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Abstract

In this thesis we study the representation of finite translation planes in projective spaces

introduced by André [1]. This theory was also developed by Bruck and Bose 121,22] în

a distinct but equivalent form. Throughout this thesis we refer to this representation as

lhe Bruck and Bose representation or simply Bruclc-Bose. Of particular importance is

the representation of Baer subplanes of translation planes roz of order q2; lhe importance

is due to the crucial role Baer subplanes have in the characterisation of various substruc-

tures, including unitals and maximal arcs, of projective planes, as will be evident in the

text.

In Chapter 1 we present the necessary preliminary material required for the later chap-

ters. In particular we present in detail the Bruck and Bose representation [21, 22] of hhe

Desarguesian plane PG(z,qâ) and the associated coordinatisation.

In Chapter 2 we begin by reviewing the known results concerning the representation

of Baer subplanes of PG(2,q') in the Bruck and Bose representation in PG( ,q). W.

provide a new proof of the result of Vincenti [90] and Bose, Freeman and Glynn [19],

that the non-affine Baer subplanes of PG(2,q2) are represented in Bruck-Bose by certain

ruled cubic surfaces in PG(4,q) which we term Baer ruled cubic surfaces. We characterise

Baer ruled cubic surfaces in PG( ,q) for a general fixed Bruck and Bose representation

of PG(2,q') in PG( ,q). Wu determine that non-degenerate conics in Baer subplanes

of PG(Z,q2) are represented in Bruck-Bose by normal rational curves; a normal rational

curve which arises in this way is of order 2,3 or 4 and is therefore properly contained in

a plane, hyperplane or no hyperplane of PG(4, q) respectively. We apply these results

to prove the existence of certain (q'* 1)-caps in PG( ,q) which are not contained in

any hyperplane of PG( ,q) and which contain many normal rational curves of order

4. Further properties of these caps are determined in Chapter 3. We also include a

discussion of the ruled cubic surface obtained as the projection from a point P of the

Veronese Surface in PG(5, q) onto a hyperplane not containing P; in this setting we

determine some alternative proofs for our results and prove some extensions.

In Chapter 3 we investigate the Bruck and Bose representation in PG(n,q) with n ) 4.

We prove various results concerning the regular (h - 1)-spreads of PG(2h - 7, q) which

determine the Bruck and Bose representation of PG(2,qh) it Pc(zh,,g), treating the
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case h : 4 in greater detail. In particular, we prove the existence of. induced spreads

and show how the induced spreads are closely related to Bruck and Bose representation

of the Baer substructures of PG(2,q"). To obtain further properties of the higher dimen-

sional Bruck-Bose representation of the non-affine Baer substructures of the Desarguesian

plane, we make use of the Bose representation [1S] of PG(2,q'). In this chapter, we also

prove results concerning the Bruck and Bose representation of non-degenerate conics

in PG(2,q2) and we discuss the relationship between these results and the Bruck-Bose

representation of non-affine Baer sublines of PG(2,qn) ir PG(8,q).

In Chapter 4 we investigate Baer subplanes and Buekenhout-Metz unitals in PG(2,q2).

In particular we improve the known results by showing that in PG(2,q2), with q ) 13, a

Baer subplane and a Buekenhout-Metz unital with elliptic quadric as base have at least 1

point and at most 2qf 1 distinct points in their intersection. Our method of proof makes

use of the Bruck and Bose representation of PG(2,q") in PG( ,q) and the properties

of a certain irreducible sextic curve in PG(4,q). We also prove that the non-classical

Buekenhout-Metz unitals, with an elliptic quadric base, in PG(2,q2) are inherited from

the classical unitals in PG(2,q2) by a certain procedure of swapping regular l-spreads

of PG(3, q) in the Bruck and Bose representation of PG(2,q2).

In Chapter 5 we prove that a unital in PG(2,q2) is a Buekenhout-Metz unital if and only

if there exists a point 7 of the unital such that each secant line of the unital through ?
intersects the unital in a Baer subline. This is an improvement of the characterisation of

Lefèvre-Percsy [56] and an improvement of the characterisation of Casse, O'Keefe and

Penttila [26] for the cases g > 3.

In the final chapter we investigate the relationships between Thas maximal arcs, the

generalized quadrangle \(O) and egglike inversive planes. This work was motivated

by the approach of Barwick and O'Keefe [13] in investigating the relationship between

Buekenhout-Metz unitals and inversive planes (see also [6, Section 5.] and [92]). We

attempt to characterise the Thas maximal arcs in those translation planes where they

exist using two configurational properties; we do not succeed in this, but prove a char-

acterisation of Thas maximal arcs in PG(z,q2) for certain values of q.
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Chapter 1

Preliminary Results

In this chapter we collect together the main definitions, known results and constructions

we require for our original work presented in later chapters.

1.1 Incidence Structures and Designs

In this section we follow Hughes and Piper [53].

An incidence structure S : (V,6, I) is two sets V and B called varieties (or points)

and blocks (or lines) respectivel¡ with an incidence relation I C V x ß; a point P is

incident with a block (. if and only if (P, !) e I. An incidence structure ,S is finite if the

sets V and B are both finite. From now on our incidence structures are finite incidence

structures.

Given any block in an incidence structure ,S, there is a set of points incident with it

and it will be convenient to identify the block with this pointset. An incidence structure

has repeated blocks if there exist two blocks identified with the same pointset. If a

point P is incident with a block (. then we shall write PIL or P e (. and we shall use the

expressions "P is on 1", "t contains P", "/ passes through P" and similar convenient

expressions.

A t - (t, k, )) design is an incidence structure with exactly u points, no repeated

blocks, each block is incident with exactly k distinct points and each subset of ú distinct

points is incident with exactly À common blocks. Ã t - (u,k, À) design has parameters

u,k,b,r,t,) where, b equals the number of blocks, r equals the number of blocks incident
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with a point and u, lç,t,^ are defined as above.

If Sis at-(u,k,l) design,thenforanyintegerssatisfying0< slt,thereareexactly

À" blocks of ,S which are incident with any given subset of s distinct points of ,S, where

, , (i_-:)

^' 
: ^(Tl

Moreover we have the following identities for the parameters of ,S:

/ú\
1. h - l9'

(.)

2. if t > 0 then ble : uri

3. if ¿)lthenr(k-l) : ,lz(u-1).

For an incidence structure S(V,ß,I) and P a point of ,S, we define the internal struc-

ture, ,9p, of S at P to be the set of all blocks of ,S which contain P and the set of all points

of ,S, except P, which lie on at least one of those blocks and the incidence in ,Sp is inher-

ited from the incidence in ,S. In particular if ,S : (V,8, I) is at- (u,fr, l) design, then for

any point P of S the internal structure,9p of S at P is a (ú - 1) - (, - 1, k - l,l) design

with parameters
,t)' : u -t
k' : k-t
tt : t-7
\, \/\ /\

b':r
r':À2

where urkrtrÀ,b,r are the parameters of ,S.

L.2 Projective, Affine and Translation Planes

In this section we briefly present some familiar results from [52]; for further detail con-

cerning the material in this section consult [52].

A projective plane is a set of points and lines together with an incidence relation

between the points and lines such that,

(i) Any two distinct points are incident with a unique line
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(ii) Any two distinct lines are incident with a unique point

(iii) There exist four points such that no three are incident with one line

If one line of a projective plane contains only a finite number of points, then every line

in the plane contains a íinite number of points. A projective plane with this property is

called finite. We shall consider only finite projective planes in this thesis.

If n. is a projective plane, then a set rd of points and lines together with an incidence

relation such that the points (lines) of.rd are the lines (points) of zr and two elements of

rd are incident in rd if and only if they are incident in zr, is a projective plane. ø.d is called

the dual plane of zr'. Projective planes satisfy the Principle of Duality: Let A be any

theorem about projective planes. If A* is the statement obtained by interchanging the

words poi,nts and li,nes, then A* is a theorem about dual planes. Hence ,4* is a theorem

about projective planes (see [52, Theorem 3.2]).

Let ¡r be a finite projective plane, then there exists a positive integer n ) 2 such that

each line of z¡ is incident with exactly n * 1 points and each point of zr is incident with

exactly rz * 1 lines. z- contains exactly n2 + n* 1 points and n2 * nll lines. The integer

r¿ is then called the order of n'. All known finite projective planes have prime power

order (see [52, Section III.2]).

For a fixed line [.oo of zr, denote bV off(") the set of points and lines of zr obtained by

deleting [.oo and all its points; the incidence in aff(") is inherited from zr. We write

aff("): zr\l- or aff(tr) : T t*. Then otr(") is an affine plane of order n and we call

[.* the line at infinity of aff(tr) and call the points on [* the points at infinity. Two

lines in aff(tr) are parallelif they do not intersect in aff(tr); parallelisrnin aff(tr) is an

equivalence relation and in this way each point at infinity in zr corresponds to a unique

parallel class of lines in aff(tr).

A collineation of a finite projective plane n is a bijection from points to points and

lines to lines; a collineation preserves collinearity. An elation with axis /- and centre

X is a collineation of zr which fixes all points of a line (.oo of n and fixes all lines through

a point X e [.*. If the group of elations with axis (.oo in zr is transitive on the points

of zr not incident with /-, then the finite projective plane z- is a translation plane

with translation line /oo. In this case the affine plane aff(tr): zr\l- is also referred

to as a translation plane, however the context in which these terms are used in the
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text should make the meaning clear. (See [52, Chapter IV, section 5.] or [33, Section

3.1.22] for further details). Throughout this thesis we call the translation line (.oo of. a

translation plane r the line at infinity.

A finite projective plane zr is called Desarguesian if it satisfies a certain configurational

property for any choice of point 7 and line (. in r. A theorem of Baer, [52, Theorem

4.29), relates this configurational property of the plane to a collineation group property

of the plane. Moreover, Baer's result states that a projective plane zr is Desarguesian if

and only if n is a translation plane with respect to a line (. for every choice of line (. in r.

Consequently, for a Desarguesian projective plane z' and for any line /oo in zr, the affine

plane aff(tr): ø\loo is a translation plane'

For q a prime pov/er, the Galois field plane PG(2,q) is the unique Desarguesian finite

projective plane of order g (see [33, Section 1.4]).

A subplaÍre 'rT"/n of a finite projective plane rn of order n is a subset of the elements of

n' which form a projective plane having the same incidence as'rr,". A subplane r* of. rn

is called proper lf r* f rn.

Bruck's theorem ([52, Theorem 3.7]) states that if a finite projective plane rn of order n

contains a proper subplane r^ of. order m, then either n : rn2 or n ) m2 +m. If. n: m2

then the subplane r* of order rn is called a Baer subplane of the finite projective plane

r^z of order n:m,2.In this case each point inr^t\tr* is incident with a unique line of

r^ and each line .( of.r*, is either a line of.r^ (and so intersects r*inm*l'-n*!
points) or I intersects r^ in a unique point. If a line / intersects a Baer subplane B of

r,,z in mlL points, then the intersection (.¡B is called a Baer subline (of t) in B.

Much of this thesis is devoted to examining Baer subplanes and utilising the properties of

Baer subplanes; particularly in the case of the Desarguesian projective plane PG(2,q2)

of square order q2. We include the following results for later reference.

Theorern L.z.L [29] [33, Result 3.2.77] In PG(2,Q2), a quadrangle (four di,stinctpoints

no three colli,near) is contained in a unique Baer subplane of PG(2,q2). ¡

It follows from TheorcmL2.7 that for a line !.in PG(2,Q2), any three distinct points

of {. are contained in a unique Baer subline of /. Moreover, by Theorem 1.2.1, the

Desarguesian plane PG(2,q2) contains exactly q3(.q3 +I)(q'+1) distinct Baer subplanes.

In the following characterisation of Baer subplanes of PG(2,82), a blocking k-set in
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PG(2,q') ir a subset of fr points of PG(2,q2) which meets every line but contains no line

completely (see [48, Section 13.1]).

Theorem 1.2.2 [48, Theorem 13.2.2] In PG(2,q2), il B i,s a blocking (q'+ q*7)-set,

then B i,s a Baer subplane of PG(2,q2). tr

1.3 Projective Spaces

We briefly present some results of [48, Chapter 2] to establish terminology and notation.

Let V : GF(q"+l) be the (n + 1)-dimensional vector space over GF(q) with origin 0.

With respect to some basis of V,,lhe elements of I/ are of the form X : (x;0,rt,... ,rn),

where r¿ e GF(q). For X : (ro,ïtt...,rn), Y : (Ao,Ut,...,gn) inV, therelation

X : Y if and only if r¿: ÀU¿, for all 'i:0,1,... ,fl
forsome)eGr(q)\{O}

is an equivalence relation on the vectors in V\{0} with equivalence classes the one-

dimensional subspaces of V with the origin deleted. The set of equivalence classes is an

n-dimensional projective space over GF(q) and is denoted by PG(n, q). For each

X e V\{0}, the equivalence class containing X is a point in PG(n,q). Consequently,

the number 0(n) of points in PG(n,q) equals

IPG(n,q)l: 0(n) : n"lt .' : qntqn-r+...+ q+r.q-7
It will be convenient to take the standard basis for I/ over Gf(ù and to use

X : (ro,rt¡... ,r,,) to denote the point of. PG(n,q) which contains X e V; we write X

is a point of PG(n,q) with homogeneous coordinates X: (*o,rt¡... ,rn) to mean

that the coordinates l(r¡, nr¡...,rn), À e GF(q)\{0}, represent the same point X in

PG(n,,q).

A subspace of dimension m, or m-space, of PG(n,q) is a set fI- of points all of

whose coordinates form (together with the origin) a subspace of dimensiorr n1, f 1 of I/.

For 0 1m 1n, the number ó(*;n,q) of. m-spaces of PG(n,q) is given by,

r, , (q"*t-r)(q"-1) ...(qn-m+I -r)Q\m)n,ø) : '

An (n, - 1)-space of PG(n, q) is called a hyperplane (or prime); the set of points

X: (*o,ït¡... ,rn) in PG(n,q) in a hyperplane X2-1 of PG(n,q) satisfy an equation

0,6rs i 0,117 I ... I anrn : g
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where the coefficients ø¿ e GF(q) are not all zero. We shall call [øs, at¡... ,an] the

(hyperlane) coordinates of the hyperplane X",-r.

If II" and II, are subspaces of PG(n,q) of dimension r and s respectively, then:

1. the intersection of fI" and fI, is written fI" O flr;

2. lhejoin or span of fI, and fI" is written fI"fI, or (tr",n") and is the smallest

subspace of PG(n,q) which contains fI' and flr;

3. Dimension Theorem (Grassman's ldentity) Let dimll denote the dimension

of a subspace fI of PG(n,q), then

dimfl" * dimfl, : dim(fl" ¡ il') f dim(fl", fI,)

Note that distinct subspaces fI, and fI" are disjoint in PG(n,q) if and only if as subspaces

of I/ they intersect in the origin; by the definition of dimension of subspaces of PG(n, q)

we have fI" n lI, : Ø implies dim(Il' n fI') - -1.

If S and ,S' are two subspaces in PG(n,g) then a collineation o : ,S -+ ,S' is a bijection

which preserves incidence; that is, if II' C fI" then IIfl c nf .

A projectivity o : ,S -+ ,9' is a bijection given by an (rz + 1) x (n Ì 1) matrix

H e PGL(n,q), for X,Y e PG(n,q), if. Y : X" then the corresponding (column)

homogeneous coordinates satisfy ÀY: HX,for some ) € G-F(q)\{O}. The matrix.I/ is

non-singular.

With respect to a fixed basis of I/ over GF(q), an automorphism þ of GF@) induces an

automorphism / of PG(n,q); this collineation is given by X0 : (*t,*t,..., z$) for each

point X in PG(n,q).In particular, in PG(n,g2) the automorphism,

PG(n,q2) ---+ PG(n,q2)

X : (ro,rt,...,r,-) r+ X : Xq : (r8,r1,...,rt)

is called the Fröbenius automorphism. For each subspace fI" of PG(n,q2) we call II",

the image of lI, under the Fröbenius automorphism, the conjugate space of fI" with

respect to the extension GF(q') of GF(q).

If D,,-1 is any hyperplane in PG(n,q),, then AG(n,q) : PG(n,q)\E"-r is an

n-dimensional affine space over GF(q). The subspaces of AG(n,q) are the sub-

spaces of PG(n,q) with the points of E,,-1 deleted. If the affine space AG(n,q) is
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obtained from PG(n,q) in this way, for a fixed hyperplan€ Xr,-r of. PG(n,q), we call

Er,-1 the hyperplane at infinity.

For any projective space PG(n,g) there is a dual space PG(n,q)d whose poi,nts and

hyperplane.s are respectively the hyperplanes and points of PG(n,q); PG(n,q)d is an

n-dimensional projective space over GF(q), that is, PG(n,g)d is isomorphic to PG(n,q).

The projective space PG(n,q) satisfies the Principle of Duality: For any theorem true

in PG(n,q), there is an equivalent theorem true in PG(n,q)d; itr particular, if ? is a

theorem in PG(n,q) stated in terms of points, hyperplanes and incidence the same

theorem is true in PG(n,g)d and gives a dual theoremTd in PG(n,q) bv interchanging

point and hyperplane whenever they occur. Thu;s join and meet are dual. Hence the

dual of an rn-space in PG(n,g) is an (n -n't - 1)-space (see [48, Section 2.1]).

We now present results concerning subgeometries of PG(n,q) which generalise the prop-

erties of subplanes of finite projective planes.

Since GF(q) is a subfield of GF(qk) for k > I a positive integer, the projective space

PG(n,q) is naturally embedded in PG(n,qk) once the coordinate system is fixed. Any

PG(n,q) embedded in PG(n,qk) is a subgeometry of PG(n,qk). W" are particularly

interested in the case k : 2 and any PG(n, q) embedded in PG(n,,q') is called a Baer

subgeometry of PG(n,q2). Once the coordinate system is fixed, PG(n,q) is called the

Baer n-space or real Baer n-space of PG(n,q2).

As mentioned above, the Fröbenius automorphism in PG(n,q2) fixes PG(n,q) pointwise.

A Baer subgeometry PG(n,q) of PG(n,q2) has properties analagous to those of a Baer

subplane of a finite projective plane, as follows.

Theorem 1.3.1 [73, Theorems 3.1, 3.2] Let B: PG(n,q) be embedded as a Baer sub-

geometry of PG(n,q2).

(i,) Each point P i,n PG(n,q')\B i,s inci,dent with a unique line of B;

(i,i) Each hyperplanefln-t ol PG(n,q2) intersects B in either a (n-7)-space or an

(n - 2)-space of B. !
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L.4 Quadrics

In this section we follow [50, Sections 22.1,22.2].

A quadric Qnin PG(n,q) is any set of points (*o,*t,...,rn) e PG(n,q) such that

F(*o,frt¡...,r,.) :0 for some quadratic form F € GF(q)l*o,rt,...,rn]. We write

Qn: V(F) and -t' has form

F(ro,r;t...,rn) : f"or? + t a¿¡r¡r¡
i=0 i<j

where the a¡,aij € GF(q) are not all zero.

If there is no change in coordinate system which reduces the form F to one in fewer vari-

ables, then tr. is non-degenerate and Qn is non-singular; otherwise F is degenerate

and Qn is singular.

The projective linear group PG L(n+\ q) acting on all non-singular quadrics in PG(n, q)

has one or two orbits according as n is even or odd. For ?¿ even, the non-singular quadrics

in PG(n,q) are projectively equivalent and are called parabolic. For n odd, a non-

singular quadric Qnin PG(n,q) is either hyperbolic or elliptic. See [50, Section22.7]

for the canonical forms of these quadrics.

Let Wn: V(F) be a quadric in PG(n,q) with

F(*o,rt¡...,:xn) : i"r*i + t a¿¡r¿:x¡.
i,:O i<j

Define A: lou¡1, where aü:2a¿, a¡,i, - aòj for i, < j. Let B : lb¿¡], where b¿¿:0,

b¡¿: -b,i¡ - -a¿j for i' < j.

rf q: 2h, thendefine trace(t): t+*+t2" +...+t2n-',t e. GF(q). Let

Cs : {t e GF(q) | trace(t) : 0} and let h: {¿ € GF(q) | trace(t) - 1}. For s odd, C6

will denote the non-zero squares in GF(q) andCl will denote the non-squares in GF(q).

In the following theorem, for q even, A and o are evaluated as rational functions over the

set of integers where ai)ai.j are treated as indeterminates z¿, z¿ji then z¿, z¿¡ are specialised

to a¿,a¿¡ to give the result.

Theorem L.4.1 [50, Theorem 22.2.7]

(i) W" i,s si,ngular or not according as L, is zero or not, where

+lAl,

lAl,

n euen

n odd
A-
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(i,i) For n odd, the non-singular quadricWn i,s hyperbolic or elli,ptic according as a € Cs

or C1, where

q odd

q euen

For the quadric Wn:V(F) in PG(n,q) a line (.is a tangent t'oWn if / contains a

unique point of Wn.

Let X:(ro,ïr¡... ,nn),Y:(Ao,Utt...,An) €PG(n,q) with X +Y and define

G(x,Y) : F(x +Y) - F(x) - F(v).

If X is a point of the quadric and Y is not a point of the quadric, then XY is a tangent to

Wnif. and only if G(X,Y):0. If X,Y are both points of the quadric, then G(X,Y) : O

if and only if the line XY lies on the quadric. Moreover for q even, if one of X and Y is

not on the quadric, then XY is a tangent if and only if G(X,Y) :0.

An alternative expression for G(Y, X) is given by,

G(Y,x): )- T(n*../ Lt )fr.' '

For q even and r¿ even, if Q,.is anon-singular (parabolic) quadric, then Qnhas a nucleus,

that is, there exists a unique point Y ø Q" such that G(Y,X):0 for all points X; that

is, a point Y f.orwhich Tfn¡:0, for all i.dr¿' / '

Let Qn be a non-singular quadric in PG(n,q) and let P be a point of the quadric. The

set of points X for which G(P, X) : 0 is the tangent hyperplane to Qn at P. The

tangent hyperplane al P contains any rn-space on P which is containedin Q".

If. Wn is singular in PG(n,q), then Wn is a cone fInQr, the join of a vertex k-space

fI¡ to a non-singular quadric base Q, contained in an s-space fI" with lI¡ ñ lI, - lI-1

and k f s: n-I. Let P be a point of.Wn. The set of points X for which G(e,X¡:g
is the tangent space to Wn at P. The tangent space at P contains the vertex fI¡ and

if P € fI¡, then the tangent space at P is the whole space PG(n,q).

a er)(n+r)/2lAl,

{lB I - Ç1¡("+r) /zlAl} I {4lBl},
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1.5 Arcs, Curves and Normal Rational Curves in

PG(t, q)

In this section, unless stated otherwise, the material can be found in [50, Sections 27.1,

27.51.

A k,,-arc in PG(n,q) is a set of k points not contained in a hyperplane with at most r¿

points in any hyperplane of PG(n,q).

A rational curve Cd of. order din PG(n,q) is the set of points

{P(to,úr) : P(go(to,tù,... ,7n(ts,úr))l¿0, A e GF(q))

where each g¿ is a binary form of degree d and the highest common factor of the g¿ is 1

The curve Cd may also be written

{P(¿) : PUo(t),..., l"(t))lt e Gr@) u {-} }

where fr(t) : g¿(I,t). As the g¿ have no non-trivial common factor, at least one of the

/¿ has degree d.

Also Cd is normal if it is not the projection of a rational curve C'd, of order d, in

PG(n+L,q), where C'd is not contained in a hyperplane.

Let Cd be a normal rational curve in PG(n,q) not contained in a hyperplane. Then

(i) q) n;
(ii) d,: n ,

(iii) Cn is projectively equivalent to {P(ú): P(t",tn-r,... ,¿,1) lt eGf@) u {-}}.
(i") C' consists of q -l 1 points no r¿ * 1 in a hyperplane.

Note that if.C" is a normal rational curve \n PG(n,q), then C" has form

{P(¿) : P(/o(¿), f'(t),..., Í"(t)) lt e Gr@) u {-} }

where at least one of the polynomials fo, h,. . . , fn has degree n. Also,

since (/o(¿),...,f"(t)) is the image of. (t",tn-r,...,¿,1) under some projectivity

H e PGL(n -f l,q), the polynomials /¡(ú), . . . , f^(t) are linearly independent.

A normal rational curve C2 in PG(2,q) is a non-degenerate conic and a normal rational

curve C3 in PG(3,q) is called a twisted cubic curve.
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By property (iv) above, a normal rational curve C" of order n ín PG(n,q) is a

(q + l)"-arc. In certain cases the converse result is true; for example, for (q * l)¿-arcs

in PG( ,,q) \¡¡e have the following results.

Theorem 1.5.1 125] In PG( ,Q),8:2h, euery (q-1L)a-arc is the pointset of a normal

rational curue.

Theorem L.6.2 [50, Theorem27.6.5] In PG( ,q), q odd, e 17, euerA (q1-l)rarc is

the pointset of a normal rati'onal curae. n

Theorem 1.5.3 [76] [S1] InPG(n,q), q odd, withq> (4n-2314)2, euery (q+\),-arc

is the pointset of a normal rati,onal curue.

In particular, i,n PG( ,,q), q odd, q > (10.25)2, euery (q*I)a-arc is the poi,ntset of a

normal rational curue. !

Note the following result due to Glynn [43]

Theorem L.5.4 la3] In PG(4,9), there erists at\a-arc which is not the pointset of a

normal rational curue. !

1.6 Varieties and Plane Curves

In this section we follow Semple and Roth, Introduction to Algebraic Geometry 177]

The settingis PG(n,q).

Definition 1.6.1 ,4 primal orhypersurface i,sthelocus of pointsV whose coordi,nates

(*o,... ,nn) satisfE an equation of the form:

F(*0,... ,rn) : t pjr'f riÌ ...r't :0, j:!,...,(I')
io*.,.*i'n-r

where the p¡ e GF(q) are not all zero and F is a homogeneous polynomial. If F i's of

degree r, the pri,mal i,s said to be of order r and is denoted by V : Vi-, . If F is of

degree 2, the primal i,s called ø quadric.
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There are ("f") coefficients in such a polynomial F of degree r, therefor" ("*') - 1 points

of PG(n,q) (in general position) determine a unique primal Ç-,.

Example: In PG(n,q), (l\ - 1 - (l') - t: fuP generic points determine a

unique quadric. In other words, a quadric can be made to pass through tþP points;

the quadric is unique if and only if these points result i" fuP linearly independent

conditions on the coefficients of the defining polynomial -t'.

Theorem t.6.2 An arbitrary li,ne meets aVl-, i,n r poi,nts (some may coincide, some

may belong to an ertension of the fi'eld GF(q)). !

In PG(n,q), n generic primals have, in general, points in common whose coordinates are

found by solving their equations simultaneously for ø6 i fr1 1 .. . i rn. When the primals

are generâlly situated with respect to each other, we obtain the following result:

Bézout's Theorem L.6.3 In PG(n,q), n generic i,rreducible pri,mals Ví:t

(i,:7,2,...,n), of orders rrr...rTn respectiuely, haue rg2...rn cornnùon poi,nts.

n

Here irreducible means the polynomial defining a given primal is irreducible in the field

and in any extension of the field.

Examplez In PG(2,q), two generic conics have 4 points in common; of these four points

some may coincide, some may belong to an extension of the field. Similarly, in PG(S,q),

three generic quadrics have 8 points in common.

Note that when the primals are not in general position to one another the intersection

need not be the number of points prescribed by Bézout's Theorem 1.6.3, for example:

Consider the three quadrics rsfrs-r1r2:0, rl-r2rs: 0 and rfi3-r?2: 0 in PG(3,q);

the complete intersection is the set (: {(1,0,02,03);0 eGF(q) u{-}} which contains

more that 8 points rf q > 7. So here the quadrics are not generic, are not in general

position with respect to one another.

Dimension of a variety

Definition L.6.4 A poi,nt-locus in PG(n,q) is said to be an irreducible algebraic

manifold V¡ of dimension k if its poi,nts can be shown to be i,n algebraic 1-7 corre-

spondence wi,th the points of an i,rreducible primal Mn ol 0, spl,ce PG(k + 1,q).
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Algebraically this n'Ieans that if Í: (ro,rL¡... ,r,) is a general poi,nt i,n PG(n,q) and

iÍ A : (Ao,... ,Un+t) is a general point in PG(k -l 1,q), then there erists a set of n-ft
polynomials Fs,. . . , Fn, homogeneous and of the same degree 'in ys,. . . ,Ak+t, and a

further irreducible homogeneous polynomial M(gs,...,Ax+t), such that as ! descri'bes

the primal Mn defi'ned bA M(ao,'..,Ar+t) :0, the point ft : (*0,...,rn) giuen by

pïi : F¿(Ao,... ,Un+t), i : 0,... ,tu, describes V¡6i and, the correspondence is such that

the generic point of V¡ ari'ses from only one point ol M*.

The equations

Pr¿

,Ux+t)

(1.1)

(r.2)

F¿(A¡,... ,Ut +t) (rÍ : 0, . . . ,n)

0and M(Ao,

are called the parametric equations of Vn; the parameters are the k + 1 ratios U¿ : Uo

('i:I,...,k+1).

A variety Vr of dimension 1 is called a curve and a variety Vz of dimension 2 is called a

surface.

Example: In PG(3,q) consider the plane ML defined by M(Ao,At,Az,At) : Us:0.
Consider:

Pro : Fo(go, Ut,Uz,aù : Y3,

Prt : F (ao,Ut,,az,as) : Yoaz,

Prz: Fr(ao,Ur¡az¡as) : aß2,

Pïz: Fr(ao,at,uz,as) : Yoat.

So (go, Ut¡Az,Aù --+ (U3,aoyz,yry2,A¡AL) is an algebraic 1-1 correspondence and therefore

the quadric with equation ryr2-ïsn3: 0 in PG(3,q) has dimension 2 and so is a (primal)

vaúety Vr2.

Order of a variety

An (rz - k)-space in PG(n,q) can be represented as the complete intersection of k

hyperplanes in general position, that is, the solution set to a system of k linear equations

of the form

Ðou,'u
n

1(j ,k).
i=0

0

2T

(1.3)



These k equations, combined with equations (1.1), represent k polynomials in

Uo,Ut,. . . ¡Ate+r. Together with equation (1.2) we have k + t polynomials in

Uo,Ut,... ,Un+t which represent k + 7 primals in PG(k ¡ 1,ø) and by Bézout's Theo-

rem these k + t primals intersect in a given number, r say, of points. We have

Theorem 1.6.5 A generic (n - k)-space in PG(n,q) meets a uari,ety V* of di,mensi,on

lc i,n a fi,red number r of poi,nts. We call r the order of the uariety. fl

We shall write VI for a variety of dimension k and order r in PG(n,q).

Note: From above, Vf-, denotes a primal in PG(n,q)' Now n - (n - 1) : t and a

subspace of dimension 1 is a line and by Theorem 1.6.2, a line intersects V[-1in r points

which is consistent with our definition of order.

Example: The points of a h-space in PG(n,q) can be put in 1 - 1 correspondence

with those of a h-space in a PG(h+ 1, q), with the latter being a primal defined by an

equation order 1. Hence any projective subspace of dimension h, is a variety of dimension

h. By Grassman's identity (Dimension Theorem), a generic (n - h)-space in PG(n,q)

intersects a h-space in a unique point. Thus a h-space of PG(n,,q) is a variety of

dimension h and order 1 and is denoted bV SA.

Intersections of varieties

Theorem 1.6.6 In PG(n,q), the i,ntersecti'on of two uari,eties V¡ and, Vn, oÍ dimen-

si,onkandhrespectiuely,ingeneralformamani,foldV*+n-nofdi,mensionklh-n

(where k + h2 n). tr

If two varieties V¡ and V¿ intersect properly in a variety Vn+n-n of dimension k + h - n

the intersection is called normal.

Theorem I.6.7 (Genera,lized theorem of Bézout) If two uarieti,es V' and V', of

orders r and s respectiuely, i,ntersect normallg, then the i,ntersection is a uari,ety V" of

order rs. n

Exarnples:

(1) The intersection of a primal V[-, and a h-space Sfr in PG(n,q) is in general a

primal, Vf,-, say, of order r in the h-space.
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(2) The intersection of a (rz - k)-space ,Sj-n and a variety VI in PG(n,q) is in general

Så_* n VI : Vd. In other words a generic (n - k)-space intersects a variety of

dimension k in r points, where r is the order of the variety (as promised by our

definition of order).

Consider a normal rational curve Ci in PG(n,q) as discussed in Section 1.5. Then by

Section 1.5, the pointset of Ci in canonical form is

{P(¿) : P(t",tn-',...,ú, 1) lt e Gr@) u {-}}

The points of Ci are in algebraic 1-1 correspondence with the points of the (pri-

mal) Iine in PG(2,q) with points {(t,t,t) | t € GF(q) u {-}} and equation

M(Ao,At)A2):A0-Uz:0, for example. Hence the normal rational curve indeed has

dimension 1 as a variety.

Consider a generic hyperplane, that is an Sl-t in PG(n,q), with equation

asfrs * {r,y!r1* . . .l anrn: 0, where o,¿ € GF(q) are not all zero. Then S}-, inter-

sects the curve in precisely n points, namely the points of Ci with parameter ú such

that f satisfies astn *a1f,n-1+... + an:0) note that some of these points may coincide

or belong to an extension of GF(q). Hence, by the definition of order of a variety, the

normal rational curve is a variety Ci of dimension 1 and order r¿.

We include some additional results for later reference. For a discussion of genus,, the

reader is referred to [71], [5] and [48]; note that the genus g of. a curve is a non-

negative integer. Here we state a few isolated results which we require in the proof of

Theorem 4.t.4 in Chapter 4.

Theorem 1.6.8 [5, Chapter VIII, Part VI]

(i) An irreducible algebraic curue of order6 in PG( ,q), which is not contained i,n a

hyperplane, has marimum possible genus 2, that i,s, g 12.

(i,i,) An irreducible algebrai,c curue of order 4 in PG@,q) whi,ch is not contai,ned in a

hyperplane has genus g :0 (in fact this is a normal rational curue i,n PG( ,q)).

Result 1.6.9 [5, Page 239, Example 8.] Let I be a line in PG(4,q) skew to the plane of

a conic C in PG@,q). Let 0 be a projectiui,ty between the poi,nts P of the conic C and
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the points P0 of the li,ne L The set of points on the lines PPq is a rati,onal ruled cubi,c

surface. The curue which i,s the intersection of thi,s surface with a general quadric is a

sertic cltrl)e, of genus 2.

Theorern 1.6.10 flasse-'Weil Theorem [48, Theorem 10.2.1] [81] [2, Corollary 2.4] Il
C' i,s an absolutely irreducible curue of orderr and genus g in PG(n,Q),n> 2 and if R

i,s the number of points of C' then,

ln-@+1)l<zs\/q

Finally we discuss plane curves specifically, that is, curves in PG(z,q).

From above, in PG(2,q), a plane curve C" of order n is represented by an equation

f (*,a,2) : o

such that / is a polynomial of degree n, homogeneous in r,y,z.

The equation of a general C" may be written in the form

Í(r,a,z): usz" lulzn-r +... + ltrn:0,

where u¿: u¿(r,g) is homogeneous of degree i in r and gt.

A rnultiple point of order k (or k-fold point, k > 1) of C" is a point P of the curve

such that a generic line through P meets the curve in only n-k fiirther points. A k-fold

point is a singular point of the curve.

If P'(0,0, 1) is a k-fold point of C",the equation of C" may be written in the form

z"-ku¡(r,U) + ,"-u-tu¡¡1(r,a) + . . .l un(n,U) :0 (1.4)

where u*(r,g) :0 is the equation of the k tangents of.C" at P'(0,0,1); note that these

tangents are not necessarily distinct or belonging to GF(q).

L.7 The ruled cubic surface V!

The ruled cubic surface which we denote bV V] is a variety which plays an important

role in most of the work in this thesis; this was briefly introduced in Result 1.6.9. In this
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section we define this surface and briefly summarise the important properties required

for later chapters.

The following material can be found in Bernasconi and Vincenti [15].

Consider the space PG( ,q) and let C be a non-degenerate conic in a plane Sz of.

PG( ,q); let (. be a line of PG( ,q) such that [. À 32 : Ø. Let' S be a projectivity

between (. and C, that is if we denote the non-homogeneous coordinates of points of C

(respectively l) by d (respectively À) then for a fixed projectivity ó e PGL(2,q) consider

the one-to-one correspondence between points P of {. with points Pd of C given by the

relationship g : d(À), ) e GF(q)u{-}. Note that since / € PGL(2,q), the projectivity

is determined by the images of three distinct points of / (see [48, page 119]).

Consider the set G of q * 1 lines PPÔ where the point P varies over (..

Theorem t.7.I l15l The set of poi,nts i,ncident with the li,nes of G is a rati"onal ruled

uari,ety, of order 3 and di,mension 2, of PG( ,q).

We call such a variety a ruled cubic surface and denote it by V!. The line I shall

be referred to as the line directrix of the ruled cubic surface, the conic C as the base

conic, the projectivity / as the associated projectivity and the g * 1 lines in G shall

be called generators of Vf .

Theorem 1.7.2 l75l Let Vf be a ruled cubic surface in PG(4, q) with line directrir (.

base conic C and associated projecti,uity $. The following properti,es are sati,sfied by Vf :

1. Any three disti,nct generators of V] are not contai,ned in a hyperplane of PG( ,q),

2. lI5, Proposition 1.2] For any hyperplane Str oÍ PG( ,q) the i,ntersecti,on ^9r1nV] is

a cubi,c clrrlre Cl; note that the cubic curue Cl may be reduci,ble or m,ag haue some

component(s) in PG(4,F), where F i,s a field ertension of GF(q),

3. ( The proof of Theorem 2.1 in [15])

(o) In PG( ,q) there erist precisely q2 con'ics onVrs and each such conic i,s

disjoint from the line directrir (,,

(b) Each conic on Vf contains a unique point on each generator of V;,

(") Two distinct con'ics onVf intersect in a uni,que point (oÍVrt)
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Note that since any three distinct generators of V] are not contained in a hyperplane of

PG( ,q) the ruled cubic surface Vr3 is not contained in a hyperplane of PG( ,q). Finally

we note that the ruled cubic surfaces in PG( ,q) are projectively equivalent,

Theorem L.7.3 [15, Theorem 7.2, Corollary] If V andV' are two ruled cubic surfaces

in PG(4, q), then there erists at least one projecti,uity Q of PG(4, q) such that Vo : V' .

1.8 Segre varieties

In this section we follow Section 25.5 of [50]; we include some proofs to clarify the

geometric properties of Segre varieties.

In f50, Section 25.51a Segre variety is defined in terms of k projective spaces PG(ry,q),

PG(n2,q),...,PG(n¡,q) where n¡ ) I; here we consider only the special case of a

Segre variety defined in terms of two projective spaces PG(ry,q) and PG(n2,q) which

according to [50] is the Segre variety most studied.

Consider two projective spaces PG(n1,q) and PG(n2,,q), with ny,n2 ) I' Denote the

points of PG(n¿,q) bv n: @t),*f) ,... ,"li)),for i':1,2.

LetIV":{0,L,2,...,r}foranyintegerr)landletr¡beabijectionofl/",x.lV,"ronto

-Ay'-, where m * 7 : (nt+ 1)(rzz + 1).

Then the Segre variety of the two given projective spaces is the variety pn¡in2 with

pointset

{P(ro,'.. ,r*)lr¡:r,t(àt,iz):"Íl)*Í?) with P¿ :@t),"',*li)) € PG(n¿,q),i':7,2}

of PG(m,q) : PG(ntnz * nt I nz,Q)'

Thus, a typical point P(r¡,rt,.., ,r^) of pnrin2 is determined by D' point

pr(r[t) ,*lt) ,.. . ,*1,')) \n PG(ry,q) and a point pr@f),t?) ,... ,*[,')) in PG(n2,q). The

m I t : (nt + I)(n2* 1) components no,rt,,. ..,nm of the coordinates of P are given

by r¡ : rq(i1,iz) : ,ll) *l?) and therefore the components r¡ are in one-to-one corre-

spondence with attpossible products of the for^*ll)nÍl), *h.t. z1 e {0,7,... ,n1} and

ù2 e {0,1,... ,rz2}. Since n@f),*f),...,"[iÐ I (0,0,... ,0), 'i:r,2,each P¿ contains

at least one non-zero component; the product of these non-zero components (one from
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P1 and one from Pz) therefore occurs as a component of P(rs,rr¡...,n*).Hence for

any point P in the Segre variety pnrinrwe have P(*o,,rt¡...,r^) * (0,0,...,0).

The integers D1, Tr2 ãro called the indices of the variety. It can be shown that this Segre

variety is absolutely irreducible and non-singular, with order equal to

(nt + nr)l
nln2!

Any point P(ro,rt¡... ,r^) of. the Segre variety satisfies the following equations

rn\¡,iz)rrt(jt,jz) - rrt\r,iz)rrt(ir,ir) : 0 (1.5)

Theorern 1.8.1 [50, Theorem 25.5.1] The Segre uari,ety pnün2 i,s the intersecti,on of all

quadrics defined bg the equations (1.5), and conuersely any point of PG(nlnzlnt *n2, 8)

sati,sfying the equations (1.5) corresponds to a uni,que element of PG(ry,q) x PG(n2,q).

!

õ: PG(n1,q) x PG(nz,q) + puinz

be defined by

(p' (r$), *\t), . . ., 
"l:)), 

pr@f), *?), . . ., *[,'))) r--+ P (rs, rt,, . . ., r*)

with r¡ : rn(it,iz) : ,ll) *Í?) .

By Theorem 1.8.1 the mapping ô is a bijection.

Theorem L.8.2 [50, Theor em 25.5.2] For a giuen fi,red point Pt oÍ PG(n1, q) , the set of

all points õ(h, P2) wi,th P2 e PG(n2, q), is an n2- d,i,mensi,onal projectiue spz,ce contained

in pnr;n*

Simi,larly, for a gi,uen fi,red point P2 of PG(n2,q), the set of all poi,nts õ(P1,P2) with

P1 e PG(nt , q), is an nt- d,imensional projectiue space contai,ned 'in Pnr;nr.

Let

Proof We

a("f) ,*l'),.
pr@f) ,rf) , .

prove the first statement; the second is proved analogously.

.,"L'I + (0,0,...,0) is a fixed point or PG(n1,q). For any point

.,*[,')) in PG(n2,q), the components rs,n.,...,rm of the coordinates
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of. P(rs, rtt . . . , r*) : 6(n,, P2) are, up to order,

rf,)rrzl, *f),*?),
^(r) -(2) ^(r) -(2)r'l úO t ù7 ,tùl )

"f,) "L'),
*l') rL'),

*[])"f), ,!,'),*?),

The set {P(*o,rt¡. . . ,n*) : õ(Pr, P2)} is therefore a n2-dimensional space. ¡

By Theorem 1.8.2, the Segre variety pntinz has a system E1 of n1-dimensional subspaces

and a system D2 of n2-dimensional subspaces.

Theorem 1.8.3 [50, Theorem 25.5.3, Theorem 25.5.5] Angtwo di,stinct elements of Ð¡

are sleew, for i, : L,2. Each point ol pnr;n, is contained in eractly one point of E¿, for

i:1,2.

Each element of D¿ intersects each element of D¡, i+ i, i,n eractly one point.

Proof Let fIn, € t1 correspond to the point P2 € PG(n2,q), that is

lIn,: {ô(Pt, Pr) I Pt e PG(ry,q)}. Similarly, let IIi, € Er correspond to the point

P, e PG(n2, q) and suppose P" * Pr.

For any points Pr, P', e PG(ry,q), (h, Pz) t e;, P;) and therefore ô(Pr, Pù + 6(P:, P;)

since ð is a bijection. It then follows from Theorem 1.8.2 that 1I,,, i f|n, : Ø. Similarly

for two distinct elements fIn,fI,n, Q Ez,IIn, ìil|,, : Ø.

Consider the space flr,, € Xr which corresponds to the point P2 e PG(n2,8) and the

space fIn, € Ez which corresponds to the point h e PG(nt,Q), then ô(Pr,P2) is the

unique point contained in the intersectiol fI",, ¡fInr. !

Corollary 1.8.4 [50, Theorem 25.5.4]

@ rhe number of poi,nts ol pnr;n" it lpn'n"l:0(nt)0(nr) : IPG(ry,q)llPc(nz,q)l

(i,i) The number of n1-d'imensional subspaces i,n the system E1 is

lErl : 0(n2):lPG(n2,q)1. The number of nz-d,i,mensional subspaces in the

systemD2 is lXrl : 0(n): IPG(n1,q)l' tr

The main example of a Segre variety which we shall use in this thesis is the Segre variety

pr;n in PG(2n1 1,4) with n1 : 1 and rL2 : n> 1. The variety pr;r, has order z¿ * 1 and

,L')*[?)
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has lp1,,,l : (q+ t)0(n) points. The variety has a system X1 of lEtl : d(rz) lines and a

system Xz of lErl : P(1) : q*I n-spaces. If n:1, then the variety pr;r in PG(3,q)

is a hyperbolic quadric. If n:2, then the variety ptizin PG(5,q) has a system X1 of

q2 + q* 1 pairwise disjoint lines and a system D2 of. q f 1 pairwise disjoint planes; in this

case each line in D1 intersects each plane in E2 in exactly a point.

We include a few additional properties of Segre varieties, in particular, some results

concerning the existence of Segre subvarieties of a Segre variety.

It is convenient to use the following notation and to choose 4 as the following bijection

in the definition of a Segre variety. The element r¡ : n,t(ù,iz) will be denoted by r¿r¿r.

Let q(fi,i2) : i,t(nt + l) + i2. The equations (1.5) become

firirfijrj" - f¡r¿"I¿r¡" : 0 (1.6)

Theorem 1.8.5 [50, Theorem 25.5.6]

No hyperplane of PG(m,q) contai,ns the Segre uari,ety pnt;nz.

Theorem 1.8.6 [50, Theorem 25.5.7]

poi,nts P(*oo,rot,. .. ,lonz,,rt¡rrtr¡' .. ..

for which rankfr¿¡]: I.

¡

The Segre uariety pntinz cons'ists of all

,rlnz¡. , . ,trntotrntts. .. ,rnrnr) of PG(mrq)

¡

By Theorem 1.8.6, for example, the Segre variety pr;z in PG(5,q) consists of all points

(roo, ror,, fr r0, Itt, rzo, rzt) for which

rank -1

that is, for which

fOOf1¡ Íßl1t : 0

fr00fr2t ílZO/Ot : 0

It¡ïZt fZOfrt1. : 0.

A Segre variety pntjnz ln PG(m,q) is the intersection of quadrics with equations (1.6).

Therefore any line (. of PG(m,q) intersects pn1.n2 in 0,1,2 or q * 1 points. By the

following result, any line contained in the Segre variety pntinz must be contained in

either an element of X1 or an element of E2.

,too

rto

rzo

rot

rn
rzt
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Theorem 1.8.7 [50, Lemma 25.5.10]

Any li,ne I of pn'n, is contained in an element of E1 or 82.

An s-space fI, which is contained in pnünz and such that II" is contained in no

(s + l)-space fl"+r of pnr;n, is called a maximal space or maxirnal subspace of

pn1p, Using Theorem 1.8.7 it can be shown that,

Theorem 1.8.8 [50, Theorem 25.5.11, Corollary 1]

(i) The marimal spo,ces of the Segre uari,ety Pntinz are the elements oÍEt and'Ez;

(i,i,) Each s-space of pnr;n, wi,th s ) 0, i,s contained in ei,ther a un'ique element of D1

or a uni,que element oÍ Dz. tr

By Theorems 1.8.4 and 1.8.8, it is possible to count the number of subspaces contained

in pntin2 as follows.

Corollary 1.8.9 [50, Theorem 25.5.11, Corollary 2] Let ry 1 nz. The number of

s-spo,ces contai,ned'in pnrrn" is

(i,) 0(n)þ(t;rr,q)+0(n2)ó(t;rt,q), Íor 0 < s 1nt.;

(ii,) 0(n)S(t;nr,q), Íor n1 1 s 1nz.

Finally, we present the results from [50, Section 25.5] on Segre subvarieties

Theorem 1.8.10 [50, Theorem 25.5.72] Let P¿ € PG(n¿,q) and let PG(d,¿,q) be a

d4-space of PG(n¿,q), i':1,2. Then

(i) õ({P} x PG(d2,q)) is a d2-subspace and õ(PG(ù,q) x {Pr}) is a d1-subspace of

Pnt;",zi

(i,i) all subspaces of pnr;r, are obtained as i'n (i);

(ä,i) when d,¿ ) 0, i:1,2, 6(PG(dr,q) x PG(d2,q)) is a Segre uariety Pd4;a2 contained

Ln Pntinz)

(iu) Pa'ar: Pn1;n2l)PG(^',q), wherem' : d,rdz*dtid2 and PG(m',q) it themt-space

generated bU pù;¿ri
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(u) all Segre subuarieties oÍ pnr;n, are obtained as i'n (i'i'i')

Note that by considering the number of subspaces of PG(r21, q) and PG(n2, q), by Theo-

rem 1.8.10 the number of Segre subvarieties of pnr,n, can be calculated (see [50, Theorem

25.5.12, Corollary 1]).

Theorem 1.8.11 [50, Theorem 25.5.12, Corollary 2] Let fI, be an s-spacê oÍ Pnr;,r,

s ) 1, contained i,n an element fIn, of D1. Then the elements of Dz meeting fI, i,n a

point are the elements of a system of marimal subspaces of a Segre subuari,ety ps;n2 of

Pnrinr ¡

1.9 Spreads and Reguli

The following definitions and results are found in [48, Chapter 4] and [50, Section 25.6];

for further detail the reader should refer to these texts.

A spread 5, of r-spaces of PG(n,q) is a set of r-spaces which partitions PG(n,q);

that is, every point of PG(n,q) lies in some r-spâce of 5" and every two r-spaces of

5, are disjoint. The r-spaces in ,S' are the elements of 5".

A spread of r-spaces in PG(rz, q) will also be called an r-spread of PG(n,q). In the

case r:1and n:3, a l-spread of PG(3,q) will sometimes be called a line spread

of PG(3, q) or simply a spread of PG(3, q).

Theorem 1.9.1 [48, Theorem 4.1.1] The followi,ng are equiualent:

(i,) there erists a spread E, of r-spaces of PG(n,q);

(ii,) IPG(r, q)l di,uides IPG(n, q)l;

(ii,i) (r + I) diuides (n * 1).

Consider a Segre variety pt;nin PG(zn+ 1,q). The system of maximal n-spaces of pt;n

will be called an n-regulus. In the case r¿ : 1, the Segre variety pr;r is a hyperbolic

quadric in PG(3, q); a 1-regulus is also called a regulus.
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Theorern 1.9.2 [50, Theorem 25.6.1, Corollary] Il nn,IJ/n,I/,- are mutually skew

n-spaces in PG(2n*7,q), n 2 7, then the set of all lines hauing non-empty intersecti,on

withlIn,,ll', andflln is a system of marimal spaces of a Segre uariety Pt;n. Moreouer, the

n-regulus in pt,n whi,ch containsfln,ll:n and,nl, is the uni,que n-regulus in PG(2n*1, q)

whi,ch contai,ns lIn,fln and,Il'i. !

For mutually skew r¿-spaces nn,l'n,ni in PG(2n¡I,A) the (unique) n-regulus con-

taining fIn,n'n, and IIi is denoted by .R(II,,, Í,,n:;).

In this thesis we shall use the following definition of a regular n- spread.

Definition 1.9.3 Forq) 2 ann-spreadS" of PG(2v*I,q) is calledregular i'f for any

three d,isti,nct elements fln,Il'n,tll" 
"¡ 

En the whole n-regulus E(n,, IJr'*,II;) is contained

in E,-.

Theorem 1.9.4 [50, Theorems 25.6.4, 25.6.5] For q >

PG(2n a 1, Ç) i,s regular if and only i,f the n-spaces of En meeti,ng anA li,ne not i,n an

element of En form an n-regulus. ¡

In the case 7?, : 1, the above definition and theorem concerning regular l-spreads in

PG(3,q) are also valid in the case q :2;by [49, Chapter 17] for q - 2, every 1-spread

in PG(3,g) is regular. For n>! and q :2everr n-spread in PG(2n+L,2) satisfies

the property that for any three distinct elements fIn,lI:n,II', of the spread the whole

rz-regulus R(tr,,, nj,,nl,-¡ is contained in the spread. (See [50, Section 25.6] for more

detail on the case r¿ > 1 and q:2.)

The regular z¿-spreads in PG(2n + 1,q) are projectively equivalent by the following

theorem.

Theorem 1.9.5 [50, Theorem 25.6.7] The group PGL(zn+2,q) acts transitiuely on the

set of all regular n-spreads of PG(2n 1 1, ø). !

Finally we include the well known characterisation by Bruck of regular l-spreads of

PG(3, q).

Theorem 1.9.6 [20, Theorem 5.3] Let PG(3,q) be embedded as a subgeometry of

PG(3,q2). Let - denote the Fröbenius automorphism of PG(3,q2) which fi,res euery
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poi,nt i,n PG(3,q). Let g be any line of PG(3,q2) which contains no poi,nt of PG(3,q).

For each suchline, g,letsn denotethe set of allli,nes of PG(3,q) whi'chmeet g. Then,

5s : So i,s a regular spread of PG(3,q). Euery regular spread of PG(3,q) can be repre-

sented in thi,s nlanner for a unique pai,r of lines g,g. n

1.10 The Bruck and Bose representation

In this section we present the results of Bruck and Bose ([21] and [22]) which provide us

with a representation of translation planes of order qh in the projective spâce PG(zh,q).

In particular, we obtain a representation of the Desarguesian plane PG(2,gh). We also

obtain a convenient and natural coordinate system for PG(2,qä) ir this Bruck and Bose

representation.

1.1-0.1 The construction

In this section we follow [21, section 4.].

Let 5 be a (h - l)-spread of E- : PG(2h - 7,q) and embed D* as a hyperplane in

PG(zh,q).

Define an incidence structure aff(II): (P,8,1) as follows:

The poi,nts of aff(n) are the points of PG(2h,q)\t*.

The lines of ffin) are the h-spaces of PG(2h,q) which intersect D- in a unique eleme-¡.t_

of 5. (Note that this implies that each such h-space is not contained in I*.)
The incidencerelation of øf(II) is that induced by the incidence relation of PG(2h,q).

Theorem 1.10.1.1 [21, Theorem 4.1 and its Corollary] ,tr(JJ) i,s an ffine plane of

order qh. n

The affine plane affiD may be embedded in a projective plane II by adjoining the spread

E to aff(lI) as a line at infinity which we denote by [*. Each element of 5 corresponds

to a class of parallel lines of o,ff(ll), thus each element of S is adjoined to fI as a poi,nt

at infinity.
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Hence the corresponding projective plane fI has a perfectly concrete representation in

terms of the above construction.

Theorem 1.10.1.2 [21, Theorem 7.1, Corollary] otrF) i,s a translation plane wi,th trans-

lation line the li,ne at infini,ty. Moreouer, euery fini,te translation plane is i,somorphi,c to

at least one plane tffiD.

Theorem 1.10.1.3 122, Theorem 12.1, Corollary] The finite projectiue plane fI is De-

sarguesian if and only if the (h - t)-spread E of E- is a regular spread. tr

Finally we note:

Theorem 1.10.1.4 [50, Theorem25.6.7l The group PGL(zh,q) acts transitiuely on the

set of all regular (h - L)-spreads of PG(zh - L,q)' !

1,.LO.2 Some Galois theory

Before we present a coordinatisation for the projective plane fI, we review some well

known Galois theory.

The following information can be found for example in chapter 7 of A first course in

Abstract Algebra, [:O], ly John B. Fraleigh.

Lef GF(q) denote the (finite) Galois field of order q, where Q: P', p is prime and r I 1

is an integer.

The integral domain of all polynomials in an indeterminate r with coefficients in the

field GF'(q) is denoted by GF' (q)[r]. Let h be a positive integer, h > 1; then there exists

a monic polynomial of degree h in GF(q)[z] which is irreducible over GF(q). Denote

this polynomial by,

P.(r): rh - ch-trh-r c1r - cg

where the c¿ are in GF(q).

There exists an extension field E of GF(q) and an element a e .E such that p.(a) : g.

Hence a e E is algebraic over GF(q) of degree h, and the polynomial p"(r) is called the
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mi,nimal polynomial for a ouer GF(q). Each element b in GF(q)(o), u simple extension

field of GF(q), can be uniquely expressed in the form,

b:boj-bp+...+bn-tah-'

where the ó¿ are in GF(q). Thus, GF(q)(a) is a finite field extension of degree h, over

GF(q) and therefore has qh elements. It follows that G,F'(q)(o) is isomorphic to the

unique finite field with qh elements, GF(q)(o) = GF(qn). We shall identify GF'(q)(a)

with G,F'(qh).

Consider the field extension GF(qn) : CF(q)(o) of GF(q), which from above is an

algebraic extension of degree h,; it is also a vector space of dimension h over G.F (q) with

basis {1, e,d2,... ,th-'} where addition of vectors is the usual addition in GF(qh) and

scalar multiplication Àb is the usual field multiplication ln GF(qh) with ) e G-F(q) and

b e GF(qh).

We shall often identify GF(qn) (as a vector space of dimension h over Gf (ù) with the

vector space GF(q)n, since we have the following isomorphism of vector spaces,

þ: GF(qn) : GF(q)(a) ---+ GF(q)n

b :boj-fua+... + bn-tah-r r--+ (bo,bt,...,bn-t)

where the ó¿ are in GF(q) and {1, e,i... ,o'h-'} is the basis, mentioned above, fot GF(qh)

as a vector space over G.F'(q).

By the above theory, there exists an element P e GF(qth), þ /Gp(qh), such that B is

algebraic over GF(qh) and hence GF(q'n) is a vector space of dimension 2 over Gp(q)

with basis {7, p}.

The field GF(q'h) is also a finite field extension of GF(q) of dimension 2h. Moreover,

since {1, e,,. . . ,o'h-t} is a basis for GF(qh) as a vector space over G-F (q), and {1, B} is

a basis for GF(q2ä) as a vector space over GF(qä), the 2h elements,

{r, o,. . .,on-t, 0, þt,. .., p*n-t}

form a basis for GF(q'n) as a vector space over GF(q).

1.1-0.3 A regular spread for E* : PG(2h - 1, q)

Our aim is to obtain a convenient coordinate representation of PG(2,qh) it the Bruck-

Bose setting with construction fI as given in Section 1.10.1. By Theorems 1.10.1.1
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and 1.10.1.3 we require a regular (h - l)-spread 5 of I- : PG(2h - 1, q). The

following determination of a regular spread .S is a special case of the work of Bruck and

Bose given in [21, section 5.].

Throughout this section we shall use the results of Section 1.10.2 and the notation

introduced there.

Represent X- : PG(2h - 1,q) as the (2h)-dimensional vector space GF(q2h) over

GF(q); the points of PG(2h-7,q) corresponding to the 1-dimensional vector subspaces

of GF(q2h). By Section 7.L0.2 and the notation introduced there, GF(q'n) has basis,

{1, r, . . . , eh-' , þ, þa, . . . , p.n-t]¡

as a vector space over G.F'(q).

Let "I(oo), /(0), J(1) be three distinct (h - l)-subspaces of PG(2h-I,Q), chosen so

that as vector subspaces of GF(q2h),

/(-) has basis {1,o, ... ,.h-r},
J(0) has basis {8, 0a,. . . ,, þah-t}, and

-r(1) has basis {1 I þ,a I þa,. .. ,eh-r + /tn-t}.
Denote by ' the following linear transformation of /(-) onto "I(0),

t:ar---+a':þa

and, consequently, the following linear transformation maps J(*) onto "/(1),

a, + at a'.

Note that the vector space GF(q'n) is the direct sum of /(-) and /(0).

The three vector subspaces /(*), /(0), /(1) intersect pairwise in the zero vector and

hence, when considered as (h - l)-dimensional subspaces of PG(zh-I,q), the three

subspaces are pairwise disjoint.

Since J(-) is the h-dimensional vector space GF(qn) over GF(q) with basis

{L,t,... ,oh-t}, each element ø e "/(oo) can be uniquely expressed in the form,

a : o,o]-atrr+...+ an-tah-r

where th,e a¿ are in GF(q).

Note that oh is an element of GF(qh) and, by Section 1.10.2,

a,h: cs*c1a+...+ck-tah-r. (1'7)

36



since o e GF(qh) has minimal polynomial p.(r) : nh - ch-trh-r c¡, where the

c¿ ã,re in GF(q).

Similarly, for each po\l¡er th*i, i - 1,. .. ,h-2, the element ot¿+? is of course also an

element of GF(qh) and therefore can be uniquely expressed as a linear combination of

the basis elements {1,r, ... ,ah-tl¡. Hence, let

ah+i - g¿,0 i g¿Ja * .. .l g¿,n-rah-r (1 8)

where the g¿,¡ are in GF(q).

Consider the product ba of two elements b,a e J(oo). We have,

b - bs]-bla+...+ bn-tah-r

u : as* 04a+...+ ah-tah-r

where b¿ and a¿ àîe elements of G.F(q). Therefore Öa is given b¡

(b6fó14+...+ bn-roh-')(as]-o4a+...+ an-tah-r) (1.9)

and by substituting the expressions (1.7) and (1.8) into the product (1.9), we can sim-

plify (1.9) and determine óa as a (unique) linear combination of {1, o¿). . . ,*o-t}. Denote

this linear combination by,

ba 
: ,iI 

u)ï*** **'::-::i:as * a1a + + an-',,h-')

where the d,¿ are in GF(q) and d e /(oo) : GF(qh).

For convenience, \rye represent each element a € /(-) as a h-dimensional vector

(oo,or,... ,an-t), where a: a0la1a+... + ah-tah-r with the a¿ e GF(q) as usual.

Then for each element b e J(oo), b : bo l bla+ ... + bn-tah-r : (bo, bt, ".,b¿-1)' the

product (1.9) is equivalent to a linear transformation of /(-) defined by a h x h matrix,

which we shall denote by Bu, with entries in GF(q), as follows,

J(-) ---+ /(*)
a: (ao,ar¡... ,an-t) r--l (o0,or,. . . ,an-t)Bu: (do,dt,. , . ,dn-t).

and we use the convention that for ø and .86 as above, the product aB6 is the element

d,:d,o1-daa+...+ dn-tah-r of J(oo) :Gp(qh).
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For each of these h x h matrices B6 over GF(q) defined above, let

J(b) : {aBa+a'lael(-)} (1.10)

so that J(b) is a h-dimensional vector subspace of GF(q2h) and so represents a

(h - 1)-space in E- : PG(zh - 7,q).

Let C denote the collection of the qä matrices .86 over GF(q), so that,

C:{BulbeGF(qh)}.

Let 5 be the collection

{"r(-)} u U(ó) | b e GF(qh)}

of qh +l (h- 1)-spaces in PG(zh - 1,q). Note that for ó:0 and b:7 the definition

of spaces "I(0) and J(1) is consistent with our earlier definition of these spaces. We can

also note by (1.9) and the following remarks, that /(0) is defined by the zero matrix

Bo : 0 in C and /(1) is defined by the identity matrix Bt: I in C.

We now show that 5 is a regular (h - 1)-spread of E* : PG(2h - 7,q).

First we note that since J(oo) has basis {1,., . . . , o,h-t} as a vector subspace of GF(q2h)

and given the Definition (1.10) of "I(b), the subspaces "I(oo) and /(b) have only the zero

vector in common and hence as (h- 1)-spaces in PG(zh-7,q) they are disjoint.

Consider a matrix Fi6in C. For any element o e "I(oo) the prod:uct, aB6 corresponds to

the element ba in "/(oo): GF(qh). Hence aB6:0, for a e "f(oo) and ¿ +0,if and only

if b:0. It follows that for every non-zero matrix .86 in C, Bu is non-singular. Moreover

we note that for distinct matrices B6r,B6, in C,

Bur, - Bbr: Bur-u"

is an element of C since h - bz e GF(qh). Similarly, C is closed under matrix multipli-

cation. In fact (C,*, ') is isomorphic to the field GF(qh) under the isomorphism 86 r+ b

from C Io GF(qh).

For distinct matrices Bb, Bb* since .86, - Bu, is an elemenl of C, by the above discussion

Bur- 86, is non-singular. Next suppose that the two vector subspaces J(fu) and J(b2) of

GF(q'h), corresponding to the distinct matrices Bur,, Ba" € C respectively, have a non-zero

vector ø in common. By Definition (1.10), for some elements út,&2 e J(oo) :GF(qh),

r : atBu,*ai,: azBorlalz
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and by equating coefficients of the basis elements of GF(q'n), we obtarn ø, : a2

and therefore ø1 - a2. Hence we have the equalil,y a186, : aLBb, which implies

at(Bu, - Bur) :0. since Bu, - P6, is non-singular \Me have a1 : 0 and so Í : 0, a

contradiction.

Hence S is a collection of.qh+1 pairwise disjoint (h-1)-spaces in X-: PG(2h-7,q),

thatis,Sis a,(h- l)-spreadof E-. Finally,byl22,Theorem11.3] andsince(C,+,')

is a field, the spread 5 is a regular spread of X-.

By Theorem 1.10.1.3 and since 5 is a regular spread, the Bruck-Bose construction fI, of

Section 1.10.1 with spread 5, is a Desarguesian projective plane of order qä.

L.LO.  Coordinates for the projective plane fI : PG(2, qh)

Let II be a finite projective plane with the construction of Section 1.10.1 with the no-

tation introduced there. Let 5 be the regular (h - 1)-spread of E* : PG(zh-7,q)

determined in the previous section and with the notation introduced there. By Theo-

rems 1.10.1.1 and 1.10.1.3, lI is the Desarguesian projective plane PG(2,qh) since 5 is

a regular (h - 1)-spread.

In this section we use the results of [21, section 6.] to obtain a coordinate system for this

Desarguesian projective plane fI determined by 5. We shall utilise this coordinatisation

in later chapters in examination of varieties, specified by their equations in PG(2,qh),

in the Bruck-Bose setting.

First we recall a familiar coordinatisation of PG(2,qh). The points of PG(2,qh) have

homogeneous coordinates (r,A, 
"), 

where r,U, z e GF(qh) and r, a) z are not all equal to

zero. Let (.oo,the line at infinity, be the line with equation z:0, or in line coordinates,

l* is the line [0, 0, 1]. Let AG(2, qh) : PG(2,qh)\/* be the affine plane obtained from

Pc(z,qh) by removing /oo and all of its points. The points of AG(2,,gh) have coordinates

of the form (ø, gr, 1) or occasionally for convenience we shall write these affine coordinates

in the form (r,y).

The lines of AG(2,qh) 
^ay 

be divided into two types:
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(i) Lines with equation E - 'y or, equivalently, with line coordinates [0,1, -7],
where 1 e GF(qh).

These lines constitute a parallel class of lines in Ac(z,qh) with point at infinity

(1,0,0) in PG(2,qh).

(ii) Lines with equation ø : by I s or, equivalently, with line coordinates

[1, -ó, -s], where b, s € GF(qh).

For each b e GF(qh) these lines constitute a parallel class of lines in AG(2, qh)

with point at infinity (b,1,0) in PG(2,qh).

We work in the Bruck-Bose setting to obtain a natural coordinatisation of the incidence

structure lI, natural in the sense that the coordinatisation will correspond to the above

coordinatisation of the plane PG(2,qä) it a convenient way.

We have Xoo : PG(2h - 1,q) embedded as a hyperplane in the projective space

PG(zh,q). We represent PG(2h - I,q) as a 2h-dimensional vector space GF(q'n)

over the field G-F(q) with basis,

{1, o, e2,...,th-t, þ, þa,..., Po.n-t}.

Embed GF(q'n) as a hyperplane in the (2h+ 1)-dimensional vector space GF(q'n*'),

and we only need to add a single element e* say of GF(q2h+t) which is not in GF(q2h)

in order to obtain a basis

{r,., e2,. . ., dh-t, þ, þa,. . ., þoh-', "*}

for GF(q2h+t).

The regulat (h - 1)-spread E of PG(2h - L,q) is the collection of qh + t h-dimensional

vector subspaces of GF(q2h) defined in the previous section, with the notation introduced

there,

5 : {-r(oo)} u {"r(a) lb e Grþ\}.

Considering the construction in Section 1.10.1 of the finite Desarguesian projective plane

fI. Each affine point of fI is a l-dimensional vector subspace of GF(q2h+1) not contained

in the hyperplane GF(q2h) and so has a unique basis element of the form

n + y' + e* or, equivalently, (*0,*r,... ,frh-r,UorUt,... ,An¡,\)

where y' e J(0) so that r,a e J(-) : GF(qh) and have unique representation in the

form u : l!-]r¿ai, a : D?:;y¿ai, where the :x¿,!¿ ãîe in GF(q). (Note that we
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have used the fact that GF(q'o) i. the direct sum of /(-) and /(0).) Thus we define

the coordinates of the afÊne point of II with this basis element to be (*,A,7) for every

ordered pair of elements n,A € /(*) : Gf Q\.We have defined,

(r,a,7) : {* t a'* "*}
: {(*0,*r, "' ,frh-l,Uo,Ut, "' ,ant',L)}'

A line of II, distinct from the line at infinity, is a (h * l)-dimensional vector subspace

of GF(q2h+1) over GF(q) which intersects GF(q"h) in a unique element J of .S and so

has the form,

(J, (*,g, 1)) : (J, r -t A' + e*)

provided (r,A,7) is one of its points.

\Me divide these lines into two types:

(i) Lines with equaliony:1. If.7 is in J(-) :GF(qh), the point (r,g,1) of fI

lies on the line

(/(*), (0, ry, 1))

if and onlY if A :'Y'

These lines constitute a parallel class of lines in atr[I) with point at infinity

"I(oo) in IL

(ii) Lines with equation r : bA * s. If s is in "I(oo) : GF(qh) and "f(å) is in 5,

the point (*,A,I) lies on the line

(/(b), (s,0, 1)) : ({aBu+ o' la e /(oo)},s+ 0' +e*)

if and only if (" - r) * g' is in "f(b), that is, if and only if

(ro - So,lxr - slr. .. ,frh-r - "n-t) 
: (AorUt,... ,Un-t)86

where s : so f s1a + ... + sh_loå-r.

For each b e GF(qh) these lines constitute a parallel class of lines in atr(JJ)

with point at infinity /(b) in n.

Now if we wish we can consider the line at infinity [.oo of. lI as being the line with

equation z : 0, or in line coordinates the line [0,0,1]. Each element of the regular

spread 5: {"I(oo)}u{"f(a) lb e GF(qh)} is apoint on the line at infinity and it is
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convenient to associate J(b) with the coordinates (ó, 1,0) for all b e GF(q) U {oo}, so

that in particular /(-) is associated with (1,0,0).

1.11 Plane {k; .}-arcs and sets of type (*, t)

A {k;n}-arc K inafinite projective plane ro,of order q, is a set of k:lKl points in

the plane such that no n * 1 are collinear but some n are collinear. Barlotti introduced

thisdefinitionof a{k;n}-arcin1956. If n:2wecall K ale-arcandinDesarguesian

projective planes of odd order the (q* l)-arcs are characterised in Segre's Theorem as

follows.

Segre's Theorem L.11.1 169l In PG(2,q), q odd, euery (q*7)-arc'is a conic

For later reference we include

Theorem l.LL.2 [48, Theorem 12.2.5, Corollary 2] Any {k;3}-arc i'n PG(2,Q), I } 3,

satisfiesk<2qil. !

Let K be a {k;n}-arc in the finite projective plane ro, of order q. If aline (. contains

exactly s points of K we call (. an s-secant of K (O-secants are also called erternal li,nes

and l-secants are often called tangents of K). Denote by ú, (s - 0,. .. ,n) the number

of s-secants of K in rn. The following identities are proved in [75].

n

ft" : q2+q+I (1.1 1)

(1.12)

(1.13)

s=0
n

D'¿
s=1

s : k(q+t).

D r(" - 1)¿" k(k - r)
n

s=2

K is said to be of type (*r,*r,...,n), with rn1 lrnz <... <

non-zero, that is if every line of nn intersects K in exactly TtL1,TtL2,. . . or n points.

Note that the points of a conic \n PG(2,g) is a set of type (0, 1,2) since each line of the

plane is external, tangent or secant to the conic.
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We now give some results concerning sets of type (rn, n) in zrn which can be found in

1751,1741.

Let K be aset of type (*,n),01m 1n 1ql1in zro; denote by k the number of points

of K. Using the relationships (1.11), (1.12) and (1.13) we obtain tm+tn: q2 +Q*1,

mt^ * ntn: k(q + 1) and m(m - 7)t* + n(n - t)tn: k(k - 1). Note that some terms

will vanish when m: 0 or n1,:1. These equations are easily solved and the parameters

t^ andtn are given by,

t*: @hln(q" +q+ 1) - k(q+ t)l tn: @!--"lk(q+L) - *(q' +ø+ 1)l'

Moreover the integer k is found to satisfy

k2 - kl(rn + ")(q+ 
1) - ql + mn(q2 r q l-l) : 0.

By counting points of K on lines through a point Q ø K, respectively a point P e K,

we obtain a bound for the cardinality k of. a set of type (m,n),

for 71m, nùq+n 1k < (n-L)q-lm;

for m:0, k, : (n - I)q + n.

These bounds are best possible in the sense that there exist examples of sets in ro, for

some values of. q,m,n, where the cardinality k takes the extremal values. Examples will

be discussed in the following sections.

Let P be a point of K and denote by u*, un the number rn-secants, respectively

n-secants, through P. Lef Q be a point of zn not in K and denote by u^, un the

number rn-secants, respectively n-secants, through Q. Using the relationships,

u*lun :
(m - 1)u* i (n - L)u" :

We can determine the parameters as,

't).rn :'.-l,tn - ql @ - *)

un : u"+ql(n-m)
(n(q + r) - k) l(n - m)

(k - *(q + t)) l(n - m)

q+r
k-1

u"rn

r.Lrn * 't[n

n'ntrn* nun

q+r
k

un

Since these parameters are all integer valued, it follows that a necessary condition for

the existence of a set 1l of type (*,n),01m 1n 1q+L, in the plane z"o of order q,

is that (n - *) divides q.
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Given a set K of type (*,n) of ,k points in a finite projective plane rn, of order q, the

following sets are related to K.

The complement K of K is the set of pointsof zn not inK. K has q2+q+L_ k
points and is a set of type (q+ 1 - n,8*l - ^) in ro.

In the dual plane r! of ro the set Kd' of rn-secants of K constitute a set of lype (u^,u*)

of. t* points; similarly the r¿-secants of K constitute a set Kd' of type (2r,, u,,) in the

dual plane with ú,, points.

Thetrivialcasesof setsof type (*,n) inzrooccurwhenn-tn:q,\4/hereKisalineor

the complement of a line, and when n-rn:1, where K is a point or the complement

of a point. The non-trivial cases occur when n - nù is a proper divisor of q.

The sets of type (0, rz) in z'o (where n divides q is a necessary condition for existence)

are called maximal arcs; such sets necessarily have cardinality ("-I)qf rz from above.

\Me will leave the discussion of maximal arcs to a later section.

It remains to consider sets of type (*,r),71m 1n 1g in afinite projective plane

ro of order q. We have already determined (n - rn) divides q is a necessary condition

for existence. Using the parameters derived above of a set of type (*,r) as well as

the associated sets in the dual plane and their parameters, Tallini-Scafati proved the

following result in [75]:

Theorem 1.11.3 175) Suppose K i,s a set of type (7,n), n 1q, i,n a fi,nite proiectiue

plane rq, of prime power order, then q i,s a square and K is either a set of type (L, r/q+I)
oÍ qt/|l-L poi,nts OR a set of type (\,\/4+l) oÍq+ \/41-I points. n

The two sets in zro identified in this characterisation are called a unital of order 1[
and a Baer subplane of order 1Æ respectively (unitals will be defined and discussed

in more detail in a later section).

Tallini improved Tallini-Scafati's result by removing the condition that the order of the

plane must be a prime po\4/er.

Theorem !.LL.  174) Suppose K is a set of type (7,n), n 1q, i,n a finite projectiue

planerq, ol ord,erq, and,7:Q ,,\:ph pprime and'h) 0 integer' Thenq:P2h,
ln- L)

n: \/41L and K i,s either a Baer subplane or a unital of order t/Q. ¡
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L.Lz Caps, Ovoids and Spreads of PG(3, q)

For further detail regarding this section consult 133,1.4.47 to L4.621, [49] and [61]; we

restrict our attention to PG(3,q).

A k-cap in PG(3, g) is a set of k points no three of which are collinear. An ovaloid in

PG(3,q) is a k-cap of maximum size. For a k-cap K in PG(3, q), each Iine (. in PG(3, q)

is called an external, tangent or secant line of K according as the intersection (.1K

contains 0, 1 or 2 points of K.

An ovoid is a k-cap in PG(3, q) such the tangent lines at each point form a plane.

Moreover an ovoid in PG(3, q) has exactly q2 + 7 points. It is known that for q > 2 an

ovoid in PG(3, q) is an ovaloid and conversely.

Let O be an ovoid in PG(3,q). For each point P eO there exist q*l tangent lines to

O at P; these tangent lines lie in a plane about P called the tangent plane to O al' P.

Each plane of PG(3,q) intersecls O in either l point or in a (q+1)-arc and is called a

tangent plane or secant plane of (? respectively.

For all values of q, the eltiptic quadrics in PG(3, q) form an infinite class of ovoids known

as the classical ovoids of PG(3, q). Each secant plane of an elliptic quadric in PG(3, q)

intersects the elliptic quadric in q * 1 points of a non-degenerate conic. If g is odd, then

every ovoid in PG(3,q) is an elliptic quadric [8].

The only other known class of ovoids in PG(3, q) are the Tits Ovoids which exist in

PG(3,22'+r), r ) L an integer. Their construction is given as follows.

In PG(3, 2zr+r), r ) 7 an integer, consider the automorphism defined by

o¡*1o: r ---+ r'

so that o2 : r ----s *22'+z : 12. Let Or be the set of points

Or : {(l, r,a,r)l z : ïa + r"r2 + a"} u {(0, 1,0,0)}

(see [49, Theorem 16.4.5]). For r : I, Or is the non-classical ovoid in PG(3,8) discovered

by Segre [69] in 1959. For all other r, the ovoid Or was discovered by Tits [SS] in f O0O.

The Tits ovoids are the only known non-classical ovoids of PG(3, q). Moreover for q < 32

the ovoids of PG(3,q) are either classical or of Tits type (see [62], [63], [64]).
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For o the automorphism defined above, consider the following set of lines in PG(3, 2zr+t):

9æ : {(0, s,0, ¿)l s, t e GF(22'+\}

ga,b: {(s, fob Iao*2 ib"]s *fao+t +b]t,tl as,bs* aot)l s,ú € GF(22'+r)]

where a,b are any two elements in GF(22'+r¡.

This set of q2 + 1 lines forms a spread of PG(3, 2zr+t) called the Lüneburg Spread

[58, Section 23]. It can be proved that for q odd that no set of q2 + | tangents of an

elliptic quadric in PG(3, g) can form a spread of PG(3, q); this result is a consequence

of the main result of [7].

1.13 Unitals

A unital (or unitary block design) of order n is a 2 - (nt * 7,n + 1,1) design, for

some integer rz (see [33, section 2.4.2L]). A unital is therefore an incidence structure with

n : n3 f 1 points, k : n* l points on each block, such that any two distinct points are

incident with a unique common block. A unital of order n has b: n2(n2 - n-l1) blocks

and each point is incident with exactly rz2 blocks.

The problem of determining for which values r¿ a unital exists is only partially solved.

The known examples of unitals are of order r¿ where either rz is a prime porver ot n:6
(see [5e] and [a]).

We now discuss some known examples of unitals.

1-.13.1 The Classical Unitals

A polarity in a projective plane ø' is a one-to-one and onto map o from the points

(respectively tines) of r to the lines (respectively points) of zr of order 2 and which

preserves incidence, that is,

ifPll.then1 IP"

for all points P and lines I of n'.

A point P (respectively a line l) of zr is called absolute, with respect to a polarity c, if

P is incident with its image Po under a (respectively tT().
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Let ø(a) denote the number of absolute points of a polarity o in PG(2,q). Since a has

order 2, for a point P and a line (.,

PI[,ifandonlyifLIP"

and if (.: P" then

PIP"ifandonlyif/ I[.

and therefore the absolute points are in one-to-one correspondence with the absolute

lines. It also follows that each absolute line !. contains a unique absolute point, namely

the point lo, and conversely, each absolute point lies on a unique absolute line. Thus

ø(o) is also equal to the number of absolute lines of the polarity o in PG(z,q).

The polarities of PG(z,q) are classified as follows:

Theorem 1.13.1.1 [48, Section 2.1(v)] ,4 polarity ù of PG(2,Q), Q:ph p pri,me, i,s

of one of the following types:

In PG(2, q2), the Desarguesian projective plane of square order q2, the set I/ of absolute

points of a unitary (or hermitian) polarity is a set of qa + 1 points such that each line

Name (also lenown as) GF(q)

: GF(ph)

Locus of Absolute poi,nts

orthogonal (ø/ ordinary

(ó/ pseudo

p+2

P:2

q*\ points X of a non-degenerate

conic wi,th equati,on XíAX : 0,

where A is a symmetri,c matri,r in

GL(3,q)

q*7 points of a line.

unitary hermitian p arbi,trary;

h must be euen

so that q is a

square

q\/q+I points of a þerrnitian/
curue wi,th equati,on

XJ1HX :0,

where H i,s a hermi,tian n1,a-

trir (that i,s a matrir sati,sfying

Ht : HJd and H non-si,ngular)

in GL(3,q)
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of the plane intersects ll in L or q * 1 points. The lines are called tangent (absolute)

or secant (non-absolute) Iines respectively. The structure l,l is a2- (ot *7,8 + 1,1)

design, that is, a unital of order q, where the blocks are the sets of q f 1 absolute points

on the secant (non-absolute) lines of the polarity and incidence is the natural point-line

incidence of PG(2,q2).

A unital in PG(2,q2) which arises in this way from a unitary polarity is called a classical

unital (or a Hermitian unital). The classical unitals are projectively equivalent under

PGL(S,q) (see [48, Theorem 7.3.1]) and therefore up to isomorphism a classical unital

has the equation,

rq+r + Aq+r + zatr :0,

which is the canonical form of a non-singular Hermitian curve where the matrix fI is

taken as the identity matrix. The classical unitals in PG(2, q2) are also called Hermitian

curves. For this reason in the literature a unital in PG(2,q2), which is not necessarily

classical, is sometimes called a Hermitian arc.

The classical unitals have been characterised in a number of ways, for example:

Theorem L.t3.1.2 [57] [37] In PG(2,q2), q] 2, a unital U i,s classi,cal i,f and only i,f

each Baer subline in PG(2,q2) i,ntersects I'l in 0,1,2 or qi-L poi'nts. !

L.t3.2 Unitals embedded in Finite Projective planes

A unital Ll of. order r¿ is said to be embedded in a finite projective plane ro, of order

q, if the points of. U are a subset of the points of rq, each block of U is a set of points

collinear in zrn (with distinct blocks on distinct lines) and incidence in U is induced by

the point-line incidence in ro. IfU is embedded in ilqwe sometimes say U is a unital in

'lfq'

The classical unitals are examples of unitals of order q (embedded) in the Desarguesian

projective plane PG (2, q2).

Let ü be a unital of order s embedded in a finite projective plane ro of. order g. The

points of l,l are necessarily a set of type (0,1,s* 1) or of type (1,s+ 1) inrn. Suppose

U is a set of type (1,s + 1) in n-n and if either q is a prime power or if qf s is a prime

po\4/er then by Theorems 1.11.3 and 1.11.4 we have that q is asquare andU is aunital

of order ,1Q in ro.
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Consider a classical unital Il of order qin PG(2,q2). Embed PG(2,q2) as a Baer subplane

in PG(2,qa); then l,l as a design has been embedded in PG(2,g4) and the unital is a

set of type (0,7,q]-1) \n PG(z,qn). So we have examples of unitals (as designs) which

arise naturally as structures in projective planes, but which may have external lines.

However if the embedded unital has no external lines then by the Tallini-Scafati and

Tallini characterisations in Theorem 1.11.3 and Theorem 1.11.4, with the appropriate

condition on the order of the plane, we may restrict our attention to finite projective

planes of square order q2 and (embedded) unitals of order q.

Thusaunital Llembeddedinafiniteprojectiveplane rnroforder q2isasetof q3+1

points of the plane such that each line intersects U in exactly 1 or q + L points; each

line is called a tangent or secant line of U respectively. Moreover, each point P e U

is incident with a unique tangent line and q2 secant lines of Ú. By the results of

Section 1.11, since a unital Ll in ro, is a (q3 * l)-set of type (1, q + 1), the set of q3 + 7

tangent lines of Ll are the points of a unital üo in the dual plane rþ of rrz; lhe unital

tlo i, called the dual unital of U in rþ.

Unitals from unitary polarities

Above we defined the classical unitals ln PG(2,q2) as those unitals (embedded in

PG(2,q2)) which arise as the set of absolute points of a unitary polarity in PG(2,q2).

Let ro be a finite projective plane (not necessarily Desarguesian) of order g.

Due to the work of Baer [3] and Seib [70] we have the following results (statement taken

from Hughes and Piper [52, Theorems 72.7,72.11,12.72)) concerning polarities in rq,

Theorern L.!3.2.L Let o be a polarity of a fi,nite projecti,ue plane of order q. If q is not

a squl,re, then o has a(o) : q + L absolute points and

(o) if q i,s euen, the absolute points are collinear

(b) if q i,s odd, the absolute points form a (q + 7)-arc

If q : s2 is a square, then o has a(o) < s3 + ! absolute points and if a(o) : s3 * 1 then

the set of absolute poi,nts and non-absolute lines forms a unital of order s : \fq. n

In ro a polarity o is called orthogonal if a(ø) : q+ 1 and unitary if aþ): q3/2 +!.
By the classification of polarities in the Desarguesian plane PG(2,q), given in Theo-

rem 1.13.1.1, any polarity of PG(2,q) is either orthogonal or unitary. Note that there
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exist examples of non-Desarguesian planes ro of. order q and polarities o in rn whose

number of absolute points satisfy q+7 <o(o) <qsl" + 1 (see for example [52, Exercise

12.161).

Theorem 1.73.2.1indicates one approach at finding ne\r/ unitals, by finding unitary po-

Iarities in non-Desarguesian finite projective planes. See [32], 147],142], [54], for example,

for results concerning unitals constructed in this manner.

1-.13.3 Buekenhout-Metz Unitals

The class of unitals known as Buekenhout-Metz unitals are defined in translation

planes rn, of order q2 with kernel of order g. In this thesis we shall not define the term

kernel, but note by [33, 5.1.11], a translation plane roz of order q2 with kernel of order

q is a translation plane which has a Bruck and Bose representation in PG( ,q) defined

by a l-spread 5 in a hyperplane E* : PG(3,q) of PG(4,q).

In the Bruck and Bose representation, the line at infinity /* (with points the elements

of the spread 5) is the translation line of the translation plane øor.

The construction is as follows: Let O be an ovoid in a hyperplane of PG( ,q)\t*
intersecting E- in a unique point X, where the tangent plane to O at X does not

contain the unique line ú of S incident with X. Let V be a point of ú distinct from X.

Let Ll* be the structure containing the spread line ú and all points of PG( ,,q)\X- on

the ovoidal cone with vertex I/ and base C?.

The ovoidal cone 7* co..esponds to a set ll of q3 + 1 points in the translation plane ro,

which is defined by the spread 5 of X*. The set U is a unital in ro, tangent to (.oo at

the point T which is represented by ú in Bruck-Bose (see [24, Section 4. (4)]). We shall

call a unital U in rn" with the above construction a Buekenhout-Metz Unital, and

we shall sometimes say L/ is Buekenhout-Metz re (T,l-). If a Buekenhout-Metz

unital /,/ is constructed in a translation planerq2 as above, with the ovoid (? an elliptic

quadric, then we say î,/ is Buekenhout-Metz with elliptic quadric as base. (Note

that we shall sometimes abbreviate Buelcenhout-Metz to B-M.)

Buekenhout proved in l2a] that each classical unital U in the Desarguesian plane

PG(2,q2) is Buekenhout-Metz rc (7,[.y) for any point T e U and (.y the tangent line

to tl at T. Moreover, Buekenhout showed that every classical unital in PG(2,ø') is
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Buekenhout-Metz with elliptic quadric as base, that is, corresponds to an elliptic quadric

cone in the Bruck-Bose representation of PG(2,q2).

Buekenhout constructed the first non-classical unitals in PG(2,24'+2), r t \, by taking

O tobe a Tits ovoid in E* : PG(3,8), e:22rtt, in the above construction. Metz

[60] extended this class of non-classical unitals in PG(2,q') to all values of q > 2by

constructing Buekenhout-Metz unitals with base ovoid an elliptic quadric and such that

the unitals did not arise from unitary polarities in PG(2,q2).

All known unitals in PG(2,q2) arc Buekenhout-Metz unitals (see for example [26]).

Finally we state two characterisations; see Chapter 5 for a new characterisation of

Buekenhout-Metz unitals in PG(2,q2),, for q > 3.

Theorem 1.13.3.1 [56, Section 2., Theorem] In PG(2,Q2), Q ] 2, a unital tl ¿s

Buelcenhout-Metz re (7,¿*) ,Í and only if euery Baer subline with a point on {.* i,n-

tersects U in 0,1,2 or q * t points. ¡

Theorem 1.13.3.2 [57, Proposition I] IÍ Tl i,s a Buekenhout-Metz unital re (7,(.*) in

PG(2,q2), with base ouoi,d an elliptic quadric and if there eri,sts a secant line I ol U,

not on T, such that I ÀU i,s a Baer subline, then U i,s a classi,cal unital. !

Unitals have been constructed in non-Desarguesian planes by using the construction of

Buekenhout-Metz unitals given above, see for example [11, 12], [31].

L.t4 Inversive Planes

A comprehensive introduction to inversive planes is given in Dembowski's Finite Geome-

triesl33, Chapter 6]. Recent results concerning this topic can be found in [61], [S2], [83],

[84], for example.

Definition 1.14.1 (Statement from [53]) ,an inversive plane I i,s a set of points with

di,stinguished subsets of the points, called circles such that:
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(r 1)

(r2)

(r3)

o,ny three disti,nct points of I are in eractly one conxnxon circle;

i,f P,Q are points of I and !. i,s a ci,rcle wi,th P e (. but Q / (. then

there i,s a unique ci,rcle of I which contai,ns both P and Q and meets

(. only in the point P;

I contai,ns four points which are not on a, conxnxon circle.

Let ,I be an inversive plane and let P be a point of .I. The set of points of 1 different

from P together with the circles containing P (minus P) and with incidence given by

inclusion, is called the internal structure Ip of. I at P.

For every point P of I the internal structure Ip is an affine plane called the internal

plane of. I at P.

By (I1) for two distinct circles L,m of..I we have the number of points common to /
and m is 0,1 or 2 and in each case 'we say the circles (. and n'L ate disjoint, tangent or

intersecting respectively.

Some subsets of circles in an inversive plane I are of particular importance and for

reference later we have the following terminology:

A bundle of circles is the set of all circles through two distinct points P,Q of 1. The

points P and Q are called the carriers ofthe bundle.

A pencil is any maximal set of mutually tangent circles through a common point P,

called the carrier of the pencil. (Note the pencils with given carrier P correspond to

the parallel classes of lines in the afÊne plane ,Ip.)

A flock is a set of mutually disjoint circles in I such that, with the exception of precisely

two points P,Q every point of -I is on a (necessarily unique) circle of the flock. These

points P,Q arc called the carriers of the flock.

In the finite case an inversive plane can be defined in the following way.

DefinitionL.t4.2,4 finite inversive plane I is a 3-(q'+1,8i-7,L) design. We call

q the order of L

For every point P of a finite inversive plane I of order q the internal plane -Ip is an

(finite) affine plane of order g (see [33, Section 6.t(a)]).

Up to isomorphism there is a unique inversive plane of order q, with q e {2,3,4,5,7}.

For q : 7 this was originally proved by R. F. Denniston with the aid of a computer;
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in [84], as a corollary of a theorem we shall mention below, Thas gives a computer-free

proof of the uniqueness of the inversive plane of order 7.

Let O be an ovoid in a 3-dimensional projective geometry. The points of. O together

with the intersections zr ll O, wilh zr a secant plane of. O, is an inversive plane 1(i?). We

call I(O) the inversive plane associated with the ovoid (?. We call an inversive plane

egglike if it is isomorphic to an I(O) for some 3-dimensional ovoid (? (see [33, Section

1.2] for i,somorphisrn of incidence structures). If O is an ovoid of PG(3,q), then the

associated inversive plane I(O) is a finite (egglike) inversive plane of order g.

Since the only known examples of ovoids in PG(3, q), with e ) 2, fall into two infinite

classes there are consequently two known infinite families of finite egglike inversive planes.

If the ovoid is an elliptic quadric of PG(3,q), then the associated inversive plane is

called classical or Miquelian since it satisfies the configurational condition known as

the Theorem of Miquel (see [33, Chapter 6] for more detail.) The family of finite

Miquelian inversive planes is denoted Vt(q). If the ovoid is a Tits ovoid in PG(3, 22'*r),

with r ) 1 an integer, then the associated inversive plane belongs to the second known

family of finite egglike inversive planes which is denoted by S(q).

The only known finite inversive planes are the egglike inversive planes in the families

U(q) and S(q). The problem of classification of ovoids of PG(3,q), with q ) 2, is

equivalent to the classification of finite egglike inversive planes. As stated in an earlier

section, the ovoids of PG(3, q), with Q t 2, have been classified fot q 1 32.

We now list some old and some recent important results concerning finite inversive planes.

1. [33, 6.1.3] For any point P of a finite egglike inversive plane I(O) the affine plane

Ip is the Desarguesian plane AG(2,q).

2. [33, 6.2.74] Every (finite) inversive plane of even order q is egglike. Consequently

q is a power of 2.

3. [33, 1.4.50] Every (finite) egglike inversive plane of odd order is Miquelian

4. l82l [8a] Let l be an inversive plane of odd order q, q ø {11,23,59}. If for at least

one point P of I the internal plane /p is Desarguesian, then .I is Miquelian.

5. l77l [65] If F is a flock of a finite egglike inversive plane I : I(0), then F is linear

(that is, the ovals of O in PG(3, q), which correspond to the circles of the fl.ock F,
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lie in planes of PG(3, q) about a common line.)

6. [61] Let I be afinite egglikeinversive plane of order 2 < q <32. If q € {S,32}

then I is Miquelian or of S(q) type. If q / {S,32} then I is Miquelian.

Finally, we shall mention the plane model of egglike inversive planes which is given

in [8a] for example.

Let O be an ovoid of PG(3, q) and let I denote the corresponding inversive plane. The

circles of I are in one-to-one correspondence with the secant plane sections of the ovoid

in PG(3, q). As a consequence we shall interchange the setting between the incidence

structure of the inversive plane and the geometry of the ovoid in PG(3,q). We shall

even abuse the terminology and refer to "circles" of. O in PG(3, q) when we mean secant

plane sections of (? which correspond to circles of the associated inversive plane. The

context in which we do this should make our meaning clear.

Let P be a point of. O and let zr be a plane of PG(3, q), not containing P. The intersection

of zr and the tangent plane rp of. O at P is denoted by l*. By projection ( of O - {P}
from P onto zr, the points of O - {P} are mapped onto the q2 points of zr\/*, the circles

of (? through P (minus P) are mapped onto lhe q2 *q affine lines of r. The Desarguesian

affine plane 7r\l- is isomorphic to the internal plane Ip of I at P. Moreover the circles

of (9 not through P are mapped by ( onto q3 - q2 ovals of ø'; each such oval is disjoint

from /*.

If the ovoid (? is an eltiptic quadric, then the circles of. O nol through P are mapped by

( onto the q3 - q2 non-degenerate conics of zr containing two points X,X €. /-, which

are the two points of O on l- belonging to the quadratic extension GF(q2) of GF(q).

Example: Consider the projective line PG(l,q2). The points of PG(1,q2) together

with the Baer sublines of PG(7,q2), with incidence given by inclusion, forms a Miquelian

inversiveplaneloforderq(see[33,page273]). Fixapoint Pof PG(I,q2) andconsider

the internal plane Ip N AG(2,q) of I at, P. By the above theory and using the same

notation, denote by L* the line at infinity of ,Ip and let zr denote the projective completion

of Ip so that Ip : zr\/*.

In the correspondence between the inversive plane l defined on PG(l, q2) and the internal

plane Ip of I at P we have: The points of PG(1, q')\{P} are the q2 points of zr'\l-.

The Baer sublines of PG(L,,q2) containing P (minus P) are the q2 .lq lines of n\loo and
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the Baer sublines of PG(1,q2) not containing P are the q3 - q2 non-degenerate conics

in zr containing two fixed points X,X e l*, with X,X conjugate with respect to the

quadratic extension GF(q') of G.F' (q).

We represent the situation as follows, lvith C1, C2 and C3 three Baer sublines of PG(1,q2)

disjoint from P. In zr, the Baer sublines are represented as non-degenerate conics con-

taining two points X,X on (.* in the quadratic extension.

X

¿oo

PG(L,q2)

1.15 Maximal Arcs

As discussed in Section 1.11, Barlotti [9] introduced the term {k; n}-arc for a set K of k

points in a finite projective plane zo of order q, where n, n * 0, is the greatest number

of collinear points in the set. {k;2}-arcs are simply called k-arcs.

A {k; n}-arc is complete if it is not contained in a {kf 1;n}-arc.

Let K be a {k; n}-arc in rn. By considering the points of K on the q * 1 lines through a

point P of. K, it is easy to see that the number k of points of K satisfies:

k: 
'rå.li!,'.'

A {nq - q -l n;n}-arc in ø"n is called a maximal arc. Equivalently, a maximal arc may

be defined as a non-empty set K of points in zro such that every line of zo meets K in

either exactly n points or in none at all; the lines of ro are called secant or external

lines of K.

PCt Cz Cs

X

1T
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Examples of maximal arcs:

For the given value of n a maximal {nq - q + n;n}-arc K in z-o is:

n: !, A single point.

n :2, A (q + 2)-arc in rq, q even, in other words K is a hyperoval in rq, q even.

tu: g, The set of points ro\L for (. aline of ro.

n - q I L, The set of points of the plane no.

Note that the study of hyperovals (maximal arcs with n : 2) is an active field of study

in its own right with an extensive literature.

Since the maximal arcs with n : 1 or q + | are determined we consider maximal arcs

withl <n<q+1.

Let Kbe a (maximat) {(" - 1)q + n;n)-arc in rq, n < q. Let Q be a point of zo not in

K. By definition every line through Q intersects K in 0 or n, points therefore we have:

r¿ divides (n - 7)q + n

hence n divides q.

Hence Barlotti obtained a necessary condition for the existence of a (maximal)

{nq - q + n;n}-arc in'rq, n 1 8, is that n divides q'

Also in [9] it was shown that if a {nq - q + n; n}-arc K exists in zrn then the set of external

lines of K is a (maximal) {q(q-n+I)ln;qfn}-arc in the dual plane of rn. It follows

that a maximal {rq- q+n;rz}-arc exists in PG(2,q), n 3 q, if and only if a maximal

{q(q - n + L) ln;qf n}-arc exists in PG(2,q).

Denniston [34] proved that Barlotti's necessary condition for the existence of maximal

arcs is sufficient in PG(2,g), q even, by constructing infinite families of maximal arcs in

Desarguesian planes of even order.

Cossu [30] showed the above necessary condition for existence of maximal arcs in zrn is

not sufÊcient; he proved PG(2,9) contains no {21;3}-arc. Thas [79] generalised Cossu's

result by proving the following result.

Theorem 1.15.1 179] In PG(2,Q), e:3h and h ) L, there are no {2q-13;3}-arcs and

(hence) no {q(q - 2)13 qf 3}-arcs. tr

In this 1987 paper Thas made the following conjecture:
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Conjecture 1.15.1 [79] In PG(2,q), q odd, the only marimal arcs are PG(2,q),

AG(2, q) : PG(2, Ç)\1." and the dual of AG(2, q) '

This conjecture was recently proved by Ball, Blokhuis and Mazzocca [7]

Theorem L.L5.2 l7l For q an odd pri,me power, and t < n < q, the Desarguesian plane

PG(z,q) does not contain a {nq - q -l n;n}-arc. ¡

We now list some constructions and classes of maximal arcs.

In [7S] Thas constructed an infinite family of maximal arcs in certain translation planes

of even order. In the literature this family of maximal arcs has been referred to as the

Thas maximal arcs and we shall do so here.

The Thas maximal arcs âre defined in certain finite translation planes of order q2 with

kernel of order q; each such translation plane corresponds to a 1-spread in a hyperplane

loo of PG( ,q) bV the 4-dimensional Bruck and Bose representation of the translation

plane (Section 1.10). The construction is as follows'

The construction of a Thas maximal arc: Let E- : PG(3'q) and consider an ovoid

O and a spread .S in Xoo such that each line of .S is incident with a unique point of. O. Ãn

ovoid O and a spread 5 in X* with this property will be called a Thas ovoid-spread

pair ((?,5).

Let Xoo be embedded as a hyperplane in PG( ,q) and let X* be a point of PG( ,q)\t*.
Denote by K* be the set containing X* and all points of PG( ,q)\t- collinear with Xo

and a point of O.

The set of points K* in PG( ,q) represents a maximul {qt - q2 + q;q}-arc K in the

translation plane rnz of order q2 with translation line loo corresponding to the spread 5.

We call K a Thas maximal arc in ro" with base point X and axis line l-.

Note that the axis line l* is an external line of. K in roz.

Existence of Thas maximal arcs: By the above construction, a Thas maximal arc

exists in a translation plane rnz of order q2 with translation line /- if and only if a Thas

ovoid-spread pair (O,S) exists in PG(3, q),for the spread 5 corresponding toroz in the

Bruck and Bose representation.

The known examples are [78]:
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Tþanslation plane q (O,S)

PG(2,,q2) even

q:22'tl, r ) |

(elliptic quadric, Regular spread)

(Tits ovoid, Regular spread)

Lüneburg plane q:22'*1, r ) |

q:22'tl, r ) 1

(Tits ovoid, Lüneburg spread)

(elliptic quadric, Lüneburg spread)

Note that for q odd, an ovoid in PG(3, q) is an elliptic quadric; by Theorem 1.15.2 there

exists no Thas ovoid-spread pair in PG(3, q), q odd.

In [80] Thas generalised the above construction of a Thas maximal arc and constructed

(maximal) {q2d-t - qd + qd-r' qd-t}-arcs in certain translation planes roo of even order

qd.

For further constructions of maximal arcs in planes other than the Desarguesian plane

see for example 145, 461.

1.16 Generalized Quadrangles

We present here some preliminary results concerning generalized quadrangles, for later

reference. Unless stated otherwise the definitions and results of this section are from

Payne and Thas [67].

A (finite) generalized quadrangle Gq is an incidence structure ,S : (P,B,I) in

which P and, ß arc disjoint (non-empty) sets of objects called points and lines (re-

spectively), and for which I is a symmetric point-line incidence relation satisfying the

following three axioms:

ÇQ axiom (i) Each point is incident with 1 * ú lines (¿ > 1) and two distinct

points are incident with at most one line.

ÇQ axiom (ii) Each line is incident with 1* s points (" 2 t) and two distinct lines

are incident with at most one point.

9Q axiom (iii) If X is a point and (. is a line not incident with X, then there is a

unique pair (Y, m) eP x ß for which X I mI Y I (..

The integers s and ú are the parameters of the ÇQand S is said to have order (s,ú); if

s: t, then ,S is said to have order s.

Let ,S be a I Q of order (", ¿). Let X, Y be two (not necessarily distinct) points of S. We
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write X - Y and say that X and Y are collinear if there exists a line (. of S such that

X I (.I Y. And X *Y means X and Y are not collinear. Note that X - X for any X

in P.

For X €P the set {Y eP;X -Y) of points in the ÇQcollinear with X is denoted

Xr. The trace of a pair (X,Y) of distinct points is the set Xr n yl and is denoted

{X,Y}t. More generally, if A is a subset of points inP, then A "perp" is defined by

AL:N{X]IXCA}.

Result 1.16.1 For distinctpoints X andY in açQ S of order (t,t), the cardi,nali,ty of

{X,Y}L is:

l{x,v}tl :s*1
l{x,Y}tl :t*L

if X -Y,
i,r x *Y.

For distinct points X and Y in 
^9, 

the span of the pair (X, )/) is

{X,Y}tt: {V €P;V e ZL for all Z e {X,Y}t}.

If X /'Y, then {X,Y}tt is also called the hyperbolic line defined by X and Y.

A triad (of points) is a triple (X,Y,Z) of pairwise non-collinear points inP. Given a

triad ? : (X,Y, Z), a center of ? is a point of. TL .

Result I.L6.2 167,t.2.4] Let S be aÇQ of order (t,ú). If t>! andt)I, then s2:t
i,f and onlg if each triad (of poi,nts) has a constant number of centers, in which case thi,s

constant number of centers is s f 1. n

Let s2 : t ) 1, so that ,S is a ÇQ of order (t, t') and by Result Lt6.2, for any

triad (X,Y,Z) we have l{X,Y,Z}tl: s * 1. If X',Y',Z' are three distinct points

in {X, Y, Z}t then since (X' ,Y' , Z') is necessarily a triad (bv Ç Q axiom (iii)), we have

{X,Y, Z)tt ç {X',Y', Z'}t and therefore l{X, Y, Z}ttl < l{X',Y', Z'}LI: s * 1. We

say a triad (X, Y,Z) \s 3-regular provided l{X,Y,Z}ttl: s * 1. A point X is called

3-regular if and only if each triad containing X is 3-regular.

Result 1.16.3 [67, 1.3.3] Let S be a ÇQ of order (t, t'), s t 7, and suppose that any

triad, contai,ned i,n {X,Y}t, X * Y, i,s 7-regular. Then the incidence structure with
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pointset {X,Y}t, wi,th circleset the sets of elements {Zr, Zr, Zr}tt, where Zt, Zz, Zs o,re

di,sti,nct points in {X,Y}L, and wi,th natural incidence, is an inuersiue plane of order s.

We include a proof of Result 1.16.3 to clarify this case for later reference.

Proof: First note that by Result 1.16.1, l{X,y}tl : s2 11 and so our incidence

structure has s2 * 1 points.

For distinct points zt, zz, ft € {x,Y}t, (zr, zz, zt) is a triad (bv GQ axiom (iii)) and

X,Y e {Zr, Zr, zr}t. It follows lhar {Zy Zr, Zr}tL ç {X,Y}r and by the 3-regularity,

each circle of our incidence structure is incident with exactly s * 1 points. It also follows

that any three distinct points in {X, Y}r determine a circle.

We now verify each property in Definition 1.14.1:

(11):Lef h:{Zt,Zr,Zr}tt andc2:{Z't,Z'r,ZL}tt betwodistinctcircles' Suppose

Xt, Xz, X3 are three distinct points incident with both circles. Note that {Zr, Zr, Zt}tt

is determined uniquely by any three distinct points X'r, XL,X| in {Zr, Zr, Z3)L sitce,

{zr, zr, zr}tt ç {x'r, xL, xL}t

and these two sets have the same cardinality s * 1'

It follows that since c1 and c2 ãtQ, distinct circles, the sets {Zr, Zr, Zs}L and {Zl, ZL, ZL}L

have at most two points in common. Points Xt, Xz,X3 are each collinear to every point

in {21, 2", Zr}r and to every point in {Z'r, ZL, ZL}t, therefore

l{Xr,Xr,Xr}tl >
2s

a contradiction, since for the triad (Xr,Xr,X3) we have l{X1, X",Xs]¡Ll: s * 1.

Therefore three distinct points determine a unique circle in our structure.

(12): Disrinct points P,Q e {X,Y}t are contained in circles {r:9,t,}tt,where Z is

any point in {X,Y}r distinct from P and Q.Bv Q1),there ut.;]: sf l choices

for Z and therefore there exist s * 1 circles incident with P and Q, with no further point

in common. By counting, we obtain that each point of the structure, distinct from P

and Q, is incident with (exactly) one circle which contains both P and Q.
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s2 1S2(
By (11) it follows that P is incident with

s(s - 1)
: s2 * s circles. So there exist

circles containing P and nol Q,let (.p be such a circle.

Each circle which contains P and Q intersects (.p in at most one point besides P. There

are s points of (.p besides P and from above, each such point lies in some circle containing

P and Q. Therefore there is one remaining circle, which contains P and Q but intersects

.(.p only in the point P.

(13): There are s2*l points in the structure and s2+1 > s*l since s ) 1 and therefore

there exist 4 points not on a common circle.

By Definition L14.I, the incidence structure is an inversive plane of order s. !

Result L.16.4 167, 3.L2] For each ouoid O in PG(3,q) there i,s a ÇQ to be called

T"(O) constructed as follows:

Let O be an ouoi,d i,n PG(3,q). Further, let PG(3,q):Doo be embedded as ahyperplane

in PG(4,q).

Define points as the following three types:

rype (i) the poi,nts PG(4,4)\E"",

Type (ii) the hyperplanes fIs of PG(4,q) Íor which lIIr n Ol: I,

Type (i,i,i,) one neu symbol (æ).

Lines are defined as the following three types:

Type (a) the lines of PG( ,q) which are not contained inÐoo and meet o
(necessarily i,n a unique point),

Type (b) the poi,nts of O.

Incidence i,s defi,ned as follows: A poi,nt of type (i,) is i,ncident only with li,nes of

type (a); here the i,ncidence is that of PG(4,q). A poi,nt of type (i,i,) is incident with all

li,nes of type (a) contained in it and wi,th the uni,que element of O i,n it. The point (æ)

is inci,dent wi,th no line of type (a) and all lines of type (b).

Tt(O) is a ÇQ of order (q,q'). ¡

Result 1.16.5 [67, 3.3.2(ii)] fhe poi,nt (*) ,/ the gQ ftp) is ?-resular.

Definition of Property (G) 1.16.6 166l In a generali,zed quadrangle S of order (t, t'),

s + 7, let X,Y be disti,nct collinear points. We say that the pair {X,Y} has property

G) i,f euerA triad (X,XuXz), withY e {X,Xt,Xr}L, is 7-regular. Then also euery
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triad (Y,Yt,Yz), with X € {}i Yt,Yr}L, is T-regular.

We say that the generali,zed quad,rangle,S has property (G) at a flag (X,t), where

X I [., if euery pair {X,Y}, X +Y,Y I (. has property (G).

We say the generalized quadrangle,9 has property (G) at the line (., or the line [.

has property (G), if eachpai,r of poi,nts {X,Y}, X +Y, andX I [.IY, has property

(c)

Result 1.16.7 [86, Section 2.4] The point X of the generalized quadrangle S, of order

(t,t'), s lL, is 7-regular if and only i,f each fl,ag (X,(.), X I1., has propertA (G). !
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Chapter 2

The Bruck and Bose representation

in PG(a, q)

In this chapter we examine the Bruck and Bose representation of translation planes zro,

of order q2 with kernel of order q; that is, translation planes of order q2 which are de-

scribed by 1-spreads of PG(3,q) in the 4-dimensional Bruck and Bose representation

([33, 5.1.11]). I" particular we consider the 4-dimensional Bruck and Bose representa-

tion of the Desarguesian plane PG(2,ø'). It Section 2.1 we recall this special case of the

general Bruck and Bose representation and establish notation for the chapter. When we

wish to work with this representation we shall refer to it as the Bruck-Bose setting,

or simply Bruck-Bose. Note that this Bruck-Bose representation of a translation plane

is equivalent to the André group theoretic representation of a translation plane given in

l1l.

In this chapter we determine the representation in Bruck-Bose of Baer subplanes of

PG(z,q2) and present characterisations of these structures. We also determine the rep-

resentation in Bruck-Bose of conics contained in Baer subplanes of PG(2,q2); this work

leads to results concerning the existence of certain 4-dimensional caps which contain

many normal rational curves.

2.L Bruck-Bose in PG(¿, q)

Recall from Section 1.10 the following representation of PG(2,q') in PG( ,q) due to

André [1] and Bruck and Bose l2l] and l22l;
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Let (* denote a fixed line PG(2,q2) and call this line the line at infini,ty of PG(2,q2).

The plane AG(2,q'): PG(z,q')\/- is the Desarguesian affine plane of order g2. Embed

D- : PG(3,q) as a hyperplanein PG(4,q).Let E be a fixed regular spread of X-. The

affine plane AG(2,q') is represented by the following incidence structure: the points are

the points of PG( ,Ø)\D-, the lines are the planes of PG( ,q), not contained in X-

and which meet E* in a line of 5 and incidence is induced by the incidence in PG(4, q).

AG(2,q2) can be completed to the projective plane PG(2,q2) by the addition of. loo

whose points are the elements of the spread 5.

We shall use the phrase a subspace of PG( ,q)\E- to mean a subspace of PG( ,q)

which is not contained in X*. The points PG( ,q)\t* shall be referred to as affine

points. Also if a line I of PG(2,q2) intersects a Baer subplane B of PGQ,q2) in a Baer

subline n'L) we call I a line of B.

Note that PG(2,q') is a translation plane with respect to any of its lines and therefore

there is choice involved in fixing the line at infinity. Moreover, by Theorem 1.10.1.3, any

regular 1-spread in PG(3,q) corresponds to a Bruck-Bose representation of PG(2,q2).

Unless stated otherwise in this chapter, the Bruclc-Bose representation of PG(2,q2) is the

representation given above for a fixed line /* of PG(2,q2) and a fixed regular 1-spread

5 of Xoo : PG(3,q).

Let roz denote a translation plane of order q2 with kernel of order q and with translation

Iine /-. Then by [33, 5.1.11] rnz is described by a 1-spread .S, of E- : PG(3,q) in the

Bruck-Bose setting in PG(4,q).

For our discussion, we shall use the expression the representation in PG(4,q) to mean the

corresponding Bruck and Bose representation of the projective translation plane being

discussed; moreover, the two representations coincide, that is ro, : PG(2,q2), if and

only if 5, : S is a regular spread of D*.

If X denotes a substructure in ror, it will be convenient at times to denote by X* the

substructure in PG(4, q) which is the Bruck-Bose representation of X. Conversely, if X*

is a substructure of PG(4,Ø), we shall denote by X the subset of points and lines of ro,

which is represented by X* in Bruck-Bose.
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2.2 Known Bruck-Bose representations of Baer sub-

structures

The representation in PG( ,q) of Baer subplanes of PG(2,q2) is of particular importance

in our discussion. In this section we review the known results'

A transversal plane in PG(4, q) is a plane in PG( ,q)\D* which contains no line of

5". Let B* be a transversal plane in PG( ,q), then B* is incident with q * 1 distinct

elements of Sr; denote these spread elements by (,r,t2,... ,lq+t. The affine points of

B* together with these q + L distinct elements of S" incident with B* correspond to a

set B inrn, of.q2 +q+7 points. For each i-_ 1,2,...,Qi7, there exist q planes in

PG( ,q)\t- containing l¿ and such that each intersects B* in q affine points. By the

Bruck-Bose correspondence, each such plane represents a line of rr, incident with q * 1

points of B. Furthermore the line at infinity intersects B in q * 1 points. If we call

these q2 +q*1lines, lines of B, then it follows that B satisfies the definition of afinite

projective plane and is therefore a Baer subplane of rn. In this way, the transversal

planes of PG(A,q) represent Baer subplanes of rn, which contain the line at infinity as

a line; a Baer subplane of rn, which contains the line at infinity as a line will be called

an affine Baer subplane of rnr.

Theorem 2.2.L [21, Section 9] ff B* is transuersal plane i,n PG( ,q) then B* i,s the

Bruclc-Bose representation of an ffine Baer subplane B of ro". !

Since the number of transversal planes in PG(4, q) equals the number of Baer subplanes

of PG(2,q2) which contain the line at infinity as a line, we have:

Corollary 2.2.2 121] B i,s an ffine Baer subplane of PG(2,q2) ?,f and only if i,n Bruck-

Bose, B* i,s a transuersal plane of PG(4,q).

Let B be an affine Baer subplane of PG(2,g2) and let (. I l.oo be a line of B. In PG(4, q),

the plane l* intersects the transversal plane B* in a line of PG( ,q)\E- (which is not

contained in X*). Therefore, by Corollary 2.2.2, any Baer subline of PG(2,q2) which

intersects loo in a unique point is represented in PG(4,q) by a line of PG( ,q)\t*;
conversely, each line of PG( ,q)\t* is the Bruck-Bose representation of a Baer subline

of PG(2,q2) which contains a unique point of [.oo.
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We now present the representations in PG( ,q) of Baer subplanes of PG(2,q2) which

intersect l* ín a unique point, and Baer sublines which are disjoint from l*.

The following result is well known and is a consequence of the example given in Sec-

tion 1.14.

Lemma 2.2.3 A Baer subli,ne b, containi,ng no poi,nt on (oo, of a line a in PG(2,q2), is

represented in PG(A,q) by a non-degenerate coni,c C* in the plane a representing a. Z

Definition 2.2.4 The con'ics i,n PG(A,q)\t* which represent Baer sublines of

PG(z,q2) shall be called Baer conics.

A Baer conic in PG(A,q) is necessarily disjoint from X*. Note that for the fixed reg-

ular spread 5 in E* there exist non-degenerate conics disjoint from loo, in planes

of PG(A,q)\t* about spread elements, but which do not represent Baer sublines of

PG(2,q2); that is, there exist non-Baer conics PG( ,q). This result was proved by Metz

[60] who showed that the number of Baer sublines of a line (. of PG(2, q2) dis;oint from

a fixed point P e (. is strictly less than the number of non-degenerate conics in PG(Z,q)

disjoint from a fixed line m in PG(2,q).

For later reference, we consider the Bruck-Bose representation of some well known con-

figurations of Baer sublines in PG(2,q2).

Lemma 2.2.6 Let Lt and L2 be disti,nct ffine points of a line a in PG(2,q2). Let

M : afl{*. There are q Baer sublines of a whi,ch contain Lt,Lz and not M.

Proof: The result follows from the fact that in PG(2,q2) there are (q2-t) l@-t) - ql7

Baer sublines containing -L1 and L2 and there is a unique Baer subline of ø containing

the three distinct points Lt,L, and M (see Theorem 1.2.1 and the subsequent remarks).

By interpreting the results of Lemma 2.2.3 and Lemma 2.2.5 in Bruck-Bose we obtain

Lemrna 2.2.6 If L\ and Li are disti,nct ffine points i,n a plane a in PG(4, q)\Ð- urzúh

a fì Eoo : Tn, where m is an element of the spread S of E*, then there eri,st q Baer

con'ics i,n a inci,dent with both Li and Li. tr

¡

We shall also make use of the following:
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Lemma 2.2.7 [19] [89] laa] In a projectiue plane rn, of order q2 the number of points

cornn'ton to two Baer subplanes B1 and, 82 of ro, i,s equal to the number of lines shared

bA Bt and,F,2. tr

Lemma 2.2.8 172] In PG(2,q2) two distinct Baer subplanes i,ntersect i,n one of the

f oll o wi,n g co nfi g urati o ns :

1. The empty set;

2. One poi,nt and, one li,ne : the poi,nt is ei,ther i,ncident or non-'incident with the line.

3. Two poi,nts and two lines: the point of i,ntersection of the two lines plus a second point

on one of the li,nes;

/r. Three points and three li'nes forming a triangle confi,guration;

5. q*! points andqll li,nes: theq-17 points are colli,near on one of thelines andthe

remaini,ng q lines form a penci'l through one of the points;

6. q-12 points and qi2 li,nes: qi-l of the points are colli,near on one of the lines and the

remai,ning q*7 li,nes form a penci,l concurrent i,n the remaining poi,nt; each line contains

2 or q -11 of the points. n

Above we recalled the representation in PG( ,q) of the affine Baer subplanes of

PG(2,q2), that is the Baer subplanes for which [.* is a secant line. We now provide

an alternative direct proof of a result obtained in [19] and also in [90], which determines

the representation of Baer subplanes of PG(2,q2) which intersect (.*in a unique point.

The variety we call a ruled cubic surface Vr3 is called a twisted ladder in [19]; its

structure will be derived in the proof of the following Lemma, and will be used in the

proof of Theorem 5.0.3 in a later chapter. (See Section 1.7 for more information on ruled

cubic surfaces.)

Lernma 2.2.9 Let B be a Baer subplanein PG(2,q2) suchthat B intersects L* i,nthe

unique poi,nt P. Then B corresponds to a ruled cubi,c surface B i,n PG(4,q)\E* wi'th

B .lI,* - p in PG(4, q), where p i's a li,ne of the spread 5 o/ E-.

Proof: Let ß denote the structure in PG(4, g) representing B. As B intersects /- in

a unique point P, in PG( ,q) 6 intersects E* only in point(s) of the line p of 5 which

represents P. The q*l lines of B through the point P e (.* correspond to q*l planes

in PG( ,q)\t." about p; each of these planes contain a line li of PG(4, q)\D- which
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represents a Baer subline of B incident with P. If follows that ß contains q * 1 lines

1i,.. .,li*, in PG( ,q)\Ð- each incident with p and no two in a plane about p. It
follows that no two of these lines intersect in a point not incident with p. Call the lines

¿i, . . . ,l|*, generators of 6; we no\M prove that these lines are mutually skew.

Suppose li I li € p with I < i < i < q + l. Then (li,li) is a transversal plane

which represents a Baer subplane, distinct from B, and sharing with B a non-degenerate

quadrangle, which by Theorem 7.2.L is a contradiction. Therefore through each point

of p there passes a unique generator of B. It follows that points of PG(4, q) on these

generators are all the points of 6. The spread line p is therefore contained in ß and p is

called the line directrix of 6.

Let Q be any point of B, distinct from P; let Q. e ß be its representative in PG@,q).

In PG(2,e2), of the Baer sublines in B through 8, one is a subline of the line QP and

the remaining q are disjoint fuom {.*. Therefore, by Lemma 2.2.3, the points of B lie on

g distinct Baer conics Ci, ... ,Cä and one generator, l|*r say, each through 8*. Each

conic Ci (i: L,. .. ,q) lies in a plane a¿ which intersects E- in a line rn¿ of the spread 5.

Let aqp denote the plane (Q.,p).In PG(2,q2),each subline of B through P intersects

each subline of B through Q, and therefore each conic Cf intersects each generator of 6

in a unique point.

Consider the plane (Q.,lil; since Q* / li, the plane (8.,1i) is a transversal plane

and therefore represents a Baer subplane B' of PG(2,q2), distinct from B. Now

lB À B'l > q + 2. It follows from Lemma 2.2.8 that the Baer subplanes B and B' in-

tersect in g * 1 lines of PG(2,q2) through Q and the line represented by (li,p). If ¿i

represents the Baer subline u of. B, then the lines of PG(2,q2) joining I to the q+7

points of u, common to B and B', are represented by the planes Qtt...¡üqrr. As a

transversal plane intersects E- in a transversal line of a regulus in the regular spread

5, it follows that the spread lines rn1, ... ,rTùqtp, each of which intersects (Q.,lil, are

generators of a hyperbolic quadric QZ of Doo. Thus the q + 7 planes Qt¡. . . 1oqa1 cort-

stitute a quadric coneVr2 of PG( ,q), with the point 8* as vertex, and the qtaüic Ql

as base. Let X[,,... ,Xä*, be the points of the Baer conic Cf. Then the q* 1 planes

(Xî,p) constitute a quadric coneV'l of PG(4,g), with the line vertex p, and base Ci.

Note that Q* : Xi for some 'i. These two quadric cones V32 and. V'! have the plane

(Q.,p) in common, and therefore residually intersect in a ruled cubic surface V"3. The
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planes of the two quadric cones represent lines of B, and therefore, by considering their

intersection, it follows that 6 is precisely the ruled cubic surface Vr3. ¡

Since there exist conics in PG(4, q)\E- which do not represent Baer sublines, it follows

that there exist ruled cubic surfaces, with directrix a line of 5, which do not represent

Baer subplanes B of PG(2,q2) intersecting /- in a unique point.

Definition 2.2.LO The ruled cubi,c surfaces i,n PG( ,q)\t.", with li,ne directri,r a li,ne

of E, which represent Baer subplanes of PG(2,q2) shallbe called Baer ruled cubics.

It is well known that in PG(2,q2) there exist q -l 1 Baer subplanes containing a given

point P and a Baer subline cof a line a not through P; if we let P e (.* and c be disjoint

from l*, then together with Lemma 2.2.3 and Lemma 2.2.9 this implies the following

result, which we shall need in a later chapter.

Lernma 2.2.tL Let a be a plane in PG( ,Ç)\E-, wi,th all E- : rn 0, line of the spread

S of E*. IÍ p is a li,ne in E distinct from m and i,f C. is a Baer con'ic i,n a, then there

erist q l1 Baer ruled cubics containi,ng p and C*. n

The representation in Bruck-Bose of Baer subplanes of PG(2,q2) is therefore completely

determined. For translation planes rnz, with kernel of order q, the problem of determining

the representation of Baer subplanes of rr, in Bruck-Bose is not completely solved.

Freeman [40] gives examples of affine Baer subplanes of a translation plane roa, of order

qa, which have a representation in 4-dimensional Bruck-Bose which is distinct from those

obtained above for the Desarguesian case (see also Foulser [aS] for other examples.)

2.9 The Bruck-Bose representation of Conics in

Baer subplanes of PG (2,q')

For later work we shall need a classification of the possible intersections of a hyperplane

of PG( ,q) and a Baer ruled cubic surface in PG( ,q). This is given in the next theorem'

Note: A Baer ruled cubic surface in PG( ,q) is a variety of order 3 and dimension

2 properly contained in the 4-dimensional space. By the results of Section 1.6 a hy-

perplane of PG( ,q) intersects the Baer ruled cubic surface in a cubic curve (see also
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Theorem L.7.2); a cubic curve on the Baer ruled cubic surface is one of the following:

(u) One line counted triply;

(b) Two lines, one counted doubly;

(.) Three lines;

(d) A conic and a line;

(.) A twisted cubic curve.

The only lines on a Baer ruled cubic surface are the generators and the line directrix.

Apart from points and lines the ruled cubic surface contains no linear subspaces.

Also note that the intersection of a hyperplane with a ruled cubic surface may have

components in some extension of the base field.

Theorem 2.3.1 Let ß be a Baer ruled cubic surface in PG( ,q). Let p € E denote the

line d,irectrir of ß, so that {p} : ß lD*. Denote by fIs a hyperplane of PG(a,fi.

The intersection 6 n IIB in PG(4,q) i's one of the following:

6nII3

The number of hyperplanes of

PG@,q) which i,ntersect ß in

such a configurati,on:

(o) The line di,rectrir p of ß Ø'- ù12

(Note: X- is an erample

of such a hyperplane)

(b) The union of a (unique) generator of B

and the line directrir p oÍ B

q+r

(") The union of two generators of ß and

the line di,rectrir p

Ø'+ ùlz

(d,) The union of a Baer conic and a gen-

erator of ß

(Note: The Baer coni,c and generator

intersect in a unique point)

q3+q2

(") A twi,sted cubi,c curue

(Note: such a curue i,ntersects the line

directri,r p in a unique point)

qa-q2
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Proof: By generating hyperplanes fI3 from subsets of points of 6, the intersection sets

IIsnB are determined. We proceed with this method until allqa +q3+ q2+q+t
hyperplanes of PG(4, q) have been considered.

Let Pf , ... ,Pä+, denote the points of p and let gf , ... ,gä+t denote the generators of 6,

such that gi ap: {Pi},'i : 7,...,Q * t.

Let C* be a Baer conic of 6 and let rç* be the plane in PG( ,q) containing C*. Hyper-

planes (nc",gil,'i:1,...,Qf l,aretheqf thyperplanesof PG( ,q) abouttheplane

zrc. j €ach hyperplane contains both the Baer conic C* and generator gf respectively. The

Baer conic C* and the generator gi constitute a cubic curve in the hyperplane (trc.,gi)

hence by the note preceding this theorem each hyperplane (nc.,gi) contains exactly the

Baer conic C* and generator gi of B fold : 1,. . ., g -l 1 respectively.

There are q2 Baer conics of 6 and gf 1 generators of 6, thus there exist q2(ql I) -- qt +q'

hyperplanes of PG(4, q) which intersect B in the union of a Baer conic and a generator

of B.

There exist 92 -l q* t hyperplanes about the line p, q2 * q distinct from E*. If t is

a line of. Ts., a plane of PG( ,Ø)E- which contains a Baer conic C* of. ß, lhen ((.,p)

is a hyperplane containing the line directrix p. Depending on whether / is an external,

tangent or secant line of C* in Ts*, the hyperplane (l,p) intersects ß in p plus 2, 1, or

0 generatorc of ß in PG(4,q) respectively. We consider these cases separately.

Two generators of B span a hyperplane about p. Such a hyperplane contains three lines

of the Baer ruled cubic surface hence no further point of B. Thus there exist q(g +Ð12

hyperplanes of PG(4, q) which intersect 6 in the union of two generators of 6 and the

line directúx p of ß.

About a plane (p, gil, for fixed i, there exist g * t hyperplanes; q contain a second

generator of 6 and one intersects B in no further point; here the hyperplane intersects

the ruled cubic surface doubly at gi. By considering the q + 1 generators in turn, we

have that there exist q * t hyperplanes of PG(4,q) which intersect B in the union of a

generator and the line directrix p of ß. The q(q - 7)f 2 remaining hyperplanes about p

therefore each intersect B in exactly the line directrix p; each such hyperplane intersects

the ruled cubic surface at p and two complex conjugate generators of the cubic surface
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in a quadratic extension extension of the base field.

Next consider a spread element rn distinct from p. About rn there is a unique plane zr-

containing a Baer conic of B. Hyperplanes (n*,Pil i:1,... ,Q * 1 each intersect 6 in

the union of the Baer conic in r* and the generator gf respectively; these hyperplanes

have been counted above. About the plane (*, Pil, for fixed 'd, there are q-I hyperplanes

distinct from both X- and (n*,Pi); let D be one of these q- t hyperlanes. X contains

no Baer conic or generator of. ß, and D does not contain the line directrix p of ß. The

hyperplane E intersects each generator line of ß in a unique point. As a hyperplane

intersects a ruled cubic surface in a cubic curve, we conclude that D intersects 6 in an

irreducible cubic curve, namely a twisted cubic curve.

Thenumberof spreadelementsbesides pisq2;thenumberof pointsof pisq*1; from

above, for a spread element m* p and apoint Pi of p there aïeq- t hyperplanes about

theplane (*,Pil whicheachintersectß ina(distinct) twistedcubiccurve. Thusthere

exist q2(g + 1)(q - 1) : qa - q2 hyperplanes of PG(4,q) which intersect ß in a twisted

cubic curve.

We have considered (q' + q') + (q2 + q) I 2 + (q + 7) + (q' - ù I 2 + q4 - q2 : q4 + q3 + q2 + q + 1

distinct hyperplanes of PG(4, q), namely all hyperplanes of PG(4,q). !

In Theorem 2.3.7 the intersection sets (o), (b), (c) and (d) can be described in B, the

Baer subplane of PG(2,q2) represented by B, as respectively: a unique point P at infinity

on B, a Baer subline in B containing P, the union of two distinct Baer sublines in B

containing P and the union of a Baer subline in B through P and a Baer subline in B

not through P. As a subset of points of B, the intersection set (e) has properties which

are not so readily recognised. We now show that an intersection set of type (e) in B is

a non-degenerate conic in B.

Lemma 2.3.2 Let ß be a Baer ruled cubi,c surface i,n the Bruclc-Bose representation of

PG(2,q2). If ( i,s a twi,sted cubic curue on ß then (* i,s the Bruck-Bose representati'on

of an oual ( i,n the correspondi,ng Baer subplane B of PG(2,q2).

Proof: A twisted cubic curve (* lies in a hyperplane Xç. of PG@,q). Since (* is

contained in B and since Ðç. OB is a cubic curve, we have DE.llß: C*. By Theorem 2.3.1

and its proof we have the following:
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1. The hyperplane Eç., which contains the twisted cubic curve (*, contains a unique

spread element rn distinct from the line directrix p of. ß;

2. The planes about minEç. each contain a unique point of (-;

3. (* has exactly ø * 1 points, one on each generator line of 6;

4. (* contains a unique point of the line directtix p of. [t'

Now we consider (* as a set of points ( in B, the Baer subplane of PG(2,q2) represented

by ß, and show that no line of B contains three points of (.

Interpreting the properties (1) - (4) in the Baer subplane B we have bV (¿) ( contains

the point {P} : B n ¿-. BV (3) each line of B through P intersects ( in at most one

further point. Now suppose there exists a line I of B containing three distinct points of

C; by the previous statement P / l. Also note that I + l* since l- is not a line of B.

In Bruck-Bose, I is a plane a¿ containing 3 distinct points of the twisted cubic curve (*

and therefore by (1), and since no three points of a twisted cubic curve are collinear,

the plane o¿ is contained in the hyperplane Dç.. Since a¿ is necessarily a plane about

a spread element (a¿ is a Bruck-Bose representation of a line of PG(2,q')) ,t contains

the unique spread element rn in Eç.. BV (Z) a¿ therefore intersects (* in a unique point,

a contradiction to our assumption that o¿ contains three distinct points of C*. Thus in

PG(2,q2) there exists no Baer subline in B which intersects ( in more than two points.

!

Lemma 2.3.3 Let C be a non-degenerate conic in PG(z,q). Embed PG(2,q) as a

Baer subplane i,n PG(2,q2). Let Cnz be the coni,c obtained by ertending C to a coni,c

¿n PG(2,q2). Let M be apoint of cn\c. TheqlI lines joining M to the points of c

are li,nes of a Baer subplane contai,ning M '

Proof: Without loss of generality let C be the conic with equation ny : z2 and let M

have coordinates (0",!,0) where 0 e GF(q2)\Cr(q). Note that (0,1,0) and (1,0,0) are

points of C.

The lines in PG(2,q2) joining M to the points of C have line coordinates given by:

{[1,0, -0]+ó10,0,-11 ld eGF(q) u{-}}
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The pencil of lines {[1,0,1] + d[0, I,7]l ó e GF(q) u {*}} in PG(2,q) is the pre-image

of the above set of lines under the projectivity of PG(2,q2) given by the non-singular

have therefore that the q * 1 lines joining

M to the points of C are q * 1 lines of a Baer subplane containing M. !

Theorem 2.3.4 The qa - q2 twisted cubi,c curues on a Baer ruled cubi,c B with line

d,i,rectri,r p in PG(4,q) are the Bruck-Bose representati,ons of the qa - q2 non-degenerate

conics in B on the point P, where B i,s the Baer subplane of PG(2,q2) represented by ß

and P the point of B at infini'ty represented by p.

Proof: For q odd the result follows from Lemma2.3.2 and Segre's Theorem 1.11.1. For

q even, let C be a non-degenerate conic in a Baer subplane B of PG(2, q2) such that

B al*: {P}, a unique point, and let P € C. Conic C is a subconic of a conic Cn" of.

PG(2, q2) and since l- is not the tangent to Coz at the point P, l* is a secant to the conic

Coz. Let M be the point of. Cn, distinct from P on the line l-. In B the points of C besides

P lie on distinct lines of B on P. Thus in Bruck-Bose B is a Baer ruled cubic surface

6 with line directrix p (representing P) and the points C* of the conic in Bruck-Bose

besides p lie on distinct generator lines of ß; lhe point M is represented in Bruck-Bose

by a spread element rn. We now show that these points C* Iie in a hyperplane of PG(a,q)

so that by Theorem 2.3.1 the points of C* are points of a twisted cubic curve on 6. In

PG(2, q2), tty Result 2.3.3, the q * 1 lines on M joining M to the points of conic C arc a

pencil of lines in a Baer subplane B' of. PG(2,q2) containing M. Since MP is a line of

B' , lhe line at infinity /- is secant to Bt and therefore B' is represented in Bruck-Bose

by a transversal plane ß'*. The hyperplane (*,8'*| of PG( ,q) therefore contains the

points C* representing the conic C. Since the hyperplane (m,ß'*) of. PG( ,q) contains

the q affine points of C* on B together with a unique point of pÇß and, since (rn,B'*)

contains no Baer conic on B, by Theorem 2.3.1 (*,ß'*l intersects ß in a twisted cubic

curve. It follows that the non-degenerate conic C is represented in Bruck-Bose by a

twisted cubic curve on the Baer ruled cubic 6. !

Corollary 2.3.6 Let B be a Baer subplane of PG(2,q2) suchthatlB a¿ool :7; letthe

uni,que poi,nt at infinity of B be P. The non-degenerate con'ics in B are represented i,n

Bruclc-Bose by ei,ther a twisted cubi,c curue (when the conic contains the poi,nt P ) or a
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l-dimensional normal rational curue (when the conic does not contai,n the point P ) on

the Baer ruled cubic ß.

We shall give two proofs; the first is quite short but does not cover all cases and the

second is a proof valid for all prime powers q > 3'

Proof of Corollary 2.3.5 (cases q even and q odd, q 17 or (10.25)2 < q): By

Theorem 2.3.4 ît remains to prove that a non-degenerate conic in B which does not

contain the point at infinity P, is represented in Bruck-Bose by a 4-dimensional normal

rational curve.

Let C be a non-degenerate conic in B which does not contain the point P. Each line of B

intersects C ín at most two points. Since non-degenerate conics on P in B are represented

in Bruck-Bose by twisted cubic curves (see Theorem 2.3.4) and since a distinct non-

degenerate conic in B intersects C in at most four points, by Theorem 2.3.1 a hyperplane

of PG( ,q) intersects the Bruck Bose representation of conic C in at most four points.

We have therefore that the Bruck-Bose representation of conic C is a set of q * 1 points

C. in PG(4, q) with the property that no hyperplane intersects the set in more than four

points; in other words we have u (q + l)a-arc C* in PG( ,q) and by Theorems 1.5.1,

1.5.2 and 1.5.3, this arc is a 4-dimensional normal rational curve for q even and g odd,

q < 7 or (10.25)2 < q. ¡

Lernma 2.3.6 There erists a,b e GF(q'z)\G F(q), Q ) 3, with the followi,ng properties:

(i,) a f b,-b,

(ä) ab-r + a-rb € GF'(q'z)\GF(q),

(äi,) ab-t e Gr(q'z)\GF(q),

and, for such a,b we haue ab { 0, a2 + 0, b' + 0.

Proof: First we prove that there exists ø € GF(q'?)\GF(q), q > 3, such that

rtr-r /GF(q):

For q - 3, G.F'(3) : {0,1,2} and Gf. (9) : {0, l,t),t)2,2,u5,u6,u7} where u2-tt-1 : 0'

Here ø *uT : ø and u2 +u5 :(r)2 as required.

Forq>3consider
r+r-L : )

<+ r2-),r+I :0
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forle GF(q)andrl0.

For each À e GF(q), there exist at most two solutions n,r-r e Gf'(q'z)\GF(q) to this

quadratic equation. Therefore there exist at least

q2 -2q-q - q(q-S) > 0

elements r e GF(q2)\Gf (q) for which r t r-r / Gp(q).

It remains to show that for r e GF(q2)\Cf (q) for which r + r-r Ø GF(q), there exists

a,b € G,F'(q'z)\G,F'(q) such that ø + b, -b and br : a:

By considering all b e GF(q2)\GF(q), we obtain q2 - q distinct elements br and br l0
as neither r nor b is equal to 0.

Since

q2-q > q- 1 : IGF'(q)\{O}l

there exists a choice of b e GF(q'z)\GF(q) for which br : a / Gf @)'

If a: bthen b("- 1) :0impliesthatø:1€ GF(q), acontradiction. If.a: -bthen
b(r+ 1) :0impliesthatr- -1 €GF(q), acontradiction' ¡

Proof of Corollary 2.3.5 (case q > 3): We investigate the representation in Bruck-

Bose of a particularl non-degenerate conic C in a Baer subplane B of PG(2,q2) wilh

lBÀt*l:1and CÀl*:Ø. LetC'o,be the conic {(g',L,0);0 e GF(q") u{oo}}, that

is,theconicinPG(2,q2) withequation z2:t)U. TheconicC'nrhasnucleus¡/(0,0,1) if

q is even.

C'n, is fixed by projectivities of the plane defined by a matrix of the form:

such that ad-bcl 0 (as lffl : @d- bc)3) (see [52, Theorem 2.37]).

The action of such a projectivity on the points of the conic C'0, ís the map:

(o2,r,o) + (lm),,\m)
(1,0,0) '--+ ({:),,t,å)

( ¡/ + ¡f, for q even ).

lFor a non-degenerate conic C1 in a Baer subplane B1, Bi : B for some collineation ø and Ci is a

non-degenerate conic in B and is therefore projectively equivalent to C via a collineation in B.
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Let C' ç C'n, be the points of C'0" in the Baer subplane PG(2,q); so

C' : {(0',L,0); 0 e GF(q)u {*}}.
We now find a projectivity with matrix ,F/ of the above form which maps PG(2,q) to

a Baer subplane B and maps C'to a conic C in B, with lB ¡L*l: 1, and such that

B nL* + (0,L,0), (1,0,0), that is, such that the unique point of B on /- is not a point

of the conic. For our coordinate representation of PG(2,q2) the line at infinity /* is the

line of PG(2,q2) with equation z :0.

We will then represent C via coordinates in the Bruck-Bose setting and determine C as

a set of points of a normal rational curve ín PG(4,q).

Consider the projectivity .[1 defined by matrix:

a2 b2 2ab

b2 a2 2ab

ab ab a2 +b2

where o, + b, -b, a,b, ab-t , ab-t + a-rb e GF(q'z)\GF(q) (refer to Lemma 2.3.6)

The Baer subplane PG(z,q) is mapped by ff as follows:

For a point (*,A,r) e PG(2,q),

H

The resulting set of points constitute a Baer subplane B whose intersection with (.oo is

the set of points (2.1) with third coordinate zero, that is with

abr * aby * (a2 +b2)z : 0,

that is, r +a * (øb-1 + a-rb)z : 0. (22)

Since ab-r +a-rb e GF' (q2)\ GF(q), equation (2.2) is the equation of a line not in PG(2, q)

and therefore the line (2.2) intersects PG(2,q) in a unique point; that is, there exists a

unique point X : (r',a', z') in PG(2,q) for which ï' + a' -l (ab-r + a-rb)z' : 0. Thus

the Baer subplane B intersects loo in a unique point, namely the point with coordinates,

r'
a'

z'

(2.1)

H
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Also we need to show that XH is not a point of the conic C. The only points of.C'n, on

the line at infinity are (1,0,0) and (0,1,0) thus if XH çCnl* then XH is (1,0,0) or

(0,1,0). Now XE: (0,1,0) or XH : (1,0,0) if and only if a2r'+b'a'+Zabz' :0 or

b2r' + a2a'+2abz' :0 respectively.

We need to show a2n' + b'a' + 2abz' f 0 and b2n' + a2a' + 2abz' I 0.

Consider the lines lo' ,b' ,2ab], lb2 ,, a2 ,2ab], 1I,7, ab-r + o-1b]. The point of intersection

of lines lo",b',2ab] and,l7,r,ab-r +a-rb] is (ó2, a2,-ab): (a-rb,ab-r,-r). The point of

intersection of lines lb',a',2abl and 17,!,ab-L + a-rbl is (o2, b2,_ab) : (ab-r,a-rb,-7)'

Since X e PG(2,q) and since -1 e GF(q) and aö-1, a-rb e GF'(q'?)\GF(q), it follows

that X I @-tb,ab-r,_l) and X I @b-t,a-rb,-l). Hence we conclude that XH is not

a point of C.

Hence B: PG(z,q)'is a Baer subplane with unique point XH on /- and the Baer

subplane B contains the non-degenerate conic C:C'H for which Cn|*:6.

The coordinates of the points of. C : C'H are given by:

( a0+b\2
\uo+a I

1

where 0eGF(q)u{-}.

(Note that if a0 +b:0 then 0: -a-rb is not an element of GF(q), a contradiction.

Hence a0 + bl 0 and similarly b0 + a + 0.)

We now transform these plane coordinates to coordinates in PG( ,q), that is the coor-

dinates of the points C* representing C in the Bruck-Bose setting in PG( ,q)\t- using

the results of Section 1.10.4.

Let a be an element of G.F (q2)\GF(q) with minimal polynomial

n2 - ),n - ¡,t,

where \, Lr € GF(q).Using :x r---+ r -- rq to denote the Fröbenius map, we have

ala : À

aa, : - l-1.

Each element ø e GF(q2) can be written uniquely in the form ø : lxt I dr2 where

rt¡12 e GF(q).
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We have therefore

0,: at I aa2,

b: bt * ab2,

and 0 :0

ar,a2 e GF(q),

b1,b2 e GF(q)

since d e GF(q) for points in C'

AIso a : atlota2: ørl(À -d)az: (at*Àa2)-aaz and similarly 0: (ór+Àóz) -abz.

For a point P in C, with the coordinate, (ffi,ffi,t) of P written as a row vector, and

using the above representation we obtain:

a0+b b0+a
b0 + o' a0 +b'

a0 +b V-

b0+a" b0+a'
b0+a

1

Now

a0 +b b0 + a ab02 + 0(b6 + aa) +ba
bo+a 

x fo+d: @
and note that the denominator is an element of GF(q). Each term in the numerator is

an element of Gtr'(q) except for ab andba, which \Me can write as follows,

ab : (rt+o,a2)(fu+o,b2)

: atbt I a0'2b1i aa1b2 i aaa2b2

: atbt * da2b7 + (À - a)a1b2 - þazbz

: atbt - þazbz I Àa1b2 * a(a2\ - atbz)

: Q + al, (for ease of notation)

and ba : atbt - þazbz * \bp2 -f a(b2q - haz)

: Q + "L (for ease of notation).

(Note that Q, Õ,, L, L are all elements of G,F'(q).)

In Bruck-Bose the point P therefore corresponds to the point P* in PG( ,q)\E* with

homogeneous coordinates:
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Q02+0(b6+aa)+8
bb02+0(ab+ba)+aa

Loz+L

bUe2+0(ab+ba)+aa

Qe'+0(bb+aa)+Q
aa02+g(ab+b-a)+bb

Lor+r
aa02 tï(ab+ba)+bb

1

(in [6] Buekenhout applied a similar transformation to unitals in PG(2,q2) ß find their

image in Bruck-Bose via coordinates in PG(4, q)).

If we multiply through by

(u6e2 + O(ab + ua) + aa) (aa02 + g(ab + b-a) + bb) ,

which is a non-zero element of GF@), we obtain each component of the coordinate vector

as a degree 4 polynomial in 0 over GF(q), where 0 e GF(q) U {-}. On simplification,

the points of C represented in Bruck-Bose are the points with coordinates given by:

aae @b +_ba)Q 
!6A 

* ""q @b + b-a)Q_ 
bb,

taa(bb + aa) +(óó + aa)(ab + ba) +bb(aa + bb)

aaL (ab+ba)L bbL I aaL (a6 + UQL

(a6 + ua)Q

+bb(bb -t aa)

UUQ + aaQ

+(ób+ aa)(ab+ba)

(ab + ba)Q

+aa(ad, * bb)

bbL

0'0'8

o,o,L

g+

03

02 2.4)bbQ

b6L

_';
o,abO

0

1(ab + b-a)L øtf + aaL (ab + øa)t

(bb+aa)(ab+ba)
(aa)2 + (bb)2

(ab + ba)2

for 0 e GF(q) u {o"}.

Denote by M the coefficient matrix in (2.4) and note that M e GL(5,q) .

Here \Me have shown the set of points of C in Bruck-Bose is the set of im-

ages of points of a normal rational curve in PG( ,q), in particular the image of
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{(0n,0t,02,0,t); 0 e GF(q) u {-}} under the projectivity determined by the matrix

M. Matrix M is necessarily non-singular as C* is a (q * 1)a-arc in PG(4,q) (see the first

proof of corollary2.3.5) andhenceC* isnotcontainedinahyperplane of PG(4,q). tr

It remains to consider the representation in Bruck-Bose of non-degenerate conics which

lie in Baer subplanes B of PG(2,q2) for which l.* isa line of B. Let C be such a conic

in a Baer subplane B of PG(2,q2) for which l- is a line of B. Coordinatise the plane so

lhat |* is the line with equation z:0 and B is the subplane PG(2,q), then the conic

C is defined by a homogeneous quadratic equation Q(*,A,2) in variables z, gt, z and with

coefficients in GF(q), that is

c 
: 'r'r.', ,'r'i,Z'rîI''r'r::1Tr,,,, a,o)te(,,v,0) : oÌ

In Bruck-Bose, B is therefore the transversal plane B* defined by the equations

rz: Az: 0 and C is represented by a non-degenerate conic C*, where

C* : {(rr,0, gr,0,1)lQ@r,yr, 1) : 0}

U{spread elements corresponding to the points of C at infinity}.

Thus C in Bruck-Bose is essentially a non-degenerate conic C* in the transversal plane

B*.

We have therefore determined the representation in Bruck-Bose of any non-degenerate

conic C in a Baer subplane of PG(2,q'). In summary, the Bruck-Bose representation C*

of C is determined and is one of the following:

o a non-degenerate conic in a (transversal) plane of PG(4,q);

o a twisted cubic curve on a Baer ruled cubic surface of PG( ,,q);

o a 4-dimensional normal rational curve on a Baer ruled cubic surface of PG(4,q).

2.4 A characterisation of Baer ruled cubic surfaces

In Section 2.2 we reviewed the Bruck-Bose representation of non-affine Baer subplanes

of PG(2,q2); such Baer subplanes are represented in Bruck-Bose by certain ruled cubic

surfaces which we call Baer ruled cubics. For a given Bruck-Bose representation of
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PG(2,,q2), thãt is for a fixed regular spread S of X*, let Ît be the set of all ruled cubic

surfaces V] in PG( ,q) with the property that the intersection Vf ñ E- in PG(4, q) is

a line which is an element of the spread 5. There exist more ruled cubic surfaces in 7l

than there exist non-affine Baer subplanes of PG(z,q2). That is, the Baer ruled cubic

surfaces in Bruck-Bose constitute a proper subset of all the ruled cubic surfaces in R.

In this section we characterise the Baer ruled cubic surfaces, amongst all ruled cubic

surfaces in1./-, for a given regular spread in the Bruck-Bose representation of PG(2,q2)

in PG(4,q).

2.4.1 The extended ruled cubic surface

Consider a ruled cubic surface V] in PG(4,q) as defined in Section 1.7 with the notation

introduced there. So Vf has base conic C,Iine directrix (. and associated projectivity

S e PGL(2,q).

Embed PG( ,q) as a Baer subspace in PG(4,q2). Consider the ruled cubic surface 7r3

over the extended field. Let / be the (unique) Iine of PG(4,q2) such that (.ÀPG(4,q) : [.

Similarly let C be the (unique) conic in PG(4,q2) such that C a PG(4, A) : C. The plane

of c is denoted by * and,sz aPG( ,q): Sz, where sz is the plane of the conic c in

PG@, q) '

Note that in PG(4,q2) the line (. is skew to the plane ,Sz. Since if not then E : (!,S2) is at

most a hyperplane of PG(4,q2) and by Theorem 1.3.1, the intersection I : :n PG@,q)

is either a hyperplane or a plane of PG( ,q). Since the line directrix (. and the base conic

C of V"3 are contained in X, we have that the entire ruled cubic Vr3 is contained in E.

Recall from Section 1.7 that a ruled cubic surface Vf \n PG(4,q) is not contained in any

hyperplane of PG(4, q) and so we obtain a contradiction.

The associated projectivity of 7r3 between I and C canbe applied to the non-homogeneous

coordinater I (a e GF(q2)U {-}) of points on l. We denote this action by / and obtain

a projective correspondence between points P(À) on (. and points P(0) on C given by,

2:ó(I), ÀeGF(q2) u{*}'

Note that the projectivity / restricted to points of / (in PG( ,q)) is simply the projec-

ól¿: ó,

tivity þ e PGL(2,q), that is
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hence / and þ are defined by the same 2 x 2 matrix over G.F'(q). In other words / is an

element of PGL(2,q).
ó

Let G be the set of lines PP: where the point P ranges over [.. In this \May \4/e obtain

a ruled cubic surface in PG(4,g2), which we shall denote by Vî, with line directrix l,

base conic C and.associated projectivity ó e PGL(2,q) (see S.ãior, 1.7). Since Ólr:i,
we note that

vllr.Ø,'):V;

and we call Vf the extended ruled cubic of Vr!.

We denote by - the Fröbenius automorphism of. GF(q'),

: GF(q2) --+ GF(q')

r + ra.

We also denote by - the automorphic collineation of PG(4,g2) induced by the Fröbenius

automorphism. The context in which this is done should make the meaning clear.

: PG( ,q') ---+ PG(4,q2)

P : P(ro,nt¡fr2t z3, x)4) '--+ P :P(r8, rl,nl, rl, rnn).

Note that this collineation of PG(4,q2), which we call the Fröbenius collineat'i,on, frxes

the Baer subspace PG( ,q) pointwise and hence the ruled cubic surface I/r3 is fixed

pointwise also. Since þ e PG L(2, q), the ruled cubic surface Vf in PG(4, q') is fixed by

the Fröbenius collineation in the following way,

gelp e t\

{P(À)P(d()))lÀ e GF(q2)u {-} @ e {)}

{P(^s)P(ó())o) lÀ e GF(q2) u {-} @ e {.)}

(The Fröbenius automorphism permutes the elements of GF(q2))

{P(^s)P(ó()o)) lÀ e GF(q2) u {-} @ e r.)}

(since þ e PGL(2,q))
,^

{PP:IP e t}
v;

Note that since / e PGL(2,q) the generators of Vf , and in particular the generator

containing the points of I with non-homogeneous coordinate oo, are fixed as a set under

the Fröbenius collineation.

vrt
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We now use PG(4, q2) as our setting for a new proof of a result originally proved by

Bernasconi and Vincenti [15, Theorem 2.4].

Theorem 2.4.1 [15] ,4 ruled cubi,c surfaceV; oÍ PG(4,q) represents a non-ffine Baer

subplane of a translati,on plane r(E), defined by a7-spread E i,n a hyperplaneÐ* of

PG(4,q) i,n the usual way, i,f and only if r(S) i,s Desarguesian.

Proof: (e) The necessary result is Theorem 2.2.9 (see also [19] [90]).

(+) To begin with, we establish the existence of a 1-spread 5 in a hyperplane X- of

PG(4,q), that is, the Bruck-Bose representation in of a translation plane. This is done

using the method of Bernasconi and Vincenti [15], but the proof that the spread 5 is

regular is new.

Let V : V; be a ruled cubic surface in PG( ,q) with line directrix l, base conic C

and associated projectivity ó e PGL(2,q) as defined in Section 1.7 with the notation

introduced there. The conic C lies in a plane of PG( ,q) which we denote by 52. Let t

be any external line of C in Sz. Put X- : (t,l), that is X* is the hyperplane of PG(4,q)

spanned by the pair of skew lines ú and l. Since each generator of V joins a point of /

and a point of C, each generator g of V intersects X- in a point of /. thus in PG( ,q)

the ruled cubic I/ intersects the hyperplane D- precisely in its line directrix l.

By Theorem 7.7.2, since no three generators of. V are contained in a hyperplane of

PG( ,q), the planes of two distinct conics on I/ are not contained in a hyperplane. Also,

since any two distinct conics on V intersect in a unique point, the planes containing

the q2 conics on V meet the hyperplane Eoo in q2 distinct and pairwise skew lines.

Denote the conics on V by C:Ct,C2,... ,Coz and denote the planes of these conics by

Sz: et,d2t.. ., as2 respectively. Let a¡ ñ D- : t¿ fot 'i :7,... ,Q2 and note that the

set of lines,

5 : {ú : lt,lzr.. . ,lsr} U U,}

is a set of q2 +1 pairwise skew lines which partition the points of X*. Thus 5 is a spread

of D- and it remains to show that S is a regular spread.

Embed PG( ,q) as a Baer subspace in PG(4,q2). Consider the base conic C of V in the

plane 
^92. 

The spread element tin 52 is an external line of C and so intersects C in two

points X,X in the quadratic extension. The points X,X are conjugate with respect

to the quadratic extension in the sense that the set {X, X} is fixed by the Fröbenius
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collineation. Note that X, X are points on the base conic of the extended ruled cubic

U! in PG(4,q2). Consider the points on I which correspond to X : P(0),X: P(0) via

the associated projectivity S of Vf . For some fixed À e GF(q2)U {oo}, we have

0 - d(À)

andtherefore A : d())
: d(À) since / e PGL(2,q).

Hence the points {X,X} on 2 are in projective correspondence with points

{A: P(l),A: P(f)} on (. and A,Aarc conjugate with respect to the quadratic exten-

sion.

Let g,p denote the pair of generatorc XA and XA of the ruled cubic surface V]. Tne

lines g, p lie in the quadratic extension D, of the hyperplane X* and are disjoint from

E*. By Theorem 1.9.6, g,pdetermine a unique regular spread of X* consisting of the

q2 + I lines of D- obtained by joining each point of g with its conjugate on p. We denote

this regular spread by Ega. Note that t : X X and (. : AA are elements of the regular

spread 5r9.

For i f 1, consider the conic C¿ on V. The conic lies in a plane o¿ which contains

the spread element [¿ of E. Since (.¿ is an external line of C¿ in the plane of the conic,

the interseclion !.¿1rC¿is a pair X¿,X¿ of points conjugate with respect to the quadratic

extension. Thus in PG(4, q2) the spread line (.¿ contains the points X¿, X¿ of the extended

ruled cubic V23 and the conic C¿ extends uniquely to a conic 4 contained in I/r3. By

Theorem t.7.2, the conic C¿ intersects each generator of the extended ruled cubic, in

particular C¿ contains a point of g and a point of p. But since the plane of the conic C¿

is not contained in X- (as a¿ is not contained in X-) it follows that

{g, s} t C¿ : {g,9} t l¿ - {Xu, Xn).

Thus the spread .S is the unique regular spread SrE of E- determined by lines g, p in

the quadratic extension of X*. The Bruck-Bose incidence structure zr(5) is therefore a

Desarguesian plane of order q2 and the ruled cubic surface I/ is a Baer ruled cubic with

respect to the regular spread .S. n

In the following characterisation of Baer ruled cubic surfaces, Sr9 denotes a regular

1-spread of X* -- PG(3,q) determined in the usual way (see Theorem 1.9.6) by a pair
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of lines g,g irL the quadratic extension of D-. Recall that a Baer ruled cubic surface in

Bruck-Bose is a ruled cubic surface which represents via Bruck-Bose a non-affine Baer

subplane of the corresponding Desarguesian plane.

Theorem 2.4.2 A characterisation of Baer ruled cubic surfaces: Let PG(2,q2)

haue Bruclc-Bose representati,on r(S) ç PG( ,q), for a fired regular spread E : Sso.

A ruled, cubicV] i,n PG( ,q) is a Baer ruled cubic surface if and only i,f V] has line

d,i,rectri,r an element of E and, such that the ertend,ed ruled cubi,c of V; i,n PG(4,q2)

contai,ns the li,nes g and! as generators.

Proof: (+) The necessary result follows from the proof of Theorem 2.4.1 and Theo-

rem 1.9.6 which states that a regular spread of PG(3,q) is determined by a unique pair

of conjugate lines in the quadratic extension.

(e) We count the number of ruled cubic surfaces in PG( ,q) which have line directrix

an element of 5 and such that the extended ruled cubic in PG(4,q2) contains g and

p as generators. We show that the number of such ruled cubics equals the number of

non-affine Baer subplanes of PG(2,q2).

Consider the Bruck-Bose representation zr(S) of PG(2,q2), where.S: SsE. Let (. and ú

be two distinct elements of the spread S. Let {X}: 9Àt, and {X} :øaú denote the

points of ú on lines g and g respectively, in the quadratic extension. Let o be any plane

of PG( ,q)\E* which contains the line ú. LeI C be a non-degenerate conic in o such

lhatCtt: {X,X}.In particular, note that ú is an external line of C in the plane o in

PG(a, fi.

Let m be a line of PG(4,q) joining a point of I with a point of C. Consider the situation

in the quadratic extension PG(4,q2): we have a line [. and a conic C such that the

plane c of the conic is skew to the line l. The three lines g, g and rn associate three

distinct points of I with three distinct points of C and so define a unique projectivity

S of PGL(2,q") between (. arrd.C.By Section 1.7 we have a ruled cubic surface V] in

PG(4,q2) with line directrix (., base conic C and associated projectivity Ó e PGL(2,q2).

Under the Fröbenius collineation (., C and the generator m of V] are fixed, since (., C

and. m are contained in PG( ,q). Also the pair of generator, {i g} of V23 ate fixed as

a set. Thus I/23 and its image Vr3 under the Fröbenius collineation u.. J pair of ruled

cubic surfaces in PG(4,q2) with the same line directrix, base conic and which share
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three distinct generators. Since the projectivity / is determined uniquely by the three

generators g,g and rn, it follows that Vf and Vr3 both have { as associated projectivity.

Hence,

and therefore the points of / (in PG( ,q)) are associated by / to points of C (in PG(a,fi)

Thus / restricted to points of (. (in PG( ,q)) defines a ruled cubic surface V] in PG@,q)

with line directrix L and base conic C. We have therefore determined that the projectivity

/ is an element of PGL(2,q) ç pCL(2,q').

Moreover the ruled cubic V] in PG( ,q) determined above has a line directrix an el-

ement of the spread 5 and has extended ruled cubic V23 which contains lines g and g

as generators. Since Vf is determined uniquely by thJchoice of line directrix /, base

conic C and generator n't)we count the number of such ruled cubic surfaces in PG( ,q)

as follows. In the following C denotes a non-degenerate conic in AG(2,q) containing a

fixed pair of special points, conjugate with respect to the quadratic extension.

lsl ' "H
(q'+t)"cMFÅx(q+1)
q4(q4 - L).

Now PG(2,q') : n'(S) contains precisely this many non-affine Baer subplanes since

PG(2,q2) contains (q'-q+1)(q'+I)qt(q*1) Baer subplanes of which q3(qt +q2 +q+t)
contain the line at infinity as a line. The result now follows. n

Corollary 2.4.9 A characterisation of Baer conics: Let PG(2,q2) haue Bruclc-Bose

representati,on n(E) ç PG(4,q), for a fired regular spread.S:5sø. A non-degenerate

conic C i,n PG@,q) is a Baer conic i,f and only if C is disjoint fromD* in PG( ,q) and

such that in the quadrat'ic ertensi,onC contains a pair of conjugate points, X,X say, on

the lines g and g. tr

We have now completely determined the Bruck-Bose representation of the Baer sub-

structures of PG(2,q2). The motivation for this work came from a paper by Jeff Thas in

which the plane model of a Miquelian inversive plane of order q is given. Consider the

Miquelian inversive plane / with points the points of a line PG(7,q2) and with circles

the Baer sublines of PG(7,q2). For a fixed point P of PG(1,q2) consider the internal

,i:v
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plane Ip = AG(2, q). By Section 1.14, the circles in ,I which do not contain P correspond

precisely to the non-degenerate conics in Ip which contain a fixed pair X, X of of special

points, conjugate with respect to the quadratic extension.

By the above characterisation of Baer conics, this plane model of Miquelian inversive

planes is evident in the Bruck-Bose representation of PG(2,q2) for each affine line {.

(= PG(t,q')) of PG(2,q2) and letting {P} : Ln (.*

2.5 Additional properties

In this section we present a result, valid for q even, which determines some properties

of the q2 nuclei associated with the q2 Baer conics on a Baer ruled cubic surface in the

Bruck-Bose representation of PG(2,q') it PG(a,fi.

Result 2.6.L Let ß be a Baer ruled, cubi,c in the Bruclc-Bose representation of PG(2, q'),

q euen. Let B be the Baer subplane of PG(2,q2) which is represented by B i,n Bruclc-

Bose. The q2 nuclei associated wi,th the q2 Baer conics of ß are distinct and lie in a

plane of PG( ,q)\t* about the li,ne directrir p oÍ ß.

Proof: Let p denote the line directrix of. ß. Let Ci be a Baer conic on B in plane o1

of PG( ,q). Let rn1 denote the unique spread element contained in o1. Since q is even,

we denote the nucleus of Ci in a1 bV ¡/ï. Note that ã,s tnl is an external line to the

conic Ci, the nucleus,n/i is not incident with m1. We have therefore that the nucleus of

a Baer conic is an affine point of PG( ,q), that is, a point in PG( ,q)\D-'

Let Q* be a point on Ci; Q* represents a point Q of B in PG(2,q2). In the proof

of Theorem 2.2.9 if is shown that the Baer ruled cubic surface 6 is contained in the

intersection of two quadric cones, namely 732, with line vertex p and base the conic Cf ,

and V!2 , with point vertex Q* and base the hyperbolic quadric in D- determined by the

regulus of spread elements which represent the points at infinity in PG(2, q') of the lines

of B incident with Q.

Let Pf, P;,... ,Pi+, denote the q* 1 distinct points of the line directrix p of ß and

denote by gi, gi,.. .Ola, the generators of B, labelled so that Pi is incident with 9i,

'i:L,2,...,q+7. Then PTC\ is a conic cone in a hyperplane, fll say, and by The-

orem 2.3.1 the intersection II] O 6 is the union of the conic Cf and the generator 9f
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of ß. In fI], the line Pï¡/i is the nuclear line of the conic cone Pr*Cf , that is, every

non-degenerate conic C ina plane o and such that C is the plane section arìPfCi, has

nucleus the point o n {Pf .n(}. BV considering the conic cones PiCi,'i: \,2,.. . ,q+1,

which are all contained in the quadric Vl, and by repeating the above argument, we

have that each non-degenerate conic inVl has a nucleus incident with the plane (¡fi,p)

about p in PG(4,q). Moreover, no such nucleus is incident with p.

Since ß Ç Vs2 aV;' and since 6 contains q2 distinct Baer conics, the q2 associated nuclei

of these conics lie in the plane (¡/i,p). It remains to show that these nuclei are distinct,

so that they constitute all q2 points of (,n(,p) not incident with p.

Consider two distinct Baer conics C* and C'* of B in planes o and o' respectively. Since

a and c' represent lines of B in PG(2,q2) and since 6 is not contained in a hyperplane

of PG( ,q), the planes a and o' intersect in a unique point and this point of intersection

isinB(seeTheoreml.7.2). Hence e,,a'hale nopointincommonwhichisnotapoint

of 6, hence the Baer conics C*,C'* have distinct nuclei. !

2.6 An Alternative Approach

The Ruled Cubic Surface R! as a model for PG(2, q)

In this section we discuss the ruled cubic surface obtained as the projection of the

Veronese Surface Vra ftom any one of its points. The Veronese Surface is the variety

V"n : {P(r',ra,a2,nz)yz,r\ I @,a,2) à point of PG(z,q)}

of PG(5, q). It is of order 4 and dimension 2. (In [50, Section 25.1], the Veronese Surface

is referred to as the quadric Veronesean of PG(2,q).)

If we write (*0,*r,r.2,frB,r.4,rs) for the coordinates of a general point in PG(5,g), then

V"a is the complete intersection of the quadrics

rl
r!
rl

- rorz

- rors

- rzfs

0, rgT4 - fr1ï3

r1r5 - fr3ï4

r2rg - r1fr4

0,

0,

0

0,

0.

Moreover, the Veronese Surface contains no lines, that is, V,! isacap in PG(5,q).
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The map

(: PG(z,q) ---+ PG(5,q)

defined by (*,a,r) + (r2,ra,U2,rz,az,22)

is a bijection of PG(2,q) onto the Veronese Surfac" Vrn; hence, Vra contains exactly

lVrnl: q2 + q * 1 points. Also, under C, the points of the conic

ar2 + ba' + cz2 + laz -f gzr * hry 0 (2.5)

in PG(2,q) correspond to the points of intersection of the hyperplane of PG(5,,q) with

coordinates la,h,b,g,l,c] and the Veronese Surface. Since a curve C' of order r in

PG(z,q) intersects a conic in 2r points (see Theorem 1.6.3), it follows that a crlrve C'

of PG(2,q) maps by ( into a curve of degree 2r onVra. In particular a line of PG(2,q)

maps into an irreducible conic on Vra and an irreducible conic of PG(2,q) maps into an

irreducible curve of order 4. By considering lines of PG(2,q), we have

Theorem 2.6.1 Properties of the Veronese Surface:

/. [50, Theorems 25.L.7,25.1.9] Let [. be any line in PG(2,q). Then ((t)'is a non-

d,egenerate conic on V2a. Moreouer, each non-degenerate conic contained in Vra i,s

of the form ((t) for some li,ne L in PG(2,q).

Each plane in PG(5,q) which contains a non-degenerate conic onV2a i,s called a

conic plane ol Vrn

2. 150, Theorem 25.1.11] Any two conic planes of Vra haue eractly one poi,nt'in common

and, thi,s conùn"ùon point belongs to Vra.

Thus V"a contains q2 +q+7 non-degenerate conics, two distinct points of Vra are contained

in a unique non-degenerate conic on V"a and two distinct non-degenerate conics on VrA

intersect in a unique point.

A degenerate conic which is a repeated line or two distinct lines in PG(z,q) corresponds

to a hyperplane section of Vra, where the hyperplane meets Vra in a non-degenerate conic

(counted doubly), or two conics with exactly one point in common, respectively.

At each point P of Vra, the q * 1 tangent lines to the q -l 1 irreducible conics of Vra at P

span a plane 
"(P); 

zr(P) is called the tangent plane of.V2a at P, and zi(P)n V24 : {P}'
Also we note that by [50, Lemma 25.L6 and Theorem 25.1.10] a projectivity of PG(2,q)
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induces a permutation of the pointset of Vra which is induced by a unique projectivity

of PG(5,q) which frxesVra. Consult [50, Section 25.1] for further detail regarding the

Veronese Surface I/ra.

We now project V"a fuom a point of.Vra to obtain a ruled cubic surface in a hyperplane

of PG(5, q) (see also [71, Section 3.22]).

Consider the point P(0,0,0,0,0,1) on Vra which is the image under ( of the point

P'(0,0,7) of PG(2,q). The tangent plane zr(P) to Vra at P is given by the equations

ro: frt : r.2:0. Project Vra from P onto the hyperplane fla with equation 15 : g.

Since P is incident with q + L conic planes of V2a, which pairwise meet in P, the given

projection of V"a from P yields q points of each of. q* 1 distinct lines 91, 92,... ,7q¡t in

II¿. The q+l remaining points oL gr,gz,...,ga+r (one on each line) are collinear in a

Iine (. of fla, where I is the projection from P of the tangent plane zr(P) of Vra at P. The

projection of V"a from P onto the hyperplane II¿ with equation 15:0, is then the set

{(r2,ra,U2,rz,x)a,0) I (r2,ra,,a2,rz,az,z2) is a point of Vra}

of.q2+qpointsof fla. BySectionl.T,thesepoints areq2 f qpointsof aruledcubic

surface with line directrix (. in fla. For the following discussion, we recall that a ruled

cubic surface is defined as follows (see Section 1.7).

Definition: 2.6.1 InfIa: PG(4,q), consider a conic C2 and a line l. slcew to the plane

of C2. Set up a projectiue correspondence between them, and joi,n corresponding poi'nts

by lines. The ruled, surface so obtai'ned is of order 3, and i,s denoted Rlr.

By choosing the coordinate system in PG(4,q), let point (0,0,0, r, g) (where

r,a €GF(q),@,ù* (0,0)) lie on I correspond to point (r2,ïU,A2,0,0) on C2. Thus

,R! is

{(r2,ry,a2, zn, za); r,y e GF(q), (r,a) I (0,0), z e GF(q) u {-} }

Define

o : Rl -+ PG(2,q)

(r2 rrUry2, zn, zy) +
(. (z: æ) +

(*,a, ,)

(0,0, 1)

by
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Thus ø contracts / into the point (0,0, 1), and

o : Rl\t -+ PG(2,q)\{(0,0,1)}

is a bijection, by definition of ø. In an abuse of notation, we shall use o to denote the

map between rB!\1, in PG( ,q), and PG(2,q)\{(0,0,1)}, in both directions.

First note that under ø our original conic

C2 : {(n2,ra,U2,0,0)lr,a e GF(q), @,a) * (0,0)}

on Rl is mapped to the l\ne z:0 of PG(2,q).

We now consider the image in PG(4,q), under ø, of lines and conics in PG(Z,q). One

method is to use the bijection ( of PG(2,q) onto the Veronese Surface Vra andthen project

Vra from P(0, 0, 0, 0, 0, 1) onto the ruled cubic Rl; for clarity we explicitly determine these

images using our bijection o of PG(2,q)\{(0,0,1)} onto .R!\/.

First consider a line ar * by i cz :0 (a,b,c e GF(q), c + 0) in PG(Z,q), not through

(0,0, 1). A parametric form of this line is

c
-a-bt(*,a, 

") 
: 7,t,

where t e GF(q) u {-}. Using the map ø we have

(r2 , ra, 92 , zr, zy) (*0, *r, 12, rs, fra)

(t,r,r':u=,-t Y)
(2.6)

(2.7)

Thus the image in PG( ,q) of the line of PG(2,q) is the set of points (*0,*r,r.2,r,3,ø.4)

on R! with the parametrisation (2.7)in quadraticfunctions of ú. These points (2.7) also

satisfy,

ans*brt* crs : 0 : r(ar *bY * cz)

and ar1 * br2 I cra : 0 : y(ar -t by * cz); (2.8)

the equations of two distinct hyperplanes, which intersect in a plane of PG(4,q).

By Section 1.5, we have therefore that the image of the line ar tba -l cz:0 (c I 0) is

the set of points (*0,*r,r2,rs¡rù (2.7) of a conic on R?r lying in the plane of PG(4,q)

defined by equations (2.8). Furthermore, the conic (Z.Z) is non-degenerate since it is the
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pre-image of the non-degenerate conic {(1,t,t2,0,0)l t e GF(q) u {-}}, in the plane

rs: r,4: 0 of PG(4,q), under the projectivity of PG( ,q) defined by the matrix,

1

0

0

a"

0

0

1

0

b

o"

0

0

1

0

b

0

0

0

c

0

0

0

0

0

c

Note: 2.6.2 In PG(2,q), proiectiuities firing (0,0,1) induce a transformation on

(#,ïU,U2,zr,zy) in PG@,q). As a consequence, the "conics" in PG( ,q), which are

the image under o of lines ar lby * cz :0 (a,b,c e GF(q), c + 0), are projecti'uely

equi,ualent.

Proof: Consider two lines (4 and (.2 in PG(2, q) with equations ar *by * cz :0, c f 0,

and a'r * bty i c' z : 0, c' 10, respectively; note that (0, 0, 1) is not incident with either

of these two lines. A projectivity fixing (0,0, 1) in PG(Z,q) and which maps .(t to [.2 is

given by

t

1

t
-a-bt

c

The corresponding projectivity in PG(4, q) is therefore given by

-at-btt
cl

1

0

g_a'
ccl

1 0

1

þ
c

bl
v

0

0

1

1

t

o,

c
a'
cl

0

0

0

1

0

0

0

0

0

1

100
10

1

t

*
-a-bt

c

-o,t-bt2

*

0

0

-at-btt
cl

-att-btt2

0

bbl¿- a
g_a'
ccl

1

0

Þ
c

0 bl
vc' c

n

Now consider a line ar I by : 0 (a,b e GF(q), a, b not both zero) in PG(2,q), that is,

a line incident with (0, 0, 1). Imposing the condition ar + by : 0 on (2.6) gives

a,fro*brt : 0,

a,frt*brz : 0,

and aø3 lbra : 0 (2.9)
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which define the equation of a line in PG( ,q) contained in -R! and therefore incident

with 1..

Thus the image of the line ar * by :0 under o is a (generator) line of Rl.

Consider the following linear combination of the equations (2.9),

a(ars -f br) i b(aq I br2) I c(a4 Í bra) : 0,

that is a(ars * bq -l cq) -l b(aq i br2 * cra) : 0,

which is a linear combination of the equations (2.8) and is therefore the equation of the

hyperplane of PG( ,q) which meets R! in the union of the conic (2.7) and the generator

line (2.9).

A pencil of lines in PG(2,q) through a fixed point (r,A,r) + (0,0,1) corresponds to

a collection of q conics on the surface R! together with a generator line of Rl. The

planes containing these q conics generate a quadric cone in PG( ,q) with point vertex

(r2,(xU,U2,zfr,zy) in R!; this is proved as follows, the plane (2.8), where a,b,c satisfy

anlbylcz:0 for some fixed (r,gt,z), passes through the point (*o,rr,fr2,frt,ra) of

PG(4,q) if and only if
rs !X1

11 12

ry
-0

r3

!04

,

that is, if and only if r(rpa - rzrz) I y(rps - ron+) * z(rsn2 - ,?) : O. (2.10)

It is easy to show that the quadric with equation (2.10) has the (fixed) point

(r2,rU,A2,zr,zy) as a singular point, by showing the first partial derivatives of the

defining polynomial are identically zero at (r2,rA,U2,zr,zy), hence by considering all

possible quadrics in PG(4,q), the quadric (2.10) in PG( ,q) is a quadric cone with point

vertex (*,rU,U2,zr,zy) and base a hyperbolic quadric.

It also follows that R! is the complete intersection of the three quadrics given by,

ÏtI+ - fr2ag:0, øtrs - fr¡7,4:0, and rsr2 - r?: 0' (2'11)

Through a point of PG( ,q) not contained on the surface -R!, that is, not satisfy-

ing (2.11), there passes a unique plane of the system (2.8), namely the plane such that

a:b; c: {xtr4- rzrst r1r5- frofrq: rsr2 - x)1. (2.L2)

This is a plane of an irreducible conic unless rsfr2- r?:0, in which case, the conic is

the union of the line directrix / and a generator line of Rl.
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Hyperplane sections of rR!

As stated in Theorem L.7.2 andin Section 1.6, the intersection of a hyperplaneof PG(4,q)

with the ruled cubic surface rB! is a cubic curve; such a cubic curve is possibly reducible,

in which case the intersection is either the union of a conic and a generator line of R| or

is the union of three lines of .B! (not necessarily distinct or belonging to Geþ\.

By considering R! as the projection of the Veronese Surface Vra in PG(5,q) from a point

of V2a, it is possible to determine the nature of the hyperplane sections of Rl in PG(4, q).

We work through this explicitly using our bijection ø between PG(2,q)\{(0,0, 1)} and

Ai\{r}.

Let l: [À0, Àt, À2, Às, À¿], À¿ e GF(q) not all zero, be the coordinates of a hyperplane of

PG( ,q). The hyperplane intersects ,R! in points (r2,ny,U2,rz,gz) satisfying

Àsr2 I)nr!]-ÀzA2 ]-Àszr]-À¿.zA- 0 (2.13)

which corresponds to the points of a conic through (0,0,1) in PG(2,q).

The number of conics in PG(2, g) through (0,0, 1) equals

qa- q'*(n;t) .(;) . q2(q*1) +q+1: q4+q3+q'+el-:,

counting non-degenerate conics and the four types of degenerate conics incident with

(0,0,1). Hence there is a one-to-one correspondence between the conics incident with

(0,0, 1) in PG(2,q) and the hyperplane sections of the cubic surface R| in PG@,q).

Thus, R! is the projective model of the system of conics incident with (0,0,1) in the

plane.

We now consider each case in more detail.

Case 1: (2.13) is the equation of a non-degenerate conic in PG(2,q).

By considering the first polar of (0,0, 1) with respect to (2.13), the tangent line to the

conic at (0,0, 1) is given by

À3r * À& :0'

The condition for the hyperplane À to intersect (. in (0, 0, 0, 7, m) , m € GF (q) u {oo}, is

Às|Àam : 0

that is, rn : -*
and so in PG(2,q), from above, U : rnr is the tangent line to the conic (2.13) at (0,0, 1).
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Case 2: (2.13) is degenerate and Às : À¿ - 0

The hyperplane À: [À0,Àr,À2,0,0] in PG( ,q) contains the line (. of Rl. The equa-

tion (2.13) becomes

\sr2iÀ1uy*À2y2 : 0

that is, (y - *rr)(A - *rr) : 0

and the lines g : rrùrn and gr : Trù2ï may be distinct or coincident in PG(2, q) or lie in

an extension of the base field.

Case 2a: rrLl - nx2 e GF(q) u {oo}

The hyperplane ) intersects R! in / together with a unique generator line counted

twice. In PG(2,Ç), we have a degenerate conic on (0,0,1) consisting of a (repeated)

line gr : Trltr.

Case 2b: mt * Tf7,2,, TrL1,rn2 e GF(q) U {oo}

The hyperplane À intersects ,R! in I together with two generator lines. In PG(2,Ç), we

have a degenerate conic on (0, 0, 1) consisting of two distinct lines A : rmtr and y : rÍù2t.

Case 2c: rnl and 1rI2 àîê conjugate elements of Gf'(q2)\GF(q).

The hyperplane À intersects -R! in I together with two generator lines in the quadratic

extension, that is, / together with two generators of the extended ruled cubic surface (as

discussed in Section 2.4.t). In PG(2,Ø), we have a degenerate conic on (0,0, 1) consisting

of two conjugate lines in the quadratic extension.

Case 3: (2.13) is degenerate and ): I-n1,a) arb, _mr7]

The equation (2.13) degenerates to become

@ - *r)(ar-r by + z) : g

for some m e GF(q) u {o"}, a,b e GF(q).

From above, the hyperplane À intersects R! in a generator line and a conic on .R!. In

PG(2,Ç), we have a degenerate conic on (0, 0, 1) consisting of two lines, U : mr (incident

with (0, 0, 1)) and ar I by t z :0 (not incident with (0, 0, 1)).

We now consider in more detail a non-degenerate conic through P'(0,0,1) in the plane

PG(2,q). By Section 1.5, such a conic has points with parametric coordinates of the

form (/6(ú), /t(ú), lr(t)) : (q * bfi,o,z I bzt,as I bst I cst2), o,¿,b¿ € GF(q), where P'

is the point of the conic associated with the parameter ú : oo. Since the conic is non-

degenerate it is a normal rational curve in the plane and therefore the polynomials /¿

are linearly independent and have non non-trivial common factor. When the coordinates
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of the points of the conic are substituted into (2.6) we obtain a parametrisation of the

corresponding points (ro,*r,{x2,ïB,ra) on A! in which fr¡,frt,fr2 ãîe quadratic in ú and

ryr14 are cubic in f, namely

rs :12: (ot+btt)2,

11 - rA : (rr + brt)(a2 + b2t),

12 :A2: (or+brt)',

13 : zr' : (or + bú)(as -l bst I cst2),

14 - za : (o, + b2t)(as* ósf * cst2)'

Thus the conic corresponds to a rational cubic curve on the surface Aå. BV case 1, these

q*1 points lie in a hyperplane section of Rl. Note that all possible reducible cubic curves

on R| have been considered in cases 2 and 3, with each such cubic curve obtained as a

hyperplane section of R!. Therefore by Section 1.5 and Theorem 7.7.2, the rational cubic

curve above is an (irreducible) twisted cubic curve. Note that the point with parameter

ú : oo of this twisted cubic lies on the line directrix L of Rl.

Alternatively, by the known results concerning the Veronese Surface Vra in PG(5,q)

quoted above, we note that such a non-degenerate conic containing P'(0,0,1) in

PG(2,q2) corresponds to a rational quartic curve containing the point P(0,0,0,0,0, 1)

with points

(ro,rr,n2,rB,r+,rs) : U|(t),/o(¿)å(¿), l?(t), foþ)frþ), ft(t)fr(t), f?(t))

and which constitute a hyperplane section of the Veronese Surface V} of PG(5,q) con-

taining P. On projection from P onto .R!, this quartic curve containing P projects to a

cubic curve contained in a 3-space.

Consider a non-degenerate conic in PG(2,q) which does not contain P'(0,0, 1). For

example z2 : na has points with coordinates (l,t',ú), where t e GF(q) u{*}. When

we substitute these coordinates into (2.6) we obtain the coordinates

(rr, *r, 12, fi3, :x4) : (1, t2,t4 rt,t3)

of points of a 4-dimensional normal rational curve contained on the surface Rl and

disjoint from the line directrix /.

We now show that every non-degenerate conic in PG(2,q) which does not contain the

point P'(0,0, 1) is mapped by o to a 4-dimensional normal rational curve on Rl disjoint

from the line directfix (..
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Curves on Rl

By Section 1.6, every curve C2* ln PG(z,q), of order 2m, with rn-fold point at (0,0,1)

has equation

z^'u* I z^-lu^4r * . . . Í u2^ : Q (2.14)

where u¡ : u¿(r,a) (i : n1,j . . . ,2m) is homogeneous of degree i in ø and g. As we shall

show, the equation (2.14) can be expressed as a monomial of degree min 12,tU,y2, zx;,yl,

so that the equation of the curve transforms by (2.6) into that of a primal (or hypersur-

face) V{ of order m in PG(4, q). The image of the curve C2* in PG(2,q) under o is

Vi a RB : Cl^, u curve of order 3m in PG( ,q) on the ruled cubic .R!.

For example, the equation of C2* with rn-fold point at P'(0,0,1) is

z^ltr*+...+ zou2^-0

where z*-àu,^¡i: z^-i(Porm*i ¡ ptn**i-rA +... + p¡rm+¿-iyi ¡...1P*+¿U^+l) for

'i:0,...,ffi and j -0,. ..,ffi*iforafixedi andsome p¡ eGF(q).

Now

"m-i 
*m*i- i'i 

:'r"rî'nÏ',1i,uri,",ï)r, 2'.' olt,
hence (2.14) can be expressed as a monomial of degree m in n2,rU,U2,zr)az.

If a curve C" in PG(z,,q) has an m-foId point at (0,0,1), but is of order n 12m, it can

be turned into a curve of order n' :2n'L with an rn-fold point at (0,0,1) by adding 2m-n

lines not through (0,0, 1). We then obtain a curve C2* in PG(2,q) with an equation

given by the product of the equation defining C" and the equations of lhe2m-r¿ lines.

Since the lines do not pass through (0, 0, 1), the multiplicity of P'(0, 0, 1) does not change.

As stated above, the equation of C2^ can be expressed as a monomial of degree m in

12,rU,U2,zr,zy,that is, a polynomial which defines the variety of intersecfionV{ )R1,

of a hypersurface Vi in PG(A,q) and the ruled cubic surface,R!. Thus C2* has image

in PG(4,q) given by this intersection of Rl with the hypersurface V{, namely, a variety

7r3- which consists of the image of. C" together with 2m - n (Baer) conics.

If a curve C" has a m-fold point at (0,0, 1), but is of order n ) 2m, the addition

of n-2mlines through (0,0,1) makes it of order n*n-2m:2(n-m) with a

(n-2mtm: n-m)-fold point at (0,0,1). Thus yielding a curve ç2(n-m) of order
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2(n - rn) with a (n - rn)-fold point at (0, 0, 1). In PG(4,q), the curve ç2(n-m) has image

n Rt : Cl("-^l which degenerates into the image of C" and, n - 2m generator

lines.

We summarise these results in a theorem.

Theorem 2.6.3 A curae C" of order n i,n PG(2,q) with m-fold poi,nt at (0,0,7) has

i,mage i,n PG( ,q) on the surface R?r, gi,uen by o as follows

o(c"):

In particular, we note the following examples

1. An irreducible conic C2 through (0,0,1), with n:2, rn: I and n :2m in this

case, has as image Vrr A Rl : Vf , a twisted cubic curve on the surface Rl, as

discussed above.

2. Ln irreducible conic C2 not through (0,0,1), with n :2,rn:0 and n) 2min

this case, together with two lines through (0,0,1) forms a quartic curve Cra with

2-fotd point at (0,0, 1). In PG( ,q), the image is 7r2 n Rl : Vf : Vl UV| uVrn,

that is two generator lines of ,R! together with a quartic curve on Rl. Thus o(C2) is

a quartic curve Cf with q * 1 points and this quartic curve Cra is a normal rational

curve for the following reasons:

(u) Cf , being the image of a conic not through (0,0,1), has no point on the

directrix !. of Rl.

(b) Cra therefore cannot have a linear component n, since any line on .R! has

at least one point in common with L

(.) If Cf is reducible, then by (b) it can only be reducible to a pair of conics

Ct,Cz.But these conics on Rl are the image under ø of lines o(C) and

o(Cr) of PG(2,q); a contradiction, since our original conic C2 in PG(2,q)

is irreducible.

cl*
Cl"-^

Cl"-^

if n:2m,
if n<2m,

i,f n > 2m.

!
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(d) Consider any hyperplane Sr1 of PG( ,q). Then Cf n Så ç ,?3 n Sr1. But

nt n Så is the image of a conic C in PG(2, q) through (0,0, 1) (by our

results above). Since lCaC2l ( 4, we have l,Sr1 acfl ( 4. Hence Cra is

properly contained in PG( ,q) for all q > 3.

(.) If. q : 2 or 3, the result follows.

We now prove that every 4-dimensional normal rational curve contained in ,R! and

disjoint from the line directrix / is the image under o of a non-degenerate conic in

PG(z,q) which contains P'(0,0,1)

Consider a normal rational curve Ca of PG( ,q). Then, by Section 1.5, the curve Ca is

given by

{P(ú) : P(/o(¿), Ír(t),..., ln(t)) | t e GF(q) u {-} }

where

(i) each polynomial /, has degree at most 4, 'i : 0,7,2,3,4, with at least one of the

polynomials having degree 4.

(ii) the polynomials,fo,.fi, Ír,h,fa arc linearly independent with no non-trivial com-

mon factor.

(iii) C4 is projectively equivalent to {(tn,tt,P,t,7) | t e Gf @) u {-}}.

Suppose that Ca is a normal rational curve of PG( ,q), lying on the ruled cubic -R!

Therefore Ca is given by

{ff (t)', r (Ð g (t), s (t)', r (t) h(t), s (t) h(t)) ; t e G F (q) u { - } }

where

(i) /, g are of degree at most 2 and h is of degree at most 3, since at least one of /,9
is non-constant.

(ii) /', Íg,g',Íh,gh are linearly independent quartic polynomials, with at least one

having degree 4, and have no non-constant polynomial as common divisor.

Note that / and g have no non-constant polynomial as a common divisor since otherwise

Í' , f g, g2 , Í h, gh have a common non-trivial divisor.
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Define C in PG(z, q) to be the image under o of Ca as follows

o(Cn) : C : {(/(ú), s(t), h(t)); t € GF(q)u {*} }

Suppose C contains P'(0,0,1). We consider each case separately.

Possibility 1: There exists h e GF(q) such that /(t1) : g(t): 0. In that case p: t-tt
divides both / and g, a contradiction, since by condition (ii) above, the polynomials

f' , Í g, g2, Í h, gh have no non-trivial common factor.

Possibilitv 2: t : oo corresponds to (0,0,1), in which case the degree of h is strictly

greater than the degree of / and strictly greater than the degree of g. By considering

properties (i), (ii) above, this implies that h has degree 3, the degree of / is 0 or 1 and

the degree of g is 1 or 0. In this case o(ca) : c is not a conic since it is not a normal

rational curve (of order 2) in PG(z,q).

Example, f Q) : l, g(t): ú and h(t) : Ú3 so that

C4 : {(1, ¿, t',t',t4)l t e GF(q) u {-} }

in which case C: {(1, t,f)lt e GF(q) u {-} }.

We have:

Theorem 2.6.4 If a normal rational curue Ca lies on R| and if, using the aboue notation

for Ca , the degree of h is less than or equal to 2, then there is no point of C4 on the line

directrir [. of Rl.

Suppose Ca is the normal rational curve contained in Rl with the above notation, and

suppose h has degree less than or equal to2. It follows that at least one of f ,g has degree

2. Moreover, f ,g,h are polynomials of degree at most 2, with at least one of degree 2.

The polynomials have no non-trivial common factor, since /2 , f g , g' , f h, gh have no non-

trivial common factor, and therefore C: {(/(¿), g(t),h(t)) lt e Gf @) u {o"} }, by the

definition of a normal rational curve in Section 1.5, is a non-degenerate conic in PG(2,q).

Hence,

Theorem 2.6.5 Euery normal rational curue Ca lying on Rl and disjoint from the li,ne

di,rectrir l,is mapped by o to an i,rceducible coni,c of PG(2,q) whi,ch does not contain

(0, o, 1).
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Summarising our results in one theorem we obtain the following bijective correspondence.

Theorem 2.6.6 There a,re as nxl,ny normal rational curues of PG( ,q) on Rl which

are di,sjoint from (. as there are irreducible coni,cs of PG(2,q) not through (0,0,1) , This

number it qu - qn.

Proof: An irreducible conic in PG(2,q) not containing (0,0, 1) maps under o to a

normal rational curve on Rl, with no point on / (by the above Note 2.)

By Theorem 2.6.5 the converse is true.

The number of irreducible conics in PG(2, q) is q5 - q2. The number of irreducible conics

h PG(2,q) or (0,0, 1) i. qn - q2; therefore the number of irreducible conics in PG(2,q)

not through (0,0,1) is q5 - qa. ¡

2.7 A look at PG(2,q,n) in Bruck-Bose

In this section we investigate more closely the Bruck-Bose representation of PG(2,q4).

The plane PG(2,qa) has a 4-dimensional Bruck-Bose representation over GF(q'), which

we shall denote by fl4,nr, and an 8-dimensional Bruck-Bose representation over GF(q),

which we denote by fls,q.

Consider a line /, distinct from loo, of PG(2,q*). As we have noted earlier in this chapter,

a Baer subline bqz¡1 of / which contains no point on [* is represented in fIa,o, by a non-

degenerate conic ó|r*, in the plane l*, which represents L Furthermore, the conic blz*,

is disjoint from E*, the hyperplane at infinity of fI4,or.

In this section we show that the Baer sublines bqlr of bqr¡r are each represented in fl4,n,

by a subconic of á|r*, and each such subconic b|*t is contained in a Baer subplane of

the plane l* in fI4,or. Each Baer subplane of this type intersects D- in a unique point

in fl4,oz.

Using this result together with Corollary 2.3.5 we obtain that such a Baer subline bo"¡1in

the 8-dimensional Bruck-Bose representation is a set of q2 +L points in a 4-space /** (the

representation in fls,q of the line L) of.lIs,r, which contains at least q3 +q 4-dimensional

normal rational curves. We note that in 8-dimensional Bruck-Bose, bor11 is in fact a

(q'+ l)-cap in the 4-space l** of IIs,q and since önr11 is disjoint from (.ooln PG(2,q4)

the corresponding (q2 + l.)-cap is disjoint from the hyperplane at infinity in fls,o.
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We begin by establishing a coordinate system for PG(2,qn) in 4-dimensional Bruck-Bose

as in Section 1.10.4. Let (.oo be the line of PG(2,q4) with equation z:0. Let (. be the

Iine g : 0 and denote by P : P(L,0,0) the point of intersection of the lines {. atd l.oo.

Each point of (. - {P} has coordinates of the form (4,0,1) where a e GF(qa).

Let GF(qa) : GF(q2)(o), where a e GF(qa)\GF(q') has minimal polynomialr'21-rl-c

for some fixed element c in GF(q'). Then every element b in GF(qa) can be uniquely

expressed in the form b: bo * ab1 where the ó¿ are in GF(q').

Following Section 1.10.4, in Bruck-Bose I is the plane, which we denote by l*, with affine

points (o0,or,0,0,1), a¿€GF(q2), where each point (o: oolaa1,0,1) is a point of l.

The spread element in l* is /(*) : (1,o) = ((1,0,0,0,0), (0,1,0,0,0)).

For convenience, from now on we shall represent the coordinates of points of (. and L* as

follows:

¿ : {P(7,0)}u{(o,1) laeGF(qa)}

¿. : {J(æ) : ((1,0,0), (0,1,0))} U {(oo, ot, 1) I a0,úr e GF(q2)}.

The Baer sublines of / which contain the point P(1,0) are represented in Bruck-Bose by

the lines of l* distinct from J(*). We may divide these Baer sublines into two classes

as follows.

Baer sublines of / which contain P Lines of t* - {"r(*)}
(i) {d(1,0)+ (ø,1)} u {(1,0)}, where

a e GF(qa) is fixed and 0 €

GF(q').

(ii) {0(b+ o, 0) f (r, 1)} u {(ó+ 0, 0)},

where b e GF(q2) is fixed, a e

GF(qn) is fixed and d e GF(q2).

(i) The lines y : ü7t where

a1€ GF(q2) is fixed.

(ii) The lines r : bA t (ro - ba1), for

all ô, ae, at e GF(q2)

Note that there are q2 distinct lines of type (i) and qa distinct lines of type (ii).

Let bor¡l denote the Baer subline of I with the following points.

{(t, t)} u {

P(1,0) is not a point of bo,¡t since if (1,0) : (a0,a0 + 1), then a0 +I:0 implies o is

an element of GF(q2), a contradiction.

["î](l) | 0 e GF(q2)\
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Consider a point (a0,a0 + 7)

(a0 + 1)-t : bo I ah for a necessarily unique pair bs, h € GF(q2). Then,

(bo+abr)(r+od¡ :1

and on solving the system,

bo cîh :1
ïbo + br(7-0) : 0

we obtain bs: (0 -\(-cg2 +0 - 1)-1 and h:0(-c0" +0 - 1)-1. Hence \rye may write

the coordinates (a0(bs * ab1),1) as

(a0((0 - 7)(-c02 + 0 - 1)-t + a0(-c02 + 0 - 1)-t), 1)

: (-c02(-c0'+e - 1)-t - a0(-c02 +0- 1)-t,1)

Therefore in Bruck-Bose, the Baer sublite bo"¡1 is the set b|r*1 of points of l* with

coordinates,

{(1,0,1)}u {(-c02(-c02 +0 - 1)-t, -0(-c02 +0 - 1)-t,1) l0 eGF(q')}.

Therefore ó|r*, is the image of the conic A2 : rz in /* under a projectivity of /* since

ó|r*, is given b¡

{(1,0, r)} u {

-c 0 0

0-1 0

-c1-1
| 0 e GF(q2)\.

02

0

1

If we now let bq.,.1 be the subset of. bor¡1 of points with parameler 0 e GF(q) U {*},
then bo-,.1 is a Baer subline of bo"¡1. From the above calculations we have that ó0..1 in

Bruck-Bose is a subconic ó[*, of the conic bär*r. Moreover, b[*t is projectively related

to the conic {(0',0,1) | 0 e Gp(q) u {*} } in the real Baer subplane PG(2,q) of [*.

Since ôor-.1 does not contain P,b["*1and hence b[*r has no point in D-. Suppose the

Baer subplane B of l* which contains bf*, intersects E- in q * 1 points. Then since

l* is a quadratic extension of. B, the conic bfr*, would necessarily intersect X* in two

distinct and conjugate points, a contradiction. Thus, the Baer subplane B intersects

Eoo in a unique point. Another way to see this is to consider the projectivity which

maps PG(2,q) on to the Baer subplane B. A point (*,A,r) of PG(2,q) is mapped by

the projectivity to a point of Doo if and only if -cr I A - z: 0. Since c is an element
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of GF(q2), the line l-",I,-1] is not a line of PG(2,q) and so intersects PG(2,q) in a

unique point. Thus B contains a unique point on X*.

Now consider another Baer subline br * bq+t of bor¡r.

Any Baer subline of / has stabiliser a subgroup of PGL(2,q4) isomorphic to PGL(2,q2).

In particular the real Baer subline,

bo : {(1,0)} u {(d, 1) l0 e GF(q2)}

of / has stabiliser PGL(2,q2). PGL(2,q2) acts triply transitively on the points of ó0 and

so acts transitively on the Baer sublines of b0. Hence any Baer subline of b0 is given by,

1(l):(

t(

a04b
c0+d

for some choice of a,b, c, d in GF(q") such that ad-bc f 0, where the parametrer 0 ranges

over GF(q) U {*}. This Baer subline is projectively related to the Baer subline of bo,.,.r

given by

o¿ 0t

1d.

where 0' e GF(q') u {-}. In Bruck-Bose, this Baer subline is given by,

bt

-c0 0

0

-1

0'2

0'

1
(

0

1

0-1
-c0 a2 0,c c2

2ab ad+bc 2cd

6z bd ¿z

0-1
-c1 -c1

(See [52, Theorem 2.37]). Hence in Bruck-Bose, b1 is the image bl* of the subconic b[*t

under a projectivity of l* and so bl* is a subconic of ó|r*1 contained in a Baer subplane

of l*. Again this Baer subplane intersects Xoo in a unique point.

Hence every Baer subline of åor..r in Bruck-Bose is a subconic of. bir*l contained in some

Baer subplane of l*, and the Baer subplane necessarily intersects X* in a unique point.

We have concentrated our attention on a specific Baer subline bnz¡1 of (., but any Baer

subline of I is the image of bor¡t under an element of PGL(2,qn). Let b:or¡1f bor¡1be

a Baer subline of / which does not contain the point P, then

btn¡,:,"[: i](l)
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lo ol
where f/ is some element of PGL(2,qA). Then H' : H I I is an element of

L" 1l
PGL(2,qa) and in Bruck-Bose, by repeating the arguments used for bor¡t above, bþ*,

is a set of points of l* given b¡
02

H,*

where .F1'* is an element of PGL(3, q2) since óþ*, is a non-degenerate (Baer) conic in

l*. Thus each Baer subline of. binray in Bruck-Bose is projectively related to a subconic

of b[r¡1, which represents a Baer subline of bor¡r'

We therefore have the following theorem valid for any Baer subline boz¡1of an affine line

l. of PG(2, qa) whose Bruck-Bose representation in PG(4,q') is a non-degenerate (Baer)

conic b|r*, in the plane /* which represents /'

Theorem 2.7.t If bq+t is a Baer subline of bn"¡t, then in l-dimensi,onal Bruclc-Bose

bo¡1 is a subconic bi+, of the conic b[r*, such that b[*t lies in a Baer subplane B of 1..

Moreouer, B intersecús E- in a uni,que point. n

Note that since the plane /* is isomorphic to PG(2,q2), r¡¡e can represent l* in

4-dimensional Bruck-Bose over GF(q), using !* aD* as the line at infinity of l*. Since

bir*, is a non-degenerate conic in l* disjoint from the line at infinity of t* , in Bnrck-Bose

b|r*, is ã (q'+l)-cap. Moreover this cap contains the Bruck-Bose image of the subconics

of b[r*l which each lie in non-affine Baer subplanes of l*. Since the subconics have no

point on the line at infinity of l* and by Section 2.3 we have,

Theorem 2.7.2 If bor¡1 is a Baer subli,ne of a line L of PG(2,q4) such that bnr¡1 is

d,i,sjoint from the li,ne at infinity of PG(2,q4), then in 7-di,mensional Bruck-Bose ouer

GF(q), bor¡1 i,s o (q''l l)-cap i,n the /¡-space whi,ch represents (.' Moreouer, this

(q, + I)-cap contai,ns at least q3 * q l-dimensi,onal normal rati,onal curues. !

Note that a cap of the type of Theorem 2.7.2 is not a 3-dimensional ovoid. Since if the

cap is contained in a hyperplane E of the 4-space of IIs which contains the cap, then E

and the hyperplane at infinity intersect in a plane. It then follows that the cap contains

points of Ðoo, a contradiction. Hence such a cap is not contained in any hyperplane of

0

1
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the 4-space which represents (. in fIs,r. Furthermore, such a cap is disjoint from at least

one hyperplane of the 4-space in which it lies.
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Chapter 3

The Bruck and Bose representation

in PG(tt, A) , n >

In this chapter we consider the Bruck-Bose representation in projective space of dimen-

sion greater than 4. In other words we consider the Bruck-Bose representation defined

by spreads other than 1-spreads of PG(3,q).

3.1 Some properties concerning (h - l)-spreads of

PG (zht - 1, q)

In [50, page 206] a method for constructing spreads is given; a particular case of

which is the following. Note that by Theorem 1.9.1 a (2h - 1)-spread 52¿-1,02 ex-

ists in PG( h-\,q') and since Ezh-t,q2 has more elements than there are points in

PG(4h - 7,q), there exists an element of E2¡-1,0, which is disjoint from PG(4h - 1,,q);

therefore, it is possible to embed PG(2h - l,q") in the extension PG(4h - l,q2) of

PG(4h-1, q) in such a way that PG(2h-1, g2) does not contain a point of PG(4h-7,q).

Construction 3.1.1 A construction of a (2h - l)-spread of PG(4h - 1, q) from

a (h - l)-spread of PG(2h - L,q2),

Consider a projective space PG(zh-L,q'),, h>7. By Theorem 1.9.1, there exists an

(h - l)-spread .S' of PG(2h - I,q') and S' contains q2h + 1 spread elements illn_r,or,

j : r,...,e'h * 1, of dimension h-L over GF(q2). Embed PG(2h-L,q') in the

extension PG(4h - t,q') of PG@h - t,q) so that PG(2h - 7,q') does not contain a
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point of PG@h-I,q). The (h- 1)-spacell!¡a,', and its conjugate n!n-r,', generate a

(zh-1)-space l!rn_r,n, of PG@L-L,q') and flNo-r, qrlPc( h-l,q) is a (2h-1)-space

nin-r,n of PG(ah - t,q). The q2h * 1 spaces nlrn_r,o form a partition of PG(4h - 7,q)

and we denote this (2h - 1)-spread of PG( h - 7,q) by 5.

We now prove

Theorem 3.1.1 In the Constructi,on 3.1.1, i'f the (h - 7)-spread E' of PG(2h - 7,q')

i,s regular, then the (2h - I)-spread S of PG(ah - l,q) i,s regular.

Proof: Let III-r,or, n2h_t,qr, n3h_t,0" be three distinct elements of 5'. Denote by

R' : R(llrn-r,qz,fl2¡-r,qr,l3¡-y,0") the unique (h.- l)-regulus of PG(2h-I,q') containing

these three spread elements. Let flln-r,o,n}n-'n,nln-'o be the three distinct elements

of E corresponding tollt¡- 1,0",n2h_.,or,n3h-t,0, respectively in the given construction. Let

R : R(nrzn-r,q,lZn-t,q,nln-r,q) denote the unique (2h - 1)-regulus of PG@h - I,q)

containing n!rn-r,n,l}n-t,n and II!¿-1,0. So R is a system of maximal (2h - 1)-spaces

of a Segre variety Ct,zn-t in PG( î- 1, q). Over GF(q2), R becomes a (2h - 1)-regulus

Ro, of. PG(4h - I,q'). Due to the above construction of the spread 5 we have for

j : 1,2,3, fIl4,nz is contained in l!rn-.r,q, where n!rn--r,q, is the unique element of the

regulus Ã0, which contains n!rn-r,o.Thus the line transversals of R'in PG(2h-7,q')

are line transversals of Ê0, and therefore -R' is a Segre subvariety (r,n-r of Rn, and by

Theorem 1.8.10, the regulus,R'is precisely the intersection Eo, ìPG(2h-L,q").

It now follows that for any (2h- l)-spac"nlrn--r,in R, wherel!zn-t,q is distinct from

nln-r,n,n}n-r,o and fl!o-r,', th€ unique element n!rn-.r,', of Ro, which contains nlrn-..,o

has the property llrn-.r,oraPG(2h-I,q'):n|-r,or for some element n|-r,n, of -R'' By

the construction of E from .S', if llrn-..,o (e n) is an element of S, then n!o-r,', (e A')

is an element of 5'. The converse of the preceding statement is true if fI!¡_1,n, (e rR') is

one of the q * 1 elements of .R' associated to the elements of -R via the construction of

the spread 5. (Note that ,R' has q2 .l 1 elements and R has q * 1 elements).

If 5' is a regular spread, then the regulus -R' defined by llrn_.,nr,n2h_.,nr,nth_.,0, is con-

tained in .S'and therefore, by the preceding argument, the regulus -R of PG(4h-7,q)

defined by lltn-r,n,nZn-r,o,llln_..,o is contained in.S. The result now follows. !
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Consider a translation plane zr of order q2h defined by a Bruck-Bose construction with a

(h - 1) -spread 5' of E- : PG(2h - I, q'). We now have a convenient correspondence

between this Bruck-Bose representation of n. and a second Bruck-Bose representation of

zi defined by a (2h- 1)-spread 5 of D* : PG(4h-l,q), where .S' and 5 are associated

by the above construction.

For Desarguesian planes of certain orders which have a Bruck-Bose representation, the

above Construction 3.1.1 and Theorem 3.1.1 provide us with a convenient method to

obtain a Bruck-Bose representation of the plane in a space of higher dimension and

lower order.

To illustrate this, we consider the Desarguesian plane PG(2,q4). lhe plane PG(2,q4)

has a 4-dimensional Bruck-Bose representation defined by a regular line spread S'

of PG(3,q2) and an 8-dimensional Bruck-Bose representation defined by a regular

3-spread E of PG(7,q).

In the previous chapter we investigated the 4-dimensional Bruck-Bose representation of

the Baer substructures of Desarguesian planes of square order. We now determine prop-

erties concerning the 8-dimensional Bruck-Bose representation of the Baer substructures

of PG(2,q4) and some generalisations.

Theorem 3.L.2 A regular 3-spread E in PG(7,q) has a well-defined and unique set of

i,nducedl-spreads, one in each element of S.

Proof: By Theorem 1.9.5, the regular 3-spreads of PG(7,g) are projectively equivalent.

Therefore, we can assume that 5 is the regular 3-spread of PG(7,q) obtained from a

regular l-spread.S'of PG(3,q2)by the Construction 3.1.1 with h:2. We repeat the

construction for this special case to establish notation.

Embed PG(7 , q) in PG(7, q2) and let X3,0, be a 3-space over GF(q') in PG(7,q2) which

has no point in common with PG(7, q). Let .S' be a regular 1-spread of Ð3,02 . Consider

the conjugate space Es,nz of DB,qr. For each element lI!r,0, in E', i :1, . . . , q4 + 1, lhe

3-space ll'r,0, spanned by llrr,n, and its conjugatelll,o, intersects PG(7,q) in a 3-space

il'j,n. Thes e q4 +1 3-spacer llir,n form a 3-spread E of PG(7, q) which by Theorem 3.1.1

is regular.

Each element lllr,n of .S is the intersection (Ilrr,or,f,r,o"laPG(7,q) for a unique line flrr,o,

of .S'. For 7 fixed, the join of each point P of flir,o" to its conjugate P yietds a line of
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Ilrr,n and the collection of these q2 +l lines constitutes a regular l-spread 5{ of trå,n by

Bruck's result (Theorem 1.9.6).

Hence each element flrr,n of the regular 3-spread E of PG(7, q) has a well defined induced

regular l-spread which we denote bV Sl. n

Consider the regular line spread 5' of D3,n, = PG(3,q2) and the regular 3-spread .S of

PG(7,q) associated to 5'by the Construction 3.1.1. By the Bruck-Bose construction

of Section 1.10, these spreads correspond to a 4-dimensional Bruck-Bose representation

of PG(2,q4) and an 8-dimensional Bruck-Bose representation of PG(2,q4) respectively.

Denote these Bruck-Bose incidence structures by fla,o, and lls,n respectively.

By Theorem 3.7.2 and its proof, there exists a well defined 1-1 correspondence between

the points of.Ds,o, and the (line) elements of the induced l-spreads {.S{} of PG(7,q).

Definition 3.1.3 For E a regularS-spread of PG(7,q), the (line) elements of the q4+I

i,nduced regular l- spreads {Err} shall be called partition lines. That is, for each 3- space

D¡ € 5, a line [, of E¡ is ø partition line if [. e Err, otherwi,se (. is o non-partition

line. The remaini,ng lines of PG(7 , q) are those not contained in any element of E; these

shall be called transversal lines.

In Section 2.2, we discussed the representation in 4-dimensional Bruck-Bose of affine

Baer subplanes and affine Baer sublines of Desarguesian planes of square order. By

Corollary 2.2.2 an affine Baer subplane B of PG(2,q4) is represented in fl4,oz by a plane

not contained in X- : X3,oz and which meets E- in a line I which is not an element of

S'. Consider such a line (. in E3,nr. The Iine (. and its conjugate I generate a 3-space

((., [) of PG(7,q2) and the intersection ((.,V¡neCçZ,q) is a 3-space X¿ of PG(7,g). Since

/ is incident with exactly q2 +7 l-spread elements in X3,or, the 3-space Ð¿ intersects

exactly q2 +I of the 3-spaces in the spread E of PG(7,q), meeting each in a partition

line. So in particular D¿ is disjoint from the remaining spread elements in 5.

Consider the 8-dimensional Bruck-Bose representation, fls,q, of PG(2,q4) defined by

the regular 3-spread .S of PG(7,,q). Consider a 4-dimensional subspace B* of fls,n

which intersects PG(7,q) in the 3-space D¿. Any 4-space l* in fl6,o, not contained in

PG(7,q), and which intersects PG(7,q) in a unique element of 5, either intersects B* in

a unique affine point, or the spread element contained in l* is one of lhe q2 * 1 incident

with B*. It follows by Theorem 7.2.2, that B* represents an affine Baer subplane of
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PG(2,qa), since B* and the q2 -l 1 3-spread elements incident with B* constitute a

(qn + q2 + 1)-blocking set in PG(2,q4).

By considering all lines I in E3,nz which are not elements of the 1-spread 5' and repeating

the above procedure, we obtain the 8-dimensional Bruck-Bose representation of all

q4(q' + q6 + q4 * 92) affine Baer subplanes of PG(2,q4).

Intrinsic to this representation is the existence of q8+q6+ q4+q2 3-spaces of PG(7,q)

which intersect precisely q2 + I elements of the regular 3-spread S of PG(7, q) and such

that the intersection in each case is a unique partition line, namely an element of the

induced 1-spread of that 3-space.

Theorem 3.L.4 Let S be a regular 3-spread of PG(7,q), For each 3-space E ol

PG(7,q) one of the following holds:

(1) E is an element of E and therefore E : Ej has a i,nduced regular L-spread Str. BA

d,efi,niti,on D contains eractly q2 + t parti,tion li,nes.

There are qa + L 3-spaces Ð of this type i,n PG(7,, q).

(2) E intersects eractly q2 + L elements of E, meeting each i,n a partiti,on line. Thi's

set of q2 +L parti,tionlines consti,tutes a regularL-spread of D whi,ch we shall call

ø partition l-spread.

Any two parti,ti,on lines, contained in distinct elements of E, span such a3-space.

There are q8 + q6 + q4 + q2 3-spacesE of this type in PG(7,q).

(3) E i,ntersects r elements of S where ï > q2 i t. In this case either

(t) r : q3 + 1 and E i,ntersects one element of S in a plane (which necessari,ly

contains a partition li,ne) andD intersects a further q3 elements of E, meeting

each in a poi,nt,

OT,

(ä) D i,ntersects A elements of E in a li,ne and E intersects a further

n-a: (q3 +q'+q+1) -a@+1) > 0 elements of E meeti,ng each in a

point.

In this case E contai,ns at most one parti,tion I'ine.
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If fh,flz, fls are three disti,nct elements of E which each intersectsD i,n a line,

then E has a non-triuial intersection with each element of S in the 3-regulus

A(II1,IIz,fI¡); indeedD intersects each such element of E in a li,ne.

Proof:

By Theorem 3.1.2 the qa * 1 elements of 5 constitute the 3-spaces of PG(7,q) of type

(1).

By the remarks preceding Theorem 3.1.4 there exist q8 + q6 + q4 + q2 3-spaces of

PG(7 ,q) which each inters ect, q2 -l 1 distinct elements of .S and which contain a partition

l-spread. We shall call these 3-spaces partition 3-spaces of PG(7,q). We must

show that these are the only 3-spaces of PG(7 ,q) which intersect exactly q2 + L distinct

elements of E.

fls,o is the 8-dimensional Bruck-Bose representation of PG(2,q4). The line at infinity /-
is the line with "points" the elements of 5 in PG(7,q). At usual, the Baer subplanes of

Pc(z,qa) which are secant lo !* are called ffine Baer subplanes. There exist precisely

q4(qt + q6 + q4 + q2) afÊne Baer subplanes of PG(2,q4).

Consider a 4-space B* in PG(8,q) not contained in PG(7,q) and which intersects

PG(7,q) in a 3-space E where ! intersects exactly q2 +7 elements of ,S. Necessarily,

E intersects each of these q2 + 7 elements of E in a line. By the incidence in fls,o, B*

intersects L* in exactly q2 +7 points. Each 4-space (. of PG(8,q) which represents a

line of PG(2,qa) distinct from l- is not contained in PG(7,q) and meets PG(7,q) in

an element of .9. Such a 4-space I either intersects B* in a point of PG(8,q)\PG(7,q)

or the element of 5 incident with I is one of the q2 + I 3-spread elements incident

with B*. It follows that B* represents a (qa + q2 + l)-blocking set B in PG(2,q4).By

Theorem !.2.2, B is an affine Baer subplane of PG(2,q4).

Therefore any 4-space of PG(8, g), not contained in PG(7 ,q) and which meets PG(7 , q)

in a partition 3-space represents an affine Baer subplane of PG(2,q4). There are

qL(q, + q6 + q4 + q2) such 4-spaces of PG(8, g). Since this is also the number of affine

Baer subplanes of PG(2,ga), there exist no further 3-spaces of PG(7,q) (besides the

partition 3-spaces) which intersect exactly q2 + | elements of 5.

Let E be a 3-space of PG(7,q) spanned by partition lines .(4 and (.2 where .(.1 and (,2

lie in distinct elements of 5. In the quadratic extension, the lines (.1 and [.2 intersect
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E3,oz in distinct points L1 and.L2 respectively. The 3-space (over GF(g2)) spanned by

the line L1L2 and its conjugate L1L2 is the quadratic extension Xnz of E. By joining

each point P on L1L2 to its conjugate P on T6 we obtain a set of q2 + l lines of D

which by Bruck's Theorem 1.9.6 constitutes a regular l-spread of X. The elements of

this 1-spread are all partition lines and hence by definition, this regular 1-spread is a

partition spread. Thus I is a partition 3-space. We have that two partition lines from

distinct elements of .9 span a partition 3-space.

The 3-spaces of PG(7,q) of type (1) and (2) have now been classified. The type (3)

3-spaces include all possible exceptions. It remains to prove the final remark regarding

a 3-space of type (3)(ii).

Consider a 3-space E of PG(7, g) which intersects strictly greater lhan q2 f 1 elements

of 5 but which meets no element of 5 in a plane. Suppose X intersects the 3-spread

elements flr, flz, fI3 each in a line lt,Iz,l3 respectively. The lines 11, (.2,(.s defrne a unique

1-regulus Rt: R(tt,lz,ls) in X. The 3-spread elements fll,flz,fls define a unique

3-regulus Rz : B(IIt,IIz,lIs) which is contained in 5 since 5 is regular. The line

transversals of r?r are contained in D and are necessarily transversals of the regulus R3.

Hence each spread element in R3 intersects X in a line, namely a maximal space of the

Segre variety -R1. !

Corollary 3.L.5 Let ll8,q d,enote the Bruclc-Bose representation of PG(2,q4) in

PG(8, q) and letE* denote the hyperplane at infinity of PG(8,q).

B i,s an ffine Baer subplane of PG(2,q4) ,f and onlg i,f infls,t B i,s a 4-space not

contained i,n E* and whi'ch intersects Ð* in a partition 3-space.

b¿ is a Baer subline of PG(2,q4) that contai,ns a point of (* if and only if infls,nb¿ is

a plane not contai,ned in E* and whi,ch intersects Ð* in a parti,tion line.

Proof: The afÊne Baer subplane structure in fls,q wâs determined in the proof of Theo-

rem 3.1.4. A line l, distinct from [*, of an affine Baer subplane B of PG(2,q4) intersects

B in a Baer subline b¿ lhat contains a point of. (.*.

In fls,o, / is a 4-space which intersects D* in an element D¡ of the 3-spread S and B is a

4-space which intersects loo in a partition 3-space E. The 3-spaces X¡ and E intersect

in a partition line, hence in fls,o, the interseclion !. l-ìB is a plane, not contained in E-

and which contains a partition line. This plane is then the Bruck-Bose representation of
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the Baer subline b¿.

Before considering the representation in lls,n of the non-affine Baer subplanes of PG(2,q4)

and the Baer sublines b¿ of PG(2,q4) which contain no point of. loo, we need to present

some extra material. In the next section we recall the Bose representation of a plane

PG(2,q') in the projective space PG(5,q) which was introduced in [18].

We conclude this section with a generalisation of the results determinedfor PG(2,q4)

thus far.

Theorem 3.1.6 Consi,der the Desarguesian plane PG(2,q"") (n 2l) and the n Bruck-

Bose representationsfl2i¡r :n2;+t'ztu-i (I S¿ < n) whi'ch are determi,ned by a

regular I-spread, i,n PG(3,q"*-'),

regular 3- spread, in PG(7 , q' -"),

regular (2i - I)-spread LN Pc(zi+r - I,Q2 -"),

regular (2" - L)-spread i,n PG(2"+r - L,q) respecti,uely.

Then the regular (2i -I)-spread i,n the hyperplane PG(2'+1- 1, q2 -") at i,nfini,tg of lI2r+r.

has a set of ind,uced, regular ç2t'-t _t)- spreads, one in each element of the (2i _I)- spread.

Furthermore, for each such i,nduced regular (2i-r _1)-spread, there erists a set of i,nduced

regular (Zt-z -1)-spreads, and so on, until fi,nally there eri,st induced regular L-spreads.

Proof Let Sr be regular l-spread of PG(3, q'"-') and embed PG(3, q' -') as a subspace

in PG(7,q'-') in such a rvay that it is skew to PG(7,q'-").By Theorem 3.1.1 and the

Construction 3.1.1, Er determines a regular 3-spread 5s of Pç(7,q'-") which has a

set of induced regular 1-spreads, one in each element of .S3, by Theorem 3.1.2. Embed

PG(7,q'^-') as a subspace in PG(15,q'-') in such a way that PG(7,q'-') is skew to

the Baer subspace PG(I5,q"^-t) of PG(15, q'"-') and recursively repeat the above pro-

cedure using Construction 3.1.1. At the final stage we obtain a regular (2" - 1)-spread

h PG(2n+t - 1, q) which contains the nested induced regular spreads of each stage.

If we stop the procedure before the final stage we have a regular (2i - l)-spread in

PG(2i+r _ 7,e'^-") with the nested induced regular spreads obtained up until that stage.
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By Theorem 1.9.5, regular (2¿ - 1)-spreads in PG(2i+t _ 1,q' -') are projectively equiv-

alent, and so the regular spread we have constructed, which contains nested induced

spreads, is representative. n

Corollary 3.1.7 For eachL <i 1n, embed, PG(zt+r _ l,q'-t): tä*'-t as a hyper-

plane in PG(2i+t, Q'^-") and let|I2r+, denote the Bruck-Bose representati,on of PG(2, q"")

i,n PG(2i+t , Q"-") d,etermined, bg the regular (2i - I)- spread, E2,-1 oÍ E'J'-' , as i,n The-

orem 3.1.6.

Then B i,s an ffine Baer subplane of PG(2,q2^) if and only if inlI2;+t, B is a (2i)-space

B* ol PG(2t+t,q"-n) not contai,ned, in t}*t-t and which intersects t}*t-t in eractly

q'^-' + L elements of E2u-1.

Furthermore, each element Á. e 52r-1 is ei,ther di,sjoi,nt to B* orintersects B* i,n a uni,que

element (a (2i-1_l)-space of ord,er q'"-' ) of the i,nd,uced, regular (2i-r_l)-spread, E?u-'-t

i,n 4v. !

Note that the Bruck-Bose representation B* of. an affine Baer subplane B of PG(2,q2")

is determined in Corollary 3.7.7, regardless of which of the n possible Bruck-Bose repre-

sentations of PG(2,q'") is being considered. Moreover, implicit to Theorem 3.1.6 and its

Corollary 3.1.7 is the Bruck-Bose representation of subplanes of order q2"-' of PG(2,q2 )

which contain the line at infinity as a line. Due to the existence of the induced spreads

determined in Theorem 3.1.6, in a Bruck-Bose representation II2,;+r of a Desarguesian

plane PG(2,q' ) *e have the Bruck-Bose representations of the subplanes, which contain

the line at infinity as a line, nested in fl2;ar as linear subspaces.

Finall¡let/beasublineof order q'"-'(!<i<rz) of aline Lof PG(2,g2") suchthat

/ contains a unique point on the line at infinity. It follows from the above discussion

that the representation of (. in any Bruck-Bose representation fl2;ar of PG(2,q') i"

determined.

Corollary 3.1.8 Let (. be a subli,ne of order q'^-' (L S i < n) ol a line L of PG(2,q2")

such that (. contai,ns a uni,que poi,nt on the line at infi,nity l* of PG(2,q2"). Letfl2;¡'

(1 < , 1n) denote the Bruclc-Bose representati,on of PG(2,q2 ) defined by a regular

(2i - I)-spread of PG(2t+t - l,g2 -').

Then the subline L is represented by a (Zi-i)-subspace l* of the (2i)-space L*, which rep-

resents L, i,nfl2;+r. Moreouer, l* intersects the hyperplane at i,nfini,ty PG(2i+1 - 7,Q2"-')
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i,n eractly a unique induced spread element of dimensi,on 2i-i - | and order q2n-" .

In this way we obtain the Bruck-Bose representations of any (not just a Baer) subplane

of PG(2,q2") which contains the line at infinity as a line and any (not just a Baer)

subline of a line of PG(2,g2") such that the subline contains a unique point on the line

at infinity.

3.2 The Bose representation of PG (2,q') in PG(5, q)

The results of this section are well known and form part of the folklore of finite projective

geometry. References are given where possible; however, it has been difficult to locate

references for some of the well known results which are presented here. In order to

provide a complete discussion of the Bose representation, we deemed it appropriate to

prove these results.

In [18], Bose calls a 1-spread of PG(5,q) a spread (of lines), and we shall also in this

section; that is, a spread of lines of PG(5, q) is a set of lines in PG(5,q) such that each

point of PG(5,q) is contained in one and only one line of the set. We shall also define a

dual spread of 3-spaces in PG(5, q) to be a set of 3-spaces such that each 4-space of

PG(5,q) contains one and only one 3-space of the set. Note that a spread in PG(5, q) is

equivalent to a dual spread in the dual space of PG(5,,q). Hence, the number of elements

in a spread or dual spread of PG(5,q) equals

q6-! I o '
Ã " n*t 

: q"+q'+7'

The Bose representation of PG(2,q') in PG(5,q) relies on the existence of a spread 5

of PG(5,q) of the following type.

Definition3.2.l A spread S (oÍ lines) of PG(5,q) i,s a Bose spread i,f for any two

d,isti,nct elements (4,12 of S, the 3-space spanned by (.1 and [.2 contains eractly q2 + I

elements of S.

For a Bose spread E in PG(5,q), denote by 7{t the collecti'on of 3-spaces

{E¿r,¿r : (h,lz) I [t,[.2 €. 8,, h # lz].

7L7



Note that there are precisely qn +q2 +L 3-spaces in the setT{"z for a given Bose spread

.S of PG(5, q).

Given a Bose spread 5 in PG(5, q), let n'or(E) be the incidence structure with: points the

elements of E; lines the 3-space elements of ?{s and i,nci,dence given by containment.

Theorem 3.2.2 l18l The inci,dence structure roz(E), where E is a Bose spread of

PG(5,q), is a projecti,ue plane of order q2.

Proof: Two distinct points of. rn (5) correspond to two distinct elements (.1 and [.2 of.

S. The lines .(1,t2 span a unique 3-space of PG(5,q), which contains q2 - 7 further

elements of S since ,S is a Bose spread. Hence two points of. ro"(5) are contained in a

unique line of rnr(E).

Two lines of rn (5) correspond to two elements of ?ls which we shall denote by D1 and

E2. Suppose the 3-spaces !1,E2 intersect in a plane o of PG(5,q). Each of X1 and

Ð2 contains a subspread of .S, denote these subspreads by St and ,S2 respectively. The

plane o necessarily contains an element of ,S1 (and 52 respectively). Since two lines in o

intersect, and the spreads Su Sz ç S, it follows that o contains an element L of E and !.

is an element of both,gr and,Sz. The plane o is incident with the remainingq'elements

of ,S1, meeting each such element in a point. Similarly o is incident with the remaining

q2 elements of S2\{l}, meeting each such element in a point. Thus each point of ø\{l}

is incident with an element of ,S1 and an element of ,Sz. Since 5 is aspread of PG(5,q),

we have a contradiction. Thus two distinct 3-spaces in 7{s intersect exactly in a line

which is necessarily an element of 5. Therefore two distinct lines of rnr(E) intersect in

a unique point.

Since ror(E) has qa +q2 + 1 points, it follows thatro"(5) is a projective plane of order

q2. tr

Corollary 3.2.3 If S i,s a Bose spread of PG(5,q) then the associated collection of

3-spaces'l7s is a dual spread of PG(5,q).

Proof: In the proof of Theorem 3.2.2 we showed that two distinct elements of 'Jlz

intersect in a line, a line which is an element of S. Therefore no hyperplane of PG(5, q)

contains two elements of ?13. Since there are qa + q2 + 1 3-spaces in the set ?13, and
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since each 3-space of PG(5,q) is contained in q*1 distinct hyperplanes of PG(5,q),if

follows that each hyperplane of PG(5, q) contains a unique element of.7h. tr

We now prove a result of Thas which states that a projective plane defined by a Bose

spread of PG(5,q), in the manner defined above, is necessarily Desarguesian.

Theorem 3.2.4 l87l fhe projectiue plane ro,(E), defi,ned aboue for a Bose spread E of

PG(5, q), is Desarguesian.

Proof: Let S be a Bose spread of PG(5,q) and let roz(S) be the incidence structure de-

fined as above, which by Theorem3.2.2 is a projective plane of order q2. Embed PG(5,q)

as a hyperplane in PG(6,q). Let E3,nz be the incidence structure with: points the points

of PG(6,q)\PG(5, q); li,nes the planes of PG(6, g) not contained in PG(5, q) and which

intersect PG(5,q) in a unique element of 5 and incidence given by containment.

It can be shown that D3,oz is an affine 3-space and the plane rnr(E) is then the plane

at infinity of X3,oz. Atry projective plane embedded in an affine projective 3-space is

Desarguesian, hence ror(E) is Desarguesian as required.

This configuration also provides additional information about the Bose spread .9. Let

X3,n, be the projective completion of Es,qr.Then the planes of D3,0, distinct from zrnr(S)

are given by the 4-spaces of PG(6,q) not contained in PG(5, q) and which intersect

PG(5,g) in an element of.?ls. Each such 4-space is therefore a Bruck-Bose representa-

tion of a Desarguesian projective plane of order g2 with hyperplane at infinity an element

of ?ls. It follows that for each 3-space in 7ís, the q2 + l elements of E contained in this

3-space constitute a regular spread of the space (see Section 1.10 and Theorem 1.10.1.3).

¡

Corollary 3.2.6 If E is a Bose spread of PG(5,q) andif 77s is the followi,ng collection

of 3-spaces of PG(5,q)

{E¿,,r, : (h,lz) I h, (.2 € E, t, * tz},

then for euerA element D¿r,¿, of ?ls the subset of q2 + 1 elements of S contained i,n E¿r,¿,

consti,tutes a regular 7- spread of D¿r,t". tl

In summary, if 5 is Bose spread of PG(5,q), then by definition any pair of elements of 5

spans a 3-space containing q2 +L elements of .S. If a 3-space of PG(5, g) contains q2 +I
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elements of 5, then these spread elements necessarily constitute a regular 1-spread of

the 3-space. The collection of such 3-spaces is a dual spread 7lz of. PG(5,q) and the

Desarguesian plane PG(2,q') is isomorphic to the incidence structure wllh: poinús the

elements of. E; lines the elements of ?ts and i,nci,dence given by containment. We call

such a representation of PG(2,q') in PG(5,q) a Bose representation of PG(2,q2).

Lemma 3.2.6 lL8] For E a Bose spread i,n PG(5,q): Each li,ne m of PG(5,q) i,s ei,ther

(I) an element of E, or (II) m is a transuersal to a regulus of lines in E and m is

contained in the uni,que element oÍ'lls spanned by this regulus.

Each plane of PG(5,q) is ei,ther: (I) contained in an element ol'l7z and contai'ns eractly

one element of E, or (II) contained i,n no element oÍ'lLs and i,s i,nci'dent wi,th q2 * q + 1

di,stinct elements of E.

Proof Lel m be a line of PG(5, q) which is not an element of S. Since E is a spread of

PG(5,q), the line m is incident with exactly q + 1 elements of 5. Any two elements of 5

incident with rn span a 3-space Ð e ?h which contains exactly q2 -I further elements

of 5. Since rr¿ is contained in E it follows that each of the elements of S incident with rn

is contained in D. By Corollary 3.2.5, the elements of .S in E form a regular l-spread

and therefore rn is a transversal to a regulus of elements of 5.

Each elem ent (. of 5 is contained in q3 + q2 * q * 1 planes of PG(5, q) and each such plane

is spanned by !. and a point on a distinct element of .S. Therefore, by Corollary 3.2.5,

such a plane is contained in a unique element of 7{s. Moreover, in an element of 'l7s the

q2 +! elements of 5 constitute a l-spread, therefore any plane contained in an element

of 'lís necessarily contains an element of S. There are (qa + q2 + 1)(qt + q2 + q + 7)

planes of PG(5,q) of this type and the remaining planes of PG(5, q) therefore contain

no element of 5.

Lel o be a plane in PG(5, q) which contains no element of 5; o is therefore not contained

in any element of ?ls. As 5 is a spread, each point of o is incident with an element of

.S and since ø contains no line which is an element of 5, ø is incident with q2 -f q + 7

distinct elements of .S. Each line in ø is a line of type (II) which is therefore contained

in an element of ?{s. Since ø is not contained in any element of 71s,, ø is incident with

q2 I q I 1 elements of 7{3, meeting each in a line. ¡

Theorem 3.2.7 If E i,s a Bose spread of PG(5,q) and rnr(S) i,s the Bose representation
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oÍ PG(2,q2) definedbg E, then B is a Baer subplane of PG(2,q') i,l and only if i,nthe

Bose representat'ion, B i,s a2-regulus (or Segre uari,ety pt;z) whose q2 +q*7 transuersal

Ii,nes are elements of E.

Proof Let o be a plane in PG(5, q) of type (II) in the sense of Lemma 3.2.6. Let B be

the set containing lhe q2 t q-l1 elements of 5 incident with ø and the q2 -l qt 1 elements

of.Tls which each intersect ø in a (distinct) line. Since o is a projective plane of order q,

two elements (4, (.2 of .S in B define a line of type (II) in o which is contained in a unique

element of. ?{s in B and which contains (4 and (.2. Conversely, two elements of ?ls in B

intersect in a unique element of 5 in B. Therefore B is a Baer subplane of PG(2,q2)

in the Bose representation of PG(2,q") in PG(5,q) determined by.S. Counting shows

there exists q7(qt +7)(q'+ 1)(q+ 1) planes o of type (II) in PG(5,q) and from above,

each such plane corresponds to a Baer subplane of PG(2,q2). Since PG(2,q2) contains

q3(q'- q+7)(q2 + 1)(q* 1) distinct Baer subplanes, there exists a set B, as above, of

q2+q+1 elements of S which contains at least 3 planes of type (II). These planes must be

pairwise disjoint, otherwise two intersecting planes of type (II) span at most a 4-space of

PG(5,q) which would necessarily contain more than one element of.'lLs; a contradiction.

By Theorem7.9.2, B is then a 2-regulus in PG(5,q). We continue in this way until

all planes of type (II) have been considered. Each plane of type (II) therefore defines

a 2-regulus of planes of type (II) in PG(5,q) with transversals all elements of 5; each

such 2-regulus corresponds to a Baer subplane of PG(2,q') in the Bose representation

and every Baer subplane of PG(2,q') i, the Bose representation is obtained in this way.

n

We now prove the existence of Bose spreads in PG(5,q)

Lernma 3.2.8 It is possibleto embedll2,qr: PG(2,qt) in PG(5,q") in such a way that

ll2,z: PG(2,q') is d,isjoint from PG(5,q), the real BaerS-space of PG(5,q2).

Proof By Sved's result 1.3.1 a hyperplane of PG(5,q2) intersects PG(5, q) in either a

4-space or a 3-space of PG(5, g). Each subspace S" of PG(5,q) of dimension r¿ extends

uniquely to an r¿-space ,9,r,oz ov€Í GF(q'), since a basis for ^9r, as a vector space over

GF(q) is a basis for Sn,, as a vector space over GF(q2). Furthermore, there are more

hyperplanes in PG(5,q2) than in PG(5,q). It follows that there exist hyperplanes of

PG(5,g2) which intersect PG(5,q) in a 3-space of PG(5,q).
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Let Da,n, be a hyperplane of PG(5,q2) such that the intersection E4,r" À PG(5,,q) is a

3-space; denote this 3-space by X3. In D4,n, the 3-space D3 extends uniquely to a

3-space E3,oz ov€r GF(q"). Let (. be a line of D3,n, which is skew to 13. Let m be a

Iine of Ea,nz\X3,nz which intersects X3,oz in aunique point of L Note thatm is therefore

disjoint from PG(5, q). The plane spanned by [, and rn, is disjoint from E3 and is therefore

disjoint from PG(5, q). !

By Lemma 3.2.8 we can embed I2,q, : PG(2,q') ln PG(5,q') in such a way that fl2,nz

is disjoint from the Baer 5-space PG(5,q) of PG(5,q2) and therefore no point of fI2,o,

is fixed by the Fröbenius automorphism. The conjugate plane fl2,nz is then disjoint from

fl2,qz ând disjoint from PG(5, q).

The join of each point P in fI2,o" to its conjugate point P, with respect to the extension

GF(q') of GF(q), is a line PP which intersects PG(5,q) in a Baer subline of PP. In

this way we obtain a set .9 of qa + q2 + 7 lines of PG(5,q), one through each point P of

ÍI2,oz àrLd its conjugate P in fI2,qr.

Let (1 and.$ be two distinct lines of 5 in PG(5,q). If. (t and 12intercect, then since

the plane spanned by tt and L2 contains a line in fI2,oz and a line in fIr,nr, the planes

fl2,oz and fl2,oz intersect in a point; a contradiction. The lines of .9 are therefore pairwise

disjoint and since .S contains q4 + q2 * 1 elements we have that S is a spread of lines in

PG(5,q).

It remains to prove that S is a Bose spread, that is, to prove that every 3-space of

PG(5,q) spanned by two distinct elements of 5 contains exactly q2 + l elements of 5.

Foreachpoint P¿of. fl2,nz denoteby !.¿the lineinSincidentwithP¿. Let[.¿and(.¡be

distinct elements of 5 in PG(5,q). The 3-space X3 of PG(5,q) spanned by !.¿ and (.¡

extends uniquely to a 3-space t3,q2 over G,F'(q2). the lines flP¡ of fI2,o" andffi of

fl2,nz ãte, contained in !3,n, and the regular spread of E3 determined by P¿P¡ and P¿P¡

consists of elements of 5 (see Theorem 1.9.6). Hence Et: (t¿,1¡) contains exactly q2 +7

elements of 5. We have therefore shown,

Lemma 3.2.9 If fl2,o,: PG(2,q') it embeddedin PG(5,q2) in such away thatfI2,o,

is di,sjoi,nt from the Baer î-space PG(5,q) of PG(5,q2), then if each point P of fI2,o, is

joined to i,ts conjugate poi,nt P with respect to the ertension GF(q') of GF(q) we obtai,n

a collecti,on E of qn + q2 + 7 li,nes of PG(5,q).
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The set E of lines of PG(5, q) so constructed is a Bose spread of PG(5, q) whi,ch we shall

call a canonical Bose spread. tr

By this construction of a Bose spread 5, the isomorphism between fl2,o, : PG(2,q2)

and the incidence structure rnr(E), determined in Theorem 3.2.4, arises in a very natural

way. Furthermore, for the Bose representation of PG(2,g2) defined by this construction

of a Bose spread of PG(5, q), the representation of the Baer subplanes of PG(2,q2) also

arises in a natural way and is determined in the following theorem; a special case of [50,

Lemma 25.6.8].

Theorem 3.2.10 [50, Lemma 25.6.3] Let PG(5,q') be an ertension of the projectiue

space PG(5,q). In PG(5,q2), letfI2,o be a2-space ouer GF(q) skew to PG(5,q). IÍ
P € fI2,n and, if P i,s the conjugate poi,nt of P with respect to the ertension GF(q2) of

GF(q), then the intersection of a line PP and the space PG(5,q) i,s a li,ne [. of PG(5,q).

Theselines (. form a system of marimal spaces of a Segre uariety ptiz of PG(6,q).

Finally we show that all Bose spreads of PG(5,q) are equivalent to a Bose spread con-

structed as in Lemma 3.2.9.

Theorern 3.2.tL If E is a Bose spread of PG(5,q), thenE'is a canonical Bose spread

of PG(5,,q).

Proof Let 5 be a Bose spread of PG(5,q) and let rn (S) be the Bose representation of

PG(z,q') in PG(5,q) defined by 5. Embed PG(5,q) as a Baer subspace in PG(5,q2).

By Theorem 3.2.7 each Baer subplane of ro,(S) is a 2-regulus in PG(5,q) with the

property that the transversals of the 2-regulus are all elements of .9. By Theorem 1.9.5,

the 2-reguli in PG(5,q) are projectively equivalent. Choose a Baer subplane B in

rnr(E) and let prizbe the corresponding 2-regulus in PG(5,q). The 2-regulus Ptizin

PG(5,q) extends uniquely to a 2-regulus in PG(5,g2) which we shall denote by pçnz¡r;2.

The q2 -l q * 1 transversals of gt;z in PG(5,g) are therefore all elements of 5 and are

transversals of ploz¡r,2 when considered as lines over GF(q2).

The Baer sublines of B are represented by the reguli of elements of 5 contained in pt,z.

Over GF(q2), these reguli have transversals, one in each axis plane of pgr¡riz. Each

element l¿ of E not in B is contained in a unique element X¿ of ?ls such that X¿ is an

element (a line) of. B. In E¿, the line l¿ is disjoint from the regulus of elements of 5
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which are the points of B in X¿. Therefore, over GF(q'), /¿ intersects this regulus, which

is a 3-dimensional hyperbolic quadric, in two conjugate points P¿ and P¿, where P¿ and

4 lie in distinct and conjugate axis planes of p6z¡t;z.Note that P¿ D.nd P¿ are the only

points of /¿ incident with the 2-regulus plqz¡r;2, since otherwise /¿ would be atransversal

line of pk\t;z and would then either be a point of B or be disjoint to PG(5,q); in each

case we have a contradiction.

Each of the q2 * q -l1 elements of ?lz in B contain a regular spread of elements of 5

and each such regular spread is defined by a line (and its conjugate line) over GF(q')

which is contained in an axis plane (and the conjugate axis plane respectively) of. pgz¡t;zi

denote these lines by TÍ11,Tn2,. . . lTrLnz¡.11 and the corresponding conjugate lines by

fü1,rn2,. . . ,rnnz¡na1. Note that every element [.¿ in S is incident with at least one line

m¡, if {.¿ € B, then t¿ as a line over GF(q2) is incident with q* 1 lines rn¡ and if $ e 5\8,

then (.¿ is incident with a unique line m¡.

Since there arc (q2 _ q)12 pairs of conjugate axis planes of p(n\t,, which are disjoint from

PG(5,q), at least one of these axis planes contains two of the lines rn¡; denote this plane

by lI2,r" and suppos€ ?7ù1 and rn2 are contained in fI2,qr. Consider four distinct points

of fI2,nt, two incident with m1,two incident withm2 and such that the four points form

a quadrangle in fI2,qr. The elements of .S incident with these four points correspond

to a quadrangle of points ín ror(.S) which therefore defines a unique Baer subplane B'

of rn (S). BV Theorem 3.2.7, B'corresponds to a 2-regulus p of elements of .S. Over

GF(q") the 2-regulus p extends uniquely to a 2-regulus pn, and since fl2,oz intersects

pqz in four distinct points, no three collinear, the plane fl2,oz is an axis plane of. pnr.

Therefore every element of 5 which is a point of B' is incident with ll2,o, and incident

with the conjugate plane fI2,qr. By considering all choices of a quadrangle of points

incident with the lines rn1 and m2 in fI2,n" and since every point of. fI2,rz lies in at least

one Baer subplane of ll2,n, which contains the lines rn1 and TrL2, we obtain that every

element of ,S is incident with fl2,nz and incident with the conjugate plane fI2,qr.

Hence every element of the spread S of PG(5, q) is obtained by joining a point P of fI2,o,

to its conjugate P, where fl2,nz is a plane of PG(5,q2) skew to PG(5, q). The spread S

is therefore a canonical Bose spread of PG(5,q). ¡

The original method of Bose in [1S] was to obtain a coordinate representation of PG(2, q2)

in PG(5, g). Since we shall require this coordinate representation for some later calcula-
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tions, we briefly present this work of Bose.

Lel a be a primitive root of GF(q2). Then c satisfies an equation

d2 : a+.y

where 12 - r - 7 is irreducible over G.F'(q).

Any point of PG(2,q2) has coordinates (r,A,z) + (0,0,0), r, U,z € GF(q') where

(*,A,r) and (pr,pA,pz), p e GF(q'z)\{0}, represent the same point in homogeneous

coordinates.

Since {1, r} is a basis for GF(q2) as a vector spâce over Gp(q) we can write

t: lr01- ar1, U: UoJ- aAt, z: z0l azl for a unique choice of r¿,,A¿,2¿ e GF(q).

We let the coordinates (r,y, z) in PG(2,q2) correspond to the coordi-

nates (*0,*t,Uo,Ut,zo,zt) in PG(5,q). Note that (*0,*t,Uo,Ut,zo,zt) and

(rrs,rr1,rUo,rAt,rzs,r21), r e Gf(q)\{O}, represent the same point in PG(5,q),

and they correspond to the points (r,A,r), (rr,ry,rz) respectively; the same point of

PG(2,q2).

Consider three distinct elements a,,b,c e GF(q'?)\{0}. Ãs GF(q2) is a 2-dimensional

vector space over G-F'(q), the three elements a,b,c are linearly dependent over GF(q).

Therefore there exist À1, À2, Àa e GF(q) not all zero and such that

À1a * 
^2b 

+ )3c : 0. (3.1)

If. a: as i e,a1, b : bo * ab1, c: c0l ac1, where ai,bi¡c¿ € GF(q), then from (3.1) we

have,

À1øs*À2bsl)3c¡ : 0

andÀ141 i-Àzh*À3c1 :0 (3'2)

Consider the triplets (ar,ay,az), (br,by,bz), (cr,cg,cz) which represent the same point

(r,A,") of PG(2,q2). Since for example,

(oo + aaù(rs i o,r) : a0ï0l1a1r1l a(a1rs * asrv * a1r1),

the triplets correspond to the sextuplets,

(oo*o+"Yatrrral{xg*asiq*o4rL)aoA\*'YatAtatYo*aoAtlarAr)o,0z0i1ap1ra4zg*o,0zr+o,Lzr)

(boøo +'ybtrt,bßo]-bort+bfi7,bsysl'ybtar,haolboat+blyl,bszsllbyzl,btzolbozt*hzt)
("0"0 + Tctrt,cyrs * cs.t1 * cLrrlc0A0 l ''lctyt,ctgo + coyt I crvr,c0z0 *1c1z1,qzo I c\zL + cLzL)
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respectively.

By (3.2), these sextuplets are linearly dependent over GF(q) and are therefore the coor-

dinates of three collinear points in PG(5, q) whenever a,b,c are from distinct cosets of

Gf (q)\{O} in the multiplicative group GF' (q'z)\{0}. Therefore as p varies over the q2 -7
non-zero elements of GF@2) the sextuplets corresponding to (pr, pa, pz) represent g * 1

collinear points of PG(5,q).

In this way, the q4 +q2 * 1 points of PG(2,q2) can be made to correspond to a set of

q4 + q2 * 1 lines 5a of PG(5,q), each point corresponding to one line.

Theorem 3.2.12 [18, Theorem1.1, Theorem 2.2] SB i,s a spread (of lines) of PG(5,q).

Moreouer, for each pai,r of distinct elements .(4,(.2 of En the 3-space determined by l.y

and 12 contai,ns eractly q2 +L elements oÍ Eø; that i,s, Ep is a Bose spread of PG(5,q).

We call the Bose spread En the coordinate Bose spread of PG(5,q). ¡

In this coordinate setting, Bose proved the representation of Baer subplanes of PG(2,q2)

in PG(5, q) as given in Theorem 3.2.7. For example, consider the Baer subplane PG(2,q)

of PG(2,g2), and let p¿:r¿s]-ar¿1,'i:1,2,... ,q*1be q*l elements of GF(q2),one

from each coset of Gf (q)\{O} in the multiplicative group G,F' (q'z)\{0}. W. may choose

pt:L, the identity. Then each point (r,a,r) e PG(2,q) corresponds to a line of 5s in

PG(5,q) whose points are given by,

{(*ruo, !xr¿1,lr¿s,!T¿1, zr¿s, 
"rot) I'i 

: 7,2, . . .,q + 1}.

The collection of q2 + q * 1 lines of 5a obtained in this \May are then the set of maxi-

mal spaces (transversals) of the Segre variety pr;z in PG(5,q) defined by the following

equations, for points with coordinates (*o, rr,Uo,Ut, zo, zt),

roUt-ïtAo : 0

frgZ1-f1Zg : 0

Uozt-Utzo : 0;

(a Segre variety in PG(5, q) bV Theorem 1.8.6 and the subsequent remarks.)

The opposite system of maximal spaces of the Segre variety pt;2, the q + L axis planes

contained in this Segre variet¡ are each defined by a set of equations of the form,

T¿1fg-T¿gI1 : 0

rnUo-r¿oAt : 0

T¿1Zg-T¿gZ1 : 0,
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for a fixed z e {1, 2,...,q + 1}.

Also, for each non-zero element p € GF(q'),, the transformation (r,a,r) r+ (pr,pa,pz)

of PG(2,g2) fixes every point in PG(2,q2) and therefore fixes the canonical Bose spread

Ea of PG(5,q).

Finally, we examine the relationship between the Bose representation of PG(z,q') in

PG(5,q) and the Bruck-Bose representation of PG(z,q2) in PG(4,q) with hyperplane

Xoo at infinity and ,S- a regular l-spread of X-.

Consider the Bose representation of PG(2,q2) defined by a Bose spread E of PG(5, q)

as presented in this section and with the same notation. Let PG( ,q) be a hyperplane

of PG(5,q). BV Theorem 3.2.3, the set of 3-spaces ?lB associated to.S is a dual spread

of PG(5,q) and hence the hyperplane PG(4,q) contains a unique element of 7lz; denote

this element of ?Q by X-. By Corollary 3.2.5, the 3-space Xoo contains exactly q2 +7

elements of 5 and these q2 + T lines constitute a regular l-spread of D-. Moreover,

each element of 5 not in E- is skew to D* and therefore intersects PG( ,q) in a unique

point of PG(A,,q)\E-. By the Bose correspondence between the points of PG(2,q2) and

the elements of 5, each point of PG(2,g2) corresponds either to an element of E in D-

or to a unique point of PG( ,q)\t.". Also, as the lines of PG(2,q2) correspond to the

elements of ?{2, and any two elements of ?13 intersect exactly in a line of S, each line of

PG(2,q2) corresponds to either loo or to a plane of PG( ,q) not contained in X* and

which intersects E- in an element of 5. We therefore have by Section 1.10,

Theorem 3.2.L8 IIS] Giuen a Bose representati'on of PG(z,q2) in PG(5,q), a Bruck-

Bose representati,on of PG(Z,q') in PG(4,q) is obtai,ned by consideri,ng anA fired hy-

perplane PG(A,q) ol PG(5,q) and redefining each point and li,ne of PG(2,q') to be the

intersecti,on of the corresponding subspace in the Bose representation with PG(4,q). tr

corollary 3.2.t4 [19] lrz the Bruclc-Bose representati,on of PG(2,q') in PG(4,q) d"-

fined, by a regular spread, E* in a hyperplaneÐ*: each Baer subplane of PG(2,q2) it

either a plane of PG( ,q) not contai,ned inI,* and whi,ch i,ntersectsEoo in li,ne not i'n

E*, or a ruled cubi,c surface Vf not contained in Eoo and which intersects D* i,n a line

(. e E* which is the line directri'r of V] .

Proof Consider a Bruck-Bose representation of PG(2,q2) iî PG(4,q) obtained from a

Bose representation of PG(2,q') ir PG(5,q) as in Theorem 3.2.L3 and with the notation
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introduced there. By Theorem3.2.7, in the Bose representation of PG(2,q2) each Baer

subplane of PG(2,q') is a Segre variety pt;2, with transversal lines all in the Bose spread

E. Each such variety has order 3 and dimension 3 and we shall denote it by Bl. A Segre

variety .R! intersects the hyperplane PG(A,q) in a variety of order 3 and dimension 2;

there are two cases to consider. Let r3$ be the Segre variety in PG(5, q) which is the

Bose representation of a Baer subplane B of PG(2, g2). Suppose the Baer subplane B of

PG(2,q2) contains the line at infinity as a line, then in the Bose representation Doo € ?le

intersects the Segre variety R$ in a l-regulus, a hyperbolic quadric Hl. In this case,

the intersection PG(4,q)l-R! is the variety Vf : nlV S|, the union of the hyperbolic

quadric H| and an axis plane S| of the Segre variety,R!.

Alternatively, Suppose the Baer subplane B of PG(2,q2) intersects the line at infinity

in a unique point, then in the Bose representation E- e.7{z intersects the Segre variety

,R$ exactly in a single element (. of E. In this case, the intersection PG( ,q) n,R$ is a

variety 7r3 containing (. e 5. Each element of.'lLs which contains !. and, which represents

a line of B in the Bose representation, intersects Ë$ in a 1-regulus of elements of 5.

These 1-reguli each intersect PG(4, q) in a degenerate conic, namely the line (. and a

transversal to the l-regulus. Hence the variety Vf : PG( ,q) n ft$ consists of the line

L and q + I lines of PG( ,q)\t* which meet (.; such a variety is a ruled cubic surface

with line directrix /. ¡

3.3 The Bose representation of Conics in PG(2,,q')

Consider the conic C in PG(2,q2) with points (*,A,"),n,A,z eGF(q2) and not all zero,

satisfying the equation A2 : rz.

Let GF(q') : GF(q)(a) where a, € GF(q'z)\GF(q) has minimal polynomial

p"(r) : t2 - fr - .y as in the previous section. Moreover, if q is even, then 7 has

trace(7) : 1 and for q odd, 7 has the property that I * 41 is a non-square, since

12-r-TisirreducibleinG,F'(q) by[48,Section1.4]. Theelement e,:aa isthesecond

root of po and therefore

1ala

aa
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Consider the conic C in the Bose representation of PG(2,q') in PG(5,q), defined by the

coordinateBosespreadEsof theprevioussection. Thepoints (*,A,r) ofCin PG(2,q2)

correspond to the points (ro,*r,Uo,Uttzo,zt) of PG(5,q) which satisfy

(go + .ar)t : (ro -f ar)(zs + az) (3.4)

where r : ro*.o,rt¡ A : Aolavt, z : zr+dzt with ri,Uit z¡ e GF(q). BVexpanding (3.4)

and using the equations (3.3) and a2 : e,17 to simplify the expression, we obtain

A3 +.yA? * a(2ysy1+ Aï : r0z0 * 1r1z1l a(r1zs i rszl * n1z1).

Thus the conic C in PG(z,q') in the Bose representation is the subset of. q2 + 1 elements

of the Bose spread 5a, no three contained in the same 3-space of ?ls, with points

(ro, *r,Uo,At, zo, zt) in PG(5, g) contained in the intersection of the two quadrics Q1 and

Qz with equations

a3 + ru? - rozo -'Yrtzt : 0, (3.5)

and A? * 2AoAr - ïtzo - ryzt - rt zt : 0 (3.6)

respectively.

We now determine if each quadric Q¿ is non-singular, and if so, \rye determine the charac-

teristic (hyperbolic or elliptic) of the quadric. Our method and notation are consistent

with that used in Section 1.4 ([50, Section 22.2] and in particular [50, Theorem 22.2.7]).

Let x : (ro,rLtA0,Ar,z0,z1), then Q1 and Q2 ate given by the quadratic forms defined

by matrices
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respectively. For the quadric Q1,Iet
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Therefore lAl : 4lt l0 for q odd and lAl : 4'yt :0 for q even. When g is odd, let

a: -4.y3. By Theorem 1.4.1 for q odd, the quadric 8r is non-singular and 8r is elliptic

if and only if ø is a non-square; for q even, the quadric Q1 is singular.

For the quadric Q2,let

A-

Therefore lAl:4+0 for q odd and lÁl :4:0 for q even. When q is odd, let a: -4'
By Theorem 1.4.1 for q odd, the quadric Q2ls non-singular and Q2 is elliptic if and only

if a is a non-square; for q even, the quadric Q2 is singular.

Thus for q odd, the quadrics 8r and Q2 are both non-singular and for q even the quadrics

Q1 and Q2 are both singular.

Consider the case when q is even. In this case the conic C in PG(2, q2) has nucleus

¡r/(0,1,0). In the coordinate Bose representation of PG(2,q') in PG(5,q), the nucleus is

represented by the line joining points (0,0,1,0,0,0) and (0,0,0,1,0,0); denote this line

by t¡v.The line l7y intersects the quadric 8r in the point Pr(0,0, \/7,t,0,0) (since q is

even, 7 is a square) and (.7s intersects Qzin the point P2(0,0,1,0,0,0). Consider flp,

the tangent space to It at the point P1. Following Section 1.4, the partial derivatives of

the quadratic form defining Q1 are,

ffi:-ro #:-tr, #:2ao #:2lat H:-*o #:-.yrt,
which all equal zero at Pt(O,0,\n,I,O,0). Thus fla is the entire space and therefore

P1 is contained in the vertex of Qy
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Consider flp, the tangent space to Qz at the point P2. The partial derivatives of the

quadratic form defining Q, are given by,

u^w:-", #:-zt-zo ffi:Zat #:2at12ao *:-*, #:-rt-x)0,
which all equal zero at Pz(O,0, 1,0,0,0). Thus IIp, is the entire space and therefore P2

is contained in the vertex of Qz.

Moreover, fori :1,2 respectively, P¿ is the only point of Q¿ such that IIa : pG(5,q)

and therefore each of the quadrics Qt,, Qz has a point vertex for q even and the vertex is

incident with l¡,'. In the notation of [50], Q¿:ÍIoP+, that is Q¿ has a point vertex and

base a parabolic quadric in a hyperplane disjoint from the vertex. A further verification

that the vertex of Q¿ is a point vertex is to check that a hyperplane of PG(5, q) not

incident with P¿ intersects Q¿ in a non-singular quadric. Consider the hyperplane Xe

of PG(5, q) defined by the equation go : 0 and which contains neither P1 nor Pz. The

intersection X¡ ll l7y is the point with coordinates (0,0,0,1,0,0). For i : 7,2,Iet' Q¿,s

be the quadric in Es such that Qi,o:Q¿lDo.Then each quadricQ¿,0 has points with

coordinates (ro, ït,0,Ut¡ zo, zt) satisfying the equations

Qt,o: A? - rtzo - rozt - rtzt : 0

Qz,o: 'yA? - rozo -'Yrút : 0

respectively. For each of Qr,o and Q2,s, il'ql + 0 and therefore the quadrics Q1,s and

Q2,s are non-singular parabolic quadrics by Theorem 1.4.1. Furthermore

the point (0,0,0,1,0,0) is the unique point in X¡ at which ry! : U9Olo

Onj OAj

,fori:1,
0Q¿,o

0r¡

t

0,

and therefore (0,0,0, 1,0,0) is the nucleus of Q¿,¡. Hence for each 'i : L,2, the quadric

Q¿ in PG(5,q) in non-singular with point vertex and a parabolic quadric base.

Moreover, since the partial derivatives of both Q1 and Q2 all equal zero when evaluated

at any point of the Iine (.¡¡, if E is a hyperplane of PG(5,q) which intersects (.¡¡ in a

unique point distinct from P1 and P2, then the intersections EnQl and E¡Qt are both

parabolic quadrics in X with common nucleus E a [.N. It also follows that if E¡ is a

hyperplane of PG(5, q) such that the intersection E¿ lì l¡¿ is exactly the point P1, then

the intersection Xr n 8r is a singular quadric with point vertex Pr and the intersection

En À Qz is a non-singular quadric with nucleus Pl. Similarl¡ if D¿ is a hyperplane of

PG(5,q) such that the intersection E¿Ol¡y is exactly the point P2, then the intersection

Ðn I Qz is a singular quadric with point vertex P2 and the intersection E¡ fl 8r is a

non-singular quadric with nucleus P2.

131



For 5 a Bose spread of PG(5,q) and ror(S) the Bose representation of PG(2,q') in

PG(5,q) defined by 5 and 7h the dual spread associated with .S, we have therefore

shown,

Theorern 3.3.1 IJ C is a non-degenerate coni,c in PG(2,q2), then in the Bose represen-

tati,on of PG(2,q') in PG(5,q), the coni,c is a collectionCB of q2 +1 elements of E, no

three contained i,n the sameS-space ol?{s. Furthermore, for q odd, the poi,nts of Cs li,e

in the intersecti,on of two non-singular quadrics in PG(5,q); for q euen, the poi,nts of

Ca lie in the intersection of two si,ngular quadri,cs Q1 and, Q2, el,ch of which has a poi,nt

uerter and a parabolic quadric base. In the q euen case, the nucleus N of C is a line l.¡¡

i,n the Bose representati,on and the poi,nt uertices of Qt and Q2 are disti,nct points of Lw.

Consider a non-degenerate conic C in PG(2,q2) andIeI (.* denote an external line of C;

call this line the line at infinity of PG(2,q2). If q is even, then the nucleus l/ of C is

not incident with l*. In the Bose representation of PG(2,q') in PG(5,q), the line at

infinity is a 3-space element E* of ?lg which is disjoint to the set of q2 +I elements of .S

in the Bose representation Cn of. the conic C. Moreover X- is disjoint from the element

.(.¡¡ of 5 which corresponds to the nucleus l/ in the ø even case. In Theorem 3.2.13 we

presented the relationship between a Bose representation of PG(2,q2) ir PG(5,q) and a

Bruck-Bose representation of PG(2,q2) in PG(4,q). Let lla be a hyperplane of PG(5, q)

which contains the 3-space X-; note that for the q even case, the intersectionflaÀ(.¡¡

is a unique point. By Theorems 3.2.13, 3.3.1 and the remarks preceding Theorem 3.3.1

we have,

Theorem 9.3.2 If C is a non-degenerate conic in PG(2,q2) dis¡oint from the line at

i,nfi,nity \o, then in the Bruclc-Bose representation of PG(2,q") i, PG(4,q) the coni,cC

i,s a collection of q2 +7 ffine points contained in the i,ntersecti,on of two quadrics Q1 and,

Q2. For q euen the two quadrics are ei,ther both non-si,ngular with a con1,n1,on nucleus or

eractly one of the quadrics i,s si,ngular wi,th a poi,nt uerter which is then the nucleus of

the second quadric. tr

From our work in the earlier chapters, a Baer subline of a line of PG(2,q4) which is

disjoint from the line at infinity, is represented in 4-dimensional Bruck-Bose by a non-

degenerate conic in a plane about a spread element and such that the conic is disjoint
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from the hyperplane at infinity (see Section 2.2). If we then represent PG(2,qn) in

8-dimensional Bruck-Bose we obtain a representation of the non-degenerate conic, which

in turn represents a Baer subline of a line of PG(2,q4). Theorem 3.3.2 provides additional

information about this representation which was first discussed in Theorem 2.7.2 in a

slightly different setting.

3.4 The Bruck-Bose representation of PG(2, qn) in

PG(8, q) revisited

The Bruck-Bose representation of PG(2,q4) in PG(8,q) is determined by a regular

3-spread 5e in a fixed hyperplans Dz,ø of PG(8,q). We denote this representation

by lla,o and we denote by l* the line of PG(2,q4) which corresponds to the spread .S3

in X7,o; we call /oo the line at infi'nity.

In the first section of this chapter we investigated the representation of the affine Baer

subplanes of PG(2,q4) ir fls,n. In Corollary 3.1.5 we characterised the affine Baer sub-

planes of PG(2,q4) ir terms of this representation. Moreover \rye determined how Baer

sublines ó¿ of lines of PG(2,q4), and such that ó¿ is incident with too, are represented in

lls,o. We now consider the non-affine Baer subplanes of PG(2,q4) and the Baer sublines

which are disjoint from /oo.

Let (.be a line in PG(2,q4) distinct from (.* and let P be the unique point of intersection

of (. and (.*. Let b¿ be a Baer subline of / such that b¿ is disjoint from (,oo, so that P

is not incident with b¿. Also let fI4,n" be the Bruck-Bose representation of PG(2,q4)

in PG(4,q2) defined by a regular 1-spread 5r of a hyperplan€ X3,nz of PG(4,q2). In

l.o", / is represented by a plane t. of PG(4,q')\Er,n, and the intersection [* I D3,nz is

a line P* which is an element of the spread .Sr. BV Theorem 2.2.3, the Baer subline ö¿

is represented by a non-degenerate conic b) in the plane l* such thaf bi is disjoint from

P*; in Section 2.2 we called such a conic a Baer coni,c. Note that the plane /-\{P-},

namely l* with the line P* and all its points removed, is isomorphic to the affine plane

AG(2, q2). By the results on internal structures of a Miquelian inversive planes discussed

in Section 1.14 we have: the points of /-\{P-} correspond to the points of / distinct from

P; the lines of /.\{P.} correspond to the Baer sublines of {.which contain P; incidence

is containment.
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In fls,o, the line / is represented by a 4-spàce [** of PG(8,q)\Ez,n and the intersection

l** lD7,o is a 3-space element P** of the regular 3-spread 53 of X7,0. By Theorem 3.7.2,

there exists a fixed induced regular l-spread 5/ in P**. By Corollary 3.1.5 the planes of

,**\P** which intersect P** in a unique line of 5r1 represent the Baer sublines of I which

contain the point P. Hence this regular l-spread .So1 in P** defines a 4-dimensional

Bruck-Bose representation of PG(Z,q') in the 4-space !**; this is the 4-dimensional

Bruck-Bose representation of the plane /*.

Let bi* denote the representation in fls,, of the Baer subline b¿ of .t. InfI4,or, since ó) is a

non-degenerate conic in l* , disjoint from the line P* in l*, it follows from the preceding

paragraph that b)- C ¿** is precisely a representation in 4-dimensional Bruck-Bose

of a non-degenerate conic in the plane l* : PG(2,q2) and disjoint from the line at

infinity, P*. This representation was explicitly determined in Section 3.3, in particular

in Theorem 3.3.2.

By Theorem 2.2.9,, a Baer subplane B of PGQ, qa) which intersects (.* in a unique point

.R is represented in fI4,nz by a ruled cubic surface B* with line directrix R* where -R* is

an element of 5r. Moreover, the intersection B* O E3,0, in fI4,o, is exactly the line .R* and

the points of B* Iie on q2 +L distinct lines of II4,nr\X3,or, one through each point of R*.

These lines represent the Baer sublines in B which are incident with -R. The remaining

Baer sublines in B arc represented in fla,o, by q' Baer conics on the ruled cubic surface

B*.

In fl6,n, the Baer subplane B is represented by astructure B** in PG(8,q). The point,R

in PG(2,q4) is represented by an element B** of the spread 53 of E7,0. By Theorem 3.!.2

and Corollary 3.1.5 and by considering the situation in fl4,oz above, the Baer sublines in

B incident with ,R are represented in fls,o by q2 +I distinct planes in PG(8, q)\D7,0 each

of which intersect E7,n in a distinct line of the induced l-spread 5r1 in A**. Moreover,

as B* contains q2 Baer conics infl4,nr, the structure B** contains g2 representations of

Baer conics in fls,n, where each has the structure determined in Theorem 3.3.2 for a

given 4-space of fls,o, which corresponds to a line of PG(2,q4).

It is difficult to determine in more helpful detail the Bruck-Bose representation of the

non-affine Baer subplanes of PG(2,q4).

To conclude the chapter we present one more geometric construction which may help to

clarify some of the geometric properties of these representations. For the plane PG(2, qa)
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we have been moving back and forth between the 4-dimensional Bruck-Bose represen-

tation in PG(4,q2) and the 8-dimensional Bruck-Bose representation in PG(8, q); the

following construction provides a concrete link between the two representations.

Let 5 be a Bose spread of lines of PG(5, Ø2), so that by the results of Section 3.2, S defines

a Bose representation of PG (2, qn). Lel'lús denote the dual spread of PG(5,q2) associated

with E in the usual way. Let PG(4,q2) denote a fixed hyperplane of PG(5,q2). By

Theorem 3.2.L3, PG(4,q2) determines a fixed 4-dimensional Bruck-Bose representation

fI4,oz of PG(2,q4). Denote by D3,0, the unique 3-space in?h, which is contained in

PG(4,q2). By Theorem 3.2.5, the set Sr of q4 + I elements of .9 contained in E3,0,

constitutes a regular 1-spread of !3,02.

Embed PG(5,q2) as a subspace in PG(11, q') in such a way that PG(5,q') is skew to

PG(71,q); this is possible by Construction 3.1.1 with h : 3. The 3-space X¿ spanned

by an element (. of the Bose spread S and its conjugate (,, with respect to the extension

GF(q') of GF(q), intersects PG(71,q) in a 3-space; the join of each point P e (. to

its conjugate P yields a regular l-spread of the 3-space E¿aPG(IL,q). The collec-

tion of such 3-spaces in PG(Il,q) constitutes a 3-spread of PG(17,q). The 7-space

of PG(11, q2) spanned by X3,0, and its conjugate space Ð3,n2 intersects PG(11, g) in a

7-space which we shall denote by Dz,n. Note that since X3,0, contains q4 + 7 distinct

elements of 5, E7,o contains exactly q4+I elements of the 3-spread of PG(17,q) which

therefore constitute a 3-spread of E7,o; denote this 3-spread of Dz,nby 53. The hyper-

plane PG(4,q') of PG(5,q2) together with its conjugate PG(4,q2) spans a 9-space of

PG(It,q2) which intersects PG(11,q) in a 9-space which we shall denote by PG(9,q).

Note that E7,o is a subspace of PG(9,q). Each point P € PG(4,q')\Ðr,0, is incident

with a line of PG(9,q), namely the tine PP. If we let PG(8, q) be a hyperplane of

PG(9,q) which contains X7,0, then PG(8,q) intersects each line PP in a unique point,

where P e PG(A,q2)\De,qr. By Theorem 3.1.1 the 3-spread 53 in X7,n is regular since

the l-spread 51 in E3,nz is regular. Therefore .Se defines an 8-dimensional Bruck-Bose

representation fls,, of PG(2,q4) ir PG(8,q). Moreover, in this construction the corre-

spondence between fl4,oz â,nd fls,o arises in a natural way.
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Chapter 4

Baer subplanes and

B uekenhout- Metz Unit als

In this chapter we investigate the relationship between Baer subplanes and unitals in

planes where both of these objects are defined. In particular, in a finite projective plane

rnz of order e2,we consider the problem of classifying the subsets of points of the plane,

which are the set of points in the intersection of a Baer subplane and a unital. The

earliest work on this problem is due to Seib [70] and the relevant paper is written in

German; the following statement of Seib's result is taken from [16, Lemma 2.t, (I) (2)l

[17, Result 2.4].

Theorem 4.O.1 170] Let o be a Baer inuolution which leaues inuariant a unital U of a

fi,ni,te projecti,ue plane rnz, of square order q2 . Then B, the Baer subplane fired pointwi,se

by o, contains eractlA q*L points of U, and eractly ql7 tangents of U are li,nes of B.

If q is euen, then the q -f L points i,n B ¡U are collinear in B.

If q i,s odd, then the q*I points i,n B¡U form o (q+7)-arc in B. ¡

In [51] Hölz discussed classical unitals and Baer subplanes in PG(2,q2) and used his

results to define two new designs. The results Hölz obtained on the intersection of a

classical unital and a Baer subplane in PG(2,q2) are as follows. In the paper [51], Hölz

defines,

Property (T): For each poi,nt P i,n PG(2,e2), which lies in both a Baer subplane B

and a classical uni,talU, the tangent li,netp toU at P is a line of B.
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Theorem 4.O.2 [51, Lemma2.2] Let B be a Baer subplane of PG(2,q2) sati,sfying prop-

erty (T), which contains at least three distinct points of a classical unitalU. Then B has

eractly q * I points in common with U.

If q i,s euen, these poi,nts are collinear. If q is odd, these points are ei,ther collinear or

they form an oual i,n B. n

In [23] Bruen and Hirschfeld gave many combinatorial results for the intersection of a set

of type (*,n) and a set of type (m',n') in a plane of order q, including specific results

when the two sets concerned are a Baer subplane and a unital in a plane roz of order g2.

In [a ] Grüning gave similar results including the following result which has proved to

be very useful in characterising unitals of PG(2,q2) (see the next chapter).

Theorem 4.0.3 l44l l23l Let B be a Baer subplane and let U be a unital in a projectiue

plane rloz of order q2. Denote by fu the number of li,nes of B which when ertended are

tangent lines of Ll and let lB nt/l denote the number of poi,nts i,n the intersection of B

and U. Then,

lBtul*ôr-2(q+t)

For a projective plane roz of order q2 and a unital U in rn , the set of tangent lines to Z,/

constitutes the set of points of a unital in the dual plane rþ of zroz (see Section 1.13.2);

this unital is the d,ual uni,tat of tl and is denoted by t/0. Recall also, that for any Baer

subplane B of ro, the set of lines of B constitutes a set of points of a Baer subplane Bd

in the dual plane rþ and Bd is lhe dual Baer subplane of B in rþ. By Theorem 4.0.3,

we have

Corollary 4.O.4 Let B be a Baer subplane and let U be a unital in a projectiue plane

ro" of order q2. If we kt ln nÚl denote the number of points i,n the intersection of B

and î,1, then i,n the dual plane 
"t" of iTq2 LDe hl,I)e,

lBo ¡-Uo¡:2(q + t) - lB )Ul

where Bd and,l,to or" the d,ual structures of B and, l,l respecti,uely. tr
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Theorem 4.0.3 also provides a bound on the maximum possible number of points in the

intersection of a unital U and Baer subplane B in a projective plane rq2lr:ramely,

o l lB.Ú132(q+r).

The exact values of lB nUl for which there exists a set of intersection of a Baer subplane

and a unital \nro, of cardinality lB ÀUl,has been determined in [23] forU a classical

unital t and a Baer subplane B in PG(2,q'). In [23] Bruen and Hirschfeld used the

canonical equation of a classical unital in PG(2,q2) and an algebraic proof to obtain the

following result.

Theorem 4.O.5 l23l In PG(2,q2), Íor ü a classical unital and B a Baer subplane we

haue

lBaul:1,q-¡1 or 2q*I

wherethe i,ntersection sets are aunique poi,nt, q*I poi,nts of aline of B or a coni,c in

B, or a li,ne pai,r i,n B respecti'uely. n

We extend this work by giving a geometric proof of the above result which we obtain as

a corollary to our results concerning the Buekenhout-Metz unitals in PG(Z,q2).

4.L The intersection of a Baer subplane and a

Buekenhout-Metz unital in PG (2,q')

We begin with a theorem which generalises Theorem 4.0.5 in certain cases. We ac-

knowledge that recently in the literature some of the results in Theorem 4.1.1 have been

proved independently in papers discussing derivation of Buekenhout-Metz unitals. See

for example [11], [12], [31].

Theorem A.L.L Let tl be a Buelcenhout-Metz unital re (T,l*) i,n PG(2,q2) and let B

be a Baer subplane i,n PG(Z,q2). Then,

(i,) if lBflL*l: q*7 thenlBìUl: L,Qi-I or2q*l where the i,ntersecti,on sets

are a unique point, q*L points of a li'ne of B or an oual i,n B, or a li'ne pair

i,n B respectiuely.
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(ä) xÍ BÀ(*: {T} thenlBa%l: q+l or2q*7 wheretheintersection sets

o,re a union of q points of B distinct from T and incident with disti,nct lines

of B throughT either the uni,que poi,ntT or q*7 points of a Baer subli,ne in

B contai,ni,ng T respecti,uely.

(Note: The remaining case B ¡ (.* : {P} with P I T is considered later i,n the

chapter.)

Proof: As the setting for our proof we use the 4-dimensional Bruck-Bose representation

lla of PG(2,q2), defined by a regular 1-spread 5 of a hyperplane Xoo of PG( ,q). As

tt is a Buekenhout-Metz unital ln PG(2,q2), in Bruck-Bose l,l is an ovoidal cone I'l*

with base ovoid O and vertex I/, where V is incident with an element ú of the spread 5,

and ú represents the unique point T of ll at infinity in PG(2,q2). The line at infinity

Loo of PG(2,q2) corresponds to the hyperplane Doo and in Bruck-Bose,l'l* OEo": {ú}.

(z) In this case, the line at infinity is a line of the Baer subplane B and therefore B is

represented in Bruck-Bose by a plane ß of PG@, Ø)\E* which intersects X* in a line

which is not an element of the spread 5.

Suppose lhat V € 6, then, since I,l.* is an ovoidal cone with vertex I/, the intersection

B at/* is the unique point I/, a generator line of. Ll* or a pair of distinct generator lines

of Ll*.In these cases the number lnnÚl of points in the intersection equals 1,qf 1or

2q * 7 respectively.

Alternatively, suppose that V ø B. Note that the hyperplane E- is the unique hyper-

plane of PG( ,q) which intersects the ovoidal cone I,l* in exactly the line f; since in the

quotient 3-space determinedby V, E- corresponds to the unique tangent plane to the

ovoid determined by Ll* at the ovoid point corresponding to ú. Thereforcin PG(4,q)

and since 6 is not contained in Eoo, the hyperplane (V,B), spanned by the plane ß and

the vertex V of. l,l. intersects l,l* ineither an oval cone or in a unique line on 7* distinct

from ú. In the latter case,6 ¡l,l* is a unique point of PG( ,q)\D- and hence the Baer

subplane B intersects U in a unique point. Consider the case where the hyperplane

(V,B) intersects l,l* in an oval cone. Since V ø ß, the transversal plane 6 is either

tangent to this oval cone or intersects the oval cone in an oval of q + t points of I'l*.

In these two cases the number lB n Ul of points in the intersection equals 1 or q * 1

respectively.
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(zz) In this case, the line at infinity intersects B in the unique point ? and therefore

in Bruck-Bose, B is a Baer ruled cubic surface B with line directrix ú. F\rrthermore,

since ? is the unique point at infinity of. U, in Bruck-Bose we have the intersection

BnD- :t* aE*: {ú}. Denote the generators of ßby gi,... ,9ä+t, where gf denotes

the unique generator line of 6 incident with the point V of t.

Recall that each generator line of 7* passes through V and each plane of PG( ,q)\t*
about f contains aunique generatorlineof 7*. Thns each plane (gî,t)'i:L,...,q+1
contains a generator line, l| say, of Ll* . Note that as gf passes through V , gi is either the

generator line li of. Ll* or intersects li in the unique point V. Each line gi (z I 1) does

not pass through V and therefore in the plane (gi ,t) , the line gf intersects the generator

tine li of Ll* in a unique point of PG( ,q)\E-. Therefore, for such a Baer subplane

B, and for these two cases the number lBnUlof points in the intersection of the Baer

subplane and the Buekenhout-Metz unital equals 2q -17 or q f 1 respectively. tr

Note that by the proof of Theorem 4.1.L, if a Baer subplane contains an oval of points

of a Buekenhout-Metz unital U in eCç2, q2) as in case (i), then the oval B ìll is related

to an oval plane section of the 3-dimensional base ovoid of U in the following \ilay.

Corollary 4.L.2 Let tt be a Buelcenhout-Metz unital re (T,t*) in PG(2,q2) and let B

beaBaersubplanei,nPG(2,q2) suchthat(.*isalineof B. LetO denotethebaseouoid

ol u.

If the intersecti,on B ¡U i,s an oual O in B, then the oual O i,s projectiuely equi,ualent

to an oual contained in a 3- dimensional oual cone with base oual a plane section of the

ouoid O. !

We now obtain the Bruen and Hirschfeld result (Theorem 4.0.5) as a corollary to Theo-

rem 4.1.1 as follows.

Corollary 4.1.3 l23l In PG(2,q2), lor U a classical unital and B a Baer subplane we

haue

lB nul: 1, q * 1 or 2q -17

where the intersection sets are a uníque point, q*L points of a line of B or q-fl points

of a coni,c in B and a line pai,r i,n B respecti,uely.
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Proof: By Section 1.13.3 the classical unital l,/ is Buekenhout-Metz re (7,17) for all

points T € U and the corresponding tangent line 17 to U at T. We begin by showing

that for every Baer subplane B of PG(2,q2) there exists at least one line of B which

when extended is a tangent line of U.

Suppose B is a Baer subplane of PG(2,q2) such that B contains no line tangent lo U,

then by Theorem 4.0.3, lBaUl:2q12. As U is classical, by Theorem 1.13.1.2 every

Baer subline of PG(2,q2) intersects 7 in 0,1, 2 or q* 1 points; in particular, every Baer

subline in B intersects B lU in 0,L,2 or q * 1 points. The set B aU has too many

points to be an oval in B. If B nl,/ is the disjoint union of a Baer subline in B and

an oval in B, then a secant (Baer sub)line of the oval intersects B lU in three points,

contradicting Theorem 1.13.1.2. If B lU is the union of two lines in B plus a further

point Q say, then there exist q Baer sublines in B through Q which intersect B a U

in three points, contradicting Theorem 1.13.1.2. Alternatively, one could argue that by

Theorem 7.L3.7.2 B Àll is a Tallini set in B and no Tallini set in a plane of order q has

cardinality 2q * 2 (see [55].)

Therefore, the number of points lB aul in the intersection of B and U is necessarily less

than 2q * 2 and by Theorem 4.0.3 this implies that B contains at least one line which

when extended is a tangent line of U; denote this line by l*. Since Z is Buekenhout-

Metz with respect to the line [.* and since B contains loo as a line, by Theorem 4.1.1,

B intersects l,l in I, Q I t or 2q f 1 points. Moreover since a classical unital has as base

ovoidanellipticquadric,byCorollary4.T.2if aBaersubplane Bof PG(2,q2) intersects

l,l in an oval, then the oval is a non-degenerate conic in B. !

Theorem 4.1.1 does not exhaust the possible intersections of a Buekenhout-Metz (B-M)

unital Ll and a Baer subplane B of PG(2,q2). It remains to consider the case when U

is B-M re (7, /-) and B is a Baer subplane of PG(2,q2) such that B l-ì l- is a unique

point P on (.oo distinct from T. We partially solve the problem in this case, by improving

the restriction on the number of points lA nÚl in the intersection of B and t which

was given in Theorem 4.0.3

Theorern 4.L.4 Let B be a Baer subplane in PG(2,q2). Let I'l be a Buelcenhout-Metz

unital re (T,L*) in PG(2,q2). If the base ouoid ol U is an ellipti,c quadri,c, then for
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QlL3,
1<lB.Ul<2q-tI

Proof: Consider a unital t in eC12,q2) which is Buekenhout-Metz re (?,1.") and

which has an elliptic quadric as base. By Theorem 4.0.3 and for B any Baer subplane

of PG(2,q2),

0<lB.ul<2q*2.

If tl is a classical unital then by Theorem 4.0.5, lBaUl:L,e * 1 or 2q-ll for all q as

required.

If U is a non-classical Buekenhout-Metz unital, then by Theorem 4.1.1 if B is a Baer

subplane of PG(2,g2) which contains [* as a line or if B intersects (.* in the unique

point T, then lB a%l : 1, Q * 1 or 2q -l I as required.

The remaining case to consider is the case where U is a non-classical Buekenhout-Metz

unital re (7,1"") with elliptic quadric as base and B is a Baer subplane of PG(2,g2) such

that B intersects the line at infinity in a unique point P distinct from ?. It remains to

prove for this case that I < lBaul <2q*L when q > 13. Our proof is by contradiction

making use of several preliminary results. Suppose in this case the intersection B lU
contains 2q-12 distinct points, then by Theorem 4.0.3 Bl\U contains exactly 2q*2 points.

By Theorem 1.13.3.1 and since P e (.* is not a point of the unital, each Baer subline in

B which contains the point P intersects U in at most two points; as lB aul:2qi2,
each Baer subline in B which contains P contains exactly two distinct points of U.

The unital tl is a set of points Ll* in Bruck-Bose, where l,l* is an elliptic quadric

cone in PG( ,q). h the Bruck-Bose setting, the Baer subplane B is a Baer ruled cubic

surface 6 with line directrix p in PG( ,,q). The line at infinity of PG(2,q2) corresponds

to a hyperplane l- of PG( ,q) and the line {p} :6 n E- is an element of the regular

spread 5 of E- which defines the Bruck-Bose representation. In Bruck-Bose, the element

p e E represents the unique point P of B on the line at infinity. The Baer sublines in

B which contain P are, in Bruck-Bose, the generator lines of the ruled cubic surface

B; from above, each such generator line contains exactly two distinct points of. l,l* in

PG(4,q)\E-. In particular the line directrix p of 6 contains no point of. l,l* in PG(4, q).

Denote these q+l generator lines of ßby gi,gi,...,9ä+t.The q2 Baer sublines in B
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which do not contain P arc represented in Bruck-Bose by q' distinct Baer conics on B.

For each secant line (. of. U not incident with 7 the intersection l.ÀU in Bruck-Bose is

a non-degenerate conic, namely the plane section of the quadric l,t* by the plane l* of

PG( ,,q), which correspondsto (. via Bruck-Bose. By Theorem 1.13.3.2 and since Z is

non-classical with elliptic quadric as base, no such intersection (.¡U is a Baer subline.

It follows that no Baer subline in B is contained in U and therefore, in Bruck-Bose,

no Baer conic in 6 coincides with a conic t À1.,1* (a plane section of the quadric Ll*

in PG@,q)). Moreover, since two distinct non-degenerate conics in PG(2,q) intersect

in at most four points, every Baer subline in B contains at most four points of. B¡U.
Hence the 2q -l 2 points in the intersection B n 7 constitute a {2q )- 2;4}-arc in the

Baer subplane B. Note that by Theorem 1.11.2 there exists a Baer subline in B which

contains exactly four distinct points of U.

The quadric l,l* intersects the hyperplane E- in the spread line ú. Since the line directrix

p of ß is distinct from t and ß contains no further point in E*, the line directrix p is

disjoint from the quadric l,l* in PG(4,ø). h particular the point vertex V of tl* is not

a point of. ß. Let 7 denote the variety which is the intersection ß¡l,l* in PG( ,q). Note

that the 2qi2 points of 7 in PG( ,q) are disjoint from E-. Since the2q *2 points of

7 lie two each on each generator of ß and since B is not contained in any hyperplane of

PG(4,q), the variety 7 is not contained in any hyperplane of PG(4, q). Also from our

above remarks and since 7 does not contai\ pj any generator line of B or any Baer conic

in 6 in PG(4,Ø), we have that 7 contains no lines or conics in PG( ,q).

For the remainder of the proof, the points of PG( ,q) will be called rational points;

hence the variety 7 has 2qi2 rational points. Since 7 is the intersection of a ruled cubic

surface ß, of. order 3 and dimension 2, and a quadric Ll*, of order 2 and, dimension 3,

the variety 7 has order 6 and dimension 1; 7 is therefore â, curve of order 6in PG(4,q).

If 7 is reducible, then the order of 7 may be partitioned in the following ways: 6 -
1+5 :1-l1*4 : 1+1+1+3 : 1+1+L+I+2:1+1+1+1+1+1 :
2+4:2]-3+1 : 2+2+2:3*3: 1+1+1-l3: 1+1+2+2. Henceif 7

is reducible then one of the following holds:

(u) 7 contains two twisted cubic curves.

(b) 7 contains an irreducible conic and an irreducible quartic curve.

(.) 7 contains three irreducible conics.

(d) 7 is a curve with line components.
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Note that the components of 7 may coincide or may belong to some field extension of

GF(q).

We denote bV k the algebraic closure of. K : GF(q). To show that 1 is absolutely

irreducible, by the above remarks it suffices to show that over k, 1 conlains no lines,

conics or twisted cubic curves.

By f15, Note 1.] each variety ß : Vf of PG(4,q) is the set of rational points of a variety

'itf of PG(4,K¡ obtuined by a projectivity / between a line p and a conic C of PG@, k)

where ôlo ir a projectivity / between the line p and a (Baer) conic C contained in 6 of

PG(4,g), that is @ e PGL(2,q) (see also Sectio n 2.4.7). So in PG(4, f ¡ ttte points of the

ruled cubic surface i/r' ur"partitioned by the generators otV] and distinct generators of

ûr' ir,t.rr.ct þ in distinct points.

The quadric l,l* in PG( ,q) extends to a quadric Qy in PG( ,¡f), ¡y considering

the equation which defines Ll* in PG(4,q) over the field K. Each generator line of

Ûrt inte.sects the quadric 8u in7 or 2 points unless the generator is contained inQu.

Considerthelinedirectrix pof ßinPG( ,q). Thelinepisdisjoint to Ll* inPG( ,q),

and therefore in the quadratic extension, the intersection p nll* is a pair of points A,Ao

of p, conjugate with respect to the extension GF(q') of GF(q). Thus for the line p in

PG(4,Ê¡, th. two points A, An are the only points of the quadric Q7 incident with p.

In PG(4,Ê¡ ttre sextic curve 7 is the intersection of the ruled cubic surface Ûr3 and the

quadric Q¿7.

Suppose the sextic curve 7 contains a line component g. The only lines of Vf are the

generators and the line directrix p. Since no generator of ß in PG( ,q) is contained in

Ll* and, since p is not contained in 7, the line component g of 7 is then a generator of Vf

and is such that the points of g belong to some field extension of GF(q). The lines g and

þ of V] intersect in a unique point and since g ç'y Ç 8" the point g Àþ isthen a point

of the quadric Q7. Hence gÀp is either the point A or Aq. Suppose, without loss of

generality, that gnp is the point A; hence the generator g of Vf t u, one and therefore all

of its points in the quadratic extension PG(4,q") of PG( ,q) (see Section 2.4.7). Every

generator of U] contains a unique point of the base conic C of U], hence we denote

by X the unique point of Ô incident with g. By definition of the ruled cubic Uf , tt "
points Ae pandX e Cof garerelatedbytheprojectivity,fr. Sitr.. XXqisalineof

PG( ,q) in the plane containing the base conic C of. ß, the point Xq, conjugate to X
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with respect to the quadratic extension, is therefore a point of the conic ô. tnu points

Aq e p and, Xq e i are therefore related by the projectivity ó e PGL(2,q) and thus

the line gq : XqAq is a generator line of the ruled cubic surface Ûr3. Since g is a line

component of .y, g is contained in the quadric 8¿¿ which is defined by a quadratic form

with coefficients in GF(q), namely the quadratic form which defines l,l* in PG( ,q). It

follows that the line gq, conjugate to g with respect to the extension GF(q') of GF(q),

is containe d, in Qu and hence is a line component of 7.

We have that the sextic curve 7 contains two line components g,gq, such that g and gq

contain no rational points, and therefore l\{g, gq} is residually a curve Cl of order 4

which contains 2q i 2 distinct points in PG( ,q). If Cra is absolutely irreducible, then

since the 2q*2 rational points of Cf are not contained in any hyperplane of PG(4,q),

we have by Theorem 1.6.8 that Cf has genus g:0 and by Theorem 1.6.10 the curve Cra

has exactly q+ 1 rational points, a contradiction. Thus the curve Cra must be reducible

over some field extension of GF(q).The curve Cf has no line components, since by the

above above arguments the lines g,ga are the unique lines in Ûr3 incident withp in the

points {A,, Ao}, the only two points of p in 'y : Qu ltt . The only possibility is that Cra

has a pair of conic components and therefore the rational points of Cf are contained in

conics of PG( ,q). But the only conics in PG( ,q) contained in 6 are Baer conics and

since 7 contains no Baer conic in B, from the earlier comments in the proof, we have a

contradiction.

We have established that the sextic curve 7 has no line components.

Suppose the sextic curve 7 contains an irreducible conic component Cf . Since 7 contains

no conics in PG( ,q), the conic C! in 7 is a conic on the surface Uf i" PG(4,,K) and

therefore contains at most one rational point. The remaining2q * 1 rational points of

.y are then contained in a curve Cl :7\{C?} of order 4. By the argument presented

above, the curve Cra cannot be an absolutely irreducible component of 7, and since 7

contains no line components, the curve Cra must be the union of two conic components

of 7. We obtain a contradiction as 7 contains no conics in PG( ,q) and yet'y has 2q*2

rational points. Hence the sextic curve 7 contains no conic components.

Suppose the sextic curve 7 contains a twisted cubic component Cf . Since 7 contains no

line or conic components, 7 must be the union of two irreducible cubic curve components.

Suppose that Cr3 is containedin PG(4, ø). By Theorem 2.3.1 the irreducible cubic curves
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on 6 contain a rational point of p. Since 7 contains no rational point of p, an irreducible

cubic component Cr3 of 7 is not contained in PG( ,q). Thus if 7 is the union of two

irreducible cubic curve components and neither is contained in PG(4, q), then we have

a contradiction since 7 has 2q * 2 rational points.

The sextic curve 7 therefore contains no components of lower order over any field exten-

sion, hence 7 is an absolutely irreducible sextic curve with 2q * 2 rational points.

By Theorem 1.6.10 for 7 absolutely irreducible and with 2q-12 points in PG(4,q),

l2q+2-(q+t)l3zg'/q

Since by Theorem 1.6.8, the sextic curve 7 has genus g at most 2, we consider the

possibilities g : 0,7,2. Both g : 0,1 give rise to a contradiction. For g :2, on

rearranging, wê have g - 4Jd + 1 < 0 and since q is a positive prime po\4/er, q must

satisfy 2- ß <,/4<2+ t/5; u contradiction if q > 13.

We now give a "dual" argument to show that if lB ÀUl * 2q + 2 for any B-M unital

and any Baer subplane of PG(2,q2), then lB aul l0 for any B-M unital and any Baer

subplane of PG(2,q2). The same argument can be used to show that if there is no B-M

unital and Baer subplane of PG(2,q2) with exactly 2q'12 - rn points in common for

some fixed rn satisfying 0 < m 12q * 2 then there is no B-M unital and Baer subplane

of PG(2,q2) with exactly rn points in common.

Above we have shown for B a Baer subplane and U a B-M unital, with base ovoid an

elliptic quadric, in PG(2,q2), with q > 13, that lB aul + 2q i 2. Recall that the plane

PG(2,q2) is isomorphic to the dual plane of PG(2,q2). The dual Bd of a Baer subplane

B of PG(2, q') is a Baer subplane of the dual plane. The dual of a B-M unital U, with

base ovoid an elliptic quadric, is a B-M unital Lld, withbase ovoid an elliptic quadric, in

the dual plane (see [6], [26]). Using the definition of dual structures and Theorem 4.0.4,

Bd ÀUdl : (The number of lines of B which when extended are tangent lines of û/)

: 2qt2-lB.Ul

and since lø n-Ul < 2q -l2, we have lBd a-Uol > 0. This concludes our proof. tr

So by Theorem 4.!.4, for a Baer subplane of PG(2,q2) and a B-M unital Il with elliptic

quadric as base, there are restrictions on the values lB aul can take, for q ) 13. In fact

the arguments used in the proof of this theorem can be used to show that as q increases
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the bounds on lB n Ul further restrict the possible values, for a Baer subplane B and

unital U as in the statement of the theorem, as follows. Let B and U be as in the

statement of Theorem 4.1.4. Suppose that B is tangent to the line at infinity at a point

P, where P is distinct from the unique point of U on the line at infinity. In Bruck-Bose

B is represented by a ruled cubic surface ß and. tl is a set of points l,l* i, PG@,q).

Let 7 denote the intersection B al'l* . If 7 is an absolutely irreducible sextic curve then,

by the arguments used in the proof of Theorem 4.7.4, the number of points ,R of 7 in

PG( ,q) is restricted by q, according to the following table.

Restriction on R : l.yl: lB ÀUl

q>13

q>16

q> 17

q> 79

q> 2L

etc

0 <.R <2q*2
1< -R <2q+L

2<R<2q
3 < -R <2q-L
4<R<2q-2

etc.

Corollary 4.L.5 Lett'l be a uni,tal i'n PG(2,Q2),Q ) 13, and q odd. If there eri,sts

a Baer subplane B of PG(2,q2) with no poi,nt in common withU, then U i,s not a

B u ek enh out- M et z uni,tal.

Proof: Suppose l,l is a Buekenhout-Metz unital in PG(2,q2), then in Bruck-Bose 7 is

an ovoidal cone Ll* with elliptic quadric as base since g is odd. Then by Theorem 4.7.4

for any Baer subplane B of PG(2,q2) we have lB aul> l and so no Baer subplane of

PG(2,q') is disjoint from I'1. The result now follows. !

Note that at present all known unitals in PG(2,q2) arc Buekenhout-Metz unitals (see

[26]).

Finally, we include the statement of the very recent result of Barwick, O'Keefe and

Storme [14] which characterises Buekenhout-Metz unitals in translation planes rot of

order q2 which can be represented in 4-dimensional Bruck-Bose. Note, in the following

theorem, a parabolic unital in rn" is a unital for which the translation line l.oo of the plane

is a tangent line of U; also, linear Baer subplanes of. ro, are those Baer subplanes B of
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zroz such that B is represented by a (transversal) plane in the 4-dimensional Bruck-Bose

representation of n'oz.

Theorem 4.1.6 ]a] Let l,l be a parabolic unital i,n a translati,on plane TToz of order q2

lcernel containing CF (q).

Then Ll i,s a Buekenhout-Metz unital i,f and only if euery linear Baer subplane of rn,

meets U i,n I modulo q poi,nts. tr

4.2 Examples and quartic curves

Let l,lbe a Buekenhout-Metz unital re (T,l*) and with an elliptic quadric as base in

PG(2,q2). Let B be a Baer subplane of PG(2,q2) such that lB al'll : 2q * 2, the

maximum possible number of points by Theorem 4.0.3. By the results of the previous

section, the unital Z,/ is necessarily non-classical and the Baer subplane B is necessarily

tangent to the line at infinity L* at a point P distinct from the unique point T of. U on

(.*.

In this section we shall give some specific examples in PG(2, Q2), Q ( 13, of this situation;

further, we show that in this case the points B aU are points of a quartic curve in B

with P a double point of the curve.

In Bruck-Bose, B is a Baer ruled cubic surface 6 with line directrix p a line of the regular

1-spread 5 in a hyperplane D- of PG( ,q), in the usual notation. The element p of S

is the Bruck-Bose representation of the point P: B fìl- in PG(2,q2).

The unital tl in Bruck-Bose is a quadric con" ü* in PG( ,q) and so has an associated

quadratic form with coefficients in G,t'(q); a point in PG( ,q) has coordinates given by

(ro,rr,t2,rs¡ra) f.or sorrt€ Í¿ e GF(q) and not all zero.

By Theorem 1.7.3, the ruled cubic surfaces in PG(4,q) are projectively equivalent and

hence we can choose a coordinate representation of PG( ,q) such that the ruled cubic

surface 6 is the ruled cubic surface ,R! whose points are given by,

{(r2,rA,U2,zr,zA); r,y e GF(q), (*,y) I (0,0), z e GF(q) u {-} }

By the results of Section 2.6, the Baer subplane B may be identified wilh PG(2, q) with
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point coordinates

{(*,y,2); r,U,z e GF(q) ï,U,2 not all zero }

and such that the line directrix of the ruled cubic surface corresponds to the point

P(0,0, 1) in B. In an abuse of notation, we have chosen coordinates conveniently to

represent B as the Baer subplane PG(2, q). The unital U atd the line at infinity l* will

therefore be given by new coordinates but we retain the same notation; thus P(0,0, 1) is

theuniquepointof Bon l*. InBruck-Bose, l.lisstillaquadric coneÚ*,theimageof

the original quadric cone under a projectivity of PG(4,q), and so denote its quadratic

form by

Q(*0, frLr 12, ïs, r4).

The points of PG(2,q2) ln the intersection B lll are therefore the points (r,y,z) in

PG(2,q) satisfying,

Q@',rU,a2,zr,zy):0,

this is a polynomial of degree 4, homogeneous in r,y, z and so represents a quartic curve

Cf in B: PG(2,g). Moreover the highest degree of zin the polynomialis 2 and so the

quartic curve has a double point at P(0,0, 1) by Section 1.6. This is consistent with the

fact that in Bruck-Bose, the spread element p which represents P(0,0, 1), is a line and

so intersects the quadric l,l* in two points; these two points lie in a quadratic extension

PG(4, q') of PG(4,g), since in PG(4, q), ü* and p are disjoint. Thus ín PG(2, q2), evety

line of B : PG(2, q) through P intersects the quartic curve Cra twice at P.

We note also that for small values of q computer searches have verified that there exist

examples of Buekenhout-Metz unitals with elliptic quadric as base and Baer subplanes

of PG(2,q2) such that the unital and Baer subplane are disjoint; hence there are also

examples of the dual case where such a unital and Baer subplane intersect rn 2q -12

points. We include one such example.

An example in PG(2,9):

Consider the primitive polynomial 12 - r - 1 with root (primitive element) ø. The

elements of the fields Gf' (3) and GF(9) can be represented as follows:

cr(3)
GF'(e)

{0, 1,2}

{0, 1,ø, u2,u3,u4 =2,a5ru6ru7}
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Multiplication in C.F'(g) is the usual operation with ø8 : 1. Field addition is given in

the following table.

u

0

1

Iuu2u3tt4u5u6u7

,u-
,.3w

u4a2u

ti\ u

x)

a

7u60ø3

s1u7o
6u4u1

u7 u5 t2

lu6

u

u5u
t)4 u6

0u5
u0
u3 u2

u7 u4

u2 1

u3

4u

u5 u

HÔ:

ó : PG(2,9) PG(2,9)

u6

uT

Consider the B-M unital U,swith elliptic quadric as base with pointset given by,

Ll,o: {(r,un2 *r,1); r €GF(3), n eGF(g) }U{(0,1,0)}.

The line at infinity is the line with equation z : 0, which is tangent to the unital at the

point (0,1,0) which we shall call the vertex of the unital. This form of a B-M unital

with elliptic quadric as base in PG(2,q2), q odd, is given by Baker and Ebert in [6].

Lef PG(2,3) denote the Baer subplane of PG(2,9) with points given by the coordinates

{@,A,r); r,U,z € GF(3), r,U,z not all zero }. Consider the following matrix with

columns the coordinates of the 13 distinct points of PG(2,3).

Consider the projectivity þ of PG(2,9) associated with the matrix,

---+

+
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Let B be the Baer subplane which is the image of PG(2,3) under the projectivity /.
The homogeneous coordinates of the 13 distinct points of B are given as columns on the

following matrix.

0

0

1

1

a

u6

111111
u a ,r)2 u2 ri2 1

tl1 u6 1 a7 rr)5 0

1111
11,¿5u5
tt\ a u5 u2

1

u5

..4

Of the above points of B, the following eight are points of I'l,o

(0,0, 1)

(I,u,w6)

(I,u,uB)

(7,u2,1)

(7,u2,u7)

(1, 1, ø)

(7,u6,u2)

(r,u5,u4)

: (0,u02 + 0,1)

: (w2,uua f 1,1)ø6

: (u5,uu211,1)ø3

: (1,ø + 1,1)

: (u,uu2 -l o,l)u7

: (u7 ,au6 * 0, 1)ø

: (u6,uua -l1,7)u2

: (ua,,u -10,1)ø4.

We now analyse some properties of this set B Àl'l,o in the Baer subplane B of PG(2,9).

The unique point of B on the line at infinity is the point P(1, 1,0). Each line of B on

P contains exactly two points of the set B lUu¡, as expected, since we aim to prove

that B tLlro is the set of points in B of a quartic curve with double point P. The

Iine ur I z :0 in B is an external line of the set. The remaining eight lines of B are

3-secants of the set B )Uro.

Note that each line of B contains four points and therefore if B lUro had a 4-secant

in B, disjoint from the point P, the unital Z,/øo would be classical (by Lefèvre-Percsy

Theorem 1.13.3.2), a contradiction to Theorem 4.0.5 since B contains 2q-12:8 points

of the unital.

We want to verify in this case that B ìUr6 is a quartic curve in B with double point P.

Let 0 be the projectivity associated with the matrix,

0

1

1

0

2

0

1

0

0

Ho:
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that is
0 : PG(2,9) PG(2,9)---+

fr

a

,
+

:x

Hs a

ry

Now consider the map o :0ó-t which maps B to the real Baer subplane PG(2,3) and

mapsPtothepoint (0,0,1). Theimageof thepointset BlU,o underoisthepointset

in PG(2,3) whose coordinates are given by the columns in the following matrix.

(Note that by [48, Section 2.6(iii)] a projectivity of the plane does not change the order

(degree) of a curve in the plane.)

It is now a brief exercise to verify that the above set of points in PG(2,3) lie on the

quartic curve with equation

z"(r' i rg -l zy') + z(r3 + ra2 + a\ + *'y' + ras :0

which has the point (0,0,1) as adouble point (see Section 1.6).

4.9 Concerning Classical Unitals in PG(2,q')

In l2a] Buekenhout showed that a classical unital U in fCçZ,q') is Buekenhout-Metz

with respect to any tangent line of L/; denote by l* a tangent line of. U. Moreover,

in the 4-dimensional Bruck-Bose representation of PG(2,g2) with respect to l*, the

unital l,/ is represented by an ovoidal cone l,l* in PG( ,q) with an elliptic quadric as

base. Since the plane is the Desarguesian plane PG(2,q2), the spread S in the Bruck-

Bose representation is a regular l-spread of a fixed hyperplane E* of PG( ,q), in

the usual notation. In [60], Metz showed that for a given regular spread in D- there

exist non-Baer conics in PG(4, q) in planes about the spread elements. Metz used this

fact to construct Buekenhout-Metz unitals with elliptic quadric as base and which are

non-classical unitals in PG(2, q2).

Letl,l be a non-classical unital with the above Metz construction in PG(2,q2). So in

Bruck-Bose with respect to a given fixed spread 5, the unital is an ovoidal cone Ll*
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with elliptic quadric as base and such that there exists a plane t. of PG(4, q) about an

element p of the spread 5, for which [* al,l* is a non-degenerate non-Baer conic C*. In

PG(2,Q2), t* corresponds to a secant line (. of. U for which [.aU is not a Baer subline.

Denote by ú the spread element of .S in the ovoidal cone Ll*; nole that ú is distinct from

p. By setting up a projectivity { between ú and C* in PG(4,ø) we obtain a set Vr3 of

q*l lines XXÞ where X ranges over the ql1 points of ú. The set so obtained is a ruled

cubic surface V23 with line directrix ú and a conic directrix C* by Section 1.7. Bernasconi

and Vincenti [15, Section 2] proved that there exists a regular spread S' of D- for which

Vr\ is a Baer ruled cubic for the Desarguesian plane r : r(S') (see Theorem 2.4.7).

Note that the line p is a spread element of E' and C* is then a Baer conic representing

a Baer subline C of r(E'). Consider l,l* in PG( ,,q) with respect to this new spread

S'; Ll* corr"sponds to a set of points l,l' in the Desarguesian plane t'(.S'), which is by

definition a Buekenhout-Metz unital (with elliptic quadric as base) in zr(.S'). Moreover,

there exists a secant line of -1,,1' , nol on the vertex point of-L/ and which intersects I,l' in u

Baer subline C. Hence by Theorem 1.13.3.2 ,-l,l i, a classical unital in the Desarguesian

plane r.(5').

Hence for any non-classical B-M unital U, with base ovoid an elliptic quadric, in

PG(2,q2), in Bruck-Bose it is easy to construct, by the above procedure, a new reg-

ular spread ,S' in Doo, for which U is a classical unital in the Desarguesian plane rr(S').

We have shown,

Theorem 4.3.L l27l In PG(2,q2), euerg non-classical Buelcenhout-Metz unital ll wi,th

ellipti,c quadri,c as base is inherited from a classical unitaltlc in PG(z, q2), ba a procedure

of swi,tching regular |-spreads oÍ E* : PG(3,q) in the  -di,mensional Bruclc-Bose

representati,on of PG(2,q') in PG(a,fi. rt
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Chapter 5

A characterisation of

Buekenhout-Metz unitals

The known unitals in PG(2,q2) are to within collineation Buekenhout-Metz unitals,

namely a unital whose representation in Bruck-Bose is isomorphic to that given in Sec-

tion 1.13.3. In lza] the classical unitals were shown to be B-M and it was proved that for

certain q even that there exist non-classical (B-M) unitals in translation planes of dimen-

sion 2 over their kernel. Metz showed in [60] this class of unitals contained non-classical

unitals for all q > 2. The Buekenhout unitals, that is the unitals with construction given

in [24, Section 3., Theorem 4] were shown in [10] to be classical and therefore B-M. In

[26], see also [6], the dual of a Buekenhout-Metz unital in PG(2,q2) was shown to be

B-M in PG(2,q2) and thus all known unitals in PG(2,q2) are B-M unitals.

There exist many characterisations of B-M unitals and classical unitals, see for example

Theorems 1.13.3.1, 1.13.3.2.

The B-M unitals in PG(2,q2) were characterised by Lefèvre-Percsy as follows (a variant

of Theorem 1.13.3.1):

Theorem 5.0.1 156] Letl.l be a uni,tal i,n PG(2,q2) where q > 2 and let (.oo be sorne

tangent li,ne toU. IÍ all Baer sublines hauing a point on loo intersectU i,n0,1,2 or q*l
points, thentl is a B-M unital re (7,1.*) forT the unique point of I'l on (.*. n

In [26] the Lefèvre-Percsy (Theorem 5.0.1) characterisation in PG(2,q2) was improved

in the cases q even and Ç : 3 by weakening the hypotheses to give the result:
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Theorem 6.0.2 [26, Theorem 1.3] Lettl be a uni'tal in PG(2,q2), where q> 2'is euen

orq--3. Thenl,l is a B-M unitalif and only i,f there eri,sts apointT of U suchthatthe

points of tl on each of the q2 secant lines toU throughT form a Baer subline. ¡

In this chapter, we extend the result of Theorem 5.0.2 by proving it for q ) 3; we

therefore obtain

Theorem 5.0.3 168l Letl,l be aunitalinPG(2,Q2),Q>2. ThenU is a B-M unitali,f

and, only if there erists a point T of tl such that the poi,nts of t l on each of the q2 secant

lines to l,l through T form a Baer subline.

5.1 Proof of theorem

LeL î,1 be a unital in PG(2, q2), where I ) 3, with the line at infinity l- a tangent line of

t/.l,etT: l*ll,t and suppose that the points of l,l on each line of PG(2,g2) through

T, and distinct from loo,, form a Baer subline.

Represent PG(2,q2) in PG( ,q) as in Section 2.1 with the notation introduced there.

The unital /,/ corresponds to a set of points ü* in PG(4,ø). As observed in [26], the above

hypothesis is equivalent to the hypothesis lhat l,l* consists of a spread element ú together

with a union of q2 lines Ii,li,. . . ,lä, of PG( ,q)\E-, each meeting Ú but pairwise having

no common point in PG( ,q)\Ð- . We call tî (i:1,. . . , q2) a generator li,ne of ü. . In

[26], with a sequence of lemmata, the following result is obtained:

Lemma 5.1.1 126]U i,s ei,ther a B-M unital orl,l* has the foltowing structure:

The generator li,nes of l,l. ¡att into q oual cones C1,. . . ,Cq, with disti,nct uerti,ces

VL, . . . ,Vo respectiuely. Each cone has q|t generators, namely the line t and q generator

lines of I,l* . The cones pairwise intersect in t and haue a con'ùrnon tangent plane r (about

t) whi,chis containedinE*. ConeC¿ lies in a T-di,mensionalspl,ceDi (i:1,...,Ç)
and the spaces Xoo, Er, .. . ,Dn haue the plane r as con1,n'ton intersection. We call each

D¿(i,:1,...,q) aconespace. !

We now prove Theorem 5.0.3
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Theorem 6.L.2 LetÚ be a unital i,n PG(2,q2), where q > 3. Thent'l i,s a B-M uni,tal i,f

and, only if there eri,sts a pointT of tl such that the points of tl on each of the q2 secant

li,nes to U through T form a Baer subline.

Proof: The "necessary" result is well known; it follows from the construction of a B-M

unital, see Theorem 1.13.3.1. We now prove "sufficiency".

In PG(2,q2), q ) 3, let T be a point of a unital l,/ such that the points of.U on each

of the q2 secant lines to Z,/ through ? form a Baer subline. We may assume the tangent

line to U at T is l-.

Suppose l,l isnot a B-M unital. By Lemma 5.1.1, 1,1* has the q-cone structure defined

there.

Let a be a plane of PG( ,q)\t* representing a secant line of U, not through T, in

PG(2,q2). Then o is a plane about a line rn of the spread 5, rn being distinct from ú.

Choose two generator lines ti,tifromdistinct cones of.l,l* and incident with o. Let

Li:lino.

Li:lino.
By Lemma2.2.6, there exist q Baer conics in c\rn containing the points.Li and Li.By

Lemma 2.2.11, for each such Baer conic there exist g* 1 Baer ruled cubics containing the

Baer conic and ú; each Baer ruled cubic is determined completely by joining Li to a point

of ú. Thus, there exist q Baer ruled cubics containing the line li and the point Li. BV

Theorem t.2.I, no two Baer ruled cubics containing li and ,Li contain the same generator

line through Li and therefore there exists a unique Baer ruled cubic B containing the

generator lines li and ti of l,l* . Let C* be the Baer conic ß ¡ a and let B be the Baer

subplane of PG(2,q2) represented in PG(4,q)bV ß.

Let gj, ... ,9ä+t together with li and li be the generators of 6; let li,li,9ä,... ,9| Pass

through vertices Vr,Vz,Vs,.. . , Vn respectively on ú and g|-.1 through the unique non-

vertex point of ú (see Lemma 5.1.1). Clearly gfu, is not a generator line of 7*. Notte

of gi,. .., gäare generator lines of.l,l* as by Lemma 4.0.3, B canintersect l,/ in at most

2q i 2 points.

The plane (gi*r,ú) is a plane of PG( ,q)\E- about ú and therefore contains exactly one

generator line l* oft . As l. ng|*, is necessarily an affine point, by counting the number
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of affine points in B l/,/* together with ú we obtain,

lB.ul>2q*2.

By Lemma 4.0.3 we have,

lB 'Ul:2q 
* 2'

Hence no line gî (i:3,...,g) can intersect l.l* in an affine point. The plane (gi,tl

(i : 3, ...,q) is a plane of PG( ,q)\D- about ú and therefore contains a line li of

7* which, from above, intersects ú in the vertex %. Since the generators of cone Ci are

contained in the 3-dimensional space E¿ we have that B has a generator in each conespace

14(i:1,...,q).

Lef Q be the unique point of intersection of the plane a and the plane n, the common

tangent plane to the cones C¿ (i,:1,... ,g). Note that Q : Q'l'r : rnlìzr, and rn is not

a tangent to the Baer conic C* îna. Hence, if q is even Q is not the nucleus of the C*.

Since Q ) 3, there exists a secant line of the Baer conic C* through Q, incident with C*

in two (distinct) points Mi, M; say, such that neither point is on the line g|*r. But then

Mî, M; belong to two distinct generators of 6 belonging to distinct conespaces D¿,Dj

say. Hence both Mi and Mi belong to r, a contradiction. Hence, by Lemma 5.L1,U is

a B-M unital. !

Note that in the case q : 3, the possibility exists that there is no secant line of C*

through Q which does not intersect g|11 and in that case the secant line may lie in a

unique conespace. For this reason the above proof is not valid when 8:3.
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Chapter 6

Maximal Arcs, Inversive planes and

T3p)

In this chapter we investigate the relationship between Thas maximal arcs and egglike

inversive planes. We show that a Thas maximal arc has an associated egglike inversive

plane isomorphic in a natural way to an inversive plane obtained from the generalized

quadrangleTs(O), by the method given in Theorem 1.16.3. We also show the inversive

plane obtained from a Thas maximal arc is isomorphic in a natural way to an inversive

plane obtained from a certain Buekenhout-Metz unital. The relationship between inver-

sive planes and Buekenhout-Metz unitals was recently explored by Barwick and O'Keefe

in [13]; see also [6, Section 5.] and [92].

6.1 Maximal arcs and Thas maximal arcs

Let K be a Thas maximal arc in a translation plane rnz of order g2 with associated Bruck-

Bose construction as given in Section 1.15 and the notation introduced there. Thus ro,

has a Bruck-Bose representation fla in PG( ,q), where X- denotes a fixed hyperplane of

PG(A,q) and 5 is afixed l-spread of D*. The translation line of zroz, which we denote

by t* and call lhe line at i,nfinity, is represented in Bruck-Bose by the hyperplane X-i

the points of. (.* corresponding to the elements of the spread .S of X*. The Thas maximal

arc K is defined by a 3-dimensional ovoid O inEoo with the property that each element

of 5 contains exactly one point of O. The points of K in Bruck-Bose, are the points of

PG(4,q)\t." contained in an ovoidal cone with base ovoid O and vertex a point X in

158



PG( ,q)\t.". Note that by definition loo is an external line of the Thas Maximal arc

K. In an abuse of notation we shall use X to denote the base point of K in zrnz and also

to denote the image of this point in the Bruck-Bose representation'

Denote by or, . . . ,oq2+r the points of the ovoid O inÐ* which defines the Thas maximal

arc K. Call the lines of Xo¿, i - 1,. .. ,e2 * 1, in PG( ,q), generator lines of K. Let

zron denote the unique tangent plane to O in E- at the point o¿,'i :1, . ' . , q2 +I' Recall

that the unique spread line through a point o¿ of O is contained in the tangent plane zro,

at o¿, since the plane zro, contains a spread line and each spread line contains a unique

(and therefore at least one) point of (?. Denote by s¿ the spread line incident with the

point o¿ of. O.

There exist q* t hyperplanes of PG( ,q) which contain the plane (X,t¿), for a fixed

pointo¿of theovoid 0.Thehyperplane (X,no) containstheuniquegeneratorlineXo¿

of K and therefore the g-l planes in (X,z',u) about the spread line s¿, besides 2.,, and the

plane (X,s¿), represent the q - 1 external lines of K on the point at infinity represented

by rr. These q - 1 external lines together with /oo are all the external lines to K on the

point at infinity of ro" represented by s¿.

The remaining q hyperplanes on (X,tn) each intersect the ovoidal cone in an oval cone.

Let E be such a hyperplane, so that X contains q generator lines of K besides Xo¿.

Planes about s¿ in X, besides t n t-, intersect the oval cone in q points of K and of

these planes all, except (X,tu), intersect the same q generator lines of K. We have the

following well known result:

Result 6.1.1 Let K be a Thas marimal arc wi,th base point X and, ari,s line (.oo in a

translation plane'noz of order q2, where [.* is the translation line of ro". Let P be a

point ol l*, then the secant li,nes of K incident with P besides XP are parti,tioned into

q classes of q - I lines such that the lines i,n a class intersect the same generator li,nes

oÍ rc.

6.2 Excursion into Ts((2)

In this section we recall the definition of the generalized quadrangle ft(O) and some of

the well known properties of this generalized quadrangle.
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Consider the generalized quadrangle Tt(O), defined with the ovoid O in PG(3, q) as per

Result 1.16.4 with the notation introduced there. Let X be a point of type (i) in fr@)

and let Y be the point (oo) and so X y'. Y. Now

{X,Y}t : {(X, ro,),. . ., (X,roo,*,)}

where ot¡. . . ,oq2+r are the points of the ovoid O and ron ls the tangent plane to O in

PG(3,q) at the point oi, i:1,...,82:7. The points in {X,Y}r are points of type

(zz) in rt(O).

Let 21, Zz, Zz be three distinct points in {X, Y}r, then {Zr, Zr, Zs} is necessarily a triad

bV Ç Q axiom (ziz). Considering Zt,, Zz, 23 as hyperplanes of PG(4, q), Zt À Zz l1 23 is a

line XQ on X which intersects Ð- in a unique point Q and Q ø O. Thus in Ts(O),

{Zr, Zr, Zr}t : {points of the line XQ\{A}} u {y}

A point of {Z¡Zr,Zr}Lt is therefore a point of type (iz), since such a point is collinear

with Y, contains X and contains all points o¿ of O such that Q is incident with the plane

r,n. For any ovoid O in PG(3,e), a point Q ø O lies in the tangent planes of exactly

q*1pointsofOandthecorrespondingq*1pointsof(?constituteanovalinO169).

We have therefore that l{21, Zr, Zr}ttl: q + 1 and since 21, Zz, Zs are three arbitrary

and distinct points in {X,y, }t *. have that every triad in {X,Y}t is 3-regular.

Alternatively one could argue that since Y e {Z¡ Zr, Zr}L and since Y is 3-regular,

the flag (Y,l) has property (G) , for all lines (. of. type (ó) and therefore every triad

{Zt, Zr, ft} is 3-regular.

If we let X be a point of type (z) in ft(O) and let Y be the point (oo), then from the

above discussion we can apply Theorem 1.16.3 and construct an inversive plane I"t(O)

fromT3(O) as follows (see also the proof of [67, Theorem 5.3.1])'

Result 6.2.t For the generalized quadrangle ft()) let X be a point of tgpe (i') and let

Y be the poi,nt (æ). The associated i,nuersiue plane I"t(O) is defined as follows:

Points

Circles

Hyperplanes (X,Ton), i - 1,. .. ,q2 *I.
All sets {(X,T¿r),. .., (X,lt,L+r)} where {o",,. . .,o'q+t} are the points of

an oual (plane section) of O.
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6.3 Thas maximal arcs and Inversive planes

Motivated by [92] we have the following definition

Definition 6.3.1 ,4r¿ O'Nan configuration is a set of sir di,stinct points with the fol-

lowing properti,es. The set conta'ins four di,stinct points A,B,C,D of which no three

are collinear and the remai,ni,ng two points E,F are such that {E} : AC ÀBD and

{I'} : AB ¡ C D . The si,r points A, B, C, D, E, F are called the vertices o/ the confi,g-

uration.

Let K be a maximal arc in a projective plane zro of order q. Let X be a point of K.

We say K satisfies property

Ix: If K contains no O'Nan configurations with X a vertex.

IIy: If I is a secant line of K nob through X,, m a secant line of K through

X meeting I in a point of K and Y(+ X) a point of K on rn, then there

exists a line l' * m incident with Y and meeting every line through X

that meets I and such that l' intersects each such line in a point of K.)

We now show that aThas maximal arc K with base point X satisfies 1¡ and IIy and

these properties lead to defining an inversive plane associated to the Thas maximal arc.

LeI K be a Thas maximal arc with base point X in a translation plane roz of order q2

with translation line l-. Note that rnz has a Bruck-Bose representation in PG( ,q) with

the usual notation.

Lemma 6.3.1 K satisfies Iy.

Proof: Suppose there exists an O'Nan configuration in K with X a vertex. Let m1

and m2 be the two secant lines of K not incident with X in the configuration. Let

P¡ be the point of intersection of rn¿ aLd (*, i -- 1,2. The three points of K on m1

in the O'Nan configuration correspond to three generator lines 11, l2,Is of K and m2

intersects these same generator lines of K in the O'Nan configuration. By Result 6.1.1 and

the comments preceding it, in the Bruck-Bose representation of ror,lt,Iz,l3 generâ,te a

hyperplane of PG( ,q)\D* which contains the spread lines corresponding to P1, P2 € .(.oo,

a contradiction since Xoo is the only hyperplane of PG( ,q) which contains two distinct

elements of the spread 5. Therefore there exist no O'Nan configurations in K with X a

vertex. !
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Lemma 6.3.2 K satisfies IIy

Proof: Let I be a secant line of K not on X and let lÀ(.*: {P}
follows from Result 6.1.1.

The result now

¡.

Consider the incidence structure /i defined by:

Points: generator lines of K

Blocks: secant lines of K not incident with X; identifying blocks with their

points and using the property IIy to eliminate repeated blocks

Incidence: is inherited from the translation plane

Lemma 6.3.3 I', i,s a 2-(q'+!,Q,Q-I) design.

Proof: There are q2 f 1 generator lines of K, corresponding to the points of the ovoid

in the construction of K, therefore the number o' of points of Ii is q2 Ì 1. A secant line

of K which is not incident with X intersects q generator lines of K, hence the number k'

of points in a block is q.

By Result 6.1.1, each point of [* corresponds q distinct blocks of. I', and since each

secant line of K intersec!,s (.* in a unique point, blocks corresponding to distinct points

of.tooaredistinct. Thereforethenumberó'of blocksof liistherefore q(q2+1):q3-lq.

By Result 6.1.1 there exist q- 1 secants on a point P e (.* which define the same block

of f*. A generator line of K has q - 1 points of K besides X and there exist q2 secant

lines not containing X through each such point. Therefore in I7ç, the number rt of blocks

containing a point i" qt(q - t) l@ - I) : q'.

Consider two generator lines of K; they each have q - 1 points besides X. From above a

block is defined by q- 1 distinct secant lines of K and therefore the number À, of blocks

containing two fixed points i. (q - t)'l@ - 1) : q - 7.

It follows thal I'o is a 2-(q2 * L, e,q - L) design. !

We have that a block, Bp sar, of Ii is determined by q - 1 distinct secant lines of K

each incident with a common point P e l*. Thus to each block Bp in.Ii is associated

a unique point not incident with the block, namely, the generator line of K on the line

X P. We use this fact to define a ne\ry incidence structure as follows.
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Definition 6.3.4 Let Irc be the inci,dence structure defined bg:

Points: generator li,nes of K

Ci,rcles: {{Btock Bp ol I*}U { the generator line of K in X P} ; for all blocles Bp

i,n I'*\

Incidence: contai,nment

Lemma 6.3.5 The i,ncidence structure I7ç is o 3-(q'lL,q+1,1) design, namely a fi,nite

inuersiue plane of order q.

Proof: 16 has the same number of points and blocks as I'* therefore u : 't)t - q2 + 1

and b : b' : qB + q. The number k of points in a block of 16 is b : b' * 1 : q+7.

The number r of blocks on a fixed point of 16 is given by

r : r'*{ the number of blocks of 1, determined by secant lines on a fixed point of l*)

Using the definition of blocks of /. and Result 6.1.1 we have r : rt * q: q2 + q.

It remains to show that for any three distinct points of 1¡6 there exists a unique block

containing them.

Let 11, 12,fube three distinct points of.I7ç, that is, 11,12,þ are three generator lines of K in

the Bruck-Bose representation of the translation plane. The three lines span a hyperplane

E in PG(4, q) which intersects X- in a plane containing a unique spread element; denote

this spread element by P. Since the hyperplane X intersects the ovoidal cone of the Thas

maximal arc in three generator lines, X contains an oval cone of generator lines. Thus

the planes in X about P represent secant lines of K and define a unique block of. I7ç

containing the points \,12,ls.

We have shown therefore that 16 is an inversive plane. D

Theorem 6.3.6 The inuersiue plane I7ç associated to a Thas mari,mal arc K wi,th base

poi,nt X in a translati,on plane roz is isomorphic to the inuersi,ue plane Irt(O) obtained

from the generalized quadrangle fs(O) (defined in the PG( ,q) with ouoid 0 of the

constructi,on of K.)

The i,nuersiue planes are egglike.

Proof: The result follows from the above discussion of the construction in PG(4, q) of

,16 and Result 6.2.7. !
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Remark: The inversive plane associated to a Buekenhout-Metz unital (see Barwick

and O'Keefe [13]) is isomorphic in a natural way to the inversive planes of Theo-

rem 6.3.6 defined with the same ovoid O of PG(3,q), since both Thas maximal arcs

and Buekenhout-Metz unitals are defined using a 4-dimensional ovoidal cone with base

ovoid a 3-dimensional ovoid (?.

6.4 A characterisation of Thas maximal arcs

In this section we endeavour to find a converse to the main result of Section 6.3. We

attempt to characterise Thas Maximal Arcs with the configurational properties -I¡ and

IIx. We weaken our hypothesis and obtain a partial converse'

6.4.L A sequence of lemmata

Let K be a (maximal) {øt - q2 * q;q}-arc in a translation plane roz of. order q2 with

kernel GF(q), so that zrnz has a Bruck and Bose representation in PG( ,q) defined by a

spread in the hyperplane !- of PG( ,q). Denote by l* the translation line of zro, and

suppose l- is an external line of K.

Let X be a fixed point of K.

We say K satisfies:

Ix: (As in Section 6.3.)

IIir If I is a secant line of K not through X and P is the point of intersection

of lines I and loo, then there exist q - 2 further secant lines of K incident

with P and which intersect every line through X that meets I (these

intersections are all in K).

Suppose K satisfies properties Iy and II\.

We proceed with a sequence of lemmata determining some properties of K, but first we

introduce some terminology.

Each line on X contains q - 1 points of K besides X; call such a set of q- 1 points of K

on alinethroughX avariety. For avariety V (on alinel throughX), labelthe point

at infinity of l, namely I n [*, by Py. We shall sometimes refer to Py as the point at

infinity of the variety I/.
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Let I be a secant line of K not on X. Then I is incident with q varieties and by 11}

there exist q - 2 further secants of K incident with these same q varieties and concurrent

with I in a point P onl.* Callsuch acollectionof g varieties ablock band callthe

associated point P on (.oo the point at infinity of the block ö and say b is a block

of P.

Lemma 6.4.L.L For a point P e (.*,

(i,) Distinct blocles of P are disioint (they haue no uarieti'es i'n common.)

(ä,) P i,s the poi,nt at infi,nity of eractly q blocks.

Proof: Let P be a point on loo.

(i) Let b1 and b2 be two blocks of P. Suppose ö1 and b2 intersect in a variety Vt. Let lt

be a secant line of K on P incident with ór (and therefore incident with every variety in

fu). Since 11 is incident with the variety Vr of block b2 and 11 passes through P, then 11

must be one of the q- 1 secant lines of K on P incident with every variety inb2by IIþ.

Since lr intersects K in exactly q points, blocks å1 and b2 must coincide. We have shown

therefore that distinct blocks of P are disjoint.

(ii) There exist 92 - g secant lines of K on P besides the line XP. For each block of

P there exist q - 1 secant lines of K on P which determine that block and since bV (i)

distinct blocks of P are disjoint, there are exactly g blocks of P. !

Lemma 6.4.1.2 Let P and Q be two poi,nts on loo and let bp, be be a bloclc oÍ P,Q

respecti,uely. Then the blocks bp and, bq intersect i,n eractly 0,L,2 or q uarieties.

Proof: If P: Q then by Lemma 6.4.I.L bp intersects óç in 0 or q varieties.

If P + Q, suppose öp and bqhave three varieties Vt,Vz,V3 in commoî;U contained in

line l¿, i:7,2,3, incident with X. Let -R be a point of K in Vt. By IIjr, lhe line rRP

is a secant line of K incident with P and incident with the varieties in bp; also the line

.R8 is a secant line of K onQ incident with óq. The lines RP, RQ, 12 and 13 are four

lines of an O'Nan configuration in K with X as a vertex; a contradiction, as K satisfies

-I¡, thus in this case bp and bq have at most 2 varieties in common. !

Lernrna 6.4.L.3 There are eractly q3 + q blocks in K.
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Proof: By Lemma 6.4.L.1there are q blocks corresponding to each of the q2 * l points

of. L* and by definition (or the proof of Lemma 6.4.L.2) a block corresponds to a unique

point at infinity. The result follows. n

Lemma 6.4.L.4 LetVt andVz be two disti,nct uarieti,es. There erist eractlA q-I blocks

containing both Vt and, Vz.

Proof: Let Vt be on line 11 through X and let Vz be on line 12 through X. Let r? be

a point (of rc) in V1. The join of .R to each point of Vz defines q - 1 secant lines rn¿

(,i: L,... ,Q - 1) of K, not on X and with distinct points Pr,...Pn-t ott the line at

infinity. The line rn¿ defines block B¿, containing both varieties V1 and V2, and with point

at infinity P¿(fori:1,...,q-1). Thusthere exist at least q-I blocks containing

both Vr andV2.

By IIfr, for each block B¿ there exist q - 2 further lines through P¿ incident with both

I{ and V2, thus giving all the possible lines joining a point of V1 and a point of %. Thus

there exist exactly q - 1 blocks containing both Vr and V2. ¡

Lemma 6.4.1.5 There are eractly q2 blocks containing a giuen uari,etg V.

Proof: Let Pv be the point at infinity of a fixed variety I/. For each point P on the line

at infinity besides Pv,V lies in a block of. P, since there exist secant lines of. K on P

incident with points in V. Therefore by Lemmata 6.4.1.1 and 6.4.1.2, V lies in exactly

one block of P (P € l-\{Py}), with no two distinct points at infinity determining the

same block containing V. Since there are q2 points on l* besides Py, there exist exactly

q2 blocks containing the variety V. !

Let V be the set of varieties and B be the set of blocks and with incidence I the natural

containment relation. We define an incidence structure T : (V,8, I).

Lemma 6.4.1.6 The incidence structureT : (V,ß,I) is a 2-(q" +7,e,8-7) design

with parameters:

,n, : q2+l

À!, q-t

Ir':q
bl

r'
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Proof: Lemmata 6.4.1.1, 6.4.1.2,6.4.1.3, 6.4.1.3, 6.4.7.4 and 6.4.1.5 determine the pa-

rameters of.I' . ¡

Next we define a new incidence structure T : (V,C, I) based on T. Let the set of

varieties V of T be the points P of T and let

C : {{varieties in a block Bp of a point P} U {the variety contained in the line XP}

: for all blocks Bp of. a point P, for all points P on (.*\.

Call the elements of C circles and call C the set of circles in Z.

There is a natural one-to-one correspondence between blocks of.I' and circles of Z since

each block of T ís contained in a unique circle and conversely each circle ofZ contains

a unique block of T,'.

Lemma 6.4.L.7 The incidence structureT: (V,C,l) is a 2-(q'+I,e*I,8lI) desi,gn

with parameters

u

k

b

r

: q2 +r

: q3rq

),2

Proof: Now u : yt : q2 +land ó : b' : q3 +qusing the definition of T andthe natural

one-to-one correspondence between circles and blocks. The number k of varieties in a

circle is one more than the number k' of varieties in a block, therefore k : lc'+ 1 : q+L.

For a variety I/ with point at infinity P, the number of circles containing I/ equals

the number of blocks containing V plus the number of blocks of. P, therefore

r:rt1-q:q2+q.

Lastly, consider two varieties Vr and V2 with points at infinity P1 and P2 respectively.

Variety V1 lies in a unique block of Pz and similarly variety V2 lies in a unique block of

Pr and there are q - 1 blocks containing both Vr and V2. Therefore the number À2 of

circles containing both I/r and V2 is q * 1. ¡

Corollary 6.4.1.8 The followi,ng four statements are equiualent for the inci,dence struc-

ture T.
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(i)

(ü)

(ü,i)

(*)

three di,stinct uarieti,es are contai,ned in at least one ci,rcle

three d'istinct uarieties a,re contained in at most one circle

the desi,gn T has parameter )e : 1

the design I is a fi,nite i,nuersiue plane

Proof: If three distinct varieties are contained in a unique circle, for any choice of three

distinct varieties, then T is a 3-(q2 1-I,e + 1,1) design with the parameters given in

Lemma 6.4.7.7 together with Àg : 1, that is, Z is a finite inversive plane.

Let )3n , i: L,... , (å), be the number of circles containing three given (distinct) varieties

Vt,Vz,V3, for all (å) possible choices of Vr,Vz,Vz.We now count in two ways the number

of 3-flags ofZ

Thus the average number \zuau" of circles on three varieties is given by

\zoave b(å)/ (i)

1

Thereforeif )8. > l forallithen)s,: l foralli. Similarlyif 13. < l forallithen

Àau : 1 for all ¿. n

Lernma 6.4.1.9 Let V and, Vz be two distinct uarieties in a bloclc bp ol a poi,nt P

(P e (.*). Let l¿ be the lines on X contai,ningV, with the poi,nt at infinity of l¿ denoted

bA Q¿, 'i: L,2.

If a Baer subplane B of ro, contains P,Q1,Q2 and X then

ei,ther B contains no points of V1 or V2

or B contains the same number of points of V1 as of Vz.

Proof: Let ,R be a point of I/r in B. Since P R and 12 are lines of B, the point P Rllz is

a point of B. Since 11 and lz lie in the block bp of. P,by IIjt,the point PRaIz of B is

a point on 12 of the maximal arc K, that is P,R ll lz is a point of V2. The same argument

holds if we suppose .R is a point of. Vz in B.

It follows that either B contains no points of I/r and Vz or B contains the same number

of points of Vr as of. Vz. tr
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We now use the results of Section 2.1 and Section 2.2 concerning the Bruck-Bose rep-

resentation in PG( ,q) of some of the Baer subplanes and Baer sublines of ø'nr. In the

following lemmata, a li,near Baer subplane of roz is a Baer subplane of ro, which is rep-

resented in Bruck-Bose by a (transversal) plane of PG(4,ø)\t- which intersects E* in

a line which is not a line of the spread 5 of Ð*; ali,near Baer subline is a Baer subline

of a line of rn" which is represented in Bruck-Bose by a line of PG( ,q)\E-.

Lemma 6.4.1.10 There erists a linear Baer subline in rnz containing X and which

contai,ns at least one further point ol rc. If a li,near Baer subline whi,ch contains X

contains eractly n further poi,nts of K, then euery linear Baer subline whi,ch contai,ns X

and which contains further points of K contai,ns eractly n points of K besi,d,es X.

Proof: Let lr be a line on X containing a linear Baer subline lp1, where 161 contains X

and contains n points of K besides X. Let lr(* lt) be any other line containing a linear

Baer subline Is2, with X e laz, and such lhat lp2 contains further points of K. There

exists a linear Baer subplane B of. ro, containing 16l and lB2 ànd since lsl and ls2 both

have points at infinity, the line at infinity is a line of B.

Let I be a line not through X and such that I contains a point of K in 161 and a point

of K in lB2, then I is a line of B and intersects (.* ina point P of B. Thus, as I is a

secant line of K on P and hence the varieties in 11 and l2lie together in a block of P.

Now by Lemma 6.4.7.9, Baer sublines ls1 and le2 contain the same number of points of

K besides X. The result now follows. ¡

By Lemma 6.4.1.10, the linear Baer sublines of roz which contain X contain either 0 or

rz further points of K, where 1 ( n < q- 1 is a fixed integer. Moreover, since each secant

line of K incident with X contains exactly q - 1 points of K distinct from X, the integer

ndivides q-1.

Lemma 6.4.L.LI If ro, is the Desarguesi,an plane PG(2,q2), then each linear Baer

subline of ro" which contai,ns X contains ei,ther 0 or n further poi,nts of rc, where

| < n 1 q - 7 is a fi,red integer such that n diuides q - 7.

Proof: If rn, is the Desarguesian plane PG(2,q2), then by 1.15.2 and since 7rq2 contains

a maximal arc K we have that g is even. Moreover in the Bruck-Bose representation

of ro" în PG( ,q) the l-spread 5 of X- : PG(3,q) is then a regular spread. By the
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remarks preceding this lemma we have that each linear Baer subline of. ro, which contains

X contains exactly 0 or n further points of K, where 1 1 n 1 q - 1 is a fixed integer

and n divides q-L Suppose that n:1. Firstly if q:2, then K is necessarily a Thas

maximal arc in 'rrq2 j so we consider the case q > 4. Consider two distinct varieties I/r and

Vz of.T contained in lines .fi,(.2of. rq2 respectively. By definition 11 and 12 intersect in

the point X of K. Denote by Pt and P2 the points at infinity of. (4 and 12 respectively. In

Bruck-Bose, the points Pt, Pz on l* correspond to distinct elements P{ , P; of the regular

spread S of l*. In 7, there exist q - 1 distinct blocks which contain the varieties V1

andV2; denote the points at infinity of these blocks by Qr,Qz,... ,Qq-t. In Bruck-Bose

the points Q¿ correspond to q - 1 distinct elements of the spread S; denote these spread

elements by Qi, i:7,... ,Q - 1. There exist q * 1 reguli in 5 containing Pi and P],

therefore there exists at least one regulus /t of lines of 5 which contains Pf and Pl but

which contains no spread element Qi. Lef 7l'denote the opposite regulus of Rin X-. In
Bruck-Bose, the lines /1 and [.2 correspond to planes li and li in PG(a, q) respectively;

both planes contain X and a line Pi, P; respectively of 5.

Since ïL : 7,, the q points of. K in ly are represented in Bruck-Bose by the point X and

g - 1 further points of li\{Pf } on distinct lines of li through X. Similarly for the points

of K incident with (.2. In Bruck-Bose, since q > 4 there exists a line rn in the opposite

regulus of 7l such that the plane B : (m,X) contains a point of K in /i besides X and

a point of K in /i besides X; denote these two points of K in B, which are distinct from

X, by Yi,Y; respectively. Each point {* corresponds to a point Y¿ in rn, incident with

the variety Vrfori:t,2. The lineYlY2 is distinct from(.oo and intersects /- in apoint

Q which is necessarily the point at infinity of a block containing both varieties I/r and

V2. In Bruck-Bose Q corresponds to a spread element Q* contained in the regulus 7?

of .S; a contradiction, since the regulus 13 contains no element which is the Bruck-Bose

representation of a point of infinity of a block containing the varieties V1 and Vz. Hence

n+L and thereforen> 1 as required. ¡

Note that a Mersenne prime is a prime number which can be written in the f.orm2p -7
for some positive integer p which is necessarily prime (see [47, Theorem 18]). There are

31 known Mersenne primes and it is conjectured that there exist an infinite number of

Mersenne primes.
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Corollary 6.4.1.L2 Suppose K is a mani,mal {qt - q2 * q;q}-arc in the Desarguesi,an

plane PG(2,q2) sati,sfying properties Iy and IIi for some point X in lC. U q-t is a

Mersenne pri,me, then K i,s a Thas manimal arc wi,th base point X and aris li,ne l*. Z
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