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ABSTRACT

Arabinoxylans and (1+3,1+4)-B-D-glucans represent up to 95Vo of barley

endosperm cell walls by weight. After germination, cell walls constitute a physical

barrier that limits the access of hydrolytic enzymes secreted from the aleurone layer or

the scutellum to their substrates within cells of the starchy endosperm. Degradation of

cell wall arabinoxylans to their constituent monosaccharides in germinated barley is

mediated, in part at least, by the action of (1+a)-B-xylan endohydrolases (EC 3.2.1.8).

In the present study, a cDNA of 1.3 kb in length was amplified from poly(A)+-RNA

isolated from gibberellic acid-treated barley aleurone layers using 3' RACE-PCR (Rapid

Amplification Complementary DNA Ends-polymerase chain reaction). The NH2-

terminal amino acid sequence deduced from the cDNA showed almost complete identity

with the NH2-terminal sequence previously determined from purified barley (1+a)-B-

xylanase itself.

The PCR product was used to isolate two cDNAs encoding different (1+a)-Þ-

xylanases from cDNA libraries constructed from gibberellic acid-treated barley aleurone

layers and 5-day old seedlings. The (1-+4)-B-xylanase isoenzyme X-I cDNA is a near

full-length cDNA which encodes a polypeptide containing 427 amino acid residues; this

includes a putative signal peptide of 32 amino acids. The deduced polypeptide sequence

of the mature enzyme has two putative glycosylation sites and contains 395 amino acid

residues. It has a calculated M¡ of approximately 44,600, an isoelectric point of 6.1, and

is likely to adopt an (crlp)3-barrel conformation. The cDNA for isoenzyme X-II is

truncated at its 3' end and shows approximately l3%o divergence in its deduced amino

acid sequence compared with isoenzyme X-I. The cDNAs show a sequence identity of

9IVo at the nucleotide level. This indicates that the (1+4)-p-xylanase cDNAs are

derived from two separate genes. Both enzymes exhibit sequence and structural

similarities with microbial xylanases.

In attempts to obtain large quantities of pure (1+4)-B-xylanase protein, the near

full-length oDNA for isoenzyme X-I was expressed in the heterologous host E coll using
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the plasmid pET 14-b expression vector. The protein was expressed at high levels, but

was deposited in insoluble aggregates. No xylanase activity could be detected, even after

the partial solubilization of the inclusion bodies.

Examination of the expression patterns of the (1+a)-B-xylanase genes in barley

was based on measuring levels of (1+4)-B-xylanase mRNA by Northern blot analyses.

These analyses showed that expression of the (1+4)-B-xylanase genes in germinated

barley grain appeared to be confined largely to the aleurone layer. No mRNA transcripts

could be detected in either young or mature vegetative tissues. Treatment of aleurone

layers with gibberellic acid, abscisic acid or both, indicated that gibberellic acid induces

both transcriptional activity of the gene and the secretion of active enzyme from the

layers. Abscisic acid abolishes the gibberellic acid induction of (1+4)-B-xylanase gene

expression.

A gene encoding (1-+4)-B-xylan endohydrolase isoenzyme X-I was isolated from a

barley genomic library and the nucleotide sequence of a27O4 bp fragment defined. The

gene contains a single intron of 91 bp in the coding region of the mature enzyme, but

additional introns might be present in the 5'-untranslated region. Promoter sequences

and cis-acting elements previously identified as components of gibberellic acid response

complexes in other plant genes were detected within 200 bp of the putative transcription

start site. The cis-acting elements include a pyrimidine box CTCTTTCC, together with

TAACGAC and TATCCAT boxes. The hormonal responses described above were

consistent with the presence of this gibberellic acid response complex.

Genomic Southern blots indicated that the barley (1+4)-B-xylanase enzymes are

encoded by a family of at least 3 separate genes. Analysis of six barley cultivars

demonstrated that polymorphism exists between the cultivars, and this has been used in a

separate study to incorporate the genes into high density genetic maps. A genomic blot

of wheat-barley addition lines revealed that the three genes encoding barley (l+a)-B-

xylan endohydrolase isoenzymes are all located on barley chromosome 7 (5H).
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Chapter

Barley (Hordeum vulgare L.) is a commercially important cereal that has been used

for thousands of years for the production of alcoholic beverages, for human consumption

and as an important constituent of animal feed. It is a monocotyledonous plant which is

classified in the Triticeae tribe of the family Poaceae in the order Poales (Bothmer et aL,

1991). One of the distinguishing features of the Poales, even within the Monocotyledonae,

is the unusual composition of their cell walls (Carpita, 1996). Although cell walls only

account for about 5Vo by weight of barley grains, constituent polysaccharides of the walls

exert a disproportionately large influence during the commercial utilization of barley grain,

particularly in the brewing, distilling and stockfeed industries (Fincher, 1992). As a result,

there has been considerable research attention directed towards the analysis of cell walls in

barley grain and towards hydrolytic enzymes that depolymerize the major polysaccharide

components of the walls in the germinated grain. The most important enzymes in wall

degradation in germinated grains are probably the (l+3,1+4)-B-glucan endohydrolases

and the family of enzymes that hydrolyse arabinoxylans. While the (l+3,l+a)-p-

glucanases have been charucterized in detail and their genes have been cloned (Høj and

Fincher, 1995), much less information is available on the enzymes which hydrolyse the

arabinoxylans. The isolation and characterization of the gene(s) and corresponding

cDNAs encoding barley (1+4)-Þ-D-xylan endohydrolases were the major objectives of

this study.

In this Chapter the anatomy, morphology and composition of the barley grain are

reviewed, together with the structural and physiological changes which accompany reserve

mobilization after germination. In addition, the role of arabinoxylans in the cell wall and

the characteristics of enzymes responsible for arabinoxylan degradation are outlined,

Finally, the specific objectives of the work described in this thesis are listed.
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1.1 Barley grain anatomy and composition

The barley grain consists of two major structural components, the embryo and the

endosperm (Figure 1.1). These grain components are surrounded by a testa, the remnants

of the pericarp and the fused, dead tissue of the palea and lemma. The latter are referred to

collectively as the husk. Harvest-ripe, mature barley grains contain approximately SOVo

carbohydrate, IÙVo protein, 3Vo lipid, and 2Vo minerals (Duffus and Cochrane, 1993).

Oligosaccharides, mainly raffinose and low molecular weight fructans, represent about2Vo

of the dry weight, as does sucrose.

At the basal end of the grain is the embryo, which contains living tissues and is

diploid in nature. The embryo consists of an apical meristem (plumule), sheathed by the

coleoptile, and the primary rootlet (radicle), which is protected by the coleorhiza (Briggs,

1978,1992). Following germination, the plumule and radicle give rise to the young shoots

and roots, respectively, The embryo represents only about 2.57o of grain weight. It is rich

in protein (34Vo), sugars (sucrose, I5Vo; raffinose, 5-l0Vo), some fructans, lipids (14-I7Vo)

and ash (S-IOVo). The embryo contains more free sugar than the endosperm and is

therefore well-supplied with a readily available source of energy to support its initial

metabolic activities during germination and growth (Briggs, 1992).

An important component of the embryo is the scutellum, a shield-shaped tissue

which is situated between the embryonic axis and the endosperm. The scutellum is made

up mainly of thin-walled, cuboid parenchymatous cells. However, at the interface with the

endosperm it has a single-celled layer of palisade-type columnar epithelium cells (Briggs,

1992). The scutellar epithelium cells contain a nucleus, mitochondria, ribosomes and

endoplasmic reticulum (ER) (Nieuwdorp and Buys, 1964; Swift and O'Brien, 1972 a,b)

and are packed with phytin-containing protein bodies which serve as a source of amino

acids and phosphate during and following germination (Swift and O'Brien, 1972 a, b;

Smart and O'Brien, 1979 a, b, c; Nieuwdorp , 1963; Aisien et a1.,1936).
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The other major component of the barley grain is the endosperm. This tissue is the

primary site of nutrient storage in the grain and consists of two morphologically and

functionally distinct components; the aleurone layer and the starchy endosperm. The

starchy endosperm is surrounded by the aleurone layer, except in the region of the

scutellum. The aleurone consists of a thin layer of living cells 50-110 pm in diameter; the

cells are roughly cuboid and are separated by thick cell walls in which there are numerous

plasmodesmata. The tissue contains no starch but is rich in protein (I7-20Vo),

triacylglycerols (20Vo), minerals and sugars (including sucrose, raffinose and probably

stachyose, verbascose and fructans) (Briggs, 1992). Mature aleurone layer cells contain

nuclei, mitochondria and endoplasmic reticulum (ER), and are packed with specialized

protein bodies called aleurone grains. The aleurone grains contain proteins which are

relatively rich in basic amino acids. Embedded in the aleurone grains are deposits of both

phytin and niacytin (Bacic and Stone, 1981 a; Fulcher et aL, 1917). Thus, the aleurone

layer serves as a store of amino acids, phosphate, niacin, sugars and minerals which are

subsequently mobilized for the generation of the enzymes necessary for endosperm

mobilization. In addition, the aleurone has the cellular machinery necessary for protein

synthesis and secretion (Fincher, 1989).

The non-living starchy endosperm is the main storage tissue in the mature barley

grain and constitutes over 75Vo of the grain by weight (Briggs, 1992). The starchy

endosperm consists of thin-walled cells which are tightly packed with starch granules

embedded in a proteinaceous matrix (Bewley and Black, 1983; Briggs, 1978). Starch,

which itself constitutes 58-65Vo grain dry weight, is almost exclusively located in starchy

endosperm cells (Briggs, 1992). Polar lipids occur within starch granules and appear to

contribute to their structural characteristics (Morrison, 1988). In addition, the starchy

endosperm contains approximately 9Vo (w/w) protein (Briggs, 1992). Proteins in the

starchy endosperm of harvest-ripe barley consist of approximately 3OVo hordein, 30Vo
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glutenin and IOVo globulin. The remaining LÙVo is composed of albumins and free amino

acids (Brandt,1976).

1.2 Composition and organization of cell walls

Primary cells walls in higher plants are polysaccharide-rich extracellular structures

which are generally composed of cellulosic fibres embedded in a matrix of non-

cellulosic polysaccharides and proteins. The cellulose is organized into bundles of

approximately three dozen linear chains of (1+ )-B-glucan; these aggregates constitute

the cylindrical microfibrils that can be observed under the electron microscope (Darvilt

et a1.,1980; Carpita, 1996). The cellulosic microfibrils in most higher plant cell walls

are closely associated with adherent xyloglucan and/or glucuronoarabinoxylan chains

and form an extensive, reinforcing network throughout the wall (Albersheim et al.,

L994). The matrix phase of the cell wall consists variously of glucuronoarabinoxylan,

xyloglucans, (1+3,1-+4)-p-glucans and pectic polysaccharides (Fincher and Stone,

1986; Bacic et al., 1988; Albersheim et al., 1994; Carpita, 1996). Structural protein,

including hydroxyproline-, threonine-hydroxyproline- and glycine-rich glycoproteins,

are widely distributed constituents of the matrix phase and might provide a second

network to strengthen or fortify fully elongated or differentiated cells (Albersheim et al.,

1994; Cassab and Varner, 1988; Carpita, 1996). \ü/alls also contain enzymic proteins

that modify cell wall components during normal growth and development or in the face

of biotic and abiotic stress (Fry, 1995).

As mentioned at the beginning of this Chapter, cell walls of the Poales have

several important features that distinguish them from those of the Dicotyledonae and

other Monocotyledonae. These differences include the relative abundance of

glucuronoarabinoxylans and the exclusive occurrence of the (1+3,1-+4)-B-glucans in

the Poales (Bacic et a1.,1988; Carpita, 1996). Xyloglucans are much less abundant and
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important differences are observed in the fine structure of the pectic polysaccharides

(Carpita, 1996). Furthermore, primary cell walls of the Poales are enriched in ferulate

and p-coumarate esters which are attached to the C(O)5 atom of arabinosyl residues in

glucuronoarabinoxylans (Rudall and Caddick, 1994).

Walls of barley endosperm cells, including those of both the aleurone and the

starchy endosperm, exhibit specialized compositions that are clearly related to their

function in the grain. Levels of cellulose are low, as might be expected in non load-

bearing primary walls that must be rapidly degraded in the germinated grain. Endosperm

walls are composed predominantly of (1+3,1+4)-p-glucans and arabinoxylans; the latter

are associated with esterified ferulic acid and some p-coumaric acid, but are low in

glucuronic acid residues (Fincher, 1975, 1976).

Although detailed chemical and physical data are available on the (l+3,1+4)-B-

glucan and arabinoxylan fractions of cereal grain cell walls, the molecular organization

and interactions of these components in the wall matrix and at the matrix-microfibril

interface have not been clearly defined (Woodward et a1.,19S3). Several complex models

involving both covalent and non-covalent cross-linking of the polysaccharide and protein

constituents of cell walls have been proposed (Fincher and Stone, 1986; Fry, 1995;

Albersheim et aL, 1994; Gibeaut and Carpita, 1994; Carpita, 1996), together with the

suggestion that (l+3,1-+4)-p-glucans and arabinoxylans form a non-covalent, three-

dimensional gel network with all the properties of porosity, elasticity and mechanical

strength required for cell wall function (Fincher and Stone, 1986).

The arabinoxylans and (l-+3,1+4)-B-glucans together account for up to 95Vo of

polysaccharides in cell walls of the aleurone layer and starchy endosperm of the mature

barley grain, The walls also contain small amounts of cellulose and glucomannan, but

pectin, xyloglucan, lignin and hydroxyproline-rich glycoproteins have not been reported.

A substantial proportion of the protein present in cell wall preparations is believed to be of

cytoplasmic origin (Fincher, 1975; Bacic and Stone, 1981 b). The compositions of cell
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walls from the aleurone layer and starchy endosperm of mature barley grain, and from

vegetative tissues are compared in Table 1.1. The striking difference between walls in the

endosperm is that those of the starchy endosperm cells contain approximately 70Vo

(l-+3,1+4)-Þ-glucan and2ÙVo arabinoxylan, whereas the aleurone layer cell walls contain

approximately 26Vo (l+3,I+4)-B-glucan and 67Vo arabinoxylan (Fincher, 1975; Bacic

and Stone, 1981 b).

In contrast to the walls of the endosperm, walls of vegetative tissues of young barley

seedlings are comprised of 55-65Vo cellulose and may contain some lignin, in keeping with

the requirement of the load-bearing cell walls in these tissues to provide greater structural

rigidity than is needed in the starchy endosperm of the germinated grain (Bacic et al.,

1988; Fincher, 1992) (Table 1.1). In addition to (1+3,1+4)-B-glucan and arabinoxylan,

which constitute only 30-40Vo of these walls, pectic polysaccharides and xyloglucan may

also be present (Fincher, 1992).

(l+3,1-+4)-þ-Glucan structure: The (1+ 3,1+4)-B-glucan component of barley

endosperm cell walls consists of linear chains of glucopyranosyl residues polymerized

through (1+3)- and (1+4)-BJinkages. These glucan molecules are heterogeneous with

respect to size, solubility and molecular structure (Bacic and Stone, 1981 b; 'Woodward

and Fincher, 1983). They are unbranched polymers containing approximately 7O7o

(1+4)- and 30Vo (1+3)-linked B-glucosyl residues ananged predominantly in blocks of

two or three (1+4)-B-linkages separated by single (1+3)-linkages (Parrish et al., 1960;

'Woodward and Fincher, 1983). In addition, blocks of up to 10-12 contiguous (1+4)-F-

glucosyl residues are found and account for approximately lOVo by weight of the

polysaccharide (Woodward and Fincher, 1983). The major structural features of

(l+3,1+4)-B-glucan molecules found in cell walls can therefore be represented as

follows:



Table I.2 Characteristics of xylan endohydrolases purified from

different microorganisms

Source References

Fibrobactor

succinogenes

s85

Penicillium
Chrysogenum

Aspergillus

nidulans

Piromyces

Actínomycete

microtetraspora

flexuosa

Bacillus sp

strainbp-23

Aspergillus

nidulans

Talaromyces

emersonii

Matte and

Forsberg (1992)

Haas et aI.

(ree2)

Femândez-

Espinar et aI.

(tee4)

Teunissen

(1ee3)

Berens et al.

(ree6)

Blanco et al.

(1ees)

Fenândez-

Espinar (1993)

Tuohy et al.

(1ee3)

8.9

8.0

4.2

3.4

9.1

6.0

9.3

6.4

5.3

4.2

5.5

5.5

6.0

6.0

6.0

4.2

3.5

8.4

9.45

7.0

6.3

22.O

32.O

12.5

34.0

35.0

74.85

54.2

26.3

16.8

53.7

66.0

Isoelectric point

(pI)

Optimum pHMolecular

weight (kDa)
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non-red------G4G3G4G4G3G4G 4G 4G3G 4G4G3G -------- red.

In the above diagram, B-glucopyranosyl residues are represented as G, the numbers 3 and 4

denote (1-+3)- and (1-+4)-B-linkages respectively, and "non-red" and "red" denote the

non-reducing and reducing termini of the polysaccharide chain.

Arabinoxylan structure: Arabinoxylans consist predominantly of the two pentoses,

arabinose and xylose, and are commonly referred to as pentosans (Figure I.2). However,

cereal arabinoxylans sometimes contain hexoses and hexuronic acids as minor constituents

and if this is the case they are more precisely referred to as heteroxylans or

glucuronoarabinoxylans (Fincher and Stone, 1986). The arabinoxylans in the starchy

endosperm cell walls of barley contain linear chains of (1+4)-B-xylanopyranosyl residues,

with one or two attached cr-L-arabinofuranose residues (Fincher and Stone, 1986; Yiëtor et

a|.,1993; MacGregor and Fincher, 1993; Cleemput et a1.,1995). The main chain of the

arabinoxylan is analogous to that of cellulose, but is composed of (1+4)-linked-B-xylosyl

instead of B-glucosyl residues. Substituents consist mainly of cr-L-arabinosyl residues

linked to the C(O)3 position of xylosyl residues; some arabinosyl residues are linked to the

C(O)2 position and some xylosyl residues are substituted with arabinosyl residues at both

C(O)z and C(O)3. cr-D-Glucuronopyranosyl residues and their 4-methyl ethers constitute

up to 4Vo by weight of the arabinoxylan from the husk of barley grains and are linked to

the C(O)2 position of xylosyl residues. However, substituents other than arabinose have

not been detected in the arabinoxylan in walls of barley endosperm cells (Aspinall and

Ross, 1963; Fincher,l975; Ballance et a1.,1986).

Phenolic acids such as ferulic acid and p-coumaric acid are also associated with

arabinoxylans, where they are usually esterified to C(O)5 of arabinosyl residues. The

phenolic acids constitute approximately 0.05Vo of starchy endosperm walls in barley grain

and l.2Vo of barley aleurone walls (Bacic and Stone, 1981 a; Fincher, 1976; Gubler et al.,

1985; Mueller-Harvey et al.,1986; Viëtor et al.,1993).
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Figure 1.2 Structure of cereal arabinoxylans. Molecules consist of a linear (1+4)-Ê-xylosyl

backbone which is substituted at the O-2 and/or O-3 positions of xylosyl residues with cr-

arabinofuranosyl residues. Ferulic acid residues are sometimes esterified to the O-5 of arabinofuranosyl

residues (MacGregor and Fincher, 1993)
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The degree of arabinosyl substitution in cell wall arabinoxylans in plants depends on

the tissue location and the source of the polysaccharides (Carpita, 1996). Similarly,

arabinoxylans in barley vary widely with respect to their xylose to arabinose ratios. For

example, ratios of approximately 9:l arc observed in heteroxylans from husks (Aspinall

and Ferrier,1957), whereas in arabinoxylan preparations from the starchy endosperm or

aleurone layerwalls, ratios of 1:1 to2.3:1 are normally found (Fincher, 1975; McNeil ¿r

a1.,1975: Bacic and Stone, 1981 b; Ballance and Manners, 1978; Ballance et a1.,1986).

Organization of polysaccharides within the walls: McNeil et al. (I975) have attempted

to describe the interactions between arabinoxylans and cellulose within walls of the

barley aleurone layer using in vitro cellulose-binding experiments. Assuming that

arabinoxylans bind non-covalently to cellulose in vivo, it appears likely that any binding

would be controlled by the degree of arabinosyl substitution. The results of the

cellulose-binding experiments demonstrate that arabinoxylans require regions of at least

four contiguous, unbranched (1+4)-B-xylosyl residues for binding to occur (McNeil er

aL, 1975). Thus, the unsubstituted regions of the arabinoxylan may be able to form non-

covalent associations with the cellulosic chain, and the interaction is likely to be

stabilized by the formation of extensive hydrogen bonding of the type found in cellulosic

microfibrils. The regions of arabinoxylan/cellulose association have been referred to as

"junction zones" (Rees and Welsh,1977;Dea,1979). It seems likely that arabinoxylans

could bind not only to cellulose, but also to (1+3,1+4)-B-glucans and other

arabinoxylan molecules, to form a two component gel that would constitute the matrix

phase of the primary cell wall (Fincher and Stone, 1986). It has been postulated that a

decrease in the number of arabinosyl substituents in cell-wall arabinoxylans would

facilitate the formation of junction zones (Fincher and Stone, 1986) and that the strength

and porosity of the cell wall matrix could therefore depend on the number and

arangement of arabinosyl substituents along the xylan backbone.
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Although the binding of arabinoxylans in barley endosperm cell walls probably relies

mainly on non-covalent interactions, covalent cross-linking of wall polysaccharides is

also possible (Fincher, 1986; Fry and Miller, 1989; Carpita, 1996). It has been suggested

that ferulic acid substituents are involved in the formation of firm gels by oxidative

dimerization of ferulic acid residues and the attendant cross-linkage of arabinoxylan

chains (Izydorczyk et a1.,1990; Geissman and Neukom, 1973). The ferulic acid residues

detected in barley endosperm cell walls might therefore act as a covalent cross-linking

agent between arabinoxylan chains or in polysaccharide/protein interactions in the cell

wall matrix (Markwalder and Neukom, 1976; Fincher and Stone, 1986; lzydorczyk et al.,

1990). However, the existence of such diferulic acid cross-links in plant cell walls has

not always been rigorously demonstrated.

1.3 Physiological changes following germination of the barley grain

Germination of viable, non-dormant barley grain is initiated by the uptake of water,

which mostly enters through the micropylar region and subsequently penetrates to the

interior of the grain (Briggs, 1992). When water is taken up, the grain swells as the

embryo and endosperm become turgid. The first visible sign of the completion of

germination is the emergence of the coleorhiza from the base of the grain. The coleoptile

then breaks through the testa and grows up the dorsal side of the grain (Briggs, 1978;

Bewley and Black, 1994). Following germination, the reserves of the starchy endosperm

are mobilized and their breakdown products are translocated to support the growth and

development of the embryo and young seedling. The mobilization process in effected by a

battery of enzymes, many of which are secreted into the starchy endosperm by the

aleurone layer and the scutellar epithelium. Some enzymes pre-exist in the starchy

endosperm of the mature grain and are released or activated after germination (Fincher,

1989). In the sections below, the changes observed in the aleurone layer and scutellum of
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germinated grain are related to functions of these tissues in starchy endosperm

mobilization, and regulation of enzyme synthesis in aleurone layers and scutellar cells is

briefly reviewed.

1.3.1 Changes ìn the scutellum

Following germination, dramatic ultrastructural changes occur in the scutellum. The

scutellar epithelial cells elongate to approximately twice their original length (Smart and

O'Brien, l9l9 a). The outer wall of the scutellar epithelium is digested and a relatively

thin inner wall layer remains. This results in the formation of extended, "papillae-like"

cells with a greatly enhanced surface area for absorption of starchy endosperm degradation

products. The protein bodies and associated phytin inclusions of the scutellar epithelium

dissolve and appear to be converted to large vacuoles (Gram, 1982), whilst lipid bodies

gradually disappear. Mitochondria become active, and well-defined ER and Golgi bodies

appe¿u (Nieuwdorp and Buys, 1964; Swift and O'Brien,1972 a, b; Gram,1982).

While it is generally accepted that the aleurone layer is the major source of

hydrolytic enzymes following grain germination, the scutellum is also thought to

contribute to the secretion of enzymes into the starchy endosperm, particularly in the early

stages of endosperm mobilization (Fincher and Stone, 1986). Thus, the scutellum serves

several functions after germination. One major function is believed to be the synthesis and

secretion of the phytohormone gibberellic acid (GA). This hormone diffuses to the

aleurone layer, where it initiates the expression of specific genes (Fincher and Stone, 1993;

Bewley and Black, 1994; Jacobsen et a1.,1995).

A second function of the scutellum, as indicated above, is to synthesize and secrete

hydrolytic enzymes. These enzymes participate in the early stage of the depolymerization

of starchy endosperm reserves. Starch and cell wall degradation in germinated barley

initially occurs adjacent to the scutellar epithelium (Briggs, 1972; Gibbons, 1979,1980,
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1981; Okamoto et al., 1980; Gram, 1982: Stuart et al., 1986 a; McFadden et al., 1988;

Bewley and Black, 1994). Compared with the aleurone layer, the scutellum synthesizes a

relatively large amount of (1+3,1+4)-B-glucanase isoenzyme EI (Stuart et aI., 1986 a;

Slakeski and Fincher, 1992 a) and carboxypeptidase I (Mundy et al., 1985; Ranki et al.,

1990), but relatively small amounts (5-l0%o of total) ct-amylase (Mundy et al., 1985; Stuart

et a1.,1986 a; Ranki, 1990; Jacobsen et a\.,1995). The scutellum produces o-amylase for

I-2 days, whereas aleurone layer production of cr-amylase peaks after 3-4 days (Jacobsen

et a1.,1995).

The third role of the scutellum during reserve mobilization is to absorb degradation

products from the starchy endosperm and translocate them to the growing embryo, and this

function is clearly facilitated by the increase in surface area of scutellar epithelium cells

described above.

1.3.2 Changes in the aleurone layer

The aleurone layer is probably the most important source of hydrolytic enzymes for

starchy endosperm degradation. Several research groups have shown that isolated

aleurone layers secrete o-amylase (Chrispeels and Varner,1967; Filner and Varner,196'l),

(1+3,1+4)-p-glucanase (Stuart et al., 1986 a; Slakeski and Fincher, 1992 a), xylan

endohydrolase, ot-arabinofuranosidase, B-xylosidase (Dashek and Chrispeels, 1977; Slade

et aI., 1989), limit dextrinase (Hardie, 1975; X. Zhang, R. Burton and G. B. Fincher,

unpublished data), cr-glucosidase (Hardie, I975; Tibbot and Skadsen, 1996), peroxidase

(Gubler and Ashford, 1983), (1+3)-F-glucanases (Taiz and Jones, 1970) and nuclease I

(Chrispeels and Varner, 1967). Thus, the aleurone layer secretes a battery of enzymes that

is capable of depolymerizing starch, protein, cell wall polysaccharides and residual nucleic

acids that are stored in the starchy endosperm.
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Cells of the aleurone layer exhibit ultrastructural changes in keeping with their

primary role of synthesizing and secreting hydrolytic enzymes. Within the aleurone layer

cells, the protein bodies and their inclusions of phytin and niacytin gradually disappear,

and the protein bodies are transformed into vacuoles which occupy a large proportion of

the cell (Van Der Eb and Nieuwdorp, 196l). Furthermore, there is a proliferation of ER,

lipid bodies diminish in number, mitochondria become highly active (Van Der Eb and

Nieuwdorp, t96'l; Gram, 1982) and Golgi bodies are more abundant (Fernandez and

Staehelin, 1985; Heupke and Robinson, 1985; Gubler et aI., 1986). It is clear, therefore,

that reserve proteins, lipids, niacytin and phytin are mobilized during the generation of the

protein-synthesizing machinery that becomes very active after germination.

1.3.3 Reserve mobilization in the starchy endosperm

The scutellum and aleurone layer both participate in endosperm mobilization and

dissolution patterns reflect a temporally and spatially coordinated secretion of hydrolytic

enzymes from these specialized tissues that surround the starchy endosperm. Enzymes

secreted from the scutellar epithelium initially degrade the starchy endosperm adjacent to

the scutellum. However, after about I day the aleurone layer becomes the principal source

of hydrolytic enzymes (Gibbons, 1981; McFadden et al., 1988). As a result, barley

endosperm dissolution begins in the region immediately adjacent to the scutellum and

progresses towards the distal end of the grain as a front that is approximately parallel to the

face of the scutellar epithelium (Briggs and MacDonald, 1983; Briggs, 1992; Fincher and

Stone, 1993; Bewley and Black, 1994).

Three major phases involved in the mobilization of the starchy endosperm reserves

can be identified:

¡ degradation of the aleurone layer and starchy endosperm cell walls;

o depolymerization of proteins, starch and other storage reserves;
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. translocation of the degradation products to the growing embryo.

Degradation of cell walls: Because hydrolytic enzymes are secreted, in large part, from

tissues which surround the starchy endosperm, and because the cell walls of the endosperm

are not likely to be sufficiently porous to allow free diffusion of enzymes of the size found

in germinated grain (Carpita et al., 1979; Tepfer and Taylor, 1981; Fincher, 1992),the

barrier presented by the cell walls must first be removed so that the starch- and protein-

degrading enzymes can reach their target substrates within the starchy endosperm cells.

Thus, cell wall degradation is an important event which is essential for the efficient

mobilization of starchy endosperm reserves. The mode of action of the major enzymes

involved in cell wall breakdown are described in detail in section 1.4.

Starch degradatio,n: Starch is degraded to glucose and small oligosaccharides by the

combined action of cr-amylases, B-amylases, limit dextrinases and cr-glucosidases. 0¿-

Amylases (EC 3.2.1.1) are endohydrolases that cleave internal (l+4)-o-glucosyl linkages

of amylose or amylopectin in an essentially random fashion. The cx,-amylases synthesized

in germinated barley grain are Ca2+-dependent. a-Amylases are classified into two groups

on the basis of their isoelectric points; low pI isoforms (AMYI, pI4.5 to 5.0) and high pI

isoforms (AMY2, pI 5.9 to 6.4) (Callis and Ho, 1983). A third group, AMY3 (pI 6.5), is

comprised of high pI isoforms complexed with an cr-amylase inhibitor (MacGregor and

MacGregor, 1987). Immunocytochemical studies show that the initial production of cr-

amylase occurs in the region of the scutellum (Briggs and MacDonald, 1983; Gibbons,

1981), but represents a small proportion of the total cr-amylase in the grain. Most a-

amylase is synthesized in the aleurone layer (Ranki, 1990; Chandler and Mosleth, 1990;

MacGregor et a1.,1984). MacGregor and Marchylo (1986) have suggested that low-pl cr-

amylases are predominant in barley embryos.
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B-Amylases (EC 3.2.I.2) are exohydrolases that cleave the penultimate (1+4)-cr-

linkage from the non-reducing end of (1+4)-a-glucans to release maltose. In contrast to

cr-amylase, B-amylase is preformed in mature, quiescent barley grains and little or none is

synthesized following germination. Instead, the B-amylases are released from the bound

state, probably through the action of peptidases (Sopanen and Lauriere, 1989; Guerin ¿/

al.,l99l). B-Amylases are unable to hydrolyze intact starch granules. However, they act

synergistically with cr-amylases to degrade the granules following the secretion of the

endohydrolases from the scutellum or aleurone layer (Maeda et al., 1978; Sissons et aI.,

1992).

Limit dextrinases (EC 3.2.L41) are endohydrolases which hydrolyze branch point

(1-+6)-a-linkages in amylopectin or in branched (1+4,1+6)-ct-oligoglucosides. Limit

dextrinases are detected in low amounts in mature dry grains of barley (Manners and

Hardie, I9l7), and increase following germination (Lee and Pyler, 1984). Although

purified limit dextrinase has no action on starch granules, it enhances the rate of granule

dissolution when added to a mixture of ø- and p-amylases (Maeda et a1.,1978; Sissons ¿/

a1.,1992).

cr-Glucosidases (EC 3.2.L20) arc exohydrolases which liberate glucose from

polymeric cr-glucans and o-oligoglucosides. Barley cr-glucosidases have been reported to

initiate the hydrolysis of native starch granules in vitro at arate comparable to o-amylase

(Sun and Henson, 1990, 1991). Barley a-glucosidase is present during early grain

development and decreases during late maturation (MacGregor and Lenoir,1987:. Stark

and Yin, 1987). Very low amounts are present in the aleurone layer, pericarp and embryo

of ungerminated grain (Jorgensen, 1965: MacGregor and Lenoir, 1987; Watson and

Novellie, 1974). After germination, activity increases about six-fold (Jorgensen,1965)

and this new activity is found in the scutellum, aleurone layer, starchy endosperm and

embryo (MacGregor and Lenoir, L987; Clutterbuck and Briggs, 1973; Hardie, 1975:

Jorgensen, \965; Stark and Yin 1987). Thus, the concerted action of cr-amylases, p-
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amylases, limit dextrinases, and a-glucosidases allows the complete depolymerization of

both amylopectin and amylose to glucose.

Protein degradation: The starchy endosperm contains about two thirds of the total protein

reserves of the barley grain (Mikola and Kolehmainen,I9T2). Levels of active peptidases

in the resting grain are low, and are thought to result mainly from the activity of the

enzymes necessary for the mobilization of the aleurone layer or scutellar reserves (Fincher,

1989). In germinated grain, several endo- and exo-peptidases are responsible for the

mobilization of the storage proteins. The peptidases either pre-exist in the starchy

endosperm and are activated after germination or are secreted by the aleurone layer and

scutellum during and following grain germination (Mikola and Kolehmainen, 1972;

Mikola, 1983, 1987). The endopeptidases are important in the initial solubilization of

reserve protein and provide shorter peptide substrates for carboxypeptidases (Jones and

Poulle, 1988). Cysteine endopeptidases are the most abundant endopeptidases, accounting

for approximately 90Vo of the proteolytic activity in the germinated grain, Some cysteine

endopeptidases are secreted from isolated aleurone layers (Hammerton and Ho, 1986).

Serine carboxypeptidases are the major exo-peptidases involved in protein degradation in

the starchy endosperm (Mikola, 1987), and five serine carboxypeptidases (EC 3.4.16.1)

with different substrate specificities have been identified in germinated barley (Mikola,

1983). Final products of the action of endo- and exo-peptidases include free amino acids

and small peptides of two or three amino acid residues. These di- and tri-peptides are

rapidly transported into the scutellum and converted to free amino acids (Sopanen,1979;

Higgins and Payne, 1981; Payne and Walker-Smith, 1987).

Along with the starch- and protein-degrading enzymes, other hydrolytic enzymes

such as phosphatases, nucleosidases, nucleases and phosphodiesterases are also released to

salvage the constituents of residual DNA and RNA in the starchy endosperm (Chrispeels



Chapter One 16

and Varner, 1967;Taiz and Starks, I97l: Lee and Pyler, 1985, 1986, McFadden et al.,

1988).

1.3,4 Hormonal regulatíon of enzyme synthesís

During and following germination, gibberellins (GA) are synthesized in the embryo

and diffuse to the aleurone layer, where they trigger the synthesis and secretion of several

hydrolytic enzymes (Paleg, 1960 Yomo, 1960; Chrispeels and Varner, 1967; Jacobsen,

1983). GA3 is widely accepted to be the principal hormone involved in the initiation of

hydrolase synthesis. It is released from isolated barley embryos (Radley, 1967) and is

capable of stimulating the production of hydrolytic enzymes in aleurone layers isolated

from barley and from other cereal grains (Paleg, 1960; Yomo, 1960; Chrispeels and

Varner, 1967). There are high levels of specific GAs present in developing grain and these

may therefore have an additional role to play in grain development. The GA content of the

barley grain decreases during maturation and dry grain contains very low amounts of GAs.

The GA content of the grain rises again during and following germination, GA1 being the

predominant type in mature barley; low amounts of other GAs (GA¡, GA8, GAt7, GAt9,

GAzo, GAzg, GA:+ and Gfug) are also present in ungerminated grain (Gaskin et a1.,1984;

Croker et a1.,1990; Jacobseî et aI.,1995). After germination, GA3 predominates. It is not

clear whether specific GAs are synthesized in different tissues of the grain, or whether

target cells are differentially sensitive to the different forms of GA (Fincher, 1989; Fincher

and Stone, 1993). Similarly the exact site and mechanism of synthesis of the hormones

have not been fully determined. Several researchers have suggested that the embryonic

axis (Macleod and Palmer, 1967; Grosselindemann et aL,I99I), the scutellum (Radley,

1967; Lenton et aL,1994) or the aleurone layer itself (Atzorn and'Weiler, 1983; Lenton et

al., 1994) are possible sites of GA synthesis.
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The major effect of GA in the grain is the induction of de novo synthesis and

secretion of hydrolytic enzymes in the aleurone layer (Jones and Jacobsen, 1991). Mundy

and Munck (1985) showed that if the embryo is removed from barley endosperm earlier

than24 h after the start of imbibition there is no increase in GA in the endosperm and very

little a-amylase is produced. This result indicates that GA from the embryo stimulates the

production of cr-amylase. As mentioned earlier, application of GA3 to isolated barley

aleurone layer cells induces the secretion of a range of hydrolases, including cr,-amylase

(Chrispeels and Varner, 1967: Filner and Varner, 1967; Nicholls et al., 1986),

endopeptidases (Jacobsen and Varner, 1967;Hammerton and Ho, 1986; Koehler and Ho,

1990); ribonucleases (Chrispeels and Varner, 1967; Bennett and Chrispeels, 1972),

(l-+3,1+4)-p-D-glucanases (Mundy and Fincher, 1986; Stuart et a1.,1986 a; Slakeski and

Fincher, 1992b),limit dextrinase (Hardie,19751,X. Zhang, R. Burton and G. B. Fincher,

unpublished data), a-glucosidase (Clutterbuck and Briggs, l9l3; Hardie, 1975),

peroxidase (Gubler and Ashford, 1983), acid phosphatase (Ashford and Jacobsen, 1974:

Jones and Jacobsen, 1991), protease (Jacobsen and Varner, 1967) and arabinoxylan-

degrading enzymes (T aiz and Honigman, l9'7 6; Slade et al., 1 989).

Little is known about the precise molecular mechanisms of the action of GA (Jones,

1985), although it is clear that the hormone's action is reflected in altered transcriptional

activity of specific genes (Jacobsen and Beach, 1985, Fincher, 1989). Studies on the

regulation of gene expression, using isolated barley aleurone layers as a model system,

have revealed great variations in the response of different genes to GA3. The induction

patterns of the mRNA for o-amylase (Chandler et aL.,1984; Rogers, 1985), (1+3,1+4)-

B-glucanase (Mundy and Fincher, 1986) and a putative thiol protease (Rogers et a1.,1985)

indicate that GA3 exerts its control at the level of transcription (Jacobsen and Beach,

1985). The accumulation of low-pl mRNA increases approximately 20-fold after GA3

treatment, in contrast to high-pl ø-amylase mRNA, which increases by at least 100-fold

(Rogers, 1985; Bewley and Black, 1994). In addition, several groups have demonstrated



Chapter One 18

an approximately ten-fold stimulation of transcription of cr-amylase genes using nuclei

isolated from GA3-responsive barley aleurone layer protoplasts (Gubler and Jacobsen,

1992; Sutcliff et aI., 1993; Gubler et al., 1995; Jacobsen and Beach, 1985). Although

many studies have been focussed on the hormonal regulation of total cr-amylase mRNA

levels, less attention has been directed to examining the regulation of individual cr-amylase

mRNAs of the ct-amylase gene family (Higgins et ø1., I976; Jacobsen and Beach, 1985;

Muthukrishnan et a1.,1984;Zwar and Hooley, 1986).

Very little information is available concerning the effects of GA on the scutellum

during the synthesis and secretion of hydrolytic enzymes from this tissue. Levels of cr-

amylase secreted from excised barley scutella do not increase in the presence of exogenous

GA3 (MacGregor and Marchylo, 1986). However, the effects of exogenous GA3 may be

masked by the presence of the endogenous hormone in the excised scutella or,

alternatively, the scutellar cells may respond to other GAs (Fincher, 1989).

Several groups (Chrispeels and Varner, 1967; Jones and Jacobsen, 1983, l99I:

Stuart et aL, 1986 a; Jones et a1.,1987) have shown that the addition of Ca2+ to isolated

barley aleurone layers stimulates the secretion of u-amylases, (I->3,1+4)-B-glucanases,

(l+3)-F-glucanases, endopeptidases, nucleases and acid phosphatases. The Ca2+ is

generally assumed to exert its influence at the intracellular transport level, although the

mechanism of its action remains unclear and it may also be involved in signal transduction

associated with hormonal responses (Varner and Mense, 1972; Moll and Jones, 1982;

Bush ¿/ a1.,1989: Jones and Bush, I99l;Drozdowicz and Jones, 1995).

Abscisic acid (ABA) is another important phytohormone that may play a central role

in the process of grain maturation (King, 1976) by inducing the expression of "ABA-

specific" genes (Lin and Ho, 1986; Mundy and Fincher, 1986; Jacobsen and Chandler,

1987; V/illiamson and Quatrano, 1988; Clarke et aL,l991). These genes include those

encoding c-amylase inhibitors (Mundy, 1984; 'Weselake et aL.,1985; Mundy and Rogers,

1986), protease inhibitors (Svensson et aI., 1986) and various heat-stable proteins of
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unknown function (Jacobsen and Shaw, 1989). ABA also suppresses the expression of

genes which respond to GA3 ( Fincher, 1989; Jones and Jacobsen, 1991). It reverses GA¡-

promoted changes in protein synthesis and transcription in the barley aleurone layer,

including that of (1+3,1+4)-B-glucanases (Mundy and Fincher, 1986), cr-amylases

(Jacobsen and Beach, 1985; Nolan and Ho, 1988; Jacobsen et a1.,1995; Bewley and Black,

1994) and endopeptidases (Koehler and Ho, 1990).

1.4 Cell wall degradation

1.4.1 Degradøtion of starchy endosperm and aleurone layer cell walls

Hydrolytic enzymes secreted from the aleurone layer or from the scutellum must

cross the walls of the cells from which they are secreted, as well as walls of the starchy

endosperm itself. During reserve mobilization, the outer layer of the aleurone layer cell

wall is completely degraded while the inner layer remains resistant to digestion,

presumably to provide continued structural support for the protoplast (Taiz and Jones,

1970,1973;Bacic and Stone, 1981 a, b; Gubler et a|.,1987:' Fincher, 1992). The residual,

resistant inner wall layer appears to be sufficiently porous to allow secreted enzymes to

cross into the starchy endosperm. Thus, immunological studies have revealed that a-

amylase from GA3-treated barley aleurone layers diffuses through the inner layer of

aleurone walls, but secretion of the enzyme into the starchy endosperm requires the

formation of pronounced channels in the outer wall layer of the aleurone (Gubler et al.,

r987).

In the case of the scutellum, partial dissolution of the outer wall layers of the

scutellar epithelium separates the cells into cylindrical papillae at the endosperm/embryo

interface. As mentioned in section 1.3,1, this process results in an increase in surface area

of the epithelial cells and may be important for the translocation of degradation products of
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the starchy endosperm reserves from the endosperm to the embryo (Nieuwdorp and Buys

1964). In any case, changes in the scutellar epithelial and aleurone cell walls in

germinated grain are similar in that an inner wall layer remains apparently intact after

dissolution of an outer wall layer (Fincher, 1989; Bacic and Stone, l98l a).

Following the release of cell wall-degrading enzymes from the aleurone layer and

scutellum, cell walls of the starchy endosperm are degraded in an apparently biphasic

process. Initially, most of the walls are degraded but some remnants can be detected; these

remnants gradually disappear as a second front of enzymes diffuses across the starchy

endosperm (Selvig et a\.,1986; Fincher, 1989). The major polysaccharide constituents of

both aleurone layer and starchy endosperm cell walls are (1+3,1+4)-B-glucans and the

arabinoxylans (Table 1.1). The enzymology of (1+3,1+4)-p-glucan depolymerization

has been studied in detail for a number of years and is briefly summarized in section 1.4.2

below. In contrast to the large body of information available on (l+3,1+4)-p-glucan

hydrolysis, relatively little is known about the enzymes required for arabinoxylan

degradation. Similarly, the spatial and temporal regulation of genes encoding the enzymes

that participate in arabinoxylan hydrolysis has not been described. Available information

on arabinoxylan depolymerization is presented in section 1.4.3 below.

1.4.2 Hydrolysis of (I +3,1 4)- p-glucan

It might be expected that (l-+3,1+4)-B-glucans could be hydrolysed by the

following three classes of B-glucan endohydrolases, all of which have been detected in

germinated barley: (l+a)-F-glucan glucanohydrolase (cellulase, EC 3.2.1.4, Hoy et aI.,

1981; Manners et aL, 1982), (1-+3,1+4)-p-glucan 4-glucanohydrolase (EC 3.2.1.73,

Luchsinger et aI., 1960; Manners and Marshall, 1969; Manners and Wilson, 1976:

Woodward and Fincher, 1982 a, b), and (l+3)-F-glucan glucanohydrolase (EC 3.2.1.39,

Manners and Marshall, 1969; Manners and Wilson,1976; Bathgate et a1.,1974;Hgj et al.,
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1988, 1989; Hrmova and Fincher, 1993). In quantitative terms, the (l+3,1+4)-B-

glucanases are probably the most important, because (1+3)-B-glucanases are unable to

hydrolyse the single, isolated (l+3)-B-linkages found in these polysaccharides (Hpj and

Fincher, 1995) and because cellulases are relatively low in abundance (Hoy et a1.,1981).

The (l+3,1+4)-B-glucanases specifically cleave (1+4)-B-linkages of (1+3,1+4)-P-

glucan, only where the corresponding glucosyl residue is substituted at the C(O)3 position,

as follows:

JJJ
non-red---- ---G4G3G4G4G3G4G 4G4G3G4G4G3G-------- red.

Two (l+3,1+4)-p-glucanases, designated isoenzymes EI and EII, have been

purified from germinated barley and characterized (Woodward and Fincher, 1982 a).

Isoenzyme EI is predominantly synthesized in the scutellum, while isoenzyme EII is found

exclusively in the aleurone layer (Stuart et al,, 1986 b). Neither of the barley (l+3,1+4)-

p-glucanases can hydrolyze (1+3)-B-glucans or (1+4)-B-glucans (Woodward and

Fincher, 1982b; Hgj et a1.,1989).

The major products of cell wall (l+3,1+4)-B-glucans released by these

(l+3,1+4)-B-glucan endohydrolases are the trisaccharide 3-O-B-cellobiosyl D-glucose

(G4G3G¡g¿) and the tetrasaccharide 3-O -B-cellotriosyl D-glucose (G4G4G3Gre¿)

(Woodward and Fincher, 1982 b). Although the cell wall (1+3,1+4)-p-glucans will be

solubilized after hydrolysis with the endohydrolase, the oligosaccharide products represent

a valuable source of glucose for the developing seedling. Indeed, Morall and Briggs

(1978) have calculated that cell wall (l+3,1+4)-B-glucans account for up to 18.5Vo of

total glucosyl residues in the barley grain.

Enzymes capable of converting the (l+3,1+4)-p-oligosaccharides to glucose

include B-glucan exohydrolases and p-glucosidases, both of which have been detected in

homogenates of germinated grain (Preece and Hoggan, 1956; Manners and Marshall,
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1969;Leah et a1.,1995; Hrmova et a1.,1996). Hrmova et al. (1996) have suggested that

B-glucan exohydrolases are the most important enzymes in this process, because they

rapidly release glucose from the non-reducing terminus of (1+3)-, (1+3,1+4)-, (l+4)-

p-glucans and derived oligosaccharides, while the B-glucosidases hydrolyse (1+3)-Ê-

glucosyl linkages very slowly.

1.4.3 Arabínoxylan hydrolysß

1.4.3. 1 Degradation of arabinoryIan

The depolymerization of barley endosperm cell wall arabinoxylans during starchy

endosperm mobilization is probably achieved by the combined action of endo- and

exoxylanases, ct-arabinofuranosidases and B-xylosidases (Figure I.3; Preece and

MacDougall, 1958; Taiz and Honigman, 1976).

Endohydrolases: Xylan endohydrolases (EC 3.2.1.8) catalyse the hydrolysis of internal

linkages in (1-+4)-B-xylans in an essentially random fashion (Figure 1.3) and the final

products of hydrolysis are generally xylooligosaccharides with a degree of polymerization

(DP) of two or three (Preece and MacDougall, 1958; Dekker, 1989; Dekker and Richards,

1916). The enzymes may act on xylooligosaccharides as short as xylotriose, but at much

lower rates than they act on substrates with a higher DP (Reilly, 1981). Endoxylanases

may be distinguished from one another by the substrates upon which they act and by the

final products of such reactions. For example, Nishitani and Nevins (1991) have described

a sequence-dependent endoxylanase that requires a glucuronic acid substituent adjacent to

the cleaved ( 1 +4)-B-xylosyl linkage.

In general however, polymeric xylans are cleaved only at unsubstituted regions

and yield a mixture of unsubstituted xylooligosaccharides, together with short-and
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Figure 1.3 Depolymerization of arabinoxylans. -X+X-represents (l+4)-linked p-xylosyl residues, AsX- and AzX-

represent terminal o-arabinosyl residues linked to C(O)3 and C(O)2 positions of xylosyl residues, red indicates the

reducing end of the molecule.
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longer-chain substituted xylooligosaccharides. Thus, degradation products arising from

the early hydrolysis of arabinoxylan by endoxylanases are xylooligosacharides of mixed

constitution, usually containing arabinose and/or other substituents such as glucuronic

acid (or its 4-O-methyl derivative). The DPs of these early hydrolysis products vary, but

are normally greater than 4. As hydrolysis proceeds, xylose, xylobiose and xylotriose also

accumulate. Some highly purified microbial endoxylanases show transglycosylation

activity (Biely et a1.,1981). Thus, these microbial xylanases hydrolyse the main chain of

xylan, but are also capable of synthesizing oligosaccharides from high concentrations of

the low molecular weight hydrolysis products.

The extent of hydrolysis of arabinoxylans by the combined action of mainchain- and

substituent-cleaving enzymes might exceed the sum of hydrolysis by each enzyme acting

alone. A clear-cut example of such a synergy is that occurring between endoxylanase, P-

xylosidase and arabinoxylan arabinofuranohydrolase in the hydrolysis of wheat

arabinoxylans (Kormelink and Voragen, 1992). Puls and Poutanen (1989) have shown

that the xylanolytic enzymes from Trichoderma reesei act synergistically on a number of

different xylans. Hydrolysis starts by the action of endoxylanases, which decrease the

average DP of the substrate. The side-group-cleaving enzymes have their highest activity

towards short, substituted xylooligosaccharides, and hydrolysis is therefore completed by

the synergistic action of both endo- and exohydrolases.

þ-Xylosidases and xylan exohydrolases: Xylan exohydrolases and p-xylosidases, both

classified as members of the (F,C3.2.1.37) group, are often difficult to distinguish, as

indeed are exo-glycanases and glycosidases generally (Hrmova et a1.,1996). While xylan

exohydrolases normally release mono- or disaccharides from the non-reducing ends of

polysaccharide chains, p-xylosidases are often identified on the basis of their ability to

hydrolyse aryl and alkyl B-xylosides. The B-xylosidases generally hydrolyse polymeric

xylans slowly, if at all (Reilly, 1981). Nevertheless, B-xylosidases can generally hydrolyse
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short-chain xylooligosaccharides, liberating xylose from the non-reducing end, and the

substrate affinity of these enzymes usually decreases with increasing DP of the substrate.

Thus, xylosidases can act synergistically with endoxylanases (and perhaps other enzymes)

to accomplish extensive hydrolysis of polymeric heteroxylan substrates. Most p-

xylosidases cannot hydrolyse substituted xylooligosaccharides until the substituents are

removed by relevant ancillary enzymes (Puls, 1992; Coughlam and Hazelwood, 1993;

Herrmann et a1.,1996).

Arabinofuranosidases: a-L-Arabinofuranosidases (EC 3.2.1.55) can hydrolyse a-L-

arabinofuranosyl residues from cr-L-arabinofuranosides, arabinoxylans and

arabinogalactans (Figure 1.3). Kaji (198a) subdivided cr-L-arabinofuranosidases into two

groups: an Aspergillus niger-type cr-L-arabinofuranosidase and a Streptomyces

purpurascens-type a-L-arabinofuranosidase. The former group hydrolyses substrates of

low molecular weight, including L-arabinooligosaccharides, polymeric arabinans,

arabinoxylans and arabinogalactans. The latter group can act only on aryl or alkyl g-L-

arabinosides, and on cr-L-arabinooligosaccharides of low molecular weight. Kormelink ¿r

al., (1991) purified a (1+a)-B-D-arabinoxylan arabinofuranohydrolase (AXH) from

Aspergillus awamori which is highly specific for arabinoxylan, but is only capable of
hydrolysing non-reducing terminal cr-L-arabinofuranose residues from singly-substituted

xylopyranosyl residues of the arabinoxylan chain. Unlike other cr-L-arabinofuranosidases,

AXH does not show any activity towards p-nitrophenyl ø-L-arabinofuranoside, arabinans

or arabinogalactan.

1.4.3.2 Plant xylanases

A very large number of microbial endo- and exo-(1+4)-B-xylanases have been

purified and characterized (Fernández-Espinar et al., lgg3, 1994; Blanco et al., 1995;
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Berens et al., 1996), and these have attracted considerable attention because of their

potential to hydrolyse heteroxylans during the industrial conversion of plant residues to

fermentable sugars. Some properties of microbial p-xylan endohydrolases are listed in

Table L2. These enzymes vary widely in their isoelectric points, pH optima and molecular

weights.

In contrast, information on plant xylan hydrolases is very limited. Lienart et al.

(1985) partially purified an endoxylanase from cultured cells of Acacia verek; the enzyme

had an apparent molecular weight of 55,000 and an isoelectric point of 5.7. The presence

of xylan endo- and exohydrolases in secretions from isolated barley aleurone layers has

been reported, but neither group of enzymes has been purified or characterized (Taiz and

Honigman,1976; Dashek and Chrispeels, 1977). Three (l+a)-B-xylan endohydrolases

(EC 3.2.1.8) with an approximate molecular weight of 41,000 have been purified from

extracts of 5-day-germinated barley grain (Slade et aL,l989). All three isoenzymes have

identical NH2-terminal amino acid sequences, they have pI values of approximately 5 and,

although their genetic origins are not entirely clear, the authors concluded that they are the

products of separate genes (Slade et al., 1989). These three isoenzymes can be clearly

distinguished from a xylanase of M¡ 34,000 and pI 4.6 that has been purified from the

medium around GA3-treated aleurone layers (Benjavongkulchai and Spencer, 1986). The

relationship of the endo-xylanases purified by Benjavongkulchai and Spencer (1986) and

Slade et aI. (1989) has not been satisfactorily explained. It seems unlikely that different

endo-xylanases from barley aleurone layers would have such widely divergent molecular

weights. Nevertheless, NH2-terminal amino acid sequences of the three enzymes studied

by Slade et al. (1989) were used in the present work to generate oligonucleotides for the

isolation of cDNAs encoding barley (l-+4)-B-xylan endohydrolases.



Table I.2 Characteristics of xylan endohydrolases purified from

different microorgani sms
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succinogenes

s85

Penicillium
Chrysogenum

Aspergillus

nidulans
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(1ee6)

Blanco et al.

(1ees)
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5.5
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6.0

6.0

4.2

3.5

8.4

9.45

1.0

6.3

32.0

35.0

22.0

t2.5

34.0

14.85

54.2

26.3

16.8

53.7

66.0
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Optimum pHMolecular

weight (kDa)
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1.5 Regulation of genes encoding hydrolytic enzymes

During and following germination, specific genes are differentially expressed or

repressed in the various tissues within the endosperm. The high level of spatial and

temporal coordination of gene expression is demonstrated by the transcriptional activity

of barley (1+ 3,1-+4)-p-glucanases (Fincher, 1989; Fincher and Stone, 1993).

McFadden et al. (1988) have shown by in situ hybridization that (1+3,1+4)-B-

glucanase mRNA accumulates initially in the scutellum. Subsequently, levels decrease

in the scutellum, but increase strongly in the aleurone layer. Transcription of the genes

in the aleurone occurs near the embryo initially, but proceeds towards the distal end of

the grain. Although tissue-specific sequential regulation of gene expression is not well

understood, it is clear that the regulation of many genes in the aleurone layer is mediated

at the transcriptional level (Fincher, 1989; Fincher and Stone,1993). Furthermore,

transcriptional regulation often involves the phytohormones GA and ABA. Indeed,

barley aleurone layers have been extensively used as a convenient model system for the

study of molecular mechanisms involved in gibberellin-regulated gene expression

(Fincher, 1989; Hooley, 1994).

Most progress has been made in understanding the regulation by GA of c-amylase

production in germinated barley. A large number of cereal cr-amylase genes have now

been cloned and this has enabled the analysis of promoter regions involved in the control

of transcription. In particular, cis-acting elements that confer GA regulation, tissue-

specificity and high levels of expression have been identified. Sequence analysis of the

promoters of both the low- and high-pl barley cr-amylase genes has revealed that three

conserved regions within the proximal 200-300 bp upstream of the transcription start site

are responsible for GA-induced transcription (Huttly and Baulcombe, 1989; Huttly and

Phillips, 1995; Jacobsen and Close, I99I; Kim et al., 1992; Lanahan et aI., 1992;

Jacobsen et aI., 1995). These sequences include the pyrimidine box (C/TCTTTTc/T),
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and the TAACAA/GA and TATCCAc/T boxes, which are highly conserved among the

promoters of GA3-responsive c-amylase genes of wheat, barley and rice (Huang et aI.,

1990; Gubler and Jacobsen, 1992). Analysis of a high-pl barley cr-amylase promoter

(AMY6-4) indicates that the TAACAAA box represents a particularly important GA-

response element (GARE) (Skriver et al., I99l). Removal of the sequence TAACAAA

by site-directed mutagenesis abolishes the GA3 response of the barley cr-amylase gene

promoter (Gubler and Jacobsen, 1992; Jacobsen et al., 1995). Mutagenesis of the

TATCCAC box results in a decrease of GA3-regulated expression. These results

indicate that both boxes are absolutely required for the GA3-induction of genes and form

a complex gibberellic acid response complex (GARC) (Skriver et al., l99l). The

TAACAAA box also appears to be linked with ABA induced reductions in the

transcriptional activity of barley cr-amylase genes (Gubler and Jacobsen, 1992).

The expression of (l-+3,I+4)-B-glucanase genes is induced by GA and is

controlled at the transcriptional level. The barley (l+3,I-s4)-B-glucanase isoenzyme

EII gene promoter carries a motif, TAACAAC, at position -169; this sequence is similar

to the TAACAAA component of the GARE of the barley o-amylase gene (Skriver et al.,

1991). The sequence in the corresponding position of the gene encoding isoenzyme EI is

CAACAAC and similar motifs (TAAGAAA, CAACAAA) are also present in the

isoenzyme EI promoter region at -151 bp. Specific cDNA probes encoding (l+3,1+4)-

B-glucanase isoenzymes EI and EII are available to discriminate between the expression

of the specific genes (Slakeski et al., 1990; Wolf, 1992). Amounts of isoenzyme EII

mRNA are strongly enhanced after treatment of aleurone layers with GA3. However, no

induction of isoenzyme EI gene transcription was detected (Slakeski and Fincher, 1992

b; Wolf, 1992). Isoenzyme EI mRNA levels were relatively high in untreated control

aleurone layers (Slakeski and Fincher, 1992 b). Wolf (1992) also reported that the

promoter of the gene encoding isoenzyme EI is not affected by GA3 in barley aleurone

protoplasts and it is likely that specific deviations from the sequence TAACAAA disturb

o
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the binding of a putative trans-acting element. These experiments clearly demonstrate

that the genes encoding the two isoenzymes EI and EII are subject to tissue-specific and

hormonal regulation, and that significant differences exist in their regulation.

To date, there are no published reports describing the cloning of cDNAs or genes

encoding (1-+a)-B-xylanases from any plants. Thus, there is no information on the

structure of plant xylanase genes or on factors that regulate the transcriptional activity of

these genes.

1.6 Aims of the present study

The principal aim of the present study was to isolate and characterize cDNAs and

genes encoding barley (1+4)-B-xylan endohydrolases. The more specific aims of the

project were;

o to generate cDNA libraries from GA3-treated barley aleurone layers

o to screen the cDNA libraries for near full-length cDNAs for (1+a)-p-

endohydrolases and to sequence these cDNAs

. to construct vectors for the heterologous expression of (l+4)-B-xylan

endohydrolases in E. coli

o to use the cDNAs in Northern blot analyses to define the sites of transcription of

barley (1-+a)-B-xylan endohydrolase genes and to examine the effect of

phytohormones on the mRNA levels

o to isolate and characteúze barley (1+a)-B-xylan endohydrolase genes

o to define the number and location of (1+4)-B-xylan endohydrolases genes in

the barley genome.

Three barley (1+a)-p-xylan endohydrolases have been purified previously and the

sequences of 30 amino acid residues at the NH2-terminal end of the enzymes were

defined (Slade et aI., 1989). This information has now been used to design
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oligonucleotide primers for the amplification by the polymerase chain reaction (PCR) of

a (1+a)-B-xylan endohydrolase cDNA. The synthesis, amplification, cloning and

characteization of the cDNA clone were performed by reverse transcriptase-rapid

amplification complementary DNA ends (RT-RACE PCR) and are described in Chapter

2. The isolation and characterization of a full-length cDNA for (1-+4)-B-endohydrolase

isoenzyme X-I and a partial cDNA for isoenzyme X-II are presented in Chapter 3,

together with properties of the enzymes deduced from their primary structures.

The heterologous expression of the (l+a)-B-xylan endohydrolase isoenzyme X-I

cDNA and characterization of the expressed protein are described in Chapter 4.

Investigations were carried out on the sites of xylanase gene expression, as

measured by mRNA levels in Northern analyses. Total RNA was isolated from tissues

of germinated grain and young seedlings. The effects of various plant growth regulators

on the transcription of barley (l+a)-B-xylan endohydrolase isoenzyme genes were also

investigated. The results of this work are presented in Chapter 5.

In Chapter 6, the use of the cDNA to screen a barley genomic library for the

isolation of a genomic clone encoding the barley (l+a)-p-xylan endohydrolase is

described. Nucleotide sequence anaiysis of the genomic clone revealed several

important characteristics of the gene. Finally, Southern blot analyses were used to

determine the number of (1-+4)-B-xylan endohydrolase genes present in the barley

genome, using the (1+4)-B-xylan endohydrolase isoenzyme X-I cDNA as a probe. In

addition, the chromosomal locations of the (l+a)-B-xylan endohydrolase genes were

determined.
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2.1 INTRODUCTION

As stated in section 1.6, the primary objective of the work described in this thesis

was to isolate and characterize cDNAs encoding barley (1+4)-B-xylan endohydrolases

(F;C3.2.1.8). The cloning experiments were to rely completely on amino acid sequence

information obtained from the purified enzymes (Slade et al., 1989). The available

sequence was restricted to the 30 NH2-terminal amino acids (Figure 2.I). Because the

xylanase enzymes purified by Slade et al. (1989) were obtained in very low yield, there

was insufficient material for tryptic digestion and for the subsequent determination of

internal amino acid sequences (Slade et a1.,1989). Nevertheless, two regions within the

30 NH2-terminal amino acids were suitable for the generation of oligonucleotide probes

or primers (Figure 2.1)

'With regard to the appropriate tissue from which the poly (A)+-RNA should be

isolated, published data indicated that GA3-treated aleurone layers were likely to be a

suitable source of RNA for cDNA synthesis. Thus, Taiz and Honigman (1976), Dashek

and Chrispeels (1977), Benjavongkulchai and Spencer (1986) and Slade et aI. (1989) all

showed that xylan endohydrolases were secreted from isolated barley aleurone layers

following treatment with GA3.

Based on this information, two approaches were used to isolate barley (1-+4)-F-

xylan endohydrolase cDNA(s) from aleurone layer poly(A)+-nNR. Preliminary

attempts involved screening a cDNA library prepared from aleurone layer poly(A)+-

RNA using degenerate oligonucleotides as probes (Figure 2.1). The two degenerate

oligonucleotides were designated Xy1 and Xy2 and corresponded to the amino acid

sequences VYPVDHKA and KDKTDKA, respectively, from the NH2-terminal amino

acid sequence. The degenerate oligonucleotides were used as probes to screen the

aleurone cDNA library, according to Doan and Fincher (1988). However, no positive

clones were detected and the procedures are therefore not described in detail here.
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a

30
a

20
a

VYPVD HKA RF KQ L KD KTD KA RKRD VILKLG

B

VY PVDH KA

cTI TAc/r CCI GTI GAc/r CAc/r AAA/c GC Xv1

K D KTDK A

AAA/G GAT/c AAA/c ACI GAT/c AAA/c GC xv2

Figure 2.1 A. Sequence of the 30 NH2-terminal amino acids of purified barley

(1-+a)-B-xylanases (Slade et al., 1989). B. The degenerate Xyl and Xy2

oligonucleotide probes/primers designed from the two segments of the NH2-terminal

sequence (I=inosine).
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The other approach fbr cloning barley (1+4)-B-xylanase cDNA(s) was based on

the protocol developed by Frohman et aI. (1988), which has been designated "Rapid

Amplification of cDNA Ends" (RACE). The RACE protocol employs the reverse

transcription of poly (A)+-RNR using an oligo-dT adaptor-primer to generate single-

stranded cDNA. The single-stranded cDNA is subsequently amplified in the polymerase

chain reaction (PCR), using the adaptor-primer in conjunction with another 5' primer.

This particular RACE procedure, which is referred to as 3'-RACE, therefore generates

cDNAs by using PCR to amplify copies of the region between an appropriate position in

the corresponding mRNA transcript (in this case the region between the NH2-terminus of

the mature enzyme and the 3' end of the mRNA (Figure 2.2,Frohman and Martin, 1989;

Frohman, 1993; Frohman et a1.,1988).

RACE-PCR techniques are advantageous for several reasons. Firstly, it is

possible to amplify a cDNA fragment from an oligonucleotide primer which is designed

from a relatively short amino acid sequence. Secondly, it is much simpler, faster and

cheaper, and requires very small amounts of template compared to normal cDNA library

preparation and screening. Thirdly, this technique provides a method to obtain 5' and 3'

ends which might be missing from partial cDNAs isolated from libraries by conventional

methods. Furthermore, it is possible to use RACE-PCR to create overlapping 5' and 3'

cDNA ends that can later be ligated together to form a full-length cDNA. RACE-PCR

has also been used as a highly sensitive method for directly detecting and amplifying

specific RNA molecules in small samples of plant or animal tissues (Frech and

Peterhans, 1994). The disadvantage of RACE-PCR is that it often results in non-specific

PCR products; these can be minimized by gradually raising the annealing temperature

until non-specific products are no longer observed (Frohman, 1994). An additional

disadvantage is that a high error rate is associated with the PCR conditions in which

efficient RACE amplification takes place, and a high number of clones must therefore be

sequenced to identify those without point mutations (Frohman, 1994).
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In the work described in this Chapter, 3'-RACE-PCR was used to synthesize,

amplify and isolate putative barley (1+4)-B-xylanase cDNAs.
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2.2 MATERIALS AND METHODS

2.2.7 Materinls

Barley (Hordeum vulgare L., cv. Himalaya) was obtained from the Victorian

Institute of Dryland Agriculture (VIDA), Horsham, Victoria, Australia. Plasmid

pBluescript II (SK+) and E. coli sftain XLl-Blue were obtained from Stratagene (La

Jolla, CA, USA). Avian Myeloblastosis Virus Reverse Transcriptase (AMV-RT), Ta

DNA ligase, Taq polymerase and dNTPs were obtained from Promega Corporation

(Madison, WI, USA). Restriction enzymes were purchased from Promega Corporation

or New England Biolabs (Beverly, MA, USA). Tryptone, yeast extract and agar were

purchased from Difco (Detroit, MI, USA). The Megaprime cDNA labelling kit,

Hybond-N+ membranes, autoradiographic film and [3551-methionine were from

Amersham International Ltd. (UK). The IPTG, X-Gal and herring sperm DNA were

from Boehringer Mannheim GmbH (Sandhofer Strasse, Mannheim, Germany). The

radionucleotides [T-32p]Rfp and [cr-3s5]dATP were obtained from Bresatec (Adelaide,

SA). Agarose, ampicillin, maltose, DTT, SDS, PVP, Ficoll, RNAse and lysozyme were

from Sigma Chemical Company (St. Louis, MO, USA). The FastTrack mRNA isolation

kit was purchased from Invitrogen (San Diego, CA, USA). The DNA Sequencing kit

Version 2.0 was purchased from United States Biochemical Corporation (USBC;

Cleveland, Ohio, USA).
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2,2.2 Isolation of poly (Ð+-nV¿,from barley aleurone lnyers

2.2.2.1 Preparation of tissues

Aleurone layers were isolated essentially as described by Chrispeels and Varner

(1961). The proximal end of each barley grain, which contained the embryo, was

excised and discarded. The embryoless half grains, which contained the aleurone layer

and starclry endosperm tissues, were surface sterilized for 20 min with l.5Vo (vlv)

sodium hypochlorite. The half grains were rinsed twice with sterile distilled water,

soaked in 0.1 M HCI for 20 min and further rinsed with six washes of sterile distilled

water. Sterilized grain sections were incubated on sterile filter paper in Petri dishes for 3

days in the dark at room temperature, with the crease side of the grain facing downwards.

Starchy endosperm tissue was removed and 100 aleurone layers were incubated with

shaking in 50 ml conical flasks at 25oC in 5 ml 10 mM CaCI2 (containing 10 pglml

chloramphenicol, 100 pglml neomycin, 100 units/ml nystatin, and 5 pM GA3) for 44h.

A 10 mM GA3 stock solution was prepared in ethanol. The aleurone layers were rinsed

in DEPC-treated water and stored in liquid N2.

Careful surface sterilization was important for the removal of commensal

microorganisms that inhabit the surface of the grain (Hoy et a1.,1981), especially when

prolonged incubation of grain or grain sections was necessary. As a further precaution,

samples of the surface-sterilized half-grains were incubated for 44 h on malt extract agar

plates (pH 5.5) to detect fungal growth and on nutrient agar media (pH 7.\ to detect

bacterial growth (Slade, 1990). The absence of microbial growth on these media

indicated that the surface sterilization procedure had been successful.
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2.2.2.2 Isolation of total RNA

Total RNA was isolated from aleurone layers essentially as described by

Chandler and Jacobsen (1991). Approximately 350 frozen aleurone layers were ground

to a fine powder in liquid N2 with a mortar and pestle. Extraction buffer (10 ml/I00

layers) consisting of 0.1 M sodium glycinate buffer, pH 9.5, (containing l0 mM EDTA,

100 mM NaCl, l7o wlv SDS, I Vo wlv sodium deoxycholate, lOVo w/v insoluble PVP)

was added to the powdered aleurone layers, which were subsequently homogenized at

OoC in an Omnimixer for 2 min at 55,000 rpm. The homogenate was centrifuged for 20

min at 10,000 rpm in a Sorvall SS-34 rotor and the supernatant was transferred to a tube

containing an equal volume of phenol:chloroform (l:l by vol). Phenol was pre-

equilibrated with 10 mM Tris-HCl buffer, pH 7.5 ( containing 0.1M NaCl, 1 mM EDTA,

O.l%o wlv SDS).

The mixture was centrifuged for l0 min to separate the organic and aqueous

phases. During the phenol:chloroform extraction, RNA remains in the aqueous phase,

but denatured proteins are found at the interface. The aqueous phase was re-extracted at

least twice with phenol:chloroform until no more proteinaceous material could be seen at

the interface. The aqueous phase was precipitated with 0.1 vol 3 M sodium aceLate

buffer, pH 5.2 and 2.5 vol absolute ethanol at -20oC for l6 h. Following centrifugation

at 10,000 rpm for 15-20 min, the RNA pellet was dissolved in 3 ml 0.5 M sodium acetate

buffer, pH 5.8. After stirring on a vortex mixer,400 pl lVo (w/v)

cetyltrimethylammonium bromide (CTAB) was added, and the mixture was incubated on

ice for t h. After centrifugation at 13,200 rpm for 20 min, the supernatant was discarded

and the pellet was washed once with cold 0.1 M sodium acetate buffer, pH 6.0, once with

70Vo ethanol and centrifuged again. The pellet was dissolved in 600 pl NTES l0 mM

Tris-HCl buffer, pH 7.5 (containing 0.lM NaCl, I mM EDTA, 0.lVo wlv SDS), and

transferred to a microfuge tube containing 500 pl phenol. The tube was vortexed and
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centrifuged for 5 min at 13,000 rpm. The nucleic acids contained in the upper phase

were precipitated by the addition of 0.1 vol 3 M sodium acetate buffer, pH 6.0 and2.5

vol ethanol for 30 min at -80oC . After centrifugation for 15 min at 13,000 rpm, the

pellet was dissolved in 100 pl l7o DBPC-treated water and 1 ml 3 M sodium acetate

buffer, pH 6.0. The tube was incubated on ice for 2 h. Following centrifugation for 15

min at 13,000 rpm, the pellet was dissolved in sterile water and reprecipitated with 0.1

vol 3 M sodium acetate buffer pH 5,8 and 2.5 vol ethanol at -2OoC for 16 h. After

centrifugation for 15 min the final pellet was dissolved in 80 pl 10 mM Tris-HCl buffer,

pH 7.5 (containing 0.7 M NaCl, 1 mM EDTA and 0.2Vo lauryl sarcosine) and stored at

-800c

2.2.2.3 Isolation of poly (Ð+ -nMn

The total RNA isolated from GA3-treated barley aleurone layers was used for

preparation of poly (A)+-RNA using the Invitrogen FastTract mRNA isolation kit

(version 3.2) as recommended by the manufacturers, with minor modifications. Total

RNA (80 pl) was heated at 65oC for 5 min, immediately chilted on ice, and diluted to 3

ml with 10 mM Tris-HCl buffer plH7.5, containing 0.7 M NaCl, 1 mM EDTA andO'2Vo

lauryl sarcosine in a 50 ml Lux tube. One oligo (dT)-cellulose tablet was added to the 3

ml RNA and the tube was sealed. After allowing 2 min for the tablet to swell, 10 ml

"binding buffer" (composition not specified by the manufacturers) was added. After

complete dispersion of the tablet, the tube was shaken gently at room temperature for 1

h. The oligo dT-cellulose was collected by centrifugation for 8 min at 4,000 x g, washed

in2O ml "binding buffer" and collected by centrifugation. The washing was repeated

using 10 ml "binding buffer", and the resultant pellet was resuspended in 10 ml "low-

salt-wash buffer"" The washing process was repeated twice until the buffer was no

longer cloudy. Following the final wash, the oligo dT-cellulose was resuspended in 0'8
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ml "low-salt-wash buffer". The sample was pipetted into a spin-column (supplied in the

Fast Track 6RNA isolation þJlt,Invitrogen), centrifuged at room temperature for 10 sec

at 5,000 x g, and the liquid discarded. The process was repeated at least 3 times until the

4269 of the flow-through was less than 0.05. The spin-column was placed in a microfuge

tube, 200 pl "elution buffer" was added and mixed into the cellulose bed with a sterile

pipette tip, and the column recentrifuged. The eluent was collected in a microfuge tube,

and a further 200 pl "elution buffer" was added, mixed and spun through the column.

The final eluents were combined to give a total volume of approximately 400 pl. The

eluted poly (A)+-RNA was precipitated with 1.5 vol 2 M sodium acetate buffer, pH 5.2

and 2.5 vol ethanol and placed at -80oC for approximately 15 min. The tube was

centrifuged at l2,000gfor 15 min and the pellet washed withTOVI ethanol. The washed

pellet was dried under vaccum and dissolved in 20 ¡tl DEPC-treated sterile distilled

water. The yield and purity of the resultant poly (A)+-RNA was determined from the

ratio of A269 l!2gg, and by in vitro translation (Sambrook et a1.,1989).

2.2.2.4 In vitro translation of poly (Ð+ -n¡li'A

poly (A)+-RNA (0.5 pg) isolated from GA3-treated aleurone layers was

incubated with 10 pl rabbit reticulocyte lysate containing 1 ¡rl 1200 Cilmmol [3sS]-

methionine and I pl amino acid mixture (Amersham) at 30oC for I h' The translated

products (2 ttl) were spotted onto 3 MM filter paper and boiled in l07o (w/v) TCA for 10

min. The TCA was cooled by adding ice and the filter was sequentially rinsed with

water, absolute ethanol and acetone. The filter was air-dried and transferred to a

scintillation vial containing 10 ml scintillation fluid (75Vo vlv Triton-X ll4, O.3Vo wlv

ppO and 0.2Vo wlv dimethyl POPOP). Incorporation of [3sS]-methionine into TCA-

insoluble products was measured in a Rackbeta liquid scintillation spectometer

(Pharmacia-LKB, Sweden). In addition , in vitro translation products were analysed by
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electrophoresis using l2.5%o (w/v) SDS-polyacrylamide gels. Gels were dried and

exposed against X-ray Hyperfilm (Amersham) using an intensifying screen for 2 h at

-800c.

2.2.3 Amplitícation of the 3' end of the Q a)-B-xylanase cDNA by 3'-RACE PCR

Reverse transcription was used to generate single stranded cDNA, which was

subsequently used as a template in the PCR reaction. First strand cDNA was synthesized

from poly (A)+-RNA by reverse transcription using a 3S-base oligonucleotide containing

17 dT residues, as follows;

5' GACTCGAGTCGACATCGATTTTTTTTTTTTTTTTT 3'.

The oligo-dT tail annealed to the poly(A) tail of the mRNA. Extension of first strand

cDNAs from the 3' ends of the mRNA back to the region of known sequence was

accomplished using an adaptor primer of sequence

5' GACTCGAGTCGACATCG 3'

which annealed to the 3' end of the coding strand of the double stranded cDNA (Figure

2.3). A xylanase-specific amplification primer (Xy1) was annealed to the first strand (-)

of the cDNA produced by reverse transcription of the RNA and extended to generate the

complementary (+) DNA strand. The resulting double-stranded DNA was amplified by

PCR using a 5' Xyl oligonucleotide and a 3' primer containing the adaptor sequence but

no oligo(dT) tail (Figure 2.3). To avoid any non-specific binding during the second

round of PCR, the amplification was performed at an elevated temperature (45oC).

Details of the PCR procedures are described below.
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Figure 2.3 Diagrammatic representation of the 3'-RACE protocol for cDNA

synthesis and amplification of xylanase cDNA using Xyl xylanase-specific

oligonucleotide primer. Ad-(dT) and Ad-primer represent adaptor-primers with 17-
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2.2.3.1 First strand cDNA synthesis and PCR

First strand cDNA synthesis was performed using 1 pg GA3-treated aleurone

layer poly (A)*-RNA in a reaction mixture of 50 mM Tris-HCl buffer, pH 8.3,

containing 25 mM KCl, 10 mM MgCl2, 4 mM DTT, I mM NaPPi (sodium

pyrophosphate), I mM dNTPs, I U ribonuclease inhibitor, 2l U AMV reverse

transcriptase (Promega) and 0.5 ttg dT-17 anchor-primer (Frohman et al., 1988). The

anchor region contains XhoI, SaII, and CIaI recognition sites. The reaction mixture (20

pl) was incubated at 42oC for I h and diluted with water to 500 ttl. A 23-mer degenerate

primer (Xyl) corresponding to the eight NH2-terminal amino acid residues

(VYPVDHKA) of the previously purified (1+4)-Þ-D-xylan endohydrolase protein from

barley (Slade et a\.,1989) was synthesized on an Applied Biosystems DNA synthesizer.

Inosine was incorporated at wobble base positions in which more than two bases could

be selected. The cDNA reaction mixture (10 pl), 25 pmol Xy1 primer and 25 pmol of

the anchor-primer (minus dT tail) were mixed in a 50 pl PCR cocktail containing lxTaq

buffer (Promega), dNTPs at individual concentrations of 1.5 ntNI,lÙVo (v/v) DMSO and

2.5 Units Taq polymerase in a 0.5 ml microcentrifuge tube. The mixture was overlaid

with 40 pl mineral oil and the PCR reaction was performed in a Perkin Elmer Cetus

DNA Thermal Cycler. Thirty cycles of amplification were carried out using the

following step cycle programme: 94oC for 2 min, 37oC for 1 min 30 sec, 72oC for 2 min"

After 30 cycles, the mixture was heated at72oC for 10 min, and held at 4oC.

The amplified product was analysed by electrophoresis on lVo (wlv) agarose gels

and located by ethidium bromide staining (Sambrook et al., 1989). The appropriate

DNA band was excised from the gel and extracted from the agarose slice by

electroelution. The excised agarose slice was transferred to a sterile dialysis tube

containing I ml lx TAE buffer and placed in an electrophoresis tank with 0.5 x TAE for

15 min at 100 V. The DNA was eluted from the agarose gel into the buffer inside the
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dialysis tube, transferred into a microfuge tube, and extracted successively with

phenol:chloroform and chloroform alone to remove protein contaminants. The

supernatant was precipitated with 0.1 vol 3 M sodium acetate buffer, pH 5.2 and 2.5 vol

ethanol. The DNA was pelleted by centrifugation at I3,2OO rpm in a microcentrifuge for

15 min, washed withlÙVo ethanol, dried under vacuum and dissolved in 50 ¡rl TE. The

purified DNA (1 pl) was used as a template for a second round of PCR amplification,

utilizing the same primer and conditions outlined above, with the exception that the

annealing step temperature was changed to 45oC for I min.

The reamplified DNA was again extracted from agarose gels by electroelution

(Sambrook et a1.,1989) and precipitated as described above. Purified DNA was cloned

into the pBluescript SK (+) T-vector for analysis.

2.2.3.2 Construction of the T-vector

To prepare the T-vector, pBluescript SK(+) plasmid was digested with the

EcoRV restriction enzyme and incubated with Taq polymerase (1 U/mg plasmid) as

recoÍrmended by the manufacturer (Promega), in the presence of 2 mM dTTP for 2h at

70oC (Marchuk et al.,I99l). This resulted in the addition of a single thymidine at the 3'

end of each fragment. The DNA was extracted with phenol:chloroform and precipitated

with I vol 3M sodium acetate buffer, pH 5.2 and 2.5 vol ethanol. The DNA was

collected by centrifugation at 13,200 rpm in a microfuge for 15 min. The pellet was

washed withTÙVo ethanol, dried and dissolved in 50 pl sterile distilled water.

2.2.3.3. Transþrmation and plasmid DNA preparation

Preparation of competent cells: Purified PCR-amplified DNA was ligated into the T-

vector for 16 h at 14oC using T4 DNA ligase. The recombinant plasmid was
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transformed into competent XLl-Blue cells, which were prepared as follows: XLI-Blue

cells were grown overnight at 37oC with shaking at 250 rpm in Miller's LB broth

containing 15 pg/ml of tetracycline. One ml of the overnight culture was aseptically

transfered to a 500 ml Erlenmeyer flask containing 100 ml Miller's LB broth and 15

pglml tetracycline, and the flask was incubated at37oC with shaking at250 rpm until the

4666 was 0.5. Cells were transferred to 50 ml polypropylene centrifuge tubes and

centrifuged at 3,000 rpm for 15 min at 4oC. The supernatant was discarded, the cells

were resuspended in one-third of the original volume of "competency buffer I"

(containing 100 mM KCl, 30 mM potassium acetate, 60 mM CaCl2 and 0.I5Vo (vlv)

glycerol, pH 5.8; U.S.E. mutagenesis kit, manufacturer instructions, Pharmacia Biotech)

and incubated on ice for I h. The cells were centrifuged at 3000 rpm for 15 min at 4oC

and the supernatant was again discarded. The final cell pellet was resuspended in ll25th

of the original volume of "competency buffer II" (containing 10 mM MOPS, l0 mM

KCl, 75 mM CaCl2 and O.l57o (v/v) glycerol, pH 6.8; U.S.E. mutagenesis kit,

manufacturer instructions, Pharmacia Biotech) and left on ice for 15 min. The competent

cells were quick-frozen using liquid N2 and stored in 100 pl aliquots at -80oC.

Transþrmation: Frozen competent cells (100 pl) were thawed on ice and mixed gently

to assure that cells were evenly suspended. Cells were transferred to pre-chilled

microcentrifuge tubes and the ligation mix (10 pl, see section 2.2.3.2) was gently mixed

with the competent cell suspension. Tubes were incubated on ice for 30 min, at 42o for

90 sec, and incubated again on ice for 2 min. One ml LB medium was added to all tubes,

which were incubated for 90 min at 37oC with shaking at 180 rpm. The tubes were

centrifuged and all but approximately 100 pt of the supernatant was removed. The cell

pellet was resuspended in the remaining 100 pl supernatant and spread onto LB plates

containing 100 pg/ml ampicillin, 40 pglml X-gal and 12.5 llglrr,l IPTG. The plates were

incubated at37oC for approximately 16 h. V/hite colonies were picked and transferred
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to LB media containing 100 pglrnt ampicillin using sterile tooth picks. The cultures

were shakenat250 rpm overnight at 37oC.

Plasmid DNA preparation: Cells were pelleted by centrifugation at 3000 rpm for 15 min

at 4oC and the supernatant was discarded. Pellets were resuspended in 50 mM Tris-HCl

buffer, pH 8.0, (containing 8Vo wlv sucrose , O.lVo (v/v) Triton X-100 and 50 mg/ml

lysozyme) and incubated at room temperature for 15 min. The lysed cells were heated at

100oC for I min and pelleted by centrifugation at 13,000 rpm for 15 min. The resultant

pellet was removed from the microfuge tube using a sterile tootþick and the supernatant

was incubated with 5 pl 10 mg/ml RNase A at 68oC for 10 min. The supernatant was

chilled on ice and 60 ¡tl57o (w/v) CTAB was added to precipitate plasmid DNA. The

precipitate was pelleted by centrifugation for 10 min at I3,2OO rpm, dissolved in 300 pl

l.2M NaCl, and precipitated with 2.5 vol ethanol. The mixture was centrifuged for 10

min at 13,200 rpm and the DNA pellet was washed with 70Vo ethanol and resuspended in

TE buffer.

To check the insert size, lpg plasmid DNA was digested with EcoRI andXhol

restriction endonucleases. The DNA sample was mixed with 5 x DNA loading buffer

(O.25Vo w/v bromophenol blue, 0.25Vo wlv xylene cyanol, 4OVo wlv sucrose) and

separated by IVo (w/v) agarose gel electrophoresis as described by Sambrook et al.

(1989). A I kb ladder (Gibco BRL) was used as a DNA standard. DNA sequencing and

Southern blot analysis were used where appropriate to ensure the plasmid contained the

correct insert.

2.2. 3.4 P rep aration of [ 3 2 p 
1 -radiolabelled oli gonucle otide probe s

For the preparation of oligonucleotide probes, 50 pl of a reaction mixture

containing oligonucleotide (100 ng), 5 pl 10xT4 polynucleotide kinase in 700 mM Tris-
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HCI buffer,p}J7.6, (containing 100 mM MgCl2, 50 mM DTT), 50 mCi [T-32P]ATp and

2 units T4 polynucleotide kinase was incubated for I h at 37oC. The reaction was

stopped by adding I pl 0.5 mM EDTA. Labelled oligonucleotide was precipitated with

0.1 vol 3 M sodium acetate buffer, pH 5.2 and2.5 vol ethanol overnight at -20oC. The

precipitate was pelleted by centrifugation at l3,2OO rpm for 30 min, washed withTïVo

ethanol, resuspended in 50 ¡tl TE buffer pH 8.0, and added to the hybridization solution.

2.2.3.5 Southern blot analysis

Southern blot analysis was used to confirm that plasmid preparations carried

cDNAs encoding (1+a)-B-xylanase. The gel containing digested DNA was soaked in

200 ml denaturing solution (1.5 M NaCl and 0.5 M NaOH) for 30 min. The denaturing

solution was decanted and the gel was neutralised with 200 ml 0.5 M Tris-HCl buffer,

pH 7.0 (containing 1.5 M NaCl, I mM EDTA,) for 30 min. A piece of clean sponge was

soaked in2O x SSC and placed in a plastic tray, and two sheets of Whatman 3MM filter

paper were placed individually on top of the sponge. The edges of the filter paper were

sealed with a cellulose acetate-sheet frame and the gel was placed upside-down on the

paper, without trapping air bubbles. Hybond N+ membrane was placed on top of the gel

and any air bubbles were removed by rolling a glass pipette over the surface of the

membrane. Two additional sheets of Whatman 3 MM filter paper were soaked in 20 x

SSC, placed on top of the membrane and overlaid by a stack of dry paper towels. A

glass plate was placed on top of the stack and the tray was filled with 20 x SSC until the

sponge was covered. DNA was allowed to transfer overnight. The membrane

containing the transfened DNA was fixed by placing it for 20 min on a piece of 3 MM

filter paper soaked with 0.4 M NaOH. The membrane was then ready for Southern

trybridization.
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The membrane was prehybridized for 4 h with 6 x SSC, 1 x Denhardt's solution

(Denhardt, 1966), lVo (wlv) SDS and 100 pglml salmon sperm DNA, and hybridized

with the same solution containing the labelled oligonucleotide probe at 37oC for 16 h.

After hybridization, the filter was washed with2 x SSC/0.17o SDS for 30 min, followed

by I x SSC/0.1% SDS for 30 min. The membrane was dried and exposed against X-ray

Hyperfilm (Amersham) for 2 h.

2.2.3.6 Nucleotide sequence analysis

Double-stranded DNA inserts contained within purified plasmid DNA were

sequenced in both directions using DNA sequencing kits (Sequenase version 2.0 DNA

Sequencing Kit, USBC, USA) according to the manufacturer's instructions. The

sequencing kit was based on the dideoxynucleotide chain termination method (Sanger e/

al., 1977), and [¡¿-:sS]dATP was used as the radioactive label. DNA templates

(approximately 4 Wg per reaction) were denatured in 2M NaOÉVlmM EDTA for 30 min

and the denatured DNA was recovered using custom-made Sepharose 6BL (Pharmacia)

resin-spin columns. Denatured DNA was used as a template for the sequencing reaction

and the reaction products were separated on 6Vo (w/v) polyacrylamide gels (containing

467o wlv urea) by electrophoresis at 60 mA constant current at 55oC. Computer analyses

were performed using the University of 'Wisconsin Genetics Computer Group package

(Devereux et al., 1984) in the ANGIS suite of programs developed in the Department of

Electrical Engineering, University of Sydney, Australia, and the SeqEdTM version 1.0.3

(Applied Biosystems Inc.) programs.



Chapter Two 45

2.3 RESULTS AND DISCUSSION

2.3.1 Isolation of poly (A)+-RNA

Approximately 435 pg total RNA was isolated from about 1000 GA:-treated

aleurone layers. Approximately 20 pg poly (A)+-RNA was recovered from the total

RNA preparation. The purity of the isolated poly(A)+-RNA was analysed

spectrophotometrically. An Azoo/zso ratio of 2.0 indicated that the RNA preparation was

of high purity (Sambrook et a1.,1989). To further examine the integrity of the poly(A)+-

RNA, a sample was translated in vitro and products examined by SDS-PAGE and

autoradiography. The in vitro translation experiment showed that the poly (A)+-RNA

was indeed translatable. Compared to the elution buffer control, the incorporation of

l3sS]-methionine into TCA-insoluble products was 7-fold higher for aleurone layer

poly(A)+-RNA and 8-fold higher for the positive control luciferase RNA provided by the

manufacturer (Table 2.1). The size distribution of the translation products is shown in

Figure 2.4 and it is clear that the mRNA specified polypeptide products of up to 70 kDa

in size. This indicated that the mRNA was essentially intact and that the isolated poly

(A)+-RNA was suitable for first strand cDNA synthesis.

2.3.2 Ampfficatíon and cloning of a (I+4)-þxylanase IDNA

A cDNA of 1.35 kb was amplified (Figure 2.5). The expected size of the

xylanase oDNA could be estimated from the molecular weight (approximately 41,000) of

the purified protein (Slade et aI., 1989). A protein of M, 41,000 would be expected to

contain approximately 400 amino acids, which would be encoded by an mRNA of

approximately 1200 bp. Addition of a 3' untranslated region, which might be from 150-

300 bp in length, would mean the predicted size of the PCR product would be in the



TabIe 2.I In vitro translation of isolated poly(A)+-RNA

Sample TCA-insoluble material
(cpm)

Elution buffer 3581

Luciferase Control RNA 28234

Aleurone Poly (A)+-
RNA

26323



123
kDa

94-

67

43-

30

20

Figure 2.4 In vifro translation products of poly(A)+-RNA from GAr-treated

aleurone layers. Lanes t, 2 and 3 represent the in vitro translation products

from aleurone poly (A).-RNA, wheat germ extract control (without added RNA)

and luciferase RNA, respectively. The sizes of proteins are as indicated. The

strong band of I\4. approximately 45,000 kDa in lane I is presumably cr-amylase

precursor.
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Figure 2.5 Agarose gel electrophoresis of cDNA products of 3' RACE-

PCR from poly(A).-RNA of GAr-treated barley aleurone layers. A. lkb

ladder DNA markers; B. PCR product of approximately 1.3 kb.
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range 1350-1500 bp, as observed (Figure 2.5). Final amplification products were cloned

into dT-tailed, EcoRV-cleaved pBluescript vector (T-vector). Plasmid DNA was

prepared from 12 randomly selected recombinant transformants and digested with EcoRI

and XhoI restriction enzymes. To confirm the identity of the positive transformants

another oligonucleotide primer (XyZ), which corresponds to the NH2-terminal amino

acid sequence (KDKTDKA) of the xylanase eîzyme, was used as a probe for Southern

blot analysis. Among the recombinants analysed, 11 produced very strong hybridization

signals and had cDNA inserts of identical sizes. One clone showed hybridization of the

probe to a shorter fragment (Figure 2.6); this clone was not studied further.

2.3.3 Characterization of the cDNA clone

The 1.35 kb cDNA generated by PCR was designated pMXI. The detailed

restriction map of pMXI and the strategy used for nucleotide sequence analysis are

shown inFigwe2.7. Figure 2.8 shows the complete nucleotide sequence and reveals

that the cDNA is 1334 bp in length and has an open reading frame that encodes 395

amino acid residues. The 5' end of this cDNA product contains a sequence which

corresponds exactly to the sequence of the first 30 amino acids at the NH2-terminal end

of the purified barley (1-+4)-0-D-xylanase (Slade et aI., 1989), except that deduced

amino acid residue number 11 was arginine in the PCR-generated cDNA and lysine in

the purified enzyme.

The translation stop signal (TGA) is located at nucleotides 1186-1188. The

sequence contains 116 bp of 3' untranslated region and a 30 bp polyadenylic acid tail,

which starts at nucleotide 1305 (Figure 2.8). Four independent clones were sequenced at

their 5' and 3' ends and although all four cDNAs were identical at the 5' ends, they

differed at their 3'ends (Figure 2.9).
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Figure 2.6 Southern blot analysis of L2 individual PCR-generated cDNA clones

using the Xy2 oligonucleotide as a probe. The cDNA inserts were excised from

the recombinant pBluescript SK+ plasmids wlth EcoRIlHindIII, separated on I7o

agarose gels and blotted onto nylon membrane prior to probing with the Xy2

oligonucleotide. DNA fragment lengths are as indicated on the right.
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Figure 2.7 Restriction map and sequencing strategy for the cDNA clone pMXl.

The arrows indicate the direction and length of individual sequence analyses.
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No consensus polyadenylation signal (AATAAA) was observed. However, a

putative polyadenylation signal GATAAT is found 61 bp upstream from the poly(A) tail

(Figure 2.8). This may represent the polyadenylation signal, in view of the variability of

such signals in plant mRNAs (Lycett et ø1.,1983; Fray et a1.,1994; Li and Hunt, 1995).

The distance between this putative polyadenylation signal and the actual site of

polyadenylation showed considerable variation among the four clones (Figure 2.9).

Because the 5' primer used in the RACE-PCR reaction corresponded to NH2-

terminal sequence of the mature protein, no Met start codon was found and the clone was

clearly not full-length at its 5'end. In other words, the experimental design was such that

the PCR products corresponding to the cDNA would not be full-length because

sequences representing the signal peptide and 5' untranslated regions would be missing.

In conclusion, the RACE-PCR protocol proved effective for the isolation of a

xylanase cDNA. The pMXl cDNA described in this Chapter was not full-length but it

was long enough to use as a probe to screen cDNA libraries to obtain full-length cDNAs

encoding barley (1+a)-B-xylan endohydrolases. The use of the pMXl cDNA to isolate

full-length cDNAs from aleurone libraries is described in the next Chapter.
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Figure 2.8 Complete nucleotide sequence and deduced amino acid sequence

of cDNA pMXl. The 30 NHz-terminal amino acid residues from the purified

protein (Slade et a1.,1989) are shown in bold. A putative polyadenylation signal is

unclerline<l. The stop corlon is marked hy an asterisk.
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Figure 2,9 The 3' sequences of four different cDNA clones derived by PCR.

Variations in the lengths between the putative polyadenylation signal sequence

(GATAAT) and the poly(A) tails are apparent. The putative polyadenylation signal is

underlined. Identical nucleotides in all4 clones are shown by dots.
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3.1 INTRODUCTION

In contrast to microbial xylanases, for which primary structures of bacterial and

fungal xylanases have been deduced from the nucleotide sequences of cloned cDNAs

and genes (Shareck et al., l99I; Sakka et aI., 1993; Gibbs et aI., 1995), there are no

published reports describing the cloning of plant xylanase cDNAs or genes, and the

primary structures of these plant enzymes have remained undefined. Although the barley

xylanase cDNA isolated by RACE-PCR and described in Chapter 2 was not full-length,

the deduced amino acid sequence could be used to predict the complete primary structure

of the mature enzyme. However, the RACE-PCR product was truncated at its 5' end and

the position of the initiating Met codon and the sequence of the 5' untranslated region

could therefore not be defined, nor could the presence or absence of a signal peptide be

determined. In addition, it was possible that cDNAs encoding more than one xylanase

isoform might be present in the available cDNA libraries and that these might provide

information on the barley xylanase gene family.

In attempts to isolate full-length cDNAs, the RACE-PCR product was therefore

used as a probe to screen libraries prepared from RNA of GA3-treated barley aleurone

layers and 12 day-old barley seedlings. The structures of cDNAs encoding two distinct

xylanase isoenzymes are described in this Chapter and the characteristics of the proteins

have been analysed in detail. Amino acid sequences are aligned with those of selected

microbial xylanases.
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3.2 MATERIALS AND METHODS

3.2.1 MøterÍals

The cDNA synthesis, cloning and packaging kits were purchased from Stratagene

(La Jolla, CA, USA). A cDNA library prepared from barley aleurone layers (cv.

Himalaya) which had been treated for 18 h with GA3 was generously provided by Drs.

Frank Gubler and Jake Jacobsen, CSIRO Division of Plant Industry, Canberra. A barley

seedling library was purchased from Clontech Laboratories Inc. (Palo Alto, CA, USA).

Restriction enzymes andT4ligase were obtained from Promega (Madison, WI, USA)

and New England Biolabs (Beverly, MA, USA). Sephadex G-100 was obtained from

Pharmacia Biotech (Uppsala, Sweden). X-Gal, IPTG, DEPC and gibberellic acid were

purchased from Sigma. The multiprime labelling kit, autoradiographic film and nylon

membrane were from Amersham International. lu-32p1dCTP and [y-32p1ATP were from

Bresatec or Amersham International. The DNA sequencing kits (Sequenase version2.0)

were purchased from United States Biochemical Corporation.

3.2.2 Constructíon of a cDNA library

3.2.2.1 cDNA synthesis

An outline of the cDNA synthesis technique is shown in Figure 3.1. Double-

stranded cDNA was synthesized using a ?uZAP-:DNA synthesis kit (Uni-ZAP XR,

Stratagene) according to the manufacturer's instructions. Five microgr¿ìms of poly (A)+-

RNA were used for first strand cDNA synthesis. Moloney-Murine Leukemia Virus

Reverse Transcriptase (M-MuLV-RT) was used instead of Avian Myeloblastosis Virus

Reverse Transcriptase (AMV-RT). The nucleotide mixture for the first strand synthesis
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contained 10 mM dATP, dGTP, dTTP and the analog S-methyl dCTP. Thus, the first

strand cDNA had a methyl group on each cytosine base to protect the cDNA from

restriction enzymes in subsequent cloning steps. The second-strand cDNA was

synthesized from the first strand using second strand reaction buffer (1 x) containing 10

mM dNTPs, I mM DTT, 4.5 U RNase H and 7 U DNA polymerase I. During second-

strand synthesis RNase H nicks the mRNA which is bound to the first strand cDNA and

produces of fragments which serve as primers for DNA polymerase I. The dNTP

mixture was supplemented with dCTP to reduce the incorporation of S-methyl dCTP in

the second strand.

Analysis of first strand and second strand cDNA products: First- and second-strand

cDNA synthesis products were analyzed by alkaline agarose gel electrophoresis. A

sample containing 10,000-30,000 cpm of radioactivity (approxmately 5 pl) was taken

from the cDNA synthesis mix and placed in a microcentrifuge tube with 2O ¡tI carrier

DNA solution (100 pglml salmon spenn DNA). Approximately 10 pl 1 M NaOH was

added and the mixture was incubated for 30 min at 46oC. The tube was spun briefly to

return the mixture to the bottom of the tube and 10 pl 1 M HCI was added. Finally, 10 pl

1 M Tris-HCl buffer, pH 8.0 was added. The resulting mixture was extracted with an

equal vol of phenol/chloroform (1:1, v/v) and the aqueous phase was removed and re-

extracted with phenol:chloroform, followed by chloroform alone. The aqueous phase

was precipitated with an equal volume of 4 M ammonium acetate and two volumes of

cold (-20oC) ethanol. The tube was chilled for 15 min at -80oC, warmed to room

temperature with shaking to dissolve the unreacted dNTPs which were precipitated

during chilling, and spun for 10 min at 13p00 rpm. The pellet was washed once with 50

¡t"l2 M ammonium acetate and 100 pl cold ethanol. The resulting pellet was washed

with 200 ¡rl cold ethanol and, following centrifugation, the supernatant was removed.

The cDNA pellet was dried, resuspended in TE buffer, pH 8.0 and separated on a I.2Vo
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(w/v) alkaline agarose gel overnight at 20 mA to analyse the size distribution of the

product. The gel was dried, covered with Glad V/rap plastic film and examined by

exposing the gel against X-ray Hyperfilm at -70oC with an intensifying screen for 1 day.

3.2.2.2 Cloning in the ):ZAP II vector

The uneven ends of the double-stranded cDNA preparation were filled using T4

DNA polymerase and EcoRl adaptors were ligated to the blunt ends, according to the

manufacturer's instructions. The adapted oDNA ends were digested with Xhol (Figure

3.1). As a result the cDNA contained an EcoRI site at its 5' end and a XhoI site at its 3'

end, to allow directional cloning into the EcoRUXhol-digested Uni-ZAP II vector. After

ligation, the vector containing the cDNA inserts was packaged into ?,,ZAP using a

Gigapackß) Gold packaging kit, according to the manufacturer's instructions

(Stratagene). The packaged recombinant phage particles were infected into E. coli

SURE cells [el4-(mcrA), A (mcrCB-hsd SMR-mrr) 17l, sbcC, recB, recJ, umuC ::

Tn5(Kanr), uvrC, supE44, lac, gyrA96, relAl, thi-l, endAl, {F'proAB, Iacl9Z 
^ 

M15}

Tn10(tetr)1. E. coli SURE is a recA-, mcrA-, mcrCB, and mrr- strain which does not

degrade methylated DNA.

3.2.2.3 Analysis of the cDNA library

To check that insert sizes of cDNAs were satisfactory prior to screening the library,

random clones were isolated and insert sizes examined. The cDNA library was plated

out using the SURE strain of E. coli. The number of plaque forming units (pfu) was

determined and twelve single plaques were picked at random. The inserts were rescued

from fuZAPIIby in vivo excision into the pBluescript plasmid according to the supplier's

instructions. Each plaque was picked from the agar plate and transferred to 500 pl SM



Figure 3.1 Strategy for cDNA synthesis (Diagram from Stratagene product

literature). The first strand cDNA is synthesized using reverse transcriptase with the

oligo (dT)/XåoI linker-primer in the presence of 5-methyl dCTP, dATP, dGTP and

dTTP. The second-strand cDNA is synthesized from the first-strand cDNA using

DNA polymerase I, RNaseH and dNTPs. The resulting double-stranded cDNA is

blunt-ended with T4 DNA polymerase, ligated to EcoRI adaptors and finally the

cDNA is digested withXhoL
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buffer. Chloroform (20p1) was added and the tube vortexed to release the phage

particles into the SM buffer, which was incubated for 2h at room temperature. Phage

stock (100 pl) was incubated at 37oC for 15 min with 200 pl Xll-Blue cells [recAl,

endAl, gyrA96, thi-l, hsdRl7, SupE44, relAl, lac, (F', ProAB, lacl9, ZLNIILí,

Tnl0tetr)l and 1¡rl ExAssist helper phage (1x106 pfu/ml) in a 10 ml tube. Following

incubation, 3 ml of 2 x YT media was added and incubation was continued for 2.5 h at

37oC with shaking. The cell suspension (lnìl) was transferred into a sterile microfuge

tubeandheated atTOoCfor20 min. Followingcentrifugationat6,000xgfor l0minthe

supematant was transferred into a fresh microfuge tube and stored at 4oC. To plate the

rescued phagemid, 200 pl E. coli SOLR 1s14- (mcrA), A(mcrCB-hsdSMR-mrr) 171,

sbcC, recB, recJ, umuC::Tn5(kanr), uvrC, lac, gyrA96, relAl, thi-1, endA1, l,R, [F'

proAB, laclqZAMl5l Su-) cells (466s approximately 1.0) were incubated with 50 pl

rescued phagemid stock for 15 min at 3loc. The mixture was plated on LB plates

containing 100 pg/ml ampicillin and incubated at37oC overnight.

Plasmid DNA was prepared from overnight cultures by the alkaline-lysis method

(Sambrook et a1.,1989). The cDNA inserts in pBluescript plasmid were excised with

XhoI and EcoRI restriction enzymes and separated by electrophoresis using a l%o (wlv)

agarose gel.

3.2.3 Prepøratíon of [32P]-radiolabelled cDNA probes

The cDNA clone pMXl was labelled with [ç¿-:zP]-dCTP according to the protocol

provided with the Megaprime labelling kit (Amersham). The DNA fragment

(approximately 100 ng) was mixed with 5 pl random nonanucleotide primers and made

up to a volume total of 50 pl with sterile milliQ HzO. The primer-DNA mix was boiled

for 5 min and immediately transferred to ice. After cooling it was mixed with 10 pl

labelling buffer, 5 pl [s¿-lzP]-dCTP and 2 pl Klenow DNA polymerase enzyme, and
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incubated for 2O min at 37oC. The labelled DNA was separated from unincorporated

nucleotides using a Sephadex G-100 column. A sterile Pasteur pipette was plugged with

glass wool and pre-swollen Sephadex G-100 was added to a height of 7 cm. The column

was equilibrated with I x TE buffer pH 8.0. To the labelling reaction mixture was added

20 ¡tI IVo (wlv) Blue Dextran and lVo (wlv) Orange G in TE buffer and, following

equilibration, the reaction mixture was added slowly to the column. Labelled probe was

collected as the blue dye eluted from the column. The purified probe was boiled for 5

min and immediately cooled on ice before being added to the hybridizaton solution.

3.2.4 Screeníng of the aDNA líbraries

The recombinant plaques were grown overnight at 39oC on a lawn of the Sure

strain of E. coli on NZY broth plates. To prevent agar sticking to the nitrocellulose

filters, the plates were chilled to 4oC for 2 h. Nitrocellulose filters were placed on the

chilled agar surface for 2 min. The transferred plaques were denatured with 0.5M

NaOH/1.5 M NaCl and neutralized with 0.5 M Tris-HCl buffer p}{7.5lL5M NaCl for 5

min each. The filter was baked at 80oC for 2 h (Sambrook et a1.,1989), prehybridized

for 4 h and hybridized for 16 h at 65oC in 6 x SSC [1 x SSC is 150mM NaCl, l5mM

sodium citrate buffer, pH (7.0)1, 1x Denhardt's solution lO.O2Vo (w/v) BSA,O.O27o (w/v)

Ficoll and O.02Vo (w/v) PVPI (Denhardt, 1966), lVo wlv SDS, 100 pglml denatured

herring sperm DNA and the ¡s(-32P1-labelled pMXl cDNA probe. The filters were

washed at 65oC in2 x SSC/O.IVo (wlv) SDS for 20 min, followed by 1 x SSC/0.1%

(w/v) SDS for 20 min, 0.5 x SSC/0.17o (w/v) SDS for 2O min and 0.1 x SSC/O.|Vo (wlv)

SDS for 20 min. Finally, the filters were washed with 0.1 x SSC/0.1 (w/v) SDS at 70oC

for 30 min. The nitrocellulose filters were dried and exposed against X-ray Hyperfilm

(Amersham International, UK) using an intensifying screen at -80oC for 3 h. The

positive clones were subjected to three rounds of plaque purification.
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3,2.5 Southern hlot analysís, restrictíon mapping and subcloning

The inserts were rescued from )vZAP into the pBluescript plasmid and cDNAs

were excised with XhoI and EcoRI restriction enzymes. The inserts were further

digested with other restriction enzymes for subcloning into pBluescript. Resulting

fragments were fractionated on a l7o (w/v) agarose gel. The DNA was transferred to a

nylon membrane using the procedure described in Section 2.2.3.5. Hybridization was

carried out with [a-32p1 dATP-labelled pMXl cDNA as rhe probe (section 3.2.4).

Bands were excised from the gel and purified using Gene Clean (Bresatec). For

complete nucleotide sequence analysis the purified DNA fragments were subcloned into

pBluescript II SK(+¡ which had been digested with appropriate restriction enzymes and

dephosphorylated (Sambrook et al., 1 989).

3.2.6 Comparísons of îhree-dimensíonal structures of Q -+aÞþ-xylønase by computer

analysis

Coordinates for the three-dimensional structures of a bifunctional xylanase/exo-P-

glucanase from Cellulomonas fimi (Zexo) (White et al., 1994), xylanase A from

Streptomyces lividans (lxas, Ca only) (Derewenda et al., 1994) and xylanase A from

Pseudomonas fluorescens (Ixys, Ca only) (Harris et al., 1994) were taken from the

Protein Data Bank (Bernstein et aI.,I97l). Coordinates for xylanaseZfrom Clostridium

thermocellum (lxyz) (Dominguez et al., 1995) were kindly provided by the authors.

Structures were superimposed using the automated procedure in the program O (Jones er

aL, l99l). Structurally conserved segments were defined as those that were

superimposable in all pairwise comparisons. These comparisons were kindly undertaken

by Dr. Tom Garrett, Biomolecular Research Institute, Parkville, Victoria 3052.
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3.3 RESULTS

3.3.1 Construction of the cDNA library

An alkaline agarose gel of the first strand and double-stranded cDNA showed a

smear of cDNAs ranging from 500 to more than 3000 bp (Figure 3.2). The cDNA

library produced from the double-stranded cDNA contained approximately 1.2x106 pfu;

these were generated from 5 pg poly(A)+-RNl. Twelve plaques were selected at

random and pBluescript plasmid containing cDNA inserts were excised from the I,ZAPII

vector. The cDNA inserts were excised from pBluescriptby XhoI and EcoRI digestion.

Their sizes ranged from 500-2500bp (Figure 3.3). Because the molecular weight of the

purified xylanase protein from germinated barley grain extracts is 41,000 (Slade et al.,

1939) and the expected size of a full-length xylanase cDNA (including both 5' and 3'

untranslated regions) is therefore 1450-1600bp, the presence of oDNA inserts of up to

2500 bp indicated that the cDNA library was satisfactory and justified subsequent

screening for full-length xylanase cDNAs.

3.3.2 Isolation of cDNAs encoding barley Qa)-p-xylan end.ohydrolase

Three cDNA libraries were screened in attempts to obtain full-length xylanase

cDNAs. Approximately 1x105 pfu of the GA3-treated aleurone cDNA library generated

here were screened and thirty strongly positive clones were obtained and purified (Figure

3.4). The sizes of the cDNA inserts were checked by restriction digestion with XhoI and

EcoRI and analysed by Southern blotting using the 5' oligonucleotide Xy2 as a probe

(section 2.2.3.5). With this probe none of the clones gave a positive signal. Among the

plaques, detected using the pMXl cDNA, the largest cDNA insert obtained was 900 bp

and this clone was named pMXl (0.94) (Figure 3.5).
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Figure 3.4 Positive plaques after screening the cDNA library with the pMXl

cDNA probe. Panel A, positive plaques after the 2nd screen. Panel B, a single

"monoclone" aftef the 3rd scfeen.
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markers; lane 2, pMXl PCR cDNA insert; lane 3, an undigested positive cDNA

clone, lanes 4-11, different positive clones after excision of cDNA inserts with

EcoRIlXhoI.
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A second cDNA library 0.2x105 pfu) prepared by Drs. Gubler and Jacobsen from

18 h GA3treated aleurone layer poly (A)+-nNe was screened. Eighteen positives were

obtained from the library. Insert sizes were determined by restriction digestion of the

rescued clones (Figure 3.6 A) and the presence of xylanase sequences confirmed by

Southern blot analysis with the 685 bp PsrI fragment of the pMXl clone (Figure 3.6 B,

lane 19). Among the 18 clones, the biggest insert size was 1560 bp and this clone was

named pMXl(1.64).

The third library (1.5x10s pfu) prepared in Àgtl1 from l2-day-germinated barley

seedling RNA was also screened but only one positive clone was obtained. The size of

its cDNA insert was 2.J kb which included 1.8 kb and 0.9 kb EcoRI fragments (Figure

3.7). After subcloning, the plasmid was digested with EcoRI (Figure 3.8A) and Southem

blot analysis showed that the pMXl cDNA probe bound only to the 1,8 kb EcoRI

fragment (Figure 3.8 B). No hybridization was obtained with the 0.9 kb fragment. The

1.8 kb cDNA fragment was recloned and named pMX2(1.1S); the (1.15) designation

was given because it was likely that the first 700 bp at the 5' end of this cDNA resulted

from a cloning artifact (section 3.4).

In summary, the following cDNAs were isolated and characterized: a 900 bp

cDNA clone pMXl(0.94) from the aleurone layer cDNA library generated in the present

work; a near full-length, 1560 bp cDNA clone pMxl(l.64) from the aleurone layer

cDNA library provided by Drs. Gubler and Jacobsen; and a lI40 bp cDNA clone

pMX2(1.1S) from the CLONTECH seedling library.

3.3.3 Characterization of cDNAs

Of the three cDNAs, pMXl(O.9A) had a poly(A) tail and appeared to be missing

about 600 bp from its 5' end. The pMXl(l.64) clone was nearly full-length but did not

contain a poly (A) tail, while the 1140 bp pMX2(1.15) was almost complete at its 5'end
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Figure 3.6 EcoR.I restriction digest of positive clones isolated from the GA3-

treated barley aleurone layer cDNA library. Panel A, ethidium bromide-stained

agarose gel showing different positive clones prior to transfer to a nylon membrane.

Panel B, Southern blot analysis of the positive clones using the 685 bp Ps/I

fragment of the pMXI cDNA as a probe.
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Figure 3.7 Agarose gel electrophoresis of the positive clone [pMX2(1.1S)]

isolated from a l2-day seedling library following restriction digestion with

EcoIRl. Lane I, I kb DNA ladder; lanes 2-5, four individual transformants of the

positive clone showing the 1.8 kb and 0.9 kb cDNA fragments.
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Figure 3.8 Subcloned 1.8 kb and 0.9 kb fragments from the pMX2(1.1S) cDNA

clone isolated from a l2-day-germinated barley seedling library. Panel A,

ethidium bromide-stained agarose gel of plasmid DNA digested with EcoRL prior to

transfer onto a nylon membrane for blotting. Lane 1, pMXl digested with BamHI

and Hir¿dIII; lanes 2-6,1.8 kb inserts; lanes 7-11, 0.9 kb inserts; lane 12,1 kb DNA

markers. Panel B, Southern blot analysis of digested DNA following transfer to a

nylon membrane using pMXl cDNA as a probe.
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Figure 3.10 The complete nucleotide sequence and derived amino acid sequence of

barley (1+4)-Ê-xylanase isoenzyme X-I. The signal peptide is shown in bold and the

NHr-terminal valine residue of the mature enzyme is indicated with an arrow, with the

numbering of amino acid residues starting at the Val. Potential N-glycosylation sites are

indicated by dashed underlining, the likely catalytic nucleophile (Glu 168) and catalytic

acid (Glu 270) by double underlining, and the potential polyadenylation signals are

underlined with solid lines. The translation stop codon is marked with an asterisk, and

the position where the poly(A) tail for the pMXl clone begins is shown by a leaf

symbol.
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Figure 3.11 Partial nucleotide sequence and deduced amino acid sequence of

(1+4)-p-xylanase isoenzyme X-II. The signal peptide is in bold and the NHr-

terminal valine residue of the mature enzyme is indicated with an anow. Potential

N-glycosylation sites are indicated by dashed underlining, and a putative catalytic

nucleophile (Glu 163) and catalytic acid (Glu 265)by double underlining.
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but was missing about 400 bp from its 3' end. As mentioned above, the pMX2 (1.15)

had a very long (700 bp) 5' untranslated region, part of which was probably a cloning

artifact. Therefore, the 1.14 kb region of pMX2(1.1S) was compared with the

pMXl(1.64) clone.

The nucleotide sequences of the PCR-generated cDNA pMXl(1.3) and the

aleurone layer library cDNAs pMXl(0.94) and pMXl(1.64) were identical where they

overlapped, except for a few base mismatches in the PCR-generated oDNA. Only one

amino acid change was evident. The (1+4)-B-D-xylan endohydrolase encoded by these

cDNAs was designated isoenzyme X-I. The nucleotide sequence of the seedling library

cDNA pMX2(1.1S) showed a9I7o sequence identity with the other cDNAs, but the

amino acid sequence deduced from it differed significantly from the (1+4)-p-xylanase

isoenzyme X-I sequence. The (1+4)-B-xylanase encoded by the seedling library cDNA

pMX2(1.1S) was therefore designated isoenzyme X-II.

The restriction maps and nucleotide sequencing strategies for the full-length

aleurone layer cDNA pMXl(1.6A) and the seedling library cDNA pMX2(1.1S) are

compared in Figure 3.9. The complete nucleotide sequences of pMXl(1.64) and pMX2

( 1 . 1S), together with deduced amino acid sequences, are shown in Figures 3. 10 and 3. 1 1 ,

respectively. The pMXl (1.6A) cDNA has a 5'untranslated region of 136 bp, which is

followed by a putative Met initiation codon. This codon is the first in an open reading

frame that encodes 421 amino acid residues. The deduced sequence includes a putative

signal peptide of 32 amino acid residues, followed by the NH2-terminal amino acid

sequence of the mature enzyme (Slade et ø1.,1989) (Figure 3.10). There is an additional

in-frame Met codon much closer to the NH2-terminal Val residue (Figure 3.10). The

translation start point indicated in Figure 3.10 was chosen because the nucleotide

sequence in this region more closely matched the consensus sequence for translation start

points in plant genes (Joshi, l98l a). The pMX2(1.15) also encodes a signal peptide of

32 amino acids, but only 345 amino acids of the mature protein sequence. The signal
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peptides encoded by pMX2(l.lS) and pMXl(1.64) have only two differences in amino

acids.

In the region of the pMXl(1.6A) cDNA that encodes the mature (1+a)-p-xylanase

there is an overall (G+C) content of 66Vo and this is attributable in large part to an

extreme bias towards the use of G and C in the wobble base position of codons. Of the

395 codons in the region encoding the mature enzyme, only 17 have A or T in the

wobble base position (Figure 3.10).

The translation stop codon beginning at nucleotide 1418 represents the beginning

of a 195 bp 3'untranslated region and a l8 bp polyadenylate tail (Figure 3.10). The

poly(A) tail therefore begins at a different position than that observed for the PCR-

generated cDNA (Figure 2.8 cf 3.10). This indicates that although the two mRNAs

originated from a single gene, alternative polyadenylation sites are used during 3'

processing of the primary transcript in the aleurone layer cells. No AATAAA consensus

polyadenylation signals are observed in the 3' untranslated region of the barley (l+4)-Þ-

xylanase cDNA, although related sequences such as GATAAT (Joshi, 1987 b) are

present (Figure 3.10).

3.3.4 Propertíes of the encoded Q a)-B-xylanase

The mature enzyme encoded by the pMXl(1.6A) nucleotide sequence shown in

Figure 3.10 contains 395 amino acid residues. It has a calculated molecular weight of

44,623 and two potential N-glycosylation sites (Figure 3.10). The isoelectric point

calculated from the deduced amino acid sequence is 6.1.

The complete amino acid sequence of barley (1+a)-Þ-xylanase isoenzyme X-I is

aligned with the partial sequence of isoenzyme X-II in Figure 3.12. Although the

pMX2(1.1S) cDNA is truncated at its 3'end, the alignment shows clear differences

between the sequences of the two putative isoenzymes (Figure 3.12). Thus, 50 changes



Figure 3.12 Alignment of the complete amino acid sequence of barley (1+4)-

p-xylanase isoenzyme X-I, deduced from the nucleotide sequence of the near

full-length cDNA pMXl(1.64), with the partial amino acid sequence of barley

(1-+4)-B-xylanase isoenzyme X-II deduced from the pMX2(1.1S) cDNA, which

was truncated at its 3' end. The arrow indicates the NH2-terminal Val residue in

the mature enzyme (amino acid number 1), dashes show the region of the

isoenzyme X-I sequence which is absent from the isoenzyme X-II sequence, dots

indicate the identical residues and doubly underlined Glu residues are the putative

catalytic residues.
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are apparent in the 383 amino acid residues that can be aligned and isoenzyme X-I has an

extra group of 5 contiguous amino acids inserted near its NH2-terminus (Figure 3.12).

3.3.5 Fold recognition

Dr. T.P.J. Garrett used the program THREADER (Jones et aL, 1992) to see if the

barley xylanase sequence was consistent with a known protein structure. The standard

dictionary of 254 structures was modified by the addition of a xylanase/exo-B-glucanase,

2exo. Three structures gave significantZ-scores (<-3.0), the best two being c/B banels.

Scores were 2exo (-3.79),1nar, narbonin (-3.46) and lcse, subtilisin (-3.30). The top

two structures stood out more clearly for the filtered weighted Z-scores, which were

-3.01, -3.16 and -2.51, respectively (Dr. T.P.J. Garrett, personal communication).

3.3.6 Comparisons of sequences and three-dimensíonal structures.

Although there are no sequences for plant xylanases in the DNA and protein

databases, the primary structures of many xylanases of microbial origin have been

determined. Furthermore, when searching the SWISSPROT database for similar

sequences it was the microbial sequences that were most similar to the barley B-xylan

endohydrolase. Overall positional identities were about20Vo, but were as high as287o

for xylanase A from Streptomyces lividans (XYLA_STRLI). Selected bacterial and

fungal xylanase sequences have been aligned with the amino acid sequence of the barley

(1+a)-B-xylan endohydrolase isoenzyme X-I in Figure 3.13. This shows that blocks of

identical or highly conserved residues are distributed throughout the microbial sequences

and that many of these residues are also conserved in the barley enzyme

The three-dimensional conformations for four microbial xylanases have been

determined by x-ray crystallography (Derewenda et al., L994; Harris et aI., 1994:



Figure 3.13 Amino acid sequence alignment of the barley (1+4)-B-xylanase

isoenzyme X-I (hv) with selected microbial (1+4)-Þ-xylanases from

Penicillium chrysogenum (pc), Aspergillus niger (an), Streptomyces lividans (sl)

znd, Bacillus stearothermophilus (bs). The alignments were performed using the

PRETTYBOX program.
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Törrönen et a1.,1994; White et a1.,1994). The structures have been superimposed and

their alignment with the barley eîzyme is shown in Figure 3.14, along with the major

secondary structural elements. Of the 34 amino acids which are totally conserved,23

form a cluster around the putative catalytic glutamate residues (Figure 3.15). Residue

Tyt206 in the barley enzyme (Tyr171 in 2exo) also lies in this patch and, although not

completely conserved, is an aromatic residue in all cases.

o



Figure 3.I4 Structural homology of xylanases. The structurally superimposable

segments of the four xylanases are shown in uppercase letters. The remaining sequence

is shown in lowercase. The top line is the bifunctional xylanase/exoglucanase (2exo)

from Cellulomonas fimi; the second line is xylanase A from Streptomyces lividans; the

third line is xylanase A from Pseudomonas flourescensi the fourth line is xylanase Z

ftom Clostridium thermocellum; and the fifth line is (1+a)-B-xylanase from Hordeum

vulgare. Secondary structural elements for 2exo are given above the sequences (+ for

B-sheet, H for helix, elements of the orlB barrel are numbered). The sequence for the

barley xylanase was aligned by similarity with the other sequences. Because there is

little similaity at the COOH terminus, the alignment in that region may be unreliable.
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Figure 3.15 Conserved active sites in plant and microbial xylanases. The

molecular surface of the bifunctional xylanase/exoglucanase (exo) is shown in blue

with the conserved patch (yellow; residues marked with an asterisk in Figure 3.14)

which surrounds the catalytic glutamate residues (Glu168 and GIl270; white). The

highly conserved TyrITl is included in the conserved patch.
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3.4 DISCUSSION

An oligonucleotide primer corresponding to an NH2-terminal amino acid sequence

of barley (1+a)-B-xylan endohydrolases (Slade et al., 1989) was used in 3' RACE PCR

experiments to generate a cDNA from poly(A)+-RNR prepared from GA3-treated barley

aleurone layers (Chapter 2). The PCR product was subsequently used to screen a near

full-length, 1560 bp cDNA [pMX1(1.64)] from a barley aleurone layer cDNA library.

Nucleotide sequence analysis (Figure 3.10) of the cDNA confirmed that it encoded a

barley (1+a)-B-xylanase, which is now designated isoenzyme X-I. The deduced NHz-

terminal amino acid sequence is almost identical to that determined directly from three

separate endoxylanase enzymes by Slade et aI. (1989). A second cDNA [pMX2(1.1S)]

from a young seedling library was shown to encode a related yet distinct enzyme,

designated ( I +a)-B-xylan endohydrolases isoenzyme X-II.

Although the cDNA encoding isoenzyme X-II is not full-length at its 3' end, it is

long enough to allow the alignment of nearly 400 amino acids (Figure 3.12). The

alignment shows a sequence identity value of approximately 87Vo at the amino acid

level; this may be compared with a value of 9lVo identity at the nucleotide level. These

results indicate that the xylanase cDNAs are derived from two separate genes and,

because barley is predominantly self-fertilizing and plants of established cultivars are

essentially homozygous, the products of the genes represent true genetic isoenzymes.

The three barley (1+a)-B-xylanase isoforms purified by Slade et al. (1989) had identical

NH2-terminal amino acid sequences, whereas the isoenzymes X-I and X-II examined

here exhibit significant differences in their NH2-terminal sequences (Figure 3.12). It

may now be concluded, therefore, that the three isoforms described by Slade et al. (1989)

probably originated by differences in post-translational modification of a single gene

product. The presence of two potential N-glycosylation sites (Figure 3.10) provides
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scope for heterogeneity in attached carbohydrate, which might be reflected in variations

in chromatographic behaviour during the purification process.

The cDNA sequences revealed some information about the barley (1+4)-Ê-

xylanase gene structure. In particular, there is an extreme (G+C) bias in the wobble base

position of codons (Figure 3.10). Similar strong biases towards the use of G and C in the

third position of codons have been observed in genes encoding barley (l+3,1+4)-B-

glucanases, (1+3)-p-glucanases and other enzymes that are expressed at high levels in

germinated cereal grains (Slakeski and Fincher 1992 a, b; Fincher 1989; Fincher et ql.,

1986). It should be noted, however, that a (G+C) bias in the wobble base position is not

found in all genes expressed in germinated grains; a carboxypeptidase and a B-glucan

exohydrolase from germinated barley both have a balanced codon usage (Doan and

Fincher 1988; Hrmova et al., 1996) There is also evidence for alternative

polyadenylation sites during 3' processing of the primary transcript in the aleurone layers

of germinated barley (Figure 3.10). Tissue-specific 3'processing of the pre-mRNA for

barley (1+3)-Þ-glucanase isoenzyme GV has been described (Xu et al., t994), although

the functional significance of the alternative polyadenylation sites is not yet clear.

A putative signal peptide of 32 amino acid residues (Figure 3.10) also suggests that

the mature enzyme is secreted from the aleurone cells. This putative signal peptide has

charged residues near its NH2-terminus, it has a relatively short hydrophobic core and

becomes more hydrophilic towards the NH2-terminal residue of the mature enzyme

(Figure 3.10). These characteristics are typical of plant signal peptides that target

nascent polypeptides to the endoplasmic reticulum (Watson, 1984) for eventual secretion

from the cell.

Nucleotide sequence analysis of the barley (1+a)-B-xylanase cDNA enabled the

complete primary sequence of 395 amino acids in the mature eîzyme to be deduced

(Figure 3.11). The (1+4)-p-xylanase isoenzyme X-I has a calculated molecular weight

of mature enzyme of 44,623 and a pI of 6.1. These values can be compared with
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apparent molecular weight values of 41,000 and pls of 5.2 directly determined for the

three (1+4)-p-xylan endohydrolases that have been purified previously from extracts of

germinated barley grain (Slade et a1.,1989). The discrepancies between values deduced

from the cDNA and those directly measured from the purified enzyme are somewhat

larger than expected. V/hether the highly charged nature of the enzyme, which has 108

charged acidic and basic residues, together with associated carbohydrate, causes aberrant

behaviour during SDS-PAGE or isoelectric focusing is not yet known. Another

possibility is that the mature enzyme purified from germinated grain was subject to

limited degradation by carboxypeptidases present in the grain. This would create

carboxy-terminal heterogeneity with respect to both length and hence in pI of the various

truncated forms. This phenomenon of carboxy terminal processing (or degradation) has

been reported for the a-amylase of germinated barley (Lundgard and Svensson 1987).

Alignment of the barley (1+4)-B-xylanase sequence with microbial endoxylanases

reveals the presence of several highly conserved blocks containing 2-6 amino acid

residues (Figure 3.13). Microbial xylan endohydrolases have been classified into two

distinct families on the basis of amino acid sequence alignments and hydrophobic cluster

analyses (HCA) (Wong et al., 1988; Gilkes et a1.,1991; Henrissat 1991; Henrissat and

Bairoch, 1993) as follows;

a) a low molecular weight group of basic xylanases which have M1 values of

approximately 22 kDa or less and isoelectric points (pI) of approximately 8.3-10.0. This

group is a member of the G group of B-glycanases (Henrissat and Bairoch, 1993), which

is well-characterized in terms of three dimensional structures. The G family of xylanases

consists of enzymes containing a single-domain B-sheet protein (V/akarchuk, 1994;

Arase et a1.,1993; Campbell et a1.,1993; Törrönen et a1.,1993).

b) a high molecular weight group of acidic xylanases, which have Mp values of

approximately 43 kDa and above, and pI values in the range 3.6-4.5. These xylanases
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have been classified in the F family of B-glycanases (Henrissat and Bairoch, 1993),

which are generally eight-fold o/B barrels (Harris et a1.,1994) (Table 3.1).

Despite this classification, the well-characterized microbial (l-+4)-B-xylan

endohydrolases do not always fit obviously into one group or another and care must be

exercised in oversimplifying xylanase classification. Exceptions to the two groups can

be seen amongst the enzymes listed in Table 1.2 (Chapter l).

The similarities of the barley (1+a)-B-xylanases with conserved sequences in F

family microbial xylanases for which crystal structures are defined suggest that the two

groups of enzymes have similar protein folds. The microbial xylanases, from the F

family group of endo-B-glycanases are all (a/Þ)s barrel structures (Davies and Henrissat

1995; Derewenda et al., 1994: Harris et aL, 1994; White et aI., 1994). Although the

overall amino acid sequence identities between the barley B-xylan endohydrolase and the

microbial xylanases are not particularly high, it appears that the plant enzyme will prove

to be quite similar to F family microbial xylanases both in overall three-dimensional

structure and in the location of catalytic sites (Figure 3.15). It is noteworthy thatbarley

(I+3,I+4)-B-glucanase also adopts an (o/Þ)g barrel fold (Varghese ¿/ aL,1994).

The catalytic domains of several hundred glycosyl hydrolases and related enzymes

can be classified into a relatively small number of distinct families, based on similarities

in amino acid sequences (Henrissat and Bairoch, 1993). The barley (1+a)-B-xylanase

sequence deduced here (Figure 3.10) indicates that the enzyme falls into family F

(Henrisat and Bairoch, 1993). Based on this classification, the catalytic acid residue of

the barley (l+a)-B-xylanase isoenzyme X-I would be expected to be Glu 168 and the

catalytic nucleophile Glu270; the anomeric configuration of the xylosyl residues would

be expected to be retained during hydrolysis (Henrissat and Bairoch, 1993; Chen et al.,

1995; Hrmova et aI., 1996). The potential participation of these residues in the catalytic

mechanism can now be confirmed, using chemical modifications and suicide inhibitors

of the type used by Chen et al. (1993) to define the catalytic amino acids in barley



Table 3.1 Properties of a selection of basic and acidic xylanases from
microorganisms

Species References

Aspergillus níger Il John et al. (1979)

Clostridium

stercorarium

Bacillus sp V/2

Streptomyces lividans

Trichoderma

harzianumE5S

Trichoderma viride

(Onozuka)

Bérenger et aI. (1985)

Okazaki et aI. (1985)

Morosoli et al. (1986)

Kluepfel et aI. (1990)

Kluepfel et al. (1992)

Tan et al. (1985)

Sinner and Dietrichs (1975,

r976)

Beldman et aI. (1985, 1988)

F

G

F

G

F

F

F

G

G

F

F

F

F

G

5.3

9.4

4-4.5

9.2

5.3

4.4

5.2

8.4

t0.25

3.7

8.3

4.5

4.4

4.4

20.0, [8-

11.s1

48.0

50.0

17.8

53.0

57.0

43.0

31

22

50.0

22.5

44.0

62.0

t2.o

Xylanase

fanúly

Isoelectric

point (pI)

Molecular

weight

(kDa)

Cryptococcus albidus Morosoli et al. (1986)
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(1+3)-F- and (1+3,(1+a)-Þ-glucanases. However, these experiments would rely on

the availability of reasonable quantities of highly purified, stable enzyme, but problems

encountered by Slade et al. (1989) with eîzyme instability would probably preclude this

approach. An alternative approach would be to express the cDNA in a heterologous

system to generate sufficient enzyme for a thorough characterization. Attempts to

achieve high-level expression of the barley xylanase isoenzyme X-I cDNA in E. coli are

described in the next Chapter.



CHAPTER 4

HETEROLOGOUS EXPRESSION OF THE

cDNA ENCODING $+Ð-p-XYLAN

ENDOHYDROLASE ISOENZYME X.I
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4.L Introduction

Slade et al. (1989) encountered serious difficulties during the purification of barley

(1-+a)-B-xylanases. Dramatic losses of activity were evident during the purification

processes, and it proved very difficult to isolate the (1+4)-B-xylanases in large

quantities. Nevertheless, they managed to purify microgram quantities of three (1-+4)-

B-xylanase isoenzymes from germinated grains. Purification factors were close to 1800-

fold, but less than 2Vo of activity detected in initial extracts was recovered in the purified

enzyme preparations. The first 30 NH2-terminal amino acids were identical in all three

isoforms, although the enzymes showed different chromatographic mobility when

analysed by isoelectric focusing. As a result of the low yields, tryptic fragments could

not be generated for additional sequence information (Slade et al., 1989). It was

therefore not possible to conclude whether the three isoforms were products of separate

genes or were derived from a single gene product by post-translational modification.

Because these difficulties in isolating large quantities of pure active barley

xylanase precluded detailed kinetic and enzyme analyses, an attempt was made here to

express the xylanase cDNAs described in Chapter 3 in E. coli.

Several heterologous hosts for the expression of foreign genes have been

developed, including mammalian cells, insect cells, fungal cells, bacterial cells and

transgenic plant or animal cells. The choice of expression system for a given gene

depends upon the likely properties of the encoded protein, since some enzymes require

post-translational modifications to become active, whereas others may require special

processing if they are to be used as diagnostic reagents (Yarranton and Mountain, 1994).

Many eukaryotic genes have been characteúzed by heterologous expression in

bacteria (Gold, l99O: Henner 1990, Xu et aI., 1994). E. coli is the most widely-used

and convenient host for heterologous production of foreign proteins in large quantities.

The advantages of this system include the availability of suitable expression vectors, and



Chapter Four 67

the speed and adaptability of the system. Although E. coli is generally considered to be

the heterologous system of choice, it does present some disadvantages and limitations.

While significant progress has been made in the design of vectors for expression of

foreign genes in E. coli, high-level expression is still not routine. Unlike eukaryotic

cells, bacterial cells do not generally perform post-translational modifications. 'When

foreign proteins are "overexpressed" intracellularly they sometimes aggregate or

precipitate to form insoluble inclusion bodies (Marston, 1986; Schein, 1989; Kohno ¿r

al., l99O). Furthermore, proteins produced in such systems are often inactive because

eukaryotic polypeptide chains do not routinely adopt their native conformation in

prokaryotic cells. Another problem related to the overexpression of recombinant DNA

in E. coli is that the foreign protein synthesized is sometimes detrimental or toxic to the

host cell (Schertler, 1992).

Yeast can be used as an alternative eukaryotic host for the heterologous expression

of foreign proteins. Unlike bacteria, yeast possesses a complex cell biology more typical

of multicellular organisms and can mediate the secretion and post-translational

modification of many eukaryotic proteins. The main advantage of the yeast system is

that it allows the production of proteins in a soluble and active form, and purification of

expressed proteins is often simplified. Yeast expression systems have some

disadvantages which include the accumulation of inactive expressed proteins in insoluble

inclusion bodies (Kikuchi and Ikehara, 1994). One of the major disadvantages of the

yeast expression system is the low transcription rate of foreign genes, which can result in

relatively low yields of the expressed protein (Romanos et a1.,1992). This is not always

the case however, and high levels of expression have been obtained for hepatitis B core

antigen (40Vo of total cell protein, Kniskern et al., 1986) and human superoxide

dismutase (3O-70Vo of total cell protein, Hallewell et al., 1987). In comparison with the

bacterial systems, yeast expression systems are technically more complicated and time

consuming, and the transformation frequency is often low. In addition, expression levels



Chapter Four 68

generally depend on such conditions as the composition of the culture medium,

temperature and pH, and sometimes on the toxicity or secretory characteristics of the

products.

Another commonly used heterologous eukaryotic expression system is the insect

cell/baculovirus system. This system allows the expression of foreign genes to

exceptionally high levels while also allowing for the post-translational modification of

expressed proteins. The insect cell/baculovirus system has been used for the expression

of genes from viruses (Vlak et aI., 1990; Sanchez-Martinez and Pellett, l99I), bacteria

(Pennock et aI., L984), animals (Atkinson et al., 1990; Lithgow et al., I99l) and plants

(Bustos et al., 1988; Nagai et aL, 1992; Doan and Fincher, 1992; Kamp et al., 1992;

Korth and Levings, 1993), and utilizes cultured Spodoptera frugiperda (sf9) cells and a

vector which contains a strong viral polyhedrin promoter to direct transcription of cloned

genes. However, the cell cultures and viral constructs are very difficult to manipulate

and the system is very labour intensive (Summers and Smith, 1987). Cloning of foreign

genes into the baculovirus genome requires the preliminary cloning of the foreign gene

into a transfer plasmid vector and subsequent transfer of the gene into the baculovirus

genome by homologous recombination (Summers and Smith, 1987). A final problem

associated with the baculovirus system is the fact that some foreign proteins are rapidly

degraded either during, or shortly after, synthesis. Others are lost during cell breakage

and subsequent purification. In fact, proteolysis represents one of the most significant

barriers to heterologous gene expression in any organism (Marston, 1986; Gold, 1990).

Despite the general practical difficulties associated with the insect cell/baculovirus

system, there have been a number of recent improvements in the system which are

discussed in a review by Sridhar et al. (1994). These improvements mainly focus on

improving the efficiency of producing recombinant baculoviruses by giving them a

selective advantage over their wildtype counterparts (Kitts and Possee,1993).
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After analysing the various characteristics of the available heterologous expression

systems, it was decided to attempt to express the barley (1-+4)-B-xylanase cDNAs in E

coli. This decision was based on the ease of handling the E. coll system, the recent

availability of vectors and host strains that would facilitate expression and purification of

expressed proteins and, in particular, on the successful expression of barley (l+3,1+4)-

and (1+3)-B-glucanases in E. coli. (xu et al., 1994: chen et aI., 1995). It was also

deemed important that large quantities of the barley (1+a)-B-xylanases be produced,

since (1+4)-B-xylanases have some potential industrial applications, and an important

criterion for industrial implementation is the ability to produce highly active enzyme in

bulk quantities. Thus, xylanases have potential applications in the biodegradation of

lignocellulosic biomass to fuels and chemicals, improvement of rumen digestion (V/ong

et al., 1988), bleaching of kraft pulps (Koponen, l99l; Kovasin and Tikka,1992;

Lavielle et a1.,1992; Nissen et aL,1992; Buchert et a1.,1994) and in the improvement of

fibre properties (Mora et aL,1986). Xylanases also have widespread application in the

production of chicken feed supplements and bread improver mixtures (McCleary, 1992;

Nissen et al., 1992) and in the malting and brewing industries (Dekker, 1979).

Two cDNAs for barley isoenzymes X-I and X-II were isolated as described in

Chapter 3. The isolated (1-+4)-B-xylanase isoenzyme X-I cDNA was full-length

whereas the isoenzyme X-II cDNA was truncated at its 3' end (Figure 3.10 and Figure

3.11). An obvious pre-requisite for the efficient production of active protein for

functional analysis is the availability of a full-length cDNA. The construction of an

appropriate expression vector and expression of the full-length (1+4)-B-xylanase

isoenzyme X-l cDNA in E. coli is described in this Chapter. Attempts to purify the

expressed enzyme by affinity chromatography are discussed.

The pET plasmid vector was chosen for the heterologous expression studies. The

pET (plasmid for þxpression by U RNA polymerase) vector system is a powerful

system for the cloning and expression of recombinant proteins in E. coli (Resenberg er
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al., 1987; Studier et al., 1990). Expression is driven from the T7 RNA polymerase

promoter which is inducible by IPTG and, downstream from the cloned DNA fragment,

the vector has stop codons in all 3 reading frames to terminate translation. The pET-l4b

vector includes a sequence at the 5' end of the foreign gene which encodes 6 consecutive

histidine residues. The resulting protein therefore consists of the foreign protein of

interest fused at the NH2-terminus to a 6-residue histidine leader sequence. The poly-

histidine sequence (His-tag) has a high and specific affinity for a commercially-available

nickel-resin. This characteristic facilitates the purification of the expressed recombinant

protein, in a single step, by affinity chromatography.

The poly-histidine segment can be fused to the NHz- or COOH-terminus of the

expressed protein. The NH2-terminal fusion system has an advantage over the COOH-

terminal fusion system in that NH2-terminal sequencing of the gene product can be easily

performed. Furthermore, NH2-terminal fusion requires only that a short segment of 5'

nucleotide sequence is known. Also, NH2-terminus-fused proteins are often expressed 2-

4 times more efficiently than proteins tagged at their COOH-terminus (The

QlAexpressionist, product literature, Qiagen). One potential disadvantage of the poly-

histidine tagging can arise when the 3-dimensional folding of the expressed protein

positions the tag at the interior of the protein. In such a case, the tag can cause

unfavourable biochemical interactions during folding and loss of enzyme activity, it may

be sterically occluded so that affinity chromatography is no longer possible and its

position can inhibit the efficient cleavage of the tag following purification.

For expression of the barley (1+a)-B-xylanase cDNA, the expression construct

was transformed into E. coli strain BL}I (DE3) plysS. This strain has the potential

advantage that, as a B strain, it is deficient in the lon protease and lacks the omPT outer

membrane protease that can degrade proteins following cell lysis (Grodberg and Dunn,

1988). The host genome of E. coli BL2l (DE3) contains a T7 RNA polymerase gene

under the control of the lac operon, and thus expression of the polymerase can be
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induced by IPTG. A second plasmid, designated plysS, is also present in the expression

host cells to confer resistance to chloramphenicol; it contains a gene encoding for

bacterial lysozyme under the control of the tet promoter. Because lysozyme is a natural

inhibitor of Tl RNA polymerase, its presence reduces background expression prior to

induction. In addition to being an inhibitor of T7 RNA polymerase, lysozyme also has

the capacity to hydrolyse the peptidoglycan layer of the E. coli extracellular envelope

(Inouye et al.,1973). Following expression of the lysozyme gene from plasmid plysS,

lysozyme is located in the cytoplasm and therefore does not have access to the

carbohydrates on the internal layers of the bacterial extracellular envelope (Inouye et aI.,

1973). However, rupture of the envelope and cell membrane by the freezelthaw method

releases the lysozyme and facilitates complete lysis.

After the pET vector containing the (1+4)-B-xylanase foreign cDNA is

transformed into E. coli BL21(DE3), expression of the foreign gene is induced in the

presence of plasmid plysS by the addition of IPTG to the growth medium. Ni-NTA

(Nickel-nitro-tri-acetic acid) spin columns are used to purify the His-tagged protein from

the bacterial cell lysate following induction of expression. The Ni-NTA resin is

composed of a high surface concentration of NTA ligand attached to Sepharose CL-6B.

The NTA ligand has four of the six ligand binding sites in the coordination sphere of the

Ni2+ ion, leaving two sites free to interact with the 6 X His-tag (Figure 4.1). The high

affinity of the Ni-NTA resin for His-tagged proteins is due to the specificity of the

interactions between histidine residues and the immobilized Ni2+ ions on the NTA resin.

Imidazole is used to competitively elute the histidine-tagged protein from the binding

sites on the resin, since imidazole is a structural analogue of histidine (Figure 4.2).

In this Chapter, experiments designed to express barley (1+a)-p-xylanase

isoenzyme X-I cDNA in E. coli lysates are described. Although the protein was

expressed at relatively high levels, it was mostly deposited in inclusion bodies and

attempts to isolate active (1+a)-B-xylanase were unsuccessful.
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4.2 MATERIALS AND METHODS

4.2.1 Materials

The pET-l4b vector and E. coli cells HMS174 andBLZI were obtained from

Novagene, USA. E. coli Xll-Blue was from Stratagene. Ni-NTA spin columns and

imidazole were from QIAGEN Inc (Chatsworth, CA, USA). Oligonucleotides were

synthesized using an Applied Biosystems DNA Synthesizer. Oat-spelt xylan, betaine,

sorbitol, PMSF, SDS, IPTG, bacto-tryptone, guanidine-HCl and urea were purchased

from Sigma.

4.2.2 Construction of the Qa)-þxylanase isoenzyme x-I expression pløsmíd

Construction of expression plasmid: The coding region of the cDNA encoding

barley (1+a)-B-xylanase isoenzyme X-I was synthesized by PCR amplification using

pMXI (1.64) cDNA as a template. The ends of the coding region were modified during

the PCR to create suitable restriction sites, in the correct reading frame, to enable the

region to be subcloned into the expression vector pET-l4b (Figures 4.3 and 4.4). Two

oligonucleotide primers were designed to include convenient restriction enzyme sites.

Primer I
Ndel

5' CCGCTGGEATAITGGTCTACCCGGTGGACCAC 3'

(5'end)
233bp 250 bp

Primer II
BamHI

3' CGACTGCGGACTCCTAGGACTTAGATAG..5'
Stop codo

-(3'end)
1409 bp 1420bp



3

pMXl(1.64) cDNA

3',

PCR-amplification product

Restriction cleavage with NdeI and BamHI (cut ends only)

Ligation into Ndel- andBamHl- cut pET-14b vector

Figure 4.3 A diagrammatic representation of the preparation of (1-+4)-

p-xylanase isoenzyme X-I cDNA for subcloning into the pET-l4b

expression vector. The PCR product was digested with Ndel and BarnHI

restriction enzymes and ligated into the corresponding enzyme sites in the

pET-14b expression plasmid.
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Figure 4.4 Design and construction of the pET-l4b-X-r cDNA expression

vector. The barley (1+a)-B-xylanase isoenzyme X-I cDNA was inserted between

the NdeI and BamHI sites of the pET-l4b vector. Histidine residues are denoted by

H and the specific thrombin cleavage site is underlined. The cDNA insert is

represented by a solid line. The translation start codon is located within the NcoI site

of the pET-l4b vector.

Ori

Amp

T7

pET-14b expression
X-lconstruct
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Primers I and II were used to amplify the entire coding region of the cDNA, including a

stop codon adjacent to the BamHI site of primer II. Primer I contained a 5'-overhang

with an NdeI site and the cDNA sequence corresponding to the region 233-250 bp

(Figure 3.10, Chapter 3). Primer II contained a 5'-overhang, with a BamHI site and part

of the cDNA coding region corresponding to base pairs 1409-1420 (Figure 3.10, Chapter

3). The PCR was performed using Vent polymerase for 30 cycles. Before adding the

polymerase, the PCR cocktail, including template and primer, was preheated to 95oC for

5 min. Thereafter the following cycle was used : 94oC,2 min;50oC, I min; 72oC,3

min; with a final 10-min extension at'72oC after the 30 cycles were completed. The

PCR-amplified fragments were purified by Bresa-Clean according to the manufacturer's

instructions (Bresatec). The purified fragment was digested with NdeI and BamHIfor 2h

at 37oC. Digested products were further purified by extracting with phenol:chloroform

and chloroform. The aqueous, upper phase was precipitated with 0.1 vol 3M sodium

acetate buffer, pH 5.2 and 2.5 vol ethanol. The resulting pellet was washed with lO 7o

ethanol, dried and dissolved in 20 pl water. The PCR-amplified fragment was now ready

to ligate into the pET-14b expression vector.

pET-14b vector: For vector preparation, the pET-14 b vector was digested with Nd¿I

and BamHI restriction enzymes for 4 h at 31oC. Following digestion, the vector DNA

was separated in a lVo (w/v) agarose gel. The digested vector band was excised and the

vector DNA was purified by Bresa-Clean (Bresatec). The vector DNA and cDNA

fragments were ligated for 16 h at l4oC, using conditions described in section 2.2.3.3, to

construct the expression plasmid.

Bacterial strains: Expression constructs were transformed into E. coli strain Xl1-Blue,

as described in Section2.2.3.2 to maintain the construct. For induction of expression,

the E. coli sÍainBL2l (DE3) containing plysS was used.
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4.2.3 Induction of expression

The following protocol was used for induction of protein expression; 3 ml rich

media [containing l.2%o (wlv) bacto-tryptone, 2.4Vo (wlv) bacto-yeast, O.4Vo (vlv)

glycerol, 17 mM K2PO4,72 mM KzHPO+l was added to a lawn of transformed cells

grown overnight at 37oC. The cells were resuspended in this medium and 100 pl of the

cell suspension was incubated in 50 ml rich media in a 250 ml Erlenmeyer conical flask

containing 100 pglml ampicillin and25 ¡tglml chloramphenicol at3loC with shaking

until the A6ss reached 0.6. One ml of culture was centrifuged, the pellet was

resuspended as an uninduced sample control and stored at -20oC until further analysis.

IPTG (0.5 mM) was added to the remaining culture and incubation was continued at

23oC for 3 h. The flask was placed on ice for 5 min and the cells harvested by

centrifugation at 3,000 rpm for 20 min at 4oC. The supernatant was removed and the

cell pellets were stored at -70oC.

To study the time course of (1+4)-B-xylanase gene expression after induction with

IPTG, 1 ml aliquots were taken at t h intervals for up to 5 h. The cells were collected by

centrifugation and stored at -20oC for further analysis. Frozen cell pellets were thawed

and resuspended in 100 pl SDS sample loading buffer prior to analysis by SDS-PAGE .

4.2.4 Solubilization of inclusíon bodies and protein reþldìng

Stored cell pellets were thawed for 15 min on ice and resuspended in 1ml 50 mM

sodium phosphate buffer, pH 7.8, containing 300 mM NaCl, 20 mM imidazole and I

mM PMSF. The suspension was incubated on ice for 30 min, cells were lysed by

sonication for 30 sec and the resulting lysate was centrifuged at 13,200 rpm for 20 min at

4oC. The supernatant was retained for analysis by SDS-PAGE and for purification of the

expressed ( I +a)-B-xylanase under native conditions.
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The cell pellet, which contained insoluble inclusion bodies, was resuspended in 6

M guanidine-HCl or 8 M urea containing 0.1 M sodium phosphate buffer, pH 7.8 and

0.01 M Tris-HCl buffer, pH 8.0, respectively. The cells were gently stired on a rocking

platform in the denaturing buffer for I h at room temperature. The lysate was

centrifuged for 15 min at 13,200 rpm and the supernatant containing the solubilized,

denatured proteins was retained. The denatured proteins were analysed by SDS-PAGE

and used for the subsequent purification of the expressed (1+4)-B-xylanase on Ni-NTA

column.

4.2.5 Puffication of the overexpressed protein

To purify the tagged (1+a)-B-xylanase from the soluble cell lysate prepared under

non-denaturing conditions, a Ni-NTA spin column was pre-equilibrated with 600 pl 50

mM sodium phosphate buffer pH 8.0, containing 300 mM NaCl and 20 mM imidazole.

The column ìù/as centrifuged for 2 min at 2,OOO rpm at room temperature. Following

equilibration, 600 pl cell lysate was added to the column, which was recentrifuged for 2

min at 2,000 rpm. The flow-through was collected for SDS-PAGE analysis to check the

efficiency of binding. The column was washed twice with the same buffer, and once

with the same buffer containing 40 mM imidazole. Bound protein was eluted twice with

100 pl buffer containing 250 mM imidazole.

To purify the protein that had been re-solubilized from inclusion bodies, the Ni-

NTA column was pre-equilibrated with 600 pl sodium phosphate buffer pH 7.8

(containing 6 M urea, 0.01 M Tris-HCl, pH 8.0, 20 mM imidazole) and centrifugedfor 2

min at 2,000 rpm. Solubilized cell lysate (600 pl) was added onto a pre-equilibrated

column, centrifuged for 2 minutes at 2,000 rpm, and the flow-through was retained for

SDS-PAGE analysis to check the efficiency of binding. The column was washed twice

with the same buffer, and twice with the same buffer adjusted to pH 6.3. Next, the
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column was washed twice with the same buffer (pH 6.3) containing 40 mM imidazole

and bound protein was finally eluted with 200 pl buffer containing 250 mM imidazole.

For SDS-PAGE analysis, 10-20 pl eluted protein was resuspended in SDS-loading

buffer.

4.2.6 Renaturatíon of the protein

Attempts were made to refold the purified, denatured proteins by gradual dilution

and removal of the denaturing agents by dialysis (Stern et aI., 1993; Saavedra-Alanis et

al., 1994). Purified protein was transferred to dialysis tubing and dialysis was canied

out by step-wise dilution of denaturants using concentrations in the range 8 M+0.2 M

urea or 6 M+0.2 M guanidine-HCl and glycerol concentrations in the range ZOVo (vlv)

to (v/v) 5Vo. The dialysis buffer also contained 0.02 M Tris-HCl buffer, p}J7.4 with I

mM PMSF, 300 mM NaCl and 5 mM 2-mercaptoethanol. Each dialysis step was carried

out for 3 h with slow stiring at 4oC. The final dialysis was performed in 0.02 M Tris-

HCI buffer, pH 7 .4 containing 300 mM NaCl and 1 mM PMSF. The extent of enzyme

refolding was determined by measuring enzyme activty.

4.2.7 (l -4)- þXylanase actívity

Enzyme activity was measured reductometrically using the Somogyi-Nelson

procedure (1952). High background levels of reducing sugars in some substrates can

limit the usefulness of the Somogyi Nelson procedure, but this problem was not

encountered with the substrates used here. However, the substrates sometimes contained

traces of soluble starch. Oat-spelt xylan was therefore treated with cr- and B-amylase to

remove any contaminating starch before using it as a substrate for the reductometric

assay for xylanase activity. One gram of substrate was dissolved in 60 ml water and
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boiled for 15 min. The dissolved substrate was centrifuged briefly, the supernatant was

transfered to a fresh tube and the solution was adjusted to a final volume of 100 ml in 50

mM sodium acetate buffer, pH 5.5. The u- and B-amylase (20 units) were added to the

substrate and incubated at 370C overnight. The substrate was heated for 30 min to

inactivate the amylases and centrifuged. Finally the supernatant was dialysed against 50

mM sodium acetate buffer pH 5.5.

It was very important to treat the xylan with the amylases before the colorimetric

determination of xylanase activity because soluble starch present in the substrate created

problems with the specificity of the assay. In experiments not described in this thesis an

attempt was made to purify (1+a)-B-xylanase from extracts of germinated barley grain

using untreated xylan from larchwood (Sigma) as a substrate. Two putative (1+4)-B-

xylanases were purified. However, the substrate contained a small but significant

amount of starch and other non-cellulosic polysaccharides and when the two pure

proteins were sequenced they were shown to be a B-amylase and a p-glucosidase.

For the oat-spelt-xylan-based enzyme assays, the enzyme activity was measured

using 400 pl of a3Vo (w/v) oat-spelt xylan substrate in 50 mM sodium acetate buffer, pH

5.5, mixed with 100 pl soluble fraction and incubated for up to 4 h at37oC. The reaction

was stopped by the addition of 500 pl copper reagent (Somogyi solution) and the

reaction mixture boiled for 10 min. After cooling in cold water, 500 pl arsenomolybdate

solution was added to develop the blue complex. The absorbance was measured at 660

nm against substrate and enzyme blanks. A standard curve of 0-150 þglrnl xylose was

constructed and enzyme activity was expressed as ¡rg xylose equivalents released per

min.
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4.2.8 SDS-PAGE

Protein samples were analysed by SDS-PAGE essentially as described by Laemmli

(1970). Samples were mixed with equal volumes of 2 x SDS-PAGE sample buffer,

boiled for 5 min, loaded onto a polyacrylamide gel (I2Vo, w/v) and separated on gels for

3 h at a constant current of 20 mA. Gels were stained with Coomassie Brilliant Blue R-

25O prepared in 20Vo (viv) ethanol and TVo (vlv) glacial acetic acid, at 60oC for 30 min.

The gels were destained with 20Vo (vlv) ethanol andlVo (v/v) glacial acetic acid at 60oC

for 30 min. Molecular weight markers used were phosphorylase b (Mr 95,000); BSA

(Mr 68,000); ovalbumin (Mr 43,000); carbonic anhydrase (Mr 30,000); trypsin inhibitor

(Mr 20,000); cx-lactalbumin (M,14,4000) (Electrophoretic Calibration Kit, Pharmacia

LKB, Biotechnology Inc, Uppsala, Sweden).
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4.3 RESULTS AND DISCUSSION

4.3.1 Constructíon of expression plasmid

The coding region of the isolated barley (1+a)-B-xylanase isoenzyme X-I was

modified during PCR amplification to introduce NdeI and BamHI restriction sites at the

5' and 3' ends of the insert, respectively. The NdeI and BamHI sites were used for

directional cloning to create an in-frame orientation with respect to the histidine tag in

the pET-14b vector. The coding sequence containing NdeI and BamHI ends was

subsequently inserted into the NdeI and BamHI sites of vector pET-l4b to create a

translation fusion, designated pET-His-X-I (Figure 4.4). The expression vector

contained a T7 promoter, a ribosome binding sequence, a translation start codon (ATG),

a 6 x Histidine tag, a thrombin cleavage site, the cDNA insert and a T7 terminator

sequence. The in-frame insertion of the cDNA into pET-14b vector was confirmed by

sequencing both the 5' and 3'ends (data not shown).

For expression of the (1+4)-B-xylanase clone, the construct was transformed into

bacterial strain E. coliBLTI (DE3) containing the plysS plasmid. Freshly transformed

cells were used for induction. Expression was induced by the addition of IPTG and,

following expression, the cells were pelleted, lysed and the (1+a)-B-xylanase fusion

protein was purified on the Ni-NTA column. Induced and uninduced fractions were

analysed by SDS-PAGE, which revealed that the major induced protein had an apparent

Mr ranging from approximately 43,000 (Figure 4.5) to approximately 45,000 (Figure

4.6). This can be compared with a calculated M,. of 44,600 for the (1+4)-Þ-xylanase

translation product and suggests that no reading frame errors were introduced during the

PCR. Assuming that 43-45 kDa protein represents expressed (1+4)-Þ-xylanase protein,

the (1+4)-B-xylanase protein was located predominantly in the pellet of the cell lysate.

A small amount of expressed (1-+4)-Þ-xylanase protein was seen in the soluble fraction
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Figure 4.5 The heterologous expression and purification of (1-+4)-Þ-

xylanase isoenzyme X-I. SDS-PAGE analysis of proteins in the E. coli lysate

after induction with IPTG. Lanes 1 and 8, protein molecular mass (kDa)

standard markers; lane 2, cell lysate before induction; lane 3, cell lysate after

induction; Lane 4; protein released from cells after sonication; lane 5, protein in

insoluble pellet; lane 6, bound soluble protein eluted from the Ni-NTA column

with 100 mM sodium phosphate buffer, pH 7.9 containing 250 mM imidazole;

lane7, unbound soluble protein wash through the column.
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Figure 4.6 SDS-PAGE analysis of barley (1+4)-Ê-xylanase isoenzyme X-I

following expression in E. colí for varying times. M, molecular weight protein

markers (kDa). UN, cell lysate before induction; lanes 1-5, cell lysate after induction

with IPTG for different times (h).
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of the cell lysate. (Figure 4.5,lane 4). When the soluble fraction of the cell lysate was

purified through the Ni-NTA column, a weak band corresponding to the expressed

protein was observed (Figure 4.5, lane 7). However, when the soluble extracts and Ni-

NTA column eluants were checked for (1+a)-p-xylanase activity using oat-spelt xylan

as a substrate, no activity could be detected.

4.3.2 Variation to culture conditions

Preliminary experiments were conducted using two different growth temperatures

(23oC and 37oC) following induction. Several research groups have shown that when E

coli oultures are grown at temperatures lower than 30oC, most of the proteins were

expressed in an active and soluble form, while proteins from cultures grown at 37oC arc

often insoluble (Schein and Noteborn, 1988; Haase-Pettingell and King, 1988; Piatak et

aL, 1988; R. Stewart and G.B. Fincher, unpublished data). However, in this case the

lower temperature did not have any effect on the expression of the (1+a)-p-xylanase

protein in a soluble form.

To monitor the expression of the (1+4)-B-xylanase cDNA a time course

experiment was conducted. Cells were induced for 1,2,3,4 or 5 h with 0.5 mM IPTG at

23oC. SDS-PAGE analysis revealed that a 3 h induction period gave the highest levels

of expression (Figure 4.6), but again no (1+4)-B-xylanase activity was detected in the

soluble fraction of the cell lysate (data not shown).

Several other experiments were conducted in an attempt to express the (1+4)-B-

xylanase protein in an active, soluble form (data not shown). By employing enriched

growth media, Moore et aI. (1993) found a deaminase could be induced in a soluble

active form to a level of at least 20Vo of cellular protein. In the present work, cells were

therefore induced in two different media, FTB and LB, but the composition of the

growth medium appeared to have little effect on (1-+4)-p-xylanase protein solubility or
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activity. The host strain was also changed to E. coli HMS174 in the expectation that this

strain might tolerate overexpressed protein (pET system product literature, Novagen,

Madison, WI). However, no soluble (1+a)-B-xylanase protein was obtained. A further

set of experiments was carried out to examine the effect of cell density and growth times

on protein solubility. Cells were induced with IPTG when their A6se reached 1.0 and

expression was continued for 60 or 90 min following induction. However, increasing the

cell density or decreasing expression times proved unsuccessful in increasing (1+4)-p-

xylanase solubility or activity.

Blackwell and Horgan (1991) have reported that inducing E. coli cells under

osmotic stress in the presence of sorbitol and glycyl betaine can significantly enhance the

production of soluble, active protein. In a final attempt to obtain soluble (l+a)-F-

xylanase eîzyme, cells were grorwn and induced in LB medium containing 660 mM

sorbitol and2.5 mM glycyl-betaine at23oC but again no soluble (1-+a)-B-xylanase was

produced.

4.3.3 Solubilizatíon of inclusion bodies and renaturation

As detailed in the previous sections, expression of the barley (1+a)-B-xylanase

cDNA was performed under a variety of conditions including different media

compositions, a range of pHs, different temperatures, three host cell lines, high and low

cell densities, and a range of IPTG concentrations. In every case a strongly-induced

protein of the correct molecular weight could be seen in the cell lysates but it because

apparent that the expressed eîzyme was always deposited in an inactive, insoluble

'inclusion body' complex in the E. coli cells. Several research groups have reported that

high levels of expression often lead to the formation of inclusion bodies (Arango et al.,

1992; Landman et aI., 1992; Oono et aI., 1992; Rinas and Bailey, 1992; Schulze et al.,

1994; Sirawarapom et a1.,1993). Schein (1989) suggested that inclusion bodies arise by
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inappropriate aggregation of partially folded or incorrectly folded intermediates. The

production of proteins as insoluble inclusion bodies sometimes allows an easier

purification, but when active enzyme is required, correctly folded protein is clearly

essential.

Our attempts to refold denatured protein from the inclusion bodies were also

unsuccessful. Solubilization of the insoluble protein aggregates was achieved with

strong denaturing agents. In the presence of 6 M guanidine-HCl and 8 M urea as strong

chaotropic agents, proteases are also denatured and the procedure can therefore be

performed at room temperature without any deleterious effects on protein integrity. In

an attempt to refold the solubilized protein, 6 M guanidine-HCl was gradually removed

by dialysis, but the protein re-precipitated during this process. This result was in

agreement with the report of Hartley and Kane (1988) who also found that solubilized

protein re-precipitated during dialysis, although a number of proteins have been

successfully returned to their native or active state after renaturation of inclusion bodies

using the step dialysis procedure (Arango et aI.,1992: Narciandi et a1.,1993; Brown ¿/

al., 1993; Cox and Johnson, 1993; Friedhoff et aI., 1994). Another disadvantage of

using guanidine-HCl is that it often precipitates in the presence of SDS, thereby

rendering subsequent analysis by SDS-PAGE difficult.

In a second attempt to renature the expressed protein, 8 M urea was used to

solubilize the protein aggregates, and the solubilized (1+a)-B-xylanase was purified

using a Ni-NTA column. Again refolding of the purified, denatured protein was

attempted by dialysis against an appropriate buffer containing decreasing concentrations

of urea. In this case expressed protein did not precipitate during dialysis. Following the

final dialysis step into a urea-free buffer, the protein remained in solution but when

enzyme activity was assayed against 0.3Vo (wlv) oat-spelt xylan none could be detected.

This suggested that the protein had not folded correctly during this treatment, although it

had remained in solution. Soluble protein was analysed by SDS-PAGE both prior to and



Chapter Four 83

following dialysis (Figure 4.7). Most of the expressed protein was not bound to the Ni-

NTA column. Bound and eluted protein had no (1-+a)-B-xylanase activity.

Although no further attempts were made to express barley (1+a)-0-xylanase in an

active form, there are other strategies which might be pursued in the future. There are

now several commercially-available E.coli host strains which have been designed

specifically to enhance the solubility of foreign proteins and to keep the proteins folded

(The QlAexpressionist, product literature, Qiagen). A new gene expression system

based on the use of the E. coli thioredoxin pTrxFus vector (LaVallie et al., 1993) has

proven to be successful in overcoming problems of protein insolubility. Furthermore, it

has been shown that co-expressing foreign proteins with molecular chaperones or the

addition of molecular chaperones such as GroEL or GroES during protein folding can

lead to significant increases in protein solubility (Buchner et al., l99I; Hendrick and

Hartl, 1993; Todd et a1.,1994; Ellis, 1994; Rudolph and Lilie, 1996).

Finally, if active barley (1-+a)-B-xylanase cannot be successfully expressed in

E.coli, perhaps the use of eukaryotic heterologous systems such as those based on insect

cell/baculovirus or yeast protocols should be investigated. Due to time constraints it was

not possible to try these other expression systems in the present study. Doan et al.

(1993) successfully expressed barley (I+3,1->4)-B-glucanase in a baculovirus system,

but this eîzyme can also be expressed in an active form in E. coli (R. J. Stewart and G.

B. Fincher, pers. commun.).
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CHAPTER 5

DEVELOPMENTAL REGULATION OF

(1+a)-B-D-XYLANASE GENE EXPRESSION
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5.1 INTRODUCTION

Two cDNAs encoding barley (1-+4)-B-xylanase isoenzymes X-I and X-II have

been isolated and characterized as described in Chapters 2 and 3. The cDNA for

isoenzyme X-I was full-length, while the cDNA for isoenzyme X-II was truncated at its

3' end. These cDNAs were therefore available as probes to examine the spatial,

temporal and hormonal regulation of xylanase gene expression in various tissues of

barley. In this Chapter experiments are described in which the full-length cDNA

encoding (1+a)-B-xylanase isoenzyme X-I was used to probe Northern blots for

xylanase mRNA in extracts of vegetative tissues of mature plants, in tissues from the

germinated grain, and in tissues from young seedlings. The cDNAs encoding isoenzyme

X-I and X-II were very similar in sequence (9l%o identity) and the 3' untranslated region

of the isoenzyme X-II cDNA, which might have shown sequence divergence from the

same region of the isoenzyme X-I cDNA, was not available for use as a probe. As a

result, it was not possible to design isoenzyme-specific oligonucleotide or cDNA probes

to study the developmental regulation of the specific, individual genes coding for (1+4)-

p-xylanase isoenzymes X-I and X-IL Rather, the probe detects both mRNA species and

possibly mRNAs from other (1+a)-B-xylanase genes.

In initial work described in this Chapter, the expression of xylanase genes, as

measured by mRNA transcripts in Northern blot analyses, was detected only in aleurone

layers. Barley aleurone layers have been used extensively as a convenient model system

to examine the hormonal control of gene expression in plants (Taiz and Honigman, 1976;

Dashek and Chrispeel, 1977;Ho et aI., 1987; Jacobsen and Chandler, 1987; Fincher,

1989; Jones and Jacobsen, I99I; Fincher, 1992; Jacobsen et a1.,1995). Aleurone layers

were therefore treated with the phytohormones GA3 and ABA to determine whether or

not transcription was mediated by these hormones. Concurrently, the activities of

various other enzymes that would be involved in arabinoxylan depolymerization were
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measured in the medium surrounding isolated aleurone layers. Furthermore, the levels of

expression of (1+a)-B-xylanase in isolated aleurone layers were compared with those of

the (1+3,1+a)-B-glucanase; the latter enzyme also plays a key role in cell wall

degradation.
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5.2 MATERIALS AND METHODS

5.2.1 Materials

Wheat flour arabinoxylan and barley (l-+3,1-+4)-Þ-glucan were obtained from

Megazyme (Warriewood, NSW, Australia). 4-Nitrophenyl-a-L-arabinofuranoside (4-

NPA),4-nitrophenyl-p-D-xyloside (4-NPX), MOPS, DEPC, 2-mercaptoethanol, orcinol,

guanidine thiocyanate, gibberellic acid (GA), abscisic acid (ABA) and low melting-point

agarose were obtained from Sigma Chemical Co. Hybond-N+ autoradiographic film was

purchased from Amersham. RadioactivelyJabelled [a-:zP]-dCTP was from Bresatec.

Thin layer chromatography (TLC) plates Kieselgel 60 were from Merck (Germany),

Ostwald viscometers were from Cannon (USA), and RNA markers were purchased from

Promega.

Plant Material: Barley (Hordeum vulgare L. cv. Richard) was obtained from Ms.

Amanda Kerry, Department of Plant Science, University of Adelaide, South Australia.

Grains were surface sterilized in l%o (v/v) sodium hypochlorite for l0 min, rinsed

thoroughly with sterile distilled water and sown directly into moist vermiculite. Barley

grains were germinated at 24oC under ambient conditions of light and temperature.

Leaves were harvested from 5,7,9,12,17,35 and 50 day-old seedlings, and roots were

harvested from 5, 7,9 and 12 day-old seedlings. Scutella were excised from grains 24h

after soaking in water. For the 5-day germinated grain sample, roots and shoots were

first removed from the grain. All samples were washed with DEPC-treated sterile water,

frozen in liquid N2 and stored at -80oC prior to RNA extraction.

Hormone treatment of seedlings: Five-day germinated seedlings were sprayed with GA3

(5 pM) or GA3+ABA (5 pM and 25 ¡tl:|l4., respectively,in2O mM potassium citrate
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buffer, pH 6.0) until leaves were completely wet. Potassium citrate buffer (20 mM, pH

6.0) was sprayed onto the seedlings as a negative control. Sampling was coÍtmenced L2

h after spraying the seedlings with the hormone solution. Leaves and roots were

removed and washed with sterile DEPC water, frozenin liquid N2 and stored at -80oC.

5.2.2 Isolation and. hormonal treatment of aleurone layers

The hull-less barley variety Richard was used throughout this work, mainly

because the absence of a husk facilitates the extraction of RNA. Grains were surface

sterilized in l%o (v/v) sodium hypochlorite for 10 min and rinsed thoroughly with water.

It was particularly important to ensure that the grain was thoroughly surface-sterilized

because of the extended incubation periods that were necessary for monitoring (1+4)-B-

xylanase secretion (Slade et a1.,1989) and because any fungal contaminants might also

be expected to produce (1-+4)-B-xylanases (Peltonen, 1995).

Barley aleurone layers were prepared essentially as described in section 2.2.2.1.

Isolated layers (100) were incubated in 5 ml 10 mM CaClr,20 mM sodium acetate, pH

5.5 (containing 100 units/ml nystatin, 100 ¡rg/ml neomycin and 10 llglrnl

chloramphenicol) and gently shaken for up to 72h in the dark at 22oC in the presence or

absence of 5 pM gibberellic acid (G\),25 ¡tl|l4 abscisic acid (ABA) or both. Layers

were rinsed with sterile 10 mM CaClr, frozen in liquid N, and stored at -80oC prior to

RNA extraction. Aliquots of the media around the aleurone layers were centrifuged to

remove cellular debris, dialyzed and concentrated in a Microcon 10 ultrafilter (Amicon

Inc, Beverly, MA, USA) in 50 mM sodium acetate buffer, pH 5.5 containing 3 mM 2-

mercaptoethanol and 5 mM sodium azide. These samples were used to assay enzyme

activities.
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5.2.3 Enzyrne assa.ys

(1a)-þ-Xylanase and (l+3,1a)-þ-Slucanase: Because reducing sugar assays have

several limitations, especially where background levels of sugars are high (as discussed

in section 4.2.7), (1+a)-B-xylanase and (1+3,1+4)-B-glucanase secreted into the

incubation media were measured viscometrically. The assays involved the use of highly

viscous polysaccharide substrates and a reduction in the viscosity of the particular

substrate was used as a sensitive indicator of enzyme activity. Thus, ( 1+4)-B-xylanase

and (1->3,1+4)-p-glucanase activities were measured viscometrically using as

substrates 0.3Vo (wlv) wheat flour arabinoxylan or 0.3Vo (w/v) barley (l+3,1+4)-p-

glucan, respectively (V/oodward and Fincher, 1982 a; Slade et al., 1989). To dissolve

the arabinoxylan substrate, I g polysaccharide was soaked in a beaker with 6 ml of 95Vo

(v/v) ethanol and 80 ml of water was added. The beaker was placed on a magnetic stirrer

hot plate and heated to 100oC with vigorous stirring until the substrate was completely

dissolved (manufacturer's instructions, Megazyme). The solution was adjusted to a

volume of 100 ml with water and stored in a sealed glass container. Sodium azide was

added to 5 mM to inhibit microbial growth. (l+3,1-+4)-p-Glucan substrate was

prepared essentially as described by V/oodward and Fincher (1982 a).

Buffers contained 50 mM sodium acetate buffer, 400 ¡tg/ml BSA, 5 mM sodium

azide and 5 mM 2-mercaptoethanol and were adjusted to pH 5.5 for the (l-+4)-B-

xylanase assay or pH 5.0 for the (l->3,1->4)-B-glucanase assay. For each assay 50 pl of

an appropriately diluted sample was added to 550 pl substrate that had been equilibrated

at 40oC for at least 3 h. Flow rates were recorded over 30 min. One unit of enzyme

activity is defined as the change in the reciprocal of specific viscosity (l/lrp) per min

(Woodward and Fincher, 1982 a). The equation used for calculating activity units was as

follows:
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Â t/r1sp = l/nspts -1lnspto - rl (tsltb-1) - t/(t./tb-1)

where t¡ is the flow time (sec) of the buffer alone; to is the flow time of the substrate

before enzyme was added; t5 is the flow time 5 min after the addition of enzyme solution

to the substrate (Woodward and Fincher, 1982 a).

Glycosidas¿s: o-L-Arabinofuranosidase and B-D-xylopyranosidase activities were

determined colorimetrically on 4-nitrophenyl-a-arabinofuranoside (4-NPA) or 4-

nitrophenyl-B-xylopyranoside (4-NPX). Substrate solutions (0.5 mg/ml; 450 pl) in 50

mM sodium acetate buffer, pH 5.5 were incubated with 50 ¡tl dilute enzyme extract at

40oC for 30 min. The reaction was stopped with 500 ¡tl4Vo (w/v) sodium carbonate

solution (Biely et aI., 1980) and the absorbance of liberated 4-nitrophenol (4-NP) was

measured at 4lO nm. One unit of activity is expressed as the amount of enzyme required

to release 1 pmol4-NP per min.

5,2.4 Thin layer chromatography

For analysis of the products released from the substrate during hydrolysis, the

media (20 pl) surounding aleurone layers was added to 100 ¡tl O.5Vo (w/v) arabinoxylan

substrate and incubated at 37oC for ap to 24 h. Samples (15 pl) were taken after O.25 h,

0.5 h, 2h,6 h, and 24hincubation, and the enzyme was heat-inactivated at 100oC for 3

min. Substrate and enzyme controls were also treated in the same manner. All samples

were concentrated to a final volume of 5 pl under vacuum, and spotted onto thin layer

chromatography (TLC) plates. Hydrolysis products were separated twice in ethyl

acetate:acetic acid:water (3:2:1, v/v). The TLC plates were air-dried and sugar products

were detected by spraying with the orcinol reagent (5 ûì1 H2S04, 45 ml ethanol, 0.5 g

orcinol in a total volume of 50 ml) and followed by heating at 110oC for 5 min.
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5.2.5 RNA ísolation

Three methods were used to isolate total RNA from different tissues. A modified

acid guanidine thiocyanate-phenol-chloroform method (Chomczynski and Sacchi, 1987)

was used to isolate RNA from barley scutella. Scutellar tissue (1 g) was ground to a fine

powder in liquid N2 using a mortar and pestle. Ground samples were transferred to 50

ml sterile plastic tubes and 10 ml 4 M guanidine thiocyanate, containing 25 mM sodium

citrate buffer, pH 7.0, 0.5Vo (wlv) sarkosyl and 0.1M 2-mercaptoethanol was added. The

samples were thoroughly vortexed and the homogenate was transferred to a 30 ml Corex

tube and centrifuged to remove cellular debris for 20 min at 12,000 rpm using an SS34

rotor at 4oC. The supernatant was transferred to a fresh Corex tube and extracted with an

equal volume of acid phenol:chloroform. The phenol had been equilibrated with 50 mM

sodium acetate buffer, pH 4.0. The resulting mixture was centrifuged at I2p0O rpm at

4oC and the extraction was repeated until no protein was visible at the interface. The

final aqueous phase containing the RNA was precipitated with I ml isopropanol at -20oC

overnight. The precipitate was pelleted by centrifugation for 20 min at 12,000 rpm at

4oC. The resulting pellet was dissolved in 1 ml extraction buffer, transferred to a 1.5 ml

plastic tube and re-extracted twice with phenol:chloroform. The supernatant was

precipitated with an equal volume of 4 M LiCl at -20oC overnight. Following

centrifugation at 13,200 rpm at 4oC for 20 min, the resulting pellet was dissolved in TE

buffer, pH 8.0. Samples were vortexed until the pellet was dissolved, and RNA was

precipitated with 0.1 vol ethanol for t h at -2OoC. The RNA was pelleted by

centrifugation for 20 min at 4oC and washed with '|OVo ethanol, dried under vacuum,

dissolved in TE buffer, pH 8.0 and stored at -80oC.

In the second method, total RNA was isolated from barley leaves and roots using a

modification of the method described by Verwoerd et aL (1939). Leaf pieces (1 gm)

were ground to a fine powder in liquid N2 using a mortar and pestle, and the powder was
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transferred to 2 ml plastic tubes and placed on ice. Extraction buffer (1 rrì1) containing

phenol (the phenol had been equilibrated with TE buffer, pH 8.0), 0.1 M LiCl, 0.1 M

Tris-HCl pH 8.0, 10 mM EDTA and IVo (w/v) SDS was heated to 85oC and added to

the ground powder. The powder and buffer mixture was vortexed, 500 pl

chloroform:isoamyl alcohol (24:1, v/v) was added and the tubes were vortexed for 30

sec. Following centrifugation for 5 min at 13,200 rpm, the aqueous phase was removed

and mixed with 1 vol 4 M LiCl. Following centrifugation, RNA was precipitated with

0.1 vol 3 M sodium acetate buffer, pH 5.2 and 2 vol ethanol, at -2OoC. After

centrifugation, the pellets were washed with 70Vo ethanol, dried under vacuum and

redissolved in RNase-free, DEPC-treated sterile water.

The third method involved extraction with sodium glycinate buffer (Chandler and

Jacobsen, l99l) used to isolate total RNA from aleurone layers, as described in section

2.2.2.2.

5.2.6 Northern blot analysis

Total RNA was denatured, fractionated in a formaldehyde gel and transferred to a

nylon membrane essentially as described by Sambrook et al. (1989). Total RNA (10 pg)

was mixed with sample buffer, pH 7.0, [2 ttl 10 x MOPS/EDTA buffer (1 x

MOPSiEDTA consisted of 5 mM MOPS and I mM EDTA, pH 7.0,)10 pl formamide,

3.5 pl 37Vo (vlv) formaldehyde in a 20 ¡tl reaction mixturel. RNA was gently mixed

with the buffer and heated to 70oC for 15 min. After heating, the sample was

immediately placed on ice and 2 pl sample loading dye was added. The RNA was

separated electrophoretically in a l.2Vo (w/v) agarose gel (100 ml) containing 10 ml 10 x

MOPSÆDTA buffer consisted of 0.5 M MOPS and 0.01 M EDTA, pH 7.0, and 1.5 ml

37Vo (vlv) formaldehyde. The gel was pre-run for 30 min at 50 V. The denatured RNA

sample was loaded and run for 2-3 h at 70 V. Standard RNA markers were loaded with
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the RNA samples to estimate the size of the mRNA transcripts from the Northern blot

analyses. The RNA markers were also denatured prior to loading.

Following electrophoresis, the gel was thoroughly washed with water and stained

in 0.1 mg/ml ethidium bromide for 10 min. The gel was soaked in water for 30 min prior

to being photographed on an ultraviolet (UV) illuminator. The gel was soaked in 20 x

SSC for 20 min and the RNA was transferred overnight to a Hybond-N+ membrane, as

described in section 2.2.3.5. Following transfer, the filter was rinsed with 4 x SSC, blot-

dried, baked at 80oC for I h under vacuum, and fixed under short-wave ultraviolet

illumination for 7 min.

The membrane was soaked in 5 x SSC for 1 min and rolled into a hybridization

bottle. Prehybridization solution [3 rnl 50 x Denhardt's reagent, 5 ml 20 x SSPE, 1 m]

lOVo (wlv) SDS, 2 ml salmon sperm DNA (10 mg/ml) and 9 ml formamidel was added

to the hybridization bottle. The membrane was prehybridized for at least 6 h at 42oC.

The prehybridization solution was removed and hybridization solution [2 ml 50 x

Denhardt's reagent, 5 ml 20 x SSPE , I ml lOVo (wlv) SDS, I rnt (10 mg/ml) salmon

sperm DNA, 9 ml of formamidel, containing 1 ml of the cDNA probe was added in a

total volume of 20 ml. Following hybridization for at least 24h at 42oC, the membrane

was washed with 2 x SSC/O.IVo (wlv) SDS at 42oCfor 20 min, I x SSC/0.17o (w/v) SDS

at 42oC for 20 min, 0.5 x SSC/O.lVo (wlv) SDS at 42oC for 20 min, and 0.1 x SSC/O.17o

SDS (w/v) at 42oC for 2O min. The membrane was finally washed with 0.1 x SSC/O. 17o

(w/v) SDS at 55oC for 20 min and blot-dried. Filters were subjected to phosphorimage

analysis (Molecular Dynamics) for the quantitation of signal strength.
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5.3 RESULTS

5.3.1 Tíssue locatíon of Qa)-þ-xylan endohydrolase mRNAs

To study the expression sites of the barley (1+4)-B-xylanase genes, total RNA was

prepared from different tissues including 5-day germinated grain, leaves, roots,

coleoptiles, scutella from 1-day germinated grain, and aleurone layers treated with or

without GA3. Northern blot analysis was performed using equal amounts of total RNA

(10 pg) isolated from the various tissues, with the isoenzyme X-I cDNA as a probe. A

strong signal corresponding to a mRNA transcript size of 1.9 kb was observed in total

RNA isolated from GA3-treated barley aleurone layers. A weaker hybridization signal

corresponding to a transcript of the same size was also detected in RNA preparations

from 5-day germinated whole grain (Figure 5.1 B). No hybridization signal was

observed in root, leaf, scutellum or coleoptile RNA probed with the barley xylanase

isoenzyme X-I cDNA. Photographs of the ethidium-bromide stained RNA gel (before

transfer of the RNA to the Hybond N+ membrane) under an ultraviolet illuminator

revealed that the RNA loadings from different tissues were essentially equal (Figure 5.1

A). From the resultant Northern blot analysis it is clear that xylanase gene expression is

tissue-specific, and that the genes are expressed predominantly in GA3-treated aleurone

layers.

No (1+4)-p-xylanase mRNA was detected in 5 day-old leaves (Figure 5.1 B).

However, high levels of (1-+3,1+a)-B-glucanase isoenzyme EI have been shown in

young leaves, but only after 8-10 days (Slakeski and Fincher, 1992b). These transcripts

were also present in RNA from young roots. To determine whether (1+a)-B-xylanase

gene expression might follow a similar pattern, additional Northern analyses of the RNA

extracted from leaves up to 50 days after germination and from roots up to 12 days were

performed. The results showed that no xylanase transcripts were detected during the first



A-A+SGCLR nt

- 3,638

- 1,908

- 1,385
955
28r

- -1900

A

Agarose gel
(total RNA)

X-l oDNA probe

Ell oDNA probe

B

C

- -1600

Figure 5.1 Northern blot analysis of total RNA preparations from different

tissues of barley. A. Formaldehyde agarose gel of total RNA after staining with

EtBr but before transfer to the nylon membrane. In each case 10 pg RNA from

aleurone layers with or without GA, (A+ and A-), scutellum (S), grain (G), coleoptile

(C), leaf (L) and root (R) was loaded onto the gel. B. Membrane probed with

(1-+4)-p-xylanase isoenzyme X-I cDNA. C. The same membrane stripped probed

with (1-+3,1-+4)-p-glucanase isoenzyme EII cDNA. RNA size markers are shown

on the right.
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50 days of leaf development or during the first 12 days of root development (Figure 5.2

B). On the same Northern blot, an equal amount of total RNA from GA3-treated

aleurone layers was used as a positive control (Figure 5.2 C). Ethidium bromide-stained,

UV-irradiated gels showed well-defined ribosomal RNA bands and indicated that

approximately equal amounts of the total RNA samples were loaded (Figure 5.2 A).

Slakeski (1992) observed that the (I+3,1+4)-B-glucanase isoenzyme EI gene was

expressed following fungal infection of mature barley leaves. To determine whether or

not (1+4)-p-xylanase gene expression is induced by pathogen attack, total RNA was

isolated from young leaves of near-isogenic lines of barley which were either resistant or

susceptible to the scald fungus Rhynchosporium secalis. The two barley lines used were

Clipper, which is susceptible to the scald fungus, and a backcross line of Clipper, BC-

200, which is resistant to the scald fungus (Brown et al.,19SS). The Rhynchosporium

secalis isolate used was R144. Total RNA from infected leaves for both the susceptible

and resistant varieties was kindly provided by Dr. Samuel Roulin, Department of Plant

Science, University of Adelaide. When total RNA from healthy and infected leaves was

subjected to Northern blot analysis, no xylanase mRNA transcripts were detected (Figure

5.3 B). For a positive controls, the filter was probed with a cDNA encoding barley

(1+3)-B-glucanase isoenzyme GII (Figure 5.3 C).

5.3.2 Effects of phytohormones on secretion of (I +4)-p-xylan endohydrolases from

barley aleurone layers

Northern blot analyses (section 5.3.1) suggested that transcription of (1+4)-B-

xylanase genes is restricted to the aleurone layer of germinated grain; no xylanase

transcripts could be detected in the scutellum or in young vegetative tissues.

Experiments described here on the regulation of barley (1+4)-B-xylanase gene

expression were therefore focussed on isolated aleurone layers.
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amounts of RNA were loaded; Only 5 ¡rg of GAr+ABA-treated leaf RNA was loaded.

B. Filter probed with (1-+4)-p-xylanase isoenzyme X-I cDNA. C. The same filter

stripped and probed with (1+3,1-+4)-p-glucanase isoenzyme EII cDNA.
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When barley aleurone layers were treated with GA3, (1+4)-B-xylanase secretion

into the surrounding medium could be detected after 48 h but these levels had increased

dramatically by 72 h (Figure 5.4 a). No enzymic activity was found in the medium

surrounding untreated aleurone layers, and the addition of ABA abolished the GA3

induction of (1+4)-p-xylanase secretion (Figure 5.4 a). Similar patterns of secretion

were observed for cr-L-arabinofuranosidase and B-D-xylopyranosidase; other enzymes

that are likely to participate in arabinoxylan hydrolysis (Figures 5.4 b and 5.4 c).

However, compared with (1+4)-B-xylanase secretion, relatively high levels of the cr-L-

arabinofuranosidase and B-D-xylopyranosidase were detected after 48 h (Figures 5.4 a,

5.4 b and 5.4 c; Taiz and Honigman,lg'76: Dashek and Chrispeels, 1977). Similarly,

(I+3,1-+4)-B-glucanase secretion was apparent after 24 h and by 48 h large amounts of

the enzyme had accumulated in the medium surrounding the isolated aleurone layers

(Figure 5.4 d). The same developmental patterns were observed in several independent

experiments.

5.3.3 TLC analysis of hydrolysis prodacts

Examination by TLC of the oligosaccharide products released from the

arabinoxylan substrate revealed the presence of higher oligosaccharides early in the

incubation period (Figure 5.5). These indicated that (1+4)-B-xylan endohydrolases

were secreted by GA3-treated aleurone layers in vitro. The eventual accumulation of

xylose and arabinose (Figure 5.5) could be attributed to the or-L-arabinofuranosidase and

B-D-xylopyranosidase activities (cf. Figures 5.4 b and 5.4 c).
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fi.a Effect of hormones on the accumulation of nRNA transcripts in barley

aleurone layers

Northern blot analyses of total RNA extracted from isolated aleurone layers were

used to monitor the hormonal control of (1-+4)-B-xylanase gene expression at the

transcriptional level. The close similarity of nucleotide sequences in the two genes

encoding isoenzymes X-I and X-II (Chapter 3 Figure 3.12), coupled with the absence of

sequence information for the third gene, precluded the use of gene-specific probes in

these analyses.

In GA3-treated aleurone layers, (1+4)-B-xylanase gene transcripts could be

detected at 12 h but were most abundant 24-48 h after application of the hormone

(Figure 5.6 B). No (1+4)-B-xylanase mRNA could be detected in untreated or ABA-

treated aleurone layers, although low levels were evident after T2hlnlayers treated with

both GA3 and ABA (Figure 5.8 B). Phosphorimager analysis was used to provide a

quantitative measure of band intensities following Northern btotting. Based on this

analysis, it is clear that (I+4)-B-xylanase transcripts in GA3-treated aleurone layers

increase in abundance until43 h, and thereafter decline rapidly (Figure 5.7).

For comparative purposes, the same Northern blots were subsequently probed with

a cDNA encoding barley (I+3,I+4)-B-glucanase. It should be noted that the relative

intensities of hybridizing bands on a single membrane allow meaningful comparisons to

be made, provided total RNA loadings are similar, but that care needs to be exercised in

comparing intensities when different probes have been used. Levels of (1+3,1-+4)-B-

glucanase mRNA reached a peak 24 h after GA3-treatment of the aleurone layers (Figure

5.6 C). In untreated aleurone layers, significant levels of (1+3,1+4)-B-glucanase RNA

transcripts were also present (Figure 5.6 C). After hybridization with the (1+3,1+4)-P-

glucanase cDNA probe, two transcripts of slightly different sizes were detected. It is

likely that these two transcripts correspond to (l+3,1->4)-B-glucanase isoenzymes EI
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and EII. No (l-+3,1+4)-p-glucanase transcripts could be detected in ABA-treated

aleurone layers until after 12 h. An increase in the levels of (1+3,1+4)-B-glucanase

transcrþts was observed with the combined GA3+ABA treatment (Figure 5.8 C).
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5.4 DISCUSSION

The (1-+4)-p-xylanase isoenzyme X-I cDNA was used to investigate expression

patterns in a selection of tissues, as measured by mRNA levels (Figure 5.1 B). The

(1+4)-p-xylanase mRNA transcripts were detected only in the aleurone layer (Figure

5.1 B). It is reasonable to assume that the transcripts detected in the whole grain

preparations were indeed those present in the aleurone layer (Figure 5.1 B). Because

cDNAs corresponding to both mRNA transcripts were screened from GA3-treated

aleurone libraries, it can be concluded that both genes are transcribed in these cells.

Definition of the relative abundance of the individual transcripts awaits the availabitity

of gene-specific probes. The presence of (1+4)-B-xylanase transcripts in GA3-treated

aleurone layers is consistent with the secretion of (1+a)-B-xylanases from isolated

aleurone layers (Benjavongkulchai and Spencer, 1989; Dashek and Chrispeels, 1977;

Taiz and Honigman, 1916) and with a role for the enzymes in the depolymerization of

cell wall arabinoxylans in the germinated barley grain (Fincher, 1989; Slade et al. 1989).

Northern blots also indicated that (1+4)-B-xylanase transcripts are present in low

abundance or absent in the scutellum of germinated grain, coleoptiles, young leaves,

roots and untreated aleurone layers (Figure 5.1 B). In contrast, significant levels of

(I+3,1+4)-F-glucanase are detected in the scutellum, young leaves, roots and untreated

aleurone layers (Figure 5.1 C, 5.2 C). Slakeski and Fincher (1992 b) also reported that

substantial amounts of (1+3,1+4)-B-glucanase transcripts are present in untreated

aleurone layers. The (1-+3,1+4)-B-glucanase isoenzyme EI gene is transcribed at

relatively high rates in the scutellum of germinated grain and in young leaves and roots,

where it might be involved in wall loosening during cell elongation (Slakeski and

Fincher, 1992b).

Total RNA from healthy leaves and leaves infected with the scald fungus were also

subjected to Northern blot analysis. It is evident that the (1+4)-p-xylanase X-I probe
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does not hybridize to any mRNA transcripts from either infected or uninfected leaves

(Figure 5.3 B). This result indicates that xylanase transcription was not induced by

Rhynchosporium secalis infection, whereas in positive control experiments a relatively

large amount of mRNA encoding the pathogenesis-related protein (1+3)-B-glucanase

accumulated in response to pathogen infection (Figure 5.3 C).

Northern blot analyses of total RNA extracted from isolated barley aleurone layers

were used to monitor the hormonal control of (1+4)-B-xylanase genes. Again the close

similarity of nucleotide seouences in the two genes encoding (1+4)-B-xylanase

isoenzymes X-I and X-II (Chapter 3), precluded the use of gene-specific probes in these

analyses. Indeed, there is some doubt as to whether the genes will prove to have regions

of unique sequence that might be suitable as such gene-specific probes. However, the

isolation of cDNAs for both isoenzymes X-I and X-II from aleurone layer cDNA

libraries, and the inability to detect (1+a)-p-xylanase mRNA in any other tissue,

indicates that at least the two genes are expressed only in aleurone layers; the relative

proportion of the individual transcripts is unknown.

The induction of (1+a)-B-xylanase gene expression by GA3 in isolated aleurone

layers and its abolition by ABA is clearly mediated at the transcriptional level (Figures

5.4 a and 5.7). As observed in Figure 5.4 a mRNA transcripts peak approximately 24 h

before enzyme is secreted from the layers (Figure 5.4 a). However, it must be noted that

sampling time at this stage of the experiment was 24 h and the lag between the

appearance of peak mRNA levels and peak enzyme activity could be considerably less

than 24 h. A similar large induction of endoxylanase activity by GA, and abolition of

the effect by ABA has been observed previously in isolated barley aleurone layers (Taiz

and Honigman, 19'76; Dashek and Chrispeels, l9J7; Bengavongkulhai and Spencer,

1986).

In considering the role of (1+a)-B-xylanases in cell wall degradation during

endosperm mobilization, it might be anticipated that the synthesis and secretion of
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endohydrolases responsible for hydrolysis of the major wall polysaccharides, namely

(l-s3,I+4)-p-glucanases and (1+a)-B-xylan endohydrolases, would be subject to co-

ordinated regulation. Certainly (1+3,1-+4)-p-glucanase isoenzyme EII gene

transcription and secretion of the enzyme from isolated aleurone layers is induced by

GA, (Stuart et al., 1986 a; Slakeski and Fincher, L992 b). However, ABA does not

completely abolish this effect (Figure 4d; Slakeski and Fincher, 1992 b) and

(l-+3,1+4)-B-glucanase induction by phytohormones in isolated aleurone layers has

features which differ from (1+4)-B-xylanase responses; the latter more closely resemble

those exhibited by cx,-amylase genes.

An additional, important difference between (1+a)-B-xylanase and (1+3,1+a)-B-

giucanase gene expression is related to the temporal control of transcription and enzyme

secretion. It was observed by Slade et al. (1989) that xylan endohydrolases appeared in

extracts of intact, germinated barley grain several days later than (1-+3,1+4)-B-

glucanases. This delay, albeit shorter in duration, is also seen in enzyme secretion from

isolated aleurone layers (Figure 5.4 acf . Figure 5.4 d). Slade et al. (1989) suggested that

the (1+4)-B-xylanases might simply resist extraction because they are bound to cell

walls initially and are released only after cell wall degradation is complete. However,

the results shown in Figures 5.7 and 5.9, where a single Northern blot was probed with a

(1+a)-B-xylanase cDNA, stripped and subsequently probed with a (1-+3,1+4)-B-

glucanase cDNA, indicate that the peak of transcription activity of the (1+a)-B-xylanase

genes indeed occurs up to 24 h later than the corresponding peak in (1+3,1+4)-B-

glucanase transcription.

The late appearance of (1+4)-B-xylanases, both in intact germinated grain and in

isolated aleurone layers, raises the question as to whether arabinoxylan depolymerization

is really necessary for the penetration of cell walls by u-amylases, peptidases and other

hydrolytic enzymes to their substrates in starchy endosperm cells. Perhaps removal of

(1+3,1-+4)-B-glucan increases the porosity of walls sufficiently to allow free diffusion
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of the hydrolases to starchy endosperm cells. A biphasic degradation ,m

(1+3,1+4)-B-glucans are degraded before arabinoxylans, is consistent with evidence

from electron microsopy that remnants of barley endosperm cell walls remain after the

initial front of wall-degrading enzymes has passed and that subsequent degradation of

the remaining components proceeds more slowly (Selvig et a1.,1986). It should also be

noted that aleurone layer cell walls, which exhibit a relative high proportion of

arabinoxylans (717o), (Bacic and Stone 1981 b), remain partially intact in the germinated

grain (Jones et al., 1987). Perhaps the late appearance of xylanases enables the

arabinoxylan of the aleurone cell wall to escape extensive hydrolysis in the early stages

of the endosperm mobilization; the retention of some cell wall material around the

aleurone cells might be essential to maintain their integrity during the period of active

eîzyme secretion.

In any case, it is clear that there are important differences in the hormonal

regulation of expression of barley genes that encode cell wall-degrading enzymes during

starchy endosperm mobilization, and that comparisons of promoter regions of the genes

may shed some light on these differences, particularly those responsible for the temporal

control of gene expression.



CHAPTER 6

ISOLATION OF A

(1 -+a)-p-D-XYLANASE GENE
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6.1. INTRODUCTION

In the previous Chapter, the tissue specificities and hormonal regulation of barley

(1+a)-B-xylanase expression were examined by Northern blot analyses. The cDNA

encoding (1+a)-p-xylanase isoenzyme X-I, which was described in detail in Chapter 3,

was used as a probe for the Northern analyses. Expression was detected only in the

aleurone layer of germinated grain. Furthermore, regulation of expression was mediated

at a transcriptional level, where GA3 enhanced levels of (1-+a)-B-xylanase mRNA in a

process that was antagonised by ABA (section 5.4). The induction of (1+a)-p-xylanase

gene expression in isolated aleurone layers was similar to patterns described for c-

amylase, but significant differences in response to hormones \ryere observed when

(1-+4)-p-xylanase expression was compared with expression of (1-+3,1-+4)-B-

glucanases. In addition, (1+4)-B-xylanase expression, as measured by either the

appearance of mRNA or the secretion of active enzyme, occurred at least 1 day later than

expression of (1-+3,1-+4)-B-glucanase and the high pI ø-amylase (Figure 5.4 a and 5.6

B cf 5.4 d and 5.6 C; Chandler and Jacobsen, 1991; Gubler et aL, 1995 ).

Because transcriptional activity of genes will be ultimately controlled by regulatory

proteins that bind to promoter regions of the genes, and because both GA response

elements (GARE) and ABA response elements (ABRE) have been identified in the

promoters of other barley genes that are expressed in the aleurone layer of germinated

grain (Skriver et al., l99I; Gubler and Jacobsen, 1992; Jacobsen et al., 1995), it was

considered highly likely that similar sequence elements would be involved in (1+4)-B-

xylanase gene regulation. Close examination of the (1+a)-B-xylanase promoter might

also reveal possible explanations for the observed hormonal and temporal differences in

( 1 +a)-B-xylanase gene regulation.

In this Chapter, the isolation of a (1+a)-B-xylanase gene from Hordeum vulgare

genomic libraries is described. The complete sequence and structural features of the
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gene are presented. In addition, the promoter region was scanned to identify possible

cis-acting sequence elements which may be related to specific regulatory functions such

as hormone-responsiveness and tissue-specificity. The number of genes encoding barley

(1+4)-B-xylanases has been defined, their chromosomal location identified and

polymorphisms within the different cultivars has enabled the genes to be accurately

mapped on the barley genome.
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6.2 MATERIALS AND METHODS

6.2"1 Materials

Bacterial cells E coliXLl-Blue (P2) and plasmid vector pBluescript II SK+ were

purchased from Stratagene. ü-[3zp]¿Cfp and y-¡lzplATP were obtained from Bresatec.

All restriction enzymes, T4 polynucleotide kinase, T4 DNA ligase, and alkaline

phosphatase were from Promega or New England Biolabs. The Megaprime DNA

labelling kit and autoradiographic film were purchased from Amersham International.

The Gene-Clean kit and 6Vo (wlv) polyacrylamide mix were purchased from Bresatec.

The DNA sequencing kit (version 2.0) was purchased from United States Biochemical

Corporation (USBC; Cleveland, OH, USA).

6.2,2 Screening of barley genomic library

The barley genomic library was prepared by Mr. Ron Osmond (Department of

Plant Science, University of Adelaide, South Australia) from partially digested DNA

from 7-day-old seedlings of Hordeumvulgare L. (cv. Galleon) cloned into theEcoRI site

of the bacteriophage vector I"DASH II (Stratagene, La Jolla, cA, usA). A second

library, prepared from partially digested DNA from 7-day-old seedlings of cv. Boni and

cloned into the BamHI site of the EMBL3 vector, was obtained from Clontech

Laboratories (Palo Alto, CA, USA). The libraries were plated out on lawns of E. coli

XLI-Blue (P2) cells (Stratagene) and screened by hybridization of membrane filter

plaque replicas (section 3.2.4) using the barley (1+4)-p-xylanase isoenzyme X-I cDNA

as a probe. Positive plaques were rescreened until it was confirmed that they were

monoclonal (section 3.2.4).
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6.2.3 Preparation of ),DNA

Individual positive plaques were picked and phage stock was prepared as described in

section 3.2.2.3. Phage stock (200 pl) was added to 400 ¡rl overnight cultured E. coli

XLl-Blue (P2) cells. The mixture was incubated for 15 min at 37oC to allow infection

and transferred to a 125 ml conical flask containing 50 ml LB medium. The flask was

incubated at 37oC at 200 rpm for approximately 8 h or until the bacterial cells

flocculated. The culture was centrifuged for 10 min at 10,000 rpm to pellet the cell

debris. The supernatant was transferred to a fresh centrifuge tube and incubated at 37oC

for 30 min with 20 pl DNAse and RNAse (10 mg/ml in 10 mM Tris-HCl buffer, pH7.5,

containing 15 mM NaCl). After incubation, the supernatant was adjusted with PEG

8000 and NaCl to final concentrations of lOVo (w/v) and 1 M, respectively. The solution

was left on ice overnight and phage particles were pelleted by centrifugation at 10,000

rpm for 20 min at 4oC. The supernatant was decanted and the tube inverted for 15 min

to remove residual PEG. The drained pellet was dissolved in 700 pl LB, transferred to

an Eppendorf tube, and a further 700 pl DEAE-cellulose DE-52 (equilibrated in LB) was

added to remove bacterial proteins and DNA. The tube was thoroughly mixed by

inversion and centrifuged for 5 min at room temperature. Following centrifugation the

supernatant was transferred to a fresh Eppendorf tube and the process repeated. Next,

the supernatant was mixed with 15 pl proteinase K (0.1 mg/ml) and 35 ¡tl l\Vo (w/v)

SDS, and incubated for 5 min at room temperature to lyse the phage particles. Following

incubation, 130 pl 3 M potassium acetate buffer, pH 4.8, was added, the solution was

incubated for 20 min at 88oC and subsequently collected on ice for 10 min. After

centrifugation the supernatant was transferred to a fresh tube and an equal volume of

isopropanol was added to precipitate the phage DNA. After I h at -20oC the precipitate

was pelleted by centrifugation, washed withTOVI ethanol, dried, and resuspended in 100

pl TE.
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6.2.4 Restriction dígestion and subcloning

Purified phage DNA carrying the barley genomic DNA insert was digested with

appropriate restriction enzymes and the resulting fragments were separated by

electrophoresis on a IVo (wlv) agarose gel. The separated DNA was transferred to a

Hybond-N* membrane (Amersham) and hybridized using [6¡-tzP]dCTPlabelled barley

(1+a)-p-xylanase X-I cDNA as a probe under the conditions described in section 3.2.3.

Fragments giving a positive signal were purified from the agarose gel using Gene Clean

according to the manufacturers instructions (Bresatec). The pBluescript (SK+) vector

was prepared for subcloning as follows: vector DNA was digested with the appropriate

restriction enzymes and extracted with phenol:chloroform (1:1 v/v) and chloroform.

After centrifugation the upper phase was precipitated with 0.1 vol 3 M sodium acetate

and 2.5 vol of ethanol. The pellet was washed with 70Vo ethartol, dried and resuspended

in TE. The dissolved DNA was dephosphorylated with alkaline phosphatase as

described in Sambrook et al. (1989) and the dephosphorylated DNA was separated on a

IVo (wlv) agarose gel. The plasmid DNA band was excised from the gel and purified

using Gene Clean before ligation. The procedures used for ligation and transformation

were as described in section 2.2.3.3.

6.2.5 Preparation of genomic DNAfor Southern blot analyses

Several pieces of 5-day old leaves (approximately I g) were frozen in liquid

nitrogen in a 10 ml plastic tube and crushed with a small spatula. This was transferred

to a2 ml cold Eppendorf tube and crushed again. The tube was filled with powder to the

800 pl mark and 750 pl 100 mM Tris-HCl buffer, pH 8.5, containing IVo (v/v) sarkosyl,

100 mM NaCl, 10 mM EDTA was added. Phenol/chloroform/isoamyl-alcohol (25:24:1,

vlvlv) (750 ttl) was added, the tube was shaken for 40 sec, placed in a rotating platform
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mixer for 15 min at room temperature, and spun for 10 min at 13,200 rpm. The upper

phase was transferred to an Eppendorf tube and the chloroform and isoamyl-alcohol

extraction was repeated. An equal volume of isopropanol and 0.1 vol 3M sodium acetate

buffer, pH5.2, were added to the upper aqueous phase. The contents of the tube were

mixed by inversion and the DNA allowed to precipitate for 5 min at room temperature.

The tube was centrifuged for 10 min at 13,200 rpm at room temperature. The

supernatant was poured off, the pellet was washed with 70Vo ethanol (v/v) and dried for 5

min in a Speed Vac evaporator (Savant Speed Vac SC 110). The pellet was dissolved in

42 ¡tl5 mM Tris-HCl buffer, pH 8.0, containing 500 mM EDTA and 40 mg/ml RNase A.

For Southern blot analyses the genomic DNA was hydrolysed with restriction

onzymes, fragments were separated on agarose gels and blotted onto nylon membrane

(2.2.3.5), and membranes were probed as described in section 3.2.4.

6.2.6 Chromosomøl location of the Qa)-þ-xylanase genes

Disomic wheat-barley addition lines having individual pairs of barley (Hordeum

vulgare, cv. Betzes) chromosomes added to a full complement of wheat chromosomes

(Triticum aestivum, cv. Chinese Spring) were developed by Islam et aL (1981). Thus,

addition line t has a full complement of wheat chromosomes, plus barley chromosome 1;

addition line 2 has all the wheat chromosomes plus barley chromosome 2, etc. The only

exception is addition line 5, in which the long arm of this barley chromosome causes

cytological abnormalities and male-sterility when added to wheat (Islam et a1.,1981).

The barley chromosome 5 addition line is therefore a double monosomic containing one

copy each of barley chromosomes 5 and 6 (Islam and Shepherd, 1990). On the basis of

the genetic relationship of barley chromosomes with specific wheat chromosomes, barley

chromosomes I, 2, 3, 4, 5, 6 and J are designated as the homoeologous wheat

chromosome'7H,2H,3H,4H, lH,6H and 5H, respectively (Islam and Shepherd, 1990).
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Throughout this thesis, the traditional barley chromosome numbers are followed, in

parentheses, by the numbers of the equivalent wheat homoeologous group of

chromosomes.

DNA samples from the addition lines and from the wheat and barley parents were

kindly provided by Dr A. K. R. M. Islam. Chromosomal locations of (1+a)-B-xylanase

genes in the barley genome were defined by Southern blot analyses (section 3.2.4).

6.2.7 Southern blot analysis of genomic DNA

Genomic DNA from different barley cultivars (L5-20 pg) was digested to

completion with different restriction enzymes (EcoRV, BamHI, HindIII, DraI, EcoRI

andxbar) using 1.5 U enzyme/ml, lmg/ml BSA, 1.3-4 mM spermidine at37oC. DNA

preparations from wheat (cv. Chinese Spring), barley (cv. Betzes) and the addition lines

were digested with EcoRI, BamHI and XbaI restriction enzymes using the conditions

described above. Digested fragments were separated on a l.2Vo (w/v) agarose gel at 4O

V for 16 h. The gel was stained with lmg/ml ethidium bromide for 15 min on a rocking

platform. The gel was destained with milli-Q water for 2O min and DNA was transferred

to a nylon membrane (Amersham) as described in section 2.2.3.5, Prehybridization,

hybridization and washing of the membrane were performed as described in section

3.2.4.
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6.3 RESULTS

6.3.1 Isolatíon of genomic clones

From approximately 2 x 106 plaques, four positive clones were isolated from the

cv. Galleon library using the cDNA for barley (1+a)-B-xylanase isoenzyme X-I as a

probe. The four positive clones were designated ì,,1,Ì,"2,1,3 and 1,4. Bacteriophage DNA

was digested with EcoRl to isolate the genomic DNA inserts. After restriction digestion,

the four clones were analysed by IVo (w/v) agarose gel electrophoresis. Insert sizes were

all in the range 16-18 kb (Figure 6.1 a). On the basis of banding patterns, the four clones

were grouped into three classes; class 1, 1,1; class 2, î,,2,M; class 3, À3. Southern blot

analyses showed that in each case the hybridizing sequence was located on a 3 kb EcoRI

fragment (Figure 6.1 b). This fragment was subcloned into the pBluescript vector and

designated pì,,2F,. The restriction map of this gene fragment is shown in Figure 6.2.

Restriction digests were performed with PsrI, SacI, SaclI, XhoI and SaII.

Following digestion, fragments were separated by agarose gel electrophoresis (Figure 6.3

a) and Southern blot analysis was carried out using the 685 bp PsrI fragment of pMXl

cDNA clone (Figure 2.8, Chapter 2) as a probe to identify the 5' end of the gene's coding

region. An EcoRUSalI fragment (720 bp) of p27uB was found to contain the signal

peptide coding region of the gene and a putative TATA box (Figure 6.3 b).

Sequence analyses indicated that all four genomic clones encoded (1+a)-Ê-

xylanase isoenzyme X-I, based on their high degree of identity (99.5Vo) with the

corresponding cDNA, but that they did not extend far enough beyond the putative TATA

box to allow a comprehensive analysis of the promoter region. Indeed, their 5' termini

were all located at the EcoRI site at nucleotide 394 inFigure 6.4. To isolate the 5'region

of the promoter the genomic library from the variety Boni was subsequently screened,

using the 720 bp EcoRVSall ftagment from plu2B (Figure 6.4) as a probe. A single
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Figure 6.1 Phage DNA from positive genomic clones containing the (1-+4)-

B-xylanase insert after digestion with EcoRI. A. EtBr-stained B. Southern

blot analysis. The DNA size markers are on the left.
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Figure 6.3 Restriction analysis of pl,2E. A. EtBr-stained agarose gel showing

separated DNA fragments before transfer to the nylon membrane. B. Southern

blot analysis of the transferred DNA using the 685 bp PsfI fragment (from pMXI

clone) as a probe.
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Figure 6.4 The complete nucleotide sequence of the gene encoding barley

(1-+a)-p-xylanase isoenzyme X-I. The pyrimidine box, the TAACGAC box, the

TATCCAT box, the CAAT and the TATA box of the promoter region are underlined.

The putative transcriptional start point at nucleotide 468 is indicated by an arrow, as is

the NHz-terminal Val residue of the mature enzyme. The intron is shown in lower

case letters and the putative catalytic Glu residue are in bold type. A possible

polyadenylation signal in the 3' untranslated region is underlined. Amino acid

numbering starts at the mature protein NHz-terminal.
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AGTGCGGCæGGTGTææCAÀGGAGGæGGGTGGTCGGAGATCATGGGCæCTTCCGC,CTCAGGACGGAGCCææAC,CæCGCGGTTTTCGTCC,ACGG
MGAFRLRTEPRSAAVFVHG
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GACGTGATTCTCAÀæTGGC,CACC.CCGæGGGAæGGGAæGGæGCGGCGGCGTCCGTæC,CGTGGTGCAGTTGGACÄ-ACGCCTTCCCCTTCGGGACAT

C€ATC,AÀCACGTCCGTCATCCAGAAæCGæCTTCCTCGACTTCTTCACCAACCACTTCGACTGGGCCGTCTTCGAGÀ-ACGAGCTCAÀGTGGTACCACÀC 1
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positive clone, which carried the hybridizing sequence on a 2.9 kb XbaUSalI fragment

(Figure 6.5), was isolated and the XbaASail fragment was subcloned into the pBluescrþt

vector and designated pì"2BS. The restriction map of this fragment, together with its

relationship to the plv2B clone, is shown in Figure 6.2. Nucleotide sequence analyses of

the pÌ,"28 and pl,2BS clones demonstrated that their sequences were identical in the 720

bp region where they overlapped, and it was therefore concluded that they represented

fragments of a single gene.

6,3.2 Characterizstion of genomic clones

The complete nucleotide sequence of a 2704 bp fragment which carries the gene

encoding barley (l+a)-B-xylanase isoenzyme X-I is presented in Figure 6.4. Specific

sequence motifs are compared with the corresponding plant consensus sequences in

Table 6.1. The putative transcription start point (TSP) TCCATCA at nucleotide 468

(Figure 6.4) is so designated because of its close similarity to the CTCATCA consensus

sequence defined for plant genes (Joshi, 1987 a) and because of its proximity to 5'

sequences corresponding to a TATA box, a possible CAAT box and elements of a GA

response complex (Table 6.1; Figure 6.4). The cDNA sequence of isoenzyme X-I

described in Chapter 3 begins at nucleotide 907 of the gene and the ATG translation start

point is found at nucleotide 1045 (Figure 6.4). Thus, the 5' untranslated region is more

than 550 bp in length, which is considerably longer than is observed in most plant genes

(Joshi, 1987 a). However, it remains possible that the 5' untranslated region includes

introns (Hawkins, 1988) and potential 5' and 3' intron splice sites can be seen in this

region (Figure 6.4).

The region of the gene that encodes the mature eîzyme was found to consist of two

exons interrupted by a short intron of 91 bp. The intron is located between nucleotides

tr 198 and 1288, it has boundary sequences very similar to the plant consensus sequences
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Table 6.1: Sequence motifs in the barley (l+4)-B-xylan endohydrolase gene

Consensus sequences for plant TATA boxes, TSPs and translation start points are from Joshi (1987 a) and for intron splice sites from
Hanley and Schuler (1988). Numbers in parentheses show the actual position of the motif in the nucleotide sequence in Figure 6.4.

GA Response Complex
(Ð pyrimidine box
(iÐ TAACAAA box
(iiÐ TATCCAC box

CAAT Box

TATA Box

Transcription Start Point (TSP)

Translation Start Point

Intron
(Ð 5' junction

(ii) 3' junction

Polyadenylation Signal

Motif

CTCTTTC
TAACGAC
TATCCAT

CCAT
CAJMT

consensus
xylanase gene

ACTATATATAG
CTTTTAAATAC

consensus
xylanase gene

CTCATCA
TCCATCA

consensus
xylanase gene

TAAACAATGGCT
GAGATCATGGGC

consensus
xylanase gene

AGJgtaag

AGJgtgag
consensus

xylanase gene

tttgcagJ

gatgcagJ

consensus

xylanase gene

consensus
xylanase gene

AATAAA
A-A.Tfu{A

Sequence

-1 ls (3s3)
-e8 (370)
-84 (384)

-75 to -80
-40 (428)

-25 to -39
-27 (431)

1

1(468)

Ist ATG 3'to TSP
not lst ATG 3'to TSP (1045)

(1 198)

(1288)

(2643)

PosÍtion
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(Table 6.1) and it contains stop codons in all three reading frames (Figure 6.4). The

G+C content of the intron is 5IVo. However, the region of the gene that encodes the

mature (1+a)-B-xylanase enzyme and its signal peptide shows an extreme bias towards

the use of G and C in the wobble base position of codons (Figure 6.4). Of the 427

codons in the translated region of the gene, only 2I have A or T in the third nucleotide

position. In the 3' untranslated region, a putative polyadenylation signal AATAAA is

present at nucleotide 2643 (Figure 6.4).

The sequence of the 30 NHr-terminal amino acids determined directly from highly

purified (1+a)-B-xylan endohydrolases (Slade et a1.,1989) exactly matches the amino

acid sequence deduced from the gene in the region spanning nucleotides lI4I-1321; the

intron described above is inserted in this region of the gene (Figure 6.4). Alignment of

the cDNA encoding isoenzyme X-I and the gene reveals an overall sequence identity of

99.5Vo; only 6 amino acid substitutions can be detected (Figure 6.6). The two (l+4)-B-

xylanase cDNA sequences which encode isoenzymes X-I and X-II (Chapter 3, Figure

3.10 and 3.11), showed considerably more sequence divergence (87Vo identity at the

amino acid level, 9IVo at the nucleotide level). Furthermore the 5' and 3' untranslated

sequences of the cDNA encoding isoenzyme X-I are essentially identical to the

corresponding regions in the gene (Figure 3.10 cf.6.4). It was concluded therefore that

the isolated gene encodes barley (1+a)-B-xylanase isoenzyme X-I.

6.3.3 Southern blot analysß and the barley Qa)-þ-xylanase gene farnily

Southern blots of barley genomic DNA probed with the barley (1+a)-B-xylanase

isoenzyme cDNA revealed the presence of at least three hybridizing DNA fragments in

each restriction enzyme digest (Figure 6.7). When DNA preparations from six different

barley cultivars (Clipper, Sahara, Galleon, Haruna Nijo, Chebec, Harrington) were

subjected to Southern blot analysis, three or four DNA fragments again hybridized with
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Figure 6.6 Alignment of the complete amino acid sequence of barley (1-+a)-p-xylanase isoenzyme X-I gene

and isoenzyme X-I cDNA. The a:row indicates the NH2-terminal Val residue in the mature enzyme, dots indicate

the identical residues and the doubly underlined Glu residues are the putative catalytic residues.
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Figure 6.7 Southern blots of barley genomic DNA. DNA was cut with

restriction enzymes Xbal (lane I), HindlII (lane 2), EcoRY (lane 3), EcoRI (lane

4), Dral (lane 5) and BamHI (lane 6), and probed with the near full-length barley

(1 +4)-B-xylanase cDNA isoenzyme X-I.
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the (1+4)-B-xylanase isoenzyme X-I cDNA probe (Figure 6.8), suggesting that barley

(1+4)-B-xylanases are encoded by a small gene family of at least three genes. In

addition, considerable polymorphism was evident between the cultivars (Figure 6.8).

6.3.4 Chromosomal location of the Q a)- B-xylanase genes

Southern blot analyses showed, wherever the bands were clearly visible, that the

hybridizing DNA fragment of the parent barley DNA conesponded to the hybridizing

band of addition line 5 (Figure 6.9). Three hybridizing bands (one intense and two

weak) were observed. No corresponding bands were detected in any other addition line.

From this result it can be concluded that the (1+4)-B-xylanase genes are located on

barley chromosome 7 (5H).
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Figure 6.8 Genomic Southern blot of DNA from 6 barley cultivars cut with

EcoRl(lanes l-6),Dral(lanes 7-t2),Hindlll (lanes 13'18), BarnHl (lanes L9'24)

and EcoRV (lanes 25-30). In each group of 6 digests the barley cultivars are, from

left to right, Clipper, Sahara, Galleon, Harana Nijo, Chebec and Harrington.
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Figure 6.9 Genomic DNA from wheat-barley addition lines, and their wheat and barley

parents were digested with EcoRl, Híndlll and, XbaI restriction enzymes. B and C

represent barley (cv. Betzes) and wheat (cv. Chinese Spring ), respectively; 1, 2,3, 4, 5, 6,7

represent wheat-barley addition lines 1, 2,3,4,5,6,7, respectively. Arrows indicate

location of barley (1-+4)-p-xylanase gene in corresponding addtion line.
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6.4 DISCUSSION

In this study two overlapping genomic clones were isolated from barley gene

libraries using the (1+4)-B-xylanase isoenzyme X-l cDNA as a probe. Comparisons

between the nucleotide and amino acid sequences of the gene and the isoenzyme X-I

cDNA sequence allowed the positive identification of the gene fragment as that encoding

barley (1+4)-F-D-xylanase isoenzyme X-I. The amino acid sequence of the thirty NHz-

terminal residues from the previously purified protein (Slade et a1.,1939) are identical to

the deduced amino acid sequence from the same region in the isolated gene. However,

amino acid residue 11 of the mature enzyme is an Arg and although this residue is found

in the gene (Figurc 6.4), it is a Lys in the isoenzyme X-I cDNA (Figure 6.6). Similarly,

the putative signal peptide encoded by the isoenzyme X-I gene differs from the cDNA

signal peptide at the 16th amino acid position. In the gene sequence the amino acid is

Phe whereas in the cDNA the corresponding amino acid is Tyr (Figure 6.5). Although

the amino acid sequence of (1+4)-B-D-xylanase isoenzyme X-I cDNA and the gene are

similar, six conservative amino acid differences have been identified overall (Figure 6.6);

the differences can be attributed to the different barley cultivars used to prepare the

libraries.

The calculated molecular weight of the mature enzyme (without the signal peptide)

from the deduced amino acid sequence of the isolated gene is 45,600, which is about

4,000 larger than the reported molecular weight of the purified protein as estimated by

SDS-PAGE (Slade et a1.,1989). Possible reasons for this discrepancy are discussed in

section 3.4. The sequences surrounding the translation start site (ATG) were found to be

in reasonable agreement with the consensus sequence for the translation start site of plant

genes (Joshi, 198'7 a, Table 6.1).

In general, plant signal peptides are 20-40 amino acids in length and contain

charged residues towards their NH2-terminus, followed by a hydrophobic core. Towards
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the COOH-terminus, more hydrophilic residues are found. Small, uncharged amino

acids are usually present in the cleavage site of the signal peptide; these residues are

typically alanine, glycine or serine (\iVatson, 1984). No such cleavage site sequence was

observed in the sequence deduced from the (1+a)-B-xylanase isoenzyme X-I gene,

where an Arg residue is located next to the cleavage site (Figure 6.6). Barley

(I-s3,1+4)-B-glucanase isoenzymes EI and EII (Slakeski et a1.,1990;Litts et a1.,1990;

Wolf, 1991) and (1+3)-B-glucanase (V/ang et al., 1992,Xu et aI., 1992) signal peptides

contain a Ser residue in the corresponding site and exo-glucanase isoenzyme ExoII

(Hrmova et a1.,1996) contains an Ala residue.

The open reading frame, which encodes the 32 amino acid signal peptide and a

mature protein of 395 amino acids, is interrupted by an intron of 91 bp. The nucleotide

sequences present at the intron/exon junctions are generally conserved in eukaryotic

genes, with most intron sequences starting with GT at the 5' end and ending with AG at

the 3' end (Brown 1988). The 5' plant splice junction consensus sequence is

c/4AGJgtaag and the 3' consensus sequence is tttgcagJ [note that nucleotide sequences

for introns are usually represented in lower casel. The gene for (1+4)-B-xylanase

isoenzyme X-I has exon/intron boundary sequences which are in good agreement with

the above-mentioned consensus sequences (Table 6.1). Furthermore, stop codons are

present in all reading frames, which is also typical of plant introns. The G+C and A+T

contents of the intron are Sl%o and 49Vo, respectively. Plant introns generally exhibit a

higher A+T to G+C ratio (Slakeski et a1.,1990; Wolf, l99l;Litts et aL, L99O;Wang et

al., 1992; Xu et aI ., 1992). The A+T rich sequence near the intron boundaries are

reported to be required for effective splicing of adjacent exons . The higher A+T content

is thought to be necessary for the efficient processing of plant pre-mRNA (Goodall and

Filipowicz, 1989). In yeast, a consensus branch point sequence is required for the

formation of a lariate intermediate in the excision of intervening sequences in pre-

mRNA, and is located 18-40 bp upstream from the 3' splicing boundaries in yeast
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(Brown, 1986; Pikielny et al., 1983). Plant genes generally do not contain the highly

conserved TACTAAC sequence found in yeast introns (Brown, 1986). The TACTAAC

region of the yeast intron lies between bases -15 and -50 from the 3' splice junction

(Brown 1986). However, a putative branch-point-like sequence ACGTAAC is located

33 bp from the 3' splicing zone of the intron (at nucleotide 1257, Figure 6.4) of the

isolated barley (1+4)-B-xylanase gene and an additional TAATAAC sequence is found

another 35 (at nucleotide I2I9) bp in the 5' direction (Figure 6.4). In (1+3,1+4)-P-

glucanase isoenzyme EI, the branch point is found in the same position (Slakeski et aI.,

1990).

The intron observed in the isolated isoenzyme X-I gene is relatively short (91 bp).

Similar short introns have been reported in the RGAI gene from rice (Oryza sativa L. IR-

36), which encodes a G protein cr subunit (Seo et aI., 1995). In contrast, Brown

(1986) has reported that higher plant genes contain very few short introns and almost

two-thirds of known plant introns are between 100 and 2000 bp in length. Introns which

are even larger than 2000 bp have been reported in (I+3,14)-0-glucanases and

(1+3)-Þ-glucanases of barley, rice, and tobacco (Ohme-Takagi and Shinishi, l99O;

Sperisen et al., I99l; Slakeski et al,1990; V/olf, 1991; Simmons ¿r a1.,I992;Wang et

a1.,1992).

The promoter region of the isolated gene for isoenzyme X-I has a putative TATA

sequence which shows some similarity to the plant consensus sequence; 6 residues out of

11 are identical (Table 6.1). An identical TATA box sequence has been reported in

soybean heat shock protein genes (Joshi, 1987 a). In the rice RGAI gene, a divergent

TATA (ATATGA) sequence is also observed (Seo er al., 1996). Thus, considerable

divergence from the consensus sequence is observed in plant TATA boxes and this is

certainly the case for the (1+a)-B-xylanase gene studied here. Unlike most other plant

genes, the region between the TATA box and the transcription start site in the barley
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(1+4)-B-xylanase gene is very GC-rich, as has been observed in the llrce PAL

(phenylalanine ammonia lyase) gene (Zhu et aL.,1995).

Nucleotide sequence analysis of the (1-+4)-B-xylanase isoenzyme X-I gene in the

coding region of the mature enzyme has an overall G+C content of 65Vo (Figure 6.4).

This is mainly due to the extremely strong bias towards the use of G+C in the wobble

base position of codons. Similar codon biases have been reported in the translated

regions of genes or cDNAs encoding barley and wheat (l+3,1+4)-B-glucanases

(Slakeski et al.,1990;Litts et al.,1990; V/olf, l99l;Lai et aL,1993) and barley (1+3)-

B-glucanases (Høj et a1.,1989; Wang et a|.,1992;Xu et aI., 1992; Qi, 1994). According

to Murray et al. (1989) and Campbell and Gowri (1990), monocotyledonous genes

generally exibit a high G+C content in the degenerate third base of codons, whereas

dicots exhibit a more balanced codon usage. In E. coli and yeast, codon bias is most

extreme in highly expressed proteins. Biased codon usage in highly expressed genes is

believed to enhance translation and may be required for maintaining mRNA stability

(Murray et aI., 1989). In maize and wheat, the genes for ribulose 1,5 biphosphate

(RuBPC) and chlorophyll a/b (CAB) almost completely avoid the use of A+T in the third

position of codons, whereas in soybeans the codon usage pattern for the same genes is

almost identical to the more balanced dicotyledonous pattern (Murray et al., 1989).

However, balanced codon usages have been reported in a barley carboxypeptidase cDNA

(Doan and Fincher, 1988) and in a barley exo-B-glucanase isoenzyme ExoII cDNA

(Hrmova et a1.,1996).

For the isolated (1+a)-B-xylanase isoenzyme X-I gene, a putative polyadenylation

signal AATAAA is located 222bp downstream from the TGA stop codon (Figure 6.4).

Several other potential polyadenylation signals can be identified. The barley (1+a)-Ê-

xylanase isoenzyme X-I cDNA has no conserved AATAAA sequence, but this cDNA

did not extend to the AATAAA sequence of the corresponding (1+4)-p-xylanase

isoenzyme X-I gene. Whether this resulted from truncation of the cDNA during
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synthesis, or whether alternative polyadenylation sites are present, remains to be

demonstrated. Previous studies have demonstrated that polyadenylation signal

sequences in plant genes are not as highly conserved as they are in animal genes (Joshi,

1987 b). Sequence comparisons of plant nuclear genes reveals that less than 50Vo of

mRNAs have AAUAAA sequences near their poly(A) site (Joshi, 1987 b; Messing et al.,

1983; 'Wu ¿/ al., 1995). In plant mRNAs, an additional cis-acting, GU-rich sequence

element is required for efficient functioning of the poly(A) signal. The element is

present upstream from the poly(A) signal and is much less conserved than the AAUAAA

sequence. This upstream region has been found in all plant genes analyzed and is

believed to be essential for 3'-end processing ( Hunt and MacDonald, 1989; Sanfacon e/

al.,I99l; Guerineau et a|.,1991; Mogen et a1.,1992; Wt et a1.,1993,1994; Sanfacon,

1994). In cauliflower mosaic virus (CaMV), a direct repeat of UUUGUA is the sole

sequence element essential for the polyadenylation site (Rothnie et al., 1994). Similar

TTTGTA sequences are seen upstream from the poly(A) site (at nucleotides 2531 and

2553) in the (1+4)-B-xylanase isoenzyme X-I gene isolated here (Figure 6.4).

Thus, the barley (1+a)-B-xylanase isoenzyme X-I gene contains sequence motifs

for transcription, RNA processing, translation and protein processing that are typical of

plant genes (Figure 6.4, Table 6.1). In addition, the promoter region has well-defined

sequence elements that are very similar to components of the GA response complex that

has been identified in cereal cr-amylase promoters in recent years (Skriver et al., I99I;

Rogers and Rogers , 1992; Sutcliff et aI., 1993; Huttly and Phillips, 1995; Gubler et aI.,

1995). The GA response complex in the high pI barley cr-amylase promoter has at least

three cis-acting elements, located in a region between -I74 and -108 from the

transcription start point. These elements include a pyrimidine box, a TAACAAA box

and a TATCCAC box (Gubler and Jacobsen, 1992). More recent in vitro evidence

suggests that a GA-regulated Myb protein transactivates the cx-amylase gene promoter

through specific binding to the TAACAAA box (Gubler et a1.,1995).
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The barley (1+a)-B-xylanase gene promoter studied here has similar cis-located

sequences, arranged in the same order in the region -115 to -80, including a pyrimidine

box, a TAACGAC box and a TATCCAT box (Figure 6.4). These components of the

putative GA response complex are closer together than are the corresponding

components in cr-amylase promoters. The presence of a GA response complex is

consistent with the GA induction of both (1+4)-B-xylanase gene transcription in isolated

aleurone layers and the secretion of active enzyme by the layers (Chapter 5, Figures 5.6

B and 5.4 a). The barley (l+3,1+4)-p-glucanase isoenzyme EII gene promoter also has

a pyrimidine box, a TAACAAC box and a TATCAC box (V/olf ,1991), but whether the

subtle differences in hormonal responses observed with this gene result from the spacing

of these elements, from minor sequence variations within the boxes, from additional cis-

acting elements or from post-transcriptional effects, remains to be demonstrated.

Genomic Southern blot analyses suggest that (1+4)-B-xylan endohydrolases in

barley are encoded by a family of at least three genes (Figure 6.7 and 6.8). In the present

study a gene encoding (l+4)-p-xylanase isoenzyme X-I was isolated. No clones

carrying the other two genes were found during extensive screening of two genomic

libraries and, indeed, no other plant (1+4)-p-xylanase genes have been described. A

Southern blot of wheat-barley addition lines indicates that all three genes for (1-+4)-B-

xylanases are located on barley chromosome 7 (5H) (Figure 6.9). Genomic Southern

analysis of six different barley cultivars showed that (1+a)-B-xylanase gene

polymorphism exists between the cultivars (Figure 6.8) and this has allowed the genes to

be mapped (Banik et aI., 1996). Mr. Chen-Dao Li used the barley (1+a)-B-xylanase

isoenzyme X-I cDNA isolated here to map the genes (Figure 6.10). The three barley

(1-+4)-B-xylanase genes are located on the long arm of chromosome 7 (5H), where they

are so tightly clustered that no recombination is observed between them. The

distribution of tightly-linked (1+4)-B-xylanase genes on barley chromosome 7 (5H)

suggests that they have arisen by tandem duplication of a single ancestral gene. Several



Figure 6.10 Map positions of the three (1+4)-B'xylanase genes on barley

chromosome 7 (5H) of the "Galleon" x "Haruna Nijo" and t'Chebec" x

,,Ilarrington" DH populations. The consensus linkage map shows the position of

the xylanase genes between the RFLP markers CDO506 and PSR370; the centomere

is located on the CDO506 side of the genes. No recombination was detected

between the three xylanase genes in234 DH lines (Data of Mr. Chen-Dao Li).
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other gene families in barley are also organised as clusters in a limited region of a

particular chromosome. The barley (1+3)-B-glucanase gene family, which consists of

seven members, is distributed along the long arm of chromosome 3 (3H) (Li et al.,

1996), while barley hordein genes are organized in a similar manner on chromosome 5

(1H) (Shewry et aL,1990).

Of particular interest is the tight clustering of cr-amylase genes (Amyl) on

chromosome 6 (6H) (Khursheed and Rogers, 1988; Takano and Takeda,1987). Both the

cr-amylase genes and the (1+a)-p-xylanase genes studied here may represent an early

stage in the evolution of gene families, where tandemly duplicated genes are still closely

linked and dispersal along the chromosome by chromosome rearrangements or

translocations to other chromosomes has not yet occurred. Recent duplication of (1+4)-

B-xylanase genes might also explain the relatively high level of sequence identity (9lVo

at the nucleotide level) between the genes encoding isoenzymes X-I and X-II (Chapter

3). This level of sequence identity can be compared with values as low as 45Vo for seven

members of the barley (1+3)-B-glucanase gene family (Xu et aL, 1992), six of which

are located in a region less than 20 cM in length on chromosome 3 (3H); the seventh

gene lies on the same chromosome about 50 cM outside this cluster (Li et al., 1996). A

high level of sequence identity between the (1+4)-B-xylanase genes might also present

practical difficulties in obtaining gene-specific probes for future expression studies.



CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS
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7.1 Summary of work described here

The isolation, sequencing and chatacterization of two cDNAs encoding barley

(1+a)-p-xylanase isoenzymes X-I and X-II and the gene corresponding to isoenzyme X-

I have been described in this thesis. The results of genomic Southern blot analyses

indicated that the barley (1+4)-B-xylanase gene family consists of at least 3 genes which

have been mapped to a single locus on the long arm of chromosome 7 (5H). The cDNA

was used to monitor tissue-specific expression, developmental regulation and hormonal

control of the (1+a)-B-xylanase genes. Expression, as measured by the appearance of

(1+a)-B-xylanase mRNA transcripts, was detested only in the aleurone layer of

germinated grain. Expression could also be induced in isolated aleurone layers

following treatment with the phytohormone GA. However, expression patterns of

individual genes could not be defined because gene-specific probes were not available.

Although heterologous expression of the barley isoenzyme X-I cDNA was achievedin E.

coli;the expressed protein was precipitated into insoluble, inclusion bodies and no active

enzyme could be recovered.

7.2 Potential short-term follow-up

A number of experiments could be performed in the short-term to expand on and to

complete work described here. Of primary importance is the isolation of gene-specific

probes for the detailed description of spatial and temporal factors which regulate the

expression of the three individual (1+4)-B-xylanase genes. Thus, cDNAs or genes

encoding each isoenzyme need to be cloned, in the expectation that sequence differences

might be detected in the genes or their flanking regions; these could be used as gene-

specific probes. Experiments could also be conducted to identify cis- and trans-acting

regulatory elements that mediate tissue specificity and the developmental and hormonal



Chapter Seven l2l

control of expression of each gene. In particular, factors or gene sequences which are

responsible for the relatively late expression of the (1+4)-B-xylanase genes in the

aleurone layer of germinated grain might be pin-pointed by detailed promoter deletion

analyses. Derived information on the mechanisms of gene regulation could be important

not only for a thorough understanding of the physiology of cell wall degradation in

germinated grain, but also could be central in future attempts to manipulate (1-14)-B-

xylanase expression in barley which might be genetically engineered to improve its

performance in commercial processes.

Further experiments could be designed to investigate more thoroughly the potential

role of (1+a)-B-xylanases in plant-pathogen interactions. (1+a)-B-Xylanase production

in plants is enhanced by pre-treating leaves with ethylene (Fuchs et a1.,1989; Avini et

al., 1994) which is generally believed to be a stress-related hormone. This leads to an

increase in the accumulation of (1-+4)-p-xylanase mRNA transcripts, (1-+a)-Ê-xylanase

activity and the concurrent expression of pathogenesis-related proteins (Fuchs et aI.,

1989; Avini et al., 1994; Bailey et al.,l99O,I99l, 1993,1995; Lotan and Fluhr, 1990).

In Chapter 5, it was observed that barley (1+a)-B-xylanase was not induced in barley

leaves which were infected with the scald fungus, Rhynchosporium secalis, but other

pathogens might induce (1+a)-B-xylanase expression and the expression of xylanase

genes not detectable with the currently available cDNA probes can not yet be ruled out.

Additional studies could be initiated to express the (1+4)-B-xylanase protein in an

active form in appropriate heterologous systems such as E. coli, yeast, or the insect

cell/baculovirus system, using recently reported improvements in these expression

systems. Co-expressing the proteins with the assistance of molecular chaperones might

be required to obtain soluble, active protein. If such studies proved to be successful, the

active, folded protein could be used in crystallization studies to resolve the three-

dimensional structure of the eîzyme. Such three-dimensional data could be used in

conjunction with site-directed mutagenesis to elucidate substrate-binding mechanisms
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and the molecular details of catalysis. It would also present opportunities for the

engineering of increased stability into the enzyme, which could have commercial

applications.

7.3 Industrial importance of (1+4)-B-xylanases

(l+a)-Þ-Xylanases and their substrates are central in many of the industrial processes

described below and novel, highly purified (l-+a)-B-xylanases could provide

manufacturers with useful additives which might improve process productivity or product

quality. Additionally, properties of selected (1+4)-B-xylanases might be tailored through

genetic engineering to enhance their performance in industrial processes.

Pulp and paper: Microbial (l+a)-B-xylanases are used in the pulp and paper industry.

Cellulase-free xylanase preparations yield a range of desirable pulp characteristics by

selectively hydrolyzing particular non-cellulosic polysaccharides in pulps and paper fibres

(Viikari et a1.,1986; Sharma, 1987; Nissen et a1.,1992; Lavielle et aL, 1992; Buchert ¿r

al., 1994). The use of (l-+4)-B-xylanase in pulp refining also decreases the energy

demand for subsequent mechanical processes (Wong and Saddler,1992). Incorporation of

(l-+4)-B-xylanase in pre-bleaching processes allows the use of lower chlorine charges

during the bleaching of kraft pulp. As a result, environmental problems associated with

chlorine discharge are diminished (Senior et a1.,1992; Viikari et al., l99l; Milagres and

Duran, 1992). In the paper and pulp industry it is essential that these xylanase preparations

are free of contaminating cellulase activity, which could result in costly damage to the

cellulose fibres.

Livestock nutrition: Arabinoxylans are responsible for anti-nutritional effects in cereal-

based stockfeeds for monogastric animals because they limit access of digestive enzymes
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to nutrients in the digestive tract and can also slow the uptake of digestion products

(MacGregor and Fincher, 1993). The addition of xylanases to poultry diets improves

their nutritive value and as a consequence improves the growth performance of broilers

(Paridon et a1.,1992; Bedford and Classen, 1992).

Food processing: In the food processing industries, ( 1 -+4)-B-xylanases find applications in

the clarification of fruit juices (Biely, 1985) and in the preparation of dextrans which are

used as food thickeners (Biely et a1.,1980). (l+4)-Þ-Xylanases are also utilized by the

baking industry (Maat et aI., 1992). Although treatment of wheat dough with excessive

(l+a)-p-xylanase results in a rapid loss of dough strength and the production of a wet,

sticky dough mass (McCleary, 1992), the judicious use of (1+4)-B-xylanases in bread-

making mixtures can lead to improved qualities characteristics such as increased loaf

volume or a more desirable crust colour (McCleary, 1992). Clearly the large-scale

production of purified xylanases is a desirable prerequisite for these applications.

(1a)-þ-Xylanases in malting and brewing: Barley (l+3,1+4)-B-glucans are widely

recognized as undesirable in brewing processes, because highly viscous solutions interfere

with filtration steps and because the (1+3,1+4)-B-glucans can form precipitates in the

final beer product (MacGregor and Fincher, 1993). However, the physiochemical

properties of arabinoxylans are similar to those of (l+3,1+4)-p-glucans and problems

normally attributed to (l+3,1-r4)-B-glucans might also be caused by arabinoxylans.

Hitherto, most work has been focused on (1+3,1+4)-B-glucans; the arabinoxylans have

received relatively little attention (Coote and Kirsop, 1976; MacGregor and Fincher,

1993).

The potential importance of arabinoxylans during malting and brewing has recently

been reported by Schwarz and Han (1995), who found that arabinoxylan contents in

several commercial beers ranged from 514 ¡tglml to 4,211 pg/ml; (l+3,1+4)-B-glucan
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levels ranged from 0.3 pglml to 241 þg/ml. Arabinoxylans accounted for 70Vo of non-

starchy polysaccharides in pilot-brewed beer and for ap to l\Vo of the total carbohydrates

in beer (Schwarz and Han, 1995). Vietor et aI. (199I) have also reported that a substantial

amount of arabinoxylan is present in malt wort and Han and Schwarz (1996) showed that

(1+a)-B-xylanase levels are positively correlated with malt extract values.

In the light of these results, it is surprising that very little attention has been paid to

the role of (1-+4)-B-xylanases in the malting and brewing processes. Arabinoxylan-

degrading enzymes could play an important role in decreasing filtration difficulties in

malting and brewing. Further experiments could be undertaken to genetically manipulate

barley varieties or lines to enhance (1+a)-B-xylanase expression.

7.4 Improving (1+4)-B-xylanases for commercial processes

An important prerequisite for the use of (1+4)-B-xylanases in industry is their

ability to remain active at elevated temperatures. For example, malt extracts are incubated

at temperatures of about 65oC during the initial enzymic degradation of starch in the

brewing process. However, Slade et aI., (1989) showed that barley (1+4)-B-xylanases are

extremely unstable. The production of more stable isoforms of barley (1+a)-B-xylanases

could be beneficial for a range of biotechnological applications not only in the malting and

brewing industries, but also in the pulp and paper, food-processing and stockfeed

industries.

Stable isoforms could be produced through the use of site-directed mutagenesis by

introducing additional glycosylation sites, or by altering key amino acids (Vieille and

Zeikus, 1996). Doan and Fincher (1992) have successfully increased the thermostability

of barley (1-+3,1+4)-p-glucanase isoenzyme EI by the introduction of an additional

glycosylation site. In the malting and brewing industries it might also be an advantage to

genetically engineer increased thermostability into barley (1+4)-p-xylanases, but this
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would probably need to be linked with earlier and higher levels of expression of the

genes.

Manipulation of the cis-acting elements within the 5' regions of barley (1+4)-Þ-

xylanase genes might be used enhance levels of gene expression. In the present study it

was observed that induction of (1+a)-B-xylanase expression occurred one day later than

that of both (l+3,1+4)-B-glucanase and cr-amylase. To accelerate arabinoxylan

degradation during endosperm mobilization, the entire promoter region of the barley

(1+a)-B-xylanase could be replaced by a germination-specific promoter such as the c¡c-

amylase promoter, which is activated earlier than endogenous (1+a)-p-xylanase and to

relatively higher levels. In addition, to obtain higher expression rates for endogenous

(1+4)-B-xylanases, the copy number of the genes could be increased.

Any attempts to manipulate barley (l+a)-B-xylanases will be dependent on the

stable integration of genetically engineered genes into the barley genome. A major

prerequisite for this is the availability of routine balley transformation protocols. Recent

successes in the production of transgenic barley has opened up the possibility for the

stable integration of engineered genes into barley, with the aim of producing transformed

barley plants for incorporation into breeding programs. The most successful approach

for the production of transgenic barley so far is particle bombardment (Jähne et aI., 1994:

Ritala et al., 1994: Wan and Lemaux, 1994; Hagio et al., 1995). Fertile transgenic

barley plants have also been generated by direct DNA transfer to protoplasts (Jähne e/

aI.,7991; Golds et al., 1994; Kihara and Funatsuki, 1994; Funatsuki ¿f al., 1995;

Salmenkallio-Marttila et aI., 1995) and very recent successes with a virulent strain of

Agrobacteríum tumefaciens offer possibilities for the future (Dr. R. Brettell, pers.

commun.). Thus, Jensen et aI. (1996) have introduced a genetically engineered,

thermostable bacterial (l+3,1-+a)-B-glucanase into barley and it can be confidently

predicted that, in the future, genetically engineered (1+a)-B-xylanase genes encoding

enzymes with enhanced performance chalacteristics could also be reintroduced into
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barley if the industry considered such material useful. The isolated (l+4)-p-xylanase

genes described in this thesis represent a source of DNA for the manipulation of both

coding regions and promoters for these future experiments.
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APPENDICES



Appendix 1

Solutions

50 x Denhardt's solution

IVo (wlv) Ficoll, lVo (wlv) polyvinylpyrrolidine, 1% (w/v) BSA

20 x SSC

3 M NaCl, 0.3 M sodium citrate (pH 7.0)

20 x SSPE

3 M NaCl, 0.2M NaH2PO4, 20 mM EDTA

SM

10 mM NaCl, 8 mM MgSO4, 50 mM Tris-HCl (pH 7.5), O.ÙlVo gelatin

10 x TAE

0.4 M Tris-HCl (pH 8.0), Ll5Vo (v/v) glacial acetic acid, 10 mM EDTA

10 x TBE

10 x 0.89 M Tris-HCl (pH 8.0),0.89 M boric acid,20 mM EDTA

10xTE

0.1 M Tris-HCl (pH 8.0), 10 mM EDTA



Appendix 2

Nutrient Media

LB media

lVo (wlv) Bactotryptone, 0.5 Vo (wlv) Bacto-yeast extract, l%o (wlv) NaCl

Miller's Broth

lVo (wlv) Bacto-tryptone, lVo (w/v) Bacto-yeast extract, 0.5Vo (wlv) NaCl

2 x YT medium

l%o (wlv) Bacto-yeast extract, 1.67o (wlv) Bacto-tryptone,IVo (w/v) NaCl

NZY medium

O.5Vo (w/v) Bacto-yeast extract, O.2VoMgSO4.7H2O,0.57o NaCI,IVoNZ amine (casein

hydrolysate)




