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Abstract

In this thesis we study the representation of finite translation planes in projective spaces
introduced by André [1]. This theory was also developed by Bruck and Bose [21, 22] in
a distinct but equivalent form. Throughout this thesis we refer to this representation as
the Bruck and Bose representation or simply Bruck-Bose. Of particular importance is
the representation of Baer subplanes of translation planes 7z of order ¢%; the importance
is due to the crucial role Baer subplanes have in the characterisation of various substruc-
tures, including unitals and maximal arcs, of projective planes, as will be evident in the

text.

In Chapter 1 we present the necessary preliminary material required for the later chap-
ters. In particular we present in detail the Bruck and Bose representation [21, 22] of the

Desarguesian plane PG(2,¢") and the associated coordinatisation.

In Chapter 2 we begin by reviewing the known results concerning the representation
of Baer subplanes of PG(2,¢?) in the Bruck and Bose representation in PG(4,q). We
provide a new proof of the result of Vincenti [90] and Bose, Freeman and Glynn [19],
that the non-affine Baer subplanes of PG(2, ¢%) are represented in Bruck-Bose by certain
ruled cubic surfaces in PG(4, q) which we term Baer ruled cubic surfaces. We characterise
Baer ruled cubic surfaces in PG(4, q) for a general fixed Bruck and Bose representation
of PG(2,4¢%) in PG(4,q). We determine that non-degenerate conics in Baer subplanes
of PG(2,q?%) are represented in Bruck-Bose by normal rational curves; a normal rational
curve which arises in this way is of order 2, 3 or 4 and is therefore properly contained in
a plane, hyperplane or no hyperplane of PG(4, q) respectively. We apply these results
to prove the existence of certain (¢*> + 1)—caps in PG(4,q) which are not contained in
any hyperplane of PG(4,q) and which contain many normal rational curves of order
4. Further properties of these caps are determined in Chapter 3. We also include a
discussion of the ruled cubic surface obtained as the projection from a point P of the
Veronese Surface in PG(5,¢) onto a hyperplane not containing P; in this setting we

determine some alternative proofs for our results and prove some extensions.

In Chapter 3 we investigate the Bruck and Bose representation in PG(n, q) with n > 4.
We prove various results concerning the regular (h — 1)—spreads of PG(2h — 1, q) which
determine the Bruck and Bose representation of PG(2,¢") in PG(2h,q), treating the



case h = 4 in greater detail. In particular, we prove the existence of induced spreads
and show how the induced spreads are closely related to Bruck and Bose representation
of the Baer substructures of PG(2, ¢"). To obtain further properties of the higher dimen-
sional Bruck-Bose representation of the non-affine Baer substructures of the Desarguesian
plane, we make use of the Bose representation [18] of PG(2, ¢?). In this chapter, we also
prove results concerning the Bruck and Bose representation of non-degenerate conics
in PG(2,¢?) and we discuss the relationship between these results and the Bruck-Bose

representation of non-affine Baer sublines of PG(2,¢*) in PG(8,q).

In Chapter 4 we investigate Baer subplanes and Buekenhout-Metz unitals in PG(2, ¢?).
In particular we improve the known results by showing that in PG(2, ¢?), with ¢ > 13, a
Baer subplane and a Buekenhout-Metz unital with elliptic quadric as base have at least 1
point and at most 2¢+1 distinct points in their intersection. Our method of proof makes
use of the Bruck and Bose representation of PG(2,4?) in PG(4,q) and the properties
of a certain irreducible sextic curve in PG(4,q). We also prove that the non-classical
Buekenhout-Metz unitals, with an elliptic quadric base, in PG(2, ¢?) are inherited from
the classical unitals in PG(2, ¢?) by a certain procedure of swapping regular 1—spreads

of PG(3,q) in the Bruck and Bose representation of PG(2, ¢?).

In Chapter 5 we prove that a unital in PG(2, ¢%) is a Buekenhout-Metz unital if and only
if there exists a point T' of the unital such that each secant line of the unital through T
intersects the unital in a Baer subline. This is an improvement of the characterisation of
Lefevre-Percsy [56] and an improvement of the characterisation of Casse, O’Keefe and

Penttila [26] for the cases ¢ > 3.

In the final chapter we investigate the relationships between Thas maximal arcs, the
generalized quadrangle T3(O) and egglike inversive planes. This work was motivated
by the approach of Barwick and O’Keefe [13] in investigating the relationship between
Buekenhout-Metz unitals and inversive planes (see also [6, Section 5.] and [92]). We
attempt to characterise the Thas maximal arcs in those translation planes where they
exist using two configurational properties; we do not succeed in this, but prove a char-

acterisation of Thas maximal arcs in PG(2, ¢?) for certain values of q.
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Chapter 1

Preliminary Results

In this chapter we collect together the main definitions, known results and constructions

we require for our original work presented in later chapters.

1.1 Incidence Structures and Designs

In this section we follow Hughes and Piper [53].

An incidence structure S = (V, B,1) is two sets V and B called varieties (or points)
and blocks (or lines) respectively, with an incidence relation I C V x B; a point P is
incident with a block £ if and only if (P, #) € I. An incidence structure S is finite if the
sets V and B are both finite. From now on our incidence structures are finite incidence

structures.

Given any block in an incidence structure S, there is a set of points incident with it
and it will be convenient to identify the block with this pointset. An incidence structure
has repeated blocks if there exist two blocks identified with the same pointset. If a
point P is incident with a block £ then we shall write PIZ or P € ¢ and we shall use the
expressions “P is on £”, “¢ contains P”, “/ passes through P” and similar convenient

expressions.

A t—(v,k,)\) design is an incidence structure with exactly v points, no repeated
blocks, each block is incident with exactly k£ distinct points and each subset of ¢ distinct
points is incident with exactly A common blocks. A t — (v, k, A) design has parameters

v, k, b, 7, t, A where, b equals the number of blocks, r equals the number of blocks incident



with a point and v, k, ¢, A are defined as above.

If Sisat—(v,k,\) design, then for any integer s satisfying 0 < s < ¢, there are exactly
As blocks of S which are incident with any given subset of s distinct points of S, where
(=)
As = A=t
(t—s)
Moreover we have the following identities for the parameters of S:
k\ ?
()

2. if t > 0 then bk = vr;

1.b= A

3. ift > 1 then r(k—1) = Ay(v—1).

For an incidence structure S(V, B,I) and P a point of S, we define the internal struc-
ture, Sp, of S at P to be the set of all blocks of S which contain P and the set of all points
of S, except P, which lie on at least one of those blocks and the incidence in Sp is inher-
ited from the incidence in S. In particular if S = (V, B,I) is a t— (v, k, A) design, then for
any point P of S the internal structure Sp of S at Pisa (t — 1) — (v — 1,k — 1, A) design

with parameters

o= v—1
K = k-1
= t—1
A=A
b = 7
" = A

where v, k,t, A, b, r are the parameters of S.

1.2 Projective, Affine and Translation Planes

In this section we briefly present some familiar results from [52]; for further detail con-

cerning the material in this section consult [52].

A projective plane is a set of points and lines together with an incidence relation

between the points and lines such that,

(i) Any two distinct points are incident with a unique line.
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(ii) Any two distinct lines are incident with a unique point.

(iii) There exist four points such that no three are incident with one line.

If one line of a projective plane contains only a finite number of points, then every line
in the plane contains s finite number of points. A projective plane with this property is

called finite. We shall consider only finite projective planes in this thesis.

If 7 is a projective plane, then a set 7@ of points and lines together with an incidence
relation such that the points (lines) of ¢ are the lines (points) of 7 and two elements of
7% are incident in 7¢ if and only if they are incident in 7, is a projective plane. ¢ is called
the dual plane of 7. Projective planes satisfy the Principle of Duality: Let A be any
theorem about projective planes. If A* is the statement obtained by interchanging the

words points and lines, then A* is a theorem about dual planes. Hence A* is a theorem

about projective planes (see [52, Theorem 3.2]).

Let 7 be a finite projective plane, then there exists a positive integer n > 2 such that
each line of 7 is incident with exactly n + 1 points and each point of 7 is incident with
exactly n+ 1 lines. 7 contains exactly n? +n -+ 1 points and n? +n+1 lines. The integer
n is then called the order of w. All known finite projective planes have prime power

order (see [52, Section III.2]).

For a fixed line £, of 7, denote by aff(m) the set of points and lines of 7 obtained by
deleting £, and all its points; the incidence in aff(w) is inherited from 7. We write
aff(m) = m\loo or aff(n) = wbe. Then aff(n) is an affine plane of order n and we call
/4 the line at infinity of aff(w) and call the points on /., the points at infinity. Two
lines in aff() are parallel if they do not intersect in aff(7); parallelism in aff() is an
equivalence relation and in this way each point at infinity in 7 corresponds to a unique

parallel class of lines in aff(m).

A collineation of a finite projective plane 7 is a bijection from points to points and
lines to lines; a collineation preserves collinearity. An elation with axis /., and centre
X is a collineation of 7 which fixes all points of a line ¢,, of 7 and fixes all lines through
a point X € £,,. If the group of elations with axis ¢, in 7 is transitive on the points
of 7 not incident with /., then the finite projective plane 7 is a translation plane
with translation line £,,. In this case the affine plane aff(m) = 7\£y is also referred

to as a translation plane, however the context in which these terms are used in the

11



text should make the meaning clear. (See [52, Chapter IV, section 5.] or [33, Section
3.1.22] for further details). Throughout this thesis we call the translation line £, of a

translation plane 7 the line at infinity.

A finite projective plane 7 is called Desarguesian if it satisfies a certain configurational
property for any choice of point V and line £ in 7. A theorem of Baer, [562, Theorem
4.29], relates this configurational property of the plane to a collineation group property
of the plane. Moreover, Baer’s result states that a projective plane 7 is Desarguesian if
and only if 7 is a translation plane with respect to a line £ for every choice of line £ in 7.
Consequently, for a Desarguesian projective plane 7 and for any line £, in 7, the affine

plane aff(r) = m\ly is a translation plane.

For ¢ a prime power, the Galois field plane PG(2,q) is the unique Desarguesian finite
projective plane of order g (see [33, Section 1.4]).

A subplane 7, of a finite projective plane 7, of order n is a subset of the elements of
7, which form a projective plane having the same incidence as m,. A subplane =, of m,

is called proper if m, # T,.

Bruck’s theorem ([52, Theorem 3.7]) states that if a finite projective plane m, of order n
contains a proper subplane 7, of order m, then either n = m? or n > m?2+4+m. If n = m?
then the subplane ,, of order m is called a Baer subplane of the finite projective plane
7m2 of order n = m?. In this case each point in m,,2\7,, is incident with a unique line of
7m and each line £ of m,,2 is either a line of m, (and so intersects 7, inm+1<n+1
points) or £ intersects 7, in a unique point. If a line £ intersects a Baer subplane B of

Tmz i m + 1 points, then the intersection £ N B is called a Baer subline (of ¢) in B.

Much of this thesis is devoted to examining Baer subplanes and utilising the properties of
Baer subplanes; particularly in the case of the Desarguesian projective plane PG(2, ¢?)

of square order ¢®. We include the following results for later reference.

Theorem 1.2.1 [29] [33, Result 3.2.17] In PG(2,¢?), a quadrangle (four distinct points

no three collinear) is contained in a unique Baer subplane of PG(2,¢?). O

It follows from Theorem 1.2.1 that for a line £ in PG(2,4?), any three distinct points
of ¢ are contained in a unique Baer subline of /. Moreover, by Theorem 1.2.1, the

Desarguesian plane PG(2, ¢%) contains exactly ¢*(¢® +1)(¢*+ 1) distinct Baer subplanes,

In the following characterisation of Baer subplanes of PG(2,¢?), a blocking k—set in

12



PG(2,¢?) is a subset of k points of PG(2, ¢%) which meets every line but contains no line
completely (see [48, Section 13.1]).

Theorem 1.2.2 [48, Theorem 13.2.2] In PG(2,4?), if B is a blocking (¢® + q + 1)—set,
then B is a Baer subplane of PG(2,q?). O

1.3 Projective Spaces

We briefly present some results of [48, Chapter 2] to establish terminology and notation.

Let V = GF(¢q""!) be the (n + 1)—dimensional vector space over GF'(g) with origin 0.
With respect to some basis of V, the elements of V' are of the form X = (zg,z1,... ,2,),
where z; € GF(q). For X = (2o, Z1,... ,%n), ¥ = (Y0, ¥1,--. ,Yn) in V, the relation
X=Y ifandonlyif z; =My, foralli=0,1,...,n
for some A € GF(q)\{0}
is an equivalence relation on the vectors in V\{0} with equivalence classes the one-
dimensional subspaces of V' with the origin deleted. The set of equivalence classes is an
n—dimensional projective space over GF(q) and is denoted by PG(n, q). For each
X € V\{0}, the equivalence class containing X is a point in PG(n,q). Consequently,

the number 6(n) of points in PG(n,q) equals
qn+1 -1

|PG(n,q)| = G(n) = ?‘1— . q"—i-q" 1+...+q+1.
It will be convenient to take the standard basis for V over GF(q) and to use
X = (%o, 1, .. ,n) to denote the point of PG(n, q) which contains X € V; we write X
is a point of PG(n,q) with homogeneous coordinates X = (¢, z1, ... ,%,) to mean
that the coordinates A(xq, Z1,...,Zn), A € GF(q)\{0}, represent the same point X in

PG(n,q).

A subspace of dimension m, or m—space, of PG(n,q) is a set II,, of points all of
whose coordinates form (together with the origin) a subspace of dimension m + 1 of V.

For 0 < m < n, the number ¢(m;n, q) of m—spaces of PG(n,q) is given by,

(qn+1 _ 1)((]" . 1) . (qn—m+1 _ 1)
(@™ =1)(g™—1)...(¢—1)
An (n — 1)—space of PG(n,q) is called a hyperplane (or prime); the set of points

p(m;n,q) =

X = (zo,21,--. ,Zn) in PG(n,q) in a hyperplane X,_; of PG(n,q) satisfy an equation
%o +a1x1+...+az, = 0

13



where the coefficients a; € GF(q) are not all zero. We shall call [ag,a4,...,a,] the

(hyperlane) coordinates of the hyperplane %,,_;.

If TT, and II, are subspaces of PG(n,q) of dimension r and s respectively, then:

1. the intersection of II, and Il is written IL. N IIg;

2. the join or span of II, and Il is written IL.II; or (IL.,II;) and is the smallest
subspace of PG(n,q) which contains II, and II,;

3. Dimension Theorem (Grassman’s Identity) Let dimII denote the dimension

of a subspace II of PG(n,q), then

dimIl, + dimll, = dim(II, N II,) + dim(IL,, IT,).

Note that distinct subspaces IT, and II; are disjoint in PG(n, ¢) if and only if as subspaces
of V they intersect in the origin; by the definition of dimension of subspaces of PG(n, q)
we have I1, N II; = ) implies dim(II, NII,) = —1.

If S and S’ are two subspaces in PG(n, q) then a collineation o : S — S’ is a bijection
which preserves incidence; that is, if II, C II; then II7 C II7.

A projectivity 0 : S — S’ is a bijection given by an (n + 1) x (n + 1) matrix
H € PGL(n,q): for X,Y € PG(n,q), if Y = X° then the corresponding (column)
homogeneous coordinates satisfy \Y = HX, for some A € GF(¢)\{0}. The matrix H is

non-singular.

With respect to a fixed basis of V' over GF(g), an automorphism ¢ of GF(gq) induces an
automorphism ¢ of PG(n, q); this collineation is given by X?¢ = (z8,2?,... ,z?) for each
point X in PG(n,q). In particular, in PG(n,¢?) the automorphism,

PG(n,q¢*) — PG(n,q?)
X = (x9,T1,...,%Tn) = X=XT=(z8,2%,...,29)
is called the Frébenius automorphism. For each subspace II,. of PG(n, ¢?) we call T,

the image of II, under the Frébenius automorphism, the conjugate space of 11, with

respect to the extension GF(q¢?) of GF(q).

If ¥, ; is any hyperplane in PG(n,q), then AG(n,q) = PG(n,q)\T,—1 is an
n—dimensional affine space over GF(q). The subspaces of AG(n,q) are the sub-

spaces of PG(n,q) with the points of X,_; deleted. If the affine space AG(n,q) is

14



obtained from PG(n,q) in this way, for a fixed hyperplane ¥,_; of PG(n,q), we call
Yn—1 the hyperplane at infinity.

For any projective space PG(n,q) there is a dual space PG(n,q)? whose points and
hyperplanes are respectively the hyperplanes and points of PG(n,q); PG(n,q)? is an
n—dimensional projective space over GF(q), that is, PG (n, ¢)¢ is isomorphic to PG(n, q).
The projective space PG(n, q) satisfies the Principle of Duality: For any theorem true
in PG(n,q), there is an equivalent theorem true in PG(n,q)% in particular, if T is a
theorem in PG(n,q) stated in terms of points, hyperplanes and incidence the same
theorem is true in PG(n,q)¢ and gives a dual theorem 7% in PG(n, q) by interchanging
point and hyperplane whenever they occur. Thus join and meet are dual. Hence the

dual of an m—space in PG(n,q) is an (n — m — 1)—space (see [48, Section 2.1]).

We now present results concerning subgeometries of PG (n, g) which generalise the prop-

erties of subplanes of finite projective planes.

Since GF(q) is a subfield of GF(q*) for k > 1 a positive integer, the projective space
PG(n,q) is naturally embedded in PG(n, ¢*) once the coordinate system is fixed. Any
PG(n,q) embedded in PG(n,¢*) is a subgeometry of PG(n,q*). We are particularly
interested in the case k = 2 and any PG(n,q) embedded in PG(n,¢?) is called a Baer
subgeometry of PG(n,¢*). Once the coordinate system is fixed, PG(n, q) is called the

Baer n—space or real Baer n—space of PG(n, ¢?).
As mentioned above, the Frobenius automorphism in PG(n, ¢?) fixes PG(n, q) pointwise.

A Baer subgeometry PG(n,q) of PG(n,¢?*) has properties analagous to those of a Baer

subplane of a finite projective plane, as follows.

Theorem 1.3.1 [73, Theorems 3.1, 3.2] Let B = PG(n,q) be embedded as a Baer sub-
geometry of PG(n,q?).

(i) Each point P in PG(n,q¢*)\B is incident with o unique line of B;

(ii) Each hyperplane I1,,_y of PG(n,q?) intersects B in either a (n — 1)—space or an
(n — 2)—space of B. O

15



1.4 Quadrics

In this section we follow [50, Sections 22.1, 22.2].

A quadric Q, in PG(n,q) is any set of points (zo,z1,...,%,) € PG(n,q) such that
F(zo,71,...,%,) = 0 for some quadratic form F' € GF(q)[zo,21,... ,%,). We write
Q, = V(F) and F has form

n

F(xo,%1,. .. ,2Zn) = Zaim? + Zaijxixj

i=0 i<j
where the a;,a;; € GF(q) are not all zero.
If there is no change in coordinate system which reduces the form F' to one in fewer vari-
ables, then F' is non-degenerate and Q, is non-singular; otherwise F' is degenerate

and @, is singular.

The projective linear group PGL(n+1, q) acting on all non-singular quadrics in PG(n, q)
has one or two orbits according as n is even or odd. For n even, the non-singular quadrics
in PG(n,q) are projectively equivalent and are called parabolic. For n odd, a non-
singular quadric @, in PG(n, g) is either hyperbolic or elliptic. See [50, Section 22.1]

for the canonical forms of these quadrics.

Let W, = V(F) be a quadric in PG(n, q) with
F(Zo, %1, ,2Zn) = Zaix? + Zaijmixj.
i=0 i<j

Define A = [a;;], where a; = 2a;, aj; = a;; for i < j. Let B = [by], where by = 0,
bji = —bi; = —ay; for ¢ < j.

If ¢ = 2 then define trace(t)= ¢t + >+t + ... + ¥, t € GF(q). Let
Co = {t € GF(q) | trace(t) = 0} and let C; = {t € GF(q) | trace(t) = 1}. For ¢ odd, Cy
will denote the non-zero squares in GF(q) and C; will denote the non-squares in GF'(g).
In the following theorem, for ¢ even, A and « are evaluated as rational functions over the
set of integers where a;, a;; are treated as indeterminates z;, z;;; then z;, 2;; are specialised

to a;, a;; to give the result.
Theorem 1.4.1 [50, Theorem 22.2.1]

(i) W, is singular or not according as A is zero or not, where

1|A|, n even

|A|, n odd

A =

16



(11) Forn odd, the non-singular quadric W, is hyperbolic or elliptic according as a € Cy

or Cy, where

(=1)m+D214], ¢ odd
{IB] = (-=1)"*D2|A]}/{4]B]}, g even.

For the quadric W, = V(F) in PG(n,q) a line £ is a tangent to W, if £ contains a

unique point of W,.

Let X = (20, %1,--- ,Zn), Y = (Y0, Y1, - »Yn) € PG(n,q) with X # Y and define
G(X,Y) = F(X +Y) — F(X) - F(Y).

If X is a point of the quadric and Y is not a point of the quadric, then XY is a tangent to
W, if and only if G(X,Y) = 0. If X, Y are both points of the quadric, then G(X,Y) =0
if and only if the line XY lies on the quadric. Moreover for g even, if one of X and Y is

not on the quadric, then XY is a tangent if and only if G(X,Y) = 0.

An alternative expression for G(Y, X) is given by,

oF
GY,X) =) 7 (V)i
T4
For g even and n even, if Q,, is a non-singular (parabolic) quadric, then Q, has a nucleus,
that is, there exists a unique point Y ¢ Q, such that G(Y, X) = 0 for all points X; that

85; (Y) =0, for all 4.

Let Q,, be a non-singular quadric in PG(n,q) and let P be a point of the quadric. The

is, a point Y for which

set of points X for which G(P, X) = 0 is the tangent hyperplane to Q, at P. The

tangent hyperplane at P contains any m—space on P which is contained in Q.

If W, is singular in PG(n,q), then W, is a cone II;Q;, the join of a vertex k—space
II; to a non-singular quadric base Q; contained in an s—space II; with Il N 1L, =114
and k+ s =n — 1. Let P be a point of W,. The set of points X for which G(P, X) =0
is the tangent space to W, at P. The tangent space at P contains the vertex II; and
if P e II, then the tangent space at P is the whole space PG(n, q).
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1.5 Arcs, Curves and Normal Rational Curves in

PG(n,q)

In this section, unless stated otherwise, the material can be found in [50, Sections 27.1,

27.5).

A k,—arc in PG(n,q) is a set of k points not contained in a hyperplane with at most n

points in any hyperplane of PG(n,q).

A rational curve C¢ of order d in PG(n,q) is the set of points

{P(to,t1) = P(go(to, 1), - .- , gulto, t1))] to, 21 € GF(q) }

where each g; is a binary form of degree d and the highest common factor of the g; is 1.

The curve C¢ may also be written

{P(t) = P(fo(t), .., fn(t))| t € GF(q) U{oo} }

where f;(t) = ¢i(1,t). As the g; have no non-trivial common factor, at least one of the

f; has degree d.

Also C% is normal if it is not the projection of a rational curve C'% of order d, in

PG(n+1,q), where C' 4 is not contained in a hyperplane.

Let C? be a normal rational curve in PG(n,¢) not contained in a hyperplane. Then
i) a>n;
(ii) d=n;
(iii) C™ is projectively equivalent to {P(t) = P(t",t"!,... ,t,1) |t € GF(q) U {oo}}.
(iv) C™ consists of ¢ + 1 points no n + 1 in a hyperplane.

Note that if C™ is a normal rational curve in PG(n,q), then C™ has form

{P(t) = P(fot), 1(1),--- , fa(t)) | t € GF(q) U {00} }

where at least one of the polynomials fy, fi,...,f, has degree n. Also,
since (fo(t),..., fn(t)) is the image of (¢",t""!,...,t,1) under some projectivity
H € PGL(n +1,q), the polynomials fo(t), ... , fa(t) are linearly independent.

A normal rational curve C? in PG(2,q) is a non-degenerate conic and a normal rational

curve C? in PG(3,q) is called a twisted cubic curve.
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By property (iv) above, a normal rational curve C™ of order n in PG(n,q) is a
(q + 1),—arc. In certain cases the converse result is true; for example, for (¢ + 1),—arcs

in PG(4, q) we have the following results.

Theorem 1.5.1 [25] In PG(4,q), ¢ = 2", every (q+ 1)4-arc is the pointset of a normal

rational curve. O

Theorem 1.5.2 [50, Theorem 27.6.5] In PG(4,q), ¢ odd, ¢ < 7, every (q + 1)4-arc is

the pointset of a normal rational curve. O

Theorem 1.5.3 [76] [81] In PG(n,q), q odd, with ¢ > (4n — 23/4)?, every (q+ 1),-arc
is the pointset of a normal rational curve.

In particular, in PG(4,q), q odd, ¢ > (10.25)2, every (q + 1)4-arc is the pointset of a

normal rational curve. O
Note the following result due to Glynn [43].

Theorem 1.5.4 [43] In PG(4,9), there exists a 104—arc which is not the pointset of a

normal rational curve. a

1.6 Varieties and Plane Curves

In this section we follow Semple and Roth, Introduction to Algebraic Geometry [71].

The setting is PG(n, q).

Definition 1.6.1 A primal or hypersurface is the locus of points V whose coordinates
(zo, - .- ,Tn) satisfy an equation of the form:
F(xoy... ,Zn) = Z pizdait ..z =0, j=1,...,("")
10+ Fin=r
where the p; € GF(q) are not all zero and F is a homogeneous polynomial. If F' is of

degree r, the primal is said to be of order r and is denoted by V =V,_, . If F is of

degree 2, the primal is called a quadric.
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There are (") coefficients in such a polynomial F' of degree r, therefore ("") — 1 points

of PG(n,q) (in general position) determine a unique primal V;_,.

Example: In PG(n,q), (M%) -1 = (") -1 = ﬂ@La) generic points determine a
unique quadric. In other words, a quadric can be made to pass through 3&3;—3) points;
the quadric is unique if and only if these points result in ﬂ"2—+32 linearly independent

conditions on the coefficients of the defining polynomial F'.

Theorem 1.6.2 An arbitrary line meets a V,_, in r points (some may coincide, some

may belong to an extension of the field GF(q)). O

In PG(n,q), n generic primals have, in general, points in common whose coordinates are
found by solving their equations simultaneously for xy : z1 : ... : z,. When the primals

are generally situated with respect to each other, we obtain the following result:

Bézout’s Theorem 1.6.3 In PG(n,q), n generic irreducible primals V;*,
(i=1,2,...,n), of orders ri,...,Tn respectively, have Tir3...TH, common points.

O

Here irreducible means the polynomial defining a given primal is irreducible in the field

and in any extension of the field.

Example: In PG(2, q), two generic conics have 4 points in common; of these four points
some may coincide, some may belong to an extension of the field. Similarly, in PG(3, ),

three generic quadrics have 8 points in common.

Note that when the primals are not in general position to one another the intersection

need not be the number of points prescribed by Bézout’s Theorem 1.6.3, for example:

Consider the three quadrics zoz3 — 2122 = 0, 22 — 270 = 0 and z123— 22 = 0 in PG(3, q);
the complete intersection is the set ¢ = {(1,8,6% 6%);6 € GF(g) U {o0}} which contains
more that 8 points if ¢ > 7. So here the quadrics are not generic, are not in general

position with respect to one another.

Dimension of a variety

Definition 1.6.4 A point-locus in PG(n,q) is said to be an irreducible algebraic
manifold V) of dimension k if its points can be shown to be in algebraic 1-1 corre-

spondence with the points of an irreducible primal My of a space PG(k +1,q).
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Algebraically this means that if T = (o, Z1,... ,Zn) 15 a general point in PG(n,q) and
if § = (Yo,--- ,Yk+1) 1S a general point in PG(k +1,q), then there exists a set of n+1
polynomials Fy, ..., F,, homogeneous and of the same degree in yo,... ,Yp+1, and a
further irreducible homogeneous polynomial M (yo, ... ,Yk+1), sSuch that as § describes
the primal My, defined by M(yo, ... ,Yk+1) = 0, the point & = (xo,... ,2n) given by
pz; = Fi(yo,... ,Uk+1), ¢ = 0,...,n, describes Vi; and the correspondence is such that

the generic point of Vi arises from only one point of M.

The equations

pT; = E(yOa 7yk+1) (7’:0, ,’I’L) (11)

and M(yo,...,Yk41) = O (1.2)

are called the parametric equations of Vi; the parameters are the £+ 1 ratios y; : yo
(i=1,...,k+1).

A variety V; of dimension 1 is called a curve and a variety V; of dimension 2 is called a

surface.

Example: In PG(3,q) consider the plane Mj defined by M (yo, y1,y2,¥3) = y3 = 0.

Consider:

pzo = Fo(yo, Y1, Y2, ys) = 3,
pz1 = Fi(yo, Y1, Y2, ¥3) = Yol2,
pz2 = F2(yo, Y1, Y2, ¥3) = Y1¥2,
px3 = F3(yo, Y1,Y2,Y3) = Yoy1-
So (Yo, Y1, Y2, Y3) — (Y3, Yola, Y1Y2, Yoy ) is an algebraic 1-1 correspondence and therefore

the quadric with equation z,72—zoz3 = 0in PG(3, ¢) has dimension 2 and so is a (primal)

variety V3.
Order of a variety

An (n — k)—space in PG(n,q) can be represented as the complete intersection of k&
hyperplanes in general position, that is, the solution set to a system of k linear equations

of the form
Zaijxi =0 (_] = 1, e ,k) (13)
1=0
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These k equations, combined with equations (1.1), represent k polynomials in
Yo, Yiy--- »Yks1.  Together with equation (1.2) we have k + 1 polynomials in
Yo, Y1, - - - , Yks1 Which represent k + 1 primals in PG(k + 1, ¢) and by Bézout’s Theo-

rem these k + 1 primals intersect in a given number, r say, of points. We have

Theorem 1.6.5 A generic (n — k)—space in PG(n,q) meets a variety Vi, of dimension

k in a fived number v of points. We call r the order of the variety. a

We shall write V" for a variety of dimension k and order r in PG(n, q).

Note: From above, V7, denotes a primal in PG(n,q). Now n — (n—1) =1 and a
subspace of dimension 1 is a line and by Theorem 1.6.2, a line intersects V;;_; in r points

which is consistent with our definition of order.

Example: The points of a h—space in PG(n,q) can be put in 1 — 1 correspondence
with those of a h—space in a PG(h + 1, ¢q), with the latter being a primal defined by an
equation order 1. Hence any projective subspace of dimension A is a variety of dimension
h. By Grassman’s identity (Dimension Theorem), a generic (n — h)—space in PG(n, q)
intersects a h—space in a unique point. Thus a h—space of PG(n,q) is a variety of

dimension h and order 1 and is denoted by S}.

Intersections of varieties

Theorem 1.6.6 In PG(n,q), the intersection of two varieties Vi and Vy, of dimen-
sion k and h respectively, in general form a manifold Viyn_n of dimension k+ h —n

(where k + h > n). O

If two varieties Vj, and V}, intersect properly in a variety Viip—pn of dimension k+h —n

the intersection is called normal.

Theorem 1.6.7 (Generalized theorem of Bézout) If two varieties V" and V°, of
orders r and s respectively, intersect normally, then the intersection is a variety V™ of

order rs. a
Examples:

(1) The intersection of a primal V,7_; and a h—space S; in PG(n,q) is in general a

primal, V;/_; say, of order r in the h—space.
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(2) The intersection of a (n— k)—space S:_, and a variety V] in PG(n, q) is in general
St NVE =V{. In other words a generic (n — k)—space intersects a variety of
dimension k in r points, where r is the order of the variety (as promised by our

definition of order).

Consider a normal rational curve C} in PG(n,q) as discussed in Section 1.5. Then by

Section 1.5, the pointset of CT in canonical form is
{P(t)=P(",t",...,t,1) |t € GF(q) U{oo} }.

The points of CT are in algebraic 1-1 correspondence with the points of the (pri-
mal) line in PG(2,q) with points {(1,,1) | t € GF(q) U {oo}} and equation
M (yo,y1,y2) = Yo — y2 = 0, for example. Hence the normal rational curve indeed has

dimension 1 as a variety.

Consider a generic hyperplane, that is an S. , in PG(n,q), with equation
aoZo + a1T1 + ... + apzn = 0, where a; € GF(q) are not all zero. Then S}_; inter-
sects the curve in precisely n points, namely the points of C' with parameter ¢ such
that ¢ satisfies agt™ + a1t" " + ...+ a, = 0; note that some of these points may coincide
or belong to an extension of GF'(¢q). Hence, by the definition of order of a variety, the

normal rational curve is a variety C7 of dimension 1 and order n.

We include some additional results for later reference. For a discussion of genus, the
reader is referred to [71], [5] and [48]; note that the genus g of a curve is a non-
negative integer. Here we state a few isolated results which we require in the proof of

Theorem 4.1.4 in Chapter 4.

Theorem 1.6.8 [5, Chapter VIII, Part VI]

(i) An irreducible algebraic curve of order 6 in PG(4,q), which is not contained in a

hyperplane, has mazimum possible genus 2, that is, g < 2.

(i) An irreducible algebraic curve of order 4 in PG(4,q) which is not contained in a

hyperplane has genus g = 0 (in fact this is a normal rational curve in PG(4,q)).

Result 1.6.9 [5, Page 239, Example 8.] Let ! be a line in PG(4,q) skew to the plane of
a conic C in PG(4,q). Let 6 be a projectivity between the points P of the conic C and
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the points P? of the line I. The set of points on the lines PP is a rational ruled cubic
surface. The curve which is the intersection of this surface with a general quadric is a

sextic curve, of genus 2.

Theorem 1.6.10 Hasse-Weil Theorem [48, Theorem 10.2.1] [81] [2, Corollary 2.4] If
C" is an absolutely irreducible curve of order r and genus g in PG(n,q), n > 2 and if R

is the number of points of C” then,

|R—(¢+1)] <29

Finally we discuss plane curves specifically, that is, curves in PG(2, q).

From above, in PG(2,q), a plane curve C" of order n is represented by an equation

flz,y,2) =0
such that f is a polynomial of degree n, homogeneous in z, y, z.

The equation of a general C™ may be written in the form
f(.’IJ,y,Z) = uozn +’U,1Zn_1 +...Fu, = Oa

where u; = u;(z,y) is homogeneous of degree 7 in z and y.

A multiple point of order k (or k-fold point, k¥ > 1) of C™ is a point P of the curve
such that a generic line through P meets the curve in only n—k further points. A k—fold

point is a singular point of the curve.
If P'(0,0,1) is a k-fold point of C™, the equation of C™ may be written in the form

n—k—1

2 Fug(z,y) + 2 ukr1(2,y) + ... + un(z,y) =0 (1.4)

where u(z,y) = 0 is the equation of the k tangents of C* at P'(0,0, 1); note that these

tangents are not necessarily distinct or belonging to GF(q).

1.7  The ruled cubic surface V3

The ruled cubic surface which we denote by V;} is a variety which plays an important

role in most of the work in this thesis; this was briefly introduced in Result 1.6.9. In this
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section we define this surface and briefly summarise the important properties required

for later chapters.
The following material can be found in Bernasconi and Vincenti [15].

Consider the space PG(4,q) and let C' be a non-degenerate conic in a plane S; of
PG(4,q); let £ be a line of PG(4,q) such that £N S, = 0. Let ¢ be a projectivity
between ¢ and C, that is if we denote the non-homogeneous coordinates of points of C
(respectively £) by 8 (respectively \) then for a fixed projectivity ¢ € PGL(2, q) consider
the one-to-one correspondence between points P of £ with points P of C given by the
relationship 8 = ¢(\), A € GF(q)U{oo}. Note that since ¢ € PGL(2, g), the projectivity
is determined by the images of three distinct points of £ (see [48, page 119]).

Consider the set G of ¢ + 1 lines PP? where the point P varies over /.

Theorem 1.7.1 [15] The set of points incident with the lines of G is a rational ruled
variety, of order 8 and dimension 2, of PG(4,q).

We call such a variety a ruled cubic surface and denote it by V3. The line £ shall
be referred to as the line directrix of the ruled cubic surface, the conic C' as the base
conic, the projectivity ¢ as the associated projectivity and the ¢+ 1 lines in G shall

be called generators of V.

Theorem 1.7.2 [15] Let V? be a ruled cubic surface in PG(4,q) with line directriz ¢

base conic C and associated projectivity ¢. The following properties are satisfied by Vs :

1. Any three distinct generators of V3 are not contained in a hyperplane of PG(4,q),

2. [15, Proposition 1.2] For any hyperplane St of PG(4,q) the intersection S3NV3 is
a cubic curve C3; note that the cubic curve C3 may be reducible or may have some

component(s) in PG(4, F), where F is a field extension of GF(q),

3. ( The proof of Theorem 2.1 in [15])

(a) In PG(4,q) there exist precisely q* conics on V3 and each such conic is
disjoint from the line directriz £,
(b) FEach conic on V3 contains a unique point on each generator of V3,

(c) Two distinct conics on V3 intersect in a unique point (of V).
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Note that since any three distinct generators of V;} are not contained in a hyperplane of
PG(4, q) the ruled cubic surface V3} is not contained in a hyperplane of PG(4, ¢). Finally

we note that the ruled cubic surfaces in PG(4, q) are projectively equivalent,

Theorem 1.7.3 [15, Theorem 1.2, Corollary] If V and V' are two ruled cubic surfaces
in PG(4,q), then there exists at least one projectivity ® of PG(4,q) such that V® = V.

1.8 Segre varieties

In this section we follow Section 25.5 of [50]; we include some proofs to clarify the

geometric properties of Segre varieties.

In [50, Section 25.5] a Segre variety is defined in terms of k projective spaces PG(n,,q),
PG(ny,q),...,PG(ng,q) where n; > 1; here we consider only the special case of a
Segre variety defined in terms of two projective spaces PG(ny,q) and PG(ns,q) which

according to [50] is the Segre variety most studied.

Consider two projective spaces PG(ni,q) and PG(ny,q), with ny,ne > 1. Denote the
points of PG(n;,q) by P, = (m((]i),azgi), . ,xsf)), for:=1,2.

Let N, = {0,1,2,...,r} for any integer r > 1 and let 7 be a bijection of Ny, X N,, onto
Ny, where m +1 = (ny + 1)(ng + 1).

Then the Segre variety of the two given projective spaces is the variety pp,;n, with

pointset,
{P(zo,... ,Zm)|Zj = Tn(ir i) = :vg)xg) with P, = (x(()i), e ,x,(:)) € PG(ni,q),1=1,2}

of PG(m,q) = PG(nins + ny + na,q).

Thus, a typical point P(zo,%1,...,%m) Of ppn, is determined by a point
Pl(xgl),mgl), e ,x&)) in PG(n4,q) and a point Pg(x((f),x(f), ... ,x%)) in PG(na,q). The
m+1 = (n; + 1)(nz + 1) components xg, %1, ... , Ty of the coordinates of P are given
by T; = ZTngi) = xff)ng) and therefore the components z; are in one-to-one corre-
spondence with all possible products of the form xgll)a:l(-f), where i; € {0,1,...,n:} and

is € {0,1,...,n2}. Since Pi(xgi),mgi), .. ,ng)) # (0,0,...,0), 4 = 1,2, each P, contains

at least one non-zero component; the product of these non-zero components (one from

26



P, and one from P,) therefore occurs as a component of P(zg,1,...,%Zy). Hence for

any point P in the Segre variety pn,.,, we have P(zo,%1,...,2Zm) # (0,0,...,0).

The integers ni,n, are called the indices of the variety. It can be shown that this Segre

variety is absolutely irreducible and non-singular, with order equal to

(n1 + no)!
nl!ng! '
Any point P(zg,z1,... ,Zm) of the Segre variety satisfies the following equations
Tnis 2 Sn(ir.a) ~ Tn(irga)Fn(insiz) = O- (1.5)

Theorem 1.8.1 [50, Theorem 25.5.1] The Segre variety pn, ., s the intersection of all
quadrics defined by the equations (1.5), and conversely any point of PG (ning+mn1+ng, q)

satisfying the equations (1.5) corresponds to a unique element of PG(ny,q) x PG(ny, q).
O

Let
d : PG(ny,q) X PG(n2,q) — Pryiing

be defined by

(Pl(xgl),xgl), L x(l)),Pg(a:gz),x?), o D)) — P20, 21, .+ )

Y¥nq ) ng

By Theorem 1.8.1 the mapping ¢ is a bijection.

Theorem 1.8.2 [50, Theorem 25.5.2] For a given fized point Py of PG(n1,q), the set of
all points 6( Py, Py) with Py € PG(ny,q), is an ng—dimensional projective space contained
N Prims-

Similarly, for a given fized point Py of PG(na,q), the set of all points 6(Py, Py) with

P, € PG(n4,q), is an n1—dimensional projective space contained in Py, -

Proof We prove the first statement; the second is proved analogously.
Pl(x(()l),:cgl),... ,x%ll)) # (0,0,...,0) is a fixed point of PG(ni,q). For any point

Pg(a:gz),x?), . ,x%)) in PG(ns,q), the components g, z1, ... ,Zm of the coordinates
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of P(xy,Z1,... ,%m) = 6(P1, P2) are, up to order,

0,3 L0 @ () 52

To To'y Lo &1’y -+ Lo Tnz,
02, 0,9, ., Dl
202P, 20,20, ..., 022,
The set {P(zo,Z1,... ,Zm) = 6(P1, P2)} is therefore a ny—dimensional space. O

By Theorem 1.8.2, the Segre variety pn,.n, has a system %; of n;—dimensional subspaces

and a system X, of ny—dimensional subspaces.

Theorem 1.8.3 [50, Theorem 25.5.3, Theorem 25.5.5] Any two distinct elements of ;
are skew, for i = 1,2. Each point of pn,.m, 15 contained in exactly one point of ¥;, for

i=1,2.

Each element of &; intersects each element of ¥;, i # j, in ezactly one point.

Proof Let II,, € X; correspond to the point P, &€ PG(ng,q), that is
I, = {6(P, P) | P € PG(ny,q)}. Similarly, let I'I'n1 € ¥, correspond to the point
P, € PG(ny,q) and suppose P, # P,

For any points Py, P, € PG(ny,q), (P, P2) # (P}, P;) and therefore §(Py, P,) # §(P,, P,)
since ¢ is a bijection. It then follows from Theorem 1.8.2 that II,, N l'I'n1 = (). Similarly
for two distinct elements I1,,,IT, € 5y, I, NI, = 0.

Consider the space II,, € %, which corresponds to the point P, € PG(ng,q) and the
space II,, € ¥ which corresponds to the point P, € PG(ny,q), then §(Py, P,) is the

unique point contained in the intersection II,, NIl,,. a
Corollary 1.8.4 [50, Theorem 25.5.4]

(i) The number of points of Prim, 15 |Prisne| = 8(n1)0(n2) = |PG(n4,q)| |PG(na, q)|.

(ii) The number of ni—dimensional subspaces in the system X; s
|Z1| = 0(n2) = |[PG(ng,q)|. The number of ny—dimensional subspaces in the
system Ly 15 |Xo| = 0(n;) = |PG(n4,q)|. 0

The main example of a Segre variety which we shall use in this thesis is the Segre variety

p1n in PG(2n 4+ 1,¢) with n; = 1 and ny =n > 1. The variety p;;, has order n +1 and
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has |p1,n] = (¢ + 1)8(n) points. The variety has a system X; of |£;| = 6(n) lines and a,
system X, of [X3] = 6(1) = ¢ + 1 n—spaces. If n = 1, then the variety p;,; in PG(3,¢)
is a hyperbolic quadric. If n = 2, then the variety p; in PG(5,q) has a system %; of
g%+ q+ 1 pairwise disjoint lines and a system X5 of ¢+ 1 pairwise disjoint planes; in this

case each line in ¥; intersects each plane in 3, in exactly a point.

We include a few additional properties of Segre varieties, in particular, some results

concerning the existence of Segre subvarieties of a Segre variety.

Theorem 1.8.5 [50, Theorem 25.5.6]
No hyperplane of PG(m, q) contains the Segre variety pn,.mn,. O

It is convenient to use the following notation and to choose 1 as the following bijection
in the definition of a Segre variety. The element z; = z,;, ;,) will be denoted by z;,;,.

Let n(i1,42) = i1(n1 + 1) + 45. The equations (1.5) become
TiyigTirje — LjrinTirje = O (1'6)

Theorem 1.8.6 [50, Theorem 25.5.7] The Segre wvariety pn,m, consists of all

points P(ﬂ?oo,iﬂm,--- y Longy L10y L1y e o v v v yLingy+++ 9 Tn10y Tnyly - - - ,l'mnz) of PG(m, Q)

for which rank[z;;] = 1. O

By Theorem 1.8.6, for example, the Segre variety p;.» in PG(5,q) consists of all points

(%00, Zo1, Z10, Z11, T20, Z21) for which

Zoo o1
rank | 19 27 | =1
Ta0 T21
that is, for which
TooTir — ZwTor = 0
TooTar — ZT20Tor = 0
T10Tz1 — T20T11 = 0.

A Segre variety pn,.n, in PG(m,q) is the intersection of quadrics with equations (1.6).
Therefore any line £ of PG(m,q) intersects pn,.m, in 0,1,2 or ¢ + 1 points. By the
following result, any line contained in the Segre variety pp,.,, must be contained in

either an element of ¥; or an element of .
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Theorem 1.8.7 [50, Lemma 25.5.10]

Any line £ of ppyn, is contained in an element of 31 or Y. 0O

An s—space II; which is contained in pp ., and such that II, is contained in no
(s + 1)—space II;11 Of pnyin,, is called a maximal space or maximal subspace of

Pnying- Using Theorem 1.8.7 it can be shown that,
Theorem 1.8.8 [50, Theorem 25.5.11, Corollary 1]

(i) The mazimal spaces of the Segre variety pn,;n, are the elements of ¥1 and Xo;

(i) Each s—space of Py, With s > 0, is contained in either a unique element of Y

or a unique element of Y. a

By Theorems 1.8.4 and 1.8.8, it is possible to count the number of subspaces contained

in pp,n, as follows.

Corollary 1.8.9 [50, Theorem 25.5.11, Corollary 2] Let n; < np. The number of

s—spaces contained in Pp, ., 18

(i) 0(n1)e(s; m2, @) + 0(n2)b(s; 1, 9), for 0 <'s < my;

(i1) 0(n1)¢(s;n2,q), for ny < s < ny. O

Finally, we present the results from [50, Section 25.5] on Segre subvarieties.

Theorem 1.8.10 [50, Theorem 25.5.12] Let P, € PG(n;,q) and let PG(d;, q) be a
d;—space of PG(n;,q), 1 =1,2. Then

(i) §({P,} x PG(ds,q)) is a do—subspace and §(PG(dy,q) X {I2}) is a di—subspace of
pm;nz;

(i3) all subspaces of pnym, are obtained as in (i);

(iii) when d; > 0, i = 1,2, §(PG(dy,q) x PG(da,q)) is a Segre variety pg;a, contained

mn pm;nz ;

(1v) Payidy = Prame NPG(M', q), wherem' = didy+d1+dz and PG(m/, q) is the m'—space

generated by paydy;
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(v) all Segre subvarieties of pp,.n, are obtained as in (iii). O

Note that by considering the number of subspaces of PG(n1, ¢) and PG(ny, q), by Theo-
rem 1.8.10 the number of Segre subvarieties of py,.n, can be calculated (see [50, Theorem

25.5.12, Corollary 1]).

Theorem 1.8.11 [50, Theorem 25.5.12, Corollary 2] Let I, be an s—space of ppym,,
s > 1, contained in an element 11, of ¥1. Then the elements of ¥y meeting Il; in a
point are the elements of a system of mazimal subspaces of a Segre subvariety pgyn, of

pnl;nz . O

1.9 Spreads and Reguli

The following definitions and results are found in [48, Chapter 4] and [50, Section 25.6};

for further detail the reader should refer to these texts.

A spread S, of r—spaces of PG(n,q) is a set of r—spaces which partitions PG(n, q);
that is, every point of PG(n,q) lies in some r—space of S, and every two r—spaces of

S, are disjoint. The r—spaces in S, are the elements of S;.

A spread of r—spaces in PG(n, q) will also be called an r—spread of PG(n,q). In the
case r = 1 and n = 3, a 1—spread of PG(3,q) will sometimes be called a line spread

of PG(3,q) or simply a spread of PG(3,q).

Theorem 1.9.1 [48, Theorem 4.1.1] The following are equivalent:

(i) there exists a spread S, of r—spaces of PG(n,q);

(ii) |PG(r,q)| divides |PG(n,q)|;
(iii) (r +1) divides (n + 1). O
Consider a Segre variety p;., in PG(2n+1,¢q). The system of maximal n—spaces of p1;,

will be called an n—regulus. In the case n = 1, the Segre variety p;,; is a hyperbolic

quadric in PG(3, ¢q); a 1—regulus is also called a regulus.
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Theorem 1.9.2 [50, Theorem 25.6.1, Corollary] If II,,IT,,TI, are mutually skew
n—spaces in PG(2n+1,q), n > 1, then the set of all lines having non-empty intersection
with 11, H'n and H',; is a system of mazimal spaces of a Segre variety py.,. Moreover, the
n—regulus in p1,, which contains Il,, IT, and IT, is the unique n—regulus in PG(2n+1,q)

which contains 11, TT,, and IT,. O

For mutually skew n—spaces IL,,IT, II in PG(2n + 1,q) the (unique) n—regulus con-
taining II,, IT,, and I, is denoted by R(IL,,II,,,II,).

In this thesis we shall use the following definition of a regular n—spread.

Definition 1.9.3 Forq > 2 an n—spread S, of PG(2n+1, q) is called regular if for any
three distinct elements 11, H’n, H’,’L of S, the whole n—regulus R(I1,, H’n, H’r;) 18 contained

mn S,.

Theorem 1.9.4 [50, Theorems 25.6.4, 25.6.5] For ¢ > 2 an n—spread S, of
PG(2n +1,q) is regular if and only if the n—spaces of S, meeting any line not in an

element of S, form an n—regulus. O

In the case n = 1, the above definition and theorem concerning regular 1—spreads in
PG(3,q) are also valid in the case ¢ = 2; by [49, Chapter 17] for ¢ = 2, every 1—spread
in PG(3,q) is regular. For n > 1 and ¢ = 2 every n—spread in PG(2n + 1, 2) satisfies
the property that for any three distinct elements I'In,H'n,l'[','L of the spread the whole
n—regulus R(IT,,II,,TI,) is contained in the spread. (See [50, Section 25.6] for more

detail on the case n > 1 and ¢ = 2.)
The regular n—spreads in PG(2n + 1,q) are projectively equivalent by the following

theorem.

Theorem 1.9.5 [50, Theorem 25.6.7] The group PGL(2n+2,q) acts transitively on the
set of all reqular n—spreads of PG(2n+1,q). O

Finally we include the well known characterisation by Bruck of regular 1—spreads of

PG(3,9).

Theorem 1.9.6 [20, Theorem 5.3] Let PG(3,q) be embedded as a subgeometry of
PG(3,¢%). Let ~ denote the Frébenius automorphism of PG(3,q*) which fizes every
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point in PG(3,q). Let g be any line of PG(3,¢*) which contains no point of PG(3,q).
For each such line, g, let S, denote the set of all lines of PG(3,q) which meet g. Then,
S, = Sz is a regular spread of PG(3,q). Every regular spread of PG(3,q) can be repre-

sented in this manner for a unique pair of lines g,g. |

1.10 The Bruck and Bose representation

In this section we present the results of Bruck and Bose ([21] and [22]) which provide us
with a representation of translation planes of order ¢" in the projective space PG(2h,q).
In particular, we obtain a representation of the Desarguesian plane PG(2,¢"). We also
obtain a convenient and natural coordinate system for PG(2, ¢") in this Bruck and Bose

representation.

1.10.1 The construction

In this section we follow [21, section 4.].

Let S be a (h — 1)—spread of £o, = PG(2h — 1,¢q) and embed 3, as a hyperplane in
PG(2h,q).

Define an incidence structure aff(Il) = (P, B, I) as follows:

The points of aff(IT) are the points of PG(2h, ¢)\Zw.
The lines of aff(II) are the h—spaces of PG(2h, q) which intersect Yo, in a unique element

of S. (Note that this implies that each such h<=space is not contained in E.)
The incidence relation of aff(IT) is that induced by the incidence relation of PG(2h, q).

Theorem 1.10.1.1 [21, Theorem 4.1 and its Corollary] aff(II) is an affine plane of

order q". 0

The affine plane aff(I1) may be embedded in a projective plane II by adjoining the spread
S to aff(IT) as a line at infinity which we denote by . Each element of S corresponds
to a class of parallel lines of aff(II), thus each element of S is adjoined to IT as a point

at infinity.
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Hence the corresponding projective plane II has a perfectly concrete representation in

terms of the above construction.

Theorem 1.10.1.2 [21, Theorem 7.1, Corollary] aff(II) is a translation plane with trans-
lation line the line at infinity. Moreover, every finite translation plane is isomorphic to

at least one plane off(IT).

Theorem 1.10.1.3 [22, Theorem 12.1, Corollary] The finite projective plane II is De-
sarguesian if and only if the (h — 1)—spread S of L is a regular spread. a

Finally we note:

Theorem 1.10.1.4 [50, Theorem 25.6.7] The group PGL(2h, q) acts transitively on the
set of all reqular (h — 1)—spreads of PG(2h —1,q). O

1.10.2 Some Galois theory

Before we present a coordinatisation for the projective plane II, we review some well

known Galois theory.

The following information can be found for example in chapter 7 of A first course in

Abstract Algebra, [39], by John B. Fraleigh.

Let GF(q) denote the (finite) Galois field of order ¢, where ¢ = p", p is prime and r > 1

is an integer.

The integral domain of all polynomials in an indeterminate x with coefficients in the
field GF(q) is denoted by GF(q)[z]. Let h be a positive integer, h > 1; then there exists
a monic polynomial of degree h in GF(q)[z] which is irreducible over GF(g). Denote
this polynomial by,

Do) = 2t —epzt = —ar—

where the ¢; are in GF(q).

There exists an extension field E of GF(q) and an element o € E such that pa(a) = 0.
Hence « € E is algebraic over GF(q) of degree h, and the polynomial p,(z) is called the
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minimal polynomial for a over GF(q). Each element b in GF(¢)(), a simple extension

field of GF(q), can be uniquely expressed in the form,
b= b() + blOd + ...+ bh_lah_l

where the b; are in GF(q). Thus, GF(q)() is a finite field extension of degree h over
GF(q) and therefore has ¢" elements. It follows that GF(¢)(c) is isomorphic to the
unique finite field with ¢" elements, GF(q)(a) = GF(q"). We shall identify GF(g)(c)
with GF(g").

Consider the field extension GF(¢") = GF(q)(a) of GF(q), which from above is an
algebraic extension of degree h; it is also a vector space of dimension h over GF'(q) with
basis {1, @,0?,... ,a" '} where addition of vectors is the usual addition in GF(¢") and
scalar multiplication Ab is the usual field multiplication in GF(¢") with A € GF(q) and
be GF(q").

We shall often identify GF(¢") (as a vector space of dimension h over GF(q)) with the

vector space GF(q)", since we have the following isomorphism of vector spaces,
¢: GF(¢") = GF(q)(e) — GF(q)"
b=1by+ b+ ...+bh_1ah‘1 — (bo,bl,... ,bh—l)

where the b; are in GF(q) and {1,q,...,a" !} is the basis, mentioned above, for GF(¢")

as a vector space over GF(q).

By the above theory, there exists an element 8 € GF(¢?*), 8 ¢ GF(q¢"), such that § is
algebraic over GF(¢") and hence GF(g*") is a vector space of dimension 2 over GF(q)
with basis {1, 8}.

The field GF(¢*") is also a finite field extension of GF(q) of dimension 2h. Moreover,
since {1,0,...,a" '} is a basis for GF(¢") as a vector space over GF(q), and {1, 8} is

a basis for GF(¢%") as a vector space over GF(¢"), the 2h elements,

{1,a,...,a" 1,8, Ba,...,Ba"""}

form a basis for GF(¢**) as a vector space over GF(q).

1.10.3 A regular spread for ¥, = PG(2h—-1,q)

Our aim is to obtain a convenient coordinate representation of PG(2, ¢") in the Bruck-

Bose setting with construction II as given in Section 1.10.1. By Theorems 1.10.1.1
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and 1.10.1.3 we require a regular (h — 1)—spread S of £, = PG(2h — 1,q). The
following determination of a regular spread S is a special case of the work of Bruck and

Bose given in [21, section 5.).

Throughout this section we shall use the results of Section 1.10.2 and the notation

introduced there.

Represent Yoo = PG(2h — 1,q) as the (2h)—dimensional vector space GF(¢*") over
GF(q); the points of PG(2h — 1, ¢) corresponding to the 1-dimensional vector subspaces
of GF(¢*"). By Section 1.10.2 and the notation introduced there, GF(¢*") has basis,

{1,a,...,0",8,Ba,...,Ba" 1}
as a vector space over GF(q).

Let J(o0o), J(0), J(1) be three distinct (b — 1)—subspaces of PG(2h — 1,q), chosen so
that as vector subspaces of GF(¢?"),

J(00) has basis {1,a,...,a" '},

J(0) has basis {8, fa, ... ,Ba""}, and

J(1) has basis {1+ 3,a + Ba,... "' + Bal~1}.
Denote by ’ the following linear transformation of J(oo) onto J(0),

":a+—— d=pa

and, consequently, the following linear transformation maps J(oco) onto J(1),
a — a+a.

Note that the vector space GF(q*") is the direct sum of J(oco) and J(0).

The three vector subspaces J(o0), J(0), J(1) intersect pairwise in the zero vector and
hence, when considered as (h — 1)—dimensional subspaces of PG(2h — 1, ¢), the three

subspaces are pairwise disjoint.

Since J(oco) is the h—dimensional vector space GF(q") over GF(q) with basis

{1,0,...,a" 1}, each element a € J(co) can be uniquely expressed in the form,

a = ag+ara+...+ap1a"t
where the a; are in GF(q).
Note that o is an element of GF(¢") and, by Section 1.10.2,

Olh = ¢ +ca+...+ ch_lah_l. (17)

36



since o € GF(¢") has minimal polynomial p,(z) = " — ¢p_13"! — ... — ¢o, where the
c; are in GF(q).
Similarly, for each power of*% i = 1,...,h — 2, the element o"** is of course also an

element of GF(q") and therefore can be uniquely expressed as a linear combination of

the basis elements {1,q,...,a"}. Hence, let

oMttt = gio+ g1+ ...+ gi,h_lah‘l (1.8)

where the g; ; are in GF(q).

Consider the product ba of two elements b, a € J(co). We have,

b = b +b1a+...+bh_1ah‘1

o = ay+aa+...+ap_aM?

where b; and a; are elements of GF'(g). Therefore ba is given by,
(b +bro+ ...+ bp1a" N(ag + ara+ ... + ap_1a"1) (1.9)

and by substituting the expressions (1.7) and (1.8) into the product (1.9), we can sim-
plify (1.9) and determine ba as a (unique) linear combination of {1, a, . .. ,a" 1}, Denote

this linear combination by,

ba = (bo +ba+...+ bh_lah‘l)(ao +aa+...+ ah_lah_l)
= (do -+ d1a +...+ dh_lah_l)
= d
where the d; are in GF(q) and d € J(oo) = GF(g").
For convenience, we represent each element a € J(oo) as a h—dimensional vector
(ag,ai,... ,ap—1), where a = ap + a1 + ... + an_10"! with the a; € GF(q) as usual.
Then for each element b € J(00), b= by + b+ ...+ bp_10"™t = (bg, b1, ... ,bp_1), the

product (1.9) is equivalent to a linear transformation of J(co) defined by a h x h matrix,

which we shall denote by By, with entries in GF(q), as follows,
J(00) — J(0)
a = (ag,a,...,ap-1) +—> (@o,a1,...,84-1)By = (do,ds,... ,dp_1).

and we use the convention that for a and By as above, the product aB; is the element

d=dy+dia+...+dy_10"1 of J(c0) = GF(¢").
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For each of these h x h matrices By over GF'(q) defined above, let

J(b) = {aBy+d'|ae€ J(o0)} (1.10)
so that J(b) is a h—dimensional vector subspace of GF(¢*") and so represents a
(h — 1)—space in ¥y, = PG(2h —1,q).

Let C denote the collection of the ¢® matrices B, over GF(q), so that,

C={B,|be GF("}.

Let S be the collection
{J(c0)} U{J(b) | b€ GF(¢")}

of ¢" +1 (h — 1)—spaces in PG(2h — 1,q). Note that for b= 0 and b = 1 the definition
of spaces J(0) and J(1) is consistent with our earlier definition of these spaces. We can
also note by (1.9) and the following remarks, that J(0) is defined by the zero matrix
By =0in C and J(1) is defined by the identity matrix B; = I in C.

We now show that S is a regular (h — 1)—spread of £ = PG(2h — 1, q).

First we note that since J(o0o) has basis {1, 0, ..., "} as a vector subspace of GF(¢*")
and given the Definition (1.10) of J(b), the subspaces J(co) and J(b) have only the zero

vector in common and hence as (h — 1)—spaces in PG(2h — 1, q) they are disjoint.

Consider a matrix By in C. For any element a € J(co) the product aB, corresponds to
the element ba in J(co) = GF(g"). Hence aBy, = 0, for a € J(co) and a # 0, if and only
if b= 0. It follows that for every non-zero matrix B, in C, B, is non-singular. Moreover

we note that for distinct matrices By, , By, in C,
By, — By, = By, -1,

is an element of C since b, — b, € GF(g"). Similarly, C is closed under matrix multipli-
cation. In fact (C,+,-) is isomorphic to the field GF (¢") under the isomorphism B b
from C to GF(¢").

For distinct matrices By,, By,, since By, — By, is an element of C, by the above discussion
By, — By, is non-singular. Next suppose that the two vector subspaces J(b;) and J(ba) of
GF(¢*"), corresponding to the distinct matrices By, , By, € C respectively, have a non-zero

vector 7 in common. By Definition (1.10), for some elements a1, as € J(00) = GF(¢"),
£ = a;By, +a; = By, + ay
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and by equating coefficients of the basis elements of GF(g**), we obtain a; = a,
and therefore a; = a;. Hence we have the equality a1Bp, = a1Bp, which implies
a1(By, — Bp,) = 0. Since Bj, — By, is non-singular we have a; = 0 and so z = 0, a

contradiction.

Hence S is a collection of ¢" + 1 pairwise disjoint (h — 1)—spaces in o, = PG(2h—1, q),
that is , S is a (h — 1)—spread of ¥ Finally, by [22, Theorem 11.3] and since (C, +, -)
is a field, the spread S is a regular spread of X.

By Theorem 1.10.1.3 and since S is a regular spread, the Bruck-Bose construction II, of

Section 1.10.1 with spread S, is a Desarguesian projective plane of order ¢".

1.10.4 Coordinates for the projective plane II = PG(2,q")

Let II be a finite projective plane with the construction of Section 1.10.1 with the no-
tation introduced there. Let S be the regular (h — 1)—spread of ¥, = PG(2h —1,q)
determined in the previous section and with the notation introduced there. By Theo-
rems 1.10.1.1 and 1.10.1.3, II is the Desarguesian projective plane PG(2,¢") since S is
a regular (h — 1)—spread.

In this section we use the results of [21, section 6.] to obtain a coordinate system for this
Desarguesian projective plane IT determined by S. We shall utilise this coordinatisation
in later chapters in examination of varieties, specified by their equations in PG(2,¢"),

in the Bruck-Bose setting.

First we recall a familiar coordinatisation of PG(2,q"). The points of PG(2,q") have
homogeneous coordinates (z,v, z), where z,y, 2 € GF(¢") and z, y, z are not all equal to
zero. Let fo, the line at infinity, be the line with equation z = 0, or in line coordinates,
{s is the line [0,0,1]. Let AG(2,q") = PG(2, ")\l be the affine plane obtained from
PG(2, ¢") by removing £, and all of its points. The points of AG(2,¢") have coordinates
of the form (z,y, 1) or occasionally for convenience we shall write these affine coordinates

in the form (z,y).

The lines of AG(2,¢") may be divided into two types:
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(i) Lines with equation y = v or, equivalently, with line coordinates [0,1, —v],
where v € GF(g").
These lines constitute a parallel class of lines in AG(2, ¢") with point at infinity
(1,0,0) in PG(2,q").
(ii) Lines with equation = by + s or, equivalently, with line coordinates
[1, —b, —s], where b, s € GF(¢").
For each b € GF(¢") these lines constitute a parallel class of lines in AG(2, ¢")
with point at infinity (b,1,0) in PG(2, ¢").
We work in the Bruck-Bose setting to obtain a natural coordinatisation of the incidence
structure II, natural in the sense that the coordinatisation will correspond to the above

coordinatisation of the plane PG(2,q") in a convenient way.

We have X, = PG(2h — 1,q) embedded as a hyperplane in the projective space
PG(2h,q). We represent PG(2h — 1,q) as a 2h—dimensional vector space GF(q?")
over the field GF(q) with basis,

T o
{1,a,0%,... 0" 8, Ba, ..., Ba"" 1}

Embed GF(q?") as a hyperplane in the (2h + 1)—dimensional vector space GF(¢*"*'),
and we only need to add a single element e* say of GF(¢g?"*!) which is not in GF(¢*")

in order to obtain a basis
2 h—1 h—1
{1,0,0%...,&" "B, Ba,...,0a" " e}

for GF(g*"*1).

The regular (h — 1)-spread S of PG(2h — 1, ¢) is the collection of ¢" + 1 h—dimensional
vector subspaces of GF(q?") defined in the previous section, with the notation introduced

there,

S = {J(e0)}U{J() |be GF(¢")}.

Considering the construction in Section 1.10.1 of the finite Desarguesian projective plane
I1. Each affine point of II is a 1-dimensional vector subspace of GF(q?**!) not contained

in the hyperplane GF(q*") and so has a unique basis element of the form
z+ yl + e or, equivalently, (an Z1y--- 5 Th-1Y0,Y1y- - Yn-1, 1)

where 3 € J(0) so that z,y € J(oo) = GF(g") and have unique representation in the
form z = S @0, y = Y1) viof, where the z;,y; are in GF(g). (Note that we
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have used the fact that GF(¢?") is the direct sum of J(co) and J(0).) Thus we define
the coordinates of the affine point of II with this basis element to be (z,y,1) for every

ordered pair of elements z,y € J(co) = GF(g"). We have defined,

(z,9,1) = {z+1y +e}
= {(z0, %15, Th-1,Y0, Y15 - - » Y1, L) }.
A line of TI, distinct from the line at infinity, is a (h + 1)—dimensional vector subspace

of GF(¢*"*') over GF(q) which intersects GF(¢**) in a unique element J of S and so

has the form,

(J,(z,9,1)) = (Jz+y +e)
. <Ja (an T1yeee yTh-1,Y0Y15--- 5 Yn-1, 1))
provided (z,y,1) is one of its points.

We divide these lines into two types:

(i) Lines with equation y = ~. If 7y is in J(o0) = GF(g"), the point (z,y,1) of II

lies on the line
(J(00), (0,7,1))

if and only if y = 7.
These lines constitute a parallel class of lines in aff(I) with point at infinity
J(00) in II.

(ii) Lines with equation z = by +s. If s is in J(oo) = GF(¢") and J(b) is in &,
the point (z,y,1) lies on the line

(J(b),(s,0,1)) = ({aBy+a'|a € J(o0)},s+0" +¢€)
if and only if (z — s) + ¢ is in J(b), that is, if and only if

(330 — 80, L1 — 81+ yTho1 — Sh—1) = (@/o,yh e Yr—1) B

where s = s+ sy + ... + sp_1aP 7L

For each b € GF(q") these lines constitute a parallel class of lines in aff(IT)
with point at infinity J(b) in II.
Now if we wish we can consider the line at infinity /., of II as being the line with
equation z = 0, or in line coordinates the line [0,0,1]. Each element of the regular

spread S = {J(c0)} U {J(b) | b € GF(¢")} is a point on the line at infinity and it is
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convenient to associate J(b) with the coordinates (b,1,0) for all b € GF(q) U {o0}, so
that in particular J(co) is associated with (1, 0,0).

1.11 Plane {k;n}—arcs and sets of type (m,n)

A {k;n}—arc K in a finite projective plane m,, of order g, is a set of & = |K| points in
the plane such that no n + 1 are collinear but some n are collinear. Barlotti introduced
this definition of a {k;n}—arc in 1956. If n = 2 we call K a k—arc and in Desarguesian
projective planes of odd order the (¢ + 1)—arcs are characterised in Segre’s Theorem as

follows.
Segre’s Theorem 1.11.1 [69] In PG(2,q), q odd, every (g + 1)—arc is a conic. O
For later reference we include:

Theorem 1.11.2 [48, Theorem 12.2.5, Corollary 2] Any {k;3}—arc in PG(2,q), ¢ > 3,
satisfies k < 2q + 1. O

Let K be a {k;n}—arc in the finite projective plane 7, of order ¢. If a line £ contains
exactly s points of K we call £ an s—secant of K (0-secants are also called ezternal lines
and 1-secants are often called tangents of K). Denote by ¢, (s = 0,...,n) the number

of s—secants of K in m,. The following identities are proved in [75].

S

ts = ¢ +q+1 (1.11)

zn:sts = k(g+1). (1.12)

s=1
n
s(s—1t;, = k(k—1) (1.13)
§=2
K is said to be of type (my,ma,...,n), withmy <mg < ... <n, if ty,,tm,,... ,tn are
non-zero, that is if every line of 7, intersects K in exactly my, ms,... or n points.

Note that the points of a conic in PG(2, q) is a set of type (0, 1,2) since each line of the

plane is external, tangent or secant to the conic.
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We now give some results concerning sets of type (m,n) in 7, which can be found in

[75], [74].

Let K be a set of type (m,n), 0 < m < n < g+1 in 7y; denote by k the number of points
of K. Using the relationships (1.11), (1.12) and (1.13) we obtain ¢y +t, = ¢* +g¢+1,
Mitm + nt, = k(g + 1) and m(m — 1)t,, + n(n — 1)t, = k(k — 1). Note that some terms
will vanish when m = 0 or m = 1. These equations are easily solved and the parameters

tm and t, are given by,

tm = Gem (@ +¢+1) = k(g 1) tn = Gy k(@ + 1) — m(¢® + ¢ + 1))

Moreover the integer k is found to satisfy

k2 — k[(m+n)(g+1) — g] + mn(¢* + ¢+ 1) =0.

By counting points of K on lines through a point ¢ K, respectively a point P € K,

we obtain a bound for the cardinality k of a set of type (m,n),

for1<m, mg+n<k<(n-1)¢g+m;
for m =0, k=(n-—1)g+n.

These bounds are best possible in the sense that there exist examples of sets in m,, for
some values of g, m,n, where the cardinality & takes the extremal values. Examples will

be discussed in the following sections.

Let P be a point of K and denote by v, v, the number m—secants, respectively
n—secants, through P. Let @ be a point of m, not in K and denote by u,, u, the

number m—secants, respectively n—secants, through Q). Using the relationships,

Unt+Un = q+1 Un + U, = ¢+1
(m—Nvp+n—-1v, = k-1 MUy, + MUy, = Kk

We can determine the parameters as,

Un = Um —q/(n—m) U = (n(g+1)—k)/(n—m)
(k —m(g+1))/(n—m).

Up = Up+q/(n—m) U,

Since these parameters are all integer valued, it follows that a necessary condition for
the existence of a set K of type (m,n), 0 < m < n < g+ 1, in the plane 7, of order g,
is that (n — m) divides g.
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Given a set K of type (m,n) of k points in a finite projective plane m,, of order ¢, the

following sets are related to K.

The complement K of K is the set of points of m; not in K. Khasg*+q+1—k
points and is a set of type (¢+1—n,¢+1—m) in 7,.

In the dual plane 7¢ of my the set K of m—secants of K constitute a set of type (vm, Um)
of t,, points; similarly the n—secants of K constitute a set K% of type (un,v,) in the

dual plane with ¢, points.

The trivial cases of sets of type (m, n) in m, occur when n —m = ¢, where K is a line or
the complement of a line, and when n — m = 1, where K is a point or the complement

of a point. The non-trivial cases occur when n — m is a proper divisor of g.

The sets of type (0,n) in 7, (where n divides ¢ is a necessary condition for existence)
are called maximal arcs; such sets necessarily have cardinality (n — 1)g+n from above.

We will leave the discussion of maximal arcs to a later section.

It remains to consider sets of type (m,n), 1 < m < n < ¢ in a finite projective plane
7, of order . We have already determined (n — m) divides ¢ is a necessary condition
for existence. Using the parameters derived above of a set of type (m,n) as well as
the associated sets in the dual plane and their parameters, Tallini-Scafati proved the

following result in [75]:

Theorem 1.11.3 [75] Suppose K 1is a set of type (1,n), n < g, in a finite projective
plane m,, of prime power order, then q is a square and K is either a set of type (1,/q+1)
of g\/q + 1 points OR a set of type (1,,/g+1) of g+ /g +1 points. O

The two sets in 7, identified in this characterisation are called a unital of order /g
and a Baer subplane of order ,/q respectively (unitals will be defined and discussed

in more detail in a later section).

Tallini improved Tallini-Scafati’s result by removing the condition that the order of the

plane must be a prime power.

Theorem 1.11.4 [74] Suppose K is a set of type (1,n), n < g, in a finite projective

plane w4, of order q, and S p" p prime and b > 0 integer. Then q = p?*,

(n—1)

n=.,/qg+1 and K is either a Baer subplane or a unital of order \/q. m|
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1.12 Caps, Ovoids and Spreads of PG(3,q)

For further detail regarding this section consult [33, 1.4.47 to 1.4.62], [49] and [61]; we
restrict our attention to PG(3, g).

A k—cap in PG(3,q) is a set of k points no three of which are collinear. An ovaloid in
PG(3, q) is a k—cap of maximum size. For a k—cap K in PG(3, q), each line £ in PG(3, )
is called an external, tangent or secant line of K according as the intersection £N K

contains 0, 1 or 2 points of K.

An ovoid is a k—cap in PG(3,q) such the tangent lines at each point form a plane.
Moreover an ovoid in PG(3,q) has exactly ¢* + 1 points. It is known that for ¢ > 2 an

ovoid in PG(3,q) is an ovaloid and conversely.

Let O be an ovoid in PG(3,q). For each point P € O there exist ¢ + 1 tangent lines to
O at P; these tangent lines lie in a plane about P called the tangent plane to O at P.
Each plane of PG(3, q) intersects O in either 1 point or in a (g + 1)—arc and is called a

tangent plane or secant plane of O respectively.

For all values of ¢, the elliptic quadrics in PG(3, ¢) form an infinite class of ovoids known
as the classical ovoids of PG(3,q). Each secant plane of an elliptic quadric in PG(3, q)
intersects the elliptic quadric in ¢ + 1 points of a non-degenerate conic. If ¢ is odd, then

every ovoid in PG(3,q) is an elliptic quadric [8].

The only other known class of ovoids in PG(3,¢) are the Tits Ovoids which exist in

PG(3,2%%1), r > 1 an integer. Their construction is given as follows.
In PG(3,2%+1), r > 1 an integer, consider the automorphism defined by
21‘+1
o:T — 1%
so that 02 : 1 — 227" = z2. Let O be the set of points

Or ={(1,2,9,9)| z =2y + 27" + 47} U {(0,1,0,0)}

(see [49, Theorem 16.4.5]). For r = 1, Or is the non-classical ovoid in PG(3, 8) discovered
by Segre [69] in 1959. For all other r, the ovoid Or was discovered by Tits [88] in 1960.

The Tits ovoids are the only known non-classical ovoids of PG(3, ¢). Moreover for ¢ < 32

the ovoids of PG(3,q) are either classical or of Tits type (see [62], [63], [64]).
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For o the automorphism defined above, consider the following set of lines in PG(3,2"*1):
goo = {(0,5,0,t)| 5, € GF(2*" 1)}

gop = {(5,[ab+ a” " + b%)s + [0 + bJt, t + as,bs + a”t)| s,t € GF(2* 1)}
where a, b are any two elements in GF(2%71),

This set of g% + 1 lines forms a spread of PG(3,2%*1) called the Liineburg Spread
[58, Section 23]. It can be proved that for ¢ odd that no set of q?> 4+ 1 tangents of an
elliptic quadric in PG(3, ¢) can form a spread of PG(3, g); this result is a consequence

of the main result of [7].

1.13 Unitals

A unital (or unitary block design) of order n is a 2 — (n® + 1,n + 1,1) design, for
some integer n (see [33, section 2.4.21]). A unital is therefore an incidence structure with
v = n3 + 1 points, k = n + 1 points on each block, such that any two distinct points are
incident with a unique common block. A unital of order n has b = n?(n* — n+ 1) blocks

and each point is incident with exactly n? blocks.

The problem of determining for which values n a unital exists is only partially solved.
The known examples of unitals are of order n where either n is a prime power or n = 6

(see [59] and [4]).

We now discuss some known examples of unitals.

1.13.1 The Classical Unitals

A polarity in a projective plane 7 is a one-to-one and onto map o from the points
(respectively lines) of 7 to the lines (respectively points) of m of order 2 and which
preserves incidence, that is,

if PIZ then ¢ 1 P*
for all points P and lines £ of 7.

A point P (respectively a line £) of 7 is called absolute, with respect to a polarity c, if

P is incident with its image P® under « (respectively £* I £).
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Let a(a) denote the number of absolute points of a polarity & in PG(2,¢). Since o has

order 2, for a point P and a line /,

P1/if and only if /¢ 1 P¢
and if £ = P* then

PIP®ifand onlyif (214
and therefore the absolute points are in one-to-one correspondence with the absolute
lines. It also follows that each absolute line £ contains a unique absolute point, namely

the point £%, and conversely, each absolute point lies on a unique absolute line. Thus

a(c) is also equal to the number of absolute lines of the polarity a in PG(2, q).

The polarities of PG(2, q) are classified as follows:

Theorem 1.13.1.1 [48, Section 2.1(v)] A polarity a of PG(2,q), ¢ = p" p prime, is
of one of the following types:

Name (also known as) | GF(q) Locus of Absolute points
= GF(p")
orthogonal | (a) ordinary | p #2 g+1 points X of a non-degenerate

conic with equation X'AX = 0,

where A is a symmetric matriz in

GL(3,9)
(b) pseudo p=2 g + 1 points of a line.
unitary hermitian p arbitrary; q+/q + 1 points of a (hermitian )

h must be even | curve with equation
so that q s a

XVIHX =0,
square

where H is a hermitian ma-
triz (that is a matriz satisfying
H' = HVY and H non-singular)
in GL(3,q)

In PG(2, ¢?), the Desarguesian projective plane of square order q?, the set U of absolute

points of a unitary (or hermitian) polarity is a set of ¢® + 1 points such that each line
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of the plane intersects I in 1 or ¢ + 1 points. The lines are called tangent (absolute)
or secant (non-absolute) lines respectively. The structure U is a 2 — (¢® + 1,¢ + 1,1)
design, that is, a unital of order g, where the blocks are the sets of ¢ + 1 absolute points
on the secant (non-absolute) lines of the polarity and incidence is the natural point-line

incidence of PG(2, ¢?).

A unital in PG(2, ¢?) which arises in this way from a unitary polarity is called a classical
unital (or a Hermitian unital). The classical unitals are projectively equivalent under
PGL(3,q) (see [48, Theorem 7.3.1]) and therefore up to isomorphism a classical unital
has the equation,

:L-‘H'l + yq+1 + zq+1 - 0,

which is the canonical form of a non-singular Hermitian curve where the matrix H is
taken as the identity matrix. The classical unitals in PG(2, ¢*) are also called Hermitian
curves. For this reason in the literature a unital in PG(2, ¢?), which is not necessarily

classical, is sometimes called a Hermitian arc.

The classical unitals have been characterised in a number of ways, for example:

Theorem 1.13.1.2 [57] [37] In PG(2,4%), ¢ > 2, a unital U is classical if and only if
each Baer subline in PG(2,q?) intersects U in 0,1,2 or ¢+ 1 points . O

1.13.2 Unitals embedded in Finite Projective planes

A unital I/ of order n is said to be embedded in a finite projective plane 7, of order
g, if the points of U are a subset of the points of m,, each block of U is a set of points
collinear in m, (with distinct blocks on distinct lines) and incidence in I is induced by
the point-line incidence in m,. If U is embedded in 7, we sometimes say U is a unital in

Tg-

The classical unitals are examples of unitals of order ¢ (embedded) in the Desarguesian

projective plane PG(2, ¢?).

Let U be a unital of order s embedded in a finite projective plane m, of order ¢q. The
points of U are necessarily a set of type (0,1,s+ 1) or of type (1,54 1) in m,. Suppose
U is a set of type (1,s + 1) in m, and if either ¢ is a prime power or if ¢/s is a prime
power then by Theorems 1.11.3 and 1.11.4 we have that ¢ is a square and U is a unital
of order /g in 7.
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Consider a classical unital If of order ¢ in PG(2,¢?). Embed PG(2, ¢?) as a Baer subplane
in PG(2,¢%); then U as a design has been embedded in PG(2,¢"*) and the unital is a
set of type (0,1,¢ + 1) in PG(2,¢*). So we have examples of unitals (as designs) which
arise naturally as structures in projective planes, but which may have external lines.
However if the embedded unital has no external lines then by the Tallini-Scafati and
Tallini characterisations in Theorem 1.11.3 and Theorem 1.11.4, with the appropriate
condition on the order of the plane, we may restrict our attention to finite projective

planes of square order ¢? and (embedded) unitals of order q.

Thus a unital I embedded in a finite projective plane 7,2 of order ¢* is a set of @ +1
points of the plane such that each line intersects U in exactly 1 or ¢ + 1 points; each
line is called a tangent or secant line of U respectively. Moreover, each point P € U
is incident with a unique tangent line and ¢? secant lines of {. By the results of
Section 1.11, since a unital Z{ in 7y is a (¢° + 1)—set of type (1,¢+ 1), the set of ¢° + 1
tangent lines of U are the points of a unital 7* in the dual plane 71':112 of m,2; the unital

71° is called the dual unital of I/ in ng.

Unitals from unitary polarities

Above we defined the classical unitals in PG(2,¢%) as those unitals (embedded in
PG(2,¢%) which arise as the set of absolute points of a unitary polarity in PG(2, ¢?).

Let m, be a finite projective plane (not necessarily Desarguesian) of order q.

Due to the work of Baer [3] and Seib [70] we have the following results (statement taken
from Hughes and Piper [52, Theorems 12.7, 12.11, 12.12]) concerning polarities in 7,

Theorem 1.13.2.1 Let o be a polarity of a finite projective plane of order q. If q is not
a square, then o has a(o) = ¢+ 1 absolute points and

(a) if q is even, the absolute points are collinear

(b) if q is odd, the absolute points form a (q + 1)-arc
If g = s% is a square, then o has a(o) < s® + 1 absolute points and if a(o) = s* + 1 then

the set of absolute points and non-absolute lines forms a unital of order s = |/q. O

In 7, a polarity o is called orthogonal if a(0) = ¢ + 1 and unitary if a(s) = ¢%/? + 1.
By the classification of polarities in the Desarguesian plane PG(2,q), given in Theo-
rem 1.13.1.1, any polarity of PG(2,q) is either orthogonal or unitary. Note that there
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exist examples of non-Desarguesian planes m, of order ¢ and polarities ¢ in m, whose
number of absolute points satisfy ¢ + 1 < a(o) < ¢*/2 4+ 1 (see for example [52, Exercise
12.16)).

Theorem 1.13.2.1 indicates one approach at finding new unitals, by finding unitary po-
larities in non-Desarguesian finite projective planes. See [32], [41], [42], [54], for example,

for results concerning unitals constructed in this manner.

1.13.3 Buekenhout-Metz Unitals

The class of unitals known as Buekenhout-Metz unitals are defined in translation
planes mg2 of order q® with kernel of order q. In this thesis we shall not define the term
kernel, but note by [33, 5.1.11], a translation plane 7,2 of order ¢* with kernel of order
q is a translation plane which has a Bruck and Bose representation in PG(4, q) defined

by a 1—spread S in a hyperplane ¥, = PG(3,q) of PG(4,q).

In the Bruck and Bose representation, the line at infinity £o, (with points the elements

of the spread ) is the translation line of the translation plane mg.

The construction is as follows: Let O be an ovoid in a hyperplane of PG(4,¢)\X
intersecting Yo, in a unique point X, where the tangent plane to O at X does not
contain the unique line ¢ of S incident with X. Let V be a point of ¢ distinct from X.
Let U be the structure containing the spread line ¢ and all points of PG(4, ¢)\Zc on

the ovoidal cone with vertex V and base O.

The ovoidal cone U corresponds to a set U of ¢® + 1 points in the translation plane g2
which is defined by the spread S of ¥o,. The set I/ is a unital in 72 tangent to £, at
the point T which is represented by ¢ in Bruck-Bose (see [24, Section 4. (4)]). We shall
call a unital U in w2 with the above construction a Buekenhout-Metz Unital, and
we shall sometimes say U is Buekenhout-Metz re (T,{). If a Buekenhout-Metz
unital I is constructed in a translation plane 7,2 as above, with the ovoid O an elliptic
quadric, then we say U is Buekenhout-Metz with elliptic quadric as base. (Note
that we shall sometimes abbreviate Buekenhout-Metz to B-M.)

Buekenhout proved in [24] that each classical unital I in the Desarguesian plane
PG(2,q?) is Buekenhout-Metz re (T, £¢y) for any point T € U and 7 the tangent line
to U at T. Moreover, Buekenhout showed that every classical unital in PG(2,¢?) is
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Buekenhout-Metz with elliptic quadric as base, that is, corresponds to an elliptic quadric

cone in the Bruck-Bose representation of PG(2, ¢?).

Buekenhout constructed the first non-classical unitals in PG(2,2%*2), r > 1, by taking
O to be a Tits ovoid in Lo = PG(3,q), ¢ = 2*"*!, in the above construction. Metz
[60] extended this class of non-classical unitals in PG(2,¢?) to all values of ¢ > 2 by
constructing Buekenhout-Metz unitals with base ovoid an elliptic quadric and such that

the unitals did not arise from unitary polarities in PG(2, ¢%).
All known unitals in PG(2, ¢?) are Buekenhout-Metz unitals (see for example [26]).

Finally we state two characterisations; see Chapter 5 for a new characterisation of

Buekenhout-Metz unitals in PG(2, ¢?), for ¢ > 3.

Theorem 1.13.3.1 [56, Section 2., Theorem] In PG(2,¢*), ¢ > 2, a unital U is
Buekenhout-Metz re (T,4) if and only if every Baer subline with a point on Ly, in-

tersects U in 0,1,2 or ¢ + 1 points. O

Theorem 1.13.3.2 [57, Proposition 1] If U is a Buekenhout-Metz unital re (T, £Lw) in
PG(2,q?), with base ovoid an elliptic quadric and if there ezists a secant line | of U,

not on T, such that I N is a Baer subline, then U is a classical unital. a

Unitals have been constructed in non-Desarguesian planes by using the construction of

Buekenhout-Metz unitals given above, see for example [11, 12], [31].

1.14 Inversive Planes

A comprehensive introduction to inversive planes is given in Dembowski’s Finite Geome-
tries [33, Chapter 6]. Recent results concerning this topic can be found in [61], [82], [83],
[84], for example.

Definition 1.14.1 (Statement from [53]) An inversive plane I is a set of points with

distinguished subsets of the points, called circles such that:
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(I1) any three distinct points of I are in exactly one common circle;

(12) o P,Q are points of I and £ is a circle with P € £ but Q ¢ £ then
there is a unique circle of I which contains both P and QQ and meets
£ only in the point P;

(I3) I contains four points which are not on a common circle.

Let I be an inversive plane and let P be a point of I. The set of points of I different
from P together with the circles containing P (minus P) and with incidence given by

inclusion, is called the internal structure Ip of I at P.

For every point P of I the internal structure Ip is an affine plane called the internal

plane of I at P.

By (I1) for two distinct circles £,m of I we have the number of points common to ¢
and m is 0,1 or 2 and in each case we say the circles £ and m are disjoint, tangent or

intersecting respectively.

Some subsets of circles in an inversive plane I are of particular importance and for

reference later we have the following terminology:

A bundle of circles is the set of all circles through two distinct points P, Q of I. The
points P and () are called the carriers of the bundle.

A pencil is any maximal set of mutually tangent circles through a common point P,
called the carrier of the pencil. (Note the pencils with given carrier P correspond to
the parallel classes of lines in the affine plane Ip.)

A flock is a set of mutually disjoint circles in I such that, with the exception of precisely
two points P, R every point of I is on a (necessarily unique) circle of the flock. These

points P, @Q are called the carriers of the flock.

In the finite case an inversive plane can be defined in the following way.

Definition 1.14.2 A finite inversive plane I is a 3-(¢> + 1, + 1,1) design. We call
q the order of I.

For every point P of a finite inversive plane I of order g the internal plane Ip is an

(finite) affine plane of order ¢ (see [33, Section 6.1(4)]).

Up to isomorphism there is a unique inversive plane of order ¢, with ¢ € {2,3,4,5,7}.

For ¢ = 7 this was originally proved by R. F. Denniston with the aid of a computer;
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in [84], as a corollary of a theorem we shall mention below, Thas gives a computer-free

proof of the uniqueness of the inversive plane of order 7.

Let O be an ovoid in a 3-dimensional projective geometry. The points of O together
with the intersections m N O, with 7 a secant plane of O, is an inversive plane I{O). We
call I(O) the inversive plane associated with the ovoid O. We call an inversive plane
egglike if it is isomorphic to an I(Q) for some 3-dimensional ovoid O (see [33, Section
1.2] for isomorphism of incidence structures). If O is an ovoid of PG(3,q), then the

associated inversive plane I(O) is a finite (egglike) inversive plane of order q.

Since the only known examples of ovoids in PG(3, ¢), with ¢ > 2, fall into two infinite
classes there are consequently two known infinite families of finite egglike inversive planes.
If the ovoid is an elliptic quadric of PG(3,q), then the associated inversive plane is
called classical or Miquelian since it satisfies the configurational condition known as
the Theorem of Miquel (see [33, Chapter 6] for more detail.) The family of finite
Miquelian inversive planes is denoted M(q). If the ovoid is a Tits ovoid in PG(3,2* 1),
with 7 > 1 an integer, then the associated inversive plane belongs to the second known

family of finite egglike inversive planes which is denoted by S(q).

The only known finite inversive planes are the egglike inversive planes in the families
M(q) and S(q). The problem of classification of ovoids of PG(3,¢), with ¢ > 2, is
equivalent to the classification of finite egglike inversive planes. As stated in an earlier

section, the ovoids of PG(3,¢q), with ¢ > 2, have been classified for ¢ < 32.

We now list some old and some recent important results concerning finite inversive planes.

1. [33, 6.1.3] For any point P of a finite egglike inversive plane I(O) the affine plane
Ip is the Desarguesian plane AG(2,q).

2. [33, 6.2.14] Every (finite) inversive plane of even order g is egglike. Consequently

q is a power of 2.
3. [33, 1.4.50] Every (finite) egglike inversive plane of odd order is Miquelian.

4. [82] [84] Let I be an inversive plane of odd order ¢, ¢ & {11,23,59}. If for at least

one point P of I the internal plane Ip is Desarguesian, then I is Miquelian.

5. [77) [65] If F is a flock of a finite egglike inversive plane I = I(0), then F is linear
(that is, the ovals of O in PG(3, ¢), which correspond to the circles of the flock F,
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lie in planes of PG(3,q) about a common line.)

6. [61] Let I be a finite egglike inversive plane of order 2 < ¢ < 32. If ¢ € {8,32}
then I is Miquelian or of S(g) type. If ¢ & {8, 32} then I is Miquelian.

Finally, we shall mention the plane model of egglike inversive planes which is given

in [84] for example.

Let O be an ovoid of PG(3,q) and let I denote the corresponding inversive plane. The
circles of I are in one-to-one correspondence with the secant plane sections of the ovoid
in PG(3,q). As a consequence we shall interchange the setting between the incidence
structure of the inversive plane and the geometry of the ovoid in PG(3,q). We shall
even abuse the terminology and refer to “circles” of O in PG(3, q) when we mean secant
plane sections of O which correspond to circles of the associated inversive plane. The

context in which we do this should make our meaning clear.

Let P be a point of © and let 7 be a plane of PG(3, ¢), not containing P. The intersection
of w and the tangent plane 7p of O at P is denoted by £e. By projection ¢ of O — {P}
from P onto 7, the points of © — {P} are mapped onto the ¢* points of 7\, the circles
of O through P (minus P) are mapped onto the ¢*+¢ affine lines of 7. The Desarguesian
affine plane 7\/£y, is isomorphic to the internal plane Ip of I at P. Moreover the circles
of O not through P are mapped by ¢ onto ¢* — ¢? ovals of 7; each such oval is disjoint

from £.

If the ovoid O is an elliptic quadric, then the circles of O not through P are mapped by
¢ onto the ¢3 — ¢? non-degenerate conics of 7 containing two points X, X € £, which

are the two points of @ on £, belonging to the quadratic extension GF(¢*) of GF(q).

Example: Consider the projective line PG(1,¢%). The points of PG(1,q?) together
with the Baer sublines of PG(1, ¢), with incidence given by inclusion, forms a Miquelian
inversive plane I of order g (see [33, page 273]). Fix a point P of PG(1, ¢*) and consider
the internal plane Ip & AG(2,q) of I at P. By the above theory and using the same
notation, denote by £, the line at infinity of Ip and let 7 denote the projective completion

of Ip so that Ip = 7\ £leo.

In the correspondence between the inversive plane I defined on PG(1, ¢?) and the internal
plane Ip of I at P we have: The points of PG(1,q*)\{P} are the ¢* points of m\l.
The Baer sublines of PG(1, ¢°) containing P (minus P) are the ¢* + ¢ lines of 7\{y and

54



the Baer sublines of PG(1,¢?) not containing P are the ¢* — ¢* non-degenerate conics
in 7 containing two fixed points X, X € £, with X, X conjugate with respect to the
quadratic extension GF(q®) of GF(g).

We represent the situation as follows, with Cy, Cy and Cj three Baer sublines of PG(1, ¢*)
disjoint from P. In 7, the Baer sublines are represented as non-degenerate conics con-

taining two points X , X on 4 in the quadratic extension.

C_ G Gy r ) o
PG(1,¢?) s
OF

1.15 Maximal Arcs

As discussed in Section 1.11, Barlotti [9] introduced the term {k; n}-arc for a set K of k
points in a finite projective plane 7, of order g, where n, n # 0, is the greatest number

of collinear points in the set. {k;2}-arcs are simply called k-arcs.
A {k;n}-arc is complete if it is not contained in a {k + 1;n}-arc.
Let K be a {k;n}-arc in m,. By considering the points of K on the ¢ + 1 lines through a
point P of K, it is easy to see that the number & of points of K satisfies:
k< (g+1)(n-1)+1
= ng—gq+n
= (n—-1)g+n.

A {nq — ¢+ n;n}-arc in 7, is called a maximal arc. Equivalently, a maximal arc may
be defined as a non-empty set K of points in 7, such that every line of 7, meets K in

either exactly n points or in none at all; the lines of m, are called secant or external

lines of K.
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Examples of maximal arcs:

For the given value of n a maximal {nq — ¢ + n;n}-arc K in 7, is:

n=1, A single point.
n=2, A (q + 2)-arc in 7,, g even, in other words K is a hyperoval in 7y, g even.
n=gq, The set of points 7,\£ for £ a line of m,.

n=gq+1, The set of points of the plane m,.
Note that the study of hyperovals (maximal arcs with n = 2) is an active field of study

in its own right with an extensive literature.

Since the maximal arcs with n = 1 or ¢ + 1 are determined we consider maximal arcs

withl<n<gqg+1.

Let K be a (maximal) {(n — 1)q + n; n}-arc in 7y, n < q. Let @ be a point of 7, not in

K. By definition every line through @ intersects X in 0 or n points therefore we have:

n divides (n — 1)g+n

hence n divides q.

Hence Barlotti obtained a necessary condition for the existence of a (maximal)
{nq — ¢ + n;n}-arc in mg, n < q, is that n divides q.

Also in [9] it was shown that if a {ng—g+n;n}-arc K exists in 7, then the set of external
lines of K is a (maximal) {g(¢ — n + 1)/n;¢/n}-arc in the dual plane of m,. It follows
that a maximal {nq — ¢ + n;n}-arc exists in PG(2,q), n < ¢, if and only if a maximal

{q(g — n + 1)/n; g¢/n}-arc exists in PG(2,q).

Denniston [34] proved that Barlotti’s necessary condition for the existence of maximal
arcs is sufficient in PG(2, q), ¢ even, by constructing infinite families of maximal arcs in

Desarguesian planes of even order.

Cossu [30] showed the above necessary condition for existence of maximal arcs in m, is
not sufficient; he proved PG(2,9) contains no {21;3}-arc. Thas [79] generalised Cossu’s

result by proving the following result.

Theorem 1.15.1 [79] In PG(2,q), ¢ = 3" and h > 1, there are no {2¢q + 3;3}-arcs and
(hence) no {q(q — 2)/3; q/3}-arcs. O

In this 1987 paper Thas made the following conjecture:
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Conjecture 1.15.1 [79] In PG(2,q), q odd, the only mazimal arcs are PG(2,q),
AG(2,q) = PG(2,q)\lo and the dual of AG(2,q).

This conjecture was recently proved by Ball, Blokhuis and Mazzocca [7)].

Theorem 1.15.2 [7] For q an odd prime power, and 1 < n < g, the Desarguesian plane

PG(2,q) does not contain a {ng — g+ n;n}—arc. O

We now list some constructions and classes of maximal arcs.

In [78] Thas constructed an infinite family of maximal arcs in certain translation planes
of even order. In the literature this family of maximal arcs has been referred to as the

Thas maximal arcs and we shall do so here.

The Thas maximal arcs are defined in certain finite translation planes of order ¢? with
kernel of order ¢; each such translation plane corresponds to a 1—spread in a hyperplane
Yoo of PG(4,q) by the 4—dimensional Bruck and Bose representation of the translation

plane (Section 1.10). The construction is as follows.

The construction of a Thas maximal arc: Let ¥, = PG(3, ¢) and consider an ovoid
O and a spread S in Yo, such that each line of S is incident with a unique point of O. An
ovoid @ and a spread S in X, with this property will be called a Thas ovoid-spread
pair (0, S).

Let ¥, be embedded as a hyperplane in PG(4, ¢) and let X* be a point of PG (4, ¢)\Zc.
Denote by K* be the set containing X* and all points of PG(4, ¢)\E collinear with X*
and a point of O.

The set of points K* in PG(4,q) represents a maximal {¢* — ¢*> + ¢; ¢}-arc K in the
translation plane 7,2 of order ¢* with translation line £y, corresponding to the spread S.

We call K a Thas maximal arc in 7, with base point X and axis line /.
Note that the axis line £, is an external line of K in mg2.

Existence of Thas maximal arcs: By the above construction, a Thas maximal arc
exists in a translation plane w2 of order ¢* with translation line £y, if and only if a Thas
ovoid-spread pair (O, S) exists in PG(3, q), for the spread S corresponding to 7, in the

Bruck and Bose representation.

The known examples are [78]:
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Translation plane | ¢ (0,8)

PG(2,¢%) even (elliptic quadric, Regular spread)
q =2%*1 r > 1| (Tits ovoid, Regular spread)

Liineburg plane | ¢ =2%*! r > 1 | (Tits ovoid, Liineburg spread)

g =27+, r > 1| (elliptic quadric, Liineburg spread)

Note that for ¢ odd, an ovoid in PG(3, ¢) is an elliptic quadric; by Theorem 1.15.2 there
exists no Thas ovoid-spread pair in PG(3, q), ¢ odd.

In [80] Thas generalised the above construction of a Thas maximal arc and constructed
(maximal) {¢*¢! — g% + ¢%!; g% }-arcs in certain translation planes mg of even order
q*.

For further constructions of maximal arcs in planes other than the Desarguesian plane

see for example [45, 46).

1.16 Generalized Quadrangles

We present here some preliminary results concerning generalized quadrangles, for later
reference. Unless stated otherwise the definitions and results of this section are from

Payne and Thas [67].

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P, B,I) in
which P and B are disjoint (non-empty) sets of objects called points and lines (re-
spectively), and for which I is a symmetric point-line incidence relation satisfying the
following three axioms:
GQ axiom (i) Each point is incident with 1 +¢ lines (f > 1) and two distinct
points are incident with at most one line.
GQ axiom (ii) Each line is incident with 1+ s points (s > 1) and two distinct lines

are incident with at most one point.

GQ axiom (iii) If X is a point and ? is a line not incident with X, then there is a
unique pair (Y,m) € P x B for which X ImIY I £
The integers s and t are the parameters of the GQ and S is said to have order (s,t); if

s =t, then S is said to have order s.

Let S be a GQ of order (s,t). Let X,Y be two (not necessarily distinct) points of S. We
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write X ~ Y and say that X and Y are collinear if there exists a line £ of S such that
XIZ1Y. And X Y means X and Y are not collinear. Note that X ~ X for any X
in P.

For X € P the set {Y € P; X ~ Y} of points in the GQ collinear with X is denoted
X~+. The trace of a pair (X,Y) of distinct points is the set X+ N YL and is denoted

{X,Y}+. More generally, if A is a subset of points in P, then A “perp” is defined by
At =n{X+t| X € A}.

Result 1.16.1 For distinct points X andY in a GQ S of order (s,t), the cardinality of
{X, Y} is:

{X, Y} |=s+1 if X~Y,
HX, Y} |=t+1 if XAY.

For distinct points X and Y in S, the span of the pair (X,Y") is
(X, Y}t ={veP,Vez forall Z€e {X,Y}'}.

If X o6 Y, then {X,Y}** is also called the hyperbolic line defined by X and Y.

A triad (of points) is a triple (X, Y, Z) of pairwise non-collinear points in P. Given a

triad T = (X, Y, Z), a center of T is a point of T.

Result 1.16.2 [67, 1.2.4] Let S be a GQ of order (s,t). If s > 1 and t > 1, then s* =1t
if and only if each triad (of points) has a constant number of centers, in which case this

constant number of centers is s + 1. O

Let s2 = t > 1, so that S is a GQ of order (s,s?) and by Result 1.16.2, for any
triad (X,Y,Z) we have |{X,Y,Z}}| = s+ 1. If X',Y',Z' are three distinct points
in {X,Y, Z}* then since (X',Y’, Z') is necessarily a triad (by GQ axiom (iii)), we have
{X,Y,Z}* € {X",Y", Z'}* and therefore |{X,Y, Z}*| < {X',Y', Z'} | = s +1. We
say a triad (X,Y, Z) is 3-regular provided |{X,Y,Z}*!| = s+ 1. A point X is called

3-regular if and only if each triad containing X is 3-regular.

Result 1.16.3 [67, 1.3.3] Let S be a GQ of order (s,s%), s # 1, and suppose that any
triad contained in {X,Y}+, X # Y, is 3-reqular. Then the incidence structure with
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pointset {X,Y'}*, with circleset the sets of elements {Z1, Zs, Zs}*, where Zy, Zy, Zs are

distinct points in {X,Y}*, and with natural incidence, is an inversive plane of order s.

We include a proof of Result 1.16.3 to clarify this case for later reference.

Proof: First note that by Result 1.16.1, |{X,Y}*| = s® + 1 and so our incidence
structure has s2 + 1 points.

For distinct points Z1, Z, Zs € {X, Y}, (21, Z5, Z3) is a triad (by GQ axiom (iii)) and
X,Y € {Z,,Z,, Z3}*+. Tt follows that {Z1, Zs, Z3}+ C {X, Y} and by the 3-regularity,
each circle of our incidence structure is incident with exactly s+ 1 points. It also follows

that any three distinct points in {X, Y }* determine a circle.
We now verify each property in Definition 1.14.1:

(11): Let ¢; = {Zy, Zs, Z3}** and ¢y = {Z'y, Z'5, Z3}*" be two distinct circles. Suppose
X1, X5, X5 are three distinct points incident with both circles. Note that {Z, Z3, Zs}*+

is determined uniquely by any three distinct points X1, X3, X3 in {Z1, Z, Z3}t since,
{Zla Z2’ Z3}J_J_ g {X{a Xé’ Xé}J—

and these two sets have the same cardinality s + 1.

It follows that since ¢; and ¢, are distinct circles, the sets {Z1, Z, Z3}* and {Z1, Z}, Z5}+
have at most two points in common. Points X;, X2, X3 are each collinear to every point

in {Zy, Zy, Z3}* and to every point in {Z], Z}, Z3}*, therefore

|{X1,X2,X3}J'| > (8+1)+(8+1)—2
= 28
> s+ 1 since s > 1,
a contradiction, since for the triad (X1, X3, X3) we have |{X1, Xo, X3} = s+ 1.

Therefore three distinct points determine a unique circle in our structure.

(I12): Distinct points P,Q € {X,Y}* are contained in circles {P, @, Z}**, where Z is
2_1
any point in {X,Y}* distinct from P and Q. By (I1), there are i

= s + 1 choices
s —_—

for Z and therefore there exist s+ 1 circles incident with P and @, with no further point

in common. By counting, we obtain that each point of the structure, distinct from P

and @, is incident with (exactly) one circle which contains both P and Q.
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2( o2
=1
By (I1) it follows that P is incident with %%—1)) = 5% + s circles. So there exist

circles containing P and not (), let £p be such a circle.

Each circle which contains P and @ intersects £p in at most one point besides P. There
are s points of £p besides P and from above, each such point lies in some circle containing
P and Q. Therefore there is one remaining circle, which contains P and @ but intersects

£p only in the point P.

(I3): There are s>+ 1 points in the structure and s*+1 > s+1 since s > 1 and therefore

there exist 4 points not on a common circle.

By Definition 1.14.1, the incidence structure is an inversive plane of order s. a

Result 1.16.4 [67, 3.1.2] For each ovoid O in PG(3,q) there is a GQ to be called
T3(O) constructed as follows:
Let O be an ovoid in PG(3,q). Further, let PG(3,q) = L be embedded as a hyperplane
in PG(4,q).
Define points as the following three types:

Type (i)  the points PG(4,q)\ X,

Type (ii) the hyperplanes I3 of PG(4,q) for which |II3N O] =1,

Type (iii) one new symbol (00).

Lines are defined as the following three types:
Type (a) the lines of PG(4,q) which are not contained in Yo, and meet O

(necessarily in a unique point),

Type (b) the points of O.

Incidence is defined as follows: A point of type (i) is incident only with lines of
type (a); here the incidence is that of PG(4,q). A point of type (ii) is incident with all
lines of type (a) contained in it and with the unique element of O in it. The point (o)

is incident with no line of type (a) and all lines of type (b).

T3(0) is a GQ of order (g,¢?%). O
Result 1.16.5 [67, 3.3.2(ii)] The point (c0) of the GQ T3(0) is 3-regular. O

Definition of Property (G) 1.16.6 [66] In a generalized quadrangle S of order (s, s?),
s#1, let X,Y be distinct collinear points. We say that the pair {X,Y} has property
(Q) if every triad (X, X1, X5), with Y € {X, X1, X}, is 8-regular. Then also every

61



triad (Y,Y1,Ys), with X € {Y,Y1, Yo}, is S-regular.

We say that the generalized quadrangle S has property (G) at a flag (X, ¢), where
X 12, if every pair {X,Y}, X #Y,Y 1 £ has property (G).

We say the generalized quadrangle S has property (G) at the line £, or the line £
has property (G), if each pair of points {X,Y}, X #Y, and X 1 £ 1Y, has property
(@).

Result 1.16.7 [86, Section 2.4] The point X of the generalized quadrangle S, of order
(s,s?), s # 1, is S-reqular if and only if each flag (X,£), X 1 £, has property (G). O
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Chapter 2

The Bruck and Bose representation

in PG(4,q)

In this chapter we examine the Bruck and Bose representation of translation planes g
of order ¢* with kernel of order ¢; that is, translation planes of order ¢* which are de-
scribed by 1—spreads of PG(3,¢) in the 4—dimensional Bruck and Bose representation
([33, 5.1.11]). In particular we consider the 4—dimensional Bruck and Bose representa-
tion of the Desarguesian plane PG(2,¢?). In Section 2.1 we recall this special case of the
general Bruck and Bose representation and establish notation for the chapter. When we
wish to work with this representation we shall refer to it as the Bruck-Bose setting,
or simply Bruck-Bose. Note that this Bruck-Bose representation of a translation plane
is equivalent to the André group theoretic representation of a translation plane given in
[1].

In this chapter we determine the representation in Bruck-Bose of Baer subplanes of
PG(2,¢?) and present characterisations of these structures. We also determine the rep-
resentation in Bruck-Bose of conics contained in Baer subplanes of PG(2, ¢?); this work
leads to results concerning the existence of certain 4—dimensional caps which contain

many normal rational curves.

2.1 Bruck-Bose in PG(4,q)

Recall from Section 1.10 the following representation of PG(2,¢?) in PG(4,q) due to
André [1] and Bruck and Bose [21] and [22];
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Let /o, denote a fixed line PG(2,¢?) and call this line the line at infinity of PG(2,¢?).
The plane AG(2, ¢?) = PG(2, ¢*)\w is the Desarguesian affine plane of order ¢*. Embed
Y = PG(3,q) as a hyperplane in PG(4,¢). Let S be a fixed regular spread of Y. The
affine plane AG(2, ¢?) is represented by the following incidence structure: the points are
the points of PG(4,q)\X, the lines are the planes of PG(4,¢), not contained in X,
and which meet ¥, in a line of S and incidence is induced by the incidence in PG(4, q).
AG(2,¢?) can be completed to the projective plane PG(2,¢*) by the addition of £

whose points are the elements of the spread S.

We shall use the phrase a subspace of PG(4,q)\Xw t0 mean a subspace of PG(4,q)
which is not contained in Y. The points PG(4,q)\X« shall be referred to as affine
points. Also if a line [ of PG(2, ¢*) intersects a Baer subplane B of PG(2,¢?) in a Baer

subline m, we call [ a line of B.

Note that PG(2,¢?) is a translation plane with respect to any of its lines and therefore
there is choice involved in fixing the line at infinity. Moreover, by Theorem 1.10.1.3, any
regular 1—spread in PG(3,q) corresponds to a Bruck-Bose representation of PG(2,¢?).
Unless stated otherwise in this chapter, the Bruck-Bose representation of PG(2, ¢?) is the
representation given above for a fixed line o, of PG(2, ¢?) and a fixed regular 1—spread

S of £, = PG(3,9).

Let 7,2 denote a translation plane of order q* with kernel of order ¢ and with translation
line £o,. Then by [33, 5.1.11] w2 is described by a 1—spread Sy of ¥o, = PG(3, q) in the
Bruck-Bose setting in PG(4, q).

For our discussion, we shall use the expression the representation in PG(4, q) to mean the
corresponding Bruck and Bose representation of the projective translation plane being
discussed; moreover, the two representations coincide, that is w2 = PG(2,¢%), if and

only if S, = S is a regular spread of Y.

If X denotes a substructure in 7p, it will be convenient at times to denote by X* the
substructure in PG(4, ¢) which is the Bruck-Bose representation of X. Conversely, if X*
is a substructure of PG(4, q), we shall denote by X the subset of points and lines of 7,2
which is represented by X* in Bruck-Bose.
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2.2 Known Bruck-Bose representations of Baer sub-

structures

The representation in PG(4, q) of Baer subplanes of PG(2, ¢°) is of particular importance

in our discussion. In this section we review the known results.

A transversal plane in PG(4,q) is a plane in PG(4,q)\¥ which contains no line of
S,. Let B* be a transversal plane in PG(4,q), then B* is incident with ¢ + 1 distinct
elements of S,; denote these spread elements by ¢,%s,...,4441. The affine points of
B* together with these g + 1 distinct elements of S, incident with B* correspond to a
set B in m,; of ¢*> + q + 1 points. For each i = 1,2,...,q + 1, there exist ¢ planes in
PG(4,q)\Zo containing ¢; and such that each intersects B* in ¢ affine points. By the
Bruck-Bose correspondence, each such plane represents a line of 7,2 incident with ¢ + 1
points of B. Furthermore the line at infinity intersects B in ¢ + 1 points. If we call
these g2 + q + 1 lines, lines of B, then it follows that B satisfies the definition of a finite
projective plane and is therefore a Baer subplane of 7. In this way, the transversal
planes of PG(4, q) represent Baer subplanes of 7,2 which contain the line at infinity as
a line; a Baer subplane of 2 which contains the line at infinity as a line will be called

an affine Baer subplane of 7.

Theorem 2.2.1 [21, Section 9] If B* is transversal plane in PG(4,q) then B* is the

Bruck-Bose representation of an affine Baer subplane B of mp. a

Since the number of transversal planes in PG(4, ¢) equals the number of Baer subplanes

of PG(2,q¢?) which contain the line at infinity as a line, we have:

Corollary 2.2.2 [21] B is an affine Baer subplane of PG(2,¢*) if and only if in Bruck-
Bose, B* is a transversal plane of PG(4,q).

Let B be an affine Baer subplane of PG(2, ¢?) and let £ # £o, be a line of B. In PG(4, g),
the plane ¢* intersects the transversal plane B* in a line of PG(4,¢)\Xs (which is not
contained in £4). Therefore, by Corollary 2.2.2, any Baer subline of PG(2,¢?) which
intersects 4y in a unique point is represented in PG(4,q) by a line of PG(4, ¢)\Z;
conversely, each line of PG(4, ¢)\Xw is the Bruck-Bose representation of a Baer subline

of PG(2,¢*) which contains a unique point of .
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We now present the representations in PG(4,q) of Baer subplanes of PG(2,¢*) which

intersect /., in a unique point, and Baer sublines which are disjoint from £.

The following result is well known and is a consequence of the example given in Sec-

tion 1.14.

Lemma 2.2.3 A Baer subline b, containing no point on e, of a line a in PG(2,¢?), is

represented in PG(4,q) by a non-degenerate conic C* in the plane o representing a. O

Definition 2.2.4 The conics in PG(4,9)\Xs which represent Baer sublines of
PG(2,q%) shall be called Baer conics.

A Baer conic in PG(4,q) is necessarily disjoint from ¥. Note that for the fixed reg-
ular spread S in X, there exist non-degenerate conics disjoint from X, in planes
of PG(4,q)\Ze about spread elements, but which do not represent Baer sublines of
PG(2,¢?); that is, there exist non-Baer conics PG(4,¢). This result was proved by Metz
[60] who showed that the number of Baer sublines of a line £ of PG(2,¢*) disjoint from
a fixed point P € { is strictly less than the number of non-degenerate conics in PG(2, q)

disjoint from a fixed line m in PG(2,q).

For later reference, we consider the Bruck-Bose representation of some well known con-

figurations of Baer sublines in PG(2, ¢%).

Lemma 2.2.5 Let L, and Lo be distinct affine points of a line a in PG(2,¢%). Let
M = an /. There are q Baer sublines of a which contain Ly, Ly and not M.

Proof: The result follows from the fact that in PG(2, ¢%) there are (¢*—1)/(¢g—1) = ¢+1
Baer sublines containing L; and L, and there is a unique Baer subline of a containing

the three distinct points L1, L, and M (see Theorem 1.2.1 and the subsequent remarks).
O

By interpreting the results of Lemma 2.2.3 and Lemma 2.2.5 in Bruck-Bose we obtain:

Lemma 2.2.6 If L} and L} are distinct affine points in a plane o in PG(4,q)\Xoo with
aN Y. = m, where m is an element of the spread S of Y, then there exist ¢ Baer
conics in o incident with both LT and L. O

We shall also make use of the following:
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Lemma 2.2.7 [19] [89] [44] In a projective plane 7,2 of order ¢* the number of points
common to two Baer subplanes By and By of g is equal to the number of lines shared

by B1 and Bg. O

Lemma 2.2.8 [72] In PG(2,q%) two distinct Baer subplanes intersect in one of the
following configurations:

1. The empty set;

2. One point and one line : the point is either incident or non-incident with the line.
3. Two points and two lines: the point of intersection of the two lines plus a second point
on one of the lines;

4. Three points and three lines forming a triangle configuration;

5. q+1 points and q+1 lines: the ¢+ 1 points are collinear on one of the lines and the
remaining q lines form a pencil through one of the points;

6. g+2 points and q+2 lines: g+1 of the points are collinear on one of the lines and the
remaining ¢+ 1 lines form a pencil concurrent in the remaining point; each line contains

2 or ¢+ 1 of the points. |

Above we recalled the representation in PG(4,q) of the affine Baer subplanes of
PG(2,¢%), that is the Baer subplanes for which £ is a secant line. We now provide
an alternative direct proof of a result obtained in [19] and also in [90], which determines
the representation of Baer subplanes of PG(2,¢*) which intersect £, in a unique point.
The variety we call a ruled cubic surface V3 is called a twisted ladder in [19); its
structure will be derived in the proof of the following Lemma, and will be used in the
proof of Theorem 5.0.3 in a later chapter. (See Section 1.7 for more information on ruled

cubic surfaces.)

Lemma 2.2.9 Let B be a Baer subplane in PG(2,q?%) such that B intersects lo, in the
unique point P. Then B corresponds to a ruled cubic surface B in PG(4,q)\YXe with
BN Yy =p in PG(4,q), where p is a line of the spread S of L.

Proof: Let B denote the structure in PG(4, q) representing B. As B intersects £, in
a unique point P, in PG(4,q) B intersects X, only in point(s) of the line p of S which
represents P. The ¢+ 1 lines of B through the point P € £, correspond to ¢ 4+ 1 planes
in PG(4,q)\Xe about p; each of these planes contain a line £ of PG(4,q)\Xo which
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represents a Baer subline of B incident with P. It follows that B contains ¢ + 1 lines
5o, li in PG(4,9)\Xs each incident with p and no two in a plane about p. It
follows that no two of these lines intersect in a point not incident with p. Call the lines

1y...,ls,, generators of B; we now prove that these lines are mutually skew.

Suppose If N1¥ € p with 1 < i < j < ¢+ 1. Then ([,l5) is a transversal plane
which represents a Baer subplane, distinct from B, and sharing with B a non-degenerate
quadrangle, which by Theorem 1.2.1 is a contradiction. Therefore through each point
of p there passes a unique generator of B. It follows that points of PG(4,q) on these
generators are all the points of B. The spread line p is therefore contained in B and p is

called the line directrix of B.

Let Q be any point of B, distinct from P; let Q* € B be its representative in PG(4, q).
In PG(2,¢?), of the Baer sublines in B through @, one is a subline of the line QP and

the remaining ¢ are disjoint from /. Therefore, by Lemma 2.2.3, the points of B lie on

q distinct Baer conics CY,...,Cy and one generator, [;,, say, each through @Q*. Each
conic C} (i =1,...,q) lies in a plane a; which intersects £, in a line m; of the spread S.

Let a1 denote the plane (Q*,p). In PG(2,¢*), each subline of B through P intersects
each subline of B through @, and therefore each conic C} intersects each generator of B

in a unique point.

Consider the plane (Q*,1}); since @* ¢ I}, the plane (Q*[;) is a transversal plane
and therefore represents a Baer subplane B’ of PG(2,q?), distinct from B. Now
|IBNB'| > ¢+ 2. It follows from Lemma 2.2.8 that the Baer subplanes B and B’ in-
tersect in ¢ + 1 lines of PG(2,q?) through @ and the line represented by (/},p). If I}
represents the Baer subline u of B, then the lines of PG(2,¢?) joining Q to the ¢ + 1
points of u, common to B and B’, are represented by the planes oq,...,qg1. As a
transversal plane intersects X, in a transversal line of a regulus in the regular spread
S, it follows that the spread lines my, ... ,m,,p, each of which intersects (Q*,[), are
generators of a hyperbolic quadric Q3 of ¥. Thus the ¢ + 1 planes ay,... , a1 con-
stitute a quadric cone V2 of PG(4,q), with the point Q* as vertex, and the quadric O}
as base. Let Xf,..., X7, be the points of the Baer conic Ct. Then the ¢ + 1 planes
(X},p) constitute a quadric cone V2 of PG(4,q), with the line vertex p, and base C;.
Note that @* = X} for some i. These two quadric cones V3§ and V2 have the plane

{(Q*,p) in common, and therefore residually intersect in a ruled cubic surface V;'. The
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planes of the two quadric cones represent lines of B, and therefore, by considering their

intersection, it follows that B is precisely the ruled cubic surface V2. O

Since there exist conics in PG(4, ¢)\YXs which do not represent Baer sublines, it follows
that there exist ruled cubic surfaces, with directrix a line of S, which do not represent

Baer subplanes B of PG(2,¢?) intersecting £, in a unique point.

Definition 2.2.10 The ruled cubic surfaces in PG(4,q)\Xw0, with line directriz a line
of S, which represent Baer subplanes of PG(2,¢®) shall be called Baer ruled cubics.

It is well known that in PG(2,¢?) there exist ¢ + 1 Baer subplanes containing a given
point P and a Baer subline c of a line a not through P; if we let P € £, and ¢ be disjoint
from £, then together with Lemma 2.2.3 and Lemma 2.2.9 this implies the following

result, which we shall need in a later chapter.

Lemma 2.2.11 Let a be a plane in PG(4, ¢)\Xw, with aNEs = m a line of the spread
S of ©o. If p is a line in S distinct from m and if C* is a Baer conic in o, then there

exist ¢ + 1 Baer ruled cubics containing p and C*. m]

The representation in Bruck-Bose of Baer subplanes of PG/(2, q?) is therefore completely
determined. For translation planes 7,2, with kernel of order g, the problem of determining
the representation of Baer subplanes of 7, in Bruck-Bose is not completely solved.
Freeman [40] gives examples of affine Baer subplanes of a translation plane 7, of order
¢*, which have a representation in 4—dimensional Bruck-Bose which is distinct from those

obtained above for the Desarguesian case (see also Foulser [38] for other examples.)

2.3 The Bruck-Bose representation of Conics in

Baer subplanes of PG(2, q?)

For later work we shall need a classification of the possible intersections of a hyperplane

of PG(4, q) and a Baer ruled cubic surface in PG(4, ¢). This is given in the next theorem.

Note: A Baer ruled cubic surface in PG(4,q) is a variety of order 3 and dimension
2 properly contained in the 4-dimensional space. By the results of Section 1.6 a hy-

perplane of PG(4,q) intersects the Baer ruled cubic surface in a cubic curve (see also
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Theorem 1.7.2); a cubic curve on the Baer ruled cubic surface is one of the following:

(a) One line counted triply;
(b) Two lines, one counted doubly;
(c) Three lines;
(d) A conic and a line;
(e) A twisted cubic curve.
The only lines on a Baer ruled cubic surface are the generators and the line directrix.

Apart from points and lines the ruled cubic surface contains no linear subspaces.

Also note that the intersection of a hyperplane with a ruled cubic surface may have

components in some extension of the base field.

Theorem 2.3.1 Let B be a Baer ruled cubic surface in PG(4,q). Let p € S denote the
line directriz of B, so that {p} = BN Zw. Denote by I3 a hyperplane of PG(4,q).

The intersection BN 113 in PG(4,q) is one of the following:

The number of hyperplanes of
PG(4,q) which intersect B in
BNIl; such a configuration:

(a) The line directric p of B (> —q)/2
(Note: o is an ezample

of such a hyperplane)

(b) The union of a (unique) generator of B g+1
and the line directriz p of B

(c¢) The union of two generators of B and (¢®+q)/2
the line directriz p

(d) The union of a Baer conic and a gen- @ + ¢?
erator of B

(Note: The Baer conic and generator

intersect in a unique point)

(e) A twisted cubic curve qt — ¢?

(Note: such a curve intersects the line

directriz p in a unique point)
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Proof: By generating hyperplanes II3 from subsets of points of B, the intersection sets
I3 N B are determined. We proceed with this method until all ¢* + ¢® + ¢> + ¢ + 1
hyperplanes of PG(4, q) have been considered.

Let Pr,..., Py, denote the points of p and let g7, ..., g7, denote the generators of B,
such that g} Np={P;},i=1,...,¢+1.

Let C* be a Baer conic of B and let m¢+ be the plane in PG(4, ¢) containing C*. Hyper-
planes {m¢s,g!), i =1,...,¢+1, are the ¢ + 1 hyperplanes of PG(4, q) about the plane
Te~; each hyperplane contains both the Baer conic C* and generator g; respectively. The
Baer conic C* and the generator g} constitute a cubic curve in the hyperplane (¢, gf)
hence by the note preceding this theorem each hyperplane (m¢-, gf) contains exactly the

Baer conic C* and generator g of B for i =1,...,q + 1 respectively.

There are g2 Baer conics of B and g+1 generators of B, thus there exist ¢>(¢+1) = ¢*+¢
hyperplanes of PG(4, ¢) which intersect B in the union of a Baer conic and a generator

of B.

There exist g% + ¢ + 1 hyperplanes about the line p, ¢ + ¢ distinct from ¥o,. If £ is
a line of e+, a plane of PG(4, )T which contains a Baer conic C* of B, then (£, p)
is a hyperplane containing the line directrix p. Depending on whether £ is an external,
tangent or secant line of C* in mc+, the hyperplane (£, p) intersects B in p plus 2, 1, or

0 generators of B in PG(4, q) respectively. We consider these cases separately.

Two generators of B span a hyperplane about p. Such a hyperplane contains three lines
of the Baer ruled cubic surface hence no further point of B. Thus there exist ¢(g+ 1)/2
hyperplanes of PG(4,q) which intersect B in the union of two generators of B and the

line directrix p of B.

About a plane (p,g}), for fixed i, there exist ¢ 4 1 hyperplanes; ¢ contain a second
generator of B and one intersects B in no further point; here the hyperplane intersects
the ruled cubic surface doubly at g¥. By considering the ¢ + 1 generators in turn, we
have that there exist ¢ + 1 hyperplanes of PG(4,q) which intersect B in the union of a
generator and the line directrix p of B. The ¢(¢ — 1)/2 remaining hyperplanes about p
therefore each intersect B in exactly the line directrix p; each such hyperplane intersects

the ruled cubic surface at p and two complex conjugate generators of the cubic surface
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in a quadratic extension extension of the base field.

Next consider a spread element m distinct from p. About m there is a unique plane my,
containing a Baer conic of B. Hyperplanes (7, P}) i =1,...,q + 1 each intersect B in
the union of the Baer conic in 7, and the generator g} respectively; these hyperplanes
have been counted above. About the plane (m, P}), for fixed 4, there are ¢—1 hyperplanes
distinct from both Yo, and (m,, P;); let ¥ be one of these ¢ — 1 hyperlanes. ¥ contains
no Baer conic or generator of B, and ¥ does not contain the line directrix p of B. The
hyperplane ¥ intersects each generator line of B in a unique point. As a hyperplane
intersects a ruled cubic surface in a cubic curve, we conclude that ¥ intersects B in an

irreducible cubic curve, namely a twisted cubic curve.

The number of spread elements besides p is ¢%; the number of points of p is ¢ + 1; from
above, for a spread element m # p and a point P of p there are ¢ — 1 hyperplanes about
the plane {(m, P}) which each intersect B in a (distinct) twisted cubic curve. Thus there
exist ¢>(¢ + 1)(q¢ — 1) = ¢* — ¢* hyperplanes of PG(4,¢) which intersect B in a twisted

cubic curve.

We have considered (¢*+¢%)+(¢*+9)/2+(¢+1)+(¢*—0)/2+¢* - ¢* = "+ +¢*+q+1
distinct hyperplanes of PG(4, q), namely all hyperplanes of PG(4, q). O

In Theorem 2.3.1 the intersection sets (a), (b), (¢) and (d) can be described in B, the
Baer subplane of PG (2, ¢%) represented by B, as respectively: a unique point P at infinity
on B, a Baer subline in B containing P, the union of two distinct Baer sublines in B
containing P and the union of a Baer subline in B through P and a Baer subline in B
not through P. As a subset of points of B, the intersection set (e) has properties which
are not so readily recognised. We now show that an intersection set of type (e) in B is

a non-degenerate conic in B.

Lemma 2.3.2 Let B be a Baer ruled cubic surface in the Bruck-Bose representation of
PG(2,q%). If ¢* is a twisted cubic curve on B then (* is the Bruck-Bose representation

of an oval ¢ in the corresponding Baer subplane B of PG(2,¢%).

Proof: A twisted cubic curve ¢* lies in a hyperplane ¥+ of PG(4,q). Since (* is
contained in B and since £~ NB is a cubic curve, we have X~ NB = ¢*. By Theorem 2.3.1

and its proof we have the following:
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1. The hyperplane X¢-, which contains the twisted cubic curve ¢*, contains a unique

spread element m distinct from the line directrix p of B;
2. The planes about m in ¥¢» each contain a unique point of ¢*;
3. ¢* has exactly ¢ + 1 points, one on each generator line of B;

4. ¢* contains a unique point of the line directrix p of B.

Now we consider * as a set of points ¢ in B, the Baer subplane of PG(2, q°) represented

by B, and show that no line of B contains three points of ¢.

Interpreting the properties (1) — (4) in the Baer subplane B we have by (4) ¢ contains
the point {P} = B Nlx. By (3) each line of B through P intersects ¢ in at most one
further point. Now suppose there exists a line [ of B containing three distinct points of
¢; by the previous statement P ¢ I. Also note that I # I since Iy is not a line of B.
In Bruck-Bose, [ is a plane o; containing 3 distinct points of the twisted cubic curve ¢*
and therefore by (1), and since no three points of a twisted cubic curve are collinear,
the plane o is contained in the hyperplane ¥.. Since q; is necessarily a plane about
a spread element (q; is a Bruck-Bose representation of a line of PG(2, q?)) oy contains
the unique spread element m in ¢. By (2) o4 therefore intersects ¢* in a unique point,
a contradiction to our assumption that o; contains three distinct points of ¢*. Thus in

PG(2, %) there exists no Baer subline in B which intersects ¢ in more than two points.

d

Lemma 2.3.3 Let C be a non-degenerate conic in PG(2,q). Embed PG(2,q) as a
Baer subplane in PG(2,q%). Let Cp be the conic obtained by extending C to a conic
in PG(2,q%). Let M be a point of C2\C. The g + 1 lines joining M to the points of C

are lines of a Baer subplane containing M.

Proof: Without loss of generality let C be the conic with equation zy = 2% and let M
have coordinates (62, 1,6) where 6 € GF(¢*)\GF(q). Note that (0,1,0) and (1,0,0) are
points of C.

The lines in PG(2, ¢?) joining M to the points of C have line coordinates given by:

{[17 0, _9] + ¢[0,0’ _1] | ¢ € GF(Q) U {OO}}
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The pencil of lines {[1,0,1] + #[0,1,1] | ¢ € GF(¢q) U{oo}} in PG(2, q) is the pre-image
of the above set of lines under the projectivity of PG(2,4?) given by the non-singular

1 0 0
matrix | 0 0 0 | € PGL(3,q%). We have therefore that the ¢+ 1 lines joining
0 =146 —0

M to the points of C are g + 1 lines of a Baer subplane containing M.

Theorem 2.3.4 The ¢* — ¢* twisted cubic curves on a Baer ruled cubic B with line
directriz p in PG(4,q) are the Bruck-Bose representations of the q* — ¢ non-degenerate
conics in B on the point P, where B is the Baer subplane of PG(2,q*) represented by B
and P the point of B at infinity represented by p.

Proof: For q odd the result follows from Lemma 2.3.2 and Segre’s Theorem 1.11.1. For
q even, let C be a non-degenerate conic in a Baer subplane B of PG(2,¢?) such that
BNy = {P}, a unique point, and let P € C. Conic C is a subconic of a conic Cg of
PG(2,¢?) and since Iy is not the tangent to Cq2 at the point P, I is a secant to the conic
C,2. Let M be the point of Cp> distinct from P on the line lo,. In B the points of C besides
P lie on distinct lines of B on P. Thus in Bruck-Bose B is a Baer ruled cubic surface
B with line directrix p (representing P) and the points C* of the conic in Bruck-Bose
besides p lie on distinct generator lines of B; the point M is represented in Bruck-Bose
by a spread element m. We now show that these points C* lie in a hyperplane of PG(4, ¢)
so that by Theorem 2.3.1 the points of C* are points of a twisted cubic curve on B. In
PG(2,¢%), by Result 2.3.3, the ¢+ 1 lines on M joining M to the points of conic C are a
pencil of lines in a Baer subplane B’ of PG(2,¢*) containing M. Since M P is a line of
B', the line at infinity £, is secant to B’ and therefore B’ is represented in Bruck-Bose
by a transversal plane B'*. The hyperplane {m,B*) of PG(4,q) therefore contains the
points C* representing the conic C. Since the hyperplane (m, B'*) of PG(4,q) contains
the ¢ affine points of C* on B together with a unique point of p C B and since (m, B'*)
contains no Baer conic on B, by Theorem 2.3.1 (m, B'*) intersects B in a twisted cubic
curve. It follows that the non-degenerate conic C is represented in Bruck-Bose by a

twisted cubic curve on the Baer ruled cubic B. a

Corollary 2.3.5 Let B be a Baer subplane of PG(2,4?) such that |BNl| = 1; let the
unique point at infinity of B be P. The non-degenerate conics in B are represented in

Bruck-Bose by either a twisted cubic curve (when the conic contains the point P) or a
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4-dimensional normal rational curve (when the conic does not contain the point P) on

the Baer ruled cubic B.

We shall give two proofs; the first is quite short but does not cover all cases and the

second is a proof valid for all prime powers ¢ > 3.

Proof of Corollary 2.3.5 (cases ¢ even and q odd, q < 7 or (10.25)? < q): By
Theorem 2.3.4 it remains to prove that a non-degenerate conic in B which does not
contain the point at infinity P, is represented in Bruck-Bose by a 4-dimensional normal

rational curve.

Let C be a non-degenerate conic in B which does not contain the point P. Each line of B
intersects C in at most two points. Since non-degenerate conics on P in B are represented
in Bruck-Bose by twisted cubic curves (see Theorem 2.3.4) and since a distinct non-
degenerate conic in B intersects C in at most four points, by Theorem 2.3.1 a hyperplane
of PG(4,q) intersects the Bruck Bose representation of conic C in at most four points.
We have therefore that the Bruck-Bose representation of conic C is a set of ¢ + 1 points
C* in PG(4, q) with the property that no hyperplane intersects the set in more than four
points; in other words we have a (g + 1)4—arc C* in PG(4,q) and by Theorems 1.5.1,
1.5.2 and 1.5.3, this arc is a 4—dimensional normal rational curve for q even and ¢ odd,

q < 7or (10.25)2 < q. U

Lemma 2.3.6 There ezists a,b € GF(¢*)\GF(q), ¢ > 3, with the following properties:
(i) a#b,—b,
(i) ab~'+a"'b € GF(¢*)\GF(q),
(i) ab~t € GF(¢*)\GF(q),

and for such a,b we have ab# 0, a®> # 0, b* # 0.

Proof: First we prove that there exists z € GF(¢*)\GF(q), ¢ > 3, such that
z+a27! ¢ GF(q):

For ¢ = 3, GF(3) = {0,1,2} and GF(9) = {0, 1,w,w?, 2,w’,wb w"} where w?—w—1 = 0.

Here w + w” = w and w? + w® = w? as required.

For ¢ > 3 consider
z+z ! = A

«— zrZ-)Xz+1 =0
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for A € GF(q) and = # 0.

For each A € GF(q), there exist at most two solutions z,z~! € GF(¢*)\GF(q) to this

quadratic equation. Therefore there exist at least

¢ —2¢—-q¢=4q(@—3) >0
elements z € GF(q*)\GF(q) for which z + 27" ¢ GF(qg).

It remains to show that for z € GF(¢*)\GF'(q) for which z + 2! ¢ GF'(g), there exists
a,b € GF(q*)\GF(q) such that a # b, —b and bz = a:

By considering all b € GF(q?)\GF(q), we obtain ¢> — ¢ distinct elements bz and bz # 0

as neither z nor b is equal to 0.

Since
¢ —q > q—1 = |GF(9)\{0}|
there exists a choice of b € GF(¢?)\GF(q) for which bz = a &€ GF(q).

If @ = b then b(z — 1) = 0 implies that £ =1 € GF(q), a contradiction. If a = —b then
b(z + 1) = 0 implies that z = —1 € GF(q), a contradiction. O

Proof of Corollary 2.3.5 (case q > 3): We investigate the representation in Bruck-
Bose of a particular! non-degenerate conic C in a Baer subplane B of PG(2,¢*) with
|IBNLy| =1and CNly = 0. Let C;z be the conic {(62,1,0); § € GF(¢?) U{o0}}, that
is, the conic in PG(2,q?) with equation 2z = zy. The conic C;z has nucleus N(0,0,1) if

q is even.

C;z is fixed by projectivities of the plane defined by a matrix of the form:

a* b 2ab
H=|¢ d& 2cd
ac bd be+ad
such that ad — bc # 0 (as |H| = (ad — bc)?) (see [52, Theorem 2.37]).

The action of such a projectivity on the points of the conic C;Z is the map:

[ 2 a
,1,0) — ((222)°,1,222)

10,00 — ((9%12)
(N — N, for qeven).

1For a non-degenerate conic C; in a Baer subplane By, Bf = B for some collineation ¢ and C{ is a

non-degenerate conic in B and is therefore projectively equivalent to C via a collineation in B.
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Let C' C (,’;2 be the points of C;z in the Baer subplane PG(2,q); so
C'={(0%1,0); 6 € GF(q) U {oo}}.

We now find a projectivity with matrix H of the above form which maps PG(2,q) to
a Baer subplane B and maps C' to a conic C in B, with |B N ¢x| = 1, and such that
BnNiy #(0,1,0),(1,0,0), that is, such that the unique point of B on £, is not a point
of the conic. For our coordinate representation of PG(2, ¢?) the line at infinity £, is the
line of PG(2,¢*) with equation z = 0.

We will then represent C via coordinates in the Bruck-Bose setting and determine C as

a set of points of a normal rational curve in PG(4,q).

Consider the projectivity H defined by matrix:

a? b 2ab
b a2 2ab
ab ab a®+ b

where a # b, —b, a,b,ab™!,ab™! + a7'b € GF(¢*)\GF(q) (refer to Lemma 2.3.6).
The Baer subplane PG(2, q) is mapped by H as follows:

For a point (z,y, 2) € PG(2,q),

x a’z + b*y + 2abz
H y | = bz + a’y + 2abz : (2.1)
z abx + aby + (a* + b?)z

The resulting set of points constitute a Baer subplane B whose intersection with /., is

the set of points (2.1) with third coordinate zero, that is with

abz + aby + (a®? +b%)z = 0,
thatis, z+y+(ab'+a7'b)z = 0. (2.2)
Since ab~+a~1b € GF(¢*)\GF(q), equation (2.2) is the equation of a line not in PG(2, q)
and therefore the line (2.2) intersects PG(2,¢) in a unique point; that is, there exists a
unique point X = (z',4',2') in PG(2,q) for which z' +y' + (ab™' + a~'b)2’ = 0. Thus

the Baer subplane B intersects £y, in a unique point, namely the point with coordinates,

z a’z’ + b*y' + 2abz’
H| vy | =| 0?' +a2 +2ab2 | = X". (2.3)
2 0
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Also we need to show that X¥ is not a point of the conic C. The only points of C;z on
the line at infinity are (1,0,0) and (0,1,0) thus if X# C C N £y then X# is (1,0,0) or
(0,1,0). Now X = (0,1,0) or X¥ = (1,0,0) if and only if a®z" + by’ + 2abz' = 0 or
b2z’ + a®y’' + 2abz’ = 0 respectively.

We need to show a2z’ + b2y’ + 2abz’ # 0 and b2z’ + a?y’ + 2abz’ # 0.

Consider the lines [a2, b, 2ad], [V, a?,2ab], [1,1,ab™" + a~'b]. The point of intersection
of lines [a?, b%, 2ab) and [1,1,ab~! +a~'b] is (b%, a®, —ab) = (a~'b,ab™*, —1). The point of
intersection of lines [b%, a2, 2ab) and [1,1,ab™! + o718} is (a?,b?, —ab) = (ab™',a"'b, —1).
Since X € PG(2,q) and since —1 € GF(g) and ab™!,a~'b € GF(¢*)\GF(q), it follows

that X # (a~'b,ab™, —1) and X # (ab~1,a"'b,—1). Hence we conclude that X ¥ is not
a point of C.

Hence B = PG(2,¢)¥ is a Baer subplane with unique point X* on £, and the Baer

subplane B contains the non-degenerate conic C = ' H for which C N £ = 0.

The coordinates of the points of C = (' H are given by:

2 a6+b\2 af+b
0 (b9-+—a) b0+a
— - b0+a
H 1 1 — af+b
af+b
6 bb+a 1

where 6 € GF(q) U {oo}.

(Note that if ad +b = 0 then § = —a™'b is not an element of GF(q), a contradiction.
Hence af + b # 0 and similarly b0 + a # 0.)

We now transform these plane coordinates to coordinates in PG(4, q), that is the coor-
dinates of the points C* representing C in the Bruck-Bose setting in PG(4, q)\X using
the results of Section 1.10.4.

Let a be an element of GF(q?)\GF(g) with minimal polynomial
22— Az — u,
where \, u € GF(q). Using x — & = 2 to denote the Frébenius map, we have

at+a = A
aty = —U.
Each element z € GF(g?) can be written uniquely in the form z = z; + ax, where

z1, %2 € GF(q).
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We have therefore:

a = a1 + aag, a1, a2 € GF(Q),
b=0b,+aby, bi,by € GF(q)

and =0 since § € GF(q) for points in C'.

Also @ = a1 + aag = a1 + (A — @)az = (a1 + Aag) — aay and similarly b= (by + Aby) — ab,.

af+b bl+a

For a point P in C, with the coordinates (&£, %te,

1) of P written as a row vector, and

using the above representation we obtain:

<a0+b b0 + a 1)

ad+b bo+a b0+a a,9+61
b9 +a’ ab+b’ '

= <b9+axl39+a’ ab+b ab+b

Now

ad+b  bO+a ab? + 0(bb + ad) + ba

W+a  b+a _ bb6%+0(ab+ba)+ad

and note that the denominator is an element of GF(q). Each term in the numerator is

an element of GF(q) except for ab and ba, which we can write as follows,

ab = (a1 + aas)(bs + abs)
= a1b; + aab + aaby + adasbs
= aib; + aazb; + (A — &)aiby — paghs
= a1by — pagby + Aarby + afazby — a1bs)
= @+ aL (for ease of notation)
and ba = aiby — paghy + Abrag + a(baar — byag)

= Q+ alL (for ease of notation).

(Note that Q, Q, L, L are all elements of GF(q).)

In Bruck-Bose the point P therefore corresponds to the point P* in PG(4,q)\Yo with

homogeneous coordinates:
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[ Q8 +0(b+aa)+O )

bb6? + 8(ab + ba) + ad
LO*+ 1L

bbo? + 0(ab + ba) + aa

Q0% + 0(bb + ad) + Q

aaf? + 0(ab + ba) + bd
L6?+L

aab? + 6(ab + ba) + bb

\ ! /

(in [6] Buekenhout applied a similar transformation to unitals in PG(2,¢?) to find their

image in Bruck-Bose via coordinates in PG(4,q)).

If we multiply through by
(bb6* + 6(ab + ba) + aa) (aad” + 0(ab + ba) + bd)

which is a non-zero element of GF(q), we obtain each component of the coordinate vector
as a degree 4 polynomial in § over GF(q), where 8 € GF(q) U {oo}. On simplification,

the points of C represented in Bruck-Bose are the points with coordinates given by:

) (ab+ b3)Q bbQ + aa@ (ab + b2)Q .
aa®) _ _ B _ ~ bb@
+aa(bb + aa) +(bb + aa)(ab + ba) +bb(aa + bb)
aal (ab + ba)L bbL + aal (ab + ba)L L | [ gt
03
. b+ba)Q bbQ + aaQ) b+ ba
b0 (a_ ] a)Q ) Q aa_Q (a a)Q_ 0aQ 2 2.4
+bb(bb + aa) +(bb + aa)(ab + ba) +ad(ad + bb) ;
boL (ab + ba)L bbL + aalL (ab+ ba)L aaL \ 1l /
o _ a)? + (bb)? o _
wath (6+am)abrbn) (b0) (a -+ bb)(ab + ba) aabb
(ab + ba)?

for § € GF(q) U {o0}.
Denote by M the coefficient matrix in (2.4) and note that M € GL(5,q) .

Here we have shown the set of points of C in Bruck-Bose is the set of im-

ages of points of a normal rational curve in PG(4,q), in particular the image of
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{(64,63,6%,0,1); 6 € GF(q) U {oo}} under the projectivity determined by the matrix
M. Matrix M is necessarily non-singular as C* is a (¢ + 1)s-arc in PG(4, q) (see the first
proof of corollary 2.3.5) and hence C* is not contained in a hyperplane of PG(4,q). O

It remains to consider the representation in Bruck-Bose of non-degenerate conics which
lie in Baer subplanes B of PG(2,¢?) for which £, is a line of B. Let C be such a conic
in a Baer subplane B of PG(2, ¢?) for which £, is a line of B. Coordinatise the plane so
that £ is the line with equation z = 0 and B is the subplane PG(2, ¢), then the conic
C is defined by a homogeneous quadratic equation Q(z,y, z) in variables z,y, z and with

coefficients in GF(q), that is
¢ = {(z,4,2)|Q(x,y,7) = 0}
= {(=,9,1)IQ(=,y,1) = 0} U{(2,4,0)|Q(=,y,0) = 0}.

In Bruck-Bose, B is therefore the transversal plane B* defined by the equations

z5 = 1o = 0 and C is represented by a non-degenerate conic C*, where

cr = {(xl, Oa i, O, 1)|Q($1, Y1, 1) = 0}
U{spread elements corresponding to the points of C at infinity}.

Thus C in Bruck-Bose is essentially a non-degenerate conic C* in the transversal plane

B*.

We have therefore determined the representation in Bruck-Bose of any non-degencrate
conic C in a Baer subplane of PG(2,¢?). In summary, the Bruck-Bose representation C*

of C is determined and is one of the following:

e a non-degenerate conic in a (transversal) plane of PG(4, q);
e a twisted cubic curve on a Baer ruled cubic surface of PG(4, q);

e a 4-dimensional normal rational curve on a Baer ruled cubic surface of PG(4,q).

2.4 A characterisation of Baer ruled cubic surfaces

In Section 2.2 we reviewed the Bruck-Bose representation of non-affine Baer subplanes
of PG(2,¢?); such Baer subplanes are represented in Bruck-Bose by certain ruled cubic

surfaces which we call Baer ruled cubics. For a given Bruck-Bose representation of
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PG(2,q?), that is for a fixed regular spread S of Lo, let R be the set of all ruled cubic
surfaces Vi in PG(4, q) with the property that the intersection V3’ N Xy, in PG(4,q) is
a line which is an element of the spread S. There exist more ruled cubic surfaces in R
than there exist non-affine Baer subplanes of PG(2,¢%). That is, the Baer ruled cubic
surfaces in Bruck-Bose constitute a proper subset of all the ruled cubic surfaces in R.
In this section we characterise the Baer ruled cubic surfaces, amongst all ruled cubic

surfaces in R, for a given regular spread in the Bruck-Bose representation of PG(2, q?)

in PG(4,q).

2.4.1 The extended ruled cubic surface

Consider a ruled cubic surface V33 in PG(4, q) as defined in Section 1.7 with the notation

introduced there. So V;? has base conic C, line directrix £ and associated projectivity

¢ € PGL(2,q).

Embed PG(4,q) as a Baer subspace in PG(4,¢?). Consider the ruled cubic surface V3
over the extended field. Let £ be the (unique) line of PG(4, ¢°) such that £ NPG(4,q) = L.
Similarly let C be the (unique) conic in PG(4, ¢%) such that CNPG (4,q) = C. The plane
of g is denoted by S, and S; N PG(4,q) = Sz, where Sy is the plane of the conic C in
PG(4,q). ) -

Note that in PG (4, ¢?) the line f is skew to the plane S,. Since if not then § === £ ,S2) is at
most a hyperplane of PG(4, ¢°) and by Theorem 1.3.:, the intersection ¥ = {)ﬂPNG(4, q)
is either a hyperplane or a plane of PG(4, g). Since the line directrix £ and the base conic
C of V} are contained in X, we have that the entire ruled cubic V3 is contained in X.
Recall from Section 1.7 that a ruled cubic surface V33 in PG(4, ¢) is not contained in any

hyperplane of PG(4, q) and so we obtain a contradiction.

The associated projectivity of V33 between £ and C can be applied to the non-homogeneous
coordinates A (A € GF(q?)U{oo}) of points on £. We denote this action by ¢ and obtain

a projective correspondence between points P()) on £ and points P(6) on C given by,
0 =¢(\), A € GF(¢*) U {oo}.

Note that the projectivity ¢ restricted to points of £ (in PG(4,¢)) is simply the projec-
tivity ¢ € PGL(2, q), that is

fle . ¢’

82



hence ¢ and ¢ are defined by the same 2 x 2 matrix over GF(g). In other words ¢ is an
element of PGL(2,q).

~

Let g be the set of lines PPis where the point P ranges over £ . In this way we obtain

a ruled cubic surface in PG(4, ¢%), which we shall denote by V,, with line directrix £

base conic g and associated projectivity ¢ € PGL(2,q) (see Se(;;ion 1.7). Since ¢, = ¢,

we note that ) -
‘és|PG(4,q) =V

and we call V;} the extended ruled cubic of V3.

~

We denote by ~ the Frébenius automorphism of GF(¢%),
~— : GF(¢®) — GF(¢)

x — x4,
We also denote by ~ the automorphic collineation of PG(4, ¢?) induced by the Frobenius
automorphism. The context in which this is done should make the meaning clear.

B PG(4,¢%) — PG(4,q%)
P = P(x0,z1,%2,%3,74) +—> P =P(al,a, 27 24, 27).

Note that this collineation of PG(4,¢?), which we call the Frébenius collineation, fixes
the Baer subspace PG(4,q) pointwise and hence the ruled cubic surface V3 is fixed

pointwise also. Since ¢ € PGL(2,q), the ruled cubic surface V3 in PG(4,¢*) is fixed by

the Frobenius collineation in the following way,

VP = {PPYPet)
= {PQIP(V))IA € GF(¢*) U{oo} (P € £)}
= {P)P(#(N)I)IX € GF(g*) U{oo} (P € £)}
(The FrﬁbNenius automorphism permutes the elements of GF(¢?))
= {PQIP)IA € GF(g*) U{oo} (P € £)}
(since ¢ € PGL(2,q))
= {?;fw € (}
W

~

Note that since ¢ € PGL(2,q) the generators of V3, and in particular the generator
containing the points of £ with non-homogeneous coordinate co, are fixed as a set under

the Frobenius collineation.
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We now use PG(4,¢%) as our setting for a new proof of a result originally proved by

Bernasconi and Vincenti [15, Theorem 2.4].

Theorem 2.4.1 [15] A ruled cubic surface V3 of PG(4,q) represents a non-affine Baer
subplane of a translation plane 7(S), defined by a 1—spread S in a hyperplane Yo, of
PG(4,q) in the usual way, if and only if m(S) is Desarguesian.

Proof: (<=) The necessary result is Theorem 2.2.9 (see also [19] [90]).

(=) To begin with, we establish the existence of a 1—spread S in a hyperplane ¥ of
PG(4,q), that is, the Bruck-Bose representation in of a translation plane. This is done
using the method of Bernasconi and Vincenti [15], but the proof that the spread S is

regular is new.

Let V = V3 be a ruled cubic surface in PG(4,q) with line directrix £, base conic C
and associated projectivity ¢ € PGL(2,q) as defined in Section 1.7 with the notation
introduced there. The conic C lies in a plane of PG(4,q) which we denote by S,. Let ¢
be any external line of C in Sy. Put o, = (t,£), that is X is the hyperplane of PG(4, q)
spanned by the pair of skew lines ¢ and £. Since each generator of V' joins a point of £
and a point of C, each generator g of V intersects X in a point of £. thus in PG(4, q)

the ruled cubic V intersects the hyperplane X, precisely in its line directrix £.

By Theorem 1.7.2, since no three generators of V' are contained in a hyperplane of
PG(4, q), the planes of two distinct conics on V' are not contained in a hyperplane. Also,
since any two distinct conics on V intersect in a unique point, the planes containing
the g% conics on V meet the hyperplane ¥ in ¢* distinct and pairwise skew lines.
Denote the conics on V by C = C1,Cs, ... ,C,2 and denote the planes of these conics by
Sy = aq,0,. .., 04 respectively. Let oy N X =4 fori =1,... ,q% and note that the
set of lines,

8: {t=£1,£2,... ,qu}U{E}

is a set of g2 +1 pairwise skew lines which partition the points of ¥,. Thus S is a spread

of ¥, and it remains to show that S is a regular spread.

Embed PG(4, q) as a Baer subspace in PG(4,¢?). Consider the base conic € of V in the
plane S,. The spread element ¢ in S, is an external line of C and so intersects C in two
points X, X in the quadratic extension. The points X , X are conjugate with respect

to the quadratic extension in the sense that the set {X, X} is fixed by the Frobenius
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collineation. Note that X, X are points on the base conic of the extended ruled cubic
Vi in PG(4,¢?). Consider the points on £ which correspond to X = P(#), X = P(0) via
the associated projectivity ¢ of V3. For some fixed A € GF(¢?) U {00}, we have

6 =

| -
~
p
S

and therefore 6 =

-

()
= ¢()) since ¢ € PGL(2,q).
Hence the points {X,X} on C are in projective correspondence with points

{A=P()\),A=P()\)} on £ and A, A are conjugate with respect to the quadratic exten-

sion.

Let ¢,g denote the pair of generators XA and X A of the ruled cubic surface V3. The
lines g, g lie in the quadratic extension ¥, of the hyperplane ¥, and are disjoi;t from
Y. By Theorem 1.9.6, g, 7 determine aNunique regular spread of %, consisting of the
g*+1 lines of X, obtained by joining each point of g with its conjugate on g. We denote
this regular spread by S;5. Note that t = XX and £ = AA are elements of the regular
spread Sgg.

For ¢ # 1, consider the conic C; on V. The conic lies in a plane o; which contains
the spread element £; of S. Since ¢; is an external line of C; in the plane of the conic,
the intersection £; NC; is a pair X;, X; of points conjugate with respect to the quadratic
extension. Thus in PG(4, ¢%) the spread line 4; contains the points Xj, X of the extended

ruled cubic Vi# and the conic C; extends uniquely to a conic C; contained in V3. By

~ ~

Theorem 1.7.2, the conic C; intersects each generator of the extended ruled cubic, in

~

particular C; contains a point of g and a point of §. But since the plane of the conic C;

~

is not contained in Yo, (as ; is not contained in ¥,) it follows that

~

{9,y NCi ={g,9} Nt = {X;, X;}.

Thus the spread S is the unique regular spread Sy of Yo, determined by lines g, 7 in
the quadratic extension of ¥,. The Bruck-Bose incidence structure 7(S) is therefore a
Desarguesian plane of order ¢ and the ruled cubic surface V is a Baer ruled cubic with

respect to the regular spread S. O

In the following characterisation of Baer ruled cubic surfaces, S;; denotes a regular

1—spread of Yo, = PG(3,q) determined in the usual way (see Theorem 1.9.6) by a pair
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of lines g, 7 in the quadratic extension of £. Recall that a Baer ruled cubic surface in
Bruck-Bose is a ruled cubic surface which represents via Bruck-Bose a non-affine Baer

subplane of the corresponding Desarguesian plane.

Theorem 2.4.2 A characterisation of Baer ruled cubic surfaces: Let PG(2,¢%)
have Bruck-Bose representation w(S) C PG(4,q), for a fized regular spread S = Syg.
A ruled cubic Vi in PG(4,q) is a Baer ruled cubic surface if and only if V3 has line
directriz an element of S and such that the estended ruled cubic of Vi in PG(4,¢%

contains the lines g and § as generators.

Proof: (=) The necessary result follows from the proof of Theorem 2.4.1 and Theo-
rem 1.9.6 which states that a regular spread of PG(3,q) is determined by a unique pair

of conjugate lines in the quadratic extension.

(<) We count the number of ruled cubic surfaces in PG(4,q) which have line directrix
an element of S and such that the extended ruled cubic in PG(4,¢%) contains g and
7 as generators. We show that the number of such ruled cubics equals the number of

non-affine Baer subplanes of PG(2,¢%).

Consider the Bruck-Bose representation 7(S) of PG(2,¢?), where S = Sgg. Let £ and ¢
be two distinct elements of the spread S. Let {X} = gNt, and {X} =g Nt denote the
points of t on lines g and g respectively, in the quadratic extension. Let a be any plane
of PG(4,q)\Eo which contains the line t. Let C be a non-degenerate conic in « such
that C Nt = {X, X}. In particular, note that ¢ is an external line of C in the plane ¢ in
PG(4,q).

Let m be a line of PG(4, q) joining a point of £ with a point of C. Consider the situation
in the quadratic extension PG(4,¢%): we have a line £ and a conic g such that the
plane o of the conic is skew to the line f . The three lines g,¢ and m associate three
distinct points of £ with three distinct points of (NZ and so define a unique projectivity
¢ of PGL(2,q?) between f and g By Section 1.7 we have a ruled cubic surface V3 in
FDG (4, ¢?) with line directrix £, base conic C and associated projectivity ¢ € PGL(2?q2).
Under the Frobenius collineation £ i g and the generator m of V3 are fNixed, since £, C

and m are contained in PG(4,q). Also the pair of generators {g,7} of V3’ are fixed as

a set. Thus V3 and its image V3 under the Frobenius collineation are a pair of ruled

cubic surfaces in PG(4,q*) with the same line directrix, base conic and which share
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three distinct generators. Since the projectivity ¢ is determined uniquely by the three

generators g,g and m, it follows that V33 and V; both have ¢ as associated projectivity.
Hence,

=7
and therefore the points of £ (in PG(4, q)) are associated by ¢ to points of C (in PG(4, q)).
Thus ¢ restricted to points of £ (in PG(4, q)) defines a ruled cubic surface V;? in PG(4, q)

with line directrix £ and base conic C. We have therefore determined that the projectivity

¢ is an element of PGL(2,q) C PGL(2,¢%).

~

Moreover the ruled cubic V;} in PG(4,q) determined above has a line directrix an el-
ement of the spread S and has extended ruled cubic V;* which contains lines g and g
as generators. Since V3 is determined uniquely by th(: choice of line directrix ¢, base
conic C and generator m, we count the number of such ruled cubic surfaces in PG (4, q)
as follows. In the following C denotes a non-degenerate conic in AG(2,q) containing a

fixed pair of special points, conjugate with respect to the quadratic extension.

S| % (s|-1x|{ planes of PG(4, ¢)\EXs containing a spread element}|x|{c}| « (a+1)?
[{conics on a ruled cubic surface in PG(4, q)}| g+l
= (¢2+1) % !qzz(qzngq"‘—qz) x (q+1)

¢*(g* - 1).

I

Now PG(2,q?) = 7(8) contains precisely this many non-affine Baer subplanes since
PG(2, ¢%) contains (¢2—g+1)(g*+1)¢*(g+1) Baer subplanes of which ¢*(¢®+¢*>+¢+1)

contain the line at infinity as a line. The result now follows. O

Corollary 2.4.3 A characterisation of Baer conics: Let PG(2, ¢?) have Bruck-Bose
representation m(S) C PG(4,q), for a fized regular spread S = Sg5. A non-degenerate
conic C in PG(4,q) is a Baer conic if and only if C is disjoint from Yo, in PG(4,q) and
such that in the quadratic extension C contains a pair of conjugate points, X , X say, on

the lines g and g. a

We have now completely determined the Bruck-Bose representation of the Baer sub-
structures of PG(2, ¢*). The motivation for this work came from a paper by Jeff Thas in
which the plane model of a Miquelian inversive plane of order ¢ is given. Consider the
Miquelian inversive plane I with points the points of a line PG(1,¢?) and with circles

the Baer sublines of PG(1,¢?). For a fixed point P of PG(1,q?) consider the internal
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plane Ip & AG(2,q). By Section 1.14, the circles in I which do not contain P correspond
precisely to the non-degenerate conics in Ip which contain a fixed pair X, X of of special

points, conjugate with respect to the quadratic extension.

By the above characterisation of Baer conics, this plane model of Miquelian inversive
planes is evident in the Bruck-Bose representation of PG(2,¢%) for each affine line ¢

(& PG(1,4¢?%)) of PG(2,4?) and letting {P} = £N L.

2.5 Additional properties

In this section we present a result, valid for ¢ even, which determines some properties
of the ¢? nuclei associated with the ¢> Baer conics on a Baer ruled cubic surface in the

Bruck-Bose representation of PG(2,¢?) in PG(4,q).

Result 2.5.1 Let B be a Baer ruled cubic in the Bruck-Bose representation of PG(2, ¢%),
q even. Let B be the Baer subplane of PG(2,q%) which is represented by B in Bruck-

Bose. The ¢* nuclei associated with the q* Baer conics of B are distinct and lie in a

plane of PG(4,9)\Zs about the line directriz p of B.

Proof: Let p denote the line directrix of B. Let C} be a Baer conic on B in plane oy
of PG(4,q). Let m; denote the unique spread element contained in cy. Since g is even,
we denote the nucleus of C§ in @y by Nf. Note that as m; is an external line to the
conic C?, the nucleus Ny is not incident with m;. We have therefore that the nucleus of

a Baer conic is an affine point of PG(4, q), that is, a point in PG (4, ¢)\Yco.

Let Q* be a point on C¥; @Q* represents a point @ of B in PG(2,¢%). In the proof
of Theorem 2.2.9 it is shown that the Baer ruled cubic surface B is contained in the
intersection of two quadric cones, namely V2, with line vertex p and base the conic CY,
and V;Z, with point vertex @* and base the hyperbolic quadric in £, determined by the
regulus of spread elements which represent the points at infinity in PG(2, q?) of the lines

of B incident with Q.

Let Pf,Py,..., Py, denote the ¢ + 1 distinct points of the line directrix p of B and
denote by g%,93,...9;,1 the generators of B, labelled so that P is incident with g7,

i=1,2,...,9g+1. Then P;C} is a conic cone in a hyperplane, II3 say, and by The-

orem 2.3.1 the intersection II} N B is the union of the conic C} and the generator gi
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of B. In IL}, the line PNy is the nuclear line of the conic cone PyCY, that is, every
non-degenerate conic C in a plane o and such that C' is the plane section oo N PyCY, has
nucleus the point N {PN{}. By considering the conic cones P;'CY, i =1,2,...,¢+1,
which are all contained in the quadric V2, and by repeating the above argument, we
have that each non-degenerate conic in V2 has a nucleus incident with the plane (N7, p)

about p in PG(4, q). Moreover, no such nucleus is incident with p.

Since B C V2 NV;,? and since B contains ¢* distinct Baer conics, the ¢* associated nuclei
of these conics lie in the plane (N}, p). It remains to show that these nuclei are distinct,

so that they constitute all g2 points of (N}, p) not incident with p.

Consider two distinct Baer conics C* and C'* of B in planes « and o respectively. Since
« and o represent lines of B in PG(2,¢?) and since B is not contained in a hyperplane
of PG(4, q), the planes « and ¢ intersect in a unique point and this point of intersection
is in B (see Theorem 1.7.2). Hence o, o’ have no point in common which is not a point

of B, hence the Baer conics C*, C'* have distinct nuclei. a

2.6 An Alternative Approach

The Ruled Cubic Surface R3 as a model for PG(2, q)

In this section we discuss the ruled cubic surface obtained as the projection of the

Veronese Surface V! from any one of its points. The Veronese Surface is the variety
‘/24 = {P($2, zy, y21 zz,Yz, 22) | (.’L', Y, Z) a pOint of PG(2, q)}

of PG(5,q). Tt is of order 4 and dimension 2. (In [50, Section 25.1], the Veronese Surface
is referred to as the quadric Veronesean of PG(2,q).)

If we write (zq, 21, T2, T3, T4, Ts) for the coordinates of a general point in PG(5, g), then

V4t is the complete intersection of the quadrics

22 — xomy = O, ZToTs — 2123 = O,
2 — —

T3 — Tols — 0, 1Ty — X3Xg4 = 0,
2 _ _

x5 —zoxs = 0, Toxs — X124 = O.

Moreover, the Veronese Surface contains no lines, that is, V;' is a cap in PG(5, g).

89



The map
¢: PG(2,q) — PG(5,q)
defined by  (z,y,2) +— (2% zy,v% 12,97, 2%)
is a bijection of PG(2,q) onto the Veronese Surface V,'; hence, V,! contains exactly

|Vit| = ¢* + g + 1 points. Also, under ¢, the points of the conic
az? + by +c2t + fyz+gzx+hry = 0 (2.5)

in PG(2,q) correspond to the points of intersection of the hyperplane of PG(5,q) with
coordinates [a, h, b, g, f,c] and the Veronese Surface. Since a curve C" of order r in
PG(2,q) intersects a conic in 2r points (see Theorem 1.6.3), it follows that a curve C”
of PG(2,q) maps by ¢ into a curve of degree 2r on V3. In particular a line of PG(2,q)
maps into an irreducible conic on V! and an irreducible conic of PG(2,q) maps into an

irreducible curve of order 4. By considering lines of PG(2,q), we have

Theorem 2.6.1 Properties of the Veronese Surface:

1. [50, Theorems 25.1.7, 25.1.9] Let £ be any line in PG(2,q). Then ((£) is a non-
degenerate conic on Vi. Moreover, each non-degenerate conic contained in Vy' is

of the form ((£) for some line £ in PG(2,q).

Each plane in PG(5,q) which contains a non-degenerate conic on Vi is called a

conic plane of V!

2. [50, Theorem 25.1.11] Any two conic planes of Vit have ezactly one point in common

and this common point belongs to V.

Thus V5! contains ¢®+¢+1 non-degenerate conics, two distinct points of V! are contained
in a unique non-degenerate conic on V;* and two distinct non-degenerate conics on V3

intersect in a unique point.

A degenerate conic which is a repeated line or two distinct lines in PG(2, g) corresponds
to a hyperplane section of V!, where the hyperplane meets V4 in a non-degenerate conic

(counted doubly), or two conics with exactly one point in common, respectively.

At each point P of Vi, the ¢ 4+ 1 tangent lines to the g + 1 irreducible conics of V;' at P
span a plane 7 (P); 7(P) is called the tangent plane of V;' at P, and n(P)NV; = {P}.
Also we note that by [50, Lemma 25.1.6 and Theorem 25.1.10] a projectivity of PG(2, q)
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induces a permutation of the pointset of V! which is induced by a unique projectivity
of PG(5,q) which fixes V3}. Consult [50, Section 25.1] for further detail regarding the

Veronese Surface V.

We now project V; from a point of V3 to obtain a ruled cubic surface in a hyperplane

of PG(5,q) (see also [71, Section 3.22]).

Consider the point P(0,0,0,0,0,1) on V;! which is the image under ¢ of the point
P'(0,0,1) of PG(2,q). The tangent plane =(P) to V4 at P is given by the equations
To =1 =z = 0. Project V,! from P onto the hyperplane II; with equation z5 = 0.
Since P is incident with ¢ + 1 conic planes of V!, which pairwise meet in P, the given
projection of V3! from P yields ¢ points of each of ¢ + 1 distinct lines g1, gz, ..., gg41 in
II,. The g + 1 remaining points on g1, g2, - . , gg+1 (one on each line) are collinear in a
line £ of I1,, where £ is the projection from P of the tangent plane 7(P) of V! at P. The

projection of V;! from P onto the hyperplane II; with equation x5 = 0, is then the set
{(z?, zy,v?, x2,xy,0) | (z°, 2y, ¥ 52, Yz, z%) is a point of V,'}

of ¢? + q points of II;. By Section 1.7, these points are g% + ¢ points of a ruled cubic
surface with line directrix ¢ in II4. For the following discussion, we recall that a ruled

cubic surface is defined as follows (see Section 1.7).

Definition: 2.6.1 InIl, = PG(4,q), consider a conic C* and a line £ skew to the plane
of C%. Set up a projective correspondence between them, and join corresponding points

by lines. The ruled surface so obtained is of order 3, and is denoted Rj.

By choosing the coordinate system in PG(4,q), let point (0,0,0,z,y) (where
z,y € GF(q), (z,y) # (0,0)) lie on £ correspond to point (z2,zy,y?0,0) on C?. Thus

RS is
{(2?, xy, 9%, 2z, 2y); z,y € GF(q), (z,y) # (0,0), z € GF(q) U {oc} }
Define

o: R — PG(2,q)

(xzaxy,yz,zw,zy) — (2,9, 2)
£(z2=00) — (0,0,1)
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Thus o contracts £ into the point (0,0, 1), and
o : R3\E = PG(2,9)\{(0,0,1)}
is a bijection, by definition of . In an abuse of notation, we shall use o to denote the

map between R3\/, in PG(4,q), and PG(2,¢)\{(0,0,1)}, in both directions.

First note that under o our original conic

C? = {(2?, xy,v%,0,0)| z,y € GF(q), (z,y) # (0,0)}

on R} is mapped to the line z = 0 of PG(2,q).

We now consider the image in PG(4, q), under o, of lines and conics in PG(2,¢q). One
method is to use the bijection ¢ of PG(2, q) onto the Veronese Surface V5 and then project
V3 from P(0,0,0,0,0, 1) onto the ruled cubic R3; for clarity we explicitly determine these
images using our bijection o of PG(2,q)\{(0,0,1)} onto R3\Z.

First consider a line az + by +cz =0 (a,b,c € GF(g), ¢ # 0) in PG(2, q), not through

(0,0,1). A parametric form of this line is

(75, = (Lt, — bt),

c

where t € GF(q) U {oco}. Using the map o we have

(xZ,xy,y2,zx,zy) = (.’150,33'1,.’172,373,.’174) (26)

e _ _ 2
_ <l,t,t2, ac b —at bt)_ 0

c

Thus the image in PG(4, q) of the line of PG(2, g) is the set of points (zo, 1, 2, 3, T4)
on R} with the parametrisation (2.7) in quadratic functions of . These points (2.7) also

satisfy,

azo 4+ bri +cx3 =0= z(az + by + cz)

and azi +bzy +cxy =0= y(az+ by + cz); (2.8)

the equations of two distinct hyperplanes, which intersect in a plane of PG(4, g).

By Section 1.5, we have therefore that the image of the line az + by +cz =0 (¢ # 0) is
the set of points (zo, 1, T, T3, 74) (2.7) of a conic on R} lying in the plane of PG(4, q)

defined by equations (2.8). Furthermore, the conic (2.7) is non-degenerate since it is the
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pre-image of the non-degenerate conic {(1,t,¢%,0,0)] t € GF(q) U {o0}}, in the plane
z3 = 24 = 0 of PG(4, q), under the projectivity of PG(4, ¢) defined by the matrix,

10000
01000
00100
a b 0 c O
-OabOC_

Note: 2.6.2 In PG(2,q), projectivities fizing (0,0,1) induce a transformation on
(z%, 2y, v, 2z, 2y) in PG(4,q). As a consequence, the “conics” in PG(4,q), which are
the image under o of lines ax + by + cz = 0 (a,b,c € GF(q), c # 0), are projectively

equivalent.

Proof: Consider two lines ¢; and {3 in PG(2, q) with equations ax + by +cz =0, ¢ # 0,
and a'z + by +c'z =0, ¢ # 0, respectively; note that (0,0, 1) is not incident with either
of these two lines. A projectivity fixing (0,0,1) in PG(2, ¢) and which maps ¢; to 45 is

given by
1 il 0 0 1
t = 0 1 0 t
—a’ —b't a b Y —a—bt
% e~ % ¢~ @ 1 .

The corresponding projectivity in PG(4, q) is therefore given by

1 1 o o ool 1 ]
t 0 1 0 00 t
12 = 0 0 1 00 t2
= ) 4-82-5 o 1off =
] —a’tCTb’t2 i \_ 0 %_Z—: %_l;_: 0 1_ i —atc—bt2 |

a

Now consider a line az + by = 0 (a,b € GF(q), a,b not both zero) in PG(2,g), that is,
a line incident with (0,0, 1). Imposing the condition ax + by = 0 on (2.6) gives

axg +br; = 0,
ary +bry = 0,

and azrz+bzry = 0 (2.9)
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which define the equation of a line in PG(4, q) contained in R3 and therefore incident

with £.
Thus the image of the line az + by = 0 under o is a (generator) line of R3.

Consider the following linear combination of the equations (2.9),

a(axg + bx1) + blazy + bxy) + c(azs + bzy) = 0,
that is  a(azg + bz1 + cx3) + blaxy +bxy +cxs) = 0,
which is a linear combination of the equations (2.8) and is therefore the equation of the
hyperplane of PG(4, q) which meets RS in the union of the conic (2.7) and the generator
line (2.9).

A pencil of lines in PG(2,q) through a fixed point (z,y,2) # (0,0,1) corresponds to
a collection of ¢ conics on the surface RS together with a generator line of R5. The
planes containing these ¢ conics generate a quadric cone in PG(4, ¢) with point vertex
(z%, zy, v, 2, 2y) in R3; this is proved as follows, the plane (2.8), where a,b, ¢ satisfy
az + by + cz = 0 for some fixed (z,y, 2), passes through the point (zo,z1,Z2, 3, zs) of
PG(4,q) if and only if

To Ti T3

Z1 Zy T4 | =0

T Yy =z
that is, if and only if z(z174 — T223) + Y(T123 — ToZ4a) + 2(Toz2 — 2%) = 0. (2.10)

It is easy to show that the quadric with equation (2.10) has the (fixed) point
(z2, 2y, y?, 2z, 2zy) as a singular point, by showing the first partial derivatives of the
defining polynomial are identically zero at (z?,zy,y?, 2z, 2y), hence by considering all
possible quadrics in PG(4, q), the quadric (2.10) in PG(4, ¢) is a quadric cone with point

vertex (x2, zy, y?, 2z, 2y) and base a hyperbolic quadric.
It also follows that R3 is the complete intersection of the three quadrics given by,
T1%4 — ToZs =0, ¥1%3 — ToTs =0, and zoxs — 22 = 0. (2.11)

Through a point of PG(4,q) not contained on the surface R3, that is, not satisfy-
ing (2.11), there passes a unique plane of the system (2.8), namely the plane such that

a:b:ic= 2124 — TaTs : T1Ts — ToTy : ToTy — To. (2.12)

This is a plane of an irreducible conic unless zgzy; — 7 = 0, in which case, the conic is

the union of the line directrix £ and a generator line of R3.
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Hyperplane sections of R}

As stated in Theorem 1.7.2 and in Section 1.6, the intersection of a hyperplane of PG(4, q)
with the ruled cubic surface RS is a cubic curve; such a cubic curve is possibly reducible,
in which case the intersection is either the union of a conic and a generator line of RS or

is the union of three lines of R3 (not necessarily distinct or belonging to GF(q)).

By considering R3 as the projection of the Veronese Surface V! in PG(5, ¢) from a point
of Vi, it is possible to determine the nature of the hyperplane sections of R3 in PG(4,q).
We work through this explicitly using our bijection o between PG(2,¢)\{(0,0,1)} and

R\{¢}.
Let A= [Xo, A1, A2, A3, A4, A; € GF'(g) not all zero, be the coordinates of a hyperplane of
PG(4,q). The hyperplane intersects R3 in points (22, 2y, y?, 2z, yz) satisfying

Moz? 4+ My + Aoy? 4+ Aszz + Mzy =0 (2.13)

which corresponds to the points of a conic through (0,0,1) in PG(2, ).

The number of conics in PG(2, ¢) through (0,0, 1) equals

+1
¢ -7+ <q2 )+(g) +@ g+ ) +g+l=¢"+P+¢+q+1,

counting non-degenerate conics and the four types of degenerate conics incident with
(0,0,1). Hence there is a one-to-one correspondence between the conics incident with
(0,0,1) in PG(2,q) and the hyperplane sections of the cubic surface R} in PG(4,q).
Thus, R is the projective model of the system of conics incident with (0,0,1) in the

plane.
We now consider each case in more detail.

Case 1: (2.13) is the equation of a non-degenerate conic in PG(2,q).

By considering the first polar of (0,0,1) with respect to (2.13), the tangent line to the
conic at (0,0, 1) is given by
)\3.’17 + )\4y = 0.

The condition for the hyperplane )\ to intersect £ in (0,0,0,1,m), m € GF(q) U {00}, is

)\3 + )\47’)’7, = 0
: _ A
that is, m = -5

and so in PG(2, q), from above, y = mz is the tangent line to the conic (2.13) at (0,0, 1).
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Case 2: (2.13) is degenerate and A3 = Ay = 0.

The hyperplane A= [Ag, A1, A2,0,0] in PG(4,q) contains the line £ of R3. The equa-
tion (2.13) becomes
X2+ Mzy+ X2y = 0
that is, (y — mix)(y —mez) = 0
and the lines y = m;z and y = myx may be distinct or coincident in PG(2,q) or lie in
an extension of the base field.

Case 2a: m; =my € GF(q) U {0}

The hyperplane ) intersects R3 in £ together with a unique generator line counted
twice. In PG(2,q), we have a degenerate conic on (0,0,1) consisting of a (repeated)
line y = myx.

Case 2b: m; # my, my,my € GF(q) U {0}

The hyperplane ) intersects R3 in £ together with two generator lines. In PG(2, g), we
have a degenerate conic on (0,0, 1) consisting of two distinct lines y = miz and y = moz.

Case 2c: m,; and m; are conjugate elements of GF(¢?)\GF(q).

The hyperplane ) intersects RS in £ together with two generator lines in the quadratic
extension, that is, £ together with two generators of the extended ruled cubic surface (as
discussed in Section 2.4.1). In PG(2, q), we have a degenerate conic on (0, 0, 1) consisting

of two conjugate lines in the quadratic extension.

Case 3: (2.13) is degenerate and A= [—ma,a,b, —m, 1].

The equation (2.13) degenerates to become
(y—mz)(ax +by+2) =0

for some m € GF(q) U {0}, a,b € GF(q).
From above, the hyperplane ) intersects R3 in a generator line and a conic on Rj. In
PG (2, q), we have a degenerate conic on (0,0, 1) consisting of two lines, y = ma (incident

with (0,0,1)) and az + by + z = 0 (not incident with (0,0, 1)).

We now consider in more detail a non-degenerate conic through P’(0,0,1) in the plane
PG(2,q). By Section 1.5, such a conic has points with parametric coordinates of the
form (fo(t), f1(2), f2(t)) = (a1 + bit,as + bat, az + bst + c3t?), ai, b; € GF(q), where P’
is the point of the conic associated with the parameter ¢t = co. Since the conic is non-
degenerate it is a normal rational curve in the plane and therefore the polynomials f;

are linearly independent and have non non-trivial common factor. When the coordinates
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of the points of the conic are substituted into (2.6) we obtain a parametrisation of the
corresponding points (zg, 1, T2, T3, T4) ON Rg in which zg, 21, 22 are quadratic in ¢ and

Z3, T4 are cubic in ¢, namely

rg = .’E2 = (a1 +b1t 2,
1 =Y = (a1 + blt (a2 + bgt),

)
)
zy =y’= (ag+ bot)?,
)
)

(
3 =2z = (a;+ bit)(as+ bat + c3t?),
z4 =2y = (az+ bat)(az + bst + cat?).
Thus the conic corresponds to a rational cubic curve on the surface R3. By case 1, these
g+1 points lie in a hyperplane section of R5. Note that all possible reducible cubic curves
on R3 have been considered in cases 2 and 3, with each such cubic curve obtained as a
hyperplane section of R3. Therefore by Section 1.5 and Theorem 1.7.2, the rational cubic

curve above is an (irreducible) twisted cubic curve. Note that the point with parameter

¢ = 0o of this twisted cubic lies on the line directrix ¢ of Rj.

Alternatively, by the known results concerning the Veronese Surface V! in PG(5,q)
quoted above, we note that such a non-degenerate conic containing P'(0,0,1) in
PG(2,q%) corresponds to a rational quartic curve containing the point P(0,0,0,0,0,1)

with points

(550, T1,T2,T3, T4, xs) - (.f02(t)a fO(t)fl(t)’ f12(t)a fo(t)fz(t)a fl(t)f2(t)a fzz(t))

and which constitute a hyperplane section of the Veronese Surface Vi of PG(5,q) con-
taining P. On projection from P onto R3, this quartic curve containing P projects to a

cubic curve contained in a 3—space.

Consider a non-degenerate conic in PG(2,q) which does not contain P’(0,0,1). For
example 22 = xy has points with coordinates (1,t?,t), where t € GF(g) U {o0}. When

we substitute these coordinates into (2.6) we obtain the coordinates
(xo, T1,%9,23, 1134) = (1, t2, t4, t, t3)

of points of a 4—dimensional normal rational curve contained on the surface R} and

disjoint from the line directrix 4.

We now show that every non-degenerate conic in PG(2,¢q) which does not contain the
point P'(0,0,1) is mapped by o to a 4—dimensional normal rational curve on Rj disjoint

from the line directrix £.
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Curves on R}

By Section 1.6, every curve C?™ in PG(2,q), of order 2m, with m-fold point at (0,0, 1)

has equation
2™ Uy + 2™ g1 F .. A Ugm = 0 (2.14)

where u; = u;(z,y) (i =m,...,2m) is homogeneous of degree i in z and y. As we shall
show, the equation (2.14) can be expressed as a monomial of degree m in z2, zy, y?, 2z, y2,
so that the equation of the curve transforms by (2.6) into that of a primal (or hypersur-
face) Vi of order m in PG(4,q). The image of the curve C*™ in PG(2,q) under o is
Vim0 R} = C3™, a curve of order 3m in PG(4, ¢) on the ruled cubic Rj.

For example, the equation of C*™ with m-fold point at P'(0,0,1) is
2™ U+« o+ 20Ugm = 0

where 2™ Uy = 2™ Hpoz™ T + pra™ Ty + L+ Pz Iyl L+ pyy™ ) for
i=0,...,mand 5 =0,...,m+ for a fixed ¢ and some p; € GF(g).
Now
Zm_i$m+i—jyj — (zm)m‘im‘z(i_j) (J,'y)] for ¢ > _7
= (ez)™ 7 (2y) H(ay)’ fori<j

hence (2.14) can be expressed as a monomial of degree m in 22, zy, y?, 2z, yz.

If a curve C™ in PG(2, q) has an m-fold point at (0,0,1), but is of order n < 2m, it can
be turned into a curve of order n' = 2m with an m-fold point at (0,0, 1) by adding 2m—n
lines not through (0,0,1). We then obtain a curve C?™ in PG(2,¢) with an equation
given by the product of the equation defining C™ and the equations of the 2m — n lines.
Since the lines do not pass through (0, 0, 1), the multiplicity of P'(0, 0, 1) does not change.
As stated above, the equation of C?™ can be expressed as a monomial of degree m in
z2, 2y, y?, zx, zy, that is, a polynomial which defines the variety of intersection V;™ N R3
of a hypersurface V" in PG(4,q) and the ruled cubic surface Rj. Thus C*™ has image
in PG(4, q) given by this intersection of R with the hypersurface V3", namely, a variety

V3™ which consists of the image of C™ together with 2m — n (Baer) conics.

If a curve C™ has a m-fold point at (0,0,1), but is of order n > 2m, the addition
of n — 2m lines through (0,0,1) makes it of order n +n — 2m = 2(n — m) with a
(n — 2m + m = n — m)-fold point at (0,0,1). Thus yielding a curve C*»~™ of order
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92(n—m) with a (n—m)-fold point at (0,0,1). In PG(4, q), the curve C*"~™ has image
VP ™ A RS = CX™ ™ which degenerates into the image of C™ and n — 2m generator

lines.

We summarise these results in a theorem.

Theorem 2.6.3 A curve C™ of order n in PG(2,q) with m—fold point at (0,0,1) has

image in PG(4,q) on the surface R}, given by o as follows

cim if n=2m,
o(C") =8 C™™ if n<2m,

C=™  if n.> 2m.

In particular, we note the following examples:

1. An irreducible conic C? through (0,0,1), with n = 2, m = 1 and n = 2m in this
case, has as image V3! N R} = V3, a twisted cubic curve on the surface R}, as

discussed above.

2. An irreducible conic C? not through (0,0,1), with n =2, m = 0 and n > 2m in
this case, together with two lines through (0,0, 1) forms a quartic curve C} with
2-fold point at (0,0,1). In PG(4,q), the image is VN RS = V¥ = VI UV UV,
that is two generator lines of R} together with a quartic curve on R. Thus o(C?) is
a quartic curve Cf with ¢+ 1 points and this quartic curve C? is a normal rational

curve for the following reasons:

(a) C4, being the image of a conic not through (0,0,1), has no point on the
directrix £ of R3.

(b) C# therefore cannot have a linear component n, since any line on R} has
at least one point in common with £.

(c) If Cf is reducible, then by (b) it can only be reducible to a pair of conics
C1,C,. But these conics on R are the image under o of lines (C;) and
o(Cs) of PG(2, q); a contradiction, since our original conic C? in PG(2, q)

is irreducible.
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(d) Consider any hyperplane S; of PG(4,¢q). Then Cf NS} C R} N Si. But
R3 N S} is the image of a conic C in PG(2,q) through (0,0,1) (by our
results above). Since |C N C?| < 4, we have |S; N C}| < 4. Hence Cf is
properly contained in PG(4, q) for all ¢ > 3.

(e) If ¢ =2 or 3, the result follows.

We now prove that every 4-—dimensional normal rational curve contained in R3 and
disjoint from the line directrix ¢ is the image under o of a non-degenerate conic in

PG(2, q) which contains P'(0,0,1)

Consider a normal rational curve C* of PG(4,q). Then, by Section 1.5, the curve C* is
given by
{P(t) = P(fo(®), f1(t),-.- , fa(¥)) | t € GF(q) U{oo} }

where

(i) each polynomial f; has degree at most 4, i = 0,1,2, 3,4, with at least one of the

polynomials having degree 4.

(ii) the polynomials fo, f1, f2, f3, f4 are linearly independent with no non-trivial com-

mon factor.

(iii) C* is projectively equivalent to {(¢*,¢*,t%,¢,1) | t € GF(g) U {o0}}.

Suppose that C* is a normal rational curve of PG(4,q), lying on the ruled cubic R3.
Therefore C* is given by

{(F@)? F(D)9(t), 9(t)%, F()R(E), g()R(t)); t € GF(q) U {oo}}

where

(i) f,g are of degree at most 2 and h is of degree at most 3, since at least one of f, g

is non-constant.

(i) f?, fg, 9% fh,gh are linearly independent quartic polynomials, with at least one

having degree 4, and have no non-constant polynomial as common divisor.

Note that f and g have no non-constant polynomial as a common divisor since otherwise

2, fg, 9% fh,gh have a common non-trivial divisor.
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Define C in PG(2,q) to be the image under o of C* as follows

o(C*) =C={(f(t),9(t),h(?)); t € GF(q) U {0} }
Suppose C contains P'(0,0,1). We consider each case separately.

Possibility 1: There exists t; € GF(q) such that f(t1) = g(¢t1) = 0. In that casep =t—1;
divides both f and g, a contradiction, since by condition (ii) above, the polynomials

f2, fg, 6% fh, gh have no non-trivial common factor.

Possibility 2: ¢ = oo corresponds to (0,0,1), in which case the degree of h is strictly
greater than the degree of f and strictly greater than the degree of g. By considering
properties (i), (ii) above, this implies that & has degree 3, the degree of f is 0 or 1 and
the degree of g is 1 or 0. In this case o(C*) = C is not a conic since it is not a normal

rational curve (of order 2) in PG(2, q).

Example: f(t) =1, g(t) =t and h(t) = t* so that
Ct = {(1,t,3,1%,t*)| t € GF(q) U {00} }

in which case C = {(1,t,13)| t € GF(q) U {oo} }.

We have:

Theorem 2.6.4 If a normal rational curve C* lies on R3 and if, using the above notation
for C*, the degree of h is less than or equal to 2, then there is no point of C* on the line
directriz £ of Rj.

Suppose C* is the normal rational curve contained in Rj with the above notation, and
suppose h has degree less than or equal to 2. It follows that at least one of f, g has degree
2. Moreover, f, g, h are polynomials of degree at most 2, with at least one of degree 2.
The polynomials have no non-trivial common factor, since f2, fg, g%, fh, gh have no non-
trivial common factor, and therefore C = {(f(t), g(¢), h(t)) | t € GF(q) U {o0} }, by the

definition of a normal rational curve in Section 1.5, is a non-degenerate conic in PG(2, q).

Hence,

Theorem 2.6.5 Every normal rational curve C* lying on RS and disjoint from the line

directriz ¢ is mapped by o to an irreducible conic of PG(2,q) which does not contain

(0,0,1).
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Summarising our results in one theorem we obtain the following bijective correspondence.

Theorem 2.6.6 There are as many normal rational curves of PG(4,q) on R3 which
are disjoint from £ as there are irreducible conics of PG(2,q) not through (0,0,1). This

number is ¢° — q*.

Proof: An irreducible conic in PG(2,q) not containing (0,0,1) maps under ¢ to a

normal rational curve on R3 with no point on £ (by the above Note 2.)
By Theorem 2.6.5 the converse is true.

The number of irreducible conics in PG(2, q) is ¢° —¢%. The number of irreducible conics
in PG(2,q) on (0,0,1) is ¢* — ¢%; therefore the number of irreducible conics in PG(2,q)
not through (0,0, 1) is g% — ¢*. O

2.7 A look at PG(2,q*) in Bruck-Bose

In this section we investigate more closely the Bruck-Bose representation of PG(2, qh).
The plane PG(2, ¢%) has a 4-dimensional Bruck-Bose representation over GF(q?), which
we shall denote by Il4 .2, and an 8-dimensional Bruck-Bose representation over GF'(q),

which we denote by Ilg 4.

Consider a line ¢, distinct from £, of PG(2,¢*). As we have noted earlier in this chapter,
a Baer subline b2 of £ which contains no point on £y, is represented in Il ;2 by a non-
degenerate conic b}; 41 in the plane £*, which represents ¢. Furthermore, the conic b;z +1

is disjoint from X, the hyperplane at infinity of Il .

In this section we show that the Baer sublines bgy1 of bpz; are each represented in I1y g
by a subconic of bj,,, and each such subconic b}, , is contained in a Baer subplane of
the plane ¢* in II; ;2. Each Baer subplane of this type intersects ¥, in a unique point

in H4,q2 .

Using this result together with Corollary 2.3.5 we obtain that such a Baer subline b2, in
the 8-dimensional Bruck-Bose representation is a set of g2+ 1 points in a 4-space £** (the
representation in ITg , of the line £) of Ilg 4, which contains at least ¢* + ¢ 4-dimensional
normal rational curves. We note that in 8-dimensional Bruck-Bose, bpy; is in fact a
(¢ + 1)—cap in the 4—space £** of IIg, and since b1 is disjoint from £y, in PG(2,¢%)
the corresponding (q? + 1)—cap is disjoint from the hyperplane at infinity in Ilg .
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We begin by establishing a coordinate system for PG(2, ¢*) in 4-dimensional Bruck-Bose
as in Section 1.10.4. Let 4y be the line of PG(2,q*) with equation z = 0. Let £ be the
line y = 0 and denote by P = P(1,0,0) the point of intersection of the lines £ and /.
Each point of £ — {P} has coordinates of the form (a,0,1) where a € GF(g*).

Let GF(q%) = GF(¢%)(a), where o € GF(¢*)\GF(¢*) has minimal polynomial z*>+z +c
for some fixed element ¢ in GF(g?). Then every element b in GF(¢*) can be uniquely

expressed in the form b = by + ab; where the b; are in GF(q%).

Following Section 1.10.4, in Bruck-Bose ¢ is the plane, which we denote by £*, with affine
points (ag, a1,0,0,1), a; € GF(¢*), where each point (a = aop + a1, 0,1) is a point of £.
The spread element in £* is J(o0) = (1,a) = ((1,0,0,0,0), (0,1,0,0,0)).

For convenience, from now on we shall represent the coordinates of points of £ and £* as

follows:

¢ = {P(1,0}U{(a,1) | a € GF(¢")}
¢ = {J(o0) ={(1,0,0),(0,1,0))} U {(ao, a1,1) | @, a1 € GF(¢*)}.
The Baer sublines of £ which contain the point P(1,0) are represented in Bruck-Bose by

the lines of ¢* distinct from J(oo). We may divide these Baer sublines into two classes

as follows.

Baer sublines of £ which contain P Lines of £* — {J(o0)}

(i) {6(1,0)+ (a,1)}U{(1,0)}, where

a € GF(q") is fixed and 6 €
GF(g%).

(i) {6(b+a,0)+(a,1)}U{(b+,0)},

where b € GF(¢?) is fixed, a €

GF(q") is fixed and § € GF(¢%).

(i) The lines y = aj, where

a1 € GF(¢?) is fixed.

(ii) The lines z = by + (ap — bay), for
all b, a9, a1 € GF(¢?)

Note that there are ¢? distinct lines of type (i) and ¢* distinct lines of type (ii).

Let b,24;1 denote the Baer subline of £ with the following points.

{(m)}u{[z (1’] (f) 19 € GF(&).

P(1,0) is not a point of b2, since if (1,0) = (o, a6 + 1), then af + 1 = 0 implies « is

an element of GF(¢?), a contradiction.
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Consider a point (af,0f + 1) = (af(af + 1)7',1) of bpi;.  Suppose that

(af + 1)1 = by + ab; for a necessarily unique pair by, by € GF(g?). Then,
(bp + aby)(1+af) =1

and on solving the system,

bo - chl =1
0by + bi(1—0) = 0

we obtain by = (f — 1)(—cf#? +80 — 1) and by = §(—ch*> +6 —1)~". Hence we may write
the coordinates (af(by + ab1),1) as

(aB((0 —1)(—ch?+ 80— 1)1+ af(—c? + 6 —1)71),1)
= (—cf?(—c?+0—-1)"1 —af(—ch?>+0—-1)"11)

Therefore in Bruck-Bose, the Baer subline by, is the set b;z 41 of points of £* with

coordinates,
{(1,0, )} U {(—cO?(—ct? + 6 —1)71, —8(—ct* + 0 —1)"1,1) | € GF(¢*)}.

Therefore b;z 41 is the image of the conic y?2 = zz in £* under a projectivity of £* since

b;z 41 is given by,

—-c 0 0 62
{(,o,n}u{| o -1 o 9 | |0eGF())}).
—-c 1 -1 1

If we now let by1 be the subset of b of points with parameter 6 € GF(g) U {00},

then b,y is a Baer subline of bp2,;. From the above calculations we have that byy1 in

*
?+1°

to the conic {(6%,0,1) | 8 € GF(q) U {oo} } in the real Baer subplane PG(2,q) of £*.

Bruck-Bose is a subconic b7, of the conic b Moreover, b}, is projectively related

Since bg241 does not contain P, b, and hence b}, has no point in Y. Suppose the
Baer subplane B of £* which contains b}, intersects Yo, in ¢ + 1 points. Then since
£* is a quadratic extension of B, the conic b;‘z 41 would necessarily intersect Yoo in two
distinct and conjugate points, a contradiction. Thus, the Baer subplane B intersects
Yoo in a unique point. Another way to see this is to consider the projectivity which
maps PG(2,q) on to the Baer subplane B. A point (z,y,z) of PG(2,q) is mapped by

the projectivity to a point of X, if and only if —cz 4+ y — 2 = 0. Since c is an element
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of GF(q?), the line [—¢,1, —1] is not a line of PG(2,q) and so intersects PG(2,q) in a

unique point. Thus B contains a unique point on X.
Now consider another Baer subline b' # by41 of bja1.

Any Baer subline of £ has stabiliser a subgroup of PGL(2, ¢*) isomorphic to PGL(2, ¢*).

In particular the real Baer subline,
= {(1,0)}u{(6,1) |6 € GF(¢*)}

of ¢ has stabiliser PGL(2,q?). PGL(2,¢?) acts triply transitively on the points of 4° and

so acts transitively on the Baer sublines of 4°. Hence any Baer subline of 4° is given by,

I} af+b
4 — ch+d
1 1

for some choice of a, b, ¢, d in GF(q?) such that ad—bc # 0, where the parameter 6 ranges
over GF(q) U {oo}. This Baer subline is projectively related to the Baer subline of bs2.1
given by

a 0 4

a l 1

b=

where §' € GF(q?) U {oo}. In Bruck-Bose, this Baer subline is given by,

—c 0 0 6’2 —c 0 0 a? ac c? 02
0 -1 O g = 0 -1 0 2ab ad -+ bc 2cd [0}
— 1 -1 1 - 1 -1 b2 bd d? 1

(See [52, Theorem 2.37]). Hence in Bruck-Bose, b is the image b"™* of the subconic b},
under a projectivity of £* and so b'* is a subconic of bp2 41 contained in a Baer subplane
of ¢*. Again this Baer subplane intersects ¥ in a unique point.

Hence every Baer subline of by2,; in Bruck-Bose is a subconic of b7, contained in some

Baer subplane of £*, and the Baer subplane necessarily intersects Y, in a unique point.

We have concentrated our attention on a specific Baer subline b2, of £, but any Baer
subline of £ is the image of b2, under an element of PGL(2, q*). Let b'q2 +1 7 bgzy1 be

a Baer subline of £ which does not contain the point P, then

' a 0 0 9
b = {H . . |6 € GF(¢°) U {0} }
o
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a 0
where H is some element of PGL(2,¢*). Then H' = H is an element of

o 1

PGL(2,q*) and in Bruck-Bose, by repeating the arguments used for bg2,; above, b;’; "

is a set of points of £* given by,

where H'* is an element of PGL(3,¢?) since b;’; 41 is a non-degenerate (Baer) conic in
¢*. Thus each Baer subline of b;z +1 in Bruck-Bose is projectively related to a subconic

of b;z +1» Which represents a Baer subline of by244.

We therefore have the following theorem valid for any Baer subline bg2.; of an affine line
¢ of PG(2,q*) whose Bruck-Bose representation in PG(4,¢%) is a non-degenerate (Baer)

conic b;z +1 in the plane £* which represents £.

Theorem 2.7.1 If byi1 is a Baer subline of b1, then in 4-dimensional Bruck-Bose
bgt1 s a subconic by, of the conic bz, such that b}, lies in a Baer subplane B of {*.

Moreover, B intersects Yo, in a unique point. O

Note that since the plane ¢* is isomorphic to PG(2,¢%), we can represent £* in
4-dimensional Bruck-Bose over GF(q), using £* N ¥ as the line at infinity of £*. Since
bayrisa non-degenerate conic in £* disjoint from the line at infinity of £*, in Bruck-Bose
b;z s1isa (q2+1)-cap. Moreover this cap contains the Bruck-Bose image of the subconics
of bZQ +1 Which each lie in non-affine Baer subplanes of £*. Since the subconics have no

point on the line at infinity of £* and by Section 2.3 we have,

Theorem 2.7.2 If b2y s a Baer subline of a line £ of PG(2,q*%) such that bpyy is
disjoint from the line at infinity of PG(2,q%), then in 8-dimensional Bruck-Bose over
GF(q), bgps1 is a (¢° + 1)-cap in the 4-space which represents £. Moreover, this

(¢2 + 1)-cap contains at least ¢* + q 4-dimensional normal rational curves. i

Note that a cap of the type of Theorem 2.7.2 is not a 3-dimensional ovoid. Since if the
cap is contained in a hyperplane ¥ of the 4-space of IIg which contains the cap, then %
and the hyperplane at infinity intersect in a plane. It then follows that the cap contains

points of Yo, a contradiction. Hence such a cap is not contained in any hyperplane of
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the 4-space which represents ¢ in Ilg ,. Furthermore, such a cap is disjoint from at least

one hyperplane of the 4—space in which it lies.
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Chapter 3

The Bruck and Bose representation

in PG(n,q), n > 4

In this chapter we consider the Bruck-Bose representation in projective space of dimen-
sion greater than 4. In other words we consider the Bruck-Bose representation defined

by spreads other than 1—spreads of PG(3, ).

3.1 Some properties concerning (h —1)—spreads of

PG(2h—-1,q)

In [50, page 206] a method for constructing spreads is given; a particular case of
which is the following. Note that by Theorem 1.9.1 a (2h — 1)—spread Sop—1,42 €x-
ists in PG(4h — 1,¢%) and since Sp;_1,42 has more elements than there are points in
PG(4h — 1,q), there exists an element of Sp,_1,42 Which is disjoint from PG(4h — 1,q);
therefore, it is possible to embed PG(2h — 1,¢?%) in the extension PG(4h — 1,¢*) of
PG(4h—1,q) in such a way that PG(2h—1, ¢*) does not contain a point of PG(4h—1, q).

Construction 3.1.1 A construction of a (2h — 1)—spread of PG(4h — 1,q) from
a (h — 1)—spread of PG(2h —1,¢%):

Consider a projective space PG(2h — 1,¢%), h > 1. By Theorem 1.9.1, there exists an
(h — 1)—spread &' of PG(2h — 1,¢%) and &’ contains ¢*" + 1 spread elements H{z—l,qz’
j =1,...,¢°" + 1, of dimension h — 1 over GF(¢?). Embed PG(2h — 1,¢*) in the
extension PG(4h — 1,¢%) of PG(4h — 1,q) so that PG(2h — 1,¢*) does not contain a
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point of PG(4h — 1,q). The (h — 1)—space H{l_l,qz and its conjugate ﬁi_l,qz generate a
(2h—1)—space th—l,q2 of PG(4h—1,¢*) and th—l,qz NPG(4h—1,q) is a (2h—1)—space
th—lﬂl of PG(4h —1,q). The ¢*" + 1 spaces th—l,q form a partition of PG(4h —1,q)
and we denote this (2h — 1)—spread of PG(4h —1,q) by S.

We now prove:

Theorem 3.1.1 In the Construction 3.1.1, if the (h — 1)—spread §' of PG(2h — 1, ¢?)
is regular, then the (2h — 1)—spread S of PG(4h — 1,q) is regular.

Proof: Let TI;_; ., I, 2 IT}_, » be three distinct elements of S'. Denote by

R' = R(IT}_, »,1T;_; 2,1}, ) the unique (h—1)—regulus of PG(2h—1, q?) containing

%
these three spread elements. Let 113, , T13, , ,, I13,_,; , be the three distinct elements
of S corresponding to H}l_L 2 Hi—qu’ Hi_l’ ;2 Tespectively in the given construction. Let
R = R(I},_, ,,113,_, ,, 113, ;) denote the unique (2h — 1)—regulus of PG(4h — 1,q)
containing 11}, _, ,, I13,_, , and 11, , ;. So R is a system of maximal (2h — 1)—spaces
of a Segre variety (1 251 in PG(4h—1,q). Over GF(¢?), R becomes a (2h — 1)—regulus
R of PG(4h — 1,¢?). Due to the above construction of the spread S we have for
j =123, Hfl_l, g2 is contained in th—1,q2 where th_l’qQ is the unique element of the
regulus R, which contains th—l,q' Thus the line transversals of R' in PG(2h — 1,¢?)

are line transversals of R, and therefore ' is a Segre subvariety (1n—1 of Rz and by

Theorem 1.8.10, the regulus R’ is precisely the intersection R, N PG(2h — 1, q?).

It now follows that for any (2h — 1)—space H%h_l’q in R, where th_l’q is distinct from
I3,y g 13,1, and TI3, , , the unique element th_l,qg of R, which contains 0%, 5.,
has the property th_l’ 20N PG(2h—1,q¢%) = H£-1,q2’ for some element, Hi_l,qQ of R'. By
the construction of § from &', if th—l,q (€ R) is an element of S, then H{l_l, 2 (ER)
is an element of S’. The converse of the preceding statement is true if Hi—Lq? (e R is
one of the ¢ + 1 elements of R’ associated to the elements of R via the construction of

the spread S. (Note that R’ has ¢° + 1 elements and R has g+ 1 elements).

If &' is a regular spread, then the regulus R’ defined by II;_, ,II;_; », 1T} _,  is con-
tained in &' and therefore, by the preceding argument, the regulus R of PG(4h — 1,q)

defined by I13,_,; ,, 113, _, ,, T13,_; , is contained in S. The result now follows. 0
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Consider a translation plane 7 of order ¢?* defined by a Bruck-Bose construction with a
(h — 1)—spread S’ of ¥, = PG(2h — 1,¢?). We now have a convenient correspondence
between this Bruck-Bose representation of 7 and a second Bruck-Bose representation of
7 defined by a (2h —1)—spread S of £, = PG(4h—1,q), where &’ and S are associated

by the above construction.

For Desarguesian planes of certain orders which have a Bruck-Bose representation, the
above Construction 3.1.1 and Theorem 3.1.1 provide us with a convenient method to
obtain a Bruck-Bose representation of the plane in a space of higher dimension and

lower order.

To illustrate this, we consider the Desarguesian plane PG(2,q*). The plane PG(2,q*)
has a 4-dimensional Bruck-Bose representation defined by a regular line spread &'

of PG(3,¢*) and an 8—dimensional Bruck-Bose representation defined by a regular

3—spread S of PG(7,q).

In the previous chapter we investigated the 4-dimensional Bruck-Bose representation of
the Baer substructures of Desarguesian planes of square order. We now determine prop-
erties concerning the 8-dimensional Bruck-Bose representation of the Baer substructures

of PG(2,q*) and some generalisations.

Theorem 3.1.2 A regular 3—spread S in PG(7,q) has a well-defined and unique set of

induced 1—spreads, one in each element of S.

Proof: By Theorem 1.9.5, the regular 3—spreads of PG(7, q) are projectively equivalent.
Therefore, we can assume that S is the regular 3—spread of PG(7,q) obtained from a
regular 1—spread S’ of PG(3,¢?) by the Construction 3.1.1 with & = 2. We repeat the

construction for this special case to establish notation.

Embed PG(7,q) in PG(7,q?) and let $3 ;2 be a 3—space over GF(¢?) in PG(7, ¢°) which
has no point in common with PG(7,q). Let S’ be a regular 1—spread of X3 ;2. Consider
the conjugate space X342 of X3 42. For each element H{,q2 inS,j=1,...,¢* +1, the
3—space H?,;’ ;> Spanned by H{,qg and its conjugate ﬁiqz intersects PG(7,q) in a 3—space
IT} ,. These ¢*+1 3—spaces T3 , form a 3—spread S of PG(7, q) which by Theorem 3.1.1

is regular.

Each element Hg,q of § is the intersection <H{,q2,ﬁ{’q2> N PG(7,q) for a unique line H{, 2

of &'. For j fixed, the join of each point P of H{,qz to its conjugate P yields a line of
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Hg,q and the collection of these g% + 1 lines constitutes a regular 1—spread S/ of Hg,q by

Bruck’s result (Theorem 1.9.6).

Hence each element Hg’q of the regular 3—spread S of PG(7, q) has a well defined induced

regular 1—spread which we denote by 8{. O

Consider the regular line spread &' of 3 2 = PG(3,¢*) and the regular 3—spread S of
PG(7,q) associated to S’ by the Construction 3.1.1. By the Bruck-Bose construction
of Section 1.10, these spreads correspond to a 4-dimensional Bruck-Bose representation
of PG(2,q*) and an 8-dimensional Bruck-Bose representation of PG(2, ¢*) respectively.

Denote these Bruck-Bose incidence structures by I, .2 and Ilg 4 respectively.

By Theorem 3.1.2 and its proof, there exists a well defined 1-1 correspondence between

the points of X3 42 and the (line) elements of the induced 1—spreads {Si} of PG(7, q).

Definition 3.1.3 For S a regular 3—spread of PG(7,q), the (line) elements of the ¢*+1
induced reqular 1—spreads {8} shall be called partition lines. That is, for each 3—space
¥, €8, aline £ of &; is a partition line if £ € 8{, otherwise £ is a non-partition
line. The remaining lines of PG(7,q) are those not contained in any element of S; these

shall be called transversal lines.

In Section 2.2, we discussed the representation in 4-dimensional Bruck-Bose of affine
Baer subplanes and affine Baer sublines of Desarguesian planes of square order. By
Corollary 2.2.2 an affine Baer subplane B of PG(2, ¢*) is represented in II, ;2 by a plane
not contained in ¥, = Y3 2 and which meets Y in a line £ which is not an element of
S'. Consider such a line £ in X3 4. The line £ and its conjugate ¢ generate a 3—space
(£, %) of PG(7,q?) and the intersection (¢, £)NPG(7,q) is a 3—space &, of PG(7, q). Since
¢ is incident with exactly ¢ + 1 1—spread elements in 3 2, the 3—space %, intersects
exactly ¢? + 1 of the 3—spaces in the spread S of PG(7, q), meeting each in a partition

line. So in particular X, is disjoint from the remaining spread elements in S.

Consider the 8—dimensional Bruck-Bose representation, Il 4, of PG(2,¢*) defined by
the regular 3—spread S of PG(7,q). Consider a 4—dimensional subspace B* of Ilg,
which intersects PG(7,q) in the 3—space ¥;. Any 4—space [* in Ilg 4, not contained in
PG(7,q), and which intersects PG(7, ¢) in a unique element of S, either intersects B* in
a unique affine point, or the spread element contained in [* is one of the ¢% + 1 incident

with B*. It follows by Theorem 1.2.2, that B* represents an affine Baer subplane of
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PG(2,q%), since B* and the ¢®> + 1 3—spread elements incident with B* constitute a
(¢* + ¢ + 1)—blocking set in PG(2,¢*).
By considering all lines £ in X3 ,» which are not elements of the 1—spread S’ and repeating

the above procedure, we obtain the 8—dimensional Bruck-Bose representation of all

¢*(q® + ¢® + ¢* + ¢°) affine Baer subplanes of PG(2,¢").

Intrinsic to this representation is the existence of ¢+ ¢® + ¢* + ¢> 3—spaces of PG(7, q)
which intersect precisely g® + 1 elements of the regular 3—spread S of PG(7, q) and such
that the intersection in each case is a unique partition line, namely an element of the

induced 1—spread of that 3—space.

Theorem 3.1.4 Let S be a regular 3—spread of PG(7,q). For each 3—space ¥ of
PG(7,q) one of the following holds:

(1) ¥ is an element of S and therefore ¥ = X; has a induced reqular 1—spread S!. By

definition ¥ contains exactly ¢> + 1 partition lines.

There are ¢* +1 3—spaces ¥ of this type in PG(7,q).

(2) X intersects ezactly ¢°> + 1 elements of S, meeting each in a partition line. This
set of ¢* + 1 partition lines constitutes a regular 1—spread of ¥ which we shall call

a partition 1—spread.

Any two partition lines, contained in distinct elements of S, span such a 3—space.

There are ¢8 + ¢° + ¢* + q*> 3—spaces & of this type in PG(7,q).
(8) T intersects x elements of S where x > ¢* + 1. In this case either:

(i) z = ¢® + 1 and T intersects one element of S in a plane (which necessarily
contains a partition line) and ¥ intersects a further ¢* elements of S, meeting
each in a point,
or,

(i) & intersects y elements of S in a line and ¥ intersects a further
t—y = (+¢+q+1)—ylg+1) > 0 elements of S meeting each in a
point.

In this case ¥ contains at most one partition line.
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If 11y, Iy, I3 are three distinct elements of S which each intersects X in a line,
then ¥ has a non-trivial intersection with each element of S in the 3—regulus

R(I1y, 115, II3); indeed X intersects each such element of S in a line.

Proof:

By Theorem 3.1.2 the ¢* + 1 elements of S constitute the 3—spaces of PG(7, q) of type
(1).

By the remarks preceding Theorem 3.1.4 there exist ¢® + ¢® + ¢* + ¢° 3—spaces of
PG(7,q) which each intersect ¢>+ 1 distinct elements of S and which contain a partition
1—spread. We shall call these 3—spaces partition 3—spaces of PG(7,q). We must
show that these are the only 3—spaces of PG(7,q) which intersect exactly ¢®+ 1 distinct

elements of S.

ITg,, is the 8—dimensional Bruck-Bose representation of PG(2,q%). The line at infinity £,
is the line with “points” the elements of S in PG(7,¢). As usual, the Baer subplanes of
PG(2,q*) which are secant to £, are called affine Baer subplanes. There exist precisely

¢*(¢® + ¢ + ¢* + ¢?) affine Baer subplanes of PG(2,¢").

Consider a 4—space B* in PG(8,q) not contained in PG(7,q) and which intersects
PG(7,q) in a 3—space ¥ where ¥ intersects exactly q*> + 1 elements of S. Necessarily,
¥ intersects each of these ¢ + 1 elements of S in a line. By the incidence in Ilg,, B*
intersects £, in exactly g2 + 1 points. Each 4—space £ of PG(8,¢q) which represents a
line of PG(2,q*) distinct from £, is not contained in PG(7,q) and meets PG(7,q) in
an element of S. Such a 4—space £ either intersects B* in a point of PG(8,¢)\PG(7,q)
or the element of S incident with £ is one of the ¢®> + 1 3—spread elements incident
with B*. It follows that B* represents a (g* + ¢ + 1)—blocking set B in PG(2,¢*). By
Theorem 1.2.2, B is an affine Baer subplane of PG(2, ¢*).

Therefore any 4—space of PG(8, q), not contained in PG(7, ¢) and which meets PG(7, q)
in a partition 3—space represents an affine Baer subplane of PG(2,q*). There are
¢*(¢® + ¢® + ¢* + ¢?) such 4—spaces of PG(8,q). Since this is also the number of affine
Baer subplanes of PG(2,q%), there exist no further 3—spaces of PG(7,q) (besides the

partition 3—spaces) which intersect exactly ¢ + 1 elements of S.

Let X be a 3—space of PG(7,q) spanned by partition lines ¢; and £, where £; and £,

lie in distinct elements of S. In the quadratic extension, the lines ¢; and ¢, intersect

113



Y3, in distinct points L; and L, respectively. The 3—space (over GF(¢*)) spanned by
the line L1L, and its conjugate L; L, is the quadratic extension L, of . By joining
cach point P on L;L, to its conjugate P on L;L, we obtain a set of ¢2 + 1 lines of
which by Bruck’s Theorem 1.9.6 constitutes a regular 1—-spread of X. The elements of
this 1—spread are all partition lines and hence by definition, this regular 1—spread is a
partition spread. Thus ¥ is a partition 3—space. We have that two partition lines from

distinct elements of S span a partition 3—space.

The 3—spaces of PG(7,q) of type (1) and (2) have now been classified. The type (3)
3—spaces include all possible exceptions. It remains to prove the final remark regarding

a 3—space of type (3)(ii).

Consider a 3—space ¥ of PG(7,q) which intersects strictly greater than ¢ + 1 elements
of S but which meets no element of S in a plane. Suppose X intersects the 3—spread
elements II;, IIy, II3 each in a line £y, €5, £3 respectively. The lines ¢;, {5, ¢3 define a unique
1—regulus Ry = R(fy,0s,03) in . The 3—spread elements II;, Il IT3 define a unique
3—regulus R3 = R(Ily,II,,II3) which is contained in S since S is regular. The line
transversals of R; are contained in ¥ and are necessarily transversals of the regulus Rj.
Hence each spread element in R3 intersects X in a line, namely a maximal space of the

Segre variety R;. a

Corollary 3.1.5 Let Ilg, denote the Bruck-Bose representation of PG(2,¢*) in
PG(8,q) and let $o, denote the hyperplane at infinity of PG(8,q).

B is an affine Baer subplane of PG(2,q%) if and only if in gy B is a 4—space not

contained in ¥o and which intersects Yo tn a partition 3—space.

by is a Baer subline of PG(2,q") that contains a point of L if and only if in Ilggq by is

a plane not contained in Yo and which intersects Yo, in a partition line.

Proof: The affine Baer subplane structure in ITg , was determined in the proof of Theo-
rem 3.1.4. A line ¢, distinct from £, of an affine Baer subplane B of PG(2, ¢*) intersects

B in a Baer subline b, that contains a point of /.

In Ilg 4, £ is a 4—space which intersects X, in an element %; of the 3—spread Sand Bisa
4—space which intersects X, in a partition 3—space ¥. The 3—spaces X; and X intersect
in a partition line, hence in Ilg 4, the intersection £ N B is a plane, not contained in ¥e

and which contains a partition line. This plane is then the Bruck-Bose representation of
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the Baer subline b,. J

Before considering the representation in g , of the non-affine Baer subplanes of PG(2, ¢*)
and the Baer sublines b, of PG(2, ¢*) which contain no point of £, we need to present
some extra material. In the next section we recall the Bose representation of a plane

PG(2,¢%) in the projective space PG(5,q) which was introduced in [18].

We conclude this section with a generalisation of the results determined for PG(2,¢*)

thus far.

Theorem 3.1.6 Consider the Desarguesian plane PG(2,¢%") (n > 1) and the n Bruck-

Bose representations Ilyis = Iy, 2 (1 < ¢ < n) which are determined by a

reqular 1—spread in PG(3,¢ "),
reqular 3—spread in PG(7,¢°"),

Tegular (2"' — 1)—sp1"ead in PG(2i+1 _ 1’ qzn—i),

regular (2" — 1)—spread in PG(2"! —1,q) respectively.

Then the regular (2 —1)—spread in the hyperplane PG(2T —1, @) at infinity of My
has a set of induced reqular (20~ —1)—spreads, one in each element of the (2'—1)—spread.
Furthermore, for each such induced regular (2:=1—1)—spread, there exists a set of induced

regular (21-2 — 1)—spreads, and so on, until finally there exist induced regular 1—spreads.

Proof Let S; be regular 1—spread of PG(3,¢2" ") and embed PG(3,¢*""") as a subspace
in PG(7,¢*""") in such a way that it is skew to PG(7,¢*"""). By Theorem 3.1.1 and the
Construction 3.1.1, S; determines a regular 3—spread S of PG(7,¢%""") which has a
set of induced regular 1—spreads, one in each element of Sz, by Theorem 3.1.2. Embed
PG(7,¢7"") as a subspace in PG(15, ¢ ") in such a way that PG(7,¢*" ") is skew to
the Baer subspace PG(15,¢%" ") of PG(15,¢*" ") and recursively repeat the above pro-
cedure using Construction 3.1.1. At the final stage we obtain a regular (2" — 1)—spread
in PG(2"*! — 1,q) which contains the nested induced regular spreads of each stage.
If we stop the procedure before the final stage we have a regular (2¢ — 1)—spread in

PG(21 —1,¢2""") with the nested induced regular spreads obtained up until that stage.
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By Theorem 1.9.5, regular (2 — 1)—spreads in PG(21*1 — 1, ¢*"™") are projectively equiv-
alent, and so the regular spread we have constructed, which contains nested induced

spreads, is representative. O

Corollary 3.1.7 For each 1 < i < n, embed PG(2+1 — 1,¢"™") = £2"'~1 4s a hyper-
plane in PG(27,¢2" ") and let Tyiv1 denote the Bruck-Bose representation of PG(2,¢%")
in PG(21+1,¢**™") determined by the regular (2¢ — 1)—spread Sy_y of 21 45 in The-

orem 3.1.6.

Then B is an affine Baer subplane of PG(2,¢*") if and only if in lyi+1, B is a (2*)—space
B* of PG(2*,¢%" ") not contained in %"~ and which intersects 2" ! in ezactly

¢ +1 elements of Spi_;.

Furthermore, each element A € Syi_, is either disjoint to B* or intersects B* in a unique
element (a (2~ —1)—space of order ™) of the induced regular (2~'—1)—spread S2 ™'~
in A. O

Note that the Bruck-Bose representation B* of an affine Baer subplane B of PG(2,¢*")
is determined in Corollary 3.1.7, regardless of which of the n possible Bruck-Bose repre-
sentations of PG(2,¢%") is being considered. Moreover, implicit to Theorem 3.1.6 and its
Corollary 3.1.7 is the Bruck-Bose representation of subplanes of order ¢*"~ of PG(2,¢*")
which contain the line at infinity as a line. Due to the existence of the induced spreads
determined in Theorem 3.1.6, in a Bruck-Bose representation Ilsi+: of a Desarguesian
plane PG(2,¢?") we have the Bruck-Bose representations of the subplanes, which contain

the line at infinity as a line, nested in Ilyi+1 as linear subspaces.

Finally, let £ be a subline of order ¢**~ (1 < j < n) of a line L of PG(2,¢%") such that
¢ contains a unique point on the line at infinity. It follows from the above discussion
that the representation of £ in any Bruck-Bose representation Ily+i of PG(2,¢*") is

determined.

Corollary 3.1.8 Let £ be a subline of order ¢**~ (1 < j <n) of a line L of PG(2,¢%")
such that £ contains a unique point on the line at infinity Lo, of PG(2,¢%"). Let Tz
(1 < i < n) denote the Bruck-Bose representation of PG(2,¢*") defined by a regular
(2¢ — 1)—spread of PG(2+! — 1,¢%"7").

Then the subline £ is represented by a (219)—subspace £* of the (2')—space L*, which rep-
resents L, in Iy+1. Moreover, £* intersects the hyperplane at infinity PG(2i+! —1,¢*")
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in ezactly a unique induced spread element of dimension 2°=7 —1 and order "7, O

In this way we obtain the Bruck-Bose representations of any (not just a Baer) subplane
of PG(2,¢%") which contains the line at infinity as a line and any (not just a Baer)
subline of a line of PG(2,¢*") such that the subline contains a unique point on the line

at infinity.

3.2 The Bose representation of PG(2,q?%) in PG(5,q)

The results of this section are well known and form part of the folklore of finite projective
geometry. References are given where possible; however, it has been difficult to locate
references for some of the well known results which are presented here. In order to
provide a complete discussion of the Bose representation, we deemed it appropriate to

prove these results.

In [18], Bose calls a 1—spread of PG(5,q) a spread (of lines), and we shall also in this
section; that is, a spread of lines of PG(5, g) is a set of lines in PG(5, q) such that each
point of PG(5, q) is contained in one and only one line of the set. We shall also define a
dual spread of 3—spaces in PG(5, q) to be a set of 3—spaces such that each 4—space of
PG(5, q) contains one and only one 3—space of the set. Note that a spread in PG (5, g) is
equivalent to a dual spread in the dual space of PG(5, ¢). Hence, the number of elements
in a spread or dual spread of PG(5, q) equals

¢ -1

o b ¢+ +1

The Bose representation of PG(2,¢%) in PG(5,q) relies on the existence of a spread S
of PG(5,q) of the following type.

Definition 3.2.1 A spread S (of lines) of PG(5,q) is a Bose spread if for any two
distinct elements £y, %y of S, the 3—space spanned by ¢, and £y contains ezactly ¢* + 1

elements of S.

For a Bose spread S in PG(5,q), denote by Hs the collection of 3—spaces

{231,22 = <£17£2> l bl €8, b # 22}
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Note that there are precisely ¢* +¢?+1 3—spaces in the set H3 for a given Bose spread
S of PG(5,q).

Given a Bose spread S in PG(5, q), let m;2(S) be the incidence structure with: points the

elements of S; lines the 3—space elements of ‘Hs and incidence given by containment.

Theorem 3.2.2 [18] The incidence structure mp2(S), where S is a Bose spread of
PG(5,q), is a projective plane of order ¢*.

Proof: Two distinct points of m,2(S) correspond to two distinct elements ¢; and £ of
S. The lines ¢;, ¢, span a unique 3—space of PG(5,q), which contains ¢* — 1 further
elements of S since S is a Bose spread. Hence two points of 7,2(S) are contained in a

unique line of 72 (S).

Two lines of m2(S) correspond to two elements of #3 which we shall denote by ¥, and
¥,. Suppose the 3—spaces &, ¥y intersect in a plane o of PG(5,q). Each of ¥; and
Y, contains a subspread of S, denote these subspreads by S; and S, respectively. The
plane o necessarily contains an element of S; (and S, respectively). Since two lines in o
intersect, and the spreads S, S; C S, it follows that o contains an element £ of S and £
is an element of both S; and S,. The plane ¢ is incident with the remaining ¢ elements
of S;, meeting each such element in a point. Similarly o is incident with the remaining
¢> elements of S;\{£}, meeting each such element in a point. Thus each point of o\ {£}
is incident with an element of S; and an element of S,. Since S is a spread of PG(5, q),
we have a contradiction. Thus two distinct 3—spaces in Hj intersect exactly in a line
which is necessarily an element of S. Therefore two distinct lines of 7,2(S) intersect in

a unique point.

Since mp(S) has ¢* + ¢* + 1 points, it follows that 7,2(S) is a projective plane of order
q>. O

Corollary 3.2.3 If S is a Bose spread of PG(5,q) then the associated collection of
3—spaces Hs is a dual spread of PG(5,q).

Proof: In the proof of Theorem 3.2.2 we showed that two distinct elements of Hs
intersect in a line, a line which is an element of S. Therefore no hyperplane of PG(5, q)

contains two elements of H3. Since there are ¢* + ¢> +1 3—spaces in the set H3, and
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since each 3—space of PG(5, q) is contained in ¢ + 1 distinct hyperplanes of PG(5, g), it
follows that each hyperplane of PG(5,¢) contains a unique element of H3. a

We now prove a result of Thas which states that a projective plane defined by a Bose

spread of PG(5,q), in the manner defined above, is necessarily Desarguesian.

Theorem 3.2.4 [87] The projective plane mp2(S), defined above for a Bose spread S of
PG(5,q), is Desarguesian.

Proof: Let S be a Bose spread of PG(5, q) and let m;2(S) be the incidence structure de-
fined as above, which by Theorem 3.2.2 is a projective plane of order ¢°>. Embed PG(5, q)
as a hyperplane in PG(6, q). Let X3 ;2 be the incidence structure with: points the points
of PG(6,q)\PG(5,q); lines the planes of PG(6,¢) not contained in PG(5, q) and which

intersect PG(5,q) in a unique element of S and incidence given by containment.

It can be shown that X; ;2 is an affine 3—space and the plane 7,2(S) is then the plane
at infinity of ¥3 2. Any projective plane embedded in an affine projective 3—space is

Desarguesian, hence m,2(S) is Desarguesian as required.

This configuration also provides additional information about the Bose spread S. Let
§3,q2 be the projective completion of 33 ;2. Then the planes of 33 g2 distinct from 7,2(S)
are given by the 4—spaces of PG(6,q) not contained in PG(5,q) and which intersect
PG(5,q) in an element of Hs. Each such 4—space is therefore a Bruck-Bose representa-
tion of a Desarguesian projective plane of order ¢® with hyperplane at infinity an element
of Hs. It follows that for each 3—space in H3, the ¢ + 1 elements of S contained in this

3—space constitute a regular spread of the space (see Section 1.10 and Theorem 1.10.1.3).

O

Corollary 3.2.5 If S is a Bose spread of PG(5,q) and if Hs is the following collection
of 3—spaces of PG(5,q)

{251!2 = <£1’£2> | Ela£2 € S’ El # £2}a

then for every element Ly, 4, of H3 the subset of q® +1 elements of S contained in Ty, p,

constitutes a reqular 1— spread of ¥y, 4,. a

In summary, if S is Bose spread of PG(5, q), then by definition any pair of elements of S
spans a 3—space containing ¢>+ 1 elements of S. If a 3—space of PG(5, ) contains ¢*+1
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elements of S, then these spread elements necessarily constitute a regular 1—spread of
the 3—space. The collection of such 3—spaces is a dual spread H; of PG(5,q) and the
Desarguesian plane PG(2, ¢?) is isomorphic to the incidence structure with: points the
elements of S; lines the elements of H;3 and incidence given by containment. We call

such a representation of PG(2,¢?) in PG(5,q) a Bose representation of PG(2, ¢?).

Lemma 3.2.6 [18] For S a Bose spread in PG(5,q): Each line m of PG(5,q) is either
(I) an element of S, or (II) m is a transversal to a regulus of lines in S and m is
contained in the unique element of Hz spanned by this requlus.

Each plane_of PG(5,q) is either: (I) contained in an element of Hs and contains ezactly
one element of S, or (II) contained in no element of Hz and is incident with P?+qg+1

distinct elements of S.

Proof Let m be a line of PG(5, q) which is not an element of S. Since S is a spread of
PG(5,q), the line m is incident with exactly ¢+ 1 elements of S. Any two elements of
incident with m span a 3—space ¥ € H3 which contains exactly g*> — 1 further elements
of S. Since m is contained in ¥ it follows that each of the elements of S incident with m
is contained in ¥. By Corollary 3.2.5, the elements of S in ¥ form a regular 1—spread

and therefore m is a transversal to a regulus of elements of S.

Each element £ of S is contained in ¢® + ¢*> + ¢+ 1 planes of PG(5, ¢) and each such plane
is spanned by £ and a point on a distinct element of S. Therefore, by Corollary 3.2.5,
such a plane is contained in a unique element of Hs. Moreover, in an element of H3 the
¢ + 1 elements of S constitute a 1—spread, therefore any plane contained in an element
of 5 necessarily contains an element of S. There are (¢* + ¢ + 1)(¢®* + ¢* + ¢ + 1)
planes of PG(5,q) of this type and the remaining planes of PG(5,q) therefore contain

no element of S.

Let ¢ be a plane in PG(5, q) which contains no element of S; o is therefore not contained
in any element of H3. As S is a spread, each point of ¢ is incident with an element of
S and since o contains no line which is an element of S, ¢ is incident with ¢ + ¢+ 1
distinct elements of S. Each line in o is a line of type (II) which is therefore contained
in an element of H;. Since o is not contained in any element of M3, o is incident with

q*> + q + 1 elements of H3, meeting each in a line. m|

Theorem 3.2.7 If S is a Bose spread of PG(5,q) and m,;2(S) is the Bose representation
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of PG(2,¢%) defined by S, then B is a Baer subplane of PG(2,q?) if and only if in the
Bose representation, B is a 2—regulus (or Segre variety p1.») whose ¢*+¢+1 transversal

lines are elements of S.

Proof Let o be a plane in PG(5, q) of type (II) in the sense of Lemma 3.2.6. Let B be
the set containing the ¢>+ ¢+ 1 elements of S incident with o and the ¢°+¢+1 elements
of Hs which each intersect ¢ in a (distinct) line. Since o is a projective plane of order g,
two elements £, ¢ of S in B define a line of type (II) in o which is contained in a unique
element of Hs in B and which contains ¢; and ¢5. Conversely, two elements of Hgz in B
intersect in a unique element of S in B. Therefore B is a Baer subplane of PG(2,¢%)
in the Bose representation of PG(2,¢?) in PG(5,q) determined by S. Counting shows
there exists ¢3(¢® + 1)(¢? + 1)(¢ + 1) planes o of type (II) in PG(5,¢) and from above,
each such plane corresponds to a Baer subplane of PG(2,¢?%). Since PG(2,q?) contains
¢*(¢*> — ¢+ 1)(¢? + 1)(¢ + 1) distinct Baer subplanes, there exists a set B, as above, of
¢*>+q+1 elements of S which contains at least 3 planes of type (II). These planes must be
pairwise disjoint, otherwise two intersecting planes of type (II) span at most a 4—space of
PG(5, ) which would necessarily contain more than one element of #3; a contradiction.
By Theorem 1.9.2, B is then a 2—regulus in PG(5,q). We continue in this way until
all planes of type (II) have been considered. Each plane of type (II) therefore defines
a 2—regulus of planes of type (II) in PG(5,q) with transversals all elements of S; each
such 2—regulus corresponds to a Baer subplane of PG(2,¢*) in the Bose representation

and every Baer subplane of PG(2, ¢?) in the Bose representation is obtained in this way.

O

We now prove the existence of Bose spreads in PG(5, q).

Lemma 3.2.8 It is possible to embed Il o = PG(2,¢%) in PG(5,¢?) in such a way that
1Ty, = PG(2,¢%) is disjoint from PG(5,q), the real Baer 5—space of PG(5,q%).

Proof By Sved’s result 1.3.1 a hyperplane of PG(5,¢*) intersects PG(5,¢) in either a
4—space or a 3—space of PG(5, q). Each subspace S,, of PG(5, ¢) of dimension n extends
uniquely to an n—space S, 2 over GF(¢?), since a basis for S, as a vector space over
GF(q) is a basis for S, 42 as a vector space over GF(g®). Furthermore, there are more
hyperplanes in PG(5,¢%) than in PG(5,q). It follows that there exist hyperplanes of
PG(5, ¢?) which intersect PG(5,q) in a 3—space of PG(5,q).
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Let ¥4, be a hyperplane of PG(5,¢?) such that the intersection ¥4, N PG(5,q) is a
3—space; denote this 3—space by 3. In X4, the 3—space X3 extends uniquely to a
3—space X3 2 over GF(q®). Let £ be a line of ¥3 ;» which is skew to X3. Let m be a
line of £, 42\YX3 ;2 which intersects 3342 in a unique point of £. Note that m is therefore
disjoint from PG(5, g). The plane spanned by £ and m is disjoint from ¥3 and is therefore
disjoint from PG(5,q). O

By Lemma 3.2.8 we can embed Il 2 = PG(2,¢?) in PG(5,¢%) in such a way that IT, p
is disjoint from the Baer 5—space PG(5,q) of PG(5,¢%) and therefore no point of Il ;2
is fixed by the Frobenius automorphism. The conjugate plane ﬁg’qz is then disjoint from

I1,,2 and disjoint from PG(5,q).

The join of each point P in I, ;2 to its conjugate point P, with respect to the extension
GF(¢?) of GF(q), is a line PP which intersects PG(5,q) in a Baer subline of PP. In
this way we obtain a set S of ¢* + ¢% + 1 lines of PG(5, ), one through each point P of

T, > and its conjugate P in IIp 4.

Let ¢, and /5 be two distinct lines of S in PG(5,q). If ¢; and #; intersect, then since
the plane spanned by ¢; and ¢, contains a line in II; » and a line in ﬁzyqz, the planes
IT; ;2 and ﬁz,qz intersect in a point; a contradiction. The lines of S are therefore pairwise

disjoint and since S contains ¢* + ¢* + 1 elements we have that S is a spread of lines in

PG(5,q).

It remains to prove that S is a Bose spread, that is, to prove that every 3—space of

PG(5, q) spanned by two distinct elements of S contains exactly q*> + 1 elements of S.

For each point P; of Iy ;2 denote by #; the line in S incident with P;. Let £; and £; be
distinct elements of S in PG(5,q). The 3—space X3 of PG(5,q) spanned by ¢; and ¢;
extends uniquely to a 3—space 3 2 over GF(¢*). The lines P,P; of Il ;. and P,P; of
ﬁg’qZ are contained in Y3 ;2 and the regular spread of X3 determined by P;P; and TPJ
consists of elements of S (see Theorem 1.9.6). Hence X3 = (¢;, ;) contains exactly ¢>+1

elements of S. We have therefore shown,

Lemma 3.2.9 IfIl, 2 = PG(2,¢%) is embedded in PG(5,¢*) in such a way that Iy z
is disjoint from the Baer 5—space PG(5,q) of PG(5,¢?%), then if each point P of Iy p2 is
joined to its conjugate point P with respect to the extension GF(q?) of GF(q) we obtain
a collection S of ¢* + ¢*> + 1 lines of PG(5,q).

122



The set S of lines of PG(5, q) so constructed is a Bose spread of PG(5, q) which we shall

call a canonical Bose spread. O

By this construction of a Bose spread S, the isomorphism between II, » = PG(2,¢?)
and the incidence structure 7,2 (S), determined in Theorem 3.2.4, arises in a very natural
way. Furthermore, for the Bose representation of PG(2,¢?) defined by this construction
of a Bose spread of PG(5, q), the representation of the Baer subplanes of PG(2, ¢*) also
arises in a natural way and is determined in the following theorem; a special case of [50,

Lemma 25.6.8].

Theorem 3.2.10 [50, Lemma 25.6.8] Let PG(5,q*) be an extension of the projective
space PG(5,q). In PG(5,¢%), let Ilo, be a 2—space over GF(q) skew to PG(5,q). If
P ¢ Iy, and if P is the conjugate point of P with respect to the extension GF(q*) of
GF(q), then the intersection of a line PP and the space PG(5,q) is a line £ of PG(5,q).

These lines £ form a system of mazimal spaces of a Segre variety pi.o of PG(5,q).

Finally we show that all Bose spreads of PG(5,q) are equivalent to a Bose spread con-

structed as in Lemma 3.2.9.

Theorem 3.2.11 If S is a Bose spread of PG(5,q), then S is a canonical Bose spread
of PG(5,q).

Proof Let S be a Bose spread of PG(5,¢) and let m;2(S) be the Bose representation of
PG(2,¢%) in PG(5,q) defined by S. Embed PG(5,q) as a Baer subspace in PG(5,¢?).
By Theorem 3.2.7 each Baer subplane of 7,2(S) is a 2—regulus in PG(5,q) with the
property that the transversals of the 2—regulus are all elements of S. By Theorem 1.9.5,
the 2—reguli in PG(5,q) are projectively equivalent. Choose a Baer subplane B in
7,2(S) and let pi;» be the corresponding 2—regulus in PG(5,q). The 2—regulus py;2 in
PG (5, q) extends uniquely to a 2—regulus in PG(5, ¢*) which we shall denote by pg2)1;s.
The ¢ + q + 1 transversals of pi5 in PG(5,q) are therefore all elements of S and are

transversals of p(2)1.2 when considered as lines over GF(¢?).

The Baer sublines of B are represented by the reguli of elements of S contained in p,o.
Over GF(q?), these reguli have transversals, one in each axis plane of p2);.. Each
element ¢; of S not in B is contained in a unique element ¥; of H3 such that ¥; is an

element (a line) of B. In %;, the line ¢; is disjoint from the regulus of elements of S
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which are the points of B in ;. Therefore, over GF(q?), ¢; intersects this regulus, which
is a 3—dimensional hyperbolic quadric, in two conjugate points P; and P;, where P; and
P; lie in distinct and conjugate axis planes of p(g2)1;2. Note that P; and P; are the only
points of £; incident with the 2—regulus p(42)1,2, since otherwise £; would be a transversal
line of p(g2y1;2 and would then either be a point of B or be disjoint to PG (5, ¢); in each

case we have a contradiction.

Each of the ¢? + ¢ + 1 elements of H3 in B contain a regular spread of elements of S
and each such regular spread is defined by a line (and its conjugate line) over GF(q?)
which is contained in an axis plane (and the conjugate axis plane respectively) of p(2)1.2;
denote these lines by mq,mg,... ,mp 441 and the corresponding conjugate lines by
1, Mg, - .. ,Mg24q+1. Note that every element £; in S is incident with at least one line
my; if £; € B, then ¢; as a line over GF(¢?) is incident with ¢+1 lines m; and if £; € S\B,

then /; is incident with a unique line m;.

Since there are (¢ — ¢)/2 pairs of conjugate axis planes of p(p);2 which are disjoint from
PG(5,q), at least one of these axis planes contains two of the lines m;; denote this plane
by Iy 2 and suppose m; and my are contained in Il 2. Consider four distinct points
of I ,2, two incident with my, two incident with m, and such that the four points form
a quadrangle in Il 2. The elements of S incident with these four points correspond
to a quadrangle of points in m,2(S) which therefore defines a unique Baer subplane B’
of m,2(S). By Theorem 3.2.7, B’ corresponds to a 2—regulus p of elements of S. Over
GF(q?) the 2—regulus p extends uniquely to a 2—regulus p, and since II, ;2 intersects
pg in four distinct points, no three collinear, the plane Il ;2 is an axis plane of pp.
Therefore every element of S which is a point of B’ is incident with II, ;2 and incident
with the conjugate plane ﬁg,qz. By considering all choices of a quadrangle of points
incident with the lines m; and my in II, 2 and since every point of Il s lies in at least
one Baer subplane of Il 2 which contains the lines m; and my, we obtain that every

element of S is incident with II, . and incident with the conjugate plane T_I2,qz.

Hence every element of the spread S of PG(5, q) is obtained by joining a point P of I,
to its conjugate P, where Il, . is a plane of PG(5, ¢®) skew to PG(5,q). The spread S
is therefore a canonical Bose spread of PG(5,q). |

The original method of Bose in [18] was to obtain a coordinate representation of PG(2, ¢%)

in PG(5,q). Since we shall require this coordinate representation for some later calcula-
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tions, we briefly present this work of Bose.

Let o be a primitive root of GF(q?). Then « satisfies an equation

o® = a+y

where 22 —  — « is irreducible over GF(q).

Any point of PG(2,¢%) has coordinates (z,y,z) # (0,0,0), z,y,2 € GF(q*) where
(z,v,2) and (pz, py, pz), p € GF(¢*)\{0}, represent the same point in homogeneous

coordinates.
Since {1,a} is a basis for GF(¢*) as a vector space over GF(q) we can write
T =T+ azy, Y=Y+ ay, 2= 2+ az for a unique choice of x;,y;, z; € GF(q).

We let the coordinates (z,y,2) in PG(2,¢%) correspond to the coordi-
nates (%o, T1, Yo, Y1, 20, 21) in PG(5,q). Note that (xo,21,Y0,¥1,20,21) and
(rZo, TT1,TY0, TY1,T20,721), T € GF(q)\{0}, represent the same point in PG(5,q),
and they correspond to the points (z,y, z), (rz,ry,rz) respectively; the same point of

PG(2,¢%).

Consider three distinct elements a,b,c € GF(¢?)\{0}. As GF(¢?) is a 2—dimensional
vector space over GF(q), the three elements a, b, c are linearly dependent over GF(g).

Therefore there exist A1, A2, A3 € GF(q) not all zero and such that
/\1a + )\zb + /\3C = 0. (31)

If a = ag + aay, b= by +aby, ¢ =cy+ acy, where a;, b;,¢; € GF(q), then from (3.1) we
have,
)\10,0 + >\2b0 + )\300 =90
and M\a; +Xbi+X3c; = 0 (3.2)
Consider the triplets (az, ay, az), (bz,by,bz), (cz, cy, cz) which represent the same point
(z,vy, 2) of PG(2,¢%). Since for example,
(ao + aa1)(xo + azy) = aoy + yarz1 + afai Ty + apy + a171),

the triplets correspond to the sextuplets,

(aozo + ya121, a120 + apT1 + @11, GoYo + YA1Y1, A1Y0 + GoY1 + A1Y1, G020 + VG121, G120 + Go21 + A121)
(boxo + Yb1z1, brzo + box1 + b1z1, boyo + Yb1y1, biyo + boyr + biy1, bozo + ¥b121,b120 + boz1 + bi21)

(cozo + Ye121, 10 + CoZ1 + €11, CoYo + YC1Y1, C1Yo + CoY1 + C1Y1, CoZo + YC121,C120 + Co21 + C121)
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respectively.

By (3.2), these sextuplets are linearly dependent over GF(q) and are therefore the coor-
dinates of three collinear points in PG(5, q) whenever a, b, ¢ are from distinct cosets of
GF(q)\{0} in the multiplicative group GF(¢g*)\{0}. Therefore as p varies over the ¢* —1
non-zero elements of GF'(¢q?) the sextuplets corresponding to (pz, py, pz) represent g+ 1
collinear points of PG(5,q).

In this way, the ¢* + ¢ + 1 points of PG(2,¢%) can be made to correspond to a set of
q* + ¢* + 1 lines Sg of PG(5,q), each point corresponding to one line.

Theorem 3.2.12 [18, Theorem1.1, Theorem 2.2] Sg is a spread (of lines) of PG(5,q).
Moreover, for each pair of distinct elements £1,£, of Sp the 3—space determined by £,

and ¥y contains eractly q*> + 1 elements of Sp; that is, Sg is a Bose spread of PG(5,q).

We call the Bose spread Sp the coordinate Bose spread of PG(5,q). O

In this coordinate setting, Bose proved the representation of Baer subplanes of PG(2, ¢?)
in PG(5, q) as given in Theorem 3.2.7. For example, consider the Baer subplane PG(2, q)
of PG(2,4¢%), and let p; = rio+aryt, i =1,2,...,¢+1 be ¢+ 1 elements of GF(¢?), one
from each coset of GF(q)\{0} in the multiplicative group GF'(¢?)\{0}. We may choose
p1 = 1, the identity. Then each point (z,y, z) € PG(2, q) corresponds to a line of Sg in
PG(5, q) whose points are given by,

{(z7i0, TTi1, YTio, Yri1, 2Ti0, 21i1) | 1 =1,2,... ,¢ + 1}

The collection of ¢% + ¢ + 1 lines of Sp obtained in this way are then the set of maxi-
mal spaces (transversals) of the Segre variety pi.2 in PG(5, q) defined by the following

equations, for points with coordinates (xo, 1, Yo, Y1, 20, 21),

Toy1 —ZT1yo = O
To21 — X129 = 0
Yoz1 — Y120 = 05

(a Segre variety in PG(5,q) by Theorem 1.8.6 and the subsequent remarks.)

The opposite system of maximal spaces of the Segre variety pi.2, the ¢ + 1 axis planes

contained in this Segre variety, are each defined by a set of equations of the form,

Tin®o — TipT1 = 0
Yo —Tioyr = 0
Titzo — rigz1 = 0,
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for a fixed 7 € {1,2,...,¢+1}.

Also, for each non-zero element p € GF(q?), the transformation (z,y, 2) — (pz, py, pz)
of PG(2, ¢?) fixes every point in PG(2,¢?) and therefore fixes the canonical Bose spread
Sp of PG(5,q).

Finally, we examine the relationship between the Bose representation of PG(2,¢?) in
PG(5,q) and the Bruck-Bose representation of PG(2,¢?) in PG(4,q) with hyperplane
Y at infinity and S, a regular 1—spread of Xu.

Consider the Bose representation of PG(2,¢?%) defined by a Bose spread S of PG(5,q)
as presented in this section and with the same notation. Let PG(4,¢) be a hyperplane
of PG(5,q). By Theorem 3.2.3, the set of 3—spaces H3 associated to S is a dual spread
of PG(5,q) and hence the hyperplane PG(4, ¢) contains a unique element of #3; denote
this element of Hs by . By Corollary 3.2.5, the 3—space ¥, contains exactly @ +1
elements of S and these ¢ -+ 1 lines constitute a regular 1—spread of ¥.,. Moreover,
each element of S not in X, is skew to X, and therefore intersects PG(4, ¢) in a unique
point of PG(4, ¢)\Zw. By the Bose correspondence between the points of PG(2,¢%) and
the elements of S, each point of PG(2, ¢?) corresponds either to an element of S in X
or to a unique point of PG(4,q)\Ze. Also, as the lines of PG(2, ¢*) correspond to the
elements of H3, and any two elements of H3 intersect exactly in a line of S, each line of
PG(2,¢?) corresponds to either £, or to a plane of PG(4,¢) not contained in ¥, and

which intersects ¥, in an element of S. We therefore have by Section 1.10,

Theorem 3.2.13 [19] Given a Bose representation of PG(2,¢%) in PG(5,q), a Bruck-
Bose representation of PG(2,q%) in PG(4,q) is obtained by considering any fized hy-
perplane PG(4,q) of PG(5,q) and redefining each point and line of PG(2,q?) to be the

intersection of the corresponding subspace in the Bose representation with PG(4,¢q). O

Corollary 3.2.14 [19] In the Bruck-Bose representation of PG(2,q*) in PG(4,q) de-
fined by a regular spread S in a hyperplane Too: each Baer subplane of PG(2,q%) is
either a plane of PG(4,q) not contained in Yo, and which intersects Lo, in line not in

Seo, or a ruled cubic surface V3 not contained in Lo, and which intersects Lo, in a line

¢ € S, which is the line directriz of V3.

Proof Consider a Bruck-Bose representation of PG(2,¢%) in PG(4, q) obtained from a
Bose representation of PG(2, ¢%) in PG(5, ¢) as in Theorem 3.2.13 and with the notation
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introduced there. By Theorem 3.2.7, in the Bose representation of PG(2,¢?) each Baer
subplane of PG(2,¢?) is a Segre variety p;.2, with transversal lines all in the Bose spread
S. Each such variety has order 3 and dimension 3 and we shall denote it by R. A Segre
variety RS intersects the hyperplane PG(4,¢) in a variety of order 3 and dimension 2;
there are two cases to consider. Let R3 be the Segre variety in PG(5,q) which is the
Bose representation of a Baer subplane B of PG(2,¢?). Suppose the Baer subplane B of
PG(2,¢%) contains the line at infinity as a line, then in the Bose representation Yo, € H3
intersects the Segre variety R3 in a 1—regulus, a hyperbolic quadric HZ. In this case,
the intersection PG(4,q) N RS is the variety V;# = HZ U S}, the union of the hyperbolic

quadric HZ and an axis plane S} of the Segre variety R3.

Alternatively, Suppose the Baer subplane B of PG(2,¢?) intersects the line at infinity
in a unique point, then in the Bose representation ¥, € H3 intersects the Segre variety
R3 exactly in a single element £ of S. In this case, the intersection PG(4,¢) N R} is a
variety V3 containing £ € S. Each element of 3 which contains £ and which represents
a line of B in the Bose representation, intersects Rj in a 1—regulus of elements of S.
These 1—reguli each intersect PG(4,q) in a degenerate conic, namely the line £ and a
transversal to the 1—regulus. Hence the variety V.2 = PG(4,q) N R} consists of the line
£ and q + 1 lines of PG(4,q)\Xw which meet ¢; such a variety is a ruled cubic surface

with line directrix £. O

3.3 The Bose representation of Conics in PG(2, q?)

Consider the conic C in PG(2, ¢*) with points (z,y, 2), z,y,z € GF(¢*) and not all zero,

satisfying the equation y? = x2.

Let GF(¢?) = GF(q)(a) where o € GF(¢*)\GF(g) has minimal polynomial
po(t) =22 —x — 7 as in the previous section. Moreover, if ¢ is even, then v has
trace(y) = 1 and for ¢ odd, v has the property that 1 + 4v is a non-square, since
x? — x — vy is irreducible in GF(q) by [48, Section 1.4]. The element &@ = o4 is the second

root of p, and therefore

and o@ = —7v. (3.3)
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Consider the conic C in the Bose representation of PG(2,¢?) in PG(5, q), defined by the
coordinate Bose spread Sg of the previous section. The points (z,y, z) of C in PG(2, ¢?)
correspond to the points (o, Z1, Yo, Y1, 20, 21) of PG(5, ¢) which satisfy

(o +ay)® = (o + az1) (20 + az1) (3.4)

where z = zo+az1, Y= yo+ay:, z = 2o+az; with z;,y;, 2 € GF(q). By expanding (3.4)

and using the equations (3.3) and a? = « + 7 to simplify the expression, we obtain
yf) + ’yyf + a(2yoy1 + yf) = Zgzp + YX121 + 01(117120 —+ 2921 + xlzl).

Thus the conic C in PG(2,¢?) in the Bose representation is the subset of ¢* + 1 elements
of the Bose spread Sp, no three contained in the same 3—space of Hj, with points
(w0, %1, Yo, Y1, 20, 21) in PG(5, q) contained in the intersection of the two quadrics @1 and

Q2 with equations

Yo + Wi — Tz — 18121 = O, (3.5)
and 9} 4 2yoyr — 120 — Tozs — 121 = 0 (3.6)
respectively.

We now determine if each quadric ); is non-singular, and if so, we determine the charac-
teristic (hyperbolic or elliptic) of the quadric. Our method and notation are consistent

with that used in Section 1.4 ([50, Section 22.2] and in particular [50, Theorem 22.2.1}).

Let x = (zg, 1, Y0, Y1, 20, 21), then Q1 and @ are given by the quadratic forms defined

by matrices

1 0 |

0 00O 0 000 0 -1

0000 0 —v 0000 -1 -1

0010 O 0 0002 0 O
M, = and M, =

000+ O 0 0001 0 O

0000 O 0 0000 O O

0 000 O 0 0000 O O
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respectively. For the quadric @y, let

0 0 0 0 -1 0
0 0 0 0 0 —vy
0 0 20 0 O
A=
0 0 02y 0 O
-1 0 00 0 O
0 —y 0 0 0 0

Therefore |A| = 49® # 0 for ¢ odd and |A| = 4y* = 0 for ¢ even. When ¢ is odd, let
a = —4+3. By Theorem 1.4.1 for ¢ odd, the quadric @; is non-singular and @ is elliptic

if and only if a is a non-square; for ¢ even, the quadric @, is singular.

For the quadric @), let

[0 0 00 0 -1]

0 0 00 —1 -1

0 0 02 0 0
A=

0 0 22 0 0

0 100 0 0

1 -100 0 0

Therefore |A] =4 # 0 for ¢ odd and |A| =4 = 0 for ¢ even. When ¢ is odd, let a = —4.
By Theorem 1.4.1 for ¢ odd, the quadric @) is non-singular and @), is elliptic if and only

if a is a non-square; for ¢ even, the quadric @), is singular.

Thus for g odd, the quadrics @1 and @), are both non-singular and for q even the quadrics
@1 and @4 are both singular.

Consider the case when ¢ is even. In this case the conic C in PG(2,¢*) has nucleus
N(0,1,0). In the coordinate Bose representation of PG(2,¢?) in PG(5, q), the nucleus is
represented by the line joining points (0,0,1,0,0,0) and (0,0,0,1,0,0); denote this line
by £y. The line £y intersects the quadric Q; in the point P;(0,0,,/7,1,0,0) (since g is
even, v is a square) and £y intersects @ in the point P5(0,0,1,0,0,0). Consider IIp
the tangent space to @ at the point P;. Following Section 1.4, the partial derivatives of

the quadratic form defining ), are,

0Q1 _ o091 __ 0Q1 __ Q1 __ 0 _ 01 __
8zo ~ 20 oxr1 ’)’Zl Yo - 2y0 oy - 27y1 8z0 Zo 921 ’Yxl’

which all equal zero at P(0,0,./7,1,0,0). Thus IIp, is the entire space and therefore

P, is contained in the vertex of Q.
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Consider IIp, the tangent space to (o at the point P,. The partial derivatives of the

quadratic form defining () are given by,

9Q2 0Q2 . 9Q2 __ 0Qs __ Qs _ 8Q: _ ..
Tl = =2 ger = TAT A g T2 o = 21+ 2y0 G =T G = —T1 — o,

which all equal zero at P,(0,0,1,0,0,0). Thus IIp, is the entire space and therefore P,

is contained in the vertex of )s.

Moreover, for i = 1,2 respectively, P; is the only point of Q; such that IIp, = PG(5,q)
and therefore each of the quadrics @1, Q- has a point vertex for ¢ even and the vertex is
incident with £y. In the notation of [50], @; = IIoP4, that is @; has a point vertex and
base a parabolic quadric in a hyperplane disjoint from the vertex. A further verification
that the vertex of Q; is a point vertex is to check that a hyperplane of PG(5,q) not
incident with P; intersects @; in a non-singular quadric. Consider the hyperplane %,
of PG(5,q) defined by the equation yo = 0 and which contains neither P, nor P,. The
intersection ¥y N £y is the point with coordinates (0,0,0,1,0,0). For s = 1,2, let Qip
be the quadric in Xy such that Q;o = Q; N . Then each quadric ;¢ has points with

coordinates (zg, 1,0, y1, 20, 21) satisfying the equations

Qio: Y3 —x120 — Loz — 1121 = 0
Q2,0 : YY; — Tozo —¥T121 = 0
respectively. For each of Q10 and Qa0, 3|A| # 0 and therefore the quadrics Q1 and

Q2,0 are non-singular parabolic quadrics by Theorem 1.4.1. Furthermore, for ¢ = 1,2,
0Q; 0Q; 0Q;

the point (0,0,0,1,0,0) is the unique point in ¥y at which Qi = Qi = Qi =0,
8.’1Jj 8yj aZj

and therefore (0,0,0,1,0,0) is the nucleus of @Q;. Hence for each 7 = 1,2, the quadric

Q; in PG(5, q) in non-singular with point vertex and a parabolic quadric base.

Moreover, since the partial derivatives of both @; and @) all equal zero when evaluated
at any point of the line £y, if ¥ is a hyperplane of PG(5,¢) which intersects £y in a
unique point distinct from P; and P,, then the intersections 3N ¢); and ¥ N Q) are both
parabolic quadrics in ¥ with common nucleus £ N £y. It also follows that if 3, is a
hyperplane of PG(5, q) such that the intersection ¥; N £y is exactly the point P, then
the intersection ¥; N @1 is a singular quadric with point vertex P; and the intersection
Yr N Q2 is a non-singular quadric with nucleus P;. Similarly, if ¥; is a hyperplane of
PG (5, g) such that the intersection ¥; N4y is exactly the point P, then the intersection
Yk N Q2 is a singular quadric with point vertex P, and the intersection ¥, N @) is a

non-singular quadric with nucleus P.
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For S a Bose spread of PG(5,q) and m,(S) the Bose representation of PG(2,¢?) in
PG(5,q) defined by & and Hj the dual spread associated with S, we have therefore

shown,

Theorem 3.3.1 IfC is a non-degenerate conic in PG(2,q*), then in the Bose represen-
tation of PG(2,4?) in PG(5,q), the conic is a collection Cp of ¢* + 1 elements of S, no
three contained in the same 3—space of Hs. Furthermore, for q odd, the points of Cg lie
in the intersection of two non-singular quadrics in PG(5,q); for q even, the points of
Cg lie in the intersection of two singular quadrics Q1 and Q2, each of which has a point
vertex and a parabolic quadric base. In the q even case, the nucleus N of C is a line {y
in the Bose representation and the point vertices of (1 and Qo are distinct points of £y.

O

Consider a non-degenerate conic C in PG(2, ¢?) and let £,, denote an external line of C;
call this line the line at infinity of PG(2,¢?). If q is even, then the nucleus N of C is
not incident with £,. In the Bose representation of PG(2,4?) in PG(5,q), the line at
infinity is a 3—space element ., of H3 which is disjoint to the set of ¢* +1 elements of S
in the Bose representation Cp of the conic C. Moreover Y, is disjoint from the element
¢x of S which corresponds to the nucleus N in the g even case. In Theorem 3.2.13 we
presented the relationship between a Bose representation of PG(2, ¢?) in PG(5,q) and a
Bruck-Bose representation of PG(2,¢%) in PG(4, q). Let I14 be a hyperplane of PG(5, q)
which contains the 3—space L; note that for the ¢ even case, the intersection Iy N £y
is a unique point. By Theorems 3.2.13, 3.3.1 and the remarks preceding Theorem 3.3.1

we have,

Theorem 3.3.2 If C is a non-degenerate conic in PG(2,q*) disjoint from the line at
infinity ls, then in the Bruck-Bose representation of PG(2,¢*) in PG(4,q) the conic C
is a collection of ¢ +1 affine points contained in the intersection of two quadrics Q1 and
Q.. For q even the two quadrics are either both non-singular with a common nucleus or
exactly one of the quadrics is singular with a point vertex which is then the nucleus of

the second quadric. a

From our work in the earlier chapters, a Baer subline of a line of PG(2,¢*) which is
disjoint from the line at infinity, is represented in 4—dimensional Bruck-Bose by a non-

degenerate conic in a plane about a spread element and such that the conic is disjoint
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from the hyperplane at infinity (see Section 2.2). If we then represent PG(2,q?) in
8—dimensional Bruck-Bose we obtain a representation of the non-degenerate conic, which
in turn represents a Baer subline of a line of PG(2, ¢*). Theorem 3.3.2 provides additional
information about this representation which was first discussed in Theorem 2.7.2 in a

slightly different setting.

3.4 The Bruck-Bose representation of PG(2,q*) in
PG(8, q) revisited

The Bruck-Bose representation of PG(2,q*) in PG(8,q) is determined by a regular
3—spread S; in a fixed hyperplane Y7, of PG(8,¢q). We denote this representation
by TIg, and we denote by £ the line of PG(2,¢*) which corresponds to the spread Ss

in ¥ 4; we call £ the line at infinity.

In the first section of this chapter we investigated the representation of the affine Baer
subplanes of PG(2,¢*) in Ilg,. In Corollary 3.1.5 we characterised the affine Baer sub-
planes of PG(2,¢*) in terms of this representation. Moreover we determined how Baer
sublines b, of lines of PG(2,¢*), and such that b, is incident with /., are represented in
Ilg,,. We now consider the non-affine Baer subplanes of PG(2,¢") and the Baer sublines

which are disjoint from £,.

Let £ be a line in PG(2, ¢*) distinct from £,, and let P be the unique point of intersection
of ¢ and ¢.,. Let b, be a Baer subline of £ such that b, is disjoint from /.., so that P
is not incident with b, Also let TI; 2 be the Bruck-Bose representation of PG(2,¢*)
in PG(4,¢%) defined by a regular 1—spread S; of a hyperplane Y3 ;2 of PG(4,¢%). In
Iy, £ is represented by a plane £* of PG(4,¢%)\X3 and the intersection £* N 3 52 is
a line P* which is an element of the spread &;. By Theorem 2.2.3, the Baer subline b,
is represented by a non-degenerate conic b} in the plane £* such that b} is disjoint from
P*; in Section 2.2 we called such a conic a Baer conic. Note that the plane £*\{P*},
namely ¢* with the line P* and all its points removed, is isomorphic to the affine plane
AG(2,¢?). By the results on internal structures of a Miquelian inversive planes discussed
in Section 1.14 we have: the points of £*\{P*} correspond to the points of ¢ distinct from
P; the lines of £*\{P*} correspond to the Baer sublines of £ which contain P; incidence

is containment.
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In Ilg 4, the line £ is represented by a 4-space £** of PG(8,q)\X7,4 and the intersection
£* N3y, is a 3—space element P** of the regular 3—spread Sz of ¥7 4. By Theorem 3.1.2,
there exists a fixed induced regular 1—spread S} in P**. By Corollary 3.1.5 the planes of
£*\ P** which intersect P** in a unique line of S; represent the Baer sublines of £ which
contain the point P. Hence this regular 1—spread S; in P** defines a 4—dimensional
Bruck-Bose representation of PG(2,¢%) in the 4—space £**; this is the 4—dimensional

Bruck-Bose representation of the plane £*.

Let b}* denote the representation in Ilg 4 of the Baer subline b, of £. In Iy z, since by is a
non-degenerate conic in £*, disjoint from the line P* in £*, it follows from the preceding
paragraph that bj* C ¢** is precisely a representation in 4—dimensional Bruck-Bose
of a non-degenerate conic in the plane £* = PG(2,¢*) and disjoint from the line at
infinity, P*. This representation was explicitly determined in Section 3.3, in particular

in Theorem 3.3.2.

By Theorem 2.2.9, a Baer subplane B of PG(2, ¢*) which intersects £ in a unique point
R is represented in II, ;2 by a ruled cubic surface B* with line directrix R* where R* is
an element of S;. Moreover, the intersection B* NX3 ;2 in Iy ;2 is exactly the line R* and
the points of B* lie on ¢% + 1 distinct lines of T4 42\X3 42, one through each point of R*.
These lines represent the Baer sublines in B which are incident with R. The remaining
Baer sublines in B are represented in I1 2 by ¢® Baer conics on the ruled cubic surface
B*.

In Ilg,, the Baer subplane B is represented by a structure B** in PG (8,¢). The point R
in PG(2, q*) is represented by an element R** of the spread Sz of ¥7,. By Theorem 3.1.2
and Corollary 3.1.5 and by considering the situation in II4 ;2 above, the Baer sublines in
B incident with R are represented in ITg , by ¢* + 1 distinct planes in PG(8, ¢)\X7,4 each
of which intersect X7, in a distinct line of the induced 1—spread S in R**. Moreover,
as B* contains ¢? Baer conics in Il g2, the structure B** contains q? representations of
Baer conics in Ilg,, where each has the structure determined in Theorem 3.3.2 for a

given 4—space of Ilg 4, which corresponds to a line of PG(2, q).

It is difficult to determine in more helpful detail the Bruck-Bose representation of the

non-affine Baer subplanes of PG(2, ¢%).

To conclude the chapter we present one more geometric construction which may help to

clarify some of the geometric properties of these representations. For the plane PG(2, ¢*)
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we have been moving back and forth between the 4—dimensional Bruck-Bose represen-
tation in PG(4,¢?) and the 8—dimensional Bruck-Bose representation in PG(8, q); the

following construction provides a concrete link between the two representations.

Let S be a Bose spread of lines of PG(5, ¢%), so that by the results of Section 3.2, S defines
a Bose representation of PG(2, ¢*). Let 3 denote the dual spread of PG(5, ¢) associated
with S in the usual way. Let PG(4,q?) denote a fixed hyperplane of PG(5,¢%). By
Theorem 3.2.13, PG(4, ¢?) determines a fixed 4—dimensional Bruck-Bose representation
Iy 2 of PG(2,¢*). Denote by X5, the unique 3—space in H3 which is contained in
PG(4,q¢%). By Theorem 3.2.5, the set S; of ¢* + 1 elements of S contained in Yz

constitutes a regular 1—spread of Y3 s.

Embed PG(5,¢%) as a subspace in PG(11,4?) in such a way that PG(5,¢?) is skew to
PG(11, q); this is possible by Construction 3.1.1 with h = 3. The 3—space ¥, spanned
by an element £ of the Bose spread S and its conjugate ¢, with respect to the extension
GF(¢*) of GF(q), intersects PG(11,q) in a 3—space; the join of each point P € £ to
its conjugate P yields a regular 1—spread of the 3—space ¥; N PG(11,q). The collec-
tion of such 3—spaces in PG(11, q) constitutes a 3—spread of PG(11,q). The 7—space
of PG(11,4?) spanned by ¥, and its conjugate space 3, intersects PG(11,¢) in a
7—space which we shall denote by ¥7,. Note that since X3 ,2 contains ¢* + 1 distinct
elements of S, ¥, contains exactly ¢* + 1 elements of the 3—spread of PG(11, ¢) which
therefore constitute a 3—spread of 37 4; denote this 3—spread of ¥, by S3. The hyper-
plane PG(4,¢?) of PG(5,¢%) together with its conjugate PG(4, ¢?) spans a 9—space of
PG (11, ¢?) which intersects PG(11,q) in a 9—space which we shall denote by PG(9, q).
Note that Y7, is a subspace of PG(9,q). Each point P € PG(4,¢%)\X5, is incident
with a line of PG(9,q), namely the line PP. If we let PG(8,q) be a hyperplane of
PG(9,q) which contains Y74, then PG(8,q) intersects each line PP in a unique point,
where P € PG(4,¢*)\X34. By Theorem 3.1.1 the 3—spread S; in X7, is regular since
the 1—spread &; in X3 ;2 is regular. Therefore S; defines an 8—dimensional Bruck-Bose
representation IIg, of PG(2,q*) in PG(8,g). Moreover, in this construction the corre-

spondence between II4 2 and Ilg; arises in a natural way.
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Chapter 4

Baer subplanes and

Buekenhout-Metz Unitals

In this chapter we investigate the relationship between Baer subplanes and unitals in
planes where both of these objects are defined. In particular, in a finite projective plane
mq2 of order g%, we consider the problem of classifying the subsets of points of the plane,
which are the set of points in the intersection of a Baer subplane and a unital. The
earliest work on this problem is due to Seib [70] and the relevant paper is written in
German; the following statement of Seib’s result is taken from [16, Lemma 2.1, (1) (2))

[17, Result 2.4].

Theorem 4.0.1 [70] Let o be a Baer involution which leaves invariant a unital U of a
finite projective plane 7y, of square order g*. Then B, the Baer subplane fived pointwise
by o, contains exactly g + 1 points of U, and ezactly g + 1 tangents of U are lines of B.
If q is even, then the ¢ + 1 points in BN U are collinear in B.

If q is odd, then the q¢ + 1 points in BNU form a (g + 1)-arc in B. O

In [51] Hélz discussed classical unitals and Baer subplanes in PG(2,4?) and used his
results to define two new designs. The results Ho6lz obtained on the intersection of a
classical unital and a Baer subplane in PG(2, ¢?) are as follows. In the paper [51], Holz

defines,

Property (T): For each point P in PG(2,q?), which lies in both a Baer subplane B

and a classical unital U, the tangent line tp to U at P is a line of B.
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Theorem 4.0.2 [51, Lemma 2.2] Let B be a Baer subplane of PG(2, ¢%) satisfying prop-
erty (T), which contains at least three distinct points of a classical unital U. Then B has

ezactly ¢ + 1 points in common with U.

If q is even, these points are collinear. If q is odd, these points are either collinear or

they form an oval in B. |

In [23] Bruen and Hirschfeld gave many combinatorial results for the intersection of a set
of type (m,n) and a set of type (m’,n’) in a plane of order g, including specific results
when the two sets concerned are a Baer subplane and a unital in a plane w2 of order ¢*.
In [44] Griining gave similar results including the following result which has proved to

be very useful in characterising unitals of PG(2,¢?) (see the next chapter).

Theorem 4.0.3 [44] [23] Let B be a Baer subplane and let U be a unital in a projective
plane 7y of order q%. Denote by by the number of lines of B which when extended are
tangent lines of U and let |B NU| denote the number of points in the intersection of B
and U. Then,

|\ BNU|+b =2(g+1)

For a projective plane w2 of order ¢ and a unital U in T4, the set of tangent lines to u
constitutes the set of points of a unital in the dual plane wgg of m,2 (see Section 1.13.2);
this unital is the dual unital of U and is denoted by 7°. Recall also, that for any Baer
subplane B of 7,2 the set of lines of B constitutes a set of points of a Baer subplane B¢
in the dual plane 7r(‘112 and B¢ is the dual Baer subplane of B in ﬂjz. By Theorem 4.0.3,

we have

Corollary 4.0.4 Let B be a Baer subplane and let U be a unital in a projective plane
mge of order ¢*. If we let |BN U| denote the number of points in the intersection of B

and U, then in the dual plane 7, of T we have,
IBEN U’ =2(¢+1) — |BN|

where B® and U°® are the dual structures of B and U respectively. m|
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Theorem 4.0.3 also provides a bound on the maximum possible number of points in the

intersection of a unital / and Baer subplane B in a projective plane 7,2, namely,
0<|BNU| < 2(g+1).

The exact values of |[BNU| for which there exists a set of intersection of a Baer subplane
and a unital in 7, of cardinality |B NU|, has been determined in [23] for I a classical
unital U and a Baer subplane B in PG(2,4?). In [23] Bruen and Hirschfeld used the
canonical equation of a classical unital in PG(2, ¢?) and an algebraic proof to obtain the

following result.

Theorem 4.0.5 [23] In PG(2,¢?), for U a classical unital and B o Baer subplane we
have

|IBNU|=1,g+1 or 2¢+1

where the intersection sets are a unique point, ¢ + 1 points of a line of B or a conic in

B, or a line pair in B respectively. a

We extend this work by giving a geometric proof of the above result which we obtain as

a corollary to our results concerning the Buekenhout-Metz unitals in PG(2, ¢?).

4.1 The intersection of a Baer subplane and a

Buekenhout-Metz unital in PG(2, g?)

We begin with a theorem which generalises Theorem 4.0.5 in certain cases. We ac-
knowledge that recently in the literature some of the results in Theorem 4.1.1 have been
proved independently in papers discussing derivation of Buekenhout-Metz unitals. See

for example [11], [12], [31].

Theorem 4.1.1 Let U be a Buekenhout-Metz unital re (T, £s) in PG(2,4?) and let B
be a Baer subplane in PG(2,q?). Then,
(i) if |BNLlo|=q+1 then |BNU| =1,q+1 or 2q+1 where the intersection sets
are a unique point, ¢ + 1 points of a line of B or an oval in B, or a line pair

in B respectively.
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(i) if BN Ly = {T} then |[BNU| =g+ 1 or 2q + 1 where the intersection sets
are a union of q points of B distinct from T and incident with distinct lines
of B through T either the unique point T' or q + 1 points of a Baer subline in

B containing T respectively.

(Note: The remaining case BN 4y = {P} with P # T is considered later in the
chapter.)

Proof: As the setting for our proof we use the 4—dimensional Bruck-Bose representation
I1, of PG(2,q?), defined by a regular 1—spread S of a hyperplane L, of PG(4,q). As
U is a Buekenhout-Metz unital in PG(2,¢?), in Bruck-Bose U is an ovoidal cone U
with base ovoid O and vertex V, where V is incident with an element ¢ of the spread S,
and t represents the unique point T of U at infinity in PG(2,¢?). The line at infinity
o, of PG(2,¢%) corresponds to the hyperplane ¥, and in Bruck-Bose, U NI = {t}.

(4) In this case, the line at infinity is a line of the Baer subplane B and therefore B is
represented in Bruck-Bose by a plane B of PG(4,¢)\Xw which intersects ¥, in a line

which is not an element of the spread S.

Suppose that V € B, then, since U’ is an ovoidal cone with vertex V, the intersection
BNU" is the unique point V, a generator line of U" or a pair of distinct generator lines
of U". In these cases the number |B NU| of points in the intersection equals 1,q+ 1 or

2q + 1 respectively.

Alternatively, suppose that V ¢ B. Note that the hyperplane X, is the unique hyper-
plane of PG(4, q) which intersects the ovoidal cone U in exactly the line ¢; since in the
quotient 3—space determined by V, ¥, corresponds to the unique tangent plane to the
ovoid determined by U" at the ovoid point corresponding to t. Therefore in PG (4,q)
and since B is not contained in ¥, the hyperplane (V, B), spanned by the plane B and
the vertex V of If* intersects I  in either an oval cone or in a unique line on " distinct
from ¢. In the latter case, BNYU is a unique point of PG(4, ¢)\Zo and hence the Baer
subplane B intersects I in a unique point. Consider the case where the hyperplane
(V, B) intersects U" in an oval cone. Since V ¢ B, the transversal plane B is either
tangent to this oval cone or intersects the oval cone in an oval of ¢ + 1 points of u.
In these two cases the number |B NU| of points in the intersection equals 1 or ¢ + 1

respectively.
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(#) In this case, the line at infinity intersects B in the unique point T and therefore
in Bruck-Bose, B is a Baer ruled cubic surface B with line directrix ¢{. Furthermore,
since T is the unique point at infinity of I, in Bruck-Bose we have the intersection
BNEe =U NTe = {t}. Denote the generators of B by g7, ... ,g;,,, where g denotes

the unique generator line of B incident with the point V' of ¢.

Recall that each generator line of I passes through V' and each plane of PG(4, ¢)\Zw
about ¢ contains a unique generator line of U . Thus each plane (g¥,t) i=1,...,¢+1
contains a generator line, [} say, of U". Note that as g7 passes through V', g7 is either the
generator line [ of U or intersects I in the unique point V. Each line g} (i # 1) does
not pass through V and therefore in the plane (g}, t), the line g} intersects the generator
line I* of U  in a unique point of PG(4,q)\Es. Therefore, for such a Baer subplane
B, and for these two cases the number |B NI of points in the intersection of the Baer

subplane and the Buekenhout-Metz unital equals 2¢g 4 1 or q + 1 respectively. O

Note that by the proof of Theorem 4.1.1, if a Baer subplane contains an oval of points
of a Buekenhout-Metz unital If in PG(2, ¢?) as in case (i), then the oval BN is related

to an oval plane section of the 3—dimensional base ovoid of U in the following way.

Corollary 4.1.2 Let U be a Buekenhout-Metz unital re (T, £y) in PG(2,q?) and let B
be a Baer subplane in PG(2,q%) such that £y is a line of B. Let O denote the base ovoid
of U.

If the intersection BN U is an oval O in B, then the oval O is projectively equivalent

to an oval contained in a 3—dimensional oval cone with base oval a plane section of the

ovoid O. O

We now obtain the Bruen and Hirschfeld result (Theorem 4.0.5) as a corollary to Theo-

rem 4.1.1 as follows.

Corollary 4.1.3 [23] In PG(2,4?), for U a classical unital and B a Baer subplane we

have

|IBNU|=1,q+1 or 2¢+1

where the intersection sets are a unique point, ¢+ 1 points of a line of B or g+ 1 points

of a conic in B and a line pair in B respectively.
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Proof: By Section 1.13.3 the classical unital I is Buekenhout-Metz re (T, Ir) for all
points T € U and the corresponding tangent line Iz to U at T. We begin by showing
that for every Baer subplane B of PG(2,4?) there exists at least one line of B which

when extended is a tangent line of .

Suppose B is a Baer subplane of PG(2,¢?) such that B contains no line tangent to U,
then by Theorem 4.0.3, |BNU| = 2q + 2. As U is classical, by Theorem 1.13.1.2 every
Bacr subline of PG(2,¢?) intersects I in 0,1,2 or ¢+ 1 points; in particular, every Baer
subline in B intersects BN in 0,1,2 or ¢ + 1 points. The set B NI has too many
points to be an oval in B. If BN U is the disjoint union of a Baer subline in B and
an oval in B, then a secant (Baer sub)line of the oval intersects B NI in three points,
contradicting Theorem 1.13.1.2. If BN is the union of two lines in B plus a further
point @ say, then there exist ¢ Baer sublines in B through @ which intersect B N u
in three points, contradicting Theorem 1.13.1.2. Alternatively, one could argue that by
Theorem 1.13.1.2 BN is a Tallini set in B and no Tallini set in a plane of order ¢ has
cardinality 2¢ + 2 (see [55].)

Therefore, the number of points |B NU| in the intersection of B and U is necessarily less
than 2¢ + 2 and by Theorem 4.0.3 this implies that B contains at least one line which
when extended is a tangent line of If; denote this line by £. Since U is Buekenhout-
Metz with respect to the line £, and since B contains £y, as a line, by Theorem 4.1.1,
B intersects U in 1,q+ 1 or 2¢ + 1 points. Moreover since a classical unital has as base
ovoid an elliptic quadric, by Corollary 4.1.2 if a Baer subplane B of PG(2, ¢*) intersects

U in an oval, then the oval is a non-degenerate conic in B. O

Theorem 4.1.1 does not exhaust the possible intersections of a Buekenhout-Metz (B-M)
unital 2/ and a Baer subplane B of PG(2,¢%). It remains to consider the case when U
is B-M re (T, £,) and B is a Baer subplane of PG(2, q?) such that B N4y is a unique
point P on £, distinct from 7. We partially solve the problem in this case, by improving
the restriction on the number of points |[B N | in the intersection of B and U which

was given in Theorem 4.0.3

Theorem 4.1.4 Let B be a Baer subplane in PG(2,q¢%). Let U be a Buekenhout-Metz
unital re (T, L) in PG(2,¢%). If the base ovoid of U is an elliptic quadric, then for
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q> 13,
1< |BNU| <2g+ 1.

Proof: Consider a unital I in PG(2,q?) which is Buekenhout-Metz re (T, /) and
which has an elliptic quadric as base. By Theorem 4.0.3 and for B any Baer subplane
of PG(2,4q%),

0<|BNU|<2q+2.

If U is a classical unital then by Theorem 4.0.5, [BNU| =1,q+ 1 or 2¢ + 1 for all q as

required.

If I is a non-classical Buekenhout-Metz unital, then by Theorem 4.1.1 if B is a Baer
subplane of PG(2,4?) which contains £ as a line or if B intersects £, in the unique

point T, then |BNU| =1,¢+ 1 or 2¢ + 1 as required.

The remaining case to consider is the case where U is a non-classical Buekenhout-Metz
unital re (T, £,,) with elliptic quadric as base and B is a Baer subplane of PG(2, ¢) such
that B intersects the line at infinity in a unique point P distinct from T'. It remains to
prove for this case that 1 < |BNU| < 2¢+ 1 when ¢ > 13. Our proof is by contradiction
making use of several preliminary results. Suppose in this case the intersection B N 7]
contains 2¢g+2 distinct points, then by Theorem 4.0.3 BN contains exactly 2¢+2 points.
By Theorem 1.13.3.1 and since P € /, is not a point of the unital, each Baer subline in
B which contains the point P intersects I in at most two points; as |[BNU| = 2¢ + 2,

each Baer subline in B which contains P contains exactly two distinct points of .

The unital U is a set of points U" in Bruck-Bose, where U is an elliptic quadric
cone in PG(4,q). In the Bruck-Bose setting, the Baer subplane B is a Baer ruled cubic
surface B with line directrix p in PG(4,q). The line at infinity of PG(2, ¢) corresponds
to a hyperplane X, of PG(4,q) and the line {p} = BN X is an element of the regular
spread S of ¥, which defines the Bruck-Bose representation. In Bruck-Bose, the element
p € S represents the unique point P of B on the line at infinity. The Baer sublines in
B which contain P are, in Bruck-Bose, the generator lines of the ruled cubic surface
B; from above, each such generator line contains exactly two distinct points of U in
PG(4,9)\Ze- In particular the line directrix p of B contains no point of U in PG(4,q).
Denote these ¢ + 1 generator lines of B by ¢7,93,...,9;,1- The ¢* Baer sublines in B
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which do not contain P are represented in Bruck-Bose by ¢? distinct Baer conics on B.
For each secant line £ of I not incident with T the intersection £ N in Bruck-Bose is
a non-degenerate conic, namely the plane section of the quadric u by the plane £* of
PG(4,q), which corresponds to £ via Bruck-Bose. By Theorem 1.13.3.2 and since U is
non-classical with elliptic quadric as base, no such intersection £ NI is a Baer subline.
It follows that no Baer subline in B is contained in I and therefore, in Bruck-Bose,
no Baer conic in B coincides with a conic £* N U (a plane section of the quadric u
in PG(4,q)). Moreover, since two distinct non-degenerate conics in PG(2, q) intersect
in at most four points, every Baer subline in B contains at most four points of B N U.
Hence the 2¢ + 2 points in the intersection B N U constitute a {2q + 2;4}—arc in the
Baer subplane B. Note that by Theorem 1.11.2 there exists a Baer subline in B which

contains exactly four distinct points of U.

The quadric U intersects the hyperplane T, in the spread line . Since the line directrix
p of B is distinct from ¢ and B contains no further point in ¥, the line directrix p is
disjoint from the quadric " in PG(4,q). In particular the point vertex V of U" is not
a point of B. Let  denote the variety which is the intersection B NU" in PG (4,q). Note
that the 2¢ + 2 points of v in PG(4, q) are disjoint from X.,. Since the 2¢ + 2 points of
~ lie two each on each generator of B and since B is not contained in any hyperplane of
PG(4,q), the variety «y is not contained in any hyperplane of PG(4,q). Also from our
above remarks and since v does not contain p, any generator line of B or any Baer conic

in B in PG(4,q), we have that v contains no lines or conics in PG(4,q).

For the remainder of the proof, the points of PG(4,q) will be called rational points;
hence the variety v has 2 + 2 rational points. Since vy is the intersection of a ruled cubic
surface B, of order 3 and dimension 2, and a quadric 17*, of order 2 and dimension 3,
the variety y has order 6 and dimension 1; v is therefore a curve of order 6 in PG(4, q).
If v is reducible, then the order of v may be partitioned in the following ways: 6 =
145 =14144 =1414143 =14+14+14+142 = 1+14+1+1+1+1 =
244 =24+34+41=2+24+2=3+3=1+1+1+3 = 1+1+4+2+2. Henceify

is reducible then one of the following holds:

(a) +y contains two twisted cubic curves.
(b) v contains an irreducible conic and an irreducible quartic curve.
(c) ~y contains three irreducible conics.
(

d) v is a curve with line components.
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Note that the components of v may coincide or may belong to some field extension of

GF(qg).

We denote by K the algebraic closure of K = GF(q). To show that v is absolutely
irreducible, by the above remarks it suffices to show that over K , Y contains no lines,

conics or twisted cubic curves.

By [15, Note 1.] each variety B = V3’ of PG(4, q) is the set of rational points of a variety
V2 of PG(4, K) obtained by a projectivity ¢ between a line p and a conic C of PG(4, K)
where qAblp is a projectivity ¢ between the line p and a (Baer) conic C contained in B of
PG(4,q), that is ¢ € PGL(2, q) (see also Section 2.4.1). So in PG(4, K) the points of the
ruled cubic surface V;3 are partitioned by the generators of V3 and distinct generators of

V3 intersect  in distinct points.

The quadric U in PG(4,q) extends to a quadric Qu in PG(4,K), by considering
the equation which defines U in PG(4,q) over the field K. Each generator line of
1723 intersects the quadric Qu in 1 or 2 points unless the generator is contained in Qu.
Consider the line directrix p of B in PG(4, q). The line p is disjoint to U in PG (4,q),
and therefore in the quadratic extension, the intersection pﬂa* is a pair of points A, A?
of p, conjugate with respect to the extension GF(g*) of GF(g). Thus for the line p in
PG(4, K), the two points A, A7 are the only points of the quadric Qy incident with p.
In PG(4, K) the sextic curve v is the intersection of the ruled cubic surface V2 and the

quadric Qy.

Suppose the sextic curve 7 contains a line component g. The only lines of 1723 are the
generators and the line directrix p. Since no generator of B in PG(4, q) is contained in
U" and since p is not contained in v, the line component g of v is then a generator of 1723
and is such that the points of g belong to some field extension of GF(q). The lines g and
p of 1723 intersect in a unique point and since g C v C Qu the point g N p is then a point
of the quadric Qu. Hence g N p is either the point A or A?. Suppose, without loss of
generality, that gNp is the point A; hence the generator g of 1723 has one and therefore all
of its points in the quadratic extension PG(4,¢*) of PG(4,q) (see Section 2.4.1). Every
generator of V3 contains a unique point of the base conic C of V2, hence we denote
by X the unique point of C incident with ¢g. By definition of the ruled cubic 1723, the
points A € p and X € C of g are related by the projectivity q3 Since X X1 is a line of
PG(4,q) in the plane containing the base conic C' of B, the point X9, conjugate to X
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with respect to the quadratic extension, is therefore a point of the conic C. The points
A9 € p and X? € C are therefore related by the projectivity ¢ € PGL(2,q) and thus
the line g¢ = X%A7 is a generator line of the ruled cubic surface 1723. Since g is a line
component of v, ¢ is contained in the quadric Qy which is defined by a quadratic form
with coefficients in GF(g), namely the quadratic form which defines I in PG(4,q). It
follows that the line g9, conjugate to g with respect to the extension GF(q?) of GF(q),

is contained in @)y, and hence is a line component of 7.

We have that the sextic curve <y contains two line components g, g9, such that g and g?
contain no rational points, and therefore v\{g, g} is residually a curve C} of order 4
which contains 2¢ + 2 distinct points in PG(4,q). If C} is absolutely irreducible, then
since the 2¢ + 2 rational points of C{ are not contained in any hyperplane of PG(4,q),
we have by Theorem 1.6.8 that C# has genus g = 0 and by Theorem 1.6.10 the curve C}
has exactly ¢ + 1 rational points, a contradiction. Thus the curve C} must be reducible
over some field extension of GF'(q). The curve C} has no line components, since by the
above above arguments the lines g, g? are the unique lines in 1723 incident with p in the
points {A, A7}, the only two points of p in v = Qun 1723. The only possibility is that C}
has a pair of conic components and therefore the rational points of C} are contained in
conics of PG(4,q). But the only conics in PG(4, ¢) contained in B are Baer conics and
since 7y contains no Baer conic in B, from the earlier comments in the proof, we have a

contradiction.
We have established that the sextic curve v has no line components.

Suppose the sextic curve « contains an irreducible conic component C?. Since 7 contains
no conics in PG(4,q), the conic C2 in v is a conic on the surface V# in PG(4, K) and
therefore contains at most one rational point. The remaining 2¢ + 1 rational points of
~ are then contained in a curve C; = y\{C?} of order 4. By the argument presented
above, the curve Cf cannot be an absolutely irreducible component of v, and since vy
contains no line components, the curve C{ must be the union of two conic components
of v. We obtain a contradiction as « contains no conics in PG(4, ¢) and yet « has 2¢+ 2

rational points. Hence the sextic curve <y contains no conic components.

Suppose the sextic curve v contains a twisted cubic component C?. Since 7 contains no
line or conic components, v must be the union of two irreducible cubic curve components.

Suppose that C? is contained in PG(4, q). By Theorem 2.3.1 the irreducible cubic curves
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on B contain a rational point of p. Since v contains no rational point of p, an irreducible
cubic component C? of v is not contained in PG(4,¢q). Thus if v is the union of two
irreducible cubic curve components and neither is contained in PG(4, q), then we have

a contradiction since <y has 2¢ + 2 rational points.

The sextic curve vy therefore contains no components of lower order over any field exten-

sion, hence «y is an absolutely irreducible sextic curve with 2q + 2 rational points.

By Theorem 1.6.10 for v absolutely irreducible and with 2¢ + 2 points in PG(4, q),

12¢ +2 — (¢ +1)| < 29v/4.

Since by Theorem 1.6.8, the sextic curve v has genus g at most 2, we consider the
possibilities ¢ = 0,1,2. Both g = 0,1 give rise to a contradiction. For g = 2, on
rearranging, we have ¢ — 4,/ +1 < 0 and since ¢ is a positive prime power, ¢ must

satisfy 2 — V3 < VI<2+ v/3; a contradiction if ¢ > 13.

We now give a “dual” argument to show that if |[B NU| # 2¢ + 2 for any B-M unital
and any Baer subplane of PG(2,¢?), then |BNU| # 0 for any B-M unital and any Baer
subplane of PG(2, ¢?). The same argument can be used to show that if there is no B-M
unital and Baer subplane of PG(2,¢?) with exactly 2¢ + 2 — m points in common for
some fixed m satisfying 0 < m < 2q + 2 then there is no B-M unital and Baer subplane

of PG(2,q?) with exactly m points in common.

Above we have shown for B a Baer subplane and I a B-M unital, with base ovoid an
elliptic quadric, in PG(2, ¢%), with ¢ > 13, that |B NU| # 2¢ + 2. Recall that the plane
PG(2, ¢?) is isomorphic to the dual plane of PG(2,¢?). The dual B? of a Baer subplane
B of PG(2, ¢?) is a Baer subplane of the dual plane. The dual of a B-M unital U, with
base ovoid an elliptic quadric, is a B-M unital Hd, with base ovoid an elliptic quadric, in

the dual plane (see [6], [26]). Using the definition of dual structures and Theorem 4.0.4,

IBYNI{’| = (The number of lines of B which when extended are tangent lines of If)
= 2¢+2—|BNU|
and since |BNU| < 2q + 2, we have |B® N’ > 0. This concludes our proof. O

So by Theorem 4.1.4, for a Baer subplane of PG(2,¢?) and a B-M unital U with elliptic
quadric as base, there are restrictions on the values |B NI| can take, for ¢ > 13. In fact

the arguments used in the proof of this theorem can be used to show that as ¢ increases
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the bounds on |B N U| further restrict the possible values, for a Baer subplane B and
unital U as in the statement of the theorem, as follows. Let B and U be as in the
statement of Theorem 4.1.4. Suppose that B is tangent to the line at infinity at a point
P, where P is distinct from the unique point of U on the line at infinity. In Bruck-Bose
B is represented by a ruled cubic surface B and U is a set of points U in PG(4,q).
Let v denote the intersection BN U . If v is an absolutely irreducible sextic curve then,
by the arguments used in the proof of Theorem 4.1.4, the number of points R of v in
PG(4,q) is restricted by ¢, according to the following table.

Restriction on R = |y| = |BNU|
qg>13 0<R<2¢+2
qg> 16 1<R<2¢+1
qg> 17 2< R<2q
qg>19 3<R<2¢—-1
qg>21 4<R<2¢—-2
etc. etc.

Corollary 4.1.5 Let U be a unital in PG(2,¢%), ¢ > 13, and ¢ odd. If there exists
a Baer subplane B of PG(2,q%) with no point in common with U, then U is not a
Buekenhout-Metz unital.

Proof: Suppose U is a Buekenhout-Metz unital in PG(2, ¢%), then in Bruck-Bose U is
an ovoidal cone U with elliptic quadric as base since g is odd. Then by Theorem 4.1.4
for any Baer subplane B of PG(2,q?) we have |[BNU| > 1 and so no Baer subplane of
PG(2,¢?) is disjoint from U. The result now follows. O

Note that at present all known unitals in PG(2, ¢?) are Buekenhout-Metz unitals (see
[26]).

Finally, we include the statement of the very recent result of Barwick, O’Keefe and
Storme [14] which characterises Buekenhout-Metz unitals in translation planes mg of
order ¢? which can be represented in 4—dimensional Bruck-Bose. Note, in the following
theorem, a parabolic unital in 7y is a unital for which the translation line £, of the plane

is a tangent line of U; also, linear Baer subplanes of mq2 are those Baer subplanes B of
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g2 such that B is represented by a (transversal) plane in the 4—dimensional Bruck-Bose

representation of mg.

Theorem 4.1.6 [14] Let U be a parabolic unital in a translation plane mp of order ¢*

kernel containing GF(q).

Then U is a Buekenhout-Metz unital if and only if every linear Baer subplane of mp

meets U in 1 modulo q points. O

4.2 Examples and quartic curves

Let U be a Buekenhout-Metz unital re (7, £) and with an elliptic quadric as base in
PG(2,¢%). Let B be a Baer subplane of PG(2,¢%) such that |BNU| = 2¢ + 2, the
maximum possible number of points by Theorem 4.0.3. By the results of the previous
section, the unital If is necessarily non-classical and the Baer subplane B is necessarily
tangent to the line at infinity £, at a point P distinct from the unique point T of U on
Loo.

In this section we shall give some specific examples in PG(2, ¢%), ¢ < 13, of this situation;
further, we show that in this case the points BN U are points of a quartic curve in B

with P a double point of the curve.

In Bruck-Bose, B is a Baer ruled cubic surface B with line directrix p a line of the regular
1—spread S in a hyperplane ¥, of PG(4,¢), in the usual notation. The element p of S
is the Bruck-Bose representation of the point P = B N £y, in PG(2,¢?).

The unital I/ in Bruck-Bose is a quadric cone U in PG (4, q) and so has an associated
quadratic form with coefficients in GF(q); a point in PG(4, ) has coordinates given by

(0, T1, Ta, T3, T4) for some z; € GF(g) and not all zero.

By Theorem 1.7.3, the ruled cubic surfaces in PG(4, q) are projectively equivalent and
hence we can choose a coordinate representation of PG(4, q) such that the ruled cubic

surface B is the ruled cubic surface RS whose points are given by,

{(2®, 2y,9%, 2z, 2y); z,y € GF(q), (z,y) # (0,0), z € GF(q) U {00} }.

By the results of Section 2.6, the Baer subplane B may be identified with PG(2, ¢) with
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point coordinates
{(z,y,2); z,y,2 € GF(q) ,y,z not all zero }

and such that the line directrix of the ruled cubic surface corresponds to the point
P(0,0,1) in B. In an abuse of notation, we have chosen coordinates conveniently to
represent B as the Baer subplane PG(2,q). The unital U and the line at infinity £, will
therefore be given by new coordinates but we retain the same notation; thus P(0,0,1) is
the unique point of B on £y. In Bruck-Bose, U is still a quadric cone U, the image of
the original quadric cone under a projectivity of PG(4,¢), and so denote its quadratic
form by

Q(xo,xh T2, 23, $4)~

The points of PG(2,¢%) in the intersection B NU are therefore the points (z,y, z) in
PG(2, q) satisfying,
Q(m2’ my’ yz’ zm’ zy) . 07

this is a polynomial of degree 4, homogeneous in z,y, z and so represents a quartic curve
Ctin B = PG(2,q). Moreover the highest degree of z in the polynomial is 2 and so the
quartic curve has a double point at P(0,0,1) by Section 1.6. This is consistent with the
fact that in Bruck-Bose, the spread element p which represents P(0,0,1), is a line and
so intersects the quadric U" in two points; these two points lie in a quadratic extension
PG(4,q?) of PG(4,q), since in PG(4, q), U and p are disjoint. Thus in PG(2, ¢%), every
line of B = PG(2, q) through P intersects the quartic curve Cf twice at P.

We note also that for small values of ¢ computer searches have verified that there exist
examples of Buekenhout-Metz unitals with elliptic quadric as base and Baer subplanes
of PG(2,q?) such that the unital and Baer subplane are disjoint; hence there are also
examples of the dual case where such a unital and Baer subplane intersect in 2q + 2

points. We include one such example.
An example in PG(2,9):

Consider the primitive polynomial z2 — z — 1 with root (primitive element) w. The

elements of the fields GF(3) and GF(9) can be represented as follows:

GF(3) = {0,1,2}
GF(9) = {0,1,w,w?w? w!=2w5 wé w’}
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Multiplication in GF(9) is the usual operation with w® = 1. Field addition is given in

the following table.

0|1 w w? wd w W W W
1 |w* w? W Wb wd oW w
w w Wl w? wt Wb
w? Wt owt w10 W
w3 wi WS W ow
w? 1 b ¥ Ww?
wd w w wh
WS w?
w’ ws

Consider the B-M unital U, with elliptic quadric as base with pointset given by,
Uy = {(z,wz®+1,1); r € GF(3), = € GF(9) } U{(0,1,0)}.

The line at infinity is the line with equation z = 0, which is tangent to the unital at the
point (0,1,0) which we shall call the vertex of the unital. This form of a B-M unital

with elliptic quadric as base in PG(2,¢%), q odd, is given by Baker and Ebert in [6].

Let PG(2,3) denote the Baer subplane of PG(2,9) with points given by the coordinates
{(z,y,2); z,y,2 € GF(3), z,y,z not all zero }. Consider the following matrix with
columns the coordinates of the 13 distinct points of PG(2, 3).

0000111111111
0111000111222
1 0120120122012

Consider the projectivity ¢ of PG(2,9) associated with the matrix,
W wt 0

Hy=|1 w* 0

that is
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Let B be the Baer subplane which is the image of PG(2,3) under the projectivity ¢.
The homogeneous coordinates of the 13 distinct points of B are given as columns on the

following matrix.

o1 1 1 1 1 1 1 1 1 1 1 1
0 w w w w? w? w1 1 1 5 b Wb

0 W w W w? Wt

Of the above points of B, the following eight are points of U,.

(0,0,1) = (0,w0?+0,1)
(Lw,w¥) = (W,ww*+1,1)u"
(1,w,w?) = (W5 ww?+1,1)u?
(1,031 = (w+1,1)

(1,w?,w") = (w,ww?+0,1)w’

(1,,w) = (W ww®+0,1)w

(L,wd w?) = (Wb ww*+1,1)w?
(1,w®w?) = (whw+0,1)w!

We now analyse some properties of this set BN, in the Baer subplane B of PG(2,9).
The unique point of B on the line at infinity is the point P(1,1,0). Each line of B on
P contains exactly two points of the set B N U0, as expected, since we aim to prove
that B N U, is the set of points in B of a quartic curve with double point P. The
line wz + z = 0 in B is an external line of the set. The remaining eight lines of B are

3-secants of the set B N Uyo.

Note that each line of B contains four points and therefore if B N, had a 4-secant
in B, disjoint from the point P, the unital U, would be classical (by Lefevre-Percsy
Theorem 1.13.3.2), a contradiction to Theorem 4.0.5 since B contains 2q + 2 = 8 points
of the unital.

We want to verify in this case that B N, is a quartic curve in B with double point P.

Let 6 be the projectivity associated with the matrix,

001
Hy=|1 20
100
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that is
6 : PG(2,9) — PG(2,9)

Now consider the map o = 6¢~! which maps B to the real Baer subplane PG(2,3) and
maps P to the point (0,0,1). The image of the pointset B NU,o under o is the pointset

in PG(2,3) whose coordinates are given by the columns in the following matrix.

1 0101111
01211021
00011212

(Note that by [48, Section 2.6(iii)] a projectivity of the plane does not change the order

(degree) of a curve in the plane.)

It is now a brief exercise to verify that the above set of points in PG(2,3) lie on the

quartic curve with equation
x4y +29Y) + 2 + P + ) + 2P+ 2P =0

which has the point (0,0, 1) as a double point (see Section 1.6).

4.3 Concerning Classical Unitals in PG(2, q?)

In [24] Buekenhout showed that a classical unital I/ in PG(2,¢%) is Buekenhout-Metz
with respect to any tangent line of U; denote by £, a tangent line of /. Moreover,
in the 4—dimensional Bruck-Bose representation of PG(2,q?) with respect to £, the
unital U is represented by an ovoidal cone U in PG(4,q) with an elliptic quadric as
base. Since the plane is the Desarguesian plane PG(2, ¢?), the spread S in the Bruck-
Bose representation is a regular 1—spread of a fixed hyperplane X, of PG(4,¢q), in
the usual notation. In [60], Metz showed that for a given regular spread in X, there
exist non-Baer conics in PG(4, q) in planes about the spread elements. Metz used this
fact to construct Buekenhout-Metz unitals with elliptic quadric as base and which are

non-classical unitals in PG(2, ¢?).

Let U be a non-classical unital with the above Metz construction in PG(2,4¢%). So in

Bruck-Bose with respect to a given fixed spread S, the unital is an ovoidal cone U
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with elliptic quadric as base and such that there exists a plane £* of PG(4,¢) about an
element p of the spread S, for which £* N U isa non-degenerate non-Baer conic C*. In

PG(2,4?), £ corresponds to a secant line £ of U for which £ NI is not a Baer subline.

Denote by ¢ the spread element of S in the ovoidal cone L_{*; note that ¢ is distinct from
p. By setting up a projectivity ¢ between ¢ and C* in PG(4, q) we obtain a set V3 of
g+ 1 lines X X% where X ranges over the ¢+ 1 points of t. The set so obtained is a ruled
cubic surface V3 with line directrix ¢ and a conic directrix C* by Section 1.7. Bernasconi
and Vincenti [15, Section 2] proved that there exists a regular spread S’ of 3, for which
V3 is a Baer ruled cubic for the Desarguesian plane 7 = 7(S’) (see Theorem 2.4.1).
Note that the line p is a spread element of &’ and C* is then a Baer conic representing
a Baer subline C' of 7(S'). Consider U in PG(4,q) with respect to this new spread
S's U corresponds to a set of points U in the Desarguesian plane 7(8'), which is by
definition a Buekenhout-Metz unital (with elliptic quadric as base) in 7(S’). Moreover,
there exists a secant line of 17’, not on the vertex point of U and which intersects I/ in a
Baer subline C. Hence by Theorem 1.13.3.2, U is a classical unital in the Desarguesian

plane 7(S8').

Hence for any non-classical B-M unital I{, with base ovoid an elliptic quadric, in
PG(2,4?), in Bruck-Bose it is easy to construct, by the above procedure, a new reg-

ular spread &' in T, for which I is a classical unital in the Desarguesian plane 7 (S').

We have shown,

Theorem 4.3.1 [27] In PG(2,¢?), every non-classical Buekenhout-Metz unital U with
elliptic quadric as base is inherited from a classical unital U in PG(2,q%), by a procedure
of switching regular 1—spreads of ¥ = PG(3,q) in the 4—dimensional Bruck-Bose
representation of PG(2,q?) in PG(4,q). O
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Chapter 5

A characterisation of

Buekenhout-Metz unitals

The known unitals in PG(2,¢?) are to within collineation Buekenhout-Metz unitals,
namely a unital whose representation in Bruck-Bose is isomorphic to that given in Sec-
tion 1.13.3. In [24] the classical unitals were shown to be B-M and it was proved that for
certain ¢ even that there exist non-classical (B-M) unitals in translation planes of dimen-
sion 2 over their kernel. Metz showed in [60] this class of unitals contained non-classical
unitals for all ¢ > 2. The Buekenhout unitals, that is the unitals with construction given
in [24, Section 3., Theorem 4] were shown in [10] to be classical and therefore B-M. In
[26], see also [6], the dual of a Buekenhout-Metz unital in PG(2,¢*) was shown to be
B-M in PG(2,¢?) and thus all known unitals in PG(2, ¢*) are B-M unitals.

There exist many characterisations of B-M unitals and classical unitals, see for example

Theorems 1.13.3.1, 1.13.3.2.

The B-M unitals in PG(2, ¢%) were characterised by Lefevre-Percsy as follows (a variant

of Theorem 1.13.3.1):

Theorem 5.0.1 [56] Let U be a unital in PG(2,¢%) where ¢ > 2 and let £y, be some
tangent line to U. If all Baer sublines having a point on £y, intersect U in 0,1,2 or ¢+1
points, then U is a B-M unital re (T, £y,) for T the unique point of U on L. a

In [26] the Lefévre-Percsy (Theorem 5.0.1) characterisation in PG(2, ¢*) was improved

in the cases ¢ even and ¢ = 3 by weakening the hypotheses to give the result:
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Theorem 5.0.2 [26, Theorem 1.3] Let U be a unital in PG(2,¢?), where ¢ > 2 is even
or ¢ = 3. Then U is a B-M unital if and only if there exists a point T of U such that the

points of U on each of the q* secant lines to U through T form a Baer subline. a

In this chapter, we extend the result of Theorem 5.0.2 by proving it for ¢ > 3; we

therefore obtain

Theorem 5.0.3 [68] Let U be a unital in PG(2,¢%), ¢ > 2. Then U is a B-M unital if
and only if there exists a point T of U such that the points of U on each of the ¢* secant

lines to U through T form a Baer subline.

5.1 Proof of theorem

Let U be a unital in PG(2, ¢?), where ¢ > 3, with the line at infinity £, a tangent line of
U. Let T = £, N U and suppose that the points of i on each line of PG(2, ¢*) through

T, and distinct from £, form a Baer subline.

Represent PG(2,¢%) in PG(4,q) as in Section 2.1 with the notation introduced there.
The unital I corresponds to a set of points i in PG(4,q). As observed in [26], the above
hypothesis is equivalent to the hypothesis that U consists of a spread element t together
with a union of ¢* lines I5, 13, . .. g2 of PG (4, ¢)\Xwo, each meeting ¢ but pairwise having
10 common point in PG(4,q)\Se . We call If (i =1,... ,¢%) a generator line of U . In

[26], with a sequence of lemmata, the following result is obtained:

Lemma 5.1.1 [26] U is either a B-M unital or U has the following structure:
The generator lines of U fall into q oval cones Cy,... ,Cq, with distinct vertices
Vi,...,V, respectively. Each cone has g+1 generators, namely the line t and q generator

lines of U". The cones pairwise intersect in t and have a common tangent plane © (about

t) which is contained in Lo, . Cone C; lies in a 8-dimensional space &; (i = 1,... ,q)
and the spaces Yoo, L1, - - -  Bq have the plane m as common intersection. We call each
Y; (i=1,...,q) a conespace. i

We now prove Theorem 5.0.3
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Theorem 5.1.2 Let U be a unital in PG(2,q?), where ¢ > 3. Then U is a B-M unital if
and only if there exists a point T of U such that the points of U on each of the q* secant

lines to U through T form a Baer subline.

Proof: The “necessary” result is well known; it follows from the construction of a B-M

unital, see Theorem 1.13.3.1. We now prove “sufficiency”.

In PG(2,q%), ¢ > 3, let T be a point of a unital U such that the points of I on each
of the ¢? secant lines to U through T form a Baer subline. We may assume the tangent

line to U at T is Loo.

Suppose U is not a B-M unital. By Lemma 5.1.1, U has the g-cone structure defined
there.

Let o be a plane of PG(4,q)\Zoo representing a secant line of I/, not through T, in
PG(2,4¢%). Then « is a plane about a line m of the spread S, m being distinct from ¢.

Choose two generator lines [}, [; from distinct cones of U" and incident with o. Let
Li=lNa
Ly=0Na.

By Lemma, 2.2.6, there exist ¢ Baer conics in a\m containing the points L} and L3. By
Lemma 2.2.11, for each such Baer conic there exist ¢+ 1 Baer ruled cubics containing the
Baer conic and ¢; each Baer ruled cubic is determined completely by joining L] to a point
of t. Thus, there exist ¢ Baer ruled cubics containing the line /; and the point Lj. By
Theorem 1.2.1, no two Baer ruled cubics containing /7 and L3 contain the same generator
line through L% and therefore there exists a unique Baer ruled cubic B containing the
generator lines [} and I3 of U". Let C* be the Baer conic BN« and let B be the Baer
subplane of PG(2, ¢*) represented in PG(4,q) by B.

Let g3, ... ,g;,, together with /] and [; be the generators of B; let 13,13, 93, ... , g; pass
through vertices V1, V2, Vs,... ,V, respectively on ¢ and gj,, through the unique non-
vertex point of ¢ (see Lemma 5.1.1). Clearly g, is not a generator line of U". None
of g3,...,g; are generator lines of U as by Lemma 4.0.3, B can intersect I{ in at most

2q + 2 points.

The plane (g}, ;,t) is a plane of PG(4, g)\Ze about ¢ and therefore contains exactly one

generator line [* of U'. Asl*n ;1 1s necessarily an affine point, by counting the number
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of affine points in BN U" together with t we obtain,
|BNU| > 2q+ 2.

By Lemma 4.0.3 we have,
|BNU| = 2g+ 2.

Hence no line g} (i = 3,...,¢q) can intersect U in an affine point. The plane (g}, )
(i = 3,...,q) is a plane of PG(4,¢)\Es about ¢ and therefore contains a line [} of
U" which, from above, intersects ¢ in the vertex V;. Since the generators of cone C; are
contained in the 3-dimensional space £; we have that B has a generator in each conespace

21; (’Lzl, ,q).

Let @ be the unique point of intersection of the plane o and the plane 7, the common
tangent plane to the cones C; (i =1,...,q). Note that Q = aNm = mNm, and m is not
a tangent to the Baer conic C* in «. Hence, if ¢ is even @ is not the nucleus of the C*.
Since ¢ > 3, there exists a secant line of the Baer conic C* through @, incident with C*
in two (distinct) points M}, M} say, such that neither point is on the line gg,,. But then
M}, M} belong to two distinct generators of B belonging to distinct conespaces X;, 3,
say. Hence both M} and M7 belong to =, a contradiction. Hence, by Lemma, 5.1.1, U is
a B-M unital. a

Note that in the case ¢ = 3, the possibility exists that there is no secant line of C*
through @ which does not intersect g;,, and in that case the secant line may lie in a

unique conespace. For this reason the above proof is not valid when ¢ = 3.
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Chapter 6

Maximal Arcs, Inversive planes and

T3(0)

In this chapter we investigate the relationship between Thas maximal arcs and egglike
inversive planes. We show that a Thas maximal arc has an associated egglike inversive
plane isomorphic in a natural way to an inversive plane obtained from the generalized
quadrangle T3(0©), by the method given in Theorem 1.16.3. We also show the inversive
plane obtained from a Thas maximal arc is isomorphic in a natural way to an inversive
plane obtained from a certain Buekenhout-Metz unital. The relationship between inver-
sive planes and Buekenhout-Metz unitals was recently explored by Barwick and O’Keefe

in [13]; see also [6, Section 5.] and [92].

6.1 Maximal arcs and Thas maximal arcs

Let K be a Thas maximal arc in a translation plane 72 of order ¢* with associated Bruck-
Bose construction as given in Section 1.15 and the notation introduced there. Thus
has a Bruck-Bose representation I, in PG(4, q), where X, denotes a fixed hyperplane of
PG(4,q) and S is a fixed 1—spread of L. The translation line of 7z, which we denote
by £ and call the line at infinity, is represented in Bruck-Bose by the hyperplane ¥u;
the points of £, corresponding to the elements of the spread S of ¥,. The Thas maximal
arc K is defined by a 3—dimensional ovoid O in ¥, with the property that each element
of S contains exactly one point of O. The points of K in Bruck-Bose, are the points of

PG(4,q)\X contained in an ovoidal cone with base ovoid O and vertex a point X in
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PG(4,9)\Ew. Note that by definition / is an external line of the Thas Maximal arc
K. In an abuse of notation we shall use X to denote the base point of K in 7 and also

to denote the image of this point in the Bruck-Bose representation.

Denote by 01, ... ,04241 the points of the ovoid O in ¥, which defines the Thas maximal
arc K. Call the lines of Xo;, i =1,...,¢%>+ 1, in PG(4,q), generator lines of K. Let
m,, denote the unique tangent plane to O in %, at the point 0;, 2 =1,... ,q%>+1. Recall
that the unique spread line through a point o; of O is contained in the tangent plane m,,
at o;, since the plane 7, contains a spread line and each spread line contains a unique
(and therefore at least one) point of O. Denote by s; the spread line incident with the
point o; of O.

There exist ¢ + 1 hyperplanes of PG(4,¢) which contain the plane (X,s;), for a fixed
point o; of the ovoid O. The hyperplane (X, 7,,) contains the unique generator line Xo;
of K and therefore the g—1 planes in (X, 7,,) about the spread line s;, besides 7,, and the
plane (X, s;), represent the ¢ — 1 external lines of C on the point at infinity represented
by s;. These g — 1 external lines together with £, are all the external lines to K on the

point at infinity of 7,2 represented by s;.

The remaining ¢ hyperplanes on (X, s;) each intersect the ovoidal cone in an oval cone.
Let ¥ be such a hyperplane, so that ¥ contains g generator lines of K besides Xo;.
Planes about s; in £, besides ¥ N X, intersect the oval cone in ¢ points of K and of
these planes all, except (X, s;), intersect the same g generator lines of K. We have the

following well known result:

Result 6.1.1 Let K be a Thas mazimal arc with base point X and azis line {y in a
translation plane 7,2 of order ¢?, where Lo is the translation line of m2. Let P be a
point of L, then the secant lines of K incident with P besides X P are partitioned into

q classes of ¢ — 1 lines such that the lines in a class intersect the same generator lines

of K.

6.2 Excursion into T3(O)

In this section we recall the definition of the generalized quadrangle T3(0) and some of

the well known properties of this generalized quadrangle.
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Consider the generalized quadrangle T3(O), defined with the ovoid O in PG(3, q) as per
Result 1.16.4 with the notation introduced there. Let X be a point of type (3) in T3(O)
and let Y be the point (co) and so X Y. Now

{X, Y}J_ = {(X, o). (X, 7r0q2+1>}

where 01, ... ,0424; are the points of the ovoid O and m,, is the tangent plane to O in
PG(3,q) at the point o;, s = 1,...,¢> = 1. The points in {X,Y}* are points of type
(72) in T3(O).

Let Z1, Zo, Z5 be three distinct points in {X, Y }*, then {Z:, Z,, Z3} is necessarily a triad
by GQ axiom (iii). Considering Z1, Zs, Z3 as hyperplanes of PG(4,q), Z1NZyN Z3 is a
line XQ on X which intersects Yo in a unique point @ and @ ¢ O. Thus in T3(0),

{Z,, Z,, Z3} - = {points of the line XQ\{Q}} U {Y}.

A point of {Z1, Z,, Z3}1+ is therefore a point of type (44), since such a point is collinear
with Y, contains X and contains all points o; of O such that @ is incident with the plane
To;. For any ovoid O in PG(3,¢), a point Q € O lies in the tangent planes of exactly
q + 1 points of @ and the corresponding g + 1 points of O constitute an oval in O [69].
We have therefore that |{Z, Z2, Z3}1+| = ¢+ 1 and since Z, Z,, Z3 are three arbitrary
and distinct points in {X,Y, }* we have that every triad in {X, Y} is 3-regular.

Alternatively one could argue that since Y € {Z1, Z2, Z3}* and since Y is 3-regular,
the flag (Y,£) has property (G) , for all lines £ of type (b) and therefore every triad
{Z1, Zs, Z3} is 3-regular.

If we let X be a point of type (i) in T3(0O) and let Y be the point (co), then from the
above discussion we can apply Theorem 1.16.3 and construct an inversive plane Ix3(O)

from T3(O) as follows (see also the proof of [67, Theorem 5.3.1]).

Result 6.2.1 For the generalized quadrangle T3(O) let X be a point of type (i) and let

Y be the point (o). The associated inversive plane Ix3(O) is defined as follows:

Points: Hyperplanes (X,7,,), t =1,...,¢° + 1.
Circles: Al sets {(X,74),.. ,{X, 7r0;+1)} where {0}, ... ,0},,} are the points of

an oval (plane section) of O.
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6.3 Thas maximal arcs and Inversive planes
Motivated by [92] we have the following definition.

Definition 6.3.1 An O’Nan configuration is a set of sixz distinct points with the fol-
lowing properties. The set contains four distinct points A, B,C,D of which no three
are collinear and the remaining two points E, F are such that {E} = AC N BD and
{F} = ABNCD. The siz points A,B,C,D, E, F' are called the vertices of the config-

uration.

Let K be a maximal arc in a projective plane 7, of order ¢q. Let X be a point of K.

We say K satisfies property

Ix: If K contains no O’Nan configurations with X a vertex.
IIx: Iflis a secant line of K not through X, m a secant line of K through
X meeting ! in a point of K and Y (# X) a point of K on m, then there
exists a line I’ # m incident with ¥ and meeting every line through X
that meets | and such that !’ intersects each such line in a point of K.)
We now show that a Thas maximal arc K with base point X satisfies Iy and IIx and

these properties lead to defining an inversive plane associated to the Thas maximal arc.

Let K be a Thas maximal arc with base point X in a translation plane 7, of order ¢
with translation line £,. Note that 7,2 has a Bruck-Bose representation in PG(4, q) with

the usual notation.
Lemma 6.3.1 K satisfies Ix.

Proof: Suppose there exists an O’Nan configuration in X with X a vertex. Let m;
and ms be the two secant lines of I not incident with X in the configuration. Let
P; be the point of intersection of m; and fo, ¢ = 1,2. The three points of K on m,
in the O’Nan configuration correspond to three generator lines [1,l,l3 of K and my
intersects these same generator lines of K in the O’Nan configuration. By Result 6.1.1 and
the comments preceding it, in the Bruck-Bose representation of g2, l1,1s,[3 generate a
hyperplane of PG(4, ¢)\ X which contains the spread lines corresponding to P, P, € £y,
a contradiction since X, is the only hyperplane of PG(4, q) which contains two distinct

elements of the spread S. Therefore there exist no O’Nan configurations in K with X a

vertex. O
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Lemma 6.3.2 C satisfies [Ix

Proof: Let | be a secant line of X not on X and let I N 4y, = {P}. The result now
follows from Result 6.1.1. O.

Consider the incidence structure I defined by:

Points: generator lines of K
Blocks: secant lines of K not incident with X; identifying blocks with their
points and using the property ITx to eliminate repeated blocks

Incidence: is inherited from the translation plane

Lemma 6.3.3 I is a 2-(¢> +1,q,q — 1) design.

Proof: There are g% + 1 generator lines of K, corresponding to the points of the ovoid
in the construction of &, therefore the number v’ of points of I is ¢> + 1. A secant line
of K which is not incident with X intersects q generator lines of X, hence the number &'

of points in a block is gq.

By Result 6.1.1, each point of £ corresponds ¢ distinct blocks of I,'C and since each
secant line of K intersects /4, in a unique point, blocks corresponding to distinct points

of £, are distinct. Therefore the number ¥’ of blocks of Iy is therefore g(q>+1) = ¢ +4¢.

By Result 6.1.1 there exist ¢ — 1 secants on a point P € £, which define the same block
of Iy.. A generator line of K has ¢ — 1 points of K besides X and there exist q? secant
lines not containing X through each such point. Therefore in I, ,’C, the number 7’ of blocks

containing a point is ¢*(q — 1)/(g — 1) = ¢*.

Consider two generator lines of ; they each have ¢ — 1 points besides X. From above a
block is defined by ¢ — 1 distinct secant lines of K and therefore the number A, of blocks
containing two fixed points is (¢ — 1)?/(¢—1) = ¢ — 1.

It follows that I is a 2-(¢°> +1,¢,q — 1) design. O

We have that a block, Bp say, of I,'C is determined by q — 1 distinct secant lines of K
each incident with a common point P € £,. Thus to each block Bp in I,/C is associated
a unique point not incident with the block, namely, the generator line of X on the line

X P. We use this fact to define a new incidence structure as follows.
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Definition 6.3.4 Let Ix be the incidence structure defined by:

Points:  generator lines of K
Circles: {{Block Bp of I, }U{ the generator line of K in X P} ; for all blocks Bp
in I}

Incidence: containment

Lemma 6.3.5 The incidence structure I is a 8-(¢2+1,q9+1,1) design, namely a finite

inversiwe plane of order q.

Proof: Ix has the same number of points and blocks as Iy therefore v = v' = ¢% + 1

and b= b = ¢ + q. The number & of points in a block of Ix is b= +1=¢+1.

The number r of blocks on a fixed point of I is given by
r = r'+{ the number of blocks of I;. determined by secant lines on a fixed point of £,,}

Using the definition of blocks of [ ;c and Result 6.1.1 we have r = ' + ¢ = ¢*> + ¢.

It remains to show that for any three distinct points of Ix there exists a unique block

containing them.

Let [y, 15, I3 be three distinct points of I, that is, /1, 2, [3 are three generator lines of K in
the Bruck-Bose representation of the translation plane. The three lines span a hyperplane
¥ in PG(4, q) which intersects 3, in a plane containing a unique spread element; denote
this spread element by P. Since the hyperplane ¥ intersects the ovoidal cone of the Thas
maximal arc in three generator lines, ¥ contains an oval cone of generator lines. Thus
the planes in ¥ about P represent secant lines of X and define a unique block of Ik

containing the points Iy, I, [3.

We have shown therefore that I is an inversive plane. O

Theorem 6.3.6 The inversive plane I associated to a Thas maximal arc K with base
point X in a translation plane T, is isomorphic to the inversive plane Ix3(O) obtained
from the generalized quadrangle T3(O) (defined in the PG(4,q) with ovoid O of the
construction of K.)

The inversive planes are egglike.

Proof: The result follows from the above discussion of the construction in PG(4, q) of

I and Result 6.2.1. O
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Remark: The inversive plane associated to a Buekenhout-Metz unital (see Barwick
and O’Keefe [13]) is isomorphic in a natural way to the inversive planes of Theo-
rem 6.3.6 defined with the same ovoid O of PG(3,q), since both Thas maximal arcs
and Buekenhout-Metz unitals are defined using a 4—dimensional ovoidal cone with base

ovoid a 3—dimensional ovoid O.

6.4 A characterisation of Thas maximal arcs

In this section we endeavour to find a converse to the main result of Section 6.3. We
attempt to characterise Thas Maximal Arcs with the configurational properties Ix and

IIx. We weaken our hypothesis and obtain a partial converse.

6.4.1 A sequence of lemmata

Let K be a (maximal) {¢° — ¢* + ¢; ¢}-arc in a translation plane mg of order ¢ with
kernel GF'(q), so that mp2 has a Bruck and Bose representation in PG(4, q) defined by a
spread in the hyperplane X, of PG(4,¢). Denote by £, the translation line of 7g and

suppose £, is an external line of K.

Let X be a fixed point of K.
We say K satisfies:

Ix:  (As in Section 6.3.)

IT%: Iflis a secant line of K not through X and P is the point of intersection
of lines [ and £, then there exist ¢ — 2 further secant lines of K incident
with P and which intersect every line through X that meets [ (these
intersections are all in K).

Suppose K satisfies properties Ix and IT%.

We proceed with a sequence of lemmata determining some properties of X, but first we

introduce some terminology.

Each line on X contains ¢ — 1 points of K besides X; call such a set of ¢ — 1 points of K
on a line through X a variety. For a variety V (on a line [ through X), label the point
at infinity of I, namely | N £y, by Py. We shall sometimes refer to Py as the point at
infinity of the variety V.
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Let | be a secant line of X not on X. Then [ is incident with ¢ varieties and by I[%
there exist ¢ — 2 further secants of X incident with these same g varieties and concurrent
with [ in a point P on /. Call such a collection of ¢q varieties a block b and call the
associated point P on /., the point at infinity of the block b and say b is a block
of P.

Lemma 6.4.1.1 For a point P € {,

(i)  Distinct blocks of P are disjoint (they have no varieties in common.)

(1) P 1is the point at infinity of ezactly q blocks.

Proof: Let P be a point on £.

(i) Let b; and b2 be two blocks of P. Suppose b; and b, intersect in a variety V;. Let [
be a secant line of K on P incident with b; (and therefore incident with every variety in
b1). Since [; is incident with the variety V; of block b, and I; passes through P, then [y
must be one of the ¢ — 1 secant lines of XC on P incident with every variety in by by IT%.
Since /; intersects K in exactly ¢ points, blocks b; and b; must coincide. We have shown

therefore that distinct blocks of P are disjoint.

(ii) There exist g> — ¢ secant lines of K on P besides the line X P. For each block of
P there exist ¢ — 1 secant lines of K on P which determine that block and since by (i)
distinct blocks of P are disjoint, there are exactly ¢ blocks of P. a

Lemma 6.4.1.2 Let P and Q be two points on fs, and let bp, by be a block of P,Q

respectively. Then the blocks bp and bg intersect in exactly 0,1,2 or q varieties.

Proof: If P = () then by Lemma 6.4.1.1 bp intersects b in 0 or g varieties.

If P # @, suppose bp and by have three varieties V1, V3, V3 in common; V; contained in
line l;, + = 1,2, 3, incident with X. Let R be a point of K in V;. By II%, the line RP
is a secant line of K incident with P and incident with the varieties in bp; also the line
RQ is a secant line of K on @ incident with bgy. The lines RP, RQ), l; and I3 are four
lines of an O’Nan configuration in I with X as a vertex; a contradiction, as K satisfies

Ix, thus in this case bp and bg have at most 2 varieties in common. O

Lemma 6.4.1.3 There are ezactly q3 + q blocks in K.
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Proof: By Lemma 6.4.1.1 there are q blocks corresponding to each of the ¢® + 1 points
of £, and by definition (or the proof of Lemma 6.4.1.2) a block corresponds to a unique

point at infinity. The result follows. |

Lemma 6.4.1.4 Let Vi and V, be two distinct varieties. There exist exactly g —1 blocks
containing both Vi and V5.

Proof: Let V; be on line ; through X and let V2 be on line Iy through X. Let I be
a point (of K) in V;. The join of R to each point of V; defines ¢ — 1 secant lines m;
(i=1,...,¢—1) of K, not on X and with distinct points Py,...P,_; on the line at
infinity. The line m; defines block B;, containing both varieties V; and V,, and with point
at infinity P, (for = 1,...,¢ — 1). Thus there exist at least ¢ — 1 blocks containing
both V] and V5.

By II%, for each block B; there exist ¢ — 2 further lines through P; incident with both
V; and V,, thus giving all the possible lines joining a point of V; and a point of V5. Thus
there exist exactly ¢ — 1 blocks containing both V; and V5. a

Lemma 6.4.1.5 There are ezactly ¢* blocks containing a given variety V.

Proof: Let Py be the point at infinity of a fixed variety V. For each point P on the line
at infinity besides Py, V lies in a block of P, since there exist secant lines of K on P
incident with points in V. Therefore by Lemmata 6.4.1.1 and 6.4.1.2, V' lies in exactly
one block of P (P € £,,\{Py}), with no two distinct points at infinity determining the
same block containing V. Since there are ¢? points on £, besides Py, there exist exactly

q° blocks containing the variety V. 0

Let V be the set of varieties and B be the set of blocks and with incidence I the natural

containment relation. We define an incidence structure Z' = (V, B, I).

Lemma 6.4.1.6 The incidence structure I' = (V,B,1) is a 2-(¢* + 1,q,q9 — 1) design

with parameters:

Vo= ¢?+1
o= q

¥ = ¢+g¢q
Al = g

Ay = g-—1
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Proof: Lemmata 6.4.1.1, 6.4.1.2, 6.4.1.3, 6.4.1.3, 6.4.1.4 and 6.4.1.5 determine the pa-

rameters of 7. 0O

Next we define a new incidence structure Z = (V,C, I) based on Z’. Let the set of
varieties V of Z' be the points P of Z and let
C = {{varieties in a block Bp of a point P} U {the variety contained in the line X P}
: for all blocks Bp of a point P, for all points P on /}.

Call the elements of C circles and call C the set of circles in 7.

There is a natural one-to-one correspondence between blocks of Z' and circles of Z since
each block of 7' is contained in a unique circle and conversely each circle of Z contains

a unique block of Z'.

Lemma 6.4.1.7 The incidence structure T = (V,C,1) is a 2-(¢*+1,q+1,q+1) design

with parameters

v = ¢?+1
k= q+1
b = ¢+4q¢q
roo= ¢ +q
Ay = gq+1

Proof: Now v =v' = ¢+ 1 and b = b’ = ¢3+ q using the definition of Z and the natural
one-to-one correspondence between circles and blocks. The number k of varieties in a

circle is one more than the number &' of varieties in a block, therefore k = k'+1 = ¢+ 1.

For a variety V with point at infinity P, the number of circles containing V' equals
the number of blocks containing V plus the number of blocks of P, therefore
r=r'+q=¢"+gq.

Lastly, consider two varieties V; and V, with points at infinity P, and P, respectively.
Variety V; lies in a unique block of P, and similarly variety V5 lies in a unique block of
P, and there are ¢ — 1 blocks containing both V; and V,. Therefore the number Ay of
circles containing both V; and V; is ¢ + 1. O

Corollary 6.4.1.8 The following four statements are equivalent for the incidence struc-

ture I.
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(i)  three distinct varieties are contained in at least one circle
(i)  three distinct varieties are contained in at most one circle
(111) the design T has parameter Az =1

(iv) the design I is a finite inversive plane

Proof: If three distinct varieties are contained in a unique circle, for any choice of three
distinct varieties, then T is a 3-(¢> + 1,q + 1,1) design with the parameters given in

Lemma 6.4.1.7 together with A3 = 1, that is, Z is a finite inversive plane.

Let As;, 4 =1,...,(3), be the number of circles containing three given (distinct) varieties
Vi, Vo, Vs, for all (g) possible choices of V1, V5, V3. We now count in two ways the number

of 3-flags of
()
k
Az, =b .
2 =(s)

Thus the average number A3, ave of circles on three varieties is given by

Mave = b(3)/(5)
= L

Therefore if A3, > 1 for all i then A3, = 1 for all <. Similarly if A3; < 1 for all ¢ then
A3, = 1 for all 4. O

Lemma 6.4.1.9 Let Vi and V, be two distinct varieties in a block bp of a point P
(P € £). Let l; be the lines on X containing V;, with the point at infinity of l; denoted
by Qi, 1= ]., 2.
If a Baer subplane B of mp contains P,Q1, Q2 and X then

either B contains no points of Vi or Vs

or B contains the same number of points of Vi as of Va.

Proof: Let R be a point of V; in B. Since PR and [, are lines of B, the point PRNI, is
a point of B. Since [; and [, lie in the block bp of P, by II%, the point PRN; of B is
a point on [y of the maximal arc /I, that is PRN I, is a point of V,. The same argument

holds if we suppose R is a point of V; in B.

It follows that either B contains no points of V; and V;, or B contains the same number

of points of V; as of V5. O
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We now use the results of Section 2.1 and Section 2.2 concerning the Bruck-Bose rep-
resentation in PG(4, q) of some of the Baer subplanes and Baer sublines of 7. In the
following lemmata, a linear Baer subplane of 7,2 is a Baer subplane of 7 which is rep-
resented in Bruck-Bose by a (transversal) plane of PG(4, ¢)\Xo which intersects L in
a line which is not a line of the spread S of ¥; a linear Baer subline is a Baer subline

of a line of 7,2 which is represented in Bruck-Bose by a line of PG(4,¢)\Xw.

Lemma 6.4.1.10 There ezists a linear Baer subline in mp containing X and which
contains at least one further point of K. If a linear Baer subline which contains X
contains exactly n further points of IC, then every linear Baer subline which contains X

and which contains further points of K contains ezactly n points of K besides X.

Proof: Let [; be a line on X containing a linear Baer subline /51, where [p; contains X
and contains n points of K besides X. Let lo(5£ [1) be any other line containing a linear
Baer subline lgo, with X € Igs, and such that I, contains further points of . There
exists a linear Baer subplane B of m; containing /p; and Ip> and since I, and Ip; both

have points at infinity, the line at infinity is a line of B.

Let ! be a line not through X and such that ! contains a point of X in /5, and a point
of K in lgy, then [ is a line of B and intersects £ in a point P of B. Thus, as [ is a
secant line of IC on P and hence the varieties in [; and [, lie together in a block of P.
Now by Lemma 6.4.1.9, Baer sublines /g, and g, contain the same number of points of

K besides X. The result now follows. O

By Lemma 6.4.1.10, the linear Baer sublines of 7, which contain X contain either 0 or
n further points of KC, where 1 < n < ¢—1 is a fixed integer. Moreover, since each secant
line of K incident with X contains exactly ¢ — 1 points of K distinct from X, the integer
n divides ¢ — 1.

Lemma 6.4.1.11 If w2 is the Desarguesian plane PG(2,q?), then each linear Baer
subline of w2 which contains X contains either 0 or n further points of K, where

1 <n < q—11is a fized integer such that n divides ¢ — 1.

Proof: If 72 is the Desarguesian plane PG(2, ¢%), then by 1.15.2 and since 7> contains
a maximal arc K we have that ¢ is even. Moreover in the Bruck-Bose representation

of Tz in PG(4,q) the 1—spread S of ¥y, = PG(3,q) is then a regular spread. By the
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remarks preceding this lemma we have that each linear Baer subline of 7,2 which contains
X contains exactly 0 or n further points of K, where 1 < n < ¢ — 1 is a fixed integer
and n divides ¢ — 1. Suppose that n = 1. Firstly if ¢ = 2, then K is necessarily a Thas
maximal arc in 7,2, so we consider the case ¢ > 4. Consider two distinct varieties V; and
V, of T' contained in lines #;, 45 of mp respectively. By definition ¢, and ¢, intersect in
the point X of K. Denote by P; and P, the points at infinity of ¢; and /5 respectively. In
Bruck-Bose, the points P, P, on £, correspond to distinct elements Py, Py of the regular
spread S of ¥,. In 7', there exist ¢ — 1 distinct blocks which contain the varieties V;
and V3; denote the points at infinity of these blocks by Q1,Q2,. .. ,Q4—1. In Bruck-Bose
the points @Q; correspond to ¢ — 1 distinct elements of the spread S; denote these spread
elements by Qf, ¢ = 1,...,¢ — 1. There exist ¢ + 1 reguli in S containing P;" and Py,
therefore there exists at least one regulus R of lines of & which contains P} and P; but
which contains no spread element (). Let R' denote the opposite regulus of R in ¥. In
Bruck-Bose, the lines ¢; and £, correspond to planes ¢; and £5 in PG(4, q) respectively;
both planes contain X and a line Py, Pj respectively of S.

Since n = 1, the ¢q points of K in ¢; are represented in Bruck-Bose by the point X and
q — 1 further points of £;\{P;} on distinct lines of £ through X. Similarly for the points
of K incident with #5. In Bruck-Bose, since ¢ > 4 there exists a line m in the opposite
regulus of R such that the plane B = (m, X) contains a point of K in £} besides X and
a point of K in £} besides X; denote these two points of K in B, which are distinct from
X, by Y}, Yy respectively. Each point Y;* corresponds to a point Y; in 72 incident with
the variety V; for i = 1,2. The line Y,Y5 is distinct from /., and intersects ¢, in a point
Q@ which is necessarily the point at infinity of a block containing both varieties V; and
Va. In Bruck-Bose @) corresponds to a spread element Q* contained in the regulus R
of S; a contradiction, since the regulus R contains no element which is the Bruck-Bose
representation of a point of infinity of a block containing the varieties V; and V,. Hence

n # 1 and therefore n > 1 as required. a

Note that a Mersenne prime is a prime number which can be written in the form 27 — 1
for some positive integer p which is necessarily prime (see [47, Theorem 18]). There are
31 known Mersenne primes and it is conjectured that there exist an infinite number of

Mersenne primes.
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Corollary 6.4.1.12 Suppose K is a mazimal {¢® — ¢® + ¢; ¢} —arc in the Desarguesian
plane PG(2,q?) satisfying properties Ix and IIx for some point X in K. Ifq—1isa

Mersenne prime, then K is a Thas mazimal arc with base point X and axzis line {y,. O
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