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SUMMARY

The example of the grain weevils (sitophiLus

gr,anaríus) and the rice weevils (sitophiLus ot'yzae)

infesting stored wheat is used. The weevils destroy

the wheat by (1) ovipositing eggs into the grains and

(2) eating the wheat. Models for predicting the damage

to the wheat and the size of the population of the

weevils are given.

The weevil population comprises of (1) the immature

group consisting of the eggs, larvae, pupae and pre-

emergence adults and (2) the group of sexually mature

adult.s.

The system is modelled to go through two phases.

In phase I the food v'atio (that is the number of intact

girains per weevil) is above a specified critical value

and has no influence on the activities of the weevils.

In phase II the food ratio has dropped below the critical

va1ue. Then the activities of the weevils are

influenced by the food ratio. Continuous time deterministic

models for both phases are given. Because of the delay

in the emergence of adults from eggs the equations for

the weevil population are delay differential equations.

The method of steps and Laplace transform techniques are

used in solving the equations

The effect of temperature variation on the system

is incorporated by formulating the parameters of the

system as functions of both the temperature and the food
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ratio. Two computer programmes' one for constant

temperature conditions and the other for variable temperature

conditions, are included.

In the stochastic analysis of the system the

distribution of the bivariate process of the number of

intact grains and the number of adult weevils is discussed.

The moments of the other variables such as the size of the

immature group and the number of emigrants can be deduced

from this distribution. The phase I stochastic model is

a reformulation of the phase I deterministic model. For

phase II two stochastic models are given. The first one

is a reformulatíon of the phase II deterministic model.

The second one incorporates the possibility that under

reduced food ratio more than one egg may be oviposited

into a single grain. This is achieved by dividing time

into developmental periods. During each period a grain

(whether already containing eggs or not) is susceptible to

attacks by the weevils. Those grains that are attacked

are regarded u'seless at the end of the period.

In the last model equations for the spatial

distribution of weevils wit.hin wheat stored in a container

are derived. The derivation is based on the hypothesis

that the probability that a weevil continues to stay at

a point of the container is proportional to the food ratio

at the point. one of the equations is a delay integro-

differential equation. A Laplace transformation technique

is used in solving the equation. It is also shown that

the method of steps could be used to solve the equation.
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CHAPTER 1

INTRODUCTION

1.1 DESCRIPTION OF THE ECOLOGTCAL SITUATION

In the formulation of the models in this thesis

the example of grain weevils (sitophiLus grananius,

abbreviated to S.G.) and the rice weevils (SítophiLus

orAzae, abbreviated to 5.0.) infesting stored quantities

of wheat is used. In most of the discussions the

quantities of wheat are comparable to those used in

laboratory experiments. The wheat is supposed to be

stored in containers from which the weevils may elnigrate.

The weevils damage the wheat by (1) eating the grain

and (2) ovipositing eggs into individual grains. The

female bores a hole into a grain, oviposits an e99 in it

and then seaLs off the hole with secreted material

(Richards, L947). All the stages of the development of

the egg, that is the egg, larva, pupa and the pre-emergence

adult, take place within the grain. A large proportion

of the grain is used up for the development of the egg.

The proportion which is left over after an adult has

emerged from the egg can only be used for consumption by

the adult weevils. If another egg is oviposited in a

hollow grain from which an adult has already emerged, the

egg does not develop into an adult. The length of the

developmental period of an egg depends on the environmental

conditions, such as temperature and relative humidity or

the moisture content of the grain, through which the e99
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develops. Ro\nI 1 of Table 4.1 (in Appendix 1.1) gives a

few of the observed lengths under different environmental

conditions by different researchers.

The life styles of the two species, S.G. and 5.0-

are similar except that the longevity (life span) of

5.0. is shorter than that of S.G. However the progeny

for S.o. (that is the total number of eggs laid by a 5.0.

femare) is greater than that for s'G' (see row 6 of

Table 4.1 in Appendix 1.1). It has been observed in

experiments conducted at the Waite Agricultural Research

Institute, University of Adelaide, that the S.O. is more

dispersive than the S. G. Other differences and similarities

can easily be noticed from Table 4.1 in Appendix t.I.

I.2 THE AIM OF THIS STUDY

The models given in this thesis are for the purpose

of predicting the damage to stored. cereal products by

insects infesting the products. AIso the size of the

population of the insects is of interest. As mentioned

in Section 1. I the example of weevils infesting wheat

stored in a container is used. Though the experimental

results referred to in this study are for small quantities

of wheat, the mathematical analysis gives an insight into

what might happen in systems of large quantities such as

in a silo. It is also hoped thatrby revisingthe assumptions

made, the models can be rnodified to apply to other similar

infestation situations. AIso the prediction by the models

may be useful in establishing control on the damage that

is caused by the insects.
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It should be noted that while in most experimental

work it is not possible to determine the total effect of

several environmental factors on an ecosystem, mathematical

models can be handy in predicting and/or estimating the

combined effect of these factors.

1.3 PREVTOUS AND/OR RELATED I{ATHEMATTCAL MODELS

The SitophiLus species have been extensively

studied experimentally in many parts of the world.

However there have not been, to the best of my knowledge'

analytical models for the populations of the species

that compare with those for the related beetle, Tribolium.

Unlike LL,e SítophiLus LI;re TriboLium thrives best on wheat

f1our. The eggs are laid indiscriminately in the flour

and the larvae are capabte of moving within the flour.

Though the life st.yle of TriboLium is different from that

of SitophiLus , some of the analytical methods for TriboLium,

for example Bartlett (1960), MerLz and Davis (1968) ,

Neyman, Park and Scott (1956) and Niven (1968), have proved

useful in the formulation of some of the models (for

SitophiLus) discussed in this thesís.

The system of weevils infesting wheat can be modelled

as a prey-predator system. However in this case the prey

(i.e. the wheat grains) are passive in that they cannot

react physicatly to the attacks from the predators (i.e.

the weevils). For example they cannot run a\^lay! The

prey-predator models that have proved useful are referred

to in Sections 2.0 and 2.2.I.



4.

Al-so the grain-weevil system can be regarded as a

carrier-borne epidemic in which the wheat grains are the

susceptibles and the weevils the carriers. In fact, for

the stochastic models in Chapter 5' techniques for

carrier-borne epidemics (for example Henderson, L979 and

Bailey, 1975) are used in solving some of the equations.

L.4 THE SCOPE AND METHODS OF THE STUDY

The population of the weevils is taken to comprise

two age groups. Since all the developmental stages of

an egg take place within a single grain, it is reasonable

to consider the eggs, larvae' pupae and pre-emergence

adults as one group. The second group consists of mature

adutts capable of laying eggs and moving. The movements

may result in emigration. Tognetti and Mazanov (1970) and

Tognetti (1975) discussed similar two-stage population

models in which the egg-group is supposed to give "births"

to the adult-group and vice-versa. The giving of births

by the eggs is the emergence of adults from the e99s. In

the stochastic models (Chapters 4,5) the emergence prdcéss

is treated as an immigration process into the second group.

It should be noted that the Tognetti and Mazanov models

do not include explicit equations for the food medium as

done in this thesis.

The system (that is, the wheat grains and the two-

age population of the weevils) is modelled to go through

two phases. In phase I the number of intact grains

avaítabte per adult weevil (to be referred to as the
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food v,atio) is above a specified value (to be referred to

as the eriticaL food z'atio) . In this phase the food

ratio has no influence on the activities of the weevils.

In phase II the food ratio has dropped to and below the

critical value. Then the activities of the weevils

become influenced by the food ratio.

In Chapter 2 icwo continuous time deterministic

models, one for each of the two phases, are discussed-

In the phase I model the parameters such as the oviposition

rate, mortality rate and emigration rate are constants-

In the phase II model the parameters become functions of

the food ratio. In both models other environmental

conditions such as the temperature, moisture content of

the grain and relative humidity are assumed to be optimal

as those that are possible in controlled laborat,ory

experiments. Because of the delay in the emergence of

adults from eggs the equations for the population of the

weevils are delay differential equations. The method of

6teps and Laplace transform techniques are used in solving

the equations.

In Chapter 3, t,he effect of temperature variation

on the system is incorporated by redefiníng the parameters

as functions of both the temperature and the food ratio.

Discrete time equations corresponding to the continuous

time equations of the models in Chapter 2 are used in

two computer programmes, one of which is for the constant

temperature conditions and the other for the variable

temperature conditions .
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In the stochastic analysis of the system the

dístribution of the bivariate process of the number of

intact grains and the number of adult weevils is discussed.

The moments of other variables, for example the size of

the immature age group and the number of emigrants, can

be deduced from this distribution. The phase I stochastic

model, discussed in Chapter 4, is a stochastic reformulation

of the phase I deterministic model of Section 2.L. In

Chapter 5 two phase II models are given. The first one

is a stochastic reformulation of the phase II deterministic

model of Section 2.2. The second model incorporates the

possibility that, under reduced food ratio, more than one

egg may be oviposited into a single grain. This is

achieved by dividing the time line into developmental

periods. During each developmental period a grain (whether

already containing eggs or not) is susceptible to attacks

by the weevils. Those grains that are attacked are

regarded useless at the end of the period. Agreements aS

well as differences between the stochastic means and the

deterministic values of the variables involved are noted.

In the last model of this thesis equations for the

spatial d.istribution of weevils within wheat stored in a

container are derived. The derivation is based on the

hypothesis that the probability that a weevil continues

to stay at a point inside the container is proportional

to the food ratio at the point. The method of separation

of variables is applied to the equations. The time factor
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equation, which results, is a delay integro-differential

equation. A Laplace transform technique is used in

solving the equation. It is, also, shown that the method

of steps could be used to solve such an equation.

I.5 VALUES OF PARAMETERS USED TN THE STUDY

Several parameters are used in the models in this

thesis. In establishing properties of the solutions to

the models it is essential that the values these parameters

could take on are known. Table 4.1 in Appendix 1-1 gives

a summary of the parameters, their values, the researchers

responsible for the values and, where possible or

applicable, the conditions under which the values were

determined. Though, according to the table, the values

of a parameter may differ from researcher to researcher,

it is import.ant to appreciate that these values give an

idea of the possible range of values for the parameter.
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CHAPTER 2

CONTINUOUS TÏME DETERMINTSTIC MODELS

2.0 INTRODUCTION

Lêt S (t) be the number of unattacked (intact) grains

and w(t), the number of adult weevils in the system at

time t . Then E}¡e food ratio fox the system, ât time t t

is F(t) å S(t)/W(t) The reciprocal of the food ratio

may be interpreted as |-he densitg in terms of weevils per

intact grain. The other variables of interest are u(t) ,

the size of the immature group, and R(t) , the total number

of emigrants (that is, the number of weevils that have

emigrated from the system) by time t

vüith c as the cTiticaL food y,atio, the system is in

phase r if F(t) > c and in phase II if F(t) < c . The

existence of such a critical food ratio in a real ecological

system has been discussed by, for example, Maclagan and

Dunn (1935), as the number of grains per weevil below

which the oviposition rate decreases and the mortality rate

increases. According to Maclagan and Dunn c = L2.5 grains

per weevil. Hardman (L977) used the reciprocal of this

value (that is 0.08 weevils per grain) as the threshold

density above which there are increased contacts between

SitophiLus orAzae. Coombs and Woodroffe (1973) gave the

critical food ratio as 10 grains per female. Though Richards

(Lg47) observed that a significant drop in oviposition occurs
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when there \^lere t0 grains per female, he pointed out that

there was a significant increase in the rate of oviposition

when the food ratio was increased to 20 grains per female'

However, above 20 grains per female there was no significant

increase in the rate. Thus according to Richards we could

take IO < C < 20 grains Per female'

we should note that since the consumption rate for

an individual weevil could be as smalI t= 1fo- of the ovi-

position rate (see ro\^¡s 5 and 6(b) of Table 4.1 in Appendix

I.I)the female weevil would need about I00 times as many

grainsasthemaleweevil.Henceinasysteminwhichthe

sex ratio is for example 1:1, the need for t'he intact grains

bythefemaleweevilsisagoodestimateoftheneedfor

the grains by the whole population'

In the models we do not differentiate between females

and males. we assume that the mortality rate, the consumption

rate and the emigration rate are the same for both the female

weevilandthemaleweevil.Howeverinasystemofsex

ratio 1:1 the oviposition rate per weevil would be 4 the

rate per female¡ fot the male does not lay e99s'

Ït is interesting that Arditi, AbiIIon and Vieira Da

Silva(Lg77,Lg78)usedthesameideaof''criticalfoodratio''

intheirtwo-phaseprey-predatormodels.Intheirmodelthe

food ratio is defined as the ratio of the number of prey to

thenumberofthepredators.Thisisanexampleofprey-
predator methods that can be applied to our grain-weevil

system. However, we should note that Arditi et aL' inves-

tigated stability of their system' In the grain-weevil

system the discussion of stability is of little interest
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because by the time the system becomes stable all the grain

will have been destroyed. Therefore, in this chapter,

attempts are made to obtain explicit solutions, especially

f or the earlier stages of t,he storage, rather than aslzmptotic

solutions.

In each of the Sections 2.L and 2-2 assumptions'

equations based on these assumptions and the solutions to

the equations are discussed.

2.I PHASE I: SUFFICTENT CEREAL AVAILABLE

2.I.I Basic Assumptions and Equations

For this phase there are enough intact wheat grains

and, therefore, the weevils' activities are not influenced

in any way by the availability of intact grains. we also

assume that other environmental conditions such as the

temperature, å:l?...iff "iïii: Ì."{.or 
moisture content of the

grains are optimal. n Then unãer these optimal conditions

we have the oviposition rate of x eggs/day/weevil, the

consumption rate of v grains,/weevil/day' the death rate of

U weevils/day/weevil and the emigration rate of e weevils/

day,/weevil as constants. Also the time it takes an egg to

develop into a mature adult is taken to be -q" days, where

q. is a constant. Thus, Íror phase It the rates of change

of the variables S(t), W(t), U(t) and R(t) are given by

dS
æ (v + À)w(r) ( 2 .1.1)

dw_
æ- pÀw(t a) (u + e)w(t) (2.t.2)



1r.

d.u
AE = Àw (t a) + rvr (t) (2.r.3)

dR
æ

(2.r.4)

\nrhere p is the proportion of e99s that develop into adults.

The equations are subject to

(I) inì,tiaZ conditions: S(0) = So, W(0) - Ws, U(0) = 0

and R(0) = 0;

(2) nonnegatiuity: S(t), W(t), U(t), R(t) >

and

(3) bound.ary conditions: S(t) , w(t) , U(t) ' R(t) = 0 for

t < 0.

According to the equations (2.1.1) (2.I.4), once W(r)

is determined for r < t , the values of the other variables

at time t , can be derived-

The term Àvü(t) in (2.I.1) is the total rate at which

the intact grains are attacked because of the oviposition

of the eggs. since v could be as small as (0.0I)À (see

ro\^¡s 5 and 6(b) of Table 4.1 in Appendix I'1), it is'

according to (2.L.2) , the laying of eggs that is the dominant

factor in the destruction of the wheat grains' Equation

(2.I.I) , also, incorporates the assumption that once a

grain has been attacked it cannot be used in future for

oviposition purposes. In phase It that is when F(t) ¡ c,

the female avoids grains already containing larvae (Mac-

Lagan and Dunn, 1935; Coombs and v'Ioodroffe, L973). The

term Àw(t a) in (2.1.3) is the total rate at which the

adults are expected to emerge from the eggs taid a days

ago. However not all the eggs survive the developmental

stages; hence the term p),vü(t - a) in (2.L.2) with p < I.

eW t(
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The size of the immature group is implicitly involved

in determining vü(t) and s(t). The emigrants are of a

lesser importance in that once a weevil has left the system

it cannot damage the wheat any more. Therefore, wê shall

not Iay much emphasis on equations (2.I.3) and (2.L.4) -

However, in chapter 3, \^7e shatl compare computed values of

the total number of emigrants R(t) with those obtained

experimentally at the Waite Agricutltural ReSeôrch

Ins ti Lute, University of Adelaide.

2.I.2 Solution of the Equations

(A) Method of steps

We solve the system of equations (2'I'1) Q'L'A)

(2.I.2 ln particular) for 0 < t. < a and then \^Ie use the

solution as an input to the system for a ( t < 2a' Then

the sotution for a ( t < 2a is used in a similar way when

solving the equations for 2a ( t < 3a ' This procedure

is continued to 3a ( t < 4a and the following intervals.

Many authors have tended not to use this rather natural

way of solving d.eLag differential equations because they are

interested in the asymptotic solutions to the equations.

we should note that the method is useful if we are interested

in earlier solutions rather than in the long run solutions '

However, I must admit that the solutions might become untrack-

able after a few delays have been used. I should mention

that E1'sgol'ts and Norkin (1973) have indicated the signif-

icance of this method by applying it to several examples

of equations in the delay differential equations family.
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Let K = U+e (- total rate at which weevils are removed

from the system). Then multiplying Q'L'2) by ""t and

rearranging the equation we obtain

dE
(eKtw(t)) - pÀeKtw(t - a) (2.1.s)

Now define the function

J(t) = "Ktw(t).
(2.r.6\

Then from (2.I.5) we have

d

with

and

So

J(0) = Wo

J(t) = 0

w(r) = 0

(since W(0) = Wo)

for t < O (from boundarY condition

for t < 0).

J(t) - We + PÀe
Ka J(t a) dt

= .J (Ilì a) + pÀeKA J (t a) dt Q.I.7)

r'
J

0

t
f'
J

mat

where *r = lt/al (i.e.,

equal to t/a) and

Thusfor 0<t<a wehave

the greatest integer less than or

J(m a t1" "t'l ') 1
T1t

J(t) = Wo ( 2.1 .8)

For a(t<2a wehave
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K
rt-a
I woat

J

0

aJ(t) = J(a) + p),e

= J (a) + J.(o) pI (t - ") .K"

= wolI + pÀ(t - a)eK"]

Similarl-y for 2a(t<3a weobtain

62túT (t - 2a)

(2.L.e)

z

KA So substituting f or ,r ( 2a) from Q 'L '9)

(2.1.10)

( 2.1.11)

where ç¿ = pÀe

we obtain

=wol1+f¿(r a) .* (t- za)21 .

continuing with this procedure we deduce that, fot an

arbitrary t,

r (r) i
r=0

*t
.r((mt - r)a)

0t {t-m.a) t

J(t) =Wotl+CIa+f2(t Za)
n2T (t - za)21+

r!

¿Wo

Then, according Ëo (2.1.6)

W(t) = J(t)e -Kt (2.r.L2)

(B) Lap Iace Transform Met'hod

Let us denote the Laplace transform of W(È) by û(z) ;

that is

*t
I

r=0

^T

h (t - ra)'

ft(z) = J(w(r)) ê- .-ttw (t) dt.
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Then the Laplace transform of (2-L.2) gives us

¡4
zW(z) - W(0') pÀe-a"û ( z ) "fr(r),

that is

Now expanding the

we get

1/ I \
z+K\: ..e'.-""^#Ò )

Vüo

vüo

þ (z)

z*rc-pÀe -az

say.

v (z\
t

( 2. r.13)

(2.r.l.4)

usually to invert an equation of the form (2.1.13) we need

to establish where the zeros of þþ) Iie. Bellman and

Cooke (1963, Chapters 4 and l-2) have discussed, in great

detail, the curve on which the zeros of þ(z) lie'

However, the locations of these zeros are important only

if we are interested in the asymptotic properties of the

solution. In this thesis (especially for phase I) we

are concerned with solutions for the early stages of storage.

We, therefore, try to obtain explicit solutions'

In order to invert (2.I.I3) (without. first establishing

the locations of the zeros of ü(z)) we write

w(z)

second factor in powers of pÀe-t' / (z+<) '

I
@

æ
I'
L

r=0

v
(p -. r -raz

^)e

where

t
(z)

(z+rc) r*1
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Now noting that with the Heaviside unit function

t<0
H (r) 4-

L> 0

we have

J (H (t-b) s (t-b) ) = "-b'è 
(r)

the inverse Laplace transform of Úr(z) is

rl (r) (pÀ)'H (t-ra) g (t-ra)r
where

for

for

I
I

IO
l.r

t-

L

I
( z+rc)

r+1

According to Erdé]yi (1962, Section 4.2) the series (2.1.14)

is unif ormly convergent. Hence, f rom (2 .I.I3) and (2 .I. 14 )' ,

the inverse Laplace transform of ñtrl is

vü (t) - Wo 91 (t-ra)r H (r-ra) e-K (t-ra) 
. ( 2.1.ls)

AIso, for a similar application of Erdélyi's results, see

Mazanov and Tognetti (L974) . Now for na ( t < (n+I) ar

n an integer, we have t - ra < O for r ) n*I and

therefore H(t ar) = O for r Þ (n+1) . Hence, from

(2.I.15) , we have

W(t) - Vüo
À) 

r (t-ra)r 
"-* 

(t-ra)
(2.L.16)

oo
çl

)

r=0

Ir/al
I

r=0 r

which is the same as the solution (2-l--L2) by the method of

steps.
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Expressions for the Variables s (r) U (t) and R (t)

Now from

intact grains'

(2.1.1) v¡e have the remaining number of

S (t) , at time t given bY

s(r) S¡ 0Q (r) (2.L.L7)

where

o (r) Vl(t)dt I
n=0 na

ilt lE/al , so

(n+t) a
vl(t) dt +

s (0)

m -1t ¡t 'l

j w(t)dtj,
*t'

I
L

r'
J

o

f.

J

oú = v + ¡.,

and.
-I
I W(t)dt = 0

n=0

Now from (2.L.L6) I^¡e have

m

= lVo I

Evaluating the

using table of

W(t)dt I
r=0

where f'¿
. Kap^e

Simi larly '
(n+1) a

ra) te-K (r-ra) Ut

f"
J

0

f'
J
mat

t
I w(t)dt
)
mat

(t
r=0

integral in the right-hand side by parts or

integrals lrre obtain
m

*r{trc (m.-r) ']o"-"*'"

k

t
I

k=0

t
Wo

K
f'
J
mat

/n\'
\*/

I
L IK (t ra) e J

( 2 .1. t8)-Kt

I{o
K

n

I
r=0 {[.,,,-'1.]u"-*"'/n\'

\*/
I

FT

t

I
k=0

)
t

L

na

w(r) dt

r(n + I r)a I
J

k
e-r (n+t) a



Then, after some manipulation, we get

18.

-Krae

k
[ rc (m.-r) al

l.
I

-Km a
e tk:

I r< ( t-ra k

k

m-1t (n+1) a
W(t) dt =

m-t

P{ ,1, (*)'I
n=0 na

m. -1t /n\'
,!o \./

Ad,d,ing (2.f .18) and (2.1.19) we get

I
k=0

m

= ï{,.L(PI -Kra

(2.1.19)

(2.L.20)

o (r) e

m

-Kt .t /c¿\'
tt=o \*/

r
I

k=0
e

From (2.f.3) the size of the immature group, ât time

t , is given bY

¡t
u(r)= Àl w(t)dt= ÀtO(t)-O(t-a)l

J

t-a

and from (2.I.4) the total number of emigrants by time t is

given by

R(r) L W(t)d.t = t 9(t) '

where a(t) is given bY Q.L.20) '

For an arbitrary large t the expressions (2.1.16)

for vìI (t) , (2 .I.7) ( in conjunction with (2 .L. 20) ) for s (t)

and similarly for U(t) and R(t) ' are not simple to handle'

However, wê should note that the solutions are used only

for t < ttÉ i where t* is the time at which the critical

f'
J

0
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food ratio is reached and then phase I ends. The value

of t* is IikeIy to fall within the first few devel0p-

mental periods over which the expressions for the solutions

would be relatively simPle.

2.1.3 The time at which cerea1 supplv becomes critical

Let us denote this time by t* as in the previous

section. Then t* is the smallest positive root of the

equation F(t) = C , that is

S(t) = C W(t)

oE t according to (2.I.l-7) ,

So o Q(t) = C Vü(t)

Now substituting f.or o (t) from (2.L.20) and for w(t)

from (2.r.16) and then doing some simplifyingr we obtain

Fo å ): (Pi e-Kra

m r
/n\
\"/

t-ra) I rt
I
=Q

-Kt c=e r

I r< (t-ra) ]
k

q, (2.r.2L)
1-l I

K

where Fs a So/lrlo is the initial food ratio.

For *. ) L, the roots of (2-I.2L) (and therefore

t*) cannot be obtained explicitly. However we should note

that the value of t* depends on the initial conditions

S(0) = So and I^I(0) = Wo and therefore on the initial food

ratio Fo . So ]et uS determine the conditions on Fo such

(
\{

cl\
- R)

/su\"it\*/ r1o

K

m t
I

r=0
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that, for example, 0 < t* ( â, a < t* < 2a, 2a < t:t ( 3a,

and so on.

For 0<t<a (2.L.2I) reducesto

Fs d/R = (c cl/rc) e-Kt (2.L.22)

Now for 10 < C < 20 (see Section 2.0) and according to

the possible values of the parameters v' À, U and e as

given in Table 4.1 in Appendix I.1 C a'/R < 0 . Hence

the right hand side (RHS) of (2.L.22) is an increasing

function of t over the interval [Ora). Now at t = 0

RHS of (2.I.22) - C a/rc 4 Fo d/R

since Fe > C for phase I. Therefore t* e (0'a) only if

Fs * å . (c-s)"R/
-Ka

,

and then

Otherwise

Note that 0 (a)

Soift*>ar

r* = å u.,t##]

Fs

For a(t<2a (2.I.2I) reducesto

c - o,)"-rc" = trr > a. (2.L.23)
R/'å*(

-KtFo a/K = (C o/r)[I + CI(t a)]e

oCI , -Ka+ -- (e
K.

-Kt,e)

= 0(r) say

Q.r.24)

-Ka= (c a/rc) e

then according to (2.L.23) we have

0 (a) < Fs a/R



2I.

It can be shown that, for c - o,/K 4 0, 0(t) is an increas-

ing function on (a,2a). So (2.I.24) has a real solution

for t (i.e., t* € (a,2a) ) only if 0(t) can increase to

and possibly beyond Fo a/r over the interval. This is

so only if

0(24) Þ Eo a/rc (2.L.251

Thus, from (2.I.23) and (2.I.25) , we have t* e (a,2a) if

(2.L.26)

and t* > 2a if

0(2a)

The conditions on Fo for t* € (2a,3a) and higher develop-

mental intervals may be obtained in a similar \4lay. But

for these higher intervals the computation becomes more

and more difficult.

Example 2.L of the parameters as follows:

Fn ¡ q 
a-K

With the values

u 0.008333' e =

0.01492 , P =

0 .00 6436 , x

0.7 and a

1.0

50v

we can show, from (2.L.26) , that t* e (a,2a) if

40.63 < Fs < 1140-12 for C = 10

and 45.4L a Fo < L208.78 for c = 20-

The example above indicates that for small quantities

of wheat, for example those used in laboratory experiments'

it. is very likely that the critical food ratio is reached
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before the end of the seconcl developmental period. Hard-

manr s (1977\ observations agree with this. In Hardmanrs

experiments he had several cells initially containing 100

weevils and an average of 695.69 (:19900 grains) of wheat.

He observed that hís critical food ratio of I2.5 grains to

a weevil was reached in several of the cells as early as

84 days after the start of the experiments. According to

him the developmental period was 50 days. The initial

food ratio, F0 , was approximately 200 grains per weevil.

Even if we may establish the developmental interval

in which tìk 1ies, the exact value of t* (for ttr > a)

is difficult to obtain from (2.I-2L) . In Chapter 3

estimates of tt( , fot different initial conditions ' are

obtained by solving (2.I.2L) numerically on the computer'

2.2 PHASE IT: LTMITED CEREAL AVAILABLE

2.2.0 Introduction

Phase II starts at time t* at which the critical

food ratio c is reached for the first time. Note that

L' > t* does not necessarily mean that F(t') < c' rn

other words there is a chance that the food ratj-o may rise

up to and even above C at some time instant L' > t*

But in section 2.2.2 it is shown that, according to the

assumptions made in Section 2.2.L, F(t) < C for t > tt(
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2.2.I Basic Assumptions and Discussions

(A) Oviposition rate

As the food ratio, F(t) , drops to and below the

critical value C the oviposition rate, À (t) , is expected

to decrease. When F(t) = 0 (that is, when intact grains

are finished) À(t) , a1so, should be zero. so a reasonable

assumption to make is the followinq

À (t) ( constant) X F (r)

V'Ie make À (t)

constant to be

continuous at t

X/c . That is

t?k by choosing the

À (r) ÀF (r)
c

(2.2.r)

where the constant À is the oviposition rate in phase I -

The assumption that the oviposition rate is a functíon

of the food ratio is in accordance with Maclaganrs (1932)

observations on the effect of density (the reciprocal of

F(t) ) on the oviposition rate. In the mathematical rep-

resentation of his data Maclagan tried to fit the data with

the curve of the form À = mFn where m and n are

constants. He realised that he had to divide the range

of the values of F (t) into sub-ranges over which the pair

(mrn) took on different values. For example for

0.25 < F < 9 wheat grains per weevil, (m,n) was deter-

mined to be (0.19 , L.66) ¡ for 9.1 < F < 200, (m,n) was

(1.38, 0.55). He also observed that when there is one

grain for every four female weevils, the insects cannot

or will not oviposit at all. However' we should note that
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according to Maclagan's values of m and n , À = 25'44

at F = 2OO , 4.65 at F = 9.1 , 7-29 at F = 9 and

0.019 at F = O.25. The value of À at F = 200 is

an overestimation of the possible values À can take on

(see row 6(b) of Table 4.1 in Appendix 1.1) . Also there

is Some inconsistenclz in the values of À at F = 9 . I and

F = 9 ¡ these values are not expected to differ that much

and the first one should be greater than the second one.

However, according to l,taclagan's (L932, Fig. 3) it is

apparent that for F < L2.5 the data points could be

fitted by a linear relation of the form À(t) = (constant)

x F (t) . one way of reducing the overestimation of the

oviposition rate for F > I2.5 would be to take it. as a

constant over this range. Hence the formulae for À(t)

used in the models in this thesis, that is À(t) = m[ F(t)]n

with m=À and n=0 for F>c(=10) andraccording

ro (2.2.L) ,

m X/C and n=1 for F<c(=10)

are reasonable.

(B) The consumption rate

The consumption rate, v(t) , is assumed to obey the

same law as the oviposition rate. When intact grains

become Scarce for ovipositional purposes it is reasonable

to assume that it is equally difficult. to find intact

grains for consumption, So, for phase II, we assume that

v (r) vS (t)
m-(Ð

(2.2.2)

where the constant v is the consumption rate in phase I.
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(c)

From the wheat viewpoint the intact grains are attacked

and damaged by an individual weevil at the rate of

(2.2.3)

grains per day.

In connection with the prey-predator theory as

mentioned in Section 1.3 (the wheat grains being the passive

prey and the weevils the predators) , the assumption (2-2.3)

is well supported by Arditi, Abillon and vieirra Ða silva

(1978). They refer to o,(t) (or to be more precise

ct(S(t) ,W(t) ) ) as the functional response between the prey

and the predators. They compare their

cr(t) a v(t) + À(t) t+l s(r)
I^I(Ð

cr(S(t) ,w(t) )g
ât

a2S(t)/vü(t)

if s (r)

if s (r)

> dw (r)

< dw(t) ,i

where êr r ã.2 and d are constants, with the Lotka-

Voltera functional response A(S (t) ,W(t) ) = (Constant) x S (t)

(or more generally a(S (t) ,W(t) ) = Q(s (t) ) . The weakness

of the Lotka-volterra functional response is that there is

no upper timit on the number of prey that a predator can

kilI in a unit time. The functional response of the form

(2.2.3) would prevent a situation in which it would be

possible for the whole prey population to be eaten at one

time by the predators. Pearce (1970) too preferred' the

functional response of the form (2.2.3) to the Lotka-

Volterra resPonse.

There are, of course, other forms of a(s(t) 'w(t) )

that could be used for our grain-weevil system' However
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I^te should note that the form for q(s(t) 'w(t)) that would

be used depends on (1) the structure of the problem being

studied and (2) the form of the solution required from the

modeI. If an analytic solution is required, then, in

most cases, the forms of the functions, such as o(S(t),W(t) ),

involved in the model have to be relatively simple. If

a numerical solution is considered sufficient, then the

functions could be general. Howeverr wê should realise

that, in some situations, solutions to a rather general

model may give the same information as the solution to a

relativety simpler model. For our grain-weevil system

(2.2.3) seems appropriate for phase IT.

(D)

It may be argued that the two fundamental causes for

migration of insects are: (1) excessive contact stim-

ulation due to crowded conditions and (2) shortage of food

supply in the habitat (Maclagan, L932). However' \^re

should realise that even ín situations where (I) and (2)

do not apply there may be some migration. Thus even in

phase I during which (1) and (2) do not apply we expect

some emigration of the weevils. For phase II during

which (1) and (2) applyr wê expect the emigration rate

e (t) to incv'eas¿ with the decreasing food ratio F (t) .

Again here there are many possible forms for the emigration

rate e (t) as a function of F (t) . For our model we

assume that

e(t) = e+eb(c s (r) /w (r) ) (2.2.4)
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where the constant e in the RHS of (2.2.4) is the emig-

ration rate in phase I and b is another parameter which

allows some freedom in adjusting the magnitude of e(t)

Note that e (t*) = e . That is e (t) is continuous at

the common boundary of phase I and phase II -

According to (2.2.4) the maximum rate of emigration

is e(1 + bC) weevils/dayrlweevil and this occurs when

F(t) = 0 , that is when the grains are finished. one

would expect all the weevils to leave the habitat'at once'

when grains are finished. This would imply that e(t)+oo

as F (t) + 0. But this is not the case. some weevils

choose to continue staying in the habitat. In fact it

has been observed that when the food ratio is 10w the

weevils feed on frass and husks of the grains from which

young ones have emerged (coombs and woodroffe, 1964\ .

(E) The mortalitY rate

The mortality rate is expected to increase as the

food ratio decreases. However, if the weevils are free

to emigrate then the pressure of death woutd be relieved

a bit. In other words the increase ín the mortality rate

would be accounted for through the increased rate of

emigration. Thus \^7e may assume that the mortality rate

of u weevils/dayr/weevil remains constant even in phase II.

(F)

Finally \^7e make the assumption that it still takes

a days for a mature adult to emerge from an egg' We

should note that because all the developmental stages of an

egg take place within a grain the factor of crowding (that
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is, reduced food ratio) has no effect on the rate of

development of the egg. The only factor that could

influence the rate is the competition between larvae íf

more than one egg is oviposited in a single grain (¡'tac-

Lagan and Dunn, 1935). However, under optimal temperature,

relative humidity and moisture content of the grain the

developmental period may not differ that much from that for

phase I; its length can still be approximated by a days.

Then the emergence rate of mature adults from the eggs at

time t is

n (t) = pÀ (t-a) W (t-a) (2.2.5)

where

À (t-a)
À

ÀS (t-a)
t<t*+a

t>t*+a{
for

for
cw ( t-a)

2.2.2 The Equations

According to assumption (c) in section 2.2.I and using

(2.2.Ð the equation for the nr:mber of intact grains, S(t) ,

is

(2.2.6)dS
ãE

where now ô = (v + X) /C

Now using assumption (E) and equations (2'2'4)

the equation for the number of adult weevils,

and (2.2 .5) ,

w(t) , is

+ = pÀ(r-a)w(r,a)

where p=u+e(I+bc).

pw(t) +beS(t) Q.2.7)



29.

The equation for the sLze of the immature group, U(t) ISf

À ( t-a) vü ( t-a) + r (r) vü (r) . (2.2.8)

by time t satisfYThe total number of emigrants, R(t)

the equation

,

e (t) tr7 (t)

e ( l+bc) vü (t) - be s (t) . (2.2.e)

We require S(t) , W(t) , U(t) and R(t) >

Itshouldbeemphasised,atthispoint'thattheRHS

of (2.2.6) is the rate at which intact gnains are attacked'

It does not mean that the already attacked grains ' for

example, those containing eggs, are not attacked again'

we can assume that the total rate of attacks on the grains

is still v + À but only the fraction S(t)/tCvü(t)l of

theattacksmanagetolandontheintactgrains.Since
atmostoneadultmayemergefromagrainwhichatonetime

holds more than one egg (Coombs and Woodroffe, L973¡

Hardman , Lg77) S (t) /t cw(t) I also represents the fraction

of the e99s tO0p% of which are expected to develop into

adults.

The term beS( t ) in Q'2'7) may be interpreted as

therateatwhichtheintactgrainsattracttheweevilsto

continue staYing in the habitat'

Note,from(2.2-B)and(2'2'9)'thatonces(t)and

w(t)havebeendeterminedthenwecansolveforU(t)

and R(t) . For this reason we shall concentrate on

determining solutions to (2'2'6) and (2'2'7) '
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Let us check whether the food ratio F (t) is likely

to rise to and above the critical food ratio c at some

time instant t' > t* rf F(t) > c , f'or t = L' > t'r ,

then o(tr) would be greater than the rate at which the

intact grains are attacked in phase I This would not

be in accordance with the intention that o(t) is smaller

in phase II than in phase I . Also if F(t') > C then

e(t') < e and could become negative in which case it

would be meaningless to refer to e (t) as an emigration

rate. Let us consider

uË(J)-=#(s(r)/w(t), =W
Now substituting for s' (t) and w' (t) from (2.2 -6) and

(2.2.7) we obtain

F (t) - belF (t) I 2.

(2.2.t0)

Thus for W(t) > O and F > 0, ô > p, for example, is

a suf fícient cond.ition that F'(t) < 0 (that is F(t)

is a decreasing function) for t > tt(

For the possible ranges of values for the parameters

U, v, À, Cì e (see Table A.I, Appendix t'I), for example

with

u = 0.008333' v = 0.0L482, 
^ 

> 0'5'

and e=0.006436,

ô>p if b<0.5703 for Q=10 orif b<0'08525

for C = 20.
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This also indicates the range of values the dimensionless

parameter b (assumptíon (D), section 2.2.I) could take

on without invalid.ating the equations (2.2.6) - (2-2.9) .

SowecantakeF(t)<canddecreasingfort>t'f.

2.2.3 Solutions of the Equations

solving (2.2.6) subject to the initial condition

S (¡t') = S* \¡7e obtain

s(t) = s*e-ô(t-t*) (2.2.Lr)

For t* < t < t**a we have À (t-a) À. Then from

(2.2.7) we have

ål : Ptrw(t-a) pvü(t) + be S(t)

Now multiPlYing this equation bY

equation we get

.ot and rearranging the

for L>E*

t*

where W* = VÍ(t*) . The integral in

using the Phase I solution for W(r)

( 2. 1.11) and (2.I.12) ) .

St*"ot¡ = pÀvü(t-a)ept + be s(t)ept

substituting for s(t) from (2.2.LI\ and then integrating

we obtain

w(r) = w*.-e(r-r*, * år=t;["-o(t-t*) - "-û(t-t.l ]

¡t+ pÀ J" wtr a)e-o(t-t)u. , (2'2'L2)

(2.2.I2) is evaluated

from (2.f.16) (or
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For t > t*+a (2.2.7) becomes

# = Pf s(t-a) pt¡ü(t) + be S(t)

Now substituting for S(t-a) and S(t) from (2.2.II) and'

then integrating we obtain

w (t) = w (t**a) 
"-P 

( t-t* -a)

+s* [erzc + be .-t"]{
ô p

(2.2.r31

for L> t*+a

2-2.4 The time at which the cereal supply is likely to
get finished

According to (2.2.IL) S(t) decreases exponentially

but remains positive for finite t . so theoretically

intact grains never get finished. However we should note

that although, theoretícally, one graín remaining implies

that we stiIl have intact grains, practically I grain or

even 10 or 100 grains remaining, may be regarded as a

situation with no "usefuI" grains left. The remaining

intact grains may be useless because either they are

inaccessible because of their locations or they are contam-

inated. For example Maclagan (1932) observed that when

less than one grain is available to every four females (that

is when F(t) <

number of weevils at the time when F(t) = 0.25, the number

of intact grains left in the system may be large. In order

to get an idea of how soon useful grains are likely to get
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finished we could solve for the time at which the number

of the remaining intact grains is, for example, I or 10.

Example2.2z V[ith À-1.0,V=0.0]-482, C-I0 and

S* = 8952, for example, S(t) = I (that is one intact

grain remaining) when t - ttr = 90 days.

When S(t) = 10, t t* = 67 days- So if the one

(ten) remaíning intact grain(s) is (are) regarded useless,

then useful grains are finished in about 90 (67) days

after the criticat food ratio is reached.
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CHAPTER 3

DISCRETE TTI4E EOUATIONS AND

TNCORPORÀTION OF TEMPERATURE.

3.0 TNTRODUCTION

Having solved the continuous time model- for our

grain-weevil system one may feel that there is no need

to try to solve the corresponding discrete time model.

We should have it borne in mind that continuous time

equations are an approximate description of the real

situation. The events occur in the system at discrete

time points. Thus the use of discrete time equations

may be justífied. However we should. note that even when

we use the discrete tíme equations we are still describing

the situatign approximately. The solution to the discrete

time mocle1 and the solution to the continuous time model

may give the same general picture of the behaviour of the

system. The advantage of continuous time equations is

that they may be analytically solvable in some cases

where the corresponding discrete time equations are not

solvable or very difficult to solve anaIytically. However

the advantage of the discrete time equations is that they

are easily handled. on the computer. Tn this chapter we

do not intend to solve the discrete time equations

analytically but numerically on the computer. The
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discrete time formulation becomes very handy when

incorporating the temperature effect on the behaviour

of our system (see Section 3.2).

3.1 THE EQUATTONS FOR OPTII,IAL TEMPERATIIRE CONDITIOIIS

Since the unit of time used when referring to

the values of the parameters is a day (see Section 2.I.I),

the unit of time for the discrete time formulation will

be one day. Then the discrete time equations are

S(t+1) = S(t) tÀ(t) +v(t)lrv(t)

w(t+1) = W(t) + pÀ(t-a)W(t-a) te(t)+u(t) l!v(t)
( 3.1. r)

R(t+1) =R(t) +e(t)w(t)

for | = 0r1r2r... and where the variables S' W' U

ancl R are as defined in chapter 2. The equations are

still subject to

S(0) =50.n üi(0) =ülo, U(0) =0=P16¡

and S(t), \d(t) , U(t), R(t) > 0 for L)' 0.

The parameters À (t) , v (t) , e (t) and u (t) are given

by:

À

Às (r)
for

for

s(r)

s(r)

> cvt (r)

< cw(r);the oviposition rate' À(t)
CW
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the consumption rate, v(t)

the emigration rate, e (t)
e for S (t)

e*be (c-s (E)/W ft))
s (r)

> cw (r)

< cw(t) ;

> cw (r)

for
< cvù(r) ;

for

for

s (r)

s (r)

I
I

and the mortality rate U (t) = U (a constant) ,

as in Chapter 2.

3.1.1 Computer ProqrraÍune I

The FORTRå,N prograrnme used Èo solve the equations

(3.1.I) is given in Appendix 3.1.

Input. The values of the parameters used in the

progranme were as follows:

[ = 1.0,

P = o-7,

u - 0.008333, e = 0.006436,

v=0.02L285, b=0.L2 and

a = 50,

C = 10.

These values were based on the values of the parameters

for SítophiLus )z,yzae as given in Table A,.1 in

Appendix 1.1. T{here several values for a single
parameter are given in the Table, the value used in the

programme was considered to be a compromise between the

values in the Table. In particular the length of the

developmental period of 50 days was based on Hardmanrs
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(see rohr I of Table 4.1 in APPendix

The initial amount of wheat used was 600 g

estimated to be equívalent to 20,000 grains of variety

8156 Olympic wheat. Runs of the progralnme were made

for the initial numbers of 24O, L2O | 60 and 30 weevils

in equal initial quantities of wheat.

Output. The key parts of the numerical output tnat I

choose to look at are the time, t*, âÈ which the

critical foocl ratio is reached and the times tro and

tr at which there are 10 grains and I grain' respectively,

remaíning in the system. Accordíng to the argument in

Section 2.2.4 tro and t¡ gives us an idea of how

fast and when the intact grains are likely to get fínished.

These parts of the output are given in Table 3.1.

TABLE 3.1 The times E*, tro, tr (days) aÈ whích the

crítical food. ratio is reached, l0 grains are remaining

and 1 grain is remaining, respectively, fot the initial

number of Wo weevils.

ltlo t* tto tr

240

L20

60

30

56

64

76

95

119

L27

L37

L52

140

148

158

L73

From Table 3.I we note that for each of the four

initial conditions, t* lies in the second developmental
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period: 50 100 days. This is in agreement with the

condition on the initia1 food ratio Fe as given in

Example 2.I. Al-so the times tr o-t* and tl-l* do

not differ much from those obtained from the continuous

time solutions. For example for the initial number of

240 weevils S(t*) = 8952 (same value used in Example

2.2\ and, according to Table 3.1, tro-tr = 63 days

(compared with the continuous Èime solution of 67 days

in Example 2.2) and tr-t* = 84 days (compared with

90 days in Example 2.2) . This tends to confirm that

the discrete time solutions and the continuous time

solutions give more or less the same informatíon about

the behaviour of the system.

For a more detailed description of, the behaviour

of the system I feel that it is appropriate to give it

in a graphical form" Figures 3.14/B give a typical
graphical output of the computer progranme in Appendix

3.1. The curves in Figures3.lArB are for the initial

number of L20 weevils.

From the graphical output the number of intact

grains is decreasing as expected; for the wheat is

never renewed. Tn the fj-rst developmental period no

young mature weevils come up. So over this period the

size or the population of adult weevils decreases due

to deaths and emigration. After the first developmental

period the population increases well after the time t*

at which the critical food ratio is reached. Then it

decreases monotonically. The size of the immature group
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(2)

(3)

the Food Ratio,

Number of intact grains,

Number of adult weevils.
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Curves for (1)
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the
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size of the immature group, U(t),
number of ac1ult weevils, VÍ(t) ,

total number of emigrants, R(t).
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increases monotonically from zero to a maximum which

occurs after time t* but before the time at which the

population of the adults attains its maximum. Then the

size drops rapidly. In other words the rate of emergence

of adults increases rapidly. This results in a peak of

the population of the adults being reached soon after"

The food ratio increases over the first developmental

period and then it decreases monotonically and rapidly

for the rest of the developmental periods.

3.2 TEMPERATURE VARIATION INCORPORATED

3.2.0 fntroductíon

For wheat stored in places with fluctuating

temperatures there is need to incorporate the temperature

effect on the parameters. In large bulks of wheat

temperatures take long to change but in small bulks

Lemperature changes are Iikely to be as fast as the

outside temperature changes.

For the weevils, like many insects and animals,

there is an interval of temperatures within which the

weevils are active. Outside this interval, most of the

activities come to a stop and this may result in deaths

of the weevils. rn the following sections I outline the

temperature effects on various activities of the weevils.

3.2.I Development of the Egg

An egg requires a

in order to complete its

certain amount of heat energy

development into a mature adult.
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Thus at low temperatures the rate of development of the

egg is small. However the temperatures cannot be

increased arbitrarily so as to accelerate the development.

In fact there exists an upper temperature threshoLd, 0u ,

above which a retardation in the development results and

even deaths of the immature weevils may occur. Also

there exists a Louez, temperature threshoLd, 0" , below

which development stops. In the interval (eL,0u) there

exists a temperature at which the rate of development is

maximum. We shall refer to this temperature as the

optimaL temperatuye (for development) and we shal1 denote

it by 0*. [For the Iower threshold, upper threshold and

the optimal temperature in the case of SitophiLus )r'yzae

and ^gitophíLus gnanarius see row B of Table 4.1 in

Appendix 1.1. l

The curve for the rate of development of an immature

weevil- is of the form in Figure 3.2. The shape of the

development curve in Figure 3.2 is common to many insects

and animals. Logan, Wollkind, Hoyt and Tanigoshi (1976)

described the rate of development in arthropods in two

phases with respect to temperature. For the phase below

the optimal temperature 0* Logal et aL gave the rate as

an increasing exponential function and for the phase

above 0* they gave the rate as a decreasing exponential

function of the temperature 0 with 0* and 0u as

parameters. Combining the two functions, Logan et aL

obtained a curve of the shape in Figure 3.2.
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0*
L

Temperature, e

The curve for the rate of the development

of the egg. OLr 0* and 0u are t'he lower

te-mperature threshold, the optimal temperature

and the upper temperature threshold

respectively.

0 e
U

FTGURE 3.2.
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Since in our models we are taking the immature

stages of the eggs, larvae, pupal and pre-emergence

adults to constitute the immature group¡ \dê shal1 not

be concerned with the rates of development of the

individual stages but rather with the accumuLatíue

development. In other words we need to deter¡níne the

amount of heat energy that has been received by an egg

by some point in time. IThe effect of temperature on

the individual immature stages is well discussed in

Birch (1945) .l

One of the units used in measuring the heating

energy for development is a daA'degree.

Definition. In simple terms, let us consider the

following hypothetical situation. Suppose that on a

certain day the temperature remained constant at

0o (> 0") , then the amount of heating energy received

by an egg (larvar pupa t ot even an adult weevil) during

that day would be e o-0r, daA-d.egrees (Do) . If the

temperature remained constant for n days, then the

heating energy gained by an individual during those days

would be n(00-0") Do.

For a general situation, the number of day-degrees

gained by an individual, in an interval of time, is the

area under the temperature curve and between the two

temperature thresholds as shown in Figure 3.3. Hardman

(1978) estimated the amount of heating energy required

by Sitophilus ovAza.e to pass from egg to newly-emerged

adult to be 422.7 Do .
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Note that each insect or eg9 receives the heating

energy independently of the others in the system. fn

other words individuals who live through the same

interval of time receive the same amount of heating

energy over the interval.

We should have it borne in mind that temperature

is a random function of time. So in order to compute

the number of day-degrees accumulated during an interval

of time we must have recorded the temperatures over the

interval. One way of estimating the number of day-degrees

accumulated over the interval is to suppose that the

temperature varies according to a modified sine ua.ue whose

consecutive minima (or maxima) are not necessarily the

same, as shown in Figure 3.4. The shaded area in the

figure is the accumulated number of day-degrees as

estimated by the sine wave.

. Allen (L976) used the sine \^¡ave approximatj-on

technique to derive an algorithm for calculating the

number of d.ay-degrees accumulated over a given time

interval based on the two temperature thresholds and the

daily minima and maxima temperatures recorded over the

interval. Allen divided each day into two twelve-hour

intervals. Then the minima and maxima temperatures over

each of these intervals \^/ere the input data into the

modif ied sine \^Iave.

In the Computer Programme II (Appendix 3 -2) which

incorporates the infl-uence of temperature on the
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parameters I have adopted Al-Ien's algorf thm.

If an adult emerges from an egg at time t then

the egg must have been laid at time Ê where t.-€. is

the time it took the egg to receive A heating day-

degrees requíred for its fu1l development. Thus the

Iength of the developmental periocl, t-û, depends on

the seasons through which the egg has developed.

According to the output of the Computer Programme II

the length of the developmental period. could be as short

as 3I days for those eggs that develop in sufllmer and as

Iong as 220 days for those which develop through winter.

3.2.2 Effect of Temperature on Mortality Rate

Temperature fluctuations also affect the

mortatity rate of the immature stages. According to

Birch (f945) tfre larval stage, the longest of the

immature stages, is the one which is very susceptible

to temperature fluctuations. However since we have

combined all the immature stages into a single stage

we need only to consider the accumulative effect of

temperature on the survival of the eggs. So the

proportion, p, of the eggs that survive to mature

adults is an accumulative measure of survival of the

immature stages. In other words p is a function of

each of the temperature points that occur during the

development of the egg and its values depenil particularly

on the extreme temperatures that occur during the

d.evelopment" For this reason it is very difficult to
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incorporate p as a direct function of instantaneous

temperature. However the reduction in p may be

indirectly accounted for through the reduced oviposition

rate discussed in section 3 "2.3.
In adult weevils the mortality rate is expected

to increase at extreme temperatures. Between the

temperature thresholds 0" and 0u the mortality rate

is expected to vary according to the curve in Figure 3.5.

That is the rate is more or less constant for the

temperatures between the fower threshol-d 0" and the

optimal temperature 0*. Above 0* it increases rapidly.

In Chapter 2 it was assumed that, fot optimal

temperature conditions, the mortality rate remains

constant even in phase 1I. So now by incorporating

temperature the mortality rate is

u (t) u(0(r) ) (3.2. 1)

where

is the

U (0) is of the form in

constant mortality rate

Figure 3.5 and

used in Chapter

u(0*)

2.

3.2.3 Effect of Temperature on Oviposition Rate

The oviposition is affected by temperature in

the same way as the development of the egg. That is

there is an interval of temperatures within which

oviposition is possible. At temperatures outside this

interval oviposition stops. Also there is an optímaL

temperature at which the oviposition rate is maximum.

According to Birch's (I945) observations the lower
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temperature threshold, the optimal temperature and the

upper threshold, fot SitophiLus oYAzae, are J'5.2oc,

29.Loc and 34.60c respectively. The oviposition

rate curve is of the form shown in Figure 3-6.

Now combining the temperature and the food ratio

influences the resultant oviposition rate is

À (r)
À(e(r))

À (e (r) ) s (r) /cw(r)
Í
l.

for

for

s (r)

s (r)

> cw(r)

< cw(r)
(3.2.2)

where the factor À(O(t)) is given by the curve in

Figure 3.6 and À(O't) is the oviposition rate in

phase I und.er optimal temperature conditions.

3.2.4 The Consumption Rate

The consumption rate, v, ât which adults eat

the wheat grain is assumed to remain constant. That is,

it is independent of density and temperature-

3.2.5 The Emigration Rate

f have not come across any literature on how the

emigration of weevils is influenced by temperature.

However the emigration rate is expected to increase

with increasing temperature. This is because the

weevils become more active aS the temperature rises.

But there is a limit to how high the temperature can

rise before the activeness is drastically reduced. Also
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we assume the existence of a lower temperature threshold

below which the weevils are so dormant that they cannot

emigrate. In general we expect the emigration rate

curve to be of the form in Figure 3.7.

With the food availability factor and the

temperature effect combined, the resultant emigration

rate is given by

e (t) I
l.

e(0(t))

E (e (t) ) Il+bc-bs (t)/w(t) I

for

for

s (r)

s (r)

> cw(r)

< cvü(r)
(3.2.3)

where e (e) is of the form in Figure 3.7 and e(e*)

is the emígration rate at the optimal temperature in

phase I.

3.2.6 The Emergence Rate

when the temperature influence on the developmental

period is incorporated the rate at which adults emerge

from the eggs at t is given bY

n(r) = p'À(o(ÊllwtÊl (3 .2 .4)

where p' is the new proportion of eggs that are expected

to survive the immature stages and Ê is the time at

which the eggs, from which adults are emerging at time

t, were laid. ff the temperatures over the interval

(Ort) have been recorded then Ê can be determined by

using the requirement that in the t-î. days the amount
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of A heating day-degrees must have been received by

each of the emerging insects (see Section 3.2.I).

3.2.7 The Equations Incorporating Temperature and

Food Ratio

Now the equations which incorporate both the

temperature and the food. ratio can be deduced from the

optimal temperature equations (3.1.1) by replacing the

constants l,þ,e and p by À(0(t)), u(e(t)), e(0(t))

and p' respectively and the ne\^l expression for the

emergence rate n(t) is given by (3.2.41 .

In most situations the functions À(0) ' u(e) and

e(0) are unknown. However if some values of a

parameter q(0) can be determined (experimentally) at

a few temperature points, then the values of the

parameter at other temperature points may be estimated

by linear interpolation. If, for examPle, we use the

values of the parameter ã at the lower temperature

threshold 0L, the optimal temperature e* and the

upper temperature threshold 0u, then the linear

interpolation for E on (eL,0u) is given by

roL + ( q*-EL) fore<0*
g(0) (3.2.5)

g* + (Eu-E*) for 0>0*

where E" = 6(eL) , E* = E(0*) and Eu = E(eu)

In the computer progranme II I have used the

formulae (3.2.5) ín computing the values of the

I
I
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parameters À(0), u(0), and e(0).

3.2.8 The Computer Programme II: Input/output

Input

The daily minimum and maximum temperatures used

as the input for the progralnme were recorded from

December I, L977 in one of the experimental sheds at

the Waite Agricultural Research Institute, University

of Adel-aide.

The values of, the parameters used in the progralnme

were as follows:

0" = 13oc and 9u = rOOooc for development;

0" = L2oc, 0* = 22oc and. 0u = 26oc for the

other activities such as oviposition and emigration;

l(e'k) = 1.0, U(0*) = 0.008333, e(0*) = 0.006436¡

À(eL) = 0., u(0") = tr(0*), e(0") = 0.10 x e(0*);

À(0u) = 0", u(0u) = 2"0 x p(0*), e(0u) = e(0*);

p=0.7¡ c= 10;v=0.021285¡ and b-0'I2'

The initial number of grains So = 20000 (= 600 g

of variety 8156 Ol1.mpic wheat). Runs of the programme

vrere d.one for the initial numbers of 240, I20t 60 and 30

adult weevils.

Note that the temperature thresholds for the

development of the egg (that is for the computation of

heating day-degrees) are different from those for the

other activities such as oviposition and emigration.

It is assumed that these activities, other than the

development of the eggs, share the same temperature



55.

thresholds and the same optj-mal temperature. In the

real situation these temperatures may be different.

Note also that the upper temperature threshold for

development was set to an arbitrary large value (lOOOoC),

for theoretically the higher the temperature the greater

the number of heating day-degrees accumulated in a unit

time.

The data above are fox SitophíLus or'Azae. However

I should point out that the values of the temperature

thresholds and the optimal temperature are lower than

those quoted from the cited l-iterature (see row 8 of

Table A.1). The explanation is as follows. The values

of the parameters as given in Table 4.1 were determined

at constant (optimal) temperatures. I would say there

is a difference between the optimal temperature for

cultures of weevils reared at constant temperatures and

the optimal ternperature for cultures reared at fluctuating

temperatures. In the later case the weevils tend to

acclimatize to the variable conditions. So instead of

regarding a single temperature as the optimal one we

would have an optimal interval of temperatures. This

interval could be represented by an average temperature

in which case this average temperature would be less

than the optimal temperature for cultures reared at

constant temperatures. In order to minimise errors in

the estimation of the daily average temperatures by

using the mean of the daity minimum and maximum temperatures,

f used the average of three temperature points: the
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minimum in the morning (night), the maximum during the

day, and the minimum in the evening (night). Then I

realised that only one of the average temperatures

(of 31.3oc) obtained Èhis way exceeded the optimal

temperature of 29.Ioc for oviposition as given by

Birch (1953) (see ro$Í 6(a) of Table A.I). So I had to

lower the thresholds and the optimal temperature

accordingly to the values given above. I should say

that these values may not be the best to use. However'

according to the range of the average Èemperatures

obtained by using the three-temperature-points technique,

it did not make any significant difference in the computer

output when the optimat (average) temperature and/ot

the upper threshold were increased by tl or !2oC.

Output

According to the output of Èhe programme, as

mentioned at the end of Section 3.2.L, the developmental

period. could be as short as 31 days for the eggs which

developed through the summer period of December 1978-

January Lglg, .rrd å" long as 220 days for the eggs

which developed. through part of Autumn; the winter and

spring of 1978. These values compare well with Birchrs
(f945) observations of 27.7 days aÈ the supposedly

optimal- temperature of 29 .Loc and 230 d.ays at L5.2oC

f,or one egg of SitophiLus o?Aza.e per grain.

Figures 3.8 and 3.9 are the graphical output of

the programme for the initial numbers of weevils Ws = LzO

and 30 respectively. The curves for S(t) and F(t)
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FTGURE 3.8A

Curves for (1) the Food. Ratio

(2) Number of, Intact Grains

(3) Number of Adult VÍeevils

(4) Temperature (December I, L977 February l, L979)

for the initial number of We = I20 weevils, in 201000 grains.
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FIGURE 3.88

Curves for (1) Temperature (December I, L977-Eebruary 1, L979)

(2) Síze of Immature GrouP

(3) Number of Adult Weevils

(4) Total Number of Emigrants

for the inítial number of We = 120 weevils Ln 20,000 grains-
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FIGURE 3"94

Curves for (1) Food Ratio

(2) Number of Intact Grains

(3) Number of Adult Weevils

(4) Temperature (December L, I977-Eebruary 1, L979)

for the initial number of, Ws = 30 weevils in 20,000 grains'
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FIGURE 3.98

Curves for (1)

(2)

(3)

(4)

for the initial

Temperature (December I, L977-Eebruary 1, 1979)

Size of Immature Group

Number of Adult Weevils

Total l{umber of Emigrants

number of We = 30 weevils in 201000 grains.
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are similar to the corresponding curves in Figure 3.IA
for optimal temperature condition. Though the curve

for Vr(t) is similar to Èhat in Figure 3.1 there is a

rise in the curve in Figures 3.8 and 3.9 at the end of
hlinter. This rise, which is absent in Figure 3.1, is
due to the relatively large nr:mber of adults emerging

from the eggs whose developmental periods had been

Iengthened by Winter temperatures. The rise is more

pronounced in the case of the initial number of 30 weevils.
Unlike in the case of optimal temperature (Figure 3.lB)
ttre curves for U(t) and R(t) in Figures 3.BB and

3.98 are rather flat in $rinter. The stationary feature
of U(t) in Winter is due to the reduced rate of
oviposition combined with the reduced rate of emergence;

and that for R(.È) is due to the reduced rate of
emigration.

AIso from the output of programme fI we have

Table 3.2 which shows the times, t*, ât which the

criticar food ratio was reached in the four cases of the

initial numbers of 240, L2O, 60 and 30 weevils, The

times tl o, tr are the times at which there were ro intact
grains and I íntact grain, r""p."tivefy, remaining in

ithe system

I NoÈe that in the case of the initial number of
y 240 weevils the values of t* in Tabres 3,1 and 3.2

are nearly the same (that ís t* = 55 days for the



There appears to be a contradictj-on her:e- bet-weel-r the performance of

weevils under real and optimal temperature conditions, in that the weevils

have reached t* earlier under reaf conclítions than under supposedly

optimal conditions. Howevero the problem is overcome by referring to the

definition of optimal temperature conditions (p- l0) ' especially the comment

"there is no reason to believe that weevil growth, grain depletion or time

to the criticaf temperature will attain their maxj-mum or minj-mum values

under these conditions" '
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TABLE 3.2. Times t*, tro, tr (days) at which the

critical food ratio was reache.d, 10 grains were

remaining and I grain was remaining for the initial

number of Wo weevils when the temperature was

incorporated..

Wo t* t¡o tr

240

L20

60

30

55

72

88

LO2

315

341

369

388

372

388

413

427

variable temperature conditions and t* = 56 days f.or

the optimal temperature conditions). This implíes that

the Summer temperatures correspond to the optimal range
Ínselt ' Se,r e1q':te \c{3€

of temperatures. r. For the other initial numbers of

weevils phase I was prolonged due to the Autúmn and

lilinter weather which commenced before the critícal food

ratio had been reached.

Finally I compare the total number of emigrants,

R(t), determined experiment.ally by Mr S. Mlambo at

the flaite Agricultural Research Institute, University

of Adelaide, with the corresponding outpuÈ of programme

fI at several time points as shown in Table 3.3. According

to Table 3.3 there is a reasonable agreement between the

observed and the computed t.otal number of emigrants for

the initial numbers of l{o = 240, L20 and 60 weevils. In



TABLE 3.3. ComparisOn between the observed and

from systems which started in December L, 1977

20,000 grains. In each case the initial ratio

computed total number of emigrants, R(t) '
with We = 240, I2O, 60 and 30 weevils in

of femal-es to males was 1: l- -

or(,

Day

0

22

64

l-20

L76

232

28B

344

400

427

F/nghllu -

Ending -

L/L2/77

22/L2/77

2/2/7 8

30 /3/7 8

25/s/78

20/7/78

L4/e/78

e /LL/1 B

4/r/7e

r/2/7e

329

20L2

3060

3L92

3805

4655

4827

5493

0

31

243

3420

4948

4987

5007

5270

5582

570 3

0

For Ws = 24O

Observed ComPuted

For Vüo l-20

Observed ComPuted

L34

940

L704

2052

3025

4265

47 80

5071

0

16

99

2084

3835

3885

3 914

4285

4798

497 5

0

For We 60

Observed ComPuted

66

636

104 1

r1l5

2638

30 35

440r

0

8

50

951

2]-83

2239

227 5

2869

4 018

4432

0

For Ws 30

Observed ComPuted

TOTAL NUMBER OF EMIGRANTS

11

24

33

38

4I

59

L26

0

4

25

370

100 I

10 36

1060

1860

4 115

4953

0
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the case of W¡ = 30 the computed number of emigrants

is far greater than the observed ones. The big differences

may be due to lack of the weevils to aggregate for the

purpose of mating. Individuals wander about the habitat

for a long time before they can meet one another. Hence

the oviposition rate would be drastically reduced

resulting in a very slow growth of the population and

hence the small number of emigrants.

The We = 30 case tends to suggest that there is

an interval for the food ratio within which emigration

(as well as other activities) is independent of the

food ratio. outside this interval (that is at low food

ratio as well as high food ratio) it is a function of the

food ratio. In fact Maclagan (1932) pointecl out that

his experiments indicated that if the number of wheat

grains were increased from 400 per female weevil to 800

or even 600, there followed a reduction in the number of

progeny, which meant there was an optimal degree of

crowding (or food supply per weevil) in regard' to the

number of eggs oviposited. So it seems that the food

ratio of 800 grains per female weevil (that is 400 grains

per weevil if the ratio of females to males is 1:1) is

another critical food ratío which is not incorporated in
for

our equations. However we should note that/the initial

number of Vlp = 240, L2Ot and 60 weevils in 20'000 grains

the food ratio is less than 400 grains per weevil. Hence,

for these initial conditions our equations should be

alright.
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Accord.ing to the discussion in the previous two

paragraphs the two-phase formulation would be applicable

to quantities of wheat ancl initial numbers of weevils

used in laboratory experiments in which the initial

food ratio is not too high. For targe quantities of

wheat such as those stored in silos (with small initial

numbers of weevils) we would need to consider ä three-

phase formulation. So this is another approach that

could be consiclered for future models.



66.

CHAPTER 4

A STOCHASTIC MODEL FOR PHASE I

4.L INTRODUCT]ON

The model discussed in this chapter is a stochastic

version of the deterministic model in section 2.1. In

the present model the parameters are no longer determínistic

but probabilístic. That is, for example, with the

oviposition rate as À eggs/ð.ay/weevil we mean that

the probability that a weevil oviposits an egg in an

infinitesimal time interval (t,t+ôt) is Àôt. so the

number of intact grains, S(t); the number of adult

weevils, W(t) ; the síze of the immature group' U(t) ;

and the total number of emigrants, R(t), at time L,

are random variables. We stitl define the random variable

for the food ratio as F(t) = S(t)/w(t) -

In any situation a stochastic version of a

deterministic model , Lf possible, enables us to determine

or estimate the variances (and higher moments), in

addition to the means, of the variables involved. Also

the stochastic mean of a random variable may be used as

a check on the accuracy and,/or validity of the corresponding

deterministic value of the variable. For example for our

grain-weevil system it is shown in section 4.5.1 that

the stochastic mean of the number of intact grains is

not the same as the deterministic solution obtained in

Section 2.L.
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In the stochastic version we consider the

distribution of the bivariate process {s (t) ,w(t) , E Þ 0}.

Let us recall from Section 2.L,I that during phase I

the weevil population is not influenced by the number of

intact grains available but the weevils destroy the graíns.

So the distrj-bution of W(t) can be derived independently

of the distribution of S (t) . Then using the conditional

distribution of S(t) given a sample path of {W(L), 6 < t}

the distribution (moments, in particular) of S(t) may

be determined..

The differential eguations for the conditional

probabilities

ps(tlw(.)) = P(s(t) = sl{w(e) , 6 < t})

are clerived and solved recursively" However in an attempt

to obtain expressions f.or the conditional moments or the

probability generating function (p.g.f.) of S(t) ' the

solutions prove cumbersome tO use, In order to reduce

the difficutty in handling the p.9.f. of S(t) an

artificial variable 3 ttl is introduced to represent

s (t) . The variable ê ttl takes on the positive values with

the same probabilities as S(t). But, unlike S(t) '
ôttl takes orrr a1so, the artificial values -It-2,. ".,-*'
The equations for Èhe means of ôttl and v'I(t) work

out to be the same as the ones for S(t) and w(t) '
respectively, in the deterministic modef in section 2.I.

ABut, since sttl I s(t), this implies that the mean of
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the random variable S (t) does not satisfy the same

equation as the determinisLic variable S (t) . In section

4.7 it is shown that the mean of ôttl is a lower bound

of the mean of S(t) "

The conditional p.9"f. of êttl given {w(6), 6 < t}

is used in the derivation of an approximate joint p.g.f'

of ôftl and vü(t). In the derivation the emergence

process {n(t) , L Þ O} is regarcled as an immigration

process that is independent of the adult weevil population.
of

Two independent methods (one/wtricfr is the method of "marks

ancl catastrophe") are used to obtain the approximate

expression for the joint P.9.f.
The means of êftl and w(t) are used in

determining an estimate of the time t* at which the

food ratio is expected to drop to the critical value c

for the first time.

4.2 A REVIEW OF THE ASSUMPTIO}IS

with the same environmental conditíons assumed

f,or phase I in Section 2"I the oviposition rate of À

eggs/ó.aylweevil, the rates of emigration and mortality

of e and lJr respectively, weevils/ð'ay/weevil and the

consumption rate of v gtaíns/weevj]-/ð2y are constants.

AIso the proportion, p, Of the eggs that are expected

to develop into mature adults is a constant. The

expected length of the devetopmental period, from egg to

mature adult, is taken to be equal to a fixed number of

a days,
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As in the deterministic case (section 2.I) phase I

corresponds to F(t) > c (or s(t) > cw(t) ) . when the

food ratio F(t) drops to and below the critical value

c the formulation presented in this chapter will no

longer be valid. The modets for the phase II (that ís,

f.or F(t) < C) are discussed in Chapter 5.

At time t=0 there are So intact grains and We

mature weevils in the system. The size of the immature

age group, êt the time, is zero.

Given a sample path of the weevil population'

{w(t) , L > O}, the wheat grains are destroyed at the

rate

&(r) = (À+v)w(t) (4.2.L)

and the rate at which mature adults emerge from the

immature age group is

n (t) = pÀW (t-a) Ø.2.2)

where the parameters in the right hand sides of (4.2.I)

and (4.2.2) are as defined in the first paragraph above.

4.3 THE DISTRIBUTION OF THE WEEVILS ( INSECTS )

Since there are no young weevils emerging from

the eggs over the time interval o < t I dr {w(t), 0 < t < a}

is equivalent to a death process in which the 'odeath"

rate, K, is the sum of the death rate U and the

emigration rate e. That is K = U+e" Hence with Wo

adult weevils at time t=0
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P (W(t) = w)
Ws

f^7
e-wKa(I-"-rt,!fo-w\

)

(4.3.1)

vartw(t) I = woe-*t(1-e-*t)

f,or 0 < t ( a.

Let us denote the n-th developmental períod,

that is the time interval ((na, (n*1)al ' by Dî' Next

Iet us consider the conditional distribution of w(t) '
t € Dn given a sample path of {w(6) , e e Dr,-r}'

For n Þ L, {w(t), L e Dn} is a death-emergence

process in which the emergence rate is given by (4.2.2).

Then, for t € Dn, the Probabilities

pw(tl{w(ç), 4e rr,-ri) a=p(w(t) -wl{w(6), e e 
'n-t})

satisfy the difference-differential equations

d.pa \¡¡¡

ãT = - [rcw+n (t) J n, (t) + rc (w+I) pw+1(t)

+ n (t) no,_, (t) (4 .3.2)

for O<t(a" Therefore

EIW(t) I = Woê -rct

with pw= 0 for w<0

Muttiplying (4.3.2) bY

can show that the P-9.f"

andsummingover wÞ 0 we

( e D -i)- n-I

t
I

w
v

I v'p (t {w(6) ,u¿
w

cn(rl{vü(6), (eD . Ì)n-I
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satisfies the differentíal equation

AG

T+ = -" (y-r)
AG

-ãy + (y-1) n (t) G' (4.3.3)n

The auxiJ-iary equations for (4.3.3)

dG

are

dr
I

dv
r (y-t) y-1) n (t

n
Gn

Hence we have

åË = " 
(y-r) ÈÞ (y-1) = AeKt (4.3.4)

(4.3.5)

where A is a constant; and

d ( &n Gr,) = (y-1) n (t) dt

Now substituting for (y-1) from (4.3.4) and integrating

we obtain

c exp{-n
I
J

An (r)eKtdt] = constant
t

na

= 0(A) say.

Substituting f,or A from (4.3.4) we have

c exp{- (v-1)
n

t 
n(t)e-r(t-t)d.t]t'

J na

= 0((y-1)e -rt (4.3.6)



Now using the initial condition

G,r(nal{w(E), Ç e Dr,-r}) Ow(na)

we have

"w(na) 
_ o((y_l)"-"t")

which implies that

0(e) Ie"*t" + 11w(na)

Hence from (4.3.6) we have

cn(tl{w(6), ç e ,rr-r})

tr + (y-1)e-r(t-na)1w(na) x

72.

-ç (t-r) Ì ( 4.3.7)exp{ (y-1) n(t)e
na

t

= v,ï(na).-* (t-na) *f
(4.3.8)

n (r) e-r (t-t) d,

t

Then from the p.g.f . (4.3.'7) we obtain the conditional

expectation of w(t), t € Dn, to be

Etw(t) l{w(e ), Ç e ,r,-r}l

t

and the conditional variance

var[w(t) | {w(6), Ç e rn-t}]

= 9'J (na) e

na

- rc ( t-na) -rc (t-na)
( r-e

+
na

n(t)e-rc(t-t)d, (4.3.9)
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Proposition 4.L The stochastic mean , E(w(t) ) ' of

the number of adult weevils is the same as the deterministic

value of W(t) determined' in Section 2'L'2'

Proof. From (4.3-8) we have

EIw(t)l = Elw(na)le -r (t-na)

has been substituted for from

J(t) = E(W(t) )e*t ín (4.3-to)

t
J (t) = .r (na) + P).e*' J ( t-a) dt

pÀE{w ( r-a)]e- r 
( t- t ) d. (4.3.10)

(4.2.2)).

we obtain

+
t

na
l"

J

(where n (t)

Now setting

I
J

which is the same as equation (2'L'7) ' ill

Hence,

EIw(r) l

according to the proposition, the solution for

from (4.3.I0) is given by Q'L'r6)' That is

na

It al
^

t (t-ra
t

r=0

r -K (t-ra)ô
I (4.3.11)EIw(t)l - wo

It is not possible to come out from (4.3.9) with

a neat expression (such as (4.3.11) for E [vü(t) I ) fox

the unconditional variance Var[W(t)]' However' íf the

distribution of W(6) , Ç e D,,-I has been d'etermined

(for example for Ç e Do), (4'3'9) can be useful in

estimating the possible range of values Varlw(t)l can

take on for t € Dn
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4.4 THE DISTRIBUTION OF TNTACT GRAINS GTVEN A SAMPLE

PATH OF THE INSECT POPULATTON

Let p (t.lw{-)) = P(s(t) = sl{w(e), 0 < 6 < t}) (4'4'0)
5

sínce the wheat is not renewed and the grains are

continuously being destroyed by the weevils s(t) ( so

(the initial number of intact grains). AIso,obviously,

s(r) >

(4.4.1)ps(tlw(')l = o for s < o or s ¡ so

Now, by considering the transitions of S (t) given

{w(6), o < 6 < t} over the time interval (t,t+ôt) t,rre

can easily show that the probabilities (4.4.0) satisfy

the differential difference equations

dp^
ãÈ=-õPs+õP=+r

(4 .4 .2)

for s = Lr2r...¡Ss , and

dpo
_=dr c¡üP r

(where õ is given by G-2.I)), subject to the initial

conditions

0 for
1 for

s I so

s = So

(4.4.3)

(4 .4 .4)p (0lw(o) )
s

Í
L

I
Í

The term -õpo is absent from the right-hand side of

(4.4.3) because once the grains are finished the weevils
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cannÖt eat any more!

Let cs(r,xlw(-))
Ss

I
s=0

*sps(rlw(-)).

Then from equations (4.4.2\ and (4.4.3) we get

d\J
S = õ(1 r)c'xs (4 .4 .51

(4.4.6\

(4 .4 .7',)

The awkward unknown term -õ (* l) po (t I W (' ) ) presents

difficulties if we try to solve for the p'g'f' G" from

(4.4.5). ff õ were a constant then one way of solving

(4.4.2) and (4.4.3) would be to apply Bailey's (L964'

chapter 11) Laplace transform technique to these equations

to isolate po (t) " But in this case, where cr = cl(t) and

unspecified as yet, Laplace transforms of the right-hand'

sidesof(4.4.2)and(4.4.3tcannotbeworkedout:
explicitly j-n terms of the transforms of P=, s=0'I" " 'So'

We no\nl resort to solving (4.4 .2) and (4 ' 4 '3)

recursively. Starting with s = So, (4'4'1) and (4'4'2)

give

ar

-A(t)p =eSo

where
t

A (r) õ,(t)dt
0

Now from (4.4.2) and (4.4.4) we obtain

I
J

A(t)p e f'
JoS

for 0<s(So-1.

õ(t)eAtttn"*r(t)dr (4.4.8)
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so setting s = so-l in (4.4.8) , then substituting for

pro from (4.4.6) and integrating we 9et

p = A(t)e -A(t)
s o -l

Similarly, for s = So-2, \¡re get

t "Ez -A(t)
Pto-z ( t

J

õ(tz) õ (r r) dt rdtz) et

J0

t -A(t)õ(r)dt) 2e

0

Inductively or recursively we obtain

t So-s -A(t) for s=lr2r...,So G.4.9)
Dts So-s e

Now by either integratíng (4'4'3) or using

p
s
(tlw(.)) = 1

we obtain

S -t -A(t)po(tlw(')) = r
0

I r! e
r=0 (4.4.10)

I
î t

J

So

I
s=0

A(r) I r

i
r=S o

-A(r)e

õ

Let us note that with õttl "= So S(t) '
is the number of grains damaged by time

that ís

tr wet(

have
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s!
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(4.4.1r)
s=0r1r... rSo-lfor

and

P(s(r) so lw(.) )
lA(t) , 

r"-A(t)
r!

The right-hand side of (4.4.11) is a probabilit.y mass

function for the Poisson distribution with A(t) as its

mean. In other words the grains are destroyed according

to a Poisson process but, unlike the usual Poísson process

whose source is infinite, the destruction process comes

to an end when there are no more intact grains left.

From the probabilities (4.4.9) and (4.4.10) we can

get the conditional p.g.f . of S(t) given {W(6) ' 6 < t}

in a series form. However this form proves cumbersome

to use. This difficulty prompted me to introd.uce a

non-physical random variable ô ttl which is closely related

to S(t) and whose conditional p.g.f. given

{Vü(6), O < ç < t} can be obtained in a more compacL form

as shown j-n the next section. Also working with êttl

it is possible to show that the stochastic mean E(S(t))

is not the same as the d.eterministic value of s(t) as

determined in Section 2.I.

4.5 AN ARTIFTCIAL RANDOM VARIABLE FOR TTTE INTACT GRAINS

c

æ

It 0

Let the random variable 3 ttl be defined as follows '
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(i) P(ô(t) = sl{w(ç), o < q < t})
for s=I ,2r--.rSs.

(ii) The conditional probabilities

ô"{.lwt.)) = Ptêttl - sl{w(ç),

= P(S(r)=sl{w(ç), o < 6 < t})
(4.s.1)

o<6<r])

satisfy the equation (4.4.2) ' That is

clr)
ÞE - -õps + dP"+t

for integers s, € (--rSo] ,

(4.5.2)

(4.s.3)

(4.5.4)

where

0 for s>So

Then according to (4.5.I)

ps(rlwl.) ) = ô,(tlw(') ) for s>L

Proposition: Po (tlw(') )

0

I
Þ-

ô (rlw(.))
Þ

p
s

Proof:Solving(4.5.2)recursivetyintheSamewayas

when solving (4.4.2) we get

@

ô -A(t)

f.Or s = So, So-I , ... r1r0 ,-Lr... ¡-æ'

0

I
s=-æ

1)=
Þ

0

fl

L
s=-@

So
C^-ê

lA(t)l"u " ^-e(t)-'!!g (So-s) !
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tA(t)-lr ^-A(t)r!

=Po (from (4.4.10)). lil

Thus knowing the Probabilitíes Ps , integer

s € (--rSol, we can deduce the probabílities ps

from (4.5.1) and (4.5.3).

Let ô(t,xlw{.1) be the generating function for

the probabilities ô= That is

ê(t,x lrv(.) ) x l"l < 1.

i
r=S o

Ss

I
s=-@

pS
I

Substituting for P from (4.5.4) \Á/e get

t

ê(t,xlw(.) ) = *so exp{ t!-uA(t) }

Now substituting for A(t) from (4.4.7) and using

(4.2.I) we obtain

=x So w(r) drÌ (4.s.s)
0

Let me point out that we can extend the artificial-

variable technique, used above, in determining the

conditional probabilities ps (t lWt. ) ) to deriving (the

generating function of) the joint probabilíties

psr^r(t) ! P(s(t) = s' w(t) = w)

ê(t,x lw(.) ) exp{ ( À+v) rl-u j

An example of this extension is in Chapter 5, Section
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5.L.2 in which the number of weevils w(t) (instead of

s(t)) is the one represented by an artificial variable'

Also it is worth mentioning cox and smith's (1961'

Chapter J.rr, Section 3.1) example on queues in which'

because of th.e awkwardness of the equations (similar to

the one of the equations (4.4'2) and (4'4'3)) satisfied

bytheprobabilitiesfortheirsystem,theyextendedthe

domain of the states of the system to -oo' To ensure

that their extended system gave the required solutions

fortheprobabilities,theyintroducedanartificial
relation connecting the o and -1 states of the system'

So, in theír case, once t'he probability for being in the

artificial -1 state is determined, the probability for

the zero state can be deduced. For our grain-weevil

system the probability of the zero-grains state is the

sumoftheprobabilitiesfortheartificialstates
or-1 ,-2r...¡-@.

4.5.r Mean and Varianc e of the Artifi cial Variable

From the conditional p.9'f' (4'5'5) of ôttl

given {w(4) I 6 < t} we have the conditional expectation

of â ttl given by

lw(-)l AG t x W

x=I
E Iâ (t)

t
= So (v+À)

0
W(r)dt (4.5.6)
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t l-s(Therefore the unconcliLional expectation of

given bY

(v+À) E(w(t) )dt
0

Sínce E(w(t)) satisfies the same equation as the

deterministic value for W(t) (see Section 4'3), the

equations (4.5.7) and Q -L.7) show that E (ê (t) )

satisfiestheSameequationasthedeterministicvalue
for the number of intact grains, s(t). But the artificial-

variable ô ttl is not the same as S (t) . Therefore the

stochastie mea.n I E(S (t) ) , and the deterministic uaLue

for the number of intact grains are not the same ' In

section +.7 I show that the deterministic value is a

Iower bound for the stochastic mean'

The conditionaf variance of ô (t) given

{w(6) , e < t} is given bY

ôttll = so
t

t
J

(4.5.7)
E (

a'êI
L

vartô(t) lvr(.)l 5g

= l*(å,ry) . #l _.x=I

where â = ê(t,xlw(')) as in (4'5'5)" Taking the

logarithm of (4.5.5) and then dífferentiating the result

twice with resPect to x we have

*(å H )t
t

x=I
--So * 2(v+À) I

J 0
!'i(t) dt
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So adding AG

5x to both sides we obtain
x=1

t
var IS (t) ] cl Etw(t)ldt

var[ê(r) lw(-)] (v+À) I
J

W(t)dt
t

(4.5.8)
0

Before we determine the unconditionar variance of ô ltl

Iet us note the implication of (4.5.8). According to

(4.5.8) the variance of Sttl is an increasing function

of time for any given sample path of the weevil population.

In the evaluation of var t3 (t) I let us note the

identity

vartô(t)l = ElVartôttl lwt'llt

+ vartE(ê(t) lw(-))l

Hence from (4.5.8) and (4.5.6) we have

I
J o

+

(4.s.e)

+

v{hile et¡r(t)l is given by (4.3.11) we have not determined

the joint distribution of w(6) and w(r) , e I r ' Hence

¡t rt
o'l I rtw(t)w(E) 1drd6

JoJo

et eE

o'l I ntw(r)lEtw(6)ldtdç
J oJ o

.,jr"tw(t) ldt

¡L rE
o' I I co,t(W(t),W(6) )dtd6

JoJo
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the evaluation of Etw(e)w(t)l is not possible f'or all

values of e,r . However for r r 4 ( a it is possible

as follows. Since {W(t), 0 < t ( a} is a pure-death

process (see beginning of section 4.3) the conditional

distríbution of w(r) given w(6), e l Lt is the

binomial distribution b (W(6) , "-* 
(r-E) 

) . Now consider

EIw(ç)w(r)l = E[w(q)n(w(r) lwte) )J

- ElW2(ç)e -r (t-6) (4. s. r0)

But w(6) is of Lhe binomial distribution I blwo'e-"8)

Hence EIW(Ç)w(t)I can be determined from (4'5'f0)'

Then substituting for the expectations in the R.H.s. of

(4.5.9) and integrating it can be shown that ' for

0<t(âr

Var IS (t) ] = +(r-e-*t) [l+crt-f (t-"-*t)]

4.6 APPROXIMATE DERIVATI ON OF JOINT DISTRIBUTION OF THE

l

ARTIFICIAL VARIABTE AND THE IiüEEVILS

In this section our grain-weevil system is

approximated to one in which the emergence process of

youngweevilsfromtheeggsistakenasanimrnigration

process independent of the adult weevil population' The

original weevils (at time t=0) as well as the "immigrants"

(that is the offsprings) are assumed to behave independently
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of each other.

The derivation of the approximate joint p'g'f' of

ôttl and W(t) gives us an opportunity to look at two

alternative methods (see Sections 4.6.1 and 4.6'z) that

can be used to deríve Purirs 0975, Eqn ' ]-4) result for

a time-homogeneous birth-and-death process with possibly

time d.ependent immigration rate - In our case the

immigration rate (emergence rate) n (t) could be

deterministic or stochastic, but it should be independent

of the weevil population.

First we look at this joint p.g. f - ê(t,x,Y) of
^^
S ttl ancl W(t) given S tOl = So and W(0) = Wo That

is
ê(t,x,y) = E(xs(t)yv{(t)) , l*l,lvl < r

with s Weê(o,x,y) =x v

Now

G(trxry) = elyw(t)s(*3 (t) ¡ {w{r), O < t < t])l

= n Iyw 
( t) ô (t,xlwr,r ¡1

Now substit.uting for ô(t,xlUlrl)from (4.s.s) we have

ê(t,x,y) = elyw(t).*p{ (À+v) tl-U j

= *SoELy*(t)"zQ{t),

w(r)dtÌl
t

0

t
I
J

where

o(r)
0
W(t)dt
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and

¿J-

Let us write

w(r) ze(L) = E(E¡y*(t) "'Q 
(t) lin (r) , O < r < t]l )Ety e

tr+vl tl - 1)

l

Then with

If (t, y ,z) = E [.ylv 
(t) 

ezQ 
(t) 

I {¡ (t) , O < t < t]l

the joint p. g. f . of ô f tl and I^r (t) is

â(t,x,y) = *toulH (t,Y,z)l (4.6.0)

We could use Puri (1975, Eqn ' L4) to obtain an

expression for H(t,Y,z). However (as already mentioned)

we shall derive the expression fot H(t'Y'z) using two

alternative methods. Method A (section 4.6.I) gives

usinsightsintothetechniquesusedtod.erivePuri's

result.Thetechniquesusedinthesecondmethod(that

is the method of "marks and catastrophe", section 4'6'2)

are not only interesting but also give insights into a

wide range of problems to which the method could be

applied.

4.6.I Method A

According to thís method we make use of the

expression for

Hr (t ty tzl "= ¡lytt ( E) ezQr 
(t),
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where {wr (t) , L > O} is a death process and

t
Qr (t) Wr (t) dt

0

I
J

Therefore r,,le need to determine Hr (t ¡Y¡z) ' lrn our case

we could interpret wr (t) as the number of, the original

weevils still in the system at tíme t'l

Let the death rate in the process {wr (t) , L Þ 0}

be K = U+e and Wl (0) = !'Io (the initial number of

weevils) "

In order to determine Hr (t,x,Y) we shall use

Puri's (f966) argument by which he derived the

characteristic function f,or the bivariate process
rt

{(x(t), l-x(r)dt), L> 0}, where {x(t),LÞ 0} isa
Jo

bírth-death process. In our case \^te are interested in

the moment quasi-probability generating function'

Hr (t,y,z) of {(wr (t), Qr (t) , L 2 o}-

Let ôWr and ôQr be changes in Wr (t) and

Ql (t) , respectively, over the time interval (t, t+t)

where r is infinitesímaI, suctt that a maximum of one

event (death) may occur over the interval'

So, given W(t) = n

ôWr = 0 and ôQr = nr if no death occurs

and 6wr = -1 and ôgr = n0*(n-1) (t-0)

if a death occurs, where t+O (O < t) is the time at

which it occurs.
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Let P = P(no death occurs in (t,t+r) lw-t (t) : n)
0rD

and P rrn = p(a death occurs in (t,t+t) lWr (t) = n) .

Now with the probabilistic rate of death as K = u*e '

P(an individual does not die by time t) = "-"t

Therefore

(e-"t)t = 
"-rIKr

- (n-1) rt

-r0
f(0) KE

Dtort

nr,, = (i),r-e-"-)"

Let O be the r.v. which takes on the values 0

(where death occurs at t+O). Then from Puri (1966) Èhe

conditional probability density function of 0 given

0<r is

(4.6.1)

(4 .6 .2)
-VTr-e

Next we consider

First let us evaluate

s (yôwr"ZôQt l*. (a)

Hr (t+r ,y,z) = E(y!Ít (t) +ôv{r.z (Qr (t) +ôQr ) 
)

- E[ywt (t)"zpr (t)n(yu*tezôQr lwr (t) )].(4.6.3)

* nr, J-' fl", 
t"o+ (n-r) (r-o)l r (o) dono ,.y 

o azn'r

=n)

+ 0 (t)
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Now substituting fox Po,, and nr,r from (4'6'1) and

for f(O) from (4-6.2\ and then evaluating the

integral we obtain

E (yôtt eZ ô Qt lw, ( t) -n)
(z-<) r .e-L:ê

So replacing n in

(4.6 .3) we have

H r (t+t ) ,Y,z) -IIr (l,y,z\

(z-r<) nt + .*e (z-r) (n-1) t 
¡

v
lz K

+ O(t) (4.6 .4 )

(4.6.4) bY wr (t) and then using

T

= E{ywt 
(t)ezgr (t) I(e'('-rc) twr (t) -L\ /ï

rc!f (t) (e
(z-r)t(Ìfr(t):1)

e rÌ+ v z-K T

+ o (t)

Now taking the limits of both sides as t + 0 we obtain

# = u{yw. [t) ezQr 
(t)*, (È) [z-rc+c/y]]

I (z-r¡y+rc1#""t"tr (t)"zQt (t) ]

ÐH:-58 (4.6. s)That is te-r¡ y+*rþ
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Since Wr (0) = W(O) = Wo and Qr (0) = 0 we have

Hr (0 tY,z) = Ywo

solving (4.6.5) subject to the inj-tiat condition

(4.6.6) t{e obtain

Hr (t,y,z) = Ih(t,Y,Z)lwo

lK (z-<)le

(4.6.6)

(4.6.7)

(4.6.8)

(4.6.e)

where î(L,y,z) z K

Note that for Iatre = I

Hr(t,Ytz) = h(L,Y,z)
t.
Í

Now to obtain the fuII expression for H(t'Y'z)

\^fe incorporate immj-gration (ttrat is the emergence of

adult weevils from eggs) - To do this we shall use

Bartlett's (1966, Sec. 3.4f) technique for deriving a

p.g.f. for a birth-death-and-immigration process as

follows.
Let us divide the interval IO,tl into subintervals

I.r-, ,rrl, r=1r 2,. - - - The probability that there is an

immigrant (trrat is, a mature weevil emerging from an egg)

during the interval ('rr,'rr*r) is n (rt) Atr*0 (Att) ' where

Àt = r .- r . Assuming that the weevils behave
--r r+I t

independentlyofeachotherrtheimmigrantinthetime

interval (rrrtr*r) would set up an independent death

process starting at approximately | = tr' Then'

according to (4.6.9) , the p.g.f' of the component of the
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bivariate process {W(t) ,Q(t) , L > 0} contributed by

the immigrant is h(t-r r,t,z) . So the contribution to

H(L,y,z) by what happens (tfrat is, one immigrant or

none) in the interval (rrrrr+t) is

(r-n ('rr) atr) [rr (t-rr,Y,z) )o

+ n (rr) Atrh (t-t ,,Y,2) + 0 (Arr

= 1+n (r.) Atr [h(t-t, ,Y,z) -I] + 0 (Ârr)

I{ow from the assumption of independence of indíviduaIs,

we have the contribution to H(t,Y,z) by all the

immigrants by time t as

Hz (t,Y rz) 1im
ilat ll +0r

r

II{I+n (rr) [h (t-rr,Y t z) -1J Atr] (4.6.10)
r

Now takíng the natural logarithm of (4.6.10) and taking

n(t) th(t-t,y,z)-Ll to be continuous in r so that we

have

lnlimn{ }=limInn{ }

where ll Ar ll = max{A'r
t T

t

we get

In Hz(E,y,z) Irn{1+n (rr) [h (t-r, ,Y ,z) -1] atr]

,
t

lim
il At ll ->0

t

1im
ll At ll -+0

t

t

r

i
t

(tr) [h(t-r, ,Y,z) -1] Àtr+0 (Arr) ]{ n

t"

J 0
n (t) [h (t-'t,Y,z) -L] ct .
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t
Hence Hz (L ,Y t z) = exp n (t) Ih (L-t,Y,z) -Llð'rI

J 0

(4 .6.11)

l{owusingtheassumptionthatthe''immigration''

process is independent of the weevil population (and

therefore independent of the population of the original

weevils) we have H(t, Y,z) - H1 (L,Y'z)Hz(L'y 'z) '

So substituting for Hr (t ,Y,z) ancl Hz (t tY tz) from

(4.6.7) and (4.6-11), respectively,in (4'6'0) we have the

approximation of the joint p'g'f ' of ô ttl and W(t)

given by

ô(a,x,y) = xsoltr(t tY,Z)l!üo

t
s Iexp{ n(t) th(t-t,Y,z)-I1atÌl (4 '6'L2)

0

where h(l,y,z) is given by (4"6"8) and

z= (v+À) (L/x-L)

4.6 .2 Method of Marks and CatastroPhe

As in Method A we use this methocl to evaluate

t.

J

H(t,y,z) = Elyw(E).za(t) l{n(t), 0 ( t < t}l

where vr ( t) and 0 (t)

Let us write H(t,Y,z)

æ

\
L

r=0

are defined as before'

in the form

v
z Ff;

r
H(L,Y,z) e e¿

t
(q)
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where r'r(ø) = P(W(t) = xt A(t) < q) '

Now let Ç = -z = - (v+Àl tl-f) be interpreted

as the "catastrophe" rate per weevil' Then

çW(t) = total catastrophe rate to live weevils at

time t.
È

so 6q (t) eW(u) du is the catastrophe rate to live

weevils over
0

(0,r).

Hence

t

J

zs -rq ^[no catastrophe occurs to live weevilsl
ê--'=e '-=P[orr", (o,t)l0ttl -q I

Also let us interPret

weevil is "marked" -

y as the ProbabilitY that a

H(trY,z)
oo

IL
r=0

11l
,a weevil is alive and marked at time t Ìtand has had' no catastroPhe

a weevíI d.ies in ( 0 
' 
t)

catastroPhe occurs to it

Then

ccured to the I
rked at time t 

t

ccurred before I

who died in (0't) " I

I.o'"- 
6qdn, (Q)

(4.6.13)

EzLet us define events (or properties) E1 and

as follows:

E2 = {
before a ]



Let E=BtvEz

Then

H(L,Y,z) P

Hr (t ,Y,z\ P

each of the original weevils as
rðrr as the immlgrants (offsprings)
in (0,t) has ProPertY E

93.

each of the original weevils
has propertY E

But since the immigration process is assumed to be

independent of the weevil population we can write

n(L,y,z) = Hr (trY,z)Hz(L,Y,z)

where

(4.6.14)

and

Hz (t,Y,z) P
all immigrants in (0't)
satisfy E

wilt

Now with w(0) - v{s (trre initial number of weevils) and

using independence of individual weevils' we have

H:(t,Y,z) = {P(gr U Er)}wo

= {p (er ) + P (Er) }wo

(since Er

Now P(Er)

and
P (Ez)

and Ez are mutua1lY exclusive) '

-Kt -Ct=eye

P
first event is death
catastrophe in (0 't

either death or
x

Pleither death or catastrophe in (0't)]

= f= (r-e-rt"-6t,
K+q
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Hence Hl (t tY rz) ly" (6+r)r * å(1-e-1ç+rc)t)l*o

So replacing 4

obtain

Hr (t rY,z)

by -z and rearranging the terms \^Ie

K+y (z-rc)e ( z-rc ) t_"
l uo

I z-K

th(t ty tz) lwo

which is the same as the result given by (4"6"7\ and (4'6"8)'

From the definitionofh (L'y'z) we have the following

interpretation:

I a cata
1-h(L,Y,z\=Plirtïiå

I catast

Similarly if a weevíl emerges at time a ( t then

t-h( L-t,y,z) is the probability that the weevil does

not satisfy property E' So the rate of immigration

(emergence), at time t' of weevils that will not

satisfY E

= n(t) tI-h(L-r,Y,z))

Therefore the total rate of emergence of weevils over

(O,t) which will not satisfy E at time t

P E(

t
t

) 0
¡ (t) tI-h ( L-r,Y, z) ldt
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H"(t ,y,z) = p(alt immigrants in (0,t) will satisfy E)

= P (no immigrants do not satisfY E)

= exP{- I
J

¡ (t) Il-h(t-r, Y,z) I dt]t

0

So substituting for H r (t tY rz) and Hz (t 'Y 'z) in (4 '6 'I4)

\^7e get
t

H(L,Y,z) th (t ,y,z¡ l 
woexp{ n (t) th (t-t, Y,z) -Il dr]

0

as by the first method.

Finally let' us note that the interpretation of

e(yw(t)"zQ(t), as a probability, such as in (4-6.13) ,

applies to a general class of problems ' If the probability

of the ,,event E" (defined according to the situation

beinginvestigated)canbedeterminedthentheexpression

for the correspond.ing generating function such as H(trY,z)

can be obtained.

4.6 .3 On the Immigration Emerqence) Rate

I
J

Substituting for H (t,Y,z)

the approximate joint P.g.f' of

(4 .6 .0) we obtain

and W(t) as

t
n (t) th (t-'r, Y,z) -Ll dr] l

o (4.6.15)

t_n

s (r)

ô(t,*,y) : *to [h(t,y ,z))wout"*n{ j

where h(t,Y,z) is given by (4'6'B) and z = (v+À) (I/x-L)
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The choice of the "immigration" process

{n (t) , L Þ O} could be arbitrary' However the rather

natural stochastic form n (t) = pÀw(t-a) ' ês defined in

(4.2.2), cannot be used here because' in the derivation

of (4.6.15) , we have assumed that the immigration process

is independent of the weevil population' If we take

| (t) as deterministic then one possible value for n (t)

is its deterministic value pÀI'I(t-a) as given by the

solution for W(t) in the phase I deterministic model

(Section 2.L) .

UsingthedeterministicvaluepÀW(t-a)forn(t)

and setting x=l in (4.6.15) we obtain the approximate

marginal P.9.f. of w(t) as

t
e (t,y)

From (4 .6.L6\

of W(t) as

lr+(y-r) "-*tlwoexp{ 
(v-1) f n (t) e-r (t-t) d. \ . (4 -6.L6)

0

\^re obtain the approximate stochastic mean

Etvü(t)l = woê + (4.6.u)

But according to the Proposition 4'L the deterministic

value of n(t) is the same as pÀElw(t-a) J ' Substituting

pÀElw(t-a)lforn(t)in(4'6'I7)'itisnotdiffícult

to verify that E(w(t) ) , as given by (4'6'L7) ' is the

same as the deterministic value of W(t) in Section 2'L'

In otherwords the stochastic mean of W(t) by the

-rt
Írt,r)e 

r(t-')d''
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approximatederivationisthesameaStheexactstochastic

meanderivedinSection4'3'Thisalso'accordingto
(4.5.6) , implies that the stochastic mean of ôttl is

the same as the exact one given by (4 '5 '7) '

From G.6.16) the approximate variance of w(t) is

n (t) e-r (t-t) dt
0

which is different from the exact variance that can be

obtained from (4.3.8) and (4'3' 9 ) ' Similarly the

approximate variance of ê ttl would be different from

the exact one.

Let me conclude this section by pointing out that

the derivation of an exact expression of

elyw(t)eza(t) l{¡ (t) r r < t}l where {n (t) , t ( t} is

a function of the process iw(t) , L Þ 0Ì (as in the case

of the weevil population in which n(t) = pÀW(t-a)) is

a difficult problem. However I feel that it can be

solved. r wilr look at this probrem in my future research

work.

MEAN AND VARIANCE OF THE NUMBER OF

varlw(t)l = wo"-*t(r-e-"t) + f
t

4.7 BOUNDS FOR THE

INTACT GRAINS

Let us reca1J that

(intact) grains at time

random variable ê ttl

and (4.5.3) .

S (t) , the number of unattacked

Lt is related to the artificial

by the relations (4 .5 ' t) , (4 '5 '2)
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Multiplying equation (4'5'2) by s and summing

over the integers s € (-*rSol we obtain

d
AE

(E ts (r) {w o < 6 < tll)e

= õ(r) s {-ô"+ô"*r)

= õ(t) {-ô"*r) = -& (t) . (4 -7 'r)

Similar1y using equation (4'4'2) we obtain

Ss

I
s =-@

So

I
s=-@

= -ô¡(t) tl-po (tl{w(e ) '

Thedifferenceoftheequations(4.7.I)and(4.7.2)is

d
æ

d
æ

(Ets(r)l{w(6), o < 6 < t}l)

0 < 6 < tÌ)l
(4.7 .2\

(Ets(r)l{w(E), o < 6 < t}J)

= #(Etê(t) l{w(E), o < E < tll)

+ õ(t)po(tl{w(e), o < E < t})'

Now integrating with respect to t and then taking the

expectations we obtain

t
t"

J

E(õ(t)no(tl {w(6), o < 6 ( t}))dt
(4 .7 .3)

E(s(r)) = EIô(t)l +
0
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ït is difficult to reduce the second term of the right-

hand sid.e of (4.7 "3) to a reasonable expression not

involving any of the operators of integration and

expectation. However, since õ(t) >

the term is non-negative. Hence

Ets(r)l > EÍs(t)l (4 .7 .4)

Thatis,theexpectednumberofintactgrainsattime

tisgreaterthanorequaltotheexpectationofthe

artificial variable

Next we consider

(s-E (ô ttl I ) 'P (3 (t) = s)

S t(

So

I
s=-

Var (S (t) )

Se

I (=-e (S) ) 'P (s=s)
s=1

in which

So

Var(ôttl I

æ

P(ô(t) = s) = P(s(t) = s) for s > 0

+ (s-E (ô) ) 'P (ê=s)
0

Ï
Þ- @

At this point let us note that because E (s (t) ) >/ 0 and

E(s(r) ) > E(êttl l, B(ô(t) ) < o would correspond to the

situation when the expected number of intact grains is

zero or close to zero- In this case we would expect

Var(S(t) ) be zero or almost zeto'

However if E(ê (t) ) > O then, accord'ing to (4 '7 '4) '

we expect some intact grains still remaining in the system'

rn this case (s-Etôl l' >'z (E(ô) ) 'z for s ( 0 and then
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0

(E(ô(r)))21var (ô ttl I > ( s-E (ô) ) 'P (s=s) + P (S=s)
I æ

But according to (4.5.3)

0

r
L

s=-
e (S=s) = p (g=0)

æ

Therefore

Var (S (t) ) > (s-r (s) ) 2P (s=s)
0

The right-hand side would be minimum if E(S(t) ) = E(S(t) ) '

But according to (4.7 .3) or (4.7 .4) this equality does

not necessarilY hold. Therefore

var (S (t) ) ( Var (S (t) ) (4.7 .5)

I
s

0

IS

f.or E(s(t)) )- 0

4.8 THE TIME AT WHICH NUMBER OF TNTACT GRATNS PER WEEVIL

BECOMES CRITICAL

LetT*bethetimeatwhichthecriticalfood'

ratio is first reached. Then T* is a random variable

whose distributíon is given bY

P(r* > t) = P(S(t) > CW(t) for 0 < t ( t)

Its probability distribution function is

Fr*(t) = I-P(S(I) > cw(t) for 0 < t ( t)'

Its expectation is
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E(T*)
r-
J o 

tr-rr* (t) I dt

for 0 < t ( t)dt
(4.8.r)

But to obtain explicit expressions for the joint

probabilities psw(t) for the bivariate process

{ (s(t), w(t) ) , L > 0} and therefore an expression for

the probability in (4.8.1) is very complicated. Thus

equation (4.8.I) is not very useful in determining E(T*) '

Instead of determining the exact value of E(T*) as

given by (4.8.1), \^re txy to estimate T* by t* satisfying

the equation

j-nt, trl > cw(t)

E(s(r)) = cE(w(r)) (4.8.2)

Since E(S (t) ) and E(W(t) ) are the same as the

deterministj-c values for S (t) and W(t) respectively'

equation(4.8.2)istheSameasthedeterministicone
(2.L.zL).But,aSalreaclypointedoutinSection2.I.3,

explicit expressions for t* and other roots of (4.8.2\

cannot be obtained. This is the point at which we would

turn to the computer as $/e did in Section 3't'1'

Finally we should note that the value of t*

obtained from (4.8.2) is less than or equal to that

given by

E(S(r)) = CE(w(r)). (4.8.3)
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This is because E (S (t) ) and E (ê (t) ) are decreasing

and E (s (t) ) > E(ô ttl I (during phase r) ' But since we

have not determined E(s(t) ) , we cannot solve for ttr

from (4.8.3) .

4.9 DISCUSSION

InthisChapterThavediscussedthestochastic

version of the phase I deterministic model discussed in

Chapter2|section2.L.Theprobabilitydistributions

of the number of intact grains, S(t), and the number

of adult weevils, W(t), have been considered'

In order to reduce the difficulty in handling the

rather untrackable expression for the p'9'f' of' S(t) '
an artificial variable âttl was introduced to represent

s(t). The stochastic means of êttl and w(t) worked

out to be the same as the deterministic values for s (t)

and w(t) r respectivelyr âs determined in section 2.I'L'

rt has been shown (see section 4"7\ that E(ê(t)) and

therefore the deterministic value for S (t) underestimates

the stochastic mean of the number of intact grains '

Treatingtheemergenceprocessoftheweevilsfrom

the eggs as an immigration process independent of the

adult weevil population an approximate expression for the

joint p.g.f. of êttl and w(t) has been derived. rn

this approxímate derivation two independent methods (one

of which is the method of "marks and catastrophe") with

notable techniques have been used (see sections 4.6'I and

4.6.2).
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Thoughithasnotbeenpossibletodeterminethe

exact value of the expected time tìt at which the

critical food ratio is reached for the first time, it has

been indicated that an estimate of it can be obtained

from the equation E(ê(t)) = cE(w(t)). The estimate

obtained this way (and therefore the deterministic value

of t*) is less than or equal to that obtained by using

the non-artificial mean of S (t) instead of E (ô (t) ) '

The distributions (or moments) of the size of the

immature group, u(t) I and the total number of emigrants,

R(t), have not been explicitly discussed. However they

are implicitly involved through the oviposition and

emergenceratesandtheemigrationraterespectively.
But íf explicit consideration is required' it can be

achieved through the stochastic equations

dq(t) = À (w(r) -w(r-a) )
dt

and
= ew(t)

Finally]etmepointoutthatwheretheexpressions

or equations for the means and variances are complicated

enough not to reveal the general properties of these

moments, computer prografilmes such as those in Chapter 3

could be helpful in revealing the properties '
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CHAPTER 5

STOCHASTIC MODELS FOR PHASE TI

5.0 INTRODUCTfON

AsalreadynotedinSection2.2.oIphasellstarts

at time t* at which the critical food ratio C is

reached f.or the first time' Other than the revision of

the assumptions made for phasê r r continuity of the para-

meters involved, ât time t* ' is maintained' Unfort-

unately, êS pointed out in Section 4'8' the distribution

of the random variable T* which takes on the values t*

couldnotbeestablished.Forthisreasonlhaveused
t* , the estimate of Tt( (obtained as in Section 4 ' B) '

rather than the random variabLe T* ' âs the starting

pointintimeforphasell.Thenumberofintactgrains'

S* , and the number of adult weevils' W* ' dL time ttr are

determined using the solutions for S(t) and W(t) in

the deterministic model of Section 2'L (or E(3(t) ) and

E(W(t))inthecorrespondingstochasticmodel;Sections

4.3 and 4.5) . However upper bounds for str and w* t

given the initial conditions S(0) = S0 and' W(0) - Vüo '

can be determined independently of the solutions of

Section 2.I ot Sections 4'3 and 4'5 as demonstrated at

the end of Section 5'l'0'

In this chapter I present two models' Model A is

astochasticversionofthedeterministicmodeldiscussed
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inSection2.2.InModelB.thetimelineisdividedinto

developmental periods t(n-I)a'na) where a is the length

ofadevelopmentalperiodasinearlierchapters,D=fI*,

n* + Ir. .. and (n*'1) a ( t* < n*a ; n* an integer'

ModelBincorporatesthefactthatunderreducedfoodratio

morethanoneeggmaybeovipositedintoasinglegrain
(Hardman' 1978). So rather than removing a grain from

thegroupofgrainssusceptibletoattacksfromtheweevils'

immediately it is attacked, it is kept there until the end

ofthedevelopmentalperiod.duringwhichitisattacked.

Attheendoftheperiodthegrainisconsiderednolonqer

usefulinthattheweevilswillnotuseitan)zmore.Also,

by taking the emigration rate as a step function with

respect to the developmental periods' the ecological

hypothesis that young weevils are more dispersive than

the old ones (private communication with Dr' R' Laughlin'

Department of Entomology, Waite Agriculatural Research

Institute) is incorporated (see Section 5'2'L' assumption z)'

InModelAthejointdistributionofS(t)andw(t)

is considered. But because of the complicated form of

the equation for the joint p'g'f' of S(t) and w(t) an

artificiar random variabre frttl is introduced to repre-

sent W(t) to reduce the complication' The stochastic

means of s(t) and the artificial variable ûttl are

compared with the corresponding deterministic values '

For Model B in addition to establishing the joint

distribution of S(t) and w(t) during a developmental

period'recurrencerelationsfortheirexpectedvaluesat

thebeginningsofconsecutivedevelopmentalperiodsare



derived. Also the distribution of the number of

oviposited in a single grain during a given time

is determined.

A comparison between the solutions of the

is made.
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eggs

interval

two models

5.r MODEL A

5.1.0 A Review of the assumptions for phase II

AsmentionedinSection5'Othismod'elisastochastÍc

version of the deterministic model for phase II discussed

inSection2.2.Brieflyletusreviewtheassumptions

madeinSectj-on2.2.Forthestochasticconsiderationthe
parameters are probabilistic as explained in Section 4'I'

Inthisprobabilisticcontextwehavetheovipositionrate

À (r) r s(r) /w(t),

the consumPtion rate

v (t) v s (r) /vü (r) ,

themortalityrateuremainsconstantandtheemigration

rate

e (r) = e * be (c-s (t) /w (t) )

The emergience rate

n (t) p I(t-a)w(t-a)

is a random variable as in the phase r stochastic model.

The constants ¡., v' et b, p and c are the same as

those used in the phase I model in Chapter 4 '
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Combining the oviposition and consunption rates

we obtain the rate

c, (r) = (*" ) #+ = ô s (t) /w(t)

at which an

grains.

i-ndividual weevil attacks and damages the intact

Wemakeafurtherassumptionthattheexpressionsfox

the parameters given above will apply at any time L > t*

even if the food ratio s(t)/w(t) might be greater than

C once again. But the rising of the food ratio above C

aftertimet'risveryunlikelysince,accordingtothe

expressionfortheemigrationratee(t)'thiswouldtend
to reduce the number of emigrants and therefore increase

the number of weevils that decide to stay in the system

for a while. This, in turn' implies that the grains are

attacked at a greater rate' So S(t) would decrease

faster whereas w(t) would be increasing (or decreasing

at a reduced rate) . Then the food ratio S (t) /W(t) would

decrease - which is a contradiction to the supposition that

the food ratio might rise above C at some time t > t*

RecallthatinSection2.2.2itwasproved'thatthedetermi.

nistic food ratio is decreasing for t > t*

As in the previous chapter we shall be concerned

mainly with the bivariate process {(S(t),W(t)),t > t*}.

The initiar condition for the process is s (t*) = s* and

W(¡,t)=W*whereS?'çandW*aredeterminedusingphase

I solutions as mentioned in Section 5'0' However' rough

but reasonable upper bounds for S* and w* given

S(0)=Soandvü(0)_Wocanbedeterminedindependently
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of the solutions of Section 2'L ot Sections 4'3 and 4'5

by using the following argument' Suppose that none of

theoriginalweevilsandthosethathaveemergedduring
phase I have died or emigrated by time t* ' Then usinq

the assumption that only one egg is oviposited in a grain

during Phase lt we have

SO

W* = Wo + p x {(nr¡nlcer of grains used up to time t*)

(number of grains still holding eggs at time t*) ]

a !r1o + p x (number of grains used up to time t*)

W*<Wo+p(So s*) (5.r.0)

where P is the ProPortion

develoP into adults' But

(5.I.0) we have

of

stc

eggs that

= CW*

are exPected to

Therefore from

and hence

W* < (Wo + p So\/Q + PC)

S* < C(Wo + p So)/(t + pc)

i oint tlistribution of weevils and
5.1.1 Equations for the

the intact qrains

Let t = t* + ma and denote the time interval
m

(t*r... rt*+rl by D^ for m = 0'1' 2" " ' We shall

consider the conditional bivariate process { (S (t) 'W(t) ) '

r€r*Ì given {(s(6),w(ç)), e e D*-r}' Given

{ (s ( 6) ,vü ( q) ) , 1 e D*-l} trre emergence rate

n(t) s pÀ(t-a)vü(t-a) becomes specif ied at all t € D*

ThenthepossibletransitíonsofthebivariateprocesS

over a short time interval (t't+ôt) t D* are:
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probabilitv
ôs + g(ôt) for \^7 > 0

n(t)ôt + o(ôt)

pw-bes+O(ôt) for w>0

1- tn(t) + (ô - be)s + Pwlôt

+ o(ôt) lor w > 0

I n(t)ôt + 0(ôt)

0 (ôr)

( s,w) ->

(s'w) ->

( s,w) ->

( s,w) ->

( s-Irw)

( s rw+1)

( s rw-I)
(srw)

(sr0) + (sr0)

Others

where

p=¡r*e*beC and ft = (v + 
^.)/c.

Now with the conditional probabilities

þ (t;m) E ?(s(t)=s,w(t)=\^rl{(s(6),w(ç) ) '6 € Dm-r})
- S\^t

we have, from (5.1.1) '

#(p"r) = t(ô-be)s+n(t) +P\nIlPsv¡

+ ô(s+r)ps+r,, * t p(w+I) - beslP=,w+t

+ n(t)p srw-I

for wÞ 1,

and

# (n=o) :' n(t)pso + (p - bes)P=r (5'1'3)

where

= 0 for s\^7<0

' ( 5.I.I)

( 5. 1.2)

D'sr¡¡

rnitially (that is, at time t*) we have
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?(s(t*)=s, hI(tm)=wl {(s(6),w(6) ),8 € D*-r}

t:
fors=s

otherwise

and w=w,mm

where =* = S(tm) and ** = w(tm)

Now define the conditionar probability generating functíon

G (trxrY) \x\ , \yl< t. (5.1.4)i
w=0

i
s=0

*",rtp ( t; ¡n) ,t - S\^Im

Multiplying (5.f.2) bY x

summing with resPect to

and ( 5. I. 3) bY xs

and \4t as in ( 5.1.4)

S \^I
v and then

\^Ie obtain

æ

AG
mT'

ðGãG
{û (x-I) - bex(y-1) /v}5fm

ðy

+ n (t) (y-1) G* * {d (x-1) - bex (v-L) /v}

(see Section 4.4), we have

I
s-ISx psO

( s.1. s)
s=0

Again, Iike in Phase Ï

the awkward term
oo

{ô (x-I) - bex (v-L) /v} I
s=0

stickingaround.Thistermlooksevenmoreawkward'than

thatinequation(4.4.5).Evensolvingequations(5.1.2)

and (5.f.3) recursively, unlike in Section 4'4' is very

complicated. So again we shall try to use an artificial

random variable to represent the number of adult weevils

in a way similar to that used in Section 4'5'

sx"-tn=o
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5.I.2 Arti ficial random variabl e for weevils

Letusextendtherangeofthevaluesvü(t)could

take on to -æ by defining the artificial random variable

ñttl to rePresent w(t) as follows:

ê- p(s(tl = s¡ fittl = wl{(s(6), w(6)) '(i) ô (t;m)-sw

Ç e D*_r])

p

c \^I '

æ

(t,m) for $7 > 0
s \^t

(5.I.2) , that is

that is

and Ê satisfY equation
(5.r.6)

( 5 .1.7)

sw

( ii) #(ñ"*) = -t(û-be)s+n(t) +Pwìô='

+ ô(s+r)ô +[ p (w+1) - be s] ô",**r
s*1rw

+ n (t) ô",r-,

for s2- 0 and' -oo < w < æ

Then with ê* (t,xry) as the generating function of the

"artificial" Probabilities P

ê (t,x,Y) = Ii l
S VI^xvp- - Sr¡I

m g= Q 1¿= -oo

are

aê

- {ô (x-1) - bex(Y-I) /v}fi

equat,ion ( 5.1. 5) becomes

ðô ðô*

#= p(y-r) 
"f

+ ¡ (y'1) G*

The auxiliary equations for (5'I'7)

dx
dG

mdt dv
T = Ñ:Ð- x-1 gx v- v n (f) (Y-I) êm



I dY : n =à (y-1) 
"-Pt = Constant = A '

Y ãE- P

(2) a ( tnê*)
= n (t) (y-1) .

Hence we have

(r)

dt

Now substituting for Y

obtain

È
m

LL2.

from (5.1.8) and integrating we

(5.1.8)

Substituting for A from (5'1'8) we get

n (t) e-P 
(t-r) dr)

*"*p{
¡t

(y-r) 
.l
t

m

G

n (t) Aeord'r .= Constant.
)

)

I + (y-I) e-p (t-t)

(3) 9T = ô(x-r)
cl.I'

- bex 1y_L) /v.

Now substituting for Y

terms we obtain

= Constant = B.

from (5.1.8) and rearranging the

eAe
pt

0¿pt

( 5.1.9 )

dx
ã,8

+

Integrating this equation we get

x(t+e"et)re7P"-ôt = ôJ (r + Aegr )b¿/9"-ôtd.

1*Ae

t

t
m

+ constant.

So substiÈuting for A from (5'1'8) we have

*Ybt/g"-ôt + û f
t be/ p

ô

t
m

= Constant = D.

I
I

-o¿T -ctT

(5.r.10)



Therefore, according to (5'1'9) '

ê*{trxry) "*n{
(y-r) Ít n (t) e-o 

(t-t'utÌ

t

= O(arD) (that is, an arbitrary function of
A and D).

Now using the initial condit'ion

ô^{t*rxry) = *"^v

we have

Hence

So now substituting for A

respectivelY we obtain

ê*{t,x,y)

, --- -b e / p 
^ - ô ( t - t * )txy 'e

['
J
Lm

exp{ (y-1) n (t) "-9 
(t-t) u.1

5.1. 3 Distributi on of intact grains
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X

f'
J
Lm

+ô lI + (y-r)e -p (t -r) rbe/ P x

( 5.1. 11)

m

\^t m I

o ( (y-r) 
"-ptm,xybe/p.-ôt*) 

= vsmysm

0 (A,D) = [ r + ae0t*] **¡ Deût,n (r + AePt*) -be/ Pl "*

and D from (5.I.8) and (5'I'10)

= [1+ (y-r) 
"-P 

( t-t*) I 
wm-¡ es^/ I

"-ô('r-t*) 
dtls* x

Setting Y

p.9.f. of S (t) '

I in (5.1.11) we obtain the conditional

, siven {(s(6),vf(ç)), Çe D*-r} as
m'teD
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[""-t(t-tm) 
+ ô

I
Ir + (x-1) e-ô(t-t*) m

which is the p -g.f. of the binomial distribution

b(s*re -ô (t-¡*) ) . Let us note that , of the entire

Ì, the p.g.f. (S.I.12) dePends on

G (t, x)
m

|.'
J
t

m

s
t

L

( 5 .1. r2)

(s.1.13)

Claim.

L> L*

G
m

m-1

Given S(tx) = S* (and W(t*) = W*) ' S(t) for

is of the binomial distribution b(s*,"-ô(t-t*) )

Proof. Let us rewrite

(t,x) = G(t,x;s-) å G(t,xlstt*) =s)m

Then from (5.I.I2) we deduce

e(t*rx;s*-r) = [ I + (x-I)e -ôa, s*-1

Multiplying (5.1.12) by P(S(tm) = s

summing with resPect to s* we get
ls tt ) = s _) and' m-Im m-1

-ô ( t-t*)
G(trx;sn-r) = G(t*rI + (x-t)e s

m 1

which, using (5.1.13),

= [ r + (x-1) 
"-ô 

(t-tm-l) ] sm-t 
' ( s. r.14)

From (5.1.12) and (5'1'14) it is clear that working recur-

sively backwards we obtain

-âtt-t*), s*
G(t,x;S*) = [I + (x-r)e I

which is the P.g.f. in the Claim' \\l
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Hence for E> tt(

given S(t*) = S*

nts(r)l
varl S (t) ]

the mean and the variance of S (t)

are

= s* "-ô(t-t*)
-ô t¡-¡r'¡= S*(l - e *'

t
I

( 5 .1. ls)
-ô(t-t*))e

Weshouldnotethatthestochasticmean,E[S(t)]'

of the number of intact grains is the same as the deter-

ministic value S (t) given by Q'2'11) ' Hence the

investigationofhowSoonintactgrainsarelikelytoget

finished is the same as in Section 2'2'4'

5.1.4 The mean of the art t_ ficial variable

expression is not simple enough to handle' we shall restrict

Etû(r) l(s(ç),w(6)), Ç e Dm-r]l

smq ( tm, t)

our discussion to the mean Etû(t)l

Differentiating (5'I'1I) with respect to y and

thensetting x=I and Y= 1 weobtain

=wem
-p (t-t¡) +

where

By setting

ional P.g.f. of

q(tm,t)

From (5. I.16)

ñttl ,t€D^r

x=I
frttl

in (5.1.1I) we would obtain condit-

However, because the resulting

( 5. r.16)
+ Jt n (t) e-e 

(t-t) u-
t

m

= be(e-g(t-t*) - "-û(t-t*) 
) /(ã p)

wededucetheunconditionalexpectationof

to be
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EIfr(r)1 = Elw(tm)l e-p(t-tm) + E[ s(tn)] q(tm't)

Etn(t)le P(t-r)dr ( 5. t. 17)

Substituting for Et S(tm)l from (5'1'15) and then

substituting for Etvü(tr.)1, n = m' ß-I""'O' recursívely

in the right-hand side of (5'I'I7) it can be shown that'

given S(t*) = S* and fr(t*) = W* '

Et fr(t) 1 = w*e-P 
(t-È*) + s* q(t*,t)

+ [t EIn(t)]e P(t-r)dr (s'1'18)
)
t*

Withtheappropriateexpressionforn(t)'itis

not difficult to verify that (5'I'18) is equivalent to

(2.2.12) for t* < t ( t**a and to (2'2'L3) for L > t*+a

Inotherwordsthestochastícmeanoftheartificialrandom
variable ûttl is the same as the deterministic value of

the number of the weevils. But since íìttl / w(t) '

thisimpliesthatthestochasticmeanandthedeterministic

value of the number of weevils are not the same' Under

certainassumptions(seenextsection)thedeterministic

value of w(t) (ttrat is EtûT(t)l ) is a lower bound for

the stochastic mean'

5. l. 5 ReI ationshiP between the means of the artificial

variable and the weevils

E[ w] wô

i'
Jt

+

æ

T
\¡I

Ê,I *Ê,^,+ [ w

w=O " W<0æ

lf,
'\^/l)

" I¡IBut according to (5'I'6) for v¡ > 0. Hence



Et frl EIwl + I
w<0

\4I

II7 .

(5.r.re)

>0 f.or w(0

\^7 p
w

The complicated form of the generating function of the

generatingfunctionofthe"artificial"probabilitiesÊ \¡7

makes it difficult to

Îf þ* " 
0 for all

establish whether Ê*

< 0 then

which, from (5-1.19) 'I
w(0

implies that
EI < Elwl (s.r.20)

5.1.6 Conclusion

Itisinterestingtonotethataccordingtothismodel

the grain-weevil system is equivalent to one in which the

weevilshavenoinfluenceona''pure-death''grainprocess

buttheavailabilityofthegraininfluencestheweevil
population. This is the reverse of the influences in the

stochastic model for Phase I '

While the stochastic mean and the deterministic

varue of the number of intact grains worl< out to be the

same, the stochastíc mean of the number of weevils is

different from the corresponding value which happens to be

the same as the mean of the artificial random variable

fittl .

Thedistributionoftheweevilscouldnotbeobtained'

explicitly.Inferencesaboutthedistributioncanbernade

through that of the artificial r.v. frttl (for example'

throughtherelation(5.1.20)).Buteventhenthedistri-

bution of ûttl is not that easy to handle' These diff-

I^Il
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icultiespromptedmetorevisesomeoftheassumptionsmade

inSection5.l.O.TirisledtoModelBwhich,Ishould

say, is not necessarily easier to handle' but explicitly

incorporates two important aspects of the grain-weevil

systemundercriticalfoodratioconditions:(1)more

than one egg may be oviposited into a grain and Q) young

weevils are more dispersive than the old ones '

5.2 MODEL B

As in Model A the initial point in time is tt(

Weconsiderthejointdistributionofthenumberofintact
grainsS(t)andthenumberofweevilsw(t)overeach

of the developmental periods t (n-1) a,fIâ) , 11 = n*,n**1 |... I

where (n*-I)a < t* ( n*a and n* is an integer' Also

recurrencerelationsbetweentheexpectationsofs,,ns(na)
and w a- w(na) , î = ¡* rn**lr... are derived. Because of

n

the special assumptions made in Model B we need a careful

look at the transition from phase I to phase II during the

interval I t*-a, ri*a) ( see Section 5 '2 '5) '

5.2.L AssumPtions

Unless restated, the assumptions made in Section 5't'0

also apply to Model B' Here we make further assumptions

that are unique to llodel B '

I. Awheat grain is subject to attacks by the weevils

until a mature weevil emerges from it' If none of the

eggs oviposited in a grain develop into adult weevils ' then

the grain is regarded destroyed at the time when all the
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eggs are expected to have developed into adults ' A maxl-mum

of one adult may emerge from a graín'

2. The eggs laid in the developmental period I na, (n+1) a) '

n ) n*, and successfutly emerge into adults' do so at

time (n+1) a This assumption tends to imply that eggs

emerge into adults prematurely - instead of emerging

continuously in time, the emergence of adults from the

eggsisforcedtooccuratthebeginningsofdevelopmental
periods. This may not be a bad approximation since'

according to an ecological hypothesis ' the young weevils

are more dispersive than the old ones and therefore most

of them wourd tend to emigrate before they can contribute

significantlytothechangestothesystem.Consequently

itdoesnotmatterVerymuchatwhatinstantofadevelop-

mental period an adult emerges from an egg' An attempt

to incorporate the hypothesis that young weevils are more

dispersivethantheol.Jonesismadethroughassumption4

below.

3. I-f the number of intact grains at time na is =" I

then according to assumption 1' the total nuriber of grains

susceptible to attacks at any time t € [ na' (n+1) a) is

s . So if at time t the number of intact grains is
n

S (t) , then the probabilistic rate at. which the intact

grains are attacked (and therefore damaged), at that time'

is proportional to S(t),/s- ' lVe shall take it to be

(v + ),)s(t)/sn S(t) ' sâY'o (t) =C[ n

where v and À are the constant rates

oviposition, respectively, during phase

of consumPtion and

c[=T- | and n
( v+À) ,/s'
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Inotherwords,theratesofconsumptionandoviposítion

by an individual weevil at time t € [na'(n+l)a) are

v S (t) /s* and À S (t) /s., respectively '

Let us note that in Mertz and Davies (1968) discussion

of the cannibalism of the pupar stage by the adurt beetres

(Tv'iboLium Castaneum) ,Merlz and Davies make the same

assumption on the rate at which the pupae are attacked'

Thatistheprobabilisticrateatwhichthepupalpopulation

is attacked by an individual beetre is proportional to the

ratioofthelivepupaetothetotalnumberofpupaeat

the beginning of a time interval' In our case the pupae

would be replaced by the grains and the adult beetles by

the weevils. However, in the Mertz and' Davies investi-

gation the number of predators (that is the adutt beetles;

weevils in our case) vras taken to be fixed during the

entireperiodinwhichthepupaearevulnerabletoattacks.
In our grain-weevíI system the predator (weevil) population

is a death process over the developmental period'

4. The probability that a weevil leaves the system

during a short time interval (t't+ôt) increases as the

food ratio s(t)/w(t) d'ecreases' As already used in

Model A, one of the possible forms for the rate of

emigration Per weevil is

e(t) = e + be(C s (r) /w (r) )
(5.2.0)

where the constants

Model A.

According to

number of emigrants

e, b and C are the same as an

assumption 2 we would expect a greater

per unit time at the beginning of the



interval

interval.

to revise

s(na) = s

I2L.

I na, (n+1) a) than at any later instant of

One way of incorporating this hypothesis

the emigration rate (5.2'0) as follows'

the

is

Given

n
and w (na) = Wtn

e(t) = e+be(C S /w c say (s.2.1)
nn n

for na ( t < (n+I)a That is the emigrat'ion rate rs

constant over I na, (n+I) a) ' So, since over the interval

theweevilpopulationisadeath-emigrationprocess,there

aremoreweevilsandthereforemoreemigrantsperunit

timeatthebeginningoftheintervalthanatanylatter

instant. Hence the hypothesis is incorporated'

5.2.2 Joint distr ibution of weevils and intact grains

durinq a devel opmental period

According to the assumptions I 4 in Section 5'2'r.'

given S(na) = s' and vü(na) = w' the possible transitions

for the bivariate process { (s (t) ,w(t) ) ' na ( t < (n+I) a}

andthecorrespondingprobabilitiesoverthetimeinterval
(t,t+ôt) c I na, (n+la) are:

Transition ProbabilitY

( s,hI) ->

( s,w) ->

(s'w) -à

Others

p

(s,v{-I)

(s-1,vü)

(S,W)

(u+en)wôt+0(6t)
0 Svüôr + 0(ôr)

n

1 - lcrns + P * en]Wôt + 0(ôt)

0(6r)

where U is the mortality rate as used before' Then'

for na ( t < (n+l)a , the conditional probabilities

wls,n W )1 I P(s(r) nnI
s \^/

(t; s
n

w
n

s, W(t) n = \^l



satisfy the differential difference equation

d
AE

(*rrr * cx,rrsw) p".o * o,r, ( s+1) wps+r rw 
+ rr", (w+1) ps,w+r'

(p )

l"l ' lvl
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sw

c (t;x,y)
n

defined bY

where Kr, = u + er, = p + e(I+bC) - besn/wrt

and or, = (v + I)/sn

From (5.2.I) we can show that the conditional joint p'g'f'

of (S (t) ,W (t) ) given Sr, = s' and W'

â2cnMt

( 5.2. r)

n

(5.2.2)

(5.2.3)

(5 .2.4)

t'

w

G (trxrY)
n

= I I *"ytp=,"(tisrrr\drr) r

SW

satisfies the equation

with the initial condition

ðG

=t-ov(x-t)ðy n-

nwn
v

s
G ( na, x, y) =X

n

Equation (5'2'2) is similar to some equations for

carrier.borneepidemicsmodels(seeBailey,L975|Chapter

fO). Now using Baileyts technique let us look fot a

solutíon of $-2.2) in the form

G (trxrY) (x-l) ttnr(t,Y)oo

Irn

where the function" frr are differentiable in both

and y , and are such that the series is convergent'

Substituting fox G- defined bY (s.2.41 in (5.2.2)

and equating the coefficients of (x-l) t \de obtain
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âfnr
Til +( K

âf nr
Ty (5.2.s)

(5 .2 .6)

(5 .2.7)

(y-1) + ro,rrY) =0
n

for t = 0rlr2r...

By rewriting the initial condition (5'2'3)

(na,x,y) = [1 + (x-1)] nwny=

AS

s f l=") (x_r),y"
r=O\ r /G n

we deduce the initial condition to (5'2'5) to be

f (na 
' Y) v

\^I n/ ="\
\./nr

where takes on the conventional zero value for

r<0orr'"r, Then the solution to (5'2'5) with

(5 .2.6) isthe initial condition

f ,r, (t'Y)
-ß( ßrrrY-rcrr) e n _ (t-na) + K-n I

I

(;)

w n

(J)t
ß'nr

where ßrr, = *r, * fo'

Def initely frrr(t,Y) are d'ifferentiable in both t

y andsince, fnr(trY) =o foc r <o or r 'S"

and

, the

series in (5-2.4) is convergent' So $'2'4\ reduces to

G (t, xrY)
S n

I
r=0

( x-1) t f (t,y)
xn

er of weevils hI(t), na(t< (n+l) a

( 5.2.8)
n

Di stribution of the numb

The conditional p.g'f' of W(t) given

is, from $-2-4),

and
n n

Vl =wn n

crr(t,Y) = Gr,(t'rlrY) f (t rY)0

Theref ore f rom (5.2 '7) we have

n

err(t,y) = [ I + (y,1) e-Kr, 
( t-na) , 

wtt (5.2.e)
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whích is â p. g.f . of the binomial distribution b(wnre-Kt(t-na) ¡

Hence the conditional mean and variance of w(t) given

and are
n n

Etw(t);srr,wrrl =wen
-Kn (t-na) (s.2.10)

and

S = s Vrl = \^J
nn

varllr1(t) ;srr rwol = wne-Kn(t-na) 11 e-K"(È-na) I ' (5'2'11)

Distribution of the number of intact rain S r) na(t< n+1) a

The conditionat p.9. f ' of S (t) given Sr, = "r, 
and

wr, = wn can be obtained by setting y = I in (5'2'8) '

However,itsufficestolookatthefactorialmoments

Et s(t) (t) isrrrvlrrl t t = 0rrr 2r " ', which' from (5'2'8) ' are

given by

(r) = r! f (t,1)E[S (t);s wl
arG (trlrr)n

EIs(t);srr,wrrl f nI ( r,l)

\^7 are

2(L,L) + fnr(1

ß nr

nr

(5.2.L2)

f ) (r,r) (s.2.13)
nl

w

(s.2.14)

,
âxrn n

(where bY X
(r) r mean X(X-I) ... (x-r+I) ) .

In particular the conditional mean and variance of s (r)

given Sr, = s' and Wn n

and

varlS(t);srr,wrrl 2f n

where according to (5.2.7)

to,r"-ßnt(t-na) + Kn
I
I

n

f (t,r)nr
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5.2.3 Distribut ion of egg s per grarn

Let I (t) denote the number of eggs oviposited in

a grain over the time interval I nart) and denote by

pi(tlsrr,w(')) = P(r(t) = ilsr, = srr,{w('r) ' na ( r < t})

Nonr, according to assumption 3 of Section 5'2'L' e99s

are oviposited into a grain by the W(t) weevils in the

system at time t at the rate ittl = Àw(t)/sn ' so

over the developmental period Ina,(n+1)a) the probab'

ilities pi (t I srr,w ( . ) ) satisfy the following differential

difference equation

dp.
# = 

=l- 
w(r) t nr_, - pil

I for i= 0

0 for il 0

( s. 2. 15)

( s.2.16)

n

with pi = 0 for i < 0.

According to assumption 2 of Section 5'2'1 we start the

developmental period I na, (n+I) a) with none of the grains

containing any eggs. Hence the initial condition for

(5.2.I5) is

n, ( na I sr", = s, ,wr, = *r,) I
I

From ( 5. 2.15)

I (t) given

we can show that the conditional p 'g'f ' of

Sr, = =r, and {w(t) ,na ( r < t} ,

G(t,vls.,,vü(')) o'tpi (t l s,r,w (') ) ,
0

oo

I
l_

satisfies the differential equation
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# = Àr'(v-r)w(t)G

with the initial condition (according to (5'2'16) (5.2.L7)

G ( na ,v; sr, ,wrr) = vo = I

where À = )t/s,nn

The solution to (5-2.I7) is

G(t,vlsr,,w(.)) = exP[ (v-1)A (t)1

where A (t) = Ànn

Now taking the expectation of (5.2.I8) with respect to

{w(t),na ( 'r < t} we obtain the p'g'f ' of the number of

eggs at time t , given S(na) = =r, and W(na) = wrr' to

be

¡t
I w(t)dt
)
na

(5.2.18)

G(trv; srrrwrr) = E[ exP{trrr(v-1) vr(t)dtÌ1 .f-
J

na

The right-hand side can be easily deduced from the results

ofsection4.6inwhichwedeterminedanexpressionfor

Hr(t ¡Ytz) a e[ywr(t)ezQt(t)]

where {v'Ir (r),

and er (t) = 
J

for G(t'v;srrr

Then \^7e get

O < r < t] is a death-emigration process
È

V,Ir (t)dt . Thus to obtain the expressaon
0
\^I

n ) we would set Y = 1 and z = Àn (v-1) '

G(trv;srrrwrr) = th(t-na rL rz\f

where according to (4.6.8) we have

wn (5.2.Le)



,"(r-rctr) ( t-na)
n

n

[ Àn(v-1) -Kn] (t-na)

v- nn

SKnn

e

(2x (t-na) -1) e
n

K

r27 .

n

h(t-na rLrz) z

À (v-t) e
n

K

K

K n

d-

(5.2.20)

Then the conditional expectation of I (t) given

and W w IS
n

ðG(trv;srrrwrr)
E[ I(t);s,.,,wrrl v=1

À
âh t-na I 0

n z

n

n

wn

Àwrrl 1 e-K 
(t - tt a) 

I (5.2.2L)

where,recalI,",=U+t'

conditional variance is
= U + e + be(C srr,/wrr) - The

'2Rn(t-na) I
Ivar[ r (t) ; s,,,w,,1 = -"{(k)" It

* À l-t *KI
nL

-Kr,(t-na) I
I

(s.2.22)

e relations for the momen ts of the weevils5.2.4 Recurrenc
and the qrains at beginnings of consecutive develop-

mental periods

WeshouldnotethatthoughthevariableS(t)is

continuous at | = (n+l) a , the variable W(t) ' because

of assumption 2 of Section 5'2'!, is discontinuous at

| = (n+1) a . New offsprings emerge at that time' So

(5.2.8)andtherefore(5.2.r0)and.(5.2.11)arenotvalid

at t - (n+I)a . The random variable wr,+t for the

number of adult weevils at time (n+I) a is given by



Wn+l

= \^I
n

1im
tî (n+1) a

Iim
tt (n+1) a

{p'(s*n

I2B.

s(r)) + w(t)Ì

Iim W (t)
tt (n+l) a

(5 .2.23)

lim 2P'Cov[ S ( t) ,vü ( t) ; snwnì
tt (n+1) a

(5.2.25)

p'(s S )+n+I

where p' is the proportion of the attacked grains from

which we expect adults to emerge' If a weevil emerges

fromeachgraininwhicheggshavebeenoviposited'then
p, = X/(v + I) otherwise P' < \/(v + À)

From (5.2.2Ð we obtain the conditional mean and

variance of wn+l given sr, = sn and' wr, = *r Taking

theexpectationof(5.2.23)andthenusing(5.2.10)wehave

u[ tr,*t i srr rwrr] ,r"-" 
tt + p' { s' u[ tr,*t i sr, rwrrl ] . (5.2.24)

= \^7

From (5.2.23) in conjunction wíth (5'2'If) $re obtain

Varl Wrr*, i s' r\rJr.,l

(p' ) 2var[ tr,*r i =r,wr,]

where, from the joint p'g'f' (5'2'8) of S(t) and W(t)

+

"-*tt 
( I e-K tt )

covl S (t) ,w(t) ; srr,wrrl

af n1
( (n+I) a' l)

- w'f ,,1 
( ( n+r) a, I¡ e-Kta ,

ðy

and E[ s.,*1i srr r\a/rrl and varl sn*li srr'wr,] are obtained by

setting ! = (n+l)a in (5.2.12) and (5.2.13) respectively'

From (5.2.13) and (5'2'25) it is clear that the

expressions for the variances of Srr+r and Wn+l are

not easy to handle. we sharr, therefore, try to use the



means to investigate the states of

nings of consecutive developmental

(5.2.L2) Iet us consider E (Srr*r; s

Substituting f or f ,,t f rom (5 '2 '7 )

the system

periods.

,n
r^r)=f

n nl
we get

L29.

at the begin-

First from

(n+I) a, I) .

(s.2.26)

(5 .2.27 )

l_s

(5 .2 .28)

n(s +1[srr,wrr) = snl d(=rrr*rr)] tt

d.(srrrwrr) : I
ßr, t

Let us note that 0 < d(srrrwrr) ( r and therefore

[r, " Id(srrrwrr)l*t is the expected fraction of the intact

grains at time na still unattacked at time (n+1) a ' so

Iet us investigate how large l' can be anð'/ot how quickly

it decreases through the developmental periods'

where
ot, (r

n

Propositíon 5. I The sufficient

e-ßtlt)

condition that 9"

ofs
n

(i)

and (ii)

is that

an increasing function

a decreasing function
n

of r,rr
n

S /w g/ (2be)
nn

I The proof is given in Appendix 5'I']

so according to (i), for a qiven number of weevils, the larger

the number of intact grains at the beginning of a developmental

period, the greater the number of intact grains remaining in

the system at the end of the period,. According to (ii) the

larger the number of weevils at the beginning of the period

thegreaterthenumberofgrainsthatareattackedinthe
period and therefore the less the number of intact grains

remaining at the end of the Period'
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If the value of the constant b (see end of Section

2.2.2) is such that C <

evenatthetimet*whenthecriticalfoodratioisreached

for the first time; since S(t*),/W(t*) : C < g/(2be) ' But

aspointedoutinSection5.l.0itishighlylikelythat

S'/Wr, < c for atl na > ttc ' So it is very likely that

(5.2.28) is satisfied for all developmental periods after

t¡k . Then from (i) we have

r,, ' l.(k,'")]'" = s(w,,) ' sa'

Because of the complexity of the expression for g(wn) it

isnoteasytodetermineitsmaximumvalueortoestablish

a meaningful upper bound for it' However' for a set of

possiblevaluesoftheparametersinvolvedwemaybeableto

demonstrate that g (wrr) is a decreasing function of *r,

and it woutd be possible to calculate maximum values of the

fraction I' for various values of the number of weevils'
n

\Àr , ât the beginning of the period ' In Example 5 ' I below
n

in which we demonstrate that g(wn) is a decreasing function

of \^7 r wê make use of the value of g(wrr) as *r, * -
n

The value is calculated from the limit

-Ba/ 24 (v+À) be---gT- (1 e )lim g (wrr) = eXp
\rü -)æ

n

which is obtained after some tedious and lengthy manipulation'
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Example 5.1

Withv=o.o2L2B5,x=1.0,e=0.006436,u=0.008333'

Q = I0.0, b = O-]*2 and a = 50 we have $'2'28) satisf ied

evenatthetimet*whenthecriticalfoodratioisreached.
Using these values we obtain:

Table 5.1

o -o684L2o.o6a425o. 0684480.0684930.0688620.0733r1q(w )-n

5XIO 3
2x10 3ro3500100IO\^7

n

0.0684020 .068407q(w )-n

+oo10'+w
n

Tabre 5.1 crearly indicates that, for the given varues of the

parameters, g (\n¡n) is a decreasing f unction of *r, ' For

example , fot \^7 >

,trl < (5.2.29)
E[S ,n+l n

S n

Then from (5.2.I0) and (5'2'23) we have

-Kn ê
E[wr,+t;srrrwr.,l > (o'93rr)P'sr, + wn e

-K__a _-ßa ^bea sn/*n > (w + beas )e-ß.But 1^7 e'-n-=w e e - r"n n'nn
Hence f.or *r, Þ 100 we have

s +hr
nE[ wrr*r i sn'w' nl t (0.9311)P' + beae-$a

"-ß".(5.2.30)
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E (1ñ
n

nlsr,+rl < (0.0689)EtSnl (5'2'31)

and

E[ Vün+rl> t (0.931r)p + bea e ßt] n[ srr] + E[ Wr,] t-ßt ' (5'2'32)

It is clear from (5'2'30) or (5'2'32) that the extinction

of the population of the weevils (including the eggs) is not

possible before intact grains get finished; even if

= 0, E[Wn+1isn,wn1 0 provided' "r, 
> 0.

From (5.2.2g) and (5.2'30) i,rle can deduce that for

) > 100,

Iim W (t)
tt (n+1) a

LetusrecallthataccordingtoModelAweobtainedthe

mean of the number of intact grains as e[S(t)] : S* "-ô(t-t*)
(see equations (5.1.15)). According to this solution the

expected number of intact grains at the end of a develop-

mental period would be the fraction .-ô. of the number at

the beginning of the period. Now with fi = (v+À)/c and

withV,À,aandCtakingonthevaluesusedinExample

5.1, "-ô. - 0.0060577. Comparing this value with the

values of g(wr,) in Tab1e 5'1 we deduce that' according to

ModelBthenumberofintactgrainsremainingafterone

developmental period (or any interval of time) could be as

high as 1l times the number that would be remaining according

to Model A; the initial numbers of intact grains at the

beginning of the period being the same' This is expected

becauseinModelBeventhealreadyattackedgrainsmaybe

used again by the weevils whereas in Model A once a grain is

attacked it is regarded destroyed and it cannot be used

agarn.
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5 .2.5 The transitio n from Phase I to Phase II

we should not forget that there is a delay in the

emergence of an adult from an egg. so we should. look at

the interval I t*-arri*a) carefully so that the complete

output of phase I can be used as the input to phase II-

We shall assume that over the interval I t*rn*a) the

wheat grains susceptible to attacks by the weevils are those

which are intact at time t* . Then the derivation of the

distribution of the bivariate process { (S (t) ,W(t) ) ,¡*(t(n*a}

would be the same as in Section 5.2.2. So by replacing

ïlâ, "r, and t' by t*, s* and vr* respectively and

setting t = n*a in (5.2.12) and (5.2.L4) \Àle obtain

E[S(n*a)ls{t*) = s*rw(t*) = w*] = ='tgr(w*)

where d(r*) (obtained by using s* : Cw*) works out to

g*{w* ¡
i
L

t "*n {- (u*' . #)("*a - ..)}]'.

It is not clear whether g*(w*) is an increasing or a

decreasing function of !\¡* . fntuitivety g* (w*) should

be a decreasing function; for the larger the value of \^J*

the greater the rate at which the grains will be attacked

and therefore the smaller the number of intact grains left

in the system at time n*a . But a demonstration of this

intuition, as we did for g(wr,) in Example 5'I, is not

possible because t* is not specified.

over the interval (t*rn*a), w(t) is a binomial

random variable with parameters w* and expl -(p+e) (t-t*)] '

We account for all eggs laid in the interval I t*-arn*a) by
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assuming that they die or emerge into adults at time n*a

Thus the size of the population of the adult weevils at

time n*a is

W(n*a) = Iim W(t) + p'(S(t*-a) S(n*a)) '
ttn* a

Hence EIW(n*a)l = EIW*l exp{- (r'+')(n*a-t*)}

+ p'(Et S(tx-a)l - E[ S(n*a)] )

where' once the value of t* has been determined or

estimated (see Section 4'8), E[W*] can be evaluated

equation(4.3.rr)andalowerboundforEts(t*-a)]
evaluated by using (4 .7 ' 4) and (4'5 '7 \ '

5 .2. 6 Generalis some of the ASS ns

using

is

The assumptions in Section 5 '2'L are such that we have

been able to derive and sorve the equation for the functions

f,''(t,Y).Asitisapparentfromthemarginaldistributions

of S(t) and w(t) , these functions play a basic role in

the essentiar structure of our problem. However, if we

wish to revise or generalise the assumptions we may not be

able to derive an equation for fnr(t'Y) ' Even if we are

abre to derive the equation it may not be possible to sorve

theequationdirectly,forexample'withouttakingtrans-
formsofit.Inthissectionweshalllookatageneral-

ization of some of the assumptions and still be able to

determine the functions fn,

Weshallrelaxassumption3ofSection5.2.LSoaSto

Iettherateatwhichtheintactgrainsareattackedtobe

aproductofs(t)andanarbitraryfunctionofthenumber

of adult weevils W(t)' That is' given that S(na) = s

nand w (na) w
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(i) cxn (t) = S (t) g (w (t) r s' rlatrrr) for na < t < (n+l)a t

\^¡here 6 is the arbitrary function' Also we shall let

the emigration rate e (t) and the death rate u be functions

of w(t) instead of being constants during a developmental

period as used in Section 5'2'2' That ís the emigration

and death rates, for na ( t < (n+I)a ' are

(ii) err(t) = e(w(t),sr,,wr,) and un(t) = u(w(t)'srr'w")

respectivelY.

With the rates (i) and (ii) rtle can regard our system as

aCarrier-borneepidemicinwhichthegrainsarethesuscept-

ibles and the weevils are the carriers' Then' according to

Henderson's (Lglg) technique we can write the p'g'f' Gn(t'x'Y)

in the form

Gn (trxry)
S

n

I
s=0

(5. 2. 33 )(x-r) "(=s)I YwQ=, (t)

where

q (r) P
\^/

there

t and

grains

time

are w weevils (carriers) at time

a fixed Predetermined grouP of s

(susceptibles) is stilt intact at

t

Using this aPProach we

weevils. In our case

could also have d'ifferent groups of

the obvious groups would be those of

the eggs, larvae' pupae' pre-emergence ad'ults' mature females

and mature males' Then w(t) becomes a vector w(t)

= (w- (t) , . .. tw.- (t) ) where w. (t) is the size of the i-th
rnl

group at time t . However' for our discussion here we

shall consider the case of one group of weevils (the mature

adults). The results for more than one group can be

obtained using a similar líne of argument'
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Comparing (5.2-8) and (5'2'33) \^re deduce that

fn" (t'Y) / ="\
\=/ I v' qsw (t)

\¡V

(5.2.34)

(5.2.3s)

So here f ,r" has been broken up into the functions gsl^¡ (t)

of one independent variable t . Note that this is actually

what we did in section 5.2.2 when we broke up Gn(t,xrY)

into the functions frrr(t,Y) ' rn general it is simpler

tosolve1¡orfunctionswithfewerarguments.Thusifwe

can solve for qsw (t) \^Ie can obtain an expression for

f ,r" (t,Y) using (5 .2.34 ) '

Accordingtotheformulas(i)and(ii)fortherates

clr, (t) , er, (t) and un (t) the probabilities Q"* (t) satisfy

the equations

do's \^7ãr-
do'so-ãE-

: - Ys 1w) 9", + ß (w+r) qs 
,w+t-

and

with s-sw

where

and

= ß(r)ø,

(r) 0 for r¿(0 or \^/ > w , Dâ < t < (n+l)a
n

The initial condition for (5'2'35) l_s

q (na) =-s\Ât
Í
l.

0 for wlwn

I for t=w'

Note that because the generating function

J v!19",o
\^t

f ,,"(t,n) /("J)
S
(t,Y) w , (5.2.36)
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wewouldnottrytousethemethodofgeneratingfunctionfor

the s to solve the equations (5 'Z'35); fot if we cannot
-sw

solve the equation for the functions frr= we cannot solve

the equation for J.(Y,t) ' So if we are to solve (5'2'35)

the remaining alternative is to solve them recursively in

\^TeitherdirectlyorbyfirsttakingLaplacetransforms

and then inverting the results'

Now define the transformation functions

ôe)
\¡r

I
J

oo

s (t)
- I¡t

-zte dr
na

forRez>someR>oo so that the integral is convergent;

where the subscriPt

we obtain

and

(z)
n

and

Q\n¡ (z)
e(w+r)ô .-Q)' I^I+ I

has been supressed. Then from (5'2'35)

(5 .2 .37 )
t

qo(t) : ß(1) t'

J
9, (t) dt

s

(z + y (w) ) ô,u {r) : 9, (nt+) e-zna + ß (w+t) ôr*, {t)

na

Now solving $-2.37) using the initial condition

= ô and the boundary condition q\^¡(t) = 0
\,rI r Wn 

^therefore ô,otr) = 0) for \^7 t t' ' wê obtain

s (na)
- \^I

(and

-zna
Q\n¡

e''nu/ rl (z+y(r))

f.Or 1-<w<W

n

f=\47

z+Y (w)

ß (r)
I

n

I¡/Iw

+
=1,

n
]I

n
-zna FeL

r=w

w\¡f -1n
l

r=w*
I
L I

ß (r) (5.2.38)
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1(w<w

where

Now noting that

r
l=w
)lr

t -zna
t

J

e-y (w) (t-na) 
"-r.dt = ;ry@

na

the inverse of the transform (5'2'38) is

q (r)
w

\¡/ -1n
Ii ß (r)

r=w*1
I
L

I
I n

w

t
f cç e-Y(r) (t-na),
=vf (5.2.3e)

q\n¡ (t) = "-Y 
(wn) (t-na)

n

SuPPose that''

5.2.L, wê still have

and qo (t) is evaluated from the second equation of $'2' 37)'

SpresupplyingthesubscriptSandsubstitutingfor
q(t)in(5.2.34)and(5.2.33)weobtainexpressionsfor-sw

frr= (try) and Gn (trx,Y) respectively'

Example 5.2

according to assumption 3 of Section

o (t) (v + À)S(t)/sn = o^ S(t)

but the emigration rate (5.2.I) is revised to

s (t) = e + be (C srrlw(t) )

= K + besn/W(t) (5.2.40)

and the death rate U (t) = U (a constant) '

Then we can show that the generating function
l^I

,r (t,y) ^= I yt q
\tr¡= 0

w
(r)
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is suppressed again) satisfies the(where the subscriPt

equation

ðJ
ðr lo"" * *(y-1)] ,l * bes r\,

y/('n

- bes I
n
(
\ - |)no t.r

(5.2.4L)

According to (5.2.36) f ,, 
(t,Y) would satisfy the same

equation (5.2.4L) except that the last term of the right-

hand side of (5.2.4L) would be murtipried bv (=J) ' rhe

unknown term ur="(r - |)nottl in $'2'4L) makes it

difficult to solve fot J(t,Y) directly from the equation'

But according to the procedure used to obtain (5.2.39),

expressions for the functions q, (t) (and hence the function

fr, (t,y) can be easily obtained. Thus this example illus-

trates that the equation for the function= fr,(t'y) may

not be simpte enough to apply straight-forward methods to

solve it whereas the equations for qw(t) can be easily

solved.

5.3 DISCUSSION

AsalreadynotedinSection5.I.2,accordingtoModel

A , exact equations for the distribution of the weevils

could not be obtained. In order to be able to make some

inferences about the weevil poputation I introduced an

artifitial random variable û¡ttl Mode1 B offers an

alternative way by which an introduction of the artificial

random variable can be avoided. This is achieved by d'ivid'ing

the time line into developmental periods and assuming that
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alltheeggstaidduringadevelopmentalperiodemergeinto

adults at the beginning of the next one' At this point let

me mention Neyman, Park and scott (1956) model for a situation

similar to the grain-weevil system. In theír investigation

of cannibalism of eggs by the adult beetle, TTiboLium, they

divided time into successive "seasons" and assumed that the

female IaLd' aLL its e99s at the beginning of a season' Then

the eggs would be subject to attacks by the adults during

part of the season. The survivors become mature adults at

thebeginningofthenextSeason.Howeverweshouldnote

the differences between Neyman et aL problem and our grain-

weevil problem. In their model the beetles eat what they

lay (in other words there is an increase in the food supply

at the beginning of each season) whereas in our case the

food supply is strictly decreasing' Our Model B allows

oviposition through the developmental periods whereas in

NeymanetaLmod'eLafemalebeetlelaysallitseggsonce

and for all.

According to Model A the possibility that more than

one egg could be oviposited in a grain could not be explicitly

considered. But according to Model B a grain (whether

already containing eggs or not) is susceptible to attacks by

the weevils until the end of a developmental period' Thus

according to the Model B formulation the intact grains are

used at a slower rate than in l40del A and the distribution

of the number of eggs oviposited in a single grain during

any interval of time (within a developmental period) can

be determined. AIso a combination of the assumption that
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young adults emerge at the beginníng of a developmental

period and the assumption that the emigration rate is

constant during the developmental period incorporates the

hypothesis that young adults are more dispersive than the

old ones (see Section 5.2.1) '

Now turning to the solutions let us note that according

to Model A S (t) (that is the number of intact grains at

time t) is binomially distributed' However' as already

mentioned, the exact distribution of vü(t) (that is the

number of adult weevils at time t) could not be obtained'

But the expectation and variance of the artificial variable

ûttl were shown (under certain assumptions; see section

5.1.5) to be a lower bound for the expectation and an upper

bound for the variance, respectively, of W(t) ' According

to Model B W(t) is binomially distributed during a develop-

mental period but the equations for the distribution of S (t)

are more difficult to handle. From the recurrence relations

(derived in Section 5.2.4) between the expectations of S(t)

and vü(t) at the beginnings of two consecutive developmental

periods we could determine the maximum fraction of intact

grains that are noú attacked. during a developmental period'

comparing the solutions for s(t) by the two models, for

a given set of values of the parameters, \^7e could ded'uce

that according to Model B the number of intact grains not

attacked during a developmental period could be as high

aSlltimesthecorrespondingnumberinModelA.Also

from tLre recurrence relations we can deduce that the extinction

of the weevil population is not possible until all the intact

grains have been utilised. But even then the weevit population
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wouldnotcometoanendimmediatelyintactgrainsare

finished. It has been observed (Coombs and V'Ioodroffe'

Lg73) that when intact grains are finished the weevils feed

onfrassandthehusksofthegrainsfromwhichyoungones

have emerged. so r wourd say that then the weevil population

becomes a death-emigration process in which the longevity of

anindivid'ualisverymuchreduced.InourthTomodelsthe

reduction in longevity is achieved through the increased

rateofemigrationwhenthegrainsgetfinished.Someof

the weevils that would have died in the system, because of

Iack of food and ovipositional sites' are free to emigrate

From the grain-weevil system viewpoint emigrants can be

regardeddead.Hencethosewhíchemigratehaveashort
life-span as far as the system is concerned'

Finallylwouldliketonotethatarevisionofthe

assumpti-ons made in the two models remains open. As shown

in section 5.2.6 there are other !{ays of formulating our

problem and still be able to solve the equations. Hou¡ever'

we should have it borne in mind that a d'rastic revision may

not relate to the situation r,.re are considering'
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CHAPTER 6

S PATIAL DISTRIBUTION OF INSECTS (WEEVILS) V'IITHTN

STORED GRAIN

6.I INTRODUCTION

In the previous chapters we have not taken into

account the spatial distribution (díspersal) of the weevils

withín the wheat they are infesting. The spatial

distribution influences the activities of the weevils.

For example, as pointed out at the end of section 3.2.8,

when the weevils are sparsely distributed within the

wheat the oviposition rate may be very low due to lack

of copulation. For sure the spatial distribution

influences the rate of emigration; for the weevils can

only emigrate from the surfaces open to the outside

environment. It is also of interest to det,ermine whether

there are aggregations of the weevils in some particular

sections of the stored wheat.

Themodel,inthischapter,isconcernedwiththe

dispersal of weevils withín wheat stored in a container.

The container could be small or as big as a silo'

Initially \,üe have all the wheat grains intact and'the

initial distribution of a given number of weevils within

the grain is known.

This dispersal problem could be regarded as a

díffusion problem with the diffusion coefficients



L44.

as functions of the local conditions' In the next

section I mention models that are related to our problem'

but because of the special nature of the grain-weevil I

system the models cannot fit exactly the assumptions

made about the system. I therefore derive and solve

dispersal equations from first principles' The basic

assumption for the derivation is that the length of time

aweevilspendsinasectionofthewheatdependsonthe

availabilityofintactgrainsinthesection.Aweevil

ismorelikelytostaylongerinasectionwherethefood

ratio is high than in a section where the food ratio is

Iow.

Theequationsderivedareforthenumberofweevils

and the number of inLact grains per unit volume' Ïn

order to sorve these equations the method of sepaz'ation

of uar'íabLes is applied and then a Laplace transform

technique is used to determine the exact solution to a

resulting d.eLay integro-d'iffez'entíaL equation' Though

thisdelayequationisofhigherdifficultythanthe

delay differential equations of Chapter 2 ' it is shown

thatwecouldstillsolveitbytherathernaturalmethod

of steps.

6.2 BAS IC ASSUMPTIONS AND RELA TED MODELS

We shal-l assume that the con+-ainer in which the

wheat is stored is cylindrical. However, for the

formulation of the prolclem we sha1l represent the
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container by a line segment. Thus a point on the lj-ne

segment represents a cross-section of the container.

The time a weevil spends in a section of the

container is a function of the food v,atio (that is the

average number of intact grains to a weevil) in that

section. A weevil is likely to stay longer in a section

where the food ratio is high than in a section where the

food ratio is low.

Lets(x,t)andw(x,t)bethenumberofintact

grains and the number of weevils, respectively, Pêr unit

volume in section x ofl the container (or at point x

when referring to the representative line) at time t.

Then we define the food ratio in section x at time t

AS

F (x, t) s(x,L) /vt (x,t) (6 .2.L)

one of the possible equations that could model the

dispersal (distribution) of the weevils within the wheat

is the equation i- or "diffusion under a potential field" '

That is w(xrt) could satisfy an equation of the form

2
d ðw

ãx
ðw
ãT

ir (x)

õ w + ù(x)

(constant) ðP
EX

ãxz

where

and

our

In

P is the potential function (Chesson, 1976) ' fn

case P could be a function of the food ratio F(x't).

particular we could take P(x,t) = F(x,t) ' However'
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if we do sor we \^7ou1d be assuming that the weevils would

move(dríft)indirectionsofincreasingfoodratio.I

do not think thät the weevils can determine the direction

of greatest increase from where they are. Instead' I

feel, it is the local condítions, such as the local food

ratío,thatdeterminewhetheraweevilisgoingtomove

or to stay for a while. once it has decided to move,

its immediate direction of motion is arbitrary' Thus it

is not obvious how we can relate the movements of the

weevils to the food ratio potential field'

Kiester and Slatkin (I974) derived an equation for

the dispersal of lizards in a linear habitat' They

basedtheirderivationonthehypothesisthatthe
probability that an individual moves in a gíven direction

x + x + ôx in a small interval of time is proportional-

to the length of the interval and to the directional

increase E (x+ôx) E (x) , where E (x) is the free-time

available at position x after an individual has performed'

the essential activities such as looking for food and

eating at x. Kiester et aL assume that the probability

of moving ín the direction in which E (x) is decreasing

is zero. As I can see their argument would apply to

situations in which the habitat is stationary (that is

not time-dependent) and the individuat animals have

alreadyexploredthehabitatsoastoknowthefavourable
places, within the habitat, for dífferent activíties! In

our case the habitat is not stationary; as the weevils

moveamongthel¡Theatgrainstheyreducethefoodavailability



L47 .

in the habitat.

Forourproblemwemakethefollowingassumption.
,,In a small interval of time (t, t+ôt) a weevil will

either leave or stay in the section of the container it

is in at ti-me t. If the weevil decides to leave then

the probability that it moves up (right of the axis of

the container is horizontal) is a half eà - The probability

g(x,t)i that a weevil stays in the section x over the

time interval (trt+ôt) ís proportional to the mean food

ratio in the section. " That is

S (x,t) D s(x,L)/vt(x't) (6 .2.2)

where D is a constant. skellam (1951) refers to this

kind of movement (dispersal) as due to "random blindness"

anindividualmovesbecauseofcumulativeeffectof

Iocal irregularitieS but then it "may not discrimínate

between two parts of a habitat differing considerably in

their effect on survival".

Of course the other processes that take place in

our system are the emergence of young weevils from the

eggs and the dying and emigration of the adults' As in

previous chapters (except section 3'2'2) we shall assume

it takes a days Írot an egg to develop into a mature

adult.Themovementsoftheadultweevilspastagrain

inwhichanegghasbeenoviposited'hasnoeffectonthe

rate of the development of the e99' A weevil may leave

the container only from the top surface of the wheat'



148.

6.3 DERIVATION OF THE EQUATIONS

Let the depth of the wheat in the container be

L. For the sake of the derivation of the dispersal

equation let us divide the wheat into sections of width

h; the middle of the i-th section being ti-llrr distance

units above the bottom of the container. We shall consider

movements of a weevil during a short time interval

(t,t+ôt) where h and 6t are such that the probability'

ß(i,t), that an individual will not leave section i in

the time interval is j-ndependent of h and ôt. rn

other words if we make h smaller we also reduce the

value of ôt in such a r^/ay that the probability ß(i,t)

is unchanged.. For if we are to reduce h without

reducing ôt then the region over which a weevil would

wander f.or the same length of time (without leaving the

section) will be smaller. This would tend to decrease the

probability ß(i,t). However by reducing ôt in an

appropriate way we can have ß (i,t) remaining constant'

Let, according to rc.2-2) |

ß(i,t) = <(v+À)s(i,L) /w(i't)

= rccls ( i,L) /w ( i, t) (6.3.1)

where rc is an arbitraÍy constant (D = rco'), v is the

rate at which the grains are eaten by an individual weevil

and À is the rate of oviposition of e99s per weevil.

[For the choice of the values of K see the paragraph

afLer re]ation (6.4 -20) --l
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Firstof.allletusderivetheequationfoxthe

dispersalaspectofourprocess.Thepossibletransitions
(movements) and the corresponding probabilities, in the

time interval (t't+6t), by a weevil in section i at

time t are:

transition robabilit

i+i

i+i-I

i -+ i+I

ß(i,r)

|rr-ß ( i, t) l

Lrr-ß ( i, t) l.

Therefore with

in section i

weevils in the

w(irt) as the expected number of weevils

at time Lt the exPected number of

section at time t+ôt is

w ( i, t+ôt) ß (i,t)w(i,t) + ïrr-ß (i+r, t) lw (i+1, t)

+
2
1 tr-ß(i-I,t) lw(i-t,t) rc.3'2)

Hoppensteadt lLg76, Chapter vIITI uses similar arguments

to derive a diffusíon approximation to a propagation of

a biological activity along a grid of cells ' However in

his derivation the probability ß is constant unlike

our ß(irt) which depends on the local conditions'

Therefore his final result cannot fit our situation.

Let us represent section i by a single variable

x. For example x could be the height , fi-lln' of

the middle of section i above the bottom of the container'

So substituting fot ß(i,t) from (6'3'f) and then

replacing i by xt i+I by x*h and i-l by X-h'



1s0.

equation (6 -3.2) becomes

w (x, t+ôt) = ros (x, t) + 1
2 lw (x+h, t) -ros (x+h, t) l

+ | tr t"-tt, t) -rccrs (x-h, t) I ,
(6.3.3)

Now from the Taylorts series expansion of w(x't+6t)

about (xrt) with respect to t and th'e Taylor's series

expansion of the right-hand sid.e (RIIS) of ( 6 .3. 3) about

(xrt) with resPect to x v¡e obtain

I ð2w2æ*ot*df
(ôr)2 + ot(ôr)21

q2
d (w-<os) + o(h2)ãF

Dividing this equation by ôt and taking limits as

ôt+0 and þ+0 insucha\^/aYthat

h2/6t * o' (a constant)

and hr/ôt*0 for r>2

ln
2

,

r,rre obtain
1)=20-âw

ñ--OL

¡2
d (6.3.4)
ãF (w-rcos)

The constant o2 is arbitrary" However condition

(6.4.20)(insection6.4.2)índicateshowtheva]-uesof

a2 , in conjunction with the values of R I may be chosen

so as to ensure a solution to our problem'

6. 3. I Deaths, Emer gence and Emigration Incorporated

In deriving (6.3'4) vre considered only the movement

of the weevils. But as they move, they also oviposít eggs
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and eat up the grain, some die, young ones emerge from

eggs laid a days ago and some emigrate from the top

surface. If the dispersal of the weevils is not

considered the eguation f,or the expected number of

weevi-ls per unit volume, w(x,t), would be

âw (I.t) = -uw (x, t) + plw (x, t-a) (6.3.5)

where p is the mortality rate fox an individual weevil,

p is the proportion of the e99s that develop into

adultsrandÀistheoviposiLionrateasdefined
bef,ore. Note that Àw(x,t-a) is the total rate of

oviposition of eggs in section x at time t-a' The

total emergence rate in the section at time t is a

proportionofthisovipositionrate-hencethesecond

term in the RHS of (6.3-5)-

Now combining (6.3.4) and (6'3'5) we get

ðw!ë,t) = -uw(x,t) * pÀw(x,t-a)

'Zo" å,r(x,t)-Kos(x,t) ). (6.3.6)+

The expected number of intact grains per unit volume,

g ( x, t) , satisfies the equation

ðs (x,t)
ât = -ow(xrt) (6.3.7)

where or^z(xrt) is the total rate at which'the weevils use

up the grains in section x at time t'
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'Itle initiaL cond.ítions to (6.3.6) and (6 '3 '7) are

w(x,0) = þ ot"t (6.3.8)

and s(x'o) (6.3.e)

for0(x(LandwhereÔ(x)isaknownfunction.
Forexampleiftheweevilsareinitiallyreleasedat

the top surface we would have 0 (x) = ô (x-L) ' So is

the initial number of intact grains and Ns is the number

of adult weevils initially introduced into the system'

The weevils leave (emigrate from) the wheat at the

rate of e weevils per unit time per weevil in the top

surface. Thus Llte bound.at,y cond.itíons to equation (6'3'6)

are

= ew(Lrt) (6.3.10)
L

and
ðw (6.3.11)
ðx f.= o

where, of course, equation (6'3'1I) implies that the

weevils cannot leave the system through the bottom of

the container. we should note that though weevils may

leavethehabitattheycannotcomeback.Inotherwords

there is no immigration into the system'

6.4 SOLUTTON OF THE EQUATIONS

6 .4.1 Separati on of Variables

Integrating(6.3.7)subjecttotheinitialcondition
(6.3.9) $Ie get

0S
L

Ew

-dx x

0
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o{, w(xr t) dr

Then substituting for s(x,t) in (6'3'6) we have

s (xrt) cv0
L

ft
Jo

o2 1 d2u
Zñd-F

(6.4.1)

(6.4.3)

: O, (6 .4.4)

I^7e

ðw (x, t)
at - pÀ\nr (x, t-a) Uw (x, t)

¡2
ö

ãxz

T'(t) T t ÀT t-a) c

(w(x,t) *rco2 w(xrt)dt). (6.4.2)*rõ2
t

f
J 0

Let us look for a solution to equation rc'4'2) of the

form

r¡¡(x¡t) = N(x) T(t)

Then from (6.4.2) we obtain

2

2
T ( t) +rcq2 T(t)dt

0

where c isaParameter.

So we have

d2N
æ +\2N-0

and

dT
æ + n*Lu2y2)r(t) + t*o'o'\'f.t,t)dt pÀr(t-a)

where 
\z = er/ú2 .

From the boundary conditions (6.3.10) and (6.3.1r)

have

dN
aç x=L

= eN (L) (6.4.5)
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and

(6.4.6)
x=0

The general solution to (6-4-3) is

N (x) Kr cos Yx + K2 sin Yx

where K1 and

(6 .4 .6) implies

So

N (x) K: cos Yx (6.4.7)

Now applying boundary condition (6'4'5) to the solution

(6.4.7) r,,re obtain

tan YL = ¿lY . (6'4'8)

0dN
ax

K2 are

that K2

constants" The boundary condition

u.

So the eigenvalues of the equation

of (6.4.8). From Figure 6.1 it is

positive eigenvalue is

(r-1) + er
L

(6 .4 . 3) are the

clear that the

roots

r-th

lt

L
+

Y
T

t Y = I12t...

where 0 <

The r-th

0 < rT/2
T

negative

and Q -+0 as r+cor
eigenvalue is

v; - {r-r) f 9-
L

+
lr , t = L12r...

Because of the evenness of the solution rc'4'7) and

because it is the square of Y that appears in the

equation rc.4.4) we shal1 consider only the positive

eigenvalues" Denote the r-th eigenvalue by Yr' Then
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J -- t*,r, YL

J

I

\
I

i
\

-Y, -y. _.t
Y. v,

Y

\
ì
I
I

I

FIGURE 6.L: The locations of the real roots

'\2, -Yr, \tt \2, Ygr of the

equation tan YL = ¿/\ -



156.

the general solution to (6.4'2) is of the form

æ

w (x, t)

T (t) is the
T

eigenvalue Yr

I T (t) cos
r=l T

solution to (6.4-4) corresponding

YX'r
(6"4.e)

6 .4 .2 Laplace Transform Technique

Let us rewrite equation (6"4.4) AS

t
t'(t) *brT(t) *bz T(t)dt bsT(t-a) 0 (6"4.10)

where

to the

where

Note

0

br =v+L2o'y',bz=L"o'
that bi ¡ 0, i - I,2'3-

õ '\' and b¡ = PÀ'

Accord.ingtoBellmanandCooke(1963),theLaplace

transform of a delay equation such as (6'4'10) can be

usefulindiscussingtheaslrmptoticbehaviourofthe

solution as t + -. However for our grain-weevil system

\Àre cannot wait that long - all the wheat grains will have

been destroyed. The solution for the first few days'

weeks or months is more important than the long-run

solution. For this reason we shall use the Laplace

transform to determine the solution to rc'4'4) (or

(6.4.10)) as an explicit function of time t' Then we

can easily deduce the solutions over several of the

developmental periods, na ( t <(n41)a, 11 = 0tI,2t... f

in the earlier part of the storage of the wheat'

Denote the Laplace transform of T (t) by
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ûtr) = ¿(r(t)) å ô r (r) dt

where the integral is assumed convergent for

ReZ > some R > -oo . NOW taking the Laplace transform of

(6.4.10) we get

(z * br .+ - bse-"")i(r) = t(o+)

So
+r(0 )z

-

z2 +b 1z*b 2-b sàe- 
az

t;
-zL

zT

where

Expanding the RHS of (6.4.11)

we obtaín

oo

I

r (o+) z

a(z) (I-bs ze-az/Q(z))

eG) = z24p1ztb2 = (z-q,t) (z-qz\ , sa!.

in powers of bsze ^'/Q(ù ,

(6.4.11)

(6 .4.L2)+x(z) = T(0 oro"-o"' lz/a(") lk*l
0k

Let
k+f k+l

v
z z(z)

(z-q, ) 
k*l (z-qz) k+1k ek*f ( r)

Now let us note that

ß(H(t-b) f (t-b) ) =,e-b"î(r)

where H(t) is the Heaviside unit functíon, that is
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H (r)
0

1{
for t<0

for t>/ 0

+i+1

l-

t

f(t) is an arbitrary function and E(z) is the Laplace

transform, ß(f (t)), of f (t). so the inuez'se Laplace

transform of (6.4.I2) is

T(t) = r(o+)
æ
I
L

k=0
b rkH ( r-ka) üo ( t-ka) (6.4.13)

Thus we need to determine Ú,, (t) which is the inverse

Laplace transform of 0otrl.
Note that ît. <") is a quotient of two polynomials ',K

The numerator is of degree (k+1) and the denominator

is of clegree 2 (k+1) with each of the factors (z'qt) ,

(z-qz) repeated k+I times. Therefore we can write

û (z) in the Partial fractions form:
k

k
I

í=0

k
Iúu ( z)

k
F

L
i=0

(z'qt)A

A B
1 l- (6 .4 .L4)

(6.4.15)

l_ o (z-qr)

where the coefficients Ai'

obtained from

(z-qz) i+l

l_ 0r1r... rk are

k-i

B
1

k+l . k+lz = \z-92 )

+ (z-qr) k+l k
I s. (z-q.r. ) 

o- t
=Q 

r
I'

by, for examPle, comparing coefficients of the polynomials

of the LHS and RHS of rc.4.15)' Then the inverse Laplace

transform of (6 .4 .14) gives
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k
I

l_

A
k
\
L

L-IJ

k
(r-ka) I

i=0

æ
+

= r(o') I b,
k=0

úk(t)
ai"o r t

i -T- + B
n

Hence from (6.4.13) we have

lai.n r ( t-tna) *". 
"oz 

( t-ra),

toL" )"o r (t-ka l*"1" )"oz (t-ka ) t

Íor na ( t < (n+1) a. The constants o1")' 
"L")

values of Aí, Bi, respectively, when na ( t <

Thus , fot examPle, Í-.ot 0 < t I àr we have

and therefore

1
ktt (t-ka)r(r) i!

(6 .4 .L6)

Solution for na(t < (n+I) d, where inteqer n > 0.

For na ( t < (n+l)a and k ;' nr we have

t-ka < 0 and therefore H(t-ka) = 0' Then from (6'4'16)

we have

( r-ka) I
(n)T(t) = f (r) ìt

nkê r(o+) I ¡ro I
k=0 i=0

x

(6.4.17 )

are the

(n+I) a.

n=0

(6.4.18)r(r) = r(o*l tafo)"t't * ":")"o't¡

Now using rc.4.I6) , and since according to

k - 0, we have

L_ (z-qz) n (o) + (z-qr)B (o)

(6.4.17).

which gives

U
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(6.4.re)

In order

condition

some

B

On the roots Ç t ¡Ç.2 .

Since we do not expect any periodic or oscillatory

behaviour for our system we wourd require 9r '92 to

be reaI. Let us recall that q-tt1'z are the roots of

the equation

Qþ) A zz *brz*b2 0

are real Lf0where

bt'

So

that
brrbz >

4bz >

9,t t9,z

is, if

tu*åo'\')' 2<a2o'v' >

For positive values of orK and Y this condition

reduces to

aoy,/11. > oLo'v'+

Since the LIIS

minimum value,

\", t=I ,2r"'
chosen. Then,

9,t tS,z < 0.

So far

to determine

(6.3.8). But

u
(6 .4 .20)

of rc.4.20) is quadratic in Y with a

(6.4.20) is satisfied for all eigenvalues

Lf the values of o and K are suitablY

because brrbz > O, we have both

T(O+) has remained unsPecified'

T(0+) we shall use the initial

before we do so let us introduce
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notation. Denote the solution to (6.4.4) corresponding

to the eigenvalue yr of (6.4.3), for na ( t < (n*1)a'

by tl") (t) and let 1rr,Çr, be the corresponding zetos

of Q(z) . That is, f rom rc .4 "I7) ,

r(")(r)
T

rr (o*r uloo,or!o#ra
(n)
ri

9. I (t-ka)
e

+

(n)
x

"(n)"9rr(t-ka),rI
(6.4.2L)

where o:T, , "lT) 
,r" rhe coefficients corresponding

to the eigenvalue yr for na ( t < (n+l)a'

Thus f..or na ( t < (n+1)a equation (6'4'9)

becomes

So

w(x,t)

w (x, o)

= s(xrna)

@

r
L

r=I
T (t) cos Yr*

and the number of intact grains per unit volume

remaining at time t in section x of the container is

given by

t
s (x,t) So

L
cr,w (x, t) dt

0

æ

I
L

r=I

æ

Ir

t (n)o(T (t) dt) cos Y x
t x

na

(o)
T (0) cos y x

t t

I

{o) 1o) from (6.4.18) we have
tNow substituting for T
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w(x,0)
I(0')

tTI
r=O

(o)*" (o)
(Ar0 r0 ) cos yr*

cos Y xr

L

But according to (6.4.L9)

(o) (o)
A +B =1r0 r0

Hence, using the initial condition (6'3'8) ' we have

þ ot"l I
r=0

rr (0')
t

(6 .4 .22)

It can be verified that the eigenfunctions cos Yt* are

orthogonal on the interval [OrL] ' So multiplying

(6.4.22) by cos Yr* and integrating with respect to x

we get

L
cos yrx dx = rr{o+) f0 (x)

0

Now using equation (6.4'9), that is

tan YrL = e/\ r ,

r^/e can show that
L

No
L

cos2yrx dx
0

coszyrx dx = L " 
* t e/ (\2+¿2) .

0

Hence for the given function 0(x), Tr(ol) is given by

2N +¿22 L
L(0')T t e*L Y t e

0
0 (x) cos Yrx dx rc.4 '23)
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Example 6.L

If the weevils are released at the top surface

0 (x) = ô (x-L) .

Then, according to (6 -4.23) ,

2N
2 +e

2 cos Y L (6 .4 .24)
L e+ Y +e

T

Example 6.2

Suppose the weevils cannot emigrate' Then it can

beshownthattheresultsforthenon-emigrationsystem

canbeobtainedfromthosefortheemigrationsystemby
setting the emigration rate e to zeto' Then the

eigenvalues Yr are given bY

Yr {r-r) f , r=L12,...

tf in addition the weevils are initiatty at the bottom

of the container, that is 0 (x) = ô (x) , then from

(6.4.23) we have

2NoF (6.4.25)

Thenfrom(6.4.18)and(6.4.L9)wecandeducethat

Tr(t) > O for 0 < t < a' Now' sance

w(xrt) i
r=l

Tr (t) cos Yr* ,

I(0')rF
T

a(0')T t

the positiveness of Tr (t) implies that a maximum density

ofweevitsperunitvolumeoccursatthebottomofthe
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container at least in the first developmental period

[0,a).

6.4.3 The Method of StePs

Itisworthnotingthattherathernatural''method

of steps" [El'sgol'ts and Norkin (1973) ' Driver (L977)I

could be used to solve the delay integrodifferential

equation rc.4-4) - In order to use the method we set

T(t) = O (or a constant) for -a ( t < a' Then we

solve the equation for O < t < a in which case T(t-a)

is a known function. Using the solution for 0 < t < a

\^re solve the equation for a ( t < 2a' This procedure

can be continued to 2a ( t < 3a and the following

intervals as demonstrat'ed below'

Differentiating rc'4'4) or (6'4'f0) we have

* br t bz T(t) (6.4.26)

(6 .4 .27 )

qt

Solution for 0<t<a

with T(t) = 0 (or a constant) for t < 0 equation

(6.4.26) reduces to

d2T
æt

dT
æf br * br ! = 0

NowifwelookforasolutionoftheformT(t)=e

the characteristic equation for (6'4'27) is

q 2 * br Q * bz = 0 (6 .4 .28)



r65.

Note that (6.4.28) is the same as the equation

QQ) 22 * br z * b2 = 0

in Section 6.4.2. Hence the roots of rc.4.28) are 9t tq'z

as in Section 6.4-2-

As before let Qrrrgr, be the characteristic roots

corresponding to the eigenvalue \r of (6'4'3) ' Then

the solutirbn to rc-4-27) corresponding to yx is

T (r) c
t

egrrt + D (6 .4.2e)e9'zt
t r

where C ,D are the constants of integration'
t- t

At this point let us reca1l that we obtained

(6.4.27) by differentiating (6'4'4) ' Therefore we must

ensure that the solution (6-4.29) satisfies (6'4'4) '

SubstitutingT-(t)in(6.4.4)or(6.4.10)weobtain

ar/grr*Dr/grr=o (6.4.30)

Now the solution to rc-4-2) as given by (6'4'9) is

e7(x,t) cos yr* (6.4.31)

Then from (6.4.I) and using (6'4'30) we have

C-ê Ç[rrÈ
ot +

o-rl

i- {"r.n" t + Dr"q" t)
t=L

s (x,t) So
L

D'e9' z t) cos yr* rc.4.32)
cf-r2i

r=I
(

Another equation for C,

applying the initial condition

and D

(6.3.8)
r is obtained bY
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w (x' o)

in the same way as in section 6'4'2' Then we obtain

: Y ot"

2 2 L

0
0(x) cos Yrx dx. (6'4'33)

rL
2N +e

a+ Y +e
t

(c+Dt

SoCandDTf

(6 .4.33) .

can be determined from (6.4'30) and

Let us note the relationshíps between

(o),"(o) and T (O+) . Comparing rc.4.23)
T'tt

c D andt
(6.4.33)

r I

andA

we notice that

Setting

(6 .4 .2e)

!(0')TD+ (6 "4.34)

(6 .4 .3s)

c

n=O in (6.4.2L)

we have

and comparing the result with

trt

(o) fr (0')ru A

Ì
x

tD

r=o

" 
(o)1' (o+)
r0 t

Note that
(6.4.Ie)

(6.4.35)

o(o) + Br0

satisfies rc.4-34) since according to
(o) 1

J.r9

Solution for a(t<2a

Let us denote the solution to rc.4.27) corresponding

to the eigenvalue Yr bY

tir) tt) - .lt) "ert * olt) "ezt ìr

or if we supress the subscript r we have the solution to



(6.4.26) as

T(t) = T(t) (t) = c(1)"trt + D(1)"ezt

for 0<t<4.

Thenfot a<t<2a rc'4'26) becomes

(6.4.36)

å# . b,ål * bzr = ptrtc(llqreQr (t-a)*o(t) qr..'" (t-a) l' (6 '4's7)

The general solution to (6.4.37) ís

(2) = c(2)eq1 (t-a) +D(2) 
"92 

(t-a) +kr (t-a) e91 
(t-a)

T (r)

+k, (t-a) e
q2 ( t-a)

where

kr = -pÀc(r) q t/ (q,z-qr)

and k2 = pÀDtt'n, /Gr-9r)

Now applying contínuitY of T(t)

T(a ) = t(a+) = T(a) , (6.4.29)

at

and

]-67 .

(6.4.38)

(6.4.3e)

t=âr that is

(6.4.38) give

( 1) 
"9r. 

( 6.4.40)

)

c(2) + D(2) = g(l) 
"9t" 

+ D

Equation (6.4.4\ , that is

S * brT * bz [t T(t)dt = PÀT(t-a)dt ' vr¡ ' -¿ Jo

should still be satisfied for a ( t < 2a'

Notethatfor a<t<2a

t

t ta

00
T(t)dt = T

( r) (t)dt +
a

T
(2) (t) dt



168.

so using the solutions rc.4.36) and (6.4.38) in (6.4.4)

we can show that

qrc(2) + qro(2) = ¡zc(r)"qra * grD(1)e9"

- pÀ(qrc(t)-qro(t))/(q,r-qr) (6'4'4L)

Solving for C

we get

(2) and D(2) from (6.4.40\ and (6.4.4L)

(2)
"( 

1) 
"era 

2pXqrc(r) / G,r-qr) 2
c

and D
(2) = D(r)"qzt 2pÀqrD(t) / (q,r-gr) 2

where we have used

9rD * qrc ( 1) 0 (from (6.4.30) )( r)

(6 .4 .42)

D

qr z (t-a)

Let t(2) (t)
t

to the eigenvalue

k1 and k2 in

be the solution to rc-4.37) corresponding
(2 (2)

\r. Then substituting for C

(6.4.38) we obtain

T (r) c (r)
"9rtt

2(2)
t t

eqr 1 (t-a) pÀq (t-a) e
I
L

À
2

I
I

I
L

2 Àq e4, z 1 t-a) t-a) e9' ' 
(t-a)

o -cf-r2 "rl o -cI'tz 'rI

o -cI-r2 'rI
À

+D (r)
"9.t 

z E +
t q -q

2 rIr

(6 .4.43)

wheregri(!=I,2)arethecharacteristicrootsfor
(6.4.27) corresponding to the eigenvalue Yr and 

"lt'
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and D(r) are determined from (6.4.30) and (6.4.33).
r
So the general solution for our system ' fot

a(t(2a is

w (x, t) (2)
T (t) cos Yr*i

r=L

æ

I

r
and

o( T
(2) (t)dt) cos Yr*

(6 .4 .44)

i=1, 2, . . . ,Tr are related

t
s (x, t) 5 x

Solution for na ( t < (n+l)a

The procedure used f'ot O < t < a and a ( t < 2a

can be extended to 2a ( t < 3a and the following

intervals.Then'recursively,thesolutionto(6.4.26)

for na ( t < (n+I) a, n=0, L,2, " ', is deduced to be

of the form

(n)
"9r 

(t-na) *T (r)

)a,x
aIt

n
I c!') (t-t.)'

i=0 
L

= 0 = D(").n+l

,lool") 
(t-na) i"e' (t-na)

where the constants 
"-(") 

ro.(")].l-

by the difference equations

f

(qr-qz) (i+r)"liì + (í+2) (i+r) c = pÀ [qrC(n)
í+2

(n-l) +(i+r)cli;r) r

(6 .4 .45)

+ (i+r) Dli;r) r

(6.4.46)

I

(qz-q,) (i+rl"lîì + (L+2) (i+r)"1î) = pÀtn'ol"-t'

So having determined C

the coefficients 
"1"' 

,

for i>L (6.4.47)

"(n-1) 
i=or r12,... rû-r,

I

i=1, 2, . . . ,t't can be obtained

c
(n)
n+j

(n-I)
i
oj"',



recursively from rc"4.45) and rc"4'46)'

The constants c1") and ol") cannot be obtained
OO

from (6.4.45) and rc-4.46t' rn order to determine the

values for these constants we use

t=na;
(6.4.4) .
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That is we

(i) T(t-r) (rr") = T(t) 1na)

that ís T(t) is continuous at

(ii) r(") (t) must satisfY

have to ensure that the equation

dT
AE

+brT*bz
t
r (t) d.t - ptrr (t-a)

0

0

is satisfied by t(") (t) .

Though the solution (6.4.44\, by the method of steps'

and the solution (6-4-l-7) may look different it can be

shown recursivelY, with respect to rrr that (6'4'44) in

conjunction with (6-4-45) and (6'4'46) is the same as

(6.4.17).

6.4.4 Remarks on the Two Methods

Accordingtothemethodofbtepsthesolutionfor

na ( t < (n+1) a depends on the solution for

(n-l)a(t<na.Forthisreasonitbecomescumbersome

to use for large values of n" However for the first

few (two or three) of the developmental periods

Ina, (n*1)a) , n=0r I12, - "., the methocl may be more straight

forwardthantheLaplacetransformmethodinthatnot
muchcomputationisinvolved;theexpressionsinvolved
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are stirr simpre to handre. The advantage of the Laplace

transformmethodisthatthesolutionforna(t<(n+l)a

canbeobtainedindependentlyofthesolutionovertlre
previous j-ntervals except that we use the initial interval

O < t < a to determine Tr(O+) , x=L,2t"' '

Howfar,asregardstheintervalslna,(ntl)a)'\^7e

would try to determine the solution to rc.4.4) would depend'

on the situation we are considering' For example in

laboratory experiments the quantities of wheat used are

usuallysmall.Insuchasituationthedispersalofthe

weevils within the wheat and the destruction of the wheat

mightberapid.Solutionsoverthefirsttwoorthree
developmental periods would be sufficient to give us a

pictureofwhathasgoneonineacÏrsectionofthewheat

grain. So in this case the method of steps would be

appropriate. For large quantities of wheat stored in

big containers such as silos, Lhe initial numbers of

weevils an:et in most cases, relatively small' Hence the

dispersaloftheweevilswíthinthegrainwouldbeslow.

so we would need to determine the solution over relatively

many developmental periods before \^Te can establish how

far ttre population of the weevils has spread' However'

even with the Laprace transform method, the expressions

for the solution to the model become more and more

difficuft to handte as \^7e move to higher developmental

periods 
"
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6 .5 DISCUSSION

In formulating the model we assumed that it is

onlythefoodratiothatpromptsaweeviltomoveahTay

or to continue staying in a section of the wheat for a

while. other conditions such as temperature and moisture

content of the grain are optimal. lrIhen a weevil decides

to leave a section, íts immediate motion is random'

Surties' (1963) observations support the random movements

at the optimal temperature of 25oC and moisture content

of I4z for SitoPhiLus granaríus '

Howe (195f) observed that there was a tendancy

of the weevil-s to move down in towers filled wíth wheat'

Thiswouldimplythatiftheweevilsareinitially

released at or near the bottom of the container then the

density of weevils per unit volume would continue to be

higher in the neighbourhood of the bottom surface. This

supports the solution for Example 6.2 in which w(x't)

is maximum at x=0 for O < t < a' Howers observations

were made over short periods (the longest being of 28 days) '

EoxsitophiLusgz,ananiusittakesatleast36daysfor

an adult to emerge from an egg (see row I of Table A'1)'

Therefore in his experiments no observations were made

on the effect of the emergence of young ones on the

distribution of the weevils within the wheat. The solution

tothemodelinthischapterenablesustodeterminethe

d.istribution (or at least an approximation to the

distribution) at anY time t'
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Though we have confined our discussion to the

wheat-weevil system the model can be applied' to similar

grain-insect systems- The equations can be modified

to ínclude renewability of the food supply ' for example

by modifying equation (6"3'7) ' AIso the formulation

couldbeextendedtonon-granularsystems.Forexample

we could apply it to a system of insects laying e99s

andfeedingontheleavesofatree.Inthiscase,unlike

in the grain-weevil systemt ne\^I leaves come up' So the

food resource for the insects is renewable'

I shoul-d point out that the model discussed in

this crrapter is for the purpose of predicting what might

happen to a quantity of cereal if it were stored fot

some length of time and it happened th"at pests such as

insects \^rere initially present' The solution to the

model would help in devising control measures anð'/or

formulating control models"
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CHAPTER 7

DISCUSSION

7 .L SCOPE AND RESULTS OF THE MODELS

AsmentionedinChapterlthemodelswereintended

forthestudyofinfestationofstoredcerealproducts
by pests such as the grain weevil, SitophíLus granarius

and the rice weevil , Sitoph|Lus or'Azde' From the cited

literature and the data used in this thesis I would say

thatthemodelsaremorerelevanttosmallquantities

of grain, such as those used in laboratory experiments'

than to large quantities of grain' However the models

haveledustosuggestpossiblewaysoftacklingsituations

with large amounts of grain (for example' see end of

Chapter 3) .

The basic assumption of the models is that the

activitiesoftheadultweevils,suchastheoviposition

of eggs and. emigration' are functions of the food ratio

(thatisthenumberofintactgrainsperadultweevil).

There is a critical food ratio C above which the

availabtenumberofintactgrainsdoesnotinfluencethe

activities.Belowctheactivitiesbecomeinfluenced

by the availability of the intact grains per weevil '

Thistedtotheconsiderationofatwo.phasegrain-weevil

system; during phase I the food ratio > c and the
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parameters for the system are constant and during phase

II the food ratio < c and the parameters are functions

of the food ratio.

The weevil, SitophíLus, used in this study has

the special characteristic that a1I the immature stages

of development take place within a grain in which the

eggislaid.Soitisnotessentialtoconsiderthe

stages of the larva, PuPa and the pre-emergence adult

separately. For this reason the weevil was modelled

to go through two stages of development: (i) the immature

stage constituted by the e99, larval, pupal and pre-

emergence stages and (ii) the mature stage at which the

weevil is sexually mature and can emigrate' In short

our grain-weevil system is a tlno-stage system going through

tuo phases.

Intheanalyticsolutionsofthemodelsother

environmental conditions such as temperature' relative

humidityormoisturecontentofthegrain(otherthan

thefoodratio)weretakentobeoptimal.Someofthe

expressions for the solutions were not simple enough to

indicatethegeneralpropertiesofthesolutions.This
prompted me to use the computer to obtain graphical form

of the solutions for the deterministic models (see Chapter

3). Also with the use of the computer it was possible

to incorporate temperature into the equations. i¡le should

note that under optimal (or constant) temperature

conditions the length of the developmental period (egg to

newlyemergedadult)wastakentobeconstant.Thisis
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because alt the immature stages of development take

place within a grain and as a result the density of ad'ult

weevils per intact grain does not affect the rate of

development of the egg. But when temperature was

incorporated the computer output showed that the

developmental period could be as long as 220 days for the

eggswhichdevelopthroughthemonthsofAutumn,Winter

and Spring and as short as 31 days for the eggs that

develop through Summer. These computed lengths of the

developmental- period were in good agreement with those

which have been observed in laboratory experiments (see

Section 3.2.8) .

Accordingtothesolutionstothedeterministic

models the size of the population of the adult weevils

decreases over the first developmental period (since

there are no new young ones coming up in this period) '

Astheyoungonesemerge,intheseconddevelopmental
period, the population size increase rapidly weII beyond

theendofphasel.Accordingtothecomputeroutputthe
populat.ion size increases for over another developmental

period (about 60 days when the developmental period was

taken as 50 days) from the time the critical food ratio

is reached. Then it decreases monotomically. The number

ofintactgrainsarefinishedlongbeforetheweevil
population becomes extinct. The incorporation of

temperature has the significant effect of slow growth of

theweevilpopulation(andthereforeaslowerrateof

depletion of the intact grains; see Tables 3.1 and 3.2) '
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The food ratio increases over the first developmental

period. As the young ones start emerging the ratio

decreases and continues to do so until it is zero (that

is when intact grains get finished) '

In Section 2.7..3 the relations that the initial

food ratio has to satisfy so as the critical food ratio

is reached in the first developmental period., in or after

the second developmental period were derived. According

to these relations it can be deduced that, for such

initial food ratios as those used in laboratory experiments'

it is likely that the critical food ratio is reached in

the second developmental period. The computer output for

the initial numbers of 240, I2O, 60 and 30 weevils to

20,OO0 wheat grains confirmed this (see Table 3-I). For

this reason, in the phase I models, I concentrated on

determining solutions for the first two developmental

periods. However where possible, I have ind.icated how

\^7e can obtain the solutions for the third and higher

developmental periods if required'

The stochastic models in chapter 4 and section 5.I

\^/ere intended for checking the deterministic solutions

of the model-s in chapter 2 and for the derivation of

expressions for the variances of the variables involved'

For phase I it worked out that the stochastic mean and

the deterministic value of the number of adult weevils

are the same but the deterministic value for the number

ofintactgrainsisalowerboundforthestochastic
mean. For phase II the reverse happens: the stochastic
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mean and the deterministic value of the number of intact

grains are the same, but, under certain assumptions

(see section 5.1.5), the deterministic value of the

number of weevils is a l0wer bound for the stochastic

mean.

ThestochasticModetBforphasellincorporates

explicitlythepossibilitythatmorethanoneeggmay
be oviposited in a grain. This was achieved by dividing

time into developmental periods. During a developmental

period a grain (whether already containing eggs or not)

is continuously susceptible to attacks by the weevils'

Those grains that are attacked are regarded useless at

the end of the period.. The distribution of the number

ofeggsovipositedinasinglegrainwasderived.The

eggsthatarelaidintograinsalreadycontainingeggs
were regarded lost since a maximum of one adult may

emerge from a grain. Thus, according to Model B' the

fraction of the number of eggs that are expected to

develop into mature adults is less than that according

to Mode1 A.

AIso by defining the emigration rate as a step

function with respect to the developmental periods the

totalnumberofemigrantsperunittímewouldbehigher

at the beginning of a developmental period than at any

Iater instant of the períod. since according to llodel B

the young weevils emerge at the beginning of the period

and since age was considered not importantrthis tends to

incorporate the ecological hypothesis that young weevils
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are more dispersive than the o1d ones '

Thenumberofgrainsthatescapetheattacksby

the weevils during a developmental period (or any

interval of tíme within the period) in Modet B could

be as high as 11 times the number in Mode1 A'

Also according to Model B it was shown that

the extinction of the weevil population is not possible

until the intact grains are finished. Then the population

becomes a death-emigration process'

7.2 MATHEMATICAL METHODS USED

Duetothedelayofemergenceofadultsfromthe

eggs, some of the equations for our grain-weevil system

are delay differential equations (chapter 2) or delay

integro-differential equations (Chapter 6)' Since we

are concerned with the damage done to the wheat by the

weevils,longrun(orasymptotic)solutionsarenotof
interest to us. It is more important predicting the

destrrhction that is likely to occur in the early stages

of storage than, for example, knowing what happens when

the grains are finished. For this reason lL]ne method of

steps (see sections 2.I.2 and 6.4.3) \^tas appropriate to

useinsolvingtheequations.Howeverifthemethodis

to be used for several developmental periods the

computationsmaybecomecumbersometohandle.Insucha

casesolvingtheequationsbytheuseofLaplacetransforms
(see Sections 2.L.2 and 6.4.2') may prove to be less

involving.
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In the stochastic model for phase I an artificial

variable was introduced to represent the number of intact

grains. This was done for the purpose of simplifying the

computation. It was, however, a rewarding exercise in

that we could prove that the expectation of this artificial

random variable was the same as the value of the number

of intact grains obtained by the deterministic model.

Also the expectation was used to showr âs alread'y mentioned'r

that the deterministic value of the number of intact grains

is a lower bound for (that is it underestimates) the

expected nunber of intact grains in the system'

By treating the emergence process of the young

weevils from the eggs as an immigration process into'

but independent of, the adult weevil population two methods

were used to derive an approximate expression for the joint

p.g.f.oftheartificíalvariableandthenumberofweevils.

The first method gives insights into the techniques that

are used to derive the Puri's Qg75' Eqn' t4) result' The

second method (ttrat is the method of "marks and catastroPhe" '

section 4.6.2) has notable techniques that can be applied

to a wid,e range of Problems '

Inthestochasticversionofthephaselldeterminsitic

modelanartificialrandomvariablewasintroducedto

represent the number of weevils' Again' in this case'

theexpectationofthisartíficialr.v.workedouttobe

theSameasthedeterministicvalue-imptyingthatthe
actual stochastic mean of the nunrlcer of weevils is not
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the

for
and

same as the deterministic value'

we should note that the technique used in solving

the p.g.f . Gn(t,x,Y) of the number of intact grains

the weevils by writing it in the series form

G (trxrY) I tx-rl "tr," (t,y)
n

and then solving Í-ot the functions f ,," ( L 'Y\ ' could' be

triedonpartialdifferentialequationsoftheform
(5.2.2) not necessarily arising from probabilistic

applications. In section 5.2'6 it was shown that for

moregeneralisedassumptionsthanthoseconsideredin

Model B the functions f.,", too, could be broken down

into functions which would prove simpler to derive'

In Chapter 6 the method of separation of variables

was used in determining the spatial distribution of the

weevils in a container storing wheat. The equation for

thetimefactorobtainedafterseparatingthespatialand
the time factors was a delay integro-differential equation'

A Laplace transform technique $las used to solve the equation'

Alsoitwasshownthatevenforthisharddelayequation

the method of steps couLd be used to solve it'

7.3 APPLICATION AND FUTURE DEVELOPMENT

With the parameters taking on appropriate values

thesolutionstothemodelscouldbeusedtopredictwhat

would happen when small quantities of stored grain get
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infestedwithpestssuchastheweevils.Thesolutions

may not apply very well to large quantities of grain' As

indicated at the end of chapter 3 it may be necessary to

consider the grain-weevil system to go through three

phases: one for low density of weevils per intact grain,

theoptimaldensityphasewhichwouldcorrespondtothe
phase I in this thesis and the high density phase

(corresponding to our phase II)' According to Maclagan

(1932)thíshighdensityphasecouldstillbedividedinto

twosubphases.oneofthesubphaseswouldcorrespondto

thedensityofmorethan4fema]-esperintactgrainat

which oviposition stops completely' Thus a consideration

of multiphase system (with more than 2 phases) is relevant

to our Problem.

Alsor âs pointed out at the end of Chapter 3 ' at

very tow density the weevil population may not survive

foralongtimeunlesstheweevitscongregatetocreate

some sort of partnership environment. so in a low density

situation the consideration of the patchness of the

distributionoftheweevilswithinthesystemmaybe

relevant.

Ïtwashopedthattheageofaweevildidnothave

much influence on its activities. This was because' for

smallquantitiesofgrain,bythetimeagestartshaving
asignifícantinfluenceonanindividual'Sactivities

mostofthegrainswouldhavebeendestroyed.Howeverfor
Iarge quantities of grain several generations of the
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weevil population are possible before a substantial

damage is done. In this case it would be essential to

consider the influence of age by, f.or example, making the

oviposition and emigration rates functions of the age.

As far as emigration is concerned we did not worry

what happens to theemigrants. In the laboratory experiments

they die. However if the wheat is stored in several units

between which the movement of the weevils is possible then

the consideration of where a weevil goes after leaving a

unit is essential for the infestation is likely to

spread over atl the units. This would give rise to a

dispersal problem which is worth studying.

As indicated in Section 5-2.6 it is possible to

reformulate the rate of emigration and the fate at which

the intact grains are attacked, and still be able to

solve the equations involved. However whatever reformulation

we may do it should not be abstractt it should relate to

the real situation under studY.
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APPENDIX 1.1

TABLE 4.1:Values of parameters as cited or estimated from existing literature
Table: R.H. relative humidity

m.c. (grain) moisture content
5. O. = Sifo plzì1uz o/7.A.3.ae

s. ç.
lw per weevil
ld per day

1. The oviposition rates given in the Table are for female
weevil. If lve assume that the sex ratio is 7:I then the
oviposition rates f.or an individual weevif ( female or
male) is taken to be a half those given in the Table.

2. In the calculation of the emigration rate ( see rovù

9 of the Table ) the second and third f ortnights r^rere used
because it lvas hoped that by then the weevils would have
settled down in their neriv habitat and no young adults
would have emerged to increase interaction between the
weevils.

Þ
H

Key to

Note



Parameter

2. Pr"opontion of

Sunvival of inma-

ture stages,

p

1- Length of the

developmental

period,

a

(days)

5. O.

s.9.

5. O.

s. ç.

Species

B irch (1953)

il

il

il

Coombs Ê lrloodroffe (tgZ¡)

Richards ( ts+z )

Birch (1953)

Golebiowska (tgos)

Handman (1977)

l.4acLagan t Dunn (ts¡S)

Coombs t lrloodroffe (tSlS)

Golebiowska ( 1969 )

I

Howe (t9oo)
Howe t HoLe (1e67)

Researchen

on Refenence

0.0

0.25

0.93

0.25

0.75

(o.zs - 3.s)x

4.0 weeks = 28 days

4.9 weeks = 34.3 days

32.9 weeks = 230.3 days

30-46 days (mean = 31.4 daYs)

436 day-degr".e. (Do) (= a9

days,53 days)

24-28 days

60 days

1ô0 days

58-64 days

(+o * g) days

36-64 days

Detenmined or Estimated

Value (s )

13.ooc , 14% n.c.

15.2oc, ',

25. joc, 
"

33.50c, tr

?

z5oc, to% R.H.

29.1oc, 14% n.c.

25.50c, L4% n.c.

15.20c, 14% n.c.

2goc, 70% R.H.

(at nrean temperabunes

?z.ioc, 23.180c)

250c, 9oz R. H.

2ooc, 60z R.H.

150c, 60z R.H.

28oc,7oz R.H.

24o c, ?

z5oc,7o% R.H.

Envinonmental

Conditions

He has more values of p at sevenal

other temperatunes.

* is the propontion of eggs which hatch.
So pnopontion of eggs that fuIIy develop

into adults is Less than.75, especially
at low tempenatunes.

Note that Handman (tgZS) estimated it to
be 422.700 .

Rathen shont companed with othen estimates.

40 days to develop into adult, 8 daYs

fon adult to mature.

Howe (1966) noted that < 1% of developrnental
peniods exceeded 48 daYs.

Comment

Þ
N)



TABLE 4.1 (Continued)

5. (nate of)

Consumption

( v qnains/w/d)

4. l'lortalitY

nate

¡r w/d/w

3. Longevity

(for" adult

weevil)

Parameten

s.o.

5. O.

s. ç.

s.0.

s.9.

Species

Golebiowska ( 1969)

(quoted Hurlock, 1965)

Golebiowska (tSOs)

Golebiowska (tgog)
(quotes Steffan, 1963)

Golebiowska

If we use

rrLongevity

(1e6e)

_1,,
1.r

If we use LongevitY
I
u

Binch ( 1953)

ll

l'1acLagan t Dunn (ts¡S)

Coonbs t lrloodnoffe (tsu ¡)

Golebiowska (tsog)

Richands (ts+u)

Reseancher

or Reference

(a) Immature Stages: 30 mg/larva

=0.8571 of a gnain of OlYmPic wheat

(b) Adults: 0.490 ngl',tld

= 0.0140 gnains/w/d

L nglutld
= 0.02857 qnains/w/d

0.08 0.0026ô7 w/d/w
30

11
ts - Longevity 120

" 0.0083s3 w/d/w

1 < ',' < -1- wldlw
250 -* -150 tt''t

i.e.0.00400 < P < 0.006A67 wldlvt

0n average 16.58 weeks = 11ô.0ô days

10.78 weeks = 75.4ô days

About 4 months = 120 days

250 days.

0n average 150 daYs

174.5 days

Detenmined on Estimated

VaIue(s)

2Boc, 75% R.H.

zloc, 70% R?H?

28oc, 7oz R. H.

250c, 90% R. H.

,Jor 29.1
oc, 

70% R

29.1oc, 70% R.H.

32.30c, 7o% R.H.

250c, 90% R.H.

2ooc, 60% R?H?

?

250c, 70% R.H.

1 grain of
on avenage

0Iyrnpic wheat weighs 35 mg

(see Handman, 1977).

So 0.01400 < < 0.02857

Deduced fnomrron average 922 beetles

wene alive at the end of 30 daYsrr.

Using Longevity of 120 days accor ding tp
l'lacLagan t Dunn and Binch respectively '

frlaximum value obtained fnom Golebiowskars

Longevity. l,linimum value obtained fnom

Coombs t lioodnoffe LongevitY.

For small strain of 5.O.infecting wheat.

Fon an isolated adult fenale. The

Iongevity is less in mass cultunes.

Þ(/)



TABLE 4.1 (Continued)

ô(a). Progeny

(totat number of

eggs laid by a

female )

5. (Continued)

(nate of)

Consumption

(v srains/w/d)

Parameter

s.o.

s. ç.

s. ç.

Species

Coon¡bs Ê lloodnoffe (tgo+) (a) Imrnature Stages z ?13 of a grain
per lanva

30 mg/Iarva> 0.8571 gnains/Iar"va

(b) Adults: 0.5188 nglutld

= 0.01482 grains/w/d

I nglvtld

-- 0.02857 grains/w/d

Golebiowska ( tgog )

(quotes HunIock,1965)

Golebiowska (tsog)
(He quotes Steffan
1e63)

Binch (tss¡) 0 eggs/female

266 il

344 rr

394 rr

197 rr

0il

380 eggs/female

125 eggs/female in 250 daYs

89-362 eggs/female
( 191.5 eggs/female on average )

il

il

lt

ll

ll

lrlacLagan t Dunn liSlS)

Coombs ê l'loodroffe (1973)

Richards ( ts+z)

Reseancher

or Refenence

Determined or" Estimated

Value(s)

z4o c

130c, 14 m. c .

230c, 14 n.c.

25.50c, 14 m. c.

29. 1oc, 14 m. c.

32.30c, 14 m.c.

350c, 14 m.c.

rrf avounablerr environment

zooc, 60% R.H.

Environmental

Conditions

The fr"action is> 213

is oviposited in the
if more than one egg

grain.

e therefore have

0.01482 < v< 0.02857

This gives ovipositìon rate l' t25l25o = o

Comment

ÞÈ



TABLE 4.1 (Continued)

7. Cnitical food

r"atio

n

gnains/weevil

6(b) 0viposition

nate

À

eggs/female/day

Parameten

s.0.
and

s. ç.

Coombs

Hardnan

ê lr'loodnoffe (tsz¡)

l,4acLagan

Richands

(tszz)

t Dunn (ts¡s)

(rg+z)

s.o.

s. ç.

Species

Binch ( 1953)

Golebiowska (tgog)

Har"dman (tszz )

rvans ( tgzz)

Richands (ts+l)

Reseancher

or Reference

10 grains/female

12.5 grains/weevil

10 grains/female

266 .r.384120 " 120

i.e.2.2167<I<3.2000

2.00 <¡, <

3980

6 .00

I 1.7304
46 x50

0.01429 <tr< 1.6743
(average value = 0.8500)

1.49 < tr< 3.33

Detenmined or" Estimated

VaIue (s )

23. ooc - 29. 1oc, 70% R. H.

zïoc, 70% R.H.

23oc, 74% n.c.

1 50c

250c, 70% R.H.

Envinonnental

Conditions

C could 1ie in Ito, zo]

À is calculated using his Longevity and

progeny data at 23oC and 29.10c.

Deduced fnomrrprogeny per 100 weevils
per day over a period of 30 daYs.

3980 eggs wene Iaid by 46 females' on

avenage, in 50 days.

Calculated from numben of eggs per, female
pen fontnight over a period of 20 weeks.

Fon weevils nanging from 16 days to 106

days old.

Comment

Þ(¡



TABLE 4.1 (Continued)

Parameter

I = Emignation

nate. e,

¡tldlvt

8. Tempenatune

thnesholds and

optimal tempera-

tunes

Species

5. O.

s. ç.

Researchen

or Reference

Handman ( tgzz )

- uses Bi rchrs ( t9+S ) data

Richands (tg+z)

Howe (t965)

il

Evans (1977)

Howe ( tgos)

Determined or Estimated

VaIue(s)

Lowen threshold for development

= 13.70c

Lowen threshold for population
increase = 170C. 0pt.range: 27r3L"

viposition ceases atartd below 9.50C

Lower threshold fon development
is 15oc

0ptimal tempenatune = 26oC

Lowen threshold fon population
incn.ase = 150

0ptimal range 26-300C

C

Environmental

Conditions
Comment

At the ¡¡aite Agricultural Reseanch Institute, Univensity of Adelaide, frlr MIambo conducted expeniments to study the emigr"ation process of

weevils from wheat stoned in containers. From his avenage numbens of emigrants duning the 2nd and 3rd for"tnights, fnom containers initially
holding 600 g (:20,000 intact gnains) of 0tympic wheat (Vaniety 8156) and 240, 120, 60, 30 weevils, I calculated the mean emigration nates.

These wonked out to be 0.006436 w/d/w for 5.O.and 0.0005478 w/d/w for S.ç..

N. B. Lower tenrperature thresholds
for development are not necessarily
the sane as those fon oviposition.

Þ
or



A7.

APPENDIX 3.1

COMPUTER PROGRAMME I

This programme is for solving equations ( 3.1.1 ) under

optimal temperature conditions.



A8.

PROGRAH OPTCOI'IDIOUTPUTI
Dll'lENsIoN rot+l oEGl{5ttrU!4t9!f !!15t1 rSl4scl tFOFl4StlrRlÓãrlr

+EilGlr4ecl rröÃirt¡c i roAY(ró6l rYltll?! rzA(8?1! ..--r.,r
€eurvALENcErs(11'Yl!'lt;¡Èiii;ii¡ã¡ti;ironlllrYrsl?lrz^lr'

+l I r I El'tGT l1t tZAlô591 I

'UEEVIL/D'AY/YEEVIL
S' DAY/ UE€VIL
S/ DAY/UEËVTL
os 15 P
rN S/IEEVIL
OAYS FOR SoOr¡ *ã-EÛ OAYS FOR S¡O¡

VALUESOËPARAÞ{ETERSAlOPlII'IALlE',IPARAÎURE
C-O¡O212t5

c
c
c
c
c
c
c
G
c
G
c

s1o
=0o
=0r, o'l

v
E
D
P

o
0064t6
o0ô333

c
G
c
c
c
c
c
c
c
c

G

c

CFDR=10¡
B=0 r 12
A:50o 3 IA=A

NAttES USED IN THE PROGRAH.-.-' 
Ëõ=HO. OF EGGS LAT D f HE PREYTOUS O A

U:EG OS+LAR vA€+PUP A E+UNEI'iERGE D AOUL T
l=NO¡ OF ADULT UEEVILS
i=ño. or uNUsEo cRArNs oF IHEAT
ron=i¡v=FOOD RATIO IDEHSIfY I
hlioirL No¡ or EMEGRANTS uP ro DATE
Et'lGT=El¡IEGRANTS DUR ING f HE PnEYIOUS

fNITIAL NOo OF UHEAT GRAINS

Y
s

DAY

SO= 2O0O 0 o
TNITTAL NOr OF AOULl fEEYILS

IOlll=24Or t Úotet =l2Qc 3 rof3t¡ c0¡ 3 IO(r¡=30r

DO 1001 H=1rl
slll=So
ulll=uotHl
€Gl1l=0r
EltlGT l1l =0 r tR l1l=0 o

Ulll=Oo
FDRt:.l=slLltu(11
fDAYlll=0
DAY I 1l =0¡PRINf ÔlrYoll{l
PRINT 

'OLINES=T
41 fOnrqffllHl.tt INITIAL NO OF CRAINS =2OO00¡f/'

+LS = rlF4cOlll
ÔO FORI.IATI l'x;i OAY i¡O OF ADULT EGGS LAID TOTAL

+AL NO fooo.tfr 
-GRA INs IEEVILS IHAT DAY

NO
OF

I¡O OF U¿E VT

EtItGRTS TOI
TGGS THAT D

+AY OF Er.rIcRTS RAT IO] rt ll
PRINl 22¡ lOAYl''lr

+11
LINES=LINE S+1
DO 'r?? X=2rl!û
t=Kr1
fDAY(Kls
IflL¡LE¡
If IFDRI
€slKl=vl
ElrcT(Kl=EfrlLl
COSfiO=CrUlLl
RlKt=RlLl +Et!OTll(t
S lKl =S fLl -CoSt{O -EG(K I
IF I LILE¡ IAI GO TO IS
ZgEG (L-IA I
GO TO ô5
2=A t

-Dt¡utLt
I +EG lKl-Z
fKt/ulKl

Sll.ltI l1l rEGlt'lrUlll rEHOTtl,lrRll't rFDRI

L
420
Ll r
UIL

I OAVIK I =L
LEOCFDRI GO TO T?
I

tt

c3
t5 UlKl=l1o

ulKl=ulL
FORIKI=5

-EtlGll Kt +Pt Z



E.CFDRI GO TO +5
tLt

LT /CFOR
( 1¡ +BfCFDRI tu lLl-E'6 tSlL I
LI/CFDR

T.0. t co To 1o

Q¡0¡l GO TO tg
OAY TL I

A9.

I
ORIGIiI YALUE

s . ,21â.rAlãXrE11oSl
SCALE FACTORT/

E11¡ 3l l]
Rf

''l4i 
: 3i'

PLEASE t22l
PLE ASE r 21 I

lÊËVILS 14ULf IPLIf,O 8Y 5¡3orl rtlrl'5

t7

1ô

a5

l¡ ¡F lUfKl rGTrO¡l OO
ylKl=0.
PRINl 20r tDAY I t( I
LI NE S=LI NE S+4
IFILTNES¡LTr5?I OO
PRINT +1rt0lÍ'{l
PRINl IO
LINEs=C

a0

??

FORMAÎ lllct 
^N+URINc lHE trI3r.-1H

PR¡NT 22¡l DAY lKl r
+l

LI NE S=LI NE S +1
¡FlL¡NES¡LT.ã?l GO
PR¡N1 4l'tUOlÈll
PRINT 40
LINES=¡
FORtIAT (3XrI3r

oo To 1t
LL =L-LIF IFDRILLI¡L
PRINT 1{ ' 

IDAY
LINES=LINES+¡
IFILINES¡L1¡5
PRfNT 41 ¡UOll'l
PRINT TO
LINES=C
FORMATlllrt

+Ay t)lll
EGT
ET4 G
cos
60
IF
sfK
f'DR
¡F
PRI

CONT ITiUE
GALL SCAL€
CALL SCALE
CALL SCALS
CALL SCALE
CALL SCALE
CALL sCALE
PRINT E3 

' 
F

+tlrRl421lr
2! FORTC^Tlrl,

+. FD
+ U .t2

"+t2(5XrE11¡CALL P AUPL
CALL PAUPL
CALL PLOT
cALL AX¡5

*¡Or9O¡ rSl
CALL AXIS
CALL AXIS
CALL LINE
CALL LINE I DA
CALL LIN€ I D
CALL SYMBOL
CALL SYÈIBOL
CALL SYI.IBOL
CALL PLOT f 3
CALL AXIS I

+42L I rt l42ql
CALL AXIs I O

10 77

TO 7''

fo 777

HGR A IT\¡S I AO ULl

?l
I

oo To +t

CRTTICAL FOOO RATIO REACHED OURING ÎH€ ttI3tt-TH D

!t

22
?77

Kl=vtsl
TlKl=Et
MD=CrS I
TO 15
lslKl.G
l=0¡
lKl=0r
ISILI.E
NT 16¡I

LIHES=LINES+4
IF ILIN€5oLT. ã?l GO TO 19
PR¡N1 41¡YOll¡ll
PRINT +O
LINES=t

l0foRMATltl, l|HEAT6RA¡NSUEREFINISHEDoURINGTHEt'tt't-fHD
+AY .rttl

c

€xr¡NcTIoNoFAouLIUEEYILPoPUL^TIoHoccuRsD
oAY rrlll- SlKt rltKlrEOf KlrUlKl tEHGTIKI rRlKl tFDRIK

IDAY¡33r;50
{Sr15¡¡60¡7(UtlSotEOr?
{FDR¡ 9o ¡6Ð'tUrtrl¡r60r7
(Rt15r¡60¡?
oRls2llrFoR
Rf42tl
I I rLXrtR tr2l3X
l3X rE11¡ 5l /
3l I
ol 122HUSE B
oTl21r'ru5E D

¡ Oo ¡11
I rS lô2
r0.r12
¡rO.r1
Yf tl rS
Yfllrll
Y 11l rF
terlór
tr¡14r
årt14¡
r ¡Or¡-
¡ rO¡t3

8F9o2¡F10oÔl

rZt I rS I ô21t ¡ 5l+Z ô I I U t +211 r U I +2tl ¡ I l42Ll ¡ I l '12

?t

?l

X¡
fÇ

VARIAEL€
t€11¡31 /'
I

LANK PAPER
ARK€R ¡NK

zt(c
42
lo
l2
lo

a
1
a

1
A

Á
I
I
f
0
0

E I r -11
HTIr.lE IN DAYST-1 2t24r0r0. tO^YtÔ21lrDfY(42ôl ¡0t
oxFooo RAlro¡11ot¡¿.orio.;FoRl42t t rFDRl4e6 I r-1 I
(11r60r711r1l
(11 r8O.¡7;7.t0l
DR(11¡6Or7r1rtl
ôr0¡2r 1¡H FOOD RfIIg-r.9.'all
¿;ó;iizz tt Nu!'IEER oF rÑrrcr GRATNS¡ 0¡r2?l
OrO.¿tZlX NUr''l 9E'R OF ¿lOULT IEEVfLS¡ 0'r2?l
3l
õúrOur-f UEEVTLS tTOTAI- EMIGRANIIT30T 1ã¡0¡ 9G¡rIl

t-11:rõ; rlZHTItrE IN DAys t-LZ124t0r0.rDAy l4¿tl rOAYIô21 I r0l



" 410'

OROU P ¡-22r15 oOr 9Oo rU I Ó211, U l4CALL AXISl2l'o r0¡ T22HSIZE OF lltùTATURE
+2âl¡-1 |

CALL LTNEIDAYITIITIl,I
CALL LINE tDAY l1l rR l!'l
GALL LTNEIOAY(1lrUl1l
CALL SYt4BOLll2¡r t¡t¡0
C^LL SYt'tBOL 112¡ 19 r Ô

CALL SYI'l 8OL (12¡ ¡9r 0
CALL PLoTlS0o¡0¡r-3
COT{T I N UE
ST OP
END

¡Or
rOo
I

rôOr7r1r0l
reoiTrL;2t

.iiiii:i:Ít¿,,!BER oF qos!,orrt!t -z.îiu NUHBER oF ADULI lEEvrLSr 0or2?l
ã:ãóü ió1Ãt- NUHoER oF EHTGRANTST 0¡ r2el

10 01
âL4

I



All.

APPBNDIX 3.2

COMPUTER PROGRAMME II

This programme is for

(a) Computing heating day-degrees

(b) Solving the equations (3 '1-'L) under

variable temPerature

The solutíon of (3.1.1) is based on the linear inter-

polarion (3 .2.5) and the f ormulae (3.2.L) , (3,2.2) , ( 3.2 .3 )

and (3.2,4) .



AL2.

PROGRAI{ TEI,IP
DIttENSIoN U

+TJTCAPI{281r
+42t1rHODl2lr

COMMON TËMPL

TUR IINPUT¡OUTPUTI
oI4I rEG 142ËI rut42tIr!!t?cI'S(t?q!tfIRI42ôItAHDD(t2t¡
R t4as I , ÉÞ{Gr 14zôt r rDAy ! !?I | ;iËtti i+¿s izt, AvTEt'lP 11201t oP I

cDD Í?-t ;AcDO lÔ 2tl tDAYf è2E I
t TEMPT t TÉ t'lPU

c
G
c
c
c
c
c
c
c
G
c

PARAI,IETERS S IHEIR VALUÉ S' "ôviposrrroH n¡re ¡s v EGGs/olY/uEEvlL
HoRTALITYR^TEIsDIEEYILS/DAY/yEEvrL
EtrEcRAfION-ïÁie IS E TdEEVTLS/DAY/UEEVfL
PROPORTION óÊ.SURVIVORSHTP OF EGGS IS P

coNsUr,tPf roN RAlE C=O¡ 02128 GRAlNS/DAY'/vEEVTL
cRIIICAL rôO6 

-RAlIO 
CFDR=10¡ GRT,IN 5/uÉEYrL

DEVELOPÞIENiÃL PÈNiOC A=42?C'I OAY-DEGREES
VrUÚES" Or PARÀ¡IETENS AT OPTIÈIAL f ÉI'IPARAf URE

Gt0 r OZL¿C'
DT=0¡O0ô3!3t
EO=0o008138
YO=1eO
P=.4
GFOR=l'0r
A=422c7
B=0r12

G
G OPT IHAL

TE },I P T=22I
C LOYER lHRESHOLD

TEMPL=12¡
C UPPER lHRESHOLO

TEHPU=26 ¡
C YALUES AT LOÍER TEIlP TTIRESHOLD

YL=0 e
OL= DT
EL=Oo10rEO

c pARÁl.reren vÃiues AT UPPER TEI'lP lHREsHoLo
YU=O ¡
DU =2r 'OTEU=2ofEO

C NAI.IES USEO ¡N THE PROGRAH
C lEI{P=TEHP ARAlURE
õ gç=Noe oF EGGS LAID fHE PnEvrous DAY
õ u--eeGs+tARvAE+PUPAE+uN¿l'lERGEo ADULTS
G Y=NO¡ OF AOULT YEEVTLS
õ 5=No. or uNUsEo GRATNS oF IHEAT
ð FON=S/U=FOOD RATIO(DENsITYI

TING D^Y-DEGREES
AÑ EHEROINO ADULT YAS LAID
ANÎS UF fO DATE
G THE PREVIOUS DAY
EATING DAY-DãoREES
coNvERSIONr,-f l2.Pll
N IEttPACATURES f5 t2 HOURS
281

c
DO L L=1rÔ3
N=1OtlL-11+1
KK=N+ 9

1 READ 5rlllEl{P
, FORl,lAf 120F4¡ 1

TUP=10O0o
TLOsl! ¡

lfrJl ¡J=1¡21 ¡I=NtKKl
I

c

c
ÎD I F=TUP-T Lo
AVTET{p lr,¡ =0o
AHDD¡11=Oo
ACOOlll=0¡
AVfEllP l1l =0¡
IDAY l1 I =ODAYlt.l=O
DO 11ô L=2r42C
KL=0
K=KL+1
IOAYfLI¡L-l.
DAYILI=IDAYILI



\
I

)

c

c

TMIN=TEMPlLrll
1¡lAX=TEMP lLr? I

1 oo AttPL= I Tl.lA X-Tla IN I
TBAR= ( TÈIAX+TM IN I
¡F I THfN¡LT oTLOI
lHETA1=.P¡BY2
COSl'=0¡

102

101

20t
10t

PRINl 9

LfNESs2
GO TO 6

11 CONYrñ¡UE
I PRrNT 10 t

LINES=LfNES+1
IFILINESTNE¡ô01
PR INT 9
LTNES=2
FORMATllHltt DAY

+)tlr TEMP
FORT.IAT l2X r I3r3l
FORt'tAT (2X¡I3r3l

"A13.

ACCUMULATED HATCHINC OEVELOP
EGG LATD ON PERIOOT I

ôXrISrtX¡F5r1l

AVlÉHp tLt = lT€MP lLr 1t +TEl'lP lLr 2l I f 2t

t I f TLO-TBAR'l .ITHETA1'+Pf BYZI +At{PLtCOSl'l

12t
l2o
GO

t

TOô

co To 101
IF I Tt{AX¡ GT rTLOI GO 1O 102
THETAl=PIBY2
COSl =0 ¡co ro 101
ixerA:'=AsrHt ( fLo-TBARITAHPL I
COSI =COS I THETAl. I
IF ITMAX¡ Gf¡TUPI GO TO 203
THEtA2=PI8Y2
GOS2=0o
GO TO 10Ô
THETA2=^sIN I I IUP-f BAR l.,Al{PLl
COS2=COS I THETA2 I
SCAL =Ltl l{o'PI8Y2l
HOO(KtssCAL rlirArn-fLOl.(TH€TA2-THEfAlllAHPLtlCOSl-GOS2l+ÌDlF

c

+. ( PI BY2-Tl'lETAZl I
coo I Kl =SCAL
KL=KL+ 1
lFlKLoLTr2l Go To 10t
AHOO (L I =AHDo ( Ll +tlo O I K I
âcoD (Lt =AcDD ( Ll +COO lK I
oo To l1E

tO5 AHDD (L I =AHOD I L-11+HDO ¡K I
ACOO (Ll =ACoO I L-11+CDO ll( t
lHIN=TE¡,IP f L+1r1I
K=K+t
GO TO 100

'.16 
CONTTNUE-õiri..,rr suBpRoGRAH ENos HERE t'1" "'tPR¡NÎ C

LI NES=ã
C FORI{AT l1Fll t t lHE EXPERIIIENT STARTED

JTCAP CALCUL
X=AHDO TLI
¡F I Xr LEo
OO 11 K=1
tF I AHOO (

PRINT 9
LTNES=2

ON DECEII BER 1r 1¡?? .l

D

GO1(¡?
E
LErXI GO TO 11

IDAYILI t lEitPt Lral r TEHP{L r2l rAVTÉf'lP tL I rAHDD I Ll

OO 6 L=lr+2t
ÁvfeHPfaí=lfeHP lLrll+TEMP lLr2l +lEHPlL+1r11 I /t¡
IOAYILI=L-1
DAylLl=IOAYILI

ATE
-A0¡l
c.42Kl ¡

c

JTCAPILI=IDAY IKI
DP I L I =IoAY I Ll -IDAY t l(lpRtNT 12r IOAYf Llrf EÞlP(Lr1l¡TE1.1PlL¡2ttAvTlt',tPtLlrAHDDlLl tJlCtPlLl ¡

ODPILI
LINES=L¡NES+1
IFfLINES¡NE¡6OI GO 1A 6

GOTO6

9

L2
10

6

l,lIN HAX HêAN
T€T,IP TEI.IP HDD
2\rF 4¡11 r¿XtE10r4¡
ZltF 4rll r 2\tî.LÛ.41

CONlINUE
so=20000¡

IO (1 t =240 ¡ $ YO l21 2t2o.
OO 1001 l¡l:1r Ô

3 UOl3ls 6Or S lOl4lr3O¡



,A14.

O OF ADULT
F4o2¡* (21
T.ION OF ËGG
,. oPfr
tt
AL NO EI4l GR
THAT OAY G

frRl!lrFORl

C ¡NtfIAL V/\LUES DATA

sR l1 l:0 r

s t 1l /u 11l
i ; ¡ö (t4 i;vo, oT¡ Eo¡ P ¡ TEt¡IPLTTEI'lPT TTEMPU
o

L¡N€S=10
41 rOnr'l 

^T 
t 1H1t t f Nf I AL NO OF

+YEEV ILS =t ¡ F 4.0 f ¡{ OPTI t{AL
+ tIORIALlTY =t¡Fa¡6¡t l3l
+S THAI SURV¡VE =r|¡ F4t2l ¡t
+¡lAL f EilP ¡ =f ¡ FÔ r1¡ I U
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APPENDIX 5.1

Proof of Proposition 5.f (of Section 5"2.4)

(i) For a given

is an increasing

r,.r we haven

function of s

to prove that d ( sr, , wr, )

. Now with
n

bes2 /w ]n'n

AT7 .

second term

ßr, t + ß bes /wn+ (v + À)/sn
nn oúK n

where

Then

The

that

s /w

and

of

(ii)

âd(s ,ur )n n
ðs n
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on/Bnr = (À + v),/{ (À +v) ß s

0
nq; lbe/w + (À + v)/s le - ßn1a

n n

) (1

It is only the

2bes /w ¡ 0,n'n
condition for
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+ (¡,+v)(ß 2bes /w e-ßnrt) /n n

[À + v + ßs bes2 /w 7 
2

nnn

fi-rst. term of the RHS > 0
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n

therefore for d (s ,\^I ) ton' n

s
n

n

tr x(s \^t )l ttt
n
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ðd (s
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rbIn n

ðs n
function

>0
n
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Now taking the logarithm of [r,

respect to *r, we have

- â.4,In
I-- ã\^, -nn ,k{ ,t x) In (1 x)

ðd (srrrwrr)

A1B.

and differentiating with

+ \^7n ---Tw -n
where

CX besn n t I - e-ßt1"1

a) e ßnral

-ßnta

(s.A.t)

(5.A.2)

(5.A.3)
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0 ßad\^/ x-n d\^7n ry; (f e-ßtIt)
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x3T

ÏI

In (1 x)

Hence (1 - x) 1n(1 - x) < - X(l - X)
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Hence RHS of ( 5 .4.4 ) <

Therefore f rom (5.4.1)

function of wn.
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0 n
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nl
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d \^I
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