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Preface

Of the many attempts to simplify the task of programming today's parallel

multiprocessor architectures, the most successful is the paradigm of Data-Parallelism.
Much of the appeai of the model lies in its high-level view of the parallel machine

coupled with its efficient mapping to a large class of real-world architectures.

While the Data-Parallel model has been very effective at allowing highly parallel

specification of operations across rectangular arrays, its applicability to programs

which use less regular data structures is very limited. This factor compromises the

utility of the model: many important scientific problems based heavily upon irregular

data structures (e.g., sparse matrix computations, finite element irregular mesh codes)

cannot be efficiently parallelized using existing Data-Parallel techniques.

The purpose of this thesis is to explore extensions to the Data-Parallel model

which make it more amenable to these kinds of irregular problems. In particular we

consider the paradigm of Nested Data-Parallelism proposed by Blelloch, investigating
techniques for efficiently mapping programs with such nested parallelism onto

traditional multiprocessor architectures. Through mathematical analysis we derive

a novel implementation of such features which makes use of a multi-threaded

model of computation upon each processor of a multiprocessor machine. We

describe a realization of this execution model which we have constructed for the

Thinking Machines CM-5 and detail how we have used this system as the basis for

the implementation of a simple language with Nested Data-Parallel features. To

demonstrate the validity of our approach we benchmark the performance of several

programs compiled using this language system, comparing the figures obtained with
those for equivalent programs compiled in the CM Fortran and NBsl systems. For

the real-world irregular codes we examine, our unoptimized compiler output running
on the CM-5 threading system delivers performance that is competitive with both

existing systems, surpassing each in certain situations.
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Chapter 1

Introduction

The efficient programming of highly parallel computers - those which offer tens,

hundreds or thousands of processors connected by a high-speed network - is perhaps

one of the most difficult problems facing modern scientific computing. It is widely

recognized that such machines hold enormous potential to provide radically improved

execution speeds for many scientific programs, thus enabling larger problems to

become computationally feasible. Yet all too often this potential is unrealized, with
programmers who port their codes to parallel architectures observing only a moderate

improvement in performance.

By far the greatest factor contributing to this phenomenon is the complexity

inherent in the programming models offered for programming parallel machines. The

earliest attempts at constructing such models involved a simple grafting of parallel

features (e.g., communications primitives) onto the traditional sequential model of

execution as embodied in languages such as C and Fortran. Such systems, many of

which are still advocated, have the advantage that they are easy for a programmer

familiar with sequential programming to learn. However, as such programmers

soon discover, the models do little to mask the inherent complexity involved in
programming many individual processors, each of which may execute instructions

entirely independently and which may, at any time, interact in an arbitrary fashion.

By and large this complexity (many times greater than that of programming a

uniprocessor machine) must be managed by the programmer. On top of this, the

programmer is also charged with the task of making his or her implementation of

the desired algorithm perform well by ensuring that all processors in the system

remain gainfully busy throughout the execution, and that the overheads (e.g., due to

1



CHAPTER 1. INTRODUCTION

communication between nodes) are not great. Considering the massive intellectual

effort required to construct a program under these models that is correct in all possible

cases and also efficient, it is not surprising that few such programs exist.

The Data-Parallel programming model 152, L2Ll represents a simpler alternative

to the inherently complex task of programming under such models. Its simplicity
derives from the provision of a higher-level view of parallel programming which

abstracts away many of the details of the paraliel architecture. The fundamental
principle underlying this paradigm is that a potentially high degree of parallelism can

be achieved through partitioning a program's large data aggregates across many nodes

of a parallel machine, and then framing a computation in terms of whole-aggregate

operations whose (purely serial) per-element computations are relatively independent,

and which may thus be performed in parallel. A Data-Parallel (DP) program is made

up of a sequence of such high-level collection-oriented operations through which runs

a single conceptual path of control. The intellectual effort required to construct such a

program is considerably less than that needed to co-ordinate the multiple concurrent

control paths of the serial-derived paradigm. Thus, the DP model is easier to program.

However, the higher-level abstraction afforded by the paradigm means that the

ultimate performance of a DP program is determined by how it is mapped by

compiler onto the parallel hardware. Typically the high-level operations offered

by a DP language are chosen such that they are highly regular in both their
patterns of computation and their parallelism. This makes the compilation task

simpler, since such forms have clear - and at the same time efficient - mappings

onto parallel architectures. The compiler technology required to generate such

mappings is well understood, and has been incorporated into a number of very

efficient DP implementations (".g., Thinking Machine's CM Fortran ll27) and

C* [101, 102, 118, 125], as wellas various HPF [57] systems). These implementations

adopt a parallelizing strategy which seeks to cast the program in a form amenable

to execution under either lhe Single Program Multiple Data (SPMD) or Single

Instruction Multi,ple Data (SIMD) model of parallel computing. The approach

revolves around the partitioning of data aggregates within the DP program across

a number of disjoint memories, each of which is closely associated with a processor.

The program is compiled into a sequence of sub-steps, each corresponding to a DP

operation in the source. The various processors of the parallel machine progress

2



CHAPTER 1. INTRODUCTION

through this sequence in lock-step, globally synchronizing at the end of every sub-

step (to eliminate any possibilities of race conditions). It is in the execution of the

sub-steps that the parallelism of the implementation is realized: each DP operation is

implemented as a co-operative operation between processors, in which each processor

is charged with executing the serial per-element operations for those aggregate indices

stored within its associated memory.

In the sections which follow we describe several languages which have, in the
past, been used for the expression of DP execution, as well as offering details of

the concrete machines to which such programs have been mapped. Following this

historical appraisal of the DP paradigm, we offer a contemporary analysis of its
suiiability as a general-purpose medium for parallel execution, noting a broad class of

important applications which are not amenable to traditional DP expression because

they embody parallel forms which are irregular. The remainder of this thesis is

devoted to investigating techniques for supporting such irregularity while retaining

the general flavour of DP execution which makes it an effective and scalable technique

for parallel computation.

1.1- Hardware Implementations of Data Parallel
Execution

Historically, the success of the DP model of parallel computing can largely be

attributed to the development of computer architectures which directly embodied

executions models - the SIMD and SPMD paradigms - useful for supporting DP.

Where implementations targetting less-specialized parallel hardware (e.g., Multiple

Instruction Multiple Data (MIMD) multiprocessors) were required to synthesize or

simulate such modes of execution, DP systems producing code for specialized SIMD

or SPMD machines could take advantage of hardware-optimized facilities especially

catering to the styles of interaction and synchronization found within those models.

This level of direct support proved an enabling factor in DP's emergence as a
technology for high performance programming.

Below we briefly survey several of the SIMD and SPMD architectures which have

proven successful targets for implementation of the DP style of execution.

3



CHAPTER 1. INTRODUCTION

1.1.1 SIMD Hardware Solutions

By definition, a SIMD computer is one that applies a single machine instruction to

a number of different data elements simultaneously. Typically, such a machine is

organized as a collection of simple computational elements, each with an associated

memory which stores the data element upon which that node will act during

a computation. Upon each clock cycle, an instruction is broadcast to every

computational node whereupon it is carried out in the context of the registers and/or
memory that is owned by the node. A point of machine synchronization occurs at

the end of each machine instruction: a new instruction will only be broadcast after

all nodes have completed the previous instruction. This global synchronization is

provided directly in hardware.

The considerable research interest in SIMD machines prevailing in the 1970's and

1980's partly represents prevailing attitudes towards theoretical design of parallel

computers, but is more representative of engineering issues such as the price-

performance trade-offs in hardware available at the time [132]. In short, it was

only by the cojoining of a large number of very simple processing elements that a

cost-effective parallel computer could be constructed.

One of the first designs to embody this principle in a commercially-released

product was the ICL Distributed Array Processor (DAP) [132, 55, 97]. This

architecture was characterized by very simple computational elements (single bit-
serial processors) connected together in a two-dimensional grid of processors. The

earliest DAP configurations comprised square grids of 1024 (32 x 32) nodes - later

versions allowed 4096 elements to be connected. The DAP was originally conceived

as a dedicated special-purpose array processor which would be connected to an ICL
mainframe (in much the same way that vector processors were added external to
earlier architectures to provide high-speed vector computation). Effectively the DAP

functioned as a special unit of the mainframe's memory - values could be read to
and written from the individual banks of memory associated with each processing

node. Special instructions issued by the mainframe would cause some or all of the

processors to perform computations in the context of their local memory and registers

in a SIMD fashion. Data could be moved between processors along the network which

connected each with its nearest grid neighbours to the North, South, East and West.

The limited nature of this connectivity (and the lack of a general router) meant that
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CHAPTER 1, INTRODUCTION

only simple and regular patterns of communication could be supported.

The Thinking Machines CM-2 17, I32,, 733, 722] is a later SIMD architecture

which embodies many of the same notions, but also adds new features to the design.

Like the DAP, ihe CM-2 is composed from a large number of single-bit processing

elements, each with an associated memory. Commercial systems were sold with
between 4096 and 65536 nodes. To improve the computational performance o{ the

nodes, Thinking Machines chose to group the processors into neighbourhoods of 32

eiements and associate a Weitek-based floating-point co-processor with each such

neighbourhood. The design was flawed by the fact that the data-path between the

nodal memories and the FPU did not supply enough bandwidth to feed data to the

unit at a rate which achieved the theoretical MFLOPS rating of the Weitek chip.

Nodes of the CM-z are joined by a hypercube network which could support both

regular (e.g., nearest neighbour) and general communication, the latter due to the

presence of a router chip on each node. It should be noted, however, that the cost of

such general communication is several orders of magnitude greater than that of using

regular modes. As with the DAP, the CM-2 is properly envisaged as the back-end

for a conventional serial processor. At various times CM-2 systems were delivered

attached to Sun 4 work stations, Vaxes and Symbolics 3600-series Lisp Machines.

Contemporary with the CM-2 were the various SIMD architectures produced by

the MasPar Computer Corporation, in particular the MP-1/2 17 , 732, L6,77]designs.

These were multiprocessor machines based around collections of 4-bit processors

arranged in a unique network configuration called the X-Net In essence the X-Net
consists of a two-dimensional grid of processors, each of which has direct connectivity

with its nearest eight neighbours. In hardware, however, the node only has four

data-paths extending from it - each of these leads to a routing node which can

switch information through the network. A high-speed global router present within
the X-Net allows the MasPar machines to implement general communication as well

as the regular styles of interaction found in the DAP (although at a significantly

greater cost). Configurations of ihe MP-1 and MP-2 typically consisted of as

many as 16384 4-bit nodes, each of which integrated a floating-point/integer unit

to improve its computational po\4/er. The nodes executed instructions broadcast from

a DECstation 5000 front end, in a SIMD fashion.

The characteristics of SIMD multiprocessors such as the DAP, CM-2 and MasPar

offer considerable benefits for the efficient implementation of DP operators. The
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CHAPTER 1. INTRODUCTION

synchronization required for correct execution of such an operator can be easily

derived from the synchronization that occurs naturally within the machine upon

the execution of each instruction. Furthermore, the patterns of communication
typically found in common DP operations display significant regularity, making their
implementation under each of the three architectures very efficient. These two areas

of direct hardware support are jointly responsible for the very high levels of DP

performance achieved on such architectur programs which are purely DP can

be compiled into very efficient forms. Such hardware is, however, quite inefficient as

a basis for less-structured forms of computation. This leads to the non-DP sections

of a program (e.g., vectol indexing operations) becoming very costly to the point

of seriously degrading overall program efficiency. Given the fact that few practical

programs are completely composed from DP features, many have seen this as a serious

limitation on the utility of SIMD hardware. This factor can be identified as one of the

forces - along with significant changes in the cost/performance of off-the-shelf serial

processors - which motivated a distinct trend away from this style of specialized

parallel architecture.

L.L.z SPMD Hardware Solutions

Changing processor technologies, coupled wiih the general observations concerning

the difficulty in obtaining good performance for real-world problems executed upon

SIMD machines, has lead computer architects to consider alternatives for supporting

the DP paradigm in hardware. The obvious candidates, general-purpose MIMD
machines, embody an unstructured style of execution with little concession for low-

cost synchronization. For these reasons such machines do not mesh well with the

DP model, and typically perform poorly when called upon to emulate a DP style of

execution (usually by synthesizing appropriate synchronization protocols in software).

Experience has shown that a better architecture for the execution of DP operators

can be obtained by specializing a general MIMD machine by adding hardware which

directly implements these protocols of global synchronization. Further hardware

optimizations can be made by assuming the default DP situation of each node

executing an identical code image. We characlerize architectures derived from such

specializations as SPMD machines since (as was the case in the SIMD model) all

processors are effectively executing the same program across different data in parallel.

6
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However, unlike the execution found in SIMD machines, the SPMD architecture has

no implicit per-instruction synchronization: the nodes proceed independently in their
execution except at points in the program where special machine instructions cause

them to synchronize with the other nodes. We call this model of executiot lock-step.

The principal advantage of the SPMD architecture (from the perspective of
implementing DP) is that, while it retains the cheap synchronization which made

the SIMD machines efficient executors of DP operations, the underlying similarities
to MIMD machines offer good performance to non-DP sections of a program.

One architecture which embodies this direction in architectural evolution is the

Thinking Machines CM-5 17,I24,95, 33], the (rather dissimiiar) successor to the

CM-2. The CM-5 is composed of a relatively small number (from 32 to L024) of

large computational elements (SPARC processors with an optional bank of   high-

performance vector units), each with an attached bank of memory (32Mb), connected

by a high-speed fat-tree 177,45,70] network. At this level of description the system

resembles a general distributed memory MIMD machine. However, there are two

important differences. Firstly, the CM-5 enforces that each of the processor nodes

must each hold a copy of a single code image, although its execution of instructions

from that image is, by default, independent. Co-ordination of nodes within the

machine is implemented by a second network (the control network) that co-exists

with the primary fat-tree network, and similarly links all nodes. This network
provides rapid global synchronization of all nodes in the machine, as well as directly
implementing several features useful for DP execution. These include hardware

implementations of global broadcasts, global reductions (".g., u global OR operation

in which each node contributes one bit) and parallel prefix operationsl. Furthermore,

the control network supports variants of these operators which are segnlented: each

processor can set a flag indicating that it is the first element in a new segment of the

input data - computations for each segment are treated independently2. The control

network is ignored by most machine instructions executed by the node, with only a

select few synchronization and global-computation (e.g., parallel prefix operations

and parallel reductions) instructions activating its facilities. This model of nodal

execution is precisely the lock-stepped evaluation described previously: nodes execute

independently of one another, except at explicit points of synchronization.
lSee Section 5.2.5 or [17] for a description of this class of DP operations.
zThe segmented vector model is described in detail in [17]; we return to a discussion of segmented

DP operations in Section 2.3.

7
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The control network facilities of the CM-5 permit very effi.cient implementations to

be made for DP operations, in much the same way a,s the cheap synchronization of the

CM-2 was an enabling factor in providing DP implementations on that architecture.

However, the fat-tree network offers a communication network which, while optimized
for regular communication (e.g., nearest neighbour communication), delivers a high-

bandwidth medium for point-to-point communication. General communications

across this network are only a factor of four worse than the optimal case, as

compared to a factor of 100 or more for the SIMD machines. This offers considerable

opportunities for the efficient execution of the non-DP segments of a program (e.g.,

dereferencing a single index of a data aggregate), making the CM-5 considerably

better at executing practical problems (both DP and non-DP).

L.2 Data-Parallel Languages

A number of programming languages have been proposed which centre upon DP

constructs as the primary source of parallelism in programs. Such parallelism is

obtained by the specification of whole-aggregate operations across aggregates which

can be distributed between nodes of a parallel machine. The majority of DP

languages provide similar features for the introduction of these types of aggregates

and operations [55] - most can be characterized as providing the following common

facilities:

1. Aggregates as elemental data objects: the ability to pass whole aggregates

as function arguments, and the ability to syntactically refer to an entire

aggregate (".g., by providing the aggregate name without any index dereference)

within an expression.

2. Bulk subselection from aggregate objects: the ability to obtain the values

for an entire aggregate dimension as a single operation, and often the ability to

be able to further refine this selection by specifying a subrange of indices.

3. Aggregate expressions and conformity: the ability to specify an operation

across all indices of an aggregate simply by applying the operation to the

unindexed aggregate name, and also the ability to apply simple binary

operations (e.g., plus) to pairs of conformant aggregates. The semantics of

these latter operations are defined by pairwise matching aggregate indices.

8
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4. Coercion of aggregates to obtain conformity: the ability to be able to

either increase the rank of an aggregate (by copying values from the existing

aggregate along a new dimension) or to decrease the rank of an aggregate (by

collapsing an aggregate dimension by combining values using some function -
e.g., summing along a particular dimension).

5. Expression indexing: the ability to apply all the normal styles of aggregate

indexing to expressions which represent aggregate values.

6. Aggregate Assignment: the ability to be able to assign an aggregate valued

expression to a specified conformant aggregate. The semantics of such an

assignment are element-wise; each element in the destination aggregate is

overwritten with the value of the corresponding element in the aggregate-valued

expression.

7. Parallel Operations Across Aggregates: a set of standard DP operations

which enable a programmer to introduce explicit parallelism through collection-

oriented expressions; these include common (commutative) reductions of

aggregates, parallel prefix Í52, 68, 76, 83] operations, and permutation

operations.

These language features collectively provide an environment in which explicitly
parallel specification can be made. The precise manifestation of these concepts in
DP languages - including the choice of the types of aggregates to allow parallel

expression across - is governed to a large extent by the historical development of

this class of languages and the computational forms they were originally designed to

express. We turn now to a brief survey of these factors, and a description of the

common DP languages they have produced.

L.2.L Historical Development of DP Languages

The development of DP languages can be considered to have been driven by two

distinct forces: the need to develop a medium for programming newly-constructed

SIMD machines, and the desire to construct a conceptually simple framework for

expressing parallel operations. The first of these influences historically dominated

the early evolution of the paradigm, and has largely been responsible for forging

the broad characteristics of the DP languages which are today widespread and

9
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popular. The desire for simplified parallel execution has been responsible both for

the development of several research-based augmentations to the basic DP language

model, and ultimately to the refinement and modern evolution of the model through

a,bsorption of ideas from such research systems.

In this section we briefly chronicle this history and evolution of DP languages.

Conceptual Origins

The basic concepts underlying DP can be identified in early collection-oriented lIlS]
languages such as APL [60] and SETL [108]. Within these languages, features

were provided for the expression of whole-aggregate operations as single source-level

operations. Conceptually, an aggregate was a first-class citizen in these languages

(rather than merely a bundle of data elements) and features were provided for

applying operations directly to an aggregate. The semantics of such collection-

oriented operation were typically defined to imply that an identical computation rffas

to be performed for each index of the collection. Also present were language features

to reduce the dimension of an aggregate (e.g., sum all elements of a vector). These

features are all reminiscent of the DP style of programming, despite the fact that
these languages were typically designed not for their opportunities for parallelism,

but rather for their expressive and abstractive power.

Languages to Program Early SIMD Machines

When SIMD architectures began to be developed in the 1970's as the results of

research into cost-effective ways to build parallel computers, the development of an

appropriate paradigm for programming such machines became an important priority.
Early prototype systems were coded directly in assembly language; however, with the

possibility that such machines could become commercial products came the necessity

to develop languages and compilers which could effectively exploit the potential of

the architectures. In developing these systems, vendors most frequently targetted

Fortran as a basis for the language they sought to develop. This choice was driven

largeiy by the language preference and familiarity of their intended market (scientific

programmers). The DP extensions to the base language were derived very simply

from an appraisal of the styles of execution for which the underlying SIMD machine

was optimized. Such machines were clearly intended as fast array processors - thus,
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parallel constructs across arrays were introduced. The fact that the nodes of the
machine were always required to execute the same sequence of instructions gave their
parallel execution a very regular flavour, well suited to problems which called for all
arrav elements to be acted upon in an identical (or similar) fashion. That is, in a DP
fashion. Thus, DP features were added to the language to allow for the convenient
expression of these types of programs (which best exploited the target machines).

An early example of a vendor-supplied DP language targetting a specific SIMD
architecture is DAP Fortran [59] (a dialect constructed for the ICL DAP, described

in the previous section)3. The language exploited parallelism from operations across

arrays whose values were partitioned across the machine. A severe limitation placed

upon such partitioned aggregates was that they could only be of a size less than or
equal to the number of nodes in the machine. That is, the largest array that could

be considered on the early DAP machines was 32 x 32; in later machines arrays up

to 64 x 64 could be acted upon. This imposition was clearly a product of the way in
which the computation was mapped onto the SIMD machine: each processing element

was responsible for acting on a sole aggregate element. DP operations in the language

supported the following types of operations across partitioned aggregates:

o broadcast a value to be stored in each aggregate element or sub-aggregate (e.g

give each row of a 2D matrix the vector value [4,5,6J),

o perform parallel assignments between aggregates of conformable shape,

o compute an array-section or slice,

o express computation of shifted forms of an aggregate (e.g., cyclically shift all
indices of the vector one place to the right)

o perform a given scalar operation on all indices in parallel (e.g., compute the sin
of all indices of a matrix, storing the results in a new matrix)

o combine aggregates (or dimensions of a multi-dimensioned aggregate) in parallel

according to some function (e.g., sum all rows of a 2D matrix to give a vector

of sums)

sThe DAP Fortran language bears many similarities to earlier research languages developed
to program the Illiac IV [7, 15]. Specifically, it is influenced by the CFD Fortran [93, 120] system
constructed for that architecture. The principal innovation of the DAP language over this predecessor
was the ability to consider more than one dimension of an aggregate as a candidate for parallelism.
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The DP features of the language were introduced either through a special indexing

notation (".g., l(,1) referred, by a notation of subscript elision, to the first column

of the matrix A) or through a set of inbuilt aggregate-level functions. Figure 1

gives some examples of DAP Fortran's DP features at work. To allow for more

complex operations to be specified, the language allowed for many of these styles

of DP operation to be combined with conditionals which defined the subset of the

processors which would execute the operation. For example, it was possible to specify

within an aggregate-level assignment that only those array elements currently with
values less than 0 should receive a new value. In this case, this would define a DP

operation in which only a subset of the machine would participate.

Later SlMD-targetted Languages

As the facilities offered by SIMD architectures developed, vendor-supplied

Fortran compilers evolved to add features exploiting the new hardware-supported

functionality. Early improvements over the DAP Fortran (e.g., CM Fortran Il27 , I28]
and MasPar's MPF [55]) eliminated the restriction on the size of distributed aggregate

which could be acted upon. These languages took advantage of special hardware

present in machines such as the CM-2 and MasPar which implemented a model

of uirtual processors. Conceptually in such languages a DP operation across a

grid utilizes as many virtual processors as there are elements in the aggregate -
as in DAP Fortran, each such processor is responsible for computations across

only that element. Hardware within the machine maps virtual processors onto

actual processors, allowing each physical processor to take the role of many virtual
processors. This advance in DP languages introduced a degree of architectural

independence - no longer was the size and configuration of the machine explicitly
defined within the program. Furthermore it permitted code to be easily transported

between machines of different (physical) size.

The CM Fortran language also introduced an alternate form of DP notation based

around the f oral1 loop, a generalized parallel loop across indices of an array. The

expressiveness of this concept extends the range of problems which can be expressed

as DP programs; the fact that the language permits for the nesting of f oralI loops

offers interesting possibilities for supporting computationally complex or irregular

codes (see Section 2.1.1).
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TNTEGER A(3,3), B(3,3), C(3,3), V(3), It(3)

v = (1,2,3)
+ v=[123]
y = (1,1,1)
+ w=[111]

1. Broadcast Operations
A = XPND (V,1,3)
+ A=[123

123
1231

B = XPND (td, 1,3)
+ Á=[111

111
1111

2. Aggregate Level Operations
C=A+B
+ c=[234

234
2341

3. Computing Array Slice
V = C (,1)
+ v=[222]

4. Computing Cyclic Shift
c = C (,+)
+ C=[

õ. Element-wise Fortran Primitive
B = LOG (B)
+ B=[000

000
0ool

6. Reducing Dimension
Il = SUM (C,1)
+ w=[1269]

Figure 1. Examples of DAP Fortran's DP Features
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Another facility which appeared first in this generation of DP languages \4/as

the ability to specify permutation-like operations on vectors and matrices. These

typically appeared in the language either as intrinsic functions (e.g., the parallel SEND

operations of CM Fortran) or as special indexing operations in which an integer vector

(rather than a scalar) appears as the index. Figure 2 illustrates this latter (vector-

valued subscript) notation as used by CM Fortran. Facilities are also commonly

available in this language for specifying generaiized permutations in which values

could collide (and be combined by a function) at their destination. It seems clear

that these kinds of features entered DP languages primarily because of the presence

of generalized network routing hardware in the machines to which they were targetted

(e.g., the CM-2 and MasPar).

INTEGER V(6), hI(6), R(6)

Y = (11 ,12,!3, 14,15,16)
+ Y=[111213141516]

hl = ( 1 ,5 ,4,3 ,6 ,2)
+ W:[154362]
R = V(Il)
+ n=[111514131612]

Figure 2. Examples of CM Fortran's Permutation Operations

DP Languages Derived from C and Lisp

Simultaneous with these advances in vendor-supplied languages, several DP languages

were proposed which developed the paradigm in other directions. A number of

definitions (and implementations) were made for DP extensions to languages other

than Fortran, but which supplied similar styles of array-based operation. The

C* [101, 102,L21,118,48, 125] language was an early exampleof such an extension,

which sought to extend ANSI C by adding a special class of parallel operations

(specified using a special style of indexing) across a program's (impliciily) distributed
arrays. Similar efforts in merging DP features with Common Lisp lead to Connection

Machine Lisp [53, 55] and later *LISP 1123,l2Ll.
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Experiments with Parallel-Prefix Operations

As well as developing new bases for DP languages, tesearchers in the 1980's also

explored new modes of expressing parallel computation in the DP style. The most

successful of the proposals to emerge from this work was that of the Parallel-

Prefi,r (or scan) operator [52, 68, 76, 83]. The semantics of this operation involved

the computation of a series of partial sums to be computed according to some

(associative) combining function. For example, a plus-scan operation, when applied

to a vector [1,2,3] would produce the vector of partial sums [1,3,6]. Although
such an operation seems, at first glance, inherently serial (the result of each addition

must be computed prior to its input into the next addition), such is not the case:

techniques developed by Hillis and Steele [52] (described further in Section 5.2.5)

allow such operations to be calculated in O(n log n) on an n processor SIMD machine.

Furthermore, research into the expressive power of such operations showed them

to be surprisingly general, with the ability to concisely express complex operations

such as parallel radix sorting, language parsing and even list traversal [52, 17].

The demonstration of parallel prefix operations as practical expressions of parallel

operations, which also operated in a broadly DP fashion, lead to their introduction
into a number of languages, including CM Fortran and *LISP. It also influenced the

design of the CM-5 hardware, as described in Section 1.L.2 previously.

Standardizing DP Fortran

With the proliferation of many different dialects of DP Fortran, all based on

similar notions and abstractions, came the desire to standardize. The end result

of considerable discussion by ANSI group X3J3 was the language Fortran 90 [81].

This standard embodied the DP features introduced with DAP Fortran, and added

the machine-independence of languages such as CM Fortran. As with the majority
of DP Fortran dialects, much of the parailel specifrcation is represented within
array indexing operations. Special parallel intrinsics (e.g., matrix multiplication,
dot products, summation of all matrix elements, circular and end-off shifts) are also

provided. Notably, the standard does not explicitly include parallel prefix operations.
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Recent Directions in DP Fortran

Subsequent to the codification of the Fortran 90 standard, a number of new DP

dialects have emerged. Of these, the most well-known is High Performance Fortran
(HPF) 157 ,I41, 75], an extension to the standard which seeks to ofer the programmer

direct control over a number of issues concerning the mapping of the program to an

underlying machine. As we have described previously, the common implementation
path for DP languages on parallel machines centres upon the decomposition of array

structures across the various memories of the underlying machine. In HPF source-

level features are available which can be used to guide the compiler in choosing the
proper data decomposition. Such features are a reaction to the difficulties encountered

by compiler-writers in producing a system which can automatically make high-quality

data layout choices by anaiytical means. In HPF, a programmer can specify a
DECOMPOSITION which is an abstract entity which looks similar to an array but which

implies no storage. Such declarations are useful since arrays within the program can

be specified as being ALIGNed with a particular DECOMPOSITION. If two or more vectors

(or matrices) are ALIGNed with the same DECOMPOSITI0N, the compiler can deduce

that those data aggregates should be decomposed identically: that is, if vectors V and

Ïl are identicaily aligned, it is always true that the ith "I"-"nt of V is stored within
the same memory as the ith elem"nt of tü. This implies that DP operations such as

V = 2*!rtr involve no inter-node communication and are thus very cheap to execute.

The syntax of the language allows for other types of decomposition information to be

specified through ALIGN statements, including the ability to align a one-dimensional

aggregate with one of the dimensions of a multi-dimensioned matrix, and the facility
to denote that one matrix should be decomposed in a manner which makes it aligned

with the transpose of another. While the addition of such a specificational feature

to the Fortran 90 standard can be viewed as a slight compromise to that language's

high level abstraction (i.e., the principle of coding without regard to the underlying

machine), the assistance which such directives provide in the compilation process is

significant in improving program performance.

Research Directions for DP Languages

Fortran 90 and HPF represent the state-of-the-art in DP languages as currently used

for scientific computation. Evolution of the ideas introduced over three decades ago
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have resulted in languages which are both mature in expressive power and easiiy

mappable onto a broad range of parallel hardware. However, as we will explore

in the section which follows, the domain of problems for which such languages can

provide efficient solutions is limited by the nature of the DP model which underlies

them. Since the model was founded upon an assumption of regular parallelism, its
expressiveness and efficiency do not extend to cases where irregular parallel forms

appear within a program. Examples of these kinds of irregularities arise naturally
in a number of important scientific problems. To allow for the expression of highly
parallel forms for such practically significant problems, a number of languages have

been proposed in which the general concepts of DP are present in a generalized

form (c.f., the descriptions of the languages Nosr, and Adl in Sections 2.1.1 and 7.1

respectively). The bulk of this thesis is devoted to exploration of these alternative DP
models, and towards the construction and evaluation of concrete instances of those

alternatives.

1.3 Limits of TYaditional Data Parallelism
The DP model and its traditional implementation under the SIMD and SPMD

models provides a proven high-performance platform for the specification of parallel

algorithms across large rectangular arrays of data. DP operations are provided

which perform a serial per-element computation for every index of such an array

in parallel. Others consider parallel operations across sub-selections of these regular

data structures, or parallel reductions of array values. All up, the paradigm offers a

broad range of parallel tools for modelling algorithms which exclusively make use of

rectangular alrays.

While many scientific computations may be reasonably framed in such a form,
there exists entire domains of scientifrc modelling - those which consider irregularly
structured data - that are not amenable to expression under the DP model.

Examples of such areas include:

o sparse-matrix computation (where grids are commonly represented as ragged

arrays such as that shown in Figure 3),

o computational chemistry simulations (where molecules are replesented by a

structuring of simple aggregates),
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¡ finite element computations across irregular meshes.

For these irregular problems of scientific computing the DP model offers only

slight opportunities for parallel expression of operations. This is an artifact of the

nature of the parallel operations available under the model: all deal exclusively with
applying a serial computation across indices of a regular data structure. If we use

DP operators to express an operation across the sparse matrix represented by the

ragged array in Figure 3 - say, the multiplication of every matrix element by 2

must frame a parallelization either as a single DP operation across the outer

(horizontal) vector, or a series of DP operations across the inner (vertical) vectors.

In the first case we would be specifying a computation where 8 serial per-element

computations are simultaneously active (each considering the indices of an inner

vector in series). The second situation involves a sequence of parallel operations: the

first comprising 4 simultaneously active per-element computations, the next consisting

of 8, and so on. While each of these DP forms is a parallel expression of the problem,

neither exposes the full parallelism of the problem - the multiplication of each of

the matrix elements by a constant is completely independent of any other element's

multiplication, therefore all 40 multiplications could be performed in parallel.

It is factors such as this which lead to the DP model being of limited use to
scientific programmers considering the parallelization of their irregular codes. Instead,

the developers of such systems are obliged to use either construct for themselves

an appropriate parallel execution model for their program from low-level parallel

constructs, or manipulate their problem to allow for an expression in some other

high-level parallel paradigm (e.g., an implicitly parallel functional model, or a parallel

object-oriented model). For many problems neither of these approaches is entirely

satisfactory - a more attractive alternative would be the development of a generalized

DP model which could support parallelism across irregular structures.

t.4 Thesis Overview
This thesis investigates ways of extending the simple DP model such that it can be

made more amenable to the expression of irregular scientific problems such as those

identified above.

Chapter 2 describes an extended DP paradigm which goes a long way towards

catering to these application areas, by allowing DP operations across irregular data
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Figure 3. An Irregular Data Structure Representing a Two-Dimensional Sparse
Matrix

to be expressed as a nesting of normal DP operations. We survey several previous

approaches [22, 96,26, L27l thaf have been undertaken in attempting to implement

a nested DP model on traditional multiprocessor machines.

Finding that none of the extant methodologies provides support for all aspects

of irregular computing, we undertake, in Chapter 3, a formal analysis of the DP

paradigms under consideration in an effort to distill a generalized execution model.

We present a comprehensive mathematical model of the DP and NDP paradigms,

as well as formalizing the concept of distributed execution. The ultimate product of

this analysis is a pair of NDP execution models which have guaranteed properties of

deadlock-avoidance for any pattern of data layout.

It should be noted that, while the material presented in Chapter 3 forms an

important part of the argument presented in this thesis, its subject matter is

exclusively technical and largely self-contained. Readers may elect to skip over this

discussion upon their first reading, concentrating on the products of our detailed

mathematical analysis - the candidate NDP implementations (summarized in
Section 3.5) - rather than the process by which they were derived. The reader
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may later return to the body of Chapter 3 in order to gain a precise understanding of
the mathematical framework of definitions and derivations which underlies the thesis.

A practical evaluation of the candidate NDP implementations derived fi'om

our mathematical model is presented in Chapter 4. We focus on the predicted

performance characteristics of each in the presence of irregular computation. At
the end of our analysis, we choose one of the two candidates - a multi-threaded

strategy the basis for subsequent work, based upon its capacities for masking

latencies introduced by program irregularities.
Chapter 5 describes an abstract machine which serves as a realization of the

chosen (multi-threaded) model on a multiprocessor distributed memory machine. Our
abstract model is highly flexible and permits generic specification of DP operations

which may operate over vectors forming part of a complex data-structure.
Considerations germane to the implementation of this model are discussed in

Chapter 6, in which a prototype implementation targetting the Thinking Machines

CM-5 [12a] is presented. The implementation includes several features specifically

catering towards irregular patterns of execution, including the provision for arbitrarily
distribution of aggregate elements across the machine. The execution model embodied

by this implementation bears some similarity to a number of previous multi-threaded

architectures [86, 30, 113,99,61 ,43,87,8], both hardware and software. Chapter 6

presents a broad comparative survey of such systems in order to characterize their
relationship to our model.

As a case study describing how our execution model supports the irregular

extensions to the DP model, Chapter 7 describes how a simple language based

upon this extended model may be efficiently mapped onto our CM-5 environment.

The performance of the language implementation is analyzed in Chapter 8, where

a number of regular and irregular computations are benchmarked. To allow

comparison, we consider the performance of equivalent programs expressed in an

optimized traditional DP system and another research prototype impiementation of
the extended DP model.

Finally, Chapter 9 draws conclusions from the work reported, highlighting a
number of significant contributions we have made in providing a highly parallel basis

for the DP specification of irregular scientific programs. We also discuss several

are¿s in which the existing systems and methodologies could gainfully be further
investigated.



Chapter 2

Nested Data-Parallelism

In the previous chapter we saw that, despite its successes at providing a high-
performance basis for simple and regular scientific computations, the traditional
paradigm of Data-Parallel execution is not easily applied to the parallelization of
less regular computations. Specifically, the flat model presented by these paradigms

does not mesh well with the structured data aggregates (potentially of irregular or

dynamically altering size) found within irregular scientific algorithms. This mismatch
makes it difficult (or impossible) for a programmer using the flat DP model to build
a computational form of such an algorithm which exposes and makes use of all the
parallelism inherently available within the algorithm. That is, due to limitations in
the model's expressibility, many opportunities for parallel execution are lost.

A simple generalization of the traditional DP model, Nested Data-Parallelism [22,
L7, 96, 26], has been proposed as a means of augmenting DP expressibility to
eliminate many of these forced serializations. This chapter introduces the paradigm
and describes how its application leads to natural and highly-parallel specifrcation of
parallel algorithms across irregularly-structured data. Following this is a discussion

of techniques that have been adopted to implement the generalized scheme on normal
multiprocessor architectures. None of the approaches is without flaw and none

precisely meet the requirements of irregular scientific computing. Thus, we close

the chapter with a discussion of the need for a more general execution model to
underlie the Nested Data-Parallel model.

2I
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2.L Concepts of Nested Data-Parallelism
The basis for the paradigm of Nested Data-Parallelism (NDP) lies in a simple

generalization of the traditional (or fl,at) model of Data-Parallelism. The flat model

derives parallelism by applying the same sequence of computation to every element

of a data aggregate in parallel, insisting that this per-element computation is purely

serial. The NDP paradigm, conversely, allows for the per-element computation of a
DP operator to itself contain parallel constructs in the form of other DP operator

instances. That is, the paradigm permits DP operators to be nested in a manner

analogous to the nesting available for other language constructs (e.g., serial loops).

A1 = lI ,2 ,3,4, 5]
Ã2 = [3,7]
A3 = 12,2,2,21
[ = [A1 ,42 ,43]

function g(x:integer -> integer) = x*1i

function f(v:integer[] -> integer[]) =
map (g,v);

B = map (t,l);
Figure 4. A Nested Data-Parallel Program

To illustrate the concept, consider the example program (written in a simple

functional DP pseudo-code) shown in Figure 4. This program considers a parallel

operation across an aggregate A made up of a nesting of one-dimensional vectors

(i.e., a ragged array) which computes a new vector nest whose elements have values

one greater than the corresponding entries in the source. The operation is specified

in terms of a simple "apply-to-all" DP operator called map. The semantics of this

operator are such that it accepts two arguments, a function and a vector and applies

the function to every element of the vector in parallel, returning a vector formed

from the results of the function calls. In the last line of the sample program we

see this operator applied to the ragged array A - this expression describes a parallel

operation in which three calls to the function f are made in parallel, the first receiving

the argument 41, the second receiving A2 and the third receiving 43. This is standard
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Data-Parallel execution. What distinguishes this program as NDP, is that the per-

element computation of this operator (i.e., the function f) itseif contains a DP

operator in the form of another nap expression. This function definition stipulates

that for each of the calls to f (themselves executing in parallel), a number of calls to

the function g (one per index of f 's argument vector) should be made in parallel.

It is important to note that the semantics of such a nesting of DP operations

implies the existence of rnultiple levels (or dimensions) of parallelism. In the

example code, two levels of parallelism exist: parallelism between instances of the

function f and parallelism within each instance of f (between invocations of the

function g). We describe the former as comprising the outer parallel di,mension of

the computation while the latter we term the inner parallel dimension. How such

multi-level parallelism is mapped onto a real-world multiprocessor is a question of

implementation, and will be discussed in Sections 2.2 and 2.3 below.

2.L.L Nested Data-Parallel Programming Languages

A number of languages support the specification of NDP operations through the

structured composition of flat DP operators. These we term Nested Data-Parallel

languages. Several such languages are described briefly below in terms of the

constructs they provide and the scope they offer for NDP expression.

NDP Fortran Dialects

As described in Section L2.7, there exist many dialects of Fortran where DP

features are added either through the provision of special indexing instructions or

through parallel loop constructs across arrays. Those that offer loop constructs (e.g.,

CM Fortran with its f oraIl construct) often cater for their nesting within a program.

This, in essence, defines an NDP computation. However, while such languages permit
the specification of multiple dimensions of parallelism within a computation, their
compilers are rarely capable of exploiting such parallelism. This is typically due to

the analytical complexities arising from the fact that these are imperative languages

- it is often difficult for a compiler to determine which of the instances within the

nested parallel loop have interdependencies. Faced with such difficulties compilers
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usually adopt a simple-minded serialization scheme for such NDP loops (such as

those described in Section 2.2)'.

SISAL

The SISAL [41, 116, 78] and SISAL 2 124] languages have their basis in the high-

level expression of dataflow semantics and are not explicitly DP languages. They

do, however, provide a number of DP-like operations across the language's vector and

array types. Particularly of interest is the parallel f oralI iterator which allows a loop

body to be instantiated independently for every element of a range or for every index of

a vector. This construct comprises three parts: a generator which specifies the range

of the iteration, a loop body which details the per-instantiation computation, and a

return value section which describes how the results from the loop body instances

should be combined to form a single result value for the loop itself. This combination

step represents a reduction operation similar to those found in most DP languages

(c.f., the rank-reducing operations described for flat DP languages in Section 1.2):

SISAL offers a typical selection of combination functions for this reduction including

summation, selection based on some criteria (e.g., return the minimum result), and

the construction of an array from the set of individual results.

SISAL permits the nesting of f oralI loops in two ways. The first is through the

complete textual encapsulation of one loop within a loop body expression of another

loop. The second nesting form makes use of a special syntactic form in which a single

body and return value section are specified but the generator includes multiple ranges

(separated by the keyword cross). Both forms of specification are completely general

and may be used to specify NDP iterations across irregularly structured data.

Paralation Lisp

Paralation Lisp [103] is a dialect of Common Lisp which adds a new data constructor,

the fi,eld, which allows for the specification of an array-like ordered collection of

elements. Field elements may be of any type including field types, thus allowing for

the construction of irregular nested aggregates. The language permits type heterogeny

between elements of the same field.
lFor example, although the CM Fortran language allows for nested forall loops, the current

compilers for the language 1127, I28l treat such constructs conservatively, making no attempt to
parallelize either the outer or inner loop.
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Two DP primitives are defined across Paralation Lisp's fields: the elwise
operator, and the (- (move) operator. The former represents a parallel iterator which
accepts a set of fields and a body erpress'ion, computing a result field by applying the
body expression to each element of each argument field. This is equivalent to one or
more instances of the apply-to-all operator map introduced in the pseudo-syntax of
our earlier example.

A second DP primitive offered by the language, the move operator, allows for
a generalized permutation (not necessarily one-to-one) of a field to be computed
in parallel. The operator accepts a source field and a mapping (computed using

the Paralation Lisp primitive match). This latter argument may be considered as a

bundle of one-way arrows connecting elements of the source field with positions in the
resultant field. During the move operation, each element of the source is pushed down

the arrows extending out from its location. Several arrows departing the same location
implies a concurrent read (duplication) of the source element; multiple arro\4/s arriving
at a single result position implies a combination (i.e., a reduction) of several source

elements. The latter situation is handled by the user specification of a reduction
function to combine colliding elements.

Both elwise and (- operations provide opportunities for general expressions to
be defined as per-element computations (for elwise this constitutes the body of the
iteration, for the move operation it derives from the possibility for a user-specified

combination function). Specifically these per-element expressions may themselves

contain elwise and/or (- operators, thus expressing NDP computation. Given

the nature of the field constructor (as a one-dimensional aggregate), such nesting

is important to the specification of parallel operations across the nested fields used

to represent complex (possibly irregular) data structures. An NDP implementation
of a (subset of) Paralation Lisp is described inl22] and [17].

Nesl

The Npst [18, 20, 19, 26) language of Blelloch is designed specifically with NDP
specification in mind. Parallelism in the language arises explicitly through operations

across homogeneous sequences of values. Irregularly structured data may be

represented as a nesting of sequences; parallel operations across such aggregates

may be specified by a nesting of the operators available for iteration across simple

unstructured sequences.
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The fundamental DP operation in the language is the functional flat DP

apply-to-aI1 construct specified by a syntax reminiscent of the list-comprehensions

provided by Miranda [131] and Haskell [58]. The Nnsl expression:

{ negate(a) : a in [3, -4, -9, 5] ];
demonstrates this construct in a flat DP context, specifying the parallel application
of a function negate to each element of a sequence of length 4. As with list-
comprehensions, NEsL's apply-to-a1l may also include a clause for sub-selecting

(filtering) which elements of the source sequence to consider in creating the result.

For example, the expression:

{ negate(a) : a in [3, -4, -9, 5] I a < a ];
is a speciflcation that the function negate should only be activated for the three

sequence elements whose values are less than 4.

The language also provides parallel permutation operations similar to the move

operator of Paraiation Lisp. The Npsl construct ->, called a parallel get, accepf; a

value sequence (of any base type) and an index sequence (of base type integer) and

computes in parallel a new sequence derived by selecting, for each position in index,
the value at that index of value. For example:

values = lao, a7¡ Q2,t Qg¡ a4¡ a'g, a'6, a'7f

indices = [3,5,2,61
values -) indices = laz, a5, ez, tl,ef

A related operation, lhe parallel put (denoted <-) is also supplied by Nnsl. This

operator takes a sequence of values (the destination sequence) and a sequence of
(integer, value) pairs. Each element (i,v) in the latter sequence causes the ith
element of the destination sequence to be overwritten with the value v.

Finally, the language also provides a number of important DP operations to

compute parallel Ttref,r (or scan) operations [17] across sequences. These operators,

(plus-scan, max-scan, min-scan, or-scan, and-scan) compute in parallel a ne\/

sequence which contains values which are partial accumulations of the elements of

the original using a particular accumulation function. For example, the plus-scan
operator, when applied to a sequence, generates the sequence of all partial sums

- that is, the ith "l"-"nt in the result sequence is the sum of all source sequence

elements up to the ith position.

While most of Nnsl's DP constructs do not ailow for general per-element

expressions, and thus do not allow for nesting, the apply-to-a11 operator clearly



CHAPTER 2, NESTED DATA-PARALLELISM 27

does support such a paradigm. This is the source of the languages NDP features: if
the expression to the left of the colon in the apply-to-a11 form itself involves a DP

operation (whether it be a put, get, scan, or another apply-to-a11) the computation

is NDP. The add-one operation across the ragged array structure outlined in Figure 4

can be concisely written in NPsl as:

B={{i+t: iinv}: vinA}
Section 2.3 below describes a strategy for the implementation of Nnsl's NDP

features.

Comparative Summary of NDP Languages

As we have seen in the preceding discussion, most NDP languages implement a

common set of DP operations - an apply-to-each construct, a parallel permutation,

and several reduction and parallel prefix operations. The flexibility afforded the

programmer in the specification of such operation, however, varies between languages

and between operators within the same language. Whereas a programmer may be

allowed to specify an arbitrary computation as the per-element code for one type

of DP construct, the same language may restrict the choices of per-element code

for another construct to a small set of system-defined options. Table 1 summarizes,

for each of the NDP languages considered thusfar (and also for the Adl language

introduced in Chapter 7), the availability of different constructs and the flexibility
afforded in their use.

DP Operation CM .tbrtran SISAT Paralation Nosr, AdI
apply-to-each

(body code)
yes yes yes yes yes

(user-def)
permutation

(combiner)
yes

(a,max,...)
no yes

(user-def)
yes

(system-def)
no

reduction
(combiner)

yes
(+,max,...)

yes
(+,max,...)

yes
(user-def)

yes
(*,max,...)

yes
(user-def)

scan
(combiner)

yes
(+,max,...)

no no yes
(+,max,...)

yes
(user-def)

Table 1. Comparing DP Operations Available in NDP Languages

A DP operation in which the programmer is permitted full flexibility in the

specification of the per-element computation is marked "(user-def)" in the table,

while those which restrict such specification to a small set of system-defined options
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appear with the label "(system-def )" or a sample of the valid options "(*, max, . . .)".

It is important to note that the introduction of NDP into a program is only possible

through use of an operator which allows user-specified per-element computation. Thus

languages which plovide a richer vocabulary of such operators allow for greater range

of NDP expression.

2.2 NDP Implementations via Serialization
As we noted earlier, one of the defining characteristics of the NDP paradigm is that it
naturally introduces multiple levels (or dimensions) of parallelism into a computation.
In implementing the NDP paradigm upon a conventional multiprocessor architecture,

it becomes necessary to map these independent dimensions of parallelism onto the

single real dimension of parallelism offered by the hardware.

The most straightforward approach to this mapping proble one adopted in
many compiler systems (e.g., 1127,1,37,1250 - is to seek a means of expressing

the parallelism afforded by an NDP expression in terms of the (well understood)

flat DP model. Once in this form the computation has only a single dimension

of parallelism and is thus readily mapped onto a hardware implementation. We

call such an approach an implementati,on uia serialization because it reduces the

parallelism within the computation by serializing all but one parallel dimension of

the computation.

A1 = l! ,2 ,3 ,4, 5]
A2 = [3,2]
A3 = 12,2,2,2)
[ = [Rt,lz,lg]

function f (v: integer[] -> integer [] ) =

{ for-serial i = 1,...,length(v)
resutt[i]=v[i]+1;

return (result) ; Ì

B = map (t,l);
Figure 5. The Inner Serialization of the Ragged Array NDP Code
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If we consider the simple example NDP code from Figure 4 it is clear that
there are two parallel dimensions expressed by the computation. One possible

implementation method is to arrange for a compiler to serialize the inner instance of
the map DP operation, leaving one parallel dimension (that afforded by the outer map).

Operationally, this leaves us with a program equivalent to that shown in Figure 5.

This program fits into the flat DP model since it incorporates a single DP operation

whose per-element computation is purely serial.

An alternative approach a compiler might adopt in implementing our simple NDP
program is to leave the inner DP operation as a parallel computation and serialize

the outer iteration of the nest. This yields a computation operationally equivalent

to the form shown in Figure 6. Again, this program fits into the confines of the flat
DP paradigm since it can be viewed as a sequence of flat DP operations. Specifically,

the serialized form does not violate the flat DP assumption that only a single DP

operation is active at any point in time.

A1 = l! ,2 ,3 ,4, 5]
A2 = 13,71
A3 = 12,2,2,2]
A - [A1,A2,A3]

function g(x:integer -) integer) = x+l;

function f(v:integer[] -> integer[]) =
map (g,v);

B = { for-serial i = 1,...,length(A)
result [i] = r (A til ) ;

return (result) ; )
Figure 6. The Outer Serialization of the Ragged Array NDP Code

It is clear than all approaches which implement NDP by reduction to a flat DP

form inherently involve the elimination of some parallelism available for exploitation
in hardware. Whether or not this reduces the performance obtained in the execution

of a NDP program on a particular hardware architecture depends on the size of

the unserialized dimension relative to the number of processing elements within the

machine. It is possible for an NDP specification to offer more parallelism than may
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be realized on a given number of processors; in that case, a seriaiized version of
the code may not suffer a significant performance penalty due to the loss in available
parallelism. Alternatively, a serialization may reduce the amount of parallelism within
an NDP code to a level where the processors of the machine are not kept busy. In
that situation a loss in performance is inevitable.

2.2,L Perils of Serialization
The serializing approach to implementing NDP places a heavy burden on the NDP
compiler - when compiling an NDP expression it must decide which of the availabie
parallel dimensions is to be preserved and which others are to be serialized. The
ultimate performance displayed by the program may be seriously affected by this
decision since it indirectly determines how much parallelism is available to be

exploited within the computation. It is clear that it is desirable that the parallel
dimension chosen for preservation by the compiler be as large as possible. In some

cases the exact extents of the dimensions may be statically determinable (".g., u
parallel loop from 1 to 100) although typically the extents of any given parallel

dimension will depend either on the size of an aggregate in the program, or upon

the dynamic value of some scalar variable or aggregate element. That is, in most

cases this information is not available statically and thus the compiler cannot make

use of such precise knowledge of the situation. Instead, compilers must adopt a
heuristic approach (driven by analysis of patterns of aggregate access) in deciding

upon a serialization. In general such conclusions, based on imperfect knowledge of
the actual situation that will prevail at runtime, flây prove unreliable, leading to
poor performance of the compiled program.

The situation becomes more complex when we consider programs whose data

(over which NDP computation is defined) changes shape as a computation unfolds.

Consider, for example, the recursive functional quicksort program shown in Figure 7

for Nnsl. The argument to the quicksort function, s, represent a sequence of items to
be sorted. The first step of the computation checks the length of the input sequence

(*s) to see whether a singleton has been passed. Assuming that the sequence contains

at least two elements, the function continues by selecting a random element as a pivot
(line 5) and computing the subsequence of s which contains elements whose value is

less than pivot (called Ies), the sub-sequence of elements greater than pivot (called
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gtr) and the subsequence of elements equal to pivot (lines 5, 6 and 7 respectively).

All of these subsequence computations are DP operations, making use of the apply-to
all operator with its selection clause.

Line 8 of the program specifies the NDP section of the computation: a nested

sequence of length 2 is formed (the first element is the subsequence les, the second

is the subsequence gtr) and a DP operation is specified across this new sequence.

The per-element computation performed during that operation is a recursive call to
qsort which is, as we have seen already, a function containing parallel code. Thus

the specified operation is NDP. The value returned by this operation (and stored in
result) is a new nested sequence of length 2,the first element of which contains a

sorted version of 1es, the second containing the sorted form of gtr. Thus to compute

the total sorted form of the input sequence s, all that is required is for the sorted

version of les (i.e., resulttOl)to be concatenated with the subsequence of s which
had values equal to pivot and further concatenated with the sorted form of gtr (i.e.,

result [1J ).

1 function qsort(s) =
2 íf (*s < 2) then s
3 else
+ Iet pivot = s[rand(*s)];
E les = {e in sl e < pivot};
o eq1 = {e in s I " -= pivot};
7 gtr = {e in sl e > pivot};
I result = {qsort(v): v in [Ies,gtr]]
e in result [O] ++ eql ++ result [1] ;

Figure 7. A Recursive Functional Quicksort in Npsl

Figure 8 shows the tree of calls to qsort generated for a top-level call to sort

a sequence of ten elements. Within each of these blocks, there exists parallelism in
the form of the operations to split the sequence around the pivot (lines 5, 6, and 7).

Between blocks at the same level of the tree there is a second dimension of parallelism.

This is introduced by the apply-to-aIl operator in line 8 which specifies that both

recursive calls should be made in parallel with one another.

If we consider the serializing implementations of this simple NDP code it quickly

becomes apparent that neither the outer nor the inner serialization is completely

satisfactory. If we serialize the inner operations (i.e., the DP operations within a
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Figure 8. A Call Tree for the Recursive Quicksort

block) then the paralleiism of the computation is very poor during early steps, due

to the small number of blocks. Near the leaves of the tree, however, this serialization
retains a good amount of parallelism: there are many blocks and the (serialized) work

contained within each is small2. If we consider the outer serialization of the qsort
(i.e., the serialization of parallelism between blocks) we note the opposite trend in
parallelism. At the root of the tree the blocks are large, indicating a large amount

of available parallelism, while towards the leaves of the tree the blocks (and thus the

opportunities for parallelism) become very small.

Figure 9 illustrates these trends. The graphs, obtained via a simulated execution

of the various serializations3, display the degree of parallelism at various times during
computation of quicksort over ten elements, for both the inner and outer serialization.

Also shown at the bottom of the figure is the theoretical parallelism that would be

attained by exploiting both parallel dimensions simultaneously. In these parallelism
profiles, the horizontal size of a block represents the amount of serial work for a

given application of the function qsort: we assume that it is possible to construct

2Whether this situation leads to good performance or not depends on how efficiently the
implementation can manage and/or schedule the large number of very fine-grained computational
elements.

3The simulated parallelism profiles were obtained by considering the units within the Quicksort
call tree (Figure 8) and their inter-dependencies. The blocks from the call tree were then placed
upon the graph axes in positions which adhered to the serialization under consideration and also
maintained inter-block dependencies.



CHAPTER 2, NESTED DATA-PARALLELISM

Inner Serialization
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a serialization which is O(n) in the size of the input vector. The degree to which
blocks are vertically stacked indicates the number of evaluations which are occurring
in parallel. As motivated above, the outer serialization approach displays poor

parallelism at the beginning of the computation but good parallelism later in the
execution; the opposite general trend is observed for the inner serialization.

It is clear that the changing sizes of the sequences passed to qsort at different

times during the computation leads to differing demands as to which serialization
is preferred. This demonstrates that for such a program none of the available

serializations will deliver optimal performan the sample serialization-based

executions shown in the figure consume 23 and 19 time units, compared to a

theoretical minimum execution time of 5. To implement programs with this style

of dynamically changing (or unfolding) parallelism in a manner which delivers a

performance close to this optimum, the implementation must necessarily exploit all
available levels of parallelism.

2.3 Structure Flattening
The serializing implementations of NDP we have discussed so far have been based

around the philosophy of applying a transform to constructs with more than one

dimension of parallelism, to yield a semantically equivalent expression which has a

single parallel dimension. These resultant expressions can be implemented directly in
terms of the unstructured DP model. A variation upon this approach is the structure

fl,attening methodology described by Blelloch et al, lI7, 22, 20, 96]. This approach

similarlyfocusses upon translating NDP constructs into forms expressible in a simpler

DP model; however, rather than targetting the traditional unstructured DP model

of computation, Blelloch's structure flattening transformations make use of the more

expressive segmented uector rnodel [I7]. This model adds one important feature to
traditional the DP paradigm: the ability to specify that a data aggregate (vector) is

logically segmented into a number of sub-aggregates (segments). DP operations across

segmented aggregates treat each segment as an independent unit of data, computing
results for each segment concurrently but independently. Operators which involve

accumulations only consider the accumulation of values within a single segment: there

is never a carry over of values from one segment's computation to anotherts.
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[ = [0,1,2,3,4,5,6,7,8,9]
seg = 12,3,1,4f

B = segmentedplus-scan (A,seg)
=à B = [0,1 l,l 2,5,9 l,l 5 l,l 6,13,21,30]

Figure 10. A Segmented scan Operation

Figure 10 illustrates the concept of a segmented flat DP operation. The vector A is

a simple one-dimensional aggregate containing 10 integer values; seg is a description
of how those ten indices of A are logically divided into four segments. According to
the specification, the first segment of the vector A consists of its first two indices, the
second segment comprises the next three, the third contains only a single index (with
value 5), while the final segment contains the remaining four indices. We consider a

segmented DP operation segmented-plus-scan which computes partial sums in the

same manner as the normal plus-scan DP operator, but which treats the computation
across each segment of the vector A as separate. That is, the operator generates a

sequence of values which are the partial sums of source indices within a particular
segment. The bottom section of the figure shows the results of the segmented scan

(the segmentation of the result is shown with I symbols). The first two result indices

are the partial sums from the first segment of A (i.e., the values 0 and 1). The next

three result values describe partial sums of A's second segment (the values 2, 3 and 4).

The single index which follows is the partial sum of the singleton third segment, while
the remainder of the result vector describes the partial sums of the final segment (the
values 6,7 ) 8 and 9).

Considering this example operation from a slightly different perspective, the

motivation for utilizing the segmented vector paradigm becomes apparent. The

computation we have just described can be considered to be operationally equivalent

to a code in which four flat scan operations are concurrently executed, each across

a different segment (sub-vector) of the vector A. The property of the segmented

vector model which indicates that each of these individual segment-operations must

be performed entirely independently, implies a conceptual parallelism between these

operations. That is, this specification is effectively equivalent to an NDP computation
(an apply-to-all whose body is a flat scan operator).

A number of implementations ll7, 22, 96] of NDP have sought to use this
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equivalence to provide a mapping from multiple conceptual dimensions of parallelism

to a single hardware dimension. The compilation technique adopted in these systems,

called structure fl,attening, involves reducing any nested aggregates present within an

NDP program into a single one-dimensional vector of values. The original structure
and dimensionality of each aggregate is preserved through a series of n segment

descriptor vectors (where n is the dimension of the original aggregate). The values

contained within the data vector are al1 those present in the innermost dimension

of the original structure, ordered so as elements from the same original vector ate

adjacent. The first segment descriptor describes the structure of the innermost level

of original nesting, the second descriptor specifying the structure of the next level

out, and so on.

The principle is best illuminated by example. Consider the data structure shown

in Figure 11(a). The structure flattening technique translates this structure into the

three vectors shown in Figure 11(b). The data vector in this diagram shows the

single vector of values produced by this method, while the segdesl vector describes

the lengths of the innermost nested sub-vectors. The sedges2 vector describes the

entire original aggregate as a single segment.

segdes2 =

segdesl =

data =

(b)

Figure 11. Example of Blelloch's Structure Flattening

Associated with this process of flattening aggregates into segmented vectors is a

second translation procedure which converts NDP operations within a program into
equivalent segmented DP operations over the flattened data. In the case of the CMU
structure flattening implementation of Nnsl, this is achieved by modifying those

user-defined functions referenced within a DP operation such that all sub-steps of the

nested call become either segmented vector operations or calls to other previously-

transformed user functions.

(a)

3

3 2 2

7 15 I 0 5 2 1
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The structure flattening approach to implementing NDP represents a significant

improvement over the serialization-based implementations described in the previous

section. The amount of parallelism presented by an NDP operation for exploitation
in hardware is based entirely on the length of the data vector for the source

aggregate, regardiess of how that vector is logically segmented. If we consider again

the quicksort NDP program from Figure 7 we can see that this equates to the
simultaneous exploitation of parallelism from more than one dimension. Operations

within an invocation remain parallel (they are the per-segment operations in the
transformed version) while parallelism between invocations is also exploited (more

than one segment is being computed simultaneously). Thus the flattening-based

implementation of this program displays optimal parallelism both at the root and

leaves of the call tree.

2.3.L Conditional Execution
The fundamental assumption made by the mapping of NDP computation onto the

segmented vector model is that an NDP operation may be characterized by a number

of structurally identical operal,ions applied in parallel. Such an operation is easily

translated into the application of a segmented version of that operation applied across

a flattened form of the original aggregate.

While many NDP codes adhere to this kind of behaviour, the fact that languages

allow for arbitrary user-defined computation (possibly including conditionals) to be

inserted as the per-element computation of a DP operator can lead to difficulties.

Consider for example the Npsl code shown in Figure 12. In this program the inner

computation of an NDP is made conditional upon the length of an inner vector. If
the vector is of length less than two, a vector of partial sums is generated using the
plus-scan operator; otherwise an apply-to-a11 operation is executed to generate a

result value. It is clear that in this program the per-element computation of the

outer apply-to-all operator violates the assumption of structural homogeneity:

it may occur that when executed, certain of the inner computations wiil invoke

instances of plus-scan while others will follow the control path which applies the

inner apply-to-all. That is, the operations applied in parallel may not necessarily

be invocations of an identical operator. Because of this, the program cannot be
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directly implemented by a process of flattening its structures and converting its NDP

operations into segmented vector operations.

function cond (vec) =
if #vec ( 2 then plus-scan (vec)
else {x+1: x in vec}

function do-stuff (vvec) =

{cond(z): zinvvec}
Figure 12. Mixing NDP and Conditionals

To implement conditional execution within NDP operations, implementations

based on structure flattening introduce an operation called packing which is

reminiscent of techniques applied in vectorizing compilers (such as described in

Chapter 5 of [107]). The essence of the methodology is that the compiler inserts code

which, at the time that a conditional is evaluated, creates a temporary segmented

vector which contains only those segments for which the predicate evaluates true.

This temporary vector is distributed across the entire machine by communications

operations. The segmented operation defined by the true branch of the conditional

is then applied to that temporary vector, the results being copied back into the

vector of results under construction (again, potentially involving communication).

An analogous process of temporary vector creation, distribution, application and

gathering then takes place for segments for which the predicate was false.

In general, this protocol of packing-based conditional execution is expensive (see

the experimental evaluation and discussion in Chapter 8, where the technique is

shown to introduce large overheads into a number of executions) as a result of the

communications induced by the redistribution and gathering phases. Techniques for

optimizing or eliminating such operations remain an active field of research.

2.4 NDP as an Efficient Basis for lrregular
Scientific Computing

As we have described previously, one of the principal strengths of the NDP model of

computing is its ability to concisely express parallel forms for irregular algorithms.



CHAPTER 2. NESTED DATA-PARALLELISM 39

Such algorithms are typically difficult or impossible to parallelize under traditional
DP models. Given this significant power of expressiveness for irregular cases, it seems

logical that an implementation of the NDP model should provide efficient execution

for irregular codes.

In Sections 2.2 and 2.3 we have described the two prevalent implementation

models for NDP, each with their own performance idiosyncrasies. We now turn to
the evaluation of each of these techniques from the perspective of providing good

parallel performance for irregular codes. The metrics we use to qualitatively gauge

this performance are the degree of parallelism obtained by the execution of the NDP

code, and the overheads (such as communications cost) introduced in supporting the

irregular aspects of the computation.

Considering the broad application area of irregular scientific computing, we note

that a computation may display irregularities in one of three forms:

f . irregularly structured data aggregates, possibly of dynamically varying size or

shape;

2. irregular (possibly statically unpredictable) aggregate access patterns;

3. non-uniform paths of execution, introduced through the presence of

conditionals.

For an implementation of NDP to be a successful basis for irregular computation it
must provide some degree of low-cost support for each of these types of computational

irregularity.
From our discussion of serialization (Section 2.2.1) it is ciear that the

implementations of NDP via simple serialization of parallel dimensions do not perform

well in the presence of the first type of irregularity described above. Specifically such

implementations are likely to be unable to exploit the maximum parallelism available

in an NDP code with this kind of irregularity, leading to performance which is sub-

optimal. Based on this observation we would consider such implementations a poor

basis for irregular scientific computing.

The structure flattening approach is specifically designed to overcome the

problems faced by serialization solutions. It realizes a maximum amount of parallelism

regardless of the shape or dimensionality of the data being worked upon, even in the

case where these quantities vary dynamically. This property is enough to make the
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structure flattening implementation a good basis for codes whose irregularity is of the

first type enumerated above, that is irregularity through data structure.

The technique is significantly less supportive of the other two forms of irregularity.

Irregular patterns of access are, to some degree, considered by the model in its
provision for optimized paralleI put and, get operations. However, the most common

form of access - the simple aggregate dereference - is not specifically optimized.

On a parallel architecture for which memory access is non-uniform (e.g., a distributed
memory multiprocessor) the cost of a simple dereference can vary widely depending

upon which memory space stores the specified aggregate element. Optimizing access

patterns in such systems becomes a task of arranging for the memory spaces accessed

by processor i to be as "close" as possible to processor i; for aggregate dereference

this becomes a task of. partitioning the aggregate across the various memories such

that those elements required by processor i are contained in a memory close to that
processor.

If we consider irregular patterns of access, this means we must consider irregular

patterns of data decomposition. There is no support for such complex data placement

strategies in the current NDP implementations based on structure flattening: the

single data vector that results from the flattening process is partitioned into several

bloclcs of adjacent elements with each block assigned to the memory of one processing

element. This decomposition is clearly very regular and leads to high overheads

in codes which rely heavily on irregular patterns of aggregate dereference, since

such accesses must frequently employ slow (communication-based) mechanisms to

retrieve values from non-local memories. Chapter 8 presents a quantitative analysis

of the remote access costs incurred by several irregular NDP programs due to various

schemes of data partitioning.
The structure flattening impiementation of NDP also does not fare well in the

presence of the third iype of irreguiarity we have noted above - non-uniform control

paths. The presence of conditional execution within an NDP operator must be

handled in the structure flattening implementation by recourse to its protocol of

packing. As described in the preceding section, this operation has the potential

to introduce high overheads due to costs involved both in distributing each of the

packed sub-vectors across the nodes of the machine and gathering the result values

back to the appropriate memories. These operations are communication-intensive,

and are a major source of inefficiency in control-irregular NDP codes implemented
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using structure flattening.
Based upon the analysis we have made of the two existing implementation

techniques for NDP, we can draw several significant conclusions. Firstly, it is clear

that neither of the existing approaches is supportive of all three types of irregularity
that we have identified as common in irregular scientific computing. Therefore, we

assert, none of the existing techniques implements the NDP model in a manner which

realizes its potential as a basis for highly parallel, efficient irregular computing. The

analysis we have undertaken in this section does, however, offer some pointers as to

what qualities an NDP implementation should possess to better cater to this domain

of parallel computing. Such an implementation should:

o realize a high degree of the parallelism inherent in an NDP operation, even ln
the presence of irregular data whose extents are statically unknown or which

are dynamically varying

o support complex or arbitrary decompositions of aggregates across memories

(to allow for expression of a low-cost partitioning in the presence of irregular

patterns of aggregate access)

o allow for heterogeneous simultaneous application of DP operations (to provide

an efficient basis for control-irregularities)

In the chapters which follow we outline the design and realization of an NDP

implementation strategy which embodies these three principles and is thus, we

propose, a good basis for irregular scientific computing.



Chapter 3

Designing a New Paradigm for
NDP

In the previous chapter we considered the paradigm of Nested Data-Parallelism from

the point of view of efficient implementation of irregular computation. In our analysis

we highlighted a number of limitations inherent in current approaches to compiling

NDP. These included: a lack of support for complex data decomposition, and poor

ability to support evaluations in which a number of heterogeneous operations are

simultaneously active. While these limitations are not a serious hindrance to efficient

execution of regular NDP codes, programs which display any degree of irregularity -
in either data structures or computational patterns - are severely penalized in their
observed performance. In short, the current implementations of NDP do not provide

an efficient framework for executing irregular computation of ihe kind found in many

important areas of scientific computing (e.g., sparse matrix operations, finite element

meshes, computational chemistry kernels).

In this chapter we turn our attention to the design of a new NDP implementation

whose characteristics make it a better substrate for irregular execution. We

specifically consider implementations which target distributed memory multiprocessor

machines, since these are the architectures for which the DP philosophy is particularly
well-suited, although many of our design considerations are equally applicable to

shared memory machines.

We begin our process of design by describing the fundamental principles of NDP

and distributed execution in terms of a mathematical model which permits convenient

proofs of several important properties of different possible NDP implementations. The

42
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model we propose is simple (based on set theory and a generic concept of algorithmic

execution), concise, and tailored specifically to the task of expressing key aspects of

NDP executions such as potential for deadlock.

Building on the mathematical foundation this model defines, we construct a series

of NDP execution paradigms, each of which possesses certain provable properties. We

begin with the construction of a paradigm which defines the minimum semantics for

DP execution, then note some deficiencies and propose augmented paradigms which

fully describe DP computation. At the end of this analysis we are left with two NDPs

paradigm which may provably execute any NDP operation to completion irrespective

of the distribution of computation across the machine. One is a single threaded

paradigm; the other incorporates multi-threading. An applied analysis of both is

undertaken in Chapter 4 with respect to usefulness as a basis for high-performance

irregular NDP programming.

3.1- Basic Concepts

We begin by making some basic definitions that will prove useful in later theorems.

Here we consider mathematical representations for the concepts of vectors and their
distribution into disjoint memory spaces of a distributed memory multiprocessor.

These notions will form the basis for our discussion of Data-Parallelism and

distributed execution.

3.1.L Vectors

We flrstly define the notion of the vector, a single-dimension data aggregate of the

type found in most DP programming languages, over which DP operations may be

defined.

Definition 3.1 .4 vector is a f,nite sequence of elements, each of a common type.

Thelength (cardi,nality) of a uectorV is denotedV¡"n, Thei'th element of a aector

(called the i'th index) is denotedVli). The first inder of any uectorV isVl}l and

the last inder isVlV¡"n-Il. The set of all indices of V is denotedVind'
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3.t.2 The Distributed Memory Machine

Since the basis of DP execution is the realization of the paralielism present in

collection-oriented operation, it is useful to define a framework for this type of

execution. We begin by designing a formalism designed to capture the semantics

of an underlying machine. We choose to limit our attention to distributed memory

machines, since these are the architectures most commonly considered for DP

execution.

Definition 3.2 ,4 distributed memory machine /Vf is a sequence (N¿)f!(e-r
of T-tuples of the form (P¿,M¿,S|). Each element of this collecti,on is called a

processing node and its position within the sequence is termed the processing node's

identity. The P¿ element of each tuple is termed, the node's processing element,
the M¡ element iús memory space and the S! component i,ts current state. The

number of processing nodes withi,n a distributed memory machine i,s termed the size

of the machine.

Our definition of a distributed memory machine describes any computational

device composed from a number of processors, each closely associated with a

private/local bank of memory. In particular, it describes the real-world class

of distributed memory (scalable) supercomputers including the SIMD and SPMD

machines described in Sections 1.1.1 and 1.1.2 respectively. Note that the existence

of a communications network is implicit in the definition; \Me assume that there exist

means by which the processing element P¿ on node i may influence the state object ,9j

of a different (i.e., remote) node j. For the discussion which follows, the mechanism

by which such transformation occurs (".g., by the transmission of messages through

a particular topology of network) is not important.
The central element of the distributed memory machine we have defined is the

processing element, a representation of the computational hardware present on the

node and which can execute instructions and define a thread of control. Within our

formal framework we choose to model this process of nodal execution as a discrete

series of transitions altering the state of the node.

Definition 3.3 Each processi,ng element P¿ can be transformed at time t by the

appli,cation of an instruction 1, generating a subsequent state at time t + 1.

Equationally S!+L : P¿(Sl,I).

44
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3.1.3 Partitioning Vectors Across the Distributed Machine

As mentioned earlier, the goal of this mathematical analysis is to model parallel
operations across data. Typically such operations are granted parallelism by the
distribution of the input data across the various memory spaces of the machine. It
is useful to describe such opportunities for parallelism - we do this by introducing
mechanisms for modelling the decomposition of a vector across memory spaces of our

model machine.

Definition 3.4 The memorA space M¿ of a node is a fi,nite set of uector indices. The

indices within M¿ a,re said to óe owned by the processing node i.

Definition 3.5 ,4. partitioned vector is a uector whose elements are all contained

wi,thin rnen'¿ory sp&ces of the distributed rnen'Lory machine. Each such aector V has

an associated" paúitioning function Pv which maps the ¡th ird,"* of V to the nod,e

identifi,er i, where the memory spo,ce of nod,ei (i.e., M¡) contains that inder of V.

Example 3.1: Figure 13 shows the relationship between vector partitioning and

memory spaces. In the upper panel we see three vectors XrY and Z of varying
length. We attribute each with a partitioning function (as shown in the middle
panel) resulting in the assignment of each index of the three vectors being assigned

to one of the memory spaces of the distributed memory machine. The bottom panel

shows the resultant mapping of indices to memory spaces.

As we have defined the concept of the partitioning function associated with each

partitioned vector, it is a mechanism for mapping each vector index to exactly one

node's memory. If we look at this from the opposite perspective it means that the

memory of a given node is composed entirely of indices (from partitioned vectors)

which some partitioning function has mapped to that memory. We can formalize this
concept as follows.

Theorem 3.L If V i,s the set of all partitioned aectors currently in etistence, then

M¿:U{reu:P,(z):i}

45

u€V

Proof: This follows from the definitions of partitioned vector and distributed
memory machine. If we consider a single partitioned vector u € V and its associated
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partitioning function P, then we can define the subset (Mo)" of u's indices which P,

indicates should be stored in a designated memory M¿. (Mo)": {z €u: P,(z): i}.
This set is clearly a subset o1 M¿. If we consider such subsets for every u € V, their
union is the set of all existing aggregate indices assigned by partitioning to node i.
By definition, this set is also M¡. z

3.2 Modelling Data-Parallelism
Armed with definitions of partitioned aggregates and distributed memory machines,

we are now in a position to discuss the semantics of distributed execution for Data-

Parallel operations over partitioned aggregates. We begin by defining a mathematical

representation for a Data-Parallel operator as a specialized form of a general

computation. From there we consider the possible distributed executions of such

forms.

3.2.t The DP Operator as a Specialized Co-operative
Computation

In its most general form, the concept of a computation can be considered to be

little more than a process by which an underlying machine is transformed from

one state to another by the application of a collection of instructions. Clearly

the execution embodied in a DP operation falls within this definition, hence it is

worthwhile formalizing the concept as part of our developing theory of DP execution.

Definition 3.6 A computation is a function C which rnaps o. set of processing nodes

P at time t and a set of uector inputs {V} to the same set of processing nodes at a
later time t * z wi,th a different state S!+":

C: {(P¿,Mo,S!),i €P} x {I4} * {(P¿,Mo,S!+"),i eP} for some z € N

We call the set P the participant set of the comltutati,on. A computation is said

to be co-operative if P conta'ins more than one rnember. A computati,on whose

participant set has but one mernber is termed local.

It is worth noting that this is a very general definition of the concept of

computation, one which embodies two common forms observed in programming
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models: the serial computation and the co-operative parallel computation. The

former includes every type of computation supporied by traditional (non-parallel)

programming languages, while the latter describes paradigms where a single

conceptual algorithm is decomposed into a set of communicating sequential

computations.

Example 3.2: Let M be a distributed memory machine of four nodes, 
^I0,¡ü,¡/2

and ÄI¡. If we consider a computationCl which maps the single node ÄIo (at time ú)

and the vector V to a future instance of ¡/0 in which S[+' contains an element called

sum which is the sum of all indices of I/ storedin Mo. The participant set for this

computation is {No}, which has only a single element. Therefore the computation C1

is a local computation.

Consider instead a computalion C2 which maps the four nodes of M (at time

f ) and a set of four vectors {%, V,V2,%} t" a future instance of the four nodes in

which each S!+" has an element called sum which holds the sum of all indices from

the vector I{. That is, node lú¡'s state contains the sum of all indices of V6, node

lú1's contains the sum of all indices of. V1, and so on. The participant set of this

computation is {Iú0, ¡ú, ¡/2, /úa}, hence C2 is co-operative.

While it is clearly true that a DP operation is a type of computation, there are

a number of properties that distinguish it from other forms that are equally termed

computation. Thus it is useful to define the DP operation as a specialization of the

general concept. Looking back to the descriptions of DP languages and operators

presented in Section 1.2, a number of distinguishing features become apparent.

Firstly, the DP operation is intended as a parallel (or co-operative) computation

- it exists within a language as an explicit opportunity for expressing paralleiism.

Secondly, a DP operation is explicitly tied to a particular argument aggregate -
it is defined as a parallel operation in which a given serial component computation

is performed for each of the indices of the input vector. Finally, as described in

Chapter 1, the DP operation is inherently synchronizittg - none of the serial sub-

components can finish until all have completed their serial execution.

Formalizing these concepts, we obtain the following definition for a DP operation:

Definition 3,7 A Data-Parallel (DP) Operation is a co-opero,tiae computation

ú which has three prolterti,es:
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1. 1 a uector V which is designated as the púrnary input of ú. We use the

notation ü(y) to describe the prirnary i,nput of a DP operator ú .

2. ú(V) may be decomposed into a set of sub-operations or responsibilities
{tíVl¿]), one such sub-operation per inder of V. Each such responsibility i,s a

local computation. E quationally :

\Í"'-'p(y) : {üIf"(y[i]), i e [0, ...,vlrn- 1]]

3. a distri,buted erecution (see Def,nition 3.1/¡ below) of ú must be synchronizi,ng

(in the sense of Definition 3.15).

Example 3.3: Consider again the distributed machine M of four nodes. Let V
be a vector of length four, partitioned so that each node owns one index of V. Let
Cz be a computation which maps all four nodes (at time f) plus the single vector

V to a future version of the four nodes in which each state object S!+" contains an

element called szn¿ with identical value, namely the sum of all elements of I/. This

computation is co-operative (there are four nodes in the participant set) and closely

associated with a single vector (i.e.,I/). Furthermore, \¡r'e can express C3 in terms of

a set of four local computations (responsibilities) as follows:

Cr" is a local computation which maps a node ¡/¡ (ut time ú) plus the vector index

7[7] stored within that node's memory space (M¡) to a future instance of l/¡ which

has a state element sum with a value equal to the sum of all indices of V. There are

four such local computations C|,C|,C!, and C!, one per index of V. We can define

informal semantics for these serial computations:

o C$ begins by creating three elements 't)t, 't)z and u3 in the state of the node /úo

which executes it. The serial computation then waits until all of these have

been filled with values, then computing su,nù : ut I uz * us * V[0] (where Iz[0]

denotes the value stored in the zeroth index of V). Once this is computed, the

value sum is copied into the state objects of each node lú¿, i : 0,. . . ,3.

. Ct", j : 1,2,3 copies the value of the jth index of V into the u¡ element of

ÄI¡'s state.

From the definition above, Cs would be a DP operator assuming it were executed

on a synchronizing execution (e.g., if \rye assume that the operation were executed in
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such a way that all nodes synchronize on completion). The example computations

C1 and Czfrotn the ExampleS.2 are not DP operators: thefirst is not a co-operative

computation, the second does not have a single primary input I/.

Each responsibiliiy within a DP operation represents a serial computation which
takes place during the execution of an operation. From the definition of the

responsibility it is clear that each such serial computation has a dependence upon

one index of the input vector, namely that index for which this responsibility was

generated (during the decomposition). We call this kind of data dependence a

close assoc'iation, with the assumption that the designated index is pivotal to the

computation embodied by the responsibility and will likely be used many times

within that computation. Because there are no restrictions on the kinds of operations

that may appear within a responsibility's serial computation, it may arise that
there are any number of other data dependences which must be fulfilled before that
computation can complete. We term these other dependences loose øssociations and

assume that, while they are necessary to the computation, the data they define is

likely to be used only a few times. Formalizing the concepts into the mathematical
framework, we get:

Definition 3.8 The responsibi,lity Vr(yU]) whi,ch corresponds to inder Vljl þf
ú's primary input) is said to be closely associated wi,th that i,nder. Any other

associations of ú¡ are termed loose associations; these may be with other indices

of V or indices of other uectors.

Example 3.4: In the previous example's definition of the responsibilities of C3,

each of the Cj's is closely associated with one vector index 7[7]. The responsibility

C$ is furthermore loosely associated with the indices Vll],Vl2l and V[3] since its

execution cannot complete until it has received these values.

3.2.2 Executing a DP Operation on a Distributed Memory
Machine

Now that we have defined Data-Parallel operations and their decomposition into a

set of local (serial) sub-computations, \/e may consider the execution of these sub-

computations (or responsibilities) on a distributed memory machine. We do this



CHAPTER 3. DESIGNING A NEW PARADIGM FOR NDP 5i

by defining the notion of a schedule o1 responsibilities maintained by each node,

a list of responsibilities which the node's processing element will at some time be

applied to. Once we have defined this notion we may consider the process of mapping

responsibilities to positions within such lists.

Definition 3.9 Each node N¿ oT the Distributed Memory Machine maintai,ns (as

part of state S!) a list Ll of responsibilities that will, at some time t, be passed to

the node's process'ing element and thus transform the local state. L! is called node

i's local schedule. The order of responsibili,ti,es within L! describes the temporal

ordering of the associ,ated transformati,ons. A node's local schedule at time 0, Ll is

called iús initial schedule.

Example 3.5: Considering again the example of. C3, the DP operator defined

previously, applied across a vector I/ of four elements, one possible set of initial
schedules is:

L3: lcïl, L?: lc¿|, Lg: lc3l, L3: lcïl
Another possible set is:

L3: lc3,c¿1, L?: lc3,cïl, LZ: ll, f,3 : []

The former set of initial schedules defines a distributed execution in which all four

nodes of the machine each execute the serial code from one responsibility. The second

set of schedules defines a different situation: nodes 2 and 3 perform no work in the

execution of the operator, whereas nodes 0 and 1 are each called upon to perform

two responsibilities. These nodes first execute (at time ú : 0) the code for the

responsibility at the head of their schedule, and then at some later time execute the

code for their second responsibility.

The local schedule structure defines a mechanism for sequencing the serial code

(from responsibilities) which a node is called upon to execute during a DP operation.

The policy which is employed in the definition of each node's initial schedule is an

important factor in how the execution will proceed. We formalize the concept of such

a policy as follows:

Definition 3.10 .4 distribution of a DP operator V(y) is a functionD that rnüps

each responsibility {/c(y[i]) to a uni,que position within eractly one initial schedule

L?.
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This definition merely states that a policy of responsibility distribution may be

defined in terms of an arbitrary function. This function is analogous to the concept

of the partitioning function for the dispersal of vector indices throughout the memory

spaces of the machine. Like the partitioning function, the distribution function can

specify arbitrarily complicated patterns of decomposition. In some instances it is

useful to restrict the possible range of distributions to enforce a particular property

of an execution. One common limitation often placed upon a distribution is that
it should map all responsibilities with close associations to index I onto the node

whose memory contains 1. This is called an owner computes distribution. There is

an implicit heuristic assumption that the cheap satisfaction of the close association

for those responsibilities will lead to an overall cheaper computation.

In our analysis we will usually consider the general case of arbitrary distributions,

although in several instances we will consider the particular case of owner computes.

In the practical application of this theory made in Chapter 4, we return to a discussion

of the benefits of such distributions in real-world implementations.

Definition 3.11 A di,stri,bution D of a DP operator V(y) is said to be owner-
computes z7f

D(\!íVlil))e LT,,, vi e [0, ...,vt"r-r]
That i,s, euery responsibi,lity closely associated wi,th a uector inder in node N¿'s memory

must be mapped into node N¿'s ini,ti,al schedule by D.

Example 3.6: Consider the vector I/ of four elements, partitioned by the function

Pu : r å M,.across a distributed memory machine of four nodes. Index I/[0] is
contained within ffi, index V[1] within Mt and so on. Consider again the DP

operator Ca from Example 3.3 and the two possible distributions of responsibilities

to initial schedules presented in Example 3.5. The first of these distributions is

owner-computes, since each node's initial schedule ,C! contains only responsibilities

whose close association is withindices stored within M¡. That is, node AIs's schedule

contains C! which is closely associated with I/[0], node ly'1's schedule contains Cr1

which is closely associated with I/[1] and so on.

Conversely, the second distribution shown in the example above is not owner-

computes since both nodes 
^¡0 

and ¡û have, within their initial schedule,

responsibilities with close associations to indices of V which are not stored within
the local memory. Specifically, l$ contains Crl which has its close association with
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I/[1] (stored in node -ly'1's memory space). Similarly, ,C! contains Cj (closely associated

with an index in M2) and Cf (closely associated with an index in Ms).

Previously we have informally referred to the mechanism by which the serial

computation from a responsibility is executed upon a node of the distributed machine.

We turn now to a formalization of this concept in preparation for our description of

the execution of an entire DP operation. We also consider a definition of what it
means for an entire DP operation to have completed its execution. Again this is a

useful concept leading up to the definition of a full DP execution.

Definition 3.12 A responsibility {t ¿ is sai,d to haue åeen appli ed when its associated

transformation has been i,nduced upon a processing node. The responsibility Ú¿ is

sai,d to óe complete at the ti,me, T, when the entfte co-operatiae computation Ú

(i.e., aII responsibi,li,ties of the DP operator) has been applied. We def,ne a predicate

complete(ü¿,ú) to be true iff at ti,me t, ú¿ is complete.

Building a Distributed Execution Formalism

To continue with our mathematical framework for describing DP, we must turn our

attention to describing the dynamic features of the paradigm. That is, we must detail

the mechanism by which a distributed DP operation (i.e., a set of initial schedules)

is executed by nodes of a distributed memory machine. To do this we must describe

an algorithm for distributed execution.

At its simplest, we can consider a distributed execution of a set of initial schedules

to be a simple three-step iterative process stepped-through by each node of the

machine:

f . initialize the node

2. fiLhe local schedule is non-empty, aPPIY the head element and remove it.

3. if the local schedule is empty, terminate, else return to Step 2

This model captures the semantics of a real-world multi-processor machine: on

each iteration of the algorithm all nodes fetch a schedule element (instruction) from

the local schedule (local program) and execute it. The node terminates its execution

when the local schedule (local program) is exhausted.
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While this definition of a distributed execution is sufficient to model a machine

at a coarse level, it ignores one important aspect of an execution central to DP

styles of execution: inter-node synchronization. As noted in the definition of the

DP operator (Definition 3.7), an important part of modelling the semantics of such

an operation is an adherence to the fundamental DP property that all collaborators

(i.e., responsibilities) synchronize prior to any of them completing their execution.

The simple model we have described above allows no form of co-ordination between

nodes stepping (independently) through the algorithm and hence the model is unable

to express DP execution.
rffe thus consider generalizing the simple model to allow it to express the style

of nodal interaction required by the DP paradigm. The first concept we choose to

add to the simple execution model is that of nodal control bloclcage,, that is a nodal

state in which further execution is disallowed until such time as some event has taken

place. In DP styles of execution such blockages commonly arise as the result of

inter-node synchronization, thus it is important that such a state is expressible in
our formalism. We choose to model nodal control blockage by augmenting each node

with a flag which denotes its readiness. The intended role of the ready flag in the

distributed execution is simple: whenever a node is marked as ready (i.e., ready flag

is set), it is in a position whereby it may execute an element from its schedule. When

the node is unready (i.e., ready flag is clear), no such execution is possible; that is,

the node is blocked.

A second factor that must be considered in our model is the specification of a
predicate by which a blocked node can become unblocked, that is a mechanism

for defining the dependency which caused a given blockage. In the DP model,

synchronizations occur between nodes which are executing responsibilities from the

same DP operation. A useful basis for modelling such a dependency is to record which

responsibilities which have been applied (executed) on a given node but which have

yet to be synchronized with their peers. These waiting responsibilities are the sources

of blockages in DP executions. We add this form of record to our model in the form

of the appli,ed seú into which responsibilities are added following their application,

and from which responsibilities are removed when a synchronization is completed.

This formalism provides a convenient mechanism for the specification of DP-style

synchronization: we can state, for example, that node Ät which has responsibility

ilr, (from DP operator ü) in its applied set will be blocked (ready flag set false) until
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such time as all other responsibilities of i[ appear in some node's applied set.

In order to keep a clean semantics (with single assignment) in our execution

modelling we also define a second set for each node, the newly applied set, a temporary
structure in which associations can be recorded immediately after being applied on a
node (before being moved into the applied set defined for the next cycle through the
algorithm).

Collectively we formalize the notion of a distributed memory machine augmented
by ready flag, applied set and newly applied set as follows:

Definition 3.13 A distributed execution environment O consists of a

distri,buted n'¿ernorA machine M, each of whose nodes N¿ haae been augmented with

three additi,onal propert'ies :

o a ready fl,ag,

o an apptli,ed set Al, and

o a newly appli,ed set A!

Each of these properties is defined at a series of discrete time steps t : 0, t : 7,. . .

The additions we have made to the nodes of the distributed memory machine
permit us to specify a new iterative model for distributed execution which has the
potential to define forms of synchronization useful to DP operation. We do this by
specifying the distributed execution as an informal four step iterative process carried

out by each node of the distributed machine:

f . initialize the node;

2. if the node is ready and has a non-empty schedule,

(a) apply the head element of the schedule,

(b) move the head schedule element to the newly applied set, and

(c) mark the node unready;

3. if the node has at least one responsibility outstanding

(a) add the newly applied set to the applied set,
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(b) remove responsibilities from the applied set for which synchronizations

have now completed

(c) determine whether the node should be returned to the ready state;

4. if the local schedule is empty, terminate, else return to Step 2.

This defrnition includes two major decision points which dictate the flow of the

algorithm, namely:

o the point at which we must determine which responsibilities to discard from the

node's applied set, and

o the point at which we must choose whether the node is to be marked ready

(and thus continue executing responsibilities).

In any given distributed execution, policies must be defined which dictate the

decision making process which takes place at both these points within the algorithm.

For convenience we describe the former decisions as being dictated by a discard

policy and the latter by a continuation policy. Clearly there are several possible

candidates for each policy; the adoption of each combination delivers an execution

with different characteristics. We can describe a simple uncoordinated execution (i.e.,

the distributed execution we began with) by defining policies of discarding the entire

applied set, and of always indicating continuation by marking the node as ready in
Step 3 of the algorithm. As we demonstrate in following sections, it is also possible

to describe more complex synchronizing operations by choosing different policies.

We now make a formal definition of our concept of the distributed execution in
line with the informal outline we have already made.

Definition 3.14 ,4 distributed execution L(P,l,O) zs an iteratiae algorithm

which transforms a distri,buted erecution enuironment Ø at time I : 0 to the same

enuironment at a later ti,me t - T. Two characteristic functions B and l def'ne

aspects of the erecution. The function B is called úåe discard function while I is

termed the continuation predicate.
The algorithm i,s defi,ned by fi,ae steps, with each node of the machine independently

beginning the erecution at the start of Step 1:
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1, each node N¿ of @ is:

(a) marked as ready,

(b) has a local time counter t¿ set to 0,

(c) and is gi,uen øn applied set Ao¿ and ø newly applied set A! both of
whose aalue is S.

2. each node N¿ o/ O which is ready and which has a non-empty local schedule Ll'
performs the followi,ng sub-steps:

(a) erami,nes the responsibi,li,ty ú ¡ at the head of Ll' and:

(b) uses ú ¡ to compute a, neu state: $!t+t - Pi(Slt ,V j)
(c) addslt¡ to N¿'s newly applied set Ã: ÃI' : Alr U {V j}
(d) remoaes ú ¡ from L¿ to form (r new schedule: f,!;+r - Áil (Llt)

(e) marks i,tself rnready.

All nodes which were ineligible to perform these steps simytly copy:

Ã'o' : A'on, S'no*t : St¿o and ¿t';*7 - ¿t; '

3. all nodes N¿ for which Ã!o' + ó,

(a) di,scard responsibilities from 1t'; ' ¡t¿¡1 : Ãl'\P(Ãl')

(b) calculate fÇ40'+1) to deterrnine whether the node N¿ is permitted to
continue its erecution

(c) nod,es N¿ for which f(Al'*t) eualuates true are marked ready

AII nodes which were ineligible to perform these steps simply copy:

¡l;*t - ¡tt.

/¡. all nodes N¿ incrernent their local time counter t¿ by 7

5. ,f = a processing node for which Lln ls not empty, return to Step 2, otherwise

termi,nate.

We now consider the specialization of this general execution which corresponds to

the fundamental DP style of synchronizing execution. In earlier discussion we stated

this property informaliy by noting that a node 1/" which has responsibility Ü, (from
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DP operator ü) in its applied set should be blocked (made unready) until such time
as all other responsibilities of I[ appear in some node's applied set. In the terms of

our mathematical framework, such a statement is a defrnition of discard policy, thus

we formalize it by defining a particular discard function É"v,," which embodies this

principle.

Definition 3.15 A distributed erecution i,n a distributed erecut'ion enu'ironment Ø is
called synchronizing if a responsibilityú¡ i,s only discardedwhen complete. That is,

g"y-"(Aln,t¿) : {Ü, e Af' : complete (Üi,l¿)}

In developing our model of a distributed execution, we adopted the applied set

as a repository of responsibilities waiting at some barrier point for their siblings to

be applied. Another way of viewing the elements of this set is as blocked threads of

control: each applied set responsibility corresponds to a control flow which cannot

continue until some synchronization event has taken place (represented by its removal

from the set by the discard policy). This point of view is useful because it allows

us to reason about the thread,edness of an execution, that is the degree to which a

node is called upon to manage multiple concurrent control threads at points during

the execution. We can define this concept of threadedness very simply in our model

as being the maximum size to which an applied set is allowed to grow while the

algorithm is being stepped-through. More formally:

Definition 3.16 We def,ne úåe threadedness T of a distributed erecution L, to be

the marimum size which ang node's applied set A! wi,ll assurne during the erecution.

Thati,s,ifanerecutiontalcesplacebetweentimet:0andt:Tacrossadistributed
rnernorA machine of size s, then

'T - ïìax max lA:l' - o.¡ò,...,"-rl ¿€[0,...,"] ' '

We call a di,stri,buted erecution with T : L single threaded ; all others øre multi-
threaded,

The principal utility in computing the threadedness of an execution model relates

to estimations of how easily that model may be mapped onto a real piece of hardware

(see Chapter 4 for such a discussion). As we noted in our review of common parallel

hardware for DP execution (Sections 1.1.1 and L.I.z), most such machines have node
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which support only a single thread of control in hardware. Thus, we would intuitively
expect that an execution model which is multi-threaded (i.e, which allows the applied

set to grow to two or more) would be more expensive to implement on such a machine

than a single-threaded model. Alternatively such multi-threaded models may be quite

easily realized on a multi-threaded architecture such as those which have recently been

proposed by the parallel hardware [8, 88, 117, 87] and software [30, 23,114,85, 99]

communities. A brief appraisal of several such models appears in Section 6.3.

3.2.3 A Synchronizing Distributed Execution for DP
Operators

We have now modelled enough concepts to allow us to consider defining a paradigm

of distributed execution for Data-Parallel operators. The first paradigm we consider

modelling is the traditional locked-step SPMD style execution commonly used in
implementations of DP (see Section 1.1.2). This represents a well-understood

approach to the parallel execution of DP operations and as such is a good starting

point for our exploration of the execution requirements for NDP operations. We begin

by describing the traditional execution in terms of our mathematical framework and

go on to prove properties for the execution. We are particularly concerned with
exploring the conditions under which the execution fails to terminate, deveioping

a refinement of our first-cut model (using a concept of aggregating responsibilities)

which is provably deadlock-free for any distribution of data and computation within
a system. In later sections this model is evaluated to determine how it copes with
the execution of multiple simultaneous DP operations (i.e., the NDP case).

From our definition of what we mean by the term DP operator, we know that such

an execution must be synchronizing: this defines B,one of the two policy functions

to the distributed execution algorithm. Thus all that is required is the definition

of a continuation predicate f and we will have constructed a distributed execution

over DP operators. We know from our discussion of SPMD architectures that their
hardware execution model is single-threaded. We can introduce this property into
the mathematical model by specifying that a node with a non-empty applied set (i.e.,

one which is already waiting upon a synchronization) is disallowed from executing

further work from its schedule. This is a continuation policy can express its

semantics within our definition of f.
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Definition 3.17 A Simple Synchronizing DP Execution;
We defi,ne a synchronizing erecution L,syn¿ by malcing a functional defi,nition of the

discard function B, and def,ning a continuation predicate I .

g"yn"(A!¿o,t¿) : {Ú ¿ e Alo

true

false

complete (ú¡, ¿o))

ifA!':6
otherwise

I sanc(Alu) :

Example 3.7: Figure 14 shows how the execution we have defined, Asynç, can

represent the SPMD-style evaluation of a DP operator V across a vector I/ of length
four. The pictured machine has four nodes, each of which is granted an initial schedule

containing one responsibility from i[¡ (the number of responsibilities being determined

by the vector length).
The top section of the figure shows the state of the nodes following their

initialization by the first step of the distributed execution algorithm. Each node

has had its applied set and newly applied set to empty, its time counter ú¿ set to 0

and the ready flag set.

The middle panel shows the same machine after algorithm Step 2 has taken place

on each node. Since all nodes were marked ready, all are given the opportunity to
apply the first responsibility from their schedule and move that responsibility into
the newly applied set. This leaves each node with an empty schedule and a cleared

ready fr,ag.

The final section of the figure shows each node after the third algorithm step has

been performed (including the evaluation of the discard and continuation functions -
thus the annotation of the arrows by B and f). The newly applied set (a singleton)

is added to the applied set of each node; elements are then removed based upon

the application of the discard function B. From Defi.nition 3.17 we know that
responsibilities are discarded only when the entire DP operation is complete. In
this instance, all four responsibilities from ìú are in applied sets, thus the operation

is complete. This means that all responsibilities are removed from applied sets

(representing the completion of a synchronization and the unblocking of each of the

nodes of the machine). Left with an empty applied set, the continuation policy defined

by fryt. marks each node ready.

Following this step the time counter would be incremented and the local schedules

inspected. Since all are empty, the execution would terminate (if one or more
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responsibilities had remained, a branch back to algorithm Step 2 would have occurred

instead).

At the completion of the algorithm the four node distributed memory machine

has fully executed the DP operation ú by applying each of the responsibilities (i.e.,

the execution of the serial code for each vector index) and then synchronizing all
participants at a barrier.

One of our goals in defining our synchronizing distributed execution was that
it should model a single-threaded parallel scheme. As mentioned previously this is
an important property to be able to assert since it indicates that the model has

control similarities with the hardware of a broad class of parallel machines including

SIMD and SPMD architectures. This similarity is a good indicator that an efficient

implementation of the model is possible for this class of machines.

Intuitively the current defrnition of the execution exhibits the single-threadedness

on account of the fact that it disallows a nodes with non-empty applied sets from

becoming ready (and thus executing further responsibilities). We now formalize this

intuition and prove it for our mathematical definition.

Theorem 3.2 Ls,Anc is single-threaded

Proof: We prove this theorem through an induction. We begin by denoting the n'th
cycle through the iterative loop of Aryn" as Cn. To prove the single-threadedness of

Aryr," we must prove that for all Cn,lATl < 1 for every node of the machine.

We begin by considering C¡, that is the situation that prevails prior to any cycles

of the loop, when only algorithm Step t has been carried out. In this case, we know

that each of the applied sets A! is empty; and thus has a cardinality of 0. That is,

lA9l < 1 for every node.

Next we prove that if we assume the proposition for cycle Cn then we can prove

it also holds lor Cn¡1. We consider the case for an arbitrary node /[. We look at

the applie d set Ai+1 for that node at the algorithm step where we teturn to the

beginning of the loop. trither one of two cases holds true for this node's applied set:

either AT+' : þ or lAi+Ll : 1. We know that these are the only two cases, since the

inductive assumption tells us that the cardinality of the set is ( 1.
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Case Ai+r : þz

In this case, we consider what must have occurred during Step 3 just prior to this

loop's completion. During that step, the continuation predicate fryn"(Ái+l) would

have been evaluated - clearly from Definition 3.17, this evaluation would rettrn true.

Thus node l/¿ completes iteration C,, marked as ready.

Now let us consider the Cn+t cycle through the loop. Since 1ú¿ is ready, it may

potentially partake in the sub-steps of algorithm Step 2 if if still has elements in

its local schedule. If we assume that no such element exists, then the path of the

algorithm simply copies ÃT*' : / which causes Step 3's sub-steps to be skipped

(AT*': ÃT+\ and C,,11 finished withlAi+21 :0 < t'
Alternatively, if we assume that Li+t has at least one element, then the sub-steps

of Step 2 are followed. The effect of this is to define Ãry+r : ÓU {V¡}. That is, at

the end of these sub-steps there is exactly one member of the applied set. Since this

set is now non-empty, the sub-steps of algorithm Step 3 are performed. The effect of

this on AT+' i" to remove 0 or more elements from Ái+1 (depending on the value of

P(ÃT*' ,tn)).
Hence, in either case, at the end of iteration C,,11 there is at most 1 member of

the set AT*'. That is, the proposition to be proven holds true for Cn+t.

Case IAT*'I : 1:

By similar analysis to that presented for the previous case, we can deduce that the

application of the continuation predicate fsynç that took place during C,, would

necessarily have evaluated to false (since ATrr is non-empty). Therefore, at the end

of the iteration Ç, node Ä4 would be marked unready. Therefore, none of the sub-

steps of Step 2 would be followed during Cn+r. Instead, Ái+1 would simply be defined

to be equal to Ai+r. This would mean that Ãi+I would be a set of one element and

hence the sub-steps of Step 3 would apply. As in the previous discussion, the effect

of these sub-steps on Ai+2 are to remove 0 or more members from Ãi+I based on

the discard function B. Regardless of the exact number of members discarded, by the

time the loop is complete, IAT*' | < 1. That is, the proposition holds true for Cn+t.

We have shown that for both possible cases, assuming the proposition for C,,

implies it to be true also for Cn¡1. This, coupled with the above proof for the base

case and the Principle of Induction, allows us to deduce lATl < 1 for all n ) 0'

Since node l/¿ is an arbitrary node of the distributed machine, it must hoid that this

property is true for all nodes. Therefore, Arytr" is single-threaded. tr
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In defining our synchronizing execution model we have effectively defined a process

whereby a computation can be decomposed into a number of serial chunks and

distributed across a machine (into the initial schedules of the various nodes). These

individual computations have an important interdependency by virtue of the fact

that they collectively defi.ne a DP operation; all must synchronize at a barrier before

completion. Since such synchronization implies the complete blockage of control on

a node it becomes important to ensure that we never arise at a situation where all

nodes block - since such an event defines a deadlocked system (which will never

complete the assigned computation). We would like to be able to discover what kinds

of conditions such deadlock can occur, so that we can consider means of ensuring that
such situations do not arise.

In the application of the simple synchronizing execution to the evaluation of a

single DP operation, the only way that a deadlock may arise is by a single node being

granted more than one responsibility for the operation. In that instance, once the

first responsibility is executed by the node it is moved into the applied set, blocking

control on the node. The blockage can only be resolved when all responsibilities have

been applied; but the second responsibility granted to the designated node cannot

possibly be applied until after the blockage has been cleared. Thus we arrive at a

circular dependency which signifies a deadlock. We formalize this argument in terms

of our model:

Theorem 3.3 Distributions D ol a DP operator ú which assign more than one

responsibi,li,tyú¿ to any giuen node, will always cause the distributed erecution L,syn¿

of ú to deadlock.

Proof: Let \Ío and ü6 be two responsibilities of iI¡ which are contained within ,Cf ,

the initial schedule of a particular node I/,. Lei po l¡e the position of üo in the list,
p¡ be the position of \[6. Without loss of generality we assume p^ 1 Pt'.

Now consider the situation where, after a number of cycles through the iterative
loop of Aryr", /ú¿ has removed üo from its schedul" LT, piacing it instead into its
applied set Ai. . This action renders l[ unready, since |rytr" evaluates to false for

AT+Ó.
Next we consider what needs to take place for the head of Li+I to be passed to

the processing element Pa. By observation, it is clear that such an event takes place

only when the node is permitted to follow the sub-steps of algorithm Step 2. That
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is, it occurs when N¿ is ready. But by the nature of fsyns that cannot happen until
the applied set A¿ is empty, which can clearly only be realized by a call to p"yn"
evaluating to a set containing üo (since we know this responsibility is a member of

AT),

Examining the definition of |ryn" it becomes apparent that iI, will only be a

member of the discard set when enerA responsibility of ü is contained within an

applied set Ai. Specifically, it can only occur when üo is within such a set. By

inspecting the algorithm again, it is clear that it is only ever possible for ü6 to be a

member of Ai (that is, the applied set for the node which had \[¡¡ in its schedule).

Therefore, for ilo to be removed frorrr Af;, that set must also contain ü6. But, by

Theorem 3.2, Async is single-threaded and hence its applied set can never contain

more than one responsibility. This implies that Vo and Ü¿ can never be members

of the same applied set; hence (by the argument above), üo can never be a member

of the discard set generated by p"ynr. Thus, ly'¿ can never become ready and the

responsibility at the head of Li can never be executed. Thus, the execution of Aryt.
will not terminate. n

Implication: This result suggests that the simple synchronizing DP execution

Aryn" is only a useful execution when the distribution 2 ensures that no node's

initial schedule has more than a single responsibility from a given DP operator

ü. Specifically, it is not a useful model in the case that the length of the close

association vector of \I is greater than the size of the machine, since in that case no

such distribution 2 exists. This is ciearly a deficiency of our simple synchronizing

model, one which now seek to address.

3.2.4 Avoiding Deadlock by Responsibility Aggregation

The limited utility of our first attempt at defining a distributed execution arose

from the fact that DP operators involving more responsibilities than the machine

size would lead to non-termination of the execution. Under the proposed system of

decomposition of DP operators, this would inevitably arise for every DP operator

acting over a vector with more indices than there are nodes in the machine.

Our approach to overcoming this limitation is to aggregate responsibilities into
larger entities. We then consider a simple modification to the previously defined

execution models which substitutes these aggregated responsibilities in place of
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normal responsibilities as elements in the initial schedule. The fact that there is
always fewer of these macro-responsibilities than normal responsibilities (the exact

number is defined by the nature of the aggregation), suggests that it should be possible

to arrange for the execution of a DP operator over a large vector to run to conclusion.

We start by defining an aggregation of responsibilities, which we term a n'La,cro-

responsibili,ty. The concept is simple: a macro-responsibility is merely a set of

responsibilities from the same DP operation. We formalize the notion as follows:

Definition 3.18 A macro-responsibility V! of a DP operator Ü(y) i's a set of
responsibilities \t ¿(Vli)). The set of Vi's closely associated indices of V is denoted

V{it,i2,...,i,} and is called the macro-responsibiliúy's close association set.

The computational semantics associated with a maclo-responsibility are assumed

to be derived from the semantics of the component responsibilities by a process of

serialization. Thus, the serial computation of a macro-responsibility can be considered

to be given by the serial computations for the individuai responsibilities concatenated

to one another by a sequencing operation. In terms of our mathematical model, this

concept can be represented as follows.

Definition 3.19 A macro-responsibili,ty {tl may be passed to a processing element,

at which time it will i.nduce a state change which 'is a composition of the state

changes associated with each of the responsibilities It ¡ it contains. That is if
ürro : {\[¿r,. .. rú¿,], then

P¿(Sl,V,o) = P¿(P¡(... PíP{SI, ü¿,), ü¿,) . ..), ü¿.-t), ü¿,)

Were the right-hand side of the equ'iaalence contains euactly r applications of the

processing element P¿.

An important point to note is that there is no notion of synchronization between

the responsibilities within a given aggregation. That is, if a DP operator Ü is

decomposed into a series of macro-responsibilities, we define a protocol of barrier

synchronization between those macro-responsibilities but each macro-responsibility

can execute as a single serial code (despite the fact that it is, in essence, a collection

of responsibilities). This defines a slightly looser notion of DP synchronization than
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considered previously, although one that still maintains the required properties of
race avoidancel.

Using the Concept of Responsibility Aggregation in the Previously
Developed Theory

The previous theory we have developed concerned the execution of serial components

of co-operative computations, these individual computational elements being derived

from the per-element computation of a DP operation. We have now developed

a new type of serial computation by the aggregation of such computational units
into coarser grained macro-responsibilities. We now consider the substitution of
such computational elements into our existing models of computation. That is,

we return to our previous descriptions of executions for schedules of responsibilities

and replace the role of the responsibility with our new computational element, the

macro-responsibility. By making this simple substitution we develop a theory for the

distributed execution of macro-responsibilities.

In particular, we can derive an algorithm for such an execution (by taking
Definition 3.14 and rewriting "macro-responsibility" wherever the "responsibility"
concept occurs in the original) which has identical structure to our model of

responsibility execution. It can be shown that the theorems proved for this earlier

execution also hold true for the derived execution for macro-responsibilities. We can

consider a Simple Macro-Responsibility Synchronizing DP Erecutions A!rn" by a

similar rewriting of Definition 3.17.

From earlier consideration, we know that such an execution has the following
properties:

1. it is single-threaded (from Theorem 3.2), and

2. it will deadlock for any distribution which assigns more than one macro-

responsibility for an operator ü to a single node (from Theorem 3.3).

We turn now to an investigation of techniques for ensuring that deadlock cannot

occur in our execution of macro-responsibilities. We know from the second derived

theorem listed above that we can guarantee a deadlock free execution if we can

lThis is achieved by virtue of the fact that all responsibilities in a mamo-responsibility are
executed serially on the same single-threaded node and thus cannot possibly generate etloneous
execution due to interleaving or other timing-related phenomena.
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guarantee that a distribution will never assign more than one macro-responsibility
from a given DP operation to any node.

We develop a technique for ensuring such properties of a distribution by limiting
the kinds of aggregations we allow for our responsibilities. To guarantee that no

node is granted more than one macro-responsibility for an operation, we must first
guarantee that the decomposition of the operation is into a number of parts less

than or equal to the number of nodes. One technique for enforcing such a property
is the insistence that we decompose our DP operations into macro-responsibilities

which are defined by close associations to indices stored in a given node's memory.

That is, we define our first macro-responsibility to incorporate all responsibilities

closely associated with the indices of node 1, our second macro-responsibility to group

those responsibilities closely associated to node 2, and so on. Such a decomposition
generates at most one macro-responsibility per memory (and thus per node), so

the total number of macro-responsibilities will never exceed the number of nodes.

We formalize this concept in our theory by introducing the notion of marimal
decompositions:

Definition 3.20 A macro-responsi,bi,li,ty {ti$ {i1, . . . ,i,}) is termed maximal e/ 'iús

close associati,on setV{fi,...,i,} includes eaery index of V which is held within a

giuen rnernory spa,ce M¿. That is, the close association set for the macro-responsibility

is giaen by:

V{i¿,...,i,} : {u € Vird, P"(u) : 7¡

whereV¡n¿ is the set of indices of V and z 'is a (f,red) node of the machine (i.e., the

node which contains all indices closely associated with \tf; ).
The decompositi,on of a DP operator ú into rna,cro-responsibi,li,ti,es is called

ø maximal decomposition iff it describes ¡ú as a set of marimal Tnacro-

responsibilities.

We now have a mechanism for ensuring that the number of macro-responsibilities

for a DP operator is less than or equal to the number of nodes in the machine. This
goes some way towards guaranteeing deadlock-free execution. We must also, however,

limit our distribution of these macro-responsibilities such that each node is only
assigned at most one of these macro-responsibilities. The simplest way to introduce
such a limitation makes uses of the fact that each macro-responsibility generated by

a maximal decomposition is inherently and uniquely reiated to a single node of the
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machine. That is, the node whose indices each responsibility in the aggregation have

close associations with. If we force our distribution to assign each macro-responsibility
to this related node's schedule, then the uniqueness ofthe relationship guarantees that
each node will be given at most one macro-responsibility from the decomposition.

Since such a distribution maps the computation for a macro-responsibility to the

same node which holds its closely associated indices, we term the distribution owner-

computes (c.f., Definition 3.11).

Definition 3.2L A macro-responsibility distribution Dtr is owner-computes iff i,t

rnups each macro-responsibilityVl(V{ir,...,i,}) to sorne position within the i,ni,tial

schedule L? of the node whose rnernory M¡ contains all the indices Vlitl,. . . ,Vli,l. in
{tl's close associat'ion set.

Our intention in defining the concepts of maximal decomposition and owner-

computes distribution was to alleviate the possibilities of deadlock in execution of

initial macro-responsibility schedules. We now formalize this desired property in a
theorem and prove that the facilities we have provided are sufficient to guarantee that
it holds for an arbitrary DP operation.

Theorem 3.4 Euery marimal nl,acro-responsibi,lity decomposition of a DP operator

V(y) whose distribution Dtr is ouner-cornputes will erecute to completion on L?ynr.

Rationale: Assume that the indices of the vector V are distributed across exactly

n nodes N¿r,N¿",...,Ni,n.We call this set of nodes lhe owner set of.tr/. Now, if we

consider a decomposition of ü into maximal macro-responsibilities, there musi (by

definition) be exactly n resultant macro-responsibilities. That is, there will be one

macro-responsibility iúf- for each of the n memory spaces M¡ corresponding to nodes

in the o\ /ner set of I/.
Now we come to the distribution of the n macro-responsibilities üf . We are given

that the distribution Dtr is owner computes, implying that node 1/, will be granted

all macro-responsibilities which have close associations with indices in its memory

space M¿. But by the argument given above, we know that for a node ly'¿, there is

exactly one maximal macro-responsibility with associations to its indices of V (this

was how we defined the decomposition). Thus the distribution 20 will grant each of
the n nodes &,,.. .,Nin an initial schedule (L?)": [úl], that is a list of one macro-

responsibility. All nodes not in V's owner set are granted empty initial schedules.
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After one cycle through the iterative loop defining our distributed execution (i.e.,

the iterative algorithm from Definition 3.14), each of these n nodes will have removed

its macro-responsibility ilrf from its schedule and added it to the newly applied

set Ã!. The discard functio" ÉSrr" will indicate that each of these n nodes may

remove these applied macro-responsibilities (since all macro-responsibilities of i[ have

been applied). Thus flyrr" returns true,the nodes are each marked ready, and the

execution is allowed to terminate (since each node now has an empty schedule).

Note that the assumption of owner-computes is actually stronger than necessary:

all that is required is a distribution 2tr which never maps more than one macro-

responsibility of \[¡ into any given initial schedule (¿1)o. n

Implication: We have now constructed a framework under which any DP

operator may be fully executed to completion. All that is required is that the

operator be maximally decomposed into macro-responsibilities, and then for those

aggregated forms to be distributed in an owner-computes fashion. Since the

execution underlying this framework is single-threaded, the paradigm should be

easily mapped onto traditional multiprocessor architectures. Indeed, if we inspect

the implementation strategies adopted by reai-world DP language systems for such

distributed architectures (such as the simple SPMD DP execution model alluded to

in Chapter 1), it is clear that most adhere to the exact same framework that we have

proposed here.

Although our approach does not consider the costs of computation, it is obvious

from inspecting the concrete example systems using this paradigm that it can be

made efficient. In part this arises from the owner-computes property which places

the computations closeiy associated with a data element on the node for which the

demands for that element can be satisfred without inter-node communication. Other,

non owner-computes, solutions also exist (as motivated in the preceding proof) -
these involve distributing maximal macro-responsibilities between nodes in a way

such that at least two nodes are granted the macro-responsibility arising from close

associations with indices from a different memory. That is, two or more nodes are

charged with the task of performing computations whose entire inptt set is off-node.

Intuitively we would expect such solutions to be significantly more costly than the

o\.vner- computes alternative.
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3.3 Extending to the Nested Data-Parallel Case

So far we have considered only the execution of single flat DP operators. Our

motivation in such analysis was to explore successful techniques for implementing such

executions with an eye towards utilizing such approaches in the design of an execution

of NDP operators. In this section we explore a simple extension of the concept of

the DP operator which allows its consideration under the models we have already

described. Through analysis of the application of such models to NDP operators, we

discover limitations of the earlier approaches and gain insight into the properties a

distributed execution of an NDP operator shouid possess.

3.3.1- Modelling NDP Operations

The mathematical framework described in the previous sections gives a complete

formalism for decomposing DP operations into a collection of serial computations

which, when co-operatively performed across a distributed machine, implement the

operation. This corresponds to the flat model of DP described in Chapter 1. The

primary goal of this analysis is, however, the description of NDP operations and it is
to this we now turn. As described in Section 2.I, an NDP operation is an extension of

a traditional DP operation whereby the various units which co-operate to implement

the operation are themselves DP operations (rather than simply serial blocks of code).

We use this characterization to make a formal definition of such operators:

Definition 3.22 A Data-Parallel Operation 'ú is called nested if each of its

component responsibilities ú ¡ are themselues Data-Parallel Operati,ons, i[,t is termed

the outer DP operation of the nest; V¡ is termed 0,n inner DP operation.

By Defi,ni,tion 3.7, such inner operations may themselaes be decomposed into

responsibilities. The responsibilities of an inner DP operationú¡ are denoted (it¡)r,
The decomposi,ti,on rule for NDP operations may be written:

ü"'-"n(y) : {ü!'-'n1vlj}, / € [0,...,V1"n- 1]]

v;"-"P(vjl) : {(ü}'"),,(ylrl[k]), k e [0,...,vu]rcrl]
This rnay be read as: the NDP operator {t (a co-operatiue computation) cl,n

be decomposed into eaactly V¡", responsibiliti,es, each of which is itself a DP

7L
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operation (i.e., a co-operatiue computation). These inner DP operations may each

be decomqtosed into Vljlrc, responsibilities, each of which is a local computation.

It is clear from this definition that a fully decomposed NDP operation consists

of a number of sets of responsibilities corresponding to the inner operations of the

nest, plus a group of responsibilities which represent the outer operation. This latter
collection has an important semantic role in the modelling, namely the representation

of synchronization which must take place between collaborators as the very last phase

of the NDP operation (necessary since the outer operation is itself a DP operation).

To begin reasoning about executions of NDP operations, we must define a
mechanism whereby these various sets of responsibilities are mapped into the

initial schedules of the machine. We extend the concept of the distribution (see

Definition 3.10) to accommodate the nested case: an NDP distribution comprises

a collection of I/ * 1 normal DP distributions (where /ú is the number of inner

DP operations of the nest). One of these distributions describes the spread of

responsibilities for the outer operation (these represent the outer synchronization),

while the remaining /ú each describe how responsibilities for one of the inner

operations should be distributed. Formally:

Definition 3.23 A distributionDn"r¡ for a NDP operation V(y) consists of a set of

distributions, one for each of the inner operat'ions ú ¡ plus one for the outer oqteration

ú.lDn"rtl:VIrn+1. AU such distributions must adhere to the following rule:

o all responsibiliti,es from the outer operator ú rnust appear wi,thin the resultant

schedules Ll laler than any responsibiliti,es for the inner operations ú ¡,

Example 3.8: Let ¡I, be an NDP operator over the nested vector

V : ll!,2,31,14,5], [6,7], [S]]. The individual responsibilities of Ü are themselves DP

operators: ü0, üt, ü2, and ü3. Each of these operators can itself be decomposed

into responsibilities (iú¡)*. We consider the process of distributing these inner

responsibilities across a machine of size four. We defrne Dnest to be this distribution,
consisting of five individual distributions D¿, one for each inner operator Ü¿ plus one

distribution 2outer for the outer operator (to represent its synchronization).

We cleclare Dolrter ) the distribution of responsibilities from the outer operation Ü

in such a fashion that each ilr¡ is mapped into the schedule for node j. That is, \Us is
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granted to node 0, ü1 to node 1, and so on. Since the responsibilities we are discussing

here represent the synchronization of the outer DP operation, the positions occupied

by these responsibilities within the various schedules must be after any responsibilities

for inner DP operations. This is a simple representation of the dependency which the

outer operation has upon the inner operations: the former cannot possibly complete

before each of the latter has completed.

Furthermore we declare Do to distribute the three inner responsibilities (iú6)¡ as

follows: (üo)o is allocated to node 0's schedule, (ü6)1 to node 1's schedule and (Vo)t
to node 2. The declarations of D1, D2, ald D3 are made in such a \4/ay that the

following mapping prevails:

(üt)o r-+ node 3, (üt)r r-+ node 0, (ür)o r-i node 1,

(ür)t r-+ node 2, (ür)o r-+ node 3

Depending on the exact list positions which these distribution functions assign to

each responsibility, one possible set of initial schedules for the machine would be:

¿3 : [(\n0)0, (ür)r, \[o], ¿? : [(Vo)r, (üz)0, \úr],

¿3 : [(Vo)2, (lûz)r, üz], ¿3 : [(iú1)0, (üs)0, \[s]

It is worthwhile noting that each of the nodal initial schedules now contains

responsibilities for a number of DP operations (in contrast to the simple cases we

have explored previously where only one DP operation was distributed). This factor,

we shall see, has ramification upon the execution of such NDP distributions and

in particular the limitations that must be put in place to ensure a deadlock-free

execution.

Observation: Once an NDP operation ì[¡ has been decomposed fully into

responsibilities and distributed l¡y Dnest, we have produced a set of initial schedules

Lo;,, one per node, which are in a form ready for input into the distributed executions

A(8, f , M) we have previously defined (in Definition 3.17) for non-nested DP

operations.

Implication: All properties and restrictions shown true for the execution of simple

DP operators on A also apply to such executions of NDP operators. Specifically:

1. such executions are single-threaded
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2. inner distributions which map more than one responsibility from a given DP

operation onto any node of the machine will generate deadlock in the execution.

As with the consideration of executing flat DP operators, this second property

poses a severe limitation to the applicability of our model. If either the inner or outer

vector of a nest has more elements than the size of the machine, then it will inevitably
be true that one node is assigned more than one responsibility from the DP operation

across that vector, and hence full execution will not be possible.

In the flat DP case, we overcame this problem by considering an aggregating

approach to responsibilities. We now turn to the application of this same approach

to the inner DP operations of a nest.

3.3.2 Macro-Responsibilities for NDP
In dealing with executions of flat DP operations, we found that responsibility

aggregation was a useful technique for eliminating deadlock possibilities arising from

multiple responsibilities from a single DP operation being assigned to a single node.

We can apply these same concepts to our emerging NDP execution model in order to

solve these same problems.

We do this by changing our model for decomposing NDP operations: rather than

dividing all inner DP operations from the nest into individual responsibilities, we

consider their division into maximal macro-responsibilities (see Definition 3.20). The

same approach is adopted in the decomposition of the outer DP operation. Once all

operations have been divided into maximal macro-responsibilities we distribute the

various sets across the nodes using a distribution 2fi"r1 which is owner-computes. We

then use the simple synchronizing macro-responsibility execution (i.e., the algorithm

from Definition 3.14 expressed in terms of macro-responsibilities) to execute the initial
schedules generated by this distribution.

For the flat DP case, where we were dealing with the execution of only a single

DP operation, these precautions - maximal macro-responsibility decomposition plus

owner-computes distribution - were enough to guarantee deadlock-free execution.

However, the fact that we are now performing a number of synchronizing operations in

an interleaved fashion, means that these measures are no longer sufficient to guarantee

that cyclic dependencies (and thus deadlock) cannot arise during the execution. A
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formulation of this result, and an illustration of how such dependencies can arrive,

are found below.

Theorem 3.5 There eúst macro-responsibility di,stributions Dï'rt for a nested DP
operation V(y) for which the si,mple synchron'izing marirnal rnacro-responsibility

bøsed erecut'ion L?yn, will not cornplete.

Rationale: We prove this by demonstrating one distribution which introduces a

cyclic dependency during an execution of A!rr.".
Consider a distributed machine of two nodes across which two vectors Vl and V2,

each of four indices, is distributed. The partitioningof Vl andV2 is such that node 0

holds indices y1[0] ,Vllll,Vzl\l and 72[1] while node t holds Vllzl,yl[3] ,V2l2l and

V2[3]. Next consider an NDP operation ü which has two inner operations, one of

which takes place across VL, the other of which is across V2.
In such a system there are three DP operations: the outer ü and the two

inner operations üs and ü1. Each of these we decompose according to a maximal

macro-responsibility decomposition. This leaves us with the following sets of macro-

responsibilities:

. VF and ürtr (representing the outer operation)

. (Vo)F : {(Vo)g, (üo)t} and (Vo)i : {(Vo)2, (üo).} (representing the first inner

operation)

. (¡úr)F : {(ü')0,(Vt)t} and (Vr)i : {(úr)r,(üt)r} (representing the second

inner operation)

The first member of each of these groups has associations with the indices of node 0,

while the second has only associations with node 1. Thus any distribution which maps

the first member of a pair to node 0's schedule and the second to node 1's schedule

is owner computes.

Consider now a single such distribution D"n rt which generates the following

(owner computes) initial schedules for nodes 0 and 1:

¿3 : [({r0)oo, (vr)f , v3], ¿1 : [(vr)oo, (vo)1, vl]
Note that this defi.nition assigns node 0 with a macro-responsibility for the first

inner DP operation, followed by one for the second DP operation. Conversely, the
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schedule of node 1 contains a macro-responsibility for the second operation followed

by one for the first.

We now turn to the execution of these schedules. This begins by each node

applying the first of its macro-responsibilities and then blocking at a synchronization

point (in algorithmic terms, each node moves a macro-ïesponsibility from the head of

the schedule to the applied set, evaluates the discard function to discover that neither

is permitted to remove elements from that set, and finally applies the continuation

function which dictates that the node should be in an unready state).

If we consider the situation on node 0: it has blocked because the first inner DP

operation Vs requires synchronization. Thus node 0 will only be unblocked at some

time after the other node's section of üs has been applied. Until that time node 0

will be idle.

If we consider the situation on the other node: this node has blocked because of

the synchronization required for the second inner DP operation ü1. This node cannot

resume execution until such time as node 0 performs its part of this inner operation.

We can see that this is a cyclic dependency and defines a deadlock. The fact

that there is at least one such distribution which generates such a result even in the

presence of a maximal decomposition and an owner-computes distribution, proves the

theorem. D

It seems clear from the preceding proof that the standard macro-responsibility

approach fails for NDP operations because it does nothing to avoid cyclic

dependencies which arise from the relative ordering of different operations on different

nodes. We now construct a means for limiting distributions of NDP operations in

such a way that we can ensure that such deadlock cannot arise within our model.

We begin by defining a simple mechanism for determining whether a distribution
specifies a consistent ordering between two DP operations on all nodes of the machine.

We say that a distribution is pairwise sorted with respect to two DP operations

if, considering those nodes of the machine which have responsibilities for both

operations, all such have those responsibilities in the same order within their schedule.

Distributions which do not maintain this property for some pair of DP operations are

guaranteed to deadlock in the same fashion as the distribution shown in the preceding

proof.
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Definition 3.24 A macro-responsi,bility distributionDtrn"r¿ of a nested DP operation

ü(y) is said to be pairwise sorted with respect to k and I iff the following
relationshi,p erists between the i,ni,tial schedules (L?)" of the distri,buted Tnenùory

machine's nodes:
Let Al be the set of nodes to which D"n"rt has mapped macro-responsibilities of

both'ú* and ú¡ (k,,1 € [0,... ,Vl"r- I],k I l). Then if z € N,
pos ((l!)o, (v¡,)o) ( pos ((LÐ",(v,)o) ++ pos ((¿l)o, (¡úr)o) < pos ((¿l)o, (!I'r)o), vi e N

where pos ((l!)o, (ü¡)o) denotes the position of node N¿'s sole rn0,cro-responsibi,lity

(v¡)i of ú ¡ within the li,st (Ll)tr.

The notion of pairwise sortedness is a means of expressing that for a given pair of

DP operations, a consistent ordering (for their macro-responsibilities)exists across the

entire machine. This is enough to guarantee that no deadlocks will be introduced into
the computation because of conflicts in the sychronization of those two operations.

We need to broaden this concept, however, to deal with an arbitrary number of DP

operations. For an NDP operation to have no ordering-induced deadlocks it must be

true that for any two DP operations defined within the nest, a pairwise ordering is

guaranteed by the distribution. We term distributions which can define this kind of

operator-wide sortedness to be totally sorted.

Definition 3.25 A macro-responsibility distributionDtrrrr¡ of a nested DP operation

ü(y) is said to be totally sorted iffVk,/ e [0,...,V1"n - 1],(k + l), D]n"rt is
pairwise sorted wrt lc and l.

We have now arrived at a point where we have defined a means of specifying a

distribution which can guarantee that no deadlock arises through differing orderings

within schedules. We now add this notion to our basic macro-responsibility execution

and show how the resulting model is guaranteed deadlock free for all NDP operations.

Theorem 3.6 A si,ngle-threaded synchronizi,ng di,stributed erecution Loryn" can

complete the erecution of an NDP operator ú on a distributed memory machine of
size N only if:

1. L]ar" is the si,mple n'tacro-responsibili,ty synchronizing DP erecution deriued

from substituting "rnacro-responsibility" in place of "responsibility" in

Defini,ti,ons 3.11 and 3.17, and
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2. the outer operation ú i,s decomposed i,nto N or fewer n'ùacro-responsi,bilities úE*,

and

3. this set of rnacro-responsibilities is distributed such that no node has more than

one withi,n its schedule, and

4. ú 't inner DP operations ú ¡ are each decomposed into fewer than N rn&cro-

responsibi,lities (ú ¡)1, and

5. these sets of Tna,cro-responsibili,ti,es are distributed by a totally sorted distribution
D"n"rt which assigns no n¿ore than one nxûcro-responsibi,lity from ú ¡ to any node

Rationale: We know that to be called synchronizing, a distributed execution must

have a discard function of the form:

p(Al',tr) : {Vf e A!' :complete(Vi,¿o)}

for a scheme of responsibility decomposition (or aggregated responsibility
decomposition) of a DP operator into sub-computations called üf .

We also know from earlier analysis that an execution can be termed single-

threaded if it has a continuation predicate that causes a node to block (i.e., remain

unready) whenever the local applied set Aj is non-empty. That is, the function I
must retun false whenever Aj is non-empty. In the case where the applied set is

empty, the function must return true for at least some of its applications; otherwise

a node n4 would never become ready and hence never complete the execution of its
schedule, Since I is a function of the applied set, if it returns true f.ot some empty

Aj it must do so for all empty Aj. Hence, by requiring single-threadedness, we have

effectively defined:

rFy,'"(AÍ') : { lÏ" ir t!o; -- r
I fulr" otherwise

Thus, merely by the assumption of properties of synchronizing and single-threaded

execution, we have fixed the two auxiliary functions of the distributed execution

algorithm. However, variance still exists between executions by virtue of the kinds of

elements contained within the nodal schedules. For example, we have seen already

the cases where each list held individual responsibilities and the case where it held

macro-responsibilities. Different properties were proved for these two executions. The

task, therefore, for the remainder of this proof is to establish that an execution with
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B and f as defined above can always complete execution of an NDP operator if: its
schedule elements are macro-responsibilities; there are fewer than l/ of them for both
the outer operation and each inner operation; and the distribution of such elements

to initial schedules is by a loLally-sorled distribution which granLs no nrore than one

outer macro-responsibility to any schedule. We prove each of these requirements in
turn.

Requirements 1 and 2: Limits on Decomposition and Distributions of
Outer Operator \[r:

Recall that the outer operator i[¡ is itself a DP operator. Thus all properties proven

previously for the execution of DP operators also holds true for \[r. Theorem 3.4

and its proof describe how, for the macro-responsibility based distributed execution,

termination is not possible when one node Ä[ has been granted more than one macro-

responsibility from a DP operator. Applying this result in the context of ü gives the
stated result: to terminate, an initial schedule (l¿)tr cannot have more than one

macro-responsibility from the outer operator ü.

Requirement 3: Decomposition of V¡(V[t]) into <
Responsibilities:
For \Í to execute to completion, each of the inner DP operators V, must execute to
completion. From an earlier analysis we know that the algorithm at the heart of the
execution will not complete if the initial schedule of any node n[ holds more than one

responsibility/macro-responsibility for the same DP operator iú¡. Thus, if we wish a
given inner DP operator ü¡ to be completely executed, we must ensure that no node

has more than one of its sub-computations. If there are ly' nodes, this means that
there must be at most -|y' sub-computations.

Given the fact that we can make no assumptions about the extents of the vector

I/[7], this means that the decomposition of ü¡ must be into macro-responsibilities,

and further that there must be fewer than I/ such macro-responsibilities in each

decomposition.

Requirement 4: The Distribution 2tr must be Totally Sorted:
We prove that this is a requirement for complete execution of the NDP operator Ü

by contradiction. We assume that there is a distribution Da of macro-responsibilities

which will complete under a single-threaded synchronizing execution, but is not totally
sorted. The fact that DE it is not totally sorted means that there exists one pair k
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and / which are not pairwise sorted. That is, if ,A/ is the set of nodes whose initial
schedules have macro-responsibilities from both ü¿ and ü¿, then I nodes 21 and 22

in "A,f for which:

pos ((4!,)o, (ìI,n)o) ( pos ((L2)" , (ür)o) <f+ pos ((L2)" , (ü*)o) ( pos ((L2)" , (vr)o)

Specifically it may be true that zt and z2 have initial schedules such that in
(L2)", \[¡'s macro-responsibility precedes !û¿'s, while in (Llr)tr the ü¡'s macro-

responsibility occurs earlier in the list. This is precisely the situation explored in
the Proof for Theorem 3.5, which showed such schedules could never complete on a

synchronizing single-threaded execution. This contradicts the assumption that the

non-totally sorted 2E under consideration would complete for such an execution.

Therefore we can conclude that no non-totally sorted distributions exist which lead

to full execution on the synchronizing single-threaded execution.

We have thus shown that the desired three properties must hold for an NDP

decomposition to execute to completion on a synchronizing single-threaded execution.

!

Corollary: The totally sorted distribution of the maximal macro-responsibilities of

V(y) will always execute to completion on a single-threaded synchronizing execution.

Rationale: By the definition of maximal decomposition of a DP operator, each

of the inner DP operators \Í¡(I/[j]) will be decomposed into exactly { macro-

responsibilities, where I/¡ ir the number of memory spaces which hold indices of

Vþ]. Clearly each of these { must be less than /ú (since l/ is the count of all nodes,

and hence all memory spaces).

The rest follows from Theorem 3.6. tr

We have now reached a scheme for NDP execution which we have proven to
always terminate across any DP operator. That is, we have arrived at a design which

meets the requirements with which we began this chapter. The scheme guarantees

completeness of execution by imposing a number of restrictions on the general

distributed execution. Specifically, we are required to ensute that the decomposition

of every DP operation in a nest consists of a number of macro-responsibilities which

is less than or equal to the number of nodes in the machine. Furthermore, these

macro-responsibilities must be distributed in a fashion which grants no more than
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one macro-responsibility from an operation to any given node. Finally, the scheme

places a further requirement upon the distribution: it must be totally sorted, that
is we must somehow eliminate the possibility of node .ly'o's schedule listing a macro-

resporrsibility for \Ío before one for ün while at the same time node N6 defines the

opposite relative orientation for its macro-responsibilities of üo and ün.

We know from an earlier result that the scheme in question is single-threaded.

Thus we term this implementation of NDP the Single-Threaded Sorted Paradigm

(Sf SP). The properties of the scheme suggest that it would offer a suitable framework

for cheaply implementing NDP on a conventional multi-processor archiecture (i.e.,

one composed of single-threaded nodes). We examine the practical considerations

of defining such an implementation (with especial reference to effi.cient support for

irregular computation) in the following chapter.

3.4 A Multi-threaded Alternative
The executions we have considered thusfar in this chapter have been limited to those

that arise when each node of a distributed memory machine embodies a single-thread

of control. We began modelling such executions based on the fact that they represent

the forms of execution most closely related to a large class of real-world multiprocessor

architectures. This semantic closeness argues in favour of a straightforward and

efficient implementation of the models upon such hardware. However, in the process

of augmenting our basic single-threaded model to ensure deadlock-free execution of

first DP and then NDP codes, restrictions and complexities \ryere added to the basic

formalism. These introduce implementation costs which, to some extent, offset this

basic low-cost mapping process.

It is therefore worthwhile returning to our original assumption - that our

executions must be single-threaded - and considering the consequences of relaxing

this limitation. In this section we undertake such an analysis, investigating the

possibilities that a multi-threaded approach affords. We begin by defining a simple

multi-threaded execution model in terms of our existing theory and then continue

by proving that this very basic definition is sufficient to guarantee deadlock-free

executions for both DP and NDP operations, irrespective of decomposition and

distribution.
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3.4,L Modelling Multi-Threaded Execution

The basis for defining a multi-threaded model of distributed execution exists already

within the mathematical framework laid down in Section 3.2.2. The concept of an

execution model's threadedness is described in Definition 3.16 which relates back to

the notion of the model's applied set as a repository for blocked threads of control.

To define a multi-threaded model of distributed execution all that is required is

that we return to our distributed execution algorithm (Definition 3.14) and define a

continuation protocol which allows for a node's applied set to grow beyond a singleton.

That is, we must define a continuation function f which enables a node to execute

a further schedule element (i.e., become ready) even in the case where one or more

previous responsibilìties are still awaiting sychronization events. Because the model

must still enforce a DP style of synchronizing execution, we must still adopt a discard

function based upon operation completion (i.e., the function from Definition 3.17).

We formally define our first-cut multi-threaded execution as follows:

Definition 3.26 A Simple Multi-threaded Synchronizing DP Execution;
We def,ne a multi-threaded synchronizing erecution L{ync by maki,ng a functional
def,nition of the discard function p!finr, and defi,ning a continuation Ttredicatelftnc.

0!fi"r(Al',t¿): {v¡ e Ain : complete (Ü¡,r¿)}

lfr"r(A!¿'): true

Multi-threaded execution is introduced into the model by the fact that the

continuation policy (defined by f) indicates that a node should remain ready

irrespective of the contents of its applied set. That is, even if there are blocked

threads of control upon the node (represented by responsibilities in the applied set),

the execution is still permitted to execute a further thread of control (by applying

a further responsibility). This aspect of the design marks it as multi-threaded. We

formalize this rationale into a formal proof:

Theorem 3.7 Lfinc is multi-threaded.

Proof: Al1 that is required is that we prove that the execution can cause the applied

set A! of at least one node to contain more than one element. We choose to prove

this by proving that Affnc can generate applied sets of any cardinality 2 0.



CHAPTER 3. DESIG/VI¡\rG A NEW PARADIGM FOR ¡\rDP 83

Let P(n) be the proposition that Affnc can generate an applied set' Al containing

n elements.

P(0) is true, since the applied set of each node begins as the empty set.

Assume that P(n) is true. That is, at some time ú at least otte ttode's applied

set Al contains exactly n members. We assume, without loss of generality, that this

occurs on a node /ú, which has at least one element remaining in its local scheduie

4.
At the end of the last iteration of the algorithm, fffnc would have been applied

to A!, returning úrze. Thus, at the end of this cycle of the algorithm, node I/¿ is

marked ready. Consider the next cycle of the algorithm. The sub-steps of Step 2 will
be followed, since the node is ready. As part of these sub-steps, node 1[ will remove

the head element from its schedule, apply it to the local processing element and add

it to the newly applied set Aj+1. Since this set will thus be non-empty, the sub-steps

of algorithm Step 3 wilt be followed, and the discard function /fi"" will be called.

Depending on the extent to which the DP operations being co-operatively executed

have completed, this set will contain 0 or more applied responsibiiities.

Consider the case where this set is empty. Then the applied set Aj+1 assumes the

value of AIU{Vr}.Thatis,attheendof thecycle,thecardinalityof theappliedset
will be n * l. Thus we can deduce that it is possible for the execution to generate an

applied set of size n * 1. That is, P(n f 1) is true.

By the principie of induction, the fact that P(0) is true and that P(n) + P(n + 1)

implies that P(n) is true for all n ) 0. n

3.4.2 Multi-Threaded Execution of Flat DP Operations

We now consider how the multi-threaded execution we have defined can be applied to

the evaluation of flat DP operations. We assume that such operations are decomposed

into a collection of responsibilities (as outlined in Definition 3.7) which are distributed

into the initial schedules of the various nodes. The execution proceeds by following

the algorithm described in Definition 3.14 with policy functions f$nc and B{,n"
from Definition 3.26.

We are interested in learning the conditions under which such an execution will
encounter a deadlock. If we consider the situations which caused cyclic dependencies

in our single-threaded models for DP execution, we see that all are centred upon
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factors related to a node being unable to execute further responsibilities while awaiting
a synchronizalion. In the multi-threaded model there is no such blockage of the entire
node's control and thus no opportunity for deadlock due to a node's inability to
execute a later responsibility because of the synchronization requirement of a former
responsibility. Since such dependencies represent the only deadlock cases for the flat
DP model, we would intuitively expect that a model which inherently avoids such

dependencies - such as our multi-threaded execution - would be naturally deadlock-

free for any distribution of a DP operation's responsibilities. We now formally prove

this intuition.

Theorem 3.8 L{ync can erecute to cornpleti,on any distribution D of a fl,at DP
operator ú .

Rationale: Consider a decomposition of ü into a set of local sub-computations

which are distributed across nodes of a machine of size s by a distribution 2. We

consider the initial schedules Ll of these nodes, defining a quantity 7, the erecution

time as follows:
.11 _, :,.til.?ï_,r

where len is the length function for lists.

len (a!)

Now consider the execution of a single cycle of the algorithm. Since f$nc is true

for all applied sets, we can deduce that every node A[ of the machine will be tagged

ready at the beginning and end of every iteration of the loop. Since every node will be

ready at the beginning of Step 2, every node with a non-empty schedule will shorten

its schedule by one, adding the head element to the newly applied set. After the 7'th
cycle, every node $ will have emptied its schedule and the algorithm will complete.

Note that this is independent of the distribution D chosen for the sub-

computations. Specifically, the execution still completes if a node //¿ is granted more

than one sub-computation from the same DP operation. !

3.4.3 Multi-Threaded Execution of NDP Operations

In the previous section we considered the application of our multi-threaded execution

model to the evaluation of flat DP operations. We turn now to a similar analysis of

the model's ability to handle the NDP case.
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We model an NDP operation in a fashion identical to that considered earlier for

the single-threaded execution (Definition 3.22). Each of the various outer and inner

DP operations of the nest are decomposed into responsibilities and then distributed
into the initial schedules of the varicrus rrotles. Multi-threaded execution is then

simulated by following the distributed execution algorithm (Definition 3.14) with the

multi-threaded policy functions (Definition 3.26) substituted.

In the consideration of deadlock conditions for our single-threaded models, NDP

operations were problematic on two counts. Firstly there was the possibility of cyclic

dependency due to a node being called upon to execute two responsibilities from

the same operation - where the second could not be performed until after the first
had synchronized with it. We have already shown in the previous section that the

multi-threaded execution manages this case without deadlock. A second cause of

cyclic dependency in NDP execution was the possibility of inconsistent ordering of

responsibilities in the various nodal schedules. This type of deadlock is also naturally
avoided in the multi-threading execution by virtue of the fact that no node is ever

disallowed from continuing executing its schedule even when a synchronization is

pending for one of its threads.

By this argument we would expect our simple multi-threaded execution to also

avoid deadlock for any distribution of an NDP operation. We no\4/ prove this assertion.

Theorem 3.9 L{ync can erecute to completion any distribution Dnest of an NDP
operator ú

Rationale: This situation is similar to that described in the proof for the previous

Theorem. If we decompose each inner DP operator \ú¡ into sub-computations and

distribute these acïoss nodes 14, we can define an execution time T in afashion similar

to above. By an identical argument, the execution of this distributed computation

will complete after exactly 7 iterations of the algorithm.

Note that this result holds true even for distributions 2nest which assign more

than one sub-computation for a single DP operator \Í¡ to a single node. It also holds

true in the case of a non-totally sorted distribution. tr

Implication: If we were to implement this execution model on a distributed memory

machine which supported multiple concurrent threads on each node, we would have an

environment in which both DP and NDP operations would execute to completion for

any possible distribution of responsibilities. That is, the multi-threaded execution we
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have examined in this section forms another design which meets the requirements with
which we began this chapter. The implementation of this candidate NDP scheme,

termed lhe Multi-Threaded Paradigm (MTP), is considered in the following chapter,

with a specific ernphasis orr lhe cosls arrd benefits associated with suppurting irregular

styles of computation.

3.5 Summarizing the Mathematical Analysis
In this chapter we have provided a lengthy formal treatment of the distributed
execution of DP and NDP operations. Beginning with models for key concepts such as

the distributed aggregate and the decomposition of a DP operation, we described an

algorithm which can be considered as a mathematical model of a real-world execution.

The exact nature of the execution modelled under our formalism is guided by two

policies: one governing the synchronization between nodes, the other defining the

situations in which the node's control should be blocked. By varying these policies

we can arrive at model executions with widely varying characteristics.

We began by considering a very simple synchronizing execution which is

functionaily identical to the SPMD style found in common flat DP implementations

on machines such as the CM-5. Both real and modelled executions portray single-

threaded computational forms. Analysis of our model showed that it could only be

guaranteed deadlock free if we adopted a mechanism for aggregating the individual
per-node computations in a way which ensured that each node only had one role

to play in the co-operative computation. With this limitation in place, the model

provided a good basis for executing flat DP operations.

We turned then to the consideration of NDP computation, at first applying the

same model found successful for flat DP execution to the new context. Analysis

showed that even given the safeguards put in place to ensure deadlock in the flat DP

case, this single-threaded model had difficulties in completing the execution of NDP

computations distributed in certain fashions. Specifically we discovered that in the

NDP case, a second type of cyclic dependency could be set up in the machine by

virtue of a lack of common consistent ordering within the schedules. To eliminate

the possibility of such situations arising we further restricted our model by placing

strong requirements of ordering upon the distribution of work. The resulting model,
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the Single Threaded Sorted Paradi,gm (STSP), can guarantee deadlock-free execution

for any distribution of an arbitrary NDP computation.
In response to the complex restrictions which were required to build a single-

threaded environment which could safely execute NDP operations, we considered arr

alternative approach - a multi-threaded model of distributed computation. While
such a model is less well suited to implementation on SIMD or SPMD hardware, it
naturally free from the kinds of cyclic dependencies which plague the single-threaded

models. Thus it is capable of executing both DP and NDP operations to completion
without any further need for semantic mechanism or limitations on distribution. This
simplicity in some ways recommends lhe Multi-Threaded Paradi,gm (Mf P)as a basis

for an NDP implementation.
In the next chapter we atalyze these two deadlock-avoiding strategies for NDP

execution from a practical perspective, deducing performance costs and characteristics

for each. We carefully consider the impact of program irregularity upon the two

execution models, highlighting the costs incurred due to synchronization and remote-

access. Based upon the results of this analysis we build a case for choosing one of

the strategies - the Multi-Threaded Paradigm a more suitable basis for the

execution of irregular scientiflc programs.



Chapter 4

Applying the Mathematical
Analysis

In the previous chapter, we considered mathematically the problem of executing

general NDP operators across vectors (and vector nests) of arbitrary partitioning.
We introduced a number of formalisms which abstractiy represent aspects of real-

world distributed execution and and DP/NDP operations. In this chapter we relate

this mathematical model back to actual hardware and software implementations by

evaluating the approach from two practical perspectives.

Firstly, we consider the model's general applicability as a descriptive tool

for DP execution models, focussing on the modelling of software and hardware

implementations of DP; we show explicitly relationships between our formalism and

several such implementations as discussed previously in Chapters 1 and 2.

Following this analysis, we consider our abstract model from a second important
perspective: that of estimating the performance characteristics of real-world

(distributed memory) implementations of NDP execution as described by the modei.

In Chapter 3, we identified two models - the "Single-Threaded Sorted Paradigm

(STSP)" and the "Multi-Threaded Paradigm (MTP)" - which guarantee termination
for all possible input partitioning. We now consider performance realizable

in implementations of each of these models by firstly identifying the principal
functionalities the models demand of an implementation, and then estimating the

cost of supplying such key functionalities. We describe a loose cost metric for

implementations - both in a general form (irrespective of the target architecture),

88
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and also for the particular case of implementations targetting SPMD architecturesl.
We build a case for choosing one of the two candidate models as the most likely

to deliver good performance in a SPMD environment, based on the estimates of
implementation overheads derived from the SPMD metrics. The choice we make of
abstract model (the MTP) and target architecture (SPMD) forms the context for the
work reported throughout the remainder of this thesis.

4.L Modelling Existing DP Paradigms
The formalisms developed in the previous chapter are very general in their expression

of DP and the execution of DP operations - most existing hardware and software

implementations of DP are expressible within the framework. We turn now to the
task of constructing such a descriptive form for several well-known DP paradigms.

These representations form a good basis for comparisons between the various DP

paradigms and the two candidate NDP paradigms (the STSP and the MTP) derived

from our modelling work, defining a place for each of the two new solutions in a

spectrum of DP/NDP implementations.

4.L.L Modelling SIMD Hardware: the CM-2

As described in Section 1.1.1, the SIMD model of computation, as typified by the

hardware architecture of the Thinking Machines CM-2, is one in which all nodes of a
parallel machine execute the same code stream, synchronizing after each instruction.

We can model such behaviour in terms of the Simple Synchronizing Distributed
Execution (Definition 3.17). We begin by modelling each machine instruction M¿

in a CM-2 program as a DP operation M!, which we may decompose into exactly N
responsibilities (where /ú is the number of CM-2 nodes to be modelled). Each of these

1ú responsibilities of. Mihas the computational semantics of the source instruction M¿

- that is, our conceptual DP operation is made up of /ú copies of the computation
for M¿. We can think of these individual responsibilities as formal representations of

1We choose to concentrate attention on SPMD implementations of our models for two reasons.
Firstly, such architectures are commonly considered to be highly conducive to extracting good
performance from DP execution. A second reason lies in the common availability of such
architectures in the scientific computing community, the audience most likely to find NDP languages
of immediate use.
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the instruction copies that are broadcast to the nodes during a real SIMD execution.

Mathematically we can represent the modelling as:

M¿ is modelled by DP operation Ml : {Mno, Mir,.. . , M¿*-r}

We distribute the responsibilities from our conceptual DP operation M! into Lhe

initial schedules of our 1ú nodes in such a \Ã/ay that the jth r"rponsibility ftorr_ Ml
(the ne operation representing the ith instruction) is placed in the schedule of nocle j
at position i. That is, exactly one copy of machine instruction M¡'s computation
is placed at each node's schedule (at position i), simulating the broadcast of the

instruction across the nodes of the machine.

If we consider the global program as a sequence of instructions Mo, Mt,. . . , Mr-7
(each modelled as a DP operation), \.\¡e can deduce the schedule that such a

distribution (broadcast) generates for each node of the machine. An arbitrary node j
is allocated the initial schedule LJ as follows:2

Ll : lMoj, Mrj,. . ., M,-t¡]

Note that this schedule mirrors exactly the global CM-z program \¡r'e are modelling:
each node is called upon to issues copies of the same instructions in the same order.

In this model of the CM-2,, an execution begins with each abstract node applying
the responsibility representing its copy of the first machine instruction Ms. The

nodes move this responsibility into their local applied sets and are unable to continue

execution until such time as these sets are emptied by discard. This occurs only when

all nodes have completed the execution of their copy of Ms (i.e., their responsibility
of Mfi. The process then begins anew for the next schedule element, and so on until
the entire series of machine instructions has been executed by each node. Clearly, in
this execution model, every machine instruction represents a point of synchronization

in the execution, which is precisely the style of execution embodied within SIMD
hardware such as the CM-2.

4.L.2 Modelling SPMD Hardware: the CM-5
The CM-5 represents a class of hardware architectures targetting the traditional
SPMD styles of execution (see Section 1.1.2) in which each node of the parallel

2Recall that in our notation (Definition 3.9) Ltk represents the list of responsibilities awaiting
execution on node k at time f .
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machine begins with an identical code stream from which it executes instructions
independently. Contained within the code stream are a number of barriers, points at

which all nodes in the machine must synchronize before continuing.
We model this model of execution by again beginnirrg with the Sirnple

Synchronizing Distributed Execution (Definition 3.17). We consider the CM-5

instruction set as comprising two types of instructions - those that introduce a

global synchronization point (e.g., the barrier synchronization, hardware implemented
parallel prefix operations) and those that do not (e.g., simple ALU instructions and

memory operations).

In line with the approach adopted in the modelling of the CM-2, we represent

operations from the former class as DP operations which are decomposed into exactly

-fy' responsibilities (where l/ is the number of CM-5 nodes modelled). As before, such

individual responsibilities are merely copies of the machine instruction, and have

semantics identical to that of the instruction itself. We can consider such elements as

copies of the machine instruction that are broadcast (one to each node) during the
execution. In formal terms we define the modelling for a synchronizing instruction
M¿ as follows:

M¿ i.s modelled by DP operator M! : {Moo, M;^,. . . , Mi*-,} ff Mi is synchronizing

Alternatively, if the instruction M¡ is not a synchronizing instruction, we model it
as a set of l/ local computations - that is, a set of lú responsibilities which are not
part of any DP operation, and which may thus execute independently without any

required synchronization. Each responsibility in the set is given the computational

semantics associated with the original instruction. We can again think of these as

being copies of the instruction which are to be broadcast to the various nodes of the

machine. Mathematically we describe the modelling as:

M¿ is modelled by the set {tr!, Ll,, . . . , Ly-'} if M¿ is not synchronizing

The independence of the responsibilities within such a set (i."., each may be

executed without a co-ordination with other set members) gives the desired property

of execution without synchronization. In terms of our mathematical model, the

responsibilities from such sets may be removed from a node's applied set at any

time after their execution, without need to wait for a synchronization event to take

place. This property can be represented in terms of the complete predicate: passing
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responsibilities corresponding to independent local computations (i.e., set members)

to complete at any time after the execution of such responsibilities will always yield

a true value.

As the final stage in modelling the CM-5 we defrne a distribution for assigrring

the responsibilities for each instruction to the initial schedules of the nodes. We can

again consider this operation to be analogous to a broadcast of machine instructions

to computational elements in the CM-5. We define our distribution in two parts, one

rule for responsibilities arising from synchronizing instructions (i.e., parts of a DP

operation) and another for those generated during the modelling of non-synchronizing

instructions (i.e., responsibilities which have no inter-relationship). Mathematically,

our rules are:

DC¡vt-S U4o, - position i in Lo¡

Dcv-s Lto - position i in Ll
These functions collectively implement a simple scheme: if we consider our global

CM-5 program to be composed of machine instructions Mo, Mt,. . . , M,-t, then the

distribution guarantees that every node is granted exactly one copy of each of these

instructions. Furthermore the nodal copies are ordered in exactly the same way as

the original program - the local version of Mo heads the schedule, followed by the

representation of Mt and so on.

Thus, for example, a CM-5 instruction stream consisting of four non-synchronizing

instructions Mo,Mt,Mz,Ms followed by a synchronizing instruction Ma, would result

in each node j being granted the following initial schedule:

L? : lLro, Ltr, Ltr, Lt", Mn¡]

It is important to note again that each of the responsibilities Lr¿ is a local

computation, and is not part of any DP operation. This means that the predicate

function complete always returns true for a responsibility Lr¿ at any time after it has

been applied. The responsibilities M¿, are, however, components of a DP operation;

thus the predicate complete returns true only after all responsibilities of M¿ have

been applied. This has the desired effect that nodes in the distributed execution

may independently apply (and discard) any of the responsibilities implementing a

non-synchronizing instruction. When a responsibility implementing a synchronizing

instruction is reached, however, all nodes must complete the instruction before any

are allowed to discard the responsibility and continue with the execution.
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4.2 Reasoning About Performance for Abstract
Model Implementations

The principal goal of the process of modelling undertaken in the preceding chapter was

the design of an execution environment whose characteristics were conducive to the

evaluation of irregular NDP codes. To date we have used our mathematicalframework

to deduce two models - the STSP and the MTP - which are potential solutions to

this problem, by virtue of their abilities to guarantee deadlock-free evaluation even

in the presence of arbitrarily complex distributions of computation (such as those

which might be required to optimize an irreguiar execution). However, as they stand,

the formalisms we have defined incorporate no mechanism for reasoning about the

practical utility of our candidate solutions, particularly the degree of performance one

could expect from an implementation of each of the models on a real-world machine.

Thus, we have no basis for deciding which of the execution models - the STSP or

MTP - is the better basis for implementing irregular NDP.

In this section we offer a series of evaluation criteria which highlight aspects central

to actual performance in implementations of our abstract models. We make use of

the descriptions of SIMD and SPMD hardware (also formal definitions within the

single framework of our mathematical analysis) from the preceding section, noting

that the actual performance obtained by abstract model X executing on hardware of

type Y can be considered in terms of the cost of mapping the formalisms of X onto

Y. The analysis which follows considers the issues involved in such mappings of the

STSP and MTP on a target machine, identifying the key areas of functionality that
must be addressed in an actual implementation. We focus particular attention on

how well we would expect implementations of the different paradigms to perform in
the presence of irregularities of the types identified in Section 2.4.

As a particular case we consider the mapping of both the STSP and MTP
environments for NDP onto a general SPMD machine (with characteristics identical

to our description for the CM-5 in Section 4.L2). We choose this type of architecture

because of it represents a broad class of parallel architectures currently in use for high

performance scientific computing. Consideration of the costs of providing the various

key functionalities for each of the models on such a machine gives us an impression

of the degree of performance that each model of NDP execution could obtain on a

real-world SPMD architecture. Particularly we can determine how such costs would



CHAPTER 4. APPLYING THE MATHEMATICAL ANALYSß 94

be affected by program irregularitities. Based upon such factors we can make an

estimation regarding which candidate model is likely to provide the best foundation

for high-performance irregular execution on a SPMD machine.

4.2.L Principal Cost Factors

If we inspect the mathematical forms of the distributed execution (Definition 3.14)

and the simple synchronizing DP execution (Definition 3.17) it is clear that there

is certain functionality assumed of the environment in which the execution is taking
place. On a basic level there is an assumption of a control flow on each of the nodes of
the machine, and some kind of mechanism for applying responsibilities. On a higher

level there are a number of model-specific functions assumed of the environment. We

can classify these latter demands into three broad categories:

1. The nodal scheduling of responsibilities;

2. The maintenance of global knowledge;

3. The satisfaction of each responsibility's associations.

The first of these categories embodies both the maintenance of the nodal local

schedule structure and the possible administration of multiple threads of control
(should the applied set ever be permitted to grow beyond a singleton). The STSP

places greater demands on the aspect of local schedule structure, since it requires that
the local schedule data structure remain sorted (in the sense of Definition 3.25) at all

times, even in situations of dynamic update. Conversely, while the MTP assumes little
of its local schedule it relies heavily on a node's ability to deal with multiple active

threads of control. We can thus define the cost of implementing the schedule-related

functionality of an abstract model as consisting of a cost involved in management of

the local schedule plus a cost involved in supporting the threadedness of the model.

The magnitudes of each of these costs depends on the degree of support offered to
each operation by the target hardware.

The second category we identify, the maintenance of global knowledge, derives

from the necessity to implement the predicate complete, which determines whether

all responsibilities of a DP operation have yet completed. It represents a vehicle

for synchronizing the co-operative participants of the operation just prior to the
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completion of the operation (a fundamental requirement for DP style of execution).

The style of interaction (as defined in the predicate and its use within the algorithmic

description of distributed execution) is reminiscent of classical barrier 163, 7, 14]

synchronization. Thus we can consider the cost of maintaining global knowledge in an

implementation of an abstract model as being equivalent to the cost of implementing a

barrier synchronization between a given set of nodes (those co-operativeiy computing

a DP operator). Again, the precise magnitude of this cost is governed by the degree

to which such operations are optimized in the target environment.

Our final identified functionality involves the satisfaction of the close and loose

associations of each responsibility. These are data dependencies (see Definition 3.8)

which must be met before the computation represented by the responsibility can

execute to completion. In an implementation of an abstract model a cost will be

incurred in retrieving the data required to satisfy the associations of a responsibility.

Depending on the location (within the distributed environment) of the node executing

the responsibility and the memory which holds the desired data, this retrieval

may involve inter-node communication. Thus the cost of satisfying an association

within an implementation of an abstract model is driven by the cost of inter-node
communication, the frequency with which such communication is required and the

degree to which the latency of remote access is visible.

If we take into account all three of these categories of assumed functionality, we

can postulate a cost metric for an implementations of an abstract model on a machine:

Implementati,on cost : (thread-support cost t schedule maintenance cost) +
barcier synchronization cost * aisible association latency

As we have noted above, the magnitude of each of these component costs will
depend heavily on the degree to which the demands of the model are compatible

with the facilities offered by the machine. For example, we would expect that an

implementation of the MTP targetting a machine with hardware support for multi-
threading (see Section 6.3.5 for a description of several such machines) would incur a
smaller thread-support costthan a similar implementation targetting a SIMD machine

(where no explicit threading support is present). Thus to evaluate the overall cost of

an implementation of model A on machine M we must estimate the various component

costs in the context of A and M and sum them (with an appropriate weighting). We

informally consider two such evaluations in the following section: those which describe

the implementation of the STSP and MTP on a SPMD multiprocessor.
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4.2.2 Implementations on a SPMD machine

As we have described in the introductory chapter of this thesis, the SPMD class of
parallel architectures are commonly considered to have the most potential for high-

performance execution of DP programs. This fact, coupled with the broad availability
of SPMD machines in the scientific computing community, makes it appropriate

that we focus special attention on the implementation of our models on this class

of architecture.
The analysis we present is divided into a discussion of the relative costs incurred by

virtue of the satisfaction of each of the principal areas of model-specific functionality
identified in the previous section. We particularly note the degree to which additional

costs are introduced by the presence of program irregularities. Following a discussion

of each of the component costs, we offer a rationale for choosing one implementation

over the other as a basis for high-performance irregular computation on a SPMD

machine.

Basic Modelling Cost

The principal difference between the STSP and the MTP lies in their basic model

of execution: the former adheres to a single-threaded form of nodal execution, while

the latter assumes a multi-threaded capability of its nodes. As described in the

formalism of Section 4.L,2, the nodes of a SPMD machine (such as the CM-5) are

distinctly single-threaded. This suggests that the thread-support cost involved in the

implementation of the STSP on such a machine would be trivial, while the same

cost of a SPMD implementation of the MTP would be relatively high. The latter
implementation would necessarily involve a software layer to provide multi-threading
capabilities on each node; the functionality and cost of that layer would be similar to

that observed in existing threading libraries such as Culler's TAM [4+,LI?,31, 30],

P-RISC [86,85], Charm [64, 111, 112, 113], Pebbles [99, 100, 10, 109], and the MIT
Cilk [23, 62] system. Later chapters of this thesis (Chapters 5 and 6) describe both

an abstract and concrete form of the precise functionality demanded by the MTP
implementation.

A second aspect of the basic cost of modelling the candidate execution paradigms

is the overheads involved in management of the local schedule data-structure. In
the MTP, no special functionality is required in this management (beyond the simple
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addition and removal of responsibilities) and indeed such a structure will likely already

exist within the software multi-threading layer for the management of local threads

(c.f., the task pool element of the nodal state defined in Section 5.1). Thus, the
management costs incurred by the MTP can be assumed to be negligible. The STSP,

however, places a particular demand upon its nodal loca1 schedule, namely that it
should always remain totally sorted (in the sense of Definition 3,25). Thus a special

protocol must be instituted in the management of that implementation's scheduling

structure. A number of factors complicate this process, including the possibility that a

real NDP program may dynamically add responsibilities at arbitrary (unpredictable)
times during the execution. Further complexity arises from the possible existence of

conditionals within an NDP nest which effectively eliminate any chances of discovering

static information regarding the order of dynamic additions. Factoring these issues

into the protocol of schedule management, we are forced to adopt a dynamic scheme

where some form of sorting operation occurs upon each addition to the local
schedule structure. The cost associated with such a protocol must be considered

to be significant on account of the frequency with which such operations would arise.

Global Knowledge Cost

The STSP and MTP place identical demands upon an implementation with regards

to the spread of global knowledge. In both, the semantics of the operation can be

considered to be functionally identical to a barrier synchronization between the nodes

co-operating on a single DP operation. Furthermore, as described in the formalism

of Section 4.1,2, many SPMD machines incorporate special global synchronization

operations (including barrier synchronization) directly in hardware. Thus, on the

surface, it would seem that both STSP and MTP implementations would incur only

a moderate cost due to global knowledge overhead. However, it must be recalled

that both the MTP and STSP models place few restrictions on the distribution
of computation across the machine, allowing the likely possibility that the set of

nodes we wish to engage in a barrier is a proper subset of the machine. In this

instance the whole-machine synchronization embodied in the hardware of the SPMD

machine does not represent the proper interaction and is thus unsuitable for use as

an implementation of global knowledge spread in the model.

This presents an interesting trade-off in the implementations: we can choose either

to restrict the allowed distribution of computation to ensure that each DP operation is
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co-operative between all nodes (and thus allow the use of hardware synchronization),

or we can retain the generality of distribution and synthesize the barrier from

primitive point-to-point communications primitives. The former approach minimizes

the synchronization cost but reverts the execution model to a simple serialization

(see Section 2.2.1 for an argument against such approaches), unable to exploit

multiple parallei dimensions. Since, as we have argued previously, such an execution

is unsuitable to irregular NDP computation, we must necessarily consider the

second approach - the synthesis of barriers from individual communications (see

Section 5.2.2for a thread-based description of such a synthesis). It is clear that such

a mode of global knowledge spread introduces a significant latency, equally high for

both STSP and MTP implementations. However, some proportion of this cost can

be masked by the MTP implementation's ability to execute other program threads

while a given thread is blocked at a synchronization point.

Association Cost

During the execution of a responsibility within either the STSP or MTP
implementation, it may be necessary to retrieve data from off-node to satisfy the close

and/or loose associations of the responsibility. The distributed nature of the SPMD

architecture dictates that such an operation necessitates inter-node communication

and thus introduces a latency. In both implementations it may be possible to

reduce this overhead by choosing judicious distributions of data and computation

such that few off-node requests are needed. Such an approach is especially tractable

for minimizing the cost associated with close associations, since the dependency

between a responsibility and its closely associated aggregate element is statically
known. We can ensure that each responsibility is distributed to the node which owns

its closely associated element by limiting our model to owner computes distributions

(Definition 3.11). However, it is typically impossible to statically deduce the

dependencies represented by loose associations, thus we must always expect a certain

degree of latency to be introduced in the satisfaction of such associations. As was

the case with the global knowledge operations, the amount of latency suffered by

the STSP and MTP implementations would be similar (given the same distributions

of data and computation), however the MTP implementation has the opportunity
to mask some or all of this overhead by executing other threads. This mechanism

has the potential to make the MTP considerably more efficient in the execution of



CHAPTER 4, APPLYING THE MATHEMATICAL A¡\TA¿YSIS 99

irreguiar NDP codes, since such programs will likely define a high number of loose

associations for constituent responsibilities.

Irregular NDP Execution on SPMD Machines

Considering all component costs for both STSP and MTP implementations on SPMD

architectures, it is clear that each has its strengths and weaknesses. While the STSP's

basic single-threaded control is provided inexpensively in a SPMD implementation,
the model suffers notable costs due to the presence of communications-induced and

synchronization-induced latency, and also must enforce a relatively expensive protocol
to ensure program sortedness. Conversely, an implementation of the MTP must

provide a complete multi-threading software layer upon each node of the machine,

with all the overheads such a system introduces. However, the MTP implementation
can make use of inexpensive mechanisms for schedule management and also has the
potential to mask some or all of the latencies introduced by synchronization and

communication.

Returning to the original goal of this analysis - to choose an environment for
irregular NDP execution can interpret these performance considerations in
light of the kinds of operations we wish optimized in our implementation. Section 2.4

identifies three common forms of irregularity in NDP codes: irregular data structures,

irregular access patterns and irregular control. The first of these is equally well

managed by the implementations of STSP and MTP; the latter two introduce high
overheads into the STSP implementation but may be handled cheaply by the MTP
implementation. This difference marks the MTP as the superior environment for

irregular execution: although it bears a constant overhead due to thread support,
the presence of program irregularities introduces few additional costs. Thus an

implementation which can minimize the threading overhead offers great potential
as a environment which delivers good performance irrespective of irregularity.

Throughout the remainder of this thesis we will focus our attention on a closer

investigation of MTP implementations for SPMD architectures. In the following
chapter we expand upon the functional requirements of the MTP, defining an abstract

machine upon which the MTP can directly be implemented. We use this design as

a basis for a low-overhead implementation of threading, described in Chapter 6.

Later chapters of the thesis consider an evaluation of an actual implementation
of the MTP upon this environment, defining a NDP language system (Chapter 7)
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and demonstrating that it delivers a high degree of performance for irregular codes

(Chapter 8).



Chapter 5

A Flamework for Multi-threaded
Expression

We have now provided a case, in terms of a detailed mathematical analysis of general

NDP execution on a distributed memory machine, for considering a multi-threaded
basis for such execution on a SPMD architecture. To further develop this idea into a

fully-fledged execution environment useful for describing actual NDP operations, we

need to elaborate the Multi-Threaded Paradigm (MTP) presented and analyzed in
Chapters 3 and 4 into an appropriate medium of general and detailed multi-threaded
expression. Specifically we need to define a SPMD abstract machine supporting

the notion of multi-threading in a simple and potentially efficient manner. The latter
requirement underlies the need we observed previously (in Section 4.2.2) for low thread

management overheads to make an implementation of the MTP practically viable.

In this chapter we describe a simple thread-based SPMD abstract machine which

adheres to the spirit of the execution we described earlier in mathematical form, while

offering low practical overheads. Our discussion details the nodal data structures,

instruction set and model of execution of the simple machine, noting how many of

these concepts are directly analogous to forms present in the earlier mathematics. To

demonstrate the generality and utility of our definition, we go on to describe how

highly-generic partitioning-independent forms for three common DP operators (map,

reduce and scan) can be expressed as programs for this abstract machine.

101
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5.1- A Threaded Abstract Machine
We now describe a distributed memory multi-threaded multi-processor machine which
promises low practical overheads: an abstract machine based upon the principles of

SPMD execution and non-preemptive multi-threading. The former influence stems

from the DP nature of the codes we expect our machine to ultimately execute. The

latter factor is a reaction to the need for low administration cost: whereas a system

in which executing threads are preempted must necessarily store the full state of

machine (including registers) at points of context switch, a non-preemptive scheme

need only store the (much smaller) state which the thread itself explicitly identifres

as necessary for continuing its execution. This factor, coupled with simpler control
requirements, means that switching costs are considerably lower for non-preemptive
systems of thread scheduling.

At the top-most level of abstraction we define our machine in terms of an abstract

machine program and a set of processing nodes,,thrs:

Let ,l-l(P,,1ú) be an abstract machine.

Where P : {c¿} is an abstract machine program,

l/ : {n¿} is a set of processing nodes

The notion of an abstract machine program is defined as follows: an f)-program

consists of a collection of disjoint threads c¿, each a sequence of abstract machine

instructions. Threads may be actiuated and passed initial state information, which

will be encapsulated throughout the lifetime of the activation. Each thread activation
(or simply activation) executes the instructions from its corresponding thread, in
sequence, until it reaches a distinguished termi,nøúe instruction. The thread activation
realizes the concept of responsibility (or macro-responsibility) in our mathematical

model (c.f., Definitions 3.7 and 3.18) - both represent the computational building
blocks which describe the unfolding of a dynamic distributed execution.

In accordance with the SPMD nature of O, each node n¿ holds a copy of the same

(global) program P, but activates threads from that program independently of other

nodes. Every node commences its execution by activating the same distinguished

startup thread cs. The node's execution of the program P continues until such time
as the thread cs terminates its activation.

At any time between the initial activation of cs and the completion of the program

P, the computational state of a node n; is described by a tuple of the following form:
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T;Q) : (h¡, t ¡(r), r ¡(r),s¿(r), öo(t) )

Where å¿ is the unique host id of the node

t¿ : {a¿¡(s1,. . . , s")} is a set of thread activations,

each encapsulating its own state variables
r¡: {(k¿¡,u¿r)} is a set of result values

s¿ is a memory pool dedicated exclusively to n¿

ó¿ is the single element of f¿ that n¿'s instruction
stream is currently being drawn from

The purpose of each of these state elements, and the modes in which the machine

0 may manipulate them are discussed in the Sections which follow. We can identify
a correspondence between the state elements and mathematical constructs presented

in our earlier analysis: f¿ is equivalent to the nodal local schedrle L (Definition 3.9),

Í)'s nodal memory pool s¿ is the precise analogue of the nodal memory space M; of
Definition 3.2; the remaining elements of r¡¿(r) can be considered elements of the state

S¿t in that same description.

5.1.1 Execution Model and the Task Pool

The nodal model of execution embodied by f) differs from that traditionally associated

with SPMD machines (see Section 1.1.2). A thread which has become active on

a node ni executes until such time as it explicitly requests suspension (by issuing

an abstract machine instruction) or terminates. In the course of its execution the
activation may request the activation of other threads, however such activations do

not occur immediately (as would function activations on a conventional machine).

Rather, new activations are added to the node's taslc pool t¿, a data structure from
which a new "executing" activation is chosen (non-deterministically) whenever the
node becomes idle. A thread may have many activations within a single task pool,

each corresponding to a distinct dynamic invocation and possessing its own internal
state.

While this generalized model of execution seems to lend the model somewhat of
a MIMD flavour, all nodes of our abstract machine are constrained to each execute

threads drawn from a single program, albeit with less clearly defined lock-stepped

phases of execution than normally present in SPMD models. Indeed, the execution
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ordering of thread activations within our model is non-deterministic, yet our paradigm
remains fundamentally SPMD.

Every activation within a node's activation pool l¿ is in exactly one of three states:

either pending, actiae or sus'pett,ded. Each describes a conrputational situalicxr which
a thread may enter during its activation:

o Ã pending acíivation is one that has been entered into the pool but has yet to
be selected for execution by the scheduler. Its encapsulated state is, therefore,
the initial state that was passed to it when it was entered into the activation
pool.

¡ An actiue activation is one which is presently being executed by the node. There

can be at most one activation within a task pool with this status, the activation
b¿.

t A suspended activation is one whose thread has aiready been partially executed,

and which voluntarily suspended its execution. Upon suspension, an activation
specifies a lcey (or identifier) which denotes the conditions under which its
execution may continue.

The fact that 0 supports the notion of thread suspension makes it a blocking model
of multi-threading in the common terminology of the literature (e.g., [10, 100, 99]).

5.L.2 The Result Pool

In addition to the task pool, each node maintains a result pool which serves as a
medium for communication and synchronization between activations. Structurally
each pool is a set of pairs - the first element of the tuple being an identifying key,

the second bearing a value of some expressible data type. By means of abstract

machine instructions (see Section 5.1.5), an activation may add a result to either the
pool of the node it is presently executing on, or to that of another node. The latter
action requires communication (see Section 5.1.4).

The result pool of a node plays an important role in the scheduling of activations

when a node becomes idle. Activations which have voluntarily suspended on a key

le rnay not be scheduled until one or more results with key k are present within
the node's result pool. At that time, the suspended activation once again becomes

schedulable (i.e., it is available for the scheduling algorithm to choose when the node
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falls idle). When such an activation is eventually chosen by the scheduler, it is said to
l¡e resurned: one result from r¿ with key k is removed from the pool and the execution

of code from the suspended activation continues from the point at which it voluntarily
lelinquished ccurtrol. The resull pool value which caused Lhe aclivatiorr to resurne is

available for use within this continuing computation.
It is clear that under this scheduling paradigm, the matching of suspension keys

with result pool keys plays a role in defining the paths of control and data flow in
the program. We assume that abstract machine programs maintain a protocol of
key management which guarantees that its allocation of keys from an infinite "key
space" is never such that a result entered into a node's result pool with key k and

intended for a given thread activation T may erroneously be intercepted by a different

activation also suspended on k.

5.1-.3 Data Types, Aggregates and Partitioning
The machine Q supports all common basic data types (numbers, characters, etc.)

but only provides a single aggregate constructor to group values of these types -
the one dimensional (nestable) vector (as described in Definition 3.1). All vectors

have a lower bound of 0 and an upper bound of len - 7. An important property
of the abstract machine is that each of its vector values is a partitioned aggregate

(c.f. Definition 3.5) - that is, its indices are spread across some or all of the nodes

of the machine according to a partitioni,ng function. The partitioning function for a
vector takes the index and aggregate length as arguments and retutns the identity of

the node which owns that index.

The individual values which a node n¿ is assigned by such partitioning functions

reside within that node's memory pool s¿ (which we assume to be unbounded).

To allow a program to easily refer to distributed vectors, f) provides a uector

descri,ptor foreveryvectorvalue. Thismeta-dataobjectisathree-tuple(id,pf,len),
in which id is an identifier which uniquely distinguishes the vector, p/ is the
partitioning function used to distribute the vector, and len is the length of the vector.

5.L,4 Communication
As alluded to previously (and described in Section 5.1.5), the language of the machine

Q includes communication instructions, which may alter the state of a remote node.
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The semantics of the inter-node communication is as follows: the node executing
the instruction sends a communication event (or message) to node n¡,, the target of
the communication instruction. The execution of that node's actiue activation ó¡

is mornentarily suspended, while the state alteratiorr specified by lhe irrsLrucLiorr is

carried out. On the completion of this state modification ol n¡,, the activation ó¡

continues from the point at which it left off when it was interrupted. From the point
of view of the activation ó¡, the state of the node has been seamlessly altered behind
the scenes.

In such a fashion, the communications instructions of 0 have the capacity to
add entries into a remote node's task pool or result pool. In the former case, the
instruction is obliged to provide an initial state for the newly activated thread, while
in the latter case, a key must be provided to tag the result value.

5.L.5 Abstract Machine Instruction Set

The abstract machine O is imperative, with each node acting as an independent
sequential computational element. In addition to the standard operation of
assignment, the language of the machine supports traditional algorithmic control
constructs (for, while, if) and a number of special instructions which deal with the
management of thread activations and communications between nodes. This section

provides a semi-formal specification of the semantics of these operations.

As notational conveniences, we adopt the following conventions in expressing the
semantics of f,)-instructions and in describing O-programs:

. we use a dot notation to refer to elements of a uector descriptor. Thus, if u

describes a vector within an f)-prograrn,, u.id denotes the vector's identity, u.p/
denotes the partitioning function of the vector and u.len denotes its length.

o \ /e use a squo,re bracket notation to refer to individual indices of a vector. Thus

u[10] denotes the eleventh element of the aggregate u. We use this notation to
refer to both locations (L-values) and values (R-values). It is an error for an

activation executing on a node n¿ to refer to an aggregate element not stored

on that node (i.e., not present within s¿).

o we use the symbol M to refer, within a thread activation, to the identity of the
host executing that activation. Thus, if a thread whose definition contains the
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assignmen| n :: M is activated on nodes 0 and 1, the first activation will assign

r :: 0 and the second r ::7.

We now describe the semantics of the eight special instructions of f,), offering

an informal and semi-formal (symbolic) definition for each. Note that within the
semi-formal definitions of operations which manipuiate the thread pool, we annotate

the thread activations under consideration with their current state and their state

variables.

enter activation (t: threadr s1r...,s,,: state vars)
An activation for the thread ú is entered into M's activation pool with state initialized
by the variables sr¡ . . .¡ sn

Symbolically: tu := tM U {ú}.

request (/z: host id, ú: thread, s1r...,s,,: state vars)
Communication occurs between nodes M and å causing an activation for ú to be entered

into å's pool with initial state s1 ,t...¡sn
Symbolically: t¡ :: ú¿ U {ú[pending, s1, . . ., s,]].

enter value (k: ke¡ o: value)
Deposit the value 'u into M's result pool and tag it with key k

Symbolically: r¡a := rM U {(T.', k)}.

result (/z: host id, k: key, u: value)
Communicate the value o from node M to node h and deposit it in the receiving node's

result pool. This result pool entry is tagged with key k

Symbolically: rj:= r¡U {(a,,k)}.

suspend activation (k: key) --+ result value
Alters the executing activation's stateto "suspended". As explained earlier, this causes

the node to schedule a new activation to execute

Symbolically: t¡a :: (t¡a\{t[executing, s1r. . ., s"]]) u {ú[suspended, s1, . . ., s,]].

terminate activation 0
Immediately remove the executing activation from the node's activation pool and stop

executing it. This causes a new activation to be scheduled

Symbolically: tm := ú¡¿\{úlexecuting, s1, . . ., s"]].
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allocate storage (u: vector id, n: integer)
This instruction causes a new memory element to be allocated in the node's memory
pool s¿. The new entry is tagged with the id of the vector it forms part of, and the
index into that vector.

Symbolically: sM := sM U (u,n,þ).

new id 0 --+ identifier
Causes an identifler to be created and returned. It is guaranteed that the identifler is

unique across the entire machine.

5.L.6 Some Useful Set Operations

The following set functions are not part of the language of the abstract machine, but
are short hand notations used in the ,Q-programs presented in the next section. The

operations we describe are define relationships between host ids within a set; most

define some ordering of the set which we denote by the sequence (A¡)fl-t.
In the thread descriptions which follow, these set operations are used to

mathematically model protocols of communication between nodes (e.g., specifying

that every node in a set should send a value to the node whose id is next largest

in the set). One particular operation, 7 is useful for defining protocols for spreading

information from a set of source nodes (each of which know a specified value) to a set of
destination nodes (each of which must receive this value from) using communications

which traverse the shortest possible path through the machine.

pos-in-ordered (s: set of host ids, å: host id) --+ integer
The sequence (A¡)fl-l is searched for the entry h and the index A¡ ofå, in the sequence

is returned. If h ç s a distinguished error value is returned.

Eramples: pos-in-ordered ({2,8,3,12,4,0}, 2) : t
pos-in-ordered ({2,8,3,I2,4,0},, 8) : +

index-ordered (s: set of host ids, n: integer) --+ host id
The n * lst element of the sequence (Ar)fl-t is returned.

Eramples: index-ordered ({2,8,3 ,12,4,0}, l) : Z

index-ordered ({2,8,3,1,2,4,0}, 4) : 8

previn-ordered-cyc (s:set of host ids, /z: host id) --+ host id
succ-in-ordered-cyc (s:set of host ids, å: host id) + host id
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The sequence (A¡)fl is searched for element h - fi it is not found, an erroï occuïs.

Assuming å, is an element of the sequence, let its position in the sequence A be a. That

is Ao - å,. prevjn-ordered-cyc returns the a - 1 element of A if that exists. In the

case that a : L the operation returns A¡"¡, that is the last element of the sequence.

The semantics of succ-in-ordered-cyc are analogous. The operation returns ,4*11

unless a = lsl in which case it returns ,4'1.

Eramples: prevìn-ordered-cyc ({2,8,3,12,4,0}, 8) : 4

previn-ordered-cyc ({2,8,3,1,2,4,0}, 0) : 12

I (hz host id, d: set of host ids, s: set of host ids) --+ set of host ids
For the putposes of this complex set operation, we need to define a metric on host ids

(i.e., a way of telling how close two host id's are). We deflne M to be such a metric.

Furthermore we consider only metrics with the property that M partitions the set of
host ids. That is, if we choose n host ids, h1 ,...rhn, from the set of all such ids 11, we

can partition the entire space of host id's into n disjoint sets using M. We do this by

defining the partition pi as comprising {h¿}u {r e HIM(h¿,r) < M(h¡,r)Vj I i}.
That is, the set of all host id's closer to the id fr.¿ than they are to any other of the

distinguished host ids h,¡. Since,i!ø1 enforces that no id can be equidistant from two of

the distinguished ids, every non-distinguished host id must fall into exactly one such

set.

The complex set operation 7 is a partitioning operator which uses "¡12. Two

preconditions to its correctness exist: firstly that the identifler h, that appears as its

first argument is a member of the set of ids s. Secondly, the two set arguments to 7, s

and d must be disjoint.
With these preconditions satisfled, the operator 7 returns the subset of d whose

elements are each closer under M to the distinguished id h than they are to any

element of s\{å,}. Symbolically:

1(h,d,s) : {r e dlM(h,*) < M(i,r)Vj e'\{å}}

To illustrate the semantics of 7 in a practical context, consider the example in

Figure 15. The situation we wish to model is the spread of a value common to a set

of nodes {0, 1} to a set of nodes {2,3}. While any of the nodes can communicate the

given value to any other, some nodes ate ((closer" than others defi.ned by some

metric ,421. This notion of inter-node "distance" governs the cost of each individual

communication. In defining a communication protocol we wish to minimize the total
distance traversed by our messages; for this we use the operation 7.
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Figure 15. Using the Set Operation 7

Part (a) of the figure defines a simple metric for determining the distance between

nodes of our abstract machine (obtained by simply subtracting the sender's id from

the receivers). The table in Figure 15(b) evaluates the distance between every possible

pair of senders and receivers using the metric. Inspecting this table we see that the

values which appear within a column are distinct, as are values appearing within a
row. This means that M is a partitioning metric - that is, no node is ever equally

distant from two other nodes under "Al¡.
Figure 15(c) shows two applications of 1 which determine a minimal

communication protocol. We firstly evaluate the expression 1(0, {2,3},{0,1}) which

can be interpreted as an operation to find the subset of target ids (i.e., {2,3}) which

are each closer to node 0 than to any other sending node. This subset represents

the targets which should receive their copy of the value to be spread from node 0
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(since receiving it from any other potential source would involve a longer distance

communication). By applying the mathematical definition of 7 we see that under

metric "Áz1o this evaluation produces the empty set, indicating that in our spread

protocol node 0 should not perform any of the communications. Conversely, our

second application of 7 determines which of the target nodes should be supplied

values from node 1 - this evaluation dictates that node I should satisfy both nodes 2

and 3. Together these evaluations of 7 define a complete minimal distance protocol

(assuming metric Mo) for the desired communication. In the thread descriptions

provided in the next section, no particular metric is assumed: the semantics of the

operations are parametric upon the measure of distance.

5.L.7 An Example f)-Execution

Figure 16 shows a simple program for the abstract machine f,). The purpose of

the program is to enter two thread activations on each node of the machine, and

ultimately have each report a greeting message to the user. Of the two threads

entered into each node's task pool, one is given an activation id 0 and the other an

activation id 1. Thread activations which have the 0 id are permitted to report to

the user immediately: those with id 1 must wait for a message to be received from

the activation 0 of the node whose node identifier is one less in a cyclic ordering of

node ids.

Recall that in this thread description, as in those which follow in the next section,

the symbol M is used to denote the id of the node executing the thread activation

(see Section 5.1.5).

We consider the execution of this simple program on an instance of the abstract

machine f-l with three processing nodes fto¡Ttr and n2. F igures 17 and 18 give snapshots

of each node's task pool and result pool at various times during the execution.

Snapshot 1 shows the abstract machine immediately upon startup: each of the

nodes has a single activation of the thread C0 in its task pool, and each result pool

is empty. Each C0 activation is marked with an A to indicate that it is active.

Once each node begins its execution of the instructions from C0, it is called upon to

enter two activations for the'WORKER thread, one with activation id 0, one with
id 1. The state of the nodes after these additions is shown in Snapshot 2. Note

that we are using the notation Worker(O) to denote the worker activation with id
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c00
{

enter activation (\MORKER,0, k1)
enter activation (\MORKER,1, k1)

done : null :: suspend activation(kl)
done: null :: suspend activation(kl)
terminate activation 0

Ì

\MORKEF- (actid: integer, k: key)
{

if actid : 0
søy "hello from thread actid on node" M
result (succ-in-ordered-cyc (M), k2, 0)
enter value (k,0)

else
ready : null :: suspend activation(k2)
søy "hello from thread actid on node" M
enter value (k,0)

terminate activation 0
Ì

Figure 16. A Simple Abstract Machine Program - hello-multi-threaded-world

0 and Worker(l) for the activation with id 1. It is important that these two be

distinguished - despite the fact that they are executing the same static code, they

are distinct dynamic elements of the computation, each with an independent state.

Note also that these worker activations are tagged P for pending.

Once the C0 activations have entered the workers, they themselves suspend at line

5 of the source program, waiting for a result with key k1 to appear within the local

pool. This causes each node to fall idle, occasioning action by the scheduler to pick a

new activation to which processor attention may be focussed. Snapshot 3 shows the

nodes after this scheduling decision has been made. We can see that nodes 0 and 2

have each chosen to make their Worker(O) elements active (they have been tagged

A), while node t has chosen'Worker(l) - each is a valid choice and the semantics of

0 make no guarantees of a deterministic selection. The worker activations on nodes 0

and 1, with id:0, pass through lines 12, 13 and 14 of the source, writing a greeting
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Figure 17. Executing the Abstract Machine Program, Snapshots 1-5
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on node 'l "

"hello from thread
on node 1"
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to the user, communicating with the next (cyclic) a message with key lc2, entering a

value into the local result pool with key k1, and finally terminating. This leads to the

nodes falling idle. Conversely, the activation on node 1 reaches line 16 of the source,

which is a thread suspension instruction on key k2. Thus this node, too, becomes idle

and needs a newly scheduled activation.
In performing the previous work, nodes 0 and 2 entered a value locally with key

k1, the key upon which the C0 activation is suspended. Hence, that task pool element

is a candidate for rescheduling. We see the state of the machine in Snapshot 4 just

after this rescheduling has occurred on both nodes. On node 1, we can see that the
previous activity on node 0 has caused a value to appear within rs which bears the

tag Ie2. This is precisely the key upon which'Worker(1) recently suspended. Thus,

at the time we come to choose a new activation to schedule, 'Worker(l) is once again

schedulable. The Snapshot shows the case where this resumption has been chosen by

the scheduler.

The resumption of C0 on nodes 0 and 2 allows both to reach line 6 of the source,

at which timethe activations once again suspend on k1. On node 1, the resumption
of the worker activation causes the user to be signalled, and for a value to be entered

locally with key k1 (lines 17 and 18 of the source, respectively). After this result

entry, the worker activation terminates.

Snapshot 5 shows nodes 0 and 2 afler their schedulers have chosen to grant

processor attention to their pending 'Worker(l) activations. These two activations

progress to line 16 of the source before suspending on key fr2. Node 1 also schedules

a pending activation, its task pool entry for Worker(0). This activation signals the

user, and issues a communication instruction which causes a value with key k2 to be

added to node 2's result pool. The activation then adds a value to the local result

pool with key k1 and terminates. Note that 11 already contained a result pool entry

wiih key k1 from the work performed in the previous Snapshot. In the semantics of fl
these two values are distinct despite their identical keys, so each is listed individually
in the result pool.

Since both of these two entries in node 1's result pool have keys matching that
upon which the node's C0 activation suspended, then either can be used to resume

that activation. Snapshot 6 shows the case where a random element has been chosen

and consumed in such a resumption. This allows node 1's CO activation to reach line

6 before once again suspending. While this is taking place, the remaining nodes are
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Figure 18. Executing the Abstract Machine Program, Snapshots 6-8

still in the process of choosing a new activation to schedule (and are hence idle). In
Snapshot 7, these two nodes both resume their activations of 'Worker(l), possible

because each node's result pool contains a value with key k2. Both signal the user

and add k1-tagged entries to their iocal pool.

The final Snapshot shows the C0 activations on each node being resumed from

the suspension at line 6. These resumptions can take place due to the presence of a

kr element in each result pool. As soon as this occurs, the nodes execute the next

instruction, terminate activation. Thus all nodes complete their execution of the

pro8ram.

"hello from thread 1

on node 0"
"hello from thread

on node 2"
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5.2 Threaded Specification of Data-Parallel
Operations

In the preceding discussion we have motivated a general model for the execution of

NDP within a paradigm of non-blocking multi-threading. To this end we defined a

semantic framework for threaded definitions in the form of the abstract machine f,).

With this ground work performed, we may now make a detailed specification of a

generalized model of NDP.

We begin by defining a thread-based form for the elemental sub-computations

which a DP operation may apply in parallel across indices of a vector; i.e., its
responsibilities. In the most general expression of DP, these elements may adopt

any computational form which returns a value (to be used in constructing the result

of the DP operation). Thus we may think of a responsibility as being represented

by a computational function. To promote parallelism, however, we consider only

referentially transparent functions (i.e., those which do not have side-effects).

We model function activation in terms of the primitives offered for thread

activation. This may be accomplished by placing the O-instructions for each DP

elemental computation within a unique thread and adhering to the following calling

convention.

To "call a function F" (i.e., to activate the elemental computation of a DP

operation):

1. enter an activation for I's thread into the local task pool passing a key ks as

an argument of initial state,

2. suspend activation of the caller on k¡

The thread folm of F models function return (passing lhe result value) by

including the following as its last two instructions:
enter value (lcs, result)
terminate activation 0

Since our model expresses NDP, we must provide for the situation where the

elemental computation of a DP operation is itself a DP operation. That is, we should

adopt the previously mentioned protocol (division into a separate thread plus calling

conventions) in our Q definitions of DP operations.
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We choose to construct such Data-Parallel Thread forms in a highly generic

fashion, partly to demonstrate the generality of the execution model and partly to
promote re-usability of our definitions. Rather than make a definition of a particuiar
instance of a DP operation, we choose to capture the semantics of the operation itself
in a form generic upon the possible elemental sub-computations and data layouts

with which it may be instantiated. We also make a design decision that our our

implementations of DP operations should be owner-computes (c.f., Definition 3.11):

this choice is made in an effort to reduce the amount of communication necessary to

complete the computation.
It is to the detaiis of constructing generic, nestable owner-computes forms for DP

operations that we now turn our attention.

5.2.L Issues in the Specification of Data-Parallel Threads

The fundamental model of execution embodied in our protocol of DP threads is

relatively simple. A DP operator ü across a partitioned vector u of length % is
modelled as an activation of the thread form of ü entered into the task pool of every

node which owns a portion of u (i.e., the participant set of ilr(u)). The instructions of

this DP thread perform, amongst other things, the spawning on each participant node

of threads implementing ü's elemental computation. One such activation occurs on

a node for each local element of I/ held within that node's memory - thus, during

the entire computation exactly Ç such elemental computation activations will be

made across the entire machine. It is important to note that there are no limitations
upon the nature of these sub-threads; they may be DP threads in themselves, thus

implementing NDP.

While this model is straightforward, there a,re a number of considerations which

govern the nature of the information we need to carry through the state of the DP

thread activations. Additionally certain constraints enforce unusual modes of thread

activation. We now come to a discussion of these factors.

Data Constraints

As intimated above, we model calls to a DP operator in a manner that is similar

to calls to a regular function. That is, we enter an activation into the local node's

activation pool and then suspend the presently executing activation until the function
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or DP operator has been completely executed. In terms of f,), this is achieved by

passing a key as one of the initiai state variables of the newly activated elemental

computation thread, and suspending upon that key. The elemental activation has

the obligation to enter a result into the node's result pool once its computation is

complete. The value so entered is the result of the DP computation.

In applying this protocol to DP threads, several subtleties arise because of

potential disparity between the set of nodes which compute a result (governed by

the owner-computes principle), and the set which require that result (to incorporate

into further computation).
Consider the example data and program shown in Figure 19. This shows a simple

nesting of an "apply-to-all" DP operation map across a nesting of vectors A. The

outer map operation specifies a parallel computation across the outer dimension of

the vector, one in which the operator map (+f ) is to be applied to each index. That

is, each of the inner yectors of the nest is acted upon by a parallel operation which

applies the (serial) function (+1) to every index.

The partitioning of A is denoted in the frgure by the numbers in small rectangles

in each index's upper right.
If we follow the model for DP threads we have defined at the beginning of

Section 5.2, the computation of the nested DP operation proceeds as follows. First

an activation of the thread form of map is entered into the task pool on nodes

1,...,6 (the owners of the outer vector). Each of these activations, in the course

of its execution, must spawn an activation for its elemental computation. Since the

elemental computation is itself a DP operation (map (+1) ), the owner computes rule

suggests that such elemental activations should be made on the set of nodes owning

the inner vectors. For the particular partitioning shown in the figure, this means that

the six activations for map (+1) should each be made on nodes 7 and 8. Thus the

computation of each of the inner DP operator instances is co-operative between nodes

7 and 8. However, the results of each such computation is actually required by one of

the nodes I,. . . ,,6 as part of the calculation of the outer DP operation. We therefore

have the situation that for the computation to be completed, each of the elemental

activations (resident on nodes 7 and 8) must communicaúe its result back to the node

which spawned it.
We term this kind of implicit data dependency a return ualue dependency. In

terms of the model as it has thusfar been explained, it is impossible for the sending
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A

map (map (+1 ) ) A
(b)

Figure 19. Difficulties in Satisfying Data Constraints

nodes to know which foreign nodes they should send copies of the co-operative result

they have just computed.

To facilitate the correct propagation of results in the case where foreign node

computation is required, we make use of the concept of participant sets (".f.,
Definition 3.6). We ensure that every activation maintains a set of host ids for

the hosts which will at some time participate in the co-operative computation of

which the activation is part. In the example above, the outermost map activation has

participant set fI¿ : {1,. . . ,6}, while each activation of the inner nap has participant
set II¿¡¿1 : {7,8}.

Participant sets provide an easy means of determining the return value

dependencies of an activation. In essence, each thread activation maintains knowledge

of its own participant set (the set of nodes it is currently co-operating with) and passes

this set as an initial state argument to any thread activations it makes. When an

activation completes its evaluation, it can compare its own participant set to that of

its caller. Any nodes which are in the caller's set but not the activation's need to be

sent the result of the computation.
Returning to the example in Figure 19, the system works as follows: the starting

thread ss is, by default, executed on every node. Every node thus enters an activation

for rnap passing the set of all host ids as its caller participanús argument. The outer

map activations first compute their own participant set fI¿ : {1,. .. ,6}; that is, each

(a)
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of the nodes 1 through 6 will perform one responsibility of the outer map. From our

earlier discussion (see Section 5.2), we know that each of these responsibilities will
be modelled as a local function call - that is, node l's map responsibility will be

a computation local to that node (i.e., will have a participant set of {1}), node 2's

map responsibility will have participant set {2}, and so on. The singleton participant
sets are computed by each of the six nodes, and passed to the thread which has been

activated locaily to perform the responsibility.

During the course of their execution of these thread components of the outer map,

the nodes are called upon to spawn activations for the inner map which is to take place

on nodes 7 and 8. During this activation process, each of the outer responsibilities

passes its own (singleton) participant set as the caller participant argument to the

map threads its spawns on the remote nodes. Each of the six map operations (all

of which are co-operative between nodes 7 and 8) can deduce their own participant
set II¿¡¿1 : {7,8}.

If we consider the situation that prevails at the completion of one of these inner
nap operations, it is clear that the result - which is known to nodes 7 and 8 -
must somehow be communicated back to the outer map responsibility which spawned

the operation. The determination of the protocol of back-propagation proceeds by

the comparison of the inner map's participant set ({7, B}) and the caller's participant
set passed during the activation of the inner rnap. For example, if we consider the

inner operation spawned by the outer map responsibility executed on node 2 we

would be required to compare the caller set {7,8} with the inner participant set {2}.
Determining that there exist elements in the latter (those that require the value) but

not in the former (those that already know the value), we would deduce that node 2

must receive a communication from either node 7 or 8 in which the final value of this

particular inner map was transmitted.
As we have demonstrated by way of this example NDP code, the concept of the

participant set provides a convenient means of satisfying return value dependencies.

Such dependencies - arising from situations where (due to the owner computes rule)

the nodes seeking a result value are different from those generating that value - define

a protocol of communication dependent on aggregate partitioning. The comparison

of participant sets represents a low-cost mechanism for dynamically deriving such

a protocol, thus allowing us to construct DP threads which are generic upon the

decomposition of input aggregates.
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Control Constraints

In the discussion of data constraints above, we implicitly assumed that whenever a

DP thread computed a set of participants, it would necessarily be true that every

node in the operators participant set would at some time enter an activation of the

thread implementing the operator. We turn now to the discussion of a mechanism to
guarantee that this situation always prevails.

In the trivial case that the participant set of an activation about to be spawned

is a subset of the participant set of the activation currently executing, the control
constraints are easily satisfied by means of traditional algorithmic control constructs

(such as if ). For example, if a co-operative computation with participant set {1,2,3}
wishes to spawn a sub-operation which itself is co-operative across nodes 1 and 2, the
outer computation can specify this with a code section which reads:

if (executing on node t or 2)

locally spawn part of inner operation
suspend until the inner operation is done

However, in cases where some or all of the nodes in the elemental activation's
set are not present within the caller's set, a more general mechanism is needed

(since the spawning operation has no existing thread of control on some or all
of the inner operation's participants). An example of a case which requires this

additional generality is the inner map activations in Figure 19. If we look at the outer
map activation executing on each node 1,...,6, we see that somehow each of these

activations must cause a co-operative computation to be initiated between nodes 7

and 8.

Generalizing this situation, we can consider the invocation of a DP operator with
a participant set IIa by an outer co-operative computation with participant set flo.

Nodes which are in II¿ but not in II" will require some special mechanism to arrange

for thread activations to be entered into their local task pool. We call this requirement

lhe actiaation constraint of the operator's invocation.

We satisfy such constraints by using the abstract machine's ability for a node to

enter an activation into a remote node's task pool. Once a DP thread begins, it
computes its own participant set and compares it to its caller's participant set. Any

node which is in the former but not the latter needs to be explicitly activated to satisfy

the control constraints. We define a protocol for nodes in the caller's set but not in the
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operator's set to send remote requests for thread activation to the appropriate nodes.

In an effort to keep the remote activation responsibility spread among nodes, we define

this protocol in terms of the set operation 7 (see Section 5.1.6). In the example DP

threads which follow, this protocol is expressed as follows: (where M is the host id
of the node executing the activation, p is the activation's participant set, u is the
vector being operated upon in parallel, / is the function representing the per-element

computation for the operator, and k is a key useful for future synchronization):
np : {æ e H lu.pf (i,u.Ien): r

't : :;"';me 
i € 10 "'u'ten - Llj

ifM€p
I for each a €1(M,nf,p) request (a,DP OP, l,,u,p,k)

This code fragment from a DP operator thread shows how such threads for
operations evaluate their own partipant set (np), how they can compare this with
the caller's set of participantr (p) to determine the set of nodes (nf) upon which it
will be necessary to remotely activate a copy of the DP operator thread. A protocol

for deciding which of the current participants should make each of the required remote

activations is specified (in the iast two lines of the code fragment) in terms of the
partitioning set operator 7: this is an effort to minimize the cost of communication
involved (c.f., Section 5.1.6).

Note that activations that are entered by this method of remote request do not
place their result in the local result pool prior to terminating: had the node in question

actually wanted the value being computed, its id would have been in the caller's

participation set argument of the DP thread, thus its participation in the computation
need not have been induced by a foreign node. In terms of the example in Figure 19,

this means that the activations of the inner map thread do not conclude by entering

results into the pools of nodes 7 and 8. Rather they pass their results back to the

calling node (as described in the data constraint discussion) and terminate.

5.2.2 Auxiliary Threads

Before presenting the thread definitions for the DP operators Map, Reduce and Scan,

it is necessary to introduce a number of auxiliary threads. These threads implement
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important basic parallel operations which are commonly used within the description

of more complex operators.

Vector Dereferencing

As mentioned in the description of the machine f), a node n¿ may only directly access

vector elements which are stored within its own memory pool s¿. In the case that a

node requires a copy of a vector element stored on a foreign node, it may only do so

by a split-phase fetch. That is, it must send a request to the node which owns the

data, asking that a copy be forwarded. Such a protocol implemented in terms of f) is
shown in Figure 20.

DEREF (u: vector, i: integer, h: host id, k: key)
{

if. u.pf (i,u.len) I M
I error
else

I result (h,k,uli])
terminate activation 0

)
Figure 20. Remote Dereference Thread

This thread first checks to see whether the vector element being requested is

actually present on the node. In the instance that it is not, an error is raised, otherwise

the appropriate value is copied into the result pool of the node which made the originai

request (i.e., DEREF's å argument). Typically this split-phase fetch would appear

within the instruction sequence of another thread in the following form, where u is
the vector being dereferenced and i is the remote index being requested.

h: u.pf U,u.len)
request (h, DEREF, u, i, M, ko)

val: suspend activation (k¡)

Synchronizing a Set of Nodes

As has been previously mentioned (Definition 3.7), the parallel semantics of DP

operators dictates that they should be synchronizing operations. In terms of Íì's
implementation of DP this translates to the requirement that the activation which

entered the DP thread should not be able to proceed until after all nodes in its co-

operative computation have finished. A relatively simple means of guaranteeing this
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property is for the DP thread to perform a synchron\zalion of all nodes in the co-

operative computation just before control is relinquished. The SYNC thread shown

in Figure 21 is an expression of such a synchronization.

SYNC (s: set of host ids, k: key)
{

iflsl :1
I enter value (k, /)
L berminate activation 0
slJcc : succin-ordered-cyc (t, M)
rep:: s

result (succrkt , M)
while rep # ó
| ú : irost id: suspend activation (k1)

I rep :: rep\{ú}
I result (succ,k1,t)
enter value (k,ó)
terminate activation 0

i
Figure 21. Synchronizing a Set of Nodes

The thread is passed a set of host ids; these are the identifiers of the nodes which

should be synchronized. It is a precondition of the correct execution of this thread

that all nodes in s at some time enter an activation of the thread with identical

arguments. Until such time as this precondition is met, the synchronization barrier

may not be passed. Additionally the activation which entered the SYNC thread

should suspend upon the key k at the point in the instruction sequence which truly
marks the barrier.

The operation of the thread is: firstly it checks for the trivial case that only one

node has been requested to be synchronized. In cases other than this trivial one, the

thread proceeds to conceptually arrange the host ids in s into a ring. Communication

then proceeds between the node executing the particular activation and its cyclic

successoï on the ring. The message communicated is simply the host id of the

originating node. Upon reception of such a message from a predecessor, an activation

ïemoves the id contained in the body of the message from the set of nodes expected

to participate in the SYNC. The message is then retransmitted to the appropriate

successor node. \Mhen finally, this set is empty, all nodes must necessarily have

entered the SYNC and so the thread may signal the calling activation that the
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synchronization is complete. This it does through passing a null valued result with
the appropriate key.

Note that the communications strategy used in the SYNC thread to implement
a barrier can be improved upon. Alternate communcations schemes, based upon

arranging the participant nodes in a tree-like structure, described in the literature [14]

involve only O(log n) communications. Such protocols can be described in 0, aithough

the resulting threads are considerably more complex than that shown in Figure 21. As

we shall see (in Section 6.2.2) when \Me come to considering the implementation of our

DP threads, the issue of low-cost synchronization becomes sufficiently important that
we consider alternate approaches which eliminate the need for thread-based protocols

of synchronization altogether.

Allocating a Distributed Vector

The act of allocating a vector whose parts are to be distributed among a set of node

memory pools, is clearly a parallel operation. Since only a node itself may make

an allocation within its own pool, such a vector allocation must necessarily be a co-

operative operation. We provide a thread ALLOC-VECTOR to perform such an

operation; its CI-thread definition is shown in Figure 22.

The arguments to the thread are the partitioning function and length of the vector

to be allocated. From this information it is possible to compute the participant set of

the computation nyt. It is a precondition to the completion of this thread that every

node whose id appears in this set enters an activation for ALLOC-VECTOR with
identical arguments. A second condition is that the activation entering the allocation

request must suspend itself on the key k at the point in its instruction stream where

the value for the new vector is actually required.

The thread for ALLOC-VECTOR may be divided into four portions (marked

by bars in Figure 22). Firstly, we compute an identifier for the vector about to be

allocated. This identifier must be unique across the entire machine, and be agreed on

by all nodes which hold portions of the vector. To achieve a practical solution to these

problems, we stipulate that the node which holds the first element actually generates

the id and communicates it to all other nodes in np. Following the agreement on

the new vector id, all nodes with portions of the vector set about allocating the

appropriate amount of space to hold their local sections of the vector. Next we

synchronize all nodes in nyt (since, like true DP operations, this allocation should be
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(1)

T
(2)

I

ALLOC-VECTOR (p/: partition function,len: integer, k: key)

{
np: {r e H lpf (i,u.len) : a

for some i e [0 ...Ien -I]]
if p/(0, len) : ¡14

lid:newid0
I for each a € np\M
I f result (a,fu,id)
else

I 
id: ia: suspend activation (k1)

fori€[0.../en-1]
I t pf U,len): ¡¡t¡
| | allocate storage (id,i)
LL

enter activation (SYNC, np,lcz)
dum: nuII: suspend activation (k2)

enter value (k,(id,pf ,len))
terminate activation 0

)

(3)

Figure 22. Allocating a Distributed Vector

a synchronizing operation). Finally, a vector descriptor is constructed and returned

to the calling activation.

5.2.3 The Map Thread

We come now to the semantic description of a simple DP operator, the functional

map. This operator takes as arguments a vector u of type a and a function /
of input type a and return typ. þ, and creates a ne\4/ vector u' of base type

P. The values within the newly constructed vector are given by the relationship

u'li] : /(r[¿]) Vi e [0 . . . u.len-1]. We assume referential transparency of the function

r.
We note two properties of this evaluation. Firstty it is always true that u'.len :

u.lery that is, the input and output vectors have the same length. Secondly the

numerous invocations of the function f arc independent and may be thus performed

in parallel.

I

r'
(4)
-
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Figure 23 defines the semantics of the map operation in terms of the abstract

machine f,) and the auxiliary threads we have previously defined. The thread takes

as arguments the vector being mapped over and the function being mapped, as well

as arguments denoting the set of nodes which expect copies of the result, and the key

they will be expecting. The latter two arguments are present to satisfy the data and

control constraints discussed previously.

1
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6

I
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I
10
11

L2

13
T4
15

16

t7
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19
20
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22
23
24

25
26
27
28

29
30

(1)
I

I
I

-
(2)

MAP (/: thread, u: vector, p: set of host ids, k: key)
{

np: {r e H lu.pf (i,u.Ien): r
for some i e [0 ...u.len - I]]nt:nplp

if.Mep
I for each a € 1(M,nt,p) reqttest (cr,MAP, f ,r,,p,lr)
ifMenp

enter activation (ALt O C -YEC,u .yt f , u .l en, k1)
new i vector: suspend activation (k1)

"r: Ó
for i € l0...u.len-l)
I if u.pf (t,u.len): ¡¡4

| | enter activation (l,"lil,i,k2,{M})
L L"::cU{i}
while " + ó
I (t*O: val, id,x: ind.ex) :: suspend activation (k2)

I newfidr]:: tmp
L " ,: c\{idr}

y¿:pÀnyt
if.Merc
lnew: vector: suspend activation (k3)
else

I for each a e 1(M,rc,np) result (a,lca,neu;)

ilMe.p
I enter activation (SYNC, p,kq)
I dummy: nuIl : suspend activation (ka)

I enter value (M,k,new)
terminate activation 0

ï
(3)

I
ï
(4)

I
I
(5)

I
ï
(6)

I
Ì

Figure 23. Threaded Specification of Map

As with the auxiliary threads presented earlier, there are certain preconditions

which need to be satisfied to guarantee correct termination of ihe MAP thread.
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Firstly, it must be true that every node whose id appears in the set p at some time

enters an activation for MAP with identical arguments. A second condition is that

the activation which entered the MAP thread must suspend upon the key k at the

point in its instruction stream where the result of the map is actually required.

Consider the deflnition which appears in Figure 23 as comprising six distinct

stages. We describe the purpose and function of each of these individually.

Stage One: Activation (lines 3-7)

The first operation that must be performed by the MAP thread is the computation

of the participant set for this DP operator. Line 3 of the thread definition illustrates

how this set np is evaluated by repeatedly applying the partitioning function of the

vector input u to determine the set of nodes which own part of u. Once we have

determined the desired participant set, we compare this with our knowledge of the

set of nodes which initiated the MAP, to determinewhich nodes need to have remote

activations directed towards them to satisfy ihe actiuation constraint (as described in

Section 5.2.1). The set operator 7 is used to define a protocol outlining which nodes

perform which remote activations.

Stage Two: Allocating the Result Vector (lines 9-10)

The next stage of the MAP thread is executed only by those nodes who have been

identified as participants (i.e., are in the set np). These nodes now collectively allocate

a distributed vector which will (when filled with values) ultimately be returned as

the result of the DP operation. The allocation is achieved by each participant

node entering an activation for the auxiliary thread ALLOC-VECTOR (defined

in Section 5.2.2). The initial state arguments passed to these activations specify that

the resulting vector should have the same length as the input u and be partitioned

according to the same partitioning function u.p/. While this second property is not

necessary to the semantics of map, it serves to minimize the communications overhead

needed to compute values for the new vector.

Following the activation of the ALLOC-VECTOR thread, each node's MAP
activation suspends until the ailocation has been performed (and the descriptor for the

new vector is written to the local result pool with key k1). After resuming execution,

MAP defines the value new to carry the value of the new vector's descriptor.
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Stage Three: Spawning Instances of the Function Thread (lines 11-15)

Once the new vector is allocated, the nodes in np must spawn an instance of the

function thread / for every index of the input vector which is stored locally. Each of

these activations represents one responsibility of the DP operator. Each activation

of the MAP thread determines for itself the indices for which it is required to make

function invocations. It does this by looping over the indices of the input vector and

determining, by recourse to the vector's partitioning function, whether the index is

local (i.e., allocated to node M - the node executing the activation). As an index

is determined to be local, it is added to the set c of local indices (line 15) and an

activation of the function thread / is entered into the local task pool (line 14). The

initial state for each function activation includes the value stored at the appropriate

index of u as well as the index itself. Furthermore the function thread is passed a

key argument, lcz with the value it returns to the MAP thread should be tagged, and

a participant set. Since each element of an aggregate is stored on exactly one node,

each activation of / needs only involve the participation of the node which owns the

associated element of u. Hence the participant set we pass is a singleton.

We place a number of expectations on the function thread / which is activated

during the execution of MAP. Firstly, any DP operations which are activated by /
should be passed /'s own participant set argument (i.e., the singleton {M}). Secondly,

results from the computation of the function over the aggregate index passed should

be ultimately entered into the local result pool in the form of a two-tuple of the form

(r, i) where r is the result value, and i is the index that was passed to the function

thread. This tuple should be tagged with the key which was passed to the function

thread.

Stage Four: Collecting Function Results (lines 16-19)

In the fourth phase of the MAP activation's execution, nodes participating in the

DP operation (i.e., those innp) gather the results from the various function threads

spawned in the previous stage, copying the returned values into indices of the return

vector (allocated in Stage 2). The set of local indices (c) built up during the spawning

process is used to determine which indices we must receive results for before this

gathering process is complete.
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Lines 16-19 of the MAP thread implement this process as a while loop predicated

upon the emptiness of c. Within the loop, the thread suspends upon the key k2 (the

same key which was passed to each of the function thread activations); execution

resumes when one of the function threads has placed a result in the result pool. Due

to the non-deterministic scheduling policy of f), we cannot assume in which order the

different function results will become available. However, as discussed in the previous

stage, we expect the return value for the function to be structured as a tuple which

includes both the function return value and the index for which the computation was

being performed. Thus, as shown in lines 17 and 18 of MAP, we can retrieve both

of these details from the result (by pattern matching) and use the result's index field

(idr) to specify which slot in the result vector to filI with the returned value (t*p).
Once we have received a result corresponding to a given vector index, we remove

that index from the set c and return to the head of the loop. Thus, the process

of suspension, resumption and slot-filling continues until the values of each of the

function threads spawned in Stage 3 have been computed and stored. At this point

the computational part of the nap operation is complete.

Stage Five: Back Propagation of Result Vector (lines 20-24)

As described in Section 5.2.I, the DP operation being performed may be called

upon to distribute the result vector (i.e., its descriptor) to satisfy its return value

dependency. We compute the set of nodes which were participants in the operator

which spawned this MAP (described by the set p) and the participants of this operation

(np). We assume that all nodes in the latter set already know the descriptor for the

return vector, by virtue of the fact that they helped in its allocation. Howevet, nodes

in pL)np,, must receive the descriptor by communication. These nodes suspend (on key

k3) awaiting the communication (line 22); nodes in np are charged with contacting

these nodes according to a protocol defined by the minimum distance operator 7
(line 24).

Stage Six: Synchronization of Participants (lines 25-28)

The last stage in the MAP thread synchronizes all nodes in p prior to the operation

terminating. As described in Chapters 1 and 3, this is necessary for all DP operations

(in order to guarantee that no race conditions can arise in a program). We make use
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of the SYNC auxiliary thread defined in Section 5.2.2 - each node in p enters an

activation for this thread passing key lca (line 26) and immediately suspends on this

key (tine 27). When the synchronization is complete, each node will receive a result

marked with ka, thus resuming the MAP. At this point it is safe for each node in p
to enter the result of the map (tagged with the key k passed as an initial argument)

into the local result pool (line 28) and terminate.

Note that, as mentioned earlier, nodes in rzp\p do not participate in this phase,

since they did not request the final value of the map. Such nodes simply terminate.

5.2.4 The Reduce Thread

We now turn to the description of a more complex nestable DP operator, the tree-

based red.uce. This operator takes as arguments a vector u of base type o, a binary

operator O which accepts two arguments of type o and returns a value of type a, and

a starting value a of type a. The single value computed by the operator is obtained

from a recursive reduction of values from u under the operator O. Represented

mathematically, this result is

((... ((, o u[0]) o u[r]) Ø ...,1v"- 2l) e,lw - rl)

where I/" is the length of the vector u.

The opportunities for parallelism in the evaluation of this operator appear, on

the surface, to be non-existent. The innermost call to e must necessarily occur first,

the enclosing call next, and so on. To introduce scope for parallelization, we must

make certain assumptions about the operator Or that is to narrow the scope of what

may be used as a reduction operator. One common limitation used in parallelizing

such evaluation, is to assume associativity of the operator O. This allows for the

rearrangement of the bracketing of the reduction without altering the final value.

Hence the reduction may be represented as, for example:

((... (, o u[0]) o...) o (... o (u[n - 2] e uln -11)...))

This form of the reduction allows significant opportunities for parallel evaluation since

it essentially defines a tree of independent applications of O.

For the purposes of the particular reduction we define here, we make a further

assumption on the operator O, namely that it is commutative. This property allows
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the arbitrary reordering of values in the reduction without altering the final value.

That is, the reduction may be equally well represented as, say,

((...(,["-2] or) o...) o(...o(u[n-1] o,[0]) ...))

or any other permutation of values. The reason we introduce this restriction is
to allow for re-ordering to optimize the communications overhead incurred by the

threaded form. Each node's role in the co-operative reduction may be divided into
two distinct phases, an on-node reduction and an inter-node reduction. In the first of

these, the node reduces all elements of u that it holds locally into a single result.

Once this has been done, the second phase combines these nodal results into a

single global result through communication. The total number of communications

required in this phase is C - 1 where C is the number of nodes participating in the

computation. This compares to as many as U^ communications (where Ç is the

length of the vector) required for the parallel reduction of an arbitrarily partitioned
vector under a associative but non-commutative operator. Note that the expression

of this latter operation (non-commutative reduction) is also possible under fl by

adopting a technique similar to that described below for the SCAN thread (see the

discussion on page 142). For the present discussion, however, we shall consider only

the commutative case.

Our semantic definition for the parallel reduction operator is shown in Figure 24.

As with the MAP thread presented previously, we define two preconditions to
successful completion of the reduction thread. Firstly, every node in the set argument

p must enter the reduction thread with identical parameters. Secondly, the activation

entering the REDUCE should suspend on the passed key k at the point in its
instruction sequence where the value of the reduction is actually needed.

As with our previous DP thread, the definition we present for REDUCE may be

logically decomposed into six distinct phases (marked by marginal bars in the figure).

We describe each stage in turn.

Stage One: Activation

In the first, we compute the participant set np of. the reduction and dispatch remote

requests. This is performed in a manner identical to the analogous phase of the MAP
definition.
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I

I
(1)

(2)

I
(3)

I
ï
(4)

I

(5)

rt
(6)

REDUCE (/: thread, u: vector, ø: value, p: set of host ids, fr: key)
{

np : {r e H lu.pf(i,u.len) : r
for some z e [0 . . .u.len - L]]

nt:npÀp
iÎ Mep
I for each a € 1(M,nt,p) teqttest (o, REDUCE, f ,u,a,p,,lc)
if M e np

nxyseq - posln-ordered (nprM)
i ::0
if. myseq: Q

lual:: a
else

+M

for r:: i...(u.len-l)
| fi u.pf çr,u.len): ll,[
| | enter activation (f ,ual,ufnl,fu,{M})
L L ual: val :: suspend activation(k1)
for j :: 1... flogr(lnpl)] + t

if (myseq mod 2r) : ¡
s : index-ordered (np,myseq + zj-r)
ifsefl
| ú : va1 : suspend activation (k2)

I enter activation (f ,ual,t,h,{M})
L ual : val :: suspend activation (k3)

else if (myseq mod 2i ) : li-L
I d : index-ordered (np, nxA seq - 2i-')
L if d e fI result (d,k2,ual)

if myseq: g

I for each i € p result (i,k,ual)
terminate activation 0

Figure 24. Threaded Speciflcation of Reduce
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The remainder of the reduction thread is only executed by those activations which
own part of the vector in question. That is, only by nodes in np. Nodes which

activated REDUCE because they desired the final value, but do not participate in
the reduction (nodes in p\np) simply terminate their activations. The final value will
be communicated to them by a node in np once the computation has completed.

Stage Two: Determining a Sequence Number

The second portion of the REDUCE thread involves each activation deciding upon

a sequence number. This number determines the role of the activation in the global

operation. Sequence numbers are computed by ordering the set np into a sequence

and determining where the local node's id appears within this sequence. An activation

is granted sequence number 0 if the local node's id occurs frrst in the sequence, the

activation whose local node id appears next would be granted sequence number 1,

and so on.

Stage Three: Determining an Initial Value

The local stage of the reduction begins with each activation deciding upon an initial
value for its accumulator variable uøl. It is in this variable that the sub-results of

the reduction will be progressively stored. The protocol for deciding upon a starting

value for this variable is as follows: the activation with sequence number 0 copies the

a activation argument, while all others find their lowest local index of u and copy its

value into ual.

Stage Four: Reduction of Local Indices

The local reduction then proceeds by continuously searching for locally stored

elements of u which have yet to be used in the computation. As each of these is found,

the binary function thread / is activated and passed two values: the current u¿l and

the particular local element of u that has been discovered. The main REDUCE
thread suspends until / has computed the combination of the two arguments. This

new local sub-result is written to ual. This process continues until all local elements

have been combined, at which time uol holds the reduction of every element of u

stored on the particular node.
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Stage Five: Global Combination of Nodal Reductions

With each of the activations of REDUCE having computed the local reduction

of their values, it is then necessary to globally combine these sub-results into the

final result. We do this through a tree-like scheme of communications as motivated

earlier: the specific protocol, first described by Hillis and Steele [52], is implemented

as llog2(lnpl)l + 1 passes through a regular communication step. During the first
such pass, all activations with odd sequence numbers communicate their u¿l variable

to the activation which has the previous sequence number. These messages, upon

reception by the even sequence numbered activations, are combined with the local ual

through another activation of /. The result of this combination overwrites the even

sequence numbered activation's uøl variable. After communicating their sub-results,

activations with odd numbers play no further part in the global accumulation, and

simply terminate. Those activations which remain executing then pass a second time
through the communications step. This time, activations whose sequence number is

divisible by 2 bú, not by 4 send their ual to the activation with sequence number two

less. This process of activations contributing their computed values and terminating
continues, until finally only one activation remains active: the one with sequence

number 0. The uøl variable of that activation contains the final value of the global

reduction. This protocol of inter-node communication is illustrated for a reduction

co-operative between seven nodes in Figure 25. The value r computed during the

final step of this example is the final value of the reduction, i.e., u0 O ul O . . . @ u6.

Stage Six: Back-Propagation of Final Result Value

The final stage of the REDUCE thread satisfies the data constraints of the operation,

namely that all nodes with id in p should be notifred of the final result. This condition

is met by the activation with sequence number 0 (the only node to know the finai
value) communicating the result to every such node. This is shown in the last step

of the example in Figure 25.

Note that it is not necessary to explicitly synchronize the nodes in p, as we

were required to do for the MAP thread. This is because all nodes with ids in
the set are implicitly synchronized by their need to receive a communication from a

single distinguished node, namely the node executing the REDUCE activation with
sequence number 0.
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Figure 26, A Tree-Based Communication Scheme for reduce

5.2.5 The Scan Thread

To round out our demonstration of Q's ability to generically model nestable DP

operations, we consider a third operator: the scan or parallel prefrx. This operator

is commonly used for a variety of purposes in the literature of traditional DP

programming (e.g., [17]). We consider a scan operator which accepts three arguments:

a vector u of base type a, a binary operator O which accepts two arguments of type

d and returns an value of type o, and a starting value of type a. From these inputs it
computes a new vector u' which has the same length as u and whose indices contain

"running totals" of the indices of u using O. That is, the first index of u', u'[0]

holds the value a O u[0], the second index, u[1] holds o O u[0] O u[1], the next holds

ø O u[0] O u[t] O u[2] and so on.

A common means of introducing parallelism into the evaluation of such parallel

prefix operations, first identified by Hillis and Steele [52], is to adopt a scheme of

interleaved computation steps and tree-based communication. Figure 26 shows such a

ffi@@
f
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protocol, illustrated for a co-operative parallel prefix computation across four nodes.

Each node of the machine begins with ihe value of one index of the source vector

(represented by ihe capital letters A, B , C , D). The first node also knows the starting

value of the scan, sú. As the frrst communication phase, every node which has a right
neighbour, informs that neighbour of the values of which it has knowledge. Once this

information has been exchanged, the evaluation continues by arranging that every

node with a neighbour two places right passes values seen thusfar to that neighbour.

Once this set of transfers has taken place, we can see that every node has knowledge

of all values needed to compute one index of the resulting parallel prefix: i.e., node 1

has enough values to compute u'[0], node 2 has the values needed to compute o'[1],

etc. Had the vector been longer, and hence further communication was required,

we would have considered neighbours 4 places distant, 8 places distant, and so on,

until each node held enough information to complete its evaluation of one index of

n'. In the general case, this parallel scheme for evaluating scan over a vector of

length 7,,, generates n * 1 inter-node transfers of information and passes through

log n communication steps.

node L node 2 node 3 node 4

t0

12

Figure 26. A Parallel Implementation of scan

In constructing a thread-based parallel evaluation for scan we adopt a similar

strategy to the tree-based scheme presented above, augmenting the protocol to take

into account the possibility that each node may hold more than one element of

the input vector. We do this by retaining the communications structure outlined

in the figure, but changing the nature of the elements which participate in the

communication - rather than considering nodes interacting in a tree-like fashion,

we consider an identical patten of interaction between activations of a particular

t1

st,A,B

st,A

st,A,B

st,A,B,
C,D

st,A

st,A,
B,C

D
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(auxiliary) thread. Each such activation corresponds to one index of the input, and

appears in the task pool on the node that owns that index (according to the o\4/ner-

computes rule). The interactions shown in Figure 26 then become inter-activation
communications, achieved by arranging for a value to be entered into the appropriate
node's result pool1. Note that, in the case where the sending and receiving activation

reside on the same node, no inter-node communication is required to model this

interaction
Figures 27 and 28 show definitions for the main SCAN thread and an auxiliary

thread which forms the elemental computation of this operator. The former of these

definitions is essentially identical to the definition of MAP from Figure 23 except

that rather that enter a user-defined elemental computation / for each local index,

SCAN enters one activation of SCAN-AUX per local index.

This similarity to our earlier definition means that SCAN has identical
preconditions to MAP, and operates in a similar fashion regarding dispatching of

remote requests, the allocation of a result vector, suspension awaiting completion of

all elemental activations, back-propagation of resuit values and synchronization.

The actual computation of result index values for the scan is performed by co-

operation between activations of the SCAN-AUX thread. During the evaluation of a

scan across a vector of length Vn, ihere will be exactly I/, such activations entered into
the various task pools of the machine. Every node's pool will hold one SCAN-AUX
activation for every local index of the input vector held locally on that node.

SCAN-AUX accepts six arguments as its initial state: the binary function /
used to combine index values, u the vector over which the scan is taking place, ø the

initial value of the scan, and i the index of u which this activations corresponds to.

Also passed is the standard participant set argument (p) and a key (k) upon which

the parent SCAN activation suspended.

The first task of the auxiliary thread is to initiahze a counter sú which represents

the currenl step distance, that is the fixed distance (measured in indices) between pairs

of activations which wili interact in the phase of the scan. Since rvve are adopting

the tree-like system illustrated in Figure 26, our protocol for interaction between

SCAN-AUX activations will first specify interactions between direct neighbours

(i.e., step distance of 1), followed by interactions between activations two indices
lSince we adhered to the owner-computes principal when activating the per-index auxiliaty

threads, we can - at any time - use the partitioning function of the input aggregate to learn
which node holds the activation corresponding to a given index.
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SCAN (/: thread, u: vectot, ø: value, p: set of host ids, k: key)
{

np: {r e H lu.pf (i,u.len): ¡
for some i e [0 .. .u.len - I)]

nt:npÀp
if.Mep
I for each a e 1(M,nf,p) request (o,SCAN, f ,u,p,k)
ifMenp

enter activation (ALL O C -VEC,u .p f , u .l en, lcy)
neu : vector: suspend activation (k1)

",: Ó
for i € l0...u.len - Il
| fi u.pf (l,u.len): ¡4
| | ""ter activation (SCAN-AUX,.f, u,ct,i,{M},kr)
L Lc::cUii)
while " + ó

y¿:pÀ@
if.Merc
lnew: vector : suspend activation (k3)
else

I for each a € 1(M,rc,np) result (a,lcs,new)

\fMep
I enter activation (SYNC, p,ks)
I dummy: nuIl : suspend activation (ka)

I enter value (M,k,new)
terminate activation 0

Figure 27. Threaded Specification of Scan, Part One
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apart, four indices apart and so on. In the initialization we thus set up the situation

as it will prevail during the first interaction: that is, we set the step distance to 1

(üne a).

The next task that must be undertaken by each instance of SCAN-AUX is the

determination of an initial value to begin the accumulation process (in the same way

as \4/e required an initial value for each REDUCE activation). We use a similar

approach as adopted in REDUCE - for the activation corresponding to index 0 of

the source vector we determine the value for working by making a call to the binary

function / (our accumulating operator) passing the starting value ¿ of the scan and

the value of index o[0] (lines 6 and 7). For all other activations of SCAN-AUX we

assign an initial value for worlcing simply by copying the source vector index u[i] upon

which the activation is operating (line 9).

1

2
3

4
b
6
t

8
I
10

11

t2
13
1.4

15
16

T7
18
19
20

2T

22
23

SCAN-AUX (/: thread, u: vector, o: value, i
p: set of host ids, k: key)

{
st::L
ifi:0
| "nt", activation (f ,a,uli.],kr,{M})
lworking:val :: suspend activation (k1)
else

I worlcing :: uli]
while st < u.len

if (i + st < u.len)
h:: u.pf (i ¡ st,,u.len)
fih+M
I result (h, kr, working)
else

I enter value (lc2,worlcing)

integer,

I

I
I enter value (k, worlcing)

Ì
Figure 28. Threaded Specification of Scan, Part Two
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The body of SCAN-AUX is an iterative loop (lines 10-21) which implements

the tree-like communication scheme illustrated in Figure 26. The loop predicate

(line 10) specifies that iteration should continue while sf, the step distance is less

than the length of the vector. Within the loop there are three distinct phases of

operation. Firstly, each activation is called upon to determine whether it is required

to send a value during this step of the communication protocol. This decisions is

made simply by determining whether there exists an activation which is sf indices to

the "right" (i."., corresponds to an index of u which is sf greater) of the activation

being evaluated. If such an activation exists (i.e., if this activation's index of i plus

the step distance sl is still a valid index of u) then the present activation will be

required to send a message to this right neighbour during this step (line 11). To

send this message, the activation must determine upon which node of 0 the specified

SCAN-AUX activation resides. Here we make use of the assumption that every

node entered one SCAN-AUX activation for each of its local indices of u. Thus, we

can use the partitioning function of the input vector to determine the node l¿ which

hosts the desired target activation (line 12). If the target node is the same as the

node currently executing the activation (i.e., M),, then the communication takes the

form of an entry into the local result pool (line 14); otherwise it involves the use of

one of f)'s inter-node communication operations (line 16). Either form of message

is tagged with the key k2. The appropriate node will, eventually, receive this value

when it suspends on k2 in line 18 (see below).

Once an activation has determined (and satisfied) its obligations as a source of

communication in the current step of the tree-like protocol, its next task is to divine

whether or not it is required to receive a message. Atty activation A which has a

neighbour exactly sf indices to the "left" is designated to be a receiver during the

current step - by virtue of the fact that this left neighbour, when executing lines 11-

16 during the current step, would have identified A (which is sú places to its "right")
as a target for communication. We implement this requirement of message receipt

by using f,)'s suspension primitive: we know that the sending activation must have

forwarded the value tagged with key k2, therefore we suspend upon that key. After
the message has been received (i.e., the key kz has appeared in the result pool, and

the activation has been resumed), the value contained therein is combined with the

current accumulat or (worlcing) bV invoking the thread for the combining function /
(shown in lines 19 and 20). The value returned from this function call is written into
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the accumulator variable.

Once an activation has carried out its commitments to send and/or receive during

this step of the protocol, SCAN-AUX prepares for the next loop iteration by

multiplying the step distance by 2 (line 21). This is a statement that the next step of

the protocol will consider neighbour activations which are twice as far apart as those

which interacted in this step. If this new step distance is greater than the length of the

input vector then the iteration terminates - this accurately models the protocol of

Hillis and Steele (pictured in Figure 26). Once the iterative loop has completed, each

activation of SCAN-AUX has computed one partial sum of the input vector - that
is, one element of the result. The activation thus completes its execution by passing

this result value back to the activation of SCAN which initiated it, which in turn
copies the value into a slot of the newly allocated result vector. Back-propagation

and synchronization then ensue as described for the MAP thread.

It is worthwhile noting that this implementation of the DP scan is deterministic

in result even in the case of a non-commutative binary accumulation function /. At
each step, combinations of sub-results occur between activations which are a fixed

(logical) number of indices apart, regardless of whether this involves communication.

That is, we attempt no evaluation re-ordering to minimize communication as we did

for the REDUCE thread (such is only possible for scan if we assume a partitioning).

The approach we have adopted for the SCAN thread definition could thus be used to

construct an alternative REDUCE deflnition which does not assume commutativity.

Such an implementation would be more general but would exhibit greater overhead

in the case where the combining function was commutative.

5.3 Summarizing the Multi-threaded FYamework

In this chapter we have introduced an abstract environment for multi-threaded

execution which has a close correspondence with the MTP model described

mathematically in preceding chapters. Our multi-threaded abstract machine, f),

represents a high-level framework in which parallel operations may be specified in

terms of a blocking thread-based execution model. The machine is built upon

principles of SPMD execution and non-preemptive scheduling with an eye towards an

efficient implementation capable of expressing DP-style operations.
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We have identified a number of issues that are critical to the modelling of

DP operations as threads, including activation dependencies and return value

dependencies. We have described simple mechanisms for expressing and resolving such

dependencies, and have used these approaches to concisely model three DP operations

(map, reduce, and scan) as threads. Our definitions of these DP threads are highiy
generic: the same operational description defines an execution of the operator for any

elemental/combining function and also for any possibly layout of the input vector.

In the following chapter we undertake an implementation of the machine f) on

a real-world distributed memory machine, the Thinking Machines CM-5. Using

this implementation we can directly code reaiizations of the DEREF, SYNC,
ALLOC-VECTOR, MAP, REDUCE and SCAN abstract thread operations,

described in Sections 5.2.2 to 5.2.5, effectively giving us a library of executable generic

threads which stand as implementations of DP operations. We show in Chapter 7
that such a library can form the basis for an NDP language implementation.



Chapter 6

AMAM: An Implementation of
the Model

The abstract machine O described in the previous chapter represents a full operational

specification of an execution environment conducive to the efficient Multi-Threaded
implementation of Nested Data-Parallelism. As an abstract machine, however, it
is not of practical use in the construction of such an NDP system - to achieve

such an end, we must construct a concrete instance of the machine O on a

real-world Distributed Memory multicomputer. This chapter considers such an

instantiation, the AMAM (Active Message Abstract Machine), on the Thinking

Machines CM-5 Supercomputer [124]. Section 9.1.1 briefly considers a number

of alternative instantiations of ,Q which could also be readily constructed to take

advantage of specific hardware support (e.g., hardware multi-threading).
In our discussion we detail the implementation of the various data- and control-

structures present in our definition of f), as well as discussing a number of practical

optimizations introduced to efficiently support NDP. We also consider how this

concrete implementation of a multi-node multi-threading system bears similarities

and differences to similarenvironments (e.g., P-RISC [86,85], TAM Í44,II9,31,30],
Charm [64, 111 ,772,113], Pebbles [99, 100, 10, 109], NomadicThreads [61], and the

I-Structure Software Cache [74,43] system) derivedfrom a need to support different

(but related) computational needs. Finally, we describe how thread definitions made

in terms of the abstract machine 0 may be rendered as executable forms for the

AMAM/CM-5. We illustrate the process by inclusion of an AMAM translation of the

generic nestable Data-Parallel MAP described in the previous chapter.

r44
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6.1- A Multi-Threading Environment for the
CM-5

Our basic strategy in constructing a concrete instance of the abstract machine f,) is

to realize its various nodal data structures and control model directly in C, coupled

with a simple communications library. Each of the instructions of 0 which provide

functionality beyond simple algorithmic control primitives may be implemented by a

C function which provides the appropriate manipulations of such structures and/or

control. Thus, ultimately, our implementation of multi-threading constitutes a library

of such functions with which computational threads (also represented by C functions)

may be linked to form multi-threaded executables.

Figure 29 shows the nodal structure of the AMAM. Many of the entities and

data structures present within this architecture are familiar from our earlier abstract

model. Below we describe briefly the role of each of these entities in the AMAM
system. Detailed discussion of the issues and concepts critical to their implementation

and functionality appears in the sections which follow.

The Code

As in the fl, every node in the AMAM is required to activate and execute threads from

a single program. This program is, at its simplest, nothing more than a collection of

AMAM threads, one distinguished as the starting (or main) thread which wili initiate
computation on every node.

The Heap

Each node of the AMAM is assumed to have its own memory space over which it is

the sole o\Mner. In the implementation, this is manifested as the nodal heap, from

which allocations of space for activation states, storage for local vector indices, and

tagged result values are made. In the CM-5 AMAM system, the per-node heap is

represented by a boundary-tag pool [90].

The Task Pool

Every thread activation presently unterminated upon a node has a corresponding

entry in that node's Task Pool. This data structure, central to the nodal scheduling
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Figure 29. Nodal Structure of the AMAM

semantics (see Section 6.1.1), maintains the following information for each activation:

r a pointer to the code for the thread of which this is an activation; this is useful

for passing control to the activation;

. a current mode for the activation denoting whether it is presently being executed

(Active), has yet to be executed (Pending) or is oniy schedulable on arrival of

a value (Suspended);

o if Suspended, an activation entry records an identifyinglcey which describes the

synchronization event which will permit resumption;

o a pointer to a block of memory in the heap which stores that activation's state.

The Mapping Table

As in Íì, the only supported aggregate is the partitioned vector. The Mapping

table manages the translation between locally stored aggregate elements and memory
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addresses in the heap where their values are stored. Given a particular vector and an

index into that vector, this table can uniquely determine the local (heap) address of

the element provided that it is stored on-node. If a request is made for an off-node

element, the translation process simply returns an error value. Section 6.1.2 discusses

the manifestation of the partitioned aggregate in AMAM, the nodal storage model

for vector indices and the efficient management of the Mapping Table.

The Result Pool

The Result Pool is the structure which provides for inter-activation communication

via values tagged with keys. Unlike the O result pool, not every communicating value

appears within the result pool: certain results, those tagged with special keys, can be

directly matched to the activations waiting upon them. The semantics of such keys,

their efficiency and generality is discussed in Section 6.1.4.

6.1-.1 AMAM Threads and Scheduling

The heart of the AMAM library is the notion of the thread as the sole unit of

activation. A thread is represented as a C function which adheres to a few simple

rules imposed by the scheduler (see below). AMAM allows for the activation of any

program thread on any node of the machine. A thread may be activated arbitrarily
many times within the system.

The principal variation between the AMAM and Íì lies in the manner in which

such notion of thread suspension is supported. Recall that the semantics of O-threads

allowed for an activation to suspend at any point during its execution. We noted that,

in the language of the literature, this made our abstract machine's multi-threading
model blocki,ng. In implementing the model upon a concrete machine, we must

consider how such potential for mid-execution blocking impacts upon the complexity

(and thus the overheads) present in the scheduling of thread activations. We now

show that an implementation of thread scheduling directly as specifred by f,l has

high overheads, and proceed to develop a more efficient alternative with equivalent

semantics.

Consider a thread ?, represented in an executable form by a C function T-imp.

Each activation of T-imp has an explicit state associated with it in the form of a set

of state inputs sl, . . . , s,, which \4/ere passed by a parent thread at activation time.
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Consider the case where the thread T (and hence the function T-imp) suspends its
execution mid-way through its execution. At the point in time where an activation

of ? signais its desire to suspend, the system must arrange for the storage of that
activation's state. When, at some later point in time, the activation is resumed

we must ensure that further execution takes place within the same context. If we

consider the range of information which may be accessed during this continuation it
is clear that it includes the state variables si¡. . ., s,,; hence it is crucial that these

be saved at suspension-time. Furthermore, if the C representation of ? makes use of
any local variables (e.g., for temporary storage) then it is possible for such variables

to be accessed in the continuation, hence these must also be saved. Finally, it may

be the case that our C code is compiled in such a way that an operation executed

after resumption of the activation reads a register which it assumes to contain a value

deposited prior to the suspension. Thus, the context we must save upon suspension

includes not only the full set of thread state inputs and local variables, but also

the full register file of the node. This potentially large amount of information must

furthermore be restored at the time an activation is resumed. These necessary state

manipulations would have the effect of introducing a high overhead into context-

switching and scheduling operations performed within the execution model.

Given the potential costs of directly implementing f)'s notion of blocking threads,

we develop an alternative approach for AMAM. Rather than allowing AMAM-thread
activations to suspend mid-way in their execution, we enforce that they must run to
completion. That is, we instead consider a non-bloclci,ng model of multi-threading. In
such a model, the amount of state information which must be stored upon suspension

of an activation is limited to the state inputs of the thread itself - local variables

and register values need not be saved (see below). This simplification, coupled with
the principle (from Cl) that the threading system should be non-preemptive to reduce

switching overheads, leaves us with a very simple scheduling model. Figure 30 shows,

in pseudo-code, this scheduler. The definition, effectively, consists of a single iterative
loop in which the node continuously chooses one of its local activations, computes

the address of the C function which represents the thread corresponding to the

activation, and launches this function using C's mechanism for dereferencing pointers-

to-functions. Several arguments are passed to the newly activated thread, including

a unique number identifying the activation, a pointer to the associated state and

(possibly) a pointer to other data items. We assume that at the end of each thread
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definition there is a call to a terminate system function which removes the activation
just executed from the nodal task pool (and hence from the list of candidates for future
execution) and deallocates the space reserved for the activation's state.

AMAM-scheduleJoop o
{

void (*/) (state-type) ;

while (running)
{

choose an entry f from the local task pool
f = t.threadpointer;
(*/) (ner¡-sched-id, ú . statepointer) ;

Ì
Ì

Figure 30. A Simple Nodal Scheduler for AMAM

While this definition of an AMAM thread and the scheduling of AMAM activations

is concise and devoid of the overhead described earlier, we have arrived at such

simplicity by eliminating an important semantic feature of f)'s threads, namely

suspension. To be useful as an implementation of our earlier design, we must provide

AMAM with a mechanism for modelling such a concept. We do this by means of

a simple augmentation of the scheduling model just presented, the addition of the

continuation. Previously r,4/e assumed that every activation would make a call to
a terminate system function immediately prior to the completion of its execution.

We now provide another option: an activation may, as its last operation, instead of

issuing a terminate make a call to a system function suspend passing a key and the

name of a thread (the activation's continuation). This system call, like terninate
removes the activation from the node, but unlike terminate a suspension also adds

an activation for the continuation thread to the local poo1. This activation receives

the state from the activation which suspended, but is also tagged as ineligible to

be scheduled until the key passed during the suspension matches one in the local

result pool. The ultimate execution of the continuation activation consumes the

value which made it eligible for rescheduling. Figure 31 shows a pseudo-code version

of the suspend system call.
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AMAM-suspend-activation (key k, thread cont)
{

state s;

s = state of calling activation
remove calling activation from task pool
Iocally add activation for cont with state s,

tagged "waiting on key k"
)

Figure 31. AMAM's Notion of Activation Suspension

With the existence of the suspend call, our scheduling algorithm becomes slightly

more complex (see Figure 32). Note, however, that this model of suspension and

resumption is much less costly than that for bloclcing threads. While there is still a

need to save state upon a call to suspend, the fact ihat it is actually a completely

new activation that will be our continuation means that we only need to copy the

state variables of the activation. That is, we are not required to keep the state of local

variables or registers used within the C function representing the thread. The fact

that our point of resumption is now a completely new activation means that such an

operation can be modelled neatly as another C function call rather than a low-level

manipulation of state. In Figure 32 this is manifested in the function calls of lines 15

and 19. In both cases a pointer to an AMAM thread (a C function) is dereferenced and

the resultant thread (function) activated and passed three parameters: an identifier

generated by the scheduler, the state object of the activation and a result value. The

situation in line 15 represents the continuation of a suspended activation, thus this

third argument corresponds to the value for which the activation was waiting. Line 19

represents the scheduling of an activation which has not previously executed: there

is no reievant result value, thus we pass a NULL as ihe third argument'

Re-expressing,Q-Programs with Non-Blocking Threads

The difference in the sense in which 0 and AMAM support the suspension of threads

means that programs written for Q may need to be transformed before they can

be realized as AMAM codes. In most cases, such a conversion is easily achieved
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AMAM-scheduleJoop o
{

void (*/) (state-type, result-type) ;

result-type r;

r¡hile (running)
{

choose an entry ú from the local task pool
if (f is waiting on a key k)
if (result pool contains k)
{

f = t.threadpointer;
¡ = pointer to result pool entry with key k
re¡nove (k, r) from result pool
(*/) (ner¿-sched-id,ú. state4ointer,r) ;

Ì
else
f = t.thread-pointer;

(*/) (new-sched-id,f . statepointer,NULL) ;

Ì

Figure 32. An AMAM Scheduler Supporting Continuations

through a simple strategy of textually splitting an O thread into a number of AMAM-
threads, using suspensions in the abstract code as the points of division. Each of the

resulting AMAM-threads (except the last) would have a call to AMAM's suspend

function as its final operation; all but the first would use the result value passed upon

resumption within the expression in which the original O-suspend occurred. Figure 33

demonstrates the principle.

While this approach is applicable to all ,f)-programs, the presence of structured

control constructs surrounding a suspension instruction can lead to difficulties. Such

cases typically require some re-expression of the program structure (c.f., the discussion

of the AMAM MAP thread in Section 6.4.2).

Section 6.4 offers AMAM versions of a number of the f)-thread definitions

described in the previous Chapter.

)
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O-THREAD(s1, s2,. . .,sn)
{

. . .. . .instructions (A).....
s1 :: suspend(k1)
. . .. . .instructions (B) . . .. .

s2 := suspend(k2)
. ... ..instructions (C). ... .

terminate activation 0
Ì

r52

AMAM-THREAD (sched-id, state-ptr, dummy)

{
instructions (A)

AMAM-suspend-activation (kr,AMAM-C0NT-1) ;

)
AMAM-CONT-1 (sched-id, state-ptr, result)
{

state-pointer-)s1 = result ;

instructions (B)
AMAM-suspend-activat ion (kz, AMAM-CONTI) ;

)
AMAM-CONT-2 (sched-id, state-ptr, result)
{

state-pointer-)s1 = result ;

instructions (C)
AMAM-terminate-activation O ;

)
Figure 33. Casting an f,)-program in Terms of Non-Blocking AMAM threads

Prioritizing the AMAM Scheduler

The AMAM-schedulel-oop defined in Figure 32 makes no attempt to minimize the

overhead of key matching, that is the cost involved in the process of determining

whether a given activation is reschedulable. As presented, the scheduler chooses an

activation non-deterministically from the task pool and, if necessary, checks for the

appropriate key in the result pool. The costs of performing this search must be

considered to be non-trivial; thus it is important that some effort is made to try to
minimize the wasted effort that results from a key matching failure (i.e., searching for

a key prior to its entry into the result pool). Given that the times at which results

become available is typically impossible to predict (the latency they embody may be

unbounded), we are limited in the scope of such optimization.

However, one heuristic which offers improvement is the prioritization of the

scheduler. Rather than simply choosing an activation at random from the pool as

our candidate for execution, we always choose a pending activation when available,

resorting to suspended activations only when left with no pending ones. The

motivation underlying this heuristic is twofold: firstly, the cost of scheduling a pending

activation is small; it is never necessary to examine the machine state in order to

schedule such an activation. Secondly, in delaying the selection of a given suspended
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activation, we are increasing the probability that the attempt to match its key will
succeed.

Figure 34 shows a scheduler which implements the prioritized protocol found in the

AMAM. In the CM-5 impiementation, there exists a special structure auxiliary to the

task pool on each node, whose purpose it is to maintain a list of pending activations.

Such a structure allows for fast selection of such an activation for execution. Table 2

gives an approximate count (in terms of memory allocations/deallocations and

memory operations) of the cost involved in various aspects of the prioritized CM-

5 scheduler. In this tabie, the symbol r refers to the number of entries in the local

result pool and á denotes a hashing constant.

AMAM-scheduleJ-oop o
{

void (x/) (state-type, result-type) ;

result-type r;

while (running)

if (task pool contains a pending activation)
{

choose a pending entry p from task pool
f = p.thread-pointer;
(*/) (new-sched-id,p. state-pointer,NULL) ;

Ì
else
{

choose an entry ú from task pool, suspended on key k
if (result pool contains k)
{

f = t.thread-pointer;
r = pointer to result pool entry with key k
remove (k, r) from result pool
(x/) (new-sched-id,f . statepointer,r) ;

)
)

{

Ì
)

Figure 34. A Prioritizing AMAM Scheduler
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Scheduler Function Allocs/Deallocs Other Ops
Adding Activation to Local Pool
Suspending an Activation (to a Continuation)
Terminating an Activation
Scheduling a Pending Activation
Selecting a Suspended Activation to Test
Testing a Direct Key
Testing a Logical Key
Scheduling after a Successful Direct Match
Scheduling after a Successful Logical Match

1

0
1

0
0
0

0
1

1

o (r

10
I

3

I
a
I

1

lh)
3

+2

4

Table 2. Scheduling Costs for the CM-5 AMAM

6.L.2 Storage Model for Partitioned Vectors

Like the abstract machine 0, its implementation AMAM provides only direct support

for a single form of data aggregate, the one-dimension partitioned vector. Such vectors

may be nested to form more complex distributed structures. As in our abstract

models, we describe the partitioning for an AMAM vector in terms of an associated

partiti,oni,ng functi,on, a mapping from a vectot index to the node which owns it. In
an AMAM program, such a specification typically takes the form of a C function with
type signature:

host-id partitioningJunction (int index, int length)
where length is the length of the vector. The fact that such functions are parametric

upon totai aggregate size allows for specification of data layout in the absence of any

knowledge of the execution-time dimensions of a vector.

Each node is responsible for storing the indices allocated to it by such partitioning,
allocating space within the node's heap. To satisfy requests to access the values of

local indices, each node maintains a mapping table which allows it to calculate the

heap address of a local index. Since this process of indirection is implicit in every

access of a vector index, it is critical that its overhead be minimized. Two systems

exist within the AMAM environment to improve efficiency in such computations: a
protocol of allocation which bunches indices from a single vector into a contiguous

memory block, and a further function associated with each vector to provide cheap

offset computation within such a block. We now turn to a discussion of these

optimizations.
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A Block-based Storage Protocol for AMAM vectors

In 0 the nodal mapping structure was manifested as a table in which an entry

was maintained for every inder stored within the local memory space, recording the

address of the allocation for that index. In constructing an implementation of this

abstract model, we use a more effective representation which reduces the time required

to search the table. A. per-aector entry is recorded in the mapping table of node lú
which points to the base of a contiguous block of .lú's memory in which a1l its indices

of the vector are stored. Placement within such a block is based on increasing vector

index. While this scheme places some limitations upon the semantics of distributed
AMAM vectors (e.g., all index allocations for a node must occur at one time, thus

vectors cannot easily "grow"), the types of problems we intend to solve using the

AMAM - DP codes across irregular data structures - will seldom require more

general semantics for their aggregates.

Figure 35 illustrates this storage model for a simple vector, V, of 9 indices

partitioned across 4 nodes. The partitioning function associated with this aggregate,

pf , maps one index to node 0, three to node 1, two to node 2 and three to node 3.

Each node has allocated a block of memory within its own personal memory space to

contain these indices. Every such block is conceptually divided into a certain number

of. slots, regions of memory exactly large enough to contain one index of the vector.

The figure shows how the ordering which indices been mapped (by pf) to a given

node adopt in that node's memory block, namely an order sorted on position (index)

in V. Thus, node 1 (onto which indices 2,3 and 8 are mapped) has allocated a block

with three slots; the value of vector index 2 is stored in slot 0, the value of index

3 in slot 1, and so on. A second function r1 is also associated with the vector -
the purpose and functionality of this relatiae location function is described in the

foliowing section.

Each node of the AMAM keeps, within its mapping table, both a pointer to the

base of block representing its indices of the vector as well as a record of the slot si,ze of

the block. Pointers to the memory representing an individual index can be computed

from these values. Given \he slot address of an index (i.e., the number of the slot it
occupies in the block), the pointer to that index's memory can be cheaply evaluated

d,t .

inder-address -- base-address * slot-address x slot-size
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Figure 35. Relationship Between Partitioning Function and Relative Location
Function

For this process to be practical \Me must have a low-cost way of determining the

slot address for a given vector index. It is clearly possible to build an algorithm

to compute this relati,ue location by repeatedly applying the vector's partitioning

function to all indices preceding the desired one, counting the number of local indices.

However, such an approach is O(n) in the number of local indices and potentially quite

expensive for large vectors. Furthermore, this process of slot address determination

introduces a wide variance in the cost of accessing a vector index, something that is

generally undesirable from the point of view of providing a system with predictable

performance. A better approach is to introduce a relatiue locati,on function with each

vector which provides cheap (preferably O(1)) determination of the slot address for

an index. We turn now to a discussion of these functions.

Relative Location F\rnctions

In an effort to optimize the process of slot address computation, we associate a second

function (in addition to the partitioning function) with each AMAM vector. This

relatiue location function, is a programmer-provided algorithmic means of determining

slot addresses in less time than required for the repetitive application function method

described previously. Given an index and the vector's length, the function must

(cheaply) return the address of the slot in which the index resides (on some node). For

every given partitioning function there is an associated algorithmic relative location

function; the two functions are closely related. It is important when the programmer
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is associating such functions with a vector that the partitioning function and relative

location do not provide conflicting views of storage layout.

To clarify the relationship between the partitioning function and the relative

location function, consider again the example shown in Figure 35. The upper shaded

box in this figure shows a definition of a partitioning function pf . The nodes above

this box show the mapping of locally-held indices to slots. The bottom shaded box

shows the relative location function, rl, which is paired with pf . The construction

of relative location functions is discussed in Section 4.1

6.1.3 The Communications Subsystem

The abstract machine ç¿ assumes a communication mechanism which allows

transparent update of the state of a foreign node. We implement this flavour of

communication in AMAM by means of acti,ue rnessa,ges [134]: low-level asynchronous

messages whose receipt causes a message handler (specified within the data of the

message) to be invoked. On the CM-5 such a protocol of message passing is

available as the very lowest (CMAML) layer of the standard communications library

CMMD [126].
The fl machine defines two communications primitives: request and result, the

former an addition to a remote task pool, the latter to a remote result pool. Internal to

AMAM we define two message handlers, one for processing request-generated active

messages arriving at a node, one to deal with result-generated active messages. The

functionality required for each of these handlers is minimal, the creation of a table

entry for the appropriate pool and the copying of information from the message into

this new entry. Some care must be taken to assure that asynchronous updates do not

interfere with other state manipulations interrupted when the message was received.

In practice it is easy to achieve such atomicity: our CM-5 implementation explicitly

does not use an interrupt-driven protocol of active messages, preferring the alternative

polling approach in which a message is only received when a node explicitly polls its

network interface for buffered messages. Various studies (e.g., [119, 44,61]) on the

CM-5 have shown this protocol of active message receipt involves considerably less

overhead. Care in the placement of polling calls avoids any semantic problems caused

by interrupted AMAM nodal state updates,
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6.L.4 A Hybrid Model for Keys

As described in Section 6.1.1, the concept of a suspension key (or simply lcey) is one

central to the specification of correct control flow in AMAM programs. Such tags

implicitly specify the schedulability predicate for suspended thread activations. As

such they represent a mechanism for synchronization and data flow as well as defining

execution order and dynamic control flow for a thread.

In our abstract model, we considered all keys to be logical entities, and thus all

determination of schedulability to involve logical scans of the result pool. In practice

such searches may prove costly, especially given the fact that there is no guarantee

that the work will result in an activation being scheduled. AMAM supports this

logical notion of keys directly, and thus retains the specificational generaiity of the

synchronization and data flow model embodied in 0. However, lue also introduce a

distinct form of key, the di,rect key, which is less general but for which the matching

process occurs directly, outside of the result pool, and is thus considerably more

efficient. The characteristics and advantages of both of these types of key are discussed

below.

Logical Keys vs Direct Keys

AMAM's \ogical leey is represented by a simple four-tuple of integers. When an

activation suspends upon such a key, it waits for the appearance of the identical

four-tuple as a tag for a value in the local result pool. Such a matching involves a

non-trivial amount of computation: the entire result pool (or possibly a subset of the

pool defined by a hashing value) must be scanned.

However,logical keys provide the greatest generality in specifying data and control

flow. The integers which make up the key are purely logical entities - they have no

explicit meaning or relationship to past execution paths. Thus, any two activations

which know (by some means) of a given logical key may communicate. No master-

slave, or any other, relationship need exist between the two activations.

The second form of key within the AMAM implementation is lhe di'rect key, which

bears close similarity to efficient synchronization mechanisms available in various

implementations of dynamic data flow, such as the Id [12, 69] language, several USC

software prototypes [43, 61, 74], and the RMIT/CSIRO [1, 2] and EM-4 [140, 104]

parallel architectures. Such keys are always created dynamically, through a call to the
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AMAM system library. This system call returns a pointer to a local area of memory

large enough to hold (a pointer to) a result value, plus a presence bit. Initially the

result field is empty and the presence bit off. A result written to the node with a

direct key lc, causes k's presence bit to become set and the received value to be copied

into the memory reserved for the key. Note that such a received value does not appear

within the nodal result pool. Once the presence bit of a direct key is set, tesumption

of the suspended activation is possible. In AMAM it is very cheap for the scheduler

to make such a check: the pointer to the key object is stored within an activation's

task pool entry, and simply dereferenced to determine schedulability.

There is a tradeoff: The patterns of control and data flow which can be modelled by

direct keys are more limited than with logical keys. Because the key is a dynamically

created entity, it is impossible for communication to occur from thread activation B
to thread activation A unless, at some earlier time, A has communicated the key to B;

that is, a direct key cannot model unsolicited communication.

This hybrid system of keys is, we believe, a unique variation on the traditional
solutions to tag-matching in a data flow system.

6.1-.5 AMAM System Calls

Table 3 describes the interface presented by ihe AMAM system. We describe briefly

the semantics associated with each of these system calls.

Basic System Calls

AMAM-¡umlosts returns the number of nodes present within the current AMAM.

AMAM-¡ne returns the identity of the node on which the call is made. This is the AMAM
equivalent of the symbol M used in Q-programs.

AMAM-new-id generates a new identifier.

Threading System Calls

AMAM-enter-activation enters an activation for a specified thread into the local

activation pool, marking it as pending and associating a given initial state.
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AMAM System Calls

System Call Arguments
AMAM-¡um-hosts
AMAM-¡ne

AMAM-¡ew-id

160

AMAM-ent er-act ivat ion

AMAM-susp end-act ivat ion

AMAM-suspend-act ivat ion-d

AMAM-t erminat e-act ivat ion
AMAM-¡rew-direct J<ey
AMAM-enterresult
AMAM-enterresult-d
AMAM-result
AMAM-result-d
AMAM-request

AMAM-enter-rnapping
AMAM-get-rnapping

void xthread (int, void x, void,t),
void xinitial-state
int sched-id, logical key k, void *state,
void xcontinuation (int, void x, void x)
int sched-id, direct key k, void *state,
void *continuation (int, void x, void x)
int sched-id

logical key k, void *value
direct k k, void *vaIue
int host, Iogical key k, void xvalue
int host, direct key k, void xvalue
int host, void *thread (int, void x, void x),
void xinitial-state
vec-id v, int slot-size, void *heap-ptr
vec-id v, int slot-addr

Table 3. Summary of AMAM System Interface

AMAM-suspend-activation changes the activation's entry in the task pool, by setting

the "suspended" status, recording a continuation and a logical suspension key.

AMAM-suspend-activation-d is identical, but the key upon which the suspension

is made is direct rather than logical.

AMAM-terrninate-activation removes an activation from the local pool.

Key Management System Call

AMAM-new-directJrey generates a new direct key by allocating space for a result and

tagging it with a presence bit initialized to off.

Results Subsystem

AMAM-enter-result places a value into the local Resuit Table, tagged with the given

logical key.
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AMAM-enter-result-d copies a value into the specifred direct key and sets its presence

bit to true.

Communication Routines

AMAM-¡esuIt causes an active message to be sent to a remote node which, upon receipt

by that node's handler, causes a value to be entered into the result pool and tagged

with the specified logical key.

AMAM-result-d also causes a message to be sent and a handler to be invoked on a

remote node. In this case, however, the job of the handler is to copy the given value

into the space allocated for the specified direct key and set the presence bit to true.

Note that it is only legal to perform such an action if the direct key passed as an

argument was generated on the node to which the value is to be written.

AMAM-request sends an active message to the specified node which causes a new

activation to be entered into that node's task pool, marked pending, and associated

with the initial state sent within the message.

Partitioned Vector Support

AMAM-enter-rnapping adds a new entry to the loca1 mapping table with the given

vector identifier, slot size and pointer to the memory block holding the vector's local

indices.

AMAM-get-rnapping calculates a pointer to a local index of the specified partitioned

vector. The system call must be provided with the slot address of the index in
question.

6.2 Optimizations for NDP use of the AMAM
The multi-threading implementation we have described is a general-purpose

environment for distributed memory computation. That is, although we have

designed the AMAM with NDP execution in mind, its functionality as presented is not

specialized towards such execution, and it is not surprising that there are situations

where the standard AMAM system discourages optimally effi.cient specification of
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such NDP programs. For these few cases it is advantageous to define specializations

(or augmentations) of AMAM functionality that offer a lower-cost specification. This

section presents four such NDP-specific optimizations which are present within the

current AMAM; Section 6.4 describes how such forms are used in the optimized

expression of DP threads.

6.2.L Multiple-Direct Keys

In the specification of threaded forms for higher order DP operators it is not

uncommon for an activation to spawn many child activations to perform the per-

index elemental computations for each local index of a vector. Typically, once the

parent has spawned its quota of children, it wishes to suspend until such time as

all the children have completed an execution. That is, only after each child has

contributed a result value, does the parent activation wish its continuation to be

scheduled. Examples of such behaviour are evident in the 0-thread definitions for

MAP (Figure 23) and SCAN (Figure 27). In both these descriptions, the fact

that AMAM's suspension call only allows for suspension on the arrival of a single

result value, forces us to synthesize a protocol of repeated suspension upon a single

k"y. Thus, rather than an activation simply suspending until it's children have all

contributed their result, it is required to: suspend, resume upon receipt of the first

child result, suspend again, resume upon receipt of second child result, and so on.

This protocol continues until all child values have been received.

In AMAM, this model of suspension awaiting multiple results displays poor

efficiency. Because AMAM's threads are non-blocking, we must express the protocol

as shown in Figure 36. This figure illustrates an activation waiting on results from

N children. The cost of such a wait is high: here we require /ú + 1 activations to be

scheduled and l/ keys to matched as part of that scheduling. Furthermore, the first

¡\¡ - 1 activations of the continuation thread AMAM-CONT cause very little useful work

to be performed (a single operation), leaving us with a high overhead computation.

To reduce the overhead of such waits we introduce the notion of. a multiple-direct

k"y. Like the direct key discussed earlier, the multiple-direct key is a dynamically

generated synchronization point. At the time of its creation, a write-count is

associated with the key. Whereas suspension upon a direct key has the implied

semantics of resumption after the key has been written to exactly once, suspension
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AMAM-THREAD (sched-id, state-ptr, dummy)

{
int i;

. . . allocate initi,al states for N children . . .

for (i=Q; i<N; i++)
{

child-i-state-)argl = ...
child-i-state-)key = k1 i
AMAM-enter-act ivat ion (ll,tllt-CHILD, child-i-state) ;

Ì
state-ptr-)counter = N ;
AMAM-suspend-act ivat i on ( s chedjd , k1 , AMAM-CONT-I ) ;

Ì

AMAM-CONT-1 (schedjd, state-ptr, result)
{

store or consunl,e úhe result
state-ptr-)counter = state-ptr-)counter - 1;
if (state-ptr-)counter > 0)

AMAM-suspend-activation (sched-id, kl,AMAM-CONT-I) ;

else
{

all result haae arriued, continue computation
)

Figure 36. Suspending an Activation in Wait of Multiple Results

on a multiple-direct key implies resumption after the key has been written a number

of times equal to the key's write-count. Each of the results written to a multiple-direct
key are stored in the memory allocated for the key.

Thus the computation expressed in Figure 36 could be more concisely and

efficiently expressed as shown in Figure 37.

AMAM's implementation of multiple-direct keys represents them as a block of

memory large enough to store (pointers to) a number of results equal to the argument

passed during key creation, plus a counter recording how many results are yet to
arrive. The process of writing to such a key becomes one of copying a pointer and

decrementing the count. Determining the schedulability of an activation suspended

)
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AMAM-THREAD (schedjd, state-ptr, dummy)

{
int i; void *,nultihey;

. . . allocate i,nitial states for N children ...
rnultiJrey = AMAM-new-rnultiple-directhey (N) ;

for (i=0; i<N; i++)
{

child-i-state-)arg1 = ...
child-i-state-)key = multihey;
AMAM-enter-activation (RUI¡I-CHILD, childj-state) ;

Ì
AMAM-susp end-act i vat i on-¡nd ( s ched-i d, mult i Jrey, AMAM-COI\IT-1 ) ;

Ì

AMAM-CONT-I (sched-id, state-ptr, *¡ssìllt-array)
{

all result haue arriued, continue computation
Ì

Figure 37. Using a Multipie Direct Key

on a multiple-direct key is cheap: the scheduler needs only look at the count to

determine whether it has reached 0.

6.2.2 An Alternative To Barrier Synchronization

It has been noted several times in this thesis that, by their very nature, Data-Parallel

computations are synchronizing operations. This arises principally from the need

to ensure that an aggregate value created by one DP operation is not consumed by

another operation until such time as the entire aggregate has been computed. The

second operation must be protected from the possibility that it may attempt to read

an index from the aggregate before it has been written.
In providing an execution environment in which DP-style operations may

be efficiently evaluated it falls to us to provide a mechanism for making such

synchronization low-cost. We have previously considered a synchronization

mechanism (for 0, see Section 5.2.2) in which participants of a DP computation

took part in a barrier synchronization, the protocol synthesized from the simple
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communications primitives of the language. While this is an effective solution,

performing such a barrier can be expensive. In this section we consider an alternative

approach which allows for a DP style of synchronization to be specified in terms

of the presence of a vector id in a node's mapping table. As we shall show, this

protocol, reminiscent of classical I-Structures [13] from data flow computing, will often

significantly reduce the overhead of synchronizing participants in a DP computation.

Characterizing the Synchronization Requirements for DP

We begin our discussion of global synchronization in DP thread programs by

characterizing the need for such synchronization in the execution of such threads.

Figure 38 shows an AMAM program in which global synchronization is important
to ensuring correct evaluation. The program in the figure makes use of two DP

threads, MAP and DEREF, the former being an implementation of the DP operator of

the same name, the latter being a thread which forwards a copy of an index's value

to a foreign node (c.f., the fl definitions in Section 5.2.3 and 5.2.2).

Consider the situation where the DP map operation is co-operative between two

nodes, node 0 and node 7. Suppose that our definition of the MAP thread does not

provide a global synchronization phase, and that node 0 completes its work in the

co-operative scheme prior to node 7. Thus control on node 0 passes to the activation

of lultt-coNT while node 7 has yet to finish its work on the MAP. Now, node 0 causes

an activation for DEREF to be entered into node 7's task pool. Suppose that for some

reason, node 7's activation of tqAp suspends. It is possible that the activation of DEREF

will be scheduled on that node, prior to the completion of the MAP. Thus we will be

reading the value of an index of the map result yet to be evaluated.

As this example demonstrates, the purpose of synchronization in DP thread

progïarrrs is to ensure that a data item (usually a vector index) is never read by

one thread activation prior to its value being written by a different activation. By

enforcing a protocol whereby the second activation cannot possibly begin until after

the first has finished (".g., by placing a barrier synchronization between the two), we

can always ensure that such a read-before-write situation cannot occur.
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AMAM-THREAD (schedjd, state-ptr, dummy)

{
void xdirectJrey;

directhey = AMAM-ner¡-direct-trey O ;

. . . allocate state for DP MAP ...
map-state-)key = directhey i
AMAM-enter-activation (l'tlp,map-state) ;

AMAM-suspend-activation (schedjd, directJrey, AMAM-CONT) ;

Ì

AMAM-CONT (sched-id, state-ptr, result)
{

vector-descriptor map-res, void xdirecthey;

map--res = result;
directhey2 = AMAM-new-directJ<ey O ;

. . . allocate state for DEREF . ..
deref-state-)vector = map-res ;

deref-state-)idx = t7 i
deref-state-)key = directhey2 ;

AMAM-request (T,DEREF,deref-state) ;

AMAM-suspend-activation (sched-id, directJrey2, AMAM-CONT-2) ;

Ì
Figure 38. Demonstrating the Need for Synchronization in DP Threads

Synthesizing a Protocol for Synchronization

When considering the definition of DP operations in f) we addressed the need for

global synchronization by constructing a special thread SYNC which implemented

a barrier synchronization between a set of participants. DP thrcads which were

not naturally synchronizing because of their implementation (e.g., REDUCE) were

required to activate this synchronization thread prior to the final value of the DP

operation being returned to the caller. Applying such an approach to the previous

example, node 0 would not have had its activation of AUUq-CONT schedulable until
both nodes 0 and 7 had completed their work on the map.

While such an approach to synchronization is clearly effective at eliminating the

possibility of read-before-write situations in a DP thread code, the cost of constructing

such a barrier protocol from AMAM's low-level communications primitives would
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prove prohibitive, Inspecting the SYNC thread we defined for f), we can see that its
synchronization of n participant nodes requires O("') communications and for O(n)

activations to be scheduled on each participant node.

Furthermore, this approach to synchronization is proactive in its prevention of

read-before-write conditions. The cost of synchronization is incurred even in the case

where individual DP operations present within a program do not naturally contain

the possibility for read-before-write conditionsl.

These factors lead us to consider a more optimistic scheme of providing

synchronization. We take our inspiration from the reactive style of synchronization

implicit in the I-Structure [13].

An Optimized Alternative: Presence-based Synchronization

If we consider the data structures and functionality of the AMAM as described in
this chapter, we can see that read-before-write errors arise only in the use of the

nodal mapping table to compute an address for a vector index. Specifically if we use

this table to compute a pointer to a vector index which has yet to be filled by some

creating thread, then we have suffered this type of error.

One approach to avoiding such problems is to arrange a protocol whereby a

vector's identity is only added to a mapping table after the operation which creates the

vector is complete. Such an approach allows for a vectot's presence in the mapping

table to be a predicate which defines whether or not a given dereference attempt
will cause a read-before-write error2. This predicate may be evaluated whenever a

dereference is to be made; attempts which cause no error may be safely satisfied

immediately, others can be delayed until such time as the creator operation has

completed.

AMAM provides a mcchanism for exploiting this style of synchronization, in the

form of a system call AMAM-verify-rnapping. We have used this facility, coupled with
a protocol of mapping table entry, to experiment with the construction of DP threads

which have significantly lower synchronization cost.

llt may arise that a DP operation consuming the output of another can safely have its execution
overlapped with that of the producer. This is possible when the consumer's pattern of access of the
result is predictable, regular and totally on-node. In such cases, the work involved in synchronizing
the producer operation prior to allowing the consumer to begin is entirely unnecessaty.

2This presumes that a vector identifier is never reused in an AMAM execution and that a program
never incorrectly attempts to dereference a vector that has been deallocated.
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The AMAM-verify-rnapping function proceeds by

o checking to see whether the specified vector id is present in the local mapping

table

o in the case where the id is present, returning a NULL value signifying that vector

may be dereferenced safely;

o in the case where the id is absent, a new direct key is generated and returned as

the result - the calling activation is expected to suspend upon this key which

will, at some later time, be filled (by call-back) to signify that it is now safe to
perform the dereference.

Section 6.4.1 presents an AMAM translation of the remote vector dereference

thread DEREF which makes use of this system facility. This thread definition

demonstrates how such presence-based synchronization can be used to eliminate

read-before-write errors without the need for an expensive protocol of barrier

synchronization.
A major advantage of this scheme is that a synchronizatiot cost is paid only when

needed. Typically a call to AMAM-verify-rnapping for a given vector identifrer need

be made only once within an activation (or series of activations and continuations)

prior to the first dereference of a given vector. It is safe to assume that if a mapping

was verified at time ú, it will be safe to dereference the vector at any times provably

after f, since identifiers are never removed from a mapping table except at the time

of vector deallocation.

In summary, this alternative approach to synchronizing DP threads offers

significant opportunities in reducing the amount of communication required to

ensure read-before-write errors cannot occur. In place of a complex protocol of

passing messages to synthesize a barrier, we can make use of a cheap system call

which determines the safety of dereferencing a vector and can arrange for issuing

a call-back message when such a dereference can safely be made. It is clear

that this process of notifying activations via call-back must necessarily involve a

certaiu a,lruurrt uf comrnunication in the AMAM. In general, however, obscrvation

of AMAM codes in which the presence-based sychronization is used, suggests that
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such communication constitutes a much lower volume than the synthesis of a barrierS.

Thus, for such program, our presence-based scheme represents a significantly lower-

cost synchronization mechanism for DP threads.

6.2.3 Working With Participant Sets

In the process of meeting the data and control dependencies necessary to fully describe

the semantics of Data Parallel operations in f), we relied heaviiy on the notion of

participant sets (see Section 5.2.1). Given that we plan to utilize such abstract

definitions to provide efficient AMAM implementations of generic partitioning-
independent operations, it is useful to augment the AMAM to provide support for
operations over such sets. Below we describe the semantics of a small group of system

calls, reminiscent of the set operations we defined in Section 5.1.6, which we have

chosen to add to our implementation in order to provide efficient manipulation of

participant sets.

AMAM-single-pset accepts a single host identifier as it argument and creates a ne'ff

participant set which contains only that identifier.

AMAM-range-pfun, when passed a partitioning function and a vectot length, produces

the set of all hosts who own indices from a vector with that partitioning and that
length.

AMAM-in-pset is a predicate which determines whether a given host identifier is

contained within a given participant set.

AMAM-and-pset takes two participant sets and produces their intersection; that is, the

set of all host identifiers present in both input sets.

AMAM-seq-pset accepts a participant set p and an integer i, and returns the set element

which is the i'th smallest (i.e., the i'th member of a sequence formed from the elements

of the set).

3Presence-based synchronization is used exclusively in the implementations of DP operators
used in our language implementation (see Chapter 7) targetting AMAM. Early experiments with
performance benchmarking barrier-based versions of these codes yielded results which were an order
of magnitude less efficient than the presence-based versions which were later adopted. This difference
in performance was due exclusively to a greater communications volume.



CHAPTER 6, AMAM: AN IMPLEMENTATIOT\T OF THE MODEL 1.70

In our CM-$ AMAM, we represent processor sets as bit-vectors, leading to

efficient implementations of the AMAM-single-pset, AMAM-in-pset and AMAM-and-pset

operations. The sequencing operation is more expensive, requiring i bit-shift

operations. Determining the range of a previously unseen partitioning function is

an operation which inherently requires the function to be evaluated for every index of

the vector. An optimization which reduces the cost of subsequent range calculations

for the same partitioning function is discussed in the following section.

6.2.4 Inverting Partitioning Functions

An operation that arises often in the coding of Data-Parallel threads is that of

determining, given a vector u and its associated partitioning functiort pf , which of the

indices of u are local to the node executing an activation. Such an operation is visible

in the Q definitions for MAP and SCAN where the vector partitioning function is

applied across the entire index space of the vector to compute the set of local indices.

In the course of a DP operation involving a set of partitioning functions, it is likely

that each node will perform the same (partial) inverse computation many times. Two

factors contribute to this: the liketihood that the same vectors will typically be used

in several DP operations over their lifetimes, and the fact that a number of vectors

(of the same length) may share the same partitioning function. Every evaluation of

partitioning function inverse (for a vector of a given length) will produce the same

result.
With this in mind, one approach towards reducing the cost of DP threads is to

arrange so that this O(n) (in the length of the vector) computation was only performed

once on each given node and its result stored to satisfy future requests to invert the

same partitioning function (in the context of an equal length vector). We implement

this memoization of inverse computation by providing a system call ll'tll't-invert-pf
which accepts a pointer to a partitioning function and a vector length and checks

to see whether the inversion of a vector of equal length and equal partitioning has

already been performed. If such a previous operation has occurred on this node, the

result will reside in a nodal data structure, the inuers'ion table - \rye can thus simply

return this value as the result of ll,tlU-invert-pf. In the instance that no prior

inversion matches the current request, we must compute the inverse by the normal
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O(n) method. The result of this computation is both returned by the system call and

added to the local inversion table.

6.3 Overview of Related Architectures
In the definition of AMAM, we have now described a complete environment for

practical distributed multi-threaded execution. The implementation we have outlined

bears some similarities to a number of other research prototypes which seek to provide

a multi-threaded execution as a basis for different models of parallelism (e.g., macro

data flow, parallel object oriented programming). In this section we briefly survey

the most important of these related architectures, commenting upon their points of

convergence and divergence with ihe AMAM model we have presented.

6.3.1 P-RISC and TAM
TAM 144,I79,31, 30] and P-RISC [86, 85] are two multi-threaded abstract machines

designed and implemented as targets for compilation of the implicitly parallel, higher-

order ianguage Id [S4]. Each is based upon the principle of macro data flow [69] which

aims to provide, on a traditional multiprocessor, a model of execution reminiscent of

that found in traditional dynamic data flow. We describe each of these architectures

in turn and then comment (in the discussion section on page ).74) on the relationship

of these designs to the AMAM.

P-RISC

The P-RISC (Parallel RISC) model consists of a number of processing nodes, each

of which owns a local memory, a communications network which allows these nodes

to exchange messages, and a (logically distinct) global memory. The latter memory'

which may actually be partitioned among the nodes, may only be accessed by split-

phase instructions. That is references into the global memory space can be assumed

to involve long latencies and thus are implemented as separate request and response

messages.

The machine executes programs which consist of a number of P-RISC graphs,

each representing a unit of computation which can be activated (".g', u function)'

Execution begins with one of these graphs being instantiated upon one node of the
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machine: this involves allocating a block of memory to be that activation's frame,
a region of local storage. Instructions from this active graph are then executed in

sequence. During this execution, the graph may specify the instantiation of other

graphs either on the initial rrode, oï on another node. This represents the spawning

of a new m'icrothread of control. The semantics of P-RISC's microthreads defines them

to be run-to-completion (i.e., they are non-blocking threads). The P-RISC allows for

an arbitrary number of microthreads to be simultaneously active upon a node of the

machine. Each maintains a pointer to the frame for the activation which spawned it;

this may be a global pointer, that is, a pointer into another node's memory.

Each node maintains a scheduling queue) a data structure which records the

microthreads which are active upon it, and governs the multiplexing of the node's

single thread of control among such microthreads. This is implemented as a simple

stack; as new microthreads are activated on a node they are pushed onto that node's

stack. When a microthread terminates its execution, the top stack element is popped

and becomes the executing microthread. While a node is executing, anY messages

that are received are queued in another data structure. Each message contains the

address of a handler that should be invoked upon its consumption: when the scheduler

is faced with an empty stack, it passes control to the handler for one of ìts queued

messages.

Sptit-Phase access is manifested in P-RISC using a continuation model. When

such an access is issued, a message is sent to the appropriate destination which

contains, aside from data necessary to the access, a pointer to an instruction in the

sender graph from which control should continue after the result becomes available.

The sending micro-thread then terminates. At some later time, on the destination

node, the message is received and ultimately consumed to pass control to the specified

handler. That handler communicates a response to the sending node, with the

continuation it received as the handler address.

Synchronization between micro-threads is specified by u join instruction which

makes reference to a variable in the activation's frame and a count of the number

of micro-threads that will participate. The variable is initialized to zero, and

incremented when each micro-thread issues its join. If the incremented value is less

than the count, the micro-thread simply dies. When the last micro-thread has issued

the instruction (which makes the variable's value equal the count), it is permitted to

proceed beyond the synchronization point.
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TAM

The Threaded Abstract Machine (TAM) model proposed by Culler bears many

similarities to P-RISC largely due to commonality of backgrounds and intended

purposes. As with the former model, TAM is a machine made up of a set of processing

nodes, each with an associated memory, and a logically distinct global heap. The

latter is assumed to be partitioned between the various nodes.

A TAM program is made up of a collection of. code-bloclcs, each a collection of

(non-blocking) threads and message handlers (called inlets). Upon activation of a

code-block, a region of memory called a frame is allocated to hold variables local to

the code-block. As part of every frame, storage is allocated for a structure called the

local continuation aector (LCV). This records the activations of each thread within
that block, and is the principal tesource used in scheduling.

The scheduling model for activations of code-blocks and their threads is

hierarchical. At the top level, each node maintains a list of all local code-block

activations which are ready, that is which have at least one thread activation which

may immediately be executed. Execution begins by one of these ready code-block

activations being selected. Once this has occurred, an inner scheduling model

is applied to schedule threads from this chosen activation's continuation vector.

Whenever execution of one thread terminates, the LCV of the current activation

is again consulted for a new thread to execute. Only when the current frame has

an empty LCV do we consider returning to the outer scheduling algorithm to choose

a new code-block activation from the ready queue. The time between applications

of this outer scheduling process is called the quantunz of the chosen frame. The

motivation in providing this two-level scheduling policy lies in improving locality by

concentrating execution on a single frame for as long as possible (possible since all

threads within a code block share its activation frame). This also makes it possible

for a compiler to determine that a set of thread activations will execute within the

same quantum, and thus permit information to be passed between such threads in

registers.

Each code-block defines, in addition to its threads, a set of inlets which act as

handlers for messages sent to threads of this code-block from threads of other code-

block activations (possibty resident on other nodes). An inlet is activated immediately

upon reception of a message, preempting any thread that may be executing at that
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time. Typically, their role in computation is simply to copy transmitted data into

appropriate fields of the receiving frame. Inlets are used to implement split-phase

access of elements of the global heap in much the same \/ay as previously described

fol P-RISC: the address of the sending frame is transmitted with thc message to enable

the thread sending the result to determine to which activation's inlet the resultant

message should be directed.

Threads are activated by a special /ork instruction in the TAM language. Such

thread activations are modelled as simple additions to the LCV. Additionally, a thread

may invoke a code-block by causing the allocation of a new frame (on some node of

the machine) and passing an initial state (the arguments to the code-block) as a

message to a designated inlet of the code-block.

TAM's threads may be specified to observe a synchronizing behaviour. This is

achieved by the introduction of an entry counter. The semantics of forking a thread

are defined such that activation of the thread (and hence addition to the LCV) only

occurs when this count has been made zero. Attempts to fork a thread with a non-zero

entry count fail, but cause the count to be decremented.

Discussion

Clearly P-RISC and TAM bear some close parallels to the architecture we have

delineated for AMAM. All are multi-node models in which each node provides some

support for multiplexing a single thread of control between a number of thread

activations. Furthermore, the nature of the threads in all models is non-blocking.

However, whereas the models derived from data flow choose to group threads together

into larger blocks which share a state object, AMAM opts for a flat modei in which

each thread activation is responsible for its own distinct state object. This approach

is feasible since, as \¡r'as the case for our abstract model f), we intend to use AMAM's

threads as representations of relatively large computations (e.g., whole functions

or sections of an NDP operation - see Sections 5.2 and 7.3.3 for discussions of

such modelling). This contrasts with the finer grain-size expected for P-RISC and

TAM, where a thread might represent only a handful of machine instructions. Thus,

although AMAM must maintaìn a number of state objects equal to the number of

current thread activations (as opposed to one state object per group of activations),

there will be overall fewer activations required to carry out a simiiar computation.
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Hence the number of state objects maintained by each of the systems is roughly

comparable.

A noticeable difference between AMAM and the data flow derived models is the

pattern of progran instantiation. In TAM and P-RISC a program bcgins as an

activation executing on a single node, whereas AMAM's distinguished startup thread

is activated on all nodes independently. This diference stems from the form of

execution which the multi-threaded environment is intended to model: the former

models are designed with a data flow style of execution (complete with forks and

joins of control/data) whereas our target is to support an extension of the traditional

SPMD model commonly used for executing DP codes.

The nodal scheduling model of P-RISC bears some similarities to that of AMAM
particularly the existence of a nodal structure recording activations and a scheduling

loop which simply selects an element of this structure. Note however, that the two

models handle continuations after split-phase operations in a different way - where

AMAM stores the continuation on the node which issued the split-phase operation

(and therefore must periodically checkfor the arrival of the result), P-RISC sends the

continuation as data in the requesting message and relies on the thread which forwards

the result to pass this continuation back (causing slightly higher communications

overheads). TAM's scheduling model is quite different to either AMAM's or P-RISC's

in that it makes some effort to take advantage of inter-thread locality - this approach

enables threads to share implicit state (e.g., registers) and also reduces the cost of

scheduling threads which are related to those just completed. However, the support

of such a hierarchical scheduling policy requires a complex dynamic data structure

across the machine which may be costly to maintain. TAM's model of split-phase

is similar to P-RISC's although rather than passing continuations, the sender gives

the local frame address and the specification of which inlet should receive the result.

Together these can be thought of as a specification of a continuation equivalent to

those found in P-RISC and AMAM.
It is worthwhile noting that all three models provide an efficient mechanism for

passing state to a continuation thread: in AMAM this is achieved by storing pointers

to the state object and the continuation of an activation which has suspended. TAM

and P-RISC achieve this by a storage model which shares frames between all threads

in a block, and thus retains state information which becomes local to the continuation

when it is ultimately activated. The AMAM model is the more general in that it
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permits the passage of state information to an arbitrary continuation; the data flow

derived models insist upon a continuation being a thread within the same code-block.

Finally it is interesting to note the similarities between the forms of communication

and synchronization present within the different models. Clearly all are bascd upon

an asynchronous handler-based style of communication of the sort embodied within
Active Messages. The synchronization mechanisms of P-RISC (the join) and TAM

(entry counts) are analogues of the (multiple) direct key mechanism we have described

for AMAM thread synchronization. In all three systems, this form of synchronization

presumes a relationship between the sending and receiving threads: the dynamic

nature of the identities in the synchronization scheme (direct keys, activation frames)

means that a given thread can only know the identity of a particular synchronization

element if it has previously been passed this information by the creator of that

element.

AMAM offers an alternative form of synchronization which does not presume

such a relationship, namely the logical key. Such keys are presumed to be static or

semi-static entities whose identity can be known to two threads who have no direct

relationship (through either previous communicationor heritage). Thus it is the case

that whereas such threads cannot express communication/synchronization via direct

keys (and the faciiities of TAM and P-RISC), their interaction can be specified in

terms of AMAM's logical keys.

In summary, AMAM, TAM and P-RISC represent models of multi-node multi-

threaded computation that are closely related but which cater to disparate needs. The

latter models cater towards threads which are very fine grained, all fork from a single

starting thread, and only every communicate with the thread which forked them.

Conversely, AMAM provides an environment for effi.ciently supporting somewhat

larger grained threads, which need not be activated from a single starting thread

and which may communicate in an arbitrary fashion (i.e., any thread activation may

communicate with any other, not just its parent activation). These differences are

manifestations of AMAM's place as a basis for NDP computation (as compared with

TAM and P-RISC's existence as a model for implementing maclo data flow).
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6.3.2 Charm

Charm [64, 111 , M,113] is a system providing a distributed memory multi-threaded

environment for an object-oriented style of execution. The most recent manifestation

of this environment, CAB [114], is particularly oriented towards supporting irregular

patterns of computation. It is this version of the system which we describe here.

Like the TAM and P-RISC models we have previously described, Charm/CAB
provides the programmer with non-blocking threads called uThreads or atomic

computati,ons, grouped together into larger control constructs called uProcesses or

chares. The uProcess also contains a number of message handlers called entries.

Each uProcess activation has an associated frame of memory which stores its local

variables and state; this memory can be viewed as the encapsulated state of a uProcess

object, manipulable only by the entries of the uProcess. The uThreads within each

uProcess represent finer grained activation units which do not own their own state

but have access to a Shared Data Area (SDAJ of the containing uProcess' frame.

Thus the Charm thread model can be said to be hierarchical in the same way that

P-RISC and TAM were, and is similarly divergent from AMAM's flat thread model.

The model of computation embodied in Charm/CAB is message-driven. The

individual uProcesses are passive entities which, once they have been activated upon

a node of the machine, carry out computation only upon receiving a message. Each

message contains the address of an entry of the receiving uProcess which corresponds

to the new uThread to be activated when eventually the message is consumed, The

nodes of the machine each maintain a queue of the messages they have received

(both from uThreads executing locally and those active on other nodes) and uses this

structure as the principal scheduling data structure. That is, the node consumes a

message from the queue (and hence executed one of the uProcess' uThreads) whenever

it falls idle. This computationai model differs from TAM's messages and AMAM's
result-based communication in that it directly links every message to the instantiation

of a new thread of control rather than simply using such communications to pass data

(which may through fulfilling data dependencies cause a later activation). The Charm

message passing model is more closely approximated by AMAM's request-based

communications protocol, that is by our mechanism for remote thread activation.
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6.3.3 Pebbles

The Pebbles 199, 100, 10, 109] system is another multi-threaded execution model

arising from research into introducing a dynamic data flow style of execution into
a von Neumann computational environment. At present the architecture is being

used as a compilation target for a distributed memory implementation of the SISAL

language [78, 41].

Pebbles offers a flat threading model (i.e., one which has no hierarchies of threads

as were present in TAM, etc.) which is non-blocking. The intention is that each thread

in the system plays the role of a node (or actor) in a dynamic data flow graph. \ /ith
this in mind, Pebbles threads do not have large state objects (frames) associated

with their activations. Rather, each activation maintains a small data structure

called a framelet which stores only its inputs. Threads are synchronizing in the sense

that they may not be scheduled for execution until such time as all input values

are available. Thus, the notion of a Pebbles framelet can be compared to AMAM's
mechanism for multiple direct keys. There is no Pebbles analogue to AMAM's per-

thread state object: all transfer of state information between a thread activation and

its continuation occurs through explicit message passing rather than (as is the case in

AMAM) through an implicit mechanism of transfer through management of a state

pointer.
Different activations of the same thread are distinguished by a unique colour;

messages directed towards a node carry úags which define the precise thread to which

they must be delivered. The Pebbles abstract machine incorporates a synchronization

unit which performs the matching/synchronization of tags to thread activations. This

process is analogous to key matching in AMAM.

6.3.4 Nomadic Threads and the l-structure Software Cache

A number of prototype multi-threaded multi-node abstract machines 143,74,61] have

recentiy been proposed by researchers at the University of Southern California as test-

beds for the experimental anaiysis of novel execution modelsa. These architectures ate

based upon a generic model of multi-threaded execution [139] similar to that embodied

by machines such as TAM and P-RISC. Like these models, the USC machines are

aThis work derives from earlier research [39, 40] by the same group which considered hardware
architectures for macro data flow.
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frame-based: that is, each activation of a code block is granted a block of state

memory which may be used in the execution of its (potentially many) component

threads.

Scheduling within the USC multi-threaded models is simplc: a code-block

activation executes until such time as either all its component threads have finished,

or all are blocked awaiting a value from another activation. Each activation's f'-ame

contains reserved fields which are used for synchronization with child activations -
when a child activation finishes, it is obliged to write a value into the appropriate field

of its parent activation to inform the parent of its completion. This synchronization

mechanism is reminiscent of TAM's frame-based synchronization and AMAM's direct

key. As is the case in AMAM, use of the USC system for implementing aggregate-

based computation has lead to the adoption of a counter-based synchronization

(similar to AMAM's multiple-direct key) to efficiently cater to the joining of multiple

child activations.

The systems which have been developed at USC have principally been used to

evaluate novel alternatives for multi-threaded execution. Consideration has been

made of possibilitìes for providing nodal caches 174, 43) into which off-node values,

gathered by an expensive split-phase fetch, can be stored to reduce the cost of future

access. In considering the implementation of aggregate-level operations which have

single-assignment semantics, such caching mechanisms can be provided at extremely

low cost. A second experimental USC prototype has considered an execution model

in which threads are permitted to relocate from node to node in order to satisfy data

dependencies. These nomadic threads [61] eliminate the need for expensive fetching

of data (usually by split-phase) typically found in thread computations which are

owner-computes .

While each of these extensions to the multi-threaded model is far beyond what

is presently supported in AMAM, the ideas they embody ate compatible with our

model. Thus, one possible future direction for the AMAM (see Section 9.1.1) could

be the consideration of such functionality.
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6.3.5 Multi-Threaded Hardware Architectures

White this discussion of architectures for multi-threaded execution has thusfar iimited
itself to those solutions which (like AMAM) offer a software-based realization of multi-

threading, it is worthwhile mentioning that recent research in hardware architectures

has also contributed a number of environments with similar features. A survey of the

broad field of hardware multi-threading is beyond the scope of this thesis, however

for purposes of comparison we provide a brief overview of two such architectures'

Section 9.1.1 provides a brief discussion of impiementing the AMAM on such

machines.

:l.T

The MIT *T [S7] (pronounced "start") is scalable (distributed memory) machine

based around a collection of customized RISC processors attached to a high-

performance fat-tree network. The processots are Motorola 88110 microprocessors

augmented with custom hardware (the Message Synchronization Unit (MSUÐ

providing functionality for frne-grained communication and synchronization. This

unit contains a stack of microthreads, each the activation of a non-blocking thread.

Very low cost hardware switching is provided within the MSU to schedule these

micro-threads for execution by the CPU.

Communication across the network is provided in the style of active messages'

with each message consisting of a continuation (i.e., a micro-thread reference) and

one or more values. This style of nodal interaction is reminiscent of that offered by

TAM, P-RISC and the remote activation facilities of the AMAM. As in these systems

the focus is on modelling high-latency access as split-phase. Receipt of a message by

the MSU leads to the execution of a handler thread (similar to a TAM inlet) which

copies data into the appropriate frame. Whenever a *T node encounters the end of

the micro-thread currently being executed, it may elect to schedule the micro-thread

for such a waiting message rather than the default action of popping the local stack

of micro-threads.
Later versions of the *T architecture (*T-NG l27l and *T-Voyager [9]) explore the

addition of globally coherent nodal caches to reduce the frequency of communications

introduced by off-node memory references.
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To date the *T family of architectures has been used as a basis for implementations

of a number of message passing libraries including Cilk [23, 62] and MPI [80]. Future

work will address the issue of compiling implicit and explicit parallel languages to

lhese rrrachiles.

Tera

The multi-threaded hardware architecture [8] developed by Tera is a shared memory

system, where each of the processor nodes in a three-dimensional mesh network has

hardware support for up to 128 concurrent threads. Each active thread is granted a

status word (which includes its instluction pointer) and a set of dedicated registers.

Inter-thread switching is very efficient with a switch-per-machine-instruction being

a viable execution paradigm. Each instruction includes a 3-bit field indicating the

(minimum) number of further instructions that can be executed from the current

thread before a dependency arises which forces a context switch. This information is

used to determine the actual grain size of the thread segments which are executed:

there is a hard upper limit of 8 instructions, indicative of the architecture's intended

purpose as a basis for fine-grained multi-threading.

Synchronization between Tera threads is described in terms of memory-based

operations. Every word of memory has an associated 4 bits of access state of.

which one bit represents presence (in analogy with AMAM's direct key and classical

I-structures).
The current multi-threaded multiprocessor architecture offered by Tera are

programmed using F'ortran, C and C++ (which is automatically parallelized by loop-

analysis) into which explicit parallelism can be added by way of pragmas. These

languages are sufficient for the expression of some irregular forms parallelism (such

as that present in irregular mesh computations); the low-cost synchronization and

latency hiding offered by the Tera architecture offer good opportunities for exploiting

such parallelism.

6.4 O-Threads in AMAM
As presented, the interface and functionality offered by AMAM are close parallels of

those central to our definition of the abstract machine f). Thus it is unsurprising

that the threads and programs we presented previously for f,) can be translated
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reasonably directly (excepting the need to split ,Q threads to make them non-blocking,

as explained in Section 6.1.1) into AMAM source. To demonstrate this process, we

present AMAM translations of two fl-threads, the remote vector dereference and the

nestable generic Data-Parallel map.

6.4.L Vector Dereference

Figure 39 shows the AMAM form of the vector dereference operator described for

0 in figure 20. The definition consists of two non-blocking threads vector-deref
and vector-deref -0. The first serves as a vehicle for verifying that the vector for

which dereferencing has been requested has been entered into the local mapping

table. As discussed in Section 6.2.2, this check is a form of synchronization by

name: if the mapping exists already then this implies that the operation upon this

node which created the vector is complete. If the mapping is absent at the time
that the vector-deref activation is executed, this implies the creator activation is

still incomplete, hence we must suspend (on a direct key) until such time as ',¡r'e are

informed by the system that the creation is complete.

Once the activation of vector-deref-0 has been scheduled, we know that the

mapping for the requested vector must be present within the local mapping table.

Thus it is safe to dereference any local index of the vector. Using the vector's relative

location function (state-ptr-)v. r1) we compute which slot corresponds to the index

we wish to retrieve. Using the mapping table and some simple pointer arithmetic this

enables us to find the heap address representing the desired index. If the calling

activation resides on the same node as this activation (i.e., h == AMAM-¡neO) then

the resuit can be passed back by a simple entry into the local result pool. Otherwise,

we must use communicate the value using AMAM-result.

6.4.2 Nestable Data-Parallel MAP
The AMAM implementation we provide for the nestable generic DP map is a

direct (non-blocking thread) translation of the O-thread defined in Figure 23

with modifications introduced to take advantage of the optimizations discussed in

Section 6.2. Figures 47, 42 and 43 give full definitions of the six threads which

collectively implement the nap. Figure 40 summarizes the possible paths an activation

of the entry thread rnap may follow between these various threads before termination.
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Fields of vector-deref State
v.id 

- 

identity of vector to be dereferenced
v.len 

- 

length of vector to be dereferenced
v.rl 

- 

vector's relative iocation function
idx 

- 

index to be dereferenced
h 

- 

id of node who requested the index value
dkey 

- 

direct key upon which caller suspended

Thread Definitions
void vector-deref (sched-id, state-ptr, dummy)

{
void *keÏj

key = AMAM-verify-rnapping (state-ptr-)v. id) ;

if (keY == NULL)

{
AMAM-enter-activation (vector-deref -0) ;

AMAM-t erminat e-act ivat ion ( sched-id) ;

)
else

AMAM-suspend-activation-d (schedjd, kef , vector-deref -0) ;

void vector-deref-O (schedjd, state-ptr, dummy)

{
void xbuf ; int slot-no;

slot-¡o = state-ptr-)v.r1 (state-ptr-)idx,
state-ptr-)v, Ien) ;

buf = AMAM-get-rnapping (state-ptr-)v. i.d,slot-no) ;

if (state-ptr-)h != AMAM-meO)
AMAM-result-d (state-ptr-)h, state-ptr->dkey,buf ) ;

else
AMAM-enter-result-d (state-ptr->dkey,buf ) ;

AMAM-terminate-task (schedjd) ;

Ì
Figure 39. AMAM Implementation of Remote vector Dereferencing
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Figure 40. Possible Execution Paths for a map Activation

The state object (which shall be denoted s) for the map thread and its various

continuations is shown at the top of Figure 41. This list describes two types of state

fields, those which must be supplied by the activation entering the map activation

(i.e., the initial state) and those which are filled in the course of the computation.

In the figure, the former are shown in the top section of the box, the latter at the

bottom.
The entry thread into the co-operative computation, map, is activated on each of

the nodes in the set s-)p by an activation which thereafter suspends on the direct key

passed as initial state (i.e., s->dkey). This entering activation is resumed once the

map has been completely computed. At that time, it will receive a vector descriptor

denoting the result of the DP operation.

The first operation performed by each activation of the map thread is the

calculation of which hosts are in the participant seú, s-)newp, of the computation

(line 5). These are the nodes which will co-operatively perform the map operation:

by the owner computes rule we determine the set to be all hosts which own a portion

of the vector. An optimized computation of this set is offered by the AMAM-range-pfun

system call (described in Section 6.2.3) which computes the range of a partitioning

function for a particular domain (the set of indices of the input vector). Once the

participant set has been determined, it is possible to determine, as we did in the

f,) implementation of MAP, which hosts need to receive messages to satisfy the

computation's activation constraint. In Figure 41 this set is called snooze (computed

in line 6); we implement the process of making remote activations by using a protocol

wherein each snooze member receives a message from the member of s-)p whose id is

"closest" to it. A f or loop (lines 9-t2) is used to implement a protocol of activation

I
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- this corresponds to an expression of the set operation 7 (see Section 5.1.6) for a

particular metric.
Following this work to satisfy the activation constraint, the map thread offers two

paths down which its activation may proceed. If an activation is a participant in
the co-operative computation for the map (i.e., it executes on a node whose id is

in s-)newp) then it passes its state to a new activation of map-1 and terminates

(line 15). Activations which are not participants in the map (i.e., node id is not in
s-)newp) pass their state instead to an activation of map-4 (line 17). This conditional

activation succinctly expresses the fact that these two sets of activations will perform

quite different roles in the ensuing computation.

Activations which reach map-1 have the responsibility of computing the result

value of the rnap for the portion of the input vector resident on a single node (the

node executing the activation). They begin by computing the subset of that vector's

indices which are locally resident - this is achieved by evaluating a (partial) inverse

of the partitioning function (line 25). As discussed in Section 6.2.4 we provide a

system call, AMAM-invert-pf, to efficiently perform such inverse calculations. Our

primary need for determining the set of local indices is to compute the storage

requirement for the local indices of the rnap result. We know, from the initial state

field s->slot-size passed at the beginning of the map, how much memory is required

to hold a single index. This coupled with the cardinality of the set computed by

inverting the partitioning function, yields the total memory requirement for the local

section of the result vector. This amount of memory is allocated from the local heap

and a pointer to its base stored in the state field s-)block (line 27).

Following the allocation of memory to store the result indices, the activations of

map-1 proceed to activate instances of the per-element computation function s-)f
(lines 2947). One such activation is (locally) entered for every local index of the

input. The initial state for each function activation includes a contert field which

holds the slot address of the index in question ) arr &rgurnent freld containing that

index's value, and a singleton caller's parti,cipant seú field. Each activation also

contains a reference to a single multiple direct key (created with a count equal to

the number of local indices of the input). Once all s-)count function activations

have been made, the map-1 activation suspends upon this key (line 3S).

We assume a basic model for the execution of the function thread s-)f in which it
accepts an initial state with the fields described above, and (after whatever scalar or
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Thread Definitions
void map (schedjd, s, dummy)

{
pset snooze; int i,t;

s-)newp = AMAM-range-pfun (s-)v.part, s-)v. len) ;

snooze = AMAM-and-pset (s-)newp, AMAM-aot-pset (s->p)) ;

t = AMAM-seq-pset (s->p,0);
for (i=O ; i<AMAM-num-hosts O ; i++)
if (AMAM-in-pset(s-)p,i)) t = i;
else if (AMAM-in-pset(snooze,i) && AMAM-rneO == t)

AMAM-request-any (i,map, s) ;

if (AMAMjn-pset (s-)newp,AMAM-rneO ) )
AMAM-enter-¡er¡-activation (map-l, s) ;

else
AMAM-enter:tew-act ivat ion (map-4 , s) ;

AMAM-terminate-activation (sched-id) ;

Ì
Figure 41. AMAM Implementation of NDP rnap, Part One
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input vector length
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f function argument to the map

slot-size- storage requirement for each result index
p 

- 

set of nodes which need map result
dkey- direct key upon which caller suspended

count- number of indices local to this node
newp- participant set of the map

block- pointer to storage for local result indices

-.1 the multiple direct key
vecid- id of vector created during the map

result-v- descriptor for the result vector
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thread-based work is required) terminates after having written a value to the direct

key it was passed. This value must be of the form (contert, result aalue), where

contert is the same context from the initial state (u->ctx) and result aalue is the

.etu-,n value of the function.
An activation reaches nap-2 after all of its child function activations have

completed and written their results to the multiple-direct key (thus reducing the key's

count to 0). Instead of receiving a single result from the scheduler, activations of this

thread receive an array of results, one for each of completed function applications.

Each entry of this array is a (contert, result ualue) pair, the context being the slot

address of the index which was passed to that particular function instance. Since the

result vector is partitioned identically to the input vector, this context is also the slot

address in the result to which the associated result value should be written. The loop

at the beginning of rnap-2 (lines 44-4e) cycles through the entire result array copying

the results into the appropriate slots of the block allocated for the result.

Following the writing of results into s-)block, the process of evaluating the

map continues with the determination of a giobal name for the result vector. The

implementation we offer here adopts a simple protocol: the node which owns the first

index of the vector is permitted to generate an identity for the vector, which is then

communicated to all other nodes in s-)newp (lines 52-55). Once this activation has

completed its broadcast, it has completed its role in the co-operative computation

and can thus generate a result vector descriptor (lines 57-58) and make an entry into

its node's mapping table (line 59). Following this, the activation passes control to

nap-4.

The map2 activations on nodes other than the designated name generator suspend

upon a key k1 until such time as the vector identity has been received (line 6a). At
this time (when the continuation map-3 has been scheduled), these activations too

may safely generate a return vector descriptor and report the new vector to the local

mapping table (lines 69-71). These activations then proceed to map-4.

The thread map-4, the joining point of all possibie paths through the series

of threads, implements a protocol of communìcations to satisfy any return value

constraints (as described in Section 5.2.1) for the DP operation. This involves

computing the set rcv of nodes which have expressed a desire to be informed of the map

result (i.e., are in s->p) but were not participants in the co-operative computation of

that result. This set is computed by line 79 of Figure 43. Activations in rcv suspend
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void map-1 (sched-id, s, dummy)

{
set-of-int idx-temp; int count;

idx-temp = AMAM-invert-pf (s-)v.pf ,s-)v.Ien) ;

s-)count = cardinality (idx-temp) ;

s-)block = allocate (s-)count*(s-)slot_size)) ;

s-)md = AMAM-new-¡nuIti-direct-Jrey(s-)count) ;

for (i=g; i( (s-)count) ; i++)
{

... allocate space for a function state u ...
u-)ctx = i;
u-)arg = AMAM€et-rnapping (s-)v. id, i) ;

u-)p = AMAM-single-pset (AMAM:neO) ;

u-)dkeY = s-)md;
AMAM-enter-new-act ivat ion (s-)f , u) ;

)
AMAM-suspend-task-rnd (schedjd, s-)md,map2) ;

Ì
void map-2 (sched-id, s, result-array)
{

func-result *r; host-id h; int i;

for (i=9; i(s-)count; i++)
{

r = (func-result *) (tmp [iJ ) ;

copy (state-)block+(r-)ctx)*s-)slot-size, r-)vaI) ;

)
h = s-)v.pf (0,s-)v.Ien);
if (h == AMAM-ne)

{
s-)vecid = AMAM-ner,¡-id O;
f or (i=9; i<AMAM-numlosts O ; i++)

if (AMAM-in-pset (i,s->p))
AMAM-result (i,k1, s-)vecid) ;

s-)result-v = make-vector-descriptor (s-)vecid,s-)v.pf ,
s-)v. rI, s-)v. len) ;

AMAM-enter-rnapping (s-)vecid, s-)block) ;

AMAM-enter-new-activation (maP-4, s) ;

AMAM-Ierminate-activation (sched-id) ;
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else
AMAM-suspend-activation (schedjd, k1,map3)

Figure 42. AMAM Implementation of NDP nap, Part Two
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on key k2 in wait of the result value, which will be forwarded to them by one of the

participants. We use a protocol similar to that presented previously (lines 9-12) for

activation to determine which participant satisfies which suspensions (lines S4-S8).

Once any required messages have been scnt, participant activations in s-)newp

terminate (line 92). If the activation was also in s-)p, and thus desired the result

value, the result value vector descriptor is written to the direct key upon which the

activation initiating the map is suspended (line 91).

Activations which receive the fi.nal map result via communication (thus reaching

map-S) similarly write this value to the caller's suspension key and terminate.

6.5 Summary of the Architecture
In this chapter we have described a concrete implementation, the AMAM, of

the threaded abstract machine 0 defined and analyzed in Chapter 5. The

realization of the multi-threaded execution model on a real-world distributed memory

multiprocessor (the Thinking Machines CM-5) is embodied in a library of C data

structures and routines. The former provide implementations of the nodal structures

found in 0, while the latter form a suite of system calls which provide the functionaiity
of the ,f) instruction set.

To allow for effi.cient scheduling of threads, we choose to limit AMAM's threads

in a way that ensures that they are non-bloclcing; that is, they do not suspend mid-

execution. While this innovation complicates the (otherwise trivial) translation of Í-)

codes into AMAM, the reduced context switching overheads involved in such a system

make the system considerably more efficient. Further improvements are gained by

introducing a system of prioritized scheduling, in which thread activations which can

cheaply be identified as schedulable have priority over those whose schedulability may

be costly to determine (e.g., activations which are suspended).

A principal feature of the AMAM is its hybrid model of synchronization keys. In

considering our abstract machine f,) we were not concerned with the nature of the keys

used within inter-thread synchronization and communication. In our implementation

such issues become important: we want to provide a mechanism which allows for

very general forms of interaction to be possible, but we also wish to minimize the

cost of synchronization which uses our keys. To a certain extent these goals are

mutually exclusive. In AMAM, we provide an environment in which two forms of
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void map-3 (schedjd, s, result)
{

s-)vecid = result;
s-)result-v = make-vector-descriptor (s-)vecid, s-)v.pf ,

s-)v . r1 , s-)v . len) ;

AMAM-enter-rnapping (resu1t, s-)block) ;

AMAM-ent er-nevr-act ivat i on (map-4 , s ) ;

AMAM-terminate-activation (sched-id) ;

Ì

void map-4 (sched-id, s, dummy)

{
pset rcv; int i,t;

rcv = AMAM-and-pset (s->p, AMAM-not-pset(s->newp)) ;

if (AMAM-in-pset (rcv, nMAM-ne O ) )
AMAM-suspend-activation (sched-id,k2,maP.5) ;

else
{

t = AMAM-seq-pset (s->p,0);
f or (i=0 ; i<AMAM-numlosts O ; i++)

if (lt'llU-in-pset(s-)p,i)) t = i;
else if (AMAM-in-pset(rcv,i) && AMAM¡neO == t)

AMAM-result (i,k2, s-)result-v)

if (AMAMin-pset (s->p,AMAM:neO))
AMAM-enter-result-d (s->dkey, s-)result-v) ;

AMAM-I erminat e-act ivat ion ( sched-id) ;

void map-S (sched-id,s,result)
{

AMAM-enter-result-d (s->dkey, result) ;

AMAM-terminate-act ivat ion (schedjd) ;

Ì
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Figure 43. AMAM Implementation of NDP map, Part Three
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synchronization are possible - synchronization by logical key and synchronization by

direct lcey. The former can support completely general patterns of interaction, but

incurs a potentially substantial matching cost; the direct key approach is less costly

irr rnatchirrg, but only aliows fol interaction between thread activations which have

some common dynamic parent.

By providing both methods of synchronization, AMAM allows the programmer

(or compiler) to make use of the most efficient method (direct keys) where they are

sufficiently expressive, but also have available a more general (albeit less efficient)

mechanism when such is required. Experiments with real DP thread programming

(see Section 7.3.4) suggests that at least 60% of the synchronizations within such

programs may be satisfied by direct keys.

We describe a number of special features which have been added to the AMAM to

optimize the execution of threaded NDP codes. These include a form of counter-based

synchronization to minimize the overhead of implementing operations, common in DP

processing, in which many threads are gathered together at a single join. Another

significant augmentation is a presence-based method of synchronizing DP operations

in which an I-structure-like protocol is introduced for AMAM's partitioned vectors

to guarantee that read-before-write access is disallowed. The use of this facility

eliminates the need for synchronization barriers to be present in the implementation

of DP operators.

The utility of the AMAM environment is demonstrated by the construction of

executable forms for two of the 0 threads defined in the previous chapter: the

vector dereference thread and the generic, nestable map thread. The close correlation

between the AMAM forms and the abstract definitions from which they are derived,

highlights the ease with which such translation may be made.

As we shall see in Chapter ?, we can make use of such concrete AMAM

implementations of our earlier generic thread definitions as the basis for the convenient

and efficient implementation of a fully-featured NDP language'



Chapter 7

Case Study: Implementing a

Simple Nested Data-Parallel
Language on the AMAM

The multi-threading library AMAM presented in the previous chapter represents

a full realization of an environment to support irregular Data-Parallel modes of

computation. In the descriptions of the various thread-forms of DP operations we have

already made some definition concerning how such computations may be expressed in

terms of this multi-threading model. This chapter extends this discussion, detailing

techniques and methodologies for mapping a simple yet fully-featured first-order

functional NDP language to the AMAM. The ianguage we choose, called Adl, is

loosely based on a subset of the SISAL language and bears semantic similarities

to Nusr,. Adl's simplicity means that the basic framework of a compiler may be

constructed with a minimal amount of effort, allowing a focus to be placed upon

techniques for producing optimized forms for the language's (very general) parallel

structures.

We present a brief overview of the Adl language, focussing our attention on

its generic Data-Parallel features and facilities for nesting such operations. This is

followed by a detailed description of a runtime support system for the language and

its construction upon the AMAM. We note that many of the more complex details of

this runtime environment (such as the provision of threaded implementations of Adl's

various DP operations) can be directly constructed from the generic forms (abstract

and concrete) we have already investigated for describing such semantics in terms of

r92
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our models. Finally we discuss the process of compiling the Adl language into AMAM
threads ready for linking with the libraries for the AMAM implementation and the

previously constructed runtime environment to build executable forms.

7.L An Overview of the Language Adl
Adl [4, 98, 6] is a small strict functional language in the style of SISAL. It features a

simple type system centering upon three base types (integer, boolean and real) from

which more complex types may be derived using two type constructors: the n-ary tuple

and the one-dimensional uector. The former represent the style of untagged structure

types common in functional languages, while the latter represents a homogeneously-

typed grouping of data elements. Each of these constructors is applicable to values

of any type of the language, thus it is possible to specify vectors of vectors, tuples

containing vectors, vectors of tuples, and so on. In this fashion arbitrary complex

types can be built.

7.L.L Program Structure
An Adl program consists of a set of function definitions, one of which is distinguished

as the main function or computational entry-point. Syntactically, a function is

declared using a binding operator := as follows:

fun cti o n -n am e f o rm al -arg um ent i = fun ct'i o n -b o dy -erp res s i o n

Function application is represented in the syntax by the specification of the function

name followed by the actual argument.

Each function notionally accepts only a single argument, although this may be

a tuple-typed value; the language provides structural pattern matching to project

elements from the argument. For example, consider the function:

add2 (a,b) := a*b

This function may be invoked with a single tuple-valued actual parameter, €.8., (2,3)'
In this case, the structural pattern matching of Adl would establish the associations

a := 2, b := 3 within the execution of add2.

User functions within an Adl program are exclusively first-order - the type system

does not permit the passing of functions as parameters. A number of language-defined

combinators (while,map,scan and reduce) are exceptions to this rule.
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Adl functions may not contain recursive function invocations. We choose to

impose this limitation to encourage an exclusively DP style of programmittg - much

of what is typically expressed in programs via recursion can equally well be cast

in terrns oI Adl's DP operators (described in Section 7.1.3). A DP cxpression of

such computations, although perhaps slightly unfamiliar to most programmets, has

the advantage that its parallelism is explicit and easily exploited by a compiler.

Furthermore optimization of such non-recursive forms is considerably less complex

(this is particularly important for equational approaches to optimization, such as the

scheme presented in [6, 5]). The Adl implementation described in this chapter makes

some use of the languages non-recursive nature (principally to simplify the protocol

of synchronization). However, Section 7.3.4 offers discussion of a simple modification

which would allow for recursive functions, thus making the approach practical for the

implementation of more general NDP languages'

Adl supports a limited form of universal quantifi.cation, called syntacti'c

polymorphism,fot its functions. In most cases, it is not required for the programmer

to specify the type of the argument or return value of a declared function: the system

assumes the most general type for such declarations. The exception to this rule is

the declaration of the main function for which a concrete argument type must be

supplied. This limitation allows for the static determination (by propagating type

information through the program) of all types within the program.

A function within the language may introduce values into its inner scope by means

of the let expression. The syntax is as follows:

Iet declarations ín result-erpression endlet
Ali declarations made in the first arm of the Iet are separated by a semi-colon, each

representing an addition to the local scope of the expression. Declarations may be

made with names identical to those in outer scopes, in which case the outer binding

is occluded within the scope of the 1et by the inner binding. Once all the bindings

specified in the first section ofthe 1et expression have been introduced, the expression

in the second arm is evaluated in the context of this inner scope (and any levels of

scope containing the let) to arrive at the final value of the let expression itself.
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7.L.2 Expressions in the Language

Adl defines the standard set of scalar numeric operations (*, -, *, /, ^ (power),

\ (integer division), and mod) for use within its expressions as predefined infix
(type-overloaded) functions. Similarly present are the boolean operations not (-),
and (&), or ( l) and the typical relational operators (==, -=, (, (=, ), )=). Common

transcendental functions (sin, cos, tan, asin, acos, atan, exp, log) are also

supplied and manifest as pre-defined functions using the normal syntax for function

application.
Scaiar literals may appear in the program, taking the form of either numerics or

the boolean literals true and f alse. Tuple literals may be specified as a parenthesized

list of expressions of any type. Literal vectors are denoted by a list of expressions, all

of identical type, surrounded by square brackets.

Conditional evaluation is manifested in the language by means of two pre-defined

functions if and while. The former appears within the program as the following

syntactic elements:

if predicate-erpr then erpr-l el-se erpr-? endif
The semantics of this construct are as follows: frrst the (boolean) predicate expression

is evaluated. Based upon the value obtained from this evaluation, either erpr-1 (if.
predicate evaluated true) or erpr-? (if predicate evaluated false) is calculated. This

represents a non-strict computation; this is the only such exception to the language's

rule of strict evaluation.

The while operator provides a means of introducing unbounded iteration into

an Adl pïogram. It appears within a program as an application of a second-order

pre-defined function:
while (iterator-fn, predicate-fn, initial-ualue)

The type rules of the language stipulate that if the initial value if of type T then

the iterator must be a unary function from 7 to ? and the predicate must be of

type ? to bool. The value of the while is obtained by repeated application of the

iterator function. The first such application is made to the initial value supplied;

subsequent ones are made to the value derived from the previous application. This

process continues until such time as a value is produced which, when passed to the

predicate, yields f alse. This final value is returned as the result of the operation.

Adl provides a number of in-built operations which work across vectors of values.
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These include the language's Data-Parallel primitives (discussed in the next Section)

as well as the operations #, ! and iota. The first of these functions, #, is a unary

prefix operator which returns the length of its vector argument. The ! is an infix
primitive which lepresents vector dereference; v ! 0 refers to the value stored at the first
index of the vector v, v | 1 to the value at the next index, and so on. The function iota
is a simple dynamic vector constructor. Given an integer, this primitive constructs a

vector of this length filling the i'th index of this new vector with the integer value i.
That is, the value of iota n is the vector [0,1,2,3,...,n-1J.

7.L.3 Data Parallel Operations

DP operations appear within the language as second-order pre-defined functions

acting across vectors of values. Three such operations are defined in Adl: map, reduce

and scan.

The map operator takes two arguments; a unary function / and a vector u of

values, and produces a new vector of equal length to u and with index values derived

from applying ,f to the corresponding index of u. That is, if we denote the result

vector as u', then
u'li): f (rl¡D Vi : 0, ...,#u - I.

Adl's DP reduce operator accepts three arguments: a binary function /, an input
vector u and a starting value ¿. From these it computes a single value obtained by

accumulating all indices of u plus the value ø using the function /. That is, adopting

an infix notation for /, we calculate

u[o](/)u[r](/). u)ul#, - rl(/)o.
We assume associativity of the function /.

The last of the language's DP operators, scan, implements an arbitrary parallel

prefix across a vector of values. Given a binary function f , ar input vector u and

a starting value ø, this operator generates a ne\4/ vector u' whose indices contain

partial accumulation (via f) of u. That is, the i'th index of the result contains the

accumulation (via f) of a and all indices up to and including i. That is, the result of

a scan across vector u using function / and starting value a is the vector:

I u[o](/)ø, u[1](/)u[0](/)ø, ,ul#u - l(f),|#, - 2l(l). . ' (/)utol(/)ø ]
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A Simple NDP Program in Adl

To illustrate how these simple DP primitives can be combined to specify nested DP

computations across irregular data structutes, consider the example Adl program in

Figure 44. The purpose of this program is to add two ragged array structures (i.e.,

vectors of vectors), a and b which are of identical shape (each inner vector is of equal

length). The program begins (in line g) bV creating a temporary vector using the

iota combinator. The values of this vector are the full set of valid indices of the

outer vector of the nest ø. That is, if we consider a run of the program (pictured

in Figure 45) where a - and hence b - is a vector of 3 inner vectors, then the

temporary vector created at line 9 is [0,1,2].

main (a:vof vof int, b:vof vof int) '=
1et

fi:=Iet
g j := a!i!j + b!ilj

in
map (g,iota #(ali))

endlet
in

map (f, iota #a)
endlet

Figure 44. Ãt Example NDP Adl Program

For each index of the temporary vector, the function f is activated (in parallel).

Each of these instances is responsible for adding one inner vector of the nest a to

a corresponding inner vector of the nest b. The argument passed to an activation

of f defines which of these additions it is to perform: the instance with argument

i=0 is responsible for adding the first pair of inner vectots, that with argument i=1

considers the second pair, and so on. Within the function f , the first operation is to

again create a temporary vector using iota, this time containing the indices of the

inner vector under consideration.

Returning to our sample run (Figure 45) we see that each of the three instance

çf f has used the iota constructor to create a vector which holds the indices of the

inner vector under consideration.
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[7, 11],lr4l,l2,2,lll
[3, 10], [80], [l,1,6] l

/ /

/

result = [ [10,21], 1941, 13,3,71 1

Figure 45. An Evaluation of the Example Adl Program

Each instance of the function f uses its temporary vector as the basis for an inner

DP operation - a parallel appiication of the function g to each vector index. Each

instance of g is charged with the task of adding one index from an inner vector of a

(i.e., a number) to the index of U in an identical position within the nest. We specify

such position as a pair of indices: an index into the outer vector, plus an index into

the appropriate inner vector. Within the function g of the sample program' we use

the argument j to specify the latter, while the former is defined by the argument

(:.) to the instance of the function / which invoked this instance of g. To retrieve

the latter, we must make use of Adl's scope rules. Once outer and inner indices are

known (and hence a position has been identified), each instance of g may perform

its addition (line a) bV a process of dereferencing both a and b with these outer and

inner indices.

If we continue the concrete example from Figure 45, we can consider the instance

of t which was passed the argument 0 to signify that it \4/as responsible for adding the

first inner vectors of a and b. We saw earlier that this function creates a temporary

vector [0,1] and applies g to each index. We can consider the two instance of g
spawned by this instance of f: one will receive the argument 0 to signify that it
should make an addition of elements at position (i:0' j:0) by using these indices

a=[
b=[

nal.n
ioEa (#a) = t0,L,2l

r(t)
í=2

(*(ali)) = lo,L,2,

f (t)
i=l-

ioEa (#(ali)) = I0l

f(r)
i=0

(#(ari) ) = [0,1]

s(J)
J-L

ârtl1 r hlrl

=>2+I=3

c(J)

-rrr, r hrrr,

=>l+6=1=> 14+80 =

c(J)
j=0

a!1.10 + b!11

s(J )
j=0

a!2!0 + b!2!0
=>2+!=3

s(J)
j=0

a!0!0 + bl0!0
=> ?+3 = 10 => l-1+10 = 21

c(J)
J-r

at0!1 + b!0!
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to dereference both a and b. The second instance of g will concentrate on position

(i:1, j:0).
Ultimately, each of the instances of g which have been spawned by the map of

line 6 will return a value to that operator. These are combined to producc a vcctor

whose values are the pairwise sums of the inner vectors of a and b for which this

instance of f was made responsible. In turn, the instance of f return these vectors to

the map at line 9, where they are combined to produce a nest where the n'th inner

vector is the pairwise sum of the n'th inner vectors of a and b. This nest becomes

the result of the program.

7.2 Building an Execution Environment for Adl
The remainder of this chapter describes an approach to constructing a Distributed-
Memory parallel implementation of the language Adl [37]. We make use of the

approach to NDP offered in previous chapters, exploiting parallelism introduced

by the partitioning of Adi's vectors across memory spaces of the machine. Our

implementation incorporates all of the various threads - those which implement

Adl's DP constructs as well as all those auxiliary to such definitions - specified in
previous discussion into a single execution environment which rests atop the AMAM.
This environment is represented in real terms as a library of AMAM thread definitions

which form a runtime system for Adl (which we call the ADLRTS).

Once we have built such an environment, our task of mapping Adl to a distributed
parallel executable becomes one of simple compilation from source to a skeletal

AMAM code. Threads from this object code directly implement the scalar operations

of the program, making calls to the ADLRIS to accomplish the non-scalar sections.

Since the complexities of message passing, participant sets, and various other factors

related to parailel thread-based DP execution are encapsulated within the thread

definitions of the library, the compiler itself does not need to consider such aspects of

the computation. This represents a major simplification in the compilation process.

This section discusses aspects of the Adl execution environment (ADLRTS); the

next describes an Adl compiler which targets this system.
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7.2.L A Thread Library to Support NDP

Our approach to implementing Adl centres around the exploitation of the explicit

parallelism introduced by the DP operations (involving map, reduce and scan) present

within a program. We do not attempt to make use of implicit parallelism (e.g.,

expression-level parallelism) afforded by the functional nature of the language.

A consequence of this implementation strategy is that it is possible to clearly

identify the sections of the Adl program which exhibit parallel behaviour. That

is, it is possible to define a small set of parallel constructs which embody the only

opportunities for parallel execution within a program. This set includes the DP

operators, the indexing operator ( I ) and vector creation operators (iota and the

vector literal constructor). This clear-cut definition of the parallel aspects of the

language suggests a particular convenient structure for the Adl language system:

a compiler which can generate thread code for the sequential (scalar) parts of the

program, coupled with a library of parallel routines (or threads) which may be called

(activated) to implement the non-scalar sections of the program. The remainder of

this chapter describes an implementation adhering to this structure. The discussion

below focusses on the construction of a generic library for the language's parallel

features; Section 7.3 offers a full description of a compiler which makes use of these

services to provide a complete implementation of the language.

The Basis for a Generic Parallel Library

We have already noted in our description of DP threads (Sections 5.2 and 6.4) that

the thread environment of 0 and AMAM allows for very general parallel operators

to be constructed. Indeed, we have demonstrated how both machines may be used to

specify parallel operations which are generic upon both an elemental function and the

partitioning of a data aggregate accepted as argument. Such generic descriptions are

precisely what is required for the construction of a concise library of parallel routines

to support the parallel execution of an Adl program.

Our work in earlier chapters provides us with ready hand-coded generic thread

forms for most of the language's parallel constructs. We can translate these forms into

AMAM (Section 6.1.1 describes the straight-forward derivation of AMAM forms for

0 threads) to supply the bulk of this runtime library. To further ease the compilation

process we also add three structured scalar operations (whi1e, read and write) to



CHAPTER 7, IMPLEMENTil\TG ADL ON THE AMAM 20r

the iibrary. Table 4 shows the full set of ADLRTS operations, each listed with the

initial state elements upon which they are parametric. In the sections which follow we

briefly describe each of these runtime library threads. We first consider those threads

whose functionality pertains to serial operations in the program, following this with

a discussion of threads which define basic operations on Adl's partitioned vectors.

Finally we describe the generic library threads which implement the language's

nestable DP operators.

Thread Name State Arguments

ADLRTS-whi1e

ADLRTS-read

ADLRTS-write

thread xfunc, thread xpred, void xstart-val,
void *funcsLink, void xpredsJink, void xdkey

yefd *store, char *type-descriptor, void xdkey

void tvalue, char xtype-descriptor, void xdkey

ADLRTS-deref

ADLRTS-al1oc-vector

ADLRTS-iota

vector-descriptor v, host-id h, int idx, void {'dkey

pset p, host-id (xpartJn) (int,int),
int slot-size, int 1en, logJrey k, void *dkey

pset p, host-id. (,r,partJn) (int,int),
int Ien, logJtey k, void xdkeY

ADLRTS-rnap

ADLRTS-reduce

ADLRTS-scan

pset p, vector-descriptor v, thread *func,
int Blot-size, void *state-Iink, log-key k,
void xdkey

pset p, vector-descriptor v, thread *func,
void *start-vaI, void *stateLink, int slot-size,
logJrey k, void *,dkey

pset p, vector-descriptor v, thread *func,
void xstart-val, void *state-Iink, int new-slot-size,
logJrey k, void *,dkey

Table 4. Thread Definitions in the ADLRTS
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Serial Operations

The ADLRTS-while thread directly implements Adl's while construct as a dynamically

unrolling series of thread activations. The initiai state object of the ADLRTS-whiIe

thread activation should contain pointers to the threads representing the iterator

function and the predicate function as well as a pointer to the value which starts

the iteration. For each of the two functions, we also require a pointer to the state

of its statically enclosing function thread activation so that scope may be modelled

in the invocations of the functions. A full discussion of this mechanism is given in

Section 7.3.4o1the description of the Adl compiler. Given these initial state items,

the runtime system thread alternatively activates (on the local node) instances of the

predicate thread and the iterator thread, storing the value returned by the latter in
an internal state element. When eventually, a predicate activation returns a false
value, the current value of this element is written to the direct key (dt<ey) mentioned

in the initial state, thus becoming the return value of the r¡hile.

File system input to an Adl program is supported by inclusion of the ADLRTS-read

thread in the runtime library. The input operation does not correspond to an explicit

construct of the language, but is implicitly specified by the declaration of a main

Adl function which accepts arguments to its execution, which we interpret as data

supplied from an external input. The ADLRTS-read thread has three input fi'elds in

its state object: a pointer to the block of memory in which the parsed value is to be

stored, a string which defines (in a simple format) what type of item is to be read,

and a direct key which is wtitten when the input operation is complete.

In a similar vein, the library provides the ADLRTS-write thread for file output. Again,

such an operation does not expiicitly occur in an Adl program, but is implied by the

fact that the main function returns a value. Our interpretation is that this result

should be written to an output file or the screen. The state flelds for this thread are

similar to those discussed for the input operation, with the exception that a pointer

to the value to be written is offered rather than a pointer to a block of memory to be

filled.
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Vector-Based Operations

The ADLRTS library supports vector dereference, the ! operator, with the

ADLRTS-deref thread. This is precisely the thread defrned in Section 6.+.1. Its input

state consists of a descriptor for the vector being dereferenced (which includes data

such as its identity and partitioning function), the index requested and the name

of the host who wishes to receive the value. The thread first checks to determine

whether the vector in question has an entry in the local mapping table (using the

AMAM-verify-rnapping system call, see Section 6.2.2). If the vector has a local

mapping, we can safely dereference it and return the result to the designated node,

writing it into the direct key dkey. If ihe verification indicated that the vector could

not yet be dereferenced, ADLRTS-deref suspends until such time as it receives a call-

back to indicate that such access is now permissible. Once this occurs it performs the

dereference and returns the result to the appropriate node, writing dkey as before'

Allocation of a new vector can be occasioned by activating the ADlRTS-alloc-vector
thread within the runtime library. This thread, derived from the f,)-program in

Section 5.2.2 (Figure 22), is never invoked directiy from a compiled Adl program

but is used by various other threads within the library. Vector allocation is a parallel

operation with a participant set equal to the set of nodes which will, eventually,

own portions of the new vector. All nodes in this set must enter an activation

of the thread for the allocation to complete. The state arguments prevailing in

allocation include the partitioning function, length and slot size oT the new vector.

In communication between the various instances of the thread corresponding to the

same allocation, a logical key mechanism is utilized since the various activations have

no direct relationship (i.e., no common ancestor activation) and the communication is

unsolicited. Because such a protocol is used, it is important that all activation must

be passed an identical logical key. Sectio n 7 .3.4 below provides some insight into how

this is achieved within the current compiler. After the allocation is complete, the

thread activations each write a vector descriptor for the newly created vector into the

direct key passed in the dkey slot of the initial state.

Adl's simple vector allocation operator iota is supported directly by a library thread

ADLRTS-iota. This has effectively the same interface and semantics as described for

the uninitialized vector ailocation thread described above. Differences lie in the lack
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of a slot size field in the input (the new vector's base type is always int) and the

presence of a per-index write operation upon the allocation of each new block of

memory

Data-Parallel Op erations

The runtime library threads ADLRTS-nap, ADLRTS-reduce, and ADLRTS-scan provide

a direct implementation of the equivalently-named DP operations of the language'

The definitions of these threads is derived directly from the descriptions we have

provided already for AMAM (Section 6.4.2 describes the map implementation) and

the abstract machine 0 (Section 5.2.4 offers a version of reduce, Section 5.2.5 details

a DP scan; both may be easily translated into AMAM threads according to the

guidelines described in Section 6.4).

Each of the threads are generic upon the function to be applied to indices or sets

of indices from the input vector: a pointer to the thread implementing this function

is passed as initial state. As described above (and further in Section 7.3.4), to achieve

the correct modelling of state for activations of these function threads, we also need

our initial state to contain a pointer to the state of the function's static parent. In

addition to this genericity, the library threads are independent of the partitioning

of the data they act upon; we make the descriptor for the input vector, which

includes details of its partitioning and relative-iocation functions, another initial state

parameter to the operations. Each activation of a DP thread from the ADLRIS also

receives, as part of its initial state, the set of nodes p which wish to be informed

of the result of the computation. Since all three thread definitions make some use

of unsolicited communication, each requires that a logical key be supplied within

the initial state; all logical keys for activations co-operating in the same operation

must be identical. Section 7.3.4 describes the mechanism for achieving this in the

current system. Finally, to communicate a result back to the invoking activation, the

initial state of each activation of ADLRTS-nap, ADLRTS-reduce and ADLRTS-scan must

incorporate a direct key.

7.3 Compiling Adl into Threads

We turn now to the description of a compilation process which translates an Adl

souïce into a collection of AMAM threads which, when combined with the ADLRTS,
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provide a distributed-memory NDP execution of the program. Our general strategy,

as stated previously, relies upon the collection of hand-coded generic threads within
our runtime system to implement the various parallel and vector-oriented aspects of

the language. Thus our compilation is charged with the production of an ÂMA.M

code which implements only the scalar functionality of the source, and which makes

activations of runtime iibrary threads as appropriate.

Adl Program

Abstact Tree

Ásr

Pani¡ion Annotated AST

Thread Annotated AST

C-codedthreads C-coded threads

+ runtìme sys calls + runtíme sys calls

Message Passing
Executable

Trace Collecting
Message Passing

Executable

Figure 46. Architecture of the Adl compiler

Figure 46 shows the logical structure of our prototype compiler. The compiler,

coded in C to produce a machine independent AMAM object code, consists of a

number of functional units, each of which considers a different sub-process of the

translation. The sections which follow provide descriptions of the functionality of

each and also note the various issues which must be dealt with during the various

phases of compilation.

Parser

Type Checker

Data Partitioner

Code Generatof lnstfument€d
AMAM I¡bAMAM lib
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7.3.L Type Checking and Simple Optimizations

Our first tasks in compiling an Adl program centre around the traditional compiler

operations of parsing and type-checking. We derive an abstract syntax tree (AST)

representation of the source by means of a simple LL(1) parser. Following this

construction, we pass the AST to a type-checking module which walks across the

tree, performing two operations. The first is a simple evaluation of type correctness;

the second is a process of tree-rewriting to eliminate any polymorphic forms present

within the program. As described in Sections 7.1.1 and 7.L2, user functions and the

presence of some overloaded in-built operators may introduce such features. Owing

to Adl's iimited form of universal quantification, every type within the program may

be statically discovered through a process of propagating type informationl from the

top-ievel function declaration through the various invocations. It is thus possible

to determine which sets of types a given function or operator is instantiated with.

Given this knowledge we may replace polymorphic function declarations with one or

more monomorphic ones (one for each different type instantiation), rewriting calls

to the function to point at the appropriate replacement. Similarly, we may replace

overloaded operators within the AST with monomorphic forms'

7.3.2 Data Partitioning
In implementing Ad1 on the AMAM, we identify the Adl vector as a partitioned

aggregate over which DP operations can be framed. As described in Section 6'L2,

each such aggregate must be associated with a partitioning function which defines the

decomposition of the vector indices across the memory spaces of the machine. Under

AMAM's moclel of execution, such functions are static entities, C routines embedded

within the code linked with the AMAM library. Thus, in producing an executable

form of an Adl program, we must also consider the generation of such functions and

their association with vectors from the program.

This is a critical aspect of the compilation of Adl; the overall performance of a

DP program in the language will be sensitive to the placement of data, since this

typically determines the volume and nature of the communication patterns present

within an AMAM execution of the code.
lThis process is similar to the instantiation of pørameterized generic ilomains, as described in

Section 17 .3 of la2l.
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One approach to this specification of data-layout is to implement of an algorithmic
method of partitioning function determination and generation. The extensive

literatureon such schemes (e.g., [46, 105,67, 92,47,89,72,56,65,66]) makesit clear

that generation of an eficient data parl,itiorr by such rneans is cornplex, even when

the decision space of partitionings is smail (e.g., limited to simple Block, Cyclic and

BIock-CycIic decompositions of various sizes). This complexity arises from the fact

that the derivation of a data partitioning scheme in which communication is minimal
(and thus the overall program cost is minimal) is equivalent to a graph partitioning
problem: first, a full graph of the program's data dependencies must be built; then

the resultant graph must be partitioned into /ú groups (one per memory space of the

distributed machine) such that the number of inter-group edges is minimized. It has

been demonstrated that the generation of such a partitioning is NP-hard [73].

Given the much larger range of partitioning functions available to our Adl compiler

(owing to the generality of AMAM partitioning functions), the task of designing an

automatic partitioner for this system is likely to be even more problematic than it
is for the more restricted cases considered in the literature. Thus, for the present

compiler prototype we do not consider the provision of such automatic determination

(although the design of such an algorithm is certain worthy of future investigation).

As an alternative, the present prototype Adl compiler requires the programmer

to provide a specification of partitioning in the form of a set of program annotations.

Given the complexity such specification ïepresents, we choose not to make such

annotations as source level (textual) declarations, but rather provide an interactive

visual environment where the decompositions can be defrned in a more abstract

fashion. This X11-based GUI tool, called PFN [38], offers a higher-level view of

the design process: a programmer assigns elements of a data aggregate to chosen

nodes by gesture in a GUI rather than by writing code, with partitioning functions

generated automatically. The operation of PFN is described in detail in Appendix A.

7.3.3 Thread Production
Once an Adl program's AST has been rewritten in monomorphic terms and annotated

with descriptions of the data-layout prevailing for each vector, we may begin

reasoning about the generation of an AMAM thread program to implement the

computation. We approach this code generation problem as a two-phase process:
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firstly we determine, by analysis of the AST, how the individual highly-structured

computational elements of the Adl program should be split into unstructured threads.

This program partitioning information can be considered a further annotation of the

AST. Once the entire program has been allocated into a thread the second phase of

generation, the actual synthesis of AMAM source, can begin. This section considers

the former analytical operation; the actual generation is described in Section7.3.4.

There are many possible ways in which a given Adl program can be represented

in threaded form. The approach we adopt in our current prototype system is a

simple syntax-directed scheme in which the division of a program's computation is
based exclusively on the position of an expression within the source. No attempt is

made to re-order the component expressions of a computation to enhance properties

(e.g., length) of the resultant threads. We choose this method purely because of its
simplicity: as described in Section9.L2, future refinements of the Adl compiler may

investigate the application of more complex approaches (such as those found in the

macro data flow literature [106, 54, 99]) and the resulting performance benefrts.

Within the current compiler prototype, the process of thread production is

implemented within the th,read colourizer module of the system, and involves a two-

pass waik across the program AST. During this walk, nodes are coloured (annotated)

according to which thread of the AMAM object code their implementation should

appear within.
The first of the two passes serves to allocate a unique colour to each function

within the source program, asserting that all should be represented as an individually
activatible computational element in the AMAM output. This is a necessary choice

since, as described in Sections 5.2 and 7.3.4 we must make use of AMAM's mechanisms

for thread activation to model the notion of function call. Since the prototype

compiler does not consider opportunities for function in-lining2, this means every

program function is responsible for contributing (at least) one thread to the object

code.

This fi.rst pass partitioning does not take into account the possible presence of

unbounded latency operations within the various functions of a program. As we

2The introduction of such optimization is complicated by our approach to implementing the
second-order features of the language as a library of generic routines. Such routines expect a thread
(representing a function) as an argument - inlining would involve the elimination of such functions
by copying their bodies into lhe generic routine. This is clearly not possible with our current
approach.
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have seen, the philosophy of AMAM (and of multi-threading in general) is that such

operations should be made split-phase lI1. , 12 ,32] . That is, the presence of unbounded

latency operations (in Adl these include nap, reduce, scan, !, iota, while)
should define a division in the implementing thread, a voluntary relinquishment

of control with an opportunity for later activation of a continuation. Our second

colourizing pass performs this sub-division, defining the thread representation of a
function containing n unbounded-latency operations as a collection of n * 1 threads.

The first thread in the series for a function we term its inaocati,on, the remainder are

called continuati,ons. The invocation thread contains the operations of the function

up to and including the first unbounded latency operation; here, the invocation

thread voluntarily suspends, passing a pointer to the first continuation thread into

AMAM. Wiihin the first continuation appear all operations between the first and

second unbounded latency operations, foilowed by a suspension pointing to the second

continuation. Thus, each operation is placed into exactly one of the n + L threads.

This process of division is analogous to that used in the translation of fl threads to

AMAM (see Section 6.1.1 for a discussion and Figure 33 for an example demonstrating

the resulting thread structure).

Conditionals

Conditionals within an Adl function can complicate this process of division into

threads. Consider, for example the fragment of Adl code shown in Figure a7(a).

The index operation (!) has unbounded latency. One branch of the conditional

expression should, by our former scheme, be implemented as a split phase (thread

terminating) operation, whiie the other clearly should not be (since it contains no

unbounded latency operations).

Our approach towards handling such cases is to treat each of the possible paths of

control as a separate collection of continuations - if one branch of the conditional is

taken, control passes through a series of continuations s1, s2,t. . ., s,r", while activations

pursuing the alternate path proceed on a different continuation series ar¡Q2,t...¡üno'

Once the conditional has been fully executed, we bring these two divergent paths of

control back together in order that subsequent code generation may continue from

the base (single dynamic path) situation.

Figure 47(b) illustrates such a scheme as applied to the example: if p is true,

control passes through thread T2 followed by T3; if p is false, we proceed directly to
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x := if p then v!12 else 100;
y := x*1;

(u)

THREAD T1 (my-id, my-state, dummy)

2r0

if (p) trren
{ " = make-¡ew-state-objectO;

s.vector = v; s.index = L2i
s.directhey = generate-new-directJreyO ;

s. replyto = myJocal-node-idO ;

AMAM-enter-request (v . part-f un(12 ,v . len) ,
INDEXJHREAD, S);

AMAM-suspend-act ivat ion (my-id,
s. directleY , T2) ;

) erse {
my-state.x = 100;
AMAM-enter-activation (T3, my-state) ;

AMAM-Ierminate-act ivat ion (my-id) ;

i

THREAD T2 (rny-id, ny-state, result)
{ my-state.x = result;

AMAM-enter-activation (T3, my-state) ;

AMAM-terminate-act ivat ion (my-id) ;

Ì

THREAD T3 (my-id, ny-state, dunmy)

1..*U=a.ae.y 
= my-state.x + 1;

(b)

Figure 47. Implementing Conditional Split-Phase
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Case 1
if (p) then <scalar>
else <scalar> Case 3:

if (p) then <split-phase>
else <scalar>

if (p) then <scalar>
else <sp1it-phase>

p \
p

Case 2: Case 4:
if (p) then <s¡r1it-Pliase>
else <split-phase>

lrue p

p

Figure 48. Execution Paths For Conditional Split-Phase

T3 (the joining point).
Figure 48 shows schematically the thread structures generated by the four possible

combinations of scalar and split-phase (unbounded latency) computation within a

conditionai. Case 3 demonstrates the situation prevailing in Figure 47. In each of the

graphics of Figure 48, the circles correspond to threads within the AMAM program;

those labelled T1 refer to the implementation of computation preceding the if (and

the evaluation of the predicate p), those labelled with an A or S represent threads

from the subsequent or alternative execution paths respectively. Note that all four

structures provide a joining point between the two execution paths, allowing a single

representation of the expressions following the conditional.

The complexity of handling the conditional case arises from the non-strict

semantics of the Adl if , necessary to ensure that only the single (appropriate) arm

of the conditional is executed.

7.3.4 Code Generation

With the issue of code partitioning resolved, the annotated AST representing the

program is passed to the code generation unit of the compiler. For the most part

the operation of this unit is unremarkable - each AST node is associated with a

code template which implements it. Complex operations like map are implemented as
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simple invocations of generic runtime system threads which embody the functionality

of the operator. Despite the simplicity of this scheme, a number of interesting issues

arise during the code generation: two are outlined below.

Modelling Function Application and Scope

As alluded to earlier, we choose to model the activation of a function / directly in

terms of the activation of the thread implementing it. In order to model the function

return flow of data, we introduce the following protocol:

o The threads F -l , C-2 C-¡ which model the function / each have as part

of their state an object named key.

o The activation of the function / is translated into three stages:

1. Creation of a state object s which contains copies of the function arguments

and a new direct key key-x (created by a call to AMAM-¡ew-directJrey)

2. A, caII to AMAM-enter-activation (F-1,s), immediately followed by

3. A cail to AMAM-suspend-activation (key-x, caller-continuation)

o The return of the function / is modelled as a two-stage process

1. A call to AflAM-enter-result (state-)key, result-va1) passing the

function result, immediately followed by

2. A call to AMAM-terminate-activation o

The handling of functions is also complicated by the need to model reference to

values available through the language's scope rules. Two possible alternatives exist for

handling such accesses. The first involves the complete elimination of implicit scoping

by means of the traditional lambda-lifting techniques [94] present in many functional

language impiementations. The second involves the management of a static link of the

kind expounded. extensively in the traditional compiler literature (".g., [3])' Such a

link effectively gives a function thread a means of accessing state objects encapsulated

by the function thread which statically contains it.
While the former approach seems attractive in that it requires no runtime

management, it has the side-effect of increasing the size of the state objects required

for threads representing functions (since these functions now effectively have a greater
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number of explicit arguments). Thus, the amount of memory consumed by such state

objects is increased, as is the overhead involved in explicitly copying values into the

initial state fields (since there are now more fi.elds).

With these considerations in mind, we choosc to adopt the static-link based

approach to scope-modelling. The specifics of the methodology are extensively

documented in the compiler literature, centreing around the computation (ut

function-activation time) of a pointer to the state of the function thread activation

statically enclosing the newly-activated function. This approach is suitable to our Adl

implementation because normal applications of Adl functions are always modeled as

the local activation of the thread form of the function. Thus a state pointer computed

by the thread activating the new function thread (a pointer to an address in the local

heap) is still meaningful in the context of the new function thread activation, since

that activation executes on the same node as the caller, and thus in the presence of

the same heap.

To model the second-order constructs of Adl (i.e., rnap, scan, reduce, and

while) we implement a protocol where, in addition to specifying a pointer to the

threaded form of the function argument, the initial state passed to such constructs

also includes a static link pointer to the designated function's (static) parent. Using

this pointer, the thread implementing the operator can establish the proper static

linking for any instances of the function it chooses to activate'

Copying State to Satisfy Activation Constraints

On occasion it is necessary to produce a remote copy of the state object of an

activation (e.g., to invoke a copy of the present activation on a remote node). In
producing such a copy it is critical to take into account the static link field of the

state: the resulting copy must still provide an access mechanism to obtain the state

of the static parent, in the form of a pointer into the local memory. A simple-minded

copy, in which an image of the original state is transmitted to the remote node, is not

enough - the static tink field of such a copy remains a pointer into the memory space

of the originating node, and is not useful for dereferencing on the target node. We

address this problem by introducing an alternate (somewhat more complex) protocol

for copying state between nodes.

The need to produce copies of state objects arises exclusively within the thread-

forms of second-order operators. As discussed in Section 5.2.I, an important aspect of
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the thread modelling of DP operations is the need to satisfy an activation constraint.

In AMAM-thread realizations of DP operators, this constraint is met by arranging

for some nodes to be remotely activated by their peers so that they may perform

tlreir part of the co-operative computation. See lines 9 t2 of the AMAM MAP
thread (Figure 4I of. Section 6.4.2) for an example of such activation. During the

remote activation of a thread, the invoking activation sends a copy of its own state

to the remote node, to be used as the initial state of the new activation. This state

object will contain a pointer to the static parent's state of the function argument

of the operator, which is a pointer into that node's heap. The copy of the state

object which is passed to the thread activation on the remote node also contains this

pointer, but now it is of no meaning, since that activation's execution is taking place

in the context of a different nodal heap. Thus whenever this remote instance of the

operator thread makes an activation of the function argument thread, that activation

will receive a static link which is invalid.

Figure 49 illustrates the circumstance in which problems of this kind arise. The

first panel shows an instance of the MAP thread executing on Node 1 of a machine.

The state object for this activation resides at address 6 in that node's heap. To

satisfy the activation constraint of the DP operation, it becomes necessary to remotely

activate a copy of the MAP thread with identical state. The second panel shows the

situation after this remote activation has been made - note that the static link field

of the newly activated state (which retains the same value as the pointer field in the

original state) now points to an unallocated region of Node 2's heap. When Node 2's

MAP instance launches the per-element computation function f oo, that activation has

an invalid static parent link.
The prototype Adl compiler avoids such erroneous instances by introducing a

means of constructing a closure for a function, that is a structure containing all

values within scope of that function. When a remote instantiation of a DP operator

takes place, the closure for the function argument is built and transported to the

remote node. Upon receipt of this data, the remote node copies the closure into its

heap. Then, upon activation of the DP operator thread on that node, it is arranged

so that the link field of its state points to the closure copy within the local heap.

This operation represents a moderate amount of overhead (in both communications

and computation), but is typically required infrequently (if at all) in the course of a

program's execution.
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Key Management Protocol in Adl and its Runtime System

In Section 6.1.4 we have described the hybrid nature of synchronization keys in the

AMAM system. The principal aspect of the scheme is the presence of a cheap

synchronization mechanism (direct keys) and a more costly, but also more general

mechanism in which synchronization is performed by matching logical keys (or tags).

The former system is limited to the specification of interactions between thread

activations which share a common ancestry (e.g., one is the activating parent of

the other). Logical keys allow completely general specification of interaction, even

between threads which have no historical relationship.

In compiling Adl to AMAM, as well as in the construction of the ADLRTS

described in the previous Section, the design of a protocol of key use and logical

key form is important.
In the context of the Adl compiler, we need consider only the implementation of

synchronization required to implement simple expressions - ali other functionality

is encapsulated within the runtime library. As described earlier, our approach to

compiling Ad1 expressions containing unbounded-latency operations (including DP

operations) is to make such computations split-phase. That is, to suspend evaluation

of the expression immediately after a call to a runtime or function thread, and continue

only once that new thread activation has completed and supplied a value. Since all

such flows of data/control are effectively call-return in nature, all are amenable to

specification through AMAM's direct keys - that is, the code generated by the Adl

compiler does not need to resort to the more general mechanism of iogical keys. All
code produced by the compiler uses a method of spiit-phase control-flow modelling

identical to that defined earlier in this Section for functions.

Within many of the system threads in the Adl Runtime system the situation is

more complex. Each data-parallel operator under AMAM is modelled as a set of co-

operating thread activations whose interactions have communications requirements

which are often only satisfied through unsolicited communication. In the current

library of system threads approximately 40% of the inter-thread data flows are of

this nature. Direct keys are not sufficient in these cases - a protocol of logical keys

must be defined. However, several aspects of Adl (including its lack of recursion)

allow us to synthesize such a scheme statically through compiler analysis' Such a

static logical key protocol, while less eficient than direct keys, remains considerably
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more open to efftcient implementation than the most general case. This technique

for matching optimization may also be applicable to more general languages under

certain circumstances.

In the current Acll cornpiler the following static system is used. Firstly, cvery

static occurrence of a data-parallel operator within the program is assigned a unique

operation nurnber by the compiler. This integer, passed to the thread activations

which implement that operator, forms part of the four-part logical key used for

suspending the system thread implementing the operator. In many cases, this number

is sufficient to uniquely specify the desired control and data flow within the data-

parallel thread. In some circumstances, other key-fields must be defrned. Commonly,

the erpected, send,er (i.e., the id of the node from which a value is to be received)

is specified. Similarly Lhe uector id of the aggregate being operated upon is used in

some cases to disambiguate between similar operations across different data' The

fourth field is occasionally used by the implementation to further encode a dynamic

contert.
This scheme is sufficiently general to allow for static logical keys to be defined

and used in all synchronizations within the Adl runtime library not amenable to

specification via direct keys. Specifically it permits patterns of communication (such

as tree-based reductions) that are not based purely upon solicited communication.

Importantly, it achieves such generality without the need for a co-ordinated "global

key space." The static logical keys are defined directly in terms of the (identical)

program running on each node of the AMAM, allowing a key to be globally known

without the need for such information to be distributed or managed at runtime'

This scheme of compiler-synthesized logical keys represents a major reduction in the

overheads of synchronization management, and hence is a major factor in reducing

the cost of our thread-based implementations on Nested Data-Parallelism.

Significantly, the definition of this protocol of logical keys is the only place within

the described Adl compilation process where the language's lack of recursion makes

for significant simplification. The fact that we may assume that a DP operator

statically nested within an Adi function / (and not within another DP operation)

can only have a single activation at any point in time, allows for that operator's

thread to be uniquely identified by a static operator number and a vector identifier' In

Section g.L2, we propose a simple extension to the described key protocol which would

disambiguate the multiple simultaneous activations of the same static DP operator,
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and thus support recursive languages

7.4 Summary of the Language Implementation
In this chapter we have described a full implementation of a simple second-order NDP

language, Adl, using the AMAM as a target thread-based execution environment. The

language contains three nestable DP operators - map, reduce and scan - each of

which is generic upon a combining function. The function passed to a DP operator

may itself contain further DP operators, thus introducing the possibilities for NDP

execution.

To simplify the task of compiling Adl to a thread-form suitable for execution on

the AMAM, we adopt an appïoach which makes use of the demonstrated ability for

AMAM threads to be written in a highly generic fashion. Specifically, we use the

generic forms we have already constructed for the operators map, reduce and scan

(see Sections 5.2.3 to 5.2.5), collecting AMAM versions of these threads (and others

pertaining to parallel operations) into a runtime library (the ADLRTS). The task of

compiling Adl then becomes one of translating a source program into a simple skeleton

AMAM program which implements the scalar parts of the program, activating threads

from the ADLRTS whenever a parallel operation must be performed'

We have described a prototype Adt compiler which undertakes this process of

translation. White the present system does not consider the automatic generation of

data partitioning, the Adl environment includes a graphical interactive tool to make

programmer specification of such details simple and intuitive. The compiler manages

the synthesis of structure in the thread program by determining which expressions

from the source program are mapped into which threads in the object code. The

current prototype uses a simple syntax-based method which first allocates each source

function to a thread and then splits that thread at points of unbounded latency.

We consider the case of conditionals containing split-phase operations, providing a

number of templates which allow for multiple paths of thread continuations.

The code generated by the Adl compiler is compact, explicitly containing only

the scalar parts of the program and invocations of ADLRTS threads to perform

parallel sections. Functions are modelled as threads within the AMAM code, scope

within such functions being implemented by a traditional static link. Care must be

taken when copying state objects between nodes to ensure that this link is correctly
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manipulated. Also present in the object code produced by our prototype compiler

is an implicit protocol of synchronization keys (see Section 6.1.4). All interactions

modelled within the skeleton AMAM code for a program are call-return in nature

(since ali operations involving more complex parallel interactions have been collcctcd

into the ADLRTS), thus the compiler makes exclusive use of direct keys within its
output.

In the following chapter we examine the performance displayed by the

(unoptimized) output from our Adl compiler, comparing actual timings derived from

the CM-5 AMAM against equivalent programs written in other DP languages and

executed upon the same hard\ryare. In analyzing our implementation we note a number

of performance idiosyncrasies which can be attributed to the particular manner in

which we have approached the task of compiling Adl. Specifically we note a number of

aspects of the thread-based approach which offer highly efficient execution of irregular

codes.



Chapter 8

Experimental Evaluation of the
AMAM

In previous chapters we have outlined an execution environment constructed atop the

Thinking Machines CM-5, and given a detailed account of how this environment has

been used to implement a general paradigm of Nested Data-Parallel execution. We

have considered a simple NDP language with generalized operators, Adl, and detailed

an approach to compilation targetting this execution model. We turn now to an

evaluation of the effectiveness of our approach, specifically analyzing the performance

displayed by a compiled Adl program executing on the CM-5 AMAM.
The experimental study which follows is divided into two parts: a qualitative

consideration of certain aspects of the execution (specifically communications bulk
and patterns), and a quantitative, comparative analysis of observed execution times.

For each evaluation we provide measurements derived from the execution of several

DP programs, both flat and nested, regular and irregular.

8.1 Qualitative Visual Analysis of AMAM's NDP
Execution

It is clear that, in a number of senses, the execution model embodied in AMAM
and used as the source of NDP execution in the Adl system is more complex than

existing paradigms of DP or NDP execution (such as those described in Chapters 1

and 2). Specifrcally, our approach allows each of the nodes within the parallel machine

220
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considerably more autonomy than is typical of SPMD systems in that they are

independently responsible for scheduling their o\¡¿n execution of sub-computations

from a number of simultaneousiy active DP operations. Furthermore, the generic

thrcads wc have constructed to collaboratively implement such operations are

independently responsible for dynamically generating the required communications

pattern to evaluate the operator over a vector whose partitioning is learned only at

runtime. Such aspects of our implementation are very different from the traditional

SPMD models based upon a well-defined series of operations which are executed in a
deterministic order in lock-step by each node of the machine.

As we have shown in preceding chapters, the unique features of our model are

useful in the construction of a ciean and concise model of NDP expression. However,

for this same model to be a practically useful underpinning for real NDP evaluation,

we must establish that it displays the same desirable qualitative properties that

traditional systems of DP (and NDP) execution provide. Accordingly, we must

demonstrate:

o a degree of regularity in patterns of communication,

o efficient exploitation of the underlying machine,

. communications strategies which scale with problem size, and

o a high degree of performance predictability.

This section describes a series of experiments which establish these properties for the

CM-5 AMAM. Our approach is to augment our abstract machine implementation

to enable it to collect time-stamped trace data describing critical events during the

execution of an abstract machine program. We focus our attention on communications

events, although we also consider the costs incurred by attempts to match logical keys

and by the scheduling of operations and receipt of messages. From the collected trace

data we derive visualizations and animations of the executing DP program. These

visualizations encapsulate qualitative aspects of the execution - by a comparative

analysis of patterns within such visualized traces we derive properties of the model.

8.1.1 Instrumentation of the AMAM
To enable the tracing and ultimate visual analysis of executing AMAM programs,

\¡/e augment the C-code comprising the AMAM such that during the execution of
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a thread program, certain time-stamped events are recorded into a trace buffer.

Upon completion of the program, the contents of this memory are written to a trace

file which can subsequently be examined, collated and animated. In the present

impiementation, two classes of events are considered: communications evcnts and

mode-change events. The semantics captured by each of the event trace categories

are detailed below.

For the most part, the tracing carried out within the AMAM system has only

slight perturbations on system performance. The network hardware of the CM-5

incorporates a high resolution timer for each node which is read directly to obtain

time stamps. The very low cost of this timer read (effectively a single read from a
memory-mapped hardware register) makes problems of nodal clock drift relatively
insignificant. To further eliminate intrusiveness on the part of the logging system,

all time-stamped traces are buffered in eficient static data-structures optimized for

speed of trace entry.

Communications Events

A. communicati,on euent occttrs whenever an AMAM node sends or teceives an active

message, whether it be to implement a data-communication (i.e., the insertion of a
tagged value into a remote node's result pool) or to accomplish remote-activation of

a thread (i.e., the insertion of a new activation into a remote node's activation pool).

Bach event generates a time-stamped log entry which records the identity of the node

on which it occurred, the size of the message sent or received, and an identifier used to

uniquely identify the message's content. This information) once collected and collated

post-run forms the basis for the visualization and analysis of communication patterns

and volume.

Mode Change Events

In addition to studying communications effects in the AMAM, we are also interested

in gaining a qualitative feel for the overheads inherent in the model's execution of

thread programs. To this end we define a conceptual model in which each node is, at

any point in time, said to be in one of flve modes of execution:

o executing code from a user thread,

o interpreting a message received from another node,
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o matching keys to determine which activation to execute next,

o rotating the task pool to find the next executable activation, and

o implementing the logic of the scheduling loop.

Within the AMAM we collect trace events recording changes in mode. That is, on

each occasion that a node switches from one of these execution modes to another, an

event is recorded which captures the node's identity and the new mode it is entering.

Post-run analysis of this information allows accurate plots and measures of node

utiiization.

8.1.2 Experimental Suite

We now consider the execution, and subsequent trace analysis, of a small suite of

Adl programs compiied using the system described in Chapter 7. We concentrate

on simple DP and NDP codes involving the map and scan operators (whose thread

implementations are described in Sections 6.4.2 and 5.2.5 respectiveiy). The programs

we consider are intended to highlight the performance characteristics of each of these

operators in isolation, as well as providing a basis for investigating the performance

displayed by a nesting of the two. To this end, we consider traces derived from

executing the following three DP codes:

1. map (+1) v: a simple non-nested application of the map operator which

produces a vector in which all the elements of v have been incremented.

2. scan (+) 0 v: a simple non-nested application of the scan operator which

generates a vector of running totals of values from the vector v'

3. map (scan (+) 0) vv: a nested data-parallel computation which generates,

given a vector of vectors, the running totals for each of vv's inner vectors.

As input to the flat DP programs, we shall consider a vector of length 64

partitioned according to a block strategy which allocates equal subranges of indices

to each of the 32 nodes of a CM-5 AMAM.
The NDP program is considered acting upon a nest of vectors with outer length

8 and whose inner vectors are each of length 8. Figure 50 shows a representation of

this structure which describes the data partitioning for this input aggregate. In this
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diagram, each rectangle corresponds to a vector index, the number contained by the

box denoting the node to which that index was allocated. The boxes at the very top

of the figure show the partitioning for the outer vector, those below the arrows show

the partitioning details of each of the 8 inner vectors.

Figure 50. Partitioning For the 8 x 8 Nested Vector Input

8.L.3 Space-Time Visualization of Communication

In this section we consider the visualization of patterns of communication generated

during the execution of our suite of DP-thread programs on the AMAM. As a means of

proclucing these graphical representations we make use of the ParaGraph [50, 49, 51]

parallel visualization environment.

The Flat map Program

We first consider an analysis of the communications regularity of each of our three

test programs. To do this, we execute each program on a 32 node CM-5 instrumented

version of AMAM, collecting communication event traces during the run. We then

animate these trace files using lhe Space-Time plot offered by ParaGraph. The space-

time visualization shows each of the 32 nodes along the vertical axis and time along

the horizontal axis (increasing to the right). Each communication is shown as a
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diagonal line originating at the sender node (at the time that the message was sent)

and ending at the receiver node (at the later time that the message was received).

Figure 51. Space-Time Plot for Flat map

Figure 51 shows the space-time visualization derived from tracing the execution

of the flat map program. This plot clearly demonstrates a very sìmple communication

structure for this program, namely a broadcast from one node to all others. This

structure may easily be explained as a manifestation of the need for the MAP
thread (defined in Figures 4l-43, Section 6.4.2) to communicate a globally-unique

name for the result vector to all nodes which participated in its computation. In

the program in question, the map operation is co-operative between all 32 nodes of

the machine (since each owns indices of the input vector); thus all nodes are in the

operation's participant set. Global uniqueness of name for the new vector is achieved

by designating one member of this set as the naming partici,panú and arranging for

that node to inform all other participants via communication. In the MAP thread,

we adopt the protocol of choosing the participant with smaliest node ID to be naming

participant. Thus we see in the figure communication emanating from node 0 destined

for all other 31 nodes of the machine.
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As described in Section 6.2.2, this protocol of name discovery also serves as a

mechanism of synchronization to avoid potential problems of read-before-write access

to vector indices.

The Flat scan Program

Figure 52 shows a ParaGraph space-time trace visualization for the flat data-

parallel operator scan. The visualization shows two communications phases

within the operation, both demonstrating a high degree of regularity. Durìng the

first of the phases, each participating node is involved in a tree-like pattern of

communicationshown by red lines in the frgure As the first step in this tree, all nodes

communicate with immediate neighbour participants. Then each communicate with
participants two distant, then four distant and so on until, in the fifth and final stage

of the combination, each of the nodes 0, . . . ,15 communicate with the node 16 places

distant. This ordered series of communications is precisely the pattern of evaluation

iilustrated in Figure 26 (Section 5.2.5) as a parallel implementation of scan. Again,

the fact that the input vector is partitioned across all nodes of the machine means

that all nodes are participants in the computatìon of the DP operator.
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After the completion of the first regular communications ph.ase, a second phase

occurs in which one node broadcasts to all others. These messages appear as blue

lines in the space-time plot. The patteln and purpose of thìs phase is identical to

that discussed for the flat map program above.

The Nested map-scan Program

The third example program, the nested scan, produces a considerably more complex

trace as shown in Figure 53. However, the illustrated pattern of communication

remains highly structured and regular. Furthermore it is possible to explain this

detailed trace directly as a composition of the previous two.

Figure 53. Space-Time Plot for Nested scan

Plior to undertaking such an explanation, it is important to recall the partitioning

of the aggregate over which the NDP program is operating (described in Figure 50).

Our observations concerning the previous traces centred around the notion of the

set of participants co-operating in the computation. Thus, it is important that we

identify, given the particular partitioning of the nested aggregate, such participant

sets for each data-parallel operator being executed. Firstly, we observe that the outer

vector of the nest is partitioned across eight nodes; 0,4, 8,12,16,20,24,28. Each of
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the eight instances of the inner data-parallel operator (the scan) operates over one

of the inner vectors, each of which has its own unique partitioning scheme. Thus the

participant set of the first scan instance would be {0, I,2,3}, the second would be

{4r51617} and so on. That is, each scan is executed as a co-operative computation

over a group of four adjacent nodes. There is no overlap between groups: every node

is a participant in exactly one of the inner operations.

With these notions of per-operator-instance participant sets in mind, the NDP

trace can be explained as follows. The flrst set of communication (the gturple lines)

represent the tree-like reduction phases of the eight scans (see Section 5.2.5 for a

discussion of the communications requirements of scan). Recall that each scan

manifests here as a co-operation between only four nodes (the owners of one inner

vector) thus the tree-like communication involves only two steps.

Immediately following the collection of purple lines, the figure shows a set of blue

lines representing the broadcast stages of each of the eight scans. As expected, each

broadcast consists of exactly three communications: each from a single member of a

group of four (the naming-participant) to another member of that same group.

Following on the completion of each of the scan instances, the trace animation

features a second set of bluelines, those corresponding to the broadcast at the very

end of the outer map operation. Recall that the participant set of the map instance

is {0,4,8,I2,L6,20,2+,28}, hence it is exactly these nodes that take part in the

synchronization. Node 0 acts as the naming-participant; all others receive the name

via communication from that node.

At the very end of the ParaGraph trace visualization, a set of red lines is visible.

These are the communications steps required to satisfy the return ualue dependency of.

the computation. As described in Section 5.2.1, these communications are a product

of the fact that the set of nodes computing the result value of the map is not the

same as the set of nodes which desire that result (i.e., all 32 nodes). Since the nodes

outside the map participant set did not learn the result through being one of the

nodes co-operatively computing it, these nodes must be forwarded the result from a

participant node.

Conclusions from the Space-Time Analysis

Each of the three space-time visualizations generated from the AMAM trace for a
DP program display clear regularity in the patterns of generated communications.
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Furthermore, by comparing the space-time visualizations for the flat DP operations

with that for the nesting of those operations it is clear that the NDP visualization

can be considered as a convolution of the visualizations for each of the component

flat operators. This composibility suggests a degree of performance predictabiiity for

the environment.

8.1-.4 Visualization of Aggregate Communications Volume

We next consider the same communications traces gathered from the execution of

each of the three sample programs (on a 32 node CM-5 instance of AMAM) from

a different viewpoint: that of overall communications volume. Our motivation in

making such an analysis comes from the concern that our NDP model, which generates

communications dynamically through a consideration of partitioning function, maY

Iead. to an excessive or unpredictable volume of communication. This would serve to

imbue our model with a significant performance opacity: that is, it would be difficult

for programmers to accurately gauge a predicted performance for their programs'

Figure 54. Communications Volume Plots

Figure 54 shows three ParaGraph Communicati,on Matrir visualization, each an

illustration of the overall communication volume of one of the three sample programs.

These representations plot sending nodes along the vertical and receiving nodes

along the horizontal. Each point in the grid is coloured according to the aggregate

communications volume from the particular sender to the the particular receiver.

A white block signifies no communication - other colours represent measured

communications volume, with blue being a small volume and colours approaching

red indicating an increasing volume.
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The left-most of the three matrices shows the communications volume for the

non-nested map program. As would be expected from earlier traces and descriptions,

this is characterized by a simple low-volume broadcast: shown as a horizontal line of

blue blocks. The middle matrix illuslrates the communication generated by the flat

scan - a set of highly regular tree-like combinations (the diagonal lines) and a single

broadcast operation (horizontal blue band, identical to the map trace).

As was the case with the Space-Time diagrams above, the appearance of the

map-scan program's volume matrix is readily explained as a composition of those

for its individual operators. The nested operation involves eight instantiations of the

scan operator, each working with an aggregate partitioned over four nodes. If we

thus consider taking the matrix for the flat scan, scaling it down (so as to make it
an operation over 4 rather than 32 nodes) we have an approximation of the matrix
for one of these inner scans. Examination of the NDP volume plot (rightmost in

Figure 54) reveals it to be almost entirely composed of eight such scaled matrices,

lined up along the diagonal. The outer map is represented by the blue blocks along

the top of the diagram (the broadcast) and the red highlights on the upper section

of the eight triangles (the result propagation).

Conclusions from the Communications Volume Analysis

Each of the communication matrix visualizations generated from AMAM trace show a

relatively small and predictable volume of communication generated for each program.

Again, as with the space-time visualizations, there is a high degree of composibility in

the observed communications volume - that is, given the observed communication

volume and pattern for two component DP operations under AMAM, \rye can make

good predictions regarding the performance of a NDP operation formed by nesting

one within the other.

8.L.5 Visualization of Processor Utilization
As a final experiment we consider an analysis of the utilization of the AMAM nodes

during the execution of a NDP operation, namely the nested scan program. As

mentioned previously, the instrumented AMAM is capable of gathering traces of

mode-changes in each node. A plot of these using ParaGraph's Gantt Chart display

reveals general trends in the proportion of time being used for user work and system
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work. Figure 55 shows such a plot for the NDP test program. The nodes of the

machine appear on the vertical axis of the graph, time appears along the horizontal,

increasing to the right. Coloured blocks show what type of work the node was involved

in at the particular point in time. The meaning associated with each of the five colours

is summarized in Table 5.

Figure 55. Processor Utilization for Nested scan

Systern Function Colour
user-work
scheduleJoop
interruptlandler
pool-rotation
matchingJ<eys

Red
Yellow
Green
Cyan
Dark Blue

Table 5. Colour Mappings for Utilization Plot

Conclusions from the Visualization of Processor Utilization

While it is difficult to extract meaningful general trends from the fine structure of

this detailed plot of the inner workings of AMAM, two important observations can be
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made. The first concerns the overall proportion of user work to system overhead. It is
clear from the overwhelming dominance of the very heavy shade in the plot that the

majority of the runtime on all nodes was engaged in the execution of user tasks. That

is, cornpaLed to the time spent on thread-management and key-matching ovcrhcads,

the time spent in useful work is very high.

A second property highlighted by the plot in Figure 55 is that, for this program,

the amount of work involved in fetching a thread for execution is very small compared

to the amount of work involved in executing it. The large system-dominated blocks

in the middle section of the visualization represent points at which no user work was

available to execute. This corresponds to the periods when non-naming participants

of the various scan operations were blocked waiting for a broadcast message. It is

interesting to note that little system overhead is visible during the value exchange

portion of each scan when threads are similarly blocked awaiting messages. The sole

difference in this case is the existence of other ready threads of work which can be

scheduled to mask this latency.

8.1-.6 Related'Work
A more comprehensive tracing and visualization system [110] has been constructed

for the CM-5 AMAM system as part of a related research project. This system aims

to provide a higher level visualization of processor utilization which is tied closely

back to DP constructs in an Adl source.

8.L.7 Summary of Qualitative Results

The experiments described in this analysis have appraised a number of practical

aspects of the CM-5 AMAM's performance from a qualitative (visualizing)

perspective. This approach permits easy recognition of important trends and

regularities in the measured performance of executing DP and NDP programs'

The first important conclusion we can draw from the experimental evidence is that

the observed overhead incurred due to the complexity of our model (i.e., nodal multi-

threading) is reasonably low. Our utilization plot clearly demonstrates that even for

a complex NDP program which assigns many threads to each node, the overwhelming

majority of runtime is spent performing user work.
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In considering the volume and pattern of the communication generated for the

sample programs compiled under our thread-based approach, we have demonstrated

a number of important properties. We have firstly shown that there is a high degree of

regularity in the protocols of communication synthesizcd by our generic DP threads,

traces from the each of the DP and NDP programs featuring simple patterns of

low-volume communication. The trace generated for the map-scan program is of

particular interest, since it highlights the composibility of our model's communication

structures: the pattern obtained in the nesting of rnap and scan is a simple (and highly

regular) combination of the patterns displayed by the operators individually.

It is also evident from our animations of communication trace that the patterns

synthesized in our thread implementation of DP operators retain the familiar

communications patterns associated with those operator. The tree-based protocol

commonly used to serve the communications needs of the scan operator (see

Section 5.2.5) is clearly evident in both codes involving that operator. This is an

important result since it suggests that our generic thread implementations of the DP

scan operator is displaying the same scalability as traditional implementations of the

operator; such scalability is one of the key properties provided by flat DP.

Overall, the results from our qualitative analysis argue in favour of the practical

utility of our approach to implementing NDP. In considering the performance

characteristics of a small suite of representative DP and NDP programs' our

analysis has demonstrated that two fundamental properties of conventional DP -
communications regularity and scalability - ate preserved under our (more general)

model. These attributes are central to the popularity and high performance of

the flat model (as described in Chapter 1); their preservation in our system is

clearly desirable. We have also demonstrated our system to have a high degree

of performance predictability, stemming from the observed composibility of NDP

operator performance traces under our system. This serves to lessen the opacity of the

system to the progïammer: an understanding of the communications characteristics

of each NDP operator allows accurate prediction of the the aggregate characteristics

of any nesting of those operators.
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8.2 Quantitative Analysis of Adt Performance

One of the motivating factors in choosing a paradigm of non-preemptive nodal multi-
threading as the basis for this work was the suggestion that such a model would

map easily and efficiently onto existing distributed memory multi-processors. In this

section we evaluate the validity of this premise by undertaking an analysis involving

the absolute measurement of the performance (execution time) of several DP codes

written in Adl, compiled into AMAM threads and executed on the CM-5 prototype

of the AMAM. No optimization was made to the raw AMAM threads produced by

our unsophisticated compilation process.

We particularly concentrate upon the measurement of NDP programs which

embody irregular patterns of computation. These are the class of problems which

the work described in this thesis aims to support.

For purposes of comparison the scientific programs oded in Adl and evaluated

have also been translated to Npsl and CM Fortran [127] (a superset of Fortran 90 [81]

and High Performance Fortran [57]). These programs have been executed and proflled

upon the latest releases of the respective CM-5 implementations (the CMU Nusl
system and the heavily optimized production CMF version 2.3.0 compiler). To enable

a fairer comparison, none of the systems were permitted to make use of the CM-5's

vector hardware.

The programs we have considered for each of the three language systems represent

natural expressions of the benchmark tests rather than heavily optimized codes in

which the structure of the underlying problem has been obscured. In a number of

places within our analysis we note opportunities for constructing forms from which

the language system may be able to extract more parallelism at the cost of readability

and clarity. However, in the comparative results reported in this chapter, no such

optimizations have been applied.

AII tests described in this section were performed on a 32 Node CM-5 made

available by the South Australian Centre for Parallel Computing.

8.2.t Basic Data-Parallel Performance

We begin our analysis of AdI/AMAM performance by considering the execution

cost of simple flat DP operations. Our execution environment was not specifically

implemented with an eye towards optimai execution of such forms, and is thus likely
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to display significantly worse performance than systems optimized for such operations

(e.g., CM Fortran). In spite of this, these flat DP tests are useful from the practical

perspective that even in many irregular NDP programs there are commonly phases

of execution which involvc flat DP modes of execution. These results are also useful

as a basis for interpreting later experiments which consider nests of these flat DP

operations.

One important factor to keep in mind in the comparative analyses which follow

is the existence of CM-5 hardware support for certain fundamental DP and DP-like

operations (see Section 1.1.2). These facilities are made available by the existence

of a second inter-node communications network (the control network) which can

efficiently: synchronize all nodes at a barrier; broadcast a single result to all nodes;

combine a value from all nodes to produce a single result; and compute certain parallel

prefix (scan) operations. As we discussed in Section 4.2.2, the machine 0 (and thus

its implementation AMAM) cannot make use of such primitives, since they support

fully general data decomposition. These hardware operations ate, however, available

to the CM Fortran and Npsl systems. This difference proves to be a major factor

in the relatively poor performance results obtained for the flat DP Adl programs we

consider below.

Flat map Performance

Our first test program is a simple application of the apply-to-all operation map. The

operation considered is the simple addition of 1 to every element of a vector of real

numbers.

The Adl, NBsl and CM Fortran versions of the code are reproduced in

Section 8.1.1 of the Appendices. Table 6 summarizes the timings obtained by running

the three programs across aggregates of 100 and 10000 elements.

For the CM Fortran progïam we considered two versions: one which makes use of

the general parallel iterator forall and another which implements the operation in

terms of an aggregate-level assignment.

For the Adl program rffe considered a number of different block and cyclic

partitions of the input vector. The value shown in the table reflects the minimum

time for these various partitionings (in both cases this occurred when the input was

partitioned in a cyclic fashion across all 32 nodes). Figure 56 shows costs for the

various partitionings in the 100 index vector tests. This shows timings for divisions
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of the input vector into 32, 16, 8, 4, and 2 blocks as well as cyclic assignment of indices

across 32, 16,,8, 4, and 2 nodes. Also plotted in the graph is the timing achieved

when all data is allocated to a single processor (and hence the operation is serial).

Total Execution in milliseconds
MF all

100
10000

0.041
0.354

Table 6. Comparative Performance of the Flat map on a 32 Node CM-5
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Figure 56. Graph of Adl Flat map Performance for Varying Partitioning

It is clear from the performance measurements reported in the table that the Adl

program is considerably less efrcient than either the Nosr, or optimized CM Fortran

codes. The timings for the AMAM program are approximately 100 times those of the

CM Fortran code and between 8 and 50 times those of the Nnsl programs. In part this

cost is the result of the overheads involved in the Adl code's invocation of a function

for each index mapped over - neither the Nosl or CM Fortran programs implement
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the addition operation by function. However, undoubtedly the largest contributor to

this relatively poor performance is AMAM's costly synchronization as opposed to the

hardware-supported synchronization available to the other two programs. Given the

very fine-grained nature of the function mappcd across input indices (i.e., a single

addition) this overhead of the map thread is a significant part of the observed cost.

An additional manifestation of these overheads can be seen in the graph of Adl

performance versus partitioning (i.e., degree of computational distribution). The

speedup ratio observed between the serial (single node) program and that operating

on all 32 nodes is only approximately 2.5 due mostly to the fact that synchronization

cost increases with the number of participant nodes.

Flat scan Performance

We now consider the non-nested DP performance of a second of Adl's input constructs,

the scan. The simple program tested in this anaÌysis constituted a single application

of the operator with the accumulating function *. That is, our program represented

a code to compute the running sums of the real-valued elements of the input vector.

Table 7 shows the results obtained from running codes for the various language

systems (code for each is given in Section 8.1.2).

As before, the Adl experimental suite included runs of the program for a variety

of input partitionings, based on both cyclic and block patterns. Figure 57 shows a

graph of the performance displayed for the same set of partitionings discussed in the

previous analysis.

tion Time in millisecon
Size Adr (32N) NESL CMF

100
10000

7.931
748.403

0.414
0.984

0.275
0.713

Table 7. Comparative Performance of the Flat scan on a 32 Node CM-5

Again these figures show our prototype Adl system displaying noticeably poorer

performance than NBsr, and CM Fortran in this test of flat Data-Parallelism. For

the smaller problem our system is approximately 20 times slower than Nnsl and 28

times slower than CM Fortran. Figures for the larger problem describe the Adl scan

an even poorer comparative situation (700 times slower than Nnsr, and over 1000
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times slower than CM Fortran). Some of the loss in performance may be attributed

to synchronization cost as before (due to the mismatch between AMAM's execution

model and the specialized synchronization hardware provided by the CM-5), and also

to the cost of invoking a user-function for each combination of sub-results. A further

factor iies in the CM Fortran and Npst programs' ability to make use of CM-5 control

network hardware to directiy implement the scan.

The difference in hardware utilization also explains the different orders of

complexity displayed by the programs: the CMF and Npsl codes, both of which can

make use of a hardware scan instruction display the O(log n) complexity provided by

that hardware implementation; the Adl program (which uses no hardware support)

displays a considerably poorer O(n) performance trend due to the overwhelming cost

of synthesizing a barrier synchronization.

Inspecting Figure 57 it is apparent that the current implementation of scan is,

however, displaying a better scaling with machine size than was attained in the earlier

experiment with map. The execution time displayed when the input aggregate is

partitioning across 32 nodes is approximately 10 times that of the undistributed

o
I
I
I
ì
I
j
I
:l
:/

]J
.l

.l
..o

+l
ó

. .--:'-'ø
þ:::::-::::::t:-::é'

+ Block Partitions

o Cyclic Partitions



CHAPTER 8. EXPERIMENTAL EVALUATIO¡\T OF' THE AMAM 239

(serial) computation

8.2.2 Flat Irregular Program Performance

As a final flat DP program, we consider a less regular DP operation in which values

from a primary input vector are permuted according to a second input vector. The

lengths of the input and permutation vectors are not necessarily identical, allowing

the possibility that a given input index may be required for more than one position

in the result vector, or that a given input index may not appear in the output. In

the DP literature this operation is sometimes called a parallel get operation, or in the

language of DP Fortran systems a uector ualued subscript.

In Adl the program is implemented as a map over the partition vector which calls

a function retrieving the appropriate index using the I operation. Note that some

or all of these indexing requests will require inter-processor communication to be

satisfied. The semantics of the operation make it impossible to statically optimize

this communication (or the partitioning which generates it), since the desired motion

of data is unknown until such time as the permutation vector becomes available (i.e.,

at runtime). The Adi program as evaluated uses simpie block partitioning (across all

32 nodes) for both input and permutation vectors.

We evaluate two NBsl programs which implement the permutation; one which

uses the same approach as the Adl program (i.e., a map-index paradigm), and a

second which uses an inbuilt NBsl primitive (->) to specify the parallel get. The

CM Fortran code uses a vector valued subscript approach. All code is presented in

Section 8.1.3.
Table 8 shows the results derived from evaluating the various programs for a

number of differently sized input and partition vectors. Tests were run which

introduced the three possible cases (input vector size ( permutation vector size,

input vector size : permutation vector size, and input vector size ) permutation

vector size) for two sizes of problem.

Note that for a number of tests, it was impossible to complete the computation in

Nnsl due either to VCODtr difficulties or other problems leading to incorrect result

values being generated.

This experiment, in contrast to the simple flat DP computations we have

considered so far, is one in which irregularities in the computation introduce an
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Vector Sizes Total Execution Time 'in milliseconds)
Input Perm I Adl (32N NESL (m-i) NESL (->) CMF
100
100
50

50
100
100

5.103
5.191
5.334

5.524
7.348
5.689

0.683
0.722
0.664

0.175
0.194
0.203

1000
1000
500

500
1000
1000

31.000
53.000
89.000

232.826
495.038
252.093

nla
nla
nla

0.260
0.397
0.407

Table 8. Comparative Performance of the Permutation Program on a 32 Node
CM-5

unpredictable amount of latency into the execution. The nature of the AdI/AMAM
implementation of the program is that each node will host a number of threads (one

per locally-held vector index) and will thus be able to mask some or all of this latency.

Thus we would expect Adl's performance to be considerably more competitive in this

test than observed previously.

Inspecting the table we see that the Adl program displays performance that is

markedly better than the map-index implementation in Nnsl - the margin is small

for the first set of tests, but large for the second. At its best the Adl permutation

outperforms this Npsl code by a factor of approximately g. By comparison, the other

Nnsl program (which uses the intrinsic parallel get operation) displays much better

performance than Adl for the tests in which it ran to completion. This difference in

Nosl performance is most likely due to the existence of a highly optimized specialized

executable primitive for the get operation. The CM Fortran runtime library also

provides such a primitive, the product of much optimization effort; thus unsurprisingly

the CM Fortran permutation program is also notably faster than the Adl version. It
would clearly be possible to add a parallei gel operator to Adl, implementing it as a

generic ADLRTS thread would expect an Adl code using such an operator to

be more competitive with the Nnsl and CM Fortran programs benchmarked in this

experiment.

8.2.3 Simple Nested DP Performance

The remainder of our analysis of the Adl implementation considers the system's

facilities for implementing NDP operators directly as simultaneously-active sets of
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AMAM threads. We begin with a simple application of DP nesting, a parallel iteration
(.up) across a vector of vectors, during which a vector of running-sums (i.e., the result

of a scan) is computed for each inner vector.

In Adl and Nosl this computation is concisely expressed as a nesting of the DP

operations considered individually in the early sections of this analysis. Such a nest

exposes a high degree of parallelism: the individual co-operative computations to

implement each inner scan may be simultaneously active within the machine. Such

semantics cannot be expressed for CM Fortran owing to that system's flat model of

DP execution - one of the dimensions of parallelism must be serialized. We consider

both possible serializations. Source code for each, and for the Adl and Npsl versions

may be found in Section 8.2.1.
The generality of the AMAM system affords great flexibility when we come to

specifying the partitioning of the input aggregate (and hence the computation) for

the Adl program. We may specify different partitioning functions for each vector in

the nest; that is, we can make a specification of the iayout for the outer vector which

is independent to the layout for the first inner vector, which is independent to the

partitioning for the second inner vector, and so on. To investigate the impact these

partitioning decisions have upon the observed performance of the NDP computation,

we considered an entire range of partitioning possibilities and executed the resulting

AMAM programs across three sizes of input.

The partitionings considered were derived by first considering block partitionings

of the outer vector across 32 nodes, 16 nodes, 8 nodes, 4 nodes, 2 nodes and 1

node (i.e., serialization of outer DP operations). For each of these candidate outer

partitionings we considered six patterns of inner partitioning, namely: partitioning

each inner vector across all 32 nodes, partitioning each across a set of 16 nodes, and

so on down to considering each inner vector to be resident upon a single processor

(i.e., serialization of each inner operation). In implementing these inner partitionings

we attempted to spread the indices of the inner vectors evenly across the machine.

Thus, if we were considering 8 inner vectors each to be partitioning into 4 blocks on

the 32 node CM-5, we would assign the blocks for the first vector to one set of four

adjacent processors, those for the next vector to a different set of four processors, and

so on.

The many partitioning functions resulting from this process were generated

interactively using the PFN tool (see Appendix A) and linked with the compiler
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output to create binaries implementing the various partitioning policies. These were

run across three differently sized inputs: a nest of 16 vectors each of length 16, a nest

of 32 vectors of length 32, and a nest of 64 vectors 64 long. Tables 9, 10 and 11 show

timings for these various versions of thc Adl mapscan program. The data is plotted

in three-dimensions to display trends and highlight the relative magnitudes of the

variations in performance. These are shown in Figures 58, 59, and 60.

Time in milliseconds
Outer Parti

Parti serial
blockj2
block-16
block-8
block-4
blockl
serial

65.941
68.394
55.940
63.981
9r.245

128.533

Table 9. Performance of the Adl 16 x 16 maPscan Varying Partitioning

140

120

0

ø-100g
Ëto
c
8eo
=oí)xo40

20

0 510 15 20
outer partitloning

inner partilion¡nq

Figure 58. PIot of 16 x 16 Adl mapscan Performance Varying Partitioning

blocklblock-32 block-l6 block-8 block-4
52.441
36.219
30.956
33.774
47.284
67.743

13.841
23.676
17.501
11.398
11.699
11.366

39.515
26.878
77.32L
L3.295

9.855
11.699

43.316
29.286
20.109
11.754
14.804
2r.548

45.34r
33.616
t7.445
18.996
25.804
34.167
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tion Time in milliseconds
Inner Outer Partitioning

Parti
block-32
block-16
block-8
block-4
blockl
serial

243

serial
210.687
157.150
76L.9L2
219.805
383.236
595.816

Table 10. Performance of the Adl 32 x 32 mapscan Varying Partitioning
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38.499
64.238
44.949
38.753
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101.496
66.905
42.430
39.345
26.856
37.902

110.518
70.687
54.459
30.090
46.800
83.897

1t4.545
83.946
40.942
57.067
94.626

t48.874

148.871
82.783
79.447

111.409
185.525
3r0.727

Figure 59. Plot of 32 x 32 Adl mapscan Performance Varying Partitioning
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Table 11. Performance of the Adl 64 x 64 mapscan Varying Partitioning
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tion me in milliseconds
Inner

Partitioning
Outer Partitioning

bIockS2 block-l6 block-8 block-4 blockl serial
b1ock32
block-l6
block.8
block-4
blockl
serial

L44.574
240.22r
775.220
725.t73
105.917
89.526

335.315
236.330
165.700
t37.r74
t02.657
L79.L64

342.738
232.764
178.041
114.510
201.089
341.931

356.402
262.897
r40.t29
2t8.455
410.145
674.609

424.9t9
2T6.II2
267.998
4+r.454
827.670

74t6.946

519.673
459.037
547.542
900.670

1768.604
2744.999

Figure 60. Plot of 64 x 64 Adl mapscan Performance Varying Partitioning
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These tables and the corresponding plots document a non-trivial relationship

between partitioning and observed performance, highlighting a frne tradeoff between

the advantages of distributing computation and the additional costs of synchronizing

a greater number of participants. The three sizes of experiments display similar trends

in their manifestation of these cost factors. One noticeable difference, however, lies

in the absolute sensitivity of performance to slight changes in partitioning - for the

small problem, a small differential in partitioning-space leads to a large change in
execution cost (as illustrated by steep gradients in the plot); for increasingly larger

input, this efiect becomes less noticeable (and thus the plots show a flatter landscape).

This decreased sensitivity derives from the greater opportunities for latency hiding

that arise in the larger computations.

Comparing the minimal execution times for each of the three experiments with the

completely serialized execution time (i.e., the time derived from serial partitionings

for both inner and outer vector) we see that the nested computation displays much

better speedup than was observed for the earlier flat DP programs. For the 16 x 16

run, the Adl program achieves a maximum speedup of 13 on 16 nodes of the machine.

The 32 x 32 experiments yield a maximum speedup o127.9 over 32 nodes. Similarly,

the 64 x 64 run achieves a 30.7 times speedup when using 32 nodes.

Table 12 takes the best Adl performance times for the three sizes of problems

(the block-16 x block-2, block-32 x serial, and block-32 x serial times

respectively) and compares them to timings measured for the NBsl program and

the two semi-serialized CM Fortran programs.

Total Execution Time ln ml S

Input Nest Size Adl NESL CMF outer CMF (inner)
16x16
32x32
64x64

9.855
21.368
89.526

0.141
0.156
0.218

r0.621
2r.966
46.199

4.831
13.041
50.360

Table 12. Comparative Performance of the mapscan (NDP) Program on a 32 Node
CM-5

The general conclusion that can be drawn from these results is that

the AdI/AMAM program displays approximately the same order of magnitude

performance as the two CM Fortran programs but is 100 - 400 times slower than

the Nnsl program. The high performance of the the Nnsl code is achieved by



CHAPTER 8. EXPERIMENTAL EVALUATIO]V OF THE AMAM 246

the structure flattening approach described in Section 2.3. The segmented operation

which results is efficiently supported on the CM-5 by specialized primitives. The poor

timings displayed by CM Fortran may be completely related to lost opportunities

for parallclism by virtue of the system's lack of support for NDP. The Adl system's

performance is, as before, hampered by the system's inability to make use of the CM-5

control network for efficient synchronization. The system does, however, display more

competitive timings than those obtained for flat DP owing to greater latency-hiding

opportunities.

8.2.4 A Simple Finite Element Mesh Computation
To consider the performance of the AdI/AMAM system in a more practical

(application-oriented) domain, we have considered two examples of sizeable real-world

irregular scientific programs in our benchmarking. The first of these considers a simple

finite element computation which solves the two-dimensional Laplace equation across

an arbitrarily complex, irregularly sized triangular mesh.

The Adt version of this pïogram, called neshcomp represents the mesh in a natural

form - as two vectors, one defining the nodes of the mesh (in terms of their position

in the plane, their initial value and an identifying number) and another defining the

triangular mesh elements (as a vector denoting the three nodes which bound the

element and an identifying number). The source for the program (reproduced in

Section 8.2.2) comprises 244 hnes of Adl which, after compilation, is implemented in

approximately 2800 lines of AMAM.
The Npsl version of the meshcomp program very closely approximates the Adl

version, the equivalent DP features and data representation being used in both'

The CM Fortran version of the program, however, is radically different in both

regards as a consequence of the lack of provision for NDP. This limitation forces

a significant amount of code to be written in a serial form, and also imposes a less

natural representation of the mesh (as a disjoint collection of three one-dimensional

arrays and a single two-dimensional array). To gain parallelism in some phases of

the computation a function / to be applied to all elements was necessarily in-lined

as a series of identically ranged forall statements. Each fora1l implements one

expression from / storing the result in a temporary array. Thus the CM Fortran

program makes use of approximately a dozen extra distributed arrays to arrive at the
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final result. While a less space-intensive solution may be possible, it would likely be

achieved by eliminating parallelism from the code (and thus presumably reducing the

overall efficiency of the program).

Code for the Npsl and CM Fortran programs is available in Scction 8.2.2.

In evaluating the performance of these progÌams across a small mesh of elements,

we considered timings for a number of phases of the computation in order to allow

for finer comparison.

o Phase One incorporates the construction of the stiffness matrir for the

computation. This involves an iteration across all elements which itself includes

an iteration across three integers. In Adl and NBsl these iterations can be

implemented in terms of a nesting of map constructs; in CM Fortran the

inner loop is serialized (by unrolling). Note that the small extent of the

inner dimension (always three elements) means that such unrolling should be

considered as only a slight loss of parallelism.

¡ Phase Two involves the first part of the construction of the diagonal m,atrin for

the iteration. The computation is a nested loop with outer length equal to the

number of elements and inner length equal to the number of nodes. Again Adl
and Nosl implement this using a nesting of maps; CM Fortran must serialize

one of these dimensions of parallelism.

¡ Phase Three completes the construction of the diagonal matrix by collapsing

the aggregate computed in the previous phase. Adl uses reduce to achieve this;

Nnsl uses its inbuilt flatten operation. The CM Fortran progtam does not

need to perform any extra work in this phase due to a clever choice of data

representationl.

o Phase Four counts the number of nodes which are on the boundary of the grid

(as defined by a specific initial value). Adl implements this as a reduce across

lWe make use of the fact that the matrix stiff is a two-dimensional Fortran structure from
which we can extract sub-vectors from both the rows and columns of the array. We can use a
technique of row-based sub-selection, coupled with a DP mask to conveniently isolate and sum the
particular array elements germane to each element of the diagonal matrix. This permits us to build
this result incrementally in-place. This method is not easily applied to the Adl and NEsl versions
owing to their vector-of-vectors representation and the single assignment semantics of the language

- sophisticated compiler analysis would be prerequisite to such optimizations'



CHAPTER 8, EXPERIMENTAL EVALUATION OF THE AMAM 248

a vector constmcted with map. Nost and CM Fortran use rnap-like operators

coupled with a predefined count operator.

o Phase Five sets initial value for every node using the boundary conditions.

This is a simple iteration across nodes and is implemented as a flat DP operation

for all programs.

o Phase Six comprises the body of the computation which implements the

Laplace iteration. An outer while loop performs iterations of the PDtr solver

until such time as values have converged. Each iteration involves approximately

six DP operations (including one nest of two maps) and many indexing

operations.

Table 13 shows the performance results for each of the phases of computation as

well as the total execution time for each of the programs.

Total Execution Time (in milliseconds
Program Adl NESL CMF

meshcomp Phase One
neshcomp Phase Two
meshcomp Phase Three
neshcomp Phase Four
meshconp Phase Five
meshcomp Phase Six

20.756
t5.714
8.974
4.000
2.483

260.013

36.247
67.750
12.333
0.987

11.643
734.960

t2.739
26.038

0.093
0.098

775.4r3
Total meshcomp Time 311.940 863.920 2r4.382

Table 13. Performance of the Finite Element Mesh Code on a 32 Node CM-5

The overall timings displayed in the table for the various meshcomp programs

suggests that the AdÌ/AMAM system achieves performance comparable to or better

than either Nosr, or CM Fortran for irregular scientifi.c computations. Analyzing the

timings for each phase we can gain insight into the factors leading to this result.

In executing Phase One of the meshcomp computation, each program must

implement an NDP operation (or a serialized version of it). Thus we might expect

the performance displayed by each pïogram to be similarly ranked to those realized

in the mapscan program previously. However, in this program the inner dimension

of parallelism is uniformly short (three elements), hence the cost associated with
serializing it is not as high as in the previous experiment. Also, the operation applied
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during the outer paraliel loop, includes several vector dereferences for each iteration.
Thus the observed performance also bears some resemblance to the relative frgures

obtained for the permutation flat DP program.

Considering Phases Two and Three together we see that the Adl performanc.e

is slightly better than that displayed by CM Fortran and considerably better than

the performance of the Npsl program. The CM Fortran program loses efficiency

because it serializes the outer loop of the parallel nest; the Npsl program displays

poor machine utilization because of the need to resort to its protocol of packing (see

Section 2.3.1) to implement the conditionals nested within the inner map operation.

Phase Four of the Nnsl and CM Fortran codes achieve considerably better

performance than the Adl version by virtue of the specialized parallel count primitive
they may make use of. This operation is optimized and supported by ihe CM-

5 control network hardware (as one of the combine-from-every-nodes operations).

Conversely, the Adl program uses an application of the general reduce operator

whose implementation has no particular hardware support.

In executing Phase Five, the observed performance of the three programs varies

considerably with CM Fortran executing the flat DP operation quickly, and Adl
executing it approximately 25 times slower. This differential is roughly in keeping

with the figures measured earlier for flat DP operations. Out of place, however, is the

Npsl program whose cost is approximately 5 times that of the Adl code. Again this is

a product of the packing operation used within the Npsl implementation to handle

conditional execution within DP operators. The fact that without the presence of

such a conditional, we would expect Nusl's performance to be of the same order of

magnitude as CM Fortran's, suggests that the cost of this operation is very high.

The final phase of the meshcomp progïam incorporates nested DP, a high degree

of indexing and several conditionals. Our earlier analysis suggests that the latter two

of these factors would contribute to poor performance of the Nnsl system relative to

the AdI/AMAM system. This is what we observe. The CM Fortran program suffers

from serialization of the single nested operation but still performs marginally better

than Adl due largely to lower cost execution of the various non-nested DP operations

executed during an iteration of the outermost (serial) loop. It may be possible to

improve the degree of exploited parallelism (and hence the observed performance)

of the CM Fortran program by a process of restructuring the program and its data

structures. One possibility would be to represent the program's two-dimensional
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arrays in a flattened form (as vectors) and expressing matrix operations in terms of

expressions across subsequences of the corresponding vectors. Any such improvements

in the code's exploitable parallelism, however, would come at the cost of readability

and and clarity of expression due to the limitations of the flat DP model and the

compilers which are implementing it.

8.2.5 A Molecular Chemistry Kernel
As a second test of the Adl system's performance for practical irregular scientific

computations, we consider the kernel of a molecular chemistry program for the

computation of bonded-forces between atoms in a molecule. Input data describe

a set of atoms and an arbitrary set of bonds between them. In Ad1 and NtrSL this

sparse connectivity matrix is represented as a ragged two-dimensional array. The

CM Fortran program uses ân unwieldy representation in which the sparse matrix is

flattened such that its values reside in a single one-dimensional array with a second

array describing the segmentation of this flattened form. Such an unnatural form is

required for any parallelism to be realized in the program, since it is impossible to

directly express parallel operations over ragged structures in the language - instead

we must represent such data structures in terms of regular (rectangular) vectors and

matrices, across which a rich variety of parallel operations are available. In contrast

the NDP code implementing the Adl and NESL versions is considerably clearer in

data and code structure and exposes a greater degree of parallelism. Particularly

noticeable are the NDP systems' ability to cieanly describe highly parallel operations

over the connectivity matrix in terms of a nesting of DP operations even in the face of

the irregular (and statically unknown) shape of the input. The CM Fortran program

was constrained to a single axis of parallel execution across this aggregate, thus forcing

the serialization of large sections of the computation.

The source for all three versions of the forces program is reproduced in

Section 8.2.3. Table 14 summarizes the results of timing experiments in which the

various programs were used to compute the bonded-forces within molecules of varying

size (from 16-atom molecules up to 512-atom molecules). The molecules considered

were rand.omly generated such that each atom was connected to approximately $nd
of all others. All programs were then run on a 32 node CM-5 using the same set of
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randomly-created molecules. For several of the tests, the instailed Nnsl system was

unable to complete execution due to the occurrence of a VCODE interpreter error'

Total Execution Time ln ds

Molec Size Adl NtrSL CMF
16 atoms
32 atoms
64 atoms
128 atoms
256 atoms
512 atoms

12.245
19.963
42.216

105.416
318.636
966.826

20.150
33.663

nla
nla
nla

anl

66.674
i60.000
178.389
484.733

2558.237
169i1.795

Table 14. Performance of the Chemistry Kernel on a 32 Node CM-5

The structure of the f orces computation is such that it may be represented as

a nesting of three DP operations: an outer map across all atoms, within which is

contained both a map across the connectivity list for a given vector, and a reduce to

add the individual forces derived from each bond. The inner map operation contains

an indexing instructi from the earlier experiment with the permute program, \/e

would expect such a structure to cause serious loss of efficiency in the NBsl program.

This is borne out in the figures in Table 14 where those Nnsl runs which completed

showed a performance about 70To worse than Adl's. The results also show even

pooïeï performance manifested by the CM Fortran version of the program. This is a

product of the need to serialize one of the dimensions of parallelism. While it would be

preferable to retain the outer parallelism (i.e., the loop across the entire set of nodes),

the opportunity for the various atoms' connectivity lists to be of heterogeneous length

makes the expression of such parallelism problematic in CM Fortran2. Instead, we

serialize the outer loop and retain the parallelism across the individual connectivity

lists.
This program provides a good example of the nature of probiem which the

AdI/AMAM model of NDP execution was specificaily designed to execute efficiently

(i.e., a completely irregular code across a ragged structure which makes use of

unpredictable indexing). The impressive relative performance of the unoptimized

Adl environment in this test provides some evidence of the validity of our approach'

2It may be possible to partially parallelize such operations by considering an even less natural
and flexible representation of data. However, such a pÌogram will necessarily sacrifice a great deal

of readability in its attempts to express such parallelism in terms of the vocabulary of flat DP.
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8.2.6 Summary of Quantitative Results

The experiments reported in this section comprise a broad application of the DP

and NDP aspects of our system and two others in a variety of situations. The tests

were all performed on a 32 node CM-5: an architecture which provides a degree of

hardware-support for certain operations which arise frequently in the evaluation of

flat DP under the traditional lock-stepped SPMD model of execution. These facilities

are not compatible with the style of execution embodied by the AMAM environment,

hence are not available for use. In the benchmarks we have considered, this has in

certain cases manifested in poor performance of Adl relative to the CM Fortran and

Npsl systems which may engage this specialized hardware.

In tests of flat DP performance the effects of this differing level of hardware

support is most abundantly apparent. The Adl versions of the basic DP operator

tests perform approximately two orders of magnitude poorer than the comparable

programs in Npsl and CM Fortran. When we consider an irregular flat DP program

(a parallel get) Adl's performance is more competitive, at times bettering that of the

map-index Nost- program. This latter code seems to particularly suffer due to the

presence of indexing within the DP operation, suggesting that the mechanism used

within the CMU Npsl system for implementing such dereference/communication is

worse than the remote-thread approach of Adl.

The experiments which consider nested DP evaiuation show the Adl system in

a better light. The mapscan program, a regular nesting of operations, shows Adl's

performance to be of the same order of magnitude as the CM Fortran versions of the

code, each of which had been partially serialized to fit in with the flat DP paradigm

offered by the CM Fortran environment. In this test, however, the Npst system shone

brightest, outperforming both Adl and CM Fortran by two orders of magnitude. This

can be attributed to a successful application of the principle of structure flattening

to this simple nest of DP operators.

In the more complicated NDP examples, which consider practical applications of

NDP in the realm of irregular scientific programming, the Nusl approach seems less

effective. In the first of these tests, the irregular fine-element mesh computation,

the presence of conditionals in many of the DP nests forces the Nnsl system to

resort to its technique of packing which, for the current implementation, seems to

introduce significant overheads. The presence of indexing seems, as before, to also be
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a contributor to that system's poor performance. Conversely, the Adl system performs

well in the presence of such irregularities, realizing timings that are comparable to

those of the CM Fortran mesh computation.

The final test considers a simpler NDP code which incorporates two dimensions

of parallelism (both of considerable extent), one of which contains indexing. For

this experiment the Adl system records the greatest efficiency - Nost suffers due

to the presence of the index operatols within the DP nest, and CM Fortran loses

considerable opportunities for parallelism by serializing the outer dimension of the

computation.
Overall, it can be concluded from these tests that the design decision (made in

Section 4.2.2) to base our model of DP execution on a loose implicitly synchronizing

model of execution causes the Adl system some loss in performance on the CM-5 due

to the system's incompatibility with some of the speciaiized hardware available on that

architecture. However, such considerations seem to impact heavily only on the simple

flat DP codes evaluated - for NDP programs, particularly for those displaying a high

degree of irregularity (introduced by the presence of indexing and/or conditional

expressions), the system displays efficiency which is comparable to, or better than,

either existing system3. This is in spite of the relatively unoptimized nature of the

Adl environment (compared specifically to the heavily optimized CM Fortran system).

These good performance frgures, achieved for precisely the class of problems for we

set out to provide efficient support, demonstrate the potential of our approach, and

recommend it as a general-purpose approach to the realization of high-performance

NDP execution for real-world irregular computations.

3The performance characteristics of our implementation - namely a high machine utilization
in NDP computation, but relatively poor handling of the flat DP case - suggest that it may be

worthwhile investigating a hybrid execution model which combines both multi-threaded execution
(for NDP code segments) and traditional SPMD execution (which optimizes flat DP). While a

detailed discussion of such a hybrid is beyond the scope of this thesis, some brief notes on such an

implementation are given in Section 9.1.2.



Chapter 9

Conclusions and Scope for Future
Work

This thesis has investigated techniques for implementing the NDP paradigm in a

manner which delivers good performance for programs which display irregularity

in their execution. We began our analysis by determining the areas in which

existing approaches to NDP implementation are deficient in their support of irregular

programs, noting the qualities an implementation should possess to be a good basis

for irregular scientifrc computing. By developing mathematical models of distributed

execution and DP, we were able to prove a set of requirements prevailing upon

distributed implementations of flat DP. Extending this work to consider the case

of NDP, we discovered that further properties were required of an implementation to

guarantee termination irrespective of data partitioning. We ultimately derived two

NDP execution models - the Single Threaded Sorted Paradigm (STSP) and the

Multi-Threaded Paradigm (MTP) - which provide those necessary properties.

For reasons of predicted efficiency we identified one of these candidates - the

MTP approach to NDP implementation - as preferable, owing to its possibilities

of masking latencies introduced by unpredictable access patterns. Expanding upon

the concepts present within this approach we proposed a high-level multi-threaded

abstract machine architecture atop which NDP translations could be specified in a

ciear and concise manner. Finding our architecture to be very general and flexible,

we developed abstract machine forms for a number of important DP constructs in a

manner which aliowed for the arbitrary nesting of parallel operators, genericity across

the per-element computation of the operator, and independence (or genericity) across

254
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the data decomposition chosen for the aggregates under consideration.

We then turned to the task of providing a concrete implementation of our

abstract machine, constructing the AMAM (Active Message Abstract Machine) on

the Thinking Machines CM-5. The implementation assumes nothing of the underlying

architectures except the existence of an asynchronous mode of communication in the

style of active messages, and thus represents a portable multi-threaded execution

environment. The implementation embodies a number of features which make it
optimized for NDP execution, most notably a unique hybrid system of synchronization

which allows for low-cost specification of call-return type communication, yet also

allows more general communication at a slightly higher cost. The AMAM also retains

the quintessential properties of our abstract model: fully asynchronous execution,

arbitrary interaction between threads, and the ability to specify partitioning

independent operations.

To demonstrate that this environment is suited to providing a basis for NDP

execution we considered a full implementation of a simple NDP programming

language (Adl) atop the AMAM. Noting that the generality of our threading

environments provided for very general specifications to be constructed (u.

demonstrated in earlier modelling), we began our language implementation by

constructing a library of generic threads, collectively implementing for the various

parallel constructs of the language. The task of compilation then became one of

synthesizing a skeletal thread program which implemented the scalar sections of

the Adl code and made invocations of the generic library threads when complex

interaction was called for. Issues which were dealt with in the construction of such a

skeletal object code included: the need to provide a mechanism for modelling scope'

a protocol of keys to permit minimum-cost synchronization, and the construction of

thread tempiates to implement conditional paths of split-phase control.

To evaluate the success of our approach to NDP implementation, we undertook

a series of experiments to analyze the performance of several DP, NDP and irregular

NDP codes, compiled using our Adl prototype compiler and executed atop the

AMAM. For comparison, semantically equivalent programs were also constructed in

CM Fortran (a highly-optimized traditional DP compiler) and Nnsl (another research

implementation of NDP). These tests showed that while Ad1/AMAM performed

considerably worse than the competitors on flat DP programs and (to a iesser extent)

on regular NDP codes, it performed very competitively for the class of problems -
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irregular NDP codes - for which it was specifically designed.

9.1- Directions for Future Research

As with all research, the work described in this thesis represents a starting point for

further study. We now outline some possible future investigations.

9.1.1 AMAM
Other applications of the AMAM: the execution model embodied within f)
and its implementation AMAM, is a general one. While the AMAM includes a

number of features which optimize Data-Parallel styles of execution, it wouid be

quite possible to consider framing other types of parallel execution (e.g., that derived

from parallel object oriented programming [25, 82, 138], or macro-dataflow derived

execution [106, 54, 99]) in terms of its threaded execution. It would be interesting to

see how broad the applicability of AMAM's multi-threading could be made.

Reducing Communication through Nodal Caching: the present AMAM

implementation fetches the value of a remote vector index every time it is required,

regardless of the fact that the vaiue may not have changed in the time between

accesses. A protocol of caching remote vector indices could be introduced to

eliminate such wasteful remote access. When considering languages based upon

single-assignment semantics (such as Adl) in which the values of indices is never

updated, such a system could be implemented with minimal coherency overheads.

Investigation of Load Balancing Techniques: the basis for the abstract machine

f^), and thus for the implementation AMAM, is that DP execution should be purely

owner-computes. This means that the load balance across a machine is typically

governed by the partitioning of the data being operated upon. Given the complex

nature of the interaction between partitioning in performance, and the irreguiar

(usually statically unpredictable) accesses and computation patterns of irregular

scientific programs it will be interesting to relax this rule, either by allowing dynamic

modification of partitioning functions, or instituting a protocol where the evaluation

of a sub-computation may be farmed off-processor with the result sent back to the

origin.
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Implementing AMAM on Multi-Threaded Hardware: as described in

Section 6.3.5, recent research in multiprocessor hardware has yielded a number

of prototype architectures which implement a multi-threaded paradigm directly

in hardware. An implementation effort which merged the ideas for thread

modelling and high-level NDP execution paradigms presented in this thesis with
efficient hardware-supported thread-switching and synchronization would provide an

interesting counterpoint to our present CM-5 system. Issues that would need to be

addressed by such an implementation include: an appropriate model for AMAM's
unique hybrid synchronization paradigm, the management of thread state while

an AMAM continuation awaits scheduling, and the generation of sufficiently many

threads to keep a fast-switching node busy across program-introduced latencies.

9.L.2 The Adl Compiler
More Sophisticated Compilation Strategies: the Adl compiler, as presented,

remains a prototype which considers only a few simple optimizations. The

development of the suite of analyses and optimizations within its framework could

lead to notable improvements in the observed performance of most Adl programs,

particularly those in which there are few opportunities for masking latencies

(introduced by inefficient object code). Areas worthy of consideration include:

. a more sophisticated scheme of thread generation which considers the reordering

of expressions to maximize thread iength;

o the application of traditional optimizations for single-assignment aggregates

(e.g., update in place analysis): it is not clear whether such techniques,

designed for very different (serial) execution environments, would be beneflcial

or detrimental to AdI/AMAM performance;

o the development of strategies to minimize closure sizes, eliminating costly

communication during remote activations.

Analytical Determination of Data Decomposition: the present Adl compiler

insists upon the programmer-specification of data layout for most of the aggregates in

a program. Although a graphical tool, PFN (see Appendix A), greatly simpiifies this

process, such specification should ultimately be automatically generated within the
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compiler. The large domain of possible partitionings (the AMAM supports arbitrary
decomposition), coupled with the language's support for irregularity suggests that

this analysis will not be straightforward.

Consideration of Recursive Adl: as described in Chapter 7, the Adl language

is defined without recursion. The compilation strategy for the language outlined in
this thesis only utilizes this property in one place: the specifrcation of a logical key

protocol. A compiler for recursive Adl could likely be constructed purely through the

expansion of this protocol. The principal issue which such an implementation would

need to address is ensuring that two dynamic instances of the same DP operator

acting across the same input vector use distinct logical keys. This could be achieved

by adding extra context information into the keys used in DP operations, taking into
account the dynamic instance of the user-function which spawned the operations.

One possibility would be to arrange for each function instance within a recursive call

chain to be assigned a unique integer (its instance number): this integer would then

be used as a context field in the logical keys used in all DP operators spawned by

that instance.

Compiling to a Hybrid AMAM/Traditional Execution Model: the

quantitative performance figures obtained for the CM-5 AMAM in Chapter 8

suggested that while the environment provides efficient execution of NDP operations,

its performance for flat DP execution lags behind that offered by traditional (lock-

stepped SPMD) execution models. It may be worthwhile considering a hybrid
execution model; that is, an environment in which flat DP segments of a program are

compiled into regular locked-step SPMD operations, while NDP sections are retained

as threads. The reconciliation of these two, very different, execution styles into a

single framework is quite challenging.

One possible approach is to consider a program to be made up of a number

of disjoint units, each of which is either serial, flat DP or NDP. Each unit would

be compiled into a form which is optimal for the type of operations it contains -
traditional lock-stepped SPMD for flat DP units, threads for NDP units. Program

transition between units would necessitate some style of global synchronization (since

the underlying execution model should change for all nodes simultaneously). In some

cases this may introduce additional overheads, although it should be noted that units

which have DP or NDP operators as their final computation would already perform
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such a synchronization step as part of that operation

9.1.3 Performance Evaluation and Visualization
Tying Visualization Back to User F\rnctions: while the existing provisions

for visualizing Adl execution are useful for learning details concerning the overall

communications cost of a program, this feedback principally concerns a lower level of

abstraction than that at which an Adl program is constructed. Thus, the information
provided by such visualizations is unlikely to be very useful to a programmer of

the system in determining which regions of his or her program are inducing poor

performance. The development of a more abstract (high-level) view of the executing

program, in which cost is tied more closely back to program-level operations, would

greatly assist performance tuning in Adl and other AMAM-implemented systems.

9.2 Contributions
The work reported within this thesis constitutes a number of significant contributions

to the field of irregular scientific computing, and specifically to the study of

implementing the NDP model of computation. In summary, \4/e have:

o offered a formal mathematical model for Data-Parallelism and Nested Data-

Parallelism, and a model for describing the implementation of such systems on

a distributed memory architecture;

o motivated and described a novel implementation strategy for NDP which is

based upon a multi-node multi-threaded model of execution;

o provided an abstract basis for such an execution in terms of the multi-threaded

architecture f,) whose basic functionality is derived from our mathematical

modelling. Íì is unique in its high-level semi-formal view of a complex multi-
threaded environment and its consideration of arbitrary decomposition of data

aggregates;

o derived formal definitions (in terms of our abstract machine fl) for a number

of operations common to DP and NDP programs using our thread-based NDP

implementation strategy. These operational representations (thread programs)
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constitute highly generic forms which are independent of the partitioning of the

data aggregates with which they work;

o described an implementation of the machine 0 and our threaded implementation

of NDP on a real-world distributed memory multiprocessor (the Thinking

Machines CM-5). This implementation is completely portable to any distributed

memory machine that offers asynchronous communications in the style of active

messages;

o introduced a hybrid scheme of synchronization which offers a very low-cost

synchronization mechanism for (common) types of simple, regular interaction

but also provides a more costly mechanism which can be used in the specification

of more general interactions;

o demonstrated how this hybrid synchronization allowed for significant

performance benefits in the implementation of DP threads;

¡ introduced a simple NDP language - Adl - and described a technique for

translating the language into a threaded form suitable for direct execution upon

our multi-threaded model and its implementation;

o described how the complex aspects of an NDP language implementation can be

encapsulated into a library of generic runtime routines;

o demonstrated the practical applicabitity of our implementation approach as an

efficient basis for irregular computation by benchmarking several compiled Adl

programs with equivalents written in CM Fortran and Nnsl, noting that for

real-world irregular NDP codes the Adl implementation achieves performance

which is comparable (and on occasion superior) to both competitors.

9.3 Final Observations

The work reported in this thesis offers a significant contribution to the field of irregular

scientific computing by means of demonstrating an environment wherein irregular

algorithms specified in a highly parallel high-level form (i.e., Nested Data-Parallelism)

may be executed efficiently regardless of their irregularity. The multi-threaded nature

of our approach makes it tolerant to irregular and unpredictable patterns of access
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by virtue of its ability to mask the latencies introduced by such forms. We believe,

after having conducted the paralielization of a number of irregular codes, that this

kind of tolerance is absolutely critical to the success of any implementation catering

to irregular language features. While compiler analysis can help in eliminating some

of the overheads introduced by program irreguiarities, there exist many situations in

such programs where data-dependencies cannot be statically determined. Analytical

approaches offer little hope in eliminating unbounded latency operations caused by

such unpredictable program behaviour. It is only when we provide a system which

can tolerate such unforeseen expensive operations ours can - that reasonable

performance can be attained. It is, we believe, in the refinement and consolidation

of latency-tolerating models of parallel execution such as AMAM's that the future of

high-performance irregular scientific computing truly lies.



Appendix A

Visual Partitionittg Specification

One of the significant features of the execution environment we have designed,

implemented and benchmarked in this Thesis is its facility to generalize data

partitioning within a DP environment. Where traditional DP execution environments

constrain the division of data aggregates to simple pre-defined patterns, our work aims

to cater to arbitrarily complex partitioning of data across processing elements. Recent

research [28, 135, 79] into applying Data-Parallelism to irregular scientiflc problems

suggests that such complexity is necessary to making the implementation efficient.

As described in Chapter 6, declarations of data layout for AMAM programs take

the form of arbitrary parti,tioning functi,ons, mathematical mappings from an index

of the aggregate to the identity of its ouner (the processing element which stores

the value of that index). Each aggregate is associated with one such function at the

time of its creation. In the current implementation of the model, such functions are

represented by an executable form (a C function) which the programmer must supply

at compile-time.
The process of designing an executable partitioning function for an AMAM

aggregate is complicated by three considerations: Firstly, as demonstrated in several

of the experimental evaluations reported in Section 8.2, the overall performance

of a DP program under AMAM is often very sensitive to the placement of data,

thus making the decisions made in partitioning function design critical to program

efficiency. Secondly, the practical act of realizing a chosen partitioning design

is susceptible to all the normal problems of coding. Logical errors can lead to

unexpectediy poor performance, or in some cases may violate constraints of the system

(e.g., how many nodes are present) leading to unpredictable runtime errors which are

262
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usually difficult to isolate. Finally, the fact that the NDP runtime libraries typically
apply a coded partitioning function many times during the execution of a complex

NDP operation, makes it crucial that the function is coded as efficiently as possible.

Clearly, the perils associated with this approach to partitioning specification call
for the burden to be removed from the programmer through automation.

As described in Section7,3.2, the full automation of this process - which revolves

around the construction of compiler optimization strategies for designing partitioning
functions based on sophisticated analysis in the presence of an accurate cost metric

- is a complex and ill-understood problem, well beyond the short-term goals of the

research presented in this Thesis. However, this does not rule out the possibilities of
partial automation of the design process, or the provision of an environment which
facilitates construction at a more abstract levei. This appendix describes research

undertaken to construct a prototype tool that aims to provide such an environment.
The environment we consider, called PFN, consists of an interactive X11-based

visual tool which permits the definition of data decomposition to be made through
gesture rather than through the authoring of code for partitioning functions. The

executable partitioning functions implementing the visual specification are generated

automatically from the abstract specifications made by the programmer. This process

is carried out within the tool and makes use of a set of optimized code templates

provably free of logical errors.

The sections which follow recap some aspects of data placement specification

in AMAM (specifically the nature of partitioning functions and relative location

functions), describe a mechanismfor attaching partitioning annotations to aggregates

whose quantity remains statically unknown, and detail the operation of PFN in the

specification and automatic generation of partitioning code.

4.1 Representing Data Placement in the Adl
System

Section 6.1.2 provides a detailed description of how the partitioning of a vector's

indices is specified within the AMAM execution environment. Specifically detailed in
this description are the roles played by the partitioning function and the associated

relative iocation functions.
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Partitioning functions constitute a mechanism for discovering which node of the

AMAM owns a given index of a vector. Such functions accept two arguments (the

index whose owner we wish to compute, and the length of the vector) and return a

host identifier.
Figure 61 shows some examples of partitioning functions valid within the

Adl implementation. These descriptions make use of the system constant

ADLRTS-num-hosts which is equal to the number of processing elements present

within the system. The first two functions implement the traditional Block and Cyclic

decompositions as found in almost every DP model. The third demonstrates a variant

to the Block partition which "interleaves" the first half of the set of blocks with the

second half. The final function demonstrates a completely irregular partitioning.

Relative Location F\rnctions

Relative location functions encapsulate a different kind of information concerning

the location of a vector index within the AMAM system. Whereas the partitioning

function gives details concerning which memory space an index resides in, the relative

location function allows discovery of the slot address within that memory space which

has been used to store the value of the index in question. The concrete form of the

relative location function accepts the same two arguments as a partitioning function

and returns an integer slot address (see the discussion in Section 6.1.2 for a more

comprehensive discussion of these aspects of the AMAM storage model). For every

partitioning function there is an associated relative location function: each vector

which has been decomposed according to a partitioning function / must also be

annotated with that /'s associated relative location function.

Figure 62 shows computational forms of the relative location functions paired with
pf -block and pf -cyclic from Figure 61. The remaining two partitioning functions

defined in Figure 61 have relative location functions identical to r1-bIock (since these

partitionings are merely node permutations of the simple Block partitioning).
Note that the exercise of constructing a relative location function which

incorporates the precise semantic information needed to allow it to be paired with
a given partitioning may require a reasonable amount of intellectual exercise. Many

opportunities exist for subtle logical errors to be introduced into the system through

obscure mismatches between the paired functions. The system assumes logical

consistency in the (pf,rl) function-pair annotation of a vector over all indices of the
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Block Partitioning:
host-id pf-block (int i, int 1)
{

float block-size;

block-size = ceil ( (f loat) I / (ftoat) ADLRTS-num-hosts ) ;

return ( (int) ((tloat) i / block-size) );

Cyclic Partitioning:
host-id pf-cyclic (int i, int 1)
{

return ( i'/" ADLRTS-numhosts ) ;

('Interleaved" Partitioning:
host-id pf-interleave (int i, int 1)
{

f loat block-size;
int block-no;

block-size = ceil ( (float) I / (f loat) ADLRTS-numhosts ) ;

block-no = (int) ((float) i / block-size);

if (2*b1ock-no < ADLRTS-numlosts) return (2*,b1ock-no);
else return (2*block-no - ADLRTS:rumlosts +1);

Complex Partitioning:
host-id pf-complex (int i, int 1)
{

int block-síze;

block-size = ceil ( (f loat) I / (float) ADLRTS-nu¡nhosts ) ;

switch (i/block-size) {
case O: return (0) ;

case 1: return (8) ;

case 2: return (11);
case 3: return (7) ;

)
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)

Ì
Figure 61. Example Partitioning Functions
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BIock Partitioning:
int rI-block (int i, int 1)
{

int block-síze;

266

block-size = ceil ( (float) I / (f loat) ADLRTS-numlosts );
return ( i 'A block-size );

Ì

Cyclic Partitioning:
int rl-cyclic (int i, int 1)
{

return (i/l0rnrs-num-hosts) ;

Figure 62. Example Relative Location Functions

vector. Unpredictable runtime errors may arise in the situation where each function

of a pair, even for a single vector index, imparts a different view of how data is laid

out within the various memory spaces of the machine.

4.1-.1 Partitioning a Vector Nest

In previous discussion of partitioning, we have considered only the situation where

partitioning specification is to be made for vectors of simple elements. For that case,

it is clear that a programmer may specify a full partitioning for a program P simply

by denoting which (pf , rI) pair will partition the output of each of P's partitioning-

introducing instructions. Such a specification can be viewed as a form of program

annotation, that is one of associating function pairs with static program-level entities.

The situation is not so straightforward when we consider the partitioning

specification of a program's input. Adl permits input to the top-level program to

be of any type, including structured types built from nested vectors and (possibly)

tuples. Since such program inputs are to be partitioned like any other vector within
a program, it becomes necessary to provide partitioning associations (i.e., (Pf ,rI)
pairs) for them. However, in the case of nested vector input, we have a situation

where the concrete (runtime) instances of the inner vectors have no direct analogue

in the static program.

)
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To illustrate, consider the case of a program whose input is defined to be a single

vector of vectors. In the Adl syntax, such a program would be declared:

main input : vof vof int = function defi,nition

That is, the structure of the aggregate to be built is implicit in the type declaration
of the main function's input. If this program is invoked with an input of

[ [1 ,2] , [2,3] , [11] ] , a total of four vectors (uout",,nint,¡'üin2¡ and uinz) would

be created at program startup. If, alternatively, the program were passed an

input of [ [1] , [2] , [3] , [4] , [5] , [6]J, the creation of seven partitioned vectors

(uout"rrl)int¡. . , ,,uins) would ensue.

It is clearly impossible to associate the dynamically generated individual inner

vector entities with static entities within the source. The fact that their number is

statically indeterminable ensures this.
Given this limitation, it is clearly not possible to make partitioning assignments

to individual inner vectors of an input-nest by means of program annotation. How

then can the necessary specification of partitioning be made for these vectors?

One straightforward approach is to address the unknown set of inner vectors

collectively by simply (and statically) associating a single (pf ,rl) function pair

with the combined set. The semantics of such an assignment is simple; each of

the statically-unknown number of inner vectors will (upon its creation) receive the

scrme partitioning association: (pf ,rI). Since there is only one assignment for the

entire set of inner vectors \ /e can associate this partitioning assignment with the (inner

instance of the) vof constructor in the program input type specificationl. Under such

an approach, the task of specifying data partitioning for nested vector inputs may be

made through static annotation. But, we have achieved this static specifiability by

adopting a very simplistic model of inner vector partitioning. Specifically, we have

assumed that each of the inner vectors must necessarily be assigned the exact same

(pf ,rt) pair, and hence be partitioned across the machine in an identical fashion.

This is a severe limitation on partitioning expressibility in that it denies the possibility

of specifying highly efficient heterogeneous partitioning of inner vectors.

Previous research into the impact of partitioning on program performance [35,

34, 36] suggests that there are many problems whose efficient computational solution

depends upon the ability to partition data aggregates in non-regular (heterogeneous)

lThe partitioning assignment for the outer vector is always a single (pf ,11) pair and can thus
always be associated with the outer instance of the vof type constructor in the program signature.
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patterns. Such situations can arise because of inherent irregularities in data structures

(e.g., complex graph structures) or because of irregularities in the computation

taking place (e.g., codes which perform high-cost work over one part of a structure

and low-cost work across the remainder). For programs displaying these kinds of

irregularities, an approach which limits partitioning to regular heterogeneous patterns

will inevitably produce either an unnecessary amount of communication (to satisfy

demands for off-node data), or a poor balance of computational load (from nodes

being assigned unequal work due to computational irregularity).
For this reason we reject the simplistic scheme of static homogeneous partitioning

of inner vectors. In its place we refine the notion of the partitioning association for

vector nests, generalizing it to become a static form generic enough to permit some

heterogeny among the partitioning of inner vectors. We call such a form a parti,tioning

scheme for the vector nest.

We define a partitioning scheme for a vector of vectors to consists of three elements:

o A partitioning association (pf ,r1) for the outer vector of the nest,

¡ A finite set of partitioning associations from which each inner vector will (at

the time of its creation) receive exactly one, and

o A strategy function which determines, for each inner vector (i.e., each index of

the outer vector), which association from this set it will receive.

Figure 63 shows an example of a partitioning scheme. In this sample scheme,

the outer vector is defined to be partitioned according to a cyclic partitioning.
Two possible partitioning associations are defined for the inner vectors of the nest,

namely (pf-inner-l, rl-inner-1) and (pf-inner2, rl-inner-2). The first of

these associations defines a traditional Block decomposition of a vector, the second

defines a partitioning where all elements are mapped to a single node (23) - such a

decomposition is often called Serial. As the final component of the scheme, we define

a strategy function strat.
Consider the partitioning that would be produced if a program whose input

was annotated with this partitioning scheme were invoked with the argument

llL,2],12,3], [11]]. Clearly the outer vector uey¡¿,¡ wol,Lld receive the association

(pf-outer, rl-outer); that is, it would be partitioned cyclically. The three

inner vectors (rint,,uin and u¿r,3) would each receive one of the two possible inner



APPENDIX A. VISU AL PARTITIO]VI¡\TG SPECIFICATION

1. Outer Vector Partitioning
host-id pf-outer (int i, int 1)
{ return ( í '1, ADLRTS-numlosts ); }

int rI-outer (int i, int 1)
{ return ( í / ADLRTS-numhosts ); }

2. Set of Inner Partitioning Possibilities
host-id pf-inner-1 (int i, int 1)
{ f loat block-size;

block-size = ceil ( (f loat) 1 / (float) ADLRTS-numhosts ) ;

return ( (int) ((ffoat) i / block-size) );

int rl-inner-l (int i, int 1)
{ float block-size;
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Ì

Ì

block-size = ceil ( (f loat) 1 / (tloat) ADLRTS-numlosts ) ;

return ( i % block-size );

host-id pf-inner2 (int i, int 1)
{ return (23); }

int rI-innerl (int i, int 1)
{ return (i); }

3. Strategy Function
(pf,rI) strategy (int index)
{

switch (index 7. 2) {
case 0: return ((pf-inner-1, rl-inner-1));
case 1: return ( (pf-inner-2, rl-inner-2) ) ;

Ì
Ì

Figure 63. Example Partitioning Scheme
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partitioning associations mentioned above. Applying the strategy function for each,

\4/e can determine that u¿n1 (index 0 of the outer vector) and u¿,,3 become block

partitioned, while u¿n2 is given the serial partitioning association.

As alluded to in the example, we associate exactly one partitioning scheme with
lhe entire structured input of a program. That is, the association can be defined as

a static annotation of the full top-level declaration of the program's main function.

At runtime, when the concrete vectors corresponding of this input are constructed,

the constructing operation is obliged to make use of the scheme's strategy function to

determine a partitioning association (pf ,r1) for each inner vectors. This mechanism

permits concrete inner vectors of the input nest to be partitioned heterogeneously,

while retaining the notion of partitioning specification as a program annotation..

The previous discussion concerning partitioning schemes has addressed the

situation where the program input is a two-deep nesting of vectors (i.e., a vector

of vectors of some base type). We can easily generalize the concept to arbitrarily
nested aggregates by refining the definition of a partitioning scheme in this case. We

define a generalized partitioning scheme (for a vector nest deeper than two) to consist

of:

o A partitioning association (pf ,rl) for the outermost vector,

o A finite set of partitionin g schemes from which each inner vector nest will (at

the time of its creation) receive exactly one, and

o A strategy function which determines, for each inner vector nest (i.e., each index

of the outer vector), which scheme from this set it will receive.

Under this recursive definition of partitioning scheme, a nest of vectors of depth

n is assigned a single partitioning scheme P. At the time of construction of the nest,

when sub-nests of depth n - I (i.e., the indices of the outermost vector) are being

built each receives a partitioning scheme, P¡., from the defined set embodied by the

second part of P's scheme. The particular scheme associated with each inner nest

is decided by application of the P's strategy function. Each of these nests of depth

n - L contain a number of sub-nests of depth n - 2; each such nest is assigned a

partitioning scheme, Pir,i* based upon their parent vector scheme's strategy function

and set of scheme possibilities. This process continues recursively until eventually,

the construction of vectors of non-structured elements is entailed. At this point,
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the parent partitioning schemes (Pir,i,",...,in-,) ut" again consulted to determine the

strategy for associating partitioning information to each of these inner-most vectors.

However, in this situation, these parent vector strategy functions return (pf ,rI)
pairs rather than further partitioning schemes. Thus the actual value-bearing vectors

of the deeply nested input structure each receive a concrete partitioning association

upon their creation.

^.2 
Visual Specification

As presented in the previous section, the task of designing the partitioning details of

an Adl program place quite onerous demands upon the programmer, namely to design

an efficient data layout given the pattern of data usage within the program, and also

to code such policies to be efficiently executable and iogically correct. It is clear that
there exists much room within this approach for introducing automation to reduce

the amount of effort needed to make such specifications. While it is an ultimate goai

of the Adl project to completely eliminate the explicit programmer specification of

data layout altogether (by introducing sufficiently sophisticated compiler analysis),

there is scope for more short-term solutions to aspects of this problem.

This section describes a prototype tool called PFN coded partly in C with user

interface sections written in Tcl/TK [136, 91]. This environment aims to automate the

more mechanical stages of the partitioning specification process, namely the coding

of partitioning functions and partitioning schemes (from a well-defined design) in
an eficient and logically consistent manner. The tool provides a high-level graphical

view of the design problem, allowing the programmer to make specifications by gesture

rather than by coding. This leaves the programmer free to focus his or her intellectual

effort upon the decisions of data layout policy.

^.2.L 
A Conceptual trYamework for Abstract Specification

The fundamental concept underlying the PFN tool is that of abstract representation

of Adl vectors. When we consider the task of statically specifying properties (e.g., to

which node each should be assigned) of individual indices of a concrete vector V it
becomes immediately obvious that the lack of static knowledge concerning the size

of V disallov/s any kind of direct specification via annotation of indices. If we cannot
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statically know how many such indices will exist, we cannot know how many indices

are available for annotation, and thus cannot properly make a definition.

To overcome this problem we need to define a mechanism for abstracting over the

actual dimension that a vector 7 wili assume at runtime. We define an abstract form
of V (denotedV'), a one-dimensional aggregate of known length n whose indices are

abstract entities called partiti,oning elernents. Each of these n partitioning elements

(U¿,,Vi,... ,Vl-r) is an abstraction across a (dynamically calculable) set of indices

from the concrete vector V. Together these n sets partition the whole index space of

7. That is, if we consider a particular concrete instance of V, then we can say that
every index Vlil of this instance is contained by exactly one partitioning element.

Furthermore we define this notion of containment such that every concrete index I/[i]
contained within a partitioning element Vj inherits any properties defined for Vj.

Consider the example shown in Figure 64. The uppermost section of the figure

shows a definition of an abstract decomposition I// of an as-yet unconstructed vector

V.In this static specification we have chosen to divide our abstract vector into four

partitioning elements V¿,Vl,V;,VJ. At runtime, when the concrete vector V is built,
this means that we will conceptually divide its indices into exactly four sets (according

to some mapping). The second box of the figure illustrates one possible instantiation
of the concrete vector, where it assumes a length of nine. In this dynamic situation,

the bottom section of the figure shows how the indices of V mighf be divided into
four sets. Each shaded circle is here representing the set associated with one of the

four partitioning elements of Vt.
The task of mapping (at runtime) concrete vector indices into the sets associated

with each partitioning element falls to a repetition pattern. Every abstract vector

must have exactly one such pattern associated with it. The role of this entity is
to provide a mapping function which takes as argument a concrete vector index and

returns the partitioning element whose set that index is to be assigned. No restrictions

are placed upon how such a mapping is computed. Thus, there are clearly an infinite
number of possible repetition patterns2. For use within our visual specification tool,

however, we define only two.

A Block repetition pattern is the analogue of the traditional block-wise

decomposition. Associating the abstract form of a vector with this pattern means

2Such patterns are effectively analogues of the partitioning function - instead of partitioning
concrete indices to a fixed number of processing nodes, we are considering mapping the same domain
onto a fixed number of abstract sets.



AP PEN DIX A, VISU AL PARTITIOT\TING SPECIFICATIOAT 273

Static Information

Repetition Pattern: Block

Abstract Vector: v'

Dynamic Information

v0 v1 v2 v3 v4 v5 v-o v7 VBConcrete Vector: v

v2

Subset v Subset vázSubset'ó Subset'i

Figure 64. Decomposing a Vector into Abstract Partitioning Elements
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that, at the time of its creation, the indices of the concrete vector will be conceptually
divided into a number of blocks (ideally one block per partitioning element in the
abstract vector), each a segment of the index-space wherein members are adjacent.

The second repetition pattern, Repeat, maps indices to sets in a fashion based

on the traditional Cyclic decomposition. At the time of its creation, a concrete vector

whose abstract form had been marked with this pattern, has its first n indices (where

n is the number of partitioning elements in the abstract vector) mapped directly to
the set with corresponding number. That is, index zero is mapped to the set for
partitioning element 0, index one is mapped to set 1 and so on. The same pattern of
mapping is then applied over the next n indices (index n is mapped to set 0, n + |
to set 1, etc.) and so on until the entire space of concrete indices is assigned to sets.

Equationally, this pattern can be represented by the function i --+ i mod n.

Returning the the example in Figure 64, we can see how the decision to assign the

abstract vector V' the Block repetition pattern has lead to the mapping of concrete

indices into the four partitioning element sets. Note that the division of nine indices

into four Blocks means a block size of three indices, hence set Vj receives no concrete

indices. If, however, the concrete vector I/ was instead of length 8, all four sets would

have been granted a block of two adjacent indices.

The concepts of an abstract representation for a vector, and of decomposition

of that form into a known finite number of partitioning elements, are important
to our model of static specification. They provide a mechanism for taking an

abstract specification of property assignment across abstract vectors and implicitly
transforming it into a generic definition of similar assignment across all possible

concrete instances of the program's vectors. The former (abstract) specification is

possible through a direct annotation approach, since the number of partitioning
elements in each abstract vector is a known static quantity. The generic form,

however, is an effective specification of properties for any possible instantiation of
the program's data structures. For any given concrete vector generated during a run
of the program, there is an abstract definition and an associated repetition pattern.
At the point in time that the vector is to be created, the actual dimensions become

known and thus the mapping between concrete indices and partitioning elements can

be generated (by applying the repetition pattern). Given this mapping, each concrete

index can be said to be contained by exactly one partitioning element. Thus each

concrete index inherits the properties from one such element.
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If we return to the example in Figure 64, we can define a property, home, f.or

each partitioning element which denotes the node on which indices contained by the

partitioning element reside. For example we could annotate partitioning element I/j
with a home Processor 4, Vl with a home Processor 0, 7/ with a home Processor 7

and I/j with a home Processor 8. As noted above, such an annotation can be viewed

as a generic specification of the property home for indices of any possible conctete

instantiation of 7. If we consider the concrete vector shown in the second box of

Figure 64 and the subsequent division of indices into partitioning elements, \4/e can

see that our abstract definition has effectively defined the home property for every

index of V. Specifically, indices us, u1 and u2 have a home of Processor 4, indices uz¡u4

and u5 have a home Processor 0, indices D6,D7 ànd us have a home Processor 7. Despite

our declaration that one partitioning element of I/' should have a home Processor 8,

no index of this instance of I/ has such a property because the index subset assigned

to V! by the Block repetition pattern is the empty set.

As an aside, it is worthwhile noting that because an abstract vector can be divided

into any (finite) number o/ partitioning elements, such a process of association is no

less general than a direct approach of assigning properties to concrete indices.

^.2.2 
Defining of Simple Partitioning: A Sample PFN
Session

Figure 65 shows the PFN tool during the specification of partitioning for a simple

vector of base values. The window is divided into two frames, the canuas (to the

right) and the palette (to the left). The former makes up the workspace of the tool,

displaying the abstract representation of the vector currently under consideration.

The name of the abstract vector (and the program it is defined within) is displayed

at the top of the canvas; below it is shown a graphical representation of the aggregate,

a horizontal rectangle divided into a finite number of smaller boxes. Each of these

boxes represents one partitioning element of the abstract form. A smaller box is
attached the the very left of the collection of partitioning element boxes - this is the

repetition pattern box, and contains a single letter proclaiming whether the abstract

vector is currently associated with the Block (B) repetition pattern or the Repeat
(R) pattern.
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Figure 65. Using PFN to Specify a Partitioning Function

The palette, the set of coloured buttons along the left hand edge of the PFN

window, describes the partitioning choices currently available. Each button represents

a processing node within the target machine, or more accurately the memorA space

owned by that processor. Each of these disjoint memories is a potential target for

a partitioning assignment. We choose to assign a unique colour with each of these

processor memories, denoted by the colour of the corresponding button within the

palette. During a PFN session, we will use these colours to describe which data is
assigned to which memory space.

The fundamental operation performed within the tool is the assignment of

partitioning elements to processing nodes. As described in the previous section, if
we assign a property to every partitioning element of an abstract vector then we have

ø/so defined this property for every concrete vector which instantiates that abstract

form. Specifically, if we annotate each element with the identity of the memory space

which will contain it during a run of the program, then we have effectively defined a

full partitioning of any concrete vector instances across those memory spaces. That

is, we have defined a partitioning function for the vector.

Wiihin PFN, the association of a partitioning element p to a processing node /[
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is lepresented graphically by filling p's box on the canvas with with the colour for' ,44.

The usel intelacts with the system to define such an association by clicking inside

a partitioning element's box. Such a gesture causes the node association fol that
element to be replace with an association to lhe current node, the processing node we

are currently working with. The box becomes filled with the corresponding colour.

The identity of tlie curlent node is shown below the palette; a visual leminder of its

identity is also afforded by the mouse cursol which always assumes the colour of the

current node. The user may alter the Curlent Node at any time by simply clicking

on a button of the palette.

To assist the user in determining the association of a paltitioning element already

colouled, whenever the mouse pointer is moved into such a box, PFN displays the

number of the node to which the element has been assigned.

Altering the repetition pattern associatecl with a vector representation upon the

canvas is achieved by clicking within its small lepetition box. This gestute causes the

vector to be associated with the next patteln in the cycle of available options. The

present tool supports only the Block (B) pattern and the Repeat (R) pattern.

Figure 66. Redefining the Number of Elements for an Abstract Vector
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The PFN tool also allows the user to redefine the number of partitioning elements
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into which a vector is divided. When an aggregate is first granted an abstract

representation, it is defined to consist of a default number of partitioning elements. A

user may "resize" this abstract form (i.e., define it to consist of a different number of
partitioning elements) at any time by clicking with the right mouse button anywhere

within the abstract vector's graphical form. Such a gesture pops up a dialogue

incorporating a slider with which a new length may be set. Figure 66 shows such

a resizing operation in progress. In the case where the representation is made longer,

the newly added elements are initially unassigned. Where the length has decreased,

allocation information for elements beyond the new length limit is iost.

Other editing operations useful to the definition of partitioning are also supplied

within the PFN canvas. A user can middle-button drag the mouse actoss a region to

mark a set of partitioning elements as selected. Disjoint selections are also permitted

- middle-button dragging with the shift key down adds all elements within the drag-

defined rectangle to the selection. An option to select all partitioning elements is

supplied on the Edit pull-down menu.

Once a selection has been defined, two sets of operations may be performed on

the specifred element set. Firstly, the assignments of colours to elements within the

selection can be cycled either left or right. In the former case this results in every

element in the selection receiving the colour of the closest selected neighbour to the

right. The selected element which is right-most on the canvas is granted a new colour

derived from the left-most selected element's starting colour. The cycle rightwards is

identical except that every selected element receives the colour of the closest selected

left neighbour element.

In addition to colour rotation, the selection can be used to move and copy segments

of a vector assignment. PFN supports the notion of an abstract vector cli.pboard to

which the cut and copy operations from the Edit pull-down assign elements. The cut

operation writes the selected elements to the clipboard and then clears each of them

of its former colour allocation (marking it unassigned). The copy operation works

similarly, but does not clear the selected elements. Once abstract vector elements are

on the PFN clipboard they may be viewed in the Clipboard View window (activated

from the Edit pul1-down) where they appear as a vector of coloured rectangles similar

to their representation upon the canvas.

The elements in the clipboard can be pasted into a current canvas selection,

overwriting the colour associations of the selected vector elements with colours
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(assignments) drawn from the clipboard: the left-most selected element of a vector

receives the colour (assignment) of the left-most clipboard item, and so on. In
the case where there are more coloured elements in the clipboard than selected

elements, some of the clipboard elements (the right-most ones) are not copied onto

the canvas. Alternatively, if the selection is larger than the number of clipboard
elements, all elements are copied once from the clipboard onto the canvas leaving some

of the selected canvas elements (those beyond the length of the clipboard segment)

unaltered.

Illustrations of PFN's partitioning element selection functionality and the

workings of the PFN clipboard-related operations are given in Section A.2.3 below.

A.2.3 Defining a Partitioning Scheme

As described in Section 4.1.1, it may arise during the partitioning specification of a
program that we need to define a partitioning scheme for a structured program input
rather than a simple partitioning function. This section describes how, by simpie

extension of the model presented previously, PFN can elegantly handle this more

complex case.

Recall that a partitioning scheme consists of a standard declaration of partitioning
for the outer vector, a set of possible partitionings for the inner vectors and a strategy

function which chooses a member of this set for every element of the outer vector.

We address the definition of each of these three elements in turn.

Defining Partitioning for the Outer Vector

It is ciear that the outermost vector of a nest is nothing more than a simple vector of

elements. Its partitioning can easily be specified in PFN using the facilities described

previously. That is, the outer vector can be placed upon the canvas as a simple

abstract vector and divided into a user-specified number of partitioning elements.

These elements may then be associated to processing nodes by gesture. Furthermore

a repetition pattern may be defined for the outer vector by clicking within a repetition
pattern box affixed to the abstract vector representation.

Figure 67 shows such the PFN window during the declaration of a scheme's outer

vector partitioning.
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Figure 67. Using PFN to Specify the Outer Partitioning of a Nest

Also shown in this figure is the aggregate selecti,on pop-up¡ a dialogue which a

usel may activate (from the toolbar') to select which of the program's aggregates is

presently visualized on the canvas. We note in this example, the dialogue selection

pop-up shows an entry for the vector currently under consideration, that is the vector

called A,:32 .0->8. Also within the list is a similal name, A:32 . 0->B [] ->4. This second

entry refers collectively to the chi,ld set of the vector; that is the set of vectors which

are themselves the indices of the outer vectol A:32.0->8. Figure 68 illustrates this

r-elationship between the entities. The fact that a child set exists for A:32 . 0->B

denotes that vectol must be the outer vector of a nest.

Defining the Set of Inner Partitioning Possibilities

The task of defining a set of possible sub-vector partitionings can be thought of as a

two stage process: firstly, we decide how many inner partitionings we want to be able

to choose from, and secondly we make definitions for this number of abstract vector

partitionings. In extending PFN to allow the specification of partitioning schemes it
is clearly necessary that both activities be somehow modelled.
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A:32.0->B

A:32.0-tB[]->A

Figure 68. Naming a Nested Structure in PFN

We choose to solve the problem of determining the number of sub-vector

partitionings within our possibility set implicitly rather than explicitly. We introduce

a simple convention to inherit this information from an earlier (unreiated) declaration:

Convention 1:

Bg conuention, the number of inner-uector partitioning possibili,ties shall equal the

number of partiti.oning elernents in the nest's outer (abstract) uector

That is, if we have previously defined a partitioning for the outer vector of the

nest in which its abstract form was decomposed into n partitioning elements, we

implicitly decide that this same number,n, should be used as the number of inner-

vector partitioning possibilities for the scheme. There is no reason such a relationship

must exist, our decision to adopt such a convention is merely to reduce the necessity

of declaring the number explicitly. That is, it is merely a specificational convenience

which permits a conceptually simple abstraction for the user to interact with - he

or she can think of the partitioning scheme under construction as a nest of abstract

vectors, the outer abstract vector (divided into n partitioning elements) containing n

abstract forms for inner vectors.
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Once we have decided the number of inner-vector partitioning possibilities, the

next task is to define each of them. The PFN tool, as we have already seen, is capable

of specifying the complete partitioning of a single vector. It would be feasible, once

the number of inner- partitionings had been decided upon, for us to simply allow the

user the opportunity of dragging representations of each individually upon the PFN

canvas and partitioning these representations in isolation. While this would be a
workable system, it denies the relationship between partitionings within the set of

inner vector possibilities. Specifically, a uset constructing such a set, may wish to do

so with constant consultation to previous element definitions from the same set.

To avoid the need for constantly switching between isolated representations of

these related abstract vectors, we choose to extend the functionality of the PFN

canvas to allow for multiple abstract vectors to be simultaneously represented and

interacted with.

Figure 69. Using PFN to Specify the Set of Inner Partitionings in a Nest

Returning to the example of partitioning the vector nest A:32 . 0-)8, we see that

our outer vector partitioning (as shown in Figure 67) divided the abstract form into
sixteen partitioning elements. Thus, by the convention described above, the tool

would implicitly afford us 16 inner vector partitioning possibilities. Furthermore, PFN
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will allow us the opportunity of partitioning these 16 abstract vectors simultaneously

upon the same canvas. Figure 69 shows how the tool might appear during the

specification of such a set of inner vector possibilities. This display would have been

arrived at by the user first defining the division of the outer vector, then selecting the

child set A:32.0->B [] -)A from the aggregate selection pop-up.

As discussed previously, the PFN tool allows for the elements to be selected lry
being middle-button dragged across wiih the mouse. In the instance where several

abstract vectors are simultaneously upon the canvas, the tool supports the selection

of elements from any number of different vectors. Figure 70 shows one such multi-
vector selection: a subset of the elements from the first and second canvas vector have

been selected, as has the sole partitioning element comprising the fourth vector. This

is indicated by the rectangles representing these selected elements being drawn with
thick borders. PFN considers a multi-vector selection as a set of disjoint single-vector

selections. Thus, a rotation operation applied to such a selection would cause each

set of elements corresponding to a single canvas vector to exchange colours. In the

example shown in the figure, this would mean that the selected elements of vector 1

would cyclically swap colours amongst themselves completely independently to the

selected elements of vector 2 who collectively are performing the same operation.

Colours are never transmitted from one vector to another during a rotation.

Figure 70 shows that this model of multi-vector disjointedness also prevails within
the clipboard (shown as a separate window at the bottom of the diagram). The

clipboard view window shows the effects of applying the copy operation (from the

Edit pull-down) to the three-vector selection prevailing on the canvas. The end result

of the operation is the creation of three disjoint clipboard lines, each a vessel for the

colour assignments copied from one of the vector selections.

Pasting a multi-line selection from the clipboard into a canvas selection also

preserves the disjoint nature of the various clipboard lines. Elements from the first

clipboard line are copied into the partitioning elements of the first (i.e., top-most)

selected vector according to the normal rules of pasting (c.f. Section A.2.2). Next,

those from the second clipboard line overwrite elements of the second vector with
selections, and so on. If the canvas selection spans fewer vectors than there are

clipboard lines, the surplus lines are not pasted to the canvas. Alternatively, running

out of clipboard lines during a paste causes the operation to cease with no modification

of some selected vectors.
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Figure 70. Selected Elements from Several Vectors and the PFN Clipboard

Figure 71 shows the effects of pasting the selection from the clipboard as shown in

the previous figure into a selection consisting of three vectors each with four selected

elements. Since the first two clipboard lines are longer than the corresponding vector

selections being pasted to, certain of the elements are not written. Conversely, the

third clipboard line consists of only a single element, thus at the end of the paste

operation, three of the final vector's selected elements remain unassociated.

Defining a Strategy F\rnction

The final aspect of defining a partitioning scheme is the specification of a strategy

function. Recall that the purpose of this function is to map to each concrete inner

vector exactly one of the possibilities from the set of inner partitionings defined

for the scheme. Again we choose to adopt a definition by convention to lessen the

specificational complexity faced by users building partitioning schemes.

Consider a vector nest with outer vector I/ whose abstract form is divided into
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Figure 71. Pasting Multi-Vector Clipboard into a Selection

n paltitioning elements. By Convention 1, this implies that the partitioning scheme

fol this nest has exactly n inner paltitioning possibilities. Furthelmole, this outel

abstract form has a repetition pattern Iz1 which maps indices of the concrete outer

vector into exactly n sets. That is, given an index i (i.e., an inner vector'), V1(i) returns

a number in the range 0...n - 1. This gives us the basis fol a second definition by

convention.

Convention 2:

By conaerztion, the strategy functi,on for a partiti,oning scheme is defi,ned to be

equiualent to the fu,nction def,ned by the repetition pattern of the outer uector

To illustrate this Convention at work, consider a vectol nest where the outer

vector has ah'eady been defined as being divided into 16 elements (and hence there

are exactly 16 sub-vector partitioning possibilities). In the case where the outer

vectol has the Block repetition pattern associated with it, the strategy function

for the partitioning scheme may be defined as: for all sub-vectors cor-responding to

indices of the outer vector which fall into block j(0 < j < I5), choose possibility 7.

Alternatively, if the outer vectol was defined to have the Repeat lepetition patter"n,

its strategy function would be: for all sub-vectors cotLesponcling to index j of the
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outer vector, choose possibility j mod 16

4.3 Generating Partitioning F\rnctions

Once a programmer has interacted with the PFN tool to define each aggregate

within the program as a set of assigned partitioning elements, total partitioning of

the program's data has been specified in terms of an abstract model. This section

describes how from such a high-level specification of partitioning, the PFN tool is
able to synthesize lower-level concrete forms. Specifically, we will consider the task of
generating executable forms of the type required by ihe Adl runtime system. That is,

we will consider the generation of partitioning functions, relative location functions

and partitioning scheme implementations.

In the current PFN prototype, the process of generation is initiated when the

user selects the "Generate C Source" option from the menu bar. The frrst action

instigated by this user command is an analysis of the abstract vectors present within
the current program. At this stage all that is considered is whether any elements from

such vectors are yet to be allocated to a processing node (i.e., has yet to have its box

coloured). The presence of any such elements means that the program's data layout

is not fully specified, and hence concrete generation cannot commence. If the tool
detects any unallocated elements, an error is produced at this stage and the synthesis

of concrete form abandoned.

In the case that the specification is complete, PFN proceeds to generate C code

forms of the partitioning function and relative location function for every vector

partitioning within the program. Furthermore it creates C versions of any strategy

functions required for partitioning schemes within the program. The remainder of

this Section describes the techniques by which such forms are generated, detailing

the mapping from abstract decomposition to C code in terms of a series of optimized,
provably correct code templates.

4.3.1- Generating Partitioning Functions by Simple
Template

The process of generating executable forms that are efficient and logically consistent

is handled by a small set of code templates. Each template consists of a short
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segment of C code within which appear a number of place-holders, symbols that are

replaced with actual concrete names or numbers when the template is instantiated

by the generation routine. Each template embodies an aspect of the abstract model's

semantics, representing it in terms of a low-level executable form.
Figures 72 and 73 show templates which implement a simple partitioning function

(and its associated relative location function) for vectors partitioned with PFN.

Figure 72's template is instantiated for each abstract vector form which was tagged

with the Block repetition pattern by a user of the tool. The other flgure's template
handles the Repeat repetition pattern case.

#define BLOCK(e1s,div) (eIs%div?1+eIs/div:eIs/div)

host-id pf -name (int i, int len)
{

int block -síze;

block-size = BLOCK (Ien, n-els);
switch (i/bIock-size) {
case 0: return (node-mapping-for-element-0)i
case 1: return (node-mapping-for-element-1) i

case n-els-l: return (node-mapping-for-final-element) i
)

Ì

int rL-name (int i, int len)
{

int block -síze1'

block-size = BLOCK (len, n-els);
return (i%block-s ize) ;

Ì
Figure 72. Code Templates for Block Partitioning Functions

In each of these illustrated templates, the symbol n-els is used to refer to the

number of partitioning elements the programmer chose to divide the abstract vector

into (i.e., the number of boxes which represented the vector upon the canvas). The

symbol node-maplting-for-element-j is used to stand for the identity of the processing
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host-id pf -name (int i, int len)
{

switch (l'/,n-els) {
case O: return (node-mapping-for-element-0);
case 1: return (node-mapping-for-element-L) ;

case n-els-1 : return (node-mapping-for-f,nal-element) ;

)
Ì

ínt rl-name (int i, int len)
{

return (í/ n-els) ;

Ì
Figure 73. Code Templates for Repeat Partitioning Functions

node to which partitioning element j was assigned during the PFN session (i.e., the

colour of box/). In the C code generated by the tool, these piaceholder symbols are

replaced by concrete information; that is, a numeric constant.

Note that the functions generated by this process of template instantiation are

computationally inexpensive. The most expensive case, that of a Block repeated

vector of many abstract elements, still only causes at most 3 - 4 arithmetic operations

and n-els integer comparisons. Since n-els is clearly a static constant, this is still an

O(1) operaiion.
The logical consistency of the (pf ,rI) pairs generated by the tool can easily

be proven correct. We consider only one such proof, that demonstrating pf-rl
correspondence for the Block repeated template, here. A similar proof by

construction is available for the Repeat pattern template.

Proof:
the rI function shown in Figure 72 is a relatiue location function which corresponds

to the partitioning function pf shown aboue i,t, and i,s thus pairable with it.
We assume that a concrete vector I/ of length V"nhas (at runtime) been annotated

with a (pf ,rI) pair generated from the template in Figurc72. Inspecting the pf
function it is clear that for a given fixed length, it will always generate a constant

block-size. If we consider the values generated by the expression (i/block-size)
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for different vaiues of i, remembering that this division is an integer one (i.e.,

the mathematical operation di,u),, we see that Vi (bloct<-size -1, the expression

evaluates to 0. Generally Vi, n.block-size ( i <
expression evaluates to n. We may safely assume that each of these blocks of n
consecutive indices is mapped by pf to a unique processing node II¡,0 ( j < n-els.

If we consider an arbitrary node from this set, two possibilities arise: either the node

has been assigned exactly block-size elements, with indices i : r.block-size< i <
(ø + 1).Ufock-size - 1 for some /, or the node has been assigned the last block

consisting of the indices i : (n-els - 1).b1ock-size < i < V"n. We consider these two

cases individually.
In the first case, the storage semantics of the Adl system enforce that a single block

B with block-size slots be allocated, and that index r.block-size fill the zero slot,

ø.bIock-size fill the number one slot, and so on up to the final slot which contains

index (r + 1).Uf ock-size - 1. We note that one representation of this mapping from

index to slot is i --+ i mod block-size.
In the case where the chosen node is the bearer of the final block, a region

of memory with V"n - (n-els - 1).block-size * 1 slots is allocated. The index

(n-els - 1).bIock-size is mapped into the zero slot, ìts successor into the next slot,

and so on. The last element of the entire vector would be placed in slot number

V"n- (n-els - 1).bIock-síze. Once again, for all indices i stored on this processing

node, this slot mapping may be described by i --+ i mod block-size.
Thus we have the situation that for any node which holds indices from the vector

V ,, the mapping function from index to slot may be described by the same function.

Therefore, this function i --+ i mod block-size is universally valid across the vector

and is hence the relative location function pairable with the partitioning function pf .

¡

A.3.2 Generating Partitioning Functions by Global
Template

It is important to note that the templates shown in Figures 72 and 73 make an implicit
assumption that each of the mappings for the abstract vector under consideration is

to a unique processing node - in the case where two or more mappings within a

vector are to the same processing node, an incorrect relatìve location function will be
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generated. To illustrate this limitation, consider the template-based generation for the
abstract vector shown in Figure 74. This abstract vector is perfectiy allowable under

PFN's model of specification, yet an application of the appropriate (Block) templates

described previously produces C code (shown in Figure 75) which implements an

inconsistent view of vector storage.

vecl

Figure 74. An Abstract Vector with Multiple Mappings to Node 1

To illustrate this point, consider the partitioning function pf -vec1 shown in the

figure: the function defines a division of a concrete vector into four equal blocks of

B indices, two of which are to be stored within the memory of node 1. Recalling

the storage model described in Section 4.1), we know that the indices of the first
of these blocks will occupy slots 0 to B - 1 in node l's memory. The indices from

the second block (indices B through 2B - 1) will be stored within slots B through
2B -L accordingly. Now, for a relative location function rl-vec to correspond to this

storage layout, it must provide the following sets of mappings:

rI-vec 0 r+ 0, rl-vec 1-r 1,...,rI-vec (B - 1) F-+ (B- 1)

rI-vec Br--+8, rl-vec(B+1) -r(B+1),...,rl-vec (28- 1) r+(28-1)
It is clear that the relative location function defined in Figure 74 does not adhere

to the second set of mappings. Specifically, the template-generated function maps

index index B to slot 0, index B + I to slot 1 and so on. That is, there is

a semantic discrepancy between the generated partitioning function and relative
location function.

It is clear that such errors arise because of the limited knowledge used by the

simple templates in their construction of relative location functions. Specifically, the

difficulties are due to a lack of global analysis of the entire set of the abstract vector's

colour assignments during the synthesis.

To address this limitation of the simple template approach, PFN provides a second

set of generation templates which may be used in situations where an abstract vector
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#define BLOCK(eIs,div) (eIs%div?1+els/div: eIs/div)

host-id pf-vecl (int i, int len)
{

int block -síze;

block-size = BLOCK (len, 4);
switch (i/block-size) {
case 0: return (1);
case 1: return (1);
case 2: return (2);
case 3: return (5) ;

Ì
i
int r1-vec1 (int i, int len)
{

int block-síze;

block-size = BLOCK (Ien, 4);
return (i%btock-síze) ;

Figure 75. Template Generated Code for Multiple Mapping Example

has been gpecified by a user to contain multiple mappings to the same node. This

alternate approach generates functions which are less efficient than those supplied by

the simple templates, but are guaranteed to generate a (pf , r1) pair that is consistent

for any PFN specification. To limit the efficiency losses introduced by such functions,
the tool only makes use of this approach in situations where generality is required -
that is, where possible the simple templates are still used.

The global analytic approach to function synthesis is based on a simple extension

to the existing template approach in which complex relationships introduced by the

storage model (through multiple mappings) may be expressed. Partitioning functions

are treated as before, the instantiations of simple templates. The generation of the

corresponding relative location functions, however, is handled in a manner which

incorporates a global picture of the abstract vector (rather than the per-element

consideration made previously) to capture the full storage-model repercussions of the

Ì
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partitioning.
Figures 76 and 77 show the template forms for generating relative location

functions in the block and repeat cases respectively. Centrai to these descriptions

are the functions colour-count and colour-total which are the sources of global

knowledge concerning the coloured PFN vector under consideration. The first of these

functions accepts an index into the abstract vector, and returns a count of the number

of indices which have identical colour to this specified partitioning element and which

also precede it in the ordering of indices. Thus for the example abstract vector shown

in Figure 74, colour-count (0) would return 0 (there ale no indices preceding index

0), while colour-count (1) would evaluate to 1 indicating one predecessor of identical

colouring.

The function colour-total, used in the definition of the relative location function

for a multiply-mapped instance of a repeat abstract vector, simply accepts an index

into that vector and returns the total number of elements which have the same colour.

For the example vector, colour-total (0) would return 2 as would colour-total(1);
calling the function with any other indices from the vector would evaluate to 1.

int rL-name (int i, int len)
{

int block-size;

block-size = BLOCK (len, n-els);
switch (i/bIock-s ize) ;

{
case 0: return (0 7. block-size);
case 1: return (1 ./. block-size + colour-count (1) * block-size);
case 2: return (2 ./. block-s!ze + colour-count (2) *, block-size);

case n-els-1: return ((n-els-l) 7. block-size +

colour-count (n-els-I) *bIock-s ize) ;

)

Figure 76. Global Code Template for Block Relative Location Functions

It is obvious that relative location functions generated by ihis approach are

more computationally costly (potentially involving numerous comparisons, then up

to three mathematical operations) than those synthesized by instantiating the simple
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int rL-name (int i, int 1en)
{

switch (l?n-els)
{
case 0:
case 1:
case 2:

return (O/ n-els) ;

return (L/n-els x colour-total(1) + colour-count(1
return (2/ n-els x colour-total(2) + colour-count(2

));
));

case n-els-1: return (i/ (n-els-l) x colour-total(n-els-1) +

colour -cou nt (n -els - l)) ;

Ì
Ì

Figure 77. Global Code Template for Repeat Relative Location Functions

templates discussed previously. They do, however, offer guaranteed correspondence

with the associated partitioning functions and are computationally inexpensive as a

model for the complex situation (uneven distribution of partitioning elements) under

consideration.

4.3.3 Generating Partitioning Schemes

The task of generating code implementing a partitioning scheme for a vector of

vectors may be viewed as a simple extension of the basic case presented above. Of
the three scheme components, two - the outer vector partitioning and the set of

inner partitioning possibilities - may be considered as merely a collection of simple

partitionings. Thus code may be generated for each by application of the templates

shown previously.

Generating the strategy function component of the scheme, however, requires an

extension of the presented technique. The templates that are required to implement

schemes with both Block and Repeat patterned outer vectors can be easily defined

as variants of the corresponding partitioning function templates. Rather than having

these templates return a host identifier indicating which host owns the element, we

modify them to return u (pf ,r1) pair indicating which of the possible inner-vector
partitionings this index of the outer vector should receive.

Figure 78 shows the strategy function for a scheme whose outer vector was given

the Block repetition pattern. In this template the following symbols are used:
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o n-els refers to the number of partitioning elements into which the outer vector

was divided,

o length-of-outer-a denotes the length of the outer vector,

o pf-and-rl-functions-for-option-j refers to the pair of partitioning and relative

location functions generated for one of the inner-partitioning possibilities.

#define BL0cK(eIs,div) (eIs%div?1+els/div:eIs/div)
typedef host-id (*,pfunc) (int, int) ;

typedef int (*rlfunc) (int,int);

(pfunc,rlfunc) stral-narne (int i)
{

int block -síze;

block-size = BLOCK (length-of-outer-u, n-els) ;

switch (i/block-size) {
case O: return (pf-and-rl-functions-for-option-0) ;

case 1: return (pf-and-rl-functions-for-option-1) ;

case n-els-I return (pf-and-rl-functi,ons-for-f,nal-option) ;

Ì
Ì

Figure 78. Code Templates for Partitioning Scheme Strategy Function (Block
Outer)

4.3.4 Extending to the Arbitrary Nesting Case

In the case of an partitioning scheme for an aggregate nest deeper than two, a slightly
different form of the partitioning scheme template is required. Rather than returning

the (pf ,rI) pair of functions for each of the possible inner-vector choices, these

templates return a (different) partitioning scheme for each inner-vector possibility.

This generalizes the generation of partitioning scheme code to an arbitrary depth.
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4.3.5 Extended Code Generation Example

Consider the Adl program shown in Figure 79, a simple program which takes a vector
of vectors and reverses the ordering of the inner vectors within the outer. For example,
given the input llL ,21 , [3] , [4, 5] I the program generates [ [4 , 5] , [3] , lL ,2f) .

main inp: vof vof real
let

1en := #inp;
f x := inp! (1en-x-1)

in
map f (iota len)

endlet
Figure 79. A Simple Adl Program

This program has two partitioning introducing elements: the call to the vector-
creating function iota, and the nested vector created at the time the program reads

its input.
Using PFN, we consider the partitioning of this program's aggregates in an

abstract sense. First we consider an abstract entity iota-instance which will
represent the vector created by the call to iota. Bringing this abstract form onto the
canvas, we divide it into four partitioning elements and attach the Repeat repetition
pattern with it. We now colour the boxes of the abstract form, assigning element 0 to
reside upon processing node 3, element 1 to node 6, element 2 to node 9 and element

3 to node 12. Once these four node associations are made, this abstract vector (and

hence all concrete instantiations of it) are fully partitioning specified.

We next consider the input to the program. Since this is a vector nest, we

will effectively be generating a partitioning scheme rather than a simple partitioning
function. We consider an abstract entity called input-out on the PFN canvas

we give this abstract vector the Block pattern and divide it into only two partitioning
elements. The first is allocated to node 17, the second to node 23. The fact that we

have divided this abstract form into two elements means that, by convention, we will
be considering the definition of exactly two inner-vector partitioning possibilities.

This set can be collectively named input-outer[]->inner, and can be brought

en n1,ússe onto the canvas. Once we have done this, we choose to divide the

first possibility into four partitioning elements and grant it the Block pattern;
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the second we divide into only a single partitioning element and give a Repeat
pattern. By gesture, we colour the first abstract vector's representation as follows:

element 0 --+ node 7, element 1 --+ node 8, element 2 --+ node 9, element 3 --+ node 10.

The second inner possibility's sole partitioning element is mapped onto node 0.

With the partitioning specification thus completed, the user clicks initiates the

generation process. The C code file that results contains the defrnitions for four

partitioning functions (and their relative location functions) plus the definition of a
strategy function for the partitioning scheme.

host-id pf-iota-instance (int i, int len)
{

s¡¡itch (1'/,4) {
case 0: return (3) ;

case 1: return (6) ;

case 2: return (9) ;

case 3: return (L2);
Ì

Ì

int rl-iota-instance (int i, int len)
{

return (i/a);
Ì

Figure 80. Code Implementing the Partitioning of the iota Instance

Figure 80 shows the code which pertains to the iota instance. Figure 81 details

the generated code which describes the partitioning of the outer vector of the input

nest. Note that the nodes named within this partitioning function are not intended to

convey memory spaces which will hold numeric elements of the input vector. Rather

they are memories which will store vector descriptors for the inner-vectors of the

input.
The partitioning function declarations for the two inner-vector partitioning

possibilities for the input are shown in Figure 82.

Figure 83 implements the strategy function for the input vector's partitioning
scheme. Recall that the outer vector has the Block repetition pattern, hence we use

the strategy function template appropriate to that pattern.
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#define BLOCK(els,div) (eIs%div?1+eIs/div:eIs/div)

host-id pf-input-outer (int i, int len)
{

int block -síze;

block-size = BLOCK (len, 2);
switch (i/block-size) {
case 0: return (tT) ;

case 1: return (23) ;

Ì
Ì

int rI-input-outer (int i, int len)
{

int block-síze;

block-size = BL0CK (Ien, 2);
return (i%block-s ize) ;

Ì
Figure 81. Code Implementing the Partitioning of Outer Vector of Input Nest

Now consider the situation where all of these concrete partitioning codes have

been compiled and linked with the implementation of the program in question. The
program is then invoked and passed the input [[1,2], [3], [4,5]1.

As the program begins its execution it first must build the distributed concrete

vectors which hold its input. The task of constructing the outer vector of the nest

begins first: the length of that vector is now known to be 3, which when divided into
two blocks gives a decomposition into the block (index0, indexl) and the block
(index 2). Thus, the outer vector will be divided so as two of the inner vector's

descriptors will reside on processing node 17 with the final one upon node 23.

The next stage of input construction concerns building the three inner vectors

of the nest. Before \Me can proceed with this, however, we must determine which
partitioning functions (and relative location functions) are associated with each.

Executing the input partitioning scheme's strategy function for each of the indices

0,1 and 2 we learn that the first two of the inner vectors are to receive the
partitioning function pf-input-inner-l while the third is to receive the function
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#def ine BLOCK(eIs,div) (eIs%div?1+eIs/div : eIs/div)

host-id pf-inputjnner-1 (int i, int len)
{

int block-size;

block-size = BLOCK (Ien, 4);
switch (i/block-size) {
case 0: return (7) ;

case 1: return (8) ;

case 2: return (9) ;

case 3: return (10);
Ì

Ì

int r1-input-inner-1 (int i, int len)
{

int block-síze;

block-size = BLOCK (Ien, 4);
return (i%Utoct<-s ize) ;

Ì

host-id pf-inputjnnerl (int i, int len)
{

switch (i%1) {
case 0: return (0) ;

)
)

int rI-input-inner2 (int i, int len)
{

return (í/t);
Ì

Figure 82. Code Implementing the Partitioning Possibilities for Inner Vectors of
Input Nest
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#define BLOCK(els,div) (eIs%¿iv:1+e1s/div:ets/div)
typedef host-id ('*pfunc) (int, int) ;

typedef int (xrlfunc) (int,int);

(pfunc,rlfunc) strat-input-outer (int i)
{

int block-síze;

block-size = BLOCK (input-outer.len, 2);
switch (i/block-size) {
case O: return ((pf-inputjnner-1,r1-input-inner-1)) ;

case 1 : return ( (pf -input jnner-2 , rI-input-inner2) ) ;

)
)
Figure 83. Code Implementing Strategy Function for Input Nest

pf -input -inner-2 .

With this knowledge we may now consider the process of allocating these three

inner vectors. Considering the first inner vector, we can see that (with a block size of
1) the first vector index (data item : 1 will be stored on node 7; the second vector

index (data item : 2) will reside on node 8.

Considering the second inner input vector, it will again be divided into blocks.

Since the concrete vector has only one element, the block size will be one. Thus the

vector's only element (data item : 3) will be mapped to node 7.

Coming to the final inner vector, this time we are to distribute the data according

to pf-input-innerl. Thus, both indices of this vector (data items : 4 and 5) are

mapped to node 0.

With the construction of the input vector (and its partitioning among the

machine), execution can begin. First we calculate the length of the input vector,

which is 3. We then call iota with this length as argument. The semantics of
this call are to generate a new vector of length 3 with the partitioning function
pf-iota-instance. The values stored within this vector will be the numbers 0 (in
index 0), 1 (in index 1) and 2 (in index 2). Considering the partitioning function in
question, index 0 will be stored on node 3, index 1 on node 6 and index 2 of node 9.

The call to the first order operator map also generates a new vector (which happens

to be the program's output). Note, however, that the programmer does not specify
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the partitioning of this aggregate. Instead, the partitioning function for this vector

is defined to be identical to that of the input to map. That is, in this case, the result

of map is partitioned according to pf -iota-instance. Since it also is of length 3,

its indices (which store vector descriptors for inner vectors) are stored on nodes 3,6

and 9.

A.4 Related and Future Work
We have described a graphical interactive environment, PFN, which allows for the

high-level specification of data layout for a nested data parallei program. Such a tool

is essential to any language system which allows for data to be distributed between

memory-spaces in complex or arbitrary patterns. Little research has addressed the

needs of such systems in the context of programming languages, primarily because

language implementations which support such generality in data placement are rare.

In the context of complex decomposition of finite element meshes, however, similar

tools have previously been proposed [29].
The novelty of our approach lies in its support for the partitioning specification

of structured aggregates whose extents are likely unknown until the time they are

instantiated. While trivial data layout specifications may be made for such structures

(e.g., map all levels of the aggregate identically), these are unlikely to be generally

efficient. The partiti,oning scltemes we introduce provide for a flexible and expressive

means of defining layouts for structures.

PFN greatly simplifies the specifrcation of partitioning for both the simple (non-

structured aggregate) case and this more complex situation. It supplies an abstract

representation of each aggregate within a program and allows these entities to be

partitioned into collections of partitioni,ng elements. By gesture, the user may assign

such elements to processing nodes of the target machine, thus defining an abstract

decomposition of the aggregate across the memory spaces of that machine. Once such

a specification is complete (i.e., every element of every aggregate has been assigned to

a processing node), the tool can automatically transform this high-level specification

into a concrete executable form by applying a set of proven and efficient C code

templates.

Experience with using the PFN in benchmarking the Adl implementation has

shown it to provide an enormous simplification over the hand-coding of complex
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partitioning details. The tool is, however, quite simplistic in the facilities it presents

users for defining allocations of data. Many possibilities exist for future expansion of
this functionality (e.g., allowing for the user to specify that two abstract aggregates

will always be partitioned identically). The ultimate goal of research into this area

of visual specification of data partitioning is for users of computational systems,

such as ours, which support arbitrary data decomposition to be presented with an

environment which abstracts the complex problem of data specification to the point
where it becomes a series of simple and intuitive decisions. In PFN, we believe, we

have gone a long way towards meeting this ideal.



Appendix B

Source Code for Evaluated
Programs

This appendix contains the full source for each of the Adl, Nnsl and CM Fortran

programs whose performance is benchmarked in Chapter B. Descriptions of the

language features which appear in the Adl codes may be found in Section 7.1. An

account of Npsl's features is available in [18,21]; CM Fortran details can be found

in various Thinking Machines manuals [127, 130, 128, \29].

8.1- Flat Data-Parallel Codes

8.1.1 Flat map Program
Adl Source

addl n := n*1;
¡nain vec: vof real := map (addl, vec)
?

NESL Source

function rnain (v) = { z+t : z in v }

CM Fortran Source (Aggregate Level +)

progra¡n forces
integer, para¡neter : : LEN=1000000

302
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declare a source and destination vector of length 1000000

real- src (LEI[), dest (LE[)

303

c

c

CMF$

declare that both vectors should be spread across CM nodes

layout src (:news), dest (:ner¡s)

c

c

c

c

set each element in src to value 1

src=1

in paraIleI, add one to every element of src
dest=src*1
end

CM Fortran Source (foraIl)
progra¡n forces
integer, param€t€r :: LEN=1000000

integer i

declare a source and destination vector of length 1000000

real src (LE¡l), dest (LEN)

C declare that both vectors should be spread across CM nodes

CMF$ layout src (:news), dest (:news)

set each element in src to value 1

src=1

in paral.lel, add one to every elenent of src
forall (i=1:LEN) dest(i) = src(i) + 1

end

c
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8.t.2 Flat scan Program

Adl Source

add (x,y) := x*Ii
main vec: vof real := scan (add,O.0,vec)
?

NESL Source

function ¡nain (v) = +-scan (v)

CM Fortran Source

Progra¡n 9can
INCLUDE, /!sr / íncLude/c¡nlCMF-def s.h'
i.nteger, parameter : : LEN=1000000

declare a source and destination vector of length 1000000

real src (LEtù), dest (LEN)

304

c

c

CMF$

declare that both v€ctors should be spread across CM nodes

layout src (:news), dest (:ne¡¡s)

set each ele¡nent in src to value 1

src=1

perform parallel prefix add across v€ctor src
call CMF-SCAN-add (dest , src , CMF-NULL, 1, CMF-UPWARD ,

cMF_TNCLUSTVE, CMF_I{01{8, . TRUE. )

end

c

c

+
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8.1-.3 Irregular Vector Index Program
Adl Source

% program inputs: A ----- source vector (contains values)
'/, per¡n -- pernutation vector (contains indices)
main (A:vof rea1, perm:vof int) :

let
deref x := Alx % returns the x'th element of A

in
map (deref,perm) % apply fn deref to all elements in perm vector;

% each such element is an index into A

endlet

NESL Source (map-index method)

% in parallel use ele¡nent of perm vector as an index i.nto %

% source vector L '/,

function neslperml (A,perm) = { A[i]: i in perm ];

NESL Source (inbuilt Perm method)

% use NESL's inbuilt perm operator to perforn parallel '/,

% dereference of A by each element of perm '/,

function neslpern2 (A,perm) = A -> perm;

CM Fortran Source

305

?

Progra¡n pern
integer, parameter
integer, paraneter

: LENl=100

: LEN2=50

c declare source, destination and permutation vectors
real a (LEN1), dest (LEN2)

integer perm (LEN2)

set values for the vectors
a = [ o.o, 1,0,2,0, ... ]
perm = [ 39, 94, 57, ... ]

c
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use CMF's vector-valued dereference to specify a

paralleI permutation
dest = a(perm)

306

c

c

end
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8.2 Nested Data-Parallel Codes

8.2.L Nested map-scan Program

Adl Source

add (x,y) := xiy; '/, binary add function
acc v := scan (add,O.O,v); % use fn add in a para1Ie1 prefix operation

% perform the function acc for every inner vector of the nest
main vvec: vof vof real := nap (acc,vvec)
?

NESL Source

'/, for each v in vv, perform a paralleI prefix add operation %

function main (vv) =

{+-scan (v) : v in vv}

CM Fortran Source (Outer Serialization)

program forces
INCLUDE' /tsr / include/cmlCMF-def s. h'
integer, paraneter :: 0LEN=200

integer, parameter :: ILEI{=SO

declare source and destination vectors
real src (oLEN,ILEN), dest (oLEN,ILEN)

integer i

set all values in src to 1.0
src = 1.0

serially loop through the outer dimension, perforning a

parallet prefix operation on each column of src during
each iteration
do i=1,0LEN

call CMF-SCAN-add (dest(1, : ),src(1, : ),CMF-NULL,1,CMF-UPIIARD,
cl{F_rNclus rvE, ctitF_t{ot{E, . TRUE . )

enddo

307

c

c

c

c

c

+

end
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CM Fortran Source (Inner Serialization)

progran forces
IIÍCLUDE' /usr / íncLude/c¡nlCMF-def s . h'
integer, paraneter :: 0LE}I=20

integer, para¡neter :: ILEN=5

declare source and destination vectors
real src (OLE¡¡,rLE¡l), deEt (0LElû,ILEN)

integer i

set all val-ues in src to 1.0
Erc = 1,0

copy first row of src to firet row of degt
dest ( : ,1) = src (: ,1)

serially iterating down rowE of src (inner dimension),
perform a parallel additíon across columns at each

iteration. We take the previous column fro¡n dest
a¡rd accumulate it with the current column fro¡n src
do i=1,ILEI{-1

dest (l,i+1) = dest (:,i) + src (:,i+1)
enddo

end

308

c

c

c

c
c
c
c
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8.2.2 meshcomp: A Simple Finite Element Mesh-Based
Computation

Adl Source

% Progran Input: vector of nodes + vector of elements
,/,

f,
,/,

lt
,/,

'/,

%

,T

each
*
*
*

*
each

*

*

node is a four-tupIe --
x position of node in plane (real)
y position of node in plane (real)
type of node (0 = non-boundary,

others denote different boundary conds)

a node number (0..nun-nodes-1)
element is a two-tuple --
a vector of length 3, defining which
three nodes bound the triangular ele¡nent
an element number (0. .nu¡n-elts-l)

% functions to select an element from a two-tuple
first (x,y) := x;
second (x,y) := y;

% functions to select fields from a node

xof (x,y,i,n) := x;
yof (x,y,i,n) := y;
iof (x,y,i,n) l= i;
nof (x,y,i,n) := n;

% useful nu¡neric functions
sqrt x := x^0,5;
fabs x := if x )= 0.0 then x else -x endif;

% function to compute the straight-line distance between two nodes

dist (p1,p2) :=
1et

x1 := xof (p1);

¡r1 := yof (p1);
x2 := xof (p2);

!2 z= yof (p2)
in

sqrt ((y2-yL)^2 + (x2-xt)^2)
endlet;



APPENDIX B, SOURCE CODE FOR EVALUATED PROGRAMS

% function to pairwise add two vectors of equal length
add-vec (v1,v2) :=

Iet
g x ;= v1!x + v2!x

in
rnap (9, iota #v1)

endlet;

% entry point
main mesh:(vof (real,reaI,int,int), vof (vof int,int))

let
nodes := fírst (mesh);

elements := second (mesh);

7. Junction to compute the area contained within a

% triangular element
area el :=
Iet

cotur := first (eI);
pl := conn!0;
p2 := conn!1¡
p3 := conn!2;
n1 := nodes!pl;
n2 := nodes!p2;
n3 := nodes!p3;
a := dist (n1 ,n2);
b := dist (n1,n3);
c := dist (n2,n3);
s ;= (a+b+c),/2

in
sqrt (s*(s-a)*(s-b)*(e-c) )

endlet;

310
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% function to compute the stiffness matrix for the
% laplace iteration across the irregular mesh

compute-stiff (nodes, ele¡nents) : =

let
'/. conpute the stiffness associat€d with a single ele¡nent

f eI :=
let

a := area (el);
conn := first (e1);

% compute the stiffnese contríbuted by one edge of the
% triangular elenent
g ind :=
let

n := connlind;
n1 := conn!((ind+l) mod 3);
n2 := connl((ind+2) mod 3);
node := nodesln;
nodel:= nodeslnl;
node2:= nodesl¡2;
aa := xof (node);
bb := yof (nodE);

dx1 := xof (nodel) - aa;

dx2 := xof (node2) - aa;
dy1 := yof (nodel) - UU;

dy2 := yof (node2) - UU

in
(dx1*dx2 + dy7*dy2)/a

endlet;

t := iota 3

in
¡nap (g,t) % perform g for each of 0,1 and 2 írt //

endlet
in

map (f,elements) % perform f for €ach €Iemênt ín //
endlet;

% cornpute the stiffneEE natrix: ++* PHASE oNE t**
stiff := compute-stiff (mesh);

311
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% define a zêto vector of equal length to node vector
zero x := 0,0;
zerovêc := map (zero,iota #nodes);

% compute the diagonal matrix contribution (a vector of
% length = # nodes) for one element
diag-per eI :=

let
iter := iota #nodes;
conn := first (e1);
id := second (e1);
n1 := conn!0;
n2 ;= conn!1;
n3 := conn!2;

3r2

fn:=ifn=nlthen
stiff!id!1 +

elseifn=n2
stiff!id!0 +

elseifn=n3
stiff!id!0 +

e1s e

0.0
endif
endif
endif

in
map (f,iter) % apply

endlet;

stiff!id!2
then
stifflid!2
then
stifflid!1

î ín // across 0, 1 , num-nodes-1

% compute a vector containing the diagonal ¡natrix contributions
'/, tor evêry êle¡nênt (ie a vector of vectors): **+ PHASE T[10 *'t,lß

diag-tmp := map (diag-per,elements) ;

% now collapse this vector by summing across the inner dimension;
% ie by adding alt the inner vectors together: ¡1.¡1.¡ß PHASE THREE ***
diag := reduce (add-vec,zerovec,diag-tmp) ;

error-thresh := 0.001;

% expression to count the number of nodes which are t{07

% on the boundary: **:t< PIIASE FoUR ***



APPENDIX B, SOURCE CODE FOR EVALUATED PROGRAMS

non bdv nodês :=

let
plus (x,y) '= x+li
f n :=

let
bd_code := iof (n)

in
if bd-code ) 0 then 1

else 0

endif
endlet;

non-bdy-fIags := map (f,nodes)
in

reduce (p1us,0,non-bdy-f1ags)
endlet;

% set an initiaL valu€ phi (which represents the fluid density
% at the given point) for every node to begin the Laplace iteration
f, *,** pIIASE FM ***
begin-phi :=

let
bdy-cond n :=
let

bd_code : = iof (n) ;

ypos := yof (n)
in

'/, t¡e nodes on the boundary (ie bd-cod6 > 1)

'/, get a special value, others get 0.0
if bd-code = 1 then 1.0
else if bd-code = 2 then -1.0
else if bd_code = 3 then 0.02 * ypos
else 0.0
endif
endif
endif

endlet
1n

nap (bdy-cond,nodes)
endlet;
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% define a ter¡nination function for the iteration
not-done (phi,err) := err >= error-thresh;

% ttre body of the Laplace iteration: 'l'*{' PIIASE SIX *r"h

jacobi (phi,err) :=

let
% function to compute the effects on one element due to
% each node (returns a vector of length # nodes)

phi-per el :=

let
iter := iota #nodes;

conn := first (eI);
id := second (e1);
n1 := conn!0;
n2 i= conn!1;
n3 := conn!2;

3L4

fn:=ifn=nlthen
phi!n3 * stiff!id!1 +

phi!n2 + stiff!id!2
else if n = n2 then

phi!n1 * stiff !id!2 +

phi !n3 * stiff I id ! 0

else if n = n3 then
philn1 * stiff!id!1 +

philn2 * stifflid!0
els e

0.0
endif
endif
endif

in
map (f,iter) % apply r í¡ // for 0,1,

endlet;
num-nodes-1
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% function to calculate the new value for each node by

'/, tírst computing the effect contributed by each node upon

% each elem€nt (a vector of vectors), then collapsing the
% inner dimension by vector addition
phinew :=

let
phi-tmp := rnap (phi-per,elements)

in
reduce (add-vec , zerovec , phi-tnp)

endlet;

% perform one step of the iteration, computing

'/, tb.e change in value for a NON-BOUNDARY node

% (tfre others are fixed during the computation)
one_step n : =

let
rny-idx := nof (n)

in
ifiof(n)=0then

phinewlmy-idx / aiaglrny-idx - phi!my-idx
eIEe

0.0
endif

endlet;

'/, tor all nodes ín //, compute the change in value
delta-phi r= nap (one-step,nodes);

% we nor¡ kno¡¡ how much the value of each node changes by,

% so r¡e can compute the new value phi-prirne for each node

phi-prime :=

let
increnent n :=

let
myidx := nof (n)

in
phi !myidx + delta-phi !myidx

endlet
in

map (increment,nodes)
endlet;

3i5
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% also using the vector of node-de1tas, we su¡n the absolute
% change in values to give an error estinate
err-red (a,b) := fabs (a) + fabs (b);
neúr-err := reduce (err-red,0.0rdelta-phi)

in
(phi-prime, neÌt-err / non-bdy-nodes) % return the vector of new values

% ptus a¡t error estimate Per node

endLet
in

white (jacobi,not-done, (begín-phi,error-thresh)) 7. the iteration
endlet

?
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NESL Source

% Program Input: vector of nodes + vector of elements '/,

l, each node is a four-element record -- '/,

'/, * x position of node in plane (reaL) l,

f, * y positi.on of node in plane (real) '/,

'/, * type of node (0 = non-boundary, '/,

'/, others denote different boundary conds) %

'/, * a node number (0. ,num-nodes-1) '/,

'/, each ele¡nent is a two-element record -- %

f, * a vector of length 3, defining which '/,

'/, three nodes bound the triangular element '/,

'/, * an el-ement number (0. ,nu¡n-etts-l)

datatype node-r (float , float , int , int ) ;

datatype element-r ( [int],int);

317

% functions to select
function xof (z) =

let node-r(x,y,i,n)
in x;

function yof (z) =

1et node-r(x,y,i,n)
i. y;

function iot (z) =

let node-r(x,y,i,n)
in i;

function nof (z) =

let node-r(x,y,i,n)
in n;

fields from a node %

=z

=t

=z

=z

% functions to select fields from an element %

function connof (z) =

let element-r(c,n) = z
in c;

function elidof (z) =

let eIe¡nent-r(c ,\) = z
in n;

% function to compute the straight-line distance between two nodes %

function distance (p1,p2) =
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let
x1 = xof (p1);
yr = yof (p1);
x2 = xoJ (p2);
y2 = yof (p2);

in
sqrt ((y2-y1)*(y2-y1) + (x2-x1)*(xZ-xl)) ;

% define a simple mesh %

nodes = lnode-r(0. 000000, o. 000000, 1,0), node-r(0. 500000, 1. 000000,0, 1),
node_r( 1. 000000, 2. 000000,3,2), node_r( 1. 500000, 1. 000000, 2, 3),
node_r(2. oooooo, o. oooooo, 0,4), node-r(1 . 000000, 0. 000000, 0, 5)l ;

ele¡nents = [eIe¡nent-r( [0, 1,5],0),
element-r( h ,3,51 ,2) ,

e1e¡nent-r ( [1 , 2 , 3] , 1 ) ,

ele¡nent-r( [3,4,5] ,3)] ;

% function to compute the area contained ¡¡ithin a

% triangular element
function area-tri (nodes,element) =

let
conn = connof (element);
p1 = conn[OJ;
p2 = connElJ;
p3 = conn[2J;
n1 = nodes [p1] ;

n2 = nodes [p2] ;

n3 = nodes [p3] ;

a = distance (nl,n2);
b = distance (n1,n3);
c = distance (n2,n3);
s = (a+b+c ) /Z .O;

in
sqrt (s*(s-a)*(s-b),t(s-c) ) ;

7. compute the stiffness contri.buted by one edge of the triangular element %

function compute-stiff-g (nodes,a,connri) =

1et
n = connli];
n1 = conn[rem(i+l,3)];
n2 = conn[ren(i+2,3)];
node = nodes [n] ;
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nodel = nodes [n1] ;

node2 = nodes [n2] ;

aa = xof (node);
66 = yof (node);
dx1 = xof (nodel) - aa;

dx2 = xof (node2) - aa;

dy1 = yof (nodel) - bb;
dy2 = yof (node2) - bb;

1n
(dx1*dx2 + dyt*dy2)/al

% compute the stíffness associated with a single element %

function compute-stiff-f (nodes,eI) =

let
a = area-tri (nodes,eI);
conn = connof (el);

in
{compute-stiff-g (nodes,a,conn,z) i z i-rL [0,1,2]];

function diag-per-f (n1,n2,n3,id,stiff ,i) =

if i == n1 then
stiff [id] [1] + stiff tidl [2]

else if i == n2 then
sriff [id] [0] + stiff tidl [2]

else if i == n3 then
stiff Iid] [0] + stiff [id] t1l

else
0.0;

% compute the diagonal matrix contribution (a vector of '/,

% length = # nodes) for one element '/,

function diag-per (stiff,el) =

let
iter = [0:#nodesJ;
conn = connof (e1);
id = elidot (e1);
n1 = conn[O];
n2 = conn[1];
n3 = conn[2];

in
{diag-per-f (n1,n2,n3,id,stiff ,z) : z ín iter};

319



APPENDIX B. SOURCE CODE FOR EVALUATED PROGRAMS

€rror-thresh = 0.001;

% translates boundary codes into initial values %

function bdy-cond (n) =

let
bd-code = iof(n);

in
if bd-code == 1 then 1.0
else íf bd-code == 2 then -1.0
else if bd_code == 3 then 0.O2*yof(n)
else 0.0;

function phi-per-f (phi,stiff ,n1,n2,n3,id,n) =

if n == n1 then
phi[n3J*stiff tid] t1l + phi[n2]+stiff tidl [2]

else if n == n2 then
phi [nlJ *stiff [id] [2] + phi [n3] *stiff tidl tOl

else if n == n3 then
phi[n1J*stiff [id] t1l + phi[n2]+stiff tidl iOl

els e
0.0;

% function to compute the effects on one element due to '/,

% each node (returns a vêctor of length # nodes) '/,

function phi-per (phi,stiff,e1) =

let
iter = [0:#nodes];
conn = connof (e1);
id = elidot (e1);
n1 = conn[O];
n2 = conn[l];
n3 = conn[2];

in
{phi-per-f (phi,stiff ,n1,n2,n3,id,z) : z in iter};

7. perforrn one step of the iteration, conputing the change in value '/,

'/, tor a IrION-BOUNDÂRY node (the others are f ixed during the computation) %

function one-step (diag,phinew,phi,n) =

1et
my-idx = nof (n);
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if iof(n) =- 0 then
phinew[my-idxl / aiag[my-idxJ - phi[my-idxJ

els e

0.0;

% do one iteration of the Laplace %

function j acobi (nodes, elements, stiff , diag, non-bdy-nodes, phi) =

let
phi-tmp = flatten ({phi-per(phi,stiff,z): z in elements});
phinew = {s¡¡(phi-tmp-> [i:3*#elenents+i:3] ) : i in [0: #nodes] ];
delta-phi = {one-step(diag,phinew,phi,z)t z in nodes};
phi-prlne = {phi[nof (z)]+delta-phi[nof(z)] : z ín nodes];
n€w-err = sun ({abs(z); z í¡ delta-phi});

in
(phi-prime , new-err/float (non-bdy-nodes ) ) ;

% a recursive formulation of the iterative loop %

function jac-iter (nodes,elements,stiff,diag,non-bdy-nodes,phi,error,i) =

if error >= êrror thresh then
let

(new-phi,nen-err) = jacobi (nodes,elements,stiff,diag,non-bdy-nodes,phi)
1n

jac-iter (nodes,elenents,stiff,diag,non-bdy-nodes,new-phi,new-err,i+1)
els e

(phi, i) ;

% entry point
function ¡nain (ns,ês) =

let
% compute the stiffness matrix: ++* PHASE o¡lE **+
stiff = {cornpute_stiff_f (ns,z): z in es};

% compute a vector containing the diagonal matrix contributions 'I
'/, Lor every element (ie a vector of vectors): +** P¡IASE TIl0 ¡ß+¡l' '/,

diag-tmp = flatten ({ai.ag-per (stiff,z): z in es});

% now collapse this vector by surnming across the inner dimension;%

% ie adding all the inner vectors together: *** PIIASE THREE **+ '/,

diag = {sum(diag-tnp->lz:3*#es+z:31): z in [0:#nodes]];
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% expression to count the nu¡nber of nodes which are NOT on the '/,

% boundary: *** PTASE FOUR tt* '/.

non-bdy-nodes = count ({iof(z) == 0: z in ns});

% set an initial value phi (which represents th€ fluid density 'I
% at given point) for every node to begin the Laplace iteration %

begin-phi = {bdy-cond(z): z in ns};
in

% ttre body of the Laplace iteration¡ *rß:lc PHASE SIX *** '/,

j ac-iter (ns, es, st if f , diag rnon-bdy-nodes,begin-phi, error-thresh, 0) ;

322



APPENDIX B. SOURCE CODE FOR EVALUATED PROGRAMS

CM Fortran Source

323

c

c

c

c

c

c

c

c

c

c

The irregular mesh is composed of a set of nodes and a set of
triangular elements which join those nodes. This program

r€prêsents nodes by way of three vectors:
nodex . .. holds the x position of each node

nodey .. . holds the y position of each node

nodei ... holds a code which identifies the node type
(O=non-boundary, other values denote boundary types)

Elements are represented by a two-dimensional matrix. Each

column of the matrix (a11 length 3) denotes the node numbers

which represent the boundary nodes of this element

progran meshcomp

integer, parameter : : NN0DES=6,ItlELEl{llTS=4

real nodex (NNODES), nodey (NNODES)

integer nodei (NNoDES), noden (NNoDES)

integer elmtc (NELEMNTS,3), el¡ntid (NELEMNTS)

values computed during the iteration
real stiff (I'IELEMNTS,3)

real diag (NN0DES)

real phi (NNODES), phinew (ÌINODES), dest-addr (NNODES)

real delta-phi (NNODES)

integer tt (l{ELElllìlTS,3)

inreger tmpl (IìIELEMNTS,3), tmp2 (NELEMNTS,3)

real n1 (NELEMNTS,3), n2 (NELEMNTS,3)

real s1 (NELEMNTS,3), s2 (NELEM¡ITS,3)

real error-thresh, error
logical non-bdy-nask (NNODES)

ínteger non-bdy-nodes
real lens (NELEI,ÍNTS,3)

real ess (IùELEMNTS), area (NELEMNTS)

integer enO (NELEMNTS), en1 (NELEMNTS), en2 (ìIELEMNTS)

reat dxl (NELEMNTS), dx2 (I{ELEMNTS), dy1 (NELEMNIS), dy2 (}¡ELEMNTS)

define a simple grid
nodex = [0.0,0.5,1.0,1.5,2.0,1.0]
nodeY = [0 .0, ! .0 ,2,0, 1 . 0,0 ' 0,0.0]
nodei = t1,0,3,2,0,0]

c

c
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elmtc(1,:) = [1,2,6]
elmtc(2,: ) = [2,3,4]
elmtc(3,:) = 12,+,61
elmtc(4,: ) = [4,5,6]

diag = 9.9

BEGIN PHASE ONE

For each elenent compute the lengths of the three
edges which define its triangular space. Note this
is a serialized NDP computation.
forall (i=1 :NELEMIùTS) lens(i,1) =

+ ((nodey(elmtc(i,2))-nodey(e1mtc(i,1)))**2 +

+ (nodex(elmtc(i,2))-nodex(eI¡ntc(i.,1)))**Z)**O.S
f oralI (i=1:NELEMIùTS) lens(!,2) =

+ ((nodey(eImtc(i,3))-nodey(elmtc(i,1)))**2 +

+ (nodex(elmtc(i,3))-nodex(elmtc(i,1)))**Z)i,¡O.S
forall (i=1:NELEMNTS) lens(i,3) =

+ ((nodey(elmtc(i,3))-nodey(eImtc(i,2)))**Z +

+ (nodex(elmtc(i,3))-nodex(elmtc(i,2)))+*2)*t0.5

compute the area of each triangular element

ess = SUM (lens,2)/2
arêa = (ess* (ess-1ens ( :, 1 ) )*(ess-lens ( :, 2) )* (ess-lens ( :,3) ) )+*0. 5

tt = elntc

loop A:

do i=1,3
corûpute the stiffness matrix

enO = tt(:,i)
tt = CSHIFT (IT,2,L)
enl = tt(: ,i)
tt = CSIIIFT (tt ,2, 1)

en2 = tt(:,i)
dx1 = nodex(en1) - nodex(enO)

dx2 = nodex(en2) - nodex(enO)

dy1 = nodey(enl) - nodey(en0)
dy2 = nodey(en2) - nodey(enO)
stiff (:,i) = (dx1*dx2 + dyl*dy2),/area
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END PHASE OtrlE

PHASE Tl,rl0: inplicitly computed

BEGIN PHASE THREE

325

c

c

c

c

c

Using the stiffness
llote that this is a

do j=1,NNSDES

aiag (j) = diag

diag (j) = diag

enddo

values, compute the diagonal matrix.
serialized NDP conputation.

(j) +

sum (stiff(:,i), *¿s¡=(enl(:) .eq. j))
(j) +

sum (stiff(:,i), *"s¡=(en2(:) .eq. j))

+

+

c END PHASE THREE

enddo

end loop A

BEGIT{ PHASE FOUR

error-thresh = 0.001

deter¡nine which nodes are not on the boundary and count them

non-bdy-mask = nodei .EQ. 0

non-bdy-nodes = count (non-bdy-mask)

END PHASE FOUR

BEGIN PHASE FIVE

set the initial phi value (the fluid density) for each node by

inspecting the boundary codes

phi = 0.0
where (nodei .eq. 1)

phi = 1.0
end where
where (nodei .eq. 2)

phi = -1.0
end where
where (nodei .eq. 3)

phi = 0.02+nodey
end where

c

c

c

c

c

c

c

c END PHASE FIVE
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c BEGIIÛ PTTASE SIX

êrror = error thresh

the iterative body of the Laplace
do whÍIe (error )= error-thresh)

phinew = 0.0

comput€ the phi change contributed by each element
tmpl = CSHIFT (elmtc,2,1)
tmp2 = CSITIFT (elmtc,2,2)
foralI (i=1:NELEMNTS) n1(i,: ) = phi(tmpl(i,: ))
forall (i=1:NELEMNTS) n2(i, :) = phi(tmp2(i, :))
forall (i=1:3) s1(:,i) = n1 (:,i) t stiff (:,i)
forall (i=1:3) s2(:,i) =n2 (:,i) i. stiff (:,i)

sum a¡d apply the per-eIen€nt changes to produce a

vector of overall phi changes

do j=l,3
do i=1 ,ÌùNODES

phinew(i) = phinew(i) +

sum (s1(:,j), ¡nask=tmp2(:,j) .eq. i)
phinew(i) = phinew(i) +

sum (s2(:,j), mask=tnpl(:,j) .eq. i)
end do

end do

use these changes to update thê phi value of each node

delta-phi = 0.0
¡¡here (non-bdy-mask)

delta-phi = phinew/diag - phi
end where
phi=phi+delta_phi

compute the error value by summing the absolute change for
all nodes
error = SUM (abs(delta-phi))/non-bdy-nodes
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c

c

c

+

+

c

c

c

end do

c END PIIASE SIX
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8,2.3 f orces: A Molecular Chemistry Kernel
Adl Source

% Input data: a vector of five-tupIes, each representing an atom.

'/, the elements of the tuples are as follows:
'/, * tuple element 1: index number of atom (0,..,#atoms-1)
'/, * tuple element 2: charge of atom
t/. * tuple element 3: x position of atom

% * tuple element 4: y position
'/. * tuple element 5: list of ele¡nents to whích this
% element is bonded

% for two particles (with charge ql and q2), positioned at (x1,y1) and

% (x2,y2), conpute the force of attraction or repulsion by Coulomb's 1aw

force (q1 ,x1 ,y!,A2,x2,y2) :=

let
dx := x2-xti
dy := !2-yt;
¡ ;= (q1*q2) / (ax^Z + dy^2)

in
(k*dx,k+dy)

endlet;

% entry point
main irreg: vof (i.nt,rea1 ,real ,rea1 ,vof int) :=

1et
% function to conpute the force upon one atom '¡ne'
f me :=

1et
% functions to select a field fro¡n an atorn tuple
whoa¡ni (i,q,x,y,v) := i;
charge (irq,x,y,v) := q;
xpos (i,q.,x,y,v) := x;
ypos (i,q,x,y,v) ¡= y;
edges (i,q,x,y,v) := v;

% compute the force due to each bond of the atom tme)

% return value is a pair (force in x-axis, force in y-axis)
g z:ínt :=

let
other := írreglz
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1n

force (charge(me),xpos (me),ypos(me),

charge (other), xpos (other), ypos (other) )

endlet;

% create a vector of all bonded forces applied to the
% atom 'ne'
t : = map (9, edges(me) ) ;

% define a function which adds force-pairs
h (x,y):=
1et
first (i,j) := i;
second (i,j) := j

in
(first (x) + fírst (y), second (x) + seconA (y))

endlet
in

% combine all bonded forces for atom tme' by accunulating
% the¡n with the function h

reduce (h, (0.0,0.0),t)
endlet

in
map (f, irreg) % cornpute forces for each atom í¡ / /

endlet
?

NESL Source

% Input data: a vector of five-field-records, each representing an atom. '/,

% the elements of the tuples are as follows: '/,

f. * record element 1: index number of atom (0,..,#atoms-1) %

'/, ,r record element 2: charge of atom f,

f, * record element 3: x position of atom %

'/, * record element 4: y position %

t/. * record element 5: list of elements to which this '/,

'/, elenent is bonded '/,

datatype atom-r ( int , float , float , float , [int] ) ;

328

'/, for two particles (with charge q1 and q2), positioned at (xl,y1) and '/,
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'/, (x2,y2), conpute the force of attraction or repulsion by Coulornb's law %

function force (q1 ,x1 ,!t,q.2,x2,y2) =

1et
dx = x2-x1;
dy = y2-y1;
¡ = (q1*q2)/(dx*dx + dy*dy)

in
(k*dx,k+dy) ;

% functions to select a field from an atom tuple %

329

function whoa¡ni (at) =

let atom-r(i,q,x,y,v)
in i;

function charge (at) =

let atom-r(irq,x,y,v)
i. q;

function xpos (at) =

let atom-r(i,q,x,y,v)
in x;

function whoa¡ni (at) =

Iet aton-r(i,q,x,y,v)
in i;

function ypos (at) =

1et aton-r(i,q,x,y,v)
io y;

function edges (at) =

1et ato¡n-r(i, q, x, y, v)
in v;

=at

=at

=at

=at

=at

=at

7. conrpute the f orce due to each bond of the atom 'me' '/,

% return value is a pai.r (force in x-axis, force in y-axis) %

function main-f-g (z,me,irreg) =

let
other = írreglz);

in
force (charge(nre),xpos(me),ypos(rne),

charge(other) ,xpos(other) ,ypos(other) ) ;

% function to compìrte the force upon one atom 'me) %

function main-f (rne,irreg) =
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let
tee = {main-f-g(z,ne,irreg): z in edges(me)};
% convert the vector of pairs into a pair of vectors
(tx,ty) = unzip (tee);

in
% combine all bonded-forces for the atom using sun

% on the x-dimension force vector tx and the y-dimension
'/, force vector ty
(sum(tx),sum(ty));

% compute forces for each aton ín // '/,

function main (irreg) = {main-l(2,írreg): z in irreg};

CM Fortran Source

This prograrn computes the bonded forces on atoms in a molecule
Each atom has propeties of x-position, y-position, charge. It
can be connected to any number of other atoms. hle represent
the molecule as follows:

the vector charges holds the charge for each ato¡n

the vector xpos holds the x-coordinate of the atom

the vector ypos holds the y-coordinate of the atom

the vector bonds is a Iogically segnented vector which
holds the identies of atoms which are bonded to.
The segmentation is defined in the vector starts
which lists, for each atom, which index of the
vector bonds holds its first bond. Subsequent
bonds for the sane vector are stored in adjacent
positions

progra¡n forces
integer, parameter : : NAT0MS=16, TOTALCOIIIS=64

real charges(¡l¡toMs), xpos(NAToMS), ypos(Ì{AToMS)

integer starts(NATo¡{S+1), bonds(ToTALCoNS)

integer i,j

tenporary vectors used during conputati.on
real xforper (TOTALCONS), yforper (T0TALCONS)

real dx (totu,c0¡¡s), ¿y (tottlcoNs)
real xfortot (NAToMS), yfortot (l[AToli{S)

330
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c

c

c

c

c

c

c

c

c

c

c

c

c

c
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c

CMF$

CMF$

cMr$

c

c

c

ensure that all vectors are laid out across the CM nodes
layout charges (lnews), xpos (:ner¡s), ypos (:news)
layout starts (:news), bonds (:ne¡us), dx (:news), dy (:news)
Iayout xforper (:ner¡s), yforper (:news)

define a simple molecule
charges = 1.0
xpos = [0 . 0 ,0 . 8 , -0 . 4, 1 . 0, -! .0 ,2. 0,0 . 0 , -0 . 1 ,0 .2 ,-o . ! ,o .2 ,

+ 3,3,-0.1,-1.1,0.0,1.0]
ypos = [0. 0, 1,2,!,2, 1. 0,-0. 2, 0. 0,-1. 0,-0. 1,0. 6, -11. 0,0. 0,

+ -0.2,-0.1,1.1,2.L,L.!f
starts = [1,5,9, 15, !7,20,24,25,28,33,40,+3 r+6,48,51,52,55]
bonds = 12,5,7, LO 11, 3, 9, !0,2,4,6,8, 9, 10, 3, 5, 1, 4, 6, 3, 5, 9, 10, 1,

+ 3,9, 10 r 2 13 ,6 ,8, 10, 1 ,2,3 ,6,8,9, 14, 13, 15, 16, 13, 15, 16,
+ 1t,72,!O,t2,!6, 11,11 ,12,!4f

serially iterate across all atoms in the molecule
do i=1,NAT0MS

c

c

for each bond of the current atom, calculate the
distance to the atom at the other end

foraIl (j=starts(i) : starts(i+1)-1)
dx (j) = xpos(bonds(j))-xpos(i)

fora11 (j=starts(i) : starts(i+1)-1)
¿y (j) = ypos(bonds(j))-ypos(i)

+

+

c

compute the force upon this atom due to each bond

forall (j=starts (i) : starts(i+1)-1)
+ xforper (j) = ((charges (bonds(j))*cfrarges(i))/
+ (dx(j)**z + dy(j¡+*2)) + ax(j)

f orall ( j =starts (i) : starts(i+1)-1 )

+ yforper (j¡ = ((charges (bonds(j))*cirarges(i))/
+ (dx(j)**z + dy(j¡**2)) * ay(j)

sun all the per-bond forces together to produce a resultant force
xfortot (i) = sum (xforper, ¡nask= (i .ge. starts(i)) .and.

(i .ft. starts(i+1) ) )

yfortot (i) = su¡n (yforper, mask= (i .ge. starts(i)) .and.
(i.rt. starts(i+1)))

end do

end

+

+
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