An Experimental System
for Evaluating
Cache Coherence Protocols
in Shared Memory Multiprocessors

Peter John Ashenden

Department of Computer Science
The University of Adelaide

Submitted for the Degree of Doctor of Philosophy
in
January 1997
Revised August 1997

© 1997, Peter J. Ashenden

Contents

Chapter 1
Introductionoeveeniecieneccsenes eeesssseseasananns 1
1.1 Workstations and Networksot 1
1.2 Multiprocessor Architecturesiiil 2
1.3 Bus Connected Shared Memory Multiprocessors 4
1.4 Contributioncoviuniiiiiineiiiia s 7
Chapter 2
Cache Coherence and Performance Evaluation 10
9.1 Caches and Cache Coherenceccciiiiiiiecnnnn. 10
2.2 Survey of Cache Coherence Protocols 14
2.9.1 Protocol Terminologyc..cvviiiiiiinrneeennns 14
2.92.2 Goodman’s Write-once Protocol 17
2.2.3 The Illinois Protocolcooiiiiiiinnn. 21
2.2.4 The Synapse Protocolo 26
2.2.5 The Berkeley Ownership Protocol 30
2.2.6 The Sun MBus Protocolcoiiiiiinnnn. 35
2.2.7 The Dragon Protocolcooiiiiiiniiin.e. 39
2.2.8 The Original Firefly Protocol 44
9.2.9 The Published Firefly Protocol 48
9.2.10 The RB and RWB Protocolscooivvnnn... 53
2.9.11 Correctness of Coherence Protocols 54
9.3 Protocols Used by Current Processorsc..onnue. 56
9.3.1 Intel Pentium® 56

it

2.32 IBMPowerPCcciiiiiiiiiiiiiiineinennns 57
2.3.3 Sun Microsystems UltraSPARC™-II 58
2.3.4 MIPS RA000 i wevcovi s sio ssamiarm s scamommsn 1o wiorios sse sisornis 58
2.3.5 DEC Alphacuweu i sewe o soemmsis e swmak o wms 58
2.4 Proposed Futurebus Cache Coherence Mechanisms 61
2.4.1 P896.2 Signalling Mechanismsc..cu. 62
2.4.2 P896.2 Cache Coherence Rules 65

2.4.3 Using P896.2 to Implement the Berkeley Protocol ... 70
2.4.4 Using P896.2 to Implement the Dragon Protocol 74
2.4.5 Summary of P896.2 Options 79
2.4.6 Correctness and Completeness of the P896.2 Rules .. 82

2.5 Performance Evaluation of Coherence Protocols 84
2.5.1 Analytical Evaluationcoociiiiiiiii, 86
2.5.2 Simulation Based Evaluation 91
2.5.3 Evaluation Using Real Systems 93
2.6 SUIMMATLY .. tvvevnnnen et eaiinnieeeetaanaianaeeeesns 94
Chapter 3
The Leopard Multiprocessorccceeeisveanenncccnans . 96
3.1 Backgroundciiiiiiiiiili 96
3.2 Leopard Architectural Frameworkoooonie. 97
3.3 The Leopard-1 Multiprocessorc.covviieene. 99
3.4 The Leopard-2 Multiprocessor e 101
3.5 The Leopard-2 System Buso 104
3.5.1 Arbitration Protocol O —— 105
3.5.2 Data Transfer Protocol 106
3.5.3 System Maintenancecoiieeeiiiiinns 109
3.6 The Leopard-2 General Data Processor 112
3.7 The L2GDP Programmable Cache Design 114

il

3.7.1 Cache Organizationcooovuiiiieinneaann. 114

3.7.2 CacheDataPathso, 116
3.8 CacheOperationcooiiiiiiiiiiiiiiiiiinn, 121
3.8.1 CPU Requirements of the External Cache 121
3.8.2 CPU Cachable Read and Write Requests 123
3.8.3 CPUFIush s cuwenan o sames s o wee s s s s 132
3.8.4 Snoop Operation wu wwsss ws s s s sawes vn sones s o 133
3.8.5 Asynchronous Writes from the Write Buffer 138
3.9 SUMMATLY5 e wewey i cemee s @ e o S v s s e 140
Chapter 4
A Programmable Cache Controller for the Leopard-2 141
4.1 Introduction = wu sewss s semwss s vanesmma 5 s s wemws wn wsen 141
4.2 Cache Controller Configuration Parameters 142
4.3 A VHDL Model of the Programmable Cache Controller 145
4.3.1 The Leopard-2 System Model 145
4.3.2 Workload Modelling in the Processor Block 148
433 TheCacheModel............coiiiiiiiiiiiiannnnn. 152
4.3.4 The Coherence Monitor Model 187
44 Summary e T T 189
Chapter 5
CONCIUSIONS .vveeverestssnsocnsesssascsasssscssscassssnsnens 191
5.1 Summary of Project Contexto, 191
5.2 Experimental Evaluation of Cache Coherence Protocols 193
5.3 Conclusionguesi o veves i o Seiam i o beies o SEs i s 195
Appendix A
L-Bus Data Transfer Protocolccciiieieniiinniinnes 196
Al OVeIVIEW ..ottt inas s ssaienasnsssoasnassans 196

v

A2 Addressing Structuret 197

A.8 Data Transfer Signals . i s it s sscvas o5 s o7 semer o v 199
A.3.1 Information Signals.............. ... i, 199
A.3.2 Master Command Signalsc.covunn 199
A.3.3 Cache Status Signals 200
A 3.4 Slave Status Signalsccccuiivesms o vonis o s 200
A.3.56 Sequencing Signals i i cewaniss s smean a sawen o e 201
A3.6 SlotAddress...... ...t 202
A.4 Data Transfer Protocol Operation 202
A.4.1 Information Transfer Handshaking 202
A.4.2 Address Transfer and Incrementing 204
A.4.3 Cache Immed-Invalidate Transaction 205
A.4.4 Cache Read-Shared Transaction 205
A.4.5 Cache Write-Back Transaction 205
A.4.6 Cache Read-Invalidate Transaction 206
A.4.7 Cache Write-Invalidate Transaction 206
A.4.8 Cache Read-Copy Transaction 206
A.4.9 Cache Write-Copy Transaction 206
A.4.10 Non-Cache Read Transaction 207
A.4.11 Non-Cache Write Transaction 207
A.4.12 Interlocked Transactionsoviiiinn. 207
A.4.13 Protocol Versionc.coviiiiinnnnannaennns 208
A5 Timing Diagramscciviieirerreeineeeeetnnnnnnes 208
Appendix B
The Leopard-2 Bus Arbitration Protocolc.n.. 222
B.1 Arbiter and Protocol Descriptionot 222
B.2 VHDL Specification of the Arbitration Protocol 225

Appendix C

A Behavioural Specification of Cache Coherence

References

vi

List of Figures

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.

Figure 2-12.
Figure 2-13.
Figure 2-14.

Figure 3-1.
Figure 3-2.

Figure 3-3.

The bus connected shared memory architecture.
Example of cache coherence.ooiiiin.
The write-once protocol.coviiiiiiiiiinnn
The Illinois protocol.,
The Synapse protocol. i
The Berkeley protocol.,
The MBus protocol.zaes «i ie e o sesis i vames s
The Dragon protocol. ...t
The original Firefly protocol.,
The Firefly protocol. s casssss oo somas s sawns s s
The Pentium protocol.o,
The MIPS R4000 write-update protocol.

The protocol used by the DEC KN470/Alpha 21164
MOdUIE. o % e @ eEEE e e SN o AN

The Berkeley protocol transition diagram, annotated
with the P896.2 rules that areinvoked.

The Dragon protocol transition diagram, annotated
with the P896.2 rules that are invoked.

Leopard multiprocessor architecture framework.
Leopard-1 Multiprocessor organization.

Leopard-2 multiprocessor workstation architecture.

vii

19
24
28
32
37

46
50
57
59

71

76
98
100

Figure 3-4.

The main functional units and data paths of the

Leopard-2 General Data Processor (L2GDP). 113
Figure 3-5. Organization of the LZGDP cache memory. 115
Figure 3-6. Cache addressfields.ooiiiiiin.. 116
Figure 3-7. Address and data paths within the L2GDP cache. 117
Figure 4-1. The top-level structure of the Leopard-2 hardware

MOodely ¢ sz s v GeeER B i BTG T S R SRS W Ea 146
Figure 4-2. Timing of processor read and write requests. 152
Figure 4-3. The record type used to define cache parameter values. . 153
Figure 4-4. The process structure of the cache controller model. 154
Figure 4-5. State transition diagrams for the cache bus arbiter (left)

and snoop bus arbiter (right): : ciwwas v vamvvi so s oo ss 156
Figure 4-6. State transition diagram for the line arbiter. 157
Figure 4-7. State transition diagram for the internal Futurebus

ATDIEOE.: w are wmmmn n meocseramms s memece i B ROASS O SUEGH 5 sk 159
Figure 4-8. Outline of the master process. 161
Figure 4-9. Outline of the procedure that checks for a cache hit. 162
Figure 4-10. Outline of the procedure that sequences a read hit. 164
Figure 4-11. Outline of the procedure that sequences a write hit. 165
Figure 4-11 (continued).coonn.e. AT i VRS 86 G i 166
Figure 4-12. Outline of the procedure that sequences a Futurebus

transaction on a write hit to a shared line. 168
Figure 4-12 (continued).cooiviiiiiiiiiiiiiiiiiiiiiens 169
Figure 4-13. Outline of the procedure that sequences a cache miss. .. 171
Figure 4-14. Outline of the procedure that copies a replaced line

tothe write buffer. ccrrvasioivonoiasnais.. 172
Figure 4-15. Outline of the procedure that sequences a read

transactionon acachemiss.coeiiiieinnnn.n. 174

viil

Figure 4-15 (continued). . ws vs v o 6 sa00ma7 s @9a8 o8 0% 5 woiness 304 - - 175

Figure 4-15 (continued). an waman s s e soieremae « o 176
Figure 4-16. Outline of the snoop process.cooinunn.. 178
Figure 4-16 (continued).o sowen i s sewms e somon s wmmem s - 179
Figure 4-17. Outline of the procedure that sequences snoop

attribute lookup. cesemis o5 5as a6 e i Seds 181
Figure 4-18. Outline of the procedure that sequences the snoop’s

actionsin atransaction. it 182
Figure 4-18 (continued).ooiiiiiiiiiiiiii i 183
Figure 4-19. Outline of the process that sequences write

transactions from the write buffer. 185
Figure 4-19 (continued). 186
Figure A-1. L-Bus address format.coooiiiiian, 198
Figure A-2. Address transfer at master 209
Figure A-3. Address transferatslavecooiinnn 210
Figure A-4. Address transfer at third party 211
Figure A-5. Address transfer abort at third party 212
Figure A-6. Non-cachable data transfer at master 213
Figure A-7. Non-cachable data transfer at slave 214
Figure A-8. Non-cachable dafa transfer at third party 215
Figure A-9. Non-cachable data transfer abort at third party 216
Figure A-10. Cachable data transfer at master 217
Figure A-11. Cachable data transfer at slave 218
Figure A-12. Cachable data transfer at third party 219
Figure A-13. Cachable data transfer abort at third party 220
Figure A-14. Cachable data transfer at cache 221
Figure B-1. Arbitration circuit connections.ne. 222
Figure B-2. Arbitration synchronization.coovnnn. 223

X

List of Tables

Table 3-1. Leopard-2 cache entry attributes. 115
Table 4-1. Configuration parameters for a reconfigurable

cache eoBtrallBr. . .cuun vu ci wamin s samme we e e o s 143
Table 4-2. Configuration parameter values to implement

different cache coherence protocols. 144

Abstract

This thesis examines cache coherence protocols designed for use in bus connected
shared memory multiprocessors. The cache coherency problem is discussed, and sever-
al previously published protocols are described in a new uniform framework, allowing
ready comparison between them to be made. The issue of protocol correctness is also
addressed. The protocol mechanisms proposed for the IEEEE P896.2 Futurebus are
described, and the way they may be used to implement the published protocols is illus-
trated. Two approaches for verifying correctness of the Futurebus mechanisms are de-
scribed. A brief survey of techniques for evaluating relative performance of cache co-
herence protocols is presented, covering three main techniques: analytical, simulation
based, and measurement of real systems. Itis argued that the last of these is the most
accurate, and that the results of such measurements are needed to validate evaluations
based on the other two techniques. Abriefdescription is presented of an early prototype
multiprocessor, the Leopard-1, and a detailed description is presented of a full-scale
multiprocessor system, Leopard-2. The Leopard-2 is an experimental platform which
includes programmable cache controllers, designed to allow performance measure-
ments of cache coherence protocols. Attention is focussed on the design of the cache at-
tached to each processor, and the way in which the coherence protocols are implem-
ented is described. A detailed behavioural model of the programmable cache controller
is presented. The model is driven by two workloads: a synthetic workload to exercise
specific aspects of system behaviour, and a pseudo-random workload to provide com-
prehensive test coverage. The model is used to verify correct maintenance of coherence

by the caches operating under different coherence protocols. The thesis concludes with

x1i

a discussion of ways in which the experimental platform is used to measure relative.

performance of coherence protocols.

Xii

Statement

I, the author of this thesis, hereby declare that this thesis does not contain material
which has been accepted for the award of any other degree or diploma in any University,
and that, to the best of by knowledge and belief, this thesis contains no material previ-

ously published or written by another person, except where due reference is made in

the text of the thesis.

I consent to this thesis being made available for photocopying and loan if accepted

for the award of the degree for which it is submitted.

Peter J. Ashenden

xiii

Acknowledgments

The design work on the Leopard multiprocessors reported on in this thesis was done
as part of a large project involving numerous people in a variety of capacities. I would

like to thank them all for being part of the team, and making the work possible.

Firstly, I would like to thank the engineering staff on the Leopard Project, Chonghe
“Bobby” Fang, Rob Gerhofer, Ken Howard and Gordon Slater, for their tireless efforts
on a project that turned out larger than we had all imagined. Thanks also to Peter Daly
and Werner Dorfl for technical support and “nuts and bolts” help, and to Peter Haw-

ryszkiewycz and Mike Petty for project management support.

The project also had significant industry involvement. Thanks are due to Alex Stan-
co, David Knight and Ken Howard (then) of Quentron Optics Pty Ltd, who set up the
initial collaborative effort that got the Leopard Project under way. During the life of
the project other industry supporters included: National Semiconductor (Aust). Pty Ltd
for donations of equipment, software and electronic components; National Semicon-
ductor Corporation, for travel support, donations of components, advance information
and technical support, and access to numerous personnel beyond the usual support
channels; Silvar-Lisco Corporation, for CAE software and technical support; Quest
International Computers Pty Ltd, for CAE software and technical support; NSD Pty
Ltd and the George Brown Group, for donation of electronic components and for keep-

ing the project up to date on component information.

The support of the several agencies who provided research funding for the Leopard
Project is also gratefully acknowledged: CSIRO Division of Information Technology,

" Defence Science and Technology Organisation, The Australian Government through

Xiv

the Australian Research Council, and the Australian Telecommunications and Elec-

tronics Research Board.

Thanks are due to a number of colleagues, who, though not directly involved in the
Leopard Project, were always interested in what was going on, and eager to discuss
ideas and offer helpful suggestions. They are Francis Vaughan, Kevin Maciunas and
David Hodson. Special thanks also to Chris Marlin, who acted as assistant supervisor
for my thesis research, and who also took a keen interest in assisting with project man-
agement and linking this project with other research projects under way in the depart-

ment.

Finally, and most importantly, I thank my supervisor, Chris Barter, not only for see-
ing me through this thesis and the research behind it, but for his commitment to the
belief that hardware-based research is vital, and for creating an environment to sup-

port it.

XV

Dedication

I dedicate this work to my wife, Katrina, without whose love, support and encourage-

ment, it would not have come to fruition.

xXvi

Chapter 1

Introduction

1.1 Workstations and Networks

A recent trend in the evolution of computer systems has been the increased use of
workstation computers in a networked environment. This trend has been brought
about by the increasing performance per unit cost of the components comprising a
workstation or a network server. For example, VLSI processor components have im-
proved in performance by a factor of ten in the last three years, with the cost per part
staying approximately constant. Semiconductor memory components have increased
in capacity by a factor of four every three years with approximately constant cost per

component, and disk storage components have followed a similar trend.

These developments have made it feasible and desirable to distribute computing re-
sources amongst individual users, in the form of workstations. A typical environment
now consists of a number of workstations located in applications areas (e.g. offices or
laboratories). Each workstation has its own processing and memory resources, and
uses a medium- to high-resolution graphics display to present a highly interactive user
interface. The workstations are connected to a local network, and use this to communi-
cate with each other, and with resource servers such as file servers,l network routers

and application-specific computation servers (e.g. simulation accelerators).

There are a number of application areas which benefit from the advantages of a

workstation environment, but which require more processing performance than cur-

rent workstations can provide. Some examples of such applications are Computer
Aided Engineering (CAE), Computer Aided Software Engineering (CASE), and docu-
ment preparation and management systems. CAE of electrical and mechanical sys-
tems require large amounts of computing resource for behavioural and physical si-
mulation, and for physical design (e.g. in circuit routing or design rule checking).
Software Engineering environments require resources for propagating incremental
changes to large software systems, and for analyzing and compiling code. Document

processing requires resources for page layout and formatting, indexing and searching.

In a network environment comprising workstations and servers, the additional pro-
cessing performance required could be added either in individual workstations, or in
the servers; the choice made depends on the particular application. For example, pro-
cessing associated with display transformations would probably be best done in the
workstation, whereas searching documents would best be performed in the server
which stores the document files. In both cases, processing performance can be in-
creased in one of two ways: either the performance of the single processor can be in-
creased, or multiple processors can be used to form a multiprocessor computer. The
former choice has the disadvantage that the cost of a monoprocessor is not linearly re- b
lated toits performance; that is, it costs more than twice as much to make a monoproces-

sor twice as fast. For this and other reasons, multiprocessors are the preferred choice.

1.2 Multiprocessor Architectures

Multiprocessors are often divided into two classes: Single Instruction stream/Multiple
Data stream (SIMD), and Multiple Instruction stream/Multiple Data stream (MIMD)
[20]. In a SIMD multiprocessor, the processors all execute the same instructions in
lock-step, but operate on different elements of data. SIMD computers can be used to

great advantage in particular applications, such as signal processing or large numeri-

cal problems, but they are not suitable for general purpose processing. MIMD com-
puters, on the other hand, are more general purpose in nature, as they do not require
great regularity in data or algorithm to take advantage of potential parallelism in com-

putation.
MIMD multiprocessors can be further classified according to two criteria:

o whether memory is shared between processors or private to each proces-

sor, and
e the interconnect network between processors and/or memory.

In a shared memory multiprocessor, all of the processors can access memory using
a common address space. The code and data for each task can be stored in shared mem-
ory, and shared variables used for inter-task communication. The physical memory

may be centralized, or distributed amongst the processors.

In a multiprocessor with private memory, each processor stores the code and data for
tasks it runsin its own private memory. Communication with other tasksis done using
message passing over the interconnection network. Thus this model is best suited to
software written using a message passing paradigm, although data sharing can be im-

plemented at some software cost.

There are a number of alternatives for the interconnection, the most suitable for an
application depending on the communication patterns exhibited. Interconnection to-
pologies can be broadly divided into three classes: link connected, switching network,

and bus connected.

In a link connected architecture, elements are connected using point to point com-
munications channels. Examples of such architectures include hypercubes, meshes
and rings. If an application can be partitioned in such a way that processing tasks can
be mapped onto the processors with relatively little communication required, then such

an architecture can be used to advantage. It also has the advantage that it scales well

to a large number of elements. However, as a general purpose machine, the architec-
ture may impose significant communication and data routing overhead. Furthermore,
it is very difficult in general to perform allocation of tasks to processors, and the alter-

native, tasks migration, is expensive in terms of performance.

Switching network architectures use routing switches to transfer data between ele-
ments. Possible topologies for the interconnect include crossbars, shuffle exchange net-
works, trees and hypertrees. These architectures have the advantage that they scale
well, however the cost of the switching network is significant. For this reason, switch-

ing network architectures are currently only seen in supercomputers.

The third interconnection scheme, the bus connected architecture, consists of ele-
ments connected by a broadcast bus. Each element may be a processor, a memory, an
I/0 interface, or a combination these. It is a highly cost effective and general architec-
ture, and is particularly well suited to workstations, however, it has the disadvantage

of not scaling to interconnect a large number of processors.

1.3 Bus Connected Shared Memory Multiprocessors

This thesis concentrates on the bus connected shared memory architecture, illustrated
in Figure 1-1. It consists of a number of processors connected to the shared memory
with a broadcast bus. The illustration shows the shared memory as centralized, but
in general, it may be distributed amongst the processors. The illustration also shows

how I/O devices can be attached.

This system organization has several advantages in the context of a workstation en-
vironment. Firstly, it is a very general structure. Any inter-task communication
mechanism, such as remote procedure call, message passing, or shared data access, can
be readily and efficiently implemented using the shared memory system. Further-

more, tasks can be allocated to run on any processor, with little cost in task migration.

Processor Processor| Processor

£ ¢ &
{ {&

Memory I/0

Figure 1-1. The bus connected shared memory architecture.

This greatly simplifies scheduler design, and allows for easier subdivision of a program
into tasks and mapping of tasks onto the physical machine. In particular dynamically

created tasks can be easily handled.

The second significant advantage of this organization is that it is incrementally ex-
pandable, at the granularity of individual processors, in a way which is transparent to
applications tasks. If a system is expanded, an application need not be reconfigured
to take advantage of the added resources; the advantage may be gained automatically.
Arelated point is that if a processor fails, it can be removed from the configuration, and
the remainder of the system can continue to operate, albeit at a degraded level of per-

formance. Thus a high-availability system can readily be constructed.

The third advantage, and one that is especially important in the context of a worksta-
tion environment, is that the cost of interconnection of components is low. The intercon-
nection between processors and memory is a passive backplane bus, requiring only the
wiring on the backplane and an interface device on each connected module. This is in
contrast with other interconnection networks, in which active routing switches are re-

quired within the interconnection network, thus adding to the cost.

Fourthly, the bus and shared memory structure allows for simplified connection of
interfaces to external devices. Such interfaces can be designed to integrate much more
closely with the software environment implemented on the machine. For example, they
can be memory mapped, accessible to software in the same address space as memory.
Alternatively, they can act as additional processors, using the same inter-task com-

munications mechanism as user and operating system tasks.

The primary disadvantage of the architecture is that it does not scale well to a large
number of connected elements. This is because the bus is a shared resource with fixed
capacity. When the communication bandwidth required exceeds the capacity of the
bus, no further performance gain can be achieved. However, current technology allows
a system to be constructed which supports of the order of ten to twenty processors on
a single bus. Further scaling can be achieved by constructing a network of buses con-

nected by bus relays or by intelligent inter-bus communication interfaces.

An important aspect of the bus connected shared memory architecture is its use of
cache memories attached to each of the processors. In addition to serving their conven-
tional purpose in the memory hierarchy (providing fast access to frequently used data),
the caches reduce the load placed on the bus and the shared memory by each processor,
thus allowing more processors to be used in a system. Chapter 2 describes the cache

coherence problem that arises, and surveys some protocols for maintaining coherence.

Since the operation of the caches is so important in the shared memory multiproces-
sor architecture, it is desirable to choose a coherence protocol that maximizes perform-
ance for the intended applications. Performance of a protocol can be assessed using
three methods. Firstly, a mathematical model of a cache system can be devised, with
parameters representing attributes of the system. Performance quéstions can be ans-
wered by solving for unknown parameter values. Secondly, a simulation model of a sys-
tem can be constructed, and program address traces used to stimulate the simulation.

Statistical analysis of events in the simulation can then be used to answer performance

questions. Thirdly, prototype hardware can be constructed to implement one or more
coherence protocols, and the properties of the system running some workload can be
measured. These three approaches are surveyed in the latter part of Chapter 2 of this

thesis.

1.4 Contribution

One of the major contributions of this thesis is a new and comprehensive survey of pre-
viously published cache coherence protocols for bus connected shared memory multi-
processors. This is presented in Chapter 2. To clarify the descriptions of the protocols,
a uniform descriptive framework is adopted, an earlier version of which was developed
by the author as a contribution to the IEEE Futurebus Cache Coherence Task Group
in 1987. Other authors have surveyed cache coherence protocols (for example, [2]), but
not in a uniform framework allowing direct comparisons to be made, nor highlighting
the similarities and differences. This has made it unnecessarily difficult for system de-
signers and other researchers to understand, evaluate and implement cache coherence _
protocols. On the other hand, using a uniform descriptive framework, the differences
betweeh the protocols are clearly delineated, which is important for a comparative ev-
aluation. Furthermore, the uniform description leads directly to identification of a set
of primitive bus protocol mechanisms, also identified in Chapter 2, for implementing
the cache coherence protocols. These, in turn, lead to the design of a cache that can be
programmed to implement the different cache coherence protocols, thus allowing ex-

perimental evaluation of the protocols in real hardware.

Another major contribution of this thesis is a demonstration of the use of behavioural
modelling techniques for specification of cache coherence protocols. Chapter 2 includes
a description of the IEEE P896.2 cache coherence protocol mechanisms, and Appen-

dix C shows a technique for specifying cache coherence protocols using the P896.2

mechanisms with an information structure model in a hardware description language.
This kind of specification is more readily understood than mathematical models by sys-
tem designers who ultimately implement cache coherence protocols in real computer
systems, yet it preserves formality of specification through the rigour of specification

of the hardware description language.

The focus of the experimental work described in this thesis is a prototype shared
memory multiprocessor system, the Leopard-2, designed and constructed as part of the
Leopard Project at the University of Adelaide. The Leopard-2 was designed to allow
a number of cache coherence protocols to be implemented and their performance meas-
ured in a controlled environment on real hardware under real workloads. The author’s
role in this project involved developing the initial concept and the Leopard architectur-
al framework, designing the Leopard-2 at the system level, determining the internal or-
ganization of each of the main components, participating in the detailed engineering
design, construction and testing, and taking on a major part of the project manage-
ment. Chapter 3 of this thesis firstly describes the Leopard-1, a predecessor to the
Leopard-2, used to gain experience with multiprocessor design and to test a number of
concepts in bus design to support cache coherence protocols. Chapter 3 then describes

the components of the Leopard-2, focussing on the cache attached to each processor.

The Futurebus cache coherence mechanisms, described in Chapter 2, make it feas-
ible to implement a cache controller that is programmable. Such a controller can be
reprogrammed to execute any of the cache coherence protocols described in this thesis.
Chapter 4 describes the design of a programmable cache controller and illustrates how
the cache coherence protocols discussed in Chapter 2 can be implemented by the pro-
grammable cache design. It then presents a model of the Leopard-2 system developed
using the hardware description language VHDL. The purpose of this model was to ver-
ify the hardware design and to specify the detailed behaviour of the programmable

cache controller. Simulation was performed using synthetic traces of processor activity

to ensure that the caches operate and interact correctly, and that cache coherence is

maintained according to the programmed cache coherence protocol.

The thesis concludes with a discussion of the use of the Leopard-2 as an experimental

vehicle for evaluating cache coherence protocols.

Chapter 2

Cache Coherence
and Performance Evaluation

2.1 Caches and Cache Coherence

In the past, high performance processors have generally incorporated memory caches.
The reason for this has been to avoid the delay involved in fetching data from main
memory. Furthermore, the data transfer rate required by the processor has been
greater than the main memory bandwidth, and a cache, being constructed with faster

memory devices, was able to operate at the required bandwidth.

These reasons for using memory caches still exist in a shared memory multiprocessor
architecture, but there is an additional benefit obtained if a cache is attached to each
processor. That is that the frequency of accesses from each processor to main memory
is substantially reduced. This means that a system with given main memory and bus
bandwidth can effectively support a larger number of processors, and so the aggregate

system throughput is increased.

To illustrate this, consider a system in which the system bus has a bandwidth of 200
Mbytes/s, each processor requires access to memory at a rate of 200 Mbytes/s, and the
cache miss rate is 10%. A first order approximation would indicate that, without
caches, each processor would require all of the bus bandwidth, and so the maximum
number of processors which could be supported by the bus is one. Any further proces-

sors added to the system would not add to aggregate throughput, since there would not

10

be bus capacity to allow the extra accesses to shared memory. However, with caches
operating, only 10% of each processor’s memory accesses would require access to the
shared memory. Hence each processor would require only one tenth of the bus band-

width, and so up to ten processors may be used effectively.

When data is shared between programs executing on different processors in a shared
memory multiprocessor, there is a requirement to ensure that processors have coherent
and consistent views of the shared data. Hennessy and Patterson summarize the dis-

tinction between coherence and consistency as follows ([26], p. 657):

Coherence and consistency are complementary: coherence defines the behav-
iour of reads and writes to the same memory location, while consistency defines
the behaviour of reads and writes with respect to accesses to other memory lo-
cations.

They define three conditions for coherence. First, if a processor P writes a value to
a location, and no other processor writes to the location, P always receives the written
value on subsequent reads from the location. In other words, from one processor’s point
of view, memory operations are performed in program order. Second, if processor Py
writes a value to a location, and no other processor writes to the location, eventually
some other processor Py will receive the written value when it reads the location. In
other words, writing to memory has an observable effect from other processors’ points
of view. Third, successive writes to a location by any two processors are seenin the same
order by all processors. In other words, writes are serialized, so that the final value seen

in a location by all processors is the same.

Hennessy and Patterson describe memory consistency as the issue of when writes
from one processor are observed by other processors. In particular, consistency ad-
dresses the issue of relative ordering of reads and writes to different locations as seen
by different processors in a multiprocessor system. A common requirement is sequen-

tial consistency, that is, the results of execution of any individual processor’s program

11

appear to all processors in the order specified by that processor’s program [45]. It is not
necessary to specify the relative order of appearance of results of different processors’
programs; where the relative order is important, software synchronization constructs
such as semaphores are used. More relaxed orderings include total store order (also
called processor consistency), partial store order, weak ordering, and release con-
sistency. These are described in [26], and allow successively less strict maintenance of

ordering of reads and writes issued by one processor.

The reason for using relaxed memory consistency models is to allow greater parallel-
ism in the memory system, in order to support greater fine-grain parallelism in the pro-
cessors. Even when a relaxed consistency model is used, there is still the requirement
for coherence, since coherence ensures that the memory behaviour conforms with pro-
gram order of reads and writes seen by an individual processor. Since this thesis fo-
cuses on coherence, the issue of memory consistency will not be discussed further. The
interested reader is referred to [26] and the references cited therein for a detailed dis-

cussion.

There have been a number of cache coherence strategies for bus-based systems pub-
lished in the literature. The view of coherence in these strategies is that the value re- |
turned to a processor when it performs a read operation from an address is the value
written by the most recently performed write operation to that address [15]. This is
ensured by equipping each cache with a bus ‘snoop’, which monitors transactions be-
tween other processors and shared memory. It is the responsibility of the snoop to en-
sure that its cache is maintained in a state which would not violate coherence. To do
this, the snoop may need to modify state information in its cache, or to participate in

bus transactions as a third party.

To illustrate the requirement for cache coherence, and to show how a system might
maintain coherence, consider an example. Suppose a system includes three processors

(P1, Py and P3), each with a copy-back cache (Cy, Cg and Cj respectively), and a shared

12

£ {& {
)
&
&

=

em

H

Figure 2-1. Example of cache coherence.

memory containing a line of data L. Suppose firstly that P; and Py each read L, causing
copies to be fetched into C; and Cg, as shown in Figure 2-1. If P; were to write a new
value to L, denoted by L, the copy in C; would be modified, and the copies in Cg and
shared memory would be out of date. A read access by Py or P3 would return the old

value, not the most recently written value.

In order to maintain coherence, C; may do one of a number of things. One alternative
is that C1 may broadcast the new value L' to all caches, and possibly to shared memory
as well. This is an example of a write-broadcast coherence protocol. In this case, Co
must recognize that the update is to a data item of which it has a copy, and accept the

new value.

Another alternative is that C; may broadcast a signal on the bus that any cached
copies of L must be invalidated. This is an example of a write-invalidate protocol. In

this case, Co must recognize the signal and invalidate its copy. Subsequently, since Cy

13

has the only valid copy of L', any further modifications of L' by P; may be confined to
Cy. However, Cy’s snoop must monitor any bus read transactions which refer to L', and
intervene to supply the most recently written copy. It may do this either by supplying
the copy directly to the requesting cache, or by writing the copy back to memory before

allowing the read to proceed.

2.2 Survey of Cache Coherence Protocols

2.2.1 Protocol Terminology

Cache coherence protocols for bus connected shared memory architectures can be
grouped into two classes: write-invalidate and write-broadcast protocols. Write-invali-
date protocols maintain coherence by allowing at most one cache in the system to have
a dirty copy of a line. When a cache needs to modify a line, it sends an invalidate signal
on the bus to cause all other caches to invalidate their copies of the line. Write-broad-
cast protocols, on the other hand, allow multiple caches to have dirty copies of a line.
When any cache modifies the line, it broadcasts the modification so that other caches

can update their copies.

This section describes a number of protocols that have been published in the litera-
ture. These protocols all have a number of aspects in common, which allow them to be
described and compared within a uniform framework. Firstly, they all operate by stor-
ing additional status bits (as well as the tag) with eachline in a cache. These bits define
the line’s coherence state with respect to that cache. Secondly, the coherence state is
modified in response to processor transactions and bus transactions performed on the
line. Depending on the coherence state and the transaction type, the cache may per-

form different actions to maintain coherence with other caches.

Bus transactions are monitored by special hardware in the cache, often called a

snoop. This hardware senses the bus control and address signals, and checks the cache

14

tags and status bits at the start of each bus transaction. It modifies the status bits and

participates in the transaction as required by the coherence protocol.

A convenient way of describing the coherence protocols is using a state transition dia-
gram that represents an individual cache’s actions. The states in the diagram repre-
sent the coherence state with respect to the cache for an arbitrary line in the address
space. There is a transition from each state for each processor transaction type and
each bus transaction type, indicating the new coherence state and any action required
of the cache. To clarify the descriptions of the protocols, a common terminology for all

protocols is adopted in this thesis.

Firstly, to describe the coherence state of a line in the address space with respect to
some cache, three boolean attributes are used: valid, exclusive and owned. If a line is
valid with respect to a cache, that cache holds a copy of the line. If a line is exclusive
with respect to a cache, there are no other caches that also hold a copy. If aline is owned
with respect to a cache, the line is dirty in that cache, and the cache is responsible for

updating shared memory at some stage, or passing ownership to some other cache.

Note that if a line is valid with respect to a cache, any of the four combinations of ex-
clusive/not-exclusive and owned/not-owned are feasible. If a line is not valid, the exclu-
sive and owned attributes are not applicable. Thus there are five feasible coherence
states. These correspond to the five states in the model proposed in the draft IEEE

P896.2 Futurebus cache coherence specification [32, 50]. The correspondence is:

M: valid/exclusive/owned,

O: valid/not-exclusive/owned,

E: valid/exclusive/not-owned,

S: valid/not-exclusive/not-owned, and

I: not-valid.

15

Four of these states, M, E, S and I, are used in a number of commercially implemented

“MESI” coherence protocols. The remaining state, O, is less commonly used.

A coherence protocol maintains coherence by ensuring that each line has the correct
set of coherence states with respect to each cache in the system. In this thesis, the term
configuration is used to refer to this set. Different protocols have different allowed con-
figurations, but they all ensure that the most recently written value of aline is accessed

by each cache.

The second aspect of a cache coherence protocol that needs to be specified is the set
of transactions on a line that may be requested by a processor. The terminology used

in this thesis is:

e read: read from the line,
e write: write to the line,

e flush: flush the line from the cache (either when the line is to be replaced
on a cache miss, or when shared memory is to be synchronized with the

cache).

The last of these transactions, flush, simply refers to the request to remove a line form
the cache. Whether memory is updated or other caches are invalidated depends on the

particular coherence protocol.

The third aspect is the set of bus transactions that may be initiated by a cache. The

terminology used in this thesis is:

o read-shared: read from a line that will not be modified in the cache, allow-

ing other caches to keep a copy of the line,

o read-invalidate: read of a whole line that may be modified in the cache,

requiring other caches to invalidate any copies of the line,

16

* invalidate: an address-only transaction signalling that other caches must

invalidate any copies of the line,

o write-invalidate: write to a line, with the side-effect that other caches

must invalidate any copies of the line,

» write-update-clean: broadcast write to a line, updating copies in other

caches and in shared memory,

o write-update-dirty: broadcast write to a line, updating copies in other

caches, but not in shared memory,

write-back: write of a dirty line back to shared memory.

In addition, when a cache detects a read bus transaction to a line for which it has the
owned attribute set, the cache must take action to supply the data in place of the shared
memory. The term intervention is used for this action. The cache may take advantage
of the line being transferred on the bus to update shared memory as a side-effect. In
this case, the term reflection is used. From the point of view of the shared memory, if

a cache reflects during a bus read transaction, the read is turned into a write.

2.2.2 Goodman’s Write-once Protocol

The write-once protocol was the first published cache coherence protocol specifically for
bus connected shared memory multiprocessors [25]. It was developed for implementa-
tion with Multibus as the interconnect between caches and memory. Multibus has very
limited support for transactions required to support coherence, so the write-once proto-

col is fairly simple.

The write-once protocol is a write-invalidate copy-back protocol. The coherence

states used in write-once are:
e invalid: not-valid,

e valid: valid/not-exclusive/not-owned,

17

» reserved: valid/exclusive/not-owned, and
e dirty: valid/exclusive/owned.

Goodman describes these states as having the following significance. Alineisinvalid
if the cache does not have a copy. A line is valid if the cache has a copy which it has not
yet modified. A line is reserved if it has been modified exactly once since being in the
valid state, and the modification has been written through to shared memory. Only one
cache in the system can have a given line in the reserved state. A line is dirty if it has
been modified locally since being in the reserved state, and the modification has not

been written through to shared memory.
The bus transactions used in the write-once protocol are:
. Iread-shared,
e read-invalidate,
e write-invalidate, and

o write-back (although this need not be a separate transaction type from

write-invalidate for this protocol).

Goodman’s original proposal did not explicitly identify all of these transaction types,
but they are included here for uniformity with the descriptions of other protocols. Good-
man did not differentiate between the two forms of write, since the protocol does not
need to distinguish them. He did not mention read-invalidate, since he did not address
the handling of write misses in the protocol. However, Archibald and Baer, in their de-
scription of the protocol [2], rectify this omission, and it is their description that is pres-

ented below.

The write-once protocol also requires caches to intervene and to reflect. Goodman
suggests that reflection can be achieved by writing back to shared memory as a sepa-
rate action immediately after intervention [25]. Thisisrequired on Multibus, since that

bus does not support reflection directly.

18

PR, PW:

BWI: bus write-invalidate

valid
not-exclusive
not-owned

read-shared

valid
exclusive
owned
BRL: BRS:
intervene reflect
: PE:
3% write-back
valid BRS: =
exclusive \ \
not-owned Pw:
PR: \ write-invalidate
PW:
read-invalidate I PE, BRI, BWI:]
PF, BRI: PR
not-valid
PR: processor read
PW: processor write
PF: processor flush
BRS: bus read-shared BRS, BRI,
BRI: bus read-invalidate BWL

PR,
BRS:

Figure 2-2. The write-once protocol.

The state transition diagram for write-once is shown in Figure 2-2. Aline is initially
not-valid with respect to all caches. On a read miss, the cache performs a read-shared
transaction to fetch the line, and sets the line attributes to valid/not-exclusive/not-
owned. If some other cache has a valid/exclusive/owned copy of the line, it responds to
the read-shared transaction by reflecting (thus updating shared memory), and chang-
ing its attributes to valid/not-exclusive/not-owned. If some other cache has a valid/ex-

clusive/not-owned copy, it clears the exclusive attribute. Hence the result of the trans-

19

action is that all wvalid copies of the line in caches are in the

valid/not-exclusive/not-owned state, and are consistent with shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-
ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by performing a read-invalidate bus trans-
action, performing the write locally, and setting the line attributes to valid/exclusive/
owned. If some other cache has a valid/exclusive/owned copy of the line, it responds to
the read-invalidate transaction by intervening (without updating shared memory). All
caches that have copies of the line (apart form the originator) invalidate it. The result
is that the cache performing the read-invalidate has the only copy of the line, and can

perform further modifications locally.

On a write hit at a valid/not-exclusive/not-owned line, the cache performs the write
locally, and also performs a write-invalidate to write through to shared memory and to
invalidate the line in other caches. It then has an exclusive copy of the line, so it sets
the exclusive attribute. On a write hit at a valid/exclusive/not-owned line, the cache
sets the owned attribute, allowing this and subsequent writes to be performed locally.
The cache is then the owner of the line, and is thus responsible either for updating
shared memory (with a write-back transaction when the line is flushed by the proces-
sor, or by reflecting when a bus read-shared transaction occurs), or for passing owner-

ship to another cache (by intervening when a bus read-invalidate transaction occurs).

There are four possible configurations for each line in the write-once protocol. They

are:
1. not-valid in all caches,
9. valid/not-exclusive/not-owned in one or more caches,

3. valid/exclusive/not-owned in exactly one cache, and

20

4. valid/exclusive/owned in exactly one cache.

Aline of memory changes between these configurations based on its use by tasks run-
ning on processors. The premise behind the protocol is that it provides the best proper-
ties of write-through and write-back. If a line is only modified once before being re-
placed, write-through is more appropriate. On the other hand, if it is modified more
than once, write-back reduces the bus usage. Write-once effectively performs write-
through on the transition from the valid/not-exclusive/not-owned state to the valid/ex-

clusive/not-owned state, and write-back once the line has the owned attribute.

2.2.3 The lllinois Protocol

The Illinois cache coherence protocol [39] was developed by Papamarcos and Patel at
the University of Illinois. It is similar to write-once, with some optimizations included
to reduce bus traffic. The most significant of these is that the protocol determines, when
a read-miss is handled, whether other caches share a copy of the fetched block. If not,

then subsequent modification of the block can proceed without further bus traffic.

Like the write-once protocol, the Illinois protocol is a write-invalidate protocol. The

coherence states used are:
* invalid: not-valid,
o exclusive-unmodified: valid/exclusive/not-owned,
o shared-unmodified: valid/not-exclusive/not-owned, and
o exclusive-modified: valid/exclusive/owned.

A line is invalid with respect to a cache if the cache does not have a copy. A line is
in the exclusive-unmodified state if the cache is the only one with a clopy, and the copy
is consistent with shared memory. If a line is in the shared-unmodified state, other
caches may have copies of the line, all of which are consistent with share memory.

Finally, if a line is in the exclusive-modified state, no other cache has a copy of the line,

21

and the line has been modified locally without having been written back yet. These
states correspond exactly to the states used in write-once, but the way a line changes

between them differs.

The bus transactions used in the Illinois protocol are:

read-shared,

read-invalidate,

invalidate, and

write-back.

The optimization over write-once shown here is that the write-invalidate transaction
is replaced with an address-only invalidate transaction. This allows a cache to gain
ownership of a shared line without having to transfer any data on the bus, thus reduc-
ing bus usage. The authors do not explicitly identify the write-back transaction [39],
but, as with the description of the write-once protocol, write-back is included here for

uniformity.

The Illinois protocol requires that caches be able to intervene and to reflect. In [39],
Papamércos and Patel explicitly identify reflection as a mechanism to be provided in
the coherency protocol (although not by the name “reflection”), compared to Goodman’s
suggestion that it be implemented as a separate bus transaction following intervention.
This indicates that Papamarcos and Patel envisioned a new bus design for their proto-

col, since no available buses at the time had any support for reflection.

The Illinois protocol also requires that when a cache issues a read transaction on the
bus, all caches with a copy of the line should respond to supply the data [39]. Where
more than one cache responds, some form of resolution scheme should be employed to
select one uniquely. Furthermore, a requesting cache must be able to determine

whether a cache or shared memory responds to its read request, indicating whether the

22

requesting cache gets an exclusive or shared copy of the line. (This further supports

the view that the designers envisaged a new bus design for their protocol.)

The premise behind having all caches respond to read requests is that they can re-
spond faster than shared memory, so bus utilization is reduced by having them do so.
However, when practical design considerations are taken into account, this may not be
the case. For a cache to respond, it must contend for access to the cache data RAM with
its client processor, and this additional contention may reduce the performance of the
processors and delay cache response. So far as cache coherency is concerned, it does
not matter whether some other cache or shared memory supplies the data, provided the
requesting cache is able to determine whether other caches have a copy of theline. This
can be signalled by the other caches without introducing contention, since it only in-
volves a tag access, and snoop-based cache implementations often have duplicated tag
stores to avoid such contention. As can be seen in Section 2.4, the IEEE Futurebus pro-

posal included a signal for this purpose.

The state transition diagram for the Illinois protocol is shown in Figure 2-3. A line
is initially not-valid with respect to all caches. On a read miss, a cache issues a read-
shared bus transaction to fetch the line. If no other caches hold a copy of the line, the
requesting cache sets the line attributes to valid/exclusive/not-owned, since it is the
only cached copy in the system. On the other hand, if there are other caches with a copy,
the requesting cache sets the line attributes to valid/not-exclusive/not-owned. If
another cache has a valid/exclusive/not-owned copy, it responds to the read-shared
transaction by clearing the exclusive attribute. A cache with a valid/exclusive/owned
copy must reflect to supply the data and coincidentally update shared memory, and
change the attributes for its copy to valid/not-exclusive/not-owned. The end result is

that all caches with a copy of the line have it in the valid/not-exclusive/not-owned state.

23

PR, PW:

valid
exclusive
owned [BRS:
reflect
PW:
BRIL
intervene
PF:
" PW:
write-back invalidate
valid valid
exclusive BRS: not-exclusive
t- d .
PR not-owne e not-owned PR,
read-invalidate BRS:
PF, BRI:
PF, BRI, BI:
PR:
read-shared[~shr]
PR:
read-shared[shr]
not-valid

PR: processor read
PW: processor write
PF: processor flush read-shared[~shr]:
BRS: bus read-shared BRS, BRI, no other cached copy
BRI: bus read-invalidate BL: read-shared[shr]:

BI: bus invalidate other caches have copies

Figure 2-3. The Illinois protocol.

A read hit occurs when the processor does a read at a line which has the valid attrib-
ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by issuing a read-invalidate bus transac-
tion, performing the write locally, and setting the attributes of the line to valid/exclu-

sive/owned. Other caches with a copy of the line (if any) respond to the read-invalidate

24

by intervening and then invalidating their copies. The result is that the requesting

cache has the only copy of the line, and can proceed with further modifications locally.

On a write hit at a valid/not-exclusive/not-owned line, a cache issues an invalidate
bus transaction. This causes any other caches with a copy of the line to invalidate it.
The originating cache changes the line attributes to valid/exclusive/owned, allowing
this and subsequent writes to be performed locally. A write hit at a valid/exclusive/not-
owned line causes the cache to set the owned attribute and perform the write. Since

it is known that no other caches have a copy, no bus transaction is required.

A write back transaction can only occur when a processor flushes a valid/exclusive/
owned line. In this case, no other cache should have a copy of the line, so the state dia-

gram does not need to specify a snoop’s action for write-back transaction.
There are four possible configurations for each line in the Illinois protocol. They are:
1. not-valid in all caches,
2. valid/not-exclusive/not-owned in one or more caches,
3. valid/exclusive/not-owned in exactly one cache, and
4. valid/exclusive/owned in exactly one cache.

These correspond exactly to the four configurations in the write-once protocol. The
main difference is that a line can go directly from the second to the fourth of these con-
figurations, bypassing the third. Whereas write-once effectively uses write-through for
the first write to a line, and copy-back for subsequent writes, the Illinois protocol uses
copy-back immediately, thus reducing bus usage. One would expect this to yield better
performance for writable data that is local to a process, since the number of bus cycles

consumed in accessing that data is reduced.

25

2.2.4 The Synapse Protocol

The Synapse N+1 system, described by Frank, was one of the first commercial shared
memory multiprocessors that implemented a cache coherence protocol [21]. The sys-
tem was targeted at high performance fault tolerant computing applications, and to

this end, the architecture included dual buses with a split transaction protocol.

The Synapse cache coherence protocol is a simple write-invalidate copy-back proto-

col. The coherence states used are:
* invalid: not-valid,
» public: valid/not-exclusive/not-owned, and
e private: valid/exclusive/owned.

A line is invalid if the cache does not have a copy. Frank refers to the distincti.on be-
tween public and private as the usage of the line. Public usage means the line is read-
only, may be resident in more than one cache, and may include read-only shared data.
Private usage means the line includes writable data, so only one cache in the system
may have a copy, and this copy may be inconsistent with shared memory. Frank intro-
duced the idea of ownership: the cache that has the copy of a line with private usage
is the owner of the line. If a line has public usage, the shared memory is considered to
be the owner. This is consistent with the descriptive framework used in this thesis to

describe cache coherence protocols.

Frank describes the implementation of the Synapse cache as using three status bits:
valid, usage and modified [21]. As will become clear from the following description, the
usage and modified bits should always be in the same state. It is not clear from Frank’s
description why two separate bits are used, though one might surmise that the modi-

fied bit would remain clear if a write operation to a private line fails.

The bus transactions used in the Synapse protocol are:

26

e read-shared,
* read-invalidate, and

* write-back.

The system also uses the write-invalidate transaction for I/O processors to do DMA
writes. This causes all caches with a copy of a line to invalidate it. Because it is only
used for I/O operations, it is not included here as part of the cache coherence protocol

(following the approaches of other descriptions of this protocol).

The Synapse protocol also requires caches to intervene and reflect. Intervention is
achieved by having the owner cache respond to a request for aline. The shared memory
knows not to respond, by virtue of having a usage mode bit with each line of memory.
If the line is private, some cache is owner, and will intervene. Reflection is achieved
by the owner cache returning a busy status to a request. The owner then performs a
write-back transaction to shared memory, which will then respond when the original
request is retried. Equivalent semantics can be achieved in one transaction on a bus
that properly supports reflection, so in this description of the protocol, reflection is not .

subdivided into its component sub-transactions.

The state transition diagram for the Synapse protocol is shown in Figure 2-4. Aline
is initially not-valid with respect to all caches. On a read miss, the cache performs a
read-shared transaction to fétch the line, and sets the attributes of the line to valid/not-
exclusive/not-owned. If the line is in private usage, the cache with the valid/exclusive/
owned copy of the line responds to the read-shared transaction by reflecting and chang-
ing to the not-valid state. (Recall that this is actually done on the Synapse system by
writing back to shared memory, and then letting the shared memory respond.) If the
line is in public usage, shared memory responds to the transaction, and any other

caches with a copy of the line retain it in the valid/not-exclusive/not-owned state.

27

valid
exclusive
owned

BRS:
reflect

BRI
intervene PW:

PF: read-invalidate

write-back

valid
not-exclusive
not-owned

PW:
read-invalidate

PR:
read-shared

not-valid

PR: processor read
PW: processor write
PF: processor flush

BRS: bus read-shared
BRI: bus read-invalidate

BRS, BRI

Figure 2-4. The Synapse protocol. .

Hence the result of the transaction is that all copies of the line in caches are in the valid/

not-exclusive/not-owned state, and are consistent with shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-
ute set. The cache can satisfy the read locally without changing the coherence state of

the line.

On a write miss, the cache fetches the line by performing a read-invalidate bus trans-

action, performs the write locally, and sets the line attributes to valid/exclusive/owned.

28

If the line is in private usage, the cache with the valid/exclusive/owned copy of the line
responds to the read-invalidate transaction by intervening (without updating shared
memory) and then invalidating its copy. If the line is in public usage, any cache with
a copy of the line invalidates it. The result is that the cache performing the read-invali-
date has the only copy of the line, and can perform further modifications locally; that

is, the line is now in private usage.

On a write hit at a valid/not-exclusive/not-owned line, the cache performs a read-in-
validate transaction to invalidate the line in other caches, sets the line attributes to
valid/exclusive/owned, then performs the write locally. On a write hit at a valid/exclu-
sive/owned line, the writes is performed locally, since no other cache has a copy of the
line. When the owned attribute is set, the cache is the owner of the line, and is thus
responsible either for updating shared memory (with a write-back transaction when
the line is flushed by the processor, or by reflecting when a bus read-shared transaction
occurs), or for passing ownership to another cache (by intervening when a bus read-in-

validate transaction occurs).

The apparent simplicity of the Synapse protocol is achieved at the cost of some ineffi-
ciencies. Firstly, when a write-hit occurs at a valid/not-exclusive/not-owned line, the
cache re-reads the line with a read-invalidate transaction, even though it already has
a coherent copy of the line. This is because the bus protocol does not include an address-
only invalidate transaction to notify other caches that they must invalidate the line.
This results in extra bus traffic. Secondly, when a read-miss occurs to a line with pri-
vate usage, the owning cache reflects and invalidates its copy. Ifit then needs to read
from the line, it suffers a miss, and re-reads the line from shared memory. Itis not clear
why the owner does not keep a copy of the line in the valid/not-exclusive/not-owned

state. There should be little (if any) penalty, and probably some performance gain.

There are three possible configurations for each line in the Synapse protocol. They

are:

29

1. not-valid in all caches,
2. valid/not-exclusive/not-owned in one or more caches, and
3. valid/exclusive/owned in exactly one cache.

The last two configurations correspond to what Frank calls public and private usage
of a line. The premise behind the protocol is that it “optimizes system performance by
allowing efficient sharing of data while minimizing the overheads of maintaining co-
herence” ([21], p. 166). While it is true that the protocol’s simplicity reduces the com-
plexity of its implementation, the question of the scheme’s efficiency compared to other

protocols is debatable, and is one of the main issues addressed in this thesis.

2.2.5 The Berkeley Ownership Protocol

The Berkeley cache coherence protocol [35] was designed to improve performance with-
out adding significant cost to a system. The designers note the following constraints

on their protocol ([35], p. 277):

(1) minimize the number of additional bus actions needed to maintain con-
sistency, thus making data sharing reasonably cheap, (2) avoid memory system
design, so that commercially available memory boards could be used, and (3)
avoid backplane design, although additional signals could be added to an exist-
ing backplane and bus protocol to support special communications among the
caches.

This is in contrast to some other protocols to be examined in the rest of this section that
involved extensive design of new bus backplanes and signalling protocols. The Ber-
keley protocol, on the other hand, was first implemented in a Multibus system with the

addition of one extra control wire. Subsequently, the protocol was incorporated into the

SPUR multiprocessor [27] using a modified Nubus.

The Berkeley protocol is a write-invalidate copy-back protocol based on the idea of

ownership introduced in the Synapse protocol. The coherence states used are:

30

invalid: not-valid,

* unowned: valid/not-exclusive/not-owned

» owned exclusive; valid/exclusive/owned, and

* owned non-exclusive: valid/not-exclusive/owned.

A line is invalid if the cache does not have a copy. The unowned state corresponds
to the public state in the Synapse protocol, and indicates that the line is present in the
cache and may only be read. Other caches may also have copies of the line. The owned
exclusive state corresponds to the private state in the Synapse protocol. It indicates
that the line has been modified locally, that it is the only cached copy, and that shared
memory has not been updated. The owned non-exclusive state is an extension of the
set of Synapse states. It is similar to the owned exclusive state, but does allows other
caches to hold copies of the line. If any modifications are to be made to the line, these

other caches must be informed.
The bus transactions used in the Berkeley protocol are:
e read-shared,
* read-invalidate,
e invalidate, and
* write-back.

The designers also describe the use of write-invalidate transactions [35]; however
these are only issued by I/O devices and processors without caches, so they are not in-

clude in this description.

The Berkeley protocol requires a cache to intervene when a line it owns is read by
some other cache. Shared memory is not updated in this case, and ownership remains
with the intervening cache in the case of a read-shared transaction, or is transferred

to the reading cache in the case of a read-invalidate transaction. This means that data

31

PW:
PR, PW: invalidate
[PR: |
valid BRS: valid
exclusive) not-exclusive
owned infervene owned BRS:
intervene
BRI:
intervene
BRI:
intervene PW:
5F- invalidate
write-back BI- valid
not-exclusive
PF: not-owned PR,
write-back BRS,
BWB:
PW: I =
read-invalidate FF, BRI, BL:
PR:
read-shared

PR: processor read not-valid
PW: processor write
PF: processor flush
BRS: bus read-shared
BRI: bus read-invalidate BRS, BRI,
BI: bus invalidate BI, BWB:
BWB: bus write-back

Figure 2-5. The Berkeley protocol.

that is read/write shared is passed amongst the caches, and main memory is not up-

dated until the owner must replace the line.

The state transition diagram for the Berkeley protocol is shown in Figure 2-5. Aline
is initially not-valid with respect to all caches. On a read miss, the cache performs a
read-shared bus transaction to fetch the line, and sets the attributes of the line to valid/
not-exclusive/not-owned. If some other cache has the owned attribute set for the line,

it intervenes on the reqd-shared transaction to supply the most up-to-date copy, and

32

sets its attributes to valid/not-exclusive/owned. If the memory is the owner, it services
the read-shared transaction. Hence the result of the transaction is that all caches with
a copy of the line have it with the exclusive attribute cleared, even though the cached

copies may not be consistent with shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-
ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by performing a read-invalidate bus trans-
action to fetch the line, sets its attributes to valid/exclusive/owned, and proceeds with
the write locally. The bus transaction causes the current owner of the line to supply it,
either by intervening if a cache is the owner, or by simply responding to the read if the
shared memory is the owner. In addition, any other cache which has a copy of the line
invalidates it. The result is that the cache which performed the read-invalidate be-
comes owner and has the only valid copy of the line, and can make further modifications

locally.

The actions on a write hit depend on the attributes of the line. If the line has the ex-
clusive attribute cleared, there may be other caches in the system with a copy. In this
case, the modifying cache issues an invalidate bus transaction to cause other caches to
invalidate the line. The modifying cache sets the attributes of its copy of the line to
valid/exclusive/owned, and proceeds with the write locally. If, on the other hand, the
line is valid/exclusive/owned, then no other cache has a copy of the line, so the modify-
ing cache leaves the line in this state and proceeds with the write locally. In both cases,
the result is that the modifying cache becomes owner and has the only valid copy of the

line, and can make further modifications locally.

The remaining transitions deal with the case of a line being flushed from the cache

by a processor. If the cache is the owner of the line, it is responsible for ensuring that

33

shared memory is updated, and so it issues a write-back bus transaction. Since only
one cache can be owner of a line, a bus snoop should never observe a write-back transac-
tion for a line it owns. It may, however, observe a write-back of a valid/not-exclusive/
not-owned line, but no action is required in this case, as the owner is simply passing

ownership back to the shared memory.
The possible configurations for each line in the Berkeley protocol are:
1. not-valid in all caches,
2. valid/not-exclusive/not-owned in one or more caches,
3. valid/exclusive/owned in exactly one cache, and

4. valid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

The second and fourth of these correspond to public usage in the Synapse protocol,
and the third to private usage. The difference between the two configurations of public
usage arises from the Berkeley protocol designers’ choice of avoiding writing a line back
to shared memory when usage changes from private to public. Under the Berkeley pro-
tocol, data that is re_ad-only or read shared will be in the second configuration. Data
that is local to a process will be in the second or third configuration. Data that is read/
write shared will alternate between the third and fourth configurations, with no addi-
tional shared memory access required until the line is flushed by the owner cache.
Compare this with the write-once protocol, in which a shared memory write is required
whenever a cache modifies possibly shared data. The Berkeley protocol designers show
that the write-once protocol issues significantly more bus traffic than their protocol

[35].

34

2.2.6 The Sun MBus Protocol

In 1991 Sun Microsystems announced the first of its multiprocessor systems, the
SPARCsystem 600MP [47], a two- or four-processor system designed for network server
applications. They have since introduced a number of desktop multiprocessor worksta-
tions, using the same multiprocessor technology. These systems are based on small
CPU/cache/MMU modules, interconnected with shared memory using a bus called

MBus, which implements the cache coherence protocol described in this section.

The MBus protocol is a write-invalidate copy-back protocol, which can be viewed as

an extension of the Berkeley protocol. The coherence states used are:

» invalid: not-valid,

exclusive clean: valid/exclusive/not-owned,

shared clean: valid/not-exclusive/not-owned,

o exclusive modified; valid/exclusive/owned, and

shared modified: valid/not-exclusive/owned.

Aline is invalid if the cache does not have a copy. The exclusive clean state indicates
that the cache is the only cache with a copy, and that it is consistent with shared mem-
ory. This corresponds to the exclusive-unmodified state in the Illinois protocol, and is
an extension over the Berkeley protocol. The shared clean state corresponds to the un-
owned state in the Berkeley protocol, and indicates that the line is present in the cache
and may only be read. Other caches may also have copies of the line. The exclusive
modified state corresponds to the owned exclusive state in the Berkeley protocol. It in-
dicates that the line has been modified locally, that it is the only cached copy, and that
shared memory has not been updated. Finally, the shared modified state corresponds
to the owned non-exclusive state in the Berkeley protocol. Itis similar to the exclusive
modified state, but does allow other caches to hold copies of the line. If any modifica-

tions are to be made to the line, these other caches must be informed.

35

The bus transactions used in the MBus protocol are:
» read-shared,
e read-invalidate
e invalidate, and
» write-back.

The designers note that DMA I/O transactions also participate in the cache coherence
protocol using write-invalidate transactions [47]. Thisis not includes in the description

of the protocol in this thesis.

Like the Berkeley protocol, the MBus protocol requires a cache to intervene when a
line it owns is read by some other cache. Shared memory is not updated in this case,
and ownership remains with the intervening cache in the case of a read-shared transac-
tion, or is transferred to the reading cache in the case of a read-invalidate transaction.
The extension to the Berkeley protocol that allows use of the extra coherence state
(valid/not-shared/not-owned) is the inclusion of a sharing status signal on the bus, as
in the Illinois protocol. Thisis used on a read-shared transaction to allow the requester

to determine whether to clear the exclusive attribute when it fetches a line.

The state transition diagram for the MBus protocol is shown in Figure 2-6. A line
is initially not-valid with respect to all caches. On a read miss, the cache performs a
read-shared bus transaction to fetch the line. If no other caches hold a copy of the line,
the requesting cache sets the line attributes to valid/exclusive/not-owned, sinceit is the

only cached copy in the system.

On the other hand, if there are other caches with a copy, the requgsting cache sets
the line attributes to valid/not-exclusive/not-owned. If some other cache has the owned
attribute set for the line, it intervenes on the read-shared transaction to supply the
most up-to-date copy, and sets its attributes to valid/not-exclusive/owned. If no other

cache is the owner, shared memory services the read-shared transaction, and any other

36

PW:

invalidate

BRS:
intervene

valid BRS: valid
exclusive intervene not-exclusive
owned owned
BRI:
intervene
BRI:
intervene (B |
PF: PF: PW:
write-back write-back invalidate

valid \ / valid
BRS: P

exclusive not-exclusive
not-owned not-owned
PW; PR,
read-invalidate BRS,
BWB:
PE, BRI: PF, BRI, BI:
PR: PR:
read-shared[-shr] read-shared[shr]
not-valid
PR: processor read
PW: processor write
PF: processor flush [<shr]
~shrf:
BRS: bus read-shared BRS, BRI,
BRI: bus read-invalidate Bl, BWB: MSIOHErSIEHEd copy
BI: bus invalidate [shr]:)
BWB: bus write-back other caches have copies

Figure 2-6. The MBus protocol.

cache with a copy of the line sets its attributes to valid/not-exclusive/not-owned. Hence
the result of the transaction is that all caches with a copy of the line have it with the
exclusive attribute cleared, even though the cached copies may not be consistent with

shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-
ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

37

A write miss is handled in the same way as the Berkeley protocol. The cache fetches
the line by performing a read-invalidate bus transaction to fetch the line, sets its attrib-
utes to valid/exclusive/owned, and proceeds with the write locally. The bus transaction
causes the current owner of the line to supply it, either by intervening if a cache is the
owner, or by simply responding to the read if the shared memory is the owner. In addi-
tion, any other cache which has a copy of the line invalidates it. The result is that the
cache which performed the read-invalidate becomes owner and has the only valid copy

of the line, and can make further modifications locally.

The actions on a write hit depend on the attributes of the line. If the line has the ex-
clusive attribute cleared, there may be other caches in the system with a copy. In this
case, the modifying cache issues an invalidate bus transaction to cause other caches to
invalidate the line. The modifying cache sets the attributes of its copy of the line to
valid/exclusive/owned, and proceeds with the write locally. If, on the other hand, the
exclusive attribute of the line is set, then no other cache has a copy of the line, so the
modifying cache sets the owned attribute and proceeds with the write locally. In both
cases, the result is that the modifying cache becomes owner and has the only valid copy

of the line, and can make further modifications locally.

When the client processor flushes a line that has the owned attribute set, the cache
issues a write-back bus transaction. Since only one cache can be owner of a line, a bus
snoop should never observe a write-back transaction for a line it owns. Asin the Ber-
keley protocol, it may observe a write-back of a valid/not-exclusive/not-owned line, but
no action is required in this case, as the owner is simply passing ownership back to the

shared memory.

There are five possible configurations for each line in the MBus protocol. They are:

1. not-valid in all caches,

2. valid/exclusive/not-owned in exactly one cache,

38

3. valid/exclusive/owned in exactly one cache,
4. valid/not-exclusive/not-owned in one or more caches, and

5. valid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

A line is in one of the second or third configuration when it contains data which is
not currently being shared. Read-only private data remains in the second configura-
tion, whereas data that is modified changes to the third configuration. In the latter
case, the cache is the owner of the data, and must update shared memory before evict-
ing the line. Data that is subsequently read shared between processors changes to one
of the fourth or fifth when the second cache accesses it. If the first cache does not own
the line, it changes to the fourth configuration. If the first cache does own the line, it
retains ownership and the line changes to the fifth configuration. Whenever any cache
writes to a shared line, all other caches are invalidated, and ownership passes to the

writer. The line changes to the second configuration.

The optimization over the Berkeley protocol provided by the inclusion of the valid/ex-
clusive/not-owned state is evident when a read followed by a write to private data is
considered. In the Berkeley protocol, the write induces an invalidate bus transaction,
since the cache is not able to tell that there are no other cached copies. In the MBus
protocol, the cache uses the sharing signal on the read to determine that it should leave
the exclusive attribute set, and so can proceed with the write without having to notify
other caches. This not only reduces bus traffic, but also reduces contention on other

caches between the snoops and the client processors for access to the tag stores.

2.2.7 The Dragon Protocol

The Dragon cache coherence protocol is used in the Dragon multiprocessor developed
at the Xerox Palo Alto Research Center [37]. The description presented here is based
on that presented by Archibald and Baer [2].

39

The Dragon protocol is a write-broadcast protocol. The coherence states used are:

» valid-exclusive: valid/exclusive/not-owned,

* shared-clean: valid/not-exclusive/not-owned,
e dirty: valid/exclusive/owned, and

e shared-dirty. valid/not-exclusive/owned.

The not-valid state is not explicitly represented in a cache using the Dragon protocol.
This is because lines can be write-shared between caches, so invalidations are not ne-
cessary. A line is only evicted when replaced on a miss, and the cache is filled on cold
start, so a cache entry isnever invalid in the Dragon system. However, since this thesis
describes the protocol in terms of the state of a line in the address space (rather than

a cache entry’s state), the not-valid state is included.

The Dragon protocol as described by Archibald and Baer only uses two types of bus
transaction: a read transaction of a whole line, and a broadcast write to a single word.

These correspond to:
e read-shared, and
o write-update-dirty.

The description does not explicitly mention any form of write-back transaction for
flushing a line from a cache to shared memory, however, for completeness, the write-

back transaction is included in in this description.

The Dragon protocol requires an owner cache to intervene when it observes a read-
shared bus transaction. In addition, like the Illinois system, the Dragon bus includes
a sharing signal to allow cache snoops to indicate that they have a copy of a line being

accessed by a bus transaction.

The state transition diagram for the Dragon protocol is shown in Figure 2-7. Aline

is initially not-valid with respect to all caches. On a read miss, a cache issues a read-

40

PW:
PR, PW: BRS: write-update-
intervene dirtyfshr]
PW:
. | write-update- i
vallq dirty]~shr] valid .
exclusive BRS: not-exclusive
owned intervene | owned
PW:
PW- writ_e-update-
write-update- dirty[shr]
dirty[~shr] BWUD:
update
PW:
PR: PF: PF:
write-back write-back
valid \ / valid
exclusive MBRS] - i
{ BRS: not-exclusive
not-owned / not-owned
PR:
o P ead-sharedjsh i
read-sharedf~shr| g nageals . / BWB:
write-update-dirty WD,
update
PF: e
PR: . PR:
read-shared[~shr| not-valid read-shared[shr]
PR: processor read
PW: processor write BRS,
PF: processor flush BWUD, [~shr]:
BRS: bus read-shared BWB: no other cached copy
BWUD: bus write-update-dirty [shr]:

BWB: bus write-back

other caches have copies

Figure 2-7. The Dragon protocol.

shared bus transaction to fetch the line. If no other caches hold a copy of the line, the
sharing signal on the bus is left negated. The requesting cache sets the line attributes

to valid/exclusive/not-owned, since it is the only cached copy in the system.

On the other hand, if there are other caches with a copy, they assert the sharing sig-

41

nal, and the requesting cache sets the line attributes to valid/not-exclusive/not-owned.
If another cache has a valid/exclusive/not-owned copy, it responds to the read-shared

transaction by clearing the exclusive attribute. A cache with an owned copy must inter-

vene to supply the data, and clear the exclusive attribute for its copy. The end result

is that all caches with a copy of the line have the exclusive attribute cleared.

A read hit occurs when the processor does a read at a line which has the valid attrib-
ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by performing a read-shared bus transac-
tion. Other caches respond to this transactions exactly as described for a read miss.
If the requesting cache detects the sharing signal negated, it can perform the write lo-
cally, and sets the line to valid/exclusive/owned. If the sharing signal is asserted, the
requesting cache must follow the read-shared with a write-update-dirty in order to
maintain coherence with the other caches. The requesting cache sets its copy of the line
to valid/not-exclusive/owned, assuming ownership of the line. All other cachés set their

copies to valid/not-exclusive/not-owned.

On a write hit at a line with the exclusive attribute set, a cache can perform the write
locally, and sets the owned attribute. If, however, the exclusive attribute is cleared, the
cache issues a write-update-dirty transaction to maintain coherence with other caches, ‘
and sets the owned attribute. The other caches accept the new data, and a previous
owner clears the owned attribute. The requesting cache also observes the sharing bus
signal to determine whether the line is still in fact shared, and clears or sets the exclu-
sive attribute appropriately. (The line may have been evicted by all other caches since

the last time sharing status was detected.)

A significant feature of the Dragon protocol is that write broadcasts do not update
shared memory. Instead, ownership is passed around to the most recent writer, which
must write the line back to shared memory using a write-back transaction when it re-
places the line. If the owner has the exclusive attribute cleared when it writes back,

the transaction will be sensed by the snoops of other caches with valid/not-exclusive/

42

not-owned copies of the line. However, they need take no action in response to the

transaction.
There are five possible configurations for each line in the Dragon protocol. They are:

1. not-valid in all caches,

2. valid/exclusive/not-owned in exactly one cache,

3. valid/exclusive/owned in exactly one cache,

4. valid/not-exclusive/not-owned in one or more caches, and

5. wvalid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

A line is in one of the second or third configurations when it contains data which is
not currently being shared. Read-only private data remains in the second configura-
tion, whereas data that is modified changes to the third configuration. In the latter
case, the cache is the owner of the data, and must update shared memory before evict-
ing theline. Data that is shared between processors changes to one of the fourth or fifth
configuration when the second cache accessesit. If the first cache does not own the line,
it changes to the fourth configuration. If the first cache does own the line, it retains
ownership as long as the data is only read-shared. (The line is in the fifth configura-
tion.) When one of the caches writes the data, the others are updated, and ownership

passes to the writer. (The line stays in the fifth configuration.)

The premise behind the Dragon protocol is that caches are faster than shared mem-
ory, so transactions to shared memory should be avoided where possible. For this re-
ason, write-shared data is broadcast amongst caches, without updating shared mem-
ory until the line is replaced in the owner. This is related to the assumption in the
Illinois protocol that caches can satisfy reads faster than shared memory, and so the
same counter arguments involving contention with the client processor within a cache

also apply to the Dragon protocol.

43

Another source of performance loss, identified by the designers of the Firefly protocol
(see Section 2.2.9), is that write broadcasts will continue to a shared line for as long as
the line remains in other caches, even if their client processors no longer require the
data. Compare this with write-invalidate coherence protocols, where a processor write

causes the line to become private by invalidating other cached copies.

2.2.8 The Original Firefly Protocol

The Firefly cache coherence protocol is used in the Firefly multiprocessor workstations
developed at the Digital Equipment Corporation Systems Research Centre [52]. Archi-
bald and Baer [2] describe an early version of the protocol that contains fewer states
than the protocol finally published for Firefly. The original protocol is described here

first, and the published protocol is described in the next section.

The original Firefly protocol is similar to the Illinois protocol described in Sec-
tion 2.2.3, but is write-broadcast instead of write-invalidate. The four coherence states

used are:
e not-valid,
» valid/exclusive/not-owned,
* valid/not-exclusive/not-owned, and
» valid/exclusive/owned.

These states correspond exactly to the four states used in the Illinois protocol. Asin
the Dragon protocol, the not-valid state is not explicitly represented in a cache. Lines
can be write-shared between caches, so invalidations are not necessary. A line is only
evicted when replaced on a miss, and a special scheme is used to fill a cache on cold
start, so a cache entry is never invalid in the original Firefly system. However, the not-
valid state is included in this description, as it deals with the coherence state of a line

in the address space, not a cache entry.

44

The bus transactions used in the original Firefly protocol are:

e read-shared,
* write-update-clean, and
* write-back.

In the description of this protocol by Archibald and Baer, the transaction type used to
write a line back to shared memory when it is flushed from a cache is not explicitly iden-

tified. This discussion uses the write-back transaction type for uniformity.

The original Firefly protocol requires a cache to reflect when it observes a read-
shared bus transaction. Like the Illinois protocol, all caches with a copy of the line sup-
ply the data. However, instead of selecting just one of them to put the data on the bus,
the Firefly system allows all caches to drive the bus, on the premise that they will all
drive the same value, since the caches are coherent. In addition, like the Illinois sys-
tem, the Firefly busincludes a sharing signal to allow cache snoops toindicate that they

have a hit on a line being accessed by a bus transaction.

The state diagram for the original Firefly protocol is shown in Figure 2-8. The state
changes for a line in response to processor read requests and processor flushes are iden-
tical to those in the Illinois protocol. However, the state changes in response to a proces-

sor write request are quite different, since the protocol is write-broadcast.

A line is initially not-valid with respect to all caches. On a read miss, a cache issues
aread-shared bus transaction to fetch the line. If no other caches hold a copy of the line,
the requesting cache sets the line attributes to valid/exclusive/not-owned, since it is the
only cached copy in the system. On the other hand, if there are other caches with a copy,
the requesting cache sets the line attributes to valid/not-exclusive/not-owned. If
another cache has a valid/exclusive/not-owned copy, it responds to the read-shared
transaction by clearing the exclusive attribute. A cache with a valid/exclusive/owned

copy must reflect to supply the data and coincidentally update shared memory, and

45

[PR, PW:
valid
exclusive
owned
PE: BRS:
write-back reflect
PW:
[Pw:] T
write-update-
cleanfshrf
PW:
valid write-update- valid
exclusive RS L \ \ gleanfshif not-exclusive
not-owned = not-owned
/ PR:
PW: PW: BRS,
read-shared{~shr| | read-sharedfshr| BWB:
write-update-clean BWUC:
update
PR: . PR:
read-shared[~shr] not-valid read-shared{shr|
PR: processor read
] - BRS,
i B o
BWB: no other cached copy
BRS: bus read-shared hrl:
BWUC: bus write-update-clean [shr]: .
BWB: bus write-back other caches have copies

Figure 2-8. The original Firefly protocol.

change the attributes for its copy to valid/not-exclusive/not-owned. The end result is

that all caches with a copy of the line have it in the valid/not-exclusive/not-owned state.

A read hit occurs when the processor does a read at a line which has the valid attrib-
ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache firstly fetches the line by issuing a read-shared bus trans-

action and senses whether other caches in the system have a copy of the line. If no other

46

caches hold a copy, the requesting cache performs the write locally and sets the line at-
tributes to valid/exclusive/owned, since it is the only cache in the system with a copy
of theline. On the other hand, if there are other cached copies of the line in the system,
the requesting cache follows the read-shared transaction with a write-update-clean
transaction to update the other copies and shared memory. The requesting cache also

updates its own copy and sets the line attributes to valid/not-exclusive/not-owned.

On a write hit at a valid/not-exclusive/not-owned line the cache issues a write-up-
date-clean transaction to update any other copies that may be held in other caches and
to update shared memory, as well as updating its own copy. If there are other cached
copies, they are also in the valid/not-exclusive/not-owned state. All of the caches, in-
cluding the requesting cache, leave the attributes for the line unchanged. On the other
hand, if there are no other cached copies, the requesting cache changes the line attrib-
utes to valid/exclusive/not-owned. On a write hit at a valid/exclusive/not-owned line
the cache sets the owned attribﬁte and performs the write locally. No bus transaction

is required, since no other caches have a copy of the line.

Asin the Illinois protocol, there are four possible configurations for a line in the origi- ‘

nal Firefly protocol. They are:

1. not-valid in all caches,

N

valid/not-exclusive/not-owned in one or more caches,
3. valid/exclusive/not-owned in exactly one cache, and

4. valid/exclusive/owned in exactly one cache.

Aline thatisread-only and is private to one task on a single processor moves between
the first and third configurations. When the private line is modified, it moves to the
fourth configuration, with updates performed locally. A shared line moves between the

first and second configurations, with updates being broadcast to all cached copies. If

47

a line is initially accessed as though it were private, but subsequently becomes shared,

it moves from the third or fourth configuration to the second.

2.2.9 The Published Firefly Protocol

The Firefly protocol published in [52] is a write-broadcast protocol, similar in some re-
spects to the Dragon protocol. It effectively uses all five possible coherence states, with
all four combinations of not-exclusive/exclusive and not-owned/owned being implem-
ented with two attribute bits, shared and dirty (owned), for each entry in the cache.
The omission of the not-valid state is carried over into the published Firefly protocol.
However, the not-valid state is included in this description, as it deals with the coher-

ence state of a line in the address space, not a cache entry.

The published Firefly protocol only uses a single type of read bus transaction and a

single type of write bus transaction. They correspond to:

e read-shared, and
e write-update-clean.

No distinction is made between writing a line to update data and writing back to
shared memory when a line is flushed from a cache. The designers evidently chose to
maintain simplicity of design by reducing the number of types of bus transactions sup-

ported.

The published Firefly protocol requires a cache to intervene instead of reflect when
it observes a read-shared bus transaction. As in the original protocol, all caches with
a copy of the line drive the bus to supply the data. Also, the sharing signal is retained
in the published protocol to allow cache snoops to indicate that they have a hit on a line

being accessed by a bus transaction.

One significant difference between the published Firefly system and other systems

isthat it is uses a cache line size of one word. Since most processor writes are to a whole

48

word, when a dirty line is modified, a write-update-clean transaction to update the
word effectively makes the whole line clean again. The published Firefly protocol
makes use of this operation to optimize bus traffic for write-shared lines. However, this
operation cannot be used for partial word modification (byte or halfword writes), and
in these cases, the protocol resorts to a read-shared followed by a write-update-clean

to effect the modification.

The state transition diagram for the published Firefly protocol is shown in
Figure 2-9. A line is initially not-valid with respect to all caches. On a read miss, a
cacheissues a read-shared bus transaction to fetch the line, sets the valid attribute, and
clears the owned attribute. If other caches have a copy of the line, they intervene to
supply the data, assert the sharing signal on the bus, and clear the exclusive attribute
for their copy of the line. The requesting cache also clears the exclusive attribute bit
in its entry. On the other hand, if no other caches have a copy of the line, the data is
supplied by shared memory, the sharing bus signal is left unasserted, and the request-
ing cache sets the exclusive attribute bit in its entry. When a read hit occurs, the cache can
satisfy the read locally without changing the coherence state of the line, and no other cache needs

to be notitied.

The action on a write miss depends on whether the write is to a whole word (the most
frequent case) or to a partial word. In the former case, the cache effectively pérforms
write-through with allocation by issuing a write-update-clean transaction and writing
the line in the cache. Other caches with a copy of the line update the data and clear
the exclusive attribute in their entries, and assert the sharing signal on the bus. If the
requesting cache sees this signal asserted, it sets its copy to valid/not-exclusive/not-

owned, otherwise it sets it to valid/exclusive/not-owned.

In the case of a miss on a partial write, the cache issues a read-shared bus transaction
to fetch the word. Other caches respond to this transaction exactly as described for a

read miss. If the requesting cache detects the sharing signal negated on the bus, it can

49

PR, PW:

valid

exclusive

owned

BWUC: |

BRS:
inte

update

BRS:
intervene

rvene

PW(partial]:

read-shared[~shr]

PW:

PF:

write-update—

write-update-
cleanf~shr|

valid
not-exclusive
owned

BWUC:
update

\

PW:
write-update-
clean[shr|

PW:
I clean = WS
write-update— write-update-
W clean cleanfshr|
A write-update- / =
valid clean|-shr| valid
exclusive TR \ WG »| Dot-exclusive
not-owned \ — update /L not-owned
PW: PW/(partial}:
wr‘i teiipare= read-sharedfshr/|
clean{~shr] write-update-clean BWUC:
W- < update
— write-update-
PF: cleanfshr]
PR: . PR:
read-shared|~shr| not-valid read-shared{shr|
PR: processor read BRS,
PW: processor write BWUC: [~shr]:
PF: processor flush no other cached copy
BRS: bus read-shared [shr]:

BWUC: bus write-update-clean

other caches have copies

Figure 2-9. The Firefly protocol.

50

perform the partial write locally, and sets the line to valid/exclusive/owned. Ifthe shar-
ing signal is asserted, the requesting cache must follow the read-shared with a write-
update-clean in order to maintain coherence with the other caches. In this case, all

caches, including the requester, set the line to valid/not-exclusive/not-owned.

On a write hit at a line with the exclusive attribute set, a cache can perform the write
locally, and sets the owned attribute. If, however, the exclusive attribute is cleared, the

cache issues a write-update-clean transaction to maintain coherence with other caches,

and clears the owned attribute. It also observes the sharing bus signal to determine
whether the line is still in fact shared, and clears or sets the exclusive attribute ap-
propriately. (The line may have been evicted by all other caches since thelast time shar-

ing status was detected.)

When an owned line is to be evicted from a cache on a read or write miss, the cache
issues a write-update-clean transaction to update shared memory. The consequence
of the protocol not using distinct bus transaction types for write back and normal coher-
ent writes is that other caches that share a copy of the line being written back will still
take a copy of the line, even though it is not necessary. The penalty is the small amount
of extra contention between the cache snoop and the client processor, but this may be

compensated for by the simplicity of having fewer transaction types.
There are five possible configurations for each line in the published Firefly protocol.
They are:
1. not-valid in all caches,
2. valid/exclusive/not-owned in exactly one cache,
3. valid/exclusive/owned in exactly one cache,
4. valid/not-exclusive/not-owned in one or more caches, and

5. valid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

A line is in one of the second or third configurations when it contains data which is
not currently being shared. Read-only private data remains in the second configura-
tion, whereas data that is modified changes to the third configuration. In the latter
case, the cache is the owner of the data, and must update shared mefnory before evict-
ing theline. Data that is shared between processors changes to one of the fourth or fifth
configuration when the second cache accessesit. Ifthe first cache does not own the line,

it changes to the fourth configuration. If the first cache does own the line, it retains

51

ownership as long as the data is only read-shared. (The line is in the fifth configura-
tion.) As soon as any cache writes the data, the write is effectively treated as a write-
through operation, and ownership reverts to the shared memory. (The line changes to

the fourth configuration.)

The premise behind the published Firefly protocol, stated by the designers, is that
a copy-back strategy is appropriate for lines that are not shared, whereas write-
through is more appropriate for shared lines. The use of the sharing bus signal allows
a cache to determine when sharing ceases, at which time it can revert from write-
through to copy-back. The designers note that the disadvantage of this approach is that
write-through continues to be used for a shared line for as long as a line remains in
other caches, even if their client processors no longer require the data. (This problem
also arises with the Dragon protocol, as mentioned in Section 2.2.7.) Compare this with
write-invalidate coherence protocols, where a processor write causes the line to become
private by invalidating other cached copies, thus allowing a copy-back strategy to be
used for the line. The Firefly designers note that write-invalidate protocols perform
poorly when write sharing occurs, since an invalidated line containing shared data
must be re-fetched when next needed. However, subsequent studies, such as that of
Eggers and Katz [18], suggest that in practice, the amount of write-sharing is small,

and so this overhead may not be significant.

As mentioned above, the Firefly protocol as published deals with cache lines that are
one word in size, allowing soine optimizations to reduce bus traffic. It is not clear how
best to adapt the protocol to handle cache lines of larger than one word. One possibility
is to treat all processor writes as partial line writes, and deal with them according to
the state transition rules in Figure 2-9. However, this would require that the whole
cache line be broadcast using a write-update-clean transaction when a cache has a
write hit in response to a client processor write request. The reason for thisis that some

other cache may be the owner of the line, with several words in the line being dirty. The

52

owner responds to the write-update-clean transaction by copying the data and relin-
quishing ownership. This requires that the caches copies be consistent with shared
memory, and the only way to guarantee this is to broadcast the whole line. The problem
with this approach is that it would generate excessive bus traffic, transmitting data
that, most of the time, is not modified. This is counter to the premise behind the proto-
col. Hence it is unlikely that the protocol as published would be used for caches with
a line size of larger than one word. An alternative is to revert to the earlier version of

the protocol described in Section 2.2.8.

2.2.10 The RB and RWB Protocols

The last of the published cache coherence protocols discussed in this thesis is the RWB
(read write broadcast) protocol of Rudolph and Segall [44]. This scheme is an extension
of the RB (read broadcast) protocol described in the same source. These protocols are

rarely cited in the subsequent literature on the subject, for a number of reasons.

The first problem with the RB and RWB protocols is that they are predicated on the
assumption that a cache line is one word in size. The authors do not discuss how partial
writes should be handled, nor suggest any generalization to larger line sizes. Itisclear
from the large number of studies analyzing cache performance for various line sizes,

that a larger size is desirable for all practical systems.

The second problem is that the protocols rely on cache snoops observing read transac-
tions on the bus, and copying the data into their cache memories. The motivation for
this, as stated by the authors, is to optimize performance for reads over writes. A snoop
copying data from the bus on a read is optimistically assuming that its client processor
will read that data soon, so the act of copying the data potentially avoids an extra bus
transaction. However, the bus signaling protocol to synchronize the requester, the re-
sponder and an arbitrary number of snoops to permit this kind of transaction is in prac-

tice prohibitively complex and expensive. In addition, the protocols require caches to

53

intervene on reads when they have the most up to date copy of a line. The authors
suggest that this be done by interrupting the read, writing the data back to shared
memory, and then retrying the read. The complexity of allowing snoops to copy the data
being read prohibits the optimization of performing a reflecting read as one bus trans-

action.

Unlike all of the previously discussed protocols, these protocols appear never to have
been implemented in a real computer system. Certainly the authors make no mention
in their paper of an implementation. Given the problems outlined here, and the fact
that the literature gives little further comment on these protocols, they are not de-
scribed further in this thesis. The interested reader is referred to [44] for a detailed

description.

2.2.11 Correctness of Coherence Protocols

It is appropriate at this point to comment on the correctness of the published cache co-
herence protocols. The object of these protocols is to ensure that each processor ob-
serves the most recently written value of any datum when it accesses the memory hier-
archy. For the simpler protocols, one can be convinced by inspection that this
requirement is met. However, for the more complex protocols, it is not obvious, and

some form of verification is desirable.

The framework used in this thesis for description of the protocols can also be used
as the basis of their formal verification. The operation of each cache is described in
terms of a finite state machine, which makes transitions based on the current state of
a line, the action requested by the client processor, and bus transactions observed by
the cache snoop. A system consisting of a collection of processor/cache pairs and a
shared memory can be modelled as a composite state machine, with the global state
based on the collected states of the component caches. In this composite state machine,

transitions are initiated solely by requests from client processors.

54

An implicit assumption inherent in all of the protocols is that global state transitions
are atomic. From this assumption comes the requirement that global actions for client
processor requests be serialized. Only private operations within a cache, not requiring
reference to other cache states, can be performed in parallel. (Fortunately, these are
the majority of operations.) Without the assumption of atomicity, the coherence proto-
cols would not operate correctly. The practical implication for cache system designs is
that the shared bus must form the mechanism for serialization. Where two or more cli-
ent requests address one line of the shared memory address space, the bus arbitration
system determines the order of coherence transitions resulting from the requests.
Where a client request is delayed pending allocation of the bus, a cache must grant its
snoop exclusive access to its state, forcing the client to wait, in order to avoid deadlock.
This mutual exclusion between the client processor and the snoop within the cache

(often called interference) is a potential source of performance degradation.

Given the assumption of atomicity and the resulting serialization, formal verifica-
tion of a protocol is based on enumeration of a set of permissible global states, in which
coherence is maintained. These are the configurations for each protocol, mentioned in
previous sections. Other global states are deemed erroneous, in that they do not guar-
antee coherence. For example, a global state in which two or more caches have the
owned attribute set must be deemed erroneous. The verification process starts from an
initial global state (invalid in all caches), and proceeds by a search through the global
state space from reachable global states. If a global state is reached which is not a per-
missible state, the protocol is incorrect. If, when the search terminates, all reachable

states are permissible, the protocol is partially correct.

Full correctness also requires verification that the data seen by processorsis also the
most recently written. This can be verified by augmenting the global state with in-
formation about contents of a line, as described by Pong and Dubois in [41]. The

authors present a notation to formalize analysis of global state changes, and annotate

55

states with information as to whether copies of data in a line are fresh, obsolete, or noda-
ta (not present). They demonstrate correctness of the Write-once, Illinois, Berkeley,
Dragon and Firefly protocols, and for each, derive a set of permissible states that corres-

pond to the configurations described in previous sections of this thesis.

2.3 Protocols Used by Current Processors

In this section, the cache coherence protocols used by a number of widely used commer-
cial microprocessors are described. These protocols are variations of the protocols de-

scribed in the previous section.

2.3.1 Intel Pentium®

The Intel Pentium® family of microprocessors [34] is widely used in personal com-
puters. It includes on-chip instruction and data caches, with facilities for maintaining
coherence between caches in a shared memory multiprocessor system. The cache co-
herence protocol used for the data cache is based on the write-once protocol described
in Section 2.2.2, with some minor differences. First, the Pentium protocol is not write-
allocate—on a write miss, the data is written through to main memory without fetching
the missed line into the cache. As a consequence, the protocol does not require a bus
read-invalidate transaction type. Second, the Pentium bus includes a facility that can
be used to detect sharing of a line by other caches. This can be used to optimize the
protocol by avoiding the shared stated and the write-invalidate on the first update for
private lines. Third, the Pentium bus does not include facilities for directly implement-
ing reflection or intervention. Instead, the same effect is achieved bsf aborting a miss
while the owner cache writes the missed line back to shared memory, then retrying the
miss. (This is discussed in relation to the Multibus in Section 2.2.2.) The state trans-

ition diagram for the Pentium protocol is shown in Figure 2-10.

56

valid
exclusive
owned

BWI:
abort/write-back/
retry

BRS:
abort/write-back/
PF: retry
write-back

\ o

write-invalidate

valid
exclusive
not-owned J*

valid
not-exclusive
not-owned

PR,
BRS:

PR:
read-shared[~shr]

PR:
read-shared|[shr]

not-valid

PR: processor read
PW: processor write
PF: processor flush

BRS, BWI: PW:
BRS: bus read-shared write-invalidate

BWI: bus write-invalidate

Figure 2-10. The Pentium protocol.

2.3.2 IBM PowerPC

The IBM PowerPC 604 microprocessor [30] implements the PowerPC architecture, de-
veloped jointly by IBM and Motorola. The PowerPC 604 uses the Illinois protocol de-
scribed in Section 2.2.3, with one minor difference. Whereas the Illinois protocol uses

intervention and reflection provided directly by the bus protocol, the PowerPC 604

57

achieves the same effect by aborting a miss while the owner cache writes the missed

line back to shared memory, then retrying the miss.

2.3.3 Sun Microsystems UltraSPARC ™ -l

The UltraSPARC™-II processor [48] is an implementation of Sun Microsystems’
SPARC V9 architecture. The UltraSPARC-II includes internal instruction and data
caches, and a second level cache implemented with external static RAM, but managed
by an on-chip controller. The cache coherence protocol implemented by the controller
is based on the MBus protocol described in Section 2.2.6, with two variations. First, the
UltraSPARC-II protocol uses a read-invalidate transaction instead of an address-only
invalidate transaction on a write hit to a shared line. Second, since the processor pro-
vides a block write operation to write a whole line, the UltraSPARC-II protocol includes

additional transitions to invalidate a line when a block write is sensed on the bus.

2.3.4 MIPS R4000

The MIPS R4000 family of processors [38] includes the R4000MC, which includes fa-
cilities for controlling a coherent second-level cache. The coherence protocol to be used
for each page in the address space is determined by configuration bits in the page table
entry. A write-invalidate or a write-update protocol can be selected, as well as non-
shared and uncached options. The write-invalidate protocol used is the MBus protocol
described in Section 2.2.6. The write-update protocol used is similar to the Dragon pro-
tocol described in Section 2.2.7, except that sharing detection is not used on update

transactions. The modified state transition diagram is shown in Figure 2-11.

2.3.5 DEC Alpha

The DEC Alpha 21164 processor [16] includes controllers for an on-chip second-level

cache and an off-chip board-level cache. A five-state write-invalidate cache coherence

58

PR:

PW:
[PR, PW: write-update-
intervene dirty
valid valid
exclusive BRS: not-exclusive
owned intervene owned
PW:
write-update-
dirty
BWUD:
update
PW:
PR: PF: PF:
write-back write-back
valid \ / valid
exclusive Bre 1 = Dot-exclusive
{ BRS: |
not-owned not-owned
PR:
EX et dfshr] s
e read-shared([shr BWE:
read-shared|~shr| write-update-dirty
BWUD:
update
L& PF:
PR: . PR:
read-sharedf~shr| not-valid read-shared|shr|
PR: processor read
PW: processor write BRS,
PF: processor flush BWUD, [~shr]:
BRS: bus read-shared BWB: no other cached copy
BWUD: bus write-update-dirty [shr]:

BWB: bus write-back

other caches have copies

Figure 2-11. The MIPS R4000 write-update protocol.

59

protocol is followed. The KN470 processor module [24] incorporates an Alpha 21164
processor with a board-level cache, and implements the bus transactions required to
support the cache coherency protocol. In order to maintain compatibility with previous
processor modules, the KN470 does not implement an address-only invalidation trans-
action. Instead, write-invalidate transactions are used to inform other caches of modi-
fications to shared lines. Furthermore, the KN470 bus protocol does not provide a

mechanism for caches toindicate sharing status during a transaction. While the Alpha

BRS:
PR, PW: intervene
valid BRS: valid
exclusive intervene not-exclusive
owned owned
intervene write-invalidate hfervene
PF:
- PF: e
PR: write-back write-back
valid \ 4 valid
N write-invalidate .
exclusive R not-exclusive
not-owned 122> | *| not-owned
PW: PR,
read-invalidate BRS,
BWB:
PF, BRI: PF, BRI, BWI:
PR:
read-shared
not-valid
PR: processor read
PW: processor write
PF: processor flush
BRS: bus read-shared BRS, BRI,
BRI: bus read-invalidate BWI, BWB:
BWI: bus write-invalidate
BWB: bus write-back

Figure 2-12. The protocol used by the DEC KN470/Alpha 21164 module.

21164 has provision for using sharing status, the lack of bus support prevents use of
sharing status in the coherence protocol. The coherence protocol resulting from these
limitations is similar to the write-once protocol described in Section 2.2.2, augmented
with aspects of the Berkeley ownership protocol described in Section 2.2.5. The state

transition diagram is shown in Figure 2-12.

60

2.4 Proposed Futurebus Cache Coherence Mechanisms

In 1979, the IEEE Computer Society Technical Committee on Microprocessors and
Microcomputers set up a working group to develop a new backplane bus protocol. The
motivation was that existing bus technology would not be able to meet the bandwidth
and functional requirements foreseen at the time. The working group identified sup-
port for multiprocessors as a particular deficiency of existing buses, and worked to-
wards a signalling protocol that would support bus-connected shared memory multi-
processors. The first major product of the working group was IEEE Standard 896.1,
the Futurebus specification [31], which covered the physical, electrical and basic proto-
col aspects of the bus. Although it did not specify cache coherence protocols, it did pro-
vide hooks on which such protocols could be built. The author was involved as a

member of the working group from 1985 until the publication of the standard in 1987.

As part of the 896.1 working group activity, a Cache Coherence Task Group was set
up. This later gained full working group status, under the project name P896.2, to de-
velop specifications for higher level protocols for Futurebus, including cache coherence.
The author was involved in this group from 1985 until 1989, and contributed an earlier
version of the descriptive framework used in Section 2.2. This was subsequently used
in the specification of mechanisms to support cache coherence, described in the draft
standard produced by the working group [32]. These mechanisms are described here,
although not exactly in the form presented in the draft standard, but in a form more

consistent with the descriptive framework used in this thesis.

The P896.2 Futurebus support for cache coherence does not actually define a cache
coherence protocol. Instead, it specifies a set of mechanisms from whlich a protocol can
be constructed, together with a set of rules governing the use of the mechanisms. The
rules allow for alternatives to be chosen, and the particular set of alternatives chosen

in an implementation determine the coherence protocol followed. The advantage of this

61

approach is that designers can select protocols suitable for different applications, but
still be assured that all modules that conform to the standard will inter-operate. Thus
it is possible to construct a heterogeneous system consisting of various forms of copy-

back caches, and have them all remain mutually coherent.

This thesis firstly describes the relevant parts of the signalling mechanisms specified
to support cache coherence, followed by the rules that govern their use. It then shows
how the rules can be applied to implement two copy-back cache coherence protocols, one
write-invalidate, and the other write-broadcast. Finally, it discusses the issues of cor-

rectness and completeness of the rules.

2.4.1 P896.2 Signalling Mechanisms

Information transfers on Futurebus take place in transactions, consisting of an address
transfer, zero or more data transfers, and a disconnection transfer. During an address
transfer, a bus master places an address and command on the bus. The commands a

master may issue during an address transfer are:

¢ Cache-Command: the master intends to keep a cached copy of the ad-

dressed line after successful completion of the transaction.
o Intent-to-Modify: the master intends to modify the addressed line.

e Broadcast: the transaction will proceed using broadcast signalling, allow-

ing a number of potential slaves to connect and receive data.

Potential slaves examine the address and command, and determine whether to par-

ticipate in the transaction. They return status information to the master as follows:

e Cache-Status: a slave that is neither intervening or reflecting will keep a

cached copy of the line after the transaction.

62

» Selected: shared memory recognizes the address and will participate in the
transaction. Also asserted by a cache in a broadcast transaction if it will

participate.

* Third-Party: a cache must participate in the transaction by intervening or

reflecting.

e Intervene: the third party will participate by intervening, as opposed to re-

flecting.

e Busy: a slave cannot complete the transaction immediately, so the master

must abort and retry in a later bus tenure.

If a data transfer follows in the transaction, the master may issue the following com-

mand to the participating slaves:

o Three-Party: this is a three party transaction. The selected slave should
examine the Intervene signal, and if it is set, become disabled and not par-
ticipate further. If Intervene is clear, the selected slave should become di-

verted and accept data from the reflecting third party cache.
e Write: data will be written by the master to the connected slave(s).
At the end of the transaction, the master may issue an additional command:

e Quwnership: the master will assume ownership, implying that the current

owner must relinquish ownership.

These are the basic mechanisms used to build the different kinds of bus transactions
referred toin Section 2.2. The P896.2 specification also includes a number of additional
commands and status responses, for dealing with error detection and recovery, manag-
ing block transfers over line boundaries, and other issues. As this description concen-
trates on the support for cache coherence, the additional commands and responses are
not discussed here, nor are they included in the rules for maintaining coherence. The

interested reader is referred to [32] for details.

63

The way in which the signalling mechanisms are used to implement the transaction

types described in Section 2.2 is as follows:

read-shared: during the address transfer the master asserts Cache-Com-
mand and negates Intent-to-Modify and Broadcast; during the data

transfer the master negates Write.

read-invalidate: during the address transfer the master asserts Cache-
Command and Intent-to-Modify and negates Broadcast; during the data

transfer the master negates Write.

invalidate: during the address transfer the master asserts Cache-Com-
mand and Intent-to-Modify and negates Broadcast; there is no data

transfer.

write-invalidate: during the address transfer the master asserts Cache-
Command and Intent-to-Modify and negates Broadcast; during the data

transfer the master asserts Write.

write-update-clean: during the address transfer the master asserts Cache-
Command, Intent-to-Modify and Broadcast; during the data transfer the

master asserts Write.

write-update-dirty: this can be implemented in exactly the same way as a
write-update-shared transaction, by ignoring the fact that shared memory

is updated as a side-effect.

write-back: during the address transfer the master negates Cache-Com-
mand and negates Intent-to-Modify and Broadcast; during the data

transfer the master asserts Write.

64

2.4.2 P896.2 Cache Coherence Rules

The rules for maintaining cache coherence specified by P896.2 govern changes in at-
tributes for a line stored in a cache, and changes in connection state of modules during
a transaction in which the module recognizes the address. The P896.2 rules use the
attributes names valid, exclusive and owned, as in Section 2.2. The P896.2 rules also

use the following names for connection states of modules:
e uns: unselected (not participating in the transaction)
» sel: selected by the address
* int: intervening
o ref: reflecting
* dis: disabled
* div: diverted

The rules are formed with a boolean condition on the left hand side, and a resultant
assertion on the right hand side. The symbol between them is either “=” to denote
“shall”, mandating change, or “—” to denote “may”, allowing change. Itis assumed that
if a change is neither mandated nor allowed, it is prohibited. The boolean operators
used are: “&” for conjunction, “|” for disjunction, and over-bar (“) for negation. This
presentation of the rules follows the same numbering as used in the P896.2 draft speci-

fication.

The first set of rules governs line attribute changes made by a cache snoop during

a transaction.
(1) Snoop & Cache-Command = exclusive

Rule (1) specifies that a cache must relinquish the exclusive attribute if it observes

a transaction in which another cache acquires a copy of the line.

(2) Snoop & Ownership = owned

65

Rule (2) specifies that a cache must relinquish ownership if another cache acquires

it. This is necessary to ensure that there is only ever one cache that is owner of a line.

(3) Snoop & Intent-to-Modify &

(Broadcast & owned

| Broadcast & Write
| Broadcast & sel) = valid

Rule (3) specifies that a cache must invalidate a line when a master indicates that

it will modify the line, and one of the following:

* the snoop cannot intervene on a non-broadcast transaction (e.g., a non-
caching write from an I/O controller), because it is not owner, and thus

cannot update its cache with the new data, or
* the transaction is a read-invalidate or an invalidate, or

e the data is broadcast, but the snoop chooses not to update its cache with

the new data (see Rules (15) and (16) below).

The second set of rules governs line attribute changes made by a cache when it is

master of a transaction initiated in response to a request from its client processor.
(4) Master & Cache-Command — valid

Rule (4) specifies that if a cache master indicates it will keep a copy of the line, it may

acquire the valid attribute for the line.

(5) Master & Cache-Command & Cache-Status &
(Broadcast

| Broadcast & Third-Party
| Broadcast & Intent-to-Modify & Write) — exclusive

66

Rule (5) specifies that a cache master may assume the exclusive attribute if it detects
that no other cache intends to keep a copy of the line after any of the following transac-

tions:
e a broadcast, or
* anon-broadcast in which there was no third party cache participating, or
* aread-invalidate or invalidate.

(6) Master & Ownership = owned

Rule (6) specifies that a cache master must acquire ownership if it forces another
cache to relinquish it. This is necessary to ensure that ownership of a line is not lost,

since ownership carries with it the obligation to copy-back a line before replacing it.

The next two rules serve to ensure that line attributes are acquired correctly, allow-

ing only five coherence states for a line.
(7) owned | exclusive = valid

Rule (7) specifies that for a line to become owned or exclusive, it must also become

valid.

(8) valild = owned & exclusive

Rule (8) specifies that if a line is invalidated, it is no longer owned and no longer ex-

clusive.

The following four rules govern changes that a cache may make to the attributes of

a line without incurring bus transactions.
(99 owned — valid

Rule (9) specifies that a cache may invalidate a line at any time so long as it does not
own the line. For example, if a not-owned line is to be replaced or flushed from a cache,
it may simply be overwritten. However, if the line is owned, it may not be invalidated

without first passing on ownership. (See also Rule (12) below.)

67

(10) owned — exclusive

Rule (10) specifies that a cache may relinquish the exclusive attribute for a line it
holds at any time so long as it is not owner. In fact, this is overly restrictive. The inten-
tion is that a cache may assume a line to be shared without loss of generality. There
is no reason why it may not do so when it owns the line, so the following amended
Rule (10) is proposed in this thesis, allowing a cache to relinquish the exclusive attrib-

ute for a line it holds at any time:
(10a) valid — exclusive
(11) exclusive — owned

Rule (11) specifies that a cache that knows a line it holds is not shared by any other
cache may assume ownership at any time. Typically it would do this when the client
processor issues a write. The fact that the line is not shared means that the cache can

proceed with the write locally.
(12) Dirty — owned

Rule (12) specifies that if the cache can determine that the line is consistent with
shared memory, it may relinquish ownership (effectively passing ownership back to
shared memory). This may occur in a number of circumstances, such as after a copy-

back to flush the line, or after a non-broadcast transaction in which the cache reflected.

The next set of rules governs how a cache snoop should set its connection state in re-
sponse to observed bus transactions, depending on the coherence state of its copy of the

line addressed.
(13) Snoop & Broadcast & owner => int & ref | int & ref

Rule (13) specifies that a snoop that observes a non-broadcast transaction addressing

a line which it owns must either intervene or reflect.

(14) Snoop & Broadcast & owned = uns

68

Rule (14) specifies that a snoop that observes a non-broadcast transaction addressing

a line which it does not own must remain unselected for the transaction.
(15) Snoop & Broadcast & owner = sel

Rule (15) specifies that a snoop that observes a broadcast transaction addressing a
line which is owns must become selected, so that it may participate in the transaction

and receive the updated data.
(16) Snoop & Broadcast & valid => sel & uns | sel & uns

Rule (16) specifies that a snoop that observes a broadcast transaction addressing a
line of which it has a copy must either become selected to update the copy, or remain

unselected. (See also Rule (3) above.)
(17) Snoop & valid = uns

Rule (17) specifies that a snoop that observes a transaction addressing a line of which

it does not have a copy must remain unselected.

The following rules govern how the shared memory should set its connection state

in response to a transaction that addresses a line it stores.
(18) Shared-Memory = sel

Rule (18) specifies that the shared memory should become selected when it recogn-
izes the address. It will remain selected and transfer data normally, unless its connec-

tion state is subsequently changed by application of Rules (19) or (20).

(19) Shared-Memory & sel &
Broadcast & Three-Party & Intervene = dis

Rule (19) specifies that the shared memory must become disabled if a third party
cache intervenes on a non-broadcast transaction. The shared memory takes no further

part in the transaction.

69

(20) Shared-Memory & sel &
Broadcast & Three-Party & Intervene = div

Rule (20) specifies that the shared memory must become diverted if a third party
cache reflects on a non-broadcast transaction. The shared memory must accept the
data transferred on the bus (whether the transaction is a read or a write) and update

the stored copy of the line.

The final rule governs the use of the Busy status response from a slave during an ad-

dress transfer.

(21) Snoop & owned = Busy(deadlock-potent)

Rule (21) specifies that a snoop that does not own a line may not return a “deadlock-
potent” busy response to the master. This is a busy response reserved for an owner
cache that must update shared memory before it can respond to the request from the
master. It may occur if a cache designer has chosen to implement the equivalent of re-
flection by having the cache abort the transaction, update shared memory, and then
allow the transaction to be retried. The response is called “deadlock-potent” because
of the possibility of deadlock if the cache is also waiting to retry a transaction at some

other line in the address space. A protocol must be designed to avoid such deadlock.

2.4.3 Using P896.2 to Implement the Berkeley Protocol

As a demonstration of construction of a cache coherence protocol using the P896.2 rules,
a description is presented of the Berkeley protocol, described in Section 2.2.5, specified
in terms of the rules. Figure 2-13 shows the state transition diagram for the Berkeley
protocol, as presented before, but annotated with the P896.2 rules that govern the
transitions. The following commentary describes how each of the rulesis applied in the

protocol.

(1) Snoop & Cache-Command = exclusive

70

PW:
PR. PW- invalidate
' LG
valid BRS: | valid
exclusive : not-exclusive
interv
owned (1) (l;;w owned B_RS‘
intervene
(13)
BRI:
intervene
T (2)(3) (13)

intervene PW-

(L@ G)(A3) invalidate

N (5)(6)

. BI:
write-back i :
@ 0) valid
(10a) (12/9) not-exclusive
PE: not-owned
write-back
read-invalidate B(\zg:
4) (5) (6)
BI: (3) (14
PR:
read-shared

PR: processor read not-valid Q)
PW: processor write
PF: processor tlush
BRS: bus read-shared
BRI: bus read-invalidate BRS, BRI,
BI: bus invalidate BI, BWB:
BWB: bus write-back (17

Figure 2-13. The Berkeley protocol transition diagram, annotated with the P896.2 rules that are in-

voked.

When a snoop observes a read-shared, read-invalidate or invalidate transaction, it

relinquishes the exclusive attribute, since the caching master will keep a copy of the

line.

(2)

When a snoop observes a read-invalidate or invalidate transaction, it relinquishes

ownership, passing it on the

Snoop & Ownership = owned

to caching master.

71

(3) Snoop & Intent-to-Modify &

(Broadcast & owned

| Broadcast & Write

| Broadcast & sel) = valid

When a snoop observes a read-invalidate or invalidate transaction (Intent-to-Modify

& Broadcast & Write), it invalidates its copy of the line.
(4) Master & Cache-Command — valid

When the client processor request results in a miss, the cache fetches the line using

a read-shared or read-invalidate, and assumes the valid attribute for the line.

(6) Master & Cache-Command & Cache-Status &
(Broadcast
| Broadcast & Third-Party
| Broadcast & Intent-to-Modify & Write) — exclusive

When a cache issues a read-invalidate or an invalidate transaction (Cache-Com-

mand & Cache-Status & Broadcast & Intent-to-Modify & Write), it assumes exclusive-

ness for the line.
(6) Master & Ownership = owned

When a cache issues a read-invalidate or an invalidate transaction, it assumes

ownership of the line.
(7) owned | exclusive = valid

Covered by Rules (4)-(6).

(8) wvalid = owned & exclusive
Covered by rules (1)-(3).

(9) owned — valid

When the client processor causes a not-owned line to be flushed, it is invalidated.

72

(10a) valid — exclusive

The exclusive attribute is relinquished when a valid/exclusive/owned line is copied

back to shared memory using a write-back transaction.
(11) exclusive — owned

Not invoked.
(12) Dirty — owned

When the client processor causes an owned line to be flushed, it is copied back using
a write-back transaction, and is thus no longer dirty. Hence the owned attribute is re-

linquished.
(13) Snoop & Broadcast & owner = int & ref | int & ref

When a snoop detects a read-shared or read-invalidate transaction addressing a line

which it owns, it intervenes.

(14) Snoop & Broadcast & owned = uns

When a snoop detects any transaction addressing a line which it does not own, it re-

mains unselected and does not participate in the transaction.
(15) Snoop & Broadcast & owner = sel
Not invoked.
(16) Snoop & Broadcast & valid = sel & uns | sel & uns
Not invoked.
(17) Snoop & valid = uns

When a snoop detects any transaction addressing a line of which it does not hold a

copy, it remains unselected and does not participate in the transaction.
(18) Shared-Memory = sel

The shared memory becomes selected when it recognizes an address.

73

(19) Shared-Memory & sel &
Broadcast & Three-Party & Intervene = dis

The shared memory becomes disabled on a read-shared or read-invalidate when an

owner cache intervenes.

(20) Shared-Memory & sel &

Broadcast & Three-Party & Intervene = div

Not invoked.

(21) Snoop & owned = Busy(deadlock-potent)
Not invoked.

Examining the ways the rules are applied, we see that this particular cache coher-
ence protocol arises from the choice of bus transactions constructed from the basic
mechanisms, the choice of actions taken by a cache in response to a client processor re-
quest, and the choice of whether or not to act on an optional rule (one based on the sym-
bol “—”). In a homogeneous system constructed with all caches following this protocol,
a number of the rules, and factors in some others, are not invoked. However, for a
Berkeley protocol cache to be integrated into a system containing caches using other
protocols, the cache snoop would have to implement the mandatory parts of all rules
that specify a snoop’s behaviour. One might debate as to whether this would still be
a Berkeley protocol cache. Clearly it would be an extension, with the Berkeley protocol

as a proper subset.

2.4.4 Using P896.2 to Implement the Dragon Protocol

As a second demonstration of application of the P896.2 rule, a description is presented
of the Dragon protocol, described in Section 2.2.7, specified in terms of the rules. In the
Dragon protocol, the write-update-dirty transaction is used to update other caches with

a copy of the line, without updating shared memory. The Futurebus mechanisms to not

74

provide a way of ensuring that shared memory does not participate in the broadcast
transaction. One alternative when implementing the Dragon protocol is simply to ig-
nore the fact that shared memory copies the broadcast data, as suggested in Sec-
tion 2.4.1, and implement the protocol exactly as described. The possible penalty here
is that participation by shared memory may slow down the broadcast transaction.
Given sufficient buffering in the memory system, this can be avoided. Another alterna-
tive, applicable in a homogeneous system where all caches use the Dragon protocol, is
for the shared memory not to participate in broadcast transactions. This would be an
exact implementation of the protocol. A third alternative is to take advantage of par-

ticipation by shared memory and modify the protocol accordingly.

Figure 2-14 shows the state transition diagram for the Dragon protocol, as presented
before, but annotated with the P896.2 rules that govern the transitions. The following

commentary describes how each of the rules is applied in the protocol.
(1) Snoop & Cache-Command = exclusive

When a snoop observes a read-shared transaction, it relinquishes the exclusive at-
tribute, since the caching master will keep a copy of the line. A snoop only observes a
write-update-dirty transaction in configurations where it does not have the exclusive

attribute, so the rule is not invoked for write-update-dirty transactions.
(2) Snoop & Ownership = owned

When a snoop observes a write-update-dirty transaction and updates its copy of the

line, it relinquishes ownership, passing it on to the caching master.

(3) Snoop & Intent-to-Modify &

(Broadcast & owned

| Broadcast & Write

| Broadcast & sel) = valid

Not invoked.

75

BRS: PW:

PR, PW: intervene write-update-
PW: (13) dir!y{shr}
write-update-
valid < s dirty[~shr| valid
exclusive (5) BRS: not-exclusive
owned intervene owned
\ (1) (13)
PW: PW:
writfz-upda!e- write-update-
dirty{~shr| BWUD: dirty{shr]
(5) (6) update (6)
(2) (15)
PF:
write-back Pfvlrite-back
(10a) (12) (12)
valid \ / valid
exclusive B(Rl?’ 1 not-exclusive
not-owned { \ / not-owned
PW: PW: PR:
read-shared[~shr| read-sharedfshr| BRS
(4) (5/11) write-update-dirty BWR:
) (6) (14)
BWUD:
PF: (9) (10a) PF: (9) update
(16)
PR: PR:
read-sharedf~shr] ¥ not-valid _// read-shared|[shr]
) (5) 4
PR: processor read
PW: processor write BRS, BWUD,
PF: processor flush BWB: [~shr]:
BRS: bus read-shared (17) no other cached copy
BWUD: bus write-update-dirty [shr]:
BWB: bus write-back other caches have copies

Figure 2-14. The Dragon protocol transition diagram, annotated with the P896.2 rules that are in-
voked.

(4) Master & Cache-Command — valid

When the client processor request results in a miss, the cache fetches the line using

a read-shared, and assumes the valid attribute for the line.

76

(5) Master & Cache-Command & Cache-Status &
(Broadcast

| Broadcast & Third-Party
| Broadcast & Intent-to-Modify & Write) — exclusive

When a cache issues a read-shared (Broadcast & Third-party) or a write-update-

dirty (Broadcast) transaction, and no other cache is sharing the line (Cache-Status),

the cache assumes exclusiveness for the line.
(6) Master & Ownership = owned

When a cache issues a write-update-dirty transaction, it assumes ownership of the

line.
(7) owned | exclusive = wvalid

Covered by Rules (4)-(6) and (11).

(8) valid = owned & exclusive
Covered by rules (1)-(3).
(99 owned — valid
When the client processor causes a not-owned line to be flushed, it is invalidated.
(10a) valid — exclusive
The exclusive attribute is relinquished when an egclusive line is flushed.
(11) exclusive — owned

The owned attribute is assumed when a client write request hits at an exclusive line
and the write is performed locally, or when a client write request misses and the read-
shared indicates that no other cache has a copy of the line, allowing the write to be per-

formed locally.

(12) Dirty — owned

77

When the client processor causes an owned line to be flushed, it is copied back using
a write-back transaction, and is thus no longer dirty. Hence the owned attribute is re-

linquished.
(13) Snoop & Broadcast & owner = int & ref | int & ref

When a snoop detects a read-shared transaction addressing a line which it owns, it

intervenes.

(14) Snoop & Broadcast & owned = uns

When a snoop detects a read-shared or write-back transaction addressing a line

which it does not own, it remains unselected and does not participate in the transaction.
(15) Snoop & Broadcast & owner = sel

When a snoop observes a write-update-dirty transaction addressing a line which it

owns, it must become selected and updates its copy.
(16) Snoop & Broadcast & valid = sel & uns | sel & uns

When a snoop observes a write-update-dirty transaction addressing a line of which

it holds a copy, it becomes selected and updates its copy.
(17) Snoop & valid = uns

When a snoop detects any transaction addressing a line of which it does not hold a

copy, it remains unselected and does not participate in the transaction.
(18) Shared-Memory = sel

The shared memory becomes selected when it recognizes an address. As discussed

above, it may or may not actually accept the data transferred on the bus.

(19) Shared-Memory & sel &
Broadcast & Three-Party & Intervene = dis

The shared memory becomes disabled on a read-shared transaction when an owner

cache intervenes.

78

(20) Shared-Memory & sel &

Broadcast & Three-Party & Intervene = div

Not invoked.

(21) Snoop & owned = Busy(deadlock-potent)
Not invoked.

As with the Berkeley protocol, this cache coherence protocol arises from the choices
of bus transactions, cache actions taken in response to client processor requests, and
actions on optional rules. What differentiates this protocol from the Berkeley protocol
isthat a different set of choicesis made. The same argument about extending the proto-

col to integrate with a heterogeneous system also applies.

2.45 Summary of P896.2 Options

Since different cache coherence protocols arise from different choices of actions on op-
tions in the P896.2 rules, it is useful to summarize the options. This summary is used
in development of the Leopard-2 programmable cache controller desicribed in
Chapter 4. The following list enumerates the P896.2 rules that allow optional actions

and identifies when each option is invoked by the cache coherence protocols.
(4) Master & Cache-Command — valid

Although thisruleindicates that a caching master is not required to keep a valid copy
of a line, in practice there is no need to implement this as an option. A controller design

can assume that the line should always be cached and the valid attribute acquired.

(6) Master & Cache-Command & Cache-Status &
(Broadcast
| Broadcast & Third-Party
| Broadcast & Intent-to-Modify & Write) — exclusive

79

The different protocols vary in when they acquire the exclusive attribute. The Dra-
gon protocols is sensitive to Cache-Status after a broadcast transaction. The Illinois,
MBus and Dragon protocols are sensitive to Cache-Status after a read-shared transac-
tion. The original Firefly protocol is sensitive to Cache-Status after both broadcast and
read-shared transactions. In all of these cases, the Cache-Status response is used to
determine whether the exclusive attribute is acquired. The remaining cases are write-
invalidate, read-invalidate and invalidate transactions. All protocols acquire exclu-
siveness after these transactions, since no other cache asserts Cache-Status in re-

sponse to them.
(9) owned — valid

All caches invalidate a not-owned line when it is flushed (eg, during replacement).
Thus rule is also used in conjunction with rule (12) when an owned line is flushed. The
line is written back to shared memory, allowing the owned attribute to be relinquished
according to rule (12), and then the line to be invalidated according to rule (9). The Syn-
apse protocol presents one additional use of this rule, also in conjunction with rule (12):
itinvalidates a line after a reflection operation causes shared memory to become consis-

tent with the cache.
(10a) valid — exclusive

None of the protocols make use of this option. The knowledge that a line is exclusive
is too good a performance hint to voluntarily relinquish. Hence all of the protocols that

use the exclusive attribute only relinquish it when forced to do so according to rule (1).
(11) exclusive — owned

All protocols that include the exclusive/not-owned state acquire the owned attribute
after a write hit at a line in this state. In combination with rule (5), all protocols except

Write-once, Dragon and the original Firefly protocol acquire exclusiveness and hence

80

ownership after a write hit at a not-exclusive line. Similarly, all except Dragon and the

original Firefly protocol acquire exclusiveness and hence ownership after a write miss.
(12) Dirty — owned

This is used by all protocols in combination with rule (9) to invalidate a line after flu-
shing. It is also used by those protocols that implement reflection, to relinquish owner-

ship when shared memory has been updated as a consequence of reflection.

(13) Snoop & Broadcast & owner = int & ref
| int & ref

The choice implied by this rule is whether the owner of a line should intervene or re-
flect on a read transaction. The Write-once, Illinois and Synapse protocols and the

original Firefly protocol use reflection, and the others use intervention.

(16) Snoop & Broadcast & valid = sel & uns

| sel & uns

The choice implied by this rule is whether a cache should become selected on a broad-
cast transaction and accept the data, or remain unselected. Only the Dragon and origi-
nal Firefly protocols involves broadcasts, and in those protocols, a cache with a snoop

hit should become selected.

In addition to the rules specified by the P896.2 document, a cache controller must be
configured to determine its actions in response to requests from its client processor. All
of the protocols described require the same actions in response to the following re-

quests:

* aread hit: perform the read locally with no bus transaction.

e aread miss: perform a bus read-shared transaction to fetch the line and

acquire the valid attribute.

81

* a flush due to replacement: perform a bus write-back transaction if the

line is dirty, and invalidate the line.

* a write hit at an exclusive/owned line: perform the write locally with no

bus transaction.

¢ a write hit at an exclusive/not-owned line: perform the write locally and

acquire the owned attribute according to rule (11).

The protocols differ in their actions for a write hit at a not-exclusive line and for a
write miss. The required bus transactions and attribute changes can be programmed

as configuration parameters for the cache controller, as described in Chapter 4.

2.4.6 Correctness and Completeness of the P896.2 Rules

The claim made by the developers of the P896.2 cache coherence specification is that
the rules are sufficient to construct a set of interoperable cache coherence protocols.
This has not been formally substantiated, however, work by Robinson, with whom the

author collaborated in 1988, shows some initial steps towards verification of the rules.

In [42], Robinson describes a transcription of the P896.2 rules into a Prolog know-
ledge base. These rules are augmented with a further ten rules that formally specify |
aspects. that are informally described in the draft standard. For example, a rule has
been added that formalizes the requirement that a snoop assert Cache-Status during
a transaction if it intends to keep a copy of the'line after the transaction. Robinson also
added facts to the knowledge base to represent the state of modules and the bus, and
rules to simulate transactions. The stimulus to the simulation was a query that speci-
fied a set of client processor requests to be performed. The logic program then inferred
the bus transactions required and the coherence state changes necessary to ensure co-

herence, according to the transcribed P896.2 rules.

In [42], Robinson demonstrates that the logic program correctly simulates the oper-

ations (described in [32]) of a heterogeneous system comprising an invalidating copy-

82

back cache, a broadcasting copy-back cache, a write-through cache, a non-caching
master and a shared memory. Robinson presents this simulation as the first step to-
wards “find[ing] an invariant expressing cache coherence and proving that any bus
transactions complying with the formulese maintain the invariant.” The author of this
thesis suggests that one way to formulate such an invariant would be in terms of the

global state of the system, as outlined in Section 2.2.11.

An alternate approach to verifying correctness of the protocols also relies on simula-
tion of a system, but is expressed using a behavioural simulation language instead of
a logic programming language. The advantage of this approach is that it includes mo-
delling of the sequence of events within a bus transaction, allowing verification of inter-
actions between modules at a more detailed level. This is important for the Futurebus
protocol mechanisms, which involve sequences of actions by bus masters, slaves and
third parties, each acting in accordance with the P896.2 rules. Not only should the
overall effect of the rules be verified, but the cause and effect relationships implied by
them must be shown to lead to maintenance of coherence. Conversely, if coherence is
not maintained, a verification technique should be able to pin-point the interaction wi-
thin a transaction that leads to loss of coherence. Compare this with Robinson’s ap-
proach, in which a transaction is considered as atomic interaction between the partici-
pants, with no cause/effect ordering within the transaction being visible. The
technique of using detailed simulation to verify correctness of the cache coherence pro-
tocols is similar to that used by Wood to test the cache controller circuits designed to

implement the Berkeley protocol in the SPUR multiprocessor [55].

The author of this thesis developed a simulation suite to verify the Futurebus proto-
col mechanisms as part of the collaborative work with Robinson in 1988. The author’s
work consisted of developing behavioural simulation models, written in the Helix
Hardware Description Language [46], of a cache, a Futurebus interface that implem-

ented the basic signalling mechanisms, and a client CPU. This work is described in [3]

83

(reproduced in Appendix C). The cache model was parameterized to allow specification
of actions to be taken within the framework of the P896.2 rules. Instances of the mod-
ules were interconnected to form a model of a complete bus connected shared memory
multiprocessor. The assembled suite was used to simulate operation of caches and Fu-
turebus transactions at the level of individual bus signalling events. The way the suite
was to be used to verify the protocols was to stimulate the cache modules with a se-
quence of a CPU requests and bus transactions that randomly covered the space of pos-
sible interactions between modules, and verify the maintenance of coherence as the si-
mulation progressed. Random testing is chosen, as the state space is intractably large.
As reported by Wood, a well chosen suite of stimulus vectors gives good coverage and
a high degree of confidence in the correctness of the system. Experiments with the suite
revealed no cases in which coherence waslost. As well asits use in verifying the correct-
ness of the cache coherence mechanisms, parameterizing of the simulation model made
it possible to simulate any of the cache coherence protocols implemented with the basic
mechanisms, and to observe the detailed interactions between modules under complex
scenarios. This proved very useful as an aid to understanding the dynamics of the

cache coherence protocols.

2.5 Performance Evaluation of Coherence Protocols

Having surveyed the published cache coherence protocols for bus connected shared
memory multiprocessors, one must ask why there is such a proliferation of protocols.
One answer is that they have been developed in response to different perceptions of the
optimal points in the space of cost/performance trade-offs. Proponents of the more el-
aborate protocols argue that the performance gains merit the extra cost, whereas others
argue that there are performance penalties associated with the complexity, and that
simpler protocols will perform better. This can be most clearly seen in the difference

between write-invalidate and write-broadcast protocols. Write-invalidate protocols are

84

simpler to implement, since the data in the cache never needs to be modified as a result
of a snooped bus transaction. Only the attributes need to be modified, and then only
on the first snoop hit to a line in the cache. On the other hand, a write-broadcast cache
needs to provide a data path for broadcast data to be written into the cache data mem-
ory. This path needs to be used on every snoop write hit. Proponents of write-broadcast
strategies claim that this extra complexity is small, given that a read data path is re-
quired to support intervention, and that the performance improvement gained by not
invalidating the data in the cache (thus causing future misses when the CPU accesses

the data) warrants the extra complexity.

It has also been suggested that write-invalidate protocols result in superior perform-
ance over write-broadcast protocols [18]. The premise is that when a cache line is
shared, each processor performs several updates before some other processor acquires
the line. Under these circumstances, a write-invalidate protocol has the effect of giving
a processor an exclusive copy of the line after the first update, allowing it to perform
subsequent updates without further bus traffic. A write-broadcast protocol, on the
other hand, requires the processor to broadcast each update to all other processors that
maintain a cached copy of the line, resulting in increased bus traffic. However, write-
invalidate protocols have been shown to have poor behaviour for synchronization oper-
ations, such as locks and barriers, which may occur frequently in concurrent programs
(see, for example, [26] pp. 699-703). The problem is that the protocol produces a large
number of invalidation transactions and consequent read-miss transactions when a
lock variable is released. Write-broadcast protocols perform significantly better in this
case, requiring many fewer bus transactions. Hence the choice between the two kinds
of protocol depends on the frequency of synchronization operations and the patterns of

data sharing between processes.

Many of the arguments, such as that of relative implementation complexities men-

tioned above, rely on qualitative judgements about system and cache design and pro-

85

gram behaviour. However, in recent years, computer architects have become increas-
ingly aware of the need for a quantitative basis for their design decisions. Analysis and
measurement of system and program behaviour has been shown to lead to more cost
effective and higher performance solutions than reliance on conventions, intuitions

and qualitative judgements.

These arguments point to the need for quantitative data for use in evaluating per-
formance of cache coherence protocols. With such data, informed design decisions can
be made in determining a balance between implementation cost and expected perform-
ance for a system. In this section, three approaches for obtaining quantitative data are
described: analytical modelling, simulation modelling, and measurement of real sys-

tems. Their advantages and disadvantages are discussed.

2.5.1 Analytical Evaluation

The basis behind an analytical performance evaluation technique is a mathematical
model of system behaviour, usually involving quantifiable parameters such as proba-
bilities of memory references, and distributions of wait times, access times, etc. The
model provides ways of calculating new parameters of interest, such as processor and
bus utilization. Ideally, the formulae for calculating such values should be in closed
form, allowing a designer to determine quickly values for a variety of alternate design
parameters. However, for a mathematical model to be amenable to closed form solu-
tion, it must necessarily be relatively simple. Models of computer system behaviour can
only achieve such simplicity by being approximate. Hence there is a trade-off between
a model’s accuracy of prediction and its utility as a design tool. The complexity of more
accurate models may require them to be solved using iterative numerical techniques,

or may render them totally intractable.

An example of a mathematical modelling technique is presented by Patel in [40].

Patel analyses a system comprising a number of processors each with private cache,

86

and a set of shared memory modules connected to the caches via either a full crossbar

or a delta interconnection network. The parameters in the model are:

N: the number of processors,

M: the number of memory modules,

m: the probability that a given cache makes a request to shared memory

in a clock cycle,

w: the average number of cycles for which the cache must wait for arbitra-

tion and interconnection contention, and

t: the time taken for the transaction with shared memory.

Patel derives an expression for U, the processor utilization (the proportion of time for
which a processor is not stalled waiting for a cache miss to be serviced), which can be
used to compare the relative performance of different cache and system organizations.
The analysis relies on the simplifying assumption that cache requests to shared mem-
ory are random and uniformly distributed over all memory modules. The author as-
serts that thisis a reasonable characterization of the behaviour of a multiprocessor sys- ‘

tem, without supplying much supportive evidence or convincing argument.

The formula derived by Patel for U is expressed in terms of the parameter w, which
itself is dependent in a non-trivial way on the other parameters. Thus to solve for U,
a value for w must also be calculated. Patel cifes previous research on the simplest case
where m = 1 and ¢ = 1, stating that no closed form solution had been found, and that
solution techniques using Markov analysis required large amounts of calculation.
Patel then employs a further approximation in his model, decomposing the wait time
w and the transaction time ¢ into w+t independent unit-time requests for service, thus
reducing the model to the simplest case described above, and using an approximate
analytical solution to this case. He justifies these approximations by comparing the re-

sults they yield with results of simulations of a number of system organizations, show-

87

ing that the error is within the confidence bounds of the simulation for parameter va-
lues of interest. (Of course, this begs the question of how accurately the simulation

mirrors the behaviour of the real system.)

In their description of the Illinois cache coherence protocol [39], Papamarcos and
Patel present a performance analysis based on the same technique. Their analytical
model is more refined, in that it uses more parameters to describe system behaviour in
more detail. A number of these parameters are probabilities of occurrence of events,
which must be estimated in order to use the model. There are also other simplifying
assumptions, for example, that invalidations only cause one cache to invalidate. The
model yields three non-linear equations in three unknowns: the average waiting time
per busrequest, the real execution time per useful computation time (the inverse of pro-
cessor utilization), and the average bus utilization. The authors report agreement wi-
thin 5% between their analytical study of a number of system organizations and trace-

driven simulations.

A different approach to analytical modelling of cache coherence protocol performance
is presented by Vernon and Holliday in [53], based on use of Generalized Timed Petri
Nets (GTPNSs), described by the authors in [28]. A GTPN is based on a conventional

Petri net, but is augmented with a number of attributes on each transition as follows:

* the probability of firing (which may depend on the marking of the net

when the transition is ready to fire),

e the duration of firing (which may also depend on the net marking when

the transition fires),
e flags used to determine the probabilities for the next states, and

» resources deemed to be “in use” for the duration of firing (e.g., a bus or

memory).

88

The analytical technique proposed by Vernon and Holliday involves modelling a pro-
tocol running under a particular workload with a GTPN. The workload model they use
is based on that originally proposed by Dubois and Briggs [17], in which a steam of
memory references from a processor is divided into two sub-streams, one for private and
shared read-only data, and the other for shared writable data. Vernon and Holliday
divide the first of these into the two separate components, private data and shared
read-only data. They characterize the workload in terms of relative frequency of ac-
cesses from each of the three sub-streams and a geometrically distributed inter-arrival
time of requests. The GTPN model driven by this probabilistic workload is further
characterized by probability estimates for cache hits, reads (as opposed to writes), re-
placements, etc, and by the parameters of a hardware system under study, such as the

cache hit time and miss penalty.

Once the complete model of protocol and workload has been assembled, the analytical
technique treats the GTPN as a stochastic process (by virtue of the probabilistic firing
characteristics). Performance measures, based on steady state usage of resources at-
tached tothe GTPN, are then determined automatically, derived by finding and analyz-
ing the Markov chain embedded within the GTPN model. The performance measures
cited by the authors include bus utilization and speed-up, being the relative execution

time of the multiprocessor compared to a monoprocessor with infinite cache. -

In [53], Vernon and Holliday present results of analysing a protocol similar to Good-
man’s write-once protocol, and four variations based on mechanism used in the other
protocols discussed in this thesis. They report that, while their analysis indicates im-
proved performance over the basic protocol for each of the variations, the assumed level
of sharing and hit rates for private and shared read-only data have significant impact
on the derived performance estimates. This indicates that the technique may be suit-
able for performance studies where the workload characteristics and hardware attrib-

utes (apart from coherence protocol) are known in advance, but has serious shortcom-

89

ings as a more general tool for performance evaluation. Furthermore, the authors
comment upon a major disadvantage of the GTPN modelling technique, namely that
the state-space size escalates rapidly as model complexity increases. While they
suggest investigation into ways of analyzing models with larger state spaces as a future

topic for research, they do not appear to have published further in that area.

Vernon, Lazowska and Zahorjan [54] have subsequently proposed an alternative
form of analytical model, based on Mean Value Analysis techniques taken from queu-
ing network modelling theory. The approach is “to construct a set of equations that com-
pute the mean values of various performance quantities in terms of the mean values
of various model inputs—frequently resorting to iteration when direct calculation is
not possible” ([54], p. 310). The model inputs include probabilities of different kinds
of access made by the processors in a system, characterizing the workloads run by the
processors. From these values, the analytical model provides formulae for calculating
secondary probabilities of different actions taken by caches in response to processor ac-
cess requests, such as satisfying the requests locally, performing broadcast writes or
invalidations, etc. The authors then derive a set of formulae that describe the mean
total time between memory requests issued by a processor, expressed in terms of the
mean processor execution time between requests, T, and mean response times for differ-
ent cache, bus and memory actions. The resulting formulae require iterative solution,
but converge quickly. The authors compare the results yielded by this mean value anal-
ysis with those of the GTPN model, and report close agreement. They also report
approximate agreement with some of the simulation studies described in [35] and [2].
However, while they conclude that the mean value model can be customized to other
protocols to provide a fast means of predicting approximate performance, they note that
there are cases where the technique can produce inaccurate results, and recommend

use of more detailed techniques to validate the analyses.

90

In summary, it can be seen that analytical models of a system, where they exist, can
be used as an approximate predictor of system performance. One major difficulty that
may confront a system designer is finding a model that takes account of parameters of
interest. For example, a designer may wish to explore the performance effects of vary-
ing memory reference patterns in the workload. If no available model takes this effect
into account, and the designer is not in a position to develop a new analytical model
(usually the case), then analytical performance evaluations techniques are not ap-

propriate.

2.5.2 Simulation Based Evaluation

Simulation based techniques for evaluation of performance rely on use of a simulation
model of the physical system, that is, a program that attempts to emulate the behaviour
of the system over a simulated interval of time. A model for evaluating performance
of a cache coherent multiprocessor consists of program modules to emulate the proces-
sors, the caches, and the bus and shared memory combination. A processor module gen-
erates a stream of memory references that are passed to the corresponding cache mod-
ule. The cache module processes the memory references according to the cache
organization and coherence protocol being simulated, possibly generating requests to
be handled by the bus and shared memory module. System performance can be meas-
ured with instrumentation embedded in the model and in the run-time system used to

execute the model.

One of the advantages of simulation as a means of evaluating system performance
isits flexibility. A model can be made as accurate or approximate as required by encod-
ing the appropriate level of detail in the programs that emulate behaviour of the compo-
nents in the system. However, there is a trade-off, in that more detailed models take

correspondingly longer in real time to execute.

91

Another advantage of using simulation based evaluation over analytical evaluation
is that additional system parameters which are difficult to quantify can be included in
the model. For example, different workload memory reference patterns can be used,
simply by varying the way in which the processor modules in the model generate mem-

ory references.

The two main approaches used to generate memory reference streams for simulation
models are synthetic workloads, in which a combination of stochastic processes provide
successive addresses, and traces of address collected from real programs running on
real machines. Synthetic workload generators have the advantage that they provide
a simple, compact way of generating a large number of addresses to exercise a simula-
tion model. However, they share the disadvantage with synthetic benchmarks, that
they are an approximation to the behaviour of real programs based on intuitions or sim-
plified from measured behaviour. On the other hand, real address traces provide the
most accurate characterization of program behaviour, but usually involve storage and
management of copious volumes of data, and are difficult to collect. Where useful ad-
dress traces exist, they are often regarded as proprietary information, jealously
guarded by their originators. This is particularly the case for multiprocessor address '

traces.

An example of use of a simulation model to evaluate performance of cache coherence
protocols is described by Archibald and Baer in [2]. Their model consists of a number
of processes written in Simula, one for each processor, one for each cache, and one for
the system bus, shared memory and cache snoops. The processor modules generate a
request stream using a synthetic workload. Memory references are divided into refer-
ences to private lines and references to sharable lines. For each reference generated
by a processor, the choice between these, as well as the choice between a read or write,
is made randomly based on parameters input to the model. The cache model handles

these requests, again using random choices based on input parameters, simulating the

92

steady state behaviour of the system. Private lines are not explicitly represented, on
the assumption that the results of previous research on uniprocessor caches can be ap-
plied, and thus probabilistic treatment can be used. Sharable lines on the other hand
are explicitly identified, and interactions between caches dealing with shared lines in-

clude the line identifier.

Archibald and Baer report measurement of a number of system organizations, com-
paring the following protocols: write-through, Synapse, Write-once, Illinois, Berkeley,
the original Firefly, and Dragon. They identify two main factoré which contribute to
performance differences between the protocols: the way in which private lines are han-
dled, and the overhead in dealing with shared lines. They conclude that the write-
broadcast protocols perform better in handling shared data, but note that there are nu-
merous implementation considerations that might lead a designer to prefer a different

protocol.

2.5.3 Evaluation Using Real Systems

One of the most significant disadvantages of both analytical and simulation based tech-
niques for evaluating performance of cache coherence protocols is their failure to accu-
rately characterize the workload driving the caches in a system. Analytical techniques
necessarily use very simple models of the workload to make analysis tractable. Simula-
tion based techniques use either synthetic workloads, which again are an approxima-
tion to a real workload, or address traces. The problem with address traces, apart from
the difficulty in acquiring them, is that they are drawn from execution of a single pro-
gram, and do not take account of factors such as context switching, operating system

execution and I/O activity.

A solution to these problems is to measure the performance of real multiprocessor
computer systems using different cache coherence protocols. The difficulty here liesin

collecting measurements from sufficiently many systems at different points on the sys-

93

tem design space. Most existing designs that differ with respect to coherence protocol
also differ in other ways, making it impossible to isolate the effect of coherence protocol

upon performance.

In order to address these difficulties, the Leopard-2 Multiprocessor [5] was designed
to allow a number of different cache coherence protocols to be implemented, with all
other system parametersheld constant. The aim was to run a number of workloads that
typified different application environments, and to measure performance under each
of the cache coherence strategies for each workload. By this means, the effects of oper-
ating system and I/O activity would be taken into account. The expectation was that
the data gathered from such measurements would be used to either validate or refute
previous studies based on analytical and simulation techniques, and to aid designers
in choosing a protocol for a new design. The Leopard-2 system is described in detail in

the next chapter of this thesis.

2.6 Summary

In this chapter a new descriptive framework for cache coherence protocols is presented,
and used as the basis for a survey of previously published protocols. The framework
provides a way of making clear the similarities and differences between the protocols.
This contrasts with other published surveys which adopt the diverse terminologies of
the protocols’ original developers, obscuring the similarities and making comparison

more difficult.

Secondly, the chapter presents a description of the proposed IEEE P896.2 Futurebus
bus protocol mechanisms designed to support implementation of cache coherence pro-
tocols in such a way that modules using different protocols can interoperate and main-
tain coherence. Development of these mechanisms was made tractable by the uniform

descriptive framework. This chapter also shows how the published protocols can be im-

94

plemented in terms of the Futurebus mechanisms, and addresses the issue of verifying

correctness of the mechanisms through the vehicle of behavioural simulation.

Finally, noting the importance of quantitatively analysing the performance of sys-
tems using different protocols, this chapter examines three approaches to quantitative
evaluation, namely analytical, simulation based, and by measurement of real hard-
ware. It shows that, while the first two have a useful role to play in performance evalu-
ation, there is a strong need for application of the third approach, both for the more de-
tailed and accurate data that it produces, and to validate analytical and simulation

models.

95

Chapter 3

The Leopard Multiprocessor

3.1 Background

The Leopard Multiprocessor Project was set up in 1984 to investigate a multiprocessor
architecture suitable for use in a networked workstation environment. A series of
prototypes based on the bus-connected shared memory architecture was designed and
constructed over the period from 1984 to 1992. The first of these, known unofficially
as the Leopard-0, was designed in collaboration with an industry partner. It served as
a means of gaining experience in designing high performance computer systems, and

as the basis of a commercial image display workstation (the QDS-1000 [36]).

The second prototype, the Leopard-1, was a small multiprocessor which included
three CPU boards, connected with other boards via the L-bus [4]. This system was de-
signed to test a number of concepts in bus design, in particular, mechanisms to support
cache coherence protocols. The author’s work in this area lead to involvement with the
IEEE P896 Futurebus Working Group. As a result, some of the ideas from the proposed
Futurebus were used in the L-Bus, and a number of concepts from L-Bus were adopted
in the Futurebus draft specifications, particularly those relating to support for cache
coherence. The Leopard-1 was also used as a hardware platform for testing multipro-
cessor operating systems kernels, to investigate some of the concurrency issues that

arise.

The third prototype designed and constructed as part of the Leopard Project was the

Leopard-2. It was designed to serve as a platform for investigations into cache coher-

96

ence protocols, concurrent operating systems and concurrent applications. The previ-
ous chapter identified the need for experimental work comparing the performance of
the different cache coherence protocols running real applications on real hardware.
The Leopard-2 is design to support such experiments, by virtue of having program-
mable caches attached to the CPUs and connection of a bus monitor to the system bus.
The programmable caches allow different cache coherence protocols to be implemented
within a uniform system environment (cache size, line size, operating system, etc.). The
bus monitor, in conjunction with a logic state analyzer and data acquisition system, al-
lows bus transactions to be traced to observe the behaviour of the cache coherence pro-

tocol in detail.

This chapter describes the Leopard architectural framework, and reviews the or-
ganization of the Leopard-1 and Leopard-2 systems. It then describes the cache design
of the Leopard-2 in detail.

3.2 Leopard Architectural Framework

The three Leopard systems are all based on the Leopard bus connected shared memory
architectural framework, illustrated in Figure 3-1. It consists of a pool of homogeneous
General Data Processors connected via a broadcast system bus to a Shared Memory sys-
tem. This basic structure is augmented with facilities for specialized data processing

and for input/output.

The General Data Processors in a Leopard system provide a pool of processing re-
sources for the execution of system and application tasks. A task ready to run may be
allocated to any General Data Processor, depending on the task scheduling algorithm
used by an operating system or some dedicated application. All of the General Data
Processors in a particular implementation need not be implemented identically. How-

ever, they must provide a uniform execution environment for tasks, so that any task

97

General Special
Data Data
Processor Processor

{ {; &

{} System Bus {}

Device
Processor

<)

| b I Y Z
1 V. I N
Shared Device
Memory Controller

Figure.3-1. Leopard multiprocessor architecture framework.

can run on any processor. This is achieved in Leopard systems by using National Semi-
conductor NS32000 Series processor components, all of which have the same instruc-

tion set architecture [29].

The Shared Memory system provides the primary storage resource, and is shared
amongst all processor components. It is used for storage of task code and data, and by
virtue of being shared, can be used to implement inter-task communications mecha-

nisms.

The System Bus is a broadcast backplane bus, used to connect all modules in a Leop-
ard system. The architectural framework does not specify a particular bus design, other
than requiring it to have high bandwidth, and to support multiple masters using a fair

allocation scheme.

A Special Data Processor is an optional component used to optimize performance of
some particular processing service. For example, array processors, signal processors,

or graphics transformation processors may be included as Special Data Processors.

98

A Device Processor is a processor to which is attached special hardware for interfac-
ing to external devices, such as file storage media, network connections, graphics dis-
plays and other user interfaces. The Device Processor acts as a resource manager, pro-
viding device access services to application tasks running on General Data Processors.
Access to the services provided is gained using the same inter-task communications

mechanisms as are used between application tasks.

A Device Controller is an interface to external devices without an attached processor
to act as resource manager. The services of the Device Controller are accessed using
conventional Control/Status Registers. Any resource management must be done using

tasks running on General Data Processors.

The Leopard architectural framework can serve as the basis for both workstation and
network server systems. A workstation can be constructed with a number of processors,
a shared memory, a device processor for graphics display and user interface (keyboard,
mouse, etc.), and a device processor for network and optional local disk interface. On
the other hand, the architecture can be used to create a variety of servers for particular
applications. General and special data processors can be used to support both general
and application specific computation serving, and various device processors can be
used to provide access services for mass storage, network routing, printing, data ac-

quisition, etc.

3.3 The Leopard-1 Multiprocessor

The Leopard-1 Multiprocessor is a small-scale multiprocessor system consisting of
three processor boards and a colour frame buffer. The organization of the Leopard-1
is shown in Figure 3-2. Each processor has a block of local memory and basic input/out-
put resources. The frame buffer was designed and constructed by C. Fang (see [19] for

a detailed description). A shared memory board was also planned, but proved unneces-

99

Serial Serial Serial

H H H

General General General
Data Data Data
Processor Processor Processor

{; { &
B __@_ B L-Bus @

: Graphics
Memory ' Controller —© Video
|

Figure 3-2. Leopard-1 Multiprocessor organization.

sary, as extra memory in the frame buffer proved sufficient to support the experiments

for which the Leopard-1 was used.

The L-Bus, used as the system bus in the Leopard-1, was designed to support sym-
metric multiprocessor operation. Appendix A describes the data transfer protocol in
detail. It includes all of the transaction types and mechanisms identified in Chapter 2
to support cache coherence protocols. The bus specification also defines a mechanism
for distributing interrupts from device controllers to processors in a Leopard-1 system.
The underlying model is that a device controller requests an interrupts at a priority
level between 1 and 15 (1 being the lowest priority and 15 being the highest). The pro-
cessors execute tasks at priority levels between 0 and 15, with 0 being the lowest priori-
ty used only for the idle task, and 15 being the highest priority used for an uninterrupt-
ible task. When an interrupt is requested at a priority higher than that of the lowest
execution priority of any processor, the interrupt mechanism chooses one of the highest

priority requests and interrupts one of the lowest priority processors. That processor

100

. : . : : A\
then reads an interrupt identifier from the interrupting controller, containing infoyma-
Y

tion about its identity and reason for interrupting, and services the request. The inter-

rupt protocol is described in detail in [4]. The implementation includes fully distri-
buted logic to evaluate the maximum and minimum priorities and to synchronize

operations.

The Leopard-1 multiprocessor was constructed in 1986, and used in a number of ex-
periments, apart from its use to prove the concepts in the bus design. The Minix operat-
ing system [51] was ported to run on a single processor, then subsequently extended to
run as a multiprocessor operating system on the complete Leopard-1 multiprocessor.

The system also supported experiments in parallel graphics operations.

3.4 The Leopard-2 Multiprocessor

The Leopard-2 Multiprocessor is a multiprocessor workstation based on the general
Leopard architectural framework. It includes processor boards each containing an
NS32532 processor chip and a large off-chip second-level cache, an I/O device processor
for network and mass-storage interface, and an error correcting shared memory. A col-
our frame buffer was also designed, but resource limitations prevented its construction.
The Chorus multiprocessor operating system [43], designed for this type of architec-
ture, has been ported, to serve as the basis for applications software. A bus monitor is
also included as part of the hardware, to trace bus transactions as part of the perform-

ance measurement experiments.

Figure 3-3 shows the Leopard-2 architecture. Each module is briefly described here,
followed by more detailed descriptions of the system bus protocols and General Data
Processor design. Detailed descriptions of each of the modules can be found in [5], [6],

(71, 8], [9], [10], [11], [12], [13] and [23].

101

,]-’.I!--_..F\.____ -
~ I

Ethernet SCSI Serial

: T8

General Storage &
Data Comm’s
Processor Processor

@ Futurebus @
- U ¢

Shared Futurebus Graphics
Memory Monitor Controller —© Video

Figure 3-3. Leopard-2 multiprocessor workstation architecture.

The system bus used in the Leopard-2 is based on the IEEE Std. 896.1-1987 Future-
bus [31]. At the time of design, this was the only standard bus providing sufficiently
high throughput, multiprocessor support and protocols for cache coherence. The ways .

in which the Leopard-2 bus differ from the full standard are described in Section 3.5.

Each Leopard-2 General Data Processor (GDP) module uses an NS32532 CPU with
an NS32381 floating point coprocessor. The CPU includes internal instruction and
data caches, and these are augmented with a 512 Kbyte external cache accessed using
physical addresses. The external cache incorporates bus snooping hardware to main-
tain coherence of cached data. The cache controller is designed as a replaceable mod-
ule, to allow different cache coherence strategies to be applied and evaluated. The
GDPs include a local 4 Mbyte error correcting memory for storing processor-local oper-
ating system code and data, and two serial ports for diagnostic use. These local re-

sources are not accessible from the system bus.

102

The Leopard-2 Shared Memory (SM) boards each contain 16 Mbytes of error correct-
ing memory. The memory system uses a three stage pipeline consisting of DRAM ac-
cess, error checking and bus interface stages. The pipeline is reversible to allow both
burst reading and burst writing. By using a 64 bit wide array of static column DRAM
devices, the SM can keep up with peak burst transfer rates on the system bus. This is

important, as most memory transactions are transfers of cache lines or I/O blocks.

The Leopard-2 Storage and Communications Processor (SCP) is a device processor
implemented with an NS32532 CPU. The SCP includes interfaces for Ethernet, SCSI
and four general purpose serial ports. It also contains a local 4 Mbyte error correcting
memory for local driver code and data, and for I/O buffers. This is supported by high
speed block-move hardware for transferring I/O data between buffer memory and

shared memory.

The Leopard-2 Graphics Controller was designed as a high resolution colour frame
buffer device, providing 2 Mpixels of 8 bits per pixel. The design was adapted from the
Leopard-1 graphics controller [19]. The frame buffer is accessible in three areas of the
system bus address space, with each area providing a different pixel organization. The
first area allows the frame buffer to be used as eight bit-mapped layers, with 32 pixels
from a layer accessible in one 32 bit transfer. The second area accesses the frame buffer
as an array of 8-bit-deep pixels, with four complete pixels accessible in a 32 bit transfer.
The third area allows the use of a collection of raster-op processors to transfer image
data between sections of the frame buffer. These flexible access modes allow different

types of display operations to be written easily and efficiently.

The Futurebus Monitor is a bus monitoring device used for system debugging and
tracing. It contains front panel indicators to reflect the state of bus signals, and connec-
tions to a logic analyzer or other tracing instrument for sampling bus states. By pro-
gramming the instrument with appropriate triggering and sample qualification com-

mands, selective traces of particular bus activity of interest can be captured.

103

The Leopard-2 is designed to allow comparison of different coherence protocols oper-
ating under controlled conditions. The cache data path on each Leopard-2 GDP in-
cludes all the resources required for the various protocols, and the controller is a plug-in
module. Different controllers can be designed to implement different coherence proto-
cols, and a suite of benchmark programs can be used to measure relative performance.
The Futurebus Monitor can be used in combination with a trace capturing instrument

to determine the differences in bus behaviour that lead to performance differences.

3.5 The Leopard-2 System Bus

The IEEE Futurebus design is an important part of the Leopard-2 as a platform for ex-
perimentation with cache coherence protocols. At the time of design, it was the only
bus available which provided a general set of mechanisms allowing all protocols of in-
terest tobeimplemented. Indeed, as demonstrated in Section 2.4, a number of different
protocols can coexist within one Futurebus based system. The Futurebus design makes

it feasible to implement plug-in cache controllers for the GDP caches.

Futurebus is an asynchronous 32-bit backplane bus, designed specifically to support
high performance multiprocessor systems. The Futurebus standard is composed of two
parts. The first part, IEEE Std. 896.1-1987 [31], specifies the electrical signailing le-
vels, the mechanical aspects of board, connector and backplane design, and the basic
arbitration, data transfer and system maintenance protocols. The second part, P896.2
[32], was drafted, but never passed as a standard (for numerous reasons, mostly non-
technical). It expands on the first part by specifying a CSR architecture, cache coheren-

cy protocols, and error recovery mechanisms.

At the time of design of the Leopard-2 system, however, the Futurebus standard was
not completely stable, and there were no integrated protocol controller devices avail-

able from commercial or other sources. The Futurebus Working Group was considering

104

proposals for extending the standard to include faster arbitration and data transfer
protocols. Furthermore, the Leopard-2 does not require all of the facilities specified in
the Futurebus standards. For these reasons, the Leopard-2 uses a system bus which

is a subset the Futurebus specifications as they stood at the time of design (end of 1988).

In this section, I will outline the differences between the systems bus protocols im-

plemented in the Leopard-2 and those specified in the Futurebus standards.

3.5.1 Arbitration Protocol

The IEEE Futurebus standard specifies a relatively complex but flexible arbitration
protocol for allocating bus tenure amongst requesting potential masters. It provides
for two classes of modules involved in arbitration: fairness modules and priority mod-
ules. The fairness modules in a system are granted access to the bus in such a way that
none may be starved by any other. This is achieved by arranging for a fairness module
to inhibit further bus requests after a tenure, until all other fairness modules have had
pending requests serviced. Priority modules in a system are allocated strictly ordered
priority numbers (by the system designer or by configuration software). A priority mod-
ule is granted bus access in preference to all fairness modules and all other priority

modules with lower priority.

The signalling used to implement the arbitration protocol uses distributed asyn-
chronous handshaking, based on the three phase synchronization scheme first pro-
posed for the TriMOSBus [49]. A normal arbitration cycle requires six phases to com-
plete, and an additional three phases when all fairness modules must release their bus
request inhibition. The fact that six or nine phases are required is a disadvantage of
this scheme. Firstly, on a fully loaded bus, the time taken for an arbitration cycle to
complete may be longer than a data transfer transaction. Secondly, when the bus is
idle, there is a significant delay before the bus can be allocated to a requester. These

two points indicate that a significant proportion of the bus bandwidth may be wasted

105

whilst waiting for arbitration to complete. The IEEE Futurebus Working Group re-
cognized these problems, and considered revising the arbitration protocol to ameliorate

them.

In order to avoid the problems, a simplified asynchronous parallel arbitration proto-
col was developed for use in the Leopard-2. This new protocol is described in detail in
Appendix B. The same three phase synchronization mechanism is used, but all ar-
bitration cycles take exactly three phases. Furthermore, none of the operations in-
volved in the protocol are delay operations, as required by the Futurebus protocol to
allow distributed priority resolution logic to settle. These changes, in combination,
make the Leopard-2 arbitration protocol potentially faster than that specified for the
IEEE Futurebus.

3.5.2 Data Transfer Protocol

The Futurebus standard protocol for data transfer includes facilities for use in a diverse
range of systems. However, any one system would probably not make use of all of the
facilities. This was the case in the Leopard-2, and so a subset of the facilities was used,

and only those signals required were actually implemented.

Single address and burst transactions

In a Futurebus system, a transaction may be either single-address or burst-address.
A single address transaction consists of an arbitrary number of read and write
transfers, in any order, to one single address. This allows implementation of such oper-
ations as read-modify-write and write-read-verify as single transacti;)ns with only one
address transfer. In the Leopard-2, these types of operation are not supported by the
NS32532 processors, and the cost of implementing the protocols is avoided. All transac-

tions are treated as burst transfers, with a single quadlet (four-byte word) access treated

106

as a very short burst of one transfer. An atomic read-modify-write operation is implem-

ented as an interlocked sequence of a read transaction followed by a write transaction.

Lane disable signals

The Futurebus specification allows a burst transaction to start at any address and pro-
ceed until the master is done or the slave replies with the end-of-data (ED) signal. The
specification does not place any restrictions on the lane disable signals during any of
the data transfers. So, for example, a master may perform a burst write where only one
byte per quadlet is accessed. Having to support such a transaction would greatly in-
crease the complexity of a memory controller, particularly when error checking and cor-
recting circuits are used. The Leopard-2 bus specification states that a transaction may
start at any address, with any lanes disabled for the first transfer, but subsequent

transfers may not have any lanes disabled.

End-of-data signal and cache line wrap

One of the facilities proposed in P896.2 to support cache systems is “cache line wrap- .
around.” The intention is that a cache may start reading a cache line at the quadlet
address requested by its processor, and so satisfy the processor’s request immediately.
It would then read to the end of the line, and wrap around to the beginning to read the
remainder. Two mechanisms are included in .the proposal to implement this. Explicit
wrap involves the memory slave returning ED at the end of the line, thus forcing the
cache master to start another transaction to fetch the remainder of the line. Implicit
wrap involves all modules agreeing that when a burst transaction reaches the end of
a line, ED is not returned; instead, the burst continues at the beginning of the line.
However, the proposal does not specify a way for determining which mechanism is to
be used. The Leopard-2 bus solves the problem by specifying that all burst transactions

wrap at cache line (16 quadlet) boundaries. Hence the ED signal is not required, and

107

isnotimplemented. If a master such as an I/O processor needs to transfer a block longer
than one cache line, it must break the transfer up into line sized packets. The overhead
of doing this is not great, and has the side effect of preventing the bus from being kept

by one master for long periods.

Tag bit

The Futurebus specification provides a 32-bit bus for address and data, and also in-
cludes an extra tag bit (TG) with parity (TP). The tag signal satisfies the same timing
and protocol constraints as the address and data bits, and its use is left unspecified.
Since the Leopard-2 has no use for this tag bit, it is not implemented in the Leopard-2

bus.

Parity generation and checking

The 896.1 Futurebus specification includes four byte-parity signals for the address/
data lines and a parity bit for the command lines. It specifies that if parity checking
is activated, modules should generate and check for odd parity. If a parity error is de-
tected, an error status should be returned to the bus master. However, the 896.1 docu-
ment does not specify how parity checking should be activated, nor what error recovery
mechanisms apply when a parity error is detected. The P896.2 proposal includes such
mechanisms, but they are somewhat complex and expensive to include in a design. For
this reason, the Leopard-2 bus specification requires that parity is always generated
and checked. When an error is detected, an error status is returned to the master and

the transaction is aborted.

Interlocked transaction sequences

Futurebus provides a mechanism to support interlocked sequences of transactions

using the LK command bit during the address transfer of a transaction. A bus master

108

may lock any number of slaves by performing successive transactions with the LK bit
set. All of the slaves must maintain the lock until a transaction is performed with LK
clear, or until the master relinquishes the bus. The scope of a lock on a module (that
is, what resources on the module are locked) is module dependent. A difficulty arises
with this scheme when a master performs an interlocked sequence of transactions and
does not need to perform a subsequent unlocked transaction, and no other module
needs touse the bus. Inthis case, the master remains holder of the bus, and so the inter-
lock is not released. Hence the locked resources remain locked, even though the inter-
locked sequence is complete. To solve this problem, the Futurebus specification allows
the master to perform a special bus arbitration cycle, handing the bus back to itself in
order to release the locks. The cost of this is that the master must recognize when such

a cycle is required, and then initiate it.

The Leopard-2 specification greatly simplifies the interlock mechanism. Asin Futu-
rebus, an interlocked sequence of transactions is signalled using the LK bit during the
address transfers. However, in the Leopard-2, the sequence must consist of a read
transaction followed by a write transaction at the same address and in the same bus
tenure. Theinterlock lasts for just those two transactions, and the scope of the interlock
is the quadlet addressed in the transfers. This scheme greatly simplifies the imple-
mentation of interlock management, particularly in copy-back caches, where the lock

must extend over a copy the quadlet in a dirty line present in a cache.

3.5.3 System Maintenance

The facilities for system maintenance specified in the Futurebus standard are, like the
data transfer protocol, also very general purpose. The Leopard-2 uses a simplified ver-

sion of these facilities, described in this section.

109

Memory organization

The Futurebus bus address space of 4 Gbytes is divided into two sections. One section
of 32 Mbytes is a structured space reserved for module Control and Status Registers
(see below), and the remainder is a linear unstructured space for memory and other re-
sources. Modules may be configured to provide resources at any locations within the
memory area. The Leopard architecture adopts this scheme, but in addition reserves
the bottom 32 Mbytes of memory address space. Modules must not be configured to pro-
vide resources in this area. Instead, modules may use these addresses internally for

private resources such as local memory, local I/O devices, etc.

Bus initialization

The IEEE 896.1 specification provides two levels of bus reset, called bus initialization
and bus reset. They are both activated by a pulse on the bus signal, RE. A short pulse
signals initialization and a long pulse signals reset. Abusinitialization is used toreset
the bus interface on each module to recover from bus protocol problems, and does not
reset the bus clients. A busreset is used to recover from serious system-wide problems,
and resets the whole system to an initial state. The bus initialize and bus reset proto-
cols both involve alignment processes for the arbitration and data transfer buses.
These allow modules to reset all the bus signals to the initial state and to agree when

transactions may proceed.

The Leopard-2 system uses a much simplified initialization protocol, providing only
a system-wide busreset. Apulse of atleast 10 uson the bus RE signal isused to activate
a system reset. On the leading edge of the pulse, all modules and bus interfaces must
return to the initial state and hold that state for as long as RE is asserted. When RE

is released, transactions may proceed.

110

Live insertion and withdrawal

In order to support fault-tolerant and high-availability systems, the Futurebus proto-
colsinclude an option for inserting and removing modules while a system is active. Live
insertion requires that a module be powered and activated by an umbilical cord plugged
into the module’s front panel before being inserted into the backplane. While being in-
serted, it must not drive any bus signals. When the module is inserted, the umbilical
cable may be removed, and the module must then monitor the bus synchronization
lines (strobes and acknowledges) to wait for the beginning of arbitration and data
transfer transactions. When a new transaction starts, the newly added module may
joinin. One of the disadvantages of this scheme is that there is a very short timing win-
dow when the new module must assert its synchronization signals on the bus in order
tojoin the transaction reliably. This timing window is specified as an absolute duration
(53 ns, based on backplane and transceiver delays), and as such is not “technology inde-
pendent”. The Leopard-2 system has no requirement for live insertion or withdrawal,
so the requirements specified by the Futurebus standard to support them are not im-

plemented.

CSR space

The IEEE 896.1 standard and the P896.2 proposal together specify a Control and Sta-
tus Register (CSR) architecture for Futurebus systems. The architecture is based on
geographic addressing, where a module’s slot number in a backplane determines its
CSR addresses in the bus address space. This scheme is extended to allow for addres-
sing modules on multiple buseslinked through bus repeaters. Each module is allocated
a block of CSR address space, and a number of required registers are specified to pro-

vide system maintenance functions.

The CSR architecture used in the Leopard-2 is based on that specified in the IEEE

Futurebus standards, but is significantly simplified. Support for multiple buses is not

111

implemented, nor are most of the specified system maintenance registers. Further-
more, addresses in a block transfer in CSR space are not incremented, thus only one
register can be addressed per transaction. The interested reader is referred to [6] for

further details of the Leopard-2 CSR organization.

Event notification

The IEEE Futurebus standard does not include any backplane signals specifically for
handling interrupts. It is expected that I/O interfaces in a high performance system
will be managed by an intelligent controller, and there will be no need for time critical
interrupts. Instead, the Futurebus provides a mechanism for event notification be-
tween modules using the data transfer bus. A module which needs to be notified of ev-
ents includes 32 Event Registers at a defined location in its CSR space. Any write oper-
ation from the bus to one of these registers triggers an interrupt to the module. The
specification allows the recording of data with an event notification, and allows queu-

ing of events with the bus busy (BS) signal being used to indicate a full queue.

The Leopard-2 has adopted a simplified version of the Futurebus event notification
mechanism, described in detail in [6]. This mechanism is used by device controllers for
device interrupts which are not time-critical, and by the operating system to implement

message passing and task dispatching.

3.6 The Leopard-2 General Data Processor

The Leopard-2 General Data Processors (L2GDPs) in a Leopard-2 system form the
main processing resource for applications and operating system tasks. Each L2GDP
includes an NS32532 CPU and NS32381 FPU, which together form the execution unit,
a large cache memory, local memory and diagnostic I/O resources, and an interface to
the Leopard-2 Futurebus backplane. Figure 3-4 shows the data paths that intercon-

nect these components. A detailed description of the design can be found in [8].

112

Processor

Block
Interrupt Local Diagnostic
i) Controller Memory I/O
Programmable @ @ @
Snooping < >
Cache @ Local Bus
Control/
Status Regs
Futurebus
Interface

< @ Futurebus >

Figure 3-4. The main functional units and data paths of the Leopard-2 General Data Processor
(L2GDP).

The processor block contains the execution unit and the clock generator for the
L2GDP module. The processor’s address, data and control buses connect directly to the
cache, allowing high speed transfers of data between the two. The cache is connected
to a local bus for access to local resources, and to the Futurebus interface for access to

shared system resources.

The local resources consist of an interrupt controller, a local memory block including
boot EPROM, static RAM and error correcting dynamic RAM, and a diagnostic I/O
interface consisting of two RS-232 serial ports. The local bus is also used for processor

access to registers in the L2GDP’s CSR block.

The Futurebus interface is used by the cache to provide access to system shared mem-

ory and to other modules’ CSR spaces. When the cache is not directly controlling the

113

bus as a master, the address and data paths between the cache and the Futurebusinter-
face are used to snoop on bus transactions, in order to implement a cache coherence pro-
tocol. This arrangement of buses (a local bus separate from the Futurebus interface
data paths) allows internal cache operations and local bus accesses to proceed concur-

rently with Futurebus snooping.

3.7 The L2GDP Programmable Cache Design

The L2GDP cache consists of separate data path and control sections. The cache data
paths contain the memory, buffers and comparators used to process addresses and data.
The cache controller is a plug-in module which controls operation of the data path. The
reason for making the controller a plug-in unit is to allow different control algorithms
to be used, implementing different cache coherence protocols. This is how the Leop-

ard-2 acts as a platform for experimentation with cache coherence protocols.

3.7.1 Cache Organization

The L2GDP cache is a 512 Kbyte 2-way set associative physical address cache. The
cache memory can be considered as a two dimensional array of entries, as shown in
Figure 3-5. The two columns are called sections, and the 4096 rows are the sets. Each
entry in the cache consists of a line of data, a tag indicating the physical address of the

line, and a set of attributes.

The NS32532 internal instruction and data caches use a line size of 16 bytes, whereas
the P896.2 specification requires that cache line attributes be associated with lines of
64 bytes. For this reason, the Leopard-2 external cache uses a line size of 64 bytes, and
divides each line into four sectors of 16 bytes each, corresponding to the CPU internal
cache line size. The internal and external caches jointly satisfy the inclusion property
that if a 16 byte line is valid in the internal cache, then the 64 byte line of which it is

a sector is valid in the external cache.

114

Section 0 Section 1

Ent

“ Tag
Set 1 < i/ Line

T Attributes
Set 2 o
Set 3

L
7,
/
Set 4095

Figure 3-5. Organization of the L2GDP cache memory.

The attributes stored in each entry are shown in Table 3-1. The attributes FB_valid,
FB_owned and FB_exclusive are defined by the Futurebus protocol. FB valid indi-
cates that the line is valid in the cache, and may be read by the CPU. FB owned indi-
cates that the line has been modified with respect to memory, and the cache must either
copy the line back to memory or pass ownership to another cache. FB_exclusive indi-
cates that the line is the only cached copy, and may be written to by the CPU without

notifying other caches.

Attribute Purpose

FB_valid Line is valid

FB_owned Line is owned

FB_exclusive Line is exclusive

Ivalid<3:0> Sector may be valid in CPU instruction cache
Dvalid<3:0> Sector may be valid in CPU data cache
Dirty_Sector<3:0> Sector has been modified

Spare For use by cache controller

Table 3-1. Leopard-2 cache entry attributes.

115

31 1817 6 5 210
Tag Set Index Qu"ild-let

Index

Figure 3-6. Cache address fields.

The attributes Ivalid<3:0> and Dvalid<3:0> are used to maintain the inclusion prop-
erty. The cache controller can infer from the CPU control signals when a sector is copied
into the CPU’s internal instruction or data cache, and must set the appropriate attrib-
ute bits in the external cache entry. When the external cache entry is subsequently in-
validated, the corresponding internal cache entries must also be invalidated using the
CPU’sinvalidation control pins. The Ivalid and Dvalid attributes only indicate that the
sector may be valid in an internal cache, not that they definitely are valid. This is be-
cause the CPU’s invalidation pins can only cause invalidation of a whole set, not an in-
dividual entry in the internal cache. Further more, sectors may be invalidated in the
internal cache by software CINV (cache invalidate) instructions, without the external

cache being notified.

A CPU address is divided into a number of fields for use within the cache, as shown
in Figure 3-6. The set index is used to select the set within the cache memory where
the addressed line may reside. Ifthe line is stored in the cache, the tag field of the cache
entry is set to the tag field of the address. The quadlet index field is then used to select
the quadlet within the line.

3.7.2 Cache Data Paths

Ablock diagram of the L2ZGDP cache data paths is shown in Figure 3-7. The cache has
separate memories for the data, tag and attribute fields of cache entries. Furthermore,
the tag and Futurebus coherence attributes of each entry are duplicated for the snoop, allow-

ing the snoop to accesses tags and attributes without interfering with the CPU. How-

116

LT1

Buffered Futurebus Address/Data Bus

AY,

<K

>
= . o
CPU Cache Data Bus FEN { S
Data
Cache Address Bus
— A\ Addr
—/|Latch
CPU
Addr
Processor Processor K/ NS
Attributes Tags
>k \} Copyback
é\:ire:i A\/ Cache v Av Aggl’ress Write
atcr))r Data RAM Compar- Buffer
Snoop Snoop 4 ator
Attributes Tags
—NJ Addr TT TT
—/|Latch
Snoop Address Bus
Local Address Bus :>
NS >
Local Data Bus
NS

-

Figure 3-7. Address and data paths within the L2GDP cache.

ever, both copies of a tag or attribute must be updated when a modification is made.
The cache also include a write buffer for queuing writes to memory, and for reordering
the copy-back and fetching of lines during replacement. When a line is replaced, the
controller may copy the line into the buffer whilst waiting for access to the Futurebus.
It may then fetch the new line from memory and satisfy the CPU request, before writing

the replaced line back to shared memory.

When the CPU initiates a memory reference, the tag and set index fields are latched
into the CPU addresslatch, and the quadlet index bits are input to the cache controller.
The latched address may be used as the cache address, along with low order quadlet

index bits supplied by the cache controller.

When a Futurebus transaction is started, the tag and set index fields of the Future-
bus address are latched in the snoop address latch for use in the snooping function of
the cache. These too may be used as the cache address when the snoop address trans-

ceiver is enabled in the right direction.

The address comparator allows the cache controller to compare the CPU address with
the snoop address. The controller performs this comparison when the CPU requests
access to a line while a Futurebus transaction is in progress, or vice versa. If both refer
to the same line in the shared memory address space, then mutual exclusion over access
to the tags, attributes and data must be enforced, for the reasons discussed in Sec-

tion 2.2.11.

The data memory is a high speed static RAM array used to store the cached lines.
It is organized as two sections, each of 64K 32-bit quadlets. The cache controller selects
a section to access, and the quadlet within an entry is selected by the set index and

quadlet index fields of the cache address.

The CPU tag memory is an array of high speed tag-RAM devices (a RAM with a built-

in comparator). The array is organized as two sections, each with 4096 14-bit tags. The

118

set index field of the cache address is used to select a set of tags. When a cache lookup
is being done, the tag-RAM in each section compares the tag field of the cache address
with the selected stored tag and generates a hit status output bit. When aline isloaded
into the cache, the cache controller selects one section, and the tag field is stored in the
selected entry. When a line is being replaced, the cache controller selects a section and
disables the tag part of the CPU address latch. The tag-RAM then supplies the tagfield

to form the address of the line being replaced.

The CPU attribute memory is organized as two sections of 4096 16-bit attribute
words. The set index field of the cache address is used to select a set of attributes. The
attributes for each section are connected separately to the cache controller. The attrib-
ute memory also contains one bit per set for implementing a least recently used (LRU)

replacement policy. The cache controller can update this bit on each cache hit.

The snoop tag memory stores duplicates of the CPU tags. It uses the latched snoop
address instead of the cache address. Whenever the CPU tag memory is modified, the
same modification must be made to the snoop tag memory. This requires disabling the
snoop address latch output and enabling the snoop address transceiver to transmit the

cache address onto the snoop address bus.

The snoop attribute memory is a partial duplicate of the CPU attributes. Only the
FB valid, FB_owned and FB_exclusive attributes are included, as they are the only
ones required by the snoop. This memory must be modified whenever the CPU attrib-
utes are modified. Furthermore, if the snoop needs to modify these attributes, the CPU
copy must also be modified. This requires disabling the CPU cache address latch output
and enabling the snoop address transceiver to transmit the snoop address onto the
cache address bus. This address path is also used when the snoop needs to access the

cache data memory when it is acting as a third party in a Futurebus transaction.

119

The write buffer is a 64-entry FIFO for queuing data to be written to memory. The
size of the buffer was chosen based on readily available FIFO devices that were sufficient for an en-
tire flushed cache line. Each entry contains a quadlet of data, the address of the data, and
a set of flag bits indicating end of a burst, valid bytes within the quadlet, whether the
address is a local or Futurebus address, and whether the cache is retaining a copy of
the written data. The cache controller generates the flag bits. When the write buffer
is used for queuing single-quadlet write-through operations to non-cachable data, the ad-
dress and data are supplied by the CPU, the end of burst flag is set, and the cache-copy
flagis cleared. When the write buffer is used to reorder the copy-back of a line during
replacement, the address is derived from the set index and the tag value stored in the
CPU tag memory and the data is read from the cache data memory. Only those sectors
which are recorded as dirty (having the Dirty Sector attribute set) need to be written
into the buffer. The end of burst flag is set by the cache controller at the end of a run

of dirty sectors within the line. The cache-copy flag is cleared

The copy-back address comparator stores the address of an owned cache line when
it has been copied into the write buffer for replacement. The cache snoop then uses this
comparator to check each Futurebus transaction for a hit with the address of the re-
placed line. If a hit occurs, the transaction may not proceed and must be retried later.
This is an example of the use of the deadlock potent busy response referred to in
Rule (21) of the P896.2 coherence rules set, and ensures that coherency is maintained
with the line in the write buffer. Because the comparator can only store one address,
only one owned line can be queued in the write buffer. However, multiple write-

throughs may be queued, and these may coexist with a replaced line in the write buffer.

Note that the lack of snooping on buffered uncachable data does not lead to con-
sistency problems. Suppose a processor A issues a write to an uncachable location, then
synchronizes with a processor B, followed by B reading the uncachable location. If the

write data is still buffered when the synchronization operation occurs, the buffer in A

120

is flushed before the synchronization operation completes. The flushing is forced as a

result of the read operation that is part of the synchronization operation in A.

The address buffer and data transceiver between the cache buses and the local bus
are used for cachable memory accesses to the local memory and for I/O accesses to I/O
modules on the local bus. The write buffer outputs also connect to the local bus. The
address buffer and data transceiver between the local bus and buffered Futurebus are
used for accesses to Futurebus shared memory and Futurebus CSR space. These ac-
cesses from the CPU or cache are routed via the local bus. In the case of the snoop par-

ticipating as a third party in a Futurebus transaction, only the data bus is used.

3.8 Cache Operation

This section firstly outlines the types of requests the CPU on the Leopard-2 General
Data Processor makes of the external cache. It then describes the detailed operations
that must be performed by the cache data path in response to requests involving cach-
able data, and to Futurebus transactions observed by the snoop. These operations are
managed by the cache controller, which must be implemented as a set of interacting
sub-controllers: a CPU request controller, a snoop controller and a write buffer con-
troller. Note that in the actual implementation, many of the operations described here

may be performed concurrently. They are presented here sequentially for clarity.

3.8.1 CPU Requirements of the External Cache

The CPU accesses the external cache to fetch instructions, to read and write data, and
to fetch and update virtual memory page table entries. From the point of view of the
external cache, these can all be treated simply as memory references, without having
to distinguish between the different kinds of data. The CPU also accesses non-cachable

memory data and I/O device registers using the same memory bus as cachable data, so

121

the external cache must deal with these, transparently accessing the memory or I/O de-

vices as required.
The operations requested by the CPU that must be handled by the external cache are:

* cachable read
* cachable write
* non-cachable read (for non-cachable data or I/O register)

* non-cachable write (for non-cachable data or I/O register)

interlocked read-modify-write transaction

Reads may be of single words or bursts of multiple words. Writes are always to single
words (or parts of single words), since the CPU internal data cache is write-through.
The external cache can treat all accesses uniformly as bursts, taking a single word read
to be a very short burst of only one word. The NS32532 processor uses bursts to fetch
up to a sector of data at a time to fill its internal instruction buffer or an internal cache
line. Bursts may start at any address, and in the case of instruction fetches, may only
continue as far as the end of the sector (aligned 16 byte block). Bursts for data fetches, _
however, may wrap back to the beginning of the sector and continue to the word preced-
ing the ﬁrst fetched in the sector. This allows the CPU to fetch a word immediately to
satisfy an internal cache miss, then fill the rest of the internal cache line while the exe-

cution unit is processing that word.

The CPU performs an interlocked transaction by first completing any outstanding
bus transactions, then asserting the ILO signal. Next, it performs the read followed
by the write with no intervening transactions. When they are complete, it negates the
ILO signal and resumes normal bus operation. The external cache treats data operated
on using interlocked transactions as cachable data, and relies on the cache coherence
protocol and the system bus protocols to serialize access. If it has a hit, it treats it as

a write hit, acquiring the Futurebus first, then performing the read locally followed by

122

any transaction required for the write. If it has a miss, it acquires the Futurebus,
fetches the line as a write miss, then performs the read locally followed by any transac-

tion required for the write.

One problem that arises in a multiprocessor with multi-level caches is that cache co-
herence must also be maintained between levels of caches. In the L2GDP, the data in
the internal cache must be kept consistent with that in the external cache, and hence
with shared memory. Since the NS32532 instruction cache is read-only and the data
cache is write-through, this reduces to ensuring that if an external cache line is invali-
dated or updated by the snoop, any portion of that line which is cached internally is also
invalidated. The external cache maintains a set of attributes for each line to indicate
which of the internal caches may have a copy of each sector. The CPU provides a set
of pins to allow the external cache to selectively invalidate internal cache data. It can
invalidate the entire instruction cache or data cache, or Jjust a set of either cache. The
external attribute bits cannot accurately determine whether a sector is internally
cached, for two reasons. Firstly, the data cacheis 2-way set associative, but the facility
for externally forcing invalidation only allows for an entire set to be invalidated. Thus
the external cache attributes for a sector may indicate that it is internally valid, even
after it hasbeen invalidated as a side effect of being in the same set as some other sector
which was invalidated. Furthermore, the CPU may execute a CINV (cache invalidate)
instruction to invalidate an address in an internal cache. The external cache does not

include means of detecting this.

3.8.2 CPU Cachable Read and Write Requests

When the CPU initiates a cachable read or write request, it provides the starting ad-
dress on its address bus. For a read, it expects the data to be provided on its data bus
after two clock cycles. For a write, the CPU provides the data at the same time as the

address, and expects it to be accepted after two clock cycles. The external cache delays

123

the CPU until it has data available for aread or until it has accepted the data for a write.

The operations performed by the external cache are as follows.

Cache lookup
1. The CPU address is saved in the CPU address latch.

2. Arbitration is performed with the snoop controller to gain mutual exclusion to

the addressed line of the shared memory address space.

3. The set-index field of the cache address is used to look up the CPU tag and
attribute memories in the addressed set. The tag field of the cache address is
compared with the fetched tags in each section of the tag memory. Concur-
rently, the cache address is used to access the line in the data memory, in the

optimistic expectation of a hit.

4. If one of the tag memories signals a hit, and the corresponding attribute
memory has the FB_valid bit set, a hit in the external cache is indicated, and
the corresponding section is selected. The actions for handling a read hit and

a write hit are described below.

5. If neither tag memory signals a hit, or if one does but the corresponding at-
tribute memory has the FB_valid bit clear, a miss in the external cacheé is in-
dicated. If the coherence protocol requires a memory read transaction to fetch
the line, a valid line in the cache may need to be replaced. The coherence pro-
tocol may also require a memory write transaction. The actions for handling

these cases are described below.

Handling a read hit

1. The selected section of the data memory is enabled onto the CPU/cache data
bus and the data from the selected entry is accepted by the CPU. The cache

124

allows the CPU to continue. The CPU provides successive addresses to the
cache data memory, accepting each word as it is placed on the CPU data bus

by the data memory.

2. When the CPU has accepted the last word in the burst, it terminates the read

request.

3. The cache uses bits 4 and 5 of the CPU address to determine the sector
number, and sets the Ivalid or Dvalid attribute bit for the line, depending on
whether the read request is an instruction or data fetch. The LRU attribute

bit is also set or cleared, depending on which section is selected.

4. The updated attributes are written back to the selected section of the CPU at-

tribute memory.

5. The cache releases the mutual exclusion lock on the line. The cache operation

is then complete.

Handling a write hit

1. If the coherence protocol requires a bus transaction and the addressed line is

in the shared memory address space, the following occurs:

1.1. If the cache has Futurebus tenure, it skips to step 1.6. (The cache has
Futurebus tenure if the hit follows immediately from a write miss and

tenure was held in order to perform this transaction.)

1.2. Otherwise, the cache must release the mutual exclusion lock on the
line requested by the CPU, in order to avoid deadlocking with some

other cache which may be waiting to access that line.

1.3. The cache arbitrates for access to the Futurebus.

125

1.4. The mutual exclusion lock for the line is re-acquired. No arbitration is
necessary, as the cache is master of the Futurebus, thus inhibiting any

action by the snoop.

1.5. The FB_valid attribute is re-read and checked to see if the cache still
has a hit for the line. (The line may have been invalidated by the
snoop since the attributes were previously checked.) If the line is in-
valid, the write hit is turned into a write miss, and operation proceeds
as described below (handing a miss). Otherwise operation continues

with step 1.6.

1.6. The write buffer is flushed, as described in Section 3.8.5, but without
releasing tenure of the Futurebus. (The write buffer must be flushed

in order to maintain sequential consistency of memory operations.)

1.7. The address buffers are enabled to pass the address from the cache ad-
dress bus via the local address bus to the buffered Futurebus address
bus, and the data buffers are enabled to pass data from the CPU/cache
data bus via the local data bus to the buffered Futurebus data bus.

1.8. The required Futurebus write transaction is initiated, writing from the
selected section of the cache data memory. The type of Futurebus
transaction used depends on the particular cache coherence protocol

being implemented.
1.9. The address and data buffers are disabled and the Futurebus released.

2. If the coherence protocol requires a bus transaction and the addressed line is

in the local memory address space, the following occurs:

2.1. The write buffer is flushed, as described in Section 3.8.5. (The write
buffer must be flushed in order to maintain sequential consistency of

memory operations.)

126

2.2. The address buffers are enabled to pass the address from the cache ad-
dress bus to the local address bus, and the data buffers are enabled to

pass data from the CPU/cache data bus to the local data bus.

2.3. Alocal bus write transaction is initiated, writing from the selected sec-

tion of the cache data memory.
2.4. The address and data buffers are disabled.

3. The cache uses bits 4 and 5 of the CPU address to determine the sector
number, and, if necessary, sets the Dirty Sector attribute bit for the line. The
Futurebus attribute values are modified if required by the cache coherence
protocol. The LRU attribute bit is also set or cleared, depending on which

section is selected.

4. The updated attributes are written back to the selected section of the CPU at-

tribute memory.

5. If the Futurebus attribute values are modified, the new values are written to

the snoop attribute memory as follows:

5.1. Arbitration is performed with the snoop controller to gain access to the

snoop attribute memory.

5.2. The address buffer is enabled to Ipass the address from the cache ad-

dress bus to the snoop address bus.
5.3. The new attribute values are written into the snoop attribute memory.

5.4. The address buffer between the cache and snoop address buses is dis-

abled, and access to the snoop attribute memory is relinquished.

6. The write enable signal of the selected section of the data memory is enabled,

causing it to write the data from the CPU/cache data bus.

127

7. The cache allows the CPU to continue, and releases the mutual exclusion lock

on the line. The cache operation is then complete.

Handling a miss

1. The LRU and FB_valid attribute bits are used to select the least recently

used or vacant section of the addressed set.

2. If a read transaction is required and any of the Dirty Sector attribute bits of

the selected entry are set, the line in the entry must be replaced. To do this,

dirty sectors must be written back to shared memory. The sectors are first co-

pied into the write buffer as follows:

2.1.

2.2.

2.3.

2.4.

The cache must release the mutual exclusion lock on the line requested
by the CPU, in order to avoid deadlocking with some other cache which

may be waiting to access that line.

If the write buffer is still busy with a previous copy-back or there is in-
sufficient room in the write buffer for the replaced line, the cache must
wait until the previous copy-back has been flushed to memory (freeing
the copy-back address comparator to hold the address of the newly re-

placed line) and there is sufficient room.

The tag field output of the CPU address latch is disabled, and the tag
from the selected section of the tag memory is enabled onto the cache
address bus in its place. This, together with the set index from the
CPU address latch, forms the shared memory address of the line to be

replaced.

The cache must acquire a mutual exclusion lock on the replaced line.
This is necessary to avoid a race between the snoop and the cache.

Without the lock, if the snoop determines that it must intervene on a

128

transaction to supply the replaced line, by the time the snoop is

granted access to the cache bus the line may no longer be in the cache.

2.5. The FB_valid and Dirty Sector attributes of the replaced line are re-
read and checked to see if the line still needs to be copied back. (The
attributes may have been changed by the snoop since they were previ-
ously checked.) If copy-back is no longer needed, operation continues

from step 2.8 below.

2.6. The address of the replaced line is written into the copy-back address

comparator.

2.7. Each dirty sector is then read from the selected section of the data
memory, word at a time. For each word, a write buffer entry is pushed
into the write buffer FIFO. An entry consists of the word of data, its
address, four byte-enable bits (all set in this case), a flag to indicate
whether the address refers to a local memory or a shared memory lo-
cation, an end-of-block flag, and a cleared cache-copy flag. The end-of-
block flag is set for the last word in a contiguous run of addresses. Ad-
jacent dirty sectors are merged into a block, whereas non-dirty sectors

are not written back.
2.8. The mutual exclusion lock on the replaced line is released.

2.9. The tag output from the tag memory is disabled, and the tag field from
the CPU address latch is re-enabled, forming the address of the re-

quested line on the cache address bus again.

3. If a read bus transaction is required and the line to be read is a local memory

line, it is fetched from local memory as follows:

3.1. The write buffer is flushed, as described in Section 3.8.5. If servicing

this cache miss involved buffering a replaced line (described in step 2

129

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

above), all write buffer entries up to but not including the replaced line
are flushed, otherwise the entire write buffer is flushed. (The write
buffer must be flushed in order to maintain sequential consistency of

memory operations.)

The address buffer is enabled to pass the address from the cache ad-
dress bus to the local address bus, and the data buffer is enabled to

pass data from the local data bus to the CPU/cache data bus.

A local bus burst read transaction is initiated, fetching the line and

writing it into the selected section of the cache data memory.
The address and data buffers are disabled.

The FB_valid and FB_exclusive attributes of the line are set, and the

FB_owned and Dirty Sector attributes are cleared.

The tag field of the cache address bus is written into the selected sec-

tion of the cache tag memory.

Arbitration is performed with the snoop controller to gain access to the

snoop tag and attribute memories.

The address buffer is enabled to pass the address from the cache ad-

dress bus to the snoop address bus.

The FB_valid and FB_exclusive attributes of the line are set, and the

FB_owned attribute is cleared.
The tag field of the address is written into the snoop tag memory.

The address buffer between the cache and snoop address buses is dis-
abled, and access to the snoop tag and attribute memories is relin-

quished.

The CPU request is then completed as described above for a hit.

130

4. If a read bus transaction is required and the line to be read is a shared mem-

ory line, it is fetched from shared memory as follows:

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

If the cache has Futurebus tenure, it skips to step 4.5. (The cache has
Futurebus tenure if the miss follows immediately from a write hit at a
shared line, and the line was invalidated by the snoop while the cache

was acquiring tenure.)

Otherwise, the cache must release the mutual exclusion lock on the
line requested by the CPU, in order to avoid deadlocking with some

other cache which may be waiting to access that line.
The cache arbitrates for access to the Futurebus.

The mutual exclusion lock for the line is re-acquired. No arbitration is
necessary, as the cache is master of the Futurebus, thus inhibiting any

action by the snoop.

The write buffer is flushed, as described in Section 3.8.5. If servicing
this cache miss involved buffering a replaced line (described in step 2
above), all write buffer entries up to but not including the replaced line
are flushed, otherwise the entire write buffer is flushed. (The write
buffer must be flushed in order to maintain sequential consistency of
memory operations.) The Futurebus tenure is not released after flush-

ing the write buffer.

The address buffers are enabled to pass the address from the cache ad-
dress bus via the local address bus to the buffered Futurebus address
bus, and the data buffers are enabled to pass data from the buffered

Futurebus data bus via the local data bus to the CPU/cache data bus.

A Futurebus read transaction is initiated, fetching the line and writing

it into the selected section of the cache data memory. The type of Futu-

131

rebus transaction used depends on the particular cache coherence pro-

tocol being implemented.
4.8. The address and data buffers are disabled.

4.9. If the coherence protocol does not require a write bus transaction to fol-
low the read transaction, or if the write buffer is empty, the Futurebus

tenure is released.

4.10. The FB valid, FB_exclusive and FB_owned attributes of the line are
set according to the cache coherence protocol being implemented, and

the Dirty Sector attributes are cleared.

4.11. The tag field of the cache address bus is written into the selected sec-

tion of the cache tag memory.

4.12. The address buffer is enabled to pass the address from the cache ad-

dress bus to the snoop address bus.

4.13. The FB_valid, FB_exclusive and FB_owned attributes of the line are
set in the snoop attribute memory according to the cache coherence

protocol being implemented.
4.14. The tag field of the address is written into the snoop tag memory.

4.15. The address buffer between the cache and snoop address buses is dis-

abled.

4.16. The CPU request is then completed as described above for a hit.

3.8.3 CPU Flush

No provision is made in the L2ZGDP cache for allowing the CPU to specify that a cache
line be flushed. Flushing only occurs as part of line replacement on a read or write miss.

The reason an explicit flush operation is not provided is that a cache coherence protocol

132

automatically handles the cases where a flush would otherwise be required, such as
process migration and I/O operations. In the case of process migration, the process’ con-
text is stored in shared physical memory. Reference to it from a new processor involves
a cache miss on that processor, and the cache coherence protocol ensures that any modi-
fied part of the context is supplied by the old processor using intervention or reflection.
In the case of I/O operations, the problem to consider is an I/O buffer written to by a
processor and subsequently read by an I/O controller. Again, the cache coherence proto-
col ensures that, when the I/O controller performs a read transaction to shared memory,

the cache supplies any parts of the buffer not yet written back.

3.8.4 -Snoop Operation

When a transaction occurs on the Futurebus, the snoop must examine its copy of the
cache tags and attributes to determine if it should be involved in the transaction. It
must follow the Futurebus cache coherence rules described in Section 2.4.2, customized
for whichever cache coherence protocol is being implemented. The operations per-

formed by the snoop are as follows.

Cache lookup
1. The Futurebus address is saved in the snoop address latch.

2. Arbitration is performed with the CPU request controller to gain mutual ex-

clusion to the addressed line of the shared memory address space.

3. A check is made for a write buffer hit, as described below. If a write buffer

miss is indicated, operation proceeds.

4. The set-index field of the snoop address is used to look up the snoop tag and
attribute memories in the addressed set. The tag field of the snoop address is

compared with the fetched tags in each section of the tag memory.

133

5. If one of the tag memories signals a hit, and the corresponding attribute
memory has the FB_valid bit set, a hit in the cache is indicated, and the cor-
responding section is selected. The actions for handling a hit for different

kinds of Futurebus transactions are described below.

6. If neither tag memory signals a hit, or if one does but the corresponding at-
tribute memory has the FB_valid bit clear, a miss in the cache is indicated.
In this case, the snoop controller relinquishes mutual exclusion on the ad-

dressed line, and remains unselected for the remainder of the transaction.

Hit requiring no action

The snoop relinquishes the mutual exclusion lock on the line and remains unselected

for the course of the transaction.

Hit requiring simple attribute modification

If the only action required of the snoop as a result of the transaction is that it relinquish
ownership or exclusiveness, it must modify the attributes in both attribute memories

at the end of the transaction as follows:

1. The new attributes are written back to the selected section of the snoop at-

tribute memory.

2. Arbitration is performed with the CPU request controller to gain access to the

CPU attribute memory.

3. The address buffer is enabled to pass the address from the snoop address bus

to the cache address bus.

4. The attributes are read from the selected section of the CPU attribute mem-

ory, using the set-index field of the address to access the required set.

5. The attribute values are modified using the new Futurebus attributes, and

are written back to the selected section of the CPU attribute memory.

134

6. The address buffer between the snoop and cache address buses is disabled,
access to the CPU attribute memory is relinquished, and the mutual exclu-

sion lock on the line is relinquished.

Hit requiring invalidation

If the action required of the snoop is that it invalidate the line in the cache, then at the
end of the transaction it must modify the attributes in both attribute memories and in-

validate any sectors of the line cached by the CPU. It does this as follows:

1. The Futurebus attributes are cleared and written back to the selected section

of the snoop attribute memory.

2. Arbitration is performed with the CPU request controller to gain access to the

CPU attribute memory.

3. The address buffer is enabled to pass the address from the snoop address bus

to the cache address bus.

4. The attributes are read from the selected section of the CPU attribute mem-

ory, using the set-index field of the address to access the required set.

5. For each sector in the line for which the Ivalid or Dvalid attribute bit is set, a

cache invalidation command is applied to the CPU cache invalidation bus.

6. The attribute values are all cleared, and are written back to the selected sec-

tion of the CPU attribute memory.

7. The address buffer between the snoop and cache address buses is disabled,
access to the CPU attribute memory is relinquished, and the mutual exclu-

sion lock on the line is relinquished.

Hit requiring intervention or reflection

If the snoop determines that it must act as a third party in the Futurebus transaction

by intervening or reflecting, it does so as follows:

135

1. Arbitration is performed with the CPU request controller to gain access to the

cache address and data buses.

2. The address buffer is enabled to pass the address from the snoop address bus

to the cache address bus.

3. The data buffers are enabled to pass data from the cache data bus, via the

local data bus, to the buffered Futurebus data bus.

4. For each quadlet of data to be supplied by the cache, the snoop controller
supplies the quadlet offset address within the line, and the set-index is sup-
plied from the snoop address latch. This combined address is used to access

the data memory, and the data supplied to the Futurebus.
5. At the end of the transaction, the data buffers are disabled.

6. If any Futurebus attributes for the line need to be modified, the snoop per-

forms the appropriate actions as described above.

7. The address buffer between the snoop and cache address buses is disabled,
access to the cache buses is relinquished, and the mutual exclusion lock on

the line is relinquished.

Hit involving broadcast data

If the Futurebus transaction is a broadcast, and the cache chooses or is compelled to

accept the data, it does so as follows:

1. Arbitration is performed with the CPU request controller to gain access to the

cache address and data buses.

2. The address buffer is enabled to pass the address from the snbop address bus

to the cache address bus.

3. The data buffers are enabled to pass data to the cache data bus, via the local
data bus, from the buffered Futurebus data bus.

136

4. For each quadlet of data broadcast, the snoop controller supplies the quadlet
offset address within the line, and the set-index is supplied from the snoop
address latch. This combined address is used by the data memory, and the

data is supplied from the Futurebus.
5. At the end of the transaction, the data buffers are disabled.

6. If any Futurebus attributes for the line need to be modified, the snoop per-

forms the appropriate actions as described above.

7. The address buffer between the snoop and cache address buses is disabled,
access to the cache buses is relinquished, and the mutual exclusion lock on

the line is relinquished.

Hit in the write buffer

When a Futurebus transaction occurs, there may be a line in the write buffer waiting
to be written back to shared memory. For the line to be in the write buffer, it must have
been owned by the cache. Hence, in order for coherence to be maintained, the Future-
bus transaction must be aborted and retried after the line is written back. This is
achieved by having the cache return a “busy” status during the address transfer part
of the transaction. The way in which the snoop checks for and handles a hit in the write

buffer is as follows:

1. If there is a replaced line waiting in the write buffer to be copied back to
shared memory, the copyback address comparator compares the latched Futu-
rebus address with the address of the replaced line. The Futurebus address
stored in the snoop address latch is compared with the address stored in the

copy back address comparator.

2. If the addresses refer to different lines in the shared memory address space, a

write buffer miss is indicated, and the Futurebus transaction may proceed.

137

3. If the addresses refer to the same line, a write buffer hit is indicated, and the
snoop may not proceed with the Futurebus transaction. Instead, it asserts
the BS status signal, causing the transaction master to abort the transaction,
relinquish its bus tenure, and retry later. The snoop controller releases the
mutual exclusion lock on the line. Since Futurebus arbitration is fair, the write
buffer has an opportunity to flush its FIFO, writing the line back to shared

memory, before the transaction master retries the transaction.

3.8.5 Asynchronous Writes from the Write Buffer

When the write buffer FIFO is not empty, the write buffer controller asynchronously
initiatés bus transactions to complete the buffered writes. In addition, it may be forced
to flush the write buffer in order to maintain the necessary ordering of memory reads
and writes required for sequential consistency. Data buffered in the FIFO may consist
of a mix of local memory and shared memory data. There may be a number of non-cach-
able write-through entries, and at most one write-back entry. The write-back entry is
distinguished from the write-through entries by being one or more bursts of data,
rather than a single quadlet. The way in which the write buffer controller performs the

write operations is as follows .

1. If the entry at the head of the FIFO queue has the flag indicating local mem-
ory data set, the write buffer controller performs a local memory write as fol-

lows:

1.1. The write buffer controller arbitrates with the CPU request controller

for access to the local bus.

1.2. If the end of burst flag for the entry is clear, the entry is part of a line
being written back to local memory, so the address stored in the copy-

back address comparator is cleared.

138

1.3.

1.4.

1.5.

1.6.

A local bus write transaction is started, with addresses and data being

supplied from successive entries from the FIFO.

When an entry with the end of burst flag set is written, the local bus

transaction is terminated.

If the entry now at the head of the FIFO queue is another local memory

write, operation repeats from step 1.2.

Access to the local bus is relinquished.

2. If the entry at the head of the FIFO queue has the flag indicating local mem-

ory data cleared, the write buffer controller writes to shared memory on the

Futurebus as follows:

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

The write buffer controller arbitrates with the CPU request controller
for access to the local bus, and, if necessary, arbitrates for access to the

Futurebus.

If the end of burst flag for the entry is clear, the entry is part of a line
being written back to shared memory, so the address stored in the copy-

back address comparator is cleared.

A Futurebus write transaction is started, with the initial address being
supplied from the head entry of the FIFO, and data being supplied

from the head and successive entries.

When an entry with the end of burst flag set is written, the Futurebus

transaction is terminated.

If the entry now at the head of the FIFO queue is another shared mem-

ory write, operation repeats from step 2.2.

Access to the local bus and tenure of the Futurebus are relinquished, if

not required for subsequent bus transactions.

139

3.9 Summary

This chapter has described the general architectural framework used for the Leopard
Multiprocessors, and presented details of organization and operation of two experi-
mental multiprocessor systems constructed within this framework. A number of sig-
nificant results flowed from the work on these systems. Firstly, work on the design of
the Leopard-1 L-Bus protocols clarified the bus protocol mechanisms needed to support
a number of cache coherence protocols with interoperability between them. The work
led to contributions to the development of similar mechanisms for the IEEE P896 Futu-
rebus, both in the basic data transfer protocol specified in IEEE Std. 896.1- 1987 and
in the cache coherence mechanisms defined in the P896.2 draft specification. This in
turn led to the development of the Leopard-2 cache design, which can implement a va-
riety of cache coherence protocols. Secondly, the Leopard-2 system described here has
been constructed, and is ready for use as a platform for experiments to measure and
evaluate cache coherence protocols, and as a shared memory multiprocessor for evalu-

ating concurrent software on such architectures.

140

Chapter 4

A Programmable Cache Controller for
the Leopard-2

4.1 Introduction

The Leopard-2 GDP cache datapath described in Chapter 3 contains the resources re-
quired to implement cache coherence protocols such as those described in Chapter 2.
One way to vary the coherence protocol implemented by the cache would be to plug in
different hardwired cache controller modules, each designed for a specific protocol.
However, since the different protocols can be expressed as a set of choices to be made
within the options allowed by the P896.2 rules, it is feasible to design a programmable

controller that can be reconfigured to implement different protocols.

This chapter outlines the steps needed to design a programmable cache controller
that can implement all of the protocols described in Chapter 2, with the exception of the
published Firefly protocol described in Section 2.2.9. The published Firefly protocol
cannot be directly implemented, as the Futurebus specification fixes the cache line size
at 64 bytes. For this reason, and the reasons discussed at the end of Section 2.2.9, the
published Firefly protocol is not included in the following discussion. The original Fire-
fly protocol, described in 2.2.8, can be implemented by the reconﬁgﬁrable cache con-

troller.

The outline of the programmable cache controller is followed by a description of a si-

mulation model of the Leopard-2 system developed using the hardware description lan-

141

guage VHDL [14, 33]. The model includes a detailed specification of the behaviour of
the programmable cache controller. Through simulation of the model, verification of

correct operation is performed.

4.2 Cache Controller Configuration Parameters

The cache controller for the Leopard-2 GDP cache is parameterized to implement each
of the cache coherence strategies under consideration. This is done by including a con-
figuration register in the controller, writable by system software. The register contains
parameters that indicate which choice should be taken for each of the options described
in Section 2.4.5. Table 4-1 shows the register parameters, the corresponding P896.2

rules and the allowed values.

142

Parameter mnemonic Values Parameter meaning P896.2
rule
excl_depends_on_CS_- yes/no If yes, cache checks Cache-Status on 5
on_read_shared bus read-shared to determine whether to
acquire exclusive attribute;
If no, cache does not acquire exclusive
attribute
tr_write_hit_shared invalidate/ Transaction performed by cache on
read-invalidate/ write hit at shared line
write-invalidate/
write-update-dirty/
write-update-clean
owned_on_write_hit_shared yes/no If yes, cache acquires owned attribute 5&11
on write hit at not-exclusive line;
If no, cache does not acquire owned at-
tribute
excl_depends_on_CS_- yes/no If yes, cache checks Cache-Status on 5
on_write_hit_shared write hit at shared line to determine
whether to acquires exclusive attribute;
If no, cache always acquires exclusive
attribute
tr_write_miss read-invalidate/ Transaction performed by cache on
read-shared* write miss
reflect_on_read_shared yes/no If yes, owner snoop reflects on bus 13
read-shared;
If no, owner snoop intervenes
inval_if third_party yes/no If yes, snoop invalidates after becoming |12 & 9
a third party on bus read-shared;
If no, snoop does not invalidate
sel_on_broadcast_hit yes/no If yes, snoop becomes selected when it | 16
gets a hit on bus broadcast;
If no, snoop remains unselected

* if Cache-Status asserted during the read-shared transaction, cache follows it with the transaction specified by
tr_write_hit_shared.

Table 4-1. Configuration parameters for a reconfigurable cache controller.

Using this parameterization of the cache controller, the coherence protocols are im-
plemented with different sets of parameter values, as shown in Table 4-2. The binary
encoded values of these parameters are used in the finite state machines used to imple-
ment the cache controller, to determine the actions taken at choice points in the control

algorithms described in Section 3.8.

143

Parameter Write- Illinois | Synapse | Berkeley | MBus Dragon | Original
once Firefly
excl_depends_on_CS_- no yes no no yes yes yes
on_read_shared
tr_write_hit_shared write- inval read- inval inval write- write-up-
inval inval update- | date-
dirty clean
owned_on_write_hit_shared no yes yes yes yes yes no
excl_depends_on_CS_- no no no no no yes yes
on_write_hit_shared
tr_write_miss read- read— read- read- read- read- read-
inval inval inval inval inval shared shared
reflect_on_read_shared yes yes yes no no no yes
inval_if third_party no no yes no no no no
sel_on_broadcast_hit no no no no no yes | yes

Table 4-2. Configuration parameter values to implement different cache coherence protocols.

A programmable cache controller has a number of important advantages over sepa-
rate hardwired controllers. The most obvious advantage is the reduced cost and ease
of operation, making experiments with different cache coherence protocols simpler and
faster to perform. However, the fact that the controller can be reconfigured dynamically
is important in a production system running a variety of different workloads. Early
evidence for this can be seen in cache controllers for small multiprocessor workstations
and servers, which allow a choice of copy-back, write-through or no caching, selectable
for each page of a virtual address space. (The cache controller in the Intel Pentium®
processor [34] is an example.) The extension to this scheme, provided by a dynamically
reconfigurable cache controller as described above, is to select the most appropriate
cache coherence protocol for each address space, depending on the memory referencing
behaviour of the processes using the address space. A configuration vector may be asso-
ciated with each address space, and when a process using the address space is sche-

duled onto a processor, the configuration vector is loaded into the processor’s cache con-

troller.

144

4.3 A VHDL Model of the Programmable Cache Controller

There are a number of important motivations for developing a model of a complex hard-
ware system. Several are discussed by the author in [14] (pp. 2-3), the most relevant
being to specify the requirements and functionality of the system completely and un-
ambiguously, and to allow testing and verification of the design through simulation.
(Note that the hardware design community uses the term “verification” to include test-
ing. The term does not necessarily imply use of formal mathematical methods to prove
that the model meets a specification.) This section presents a model of the Leopard-2
Multiprocessor developed by the author using the standard hardware description lan-
guage VHDL. The model was developed to specify the behaviour of a programmable
cache controller for the Leopard-2 GDP using the cache configuration parameters de-
scribed in Section 4.2, and to allow simulation experiments to be performed to verify
the designs of the Leopard-2 GDP cache and cache controller. The approach taken to
verification was to embed the cache model in a larger model of the entire Leopard-2 sys-
tem, and to include instrumentation within the larger model to monitor coherence
states of memory lines. The instrumentation checks to ensure that coherence is main-

tained for each line.

4.3.1 The Leopard-2 System Model

At the top level of abstraction, the hardware model of the Leopard-2 Multiprocessor sys-
tem, illustrated in Figure 4-1, comprises three GDP processor components and a
shared memory component interconnected with a Futurebus backplane bus. Since the
focus of the hardware model is on the caches and cache coherence, the I/O processor and
controller components are not included. The number of GDPs was chosen to allow si-
mulation of complex interactions between multiple processors sharing aline. An exam-
ple scenario involves one cache suffering a write-miss and fetching a line, a second

cache intervening to supply the line, and a third cache invalidating its copy of the line.

145

12gdp

L

processor_block
: 12sm
cache memory
futurebus_interface futurebus_interface
1 N 1

_ futurebus _

Figure 4-1. The top-level structure of the Leopard-2 hardware model.

The GDP is decomposed into a processor block component, a cache and a Futurebus
interface. The shared memory is similarly decomposed into a memory componeﬁt and

a Futurebus interface.

The data values stored and transferred within the real Leopard-2 system are not di-
rectly modelled. Instead, each line of data is represented by a token that indicates the
processor that most recently updated the line and the simulation time of the update.
Processors are identified using their Futurebus geographic address, with the reserved
value 0 indicating that the line has not been updated since initialization. The time-
stamps in the data tokens are used by the coherence monitoring instrumentation in the

model to verify that each processor sees the latest version of the line.

The connections upon which address and data flow are further abstracted from their
real electrical implementation. In the real hardware, buses are driven by tristate
drivers, allowing different components to act as sources for an indiviciual bus at differ-
ent times. If no driver for a busis enabled, the bus “floats”, and any component sensing
the bus receives an undefined value. Detailed electrical models represent this behav-

iour by augmenting the binary data type with a third value, “Z”, indicating the high-im-

146

pedance state of a tristate driver, and a fourth value, “X”, indicating an unknown value.
Since the model described here uses abstract tokens for data values and abstract inte-
gers for addresses, the augmented binary representation is inappropriate. Instead,
buses are driven with a tuple comprising a valid flag and the abstract value. if the valid
flagisfalse, the abstract value part isignored; if the valid flagis true, the abstract value
part is the value driven on the bus. The bus resolution function, which combines con-
tributions from all drivers to determine the actual value on the bus, verifies that at most
one driver is active at a time. This provides a significant degree of error checking in
the model, and ensures that corrupted addresses and data values are not propagated

without being detected.

The timing of interactions within each GDP are regulated by a clock signal generated
by the processor block component. This models the processor clock in the real hard-
ware. The connections between the processor block and the cache is an abstraction of
the NS32532 bus interface. It includes just those control and status signals necessary
to simulate transactions with the cache. The timing of the interactions, however, is di-
rectly modelled on the timing requirements of the NS32532 bus interface, referenced
to the processor clock. Thus, for example, transactions are divided into sequences of |
timing étates, with addresses issued and control signals activated at specified clock
edges, and data required to be valid within specified numbers of clock cycles. Status
signals are returned by the cache to allow it to insert wait cycles when data may be

delayed.

Address and data values on the Futurebus are modelled using the same abstract
types as are used within the GDP and memory components. However, the synchroniz-
ation signals used for arbitration and data transactions are modelled in detail. Each
data transaction is composed of three “beats” an address beat, during which address
and command information are exchanged; a data beat, during which a data line token

is transferred; and an end beat, during which completion status information is ex-

147

changed. Inthe real hardware, there are separate data beats for each word of data wi-
thin a block. In the model, these are all collapsed into a single data beat for transfer

of the data token.

The reason for modelling synchronization of arbitration and data transaction in de-
tail is that the Futurebus protocols are asynchronous (not clocked) and involve syn-
chronized interaction of several bus modules in different capacities such as master,
slave and third party. There is no centralized component that manages synchroniz-
ation; rather synchronization is fully distributed amongst those inodules taking part
in a transaction. If the Futurebus synchronization protocol were not used, then some
other, equally complex, protocol would be required. It appeared best to use the existing
proven protocol to synchronize the modelled components in the same way as the real
components would be synchronized. Since the synchronization aspects of cache coher-
ence protocols are the most difficult parts to implement correctly, detailed modelling of

synchronization is important for verifying correctness of the cache design.

4.3.2 Workload Modelling in the Processor Block

The Leopard-2 system model is stimulated by read and write requests generated by the
processor block on each L2ZGDP. These requests represent the workload performed by
the Leopard-2 system. Two versions of the processor block component were developed,

each generating requests differently.

The first processor block version generates requests according to a command file. The
command file allows specification of synthetic address traces to exercise specific behav-
iours within the model. For example, during development of the cache model, synthetic
traces were constructed to cause hits and misses within the cache. The detailed behav-
iour of the cache controller and cache datapaths was observed to verify that the correct
operations were performed. The particular command file used by the processor block

is specified by a generic parameter, and so can be varied for each instance within the

148

system. This allows use of trace sets in which each processor performs different se-
quences of requests. For example, trace sets can be constructed to take a shared mem-
ory line through different coherence states in different processors, exercising particu-

lar aspects of the implementation of a cache coherence protocol.

The command files read by the first version of the processor block consist of lines of

text, each specifying a request to be performed. An example trace file is

@1us R C 00000000 miss, sec 0 index 0
W C 00000000 hit, sec 0 index 0
R C 00040000 miss, sec 1 index 0
R C 00080000 miss, sec 0 index 0, copyback, flush buffer
W N 00008000 write to buffer
W N 00008004 write to buffer
R C 00000040 miss, sec 0 index 1, flush buffer
+1lus R C 00000000 miss, sec 1 index 0

The “@” symbol denotes an absolute simulation time at which the request is to be per-
formed. The “+” symbol denotes a delay after completion of the previous request before
the specified request is performed. The omission of a time denotes that the request is
to be performed immediately after the previous request. Each request may be either
a read (denoted by “R”) or a write (denoted by “W”), and may be cachable (“C”) or non-
cachable (“N”). The address is specified in hexadecimal. Text following the address is
a comment, and may be used to document the actions expected in response to the re-

quest.

The second version of the processor block generates read and write requests accord-
ing to a programmed workload model. Previously published simulations of caches use
workload models that attempts to mimic the behaviour of real workloads, since the aim

of those simulations is to evaluate performance of the simulated system. Some of the

149

models are discussed in Section 2.5. The aim of the simulation model discussed here,
however, is to verify correctness of the cache design and implementation of cache coher-
ence protocols, so the workload model is quite different. It is designed to cover random-
ly all cases of interactions between caches accessing a collection of shared memory
lines. The approach taken is similar to that described by Wood et al [55] for testing the
SPUR cache controller. Only a small number of lines are referenced, some being shared
between processors, and others being referenced by only one processor. These two cate-
gories model shared and private data respectively. The lines are allocated in the ad-

dress space as follows:

Shared: 00000000 - 000000FF
00040000 - 000400FF
00080000 - 000800FF
000C0000 - 000COOFF

Private: 0000700 - 0000nnFF
0004nn00 - 0004nnFF
0008nn00 - 0008nnFF
000Cnn00 - 000CnnFF

The symbol nn denotes the-geographic address of a GDP—each GDP uses its geo-
graphic address to determine the shared memory addresses of its private lines. Lines
are 64 bytes each, so each group of consecutive addresses corresponds to four consecu-
tive lines. Since there are 256 Kbytes of storage in each section of each cache, all of the

groups of four lines map to sets 0 to 3 of each cache.

The algorithm for the workload model involves generating successive requests as fol-

lows:

» randomly choose a line to access, with probability of choice uniformly dis-

tributed amongst the shared and private lines accessible by the processor,

150

» randomly choose between a read request (with probability 0.75) and a

write request (with probability 0.25)

Each processor uses its geographic address to calculate the seed for its pseudo ran-
dom sequence generator used to make the random choices. If this were not done, each

processor would generate the same sequence of memory requests, defeating the aim of

the workload model.

As Wood et al note [65], the state space of interactions between caches is sufficiently
large that manual generation of tests is intractable. While random testing makes test-
ing feasible, it is not clear how good the test coverage is, nor how to analytically deter-
mine the level of coverage. Wood et al suggest this issue as a future research area. They
do, however, report success in uncovering a number of design defects in their controller

through use of randon testing.

Both versions of the processor block described above generate read and write re-
quests on signals connected to the cache component. Timing of values on these signals
is synchronized by the clock signal generated by the processor block, as shown in
Figure 4-2. The processor issues the memory address, command information, and, for
write requests, data during the T1 timing state, and pulses the address-strobe signal
to start the access. If there is no delay in servicing the request, the cache responds by
supplying status information and, for read requests, the data during the T2 state, and
asserting the ready signal. Ifthereis a delay, the cache leaves the ready signal negated,
causing the processor block to insert wait states until ready is asserted. The status in-
formation that the cache returns includes a retry signal that is used to force the proces-
sor to abort the request and retry it. This is used when the cache receives a busy-retry
response from the Futurebus while servicing a cache miss. The request timing and pro-
tocol described here is a simplification of that used by the NS32532, focussing on just

those aspects needed to model the coherent caching behaviour of the Leopard-2 system.

151

clock

address,
command

write
data

address
strobe

status

read
data

ready

Twait

Twai[

Tidte

Figure 4-2. Timing of processor read and write requests.

4.3.3 The Cache Model

The cache subsystem of the Leopard-2 GDP consists of a datapath, described in Sec-
tion 3.7.2, and a cache controller, which operates as described in Section 3.8. This or-
ganization is mirrored in the hardware model of the cache subsystem. The structure
of the datapath is modelled at the register transfer level, with separate component in-
stances for each of the elements in the datapath. The simpler elements, such as trans-
ceivers and comparators, are modelled using a dataflow style. More complex elements
are modelled using a behavioural style, in which the function of the element is ex-

pressed in the form of an algorithm using processes containing sequential statements.

152

type parameter_set is record
excl_depends_on_CS_on_read_shared : boolean;
tr_write_hit_shared : transaction_type;
owned_on_write_hit_shared : boolean;
excl_depends_on_CS _on_write_hit_shared : boolean;
tr_write_miss : transaction_type;
reflect_on_read_shared : boolean;
inval_if_third_party : boolean;
sel_on_broadcast_hit : boolean;

end record parameter_set;

Figure 4-3. The record type used to define cache parameter values.

Operation of the datapath elements is controlled by control signals, sequenced by the
cache controller synchronized by the clock signal from the processor block. In the real
Leopard-2 hardware, the sequence of operations would be devised to take as few clock
cycles as possible, to maximize performance. While the hardware model pays signific-
ant attention to reducing the number of clock cycles for each sequence, there may be
scope for further optimization. The main aim in developing the model was correct oper-

ation; optimal sequencing was beyond the scope of the design.

The cache controller model is parameterized using the scheme described in Sec-
tion 4.2. The entity interface for the controller includes a generic constant for specify-
ing the particular parameter values to be taken on by a cache controller instance. The
generic constant is a record of the type shown in Figure 4-3. The modelled cache is pro-
grammed to implement a particular coherence protocol by supplying actual parameter

values for the generic constant according to Table 4-2.

The cache controller model is behavioural in style, and consists of a number of com-
municating processes, illustrated in Figure 4-4. The master process sequences cache
actions in response to processor read and write requests, the snoop process sequences

cache actions in response to transactions observed on the Futurebus, and the write

153

snoop bus cache bus
control signals control signals

cache bus
arbiter

snoop bus
arbiter

write buffer
controller

master

line

arbiter

internal

futurebus

arbiter
address \
comparator futurebus futurebus write buffer

result control arbitration control signals

signals signals

Figure 4-4. The process structure of the cache controller model.

buffer process sequences flushing to shared memory of write data from the write buffer.

The remaining processes are arbiters and multiplexers, discussed below.

Cache Controller Arbiters

Many of the control signals for various parts of the cache datapath must be sequenced
by different processes at different times. For example, control signals for the snoop bus
must be sequenced by the snoop process when a Futurebus transaction is in progress,
but must be sequenced by the master process when the snoop’s copy of attributes is
being updated. The requirement for shared control leads to the inclusion of an arbiter

for each set of shared resources: one for the cache buses shared by the master and snoop

154

processes, one for the snoop buses shared by the master and snoop processes, and one
for the Futurebus interface shared by the master and write buffer processes. Asso-
ciated with each arbiter is a multiplexer that selects control signal values from the pro-

cess that is granted access to the set of resources.

The remaining arbiter in the cache controller is used to ensure mutual exclusion be-
tween the processor and the snoop operating on lines of the shared memory address
space. The requirement for mutual exclusion is discussed in Section 2.2.11, and its im-
plementation in the cache controller algorithm is described in Section 3.8. The line ar-
biter takes as input the result of the address comparator in the cache datapath. This
comparator compares the line address being accessed as part of servicing the processor
request with the line address being accessed by the snoop. If both the processor and
the snoop are active and the line addresses are equal, there is contention for use of the
line, so the processor and snoop operations are serialized. Otherwise, if only one of the
processor or snoop is active or if they accessing different lines, there is no contention,

so they may perform their operations concurrently.

The presence of the arbiters and the serialization that they enforce are manifest in
interference between the processor and the snoop. While interference due to mutual
exclusion over line addresses is expected to be relatively rare (except in cases of heavily
shared data), interference due to shared access to cache and snoop buses is expected
to be relatively more frequent. (The actual frequency depends on the access patterns
of the particular code being run on the system.) This is because it occurs whenever the
processor or snoop must update attributes of a line, irrespective of which line the other
process is accessing, or when the snoop must access the cache data memory to act as
a third party or to receive a broadcast update. Fortunately, the duration of each in-
stance of these latter cases of interference is less than that of interference due to mutual
exclusion over lines, hence its effect on performance is minimal. The performance ef-

fects are further ameliorated by allowing the processes to proceed speculatively on the

155

master granted
cache bus

snoop granted
snoop bus

]

!master_using_cache_bus !snoop_using_snoop_bus
& snoop_request_- !snoop_request_- & master_request_- !master_request_-
for_cache_bus for_cache_bus for_snoop_bus for_snoop_bus

\ !
snoop granted master granted
cache bus snoop bus

Figure 4-5. State transition diagrams for the cache bus arbiter (left) and snoop bus arbiter (right).

assumption of being granted access to a resource immediately upon requesting it, and

blocking later if they find the resource denied.

The arbiters are implemented as clocked finite state machines. The cache bus and
snoop bus arbiters are the simplest. Their state transition diagrams are shown in
Figure 4-5. Normally the masteris granted access to the cache bus, so there is no explic-
it request from the master. Instead, the master indicates when it is actually using the
cache bus. The snoop has an explicit request signal, and is only granted the cache bus
when the master is not using it. While the snoop is granted the cache bus, the master
refrains from using it. When the snoop has finished using the cache bus, it removes
its request, allowing the master to proceed when it needs the bus. Operation of the
snoop bus arbiter is similar, but with the snoop normally granted access and the master

having to request access.

The state transition diagram for the line arbiter is shown in Figure 4-6. In addition
to the transition conditions shown in the diagram, transitions are only taken when
neither master is granted use of the snoop bus nor snoop is granted use of the cache bus.
This condition is required to prevent false transitions due to address matches when an
address from one side (master or snoop) is transmitted to the address bus of the other

side. The condition is omitted from the diagram for clarity.

156

master_req
& snoop_req
& equal
!master_req !master_req
& !snoop_req & !snoop_req
master_req
& snoop_req !master_req
& lequal & snoop_req
master_req
& !snoop_req
!master_req
master & snoop_req
only master_req
& !snoop_req
master_teq
master_req & snoop,_req
& snoop_req \ & !equ_al
& lequal !master_req
& !snoop_req
master_req
& !snoop_req S!Lmaster_req
snoop_req

master_req
& snoop_req
& equal

Figure 4-6. State transition diagram for the line arbiter.

Initially the arbiter is in the “idle” state with neither master nor snoop active. If the
master alone requests use of a line, the arbiter transitions to the “master only” state,
granting permission for the master to use the line. Similarly, if the snoop alone re-
quests use of a line, the arbiter transitions to the “snoop only” state, granting permis-
sion for the snoop to use the line. If both master and snoop simultaneously request use
of lines, and the line addresses are not equal (denoted by “lequal” in the diagram), the
arbiter transitions to the “both” state and both are granted permission to proceed. If
both requests are made simultaneously but the line addresses are equal, the arbiter

grants permission to the master first. Only when the master completes its request, or

157

when the master’s line address changes, is the snoop allowed to proceed. When the ar-
biter is in the “both” state, the line addresses may change from being unequal to being
equal. This may occur when the master must replace a line and move it to the write
buffer. Whilst moving the replaced line, the mutual exclusion lock must be applied over
the address of the replaced line, to prevent the snoop trying to perform coherence trans-
action on the line while it is not available. (Once the replaced line is in the write buffer,
the copyback address comparator is used to prevent further coherence transactions on
the line until it has been written back to shared memory.) At the start of the move, the
master’s line address changes from that of the line requested by the CPU to that of the
replaced line. At the end of the move, the master’s line address reverts to that of the
line requested by the CPU. In both cases, if the snoop is currently granted use of the
line to which the master’s address changes, the snoop is allowed to complete its activity

before the master is allowed to proceed.

The state transition diagram for the internal Futurebus arbiter is shown in
Figure 4-7. The function of this arbiter is to merge requests for the Futurebus from the
cache master and the write buffer. The merged request is forwarded to the Futurebus
arbiter in the Futurebus interface, and the returned grant is directed back to the cache
master or write buffer as appropriate. A complication is that the cache master may pre-
empt the write buffer. If the write buffer has acquired the Futurebus to perform queued
non-cachable writes, and the cache master needs to satisfy a read miss, it preempts the
write buffer in order to read the required line without delay, then returns access to the

Futurebus to the write buffer.

When the cache master requests the Futurebus, the request is forwarded to the Futu-
rebus interface, and when the bus is granted, the grant is returned to the cache master.
A write buffer request is only forwarded to the Futurebus interface if there is no concur-
rent cache master request. If, by the time the bus is granted, a cache master request

has arrived, the grant is forwarded to the cache master in preference to the write buffer.

158

3

!f/bus_gnt
cache_req ['cache_gnt, lcache_req
[[/bus_req] Iwibug_gnt] & w/buf_req
[f/bus_req]

both
releasing

cache Icache_req leache_req write buffer
requesting %T;m/b“f_r e]q ‘gf':?";”/b“t_felq requesting
Iffbus_req 'ffbus_req

f/bus_gnt

Icache_req
[cache_gnt]

& f/bus_gnt
[w/buf_gnt]

cache_req
& f/ous_gnt

[cache_gnt]
Icache_req & w/buf_req

[~cache_gnt, w/buf_gnt] _..‘

cache
granted

write buffer
granted

lg———————— cache_req & !w/buf_req
[cache_gnt, Iw/buf_gnt]

. cache_req
'wibuf_req & w/buf req
[cache_gnt] [!w/buf_-gnt]

cache
preempting

Figure 4-7. State transition diagram for the internal Futurebus arbiter.

When both requests are negated, the Futurebus request is also negated, and when the
Futurebus grant is negated by the Futurebus interface, the returned grant to the cache
master or write buffer is also negated. If a write buffer request arrives at the same time
as the cache master request is removed, tenure of the Futurebus is maintained, and the
grant is transferred from the cache master to the write buffer. Tenure is transferred
from the write buffer to the cache master in the case of a cache master request arriving
at the same time that the write buffer request is removed. The remaining transitions
implement preemption of the write buffer by the cache master, signalled by a cache

master request arriving while the bus is granted to the write buffer. In this case, the

159

grant is removed from the write buffer. When the write buffer has completed its current
bus transaction, it removes its request. This signals to the arbiter that bus tenure can
be transferred to the cache master. The write buffer must then re-assert its request to

regain bus tenure after the cache master has completed its transactions.

Master Sequencer Outline

The master process shown in Figure 4-4 models the sequencing of cache datapath oper-
ations in response to read and write requests from the processor. The process uses the
clock signal generated by the processor to synchronize operations. A pseudo-code out-
line of the master process is shown in Figure 4-8. The process waits until a processor
request arrives (middle of a T; clock cycle, on the falling clock edge), then decodes the
command information to determine how to respond. In the case of non-cachable reads,
a procedure is called to sequence the required Futurebus read transaction. In the case
of non-cachable writes, a procedure is called to write the data into the write buffer. The
details of these two procedures is not discussed here, since the focus is on coherent cach-

able memory accesses.

If the processor request is for a cachable accesses, the master process calls a proced-
ure to sequence looking up the cache to check for a hit. This takes until the falling clock
edge of the subsequent clock cycle (Tg or Tyait). If the access is found to miss, a proced-
ure is called to sequence the miss. This will take a number of Tyt clock cycles, return-
ing on the falling clock edge of a cycle with the required line having been fetched into
the cache, or with a retry status, requiring the processor to abort and retry the request.
The procedure that sequences aborting with retry simply returns the cache control sig-
nals to their quiescent state, releases resources acquired by the master through ar-
bitration, and responds to the processor with retry status. In the case of the line being
successfully fetched, the process simply falls through into the section that sequences

a hit. For a read hit, the master process calls a procedure to sequence accessing the

160

master : process is
begin
CPU_transaction_loop : loop

wait until falling clock edge in T1

if cpou_command is non-cachable read then
sequence_non_cachable read

elsif cpu_command is non-cachable write then

sequence_non_cachable_write
else
sequence_cache_lookup
if not hit then
sequence_miss
if abort_with_retry then
sequence_abort_with_retry
end if
end if
if not abort_with_retry then
if cpu_command is read then
sequence_read_hit
else
sequence_write_hit
if abort_with_retry then
sequence_abort_with_retry
end if
end if
end if
end if

end loop CPU_transaction_loop
end process master

Figure 4-8. Outline of the master process.

cache for the required data. For a write hit, the process calls a procedure that sequences
updating the cache, and performing any Futurebus transaction required to maintain
coherence. Since such a Futurebus transaction may return retry status, the write se-
quencing procedure may also return retry status. Upon completion of sequencing the

processor’s request, the master process loops and waits for the next request.

161

procedure sequence_cache_lookup is
begin
master_requesting_line <= true

enable cpu tag latch and set index latch outputs
enable cpu tag ram comparison

enable cpu attribute ram outputs

cache_offset <= cpu_offset for data ram address

loop

wait until rising edge of clock

exit when snoop not using cache bus and master granted mutex to line
end loop
master_using_cache_bus <= true

wait until middle of clock cycle

sample current cpu attributes

sample current Iru section

assume initially hit is false

for each section loop
if tag match and cpu attribute fb_valid is set then

hit is true, hit_section_index is this section

end if

end loop

disable cpu tag ram comparison
disable cpu attribute ram outputs

end procedure sequence_cache_lookup

Figure 4-9. Outline of the procedure that checks for a cache hit.

The procedure that checks for a cache hit is shown in Figure 4-9. The procedure is
called on the falling clock edge of the T cycle of the processor’s request. It immediately
requests mutually exclusive access to the line by asserting its arbitration request sig-
nal. In fact, the arbitration request signal passed to the line arbiter is the logical-or of
the processor’s address strobe signal and the request generated by the master process.
Since the line arbiter is clocked on falling edges of the processor clock, this scheme al-
lows arbitration to commence during the T cycle rather than being delayed until the

next cycle. Furthermore, in the common case of the master being granted mutual exclu-

162

sion for the requested line immediately, the result of arbitration is known in time for

the master to proceed without delaying the processor.

The procedure in Figure 4-9 must also arbitrate for access to the cache buses and con-
trol signals, since the snoop may be using them. Rather than waiting for the outcome
of this arbitration, the procedure speculatively activates its control outputs in the ex-
pectation that it already has won arbitration. (As described earlier, the master is
deemed always to be requesting use of the buses and control signals, so is granted ac-
cess as long as the snoop has not already acquired them.) The arbiter is clocked on the
rising edge of the processor clock, so the result of arbitration is known at the beginning
of the next clock cycle. The procedure waits until granted access before proceeding. In
the common case, the master is granted access immediately, and can proceed without

delaying the processor.

The control outputs that are speculatively enabled cause the CPU’s address to be
placed on the cache address bus, the tag RAM to use this address to compare with the
stored tags, the CPU attributes to be read, and the data RAM to start accessing the set
of data. When use of the cache buses is available and the master has mutual exclusion
over the requested line, the procedure delays until the falling clock edge of of the next
clock cycle, then samples the CPU attributes, LRU section number and tag comparison
results. It uses the attributes and comparison results to determine if the requested line
is hit in the cache. Having done so, it disables the tag RAM and CPU attributes RAM.
The CPU addressis left enabled for subsequent steps. Upon return from the procedure,
the request has progressed to the falling clock edge of the cycle after T, and the master

has determined whether the requested line is present, and if so, in which section.

The procedure that sequences a read hit is shown in Figure 4-10. The procedure en-
ables the data RAM and transceivers to supply data to the CPU, and asserts the ready
signal to allow the CPU to proceed. It then enables the CPU attributes RAM to write
back the CPU attributes unchanged and to update the LRU section number to refer to

163

procedure sequence_read_hit is
begin
enable data RAM hit section output
enable cpu/cache data transceiver in cache-to-cpu direction

assert CPU ready signal

cpu_attributes(hit_section_index) <= current_cpu_attributes(hit_section_index)
Iru_section <= new_i{ru_section
write-enable hit_section_index of cpu attributes RAM (also writes Iru_section)

wait until rising clock edge at end of T2 clock cycle

negate CPU ready signal

disable cpu tag latch and set index latch outputs
cache_offset <= undriven

disable cpu/cache data transceiver

disable cpu attributes RAM

disable data RAM
cpu_attributes(hit_section_index) <= undriven
Iru_section <= undriven

master_requesting_line <= false
master_using_cache_bus <= false
end procedure sequence_read_hit

Figure 4-10. Outline of the procedure that sequences a read hit.

the other of the two sections, and asserts the write-enable control signal to the CPU at-
tributes RAM. The procedure then waits until the rising clock edge at the end of the
clock cycle, then disables all of the active control signals, releases the mutual exclusion

lock on the line, and makes the cache bus accessible to the SNoop.

The procedure that sequences a write hit is shown in Figure 4-11. The procedure first
checks whether the line is shared, and if so, calls a procedure to sequence the Futurebus
transaction required to maintain coherence. If it returns with retry status, the write-
hit procedure also returns immediately with retry status. If it returns indicating that
the write hit should be transformed into a miss (due to the snoop invalidating the line

while the master was waiting for the Futurebus), the write-hit procedure calls a proced-

164

procedure sequence_write_hit is
begin
if cpu_attributes(hit_section_index).fb_exclusive is clear then
sequence_write_hit_to_shared _transaction
if abort_with_retry then
return
end if
if turn_hit_into_miss then
sequence read_for_miss
using hit_section_index as replaced_section_index
if abort_with_retry then
return
end if
if cpu_attributes(hit_section_index).fb_exclusive is still clear then
sequence_write_hit_to_shared_transaction
if abort_with_retry then
return
end if
end if
end if
end if

if cpu_attributes(hit_section_index).fb_exclusive is clear then
set/clear required_fb_owned_value depending on
owned_on_write_hit_shared
set/clear required_fb_excl_value depending on
excl_depends_on_CS_on_write_hit_shared
(use saved cache_status value if excl_on_write_hit_shared is excl)
else
set required_fb_owned_value and required fb_excl_value
end if

if required_fb_owned_value differs from current fbo_owned value
or required_fb_excl_value differs from current fb_excl value then

master_request_for_snoop_bus <= true

update current_cpu_attributes(hit_section_index)

with required attribute values
cpu_attributes(hit_section_index)

<= current_cpu_attributes(hit_section_index)
Iru_section <= new_lru_section
enable cpu/snoop address transceiver in cpu-to-snoop direction
snoop_attributes(hit_section_index)

<= current_cpu_attributes(hit_section_index)

wait until rising clock edge and master_granted_snoop_bus

165
Figure 4-11. Outline of the procedure that sequences a write hit.

write enable hit_section_index of cpu attributes RAM (also writes Iru section)
write enable hit_section_index of snoop attributes RAM

wait until falling clock edge
master_requesting_snoop_bus <= false

cpu_attributes(hit_section_index) <= undriven
Iru_section <= undriven

disable cpu attributes RAM

disable cpu/snoop address transceiver
snoop_attributes(hit_section_index) <= undriven
disable snoop attributes RAM

end if

enable cpu/cache data transceiver in cpu-to-cache direction
write-enable hit_section_index of data RAM
assert CPU ready signal

wait until rising clock edge at end of T2 clock cycle

negate CPU ready signal

disable cpu tag latch and set index latch outputs
cache offset <= undriven

disable cpu/cache data transceiver

disable data RAM

master_requesting_line <= false
master_using_cache_bus <= false
end procedure sequence_write_hit

Figure 4-11 (continued).

ure to read the missed line, then if the line is still shared, calls the write-hit transaction
procedure again. That procedure will complete normally, since Futurebus tenure is
maintained between the read for the miss and the write-hit transaction, so there is no

opportunity for the snoop to invalidate the line a second time.

Next, if the line is shared, the write-hit procedure determines new values for the
fb_owned and fb_exclusive attributes of the line, based on the values of the configura-

tion parameters owned on write hit shared and excl_depends_on_CS on_-

166

write_hit_shared. In the case of a write hit to an exclusive line, fb_owned is alway set,

and the fb_exclusive attribute remains set.

The write hit procedure next determines whether the stored attributes must be up-
dated. It compares the required attribute values with the current values, and if there
is a difference, the update proceeds. The procedure arbitrates for access to the snoop
bus, and sets up the new attribute values and LRU section index for the CPU and snoop
attribute RAMs. When access to the snoop bus is granted, the CPU and snoop attribute
RAMs are updated. The procedure then releases the snoop bus and disables all control
signals used to update the attribute RAMs. The write-hit procedure next sequences the
local write to the cache. It enables the data transceivers to forward data from the CPU
to the cache, enables the data RAM to accept the data from the CPU, and asserts the
ready signal to allow the CPU to proceed. The procedure then waits until the rising
clock edge at the end of the clock cycle, then disables all of the active control signals,
releases the mutual exclusion lock on the line, makes the cache bus accessible to the

Snoop.

The procedure that sequences a Futurebus transaction on a write hit to a shared line
is shown in Figure 4-12. If the master does not currently have Futurebus tenure, the
procedure first releases the mutual exclusion lock on the line and makes the cache
buses available to the snoop. It then requests arbitration for the Futurebus. When ac-
cess to the Futurebus is granted, the procedure reacquires the mutual exclusion lock
on the line and use of the cache buses. It need not wait for these to be granted; since
the master has Futurebus tenure, the snoop and all other masters in the system must
be inactive. Next, the procedure re-reads the attributes from the CPU attribute RAM,
since the line may have been invalidated by the snoop while the master was waiting
for the Futurebus. If the line isinvalid, the procedure returns with a status value indi-

cating that the write hit should be turned into a write miss.

167

procedure sequence_write_hit_to_shared_transaction is
begin
if not cache_grant then
master_requesting_line <= false
master_using_cache_bus <= false

cache_request <= true
wait until falling clock edge and cache_grant

master_requesting_line <= true
master_using_cache_bus <= true

enable cpu attribute RAM outputs
wait until middle of clock cycle
sample current cpu attributes
disable cpu attribute RAM outputs

if fb_valid attribute in hit section is now clear then
turn_hit_into_miss := true
return
end if
end if

if tr_write_hit_shared is a write transaction then

enable cpu/cache data transceiver in cpu—to—cache direction
else

disable cpu/cache data transceiver
end if

if write buffer is not empty then

flush_write_buffer <= true

wait until falling clock edge and write buffer is empty
end if
flush_write_buffer <= false

enable cache/Futurebus address and data transceivers
data direction depends whether tr_write_hit_shared is a read or write transaction

assert Futurebus cache_command and intent_to_maodify

assert/negate Futurebus broadcast depending on tr_write_hit_shared
assert/negate Futurebus write depending on tr_write_hit_shared

assert/negate Futurebus ownership depending on owned_on_write_hit_shared

assert Futurebus address strobe
wait until falling clock edge and Futurebus address acknowledge asserted
save Futurebus cache_status reply value

Figure 4-12. Outline of the procedure that sequences a Futurebus transaction on a write hit to a
shared line.

168

if Futurebus busy reply then
abort_with_retry := true
elsif tr_write_hit_shared is not invalidate then
assert/negate Futurebus three_party depending on third_party reply
assert Futurebus data strobe
if tr_write_hit_shared is a read transaction then
write enable hit section of data RAM
end if
wait until falling clock edge and Futurebus data acknowledge asserted
if tr_write_hit_shared is a read transaction then
disable data RAM
end if
negate Futurebus data strobe
end if
negate Futurebus address strobe
wait until falling clock edge
and Futurebus address and data acknowledge both negated

negate Futurebus_command
disable cache/Futurebus address and data transceivers

if tr_write_hit_shared is a read transaction then
enable cpu/cache data transceiver in cpu-to—cache direction
end if

cache_request <= false
wait until falling clock edge and not cache_grant

end procedure sequence_write_hit_to_shared_transaction

Figure 4-12 (continued).

If the transaction can proceed, its type ié specified by the parameter
tr_write_hit_shared. In the case of a write transaction being required, the procedure
enables the CPU’s data onto the cache data bus, otherwise it disables the CPU data
transceivers. The procedure then signals the write buffer to drain, and waits until
there are no entries in the write buffer. It prepares for the Futurebus transaction by
enabling the transceivers between the cache buses and the Futurebus interface, and

by setting up the Futurebus command values based on the configuration parameter va-

169

lues. The procedure then sequences the Futurebus transaction, starting with an ad-
dress beat. It saves the value of the Cache-Status reply signal for later use in updating
the attributes of the line. In addition, it saves the state of the busy reply signal for use
after the bus transaction is complete. If there is no busy reply and the transaction is
not an address-only invalidate, the transaction proceeds with a data beat, reading data
into the data RAM or writing data from the cache data bus depending on the type of
transaction. When the transaction sequence is complete, the procedure negates the Fu-
turebus command values, disables the cache-to-Futurebus transceivers, re-enables the

CPU-to-cache data transceiver, and releases tenure of the Futurebus.

The procedure that sequences a cache miss is shown in Figure 4-13. The procedure
first selects a section in the current set for replacement, preferring an entry that is not
valid if one exists, otherwise choosing the least recently used entry. It next examines
the Dirty attribute of the replaced line to determine whether the line must be copied
back via the write buffer. If so, the procedure releases the mutual exclusion lock on the
line and use of the cache buses, in order to avoid deadlock with other caches via the
snoop during subsequent operations. The procedure then waits until there is no previ-
ously buffered line pending in the write buffer and there is room for the newly replaced
line. It then sets a flag to indicate to the write buffer sequencer that the line about to
be placed in the write buffer is replaced as part of the current miss. This is required
to prevent the write buffer from flushing that line before the line requested by the CPU
is fetched from shared memory. The procedure next calls a procedure to sequence the
transfer of the replaced line to the write buffer. The miss sequencing procedure then
calls a procedure to sequence the read transaction to fetch the required line. Finally,

it clears the flag allowing the write buffer to proceed with flushing the replaced line.

The procedure that sequences copying a dirty replaced line to the write buffer is
shown in Figure 4-14. The procedure first replaces the tag field on the cache address
bus with the tag of the replaced line, and sets the offset part of the address to 0. It then

170

procedure sequence_miss is
begin
set replaced_section_index to Iru_section
for each section
if cpu_attributes(section_index).fb_valid is clear then
set replaced_section_index to this section
end if
end loop

if cpu_attributes(replaced_section_index).dirty is set then
master_requesting_line <= false
master_using_cache_bus <= false
if copyback pending or write buffer full then
wait until falling clock edge
and no copyback pending and write buffer not full
end if
current_miss_required_copyback <= true
sequence_copyback
end if

sequence_read_for_miss
current_miss_required_copyback <= false
end procedure sequence_miss

Figure 4-13. Outline of the procedure that sequences a cache miss.

requests mutual exclusion for the replaced line. It initiates the re-reading of the CPU
attributes, then waits until the mutual exclusion lock on the replaced line is granted
and the snoop is not using the cache buses. When access is made available, the proced-

ure claims use of the cache buses, then re-samples the CPU attributes and disables the

CPU attribute RAM outputs.

The procedure next checks whether the replaced line is still valid and dirty. If it is,

the line must still be copied back. The procedure sets a flip-flop that signals the pres-
ence of a replaced line pending copy-back in the write buffer, enables the data RAM out-
put to supply the line, and sets up the write buffer marks. When the address, data and

mark values are stable on the cache buses, the procedure enables the copy-back address

171

procedure sequence_copyback is

begin
disable cpu tag latch output
output enable replaced_section_index of cpu tag RAM
cache_offset <= 0 for copyback address

master_requesting_line <= true
enable cpu attribute RAM outputs

loop

wait until rising clock edge

exit when snoop not using cache bus and master granted mutex to line
end loop
master_using_cache_bus <= true

wait until falling clock edge

sample current cpu attributes
disable cpu attribute RAM outputs

if fb_valid and dirty attribute of replaced_section_index are both set then
set copyback_pending flip-flop
enable data RAM replaced section output
write through mark <="0’
cache command mark <="0’

wait until rising clock edge at start of next clock cycle

enable write to copyback address comparator
enable shift-in to write buffer fifo

wait until falling clock edge and write buffer fifo accepted input

disable write to copyback address comparator

disable shift-in to write buffer

disable data RAM replaced section output
end if;

disable replaced_section_index of cpu tag RAM
cache_offset <= cpu_offset

master_requesting_line <= false
master_using_cache_bus <= false

end procedure sequence_copyback

Figure 4-14. Outline of the procedure that copies a replaced line to the write buffer.

172

comparator and write buffer FIFO inputs. After a delay for the inputs to be accepted,
the comparator and FIFO inputs are disabled and the data RAM output is disabled.
This completed transfer of the replaced line to the write buffer. The final actions of the
procedure are to restore the address of the line requested by the CPU on the cache ad-
dress bus, to release the mutual exclusion lock on the replaced line, and to make the

cache buses available to the snoop.

The procedure that sequences a read transaction on a cache miss is shown in
Figure 4-15. The procedure is called either on an initial miss in response to a CPU re-
quest, or on a write miss resulting from a snoop invalidation of a shared line during a
write hit. In the former case, the procedure is called without the master having Future-
bus tenure, and the mutual exclusion lock on the line may or may not be held, depend-
ing on whether a copyback preceded the call. In the latter case, the procedure is called
with the master having Futurebus tenure and the mutual exclusion lock on the line in

place.

The procedure first checks whether the master has Futurebus tenure. If not, it ensur-
es that the mutual exclusion lock and use of the cache buses are released, then requests
arbitration for the Futurebus so that it can initiate the transaction required to read the
line. When access to the Futurebus is granted, the procedure reacquires the mutual
exclusion lock on the line and use of the cache buses. It need not wait for these to be
granted; since the master has Futurebus tenure, the snoop and all other masters in the
system must be inactive. The procedure then signals the write buffer to drain, and
waits until there are no entries in the write buffer, or until the entry at the head of the
write buffer is the replaced line transferred earlier in processing the current miss. The
procedure next determines the required type of Futurebus transaction: read-shared for
a read miss; or read-shared or read-invalidate, specified by the tr write_miss param-
eter, for a write miss. The procedure prepares for the Futurebus transaction by enab-

ling the transceivers between the cache buses and the Futurebus interface, and by set-

173

procedure sequence_read_for_miss is
begin
if not cache_grant then
master_requesting line <= false
master_using_cache_bus <= false
cache_request <= true
wait until falling clock edge and cache_grant

master_requesting_line <= true
master_using_cache bus <= true
end if

if write buffer is not empty

and (write through mark output is set

or pending copyback is from previous miss) then
flush_write_buffer <= true
wait until falling clock edge
and (write buffer is empty
or (write through mark is clear
and pending copyback is from this miss))

end if
flush_write_buffer <= false’

if cpu request is read then

set required_transaction to read_shared
else

set required_transaction to tr_write_miss parameter value
end if

enable cache/Futurebus address and data transceivers for read direction

assert Futurebus cache_command
negate Futurebus broadcast, three party and write
if required_transaction is read_invalidate then
assert Futurebus intent_to_modify and ownership
else :
negate Futurebus intent_to_modify and ownership
end if

assert Futurebus address strobe
wait until falling clock edge and Futurebus address acknowledge asserted
save Futurebus cache_status reply value
if Futurebus busy reply then
abort_with_retry := true
else

Figure 4-15. Outline of the procedure that sequences a read transaction on a cache miss.

174

assert/negate Futurebus three_party depending on third_party reply
assert Futurebus data strobe
write enable replaced section of data RAM
wait until falling clock edge and Futurebus data acknowledge asserted
disable data RAM
negate Futurebus data strobe
end if
negate Futurebus address strobe
wait until falling clock edge
and Futurebus address and data acknowledge both negated

negate Futurebus command
disable cache/Futurebus address and data transceivers

if (not (CPU request is write and required_transaction is read_shared
and saved cache_status is set)
and write_buffer is empty) or abort_with_retry then
cache_request <= false
wait until middle of clock cycle and not cache_grant
end if

if abort_with_retry then
return
end if

master_request_for_snoop_bus <= true after prop_delay;

determine current_cpu_attributes(replaced_section_index):
set fb_valid
if bus transaction was read_invalidate then
set fb_owned and fb_exclusive
else
clear fb_owned
if excl_depends_on_CS on_read_shared
and saved cache_status is set then
set fb_exclusive
else
clear fb_exclusive
end if
end if
clear fb_dirty

cpu_attributes(replaced_section_index)
<= current_cpu_attributes(replaced_section_index)
Iru_section <= new_lIru_section

Figure 4-15 (continued).
175

enable cpu/snoop address transceiver in cpu-to-snoop direction

snoop_attributes(replaced_section_index)
<= current_cpu_attributes(replaced_section_index)

wait until rising clock edge and master_granted_snoop_bus

write enable replaced_section_index of cpu tag RAM

write enable replaced_section_index of cpu attributes RAM
(also writes Iru section)

write enable replaced_section_index of snoop tag RAM

write enable replaced_section_index of snoop attributes RAM

wait until falling clock edge
master_requesting_snoop_bus <= false

disable cpu tag RAM
cpu_attributes(replaced_section_index) <= undriven
Iru_section <= undriven

disable cpu attributes RAM

disable cpu/snoop address transceiver

disable snoop tag RAM
snoop_attributes(replaced_section_index) <= undriven
disable snoop attributes RAM

end procedure sequence_read_for_miss

Figure 4-15 (continued).

ting up the Futurebus command values based on the required bus transaction type.
It then sequences the Futurebus transaction, starting with an address beat. It saves
the value of the Cache-Status reply signal for later use in updating the attributes of the
line. In addition, it saves the state of the busy reply signal for use after the bus transac-
tion is complete. If there is no busy reply, the transaction proceeds with a data beat,
reading data into the data RAM. When the transaction sequence is complete, the pro-
cedure negates the Futurebus command values and disables the cache-to-Futurebus
transceivers. Next, it determines whether to release Futurebus tenure. It does so only

if the miss is not a write miss requiring a subsequent bus write transaction, and if the

176

write buffer is empty, or if the read transaction returned busy status. If the Futurebus
transaction returned retry status, no further action is required, so the procedure re-
turns. Otherwise, the CPU and snoop tag and attributes for the fetched line must be
stored. The new attribute values are determined, based on the transaction type and
on the value of the configuration parameter excl_depends_on_CS on_read shared.
The procedure arbitrates for access to the snoop bus, and sets up the new attribute va-
lues and LRU section index for the CPU and snoop attribute RAMs. The new tag value
is already present on the cache address bus as part of the line’s address. When access
to the snoop bus is granted, the CPU and snoop tag and attribute RAMs are updated.
The procedure then releases the snoop bus and disables all control signals used to up-

date the tag and attribute RAMs.

Snoop Sequencer Outline

The snoop process shown in Figure 4-4 models the sequencing of cache datapath oper-
ations in response to Futurebus transactions. The process uses the clock signal gener-
ated by the processor to synchronize operations. A pseudo-code outline of the snoop pro-
cess is shown in Figure 4-16. The process waits until a Future bus transaction is
initiated, indicated by the Futurebus address strobe signal being asserted, then calls
a procedure to sequence looking up the snoop attributes to check for a hit. The process
next determines what action is required in response to the transaction. The decision
is based on the P896.2 rules and the cache configuration parameters. If the lookup
found a hit in the write buffer, the snoop remains unselected and will return a busy
reply to the transaction master. If the lookup found a hit in the cache, the transaction
is a broadcast and the parameter sel_on_broadcast_hit indicates that the snoop should
accept the data, the snoop becomes selected. If the lookup found a hit, the line is owned
by the cache and the transaction is not a broadcast, the snoop must become a third party

in the transaction. If the transaction is a read-shared and the parameter re-

177

snoop : process is
begin
futurebus_transaction_loop : loop

wait until falling clock edge and Futurebus address strobe asserted
sequence_snoop_lookup

if write buffer hit then
connection_state := unselected
elsif fb_valid and broadcast and sel_on_broadcast_hit then
connection_state := selected
elsif fb_valid and fb_owned and not broadcast then
if read—shared & reflect_on_read_shared then
connection_state := reflecting

else
connection_state := intervening
end if
else
connection_state := unselected
end if

if not write buffer hit then
set new attributes to current attributes (initially)
if cache_command then
clear new fb_exclusive attribute
end if
if ownership or reflect then
clear new fb_owned attributes
end if
if (fb_valid and intent_to_modify
and ((not broadcast and not fb_owned)
or (not broadcast and not write)
or (broadcast and unselected)))
or third_party and inval_if_third_party then
clear all new attributes
end if
end if

Figure 4-16. Outline of the snoop process.

flect_on_read_shared is set, the snoop becomes a reflecting third party, otherwise it be-

178

if write buffer hit then
assert Futurebus busy reply
negate Futurebus cache_status, selected, third_party and intervene reply
else
negate Futurebus busy reply
if new fb_valid attribute set then
assert Futurebus cache_status reply
else
negate Futurebus cache_status reply
end if
if connection_state is selected then
assert Futurebus selected reply
negate Futurebus third_party and intervene reply
elsif connection_state is reflecting then
assert Futurebus third_party reply
negate Futurebus selected and intervene reply
elsif connection_state is intervening then
assert Futurebus third_party and intervene reply
negate Futurebus selected reply
else
negate Futurebus selected, third_party and intervene reply
end if
end if
assert Futurebus address acknowledge

if write buffer hit or (unselected and new attributes same as old attributes) then
snoop_requesting_line <= false
snoop_using_snoop_bus <= false
wait until falling clock edge and Futurebus address strobe negated
negate Futurebus address acknowledge

else
sequence_snoop_participation

end if

disable snoop tag latch and set index latch outputs
end loop futurebus_transaction_loop
end process snoop

Figure 4-16 (continued).

comes an intervening third party. In the remaining cases where the lookup found a hit,

and in the case where the lookup found a miss, the snoop remains unselected.

179

Next, if there was no write buffer hit, the snoop process determines what attribute
changes are required. The decision is based on the P896.2 rules. In addition, if the
snoop is to participate as a third party and the parameter inval _if third party is set,

the snoop must clear all attributes.

Having determined the required response and new attribute values for the line, the
snoop process acknowledges the address beat. It asserts or negates the Futurebusreply
signals as appropriate, and asserts the Futurebus address acknowledge signal. Next,
the process implements its required action. If a write buffer hit was detected, or if the
snoop is unselected and need not update the line’s attributes, the snoop need take no
further part in the transaction. It immediately releases the mutual exclusion lock on
the line and use of the snoop bus, then waits for the end of the transaction. When the
transaction completes, the process negates the address acknowledge. If the snoop does
have some actions to perform, the process calls a procedure to sequence those actions.
Upon completion of sequencing the transaction, the snoop process loops and waits for

the next transaction.

The procedure that sequences lookup of the snoop attributes is shown in Figure 4-17.
The procedure first requests arbitration for mutually exclusive access to the cache line,
then speculatively enables the snoop attribute and tag RAMs. It then waits until mu-
tual exclusion is granted and the master is not using the snoop bus before proceeding.
The procedure confirms its own use of the snoop bus, thus locking out the master, and
waits for the attribute values to be accessed and the tag comparison to be performed.
During this time, the copyback address comparator also compares the Futurebus ad-
dress with the saved address of the line awaiting copying back to shared memory. If
there is a copyback pending and the addresses match, the procedure indicates a write
buffer hit. Otherwise, it samples the current snoop attributes, and checks whether
there is a hit in either section of the cache. Finally, the procedure disables the snoop

tag RAM and attribute RAM outputs and returns.

180

procedure sequence_snoop_lookup is
begin
snoop_requesting_line <= true

enable snoop tag latch and set index latch outputs
enable snoop tag ram comparison
enable snoop attributes ram outputs

wait until rising clock edge
and master not using snoop bus and snoop granted mutex to line

snoop_using_snoop_bus <= true
wait until falling clock edge

if copyback_pending and copyback comparator match then
set write buffer hit
else
sample current snoop attributes
assume initially hit is false
for each section loop
if tag match and cpu attribute fb_valid is set then
hit is true, hit_section_index is this section
end if
end loop
end if

disable snoop tag ram comparison
disable snoop attributes ram outputs
end procedure sequence_snoop_lookup

Figure 4-17. Outline of the procedure that sequences snoop attribute lookup.

The procedure that sequences the snoops actions during a transaction is shown in
Figure 4-18. The procedure first requests arbitration for use of the cache buses and spe-
culatively enables the address transceivers to pass the Futurebus transaction address
to the cache address bus. It then waits for use of the cache buses to be granted. If the
snoop must participate in the transaction, the procedure then enables the data trans-
ceivers between the cache data bus and the Futurebus and enables the data RAM. The
direction of data transfer depends on whether the transaction is a read or a write. The

procedure then waits until either the data strobe is asserted, indicating commencement

181

procedure sequence_snoop_participation is
begin
snoop_request_for_cache_bus <= true
enable cpu/snoop address transceiver in snoop_to_cpu direction

wait until falling clock edge and snoop_granted cache bus

if not unselected then
if Futurebus write then
enable cache/Futurebus data transceivers
in Futurebus-to-cache direction
write enable hit section of data RAM
else
enable cache/Futurebus data transceivers
in cache-to—Futurebus direction
output enable hit section of data RAM
end if

wait until falling clock edge
and Futurebus data strobe asserted or address strobe negated

if Futurebus data strobe asserted then
assert Futurebus data acknowledge
if Futurebus write then
disable write to data RAM
end if
wait until falling clock edge
and Futurebus data strobe negated and address strobe negated
if not Futurebus write then
disable data RAM output
end if
negate Futurebus data acknowledge
end if

enable cache/Futurebus data transceivers

else
wait until falling clock edge and Futurebus address strobe negated
end if

if new attributes differ from current attributes then
enable cpu attribute ram outputs

wait until rising clock edge
sample current_cpu_attributes and current_|ru section
disable cpu attribute ram outputs

Figure 4-18. Outline of the procedure that sequences the snoop’s actions in a transaction.

182

update current_cpu_attributes(hit_section_index) with new attributes
if new fb_owned is clear then
clear current_cpu_attributes(hit_section_index).dirty
end if
cpu_attributes(hit_section_index)
<= current_cpu_attributes(hit_section_index)
Iru_section <= current_Iru section
snoop_attributes(hit_section_index) <= new attributes
write enable hit_section_index of cpu attributes ram
(also writes back Iru section)
write enable hit_section_index of snoop attributes ram

wait until falling clock edge
cpu_attributes(hit_section_index) <= undriven
Iru_section <= undriven

disable cpu aftributes ram
snoop_attributes(hit_section_index) <= undriven
disable snoop attributes ram

end if

disable cpu/snoop address transceiver
negate Futurebus address acknowledge

snoop_requesting_line <= false
snoop_using_snoop_bus <= false
snoop_request_for_cache_bus <= false

end procedure sequence_snoop_participation

Figure 4-18 (continued).

of a data beat, or until the address strobe is negated, indicating and address-only trans-
action. In the case of a data beat, the procedure asserts the data acknowledge signal,
since, by this time, data has been accepted for a write or data is available for a read.
For a write, the procedure also disables the data RAM to complete acceptance of the
data. The procedure then waits until completion of the data beat and commencement
of the end beat, indicated by both the data strobe and the address strobe being negated.

For a read, it disables the data RAM output, since the transaction master has accepted

183

the data. The procedure negates the data acknowledge signal to acknowledge comple-
tion of the data beat and disables the data transceivers. In the case of the snoop not
participating in the transaction, the procedure ignores any data beat that occurs, and

just waits for the end beat, indicated by the address strobe being negated.

The snoop’s action during the end beat is to update the stored CPU and snoop attrib-
utes if the new attribute values differ from the current values. The procedure enables
the CPU attribute RAM output in order to read the additional attributes not replicated
in the snoop attribute RAM. It then waits for the values to be read, samples them, and
disables the CPU attribute RAM outputs. It updates the attribute values for the hit
section, and clears the Dirty attribute if ownership is relinquished. The procedure then
drives the updated attributes onto the CPU and snoop attribute buses, and enables the
CPU and snoop attribute RAMs to write the new values. After a delay for the write to
occur, it removes the driving values and disables the attribute RAMs. The final actions
of the procedure are to disable the address transceiver between the snoop and cache
buses, to acknowledge completion of the end beat by negating the address strobe, to re-

lease the mutual exclusion lock and to release use of both cache and snoop buses.

Write Buffer Sequencer Outline

The process that sequences write transactions from the write buffer is shown in
Figure 4-19. All action are synchronized with the falling clock edge in the middle of a
clock cycle. The process waits until there is an entry waiting at the output of the write
buffer FIFO. It then checks whether it already is granted use of the Futurebus or
whether the master process is waiting for the write buffer to be flushed. If neither is
the case, the process requests arbitration for the Futurebus, and waits until access is
granted. When the process can proceed, it prepares for the Futurebus transaction by
setting up the Futurebus command values and by enabling address and data outputs

from the write buffer FIFO. The Cache-Command value is set using the cache_com-

184

write_buffer_controller : process is
begin
wait until falling clock edge and write buffer not empty

if not (write_buffer_grant or flush_write_buffer) then
write_buffer_request <= true
wait until falling clock edge
and (write_buffer_grant or flush_write_buffer)
end if

assert/negate Futurebus cache_command
depending on cache_command mark output
assert/negate Futurebus intent_to_modify
depending on write_through mark output
assert Futurebus write
negate Futurebus broadcast, three_party and ownership

enable write buffer address and data outputs

assert Futurebus address strobe
wait until falling clock edge and Futurebus address acknowledge asserted
save Futurebus busy reply value
if not Futurebus busy reply then
assert/negate Futurebus three_party depending on third_party reply
assert Futurebus data strobe
wait until falling clock edge and Futurebus data acknowledge asserted
enable write buffer shift-out
negate Futurebus data strobe and address strobe
if write_through mark output is cleared then
reset copyback_pending flip-flop
reset copyback address comparator
wait until rising clock edge at start of next clock cycle
disable write buffer shift-out
else
wait until rising clock edge at start of next clock cycle
disable write buffer shift-out
end if
wait until falling clock edge
and Futurebus address and data acknowledge both negated
else
negate Futurebus address strobe
wait until falling clock edge
and Futurebus address acknowledge negated
end if

Figure 4-19. Outline of the process that sequences write transactions from the write buffer.

185

negate Futurebus command
disable write buffer address and data outputs

if write_buffer_preempt or write buffer empty
or saved Futurebus busy reply is set then
write_buffer_request <= false

end if

end process write_buffer_controller

Figure 4-19 (continued).

mand mark output from the FIFO. The Intent-to-Modify value is set using the
write_through mark: set for a write-through or cleared for a copy-back. The process
then sequences the Futurebus transaction, starting with an address beat. It saves the
state of the busy reply signal for use after the bus transaction is complete. If there is
no busy reply, the transaction proceeds with a data beat, writing data from the FIFO
output. On completion of the data beat, the process shifts the entry out of the head of
the FIFO and terminates the Futurebus transaction. In the case of a copy-back, the
process also resets the copyback pending flip-flop to indicate to the master process that
the copy-back has completed, and resets the copyback address comparator. By the time
the entire Futurebus transaction is completed, the next entry in the FIFQ (if there is
one) has advanced to the head, and the master has determined whether it needs to

maintain the flush_write buffer signal active.

If there was a busy reply status from the address beat of the bus transaction, the pro-
cess does not proceed with the data beat. Instead, it terminates the bus transaction and
leaves the entry at the head of the write buffer FIFO so that the write can be retried

later.

When the transaction sequence is complete, with or without retry status, the process

negates the Futurebus command values and disables the address and data outputs

186

from the write buffer FIFO. It then determines whether to release Futurebus tenure.
It does soifitis preempted by the master, if the FIFQO is empty, or if the write transaction

returned retry status. The process then repeats from the beginning.

4.3.4 The Coherence Monitor Model

The coherence monitor within the Leopard-2 system model consists of a set of observa-
tion processes, one within each cache, and a global monitor that verifies maintenance
of coherence. The observation process in a cache senses the values written to and read
from the cache and senses the changes made to attribute values of lines in the cache.

It communicates this information to the global monitor.

In order for the global monitor to verify maintenance of coherence for a line in the

shared memory address space, it must verify two properties:

» that the attributes of the line are maintained within the legal set of con-

figurations for the coherence protocol being used, and

 that each cache provides its client processor with the most recently written

version of the line.

The global monitor checks the first property by maintaining, for each line, a copy of
the attributes stored in the caches. This represents the configuration of the line. The
monitor has a generic parameter that specifies the coherence protocol in use and thus
which configurations are legal. When an observation process informs the global moni-
tor of a change in attribute values for a line in a cache, the monitor updates its copy and

verifies that the new configuration is legal.

The global monitor checks the second property by maintaining a copy of the shared
memory image, which is the view of shared memory that should be seen by each proces-
sor. The shared memory image includes updates from processor write operations, even
if they are not transmitted through to the physical shared memory. Recall that the

Leopard-2 model represents the value of a line by a token stamped with the time at

187

which the line was last updated by a processor write. If the coherence protocol is cor-
rect, each cached copy of a line should contain the same latest updated value. On a read
hit in a cache, the observation process informs the global monitor of the timestamp of
the value read from the cache. The monitor compares the timestamp with that of the
shared memory image line to ensure that they are equal. Any write to a cache updates
the shared memory image, so the observation process informs the global monitor. The
monitor compares the timestamp of the update with that of the shared memory image
to ensure that the superseded value is older. Ifit is not, the protocol or its implementa-

tion is in error.

One difficulty that arises in implementing the global monitor is that of the size of the
shared memory image. There is potential for the host simulator to run out of memory.
The same problem arises in implementing behavioural simulation models of large
memory systems, and is solved by using sparse representations of the address space,
storing only those sections that are actually in use. In the case of the global monitor
model, the address space is divided into segments, each the size of one cache section.
The first time that any line within a segment is cached, storage is allocated for that seg-
ment of the shared memory image. Any segment without allocated storage is deemed

to have all lines uncached (invalid in every cache) with a timestamp of 0.

The observation process in each cache, as mentioned above, informs the global moni-
tor of read and write values and attribute changes. The process senses the state of con-
trol signals generated by the cache controller to determine when to sample data and
attribute values. Aread value is sampled when the cache controller enables the cache
data RAM output to service a read hit. A write value is sampled when the cache con-
troller write-enables the data RAM to service a write hit. In the case of a write hit to
a shared line involving a Futurebus transaction, the transaction is performed before
the cache is updated. If the transaction is a write-update, another cache may update

its value and read it before the write to data RAM occurs in the writing cache. To avoid

188

this being detected as an error by the global monitor, the observation process in the
writing cache also samples the write data when the cache controller initiates a Future-

bus write transaction for a write hit to a shared line.

The observation process samples attribute values whenever the master or snoop
write-enables the CPU attributes RAM, and informs the global monitor of the new
value. It uses the tag and set index values from the cache address bus to determine the

address of the line for use by the monitor.

A complication arises when a line is replaced by the master. The global monitor must
be informed so that it can modify the the attributes for the line to indicate that the line
is no longer valid in that cache. The difficulty is that, if the line is not dirty, the entry
is simply overwritten in the cache without the tag of the replaced line being output onto
any bus. Hence the observation process is unable to determine the address of the re-
placed line just by sampling the cache buses. To circumvent this problem, the observa-
tion process maintains its own copy of the cache tags. When the cache controller write-
enables the CPU tag RAM, the observation process informs the global monitor that a
line is being replaced. The address of the line is determined using the set index value
on the cache address bus and the tag value saved by the observation process. The ob- ‘

servation process then copies the new tag value.

4.4 Summary

This chapter has described the design of a programmable cache controller for the
Leopard-2 Multiprocessor. The programmability is based on an analysis of the options
within the P896.2 Futurebus cache coherence rules, and allows implementation of the
various cache coherence strategies discussed in Chapter 2. This chapter also describes
a behavioural model of the Leopard-2 system, and details the control sequences used

by the cache controller to manage the cache datapath. The model, in execution, is

189

driven by two alternative workloads: a synthetic workload to exercise specific aspects
of the system behaviour, and a pseudo-random workload to provide comprehensive test
coverage. The model also incorporates monitors to verify correct maintenance of coher-

ence by the caches.

190

Chapter 5

Conclusions

5.1 Summary of Project Context

In Chapter 2 of this thesis, three approaches to evaluating performance of cache coher-
ence strategies were compared: analytical, simulation based, and by measuring real
systems. The third approach yields the most accurate evaluation, provided differences

due to other factors can be isolated.

The author’s part in the Leopard Project was to design and construct an experimental
vehicle for making such measurements. This sub-project formed the basis for further

work in the overall project, including:

 using the experimental hardware to evaluate the protocols described in

detail in Chapter 2 under real operating conditions,
» experimental work in multiprocessor operating systems,

 development and evaluation of concurrent applications, including the
Multiview software engineering environment [1] and a parallel imple-

mentation of the SISAL functional language [22],

The motivation for constructing a system to allow measurements of cache behaviour
came from the scarcity of raw data available, and the lack of validated comparisons
published in the literature. This was despite the frequently cited advantages of the
shared memory multiprocessor architecture, and the prediction that future worksta-

tions and network servers would rely heavily on that architecture. At the time of com-

191

mencement of the project, none of the small number of commercially'available multi-

processors had the flexibility to allow the experimental goals to be met.

One approach considered as a means of developing a system for cache coherence ex-
periments was to accept some of the limitations inherent in existing commercial sys-
tems, and to modify them sufficiently to support different cache coherence strategies.
This would have involved less design and construction work than designing a new sys-
tem, since the existing input/output and memory systems would be used. However, it
would have relied on a commercial system having a sufficiently flexible bus protocol to
allow augmentation (possibly including extra bus wires) to implement different cache
coherence protocols, and having hardware design and packaging organized in such a
way as to allow “splicing in” extra cache hardware. Furthermore, it would have relied
on a vendor being willing to make available the proprietary design information to sup-
port such modifications to their hardware. Discussions held with some vendors and
other researchers in the early stages of this project indicated that vendors regard such
proprietary information as extremely confidential and sensitive, and are not willing to
make it available to independent researchers, even under strict secrecy agreements.
Hence, for these reasons, if not for reasons of technical difficulty, this approach was re-

jected.

With this background as a starting point, design and construction work on the Leop-
ard systems was undertaken. The project was extremely ambitious, but construction
of a complete Leopard-2 system has been completed and the system demonstrated. The
prototype consists of four General Data Processors, a Shared Memory, a Futurebus Mo-
nitor and a Storage and Communications Processor. Subsequent work included port-

ing the Chorus operating system [43] to run on the hardware.

192

5.2 Experimental Evaluation of Cache Coherence Protocols

Of the experiments that the Leopard multiprocessor was designed to support, the one
most relevant to this thesis is the measurement of system performance under different
cache coherence protocols. It is essential to realize that a complete computer system
consists not just of the CPU, cache and main memory, but also the I/O hardware, the
operating system software, and the applications programs that the end user runs. Dif-
ferent cache coherence protocols may affect the overall system performance to different
degrees as these other factors are included. Thus a valid performance evaluation ex-
periment must include the effects of these additional factors, and, in reporting results,

must also report the conditions under which the measurements were made.

One factor of great interest is the way in which performance under different protocols
is affected by the choice of workload for the system. The way in which the protocols deal
with data shared between processors is one of the primary differences between them,
so it is important to assess performance under workloads with differing degrees of data
sharing. Some studies, for example those done by Eggers and Katz [18], suggest that
the amount of actual data sharing in real applications is low. However, the extent to
which the applications they measured are typical of parallel programs that will be run
on shared memory multiprocessors is questionable. One could argue that if sharing is
efficiently supported by the architecture, software designers will write programs in
such a way as to take advantage of it, thus increasing the degree of sharing above that

measured in current programs.

At the time of construction of the Leopard multiprocessor, the experiments planned
involved using a variety of application programs to run as benchmarks. The chosen

programs spanned a spectrum of process granularity and data sharing:

e the parallel SISAL system, representing fine grained parallelism with
heavy data sharing,

193

¢ the Multiview system, representing coarse grained parallelism with a

lower degree of data sharing,

» data parallel algorithms, such as image processing and numerical applica-

tions,

* general interactive workstation usage, such as office automation and soft-

ware development tasks.

These benchmark applications were to run under the Chorus micro-kernel operating
system [43] ported to the Leopard-2 system, supplemented with a Unix interface layer.
The planned cache evaluation experiments involved running each benchmark with
each of the cache coherence protocols, and forming a matrix of performance measure-
ments. The primary metric of performance would be execution time of the program
being run. It is well recognized that this is the most reliable and complete measure of
system performance, as it includes all of the effects of hardware organization, I/O oper-
ation, operating system overhead and application characteristics. (See, for example,

[26] for a discussion of this issue.)

One of the difficulties with this experimental technique is maintaining a controlled
environment, so that only the desired factors vary between runs. Two techniques were
considered to deal with this problem. The first was to use a fixed initial configuration
for each trial, and to isolate the system from random external influences. Setting up
an initial configuration involves such factors as formatting a disk store with exactly the
same files and data in the same locations, and starting the trial by boot-strapping from
this initial configuration. Isolation from external influences involves disconnecting
any network connections to other systems, and using scripts to control the running of
the benchmarks, so as not to rely on human user reaction times. The second technique
for dealing with variations in the environment was to perform a number of trials of each

measurement, and average the results. While this has the advantage of including the

194

effects of external influences on the computer system performance, the additional time
required to complete sufficient trials to gain statistical significance may make the ex-

periment intractable.

5.3 Conclusion

This thesis describes research in the area of cache coherence protocols for bus connected
shared memory multiprocessors, undertaken as part of the Leopard Project. The re-
search has produced some significant theoretical results, which underpin a practical
experiment in the construction of a multiprocessor platform for evaluating cache coher-

ence protocols.

The description of cache coherence protocols in a uniform framework, presented in
Chapter 2, allows comparisons to be made between the protocols, and simplifies their
analysis. This work, and the research into bus protocols performed whilst designing
the Leopard-1, had a significant impact on the design of cache coherence mechanisms
for the IEEE Futurebus Standard. These, in turn, made possible the design of the gen-
eral purpose cache datapath in the Leopard-2 system (described in Chapter 3) and the
reconfigurable cache controller (described in Chapter 4), which can be programmed to

implement different coherence protocols.

The Leopard-2 multiprocessor forms a vehicle for comparing the performance of a va-
riety of cache coherence protocols under controlled conditions. This form of evaluation
is necessary to validate previous performance studies done using analytical and si-
mulation based techniques. The Leopard-2 system is now operational, and may be used
to perform such experiments. The results of these experiments will greatly aid future
designers of shared memory multiprocessors to achieve maximum performance for pro-

grams run on this important class of computer systems.

195

Appendix A

L-Bus Data Transfer Protocol

This appendix describes the data transfer protocol developed for the Leopard-1

Multiprocessor system.

A.1 Overview

L-Bus transactions are composed of an address transfer from a master to slave mod-
ules, followed by zero or more data transfers between them. When a module needs to
initiate bus transactions, it requests access to the L-bus using the arbitration protocol.
When it is granted the bus, it becomes master, and may initiate zero or more transac-
tions. (A typical case where no transactions are done is when the master must perform
an interlocked data access, but some other module already owns the lock. This is de-
scribed in detail below.) When the master has completed its last transaction, it releases

the bus.

During an address transfer, the master broadcasts the first address for the transac-
tion. Each module determines whether it will be involved in the transaction, and if so,
takes a copy of the address, and increments it after each data transfer. The particular
module referred to by the address is selected as the slave. Other modules may be in-

volved as third parties, and may monitor the subsequent data transfers.

For each data transfer, the caches determine whether they have a copy of the data

being accessed. If a cache does not have a copy, it does not participate further in the

196

data transfer. If a cache does have a copy, then its response depends on the type of data

transfer, as discussed below

The L-Bus data transfer protocol supports both write-through and write-back caches,
and provides mechanisms to support cache coherence protocols. Caches may intervene
on data transfers to supply the most up-to-date copy of a block, and may notify other
caches that they should invalidate their copies of a block. The L-Bus protocol imple-
ments these mechanisms in a way that allows a mixture of cache coherence protocols

in the one system. However, it assumes that all caches use the same block size.

The L-Bus data transfer protocol also implements an interlocking mechanism for
controlled access to shared data. A lock signal is provided, which only one module may
assert at a time. When a module needs exclusive access to data, it requests the bus and
checks the state of the lock signal. If the signal is asserted, the module must relinquish
the bus and retry later. If the signal is negated, the module asserts it and commences
interlocked operation on the data. The operation may continue over more than one bus
tenure, and non-interlocked data access by other modules may be interleaved. During

the last data transfer of the interlocked operation, the module negates the lock signal. -

A.2 Addressing Structure

Addressing in L-Bus is based on backplane slot position. Slots are numbered from
1 to 30 from left to right (viewed from the board insertion side) across the backplane.
The slot number is encoded on signals presented to each board by the backplane. Each

board is allocated a region in the address space according to its slot number.

The address space of a board is divided into two regions, one for cachable data and
one for non-cachable data. Modules accessing data from the cachable region may put
the data in their local caches. All caches must monitor data transfers to and from this

region. Data from the non-cachable region must not be cached.

197

31 272625 210

Slot |C Offset PV

Figure A-1. L-Bus address format.

The format of an L-Bus addressis shown in Figure A-1. The Slot field indicates which
backplane slot contains the board to be selected as the slave. Slot address 0 is reserved
for modules to access local memory and registers. Slot address 31 is reserved for the
System Region (see below). When the C field is 1, the offset is in the cachable region
of the board’s address space, otherwise it is in the non-cachable region. The Offset field
is the word address of the data within the selected region of the board. The byte address
is four times the word address. The PV field is the protocol version indicator. It indi-
cates the lowest version of the L-Bus protocol which implements the type of transaction
requested by the master. If the slave conforms only to some lower version and cannot
perform the requested transaction, it must abort the transaction. The use of the proto-
col version field allows enhancements to be made to the bus protocols whilst ensuring
compatibility with existing modules. The restrictions applying to to different protocol
versions are described in Section A.4.13 below. The values of PV defined are 00 for the
Quibus Version 0.9 bus protocol (used in the QDS-1000 system), and 01 for the L-Bus

protocol described here.

The System Region of the L-Bus address space, corresponding to Slot address 31, is
reserved for registers and storage not specific to a particular module, but which are
used to coordinate modules in a system. Locations in the System Region may have a
distributed implementation, or be decoded in a way dependent on the state of the sys-
tem. One such location is the Interrupt Identifier location, at offset 0 in System Region.

This is used in the interrupt protocol to acknowledge receipt of an interrupt. The actual

198

module that responds to an access to this location is the one selected by the interrupt

mechanism as the winning requester.

A.3 Data Transfer Signals

The L-Bus specification defines a number of backplane signals to carry address, data,
command and status information, and to synchronize transfer of this information be-

tween modules. These signals are described in this section.

A.3.1 Information Signals
Infl0:31] — address and data values

Address values are formatted as described in Section A.2, with bit 0 on Inf{[0]. Data
values are four bytes wide, with the lowest address (byte 0) on Inf[0:7], the next byte
on Inf[8:15], etc.

A.3.2 Master Command Signals

Command[0:3] — carry command information during an address transfer and byte-en-

able information during a data transfer
EndSeq — last data transfer in a transaction
Lock — interlocked operation in progress

The command information sent during an address transfer specifies the type of the
transaction, and hence whether the subsequent data transfers are reads or writes. The

command values are:

Command Transfer Type |

-3 2 1 0 ‘
0 0 0 0 non-cache read B ‘
0 0 0 1 non-cache write |

0 0 1 X reserved l

199

T =)
== O O OO

1

During a data_transfer the comménd signals are used to send byte-enable informa-
tion to the slave. Command([0] is used as ByteEn[0] controlling byte 0, Command[1]
as ByteEn[1] controlling byte 1, etc. In a write transfer, only those bytes with the cor-
responding ByteEn signal asserted are written, the other bytes in the word being pre-

served. In a read transfer, only those bytes with the corresponding ByteEn signal as-

- O O R H O O M

1

—_ O =2 O R O = O K

serted are required by the master.

A.3.3 Cache Status Signals

PassiveHit — a cache has a copy of the data, and it is consistent with shared memory

InterveneHit — a cache has the most up-to-date copy of the data and must intervene

on the transfer

SlaveUpdate — the memory slave must update its copy of the data with the value trans-

ferred on the bus

A.3.4 Slave Status Signals

reserved
cache read-shared
cache write-back

cache read-invalidate
cache write-invalidate
cache read-copy

cache write-copy
reserved

cache immed-invalidate

Status[0:2] — slave completion status for the transfer

The values returned for completion status are as follows:

Status |
2 1 0
0 0 O
0o 0 1

Code

SelectErr
AccErr

200

Indicated Condition

Slave does not respond
Access error

0 1 0 OpErr Invalid operation requested \
0 1 1 ProtErr Protocol error |
1 0 0 Succes Successful completion |
1 0 1 Retry Busy retry |
1 1 0 reserved |
1 1 1 TPAbort Third party abort

The code Success indicates that no problem occurred during the data transfer. Retry
is returned when the slave is busy, and waiting for it would unduly hold up the bus or
cause deadlock. When this status is returned, the master must terminate the current
transaction, release the bus, request it again, and retry the data transfer. SelectErr is
returned when there is no board inserted into the addressed slot, or when the board’s
address space does not include the addressed offset. AccErr is returned when the slave
is unable to complete the data transfer because of an internal error, such as a mémory
checksum error or a component fault. OpErr is returned when the transfer required
an invalid operation to be performed, such as writing to read-only memory or reading
a word from a byte-wide register. ProtErr is returned when the protocol level of the data
transfer is higher than the maximum recognized by the slave. TPAbort is returned

when a third party module needs to abort the transfer.

A.3.5 Sequencing Signals

AddrStrobe — master has initiated an address transfer

DataStrobe — master has initiated a data transfer

Ready — all modules are ready for data transfer (wired-and)

CacheAck — all caches acknowledge availability of cache status (wired-and)
StatusAck — all participating modules acknowledge availability of status (wired-and)

TPAck — all third party modules acknowledge completion of data transfer (wired-and)

201

A.3.6 Slot Address

Slot[0:4] — slot number, supplied by the backplane

A.4 Data Transfer Protocol Operation

In this section, the operation of the L-Bus data transfer protocol is described in detail.

Timing diagrams for each of the transfer types are shown in Section A.5.

A.4.1 Information Transfer Handshaking

The transfer of information (address and data) on the Inf signals is sequenced with
a handshaking protocol using the synchronization signals listed in Section A.3.5 above.
This section firstly describes the basic handshaking protocol used for non-caching
transactions, then describes how it is augmented for transactions involving cachable

data.

Initially, when the data transfer busis idle, each module negates AddrStrobe, DataS-
trobe, StatusAck and TPAck, and asserts Ready when it is ready to commence a

transfer. Since Ready is wired-and, it will not become true until all modules are ready.

When a master must initiate a transfer, it waits until Ready is true, then places a
command code on the Command signals, and may place information on the Inf signals.
If the transfer is an address transfer, the master asserts AddrStrobe, whereas if the
transfer is a data transfer, the master asserts DataStrobe.

When one of the strobe signals becomes true on the bus, each module sequences the
Ready, StatusAck and TPAck signals according to the part they must play in the
transfer protocol. The master module itself immediately negates Ready and asserts
StatusAck and TPAck. The addressed slave module and the third party modules negate
Ready and commence their action for the transfer.

When the slave has completed its action, which may involve placing information on

the Inf signals, it places a status value on the Status signals and asserts StatusAck.

202

Any third party module which needs to signal an error may do so by forcing the Status
value to TPAbort and asserting StatusAck. Other third party modules also assert Sta-
tusAck. Since this signal is wired-and, it will not become true until all participating

modules have determined the status for the transfer.

When each third party module has completed its action, it asserts TPAck. Since this
signal is wired-and, it will not become true until all third party modules have completed

their actions.

When the master sees StatusAck and TPAck both true, it removes the command and
any information from the bus and negates the strobe signal, StatusAck and TPAck. All
other modules, on seeing the strobe signal false, remove any status or information from
the bus and also negate StatusAck and TPAck. All modules hold Ready false until they
are ready to commence the next transfer. When all modules assert Ready, the next

transfer may commence.

In order to handle transfer of cachable data, the basic protocol is extended using the
cache status signals. Asin the basic protocol, the master waits until the Ready signal
is true, places a command and possible data on the bus, then asserts DataStrobe. In
a cachable data transfer, each éache then negates Ready and checks for a hit at the ad-
dressed location. If a cache doesnot have a hit, it does not assert any of the cache status
signals. If a cache has a copy of the data which is consistent with the copy in shared
memory, is asserts PassiveHit. If there is a cache which has a more recently written
copy of the data than shared memory and hence must intervene on the data transfer,
it asserts InterveneHit. It may also assert SlaveUpdate if it requires that the shared
memory slave update its copy using the data transferred. When each cache has com-
pleted the check, it asserts CacheAck and StatusAck. Since CacheAck is wired-and, it

does not become true until all caches have completed the check.

203

In a cachable data transfer, the slave waits until both DataStrobe and CacheAck are
true, and then checks the cache status signals. If InterveneHit is false, it continues nor-
mally. If InterveneHit is true and SlaveUpdate is false, it suppresses its action and al-
lows the cache asserting InterveneHit to complete the transfer. If InterveneHit and
SlaveUpdate are both true, the slave allows the intervening cache to complete the
transfer, but takes a copy of the transferred data to update its own copy. The remainder
of the handshaking sequence then continues as in the basic protocol, with the caches
removing the cache status signals and negating CacheAck when they see DataStrobe

become false.

A.4.2 Address Transfer and Incrementing

A module which needs to use the data transfer bus firstly goes through the arbitra-
tion process, and when granted the bus, becomes the new bus master and initiates

transactions.

To start a transaction, the master first initiates an address transfer, using the basic
handshaking protocol described in Section A.4.1 above. The command code it sends on
the Command signals indicates the type of the ensuing data transfers, and the informa-
tion on the Inf signals is the address of the first data transfer. If there is a module in
the addressed slot, it stores the address and command, and becomes the slave for the
transaction. It returns an appropriate status code depending on whether or not it can
continue with the transaction. Any third party modules may also store the address and
command, and may return the TPAbort code if they need to prevent the transaction

from proceeding.

After the address transfer has successfully completed, the master may initiate zero
or more data transfers. The address for each data transfer is that stored by all of the
participating modules, and must be incremented by one word after each successful data

transfer in the transaction. When the master initiates the last data transfer in the

204

transaction, it asserts EndSeq. In the case of a transaction with no data transfers, End-
Seq is asserted during the address transfer. If there is a data transfer in which the sta-

tus code returned is not Success, the transaction is terminated.

A.4.3 Cache Immed-Invalidate Transaction

A cache immed-invalidate transaction may only occur in the cachable region of a
module’s address space. If the master issues a cache immed-invalidate command code
in an address transfer, the transaction contains no subsequent data transfers. The
command indicates that any cache which has a copy of the data at the addressed lo-

cation must immediately invalidate that copy.

A.4.4 Cache Read-Shared Transaction

A cache read-shared transaction may only occur in the cachable region of a module’s
address space. It is used by a cache master to read a block without changing the data
in other caches. A third party cache which does not have a hit or which has a passive
hit at the addressed location takes no action. A third party cache with an intervene hit

must intervene to supply the data.

A.4.5 Cache Write-Back Transaction

A cache write-back transaction may only occur in the cachable region of a module’s
address space. It is used by a cache master which has the most recently written copy
of the addressed block to write it back to memory. A third party cache which does not
have a hit or which has a passive hit at the addressed location takes no action. If there
is a third party cache with an intervene hit, the cache coherency protocol has been cor-

rupted, so the cache should return the TPAbort status code.

205

A.4.6 Cache Read-Invalidate Transaction

A cache read-invalidate transaction may only occur in the cachable region of a mod-
ule’s address space. It is used by a cache master to gain an exclusive copy of the ad-
dressed data. A third party cache which does not have a hit at the addressed location
takes no action. A third party cache with a passive hit must invalidate its copy of the
data. A third party cache with an intervene hit must intervene to supply the data, and

then invalidate its copy.

A.4.7 Cache Write-Invalidate Transaction

A cache write-invalidate transaction may only occur in the cachable region of a mod-
ule’s address space. It isused by a cache master to write its copy of the addressed data
through to shared memory. A third party cache which does not have a hit at the ad-
dressed location takes no action. A third party cache with a passive hit must invalidate
its copy of the data. A third party cache with an intervene hit must invalidate its copy

and force shared memory to be updated.

A.4.8 Cache Read-Copy Transaction

A cache read-copy transaction may only occur in the cachable region of a module’s
address space. Itisused by a cache master to gain a non-exclusive copy of the addressed
data. A third party cache which does not have a hit or which has a passive hit at the
addressed location may take a copy of the transferred data. A third party cache with

an intervene hit must intervene to supply the data.

A.4.9 Cache Write-Copy Transaction

A cache write-copy transaction may only occur in the cachable region of a module’s
address space. It is used by a cache master to broadcast a copy of the addressed data

through to shared memory and to third party caches. A third party cache which does

206

not have a hit at the addressed location may take a copy of the transferred data. A third
party cache with a passive hit must take a copy. A third party cache with an intervene

hit must intervene to accept the data, and may force shared memory to be updated.

A.4.10 Non-Cache Read Transaction

A non-cache read transaction may occur at any address, and is the normal transac-
tion type used by a non-cache master. If the addressed location is in the non-cachable
region of a module’s address space, the basic handshaking protocol is used. If the lo-
cation is in the cachable region, the extended handshaking protocol is used. A third
party cache which does not have a hit or which has a passive hit at the addressed lo-
cation takes no action. Athird party cache with an intervene hit must intervene to sup-

ply the data.

A.4.11 Non-Cache Write Transaction

A non-cache write transaction may occur at any address, and is the normal transac-
tion type used by a non-cache master. If the addressed location is in the non-cachable
region of a module’s address space, the basic handshaking protocol is used. If the lo-
cation is in the cachable region, the extended handshaking protocol is used. A third
party cache which does not have a hit at the addressed location takes no action. A third
party cache with a passive hit must invalidate its copy of the data. A third party cache
with an intervene hit must intervene to accept the data, and may force shared memory

to be updated.

A.4.12 Interlocked Transactions

Modules needing to perform interlocked operations on data use the Lock signal to en-
sure mutual exclusion. Before commencing an interlocked operation, a module checks
this signal. If it is already true, some other module is in the middle of an interlocked

operation. Hence the bus must be relinquished and requested again.

207

When the module has the bus and the Lock signal is false, the interlocked operation
may commence. The Lock signal must be asserted before the first interlocked transfer,
and held until the last data transfer in the interlocked operation. The bus may be relin-
quished in the midst of an interlocked operation to allow non-interlocked transactions
to proceed. The Lock signal must be asserted for all transfers in an interlocked oper-
ation, not just while the bus is relinquished during the operation. This ensures correct
interlocking in multi-port slaves, such as a memory block on an intelligent device con-

troller.

A.4.13 Protocol Version

As indicated in Section A.2, protocol version 01 is used to indicate conformance with
the data transfer protocol described here. Protocol version 00 is used to provide com-
patibility with the Quibus Version 0.9 bus protocol used in the QDS-1000 system. The

restrictions applied for compatibility are:

o all data transfers must be of the non-cache read or non-cache write type,

and

e each transaction must consist of an address transfer followed by at most

one data transfer.

Where an L-Bus transaction could be performed according to these restrictions, it is
done as a protocol version 00 transaction. This ensures maximum compatibility be-

tween modules, allowing QDS-1000 modules to be integrated into a Leopard-1 system.

A.5 Timing Diagrams

The following timing diagrams show the sequencing of address and data transfers
in the L-Bus data transfer protocol. Each kind of transfer is shown from the perspective

of the master, the slave and a third party module.

208

AddrStrobe
(out)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

TPAck
(in)

Ready
(out)

Ready
(in)

Command
EndSeq
(out)

Inf
(out)

Status
(in)

Figure A-2. Address transfer at master

I I \
/
/
/
-
\
ammn
X X
/X Address X\

X

209

AddrStrobe / \
r?in) —l \

StatusAck Y/ \
(out) _/ N

TPAck \
(out) /

Ready \ /
(out)

S X X
(in)

({E{ X Address X7
SR /X XA

Figure A-3. Address transfer at slave

210

AddrStrobe / \
(n) —0mn / _

StatusAck / O\
(out)

StatusAck Y/ \

(in) /i

TPAck y \
(out) /] [|

Ready \ /
(out)

“hadq X X

(in)

Inf
(in)

><

Address X

i A X

Figure A-4. Address transfer at third party

211

AddrStrobe Y
(in) —u /

StatusAck
{out)

TPAck
(out)

Ready
(out)

Command
EndSeq X

(in)

i X

Address

Status
{out)

L/

Figure A-5. Address transfer abort at third party

212

TPAbort

DataStrobe
(out)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

TPAck
(in)

Ready
(out)

Ready
(in)

Command
EndSeq
(out)

Inf
(out)

Status
(in)

Inf
(in)

> L

Write Data

Figure A-6. Non-cachable data transfer at master

213

DataStrobe
(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq
(in)

Inf

(in)

Status
(out)

Inf

Write Data

/ X
/ X

Figure A-7. Non-cachable data transfer at slave

214

DataStrobe / \
(n) — / \

StatusAck / \
(out)

StatusAck /
(in) / \

TPAck Y/ \
(out) /| N

Ready ‘\ //—

(out)

o X X

(in)

&ﬁg X Write Data X

g X X

({Irg X Read Data X

Figure A-8. Non-cachable data transfer at third party

215

DataStrob L \
ata r?jn?____/ \

StatusAck Y \
(out) / | S

TPAck \
(mft) /

Read
eady \ !

Commend X X

(in)

&3{ X Write Data X

S L/ rembor] N\ |

Figure A-9. Non-cachable data transfer abort at third party

216

DataStrobe y/ \
(out) —d — / \

CacheAck
(out) /

CacheAck /
(in) /

StatusAck
(out) /

|
\
N
Status%%l; l / ____
Y
L S
/

TPAck
(01ft) /

TPAck /
(in) /

Ready
(out)

~

Read [\
e?in}; _J

Command
‘EndSeq
(out)

Inf = \
(Oulil:) /_X Write Data)

><

2

PassiveHit
InterveneHit X
SlaveUpdate

(in)

&Eg X Intervene [Read Data

> > >

Stat
) X

({ﬁg X Read Data X

217
Figure A-10. Cachable data transfer at master

DataStrobe / \
(n) — / \

CacheAck / \

(in) /l

StatusAck / \
(out) /

TPAck \
(out) /

Ready \ /
(out)

"B X X
(in)

Inf X Write Data)(

(in)

I Passivegit

nterveneHit

SlaveUpd(a}tei X X
in

525 X Intervene [Read Data

Inf

(out) Read Datq

S | /X XA\
/X XA\

Figure A-11. Cachable data transfer at slave

218

DataStrobe Y N
out) —_/ \

CacheAck /
(in) /|

StatusAck
(out) /

(in) /

TPAck 4
(out) /

L

L

StatusAck / \—
L -

Read
(out}; \

“ER X X
(in)

({Irg / >< Write Data)(_\

PassiveHit
InterveneHit X
SlaveUpdate

(in)

&E{ X Intervene [Read Dat

Status
a(in) X

> x> X

Inf]
(in) AX Read Dat?

Figure A-12. Cachable data transfer at third party

219

DataStrobe

CacheAck

(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq
(in)

Inf
(in)

PassiveHit
InterveneHit
SlaveUpdate

(in)

Inf
(in)

Status
(out)

(out) —_/

e

Write Data

ntervene

Read Data

TPAbort

Figure A-18. Cachable data transfer abort at third party

220

DataStrobe
(in

CacheAck
(out)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

TPAck
(in)

Ready
(out)

Command
EndSeq
(in)

Inf
(in)

PassiveHit
InterveneHit
SlaveUpdate

(out)

Inf
(out)

Status
(in)

Inf
(in)

) —

X

Write Data x

/X

/_X Intervene

Read Dat

Read Dat4

Figure A-14. Cachable data transfer at cache

221

Appendix B

The Leopard-2 Bus Arbitration Protocol

This appendix describes the arbitration protocol designed for use in the Leopard-2.
It is based on that specified in the IEEE Futurebus standard [31], but is considerably

simplified, allowing for significantly faster operation.

B.1 Arbiter and Protocol Description

A module which is to be involved in the arbitration process must include an arbiter
with the interfaces illustrated in Figure B-1. The pins AP, AQ and AR are the syn-
chronization signals used to sequence the arbitration protocol. The GA signal encodes
the geographical address (slot number, between 1 and 24) for the module in the back-
plane. The signals REQ(24:1) are used by the arbiter to signal a request for access to -
the bus. A module in slot i uses REQ() to signal its request. The reset signal, RE, is

la—— AP
<—> AR

REQUEST —= ARBITER

le—» REQ(24:1)
GRANT ~—— GA

<—— RE

Figure B-1. Arbitration circuit connections.

222

Figure B-2. Arbitration synchronization.

used to initialize the arbiter. The module uses the REQUEST signal to request access
to the bus. When access is granted, the arbiter asserts the GRANT signal. The module
then proceeds to use the bus, and when it has finished, it negates REQUEST. The ar-
biter responds by negating GRANT, after which a new request may be signalled.

The three synchronization signals, AP, AQ and AR, are active-low open-collector sig-
nals driven by all of the arbiters in a system. If any module asserts one of the signals
(by pulling it low), that signal is in the asserted state for all modules. It is only in the
negated state when it is released by all modules (and so pulled high by the bus termina-
tor). This property is used to implement the three phase synchronization scheme, as

illustrated in Figure B-2.

Initially, AP and AQ are released by all modules, and AR is asserted by all modules,
and this state is called waitl. Any module may initiate state phasel by asserting AP,
after which all modules may assert AP. When any module has completed processing
for phasel, and after it has asserted AP, it may release AR. Only when all moduleshave

released AR does the bus line become negated, and state wait2 is entered. This process

223

is repeated, cycling through the synchronization signals as shown in Figure B-2, until

state waitl is reached again.

The arbitration protocol is specified formally in VHDL in Section B.2 below, and op-
erates as follows. Initially, after a reset operation, the synchronization signals are in
state waitl, and there is no current master. When an arbiter which is not current
master receives a bus request from its client module, it initiates state phasel by assert-
ing AP. All arbiters, when they detect the start of state phasel, also assert AP, and latch
the state of their client request signals. Arbiter i drives signal REQ() with the latched
value. When an arbiter has completed this operation, it releases AR. When all arbiters

have completed the operation, state wait2 is entered.

When each arbiter detects state wait2, it asserts AQ to enter state phase2, and uses
the values on REQ(24:1) and the knowledge of the current master to determine the
master-elect. A round-robin allocation policy is used, where the master-elect is the re-
questing master with the least geographical address higher than the current master
(modulo 25). When each arbiter has determined the master-elect, it releases AP. When

all arbiters have completed the operation, state wait3 is entered.

If an arbiter detects state wait3 and there is no current master (after reset), it im-
mediately initiates state phase3 by asserting AR. Otherwise, all arbiters wait for the
current master to finish its use of the bus, after which it initiates state phase3.- When
state phased is detected, all arbiters also assert AR and make the master elect the cur-
rent master. They then release AQ to signal completion of bus hand-over. The new cur-
rent master, as soon as it has acquired that status, may start to use the data transfer
bus. When all arbiters have completed the hand-over operation, state wait1 is entered.
All arbiters remain in this state until a new request from a module other than the cur-
rent master is detected. While in state waitl, the current master may regain tenure
of the bus immediately, without having to arbitrate, so long as there are no other re-

quests from other masters.

224

B.2 VHDL Specification of the Arbitration Protocol

The package arbitration_bus defines the types used in the arbiter specification. The
type bus_signal represents an active low signal on the bus with only one driver. The sub-
type resolved_bus_signal is a resolved signal type used to represent active low signals
which may have more than one driver. The type REQ_array is used for the request sig-
nals on the arbitration bus. GA_range specifies the allowed values for geographical
(slot) addresses. The value 0is reserved, and does not refer to any slot number. Finally,
bus_settling_delay is the maximum round trip propagation delay specified in the Future-

bus standard.

package arbitration_bus is

type bus_signal is ('L, 'H’);
type bus_signal_vector is array (natural range <>) of bus_signal;

function resolve_bus(drivers : bus_signal_vector) return bus_signal;
subtype resolved_bus_signal is resolve_bus bus_signal;
type REQ_array is array (24 downto 1) of resolved_bus_signal;
subtype GA_range is integer range 0 to 24; —- 0 reserved for no master
constant bus_settling_delay : time; --time for signal driven on bus to settle
end arbitration_bus;
The body of the arbitration_bus package contains the specification of the bus signal re-
solution function. If performs a wired-or function, producing a low value (asserted) if

any of the drivers are low, otherwise it produces a high value (negated). The value for

the settling time constant is also specified in the body.

package body arbitration_bus is

function resolve_bus(drivers : bus_signal_vector) return bus_signal is
variable result : bus_signal :="H’;
begin
for i in drivers’range loop
if drivers(i) = 'L then
result := 'L’
end if;
end loop;

225

return result;
end resolve_bus;

constant bus_settling_delay : time := 25 ns;
end arbitration_bus;

The operation of the arbitration protocol is specified by the operation of each of the
arbiters that participate in the protocol. The following declaration of the entity arbiter
corresponds to the arbiter module shown in Figure B-1. The request and grant signals
attach to the client processor. The processor requests bus tenure by asserting request.
When it detects grant asserted, it may proceed to use the bus. When it is complete, it
negates request, and waits until grant is negated. It may then make further requests.

use work.arbitration_bus.all;

entity arbiter is

port (request : in boolean;
grant : out boolean;
AP, AQ, AR : inout resolved bus_signal;
REQ : inout REQ_array;
GA :in GA_range;
RE : in bus_signal);

end arbiter;

The architecture body of the arbiter specifies the behaviour in terms of a number of
interacting processes. The internal signal current_master encodes the geographical ad-
dress of the module that is currently granted bus tenure. The signal master_elect en-
codes the geographical address of the master that wins the arbitration process. The
function next_master determines the geographical address of the module to be allocated
tenure next, given the current master and the vector of requests. This function imple-
ments the round-robin policy. The process initialization sets the synchronization state to
waitl, and the current master to 0, indicating that no master has tenure. The process
acquire specifies that an arbiter whose client process requests the bus \‘Nhile not already
current master starts the synchronization cycle by initiating the change to phasel. The
process make_request specifies that when an arbiter detects the beginning of state

phasel, it uses the current state of the client request to assert or negate its bus request

226

signal. The non-deterministic decision point inherent in all arbiters is implied by this
operation. The arbiter may take an indeterminate amount of time to decide whether
the request input is asserted or negated when phasel begins. The process elect specifies
that when all arbiters have decided upon their requests, a new master will be elected
based on the round-robin policy. The process tenure_release then specifies that further
progress of the synchronization cycle is delayed until the current master has completed
its bus tenure (at which time its grant signal is negated). However, if there is no current
master (ie., during the first cycle), the synchronization cycle continues. The process
hand_over specifies that when the current master has released the bus, the elected
master becomes the current master, and its grantis asserted. The synchronization cycle
is then complete, and returns to state waitl. The process release specifies that if the
client process negates the request signal, and there are no other requests being arbi-
trated (indicated by still being in state waitl), the grant signal is negated, but the mod-
ule remains current master. The process reacquire specifies that a current master may
resume tenure without having to re-arbitrate, provided no other requests are being ar-

bitrated.

architecture specification of arbiter is

signal current_master : GA_range; —— GA of current bus master
signal master_elect : GA_range; —-- GA of elected bus master

function next_master(current_master : in GA_range;
REQ : in REQ_array) return GA range is
variable candidate : GA_range;
begin
candidate := current_master + 1;
if candidate = 25 then
candidate := 1;
end if;
loop
if REQ(candidate) =L then
return candidate;
else
candidate := candidate + 1;
if candidate = 25 then

227

candidate := 1;
end if;
end if;
end loop;
end next_master;

228

begin -- specification

initialization : process (RE)

begin
if RE ='L then
AP <="H; AQ<='H; AR<='lL; --initially in state wait1
current_master <= 0; —- bus allocated to no master
end if;

end process initialization;

acquire : process
begin
wait until AP ='H' and AQ="H and AR ="l --wait1
and current_master /= GA and REQUEST;
AP <='L’; -- start phaset
end process acquire;

make_request : process

begin
wait until AP ='L' and AQ ="H and AR ='L’; --phase1
AP <="L;
if REQUEST then
REQ(GA) <="L;
else
REQ(GA) <="H’;
end if;

AR <="H’ after bus_settling_delay; --wait2
end process make_request;

elect : process

begin
wait until AP =L and AQ ='H’ and AR ="H’; --wait2
AQ <='l’; -- start phase2

master_elect <= next_master(current_master, REQ);
AP <="H’ after bus_settling_delay; --wait3
end process elect;

tenure_release : process
begin

wait until AP ='H’ and AQ="L'and AR="H --wait3

and ((current_master = GA and not REQUEST)
or current_master = 0);

GRANT <= false;

AR <="L; --start phase3
end process tenure_release,

229

hand_over : process

begin
wait until AP ='H and AQ ="L'and AR ='L’; --phase3
AR <="L;

current_master <= master_elect;

GRANT <= current_master = GA,;

AQ <="H’ after bus_settling_delay; -- wait1
end process hand_over,;

release : process
begin
wait until AP ="H and AQ="Hand AR ="' --wait1
and current_master = GA and not REQUEST,
GRANT <= false;
end process release;

reacquire : process
begin
wait until AP ='H and AQ="H and AR =" --wait1
and current_master = GA and REQUEST;
GRANT <= true;
end process reacquire;

end specification;,

230

A Behavioural Specification of Cache

Coherence

PJ. Ashendent and C.D. Marlint

Multiprocessor systems with shared memory are of increasing interest, because of their flexibility, incremen-
tal expandability, and potentially low cost. To reduce bus contention and to improve memory access time,
such multiprocessor systems commonly incorporate a memory cache per processor. The use of memory
caches leads to the need to ensure that the contents of the caches are coherent with each other and with the
shared memory; this is the so-called cache coherence problem. A number of strategies have been proposed to
overcome this problem, but little is known about their advantages and disadvantages.

This paper contributes to the study of cache coherence strategies by proposing a formal model of cache
coherence. This model, which is an information structure model, is described and its application illustrated
by outlining how it can be used to describe the cache coherence strategy used in the Futurebus standard.
Keywords and Phrases: cache coherence strategies, information structure models, muitiprocessor computer

systems, Futurebus.

CR Categories: B.3.2, B.3.3, C.1.2.

1. INTRODUCTION

A multiprocessor computer architecture which has
received much attention recently is the bus-based symmet-
ric multiprocessor. It consists of a pool of homogeneous
processors connected via a system bus to a globally shared
memory. This basic configuration may also be augmented
with processors and controllers for particular functions
such as 1/0 interfacing, graphics processing and graphics
display. Several examples may be found, both as commer-
cially manufactured systems [e.g. Sequent Balance (Fiel-
land and Rodgers, 1984) and Symmetry (Manuel,
1987), Encore Multimax (Anzelmo et al., 1985) and the
DEC VAX 8000 Series multiprocessors (Digital Equip-
ment Corporation, 1985), and as experimental systems for
research, e.g. SPUR at U.C. Berkeley (Hill et al., 1986), and
Leopard at University of Adelaide (Ashenden et al,
1987)]. The symmetric multiprocessor architecture has a
number of important advantages for many applications.
See Ashenden, Barter and Marlin (1987) for a discussion
of these.

From consideration of processor-to-memory access
bandwidths and bus data transfer bandwidths, it is clear
that a data cache on each processor is crucial to the suc-
cessful operation of a symmetric multiprocessor. Without
a cache, the bus would be a source of congestion, with each
processor having to wait for access to code and data stored
in shared memory. A first order approximation would
indicate that the use of caches increases the number of
processors which can effectively use a bus by a factor
related to the cache hit-rate.

Of interest is the work undertaken by the IEEE Future-

Copyright © 1988, Australian Computer Society Inc.

General permission to republish, but not for profit, all or part of this
material is granted, provided that the ACJ's copyright notice is given and
that reference is made to the publication, to its date of issue, and to the
fact that reprinting privileges were granted by permission of the Austral-
ian Computer Society Inc.

bus Standard Working Group (IEEE Standard 896.1,
1987). Until recently, there was no standard bus suitable
for use in a symmetric multiprocessor implementation.
Manufacturers and researchers resorted to their own cus-
tom bus designs [e.g. the Balance system bus, the Mul-
timax Nanobus, and L-Bus (Ashenden and Knight, 1985)
in the Leopard-1 system]. The problems with existing
standard buses were that they assumed a monoprocessor
as bus master, they had insufficient bandwidth, and they
provided no support for multiple caches. More recently
introduced buses [such as Multibus-II (IEEE Standard
1296, 1987) and VME (IEEE Draft Standard 1014,
1987)] have addressed the performance issues and allow
symmetric multiple masters, but still provide no cache
support. The Futurebus design, on the other hand, has
addressed all of these problems, as will be described below.

The Futurebus Standard specification has been divided
into two sections. [EEE Standard 896.1 (1987) defines the
mechanical and electrical details, and specifies the basic
protocol mechanisms for bus transactions. The second
section (called P896.2, currently being drafted) will define
the next level of protocol, including message passing for-
mats, event notification, and the cache coherence protocol.
The first author has been involved in development of both
sections, concentrating on the specification of cache
coherence in P896.2. The issue of how to specify coherent
cache behaviour has been given much attention by the
Working Group, and the approach promoted by the
authors is presented in this paper.

2. CACHE COHERENCE

The model of a symmetric multiprocessor used to consider
the behaviour of caches is illustrated in Figure 1. [t consists
of a shared memory accessible via the system bus and a
number of caches, each of which serves a client. (Typically
the clients would be processors.) Data in shared memory is

t Department of Computer Science, University of Adelaide, GPO Box 498, Adelaide, SA, 5001. This paper was presented at the Eleventh Australian Computer
Science Conference at the University of Queensland in Brisbane, Queensland in February 1988,

50

The Australian Computer Journal, Vol. 20, No. 2, May 1988

231

A Behavioural Specification of Cache Coherence

Client 1 Client 2 Client 3
T T~ C T~
. S 11 j_ﬁ L~
Cache 1 Cache 2 Cache 3

1L
(J

S 1 T~

-

Shared Memory

Figure 1. Data sharing between multiple caches.

treated as an array of equally sized contiguous blocks
called lines. The service provided by each cache is fast
access to lines of shared memory data. This is achieved by
storing loeally a copy of those lines expected to be used by
the client. [See Smith (1982) for a description of cache
design parameters.] The requirement placed on the cache
service is that, at any time, all clients are given the same
image of the data in shared memory. This property is
called cache coherence.

To illustrate the way in which caches can interact to
maintain coherence, suppose the caches in Figure 1 are
copy-back caches, and that tasks executing on the three
clients are sharing access to data contained in line L. The
data is stored in shared memory, and Caches 1 and 2 each
have a copy, by virtue of having read the line from shared
memory.

Suppose Client | wishes to modify L. Given that there is
another cached copy of L, Cache 1 cannot simply modify
its local copy, since that would produce a violation of
coherence. Amongst the options available are that it
broadcast the new data to all other caches (and possibly to
shared memory as well), or that it broadcast a signal for all
other caches to invalidate their copies of L. For the purpose
of this illustration, assume it does the latter. In this case,
Cache | will then contain the only current version of L
(call if L) with shared memory still containing the old
version.

Now suppose Client 3 wishes to read the data. [f Cache
3 were to fetch the data from shared memory, it would
fetch the old version, It is necessary for Cache 1 to become
involved in the transaction to supply the current version L',
It can do this by disabling the shared memory, and interven-
ing to supply L'in its place. Alternatively, it could supply L’
in place of shared memory, and cause shared memory to
make use of the data on the bus to update the primary copy
(i.e., shared memory does a write). This is called reflection.

The way in which caches respond to client requests and
bus transactions in order to maintain coherence is called a
cache coherence strategy. There have been several coher-
ence strategies published in the literature and imple-

The Australian Computer Journal, Vol 20, No. 2, May 1988

mented in expenmental systems over the past four years.
These include Goodman’s write-once strategy (Goodman,
1983), Papamarcos’ lllinois strategy (Papamarcos and
Patel, 1984), the Berkeley ownership strategy used in SPUR
(Katz et al.,, 1985), and the XEROX Dragon and DEC
Firefly strategies (Archibald and Baer, 1986).

These strategies are typically defined in an informal
manner. Comparisons between them have been made in
an informal descriptive manner, using analytic models
(Vernon and Holliday, 1985) and using the results of simu-
lation studies (Archibald and Baer, 1986). The analytic
models used differ from the model to be presented in this
paper in that they are aimed at estimating performance of
systems incorporating the modelled strategies, whereas
our model is aimed at precise specification of strategies in
general.

All of the above strategies have some points in com-
mon. Firstly, they all augment the usual valid/invalid state
bit of a cache entry with additional status bits to reflect
further attributes of a line (e.g. degree of sharing, whether
the line has been modified, etc.). Secondly, they all require
caches to monitor bus transactions, and possibly to change
line state if they have a copy of the data being accessed by
the transaction. Thirdly, they all assume special bus sup-
port for maintaining coherence. This support takes the
form of additional transaction types beyond the usual read
and write, such as invalidation, intervention and broadcast
transactions.

Prior to the development of Futurebus, standard buses
provided no protocol mechanisms for such things as notifi-
cation of invalidation or intervention. Those proprietary
buses developed to support particular cache coherence
strategies only included the necessary mechanisms for
their particular strategies. The goal of the Futurebus
Committee was to provide protocol mechanisms to sup- -
port all coherence strategies. This required investigation of
the published strategies to determine the set of transac-
tions required. As a result of this investigation, a prelimi-
nary model of coherent cache behaviour was formulated
(Sweazey and Smith, 1986), and the basic bus protocol of
IEEE Standard 896.1 was designed to support implemen-
tation of this model.

3. SPECIFICATION TECHNIQUES
The current work of the Cache Coherence Task Group of
the P896.2 Working Group is to draft a specification of the
behaviour of caches in a Futurebus system. The specifica-
tion must ensure that any conforming implementation
maintains coherence, and must be flexible enough to
include published coherence strategies as subset imple-
mentations. A problem to which the Task Group has given
much consideration is the selection of a specification lan-
guage. This is a significant problem, since the solution has
bearing on the effectiveness of the specification as a stand-
ard. It must combine precision and completeness with
intelligibility by its intended audience.

The specification of cache coherence strategies has a
number of parallels with the specification of programming
language semantics. The same range of possible specifica-

51

232

A Behavioural Specification of Cache Coherence

Symbols,
Schematics Models
Y 4
Netlist Modgl
Extractor Compiler
']
¥ ¥
Simulation
Linker
4
Simulator

Figure 2. Helix system organisation.

tion techniques applies, from very informal to highly for-

mal; as with programming languages, the most common

techniques are at the informal end of this spectrum. The

motivation for the development of formal models of cache

coherence strategies is also similar to that motivating the

development of formal models of programming language

semantics, and comes in three parts:

— to help in the process of understanding (and comparing)
cache coherence strategies,

— to provide a less ambiguous way to describe a particular
cache coherence strategy, and

— to assist with proving various properties of a particular
cache coherence strategy.

In view of these similarities, it is not surprising that the
sorts of models which are useful in the formal description
of programming language semantics are also useful in the
formal description of cache coherence strategies. At the
informal end of the specification spectrum, a natural lan-
guage (e.g. English) may be used. However, its apparent
advantage of being understood a priori by its intended
audience is, in fact, its weakness. Natural languages are
learned by example, and sentences may be interpreted
differently by different people. The diversity of interpreta-
tion and nuance which makes poetry and other artistic
literature possible precludes its use for formal documents.
Where precise natural language is required, documents are
circumlocutious, laboured, and often ambiguous and
opaque to understanding, despite the best efforts of their
authors. Furthermore, concepts expressed in natural lan-
guage are not amenable to verification through analytical
or mathematical means.

At the highly formal end of the spectrum of specifica-
tion languages are formal mathematical notations, such as
abstract temporal logic [e.g., LOTOS (ISO/TC97/8C21
DP-8807, 1985)] and Petri nets (Peterson, 1977). These
achieve precision by virtue of a rigorous mathematical
basis, and hence properties of the concept being specified
can be proven mathematically. However, such notations
are often inappropriate, since they rely on the proficiency
of the authors in expressing the concept in the formal

52

terms, and are not easily understood by the large number
of system designers who must read the specification. In
addition, it is not always clear how to test a physical system
for conformance to a specification written in such a
notation,

A compromise between the above extremes is repres-
ented by the notion of an information structure model
(Wegner, 1971). This kind of model is especially useful in
the description of programming language semantics,
where the state of a program is described by an informa-
tion structure (essentially a data structure) and the seman-
tics of a particular language feature is described by giving
its effect on the information structure. For example, the
information structure used by Basili (1975), in his descrip-
tion of the semantics of some language features for graph
manipulation, is a collection of sets modelled as graphs.
Similarly, Marlin and Oudshoorn (1985) use an informa-
tion structure consisting of a collection of tables in their
description of the data control aspect of programming
languages.

An information structure model can also be used to
describe the behaviour of coherent caches in a multipro-
cessor system. In this case, the state of each cache is
represented by an information structure, and the changes
in cache state are represented as transformations on the
information structure. The contents of the information
structure include the representation of attributes of lines of
data (e.g. validity, sharing, etc.). The transformations
represent the behaviour exhibited by a cache in response to
transactions on the system bus, and to requests made by the
corresponding cache client.

Using an information structure model as a specification
has several advantages, particularly in the context of a
standards document. Firstly, the information structure and
the transformation operations can be expressed in a famil-
iar “programming language’ form. This makes it easier to
produce the standard, and leads to a standard which is
more intelligible to its intended audience.

Secondly, because of the programming language form,
the specification of a system can be simulated. This
requires an interpreter for the language, provision of some
concrete representation of the information structure, and
an environment for executing the transformation opera-
tions in response to some externally provided stimulus
events.

Thirdly, as a result of a simulation, test vectors can be
created, and subsequently used to verify conformance of
an implementation to the specification. This is analogous
to the use of validation suites to test programming lan-
guage implementations for conformance to a semantic
specification. The simulation can also be used as a refer-
ence implementation, being the arbiter in the case of dis-
agreements between implementations.

A common criticism of specification languages in
general is that they themselves need to be specified for-
mally, and this is also true of specification systems based
on information structures. However, the two components
of an information structure model can themselves be spec-
ified in precise terms:

The Australian Computer Journal, Vol 20, No. 2, May 1988

233

A Behavioural Specification of Cache Coherence

— The information structure can be described precisely
using algebraic techniques for specifying abstract data
types (Goguen, 1975; Goguen et al,, 1977; Guttag,
1980 and Guttag et al., 1978); for illustrations of how
this can be done see Friedel et al. (in preparation),
Marlin and Oudshoorn (1985) and Oudshoorn and
Marlin (in preparation).

— The transformations can be written in the notation of a
programming language (either pre-existing or designed
for the purpose) whose semantics can be specified for-
mally using techniques such as denotational semantics
(Tennent, 1976).

In this way the information structure model will use only

primitives which have precise descriptions, thus ensuring

that the model has firm foundations.

4. ABEHAVIOURAL SPECIFICATION USING HELIX
As part of the work for the IEEE P896.2 Cache Coherence
Task Group, we have developed a behavioural specifica-
tion of the Futurebus Cache Coherence protocol using the
Helix simulation system (Silvar-Lisco Corporation, 1986).
This system is part of a Computer Aided Engineering
suite, and is a discrete event simulator specialised for
modelling electronic systems.

The behavioural specification could be written using
some other programming language, such as Pascal, Lisp,
or a concrete form of such mathematical notations as
temporal logic (e.g. Tempura (Moszkowski)). The
requirement is that there be a formal semantic basis under-
lying the language used. Helix was chosen because its
modelling language is specially designed for expressing
behavioural interactions in complex electronic systems,
and the runtime system provides most of the infrastructure
required for managing a simulation and collecting resuits.

4.1 Overview of the Helix System

Figure 2 iliustrates how the Helix simulation system is
used. Graphical symbols representing components, and a
schematic representing a circuit of interconnected sym-
bols, are created using a graphics editor. A netlist extractor
is used to determine the electrical connectivity drawn in
the schematic, and to perform some validity checks on the
circuit. For each component type to be simulated, a behav-
ioural model is written using the Helix Hardware Descrip-
tion Language (HHDL). These models are then checked
and compiled into an intermediate code. Next, the simula-
tion linker is invoked to check for consistency between
component symbols and models, and to create a simulator
for the schematic. .

The HHDL language is based on Pascal, augmented by
constructs for representing component pins and concur-
rency constructs for implementing component actions in
response to pin stimuli. An HHDL program firstly defines
nettypes, which are (almost) arbitrary Pascal data types
used to represent values passed on signal nets between
component pins. Then, for each component type in the
circuit, a comptype is defined. This consists of the specifi-
cation of the pins, naming the nettypes they may connect
to, some local state expressed in the form of local varia-

The Australian Computer Journal, Vol. 20, No. 2, May 1988

bles, a collection of subprocesses, and a main body for
initialisation. The subprocesses are bodies of code which
are activated when specified conditions occur; typically,
the conditions are changes of values on input pins.

module flipflops;
const Tpd = 10;
nettype lognet = (Unk, Z, Lo, Hi);
comptype DfT;
inward D, CLK : lognet;
outward Q : lognet;
subprocess sample :
upon (CLK=Hi) and (recall(CLK)=Lo)
check CLK do
begin
case D of
Lo, Hi : assign D to Q delay Tpd;
Unk, Z : assign Unk to Q delay Tpd;
end;
end; (* sample)
begin (* Dff x)
Q := Lo;
end; (* Dff =)

Figure 3. HHDL model for a D-type flip-flop.

Figure 3 is an example of HHDL code for a D-type
flip-flop (called Dff), contained in a separately compiled
module called flipflops. The net-type lognet defines the
four-state type commonly used for logic simulation, with
values for unknown, high impedance, low and high logic
levels, respectively. Comptype Dff has two input pins, for
data and clock, and a data output pin. lts initialisation body
resets the output to the low logic level. The subprocess
sample is sensitive to changes in the value on the CLK input
(indicated by the phrase “check CLK"), and is activated
when the new value is Hi and the previous value was Lo.
When activated, a new value is passed onto the output pin,
based on the current value of the data input pin.

The simulator created by the simulation linker is a
program which contains an instance of a component
model for each use of the component in the schematic. A
run-time environment is provided which represents the
signal nets connecting component instances, schedules
updates of nets on a simulation timeline, and activates
comptype instances at the required timepoints, For exam-
ple, the assign statements in Figure 3 cause the run-time
system to schedule an update of the net connected to the Q
output of the flip-flop at a time point Tpd units after the
current activation. The run-time system also collects a
history of net updates when the program is run, and this
history is used by formatting tools to create tabular or
logic-analyser type displays of the simulation. Additional
information about the behaviour of individual components
in the circuit may be obtained by embedding trace write
statements in the HHDL models. The simulator is con-
trolled by a debugger-style command interface, providing
single-stepping, breakpoints, and other similar facilities.

53

234

A Behavioural Specification of Cache Coherence

CACHE
—+ ADDR AD
Client [CM

Interface REQ L

ot e
ot —tme
o] e e
-+— REPLY as_tx f—s=
AS_rx (4—
ak_ tx f—t-
AK.rx po—
altx p—b=
Alrx j«— |Futurebus
dootoc s Interface
IX f—
dk.tx p—t-
DK.rx pt—
ditx p——b-
DL!'X o
BUSREQ |—-
BUSGNT [¢—

Figure 4. Symbol for a Futurebus Cache.

4.2 Specification of Coherence

The Helix system can be readily used to create an informa-
tion structure model of cache coherence. This is done by
defining a symbol for a cache, with pins to connect to a
client and a Futurebus (see Figure 4), and specifying an
HHDL comptype for the cache behaviour. The comptype
contains local variables to implement the information
structure representing the cache, and the transformation
operations are encoded as comptype subprocesses.

One of the problems in designing any model is to
determine which aspects of the system under considera-
tion are actually relevant, and which can be ignored. In the
case of modelling caches for the specification of coher-
ence, the actual lines of data are not relevant; it is the line
addresses and attributes that are important. For this rea-
son, the information structure representing a cache does
not contain any reference to the data which may be stored
in a cache.

Another difficulty in model design is the temptation to
incorporate details of some particular .implementation.
For example, a model might represent the cache storage as
a small array of entries for storage of line tags and status
bits. However, this approach would then require attention
to the various cache design parameters (as mentioned in
Smith, 1982) in order to specify cache behaviour. A better
solution is to represent the attributes of each shared
memory line, including the validity attribute.

Given the above two considerations, the information
structure for a Futurebus coherent cache is implemented
as shown in Figure 5. The store is represented by an array
of status attributes, one entry for each line of shared
memory data. The attribute valid indicates whether the
line is stored in the cache’s memory, shared indicates
whether some other cache in the multiprocessor may also
have a copy of the line, and owner indicates whether this
cache is the owner of the line. Ownership means that the
line has been updated without being written to shared
memory, and implies an obligation to supply the data in
response to bus read transactions, and to perform a copy-
back or transfer of ownership at some stage. Note that lack
of validity implies lack of the other two attributes.

54

type
line.index_type = 0..nr.lines—1;
status_type = (valid, shared, owner);
line_type = record
status : set of status_type;
end;
storetype = array [line_index_type]
of line_type;
cache_configtype = record
accept.broadcast,
reflecting_owner,
end;
var
store : store_type;
config : cache_config_type;
connectionstatus : (unselected, selected,
intervening, reflecting);
bus.hit, keep.copy, ...: boolean;
(* other temporary variables .. .x)

...: boolean

Figure 5. Information structure for a Futurebus coherent cache.

The variable config is used to represent the diversity of
possible coherence strategies which must be encompassed
by the Futurebus coherence protocol. It contains a set of
switches which are used at decision points in the transfor-
mation operations to govern how the information structure
is modified. Following it are state variables used to com-
municate between the different HHDL subprocesses
which define the transformations. The remaining variables
are temporary storage used to implement the
transformations.

The HHDL subprocesses which implement the trans-
formations on the information structure fall into two
groups: the snoop group, in which subprocesses are acti-
vated in response to Futurebus transactions, and the server
group, in which subprocesses are activated in response to
client requests. To illustrate the way in which the trans-
formations are implemented, the snoop group will be dis-
cussed in some detail. The interested reader is referred to
the draft P896.2 document (IEEE Draft Standard 896.2)
for the protocol relating to service of client requests.

The snoop group contains three subprocesses, invoked
on the address beat, each data beat and the end beat,
respectively. The address beat subprocess, outlined in Fig-
ure 6, implements the cache lookup function, checking
whether the cache has a hit at the address of the bus
transaction. It is sensitive to changes in the address strobe
input (AS_rx), and is activated when this pin changes
from Lo to Hi, and the cache is not acting as a bus master.
The address and command information placed on the bus
by the bus master is accepted for use in this beat and the
subsequent beats comprising the transaction.

Next, the cache arbitrates for exclusive use of the line of
data being accessed by the bus transaction. The arbitration
is required, as the cache client may asynchronously request
access to the same line, possibly modifying its attributes.

The Australian Computer Journal, Vol 20, No. 2, May 1988

235

A Behavioural Specification of Cache Coherence

subproceas do_address_best :
upon mot master and (AS_rx = Lo) and (recall(AS.rx) = Hi)
check 45_rx do
begin (¢ do_nddrass_beat ¢)
bus_line_index :w RegToInt(AD[3!..6]);
bus_quadlet_indax ;= RegToInt(AD(S..2));
bus_addr_command :s CH;
bul_lcquin_nux‘bul_lim-indu) H
uwith svore(bus_line_index], bus_sddr_command do
begin
bus_hit := valid in status;
i? bus_hit then
begin
if TN and BC then
12 config.uccept_broadcast then
connection_status :v sslacted;
if (not BC) and (owner in status) then
begin (* smust reflect or intervene »)
read_occurred :® false;
12 config.reflecting owner then
begin
connection_status :v reflecting;
all_dizty_rveflected :» falss;
assign Lo to di_tx; assign Z to dk.tx;
end
else (* intervening ouner *)
bagin
connection_status :» intervening;
aseign Lo to di_tx; assign Lo to dk_tx;
end;
end;
Xeap_copy := (connection_status in [selected, intervening, reflecting))
or ((connection_status = unsalectsd)
and not IN and config.keep_aftar_unsslected);
vith bus_status do
begin
sl :s connection_status = pelected; cm :® Xeep_copy;
bs :» false; er :w false;
end;
end
wlse (* not dus_hit)
begin
bus_release_mutex;
with bus_status do
bagin
93l := false; cs :* falnme;
bs :w false; ar :® falsge;
end
end;
asaign bus_status to st;
assign Lo to ak_txz; assign 2 to ai_tx;
end;
end; (» do_nddress_beat o)

Figure 6. The address beat subprocess.

Once access is gained, the cache determines whether it has
a hit at the address of the bus transaction, by checking the
valid attribute of the corresponding line. If there is no hit,
then no further action is required for the transaction, and so
exclusive access to the line is released, no Futurebus status
signals are asserted, and the cache remains disconnected.

If the cache does detect a hit, its actions depend on the
master’'s command, the remaining attributes of the line,
and the cache’s configuration settings. For example, in the
case of a broadcast update transaction (/M and BC com-
mand bits set), a properly configured cache can connect as
a selected slave to receive the new data. The remainder of
the subprocess body sets information structure flags for
use by the data beat and end beat subprocesses, and speci-
fies the Futurebus status and handshaking for the address
beat.

The subprocess which handles data beats is shown in
Figure 7. It is sensitive to changes in the data strobe input
(DS-rx),but is only activated when the cache is connected,
either to accept broadcast data, or to participate as a third
party. This latter case is shown in detail. The data beat
command, consisting of a write signal (WR) and four byte-

The Australian Computer Journal, Vol 20, No. 2, May 1988

subprocess do_data_beat :
upon (connection.atatus in [salected, reflecting. interveningl)
and (((AS.rx = Lo) and (DS_rx = Lo)
and (recall(DS_rz) = Hi)) (+ odd beat)
or ((AS_xx = Lo) and (DS.rx = Hi)
and (recall(DS_rx) = Lo))) (¢ even or null beat ¢)
check DS_rx do
begin (¢ do_data_beat *)
vith bus_addr_command do
begin
it connection_status ¥ selscted thenm
begin (¢ handle broadcast spdate ¢)
end
elas (& connection_status is [reflecting, intervening) »)
begin (¢ handle third party participation)
iz BT or (DS_rx = Lo) thea
begin {* odd or evem beat, nct mull data heat ¢)
bus_data_command = CN;
read_occurred :® read_occwrred or not bus_data_command.VR;
17 bus_data_command.Wh thea
begim (¢ accept data from AD meing lame disables »)
ond
else (¢ not WR ¢)
begin (* mpply data to AD using lane disables ®)

end;
(e ine status
with bus_status do
begin
if BT thea
if bus_quadlet_index » line_size-1 then
begin (* end of line, so wrap to beginning »)
bus_status.ed :® true; bus_quadlet_index :» 0;
end
else
begin (¢ increment to mext quadlet ®)
bus_status.ed :» false;
bus_quadlet_index :» bus_quadlet_index ¢ 1;
ond;
bus_stitus.sl := false; bYus_status.er := false;
bus_status.cs := keep_copy;
end;
assign bus_status to st;
snd;
{*» handshake as third party ¢)
i? DS_rx = Lo then (¢ odd beat o)
assign Z to di_tx
slse (¢ even or null beat o)
aspigm Lo to di_tx;
end;
ond;
and; (¢ do_data_beat s)

P *)

Figure 7. The data beat subprocess.

lane disables (LW, ... LZ, c.f. byte-enables on other
buses), is accepted from the master and used to control the
reading or writing of data. Next the Futurebus status is
determined, based on whether or not a line wrap has
occurred, and then the data beat handshaking is
performed.

The end beat subprocess, shown in Figure 8, specifies
how a cache updates its line attributes at the end of a
transaction. Again, only the detail for third party participa-
tion is shown. Where the cache is allowed to keep a copy of
the line and intervened on a transaction initiated by a
caching master (indicated by CC being true), the cache
must include the shared attribute in the line’s status set. If
the cache reflected, and shared memory was completely
updated with the modified (dirty) data from the line, then,
depending on the cache’s configuration, it modifies the line
attributes accordingly. If the cache had detected a cache
hit, exclusive access to the line is released. The last action
of the cache is to complete the transaction handshake.

In order to be able to execute the specification of cache
behaviour, it is necessary to create a driver symbol and
corresponding HHDL model for the client interface and

55

236

A Behavioural Specification of Cache Coherence

subprocess do_and_beat :
upon mot master and (AS_rx = Hi) and (recall(4S_rx) = Lo)
check iS_rx do
degin (¢ do_end_beat ¢)
12 bus_hit thea
begin
~ bus_disconnect_command := CH;
with bus_addr_command do
if connection_status = gelected then
begin (+ end of broadcast update °)
end
wlse if connection_status in [reflecting, intervening] then
(¢ end of third party participation o)
if bus_disconnect_command.DBS then
begin (v do transaction back-out ®)
ond
else it dus_disconnect_command.DEN then
begin (¢ do transaction error recovery *)
ond
alse (¢ successful completion of transaction)
with storalbus_line_index]) do
12 Xeep_copy and nmot (CC and IN and not BC and read_oceurred) then
(* nllowed to kesp the linae &)
if connsction_status = intervening then
12 CC then
status = status ¢+ [sbared]
else (* connection_status = raflecting ¢)
4f all_dirty_reflected than
12 comtig.Xkeep.after.reflect then
12 CC then
atatus = status + {ehared];
it not config.oun_after_reflect then
status :v status - {owner]
elna (* not contig.ksep_after.reflact)
status :v (]
alse (* mot all_dirty_reflected o)
i1 CC then
status := status ¢ [shared]
else (¢ must invalidate °)
status :=]
else (* connectiom_status = unselected o)
begin (¢ end of non-participation)
end;
bus_release_mutex;
ond; (+ if bua_hit ¢)
(¢ do handshake to complets disconnection beat =)
assign Lo to al_tx;
asaign 2 to dk_tx; assign Z to di_tx;
assign Z to ak_tx;
end; (* do_and_beat ¢)

Figure 8. The end beat subprocess.

for the Futurebus interface. A circuit is created with nets
linking the interface pins of a cache symbol instance to an
instance of each of the driver symbols. The circuit is then
linked to create a simulator. The purpose of the driver
models is to activate the input pins of the cache model
according to some predetermined command file or algo-
rithm. They can also monitor the output pins of the cache
model and report through the trace write mechanism.
Using this approach, the behaviour of the cache under
various driving conditions can be observed. For example,
the client and Futurebus models could be programmed to
stimulate the cache with transactions using the same cache
line at the same simulation time point, in order to investi-
gate the effects of collision of mutual exclusion requests.

5. CONCLUSIONS

In this paper, we have shown that an information structure
model for describing the behaviour of coherent caches has
several advantages over other modelling techniques, par-
ticularly where the model is to be used as a reference
document. It combines an appropriate degree of precision
and completeness, while remaining intelligible to an

56

audience not expert in reading highly formal notations. In
addition, a specification based on an information structure
model expressed in programming language form can be
executed to simulate the system being modelled. This
simulation can be used as a reference implementation, and
can provide test vectors for conformance validation.
Where more formal specification is required, well known-
semantic specification techniques for programming lan-
guages and data types can be applied.

The model we have described can be used for a number
of purposes, all being investigated by the authors. Firstly,
the IEEE P896.2 Cache Coherence Task Group is draft-
ing a specification of the Futurebus cache coherence pro-
tocol based on the ideas presented here. Secondly, the
previously published cache coherence strategies can be
described in terms of this model, by defining a set of
configuration constants for each strategy. Thirdly, a for-
mal proof can be constructed to show that any cache
system conforming to the specification does, in fact, main-
tain coherence. Fourthly, experiments can be performed to
determine how various aspects of conforming coherent
caches affect overall system performance. The outcomes
of these investigations will add significantly to the under-
standing of cache behaviour in multiprocessor systems.

6. ACKNOWLEDGEMENTS

The authors are grateful for the helpful comments of one
of the referees.

7. REFERENCES

ANZELMO, T., MOORE, R. and BELL, C.G. (1985): “Multiprocessor
Makes Parallelism Work”, Electronics, Vol. 58, No. 35, pp. 46-48,2
September 1985.

ARCHIBALD, }. and BAER, J-L. (1986): “Cache Coherence Protocols;
Evaluation Using a Multiprocessor Simulation Model™, ACM Tran- .
sactions on Computer Systems, Vol. 4, No. 4, pp. 273-298, November
1986.

ASHENDEN, PJ., BARTER, C.J. and MARLIN, C.D. (1987) “The
Leopard Workstation Project”, ACM Computer Architecture News,
Vol. 15, No. 4, pp. 40-51, September 1977.

ASHENDEN, PJ. and KNIGHT, D.L. (1985): L-Bus Specification,
Department of Computer Science, University of Adelaide, South
Australia.

BASILIL V.R. (1975 “A Structured Approach to Language Design”,
Computer Languages, Vol. |, No. 3, pp. 255-273, September 1975.

DIGITAL EQUIPMENT CORPORATION (1985). VAXBI Technical
Summary, Maynard, Massachusetts.

FIELLAND, G. and RODGERS, D. (1984); *32-bit Computer System
Shares Load Equally Among up to 12 Processors™, Electronic Design,
pp. 153-168, 6 September 1984.

FREIDEL, D., MARLIN, C.D. and OUDSHOORN, M. “Modelling
Communication in Ada with Shared Data Abstractions”, in
preparation.

GOGUEN, LA, (1975): “Correctness and Equivalence of Data Types™,
Mathematical Systems Theory, Proc. Initial Symposium, Springer-
Verlag, pp. 352-358.

GOGUEN,J.A,, THATCHER,J.W,WAGNER,E.G. and WRIGHT,J.B.
(1977): “Initial Algebra Semantics and Continuous Algebras™, J.
ACM, Vol. 24, No. |, pp. 68-95.

GOODMAN, J. (1983): “Using Cache Memory to Reduce Processor-
Memory Traffic™, Proc. 10th Ann. Int. Symp. on Computer Architec-
ture, Stockholm, pp. 124-131, June 1983,

GUTTAG, J.V. (1980): “Notes on type abstraction (Version 2)", /[EEE
Transactions on Software Engineering, Vol. SE-6, pp. 13-23, January
1980.

The Australian Computer Journal, Vol 20, No. 2, May 1988

237

A Behavioural Specification of Cache Coherence

GUTTAG, J.V., HOROWITZ, E. and MUSSER, D.R. (1978): “The
Design of Type Abstractions” in R, T. Yeh, editor, Current Trends in
Programming Methodology, Prentice-Hall Inc., Englewood Cliffs,
New Jersey, Ch. 4, pp. 60-79.

HILL, M. et al. (1986): “*Design Decisions in SPUR", I[EEE Computer,
Vol. 19, No. | I, pp. 8-22, November 1986.

[EEE Standard 896.1 (1987): Buckplune Bus Specification for Multipro-
cessor Architectures (Futurebus), IEEE, New York, NY.

IEEE Draft Standard 896.2, Firmware Protocols for Futurebus, |EEE,
New York, NY, forthcoming.

IEEE Draft Standard 1014 (1987): “VMEbus", A Standard Specification
for a Versatile Buckplane Bus, 1IEEE, New York, NY,

IEEE Standard 1296 (1987): “High Performance 32-bit Bus, IEEE, New
York, NY.

ISO/TC97/SC21 DP-8807 (1985):: LOTOS — A Formal Description
Technique Based on the Temporal Ordering of Observational Behuv-
iour, Paris, February 1985.

KATZ, R.H. er al. (1985): “Implementing a Cache Consistency Pro-
tocol”, Proc. 12th Ann. Int. Symp. on Computer Architecture, Boston,
Masachusetts, pp. 276-283, June [985.

MANUEL, T. (1987): “How Sequent’s New Model Outruns Most Main-
frames”, Electronics, Vol. 60, No. | I, pp. 76-78, 28 May 1987.

MARLIN. C.D. and OUDSHOORN, M. (1985): “Using Abstract Data
Types in a Model of the Data Control Aspects of Programming
Languages", Australiun Comp. Sci Commun., Vol. 7, No. |, pp. 19-1
—19-10, February 198S.

MOSZKOWSKI, B. *Executing Temporal Logic Programs™, Seminar on
Concurrency (Brookes, S.D. et al, ed.), Lecture Notes in Comp. Sci.,
No. 197, Springer-Verlag, Berlin, pp. 111-130.

OUDSHOORN, M. and MARLIN, C.D. “Describing Data Control in
Programming Languages”, in preparation.

PAPAMARCOS, M.S. and PATEL, J.H. (1984): “A Low-Overhead
Coherence Solution for Multiprocessors with Private Cache Memo-
ries”, Proc. 1 1th Ann Int. Symp. on Computer Architecture, Ann Arbor,
Michigan, pp. 348-354, June 1984.

PETERSON, J.L. (1977): “Petri Nets”, ACM Computing Surveys, Vol. 9,
No. 3, pp. 223-252, September 1977.

SILVAR-LISCO CORPORATION (1986): Helix Reference Manual,
Document Nos. HLX-2.2-002, HLX-2.2-003, HLLX-2.2-004, Menlo
Park, California, October 1986.

SMITH, A L (1982); “Cache Memories™, ACM Computing Surveys, Vol.
14, No. 3, pp. 473-530, September 1982.

The Australian Computer Journal, Vol 20, No. 2, May 1988

SWEAZEY, P. and SMITH, A.J. (1986): “A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE Futurebus”,
Proc. 13th Ann. Ini. Symp. on Computer Architecture, Tokyo, Japan,
pp. 414-423, June 1986.

TENNENT, R.D. (1976): “The Denotational Semantics of Programming
Languages™, Commun. ACM, Vol. 19, No. 8, pp. 437-453, August
1976.

VERNON, M.K. and HOLLIDAY, M.A. (1985): Performance Analysis of
Multiprocessor Cache Consistency Protocols Using Generalized Timed
Petri Nets, Tech. Report, Computer Sciences Department, University
of Wisconsin, Madison.

WEGNER, P. (1971): “Data Structure Models for Programming Lan-
guages”, Proc. Symp. Data Structures in Programming Languages, pp.
1-54.

BIOGRAPHICAL NOTES

Peter Ashenden is a Senior Research Officer with the
Department of Computer Science at the University of Ade-
laide. He completed his Honours Degree in Computer
Science in 1982 at the University of Adelaide and continued
there as a Research Assistant when the Leopard Project was
founded. His main areas of research interest are computer
architecture and computer engineering, particularly related
to multiprocessor architectures. He is also interested in
computer-aided engineering for electronics design.

Chris Marlin has been with the Department of Computer
Science at the University of Adelaide, where he is now a
Senior Lecturer and Deputy Chairman, since 1984. He
completed his Honours Degree in Computing Science in
1973 and his PhD in Computing Science in 1979, both at the
University of Adelaide. From January 1980 to December
1983, he was an Assistant Professor of Computer Science at
the University of lowa, Iowa City, lowa (USA). His research
has primarily been concerned with programming language
design, specification and implementation, especially in rela-
tion to coroutines and parallel processes, and various aspects
of integrated incremental programming environments.

57
238

239

References

[1]

(2]

[3]

(4]

[5]

(6]

(7]

[8]

R. A. Altmann, A. N. Hawke and C. D. Marlin, “An integrated programming en-
vironment based on multiple concurrent views,” Australian Computer Journal,

Vol. 20, No. 2 (May 1988), pp. 65-72.

J. Archibald and J.-L. Baer, “Cache coherence protocols: evaluation using a
multiprocessor simulation model,” ACM Transactions on Computer Systems,

Vol. 4, No. 4 (November 1986), pp. 273-298.

P. J. Ashenden and C. D. Marlin, “A behavioural specification of cache coher-

ence,” Australian Computer Journal, Vol. 20, No. 2 (May 1988), pp. 50-57.

P. J. Ashenden, L-Bus specification, Version 1.3, Department of Computer Sci-
ence, University of Adelaide, South Australia (March 1986).

P. J. Ashenden, C. J. Barter and M. A. Petty, The Leopard multiprocessor
workstation project, CCSSE Tech. Report LW-01 (November 1989), Dept. Com-

puter Science, University of Adelaide, South Australia.

P. J. Ashenden, The Leopard-2 workstation bus architecture, CCSSE Tech. Re-
port LW-02 (August 1989), Dept. Computer Science, University of Adelaide,
South Australia.

P.J. Ashenden, R. Gerhofer and K. R. Howard, The Leopard-2 General Data Pro-
cessor users guide, CCSSE Tech. Report LW-03 (September 1989), Dept. Com-

puter Science, University of Adelaide, South Australia.

P. J. Ashenden, C. Fang, R. Gerhofer, K. R. Howard and G. C. Slater, The Leop-
ard-2 General Data Processor design description, CCSSE Tech. Report LW-04
(March 1990), Dept. Computer Science, University of Adelaide, South Australia.

240

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P.J. Ashenden, The Leopard-2 Futurebus Monitor users guide, CCSSE Tech. Re-
port LW-05 (September 1989), Dept. Computer Science, University of Adelaide,
South Australia.

P. J. Ashenden, The Leopard-2 Futurebus Monitor design description, CCSSE
Tech. Report LW-06 (March 1990), Dept. Computer Science, University of
Adelaide, South Australia.

P. J. Ashenden, The Leopard-2 General Data Processor local bus description,
CCSSE Tech. Report LW-07 (September 1989), Dept. Computer Science, Uni-
versity of Adelaide, South Australia.

P. J. Ashenden, The Leopard-2 Futurebus Interface functional description,
CCSSE Tech. Report LW-10 (November 1989), Dept. Computer Science, Uni-
versity of Adelaide, South Australia. '

P. J. Ashenden, The Leopard-2 General Data Processor local memory design de-
scription, CCSSE Tech. Report LW-12 (March 1990), Dept. Computer Science,
University of Adelaide, South Australia.

P. J. Ashenden, The Designer’s Guide to VHDL, Morgan Kaufmann Publishers

, Inc., San Francisco (1996).

L. M. Censier and P. Feautrier, “A new solution to coherence problems in multi-
cache systems,” IEEE Transactions on Computers, Vol. C-27, No. 12 (December
1978), pp. 1112-1118.

Digital Equipment Corporation, Alpha 21164 Hardware Reference Manual,
http:/ftp.digital.com/pub/Digital/info/semiconductor/literature/164hrm.pdf
(1997). |

M. Dubois and F. A. Briggs, “Effects of Cache Coherency in Multiprocessors,”
IEEE Transactions on Computers, Vol. C-31, No. 1l (November 1982),
pp. 1083-1099.

241

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

S.J. Eggers and R. H. Katz, “A characterization of sharing in parallel programs
and its application to coherency protocol evaluation”, Proc. 15t Int. Symp. Com-
puter Architecture, ACM Computer Architecture News, Vol. 16, No. 2 (June
1988), pp. 373-382.

C. Fang, A high performance colour graphics display system, Masters Thesis
(November 1987), Department of Computer Science, The University of Adelaide,
South Australia.

M. J. Flynn, “Very high speed computing systems,” Proceedings of the IEEE,
Vol. 54, No. 12 (December 1966), pp. 1901-1909.

S. J. Frank, “Tightly coupled multiprocessor system speeds memory-access

times,” Electronics, Vol. 57, No. 1 (January 1984), pp. 164-169.

H. Garsden and A. L. Wendelborn, “A comparison of microtasking implementa-
tions of the applicative language SISAL,” in H. Burkhart (ed.), Proc. COMPAR
90-VAPP 1V (Joint International Conference on Vector and Parallel Processing
Switzerland), Lecture Notes in Computer Science, Vol. 457, Springer, Berlin _

(1990).

R. Gerhofer, C. Fang and P. J. Ashenden, The Leopard-2 Storage and Communi-
cations Processor local bus description, CCSSE Tech. Report LW-19 (April 1990),
Dept. Computer Science, University of Adelaide, South Australia.

N. D. Godiwala and Barry A. Maskas, “The Second-generation Processor Module
for AlphaServer 2100 Systems,” Digital Technical Journal, Vol. 7, No. 1,
http:/www.digital.com/info/DTJH06/DTJH06SC.TXT (1995).

J. R. Goodman, “Using cache memory to reduce processor-memory traffic,” Proc.
10t Int. Symp. Computer Architecture, ACM Computer Architecture News,
Vol. 11, No. 3 (June 1983), pp. 124-131.

242

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quantitative Ap-
proach, 2nd Edition, Morgan Kaufmann Publishers, San Mateo, Calif. (1996).
M. Hill et al., “Design decisions in SPUR”, IEEE Computer, Vol. 19, No. 11
(November 1986), pp. 8-22.

M. A. Holliday and M. K. Vernon, “A Generalized Timed Petri Net model for per-

formance analysis,” IEEE Trasactions on Computers, Vol. SE-13, No. 12
(December 1987), pp. 1297-1310.

C. Hunter, Series 32000 programmer’s reference manual, Prentice-Hall, New

Jersey (1987).

IBM, PowerPC 604 RISC Microprocessor User’s Manual,
http://www.chips.ibm.com/products/ppc/documents/datasheets/604/
user_manual/604um.pdf (1995).

IEEE, IEEE standard backplane bus specification for multiprocessor architec-

tures: Futurebus, ANSI/IEEE Std. 896.1-1987, IEEE, New York (1988).

IEEE P896.2 Working Group, Futurebus P896.2 specification, Draft 1.1 (August
1988), IEEE Inc., New York.

IEEE, Standard VHDL Language Reference Manual, IEEE Std. 1076-1993,
IEEE, New York (1993).

Intel Corp., Intel Pentium® Processor Family Developer’s Manual,

http://developer.intel.com/design/pentium/manuals/24142805.pdf (1997).

R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins and R. G. Sheldon, “Imple-
menting a cache consistency protocol,” Proc. 12" Int. Symp. Computer Architec-
ture, ACM Computer Architecture News, Vol.13, No.3 (June 1985),
pp- 276-283.

D. L. Knight, P. J. Ashenden, C. D. Marlin and C. J. Barter, “The QDS-1000: a

modular expandable image processing workstation”, presented at Remote Sens-

243

[37]

[38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

ing—Current Status and Applications, South Australian Institute of Techno-

logy, Adelaide, South Australia (June 1985).

E. M®Creight, The dragon computer system: an early overview, Technical Report,

Xerox Corp. (September 1984), cited by Archibald and Baer in [2].

MIPS Technologies, Inc., R4000/ R4400 Microprocessor User’s Manual, 2nd edi-
tion, ftp://sgigate.sgi.com/pub/doc/R4400/User Manual/
R4400 Uman_book Ed2.pdf (1994).

M. S. Papamarcos and J. H. Patel, “A low-overhad coherence solution for multi-
processors with private cache memories”, Proc. 11! Int. Symp. Computer Archi-
tecture, ACM Computer Architecture News, Vol. 12, No. 3 (June 1984),
pp. 348-354.

J. H. Patel, “Analysis of multiprocessors with private cache memories”, IEEE

Transactions on Computers, Vol. C-31, No. 4 (April 1982), pp. 296-304.

F. Pong and M. Dubois, The verification of cache coherence protocols, Technical
Report No. CENG-92-20 (November 1992), Dept. Electrical Engineering—Sys-

tems, University of Southern California, Los Angeles.

P. Robinson, The IEEE Futurebus cache coherence protocol as a logic program,

unpublished memo (1988), Computer Laboratory, University of Cambridge.

M. Rozier et al., CHORUS distributed operating system, Chorus Systémes Tech.
Report CS/TR-88-7.6 (November 1988).

L. Rudolph and Z. Segall, “Dynamic decentralized cache schemes for MIMD par-
allel processors”, Proc. 110 Int. Symp. Computer Architecture, ACM Computer
Architecture News, Vol. 12, No. 3 (June 1984), pp. 340-347.

C. Scheurich and M. Dubois, “Correct memory operation of cache-based multi-
processors,” Proc. 14" Int. Symp. Computer Architecture, ACM Computer Archi-
tecture News, Vol. 15, No. 2 (June 1987), pp. 234-243.

244

[46]

[47]

(48]

[49]

[50]

[51]

(62]

(53]

(54]

Silvar-Lisco Corp., Helix reference manual, Document Nos. HLX-2.2-002,

HLX-2.2-003 and HLX-2.2-004, Menlo Park, CA (October 1986).

Sun Microsystems, Inc., SPARCsystem ™ 600MP: new technology for flexibility,
scalability, and growth, Technical White Paper (September 1991).

Sun Microsystems, Inc., UltraSPARCTM-II High~Performance, 250 MHz,
64-Bit RISC Processor, http://www.sun.com/sparc/stp1031/datasheets/
stp1031lga.pdf (1997).

I. E. Sutherland, C. E. Molnar, R. F. Sproull and J. C. Mudge, “The TRIMOS-
BUS,” CalTech Conference on VLSI (January 1979), pp. 395-427.

P. Sweazey and A. J. Smith, “A class of compatible cache consistency protocols
and their support by the IEEE Futurebus,” Proc. 13t Int. Symp. Computer
Architecture, ACM Computer Architecture News, Vol. 14, No. 2 (June 1986),
pp. 414-423.

A. S. Tanenbaum, Operating systems: design and implementation, (Prentice

Hall, 1987).

C. Thacker, L. C. Stewart and E. H. Satterthwaite, “Firefly: a multiprocessor
workstation”, IEEE Transactions of Computers, Vol. 37, No. 8 (August 1988),
pp. 909-920.

M. K. Vernon and M. A. Holliday, “Performance analysis of multiprocessor cache
consistency protocols using Generalized Timed Petri Nets”, Proc. Performance
86 and ACM SIGMETRICS 1986 Joint Conference on Computer Performance
Modeling, Measurement and Evaluation, Raleigh, N.C. (May 1986), pp. 9-17.

M. K. Vernon, E. D. Lazowska and J. Zahorjan, “An accurate and efficient per-
formance analysis technique for multiprocessor snooping cache-consistency pro-
tocols”, Proc. 15t Int. Symp. Computer Architecture, ACM Computer Architec-
ture News, Vol. 16, No. 2 (June 1988), pp. 308-315.

245

[65] D.A.Wood, G. A. Gibson and R. H. Katz, “Verifying a multiprocessor cache con-
troller using random test generation,” IEEE Design and Test of Computers, Vol.

7, No. 4 (August 1990), pp. 13-25.

246

