
FI

rt 'cr -

An E>rperimental SYstem
for Evaluating

Cache Coherence Protocols
in Shared Memory Multiprocessors

Peter John Ashenden

Department of ComPuter Science

The University of Adelaide

Submitted for the Degree of Doctor of Philosophy
ln

January 1997

Revised August 1997

@ 1997, Peter J. Ashenden

Gontents

Chapter I
Introduction "
1.1 Workstations and Networks

L.2 Multiprocessor Architectures

1.3 Bus Connected Shared Memory Multiprocessors ' '

1.4 Contribution

Chapter 2
Cache Coherence and Performance Evaluation

Caches and Cache Coherence . '

Survey of Cache Coherence Protocols ' ' . .

2.2.L Protocol Terminolory .'

2.2.2 Goodman's'Write-once Protocol ' .

2.2.3 The Illinois Protocol . - . .

2.2.4 The SynaPse Protocol . .

2.2.5 The Berkeley Ownership Protocol

2.2.6 The Sun MBus Protocol

2.2.7 The Dragon Protocol . . .

2.2.8 The Original Firefly Protocot ' . . .

2.2.9 The Published Firefly Protocol

2.2.L0 The RB and RWB Protocols

2.2.L| Correctness of Coherence Protocols

Protocols Used by Current Processors

2.3.I Intel Pentium@

1

1

2

4

7

2.t

2.2

10

10

L4

t4

t7

2L

26

30

35

39

44

48

53

54

56

56

2.3

ll

2.3.2 IBM PowerPC

2.3.3 Sun Microsystems UItTaSPARC* -il

2.3.4 MIPS R4000

2.3.5 DECAlpha....

2.4 Proposed Futurebus Cache Coherence Mechanisms

2.4.t P896.2 Signalling Mechanisms

2.4.2 P896.2 Cache Coherence Rules

2.4.3 Using P896.2 to Implement the Berkeley Protocol . .

2.4.4 Using P896.2 to Implement the Dragon Protocol . . .

2.4.5 Summary of P896.2 OPtions

2.4.6 Correctness and Completeness of the P896.2 Rules '.

2.5 Performance Evaluation of Coherence Protocols

2.5.t Analytical Evaluation ... '

2.5.2 Simulation Based Evaluation

2.5.3 Evaluation Using ReaI Systems

2.6 Summary ...

Chapter 3

The' Leopard MultiProcessor

Background '.
Leopard Architectural Framework

The Leopard-l MultiProcessor

The Leop ar d-2 MultiProcessor

The Leopard-2 System Bus .

3.5.1 Arbitration Protocol

3.5.2 Data Tbansfer Protocol

57

58

58

58

61

62

65

70

74

79

82

84

86

91

93

94

3.1

3.2

3.3

3.4

3.5

. 101

96

96

97

99

104

105

3.5.3 System Maintenance

3.6 The Leopard'2 General Data Processor . ' '

3.7 The L2GDP Programmable Cache Design '

106

109

LTz

LL4

ln

3.8

4.L

4.2

4.3

3.7.1 Cache Organization

3.7.2 Cache Data Paths

Cache Operation

3.8.1 CPU Requirements of the External Cache

3.8.2 CPU Cachable Read and Write Requests

. 133

tL4

116

t2L

t2t
t23

r32

138

140

3.8.3 CPU Flush

3.8.4 Snoop Operation

3.8.5 Asynchronous Writes from the Write Buffer

3.9 Summary

Chapter 4
A Programmable Cache Controller for the Leopard-2

Introduction

Cache Controller Configuration Parameters

A VHDL Model of the Programmable Cache Controller

4.3.1 The Leopard-2 System Model

4.3.2 Workload Modelling in the Processor Block .

4.3.3 The Cache Model

4.3.4 The Coherence Monitor Model

4.4 Summary

Appendix A
L-Bus Data Tbansfer Protocol

4.1 Overview

L4l
L4t

t42

L45

I45

148

t52

187

189

Chapter 5

Conclusions 191

5.1 Summary of Project Context . . ' 191

5.2 Experimental Evaluation of Cache Coherence Protocols . . . ' . 193

5.3 Conclusion .. . 195

r96

196

lv

Addressing Structure

Data Tlansfer Signals

4.3.1 Information Signals

A.3.2 Master Command Signals

4.3.3 Cache Status Signals

4.3.4 Slave Status Signals

4.3.5 Sequencing Signals

A.3.6 Slot Address . .

Data Tþansfer Protocol Operation

4.4.1 Information Tþansfer Handshaking

A.4.2 Address Tþansfer and Incrementing

4.4.3 Cache Immed-Invalidate Tbansaction

A.4.4 Cache Read-Shared TYansaction

4.4.5 Cache Write-Back Tîansaction

4.4.6 Cache Read-Invalidate Tþansaction.

A.4.7 Cache Write-Invalidate Transaction

4.4.8 Cache Read-Copy TÎansaction

A.4.9 Cache Write-Copy Tlansaction

4.4.10 Non-Cache Read Tîansaction

4.4.11 Non-Cache Write T?ansaction

A.4.I2 InterlockedTlansactions

4.4.13 Protocol Version

4.5 Timing Diagrams

Appendix B
The Leopatd'2 Bus Arbitration Protocol

Arbiter and Protocol DescriPtion

VHDL Specifrcation of the Arbitration Protocol .

4,2

A..3

4.4

t97

199

199

199

200

200

201

202

202

202

204

205

205

205

206

206

206

206

207

207

207

208

208

222

8.1

8.2

222

225

Appendix C

A Behavioural Specification of Cache Coherence

References

23L

240

V1

List of Figures

Figure 1-1. The bus connected shared memory architecture. .

Figure 2-1. Example of cache coherence

Fig:,re 2-2. The write-once protocol . . .

Figure 2-3. The Illinois protocol. . . .

Figure 2-4. The Synapse protocol. . .

Figure 2-5. The Berkeley protocol.

Figure 2-6. The MBus Protocol

Figure 2-7. The Dragon protocol. ' . . .

Figure 2-8. The original Firefly protocol'

Figure 2-9. The Firefly protocol. . .

Figure 2-L0. The Pentium protocol'

Figure z-1-L. The MIPS R4000 write-update protocol.

the DEC KN47O/Alpha 2L164Figure 2-I2. The_p_rotocol used by
module.

Fizure 2-13. The Berkeley protocol transition diagr-am, annotated- -o---
with the pggO.Z rules that are invokéd. 7t

Fizure 2-L4. The Dragon protocol transition diagram, annotated- -o---
with the?89^6.2 rules that are invoked. 76

Figure 3-1. Leopard multiprocessor architecture framework. 98

Figure 3-2. Leopard-l Multiprocessor organization. 100

Figure 3-3. Leopard-2 multiprocessor workstation architecture. I02

5

13

19

24

28

32

37

4T

46

50

57

59

60

vll

Figure 3-4. The main functional units and data_paths of the
Leopard-2 General Data Processor (L2GDP). . . .

Figure 3-5.

Figure 3-6.

Figure 3-7.

Figure 4-1.

Organization of the L2GDP cache memory

Cache address frelds.

Address and data paths within the L2GDP cache. tl7

The top-level structure of the Leopard-2 hardware
model L46

113

115

116

L52

t54

156

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 4-5.

Timing of processor read and write requests.

The record type used to define cache parameter values.

The process structure of the cache controller model'

State transition diagrams for the cache bus arbiter (left)

153

and snoop bus arbiter (right)

Figure 4-6

Figure 4-7

State transition diagram for the line arbiter. ' '

State transition diagram for the internal Futurebus

L57

159arbiter

Figure 4-8. Outline of the master process

Figure 4-9. Outline of the procedure that checks for a cache hit. L62

Figure 4-10. Outline of the procedure that sequences a read hit. ' 164

Figure 4-11. Outline of the procedure that sequences a write hit. 165

Figure 4-11 (continued) 166

Figure 4-t2. Outline of the procedure. that sequengg.s a Futurebus
transaction on a write hit to a shared line. . 168

Figure 4-12 (continued) 169

Figure 4-13. Outline of the procedure that

Fizure 4-t4. Outline of the procedure that
to the write buffer.

161

sequences a cache miss. l7L

copies a replaced line
t72

Figure 4-t5. Outline of the procedure that sequences a read
transaction on a cache miss'

vlll

. L74

Figure 4-15 (continued).

Figure 4-15 (continued).

Figure 4-16. Outline of the snoop process.

Figure 4-16 (continued).

Figure 4-L7. Outline of the procedure that
attribute lookup.

Figure A-2.

Figure A-3.

Figure A-4.

sequences snoop

Figure 4-18. Outline of the procedure that sequences the snoop's
actions in a transaction. .

Figure 4-18 (continued).

Figure 4-L9. Outline of the process th?t s.eqlpnces write
transactions from the write buffer.

Figure 4-19 (continued).

Figure A-1. L-Bus address format.

Address transfer at master

Address transfer at slave

Address transfer at third partY

Figure A-5. Address transfer abort at third party

Figure A-6. Non-cachable data transfer at master

Figure A-7. Non-cachable data transfer at slave

Figure A-8. Non-cachable data transfer at third party

Figure A-9. Non-cachable data transfer abort at third party

Figure A-10. Cachable data transfer at master

Figure A-11. Cachable data transfer at slave

Figure A-12. Cachable data transfer at third party

Figure A-13. Cachable data transfer abort at third party ' ' .

Figure A-14. Cachable data transfer at cache

Figure B-1. Arbitration circuit connections.

Figure B-2. Arbitration synchronization.

t75

176

178

L79

181

r82

183

185

186

198

209

2t0

ztr
2t2

2t3

2t4

2t5

2L6

2L7

2I8

2t9

220

22t

222

223

1X

List of Tables

Table 3-1. Leopard-2 cache entry attributes

Table 4-1. tion for a reconfigurable

115

L44

143

Table 4-2. Conftguration parameter values toìmplement
different cache coherence protocols.

x

Abstract

This thesis examines cache coherence protocols designed for use in bus connected

shared memory multiprocessors. The cache coherency problem is discussed, and sever-

al previously published protocols are described in a new uniform framework, allowing

ready comparison between them to be made. The issue of protocol correctness is also

addressed. The protocol mechanisms proposed for the IEEEE P896.2 Futurebus are

described, and the way they may be used to implement the published protocols is illus-

trated. TWo approaches for verifying correctness of the Futurebus mechanisms are de-

scribed. A brief survey of techniques for evaluating relative performance of cache co-

herence protocols is presented, covering three main techniques: analytical, simulation

based, and measurement of real systems. It is argued that the last of these is the most

accurate, and that the results of such measurements are needed to validate evaluations

based on the other two techniques. Abrief description is presented of an early prototype

multiprocessor, the Leopard-l, and a detailed description is presented of a full-scale

multiprocessor system, Leopard-2. The Leopard-2 is an experimental platform which

includes programmable cache controllers, designed to allow performance measure-

ments of cache coherence protocols. Attention is focussed on the design of the cache at-

tached to each processor, and the way in which the coherence protocols are implem-

ented is described. A detailed behavioural model of the programmable cache controller

is presented. The model is driven by two workloads: a synthetic workload to exercise

specific aspects of system behaviour, and a pseudo-random workload to provide com-

prehensive test coverage. The model is used to verify correct maintenance of coherence

by the caches operatingunder different coherence protocols. The thesis concludes with

xl

a discussion of ways in which the experimental platform is used to measure relative.

performance of coherence protocols.

xlt

Acknowledgments

The design work on the Leopard multiprocessors reported on in this thesis \ryas done

as part of a large project involving numerous people in a variety of capacities. I would

like to thank them all for being part of the team, and making the work possible.

Firstly, I would like to thank the engineering staff on the Leopard Project, Chonghe

"Bobby" Fang, Rob Gerhofer, Ken Howard and Gordon Slater, for their tireless efforts

on a project that turned out larger than we had all imagined. Thanks also to Peter Daly

and Werner Dorfl for technical support and "nuts and bolts" help, and to Peter Haw-

ryszkiewycz and Mike Petty for project management support.

The project also had signifrcant industry involvement. Thanks are due to Alex Stan-

co, David Knight and Ken Howard (then) of Quentron Optics Pty Ltd, who set up the

initial collaborative effort that got the Leopard Project under way. During the life of

the project other industry supporters included: National Semiconductor (Aust). Pty Ltd

for donations of equipment, software and electronic components; National Semicon-

ductor Corporation, for travel support, donations of components, advance information

and technical support, and a0cess to numerous personnel beyond the usual support

channels; Silvar-Lisco Corporation, for CAE software and technical support; Quest

International Computers Pty Ltd, for CAE software and technical support; NSD Pty

Ltd and the George Brown Group, for donation of electronic components and for keep-

ing the project up to date on component information'

The support of the several agencies who provided research funding for the Leopard

Project is also gratefully acknowledged: CSIRO Division of Information Technology,

Defence Science and. TechnologS' Organisation, The Australian Government through

xlv

the Australian Research Council, and the Australian Telecommunications and Elec-

tronics Research Board.

Thanks are due to a number of colleagues, who, though not directly involved in the

Leopard Project, were always interested in what was going on, and eager to discuss

ideas and offer helpful suggestions. They are Francis Vaughan, Kevin Maciunas and

David Hodson. Special thanks also to Chris Marlin, who acted as assistant supervisor

for my thesis research, and who also took a keen interest in assisting v\rith project man-

agement and linking this project with other research projects under way in the depart-

ment.

Finally, and most importantly, I thank my supervisor, Chris Barter, not only for see-

ing me through this thesis and the research behind it, but for his commitment to the

belief that hardware-based research is vital, and for creating an environment to sup-

port it.

XV

Dedication

I dedicate this work to my wife, Katrina, without whose love, support and encourage-

ment, it would not have come to fruition.

xvl

Chapter 1

lntroduction

1.1 Workstations and Networks

A recent trend in the evolution of computer systems has been the increased use of

workstation computers in a networked environment. This trend has been brought

about by the increasing performance per unit cost of the components comprising a

workstation or a network server. For example, VLSI processor components have im-

proved in performance by a factor of ten in the last three years, with the cost per part

staying approximately constant. Semiconductor memory components have increased

in capacity by a factor of four every three years with approximately constant cost per

component, and disk storage components have followed a similar trend.

These developments have made it feasible and desirable to distribute computing re-

sources amongst individual users, in the form of workstations. A typical environment

now consists of a number of workstations located in applications areas (e.g. offrces or

laboratories). Each workstation has its own processing and memory resources, and

uses a medium- to high-resolution graphics display to present a highly interactive user

interface. The workstations are connected to a local network, and use this to communi-

cate with each other, and with resource servers such as file ,"rt
"rr,

network routers

and application-specific computation servers (e.g. simulation accelerators).

There are a number of application areas which benefit from the advantages of a

workstation environment, but which require more processing performance than cur-

1

rent workstations can provide. Some examples of such applications are Computer

Aided Engineering (CAE), Computer Aided Software Engineering (CASE), and docu-

ment preparation and management systems. CAE of electrical and mechanical sys-

tems require large amounts of computing resource for behavioural and physical si-

mulation, and for physical design (e.g. in circuit routing or design rule checHtg).

Software Engineering environments require resources for propagating incremental

changes to large software systems, and for analyzing and compiling code. Document

processing requires resources for page layout and formatting, indexing and searching.

In a network environment comprising workstations and servers, the additional pro-

cessing performance required could be added either in individual workstations, or in

the servers; the choice made depends on the particular application. For example, pro-

cessing associated with display transformations would probably be best done in the

workstation, whereas searching documents would best be performed in the server

which stores the document files. In both cases, processing performance can be in-

creased in one of two ways: either the performance of the single processor can be in-

creased, or multiple processors can be used to form a multiprocessor computer. The

former choice has the disadvantage that the cost of a monoprocessor is not linearly re-

lated to its performance; that is, it costs more than twice as much to make a monoproces-

sor twice as fast. For this and other reasons, multiprocessors are the preferred choice.

1.2 Multiprocessor Architectures

Multiprocessors are often divided into two classes: Single Instruction streamMultiple

Data stream (SIMD), and Multiple Instruction streamMultiple Data stream (MIMD)

t201. In a SIMD multiprocessor, the processors all execute the same instructions in

lock-step, but operate on different elements of data. SIMD computers can be used to

great ad.vantage in particular applications, such as signal processing or large numeri-

2

cal problems, but they are not suitable for general purpose processing. MIMD com-

puters, on the other hand, are more general purpose in nature, as they do not require

great regularity in data or algorithm to take advantage of potential parallelism in com-

putation.

MIMD multiprocessors can be further classified according to two criteria:

. whether memory is shared between processors or private to each proces-

sor, and

. the interconnect network between processors and/or memory.

In a shared memory multiprocessor, all of the processors can access memory using

a common address space. The code and data for each task can be stored in shared mem-

ory, and shared variables used for inter-task communication. The physical memory

may be centralized, or distributed amongst the processors'

In a multiprocessor with private memory, each processor stores the code and data for

tasks it runs in its own private memory. Communication with other tasks is done using

message passing over the interconnection network. Thus this model is best suited to

software written using a message passing paradigm, although data sharing can be im-

plemented at some software cost.

There are a number of alternatives for the interconnection, the most suitable for an

application depending on the communication patterns exhibited. Interconnection to-

pologies can be broadly divided into three classes: Iink connected, switching network,

and bus connected.

In a link connected architecture, elements are connected using point to point com-

munications channels. Examples of such architectures include hypercubes, meshes

and rings. If an application can be partitioned in such a way that processing tasks can

be mapped onto the processors with relatively little communication required, then such

an architecture can be used to advantage. It also has the advantage that it scales well

J

to a large number of elements. However, as a general purpose machine, the architec-

ture may impose significant communication and data routing overhead. Furthermore,

it is very difficult in general to perform allocation of tasks to processors, and the alter-

native, tasks migration, is expensive in terms of performance.

Switching network architectures use routing switches to transfer data between ele-

ments. Possible topologies for the interconnect include crossbars, shuffle exchange net-

works, trees and hypertrees. These architectures have the advantage that they scale

well, however the cost of the switching network is signifrcant. For this reason, switch-

ing network architectures are currently only seen in supercomputers.

The third interconnection scheme, the bus connected architecture, consists of ele-

ments connected by a broadcast bus. Each element may be a processor, a memory, âtr

I/O interface, or a combination these. It is a highly cost effective and general architec-

ture, and is particularly well suited to workstations, however, it has the disadvantage

of not scaling to interconnect a large number of processors.

1.3 Bus Connected Shared Memory Multiprocessors

This thesis concentrates on the bus connected sharedmemory architecture, illustrated

in Figure 1-1. It consists of a number of processors connected to the shared memory

with a broadcast bus. The illustration shows the shared memory as centralized, but

in general, it may be distributed amongst the processors. The illustration also shows

how I/O devices can be attached.

This system organization has several advantages in the context of a workstation en-

vironment. Firstly, it is a very general structure. Any inter-task communication

mechanism, such as remote procedure call, message passing, or shared data access, can

be readily and efficiently implemented using the shared memory system. Further-

more, tasks can be allocated to run on any processor, with little cost in task migration.

4

Memory r/o

ProcessorProcessor Processor

Figure 1-1. The bus connected shared memory architecture

This greatly simplifies scheduler design, and allows for easier subdivision of a program

into tasks and mapping of tasks onto the physical machine. In particular dynamically

created tasks can be easily handled.

The second significant advantage of this organization is that it is incrementally ex-

pandable, at the granularity of individual processors, in a way which is transparent to

applications tasks. If a system is expanded, an application need not be reconfigured

to take advantage of the added resources; the advantage may be gained automatically.

Arelated point is that if a processor fails, it can be removed from the configuration, and

the remainder of the system can continue to operate, albeit at a degraded level of per-

formance. Thus a high-availability system can readily be constructed.

The third advantage, and one that is especially important in the context of a worksta-

tion environment, is that the cost of interconnection of components is low. The intercon-

nection between processors and memory is a passive backplane bus, requiring only the

wiring on the backplane and an interface device on each connected module. This is in

contrast with other interconnection networks, in which active routing switches are re-

quired within the interconnection network, thus adding to the cost.

5

Fourthly, the bus and shared memory structure allows for simplified connection of

interfaces to external devices. Such interfaces can be designed to integrate much more

closely with the sofiware environment implemented on the machine. For example, they

can be memory mapped, accessible to software in the same address space as memory.

Alternatively, they can act as additional processors, using the same inter-task com-

munications mechanism as user and operating system tasks.

The primary disadvantage of the architecture is that it does not scale well to a large

number of connected elements. This is because the bus is a shared resource with flrxed

capacity. 'When the communication bandwidth required exceeds the capacity of the

bus, no further performance gain can be achieved. However, current technolory allows

a system to be constructed which supports of the order of ten to twenty processors on

a single bus. Further scaling can be achieved by constructing a network of buses con-

nected by bus relays or by intelligent inter-bus communication interfaces.

An important aspect of the bus connected shared memory architecture is its use of

cache memories attached to each of the processors. In addition to servingtheir conven-

tional purpose in the memory hierarchy (providing fast access to frequently used data),

the caches reduce the load placed on the bus and the shared memory by each processor,

thus allowing more processors to be used in a system. Chapter 2 describes the cache

coherence problem that arises, and surveys some protocols for maintaining coherence.

Since the operation of the caches is so important in the shared memory multiproces-

sor architecture, it is desirable to choose a coherence protocol that maximizes perform-

ance for the intended applications. Performance of a protocol can be assessed using

three methods. Firstly, a mathematical model of a cache system can be devised, with

parameters representing attributes of the system. Performance questions can be ans-

wered by solving for unknown parameter values. Secondly, a simulation model of a sys-

tem can be constructed, and program address traces used to stimulate the simulation.

Statistical analysis of events in the simulation can then be used to answer performance

6

questions. Thirdly, prototype hardware can be constructed to implement one or more

coherence protocols, and the properties of the system running some workload can be

measured. These three approaches are surveyed in the latter part of Chapter 2 of this

thesis.

1.4 Contribution

One of the major contributions of this thesis is a new and comprehensive survey of pre-

viously published cache coherence protocols for bus connected shared memory multi-

processors. This is presented in Chapter 2. To clarify the descriptions of the protocols,

a uniform descriptive framework is adopted, an earlier version of which was developed

by the author as a contribution to the IEEE Futurebus Cache Coherence Task Group

in 1987. Other authors have surveyed cache coherence protocols (for example, [2]), but

not in a uniform framework allowing direct comparisons to be made, nor highlighting

the similarities and differences. This has made it unnecessarily diffrcult for system de-

signers and other researchers to understand, evaluate and implement cache coherence

protocols. On the other hand, using a uniform descriptive framework, the differences

between the protocols are clearly delineated, which is important for a comparative ev-

aluation. Furthermore, the uniform description leads directly to identification of a set

of primitive bus protocol mechanisms, also identified in Chapter 2, for implementing

the cache coherence protocols. These, in turn, lead tcj the design of a cache that can be

programmed to implement the different cache coherence protocols, thus allowing ex-

perimental evaluation of the protocols in real hardware.

Another major contribution of this thesis is a demonstration of the use of behavioural

modelling techniques for specifrcation of cache coherence protocols. Chapter 2 includes

a description of the IEEE P896.2 cache coherence protocol mechanisms, and Appen-

dix C shows a technique for specifying cache coherence protocols using the P896.2

7

mechanisms with an information structure model in a hardware description language.

This kind of specification is more readily understood than mathematical models by sys-

tem designers who ultimately implement cache coherence protocols in real computer

systems, yet it preserves formality of specification through the rigour of specifrcation

of the hardware description language.

The focus of the experimental work described in this thesis is a prototype shared

memory multiprocessor system, the Leopard-2, designed and constructed as part of the

Leopard Project at the University of Adelaide. The Leopard-2 was designed to allow

a number of cache coherence protocols to be implemented and their performance meas-

ured in a controlled environment on real hardware under real workloads. The author's

role inthis project involved developing the initial concept and the Leopard architectur-

al framework, designing the Leopard-2 at the system level, determining the internal or-

ganization of each of the main components, participating in the detailed engineering

design, construction and testing, and taking on a major part of the project manage-

ment. Chapter 3 of this thesis frrstly describes the Leopard-l, a predecessor to the

Leopard-2, used to gain experience with multiprocessor design and to test a number of

concepts in bus design to support cache coherence protocols. Chapter 3 then describes

the components of the Leopard-2, focussing on the cache attached to each processor.

The Futurebus cache coherence mechanisms, described in Chapter 2, make it feas-

ible to implement a cache controller that is programmable. Such a controller can be

reprogrammed to execute any of the cache coherence protocols described in this thesis.

Chapter 4 describes the design of a programmable cache controller and illustrates how

the cache coherence protocols discussed in Chapter 2 can be implemented by the pro-

grammable cache design. It then presents a model of the Leopard-2 system developed

using the hardware description language VHDL. The purpose of this model was to ver-

ify the hardware design and to specify the detailed behaviour of the programmable

cache controller. Simulation was performed using synthetic traces of processor activity

8

to ensure that the caches operate and interact correctly, and that cache coherence is

maintained according to the programmed cache coherence protocol.

The thesis concludes with a discussion of the use of the Leopard-2 as an experimental

vehicle for evaluating cache coherence protocols.

9

Chapter 2
Cache Coherence

and Performance Evaluation

2.1 Caches and Cache Coherence

In the past, high performance processors have generally incorporated memory caches.

The reason for this has been to avoid the delay involved in fetching data from main

memory. Furthermore, the data transfer rate required by the processor has been

greater than the main memory bandwidth, and a cache, being constructed with faster

memory devices, was able to operate at the required bandwidth.

These reasons for using memory caches still exist in a shared memory multiprocessor

architecture, but there is an additional benefit obtained if a cache is attached to each

processor. That is that the frequency of accesses from each processor to main memory

is substantially reduced. This means that a system with given main memory and bus

bandwidth can effectively support a larger number of processors, and so the aggregate

system throughput is increased.

To illustrate this, consider a system in which the system bus has a bandwidth of 200

Mbytesis, each processor requires access to memory at a rate of 200 Mbytes/s, and the

cache miss rate is l\Vo. A fîrst order approximation would indicate that, without

caches, each processor would require all of the bus bandwidth, and so the maximum

number of processors which could be supported by the bus is one. Any further proces-

sors added to the system would not add to aggregate throughput, since there would not

10

be bus capacity to allow the extra accesses to shared memory. However, with caches

operating, only lïVo of each processor's memory accesses would require access to the

shared memory. Hence each processor would require only one tenth of the bus band-

width, and so up to ten processors may be used effectively.

'When data is shared between programs executing on different processors in a shared

memory multiprocessor, there is a requirement to ensure that processors have coherent

and consistent views of the shared data. Hennessy and Patterson summarize the dis-

tinction between coherence and consistency as follows ([26], p. 657):

Coherence and consistency are complementary: coherence defines the behav-

iour of reads and writes to the same memory location, while consistency defines

the behaviour of reads and writes with respect to accesses to other memory lo-

cations.

They define three conditions for coherence. First, if a processor P writes a value to

a location, and no other processor writes to the location, P always receives the written

value on subsequent reads from the location. In other words, from one processor's point

of view, memory operations are performed in program order. Second, if processor P1

writes a value to a location, and no other processor writes to the location, eventually

some other processor P2 will receive the written value when it reads the location. In

other words, writing to memory has an observable effect from other processors'points

of view. Third, successive writes to a location by any two processors are seen in the same

order by all processors. In other words, writes are serialized, so that the final value seen

in a location by all processors is the same.

Hennessy and Patterson describe memory consistency as the issue of when writes

from one processor are observed by other processors. In particular, consistency ad-

dresses the issue of relative ordering of reads and writes to different locations as seen

by different processors in a multiprocessor system. A common requirement is sequen-

tial consistency, that is, the results of execution of any individual processor's program

LT

appear to all processors in the order specified by that processor's program t451. It is not

necessary to specify the relative order of appearance of results of different processors'

progïams; where the relative order is important, software synchronization constructs

such as semaphores are used. More relaxed orderings include total store order (also

called processor consistency), partial store order, weak ordering, and release con-

sistency. These are described in [26], and allow successively less strict maintenance of

ordering of reads and writes issued Uy on" processor.

The reason for using relaxed memory consistency models is to allow greater parallel-

ism in the memory system, in order to support gleater fine-grain parallelism in the pro-

cessors. Even when a relaxed consistency model is used, there is still the requirement

for coherence, since coherence ensures that the memory behaviour conforms with pro-

gram order of reads and writes seen by an individual processor. Since thi,,s fþstit ¡.-

cuses on coherence, the issue of memory consistency will not be discussed further. The

interested reader is referred to [26] and the references cited therein for a detailed dis-

cusslon.

There have been a number of cache coherence strategies for bus-based systems pub-

lished in the literature. The view of coherence in these strategies is that the value re-

turned to a processor when it performs a read operation from an address is the value

written by the most recently performed write operation to that address [15]. This is

ensured by equipping each cache with a bus'snoop', which monitors transactions be-

tween other processors and shared memory. It is the responsibility of the snoop to en-

sure that its cache is maintained in a state which would not violate coherence' To do

this, the snoop may need to modify state information in its cache, or to participate in

bus transactions as a third PartY.

To illustrate the requirement for cache coherence, and to show how a system might

maintain coherence, consider an example. Suppose a system includes three processors

(Pr, Pz and. P3), each with a copy-back cache (Cr, Cz and C3 respectively), and a shared

12

L
Mem

C3

L
C2

L
C1

P1 P3P2

Figure 2-1. Example of cache coherence

memory containing a line of data L. Suppose firstly that P1 and P2 each read L, causing

copies to be fetched into C1 and C2, as shown in Figure 2-L. fi P1 were to write a nel\¡

value to L, denoted by L', the copy in C1 would be modifred, and the copies in C2 and

shared memory would be out of date. A read access by Pz or P3 would return the old

value, not the most recently written value.

In order to maintain coherencê, C1 may do one of a number of things. One alternative

is that C1 may broadcast the new value L' to all caches, and possibly to shared memory

as well. This is an example of a write-broødcast coherence protocol. In this câs€, C2

must recognize that the update is to a data item of which it has a copy, and accept the

new value.

Another alternative is that C1 may broadcast a signal on the bus that any cached

copies of L must be invalidated. This is an example of a write-inualidøte protocol. In

this case, C2 must recognize the signal and invalidate its copy. Subsequently, since C1

t3

has the only valid copy of L', any further modifìcations of L' by P1 ma/ be confined to

C1. However, C1's snoop must monitor any bus read transactions which refer to L', and

intervene to supply the most recently written copy. It may do this either by supplying

the copy directly to the requesting cache, or by writing the copy back to memory before

allowing the read to proceed.

2.2 Survey of Cache Goherence Protocols

2.2.1 Protocol Terminology

Cache coherence protocols for bus connected shared memory architectures can be

grouped into two classes: write-inualidate andwrite-broadcast protocols. Write-invali-

date protocols maintain coherence by allowing at most one cache in the system to have

a dirty copy of a line. When a cache needs to modify a line, it sends an invalidate signal

on the bus to cause all other caches to invalidate their copies of the line. Write-broad-

cast protocols, on the other hand, allow multiple caches to have dirty copies of a line.

When any cache modifies the line, it broadcasts the modification so that other caches

can update their copies.

This section describes a number of protocols that have been published in the litera-

ture. These protocols all have a number of aspects in common, which allow them to be

described and compared within a uniform framework. Firstly, they all operate by stor-

ing additional status bits (as well as the tag) with each line in a cache. These bits defrne

the line's coherence state with respect to that cache. Secondly, the coherence state is

modifred in response to processor transactions and bus transactions performed on the

line. Depending on the coherence state and the transaction t¡4pe, the cache may per-

form different actions to maintain coherence with other caches.

Bus transactions are monitored by special hardware in the cache, often called a

snoop. This hardv¡are senses the bus control and address signals, and checks the cache

T4

tags and status bits at the start of each bus transaction. It modifies the status bits and

participates in the transaction as required by the coherence protocol.

A convenient way of describing the coherence protocols is using a state transition dia-

gram that represents an individual cache's actions. The states in the diagram repre-

sent the coherence state with respect to the cache for an arbitrary line in the address

space. There is a transition from each state for each processor transaction type and

each bus transaction type, indicating the new coherence state and any action required

of the cache. To clarify the descriptions of the protocols, a common terminology for all

protocols is adopted in this thesis.

Firstly, to describe the coherence state of a line in the address space with respect to

some cache, three boolean attributes are used: uølid, exclusiue andowned. If a line is

valid with respect to a cache, that cache holds a copy of the line. If a line is exclusive

with respect to a cache, there are no other caches that also hold a copy. If a line is owned

with respect to a cache, the line is dirty in that cache, and the cache is responsible for

updating shared memory at some stage, or passing ownership to some other cache.

Note that if a line is valid with respect to a cache, any of the four combinations of ex-

clusive/not-exclusive and owned/not-owned are feasible. If a line is not valid, the exclu-

sive and owned attributes are not applicable. Thus there are five feasible coherence

states. These correspond to the frve states in the model proposed in the draft IEEE

P896.2 Futurebus cache coherence specification [32, 50]. The correspondence is:

. M: valid/exclusive/owned,

. O: valid/not-exclusive/owned,

. E: validiexclusive/not-owned,

. S: valid/not-exclusive/not-owned, and

. I: not-valid.

15

Four of these states, M,E, S and I, are used in a number of commercially implemented

"MESI" coherence protocols. The remaining state, O, is less commonly used.

A coherence protocol maintains coherence by ensuring that each line has the correct

set of coherence states with respect to each cache in the system. In this thesis, the term

configuration isused to refer to this set. Different protocols have different allowed con-

figurations, but they all ensure that the most recently written value of a line is accessed

by each cache.

The second aspect of a cache coherence protocol that needs to be specifred is the set

of transactions on a line that may be requested by a processor. The terminolory used

in this thesis is:

. read: read from the line,

. write: write to the line,

. flush: flush the line from the cache (either when the line is to be replaced

on a cache miss, or when shared memory is to be synchronized with the

cache).

The last of these transactions, flush, simply refers to the request to remove a line form

the cache. Whether memory is updated or other caches are invalidated depends on the

particular coherence protocol.

The third aspect is the set of bus transactions that may be initiated by a cache. The

terminolory used in this thesis is:

. read-shared,: read from a line that will not be modiflred in the,cache, allow-

ing other caches to keep a copy of the line,

. read,-inua,lidøte: read of a whole line that may be modified in the cache,

requiring other caches to invalidate any copies of the line,

16

. inualidate: an address-only transaction signalling that other caches must

invalidate any copies of the line,

. write-inualidøte: write to a line, with the side-effect that other caches

must invalidate any copies of the line,

. write-update-clean: broadcast write to a line, updating copies in other

caches and in shared memory

. write-update-dirty: broadcast write to a line, updating copies in other

caches, but not in shared memory,

. write-back: write of a dirty line back to shared memory.

In addition, when a cache detects a read bus transaction to a line for which it has the

owned attribute set, the cache must take action to supply the data in place of the shared

memory. The term interuentio¿ is used for this action. The cache may take advantage

of the line being transferred on the bus to update shared memory as a side-effect. In

this case, the term reflection is used. From the point of view of the shared memory, if

a cache reflects during a bus read transaction, the read is turned into a write.

2.2.2 Goodman's Write-once Protocol

The write-once protocol was the frrst published cache coherence protocol specifically for

bus connected shared memory multiprocessors 125). h was developed for implementa-

tion with Multibus as the interconnect between caches and memory. Multibus has very

limited support for transactions required to support coherence, so the write-once proto-

col is fairly simple.

The write-once protocol is a write-invalidate copy-back protocol. The coherence

states used in write-once are:

. inuølid: not-valid,

. ua,lid: valid/not-exclusive/not-owned,

t7

. resen)ed: valid/exclusive/not-owned, and

. dirty:valid/exclusive/owned.

Goodman describes these states as having the following signifrcance. Aline is invalid

if the cache does not have a copy. A line is valid if the cache has a copy which it has not

yet modiflred. A line is reserved if it has been modified exactly once since being in the

valid state, and the modification has been written through to shared memory. OnIy one

cache in the system can have a given line in the reserved state. A line is dirty if it has

been modified locally since being in the reserved state, and the modification has not

been written through to shared memory.

The bus transactions used in the write-once protocol are:

. read-shared,

. read-invalidate,

. write-invalidate,and

. write-back (although this need not be a separate transaction type from

write-invalidate for this protocol).

Goodman's original proposal did not explicitly identify all of these transaction t¡rpes,

but they are included here for uniformity with the descriptions of other protocols. Good-

man did not differentiate between the two forms of write, since the protocol does not

need to distinguish them. He did not mention read-invalidate, since he did not address

the handling of write misses in the protocol. However, Archibald and Baer, in their de-

scription of the protocol [2], rectify this omission, and it is their description that is pres-

ented below

The write-once protocol also requires caches to intervene and to reflect. Goodman

suggests that reflection can be achieved by writing back to shared memory as a sepa-

rate action immediately after intervention [25]. This is required on Multibus, since that

bus does not support reflection directly.

18

BWI:
BRI,

not-valid
read-shared

PR:

B}VI
PW:

read-invalidate

BRS
PR,

PW:
write-invalidate

valid
exclusive

not-owned

valid
not-exclusive
not-owned

PW: write-back

RS:BRI:
intervene

valid
exclusive

owned

PW

PR: processor read
PW: processor write
PF: processor flush

BRS: bus read-shared
BRI: bus read-invalidate
BWI: bus write-invalidate

Figure 2-2. Ttre write-once protocol.

The state transition diagram for write-once is shown in Figure 2-2. Aline is initially

not-valid with respect to all caches. On a read miss, the cache performs a read-shared

transaction to fetch the line, and sets the iine attributes to valid/not-exclusive/not-

owned. If some other cache has a valid/exclusive/owned copy of the line, it responds to

the read-shared transaction by reflecting (thus updating shared memory), and chang-

ing its attributes to valid/not-exclusive/not-owned. If some other cache has a valid/ex-

clusive/not-owned copy, it clears the exclusive attribute. Hence the result of the trans-

T9

action is that all valid copies of the line in caches are in the

valid/not-exclusive/not-owned state, and are consistent with shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-

ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by performing a read-invalidate bus trans-

action, performing the write locally, and setting the line attributes to valid/exclusive/

owned. If some other cache has a valid/exclusive/owned copy of the line, it responds to

the read-invalidate transaction by intervening (without updating shared memory). All

caches that have copies of the line (apart form the originator) invalidate it. The result

is that the cache performing the read-invalidate has the only copy of the line, and can

perform further modifications locally.

On a write hit at a valid/not-exclusive/not-owned line, the cache performs the write

locally, and also performs a write-invalidate to write through to shared memory and to

invalidate the line in other caches. It then has an exclusive copy of the line, so it sets

the exclusive attribute. On a write hit at a valid/exclusive/not-owned line, the cache

sets the owned attribute, allowing this and subsequent writes to be performed locally.

The cache is then the owner of the line, and is thus responsible either for updating

shared memory (with a write-back transaction when the line is flushed by the proces-

sor, or by reflecting when a bus read-shared transaction occurs), or for passing owner-

ship to another cache (by intervening when a bus read-invalidate transaction occurs).

There are four possible conflrgurations for each line in the write-once protocol. They

are

1. not-valid in all caches,

2. valid/not-exclusive/not-owned in one or more caches,

3. valid/exclusive/not-owned in exactly one cache, and

20

4. valid/exclusive/owned in exactly one cache.

Aline of memory changes between these configurations based on its use by tasks run-

ning on processors. The premise behind the protocol is that it provides the best proper-

ties of write-through and write-back. If a line is only modifred once before being re-

placed, write-through is more appropriate. On the other hand, if it is modified more

than once, write-back reduces the bus usage. Write-once effectively performs write-

through on the transition from the valid/not-exclusive/not-owned state to the valid/ex-

clusive/not-owned state, and write-back once the line has the owned attribute.

2.2.3 The lllinois Protocol

The Illinois cache coherence protocol [39] was developed by Papamarcos and Patel at

the University of Illinois. It is similar to write-once, with some optimizations included

to reduce bus trafflrc. The most significant of these is that the protocol determines, when

a read-miss is handled, whether other caches share a copy of the fetched block. If not,

then subsequent modification of the block can proceed without further bus traffic.

Like the write-once protocol, the Illinois protocol is a write-invalidate protocol. The

coherence states used are:

. inualid: not-valid,

. exclusiue-unmodified:valid/exclusive/not-owned,

. shøred-unmodified : v alid{ not-exclusive/not-owned, and

. exclusiue-modified: valid/exclusive/owned.

A line is invalid with respect to a cache if the cache does not have a copy. A line is

in the exclusive-unmodified, state if the cache is the only one with a copy, and. the copy

is consistent with shared memory. If a line is in the shared-unmodified state, other

caches may have copies of the line, all of which are consistent with share memory.

FinaIIy, if a line is in the exclusive-modified state, no other cache has a copy of the line,

2l

and the line has been modified locally without having been written back yet. These

states correspond exactly to the states used in write-once, but the way a line changes

between them differs.

The bus transactions used in the Illinois protocol are

read-shared,a

read-invalidate,

invalidate, and

a write-back.

The optimization over write-once shown here is that the write-invalidate transaction

is replaced with an address-only invalidate transaction. This allows a cache to gain

ownership of a shared line without having to transfer any data on the bus, thus reduc-

ing bus usage. The authors do not explicitly identify the write-back transaction [39],

but, as with the description of the write-once protocol, write-back is included here for

uniformity.

The Illinois protocol requires that caches be able to intervene and to reflect. In [39],

Papamarcos and Patel explicitly identify reflection as a mechanism to be provided in

the coherency protocol (although not by the name "reflection"), compared to Goodman's

suggestion that it be implemented as a separate bus transaction following intervention.

This indicates that Papamaicoó and Patel envisioned a new bus design for their proto-

col, since no available buses at the time had any support for reflection.

The Illinois protocol also requires that when a cáche issues a read transaction on the

bus, all caches with a copy of the line should respond to supply the data [39]. Where

more than one cache responds, some form of resolution scheme should be employed to

select one uniquely. Furthermore, a requesting cache must be able to determine

whether a cache or shared memory responds to its read request, indicating whether the

a

a

22

requesting cache gets an exclusive or shared copy of the line. (This further supports

the view that the designers envisaged a new bus design for their protocol.)

The premise behind having all caches respond to read requests is that they can re-

spond faster than shared memory, so bus utilization is reduced by having them do so.

However, when practical design considerations are taken into account, this may not be

the case. For a cache to respond, it must contend for access to the cache data RAIVI with

its client processor, and this additional contention may reduce the performance of the

processors and delay cache response. So far as cache coherency is concerned, it does

not matter whether some other cache or shared memory supplies the data, provided the

requesting cache is able to determine whether other caches have a copy of the line. This

can be signalled by the other caches without introducing contention, since it only in-

volves atagaccess, and snoop-based cache implementations often have duplicated tag

stores to avoid such contention. As can be seen in Section 2.4,the IEEE Futurebus pro-

posal included a signal for this purpose.

The state transition diagram for the Illinois protocol is shown in Figure 2-3. A line

is initially not-valid with respect to all caches. On a read miss, a cache issues a read-

shared bus transaction to fetch the line. If no other caches hold a copy of the line, the

requesting cache sets the line attributes to valid/exclusive/not-owned, since it is the

only cached copy in the system. On the other hand, if there are other caches with a copy,

the requesting cache sets the line attributes to valid/not-exclusive/not-owned. If

another cache has a valid/exclusive/not-owned copy, it responds to the read-shared

transaction by clearing the exclusive attribute. A cache with a valid/exclusive/owned

copy must reflect to supply the data and coincidentally update shared memory, and

change the attributes for its copy to valid/not-exclusive/not-owned. The end result is

that all caches with a copy of the line have it in the valid/not-exclusive/not-owned state.

23

BRS,
BI:

not-valid

PR
read-sha

PR
BIBRI

PF, BRI:

PW:
read-ínvalidate

BRS:
PR,

valid
not-exclusive
not-owned

valid
exclusive

not-o\üned

PW:
invalidate

PF:
write-back

Lntervene
BRI

PW:

BRS

valid
exclusive

owned

PW

PR: processor read
PW: processor write
PF: processòr flush

BRS: bus read-shared
BRI: bus read-invalidate
BI: bus invalidate

read-shøred[-shr] :

no other cached copy

read-sharedIshr]:
other caches have copies

Figure 2-3. The Illinois protocol.

Aread hit occurs when the processor does a read at a line which has the valid attrib-

ute set. In.these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by issuing a read-invalidate bus transac-

tion, performing the write locally, and setting the attributes of the line to valid/exclu-

sive/owned. Other caches with a copy of the line (if any) respond to the read-invalidate

24

by intervening and then invalidating their copies. The result is that the requesting

cache has the only copy of the line, and can proceed with further modiflrcations locally.

On a write hit at a valid/not-exclusive/not-owned line, a cache issues an invalidate

bus transaction. This causes any other caches with a copy of the line to invalidate it.

The originating cache changes the line attributes to valid/exclusive/owned, allowing

this and subsequent writes to be performed locally. A write hit at a valid/exclusive/not-

owned line causes the cache to set the owned. attribute and. perform the write. Since

it is known that no other caches have a copy, no bus transaction is required.

A write back transaction can only occur when a processor flushes a valid/exclusive/

owned line. In this case, no other cache should have a copy of the line, so the state dia-

gram does not need to specify a snoop's action for write-back transaction.

There are four possible configurations for each line in the Illinois protocol. They are:

1. not-valid in all caches,

2. valid/not-exclusive/not-owned in one or more caches,

3. valid/exclusive/not-owned in exactly one cache, and

4. valid/exclusive/owned in exactly one cache.

These correspond exactly to the four confi.gurations in the write-once protocol. The

main difference is that a line can go directly from the second to the fourth of these con-

flrgurations, bypassingthe third. Whereas write-once effectively uses write-through for

the first write to a line, and copy-back for subsequent writes, the Illinois protocol uses

copy-back immediately, thus reducing bus usage. One would expect this to yield better

performance for writable data that is local to a process, since the number of bus cycles

consumed in accessing that data is reduced.

25

2.2.4 The Synapse Protocol

The Synapse N+1 system, described by Frank, was one of the first commercial shared

memory multiprocessors that implemented a cache coherence protocol [211. The sys-

tem was targeted at high performance fault tolerant computing applications, and to

this end, the architecture included dual buses with a split transaction protocol.

The Synapse cache coherence protocol is a simple write-invalidate copy-back proto-

col. The coherence states used are:

. inualid: not-valid,

. public: valid/not-exclusive/not-owned, and

. priuate: valid/exclusive/owned.

A line is invalid if the cache does not have a copy. Frank refers to the distinction be-

tween public and private as t},e usage of the line. Public usage means the line is read-

only, may be resident in more than one cache, and may include read-only shared data.

Private usage means the line includes writable data, so only one cache in the system

may have a copy, and this copy may be inconsistent with shared memory. Frank intro-

duced the idea of ownership: the cache that has the copy of a line with private usage

is the owner of the line. If a line has public usage, the shared memory is considered to

be the owner. This is consistent with the descriptive framework used in this thesis to

describe cache coherence protocols.

Frank describes the implementation of the Synapse cache as using three status bits:

valid, usage and modifred [21]. As will become clear from the following description, the

usage and modifred bits should always be in the same state. It is not clear from Frank's

description why two separate bits are used, though one might surmise that the modi-

fred bit would remain clear if a write operation to a private line fails.

The bus transactions used in the Synapse protocol are:

26

read-shared,

read-invalidate, and

write-back.

The system also uses the write-invalidate transaction for I/O processors to do DMA

writes. This causes all caches with a copy of a line to invalidate it. Because it is only

used for I/O operations, it is not included here as part of the cache coherence protocol

(following the approaches of other descriptions of this protocol).

The Synapse protocol also requires caches to intervene and reflect. Intervention is

achieved by having the owner cache respond to a request for a line. The shared memory

knows not to respond, by virtue of having a usage mode bit with each line of memory.

If the line is private, some cache is owner, and will intervene. Reflection is achieved

by the o'wner cache returning a busy status to a request. The owner then performs a

write-back transaction to shared memory, which will then respond when the original

request is retried. Equivalent semantics can be achieved in one transaction on a bus

that properly supports reflection, so in this description of the protocol, reflection is not

subdivided into its component sub-transactions.

The state transition diagram for the Synapse protocol is shown in Figure 2-4. Aline

is initially not-valid with respect to all caches. On a read miss, the cache performs a

read-shared transaction to fetch the line, and sets the attributes of the line to valid/not-

exclusive/not-owned. If the line is in private usage, the cache with the valid/exclusive/

owned copy of the line responds to the read-shared transaction by reflecting and chang-

ing to the not-valid state. (Recall that this is actually done on the Synapse system by

writing back to shared memory, and then letting the shared memory respond.) If the

line is in public usage, shared memory responds to the transaction, and any other

caches with a copy of the line retain it in the valid/not-exclusive/not-owned state.

a

a

a

27

BRS, BRI

not-valid
read-shared

PW:
read-invalidate

BRS:
PR,

valid
not.exclusive

not-owned

PF:
write-back

PW:
read-invalidate

BRI:
intervene

BRS

valid
exclusive

owned

PR: processor read
PW: processor write
PF: processor flush

BRS: bus read-shared
BRI: bus read-invalidate

Figure 2-4. The Synapse protocol.

Hence the result of the transaction is that all copies of the line in caches are in the valid/

not-exclusive/not-owned state, and are consistent \¡rith shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-

ute set. The cache can satisfy the read locally without changing the coherence state of

the line.

On a write miss, the cache fetches the line by performing a read-invalidate bus trans-

action, performs the write locally, and sets the line attributes to valid/exclusive/owned.

28

If the line is in private usage, the cache with the valid/exclusive/owned copy of the line

responds to the read-invalidate transaction by intervening (without updating shared

memory) and then invalidating its copy. If the line is in public usage, any cache with

a copy of the line invalidates it. The result is that the cache performing the read-invali-

date has the only copy of the line, and can perform further modifications locally; that

is, the line is now in private usage.

On a write hit at a valid/not-exclusive/not-owned line, the cache performs a read-in-

validate transaction to invalidate the line in other caches, sets the line attributes to

valid/exclusive/owned, then performs the write locally. On a write hit at a valid/exclu-

sive/owned line, the writes is performed locally, since no other cache has a copy of the

line. When the owned attribute is set, the cache is the owner of the line, and is thus

responsible either for updating shared memory (with a write-back transaction when

the line is flushed by the processor, or by reflecting when a bus read-shared transaction

occurs), or for passing ownership to another cache (by intervening when a bus read-in-

validate transaction occurs).

The apparent simplicity of the Synapse protocol is achieved at the cost of some ineffi-

ciencies. Firstly, when a write-hit occurs at a valid/not-exclusive/not-owned line, the

cache re-reads the line with a read-invalidate transaction, even though it already has

a coherent copy of the line. This is because the bus protocol does not include an áddress-

only invalidate transaction to notify other caches that they must invalidate the line.

This results in extra bus traffic. Secondly, when a read-miss occurs to a line with pri-

vate usage, the owning cache reflects and invalidates its copy. If it then needs to read

from the line, it suffers a miss, and re-reads the line from shared memory. It is not clear

why the owner does not keep a copy of the line in the valid/not-exclusive/not-owned

state. There should be little (if any) penalty, and probably some performance gain.

There are three possible configurations for each line in the Synapse protocol. They

are

29

1. not-valid in all caches,

2. valid/not-exclusive/not-owned in one or more caches, and

3. valid/exclusive/owned in exactly one cache.

The last two configurations correspond to what Frank calls public and private usage

of a line. The premise behind the protocol is that it "optimizes system performance by

allowing efficient sharing of data while minimizing the overheads of maintaining co-

herence" (l2Ll, p. 166). While it is true that the protocol's simplicity reduces the com-

plexity of its implementation, the question of the scheme's efficiency compared to other

protocols is debatable, and is one of the main issues addressed in this thesis.

2.2.5 The Berkeley Ownership Protocol

The Berkeley cache coherence protocol [35] was designed to improve performance with-

out adding significant cost to a system. The designers note the following constraints

on their protocol ([35], p.277):

(1) minimize the number of additional bus actions needed to maintain con-

sistency, thus making data sharing reasonably cheap, (2) avoid memory system

design, so that commercially available memory boards could be used, and (3)

avoid backplane design, although additional signals could be added to an exist-

ing backplane and bus protocol to support special communicatlons among the

caches.

This is in contrast to some other protocols to be examined in the rest of this section that

involved extensive design of new bus backplanes and signalling protocols. The Ber-

keley protocol, on the other hand, was first implemented in a Multibus system with the

addition of one extra control wire. Subsequently, the protocol was incorporated into the

SPUR multiprocessor [27] using a modified Nubus.

The Berkeley protocol is a write-invalidate copy-back protocol based on the idea of

ownership introduced in the Synapse protocol. The coherence states used áre:

30

inualid: not-valid,

unow ned : valid/not-exclusive/not-owned

owned exclusiue; valid/exclusive/owned, and

owned non-excluslue : valid/not-exclusive/owned.

A line is invalid if the cache does not have a copy. The unowned state corresponds

to the public state in the Synapse protocol, and indicates that the line is present in the

cache and may only be read. Other caches may also have copies of the line. The owned

exciusive state corresponds to the private state in the Synapse protocol. It indicates

that the line has been modiflred locally, that it is the only cached copy, and that shared

memory has not been updated. The owned non-exclusive state is an extension of the

set of Synapse states. It is similar to the owned exclusive state, but does allows other

caches to hold copies of the line. If any modifications are to be made to the line, these

other caches must be informed.

The bus transactions used in the Berkeley protocol are:

a read-shared

read-invaUdate,

invalidate, and

write-back.

The designers also describe the use of write-invalidate transactions [35]; however

these are only issued by I/O devices and processors without caches, so they are not in-

clude in this description.

The Berkeley protocol requires a cache to intervene when a line it owns is read by

some other cache. Shared memory is not updated in this case, and ownership remains

with the intervening cache in the case of a read-shared transaction, or is transferred

to the reading cache in the case of a read-invalidate transaction. This means that data

a

a

a

a

31

BRS, BRI,
BWB:

not-valid
read-shared

read-invalidate
PW

BRS,
BIWB:

write-back

valid
not-exclusive
not-owned

PF:
write-back

PW:
invalidate

BRI:
intervene

intervene

BRS:
intervene

BRS:
intervene

valid
not-exclusive

olvned

valid
exclusive

owned

PR:

PR, PW: invaLidate

PR: processor read
PW: processor write
PF: processor flush

BRS: bus read-shared
BRI: bus read-invalidate
BI: bus invalidate
BWB: bus write-back

Figure 2-õ. The Berkeley protocol

that is read/write shared is passed amongst the caches, and main memory is not up-

dated until the owner must replace the line.

The state transition diagram for the Berkeley protocol is shownin Figure 2-5. Aline

is initially not-valid with respect to all caches. On a read miss, the cache performs a

read-shared bus transaction to fetch the line, and sets the attributes of the line to valid/

not-exclusive/not-owned. If some other cache has the owned attribute set for the line,

it intervenes on the read-shared transaction to supply the most up-to-date copy, and

32

sets its attributes to valid/not-exclusive/owned. If the memory is the owner, it services

the read-shared transaction. Hence the result of the transaction is that all caches with

a copy of the line have it with the exclusive attribute cleared, even though the cached

copies may not be consistent with shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-

ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by performing a read-invalidate bus trans-

action to fetch the line, sets its attributes to valid/exclusive/owned, and proceeds with

the write locally. The bus transaction causes the current owner of the line to supply it,

either by intervening if a cache is the owner, or by simply responding to the read if the

shared memory is the owner. In addition, any other cache which has a copy of the line

invalidates it. The result is that the cache which performed the read-invalidate be-

comes owner and has the only valid copy of the line, and can make further modifications

locally.

The actions on a write hit depend on the attributes of the line. If the line has the ex-

clusive attribute cleared, there may be other caches in the system with a copy. In this

case, the modifying cache issues an invalidate bus transaction to cause other caches to

invalidate the line. The modifying cache sets the attributes of its copy of the line to

valid/exclusive/owned, and proceeds with the write locally. If, on the other hand, the

line is valid/exclusive/owned, then no other cache has a copy of the line, so the modify-

ing cache leaves the line in this state and proceeds with the write locally. In both cases,

the result is that the modifying cache becomes owner and has the only valid copy of the

line, and can make further modifications locally.

The remaining transitions deal with the case of a line being flushed from the cache

by a processor. If the cache is the owner of the line, it is responsible for ensuring that

JJ

shared memory is updated, and so it issues a write-back bus transaction. Since only

one cache can be owner of a line, a bus snoop should never observe a write-back transac-

tion for a line it owns. It may, however, observe a write-back of a valid/not-exclusive/

not-owned line, but no action is required in this case, as the owner is simply passing

ownership back to the shared memory.

The possible configurations for each line in the Berkeley protocol are:

1. not-valid in all caches,

2. valid/not-exclusive/not-owned in one or more caches,

3. valid/exclusive/owned in exactly one cache, and

4. valid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

The second and fourth of these correspond to public usage in the Synapse protocol,

and the third to private usage. The difference between the two conflrgurations of public

usage arises from the Berkeley protocol designers'choice of avoiding writing a line back

to shared memory when usage changes from private to public. Under the Berkeley pro-

tocol, data that is read-only or read shared will be in the second configuration. Data

that is local to a process will be in the second or third configuration. Data that is read/

write shared will alternate between the third and fourth configurations, with no addi-

tional shared memory access required until the line is flushed by the owner cache.

Compare this with the write-once protocol, in which a shared memory write is required

whenever a cache modifies possibly shared data. TheBerkeley protocol designers show

that the write-once protocol issues significantly more bus traffrc than their protocol

[3s].

34

2.2.6 The Sun MBus Protocol

In 1991 Sun Microsystems announced the first of its multiprocessor systems, the

SPARCsystem 600MP 1471, atwo- or four-processor s¡zstem designed for network server

applications. They have since introduced a number of desktop multiprocessor worksta-

tions, using the same multiprocessor technolog¡2. These systems are based on small

CPU/cache/MMU modules, interconnected with shared memory using a bus called

MBus, which implements the cache coherence protocol described in this section.

The MBus protocol is a write-invalidate copy-back protocol, which can be viewed as

an extension of the Berkeley protocol. The coherence states used are:

. inualid: not-valid,

. exclusíue clean: valid/exclusive/not-owned,

. shared clean:valid/not-exclusive/not-owned,

. exclusiue modified; valid/exclusive/owned, and

. shared modified: valid/not-exclusive/owned.

Aline is invalid if the cache does not have a copy. The exclusive clean state indicates

that the cache is the only cache with a copy, and that it is consistent with shared mem-

ory. This corresponds to the exclusive-unmodifred state in the Illinois protocol, and is

an extension over the Berkeley protocol. The shared clean state corresponds to the un-

owned state in the Berkeley protocol, and indicates that the line is present in the cache

and may only be read. Other caches may also have copies of the line. The exclusive

modifred state corresponds to the owned exclusive state in the Berkeley protocol. It in-

dicates that the line has been modiflred locally, that it is the only cached copy, and that

shared memory has not been updated. Finally, the shared modifred state corresponds

to the owned non-exclusive state in the Berkeley protocol. It is similar to the exclusive

modified state, but does allow other caches to hold copies of the line. If any modiflrca-

tions are to be made to the line, these other caches must be informed.

35

The bus transactions used in the MBus protocol are:

. read-shared,

. read-invalidate

. invalidate, and

. write-back.

The designers note that DMA I/O transactions also participate in the cache coherence

protocol using write-invalidate transactions [47]. This is not includes in the description

of the protocol in this thesis.

Like the Berkeley protocol, the MBus protocol requires a cache to intervene when a

line it orwns is read by some other cache. Shared memory is not updated in this case,

and ownership remains with the intervening cache in the case of a read-shared transac-

tion, or is transferred to the reading cache in the case of a read-invalidate transaction.

The extension to the Berkeley protocol that allows use of the extra coherence state

(valid/not-shared/not-owned) is the inclusion of a sharing status signal on the bus, as

in the Illinois protocol. This is used on a read-shared transaction to allow the requester

to determine whether to clear the exclusive attribute when it fetches a line.

The state transition diagram for the MBus protocol is shown in Figure 2-6. A line

is initially not-valid with respect to all caches. On a read miss, the cache performs a

read-shared bus transaction to fetch the line. If no other caches hold a copy of the line,

the requesting cache sets the line attributes to valid/exclusive/not-owned, since it is the

only cached copy in the system.

On the other hand, if there are other caches with a cop)l the requesting cache sets

the line attributes to valid/not-exclusive/not-owned. If some other cache has the owned

attribute set for the line, it intervenes on the read-shared transaction to supply the

most up-to-date copy, and sets its attributes to valid/not-exclusive/owned. If no other

cache is the owner, shared memory services the read-shared transaction, and any other

36

BI, BWB:

not-valid
read-sharedIshr]

PR

PR BRI, BI

PR,
BRS,
BWB:

read-invalidate

BRS:
valid

not-exclusive
not-owned

valid
exclusive

not-owned

PW:
invalidatewrite-back

PF
write-hack

PF

uúervene

intervene

inte,'vene

valid
not-exclusive

owned

valid
exclusive

owned

interuene

PR:
invalidate

PR: processor read

PW: processor write
PF: processor flush

BRS: bus read-shared
BRI: bus read-invalidate
BI: bus invalidate
BVr'B: bus write-back

[-shr]:
no other cached copy

Ishr]:
other caches have copies

Figure 2-6. The MBus protocol.

cache with a copy of the line sets its attributes to valid/not-exclusive/not-owned. Hence

the result of the transaction is that all caches with a copy of the line have it with the

exclusive attribute cleared, even though the cached copies may not be consistent with

shared memory.

A read hit occurs when the processor does a read at a line which has the valid attrib-

ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

37

A write miss is handled in the same way as the Berkeley protocol. The cache fetches

the line by performing a read-invalidate bus transaction to fetch the line, sets its attrib-

utes to valid/exclusive/owned, and proceeds with the write locally. The bus transaction

causes the current owner of the line to supply it, either by intervening if a cache is the

owner, or by simply responding to the read if the shared memory is the owner. In addi-

tion, any other cache which has a copy of the line invalidates it. The result is that the

cache which performed the read-invalidate becomes owner and has the only valid copy

of the line, and can make further modifications locally.

The actions on a write hit depend on the attributes of the line. If the line has the ex-

clusive attribute cleared, there may be other caches in the system with a copy. In this

case, the modifying cache issues an invalidate bus transaction to cause other caches to

invalidate the line. The modifying cache sets the attributes of its copy of the line to

valid/exclusive/owned, and proceeds with the write locally. If, on the other hand, the

exclusive attribute of the line is set, then no other cache has a copy of the line, so the

modifying cache sets the owned attribute and proceeds with the write locally. In both

cases, the result is that the modifying cache becomes owner and has the only valid copy

of the line, and can make further modifications locally.

When the client processor flushes a line that has the owned attribute set, the cache

issues a write-back bus transaction. Since only one cache can be owner of a line, a bus

snoop should never observe a write-back transaction for a line it owns. As in the Ber-

keley protocol, it may observe a write-back of a valid/not-exclusive/not-owned line, but

no action is required in this case, as the owner is simply passing ownership back to the

shared memory.

There are five possible conflrgurations for each line in the MBus protocol. They are:

1. not-valid in all caches,

2. valid/exclusive/not-owned in exactly one cache,

38

3. valid/exclusive/owned in exactly one cache,

4. valid/not-exclusive/not-owned in one or more caches, and

5. valid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

A line is in one of the second or third configuration when it contains data which is

not currently being shared. Read-only private data remains in the second configura-

tion, whereas data that is modifred changes to the third configuration. In the latter

case, the cache is the owner of the data, and must update shared memory before evict-

ing the line. Data that is subsequently read shared between processors changes to one

of the fourth or fifth when the second cache accesses it. If the first cache does not own

the line, it changes to the fourth configuration. If the first cache does own the line, it

retains ownership and the line changes to the frfth configuration. Whenever any cache

writes to a shared line, all other caches are invalidated, and ownership passes to the

writer. The line changes to the second conflrguration.

The optimization over the Berkeley protocol provided by the inclusion of the valid/ex-

clusive/not-owned state is evident when a read followed by a write to private data is

considered. In the Berkeley protocol, the write induces an invalidate bus transaction,

since the cache is not able to tell that there are no other cached copies. In the MBus

protocol, the cache uses the sharing signal on the read to determine that it should leave

the exclusive attribute set, and so can proceed with the write without having to notify

other caches. This not only reduces bus traffic, but also reduces contention on other

caches between the snoops and the client processors for access to the tag stores.

2.2.7 The Dragon Protocol

The Dragon cache coherence protocol is used in the Dragon multiprocessor developed

at the Xerox Palo Alto Research Center [37]. The description presented here is based

on that presented by Archibald and Baer [2].

39

The Dragon protocol is a write-broadcast protocol. The coherence states used are:

. u alid - exclusiu e valid/exclusive/not-owned,

. shared - clean: valid/not-exclusive/not-owned,

. dirty:valid/exclusive/owned, and

. shared-dirty, valid/not-exclusive/owned.

The not-valid state is not explicitly represented in a cache using the Dragon protocol.

This is because lines can be write-shared between caches, so invalidations are not ne-

cessary. A line is only evicted when replaced on a miss, and the cache is frlled on cold

start, so a cache entry is never invalid in the Dragon system. However, since this thesis

describes the protocol in terms of the state of a line in the address space (rather than

a cache entry's state), the not-valid state is included.

The Dragon protocol as described by Archibald and Baer only uses two types of bus

transaction: a read transaction of a whole line, and a broadcast write to a single word.

These correspond to:

. read-shared, and

. write-update-dirty.

The description does not explicitly mention any form of write-back transaction for

flushing a line from a cache to shared memory however, for completeness, the write-

back transaction is included in in this description.

The Dragon protocol requires an owner cache to intervene when it observes a read-

shared bus transaction. In addition, like the Illinois system, the Dragon bus includes

a sharing signal to allow cache snoops to indicate that they have a copy of a line being

accessed by a bus transaction.

The state transition diagram for the Dragon protocol is shown in Figure 2-7. A line

is initially not-valid with respect to all caches. On a read miss, a cache issues a read-

40

BWUD,
B\{B:

read-sharedIshr]
PR:

not-valid

PF:

PW:
BWBread-sharedIshr]

PR:

valid
not-exclusive
not-olvned

valid
exclusive

not-owned

PR:
write-backwrite-back

BWUD:

wrile-update-
PW write-update-

P.W

BRS:
intervene

valid
not-exclusive

owned

valid
exclusive

owned

-shr
wrile-update-

PW

BRS:
intervene

write-update-

BWUD:
update

PR: processor read

PW: processor write
PF: processor flush

BRS: bus read-shared
BWUD: bus write-update-dirty
BWB: bus write-back

[-shr]:
no other cached copy

Ishr]:
other caches have copies

Figure 2-7. The Dragon protocol

shared bus transaction to fetch the line. If no other caches hold a copy of the line, the

sharing signal on the bus is left negated. The requesting cache sets the line attributes

to valid/exclusive/not-owned, since it is the only cached copy in the system.

On the other hand, if there are other caches with a copy, they assert the sharing sig-

nal, and the requesting cache sets the line attributes to valid/not-exclusive/not-owned.

If another cache has a valid/exclusive/not-owned copy, it responds to the read-shared

transaction by clearing the exclusive attribute. A cache with an owned copy must inter-

4t

vene to supply the data, and clear the exclusive attribute for its copy. The end result

is that all caches with a copy of the line have the exclusive attribute cleared.

Aread hit occurs when the processor does a read at a line which has the valid attrib-

ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache fetches the line by performing a read-shared bus transac-

tion. Other caches respond to this transactions exactly as described for a read miss.

If the requesting cache detects the sharing signal negated, it can perform the write lo-

cally, and sets the line to valid/exclusive/owned. If the sharing signal is asserted, the

requesting cache must follow the read-shared with a write-update-dirty in order to

maintain coherence with the other caches. The requesting cache sets its copy of the line

to valid/not-exclusive/owned, assuming ownership of the line. All other caches set their

copies to valid/not-exclusive/not-owned.

On a write hit at a line with the exclusive attribute set, a cache can perform the write

locally, and sets the owned attribute. If, however, the exclusive attribute is cleared, the

cache issues a write-update-dirty transaction to maintain coherence with other caches,

and sets the owned attribute. The other caches accept the new data, and a previous

owner clears the owned attribute. The requesting cache also observes the sharing bus

signal to determine whether the line is still in fact shared, and clears or sets the exclu-

sive attribute appropriately. (The line may have been evicted by all other caches since

the last time sharing status was detected.)

A significant feature of the Dragon protocol is that write broadcasts do not update

shared memory. Instead, ownership is passed around to the most recent writer, which

must write the line back to shared memory using a write-back transaction when it re-

places the line. If the owner has the exclusive attribute cleared when it writes back,

the transaction will be sensed by the snoops of other caches with valid/not-exclusive/

42

not-owned copies of the line. However, they need take no action in response to the

transaction.

There are five possible configurations for each line in the Dragon protocol. They are:

1. not-valid in all caches,

2. valid/exclusive/not-owned in exactly one cache,

3. valid/exclusive/owned in exactly one cache,

4. valid/not-exclusive/not-owned in one or more caches, and

5. valid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

A line is in one of the second or third configurations when it contains data which is

not currently being shared. Read-only private data remains in the second configura-

tion, whereas data that is modified changes to the third confrguration. In the latter

case, the cache is the ortrner of the data, and must update shared memory before evict-

ing the line. Data that is shared between processors changes to one of the fourth or frfth

configuration when the second cache accesses it. If the flrrst cache does not own the line,

it changes to the fourth configuration. If the first cache does own the line, it retains

ownership as long as the data.is only read-shared. (The line is in the fîfth configura-

tion.) 'When one of the caches writes the data, the others are updated, and ownership

passes to the writer. (The line stays in the fifth confrguration.)

The premise behind the Dragon protocol is that caches are faster than shared mem-

ory, so transactions to shared memory should be avoided where possible. For this re-

ason, write-shared data is broadcast amongst caches, without updating shared mem-

ory until the line is replaced in the owner. This is related to the assumption in the

Illinois protocol that caches can satisfy reads faster than shared memory, and so the

same counter arguments involving contention with the client processor within a cache

also apply to the Dragon protocol.

43

Another source of performance loss, identified by the designers of the Firefly protocol

(see Section 2.2.9), is that write broadcasts will continue to a shared line for as long as

the line remains in other caches, even if their client processors no longer require the

data. Compare this with write-invalidate coherence protocols, where a processor write

causes the line to become private by invalidating other cached copies.

2.2.8 The Original Firefly Protocol

The Firefly cache coherence protocol is used in the Firefly multiprocessor workstations

developed at the Digital Equipment Corporation Systems Research Centre t521. Archi-

bald and Baer [2] describe an early version of the protocol that contains fewer states

than the protocol finally published for Firefly. The original protocol is described here

first, and the published protocol is described in the next section.

The original Firefly protocol is similar to the Illinois protocol described in Sec-

tion 2.2.3, but is write-broadcast instead of write-invalidate. The four coherence states

used are:

. not-valid,

. valid/exclusive/not-owned,

. valid/not-exclusive/not-owned, and

. valid/exclusive/owned.

These states correspond exactly to the four states used in the Illinois protocol. As in

the Dragon protocol, the not-valid state is not explicitly represented in a cache. Lines

can be write-shared between caches, so invalidations are not necessary. A line is only

evicted when replaced on a miss, and a special scheme is used to fill a cache on cold

start, so a cache entry is never invalid in the original Firefly system. However, the not-

valid state is included in this description, as it deals with the coherence state of a line

in the address space, not a cache entry.

44

The bus transactions used in the original Firefly protocol are

read-shared,a

write-update-clean, and

write-back.

In the description of this protocol by Archibald and Baer, the transaction type used to

write a line back to shared memory when it is flushed from a cache is not explicitly iden-

tified. This discussion uses the write-back transaction type for uniformity.

The original Firefly protocol requires a cache to reflect when it observes a read-

shared bus transaction. Like the Illinois protocol, all caches with a copy of the line sup-

ply the data. However, instead of selecting just one of them to put the data on the bus,

the Firefly system allows all caches to drive the bus, on the premise that they will all

drive the same value, since the caches are coherent. In addition, like the Illinois sys-

tem, the Firefly bus includes asharing signal to allow cache snoops to indicate that they

have a hit on a line being accessed by a bus transaction.

The state diagram for the original Firefly protocol is shown in Figure 2-8. The state

changes for a line in response to processor read requests and processor flushes are iden-

tical to those in the Illinois protocol. However, the state changes in response to a proces-

sor write request are quite different, since the protocol is write-broadcast.

A line is initially not-valid with respect to all caches. On a read miss, a cache issues

a read-shared bus transaction to fetch the line. If no other caches hold a copy of the line,

the requesting cache sets the line attributes to valid/exclusive/not-owned, since it is the

only cached copy in the system. On the other hand, if there are other caches with a cop)l

the requesting cache sets the line attributes to valid/not-exclusive/not-owned. If
another cache has a valid/exclusive/not-owned cop¡r, it responds to the read-shared

transaction by clearing the exclusive attribute. A cache with a valid/exclusive/owned

copy must reflect to supply the data and coincidentally update shared memory, and

a

a

45

BWB:
BWUC,

PR:PR:
not-valid

PF:

read-sharedIshrl
write-update-clean

BWB:
PW:

PR:

BRS:

valid
not-exclusive
not-owned

valid
exclus¡ve

not-owned
-shr

write-update-

write-updqte-
Prr¡/

PW:

write-back

Yalid
exclusive

owned

PW:

BW{JC:
update

PR: processor read
PW: processor write
PF: processor flush

BRS: bus read-shared
BWUC: bus write-update-clean
BWB: bus write-back

[-shr]:
no other cached copy

Ishr]:
olher caches have copies

Figure 2-8. The original Firefly protocol

change the attributes for its copy to valid/not-exclusive/not-owned. The end result is

that all caches with a copy of the line have it in the valid/not-exclusive/not-owned state.

Aread hit occurs when the processor does a read at a line which has the valid attrib-

ute set. In these cases, the cache can satisfy the read locally without changing the co-

herence state of the line.

On a write miss, the cache firstly fetches the line by issuing a read-shared bus trans-

action and senses whether other caches in the system have a copy of the line. If no other

46

caches hold a copy, the requesting cache performs the write locally and sets the line at-

tributes to valid/exclusive/owned, since it is the only cache in the system with a copy

of the line. On the other hand, if there are other cached copies of the line in the system,

the requesting cache follows the read-shared transaction with a write-update-clean

transaction to update the other copies and shared memory. The requesting cache also

updates its own copy and sets the line attributes to valid/not-exclusive/not-owned.

On a write hit at a valid/not-exclusive/not-owned line the cache issues a write-up-

date-clean transaction to update any other copies that may be hetd in other caches and

to update shared memory, as well as updating its own copy. If there are other cached

copies, they are also in the valid/not-exclusive/not-owned state. All of the caches, in-

cluding the requesting cache, leave the attributes for the line unchanged. On the other

hand, if there are no other cached copies, the requesting cache changes the line attrib-

utes to valid/exclusive/not-owned. On a write hit at a valid/exclusive/not-owned line

the cache sets the owned attribute and performs the write locally. No bus transaction

is required, since no other caches have a copy of the line.

As in the Illinois protocol, there are four possible confìgurations for a line in the origi-

nal Firefly protocol. They are:

1. not-valid in all caches,

valid/not-exclusive/not-owned in one of more caches,

valid/exclusive/not-owned in exactly one cache, and

valid/exclusive/owned in exactly one cache.

A line that is read-only and is private to one task on a single processor moves between

the first and third configurations. When the private line is modified, it moves to the

fourth configuration, with updates performed locally. A shared line moves between the

first and second configurations, with updates being broadcast to all cached copies. If

2.

D
t).

4.

47

a line is initially accessed as though it were private, but subsequently becomes shared,

it moves from the third or fourth configuration to the second.

2.2.9 The Published Firefly Protocol

The Firefly protocol published in [52] is a write-broadcast protocol, similar in some re-

spects to the Dragon protocol. It effectively uses all five possible coherence states, with

all four combinations of not-exclusive/exclusive and not-owned/owned being implem-

ented with two attribute bits, shared and dirty (owned), for each entry in the cache.

The omission of the not-valid state is carried over into the published Firefly protocol.

However, the not-valid state is included in this description, as it deals with the coher-

ence state of a line in the address space, not a cache entry.

The published Firefly protocol only uses a single type of read bus transaction and a

single type of write bus transaction. They correspond to:

. read-shared, and

. write-update-clean.

No distinction is made between writing a line to update data and writing back to

shared memory when a line is flushed from a cache. The designers evidently chose to

maintain simplicity of design by reducingthe number of types of bus transactions sup-

ported.

The published Firefly protocol requires a cache to intervene instead of reflect when

it observes a read-shared bus transaction. As in the original protocol, all caches with

a copy of the line drive the bus to supply the data. Also, t};le shøring signal is retained

in the published protocol to allow cache snoops to indicate that they have a hit on a line

being accessed by a bus transaction.

One significant difference between the published Firefly system and other systems

is that it is uses a cache line size of one word. Since most processor writes are to a whole

48

word, when a dirty line is modiflred, a write-update-clean transaction to update the

word effectively makes the whole line clean again. The published Firefly protocol

makes use of this operation to optimize bus trafflrc for write-shared lines. However, this

operation cannot be used for partial word modification (byte or halfword writes), and

in these cases, the protocol resorts to a read-shared followed by a write-update-clean

to effect the modification.

The state transition diagram for the published Firefly protocol is shown in

Figure 2-9. A line is initially not-valid with respect to all caches. On a read miss, a

cache issues a read-shared bus transaction to fetch the line, sets the valid attribute, and

clears the owned attribute. If other caches have a copy of the line, they intervene to

supply the data, assert the sharing signal on the bus, and clear the exclusive attribute

for their copy of the line. The requesting cache also clears the exclusive attribute bit

in its entry. On the other hand, if no other caches have a copy of the line, the data is

supplied by shared memory, the sharing bus signal is left unasserted, and the request-

ing cache sets the exclusive attribute bit in its entry. When a read hit occurs, the cache can

satisfy the read locally without changing the coherence state of the line, and no other cache needs

to be notified.

The action on a write miss depends on whether the write is to a whole word (the most

frequent case) or to a partial word. In the former case, the cache effectively performs

write-through with allocation by issuing a write-update-clean transaction and writing

the line in the cache. Other caches with a copy of the line update the data and clear

the exclusive attribute in their entries, and assert the sharing signal on the bus. If the

requesting cache sees this signal asserted, it sets its copy to valid/not-exclusive/not-

owned, otherwise it sets it to valid/exclusive/not-owned.

In the case of a miss on a partial write, the cache issues a read-shared bus transaction

to fetch the word. Other caches respond to this transaction exactly as described for a

read miss. If the requesting cache detects the sharing signal negated on the bus, it can

49

BWUC:

-shr not-valid

PW:
w)rite-update-

cleanIshr]

BRS:
write-update-

PWIpartial]:
read-shared.Ishrl

update
BBRS:

Yslid
not-exclusive
not-owned

valid
exclusive

not-own€d

write-update-
PW

PF:
write-update-

clean

write-update-

wrile-upd,ate-
clean

PW:
write-update-

cleanfshr]

-shr

PW:
write-update-

BWUC:
update

lnlervetrc
B valid

not-exclusive
owned

valid
exclusive

owned

PR
BWUC:PW:

intervene

BWUC
update

PR: processor read

PW: processor write
PF: processor flush

BRS: bus read-shared

[-shr]:
no other cached copy

Ishr]:
other caches have copiesBWUC: bus write-update-clean

Figure 2-9. The Firefly protocol.

perform the partial write locally, and sets the line to valid/exclusive/owned. If the shar-

ing signal is asserted, the requesting cache must follow the read-shared with a write-

update-clean in order to maintain coherence with the other caches. In this case, all

caches, including the requester, set the line to valid/not-exclusive/not-owned.

On a write hit at a line with the exclusive attribute set, a cache can perform the write

locally, and sets the owned attribute. If, however, the exclusive attribute is cleared, the

cache issues a rtrrite-update-clean transaction to maintain coherence with other caches,

50

and clears the owned attribute. It also observes the sharing bus signal to determine

whether the line is still in fact shared, and clears or sets the exclusive attribute ap-

propriately. (The line may have been evicted by all other caches since the last time shar-

ing status was detected.)

When an owned line is to be evicted from a cache on a read or write miss, the cache

issues a write-update-clean transaction to update shared memory. The consequence

of the protocol not using distinct bus transaction types for write back and normal coher-

ent writes is that other caches that share a copy of the line being written back will still

take a copy of the line, even though it is not necessary. The penalty is the small amount

of extra contention between the cache snoop and the client processor, but this may be

compensated for by the simplicity of having fewer transaction types.

There are five possible configurations for each line in the published Firefly protocol.

They are:

1. not-valid in all caches,

2. valid/exclusive/not-owned in exactly one cache,

3. valid/exclusive/owned in exactly one cache,

4. valid/not-exclusive/not-owned in one or more caches, and

5. valid/not-exclusive/owned in exactly one cache and valid/not-exclusive/not-

owned in zero or more other caches.

A line is in one of the second or third configurations when it contains data which is

not currently being shared. Read-only private data remains in the second configura-

tion, whereas data that is modifred changes to the third configuration. In the latter

case, the cache is the owner of the data, and. must update shared memory before evict-

ingthe line. Data that is shared between processors changes to one of the fourth or frfth

configuration when the second cache accesses it. If the fìrst cache does not own the line,

it changes to the fourth configuration. If the first cache does own the line, it retains

5L

ownership as long as the data is only read-shared. (The line is in the fifth configura-

tion.) As soon as any cache writes the data, the write is effectively treated as a write-

through operation, and ownership reverts to the shared memory. (The line changes to

the fourth configuration.)

The premise behind the published Firefly protocol, stated by the designers, is that

a copy-back stratery is appropriate for lines that are not shared, whereas write-

through is more appropriate for shared lines. The use of the sharingbus signal allows

a cache to determine when sharing ceases, at which time it can revert from write-

through to copy-back. The designers note that the disadvantage of this approach is that

write-through continues to be used for a shared line for as long as a line remains in

other caches, even if their client processors no longer require the data. (This problem

also arises with the Dragon protocol, as mentioned in Section 2.2.7 .) Compare this with

write-invalidate coherence protocols, where a processor write causes the line to become

private by invalidating other cached copies, thus allowing a copy-back stratery to be

used for the line. The Firefly designers note that write-invalidate protocols perform

poorly when write sharing occurs, since an invalidated line containing shared data

must be re-fetched when next needed. However, subsequent studies, such as that of

Eggers and,Katz [18], suggest that in practice, the amount of write-sharing is small,

and so this overhead may not be significant.

As mentioned above, the Firefly protocol as published deals with cache lines that are

one word in size, allowing some optimizations to reduce bus traffïc. It is not clear how

best to adapt the protocol to handle cache lines of larger than one word. One possibility

is to treat all processor writes as partial line writes, and deal with them according to

the state transition rules in Figure 2-9. However, this would require that the whole

cache line be broadcast using a write-update-clean transaction when a cache has a

write hit in response to a client processor write request. The reason for this is that some

other cache may be the owner of the line, with several words in the line being dirty. The

52

owner responds to the write-update-clean transaction by copying the data and relin-

quishing ownership. This requires that the caches copies be consistent with shared

memory, and the only way to guarantee this is to broadcast the whole line. The problem

with this approach is that it would generate excessive bus traffic, transmitting data

that, most of the time, is not modified. This is counter to the premise behind the proto-

col. Hence it is unlikely that the protocol as published would be used for caches with

a line size of larger than one word. An alternative is to revert to the earlier version of

the protocol described in Section 2.2.8.

2.2.10 The RB and RWB Protocols

The last of the published cache coherence protocols discussed in this thesis is the RWB

(read write broadcast) protocol of Rudolph and Segall [44]. This scheme is an extension

of the RB (read broadcast) protocol described in the same source. These protocols are

rarely cited in the subsequent literature on the subject, for a number of reasons.

The frrst problem with the RB and RWB protocols is that they are predicated on the

assumption that a cache line is one word in size. The authors do not discuss how partial

writes should be handled, nor suggest any generalization to larger line sizes. It is clear

from the large number of studies analyzing cache performance for various line sizes,

that a larger size is desirable for all practical systems.

The second problem is that the protocols rely on cache snoops observing read transac-

tions on the bus, and copying the data into their cache memories. The motivation for

this, as stated by the authors, is to optimize performance for reads over writes. A snoop

copying data from the bus on a read is optimistically assuming that its client processor

will read that data soon, so the act of copying the data potentially avoids an extra bus

transaction. However, the bus signaling protocol to synchronize the requester, the re-

sponder and an arbitrary number of snoops to permit this kind of transaction is in prac-

tice prohibitively complex and expensive. In addition, the protocols require caches to

53

intervene on reads when they have the most up to date copy of a line. The authors

suggest that this be done by interrupting the read, writing the data back to shared

memory, and then retrying the read. The complexity of allowing snoops to copy the data

being read prohibits the optimization of performing a reflecting read as one bus trans-

action.

Unlike all of the previously discussed protocols, these protocols appear never to have

been implemented in a real computer system. Certainly the authors make no mention

in their paper of an implementation. Given the problems outlined here, and the fact

that the literature gives little further comment on these protocols, they are not de-

scribed further in this thesis. The interested reader is referred to l44l for a detailed

description.

2.2.11 Correctness of Coherence Protocols

It is appropriate at this point to comment on the correctness of the published cache co-

herence protocols. The object of these protocols is to ensure that each processor ob-

serves the most recently written value of any datum when it accesses the memory hier-

archy. For the simpler protocols, one can be convinced by inspection that this

requirement is met. However, for the more complex protocols, it is not obvious, and

some form of verification is desirable.

The framework used in this thesis for description of the protocols can also be used

as the basis of their formal verification. The operation of each cache is described in

terms of a finite state machine, which makes transitions based on the current state of

a line, the action requested by the client processor, and bus transactions observed by

the cache snoop. A system consisting of a collection of processor/cache pairs and a

shared memory can be modelled as a composite state machine, with the global state

based on the collected states of the component caches. In this composite state machine,

transitions are initiated solely by requests from client processors.

54

An implicit assumption inherent in all of the protocols is that global state transitions

are atomic. From this assumption comes the requirement that global actions for client

processor requests be serialized. Only private operations within a cache, not requiring

reference to other cache states, can be performed in parallel. (Fortunately, these are

the majority of operations.) Without the assumption of atomicit¡ the coherence proto-

cols would not operate correctly. The practical implication for cache system designs is

that the shared bus must form the mechanism for serialization. Where two or more cli-

ent requests address one line of the shared memory address space, the bus arbitration

system determines the order of coherence transitions resulting from the requests.

Where a client request is delayed pending allocation of the bus, a cache must grant its

snoop exclusive access to its state, forcing the client to wait, in order to avoid deadlock.

This mutual exclusion between the client processor and the snoop within the cache

(often called interference) is a potentiai source of performance degradation.

Given the assumption of atomicity and the resulting serialization, formal verifica-

tion of a protocol is based on enumeration of a set of permissible global states, in which

coherence is maintained. These are the configurations for each protocol, mentioned in

previous sections. Other global states are deemed erroneous, in that they do not guar-

antee coherence. For example, a global state in which two or more caches have the

owned attribute set must be deemed erroneous. The verification process starts from an

initial global state (invalid in all caches), and proceeds by a search through the global

state space from reachable global states. If a global state is reached which is not a per-

missible state, the protocol is incorrect. If, when the search terminates, all reachable

states are permissible, the protocol is partially correct.

FulI correctness also requires verification that the data seen by processors is also the

most recently written. This can be verified by augmenting the global state with in-

formation about contents of a line, as described by Pong and Dubois in [41]. The

authors present a notation to formalize analysis of global state changes, and annotate

55

states with information as to whether copies of data in a line arefresh, obsolete, or noda-

ta. (not present). They demonstrate correctness of the Write-once, Illinois, Berkeley,

Dragon and Firefly protocols, and for each, derive a set of permissible states that corres-

pond to the conflrgurations described in previous sections of this thesis.

2.3 Protocols Used by Current Processors

In this section, the cache coherence protocols used by a number of widely used commer-

cial microprocessors are described. These protocols are variations of the protocols de-

scribed in the previous section.

2.9.1 lntel Pentium@

The Intel Pentium@ family of microprocessors t34l is widely used in personal com-

puters. It includes on-chip instruction and data caches, with facilities for maintaining

coherence between caches in a shared memory multiprocessor system. The cache co-

herence protocol used for the data cache is based on the write-once protocol described

in Section 2.2.2, with some minor differences. First, the Pentium protocol is not write-

allocate---on a write miss, the data is written through to main memory without fetching

the missed line into the cache. As a consequence, the protocol does not require a bus

read-invalidate transaction type. Second, the Pentium bus includes a facility that can

be used to detect sharing of a line by other caches. This can be used to optimize the

protocol by avoiding the shared stated and the write-invalidate on the flrrst update for

private lines. Third, the Pentium bus does not include facilities for directly implement-

ing reflection or intervention. Instead, the same effect is achieved by aborting a miss

while the owner cache writes the missed line back to shared memory, then retrying the

miss. (This is discussed in relation to the Multibus in Section 2.2.2.) The state trans-

ition diagram for the Pentium protocol is shown in Figure 2-L0.

56

PW:
write-invalidate

BWI:B

not-valid

PR:

PF, BWIPR BWI:

PR
BRS:

PW:
write-invalidate

BRS valid
not-exclusive

not-owned

valid
exclusive

not-owned

PW:
write-back

PF:

BRS:
abortlwrite-backl

BWI:
abortlwrite-backl

valid
exclusive

owned

PV/:

PR: processor read
P'W: processor write
PF: processor flush

BRS: bus read-shared
BWI: bus write-invalidate

Figure 2-10. The Pentium protocol

2.3.2 IBM PowerPC

The IBM PowerPC 604 microprocessor [30] implements the PowerPC architecture, de-

veloped jointly by IBM and Motorola. The PowerPC 604 uses the Illinois protocol de-

scribed in Section 2.2.3, with one minor difference. Whereas the Illinois protocol uses

intervention and reflection provided directly by the bus protocol, the PowerPC 604

57

achieves the same effect by aborting a miss while the owner cache writes the missed

line back to shared memory, then retrying the miss.

2.3.3 Sun Microsystems UItTaSPARC*-ll

The UIITaSPARC*-II processor [48] is an implementation of Sun Microsystems'

SPARC V9 architecture. The lIltraSPARC-II includes internal instmction and data

caches, and a second level cache implemented with external static RAM, but managed

by an on-chip controller. The cache coherence protocol implemented by the controller

is based on the MBus protocol described in Section 2.2.6, with two variations. First, the

UItTaSPARC-II protocol uses a read-invalidate transaction instead of an address-only

invalidate transaction on a write hit to a shared line. Second, since the processor pro-

vides a block write operation to write a whole line, the UItTaSPARC-II protocol includes

additional transitions to invalidate a line when a block write is sensed on the bus.

2.3.4 MIPS R4000

The MIPS R4000 family of processors [38] includes the R4000MC, which includes fa-

cilities for controlling a coherent second-level cache. The coherence protocol to be used

for each page in the address space is determined by configuration bits in the page table

entry. A write-invalidate or a write-update protocol can be selected, as well as non-

shared and uncached options. The write-invalidate protocol used is the MBus protocol

described in Section 2.2.6. The write-update protocol used is similar to the Dragon pro-

tocol described in Section 2.2.7, except that sharing detection is not used on update

transactions. The modiflred state transition diagram is shown in Figure z-tl.

2.3.5 DEC Alpha

The DEC Alpha 21164 processor [16] includes controllers for an on-chip second-level

cache and an off-chip board-level cache. A five-state write-invalidate cache coherence

58

BWUD,
BWB:

-shr
PR

not-Yalid

PF:

BRS,
B\{B:read-sharedIshr]

BRS:

valid
not-exclusive

not-owned

valid
exclusive

not-owned

write-backwrite-back

PW:

BVYUD

write-update-

BRS:
iúervette

valid
not-exclusive

owned

Yalid
exclusive

owned

itúervene
write-update-

PR:

PR: processor read
PW: processor write
PF: processor flush

BRS: bus read-shared
BWUD: bus write-update-dirty
BWB: bus write-back

[-shr]:
no other cached copy

Ishr]:
other caches have copies

Figure 2-11. The MIPS R4000 write-update protocol

protocol is followed. The KN470 processor module [24] incorporates an Alpha 2LL64

processor with a board-level cache, and implements the bus transactions required to

support the cache coherency protocol. In order to maintain compatibility with previous

processor modules, the KN470 does not implement an address-only invalidation trans-

action. Instead, write-invalidate transactions are used to inform other caches of modi-

fications to shared lines. Furthermore, the KN470 bus protocol does not provide a

mechanism for caches to indicate sharing status during a transaction. While the Alpha

59

BWI, BWB:
BRI,

not-valid
read-shared

PR,
BRS,
BWB:

read-invalidate

valid
not-exclusive
not-owned

write-invalidateYalid
exclusive

not-owned

wrile-back
PF write-back

BWI:

BRI:
intervene

PW:
write-invalidateùúervetrc

BRS:
itúervetrc

Yalid
not-exclusive

owned

valid
exclusive

owned

BRS:
intervene

PR:

PR: processor read
PW: processor write
PF: processor flush

BRS: bus read-shared
BRI: bus read-invalidate
BWI: bus write-invalidate
BWB: bus write-back

Figure 2-12. The protocol used by the DEC KN470/Alpha2LL64 module

21L64 has provision for using sharing status, the lack of bus support prevents use of

sharing status in the coherence protocol. The coherence protocol resulting from these

limitations is similar to the write-once protocol described in Section 2.2.2, augmented

with aspects of the Berkeley ownership protocol described in Section 2.2.5. The state

transition diagram is shown in Figure 2-L2.

60

2.4 Proposed Futurebus Cache Coherence Mechanisms

In 1979, the IEEE Computer Society Technical Committee on Microprocessors and

Microcomputers set up a working group to develop a ne\ry'backplane bus protocol. The

motivation was that existing bus technolory would not be able to meet the bandwidth

and functional requirements foreseen at the time. The working group identifred sup-

port for multiprocessors as a particular deficiency of existing buses, and worked to-

wards a signalling protocol that would support bus-connected shared memory multi-

processors. The first major product of the working group was IEEE Standard 896.1,

the Futurebus specification [31], which covered the physical, electrical and basic proto-

col aspects of the bus. Although it did not specify cache coherence protocols, it did pro-

vide hooks on which such protocols could be built. The author was involved as a

member of the working group from 1985 until the publication of the standard in 1987.

As part of the 896.1 working group activity, a Cache Coherence Task Group was set

up. This later gained full working group status, under the project name P896.2, to de-

velop speciflrcations for higher level protocols for Futurebus, including cache coherence.

The author rü¡as involved in this group from 1985 until 1989, and contributed an earlier

version of the descriptive framework used in Section 2.2. This was subsequently used

in the specification of mechanisms to support cache coherence, described in the draft

standard produced by the working group [32]. These mechanisms are described here,

although not exactly in the form presented in the draft standard, but in a form more

consistent with the descriptive framework used in this thesis.

The P896.2 Futurebus support for cache coherence does not actually define a cache

coherence protocol. Instead, it specifies a set of mechanisms from which a protocol can

be constructed, together with a set of rules governing the use of the mechanisms. The

rules allow for alternatives to be chosen, and the particular set of alternatives chosen

in an implementation determine the coherence protocol followed. The advantage of this

6l

approach is that designers can select protocols suitable for different applications, but

still be assured that all modules that conform to the standard will inter-operate. Thus

it is possible to construct a heterogeneous system consisting of various forms of copy-

back caches, and have them all remain mutually coherent.

This thesis flrrstly describes the relevant parts of the signalling mechanisms specified

to support cache coherence, followed by the rules that govern their use. It then shows

how the rules can be applied to implement two copy-back cache coherence protocols, one

write-invalidate, and the other write-broadcast. Finally, it discusses the issues of cor-

rectness and completeness of the rules.

2.4.1 P896.2Signalling Mechanisms

Information transfers on Futurebus take place in transactions, consisting of an address

transfer, zero or more data transfers, and a disconnection transfer. During an address

transfer, a bus master places an address and command on the bus. The commands a

master may issue during an address transfer are:

Cache-Comrnand; the master intends to keep a cached copy of the ad-

dressed line after successful completion of the transaction.

Intent-to-Modify: the master intends to modify the addressed line.

Broadcasú: the transaction will proceed using broadcast signalling, allow-

ing a number of potential slaves to connect and receive data.

Potential slaves examine the address and command, and determine whether to par-

ticipate in the transaction. They return status information to the master as follows:

Cache-Status: a slave that is neither intervening or reflecting will keep a

cached copy of the line after the transaction.

a

a

a

a

62

. Selected: shared memory recognizes the address and will participate in the

transaction. Also asserted by a cache in a broadcast transaction if it will

participate.

. Third-Party: a cache must participate in the transaction by intervening or

reflecting.

. Interuene: the third party will participate by intervening, as opposed to re-

flecting.

. Busy: a slave cannot complete the transaction immediately, so the master

must abort and retry in a later bus tenure.

If a data transfer follows in the transaction, the master may issue the following com-

mand to the participating slaves:

. Three-Party: this is a three party transaction. The selected slave should

examine tl,e Interuene signal, and if it is set, become disabled and not par-

ticipate further. If Interuene is clear, the selected slave should become dl-

uerted and accept data from the reflecting third party cache.

. Write: data will be written by the master to the connected slave(s).

At the end of the transaction, the master may issue an additional command:

. Ownership: t]ne master will assume ownership, implying that the current

owner must relinquish ownership.

These are the basic mechanisms used to build the different kinds of bus transactions

referredtoin Section2.2. The P896.2 speciflrcation alsoincludes anumberof additional

commands and status responses, for dealing with error detection and recovery, manag-

ing block transfers over line boundaries, and other issues. As this description concen-

trates on the support for cache coherence, the additional commands and responses are

not discussed here, nor are they included in the rules for maintaining coherence. The

interested reader is referred to [32] for details.

63

The way in which the signalling mechanisms are used to implement the transaction

types described in Section 2.2 ís as follows:

. read-shared: during the address transfer the master asserts Cache-Com-

mand and negates Intent-to-Modify and Broodcøsú; during the data

transfer the master negates Write.

. read-inualidate: during the address transfer the master asserts Cache-

Command and Intent-to-Modify and negates Broadcøsú; during the data

transfer the master negates Write.

. inualidate'. during the address transfer the master asserts Ca.che-Com-

mand and Intent-to-Modify and negates Broadcøsú; there is no data

transfer.

. write-inualidate: during the address transfer the master asserts Cøche-

Cornmand and Intent-to-Modify and negates Broadcøsú; during the data

transfer the master asserts Write.

. write-update-clean: during the address transfer the master asserts Cache-

Commønd, Intent-to-Modify and Broadcøsú; during the data transfer the

master asserts Write.

. write-update-dirty: this can be implemented in exactly the same way as a

write-upda,te-shared transaction, by ignoring the fact that shared memory

is updated as a side-effect.

. write-bøck: during the address transfer the master negates Cøche-Com-

mand and negates Intent-to-Modify and Broødcøsú; during the data

transfer the master asserts Write.

64

2.4.2 P896.2 Cache Coherence Rules

The rules for maintaining cache coherence specifred by P896.2 govern changes in at-

tributes for a line stored in a cache, and changes in connection state of modules during

a transaction in which the module recognizes the address. The P896.2 rules use the

attributes names ualid, exclusiue andowned, as in Section 2.2. T}rre P896.2 rules also

use the following names for connection states of modules:

. LLns; unselected (not participating in the transaction)

. sel: selected by the address

. int: intervening

. refi reflecting

. dis: disabled

. diu: diverted

The mles are formed with a boolean condition on the left hand side, and a resultant

assertion on the right hand side. The symbol between them is either '(1" f,s denote

"shall", mandating change, or "---" to denote "may" , allowing change. It is assumed that

if a change is neither mandated nor allowed, it is prohibited. The boolean operators

used are: "&" for conjunction, " l " for disjunction, and over-bar (" ") for negation. This

presentation of the rules follows the same numbering as used in the P896.2 draft speci-

flrcation.

The first set of rules governs line attribute changes made by a cache snoop during

a transaction.

(1) Snoop & Cache-Command :+ exclusive

Rule (1) specifies that a cache must relinquish the exclusive attribute if it observes

a transaction in which another cache acquires a copy of the line.

(2) Snoop & Ownership + owned

65

Rule (2) specifies that a cache must relinquish ownership if another cache acquires

it. This is necessary to ensure that there is only ever one cache that is owner of a line.

(3) Snoop & Intent-to-Modify &

(Bro"¿clõast & õwñed

I Broadcast- & Wr-Ite

I Broadcast&seI) + valid

Rule (3) speciflres that a cache must invalidate a line when a master indicates that

it will modify the line, and one of the following:

. the snoop cannot intervene on a non-broadcast transaction (e.g., a non-

caching write from an I/O controller), because it is not o\¡¡ner, and thus

cannot update its cache with the new data, or

. the transaction is a read-invalidate or an invalidate, or

. the data is broadcast, but the snoop chooses not to update its cache with

the new data (see Rules (15) and (16) below).

The second set of rules governs line attribute changes made by a cache when it is

master of a transaction initiated in response to a request from its client processor.

(4) Master & Cache-Command + valid

Rule (4) speciflres that if a cache master indicates it will keep a copy of the line, it may

acquire the valid attribute for the line.

(5) Master & Cache-Command & Cache-Status &

(Broadcast

I Bro"¿d¿as[& Thäd-Party

I Broaclcas-[& Intent-to-Modify &Write) + exclusive

66

Rule (5) specifies that a cache master may assume the exclusive attribute if it detects

that no other cache intends to keep a copy of the line after any of the following transac-

tions:

. a broadcast, or

' a non-broadcast in which there was no third party cache participating, or

. a read-invalidate or invalidate.

(6) Master & Ownership + owned

Rule (6) specifies that a cache master must acquire ownership if it forces another

cache to relinquish it. This is necessary to ensure that ownership of a line is not lost,

since ownership carries with it the obligation to copy-back a line before replacing it.

The next two rules serve to ensure that line attributes are acquired correctly, allow-

ing only five coherence states for a line.

(7) owned I exclusive + valid

Rule (7) specifres that for a line to become owned or exclusive, it must also become

valid.

(8) vãm + õwned- & exffiñe

Rule (8) speciflres that if a line is invalidated, it is no longer owned and no longer ex-

clusive.

The following four rules govern changes that a cache may make to the attributes of

a line without incurring bus transactions.

(9) o\¡rneã + çãIiT

Rule (9) specifies that a cache may invalidate a line at any time so long as it does not

own the line. For example, if a not-owned line is to be replaced or flushed from a cache,

it may simply be overwritten. However, if the line is owned, it may not be invalidated

without frrst passing on ownership. (See also Rule (12) below.)

67

(10) õwned exclustve--)

Rule (10) specifies that a cache may relinquish the exclusive attribute for a line it
holds at any time so long as it is not owner. In fact, this is overly restrictive. The inten-

tion is that a cache may assume a line to be shared without loss of generality. There

is no reason why it may not do so when it owns the line, so the following amended

Rule (10) is proposed in this thesis, allowing a cache to relinquish the exclusive attrib-

ute for a line it holds at any time:

(10a) valid --à exclusive

(11) exclusive ---à owned

Rule (11) specifies that a cache that knows a line it holds is not shared by any other

cache may assume ownership at any time. Tlpically it would do this when the client

processor issues a write. The fact that the line is not shared means that the cache can

proceed with the write locally.

(L2) Dirty- + õwned

Rule (12) specifies that if the cache can determine that the line is consistent with

shared memory, it may relinquish ownership (effectively passing ownership back to

shared memory). This may occur in a number of circumstances, such as after a copy-

back to flush the line, or after a non-broadcast transaction in which the cache reflected.

The next set of rules governs how a cache snoop should set its connection state in re-

sponse to observed bus transactions, depending on the coherence state ofits copy ofthe

line addressed.

(13) Snoop & B¡õEIõast & owner =à int & -ref I ä & ref

Rule (13) specifres that a snoop that observes a non-broadcast transaction addressing

a line which it owns must either intervene or reflect.

(14) Snoop & Broadcast & owned + uns

68

Rule (14) specifies that a snoop that observes a non-broadcast transaction addressing

a line which it does not own must remain unselected for the transaction.

(15) Snoop & Broadcast & or,¡¡ner =+ sel

Rule (15) specifies that a snoop that observes a broadcast transaction addressing a

line which is owns must become selected, so that it may participate in the transaction

and receive the updated data.

(16) Snoop & Broadcast & valid + sel & uns I sel- & uns

Rule (16) specifies that a snoop that observes a broadcast transaction addressing a

line of which it has a copy must either become selected to update the cop¡1 or remain

unselected. (See also Rule (3) above.)

(L7) Snoop & vãm + uns

Rule (17) specifres that a snoop that observes a transaction addressing a line of which

it does not have a copy must remain unselected.

The following rules govern how the shared memory should set its connection state

in response to a transaction that addresses a line it stores.

(18) Shared-Memory + sel

Rule (18) specifies that the shared memory should become selected when it recogn-

izes the address. It will remain selected and transfer data normally, unless its connec-

tion state is subsequently changed by application of Rules (19) or (20).

(19) Shared-Memory & sel &

Broadcast & Three-Party & Intervene + dis

Rule (19) specifies that the shared memory must become disabled if a third party

cache intervenes on a non-broadcast transaction. The shared memory takes no further

part in the transaction.

69

(20) Shared-Memory & sel &

Btoadcast & Three-P arty & Intervene + div

Rule (20) specifies that the shared memory must become diverted if a third party

cache reflects on a non-broadcast transaction. The shared memory must accept the

data transferred on the bus (whether the transaction is a read or a write) and update

the stored copy of the line.

The frnal rule governs the use of the Busy status response from a slave during an ad-

dress transfer.

(2I) Snoop & owned + Busy(deadlocFpote-ñÐ

Rule (21) specifies that a snoop that does not own a line may not return a "deadlock-

potent" busy response to the master. This is a busy response reserved for an owner

cache that must update shared memory before it can respond to the request from the

master. It may occur if a cache designer has chosen to implement the equivalent of re-

flection by having the cache abort the transaction, update shared memory, and then

allow the transaction to be retried. The response is called "deadlock-potent" because

of the possibility of deadlock if the cache is also waiting to retry a transaction at some

other line in the address space. A protocol must be designed to avoid such deadlock.

2.4.3 Using P896.2 to lmplement the Berkeley Protocol

As a demonstration of construction of a cache coherence protocol usingthe P896.2 ruIes,

a description is presented of the Berkeley protocol, described in Section 2.2.5, specifred

in terms of the rules. Figure 2-13 shows the state transition diagram for the Berkeley

protocol, as presented before, but annotated with the P896.2 rules that govern the

transitions. The following commentary describes how each of the rules is applied in the

protocol.

::t exclusive(1) Snoop & Cache-Command

70

BWB:
1L4)

1

BI, BWB

not-valid 4
resd-shared

BI: 4

4BRI:

PW:
read-invalidate

PF

write-back

valid
not.exclusive
not-owned

BI:

10a

PF:
write-back

invalidate

BRI:
intervene

BRI:
intervene

BRS:
intervene

1

intervene

valid
not-exclusive

owned

valid
exclusive

owned

PR:

PW:P invalidate

PR: processor read
PIV: processor write
PF: processor tlush

BRS: bus read-shared
BRI: bus read-invalidate
BI: bus invalidate
BWB: bus write-back

Figure 2-13. The Berkeley protocol transition diagram, annotated with the P896.2 rules that are in-
voked.

When a snoop observes a read-shared, read-invalidate or invalidate transaction, it

relinquishes the exclusive attribute, since the caching master will keep a copy of the

line.

(2) Snoop & Ownership + o\Mned

'When a snoop observes a read-invalidate or invalidate transaction, it relinquishes

ownership, passing it on the to caching master.

7l

(3) Snoop & Intent-to-Modify &

(Broaclcas-[& owned-

I Broacl¿ãs[& W¡iIe

I Broadcast&sel-) + vam

When a snoop observes a read-invalidate or invalidate transaction (Intent-to-Modify

& Brõæl¿as[& WIIte), it invalidates its copy of the line.

(4) Master & Cache-Command -+ valid

When the client processor request results in a miss, the cache fetches the line using

a read-shared or read-invalidate, and assumes the valid attribute for the line.

(5) Master & Cache-Command & Cache-Status &

(Broadcast

I Broaclcast- & Th-i¡d+arty-

I Broaclcas[& Intent-to-Modify &Write) * exclusive

When a cache issues a read-invalidate or an invalidate transaction (Cache-Com-

mand & eãcEeSIãm & BrõElcast- & Intent-to-Modify & WFife), it assumes exclusive-

ness for the line.

(6) Master & Ownership + owned

When a cache issues a read-invalidate or an invalidate transaction, it assumes

ownership of the line.

(7) owned I exclusive + valid

Covered by Rules (4)-(6).

(S) valid- + owneã & ex¿Iusite

Covered by rules (1)-(3).

(9) o\¡¡neã vaTñ

When the client processor causes a not-owned line to be flushed, it is invalidated.

72

(10a) valid --à ex¿lusiçe

The exclusive attribute is relinquished when a valid/exclusive/owned line is copied

back to shared memory using a write-back transaction.

(11) exclusive -+ owned

Not invoked.

(I2) Dirty + owned

When the client processor causes an owned line to be flushed, it is copied back using

a write-back transaction, and is thus no longer dirty. Hence the owned attribute is re-

linquished.

(13) Snoop & Broadcast & owner => int & réf I int & ref

When a snoop detects a read-shared or read-invalidate transaction addressing a line

which it owns, it intervenes.

114) Snoop & B;õãicast & owned + uns

When a snoop detects any transaction addressing a line which it does not own, it re-

mains unselected and does not participate in the transaction.

(15) Snoop & Broadcast & owner + sel

Not invoked.

(16) Snoop & Broadcast & valid + sel & uns I sel & uns

Not invoked.

(17) Snoop & valid + uns

When a snoop detects any transaction addressing a line of which it does not hold a

copy, it remains unselected and does not participate in the transaction.

(18) Shared-Memory + sel

The shared memory becomes selected when it recognizes an address.

73

(19) Shared-Memory & sel &

Broaclcas-t & Three-Party & Intervene + dis

The shared memory becomes disabled on a read-shared or read-invalidate when an

owner cache intervenes.

(20) Shared-Memory & sel &

Broadcast & Three-Party&Intervene + div

Not invoked.

(2L) Snoop & owñed + Bu-syGead-lõ¿E-potent)

Not invoked.

Examining the ways the rules are applied, we see that this particular cache coher-

ence protocol arises from the choice of bus transactions constructed from the basic

mechanisms, the choice of actions taken by a cache in response to a client processor re-

quest, and the choice of whether or not to act on an optional rule (one based on the sym-

bol "*"). In a homogeneous system constructed with all caches following this protocol,

a number of the rules, and factors in some others, are not invoked. However, for a

Berkeley protocol cache to be integrated into a system containing caches using other

protocols, the cache snoop would have to implement the mandatory parts of all mles

that specify a snoop's behaviour. One might debate as to whether this would still be

a Berkeley protocol cache. Clearly it would be an extension, with the Berkeley protocol

as a proper subset.

2.4.4 Using P896.2 to lmplement the Dragon Protocol

As a second demonstration of application of the P896.2 rule, a description is presented

of the Dragon protocol, described in Section 2.2.7 , specifred in terms of the rules. In the

Dragon protocol, the write-update-dirty transaction is used to update other caches with

a copy of the line, without updating shared memory. The Futurebus mechanisms to not

74

provide a rñ¡ay of ensuring that shared memory does not participate in the broadcast

transaction. One alternative when implementing the Dragon protocol is simply to ig-

nore the fact that shared memory copies the broadcast data, as suggested in Sec-

tion 2.4.1, and implement the protocol exactly as described. The possible penalty here

is that participation by shared memory may slow down the broadcast transaction.

Given sufficient bufferingin the memory system, this canbe avoided. Another alterna-

tive, applicable in a homogeneous system where all caches use the Dragon protocol, is

for the shared memory not to participate in broadcast transactions. This would be an

exact implementation of the protocol. A third alternative is to take advantage of par-

ticipation by shared memory and modify the protocol accordingly.

Figure 2-14 shows the state transition diagram for the Dragon protocol, as presented

before, but annotated with the P896.2 rules that govern the transitions. The following

commentary describes how each of the rules is applied in the protocol.

(1) Snoop & Cache-Command + exclusive

When a snoop observes a read-shared transaction, it relinquishes the exclusive at-

tribute, since the caching master will keep a copy of the line. A snoop only obseryes a

write-update-dirty transaction in configurations where it does not have the exclusive

attribute, so the rule is not invoked for write-update-dirty transactions.

(2) Snoop & Ownership - ownêã

When a snoop observes a write-update-dirty transaction and updates its copy of the

line, it relinquishes ownership, passing it on to the caching master.

(3) Snoop & Intent-to-Modify &

(Bro"¿clcasl & õwñed

I Br-oaclõast & WIite

I Broadcast&sel) + valid-

Not invoked.

75

BRS, BWUD,
BWB:

read-sharedIshr]
PR:

(4)

PR

not-valid

PF:

BWB

PR
read-shared.[shrl
write-update-dirty

read-shared[-shr]

I1

BRS:
vslid

not-exclusive
not-owned

valid
exclusive

not-owned

write-back
PFwrite-back

update

write-update-
dirtyIshr]

write-updale-
dirty[-shrl

BRS:
itúervene

valid
not-exclusive

owned

valid
exclusive

owned

write-update-
tlirty[-shr]

write-update-
PWBRS:

,ntervene

BWUD:
update
(16)

PR: processor read

PW: processor write
PF: processor flush

BRS: bus read-shared
BWUD: bus write-update-dirty
BWB: bus write-back

[-shr]:
no other cached copy

Ishr]:
other caches have copies

Figure 2-14. The Dragon protocol transition diagram, annotated with the P896.2 rules that are in-
voked.

(4) Master & Cache-Command ---' valid

When the client processor request results in a miss, the cache fetches the line using

a read-shared, and assumes the valid attribute for the line.

76

(5) Master & Cache-Command & eaõhêSTãIus &

(Broadcast

I B¡oacl¿as[& Thmfa-ïty-

I Bro'¿cnæt & Intent-to-Modify & W¡iTe)

When a cache issues a read-shared (BrõãftlcasE & or a write-update-

dirty (Broadcast) transaction, and no other cache is sharing the line (eacheStãm),

the cache assumes exclusiveness for the line.

(6) Master & Ownership + owned

When a cache issues a write-update-dirty transaction, it assumes ownership of the

line.

(7) owned I exclusive + valid

Covered by Rules (4)-(6) and (11).

(8) \'alid- + owned & exõmtvA

Covered by rules (1)-(3).

(9) õ\ryñed + çãIid

When the client processor causes a not-owned line to be flushed, it is invalidated.

(10a) valid + exclusive

The exclusive attribute is relinquished when an exclusive line is flushed.

(11) exclusive owned

The owned attribute is assumed when a client write request hits at an exclusive line

and the write is performed locally, or when a client write request misses and the read-

shared indicates that no other cache has a copy of the line, allowing the write to be per-

formed locally.

(12) DäF + õwneã

.---> exclusive

77

When the client processor causes an owned line to be flushed, it is copied back using

a write-back transaction, and is thus no longer dirty. Hence the owned attribute is re-

linquished.

(13) Snoop & Brõælõãst & owner =) int & -ref I rTï & ref

When a snoop detects a read-shared transaction addressing a line which it owns, it
intervenes.

(14) Snoop & Brõælõast & õ\'vneã + uns

When a snoop detects a read-shared or write-back transaction addressing a line

which it does not own, it remains unselected and does not participate in the transaction.

(15) Snoop & Broadcast & owner + sel

When a snoop observes a write-update-dirty transaction addressing a line which it
owns, it must become selected and updates its copy.

(16) Snoop & Broadcast & valid + sel & uns I sel & uns

When a snoop observes a write-update-dirty transaction addressing a line of which

it holds a copy, it becomes selected and updates its copy.

(L7) Snoop & valtd ::à uns

When a snoop detects any transaction addressing a line of which it does not hold a

copy, it remains unselected and does not participate in the transaction.

(18) Shared-Memory + sel

The shared memory becomes selected when it recognizes an address. As discussed

above, it may or may not actually accept the data transferred on the bus.

(19) Shared-Memory & sel &

Broadcast & Three-Party & Intervene + dis

The shared memory becomes disabled on a read-shared transaction when an owner

cache intervenes.

78

(20) Shared-Memory & sel &

Broaclõas[&Three-Party&Iñtervene + div

Not invoked.

(2L) Snoop & õwned =+ BusyGea,Ilõ¿E-potent)

Not invoked.

As with the Berkeley protocol, this cache coherence protocol arises from the choices

ofbus transactions, cache actions taken in response to client processor requests, and

actions on optional rules. What differentiates this protocol from the Berkeley protocol

is that a different set of choices is made. The same argument about extending the proto-

col to integrate with a heterogeneous system also applies.

2.4.5 Summary of P896.2 Options

Since different cache coherence protocols arise from different choices of actions on op-

tions in the P896.2 rules, it is useful to summarize the options. This summary is used

in development of the Leopard-2 programmable cache controller desicribed in

Chapter 4. The following list enumerates the P896.2 rules that allow optional actions

and identifies when each option is invoked by the cache coherence protocols.

(4) Master & Cache-Command -> valid

Although this rule indicates that a caching master is not required to keep a valid copy

of a line, in practice there is no need to implement this as an option. A controller design

can assume that the line should always be cached and the valid attribute acquired.

(5) Master & Cache-Command & Cache-Status &

(Broadcast

I Bro'dclcas-[& TEirdTarty

I Bro-¿clcas[& Intent-to-Modify &Write) + exclusive

79

The different protocols vary in when they acquire the exclusive attribute. The Dra-

gon protocols is sensitive to Cache-Status after a broadcast transaction. The lllinois,

MBus and Dragon protocols are sensitive to Cache-Status after a read-shared transac-

tion. The original Firefly protocol is sensitive to Cache-Status afterbothbroadcast and

read-shared transactions. In all of these cases, the Cache-Status response is used to

determine whether the exclusive attribute is acquired. The remaining cases are write-

invalidate, read-invalidate and invalidate transactions. All protocols acquire exclu-

siveness after these transactions, since no other cache asserts Cache-Status in re-

sponse to them.

(9) owned tãrid---)

All caches invalidate a not-owned line when it is flushed (eg, during replacement).

Thus rule is also used in conjunction with rule (12) when an owned line is flushed. The

line is written back to shared memory, allowing the owned attribute to be relinquished

accordingtorule(12),andthenthelinetobeinvalidatedaccordingtorule(9). TheSyn-

apse protocol presents one additional use of this rr.le, also in conjunction with rule (12):

it invalidates a line after a reflection operation causes shared memory to become consis-

tent with the cache.

(10a) valid --å exclusive

None of the protocols make use of this option. The knowledge that a line is exclusive

is too good a performance hint to voluntarily relinquish. Hence all of the protocols that

use the exclusive attribute only relinquish it when forced to do so according to rule (1).

(11) exclusive owned+

All protocols that include the exclusive/not-owned state acquire the owned attribute

after a write hit at a line in this state. In combination with rule (5), all protocols except

'Write-once, Dragon and the original Firefly protocol acquire exclusiveness ánd hence

80

ownership after a write hit at a not-exclusive line. Similarly, all except Dragon and the

original Firefly protocol acquire exclusiveness and hence ownership after a write miss.

(L2) Dirty owned---+

This is used by all protocols in combination with rule (9) to invalidate a line after flu-

shing. It is also used by those protocols that implement reflection, to relinquish owner-

ship when shared memory has been updated as a consequence of reflection.

(13) Snoop & Broadcast & orvvner

I iñï & ref

int & ref

The choice implied by this rule is whether the owner of a line should intervene or re-

flect on a read transaction. The Write-once, Illinois and Synapse protocols and the

original Firefly protocol use reflection, and the others use intervention.

(16) Snoop & Broadcast & valid =+ sel & uns

I seI & uns

The choice implied by this rule is whether a cache should become selected on a broad-

cast transaction and accept the data, or remain unselected. Only the Dragon and origi-

nal Firefly protocols involves broadcasts, and in those protocols, a cache with a snoop

hit should become selected.

In addition to the rules specifred by the P896.2 document, a cache controller must be

configured to determine its actions in response to requests from its client processor. AII

of the protocols described require the same actions in response to the following re-

quests:

a read hit: perform the read locally with no bus transaction

a read miss: perform a bus read-shared transaction to fetch the line and

acquire the valid attribute.

a

8L

' a flush due to replacement: perform a bus write-back transaction if the

line is dirty, and invalidate the line.

' a write hit at an exclusive/owned line: perform the write locally with no

bus transaction.

' a write hit at an exclusive/not-owned line: perform the write locally and

acquire the owned attribute according to rule (11).

The protocols differ in their actions for a write hit at a not-exclusive line and for a

write miss. The required bus transactions and attribute changes can be programmed

as configuration parameters for the cache controller, as described in Chapter 4.

2.4.6 Correctness and Completeness of the P896.2 Rules

The claim made by the developers of the P896.2 cache coherence specification is that

the rules are sufficient to constrrrct a set of interoperable cache coherence protocols.

This has not been formally substantiated, however, work by Robinson, with whom the

author collaborated in 1988, shows some initial steps towards verification of the rules.

In 1421, Robinson describes a transcription of the P896.2 rules into a Prolog know-

ledge base. These rules are augmented with a further ten rules that formally specify

aspects that are informally described in the draft stand.ard. For example, a rule has

been added that formalizes the requirement that a snoop assert Cache-status during

a transaction if it intends to keep a copy of the line after the transaction. Robinson also

added facts to the knowledge base to represent the sbate of modules and the bus, and

rules to simulate transactions. The stimulus to the simulation \Mas a query that speci-

fied a set of client processor requests to be performed. The logic program then inferred

the bus transactions required and the coherence state changes necessary to ensure co-

herence, according to the transcribed P896.2 rules.

Inl42l, Robinson demonstrates that the logic program correctly simulates the oper-

ations (described in [32]) of a heterogeneous system comprising an invalidating copy-

82

back cache, a broadcasting copy-back cache, a write-through cache, a non-caching

master and a shared memory. Robinson presents this simulation as the first step to-

wards "find[ing] an invariant expressing cache coherence and proving that any bus

transactions complying with the formulæ maintain the invariant." The author of this

thesis suggests that one way to formulate such an invariant would be in terms of the

global state of the system, as outlined in Section2.2.IL.

An alternate approach to verifying correctness of the protocols also relies on simula-

tion of a system, but is expressed using a behavioural simulation language instead of

a logic programming language. The advantage of this approach is that it includes mo-

delling of the sequence of events within a bus transaction, allowing veriflrcation of inter-

actions between modules at a more detailed level. This is important for the Futurebus

protocol mechanisms, which involve sequences of actions by bus masters, slaves and

third parties, each acting in accordance with the P896.2 rules. Not only should the

overall effect of the rules be veriflred, but the cause and effect relationships implied by

them must be shown to lead to maintenance of coherence. Conversely, if coherence is

not maintained, a verifrcation technique should be able to pin-point the interaction wi-

thin a transaction that leads to loss of coherence. Compare this with Robinson's ap-

proach, in which a transaction is considered as atomic interaction between the partici-

pants, with no cause/effect ordering within the transaction being visible. The

technique of using detailed simulation to verify correctness of the cache coherence pro-

tocols is similar to that used by Wood to test the cache controller circuits designed to

implement the Berkeley protocol in the SPUR multiprocessor [55].

The author of this thesis developed a simulation suite to verify the Futurebus proto-

col mechanisms as part of the collaborative work with Robinson in 1988. The author's

work consisted of developing behavioural simulation models, written in the Helix

Hardware Description Language [461, of a cache, a Futurebus interface that implem-

ented the basic signalling mechanisms, and a client CPU. This work is described in [3]

83

(reproduced in Appendix C). The cache model was parameterized to allow speciflrcation

of actions to be taken within the framework of the P896.2 mles. Instances of the mod-

ules were interconnected to form a model of a complete bus connected shared memory

multiprocessor. The assembled suite was used to simulate operation of caches and Fu-

turebus transactions at the level of individual bus signalling events. The way the suite

was to be used to verify the protocols was to stimulate the cache modules with a se-

quence of a CPU requests and bus transactions that randomly covered the space of pos-

sible interactions between modules, and verify the maintenance of coherence as the si-

mulation progressed, Random testing is chosen, as the state space is intractably large.

As reported by'Wood, a well chosen suite of stimulus vectors gives good coverage and

a high degree of confidence in the correctness of the system. Experiments with the suite

revealed no cases in which coherence was lost. As well as its use in verifying the correct-

ness of the cache coherence mechanisms, parameterizingof the simulation model made

it possible to simulate any of the cache coherence protocols implemented with the basic

mechanisms, and to observe the detailed interactions between modules under complex

scenarios. This proved very useful as an aid to understanding the dynamics of the

cache coherence protocols.

2.5 Performance Evaluation of Coherence Protocols

Having surveyed the published cache coherence protocols for bus connected shared

memory multiprocessors, one must ask why there is such a proliferation of protocols.

One answer is that they have been developed in response to different perceptions of the

optimal points in the space of cost/performance trade-offs. Proponents of the more el-

aborate protocols argue that the performance gains merit the extra cost, whereas others

argue that there are performance penalties associated with the complexity, and that

simpler protocols will perform better. This can be most clearly seen in the difference

between write-invalidate and write-broadcast protocols. Write-invalidate protocols are

84

simpler to implement, since the data in the cache never needs to be modified as a result

of a snooped bus transaction. Only the attributes need to be modiflred, and then only

on the first snoop hit to a line in the cache. On the other hand, a write-broadcast cache

needs to provide a data path for broadcast data to be written into the cache data mem-

ory. This path needs to be used on every snoop write hit. Proponents of write-broadcast

strategies claim that this extra complexity is small, given that a read data path is re-

quired to support intervention, and that the performance improvement gained by not

invalidating the data in the cache (thus causing future misses when the CPU accesses

the data) warrants the extra complexity.

It has also been suggested that write-invalidate protocols result in superior perform-

ance over write-broadcast protocols [181. The premise is that when a cache line is

shared, each processor performs several updates before some other processor acquires

the line. Under these circumstances, awrite-invalidate protocol has the effect of giving

a processor an exclusive copy of the line after the first update, allowing it to perform

subsequent updates without further bus traffic. A write-broadcast protocol, on the

other hand, requires the processor to broadcast each update to all other processors that

maintain a cached copy of the line, resulting in increased bus traffic. However, write-

invalidate protocols have been shown to have poor behaviour for synchronization oper-

ations, such as locks and barriers, which may occur frequently in concurrent programs

(see, for example, t26l pp. 699-703). The problem is that the protocol produces a large

number of invalidation transactions and consequent read-miss transactions when a

lock variable is released. Write-broadcast protocols perform signifïcantly better in this

case, requiring many fewer bus transactions. Hence the choice between the two kinds

of protocol depends on the frequency of synchronization operations and the patterns of

data sharing between processes.

Many of the arguments, such as that of relative implementation complexities men-

tioned above, rely on qualitative judgements about system and cache design and pro-

85

gram behaviour. However, in recent years, computer architects have become increas-

ingly aware of the need for a quantitative basis for their design decisions. Analysis and

measurement of system and program behaviour has been shown to lead to more cost

effective and higher performance solutions than reliance on conventions, intuitions

and qualitative judgements.

These arguments point to the need for quantitative data for use in evaluating per-

formance of cache coherence protocols. With such data, informed design decisions can

be made in determining a balance between implementation cost and expected perform-

ance for a system. In this section, three approaches for obtaining quantitative data are

described: analytical modelling, simulation modelling, and measurement of real sys-

tems. Their advantages and disadvantages are discussed.

2.5.1 AnalyticalEvaluation

The basis behind an analytical performance evaluation technique is a mathematical

model of system behaviour, usually involving quantifiable parameters such as proba-

bilities of memory references, and distributions of wait times, access times, etc. The

model provides r'¡rays of calculating new parameters of interest, such as processor and

bus utilization. Ideally, the formulae for calculating such values should be in closed

form, allowing a designer to determine quickly values for a variety of alternate design

parameters. However, for a mathematical model to be amenable to closed form solu-

tion, it must necessarily be relatively simple. Models of computer system behaviour can

only achieve such simplicity by being approximate. Hence there is a trade-off between

a model's accuracy of prediction and its utility as a design tool. The complexity of more

accurate models may require them to be solved using iterative numérical techniques,

or may render them totally intractable.

An example of a mathematical modelling technique is presented by Patel in [40].

Patel analyses a system comprising a number of processors each with private cache,

86

and a set of shared memory modules connected to the caches via either a full crossbar

or a delta interconnection network. The parameters in the model are:

. N: the number of processors,

. M: the number of memory modules,

. Ín: the probability that a given cache makes a request to shared memory

in a clock cycle,

. Lo: the average number of cycles for which the cache must wait for arbitra-

tion and interconnection contention, and

. ú: the time taken for the transaction with shared memory.

Patel derives an expression for U, the processor utilization (the proportion of time for

which a processor is not stalled waiting for a cache miss to be serviced), which can be

used to compare the relative performance of different cache and system organizations.

The analysis relies on the simplifying assumption that cache requests to shared mem-

ory are random and uniformly distributed over all memory modules. The author as-

serts that this is a reasonable charactefization of the behaviour of a multiprocessor sys-

tem, without supplying much supportive evidence or convincing argument.

The formula derived by Patel for U is expressed in terms of the parameter ru, which

itself is dependent in a non-trivial way on the other parameters. Thus to solve for U,

a value for wmust also be calculated. Patel cites previous research on the simplest case

where m = ! and t = 1, stating that no closed form solution had been found, and that

solution techniques using Markov analysis required large amounts of calculation.

Patel then employs a further approximation in his model, decomposing the wait time

u and the transaction time ú into w+t independent unit-time requests for service, thus

reducing the model to the simplest case described above, and using an approximate

analytical solution to this case. He justifres these approximations by comparing the re-

sults they yield with results of simulations of a number of system organizations, show-

87

ing that the error is within the confidence bounds of the simulation for parameter va-

lues of interest. (Of course, this begs the question of how accurately the simulation

mirrors the behaviour of the real system.)

In their description of the Illinois cache coherence protocol [39J, Papamarcos and

Patel present a performance analysis based on the same technique. Their analytical

model is more reflrned, in that it uses more parameters to describe system behaviour in

more detail. A number of these parameters are probabilities of occurrence of events,

which must be estimated in order to use the model. There are also other simplifying

assumptions, for example, that invalidations only cause one cache to invalidate. The

model yields three non-linear equations in three unknowns: the average waiting time

per bus request, the real execution time per useful computation time (the inverse of pro-

cessor utilization), and the average bus utilization. The authors report agreement wi-

thinSTo between their analytical study of a number of system organizations and trace-

driven simulations.

A different approach to analytical modelling of cache coherence protocol performance

is presented by Vernon and Holliday in [53], based on use of Generalized Timed Petri

Nets (GTPNs), described by the authors in [28]. A GTPN is based on a conventional

Petri net, but is augmented with a number of attributes on each transition as follows:

the probability of firing (which may depend on the marking of the net

when the transition is ready to fire),

the duration of firing (which may also depend on the net marking when

the transition frres),

flags used to determine the probabilities for the next states, and

resources deemed to be "in use" for the duration of firing (e.g., a bus or

memory).

a

a

88

The analytical technique proposed by Vernon and Holliday involves modelling a pro-

tocol runningunder a particular workload with a GTPN. The workload model they use

is based on that originally proposed by Dubois and Briggs [17], in which a steam of

memory references from a processor is divided into two sub-streams, one for private and

shared read-only data, and the other for shared writable data. Vernon and Holliday

divide the first of these into the two separate components, private data and shared

read-only data. They characterize the workload in terms of relative frequency of ac-

cesses from each of the three sub-streams and a geometrically distributed inter-arrival

time of requests. The GTPN model driven by this probabilistic workload is further

characterized by probability estimates for cache hits, reads (as opposed to writes), re-

placements, etc, and by the parameters of a hardware system under study, such as the

cache hit time and miss penalty.

Once the complete model of protocol and workload has been assembled, the analytical

technique treats the GTPN as a stochastic process (by virtue of the probabilistic frring

characteristics). Performance measures, based on steady state usage of resources at-

tached to the GTPN, are then determined automatically, derived by finding and analyz-

ing the Markov chain embedded within the GTPN model. The performance measures

cited by the authors include bus utilization and speed-up, being the relative execution

time of the multiprocessor compared to a monoprocessor with infinite cache. '

In [53], Vernon and Holliday present results of analysing a protocol similar to Good-

man's write-once protocol, and four variations based on mechanism used in the other

protocols discussed in this thesis. They report that, while their analysis indicates im-

proved performance over the basic protocol for each of the variations, the assumed level

of sharing and hit rates for private and shared read-only data have significant impact

on the derived performance estimates. This indicates that the technique may be suit-

able for performance studies where the workload characteristics and hardware attrib-

utes (apart from coherence protocol) are known in advance, but has serious shortcom-

89

ings as a more general tool for performance evaluation. Furthermore, the authors

comment upon a major disadvantage of the GTPN modelling technique, namely that

the state-space size escalates rapidly as model complexity increases. While they

suggest investigation into ways of analyzing models with larger state spaces as a future

topic for research, they do not appear to have published further in that area.

Vernon, Lazowska and Zahorjan [54] have subsequently proposed an alternative

form of analytical model, based on Mean Value Analysis techniques taken from queu-

ing network modelling theory. The approach is "to construct a set of equations that com-

pute the mean values of various performance quantities in terms of the mean values

of various model inputs-frequently resorting to iteration when direct calculation is

not possible" ([54], p. 310). The model inputs include probabilities of different kinds

of access made by the processors in a system, characterizíng the workloads run by the

processors. From these values, the analytical model provides formulae for calculating

secondary probabilities of different actions taken by caches in response to processor ac-

cess requests, such as satisfying the requests locally performing broadcast writes or

invalidations, etc. The authors then derive a set of formulae that describe the mean

total time between memory requests issued by a processor, expressed in terms of the

mean processor execution time between requests, r, and mean response times for differ-

ent cache, bus and memory actions. The resulting formulae require iterative solution,

but converge quickly. The authors compare the results yielded by this mean value anal-

ysis with those of the GTPN model, and report close agreement. They also report

approximate agreement with some of the simulation studies described in [35] and [2].

However, while they conclude that the mean value model can be customized to other

protocols to provide a fast means of predicting approximate performance, they note that

there are cases where the technique can produce inaccurate results, and recommend

use of more detailed techniques to vaiidate the analyses.

90

In summary, it can be seen that analytical models of a system, where they exist, can

be used as an approximate predictor of system performance. One major difficulty that

may confront a system designer is finding a model that takes account of parameters of

interest. For example, a designer may wish to explore the performance effects of vary-

ing memory reference patterns in the workload. If no available model takes this effect

into account, and the designer is not in a position to develop a nev¡ analytical model

(usually the case), then analytical performance evaluations techniques are not ap-

propriate.

2.5.2 Simulation Based Evaluation

Simulation based techniques for evaluation of performance rely on use of a simulation

model of the physical system, that is, a program that attempts to emulate the behaviour

of the system over a simulated interval of time. A model for evaluating performance

of a cache coherent multiprocessor consists of program modules to emulate the proces-

sors, the caches, and the bus and shared memory combination. A processor module gen-

erates a stream of memory references that are passed to the corresponding cache mod-

ule. The cache module processes the memory references according to the cache

organization and coherence protocol being simulated, possibly generating requests to

be handled by the bus and shared memory module. System performance can be meas-

ured with instrumentation embedded in the model and in the run-time system used to

execute the model.

One of the advantages of simulation as a means of evaluating system performance

is its flexibility. A model can be made as accurate or approximate as required by encod-

ing the appropriate level of detail in the programs that emulate behaviour of the compo-

nents in the system. However, there is a trade-off, in that more detailed models take

correspondingly longer in real time to execute.

9l

Another advantage of using simulation based evaluation over analytical evaluation

is that additional system parameters which are difficult to quantify can be included in

the model. For example, different workload memory reference patterns can be used,

simply by varying the way in which the processor modules in the model generate mem-

ory references.

The two main approaches used to generate memory reference streams for simulation

models are synthetic workloads, in which a combination of stochastic processes provide

successive addresses, and traces of address collected from real programs running on

real machines. Synthetic workload generators have the advantage that they provide

a simple, compact way of generating a large number of addresses to exercise a simula-

tion model. However, they share the disadvantage with synthetic benchmarks, that

they are an approximation to the behaviour of real programs based on intuitions or sim-

plifred from measured behaviour. On the other hand, real address traces provide the

most accurate characterization of program behaviour, but usually involve storage and

management of copious volumes of data, and are difficult to collect. 'Where useful ad-

dress traces exist, they are often regarded as proprietary information, jealously

guarded by their originators. This is particularly the case for multiprocessor address

traces.'

An example of use of a simulation model to evaluate performance of cache coherence

protocols is described by Archibald and Baer in [2]. Their model consists of a number

of processes written in Simula, one for each processoi one for each cache, and one for

the system bus, shared memory and cache snoops. The processor modules generate a

request stream using a synthetic workload. Memory references are divided into refer-

ences to private lines and references to sharable lines. For each reference generated

by a processor, the choice between these, as well as the choice between a read or write,

is made randomly based on parameters input to the model. The cache model handles

these requests, again using random choices based on input parameters, simulating the

92

steady state behaviour of the system. Private lines are not explicitly represented, on

the assumption that the results of previous research on uniprocessor caches can be ap-

plied, and thus probabilistic treatment can be used. Sharable lines on the other hand

are explicitly identified, and interactions between caches dealing with shared lines in-

clude the line identifier.

Archibald and Baer report measurement of a number of system organizations, com-

paring the following protocols: write-through, Synapse, Write-once, Illinois, Berkeley,

the original Firefly, and Dragon. They identify two main factors which contribute to

performance differences between the protocols: the way in which private lines are han-

dled, and the overhead in dealing with shared lines. They conclude that the write-

broadcast protocols perform better in handling shared data, but note that there are nu-

merous implementation considerations that might lead a designer to prefer a different

protocol.

2.5.3 Evaluation Using Real Systems

One of the most significant disadvantages of both analytical and simulation basedtech-

niques for evaluating performance of cache coherence protocols is their failure to accu-

rately characterize the workload drivingthe caches in a system. Analytical techniques

necessarily use very simple models of the workload to make analysis tractable. Simula-

tion based techniques use either synthetic workloads, which again are an approxima-

tion to a real workload, or address traces. The problem with address traces, apart from

the difficulty in acquiring them, is that they are drawn from execution of a single pro-

gFâm, and do not take account of factors such as context switching, operating system

execution and I/O activity.

A solution to these problems is to measure the performance of real multiprocessor

computer systems using different cache coherence protocols. The difficulty here lies in

collecting measurements from sufficiently many systems at different points on the sys-

93

tem design space. Most existing designs that differ with respect to coherence protocol

also differ in other ways, making it impossible to isolate the effect of coherence protocol

upon performance.

In order to address these diffrculties, the Leopard-2 Multiprocessor [5] was designed

to allow a number of different cache coherence protocols to be implemented, with all

other system parameters held constant. The aim was to run a number ofworkloads that

typifred different application environments, and to measure performance under each

of the cache coherence strategies for each workload. By this means, the effects of oper-

ating system and I/O activity would be taken into account. The expectation was that

the data gathered from such measurements would be used to either validate or refute

previous studies based on analytical and simulation techniques, and to aid designers

in choosing a protocol for a ne\ry design. The Leopard-2 system is described in detail in

the next chapter of this thesis.

2.6 Summary

In this chapter a new descriptive framework for cache coherence protocols is presented,

and used as the basis for a survey of previously published protocols. The framework

provides a way of making clear the similarities and differences between the protocols.

This contrasts with other published surveys which adopt the diverse terminologies of

the protocols' original developers, obscuring the similarities and making comparison

more difficult.

Secondly, the chapter presents a description of the proposed IEEE P896.2 Futurebus

bus protocol mechanisms designed to support implementation of cache coherence pro-

tocols in such a way that modules using different protocols can interoperate and main-

tain coherence. Development of these mechanisms was made tractable by the uniform

descriptive framework. This chapter also shows how the published protocols can be im-

94

plemented in terms of the Futurebus mechanisms, and addresses the issue of verifying

correctness of the mechanisms through the vehicle of behavioural simulation.

Finally, noting the importance of quantitatively analysing the performance of sys-

tems using different protocols, this chapter examines three approaches to quantitative

evaluation, namely analytical, simulation based, and by measurement of real hard-

ware. It shows that, while the first two have a useful role to play in performance evalu-

ation, there is a strong need for application of the third approach, both for the more de-

tailed and accurate data that it produces, and to validate analytical and simulation

models.

95

Chapter 3
The Leopard Multiprocessor

3.1 Background

The Leopard Multiprocessor Project was set up in 1984 to investigate a multiprocessor

architecture suitable for use in a networked workstation environment. A series of

prototypes based on the bus-connected shared memory architecture was designed and

constructed over the period from 1984 to 1992. The first of these, known unofficially

as the Leopard-O, was designed in collaboration with an industry partner. It served as

a means of gaining experience in designing high performance computer systems, and

as the basis of a commercial image display workstation (the QDS-1000 t36l).

The second prototype, the Leopard-l, rwas a small multiprocessor which included

three CPU boards, connected with other boards via the L-bus [4]. This system was de-

signed to test a number of concepts in bus design, in particular, mechanisms to support

cache coherence protocols. The author's work in this area lead to involvement with the

IEEE P896 Futurebus Working Group. As a result, some of the ideas from the proposed

Futurebus \¡¡ere used in the L-Bus, and a number of concepts from L-Bus were adopted

in the Futurebus draft specifications, particularly those relating to support for cache

coherence. The Leopard-l was also used as a hardware platform for testing multipro-

cessor operating systems kernels, to investigate some of the concuriency issues that

arlse.

The third prototype designed and constructed as part of the Leopard Project was the

Leopard-2. It was designed to serve as a platform for investigations into cache coher-

96

ence protocols, concurrent operating systems and concurrent applications. The previ-

ous chapter identified the need for experimental work comparing the performance of,

the different cache coherence protocols running real applications on real hardware.

The Leop ard-2 is design to support such experiments, by virtue of having program-

mable caches attached to the CPUs and connection of a bus monitor to the system bus.

The programmable caches allow different cache coherence protocols to be implemented

within a uniform system environment (cache size, line size, operating system, etc.). The

bus monitor, in conjunction with a logic state analyzer and data acquisition system, al-

lows bus transactions to be traced to observe the behaviour of the cache coherence pro-

tocol in detail.

This chapter describes the Leopard architectural framework, and reviews the or-

ganization of the Leopard-l and Leopard-2 systems. It then describes the cache design

of the Leopard-2 in detail.

3.2 Leopard Architectural Framework

The three Leopard systems are all based on the Leopard bus connected shared memory

architectural framework, illustrated in Figure 3-1. It consists of a pool of homogeneous

General Data Processors connected via a broadcast system bus to a Shared Memory sys-

tem. This basic structure is augmented with facilities for specialized data processing

and for input/output.

The General Data Processors in a Leopard system provide a pool of processing re-

sources for the execution of system and application tasks. A task ready to run may be

allocated to any General Data Processor, depending on the task scheduling algorithm

used by an operating system or some dedicated application. All of the General Data

Processors in a particular implementation need not be implemented identically. How-

ever, they must provide a uniform execution environment for tasks, so that any task

97

Device
Controller

Shared
Memory

Device
Processor

Special
Data

Processor

General
Data

Processor

System Bus

Figure.S-1. Leopard multiprocessor architecture framework.

can run on any processor. This is achieved in Leopard systems by using National Semi-

conductor NS32000 Series processor components, all of which have the same instruc-

tion set architecture [29].

The Shared Memory system provides the primary storage resource, and is shared

amongst all processor components. It is used for storage of task code and data, and by

virtue of being shared, can be used to implement inter-task communications mecha-

nisms.

The System Bus is a broadcast backplane bus, used to connect all modules in a Leop-

ard system. The architectural framework does not specify a particular bus design, other

than requiring it to have high bandwidth, and to support multiple masters using a fair

allocation scheme.

A Special Data Processor is an optional component used to optimize performance of

some particular processing service. For example, array processors, signal processors,

or graphics transformation processors may be included as Special Data Processors.

98

A Device Processor is a processor to which is attached special hardware for interfac-

ing to external devices, such as file storage media, network connections, graphics dis-

plays and other user interfaces. The Device Processor acts as a resource manager, pro-

viding device access services to application tasks running on General Data Processors.

Access to the services provided is gained using the same inter-task communications

mechanisms as are used between application tasks.

A Device Controller is an interface to external devices without an attached processor

to act as resource manager. The services of the Device Controller are accessed using

conventional Control/Status Registers Any resource management must be done using

tasks running on General Data Processors.

The Leopard architectural framework can serve as the basis for both workstation and

network server systems. Aworkstation can be constructed with a number of processors,

a shared memory, a device processor for graphics display and user interface (keyboard,

mouse, etc.), and a device processor for network and optional local disk interface. On

the other hand, the architecture can be used to create a variety of servers for particular

applications. General and special data processors can be used to support both general

and application specific computation serving, and various device processors can be

used to provide access services for mass storage, network routing, printing, data ac-

quisition, etc.

3.3 The Leopard-1 Multiprocessor

The Leopard-l Multiprocessor is a small-scale multiprocessor system consisting of

three processor boards and a colour frame buffer. The organization of the Leopard-l

is shown in Figure 3-2. Each processor has a block of local memory and basic input/out-

put resources. The frame buffer was designed and constructed by C. Fang (see [19] for

a detailed description). A shared memory board was also planned, but proved unneces-

99

Graphics
Controller

General
Data

Processor

General
Data

Processor

General
Data

Processor

Serial Serial Serial

L-Bus

t- -1

Shared
Memory Video

L J

Figure 3-2. Leopard-1 Multiprocessor organization.

sary, as extra memory in the frame buffer proved sufficient to support the experiments

for which the Leopard-l was used.

The L-Bus, used as the system bus in the Leopard-l, was designed to support sym-

metric multiprocessor operation. Appendix A describes the data transfer protocol in

detail. It includes all of the transaction types and mechanisms identified in Chapter 2

to support cache coherence protocols. The bus speciflrcation also defines a mechanism

for distributing interrupts from device controllers to processors in a Leopard-l system.

The underlying model is that a device controller requests an interrupts at a priority

level between 1 and 15 (1 being the lowest priority and 15 being the highest). The pro-

cessors execute tasks at priority levels between 0 and 15, with 0 beingthe lowest priori-

ty used only for the idle task, and 15 being the highest priority used for an uninterrupt-

ible task. 'When an interrupt is requested at a priority higher than that of the lowest

execution priority of any processor, the intermpt mechanism chooses one of the highest

priority requests and interrupts one of the lowest priority processors. That processor

100

then reads an interrupt identiflrer from the interrupting controller, containing

tion about its identity and reason for interrupting, and services the request. The inter-

rupt protocol is described in detail in [4]. The implementation includes fully distri-

buted logic to evaluate the maximum and minimum priorities and to s¡rnchronize

operations.

The Leopard-l multiprocessor was constructed in 1986, and used in a number of ex-

periments, apart from its use to prove the concepts in the bus design. The Minix operat-

ing system [51] was ported to run on a single processor, then subsequently extended to

run as a multiprocessor operating system on the complete Leopard-l multiprocessor.

The system also supported experiments in parallel graphics operations.

3.4 The Leopard-z Multiprocessor

The Leop ard-2 Multiprocessor is a multiprocessor workstation based on the general

Leopard architectural framework. It includes processor boards each containing an

NS32532 processor chip and a large off-chip second-level cache, an I/O device processor

for network and mass-storage interface, and an error correcting shared memory. A col-

our frame buffer was also designed, but resource limitations prevented its construction.

The Chorus multiprocessor operating system [43], designed for this type of architec-

ture, has been ported, to serve as the basis for applications software. Abus monitor is

also included as part of the hardware, to trace bus transactions as part of the perform-

ance measurement experiments.

Figure 3-3 shows the Leopard-2 architecture. Each module is briefly described here,

followed by more detailed descriptions of the system bus protocols and General Data

Processor design. Detailed descriptions of each of the modules can be found in [5], [6],

[7], [8], ¡91, [101, ¡111, [12], [13] and [23].

101

Graphics
Controller

Futurebus
Monitor

Shared
Memory

Storage &
Comm's

Processor

General
Data

Processor

Eühernet SCSI Serial

Futurebus

Video

Figure 3-3. Leopard-2 multiprocessor workstation architecture.

The system bus used in the Leopard-2 is based on the IEEE Std. 896.1-1987 Future-

bus [31]. At the time of design, this was the only standard bus providing sufflrciently

high throughput, multiprocessor support and protocols for cache coherence. The ways

in which the Leopard-2 bus differ from the full standard are described in Section 3.5.

Each Leopard-2 General Data Processor (GDP) module uses an NS32532 CPU with

an NS32381 floating point coprocessor. The CPU includes internal instruction and

data caches, and these are augmented with a 512 Kbyte external cache accessed using

physical addresses. The external cache incorporates bus snooping hardware to main-

tain coherence of cached data. The cache controller is designed as a replaceable mod-

ule, to allow different cache coherence strategies to be applied and evaluated. The

GDPs include a local 4 Mbyte error correcting memory for storing processor-local oper-

ating system code and data, and two serial ports for diagnostic use. These local re-

sources are not accessible from the system bus.

L02

The Leopard-2 Shared Memory (SM) boards each contain 16 Mbytes of error correct-

ing memory. The memory system uses a three stage pipeline consisting of DRAM ac-

cess, error checking and bus interface stages. The pipeline is reversible to allow both

burst reading and burst writing. By using a 64 bit wide array of static column DRAM

devices, the SM can keep up with peak burst transfer rates on the system bus. This is

important, as most memory transactions are transfers of cache lines or I/O blocks.

The Leop ard-2 Storage and Communications Processor (SCP) is a device processor

implemented with an NS32532 CPU. The SCP includes interfaces for Ethernet, SCSI

and four general purpose serial ports. It also contains a local 4 Mbyte error correcting

memory for local driver code and data, and for I/O buffers. This is supported by high

speed'block-move hardware for transferring I/O data between buffer memory and

shared memory.

The Leopard-2 Graphics Controller was designed as a high resolution colour frame

buffer device, providing 2 Mpixels of 8 bits per pixel. The design was adapted from the

Leopard-1 graphics controller [19]. The frame buffer is accessible in three areas of the

system bus address space, with each area providing a different pixel organization. The

first area allows the frame buffer to be used as eight bit-mapped layers, \,nith 32 pixels

from a layer accessible in one 32 bit transfer. The second area accesses the frame buffer

as an array of 8-bit-deep pixels, with four complete pixels accessible in a 32 bit transfer.

The third area allows the use of a collection of raster-op processors to transfer image

data between sections of the frame buffer. These flexible access modes allow different

types of display operations to be written easily and efficiently.

The Futurebus Monitor is a bus monitoring device used for system debugging and

tracing. It contains front panel indicators to reflect the state of bus signals, and connec-

tions to a logic analyzer or other tracing instrument for sampling bus states. By pro-

gramming the instrument with appropriate triggering and sample qualifrcation com-

mands, selective traces of particular bus activity of interest can be captured.

103

The Leopard-2 is designed to allow comparison of different coherence protocols oper-

ating under controlled conditions. The cache data path on each Leopard-2 GDP in-

cludes all the resources required for the various protocols, and the controller is a plug-in

module. Different controllers can be designed to implement different coherence proto-

cols, and a suite of benchmark programs can be used to measure relative performance.

The Futurebus Monitor can be used in combination with a trace capturing instrument

to determine the differences in bus behaviour that lead to performance differences.

3.5 The Leopard-z System Bus

The IEEE Futurebus design is an important part of the Leopard-2 as a platform for ex-

perimentation with cache coherence protocols. At the time of design, it was the only

bus available which provided a general set of mechanisms allowing all protocols of in-

terest to be implemented. Indeed, as demonstrated in Section 2.4, anumber of different

protocols can coexist within one Futurebus based system. The Futurebus design makes

it feasible to implement plug-in cache controllers for the GDP caches.

Futurebus is an asynchronous 32-bit backplane bus, designed speciflrcally to support

high performance multiprocessor systems. The Futurebus standard is composed of two

parts. The first part, IEEE Std. 896.1-1987 [31], speciflres the electrical signalling le-

vels, the mechanical aspects of board, connector and backplane design, and the basic

arbitration, data transfer and system maintenance protocols. The second part, P8962

[32], was drafted, but never passed as a standard (for numerous reasons, mostly non-

technical). .It expands on the first part by specifying a CSR architecture, cache coheren-

cy protocols, and error recovery mechanisms.

At the time of design of the Leopard-2 system, however, the Futurebus standard was

not completely stable, and there were no integrated protocol controller devices avail-

able from commercial or other sources, The FuturebusWorking Group was considering

104

proposals for extending the standard to include faster arbitration and data transfer

protocols. Furthermore, the Leopard-2 does not require all of the facilities specified in

the Futurebus standards. For these reasons, the Leopard-2 uses a system bus which

is a subset the Futurebus specifications as they stood at the time of design (end of 1988).

In this section, I will outline the differences between the systems bus protocols im-

plemented in the Leopard-2 and those speciflred in the Futurebus standards.

3.5.1 ArbitrationProtocol

The IEEE Futurebus standard specifies a relatively complex but flexible arbitration

protocol for allocating bus tenure amongst requesting potential masters. It provides

for two classes of modules involved in arbitration: fairness modules and priority mod-

ules. The fairness modules in a system are granted access to the bus in such a way that

none may be starved by any other. This is achieved by arranging for a fairness module

to inhibit further bus requests after a tenure, until all other fairness modules have had

pending requests serviced. Priority modules in a system are allocated strictly ordered

priority numbers (by the system designer or by confrguration software). A priority mod-

ule is granted bus access in preference to all fairness modules and all other priority

modules with lower priority.

The signalling used to implement the arbitration protocol uses distributed asyn-

chronous handshaking, based on the three phase synchronization scheme first pro-

posed for the TriMOSBus [49]. A normal arbitration cycle requires six phases to com-

plete, and an additional three phases when all fairness modules must release their bus

request inhibition. The fact that six or nine phases are required is a disadvantage of

this scheme. Firstly, on a fully loaded bus, the time taken for an arbitration cycle to

complete may be longer than a data transfer transaction. Secondly, when the bus is

idle, there is a signifrcant delay before the bus can be allocated to a requester. These

two points indicate that a significant proportion of the bus bandwidth may be wasted

105

whilst waiting for arbitration to complete. The IEEE Futurebus Working Group re-

cognized these problems, and considered revising the arbitration protocol to ameliorate

them.

In order to avoid the problems, a simplifred asynchronous parallel arbitration proto-

col was developed for use in the Leopard-2. This new protocol is described in detail in

AppendixB. The same three phase synchronization mechanism is used, but all ar-

bitration cycles take exactly three phases. Furthermore, none of the operations in-

volved in the protocol are delay operations, as required by the Futurebus protocol to

allow distributed priority resolution logic to settle. These changes, in combination,

make the Leopard-2 arbitration protocol potentially faster than that specified for the

IEEE Futurebus.

3.5.2 Data Transfer Protocol

The Futurebus standard protocol for data transfer includes facilities for use in a diverse

range of systems. However, any one system would probably not make use of all of the

facilities. This was the case in the Leopard-2, and so a subset of the facilities was used,

and only those signals required were actually implemented.

Single address and burst transactions

In a Futurebus system, a transaction may be either single-address or burst-address.

A single address transaction consists of an arbitrary number of read and write

transfers, in any order, to one single address. This allows implementation of such oper-

ations as read-modify-write and write-read-verify as single transactions with only one

address transfer. In the Leopard-2, these types ofoperation are not supported by the

NS32532 processors, and the cost of implementing the protocols is avoided. All transac-

tions are treated as burst transfers, with a single quadlet (four-byte word) access treated

106

as a very short burst of one transfer. An atomic read-modify-write operation is implem-

ented as an interlocked sequence of a read transaction followed by a write transaction.

Lane disable signals

The Futurebus specification allows a burst transaction to start at any address andpro-

ceed until the master is done or the slave replies with the end-of-data (ED) signal. The

specification does not place any restrictions on the lane disable signals during any of

the data transfers. So, for example, a master may perform a burst write where only one

byte per quadlet is accessed. Having to support such a transaction would greatly in-

crease the complexity of a memory controller, particularly when error checking and cor-

recting circuits are used. The Leopard-2 bus specifrcation states that a transaction may

start at any address, with any lanes disabled for the first transfer, but zubsequent

transfers may not have any lanes disabled.

End-of-data signal and cache line wrap

One of the facilities proposed in P896.2 to support cache systems is "cache line wrap-

around." The intention is that a cache may start reading a cache line at the quadlet

address requested by its processor, and so satisfy the processor's request immediately.

It would then read to the end of the line, and rwrap around to the beginning to read the

remainder. TWo mechanisms are included in the proposal to implement this. Explicit

wrap involves the memory slave returning ED at the end of the line, thus forcing the

cache master to start another transaction to fetch the remainder of the line. Implicit

wrap involves all modules agreeing that when a burst transaction reaches the end of

a line, ED is not returned; instead, the burst continues at the beginning of the line.

However, the proposal does not specify a way for determining which mechanism is to

be used. The Leopard-2 bus solves the problem by specifying that all burst transactions

rv\rrap at cache line (16 quadlet) boundaries. Hence the ED signal is not required, and

t07

is not implemented. If a master such as an I/O processor needs to transfer a block longer

than one cache line, it must break the transfer up into line sized packets. The overhead

of doing this is not great, and has the side effect of preventing the bus from being kept

by one master for long periods.

Tag bit

The Futurebus speciflrcation provides a 32-bit bus for address and data, and also in-

cludes an extra tag bit (TG) with parity (TP). The tag signal satisfies the same timing

and protocol constraints as the address and data bits, and its use is left unspecifred.

Since the Leopard-2 has no use for this tag bit, it is not implemented in the Leopard-2

bus.

Parity generation and checking

The 896.1 Futurebus speciflrcation includes four byte-parity signals for the address/

data lines and a parity bit for the command lines. It specifies that if parity checking

is activated, modules should generate and check for odd parity. If a parity error is de-

tected, an error status should be returned to the bus master. However, the 896.1 docu-

ment does not specify how parity checking should be activated, nor what error recovery

mechanisms apply when a parity error is detected. The P896.2 proposal includes such

mechanisms, but they are somewhat complex and expensive to include in a design. For

this reason, the Leopard-2 bus specification requires that parity is always generated

and checked. When an error is detected, an error status is returned to the master and

the transaction is aborted.

I nte rl ocke d tran sacti o n seq u e n ce s

Futurebus provides a mechanism to support interlocked sequences of transactions

using the LK command bit during the address transfer of a transaction. A bus master

108

may lock any number of slaves by performing successive transactions with the LK bit

set. All of the slaves must maintain the lock until a transaction is performed with LK

clear, or until the master relinquishes the bus. The scope of a lock on a module (that

is, what resources on the module are locked) is module dependent. A diffrculty arises

with this scheme when a master performs an interlocked sequence of transactions and

does not need to perform a subsequent unlocked transaction, and no other module

needs to use the bus. In this case, the master remains holder of the bus, and so the inter-

lock is not released. Hence the locked resources remain locked, even though the inter-

locked sequence is complete. To solve this problem, the Futurebus specification allows

the master to perform a special bus arbitration cycle, handing the bus back to itself in

order to release the locks. The cost of this is that the master must recognize when such

a cycle is required, and then initiate it.

The Leopard-2 speciflrcation greatly simplifies the interlock mechanism. As in Futu-

rebus, an interlocked sequence of transactions is signalled using the LK bit during the

address transfers. However, in the Leopard-2, the sequence must consist of a read

transaction followed by a write transaction at the same address and in the same bus

tenure. The interlock lasts for just those two transactions, and the scope of the interlock

is the quadlet addressed in the transfers. This scheme greatly simplifies the imple-

mentation of interlock management, particularly in copy-back caches, where the lock

must extend over a copy the quadlet in a dirty line present in a cache.

3.5.3 SystemMaintenance

The facilities for system maintenance specified in the Futurebus standard are, like the

data transfer protocol, also very general purpose. The Leopard-2 uses a simplifred ver-

sion of these facilities, described in this section.

109

Memory organizatíon

The Futurebus bus address space of 4 Gbytes is divided into two sections. One section

of 32 Mbytes is a structured space reserved for module Control and Status Registers

(see below), and the remainder is a linear unstmctured space for memory and other re-

sources. Modules may be configured to provide resources at any locations within the

memory area. The Leopard architecture adopts this scheme, but in addition reserves

the bottom 32 Mbytes of memory address space. Modules must not be configured to pro-

vide resources in this area. Instead, modules may use these addresses internally for

private resources such as local memory, local I/O devices, etc.

Bus initialization

The IEEE 896.1 specification provides two levels of bus reset, called bus initializøtion

and b¿s reset. They are both activated by a pulse on the bus signal, RE. A short pulse

signals initialization and a long pulse signals reset. Abus initialization is used to reset

the bus interface on each module to recover from bus protocol problems, and does not

reset the bus clients. Abus reset is used to recover from serious system-wide problems,

and resets the whole system to an initial state. The bus initialize and bus reset proto-

cols both involve alignment processes for the arbitration and data transfer buses.

These allow modules to reset all the bus signals to the initial state and to agree when

transactions may proceed.

The Leop ard-2 system uses a much simplified initialization protocol, providing only

a system-wide bus reset. A pulse of at least 10 ¡rs on the bus RE signal is used to activate

a system reset. On the leading edge of the pulse, all modules and bus interfaces must

return to the initial state and hold that state for as long as RE is asserted. When RE

is released, transactions may proceed.

110

Live insertion and withdrawal

In order to support fault-tolerant and high-availability systems, the Futurebus proto-

cols include an option for inserting and removingmodules while a system is active. Live

insertion requires that a module be powered and activatedby anumbilical cordplugged

into the module's front panel before being inserted into the backplane. While being in-

serted, it must not drive any bus signals. When the module is inserted, the umbilical

cable may be removed, and the module must then monitor the bus synchronization

lines (strobes and acknowledges) to wait for the beginning of arbitration and data

transfer transactions. When a new transaction starts, the newly added module may

join in. One of the disadvantages of this scheme is that there is a very short timing win-

dow when the new module must assert its synchronization signals on the bus in order

to join the transaction reliably. This timingwindow is specified as an absolute duration

(53 ns, based on backplane and transceiver delays), and as such is not "technolory inde-

pendent". The Leopard-2 system has no requirement for live insertion or withdrawal,

so the requirements specifred by the Futurebus standard to support them are not im-

plemented.

CSR space

The IEEE 896.1 standard and the P896.2 proposal together specify a Control and Sta-

tus Register (CSR) architecture for Futurebus systems. The architecture is based on

geographic addressing, where a module's slot number in a backplane determines its

CSR addresses in the bus address space. This scheme is extended to allow for addres-

sing modules on multiple buses linked through bus repeaters. Each module is allocated

a block of CSR address space, and a number of required registers are specified to pro-

vide system maintenance functions.

The CSR architecture used in the Leopard-2 is based on that specifred in the IEEE

Futurebus standards, but is signifrcantly simplifred. Support for multiple buses is not

111

implemented, nor are most of the specified system maintenance registers. Further-

more, addresses in a block transfer in CSR space are not incremented, thus only one

register can be addressed per transaction. The interested reader is referred to [6] for

further details of the Leopard-2 CSR organization.

Event notification

The IEEE Futurebus standard does not include any backplane signals specifrcally for

handling interrupts. It is expected that I/O interfaces in a high performance system

will be managed by an intelligent controller, and there will be no need for time critical

interr-upts. Instead, the Futurebus provides a mechanism for event notification be-

tween modules using the data transfer bus. A module which needs to be notiflred of ev-

ents includes 32 Event Registers at a defined location in its CSR space. Any write oper-

ation from the bus to one of these registers triggers an interrupt to the module. The

specifrcation allows the recording of data with an event notification, and allows queu-

ing of events with the bus busy (BS) signal being used to indicate a full queue.

The Leopard-2 has adopted a simplifred version of the Futurebus event notification

mechanism, described in detail in [6]. This mechanism is used by device controllers for

device interrupts which are not time-critical, and by the operating system to implement

message passing and task dispatching.

3.6 The Leopard-2 General Data Processof

The Leopatd-2 General Data Processors (L2GDPs) in a Leopard-2 system form the

main processing resource for applications and operating system tasks. Each L2GDP

includes an NS32532 CPU and NS32381 FPU, which together form the execution unit,

a large cache memory, local memory and diagnostic I/O resources, and an interface to

the Leopard-2 Futurebus backplane. Figure 3-4 shows the data paths that intercon-

nect these components. A detailed description of the design can be found in [8].

rr2

Futurebus
Interface

Control/
Status Regs

Programmable
Snooping

Cache

rlo
DiagnosticLocal

Memory
Interrupt

Controller

Processor
Block

Local Bus

Futurebus

Figure 3-4. The main functional units and data paths of the Leopard-2 General Data Processor
G2GDP).

The processor block contains the execution unit and the clock generator for the

L2GDP module. The processor's address, data and control buses connect directly to the

cache, allowing high speed transfers of data between the two. The cache is connected

to a local bus for access to local resources, and to the Futurebus interface for access to

shared system resources.

The local resources consist of an interrupt controller, a local memory block including

boot EPROM, static RAM and error correcting dynamic RAM, and a diagnostic I/O

interface consisting of two RS-232 serial ports. The local bus is also used for processor

access to registers in the L2GDP's CSR block.

The Futurebus interface is used by the cache to provide access to system shared mem-

ory and to other modules' CSR spaces. 'When the cache is not directly controlling the

113

bus as a master, the address and data paths between the cache and the Futurebus inter-

face are used to snoop on bus transactions, in order to implement a cache coherence pro-

tocol. This arrangement of buses (a local bus separate from the Futurebus interface

data paths) allows internal cache operations and local bus accesses to proceed concur-

rently with Futurebus snooping.

3.7 The L2GDP Programmable Cache Design

The L2GDP cache consists of separate data path and control sections. The cache data

paths contain the memory, buffers and comparators used to process addresses and data.

The cache controller is a plug-in module which controls operation of the data path. The

reason for making the controller a plug-in unit is to allow different control algorithms

to be used, implementing different cache coherence protocols. This is how the Leop-

ard-2 acts as a platform for experimentation with cache coherence protocols.

3.7.1 Cache Organization

The L2GDP cache is a 512 Kbyte 2-way set associative physical address cache. The

cache memory can be considered as a two dimensional artay of entries, as shown in

Figure 3-5. The two columns are called sections, and the 4096 rows are the sets. Each

entry in the cache consists of a line of data, atagindicating the physical address of the

line, and a set of attributes.

The NS32532 internal instruction and data cachesuse aline size of 16 bytes, whereas

the P896.2 specification requires that cache line attributes be associated with lines of

64 bytes. For this reason, the Leopard-2 external cache uses a line size of 64bytes, and

divides each line into four sectors of 16 bytes each, corresponding to the CPU internal

cache line size. The internal and external caches jointly satisfy the inclusion property

that if a 16 byte line is valid in the internal cache, then the 64 byte line of which it is

a sector is valid in the external cache.

7t4

(

Section 0 Section 1
Entry

Set 0

Set 1

Set 2

Set 3

Line
Attributes

Tag

Set 4095

Figure 3-5. Organization of the L2GDP cache memory,

The attributes storedin each entry are shown in Table 3-1. The attributes FB_valid,

FB_owned and FB_exclusive are defined by the Futurebus protocol. FB_valid indi-

cates that the line is valid in the cache, and may be read by the CPU. FB_owned indi-

cates that the line has been modified with respect to memory, and the cache must either

copy the line back to memory or pass ownership to another cache. FB_exclusive indi-

cates that the line is the only cached copy, and may be written to by the CPU without

notifying other caches.

For use by cache controllerSpare

Sector has been modifiedDirty_Sector<3:0>

Sector may be valid in CPU data cacheDvalid<3:0>

Sector may be valid in CPU instruction cacheIvalid<3:0>

Line is exclusiveFB exclusive

Line is ownedFB owned

Line is validFB valid

PurposeAttribute

Table 3-1. Leopard-2 cache entry attributes

115

31 18 17 65 2L0
Quadlet

Tn ¡l ovSet IndexTag

Figure 3-6. Cache address fields

The attributes lvalid<S:0> and Dvalid<3:0> are used to maintain the inclusion prop-

erty. The cache controller can infer from the CPU control signals when a sector is copied

into the CPU's internal instruction or data cache, and must set the appropriate attrib-

ute bits in the external cache entry. When the external cache entry is subsequently in-

validated, the corresponding internal cache entries must also be invalidated using the

CPU's invalidation control pins. The Ivalid and Dvalid attributes only indicate that the

sector may be valid in an internal cache, not that they definitely are valid. This is be-

cause the CPU's invalidation pins can only cause invalidation of a whole set, not an in-

dividual entry in the internal cache. Further more, sectors may be invalidated in the

internal cache by software CINV (cache invalidate) instructions, without the external

cache being notifred.

A CPU address is divided into a number of frelds for use within the cache, as shown

in Figure 3-6. The set index is used to select the set within the cache memory where

the addressed line may reside. If the line is stored in the cache, the tag freld of the cache

entry is set to the tag field of the address. The quadlet index freld is then used to select

the quadlet within the line.

3.7.2 Cache Data Paths

Ablock diagram of the L2GDP cache data paths is shown in Figure 3-7. The cache has

separate memories for the data, tag and attribute frelds of cache entries. Furthermore,

the tag and Futurebus coherence attributes of each entry are duplicated for the snoop, allow-

ing the snoop to accesses tags and attributes without interfering with the CPU. How-

tr6

CPU
Data

Cache Data Bus

CacheAddress Bus

CPU
Addr

Local Data Bus

Addr

Addr

Address
Compar-

ator
Snoop

Attributes

Processor

Attributes

Snoop

Tags

Processor

Tags

Cache
Data RAM

Buffered Futurebus Address/Data Bus

Snoop Address Bus

Address
Compar-

ator

Local Address Bus

Write
Buffer

Ê
F
-ì

Figure 3-7. Address and data paths within the L2GDP cache.

ever, both copies of a tag or attribute must be updated when a modification is made.

The cache also include a write buffer for queuing writes to memory, and for reordering

the copy-back and fetching of lines during replacement. When a line is replaced, the

controller may copy the line into the buffer whilst waiting for access to the Futurebus.

It may then fetch the new line from memory and satisfy the CPU request, before writing

the replaced line back to shared memory.

'When the CPU initiates a memory reference, the tag and set index flrelds are latched

into the CPU address latch, and the quadlet index bits are input to the cache controller.

The latched address may be used as the cache address, along with low order quadlet

index bits supplied by the cache controller.

When a Futurebus transaction is started, the tag and set index fields of the Future-

bus address are latched in the snoop address latch for use in the snooping function of

the cache. These too may be used as the cache address when the snoop address trans-

ceiver is enabled in the right direction.

The address comparator allows the cache controller to compare the CPU address with

the snoop address. The controller performs this comparison when the CPU requests

access to a line while a Futurebus transaction is in progress, or vice versa. If both refer

to the same line in the shared memory address space, then mutual exclusion over access

to the tags, attributes and data must be enforced, for the reasons discussed in Sec-

tion2.2.lL.

The data memory is a high speed static RAM array used to store the cached lines.

It is organized as two sections, each of 64K 32-bit quadlets. The cache controller selects

a section to access, and the quadlet within an entry is selected by the set index and

quadlet index fields of the cache address.

The CPIJ tag memory is an aftay of high speed tag-RAM devices (a RAIVI with a built-

in comparator). The array is organized as two sections, each with 4096 14-bit tags. The

118

set index field of the cache address is used to select a set of tags. When a cache lookup

is being done, the tag-RAM in each section compares the tag field of the cache address

with the selected stored tag and generates a hit status output bit. When a line is loaded

into the cache, the cache controller selects one section, and the tag fïeld is stored in the

selected entry. When a line is being replaced, the cache controller selects a section and

disables the tagpart of the CPU address latch. The tag-RAM then supplies the tagfield

to form the address of the line being replaced.

The CPU attribute memory is organized as two sections of 4096 16-bit attribute

words. The set index field of the cache address is used to select a set of attributes. The

attributes for each section are connected separately to the cache controller. The attrib-

ute memory also contains one bit per set for implementing a least recently used (LRU)

replacement policy. The cache controller can update this bit on each cache hit.

The snoop tag memory stores duplicates of the CPU tags. It uses the latched snoop

address instead of the cache address. 'Whenever the CPU tag memory is modiflred, the

same modiflrcation must be made to the snoop tag memory. This requires disabling the

snoop address latch output and enabling the snoop address transceiver to transmit the

cache address onto the snoop address bus.

The snoop attribute memory is a partial duplicate of the CPU attributes. OnIy the

FB_valid, FB_owned and FB_exclusive attributes are included, as they are the only

ones required by the snoop. This memory must be modified whenever the CPU attrib-

utes are mqdifred. Furthermore, if the snoop needs to modify these attributes, the CPU

copy must also be modifred. This requires disabling the CPU cache address latch output

and enabling the snoop address transceiver to transmit the snoop address onto the

cache address bus. This address path is also used when the snoop needs to access the

cache data memory when it is acting as a third party in a Futurebus transaction.

TI9

The write buffer is a 64-entry FIFO for queuing data to be written to memory. The

size of the buffer was chosen based on readily available FIFO devices that were sufficient for an en-

tire flushed cache line. Each entry contains a quadlet of data, the address of the data, and

a set of flag bits indicating end of a burst, valid bytes within the quadlet, whether the

address is a local or Futurebus address, and whether the cache is retaining a copy of

the written data. The cache controller generates the flag bits. When the write buffer

is used for queuing single-quadlet write-through operations to non-cachabledata, the ad-

dress and data are supplied by the CPIJ, the end of burst flagis set, and the cache-copy

flag is cleared. When the write buffer is used to reorder the copy-back of a line during

replacement, the address is derived from the set index and the tag value stored in the

CPU tag memory and the data is read from the cache data memory. Only those sectors

which are recorded as dirty (having the Dirty_Sector attribute set) need to be written

into the buffer. The end of burst flag is set by the cache controller at the end of a run

of dirty sectors within the line. The cache-copy flag is cleared

The copy-back address comparator stores the address of an owned cache line when

it has been copied into the write buffer for replacement. The cache snoop then uses this

comparator to check each Futurebus transaction for a hit with the address of the re-

placed line. If a hit occurs, the transaction may not proceed and must be retried later.

This is an example of the use of the deadlock potent busy response referred to in

Rule (21) of the P896.2 coherence rules set, and ensures that coherency is maintained

with the line in the write buffer. Because the comparator can only store one address,

only one owned line can be queued in the write buffer. However, multiple write-

throughs may be queued, and these may coexist with a replaced line in the write buffer.

Note that the lack of snooping on buffered uncachable data does not lead to con-

sistency problems. Suppose a processorA issues a write to an uncachable location, then

synchronizes with a processorB, followed byB reading the uncachable location. If the

write data is still buffered when the synchronization operation occurs, the buffer in A

120

is flushed before the synchronization operation completes. The flushing is forced as a

result of the read operation that is part of the synchronization operation in A.

The address buffer and data transceiver between the cache buses and the local bus

are used for cachable memory accesses to the local memory and for I/O accesses to I/o
modules on the local bus. The write buffer outputs also connect to the local bus. The

address buffer and data transceiver between the local bus and buffered Futurebus are

used for accesses to Futurebus shared memory and Futurebus CSR space. These ac-

cesses from the CPU or cache are routed via the local bus. In the case of the snoop par-

ticipating as a third party in a Futurebus transaction, only the data bus is used.

3.8 Cache Operation

This section firstly outlines the types of requests the CPU on the Leopard-2 General

Data Processor makes of the external cache. It then describes the detailed operations

that must be performed by the cache data path in response to requests involving cach-

able data, and to Futurebus transactions observed by the snoop. These operations are

managed by the cache controller, which must be implemented as a set of interacting

sub-controllers: a CPU request controller, a snoop controller and a write buffer con-

troller. Note that in the actual implementation, many of the operations described here

may be performed concurrently. They are presented here sequentially for clarity.

3.8.1 CPU Requirements of the External Cache

The CPU accesses the external cache to fetch instructions, to read and write data, and

to fetch and update virtual memory page table entries. From the point of view of the

external cache, these can all be treated simply as memory references, without having

to distinguish between the different kinds of data. The CPU also accesses non-cachable

memory data and I/O device registers using the same memory bus as cachable data, so

Lzt

the external cache must deal with these, transparently accessingthe memoryor I/O de-

vices as required.

The operations requested by the CPU that must be handled by the external cache are:

. cachable read

. cachable write

' non-cachable read (for non-cachable data or I/o register)

. non-cachable write (for non-cachable data or I/O register)

. interlocked read-modify-write transaction

Reads may be of single words or bursts of multiple words. Writes are always to single

words (or parts of single words), since the CPU internal data cache is write-through.
The external cache can treat all accesses uniformly as bursts, taking a single word read

to be a very short burst of only one word. The NS32532 processor uses bursts to fetch

up to a sector of data at a time to fill its internal instruction buffer or an internal cache

line. Bursts may start at any address, and in the case of instruction fetches, may only

continue as far as the end of the sector (aligned 16 byte block). Bursts for data fetches,

however, may wrap back to the beginning of the sector and continue to the word preced-

ing the first fetched in the sector. This allows the CPU to fetch a word immediately to

satisfy an internal cache miss, then frll the rest of the internal cache line while the exe-

cution unit is processing that word.

The CPU performs an interlocked transaction by first completing any outstanding

bus transactions, then asserting the ILO signal. Next, it performs the read followed.

by the write with no intervening transactions. When they are complete, it negates the

ILO signal and resumes normal bus operation. The external cache treats data operated

on using interlocked transactions as cachable data, and relies on the cache coherence

protocol and the system bus protocols to serialize access. If it has a hit, it treats it as

a write hit, acquiring the Futurebus first, then performing the read locally followed by

I22

any transaction required for the write. If it has a miss, it acquires the Futurebus,
fetches the line as a write miss, then performs the read locally followed by any transac-
tion required for the write.

One problem that arises in a multiprocessor with multi-level caches is that cache co-

herence must also be maintained between levels of caches. In the L2GDp, the data in
the internal cache must be kept consistent with that in the external cache, and hence

with shared memory. Since the NS32532 instruction cache is read-only and the data
cache is write-through, this reduces to ensuring that if an external cache line is invali-
dated or updated by the snoop, any portion of that line which is cached internally is also

invalidated' The external cache maintains a set of attributes for each line to indicate

which of the internal caches may have a copy of each sector. The CPU provides a set

of pins to allow the external cache to selectively invalidate internal cache data. It can

invalidate the entire instruction cache or data cache, or just a set of either cache. The

external attribute bits cannot accurately determine whether a sector is internally
cached, for two reasons. Firstly, the data cache is 2-way set associative, but the facility
for externally forcing invalidation only allows for an entire set to be invalidated. Thus

the external cache attributes for a sector may indicate that it is internally valid, even

after it has been invalidated as a side effect of being in the same set as some other sector

which was invalidated. Furthermore, the CpU may execute a CINV (cache invalidate)
instruction to invalidate an address in an internal cache. The external cache does not

include means of detecting this.

3.8.2 CPU Cachable Read and Write Requests

'When the CPU initiates a cachable read or write request, it provides the starting ad-

dress on its address bus. For a read, it expects the data to be provided on its data bus

after two clock cycles. For a write, the CPU provides the data at the same time as the

address, and expects it to be accepted after two clock cycles. The external cache delays

I23

the CPU until it has data available for a read or until it has accepted the data for a write.

The operations performed by the externar cache are as follows.

Cache lookup

1. The CPU address is saved in the CpU address latch.

2. Arbitration is performed with the snoop controller to gain mutual exclusion to

the addressed line of the shared memory address space.

3' The set-index field of the cache address is used to look up the CPU tag and

attribute memories in the addressed set. The tag flreld of the cache address is

compared with the fetched tags in each section of the tag memory. Concur-

rently, the cache address is used to access the line in the data memory, in the

optimistic expectation of a hit.

4. If one of the tag memories signals a hit, and the corresponding attribute

memory has the FB-valid bit set, a hit in the external cache is indicated, and

the corresponding section is selected. The actions for handling a read hit and

a write hit are described below.

5' If neither tag memory signals a hit, or if one does but the corresponding at-

tribute memory has the FB-valid bit clear, a miss in the external cache is in-

dicated. If the coherence protocol requires a memory read transaction to fetch

the line, a valid line in the cache may need to be replaced. The coherence pro-

tocol may also require a memory write transaction. The actions for handling

these cases are described below.

Handling a read hit

1. The selected section of the data memory is enabled onto the CPU/cache data

bus and the data from the selected entry is accepted by the CPU. The cache

124

allows the CPIJ to continue. The CPU provides successive addresses to the

cache data memory, accepting each word as it is placed on the CPU data bus

by the data memory.

2. When the CPU has accepted the last word in the burst, it terminates the read

request.

3. The cache uses bits 4 and 5 of the CPU address to determine the sector

number, and sets the Ivalid or Dvalid attribute bit for the line, depending on

whether the read request is an instmction or data fetch. The LRU attribute

bit is also set or cleared, depending on which section is selected.

4. The updated attributes are written back to the selected section of the CPU at-

tribute memory.

5. The cache releases the mutual exclusion lock on the line. The cache operation

is then complete.

Handling a write hit

1. If the coherence protocol requires a bus transaction and the addressed line is

in the shared memory address space, the following occurs:

1.1. If the cache has Futurebus tenure, it skips to step 1.6. (The cache has

Futurebus tenure if the hit follows immediately from a write miss and

tenure was held in order to perform this transaction.)

L.2. Otherwise, the cache must release the mutual exclusion lock on the

line requested by the CPU, in order to avoid deadlocking with some

other cache which may be waiting to access that line.

1.3. The cache arbitrates for access to the Futurebus.

r25

1.4. The mutual exclusion lock for the line is re-acquired. No arbitration is

necessary, as the cache is master of the Futurebus, thus inhibiting any

action by the snoop.

1.5. The FB_valid attribute is re-read and checked to see if the cache still

has a hit for the line. (The line may have been invalidated by the

snoop since the attributes were previously checked.) If the line is in-

valid, the write hit is turned into a write miss, and operation proceeds

as described below (handing a miss). Otherwise operation continues

with step 1.6.

1.6. The write buffer is flushed, as described in Section 3.8.5, but without

releasing tenure of the Futurebus. (The write buffer must be flushed

in order to maintain sequential consistency of memory operations.)

1.7. The address buffers are enabled to pass the address from the cache ad-

dress bus via the local address bus to the buffered Futurebus address

bus, and the data buffers are enabled to pass data from the CPU/cache

data bus via the local data bus to the buffered Futurebus data bus.

1.8. The required Futurebus write transaction is initiated, writing from the

selected section of the cache data memory. The type of Futurebus

transaction used depends on the particular cache coherence protocol

being implemented.

1.9. The address and data buffers are disabled and the Futurebus released.

2. If the coherence protocol requires a bus transaction and the addressed line is

in the local memory address space, the following occurs:

2.1. The write buffer is flushed, as described in Section 3.8.5. (The write

buffer must be flushed in order to maintain sequential consistency of

memory operations.)

126

2.2. T}re address buffers are enabled to pass the address from the cache ad-

dress bus to the local address bus, and the data buffers are enabled to

pass data from the CPU/cache data bus to the local data bus.

2.3. Alocal bus write transaction is initiated, writing from the selected sec-

tion of the cache data memory.

2.4. Ttre address and data buffers are disabled.

3. The cache uses bits 4 and 5 of the CPU address to determine the sector

number, and, if necessary sets the Dirty_Sector attribute bit for the line. The

Futurebus attribute values are modiflred if required by the cache coherence

protocol. The LRU attribute bit is also set or cleared, depending on which

section is selected.

4. The updated attributes are written back to the selected section of the CPU at-

tribute memory.

5. If the Futurebus attribute values are modiflred, the new values are written to

the snoop attribute memory as follows:

5.1. Arbitration is performed with the snoop controller to gain access to the

snoop attribute memory.

5.2. The address buffer is enabled to pass the address from the cache ad-

dress bus to the snoop address bus.

5.3. The new attribute values are written into the snoop attribute memory.

5.4. The address buffer between the cache and snoop address buses is dis-

abled, and access to the snoop attribute memory is relinquished.

6. The write enable signal of the selected section of the data memory is enabled,

causing it to write the data from the CPU/cache data bus.

r27

7. The cache allows the CPU to continue, and releases the mutual exclusion lock

on the line. The cache operation is then complete.

Handling a miss

1. The LRU and FB valid attribute bits are used to select the least recently

used or vacant section ofthe addressed set.

2. If a read transaction is required and any of the Dirty Sector attribute bits of

the selected entry are set, the line in the entry must be replaced. To do this,

dirty sectors must be written back to shared memory. The sectors are first co-

pied into the write buffer as follows:

2.1. The cache must release the mutual exclusion lock on the line requested

by the CPU, in order to avoid deadlocking with some other cache which

may be waiting to access that line.

2.2. If the write buffer is still busy with a previous copy-back or there is in-

sufficient room in the write buffer for the replaced line, the cache must

wait until the previous copy-back has been flushed to memory (freeing

the copy-back address comparator to hold the address of the newly re-

placed line) and there is suffrcient room.

2.3. The tag field output of the CPU address latch is disabled, and the tag

from the selected section of the tag memory is enabled onto the cache

address bus in its place. This, together with the set index from the

CPU address latch, forms the shared memory address of the line to be

replaced.

2.4. Tl¡e cache must acquire a mutual exclusion lock on the replaced line.

This is necessary to avoid a race between the snoop and the cache.

Without the lock, if the snoop determines that it must intervene on a

r28

transaction to supply the replaced line, by the time the snoop is

granted access to the cache bus the line may no longer be in the cache.

2.5. The FB_valid and Dirty Sector attributes of the replaced line are re-

read and checked to see if the line still needs to be copied back. (The

attributes may have been changed by the snoop since they were previ-

ously checked.) If copy-back is no longer needed, operation continues

from step 2.8 below

2.6. The address of the replaced line is written into the copy-back address

comparator.

2.1 . Each dirty sector is then read from the selected section of the data

memory, word at a time. For each word, a write buffer entry is pushed

into the write buffer FIFO. An entry consists of the word of data, its

address, four byte-enable bits (all set in this case) , a flag to indicate

whether the address refers to a local memory or a shared memory lo-

cation, an end-of-block flag, and a cleared cache-copy flag. The end-of-

block flag is set for the last word in a contiguous run of addresses. Ad-

jacent dirty sectors are merged into a block, whereas non-dirty sectors

are not written back.

2.8. The mutual exclusion lock on the replaced line is released.

2.9. The tag output from the tag memory is disabled, and the tag field from

the CPU address latch is re-enabled, forming the address of the re-

quested line on the cache address bus again.

3. If a read bus transaction is required and the line to be read is a local memory

line, it is fetched from local memory as follows:

3.1. The write buffer is flushed, as described in Section 3.8.5. If servicing

this cache miss involved buffering a replaced line (described in step 2

129

above), all write buffer entries up to but not including the replaced line

are flushed, otherwise the entire write buffer is flushed. (The write

buffer must be flushed in order to maintain sequential consistency of

memory operations.)

3.2. The address buffer is enabled to pass the address from the cache ad-

dress bus to the local address bus, and the data buffer is enabled to

pass data from the local data bus to the CPU/cache data bus.

3.3. A local bus burst read transaction is initiated, fetching the line and

writing it into the selected section of the cache data memory.

3.4. The address and data buffers are disabled.

3.5. The FB_valid and FB_exclusive attributes of the line are set, and the

FB_owned and Dirty Sector attributes are cleared.

3.6. The tag freld of the cache address bus is written into the selected sec-

tion of the cache tag memory.

3.7. Arbitration is performed with the snoop controller to gain access to the

snoop tag and attribute memories.

3.8. The address buffer is enabled to pass the address from the cache ad-

dress bus to the snoop address bus.

3.9. The FB_valid and FB_exclusive attributes of the line are set, and the

FB_owned attribute is cleared.

3.10. The tag freld of the address is written into the snoop tag memory.

3.11. The address buffer between the cache and snoop address buses is dis-

abled, and access to the snoop tag and attribute memories is relin-

quished.

3.12. The CPU request is then completed as described above for a hit.

130

4. If a read bus transaction is required and the line to be read is a shared mem-

ory line, it is fetched from shared memory as follows:

4.1. If the cache has Futurebus tenure, it skips to step 4.5. (The cache has

Futurebus tenure if the miss follows immediately from a write hit at a

shared line, and the line was invalidated by the snoop while the cache

was acquiring tenure.)

4.2. Otherwise, the cache must release the mutual exclusion lock on the

line requested by the CPU, in order to avoid deadlocking with some

other cache which may be waiting to access that line.

4.3. The cache arbitrates for access to the Futurebus.

4.4. The mutual exclusion lock for the line is re-acquired. No arbitration is

necessary as the cache is master of the Futurebus, thus inhibiting any

action by the snoop.

4.5. The write buffer is flushed, as described in Section 3.8.5. If servicing

this cache miss involved buffering a replaced line (described in step 2

above), all write buffer entries up to but not including the replaced line

are flushed, otherwise the entire write buffer is flushed. (The write

buffer must be flushed in order to maintain sequential consistency of

memory operations.) The Futurebus tenure is not released after flush-

ing the write buffer.

4.6. The address buffers are enabled to pass the address from the cache ad-

dress bus via the local address bus to the buffered Futurebus address

bus, and the data buffers are enabled to pass data from the buffered

Futurebus data bus via the local data bus to the CPU/cache data bus.

4.7. AFuturebus read transaction is initiated, fetching the line and writing

it into the selected section of the cache data memory. The type of Futu-

t3r

rebus transaction used depends on the particular cache coherence pro-

tocol being implemented.

4.8. The address and data buffers are disabled.

4.9. If the coherence protocol does not require a write bus transaction to fol-

low the read transaction, or if the write buffer is empty, the Futurebus

tenure is released.

4.10. The FB_valid, FB_exclusive and FB_owned attributes of the line are

set according to the cache coherence protocol being implemented, and

the Dirty Sector attributes are cleared.

The tag field of the cache address bus is written into the selected sec-

tion of the cache tag memory.

The address buffer is enabled to pass the address from the cache ad-

dress bus to the snoop address bus.

The FB_valid, FB_exclusive and FB owned attributes of the line are

set in the snoop attribute memory according to the cache coherence

protocol being implemented.

The tag freld of the address is written into the snoop tag memory.

The address buffer between the cache and snoop address buses is dis-

abled.

The CPU request is then completed as described above for a hit.

4.LL,

4.t2.

4.L3.

4.L4.

4.t5.

4.L6.

3.8.3 CPU Flush

No provision is made in the L2GDP cache for allowing the CPU to specify that a cache

Iine be flushed. Flushing only occurs as part of line replacement on a read or write miss.

The reason an explicit flush operation is not provided is that a cache coherence protocol

L32

automatically handles the cases where a flush would otherwise be required, such as

process migration and I/O operations. In the case of process migration, the process'con-

text is stored in shared physical memory. Reference to it from a new processor involves

a cache miss on that processor, and the cache coherence protocol ensures that any modi-

fied part of the context is supplied by the old processor using intervention or reflection.

In the case of I/O operations, the problem to consider is an I/O buffer written to by a

processor and subsequently read by an I/O controller. Again, the cache coherence proto-

col ensures that, when the I/O controller performs a read transaction to shared memory,

the cache supplies any parts of the buffer not yet written back.

3.8.4 Snoop Operation

When a transaction occurs on the Futurebus, the snoop must examine its copy of the

cache tags and attributes to determine if it should be involved in the transaction. It

must follow the Futurebus cache coherence rules described in Section 2.4.2, customized

for whichever cache coherence protocol is being implemented. The operations per-

formed by the snoop are as follows.

Cache lookup

1. The Futurebus address is saved in the snoop address latch.

2. Arbitration is performed with the CPU request controller to gain mutual ex-

clusion to the addressed line of the shared memory address space.

3. A check is made for a write buffer hit, as described below. If a write buffer

miss is indicated, operation proceeds.

4. The set-index freld of the snoop address is used to look up the snoop tag and

attribute memories in the addressed set. The tag freld of the snoop address is

compared with the fetched tags in each section of the tag memory.

\33

5. If one of the tag memories signals a hit, and the corresponding attribute

memory has the FB_valid bit set, a hit in the cache is indicated, and the cor-

responding section is selected. The actions for handling a hit for different

kinds of Futurebus transactions are described below.

6. If neither tag memory signals a hit, or if one does but the corresponding at-

tribute memory has the FB_valid bit clear, a miss in the cache is indicated.

In this case, the snoop controller relinquishes mutual exclusion on the ad-

dressed line, and remains unselected for the remainder of the transaction.

Hit requiring no action

The snoop relinquishes the mutual exclusion lock on the line and remains unselected

for the course of the transaction.

Hit requiring simple attribute modification

If the only action required of the snoop as a result of the transaction is that it relinquish

ownership or exclusiveness, it must modify the attributes in both attribute memories

at the end of the transaction as follows:

1. The new attributes are written back to the selected section of the snoop at-

tribute memory.

2. Arbitration is performed with the CPU request controller to gain access to the

CPU attribute memory.

3. The address buffer is enabled to pass the address from the snoop address bus

to the cache address bus.

4. The attributes are read from the selected section of the CPU attribute mem-

ory, using the set-index freld of the address to access the required set.

5. The attribute values are modified using the new Futurebus attributes, and

are written back to the selected section of the CPU attribute memory.

134

6. The address buffer between the snoop and cache address buses'is disabled,

access to the CPU attribute memory is relinquished, and the mutual exclu-

sion lock on the line is relinquished.

H it requ i ri n g i nvali d atio n

If the action required of the snoop is that it invalidate the line in the cache, then at the

end of the transaction it must modify the attributes in both attribute memories and in-

validate any sectors of the line cached by the CPU. It does this as follows:

1. The Futurebus attributes are cleared and written back to the selected section

of the snoop attribute memory.

2. Arbitration is performed with the CPU request controller to gain access to the

CPU attribute memory.

3. The address buffer is enabled to pass the address from the snoop address bus

to the cache address bus.

4. The attributes are read from the selected section of the CPU attribute mem-

ory, using the set-index field of the address to access the required set.

5. For each sector in the line for which the Ivalid or Dvalid attribute bit is set, a

cache invalidation command is applied to the CPU cache invalidation bus.

6. The attribute values are all cleared, and are written back to the selected sec-

tion of the CPU attribute memory.

7. The address buffer between the snoop and cache address buses is disabled,

access to the CPU attribute memory is relinquished, and the mutual exclu-

sion lock on the line is relinquished.

Hit requiring interuention or reflection

If the snoop determines that it must act as a third party in the Futurebus transaction

by intervening or reflecting, it does so as follows:

135

1. Arbitration is performed with the CPU request controller to gain access to the

cache address and data buses.

2. The address buffer is enabled to pass the address from the snoop address bus

to the cache address bus.

3. The data buffers are enabled to pass data from the cache data bus, via the

local data bus, to the buffered Futurebus data bus.

4. For each quadlet of data to be supplied by the cache, the snoop controller

supplies the quadlet offset address within the line, and the set-index is sup-

plied from the snoop address latch. This combined address is used to access

the data memory, and the data supplied to the Futurebus.

5. At the end of the transaction, the data buffers are disabled.

6. If any Futurebus attributes. for the line need to be modified, the snoop per-

forms the appropriate actions as described above.

7. The address buffer between the snoop and cache address buses is disabled,

access to the cache buses is relinquished, and the mutual exclusion lock on

the line is relinquished.

Hit involving broadcast data

If the Futurebus transaction is a broadcast, and the cache chooses or is compelled to

accept the data, it does so as follows:

1. Arbitration is performed with the CPU request controller to gain access to the

cache address and data buses.

2. The address buffer is enabled to pass the address from the snoop address bus

to the cache address bus.

3. The data buffers are enabled to pass data to the cache data bus, via the local

data bus, from the buffered Futurebus data bus.

L36

4. For each quadlet of data broadcast, the snoop controller supplies the quadlet

offset address within the line, and the set-index is supplied from the snoop

address latch. This combined address is used by the data memory, and the

data is supplied from the Futurebus.

5. At the end of the transaction, the data buffers are disabled.

6. If any Futurebus attributes for the line need to be modified, the snoop per-

forms the appropriate actions as described above.

7. The address buffer between the snoop and cache address buses is disabled,

access to the cache buses is relinquished, and the mutual exclusion lock on

the line is relinquished.

Hit in the write buffer

When a Futurebus transaction occurs, there may be a line in the write buffer waiting

to be written back to shared memory. For the line to be in the write buffer, it must have

been owned by the cache. Hence, in order for coherence to be maintained, the Future-

bus transaction must be aborted and retried after the line is written back. This is

achieveð by having the cache return a "busy" status during the address transfer part

of the transaction. The way in which the snoop checks for and handles a hit in the write

buffer is as follows:

1. If there is a replaced line waiting in the write buffer to be copied back to

shared memory, the copyback address comparator compares the latched Futu-

rebus address with the address of the replaced line. The Futurebus address

stored in the snoop address latch is compared with the address stored in the

copy back address comparator.

2. If the addresses refer to different lines in the shared memory address space, a

write buffer miss is indicated, and the Futurebus transaction may proceed.

r37

3. If the addresses refer to the same line, a write buffer hit is indicated, and the

snoop may not proceed with the Futurebus transaction. Instead, it asserts

the BS status signal, causing the transaction master to abort the transaction,

relinquish its bus tenure, and retry later. The snoop controller releases the

mutual exclusion lock on the line. Since Futurebus arbitration is fair, the write

buffer has an opportunity to flush its FIFO, writing the line back to shared

memory, before the transaction master retries the transaction.

3.8.5 Asynchronous Writes from the Write Buffer

When the write buffer FIFO is not empty, the write buffer controller as¡rnchronously

initiates bus transactions to complete the buffered writes. In addition, it may be forced

to flush the write buffer in order to maintain the necessary ordering of memory reads

and writes required for sequential consistency. Data buffered in the FIFO may consist

of a mix of local memory and shared memory data. There may be a number of non-cach-

able write-through entries, and at most one write-back entry. The write-back entry is

distingrrished from the write-through entries by being one or more bursts of data,

rather than a single quadlet. The way in which the write buffer controller performs the

write operations is as follows

1. If the entry at the head of the FIFO queue has the flag indicating local mem-

ory data set, the write buffer controller performs a local memory write as fol-

lows:

1.1. The write buffer controller arbitrates with the CPU request controller

for access to the local bus.

1.2. If the end of burst flag for the entry is clear, the entry is part of a line

being written back to local memory, so the address stored in the copy-

back address comparator is cleared.

138

1.3. A local bus write transaction is started, with addresses and data being

supplied from successive entries from the FIFO.

1.4. When an entry with the end of burst flag set is written, the local bus

transaction is terminated.

1.5. If the entry now at the head of the FIFO queue is another local memory

write, operation repeats from step 1.2.

1.6. Access to the local bus is relinquished.

2. If the entry at the head of the FIFO queue has the flag indicating local mem-

ory data cleared, the write buffer controller writes to shared memory on the

Futurebus as follows:

2.1. The write buffer controller arbitrates with the CPU request controller

for access to the local bus, and, if necessary, arbitrates for access to the

Futurebus.

2.2. If the end of burst flag for the entry is clear, the entry is part of a line

being written back to shared memory so the address stored in the copy-

back address comparator is cleared.

2.3. AFuturebus write transaction is started, with the initial address being

supplied from the head entry of the FIFO, and data being supplied

from the head and successive entries.

2.4. When an entry with the end of burst flag set is written, the Futurebus

transaction is terminated.

2.5. If the entry now at the head of the FIFO queue is another shared mem-

ory write, operation repeats from step 2.2.

2.6. Access to the local bus and tenure of the Futurebus are relinquished, if

not required for subsequent bus transactions.

t39

3.9 Summary

This chapter has described the general architectural framework used for the Leopard

Multiprocessors, and presented details of organization and operation of two experi-

mental multiprocessor systems constructed within this framework. A number of sig-

nificant results flowed from the work on these systems. Firstly, work on the design of

the Leopard-l L-Bus protocols clariflred the bus protocol mechanisms needed to support

a number of cache coherence protocols with interoperability between them. The work

led to contributions to the development of similar mechanisms for the IEEE P896 Futu-

rebus, both in the basic data transfer protocol specified in IEEE Std. 896.1-1987 and

in the cache coherence mechanisms defined in the P896.2 draft specification. This in

turn led to the development of the Leopard-2 cache design, which can implement a va-

riety of cache coherence protocols. Secondly, the Leopard-2 system described here has

been constructed, and is ready for use as a platform for experiments to measure and

evaluate cache coherence protocols, and as a shared memory multiprocessor for evalu-

ating concurrent software on such architectures.

t40

Chapter 4
A Programmable Cache Controller for
the Leopard-2

4.1 lntroduction

The Leopard-2 GDP cache datapath described in Chapter 3 contains the resources re-

quired to implement cache coherence protocols such as those described in Chapter 2.

One way to vary the coherence protocol implemented by the cache would be to plug in

different hardwired cache controller modules, each designed for a specific protocol.

However, since the different protocols can be expressed as a set of choices to be made

within the options allowed by the P896.2 rules, it is feasible to design a programmable

controller that can be reconfigured to implement different protocols.

This chapter outlines the steps needed to design a programmable cache controller

that can implement all of the protocols described in Chapter 2, with the exception of the

published Firefly protocol described in Section 2.2.9. The published Firefly protocol

cannot be directly implemented, as the Futurebus specification fixes the cache line size

at 64 bytes. For this reason, and the reasons discussed at the end of Section 2.2.9, t};.e

published Firefly protocol is not included in the following discussion. The original Fire-

fly protocol, described in 2.2.8,can be implemented by the reconflrgurable cache con-

troller.

The outline of the programmable cache controller is followed by a description of a si-

mulation model of the Leopard-2 system developed using the hardware description lan-

t4L

guage VHDL [14, 33]. The model includes a detailed specification of the behaviour of

the programmable cache controller. Through simulation of the model, verification of

correct operation is performed.

4.2 Cache Controller Gonfiguration Parameters

The cache controller for the Leopard-2 GDP cache is parameterized to implement each

of the cache coherence strategies under consideration. This is done by including a con-

flrguration register in the controller, writable by system software. The register contains

parameters that indicate which choice should be taken for each of the options described

in Section 2.4.5. Table 4-1 shows the register parameters, the corresponding P896.2

rules and the allowed values.

t42

16If yes, snoop becomes selected when it
gets a hit on bus broadcast;
If no, snoop remains unselected

yes/nosel on broadcast hit

t2 &9If yes, snoop invalidates after becoming
a third party on bus read-shared;
If no, snoop does not invalidate

yes/noinval_if_thirdjarty

t3If yes, owner snoop reflects on bus
read-shared;
If no, owner snoop intervenes

yes/noretlect on read shared

Transaction performed by cache on
write miss

read-invalidate/
read-shared*

tr write miss

5If yes, cache checks Cache-Status on
write hit at shared line to determine
whether to acquires exclusive attribute;
If no, cache always acquires exclusive
attribute

yes/noexcl_depends_on_CS_-
on write hit shared

5&11If yes, cache acquires owned attribute
on write hit at not-exclusive line;
If no, cache does not acquire owned at-
tribute

yes/noowned on write hit shared

Transaction performed by cache on
write hit at shared line

invalidate/
read-invalidate/
write-invalidate/
write-update-dirty/
write-update-clean

tr write hit shared

5If yes, cache checks Cache-Status on
bus read-shared to determine whether to
acquire exclusive attribute;
Ifno, cache does not acquire exclusive
attribute

yes/noexcl_depends_on_CS_-
on read shared

P896.2
rule

Parameter meaningValuesParameter mnemonic

* ifCache-Status asserted during the read-shared transaction, cache follows it with the transaction specified by

tr write hit shared.

Table 4-1. Confrguration parameters for a reconfigurable cache controller.

Using this parameterization of the cache controller, the coherence protocols are im-

plemented with different sets of parameter values, as shown in Table 4-2. T}ne binary

encoded values of these parameters are used in the flrnite state machines used to imple-

ment the cache controller, to determine the actions taken at choice points in the control

algorithms described in Section 3.8.

t43

yesyesnononononosel on broadcast hit

nonononoyesnonoinvaljf_third J)arly

yesnononoyesyesyesreflect on read shared

read-
shared

read-
shared

read-
inval

read-
inval

read-
inval

read-
inval

read-
inval

tr write miss

yesyesnono11ononoexcl_depends_on_CS_-
on write hit shared

noyesyesyesyesyesnoowned on write hit shared

write-up-
date-
clean

write-
update-
dirty

invalinvalread-
inval

invalwrite-
inval

tr write hit shared

yesyesyesnonoyesnoexcl_depends_on_CS_-
on read shared

Original
Firefly

DragonMBusBerkeleySynapseIllinoisWrite-
once

Parameter

Table 4-2. Confrguration parameter values to implement different cache coherence protocols.

Aprogrammable cache controller has a number of important advantages over sepa-

rate hardwired controllers. The most obvious advantage is the reduced cost and ease

of operation, making experiments with different cache coherence protocols simpler and

faster to perform. However, the fact that the controller can be reconfigured dynamically

is important in a production system running a variety of different workloads. Early

evidence for this can be seen in cache controllers for small multiprocessor workstations

and servers, which allow a choice of copy-back, write-through or no caching, selectable

for each page of a virtual address space. (The cache controller in the Intel Pentium@

processor [34] is an example.) The extension to this scheme, providedby a dynamically

reconfigurable cache controller as described above, is to select the most appropriate

cache coherence protocol for each address space, depending on the memory referencing

behaviour of the processes using the address space. A configuration vector may be asso-

ciated with each address space, and when a process using the address space is sche-

duled onto a processor, the configuration vector is loaded into the processor's cache con-

troller.

t44

4.3 A VHDL Model of the Programmable Cache Controller

There are a number of important motivations for developing a model of a complex hard-

ware system. Several are discussed by the author in [14] (pp. 2-3), the most relevant

being to specify the requirements and functionality of the system completely and un-

ambiguously, and to allow testing and verification of the design through simulation.

(Note that the hardware design community uses the term "verification" to include test-

ing. The term does not necessarily imply use of formal mathematical methods to prove

that the model meets a specification.) This section presents a model of the Leopard-2

Multiprocessor developed by the author using the standard hardware description lan-

guage VHDL. The model was developed to specify the behaviour of a programmable

cache controller for the Leopard-2 GDP using the cache configuration parameters de-

scribed in Section 4.2, and to allow simulation experiments to be performed to verify

the designs of the Leopard-2 GDP cache and cache controller. The approach taken to

veriflrcation was to embed the cache model in a larger model of the entire Leopard-2 sys-

tem, and to include instrumentation within the larger model to monitor coherence

states of memory lines. The instrumentation checks to ensure that coherence is main-

tained for each line.

4.3.1 The Leopard-2 System Model

At the top level of abstraction, the hardware model of the Leopard-2 Multiprocessor sys-

tem, illustrated in Figure 4-1, comprises three GDP processor components and a

shared memory component interconnected with a Futurebus backplane bus. Since the

focus of the hardware model is on the caches and cache coherence, the I/O processor and

controller components are not included. The number of GDPs was chosen to allow si-

mulation of complex interactions between multiple processors sharing a line. An exam-

ple scenario involves one cache suffering a write-miss and fetching a line, a second

cache intervening to supply the line, and a third cache invalidating its copy of the line.

t45

futurebus intertãce futurebus interface

cache memory

l2sm

processor_block

l2gdp

Figure 4-1. The top-level structure of the Leopard-2 hardware model

The GDP is decomposed into a processor block component, a cache and a Futurebus

interface. The shared memory is similarly decomposed into a memory component and

a Futurebus interface.

The data values stored and transferred within the real Leopard-2 system are not di-

rectly modelled. Instead, each line of data is represented by a token that indicates the

processor that most recently updated the line and the simulation time of the update.

Processors are identified using their Futurebus geographic address, \Mith the reserved

value 0 indicating that the line has not been updated since initialization. The time-

stamps in the data tokens are used by the coherence monitoring instrumentation in the

model to verify that each processor sees the latest version of the line.

The connections upon which address and data flow are further abstracted from their

real electrical implementation. In the real hardware, buses are driven by tristate

drivers, allowing different components to act as sources for an individual bus at differ-

ent times. If no driver for a bu,s is enabled, the bus "fl.oats", and any component sensing

the bus receives an undefined value. Detailed electrical models represent this behav-

iourby augmentingthebinary datatype with athirdvalu@,"Z",indicatingthehigh-im-

L46

pedance state of a tristate driver, and a fourth value, 'X", indicating an unknownvalue.

Since the model described here uses abstract tokens for data values and abstract inte-

gers for addresses, the augmented binary representation is inappropriate. Instead,

buses are driven with a tuple comprising a valid flag and the abstract value. if the valid

flagis false, the abstract value part is ignored;if the valid flagis true, the abstractvalue

part is the value driven on the bus. The bus resolution function, which combines con-

tributions from all drivers to determine the actual value on the bus, verifies that at most

one driver is active at a time. This provides a significant degree of error checking in

the model, and ensures that corrupted addresses and data values are not propagated

without being detected.

The timing of interactions within each GDP are regulated by a clock signal generated

by the processor block component. This models the processor clock in the.real hard-

ware. The connections between the processor block and the cache is an abstraction of

the NS32532 bus interface. It includes just those control and status signals necessary

to simulate transactions with the cache. The timing of the interactions, however, is di-

rectly modelled on the timing requirements of the NS32532 bus interface, referenced

to the processor clock. Thus, for example, transactions are divided into sequences of

timing states, with addresses issued and control signals activated at specified clock

edges, and data required to be valid within specified numbers of clock cycles. Status

signals are returned by the cache to allow it to insert wait cycles when data may be

delayed.

Address and data values on the Futurebus are modelled using the same abstract

types as are used within the GDP and memory components. However, the synchroniz-

ation signals used for arbitration and data transactions are modelled in detail. Each

data transaction is composed of three "beats": an address beat, during which address

and command information are exchanged; a data beat, during which a data line token

is transferred; and an end beat, during which completion status information is ex-

1.47

changed. In the real hardware, there are separate data beats for each word of data wi-

thin a block. In the model, these are all collapsed into a single data beat for transfer

of the data token.

The reason for modelling synchronization of arbitration and data transaction in de-

tail is that the Futurebus protocols are asynchronous (not clocked) and involve sJm-

chronized interaction of several bus modules in different capacities such as master,

slave and third party. There is no centralized component that manages synchroniz-

ation; rather synchronization is fully distributed amongst those modules taking part

in a transaction. If the Futurebus synchronization protocol \Mere not used, then some

other, equally complex, protocol would be required. It appeared best to use the existing

proven protocol to synchronize the modelled components in the same way as the real

components would be synchronized. Since the synchronization aspects of cache coher-

ence protocols are the most difficult parts to implement correctl¡ detailed modelling of

synchronization is important for verifying correctness of the cache design.

4.3.2 Workload Modelling in the Processor Block

The Leopard-2 system model is stimulated by read and write requests generated by the

processor block on each L2GDP. These requests represent the workload performed by

the Leopard-2 system. Two versions of the processor block component were developed,

each generating requests differently.

The first processor block version generates requests according to a command frle. The

command file allows specification of synthetic address traces to exercise specific behav-

iours within the model. For example, during development of the cache model, synthetic

traces were constructed to cause hits and misses within the cache. The detailed behav-

iour of the cache controller and cache datapaths was observed to verify that the correct

operations were performed. The particular command file used by the processor block

is specified by a generic parameter, and so can be varied for each instance within the

148

system. This allows use of trace sets in which each processor performs different se-

quences of requests. For example, trace sets can be constructed to take a shared mem-

ory line through different coherence states in different processors, exercising particu-

lar aspects of the implementation of a cache coherence protocol.

The command frles read by the first version of the processor block consist of lines of

text, each specifying a request to be performed. An example trace frle is

@ 1us

+ 1us

R C 00000000

w c 00000000

R C 00040000

R C 00080000

wN 00008000

wN 00008004

R C 00000040

R C 00000000

miss, sec 0 index 0

hit, sec 0 index 0

miss, sec 1 index 0

miss, sec 0 index 0, copyback, flush buffer

write to buffer

write to buffer

miss, sec 0 index 1, flush buffer

miss, sec l index 0

The "@" symbol denotes an absolute simulation time at which the request is to be per-

formed. The "+" symbol denotes a delay after completion of the previous request before

the specifred request is performed. The omission of a time denotes that the request is

to be performed immediately after the previous request. Each request may be either

a read (denoted by "R") or a write (denoted by'TP'), and may be cachable ("C") or non-

cachable ("N"). The address is speciflred in hexadecimal. Text following the address is

a comment, and may be used to document the actions expected in response to the re-

quest.

The second version ofthe processor biock generates read and write requests accord-

ing to a programmed workload model. Previously published simulations of caches use

workload models that attempts to mimic the behaviour of real workloads, since the aim

of those simulations is to evaluate performance of the simulated system. Some of the

t49

models are discussed in Section 2.5. The aim of the simulation model discussed here,

however, is to verify correctness of the cache design and implementation of cache coher-

ence protocols, so the workload model is quite different. It is designed to cover random-

ly all cases of interactions between caches accessing a collection of shared memory

lines. The approach taken is similar to that described by Wood et aI l55l for testing the

SPIJR cache controller. Only a small number of lines are referenced, some being shared

between processors, and others being referenced by only one processor. These two cate-

gories model shared and private data respectively. The lines are allocated in the ad-

dress space as follows:

Shared: 00000000 - 000000FF

00040000 - 000400FF

00080000 - 000800FF

000c0000 - 000c00FF

Private: 0000r¿n00 - 0000r¿¿FF

0004nn00 - 0004¿¿FF

0008n¿00 - 0008n¿FF

000Cn¿00 - 000Cn¿FF

The symbol nn denotes the geographic address of a GDP-+ach GDP uses its geo-

graphic address to determine the shared memory addresses of its private lines. Lines

are64 bytes each, so each group ofconsecutive addresses corresponds to four consecu-

tive lines. Since there arc 256 Kbytes of storage in each section of each cache, all of the

groups of four lines map to sets 0 to 3 of each cache.

The algorithm for the workload model involves generating successive requests as fol-

lows:

randomly choose a line to access, with probability of choice uniformly dis-

tributed amongst the shared and private lines accessible by the processor,

a

150

a randomly choose between a read request (with probability 0.75) and a

write request (with probability 0.25)

Each processor uses its geographic address to calculate the seed for its pseudo ran-

dom sequence generator used to make the random choices. If this were not done, each

processor would generate the same sequence of memory requests, defeating the aim of

the workload model.

As Wood et al note [55], the state space of interactions between caches is sufficiently

large that manual generation of tests is intractable. While random testingmakes test-

ing feasible, it is not clear how good the test coverage is, nor how to anaþically deter-

mine the level of coverage. Wood eú ø/ suggest this issue as a future research area. They

do, however, report success in uncovering a number of design defects in their controller

through use of randon testing.

Both versions of the processor block described above generate read and write re-

quests on signals connected to the cache component. Timing of values on these signals

is synchronized by the clock signal generated by the processor block, as shown in

Figure 4-2. Tlne processor issues the memory address, command information, and, for

write requests, data during the T1 timing state, and pulses the address-strobe signal

to start the access. If there is no delay in servicing the request, the cache responds by

supplying status information and, for read requests, the data during the T2 state, and

asserting the ready signal. If there is a delay, the cache leaves the ready signal negated,

causing the processor block to insert wait states until ready is asserted. The status in-

formation that the cache returns includes aretry signal that is used to force the proces-

sor to abort the request and retry it. This is used when the cache receives a busy-retry

response from the Futurebus while servicing a cache miss. The request timing and pro-

tocol described here is a simplification of that used by the NS32532, focussing on just

those aspects needed to model the coherent cachingbehaviour of the Leopard-2 system.

151

T1 Twait Twait T2 Ti¿t"

clock

address,
command

write
data

address
strobe

status

read
data

ready I

L--
t

J

I

t--
I

¿

)(

L-L-L

Figure 4-2. Timing of processor read and write requests

4.3.3 The Cache Model

The cache subsystem of the Leopard-2 GDP consists of a datapath, described in Sec-

tion 3.7.2, and a cache controller, which operates as described in Section 3.8. This or-

ganization is mirrored in the hardware model of the cache subsystem. The structure

of the datapath is modelled at the register transfer level, with separate component in-

stances for each of the elements in the datapath. The simpler elements, such as trans-

ceivers and comparators, are modelled using a dataflow style. More complex elements

are modelled using a behavioural style, in which the function of the element is ex-

pressed in the form of an algorithm using processes containing sequential statements.

t52

type parameter_set is record
excl_depends_on_CS_on_read_shared : boolean;
tr_write_hit_shared : transaction_type;
owned_on_write_hit_shared : boolean;
excl_d epend s_on_CS_on_write_h it_s h ared : boolean ;

tr_write_m iss : transaction_type;
reflect_on_read_shared : boolean;
inval_ifJhird_party : boolean;
sel_on_broadcast_hit : boolean ;

end record parameter_set;

Figure 4-3. The record type used to define cache parameter values.

Operation of the datapath elements is controlled by control signals, sequenced by the

cache controller synchronized by the clock signal from the processor block. In the real

Leopard-2 hardware, the sequence of operations would be devised to take as few clock

cycles as possible, to maximize performance. While the hardware model pays signific-

ant attention to reducing the number of clock cycles for each sequence, there may be

scope for further optimization. The main aim in developingthe model was correct oper-

ation; optimal sequencing was beyond the scope of the design.

The cache controller model is parameterized using the scheme described in Sec-

Lion 4.2. The entity interface for the controller includes a generic constant for specify-

ing the particular parameter values to be taken on by a cache controller instance. The

generic constant is a record of the type shown in Figure 4-3. The modelled cache is pro-

grammed to implement a particular coherence protocol by supplying actual parameter

values for the generic constant according to Table 4-2.

The cache controller model is behavioural in style, and consists of a number of com-

municating processes, illustrated in Figure 4-4. T};:e master process sequences cache

actions in response to processor read and write requests, the snoop process sequences

cache actions in response to transactions observed on the Futurebus, and the write

153

internal
futurebus

a¡biter

line
a rbiter

write buffer
controller

mastersnoop

arb ite¡
snoop bus cache bus

arbiter

snoop bus cache bus
signals

address
comparator

result
futurebus

control
signals

futurebus
arbitration

signals

write buffer
control signals

Figure 4-4. The process structure of the cache controller model

buffer process sequences flushing to shared memory of write data from the write buffer

The remaining processes are arbiters and multiplexers, discussed below.

Cache Controller Arbiters

Many of the control signals for various parts of the cache datapath must be sequenced

by different processes at different times. For example, control signals for the snoop bus

must be sequenced by the snoop process when a Futurebus transaction is in progress,

but must be sequenced by the master process when the snoop's copy of attributes is

being updated. The requirement for shared control leads to the inclusion of an arbiter

for each set of shared resources: one for the cache buses shared by the master and snoop

154

processes, one for the snoop buses shared by the master and snoop processes, and one

for the Futurebus interface shared by the master and write buffer processes. Asso-

ciated with each arbiter is a multiplexer that selects control signal values from the pro-

cess that is granted access to the set ofresources.

The remaining arbiter in the cache controller is used to ensure mutual exclusion be-

tween the processor and the snoop operating on lines of the shared memory address

space. The requirement for mutual exclusion is discussed in Section 2.2.L1, and its im-

plementation in the cache controller algorithm is described in Section 3.8. The line ar-

biter takes as input the result of the address comparator in the cache datapath. This

comparator compares the line address being accessed as part of servicingthe processor

request with the line address being accessed by the snoop. If both the processor and

the snoop are active and the line addresses are equal, there is contention for use of the

line, so the processor and snoop operations are serialized. Otherwise, if only one of the

processor or snoop is active or if they accessing different lines, there is no contention,

so they may perform their operations concurrently.

The presence of the arbiters and the serialization that they enforce are manifest in

interference between the processor and the snoop. While interference due to mutual

exclusion over line addresses is expected to be relatively rare (except in cases of heavily

shared data), interference due to shared access to cache and snoop buses is expected

to be relatively more frequent. (The actual frequency depends on the access patterns

of the particular code being run on the system.) This is because it occurs whenever the

processor or snoop must update attributes of a line, irrespective of which line the other

process is accessing, or when the snoop must access the cache data memory to act as

a third party or to receive a broadcast update. Fortunately, the duration of each in-

stance of these latter cases of interference is less than that of interference due to mutual

exclusion over lines, hence its effect on performance is minimal. The performance ef-

fects are further ameliorated by allowing the processes to proceed speculatively on the

155

a\
master granted

snooP bus

snoop granted
snoop bus\/

! master_using_cache_bus
& snoop_request_-

for cache bus
!snoop_request_-

for cache bus

!snoop_using_snoop_bus
& master_request_-

for_snoop_bus
!master_request_-

for_snoop_bus

snoop granted
cache bus

cache bus
master granted

Figure 4-õ. State transition diagrams for the cache bus arbiter (left) and snoop bus arbiter (right)

assumption of being granted access to a resource immediately upon requesting it, and

blocking later if they frnd the resource denied.

The arbiters are implemented as clocked finite state machines. The cache bus and

snoop bus arbiters are the simplest. Their state transition diagrams are shown in

Figure 4-5. Normally the master is granted access to the cache bus, so there is no explic-

it request from the master. Instead, the master indicates v¡hen it is actually using the

cache bus. The snoop has an explicit request signal, and is only granted the cache bus

when the master is not using it. While the snoop is granted the cache bus, the master

refrains from using it. When the snoop has finished using the cache bus, it removes

its request, allowing the master to proceed when it needs the bus. Operation of the

snoop bus arbiter is similar, but with the snoop normally granted access and the master

having to request access.

The state transition diagram for the line arbiter is shown in Figure 4-6. In addition

to the transition conditions shown in the diagram, transitions are only taken when

neither master is granteduse of the snoop bus nor snoop is granteduse of the cache bus.

This condition is required to prevent false transitions due to address matches when an

address from one side (master or snoop) is transmitted to the address bus of the other

side. The condition is omitted from the diagram for clarity.

156

both

master_req
& snoop_req

& equal

master_req !master_req
& lsnoop_req &

master_req
& snoop_req

&! &
master_req

&! snoop_req

!master_req
& snoop_req

master_req
& lsnoop_req

master_req
& snoop_req

mastef_req
& snoop_req

& ! m aster_req & !equal

& _req

masf er_req
& !master_req

&

mastef_feq
&. snooP_feq

& equal

Figure 4-6. State transition diagram for the line arbiter

Initially the arbiter is in the "idle" state with neither master nor snoop active. If the

master alone requests use of a line, the arbiter transitions to the "master only" state,

granting permission for the master to use the line. Similarly, if the snoop alone re-

quests use of a line, the arbiter transitions to the "snoop only" state, granting permis-

sion for the snoop to use the line. If both master and snoop simultaneously request use

of lines, and the line addresses are not equal (denoted by "!equal" in the diagram), the

arbiter transitions to the "both" state and both are granted permission to proceed. If
both requests are made simultaneously but the line addresses are equal, the arbiter

grants permission to the master first. Only when the master completes its request, or

t57

when the master's line address changes, is the snoop allowed to proceed. When the ar-

biter is in the "both" state, the line addresses may change from being unequal to being

equal. This may occur when the master must replace a line and move it to the write

buffer. Whilst moving the replaced line, the mutual exclusion lock must be applied over

the address of the replaced line, to prevent the snoop tryingto perform coherence trans-

action on the line while it is not available. (Once the replaced line is in the write buffer,

the copyback address comparator is used to prevent further coherence transactions on

the line until it has been written back to shared memory.) At the start of the move, the

master's line address changes from that of the line requested by the CPU to that of the

replaced line. At the end of the move, the master's line address reverts to that of the

line requested by the CPIJ. In both cases, if the snoop is currently granted use of the

line to which the master's address changes, the snoop is allowed to complete its activity

before the master is allowed to proceed.

The state transition diagram for the internal Futurebus arbiter is shown in

Figure 4-7 . The function of this arbiter is to merge requests for the Futurebus from the

cache master and the write buffer. The merged request is forwarded to the Futurebus

arbiter in the Futurebus interface, and the returned grant is directed back to the cache

master or write buffer as appropriate. A complication is that the cache master may pre-

empt the write buffer. If the write buffer has acquired the Futurebus to perform queued

non-cachable writes, and the cache master needs to satisfy a read miss, it preempts the

write buffer in order to read the required line without delay, then returns access to the

Futurebus to the write buffer.

When the cache master requests the Futurebus, the request is forwarded to the Futu-

rebus interface, and when the bus is granted, the grant is returned to the cache master.

A write buffer request is only forwarded to the Futurebus interface if there is no concur-

rent cache master request. If, by the time the bus is granted, a cache master request

has arrived, the grant is forwarded to the cache master in preference to the write buffer.

158

releasing
both

write buffer
granted

write buffer
requesting

granted
cache

cache
requesting

cache_req

!f/bus_gnt

[!cache_gnt, !cache_req
& øbuf_¡sq_reql

!cache_req
& lw/buf_req & lwþuf_¡eq

us_req] [!

fþus_gnt
Icache_gnt']

cache_req
& fþus_gnt
Icache_gntl

!cache_req
& f/bus gnt

!cache_req & w/buf_req
[-cacheSnt, Wbuf_gntl

cache_req & !w/buf_req

[cache3nt, ! w/buf_gnt]

Icache_gnt]
& wTbuf_req

[!Vbuf3nt]

preempting
cache

Figure 4-7. State transition diagram for the internal Futurebus arbiter.

When both requests are negated, the Futurebus request is also negated, and when the

Futurebus grant is negated by the Futurebus interface, the returned grant to the cache

master or write buffer is also negated. If a write buffer request arrives at the same time

as the cache master request is removed, tenure of the Futurebus is maintained, and the

grant is transferred from the cache master to the rñ/rite buffer. Tenure is transferred

from the write buffer to the cache master in the case of a cache master request arriving

at the same time that the write buffer request is removed. The remaining transitions

implement preemption of the write buffer by the cache master, signalled by a cache

master request arriving while the bus is granted to the write buffer. In this case, the

159

grant is removed from the write buffer. 'When the write buffer has completed its current

bus transaction, it removes its request. This signals to the arbiter that bus tenure can

be transferred to the cache master. The write buffer must then re-assert its request to

regain bus tenure after the cache master has completed its transactions.

Master Sequencer Outline

The master process shown in Figure 4-4 models the sequencing of cache datapath oper-

ations in response to read and write requests from the processor. The process uses the

clock signal generated by the processor to synchronize operations. A pseudo-code out-

line of the master process is shown in Figure 4-8. The process waits until a processor

requeSt arrives (middle of a T1 clock cycle, on the falling clock edge), then decodes the

command information to determine how to respond. In the case of non-cachable reads,

a procedure is called to sequence the required Futurebus read transaction. In the case

of non-cachable writes, a procedure is called to write the data into the write buffer. The

details of these two procedures is not discussed here, since the focus is on coherent cach-

able memory accesses.

If the processor request is for a cachable accesses, the master process calls a proced-

ure to sequence looking up the cache to check for a hit. This takes until the falling clock

edge of the subsequent clock cycle (T2 or Twait). If the access is found to miss, a proced-

ure is called to sequence the miss. This will take a number of T*"i¡ clock cycles, return-

ing on the falling clock edge of a cycle with the required line having been fetched into

the cache, or with a retry status, requiring the processor to abort and retry the request.

The procedure that sequences aborting with retry simply returns the cache control sig-

nals to their quiescent state, releases resources acquired by the master through ar-

bitration, and responds to the processor with retry status. In the case of the line being

successfully fetched, the process simply falls through into the section that sequences

a hit. For a read hit, the master process calls a procedure to sequence accessing the

160

master : process ¡s
begin

CPU_transaction_loop : loop

wait untilfalling clock edge in T1

if cpu_command is non-cachable read then
sequence_non_cachable_read

elsif cpu_command is non-cachable write then
sequence non cachable write

else
sequence_cache_looku p

if not hit then
sequence_miss
if abort_with_retry then

s e q u e n c e_abo rt_w it h_ret ry
end if

end if
if not abort_with_retry then

if cpu_command is read then
sequence_read_hit

else
sequence_write_hit
if abort_with_retry then

s e q u e n ce_ab o rt_wit h_ret ry
end if

end if
end if

end if

end loop CPU_transaction_loop
end process master

Figure 4-8. Outline of the master process.

cache for the required data. For a write hit, the process calls a procedure that sequences

updating the cache, and performing any Futurebus transaction required to maintain

coherence. Since such a Futurebus transaction may return retry status, the write se-

quencing procedure may also return retry status. Upon completion of sequencing the

processor's request, the master process loops and waits for the next request.

L6L

procedure sequence_cache_lookup ¡s
begin

master_requesting_line <= true

enable cpu tag latch and set index latch outputs
enable cpu tag ram comparison
enable cpu attribute ram outputs
cache_offset <= cpu_offset for data ram address

loop
wait until rising edge of clock
exit when snoop not using cache bus and master granted mutex to line

end loop
master_using_cache_bus <= true

wait until middle of clock cycle

sample current cpu attributes
sample current lru section
assume initially hit is false
for each section loop

if tag match and cpu attribute fb. valid is set then
hit is true, hit_section_index is this section

end if
end loop

disable cpu tag ram comparison
disable cpu attribute ram outputs

end procedure sequence_cache_lookup

Figure 4-9. Outline of the procedure that checks for a cache hit.

The procedure that checks for a cache hit is shown in Figure 4-9. The procedure is

called on the falling clock edge of the T1 cycle of the processor's request. It immediately

requests mutually exclusive access to the line by asserting its arbitration request sig-

nal. In fact, the arbitration request signal passed to the line arbiter is the logical-or of

the processor's address strobe signal and the request generated by the master process.

Since the line arbiter is clocked on falling edges of the processor clock, this scheme al-

lows arbitration to commence during the T1 cycle rather than being delayed until the

next cycle. Furthermore, in the common case of the master being granted mutual exclu-

t62

sion for the requested line immediatel¡ the result of arbitration is known in time for

the master to proceed without delaying the processor.

The procedure in Figure 4-9 must also arbitrate for access to the cache buses and con-

trol signals, since the snoop may be using them. Rather than waiting for the outcome

of this arbitration, the procedure speculatively activates its control outputs in the ex-

pectation that it already has won arbitration. (As described earlier, the master is

deemed always to be requesting use of the buses and control signals, so is granted ac-

cess as long as the snoop has not already acquired them.) The arbiter is clocked on the

rising edge of the processor clock, so the result of arbitration is known at the beginning

of the next clock cycle. The procedure waits until granted access before proceeding. In

the common case, the master is granted access immediately, and can proceed without

delaying the processor.

The control outputs that are speculatively enabled cause the CPU's address to be

placed on the cache address bus, the tag R"AM to use this address to compare with the

stored tags, the CPU attributes to be read, and the data RAld to start accessing the set

of data. When use of the cache buses is available and the master has mutual exclusion

over the requested line, the procedure delays until the falling clock edge of of the next

clock cycle, then samples the CPU attributes, LRU section number and tagcomparison

results. It uses the attributes and comparison results to determine if the requested line

is hit in the cache, Having done so, it disables the tag RAI{ and CPU attributes RAM.

The CPU address is left enabled for subsequent steps. Upon return from the procedure,

the request has progressed to the falling clock edge of the cycle after T1, and the master

has determined whether the requested line is present, and if so, in which section.

The procedure that sequences a read hit is shown in Figure 4-10. The procedure en-

ables the data RAM and transceivers to supply data to the CPU, and asserts the ready

signal to allow the CPU to proceed. It then enables the CPU attributes RAM to write

back the CPU attributes unchanged and to update the LRU section number to refer to

L63

procedure sequence_read_h¡t ¡s

begin
enable data RAM hit section output
enable cpu/cache data transceiver in cache-to-cpu direction

assert CPU ready signal

cpu_attributes(hit_section_index) <= curêñt_cpu_attributes(hit_section_index)
lru section (= nêw lru section
write-enable hit_section_index of cpu attributes RAM (also writes lru_section)

wait until rising clock edge at end of T2 clock cycle

negate CPU ready signal
disable cpu tag latch and set index latch outputs
cache offset <= undriven
disable cpu/cache data transceiver
disable cpu attributes RAM
disable data RAM
cpu_attri butes (hit_section_i ndex) < = und riven
lru section <= undriven

master_requesting_line <= false
master_using_cache_bus <= false

end procedure sequence_read_hit

Figrrre 4-10. Outline of the procedure that sequences a read hit.

the other of the two sections, and asserts the write-enable control signal to the CPU at-

tributes RANI. The procedure then waits until the rising clock edge at the end of the

clock cycle, then disables all of the active control signals, releases the mutual exclusion

lock on the line, and makes the cache bus accessible to the snoop.

The procedure that sequences a write hit is shown in Figure 4-IL. The procedure first

checks whether the line is shared, and if so, calls a procedure to sequence the Futurebus

transaction required to maintain coherence. If it returns with retry status, the write-

hit procedure also returns immediately with retry status. If it returns indicating that

the write hit should be transformed into a miss (due to the snoop invalidating the line

while the master rffas waiting for the Futurebus), the write-hit procedure calls a proced-

L64

procedure sequence write hit is
begin

if cpu_attributes(hit_section_index),fb exclusive is clear then
sequence_write_h it_to_sh ared_ transaction
if abort_with_retry then

return
end if
if turn hit into miss then

sequence_read_for_m iss
usin g h it_section_index as replaced_section_index

if abort_with_retry then
return

end if
if cpu_attri butes (hit_section_i ndex).f b_excl usive is sti I I clear then

sequence_write_hit_to_shared transaction
¡f abort_with_retry then

return
end if

end if
end if

end if

if cpu_attributes(hit_section_index).fb exclusive is clear then
set/clear requ i red_f b_owned_val ue depend i ng on

owned on write hit shared
set/clear requ i red_f b_excl_val u e depend i ng on

excl_depends_on_CS_on_write hit shared
(use saved cache_status value if excl_on_write_hit_shared is excl)

else
s et req u i red_f b_own ed_val u e and req u i red_f b_excl_val ue

end if

if required_fb_owned_value differs from current fb_owned value
or required_fb_excl_value differs from current fb_excl value then

master_request_for_s noop_bus < = true

u pd ate c u rre nt_c p u_att r i b ute s (h it_s e ct i o n_i n d ex)

with required attribute values
cpu_attri butes (h it_s ecti on_i nd ex)

< = cu rrêrìt_cp u_attri butes (h it_secti on_i nd ex)
lru_section <= new_lru_section
enable cpu/snoop address transceiver in cpu-to-snoop direction
s n oop_attri butes (h it_s ecti on_i n d ex)

< = cu rrê ñt_cpu_attri butes (h it_s ecti on_i n d ex)

wait until rising clock edge and master_granted_snoop_bus

165
Figure 4-ll. Outline of the procedure that sequences a write hit.

write enable hit section index of cpu attributes RAM (also writes lru section)
write enable hit section index of snoop attributes RAM

wait untilfalling clock edge

master_requestin g_snoop_bus <= false

cpu_attri butes (h it_section_i ndex) <= und riven
lru section <= undriven
disable cpu attributes RAM
disable cpu/snoop address transceiver
snoop_attri butes (h it_section_i nd eX) <= u nd riven
disable snoop attributes RAM

end if

enable cpu/cache data transceiver in cpu-to-cache direction
write-enable hit_section_index of data RAM

assert CPU ready signal

wait until rising clock edge at end of T2 clock cycle

negate CPU ready signal
disable cpu tag latch and set index latch outputs
cache offset <= undriven
disable cpu/cache data transceiver
disable data RAM

master_requesting_line <- false
master_using_cache_bus <= false

end procedure sequence_write_hit

Figure 4-11 (continued)

ure to read the missed line, then if the line is still shared, calls the write-hit transaction

procedure again. That procedure will complete normally, since Futurebus tenure is

maintained between the read for the miss and the write-hit transaction, so there is no

opportunity for the snoop to invalidate the line a second time.

Next, if the line is shared, the write-hit procedure determines new values for the

fb_owned and fb_exclusive attributes of the line, based on the values of the configura-

tion parameters owned_on_write_hit_shared and excl_depends_on_CS_on_-

766

write hit shared. In the case of a write hit to an exclusive line, fb_owned is alway set,

and the fb exclusive attribute remains set.

The write hit procedure next determines whether the stored attributes must be up-

dated. It compares the required attribute values with the current values, and if there

is a difference, the update proceeds. The procedure arbitrates for access to the snoop

bus, and sets up the new attribute values and LRU section index for the CPU and snoop

attribute RAMs. When access to the snoop bus is granted, the CPU and snoop attribute

RAMs are updated. The procedure then releases the snoop bus and disables all control

signals used to update the attribute RAMs. The write-hit procedure next sequences the

local write to the cache. It enables the data transceivers to forward data from the CPU

to the cache, enables the data RAM to accept the data from the CPU, and asserts the

ready signal to allow the CPU to proceed. The procedure then waits until the rising

clock edge at the end of the clock cycle, then disables all of the active control signals,

releases the mutual exclusion lock on the line, makes the cache bus accessible to the

snoop.

The procedure that sequences a Futurebus transaction on a write hit to a shared line

is shown in Figure 4-t2. If the master does not currently have Futurebus tenure, the

procedure first releases the mutual exclusion lock on the line and makes the cache

buses available to the snoop. It then requests arbitration for the Futurebus. When ac-

cess to the Futurebus is granted, the procedure reacquires the mutual exclusion lock

on the line and use of the cache buses. It need not wait for these to be granted; since

the master has Futurebus tenure, the snoop and all other masters in the system must

be inactive. Next, the procedure re-reads the attributes from the CPU attribute RAM,

since the line may have been invalidated by the snoop while the master was waiting

for the Futurebus. If the line is invalid, the procedure returns with a status value indi-

cating that the write hit should be turned into a write miss.

167

proced ure sequence_write_h it to_s hared_transaction is
begin

if not cache_grant then
master_requesting_line <= false
m aster_using_cache_bus <= false

cache_request <= true
wait until falling clock edge and cache_grant

master_requesting_line <= true
master_using_cache_bus <= true

enable cpu attribute RAM outputs
wait until middle of clock cycle
sample current cpu attributes
disable cpu attribute RAM outputs

if fb valid attribute in hit section is now clear then
turn_hit_into_miss := true
return

end if
end if

if tr write hit shared is a write transaction then
enable cpu/cache data transceiver in cpu-to-cache direction

else
disable cpu/cache data transceiver

end if

if write buffer is not empty then
flush write buffer <= true
wait until falling clock edge and write buffer is empty

end if
flush write buffer <= false

enable cache/Futurebus address and data transceivers
data direction depends whether tr_write_ hit shared is a read or write transaction

assert Futurebus cache command and intent to_modify
assert/negate Futurebus broadcast depend i n g on tr_write_hit_shared
assert/negate Futu rebus write depend i ng on tr_write_hit_shared
assert/negate Futu rebus owners h i p dependi n g on owned_on-write-hit-shared

assert Futurebus address strobe
wait untilfalling clock edge and Futurebus address acknowledge asserted
save Futurebus cache_status reply value

Figure 4-12. Outline of the procedure that sequences a Futurebus transaction on a write hit to a
shared line.

168

if Futurebus busy reply then
abort_with_retry := true

elsif tr_write_hit_shared is not invalidate then
assert/negate Futurebus three_party depending on third_party reply
assert Futurebus data strobe
if tr write hit shared is a read transaction then

write enable hit section of data RAM
end if
wait until falling clock edge and Futurebus data acknowledge asserted
if tr write hit shared is a read transaction then

disable data RAM

end if
negate Futurebus data strobe

end if
negate Futurebus address strobe
wait until falling clock edge

and Futurebus address and data acknowledge both negated

negate Futurebus_command
disable cache/Futurebus address and data transceivers

if tr write hit shared is a read transaction then
enable cpu/cache data transceiver in cpu-to-cache direction

end if

cache_request <= false
wait untilfalling clock edge and not cache_grant

end procedure sequence_write_hit_to_shared_transaction

Figure 4-12 (continued)

If the transaction can proceed, its type is specifred by the parameter

tr_write_hit_shared. In the case of a write transaction being required, the procedure

enables the CPU's data onto the cache data bus, otherwise it disables the CPU data

transceivers. The procedure then signals the write buffer to drain, and waits until

there are no entries in the write buffer. It prepares for the Futurebus transaction by

enabling the transceivers between the cache buses and the Futurebus interface, and

by settingup the Futurebus command values based on the configuration parameter va-

r69

lues. The procedure then sequences the Futurebus transaction, starting with an ad-

dress beat. It saves the value of the Cache-Status reply signal for later use in updating

the attributes of the line. In addition, it saves the state of the busy reply signal for use

after the bus transaction is complete. If there is no busy reply and the transaction is

not an address-only invalidate, the transaction proceeds with a data beat, reading data

into the data RAM or writing data from the cache data bus depending on the type of

transaction. When the transaction sequence is complete, the procedure negates the Fu-

turebus command values, disables the cache-to-Futurebus transceivers, re-enables the

CPU-to-cache data transceiver, and releases tenure of the Futurebus.

The procedure that sequences a cache miss is shown in Figure 4-I3. The procedure

flrrst selects a section in the current set for replacement, preferring an entry that is not

valid if one exists, otherwise choosing the least recently used entry. It next examines

the Dirty attribute of the replaced line to determine whether the line must be copied

back via the write buffer. If so, the procedure releases the mutual exclusion lock on the

line and use of the cache buses, in order to avoid deadlock with other caches via the

snoop during subsequent operations. The procedure then waits until there is no previ-

ously buffered line pending in the write buffer and there is room for the newly replaced

line. It then sets a flag to indicate to the write buffer sequencer that the line about to

be placed in the write buffer is replaced as part of the current miss. This is required

to prevent the write buffer from flushing that line before the line requested by the CPU

is fetched from shared memory. The procedure next calls a procedure to sequence the

transfer of the replaced line to the write buffer. The miss sequencing procedure then

calls a procedure to sequence the read transaction to fetch the required line. Finally,

it clears the flag allowing the write buffer to proceed with flushing the replaced line.

The procedure that sequences copying a dirty replaced line to the write buffer is

shown in Figure 4-L4. The procedure first replaces the tag flreld on the cache address

bus with the tag of the replaced line, and sets the offset part of the address to 0. It then

170

procedure sequence_miss ¡s
begin

set replaced_section_index to lru section
for each section

if cpu_attri butes (section_i ndex).f b_val id is clear then
set replaced_section index to this section

end if
end loop

if cpu_attri butes (replaced_section_i ndex) . d i rty is set then
master_requesting_line <= false
master_using_cache_bus <= false
if copyback pending or write buffer full then

wait until falling clock edge
and no copyback pending and write buffer not full

end if
current_miss_required_copyback <= true
sequence_copyback

end if

sequence_read_for_m iss
current_miss_required_copyback <= false

end procedure sequence_miss

Figure 4-13. Outline of the procedure that sequences a cache miss.

requests mutual exclusion for the replaced line. It initiates the re-reading of the CPU

attributes, then waits until the mutual exclusion lock on the replaced line is granted

and the snoop is not using the cache buses. When access is made available, the proced-

ure claims use of the cache buses, then re-samples the CPU attributes and disables the

CPU attribute RAM outputs.

The procedure next checks whether the replaced line is still valid and dirty. If it is,

the line must still be copied back. The procedure sets a flip-flop that signals the pres-

ence of a replaced line pending copy-back in the write buffer, enables the data RAM out-

put to supply the line, and sets up the write buffer marks. When the address, data and

mark values are stable on the cache buses, the procedure enables the copy-back address

t7t

procedure sequence_copyback ¡s
begin

disable cpu tag latch output
output enable replaced_section_index of cpu tag RAM
cache_offset <= 0 for copyback address

master_requesting_line <= true

enable cpu attribute RAM outputs

loop
wait until rising clock edge
exit when snoop not using cache bus and master granted mutex to line

end loop
master_using_cache_bus <= true

wait until falling clock edge

sample current cpu attributes
disable cpu attribute RAM outputs

if fb_valid and dirty attribute of replaced section index are both set then
set copyback_pending flip-flop
enable data RAM replaced section output
write through mark <= '0'

cache command mark <='0'

wait until rising clock edge at start of next clock cycle

enable write to copyback address comparator
enable shift-in to write buffer fifo

wait until falling clock edge and write buffer fifo accepted input

disable write to copyback address comparator
disable shift-in to write buffer
disable data RAM replaced section output

end if;

disable replaced_section_index of cpu tag RAM
cache_offset <= cpu_offset

master_requesting_line <= false
master_using_cache_bus <= false

end procedure sequence_copyback

Figure 4-14. Outline of the procedure that copies a replaced line to the write buffer.

172

comparator and write buffer FIFO inputs. After a delay for the inputs to be accepted,

the comparator and FIFO inputs are disabled and the data RAM output is disabled.

This completed transfer of the replaced line to the write buffer. The final actions of the

procedure are to restore the address ofthe line requested by the CPU on the cache ad-

dress bus, to release the mutual exclusion lock on the replaced line, and to make the

cache buses available to the snoop.

The procedure that sequences a read transaction on a cache miss is shown in

Figure 4-15. The procedure is called either on an initial miss in response to a CPU re-

quest, or on a write miss resulting from a snoop invalidation of a shared line during a

write hit. In the former case, the procedure is called without the master having Future-

bus tenure, and the mutual exclusion lock on the line may or may not be held, depend-

ing on whether a copyback preceded the call. In the latter case, the procedure is called

with the master having Futurebus tenure and the mutual exclusion lock on the line in

place.

The procedure first checks whether the master has Futurebus tenure. Ifnot, it ensur-

es that the mutual exclusion lock and use of the cache buses are released, then requests

arbitration for the Futurebus so that it can initiate the transaction required to read the

line. When access to the Futurebus is granted, the procedure reacquires the mutual

exclusion lock on the line and use of the cache buses. It need not wait for these to be

granted; since the master has Futurebus tenure, the snoop and all other masters in the

system must be inactive. The procedure then signals the write buffer to drain, and

waits until there are no entries in the write buffer, or until the entry at the head of the

write buffer is the replaced line transferred earlier in processing the current miss. The

procedure next determines the required type of Futurebus transaction: read-shared for

a read miss; or read-shared or read-invalidate, specified by the tr_write_miss param-

eter, for a write miss. The procedure prepares for the Futurebus transaction by enab-

ling the transceivers between the cache buses and the Futurebus interface, and by set-

L73

procedure sequence_read_for_miss ¡s
begin

if not cache_grant then
master_requesting_ line <= false
master_using_cache bus <- false
cache_request <= true
wait until falling clock edge and cache_grant

master_requesting_ line <= true
master_using_cache bus <= true

end if

if write buffer is not empty
and (write through mark output is set

or pending copyback is from previous miss) then
flush write buffer <= true
wait until falling clock edge

and (write buffer is empty
or (write through mark is clear

and pending copyback is from this miss))
end if
flush write buffer <= false

if cpu request is read then
set required_transaction to read_shared

else
set required_transaction to tr_write_miss parameter value

end if

enable cache/Futurebus address and data transceivers for read direction

assert Futurebus cache command
negate Futurebus broadcast, three_party and write
if required_transaction is read_invalidate then

assert Futurebus intent to_modify and ownership
else

negate Futurebus intent to_modify and ownership
end if

assefi Futurebus address strobe
wait untilfalling clock edge and Futurebus address acknowledge asserted
save Futurebus cache_status reply value
if Futurebus busy reply then

abort_with_retry := true
else

Figure 4-15. Outline of the procedure that sequences a read transaction on a cache miss.

174

assert/negate Futurebus three_party depending on third_party reply
assert Futurebus data strobe
write enable replaced section of data RAM
wait until falling clock edge and Futurebus data acknowledge asserted
disable data RAM
negate Futurebus data strobe

end if
negate Futurebus address strobe
wait until falling clock edge

and Futurebus address and data acknowledge both negated

negate Futurebus command
disable cache/Futurebus address and data transceivers

if (not (CPU request is write and required_transaction is read_shared
and saved cache_status is set)

and write_buffer is empty) or abort_with_retry then
cache_request <= false
wait until middle of clock cycle and not cache_grant

end if

if abort_with_retry then
return

end if

master_request for_snoop_bus <= true after prop_delay;

determ ine cu rrent_cpu_attributes (replaced_section_i ndex) :

set fb valid
if bus transaction was read invalidate then

set fb_owned and fb_exclusive
else

clear fb_owned
if excl_depends_on_CS_on_read_shared

and saved cache status is set then
set fb exclusive

else
clear fb exclusive

end if
end if
clear fb_dirty

cpu_attri butes (replaced_section_index)
< = cu r rê ñt_c p u_att ri b ut es (re p I ac ed_s ect i o n_i n d ex)

lru section (= rìêw lru section

Figure 4-15 (continued).

t75

enable cpu/snoop address transceiver in cpu-to-snoop direction

sn oop_attri butes (repl aced_section_i nd ex)
<= cu rêDt_cpu_attri butes (repI aced_section_i ndex)

wait until rising clock edge and master_granted_snoop_bus

write enable replaced_section_index of cpu tag RAM
write enable replaced_section_index of cpu attributes RAM

(also writes lru section)
write enable replaced_section_index of snoop tag RAM
write enable replaced_section_index of snoop attributes RAM

wait until falling clock edge

master_requesting_snoop_bus <= false

disable cpu tag RAM
cpu_attri butes (replaced_section_i nd ex) <= undriven
lru section <= undriven
disable cpu attributes RAM

disable cpu/snoop address transceiver
disable snoop tag RAM

snoop_attri butes (repl aced_section_i ndex) <= u nd riven
disable snoop attributes RAM

end procedure sequence_read_for_miss

Figure 4-15 (continued).

ting up the Futurebus command values based on the required bus transactibn type.

It then sequences the Futurebus transaction, starting with an address beat. It saves

the value of the Cache-Status reply signal for later use in updating the attributes of the

line. In addition, it saves the state of the busy reply signal for use after the bus transac-

tion is cornplete. If there is no busy reply, the transaction proceeds with a data beat,

reading data into the data RAM. When the transaction sequence is complete, the pro-

cedure negates the Futurebus command values and disables the cache-to-Futurebus

transceivers. Next, it determines whether to release Futurebus tenure. It does so only

if the miss is not a write miss requiring a subsequent bus write transaction, and if the

r76

write buffer is empty, or if the read transaction returned busy status. If the Futurebus

transaction returned retry status, no further action is required, so the procedure re-

turns. Otherwise, the CPU and snoop tag and attributes for the fetched line must be

stored. The new attribute values are determined, based on the transaction type and

on the value of the configuration parameter excl_depends_on_CS_on_read_shared.

The procedure arbitrates for access to the snoop bus, and sets up the new attribute va-

lues and LRU section index for the CPU and snoop attribute RAMs. The new tagvalue

is already present on the cache address bus as part of the line's address. When access

to the snoop bus is granted, the CPU and snoop tag and attribute RAMs are updated.

The procedure then releases the snoop bus and disables all control signals used to up-

date the tag and attribute RA-NIs.

Snoop Sequencer Outline

The snoop process shown in Figure 4-4 models the sequencing of cache datapath oper-

ations in response to Futurebus transactions. The process uses the clock signal gener-

ated by the processor to s¡mchronize operations. A pseudo-code outline of the snoop pro-

cess is shown in Figure 4-16. The process waits until a Future bus transaction is

initiated, indicated by the Futurebus address strobe signal being asserted, then calls

a procedure to sequence looking up the snoop attributes to check for a hit. The process

next determines what action is required in response to the transaction. The decision

is based on the P896.2 rules and the cache conflrguration parameters. If the lookup

found a hit in the write buffer, the snoop remains unselected and will return a busy

reply to the transaction master. If the lookup found a hit in the cache, the transaction

is a broadcast and the parameter sel_on_broadcast_hit indicates that the snoop should

accept the data, the snoop becomes selected. If the lookup found a hit, the line is owned

by the cache and the transaction is not a broadcast, the snoop must become a third party

in the transaction. If the transaction is a read-shared and the parameter re-

L77

snoop: process ¡s
begin

futurebus transaction_loop : loop

wait until falling clock edge and Futurebus address strobe asserted

seq u en ce_snoop_looku p

if write buffer hit then
connection state := unselected

elsif fb_valid and broadcast and sel_on_broadcast_hit then
connection state := selected

elsif fb valid and fb owned and not broadcast then
if read-shared & reflect_on_read_shared then

connection_state := reflecting
else

connection_state := intervening
end if

else
connection state := unselected

end if

if not write buffer hit then
set new attributes to current attributes (initially)
if cache command then

clear new fb exclusive attribute
end if
if ownership or reflect then

clear new fb owned attributes
end if
if (fb_valid and intent_to_modify

and ((not broadcast and not fb_owned)
or (not broadcast and not write)
or (broadcast and unselected)))

or third_party and inval_if third_party then
clear all new attributes

end if
end if

Figure 4-16. Outline of the snoop process.

flect on read shared is set, the snoop becomes a reflecting third part¡1 otherwise it be-

178

if write buffer hit then
assert Futurebus busy reply
negate Futurebus cache_status, selected, third_party and interuene reply

else
negate Futurebus busy reply
if new fb valid attribute set then

assert Futurebus cache status reply
else

negate Futurebus cache_status reply
end if
if connection state is selected then

assert Futurebus selected reply
negate Futurebus third_party and intervene reply

elsif connection_state is reflecting then
assert Futurebus third_party reply
negate Futurebus selected and intervene reply

elsif connection state is intervening then
assert Futurebus third_party and intervene reply
negate Futurebus selected reply

else
negate Futurebus selected, third_party and intervene reply

end if
end if
assert Futurebus address acknowledge

if write buffer hit or (unselected and new attributes same as old attributes) then
snoop_requesting_line <= false
snoop_using_snoop_bus <= false
wait until falling clock edge and Futurebus address strobe negated
negate Futurebus address acknowledge

else
seq u e n ce_s n oo p_parti ci pati on

end if

disable snoop tag latch and set index latch outputs
end loop futurebus_transaction_loop

end process snoop

Figure 4-16 (continued).

comes an intervening third party. In the remaining cases where the lookup found a hit,

and in the case where the lookup found a miss, the snoop remains unselected.

t79

Next, if there was no write buffer hit, the snoop process determines what attribute

changes are required. The decision is based on the P896.2 rules. In addition, if the

snoop is to participate as a third party and the parameter inval if_thirdjarty is set,

the snoop must clear all attributes.

Having determined the required response and new attribute values for the line, the

snoop process acknowledges the address beat. It asserts or negates the Futurebus reply

signals as appropriate, and asserts the Futurebus address acknowledge signal. Next,

the process implements its required action. If a write buffer hit was detected, or if the

snoop is unselected and need not update the line's attributes, the snoop need take no

further part in the transaction. It immediately releases the mutual exclusion lock on

the line and use of the snoop bus, then waits for the end of the transaction. When the

transaction completes, the process negates the address acknowledge. If the snoop does

have some actions to perform, the process calls a procedure to sequence those actions.

Upon completion of sequencing the transaction, the snoop process loops and waits for

the next transaction.

The procedure that sequences lookup of the snoop attributes is shown in Figure 4-L7 .

The procedure first requests arbitration for mutually exclusive access to the cache line,

then speculatively enables the snoop attribute and tag RAMs. It then waits until mu-

tual exclusion is granted and the master is not using the snoop bus before proceeding.

The procedure confirms its own use of the snoop bus, thus locking out the master, and

waits for the attribute values to be accessed and the tag comparison to be performed.

During this time, the copyback address comparator also compares the Futurebus ad-

dress with the saved address of the line awaiting copying back to shared memory. If
there is a copyback pending and the addresses match, the procedure indicates a write

buffer hit. Otherwise, it samples the current snoop attributes, and checks whether

there is a hit in either section of the cache. Finall¡ the procedure disables the snoop

tag RAM and attribute RAM outputs and returns.

180

procedure sequence_snoop_lookup ¡s
begin

snoop_requesting_line <= true

enable snoop tag latch and set index latch outputs
enable snoop tag ram comparison
enable snoop attributes ram outputs

wait until rising clock edge
and master not using snoop bus and snoop granted mutex to line

snoop_using_snoop_bus <= true
wait until falling clock edge

if copyback_pending and copyback comparator match then
set write buffer hit

else
sample current snoop attributes
assume initially hit is false
for each section loop

if tag match and cpu attribute fb valid is set then
hit is true, hit_section_index is this section

end if
end loop

end if

disable snoop tag ram comparison
disable snoop attributes ram outputs

end procedure sequence_snoop_lookup

Figure 4-17. outline ofthe procedure that sequences snoop attribute lookup

The procedure that sequences the snoops actions during a transaction is shown in

Figure 4-18. Theprocedurefirstrequestsarbitrationforuseofthecachebusesandspe-

culatively enables the address transceivers to pass the Futurebus transaction address

to the cache address bus. It then waits for use of the cache buses to be granted. If the

snoop must participate in the transaction, the procedure then enables the data trans-

ceivers between the cache data bus and the Futurebus and enables the data RAIVI. The

direction of data transfer depends on whether the transaction is a read or a write. The

procedure then waits until either the data strobe is asserted, indicating commencement

181

procedure sequence_snoop_participation is
begin

snoop_request_for_cache_bus <= true
enable cpu/snoop address transceiver in snoop_to_cpu direction

wait until falling clock edge and snoop_granted_cache_bus

if not unselected then
if Futurebus write then

enable cache/Futurebus data transceivers
in Futurebus-to-cache direction

write enable hit section of data RAM
else

enable cache/Futurebus data transceivers
in cache-to- Futurebus direction

output enable hit section of data RAM
end if

wait until falling clock edge
and Futurebus data strobe asserted or address strobe negated

if Futurebus data strobe asserted then
assert Futurebus data acknowledge
if Futurebus write then

disable write to data RAM
end if
wait until falling clock edge

and Futurebus data strobe negated and address strobe negated
if not Futurebus write then

disable data RAM output
end if
negate Futurebus data acknowledge

end if

enable cache/Futurebus data transceivers

else
wait untilfalling clock edge and Futurebus address strobe negated

end if

if new attributes differ from current attributes then
enable cpu attribute ram outputs

wait until rising clock edge
sample current_cpu_attributes and current_lru section
disable cpu attribute ram outputs

Figure 4-18. Outline of the procedure that sequences the snoop's actions in a transaction

r82

u pdate cu rrent_cpu_attributes (hit_section_index) with new attributes
if new fb owned is clear then

cl ear cu rrent_cpu_attri butes (h it_section_i ndex). dirty
end if
c p u_attr i butes (h it_secti on_i nd ex)

< = cu rrê rìt_cp u_att ri b utes (h it_s ecti o n_i nd ex)
lru section <= curreñt lru section
s noop_attri butes (hit_section_i ndeX) <= new attri butes
write enable hit_section_index of cpu attributes ram

(also writes back lru section)
write enable hit section_index of snoop attributes ram

wait until falling clock edge
cpu_attri butes (h it_section_ind ex) <= u nd riven
lru section <= undriven
disable cpu attributes ram

s noop_attri butes (hit_section_i ndex) <= und riven
disable snoop attributes ram

end if

disable cpu/snoop address transceiver
negate Futurebus address acknowledge

snoop_requesting_line <= false
snoop_using_snoop_bus <= false
s noop_request_for_cache_bus <= false

end procedure sequence_snoop_participation

Figure 4-18 (continued)

of a data beat, or until the address strobe is negated, indicating and address-only trans-

action. In the case of a data beat, the procedure asserts the data acknowledge signal,

since, by this time, data has been accepted for a write or data is available for a read.

For a write, the procedure also disables the data RAM to complete äcceptance of the

data. The procedure then waits until completion of the data beat and commencement

of the end beat, indicated by both the data strobe and the address strobe being negated.

For a read, it disables the data RANI output, since the transaction master has accepted

183

the data. The procedure negates the data acknowledge signal to acknowledge comple-

tion of the data beat and disables the data transceivers. In the case of the snoop not

participating in the transaction, the procedure ignores any data beat that occurs, and

just waits for the end beat, indicated by the address strobe being negated.

The snoop's action during the end beat is to update the stored CPU and snoop attrib-

utes if the new attribute values differ from the current values. The procedure enables

the CPU attribute RAM output in order to read the additional attributes not replicated

in the snoop attribute RAM. It then waits for the values to be read, samples them, and

disables the CPU attribute RAM outputs. It updates the attribute values for the hit

section, and clears the Dirty attribute if ownership is relinquished. The procedure then

drives the updated attributes onto the CPII and snoop attribute buses, and enables the

CPU and snoop attribute RAMs to write the new values. After a delay for the write to

occur, it removes the driving values and disables the attribute RAMs. The final actions

of the procedure are to disable the address transceiver between the snoop and cache

buses, to acknowledge completion of the end beat by negating the address strobe, to re-

lease the mutual exclusion lock and to release use of both cache and snoop buses.

Write Buffer Sequencer Outline

The process that sequences write transactions from the write buffer is shown in

Figure 4-L9. All action are synchronized with the falling clock edge in the middle of a

clock cycle. The process waits until there is an entry waiting at the output of the write

buffer FIFO. It then checks whether it already is granted use of the Futurebus or

whether the master process is waiting for the write buffer to be flushed. If neither is

the case, the process requests arbitration for the Futurebus, and waits until access is

granted. When the process can proceed, it prepares for the Futurebus transaction by

setting up the Futurebus command values and by enabling address and data outputs

from the write buffer FIFO. The Cache-Command value is set using the cache_com-

184

write_buffer_controller : process is
begin

wait until falling clock edge and write buffer not empty

if not (write_buffer_grant or flush_write_buffer) then
write_buffer_request <= true
wait until falling clock edge

and (write_buffer_grant or flush write buffer)
end if

assert/negate Futurebus cache_command
depending on cache_command mark output

assert/negate Futurebus intent_to_modify
depending on write_through mark output

assert Futurebus write
negate Futurebus broadcast, three_party and ownership

enable write buffer address and data outputs

assert Futurebus address strobe
wait until falling clock edge and Futurebus address acknowledge asserted
save Futurebus busy reply value
if not Futurebus busy reply then

assert/negate Futurebus three_party depending on third_party reply
assert Futurebus data strobe
wait until falling clock edge and Futurebus data acknowledge asserted
enable write buffer shift-out
negate Futurebus data strobe and address strobe
if write_through mark output is cleared then

reset copyback_pending flip-flop
reset copyback address comparator
wait until rising clock edge at start of next clock cycle
disable write buffer shift-out

else
wait until rising clock edge at start of next clock cycle
disable write buffer shift-out

end if
wait until falling clock edge

and Futurebus address and data acknowledge both negated
else

negate Futurebus address strobe
wait until falling clock edge

and Futurebus address acknowledge negated
end if

Figure 4-19. Outline of the process that sequences write transactions from the write buffer.

185

negate Futurebus command
disable write buffer address and data outputs

if write_buffer_preempt or write buffer empty
or saved Futurebus busy reply is set then
write_buffer_request <= false

end if

end process write_buffer_controller

Figure 4-19 (continued).

mand mark output from the FIFO. The Intent-to-Modify value is set using the

write through mark: set for a write-through or cleared for a copy-back. The process

then sequences the Futurebus transaction, starting with an address beat. It saves the

state of the busy reply signal for use after the bus transaction is complete. If there is

no busy reply, the transaction proceeds with a data beat, writing data from the FIFO

output. On completion of the data beat, the process shifts the entry out of the head of

the FIFO and terminates the Futurebus transaction. In the case of a copy-back, the

process also resets the copyback pending flip-flop to indicate to the master process that

the copy-back has completed, and resets the copyback address comparator. By the time

the entire Futurebus transaction is completed, the next entry in the FIFO (if there is

one) has advanced to the head, and the master has determined whether it needs to

maintain the flush write buffer signal active.

If there was a O"; r"o; status from the address beat of the bus transaction, the pro-

cess does nôt proceed with the data beat. Instead, it terminates the bus transaction and

leaves the entry at the head of the write buffer FIFO so that the write can be retried

later.

When the transaction sequence is complete, with or without retry status, the process

negates the Futurebus command values and disables the address and data outputs

186

from the write buffer FIFO. It then determines whether to release Futurebus tenure.

It does so if it is preemptedbythe master, if the FIFO is empty, or if the write transaction

returned retry status. The process then repeats from the beginning.

4.3.4 The Coherence Monitor Model

The coherence monitor within the Leopard-2 system model consists of a set of observa-

tion processes, one within each cache, and a global monitor that veriflres maintenance

of coherence' The observation process in a cache senses the values written to and read

from the cache and senses the changes made to attribute values of lines in the cache.

It communicates this information to the global monitor.

In order for the global monitor to verify maintenance of coherence for a line in the

shared memory address space, it must verify two properties:

' that the attributes of the line are maintained within the legal set of con-

figurations for the coherence protocol being used, and

' that each cache provides its client processor with the most recently written
version of the line.

The global monitor checks the first property by maintaining, for each line, a copy of

the attributes stored in the caches. This represents the configuration of the line. The

monitor has a generic parameter that specifies the coherence protocol in use and thus

which configurations are legal. 'When an observation process informs the global moni-

tor of a change in attribute values for a line in a cache, the monitor updates its copy and

verifies that the new configuration is legal.

The global monitor checks the second property by maintaining a copy of the shared,

nxenxory imøge, which is the view of shared memory that should be seen by each proces-

sor. The shared memory image includes updates from processor write operations, even

if they are not transmitted through to the physical shared. memory. Recall that the

Leopard-2 model represents the value of a line by a token stamped urith the time at

787

which the line was last updated by a processor write. If the coherence protocol is cor-

rect, each cached copy of a line should contain the same latest updated value. On a read

hit in a cache, the observation process informs the global monitor of the timestamp of

the value read from the cache. The monitor compares the timestamp with that of the

shared memory image line to ensure that they are equal. Any write to a cache updates

the shared memory image, so the observation process informs the globat monitor. The

monitor compares the timestamp of the update with that of the shared memory image

to ensure that the superseded value is older. If it is not, the protocol or its implementa-

tion is in error.

One difficulty that arises in implementing the gtobal monitor is that of the size of the

shared memory image. There is potential for the host simulator to run out of memory.

The same problem arises in implementing behavioural simulation models of large

memory systems, and is solved by using sparse representations of the address space,

storing only those sections that are actually in use. In the case of the global monitor

model, the address space is divided into segments, each the size of one cache section.

The first time that any line within a segment is cached, storage is allocated for that seg-

ment of the shared memory image. Any segment without allocated storage is deemed

to have all lines uncached (invalid in every cache) with a timestamp of 0.

The observation process in each cache, as mentioned above, informs the global moni-

tor of read and write values and attribute changes. The process senses the state of con-

trol signals generated by the cache controller to determine when to sample data and

attribute values. A read value is sampled when the cache controller enables the cache

data RAM output to service a read hit. A write value is sampled when the cache con-

troller write-enables the data RAM to service a write hit. In the case of a write hit to

a shared line involving a Futurebus transaction, the transaction is performed before

the cache is updated. If the transaction is a write-update, another cache may update

its value and read it before the write to data RAM occurs in the writing cache. To avoid

188

this being detected as an error by the global monitor, the observation process in the

writing cache also samples the write data when the cache controller initiates a Future-

bus write transaction for a write hit to a shared line.

The observation process samples attribute values whenever the master or snoop

write-enables the CPU attributes RAM, and informs the globat monitor of the new

value. It uses the tag and set index values from the cache address bus to determine the

address of the line for use by the monitor.

A complication arises when a line is replaced by the master. The global monitor must

be informed so that it can modify the the attributes for the line to indicate that the line

is no longer valid in that cache. The difficulty is that, if the line is not dirty, the entry

is simply overwritten in the cache without the tagof the replaced line being output onto

any bus. Hence the observation process is unable to determine the address of the re-

placed line just by sampling the cache buses. To circumvent this problem, the observa-

tion process maintains its own copy of the cache tags. When the cache controller write-

enables the CPU tag RAIVI, the observation process informs the global monitor that a

line is being replaced. The address of the line is determined using the set index value

on the cache address bus and the tag value saved by the observation process. The ob-

servatiòn process then copies the new tag value.

4.4 Summary

This chapter has described the design of a programmable cache controller for the

Leopard-2 Multiprocessor. The programmability is based on an analysis of the options

within the P896.2 Futurebus cache coherence rules, and allows implementation of the

various cache coherence strategies discussed in Chapter 2. This chapter also describes

a behavioural model of the Leopard-2 system, and details the control sequences used

by the cache controller to manage the cache datapath. The model, in execution, is

189

driven by two alternative workloads: a synthetic workload to exercise specifrc aspects

of the system behaviour, and a pseudo-random workload to provide comprehensive test

coverage. The model also incorporates monitors to verify correct maintenance of coher-

ence by the caches.

190

Chapter 5
Conclusions

5.1 Summary of Proiect Context

In Chapter 2 of this thesis, three approaches to evaluatingperformance of cache coher-

ence strategies were compared: analytical, simulation based, and by measuring real

systems. The third approachyields the most accurate evaluation, provided differences

due to other factors can be isolated.

The author's part in the Leopard Project was to design and construct an experimental

vehicle for making such measurements. This sub-project formed the basis for further

work in the overall project, including:

. using the experimental hardware to evaluate the protocols described in

detait in Chapter 2 under real operating conditions,

. experimental work in multiprocessor operating systems,

. development and evaluation of concurrent applications, including the

Multiview software engineering environment [1] and a parallel imple-

mentation of the SISAL functional language [22],

The motivation for constructing a system to allow measurements of cache behaviour

came from the scarcity of raw data available, and the lack of validated comparisons

published in the literature, This was despite the frequently cited advantages of the

shared memory multiprocessor architecture, and the prediction that future worksta-

tions and network servers would rely heavily on that architecture. At the time of com-

191

mencement of the project, none of the small number of commercially available multi-

processors had the flexibility to allow the experimental goals to be met.

One approach considered as a means of developing a system for cache coherence ex-

periments was to accept some of the limitations inherent in existing commercial sys-

tems, and to modify them sufficiently to support different cache coherence strategies.

This would have involved less design and construction work than designing a new sys-

tem, since the existing inputioutput and memory systems would be used. However, it

would have relied on a commercial system having a sufficiently flexible bus protocol to

allow augmentation (possibly including extra bus wires) to implement different cache

coherence protocols, and having hardware design and packaging organized in such a

way as to allow "splicing in" extra cache hardware. Furthermore, it would have relied

on a vendor being willing to make available the proprietary design information to sup-

port such modifrcations to their hardware. Discussions held with some vendors and

other researchers in the early stages ofthis project indicated that vendors regard such

proprietary information as extremely confidential and sensitive, and are not willing to

make it available to independent researchers, even under strict secrecy agreements.

Hence, for these reasons, if not for reasons of technical diffrculty, this approach was re-

jected.

With this background as a startingpoint, design and construction work on the Leop-

ard systems \ry'as undertaken. The project was extremely ambitious, but construction

of a complete Leopard-2 system has been completed and the system demonstrated. The

prototype consists of four General Data Processors, a Shared Memory, a Futurebus Mo-

nitor and a Storage and Communications Processor. Subsequent work included port-

ing the Chorus operating system [43] to run on the hardware.

t92

5.2 Experimental Evaluation of Cache Coherence Protocols

Of the experiments that the Leopard multiprocessor was designed to support, the one

most relevant to this thesis is the measurement of system performance under different

cache coherence protocols. It is essential to realize that a complete computer system

consists not just of the CPU, cache and main memory, but also the I/O hardware, the

operating system software, and the applications programs that the end user runs. Dif-

ferent cache coherence protocols may affect the overall system performance to different

degrees as these other factors are included. Thus a valid performance evaluation ex-

periment must include the effects of these additional factors, and, in reportingresults,

must also report the conditions under which the measurements \ryere made.

One factor of great interest is the wayin which performance under different protocols

is affected by the choice of workload for the system. The way in which the protocols deal

with data shared between processors is one of the primary differences between them,

so it is important to assess performance under workloads with differing degrees of data

sharing. Some studies, for example those done by Eggers andKatz [18], suggest that

the amount of actual data sharing in real applications is low. However, the extent to

which the applications they measured are typical of parallel programs that will be run

on shared memory multiprocessors is questionable. One could argue that if sharing is

effrciently supported by the árchitecture, software designers will write programs in

such a \tray as to take advantage of it, thus increasing the degree of sharing above that

measured in current programs.

At the time of construction of the Leopard multiprocessor, the experiments planned

involved using a variety of application programs to run as benchmarks. The chosen

programs spanned a spectrum of process granularity and data sharing:

. the parallel SISAL system, representing fine grained parallelism with

heavy data sharing,

193

the Multiview system, representing coarse grained parallelism with a

lower degree of data sharing,

data parallel algorithms, such as image processing and numerical applica-

tions,

general interactive workstation usage, such as office automation and soft-

ware development tasks.

These benchmark applications were to run under the Chorus micro-kernel operating

system [43] ported to the Leopard-2 system, supplemented with a Unix interface layer.

The planned cache evaluation experiments involved running each benchmark with

each of the cache coherence protocols, and forming a matrix of performance measure-

ments. The primary metric of performance would be execution time of the program

being run. It is well recognized that this is the most reliable and complete measure of

system performance, as it includes all of the effects of hardware organization, I/O oper-

ation, operating system overhead and application characteristics. (See, for example,

[26] for a discussion of this issue.)

One of the difflrculties with this experimental technique is maintaining a controlled

environment, so that only the desired factors vary between runs. TTvo techniques \¡¡ere

considered to deal with this problem. The first was to use a fixed initial configuration

for each trial, and to isolate the system from random external influences. Setting up

an initial configuration involves such factors as formatting a disk store with exactly the

same fìles and data in the same locations, and starting the trial by boot-strapping from

this initial configuration. Isolation from external influences involves disconnecting

any network connections to other systems, and using scripts to control the running of

the benchmarks, so as not to rely on human user reaction times. The second technique

for dealing with variations in the environment wàs to perform a number of trials of each

measurement, and average the results. While this has the advantage of including the

a

a

194

effects of external influences on the computer system performance, the additional time

required to complete sufficient trials to gain statistical significance may make the ex-

periment intractable.

5.3 Conclusion

This thesis describes research in the area of cache coherence protocols for bus connected

shared memory multiprocessors, undertaken as part of the Leopard Project. The re-

search has produced some significant theoretical results, which underpin a practical

experiment in the construction of a multiprocessor platform for evaluatingcache coher-

ence protocols.

The description of cache coherence protocols in a uniform framework, presented in

Chapter 2, allows comparisons to be made between the protocols, and simplifies their

analysis. This work, and the research into bus protocols performed whilst designing

the Leopard-l, had a significant impact on the design of cache coherence mechanisms

for the IEEE Futurebus Standard. These, in turn, made possible the design of the gen-

eral purpose cache datapath in the Leopard-2 system (described in Chapter 3) and the

reconfigurable cache controller (described in Chapter 4), which can be programmed to

implement different coherence protocols.

The Leopard-2 multiprocessor forms a vehicle for comparingthe performance of a va-

riety of cache coherence protocols under controlled conditions. This form of evaluation

is necessary to validate previous performance studies done using analytical and si-

mulation based techniques. The Leopard-2 system is now operational, and may be used

to perform such experiments. The results of these experiments will greatly aid future

designers of shared memory multiprocessors to achieve maximum performance for pro-

grams run on this important class of computer systems.

195

Appendix A
L-Bus Data Transfer Protocol

This appendix describes the data transfer protocol developed for the Leopard-l

Multiprocessor system.

4.1 Overview

L-Bus transactions are composed of an address transfer from a master to slave mod-

ules, followed by zero or more data transfers between them. When a module needs to

initiate bus transactions, it requests access to the L-bus using the arbitration protocol.

When it is granted the bus, it becomes master, and may initiate zero or more transac-

tions. (A typical case where no transactions are done is when the master must perform

an interlocked data access, but some other module already o\Ã¡ns the lock. This is de-

scribed in detail below.) When the master has completed its last transaction, it releases

the bus.

During an address transfer, the master broadcasts the first address for the transac-

tion. Each module determines whether it will be involved in the transaction, and if so,

takes a copy of the address, and increments it after each data transfer. The particular

module referred to by the address is selected as the slave. Other modules may be in-

volved as third parties, and may monitor the subsequent data transfers.

For each data transfer, the caches determine whether they have a copy of the data

being accessed. If a cache does not have a copy, it does not participate further in the

r96

data transfer. If a cache does have a copy, then its response depends on the type ofdata

transfer, as discussed below

The L-Bus datatransferprotocol supportsbothwrite-through andwrite-backcaches,

and provides mechanisms to support cache coherence protocols. Caches may intervene

on data transfers to supply the most up-to-date copy of a block, and may notify other

caches that they should invalidate their copies of a block. The L-Bus protocol imple-

ments these mechanisms in a way that allows a mixture of cache coherence protocols

in the one system. However, it assumes that all caches use the same block size.

The L-Bus data transfer protocol also implements an interlocking mechanism for

controlled access to shared data. Alock signal is provided, which only one module may

assert at a time. When a module needs exclusive access to data, it requests the bus and

checks the state of the lock signal. If the signal is asserted, the module must relinquish

the bus and retry later. If the signal is negated, the module asserts it and commences

interlocked operation on the data. The operation may continue over more than one bus

tenure, and non-interlocked data access by other modules may be interleaved. During

the last data transfer of the interlocked operation, the module negates the lock signal.

A.2 Addressing Structure

Addressing in L-Bus is based on backplane slot position. Slots are numbered from

1 to 30 from left to right (viewed from the board insertion side) across the backplane.

The slot number is encoded on signals presented to each board by the backplane. Each

board is allocated a region in the address space according to its slot number.

The ad.dress space of a board is divided into two regions, one for cachable data and

one for non-cachable data. Modules accessing data from the cachable region may put

the data in their local caches. All caches must monitor data transfers to and from this

region. Data from the non-cachable region must not be cached.

L97

PVOffsetCSlot

27 262531 2r0

Figure A-1. L-Bus address format.

The format of an L-Bus address is shown in Figure A-1. The Slot field indicates which

backplane slot contains the board to be selected as the slave. SIot address 0 is reserved

for modules to access local memory and registers. SIot address 31 is reserved for the

System Region (see below). When the C freld is 1, the offset is in the cachable region

of the board's address space, otherwise it is in the non-cachable region. The Offset freld

is the word address of the data within the selected region of the board. The byte address

is four times the word address. The PV field is the protocol version indicator. It indi-

cates the lowest version of the L-Bus protocol which implements the type of transaction

requested by the master. If the slave conforms only to some lower version and cannot

perform the requested transaction, it must abort the transaction. The use of the proto-

col version field allows enhancements to be made to the bus protocols whilst ensuring

compatibility with existing modules. The restrictions applying to to different protocol

versions are described in Section 4.4.13 below. The values of PV deflrned are 00 for the

Quibus Version 0.9 bus protocol (used in the QDS-1000 system), and 01 for the L-Bus

protocol described here.

The System Region of the L-Bus address space, corresponding to Slot address 31, is

reserved for registers and storage not specifrc to a particular module, but which are

used to coordinate modules in a system. Locations in the System Region may have a

distributed implementation, or be decoded in a way dependent on the state of the sys-

tem. One such location is the Interrupt Identifier location, at offset 0 in System Region.

This is used in the interrupt protocol to acknowledge receipt of an interrupt. The actual

198

module that responds to an access to this location is the one selected by the interrupt

mechanism as the winning requester.

A.3 Data Transfer Signals

The L-Bus speciflrcation defines a number of backplane signals to carry address, data,

command and status information, and to synchronize transfer of this information be-

tween modules. These signals are described in this section.

4.3.1 lnformationSignals

InfI0:311 - address and data values

Address values are formatted as described in Section 4.2, with bit 0 on InflOl. Data

values are four bytes wide, with the lowest address (byte 0) on Infl0:71, the next byte

on Infl8:151, etc.

A.3.2 Master Command Signals

Command[O:3] - carry command information during an address transfer and byte-en-

able information during a data transfer

EndSeq - last data transfer in a transaction

Lock - interlocked operation in progress

The command information sent during an address transfer specifies the type of the

transaction, and hence whether the subsequent data transfers are reads or writes. The

command values are:

Tîansfer TVpe

non-cache read
non-cache write
reserued

Command
12

0

0

0

3

0

0

0

0

0

1

0

0

1

x

199

reserued

cache read-shared
cache write-back
cache read-invalidate
cache write-invalidate
cache read-copy

cache write-copy
reserued

cache immed-invalidate

During a data transfer the command signals are used to send byte-enable informa-

tion to the slave. Commandl0] is used as ByteEn[O] controlling byte 0, Commandll]

as ByteEn[l] controlling byte 1, etc. In a write transfer, only those bytes with the cor-

responding ByteEn signal asserted are written, the other bytes in the word being pre-

served. In a read transfer, only those bytes with the corresponding ByteEn signal as-

serted are required by the master.

4.3.3 Cache Status Signals

PassiveHit - a cache has a copy of the data, and it is consistent with shared memory

InterveneHit - a cache has the most up-to-date copy of the data and must intervene

on the transfer

SlaveUpdate -the memory slave mustupdate its copyof the data withthe value trans-

ferred on the bus

A.3.4 Slave Status Signals

Status[0:2] - slave completion status for the transfer

The values returned for completion status are as follows:

Code Indicated Condition

x
0

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

x
0

1

0

1

0

1

0

1

SelectErr
AccErr

Slave does not respond
Access error

0

0

0

0

0

1

2

Status
1 0

200

0

0

1

1

1

1

1

1

0

0

1

1

0

1

0

1

0

1

OpErr
ProtErr
Succes

Retry

TPAbort

Invalid operation requested
Protocol error
Successful completion
Busy retry
reserued

Third party abort

The code Success indicates that no problem occurred during the data transfer. Retry

is returned when the slave is busy, and waiting for it would unduly hold up the bus or

cause deadlock. When this status is returned, the master must terminate the current

transaction, release the bus, request it again, and retry the data transfer. SelectErr is

returned when there is no board inserted into the addressed slot, or when the board's

address space does not include the addressed offset. AccErr is returned when the slave

is unable to complete the data transfer because of an internal error, such as a memory

checksum error or a component fault. OpErr is returned when the transfer required

an invalid operation to be performed, such as writing to read-only memory or reading

a word from a byte-wide register. ProtErr is returned when the protocol level of the data

transfer is higher than the maximum recognized by the slave. TPAbort is returned

when a third party module needs to abort the transfer.

4.3.5 SequencingSignals

AddrStrobe - master has initiated an address transfer

DataStrobe - master has initiated a data transfer

Ready - all modules are ready for data transfer (wired-and)

CacheAck - all caches acknowledge availability of cache status (wired-and)

StatusAck- all participating modules acknowledge availability of status (wired-and)

TPAck- att third party modules acknowledge completion of data transfer (wired-and)

20I

4.3.6 Slot Address

Slot[0:4] - slot number, supplied by the backplane

A.4 Data Transfer Protocol Operation

In this section, the operation of the L-Bus data transfer protocol is described in detail.

Timing diagrams for each of the transfer types are shown in Section 4.5.

4.4.1 lnformation Transfer Handshaking

The transfer of information (address and data) on the Inf signals is sequenced with

a handshaking protocol using the synchronization signals listed in Section 4.3.5 above.

This section frrstly describes the basic handshaking protocol used for non-caching

transactions, then describes how it is augmented for transactions involving cachable

data.

Initially, when the data transfer bus is idle, each module negates AddrStrobe, DataS-

trobe, StatusAck and TPAck, and asserts Ready when it is ready to commence a

transfer. Since Ready is wired-and, it will not become true until all modules are ready.

'When a master must initiate a transfer, it waits until Ready is true, then places a

command code on the Command signals, and may place information on the Inf signals.

If the transfer is an address transfer, the master asserts AddrStrobe, whereas if the

transfer is a data transfer, the master asserts DataStrobe.

'When one of the strobe signals becomes true on thé bus, each module sequences the

Ready, StatusAck and TPAck signals according to the part they must play in the

transfer protocol. The master module itself immediately negates Ready and asserts

StatusAck and TPAck. The addressed slave module and the third party modules negate

Ready and commence their action for the transfer.

When the slave has completed its action, which may involve placing information on

the Inf signals, it places a status value on the Status signals and asserts StatusAck.

202

Any third party module which needs to signal an error may do so by forcing the Status

value to TPAbort and asserting StatusAck. Other third party modules also assert Sta-

tusAck. Since this signal is wired-and, it will not become true until all participating

modules have determined the status for the transfer.

When each third party module has completed its action, it asserts TPAck. Since this

signal is wired-and, it will not become true until all third party modules have completed

their actions.

When the master sees StatusAck and TPAck both true, it removes the command and

any information from the bus and negates the strobe signal, StatusAck andTPAck. All

other modules, on seeing the strobe signal false, remove any status or information from

the bus and also negate StatusAck and TPAck. All modules hold Ready false until they

are ready to commence the next transfer. When all modules assert Read¡r, the next

transfer may commence.

In order to handle transfer of cachable data, the basic protocol is extended using the

cache status signals. As in the basic protocol, the master waits until the Ready signal

is true, places a command and possible data on the bus, then asserts DataStrobe. In

a cachable data transfer, each cache then negates Ready and checks for a hit at the ad-

dressed location. If a cache does not have a hit, it does not assert any of the cache status

signals. If a cache has a copy of the data which is consistent with the copy in shared

memory, is asserts PassiveHit. If there is a cache which has a more recently written

copy of the data than shared memory and hence must intervene on the data transfer,

it asserts InterveneHit. It may also assert SlaveUpdate if it requires that the shared

memory slave update its copy using the data transferred. When each cache has com-

pleted the check, it asserts CacheAck and StatusAck. Since CacheAck is wired-and, it

does not become true until all caches have completed the check.

203

In a cachable data transfer, the slave waits until both DataStrobe and CacheAck are

true, and then checks the cache status signals. If InterveneHit is false, it continues nor-

mally. If InterveneHit is true and SlaveUpdate is false, it suppresses its action and al-

lows the cache asserting InterveneHit to complete the transfer. If InterveneHit and

SlaveUpdate are both true, the slave allows the intervening cache to complete the

transfer, but takes a copy of the transferred data to update its own copy. The remainder

of the handshaking sequence then continues as in the basic protocol, with the caches

removing the cache status signals and negating CacheAck when they see DataStrobe

become false.

A.4.2 Address Transfer and lncrement¡ng

A module which needs to use the data transfer bus flrrstly goes through the arbitra-

tion process, and when granted the bus, becomes the new bus master and initiates

transactions.

To start a transaction, the master first initiates an address transfer, using the basic

handshakingprotocol described in Section A.4.1 above. The command code it sends on

the Command signals indicates the type of the ensuing data transfers, and the informa-

tion on the Inf signals is the address of the first data transfer. If there is a module in

the addressed slot, it stores the address and command, and becomes the slave for the

transaction. It returns an appropriate status code depending on whether or not it can

continue with the transaction. Any third party modules may also store the address and

command, and may return the TPAbort code if they need to prevent the transaction

from proceeding.

After the address transfer has successfully completed, the master may initiate zero

or more data transfers. The address for each data transfer is that stored by all of the

participating modules, and must be incremented by one word after each successful data

transfer in the transaction. 'When the master initiates the last data transfer in the

204

transaction, it asserts EndSeq. In the case of a transaction with no data transfers, End-

Seq is asserted d.uring the address transfer. If there is a data transfer in which the sta-

tus code returned is not Success, the transaction is terminated.

4.4.3 Cache lmmed-lnvalidate Transaction

A cache immed-invalidate transaction may only occur in the cachable region of a

module's address space. If the master issues a cache immed-invalidate command code

in an address transfer, the transaction contains no subsequent data transfers. The

command ind.icates that any cache which has a copy of the data at the addressed lo-

cation must immediately invalidate that copy.

A.4.4 Cache Read-shared Transact¡on

A cache read-shared transaction may only occur in the cachable region of a module's

address space. It is used by a cache master to read a block without changing the data

in other caches. A third party cache which does not have a hit or which has a passive

hit at the addressed location takes no action. A third party cache with an intervene hit

must intervene to suPPlY the data'

4.4.5 CacheWrite-BackTransaction

A cache write-back transaction may only occur in the cachable region of a module's

address space. It is used by a cache master which has the most recently written copy

of the addressed block to write it back to memory. A third party cache which does not

have a hit or which has a passive hit at the addressed location takes no action. If there

is a third party cache with an intervene hit, the cache coherency protocol has been cor-

rupted, so the cache should return the TPAbort status code.

205

4.4.6 Cache Read-lnvalidateTransaction

A cache read-invalidate transaction may only occur in the cachable region of a mod-

ule's address space. It is used by a cache master to gain an exclusive copy of the ad-

dressed data. A third party cache which does not have a hit at the addressed location

takes no action. A third party cache with a passive hit must invalidate its copy of the

data. A third party cache with an intervene hit must intervene to supply the data, and

then invalidate its copy.

A.4.7 Cache Write-lnvalidate Transaction

A cache write-invalidate transaction may only occur in the cachable region of a mod-

ule's address space. It is used by a cache master to write its copy of the addressed data

through to shared memory. A third party cache which does not have a hit at the ad-

dressed location takes no action. A third party cache with a passive hit must invalidate

its copy of the data. A third party cache with an intervene hit must invalidate its copy

and force shared memory to be updated'

4.4.8 Cache Read-Copy Transaction

A cache read-copy transaction may only occur in the cachable region of a module's

address space. It is used by a cache master to gain a non-exclusive copy of the addressed

data. A third party cache which does not have a hit or which has a passive hit at the

addressed. location may take a copy of the transferred data. A third party cache with

an intervene hit must intervene to supply the data.

A.4.9 CacheWrite-CopyTransaction

A cache write-copy transaction may only occur in the cachable region of a module's

address space. It is used by a cache master to broadcast a copy of the addressed data

through to shared memory and to third party caches. A third party cache which does

206

not have a hit at the addressed location may take a copy of the transferred data. Athird

party cache with a passive hit must take a copy. A third party cache with an intervene

hit must intervene to accept the data, and may force shared memory to be updated.

A.4.10 Non-Cache Read Transaction

A non-cache read transaction may occur at any address, and is the normal transac-

tion type used by a non-cache master. If the addressed location is in the non-cachable

region of a module's address space, the basic handshaking protocol is used. If the lo-

cation is in the cachable region, the extended handshaking protocol is used. A third

party cache which does not have a hit or which has a passive hit at the addressed Io-

cation takes no action. Athird party cache with an intervene hit must intervene to sup-

ply the data.

A.4.11 Non-Gache WriteTransaction

A non-cache write transaction may occur at any address, and is the normal transac-

tion type used by a non-cache master. If the addressed location is in the non-cachable

region of a module's address space, the basic handshaking protocol is used. If the lo-

cation is in the cachable region, the extended handshaking protocol is used. A third

party cache which does not have a hit at the addressed location takes no action. A third

party cache with a passive hit must invalidate its copy of the data. Athird party cache

with an intervene hit must intervene to accept the data, and may force shared memory

to be updated.

A.4.12 lnterlocked Transactions

Modules needingto perform interlocked operations on data use the Lock signal to en-

sure mutual exclusion. Before commencing an interlocked operation, a module checks

this signal. If it is already true, some other module is in the middle of an interlocked

operation. Hence the bus must be relinquished and requested again.

207

When the module has the bus and the Lock signal is false, the interlocked operation

may commence. The Lock signal must be asserted before the first interlocked transfer,

and held until the last data transfer in the interlocked operation. The bus may be relin-

quished in the midst of an interlocked operation to allow non-interlocked transactions

to proceed. The Lock signal must be asserted for all transfers in an interlocked oper-

ation, not just while the bus is relinquished duringthe operation. This ensures correct

interlocking in multi-port slaves, such as a memory block on an intelligent device con-

troller.

4.4.13 ProtocolVersion

As indicated in Section 4.2, protocol version 01 is used to indicate conformance with

the data transfer protocol described here. Protocol version 00 is used to provide com-

patibility with the Quibus Version 0.9 bus protocol used in the QDS-1000 system. The

restrictions applied for compatibility are:

. all data transfers must be of the non-cache read or non-cache write type,

and

. each transaction must consist of an address transfer followed by at most

one data transfer.

Where an L-Bus transaction could be performed according to these restrictions, it is

done as a protocol version 00 transaction. This ensures maximum compatibility be-

tween modules, allowing QDS-1000 modules to be integrated into a Leopard-l system.

4.5 Timing Diagrams

The following timing diagrams show the sequencing of address and data transfers

in the L-Bus data transfer protocol. Each kind of transfer is shown from the perspective

of the master, the slave and a third party module.

208

AddrStrobe
(out)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

TPAck
(in)

Ready
(out)

Ready
(in)

Command
EndSeq

(out)

Inf
(out)

Status
(in)

-

/
\ \Address

\

Figure A-2. Address transfer at master

209

AddrStrobe
(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

Status
(out)

Address

Figure A-3. Address transfer at slave

2r0

AddrStrobe
(in)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

Status
(in)

\
)\

Address

I
\I

I

\

Figure A-4. Address transfer at third party

zLl

AddrStrobe
(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

Status
(out) TPAbort

Address

Figure A-5. Address transfer abort at third party

2t2

lead Dat¡

\
\
/

-

/ \Write Data

I

I

\DataStrobe
(out)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

TPAck
(in)

Ready
(out)

Ready
(in)

Command
EndSeq

(out)

Inf
(out)

Status
(in)

Inf
(in)

Figure A-6. Non-cachable data transfer at master

2L3

DataStrobe
(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

Status
(out)

Inf
(out) lead Dat¡

Write Data

Figure A-7. Non-cachable data transfer at slave

2t4

DataStrobe
(in)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

Status
(in)

Inf
(in) Read Data

Write Data

f
\

I

\

Figure A-8. Non-cachable data transfer at third party

2L5

DataStrobe
(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

Status
(out) TPAbort

Write Data

Figure A-9. Non-cachable data transfer abort at third party

216

DataStrobe
(out)

CacheAck
(out)

CacheAck
(in)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

TPAck
(in)

Ready
(out)

Readv
(in)

Command
EndSeq

(out)

Inf
(out)

PassiveHit
InterveneHit
SlaveUpdate

(in)

Inf
(in)

Status
(in)

Inf
(in)

\
I

I

Read Datntervene
I

l

-

I
\ \taWrite D,

I

I

\

Figure A-10. Cachable data transfer at master
2t7

DataStrobe
(in)

CacheAck
(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

PassiveHit
InterveneHit
SlaveUpdate

(in)

Inf
(in)

Status
(out)

Inf
(out) lead Datr

Read Datntervene\

I

taWrite Dr

I

\

Figure A-11. Cachable data transfer at slave

2r8

DataStrobe
(out)

CacheAck
(in)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

PassiveHit
InterveneHit
SlaveUpdate

(rn)

Inf
(in)

Status
(in)

Inf
(in)

\
lead Dat¡

I

\
I

I

ntervenel Read Dat

-

/
\ \taWrite Dr

I

I
l

Figure A-12. Cachable data transfer at third party

2\9

DataStrobe
(out)

CacheAck
(in)

StatusAck
(out)

TPAck
(out)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

PassiveHit
InterveneHit
SlaveUpdate

(in)

Inf
(in)

Status
(out) TPAbort

Read Datntervenel

Lta\Mrite Dr

l

\

Figure A-13. Cachable data transfer abort at third party

220

DataStrobe
(in)

CacheAck
(out)

StatusAck
(out)

StatusAck
(in)

TPAck
(out)

TPAck
(in)

Ready
(out)

Command
EndSeq

(in)

Inf
(in)

PassiveHit
InterveneHit
SlaveUpdate

(out)

Inf
(out)

Status
(in)

Inf
(in) lead Dat¡

I
\

ntervene ,X\Read Dat

X\

Write D¡ ta

I
I

\

Figure A-14. Cachable data transfer at cache

22L

Appendix B
The Leopard-2 Bus Arbitration Protocol

This appendix describes the arbitration protocol designed for use in the Leopard-2.

It is based on that specifïed in the IEEE Futurebus standard [31], but is considerably

simplified, allowing for significantly faster operation.

8.1 Arbiter and Protocol Description

A module which is to be involved in the arbitration process must include an arbiter

with the interfaces illustrated in Figure B-1. The pins AP, AQ and AR are the syn-

chronization signals used to sequence the arbitration protocol. The GA signal encodes

the geographical address (slot number, between 1 and 24) for the module in the back-

plane. The signals REQ(24:1) are used by the arbiter to signal a request for access to

the bus.. A module in slot I uses REQ(Ð to signal its request. The reset signal, RE, is

ARBITER

AP

AQ

AR

GRANT

REQUEST

REQ(24:1)

GA
RE

Figure B-1. Arbitration circuit connections

222

I

I

AP

AQ

AR

phase2 waitlphase3wait3wait2phaselwaitl

Figure B-2. Arbitration synchronization.

used to initialize the arbiter. The module uses the REQUEST signal to request access

to the bus. When access is granted, the arbiter asserts the GRANT signal. The module

then proceeds to use the bus, and when it has finished, it negates REQUEST. The ar-

biter responds by negating GRANI after which a new request may be signalled.

The three synchronization signals, AP, AQ andAR, are active-low open-collector sig-

nals driven by all of the arbiters in a system. If any module asserts one of the signals

(by pulling it low), that signal is in the asserted state for all modules. It is only in the

negated state when it is released by all modules (and so pulled high by the bus termina-

tor). This property is used to implement the three phase synchronization scheme, as

illustrated in Figure B-2.

Initially, AP and AQ are released by all modules, and AR is asserted by all modules,

and this state is called waitl. Any module may initiate statephøse7 by assertingAP,

after which all modules may assert AP. When any module has completed processing

for phasel, and after it has assertedAP, it may release AR. Only when all modules have

releasedARdoesthebuslinebecomenegated, andstate wait2 isentered. Thisprocess

223

is repeated, cycling through the synchronization signals as shown in Figure B-2, until

state waitl is reached again.

The arbitration protocol is specified formally in VHDL in Section 8.2 below, and op-

erates as follows. Initially, after a reset operation, the synchronization signals are in

state waitl, and there is no current master. When an arbiter which is not current

master receives a bus request from its client module, it initiates state phasel by assert-

ingAP. All arbiters, whentheydetectthe startof statephasel, also assertAP, andlatch

the state of their client request signals. Arbiter j drives signal REQ(/) with the latched

value. When an arbiter has completed this operation, it releases AR. When all arbiters

have completed the operation, state wait2 is entered.

'When each arbiter detects state wait2, it asserts AQ to enter state phase2, and uses

the values on REQQ :I) and the knowledge of the current master to determine the

master-elect. A round-robin allocation policy is used, where the master-elect is the re-

questing master with the least geographical address higher than the current master

(modulo 25). When each arbiter has determined the master-elect, it releasesAP. When

all arbiters have completed the operation, state wait3 is entered.

If an arbiter detects state wait3 and there is no current master (after reset), it im-

mediately initiates state phase3 by asserting AR. Otherwise, all arbiters wait for the

current master to frnish its use of the bus, after which it initiates state phase3. When

state phase3 is detected, all arbiters also assert AR and make the master elect the cur-

rent master. They then release AQ to signal completion of bus hand-over. The new cur-

rent master, as soon as it has acquired that status, may start to use the data transfer

bus. When all arbiters have completed the hand-over operation, state waitl is entered.

All arbiters remain in this state until a new request from a module other than the cur-

rent master is detected. While in state waitl, the current master may regain tenure

of the bus immediately, without having to arbitrate, so long as there are no other re-

quests from other masters.

224

8.2 VHDL Specification of the Arbitration Protocol

The package arbitration_bus defines the types used in the arbiter specification. The

type bus_signal represents an active low signal on the bus with only one driver. The sub-

type resolved_bus_signal is a resolved signal type used to represent active low signals

which may have more than one driver. The type REQ_array is used for the request sig-

nals on the arbitration bus. GA_range specifies the allowed values for geographical

(slot) addresses. The value 0 is reserved, and does not refer to any slot number. Finally,

bus_settling_delay is the maximum round trip propagation delay specified in the Future-

bus standard.

package arbitration_bus is

type bus_signal is ('L', 'H');

type bus_signal_vector is array (natural range .t) of bus_signal;

fu nction resolve_bus (d rivers : bus_si g nal_vector) return bus_si gnal ;

subtype resolved_bus_si gnal is resolve_bus bus_si gnal ;

type REQ_array is array (24 downto 1)of resolved_bus_signal;

subtype GA_range is integer range O to 24; -- 0 reserved for no master

constant bus_settling_delay : time; -- time for signal driven on bus to settle

end arbitration_bus;

The body of the arbitration_bus package contains the speciflrcation of the bus signal re-

solution function. If performs a wired-or function, producing a low value (asserted) if
any of the drivers are low, otherwise it produces a high value (negated). The value for

the settling time constant is also specified in the body.

package body arbitration_bus is

function resolve_bus(drivers : bus_si gnal_vector) return bus_signal is
variable result : bus_signal :='H';

begin
for i in drivers'range loop

if drivers(i) = 'L then
result :='L';

end if;
end loop;

225

return result;
end resolve bus;

constant bus_settling_delay : time := 25 ns;

end arbitration_bus;

The operation of the arbitration protocol is specified by the operation of each of the

arbiters that participate in the protocol. The following declaration of the entity arbiter

corresponds to the arbiter module shown in Figure B-1. The request and grant signals

attach to the client processor. The processor requests bus tenure by asserting request.

When it detects grant asserted, it may proceed to use the bus. When it is complete, it
negates request, and waits until grant is negated. It may then make further requests.

use work.arbitration bus.all;

entity arbiter is

port (request: in boolean;
grant : out boolean;
AP, AQ, AR: inout resolved_bus_signal;
REQ: inout REQ_array;
GA: in GA_range;
RE: in bus_signal);

end arbiter;

The architecture body of the arbiter specifies the behaviour in terms of a number of

interacting processes. The internal signal current_master encodes the geographical ad-

dress of the module that is currently granted bus tenure. The signal master_elect en-

codes the geographical address of the master that wins the arbitration process. The

function next_master determines the geographical address of the module to be allocated

tenure next, given the current master and the vector of requests. This function imple-

ments the round-robin policy. The process initialization sets the synchronization state to

waitl, and the current master to 0, indicating that no master has tenure. The process

acquire specifies that an arbiter whose client process requests the bus while not already

current master starts the synchronization cycle by initiating the change to phasel. The

process make_request specifies that when an arbiter detects the beginning of state

phasel, it uses the current state of the client request to assert or negate its bus request

226

signal. The non-deterministic decision point inherent in all arbiters is implied by this

operation. The arbiter may take an indeterminate amount of time to decide whether

the request input is asserted or negated when phasel begins. The process elect specifîes

that when all arbiters have decided upon their requests, a neïv master will be elected

based on the round-robin policy. The process tenure_release then specifies that further

progress of the synchronizationcycle is delayeduntil the currentmasterhas completed

its bus tenure (at which time its grant signal is negated). However, if there is no current

master (ie., during the first cycle), the synchronization cycle continues. The process

hand_over specifies that when the current master has released the bus, the elected

master becomes the current master, and its grant is asserted. The synchronization cycle

is then complete, and returns to state waitl. The process release specifies that if the

client process negates the request signal, and there are no other requests being arbi-

trated (indicated by still being in state waitl), the grant signal is negated, but the mod-

ule remains current master. The process reacquire specifies that a current master may

resume tenure without havingto re-arbitrate, provided no other requests are being ar-

bitrated.

architecture specification of arbiter is

signal current_master : GA_range; -- GA of current bus master
signal master_elect : GA_range; -- GA of elected bus master

function next_master(current_master : in GA_range;
REQ : in REQ_array) return GA_range is

variable candidate : GA range;
begin

candidate r= curêñt_master + 1;

if candidate = 25 then
candidate := 1;

end if;
loop

if REQ(candidate) ='L then
return candidate;

else
candidate := candidate + 1;

if candidate = 25 then

227

candidate := 1;

end if;
end if;

end loop;
end next master;

228

begin -- specification

initialization : process (RE)

begin
if RE ='L then

AP <='H'; AQ <='H';
current master <= 0;

end if;
end process initialization;

AR <='L'; -- initially in state waitl
-- bus allocated to no master

acquire: process
begin

wait until AP = 'H' and AQ = 'H' and AR = 'L' -- waitl
and current master i= GA and REQUESI

AP <= 'L; -- start phasel
end process acquire;

make_request: process
begin

wait until AP ='L'and AQ ='H'and AR ='L'; -- phasel

AP <='L';
¡f REQUEST then

REO(GA) <='U;
else

REO(GA) <='H';
end if;
AR <= 'H' after bus_settling_delay; -- wait2

end process make_request;

elect : process
begin

wait until AP = 'L' and AQ = 'H' and AR = 'H'; -- wait2
AQ <= 'L'; -- start phase2

m aster_elect < = rì êxt_m aster (cu rre nt-m aster, R EQ) ;

AP <= 'H' after bus_settling_delay; -- wait3

end process elect;

tenure_release : process
begin

wait until AP = 'H' and AQ = 'L' and AR = 'H' -- wait3

. and ((current_master = GA and not REQUEST)

orcurrent_master=0);
GRANT <- false;
AR <= 'L'; -- start phase3

end process tenure_release;

229

hand_over : process
begin

wait until AP ='H'and AQ ='L'and AR ='U; -- phase3

AR <= 'L;
current_master <= master_elect;
GRANT <= CUIIêfìt MASTET = GA;

AQ <= 'H' after bus_settling_delay; -- waitl
end process hand_over;

release : process
begin

wait until AP = 'H' and AQ = 'H' and AR = 'l- -- waitl
and current master = GA and not REQUEST;

GRANT <= false;
end process release;

reacquire: process
begin

wait until AP = 'H' and AQ = 'H' and AR = 'L' -- waitl
and current_master = GA and REQUESï

GRANT <= truei
end process reacquire;

end specification;

230

A Behavioural Specification of Cache
Coherence
PJ. Ashendenf and C.D. Marlint

Multiprocessor systemswlth shared memorTareof increesinginterest, beceuse of thelrflexibility, incremen-
tal expandability, and potentially low cost. To reduc* bus cont€ntion and to improve memor1 acccss tirnc,
such multiprocessor sylems commonly incorporate ¡ memotJ cache per process¡or. the use of memory
caches leads to the need to ensure thst the contents of fhe c¡ches are coherent rvith e¡ch other and wiah the
shared memory; this is theso-calledcache coherezcr problem. A number ofstretegies heve bcen proposed lo
ovencome this problem, but little is known about their advantages end disadvrntrgcs.

Thls paper contributes to the study of cache coher€nce str¡tegles by proposlng a formrl model of cache
coherence. This model, which is an lnformation structure model, is described rnd lts epplication illustr¡ted
by outlining how it can be used to descr¡be the cache coherence slrategy used ln lhe Futurtbus st¡nd¡rd.
Keywords and Phrases: c¡che coherence strategies, informatlon structure models, multiprocessor computer

äå'iTLill'iliBTi.,, r.r..,
".,.,.I.INTRODUCTION bus Standard Working Group (IEEE Standard 896.1,

A multiprocessor computer architecture which has 1987). Until recently, there was no standard bus suitable
receivedmuchattentionrecentlyisthebus-basedsymmet- for use in a symmetric multiprocessor implementation.
ric multiprocessor. It consists of a pool of homogeneous Manufacturers and researchers resorted to their or,vn cus-
processorsconnectedviaasystembustoagloballyshared tom bus designs [e.g. the Balance system bus, the Mul-
memory. This basic confrguration may also be augmented timax Nanobus, and L-Bus (Ashenden and Knight, I 985)
with processors and controllers for particular functions in the Leopard-l systeml- The problems with existing
such asl/O interfacing, graphics processing and graphics standard buses were that they assumed a monoprocessor
display. Several examples may be found, both as commer- as bus master, they had insufficient bandwidth, and they
cially manufactured systems [e.g. Sequent Balance (Fiel- provided no support for multiple caches. More recently
land and Rodgers, 1984) and Symmetry (Manuel, introduced buses lsuch as Multibus-Il OEEE Standard
1987), Encore Multimax (Anzelmo et al., 1985) and the 1296, 1987) and VME (IEEE Draft Standard 1014,
DEC VAX 8000 Series multiprocessors (Digital Equip- 1987)l have addressed the performance issues and allow

symmetric multiple masters, but still provide no cache
support. The Futurebus design, on the other hand, has
addressed all of these problems, as will be described below.

The Futurebus Standard specifrcation has been divided
into two sections. IEEE Standard 896.1 (1987) def,rnes the
mechanical and electrical details, and specifies the basic

of these. protocol mechanisms for bus transactions. The second
From consideration of processor-to-memory access section (called P896.2, currently being drafted) will define

bandwidths and bus data transfer bandwidths, it is clear the next level of protocol, including message passing for-
that a data cache on each þrocessor is crucial to the suc- mats, event notifrcation, and the cache coheiente protocol.
cessful operation of a symmetric multiprocessor. Without The first author has been involved in development of both
acache,thebuswouldbeasourceofcongestion,witheach sections, concentrating on the specification of cache
processor having to wait for access to code and data stored coherence in P896.2. The issue of how to specify coherent
in shared memory. A frrst order approximation would cache behaviour has been given much attention by the
ìndicate that the use of caches increases the number of V/orking Group, and the ãpproach promoted by the
processors which can effectively use a bus by a factor authors is preseñted in this paper.
related to the cache hit-rate.

Of interest is the work undertaken by the IEEE Future-
2. CACIIE COHERENCE

this

ü:
ral-

ian Computer Society Inc. the clients would be processors.) Data in shared memory is

t Dcpartmentof ComputcrScicnce, Univenity of Adelaile GPO Box 498, Adelaide SA,5001.-This paperwas preænteda! the El¿venthAusfialianComputer
Science Conference ai tlv Univenity of Queensland in Brisban¿, Queersland in Februry 1988.

50 Tlu Au¡tralian Computer towmal VoL 20, No. 2, Møy I98E

23r

A Behoviourul Spec'ifit'ation of Cache Coherence

Shared Memory

ø

Cache 1

ø I

Cacl¡e 2 Cache 3

Client I Client 2 Client 3

Figure l. Data sharing between multiple caches.

mented in experimental systems over the past four years.
These include Goodman's write-once strategy (Goodman,
1983), Papamarcos' Illinois strategy (Papamarcos and
Patel, I 9 8 4), the B erkelq ow ners hip slrategy used in SPUR
(Katz et al., 1985), and the XEROX Dragon and DEC
Firefly strategies (Archibald and Baer, 1986).

These strategies are typically defined in an informal
manner. Comparisons between them have been made in
an informal descriptive manner, using analytic models
(Vernon and Holliday, 1985) and using the results of simu-
lation studies (Archibald and Baer, 1986). The analytic
models used differ from the model to be presented in this
paper in that they are aimed at est¡mating performance of
systems incorporating the modelled strategies, whereas
our model is aimed at precise specification of strategies in
general.

All of the above strategies have some points in com-
mon. Firstly, they all augment the usual validlinvalid state
bit of a cache entry with additional status bits to reflect
further attributes of a line (e,g. degree of sharing, whether
the line has been modified, etc.). Secondly, they all require
caches to monitor bus transactions, and possibly to change
line state ifthey have a copy ofthe data being accessed by
the transaction. Thirdly, they all assume special bus sup-
port for maintaining coherence. This support takes the
form ofadditional transaction types beyond the usual read
and write, such as invalidation, intervention andbroadcast
transactions.

Prior to the development of Futurebus, standard buses
provided no protocol mechanisms for such things as notifi-
cation of invalidation or intervention. Those proprietary
buses developed to support particular cache coherence
strategies only included the necessary mechanisms for
their particular strategies. The goal of the Futurebus
Committee was to provide protocol mechanisms to sup-
port all coherence strategies. This required investigation of
the published strategies to determine the set of transac-
tions required. As a result of this investigation, a prelimi-
nary model of coherent cache behaviour was formulated
(Sweazey and Smith, 1986), and the basic bus protocolof
IEEE Standard 896.1 was designed to support implemen-
tation of this model.

3. SPECTFTCATION TECHNIQUES
The cunent work of the Cache Coherence Task Group of
the P896.2 Working Group is to draft a speciñcation of the
behaviour of caches in a Futurebus system. The specifrca-
tion must ensure that any conforming implementation
maintains coherence, and must be flexible enough to
include published coherence strategies as subset imple-
mentations. A problem to which the Task Group has given
much consideration is the selection of a specification lan-
guage. This is a significant problem, since the solution has
bearing on the effectiveness ofthe specification as a stand-
ard. It must combine precision and completeness with
inrellig

The
numbe
langua

5I

treated as an array of equally sized contiguous blocks
called lines. The service provided by each cache is fast

access to linesof shared memory data. This is achieved by

storing locally a copy ofthose lines expected to be used by

the client. [Sèe Smith (1982) for a description of cache

design parameters.l The requirement placed on the cache

service is that, at any time, all clients are given the same

image of the data in shared memory. This property is

called c ac he c o herenc e.

To illustrate the way in which caches can interact to

maintain ç I are

copy-back three

cliènts are . The

data is stor each

have a copy, by virtue ofhaving read the line from shared

shared memory as well), or that it broadcast a signal for all
other caches to invalidatetheir copies of L. For the purpose

of this illustration, assume it does the latter. In this case,

Cache I will then contain the only current version of L
(call if L) with shared memory still containing the old
version.

Now suppose Client 3 wishes to read the data' If Cache

3 were to Îètch the data from shared memory, it would
fetch the old version.It is necessary for Cache I to become
involved in the transaction to supply the current version L'.
It can do this
ingto supply
in place of s

make use of
(i.e., shared memory does a write). This is calledreflection.

The way in which caches respond to client requests and

bus transaótions in order to maintain coherence is called a

cache coherence strategy. There have been several coher-
ence strategies published in the literature and imple-

Tlt¿ Awtralian Computer loumal, VoI 20, No. 2, May 1988

232

Simulator

Simulaüion
Linker

Model
Compiler

Netlist
Dxtractor

Models
Symbols,

Schematics

A Behaviourul Spet ifit'ution of Cache Coherente

Figure 2, Helix system organisation.

tion techniques applies, from very informal to highly for-
mal; as with programming languages, the most common
techniques are at the informal end of this spectrum. The
motivat¡on for the developme nt of formal models of cache
coherence strategies is also similar to that motivating the
development of formal models of programming language
semantics, and comes in three parts:

- to help in the process of understanding (and comparing)
cache coherence strategies,

- to provide a less ambiguous way to describe a particular
cache coherence strategy, and

- to assist with proving various properties of a particular
cache coherence strategy.

In view of these similarities, it is not surprising that the
sorts of models which are useful in the formal description
of programming language semantics are also useful in the
formal description of cache coherence strategies. At the
informal end of the specification spectrum, a natural lan-
guage (e.g. English) may be used. However, its apparent
advantage of being understood a priori by its intended
audience is, in fact, its weakness. Natural languages are
learned by example, and sentences may be interpreted
differently by different people. The diversity of interpreta-
tion and nuance which makes poetry and other artistic
literature possible precludes its use for formal documents.
Where precise natural language is required, documents are
circumlocutious, laboured, and often ambiguous and
opaque to understanding, despite the best efforts of their
authors. Furthermore, concepts expressed in natural lan-
guage are not amenable to verification through analytical
or mathematical means.

At the highly formal end of the spectrum of specifica-
tion languages are formal mathematical notations, such as

abstract temporal logic [e.g., LOTOS 0SO/TC97lSC2l
DP-8807, 1985)l and Petri nets (Peterson, 1977). These
achieve precision by virtue of a rigorous mathematical
basis, and hence properties of the concept being specihed
can be proven mathematically. However, such notations
are often inappropriate, since they rely on the proficiency
of the authors in expressing the concept in the formal

52

terms, and are not er
of system designe In
addition, it is not al m
for conformance a
notation.

A compromise between the above extremes is repres-
ented by the notion of an information stracture model
(Wegner, l97l). This kind of model is esp
the description of programming langu
where the state of a program is described
tion structure (essentially a data structure)

description of the data control aspect of programming
languages.

An information structure model can also be used to
describe the behaviour of coherent caches in a multipro-
cessor system. In this case, the state of each cache is
represented by an information structure, and the changes
in cache state are represented as transformations on the
information structure, The contents of the information
structure include the representation of attributes of lines of
data (e.g. validity, shäring, etc.). The transformations
represent the behaviour exhibited by a cache in response to
transactions on the system bus, and to requests made by the
corresponding cache client.

Using an information structure model as a specification
has several advantages, particularly in the context of a
standards document. Firstly, the information structure and
the transformation operations can be expressed in a famil-
iar "programming language" form. This makes it easier to
produce the standard, and leads to a standard which is
more intelligible to its intended audience.

Secondly, because of the programming language form,
the speciflrcation of a system can be simulated. This
requires an interpreter for the language, provision of some
concrete representation of the information structure, and
an environment for executing the transformation opera-
tions in response to some externally provided stimulus
events.

Thirdly, as a result of a simulation, test vectors can be
created, and subsequently used to verify conformance of
an implementation to the specification. This is analogous
to the use of validation suites to test programming lan-
guage implementations for conformance to a semantic
specification. The simulation can also be used as a refer-
ence implementation, being the arbiter in the case of dis-
agreements between implementations.

A common criticism of specification languages in
general is that they themselves need to be specified for-
mally, and this is also true of specification systems based
on information structures. However, the two components
of an information structure model can themselves be spec-
ified in precise terms:

TIU Awnalian Computcr Joumal VoI 20, No. 2, Møy I 988

233

A Behavioural SpedJìcation of Cache Cohcrenc'e

- The information structure can be described precisely
using algebraic techniques for specifying abstract data
types (Goguen, 1975; Goguen et al., 1977; Guttag,
1980 and Guttag et al., 1978); for illustrations of how
this can be done see Friedel et al. (in preparation),
Marlin and Oudshoorn (1985) and Oudshoorn and
Marlin (in preparation).

- The transformations can be written in the notation of a
programming language (either pre-existing or designed
for the purpose) whose semantics can be specified for-
mally using techniques such as denotational semantics
(Tennent, 197ó).

In this way the information structure model will use only
primitives which have precise descriptions, thus ensuring
that the model has firm foundations.

4. A BEHAVIOURAL SPECIFICATION USING HELIX
As part of the work for the IEEE P896,2 Cache Coherence
Task Group, we have developed a behavioural specifica-
tion of the Futurebus Cache Cohere nce protocol using the
Helix sim ulation system (Silvar- Lisco Corporation, I 9 86).
This system is part of a Computer Aided Engineering
suite, and is a discrete event simulator specialised for
modelling electronic systems.

The behavioural specification could be written using
some other programming language, such as Pascal, Lisp,
or a concrete form of such mathematical notations as

temporal logic (e.8. Tempura (Moszkowski)), The
requirement is that there be a formal semantic basis under-
lying the language used. Helix was chosen because its
modelling language is specially designed for expressing
behavioural interactions in complex electronic systems,
and the runtime system prpvides most of the infrastructure
required for managing a simulation and collecting results.

4.1 Overview of the Helix System
Figure 2 illustrates how the Helix simulation system is

used. Graphical symbols representing components, and a

schematic representing a circuit of interconnected sym-
bols, are created using a graphics editor. A netlist extractor
is used to determine the electrical connectivity drawn in
the schematic, and to perform some validity checks on the
circuit. For each component type to be simulated, a behav-
ioural model is written using the Helix Hardware Descrip-
tion Language (HHDL). These models are then checked
and compiled into an intermediate code. Next, the simula-
tion linker is invoked to check for consistency between
component symbols and models, and to create a simulator
for the schematic.

The HHDL language is based on Pascal, augmented by
constructs for representing component pins and concur-
rency constructs for implementing component actions in
response to pin stimuli. An HHDL program firstly defines
nettypes, which are (almost) arbitrary Pascal data types
used to represent values passed on signal nets between
component pins. Then, for each component type in the
circuit, a comptype is defined. This consists of the specifi-
cation of the pins, naming the nettypes they may connect
to, some local state expressed in the form of local varia-

Tle Aurtralian Computer Joumal VoL 20, No. 2, Møy 1988

bles, a collection of subprocesses, and a main body for
initialisation. The subprocesses are bodies of code which
are activated when specified conditions occur; typically,
the conditions are changes of values on input pins.

rnodule flipflops;
const Tpd = 10;
nettype lognet = (Unk, Z, Lo, I.Ii);
comptype Dff;

i¡rward D, CLI(: lognet;
outward Q : lognet;
subprocess sample :

upon (CLK-IIi) and (recall(Cl,K)-t")
check CLK do

begin
case D of

Lo, Bi : assign D to Q delay Tpd;
Unk, Z : assign Unk to Q delay Tpd;
end;

end; (* sample +)
begin (t Dfr +)
Q:= Lo;
end;1'* Dfr+)

Figure 3. HHDL model for a lltype flip.flop.

Figure 3 is an example of HHDL code for a D-type
flip-flop (called Dffl, contained in a separately compiled
module called flipfbps The net-type lognet defines the
four-state type commonly used for logic simulation, with
values for unknow4 high impedance, low and årgå logic
levels, respectively. Comptype Dffhas two input pins, for
data and clock, and a data output pin. lts initialisation body
resets the output to the low logic level. The subprocess
sampleis sensitive to changes in the value on the CLKinput
(indicated by the phrase "check CLK"), and is activated
when the new value is fli and the previous value was l¿.
When activated, a new value is passed onto the output pin,
based on the current value of the data input pin.

The simulator created by the simulation linker is a
program which contains an instance of a component
model for each use of the component in the schematic. A
run-time environment is provided which represents the
signal nets connecting component instances, schedules
updates of nets on a simulation timeline, and activates
comptype instances at the required timepoints. For exam-
ple, the assign statements in Figure 3 cause the run-time
system to schedule an update ofthe net connected to the 0
output of the flip-flop at a time point þd units after the
current activation. The run-time system also collects a
history of net update3 when the program is run, and this
history is used by formatting tools to create tabular or
logic-analyser type displays of the simulation. Additional
information about the behaviourof individual components
in the circuit may be obtained by embedding trace write
statements in the HHDL models. The simulator is con-
trolled by a debugger-style command interface, providing
single-stepping, breakpoints, and other similar facilities.

53

234

CACHE

BUSREQ
BUSGNT

ds-tx
DS-rx
dk¡x

DK-rx
di-tx
Dlrx

akjx
AK-rx

aiJx
AI-rx

a¡-tx
AS-rx

AD
CM
ST

ADDR

REQ

REPLY

A Behaviouru! Specif;<'ution of Cache Coherence

Futurebue
Interface

Figure 4. Symbol for a Futurebus C¡che.

4.2 Specification of Coherence
The Helix system can be readily used to create an informa-
tion structure model of cache coherence. This is done by
deflrning a symbol for a cache, with pins to connect to a

client and a Futurebus (see Figure 4), and specifying an
HHDL comptype for the cache behaviour. The comptype
contains local variables to implement the information
structure representing the cache, and the transformation
operations are encoded as comptype subprocesses.

One of the problems in designing any model ¡s to
determine which aspects of the system under considera-
tion are actually relevant, and which can be ignored. In the
case of modelling caches for the specification of coher-
ence, the actual lines of data are not relevant; it is the line
addresses and attributes that are important. For this rea-
son, the information structure representing a cache does
not contain any reference to the data which may be stored
in a cache.

Another difficulty in model design is the temptation to
incorporate details of some particular implementation.
Forexample, a model might represent the cache storage as

a small array of entries for storage of line tags and status
bits. However, this approach would then require attention
to the various cache design parameters (as mentioned in
Smith, 1982) in order to specify cache behaviour. A better
solution is to represent the attributes of each shared
memory line, including the validity attribute.

Given the above two considerations, the information
structure for a Futurebus coherent cache is implemented
as shown in Figure 5. The store is represented by an array
of status attributes, one entry for each line of shared
memory data. The attribute valid indicates whether the
line is stored in the cache's memory, shared indicates
whether some other cache in the multiprocessor may also
have a copy of the line, and owner indicates whether this
cache is the owner of the line. Ownership means that the
line has been updated without being written to shared
memory, and implies an obligation to supply the data in
response to bus read transactions, and to perform a copy-
back or transfer of ownership at some stage. Note that lack
of validity implies lack of the other two attributes,

54

tyPe
linejndex-type = 0..nrJines-1 ;

status-type = (valid, ahared, owner);
line-type = record

status : set ofstatus-type;
end;

store-type = array [inejndex-typeJ
of line-type;

cacheæonfig-type = recold
accept-broadcast,
reflecting-owner,, .. ; boolean
end;

var
store: store-type;
config : cgche-config-type;
connection-etatus : (unselecüed, selected,

interveniug, refl ecting);
busJriü, keep-copy, ...: boolean;
(+ olher lemponry aariablca ,, ,+)

Figure 5. ,"".r*"" structurc for ¡ Futurebus coherent crche.

The variable config is used to represent the diversity of
possible coherence strategies which must be encompassed
by the Futurebus coherence protocol. lt contains a set of
switches which are used at decision points in the transfor-
mation operations to govern how the information structure
is modified. Following it are state variables used to com-
municate between the different HHDL subprocesses
which define the transformations. The remaining variables
are temporary storage used to implement the
transformations.

The HHDL subprocesses which implement the trans-
formations on the information structure fall into two
groups: lhe snoop group, in which subprocesses are acti-
vated in response to Futurebus transactions, and the senrer
group, in which subprocesses are activated in response to
client requests. To illustrate the way in which the trans-
formations are implemented, the snoop group will be dis-
cussed in some detail. The interested reader is referred to
the draft P896.2 document (IEEE Draft Standard 896.2)
for the protocol relating to service ofclient requests.

The snoop group contains three subprocesses, invoked
on the address beat, each data beat and the end beat,
respectively. The address beat subprocess, outlined in Fig-
ure 6, implements the cache lookup function, checking
whether the cache has a hit at the address of the bus
transaction. It is sensitive to changes in the address strobe
input (AS-r¡), and is activated when this pin changes
from ln to H1 and the cache is not acting as a bus master.
The address and command information placed on the bus
by the bus master is accepted for use in this beat and the
subsequent beats comprising the transaction.

Next, the cache arbitrates for exclusive use of the line of
data being accessed by the bus transaction. The arbitration
is required, as the cache client may asynchronously request
access to the same line, possibly modifoing its attributes.

Th¿ Atuttuli¿ø. Computer lowna[VoL 20, No, 2, Møy 1988

235

Client I
Interfacel

A Behaviourul Spe<.ification ol Cache Coheren<'e

.ubprccaaa d.-aô¿tara-baat !

upos ¡o! a¡t.r ud (¡s-r¡ ¡ Lo) u¿ (¡.c¡It(¡s-rt) . Íl)
ah.cl l5-r¡ do

b.!t¡ (. ¿o-rddr.¡¡-b..t ù)
bu¡-IlÃ.-hd.s ¡¡ Ltlo¡Àt(¡D[3l..6]) ;
bu.-qu¡óI.t-l¡d.r ;. l.fof¡!(tDt5..2:);
bu¡-¡dd!-coud :. Cll¡
bu.-¡cq¡lr.-nt.rlbu.-¡1tr.-l!d.¡) ;

rllh .!cr. f bu-Il[.-1!¿.t] , bua-rddt-coud do
b.!ln
bur-hll r. trlld l¡ ¡t¡lur;
It b{.-hlr ßù.a

b.¡l¡
il I[r¡d lC th.!

ll coÀfl6.rcc.pl-bro¡dc¡.t th.n
couaÉtlon-rt¡![a ¡. r.l.clad¡

it (¡ct !c) ¡ñd (orô.s l¡ .trtEr) !b.n
batt¡ (. d¡t ¡.tlac! ct lntorv¡¡r ¡)
!.¡c-cccE.ô ¡. t.¡ra;
1t €c!tl¡.r.tl.ctl¡t-oh.r tha¡

b.tt¡
ccEactlcB-at¡tE. :. r.tl.cll¡¡i
¡¡l-dlrtt-s.ll.ct.d r. t¡¡¡.;
r.rl¡¡ Lo !o dl-t¡; ú.lt¡ Z lo dLt¡;
lod

.l¡a (. fEtarv.sl!! oclaE .)
b.31n
couactlo!-atrtu. i. l¡t.rr.!lB¡¡
...1¡! l¿ tc dl-t¡¡ url¡a Lc !c dl-tri
.¡d;

aDd;
L..p-coptr ir (ccM.c!lcL.t¡!u. l¡ [..l.êt.d. l!t.rr.ol¡E, r.tl..tt¡t))

or ((ccu.ctlon-.t¡lu . u¡.l.ct.C)
rÀd Dor lll ud cosÍl¡.t..p-¡f È.!-w.¡.ct.d) ¡

rlrh bu-.t¡tu do
b.tlÂ
al :. couacttoL.s¡lut ¡ r.l.cCadi c. :. ¡.ap-coDt¡
b¡ ¡. laLaa¡ ar ir t¡laa;
.ad ¡

¡¡¡l
¡l¡¡ (¡ ¡o! Èu-Lll r)

b.t1¡
bqa-ral.¡a.-Nta¡:
¡ltù bu-at¡tua do

b.tl¡
tl r. t¡.:.aa¡ ca :. trl¡.;
br ir tr:,aa¡ .r :. l¡laa;
.nC

and;
¡.al,t¡ bu-a:¡Eur !o .!¡
¡.rit! Lo to rl-rr¡ r¡.i!n Z to rj,-È¡;
. ¡d;

.Àd; (. dc-rddt.¡¡-b.¡! .)

Figure ó. The address beat subprocess.

Once access is gained, the cache determines whether it has

a hit at the address ofthe bus transaction, by checking the
valid a¡tribute of the corresponding line. If there is no hit,
then no further action is required for the transaction, and so
exclusive access to the line is released, no Futurebus status
signals are asserted, and the cache remains disconnected.

If the cache does detect a hit, its actions depend on the
master's command, the remaining attributes of the line,
and the cache's configuration settings. For example, in the
case of a broadcast update transaction (lM and BC com-
mand bits set), a properly conf,rgured cache can connect as

a selected slave to receive the new data. The remainder of
the subprocess body sets information structure flags for
use by the data beat and end beat subprocesses, and speci-
hes the Futurebus status and handshaking for the address
beat.

The subprocess which handles data beats is shown in
Figure 7. It is sensitive to changes in the data strobe input
(DS-tx), but is only activated when the cache is connected,
either to accept broadcast data, or to particiPate as a third
party. This latter case is shown in detail. The data beat
command, consisting of a write signal (IVR) and four byte-

TIu Autralian Computer Jownal, VoL 20, No. 2, May 1988

rubp¡ocaar do-d.tlba¡3 :
upon (comrcùloart¡G¡r l¡ [r.1..1.¿, ¡.1t..r1n3. lnrervrnin¡l)

¡¡d (((rS-¡r . ló) .!d (03-r¡ r l¡)
r¡d (r.c¡ll(tE_!¡) . Hf)) (. odd b.¡t .)

or ((¡S-r¡ . Lo) ¡!d (DS-rt t ii)
rD¿ (¡.crll(Ds-r¡) . fo))) (r or¡¡ or ¡ù¡l ù.¡t .)

ch.cl Ds-r! do
b.!t¡ (. do-d¡tlb.¡t.)
cl,th bu.-¡dalr-cou¡d do

b.¡l¡
ft CotaaclloLaartEa ¡ aalactad tta¡

b.6l! (. ù¡!ó1. brc¡dcu! ¡pd¡¡..)

at¡d
.1.. (. coü.ctloL.t.!ú l¡ [s.tl.GglD!. lB!.r.¡l¡3] .)

b.6l¡ (. ù¡a¿I. rùt¡d p¡rrt ÞtsrlctDrrfc! .)
It l1 cs (tr¡-n. !¡) tàu

b.al¡ (. cd¿ or .r.¡ b.¡t. Fg ¡!l¡ dtt¡ ù.¡t .)

¡.¡d-ecc8aú :. sld-occE.d or æt bu-d¡C\cor!¿.U13
l,t tÉr-¿¡tlccE¡¡d.Yl t¡.r

br¡lr (r ¡s¡¡p¡ ó¡ll tr¡ ¡D !.1!t lu. dl.¡ù¡.aa .)

¡¡d
.1r. (. Dt gf .)

b.tt! (. rDDlt r¡t¡ to ¡D !rl¡3 lu. dl.¡ùI.¡.)

.!d i
(. d.È.rltt atr¡q ra.lþua.)
rltb bú-.tatu d.

b.al¡
It l1 tù.r

lf ùot-qûdl.t-1,!¡.¡ r lb.-.k.-! tù.Ã
b.¡l! (..Dd ot ll¡.. ro rnp to b.llut!¡.)
tlr-al.to..d 3¡ trr; bEr_qûrdlai-hda¡ :r Ot
.¡d

.1ra
b.th (. trcr.rt! to !.¡r q!¡d1.3.)
ùu-¡È¡t!a.'ad:¡ td¡.t
b¡r-qúdl.t-td.¡ :. brr-qsdl.r-l!¿.r + !¡
.¡d¡

bu-atllu.¡1 :. tr¡..¡ ù¡t-ataiua..t:. ttLai
bu.-.t¡tu.e¡ ¡. l..p-copt¡
.D¿¡

rarlt¡ bua-at¡lla to rl¡
.nd¡

(. b¡hd.ù¡¡. ¡. tùtsd p¡¡rt.)
It Ds-s¡. l¡ tù.! (. od¡l b.¡9.)

M.ltn Z to dl-l¡
cl¡¡ (e ¡r¡¡ c8 !!¡l b.¡t .)

¡aaltr Lo to dl-tr;
ahd;

.nd;
.¡d; (. do_d¡t¡-b.¡l .)

Figure 7. The data beal subprocess.

lane disables (LW, . . . LZ, c.f. byte-enables on other
buses), is accepted from the master and used to control the
reading or writing of data. Next the Futurebus status is
determined, based on whether or not a line wrap has
occurred, and then the data beat handshaking is
performed.

The end beat subprocess, shown in Figure 8, specifres
how a cache updates its line attributes at the end of a
transaction. Again, only the detail for third party participa-
tion is shown. Where the cache is allowed to keep a copy of
the line and intervened on a transaction initiated by a
caching master (indicated by CC being true), the cache
must include ¡he shared attribute in the line's status set. If
the cache reflected, and shared m'emory was completely
updated with the modified (dirty) data from the line, then,
depending on the cache's confrguration, it modifies the line
attributes accordingly. If the cache had detected a cache
hit, exclusive access to the line is released. The last action
of the cache is to complete the transaction handshake.

In order to be able to execute the specification ofcache
behaviour, it is necessary to create à driver symbol and
corresponding HHDL model for the client interface and

55

236

A Behavioural Specifitation of Cache Coheren:

¡¡d
.l¡. ll bu-¿t.ccuct-3orud.DE¡ tl.!

ba¡l¡ (. do tru¡cÈlc¡.ro¡ r.cot.!t.)

a!¿
.k. (..Ec.r.l!l co¡Dl.tloB ol tsurstlo¡.)

rltl ¡tor¡[òu-ll¡r-l¡d¡r] dc
il ¡..p-4pt ¡¡d ¡ot (cc ¡!d t|l u¡t !oÈ !c ud s.¡d-occE.¡t) 31.¡

(. ¡ltor.d to l..P rù. tl¡. ')
lt øu.cllo!-ar¡ts . l¡t.n6ln! tà.tr

It CC t¡.¡
.tr!u :. tt¡tu r ftùü.d:

.1.. (. cou.ctlcL¡t¡t!¡ . s.tt.ctl¡! .)
lt .U-dktt-t.tl.cÈ.d tl.!

It co¡tl!. l..P-¡lt.r-r.tl.cÈ lù.!
ll Cc tù.¡

t!¡tu t. a!¡ÈU + [.ì¡r.¿];
lt æ! cc[tit.o¡¡-¡tt.¡-¡.tl.ct th.¡

atrtu :r a!¡!q - (orn.rl
.la. (. ¡or cc¡!t!'t..P-¡tt.!-r.t1.ct .)

¡t¡¡u :. o
¡l¡o (¡ æÈ ¡ll-d!ttt-¡.f1.ct.d .)

ll CC È1.¡
¡!r!u ¡. atrÈu . f.h¡r.dJ

.lr. (. rút t¡r¡ltdrl..)
.t¡t¡a ;. []

.laa (. conDactlo¡-ttatra . un¡.l.ct.¿ .)
b.!t¡ (. .¡d ol rc¡-P¡rÈlcaP¡llon .)

.¡d;
b!a-r.lar..-¡ula¡¡
.Àdi (. tl ùu-ùtt .)

(. do h¡!d.h¡L. to co¡pl.t. dl.co¡n.ctlon b.¡!.)
r.at!¡ Lo to rl,-t¡;
¡..1!! Z to dl-Èt; .[16tr Z to di-ar:
...1!n Z lo ¡l-t¡¡
.!d¡ (. do-.¡d-b.rr .)

Figurr 8. The end bent subprocess.

¡úbptoca¡¡ do-.!il-b.¡È ¡

rpoÀ ¡c! rr!.t ¡^d (15-rt . Íl) ¡¡d (r.c¡Il,(¡s-r¡) ' Lo)
ch.cl ¡s-r¡ do

ù.¡lD (. do-.¡d-b.¡B.)
tt bc.-tll tù.!

b.tl¡
' b!.-dllcor.c¡-cou¡Å :' Cll¡

rl,t¡ bu.-¡ddr-coold do

It coúac!1c!-at.tua ' aal.cl.d th.!
b.Et¡ (. .Ãd ct bro¡¿cuÈ ùPd¡r. ')

a¡d
.Ia.lt çou.clloL.lrtu l¡ [!.tl.ctln6, l!!.r.ôhd !!.[

(..¡d o! thlrlt Pr*t P¡rtlclPrlr'o! ')It tla-dl.cou.cl-3crud.D8S !ù.¡
b.3t¡ (. úo t¡@¡clloa b¡cl-oBl t)

audience not expert in reading highly formal notations. ln
addition, a specification based on an inforrnation structure
model expressed in programming language form can be
executed to simulate the system being modelled. This
simulation can be used as a reference implementation, and
can provide test vectors for conformance validation.
Where more formal specification is required, well known-
semantic specification techniques for programming lan-
guages and data types can be applied.

The model we have described can be used for a number
of purposes, all being investigated by the authors. Firstly,
the IEEF. P89ó.2 Cache Coherence Task Group is draft-
ing a specification of the Futurebus cache coherence pro-
tocol based on the ideas presented here. Secondly, the
previously published cache coherence strategies can be
described in terms of this model, by defining a set of
conFrguration constants for each strategy. Thirdly, a for-
mal proof can be constructed to show that any cache
system conforming to the speciFrcation does, in fact, main-
tain coherence. Fourthly, experiments can be performed to
determine how various aspects of conforming coherent
caches affect overall system performance. The outcomes
of these investigations will add significantly to the under-
standing of cache behaviour in multiprocessor systems.

6. ACKNOWLEDGEMENTS
The authors are grateful for the helpful comments of one
of the referees.

7. REFERENCES
ANZELMO, T., MOORE, R. and BELL. C.G. (1985): "Multiprocessor

Makes Parallelisnr Work", E/¿ctronin, Vol. 58, No. 35. pp. 4ó-48, 2
September 19E5.

ARCHIBALD, J. and BAER, J-L. (198ó): "Cache Cohcrence Protocols:
Evaluation Using u Multiprocessor Simulation Model", ACM Trun-
sactions on Computer Systemt, Vol. 4. No.4, pp. 2?3-298, November
1986.

ASHENDEN, P.J., BARTER, C.J. and MARLIN, C.D. (1987) "The
Leopard Workstation Project", ACM Computer Archirccrure News,

Vol. 15, No. 4. pp. 40-5 I, September 1977.
ASHENDEN, P.J. and KNIGHT, D.L. (1985): L-Btts Specific'urion,

Department of Computer Science, University of Adelaide, South
Australia.

BASILI, V.R. (1975): "A Structured Approach to Language Design",
Computer hngaøges Vol. I, No.3, pp.255-273,September 1975.

DlcITAL EQUIPMENT CORPORATION (t985): VAXBI Technirul
Summary, Maynard, Massachusetts.

FIELLAND, G. and RODGERS, D. (1984): "32-bit Computer System
Shares Load Equally Among up to I 2 Processors", Electronic Design,
pp. 153-ló8, ó September 1984.

FREIDEL, D., MARLIN, C.D. and OUDSHOORN, M. "Modelling
Communica¡ion in Ada with Shared Data Abstractions", in
preparatiirn.

GOCUEN, J.A, (I 975): "Correctness and Equivalence of Data Types",
Matlumatical Syslerns Tlwory, Proc. Initial Symposiur4 Springer-
Verlag, pp. 352-358.

COcUEN, J.4.. THATCHER, J.W., WACN ER. E.G. and WRIGHT, J.B.
(1977): "lnitial Algebra Scmanlics and Continuous Algebras", J.

ACM,YoL24, No, I, pp. ó8-95.
COODMAN, J. (1983): "Using Cachc Memory to Reduce Processor-

Memory Traffic". Proc. l0th Ann. lnt. Symp. on Computer Arc'hilet'-
ru¡¿, Stockholm, pp. 124-13 l. June 19E3.

GUTTAC, J.V. (l9E0): "Notes on type abslraction (Version 2)", IEEE
Transactions on Softwure Engineering Yol. SE-ó, pp. I 3-23, January
r 980.

Tlu Auçtralian Compuur towaal VoL 20, No. 2, Møy I96E

237

for the Futurebus interface. A circuit is created with nets
linking the interface pins of a cache symbol instance to an

instance of each of the driver symbols. The circuit is then
linked to create a simulatoi. The purpose of the driver
models is to activate the input pins ol the cache model
according to some predetermined command file or algo-
rithm, They can also monitor the output pins of the cache
model and report through the trace write mechanism.
Using this approach, the behaviour of the cache under
various driving conditions can be observed. For example,
the client and Futurebus models could be programmed to

stimulate the cache with transactions using the same cache
line at the same simulation time point, in order to investi-
gate the effects of collision of mutual exclusion requests.

5. CONCLUSIONS
In this paper, we have shown that an information structure
model for describing the behaviour of coherent caches has

several advantages over other modelling techniques, par-
ticularly where the model is to be used as a reference
document. lt combines an appropriate degree of precision
and completeness, while remaining intelligible to an

56

A Behavioural SpetiJit'utíon of Cache Coherenc'e

CUTTAG, J.V.. HOROWITZ, E. and MUSSER, D.R. (1978): "Thc
Design of Type Abstractions" in R,T. Yeh, editor, Current Trends in
hogramming Methodology, Prentice-Hall lnc.. Englewood Cliffs.
New Jersey, Ch. 4. pp, 60-79.

HILL, M. et ul. (1986\: "Design Decisions in SPUR", IEEE Conputer,
Vol. 19, No. I I, pp. 8-22, November 1986.

IEEE Standard 89ó. I (1987): But'kplune Bus SpeciJ'icarion fitr Mulripro-
cessor Architecrures (Futwebus),IEEE, New York, NY.

IEEE Draft Standard 896.2, Firmware Protorols for Futurebus, IEEE,
New York, NY, fonhcoming.

IEEE Draft Standard l0l4 (1987): "VMEbus", A Standurd Spet'iJicution

for a Versatile Buckplune Br¡s IEEE, New York. NY.
IEEE Standard 1296 (1987): "High PerJinnance 32-bit Bus,lEEE, New

York, NY.
ISO/TC97ISC2l DP-8807 (1985): LOTOS - A Formøl Des<'ri¡trion

Technþue Bused on the Temporal Ordering ol'Obsenational Behuy.
iour, Paris, Fcbruary I 9E5.

KATZ, R.H. et al. (1985): "lmplementing a Cache Consistency Pro-
tocol", Prcr<: l2th Ann. Int Symp. on Conputer Architecture, Boston,
Masachusetts, pp. 27 6-283,June 1985.

MANUEL, T. (1987): "How Sequent's New klodel Outruns Most Main-
frames", Ele<tronk's, Vol. ó0, No. I l, pp. 76-78, 28 May 1987.

MARLIN. C,D. and OUDSHOORN, M, (1985): "Using Abstract Datu
Types in a Model of the Data Control Aspects of Programming
Languages", Alstruliun Comp. ScL C<¡mnun, Vol. 7, No. I, pp. t9- |

-19- 10. February 1985.
MOSZKOWSKI, B. :'Executing Temporal Logic Programs",Semi nur on

Concunenq (Brookes. S.D. et aL, ed.), Lecture Notes in Comp. Sci.,

No. 197, Springer-Verlag, Berlin, pp. I I t- 130.

OUDSHOORN, M. and MARLIN, C.D. "Describing Data Control in
Programming Languages", in preparation.

PAPAMARCOS, M.S. and PATEL, J.H. (19E4): "A Low-Overhead
Coherence Solution for Multiprocessors with Private Cache Memo-
nes",Proc. I lth Ann Int Symp. on Computer Architectrire, Ann Arbor,
Michigan, pp. 348-354, June 19E4.

PETERSON, J.L. (197 7): "Petri Nets", A CM Co m puting S uneys, Y ol. 9,
No. 3, pp.223-252,September 1977.

SILVAR-LISCO CORPORATION (t98ó): Helix Reference Munuul.
Document Nos. HLX-2.2-002,HLX-2.2-003, HLX-2.2-004, Menlo
Park, California, October 1986.

SMITH, A.J. (1982): "Cache Memories", ACM ComputingSuney$ Vol.
14, No. 3, pp.473-530, September 1982.

S . (1986): "4 C
their Supporr
n Computer A

TENNENT, R.D. (I 976): "The Denorational Semanrics of Programm¡ng
Languages", Commun. ACM, YoL 19, No. 8, pp. 437-453, Augusl
1976.

VERN ON, M. K. and HOLLIDAY, M.A. (I 985): Performance Anolysis ol
M ulþrocessor Cache Consbæncy Protocob lJsing GercmlhedTinåd
Petri Neß, Tech. Report, Computer Sciences Department, University
of Wisconsin, Madison.

WË,CNER, P. (I 97 I): "Data Srrucrure Models for Programming Lan-
guages", Proc'. Symp. Dam Structures in Programmhg l-anguaþeg pp.
l -54.

BIOGRAPHICAL NOTES
Peter Ashenden ß a Senior. Research Offrcer with tlw
Department of Computer Science at the University of Ade-
lnide. He complcted his Honours Degree in Computer
Scicnce in I 982 at the U niversity of Adelaidc and continucd

computer-aidcd engincering for el¿cton¡cs dcsign
Chris Marlin has beenwith tlæ Department oÍComputer

Sci¿nce at the Univenþ of Adelaide, wlure he is now a
Senior Lccturer and Deputy Chairman since 1984. He
complzted his Horcurs Degree in Computing Scierce in
I 973 and his PhD in Computing Science in 1979, both at the
University of Adelaide. From January 1980 to December
1983, hewas an Assistail hofessorof ComputerSci¿nce at

the University of lowa, Iowa City, Iowa (USA), His research
has primarily been cotrcerned with programming language
desigq specifrcation and implcmentatio4 especiaþ in rela-
tion to coroutines and parallcl processeg and various aspects
of integrated incremental programming environmcnts"

Tlp Australian Computer lounø[VoI 20, No. 2, May 1988

238
57

6tz

References

t1l R. A. Altmann, A. N. Hawke and C. D. Marlin, "Arl integrated programming en-

vironment based on multiple concurrent views," Australian Computer Journal,

Vol. 20, No. 2 (May 1988), pp.65-72.

l2l J. Archibald and J.-L. Baer, "Cache coherence protocols: evaluation using a

multiprocessor simulation model," ACM Tlansactions on Cornputer Systems,

Vol. 4, No. 4 (November 1986), pp.273-298.

t3l P. J. Ashenden and C. D. Marlin, "A behavioural specification of cache coher-

ence," Austrølia.n Cornputer Journal, Vol. 20, No. 2 (May 1988), pp. 50-57.

l4l P. J. Ashenden, L-Bus specificøtion, Version 7.3, Department of Computer Sci-

ence, University of Adelaide, South Australia (March 1986).

t5l P. J. Ashenden, C. J. Barter and M. A. Petty, The Leopard m,ultíprocessor

workstation project, CCSSE Tech. Report LW-01 (November 1989), Dept. Com-

puter Science, University of Adelaide, South Australia.

t6l P. J. Ashenden, The Leopard-2 workstation bus a,rchitecture, CCSSE Tech. Re-

port LW-02 (August 1989), Dept. Computer Science, University of Adelaide,

South Australia.

l7l P. J. Ashenden, R. Gerhofer and K. R. Howard, The Leopørd-2 Generøl DataPro-

cessor users guide, CCSSE Tech. Report LW-03 (September 1989), Dept. Com-

puter Science, University of Adelaide, South Australia.

t8l P. J. Ashenden, C. Fang, R. Gerhofer, K. R. Howard and G. C. Slater, The Leop-

ard-2 General Døta Processor design descriptio¿, CCSSE Tech. Report LW-04

(March 1990), Dept. Computer Science, University ofAdelaide, SouthAustralia.

240

igl P. J. Ashenden, The Leopard-2 Futurebus Monitor users guide, CCSSE Tech. Re-

port LW-05 (September 1989), Dept. Computer Science, University of Adelaide,

South Australia.

t10l P. J. Ashenden, The Leopard-2 Futurebus Monitor design description, CCSSE

Tech. Report LW-06 (March 1990), Dept. Computer Science, University of

Adelaide, South Australia.

t1ll P. J. Ashenden, The Leopard-2 General Døta Processor local bus description,

CCSSE Tech. Report Lw-07 (September 1g8g), Dept. Computer Science, uni-

versity of Adelaide, South Australia.

ll2l P. J. Ashenden, The Leopørd-2 Futurebus Interface functíonal description,

CCSSE Tech. Report LW-10 (November 1989), Dept. Computer Science, Uni-

versity of Adelaide, South Australia.

t13l P. J. Ashenden, The Leopard-2 General Da.tø Processor locøl ïLernory design de-

scription, CCSSE Tech. Report LW-12 (March 1990), Dept. Computer Science,

University of Adelaide, South Australia.

t14l P. J. Ashenden, The Designer's Guide to VHDL, Morgan Kaufmann Publishers

, Inc., San Francisco (1996).

t15l L. M. Censier and P. Feautrier,'Anew solution to coherence problems in multi-

cache systems," IEEE Tlønsactions on Computers, Vol. C-27, No. 12 (December

1978), pp. 1112-1118.

t16l Digital Equipment Corporation, Alpha 21164 Hørdware Reference Mønual,

http://ftp.digital.com/pub/Digital/info/semiconductor/literature/164hrm.pdf

(19e7).

t17l M. Dubois and F. A. Briggs, "Effects of Cache Coherency in Multiprocessors,"

IEEE Tlønsøctions on Computers, Vol. C-31, No. 11 (November L982),

pp. 1083-1099.

24t

t18l S. J. Eggers and R. H. Katz, '.A characterization of sharing in parallel programs

and its application to coherency protocol evaluation", Proc. 15th Int. Symp. Com-

puter Architecture, ACM Computer Architecture News, Vol. 16, No. 2 (June

1988), pp. 373-382.

t19l C. Fang, A high performønce colour graphics displa,y system, Masters Thesis

(November 1987), Department of Computer Science, The University ofAdelaide,

South Australia.

t20l M. J. Flynn, 'Very high speed computing systems," Proceedings of the IEEE,

Vol. 54, No. 12 (December 1966), pp. L901-1909.

l2Ll S. J. Frank, "Tightly coupled multiprocessor system speeds memory-access

times," Electronics, Vol. 57, No. 1 (January 1984), pp. 164-169.

l22l H. Garsden and A. L. Wendelborn, '.A comparison of microtasking implementa-

tions of the applicative language SISA.L," in H. Burkhart (ed.), Proc. COMPAR

9)-UAPP IV (Joint Internationøl Conference on Vector ønd Pørøllel Processing

Switzerlønd), Lecture Notes in Computer Science, Vol. 457, Springer, Berlin

(1990).

t23l R. Gerhofer, C. Fang and P. J. Ashenden,The Leopard-2 Storage and Comrnuni-

cations Processor local bus description, CCSSE Tech. Report L\ry-19 (April 1990),

Dept. Computer Science, University of Adelaide, South Australia.

124) N. D. Godiwala andBarryA. Maskas, "The Second-generation ProcessorModule

for AlphaServer 2100 Systems," Dígital .Technicøl Journø\, Vol. 7, No. 1,

http ://www. di gital. com/info/DTJHO 6/DTJH0 6 S C. T)(T (1 I 9 5).

l25l J. R. Goodman, "IJsing cache memory to reduce processor-memory traffic," Proc.

10th Int. Symp. Computer Architecturc, ACM Computer Architecture News,

Vol. 11, No. 3 (June 1983), pp. 124-131.

242

126l J. L. Hennessy and D. A. Patterson, Cornputer Architecture: ø Quøntitøtiue þ-
proach,2nd Edition, Morgan Kaufmann Publishers, San Mateo, Calif. (1996).

l27l M. Hill et ø1., "Design decisions in SPIIR", IEEE Computer, Vol. 19, No. 11

(November 1986), pp. 8-22.

l28l M. A. Holliday and M. K. Vernon, 'A Generalized Timed Petri Net model for per-

formance analysis," IEEE Tlasøctions on Computers, Vol. SE-13, No. 12

(December 1987), pp. 1297 -1310.

L29l C. Hunte4 Series 32000 programffLer's reference n'La,nu,øL, Prentice-Hall, New

Jersey (1987).

t30l IBM, PowerPC 604 RISC Microprocessor User's Mønua.I,

http ://www chips.ibm.com/products/ppc/documentsidatash eetsl 6041

user_manual/604um.pdf (1 995).

t31l IEEE, IEEE støndard bøckplane bus specificøtion for multiprocessor architec-

tures: Futurebus, AI.ISI/IEEE Std. 896.1-1987, IEEE, New York (1988).

t32l IEEE P896.2 Working Group, Futurebus P896.2 specificøtion,Draft 1.1 (August

1988), IEEE Inc., New York.

t33l IEEE, Standørd VHDL Language Reþrence Mønuøl,IEEE Std. 1076-1993,

IEEE, New York (1993).

t34l Intel Corp., Intel Pentíum@ Processor Famíly Deueloper's Manuø\,

http://developer.intel.com/design/pentium/manualsl24L42805.pdf (1997).

t35l R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins and R. G. Sheldon, "Imple-

menting a cache consistency protocol," Proc. 12th Int. Symp. ComputerArchitec-

ture, ACM Computer Architecture News, Vol. 13, No. 3 (June 1985),

pp.276-283.

t36l D. L. Knight, P. J. Ashenden, C. D. Marlin and C. J. Barter, "The QDS-1000: a

modular expandable image processing workstation", presented at Rernote Sens-

243

ing-Current Status and Applications, South Australian Institute of Techno-

lory, Adelaide, South Australia (June 1985).

t37l E. McCrei ght, The dragon computer system: an early oueruiew, Technical Report,

Xerox Corp. (September 1984), cited by Archibald and Baer in [2].

t38l MIPS Technologies, Inc., R40001R4400 Microprocessor User's Mønua,l,2nd edi-

tion, ftp : I I sgigate. s gi. com/pub/doc/R440 O/User ManuaV

R4400_Uman_book_Ed2.pdf (1 994).

t39l M. S. Papamarcos and J. H. Patel, "A low-overhad coherence solution for multi-

processors with private cache memories", Proc. 11th Int. Symp. ComputerArchi-

tecture, ACM Computer Architecture News, Vol. 12, No. 3 (June 1984),

pp. 348-354.

t40l J. H. Patel, "Analysis of multiprocessors with private cache memories", IEEE

Tfansactions on Com,puters, Vol. C-31, No. 4 (April 1982), pp. 296-304.

t41l F. Pong and M. Dubois, The uerification of cache coherence protocols, Technical

Report No. CENG-92-20 (November 1992), Dept. Electrical Engineering-Sys-

tems, University of Southern California, Los Angeles.

l42l P. Robinson, The IEEE Futurebus cøche coherence protocol øs a logic progra,nx,

unpublished memo (1988), Computer Laboratory, University of Cambridge.

l43l M. Rozier et aI., CHORUS distributed operøting system, Chorus Systèmes Tech.

Report CSÆR-88-7.6 (November 1988).

l44l L. Rudolph and Z. Segall, "Dynamic decentralized cache schemes for MIMD par-

allel.processors", Proc. llth Int. Symp. Computer Architecture, ACM Cornputer

Architecture News, Vol. 12, No. 3 (June 1984), pp. 340-347.

t45l C. Scheurich and M. Dubois, "Correct memory operation of cache-based multi-

processors,"Proc. 14thInt. Symp.ComputerArchitecture,ACMCornputerArchi-

tecture News, Vol. 15, No. 2 (June 1987), pp.234-243.

244

t46l Silvar-Lisco Corp., Helix reference manual, Document Nos. HLX-2.2-002,

}lLX-z.2-003 and HLX-2.2-004, Menlo Park, CA (October 1986).

l47l Sun Microsystems, Inc., SPA.RCsystem* 600MP: new technology for flexibility,

scalability, and growúh, Technical White Paper (September 1991).

t48l Sun Microsystems, Inc., UI|TaSPARCTM-II High-Perfornl,ance, 250 MHz,

64-Bit R/SC Processor, http://www.sun.com/sparc/stp103l/datasheets/

stp 103 llga.pdf (1997).

l49l I. E. Sutherland, C. E. Molnar, R. F. Sproull and J. C. Mudge, "The TRIMOS-

BI-IS," CøITech Conference on VLSI (January 1979), pp. 395-427.

t50l P. Sweazey and A. J. Smith, "A class of compatible cache consistency protocols

and their support by the IEEE Futurebus," Proc. 13th Int. Symp. Computer

Architecture, ACM Computer Architecture News, Vol. 14, No. 2 (June 1986),

pp.414-423.

t51l A. S. Tanenbaum, Operating systems: design o,nd implernentation, (Prentice

Hall, 1987).

l52l C. Thacker, L. C. Stewart and E. H. Satterthwaite, "Firefly: a multiprocessor

workstation", IEEE Tlansactions of Computers, Vol. 37, No. I (August 1988),

pp. 909-920.

t53l M. K. Vernon andM. A. Holliday, "Performance analysis of multiprocessor cache

consistency protocols using Generalized Timed Petri Nets", Proc. Perforrnance

86 ønd ACM SIGMETRICS 1986 Joint Conference on Computer Perforn'r,dnce

Modeling, Measurement and Eualuation, Raleigh, N.C. (May 1986), pp. 9-17.

t54l M. K. Vernon, E. D. Lazowska and J. Za}roqan, "An accurate and effrcient per-

formance analysis technique for multiprocessor snooping cache-consistency pro-

tocols", Proc. 15th Int. Symp. Computer Architecture, ACM Computer Architec-

ture News, Vol. 16, No. 2 (June 1988), pp. 308-315.

245

t55l D. A.'Wood, G. A. Gibson and R. H.Katz, 'Verifying a multiprocessor cache con-

troller using random test generation," IEEE Design a,nd Test of Computers, Vol.

7, No. 4 (August 1990), pp. 13-25.

246

