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SUMMARY

The example of the grain weevils (sitophilus
granarius) and the rice weevils (sitophilus oryzae)
infesting stored wheat is used. The weevils destroy
the wheat by (1) ovipositing eggs into the grains and
(2) eating the wheat. Models for predicting the damage
to the wheat and the size of the population of the
weevils are given.

The weevil population comprises of (1) the immature
group consisting of the eggs, larvae, pupae and pre-
emergence adults and (2) the group of sexually mature
adulfs.

The system is modelled to go through two phases.

In phase I the food ratio (that is the number of intact
grains per weevil) is above a specified critical value
and has no influence on the activities of the weevils.

In phase II the food ratio has dropped below the critical
value. Then the activities of the weevils are

influenced by the food ratio. Continuous time deterministic
models for both phases are given. Because of the delay
in the emergence of adults from eggs the equations for
the weevil population are delay differential equations.
The method of steps and Laplace transform techniques are
used in solving the equations.

The effect of temperature variation on the system
is incorporated by formulating the parameters of the

system as functions of both the temperature and the food
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ratio. Two computer programmes, one for constant
temperature conditions and the other for variable temperature
conditions, are included.

In the stochastic analysis of the system the
distribution of the bivariate process of the number of
intact grains and the number of adult weevils is discussed.
The moments of the other variables such as the size of the
immature group and the number of emigrants can be deduced
from this distribution. The phase I stochastic model is
a reformulation of the phase I deterministic model. For
phase II two stochastic models are given. The first one
is a reformulation of the phase II deterministic model.
The second one incorporates the possibility that under
reduced food ratio more than one egg may be oviposited
into a single grain. This is achieved by dividing time
into developmental periods. During each period a grain
(whether already containing eggs or not) is susceptible to
attacks by the weevils. Those grains that are attacked
are regarded useless at the end of the period.

In the last model equations for the spatial
distribution of weevils within wheat stored in a container
are derived. The derivation is based on the hypothesis
that the probability that a weevil continues to stay at
a point of the container is proportional to the food ratio
at the point. One of the equations is a delay integro-
differential equation. A Laplace transformation technique
is used in solving the equation. It is also shown that

the method of steps could be used to solve the equation.
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CHAPTER 1

INTRODUCTION

1.1 DESCRIPTION OF THE ECOLOGICAL SITUATION

In the formulation of the models in this thesis
the example of grain weevils (Sitophilus granarius,
abbreviated to &§.G.) and the rice weevils (Sitophilus
oryzae, abbreviated to S.0.) infesting stored quantities
of wheat is used. 1In most of the discussions the
guantities of wheat are comparable to those used in
laboratory experiments. The wheat is supposed to be
stored in containers from which the weevils may emigrate.

The weevils damage the wheat by (1) eating the grain
and (2) ovipositing eggs into individual grains. The
female bores a hole into a grain, oviposits an egg in it
and then seals off the hole with secreted material
(Richards, 1947). All the stages of the development of
the egg, that is the egg, larva, pupa and the pre-emergence
adult, take place within the grain. A large proportion
of the grain is used up for the development of the egg.
The proportion which is left over after an adult has
emerged from the egg can only be used for consumption by
the adult weevils. If another egg is oviposited in a
hollow grain from which an adult has already emerged, the
egg does not develop into an adult. The length of the
developmental period of an egg depends on the environmental
conditions, such as temperature and relative humidity or

the moisture content of the grain, through which the egg
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develops. Row 1 of Table A.l (in Appendix 1.1l) gives a
few of the observed lengths under different environmental
conditions by different researchers.

The life styles of the two species, S5.G. and S5.0.
are similar except that the longevity (life span) of
S.0. 1is shorter than that of S5.G. However the progeny
for 5.0. (that is the total number of eggs laid by a S5.0.
female) is greater than that for 5.G. (see row 6 of
Table A.1l in Appendix 1.1). It has been observed in
experiments conducted at the Waite Agricultural Research
Institute, University of Adelaide, that the §.0. is more
dispersive than the S.G. Other differences and similarities

can easily be noticed from Table A.l in Appendix 1.1.

1.2 THE AIM OF THIS STUDY

The models given in this thesis are for the purpose
of predicting the damage to stored cereal products by
insects infesting the products. Also the size of the
population of the insects is of interest. As mentioned
in Section 1.1 the example of weevils infesting wheat
stored in a container is used. Though the experimental
results referred to in this study are for small quantities
of wheat, the mathematical analysis gives an insight into
what might happen in systems of large guantities such as
in a silo. It is also hoped that,by revising the assumptions
made, the models can be modified to apply to other similar
infestation situations. Also the prediction by the models
may be useful in establishing control on the damage that

is caused by the insects.
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It should be noted that while in most experimental
work it is not possible to determine the total effect of
several environmental factors on an ecosystem, mathematical
models can be handy in predicting and/or estimating the

combined effect of these factors.

1.3 PREVIOUS AND/OR RELATED MATHEMATICAL MODELS

The Sitophilus species have been extensively
studied experimentally in many parts of the world.

However there have not been, to the best of my knowledge,
analytical models for the populations of the species

that compare with those for the related beetle, Tribolium.
Unlike the Sitophilus the Tribolium thrives best on wheat
flour. The eggs are laid indiscriminately in the flour

and the larvae are capable of moving within the flour.
Though the life style of Tribolium is different from that
of Sitophilus, some of the analytical methods for Tribolium,
for example Bartlett (1960), Mertz and Davis (1968),
Neyman, Park and Scott (1956) and Niven (1968), have proved
useful in the formulation of some of the models (for
Sitophilus) discussed in this thesis.

The system of weevils infesting wheat can be modelled
as a prey-predator system. However in this case the prey
(i.e. the wheat grains) are passive in that they cannot
react physically to the attacks from the predators (i.e.
the weevils). For example they cannot run away! The
prey-predator models that have proved useful are referred

to in Sections 2.0 and 2.2.1.
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Also the grain-weevil system can be regarded as a
carrier-borne epidemic in which the wheat grains are the
susceptibles and the weevils the carriers. 1In fact, for
the stochastic models in Chapter 5, techniques for
carrier-borne epidemics (for example Henderson, 1979 and

Bailey, 1975) are used in solving some of the equations.

1.4 THE SCOPE AND METHODS OF THE STUDY

The population of the weevils is taken to comprise
two age groups. Since all the developmental stages of
an egg take place within a single grain, it is reasonable
to consider the eggs, larvae, pupae and pre-emergence
adults as one group. The second group consists of mature
adults capable of laying eggs and moving. The movements
may result in emigration. Tognetti and Mazanov (1970) and
Tognetti (1975) discussed similar two-stage population
models in which the egg-group is supposed to give "births"
to the adult-group and vice-versa. The giving of births
by the eggs is the emergence of adults from the eggs. 1In
the stochastic models (Chapters 4,5) the emergence prdceéss
is treated as an immigration process into the second group.
It should be noted that the Tognetti and Mazanov models
do not include explicit equations for the food medium as
done in this thesis.

The system (that is, the wheat grains and the two-
age population of the weevils) is modelled to go through
two phases. In phase I the number of intact grains

available per adult weevil (to be referred to as the
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food ratio) is above a specified value (to be referred to
as the eritical food ratio). In this phase the food
ratio has no influence on the activities of the weevils.
In phase II the food ratio has dropped to and below the
critical value. Then the activities of the weevils
become influenced by the food ratio.

In Chapter 2 two continuous time deterministic
models, one for each of the two phases, are discussed.
In the phase I model the parameters such as the oviposition
rate, mortality rate and emigration rate are constants.
In the phase II model the parameters become functions of
the food ratio. In both models other environmental
conditions such as the temperature, moisture content of
the grain and relative humidity are assumed to be optimal
as those that are possible in controlled laboratory
experiments. Because of the delay in the emergence of
adults from eggs the equations for the population of the
weevils are delay differential equations. The method of
steps and Laplace transform techniques are used in solving
the equations.

In Chapter 3, the effect of temperature variation
on the system is incorporated by redefining the parameters
as functions of both the temperature and the food ratio.
Discrete time equations corresponding to the continuous
time equations of the models in Chapter 2 are used in
two computer programmes, one of which is for the constant
temperature conditions and the other for the variable

temperature conditions.
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In the stochastic analysis of the system the
distribution of the bivariate process of the number of
intact grains and the number of adult weevils is discussed.
The moments of other variables, for example the size of
the immature age group and the number of emigrants, can
be deduced from this distribution. The phase I stochastic
model, discussed in Chapter 4, is a stochastic reformulation
of the phase I deterministic model of Section 2.1. 1In
Chapter 5 two phase II models are given. The first one
is a stochastic reformulation of the phase II deterministic
model of Section 2.2. The second model incorporates the
possibility that, under reduced food ratio, more than one
egg may be oviposited into a single grain. This is
achieved by dividing the time line into developmental
periods. During each developmental period a grain (whether
already containing eggs or not) 1is susceptible to attacks
by the weevils. Those grains that are attacked are
regarded useless at the end of the period. Agreements as
well as differences between the stochastic means and the
deterministic values of the variables involved are noted.

In the last model of this thesis equations for the
spatial distribution of weevils within wheat stored in a
container are derived. The derivation is based on the
hypothesis that the probability that a weevil continues
to stay at a point inside the container is proportional
to the food ratio at the point. The method of separation

of variables is applied to the equations. The time factor
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equation, which results, is a delay integro-differential
equation. A Laplace transform technique is used in
solving the equation. It is, also, shown that the method

of steps could be used to solve such an equation.

1.5 VALUES OF PARAMETERS USED IN THE STUDY

Several parameters are used in the models in this
thesis. 1In establishing properties of the solutions to
the models it is essential that the values these parameters
could take on are known. Table A.l in Appendix 1.1 gives
a summary of the parameters, their values, the researchers
responsible for the values and, where possible or
applicable, the conditions under which the values were
determined. Though, according to the table, the values
of a parameter may differ from researcher to researcher,
it is important to appreciate that these values give an

idea of the possible range of values for the parameter.



CHAPTER 2

CONTINUOUS TIME DETERMINISTIC MODELS

2.0 INTRODUCTION

Let S(t) be the number of unattacked (intact) grains
and W(t), the number of adult weevils in the system at
time t . Then the food ratio for the system, at time ¢t ,
is F(t) & s(t)/w(t) . The reciprocal of the food ratio
may be interpreted as the demnsity in terms of weevils per
intact grain. The other variables of interest are U(t) ,
the size of the immature group, and R(t) , the total number
of emigrants (that is, the number of weevils that have
emigrated from the system) by time t .

With C as the c¢ritical food ratio, the system is in
phase I if F(t) > C and in phase II if F(t) < C . The
existence of such a critical food ratio in a real ecological
system has been discussed by, for example, MacLagan and
Dunn (1935), as the number of grains per weevil below
which the oviposition rate decreases and the mortality rate
increases. According to MacLagan and Dunn C = 12.5 grains
per weevil. Hardman (1977) used the reciprocal of this
value (that is 0.08 weevils per grain) as the threshold
density above which there are increased contacts between
Sitophilus oryszae. Coombs and Woodroffe (1973) gave the
critical food ratio as 10 grains per female. Though Richards

(1947) observed that a significant drop in oviposition occurs



when there were 10 grains per female, he pointed out that
there was a significant increase in the rate of oviposition
when the food ratio was increased to 20 grains per female.
However, above 20 grains per female there was no significant
increase in the rate. Thus according to Richards we could
take 10 < C < 20 grains per female.

We should note that since the consumption rate for
an individual weevil could be as small as T%ﬁ of the ovi-
position rate (see rows 5 and 6(b) of Table A.l in Appendix
1.1) the female weevil would need about 100 times as many
grains as the male weevil. Hence in a system in which the
sex ratio is for example 1l:1, the need for the intact grains
by the female weevils is a good estimate of the need for
the grains by the whole population.

In the models we do not differentiate between females
and males. We assume that the mortality rate, the consumption
rate and the emigration rate are the same for both the female
weevil and the male weevil. However in a system of sex
ratio 1:1 the oviposition rate per weevil would be % the
rate per female; for the male does not lay eggs.

It is interesting that Arditi, Abillon and Vieira Da
silva (1977, 1978) used the same jdea of "critical food ratio"
in their two-phase prey-predator models. In their model the
food ratio is defined as the ratio of the number of prey to
the number of the predators. This is an example of prey-
predator methods that can be applied to our grain-weevil
system. However, we should note that Arditi et al. inves-
tigated stability of their system. In the grain-weevil

system the discussion of stability is of little interest



¢r te "optimal temperature conditions” as
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because by the time the system becomes stable all the grain
will have been destroyed. Therefore, in this chapter,
attempts are made to obtain explicit solutions, especially
for the earlier stages of the storage, rather than asymptotic
solutions.

In each of the Sections 2.1 and 2.2 assumptions,
equations based on these assumptions and the solutions to

the equations are discussed.

2.1 PHASE I: SUFFICIENT CEREAL AVAILABLE

2.1.1 Basic Assumptions and Equations

For this phase there are enough intact wheat grains
and, therefore, the weevils' activities are not influenced
in any way by the availability of intact grains. We also
assume that other environmental conditions such as the
temperature, relative humidity or moisture content of the

Taverd - Ser cppesiie pese
grains are optimal., Then under these optimal conditions
we have the oviposition rate of ) eggs/day/weevil, the
consumption rate of v grains/weevil/day, the death rate of
L weevils/day/weevil and the emigration rate of ¢ weevils/
day/weevil as constants. Also the time it takes an egg to
develop into a mature adult is taken to be a days, where

a 1is a constant. Thus, for phase I, the rates of change

of the variables S(t), W(t), U(t) and R(t) are given by

Il

- (v + A W(t) (2.1.1)

pPAW(E - a) - (u + e)W(t) (2.1.2)
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el AW(t - a) + AW(t) (2.1.3)
%% = eW(t) (2.1.4)

where p is the proportion of eggs that develop into adults.

The equations are subject to

(1) initial conditions: S(0) = Sy, W(0) = Wq, U(0) =0
and R(0) = 0;

(2) nonnegativity: S(t), W(t), U(t), R(t) 2 0 for t = 0;

and

(3) boundary conditions: S(t), W(t), Uu(t), R(t) = 0 for

t < 0.
According to the equations (2.1.1) - (2.1.4), once W(T)
is determined for T < t , the values of the other variables
at time t , can be derived.

The term AMW(t) in (2.1.1) is the total rate at which
the intact grains are attacked because of the oviposition
of the eggs. Since Vv could be as small as (0.01)) (see
rows 5 and 6(b) of Table A.l in Appendix 1.1), it is,
according to (2.1.2), the laying of eggs that is the dominant
factor in the destruction of the wheat grains. Equation
(2.1.1), also, incorporates the assumption that once a
grain has been attacked it cannot be used in future for
oviposition purposes. In phase I, that is when F(t) > C,
the female avoids grains already containing larvae (Mac-
Lagan and Dunn, 1935; Coombs and Woodroffe, 1973). The
term AMW(t - a) in (2.1.3) is the total rate at which the
adults are expected to emerge from the eggs laid a days
ago. However not all the eggs survive the developmental

stages; hence the term pAW(t - a) in (2.1.2) with p < L.
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The size of the immature group is implicitly involved
in determining W(t) and S(t). The emigrants are of a
lesser importance in that once a weevil has left the system
it cannot damage the wheat any more. Therefore, we shall
not lay much emphasis on equations (2.1.3) and (2.1.4).
However, in Chapter 3, we shall compare computed values of
the total number of emigrants R(t) with those obtained
experimentally at the Waite Agricultural Research

Institute, University of Adelaide.

2.1.2 Solution of the Equations

(D) Method of steps

We solve the system of equations (2.1.1) = (2.1.4)
(2.1.2 in particular) for 0 < t < a and then we use the
solution as an input to the system for a < t < 2a. Then
the solution for a < t < 2a is used in a similar way when
solving the equations for 2a < t < 3a . This procedure
is continued to 3a < t < 4a and the following intervals.

Many authors have tended not to use this rather natural
way of solving delay differential equations because they are
interested in the asymptotic solutions to the equations.

We should note that the method is useful if we are interested
in earlier solutions rather than in the long run solutions.
However, I must admit that the solutions might become untrack-
able after a few delays have been used. I should mention
that El'sgol'ts and Norkin (1973) have indicated the signif-
icance of this method by applying it to several examples

of equations in the delay differential equations family.
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Let «k = p%e (= total rate at which weevils are removed

from the system). Then multiplying (2.1.2) by et  and

rearranging the equation we obtain

g%(eKtW(t)) = pre“tu(t - a) . (2.1.5)
Now define the function
Kt
J(t) = e“tw(v). (2.1.6)

Then from (2.1.5) we have

dJ _ Ka _
I - pre “J(t a)

with J(0) = Wo (since W(0) = Wo)

and J(t) 0 for t < 0 (from boundary condition

W(t)

0 for t < 0).

so

rt
S ] J(t - a)drt
0

J(t) = W, + pre’

t
J(m_a) + pre<? } J(t - a)dr  (2.1.7)
m

ta

where m, = [t/a] (i.e., the greatest integer less than or

equal to t/a) and J(mta) = T%ﬁTa J(1).

Thus for 0 < t < a we have
J(t) = Wo . (2.1.8)

For a < t < 2a we have
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J(t)

J(a) + ple ] WodT

Ka

J(a) + J(0)pr(t - a)e
: (2.1.9)

Woll + pA(t - a) e<?

Similarly for 2a < t < 3a we obtain

2
J(t) = J(2a) + J(a)a(t - 2a) + J(O)%T (t - 2a)]

a

where § = p>\e|< So gubstituting for J(2a) from (2.1.9)

we obtain

2
J(E) = Woll + Qa + Q(t - 2a) + %T (t - 2a)2]

(t - 2a)?]. (2.1.10)

92
=W0[1+Q(t-a) +f

Continuing with this procedure we deduce that, for an

arbitrary t,

oy Qr(t—mta)r
J(t) = J((m, - r)a) =y
r=0 °
; (2.1.11)
mt Qr =
= Wp 2 F (t - ra) .
r=0 ¢ J
Then, according to (2.1.6)
Ww(t) = J(e)e ¥ . (2.1.12)

(B) Laplace Transform Method

Let us denote the Laplace transform of W(t) by W(z);

that is

fN(z) = £(W(t)) = [ e~ t2w(t) dt.
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Then the Laplace transform of (2.1.2) gives us

2t (z) - W) = pre ?ZW(z) - kW (z),
that is
A(z) = Ho (2.1.13)
ztk=-pie
W
- a)—(’é—)- y Say.

Usually to invert an equation of the form (2.1.13) we need
to establish where the zeros of ¢(z) lie. Bellman and
Cooke (1963, Chapters 4 and 12) have discussed, in great
detail, the curve on which the zeros of Y(z) 1lie.
However, the locations of these zeros are important only
if we are interested in the asymptotic properties of the
solution. In this thesis (especially for phase I) we
are concerned with solutions for the early stages of storage.
We, therefore, try to obtain explicit solutions.

In order to invert (2.1.13) (without‘first establishing

the locations of the zeros of Y (z)) we write

1 1/ 1 \

viz) Z+K\l—pxe_a7(z+K)}

Now expanding the second factor in powers of pke_az/(z+K),

we get
(l) -7 v (2.1.14)
bz r=0 =
where
(p}\)re—raz
1J)r(z) r+l -
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Now noting that with the Heaviside unit function

A

IO for t < 0
H(t) = 1

1 for t =20

we have

-bza

L (H(t-b)g(t-b)) = e G(z) .,

the inverse Laplace transform of wr(z) is

¢r(t) = (pA) ‘H(t-ra)g(t-ra)

where
=£'1|— 1 -l
g(t) L(Z+K)r+lJ
tre—Kt
- T rr

According to Erdélyi (1962, Section 4.2) the series (2.1.14)
is uniformly convergent. Hence, from (2.1.13) and (2.1.14),

the inverse Laplace transform of ﬁ(z) is

o r
Wee) =W, § ABA) (t-ra) H(t-ra)e F(E7T2)  (2.1.15)

r=0

Also, for a similar application of Erdélyi's results, see

Mazanov and Tognetti (1974). Now for na < t < (n+l)a,

n an integer, we have t - ra < 0 for r > n+l and
therefore H(t - ar) = 0 for r = (ntl) . Hence, from
(2.1.15), we have

[ t/al

W(t) = Wo )
r=0

(pk)r(t—ra)re-K(t—ra)

=1 (2.1.16)

which is the same as the solution (2.1.12) by the method of

steps.
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Expressions for the Variables S(t), U(t) and R(t)

Now from (2.1.1) we have the remaining number of

intact grains, S(t), at time t given by

S(t) = Sy = aQ(t) (2.1.17)
where
ft l’mt 1 r(n+l)a ['t 'l
Q(t) = J W(T)dT = |- Z J W(T)dT + J W(T)dTJ,
n=0
0 na mta
o = v + A, m, = [t/al, So = S(0)
and
-1 ra
) ] W(t)dr = 0.
n=0 0
Now from (2.1.16) we have
t e r ot
J W(t)dt = Wy Z (%}R } (t - ra)re_K(T_ra)dT .
mta r=0 mta

Evaluating the integral in the right-hand side by parts or

using table of integrals we obtain

t t r r k
w Q 1l
{ W(t)dt = 7} Zo (E) kzo 5 [K(mt—r)a} oTKm 2
m a s -
k
w [K(t - ra)] e'Kt} , (2.1.18)
where Q = p>\eKa .
Similarly,
(n+1l)a n r r k
W 9] 1 .
J W(t)dr = ?% rZO (E) kzo T {[K(n—r)a} g~ Kna
na

k
—{K(n + 1 - r)a] e_K(n+l)a}
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Then, after some manipulation, we get

m, -1 m, -1
tz [(n+l)aW(T)dT = MI tz /&\r e—Kra
n=0 ia K 1 r=0 \K}
mﬁ{l /QY: E [K(mt—r)a]k —-Km a}
s 2 : e Tt -
r0 V& xZo L2
(2.1.19)
Adding (2.1.18) and (2.1.19) we get
m
-t r
Q) = V%{ ) /fz) e
r=0
mt { \r r k
-kt Q [k(t-ra)l]
- e z 2 z : } . (2.1.20)
r=0 \K} k=0 ki

From (2.1.3) the size of the immature group, at time

t , is given by

t

Uu(t) = A W(t)dt = A Q(t) - Q(t-a)l

o+ —

and from (2.1.4) the total number of emigrants by time t is
given by

t
R(t) = ¢ { Ww(t)dTt = & Q(t),
0

where OQ(t) is given by (2.1.20).

For an arbitrary large t the expressions (2.1.16)
for W(t) , (2.1.7) (in conjunction with (2.1.20)) for S(t)
and similarly for U(t) and R(t), are not simple to handle.
However, we should note that the solutions are used only

for t < t*; where t* is the time at which the critical
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food ratio is reached and then phase I ends. The value

of t* is likely to fall within the first few develop-
mental periods over which the expressions for the solutions

would be relatively simple.

2.1.3 The time at which cereal supply becomes critical

Let us denote this time by t* as in the previous
section. Then t* is the smallest positive root of the

equation F(t) = C , that is

S(t) = C W(t)

or, according to (2.1.17),

Sg - o Q(t) = C W(t) .

Now substituting for Q(t) from (2.1.20) and for W(t)

from (2.1.16) and then doing some simplifying, we obtain

t o
o (9 -Kra
Fo T K rZO \E)
m i
—Kt{/c _ o) zt () [k(t-ra)l®
- \ k), 2o\k/ r!
_a mit /Q\Iril [K(t‘ra”k} (2.1.21)
< Lo \k/ a5 k! d T

e

where Fy So/Wo is the initial food ratio.

For m, > 1, the roots of (2.1.21) (and therefore
t*) cannot be obtained explicitly. However we should note
that the value of t* depends on the initial conditions

S(0) = Sg and W(0) = Weg and therefore on the initial food

ratio Fo . So let us determine the conditions on Fgy such



that, for example, 0 < t* < a,

and so on.

a < t

20.

* < 2a, 2a < t* < 3a,

For 0 < t < a (2.1.21) reduces to

Fo¢ - o/k

t

= (C = OL/K)e_K .

(2.1.22)

Now for 10 < C < 20 (see Section 2.0) and according to

the possible values of the parameters

given in Table A.1 in Appendix 1.1 C

the right hand side (RHS) of (2.1.22)

function of t over the interval [0

RHS of (2.1.22)

v, A, ¥ and

- a/k < 0 .

€ as

Hence

is an increasing

a) . Now at t

C - a/k < Fo - a/k ,

since Fg > C for phase I. Therefore t* € (0,a)
<%, (o - o) xa i
Fo K'+\C K}e ;
and then
1 [C—G/K
* = — MO/
t = n LFo—a/K] -
Otherwise
Fo>9+<c-9-> Ka 5 tx > a,
K K
For a < t < 2a (2.1.21) reduces to
~Kt
Fo - o/k = (C - a/k)[1 + Q(t - a)]e
n %% (e—Ka _ e—Kt)
= ¢(t) , say .
Note that ¢{(a) = (C - a/K)e_Ka.

So if t* > a , then according to (2.1.23) we have

$(a) < Fog - a/k .

=0

only if

(2.1.23)

(2.1.24)



Zhiky

It can be shown that, for C - o/k < 0, ¢(t) is an increas-
ing function on (a,2a). So (2.1.24) has a real solution
for t (i.e., t* € (a,2a)) only if ¢(t) can increase to
and possibly beyond F, - a/k over the interval. This is

so only if
$(2a) = Fo - a/xk . (2.1.25)
Thus, from (2.1.23) and (2.1.25), we have ¢t* € (a,2a) if

a) -ka

% + (c - E}e < Fy £ + ¢(2a) (2.1.26)

~le

and t* > 2a if

Fo > % + ¢ (2a)

The conditions on Fo for t* € (2a,3a) and higher develop-
mental intervals may be obtained in a similar way. But
for these higher intervals the computation becomes more

and more difficult.

Example 2.1 With the values of the parameters as follows:

Il
I

1.0

0.008333, ¢ 0.006436, X

=
I

]

0.7 and a 50

<
Il

0.01482 , p

we can show, from (2.1.26), that t* € (a,2a) if

40.63 < Fy < 1140.12 for C 10

20.

and 45.41 < Foy < 1208.78 for C

The example above indicates that for small quantities
of wheat, for example those used in laboratory experiments,

it is very likely that the critical food ratio is reached
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before the end of the second developmental period. Hard-
man's (1977) observations agree with this. In Hardman's
experiments he had several cells initially containing 100
weevils and an average of 695.6g (= 19900 grains) of wheat.
He observed that his critical food ratio of 12.5 grains to
a weevil was reached in several of the cells as early as
84 days after the start of the experiments. According to
him the developmental period was 50 days. The initial
food ratio, Fo, , was approximately 200 grains per weevil.
Even if we may establish the developmental interval
in which t* lies, the exact value of t* (for t* > a)
is difficult to obtain from (2.1.21). In Chapter 3
estimates of t* , for different initial conditions, are

obtained by solving (2.1.21) numerically on the computer.

2.2 PHASE II: LIMITED CEREAL AVATLABLE

2.2.0 Introduction

Phase II starts at time t* at which the critical
food ratio C 1is reached for the first time. Note that
£’ > t* does not necessarily mean that F(t’) < C. In
other words there is a chance that the food ratio may rise
up to and even above C at some time instant t’ > t* .
But in Section 2.2.2 it is shown that, according to the

assumptions made in Section 2.2.1, F(t) < C for t > t* .



23.

2.2.1 Basic Assumptions and Discussions

(A) Oviposition rate

As the food ratio, F(t) , drops to and below the

critical value C the oviposition rate, A(t) , is expected
to decrease. When F(t) = 0 (that is, when intact grains
are finished) A(t) , also, should be zero. So a reasonable

assumption to make is the following

r(t) = (constant) x F(t) .

We make A(t) continuous at t = t* by choosing the

constant to be A/C . That is

_AF(t) _ AS(t)
A(t) = & = (o) (2.2.1)

where the constant ) 1is the oviposition rate in phase I.
The assumption that the oviposition rate is a function
of the food ratio is in accordance with MacLagan's (1932)
observations on the effect of density (the reciprocal of
F(t)) on the oviposition rate. In the mathematical rep-
resentation of his data MacLagan tried to fit the data with
the curve of the form A = mF® where m and n are
constants. He realised that he had to divide the range

of the values of F(t) into sub-ranges over which the pair

(m,n) took on different values. For example for

0.25 < F < 9 wheat grains per weevil, (m,n) was deter-
mined to be (0.19, 1.66); for 9.1 < F < 200, (m,n) was
(1.38, 0.55). He also observed that when there is one

grain for every four female weevils, the insects cannot

or will not oviposit at all. However, we should note that



according to MacLagan's values of m and n , A = 25.44
at F = 200 , 4.65 at F =9.1, 7.29 at F =9 and
0.019 at F = 0.25. The value of A at F = 200 is

an overestimation of the possible values A can take on

(see row 6(b) of Table A.l in Appendix 1.1). Also there
is some inconsistency in the values of X at F = 9.1 and
F = 9 ; these values are not expected to differ that much

and the first one should be greater than the second one.
However, according to MacLagan's (1932, Fig. 3) it is
apparent that for F < 12.5 the data points could be
fitted by a linear relation of the form A(t) = (constant)
X F(t) . One way of reducing the overestimation of the
oviposition rate for F > 12.5 would be to take ‘it as a
constant over this range. Hence the formulae for A(t)
used in the models in this thesis, that is A(t) = ml F(t) 1"
with m =X and n=0 for F > C(= 10) and, according

to (2.2.1),

1 for F < C(= 10) ,

m A/C and n

are reasonable.

(B) The consumption rate

The consumption rate, v(t) , is assumed to obey the
same law as the oviposition rate. When intact grains
become scarce for ovipositional purposes it is reasonable

to assume that it is equally difficult to find intact

grains for consumption, So, for phase II, we assume that
_ vS(t)
v(t) = WD) (2.2.2)

where the constant Vv 1is the consumption rate in phase I.
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(C)

From the wheat viewpoint the intact grains are attacked

and damaged by an individual weevil at the rate of

(2.2.3)

a(t) & v(t) + A(t) = [Xil] s(t)

C
grains per day.

In connection with the prey-predator theory as
mentioned in Section 1.3 (the wheat grains being the passive
prey and the weevils the predators) , the assumption (2.2.3)
is well supported by Arditi, Abillon and Vieirra Da Silva
(1978) . They refer to a(t) (or to be more precise
a(S(t),W(t))) as the functional response between the prey
and the predators. They compare their

ai if S(t) > dw(t)

a(S(t),W(t))* {

a,S(t)/W(t) if S(t) < dw(t),
where a1, a, and d are constants, with the Lotka-
Voltera functional response @(S(t) , W(t)) = (Constant) x S(t)
(or more generally o(S(t),W(t)) = o(s(t)) . The weakness
of the Lotka-Volterra functional response is that there is
no upper limit on the number of prey that a predator can
kill in a unit time. The functional response of the form
(2.2.3) would prevent a situation in which it would be
possible for the whole prey population to be eaten at one
time by the predators. Pearce (1970) too preferred the
functional response of the form (2.2.3) to the Lotka-
Volterra response.

There are, of course, other forms of e(S(t) ,W(t))

that could be used for our grain-weevil system. However
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we should note that the form for a(S(t),W(t)) that would
be used depends on (1) the structure of the problem being
studied and (2) the form of the solution required from the
model. If an analytic solution is required, then, in
most cases, the forms of the functions, such as oa(S(t),W(t)),
involved in the model have to be relatively simple. If

a numerical solution is considered sufficient, then the
functions could be general. However, we should realise
that, in some situations, solutions to a rather general
model may give the same information as the solution to a
relatively simpler model. For our grain-weevil system

(2.2.3) seems appropriate for phase II.

(D)

It may be argued that the two fundamental causes for
migration of insects are: (1) excessive contact stim-
ulation due to crowded conditions and (2) shortage of food
supply in the habitat (MacLagan, 1932). However, we
should realise that even in situations where (1) and (2)
do not apply there may be some migration. Thus even in
phase I during which (1) and (2) do not apply we expect
some emigration of the weevils. For phase II during
which (1) and (2) apply, we expect the emigration rate
e(t) to increase with the decreasing food ratio F(t).
Again here there are many possible forms for the emigration
rate €(t) as a function of F(t). For our model we

assume that

e(t) = € + eb(C = S(t)/W(t)) (2.2.4)
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where the constant € in the RHS of (2.2.4) is the emig-
ration rate in phase I and b is another parameter which
allows some freedom in adjusting the magnitude of e(t) .
Note that e(t*) = ¢ . That is e€(t) is continuous at
the common boundary of phase I and phase II.

According to (2.2.4) the maximum rate of emigration
is €(l + bC) weevils/day/weevil and this occurs when
F(t) = 0 , that is when the grains are finished. One

would expect all the weevils to leave the habitat,at once,

when grains are finished. This would imply that e(t)->
as F(t) » 0. But this is not the case. Some weevils
choose to continue staying in the habitat. In fact it

has been observed that when the food ratio is low the
weevils feed on frass and husks of the grains from which

young ones have emerged (Coombs and Woodroffe, 1964) .

(E) The mortality rate

The mortality rate is expected to increase as the
food ratio decreases. However, if the weevils are free
to emigrate then the pressure of death would be relieved
a bit. In other words the increase in the mortality rate
would be accounted for through the increased rate of
emigration. Thus we may assume that the mortality rate

of U weevils/day/weevil remains constant even in phase II.

(F)

Finally we make the assumption that it still takes
a days for a mature adult to emerge from an egg. We
should note that because all the developmental stages of an

egg take place within a grain the factor of crowding (that
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is, reduced food ratio) has no effect on the rate of
development of the egg. The only factor that could
influence the rate is the competition between larvae if
more than one egg is oviposited in a single grain (Mac-
Lagan and Dunn, 1935). However, under optimal temperature,
relative humidity and moisture content of the grain the
developmental period may not differ that much from that for
phase I; its length can still be approximated by a days.
Then the emergence rate of mature adults from the eggs at

time t is

n(t) = pi(t-a)W(t-a) (2.2.5)
where
A for t < t* + a
x(t-a) { _
AS (t-a) for t > t* + a .

CW(t-a)

2.2.2 The Equations

According to assumption (C) in Section 2.2.1 and using
(2.2.3) the equation for the number of intact grains, S(t),

is
85 _ _ 8 s(t) , (2.2.6)

where now & = (v + A)/C
Now using assumption (E) and equations (2.2.4) and (2.2.5),
the eqguation for the number of adult weevils, W(t) , is

aw (t)

T pA(t-a)W(t-a) - pW(t) + beS(t) (2.2.7)

where p = u + (1 + bC).
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The equation for the size of the immature group, U(t) , 1is
AULE) = - (t-a)W(t-a) + A(E)W(E). (2.2.8)
The total number of emigrants, RI(t) , by time t satisfy

the equation

dR(t)
dt

]

e (£)W(t)

e (1+bC)W(t) - be S(t). (2.2.9)

i

We require S(t), W(t), U(t) and R(t) = 0.

Tt should be emphasised, at this point, that the RHS
of (2.2.6) is the rate at which intact grains are attacked.
It does not mean that the already attacked grains, for
example, those containing eggs, are not attacked again.

We can assume that the total rate of attacks on the grains
is still Vv + A but only the fraction s(t)/[cw(t)] of

the attacks manage to land on the intact grains. Since

at most one adult may emerge from a grain which at one time
holds more than one egg (Coombs and Woodroffe, 1973;
Hardman, 1977) s(t)/[cw(t)] also represents the fraction
of the eggs 100p% of which are expected to develop into
adults.

The term beS(t) in (2.2.7) may be interpreted as
the rate at which the intact grains attract the weevils to
continue staying in the habitat.

Note, from (2.2.8) and (2.2.9), that once S(t) and
W(t) have been determined then we can solve for U(t)
and R(t) . For this reason we shall concentrate on

determining solutions to (2.2.6) and (2.2.7).
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Let us check whether the food ratio F(t) 1is likely
to rise to and above the critical food ratio C at some
time instant t’' > t¥* . If F(t) >C , for t =1t" > t* ,
then o(t’) would be greater than the rate at which the
intact grains are attacked in phase I . This would not
be in accordance with the intention that a(t) is smaller
in phase II than in phase I . Also if F(t’) > C then
e(t’) < ¢ and could become negative in which case it
would be meaningless to refer to e(t) as an emigration
rate. Let us consider

dF (t)
dt

W(t)S’ (t)-W'(t)S(t)

— d e
= & (S(&) /M(r)) = W2 (t) ’

Now substituting for S’(t) and W’'(t) from (2.2.6) and

(2.2.7) we obtain

ar(t) _ _ [& -+ pl(t{;@(l]ﬁ‘;”t-a) ]F(t) - belF (t)] 2.
(2.2.10)

Thus for W(t) >0 and F >0, & > p , for example, is
a sufficient condition that F'(t) < 0 (that is F(t)
is a decreasing function) for t = t¥
For the possible ranges of values for the parameters
W, v, A, C, € (see Table A.l, Appendix 1.1), for example

with
u = 0.008333, v = 0.01482, A = 0.5,
and € = 0.006436 ,

& >p if b < 0.5703 for C = 10 or if b < 0.08525

for C = 20.
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This also indicates the range of values the dimensionless
parameter b (assumption (D), Section 2.2.1) could take
on without invalidating the equations (2.2.6) - (2.2.9) .

So we can take F(t) < C and decreasing for t > t*.

2.2.3 Solutions of the Equations

Solving (2.2.6) subject to the initial condition

S(t*) = S* we obtain

e—a(t-t*)

S(t) = s* (2.2.11)
for t = t* .
For +t* < t < t*+a we have A(t-a) = A. Then from
(2.2.7) we have
%% = pAW(t-a) - pW(t) + be S(t) .
Now multiplying this equation by ePt and rearranging the

equation we get

é%(Wept) = p)\W(t—a)ept + be S(t)ept .

Substituting for S(t) from (2.2.11) and then integrating

we obtain

_ wxa—P(t-t*) _ be S*[ -p(t-t*) _ —&(t—t*)]
W(t) W*e + a—_—pe e
¢ ~p(£-T)
+ PA J Wit - a)e P Var (2.2.12)
t*
where W* = W(t*) . The integral in (2.2.12) is evaluated

using the phase I solution for w(t) from (2.1.16) (or

(2.1.11) and (2.1.12)).
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For t > t*+a (2.2.7) becomes

dw pA

el S(t-a) - pW(t) + be S(t) .

Now substituting for S(t-a) and S(t) from (2.2.11) and
then integrating we obtain

W(t) = W(t*+a)e PlE-t¥-2)

-p(t-t*-a) _~8(t-t*-a)
+ S*[pk/C + be e—&a]{e = }
& =0

(2.2.13)

for t =2 t* + a .

2.2.4 The time at which the cereal supply is likely to

get finished

According to (2.2.11) S(t) decreases exponentially
but remains positive for finite t . So theoretically
intact grains never get finished. However we should note
that although, theoretically, one grain remaining implies
that we still have intact grains, practically 1 grain or
even 10 or 100 grains remaining, may be regarded as a
situation with no "useful" grains left. The remaining
intact grains may be useless because either they are
inaccessible because of their locations or they are contam-
inated. For example MacLagan (1932) observed that when

less than one grain is available to every four females (that

is when F(t) < 0.25) oviposition stops. Depending on the
number of weevils at the time when F(t) = 0.25, the number
of intact grains left in the system may be large. In order

to get an idea of how soon useful grains are likely to get
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finished we could solve for the time at which the number

of the remaining intact grains is, for example, 1 or 10.

Example 2.2: With X = 1.0, v = 0.01482, C = 10 and

S* = 8952, for example, S(t) 1 (that is one intact

R

grain remaining) when t - t* 90 days.

R

When S(t) = 10, t - t* 67 days. So if the one
(ten) remaining intact grain(s) is (are) regarded useless,
then useful grains are finished in about 90 (67) days

after the critical food ratio is reached.
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CHAPTER 3

DISCRETE TIME EQUATIONS AND

INCORPORATION OF TEMPERATURE.

3.0 INTRODUCTION

Having solved the continuous time model for our
grain-weevil system one may feel that there is no need
to try to solve the corresponding discrete time model.
We should have it borne in mind that continuous time
equations are an approximate description of the real
situation. The events occur in the system at discrete
time points. Thus the use of discrete time equations
may be justified. However we should note that even when
we use the discrete time equations we are still describing
the situation approximately. The solution to the discrete
time model and the solution to the continuous time model
may give the same general picture of the behaviour of the
system. The advantage of continuous time equations is
that they may be analytically solvable in some cases
where the corresponding discrete time equations are not
solvable or very difficult to solve analytically. However
the advantage of the discrete time equations is that they
are easily handled on the computer. In this chapter we
do not intend to solve the discrete time equations

analytically but numerically on the computer. The
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discrete time formulation becomes very handy when
incorporating the temperature effect on the behaviour

of our system (see Section 3.2).

3.1 THE EQUATIONS FOR OPTIMAL TEMPERATURE CONDITIONS

Since the unit of time used when referring to
the values of the parameters is a day (see Section 2.1.1),
the unit of time for the discrete time formulation will

be one day. Then the discrete time equations are

S(t+l) = s(t) - [A(t)+v(t)]IwW(t)
W(t+l) = W(t) + pr(t-a)W(t-a) - [e(t)+u(t)IwW(t)
(3.1.1)
U(t+l) = U(t) - A(t-a)W(t-a) + A(t)W(t)
R(t+1l) = R(t) + e(t)W(t)
for t =0,1,2,... and where the variables S, W, U
and R are as defined in Chapter 2. The equations are

still subject to

S(0)=84, W(0)=W,, U(0)=0=R(0)

and S(t), W(t), U(t), R(t) 2 0 for t = 0.

The parameters A(t), v(t), e(t) and u(t) are given

by:

for S(t) > CW(t)
the oviposition rate, A(t) = {xs(t)
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{ Vv for S(t) > CW(t)

vS (t)
CWw(t)

the consumption rate, v(t) =
for S(t) < CW(t);

€ for S(t) > CwW(t)
the emigration rate, e(t) {
e+be (C-S(t)/W(t)) for

S(t) < CW(t);

and the mortality rate u(t) = u(a constant),
as in Chapter 2.

3.1.1 Computer Programme I

The FORTRAN programme used to solve the equations

(3.1.1) is given in Appendix 3.1.

Input. The values of the parameters used in the

programme were as follows:

A=1.0, u

0.008333, ¢

0.006436, a = 50,

p=20.7, v 0.021285, b = 0.12 and C = 10.

These values were based on the values of the parameters
for Sitophilus Oryzae as given in Table A.l1l in
Appendix 1.1. Where several values for a single
parameter are given in the Table, the value used in the
programme was considered to be a compromise between the
values in the Table. 1In particular the length of the

developmental period of 50 days was based on Hardman's
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(1977) estimation (see row 1 of Table A.l in Appendix
1.1).

The initial amount of wheat used was 600 g
estimated to be equivalent to 20,000 grains of variety
8156 Olympic wheat. Runs of the programme were made
for the initial numbers of 240, 120, 60 and 30 weevils

in equal initial gquantities of wheat.

butgut. The key parts of the numerical output that I
choose to look at are the time, t*, at which the

critical food ratio is reached and the times t;o, and

t; at which there are 10 grains and 1 grain, respectively,
remaining in the system. According to the argument in
Section 2.2.4 t;4, and t; gives us an idea of how

fast and when the intact grains are likely to get finished.

These parts of the output are given in Table 3.1.

TABLE 3.1 The times t*, ti;o, t1 (days) at which the
critical food ratio is reached, 10 grains are remaining
and 1 grain is remaining, respectively, for the initial

number of W, weevils.

Wo t* tio ta

240 56 119 140
120 64 127 148
60 76 137 158

30 95 152 173

From Table 3.1 we note that for each of the four

initial conditions, t* 1lies in the second developmental
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period: 50 - 100 days. This is in agreement with the
condition on the initial food ratio F, as given in
Example 2.1. Also the times t;,-t* and t;-t* do
not differ much from those obtained from the continuous
time solutions. For example for the initial number of
240 weevils S(t*) = 8952 (same value used in Example
2.2) and, according to Table 3.1, +ti;o-t; = 63 days
(compared with the continuous time solution of 67 days
in Example 2.2) and t;-t* = 84 days (compared with
90 days in Example 2.2). This tends to confirm that
the discrete time solutions and the continuous time
solutions give more or less the same information about
the behaviour of the system.

For a more detailed description of the behaviour
of the system I feel that it is appropriate to give it
in a graphical form. Figures 3.1A,B give a typical
graphical output of the computer programme in Appendix
3.1. The curves in Figures 3.1A,B are for the initial
number of 120 weevils.

From the graphical output the number of intact
grains is decreasing as expected; for the wheat is
never renewed. In the first developmental period no
young mature weevils come up. So over this period the
size of the population of adult weevils decreases due
to deaths and emigration. After the first developmental
period the population increases well after the time t#*
at which the critical food ratio is reached. Then it

decreases monotonically. The size of the immature group



FIGURE 3.1A

Curves for

(1)
(2)
(3)

the Food Ratio,
Number of intact grains,

Number of adult weevils.
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FIGURE 3.1B

Curves for

(1)
(2)
(3)

the size of the immature group, U(t),

the number of adult weevils,

the total number of emigrants,

w(t),

R(t).
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increases monotonically from zero to a maximum which
occurs after time t* Dbut before the time at which the
population of the adults attains its maximum. Then the
size drops rapidly. In other words the rate of emergence
of adults increases rapidly. This results in a peak of
the population of the adults being reached soon after.
The food ratioc increases over the first developmental
period and then it decreases monotonically and rapidly

for the rest of the developmental periods.

3.2 TEMPERATURE VARIATION INCORPORATED

3.2.0 Introduction

For wheat stored in places with fluctuating
temperatures there is need to incorporate the temperature
effect on the parameters. In large bulks of wheat
temperatures take long to change but in small bulks
temperature changes are likely to be as fast as the
outside temperature changes.

For the weevils, like many insects and animals,
there is an interval of temperatures within which the
weevils are active. Outside this interval, most of the
activities come to a stop and this may result in deaths
of the weevils. In the following sections I outline the

temperature effects on various activities of the weevils.

3.2.1 Development of the Egg

An egg requires a certain amount of heat energy

in order to complete its development into a mature adult.
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Thus at low temperatures the rate of development of the
egg is small. However the temperatures cannot be
increased arbitrarily so as to accelerate the development.
In fact there exists an upper temperature threshold, 6y +
above which a retardation in the development results and
even deaths of the immature weevils may occur. Also
there exists a lower temperature threshold, eL , below
which development stops. In the interval (6L,GU) there
exists a temperature at which the rate of development is
maximum. We shall refer to this temperature as the
optimal temperature (for development) and we shall denote
it by 6*. [For the lower threshold, upper threshold and
the optimal temperature in the case of Sitophilus Oryzae
and Sitophilus granarius see row 8 of Table A.l in
Appendix 1.1.]

The curve for the rate of development of an immature
weevil is of the form in Figure 3.2. The shape of the
development curve in Figure 3.2 is common to many insects
and animals. Logan, Wollkind, Hoyt and Tanigoshi (1976)
described the rate of development in arthropods in two
phases with respect to temperature. For the phase below
the optimal temperature 6* Logal et al gave the rate as
an increasing exponential function and for the phase
above 6* they gave the rate as a decreasing exponential
function of the temperature 6 with 6* and eU as

parameters. Combining the two functions, Logan et al

obtained a curve of the shape in Figure 3.2.
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FIGURE 3.2.

Temperature, 6

The curve for the rate of the development

of the egq. eL,e* and eU are the lower
temperature threshold, the optimal temperature
and the upper temperature threshold

respectively.
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Since in our models we are taking the immature
stages of the eggs, larvae, pupal and pre-emergence
adults to constitute the immature group, we shall not
be concerned with the rates of development of the
individual stages but rather with the accumulative
development. In other words we need to determine the
amount of heat energy that has been received by an egg
by some point in time. [The effect of temperature on
the individual immature stages is well discussed in
Birch (1945).]

One of the units used in measuring the heating
energy for development is a day-degree.

Definition. 1In simple terms, let us consider the

following hypothetical situation. Suppose that on a
certain day the temperature remained constant at

6o (> eL), then the amount of heating energy received
by an egg (larva, pupa, or even an adult weevil) during
that day would be 6,-6_ day-degrees (D°). TIf the
temperature remained constant for n days, then the
heating energy gained by an individual during those days
would be n(eo-eL) D°.

For a general situation, the number of day-degrees
gained by an individual, in an interval of time, is the
area under the temperature curve and between the two
temperature thresholds as shown in Figure 3.3. Hardman
(1978) estimated the amount of heating energy required
by Sitophilus oryzae to pass from egg to newly-emerged

adult to be 422.7 D°.
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Temperature in °c

Time in Days

FIGURE 3.3. The shaded area is the number of day-

degrees received in the time interval [a,b].
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Note that each insect or egg receives the heating
energy independently of the others in the system. 1In
other words individuals who live through the same
interval of time receive the same amount of heating
energy over the interval.

We should have it borne in mind that temperature
is a random function of time. So in order to compute
the number of day-degrees accumulated during an interval
of time we must have recorded the temperatures over the
interval. One way of estimating the number of day-degrees
accumulated over the interval is to suppose that the
temperature varies according to a modified sine wave whose
consecutive minima (or maxima) are not necessarily the
same, as shown in Figure 3.4. The shaded area in the
figure is the accumulated number of day-degrees as
estimated by the sine wave.

Allen (1976) used the sine wave approximation
technique to derive an algorithm for calculating the
number of day-degrees accumulated over a given time
interval based on the two temperature thresholds and the
daily minima and maxima temperatures recorded over the
interval. Allen divided each day into two twelve-hour
intervals. Then the minima and maxima temperatures over
each of these intervals were the input data into the
modified sine wave.

In the Computer Programme II (Appendix 3.2) which

incorporates the influence of temperature on the
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parameters I have adopted Allen's algorithm.

If an adult emerges from an egg at time t then
the egg must have been laid at time t where t-t is
the time it took the egg to receive A heating day-
degrees required for its full development. Thus the
length of the developmental period, t-t, depends on
the seasons through which the egg has developed.
According to the output of the Computer Programme 1T
the length of the developmental period could be as short
as 31 days for those eggs that develop in summer and as

long as 220 days for those which develop through winter.

3.2.2 Effect of Temperature on Mortality Rate

Temperature fluctuations also affect the
mortality rate of the immature stages. According to
Birch (1945) the larval stage, the longest of the
immature stages, is the one which is very susceptible
to temperature fluctuations. However since we have
combined all the immature stages into a single stage
we need only to consider the accumulative effect of
temperature on the survival of the eggs. So the
proportion, p, of the eggs that survive to mature
adults is an accumulative measure of survival of the
immature stages. In other words p 1is a function of
each of the temperature points that occur during the
development of the egg and its values depend particularly
on the extreme temperatures that occur during the

development. For this reason it is very difficult to
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incorporate p as a direct function of instantaneous
temperature. However the reduction in p may be
indirectly accounted for through the reduced oviposition
rate discussed in section 3.2.3.

In adult weevils the mortality rate is expected
to increase at extreme temperatures. Between the
temperature thresholds GL and BU the mortality rate
is expected to vary according to the curve in Figure 3.5.
That is the rate is more or less constant for the
temperatures between the lower threshold GL and the
optimal temperature 6*. Above 6* it increases rapidly.

In Chapter 2 it was assumed that, for optimal
temperature conditions, the mortality rate remains

constant even in phase II. So now by incorporating

temperature the mortality rate is
u(t) = u(o(t)) (3.2.1)

where 1u(8) 1is of the form in Figure 3.5 and n(6%*)

is the constant mortality rate used in Chapter 2.

3.2.3 Effect of Temperature on Oviposition Rate

The oviposition is affected by temperature in
the same way as the development of the egg. That is
there is an interval of temperatures within which
oviposition is possible. At temperatures outside this
interval oviposition stops. Also there is an optimal
temperature at which the oviposition rate is maximum.

According to Birch's (1945) observations the lower
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temperature threshold, the optimal temperature and the
upper threshold, for Sitophilus oryzae, are 15.2°C,
29.1°Cc and 34.6°C respectively. The oviposition
rate curve is of the form shown in Figure 3.6.

Now combining the temperature and the food ratio

influences the resultant oviposition rate is

Ix(e(t)) for s(t) > CW(t)
A(t) = 1 (3.2.2)
A(B(t))s(t)/CW(t) for S(t) < CW(t)
where the factor A(8(t)) is given by the curve in
Figure 3.6 and X\(06*) is the oviposition rate in

phase I under optimal temperature conditions.

3.2.4 The Consumption Rate

The consumption rate, v, at which adults eat
the wheat grain is assumed to remain constant. That is,

it is independent of density and temperature.

3.2.5 The Emigration Rate

I have not come across any literature on how the
emigration of weevils is influenced by temperature.
However the emigration rate is expected to increase
with increasing temperature. This is because the
weevils become more active as the temperature rises.
But there is a limit to how high the temperature can

rise before the activeness is drastically reduced. Also
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FIGURE 3.7.

0 0* 0

Temperature, 0

The emigration rate as a function of

temperature.
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we assume the existence of a lower temperature threshold
below which the weevils are so dormant that they cannot
emigrate. In general we expect the emigration rate
curve to be of the form in Figure 3.7.

With the food availability factor and the
temperature effect combined, the resultant emigration

rate is given by

js(e(t)) for S(t) > CW(t)

e(t) = 1 (3.2.3)

e(6(t)) [1+bC-bS(t) /W(t)] for S(t) < CW(t)

where ¢€(6) is of the form in Figure 3.7 and €(8%)
is the emigration rate at the optimal temperature in

phase TI.

3.2.6 The Emergence Rate

When the temperature influence on the developmental
period is incorporated the rate at which adults emerge

from the eggs at t is given by
n(t) = p'A(6(E))W(E) (3.2.4)

where p' is the new proportion of eggs that are expected
to survive the immature stages and t is the time at
which the eggs, from which adults are emerging at time

t, were laid. If the temperatures over the interval
(0,t) have been recorded then £ can be determined by

using the requirement that in the t-t days the amount
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of A heating day-degrees must have been received by

each of the emerging insects (see Section 3.2.1).

3.2.7 The Equations Incorporating Temperature and

Food Ratio

Now the equations which incorporate both the
temperature and the food ratio can be deduced from the
optimal temperature equations (3.1.1) by replacing the
constants A,u,e and p by A(6(t)), u(e(t)), (6(t))
and p' respectively and the new expression for the
emergence rate n(t) is given by (3.2.4).

In most situations the functions A(8), u(6) and
€(6) are unknown. However if some values of a
parameter £(6) can be determined (experimentally) at
a few temperature points, then the values of the
parameter at other temperature points may be estimated
by linear interpolation. If, for example, we use the
values of the parameter £ at the lower temperature
threshold eL, the optimal temperature 6* and the
upper temperature threshold GU, then the linear

interpolation for & on (6_,6_.) is given by

L U
6 -8
* b *
) = [ bt (€ EL)(—;—B ‘BL) for 6 < 8 32 5]
A (aU—z*)(g;?;*) for © > 0

= * = * -
where £ = £(6 ), E¥ = £(6%) and £ = £(8,) .
In the computer programme II I have used the

formulae (3.2.5) in computing the values of the
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parameters A(6), u(8), and €(0).

3.2.8 The Computer Programme II: Input/Output

Input
The daily minimum and maximum temperatures used
as the input for the programme were recorded from
December 1, 1977 in one of the experimental sheds at
the Waite Agricultural Research Institute, University
of Adelaide.
The values of the parameters used in the programme

were as follows:

6. = 13°C and 9, = 1000°C for development;
6, = 12°C, o* = 22°C and 0, = 26°C for the
other activities such as oviposition and emigration;
A(B*) = 1.0, u(6*) = 0.008333, c(0*) = 0.006436;
A(GL) = 0., u(eL) = u(ex*), e(eL) = 0.10 x €(0%);
x(eU) = 0., u(eU) = 2.0 x u(e*), e(eu) = e(0%);
p=20.7; C =10; v = 0.021285; and b =0.12.
The initial number of grains S, = 20000 (= 600 g

of variety 8156 Olympic wheat). Runs of the programme
were done for the initial numbers of 240, 120, 60 and 30
adult weevils.

Note that the temperature thresholds for the

development of the egg (that is for the computation of

heating day-degrees) are
other activities such as
It is assumed that these

development of the eggs,

different from those for the
oviposition and emigration.
activities, other than the

share the same temperature
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thresholds and the same optimal temperature. In the
real situation these temperatures may be different.
Note also that the upper temperature threshold for
development was set to an arbitrary large value (1000°c),
for theoretically the higher the temperature the greater
the number of heating day-degrees accumulated in a unit
time.

The data above are for Sitophilus oryszae. However
I should point out that the values of the temperature
thresholds and the optimal temperature are lower than
those quoted from the cited literature (see row 8 of
Table A.l). The explanation is as follows. The values
of the parameters as given in Table A.l were determined
at constant (optimal) temperatures. I would say there
is a difference between the optimal temperature for
cultures of weevils reared at constant temperatures and
the optimal temperature for cultures reared at fluctuating
temperatures. In the later case the weevils tend to
acclimatize to the variable conditions. So instead of
regarding a single temperature as the optimal one we
would have an optimal interval of temperatures. This
interval could be represented by an average temperature
in which case this average temperature would be less
than the optimal temperature for cultures reared at
constant temperatures. In order to minimise errors in
the estimation of the daily average temperatures by
using the mean of the daily minimum and maximum temperatures,

I used the average of three temperature points: the
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minimum in the morning (night), the maximum during the
day, and the minimum in the evening (night). Then I
realised that only one of the average temperatures

(of 31.3°C) obtained this way exceeded the optimal
temperature of 29.1°C for oviposition as given by

Birch (1953) (see row 6(a) of Table A.l1). So I had to
lower the thresholds and the optimal temperature
accordingly to the values given above. I should say
that these values may not be the best to use. However,
according to the range of the average temperatures
obtained by using the three-temperature-points technique,
it did not make any significant difference in the computer
output when the optimal (average) temperature and/or

the upper threshold were increased by 1 or +2°C.

Output

According to the output of the programme, as
mentioned at the end of Section 3.2.1, the developmental
period could be as short as 31 days for the eggs which
developed through the summer period of December 1978-
january 1979, and és long as 220 days for the eggs
which developed through part of Autumn, the winter and
spring of 1978. These values compare well with Birch's
(1945) observations of 27.7 days at the supposedly
optimal temperature of 29.1°C and 230 days at 15.2°C
for one egg of Sitophilus oryzae per grain.

Figures 3.8 and 3.9 are the graphical output of
the programme for the initial_numbers of weevils Wy, = 120

and 30 respectively. The curves for S(t) and F(t)



FIGURE 3.8A

Curves for (1) the Food Ratio
(2) Number of Intact Grains
(3) Number of Adult Weevils
(4) Temperature (December 1, 1977 - February 1, 1979)

for the initial nhumber of W, = 120 weevils, in 20,000 grains.
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FIGURE 3.8B

Curves for (1)
(2)
(3)
(4)

Temperature (December 1, 1977-February 1, 1979)
Size of Immature Group
Number of Adult Weevils

Total Number of Emigrants

for the initial number of W, = 120 weevils in 20,000 grains.
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FIGURE 3.9A

Curves for (1) Food Ratio
(2) Number of Intact Grains
(3) Number of Adult Weevils
(4) Temperature (December 1, 1977-February 1, 1979)

for the initial number of W, = 30 weevils in 20,000 grains.
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FIGURE 3.9B

Curves for (1) Temperature (December 1, 1977-February 1, 1979)

(2) Size of Immature Group

(3) Number of Adult Weevils

(4) Total Number of Emigrants

for the initial number of W,

30 weevils in 20,000 grains.
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are similar to the corresponding curves in Figure 3.1A
for optimal temperature condition. Though the curve
for W(t) 1is similar to that in Figure 3.1 there is a
rise in the curve in Figures 3.8 and 3.9 at the end of
Winter. This rise, which is absent in Figure 3.1, is
due to the relatively large number of adults emerging
from the eggs whose developmental periods had been
lengthened by Winter temperatures. The rise is more
pronounced in the case of the initial number of 30 weevils.
Unlike in the case of optimal temperature (Figure 3.1B)
the curves for U(t) and R(t) in Figures 3.8B and
3.9B are rather flat in Winter. The stationary feature
of U(t) in Winter is due to the reduced rate of
oviposition combined with the reduced rate of emergence;
and that for R(t) is due to the reduced rate of
emigration.

Also from the output of programme II we have
Table 3.2 which shows the times, +t*, at which the
critical food ratio was reached in the four cases of the

initial numbers of 240, 120, 60 and 30 weevils. The

times ti0, t:1 are the times at which there were 10 intact

grains and 1 intact grain;-respecﬁively, reﬁaining in
the system. | J
i , Note that in tﬁe case of the initialrnumber of
i 240 weevils the values of t* in Tables 3.1 and 3.2

are nearly the same (that is t* = 55 days for the

I .



There appears to be a contradiction here between the performance of
weevils under real and optimal temperature conditions, in that the weevils
have reached t* earlier under real conditions than under supposedly
optimal conditions. However, the problem is overcome by referring to the
definition of optimal temperature conditions (p. 10), especially the comment
"there is no reason to believe that weevil growth, grain depletion or time
to the critical temperature will attain their maximum or minimum values

under these conditions".
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TABLE 3.2. Times t*, tio, t1 (days) at which the
critical food ratio was reached, 10 grains were
remaining and 1 grain was remaining for the initial

number of W, weevils when the temperature was

incorporated.
Wo t* tio ta
240 55 315 372
120 72 341 388
60 88 369 413
30 102 388 427
variable temperature conditions and t* = 56 days for

the optimal temperature conditions). This implies that
the Summer temperatures correspond to the optimal range
Trserk © Sew opgesile Y

of temperatures., For the other initial numbers of
weevils phase I was prolonged due to the Autumn and
Winter weather which commenced before the critical food
ratio had been reached.

Finally I compare the total number of emigrants,
R(t), determined experimentally by Mr S. Mlambo at
the Waite Agricultural Research Institute, University
of Adelaide, with the corresponding output of programme
II at several time points as shown in Table 3.3. According
to Table 3.3 there is a reasonable agreement between the

observed and the computed total number of emigrants for

the initial numbers of W, = 240, 120 and 60 weevils. 1In



TABLE 3.3. Comparison between the observed and computed total number of emigrants, R(t),

from systems which started in December 1, 1977 with W, = 240, 120, 60 and 30 weevils in
1:1.

20,000 grains. In each case the initial ratio of females to males was

TOTAI. NUMBER OF EMIGRANTS
F/nght
Pay Observed Computed | Observed Computed | Observed Computed | Observed Computed
Ending
For Wy, = 240 For Wy = 120 For Wy, = 60 For W, = 30
011/12/77 0 0 0 0 0 0 0 0
| 22 [22/12/77 & 31 . 16 % 8 = 4
64 | 2/2/78 329 243 134 99 66 50 11 25
120 | 30/3/78 2012 3420 940 2084 636 951 24 370
176 | 25/5/78 3060 4948 1704 3835 1041 2183 33 1001
2321 20/7/78 3192 4987 2052 3885 1115 2239 38 1036
288 | 14/9/78 3805 5007 3025 3914 2638 2275 41 1060
344 | 9/11/78 4655 5270 4265 4285 3035 2869 59 1860
400 | 4/1/79 4827 5582 4780 4798 4401 4018 126 4115
427 | 1/2/79 5493 5703 5071 4975 - 4432 - 4953

“€9
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the case of Wy, = 30 the computed number of emigrants
is far greater than the observed ones. The big differences
may be due to lack of the weevils to aggregate for the
purpose of mating. Individuals wander about the habitat
for a long time before they can meet one another. Hence
the oviposition rate would be drastically reduced
resulting in a very slow growth of the population and
hence the small number of emigrants.

The W, = 30 case tends to suggest that there is
an interval for the food ratio within which emigration
(as well as other activities) is independent of the
food ratio. Outside this interval (that is at low food
ratio as well as high food ratio) it is a function of the
food ratio. In fact MacLagan (1932) pointed out that
his experiments indicated that if the number of wheat
grains were increased from 400 per female weevil to 800
or even 600, there followed a reduction in the number of
progeny, which meant there was an optimal degree of
crowding (or food supply per weevil) in regard to the
number of eggs oviposited. So it seems that the food
ratio of 800 grains per female weevil (that is 400 grains
per weevil if the ratio of femaleé to males is 1:1) is
another critical food ratio which is not incorporated in
our equations. However we should note thap/z;e initial
number of W, = 240, 120, and 60 weeyils in 20,000 grains
the food ratio is less than 400 grains per weevil. Hence,
for these initial conditions our equations should be

alright.
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According to the discussion in the previous two
paragraphs the two-phase formulation would be applicable
to quantities of wheat and initial numbers of weevils
used in laboratory experiments in which the initial
food ratio is not too high. For large quantities of
wheat such as those stored in silos (with small initial
numbers of weevils) we would need to consider &a three-
phase formulation. So this is another approach that

could be considered for future models.
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CHAPTER 4

A STOCHASTIC MODEL FOR PHASE I

4.1 INTRODUCTION

The model discussed in this chapter is a stochastic
version of the deterministic model in Section 2.1. 1In
the present model the parameters are no longer deterministic
but probabilistic. That is, for example, with the
oviposition rate as A eggs/day/weevil we mean that
the probability that a weevil oviposits an egg in an
infinitesimal time interval (t,t+dt) is X8t. So the
number of intact grains, S(t); the number of adult
weevils, W(t); the size of the immature group, u(t);
and the total number of emigrants, R(t), at time t,
are random variables. We still define the random variable
for the food ratio as F(t) = S(t)/W(t).

In any situation a stochastic version of a
deterministic model, if possible, enables us to determine
or estimate the variances (and higher moments), in
addition to the means, of the variables involved. Also
the stochastic mean of a random variable may be used as
a check on the accuracy and/or validity of the corresponding
deterministic value of the variable. For example for our
grain-weevil system it is shown in Section 4.5.1 that
the stochastic mean of the number of intact grains is
not the same as the deterministic solution obtained in

Section 2.1.
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In the stochastic version we consider the
distribution of the bivariate process {S(t),W(t), t = 0}.
Let us recall from Section 2.1.1 that during phase I
the weevil population is not influenced by the number of
intact grains available but the weevils destroy the grains.
So the distribution of W(t) can be derived independently
of the distribution of S(t). Then using the conditional
distribution of S(t) given a sample path of {W(Zz), ¢ < t}
the distribution (moments, in particular) of S(t) may
be determined.

The differential equations for the conditional

probabilities

p (t|W(-)) = P(5(t) = s|{W(z), ¢ < t})

are derived and solved recursively. However in an attempt
to obtain expressions for the conditional moments or the
probability generating function (p.g.f.) of S(t), the
solutions prove cumbersome to use. In order to reduce

the difficulty in handling the p.g.f. of S(t) an
artificial variable §(t) is introduced to represent

S(t). The variable S(t) takes on the positive values with
the same probabilities as S(t). But, unlike S(t),

§(t) takes on, also, the artificial values -1,-2,...,-%.
The equations for the means of S(t) and W(t) work

out to be the same as the ones for S(t) and W(t),
respectively, in the deterministic model in Section o

But, since §(t) # S(t), this implies that the mean of
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the random variable S(t) does not satisfy the same
equation as the deterministic variable S(t). In section
4,7 it is shown that the mean of S(t) is a lower bound
of the mean of S(t).

The conditional p.g.f. of S§(t) given {W(z), ¢ < t}
is used in the derivation of an approximate joint p.g.f.
of §(t) and W(t). In the derivation the emergence
process {n(t), t = 0} is regarded as an immigration
process that is independent of the adult weevil population.
Two independent methods (one?ghich is the method of "marks
and catastrophe") are used to obtain the approximate
expression for the joint p.g.f.

The means of S(t) and W(t) are used in
determining an estimate of the time t* at which the
food ratio is expected to drop to the critical value C

for the first time.

4.2 A REVIEW OF THE ASSUMPTIONS

With the same environmental conditions assumed
for phase I in Section 2.1 the oviposition rate of A
eggs/day/weevil, the rates of emigration and mortality
of ¢ and 1y, respectively, weevils/day/weevil and the
consumption rate of v grains/weevil/day are constants.
Also the proportion, p, of the eggs that are expected
to develop into mature adults is a constant. The
expected length of the developmental period, from egg to
mature adult, is taken to be equal to a fixed number of

a days.
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As in the deterministic case (section 2.1) phase I
corresponds to F(t) > C (or S(t) > CW(t)). When the
food ratio F(t) drops to and below the critical value
C the formulation presented in this chapter will no
longer be valid. The models for the phase II (that is,
for F(t) < C) are discussed in Chapter 5.

At time t=0 there are S, intact grains and Wy
mature weevils in the system. The size of the immature
age group, at the time, 1is zero.

Given a sample path of the weevil population,
(W(t), t = 0}, the wheat grains are destroyed at the
rate

~

a(t) = (Av)W(t) (4.2.1)

and the rate at which mature adults emerge from the

immature age group is

n(t) = pAW(t-a) (4.2.2)

where the parameters in the right hand sides of (4.2.1)

and (4.2.2) are as defined in the first paragraph above.

4.3 THE DISTRIBUTION OF THE WEEVILS (INSECTS)

Since there are no young weevils emerging from
the eggs over the time interval 0 < t < a, {fw(t), 0 < t < a}
is equivalent to a death process in which the "death"
rate, «k, 1is the sum of the death rate 1 and the
emigration rate €. That is « = p+e. Hence with Wy

adult weevils at time t=0



P(W(t) = w) = (%f) -W|<t(l —Kt)WO-W
for 0 < t < a. Therefore
Kt

E[W(t)] = Wee

Kt

Var[W(t)] = Wee = (l-e

for 0 < t < a.

k—"_J
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(4.3.1)

Let us denote the n-th developmental period,

that is the time interval ((na, (n+l)al,

Next

let us consider the conditional distribution of W(t),

t € D given a sample path of {W(zg),

For n=>1, {W(t), t € Dn}

}.

n-1

is a death-emergence

process in which the emergence rate is given by (4.2.2).

Then, for t € Dn, the probabilities

Pw(t‘{W(C)r r € Dn_j) & p(W(t) = wl{wW(g), ¢ € Dn—l})

satisfy the difference-differential equations

dp,,

—— = -[xwn(t)Jp_(t) + <(wtl)p (€]

dt

+ n(t)p,_ (£)

with p_ = 0 for w < 0.

(4.3.2)

Multiplying (4.3.2) by yw and summing over w = 0 we

can show that the p.g.f.

Gn(t|{W(C), t €0 D = L y'p, (e {W(g), T € D __.1)

w
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satisfies the differential equation

BGn BGn
— = -k (y-1) 5y + (y-L)n(£)G . (4.3.3)

The auxiliary equations for (4.3.3) are

dG
_ n

at _ _dy __
1 k (y-1) (y-1)n(t)G

Hence we have

[o7)

—% = k(y-1) = (y-1) = Ae”*t (4.3.4)

where A is a constant; and
d(an G ) = (y-l)n(t)dt

Now substituting for (y-1) from (4.3.4) and integrating

we obtain

t
G, exp{—J An(t)e"'dr} = constant
na

= ®(a) , say. (4.3.5)

Substituting for A from (4.3.4) we have

t
E “k(E-T) g1}
na

G, exp{-(y-1) n(t)e

xt

= o((y-Lle "7) . (4.3.6)
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Now using the initial condition

Gn(naI{W(c), r € Dn—l}) _ YW(na)
we have
yW(na) - @((y—l)e_Kna)
which implies that
(8) = [eeP? 4 17¥(na)

Hence from (4.3.6) we have

¢ (t|w(), t €D ;1

—K(t-na)]W(na) %

= [1 + (y-1l)e

t
exp{(y—l)[ n(T)e—K(t—T)} (4
na

.3.7)

Then from the p.g.f. (4.3.7) we obtain the conditional

expectation of W(t), t € Dn, to be

E[W(t) [{w(z), £ €D 1}

(4.3.8)

t
= W(na)e_K(t—na)+J n(T)e—K(t_T)dT

na

and the conditional variance
var[w(t) |{w(g), ¢ € D__;}I

— W(na)e_K(t_na)(l—e_K(t_na)}

t
+ J. n(tye <t T aq
na

(4.3.9)
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Proposition 4.1 The stochastic mean, E(W(t)), of

the number of adult weevils is the same as the deterministic

value of W(t) determined in Section 2.1.2.

Proof. From (4.3.8) we have

E[W(t)] = E[W(na)]e‘K(t—na)

t
o pxmw(T-aﬂe‘K‘t‘T’dT (4.3.10)

Jna

(where n(1) has been substituted for from (4.2.2)).

Now setting J(t) = E(W(t))e“® in (4.3.10) we obtain

af®

] J(t=a)dr
na

J(t) = J(na) + pre”

which is the same as equation (2.1.7). Il

Hence, according to the proposition, the solution for

E[W(t)] from (4.3.10) is given by (2.1.16). That is

[t/al r r -x(t-ra)
ElW(E)] = W, 5 ARAL (t-ral e . (4.3.11)
r=0 )

It is not possible to come out from (4.3.9) with
a neat expression (such as (4.3.11) for E[W(t)]) for
the unconditional wvariance var[W(t)]. However, if the
distribution of W(z), ¢ € Dn—l has been determined

(for example for ¢ € Do), (4.3.9) can be useful in

estimating the possible range of values Var[W(t)] can

take on for t € Dn.
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4.4 THE DISTRIBUTION OF INTACT GRAINS GIVEN A SAMPLE

PATH OF THE INSECT POPULATION

Let ps(tIW(-)) = P(S(t) = s|{Ww(z), 0 <z <tl) (4.4.0)

Since the wheat is not renewed and the grains are
continuously being destroyed by the weevils S(t) < Sy
(the initial number of intact grains). Also,obviously.

S(t) = 0. Hence
ps(tIW(-)) =0 for s <0 or s > Sy . (4.4.1)

Now, by considering the transitions of S(t) given
{(W(z), 0 < £ <t} over the time interval (t,t+8t) we
can easily show that the probabilities (4.4.0) satisfy

the differential difference equations

dps . _
gc - "9Pg + ap L 7 (4.4.2)
for s =1,2,...,8 , and
dpo N
—E'E- = 0p1 (4.4.3)

(where @& is given by (4.2.1)), subject to the initial

conditions
IO for s # Sol
PS(O|W(0)) = 3 J' (4.4.4)
l1 for s = So
The term -dpo is absent from the right-hand side of

(4.4.3) because once the grains are finished the weevils
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cannot eat any more!
0

Il >~

Let G_(t,x|W(-)) = x°p_(t]W(-)).

s=0

Then from equations (4.4.2) and (4.4.3) we get

S = §(; - DG, - &(X - 1)po (4.4.5)

The awkward unknown term —&(i - l)po(tIW(-)) presents
difficulties if we try to solve for the p.g.f. Gs from
(4.4.5). If & were a constant then one way of solving
(4.4.2) and (4.4.3) would be to apply Bailey's (1964,
Chapter 11) Laplace transform technique to these equations
to isolate po(t). But in this case, where o = a(t) and
unspecified as yet, Laplace transforms of the right-hand
sides of (4.4.2) and (4.4.3) cannot be worked out
explicitly in terms of the transforms of Pgr s=0,1,...,50.
We now resort to solving (4.4.2) and (4.4.3)

recursively. Starting with s = Sy, (4.4.1) and (4.4.2)

give
pg, = e (4.4.6)
where
ft
A(t) = ] a(tydr . (4.4.7)
0

Now from (4.4.2) and (4.4.4) we obtain

t
p et - J (et lp_ (mat (4.4.8)
0

S

for 0 < s < Sp-1.
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So setting s = Sy-1 in (4.4.8), then substituting fox

Pg, from (4.4.6) and integrating we get

— -A(t)
pso—l = A(t)e .

Similarly, for s So-2, we get

t To _
Pg _9 &(Tz)j d(t,)dr.drz)e -
0

-A(t)

"t
(J & (t)dr) %e
0
Inductively or recursively we obtain

(A(£)1°°7% -a(c)

s (S¢-8)! , for s=1,2,...,50 - (4.4.9)

Now by either integrating (4.4.3) or using

il

So
I p (elw()) =1

s=0

we obtain

1l
‘-—l

Sg-1 r
po (£|W(+)) - % [A(t)1" -A(E)

!
r=0 r:

(4.4.10)

I

oo r
At -A(t
y [ é!)] o~A(R)
r=Sy

Let us note that with §(t) £ g5, - S(t), that is
é(t) is the number of grains damaged by time t, we

have
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(4.4.11)
= s —A(t)
p(S(t) = s|w(-)) = AELe for s=0,1,...,So-1
and
~ o r -A(t)
P(S(t) = solw(-)) = § 1alBle ;

r=Sy

The right-hand side of (4.4.11) is a probability mass
function for the Poisson distribution with A(t) as its
mean. In other words the grains are destroyed according
to a Poisson process but, unlike the usual Poisson process
whose source is infinite, the destruction process comes
to an end when there are no more intact grains left.

From the probabilities (4.4.9) and (4.4.10) we can
get the conditional p.g.f. of S(t) given {W(Z), ¢ < t}
in a series form. However this form proves cumbersome
to use. This difficulty prompted me to introduce a
non-physical random variable §(t) which is closely related
to S(t) and whose conditional p.g.f. given
{W(r), 0 < £ <t} can be obtained in a more compact form
as shown in the next section. Also working with §(t)
it is possible to show that the stochastic mean E(S(t))
is not the same as the deterministic value of S(t) as

determined in Section 2.1.

4.5 AN ARTIFICIAL RANDOM VARIABLE FOR THE INTACT GRAINS

Let the random variable §(t) be defined as follows.
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(i) P(S(t) = s|{w(y), 0 < g <t}) = p(S(t)=s|{W(z), 0 < ¢ < t})

for s=1,2,...:,50- : (4.5.1)

(ii) The conditional probabilities
B (£]W(+)) = P(8(t) = s[lW(z), 0 < <th

satisfy the equation (4.4.2). That is

dﬁ ~ N
S = -@p_ + Op
dt Py s+1
(4.5.2)
for integers s € (-«,5,] ,
where
ﬁs =0 for s > Sy .
Then according to (4.5.1)
p_(t|W(-)) = p,(t|w(:)) for s> 1
0
proposition:  po(t|W(-)) = I p_(t[W()) . (4.5.3)

s=—oo

Proof: Solving (4.5.2) recursively in the same way as

when solving (4.4.2) we get

, - BRI o
for s = Sy, So-1, ...,1,0,-1,...,-%.
So
b L BT e

s=—oo S:—CX)
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o r
- ] Rl A
r=5

0

= po (from (4.4.10)) . i
Thus knowing the probabilities - ﬁs , integer
s € (-»,S,]1, we can deduce the probabilities . p

from (4.5.1) and (4.5.3).

Let é(t,x|W(-)) be the generating function for
the probabilities ﬁs . That is
~ So .
G(t,x|w()) = Y x°p_ ., |x| <1.

Substituting for ﬁs from (4.5.4) we get

Gt,x|W(-)) = x5 exp{ G-1)A(t)}

Now substituting for A(t) from (4.4.7) and using

(4.2.1) we obtain

t
G(t,x|W()) = x50 exp{(A+v)(i—l)} w(t)dar} . (4.5.5)
0

Let me point out that we can extend the artificial-
variable technique, used above, in determining the
conditional probabilities p_(t|W(-)) to deriving (the

generating function of) the joint probabilities
p,(t) & P(S(£) = s, W(E) = w) .

An example of this extension is in Chapter 5, Section
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5.1.2 in which the number of weevils W(t) (instead of
S(t)) is the one represented by an artificial variable.

Also it is worth mentioning Cox and Smith's (1961,
Chapter III, Section 3.1) example on queues in which,
because of the awkwardness of the equations (similar to
the one of the equations (4.4.2) and (4.4.3)) satisfied
by the probabilities for their system, they extended the
domain of the states of the system to -«. To ensure
that their extended system gave the required solutions
for the probabilities, they introduced an artificial
relation connecting the 0 and -1 states of the system.
So, in their case, once the probability for being in the
artificial -1 state is determined, the probability for
the zero state can be deduced. For our grain-weevil
system the probability of the zero-grains state is the
sum of the probabilities for the artificial states

Or_ll"21°--r"°°-

4.5.1 Mean and Variance of the Artificial Variable

From the conditional p.g.f. (4.5.5) of S (t)
given w(oy, ¢t < t} we have the conditional expectation

of S(t) given by

E[g (t) lw(,)] - aG(t,X’}aV}Z(-))\
x=1
t
= Sy - (v+A)J W(t)drT (4.5.6)

0
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Therefore the unconditional expectation of S(t) is

given by

t
E(S(t)) = So - (V+A){ E(W(T))dT . (4.5.7)
0

Since E(W(t)) satisfies the same equation as the
deterministic value for W(t) (see Section 4.3), the
equations (4.5.7) and (2.1.7) show that E(S(t))

satisfies the same equation as the deterministic value

for the number of intact grains, S(t). But the artificial
variable §(t) is not the same as S(t). Therefore the
stochastic mean, E(S(t)), and the deterministic value

for the number of intact grains are not the same. In
Section 4-7 T show that the deterministic value is a

lower bound for the stochastic mean.

The conditional variance of §(t) given

{wWw(c), ¢ < tl is given by
5 _ [926 _ (36\2 , 3G]
Var[S(t) IW(')J = LW . 3§} + 5-}?_'
x=1
[ a(1 3G 3G
- [m‘c(— a—x) ¥ w}
x=1

A

where G = a(t,xlw(-)) as in (4.5.5). Taking the
logarithm of (4.5.5) and then differentiating the result
twice with respect to x we have

Pal t
36 )\ _ g, + 2(v+A)J[0W(T)dT ;

8 (
9%\

QI

x=1
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~

So adding %% %=1 to both sides we obtain
A (t
var[S(t) |[W(-)] = (v+A)J W(t)dr (4.5.8)

0

Before we determine the unconditional variance of §(t)

let us note the implication of (4.5.8). According to

(4.5.8) the variance of S(t) 4is an increasing function

of time for any given sample path of the weevil population.
In the evaluation of Var[é(t)] let us note the

identity

var[8(t)] = ElVar(S(t)|w(:))]

+ var[E(S(t) |[W(-))]
Hence from (4.5.8) and (4.5.6) we have

N t
Var[S(t)] = u} E[w(t)]ldt
0

‘t ot
+ a? E[W(T)W(z)ldrdg
v O-O

tt
- a? E[W(t)]E[W(zg)ldtdg (4.5.9)
‘0’0

['t A
= o E[W(T)]drT
Jo

(re
+ o? Cov (W(T),W(z))drdg .
J),s

While E[W(t)] 1is given by (4.3.11) we have not determined

the joint distribution of W(z) and W(t) , ¢ # 1 . Hence
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the evaluation of E[W(g)W(T)] is not possible for all
values of ¢,t. However for T,; < a it is possible

as follows. Since {W(t), 0 < T < a} is a pure-death
process (see beginning of Section 4.3) the conditional
distribution of W(t) given W(z), ¢ < t, is the

—K(T-C))_

binomial distribution b(W(zg), e Now consider

EW(g)W(t)] = E[W(Z)EMW(T) |W(z))]
- B[W2(g)e K (TTE)] (4.5.10)

But W(z) is of the binomial distribution, b(Wo,e—KE).
Hence E[W(z)W(T)] can be determined from (4.5.10).
Then substituting for the expectations in the R.H.S. of
(4.5.9) and integrating it can be shown that, for

0 <t < a,
var[8(t)] = ggi(l—e—Kt)[1+ut—%(l—e_Kt)]

4.6 APPROXIMATE DERIVATION OF JOINT DISTRIBUTION OF THE

ARTIFICIAL VARIABLE AND THE WEEVILS

In this section our grain-weevil system is
approximated to one in which the emergence process of
young weevils from the eggs is taken as an immigration
process independent of the adult weevil population. The
original weevils (at time t=0) as well as the "immigrants”

(that is the offsprings) are assumed to behave independently
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of each other.

The derivation of the approximate joint p.g.f. of
§(t) and W(t) gives us an opportunity to look at two
alternative methods (see Sections 4.6.1 and 4.6.2) that
can be used to derive Puri's (1975, Egn. 14) result for
a time-homogeneous birth-and-death process with possibly
time dependent immigration rate. In our case the
immigration rate (emergence rate) n(t) could be
deterministic or stochastic, but it should be independent
of the weevil population.

First we look at this joint p.g.f. é(t,x,y) of

g(t) and W(t) given §(0) =8, and W(0) = W, . That
e G(t,x,y) = E(xg(t)yw(t)) . Ixl. |yl €1
with &(O,X,y) ~ SoyWo .
Now
é(t,x,y) = E[yw(t)E(xé(t)l{W(T), 0 <1<thl]
= Ely" (Y& (t,x|We))]

Now substituting for a(t,xW%»from (4.5.5) we have

W(t)

~ _ t
G(t,x,y) Ely exp{(A+v)(§—l)} W(t)dr}]
0

XSOE[YW(t)eZQ(t)]

where

t
Q(t) = { W(t)drt
0
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and

_ 1 _

7 = (>\+\))(x 1) .
Let us write
E[yW(t)eZQ(t)] = E(E[ZYW(t)eZQ(t) l{n('[), 0 < t<tl}l.
Then with

H(t,y,z) = E[y" P28 | {n(1), 0 <1 < t}]
the joint p.g.f. of §(t) and W(t) is
G(t,x,y) = x °E[H(t,y,2)] (4.6.0)

We could use Puri (1975, Egn. 14) to obtain an
expression for H(t,y,z). However (as already mentioned)
we shall derive the expression for H(t,y,2z) using two
alternative methods. Method A (Section 4.6.1) gives
us insights into the techniques used to derive Puri's
result. The techniques used in the second method (that
is the method of "marks and catastrophe", Section 4,6.2)
are not only interesting but also give insights into a
wide range of problems to which the method could be

applied.
4.6.1 Method A

According to this method we make use of the

expression for

nw

Wl(t)eZQl(t)]

H;(t,y,2) Ely
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where {W;(t), t = 0} is a death process and

rt
Q:(t) = ] Wi(T)dr
0
Therefore we need to determine H:(t,y,2z). [In our case
we could interpret W;(t) as the number of the original
weevils still in the system at time t.]

Let the death rate in the process {W;(t), t > 0}
be «k = p+e and W;(0) = Wy (the initial number of
weevils) .

In order to determine H;(t,x,y) we shall use
Puri's (1966) argument by which he derived the
characteristic function for the bivariate process
{(x(t), }tX(T)dT), t >0}, where {X(t), t = 0} is a
birth—deagh process. In our case we are interested in
the moment quasi-probability generating function,
Hy(t,y,2z) of {(Wi(t), Qi1(t), t = 0}.

Let 6W; and d&Q; be changes in Wi (t) and
Q0;(t), respectively, over the time interval (t, t+T)
where 1T is infinitesimal, such that a maximum of one

event (death) may occur over the interval.

So, given W(t) =n
Wy = 0 and &8Q; = nt if no death occurs
and 6&W; = -1 and 6Q: = né+(n-1) (t-9)
if a death occurs, where t+6 (8 < T) is the time at

which it occurs.
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Let P, P(no death occurs in (t,t+1) |[Wy(t) = n)

n

and P, P(a death occurs in (t,t+1) |W1(t) n).

0

Now with the probabilistic rate of death as «k = u+g,

P(an individual does not die by time 1) = e T
Therefore
_ -KTyn _ _~-nKT
Po’n = (e )T = e
} (4.6.1)
_ (n: __—kTy _—(n-1)xT
Pl,n - (l>(l € Ye

Let O be the r.v. which takes on the values 0
(where death occurs at t+0). Then from Puri (1966) the
conditional probability density function of © given

6 < T 1is

Ke—Ke
f(e) '-:——Tr- . (4..6.2)
1-e” %

Next we consider

Hl (t+T,y'z) - E(le (t) -l'(SWJ_ez(Ql (t)»+5Ql))

= pry"1(8) o221 (Bl g (y8W1eZ0Q1 [y, (£))].(4.6.3)

First let us evaluate

E(yS"1e?89w, (t) = n)

T

-1
ve v

+ 0(T)

ZnT eZ[ne+(n—l)(T-e)j|f(e)de

— 0
Polny e
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Now substituting for PO n and Pl - from (4.6.1l) and

for f£(6) from (4.6.2) and then evaluating the

integral we obtain

E(y®"1eZ%9 W, (t) = n)
. . (z-k) T_
_ e(Z—K)nT + nK‘(z-K)(n—l)T[e l]
Y Z - K
+ 0(T) (4.6.4)

So replacing n in (4.6.4) by W, (t) and then using

(4.6.3) we have

Hy (t+1),v,2)~Hi(t,y,2)
T

. E{ywl(t)eZQl (t) [(eL(Z'K)TWI(t)_l)/T

KW](t)(e(Z—K)T_l)e(Z—K)T(Wl(t)fl)

* y(z-k) T

+ 0(T)

Now taking the limits of both sides as T > 0 we obtain

By o iy (M2 w, (b) [2mche/y])

Wl(t)eZQl(t)}

L(z—K)y+K]§§E{y

oH 1 d

H,
oy

That is

[(z=k) ytkl] (4.6.5)
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I

Since W;(0) = W(0) = W, and 0, (0) 0 we have

H,(0,y,2) = y"° (4.6.6)

Solving (4.6.5) subject to the initial condition

(4.6.6) we obtain

Hl(tIYIZ) . [h(tIYIZ)]WO (4-6.7)
(z-k) t
where h(t,y,z) = [K+Y(Z‘§)leK K (4.6.8)

Note that for W, =1
(4.6.9)

——

Hl(t;Y,Z) = h(tIYIZ)

Now to obtain the full expression for H(t,v,2z)
we incorporate immigration (that is the emergence of
adult weevils from eggs). To do this we shall use
Bartlett's (1966, Sec. 3.41) technique for deriving a
p.g.f. for a birth-death-and-immigration process as
follows.

Let us divide the interval [0,t] into subintervals
[Tr_l,Tr], r=1,2,... . The probability that there is an
immigrant (that is, a mature weevil emerging from an egg)

during the interval (1 ) is n(Tr)ATr+O(ATr), where

r’ e+l

At =T - T_. Assuming that the weevils behave
r r+1 r :

independently of each other, the immigrant in the time

interval (Tr,T ) would set up an independent death

r+l

process starting at approximately t = T . Then,

according to (4.6.9), the p.g.f. of the component of the
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the immigrant is
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{(W(t),0(t), t = 0} contributed by

h(t—Tr,t,Z). So the contribution to

H(t,y,z) by what happens (that is, one immigrant or

none) in the interval (Tr,T

r+l) S

(l—n(Tr)ATr)[h(t—Tr,y,Z)]°

+ n(Tr)ATrh(t—Tr,y,Z) + O(Arr)

e l+n(Tr)ATr[h(t—Tr,y,z)—l] + O(ATr)

Now from the assumption of independence of individuals,

we have the contribution to H(t,y,z) by all the

immigrants by time t as

Hy (t,y,2)

where ”ATr”

Now taking the

lim H{l+n(Tr)[h(t—Tr,y,z)—l]ATr} (4.6.10)

At =0 r
r

Y

max{ATt_} .
r

natural logarithm of (4.6.10) and taking

n(t) [h(t-1,y,2)-11 to be continuous in T so that we

have

ln lim 7{ } = 1im 1n 7{ | SR

we get

In HZ (tIYIZ)

ll

r r

lim Zln{l+n(Tr)[h(t—Tr,y,z)—l]ATr}

At I =>0 r
r

lim 2{n(Tr)[h(t—Tr,y,Z)—l]ATr+0(ATr)}

AT I >0 r
r

J

t

0

n(t) [h(t-1,y,2z)-1]dT.
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t
Hence H,(t,y,z) = exp} n(t) [h(t-1,y,2z)-1ldrt (4.6.11)
0

Now using the assumption that the "immigration"
process is independent of the weevil population (and
therefore independent of the population of the original
weevils) we have H(t,y,z) = H, (t,y,2z)H,(t,y,2) .

So substituting for H;(t,y,2) and H,(t,y,z) from
(4.6.7) and (4.6.11), respectively, in (4.6.0) we have the
approximation of the joint p.g.f. of §(t) and W(t)

given by

G(t,x,y) = XS"[h(t,y,Z)JW" x

t
E[exp{j n(t) [h(t-1,y,z)-11dt}] (4.6.12)
0

where h(t,y,z) is given by (4.6.8) and

z = (v+A) (1/x-1)

4.6.2 Method of Marks and Catastrophe

As in Method A we use this method to evaluate
H(t,y,z) = Ely" e [{n(n), 0 <1 <t}

where W(t) and Q(t) are defined as before.

Let us write H(t,y,z) in the form

H(tIYIZ) =

o~ 8

j yrezqur(q)
0 0

r
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where F_(q) = P(W(t) = r, Q(t) <a.
Now let ¢ = -2 = —(v+A)(i—l) be interpreted

as the "catastrophe" rate per weevil. Then

tW(t) = total catastrophe rate to live weevils at
time t.
[t
So zq(t) = J ZW(u) du is the catastrophe rate to live
0

weevils over (0,t).
Hence

o2d = e—;q _ [no catastrophe occurs to live weevils]

over (0,t)|Q(t) =g

Also let us interpret y as the probability that a

weevil is "marked”". Then

Il

H(t,y,2z) ) } yre—chFr(q)
r=0

0

no catastrophe has occured to the
weevils alive and marked at time t
and no catastrophe occurred before
death for all those who died in (0,t).

(4.6.13)
Let us define events (or properties) Ei and E;

as follows:

{a weevil is alive and marked at time t }
and has had no catastrophe

a weevil dies in (0,t) Dbefore a I

Eo = {catastrophe occurs to it
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Let E = E; U E,
Then

each of the original weevils as
H(t,y,z) = P[well as the immigrants (offspringS)]
in (0,t) has property E

But since the immigration process is assumed to be

independent of the weevil population we can write

H(trYrZ) . Hl(tIYIZ)HZ(tIYIZ) (4-6-14)
where
_ each of the original weevils
Hi(t,y,2) = P[has property E ]
and

H, (t,y,2) [all immigrants in (0,t) will]

satisfy E

Now with W(0) = Wy (the initial number of weevils) and

using independence of individual weevils, we have

Hy(t,y,2z) = {P(E; U E2)}"°

{P(E;) + P(Ez)}wo

(since E; and E; are mutually exclusive).
Now P(E;) = e_Ktye_Ct
and

P(E,) = p{flrSt event is death|either death or]x

catastrophe in (0,t)

Pleither death or catastrophe in (0,t)]

K -kt =gt
e e %)



94.

Hence H,;(t,y,z) = [ye_(C+K)t + Eéz(l—e_(€+K)t)]W°
So replacing ¢ by -z and rearranging the terms we
obtain
(z-k) t
+ - -k, W
H, (t,y,2) = [<X(Z=08 S

[h(t,y,z)1"°

which is the same as the result given by (4.6.7) and (4.6.8).
From the definitioneofh(t,y,z) we have the following

interpretation:

a catastrophe occurs in (0,t) to
_ a weevil alive and marked at t or
1-h(t,y,2) = P} ¢ the weevil is dead at t the
catastrophe occurred before its death

]

P (E)

Similarly if a weevil emerges at time T < t then
1-h(t-1,y,z) 1is the probability that the weevil does
not satisfy property E. SO the rate of immigration
(emergence) , at time t, of weevils that will not

satisfy E
= n(1) [1-h(t-T,y,2)]
Therefore the total rate of emergence of weevils over

(0,t) which will not satisfy E at time t

t
= E n(T)[l—h(t—T,y,z)]dT
0
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Hence

I

H,(t,vy,2z) P(all immigrants in (0,t) will satisfy E)

P(no immigrants do not satisfy E)

t
exp{—} n(t) [1-h(t-T,y,2z)1dTt} .
0

So substituting for H;(t,y,z) and H,(t,y,2) in (4.6.14)
we get

t
H(t,y,z) = [h(t,y,Z)]W°exp{{ n(t) [h(t-1,y,2z)-11dt}
0

as by the first method.
Finally let us note that the interpretation of

E(yW(t)eZQ(t))

as a probability, such as in (4.6.13),
applies to a general class of problems. If the probability
of the "event E" (defined according to the situation

being investigated) can be determined then the expression

for the corresponding generating function such as H(t,y,Zz)

can be obtained.

4.6.3 On the Immigration (Emergence) Rate

Substituting for H(t,y,z) in (4.6.0) we obtain

the approximate joint p.g.f. of g(t) and W(t) as
N S W (t
G(t,x,y) = x °[h(t,y,z)] °E[eXp{J n(rt) [h(t-1,y,2)-11dt}]
g (4.6.15)

where h(t,y,z) is given by (4.6.8) and z = (v+r) (1/x-1) .
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The choice of the "immigration" process
{n(t), t = 0} could be arbitrary. However the rather
natural stochastic form n(t) = pAW(t-a), as defined in
(4.2.2), cannot be used here because, in the derivation
of (4.6.15), we have assumed that the immigration process
is independent of the weevil population. If we take
n(t) as deterministic then one possible value for n(t)
is its deterministic value pAW(t-a) as given by the
solution for W(t) in the phase I deterministic model
(Section 2.1).

Using the deterministic value pAW(t-a) for n(t)
and setting x=1 in (4.6.15) we obtain the approximate
marginal p.g.f. of W(t) as

t

c(t,y) = [l+(y—l)e_Kt]W°exp{(y—l)J n(t)e ¥ dary. (4.6.16)
0

From (4.6.16) we obtain the approximate stochastic mean

of W(t) as
-kt ft -k (t-1)
E[W(t)] = Wye + n{t)e dt. (4.6.17)
Yo

But according to the Proposition 4.1 the deterministic
value of n{(t) is the same as pPAE[W(t-a)]. Substituting
pAE[W(t-a)] for n(t) in (4.6.17), it is not difficult
to verify that E(W(t)), as given by (4.6.17), is the

same as the deterministic value of W(t) in Section 2.1.

In otherwords the stochastic mean of w(t) by the
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approximate derivation is the same as the exact stochastic
mean derived in Section 4.3. This also, according to
(4.5.6), implies that the stochastic mean of §(t) is
the same as the exact one given by (4.5.7) .

From (4.6.16) the approximate variance of W(t) 1is

t

) + f n(t)e
Jo

Kt -kt —K(t—T)dT

var[W(t)] = Wee = (l-e

which is different from the exact variance that can be
obtained from (4.3.8) and (4.3.9). Similarly the
approximate variance of S(t) would be different from
the exact one.

Let me conclude this section by pointing out that
the derivation of an exact expression of
E[yW(t)eZQ(t)l{n(T), t < t}] where {n(t), T < t} is
a function of the process {W(t), t > 0} (as in the case
of the weevil population in which n(t) = pAW(t-a)) is
a difficult problem. However I feel that it can be
solved. I will look at this problem in my future research

work.

4.7 BOUNDS FOR THE MEAN AND VARIANCE OF THE NUMBER OF

INTACT GRAINS

Let us recall that S(t), the number of unattacked
(intact) grains at time t, is related to the artificial
random variable é(t) by the relations (4.5.1), (4.5.2)

and (4.5.3).
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Multiplying equation (4.5.2) by s and summing

over the integers s € (-»,S,] we obtain

L@ M), 0< <t

So ~ A
= a(t) § s(-p_tp )
s=—00
So R
= &(t) ) (-Pg,q) = -a(t). (4.7.1)
S=—00

Similarly using equation (4.4.2) we obtain
d .
aE(E[S(t)‘{W(C)r 0 <z <t}

- —3(t) [1-po(t]{W(g), 0 <z < t}]
(4.7.2)

The difference of the eqguations (4.7.1) and (4.7.2) is
g%(E[S(t)I{W(g), 0 <z <t}
- LS W@, 0 <t < el
+ a(t)po(t]{w(z), 0 <z < t}.

Now integrating with respect to t and then taking the

expectations we obtain

&
E(S(t)) = Els(t)] + } E(@(T)po(t]| {W(g), 0 < T < T}))drt
0

(4.7.3)
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Tt is difficult to reduce the second term of the right-
hand side of (4.7.3) to a reasonable expression not

involving any of the operators of integration and

expectation. However, since a(t) = 0 and po, = 0,
the term is non-negative. Hence
E[S(t)] = EI[S(t)] (4.7.4)

That is, the expected number of intact grains at time
t 1is greater than or equal to the expectation of the
artificial variable S(t) .

Next we consider

N so A ~
var(S(t)) = Y (s-E(S(t)))?P(S(t) = s)
S:—OO
in which P(8(t) = s) = P(S(t) =s) for s >0 .
So
N So R : R ~

var(§(t)) = ) (s-E(8))?P(s=s) + ] (s-E(S))2?P(S=s) .

s=1 g=—x

At this point let us note that because E(S(t)) = 0 and
E(S(t)) = E(g(t)), E(§(t)) < 0 would correspond to the
situation when the expected number of intact grains is
zero or close to zero. 1In this case we would expect
Var(S(t)) be zero or almost zero.

However if E(g(t)) >0 then, according to (4.7.4),
we expect some intact grains still remaining in the system.

In this case (s-E(8))2% > (E(S)) 2 for s < 0 and then
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0

~ 0 A A A
var (8§(t)) > ) (s-E(8))2P(S=s) + (E(S(t)))? Yy P(S=s) .
s=1 g=-0

But according to (4.5.3)
0

} P(8=s) = P(S=0) .

S=—00

Therefore
o~ 0 ~
var(S(t)) > ) (s-E(S))?P(S=s)
s=0

The right-hand side would be minimum if E(S(t)) = E(S(t)).
But according to (4.7.3) or (4.7.4) this equality does

not necessarily hold. Therefore

Vvar(s(t)) < var (S(t)) (4.7.5)

for E(S(t)) > 0.

4.8 THE TIME AT WHICH NUMBER OF INTACT GRAINS PER WEEVIL

BECOMES CRITICAL

Let T* be the time at which the critical food
ratio is first reached. Then T* is a random variable

whose distribution is given by

P(T* > t) = P(S(t) > CW(t) for 0 < T < t)
Its probability distribution function is

FT*(t) = 1-P(S(t) > CW(t) for O < T < t).

Its expectation is
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E(T*) = Jo[l—FT*(t)]dt

Il

EOP(S(T) > CwW(T) for 0 < 1 < t)dt

(4.8.1)

But to obtain explicit expressions for the joint
probabilities psw(t) for the bivariate process

{(s(t), W(r)), t = 0} and therefore an expression for

the probability in (4.8.1) is very complicated. Thus
equation (4.8.1) is not very useful in determining E(T*).
Instead of determining the exact value of E(T*) as

given by (4.8.1), we try to estimate T* by t* satisfying

the equation

E(S(t)) = CE(W(t)) . (4.8.2)

Since E(é(t)) and E(W(t)) are the same as the
deterministic values for S(t) and W(t) respectively,
equation (4.8.2) is the same as the deterministic one
(2.1.21). But, as already pointed out in Section 2.1.3,
explicit expressions for t* and other roots of (4.8.2)
cannot be obtained. This is the point at which we would
turn to the computer as we did in Section 3.1.1.

Finally we should note that the value of t¥*
obtained from (4.8.2) is less than or equal to that

given by

E(S(t)) = CE(W(t)) . (4.8.3)
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This is because E(S(t)) and E(é(t)) are decreasing
and E(S(t)) = E(§(t)) (during phase I). But since we
have not determined E(S(t)), we cannot solve for t*

from (4.8.3).

4.9 DISCUSSION

In this Chapter I have discussed the stochastic
version of the phase I deterministic model discussed in
Chapter 2, Section 2.1. The probability distributions
of the number of intact grains, S(t), and the number
of adult weevils, W(t), have been considered.

In order to reduce the difficulty in handling the
rather untrackable expression for the p.g.f. of S(t),
an artificial variable §(t) was introduced to represent
S(t). The stochastic means of §(t) and W(t) worked
out to be the same as the deterministic values for S(t)
and W(t), respectively, as determined in Section 2.1.1.
Tt has been shown (see Section 4.7) that E(§(t)) and
therefore the deterministic value for S(t) underestimates
the stochastic mean of the number of intact grains.

Treating the emergence process of the weevils from
the eggs as an immigration process independent of the
adult weevil population an approximate expression for the
joint p.g.f. of é(t) and W(t) has been derived. 1In
this approximate derivation two independent methods (one
of which is the method of "marks and catastrophe") with
notable techniques have been used (see Sections 4.6.1 and

4.6.2).
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Though it has not been possible to determine the
exact value of the expected time t* at which the
critical food ratio is reached for the first time, it has
been indicated that an estimate of it can be obtained
from the equation E(g(t)) = CE(W(t)). The estimate
obtained this way (and therefore the deterministic value
of t*) is less than or equal to that obtained by using
the non-artificial mean of S(t) instead of E(§(t)).

The distributions (or moments) of the size of the
immature group, U(t), and the total number of emigrants,
R(t), have not been explicitly discussed. However they
are implicitly involved through the oviposition and
emergence rates and the emigration rate respectively.

But if explicit consideration is required, it can be

achieved through the stochastic equations

au(t) _ _ _
—ac A(W(t)-W(t-a))
and
dr(t) _
3t = eW(t) .

Finally let me point out that where the expressions
or equations for the means and variances are complicated
enough not to reveal the general properties of these
moments, computer programmes such as those in Chapter 3

could be helpful in revealing the properties.
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CHAPTER 5

STOCHASTIC MODELS FOR PHASE iT

5.0 INTRODUCTION

As already noted in Section 2.2.0, phase II starts
at time t* at which the critical food ratio C 1is
reached for the first time. Other than the revision of
the assumptions made for phase I, continuity of the para-
meters involved, at time t* , is maintained. Unfort-
unately, as pointed out in Section 4.8, the distribution
of the random variable T* which takes on the values =t
could not be established. For this reason I have used
t* , the estimate of T* (obtained as in Section 4.8),
rather than the random variable T* , as the starting
point in time for phase II. The number of intact grains,
s* , and the number of adult weevils, W* , at time t* are
determined using the solutions for S(t) and W(t) in
the deterministic model of Section 2.1 (or E(8(t)) and
E(W(t)) in the corresponding stochastic model; Sections
4.3 and 4.5). However upper bounds for s* and W* ,
given the initial conditions §(0) = So and W(0) = Wo .
can be determined independently of the solutions of
Section 2.1 or Sections 4.3 and 4.5 as demonstrated at
the end of Section 5.1.0.

In this chapter I present two models. Model A is

a stochastic version of the deterministic model discussed
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in Section 2.2. In Model B the time line is divided into
developmental periods [(n-1)a,na) where a is the length
of a developmental period as in earlier chapters, n = n*,
n* +1,... and (n*-l)a < t* < n*a ; n* an integer.
Model B incorporates the fact that under reduced food ratio
more than one egg may be oviposited into a single grain
(Hardman, 1978). So rather than removing a grain from
the group of grains susceptible to attacks from the weevils,
immediately it is attacked, it is kept there until the end
of the developmental period during which it is attacked.
At the end of the period the grain is considered no longer
useful in that the weevils will not use it anymore. Also,
by taking the emigration rate as a step function with
respect to the developmental periods, the ecological
hypothesis that young weevils are more dispersive than
the old ones (private communication with Dr. R. Laughlin,
Department of Entomology, Waite Agriculatural Research
Institute) is incorporated (see Section 5.2.1, assumption 2)-
In Model A the joint distribution of S(t) and W(t)
is considered. But because of the complicated form of
the equation for the joint p.g.f. of S(t) and W(t) an
artificial random variable f(t) is introduced to repre-=
sent W(t) to reduce the complication. The stochastic
means of S(t) and the artificial variable W(t) are
compared with the corresponding deterministic values.
For Model B in addition to establishing the joint
distribution of S(t) and W(t) during a developmental
period, recurrence relations for their expected values at

the beginnings of consecutive developmental periods are
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derived. Also the distribution of the number of eggs
oviposited in a single grain during a given time interval
is determined.

A comparison between the solutions of the two models

is made.

5.1 MODEL A

5.1.0 A Review of the assumptions for phase IT

As mentioned in Section 5.0 this model is a stochastic
version of the deterministic model for phase II discussed
in Section 2.2. Briefly let us review the assumptions
made in Section 2.2. For the stochastic consideration the
parameters are probabilistic as explained in Section 4.1.

In this probabilistic context we have the oviposition rate

A(t)

A S(t)/W(t),

the consumption rate

]

v(t) v S(t)/wW(t),

the mortality rate u remains constant and the emigration

rate

e(t) = e + be(C-S(t) /W(t)) .

The emergence rate

n(t) p A(t-a)W(t-a)

is a random variable as in the phase I stochastic model.
The constants A, V, €, b, p and C are the same as

those used in the phase I model in Chapter 4.
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Combining the oviposition and consumption rates

we obtain the rate

N

= a S(t)/W(t)

a(t) (

J,

at which an individual weevil attacks and damages the intact
grains.

We make a further assumption that the expressions for
the parameters given above will apply at any time t > t*
even if the food ratio S(t) /W(t) might be greater than
C once again. But the rising of the food ratio above C
after time t* 1is very unlikely since, according to the
expression for the emigration rate e(t) , this would tend
to reduce the number of emigrants and therefore increase
the number of weevils that decide to stay in the system
for a while. This, in turn, implies that the grains are
attacked at a greater rate. So S(t) would decrease
faster whereas W(t) would be increasing (or decreasing
at a reduced rate). Then the food ratio S(t)/w(t) would
decrease - which is a contradiction to the supposition that
the food ratio might rise above C at some time t > t* .
Recall that in Section 2.2.2 it was proved that the determi-
nistic food ratio is decreasing for t > t*

As in the previous chapter we shall be concerned

mainly with the bivariate process {(s(t),Ww(t)),t = t*}.

The initial condition for the process is S(t*) = s* and
W(t*) = W* where s* and W* are determined using phase
I solutions as mentioned in Section 5.0. However, rough

but reasonable upper bounds for S* and W* given

S(0) = Sg and W(0) = Wo can be determined independently
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of the solutions of Section 2.1 or Sections 4.3 and 4.5
by using the following argument. Suppose that none of
the original weevils and those that have emerged during
phase I have died or emigrated by time t* . Then using
the agsumption that only one egg is oviposited in a grain

during phase I, we have

W* = We + p x {(number of grains used up to time t¥)
- (number of grains still holding eggs at time t*) }
< Wy + p X (number of grains used up to time t*)
SO

W* < Wo + p(Se = S*) (5.1.0)

where p 1is the proportion of eggs that are expected to
develop into adults. But S* = CW* . Therefore from

(5.1.0) we have

W* < (We + P So)/ (1 + pC)
and hence

S* <C(W0 +pSo)/(l+pC) .

5.1.1 Equations for the joint distribution of weevils and

the intact grains

Let tm = t* + ma and denote the time interval

(tm,...,t by Dm for m=0,1,2,... -« We shall

m+1
consider the conditional bivariate process {(s(t) ,W(t)),
t € p_} given {(s(z),w(z)), t €D__,} . Given

{(s(g) ,W(L)), T € Dm—l} the emergence rate

n(t) & pr(t-a)W(t-a) becomes specified at all t € D -

Then the possible transitions of the bivariate process

over a short time interval (t,t+8t) C Dm are:
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Transition probability .

(s,w) > (s-1,w) s + 0(8t) for w > O

(s,w) =+ (s,w+l) n(t)st + 0(St)

(s,w) » (s,w-1) pw - bes + 0(st) for w > 0

(s,w) = (s,w) 1 -In(t) + (& - be)s + ow] St}(5.1.1)

+ 0(8t) for w > 0

(s,0) >~ (s,0) 1 - n(t)st + 0(8t)
Others 0(8t)
J
where

p=p + e + beC and & = (v + A)/C.
Now with the conditional probabilities
p, (tim) = P (S (£)=s,W(t)=w| {(S(£),W()),L € D 4 })

we have, from (5.1.1),

d _ ~
I (pg,) = [ (& - be)s + n(t) + pwlp__
+ 8(s+l)p .y o F [ p(w+l) = beslpy 44
+ n(t)p, 1 (5.1.2)
for w = 1,
and
-1 (p_.) = -n(tlp + (p - bes)p (5.1.3)
dt s0 s0 sl ot
where
P =0 for sw < 0.

sSwW

Initially (that is, at time tm) we have
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P(S(t_)=s, Wt )=w|{(5(z),W(c)),C € D _q}

m

{l for s = s, and W = W

0 otherwise ,

where s = S(t ) and w_= w(t. ) .
m m m m
Now define the conditional probability generating function

[o0] o 0]

Gm(t,x,y) = ) xsywpsw(t;m), \x\,\y\51.(5.1.4)
s=0 w=0
Multiplying (5.1.2) by x°y" and (5.1.3) by x° and then

summing with respect to s and w as in (5.1.4) we obtain

9G 3G G

- = - eyl oy - {81 - bex(y-1) /Y 5y

+ n(t) (y-1G6_ + {6(x-1) - bex(y-1)/y} 1 sx°~ P

s=0
(5.1.5)

Again, like in phase 1 (see Section 4.4), we have

the awkward term

{8 (x-1) - bex(y-1)/y} ) sxs—lpSO

s=0
sticking around. This term looks even more awkward than
that in equation (4.4.5). Even solving equations (5.1.2)

and (5.1.3) recursively, unlike in Section 4.4, is very
complicated. So again we shall try to use an artificial
random variable to represent the number of adult weevils

in a way similar to that used in Section 4.5.
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5.1.2 Artificial random variable for weevils

Let us extend the range of the values W(t) could
take on to =« by defining the artificial random variable

W(t) to represent W(t) as follows:

(1) B (tim) & P(S(E) = s, W(t) = wiS(e), W)

= psw(t,m) for w >0

and @sw satisfy equation (5.1.2), that is v (5.1.6)
1) L (p ) = - [ (8 - be)s + n(t) + Wl
dt sw sw
+ ()‘L(s+l)ps+l,w +[ p (w+l) - be:s]1_oslw+l

& n(t)i:\)s w-1

for s =0 and =-» < w < *® .

Then with @m(t,x,y) as the generating function of the

nartificial" probabilities ﬁsw, that is

[o0] o«
A S _Wa
Gm(t,x,y) sZOWJQM XY Py, !
equation (5.1.5) becomes
38 _ 36 _ 3G_
-t = - o (y-1) TS?-—'@(x—l) - bex(y—l)/Y}TS;
+ n(y-1G, - (5.1.7)

The auxiliary equations for (5.1.7) are

at dy dx dG,

T = 5y-D ~ @D -bex(y-1I/AF () (y-1 &
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Hence we have

(1) §%T Q% =p = (y—l)e—pt = Constant = A . (5.1.8)
d(n&_)
(2 B = (o) (y-1)

Now substituting for y £rom (5.1.8) and integrating we

obtain

t

Gmexp{ - { n(t) AepTdT}==Constant.
t
m

Substituting for A from (5.1.8) we get

t
amexp{ - (y-l)J n(T)e_p(t_T)dT}

t
m

= Constant = B. (5.1.9)

(3 & - ax-1) - bex(y-1)/y-

Now substituting for y from (5.1.8) and rearranging the

terms we obtain

pt
%% + (beAe = = &)x = - Q.
l+Aep

Integrating this equation we get

A t
x(1 + Aept)bs/pe_Ott = - 8 J (1 + AepT)bE/pe_&TdT

t
m

+ Constant.

So substituting for A from (5.1.8) we have

t be/p _
xybe/pe_&t + 8 [ [l + (y—l)e_p(t_T)] e %t

t
m

dTt

= Constant = D. (5.1.10)
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Therefore, according to (5.1.9),

t
am(t,x,y)exp{ - (y-1) Jf n(r)e'p(t'“dT}
=

m

= ¢ (A,D) (that is, an arbitrary function of
A and D).

Now using the initial condition
A S w
B3 m m
Gm(tm,x,y) x"my '
we have

Hence

@(A,D) = [l + Aeptm]Wm[Deatm(l + Aeptm)_bE/p]Sm

So now substituting for A and D from (5.1.8) and (5.1.10)

respectively we obtain
G_(t,x,y)

t
{xybs/‘pe_a’(t"tm) + & J [l + (y_l) e_p(t—T)]bE/p X

t

m

e—&(T—tm) dT}Sm «
[t -p(t-T)

exp{ (y-1) ] n(t)e dat} . (5.1.11)
tm

5.1.3 Distribution of intact grains

Setting y = 1 in (5.1.11) we obtain the conditional

p.g.f. of S(t), t € D, given {(s(z),W(g)), t € D _,} as
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t s
G (t,x) [xe_a(t—tm) + 8 [ e—&(T—tm)dT] m

t
m

—A(t-ty) |°m

{l + (x=1)e (5.1.12)
which is the p.g.f. of the binomial distribution

-&(t—tm))

b(sm,e Let us note that, of the entire

{(s(r),Ww(g)), ¢© € Dm_l}, the p.g.f. (5.1.12) depends on

only S, -

Claim. Given S(t*) = S* (and W(t*) = W¥*), s(t) for

S +% 4 . : : . : % —O(t-t*)
t =2t is of the binomial distribution b(S*,e ).

Proof. L.et us rewrite

G _(t,x) = G(t,x;5s ) & G(t,x|s(t) = s)

Then from (5.1.12) we deduce

G(t_,xis ) = [1 + (x—l)e_&a]sm'l . (5.1.13)

m-1

Multiplying (5.1.12) by P(S(tm) = smlS(tm_l) = Sm—l) and

summing with respect to s~ W€ get

_&(t—tm) . g )

G(t,xis m-1

—1) = G(t ,1 + (x-1)e

which, using (5.1.13),
=[1 + (x—l)e_a(t_tm'l)]sm‘l. (5.1.14)

From (5.1.12) and (5.1.14) it is clear that working recur-

sively backwards we obtain

G(t,x;8*) =11+ (x-1) e'a(t—t*)]s*

which is the p.g.f. in the Claim. \“
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Hence for t = t* the mean and the variance of S(t)

given S(t*) = S* are
E[S(t)] = S* O (e-t*) :
var[ S(t)] = S*(1 - e—&(t-t*))e-a(t_t*) o (5.1.15)

We should note that the stochastic mean, B[ s(t)],
of the number of intact grains is the same as the deter-
ministic value S(t) given by (2.2.11) . Hence the
investigation of how soon intact grains are likely to get

finished is the same as in Section 2.2.4.

5.1.4 The mean of the artificial variable

By setting x =1 in (5.1.11) we would obtain condit-
ional p.g.f. of W) . However, because the resulting
expression is not simple enough to handle, we shall restrict
our discussion to the mean E[W(E)] .

Differentiating (5.1.11) with respect to y and

then setting x =1 and y = 1 we obtain

B W(t) | s (T) ,W(g)), ¢t € D__, 1}

m-1

- -p(t-tm)
W e + smq(tm,t)

© —p(t=T)
+ J n(t)e e T ar (5.1.16)

tm
where

q(tm,t) bs(e-p(t-tm)_ e—&(t-tm))/(& - p) .

From (5.1.16) we deduce the unconditional expectation of

ﬁ(t), t €D to be
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B ()] = Blwe)1e P T+ Es () Taley, t)

ft -p(t-T)
+ | E[n(t)] e dr . (5.1.17)
t
m
Substituting for E[S(tm)] from (5.1.15) and then
substituting for E[W(tn)], n=m, m-1l,...,0, recursively
in the right-hand side of (5.1.17) it can be shown that,

given S(t*) = g* and W(t*) = W* ,

B f(t)] = wre PLETET) 4 sx g(er,t)

t _ |
+ J gn(t)]e Pt Par . (5.1.18)

£ *

With the appropriate expression for n(t) , it is
not difficult to verify that (5.1.18) is equivalent to
(2.2.12) for t* < t < t*+a and to (2.2.13) for t > t*+a .
In other words the stochastic mean of the artificial random
variable W(t) is the same as the deterministic value of
the number of the weevils. But since W(t) Z W) .
this implies that the stochastic mean and the deterministic
value of the number of weevils are not the same. Under
certain assumptions (see next section) the deterministic
value of W(t) (that is E[ﬁ(t)]) is a lower bound for

the stochastic mean.

5.1.5 Relationship between the means of the artificial

variable and the weevils

E[W = ) wp, = ) w b o+ Yy wp ‘
w=-0 W w=0 W w<0 K
But according to (5.1.6) B =P for w > 0. Hence
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B[] = E[Wl + ) wp, - (5.1.19)
w<0

The complicated form of the generating function of the

generating function of the "artificial" probabilities P

makes it difficult to establish whether @w > 0 for ws< 0.
If ﬁw >0 for all w < 0 then
Y w p, <0 which, from (5.1.19),
w<0
implies that
E[W] < E[Wl . (5.1.20)

5.1.6 Conclusion

Tt is interesting to note that according to this model
the grain-weevil system is equivalent to one in which the
weevils have no influence on a "pure-death" grain process
but the availability of the grain influences the weevil
population. This is the reverse of the influences in the
stochastic model for phase I.

While the stochastic mean and the deterministic
value of the number of intact grains work out to be the
same, the stochastic mean of the number of weevils is
different from the corresponding value which happens to be
the same as the mean of the artificial random variable
W(t) .

The distribution of the weevils could not be obtained
explicitly. Inferences about the distribution can be made
through that of the artificial r.v. W(t) (for example,
through the relation (5.1.20)) . But even then the distri-

bution of W(t) is not that easy to handle. These diff-
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iculties prompted me to revise some of the assumptions made
in Section 5.1.0. This led to Model B which, I should
say, is not necessarily easier to handle, but explicitly
incorporates two important aspects of the grain-weevil
system under critical food ratio conditions: (1) more

than one egg may be oviposited into a grain and (2) young

weevils are more dispersive than the old ones.

5.2 MODEL B

As in Model A the initial point in time is t* .

We consider the joint distribution of the number of intact
grains S(t) and the number of weevils W(t) over each

of the developmental periods [ (n-1l)a,na), n = n*,n*+1,...,
where (n*-l)a < t* < n*a and n* 1is an integer. Also
recurrence relations between the expectations of Sn £ s(na)
and Wn £ W(na), n = n*,n*+l,... are derived. Because of
the special assumptions made in Model B we need a careful
1ook at the transition from phase I to phase II during the

interval [t*-a,n*a) (see Section 5.2.5).

5.2.1 Assumptions

Unless restated, the assumptions made in Section 5.1.0
also apply to Model B. Here we make further assumptions
that are unique to Model B.

1. A wheat grain is subject to attacks by the weevils
until a mature weevil emerges from it. If none of the
eggs oviposited in a grain develop into adult weevils, then

the grain is regarded destroyed at the time when all the
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eggs are expected to have developed into adults. A maximum
of one adult may emerge from a grain.

2. The eggs laid in the developmental period [ na, (n+l)a),
n = n*, and successfully emerge into adults, do so at

time (n+l)a . This assumption tends to imply that eggs
emerge into adults prematurely - instead of emerging
continuously in time, the emergence of adults from the
eggs is forced to occur at the beginnings of developmental
periods. This may not be a bad approximation since,
according to an ecological hypothesis, the young weevils
are more dispersive than the old ones and therefore most
of them would tend to emigrate before they can contribute
significantly to the changes to the system. Consequently
it does not matter very much at what instant of a develop-
mental period an adult emerges from an egg. An attempt
to incorporate the hypothesis that young weevils are more
dispersive than the o0ld ones is made through assumption 4
below.

3. TIf the number of intact grains at time na is St
then according to assumption 1, the total number of grains
susceptible to attacks at any time t € [na,(n+l)a) is

s, - So if at time t the number of intact grains is
S(t) , then the probabilistic rate at which the intact

grains are attacked (and therefore damaged) , at that time,

is proportional to S(t)/sn i We shall take it to be
a(t) = (v + A)S(t)/sn e unS(t), say,

where v and A are the constant rates of consumption and

oviposition, respectively, during phase I, and a = (\)+>\)/sn .
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In other words, the rates of consumption and oviposition
by an individual weevil at time t € [ na, (ntl)a) are
v S(t)/sn and A S(t)/sn respectively.

Let us note that in Mertz and Davies (1968) discussion
of the cannibalism of the pupal stage by the adult beetles
(Tpibolium Castaneum) Mertz and Davies make the same
assumption on the rate at which the pupae are attacked.
That is the probabilistic rate at which the pupal population
is attacked by an individual beetle is proportional to the
ratio of the live pupae to the total number of pupae at
the beginning of a time interval. In our case the pupae
would be replaced by the grains and the adult beetles by
the weevils. However, in the Mertz and Davies investi-
gation the number of predators (that is the adult beetles;
weevils in our case) was taken to be fixed during the
entire period in which the pupae are vulnerable to attacks.
In our grain-weevil system the predator (weevil) population
is a death process over the developmental period.

4. The probability that a weevil leaves the system
during a short time interval (t,t+8t) increases as the
food ratio S(t)/W(t) decreases. As already used in
Model A, one of the possible forms for the rate of

emigration per weevil is
e(t) = € + be(C - s(t)/W(t)) (5.2.0)

where the constants €, b and C are the same as in
Model A.
According to assumption 2 we would expect a greater

number of emigrants per unit time at the beginning of the
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interval [na,(n+l)a) than at any later instant of the
interval. One way of incorporating this hypothesis is
to revise the emigration rate (5.2.0) as follows. Given

S(na) = s and W(na) = w_ ,
n n

e(t) = € + be(C - sn/wn) = €, SaY (5.2.1)

for na < t < (n+tl)a . That is the emigration rate is
constant over [na,(n+l)a). So, since over the interval
the weevil population is a death-emigration process, there
are more weevils and therefore more emigrants per unit
time at the beginning of the interval than at any latter

instant. Hence the hypothesis is incorporated.

5.2.2 Joint distribution of weevils and intact grains

during a developmental period

According to the assumptions 1 - 4 in Section 5.2.1,
given S(na) = s, and W(na) =W, the possible transitions
for the bivariate process {(s(t),wWw(t)), na < t < (n+l) al
and the corresponding probabilities over the time interval

(t,t+8t) € [na,(n+tla) are:

Transition Probability
(s,W) = (s,W-1) (u + e JWSt + 0(8¢)
(s,W) - (S-1,W) unSWGt + 0(S8t)
(s,Ww) > (5,W) 1l - [ans + u + en]WGt + 0(dt)
Others 0(St)
where 1y is the mortality rate as used before. Then,

for na < t < (n+l)a , the conditional probabilities

psw(t;sn,wn) & p(s(t) = s, W(t) = wlSn =s , W = W)
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satisfy the differential difference equation

d -
dat (psw) - (an + OLnsw)psw + OLn(S-'-l)WpsHl,w + Kn(w+l)ps,w+l'
(5.2.1)
where K = M +e =¥ + ¢(1+bC) - besn/wn
and a = (v + >\)/sn
From (5.2.1) we can show that the conditional joint p.g.f.
Gn(t;x,y) of (s(t),W(t)) given Sn = s and Wn =W
defined by
Gn(t,X,Y) = Z z Xsywpsw(tisnrwn), lxlr‘Yl <1
S W
satisfies the equation
3G | 3G _ 3%G6
_B_t_ = - Kn(y-l) _3_y— - ocny(x—l) m (5.2.2)
with the initial condition
S w
Gn(na,x,y) =x "y T (5.2.3)
Equation (5.2.2) is similar to some eqguations for
carrier-borne epidemics models (see Bailey, 1975, Chapter
10) . Now using Bailey's technique let us look for a
solution of (5.2.2) in the form
_ _1\ ¥

where the functions fnr are differentiable in both t
and y , and are such that the series is convergent.
Substituting for Gn defined by (5.2.4) in (5.2.2)

and equating the coefficients of (x—l)r we obtain
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of Bfn

nr
5T + (Kn(y-l) + runy) 5y

Y

=0 (5.2.5)

for r =0,1,2,... :
By rewriting the initial condition (5.2.3) as
Sn_¥n n{sn r.%n
Gn(na,x,y) =[1+ (x-1)] "y = ) \ )(x—l) Y
r=0‘Y

we deduce the initial condition to (5.2.5) to be

£ (na,y) = (5n) y'n (5.2.6)
nr ' \r'} et

s
where \ n> takes on the conventional zero value for
r
r<0 or r>sS_ . Then the solution to (5.2.5) with

the initial condition (5.2.6) is

B (t-na) w

/Sn\[(Bnry—Kn)e_ nr + Kn] n

£ t, = 5.2.7
nr( y) \r'} Bnr J ( )
where Bnr =K + ro - -

Definitely fnr(t,y) are differentiable in both t and

y and since, fnr(t,y) =0 for r <0 or r > S« the
series in (5.2.4) is convergent. So (5.2.4) reduces to
S
N r
Gn(t,x,y) = 20 (x-1) " £ (£,7) - (5.2.8)
Y=

Distribution of the number of weevils W(t), na < t < (n+l) a

The conditional p.g.f. of Ww(t) given S = s, and

Wn =W, is, from (5.2.4),

Gn(try) . Gn(trer) = an(t'y) .

Therefore from (5.2.7) we have

G (t,y) =[1+ (y-1) e Kn (7730 ¥n (5.2.9)
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which is a p.g.f. of the binomial distribution b(wn,e-Kn(t'na)),

Hence the conditional mean and variance of W(t) given

S =8 and W =w are
n n n n

E[W(t)ss_,w ] = wne'Kn‘t‘na’ (5.2.10)

and

Var[ W(t) ;s, Wyl = W o~Kn(t-na) ( _ g7KnlE-naly (5 5 .11)

n

Distribution of the number of intact grain S(t), na < t < (ntl)a

The conditional p.g.f. of S(t) given Sn = s and

W =w,  can be obtained by setting y =1 in (5.2.8).

However, it suffices to look at the factorial moments
ss™ (t);s_,wl, r=0,1,2,..., which, from (5.2.8), are
given by

3G _(t,1,1)

(r) . = - v
E[ S (t),sn,wn] = T = r! fnr(t,l)

(r)

(where by X I mean X(X-1) ... (X-r+l)).

In particular the conditional mean and variance of S(t)

given S_ = S and W_ =W are
n n n n

E[S(t);sn,wn] fnl(t’l) (5.2.12)

and

Var[S(t);sn,wn] 2fn2(t,l) + fnl(l - fnl)(t,l) (5.2.13)
where according to (5.2.7)

—Bnr (t_na)

S \[T%n® + Kn1wn
fnr(t'l) = ( )[ g | . (5.2.14)
r nr
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5.2.3 Distribution of eggs per grain

Let TI(t) denote the number of eggs oviposited in

a grain over the time interval [na,t) and denote by
pi(tlsn,W(-)) = P(I(t) = ils = s_,{W(t), na < 1< t})

Now, according to assumption 3 of Section 5.2.1, eggs

are oviposited into a grain by the W(t) weevils in the
system at time t at the rate i(t) = >\W(t)/sn . So
over the developmental period [ na, (n+l)a) the probab-
ilities pi(tlsn,W(-)) satisfy the following differential

difference equation

_ A
__._EI-W(t)[pi_l - p.l (5.2.15)

1

with P, =0 for i< 0.
According to assumption 2 of Section 5.2.1 we start the
developmental period [ na, (n+l)a) with none of the grains
containing any eggs. Hence the initial condition for
(5.2.15) is

pi(naISn =s ,W = wn) = (5.2.16)
From (5.2.15) we can show that the conditional p.g.f. of

I(t) given S = s/ and {W(t),na < 1T < t} ,

Glt,vls W) = 1 vip(els W),

Il ~18
o

satisfies the differential equation
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-~ = Kn(v—l)W(t)G

with the initial condition (according to (5.2.16) ¢ (5.2.17)

G(na,vis ,w ) =v’=1
n n

where X = A/s
n n

The solution to (5.2.17) is

G(t,vlsn,W(-)) = expl (v-1)A_(t)] (5.2.18)
t
where A (t) = A J w(t)dr .
n n
na

Now taking the expectation of (5.2.18) with respect to
{W(t),na < T < t} we obtain the p.g.f. of the number of
eggs at time t , given S(na) = = and W(na) = L to

be

t
G(t,v;sn,wn) = E[exp{kn(v—l) J w(t)drt}l.
n

a
The right-hand side can be easily deduced from the results

of Section 4.6 in which we determined an expression for

a

W1(t)eZQ1(t)]

H,(t,y,z) Ely

where {W;(1), 0 < T < t} 1is a death-emigration process

t
and Q;(t) = I Wy(t)dT . Thus to obtain the expression
0
for G(t,v;sn,wn) we would set y =1 and z = Xn(v-l).

Then we get

n

Glt,vis_w ) = th(t-na,1,2z)] (5.2.19)

where according to (4.6.8) we have
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Ze(z—Kn)(t—na)

h(t-na,l,z) = —
Z K,

Xn(v_l)e[kn(v—l)-Kﬁ](t-na)

An(v—l) =K * (5.2.20)

Then the conditional expectation of I(t) given Sn = s

and W =w is
n n

aG(t,v;sn,wn)

Il

E[ I(t) ;Snlwn]

oV v=1

oh(t-na,1,0)

= >\an 07z
w1 - e ETRA)
= - . (5.2.21)
nn
where, recall, kK, = H + e =M + ¢ + be(C - sn/wn). The

conditional variance is

by 2
var 1(8) s, ) = w{(22) 1 - o726 (emna) |

n

+ A Kn(t-na)] .
“n

=

1+ (zxn(t-na)—l)e_

(5.2.22)

5.2.4 Recurrence relations for the moments of the weevils

and the grains at beginnings of consecutive develop-

mental periods

We should note that though the variable s(t) is
continuous at t = (n+l)a , the variable W(t) , because
of assumption 2 of Section 5.2.1, is discontinuous at
t = (ntl)a . New offsprings emerge at that time. So
(5.2.8) and therefore (5.2.10) and (5.2.11) are not valid
at t = (ntl)a . The random variable Wn for the

+1

number of adult weevils at time (n+l)a 1is given by
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W - 1im {p'(s_ - S(t)) + wW(v)}
s t+(n+l)a i
=p'(s_ -8 ;) + lim W(t) (5.2.23)
n n+l t4(n+l) a

where p’

is the proportion of the attacked grains from
which we expect adults to emerge. If a weevil emerges
from each grain in which eggs have been oviposited, then
p’ = A (v + A) otherwise p’' < A/(v + A) .

From (5.2.23) we obtain the conditional mean and

variance of Wn+1 given Sn = s, and Wn = W Taking

n

the expectation of (5.2.23) and then using (5.2.10) we have

o — “Kna 7 _ .
E[Wn+l'sn’wn] w e +p {Sn E[Sn+l,sn,wn]}.(5.2.24)

From (5.2.23) in conjunction with (5.2.11) we obtain

Var[Wn+l;sn,wn]
_w e Kn3(1 - ¢ ¥n?) - 1lim  2p’Cov[S(t),W(t)is W |
n n n
td(n+l) a
ry 2 N
+ (p") Var[Sn+l,snwn] . (5.2.25)

where, from the joint p.g.f. (5.2.8) of S(t) and W(t)

lim covl S(t) ,W(t);s_,w_]
n n

tt(n+l) a
3f . ((n+l)a,l)
_ nl _ ~Kpa
= ay annl((n+l)all)e [;
and E[Sn+l;sn,wn] and Var[Sn+l;sn,wn] are obtained by

setting t = (n+l)a in (5.2.12) and (5.2.13) respectively.
From (5.2.13) and (5.2.25) it is clear that the

expressions for the variances of Sn+l and Wn+1 are

not easy to handle. We shall, therefore, try to use the
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means to investigate the states of the system at the begin-
nings of consecutive developmental periods. First from

(5.2.12) 1let us consider E(S ;s ,w ) = £ (ntl)a,l).
n n n nl

+1
Substituting for fnl from (5.2.7) we get

. _ \
E(s., |s w) = s [dls ,w )" (5.2.26)
where
a (1 - e_Bnla)
d(s ,w ) =1- — ) (5.2.27)
n n Bnl

Let us note that 0 < d(sn,wn)sél and therefore

% & [d(sn,wn)]Wn is the expected fraction of the intact
grains at time na still unattacked at time (n+l)a . Sso
let us investigate how large Qn can be and/or how quickly

it decreases through the developmental periods.

Proposition 5.1 The sufficient condition that 2n is
(1) an increasing function of s
and (ii) a decreasing function of W
is that
sn/wn < B/(2be) . (5.2.28)

[ The proof is given in Appendix 5.1.]

So according to (i), for a given number of weevils, the larger
the number of intact grains at the beginning of a developmental
period, the greater the number of intact grains remaining in
the system at the end of the period. BAccording to (ii) the
larger the number of weevils at the beginning of the period

the greater the number of grains that are attacked in the
period and therefore the less the number of intact grains

remaining at the end of the period.
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If the value of the constant b (see end of Section
2.2.2) is such that C < B/ (2be), then (5.2.28) is satisfied
even at the time t* when the critical food ratio is reached
for the first time; since S(t*)/W(t*) = C < B/(2be) . But
as pointed out in Section 5.1.0 it is highly likely that
Sn/Wn < ¢ for all na > t¥*. So it is very likely that
(5.2.28) is satisfied for all developmental periods after

t* . Then from (i) we have
[ \1"a _
< |_d YA ] = g(wn), say .

Because of the complexity of the expression for g(wn) it

is not easy to determine its maximum value or to establish

a meaningful upper bound for it. However, for a set of
possible values of the parameters involved we may be able to
demonstrate that g(wn) is a decreasing function of W

and it would be possible to calculate maximum values of the
fraction 2n for various values of the number of weevils,
L at the beginning of the period. In Example 5.1 below
in which we demonstrate that g(wn) is a decreasing function
of W, We make use of the value of g(wn) as w_* *® .

The value is calculated from the limit

lim g(wn) = exp {_ 4(VEX)b€ (1 - e—Ba/z)}
w > Z
n

which is obtained after some tedious and lengthy manipulation.
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Example 5.1

With v = 0.021285, » = 1.0, € = 0.006436, u = 0.008333,
Cc =10.0, b = 0.12 and a = 50 we have (5.2.28) satisfied
even at the time t* when the critical food ratio is reached.

Using these values we obtain:

Table 5.1

3

w 10 100 500 10 2x10° 5x10°

g(wn) 0.073311 | 0.068862 | 0.068493 0.068448 | 0.068425 | 0.068412

w 10" + o

g(Wn) 0.068407 | 0.068402

Table 5.1 clearly indicates that, for the given values of the

parameters, g(wn) is a decreasing function of W For

example, for W > 100 we have

E[S ;s ,w. 1 < (0.0689)s . (5.2.29)
n' 'n n

n+1l

Then from (5.2.10) and (5.2.23) we have

. ’ =Kna
E[Wn+l,sn,wn] > (0.9311)p sn + W e :

-K._a - o
But w_e n° =w e Ba  beasn/wn > (w_ + beas_)e Ba |

Hence for W > 100 we have

) -BRa -Ba
E[Wn+1’sn'wn] > [(0.9311)p’ + beae " Is_+ W ¢ {5.2.30)
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From (5.2.29) and (5.2.30) we can deduce that for

E(W ) = 100,
n

E[ S ] < (0.0689)E[Sn] (5.2.31)

n+1
and

ELW_ 1> [ (0.9311)p + bea e Be1mls | + EIW ] e P2 (5.2.32)

It is clear from (5.2.30) or (5.2.32) that the extinction
of the population of the weevils (including the eggs) is not
possible before intact grains get finished; even if

lim W(t) = 0, E[W

;s ,w ] > 0 provided s_ > 0.
t4 (n+l)a non

+1 L

Let us recall that according to Model A we obtained the
mean of the number of intact grains as E[S(t)] = S* e_a(t_t*)
(see equations (5.1.15)). According to this solution the
expected number of intact grains at the end of a develop-
mental period would be the fraction e_&a of the number at
the beginning of the period. Now with & = (v+))/C and
with v,A,a and C taking on the values used in Example
5.1, e_aa = 0.0060577. Comparing this value with the

values of g(wn) in Table 5.1 we deduce that, according to
Model B the number of intact grains remaining after one
developmental period (or any interval of time) could be as
high as 11 times the number that would be remaining according
to Model A; the initial numbers of intact grains at the
beginning of the period being the same. This is expected
because in Model B even the already attacked grains may be
used again by the weevils whereas in Model A once a grain is

attacked it is regarded destroyed and it cannot be used

again.
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5.2.5 The transition from Phase I to Phase 1I

We should not forget that there is a delay in the
emergence of an adult from an egg. So we should look at
the interval |[t*-a,n*a) carefully so that the complete
output of phase I can be used as the input to phase II.

We shall assume that over the interval [t*,n*a) the
wheat grains susceptible to attacks by the weevils are those
which are intact at time t* . Then the derivation of the
distribution of the bivariate process {(S(t),W(t)),t*<t<n*a}
would be the same as in Section 5.2.2. So by replacing
na, s and W by t*, s* and w* respectively and

setting t = n*a in (5.2.12) and (5.2.14) we obtain
E[ S(n*a) |S(t*) = s*,W(t*) = w*] = s*gH(w*)

where diw*) (obtained by using s* = Cw*) works out to

*
* v+ v+ &
glw*) = [l T VFATCw® (ute) P {_ (U+g + Cw*)(n*a - t*>}] :
It is not clear whether g*(w*) is an increasing or a
decreasing function of w* . Intuitively g*(w*) should

be a decreasing function; for the larger the value of w*
the greater the rate at which the grains will be attacked
and therefore the smaller the number of intact grains left
in the system at time n*a . But a demonstration of this
intuition, as we did for g(wn) in Example 5.1, is not
possible because t* is not specified.

Over the interval (t*,n*a), W(t) is a binomial
random variable with parameters w* and expl - (p+e) (t-t*)] .

We account for all eggs laid in the interval [t*-a,n*a) by
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assuming that they die or emerge into adults at time n*a .
Thus the size of the population of the adult weevils at
time n*a is

W(n*a) = lim W(t) + p’ (S(t*-a) - S(n*a)) .

ttn*a
Hence E[W(n*a)] = E[W*] expl - (p+¢) (n*a-t*)}
+ p' (Bl S(t*-a)] - E[S(n*a)l)

where, once the value of t* has been determined or
estimated (see Section 4.8), E[ W*] can be evaluated using
equation (4.3.11) and a lower bound for E[ S(t*-a)] 1is

evaluated by using (4.7.4) and #.5.7).

5.2.6 Generalising some of the assumptions

The assumptions in Section 5.2.1 are such that we have

been able to derive and solve the equation for the functions

fnr(t,y) ) As it is apparent from the marginal distributions
of S(t) and W(t) , these functions play a basic role in
the essential structure of our problem. However, if we

wish to revise or generalise the assumptions we may not be
able to derive an equation for fnr(t,y) . Even if we are
able to derive the equation it may not be possible to solve
the eqguation directly, for example, without taking trans-
forms of it. In this section we shall look at a general-
jzation of some of the assumptions and still be able to
determine the functions fnr .

We shall relax assumption 3 of Section 5.2.1 so as to
jet the rate at which the intact grains are attacked to be
a product of S(t) and an arbitrary function of the number
of adult weevils W(t). That is, given that S(na) = s

n

and W(na) = w_,
n
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(1) an(t) = S(t)&(W(t),sn,wn) for na < t < (ntl)a ,
where & is the arbitrary function. Also we shall let
the emigration rate e(t) and the death rate U be functions
of W(t) instead of being constants during a developmental
period as used in Section 5.2.2. That is the emigration
and death rates, for na < t < (ntl)a , are

(ii) en(t) = e(W(t),sn,wn) and un(t) ES u(W(t),sn,wn)
respectively.

With the rates (i) and (ii) we can regard our system as
a Carrier-borne epidemic in which the grains are the suscept-
ibles and the weevils are the carriers. Then, according to
Henderson's (1979) technique we can write the p.g.f. Gn(t,x,y)
in the form

_ ¥ _ovs(sy\v ¥
G_(t,x,y) = szo (x-1) \;}viv ya,, (t) (5.2.33)

where there are w weevils (carriers) at time]

t+ and a fixed predetermined group of s

g (t) =P
A grains (susceptibles) is still intact at

_}ime t

Using this approach we could also have different groups of
weevils. In our case the obvious groups would be those of

the eggs, larvae, pupae, pre-emergence adults, mature females

and mature males. Then w(t) becomes a vector w(t)
e (wl(t),...,wn(t)) where wi(t) is the size of the i-th
group at time t . However, for our discussion here we

shall consider the case of one group of weevils (the mature
adults) . The results for more than one group can be

obtained using a similar line of argument.
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Comparing (5.2.8) and (5.2.33) we deduce that

S

_ ("n\ w
£ (t,y) = \s) z y' dag,(t) . (5.2.34)

So here fns has been broken up into the functions gsw(t)
of one independent variable t . Note that this is actually
what we did in Section 5.2.2 when we broke up Gn(t,x,y)
into the functions fnr(t,y) . In general it is simpler
to solve for functions with fewer arguments. Thus if we
can solve for qsw(t) we can obtain an expression for
fns(t,y) using (5.2.34).

According to the formulas (i) and (ii) for the rates
an(t), sn(t) and un(t) the probabilities qsw(t) satisfy

the equations

quW
FE = T YeWdg, W, 4y
L (5.2.35)
dg
and —2% = 8(q,
)
with qsw(t) =0 for w<O0 or w>w, na < t < (n+tl)a
where
YS(W) = s E(w,sn,wn) + (u+€)(w;sn,wn)
and B(w) = (ute) (w,sn,wn) i

The initial condition for (5.2.35) 1is

0 for w# W
_J n

g _ (na)

E 1l for w=w_ .

Note that because the generating function

S
n

& W o= { \
J_(t,y) ® ‘% a,, ¥ = £ &V g ) (5.2.36)
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we would not try to use the method of generating function for
the A,y to solve the equations (5.2.35); for if we cannot
solve the equation for the functions fns we cannot solve
the equation for Js(y,t) . So if we are to solve (5.2.35)
the remaining alternative is to solve them recursively in

w either directly or by first taking Laplace transforms

and then inverting the results.

Now define the transformation functions

f qw(t) e—zt

QW(Z) =] dt
na
for Re z > some R > - @ so that the integral is convergent;
where the subscript s has been supressed. Then from (5.2.35)

we obtain

(z + Y8 (2) = g (na)e ™% & plwrD)D, ) (¥)

and (5.2.37)
[t
qo(t) B (1) ql(T)dT

Jna

Now solving (5.2.37) using the initial condition qw(na)

= GW w and the boundary condition qw(t) = 0 (and
'"n
therefore Qw(z) = 0) for w>w , We obtain
~ e—zna
Qu (z) = z+y (w_)
n n
and

Bwtl)Q  , (2)
b for 1 < w<w .
z+y (w) n

0 (2)

w -1 w
n

n
i B(r)] e P2/ T (z+y(x))

r=w+1l r=w

It
—

w -1 w

[ n C
-l on e(r)] &
L.

—zna 2 X

L, zry(x) (5.2.38)
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w
n

where C_ = I (vy(3) - vy(r)) .
j=w
j#r

Now noting that

t —zZna
[ oY (W) (t-na) —ztq, _ €

J T ozry(w)

na
the inverse of the transform (5.2.38) is

w -1 w y

n n
{ I B(r)]i cp e VENEMA ) <y <
r=w+l r=w

I

qw(t) n

p (5.2.39)
g (t) = e—Y(wn)(t—na)

w
n

J
and qo(t) is evaluated from the second equation of (5.2.37).

So resupplying the subscript s and substituting for
qsw(t) in (5.2.34) and (5.2.33) we obtain expressions for

fns(t,y) and Gn(t,x,y) respectively.

Example 5.2

Suppose that, according to assumption 3 of Section

5.2.1, we still have
a(t) = (v + A)s(t)/s = o S(t)
but the emigration rate (5.2.1) is revised to

e(t)

e + be(C - sn/W(t))

K + besn/W(t) (5.2.40)

and the death rate u(t) = u (a constant).

Then we can show that the generating function

W
n

J(t,y) = Y y" q, (t)
w=0
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(where the subscript s 1is suppressed again) satisfies the

equation
o _ _ | .y 1 9d (, _ 1\
T Luns + k(y l)J 3y + bssn\l §}J
- (= =
besn\l y}qo(t) . (5.2.41)

According to (5.2.36) fn(t,y) would satisfy the same

equation (5.2.41) except that the last term of the right-

s

hand side of (5.2.41) would be multiplied by <5;> . The
- (1 _ 1) . .

unknown term besn\l y/qo(t) in (5.2.41) makes 1t

difficult to solve for J(t,y) directly from the equation.
But according to the procedure used to obtain (5.2.39),
expressions for the functions qw(t) (and hence the function
fn(t,y) can be easily obtained. Thus this example illus-
trates that the equation for the functions fn(t,y) may

not be simple enough to apply straight-forward methods to
solve it whereas the equations for qw(t) can be easily

solved.

5.3 DISCUSSION

As already noted in Section 5.1.2, according to Model
A , exact equations for the distribution of the weevils
could not be obtained. In order to be able to make some
inferences about the weevil population I introduced an
artifitial random variable W(t) . Model B offers an
alternative way by which an introduction of the artificial
random variable can be avoided. This is achieved by dividing

the time line into developmental periods and assuming that
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all the eggs laid during a developmental period emerge into
adults at the beginning of the next one. At this point let
me mention Neyman, Park and Scott (1956) model for a situation
similar to the grain-weevil system. In their investigation
of cannibalism of eggs by the adult beetle, Tribolium, they
divided time into successive "seasons" and assumed that the
female laid «¢ll its eggs at the beginning of a season. Then
the eggs would be subject to attacks by the adults during
part of the season. The survivors become mature adults at
the beginning of the next season. However we should note
the differences between Neyman et al problem and our grain-
weevil problem. In their model the beetles eat what they
lay (in other words there is an increase in the food supply
at the beginning of each season) whereas in our case the
food supply is strictly decreasing. Our Model B allows
oviposition through the developmental periods whereas in
Neyman et al model a female beetle lays all its eggs once
and for all.

According to Model A the possibility that more than
one egg could be oviposited in a grain could not be explicitly
considered. But according to Model B a grain (whether
already containing eggs OY not) is susceptible to attacks by
the weevils until the end of a developmental period. Thus
according to the Model B formulation the intact grains are
used at a slower rate than in Model A and the distribution
of the number of eggs oviposited in a single grain during
any interval of time (within a developmental period) can

be determined. Also a combination of the assumption that
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young adults emerge at the beginning of a developmental
period and the assumption that the emigration rate is
constant during the developmental period incorporates the
hypothesis that young adults are more dispersive than the
old ones (see Section 5.2.1).

Now turning to the solutions let us note that according
to Model A S(t) (that is the number of intact grains at
time t) is binomially distributed. However, as already
mentioned, the exact distribution of W(t) (that is the
number of adult weevils at time t) could not be obtained.
But the expectation and variance of the artificial variable
ﬁ(t) were shown (under certain assumptions; see Section
5.1.5) to be a lower bound for the expectation and an upper
bound for the variance, respectively, of w(t). Accoxrding
to Model B W(t) 4is binomially distributed during a develop-
mental period but the equations for the distribution of S(t)
are more difficult to handle. From the recurrence relations
(derived in Section 5.2.4) between the expectations of S(t)
and W(t) at the beginnings of two consecutive developmental
periods we could determine the maximum fraction of intact
grains that are not attacked during a developmental period.
Comparing the solutions for S(t) by the two models, for
a given set of values of the parameters, we could deduce
that according to Model B the number of intact grains not
attacked during a developmental period could be as high
as 11 times the corresponding number in Model A . Also
from the recurrence relations we can deduce that the extinction
of the weevil population is not possible until all the intact

grains have been utilised. But even then the weevil population
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would not come to an end immediately intact grains are
finished. It has been observed (Coombs and Woodroffe,
1973) that when intact grains are finished the weevils feed
on frass and the husks of the grains from which young ones
have emerged. So I would say that then the weevil population
becomes a death-emigration process in which the longevity of
an individual is very much reduced. In our two models the
reduction in longevity is achieved through the increased
rate of emigration when the grains get finished. Some of
the weevils that would have died in the system, because of
lack of food and ovipositional sites, are free to emigrate .
From the grain-weevil system viewpoint emigrants can be
regarded dead. Hence those which emigrate have a short
life-span as far as the system is concerned.

Finally I would like to note that a revision of the
assumptions made in the two models remains open. As shown
in Section 5.2.6 there are other ways of formulating our
problem and still be able to solve the equations. However,
we should have it borne in mind that a drastic revision may

not relate to the situation we are considering.



143.

CHAPTER 6

SPATIAL DISTRIBUTION OF INSECTS (WEEVILS) WITHIN

STORED GRAIN

6.1 INTRODUCTION

In the previous chapters we have not taken into
account the spatial distribution (dispersal) of the weevils
within the wheat they are infesting. The spatial
distribution influences the activities of the weevils.
For example, as pointed out at the end of Section 3.2.8,
when the weevils are sparsely distributed within the
wheat the oviposition rate may be very low due to lack
of copulation. For sure the spatial distribution
influences the rate of emigration; for the weevils can
only emigrate from the surfaces open to the outside
environment. It is also of interest to determine whether
there are aggregations of the weevils in some particular
sections of the stored wheat.

The model, in this chapter, is concerned with the
dispersal of weevils within wheat stored in a container.
The container could be small or as big as a silo.
Initially we have all the wheat grains intact and' the
initial distribution of a given number of weevils within
the grain is known.

This dispersal problem could be regarded as a

diffusion problem with the diffusion coefficients
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as functions of the local conditions. In the next
section I mention models that are related to our problem,
but because of the special nature of the grain-weevil
system the models cannot fit exactly the assumptions
made about the system. I therefore derive and solve
dispersal equations from first principles. The basic
assumption for the derivation is that the length of time
a weevil spends in a section of the wheat depends on the
availability of intact grains in the section. A weevil
is more likely to stay longer in a section where the food
ratio is high than in a section where the food ratio is
low.

The equations derived are for the number of weevils
and the number of intact grains per unit volume. 1In
order to solve these equations the method of separation
of variables is applied and then a Laplace transform
technique is used to determine the exact solution to a
resulting delay integro-differential equation. Though
this delay equation is of higher difficulty than the
delay differential equations of Chapter 2, it is shown
that we could still solve it by the rather natural method

of steps.

6.2 BASIC ASSUMPTIONS AND RELATED MODELS

We shall assume that the container in which the
wheat is stored is cylindrical. However, for the

formulation of the problem we shall represent the
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container by a line segment. Thus a point on the line
segment represents a cross—section of the container.

The time a weevil spends in a section of the
container is a function of the food ratio (that is the
average number of intact grains to a weevil) in that
section. A weevil is likely to stay longer in a section
where the food ratio is high than in a section where the
food ratio is low.

Let s(x,t) and w(x,t) be the number of intact
grains and the number of weevils, respectively, per unit
volume in section x of the container (or at point X
when referring to the representative line) at time t.
Then we define the food ratio in section x at time t
as

F(x,t) = s(x,t)/w(x,t) (6.2.1)

One of the possible equations that could model the
dispersal (distribution) of the weevils within the wheat
is the equation for "diffusion under a potential field".

That is w(x,t) could satisfy an equation of the form

w _ = 3%w ~ ow

3¢ = D oawz *H(X) 5y
where

Ii(x) = (constant) X %g

and P is the potential function (Chesson, 1976). 1In
our case P could be a function of the food ratio F(x,t).

In particular we could take P(x,t) = F(x,t). However,
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if we do so, we would be assuming that the weevils would
move (drift) in directions of increasing food ratio. T
do not think that the weevils can determine the direction
of greatest increase from where they are. 1Instead, I
feel, it is the local conditions, such as the local food
ratio, that determine whether a weevil is going to move
or to stay for a while. Once it has decided to move,
its immediate direction of motion is arbitrary. Thus it
is not obvious how we can relate the movements of the
weevils to the food ratio potential field.

Kiester and Slatkin (1974) derived an equation for
the dispersal of lizards in a linear habitat. They
based their derivation on the hypothesis that the
probability that an individual moves in a given direction
x > x + 6x in a small interval of time is proportional
to the length of the interval and to the directional
increase E(x+6x) - E(x), where E(x) is the free-time
available at position x after an individual has performed
the essential activities such as looking for food and
eating at x. Kiester et al assume that the probability
of moving in the direction in which E(x) is decreasing
is zero. As I can see their argument would apply to
situations in which the habitat is stationary (that is
not time-dependent) and the individual animals have
already explored the habitat so as to know the favourable
places, within the habitat, for different activities! 1In
our case the habitat is not stationary; as the weevils

move among the wheat grains they reduce the food availability
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in the habitat.
For our problem we make the following assumption.
"In a small interval of time (%, t+8t) a weevil will
either leave or stay in the section of the container it
is in at time t. If the weevil decides to leave then
the probability that it moves up (right of the axis of
the container is horizontal) is a half (%). The probability
8(x,t)! that a weevil stays in the section x over the
time interval (t,t+8t) is proportional to the mean food

ratio in the section." That is

B(x,t) = D s(x,t)/w(x,t) (6.2.2)

where D is a constant. Skellam (1951) refers to this
kind of movement (dispersal) as due to "random blindness"
- an individual moves because of cumulative effect of
local irregularities but then it "may not discriminate
between two parts of a habitat differing considerably in
their effect on survival”.

Of course the other processes that take place in
our system are the emergence of young weevils from the
eggs and the dying and emigration of the adults. As in
previous chapters (except section 3.2.2) we shall assume
it takes a days for an egg to develop into a mature
adult. The movements of the adult weevils past a grain
in which an egg has been oviposited has no effect on the
rate of the development of the egg. A weevil may leave

the container only from the top surface of the wheat.
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6.3 DERIVATION OF THE EQUATIONS

Let the depth of the wheat in the container be
L. TFor the sake of the derivation of the dispersal
equation let us divide the wheat into sections of width
h; the middle of the i-th section being (i—%)h distance
units above the bottom of the container. We shall consider
movements of a weevil during a short time interval
(t,t+8t) where h and &t are such that the probability,
B(i,t), that an individual will not leave section 1 in
the time interval is independent of h and &t. 1In
other words if we make h smaller we also reduce the
value of 6t in such a way that the probability B8(i,t)
is unchanged. For if we are to reduce h without
reducing &t then the region over which a weevil would
wander for the same length of time (without leaving the
section) will be smaller. This would tend to decrease the
probability B8(i,t). However by reducing ¢t in an
appropriate way we can have B(i,t) remaining constant.

Let, according to (6.2.2),

B(i,t) = k(v+A)s(i,t)/w(i,t)
= kas(i,t) /w(i,t) (6.3.1)
where « is an arbitrary constant (D = ko), V is the

rate at which the grains are eaten by an individual weevil
and A 1is the rate of oviposition of eggs per weevil.
[For the choice of the values of « see the paragraph

after relation (6.4.20).]
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First of all let us derive the equation for the
dispersal aspect of our process. The possible transitions
(movements) and the corresponding probabilities, in the
time interval (t,t+6t), by a weevil in section i at

time t are:

transition probability
i- 1 B(i,t)
P> i-l S11-8(i,t)]
i i+l S[1-8(i,) ],

Therefore with w(i,t) as the expected number of weevils
in section i at time t, the expected number of

weevils in the section at time t+8t is

wii,t+6t) = B(i,t)w(i,t) + %[1—8(i+l,t)]w(i+l,t)
+ %[l—B(i—l,t)]w(i—l,t) (6.3.2)

Hoppensteadt [1976, Chapter VIII] uses similar arguments
to derive a diffusion approximation to a propagation of
a biological activity along a grid of cells. However in
his derivation the probability £ 1is constant unlike
our B(i,t) which depends on the local conditions.
Therefore his final result cannot fit our situation.

Let us represent section i by a single variable
x. For example x could be the height, (i—%)h, of
the middle of section i above the bottom of the container.
So substituting for R(i,t) from (6.3.1) and then

replacing i by x, i+l by =x+h and i-1 by x-h,
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equation (6.3.2) becomes

wix,t+st) = kas(x,t) +

NI

[w(x+h,t)-xas(x+h,t)]

+ ]—z‘[w(x—h,t)—KOLs(x—h,t)], (6.3.3)

Now from the Taylor's series expansion of w(x,t+dt)
about (x,t) with respect to t and the Taylor's series
expansion of the right-hand side (RHS) of (6.3.3) about

(x,t) with respect to X we obtain

ow 22

oW 1 2 2
m st + 5 —BTQ‘((St) + O[(at) ]
= lh2 32(w—|<ocs) + o(h?)
2 9x? -

Dividing this eguation by st and taking limits as

st + 0 and h » 0 in such a way that

h2/6t » o> (a constant)

and n¥/st > 0 for r > 2,

we obtain

ow

82
= o2 (w-kas) . (6.3.4)

9x?

NI

2

The constant O is arbitrary. However condition

(6.4.20) (in section 6.4.2) indicates how the values of
62, in conjunction with the values of «k, may be chosen

so as to ensure a solution to our problem.

6.3.1 Deaths, Emergence and Emigration Incorporated

In deriving (6.3.4) we considered only the movement

of the weevils. But as they move, they also oviposit eggs
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and eat up the grain, some die, young ones emerge from
eggs laid a days ago and some emigrate from the top
surface. If the dispersal of the weevils is not
considered the equation for the expected number of
weevils per unit volume, w(x,t), would be

ow (x,t)

e = —uw(x,t) + pkw(x,t—a) (6.3.5)

where 1 is the mortality rate for an individual weevil,
p 1is the proportion of the eggs that develop into
adults, and A 1is the oviposition rate as defined
before. Note that Aw(x,t-a) is the total rate of
oviposition of eggs in section X at time t-a. The
total emergence rate in the section at time t is a
proportion of this oviposition rate - hence the second
term in the RHS of (6.3.5).

Now combining (6.3.4) and (6.3.5) we get

2 :)X d ' y S ¢ :

The expected number of intact grains per unit volume,

s(x,t), satisfiesthe equation

os(x,t) _ _
et = ow(x,t) (6.3.7)
where aw(x,t) 1is the total rate at which the weevils use

up the grains in section x at time t.



The initial conditions to (6.3.6)

w(x,0) = %% o (%)
S
and s(x,0) =-T%
for 0 < x < L and where ¢(x)
For example if the weevils are initially

the ¢ (x)

top surface we would have
the initial number of intact grains and
of adult weevils initially introduced in

The weevils leave (emigrate from)

§(x-L).
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and (6.3.7) are

(6.3.8)

(6.3.9)

is a known function.

released at
S, 1is
Ny, 1is the number
to the system.

the wheat at the

rate of € weevils per unit time per weevil in the top
surface. Thus the boundary conditions to equation (6.3.6)
are
oW
__\ = ew(L,t) (6.3.10)
S
x=L
and
v 0 (6.3.11)
X |
£=0

where, of course, equation (6.3.11) impl
weevils cannot leave the system through
the container. We should note that thou
jeave the habitat they cannot come back.

there is no immigration into the system.

SOLUTION OF THE EQUATIONS

Separation of Variables

Integrating (6.3.7) subject to the

(6.3.9) we get

ies that the
the bottom of
gh weevils may

In other words

initial condition
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9
s(x,t) = =% - o ] w(x,t)dT (6.4.1)

Then substituting for s(x,t) in (6.3.6) we have

W) o prw(x,tma) - ww(x,t)
1, g &
+ 3 c? 57 (w(x,t)+Ka2J wi(x,t)dT), (6.4.2)

0

Let us look for a solution to equation (6.4.2) of the

form
wix,t) = N(x)T(t) .

Then from (6.4.2) we obtain

T (£) +uT () -pAT(t-a) _ _c> _ 0”1 d2N
— T = -5 = 35 ¥ 7
T(t)+m2J T(1)dT 2 2 N dx
0
where ¢ 1is a parameter.
So we have
d’N , 2y = 0 (6.4.3)
dx?2 Tt
and
ar 1 1 K
dT , (u+z02y2)T(t) + 3ka?c?y?| T(T)AT - pAT(t-a) = 0, (6.4.4)
dt 2 2 5
where

From the boundary conditions (6.3.10) and (6.3.11) we

have

= = eN(L) (6.4.5)
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and

dN _
- =0 (6.4.6)
x=0

The general solution to (6.4.3) is
N(x) = K; cos Yx + K; sin Yx

where K; and K, are constants. The boundary condition
(6.4.6) implies that K, =0
So

N(x) = K; cos YxX . (6.4.7)

Now applying boundary condition (6.4.5) to the solution

(6.4.7) we obtain

tan YL = /Yy . (6.4.8)

So the eigenvalues of the equation (6.4.3) are the roots
of (6.4.8). From Figure 6.1 it is clear that the r-th

positive eigenvalue is

+ 6
Y, = (r-1) + T? , r=1,2,...

[l

where 0 < er < m/2 and er + 0 as 1 » ® .

The r-th negative eigenvalue is

—=—-—E-—-_e_1=—+ =
Y. (xr l)L T Y, r T 1,2,...

Because of the evenness of the solution (6.4.7) and
because it is the square of vy that appears in the
equation (6.4.4) we shall consider only the positive

eigenvalues. Denote the r-th eigenvalue by Y- Then
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y= &/¥

The locations of the real roots

FIGURE 6.1:

of the

=Yir Y1rs Y2r Y3y

=Y2r

e/Y.

tan yL

equation



156.
the general solution to (6.4.2) is of the form

wix,t) = Z T_(t) cos v X (6.4.9)

where Tr(t) is the solution to (6.4.4) corresponding

to the eigenvalue Yo

6.4.2 Laplace Transform Technique

Let us rewrite equation (6.4.4) as
t

T'(t) + b,T(t) + sz T(1)dT - b3sT(t-a) =0 (6.4.10)
0

where b; = u+%ozyz , by = %Kuzozyz and bs; = ph.
Note that bi >0, 1i=1,2,3.

According to Bellman and Cooke (1963), the Laplace
transform of a delay equation such as (6.4.10) can be
useful in discussing the asymptotic behaviour of the
solution as t - «. However for our grain-weevil system
we cannot wait that long - all the wheat grains will have
been destroyed. The solution for the first few days,
weeks or months is more important than the long-run
solution. For this reason we shall use the Laplace
transform to determine the solution to (6.4.4) (or
(6.4.10)) as an explicit function of time t. Then we
can easily deduce the solutions over several of the
developmental periods, na <t <(n+l)a, n=20,1,2,...,
in the earlier part of the storage of the wheat.

Denote the Laplace transform of T(t) by
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fa)

T(z) = L(T(t))

e

j e %t (v)at
0

where the integral is assumed convergent for
ReZ > some R > -» , Now taking the Laplace transform of

(6.4.10) we get

(z + by + %f — bse~®%)T(z) = T(0") .

So
a +
T(z) = 7O )=
z24b,z2+b,-bsze 2?
+
- T(0 )z (6.4.11)
0(z) (1-bsze™*%/Q(z))
where

Q(z) = z2+b,z+b, = (z-q1) (z-q2), say.

Expanding the RHS of (6.4.11) in powers of bsze 2%/Q(2),

we obtain

T(z) = 70" J bFe ¥ P1z/Q(z)1°7T . (6.4.12)
k=0
Let
. JE+1 JE+1
P (z) = = .
. Q" (2) (z-ql)kﬂ(z—qz)k+l

Now let us note that
-bz4
L(H(t-b)L(t-b)) =.e F(z)

where H(t) is the Heaviside unit function, that is
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H(t) =

f(t) is an arbitrary function and ﬁ(z) is the Laplace
transform, &(£(t)), of f£(t). So the inverse Laplace

transform of (6.4.12) is

T(t) = T(0%) T by“H(t-ka)y, (t-ka) . (6.4.13)
k=0

Thus we need to determine wk(t) which is the inverse
Laplace transform of @k(z).

Note that ﬁk(z) is a quotient of two polynomials.
The numerator is of degree (k+1) and the denominator
is of degree 2(k+l) with each of the factors (z-9:).,
(z-q,) repeated k+1 times. Therefore we can write

@k(z) in the partial fractions form:

72 % Ai % Bi
P, (z2) = _— + _— (6.4.14)
= 120 (z=q) 1™t 120 (z-qn) Yt
where the coefficients Ai'Bi' i=20,1,...,k are
obtained from
k+1 k+1 b k-1
z = (z-92) Y Ai(z—q1)
i=0
K+l © k-1
+ (z-q1) y B, (z-q2) (6.4.15)
i=0

by, for example, comparing coefficients of the polynomials
of the LHS and RHS of (6.4.15). Then the inverse Laplace

transform of (6.4.14) gives
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i q1t k
a, B2, } pEE_
1 1. .
0 i=

I 1R

b, (1) =

i

Hence from (6.4.13) we have

T(t) = T(0+) ) bng(t—ka) ) (t;?a) [AieQ1(t-ka)+Bieq2(t_ka)]
k=0 i=0 N
(6.4.16)

Solution for na < t < (n+l)a, where integer n = 0.

For na < t < (ntl)a and k > n, we have

t-ka < 0 and therefore H(t-ka) 0. Then from (6.4.16)

we have

n k i
T(t) = (%) ¢y & 00" ) bak-z (t-ka) ~

ke  i=o *!
[Ain)eql(t—ka)+B§n)eqz(t—ka)]
(6.4.17)
for na < t < (n+l)a. The constants Aﬁn), Bgn) are the

1

values of A, B,/ respectively, when na < t < (n+l)a.
Thus, for example, for O < t < a, we have n=0

and therefore

T(t) = T(0T) (Aé")eqlt + BéO)qut) _ (6.4.18)

Now using (6.4.16), and since according to (6.4.17)

k = 0, we have

(o)

z = (z—qz)AéO) + (z—ql)BO

which gives
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A(O) - _9 ,
0 di1—9gz
(6.4.19)
glo) _ _q2 )
o g>—q1

On the roots dJi,92-

Since we do not expect any periodic or oscillatory
behaviour for our system we would require di,9: to
be real. Let us recall that dgi,q2 are the roots of

the equation

Q(z) & z?2 + b1z + by =0

where b;,b, > 0. So (1,92 are real if

b,;2 - 4b, = 0, that is, if

(U+]—2-02Y2)2 . 2K0ﬂ202Y2 > 0.

For positive values of o,k and Y this condition

reduces to

fia & %02y2 - aoy/2k = 0 . (6.4.20)

Since the LHS of (6.4.20) is quadratic in Y with a
minimum value, (6.4.20) is satisfied for all eigenvalues
Yo r=1,2,... if the values of o and «k are suitably
chosen. Then, because bi;,b, > 0, we have both
qi1,92 < 0.

So far 7(0¥) has remained unspecified. In order
to determine T(0") we shall use the initial condition

(6.3.8). But before we do so let us introduce some
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notation. Denote the solution to (6.4.4) corresponding
to the eigenvalue Y, of (6.4.3), for na < t < (n+l)a,
by Tin)(t) and let 4, /9., be the corresponding zeros

of 0Q(z). That is, from (6.4.17),

n k
T](C‘n)(t) _ Tr(0+) Xbak 2 (t- ka) (t-ka) ~ rp (n) %y (£-ka)

k=0 ri
+ i) g, (Eka)y (6.4.21)
I‘l
where A(:), Bi?) are the coefficients corresponding

to the eigenvalue Y, for na < t < (ntl)a.
Thus for na < t < (n+l)a equation (6.4.9)

becomes
wix,t) = Tén)(t) cos Y _X

and the number of intact grains per unit volume

remaining at time t in section X of the container is

given by
t
_ Sy
s(x,t) = Sl J ow(x,T)dT
0
Tt (n)
= s(x,na) - ) J a (T ™ (1)dt)cos y_x.
r=1 na o r
So
w(x,0) = ) T(o)(O) cos Y X
r=l r Y

Now substituting for Téo)(O) from (6.4.18) we have
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w(x,0) = ) Tr(0+)(Aig)+B£g)) cos Y X .
r=0

But according to (6.4.19)

(o) (o) _
ArO + BrO = 1,

Hence, using the initial condition (6.3.8), we have

=z

T% p(x) = Z Tr(0+) cos Y X . (6.4.22)

It can be verified that the eigenfunctions cos Yy _x are
orthogonal on the interval [0,L]. So multiplying
(6.4.22) by cos Yy X and integrating with respect to X

we get

N. (E (T
T% J b(x) cos y x dx =T _(0") J cos?y_x dx
0 r Y 0 X

Now using equation (6.4.9), that is
tan YrL = s/yr,

we can show that

N

L
J coszyrx dx = Lo+ % E/(Y2+€2),
0 Y

Hence for the given function ¢(x), Tr(Of) is given by

v (0F) = 2N (y,+e?) (%) d (6.4.23)
r - L[€+L(Yi+€2)] o ¢(x) cos y x ox s
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Example 6.1

If the weevils are released at the top surface
o (x) = §(x-L).

Then, according to (6.4.23),

2 2
+, _ 2Np(yp+e’) cos YpL
T 00 = TrTern(vZFe ) ] §lat e
Example 6.2
Suppose the weevils cannot emigrate. Then it can

be shown that the results for the non-emigration system
can be obtained from those for the emigration system by
setting the emigration rate ¢ to zero. Then the

eigenvalues Y, are given by

Yy = (r-l)% , r=1,2,...

Y

If in addition the weevils are initially at the bottom
of the container, that is ¢(x) = §(x), then from

(6.4.23) we have

_ 2N,

+
Tr(O ) Tz . (6.4.25)

Then from (6.4.18) and (6.4.19) we can deduce that

Tr(t) s 0 for 0<t<a . Now, since

wix,t) =

=~ 8

Tr(t) cos Y X .

r=1

the positiveness of Tr(t) implies that a maximum density

of weevils per unit volume occurs at the bottom of the
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container at least in the first developmental period

[0,a).

6.4.3 The Method of Steps

Tt is worth noting that the rather natural "method
of steps" [El'sgol'ts and Norkin (1973), Driver (1977)]
could be used to solve the delay integrodifferential
equation (6.4.4). 1In order to use the method we set
T(t) = 0 (or a constant) for =-a < t < a. Then we
solve the equation for 0 < t < a in which case T(t-a)
is a known function. Using the solution for 0 < t < a
we solve the equation for a < t < 2a. This procedure
can be continued to 2a < t < 3a and the following
intervals as demonstrated below.

Differentiating (6.4.4) or (6.4.10) we have

d?T(t)
dtz

dT (t)
dt

dT(t-a)
dt

+ b, + b, T(t) - pA =0 . (6.4.26)

Solution for 0 < t < a

With T(t) = 0 (or a constant) for t < 0 equation

(6.4.26) reduces to

2
tf + b, %% +b;, T=0 . (6.4.27)

o}

ol

t
e,

Now if we look for a solution of the form T(t)

the characteristic equation for (6.4.27) 1is

g2 + by g+ by, =0. (6.4.28)
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Note that (6.4.28) is the same as the equation
0(z) =22 +b; 2z +b, =0

in Section 6.4.2. Hence the roots of (6.4.28) are di1,92
as in Section 6.4.2.

As before let qu,qr2 be the characteristic roots
corresponding to the eigenvalue Y_ of (6.4.3). Then

the solution to (6.4.27) corresponding to Y. is

P (¢) =c e1® 4+ p e%2t (6.4.29)
Y Y r

where Cr,Dr are the constants of integration.

At this point let us recall that we obtained
(6.4.27) by differentiating (6.4.4) . Therefore we must
ensure that the solution (6.4.29) satisfies (6.4.4).

Substituting Tr(t) in (6.4.4) or (6.4.10) we obtain
Cr/qr1 + Dr/qr2 =0 . (6.4.30)

Now the solution to (6.4.2) as given by (6.4.9) is

Il ©~18

(C ¥ 1t 4 p ¥ 2ty cos v x. (6.4.31)
1 r r r

wix,t) =
Y

Then from (6.4.1) and using (6.4.30) we have

o qut q-2t
s(x,t) =3 - a | (Exl + D% ) cos v x  (6.4.32)
=1 qr1 r2

Another equation for Cr and Dr is obtained by

applying the initial condition (6.3.8)
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No

T ¢ (x)

w(x,0) =

in the same way as in section 6.4.2. Then we obtain

2 2 L
_ _2Np (yyte )
C +D, = L[€+L(Yi+€2)] Jo ¢ (x) cos Y_X ax . (6.4.33)

So C_ and D_ can be determined from (6.4.30) and
(6.4.33).

Let us note the relationships between Cr,Dr and
AL°’,BE°’ and T_(0%) . Comparing (6.4.23) and (6.4.33)

we notice that

_ +
c,+D. = Tr(O ) (6.4.34)

Setting n=0 in (6.4.21) and comparing the result with

(6.4.29) we have

c =a%7 0h
e T } (6.4.35)

p =387 (0%
Yo Y

Note that (6.4.35) satisfies (6.4.34) since according to

(6.4.19) a'°) 4+ B! =1,
o

Yo

Solution for a < t < 2a

Let us denote the solution to (6.4.27) corresponding

to the eigenvalue Y by

(D (g = c(Dedit 4 pibedzt
r e r

or if we supress the subscript r we have the solution to
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(6.4.26) as

me) = 08 (g) = cPed1t 4 plPledet (6.4.36)

for 0 < t < a.

Then for a < t < 2a (6.4.26) becomes
azsr dr 1 - 1 t-
Jt2 + blE + boT = p)x[c( )qleql( a)+D( )qzeqz( a)], (6.4.37)

The general solution to (6.4.37) 1is
p(2) () = C(2)eq1(t-a)+D(2)eqz(t-a)+k1(t_a)eq1(t-a)

+k, (t-a)e®2 (£72) (6.4.38)

where

(

k; = -pAC l)ql/(qz—q1)

} (6.4.39)
and k, = pAD(l)qz/(qz-ql)

Now applying continuity of T(t) at t=a, that is

o(a”) = T(a¥) = T(a) , (6.4.29) and (6.4.38) give
(2 4 p(2) 1) gmia 4 pll) %22 - (6.4.40)

Equation (6.4.4), that is

dT B
I + b T + b, J T(t)dTr = pAT(t-a) .
t 0

should still be satisfied for a < t < 2a.

Note that for a < t < 2a

t a t
J T(T)dT = J oD (ryar + J r(2) (1ydr
0 0 a
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So using the solutions (6.4.36) and (6.4.38) in (6.4.4)

we can show that

(2) (2)

+ gD = qzc(l)eqla +

(1)eq2a

q.C q:.D

B PA(Q2C(1)‘q1D(1))/(qz—q1) (6.4.41)

(2)

Solving for C and D2)  from (6.4.40) and (6.4.41)

we get

c(2) = D12 _ apag,ctt /(qo-an)?

(6.4.42)

and D(z) - D(l)qua _ Zplqﬂ)(l)/(qz-qﬂz

where we have used

(1) (1)

q.D + g.C =0 (from (6.4.30)) .

Let TLZ)(t) be the solution to (6.4.37) corresponding

to the eigenvalue Yoo Then substituting for C(Z),D(z)r

k; and k» in (6.4.38) we obtain

T(Z)(t) - C(l)[eqflt _ 2pxqr7eqr1(t—a) B pqu1(t—a)eq'2(t_a)]
r r | (q ,-9,.,)2 o ]

D(l)[eqr2t - szquéqrz(t'a) + qurz(t—a)equ(t'a)]
F'4
= (qr -q ) q -qgq

2 ril rz ril

+

(6.4.43)

where q_. (i=1,2 ) are the characteristic roots for

(6.4.27) corresponding to the eigenvalue Y and Cil)
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and D!} are determined from (6.4.30) and (6.4.33).
So the general solution for our system, for

a < t < 2a is

_ (2)
wix,t) = Tr (t) cos Y, X

I o~18

and

s(x,t) = s(x,a) -

Il =~18

t
a(J T(z)(T)dT) cos Y.X .
Y r
r=1 a

Solution for na < t < (n+l)a

The procedure used for 0 <t <a and a <t < 2a
can be extended to 2a < t < 3a and the following
intervals. Then, recursively, the solution to (6.4.26)
for na < t < (n+l)a, n=0,1,2,..., is deduced to be

of the form

T(n)(t)

Il 18

(n)(t na)l q:(t-na) E (n)(t na)l g, (t-na)
0 i=0
(6.4.44)

where the constants Cin),Din), i=1,2,...,n are related

by the difference equations

(@rmga) (irDe ™)+ (142) (+1e (D) = prlaac ™V r DIl Y
(6.4.45)
(g2~ ql)(1+1)D(n) + (i+2)(i+l)Dii; = prlg ‘n l)+(l+l)D(n 1)y
(6.4.46)
(n) _ - nfn) .
Cn+j =0 = Dn+j for 3 =21 . (6.4.47)
So having determined C(n l),Bfn—l); i=0,1,2,...,n-1,

1

the coefficients Cin),Din), i=1,2,...,n can be obtained
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recursively from (6.4.45) and (6.4.46) .

The constants Cén) and Dén)

cannot be obtained
from (6.4.45) and (6.4.46). 1In order to determine the

values for these constants we use

(1) TV (na) = ™ (na) ,
that is T(t) is continuous at t = naj
(i1) T (£) must satisfy (6.4.4). That is we
have to ensure that the equation
t

+ bT + b2[ T(T)dT - p)xT(t—a) =0
0

ar
dt
. o (n)
is satisfied by T (t).

Though the solution (6.4.44), by the method of steps,
and the solution (6.4.17) may look different it can be
shown recursively, with respect to n, that (6.4.44) in
conjunction with (6.4.45) and (6.4.46) is the same as

(6.4.17) .

6.4.4 Remarks on the Two Methods

According to the method of bteps the solution for
na < t < (n+tl)a depends on the solution for
(n-1)a < t < na. For this reason it becomes cumbersome
to use for large values of n. However for the first
few (two or three) of the developmental periods
[na, (ntl)a), n=0,1,2,..., the method may be more straight
forward than the Laplace transform method in that not

much computation is involved; the expressions involved



171.

are still simple to handle. The advantage of the Laplace
transform method is that the solution for na < t < (n+tl)a
can be obtained independently of the solution over the
previous intervals except that we use the initial interval
0 <t < a to determine Tr(0+), r=1,2,...

How far, as regards the intervals [na,(ntl)a), we
would try to determine the solution to (6.4.4) would depend
on the situation we are considering. For example in
laboratory experiments the quantities of wheat used are
usually small. 1In such a situation the dispersal of the
weevils within the wheat and the destruction of the wheat
might be rapid. Solutions over the first two or three
developmental periods would be sufficient to give us a
picture of what has gone on in each section of the wheat
grain. So in this case the method of steps would be
appropriate. For large quantities of wheat stored in
big containers such as silos, the initial numbers cof
weevils are, in most cases, relatively small. Hence the
dispersal of the weevils within the grain would be slow.
So we would need to determine the solution over relatively
many developmental periods before we can establish how
far the population of the weevils has spread. However,
even with the Laplace transform method, the expressions
for the solution to the model become more and more
difficult to handle as we move to higher developmental

periods.
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6.5 DISCUSSION

In formulating the model we assumed that it is
only the food ratio that prompts a weevil to move away
or to continue staying in a section of the wheat for a
while. Other conditions such as temperature and moisture
content of the grain are optimal. When a weevil decides
to leave a section, its immediate motion is random.
Surties' (1963) observations support the random movements
at the optimal temperature of 25°Cc and moisture content
of 14% for Sitophilus granarius.

Howe (1951) observed that there was a tendancy
of the weevils to move down in towers filled with wheat.
This would imply that if the weevils are initially
released at or near the bottom of the container then the
density of weevils per unit volume would continue to be
higher in the neighbourhood of the bottom surface. This
supports the solution for Example 6.2 in which wix,t)
is maximum at x=0 for O < t < a. Howe's observations
were made over short periods (the longest being of 28 days).
For Sitophilus granarius it takes at least 36 days for
an adult to emerge from an egg (see row 1 of Table A.1l).
Therefore in his experiments no observations were made
on the effect of the emergence of young ones on the
distribution of the weevils within the wheat. The solution
to the model in this chapter enables us to determine the
distribution (or at least an approximation to the

distribution) at any time t.
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Though we have confined our discussion to the
wheat-weevil system the model can be applied to similar
grain-insect systems. The equations can be modified
to include renewability of the food supply, for example
by modifying equation (6.3.7). Also the formulation
could be extended to non-granular systems. For example
we could apply it to a system of insects laying eggs
and feeding on the leaves of a tree. In this case, unlike
in the grain-weevil system, new leaves come up. So the
food resource for the insects is renewable.

I should point out that the model discussed in
this chapter is for the purpose of predicting what might
happen to a quantity of cereal if it were stored for
some length of time and it happened that pests such as
insects were initially present. The solution to the
model would help in devising control measures and/or

formulating control models.
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CHAPTER 7

DISCUSSION

g/ SCOPE AND RESULTS OF THE MODELS

As mentioned in Chapter 1 the models were intended
for the study of infestation of stored cereal products
by pests such as the grain weevil, Sitophilus granarius
and the rice weevil, Sitophilus oryzae. From the cited
literature and the data used in this thesis I would say
that the models are more relevant to small quantities
of grain, such as those used in laboratory experiments,
than to large guantities of grain. However the models
have led us to suggest possible ways of tackling situations
with large amounts of grain (for example, see end of
Chapter 3).

The basic assumption of the models is that the
activities of the adult weevils, such as the oviposition
of eggs and emigration, are functions of the food ratio
(that is the number of intact grains per adult weevil) .
There is a critical food ratio C above which the
available number of intact grains does not influence the
activities. Below C the activities become influenced
by the availability of the intact grains per weevil.

This led to the consideration of a two-phase grain-weevil

system; during phase I the food ratio > C and the
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parameters for the system are constant and during phase
TI the food ratio < C and the parameters are functions
of the food ratio.

The weevil, Sitophilus, used in this study has
the special characteristic that all the immature stages
of development take place within a grain in which the
egg is laid. So it is not essential to consider the
stages of the larva, pupa and the pre-emergence adult
separately. For this reason the weevil was modelled
to go through two stages of development: (i) the immature
stage constituted by the egg, larval, pupal and pre-
emergence stages and (ii) the mature stage at which the
weevil is sexually mature and can emigrate. In short
our grain-weevil system is a two-stage system going through
two phases.

In the analytic solutions of the models other
environmental conditions such as temperature, relative
humidity or moisture content of the grain (other than
the food ratio) were taken to be optimal. Some of the
expressions for the solutions were not simple enough to
indicate the general properties of the solutions. This
prompted me to use the computer to obtain graphical form
of the solutions for the deterministic models (see Chapter
3). Also with the use of the computer it was possible
to incorporate temperature into the equations. We should
note that under optimal (or constant) temperature
conditions the length of the developmental period (egg to

newly emerged adult) was taken to be constant. This is
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because all the immature stages of development take

place within a grain and as a result the density of adult
weevils per intact grain does not affect the rate of
development of the egg. But when temperature was
incorporated the computer output showed that the
developmental period could be as long as 220 days for the
eggs which develop through the months of Autumn, Winter
and Spring and as short as 31 days for the eggs that
develop through Summer. These computed lengths of the
developmental period were in good agreement with those
which have been observed in laboratory experiments (see
Section 3.2.8).

According to the solutions to the deterministic
models the size of the population of the adult weevils
decreases over the first developmental period (since
there are no new young ones coming up in this period).

As the young ones emerge, in the second developmental
period, the population size increase rapidly well beyond
the end of phase I. According to the computer output the
population size increases for over another developmental
period (about 60 days when the developmental period was
taken as 50 days) from the time the critical food ratio
is reached. Then it decreases monotomically. The number
of intact grains are finished long before the weevil
population becomes extinct. The incorporation of
temperature has the significant effect of slow growth of
the weevil population (and therefore a slower rate of

depletion of the intact grains; see Tables 3.1 and 3.2).
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The food ratio increases over the first developmental
period. As the young ones start emerging the ratio
decreases and continues to do so until it is zero (that
is when intact grains get finished).

In Section 2.1.3 the relations that the initial
food ratio has to satisfy so as the critical food ratio
is reached in the first developmental period, in or after
the second developmental period were derived. According
to these relations it can be deduced that, for such
initial food ratios as those used in laboratory experiments,
it is likely that the critical food ratio is reached in
the second developmental period. The computer output for
the initial numbers of 240, 120, 60 and 30 weevils to
20,000 wheat grains confirmed this (see Table 3.1). For
this reason, in the phase I models, I concentrated on
determining solutions for the first two developmental
periods. However where possible, I have indicated how
we can obtain the solutions for the third and higher
developmental periods if required.

The stochastic models in Chapter 4 and Section 5.1
were intended for checking the deterministic solutions
of the models in Chapter 2 and for the derivation of
expressions for the variances of the variables involved.
For phase I it worked out that the stochastic mean and
the deterministic value of the number of adult weevils
are the same but the deterministic value for the number
of intact grains is a lower bound for the stochastic

mean. For phase II the reverse happens: the stochastic
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mean and the deterministic value of the number of intact
grains are the same, but, under certain assumptions

(see Section 5.1.5), the deterministic value of the
number of weevils is a lower bound for the stochastic
mean.

The stochastic Model B for phase II incorporates
explicitly the possibility that more than one egg may
be oviposited in a grain. This was achieved by dividing
time into developmental periods. During a developmental
period a grain (whether already containing eggs or not)
is continuously susceptible to attacks by the weevils.
Those grains that are attacked are regarded useless at
the end of the period. The distribution of the number
of eggs oviposited in a single grain was derived. The
eggs that are laid into grains already containing eggs
were regarded lost since a maximum of one adult may
emerge from a grain. Thus, according to Model B, the
fraction of the number of eggs that are expected to
develop into mature adults is less than that according
to Model A.

Also by defining the emigration rate as a step
function with respect to the developmental periods the
total number of emigrants per unit time would be higher
at the beginning of a developmental period than at any
later instant of the period. Since according to Model B
the young weevils emerge at the beginning of the period
and since age was considered not important,this tends to

incorporate the ecological hypothesis that young weevils
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are more dispersive than the old ones.
The number of grains that escape the attacks by
the weevils during a developmental period (or any
interval of time within the period) in Model B could
be as high as 11 times the number in Model A.
Also according to Model B it was shown that
the extinction of the weevil population is not possible
until the intact grains are finished. Then the population

becomes a death-emigration process.

7.2 MATHEMATICAL METHODS USED

Due to the delay of emergence of adults from the
eggs, some of the equations for our grain-weevil system
are delay differential equations (Chapter 2) or delay
integro-differential equations (Chapter 6). Since we
are concerned with the damage done to the wheat by the
weevils, long run (or asymptotic) solutions are not of
interest to us. It is more important predicting the
destruction that is likely to occur in the early stages
of storage than, for example, knowing what happens when
the grains are finished. For this reason the method of
steps (see Sections 2.1.2 and 6.4.3) was appropriate to
use in solving the equations. However if the method is
to be used for several developmental periods the
computations may become cumbersome to handle. 1In such a
case solving the equations by the use of Laplace transforms
(see Sections 2.1.2 and 6.4.2) may prove to be less

involving.
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In the stochastic model for phase I an artificial
variable was introduced to represent the number of intact
grains. This was done for the purpose of simplifying the
computation. It was, however, a rewarding exercise in
that we could prove that the expectation of this artificial
random variable was the same as the value of the number
of intact grains obtained by the deterministic model.

Also the expectation was used to show, as already mentioneds
that the deterministic value of the number of intact grains
is a lower bound for (that is it underestimates) the
expected number of intact grains in the system.

By treating the emergence process of the young
weevils from the eggs as an immigration process into,
but independent of, the adult weevil population two methods
were used to derive an approximate expression for the joint
p.g.f. of the artificial variable and the number of weevils.
The first method gives insights into the techniques that
are used to derive the Puri's (1975, Egn. 14) result. The
second method (that is the method of "marks and catastrophe",
Section 4.6.2) has notable techniques that can be applied
to a wide range of problems.

In the stochastic version of the phase II determinsitic
model an artificial random variable was introduced to
represent the number of weevils. Again, in this case,
the expectation of this artificial r.v. worked out to be
the same as the deterministic value - implying that the

actual stochastic mean of the number of weevils is not
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the same as the deterministic value.
We should note that the technique used in solving
for the p.g.f. Gn(t,x,y) of the number of intact grains

and the weevils by writing it in the series form
G (t,x,y) = z(x—l)sfns(t,y)

and then solving for the functions fns(t,y), could be
tried on partial differential equations of the form
(5.2.2) not necessarily arising from probabilistic
applications. 1In section 5.2.6 it was shown that for
more generalised assumptions than those considered in
Model B the functions fns, too, could be broken down
into functions which would prove simpler to derive.

In Chapter 6 the method of separation of variables
was used in determining the spatial distribution of the
weevils in a container storing wheat. The equation for
the time factor obtained after separating the spatial and
the time factors was a delay integro-differential equation.
A Laplace transform technigue was used to solve the equation.
Also it was shown that even for this hard delay equation

the method of steps could be used to solve it.

7.3 APPLICATION AND FUTURE DEVELOPMENT

With the parameters taking on appropriate values
the solutions to the models could be used to predict what

would happen when small guantities of stored grain get
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infested with pests such as the weevils. The solutions
may not apply very well to large quantities of grain. As
indicated at the end of Chapter 3 it may be necessary to
consider the grain-weevil system to go through three
phases: one for low density of weevils per intact grain,
the optimal density phase which would correspond to the
phase I in this thesis and the high density phase
(corresponding to our phase II). According to MacLagan
(1932) this high density phase could still be divided into
two subphases. One of the subphases would correspond to
the density of more than 4 females per intact grain at
which oviposition stops completely. Thus a consideration
of multiphase system (with more than 2 phases) is relevant
to our problem.

Also, as pointed out at the end of Chapter 3, at
very low density the weevil population may not survive
for a long time unless the weevils congregate to create
some sort of partnership environment. So in a low density
situation the consideration of the patchness of the
distribution of the weevils within the system may be
relevant.

It was hoped that the age of a weevil did not have
much influence on its activities. This was because, for
small quantities of grain, by the time age starts having
a significant influence on an individual's activities
most of the grains would have been destroyed. However for

large quantities of grain several generations of the
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weevil population are possible before a substantial

damage is done. In this case it would be essential to
consider the influence of age by, for example, making the
oviposition and emigration rates functions of the age.

As far as emigration is concerned we did not worry
what happens to theemigrants. In the laboratory experiments
they die. However if the wheat is stored in several units
between which the movement of the weevils is possible then
the consideration of where a weevil goes after leaving a
unit is essential - for the infestation is likely to
spread over all the units. This would give rise to a
dispersal problem which is worth studying.

As indicated in Section 5.2.6 it is possible to
reformulate the rate of emigration and the rate at which
the intact grains are attacked, and still be able to
solve the equations involved. However whatever reformulation
we may do it should not be abstract; it should relate to

the real situation under study.
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APPENDIX 1.1

TABLE A.l1:Values of parameters as cited or estimated from existing literature

Key to Table: R.H. = relative humidity
m.c. = (grain) moisture content
5.0. = Sitophidus oryzae
5.6. = Sitophilus granarius
/w = per weevil
/d = per day
Note: 1. The oviposition rates given in the Table are for female

weevil. If we assume that the sex ratio is 1:1 then the
oviposition rates for an individual weevil (female or

male) 1is taken to be a half those given in the Table.

2. In the calculation of the emigration rate (see row
9 of the Table) the second and third fortnights were used
because it was hoped that by then the weevils would have
settled down 1in their new habitat and no young adults
would have emerged to 1increase interaction between the

weevils.
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Parameter

Species

Researcher

or Reference

Determined or Estimated

Value(s )

Environmental

Conditions

Comment

1. Length of the
developmental

period,

a

(days)

3.[@s

S. 6.

Birch (1953)

1

Golebiowska (1969)
Hardman (1977)

MaclLagan & Dunn (1935)
Coombs & Woodroffe (1973)

]

Golebiowska (1969)

4,0 weeks = 28 days
4.9 weeks = 34.3 days
32.9 weeks = 230.3 days
30-46 days (mean = 31.4

436 day-degrees (Do) (=
days, 53 days)

24-28 days
60 days
160 days
58-64 days

days)
49

29.1°C, 14% m.c.
25.5%C, 14% m.c.
15.2°C, 14% m.c.
28°C, 70% R.H.

(at mean temperatures
22.7%, 23.18°C)
25°C, 90% R.H.

20%C, 60% R.H.
15°C, 60% R.H.

28°C, 70% R.H.

Note that Hardman (1978) estimated it to
be 422.70°.

Rather short compared with other estimates.

" 0 » 40 days to develop into adult, 8 days
(40 + 8) days 2k C, for adult to mature.
Howe (1966) ) Howe (1966) noted that <1% of developmental
—64 ) % X
Howe & Hole (1967) } REEe 2 2oty wiOE Bl periods exceeded 48 days.
2. Proportion of| S.O. |Birch (1953) 0.0 13.0°C, 14% m.c )
Survival of imma- n 0.25 15.2°C, " He has more values of p at several
ture stages, N 0.93 25.500, n Pother temperatures.
) " 0.25 33.5°c, " J
S.G. | Coombs & Woodroffe (1973)| 0.75 ?

Richards (1947)

(0.75 - 8.0)*

25%C, 70% R.H.

4

* is the proportion of eggs which hatch.
So proportion of eggs that fully develop
into adults is less than .75, especially

Lat low temperatures.

A4



TABLE A.1l (Continued)

Researcher Determined or Estimated Environmental
p t S i C
S pecies or Reference Value(s) Conditions comment
3. Longevity S5.0. |Birch (1953) On average 16.58 weeks = 116.06 days 29.10C, 70% R.H. 1 - . .
0 For small strain of S.O.infecting wheat.
(for adult " 10.78 weeks = 75.46 days | 32.3°C, 70% R.H.
weevil) MacLagan & Dunn (1935) About & months =120 days 2500, 90% R.H.
S.G. |Coombs & Woodroffe (1973)| 250 days. 20°C, 60% R7H?
Golebiowska (1969) On average 150 days ?
isolated female.
Richards (1947) 174.5 days 25°C, 70% R.H. Fom ian ispilajell RACE enalen —TH
longevity is less in mass cultures.
) i .U i 0 il 92% beetl
4, Mortality S.0. |Golebiowska (1969) 0.08 _ 0.002667 w/d/u 26°C, 70% R.M Deducedlfrom on average eetles
30 were alive at the end of 30 days".
rate If we use .
i w/d/w ik 1, "= 1 e 1 25°¢C, 984 R.H. Using Longevity of 1?0 days accordlng tp
o - Longevity 120 or 29.1°C, 70% R.H. MacLagan& Dunn and Birch respectively.
o 0.008333 w/d/w
S.G. | If we use Longevity 1 o< 1 w/d/u Maximum value obtained from Golebiouwska's
- 1 250 * = T50 Longevity. Minimum value obtained from
- u 1.2.0.00400 < u < 0.006667 w/d/w Coombs & Woodroffe Longevity.
5. (Rate of) S.0. | Golebiowska (1969) fa) Immature Stages: 30 mg/larva 1 grain of Olympic wheat weighs 35 mg
. (quoted Hurlock, 1965) 20,8571 of a grain of Olympic wheat on average (see Hardman, 1977).
Consumption
G bi 9 A . 0.
(v grains/u/d) olebiowska (1969) ;:é szétsr gniag/zg/w/d 28°C, 75% RLM.
: . So 0.01400 < v < 0.02857
Golebiowska (1969) 1 mg/w/d 0
pc’ ) 2 , 70% R7H?
(quotes Steffan, 1963) =0.02857 grains/w/d 8¢C, 70 d

“EXY



TABLE A.1 (Continued)

Researcher Determined or Estimated Environmental
Parameter Species Comment
or Reference Value(s) Conditions
5. (Continued) S.¢. Coombs & Woodroffe (1964)| (a) Immature Stages: 2/3 of a grain The fraction is > 2/3 if more than one egg
(Rate of) per larva is oviposited in the grain.
i o Golebiowska (1969) 30 mg/larva
onsumption (quotes Hurlock, 1965) & ,8571 grains/larva
(v grains/u/d) Golebiowska (1969) (b) Adults: 0.5188 mg/w/d 21%C
(He quotes Steffan =(,01482 grains/u/d We therefore have
1963) 1 mg/w/d 0.01482 < v < 0.02857
== (,02857 grains/w/d
6(a). Progeny S.0. Birch (1953) 0 eqgs/female 13°C, 14 m.c.
(Total number of L 266 N 23°C, 14 m.c.
eggs laid by a " 344 " 25.5%C, 14 m.c.
female) " 384 " 29.1°C, 14 n.c.
n 197 " 32.3%C, 14 n.c.
n 0 " 35°C, 14 m.c.
MacLagan & Dunn (1935) 380 eqgs/female "fayourable" environment
S.G. | Coombs & Woodroffe (1973) | 125 eggs/female in 250 days 20°C, 60% R.H. This gives oviposition rate A = 125/250 = 0.5

Richards (1947)

89-362 eqqs/female
(191.5 eggs/female on average)

A



TABLE A.1 (Continued)

Researcher Determined or Estimated Environmental
F BRARELEF pREGes or Reference Value(s) Conditions Ll
6(b) Oviposition | S.0. Birch (1953) 266 << 384 23.0°C - 29.1°C, 70% R.H. A is calculated using his longevity and
20
rate 1 1 progeny data at 230C and 29.10C.
A i.e. 2.2167 < A < 3.2000
. ; 0 Deduced from '"progeny per 100 weevils
2 <X < 6. % R.H. .
eqgs/female/day Golebiouska (1969) &8 00 2ENtE 181§ per day over a period of 30 days.
39 .
Hardman (1977) A= 457550 = 1.7304 23%C, 14% n.c. 3980 eggs were laid by 46 females, on
average, in 50 days.
S.G. Evans (1977) 0.01429 < A < 1.6743 Calculated from number of eggs per.female

Richards (1947)

(average value = 0.8500)
1.49 < A< 3.33

15%¢C

25°C, 70% R.H.

per fortnight over a period of 20 weeks.

For weevils ranging from 16 days to 106
days old.

7. Critical food
ratio
C

grains/weevil

S.0.

and

S. 6.

Coombs & Woodroffe (1973)
Hardman (1977)
MacLagan & Dunn (1935) }
Richards (1947)

10 grains/female

12.5 grains/weevil

10 grains/female

C could lie in [10, 20].

‘GY



TABLE A.1 (Continued)

Researcher Determined or Estimated Environmental
RARANSICH SPEGRES or Reference Value(s) Conditions Eonn s
8. Temperature | S.0. HaE:::ntiEEZZ ks dud Lower Eh:;s?géd for development B N.B. Lower temperature thresholds
thresholds and T for development are not necessarily
. t f iposition.
optimal tempera- Howe(1965) Lower threshold for population o Eiie Saweszs BGSe foR GVpQSH IO
increase = 17°C. Opt.range: 27+31C
tures . 0
Richards (1947) Oviposition ceases atand below 9.5 C
S.G. | Evans (1977) Lowerothreshold for development
is 15°C
N Optimal temperature = 26°C
Howe (1965) Lower threshold for population
increase = 15°C
n Optimal range 26-30°C

9. Emigration

rate. €,

w/d/w

At the Waite Agricultural Research Institute, University of Adelaide, Mr Mlambo conducted experiments to study the emigration process of
weevils from wheat stored in containers. From his average numbers of emigrants during the 2nd and 3rd fortnights, from containers initially
holding 600 g (= 20,000 intact grains) of Olympic wheat (Variety 8156) and 240, 120, 60, 30 weevils, I calculated the mean emigration rates.
These worked out to be 0.006436 w/d/w for S.0.and 0.0005478 w/d/w for S.G..

" 9Y
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APPENDIX 3.1

COMPUTER PROGRAMME I

This programme is for solving equations (3.1.1) wunder

optimal temperature conditions.
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PROGRAM OPTCOND{OUTPUT) *

DIMENSION WO{&) _gEle50),U(Q50|,H(&58).S(ASOI,FDR(QSG'.R(ABI!,
+EMGT (4581 , IDAY(458) sDAY{466) ,Y(1382),2A(324) .
EQUIVALENCE (S(il.Y(llI,(Hll),Y(ﬁS!il,(FDR(ll'Y(SlTl s ZA (S
1) JLEMGT (1) 53ZA1459)) )

PARAMETERS § THEIR VALUES
OVIPOSITION RATE V=1e9 EGGS/DAY/WEEVIL
MORTALITY RATE D=0,00833 WEEVILS/DAYZ/WEEVIL
CONSUMPTION RATE C=0.02128 GRAINS/DAY/WEEVIL
EMEGRATION TATE E=.006436 WEEVILS/DAYZWEEVIL
PROPORTION OF SURVIVORSHIP OF EGGS s p
CRITICAL FOOD RATIO CFDR=10. GRAINS/WVEEVIL ’
DEVELOPMENTAL PERIOD A IS 49=53 DAYS FOR SeOsp 4#5=50 DAYS FOR SeGs

VALUES OF PARAMETERS AT OPTIMAL TEMPARATURE
C=0.021285
V=1,0
E=0.0064636
D=0.006333
P=2e?7
CFDR=10.
B=0.12
AsS0e § IA=A

NAMES USED IN THE PROGRAM
EG=NOe. OF EGGS LAID THE PREVIOUS DAY
U=EGGS+LARVAE+PUPAE+UNEMERGED ADULTS
W=NOe OF ADULT WEEVILS .
S=NOe OF UNUSED GRAINS OF WHEAT
FOR=S/¥W=F0OOD RATYIO (DENSITY)"
R=2TOTAL NOe. OF EMEGRANTS UP TO DATE
EMGT=EMEGRANTS DURING THE PREVIOUS DAY
INITIAL NOe OF WHEAT GRAINS
S0=20000.
INITIAL NOe OF ADULT WEEVILS
WO(1)=240. 5 WO(2)=120, § WO(I)= 60s $ WOU(A)=30.

DO 1001 M=1,4

s{11=S0
w{1)=wOIM)
EG(1V1=0,
EMGT(11=0, SR(11=0.
Uii)=0.
FDRE1)=S(1)7vwi1)
IDAY(1)=0

DAY (1) =0,

PRINT 41,W0I(NM)
PRINT A0

LINES=S

43 FORMAT{(1H1l,* INITIAL NO OF GRAINS =20000.%/° NO OF WEEVI
+LS = 23F4e0/77) ) :

40 FORMAT( 1X,¢ DAY NO OF ADULT FGGS LAID TOTAL ND EMIGRTS TOT
+AL NO FOOD®,/» GRA INS WEEVILS THAT DAY OF EGGS THAT D
+AY OF EMIGRTS RATIO®4/7/) -

P?INT 22, IDAY{1), Sll),'(1',EG(IIQU(I',EMGT(1‘,R(1I,FDR(
*1

LINES=LINES+1

DD 777 K=23458
L=K=1

IDAY{(KI)I=L
IF(LeLEL420) DAYIK])
IF (FDRIL)<LEGSCFDR)
EGIKI=Vevw (L)
EMGT{(KI=E=W (L)}
COoOSMD=CsW (L)

1% R{K)I=R(L)I4EMGT{K)
S(K)=S(L)=COSMD =EG(K)
IF(L.LE<IA) GO TO &3
ZsSEG(L=IA)

=L
GO TO 17

83 2=0.

85 VlK (L) =EMGBT(K)+PEZ



A9.

80 TO 18
17 Li=L=1
IF (FDR{LL)Y.LE.CFDR) GO TO 43
PRINT 14,IDAY (L)
LINES=LINES+4&
IF(LINES.LTST) GO TO 45
PRINT 41,W0(M)
PRINT &40
LINES=S
14 FORMATI(//,® CRITICAL FOOD RATIO REACHED DURING THE $913,¢=TH D
+AY ¢4,77)
4% EG(K)=VeS({L)/CFOR
EMGT (K)ZE®* (1. +B*CFDRY*W(L)=E*B*5S(L)
COSMD=CaS(L)/CFOR
60 TO 15
18 IF (S{K)eGTeO0e) GO TO 19
S(K)I=0.
FORI(K)=0e
IF (S(L)IeEQeDe) GO TO 189
PRINT 16,IDAY (L)
LINES=LINES+S
IF(LINESLT.57) GO TO 19
PRINT &41,WOIM]
PRINT 40
LINES=8
18 FORMATY (/74 WHEAT GRAINS WERE FINISHED DURING THE 8,I3,8=TH D
+AY ®,77) :

19 IF (WI(K)eGTa0e) GO TO 77
WiK) =0,
PRINT 20y IDAY{K}
LINES=LINES+4A
IF(LINESLLT57) GO TO 77
PRINT 431 ,w0(M)
PRINT 40
LINES=S
20 FORMAT (7 /4% AN EXTINCTION OF ADULT WEEVIL POPULATION OCCURS D
CURING THE $4I3,8=TH DAY #2477/}
7T PRINT 22,IDAY(K]}, SIK)’i(K’.EO(Kl,U(K),EMGTlKI,R(Kl,FDR(K
<)
LINES=LINES+1
IFI(LINES.LT%57) GO TO 777
PRINT 41,W0(M)
PRINT 40
LINES=8
22 FORMAT (3XeI3, 6FSe29F10e4)
777 CONTINVE
CALL SCALEIDAY33%.
CALL SCALE (59154960
CALL SCALE(W 41544980
CALL SCALE(FDR,
CALL SCALE'(
CALL SCALE
PRINT 23,F
+8),RI421)
23 FORMATI(//
+ 8 F
<+ U %42
4+ g2(B5XgEL11e3
CALL PAUPLOT(22HUS LANK PAPER PLEASE»22)
CALL PAUPLOT(21HUSE DARKER INK PLEASE21)
CALL PLOT 2S5
CALL AXIS(CeyO0a s 41HGRAINSILADULT WEEVILS MULTIPLIED BY 3¢3ca)péhl,y1s
*00.90.151421),514201.-1) . :
CALL AXIS{0es0s912HTIME IN,DAYS.-12.24.0.0.,DAY!AZI!*DAY(hzal.Ol

AZBl,S(‘Zl!,S!QZOl.U(ﬁZl),UlQZS),H(QZi},H(&2

VARIABLE ORIGIN VALUE SCALE FACTOR®S/
9E1L103) 7 s $842(5XyE1163)/®
1/7%

X
/% v 2,2(5X9E11.3 R -
) i

CALL AXIS(21,904910HFOO0D RATIO,-10,15.0,90.,FDR(421).FDRI#ZG‘.-l)
CALL LINE(DAY(1)1,5(1)35057491,1)

CALL LINE(DAY (2114w (1) 2805751, 0)

CALL LINE(DAY(11,FOR(1) 60979104}

CALL SYMBOLI(8.9140890e2y 14H FOOD RATIO0er14)

CALL SYMBOL(8c514e490e2,27H NUMBER OF INTACT GRAINSy 0e»27)
CALL SYMBOL(B8s91%eDp0e2927H NUMBER OF ADULT WEEVILSy 0e527)

CALL PLOT(30¢90ep=3) _

CALL AXIS (0es0eg30HADULT WEEVILS (TOTAL EMIGRANTI 30y 15.0,90.,¥(
+821) W (4281 4=3) ‘ ‘

CALL AXIS(Gey0e9l2HTIME IN DAYS,=12424005009DAY(4221,0AY(428),0])
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C:LL Af:s‘zlo,OQQZZHSIZE OF IMMATURE GROUP,-ZZ.lS.0.905,0(421),U(ﬁ

+28) g~1 )

CALL LINEUDAY(1),w (1]} 96043751, 0)
CALL LINEC(DAY{1),R{1} 960,751, 2)
CALL LINE(DAY (11,01} 9804793 o11) ) -
CALL SYMBOLI(12ey Be850e2,s18H NUMBER OF EGGSe0esiB8) -
CALL SYMBOL[12699e49002,27H NUMBER OF ADULT YEEVILS, 06927}
CALL SYMBOL(1249%9e¢0,30e2429H° TOTAL NUMBER OF EMIGRANTS, Q0ep29)
CALL PLOT(30¢50e9=3) o ’

1001 CONTINUE

514 STOP

END



All.

APPENDIX 3.2

COMPUTER PROGRAMME II

This programme is for

(a) Computing heating day-degrees
(b) Solving the equations (3.1.1) under

variable temperature

The solution of (3.1.1) is based on the linear inter-

polation (3.2.5) and the formulae (3.2.1), (3.2.2), (3.2.3)

and (3.2.4).
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PROGRAM TEMPTUR (INPUT,0UTPUT) '
DIMENSION WO (4) +EGL628),U1428)
Q,JTCAPIQZBI,RIQZBI,EMGT(QZ&),IDAY
0428I,HDD(23,CDD(2D,ACDD(bZB),DAY(
COMMON TEMPL,TEMPT TEMPU

RAMETERS $ THEIR VALUES
OVIPOSITION RATE IS V EGGS/DAY/WEEVIL
MORTALITY RATE 1§ D WEEVILS/DAY/WEEVIL
EMEGRATION TATE Is E WEEVILS /DAY/WEEVIL
PROPORTION OF SURVIVORSHIP DOF EGGS IS P
CONSUMPTION RATE C=0.02128 GRAINS/DAY/YEEVIL
CRITICAL FOOD RATIO CFDR=10. GRAINS/Z/WEEVIL
DEVELOPMENTAL PERIOQOC A=422.7 DAY=DEGREES

LUES OF PARAMETERS AT OPTIMAL TEMPARATURE

Cz0.,021285%
DT=0.0083333
E0=0.0084386
vO0=1,0

P=e7
CFDR=10.
A=422.7
8B=0.12

TIMAL
TEMPT=22,
WER THRESHOLD
TEMPL=12.
PER THRESHOLD
TEMPU=26.
LUES AT LOVWER TEMP THRESHOLD
vL=0.
oL= bT
EL=0+,10*ED
RAMETER VALUES AT UPPER TEMP THRESHOLD
YuU=0.
DU =2,9°07
EU=2.%EO

NAMES USED IN THE PROGRAM

TEMP=TEMPARATURE

£G=NO, OF EGGS LAID THE PREVIOUS DAY
U=EGGS+LARVAE+PUPAE®UNEZMERGED ADUL TS

W=NO, OF ADULT WEEVILS

S=NOes OF UNUSED GRAINS OF WHEAT

FDR=S/7¥=F00D RATIO(DENSITY)

AHDD  ACCUMULATED HEATING DAY=DEGREES
JTCAP=TIME AT WHICH AN EMERGING ADULT WAS LAID
R=TOTAL NOes OF EMEGRANTS UP TO DATE
EMGT=EMEGRANTS DURING THE PREVIOUS DAY

SUBPROGRAM TO COUMPUTEZ HEATING DAY=DEGREES
SCAL =A RADIAN TO DAYS CONVERSIONI1/(2¢PI)
TIME BETWEEN MAX AND MIN TEMPARATURES I5 12 HOURS

(Ul

DATA PIBY2/1.576796328/

DD 1 L=1,423

N=10#%(L=1)+1

KK=N+9

READ 5,‘(TEMP(I,J,’J=1,2',I=N,KK,
FORMATI20F4.1)

TUP=1000.
TLO=1D3.

TDIF=TUP=TLO
AVTEMP (1) =0,
AHDD(1)=0.
ACDD(11=0.
AVTEMP (1) =0,
I0OAY{1)=0

DAY (1) =0

DD 116 L=2,428
KL=0

K=KL+1

IDAY (L)=3l =1
DAY (LI=IDAY (L)



100

102
101

203
104

105

116
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AVTEMPILIS(TEMP (Lo2) ¢+ TEMPIL,210 /2.

TMIN=TEMP (L,41}
TMAX=TEMPIL,2)

AMPLS(TMAX=TMINI /2,
TEAR=(TMAX4+TMINY/2,
IF(TMINGS.LT.TLO) GO YO 4
THETAL==P1IBY2

cCO0S1=0.

GD YO 101

IFITMAX.GTL.TLO) GO TO 102
TYTHETA1=PIBY2

C0S1 =0,

GO YO 101
THETA1=ASIN((TLD-TBAR'IA"PL )
€051 =COS(THETAL)}

IF(TMAXeGToTUP) 60 TO 203
YHETA2=PIBY2

C0S2=0.

60 TO 104
THETA2=ASIN({TUP=TBAR}/AMPL)

C0S2=COS(THETA2)
SCAL =14/ (he®PIBY2) :
HDD (K1 =SCAL ’I(TBAR-TLO|‘(THETAz-THETAll+AHPL‘(COSl-COSZl0TDIF

+2(PIBY2=THETAZ2))

COD{K)Y=SCAL ‘((TLO-TBAR]‘(THETAi#PIBYZ)+AHPL'C051)
KL=KL+1

IF(KL.LTe2) GO TO 1082
AHDD (L)=AHDD(L) +HDD (K}
ACOD(LI=ACDD(L) +CODIK)
GO YO 1186

AHDD (L)I=AHDDI{L=114HDD (K}
ACDOD(L)=ACOD(L=21)+CDD (K}
TMIN=TEMP (L+1,11)

K=K+1

GO TO 100

CONTINUVE

c sseseses SUBPROGRAM ENDS HERE sesesssss

PRINT 8

LINES=S

FORMAT (1H1,* THE EXPERIMENT STARTED ON DECEMBER 1, 1977 =)
PRINT 9 -

LINES=2

DO & L=1,428

AVTEMP (LI =I{TEMP (Lo 1) +TEMP (L, 2] 4TEMPIL*1,10)/73.

IDAY(L)=L=-1

DAY (L) =IDAY (L)

€C JTCAP CALCULATED

12
10
]

X=AHDD (L) =A

IF (XeLEeDe) GO TO 7

DO 11 K=1,428

IF (AHDD(K)«LE«X) GO TO 11

JTCAPILI=IDAY (K)

DPI{LI=IDAY(L)=IDAY (K}

PRINTY 12, IDAY(L,oTEMP(L,l',TEMP(L,Z),AVTEMP(L).AHDD(L"JTCAP(L,.

¢DP L)

LINES=LINES+1
IF(LINESeNEL.EDO) G0 TO 6

PRINT 9

LINES=2

GO TO 6

CONTINUE

PRINT 10, IDAYILI.TEMP(L,ii,TEMP(L,Zl,AVTEMP(LI,AHDDIL)
LINES=LINES+1

IF(LINES+NE-8C) GO TO 6

PRINT 9

LINES=2

FORMAT{1H1,® DAY MIN MAX ME AN ACCUMULATED HATCHING DEVELOP
e /% TEMP TEMP TEMP HDD EGG LAID ON PERIOD=)
FORMAT (2X913431 ZX,F4.1D,2X,E10.4,4X,I$,0X,F5.1)

FORMAT (2XeI3,31 ZX,F#.ll,ZX,ElO.b)

CONTINUE

S0=20000.
WO(1)=240e $ WO(2)=120s $ WO(3)= 60s 5 WOl4)=30.
DO 1001 M=1,4

| VRS
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INITIAL VALUES DATA

s{i1)=50

wii)=wO(M)

EG(1)1=0.

EMGT(1)=0. SRI(1)=0.

Ul1) =0,

FOR(1)=S(1)7v (1)

PRINT 61,!0(Ml.VO,DT,EO,P,TEMPL,TEMPT,TEMPU
PRINT 40

LINES=10

41 FORMAT(1HL,* INTIAL NO OF GRAINS = 20800 INITIAL NO OF ADULT
SWEEVILS =2,F8,07,* OPTIMAL RATES OF (1) OVIPOSITION =% ,3F&e2,% (2]
& MORTALITY =%,FBeb o™ (3) EMIGRATION =% sFBaB/ 4% PROPORTION OF EGG
4S5 THAT SURVIVE =#®,F4&e2/39* LOWER THRESHOLD TEMPe 28 4Fhoely® oPTI
+MAL TEMP, =%yFdely* UPPER THRESHOLD TEMPe =0 yFholel7)

40 FORMATI( 1X,y*® DAY MEAN NO OF ADULT EGGS LAID TOTAL NO EMIGR
+7TS TOTAL NO FOOD® 4/ * TEMP GRAINS WEEVILS THAT OAY Q@
+F EGGS THAT DAY OF EMIGRTS RATIO®,//71)

PRINT 22, IDAYIi),AVTEMPIl!,S(l',U(1I,EG(1I,U(1)gEMGT(l),R!ll,FDR(
+1)

LINES=SLINES+1

TEMP(429,1)=18,0

DO 777 K=2q.428

L=K=1

CALCULATION OF PARAMETER VALUES

V=PAR(AVTEMPCL) VL VO ,VU]

D=PAR(AVTEMP (L) DL ;DT DV}

EsPARI{AVTEMP (L) yEL yEQEV)

IF (FDRI(L),LE.CFDR}) GO TO 17
EGIK)=vesuw (L)
EMGT(KI=EswW{L)}
cosMD=Cesw L)

1% RIKI=SR{L)+EMGTIK)
S{K)=S(L)=COSMD =EG(K]
IF(AHDD{(L)YeLEeA) GO TO 683
JCIITCAP (L) _
IF (AHDD (L=1)oLT.A) GO0 YO 31
JTL=JTCAP(L=1)

GO0 TO a2

31 JTL=0

32 IF (JC.EQ.JTL) GO TO 83
NON=JTL+1
IF (JCeGT NON) 60 TO 103
2=2E£G6 (JC)
GO YO 85

103 LSUM=JC=JTL

2=0e
DO 87 I=1,LSUM
JT=JTL+I

67 Z=Z+EGI{JT)
G0 TO 85

83 2=0.

8% WiK]) L} =EMGT(K)+P*2

17 LiL=L=1
IF (FDR{LL)SLE.CFDR) GO TO 45
PRINT 14,IDAYIL)

LINES=LINES+4
IFI(LINES+LT.80) GO VO 45
PRINT 41,U0(M)'VD'DT,EO,P,TENPL,TEHPT,TEMPU
PRINT 40 '
LINES=10 '
14 FORMAT(7/y%* CRITICAL FOOD RATIO REACHED DURING THE #,1I3,*=TH D
+AY *477)

45 EG(KI=VeS({L)}/CFDR .
EMGT(K'=E‘(1043‘CFDR"U(L'-E‘B.S(L,
COSMD=C*sS{L)7CFOR

: 60 YO 15

48 IF (S(K)eGTe0e) GO TO 19
S(K)=0.

FOR(K)=Goe
IF (SIL)«EQeDe) GO TO 19
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PRINT 16,IDAY (L)
LINES=LINEZES+4&
IF(LINES.LT.80) GO TO 18
PRINY #1,U0|Ml.VOgDT,EO;P,TEHPL,TEMPT,TEMPU
PRINT 40
LINES=10
16 FORMAT (/7% WHEAT GRAINS WERE FINISHED DURING THE $4,1I3,%=TH O
+AY %4771}

19 IF (YIK)eGTs0e) GO TO 77
wWiK) =0,
PRINT 20, IDAYIK)
LINES=LINES+ & :
IF(LINES<LT.8&) GO TO 77 ' ’
PRINT #1,UO(M|,VO.DT,EO,P,TEMPL'TENPT,TEMPU
PRINT 40
"LINES=10
20 FORMATY (/7 /% AN EXTINCTION OF ADULT WEEVIL POPULATION OCCURS D
SURING THE ¢,I3,3%=TH DAY *4//1} i
A TRINT ZZ.IDAY(K),AVTEMP(K),S(Kl,WlKl.EG(K’,U(K"EMGT(KI,R(K),FDR(K
+
LINES=LINES+1
IF{LINES.LT«80) GO YO 777
PRINT QI,UO(Hl,VO'DTqEO,P,TEMPL,TEMPT’TEMPU
PRINT 40
LINES=10 :
22 FORMAT (3X,I3,2X,F5o1,8F9.2'FlO.b'
777 CONTINVUE
CALL SCALE(DAY3%¢960,47)
CALL SCALE(Sy15496047)

CALL SCALE(W315¢960,7)

CALL SCALE(FDRy Sa 60,7)

CALL SCALE(Uy31%4980497)

CALL SCALE(R415.960,7)

CALL SCALE(AVTEMP 915435605 7)

PRINT 23,FDR(421"FDR(AZB)‘S(521'95(425,'Ul521',U(425|.'(‘21.9"42
+8"R(“21),R(QZB"AVTEMP(QZI"AVTEHP(QZB'

23 FORMATU/ /7777 ¢91X,* VARIABLE ORIGIN VALUE SCALE FACTOR®S/

+0 FDR 8,2 (SXgEL11le3) /% S $,2(8XeE11e3) 7"

+ v $,2(5XK4E113)7 % w ®,2(9%X9E11e3) /7% R L]
¢92(5X9E11e3)V/% AVTEMP *42(5XeE113))

CALL PAUPLOT{21HUSE DARKER INK PLIASE,21)

CALL PAUPLOT(22HUSE BLANK PAPER PLEASE22)

CALL PLOT25

CALL AXIS (0.s0ey14H GRAINS . 149315,0590ey St421)
$450628) y=1)

QAL AXIS{CoesDesl2ZHTIME IN DAYS,=12,24409005DAY(421),DAY{4281,0]
CALL AXISU21440ey10HFOOD RATIO=1041500,900sFDRI421),FDOR1428),=1)
CALL LINE(DAY (1)45(1) 4605375151} -
CALL LINE(DAY(1) W (1) $60479150)

CALL LINE(DAY (1) 4FDR(1) y603751,4)

CALL LINE (DAY (L) 3AVTEZMP (1) 360457 g1y 3) '

CALL SYMBOLI(Bapl4eB8yCe2y 14H FOOD RATIO,0e4914%) ' TR o
CALL SYMBOL(Bae9il4alb 0e2427H NUMBER OF INTACYT GRAINSy 04327)
CALL SYMBOLI(B8s9s14e0502927H NUMBER OF ADULT WEEVILSy De927)
CALL SYMBOL(8,913a8y0e2y23H AVERAGE TEMPERATUREy Oe9p23)

CALL PLOT(30e90e9y=3) '
CALL AXIS (0e90e930HADULT WEEVILS {TOTAL EMIGRANT},30, ;95@.90,,w(

*+421) ,W(428) p=1)

CALL AXIS(0eyQepl2HTIME IN DAYS’-12’2~.°’°.’DA1“21,'DAY“ZB"ﬂ,
CALL AXIS(21s90e919HAVERAGE TEMPERATURE’-is,15.0,90.,AVTEMP(~21',
+AVTEMP(424]) 4=1) '
CALL LINE(DAY (L)ywW (1) 96053 7,1,01)

CALL LINE(DAY{(1),R(1) 980,791,452}

CALL LINEIDAY (1)U 1) 96037 451,11)

CALL LINE(DAY(1),AVTEMP (L) 28N 9Tely3) o

CALL SYMBDLIG.O,iQosg0.2'19HAVERAGE TEMPERATURE ;0e,519)

gALL SYHBOL1600'1“0§.0.Z,JSHOQQQQQTHE S1ZE OF THE IMMATURE GROUP,
+0.,38) :

CALL SYMBOL(8+0918e900e2927H NUMBER OF ADULT WEEVILS, 0e4927)
CALL SYMBOL(84913¢663002929H TOTAL NUMBER QF EMIGRANTS, Oe9p28}

CALL PLOT(30s90e9p=3)
1001 CONTINUE
22% STOP
END

izt



SUBPROGRAM FOR EVALUATING PARAMETER VALUES

51

e

54
33

FUNCTION PARUTyVHL y VHO,VHU)

COMMON TEMPL,TEMPT TEMPU

IF (T+LESTEMPT) GO TO 52

XSIVHO+ (VHU=VHO) S (T=TEMPT) Z(TEMPU=TEMPT)
IF({XeLTe0e} GO TO 54

PAR=X

GO TO 53
X=VHLf|VHO-VHL,‘(T'TEMPL'I(TEMPT-TEMPL’
G0 Y0 51

PAR=O0.

RETURN

END

A16 L4
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APPENDIX 5.1

Proof of Proposition 5.1 (of Section 5.2.4)

(i) For a given w_ we have to prove that d(sn,wn)

is an increasing function of s, - Now with

Bnl = K + o, = g - be sn/wn + (v + A)/sn

where

B =1u + (1 + bC),

an/B (A + vY/{ (X +V)B s - bssi/wn} :

nl
Then

3d (s ,w )
n n
9s

o
= g [be/w + O+ ) /s ) e Fn12
n nl

£ O+ V) (B - 2bes_/w ) (1 - e Pnl?)y

2 2
[X + v + Bsn besn/wn] .

The first term of the RHS > 0 . It is only the second term

that could be negative. So B - 2bes /w_ > 0, that is
. Bd(sn,wn)

sn/wn < B/(2be), is a sufficient condition for > 0

9s
n

and therefore for d(sn,wn) to be an increasing function

of s .
n
- _ \
(ii) SLn = [d(sn,wn)] n
=[1 - X(s ,w)]"
n n
where

@ -B
x=§—n—(1-enla)<1.
nl
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Now taking the logarithm of zn and differentiating with

respect to w, oowe have

1 8£n 1 Bd(sn,wn)
T 5w = =X (1 - X) ln(l - X) + wn _—W—} (5.A.1)
n n n
where
bes
ad _ Of'n N _ _Bnla
Yo 3w W B2 {1 (1 + Bnla)e ]
n n nl
anbesn ~Bpia
< [1 - e "017] ~
wanl
So if sn/wn < B/ (2bg)
a B
ad n _ Bn12d
Wn —aW < —2—8-2— (1 e n ) . (5.A.2)
nl
Since 0 < X <1
ln(l—X)——X——z———3——... .

Hence (1 - X)In(l - X) < - X(1 - X)

o ‘ a -

- - 811 (1 e-Bnla)h_— Brl (1 o Bnla)]
nl L nl
%n -Bnia

- @-eTMhHA e /ey

(5.A.3)

So using (5.A.2) and (5.A.3) we have the contents of { '}

in (5.A.1)
o N B=2(B_,=-0a_)
< EJL (1L - e Bnla){ _ZBnl 2 ) .(5.2.4)
nl nl
But Bnl -a = B - bssn/wn > B - B/2 = B/2
when sn/wn < B/(2be) .
Hence RHS of (5.A.4) < 0 .
2
Therefore from (5.A.1) §W£ < 0. Hence &  is a decreasing
n

function of W



Al9.

BIBLIOGRAPHY

Allen, J.C. (1976). A modified sine wave method for cal-

culating degree days. CEnviaronmentald Entomology 5,
388-396.

Arditi, R., Abillon, J.M. and Vieira Da Silva, J. (1977).

The effect of a time-delay in a predator-prey model.
Mazth. Biosci.33, 107-120.

Arditi, R., Abillon, J.M. and Vieira Da Silva, J. (1978).

A predator-prey model with satiation and intraspecific
competition. ¢&codogicald Modedding 5, 173-191.

Bailey, N.T.J. (1964). The elements of stochastic processed.

John Wiley and Sons Inc., New York.

Bailey, N.T.J. (1975). The mathemaiicald theory of infectious

diseases and its applications, 2nd ed. Charles Griffin
and Co. Ltd., London.

Bartlett, M.S. (1960). Stochastic populdation modeds.

Methuen and Co. Ltd., London.

Bartlett, M.S. (1966). An introduction to stochasiic

processes with special neference to methods and

applications, 2nd ed. Cambridge University Press,
Cambridge.

Bellman, R. and Cooke, K.L. (1963). Ditterential-difference

equations. Academic Press, New York.

Birch, L.C. (1945). The influence of temperature on the

development of the different stages of Calandra oryzae L.
and Rhizopentha dominica Fab. (Coleoptera). Aust. 9.
Exp. Biol. Med. Sci. 23, 29-35.



A20.

Birch, L.C. (1953). Experimental background to the study of
the distribution and abundance of insects. I. The
influence of tempereature, moisture and food on the

innate capacity for increase in three grain beetles.
Ecodogy 34, 698-711.

Chesson, P.L. (1976). Modeds for animal movemenits.
Ph.D. thesis, University of Adelaide.

Coombs, W.C. and Woodroffe, G.E. (1964). The influence of
food conditioning on longevity of Sitophidlus granarius
(L.) (Cod. curculionidae). Entomodlogists Mon. Mag+ 99,
145-146.

Coombs, W.C. and Woodroffe, G.E. (1973). Evaluation of some
of the factors involved in ecological succession in an

insect population breeding in stored wheat. J. Andim.
Ecol. 42, 305-322.

Cox, D.R. and Smith, W.L. (1961). Queues. Methuen and Co.
Ltd., London.

Driver, R.D. (1977). Ozdinary and delay differenitial equations.
Springer-Verlag, Heidelberg.

El'sgol'ts, L.E. and Norkin, S.B. (1973). Jntroduction to
the zheory and applications of differential equations

with deviating argumenits. Academic Press, New York.

Erdélyi, A. (1962). Operational cadcudus and generalised

functions. Holt, Rinehart and Winston, New York.

Evans, D.E. (1977). The capacity for increase at low tem-
perature of some Australian populations of the granary
weevil, Sitophidus granarius (L.) Aust. J. Ecology.
2, 69-79.



A21,

Golebiowska, Z. (1969). The feeding and fecundity of
Sitophildus granarius, Sitophilus onyzae and
Rhyzapeatha dominica (F.) in wheat grain. J. stozed
Prod., Res. 5, 143-155.

Hardman, J.M. (1977). Environmental changes associated
with the growth of populations of Sitophidus ornyzae
(L.) confined to small cells of wheat. J. 4tonred
Prod. Res.13, 45-52.

Hardman, J.M. (1978). A logistic model simulating environ-
mental changes associated with the growth of populations
of rice weevils, Sitophidlus oryzae, reared in small cells
of wheat. 7. Appld. Ecology 15, 65-87.

Henderson, W. (1979). A solution of the Carrier-borne
epidemic. J. Appd. Prob. 16, 641-645.

Hoppensteadt, F.C. (1976). Mathematicad methods of
populdation biodogy. Courant Institute of Mathematical

Sciences, New York University.

Howe, R.W. (1951). The movement of grain weevils through
grain. Budd. &nt. Res. 42, 125-134.

Howe, R.W. (1965). A summary of estimates of optimal and
minimal conditions for population increase of some
stored products insects. J. 4tozred Prod. Res. 1, 177-184.

Howe, R.W. (1966). Developmental period, and the shape of
curve representing it in stored products beetles. 7.
dtoned Prod. Res.2, 117-134.

Howe, R.W. and Hole, B.D. (1967). The yield of cultures of
Sitophidus granarnius at 25°C and 70 per cent relative
humidity with some observations on rates of oviposition
and development. J. 4tored Prod. Res. 2, 257-272.



A22.

Hurlock, E.T. (1965). Some observations on the loss in
weight caused by Sitophidus granarius (L.) (Coleoptera,
Curculionidae) to wheat under constant experimental
conditions. J. 4tored Prod. Res. 1, 193-195.

Kiester, A.R. and Slatkin, M. (1974). A strategy of movement

and resource utilization. T7Theor. Popud. Biod. 6, 1-20.

Logan, J.A., Wollkind, D.J., Hoyt, S.C. and Tanigoshi, L.K.
(1976). An analytic model for description of temperature
dependent rate phenomena in arthropods. Envinonmental
Entomodogy 5, 1133-1140.

MacLagan, D.S. (1932). The effect of population density upon
rate of reproduction with special reference to insects.
Proc. Roy. Soc. Lond. B 111, 437-454.

MacLagan, D.S. and Dunn, E. (1935). The experimental analysis
of the growth of an insect population. Proc. Roy. Soc.
Edinburgh 55, 126-139.

Mazanov, A. and Tognetti, K.P. (1974). Taylor series expan-
sion of delay differential equations - A warning.
J. theor. Biod. 46, 271-282.

Mertz, D.B. and Davies, R.B. (1968). Cannibalism of the
pupal stage by adult flour beetles: An experiment and
a stochastic model. Biomextaics 24, 247-275.

Neyman, J., Park, T. and Scott, E. (1956). Struggle for
existence. The 7xibodium model: biological and
statistical aspects. Proc. 32d Berkeley Symposium on
Math. Stats Prob. Vol 4, 41-79.

Niven, B.S. (1968). Mathematical modeds fon populations
of the floun beetle Trnibolium. Ph.D. thesis,

University of Adelaide.



A23.

Pearce, C. (1970). A new deterministic model for the inter-

action between predator and prey. Biometrics 26,
387-392.

Puri, P.S. (1966). On the homogeneous birth-and-death
process and its integral. Biometaika 53, 61-71.

Puri, P.S. (1975). A linear birth and death process under
the influence of another process. 7. Appd. Prob. 12,
1-17.

Richards, O0.W. (1947). Observations on grain weevils,

Calandra (Col., Curculionidae). I. General biology and

oviposition. Proc. Zood. Soc. Lond. 117, 1-43.

Skellam, J.G. (1951). Random dispersal in theoretical
populations. Biometrika 38, 196-218.

Steffan, J.R. (1963). Les Calandres des grains (Sitophidus).
In: Entomologie appliquée a l'agriculture (Ed. by
Balachowsky, A.S.) 1, 1070-1099.

Surtees, G. (1963). Laboratory studies on dispersion
behaviour of adult beetles in grain. I. - The grain
weevil, Sitophidus grananius (L.) (Coleoptera,
Curculionidae). Budd. Entom. Res. 54, 147-159.

Tognetti, K.P. (1975). The two stage integral popultion
model. Math. Biosci. 24, 61-70.

Tognetti, K.P. and Mazanov, A. (1970). A two-stage popula-
tion model. Math.Biosci. 8, 371-378.





