Fast Asynchronous VLSI Circuit Design Techniques

and their Application to Microprocessor Design

Shannon V. Morton, B. E. (Hons.)

Department of Electrical and Electronic Engineering
The University of Adelaide
Adelaide, South Australia.

January 22, 1997

Addenda

Section 2.2 - Asynchronous hardware

This thesis is focussed on practical asynchronous circuit design with an emphasis on micro-
processors, and therefore only those processors which have been designed to fabrication have
been included in the literature discussion. Fabricated test structures and coded microproces-
sors do not provide enough reliable data to justify their discussion in this context, although in
Section 8.1 a description of coded superscalar processors, as compared to the author’s, is given.

Section 2.2.2 - AMULET I and I1

The AMULET 1 design was the first generation attempt at implementing a sixth generation
commercial ARM6 processor, and was built with significantly less man-power and resources.
This makes comparisons between them difficult, and the performance gap of 50% should be
treated cautiously. The subsequent AMULET II processor has since demonstrated improved
performance over the ARM6.

Section 3.5 - The ECS representation

The ECS representation is intended to enable asynchronous circuits to be specified in a clear
and concise format which models the interaction of data and control wires. It is not intended as
a formal tool for synthesis, and as such has not been developed using formal methods. Instead,
an intuitive description of the representation has been presented based on the practical imple-
mentation of asynchronous circuits, as this is the major focus of the thesis.

Section 4.1 - Algebraic improvements of a TS

The simplifications described in this section are synonymous with those of boolean logic.

Section 5.3.1 - Dynamic logic

The nature of the data stream will also impact the power dissipation of a dynamic versus a
static gate.

Section 5.3.3.2 - Self-timed pseudo-nmos logic

This circuit has a fast completion detection time compared to the static logic tree, as evidenced
in Table 6.8. Compared to a typical dynamic gate however, it will be slow.

Chapter 6 - Self-timed Architectures

The pseudo self-timed architectures presented in this chapter do not require additional safety
margins. The computation and completion paths are closely matched in layout, and an implicit
margin is already included in the handshaking overhead to compensate for any variations.

Errata

Page 47, line 1: "sinks input" should read "sink’s input”
Page 77, line 2: "though" should read "through"

Page 86, line 3: "is" should read "are"

Page 99, line 29: "need" should read "needed"

Page 123, line 11: "best the there" should read "best there"
Page 155, line 11: "blocks" should read "block”

Contents

Abstract

Declaration

Preface

Acknowledgements

List of Figures

List of Tables

1 Introduction

1.1 Advantages of asynchronous systems

1.2

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7

Global communication

Data dependent computation times

Resilience to operating conditions
Reduced power dissipation
Incremental improvements
Synthesis and verification

Power spectrum

Disadvantages of asynchronous systems

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5

Control complexity
Testability
Area overhead

Operating speed

Integration and software support

...................

ix

xi

xil

xiii

xvi

1.3 Asynchronous paradigms . « « s w v a s 6o s o0 2 0 m s a wa we e w v 7

1.3.1 Timing assumptions 0t 7

1.3.2 Control signalling . 4 s wi s vw o5 mies k5 o 5w ss a8 Ea &5 8
1.3.3 Signalencoding . . s ws-cmm e somun wn mmacemn o5 w6 9

1.3.4 Summary i e e e e e e e e e e e e e e e 10

14 Thesisoutline5 56 § &G sk §6@ma@eh §hime wss oumsn 10
2 Related Work 12
2.1 Synthesis and verificationo 12
211 Tangram o5 spo o sd no@@e ¥ i% 3§ 13
2.1.2 Communicating processes v vv e 13
2.1.3 Signal transition graphs (STGS) w: o5 s msmewm va oo mmn 5o 14
2.1.4 STG related synthesis oL 15
2.1.5 Other contributions cemees & & mw e wius 0w ss s 15

2.2 Asynchronous hardware e 15
2.2.1 Micropipelines and the CFPPo 16
222 AMULET IandIl ssasses ssmeess owmes s 17
2.2.3 DCCerrordetectort it e 17
2.2.4 Caltech miCroprocessor v v vt v v v v et 18
2.2.5 Othercontributions vy womiss co sxwnag sam s 18

2.3 Summary of related works L. 18
24 Aneedforspeed 8% caww e s Bae s ne e e s 19
3 Event Controlled Systems (ECS) Design Representation 21
3.1 Conventions c o i e e e e e e e s E S W s 21
3.2 Event controlled elements o 22
3.2.1 Muller-Celement 22
3.2.2 Mergegate 23
323 Sendgate e e i w e ks 24
324 Feedpgate e e 25
3.2.5 Restoregate L L e 26
3.26 Untilgate e e e 27
3.2.7 Latchingelement 28

i

3.2.9 Relativegatespeedso 29
3.2.10 Micropipeline module exceptions 29
3.3 Some formalisms for gate representations 30
3.4 Analysis of methodologies 31
3.5 The ECS representation i 33
3.5.1 Transforming signals into the temporal domain 34
3.5.2 ECS operators and temporal equations 36
3.5.3 Some ECS gate examples.o 40
3.5.4 Comparative gate representations 43
3.5.5 Some example TS’s and their corresponding circuits 43
3.5.6 Precedence and properties of temporal operators 45
3.5.7 Interconnectivity of gatesin ECS 46
3.5.8 Principles of error detection 47
3.6 SUMINALY . .« v o v v e e e b e e e e e e 50
Fast Asynchronous Circuit Techniques 51
4.1 Algebraic improvements of a TS 51
4.1.1 Useless TE substitutions o4,
4.1.2 Useful TE substitutions oo 55
4.1.3 Taking advantage of the typical scenario 55
4.2 Improving acknowledge times 56
4.2.1 Example: sharing of a common unit 59
4.2.2 Example: data latching circuits o0 60
4.2.3 Comments on improving acknowledgements 63
4.3 Activating functional units 64
4.3.1 Conditionally activated parallel units 64
4.3.2 Generating a Jout event in the general sense 66
4.3.3 Generating a Jout event for exclusively triggered units 68
4.3.4 Splitting a tree of select gates into individual feed gates 69
44 Reducing event path delayso 69
4.4.1 Moving metastability detection out of the event path 69

3.2.8 Delays and logic functionso 29

i

4.5 SUMMAIY ms w5 % o0 @ oy & % 6% e 5 %08 @ 0 BN ¥ % 5s %0 EH KR 0 ¥ 73

Asynchronous Pipelines 74
5.1 FIFO pipelines e 75
5.1.1 Micropipeline 2P FIFOs 75
51.2 AP FIFO circuits o o i i et e e e e 76
513 Afast ECSFIFO G ssmas ya@s5 7
5.1.4 Comparison of FIFO designs 79
5.2 DPipelines with processing delays 80
5.3 Precharge pipelines: general concepts 82
5.3.1 Dynamic Logic %ua &aean i 83
5.3.2 Requirements of a PP for dynamic logic 84
5.3.3 Methods of completion and precharge detection 86
5.4 Decoupled 4P precharge pipelines o000 90
5.4.1 Implementations for PP, PPG,and PPy 90
5.4.2 Performance comparisons e e e s 91
5.5 ECS precharge pipelines e 92
5.5.1 PPa implementation 92
5.5.2 PP implementation o0 o o0 93
5.5.3 PPy implementation 94
5.5.4 Performance comparisons00 0w e 95
5.6 Comparison of ECS and D4P PP structures 96
5.7 SUIMIMATY . .« o v v e ot e e e e e e e e e e e e e e 97
Self-Timed Architectures 98
6.1 Strict self-timing requirementso o e 99
6.2 Designing and utilizing self-timed units 101
6.3 Adder Structures65 3@k GEEIEEL RS 102
6.3.1 Self-timed ripple carry implementation 103
6.3.2 Self-timed ripple select implementation 105
6.3.3 Comparison of ST adders 106
6.3.4 Pseudo self-timing (PST) 107
6.3.5 PST ripple carry implementation 108

v

6.3.6 PST ripple select implementation 109

6.3.7 Comparison of PST and ST adders 110
6.4 Incrementer structures s e m BE &8 e 5 e s e 5 112
6.4.1 Self-timed incrementer i e e e 113
6.4.2 Incrementer performancel e e e e 114
6.5 Comparator Structures s e e v o o %o ¥ e w5 0u o w A & @ e s 115
6.5.1 DPossible implementationso o0 e 116
6.5.2 Comparator tree v s wow 559 5 @ 53 ¥ 8 S B HEwH @ 117
6.5.3 Comparator performance oo o oo e e 119
6.6 Multiplier structures L 120
6.6.1 Exploiting self-timed operation 121
6.6.2 Simple partial product generationo 121
6.6.3 Radix 4 Booth encoding for generating partial products 122
6.6.4 Recoding Booth’s algorithm to improve performance 124
6.6.5 Implementation, floorplanning, and area usage 125
6.6.6 Performance and comparisons L. 126
6.6.7 Potential improvements 128
6.7 SUMIMATY .« . v v v v v v v o v v e e s s s s e n e e e e e e REECEW B 130
ECSTAC: A Pipelined Microprocessor 131
7.1 Design considerationso e 132
7.2 Instruction set architecture Lo 133
7.3 Architectural overview Lo e e e e 135
7.4 Processor sub-systemso e e e 137
7.4.1 Instruction decode 137
742 Operandfetch et innesmns 138
7.4.3 Adder, comparator, and stack processor 142
7.4.4 Arithmetic and logical unit ¢« . o v o v v v oo v 147
745 Orderunit 558 0f 53 @55 933 148
7.4.6 Registers and scoreboarding oL 149
7.4.7 Programcounter 55 eeo e 5w ee oGy 151
7.5 Testability issues L e 154

7.5.1 Delay modelled Vitbus, 154

7.5.2 Interfacedelays Lo 155
753 Scantesting EREE &% E 155
7.6 Simulationresults L L s e 156
7.6.1 Sub-system simulations L. 157
7.6.2 Core simulation environments 158
7.6.3 General purpose instruction streams 159
7.6.4 Instruction streams for determining bottlenecks 161
7.6.5 CompariSOnS v v v v e e e e 162
T SUMMAry o a e e e e e i EEE S ES S 164
ECSCESS: A Superscalar Microprocessor 166
8.1 Other asynchronous superscalar microprocessors 167
811 SCALP céi@ss c3 semvs s . 167
8.1.2 Fred e e e e e 168
8.1.3 Rotary pipeline processor 169
8.2 Characteristics of ECSCESS i qon cwn on v uu . 170
8.3 Instruction set architecture Lo 171
8.4 General architecture Lo 173
8.5 Implementation of the shore 174
8.5.1 Controlling RAW hazards 175
8.5.2 Controlling WAR hazards 176
8.5.3 Structure of the pre-FU unit 177
8.5.4 Generating the return event tothesun 178
8.5.5 Switching networko oo 179
8.6 Implementation of the sun and moons. 179
8.6.1 Globecontroller 180
86.2 PCecontrollers%5ss cs;css 565, 181
8.6.3 Branch moon controller 182
8.6.4 Stack moon controller 182
8.7 Implementation of functional units 183
871 AIDunit. i amamoms e s e 183

vi

872 MEMunit e e
8.7.3 CMP unit e e
8.8 Floorplanningissues e
8.8.1 Sizeoftheocean
8.8.2 Size of the switching network
8.8.3 A floorplan based on the minimum FU width
8.8.4 Floorplanning for a larger FU width
8.9 Simulationresults
8.10 CompariSons v v v v i e
8.11 Extensions and improvementso oL
8.11.1 Incorporating interrupts
8.11.2 Exception handling,
8.11.3 Reducing the ocean width for WAR and RAW hazards
8.12 SUMMATY . . .+« v o v ot e e e e e e
Conclusions
9.1 Further work s m s eam oo momm ss www au wemsm o & & o e o1
Fundamental Temporal Equations and Corresponding ECS Gates
ISA of the ECSTA C Microprocessor
B.1 Memory instructions semiss nowsc s m 5 6o e
B.1.1 Two byte instructions
B.1.2 Four byte instructiono s e
B.1.3 Theunused mode e
B2 ALUinstructions pli@isd ss@smes gawaa .
B.2.1 Two byte instruction (short mode)
B.2.2 Three byte instructions (long mode)
B.3 Branch instructions L
B.3.1 One byte instruction - CALL,
B.3.2 Two byte instructions - BRANCH
B.4 Stack instructions L e e e e
B.5 Special instructions G BN EEG SR e EE 8w

vil

196
199

201

C ISA of the ECSCESS microprocessor 208

C.1 Branchinstructions 4 s s o v v v s v o o b @ s am o e 208
C.2 Interrupt instructionS . s s wi sow w it s v s m s s S5 6 6% 6 6 = ow @ 6w - 209
C.3 MOVEinstruction mmeusezmns oswnny - 210
C.4 LDCinstruction o 0 it e e e e e e 210
C.5 FUINStructions o v v v v vt e e e e e e e e e e 211
C.5.1 Registerunit comwesve s wsns s o- 211
C.5.2 Arithmeticunit e e 212
C.5.3 Multiply, divide, and sqrt unit 212
C.5.4 Shifter and logical unit o oo vh va e v e 213
C.5.5 Comparator unit 213
C.5.6 Memoryunit%8% s6@ss 5§55 600m. 214
C.5.7 Floating point units and co-processors 215
Bibliography 216

viil

Abstract

Over the past decade a variety of asynchronous synthesis techniques have been pro-
posed. The majority of these have been concerned with generating provably correct
circuits with high reliability, whereas others have focussed on producing circuits with low
power dissipation. However in taking such approaches the resulting circuits are usually
swamped with a large number of gates in the critical paths and are consequently inefficient
in terms of speed.

This thesis describes a collection of novel design techniques engineered for high speed
operation (such as fast pipeline control circuits and pseudo self-timed computations). In
addition, a new gate representation is proposed to better reflect their functionality in an
asynchronous domain. As an illustration of these design techniques two microprocessors

have been implemented:

e ECSTAC is styled as a linear pipeline with a load/store architecture and an 8 bit
data path and a 24 bit address path. It employs fast pipeline control circuits and
utilizes some interesting asynchronous techniques for bypassing stages, controlling
data hazards, and register fetching. ECSTAC has been fabricated using ES2’s 0.7pm
DLM CMOS process and demonstrated a peak operating speed of 28 Mips.

e ECSCESS is structured to take advantage of self-timed data dependent compu-
tations and to employ functional parallelism. It has a 32 bit data path and can
provide for up to 32 single precision (16 double precision) functional units which
interact directly with each other, thus enabling out-of-order execution and global
results forwarding. Their operation is fully decoupled from branches and interrupts
to minimize stalling. Emphasis has been placed on maintaining a high throughput
to the functional units. It employs novel design techniques for rapid data hazard
detection between units, PC updating, and decoupled branch evaluation and branch
target determination. ECSCESS has been simulated in VHDL with delays compara-
ble to those of the 0.7um standard cell library used in ECSTAC, and demonstrated

a peak operating speed of 181 Mips.

X

Declaration

This thesis has been submitted to the Faculty of Engineering at the University of
Adelaide for examination in respect of the Degree of Doctor of Philosophy.

This thesis contains no material which has been accepted for the award of any other
degree or diploma in any University, and to the best of the author’s knowledge and belief
contains no material previously published or written by another person, except where due
reference is made in the text of the thesis.

The author hereby consents to this thesis being made available for photocopying and
for loans as the University deems fitting, should the thesis be accepted for the award of

the Degree.

S.V. Morton
January 22, 1997

Preface

The author obtained his degree in Electrical & Electronic Engineering at the University
of Adelaide in 1991, graduating with first class honours as duz of the class. He then
enrolled in the degree of Doctor of Philosophy at that same university in 1992 of which
this thesis is the culmination. The author also took one year’s intermission to work in
England on the EXACT project which involved a collaboration between a number of

European companies and universities investigating asynchronous systems.

S.V. Morton
January 22, 1997

xi

Acknowledgements

I would firstly like to thank my partner in crime Sam S. Appleton with whom I've
worked on this project for the last few years, and who kept himself out of trouble by
designing a beastly fast cache system for the ECSTAC processor (so if it doesn’t work,
it’s his fault) as well as numerous other groovy control structures. He’s been a great man
to bounce ideas off (as well as rubber balls) and a pretty good raver to boot. Thanks
Sammy.

A special thanks too to my supervisor, Mike Liebelt, who unlike his stunt double
“Andrew Denton” has not treated the project as comic relief. His guidance and expertise
has kept me on the bright, technicolour highway and out of the dark alleyed dead-ends
I'd have probably trod without him. He’s also been great at getting us well-needed funds
for this research, as well as being very understanding of my nocturnal instincts.

I’d also like to thank those others who have come and gone along the way: Dr. Pucknell
for his pioneering work in this field and some rather humourous final year lectures; Andrew
Johnson for helping the project get off the ground to start with; Jungwook Yang for his
initial work in devising a suitable cache architecture; and all the final year students who
got the best projects ever in the known and unknown universes to work on.

Let me also thank the English connection. In particular Dr. Mark Josephs of South-
bank University in London who gave me the opportunity to work with their group for a
year (as well as giving me lots of pounds), and the whole AMULET crew of Manchester
University whose brilliance in this field is truly admirable. Even the fat one.

Lastly, let me thank my parents for leverything!, the guys in the HiPCAT and VLSI
Labs for letting me play groovy music and exchanging filthy comments, and the two most

wonderful women in the world (Debz and Joolz) for lots of other stuff...

S.V. Morton (always jammin’)

xii

List of Figures

1.1
1.2
1.3

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

The clock skew problem and an alternative asynchronous protocol. 2
The isochronic fork. Lo 8
Four and two phase handshaking protocols. 9
Signal transition and state graphs for the cgate. 14
A micropipeline architecture with a logic-level latch controller. 16
Symbol, timing, and VLSI layout of a cgate. 22
Symbol and timing of a mergegate.o 23
VLSI layouts for an zorgate. 24
Symbol and timing of a send gate. 24
VLSI layouts for a latch. 25
Symbol, timing, and circuit diagram of a feed gate. 26
Symbol of a select gate. 26
Symbol and timing of a restore gate. 26
Circuit diagrams for the restoregate., 27
Symbol and timing of the until gate. 28
Two implementations of an event driven latch. 29
Representations of the cgate, send, and feed gates using STGs. 32
A typical transitioning sequence of a gate in ECS. 36

Waveforms for the send and feed gates in the voltage and temporal domains. 41

Waveforms for the cgate and a latch in the voltage and temporal domains. 42

An ECS reconfigurable FIFO. 44
A slice of the input circuitry for a discrete Fourier transform unit. 44
An illustration of a ¢event line. 46
Examples of EV errors for the send and merge gates. 48

x1il

3.20
3.21

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17

5.1
9.2
5.3
0.4
9.5
5.6
3.7
5.8
5.9
5.10

5.11

Determining a CV error using rise and fall times. 49

Example of a potential glitch for the andgate. 49
Simple gated pulse circuit and its temporal specification. 52
Degraded gated pulse circuit and its temporal specification. 53
Improved gated pulse circuit and its temporal specification. 54
An example system constructed in a SI environment. 57
An improved ECS version of the example system. 58
SI and ECS circuits for sharing a common unit. 59
Two SI micropipeline control structures for the data latching circuit. . . . 60
An ECS implemented SI version of the data latching circuit. 61
Two optimized ECS implementations of the data latching circuit. 62
Conditional activation of unit Y in parallel with unit X. 64
Two SI implementations for generating a dout event. 65
An ECS implementation for generating a dout event. 66

A generalized conditional trigger structure using SI and ECS approaches. . 67
Generating dout for exclusively triggered units using SI and ECS approaches. 68
A halting circuit with metastability and its transfer characteristic. 70

An improved halting circuit with metastability and its transfer characteristic. 71

An Hspice simulation of the improved halting circuit with metastability. . . 72
A micropipeline stage also indicating a fast-forward implementation. 76
A simple four phase FIFO controller. 77
A decoupled four phase FIFO controller. 78
An ECS micropipeline and the state pipeline FIFO controller. 78
A typical delay-modelled pipeline.o 80
A delay element for positive transitionsonly. 81
A general dynamic logic computational block. 83
A self-timed static logic method for generating cdone and pdone. 86
A self-timed pseudo-nmos logic method for generating cdone and pdone. . . 87

A method for generating cdone and pdone which closely models the worst
case pull-down time. Lo oo 88

A delay modelled method for generating cdone and pdone. 89

xiv

5.12 Precharge pipelines implemented with a decoupled four phase controller. . 91

5.13 An o precharge pipeline implemented in ECS. 93
5.14 A f precharge pipeline implemented in ECS. 93
5.15 A v precharge pipeline implemented in ECS. 95
6.1 A self-timed ripple carry implementation of an adder cell. 104
6.2 A self-timed ripple select implementation of an adder cell. 106
6.3 Self-timed and pseudo self-timed generalized views of an adder cell. 107
6.4 A pseudo self-timed ripple carry implementation of an adder cell. 108
6.5 A pseudo self-timed ripple select implementation of an adder cell. 109
6.6 The adder cell and validity detection used in the AMULET processor. . . . 111
6.7 A self-timed incrementer without unnecessary carry propagations. 114
6.8 A 2 bit comparator node and the generation of its initial inputs. 118
6.9 Symmetric and asymmetric tree structures for a full comparator. 118
6.10 Configuration of a self-timed multiplier. 126
6.11 Two possible floorplans of a self-timed multiplier. 127
6.12 A low area implementation of a self-timed multiplier. 129
7.1 The general structure of the FCSTAC microprocessor. 135
7.2 A block diagram of the OF stage. 138
7.3 Control circuit for routing the data from the ID into the OF stage. 139
7.4 Event bypass method for controlling register accesses. 141
7.5 Logic bypass method for controlling register accesses. 142
7.6 Control circuit for the first stage of the ACS. 144
7.7 Control circuit for the second stage of the ACS. 146
7.8 Refetch control for the second stage of the ACS. 147
7.9 GQGeneral structure of the low-latency FIFO used in the order unit. 149
7.10 A tag cell used in the register scoreboard. 150
7.11 General architecture of the PCunit.. 151
7.12 Interface circuitry for the DC and ACS write back phases to the PC. . . . 1562
7.13 Control schema for the PCunit. 153
7.14 Register cell used for scan testing the outputs from each stage. 156
7.15 A microphotograph of the ECSTAC microprocessor. 163

fxv

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

General structure of the ECSCESS microprocessor. 173

General structure of the globe.o oL 174
Control structure for governing RAW hazards. 175
Control structure for governing WAR hazards. 176
Control structure for governing the operation of the FU. 177
Generating a return event to the sun from 32 FUs. 178
Overall control structure of the combined sun and moons system. 180
General structure of the globe controller. 180
General structure of the PC controller. 181
General structure of the branch unit. 182
General structure of the stack unit. o000 183
A driver component used in the switching network. 186
Floorplans for ECSCESS based on two different widths of a FU. 187
Block diagram for processing interrupts. 192

xvi

List of Tables

1.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4

5.5
5.6

6.1
6.2
6.3
6.4

Dual-rail encoding of a binary value.

Relative gate delays in ECS assuming similarly sized transistors and loading.
Representations of the cgate, send, and feed gates in various other paradigms.
Representations of the cgate, send, and feed gates using Martin’s CSP. . . .
Order of precedence for the ECS operators.

Various properties of the ECS operators.

Relative speeds of three gated pulse circuits.
Relative speeds of five implementations of the data latching circuit.
Relative speeds of three implementations of a conditional triggering circuit.
Relative speeds of two implementations of a generalized conditional trig-

gering circuit.

Relative performance of six FIFO circuits.
Relative performance of four delay modelled pipeline circuits.
Three different design paradigms for precharge pipelines.
Comparison of precharge pipelines implemented with a decoupled four

phase controller. L.
Comparison of precharge pipelines implemented using ECS..
Comparison of the ECS and decoupled four phase precharge pipelines as-

suming 1ns computation, precharge, and detection delays.

Conditions for generating the output carry of a full adder.
Three states required for implementing self-timed logic.
State encoding of dual rail carry propagation signals.

State table for the dual rail carry propagation signals.

xvil

54
63
66

67

6.5
6.6
6.7
6.8

6.9

6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3

Al

B.1
B.2
B.3

C.1
C.2

Comparison of three self-timed adders. 106
Comparison of three pseudo self-timed adders. 110
State encoding of the AMULET carry propagation signals. 111
Comparison of ECS and AMULET adders, detection mechanisms, and a

known fast adder. 112
Simulation results of a self-timed incrementer. 114
Simulation results of a 32 bit comparator tree. 119
Radix 4 Booth’s algorithm for encoding partial products. 122
Combinations of two partial products which produce an output sum. . . . 124
Recoding of Booth’s algorithm to provide the partial products. 125

Simulation results and comparisons of a 32 bit signed integer self-timed

multiplier. L 127

Register accessing requirements of the fundamental instruction set. 140
Statistical information from Hspice simulations of each FCSTAC sub-system.157

Relative instruction frequencies used for the general testing of ECSTAC. . 159

Simulation speeds of ECSTAC for unit specific instruction streams. 159
Power estimations of each unit for a typical instruction stream. 161
Simulation speeds of ECSTAC for bottlenecked instruction streams. 161

Comparison of performance characteristics of various asynchronous micro-

PLOCESSOIS. « « o« o v v e e e e e e e e e e e e e e e e e e 164
Instruction frequencies used in generating code for ECSCESS. 189
Simulation speeds of ECSCESS for varying DC times. 189
Speed comparisons of various superscalar asynchronous microprocessors. . 191
Fundamental temporal equations and their corresponding gates. 201
ALU Instructions. . w: s s ws sa @ s smme an & 6 i o @ 56 € %o w o) 8 5 205
Branch Instructions. o 0 v i e e e e e e e e e 206
Special instructions. gz #6 s @ 6 JE B e 6 6w HN Nk BB e EE B 207
Instruction formats. e e e e e e e e e 208
Fundamental instruction set: o s s s c s i s s s o5 s v s o s 0 o su & 208

xviil

C.3
C4
C.5
C.6
C.7
C.8
C.9

Interrupt instructions. Lo 209
32 bit constants for the LDC instruction. 210
Proposed FU allocations for ECSCESS. 212
Arithmetic instructions. 213
Multiply, divide, and sqrt instructions. 213
Logical and shifting instructions. 213
Comparator instructions.o e 214

xix

Chapter 1

Introduction

VER the last decade asynchronous systems have received a resurgence of interest
O amongst the scientific community [MBL"89a, FDG"94, Kes95]. This has largely
been spurred by the difficulties currently encountered in clocking large systems [DWA*92],
issues which will only complicate further as feature sizes reduce, die sizes increase, and the
use of multi-chip modules (MCMs) increases. Furthermore at the dawn of digital circuit
design a synchronous approach was chosen since it avoided the race and deadlock hazards
of asynchrony. However, automated techniques have since been developed which avoid
these hazards entirely, and in fact can now provide greater reliability in their asynchronous
synthesis [Mar86, vBS88].

Asynchronous systems also possess a number of properties which make them more ad-
vantageous for certain applications than their synchronous counterparts. However, given
that there are numerous approaches to asynchronous design which are as different from
each other as they are with synchronous approaches, the ability to utilize these advantages
varies. Conversely, an asynchronous implementation also introduces difficulties which are
avoided in a synchronous one, and again the degree of disadvantageous behaviour exhib-
ited by each of the asynchronous paradigms can be significantly different.

It is therefore the focus of this chapter to discuss the relative merits of both asyn-
chronous and clocked systems, as well as the relative merits of the many different

paradigms which can be used in the design of asynchronous circuits.

1.1 Advantages of asynchronous systems

1.1.1 Global communication

In a fully asynchronous systems there is no global clock routing. Instead, the control
signalling between blocks is effected by localized communication employing a form of
request/acknowledge (handshaking) protocol. The task of routing these localized com-
munication signals is significantly less arduous than that of global routing.

Furthermore, in routing a global signal one must be wary of the effects of clock skewing,
which can cause some parts of a system to latch newly arriving data rather than the old
data from the last clock phase (Fig.1.1a). For large systems this phenomenon requires
special attention [DWA192]. In an asynchronous system however the signalling protocol
ensures that no part of a system begins computing new data until all subsequent stages

which use that data have latched it (Fig.1.1b).

0

i drivers & —
' wire delays Il [Unit 1]
clock pulse
at source
) Processing between Processed re ack
drivers & stages (delay = tf) ata =4
wire delays
[Unit 2]

(a) (b)

Figure 1.1: 1In (a) to prevent system failure the delay between 2 and #I must be less than the
fastest processing time #f. In (b) Unit 1 cannot process new data (issue reg) until Unit 2 has
latched the data from the previous phase (issued ack).

Global clock signals are also required to drive a large number of gates, and to produce
fast clock edges at these gates requires many driver stages which occupy a lot of silicon
area ([DEC88] devotes approximately 30% of its die to this task). Cascading these driver
stages to different parts of the system also complicates the skewing problem. Removing
the global clock then potentially reduces the die size of a chip (however this must be

countered by the silicon increase in providing the additional control for handshaking).

1.1.2 Data dependent computation times

Some functional units (such as adders, comparators, and incrementers) employ some
degree of signal propagation in computing their result, and as such the computation time
of that unit is dependent on the values of its source operands. For example, an incrementer
with random input data will have no carry propagation 50% of the time (for data with
an LSB of “0”), a one bit propagation 25% of the time (for data with an LSB of “017),
and so on, resulting in an average propagation length approaching only 1 bit as the data
width approaches infinity. This is significantly shorter than the worst case propagation
delay which is equal to the data width!

Self-timed computational units can therefore utilize this property in their architecture
and provide a completion signal (such as req in Fig.1.1b) as soon as the computation is
complete. Synchronous systems cannot utilize this property as the computation time for
any one stage is fixed by the global clock period. Furthermore, this period must be long
enough to account for the longest possible delay of the slowest stage of the entire system,
which could be significantly longer than is necessary elsewhere.

Note however that in these instances it is the overall latency of the computation which
is improved, not the throughput. This is because in terms of throughput, the rippling
computation can be pipelined down to an arbitrary propagation length, to the extent
that a synchronous implementation can out-perform an asynchronous one (due to the
handshaking control overhead of the latter). However in terms of latency, the worst case
scenario must still be accommodated by the synchronous system, which is only made worse
by pipelining because of the larger number of stages required. This is especially so for large
data widths, such as the 512 bit word size used in cryptography. By reducing the latency
of computation through self-timed asynchrony, processor delays such as data hazards,

branch target computations and program counter incrementing can all be improved.

1.1.3 Resilience to operating conditions

As a further extension to data dependent operations, self-timed asynchronous computa-
tions are also more resilient to operating conditions than are their synchronous equiva-
lents. Factors such as temperature, supply voltage, and process spread all serve to alter

the computation times of the same operation between chips (or even between different

locations on the same chip), so that the clock period must have an additional safety mar-
gin to encompass the vast majority of deviations. Those outside of this will not meet
specification, and those within it will not be running at their maximum speed.

With self-timed logic the completion signal from any one stage is, like the computation
itself, dependent on the operating conditions. Therefore a slower operating point will not
cause failure, and a faster operating point will, in contrast to the synchronous case,

improve the speed of the chip.

1.1.4 Reduced power dissipation

Power reduction in an asynchronous system results from the fact that inactive units do not
generate any logic transitions and therefore have no power dissipation due to switching
currents. In comparison, a synchronous system will have a significant portion of its power
dissipated by the continually active clock pulses which drive a very large capacitance.
Techniques such as clock gating can reduce this considerably, however it is infeasible to
clock gate every hierarchical element of the design (due to the increase in area, skew,
and complexity) to approach that achieved implicitly with asynchrony. With the use
of dynamic logic, the removal of unnecessary precharge and activation phases can also

further reduce power dissipation in the asynchronous case [FES94].

1.1.5 Incremental improvements

The fact that a synchronous chip must supply a clock period at least as great as its
slowest component means that a new, faster design for some other part is redundant (in
terms of clock speed) unless the slowest component(s) can also be improved (which may
well require a complete re-design of the chip). Introducing a faster component into an
asynchronous system however can in fact produce an improvement in the overall speed,

since this is not purely governed by the slowest module as in a clocked design.

1.1.6 Synthesis and verification

Control circuits for asynchronous systems can be readily specified in a formal nota-

tion, such as transition equations [Puc90, Appendix 2], signal transition graphs (STGs)

[Chu87a] and trace theory [Ebe89]. Furthermore, VLSI programming languages for asyn-
chronism such as Tangram [vBKR'91] and CSP [Mar90] have recently emerged as a
means for an even higher level of design abstraction. These formalisms enable the rapid,
automated synthesis of asynchronous control circuits which can also be formally verified

to prove their correctness. Consequently, asynchronous systems can also be more reliable.

1.1.7 Power spectrum

Synchronous systems have a power spectrum dominated by multiples of the clock fre-
quency, whereas asynchronous systems approximate a white noise spectrum. This is
especially advantageous for microwave applications, where the integration of logic onto
an antenna is required to have a negligible effect on the antenna characteristics. Further-
more, a self-timed asynchronous system is less susceptible to low-level electro-magnetic
interference (EMI), because the propagation delays introduced by this will only slow down

an asynchronous system [LZB92], but can cause failure in a synchronous one [CZ94].

1.2 Disadvantages of asynchronous systems

1.2.1 Control complexity

Although the problems associated with global clock routing are removed in an asyn-
chronous system, other problems associated with the localized communication strategy
are introduced. In particular, each individual stage of the design must have its associated
control schema explicitly designed and tested to ensure its correct operation (this is in
addition to the testing of the data path). Furthermore, each hierarchical composition of
these stages must also be thoroughly tested. A synchronous system requires only one

equivalent condition (in theory): that the clock period be greater than the stage delay.

1.2.2 Testability

If a synchronous design doesn’t work because the clock frequency is too high then it’s a
simple matter to reduce this post-fabrication to achieve correct functionality. This cannot
be done with an asynchronous system since no global control signal exists (techniques for

mimicking this approach however are discussed in Section 7.5.1).

5

Asynchronous circuits are, by virtue of their greater number of interacting control sig-
nals, more susceptible to races, deadlock, and metastability than are synchronous circuits.
Therefore the incorporation of testability is not only a more arduous task, it may also
excessively reduce system speed, increase area, and may even create additional circuit
hazards. Furthermore, many commercial test approaches rely on the fact that a finite
number of clock pulses will occur between data inputs and data outputs, whereas in a
self-timed system this is an unknown quantity, and can be especially problematic when
integrated into a synchronous environment [WPS95).

The use of partial scan testing has reportedly been used with success in some ap-
plications of asynchronous logic already [HBB95, KB95, Ron94], as have other aspects
of asynchronous gate-level testing [BR95, Haz92]. However the use of built-in self-test
(BIST) techniques, which are used extensively in synchronous systems, remain untouched

in the realm of asynchrony.

1.2.3 Area overhead

Although asynchronous implementations reduce silicon area by the removal of clock
drivers, some asynchronous paradigms (in particular, dual rail logic) require approxi-
mately twice as many gates to be placed in the data path (incorporating both data and
timing information with each bit). This is a considerable increase and a serious detriment
to this particular paradigm. Furthermore, for small systems the area saved by removing
the clock drivers (which in such cases may be minimal) could be overridden by the area

introduced by the handshaking control.

1.2.4 Operating speed

In an asynchronous system there is a communications overhead which is required to
implement handshaking between stages. This overhead can be quite excessive (in terms
of the number of gates in the critical path) for a system with complex interconnectivity,
and in many instances is a limiting factor to the overall system speed. A synchronous
system however is only limited by the data processing delay of its slowest stage which,
by careful design, can be made faster than the handshaking overhead of an otherwise

asynchronous implementation.

1.2.5 Integration and software support

Another factor that discourages the use of asynchronous logic is that the market is over-
whelmingly dominated by synchronous systems. Therefore integrating an asynchronous
chip into such an environment requires the additional overhead of asynchronous to syn-
chronous interfacing [CZ94, AML95b]. There is also a plethora of software programs
geared towards easing the design of synchronous systems, and very little targeted for

asynchrony.

1.3 Asynchronous paradigms

The pro’s and con’s of asynchrony outlined above give an indication of its more important
properties, and if the advantages can be utilized without significant detriment from the
disadvantages, then the topic of asynchrony becomes worthy of pursuit.

To this end it is imperative to investigate the range of asynchronous control schemas,
signalling protocols, and operating modes which are available, particularly since not all

paradigms share the same degree of advantageous (and disadvantageous) behaviour.

1.3.1 Timing assumptions

There is essentially a choice of three timing-related models which may be applied when
designing asynchronous systems. A delay-insensitive (DI) model assumes that both the
gate delays and the wiring delays are unbounded. This model is the most robust as it
implies correct functionality regardless of both the place and route schema used and the
drive strength of the gates themselves. However it is also the most expensive in terms of
area and communication overhead, and in practice cannot be used without compromising
the assumption of wire delays. In particular, the isochronic fork [Mar86] is often tolerated
(albeit in contradiction to the DI assumption) as shown in Fig.1.2. Here, the delay
between nodes A and B is assumed equal (but still unbounded) to the delay from node A
to C.

A DI model with an isochronic fork is often dubbed quasi-delay-insensitive (QDI).
However, this is in essence nothing more than a restrictive class of the speed independent

(SI) model, whereby gate delays are still assumed to be unquantifiable, but the wiring

—e
B
.Q—.-——A. fork
wire
&
o

Figure 1.2: The isochronic fork.

delays are assumed to be zero. The SI model is better suited to practical circuit design
than the DI model since a wider range of gates can be employed.

Finally, the least restrictive model assumes that the gate delays have an upper bound
and is dubbed the bounded delay (BD) model. This is the assumption used in synchronous
designs. It is less robust than the other two models and is therefore generally unsuitable
for methods of formal synthesis and verification. In practice however it is the most realistic
approach to use, since gate delays can in almost every circumstance be reliably quantified.
As is evidenced by the wast array of synchronous chips, the BD model can be employed
with relative ease to design functional, reliable circuits.

There are also two modes of operation which may be used with these timing models
which specify the restrictions on the environment (that which supplies the stimulus to the
design). The fundamental (FM) mode of operation requires that after an input change no
further inputs be applied to a system until all its internal signals have settled, whereas
the input-output (I0) mode enforces no such restriction. A fundamental mode circuit is
easier to synthesize because it’s guaranteed to be in a safe state when each new input is
applied (thereby simplifying hierarchical composition), whereas an 10 component requires
a careful evaluation of each individual instance to meet this criterion. The IO mode
however provides for greater design flexibility by being less restrictive on the environment’s

input signalling.

1.3.2 Control signalling

There are three main methods of effecting the handshaking protocol of Fig.1.1b. The first
approach is dubbed four phase (4P) signalling and requires two control wires (one for req
and one for ack) operating as shown in Fig.1.3a.

The rising edge of req (Areq) signifies to the receiver that its data is valid, and once

the receiver has finished with this data it issues Aack, at which time the sender’s data

req req

ack [J ack

datajée LX X7 data:ﬁ KX:X/ QX

One complete cycle 1 i Next cycle 'One complete cyclef i Next cycle E

(a) (b)

Figure 1.3: (a) A four phase handshaking protocol, and (b) a two phase protocol. Solid arrows
indicate the sender’s actions, and dashed arrows indicate the receiver’s.

may become invalidated. To then complete the 4P signalling, the sender issues a falling
edge on req (Vreq) which is then followed by the receiver issuing \7ack. Similar schemes
exist in which the data validity cycle is spread across different phases of the 4P signalling
(for example, from Areg to yack).

A two phase (2P) signalling protocol as shown in Fig.1.3b also requires two wires,
and is identical to the 4P protocol until the receiver issues Aack. In contrast to the 4P
protocol, this then completes the handshaking cycle, and a new cycle is initiated when
vreq occurs. Consequently the signalling direction is irrelevant in a 2P environment,
and only one data validity scheme is possible. Although in one sense a 2P protocol can
achieve a higher speed then a 4P protocol by removing the redundant return-to-zero (RTZ)
phase, the control circuits necessary to implement the handshaking are more complex and
therefore slower. In [DW95] it was shown that, in a speed independent model, 4P pipeline
circuits actually run faster than 2P circuits.

Finally, in [vBB96] a method was proposed for executing a 2P handshaking protocol
with only one wire, driven high by the sender and low by the receiver. This technique is

relatively new and remains to be thoroughly investigated.

1.3.3 Signal encoding

Two different forms of signal encoding are predominant in asynchrony. The first is dual
rail (DR) encoding, in which three data states are encoded onto two wires as in Table 1.1.
This approach enables timing (validity) to be coupled with each bit of data and therefore
allows accurate self-timed computations to be devised. It guarantees that a completion
signal can only occur from a unit after the data is valid: a property that is often exploited

in SI and DI synthesis. However, a doubling of the data width (which results from 2 wires

9

being needed per bit) and an increase in gate complexity means that approximately twice

the area of a synchronous implementation is used.

Wires State

w0 | wl | encoded
1 1 | not valid
110 logic 1
0 1 logic 0
0 0 error

Table 1.1: Dual-rail encoding of a binary value.

Single rail (SR) encoding is used almost universally in synchronous systems, in which
one wire is used for each binary data value and timing information is decoupled. In an
asynchronous system, this timing is then represented by additional handshaking signals
to which the data information is bundled. This approach is less suited to formal methods
as it can only approximate data validity (and therefore prevents self-timing), however its

area usage is significantly less than with dual rail encoding.

1.3.4 Summary

Given the range of asynchronous implementations available it’s not surprising that dif-
ferent styles are used for different purposes. For example, SI and DI models are popular
amongst formalists because of their mathematical provability and are also commonly used
in the design of complex systems (where automation from a set of rules is time saving).
Single rail encoding is often used in the bulk of designs except where aspects of self-
timing are to be exploited, when dual rail encoding is used (note that a conversion and
area penalty is sometimes then suffered). BD models are often used in engineered de-
signs (or as a form of post-processing to a synthesized SI circuit), for which gate level

optimization techniques can be incorporated to increase system performance.

1.4 Thesis outline

This chapter has presented an overview of the merits of asynchrony, as well as introducing
the many different design methods which can be used to implement asynchronous systems.

The following chapter will present a summary of the most important contributions to

10

asynchrony, focussing on their paradigms, goals, results, and significance. The focus of
the author’s event controlled systems (ECS) methodology will also be outlined.

Chapter 3 will present an asynchronous library of gates and different approaches to
their representation. The ECS representation developed by the author, which is intended
to simplify and properly reflect asynchronous circuit behaviour, will also be introduced.
Aspects of error detection based on this representation will also be given.

Chapter 4 will present a number of asynchronous design techniques which should
be used in the design of high speed circuits, and chapter 5 will present some very fast
pipelining circuits for use with both static and dynamic logic. Chapter 6 will introduce
some novel self-timed design techniques and architectures as well as a new single rail
approach to self-timing, dubbed pseudo self-timing (PST).

Chapter 7 will detail the design of a pipelined asynchronous processor called EC-
STAC, including its ISA, high level implementation, control structures, test strategies,
and simulation and fabrication results. Chapter 8 will likewise detail the implementation
of another processor ECSCESS, aimed at increasing parallelism and fully utilizing PST
techniques. Both of these chapters will compare the performance of these ECS processors
against others previously reported.

Chapter 9 will then present conclusions from the work presented in this thesis as well

as some ideas on how it can be extended for future applications.

11

Chapter 2

Related Work

HERE has been a vast amount of research on asynchronous systems design, and to
Treview every aspect of this discipline is impractical and unnecessary, since excellent
comprehensive reviews can be found in [Pee, MU, Hau95, GJ90]. Only a summary of the
most important contributions which have been made to the field is therefore presented in
this chapter, with an emphasis on those aspects of asynchrony which have been tackled
by various research groups, and why their results have been significant.

From such a review it should be possible to determine those areas of asynchronous
systems design which have proved inferior when compared to clocked systems. This will
then indicate directions for further investigation from which the focus of this thesis will

be drawn.

2.1 Synthesis and verification

The applicability of asynchrony to formal methods has spawned a vast network of research
groups who have endeavoured to harness this property into algorithms for both synthe-
sis and verification. Synthesis begins with a high-level system specification and reduces
this through various processes into a circuit-level implementation (this also incorporates
aspects of verification at the high-level). Verification often begins with a low-level spec-
ification of a system (usually incorporating a SI or DI model) and then determines the

locations of potential hazards.

12

2.1.1 Tangram

Tangram [vBKR'91, vBR95] is a high-level programming language based on Hoare’s
communicating sequential processes (CSP) [Hoa85] and Dijkstra’s guarded command lan-
guage [Dij76]. A specification in Tangram is similar to a conventional programming model,
enabling procedures, loops, conditional execution, sequentiality and parallelism, etc.

A Tangram program is translated into a set of handshake components which provide
an intermediary system description prior to gate-level synthesis [vB93]. Handshake com-
ponents communicate along localized request and acknowledge channels initiated by active
and passive elements respectively. Some examples of handshake elements include a JOIN
(to synchronize two or more concurrent processes), a SEQ (to enable signal transfers
between passive and active components), and a VAR (to store the value of a variable).

Compilers have been devised by Philips which translate these handshake circuits into
different asynchronous targets, including both four and two phase single and dual rail
circuits. Their design approach provides for a very fast and reliable compilation of asyn-
chronous circuits, and they have used it to design a number of variations of asynchronous
error detector chips for digital compact cassette and CD players (see Section 2.2.3). Their
work has shown conclusively that an asynchronous circuit can dissipate significantly less
power than a synchronous equivalent, however their automated approach tends to result
in a large number of gates in the control path, and is therefore unlikely to be of benefit

in the design of high speed circuits.

2.1.2 Communicating processes

Alain Martin [Mar86] has also devised a high-level programming language similarly based
on the work of Hoare and Dijkstra. It also translates the original specification into a
series of handshaking elements and then decomposes these (using techniques akin to trace
theory [Dil89]) into simple conditions which can be used to construct the final gate-level
circuit. The target paradigm is however restricted to a 4P QDI implementation, which
demands a large number of gates in the control path and is therefore unlikely to be of
benefit for high speed circuit design. A number of systems, including an asynchronous

microprocessor, have been fabricated using this synthesis technique (see Section 2.2.4).

13

2.1.3 Signal transition graphs (STGs)

STGs are interpreted Petri Nets whereby places become nodes, transitions become arcs
linking the nodes, and the number of tokens in a place is limited to one. They were first
developed by Chu [Chu87b] and have since gained considerable popularity amongst the
asynchronous community [PG93, HC95, JPKJ95] as a verifiable specification for SI circuit
synthesis.

As an example a STG specification of a Muller C element (or cgate for short) is shown
in Fig.2.1a, where the symbols + and — indicate positive and negative transitions of
the associated variable. The cgate is often dubbed the AND gate to events, as it only
generates an output event when transitions on both of its inputs (in the same direction)
have occurred. Techniques exist for verifying that a STG meets the required criterion for

a decomposition into a hazard-free SI circuit [Chu87b].

Figure 2.1: (a) A signal transition graph and (b) a corresponding state graph for the cgate,
with inputs @ and b and an output z.

A STG is first contracted into a subset of STGs for each variable, and these are then
transformed into a state graph with unique state assignment (such as in Fig.2.1b) for

synthesizing the logic function, which for the cgate is: z = a.b + z(a + b).

14

2.1.4 STG related synthesis

Myers [MM93] has extended the STG synthesis routine to incorporate timing information
onto each arc. This enables timing-redundant arcs to be removed from the STG which
subsequently reduces the complexity (and increases the speed) of the synthesized circuits.

A group at the University of Berkeley have produced an extensive design environment
called SIS [SSL*92] which incorporates the use of STGs as well as other specification
methods. SIS provides an X-interface for STG based synthesis and incorporates a range
of optional optimization programs to improve the final circuit’s performance (through
logic minimization and timing assumptions).

An independent extension to the graphical specification of STGs is called Change
Diagrams (CDs) [KKTV92]. CDs enable an initial input phase of the graph to be specified
prior to the cyclic phase required by STGs. Furthermore, the arcs between nodes are
given additional properties which enable AND and OR transitions as well as the ability
to remove pending events. These extensions improve upon the restrictiveness of a STG

specification.

2.1.5 Other contributions

Josephs and Udding [JU90a] have devised an algebraic approach to the design of DI, SI,
and handshake circuits which has been used to synthesize some simple systems (such as
a toggle and a FIFQO), however the algebra is rather cumbersome even for simple gate
specifications. Ebergen [Ebe89] has provided a synthesis technique based on trace theory
specifications. His approach has been used to generate 2P, dual rail circuits [EP92] which
are extremely area intensive. For example, a simple half-adder cell requires over 190

transistors [Hau93] in its implementation.

2.2 Asynchronous hardware

The majority of asynchronous research groups have focussed their attention on the topics
of synthesis and verification. Consequently there are relatively few examples of fabricated
asynchronous chips, and those that have been done are mostly small, experimental design

projects. However there have been a few significant milestones in this area.

15

2.2.1 Micropipelines and the CFPP

The micropipeline design style was first introduced by Sutherland [Sut89], and has since
been used by a number of research groups as a basic architecture for pipelined processor
implementations [KdSRA91, FDG193, CL95]. Micropipelines use a 2P, speed indepen-
dent, bundled data protocol to control the activity between adjacent stages (utilizing the

cgate) and incorporate dedicated event controlled latches between stages (Fig.2.2a).

————~
reg_out

—

Event Event
3

Driven 2
-

LOGIC

LOGIC
o%

N |= ;
£Driven 3

Latches Latches

Cd

P

ack_in ack_out

p
DA
(a)
Figure 2.2: (a) A simple micropipeline architecture with delay-modelled processing between
stages, and (b) an alternative controller for use with smaller, logic-driven latches.

A selection of macromodules exist which enable more complex designs to be con-
structed. Examples of these are a select, which steers input events to one of two output
events depending on a governing control signal; a call, which enables two separate event
streams to access a common unit; and a toggle, which alternately steers input events to
its two outputs. As an example construction of these units, an alternative latch controller
for the event driven latch is shown in Fig.2.2b. The enable signal of this design can be
used to interface to conventional logic-driven latch designs, which are significantly smaller
than the event-driven latch (for which various implementations are given in Fig.3.11).

An extension to the micropipeline is the counter-flow pipeline processor (CFPP)
[SSM94], which is a micropipeline style architecture devoted to processor implementa-
tions. The fundamental difference is that the CFPP enables both the forward and reverse
flow of information through its pipeline (for instructions and data results respectively),
thus reducing the need to stall for register write-backs. An issue against the CFPP is
that arbitration between flows is needed at every stage (which increases the cycle time),

and the data path is large (requiring a lot of latches per stage).

16

2.2.2 AMULET I and II

The AMULET group at Manchester University developed an asynchronous microprocessor
[FDG*93, Pav94] based on the (almost entire) ISA of an already commercial processor,
the ARM6. Their processor, AMULET1 utilized a 2P micropipeline style architecture
and incorporated some interesting design techniques for register-locking and interrupt
handling. In implementing the ARM6 asynchronously the group focussed on exploiting
the properties of low power consumption.

Although the AMULET1 design failed to improve upon the synchronous ARM6 im-
plementation in all aspects, it did demonstrate the feasibility of implementing complex
systems asynchronously. Furthermore, this was the first asynchronous attempt at a sixth
generation synchronous machine, and as such the fact that their performance (in most
critical areas such as power and speed) came within a factor of two is encouraging.

The AMULET group have recently completed a 4P implementation of the ARMG6
processor called AMULET?2, which has provided almost double the speed of the 2P mi-
cropipeline approach (using a SI control model). Branch prediction and caching have
also been incorporated, along with more refined low-power techniques, to improve perfor-

mance.

2.2.3 DCC error detector

The group at Philips who devised the Tangram VLSI programming language have also
used this to generate a number of asynchronous chips. In particular, an error detector
chip for a digital compact cassette player [vBBK194]. The group have targeted their
designs for low power dissipation, which is convenient since the DCC chip has a very slow
speed specification.

Since the first “first-time-right” chip was fabricated the designers have aimed at im-
proving the area usage, testability, and portability of their approach. In particular, the
initial dual rail design has been re-implemented using single rail data [vBBK*95], and the
asynchronous cell library has been implemented using a generic gate library to facilitate
technology remapping.

They have integrated this chip into a DCC player and have demonstrated its func-
tionality. The SR chip consumes approximately 20% of the power of its synchronous

equivalent with only a 20% area overhead.

17

2.2.4 Caltech microprocessor

The VLSI programming language developed at Caltech has been used to design a simple
16 bit asynchronous RISC-style microprocessor [MBL*89a]. The language is targeted
primarily at producing a verifiably correct design, and the chip was reported to operate
(at 5V supply) at 18 Mips drawing 45mA of current [MBL*89b]. Being a QDI design the

chip exhibited a high tolerance to operating conditions such as temperature and voltage.

2.2.5 Other contributions

A self-timed floating-point divider has been implemented using a SI model in [WH91],
which has also been incorporated into the commercial SPARC64 processor reported in
[WPS95]. Current-sensing has been investigated by [DDH91, GJ95] as an alternative
means of signifying completion detection in an asynchronous pipeline, and numerous
groups have worked on the design of sub-systems such as buffers [CL86, YHJN95] and
adders [Gar93, DA93]. Some work on processor design has also been done at the archi-
tectural level in [ECFS95, End95al, and the author reports on the implementation of an
asynchronous FFT and a high speed microprocessor in [MAL94, MAL95].

2.3 Summary of related works

A lot of the work done in asynchrony has been in the area of synthesis and verifica-
tion, and in particular using the SI and DI models. Furthermore the trend recently has
shifted from 2P micropipeline style architectures to 4P pipeline control (which under such
paradigms has been shown to generate smaller and faster circuits). There has also been
a shift towards using single rail data with combinational logic between stages (as in a
synchronous machine) rather than dual rail data, and then bundling this to SI control
with the computation time between stages modelled as a lumped delay (as in Fig.2.2a).
This approach compromises the SI control by assuming a BD model for the computational
delay only.

The focus of most hardware groups has been on utilizing asynchrony for low power
consumption, with system speed as a secondary concern. Aspects of testability and self-

timing have also been of interest to these groups.

18

2.4 A need for speed

In considering the research groups who are involved with hardware design it is evident
that asynchronous logic has in fact demonstrated improvements over synchronous designs
in the area of power consumption. When specific efforts are made towards implementing
low-power circuits, these improvements are substantial, however it seems also that power
reductions can still be achieved even without a significant focus on this.

In contrast, asynchronous designs have not been shown to exhibit any marked speed
improvements over synchronous designs (except for a few rare instances). In fact, the con-
verse is generally true. The bulk of asynchronous hardware has been speed limited by the
control overhead and has therefore exhibited a notably slower speed than could be imple-
mented synchronously. This issue is a severe impediment to the adoption of asynchrony,
since processor speed is often a more important issue than power consumption.

It is therefore of interest to devise techniques which enable faster asynchronous control
circuits to be implemented. In this quest it is hoped that the speed deficit of asynchrony
will be reduced, perhaps even to the point in which the speed surpasses a corresponding
synchronous implementation for certain architectures. Furthermore, it is anticipated that
the additional benefits of low power consumption will still occur in an asynchronous design
even without explicitly designing for it. This then is the focus of this thesis: to devise fast
asynchronous control systems which, if needs be, compromise other issues such as power

dissipation.

The question which must then be asked is which of the asynchronous paradigms and
design approaches presented thus far is most suited to the design of high-speed systems?
To implement high speed circuits one must have a great deal of control over the low-level
implementations. Consequently the synthesis techniques available are unsatisfactory, as
they are restricted to a given set of rules and building blocks (such as handshake elements).
The ideal behind synthesis is to shelter the designer from low-level design aspects and deal
only with the high-level architecture (such as inter-connectivity and system functionality)
and this is in direct contrast to the requirements for high speed circuits. Although post-
optimization techniques exist for many synthesis approaches they still do not provide for
complete control over the low-level implementation and are limited in their scope.

It is of course possible to further optimize synthesized circuits at the gate level. This

19

may involve incorporating dynamic logic, removing unnecessary gates based on timing as-
sumptions, re-implementing complex structures etc., but it is still to be expected that the
initial synthesis routine could be bettered by an engineered approach whereby all aspects
of the design process are controllable and more implementation options are available at
all stages of design.

It seems necessary then to abandon formal synthesis techniques and concentrate on
devising engineered control circuits, since these provide for greater design flexibility. Con-
sequently the asynchronous environment considered by the author will in general be a
bounded delay system operating in the IO mode, as this is the least restrictive model
available.

A single rail encoding of the data stream will also be used for a number of reasons.
Firstly, the gate complexity of single rail circuits is simpler than for dual rail which should
therefore result in faster circuit speed, and the area usage is less which therefore reduces
cost. Furthermore, the familiar gate structures used in clocked designs may be employed
which facilitates the use of current standard and generic cell libraries.

The last issue to resolve then is whether or not to implement 4P or 2P control circuits.
Now although 4P has been demonstrated to be faster than 2P for speed independent
circuits, the same is not necessarily true if bounded delay assumptions are used. This is
because low-level engineered circuit design has not been extensively applied to both 4P
and 2P approaches to enable an accurate comparison. It has been quoted that a lot of the
speed reduction in 2P is due to the greater gate complexity, however in a BD model many
of these gates can be non-acknowledged (given timing assumptions) and can therefore
be removed from the critical path. The same can be said of 4P of course, however the
additional RTZ phase must also be accounted for which complicates the design process and
reduces the number of gates which can be non-acknowledged. The 2P design paradigm is
therefore used which, as will be shown, can result in faster circuit implementations than
is possible in a 4P paradigm.

To summarize then, the design environment considered by the author to facilitate
high-speed circuits is a two phase, single rail, bounded delay, bundled data, input-output

model.

20

Chapter 3

Event Controlled Systems (ECS)

Design Representation

OR engineering asynchronous control systems one must have both a library of basic
9:{ elements for circuit composition as well as a means of representing the functions
of these elements for verification. Now although these elements can be represented in
terms of binary logic equations (as per the cgate of Fig.2.1), this may not be the best
representation to use for simplicity and descriptiveness.

This chapter will first outline the basic set of event controlled gates used by the
author in the composition of asynchronous circuits, of which many are synonymous to
the basic elements of micropipelines [Sut89] but with some significant exceptions. These
exceptions arise from a new gate representation which is explained in Section 3.5 and
which is considered by the author to best reflect their functionality. Techniques for circuit

verification and error detection will then be presented.

3.1 Conventions

In the gate descriptions to follow a number of conventions have been adopted. Firstly,
a distinction is made between event lines, which are used to effect the 2P communica-
tion protocol and for which only the logic transitions are relevant, and data lines, which
transmit conventional binary information and whose logical state is of relevance. Con-
sequently, the event lines are drawn diagrammatically with arrowheads and data lines

without. Similarly, the name of an event line is prefixed with either a “d_” or a “0”

21

symbol, to differentiate them from data lines.

Secondly, primed events are indicated on the gate symbols by a filled dot, and in a
temporal specification (described in Section 3.5) with an overline. These are events which
are assumed to have occurred at initialization and therefore set the initial state of that
gate. A primed event equates to an inversion of the signal at the gate input, although in

some instances an alternative gate implementation is used.

3.2 Event controlled elements

The range of basic event controlled gates used in the composition of asynchronous circuits
is described below. To further facilitate their understanding, each gate description is
accompanied by a timing diagram, symbol, and one or more VLSI schematics or circuit
diagrams. Relevant variations from the micropipeline gate library are also discussed.

It is important to note that a number of gates have the same logical functionality
but are treated differently due to their conceptual differences in the ECS framework.
Consequently, some gate symbols also differ from those in the corresponding micropipeline
library. This issue is further compounded by the fact that 2P event control wires (called
event lines) and binary data signals (called data lines) are conceptually different in the

ECS framework.

3.2.1 Muller-C element

This is often known simply as the cgate, or rendezvous. Its logical function is to transfer
the state of its inputs to the output when all of these are at the same state (as indicated

in Fig.3.1).

d_il1z® d—ina__.____q
) > d_out
(a) d_in d_inb_ ’—@“
{>C d_out
dima L1 E %
] El

VDD

ainb_ [[L
) dow_ [L L (o

Figure 3.1: (a) Circuit symbol, (b) timing diagram, and (c) static VLSI schematic of the cgate.

GND

22

The cgate’s behaviour is however better described in terms of its transitions (which is
also more relevant to the 2P control schema being employed). In this respect, a transition
on its output dout is produced once transitions have occurred (in the same direction) on
all of its inputs. For this reason the cgate is often considered to be the AND function for
events, hence the similarity in the circuit symbol. Note that in the ECS design framework
discussed in Section 3.5, two successive events on an input event line are prohibited unless
an output event occurs between them. An n-input cgate can be constructed by extending

the n and p transistor trees in Fig.3.1c, or by a combination of these basic 2-input elements.

3.2.2 Merge gate

The merge gate performs the OR function for events, as a transition on either of its inputs
is translated into a transition on its output. Note however that it is unrealistic (in terms of
the VLSI implementation) for two input transitions in close proximity (one on each event
line) to result in two transitions on the output, as propagation delays and rise and fall
times prevent this from happening. This scenario must therefore be prevented, and input
transitions must be adequately time-separated so they can be processed individually by the
subsequent circuitry (Section 3.5.8 provides a method for detecting when this requirement

is violated).

d_ina]

d_ina—
> d_out d_inb [1] |
d_in

dou [[1L
(a) (b)

Figure 3.2: (a) Circuit symbol, and (b) timing diagram of the merge gate.

It is evident from the timing diagram in Fig.3.2b that the merge gate is nothing
more than an zor in binary logic, and an n-input merge gate can be constructed from a
combination of these basic 2-input gates. Two VLSI implementations of an zor are shown
in Fig.3.3.

The 6 transistor design is the most compact of the two but does not have a very good
drive capability, so for driving high loads a similarly structured znor is often used with

an inverter buffer on the output. The 8 transistor design is faster and can drive higher

23

™

- el
[Gednb d_ina, d_out I | |d_inb
| | l__]
B 1] il
s ay JE B E-

(a) (b)

Figure 3.3: (a) 6 transistor design, and (b) fast pseudo-nmos 8 transistor design of an zor
gate.

loads than its 6 transistor counterpart, but its noise margin is worse and it dissipates
more power. It is only used in critical event paths or where trees of zors are required
(such as in parity detection or the merging of numerous events), for which the sequential
pass transistor paths of the 6 transistor design produce excessive delays. Conventional
multiplexer based zors are also used on rare occasions, and for some control circuits the
fast and small 6 transistor zor of [WFF94] is used (although this was only discovered after

the majority of designs were already completed).

3.2.3 Send gate

This gate passes an input event to the output when a controlling data signal is high.
Furthermore, an input event which occurs when the controlling signal is low will be kept
pending until the control eventually does go high, at which time the pending event will

be propagated through to the output. Fig.3.4b illustrates the send gate’s operation.
d_in l |

d_i
d_out control | 1]
control

dou__ [1L
(a) (b)

Figure 3.4: (a) Circuit symbol, and (b) timing diagram of the send gate.

This gate is not to be found in the micropipeline library although its implementation
is identical to that of a logic-driven latch. The distinction is made however since the

send gate operates with event lines whereas a latch operates only on data. Also, the send

24

gate must be initialized to force the output into a known state. Two VLSI schematics of
a send gate (or latch) are shown in Fig.3.5, and initialization for an output low can be
incorporated by inserting a pull-down (or a pull-up for Fig.3.5b) transistor at the node
labeled inat.

T f . Nf VDD
ini d_out
control b= I d_out
—] ; — |:| GND

(a) (b)

Figure 3.5: (a) Compact latch circuit and (b) a fast inverting Svensson latch design.

The circuit of Fig.3.5a is very compact and is therefore often used as data latches or
for non-critical event paths. The circuit of Fig.3.5b [YS89] is a faster (but larger) design
used in critical event and data paths.

The send gate provides a useful method for stalling an event until some other con-
trolling condition becomes true, as well as enabling fast bypass techniques for conditional
pipeline execution (see Section 7.4.3 for example). Note that in the ECS design framework
explained in Section 3.5, successive input events are prohibited unless an output event

occurs between them.

3.2.4 Feed gate

The feed gate is similar to the send gate in that it too passes an input event to the output
when a controlling data signal is high, however in this instance an input event which
occurs when the control is low is not kept pending, and is therefore never propagated
through to the output. This fundamental difference can be seen by comparing the second
event in the timing diagrams of Figs.3.4b and 3.6b. In the former, an output event is
eventually generated (when control goes high) whereas in the latter no such event occurs.

By combining two feed gates (driven by control and its complement), the select module

in the micropipeline library is created. Note however that in the design of the feed gate

25

d_in :l — =
d_out
(a) control : d_in |

ain_ 1L N ‘
|

control l
(b) d_out | | [(c) control

=

Q

w= | doout
p—

|

Figure 3.6: (a) Circuit symbol, (b) timing diagram, and (c) circuit diagram of the feed gate.

(shown in Fig.3.6¢) the complement-driven event output is also available from the top
latch, so that only one feed gate is actually needed in practice for its implementation

(although conceptually two feed gates are still used). The symbol chosen for a select

d_in— d_out0
control d_outl

Figure 3.7: Circuit symbol of the select gate.

module is shown in Fig.3.7.

The feed gate is often used in practice as a select module as well as for conditionally

triggering the operation of a sub-system.

3.2.5 Restore gate

The restore gate is similar in functionality to the send gate but with a controlling event
instead of a controlling data line. That is to say, an event which is pending at the input to
the restore gate will propagate through to the output when a subsequent event occurs on
the control line Opass, as shown in Fig.3.8. Note that if no input event is pending, then
an event on the control line will have no effect on the output. For example, the second

event on Opass in Fig.3.8b.

d_in |] |
d_pass
d_in—&r d_out dpass__ [| [|_
d_out | |
(a) (b)

Figure 3.8: (a) Circuit symbol, and (b) timing diagram of the restore gate.

26

The restore gate has no synonymous module in the micropipeline library however it
is similar in functionality to the decision-wait unit popular in other paradigms [Kel74,
JU90b], whose more restrictive functionality can be replicated by using two restore gates.
Note however that the decision-wast element is often used to construct a call module in the
micropipeline library (which grants access of a sub-system to one of two non-conflicting
input requests), of which the restore gate is therefore primitive.

Figure 3.9 shows two different circuit diagrams for the restore gate. The first design
simply generates a short pulse (using a self-timed pulse circuit as described in Section
4.2.2) each time an event on dpass occurs, and if an event on din is pending, propagates
this to Oout via the send gate. This design is small in size but incurs a delay of 3 gates

between dpass and dout, and is therefore used in non-critical event paths.

d_pass d—pﬁ._c_ o
=
By = \
d_in =) d_out
‘ BT 7
(| & 1
o8 |

(a) (b)

Figure 3.9: (a) Pulse driven circuit, and (b) sequential logic circuit for the restore gate.

The second design is derived from a state transition graph using asynchronous se-
quential logic techniques [Puc90, Chapter 6], and consequently views the events as binary
signals. Note that a C-element is used in this implementation but that its functionality
should be interpreted differently from that given in Section 3.2.1, since in this instance
it’s used as a logical block (obeying the logic equation given in Section 2.1.3) and not as
an event controlled unit. This second implementation is larger than the first but incurs

only a 2 gate delay between dpass and dout, and is therefore used in critical event paths.

3.2.6 Until gate

The until gate can be crudely viewed as a two to four phase converter for event lines. It

sets an output data signal high after an event on one input occurs, and then sets it low

27

again after an event on the other. It is quite obvious from this that the until gate can be
implemented as an zor if the events on the two input lines are alternating (an enforced
restriction), however it is viewed conceptually as a different gate because its inputs are
event lines, not data lines.

It is useful to be able to ascertain from the circuit diagram which of the two input
events to an until gate sets the output data high (or low, as the case may be), and also
to see what the initial state of the data is prior to any events occurring. For this reason
the circuit symbol of Fig.3.10a is used for the until gate, as opposed to the conventional
zor symbol. The event which strikes the outer bar of the symbol sets the output low, and

the primed event (signified by the dot) indicates the initial state of the output data.

d_ina

d_ina > ¢ d inb
d_inb—stfe S nb_ L[

(a) (b)

Figure 3.10: (a) Circuit symbol, and (b) timing diagram of the until gate.

Whether an until gate is implemented as an zor or znor gate depends on the initial
states of the inputs and the required initial state of the output, however if the conven-
tion is adopted whereby all event lines are initialized low, then the until gate shown in
Fig.3.10a is implemented as an zor (if the dot were placed on the other input, then an
znor implementation would result). Note also that the first input event to occur must be

on the non-primed event line (since they’re constrained to alternate).

3.2.7 Latching element

Some event driven latching elements are proposed in the micropipeline library and can be
implemented as shown in Fig.3.11. Both circuits assume the dhold and Opass events are
initially low and are alternating, and that the latch is initially transparent. The problem
with these designs is that they occupy a lot more silicon area than the logic driven latches
shown in Fig.3.5, have a high load on the event lines, and also require the event line’s
complement to be generated. Logic driven latches are therefore used in almost every
instance (except for when the data path is very small), and their circuit symbol can be

seen in Fig.3.6d.

28

| | |
[| |
. =N

_E _DO‘L | E
in {-]— ; é I>o out n — -l_ :; E—Do— out

riéw‘»ﬂ i

T |

| d_hold ' d_pass | d_hol<c:1<|— d_pass

Figure 3.11: Two implementations of an event driven latch.

3.2.8 Delays and logic functions

It is often necessary (particularly in a bounded delay, IO paradigm) to insert lumped
delays into an event stream, such as for the modelling of logic functions or to wait for
some associated data to become valid. Delays are implemented simply as inverter chains
and the symbol adopted for them was shown in Fig.2.2a.

Binary logic functions (such as nand and nor) are also used in devising control schemas

but can only be applied to data lines.

3.2.9 Relative gate speeds

In an effort to quantify the operating speed of a circuit it is necessary to determine the
relative delays of the above-mentioned gates. These gates have been simulated using
Hspice for similarly sized transistors and output loading in a 0.7um CMOS process, and
the approzimate relative delays are given in Table 3.1 (each delay unit roughly corresponds

to 0.15ns in this process).

|| Gate | Delay || Gate | Delay || Gate | Delay ” Gate | Delay ||
multiplexer 2 inverter 2 nand 3 nor 5
pP-nmos xor 6 p-nmos xnor 6 small xor 7 small xnor 9
Svensson latch 6 small latch 7 cgate 10 feed 13
restore 17

Table 3.1: Relative gate delays in ECS assuming similarly sized transistors and loading.

3.2.10 Micropipeline module exceptions

The select and call modules in the micropipeline library are not a part of the ECS library

of gates. Their functionality can however be reproduced by constructing circuits out of

29

the more primitive feed and restore gates.

The most interesting omission from the micropipeline library is that of the toggle
module, which is there used to alternately steer an input event between two output paths.
Its use in SI design paradigms often occurs in situations where a 4P signal (which may
have earlier been produced from a 2P conversion) is split into two, 2P signals [Ebe89,
FES94, DW95]. In the ECS design framework all control lines utilize 2P signalling only,
and therefore the function of the toggle module is not required.

Another module which has not yet been considered is the arbiter. This important unit
ensures that only one of two output event lines is active at any time even if events occur
simultaneously on its two input lines. To this end the arbiter must resolve its potential
internal metastability whilst ensuring that its output states remain valid. Numerous issues
dealing with metastability and the implementation of 4P arbiters (of which 2P arbiters
can be built) can be found in [CM73, Den85, EBG93, VBHT95].

Instances of arbitration should be avoided, or minimized in frequency, whenever possi-
ble, although in some cases the problem is either unavoidable or too costly to avoid (such
as in accessing memory from split caches, or incorporating an interrupt request into a
control stream). Although the arbitration function is still needed in the ECS paradigm,
it is only used in ezceptional cases, and such occurrences are therefore dealt with outside

of the general design framework.

3.3 Some formalisms for gate representations

A library of gates has been presented from which asynchronous 2P circuits can be con-
structed. These can obviously be represented graphically using the circuit symbols pro-
vided, however it is often convenient to represent their functionality and interconnectivity
in a more concise and algebraic (textual) form, such as in terms of transitions, logic levels,
or event traces.

To this end it is worthwhile investigating some currently popular design methodologies
to see how they represent the 2P functionality of the above gates. One can then select a
representation which is the most appropriate or, if needs be, devise a new representation.

An important issue to bear in mind is the fact that these methodologies are being

analyzed for their gate-representative qualities only, such as conciseness (the number of

30

terms required), complexity (the number of operators required), and indicativeness of
transitional 2P behaviour (which is a subjective issue). They are not being analyzed from
a synthesis perspective as an engineering paradigm has already been chosen for attaining
the primary goal of high-speed circuitry.

Of the vast array of methodologies possible, the following five have been chosen for
consideration: binary logic, Pucknell’s transition equations, Chu’s STGs, Ebergen’s trace
specifications, and Martin’s CSP production rules. These five approaches are in popular
use and exhibit significantly different gate representations.

To illustrate these approaches, a cgate, a send, and a feed gate have been chosen for
the analysis. Table 3.2 shows these representations for all but the CSP rules (shown in

Table 3.3) and the STG approach (which is shown graphically for clarity in Fig.3.12).

" Gate H Binary Logic l Pucknell’s TEs Ebergen’s Traces
CGATE [z=ab+2(a+b) | Az > Aa A b+ Aayb+ Abya | pref<[(a?[[b?);z]]
vz > va b+ vadb+ gbla
SEND || o =1ic+oc Ao > AcNi+ Aesyi + e N | pref* [¥[(c?)?];(i?]|c?);
o > Achi+ e i ol;pref*[i7;0!];c7]
FEED | o=o0c+cla®i) | Do>VcAi+YcT 1 pref*[c?;pref*[i?;o!];
a=ac+c(o®i) | vo>veclAi+ VeV c?;*¥[i7)]

Table 3.2: Representations of the cgate (assuming non-prefixed input events of a and b and
an output of z), send, and feed gates (assuming input and output events of ¢ and o respectively,
and a control signal of ¢) in various design methodologies.

[CGATE | SEND FEED |
aNb—z71 cANi—ot | GA-oV-iAo)A-c—at
—aA-b—=zl|cAi—=0l|(iAoV-iA-0)A-c—=al
(tA-aV-iAa)A-c—o0T
(tAaV—-iA-a)AN—-c—o0l

Table 3.3: Representations of the cgate, send, and feed gates using Martin’s CSP.

3.4 Analysis of methodologies

The gate expressions in binary logic are comparatively concise but it is difficult to grasp
the gate’s transitional functionality, particularly for the feed gate (which also expresses
a micropipeline select module). Furthermore, feedback equations are also required which

complicates the representation.

31

-
0 f
o
%—T-‘:—
15
o r)
ol o]
C

IS
O=s>
)=—
(¢l
O+ —0
7

a—@&?_ = O

¢
I+
(el

(b) ()

Figure 3.12: Representations of (a) the cgate, (b) send, and (c) feed gates using STGs.

Pucknell’s transition equations express the functionality of a gate in terms of the
conditions for positive and negative events. Four states are possible: a transition in either
direction or to remain at a logic level. Expressing the gate’s operation in this manner
removes the feedback and internal states implicit in the binary representation and also
provides an event-based description as desired. However, the increase in the number of
states to four results in a less concise format and also means that two equations are now
needed for the representation of a gate rather than one (in fact, four equations are required
if the “remain at” conditions are also expressed).

Ebergen represents a gate’s allowable traces (the sequence of inputs and outputs) in
a concise format using such operations as prefixing (pref), repetition (*[]), sequencing(;),
and weaving (||), with gate signals being defined as either inputs (?) or outputs (!). This
specification is more complex than the previous two descriptions (given the number of
operations required), and it is still difficult to grasp the transitional behaviour of the gate
from the trace specification (particularly for the feed and send gates, whose conceptual
behaviour is particularly straightforward).

CSP can also express the functionality of a gate in terms of its allowable traces (sim-
ilar to Ebergen’s approach), but is shown at the final gate specification level (involving
production rules) in Table 3.3. This representation is highly favourable for the first two
gates in which, similar to Pucknell’s transition equations, input conditions are specified
for each output event. However in contrast to Pucknell the conditions are given in terms
of their binary states which therefore improves its conciseness. The major disadvantage
of this representation can be seen in the greater complexity of the feed gate, for which the

internal states of the gate must again be specified (as in the binary logic representation).

32

STGs also specify the transitional behaviour of a gate’s output and consider the inputs
to be transitional as well (unlike CSP which expresses these as binary signals and Pucknell
who expresses them in four possible states). An exception to this is when input choice has
to be specified, causing logic level signals to be placed on certain arcs and the inclusion of
places. Note however that this delineation between data signals and transitioning events
is pleasantly indicative of the same distinction which is also made in ECS. Unfortunately
however the specification of an ECS gate as an STG is seen to be rather complex and

unwieldy, which is especially true when translated into an algebraic (textual) format.

In short then it can be said that none of the above representations are fully suitable in
terms of brevity, simplicity, and descriptiveness. Binary logic falls short in descriptiveness,
Pucknell’s TEs are not concise, Ebergen’s traces are neither descriptive nor simplistic, and
Martin’s CSP and STGs suffer in brevity. Although any of these methodologies could be
used (and are used elsewhere) for representing the ECS library of gates, it is worth while
investigating new approaches in an attempt to improve upon them. Such an investigation

has lead to the ECS representation explained in the following sections.

3.5 The ECS representation

One of the problems encountered in the above methodologies is in modelling an event
line’s transitory behaviour with logic levels. The positive and negative transitions of this
event have been considered independently when in essence the two are identical (as can
be seen by the timing diagrams in Section 3.2, in which event line transitions are treated
identically regardless of their direction). By somehow combining these two transitions
into a single term the complexity of an STG-like representation could be halved, and
it may also become possible to implement CSP and TE-like descriptions with a single
equation.

Another problem arises from the difference in functionality between data lines and
event lines. Since one is state based and the other is transitory the effect of combining
the two can introduce excessive complexity (for example, compare the traces of the feed
and send gates against that of the cgate). A representation in which the behaviour of these

two signal types can be similarly modelled should then improve the conciseness of a gate’s

33

representation and subsequently enable its functionality to be more easily understood.
These are some of the issues dealt with by the ECS representation and which result
in the simple, descriptive specification of a gate’s operation. In brief, the technique used
is to transform the signal types into a new domain (called the temporal domain) and
introduce some new operators in this domain which then enable concise gate descriptions

to be made.

3.5.1 Transforming signals into the temporal domain

Both event lines and data lines have thus far been represented in conventional binary logic,
which will henceforth be termed the voltage domain (the terms binary or logic domain
are not used because the temporal domain also uses binary logic levels, but which are
interpreted differently from those in the voltage domain). In this voltage domain, an

event occurs on the signal line 9in when a transition in either direction occurs:
N, 0in + 7,0in

where A,0in evaluates true after a positive edge transition occurs on 0in in the
voltage domain (as indicated by the subscript v), and similarly for <7,0in, and “+” is the
conventional boolean OR operator. As was mentioned before, the actual logic levels ought
to be irrelevant, and therefore the direction of the transition ought also be irrelevant, it
being merely the occurrence of a transition which is used for control signalling. Therefore,
in the ECS representation, a simple transformation is made whereby the occurrence of an
event in the voltage domain is converted into a temporal truth (ie- a positive transition

of the event line) in the temporal domain:

NOIn & A 0in + 7, 0in (3.1)

where the subscript ¢ indicates the temporal domain and the symbol < merely indi-
cates the equivalence of the two statements through the transformation. Note that this
transformation only applies to event lines. The logic state of a data line (and therefore the
direction of any transitions on that line) is relevant, and consequently the transformation
of these lines into the temporal domain is simply an identity operation (ie- their logical

interpretation is unchanged):

34

Agin < Nyin Vin < Zyin (3.2)

It will be noted then that an event line’s transition in the voltage domain is now
considered as a binary “1” level in the temporal domain. This then enables a data level
to be combined with the occurrence of a transition in a simple manner, using conventional
logical operators such as and and or. This reduces the complexity of gate specifications
and subsequently improves their descriptiveness.

The temporal transformation for event lines produces an as yet unresolved issue: if
an occurrence of a transition on an event line in the voltage domain is used to set its
temporal state high, how then is it to be subsequently set low, and furthermore, what
are the consequences if, before being set low (by whatever means is devised), another
transition occurs in the voltage domain which attempts to force a positive transition
when the signal is already (temporally) high??

The first issue to resolve is that of the conditions for producing a $7;0in event. One
approach is to force this transition immediately after the output of a gate has responded

to its input. That is:

where ‘<=’ indicates that a negative transition on 0in is produced after a positive
transition on dout (in the temporal domain). Oout is assumed to be the gate’s output
event and is generated from din according to the gate equation (discussed in Section
3.5.3). This definition for producing 7;0in is referred to as the Gate Representation
(G-Rep), and it can be verified that for all ECS gates the following byproduct results:

The event outputs of a gate in the temporal domain will therefore always be pulses (0
functions), the ramifications of which will be discussed in Section 3.5.7. To convert the
temporal interpretation of a gate’s output back into the voltage domain, the following

simple transformation can be used:

N;OQout & A, 0out + \7,00ut (3.5)

35

which is rather obvious since a logic “1” level in the temporal domain is used to
indicate the occurrence of an event in the voltage domain. Fig.3.13 illustrates the different
representations of the input and output events of a gate in the voltage and temporal
domains, with the solid arrows between signals indicating the equation number responsible

for each transition, and the dashed arrows indicating a transition of the (as yet unspecified)

gate.
d_in Voltage Domain
—)3.1
d_in . Temporal Domain
L)33
d_out R Voltage Domain
35(—
d_out Temporal Domain

Figure 3.13: An example of the voltage and temporal representations of a gate’s input and
output signals, and the equations which cause them.

A framework is now in place whereby the interaction of event line transitions and data
line states are similarly modelled. It is then hoped that the subsequent representation
of ECS gates within this framework will become both simple and descriptive, however
before this issue can be resolved it is necessary to introduce methods whereby the nature

of these interactions can be specified.

3.5.2 ECS operators and temporal equations

Thus far the temporal description of the inputs and outputs of a gate has been presented,
however the actual operation of individual ECS gates is still to be addressed. In conven-
tional logic, functions are represented by equating the logical state of an output signal
(either high or low) with the logical combination of a group of input signals using the
basic functions of and and or. Similarly, other asynchronous methodologies also employ
a collection of predefined operators which are used to specify a gate’s functionality. For
example, the weave operator (||} in Ebergen’s traces, the and operator (A) of CSP, and

the positive (A, 1, +) and negative (57, |, —) transitional operators used throughout.

36

In ECS, a similar set of operators are employed to enable the correct specification of
ECS gates. Many of these operators are analogous to those used in conventional logic,
which is primarily due to the way in which event lines and data lines are modelled. There
are however a few additional operators which are introduced to properly delineate between
different types of inputs. For example, the restore gate has two input events, however one
of these has no effect on the output unless the other has already occurred (ie- they each

affect the output in a different manner).

After ‘>’
e Usage: T. > T.

where 7, is termed the temporal effect and consists of an assignment operation (described
below), and 7, is termed the temporal cause.

The after operator is used to govern conditional operations. Specifically, if the tem-
poral cause is true (7, = 1) then the temporal effect to the left of the after operator is

processed. Exactly what this effect is depends on the assignment contained within it.

Assignment (becomes) ‘-’
e Usage: T, <~ T;

Assignment operations are always present to the left of the after operator and specify the
function (ie- the temporal effect 7, as given above) to be performed when the temporal
cause evaluates true. It is analogous to the ‘=’ operator in conventional logic, and together
with the after operator results in the general specification of a gate (termed a temporal

equation, or TE) as being:
To=Ti>Te

which reads “T, becomes 7; provided 7, is true”. This general format enables a broad
range of functions to be developed. In particular, conventional binary logic functions may

be merged with latching operations in a simple manner. For example:
y<+ (a+b)>cd

In this case, the term c.d would be used to govern the latch, with an input of a + b
and an output of y. Note also that the analogous TE of a conventional function such as

y = a + b may be specified in two identical forms:
B

y+<1 > a+b
o y<—a+b>1
y+<0 > a+b

The assignment y <— 1 is abbreviated to just y, and similarly y < 0 is abbreviated to
7. The left-hand specification then appears to have the better functional correlation to
the conventional form, however it suffers from having to specify two TEs for the gate’s
functionality, since both the y and 7 terms must be present. The second approach requires
only the one TE, however the permanently true temporal cause seems like overkill.

As a better solution, the convention is adopted in which if no after term is specified,
then “> 17 is assumed. Therefore specifying y < a + b is identical to specifying y <
a+b > 1. Note that one could adopt the convention whereby specifying y > a+ b implies
the existence of the converse TE: § > a + b, however this approach still essentially deals

with two TEs rather than one.

Consider now the general specification of a TE in which all temporal signals are events:
TE TP >TF

In this instance, 7.2 is termed a causal input event, T.F is termed an effectual input
event, and T is termed the effectual output event. By virtue of the fundamental premise
of the after operator, if T.F is false (ie- no causal input event has occurred) then an event
(a temporal truth) which occurs on 7;” will not be processed.

This issue can present difficulties when one considers that the temporal transformation
used for event lines requires that each input event must have a corresponding output
event. For TP this is given by 7., however it is not generally acceptable to define (=
as also being the output event for 7,7, since when 7;¥ = 0 this term is not processed,
and consequently no output event occurs. Therefore only one such event (in the voltage
domain) would be permitted to occur on T;F (which then sets its temporal signal high)
even when 7.f = 0 when ideally, since the assignment isn’t processed, any number of
events ought to be allowed to occur.

One solution to the problem is to define an attempt to force A7;F when T;F is already
high as having no effect, however this is unacceptable as it’s equivalent to making =

a causal term and therefore prevents some ECS gates (such as feed and restore) from

38

being modelled. Furthermore, this then prevents the incorporation of error checking into
the ECS representation (see Section 3.5.8). The correct solution is to define T as its
own output event, so that its temporal input to a gate always appears as a J pulse.
This definition then enables any number of events to occur on 7. independently of the
temporal state of 7.¥, which therefore enables the feed and restore gates to be properly
modelled. Note however that if 7F is in fact a combinational term of input events (such
as 0a.0b), then it is the combinational term which is the output event for these signals,
not the individual signals themselves. In essence, such a combinational term is treated as

its own enclosed TE.

Logical AND (‘.’) and OR(‘+’)
e Usage: Tict - Ticz or Ticr + Tic

The “and” and “or” logic functions are analogous to those used in conventional logic.

Until ‘U’
e Usage: TEUTE

The until operator has no equivalent function in conventional logic because it is used
explicitly on event lines. The result of the operation is temporally true when T.E evaluates
true and computes false when 7.5, evaluates true. On this basis, the result of an until
operation is effectively a data signal which is used to govern the effect of a TE. For

example, the following two temporal specifications (which are a collection of one or more

TEs, and dubbed a TS), are equivalent:

select <« Opass U Ohold
y < z > Opass U Ohold
y+x > select

Note also that to facilitate ease of implementation, the event 7% is defined to be the
output event of 7,5, and vice versa. Defining each signal to be its own output event
would be equally valid (and in fact produces a more versatile gate representation) but
doing so results in a more complex implementation, which is unjustified since almost
every application of this gate uses alternating events (hence the restriction). Note that a

non-alternating event stream could simply be masked with a feed gate controlled by the

result of the until operation to transform it into an alternating one.

39

Colon *’

e Usage: Ti:Te: o0 2Ty

The colon operator performs no logical operations, but rather signifies the validity of an
output signal 7; which results from some earlier input signal 7,. That is, it specifies a
computation path which exists between these signals, and ought therefore be considered
as a conceptual timing operator. It is often used to specify the requirements of a lumped

delay element, as exemplified by the TE below:
0z:0y:0x+a:b:c:0x

In this instance, the event Oz results in the data signal a being set as well as indepen-
dently resulting (through some other path) in an event on 0z (the TEs for these operations
would be given elsewhere in the TS). The colon operator indicates that a should be valid
before 0z occurs, and consequently a delay may have to be inserted from 0z to 0z. Typ-
ically, another TE would exist in the TS in which an output depends on both Jz and the
new value of a (otherwise no such timing constraint would need to be specified). Note
also that specifying the intermediate signals Jy, b, and c¢ is optional, and is included only

to highlight the relevant control and computational paths.

3.5.3 Some ECS gate examples

The set of operators just described can be used to combine both data and event lines
into a collection of TEs which each correspond to one (or more) of the gates in the ECS
library. Note however that TEs which are constructed with an output event that can occur
without an input event (and vice versa) are prohibited, as these violate the requirements
imposed by the temporal transformation. For example, a TE which or’s an event line and
a data line is prohibited, as are TEs which assign data lines to event lines (or vice versa).

The complete set of fundamental TEs and their corresponding ECS gates is given in
Appendix A. Example waveforms for the send and feed gates are shown in Figs.3.14a and
3.14b respectively to illustrate the different representations of signals in the voltage and
temporal domains.

Consider the first Jin event which occurs. For the send gate, the occurrence of this

event is transformed into a logical one in the temporal domain, which when and’ed with

40

Voltage Domain

d_in

control |
Temporal Domain
din__ | [] |
d_out | 1]

Voltage Domain

dout_ [1L

d_in
d_out
control

dout < din.control

(a)

Voltage Domain

ain_ [L

control [| |
Temporal Domain
din__ | | | |
d_out | |

Voltage Domain

d_out | |

1>—> d_out

dout + 0in > control

(b)

d_in —

control —

Figure 3.14: Waveforms for the (a) send and (b) feed gates in the voltage and temporal
domains.

control = 1 (as required by the TE) results in the effectual input term of the TE being
high. This is assigned to the temporal state of the output dout (since the causal term is
permanently true), and by virtue of Eq.3.3 this then forces the temporal state of din low
again. The effectual input term is now false, and therefore \70out then occurs.

For the feed gate, the occurrence of an event in the voltage domain sets din temporally
high, and since the causal term control is also high, this gets assigned to dout. Since din
is an effectual input event (and therefore acts as its own output event), 79in occurs
immediately, which subsequently sets the state of dout low again. Therefore both gates
generate a Qout transition for the first event on din.

With the second event however things are somewhat different. For the send gate, the
combined term din.control remains low until the control signal goes high. At this point
the output also goes high and as before then results in \y0in and sydout. For the feed
gate however the causal term is low. As such, the assignment on the left is not processed
when Adin occurs, and since it acts as its own output event, \70in occurs immediately
thereafter. It is evident then that in this instance, no output is generated on dout. The
analysis for the third and fourth input events are identical to the first. Referring to the
waveforms in the temporal domain it can be seen that the output events from both gates

are in the form of infinitesimal pulses (assuming zero gate delay).

41

The results of the analysis performed in the temporal domain may be converted into
the voltage domain by the simple inverse transformation given in Eq.3.5. It can be seen
that the resulting output waveforms for the send and feed gates in the voltage domain are
identical to those shown in Figs.3.4b and 3.6¢ respectively, which indicates that the TEs
given above do in fact represent the required logical functionality of these gates.

To further exemplify the specification and functionality of the ECS gates in the tempo-
ral domain, the TEs and timing diagrams for the cgate and a latch are given in Figs.3.15a
and 3.15b respectively. Note that for the cgate, Jout is the corresponding effectual output
event of both dina and dind. It is a simple matter to follow the analysis above and thereby

demonstrate that the TEs again properly represent the gate’s logical functionality.

Voltage Domain

d_ina
d_inb | | |

Temporal Domain
di
Ja T LT L Voltage and
d_inb I 1 1] Temporal Domains
d_out . in |
Voltage Domain sel L[|
d_out | [out | |
d_ina— 1
d_out sel— latch
d_inb—
out
dout < 0ina.0inb out < in > sel

(a) (b)

Figure 3.15: Waveforms for (a) the cgate and (b) a latch in the voltage and temporal domains.

In summary, the representation of ECS gates consists of the following steps:

1. Transform the input signals into the temporal domain using Eqgs.3.1 and 3.2.
2. Determine the causality of the TE and hence assign the state of the output.
3. If high, reset the state of the event inputs using Eq.3.3, and re-assess the output.

4. Convert the temporal output into the voltage domain using Eq.3.5.

42

3.5.4 Comparative gate representations

By comparing the gate specifications given in Section 3.3 for the send, feed, and cgate
against those given in the previous section using the ECS representation, it becomes evi-
dent that a significant improvement has occurred. For every ECS gate only one equation
is now required to represent its functionality, whereas at least two are required in general
in all other paradigms except Ebergen’s.

Another advantage of the ECS representation is in the conciseness of the description.
Only a few terms are needed in general to represent a gate in ECS whereas many more are
needed in all of the methodologies considered earlier. This has the subsequent advantage
of also making the representation more readable and understandable. This is especially
evident in the TEs for the cgate and merge gate, which are often dubbed the and and
or functions to events in the literature. None of the other paradigms mirror this effect,
whereas in the ECS representation these are the ezact same operations employed in their
specification. This ECS representation is therefore adopted for the future specification of

2P asynchronous circuits.

3.5.5 Some example TS’s and their corresponding circuits

Fig.3.16 shows an event control circuit for one stage of a reconfigurable FIFO [MAL94].
This circuit operates such that when the control signal stage is high, an incoming event
from the preceding stage is fed to the output 9fifodone. This prevents any further stages
from triggering, and hence the FIFO length is given by the number of stages preceding
it. A return event (from whatever circuit the FIFO output triggers) is fed back via the
feed and merge gates to complete the handshaking with the previous stage. If however
the control signal stage is low, then the event control simply passes through to the next
stage.

The important point to note with regard to the methodology is the correlation between
each TE and its ECS gate implementation in the circuit. For example, the last TE
corresponds to the merge gate immediately prior to the handshaking with the previous
stage. It is therefore evident that the TS is representative of the circuit topology, and
specifies this in a clear and concise format.

Another example of the correspondence between a TS and its circuit topology is shown

43

d_fifg,
d_fifodone

dfifor « Opdone > stage
d_fifo, stage
Onstart < OJpdone > stage
d_nstart 1 _
next | latch "d_pdonel ion |previous Ofifodone <« dfifor+...+0fifon
stage [control| 4 nbegun controll Stage _ .
Optrigger < Ofiforeturn > stage
d t .
stage —— Sl Opreturn < Onbegun + Optrigger

d_ptrigger

(a) (b)

Figure 3.16: (a) Circuit design and (b) the corresponding TS of a reconfigurable FIFO.

d_fiforeturn —=|

in Fig.3.17, which shows a slice of the input control circuitry for a Discrete Fourier Trans-
form (DFT) unit [MAL94]. Again, the simplicity and readability of the TS, and its
equivalence to the control circuit, is evident. Note also that the overline on dfiforeturn
is used in the TS to indicate a primed event and not an inverse of the event in the temporal

domain (which is non-sensical).

d_fifofone d_fiforeturn Otrigl < Jstart > act
T regulate Otrig2 <+ Ofiforeturn > act
fvok
OpreDFT < O0Otrigl + Otrig2
d_regulate ODFT +« OpreDFT.retactive
d trig2 tactive]
—ng retactive <+ regulate.fvok
act — D—: d_DFT fvok <+ Ofiforeturn U 0fifodone
—9 d_preDFT
Ao ST | d_trigl dfiforeturn + Ofifodone.Oregulate

(a) (b)
Figure 3.17: (a) Circuit design and (b) the corresponding TS of a slice of the input circuitry
for a DFT unit.
It should also be noted that TEs can be combined (or split) to produce a temporal
specification with fewer, but more complex, terms (or the converse when splitting TEs).

For example, the 3 through 6* TEs of Fig.3.17b could be combined and re-written as:

ODFT <« (Otrigl + Otrig2).(regulate.(dfiforeturn U Ofifodone))

— (Btrigl + Otrig2).(regulate + (0 fifodone U 0 fiforeturn)

44

Combining and splitting TEs can help produce a TS which is faster and/or smaller

than initially conceived (see Section 4.1).

3.5.6 Precedence and properties of temporal operators

The order in which the temporal operators are processed is defined in Table 3.4, in which

the operator precedence decreases from left to right.

Precedence Highest — Lowest
Operator || And | Or | Colon | Until | Assignment | After
Symbol . + : U — >

Table 3.4: Order of precedence for the ECS operators.

For example, the TE shown to the left below could equally well be written as per the

TE on the right with the brackets removed, given the precedence rules above.
(sel < ((a.b) + ¢)) > ((0z.d) U (0y : 0z)) sel < ab+c¢>0x.dUdy: 0z

The associative, commutative, and distributive properties of the and, or, and until
operators are summarized in Table 3.5. For the “and” and “or” operations these properties
are almost identical to their binary logic counterparts, however deviations exist when event
lines are considered. Note that the colon, assignment, and after operators do not exhibit

such properties.

| Signal Types [data/data || data/ event [l event / event |
Property Or | And | Until || Or | And | Until Or And | Until
Associativity || v/ | v/ - . Vv : Vv N -
Commutivity || v/ | - - Vv - Vv Vv X
Distributivity || v/ | v/ - x | (dee) - over AND | x X

Table 3.5: Various properties of the ECS operators.

A tick (/) or a cross (x) in the relevant box means that the property is valid or invalid
respectively, and a dash (-) means that the property has no meaning because the TE is
erroneous. The special distributive conditions “(d,e,e)” and “over AND” respectively

imply the following rules:

45

a.(0b+90c) = a.0b+a.0c

da + 0b.0c = (Oa + 0b).(0a + Oc)
a.(0b.0c) = (a.0b).(a.0c)

By manipulating TEs according to the above properties it becomes possible to reduce

circuit complexity and increase system speed algebraically (see Section 4.1).

3.5.7 Interconnectivity of gates in ECS

By considering the timing diagrams of the gates in the temporal domain, it appears that
two problems may exist with regard to connecting them together to form circuits. Firstly,
if the temporal outputs of a gate are always pulses, then how is it possible for a subsequent
gate (such as a send or a cgate) to function properly when the input is required to be
kept pending (and therefore kept high in the temporal domain)? Secondly, if the output
of a gate is determined by its inputs, and yet when connected to a subsequent gate as an
input its temporal level can be set low via Eq.3.3, then is there not a conflict with regard
to driving the signal level on this line?

To overcome these problems an explicit ECS definition is made for the global view of
the event line output of a gate (data line outputs do not suffer from these problems). The

configuration of gates shown in Fig.3.18 illustrates this principle.

Figure 3.18: A ¢event line which connects a gate’s output to the inputs of subsequent gates.

The local output of source gate GO (Qout) is connected to the global event line gout.
This is then distributed to each of the subsequent sink gates G1...Gn, where it then
connects onto each gate’s local input (9iny. ,). The temporal state of gout is given by
the temporal signal dout as well as the input signals din;. , of each sink gate according

to the following equations:

46

Ngout > Adout (3.6)

voout > v0ing.V 0ing ...V 0in, (3.7)

with the temporal state of a sinks input being given by Adin > Adout (remembering
that \70in is then set locally according to the gate’s TE, and in particular, the firing of its
corresponding output event). Equation 3.6 propagates the truth of an event only from the
source, as this indicates that an event has occurred in the voltage domain, and equation
3.7 indicates when all subsequent gates have responded to this input and therefore a new
output is permitted to occur.

An alternative to the introduction of global event lines (dubbed gevent lines) is to
convert back to the voltage domain at each gate’s output, then propagate this to each of
the subsequent gate’s inputs and then transform back into the temporal domain. This
approach however is somewhat unsavoury in that it requires a mixed voltage/temporal

interpretation.

3.5.8 Principles of error detection

It is now apparent that a means for error detection is possible. If an attempt is made to
force a gevent line high when it is already high then an error has occurred (similarly for an
attempt to force low an already low event line). This error is dubbed an exclusion violation
(EV) and represents the case whereby two successive events in the voltage domain have
occurred at the input of a gate before a corresponding output event has occurred.

With the infinitesimal gate delays shown thus far, an EV error can only occur for the
send and cgate, however if gate delays are now introduced into the model, then any gate
can exhibit this error when the time between inputs is less than the gate’s propagation
delay (tyrop). For example, in the timing diagrams of the send and merge gates of Fig.3.19,
an EV error is detected on the third input event. This assumes an inertial delay model
for both the positive and negative transitions of the input events in the temporal domain,
which means that the positive transition of dina for the merge gate is still queued to
effect Adout, even though it gets reset low before this can occur. Note that the 79ina
transition results from Eq.3.3 and is not affected by the gate delay model.

47

Voltage Domain Voltage Domain

d_in | | [d_ina |
control b d_inb |
Temporal Domain Temporal Domain
d_in | [A d_ina [L [
EV error 2 A
d_out | d_inb ;S F 1
d_out ‘prop=f=] S>IA
EV error
Voltage Domain Voltage Domain
d_out ! dou [1 __

(a) (b)

Figure 3.19: (a) A send gate with infinitesimal delay, and (b) a merge gate with a finite delay
tprop, Doth exhibiting EV errors.

Incorporating propagation delays into the temporal representation merely involves
delaying the assignment operation in the TE by the given amount, as is indicated by the
first output event of Fig.3.19b. This then enables system speeds to be modelled in parallel
with the detection of system errors.

Consider also the send gate of Fig.3.19a in the situation where the control signal goes
low at the same time as the first input event occurs (as shown by the dashed line). In
theory the and term of the TE will remain low and hence no output event will occur,
however in practice signals exhibit finite rise and fall times, so that as long as these two
signals change state within a certain time frame, the output will in fact be indeterminate
(ie- metastability exists). This situation is known as a coincidence violation (CV).

To enable this violation to be detected each gate must also be given a slope time i,
for its output (although a global slope time applicable to all gates may also be assumed
for simplicity), which is used to represent the gate’s finite rise and fall times.

Given that two input signals Z; and Z, transition (temporally) at times t; and ¢, (with
t1 < t,) and have slope times of t5; and t,, respectively (Fig.3.20b), then if ¢; + ts1/2 >
ty — ts/2 (which indicates that their slopes overlap) a potential CV error exists, and can

be resolved as follows:

o Let tal =11 — t51/2, iy = 1o — t32/2, tar = to + t32/2, and Tty = 61 + t1/2, and define
condition C, such that the transitions on Z; and Z, occur instead at times ¢, and

t.2, and similarly for condition C, but with times ¢, and ty,.

48

A CV error is then detected when the output of the gate (given by its TE) for C,
is different to the output which results for C,. Note that if Z; or 7, are event lines
then a CV only needs to be investigated for a positive temporal transition of the

signal.

1 ol

IZ ‘\E

— tsZ -
(b)

Figure 3.20: (a) A transition t; with a shaded slope time ty;, and (b) two transitions which
may exhibit metastability.

This technique essentially considers an instantaneous transition at time #; as occurring
(still instantaneously) at either extreme of its slope time ¢, as shown in Fig.3.20a. If a
transition on another input line (also considered at its extremes) occurs within this region,
then the gate needs to be checked for indeterminacy. By assuming that the transitions
could occur at their extremes, and then checking the resultant output for both cases, the
potential for metastability (when these are different) is revealed.

When applied to data nodes a CV returns the occurrence of a potential glitch whose
duration may be as long as the overlapping region. Fig.3.21 illustrates this situation for

a 2-input and gate.

i tal ~~<

ina <ty

inb . bt
bL-"|

out ! glitch |

Figure 3.21: Example of a potential glitch for the and gate.

Although the output of this gate should remain low, a consideration of the slope times
of the inputs shows otherwise. For condition C, (with transitions occurring at times 4
and t,,) the output of the gate does in fact stay low, however for condition Cy (with times

ty; and tyy) the output goes high for a duration equal to the overlap time, indicating that

49

a glitch may occur. Glitching of data nodes may not however be of detriment to the
system (especially when in the data path) and should therefore be treated as warnings

rather than errors.

3.6 Summary

This chapter has introduced a library of asynchronous gates which are used in the con-
struction of ECS circuits. Interestingly, these gates have been shown to be a primitive set
of the asynchronous modules used in other design methodologies.

The ECS representation which has spawned this gate library enables them to be ex-
pressed algebraically in a clear and concise form using the temporal transformation. It
should be noted however that this transformation merely enables a concise and descrip-
tive representation to be developed (as well as incorporating principles of error checking)
and is not used to synthesize ECS circuits. This latter issue is discussed in the following
three chapters which provide a range of novel engineering techniques for the design of

high speed asynchronous systems.

50

Chapter 4

Fast Asynchronous Circuit

Techniques

HE ECS design methodology has thus far provided for a unique set of fundamental
Tgates, a simple and convenient approach to their representation, and a means by
which circuit errors can be identified. With this basis it is possible to construct simple
two phase, bounded delay circuits, however without a knowledge of advanced techniques
these are likely to be inefficient with regards to speed, and most likely with regards to
other factors such as power dissipation and area too.

It is therefore necessary to explain in detail the range of design techniques developed by
the author which enable high speed two phase asynchronous circuits to be implemented.
Although high speed operation is the focus of the techniques described in this chapter,
an emphasis has also been placed on the area and power dissipation of the resulting ECS

circuits, and in particular how they compare against corresponding SI design approaches.

4.1 Algebraic improvements of a TS

The most formal method for improving the speed of a design is through algebraic ma-
nipulation. This involves substituting the terms of a TE (to the right of the assignment
operator) with the TE definitions for those signals appearing elsewhere in the TS. This
newly formed TE is termed complez, because it now provides a description for the signal
which requires more than one gate in its implementation. By then massaging this complex

TE with the laws of associativity, commutivity, and distributivity given in Section 3.5.6,

51

it is often possible to devise a new implementation which, for the majority of conditions,
is faster. Determining whether or not this is the case usually requires an understanding
of relative gate speeds (as estimated in Table 3.1) as well as the environmental input
constraints.

As a simple example of this process, consider one implementation of a gated pulse
circuit and its TS as shown in Fig.4.1. This circuit is used to prevent the activation of a

self-timed pulse until some governing condition go becomes true.

din ~F—========-—
=

\ }
—7) - pulse da <+ 0Oin.go (4.1)
®

pulse <+ 0Oa U OJout (4.2)

g0

self-timed Oout <+ Oa.pulse (4.3)

pulse circuit

(b)

Figure 4.1: (a) Circuit design and (b) the corresponding TS of a gated pulse circuit.
Temporal equations 4.1 and 4.3 can be combined to produce a complex TE for dout:
dout < (din.go).pulse

The brackets merely indicate the substitution made, and due to the associativity of
the and operator for both events and data, can equivalently be placed around the logic

signals, giving:
dout < Oin.(go.pulse)

Renaming this and term as a TE for = then results in the circuit implementation and
TS of Fig.4.2. Note that the TE for da is still included in the TS, as it’s also used in the
generation of the pulse signal.

At this level of substitution it can be seen that the circuit speed has in fact been
slowed by the delay of the and gate, and as such is a worse implementation than that of
Fig.4.1. However, the substitution process need not stop here. TE 4.4 can be substituted
into TE 4.5 to produce a complex TE for the pulse signal:

pulse < (din.go) U Oout

52

d_in

&2 - 0z O0a < Oin.go (4.4)
®
pulse < 0a U Oout (4.5
z <+ go.pulse (4.6)
X
A i dout <« Oin.x (4.7)
d_out

(a) (b)

Figure 4.2: (a) Circuit design and (b) the corresponding TS of a degraded gated pulse circuit.

Assuming now that the signal go does not transition low again until the event dout
has occurred (which places a constraint upon the operation of the environment, albeit

one which is invariably obeyed), then the TE for pulse can be re-written as:
pulse < (0in U Oout).go

A simple evaluation of the traces will reveal this equivalence. An important point to
note now is that the event Oa is no longer used in the TS, and its TE can therefore be
removed (thus reducing complexity and increasing system speed).

Further, the until term of the TE for pulse can be renamed as a TE for p (p +
din U Oout), and by substituting the new TE above for pulse into TE 4.6, the signal =

can be reduced:

go.pulse
go.(p.go)

go.p

T T T 7

pulse

Consequently the signal z is no longer required in the TS, and can instead be sub-
stituted by the pulse signal. The final circuit and TS which then results is given in
Fig.4.3.

Table 4.1 summarizes the system speeds (from din to dout) for the above three im-
plementations of the gated pulse circuit, for the two cases in which din occurs both

before and after Ago (the relative gate speeds are taken from Table 3.1, and assume

tand = tnand + tim}) .

53

_ S
d_in pulse —
D p < 0inU dout (4.8)

pulse < p.go (4.9)

dout <« Odin.pulse (4.10)

d_out

(a) (b)

Figure 4.3: (a) Circuit design and (b) the corresponding TS of an improved gated pulse circuit.

Circuit Ago < din din < Ago
Implementation | Gate Delay Path | Delay || Gate Delay Path | Delay
Initial 2tsend + tzor 19 2tsend + tzor 19
Degraded 2tsend + tzor + tand 24 2tsend + tzor + tand 24
Improved tsend + tzor + tand 18 tsend + tand 11

Table 4.1: Relative speeds of three gated pulse circuits.

It is evident that the circuit of Fig.4.3 provides the fastest system speed, with an
improvement of up to 42% over the initial implementation (note also that an improved
pulse signal can be generated with this circuit due to the nand and inverter driver). As
such it is evidenced that through the use of algebraic manipulation a faster T'S can be

achieved.

4.1.1 Useless TE substitutions

In the preceding example there was no mention of constraints on whether or not a TE can
be substituted into another, however there is in fact one important rule which should be
obeyed: any TE with an explicit after (>) clause should not be substituted into another
TE. This is because the assignment to the left of the operator is only valid under certain
conditions (as given to the right of the operator) and these cannot be separated without
altering the initial functionality. As such, there can be no algebraic manipulation of this
term and hence, the substitution is futile. For example, substituting TE 4.11 below into
TE 4.12 to produce TE 4.13 is redundant, since no simplifications can be made to this

term.

0a + Ob>c (4.11)
dc + 0e.(0b>c) (4.13)
dc « 0a.0e (4.12)

54

4.1.2 TUseful TE substitutions

One of the most commonly occurring improvements which can be made is driving an
event through two send gates driven by different control signals. By combining the two
TEs as shown from the left below, and then splitting them into a send gate and an and
gate as shown by the TS on the right, a faster implementation will result. At best, an
improvement of t.,q can be gained (a 50 % speed increase), and at worst an improvement
of tseng — tana (a marginal increase). Note however that this reduction technique requires
that vz doesn’t occur before y goes high (a constraint on the environment), otherwise
the and of these signals will not produce a Oc event which would have been produced in

the initial TS.

0b <+ Oax _ _ Z < xy
combine J¢ ¢ Oa.xy 2P
Oc <+ Oby Jc <+ Oa.z
Another useful improvement involves simplifying a merge gate driven by two common
send gates (as described by the left-hand TS below). By substituting the top two TE’s
into the TE for 0FU, and then factoring out the common wvalid signal, the smaller and
faster TS given on the right results. In this instance, a best case improvement of t,erge
(over 50% speed increase) is the result.
Jdav <+ Oa.valid

Obv «— Obwalid combine and split Oab + Oa + 0b

OFU <+ Oab.valid
OFU « OQav + 0bv

4.1.3 Taking advantage of the typical scenario

In some instances a complex TE can be split in a variety of ways which at first glance
may all seem equivalent in terms of speed. However it is often possible to choose one
such implementation which provides the greatest speed for what is anticipated to be
the most common case (either by proof or intuition). As an example, consider the TE

0ok < 0a.0b.begin, which can be split into either of the two TS’s shown below:

dint < 0a.0b oint <+ Jda.begin
0ok <« O0Oint.begin Ook <« 0b.0int

95

Although both circuits employ the same number of gates and the same worst case
delay (tsend+tegate), their best case speeds can be substantially different depending on the
usual signalling sequence. If Abegin is most likely to occur after both of the input events,
then the left-hand TS will give the better typical performance (of just tsenq), however if
it’s likely to occur before the input events, or if one event (say, 0b) is usually the last to
occur, then the right-hand TS will give the better circuit speed (of tegate)-

It is clear then that although some algebraic reductions will for all cases give improved
speed performance (as per the gated pulse circuit example given previously), others will
however require a greater understanding of the typical environmental conditions to pro-
duce the fastest circuit implementation.

Another example of this is a multiple input merge gate, given by the TE: Gout <+
da + 0b + Oc + Oe. Although for a random trace the best approach would be to use a
binary tree of 2-input merge gates (giving an average delay of 2 gates), if it is known that
one of these events (say, da) occurs most frequently, then a chain of gates may give the
best typical performance (with da triggering the last of these). Similar arguments also
apply to a multiple input cgate, when it is known that one of the inputs is typically the

last to occur.

4.2 Improving acknowledge times

One of the most fundamental causes of delay in a SI system is the overhead introduced
through acknowledgements. For a SI system to be safely composed from modular blocks,
each block must ensure that it has reached a stable, final state before sending an acknowl-
edgement back to its environment [BE89] (this, as much as anything, results from the
definition of speed independence). The latency (from input to output) imposed by any
one block can be quite substantial, and this in turn can increase the overall cycle time of
the system since any subsequent, dependent blocks cannot be activated until they receive
this acknowledgement.

Consider for example a typical event controlled SI system as shown in Fig.4.4, where
) indicates the event latency for each unit (from input event to output event), and d
indicates the data latency (from input event to worst case output data):

The cycle time for this system (taken as the sum of the latencies) is o = 36ns,

56

Environment
2=10ns

d_Uldone

U2 U3
A=10ns d=5n A=5ns d=3n

d_U2done d_U3done|__
DT; Ins

Figure 4.4: An example system constructed in a SI environment.

and cannot be reduced if one assumes a speed independent paradigm. This is because
the latency information for each block cannot be utilized, and instead the provision for
unbounded gate delays must be adhered to. Therefore theoretically, the figures for A and
d must still be considered to be anywhere in the range from 0 — oco!

In practice however such extreme variations in gate delays almost never occur, and
they can in fact be reliably quantified (as evidenced by synchronous designs). Therefore
in an ECS environment, common-sense improvements can be made to the above system
to improve the cycle time (albeit at a very high level of abstraction, involving just the
interconnection strategy).

One technique is to remove unnecessary acknowledgements. It can be seen from the
latencies that U2 will always produce its output event after U3, and therefore 0U2done
can be used to feed directly into Jout (discarding 8U3done) without having to go through
the cgate. This approach cannot be used in a SI environment because, however unlikely,
the possibility of OU3done occurring after OU2done must still be provided for.

Another technique involves providing an earlier acknowledgement back to the environ-
ment, and requires that the settling time of any subsequently triggered unit is less than
the resulting cycle time. Consider for example U2 in the above system. Once triggered U2

takes at most 10ns to settle into a final, stable state, however once OU2done occurs there

57

is another 25ns of dead time before U2 is triggered again. Therefore the cycle time for U2
could be safely increased by up to 25ns, and by providing dUldone as the Jout signal,
a 10ns improvement is achieved. The activation of U2 is now performed in parallel with
the handshaking and control logic of the environment. Fig.4.5 shows the resulting ECS
system, with an improved cycle time of o = 25ns (a 31% improvement). Note also that
the control logic within U2 and U3 is simplified since there is now no need to generate a

done event.

Environment
A=10ns

Ul

A=15ns d=8n

U2 U3

A=10ns d=5n A=5ns d=3n

Figure 4.5: An improved ECS version of the example system.

For this scenario it is not possible to take this approach to its extreme and issue din
directly as the returning acknowledgement dout to the environment (although in other
situations this may be possible). This is because the latency of Ul is 15ns but a new
input event can occur after only 10ns, therefore the first operation could easily become
corrupted by the next.

It may however be possible to improve the internal latency of U1 to just greater than
d = 8ns. This is because at present UlI is still implemented as a SI unit, with dout being
issued once all internal states have settled. However, there exists a 10ns dead time before
its next activation (due to the environment’s latency), and so dout can safely be provided
earlier by U1, whilst its internal states settle in parallel with the handshaking and control
logic of the environment. For example, assuming an internal event from U1 can be used as
Oout after 8ns (to coincide with the data output), then the cycle time of the new system

will be reduced to just ¢ = 18ns (a 50% improvement on the original ST implementation).

58

4.2.1 Example: sharing of a common unit

As a simple example of the improvement which can be attained by removing acknowl-
edgements, consider the circuit shown in Fig.4.6a, which shows one way in which a com-

putational block X can be shared by two processes.

d_a d_b d_a l l d b
d_x d x
d_adone d_bdone
d_xdone
d_adone d_bdone

(a) (b)

Figure 4.6: (a) A SI and (b) an ECS circuit for sharing a common unit.

For the SI circuit Oadone and Obdone cannot be generated until Oxdone has occurred,
however no such restriction is present in ECS. If it is known that the data produced from
X does not interact with the subsequent event control of either dadone or dbdone for at
least t;or + tx, where t;,, and tx are the processing delays of the zor gate and block X
respectively (a convention regularly adopted throughout this thesis), then da and 0b can
in fact feed out directly as the done signals.

The ECS implementation is shown in Fig.4.6b. As a result of removing the acknowl-
edgement from X, the latency of the design has been improved by t;o + tx + trestore,
and the complexity of X has been reduced by the redundancy of dzdone and the shift in
paradigm from SI to ECS. The control area has also been reduced from three gates to
one, which in turn results in a reduction in power dissipation (from two gates having to
switch per cycle down to just one).

This type of optimization is especially applicable when X has a low processing delay,
since there is then a greater probability of the data being used by the done circuitry after
lyor +1x.

29

4.2.2 Example: data latching circuits

As a more comprehensive example of the speed improvements that can be achieved
through the removal and reduction of acknowledgements, and also to further expound
the advantages of ECS over SI designs, consider now the specification for a data latching
circuit (DLC). An incoming event Jin is required to latch the data present on the input
bus to the output bus, and then issue dout when complete.

The simplest and fastest SI approach utilizes the event-driven latches (as shown in

Fig.3.11) of the micropipeline methodology [Sut89]. This is shown with inverter drivers

in Fig.4.7a.
. input
d_in)
() d_in input d_dot
—DO-—|>O—" d_pass i —
[>o——um Event —[>o—:l) .
Driven D)—Dﬁ*ﬂ Latches -—
Latches ¢
- g output N
d_out { }
output

(a) (b)

Figure 4.7: Two SI micropipeline control structures for the DLC using (a) event-driven latches,
and (b) logic-driven latches.

This is perhaps the fastest SI implementation of a data latching circuit, with a latency
of X\ = 4tiny + 2twire + 2tegate, Where ty. represents the propagation delay of the signal
through the latches. The problem however is that each event-driven latch requires at best
18 transistors, which makes for a rather large implementation of the design for all but the
smallest of data widths. A more economical solution is to use the logic-driven latches of
Fig.3.5a, and use a combination of zor and toggle to generate the select line pulse from
the incoming din event. This implementation is shown in Fig.4.7b.

The toggle operates such that the first event to occur on its input (Asel, as generated
by the zor of din and Adot) is steered to the dot output, and subsequent input transitions
oscillate between this and dout. The occurrence of ddot causes y/sel to occur, which
is then steered to dout via the toggle to indicate completion of the latching cycle. This
design requires only 6 transistors per latch and is therefore a much smaller implementation

than the event-driven latch design. Furthermore, its speed is still comparable to that of

60

Fig.4.7a, with a latency of A = 2(tzor + tiny + twire + troggle)-
In ECS no toggle element exists, however its functionality can be mimicked by using

two send gates driven by complimentary control signals, as shown in Fig.4.8.

d_in ;
| input
d_sendl
1
> Latches
’_ {} J d_out
output

Figure 4.8: An ECS implemented SI version of the DLC.

In this instance the incoming event din is passed through three phases: the first raises
the select line, the second lowers the select line (once Asel is detected at the first send
gate), and the third issues dout (once vsel is detected at the second send gate). This
implementation is known as a split toggle, and results in a SI implementation with a
latency of A = 2(tzor + twire + tsend) + 3tino-

Although the above three implementations operate using SI control, it must however
be noted that this still does not guarantee that the data has been latched! To do this
would require comparing input with output for ALL bits and enabling dout (through
a send gate) when they are all identical. This in practice would severely complicate the
control schema, (in terms of both speed and area) and is therefore rarely ever implemented.
However without this, although the control schema alone may satisfy SI criteria, the data
path does not, but satisfies instead a BD model. Therefore despite claims to SI designs
[BS89, SMJ 194, ABV+95], such as those given above, the reality is that the overall system
is in fact a BD implementation!!

Given the circuit of Fig.4.8, there are still a number of improvements which can be
made to improve the cycle time by removing BD redundancies and making assumptions
about the environments operation. The most obvious improvement is to use dsendl as
dout , and so remove the delay imposed by waiting for the circuit to settle to its final state.
This implementation assumes that 7sel can occur in parallel with the control circuitry of
the environment, and imposes a limit upon the minimum re-activation time of the circuit
(from Qout to the appearance of new data on input) of tror + tiny + twire-

Furthermore, it is usually possible to ignore the wiring delay through the latches, since

61

this is typically very small in comparison to the gate delays (except for very long data
bus widths, which would be extensively buffered anyway), and also because the Asel
propagation delay is not problematic to the circuit unless the 7sel delay is significantly
less (which would destroy the select pulse for the furthest latches), and this rare occurrence
can be easily solved through alternative transistor sizing. As a consequence, the ECS
circuit implementation of Fig.4.9a results, which is basically identical to the self-timed

pulse circuit shown shaded in Fig.4.1.

in mpm lnpul
® sel d_out
— Latches Latches
d_later
output output

d_out

() (b)

Figure 4.9: (a) A semi-optimized and (b) a fully optimized ECS implementation of the DLC.

By ignoring the wiring delay, all of the event control can now be placed on the same
side of the latching array. This enables a better VLSI floorplan and implementation of
the circuit, since only one control block must be designed and is effectively independent
of the data path. The latency of this ECS implementation is only A = £zor + tiny + tsend-

In some instance the speed of this circuit can be improved even further. If it is known
that within the environment the data on output does not interact with the subsequent
event control of Aout for at least tyor + tiny + tiasen (an identical consideration to that
discussed in the previous section), then the event 0in can in fact be fed out directly as
Jout, resulting in a zero latency implementation of the DLC.

In fact, if within this subsequent event control an event Olater is generated, then the
send gate can be removed and dlater fed back to the DLC to activate \/sel. This also
requires that the delay between din and Olater is at least as long as the pulse width
necessary for the latching of the data: din — Olater > tiqen. This circuit optimization
is shown in Fig.4.9b, and although it does not (and cannot) further reduce the latency of
the design, it does reduce the area of the control circuitry by a send gate.

Table 4.2 shows a comparison of the DLC implementations in terms of the gate delays

62

and relative speeds, using the results of Table 3.1 and assuming a relative toggle delay of

13 [Pav94, page 53], and tyire = 0.

Circuit Implementation Gate Delay Path (1)) Delay
Micropipeline with event latches (SI) 2(2tiny + twire + tegate) 28
Micropipeline with data latches (SI) || 2(tzor + tiny + twire + ttoggle) 44

ECS using a split toggle (SI) 2(tzor + twire + tsend) + 3tinv 32
ECS with initial optimization tzor + tiny + tsend 15
ECS assuming a Olater event 0 0

Table 4.2: Relative speeds of five different implementations of the DLC.

It is evidenced that even the least optimized ECS design results in over a 46% im-
provement in latency over the fastest SI implementation, as well as considerably reducing
the circuit area and control complexity. At best, the ECS methodology results in the
minimum possible latency of Ons and the minimum control area of just an zor and a
driver. Furthermore, for this circuit the number of gates switching per cycle has been
reduced from six in Fig.4.7b down to four in Fig.4.9b, which also indicates a reduction in

power dissipation.

4.2.3 Comments on improving acknowledgements

Providing earlier acknowledgements, or removing unnecessary ones, has been shown to
result in significantly faster system speeds in ECS than can be achieved using a SI im-
plementation, however to use these techniques also requires some knowledge of the en-
vironment’s operation. In particular, the time taken before the results of the optimized
circuit are again utilized, and the delay time between successive activations. Typically,
even at the architectural level, these time frames are reasonably well known (at the least,
a minimum delay can be determined), and as such these techniques can be regularly
applied.

These optimizations can be applied successively to each sub-component of a system
(beginning with the most critical), and if possible verifying through high-level simulation
that the system’s functionality is still correct. As new components of the system are
designed, a greater knowledge of their environment will become available, and so the
optimization techniques can be re-applied with progressively better results, and recursively

applied to previously designed components to further improve system speeds.

63

4.3 Activating functional units

It is often the case that two or more functional units (FUs) are required to be activated
(perhaps conditionally) by an incoming event, and to produce a completion event which
covers all possible activation scenarios. This problem can be somewhat complex (es-
pecially for a large number of FUs and controlling conditions), and requires the use of

advanced techniques to provide for low latency solutions.

4.3.1 Conditionally activated parallel units

Figure 4.10 shows a typical situation in which under all circumstances unit X is activated,
however unit Y is only activated (in parallel with X) when a governing signal c is high.

The implementation of this is obvious, however the problem posed is how best to generate

_li___i_ | d_in
N

dy

(Unicy | [Onicx]

a Oout event for this system?

d_ydone d_xdone

Figure 4.10: Conditional activation of unit Y in parallel with unit X.

One approach would be to devise a control circuit based on the logical necessities for
dout : if ¢ = 0 then dout < Oxdone else (with c = 1) Jout <— Oxdone.Oydone. Each of
the expressions in this logical description can be translated into an ECS gate. The process
of selection (if ... else ...) translates into a select gate, the assignment when ¢ = 1 is
clearly a cgate, and the assignment to dout under both clauses of the selection statement
translates into a merge gate (an OR function to events) to produce a Gout event under
both exclusive conditions.

This control circuit is shown in Fig.4.11a, and is in fact a SI implementation of the
design. Its functionality is clearly as required by the logical description given earlier,
with Qout being triggered by dzdone when Y isn’t activated (for ¢ = 0), and by the and

of dxdone and Oydone when it is (for ¢ = 1). The best case latency for this circuit is

64

Abest = tegate + tmerge, and the worst case latency is Ayorst = tfeed T tegate + tmerge, given
that the select and feed gates have identical VLSI implementations (see Section 3.2.4).
| d_in

d_ydone ¢ d_xdone

|
L

[UnitY [Unit X]

— d_yd
d_xdone
d_ydone
d_out
d_out
(a)

Figure 4.11: (a) A SI implementation for generating a dout event, and (b) an improved SI
implementation.

Note that dzdone is used in all circumstances in the generation of dout, and it therefore
seems inefficient to have to split this signal via the select gate only to merge it again later.
In fact, it can be observed that if a dydone signal could be produced for both ¢ = 0 and
¢ = 1, then dout would be given simply by: dout < Ozdone.Oydone.

The logical requirements for generating dydone under these conditions can be specified
as: if c = 0 then Oydone < Jin else dydone < Oyd : Oy : Oin, where Oyd is now the done
signal provided from unit Y. As before, the selection clause of this statement translates
into a select gate, and the two separate assignments to dydone translates into a merge
gate. Fig.4.11b shows the resulting circuit for this implementation, which is still speed
independent.

It will be observed that whereas in Fig.4.10 only a feed gate was used to trigger unit
Y, this has now been replaced by a select gate. This effectively generates a bypass event
to Oydone when unit Y isn’t activated, and ensures that regardless of the state of c, an
output event is always produced.

By viewing the design problem as a whole, and not as two separate components for the
input and output circuitry, a faster and smaller implementation has been produced. The

best case latency is Now Apest = tegate, and the worst case latency is Ayorst = tmerge 1 tegate

65

both of which are an improvement on the completion generation of Fig.4.11a.

An ECS technique can be used which reduces the latency even further. As already
mentioned, Oxdone is always used in the generation of Jout, and so a send gate can be
used to effect this. The governing control signal can be given by whether or not unit Y is
active, since if it is, then dzdone must be kept pending (if it has occurred) until unit Y
becomes inactive, otherwise it can pass through immediately as dout. This control circuit

is shown in Fig.4.12.

UnitY

d_ydone

Figure 4.12: An ECS implementation for generating a dout event.

This design assumes a minimum operating time for unit X which enables yactive to
be set: tx > tfeea + tzor, and is usually valid for all but the smallest of circuits. This
ECS implementation results in a faster generation of dout than can be achieved with the
fastest SI design. Table 4.3 summarizes the completion latency (from ddone — dout) for
when unit X alone is triggered, and for when both units are triggered with their ddone
events occurring to give the worst case latency, again assuming the relative gate delays

quoted in Table 3.1.

Circuit Only unit X triggered Both units: worst case
Implementation || Gate Delay Path | Delay Gate Delay Path | Delay
Initial SI tfeed + tmerge 20 tfeed + tcgate + tmerge 30
Improved SI tcgate 10 tmerge + tcgate 17
ECS Lsend 6 Lsend + tzor 13

Table 4.3: Relative speeds of three different implementations of a conditional triggering circuit.

Yet again, the ECS implementation has surpassed the best SI design by a significant
factor (up to 40% in this instance).

4.3.2 Generating a dout event in the general sense

The technique of the previous section can be extended to the general case in which p units

are always triggered when a 9din event occurs, and ¢ units are conditionally triggered

66

according to ¢ separate, but not exclusive, control signals. This situation is shown in
Fig.4.13a, which indicates how a SI generation of Jout is performed as extended from
Fig.4.11b. Figure 4.13b shows the corresponding ECS implementation as extended from
Fig.4.12.

d_in d_in
‘ q selects l— q controls q controls
[|
. h . 1 . N >
p units q units p units q units
always onditionall always onditionall
triggered triggered triggered triggered

p events p events
q merges '- q Xors
[1 | i i L qevents
p+q—1 : q events P 1 -
C gates |\ C gates | |g-input nor
;!—‘ ‘ |
d_out

b

d_and active

d_out

(a) (b)

Figure 4.13: A generalized conditional trigger structure with (a) a SI implementation for
generating dout, and (b) an ECS implementation.

Table 4.4 indicates the best and worst case latencies for the SI and ECS implemen-
tations, assuming that the (p + ¢)-input cgate is implemented as a binary tree, and that
the ¢-input nor gate is implemented as a pseudo-nmos structure (with a single pull-up
transistor tied to ground), with an estimated relative delay of ¢, ; tiny = 3. Note that
for p < 1, the best and worst case latencies for the ECS implementation are swapped,
the floor (| |) and ceiling ([]) functions round to the nearest lower and upper integers
respectively, and the delay values are quoted for the specific case of p = 4 and ¢ = 5. For
larger values of p and ¢, the relative improvement of the ECS approach increases (and

conversely for smaller values).

Circuit Best case (p > 1) Worst case (p > 1)
Implementation || Gate Delay Path | Delay Gate Delay Path | Delay
SI |_l092 (P + Q)J -tcgate 30 ”092 (P + Q)—| -tcgate + tmerge 47
ECS tror + f»prwr + tsend 16 ”092 (p)—l-tcgaw + tsend 26

Table 4.4: Relative speeds of two different implementations of a generalized conditional trig-
gering circuit.

67

The ECS implementation has in this instance resulted in a 47% improvement over

the SI design. The only constraint on this circuit is that Tp,

min

> tfeed + t:w'r + tpnor -
|l0g2(D) | -tegate, Where Tp, .. is the minimum latency of the fastest p unit. This ensures

that \yactive has occurred (if at all) before dand.

4.3.3 Generating a dout event for exclusively triggered units

As a frequently occurring variation on this theme, consider now the case in which only
one of r functional units can be exclusively triggered by the din event. It is possible to use
the generalized SI circuit above (with p = 0 and ¢ =), but a faster SI implementation
results if a tree of select gates is used to conditionally trigger each unit, and their outputs
merged together to generate dout (instead of anding a merge from each gate as before).

This is shown in Fig.4.14a.

d_in
d_in I SClCCtS 0g; T controls
r selects og, I controls r Lll"li.tS
£ exclusivel
I units trggere

exclusively

triggered Erj
I events
(e)
l d_out active

\,{_out

(a) (b)

Figure 4.14: Generating dout for exclusively triggered units in (a) SI and (b) ECS.

A similar ECS design to that of the previous section can also be employed, with the
only difference being that instead of triggering the send gate from a tree of cgates, a delay
unit 7T'is employed which simply delays the input event until the active signal is set. This
places no constraints on the operating speed of any of the units, but instead places a
design constraint on the delay: T > [loga(r)].tfeed + tzor + tpnor- This implementation is
shown in Fig.4.14b.

68

The average completion latency of the SI design (from Ordonejqs — Oout) is given by
Aave = (10gaT) tmerge and that of the ECS design is Agve = tzor + tpnor + tsend, Which can
be shown to be faster than the SI implementation for » > 4, assuming the relative gate

delays of Table 3.1.

4.3.4 Splitting a tree of select gates into individual feed gates

The previous section referred to a tree of select gates which was used to exclusively trigger
one of r FUs. Although this keeps the control logic for the data path simple, the event path
latency to trigger can become quite large: Ayorst = [1092(r)]-tfeca- A better solution is to
generate a selection signal for each separate FU (perhaps with a decoder), and individually
trigger each FU through a feed gate. Although this approach complicates the data path,
the event latency is significantly improved to a constant Ayerst = tjeed- This would also

improve on the design constraint for the delay T, to simply: T' > tfeed + tzor + tpnor-

4.4 Reducing event path delays

All of the previous sections have provided general techniques for improving system speeds
by typically reducing the complexity of gates in the critical event path. There are still
other techniques which can be applied in more application specific circumstances to further

reduce the event path delays of a circuit.

4.4.1 Moving metastability detection out of the event path

Consider now the situation in which a signal is used to halt an event (as per a send
gate), however in this instance the data and event are not associated. That is, a negative
transition of this signal may occur at any time and is uncorrelated to the occurrence of
the event. Clearly then, an implementation involving just a send gate is unacceptable,
since the output may become metastable when the input event and negative transition
of the control signal occur in such close proximity that the output may hover indefinitely
between the new and old logic levels.

To ensure that a valid logic level is seen by the subsequent control circuitry, a metasta-

bility resolver (MR) must be placed after the send gate as shown in Fig.4.15a. The

69

MR must ensure that a transition on dout is not activated until dsend is out of the
metastable region. This could be implemented by a VLSI circuit which doesn’t trigger a
logic high transition on its output until its input has exceeded some high voltage threshold
VHT, which is outside of the metastability region (which itself is typically near V.DD/2
[CM73]). Similar arguments apply for triggering the logic low transition. For example,
with VDD = 5V, one may design the MR for VHT = 3.5V and VLT = 1.5V.

5

FY
in

-

N

W15

=]

8. - |
gzs_valid high metastability valid low |
5 output : region output
=

3

o

o

d_in d_out

1 i " L i i i i
o 0.5 1 1.5 2 25 3 35 4 4.5 5

input voltage
(a) (b)

Figure 4.15: (a) An implementation of the unassociated halting circuit, and (b) the transfer
characteristic of its MR.

The important point to note about such a circuit is that a hysteresis loop is present,
as described by the transfer characteristic of Fig.4.15b. This requires a rather complex
design (such as a Schmitt trigger [GD85]) which can significantly increase the latency from
din to dout for the case when the signal ezt remains high. In many instances, this may in
fact be by far the most frequent scenario (such as for interrupt or exception processing),
and it is therefore worth investigating alternative architectures which reduce the typical
case latency.

One such approach is illustrated by Fig.4.16a, which operates as follows. The incoming
event 0in places the event driven latch into the pass state, which enables the ezt signal
to propagate through to extmeta (although its inverted output extmeta is actually used).
Concurrently, based on the previous value of extok which is here assumed to be high, the
event Oin is sent through to dout, which then forces the latch back into the hold state to
retain the latched value of ext (the delay element is used merely to ensure a sufficiently
long latching time of tseng + T).

It will be observed that the signal extmeta now has the potential for metastability,

70

-~
T

o
i

w

| valid high
output :

metastability region -
and valid low output

output voltage

)

d_in d_out % os i s K 25 a a5 4 45 5
input voltage

(a) (b)

Figure 4.16: (a) An improved implementation of the unassociated halting circuit, and (b) the
transfer characteristic of its MR.

and so a MR is needed after this to ensure that extok presents a valid signal to the send
gate. This MR has a simpler requirement than the previous one, since in this instance a
problem only exists for when eztmeta is transitioning high (a low transition implies that
Jin is already stalled at the send gate), whereas previously both transitions of the dsend
signal had to be resolved. The transfer characteristic for this MR is shown in Fig.4.16b,
and it can be seen that no hysteresis is present. Therefore the MR can be implemented
simply as an inverter with a low switching threshold (say, VT'L = 1.5V'), which requires
nothing more than a high n:p transistor width ratio and is a significantly less complex
implementation than required previously!

The important issue however with regards to this circuit is that, for the typical case
when eztok = 1, the latency of the circuit is merely A = t;enq. There is however a
requirement on the environment, to ensure that a newly latched value of extmeta reaches
VTL in the worst case (causing S7extok) before the next Jin event occurs: dout —
0in > Ayrpteateh + Vlino(MR) — tsend- This constraint in practice imposes a negligible
minimum latency on the environment, which is usually obeyed without any additional
design effort. A requirement on the circuit is that dout occurs before 7extok in the same
cycle, implying: tsend < Avyrrteiater + Viinu(mr), Which is also usually obeyed without
any extra design effort. Note also that the initial state of the inverting latch must be set
(typically low).

Consider now the other case in which din occurs when extok is low, either due to

continuing metastability of extmeta from the previous cycle, or a valid logic high of this

71

signal. In this instance the output dout is simply stalled until such time as ext goes high
again, as this then propagates through to extok since the latch is in the pass state.

An Hspice simulation of the new architecture is shown in Fig.4.17a for a sweep of times
for 7ext through the metastability region and an n:p width ratio of the MR inverter of
15:1. This was implemented in VLSI using the 0.7um DLM CMOS ES2 technology, with

a 5V supply, a temperature of 75°C, and using “typical” process parameters (hereafter

]
4 ; 2%RTEST. TRO
s = EXT
. L
PN EPERIPURINTIS (P L PR [TR |

= 2ﬁRTEST TRO
EXTHETA.
b

simply referred to as the ES2 technology).

5485
bosl
i —
|su§-

3 g e
Y
2.0 F
1.60 B

102
1.0ME

Az 10
2 :

A 2ReTEST 0. TR ..
EXTOK 2,07
—— -

ijem

]
B MRTEST TRO
~ D_IN

{6 (PP WAPNE PYRY SNPE (TN, PR W B |

' Kb)
[—te1esT RO
i / = plout
B
P S — 3

i 0- ‘]'N'eﬁj'éﬁ w Mg B W L e A

(a) (b)
Figure 4.17: (a) An Hspice simulation around the metastability region of the improved halting
circuit, and (b) the circuit’s operation once the next Jin event is applied.

ik H :
@
< Auylunwbsliniline

= 1 N | PR
#3908 25 oM
21.0N TIHE (LIN)

Around the metastability region of extmeta (at about 1.9V for this process), the signal
extok has safely been set low, and therefore metastability can exist indefinitely without
causing a problem for the send gate. The potential danger now however is when extmeta
rises to a peak of around 1.1V, which causes extok to dip to around 2V and may then
cause a problem for the send gate. However, being outside the metastable region, it is
known that extmeta will fall again and hence extok will rise. Therefore although extok
dips it is not metastable, and as can be seen from the simulation, is in all instances always
rising after t = 22ns. The next din event can safely be applied to the send gate after this
time (since being concurrent with a rising edge of the control signal is not a hazard) as
shown in Fig.4.17b (with din occurring at t = 23ns). Since the latch is now in the pass
state, the low value of ext is sent through to extok. If it was already low, then no dout
event will occur until Aext occurs (ie- the interrupt has been effective on this cycle, as

shown by the dout events at t = 29ns), otherwise if it was high then a dout event will

72

occur at once (at t = 24ns) and the interrupt will be effective on the next din event.
Given that dout occurs at about ¢ = 21ns, the minimum latency constraint on the
environment is therefore 1.0ns, which is of the order of a typical gate delay and would
invariably be met by the environment’s circuitry (requiring no extra design effort). The
circuit constraint explained earlier has also been met without effort.
By moving the control complexity out of the critical event path and into the data path,
the implementation of the MR, has been drastically simplified, and more importantly, the

typical case latency has been improved.

4.5 Summary

The most recurring theme in all of the techniques presented in this chapter is the min-
imization of gates in the critical event path. This can be achieved through the basic
principles of algebraic reduction, issuing earlier acknowledgements, and transferring com-
plexity from the event path into the data path.

It is clear then that the ECS designer needs to earnestly investigate his or her initial
implementation of a circuit (which should first be verified through simulation as func-
tional) to ascertain where it is possible to apply these optimizations and produce a faster
(and often smaller) design. As has been shown by the examples given, significant speed
improvements of the order of 50% can often be achieved through the use of these tech-
niques. Furthermore, an area reduction has also resulted in the majority of cases which

in turn implies fewer gate transitions per cycle and a reduction in power dissipation.

73

Chapter 5

Asynchronous Pipelines

IPELINING is an important aspect of systems design and is employed in almost
j)every modern commercial processor. By partitioning a computation into smaller
and faster components (such as a 32 bit addition into 32 one bit adder cells) each can be
made to function concurrently but on different operations. When one component finishes
its part of the computation, it latches its results into the next stage (which does the
next part of the computation) and then repeats this process for the next operation. By
pipelining a design in this fashion, the throughput can be made to be as fast as any one
component rather than their sum, which often results in a substantial improvement in
cycle time. This is however at the cost of an increase in latency (due at the least to
the propagation delay of the latches between stages), although for many applications this
is of less importance than the need for achieving a high throughput. The importance
of pipelining is therefore critical to the design of both synchronous and asynchronous
systems, of which the latter forms the focus of this chapter.

In the synchronous domain pipelining is effected by subdividing the computational
requirements into blocks of approximately equal delays, and then clocking the results
of one block into another with a clock period at least as great as the longest delay.
Ideally there is no additional control overhead apart from that imposed by this minimum
clock period, however in practice a number of other constraints such as skewing, power
dissipation, and a large clock driver load all serve to complicate the global clock paradigm
(see Section 1.1.1). Furthermore, it is not possible to take advantage of data dependent
computation times, and the throughput and latency are governed by the computation

time of the slowest stage (hence the need to equalize stage delays as much as possible).

74

Asynchronous pipelines employ the same partitioning principle as a synchronous
pipeline, however the requirement of equalized stage delays is relaxed and the regulation
of data between blocks is locally controlled. Typically a request-acknowledge (reg-ack)
protocol is employed, such that one stage signals to the next when its data is ready (req),
and that stage signals back (ack) to indicate when its next operation may begin. A vari-
ation on this theme, in which no acknowledgements are necessary and timing constraints
are propagated back to the input stage, is proposed in [AMLI6].

A number of different pipeline structures have been designed by various researchers
based on the reg-ack protocol using both two and four phase SI and BD models. The
following sections discuss some of these designs and illustrate their comparative perfor-
mance. Furthermore, some 2P ECS pipeline structures are presented which provide a

faster throughput than any others previously reported.

5.1 FIFO pipelines

A FIFO (first-in, first-out) pipeline is one which employs no processing of data between
stages, therefore the only limitation on the pipeline’s latency is the propagation delay
of data through the latches (ti4r). FIFOs are often used as storage buffers to a circuit
which may exhibit occasionally long cycle times (such as writing to a cache or buffering
prefetch logic [LCT195]), so that these variations do not typically impinge upon the cycle

time of the source which continues to supply the buffer during these long cycles.

5.1.1 Micropipeline 2P FIFOs

Perhaps the most famous implementation of an asynchronous FIFO is the micropipeline
proposed by Sutherland [Sut89], as shown in Fig.2.2 of Section 2.2.1 (with processing).
One stage of the micropipeline control using logic driven latches is shown in Fig.5.1.
The micropipeline utilizes a 2P SI control schema and operates as follows. Initially
the select line sel is high so that all of the latches are transparent (enabling input data
to filter through), and the cgate is primed. An incoming Oregin event will therefore
propagate through the cgate and force the select line low, thereby latching the input data
(which must be valid prior to this). The \/sel transition then proceeds through the toggle

and emerges as an event from the dot output Oreqout, which initiates the operation of

75

d_reqin d_ackin input data

d_prime :D_,:FDD—D%SC

P I Processing 1
! |
(notin a FIFO)
} toggle it |
/! ! !
d_reqout d_ackout output data

Figure 5.1: A micropipeline stage also indicating a fast-forward (dashed line) implementation.

the next stage. This same event is also fed back to the preceding stage as dackin to
indicate that the data has been latched and that new data may now be supplied. At some
later time the following stage will provide a dackout event to indicate this same situation
(that new data may be supplied), which then causes sel to go high via the zor and hence
enables new input data to propagate through the latch. This transition then re-primes
the cgate via the toggle (emerging now as dprime). A new cycle begins when the next
Oregin event occurs, or if one is already pending at the input of the cgate. Note that
if a latch structure is utilized which requires both sel and its inverse, then a SI control
implementation would require a primed cgate to join their opposing transitions prior to
the toggle [Sut89, Fur96], however the latch structure of Fig.3.5a avoids this additional
overhead since it only requires the sel signal.

One of the problems associated with the micropipeline is the long stage latency from
Oregqin to Oreqout (tegate + toor + 2tiny + tioggle), Which is significantly greater than the
minimum allowable latency of ;... As an improvement, the dashed event of Fig.5.1 can
be used to provide an early dreqout event to the next stage. This improves the stage
latency to just tegare (Which is still slightly greater than the latch propagation delay) and
also subsequently improves the cycle time. Note however that this alternative control

implementation (dubbed a fast-forward micropipeline [Sut89]) is no longer SI.

5.1.2 4P FIFO circuits

A very simple 4P control circuit [FES94] is shown in Fig.5.2, and consists merely of a

cgate. Much of the control circuitry of Fig.5.1 has been made redundant since a 4P

76

signalling protocol has a RTZ phase, thereby removing the need for a two-to-four phase
conversion for the sel signal (though the zor and toggle). Instead, the cgate can be used
directly to drive the latches (through a driver) and to signify the ackin and reqout signals
to adjacent stages.

reqin ackin input data

latched data
\
! Processing |

|
(not in a FIFO),

reqout ackout output data

r— === -

Figure 5.2: A simple four phase (S4P) FIFO controller.

Although this SI control schema is extremely simple it suffers from the fact that it is
only ever possible to have alternate stages storing data. This is because the closing of
stage i (\sel;) causes the opening of the preceding stage (through the path: sel; —
Nackin, — 7seli_; — Asel; 1) which in turn causes the closing of the one before that
(\sel;_3). Thus, it is only ever possible for every second stage to be latching data (7sel).

A highly optimized 4P improvement on this implementation is shown in Fig.5.3
[DW95]. This circuit introduces additional control complexity to enable the latch to close
before the following stage becomes open (meaning that 7sel;_; is no longer dependent
on Asel;), and to also decouple the RTZ handshaking phase with the preceding stage. As
such the cycle time and latency of this circuit is improved, despite being a significantly
larger design. The asymmetric cgate notation used is such that an input striking the +
bar affects only the rise of the gate’s output (on a positive transition), and one striking
the — bar affects only its fall (on a negative transition). Both transitions are controlled

by an input striking the body of the gate, as in a conventional cgate implementation.

5.1.3 A fast ECS FIFO

It was observed for the micropipeline of Section 5.1.1 that by removing the SI constraint

on the circuit (in providing an earlier Oreqout event) a faster design could be produced. By

7

regin ackin input data

sel
latched data

l Processing

Ej {nor ina FIFO,I'

reqout | |ackout output data

_

Figure 5.3: A decoupled four phase (D4P) FIFO controller.

taking this ideal one step further, and removing the extra logic necessary for re-converting
the sel signal back into events (through the toggle gate), a much simpler implementation
can be produced as shown in Fig.5.4a. In this instance, the output of the cgate is used
to provide the Oreqout and dackin events directly. To enable a sufficiently long high
signal on sel after a dackout event occurs when a Oregin event is pending, a small delay

must be inserted prior to the priming of the cgate (giving a minimum latch pulse width

of T -+ tcgate)-

d_reqin d_ackin] input data d_regin d_ackinT input data
latches

sel

latched data
T TEET T — [— Y
l Processing 1 Processmg 1
I
(ol FIFO)I (not in a FIFO),

B/

d_reqout d_ackout output data d_regout d_ackout output data
(b)

(a)
Figure 5.4: (a) An ECS implementation of the micropipeline and (b) the ECS state pipeline.
A similar structure is proposed in [YBA96] which uses very large (24 transistors)
double-edge triggered flip-flops in place of the zor and logic driven latches (which use

only 6 transistors). This results in a substantially bigger design with a slightly slower

speed than the circuit of Fig.5.4a (due to the increased load on the select line).

78

It can be seen that the dackout event of Fig.5.4a results in Asel, and so to enable a
more reliable latch pulse width to be generated, this could be used instead of the cgate
structure to produce Jackin through a send gate. This implementation is known as the
state pipeline [MAL95] and is shown in Fig.5.4b. As well as producing a better sel pulse
(in a self-timed fashion, since Asel is now guaranteed to occur before vsel), the latency
and cycle times of the pipeline are also improved (since tseng < tegate and there is less load

on the dackout event).

5.1.4 Comparison of FIFO designs

The micropipeline, four phase, and ECS FIFOs were all simulated in Hspice using the
ES2 technology, with four stages implemented and a data width of 32 bits. Identical
gate structures and sizes were used between designs which enhanced the accuracy of the
comparison. The simulation results are given in Table 5.1, for which the cycle time (o),

latency (\), power (P), and power-delay (Po) values are all quoted per stage.

[Circuit o (ns) [A (ns) [P (mW) [Po (mWns) ||
Micropipeline 12.5 4.4 1.8 22.5
F-forward micropipeline 9.3 1.3 2.6 24.2
Simple 4phase 8.1 2.0 1.5 12.2
Decoupled 4phase 7.8 1.6 3.4 26.5
ECS micropipeline 3.5 1.5 3.0 10.5
ECS state pipeline 2.8 1.3 2.2 6.2

Table 5.1: Relative performance of six FIFO circuits.

These figures verify the claim in [DW95] that 4P SI control circuits outperform 2P
SI circuits (giving a 38% improvement in cycle time), however the same cannot be said
against a BD model. In fact, the ECS state pipeline’s cycle time is shown here to be
64% lower (almost 3 times faster) than the best 4P implementation and consumes 35%
less power! Furthermore, the latency of the state pipeline is also significantly faster than
this design (by 35%). It is also interesting to note that the decoupled 4P FIFO is only
marginally faster than the single cgate implementation, which also consumes considerably
less power (56% less). The power-delay value Po is an often quoted figure of merit which
indicates the trade-off between speed and power, and in this category the ECS FIFO is

again superior.

79

It is clear then from these figures that, for a FIFO implementation, a 2P ECS pipeline
is significantly faster than a 4P pipeline, and that employing a BD model enables higher

circuit speeds to be attained than is possible with a SI model.

5.2 Pipelines with processing delays

The preceding FIFO circuits illustrate the control schemas which can be employed to
construct a pipeline, however without incorporating any data processing their applications
are limited. Typically, each stage of the pipeline will perform some kind of operation on
the data which may take longer than the latency of the FIFO, so the output event to the
next stage dackout must be stalled until its output data is valid.

In the simplest case for which the data processing delay is bounded and regular (ie-
does not exhibit significant variations in computation time), the req signal can simply be
stalled by the use of a delay element, as shown in Fig.5.5. Note however that it is not
strictly necessary for req to be delayed until its output data is valid. Rather, it must be
delayed to the extent that the next stage will activate /sel after all valid output data
has propagated through the latch. This means that the delay element 7 of Fig.5.5 can be
less than the worst case processing delay (plus a safety margin for process variations and
simulator errors) by an amount equal to the forward propagation latency of the pipeline

control (from req — 7sel).

ack) ack ack) ack
control| (1) control (1) control| _ _
req ~———m———— 2J req e L req oo req
sel sel sel
‘ 2 e =
5 7 3 "z S 7
= 7] = 1) <= 1%7)
QO Q Q (] [5) Q
= [= [— [}
V=lz1 2 [V|=1z]l & Y= (5] 2 |sg
S i "N k= S| A)3 S A S
- <4 9 - | Y = s 9 . -
=] 9] = Q =1 Q =
e = jo¥ = o = o
= S g S £ S 3
ks ks g 5

Figure 5.5: A typical delay-modelled pipeline.

The implementation of this delay element is different for 2P circuits than it is for
4P. With a 2P design an approximately equal delay is necessary for both positive and

negative transitions, and so a simple inverter chain giving the required delay time can be

80

used. However for the 4P designs, the delay is only necessary for the positive transition
of regout, and the negative transition should ideally have no delay. Obviously an inverter
chain could still be used, however the delay imposed on the negative propagation would
be severely detrimental to the cycle time. Instead, a structure such as that shown in
Fig.5.6 can be employed, which enables a positive edge to propagate through the inverter
chain, but a negative edge will cause every second inverter to be pulled low, including the

output, thereby resulting in a very low propagation latency as desired.

Figure 5.6: A delay element for positive transitions only, as required by 4P controllers.

Note that it is also possible to implement the delay by propagating the output request
through a series of gates which mirrors the worst case computation path. By doing this
the effects of process variations and simulator errors are reduced, since both control and
data delays will vary almost identically which cannot be said of the inverter chain delay.
This approach is more suited to the use of dynamic logic (discussed in Section 5.3.3.3),
since for static logic the worst case computation path cannot always be replicated for
both positive and negative transitions of a 2P event, and a 4P control signal cannot
usually propagate a fast low signal without altering the delay model. Furthermore, this
approach prevents absorbing some of the data modelled delay into the event control (from
req — “ysel in Fig.5.5, which can be used to reduce the stage latency) unless the delay
model is truncated, however this would mean that it no longer accurately mirrors the
data path which contradicts its intended purpose.

The FIFO circuits of the preceding section (excluding the micropipeline and ECS
micropipeline) were simulated using the ES2 technology and are shown in Table 5.2. A
peak data processing delay of 10ns was assumed (which includes any safety margins), and
an inverter chain delay model was used on each stage’s output request.

The latency of these circuits is now almost identical, since their processing delay model
has been absorbed into the event control from req — s7sel (which is just greater than the

processing time plus latch propagation delay: 11.3ns > 10ns + tiqcn). As could also be

81

Circuit o (ns) | A (ns) [P (mW) [Po (mWns) ||
Simple 4phase 26.3 11.3 1.6 40.9
Decoupled 4phase 18.0 11.3 2.2 39.6
F-forward micropipeline | 19.2 11.3 1.5 28.1
ECS state pipeline 12.5 11.2 1.1 13.8

Table 5.2: Relative performance of four delay modelled pipeline circuits.

expected, the cycle times of these circuits is, for all but the simple 4P (S4P) pipeline,
approximately 10ns greater than their FIFO cycle times.

It can be shown that in a pipeline with processing, the cycle time is limited only by the
return event processing time (from dackout — dackin), and not by the forward latency
(from Oreqin — Oregout), since this can be incorporated into the delay model. This is
why the ECS state pipeline is so fast, since there is a very short return processing time
(1.3ns), whereas the decoupled 4P (D4P) pipeline suffers considerably from its RTZ phase
(6.7ns).

The advantage of the D4P pipeline over the S4P structure however is now evident.
The latter is seen to exhibit a very long cycle time since, as already stated, it can only
have each alternate stage processing data, whilst the intermediate stages remain idle. In
essence, the processing delays of the current stage and the one following are incurred in
the cycle time. However, the ECS state pipeline still outperforms the D4P pipeline by a

significant margin.

5.3 Precharge pipelines: general concepts

The previous pipeline structures are useful for data computations which incorporate only
static logic. However it is often useful to implement dynamic logic structures to reduce
power consumption and increase performance. Furthermore, the use of dynamic logic (or
at the least, a pipeline with reset and activate phases) enables self-timed computations to
be performed. Using a delay-modelled approach in the control path as thus far presented
does not allow the speed advantages of self-timing to be utilized, since the worst case
delay must be accounted for, and not the typical case which may be significantly faster.
For example, a 32 bit self-timed adder has a typical delay for random data of 4.4 adder
cells [Gar93|, which is 86% faster than the worst case (32 cells), and for an incrementer

the improvement is almost 97% (1 incrementer cell versus 32).

82

It is therefore of importance to devise precharge pipeline (PP) structures which can
be used together with dynamic logic to implement self-timed (as well as non self-timed)

computations.

5.3.1 Dynamic Logic

A general dynamic logic computational block is shown in Fig.5.7. When act is low (which
implies that no processing is taking place) the output signal is precharged high through the
p-transistor. The computation begins when Aact occurs, prior to which all input signals
to the nmos pull-down tree must be valid (coming either directly from the preceding
latch stage or through a small amount of static logic). If a pull-down path through the
nmos tree exists, then output will compute low, otherwise it will remain in the logic high

precharge state.

act

Retention
Circuitry

Figure 5.7: A general dynamic logic computational block.

When dynamic logic is used inside a PP structure, it must be remembered that if
the present stage has begun its computation with output remaining high, but is stalled
by the following stage (which may still be computing, or is similarly waiting for its next
stage to unstall), it is possible that due to charge leakage output will eventually decay
low. Although this situation may be extremely rare, if it is at all possible for the pipeline
to stall for longer than the charge retention time, then some kind of state holding logic
(for the high level) is necessary. The shaded circuitry in the oval of Fig.5.7 provides this
function, by maintaining a logic high level through the weak pull-up (trickle) transistor via
the weak inverter when output is high. Note that this will slightly increase the capacitive

load on output and also the pull-down time.

83

An alternative is to prevent initiating act until the following stage is open [FL96] (so
that the results are able to be latched before the influence of charge decay), however this
approach is unsuitable for ECS since the increased wait time before activation severely
increases the processor cycle time (for the D4P controller the effect is minimal since this
can be incorporated into the RTZ phase). Another approach is to compute both output
and output through an nmos tree, and use each to activate the others trickle transistor.
Although useful for some self-timed architectures (in which the pull-down of one of these
bits indicates the “completion” of the cell) it has the disadvantage of using approximately

twice the area [vBBK195] and requires the inverse of all input signals to be routed.

Dynamic logic has been shown to be of benefit to asynchronous pipelines in terms
of both speed and power [McA92, FES94]. By reducing the capacitive load on output
through removing the static logic pull-up tree, the switching (low) time of the output
is improved. Furthermore, due to precharging, the time to a logic high is (obviously)
zero. Speed advantages can also result through the use of self-timed logic (see Chapter
6). Power is reduced because of the reduction in capacitance on the output node as well
as the reduced capacitance on the input signals (which only drive 1 transistor per cell
instead of 2 for static logic). Furthermore, since the output remains precharged until all
inputs are valid, there is no switching power loss due to glitching of the inputs.

At the global pipeline level it can be noted that if static logic is employed, then with
all pipeline stages initially open, a signal change at the input may propagate through the
entire pipeline, even if no input control event has occurred. This can result in a significant
power wastage. One solution is to have each pipeline stage initially closed, however the
extra phase of opening and closing the latches (instead of just closing them) increases the
system latency. Dynamic logic however provides a natural buffer since all outputs are
precharged, therefore significant power savings can be made without compromising the

system speed.

5.3.2 Requirements of a PP for dynamic logic

Clearly from Fig.5.7 the PP is required to produce an activation (and precharge) signal
act to the dynamic logic, which starts the computation when high and returns the system

to a precharged state when low. This then raises the question: when is it known that the

84

dynamic logic has precharged or that the computation has completed?

These questions can be answered in two ways depending on the assumptions made
on the dynamic computation. If it can be assumed that the precharge time is bounded,
then some kind of delay inserted into the PP control can be used to ensure a minimum
precharge time, otherwise a signal pdone must be returned from the dynamic logic to the
PP to indicate when all nodes are precharged (this is necessary for a SI control schema).
Similar arguments apply to the computation, with the dynamic logic returning a signal
cdone to the PP if an unbounded computation time is assumed, or for when the extreme
processing variations of a self-timed computation are to be exploited.

Table 5.3 indicates the three different paradigms which result from the above assump-
tions, dubbed alpha, beta and gamma. The combination of unbounded precharge time

and bounded computation time is not included, since it would rarely be of use.

Paradigm Timing assumptions made Signals required "
Alpha (PPa) Bounded precharge & computation act
Beta (PPf3) Bounded precharge & unbounded computation act, cdone
Gamma (PPr) Unbounded precharge & computation act, cdone, pdone

Table 5.3: Three different design paradigms for precharge pipelines.

PP« is the least robust of the three paradigms and assumes that both the precharge
and computation times are bounded. Assuming the former is reasonable since this usually
happens in parallel across the dynamic logic array, and assuming the latter (although
still reasonable for many applications) prohibits the application of PPa to self-timed
structures.

Conversely, PPf is well-suited to implementing self-timed architectures since it re-
quires a completion signal to be generated. The assumption of a bounded precharge time
is still reasonable for self-timed architectures, however in the rare instance that it is not
then PP+ can be used. This is the most robust paradigm and is necessary if a SI control
model is implemented.

The requirements on the PP for generating act are obvious: the dynamic nodes cannot
be returned to precharge (act) until their computed data has been latched into the
following stage; and the computation cannot be activated (Aact) until the data nodes
have been precharged and new data has arrived (as signalled by the input request of the

control schema).

85

The signal pdone (for PPy) is used to govern the activation of Aact on a positive
transition only, and the signal cdone (for PP+,3) is used to govern the output request
of the pipeline also on a positive transition. The negative transitions of these signals is
therefore unnecessary, and should ideally occur as soon as possible after Aact and yact

respectively so that they have a minimal effect on the cycle time.

5.3.3 Methods of completion and precharge detection

There are essentially four methods by which cdone and pdone can be generated, each of
which gives a different level of robustness in terms of its resilience to process and operating

point variations.

5.3.3.1 Self-timed static logic (STSL)

The most robust method of determining when a computation has completed is to generate
both the required signal (say, z;) and its inverse (Z;), since under all conditions (barring
stuck-at faults) one of these two signals must pull low. By nand’ing these two signals
together, and then and’ing the result for all signals, a self-timed generation of cdone can
be produced, as shown in Fig.5.8a. To enable a fast pull-down path from \yact — ycdone,

an or'ed pull-down transistor in the final and gate is used (driven by act).

Dy namic Dynlamic » Dyn}amic act
| Ji . . L _
Logic Logic Logic
I } I

X, X

Dynamic| |Dynamic|
Logic Logic

XO n Xn XO Xl

Figure 5.8: A self-timed static logic method for generating (a) cdone and (b) pdone.

Figure 5.8b shows a similar method for generating pdone. In this instance the

precharge is detected by anding all of the output nodes z; (and 7;), since these must

86

all be high to indicate completion. As before, an or’ed pull-down transistor is used on the
and gate of pdone to produce a very small delay from Aact — ypdone.

Although both of these circuits are suitable for SI control models and self-timed com-
putations, they require a substantial amount of logic in the detection path, especially
when one considers that for a large number of bits the high fan-in and gate must be re-
implemented as a tree of smaller gates. It is therefore evident that self-timed completion
detection using static logic is a slow process, and could easily become longer than the
dynamic logic computation which would then completely negate its speed advantage over

static logic.

5.3.3.2 Self-timed pseudo-nmos logic (STPL)

To overcome the speed deficiency of the self-timed static logic detection, a pseudo-nmos

style [WE93, Chapter 5.4.3] implementation can be used as shown in Figure 5.9.

VDEE act act il
P g Rag e,

4 cdone pdone \:l
[J o] 1CL |act
5 Dingie Ll

ol

‘e
=}
>

|
=

GND

(a) (b)

Figure 5.9: A self-timed pseudo-nmos logic method for generating (a) cdone and (b) pdone.

For generating cdone, the initial condition is that all z; and z; signals are high, and
the pull-up transistor is off so that cdone is low and no power (other than from leakage
currents) is drawn. When act goes high, the pull-up transistor turns on and static power is
dissipated. This transistor is sized such that in the worst case situation, when only one of
the pull-down paths is on, the output cdone still provides a suitable logic-low level. When
eventually all paths are off, which occurs when for all bits either z; or z; has computed low,
cdone will be pulled high. This circuit therefore enables very fast completion detection
but at the cost of static power dissipation only during the computation phase (which
can be minimized by suitable transistor sizing), and is independent of any pipeline stalls.
Note also that the n-transistor connected to act is used to provide a fast pull-down path

during precharge.

87

The same technique is used for generating pdone, however in this instance all nodes
are connected to a parallel row of pull-up transistors. If any one of these signals is
low, then pdone will be pulled high and pdone will stay low (static power is similarly
consumed during the precharging process through the weak, appropriately ratio’ed pull-
down transistor governed by act). As soon as all signals are high, pdone will pull low and
pdone will rise indicating precharge completion. No static power will then be drawn. Note
again that pdone has its pull-down transistor governed by act to provide a fast pull-down

time.

5.3.3.3 Computation modelled completion detection (CMCD)

For the case in which one computational node can be identified as exhibiting the worst
case pull-down (WCPD) time (as is often the case when each bit computes a similar
function) then the detection mechanisms shown in Fig.5.10 can be used to generate cdone
and pdone. This approach can be expected to closely mirror any circuit deviations arising
from variations in process and operating conditions, since the affected pull-down path is

replicated in the completion strategy.

o

cdone

VDD

—d El p————act

pdone

WwOrst case
ts | pull-down
nmos tree

cdone WwoOrst case

inpu inpu pull-up

nmos tree

>0 -

(a)
Figure 5.10: A method for generating (a) cdone and (b) pdone which closely models the worst
case pull-down time.

In Fig.5.10, act is initially low and hence (since cdone is precharged) cdone will be
low. Within the WCPD tree, all gate inputs are connected to either GND or VDD,
depending on the WCPD path of the computation to be mirrored. When act goes high
this path will connect to GND and therefore pull down the node cdone, causing cdone
to go high (the n-transistor of this inverter is connected to act to enable a rapid pull-
down delay from s7act). Completion detection is therefore rapidly and reliably signalled.

Similar arguments apply to the circuit for generating pdone, although in this instance the

88

inverter is not used, and the n-transistor network must be constructed to mirror the worst

case pull-up time.

5.3.3.4 Delay modelled completion detection (DMCD)

The simplest and least robust method of signalling completion is to use a delay model,
as shown in Fig.5.11. In this instance, a worst case pull-down (and pull-up path for
precharging) must be identifiable which, as per the CMCD approach, prevents it from

being used for self-timed computations.

Figure 5.11: A delay modelled method for generating cdone.

The signal cdone is generated simply by a delay of the act signal through the inverter
chain, and to enable a fast pull-down path, every second inverter is driven low by act
(which is connected to its n-transistor). The same circuit can be used for generating

pdone when preceded by an inverter. Note that this circuit is identical to that of Fig.5.6.

5.3.3.5 Summarizing the completion detection approaches

For generating the cdone and pdone signals for self-timed computations it is best in
terms of speed (which is the primary focus of ECS) to use the STPL mechanism, which
is significantly faster than using the static logic approach. Note that the static power
dissipation of this circuit can be controlled through transistor sizing, and is only incurred
during the actual computation time and is therefore not affected by pipeline stalls. The
STSL method should not be used for high speed applications unless the data width is
small.

If however a worst case node can be identified for the computation and precharge
times, then it is faster and more reliable to use the CMCD mechanism. If there is any
static logic circuitry present before or after the dynamic logic, then a DMCD approach

should be used to model this.

89

5.4 Decoupled 4P precharge pipelines

The D4P pipeline has been shown to be the fastest of the 4P implementations, and has
therefore been used in the construction of «, 3, and y precharge pipelines, with the
intention of comparing the performance of these D4P structures against those which can
be devised in ECS.

These PP structures can be designed by first considering the more stringent require-
ments imposed upon the D4P when implementing a PP and then simplifying this circuit

for the other paradigms.

5.4.1 Implementations for PP«a, PPg3, and PPy

Consider firstly the generation of act, for which the conditions for generating its positive

and negative transitions can be stated as:

e Aact cannot occur until Areqout of Fig.5.3 has occurred, which indicates that new

input data has been latched.

e Aact cannot occur until Apdone has occurred, which indicates that the processing

nodes are in a precharged state and are ready for dynamic computation.

e act can be initiated after Aackout, which indicates that the data from the previous
dynamic computation has been latched. This signal must stay low until 7ackout
occurs to prevent the subsequent Apdone transition from causing a premature rise

in act (resulting from the two preceding requirements).

An asymmetric cgate can be constructed from these three conditions and coupled to
the D4P pipeline as shown in Fig.5.12a to create a PP~y structure. The output request of
this new pipeline is given directly by the 4P cdone signal emerging from the computational
block.

A PP@ structure can be devised simply by removing the pdone signal from the asym-
metric cgate (since the precharge time is now assumed bounded), and inserting a delay into
the return acknowledge path which enables the precharge time from Aackout — Areqout
(prior to the cgate for act) to be controlled. Note that if the handshaking control of the

RTZ phase is longer than the required precharge time, then no delay element is necessary.

90

reqin

AN ackout

Decoupled
4 phase
Controller

ackin\ =~~~ "~ 7)

Figure 5.12: (a) PP~ and (b) PP structures implemented with a D4P controller.

Otherwise, the additional delay T could be implemented by an inverter chain of delay 7'/2
(since both transitions of ackout occur during the precharge phase), or a positive edge
only delay of T. The shaded control section of Fig.5.12a is therefore replaced by that of
Fig.5.12b to produce a PPS structure.

The simplification into a PPa paradigm is simple. The signal cdone is removed (as
a bounded computation time is now assumed), and act is simply delayed (positive edge
only) to give the output request signal. Note that the control of the next stage from
Areqin — v7sel can now be incorporated into the overall bounded control delay, hence

reducing the pipeline latency and the cycle time.

5.4.2 Performance comparisons

These three PP structures were all simulated in Hspice using the ES2 technology for a
4-stage pipeline with 32 bit buses, and assuming a dynamic computation delay (from
Aact — data valid) of 10ns, and a precharge time (from yact — data high) of 3ns. A
STPL approach was used for the generation of cdone (resulting in an additional = 1ns
delay for detection), and a CMCD strategy was used for generating pdone (which incurred
a negligible delay since it modelled the 3ns precharge time). Identical drivers for sel and
act were also used between each implementation. Table 5.4 provides the results of these
simulations, with all values quoted per stage.

It can be seen that the latency and cycle times of the PP3 and PPy structures are
almost identical. This is because a D4P controller inherently provides for a precharge
time of greater than 3ns (actually, about 6ns) in its RTZ phase, so that no delay element

was necessary. As such, the only difference in implementation is in the removal of the “+”

91

| D4P Circuit || o (ns) [A (ns) [P (mW) | Po (mWns) ||
PP« 18.0 11.6 2.6 46.0
PPj 19.4 13.0 2.5 48.7
PPy 19.6 13.2 2.8 54.5

Table 5.4: Comparison of precharge pipelines («,3,7) implemented with a D4P controller.

bar to pdone in the asymmetric cgate (hence the slight difference in speed of 0.2ns). PP«
enables a latency closer to the ideal of tjaeh + teomp (Where teomp = 10ns in this example)
because the latency of the event control has been absorbed into the delay model. The
cycle time is therefore similarly improved by the same amount. Note that in practice a

longer delay time would be implemented to provide a suitable safety margin.

5.5 ECS precharge pipelines

The ECS state pipeline discussed in Section 5.1.3 has been shown to give a much faster
latency and cycle time than any of the other pipelines. Structures similar to this can be de-
vised which enable all three PP paradigms to be realized. The operation of these pipelines

can become complex, therefore it is convenient to begin with the simplest paradigm: PPa.

5.5.1 PP« implementation

The PPa structure in ECS is in many ways similar to that of the D4P approach. In par-
ticular, since no pdone or cdone signals are provided, the computation time and precharge
times are controlled with a delay element as shown in Fig.5.13. In contrast however to
the D4P approach these delay elements now operate on events, and therefore the delay

now applies to both transitions rather than just the positive one.

The requirements for generating act are simple: Aact cannot occur until dackin oc-
curs, which signifies that a new operation is underway and the input data is latched;
and s7act cannot occur until dackout occurs, which indicates that the following stage has
latched the current data. Note that using these events requires s7sel to occur before 7act
of the preceding stage has been able to invalidate its data (precharge high). This takes a
finite time, so that in practice \/sel and syact can safely occur concurrently. Note that

act could simply be generated by the inverse of sel, however by decoupling the activation

92

act

1
: : Activation
1
|
}
1
|

. L I =

d_reqout d_ackout

Figure 5.13: An ECS PP« structure.

from the handshaking, an acknowledge can be sent to the previous stage without having

to wait for the precharging phase as would have to happen otherwise.

5.5.2 PPgS implementation

A design of a PP/ structure is presented in Fig.5.14, and is similarly seen to decouple the
handshaking (generation of sel) and activation (generation of act) phases of the design.

cdone_in d_ackin

act

Figure 5.14: An ECS PPg structure.

The most striking difference between the handshaking phase of this structure and
that of the PP« is that a forward propagating event path is no longer present! This fact
is best explained by first considering the PPa structure with a send gate placed before
dreqout governed by cdone. This then produces an initial PP# structure which can then

be modified into this one through the following observations.

93

A new operation in stage i cannot begin until Acdone_in has occurred, which would
then also produce a Jreqin event to stage ¢ As such the occurrence of this event is
irrelevant, since Acdone_in signifies the same thing (and the send gate is only of use to
maintain a forward event flow). However the new operation in stage ¢ still cannot proceed
until dackout has occurred. Instead of indicating this occurrence via Asel as in PPq,
the event can be temporally and’ed with cdone_in using a send gate to begin the new
operation. These improvements then result in a faster handshaking operation, since the
redundant dackout — Asel and Acdone_in — Oregin delays have been removed. Note
that a small delay of Tlatch is necessary to enable a sufficiently long sel pulse to be
generated in the worst case (when dackout occurs with cdone_in already high), which
can usually be coupled with the precharge delay since this is invariably longer (although
they’re shown separately in Fig.5.14 for clarity).

In most situations a pipeline will be embedded inside a higher level of abstraction,
which may require that an input dregin event be used to trigger the first stage (stage 0),
and a Oreqout event be produced from the last (stage n). In this case, the initial cdone
signal to the first stage can be generated by the TE: cdone_ing <— Oreging U Jackiny;
and the final Oregout event can be generated by: Oreqout, < Oackout,.cdone_out, (re-
membering that the overline indicates a primed event, not an inverse).

The activation phase of this circuit is in some ways similar to the PPa, which employs
an zor gate and a delay to model the precharge time. In this instance however the rise of
act is postponed until Acdone_in from the preceding stage has occurred, since this now
indicates that new data is available. Furthermore, an asymmetric cgate is employed to
rapidly produce Aact once Acdone_in has occurred, and the signal from the zor gate is
now used to ensure that, regardless of the state of cdone, a sufficiently long precharge phase
still occurs. Implementing the activation circuitry in this manner enables the latency of

the design to be substantially reduced.

5.5.3 PP~y implementation

For the PP+ implementation shown in Fig.5.15 the same basic handshaking structure
as per PPf is used, however the activation circuitry deviates from PPJ because the

precharge time is no longer bounded, and hence the pdone signal is used to indicate when

94

the dynamic logic has precharged. This is incorporated into the asymmetric cgate by
using Apdone to govern the positive edge of act.

cdone_in d_ackin

\ Handshaking

sel

Activation

act

pdone

(from dynamic logic)

cdone_out \ d_ackout

Figure 5.15: An ECS PP~ structure.

The purpose of prech now is slightly different from PP#. In this instance it is only
necessary for s\yprech to initiate the precharge phase, whereas before it had to maintain
it, since now Apdone is used to indicate precharge completion (Aprech had to be used
for this purpose in PPS). It is therefore safe to set prech high again as soon as act has

gone low, and the send gate governed by act is used to effect this.

5.5.4 Performance comparisons

These three PP structures were all simulated using the ES2 technology with identical
design parameters to those given for the D4P pipelines of Section 5.4.2. Table 5.5 provides

the results of these simulations, with all values quoted per stage.

[ECS Circuit || o (ns) | X (ns) | P (mW) | Po (mWhs) ||

PPo 14.4 114 1.3 19.3
PPg 16.2 11.7 2.7 43.7
PPy 17.0 11.9 2.7 45.9

Table 5.5: Comparison of precharge pipelines («,3,7y) implemented using ECS.

As could be expected, the cycle time of PP« is given by the sum of the computation

time, latch propagation, an zor delay, and the precharge time (with the latency given by

95

the first two components). The latency is not influenced by the control structure since this
has been absorbed into the delay model for the computation, and the cycle time is only
influenced by the delay of an zor gate’s negative transition. It is surmised that this ECS
PP« implementation is optimal in terms of speed. Interestingly, this circuit also consumes
less than half the power of the other paradigms, since there is less control activity and no
need for completion detection. Note again that in practice the latency (and cycle time)
would be increased by the safety margin incorporated into T'comp.

The cycle time of PP/ is increased by the STPL detection time of the data and the
increased delay of the asymmetric cgate over the inverter driver used in PPa. For PPy this
is increased further by the slightly slower cgate (which has an additional control signal)
and by the increased precharge time which results from having to wait for Apdone before
activating Aact (an additional cgate delay).

The latencies of PPS and PPy are given by the delays of the computation, the com-
pletion detection (which occurs in parallel with the data propagation through the latch),
and the asymmetric cgate. Since the STPL provides for a very fast completion detection

which is comparable to the latch propagation delay, these latencies are very similar to

those of PP« .

5.6 Comparison of ECS and D4P PP structures

By comparing Tables 5.4 and 5.5 it can be seen that the ECS implementations of these
PP paradigms give significantly better cycle times and slightly better latencies than the
DAP circuits in all cases. Specifically, the cycle times for the «, $, and v implementations
have been improved by 20, 17, and 13 percent respectively for the design parameters used
in the simulations.

In fact, the advantages of the ECS implementations become more pronounced as the
computation and precharge times decrease. Table 5.6 provides a calculated estimate
of the cycle times and latencies of the ECS and D4P circuits when the computation,
precharge, and detection times are all reduced to 1ns (if zero delays are assumed, the
handshaking circuitry of the ECS designs becomes predominant and limits any further

performance increase).

96

[o (ns) [PPa|[PPB|PPy | A(ns) |[PPa|PPg|PPy|
D4P 9.0 | 10.2 | 10.4 D4P 26 | 3.8 | 4.0
ECS 28 | 48 | 5.6 ECS 2.1l 25 | 2.7

%better | 69 53 46 || %better | 19 34 33

Table 5.6: Comparison of ECS and D4P PP structures («,(,y) assuming lns computation,
precharge, and detection delays.

Under these conditions the improved speed performance of the ECS designs are clearly

evident, as given by the “%better” row.

5.7 Summary

Numerous pipelining circuits have been presented for use with both static and dynamic
logic (or neither in the case of a FIFO), and in all circumstances the 2P ECS implemen-
tations have surpassed those of the best 4P designs (as well as any other 2P pipelines
previously reported). In particular, improvements of up to 64% in the case of static logic
and 69% for dynamic logic have been demonstrated, which translates into approximately
a three times speed up. Furthermore, the power consumption of these ECS circuits is also
considerably less than the D4P implementations.

Some fast techniques for implementing the completion detection necessary for dynamic
logic have also been presented. In particular, the STPL approach allows for self-timed
architectures to be implemented without incurring the excessive overhead resulting from

conventional static logic detection mechanisms.

97

Chapter 6

Self-Timed Architectures

HE previous chapter on asynchronous pipelines made numerous references to the
‘Tuse of self-timed architectures, and in particular to their ability to execute at a data,
dependent rate. These architectures can therefore take advantage of the best and typical
case computation times (being data dependent), which for certain applications can be
significantly faster than for the worst case situation. Furthermore, if the data is such
that the worst case occurrence is infrequent, then the average case computation time will
approach the best case. In contrast, a BD architecture will still be governed by the worst
case computation time regardless of the data, so that typically a much slower execution
rate results.

As an illustration of a data dependent computation, consider the conditions for gener-
ating a full adder cell’s output carry from two input signals and an input carry, as detailed

in Table 6.1.

a|b| Cou |
00 0
O(1]| Cin
1[0 Ci
111 1

Table 6.1: Conditions for generating the output carry of a full adder.

When a is equal to b there is no need for Cj, to propagate through to the next bit,
since Cyy,; can be computed directly from the inputs. In fact, if this is the case for all of
the bits in the input operands, then there is no need for any carry propagation to occur

at all!

98

A self-timed architecture can take advantage of this scenario by generating a validity
signal for all bits which are free of carry propagation. Any carries (and corresponding
validity bits) which are generated only need to propagate as far as the next cell in which a
carry (and validity) was also generated. It can be shown that for random input data the
average carry propagation length of an adder is approximately 0.9logon for input operands
with n bits [Gar93], which is considerably faster than the worst case BD propagation of
n bits, especially when n is large (such as in cryptography applications). One drawback
of self-timing is the need for completion detection across all bits of the computation
(from each bit’s validity signal), however the techniques of the previous chapter, and in
particular the STPL mechanism, enable this function to be performed rapidly.

Although synchronous systems (and asynchronous systems employing a BD compu-
tational model) require the full n bit propagation to be accommodated, techniques such
as carry look-ahead [WS58], carry selection [Bed62], and parallel decomposition [BK82]
can be used to decrease the propagation delay of the carry chain, though often at the
cost of an increase in area and a loss of regularity. Despite these techniques, self-timed
architectures still enable a performance benefit for the best and typical cases especially
for operands with large n. Only when the typical and worst case scenarios are similar
does the self-timed approach become inconsequential.

This chapter will present the design and implementation of a range of self-timed sub-
systems which are commonly used in a number of processor architectures, with particular
emphasis on those structures used in critical portions of microprocessors (such as PC
incrementing, branch target calculations, and integer processing units). Furthermore a

faster and lower area method of self-timing (dubbed pseudo self-timing) is also presented.

6.1 Strict self-timing requirements

For an operation to be self-timed, it requires there to be at least three states for any one
signal, as indicated in Table 6.2. Two states are used to convey the conventional binary
logic information (states 0 and 1), and the third state is used to encode the timing, or data
validity of the signal (state 2). It is therefore evident that to design a strictly self-timed
system, two wires are need for each bit to encode these three states. This convention is

known as dual rail (DR) logic, and although circuits based on this paradigm are highly

99

robust (since all signals have timing encoded with them) they have also been shown to

require approximately twice the area of their single rail (SR) counterparts [vBBK*95].

| State | Meaning |

0 Logic 0

1 Logic 1

2 Invalid
(3) | (unused)

Table 6.2: Three states required for implementing self-timed logic.

Note that since two wires are used to encode the three states, there is a fourth unused
state which can be used for other purposes. In particular, an error state may be encoded
here which indicates when both a logic high and a logic low level are erroneously being
transmitted on a signal (as in Table 6.3). Alternatively, this extra state may be used to
implement ternary logic, in which a bit may take the values of 0, 1, or 2. This technique
reduces the bit length of words by logy3 ~ 1.6 times, however since most self-timed
computations are proportional to the log of the bit size (as in the adder), this then results
in a constant reduction in propagation length of only log,1.6 = 0.7 bits regardless of
the data width. Given that the implementation of VLSI gates in ternary logic is more
complex (and slower) than for binary logic, the net result may well be an overall increase
in the propagation delay.

Dual rail logic must be used to implement strictly self-timed systems, however as stated
in Section 2.4 the ECS design paradigm uses single rail data. How then is it possible to
implement self-timed computations in such an environment?

One solution is to compromise the requirements of self-timed systems as follows. The
input and output signals of the computation are provided in SR format together with
an activation signal act which indicates their validity, and a completion signal cdone is
generated when the output data is valid. However within the computation itself any prop-
agating signals between bit cells are implemented in DR format, so that the completion
of the computation can be detected. This approach then enables an internally self-timed
unit to interface to the SR paradigm of ECS, and in particular, may be utilized directly

as a computational element in the pipeline structures of Chapter 5.

100

6.2 Designing and utilizing self-timed units .|)

Lk

%

\. LY, o
L A el
VI ATITF

Dynamic logic is ideal for implementing self-timed logic, since during the 1)1'@(:11;1.1‘@'(-:”[)"}.1"5'5'(%
all DR nodes are forced (in parallel) into the invalid state as required. When the compu-
tation is activated, the logic is designed such that only one of the two wires encoding the
data can change state (the precharged dynamic node pulls low), indicating that a valid
logic level is now present. This will then initiate a change in state of the following cell’s
DR signal if one hasn’t already occurred independently of this. Although this functional-
ity can be implemented with static logic, it becomes more cumbersome and is significantly
slower than the dynamic logic approach.

The environment supplies its data in SR form and initiates Aact when these are
valid, which then causes the self-timed computation to begin by discharging the relevant
dynamic nodes. Once complete, the self-timed unit will generate a cdone signal back
to the environment using the STPL approach of Section 5.3.3.2, and some time later
(depending on the environment’s structure), 7act will occur to invalidate the DR data
through precharging in preparation for the next operation.

In a pipelined architecture self-timed logic is of no use in improving throughput, but
it can be beneficial in improving the latency. This latter fact is obvious, since by reducing
the typical propagation length the computation time is decreased, however to understand
why the throughput is not improved it is worth considering again the operation of a 32
bit adder.

In a synchronous system implementing two stages each of 16 bits will approximately
double the throughput, since the worst case propagation delay of each stage is halved.
However, a self-timed system is governed by the typical case, which gives a reduction from
4.5 bits to 0.910g,16 ~ 3.6 bits. This is only a marginal improvement in throughput, and
has occurred at the expense of a significant increase in the latency to 2 x 3.6 = 7.2 bits
plus the pipeline control delay (totalling over 60% more for just one extra stage)!

In the extreme case a non self-timed system can be pipelined down to a small number
of bits per stage which can all be computed in parallel, therefore resulting in a very high
throughput, whereas the self-timed approach cannot match this even when pipelined down
to 1 bit per stage, since there is an overhead in completion detection. Furthermore, such

an implementation will also exhibit a significantly longer latency than the non self-timed

101

design (which is evident by extrapolating the two stage example above).

Therefore a self-timed circuit is of little use when the throughput of the design is of
prime concern, since this can be better achieved using conventional SR logic techniques.
The advantage of self-timing derives from its latency improvement, and should be limited
in use to situations in which such an improvement is beneficial even if it results in a

reduction in throughput.

6.3 Adder Structures

A very commonly used structure which can be self-timed is that of an adder, whose
carry propagation requirements were given in Table 6.1. Using this table and the state
allocation requirements of Table 6.2, it is possible to devise an encoding for the DR carry

signals as shown in Table 6.3.

Wires State
cOout | clout | encoded
1 1 not valid

1 0 logic 1

0 1 logic 0

0 0 error

Table 6.3: State encoding of dual rail carry propagation signals.

Encoding the invalid state as “11” enables the precharge phase to invalidate the carry
signals directly. A “0” or “1” propagation of the carry can then be detected (indicating
validity) by a logic low level on the respective wire cOout or clout. The resulting state
table for generating an output carry from the two input carry wires and the input operands
a and b is shown in Table 6.4.

If c0in and clin are both low then an error has occurred, and the value of cout is
irrelevant. If a is equal to b then a carry of either zero or one is generated onto the
appropriate wire, otherwise the input carries (cin) are propagated directly to the output

carries (cout). These signals can be determined from the state table as follows:

Oout = g+clinh = g+ clinp
clout = h+cling = h+clinp

102

[cOin clin|a b | cOout clout |
0 0 0 0 - =
0 0 0 1 -
0 0 1 0 - -
0 0 1 1 s -
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 0

Table 6.4: State table for the dual rail carry propagation signals.

with all carry signals initially precharged high and g = a.b, h=a.b,and p=a® b =
g + h. The sum value, which for SR data is given by s = p @ cin, can now be generated

using DR carry signals as:
s=pdchin=p®clin

It is also necessary to detect when each bit has completed its carry propagation. Since
this occurs when either of the DR signals goes low, this can be generated simply by

nand’ing cOout and clout.

6.3.1 Self-timed ripple carry (RC) implementation

In implementing an adder cell based on the DR carry ripple equations it is imperative to
minimize the carry propagation time across the cell. An implementation which results in
even a small improvement in this delay is of relevance, since the effect is magnified n times
when extrapolated across the full operand width (in the worst case), and 0.9logsn times
for the typical case. A short propagation time can be achieved by providing a fast pull-
down path for the dynamic logic with a minimal capacitive loading. Furthermore, since
any subsequently driven gates only require a fast pull-up time, they can be implemented

with a large p:n width ratio.

103

The carry equations could be implemented simply by generating cout with a complex
dynamic logic gate, however this approach results in a significant load on the carry signal
and a 3 transistor pull-down path (including the activate transistor beneath the nmos
tree). Instead, the implementation shown in Fig.6.1 is used.

a VDD

b |l

act —d
R — (11

=== C
clin {13 2| —¢g
ii L GND

clsin
D
valid

Figure 6.1: A self-timed ripple carry implementation of an adder cell.

In essence, the combinational terms g, h, and their inverses are computed using dy-
namic logic (as indicated by the D symbol inside the gates), which are then applied to
the dynamic computation of cout. Note also that since p is computed from the dynamic
nodes of ¢ and h, any spurious transitions on the inputs a and b will be prevented from
propagating through to the output sum, thereby conveniently reducing power consump-
tion.

The implementation shown for cout varies from conventional dynamic circuits in that
there is no activation transistor governed by act (as per Fig.5.7). Instead, all signals to
the dynamic logic block are initially low which allows this transistor to be removed and
hence reduces the carry propagation delay. Note however that the signal to transistor T2
is in fact initially high, but since T1 is off the precharging phase can still reliably occur.

Once Aact occurs, T2 turns off (depending on the values of a and b) before T1 can turn
on, so that an erroneous glitching pull-down path is prevented. If however a pull-down
path is validly activated (either through T2 staying on or when the input signal Cin goes
high), then the relevant cout signal will go low through only 2 transistors. By sizing the
inverter to cout with a large p:n ratio a very fast carry propagation delay results.

Although this design provides a short propagation delay there is a potential problem
with regards to charge distribution. During activation, if T1 turns on but T2 and T3
remain off, then the charge stored on cout will redistribute onto node cd, and reduce the

logic high level of cout to:

104

CYcout

Veout = Vdd—————
! C1cou1,‘ + Ccd

where C}, represents the capacitance of node x. To ensure a suitable logic high level on
the output the capacitance of node cd must be small compared to cout (4 times smaller
for a 20% reduction in V_4:). The VLSI implementation of this carry generation circuit
is therefore a critical design issue.

Note also that if T1 is moved to the bottom of the dynamic logic tree then the charge
distribution problem is avoided (T1 then acts as an activation transistor). Since this
results in a slightly slower carry propagation delay, and since the charge sharing problem

can be controlled, transistor T1 is left in the design at the top of the nmos stack.

6.3.2 Self-timed ripple select (RS) implementation

One technique used in the design of single rail adder structures is to precompute the
output carry for both possibilities of the input carry (low or high), and then select the
appropriate one through a multiplexer when the input carry value arrives. A similar ideal
can be used for implementing a ST adder, by precomputing the carry values at each bit (as
opposed to a group of bits in the SR carry select approach) and selecting the appropriate
one when the input carry becomes valid. For such a structure, the ripple carry equations

of Eq.6.1 are re-structured as:

cOout = c0in.h + cOin.g

clout = clin.g+ clin.h

The input carry signal can now be used to select between one of two precomputed
outputs, as shown in Fig.6.2. Dynamic logic is again used for computing the multiplexer
inputs to ensure that all cout signals are initially high (invalid) after precharge. Note that
the signals p, sum, and valid are all generated as shown in Fig.6.1.

This design may be enhanced further by removing the inverter delay from cin to
cin. This is achieved by implementing another layer of multiplexing which produces cin
directly from the inverse of the inputs to the multiplexers of Fig.6.2. This implementation

is referred to as a dual ripple select (DRS) adder.

105

cOsin

Figure 6.2: A self-timed ripple select implementation of an adder cell.

6.3.3 Comparison of ST adders

These three self-timed 32 bit adder structures have been implemented with STPL com-
pletion detection using the ES2 technology, and simulated in Hspice (level 13) using simi-
larly sized transistors for the dynamic pull-down nodes (approximately a 9:1 n-transistor
width:length ratio) and pull-up inverters (using an 11:1 p-transistor width:length ratio,

with a small n-transistor). The results are shown in Table 6.5.

ST Adder Delay (ns) Area/cell
Design || best | ave | worst | (transistors)
RC 2.5 | 35| 10.6 50
RS 3.2 | 65| 275 56
DRS 3.2 150 179 64

Table 6.5: Comparison of three self-timed adders.

The best and worst case scenarios are for carry propagation across 0 and 32 bits
respectively, and the average case assumes a carry propagation length of 5 bits (which is
close to the random data average of 4.5 bits). All times quoted include the delay of the
STPL completion detection, which is approximately 1ns.

It is clearly evident that the RC design gives by far the best speed performance,
being almost 3 times faster than RS and 2 times faster than DRS, as well as utilizing
fewer transistors (implying less power and area usage). The reason for this is that the
multiplexer outputs of the RS approach drive a higher load (up to 4 transistors versus 2
transistors for the RC design) and with less drive strength than the dynamic computation

of the RC approach.

106

Nonetheless, the speed improvement of the DRS over the RS approach is evident, being
29% faster. This is due to the removal of an inverter delay per stage and the smaller load
on the multiplexer (since the transistors of the extra transmission gate are smaller than

is otherwise needed for the inverter).

6.3.4 Pseudo self-timing (PST)

As stated in Section 6.1, a strict self-timing environment requires all signals to use dual
rail encoding, whereas the adder designs thus far presented assume single rail input signals
and initiate the internally self-timed DR carry propagation after Aact. This process can
be taken one step further by using SR signals for the carry propagation, and initiating a
matched path strategy for completion detection once Aact occurs. Figure 6.3 illustrates

this approach.

a b a l:|)
c0in —| Carry & | coout en | Carry | ——
Validity __Cell
clin Cell clout !

act

- vin r Vah‘dlty 1 vou
Il Cell T t
act

valid valid |

(a) (b)

Figure 6.3: (a) A self-timed and (b) a pseudo self-timed generalized view of an adder cell.

A PST design decouples the carry propagation circuitry from the validity detection,
whereas a ST design unifies these two functions. This decoupling enables conventional
SR designs to be used for the addition process resulting in a reduced load on the cout
signals (since they no longer initiate cell validity), which ought to subsequently improve
the propagation time and reduce the area usage. Furthermore, the load on the act signal
can be significantly reduced since it must only drive the validity detection, although it
may still be used for the carry generation if dynamic logic is preferred. If however static
logic is used in their computation then the sum values will emerge from the adder before

Acdone by approximately the same margin as the inputs arrive before Aact. This then

107

ensures greater reliability in their validity and more flexibility in when the environment
can process the outputs.

The disadvantage of the PST approach is that if static logic is used for the carry
generation then the validity circuitry, which only propagates a high level, must be im-
plemented to give at least the same stage delay as the carry circuitry for both the high
and low logic levels, which significantly restricts its implementation. Another problem is
that there is less resilience to operating variations since the validity is no longer directly
computed from the carry propagation, although having these beside each other in the
layout, as would be expected, renders this problem inconsequential.

To illustrate the PST methodology, it is worth re-considering the ST adder designs

thus far presented.

6.3.5 PST ripple carry (RC) implementation

The SR carry equation cout = g + p.cin can now be implemented directly using the same
dynamic logic block as in the ST design, and is shown in Fig.6.4. Note that in this
instance both g and p are low after precharging, which prevents the potential glitching

path to ground that was present in the ST design.

EmpeE

e
-

Figure 6.4: A pseudo self-timed ripple carry implementation of an adder cell.

The matched path validity detection must now be designed to correlate to the carry
propagation path. Since the carry value of a cell is known when p = 0, an input validity
signal (which indicates that the previous carry value is valid) only needs to propagate
to the output validity signal when p = 1, so that: vout = p 4 vin. However, since all
vout signals must pull low when act = 1, vout must actually be computed as: vout =
(P + vin).act. This equation is in the same form as that for generating cout, and can

therefore be implemented using the same logic structure so that both propagation paths

108

are matched. The inverters to csin (which buffers the sum generation from the critical
carry path) and valid are identical, and are designed to provide a low load to cin and vin

respectively.

6.3.6 PST ripple select (RS) implementation

To implement a ripple select adder the carry equation must first be re-structured to give

precomputed terms for cin and cin:
cout = cin.h + cin.g

As opposed to the ST implementation of a RS adder, there is now no need for the
multiplexer inputs for cout to be dynamic. This then reduces the load on act which
can be especially beneficial for large data widths. The validity equation must also be
re-structured to give the appropriate multiplexer inputs, which must again be forced low

when act = 0.
vout = vin.act + vin.(act.p)

Figure 6.5 shows an implementation of the PST RS adder in which the inverse of the

carry and validity signals are propagated.

vout

Figure 6.5: A pseudo self-timed ripple select implementation of an adder cell.

The carry signals now compute independently of act since static logic is employed.
This has the benefit of producing the output sum earlier than the output validity and

reducing the load on act, but suffers in that spurious transitions on a and b now propagate

109

through the design and waste power. If this is a problem then dynamic logic could again
be used for generating g and h (which then also requires a dynamic zor gate to generate
p from a and b).

A dual ripple select (DRS) adder can again be formed with another layer of multiplex-

ers for cout and vout with inverted input signals.

6.3.7 Comparison of PST and ST adders

These three PST adder structures have been simulated under the same conditions as those

of Section 6.3.3, and the results are shown in Table 6.6.

PST Adder Delay (ns) Area/cell
Design best | ave | worst | (transistors)
RC 1.9 | 28| 99 40
RS 3.0 162 26.0 38
DRS 2.7 | 44| 168 50

Table 6.6: Comparison of three pseudo self-timed adders.

As expected, the relative performance of these three adders is identical to the ST
designs of Table 6.5, with the RC approach giving approximately 2 and 3 times faster
latency than the DRS and RS approaches respectively.

The PST RC design exhibits the same propagation delay as the ST design which is
expected since they both use the same circuitry. If however the carry signals to the sum
and completion detection of both designs weren’t buffered, then the PST circuit would
have a faster propagation time since there is less load on the carry signal (no validity
circuit to trigger). The PST design is however still slightly faster, due to the removal
of the cin — wout path (a constant offset). Furthermore, for a slight increase in speed
the PST design also uses 20% fewer transistors, which implies a reduction in both power
consumption and area usage.

The RS and DRS designs using PST are also slightly faster than their ST counterparts,
due again to the removal of the cin — vout path. For these designs the area saving using
PST is even greater, being 32% and 22% respectively. It can be concluded then that
PST adder circuits are more favourable than ST circuits for high speed applications, and
probably for low power and area applications as well.

As a further comparison the ST adder design used in the AMULET processor at

110

Wires State

cOout | clout | encoded
0 0 not valid
0 i logic 1
1 0 logic 0
1 1 error

Table 6.7: State encoding of the AMULET carry propagation signals.

Manchester University was implemented [Gar93, FDG193]. This enables the relative
performance of the fastest ST and PST adders (being the RC versions) thus presented
to be determined, as well as the performance of the STPL detection mechanism (since a
different scheme is used in their design). The AMULET adder uses the carry encoding
scheme of Table 6.7 (which is the inverse of that given in Table 6.3), and the circuit

implementation for addition is reproduced in Fig.6.6.

Figure 6.6: The adder cell and validity detection used in the AMULET processor.

This design uses a significant amount of precharging in its dynamic implementation,
resulting in a large load on the act signal but providing a fast propagation time for the
carries. The dynamic pull-down path for the inverse carry signal requires 3 transistors as
opposed to only 2 in the ECS designs, which indicates that its speed will be slower.

The completion strategy implemented for the AMULET processor is indicated by the
right-most pass transistor structure. To prevent excessive RC delays across the 32 bit
propagation path, four of these gates are connected serially from every fourth bit, and
the resulting eight outputs are logically nor’ed (through 3 nor and 1 dynamic and gate)
to produce the cdone signal. This approach then prevents the best case scenarios from
being properly utilized, since detection at the first stage of the chain must still propagate

through 3 other pass transistors and a tree of gates before Acdone occurs.

111

The AMULET adder was implemented using identical design conditions and param-
eters to those of the previous sections, and the simulation results for both the AMULET
detection mechanism and STPL are shown in Table 6.8. For reference the fastest ECS

design and one of the fastest known adders are also reproduced.

Adder Delay (ns) Area/cell
Design best | ave | worst | (transistors)
AMULET (n-pass) || 6.0 | 6.3 | 16.5 43
AMULET (STPL) || 22 | 3.7 | 154 44
ECS (PST) 19 [28| 9.9 40
MODL 3.1 simulated 0.51mm?

Table 6.8: Comparison of ECS and AMULET adder designs (as well as their detection mech-
anisms) and a known fast adder scaled to a 0.7um technology.

The STPL validity detection has resulted in a distinct speed advantage for the
AMULET adder, giving 63%, 41%, and 7% improvements for the best, typical, and worst
case scenarios respectively. However the PST adder is still significantly faster, giving
improvements of 68%, 56%, and 40% respectively over the AMULET adder. It is also
marginally smaller.

The MODL design (multiple-output domino logic) of [HF89] was implemented in a
0.9um technology, and their simulation results as quoted have been appropriately scaled
to indicate performance in a 0.7um technology. The delay has been scaled by o? and the
area has been scaled by a (where o = 0.7/0.9) according to the lateral scaling method
applicable to sub-micron devices [WE93, Section 4.13]. In the typical case the PST adder
is almost 10% faster, and given that its VLSI layout (including STPL control) occupies

only 0.12mm?, it is also 76% smaller.

6.4 Incrementer structures

A 32 bit self-timed adder gains a performance advantage over a single rail adder because
the average carry propagation length is approximately 7 times less than for the worst case,
which must always be accommodated for by the latter. With regards to an incrementer,
which simply adds “1” to an input operand a, this advantage is even greater. The worst
case propagation length for an incrementer is still 32 bits, but the average case is given

by Zfil (i —1)/2* ~ 1 bit: a 32 times improvement! Furthermore, although the average

112

propagation length is 1 bit, the median case (most often occurring) requires no carry
propagation at all (when the LSB of a is zero), which occurs 50% of the time for random
data.

An incrementer is essentially nothing more than an adder, but with the operand b
masked to zero and an input carry of one. In a single rail paradigm the only disadvantage
in using an adder as an incrementer is a slight increase in propagation delay. This is
because a dedicated SR incrementer can take advantage of the known state of b = 0, and
hence reduce the carry logic and improve the propagation time across the full data width.

However, a self-timed adder suffers yet another problem when used as an incrementer.
Consider for example the case in which ¢ = 11...10 is to be incremented. Since b = 0,
a carry of zero (7cOout) will have to propagate through all of the upper 31 bits before
completion is detected! However it is obvious that since the LSB is zero, no propagation
should be necessary. The ST adder can therefore substantially increase the average prop-
agation delay when used as an incrementer, since carries must propagate through all of
the “1” chains present in a. This same argument applies to a PST adder, although in this
instance the propagation is for vout, and not necessarily for cout (depending on whether
static or dynamic logic is used for the latter).

It is therefore worth implementing a ST incrementer which does not suffer from un-

necessary carry propagation delays through any “1” chains present after the first zero.

6.4.1 Self-timed incrementer

Given that b = 0, the carry and sum equation for the incrementer cell can be reduced to:
cout = a.cin

sum = a®can

A ST incrementer should not have to propagate a carry “1” any further than the first
zero, since it is known that after this bit all subsequent carries will be low. This can be
effected by first setting cin low for all bits when act = 0 (implying the use of dynamic
logic, and effectively and’ing the above equation for cout with act), since this prevents
any unnecessary carry “0” propagations and also provides a correct initial cin value to
the sum. Furthermore, it is no longer necessary to implement DR logic for the carries,

since the only possible propagation is now for cout = 1.

113

It is also necessary to determine how completion can be detected given that SR carry
propagation is now used. Since it is known that for all incrementer cells cin = 0 initially,
the validity can be detected by the first cell which has c¢in =1 (implying that a carry has
propagated to this cell) and @ = 0 (implying that the carry propagation chain is finished),
so that: wvalid = @.cin. This cell is unique, and as such a simple dynamic NOR gate
can be used to generate cdone from the 32 wvalid signals. This approach draws no static
current during operation, and therefore consumes less power than the STPL detection
mechanism which has to be employed if an adder were used as an incrementer.

Figure 6.7 shows one possible implementation of the ST incrementer. As per the
fastest of the ST adder designs, the inputs to the nmos tree for cout are forced low
initially, thereby removing the need for an activation transistor. Similar arguments with
respect to charge distribution between nodes cd and cout are therefore also of relevance
here. Since it is known that for an incrementer cin = 1 for the first cell, the logic for that

unit can be reduced, as shown by the left-most circuitry for couty, validy, and sumy.

VDD
act—

—_— cout
cout s

O

?

%_IW cout a —

cin

cd
5 - GND
Isum 0 |valid0 |

N

vaF [sum

Figure 6.7: A self-timed incrementer without unnecessary carry propagations.

6.4.2 Incrementer performance

The incrementer has been implemented in the ES2 technology with the same design
parameters used for the adders. The Hspice (level 13) simulation results are shown in

Table 6.9 for the best, average, and worst case scenarios.

Incrementer Delay (ns) Area/cell
Design best | average | worst | (transistors)
Self-timed | L1 | 22 | 106 | 22 (12)

Table 6.9: Simulation results of a self-timed incrementer.

114

If a PST adder were used instead, the average delay time would be over approximately
5 cells (the typical maximum length of a carry “1” chain), rather than for just 1 cell in
the incrementer. As such, by comparing these results with those of Table 6.6, it is evident
that the best and average case delays for the special-purpose incrementer are better than
those of a PST adder. The worst case scenario is slightly slower, but would only happen 1
in 2%2 times. In the most frequent case of no propagation, the special-purpose incrementer
is 42% faster than if a PST adder were used. Furthermore, the area has also been reduced
from 40 transistors down to 22 (with only 12 transistors in the first cell). This almost
halves the area requirements and implies less power consumption as well.

It can also be shown quite easily that the decrementer function: @ — 1 =@ + 1, which
can be implemented with a special-purpose incrementer and an inversion of the input and

output values.

6.5 Comparator structures

An adder (or more specifically, a subtracter) can also be used as a comparator. For
example, to determine whether a > b one can simply subtract b from a and then check if
the result is greater than zero (similarly for comparing a = b and a < b). This information
is often supplied as flags from the arithmetic unit of a microprocessor, and can be easily
deduced from the sign of the result and a post-processing “test-for-zero” (logical nor).
For a non self-timed adder, in which the worst case propagation delay must be ac-
counted for, there is no major drawback in using it as a comparator. Although a special-
purpose design may be slightly faster, the additional area usage is often unjustified. How-
ever using a self-timed adder as a comparator can result in a severe performance deficit.
As an example, consider the comparison for @ > b, where a and b are similar in magnitude
(say, a = 31 and b = 28). The adder will then have to subtract 28 from 31, which results

in the following arithmetic operations:

..0001 1111 31
+ 1110 0011 28
+ ..0000 0001 1

..0000 0011 sums
1111 1111 carries

..pppp ppeg generated (g) or propagated (p)

T Hiojlor o

115

Clearly the performance of this comparison is almost the same as the worst case
performance of the adder, since all of the higher-order bits have to propagate a carry
value. This type of operation occurs frequently in software programs, particularly for
short loops and logical comparisons (true or false). In [Gar93] it was shown that, for
the Dhrystone benchmark on the ARM processor, almost 50% of all data processing
operations involving the adder required carry chains of over 28 bits in length!

A self-timed adder therefore is generally unsuitable for use as a comparator because
of these long carry chains, and it is therefore necessary to implement a special-purpose

self-timed comparator.

6.5.1 Possible implementations

A comparator must operate by comparing corresponding bits of @ and b from the MSB to
the LSB. If a and b are signed, then the sign bit must first be compared, and if equal, the
comparator initiated. One possible implementation then is to simply start from the MSB
and progress down the operand width comparing each pair of bits, and stopping as soon
as a difference is detected. However, this presents no improvement in detection time for
when the bits only differ at the low end of the operand: a frequent occurrence as already
explained.

One method of speeding this up is to use a “forward-backward” comparator. In this
implementation the comparison is also initiated from the LSB upwards, with a bit in-
dicating which of the two operands has thus far been detected as the greatest. If the
forward comparison (from the MSB downwards) hasn’t detected a difference when it co-
incides with the backward comparison, then the result of the latter is used. This approach
approximately halves the worst case propagation time by effectively “precomparing” the
lower half of the operand. The disadvantage of this approach is that even a one-half
improvement is still approximately 16 bits in length (for a 32 bit operand), and the logic
required for its implementation is considerably more complex.

The concept of precomparing can be extended. One approach is to use, for example,
eight 4 bit subtracters which operate on adjacent slices of the operands, and to then
initiate a simple ripple comparator based on the eight results. The logic requirements of

this implementation are rather simple, and the worst case comparison time is reduced to

116

a 4 bit add and an 8 bit comparison (which has a latency somewhat less than a 12 bit
carry propagation).

A better approach however is to extend the idea of precomparing down to an atomic 2
bit comparison, and reduce these through a successive tree of identical units to arrive at
the result. This has the benefit of reducing the worst case comparison path to logon =5
atomic units for a data width of n = 32 bits. However the best case comparison is
now increased to this same length which then defeats the purpose of self-timing. The
following section explains this comparator tree structure, and how the best case result

can be improved using an asymmetric tree.

6.5.2 Comparator tree

A self-timed 2 bit comparator node can be implemented with the following equations:

Vout — V1 AR
Jout = g1t €1.90
€out = €1.€

where v indicates that the comparison at this node is valid, g indicates that a > b,
and e indicates that ¢ = b thus far, with all inputs to the first row of 2 bit comparators
initially low. The node to input 1 must be of a higher order than the node to input 0.

Since all input signals are initially low, so too are the outputs. At any stage v or e,
but not both, could go high after activation. If v; = 1 then it is known that the preceding
node has completed, and its result is passed out of this node immediately since it is of
a higher order than input 0 (this is in conjunction with g to indicate which input is the
greater). If however e; = 1, then the upper tree has computed an equality of the operands.
The result of the lower tree then (vy = 1 or eg = 1) will be passed out to the next stage as
either v,y Or €, Note that even if input 0 computes first, the result of the comparison
is not known until input 1 computes.

A dynamic logic implementation of the 2 bit comparator node is given in Fig.6.8a,
and the circuitry for generating the initial inputs to a node from the operands a and b is
given in Fig.6.8b.

From this 2 bit comparator structure a full 32 bit comparator can be constructed

using a binary tree. This configuration is shown in Fig.6.9a, in which each circular node

117

€ —

\§/

g o fu @ﬁ% Bou

€0
(a) (b)

Figure 6.8: (a) An implementation of a 2 bit comparator node, and (b) the generation of the
initial inputs.

ey —|——

represents a 2 bit comparator. However as mentioned in the previous section, this results
in the best and worst case comparisons propagating through the same number of nodes,
and therefore exhibiting similar computation times (although the best case will in fact be
slightly faster since the pull-down node for v; of the 2 bit comparator requires 2 transistors,

rather than 3 for vg).

ER ey

Figure 6.9: (a) A symmetric and (b) an asymmetric tree structure for a full comparator.

To enable the best case scenario to be improved, an asymmetric tree structure such
as that shown in Fig.6.9b can be used. In this instance, the best case (when the MSBs
are different) comparison only propagates through 2 comparator nodes, although this is
now at the cost of increasing the worst case comparison to a 6 node path. Whether or
not this increase is detrimental to the overall system speed depends on the frequency of
low order versus high order comparisons.

It is tempting to effectively “flip” the tree structure shown in Fig.6.9b to give only a 2
node propagation path for the low-order comparison (which is frequent), in the hope that
its latency will be improved. However this does not happen, since even if the low-order
comparison is ready, it must still wait for the upper tree to compute before its result can
be passed out. A speed reduction therefore results, since a 6 node propagation path must

always be incurred.

118

6.5.3 Comparator performance

The simulation results of the comparator tree (implemented using the ES2 technology
with the same design parameters as the preceding sections) are shown in Table 6.10 for
both the symmetric and asymmetric tree structures. The best and worst case times are
for bit variations at the MSB and LSB respectively, and the “bit 16” time is for when a
difference is first detected at the 16th bit.

Comparator Delay (ns)

Design best | bit 16 | worst | equal
Symmetric 2.3 3.1 3.3 S
Asymmetric || 1.1 3.5 3.9 3.8
PST Adder || 9.7 5.6 9.7 9.9

Table 6.10: Simulation results of a 32 bit comparator tree.

By using an asymmetric tree structure the best case comparison time has been im-
proved by 52%, however all other comparison times have subsequently been increased
(due to an extra comparator node) by up to 19% (for when a = b). Since the worst
case scenarios are most frequent for a comparator, the symmetric implementation will
probably give the best overall performance.

It is interesting to note that although in the symmetric structure all comparisons pass
through the same number of nodes, there is still a significant variation in computation
time (up to 30% of worst case). The reason for this has already been stated as being
due to the 2 transistor pull-down time of the dynamic nodes for a best case operation. It
is also interesting to note that it’s marginally quicker to detect when a = b rather than
when a and b differ only in the LSB. This is again due to the faster implementation of
the equality path which has less capacitance on the output of the dynamic nand gate.

If a PST adder were used instead as the comparator, then the comparison times of
Table 6.10 would result, each corresponding to propagation delays of 31, 15, 31, and 32
bits respectively (with the first value being the worst possible in a range from 1 to 31
bits). In all circumstances the special purpose comparator gives significantly better perfor-
mance, with best case improvements of 76% and 89% for the symmetric and asymmetric

comparator trees respectively.

119

6.6 Multiplier structures

One of the fastest approaches to implementing a multiplier is to use a carry-save array
[MM82], in which a 32 bit multiplier is constructed from an array of 32x32 gated full

adder cells, each computing the functions:

ppij = ai-b
sum;; = sumiyyj—1 D ppi; © carry;;—1
carryi; = SuMiyy;-1.PPij + carry; j—1(sumipr j—1 + DDi ;)

for bit ¢ in row 7. The lower 32 bits of the multiplier product emerge from the sum
outputs of bit 0 in each stage, and the upper 32 bits of the product are computed with
a vector-merging adder, which simply adds the sum and carry outputs of the last stage.
Alternatively, a triangular array of gated full-adder cells could be used, although this
increases the latency of the array.

The carry-save approach is inherently parallel and can be pipelined at each stage.
This removes any carry propagations until the final adder is used, so there is no speed
advantage in using self-timed techniques for the carry-save array, however the latency of
the design could be improved slightly by self-timing the vector-merging adder (although
this then increases the cycle time). Asynchronous carry-save multipliers designed for high
throughput have been reported in [SK93, ML93|

Although the carry-save approach enables deep pipelining and therefore high through-
put, its latency is significant. This is because 32 pipeline stages are needed in the array
as well as pipelining of the adder to match the throughput requirements. Self-timing is
only of benefit with regards to improving latency often at the cost of throughput, and

therefore a carry-save multiplier is unable to take advantage of self-timed techniques.

Another popular multiplier structure is the Wallace tree [Wal64]. This approach be-
gins with a set of 32 (or 16) partial products (PPs, which are discussed in the Section
sec:ppsimpgen) and reduces these to just 2 PPs which are once again added to form the
final product. The process of reduction involves taking three inputs at bit 4 and passing
these through a full-adder cell (otherwise called a 3:2 compressor) to produce an output
(sum) of order i and another (carry) of order 7+ 1. By chaining these 3:2 compressors in

an appropriate way the initial set of PPs can eventually be reduced to the two required

120

for the final adder. Although this design approach is quite irregular it requires less logic
than the carry-save technique, since fewer compressors are used to compute the upper
and lower bits of the PP set.

Once again however the reduction to two PPs is an inherently parallel operation,
which can have no performance gain through self-timing (except for a latency reduction
in the final adder, which would again limit the throughput if the array of compressors
were pipelined).

It is evident that the algorithms currently used to produce fast multipliers are not
suited to self-timing, and it is therefore worth while considering an alternative implemen-
tation which enables self-timed logic to be used, in the hope of improving the multiplier

latency.

6.6.1 Exploiting self-timed operation

Essentially the reduction techniques thus presented postpone the addition operation to
the final stage, since for synchronous applications using a tree of such units to add the
PPs is both time and area intensive (the adder structures required are up to 64 bits long
and therefore need to be large and complex to provide for a sufficiently fast throughput).
Ironically, this may be the best approach to take for implementing a self-timed multiplier,
since the full data-dependency of the operation can then be exploited.

Furthermore, since the PST RC adder is small and simple, the area overhead in im-
plementing a tree of such units is significantly less than for a synchronous approach.
This could be further reduced by implementing fewer PST adders and multiplexing in
previously computed PP additions, although this then increases the multiplier’s latency.

Before investigating the overall implementation of such a multiplier structure, it is

necessary to determine how the initial set of PPs can be generated.

6.6.2 Simple PP generation

Given that two input operands X and Y, each 32 bits long, are to be multiplied, it is
possible to generate a sequence of 32 PPs by using the simple approach of multiplying
each bit of X by Y. For example, assuming only a 4 bit width with X = 0101 (5) and
Y = 1101 (13), a set of 4 PPs can be produced as:

121

1 10 1 PPO XoxY = 1xY
0000 PP1 X, *Y = 0xY
1101 PP2 X,xY = 1*Y

0 0 0 O PP3 XsxY = 0xY
01 000O0OGO0CT1 R 3>,2PPi = 5Y

Note that each PP is actually shifted according to the bit location of X before the
addition. A self-timed adder tree could then be implemented with the first row of 2 adders
computing Q0 = PP0+2x PP1 and Q1 = PP2+2xPP3, and the second row computing
the result as R = Q0 + 4 x Q1. Note that although the result is 8 bits wide, the first row
of adders only needs to be 4 bits wide (with the LSB of the result passing out directly as
PP0,, and the MSB emerging as the carry output).

The problem with this simple approach is that it doesn’t handle signed two’s comple-
ment numbers, and produces a number of PPs equal to the bit width n. If this can be
reduced, then the number of adders required (n — 1) can also be reduced which would

improve the speed and area of the design.

6.6.3 Radix 4 Booth encoding for PP generation

A radix 4 Booth’s algorithm [Boo51] for producing the PPs is given in Table 6.11. Whereas
in the previous encoding only 1 bit of the X operand was examined to determine the PP,
in this instance 3 bits are used in an overlapping fashion to produce a range of PPs from
—2Y — 2Y. Bit i is paired with bit ¢—1 (with ¢ even, and bit —1 set to zer(;) to determine
the magnitude of the PP, and bit i + 1 is used to determine the sign offset (0 or —2Y’).

X operand bits PP

Xig1 | Xi | Xiq
0 0 0 0
0 0 1 Y
0 1 0 Y
0 1 1 2Y
1 0 0 -2Y
1 0 1 -Y
1 1 0 -Y
1 1 1 0

Table 6.11: Radix 4 Booth’s algorithm for encoding the PPs.

122

To illustrate this procedure, consider again the example of the previous section with
X = 0101. In this instance, the first triplet of X to be considered to produce PPO is
X = 010 (bit locations 1, 0, and a zero extension), and the second triplet to produce PP1
is also X = 010 (bit locations 3, 2, and 1).

1101 PPO Xy ,—010 = Y
1 1 0 1 PP1 X3,2!1—)010 = Y
01 000O0GO0CT1 R Y.,2%PPi = 5Y

The radix 4 algorithm therefore halves the number of PPs required for signed 32 bit
operands to 16 rather than 32. Generating the PPs of value 2Y', Y, and 0 is trivial (simply
shifts or masking of the input operand Y'), however to generate —Y and —2Y requires a
two’s complement inversion which involves using an incrementer (since —Y =Y +1).

In a Wallace tree architecture the incrementing function can in fact be implemented
with additional compressors for the input carry. For an adder tree a similar technique
can be used, however at best the there will still need to be an incrementer after the final
adder. To illustrate why this is, consider the case in which PP0 = —Y and PP1 = -2Y.
The result of the addition Q0 = PP0 + 4PP1 will need to compute the function: Q0 =
Y +4(2Y + 1) + 1, which clearly involves two carries at bit locations 0 and 2, whereas
the PST adder structure allows for only one input carry. Since the lower two bits of the
addition can be passed out directly, the carry at bit location 2 is applied to this adder,
and the other carry has to be postponed to the following stage. All PPs can have their
carry postponed to a subsequent adder stage if necessary except for PPO (since there are
8 possible carries from the first layer and only 7 subsequent adders), which therefore has
to use an incrementer after the final adder. Since a self-timed incrementer is typically
fast the increase in latency is small. Furthermore this delay is only incurred when PP0
is negative (for 37.5% of cases) whereas it would almost always be incurred if used to
generate negative PP values to the first adder stage.

A self-timed adder computes in the fastest time when both of its operands are equal.
For the Booth encoding of Table 6.11 this can only occur when PP0 = PP1 = 0, which
happens only 6% of the time for random data. The following section describes a technique
in which the Booth’s algorithm is recoded to give a 22% frequency of best case adder
performance, and also reduces the frequency of use of the final incrementer to just 3% of

cases.

123

6.6.4 Recoding Booth’s algorithm to improve performance

Given the Booth encoding of Table 6.11, it is a simple matter to determine the range of
outputs from the first adder stage of Q0 = PP0+4PP1 (and similarly for Q1...Q7), as
given in Table 6.12. Note that for each value of PP0 there can only be 4 possible values
of PP1, since adjacent triplets overlap at the central bit (as indicated by the boxed value
in the table).

PPO (*Y) Possible PP1 values (*Y) Q0 (*Y)

o =20 000=0|010=1|100=-2|110=-1(0|4|-8|-4
o1 =1 : i : : 115|-7]-3
o =1 115(-7]-3
ol =2 : : : : 2|16]-6|-2
M0=-2 (|00=1|010=2|100=-1|11M=01{2|6]|-6]-2
01 =-1 : : : : 3171-5]-1
M0 =-1 3(7]-5]-1
M1 =0 418|-4|0

Table 6.12: Combinations of PP0 and PP1 which produce an output sum QO.

It is clear from this that the range of values for Q0 is —8Y — 8Y', and by considering
both triplets for PPO and PP1 together (that is, 5 bits of X at a time) it is possible
to recode the PP values to improve the adder’s performance, and yet still produce the
correct output sums for Q0. For example, the combination of PP0 = 0 and 4PP1 = 4Y
(for Xsps = 01000) can be recoded to give PP0 = PP1 = 2Y. As required the sum is
unchanged (4Y) however by recoding both PPs to be identical the self-timed adder will
now compute in the fastest time regardless of the value of Y. All summations resulting
in Q0 = 0,2Y,4Y, and 8Y can be thus recoded, resulting in 7 out of 32 cases (22%)
computing in the fastest time. Note that PP0 and PP1 are now of equal weight (Q0 =
PPO0+ PP1) which requires the first stage adders to be of the same bit width as the PPs.

Furthermore, recoding can reduce the incidence of carry propagations to the subse-
quent incrementer. For example, the combination of PP0 = —2Y and PP1 = -Y (for
Xspits = 10100) can be recoded to give Q0 = 2Y — 8Y = —6Y. This can now be imple-
mented with an input carry of one to the first stage and prevents the need for a carry of
“1” to propagate through to the next stage, and eventually to the incrementer, as would
otherwise be needed. Table 6.13 gives the PP recoding used in the self-timed multiplier
design for each X quintuplet.

124

Xspits || PPO | PP1 || Xspiss || PPO | PP1 || Xspirs || PPO | PP1 || X544 || PPO | PP1
00000 0 0 01000 || 2Y | 2Y | 10000 0 -8Y | 11000 0 -4Y
00001 0 Y |[[01001 | Y 4Y | 10001 | Y | -8Y | 11001 | Y | -4Y
00010 0 Y [|01010 | Y 4Y || 10010 | Y | -8Y | 11010 Y | -4Y
00011 || 'Y Y | 01011 | 2Y | 4Y | 10011 | 2Y | -8Y |[11011 || 2Y | -4Y
00100 || Y Y |/ 01100 | 8Y | -2Y | 10100 || 2Y | -8Y | 11100 0 |-2Y
00101 || Y 2Y || 01101 || 8Y | -Y | 10101 | Y 4Y || 11101 0 -Y
00110 || Y 2Y | 01110 || 8Y | -Y | 10110 | Y 4Y | 11110 0 -Y
00111 || 2Y | 2Y | 01111 | 8Y 0 10111 0 -4Y || 11111 0 0

Table 6.13: Recoding of Booth’s algorithm to provide the PPs.

All values for QO in the range —8Y — 8Y can be recoded to remove any carry
propagation to the next stage, except for Q0 = —5Y = 5Y 4 1. For this case (shown
boxed in the table) a value of 5Y is computed and inverted, and a carry then propagated
to the following stage. Since for PP0 this can only happen when X = 10110 (because a
zero extension is applied) the final stage incrementer will be used in just 3% of cases (1
in 32 times).

Given the recoded requirements for PPO and PP1 it’s possible to produce from Xspiss
various control signals which multiplex in the appropriate bit-shift of Y, perform masking,

inversion, and issue the carry in and carry propagate signals.

6.6.5 Implementation, floorplanning, and area usage

Figure 6.10 shows the overall implementation of the multiplier, indicating the adder widths
required (in the shaded boxes), their relative bit positions in the product generation, and
the bypassing of data values. For such a structure it is important to consider how it
should be floorplanned in VLSI. Two possible approaches are shown in Fig.6.11.

The floorplan of Fig.6.11a has a breadth governed by the first layer of eight adders.
The adders of the second layer are placed beneath this, and those of the last 2 layers are
slotted into the remaining gaps. Due to the increasing width of the adders this second
array is approximately the same width as the first.

The floorplan of Fig.6.11b simply flips the upper half of the adder array beneath the
lower half, and implements the extraneous 48 bit adder and 64 bit incrementer to the right
of this. This approach gives an aspect ratio much closer to one, which may be required

in an embedded application.

125

PPO PPl PP2 PP3 PP4 PP5 PP6 PP7 PP8 PP9 PPIO PPIl PPI2 PPI3 PP14 PPIS

EFEEEEEEES SRS

[36 bit | [36 bit | [36 bit | [36 bit | {36 bit | (36 bit] (36 bit | [36 bit |

i i
(1181 y [7:120f R} (19:16) (27:24] (63281} R3

[23:16]):/ 163241} g1

[64 bit inc’er]
64
Result

Figure 6.10: Configuration of a self-timed multiplier.

The multiplier has been implemented in the ES2 technology using PST adders and
a special-purpose incrementer. The floorplan of Fig.6.11a results in an area of 6.42mm?
with an aspect ratio of 6.2, and that of Fig.6.11b results in values of 7.12mm? and 1.7

respectively.

6.6.6 Performance and comparisons

The self-timed multiplier has been simulated using the switch-level simulator IRSIM with
a parameter file designed to give the closest approximation to various Hspice (level 13)
simulations of smaller circuits. The results of this simulation are shown in Table 6.14
together with the best known asynchronous and synchronous CMOS signed integer mul-
tipliers [SK93, YYNT90]. For the self-timed ECS multiplier, the best case multiplication
occurs for 0%0, and the worst case occurs for 1x—1. The average case time was determined
from a long test sequence of multiplications with random data.

The 4P LDPL design [SK93] implements a 16 bit multiplier in a 1.0um technology, and
uses a pipelined carry-save array and a pipelined Manchester carry adder to compute the
result. The synchronous design [YYN*90] also implements a 16 bit multiplier in a 0.5um

technology, but uses a Wallace tree and carry lookahead adders to compute the result.

126

N N O
(36 bit] 36 bit | 36 bit [36 bit]

IILIIIIIHIILII —
(36 bit | 36 bit] 36 bit] 36 bit | 36 bit] 36 bit] 36 bit | 36 bit :

lJ hﬂ lJ ﬁ L_I i—:—\ (36 b1tI 40 bit [36ibit]

[36 bit | 40 bit [36 bit] | [48 bit |36 bit] 40 b1t [36 b1t] ' -
|

— @'ﬂ — [36 bit | 40 bit 13: bl\iL
Result | —
(36 bit] 36 bit | 36 bit | 36 bit

Tl
(a) (b)

64 bit inc’er

Figure 6.11: (a) A possible floorplan for a self-timed multiplier, and (b) a floorplan with an
aspect ratio closer to one.

Multiplier Latency (ns) Throughput | Area Density
Design best | ave | worst (ns) (mm?) | (T/mm?)
ECS self-timed || 17.2 | 21.5 | 47.6 | latency+3 6.42 7300
4P LDPL 59.6 3.2 7.25 77
Synchronous 10.4 10.4 + 77 22.6 1500

Table 6.14: Simulation results and comparisons of a 32 bit signed integer self-timed multiplier.

Since these designs are implemented in different technologies than the ECS design, their
results have been scaled as described in Section 6.3.7 to correspond to a multiplication in
a 0.7um technology to enable a more accurate comparison.

To scale the synchronous design to a 32 bit data width, its latency has been increased
by 40% which accounts for the increase in Wallace tree depth (from 6 layers to 8, giving a
33% increase) and an increase in the final adder’s latency. For the LDPL design, 18 extra
stages have been added to the pipeline (for which 20 were used in the 16 bit implementa-
tion) to account for 16 extra multiplier array stages and 2 extra carry propagate stages.
Both designs have had their area (and number of transistors) scaled by a factor of 4 due
to the quadratic increase in the array size.

Interestingly, both of these designs use complementary pass transistor logic, in which
dual rail signals are computed from two complementary nmos pull-down trees (as men-
tioned in Section 5.3.1), but with their sources connected to the input signals (as well
as their gates) rather than to ground through an activate transistor. This can however
result in significant power dissipation during precharging and a slow serial precharge time

(since at precharge all pull-down paths will initially be on).

127

The ECS multiplier has a significantly lower latency than the LDPL design even in
the worst case, with a best case improvement of 71%, and the area usage has also been
reduced. The cycle time of the LDPL design is of course faster since a deep pipeline has
been used, whereas the ECS multiplier has none. As previously stated, self-timing is not
beneficial in improving the throughput over non self-timed structures (only the latency
can be improved), a fact acknowledged in [SK93] in which a corresponding synchronous
design gives a faster throughput of 2.9ns (scaled).

In contrast the multiplier in [YYN790] is not pipelined and results in a better latency
than the ECS multiplier even in the best case scenario, however its area usage is sub-
stantially more. Given that the transistor density of this design is almost 80% less, it
could be expected that significantly larger transistor widths have been used to obtain the
high throughput (although wiring and irregularity in the Wallace tree structure will also
contribute to the density difference). Resizing the transistors in the ECS multiplier could
potentially produce a typical latency closer to that of the synchronous design whilst still
occupying less area. Since the precharge time of the synchronous design is not quoted its

effect on the cycle time is unknown.

6.6.7 Potential improvements

The ECS self-timed multiplier as presented could be further improved by implementing

the following structural and algorithmic modifications.

6.6.7.1 Area reduction

To approximately halve the area usage it is possible to re-use the first layer of 8 adders
to implement the additions which would otherwise be required in the subsequent layers.
This can be done with a minimal effect on the latency, since an adder in the second layer
cannot be activated anyway until its two source operands from the first stage adders are
available. As such the only possible delay incurred will be in waiting for the re-used
adder to precharge, which can occur whilst the new source operands are multiplexed
in. Note also that since multiplexers are already used at the inputs to this layer, the
overhead in introducing another multiplexer signal is negligible. Fig.6.12 shows such an

implementation, with the first set of adder inputs given by the thick inner wires and the

128

second by the thin outer wires, and the first set of adder outputs given by the solid wires
and the second set by the dashed. Reducing the number of adders any further introduces

additional delays since the first stage additions will have to share a common unit.

| lepl o del lepl el Lepl Ao L
| 4O'biﬂgkl[j36lbit]5[48 bit | E?ﬁbit] [40 bit] |E36!bit’]—’[36lbit]

: | ;

[6I4 bit iﬁc’er]

] Result

Figure 6.12: A low area implementation of a self-timed multiplier.

6.6.7.2 Cycle time reduction

Similarly, since each layer of the multiplier must wait for the previous layer to compute,
these layers can be pipelined to increase the throughput. This is not in contradiction to
previous statements regarding self-timing and pipelines since the partitioning is placed
between, and not within, the self-timed units. The average throughput then will be gov-
erned by the maximum of the average latency of any one layer, which can be determined
from the statistical distribution of a single adder in [Gar93] as being: 7.6, 6.7, 6.0, and
5.0 bits for the first through last layers respectively. Therefore a cycle time of about 10ns
could be expected with an ECS PPS pipeline controller (assuming a 3ns precharge time,
2ns driver time, 3.2ns computation time from Table 6.6, and a control overhead of 1.8ns
from Table 5.6), with a small increase in latency of about 2ns (0.5ns per stage from Table
5.6). Note that implementing this optimization precludes the area reduction technique

previously mentioned.

6.6.7.3 Latency reduction

Aside from transistor and layout optimizations to improve latency, there is a simple
algorithmic improvement which could also be made. The recoding in Table 6.13 enables
6 of the 32 operations (19%) to compute in the minimum time, however it can also be
observed from Table 6.12 that half (50%) of the sums for QO have a magnitude equal
to either a bit shift or masking of the Y operand. For these instances the sum can be

multiplexed directly from Y (and conditionally inverted for a negative value) without

129

having to activate the adder at alll A minor drawback is that 9 in 32 operations (28%)
would now require the final incrementer. Implementing this optimization would result in a
significant power saving as well as improving the latency (and the cycle time if pipelined)
by about 1ns (again computed from the statistical distribution in [Gar93]).

The latency of the incrementer can also be removed for almost every operation. Since
the lower 16 bits of the result are available before the final 48 bit adder is activated, an
increment on these bits can be initiated in parallel with the addition. In the majority of
cases this will complete before the final adder, and will not need to be activated on the

adder’s result unless a carry from bit 15 is generated (a very rare occurrence).

6.7 Summary

This chapter has presented a range of fast self-timed adders and various other derivatives
which are typically faster, less power consuming, and smaller than any that have been
previously reported. This enables various microprocessor operations such as branch target
calculations, branch detection, and PC incrementing to be implemented quickly without
the need for complex logic structures. For these kind of operations, a low computation
latency is especially desirable.

A majority of programs also exhibit a significant amount of data dependency between
subsequent (or nearby) instructions. In such instances enabling low latency execution
through self-timing could reduce the stall time of the following instruction, and hence
increase the processor speed. Although the throughput of self-timed units is less than
could be achieved by pipelining, employing a degree of parallelism (having more than one
such unit) could overcome this problem. It may therefore be construed that a superscalar
processor structure is naturally suited to self-timed computations, whereas in contrast,
BD computational units would be ideally suited to a pipelined processor structure. Such

an investigation is embodied in the following two chapters.

130

Chapter 7

ECSTAC: APipelined Microprocessor

N asynchronous microprocessor called ECSTAC (Event Controlled Systems Tem-
lAporally specified Asynchronous CPU) has been designed using a predominantly
pipelined architecture. Although asynchronous pipelined processors are not new, the
goals behind the design of ECSTAC, and the techniques used in its implementation, are
sufficiently different to those of other processors to justify the new design.

In particular, designing a microprocessor is an extremely complex task involving a
plethora of control and data interactions. Such a complex system enables the potential of
ECS as a design framework to be properly examined, since the investigation of the com-
paratively small sub-systems thus far merely hints at this, despite having demonstrated
significant advantages at this level. Furthermore, since other asynchronous microproces-
sors have been developed, an accurate and reliable comparison of ECS can then be made.
Issues such as design area, instruction execution rate, power dissipation, etc. can all be
quantitatively measured to support such a comparison.

Another reason for undertaking the design of a complex microprocessor was to provide
a vehicle for the creation of new ideas and techniques. As new design problems arose so too
did new solutions, and out of this progressive development have arisen many of the design
approaches and methodology issues presented in the preceding chapters. In particular this
development has lead to the refinement of the ECS representation, early implementations
of the ECS pipelines and PST structures, and the majority of fast asynchronous circuit
techniques.

Since the ECS paradigm is geared towards implementing high speed control structures,

it is logical that an example system be chosen which needs to operate at high speed, and

131

yet is still challenging enough to provide some difficult design problems. Microprocessor
design has invariably been driven by the need for high speed operation, and as such
it becomes an obvious choice. This is further supported by the fact that low power
consumption is a secondary concern of ECS, and is similarly an important (yet secondary)
topic for most microprocessors. The issue of whether or not low power consumption still
results from a paradigm geared primarily for high speed can then also be determined.
There is lastly the issue of architectural alternatives, although this was not of concern
at the inception of ECSTAC but developed during its fruition. ECSTAC is constructed
as a pipelined processor not unlike the majority of early synchronous designs, however as
new information unfolded, it became apparent that perhaps the best method of exploiting
asynchrony in a microprocessor was to implement a superscalar structure. Therefore if the
latter were also implemented then a comparison could be made between both architectural

approaches, and a direction for future asynchronous microprocessors might result.

7.1 Design considerations

The cost of fabrication restricted the amount of silicon area which could be used for the
processor, and this in turn resulted in some restrictions being placed upon the architecture.
Firstly, to keep the processing area down only an 8 bit data path was used, which is
reasonable since the processor’s operating speed is governed almost entirely by the event
control and would therefore be only marginally different to a 32 bit implementation.
However, to enable sufficiently complex program codes to be compiled it was decided to
use a 24 bit address path. In retrospect it is clear that this mismatch of data and address
widths seriously affected the resulting performance by complicating numerous critical
control structures, and it would have been more practical to have these be identical.
Furthermore, since an on-chip cache was implemented (to facilitate high speed instruction
issue) and is relatively much larger than the processor core, implementing a full 32 bit
data and address path would not have been significantly more area intensive than first
thought. Unfortunately since these factors were not realized until after the design was
well under way, a 24 bit address and 8 bit data path remained.

Due to the expected high speed of the processor it was deemed necessary to incorpo-

rate an on-chip cache, as already mentioned. Separate instruction and data caches were

132

employed since a combined cache requires a significant amount of arbitration between in-
struction fetching and data operations, which could then limit the processor’s speed. This
work was undertaken by Sam Appleton, and is not described in any detail in this thesis
since the author’s contribution was in the architecture of the processor core. Specifics
of the cache design can be found in [AML95a, App96]. The core simply interprets both
caches as black box memory units.

To simplify the design there were no interrupt or exception handling facilities incorpo-
rated. Nor was there any provision for floating point operations, since these seem rather
pointless in a prototype 8 bit machine. Only integer operations are supported by the core,
excluding integer multiplication and division.

Sixteen general-purpose 8 bit registers were provided as well as a flags register (FR),
and a 24 bit stack pointer (SP) and program counter (PC). A custom RISC-like ISA was
implemented to enable the complexity of the design to be adequately managed (although

this then complicates the issue of performance comparisons).

7.2 Instruction set architecture (ISA)

Only an overview of the ISA for ECSTAC is given here, however a complete description
of all instruction codes, operating modes, and bit encoding is given in Appendix B. There
are a total of 47 distinct instruction types excluding mode variants, and 87 including
mode variants.

The first class of instructions include the memory accessing LD and ST instructions,
which retrieve and store data from and to memory respectively. Each of these instructions
have three mode variants: register mode (in which the address is computed as the sum of
two register quadruples); offset mode (address = register quadruple + offset); and direct
mode (a 24 bit address is encoded in the instruction). The first two modes require only
2 bytes for their encoding but the third requires 4 bytes, of which the address itself uses
3 (to specify a 24 bit address width).

The dissimilarity between bus sizes results in a number of awkward situations through-
out the microprocessor architecture, one of which is the fact that the modes involving
register accesses in fact have to fetch data from three separate registers as opposed to

only one if the bus widths were compatible. To alleviate this problem the 16 registers are

133

grouped into four register quadruples (Q0, Q4, Q8, and Q12) for the three byte register
accesses (termed a “Qfetch”, although the last byte of the quadruple isn’t actually used),
and the read port from the register bank provides three output buses. Note however that
because each Qfetch starts from just one of four possible registers, the output bus loca-
tions of its three register accesses are known, and therefore the register cells themselves
only require a two read port cell design.

The next class of instructions involve the ALU, incorporating left and right arithmetic
and logical shifts, signed and unsigned additions and subtractions, four logical operations
(nand, nor, xor, and not), and negation, increment, and decrement operations. The move
instruction also passes through the ALU, although no processing is performed. ALU
instructions may be encoded in the short mode (which requires two bytes) or the long
mode (which requires three), however the former requires the destination register and one
source register to be identical, whereas the latter does not. Note that all ALU instructions
with only one operand (9 of the 16 available) will be encoded as short, since a unique
source and destination register can still be specified. Two further modes are also available:
register mode (specifying a source register for the second ALU operand) and offset mode
(encoding a constant 8 bit value instead); however for the short mode encoding, the offset
may only be 4 bits long instead of 8, and is considered as an unsigned constant.

The branch instructions form yet another class. The CALL instruction has a one
byte encoding with the branch address contained in a register quadruple, and the RETN
instruction is also encoded with one byte and reloads the PC with the last value stored
in the stack (which should always be PC+1 from the calling instruction). The JUMP
instructions (encoded in two bytes) allow both unconditional branches and branches de-
pendent on any one of 14 combinations of the contents of the FR, which contains zero,
parity, sign, overflow, and carry flags. Two different jump modes are also available: reg-
ister mode, in which the branch address is contained in a register quadruple; and offset
mode, which enables jumps of +127 or -128 locations relative to the current PC value.

Four stack operations are provided (each encoded as a one byte instruction) which
enable the contents of a register (including the FR) to be PUSHed or POPped. Finally
there is a group of miscellaneous one byte instructions which include NOOP (do nothing),
TRSP (transfer the contents of Q12 to the SP, which enables this register to be initialized
before use), HALT (to stall the processor through software), FLSH (to invalidate the

134

contents of the data cache), and four instructions to enable or disable the instruction and

data caches.

7.3 Architectural overview

A block diagram of the microprocessor architecture is shown in Fig.7.1. The arrows
between modules indicate the general data flow and the ticks on each module represent a
row of latching elements between pipeline stages.

I Y 5 Y |

I
i | Instruction 24bit Adder)
N M Decode Operand Comparator &
Inst : ‘ Fifo Fetch Stack Processing)
Cache Data
Program Registers & Order
- Counter Scoreboard Unit
_ Cache
External i i S
Memory |1 L |

Figure 7.1: The general structure of the ECSTAC microprocessor.

Separate instruction and data caches (IC and DC) are used in the design to delineate
between program control and data accessing, and to enable arbitration to be placed at
the cache outputs to external memory as opposed to the input of a joint instruction and
data cache. This significantly reduces both the arbitration frequency and the effect of
metastability delays, as external memory accesses are comparatively slow anyway.

The IC continuously fetches bytes from the PC address and places the data into the
instruction decode (ID) pipeline. This is heavily pipelined so that it effectively acts
as a FIFO buffer (the decoding in each stage is minimal). The results then pass into
the operand fetch (OF) stage which, from the information provided by the ID pipeline,
controls the number of register fetches required and the organization of these (together
with any immediate input values and the PC if required) onto a minimal set of output
buses.

The adder, comparator, and stack processing (ACS) stage performs address offset

additions (which are 24 bits long and would be awkward to compute with the ALU’s

135

8 bit adder) in two stages employing 12 bit Manchester carry adders (MCAs) in each.
The second stage (the upper 12 bit addition) is bypassed if the intermediate carry is
zero (as the result of this prediction is determined in the first stage). The first stage
also determines whether or not a JUMP operation is to be taken. If it’s not, then this
operation is converted into a NOOP (therefore bypassing any 24 bit additions that may
have commenced) which then terminates at the ACS output. Otherwise, a signal is sent
back to all preceding stages which converts any instructions therein into NOOPs, since
they are now invalidated due to the branch. The IC-PC interaction is also instructed to
halt until a new PC value has been written to it. The second stage of the ACS incorporates
the SP, which places the relevant address onto the bus to the DC for writing and reading
from memory. The CALL and RETN instructions present a problem here as they require
the pushing and popping of the PC, which is 24 bits wide (whereas the data width is
only 8 bits wide), therefore special refetch control is incorporated into this stage to effect
this. At the output of the ACS stage the appropriate execution unit (DC, ALU, PC, or
nothing for a NOOP) is selected.

The ALU is a single pipeline stage employing a dedicated shifter and logical unit and
a dedicated & bit MCA. The operation time of this unit will vary depending on which of
these, if any, is required by the operation. The DC is also a single pipeline stage which
will generally write back to registers except for a RETN instruction which writes back to
the PC.

The register bank employs a standard two read port and one write port cell design,
and each register array has associated with it a corresponding tag which enables data
dependencies to be properly handled (scoreboarding). When an instruction passes through
the OF it attempts to read the source register and, if the tag is high, is successful.
Otherwise it must wait until such time that the tag does go high. When all of the
required data is read it then tags (sets low) its destination register if one exists, and then
proceeds through the rest of the pipeline. Any subsequent instructions wanting to access
this register will therefore be stalled until it is later written to and the tag removed. Thus
there can never be simultaneous read and write operations for the same register, although
for different registers this is still possible.

The PC is a simple incrementing 24 bit register, which can have data written to it

from the ACS stage or the DC. Note that these can never occur simultaneously (therefore

136

avoiding arbitration) because the detection of a program branch in the ACS stage will
convert all preceding instructions into NOOPs, and will stall all subsequent PC reads
until it is re-written to. There is however a degree of arbitration with regards to halting
the IF-PC interaction once a branch is detected, which is resolved using the technique of

Section 4.4.1.

7.4 Processor sub-systems

This section gives a more complete description of the logic blocks of Fig.7.1, focussing on

the control design techniques used to improve throughput and reduce latency.

7.4.1 Instruction decode

The ID stage receives a constant stream of 8 bit data values from the IC (as well as
the corresponding 24 bit PC location of the data), which have to be decoded to provide
numerous control signals for use in the latter stages, such as which functional unit to
trigger, how many bytes in the instruction, how many and what registers to source, etc.
It was also deemed necessary to have a FIFO buffer after the IC for two reasons. Firstly,
if the IC missed then there would be a store of instructions still in the FIFO which could
get executed whilst the IC fetched the next stream of instructions from external memory,
and secondly so that if a latter stage stalled (due perhaps to a miss in the DC, or a refetch
operation for the SP or register sourcing) then the FIFO could fill up and thereby reduce
the frequency of stalls in the IC. Both issues help to maintain a steady flow of instructions
through the processor core. Note however that implementing a FIFO here does have the
drawback of creating a longer branch latency (from when the branch instruction is first
fetched to when the branch target instruction is fetched), which can reduce performance.

Consequently, the ID process is actually combined with the FIFO, resulting in a 7
stage pipeline design. To enable the pipeline to still act as a FIFO, which requires a very
low processing latency in each stage, the decoding process was reduced to a minimal tree
of 2-input nand and nor gates with only one such gate in each stage. This ensured a high
throughput and low latency of the ID and FIFO combination.

Note that with the ISA of ECSTAC the decoding process only needs to be applied

to the first byte of any instruction, since any subsequent bytes if present only contain

137

register locations, immediate values, or function codes (which are decoded in their relevant
functional unit). However to implement this requires the instruction length to be initially
decoded (so that the start of the next instruction can be determined) and then de-activated
for any subsequent bytes. Implementing this would complicate the control circuitry and
increase the stage latency, but would decrease the power consumption. Since the former
is of most importance this design alternative is not implemented, and instead every byte
in the instruction stream is decoded. Only in the OF stage are the correct control signals

latched from the first byte of the instruction, and for any subsequent bytes discarded.

7.4.2 Operand fetch

The OF stage sources the required register values and then tags the destination register if
used. The register values are then multiplexed with the immediate operands (from bytes
2, 3, or 4) to provide the following stages with the appropriate data values. A block

diagram of the structure is shown in Fig.7.2.

Registers & Scoreboard

PC, data, control > '
Input

ID d_start —| Router
stage d_begun <~

S SOutput buses, control
Register V

Control S . d_done ACS

stage

d_return

Figure 7.2: A block diagram of the OF stage.

It will be seen from this that the OF unit uses a single pipeline stage operating at
the byte rate (as per the ID stage), however all subsequent stages are activated at the
instruction rate. Using a single stage for the register operations removes the contention
which would otherwise be present if they were spread over more than one stage. To
maintain a high throughput however it is essential that the router and register control
blocks (and the registers themselves) operate quickly.

The router is used to interface the OF stage to the ID, and is required to latch the

control bits, PC location, and data value from the first byte of each instruction, and only

138

the data value for any subsequent bytes. The control circuit used for this is shown in

Fig.7.3.

instbyte noopbit
d_start |
d_begun ‘ J d_beguna
T -1 e i [
: % : ‘counter— pulse qoss == qe==ass ;
]
]] J 1 _
I
Bus \bussel| ‘g0 LIS
| ’
Selecti | I i Last Byte?
I
I
1

\

\

\ } ;
Moo [sell_ seld

PC & control PC & control

J—t
5
data = Bus 1
— Bus 2
(1 =
atches Bus 3
L — Bus 4

Figure 7.3: Control circuit for routing the data from the ID into the OF stage.

The 2 bit control signal instbyte specifies the number of bytes which are present in
the instruction, which from Appendix B is between 1 and 4 in length. A 2 bit counter is
used to keep track of the number of bytes which have thus far been processed, and when
equal to instbyte gets reset to zero ready for the start of the next instruction. The noopbit
signal also resets the counter for when the instruction gets converted to a NOOP (when
it’s in the shadow of a taken branch).

From this counter the relevant output bus for the data values can be selected, by
appropriately masking the latch select signal bussel which is generated by the TE:
bussel + dbeguna U Ostart, so that the relevant bus data gets latched on each Jstart
event. The only latency incurred by this unit is in incrementing the counter before pro-
viding a return event back to the ID stage, since if dbeguna were used instead then the
counter may not properly mask bussel before the next instruction arrives. Note that the
forward latency from Ostart is zero, since the delay from this to \7bussel is significantly
less than the delay to dbeguna (as will be seen by the structure of the register controller).

The register accessing requirements for each of the 16 fundamental instructions (as
given by the first 4 bits of the first byte) are presented in Table 7.1, in which Qi specifies
a 24 bit source (Qfetch), Ri specifies an 8 bit source (Rfetch), and T(Ri) specifies that

register i must be tagged once all sourcing operations are complete.

139

[Code | Instruction + Mode || Byte 1 | Byte 2 | Byte 3 | Byte 4 ||
0000 | LD register Qx Qy & T(Rz)
0001 | LD offset Qx T(Raz)
0010 | LD direct T(Rz) - - .
0011 | JUMP offset FR -
0100 | ST register Qx Rz & Qy
0101 | ST offset Qx Rz
0110 | ST direct Rz - - -
0111 | JUMP register FR Qz
1000 | ALU short/register - Ry, Rz! & T(Rz)
1001 | ALU short/offset - Rz & T(Rz)
1010 | ALU long/register Rx Ry & T(Rz) -
1011 | ALU long/offset Rx T(Rz) -
1100 | POP T(Rx)
1101 | PUSH Rx
1110 | SPECIAL special?
1111 | CALL Qz

1: a second register source (Rz) is only necessary for ALU operations with 2 operands.
2: a register access of Q12 is needed for TRSP, the FR for PSHF, and a FR tag for POPF.

Table 7.1: Register accessing requirements of the fundamental instruction set.

It can be seen that register operations are only ever required for the first 2 bytes of an
instruction, and that for the second byte there may in fact be 2 register source operations
which have to occur, as well as potentially having to tag a register. Implementing such a
register controller is therefore a reasonably complex task.

One approach is to activate the register accesses using select and merge gates, as shown
in Fig.7.4. The signals gol and go2 are used to indicate whether one or two register sources
are required for each byte (although the latter is rare), and go0 and go3 indicate if the FR
or register bank has to be tagged. These signals are generated from control bits decoded
in the ID stage and the current counter value. Since the tagging functions can be done
in a fast, constant time they are triggered without acknowledgement. Merge and restore
gates are used to combine the two possible source operations prior to the register bank.
Note that tagging of the registers must occur after the register fetching and hence these
operations must be serially connected, although for the FR a fetch and a tag can never
occur together in the same instruction, therefore it can be initiated immediately.

This approach gives a best case latency from dstart — dstartc of 2(tse; + tmerge) = 40
using Table 3.1 as a guide, a nominal latency of 40+ t,,erge +tres = 64 (for just one register

source), and a worst case latency of 64 + tyerge + tres = 88 (for two register sources),

140

d_regstart d_regdone

Combine [@]

= —
Source 1 Source 2
d_tagFRstart == d_tagstart
Tag FR | ﬁt_j E@ Tag registers
—[__ . \ —I-—_-
d_start ! 1 d_done
\ d_starta d_startc ‘ A
rese
00 gol go2 go3 A
d_beguna
Last Byte? - d_retumn

Figure 7.4: Event bypass method for controlling register accesses.

excluding the delay of the registers themselves. Although this may be the most intuitive
implementation (which also happens to be a SI design excluding the tag operations), a
better implementation based on conditional gating of logic signals, rather than events, is
given in Fig.7.5

Essentially, the sourcing circuitry involves generating a logic level signal from an input
event (via the until gate), which causes Agoreg to occur if the go signal is high. Otherwise,
the register triggering is bypassed through the done signal by immediately passing out
the event through the send gate. The signal goreg is used to trigger the register access
operation, which therefore requires the registers themselves to be logic level triggered.
This is in many ways advantageous, since bus precharging is easily accommodated without
any additional control overhead, whereas for the strategy of Fig.7.4 the precharge signals
would still have to be generated from the Oregstart event.

The register unit then must also supply a logic level completion signal (which is sim-
ilarly advantageous), which then results in Adone and sends out the initial input event.
This done signal then resets the initially generated logic signal (from the until gate) which
in turn resets the subsequent gates. The correlation between source and tag structures
for this method and the previous is indicated by the shaded boxes. Note that an extra
send gate is used here between sourcel and source2 because a high signal on regdone sets
both donel and done2 high, so that were it not present the event dstartb would emerge

prematurely as Ostartc.

141

regstart regdone

Combine

goregl goreg2

So_u_rce 1 Sourcg 2

tagFRstart f V tagstart
Tag FR l Tag registers
Tl ol I
donel \?ﬁne?. C‘ih
Y > 5 | |l
7 F—x [=2

™ |

T 1 ’ |] r'
d_start | | d_startb |

7
d_starta | : d_startc ’ ; ||d_done
[o

go0 gol go2 go3

reset

d_beguna d_return

Last Byte? =

|

Figure 7.5: Logic bypass method for controlling register accesses.

This design results in a best case latency of 3ts;enq = 18, a nominal latency of 3tseng +
toor + 2tnand + tandnor + tine = 38, and a worst case latency of 3(tsend + tzor + 2tnand +
tandnor) + tiny = 74. Comparing these results against those of the SI schema results in
speed improvements of 55%, 41%, and 16% respectively (for which the first two scenarios
are the most frequent), which are in fact further enhanced by the removal of a precharge
generation phase from the event control. It should also be noted that the design area has

been considerably reduced.

7.4.3 Adder, comparator, and stack processor (ACS)

The ACS is a 2 stage unit primarily used to compute the address offsets for LD and ST
instructions using the register and offset modes, as well as computing PC relative branch
locations. Since these operations involve 24 bit data signals it is necessary to implement
a dedicated adder rather than re-use the 8 bit adder of the ALU (with 3 cycles), which
would require greater complexity and hence slow down the processor speed.

The ACS stage also performs two other important tasks: branch detection and stack

processing, in the first and second stages respectively. In the first stage, the contents of

142

the FR which were fetched from the preceding OF stage are compared to the branch code,
and if a branch doesn’t occur then the instruction is converted into a NOOP and the 24
bit adder is bypassed, otherwise the instruction proceeds as normal and all subsequent
instructions are converted into NOOPs instead.

The second stage generates the SP addresses for the DC. A decrementing stack is
used for which the top memory location can be set using the TRSP command. For a
PUSH (or POP) operation the SP (or SP+1) address is supplied to the DC together
with the fetched data from the OF stage, and then SP-1 (or SP+1) is stored as the new
SP. A RETN instruction is more complex in that three POP operations are necessary to
retrieve the new 24 bit PC location from memory, which can only store 8 bit data values.
A CALL instruction is similarly problematic, requiring three PUSH operations to store
the current PC location as well as having to reload the new PC address (giving a total of
4 operations for the one instruction). The following sections describe the operation and

control schemas of the 24 bit adder, comparator, and stack processor in turn.

7.4.3.1 The 24 bit adder

The 24 bit adder is implemented in two stages each of which executes a 12 bit Manchester
carry adder (MCA) [WE93, p322]. Although this requires a long chain of n transistors in
the worst case, a large width:length ratio is used to reduce the computation time. Fur-
thermore, since at best the execution rate of each stage will be for a two byte instruction
(LD offset) the cycle time (and latency) of this adder is not critical, and merely needs to
be less than twice the cycle time of the OF stage with one register fetch.

The first stage addition also pre-computes the output for the upper 12 bits assuming
an input carry of zero. If this proves to be correct, then the second stage 12 bit adder
does not need to be activated, thereby improving the system speed.

The control circuit for the first stage of the ACS unit is shown in Fig.7.6, and includes
the control for managing both the adder and comparator sections of the design (shown in
the shaded oval and square respectively). The state pipeline structure is used to implement
the basic handshaking requirements between adjacent stages.

The control for the adder is simple. Once the pipeline begins its operation, as signalled
by 7acssel0, the activation signal act0 for the MCA is set high provided that the instruc-
tion does in fact require the 24 bit adder (as given by doadd). A positive-edge only delay

143

& restnoop noopov
in | ©
d_acslbegun @— controliin HE-NLR] control out
oopvalid &
7 thistonoop
F-—=- |4+ = = = = i thisnoo Branch control
d_acsl 44— \ . 4
: L I d_compdily
State
pipeline ! d_acsldone

acssel0
Adder control

d_acsret

Figure 7.6: Control circuit for the first stage of the ACS.

unit is used to model the computation time of the 12 bit MCA, which is also partially
absorbed into any subsequent control delays before the next stage’s latching operation.
Once the delay model signifies completion, the event dcompdone (delayed slightly from
dacslbegun to occur after the branch detection logic, as will be discussed next) is passed
to the output event dacsldone. Note however that if a branch comparison indicates that
it’s not taken, then this instruction is converted into a NOOP (as signified by a high level
on thistonoop), and dacsldone is then passed out immediately since the result of the

addition in this instance is irrelevant.

7.4.3.2 Comparator

The comparator is used to determine whether or not a branch is to be taken. This is
implemented using a simple static logic tree which compares the flags from the FR against
the branch code. Referring to Fig.7.6, if a branch is detected then restnoop will go high,
otherwise thisnoop will go high instead. To prevent glitches on these signals from causing
erroneous behaviour they are and’ed with the noopvalid signal, which is itself generated
from dcompdone and indicates when the branch detection logic is complete (using a simple
delay model).

If thistonoop then goes high (indicating that the branch isn’t taken), the instruction
is converted into a NOOP by bypassing the addition (as already mentioned) and masking
the relevant control bits to indicate a NOOP to the next stage. If instead the noopov
signal goes high, then a branch has occurred, and all preceding stages are to be converted

into NOOPs.

144

To implement this, the noopov signal is fed back to all preceding stages and sets
a control signal noopbit high in every stage. The control state of each preceding stage’s
latches (opaque, transparent, or somewhere in between) is irrelevant, since the propagation
of this signal through a stage is less than the pulse width of noopov. There are only two
places where a potential problem exists: in halting the PC until its new location has been
loaded, and in the tagging operation of the preceding OF stage.

The first problem involves a metastability issue in the PC unit, which is discussed
in Section 7.4.7.2, and the second involves ensuring that a tag operation for the next
instruction is not initiated before it has been converted into a NOOP. A register fetch
would be okay, since its results could be discarded, however undoing a tag operation would
be a complex procedure. This problem is in fact solved without effort, since the time from
dacslbegun to Anoopov is less than the the return time to handshake with the OF stage
and initiate a tag. If it were not, then the tag operations in the OF stage would merely
have to be delayed slightly, an issue which again does not influence the critical control

path of the OF unit.

7.4.3.3 Stack processing - single operations

The stack pointer is a 24 bit address indicating the current location of the top of the
stack, and is multiplexed onto the address bus at the ACS output for a stack operation.
This can be set with a TRSP instruction, which loads the SP with the contents of (Q12.

The stack is implemented with an incrementer and a decrementer. For a PUSH opera-
tion the current SP value is required, whereas a POP operation requires SP+1. Therefore
for a POP operation SP+1 is loaded into the stack prior to the next stage being activated,
and for a PUSH operation SP-1 is loaded in after the next stage is activated.

Figure 7.7 shows the control circuit used for this operation, together with the state
pipeline controllers for the handshaking with adjacent stages and the control for the
upper 12 bit adder (which is essentially the same as that already described, except that
in this instance doaddhi is low if the pre-computation for ¢12 = 0 in the previous stage
was correct). A pulse is generated for when the stage is first activated (from Oacslret
through the merge and send gates) and also after the next stage has been activated (from
dacs2done through a send gate). A POP operation selects the first of these to reload the
SP (provided that a SP operation is occurring), and a PUSH selects the second.

145

Stack |
control P \ sel decok
[—_/ L selT IOgiC
mux incok

POP— 7
d_spredo] [

| [
d_acslret ——-’—_—D } ‘_<

P
d_acsldone L

d_acs2done

'
1
" i
pipeline d_ackout ''T_ _ _ _ _ ______ s WAL ")D {
d_pseudoBI i :
Refetch 1| acssel2 [7 ‘:

control State |
pipeline

d_acs2ret
Figure 7.7: Control circuit for the second stage of the ACS.

Once loaded, the increment and decrement of the SP are initiated (from the sel pulse).
These units are not self-timed and use a simple static logic chain for their computation,
which requires the worst case propagation time to be managed. This is implemented with
a delay on the pulse signal to indicate completion (which requires careful management to
ensure that the negative edge propagation is no faster than the positive edge) from which
the incok and decok signals are produced. These go high when SP+1 and SP-1 are valid,
and prevent their re-loading into the SP from a subsequent operation until such time.

The CALL and RETN instructions require 3 stack operations to store or retrieve the
PC, which complicates the control schema. A refetch controller is needed to repeat the
SP operation 2 more times (via dspredo), and for the CALL instruction an additional
operation is required to load the PC with its new location (OpseudoBI). These signals
are incorporated into the single operation control schema with the two merge gates, and

are generated as follows.

7.4.3.4 Stack processing - refetch control

The control circuitry for implementing the CALL and RETN instructions is shown in
Fig.7.8. Once the following stage has been initiated dacs2done occurs, which then prop-
agates through a select gate for which sprefetch is initially high for a CALL or RETN

instruction (as given by pcwrite), and which stays high until the second event on dspredo

146

occurs. Assuming call2 is low (for a RETN instruction), this will cause 2 events to occur
on Jspredo before dackout occurs to indicate completion to stage 1, giving a total of 3

SP operations as required.

8bit data Refetch control rs;prcfclch .] pcwrite
PC low logic
PC mid
PC high Bus muxing d_acs2done call2

d_spredo

0 E
1 1 d_pseudoBI
L2E —‘ E d_repeat ‘
{ L0

] | pulse] d_ackout
J". il ! X

1 0

— =

IR ; 1
mux ¥ { [
[one-Ho |—C : |
: Y i
o1 0 ¢l Jc : controlin %L1 datq
mux 1 1 masking
: | for PC
1| reset 1 reloading
pcwrite2 i 1
A4 o [- /
data bus control out

Figure 7.8: Refetch control for the second stage of the ACS.

If however a CALL instruction is occurring, then the first event on Orepeat will be
transferred to OpseudoBI (call2 is high for this first event only, and low thereafter). This
masks the control signals to initiate a reload of the new PC location until dacs2done
occurs (once the control signals have been latched). For the next iteration call2 = 0
and the control masking is removed, so that as per the RETN instruction 2 more SP
operations are initiated before dackout.

The purpose of these iterations is to enable the PC to be loaded onto the stack in
three 8 bit segments. Each time dacs2done occurs a one-hot counter is incremented
which selects the appropriate segment onto the data bus. The high byte is stored first
and the low byte last, so that when a RETN instruction reloads these into the PC the
incrementing can occur immediately on the low byte (since PC+1 is actually required as

the RETN target).

7.4.4 Arithmetic and logical unit

The ALU performs addition operations (including subtraction, negation, incrementing,
and decrementing), logical functions, and shifting of 8 bit operands, as well as passing

out the input data directly to the output for a move instruction. An 8 bit MCA is used

147

to implement the additions, and since the ALU is at best triggered at a rate equal to two
cycles of the OF stage with one register fetch, the latency of this unit is not critical.

The ALU is structured such that the logical, shifting, and move operations are all
performed in parallel, and the dynamic adder is only triggered (also in parallel) when
necessary. The appropriate result is then multiplexed onto the output bus and the rel-
evant flags computed (any flags which are not of relevance for a given operation remain
unchanged), which are then written back to the register bank.

The control circuitry for the ALU is essentially the same as the adder control of
Fig.7.6, with a constant delay element in the event path (equivalent to 7T'1) to model the
computation time of the logical and shifting operations, and a positive edge delay used
to model the computation time of the adder. If the adder is not used, then the delayed
event is passed out directly through the send gate (effectively replacing thistonoop with
add).

7.4.5 Order unit

The ACS stage can issue an instruction to either the ALU or the DC (and the PC too
for a branch), which after processing may then wish to write back a result to the register
bank. Since these units can initiate a write back at any time there is a contention issue
to be resolved, for which there are two possible solutions: using an in-order execution
model ensures that the units write back their results in the same order as the original
instruction stream; whereas an out-of-order execution model allows these to occur at any
time, provided only that writes to the same register remain in-order.

Although the latter model prevents unnecessary stalls for when one unit has to wait for
a slower, but earlier, computation to finish in another unit (as may happen in ECSTAC
if a miss in the DC causes a subsequent ALU operation to stall), the control strategy
for initiating a write back and especially for maintaining the register scoreboard is more
complex. In ECSTAC the frequency of out-of-order write backs is expected to be low,
therefore a simple in-order execution model is used, and the OU is employed to effect this.

When a DC or ALU operation is activated from the ACS stage (which will eventually
initiate a write back), a flag is also loaded into the OU which records which unit was used.

The OU is essentially a FIFO and maintains the instruction order from the ACS. When

148

the ALU or DC then initiate their register write, the output of the OU is first checked
to ensure that the correct execution order is being achieved. If a latter ALU instruction
completes before an earlier DC instruction it will stall until the DC has completed.

To implement such a design it is necessary to have a FIFO length at least as long
as the maximum number of stages which can be filled after the ACS, otherwise the OU
may unnecessarily create a stall at the ACS output (and must then also issue a return
acknowledgement). By considering Fig.7.1 there are at most 5 stages which can be filled
before the ACS stage itself stalls, therefore the OU is designed with a 7 stage FIFO.

The general structure of the OU is shown in Fig.7.9. This design enables the latency
of the FIFO to be very small and independent of the FIFO length, which is advantageous
since an ALU operation can potentially occur very quickly, and may therefore stall un-
necessarily before writing back if the FIFO latency was longer. Note that the OU also
multiplexes the appropriate data bus to the register unit as well as generating the return

events for the ALU and DC from the register bank.

input
d_cachedone Buses

T d_fi{% S | Store "one-hot" counter J
TOIM

d_aludone

d_wb
T Control
‘3&‘; :>[I Lc:[ches 17 F IF}) smg:Jrs) r A and data > wb bus
muxing j d_wbdone
[Retreive "one-hot" counter }“

d_cacheret d_aluret

Figure 7.9: General structure of the low-latency FIFO used in the order unit.

7.4.6 Registers and scoreboarding

The register bank (designed by Sam Appleton) is simply a 16x8 bit array of register cells
employing a standard two read port, one write port design. Note that although only two
read ports exist, a Qfetch (fetching 3 register values instead of just one) can still occur
since the extra two fetches always go to a unique output bus (bus2 or bus3 only). A
separate register is also implemented for the flags, which reads onto busl (as does a one

byte Rfetch) and can be written to at the same time as a write back to a data register.

149

For any microprocessor it is essential to prevent the reading of a register when new data
values are still to be written, termed a “read after write” (RAW) hazard. Conveniently,
a “write after read” (WAR) hazard is handled implicitly by the pipeline structure as is
a “write after write” (WAW) hazard in conjunction with the OU, however RAW hazards
require specific attention. One possible method of handling these is to have two logan
bit counters per register (where n is the number of pipeline stages between reading and
writing) which continually increment whenever a tag set or reset occurs. When these two
counter values are equal the register contents may be sourced, however this approach is
significantly area intensive. Another solution is presented in [PDF*92] in which a FIFO of
width m (where m is the number of registers used) and length n is used to store a bit for
each register indicating if it needs to be written to. These are then or’ed across each FIFO
stage to determine the readability of each register. This approach is still area intensive
and scales linearly with the number of registers and the number of pipeline stages.

ECSTAC employs a very different method which uses a row of latches at least as
numerous as the number of potential pipeline stages, and stores the actual encoded desti-
nation register itself (of width logam) as shown in Fig.7.10. Provided that the ordering of
instructions is maintained (an issue demanded by this strategy), then the hold and pass
states of any one latch may be regulated by the tag’s start and reset signals in a simple
“one hot” fashion. The number of cells is simply replicated for at least as many pipeline

stages as necessary.

tagstart tagreset destreg Rx

r (e

Cell i

Latch

N

S

S

£ [match
S

O

1
1
1
|
I
1
1
1
1
I
V-

hotset hotreset

Figure 7.10: A tag cell used in the register scoreboard.

When a request to read register Rz occurs, it is compared against the previously

latched destination register in each cell and sets ok; low if they match. All of the ok;

150

signals in the array are then and’ed together to give the readability of the source register
Rz (in practice, a single complex gate is used to perform the match and OR operation),
and if low then the read cycle into the register bank is halted. When a write back occurs,
the earliest cell’s select signal will go high invalidating the previously latched destination
register (which has just been written to), and subsequently setting ok; high to activate the
register read with valid data (unless another cell indicates that yet another write back to
this register is still to occur). Note that in practice there are actually three comparators
with inputs Rdtag, Rdtag — 1, and Rdtag — 2 respectively, which are used to determine
the readability for the three source registers of a Qfetch.

This scoreboarding (SCB) scheme requires significantly less area than the two methods
mentioned above and yet still enables the rapid detection of the readability of a particular
register. Furthermore, this implementation scales logarithmically with the number of

registers used.

7.4.7 Program counter

The PC unit interacts with three separate entities: the DC and ACS outputs for writing
to the PC (for RETN and BRANCH instructions respectively); and the IC for reading the
next PC location. Therefore the PC structure is broken down into two sections as shown
in Fig.7.11, with the first being used to distinguish between a PC write from the Cache
unit or a branch instruction (Write Interface), and the second being used to distinguish

between a PC read or write operation (PC Controller).

d_pccached PCcache .4 d_pchi
g PCbi]
=k =y
bc [Write Interface] ACS
2 stallO stalll

d_pccbi PCwrite

[PC Controller]7 noopov

24
d_pcde l d_pcf JfPC

Figure 7.11: General architecture of the PC unit.

151

7.4.7.1 Write interface

This unit receives request events from the ACS and DC units together with the associ-
ated data which is to be written to the PC, and then initiates this write cycle and upon
completion generates the return event to whichever unit called it. Note that it is impos-
sible for coincident input events from these two units to occur, because as soon as a PC
write is detected in the first ACS stage, all subsequent instructions (in preceding stages
of the pipeline) are then converted into NOOPs and the PC fetching cycle (from the IC)
is halted until the new PC value has been written. The write interface circuitry is shown

in Fig.7.12.

——

d_pccache , -
X | Pulse l
Ld

\
1 ohine \Refetch Control
! -
L Lulse d cb1d d_pcbi
i _p
! ohsel
1
Ll ono.2 oh2__ | FEse N ennn,
= 3bit 1-hot ' 1Generate
! C ', I return
| ounter) 1 events
\ REE = _ = "
i i T 4 . ~ - =y .
. ! 1 PC write
© 16bit 1
PCcach = inc : :
= . “
L ~ [ST] !
=== mnc : :

PCwrite d_pccbi stall0 stalll
Figure 7.12: Interface circuitry for the DC and ACS write back phases to the PC.

The data which comes from the ACS output is the new 24 bit location of the branch
instruction (PCbi), but the data which comes from the DC (PCcache) is in three streams
of 8 bits, each of which represents the new PC value from low byte to high byte respec-
tively. Therefore additional refetch control must be implemented for the DC events which
enables the full 24 bit PC address to be latched before sending out the write event to
the PC unit itself. This can be done in similar vein to the SP refetch control used for
CALL and RETN instructions in Section 7.4.3.4, using a “one-hot” counter to multiplex
the incoming byte into the appropriate portion of the 24 bit address.

152

An increment of this address must still be performed. This is implemented with a
simple static logic incrementer for the low 16 bits, since an 8 bit increment can safely
occur before the next byte is loaded from the DC. If the increment isn’t yet completed
when the last byte is loaded (implying c¢;6 = 1, and occurring only 1 in 218 times), then
the last 8 bits are incremented in a self-timed fashion.

Once the new PC location to be written is available, the PC write operation is activated
via Opcebi. The signal stall0 is used to halt this write phase until the instruction fetch
cycle has been stalled, and stalll is used to halt the acknowledge events until the new

PC address has been loaded.

7.4.7.2 PC controller

When a branch occurs the signal noopov pulses high, which causes hpfy in Fig.7.13 to go
high and therefore halt the PC-IC instruction fetch cycle according to the metastability

resolving technique of Section 4.4.1 (as indicated in the figure).

A5 ; PCwrite
cmuxsel) |
) valid
2.0 1 ST inc’er

E act

d_pccbi

' PC+1
ST inc’er control Z
- == ===" 0 1
: L3 ! MUX
1 : e p—
P O T TR S I
e 1
I Latch d_pcfd0, select| 1 —)
) (O | Mgl Sy 7 E__I:a_tc_h_-
hpfz

- ! I Latch
I r—
1
[>1 VO“I RN) _stall0
] Logic
\ Dproceed : IFbusy _________J stalll

Metastability d_pcfd d_pcf PC
Controller

Figure 7.13: Control schema for the PC unit.

Once the new PC location is ready to be loaded, dpccbi occurs and generates a write
pulse to the logic gate which then sets hpfy low. This event also sets pcmuzsel high to
multiplex in the new PC location (PCwrite), as opposed to PC + 1 as would otherwise
be used in a typical fetch cycle. The signal hpfy will eventually propagate through to
the send gate and produce dpcfd0, which then latches in the new PC location and then

153

restarts the PC-IC instruction fetch cycle.

If however there was no program branch and therefore no noopov pulse, then the
input event dpcfd will simply propagate through to latch in PC+1 for the next fetch
cycle. Whilst the IC is fetching new data, the next incremented PC location is generated
using a self-timed incrementer, and the valid signal is used to prevent the latching of the

new value until this incrementing has completed.

7.5 Testability issues

In an asynchronous system each section of the design has to have an explicit control
schema designed for it, whereas a synchronous system is globally governed by the clock.
This increase in control complexity means that there is a greater chance of design failure,
either within each section of the design or in the interfacing between them. In addition to
this there is still the same possibility of a failure in the data path logic (say, for stuck-at
faults) which could also result in the design not functioning to specification.

If after fabrication it is found that the chip does not function correctly, it is of course
necessary to determine the cause of the problem(s). This might then enable corrective
measures to be applied to the chip to give at least some degree of functionality, or at
worst should enable the problem to be rectified in a subsequent design iteration.

The ECSTAC processor employs three primary methods for analyzing and repairing

circuit faults, which were developed in co-operation with Sam Appleton.

7.5.1 Delay modelled Vit bus

It is sometimes the case that a chip may be fabricated with transistor characteristics
which differ significantly from those that were used in the simulations. If this is the case
then it’s possible for the computations in the data path to take longer than anticipated,
or alternatively the control path may be faster. In a synchronous system a slower process
corner can be overcome by reducing the clock frequency so that the data has sufficient
time to compute, however since an asynchronous system is locally controlled this same
principle cannot be employed.

Instead, the ECSTAC processor utilizes a separate V¢t power bus which drives all of
the delay modelled elements in the design (such as T'1 and T2up of Fig.7.7). If the control

154

path operates faster than the data path due to a hazardous process corner, then the delay
elements which are used to model this can be increased by lowering the supply voltage of
Vitt. As such it may then be possible for an erroneous chip to function properly.

Note that it is not possible to rectify any problems which arise from non-acknowledged
control structures which were deemed to have a shorter latency than cycle time, how-
ever the likelihood of this problem is expected to be low. Although not implemented in
ECSTAC, a prudent solution could be to use a separate power bus for the cyclic and
non-acknowledged control paths, and slow down the former (reduce its supply voltage) if

the non-acknowledged paths are sufficiently slow enough to cause a problem.

7.5.2 Interface delays

During the design process every major functional blocks of Fig.7.1 was simulated in detail
using Hspice, which enabled accurate timing information to be attained. However, since
the complete design required too much memory and processing time to properly simulate
in Hspice, an event-driven simulator IRSIM was used to test the entire system.

Although this simulator uses a parameter file which closely matches the Hspice sim-
ulations of smaller systems, it is still less reliable. As such it is possible that although
each functional block is simulated as confidently as possible, there is less confidence in the
accuracy of the interfacing between blocks. It is conceivable that assumptions regarding
the timing of the input data and events for any one block may in fact be violated by the
block preceding it.

To overcome this potential problem, a simple selection unit was placed in the forward
event paths between each sub-system which enabled a lumped delay to be switched in
prior to start-up (when the initialization signal init goes low). Therefore if the input
event to a unit occurred before the data had been fully computed, then inserting this

delay may solve the problem and enhance the chip’s functionality.

7.5.3 Scan testing

Computational errors in the data path (as opposed to control errors in the event path
as have thus far been addressed) can be identified using scan test registers, of which one
such register cell used in ECSTAC is shown in Fig.7.14.

One of two data signals (which may include the data level of an event line, for testing)

155

reg out

testload testload2

Figure 7.14: Register cell used for scan testing the outputs from each stage.

is first loaded into the scan register by pulsing testload or testload2 high. This loads
parallel data into the n register cells used in the scan chain, which can then be read out
serially by activating the two phase non-overlapping clock signals (which must both be off
when data is first loaded in). Scan registers are placed at the outputs of each sub-system to
determine whether or not the control and data signals have computed correctly, therefore
isolating the source of any problems to the block level. This can then be pin-pointed
within the block via simulation and rectified in a subsequent iteration of the design.
Note that the data must be valid when loaded into the registers, however since an
asynchronous control schema is used it is not possible to know exactly when this is so.
Therefore it is necessary to have each stage’s output stall when scanning is required, and
to pulse each unit’s output event (if pending) into the following unit once the data for each
instruction has been scanned. Since this pulse width (to a send gate) ought to be small
to prevent the possibility of more than one cycle occurring, it is generated on-chip from
an external input event. If this event is initially low, then the chip is running “at speed”
with no scanning (and therefore no stalling between stages), otherwise each subsequent
input event after start-up will generate an on-chip pulse. In many ways, the block level
hierarchy of the system then acts like a clocked design, with each unit processing one
cycle per external event, if required. Clearly, the events must be sufficiently spaced to
allow the worst case processing of a stage, and the loading and subsequent scanning of its

data.

7.6 Simulation results

The control structures presented in the preceding sections were first simulated in VHDL

with code produced from a tool which converted from a temporal specification of the

156

circuit. Once these were deemed functional they were then custom implemented in the
ES2 technology using the mask layout editor MAGIC.

For each sub-system the data path was first implemented and simulated in Hspice.
Then the control schema was floorplanned and laid out to match the height of the data
path and to produce the required control signals (such as for multiplexing, masking, and
latching) as near as possible to their location in the data path. The control layout was then
simulated with capacitive loads for control signals taken from the data path simulations,
and then finally the entire block was simulated with instruction traces designed to test

the full functionality required of the unit.

7.6.1 Sub-system simulations

Table 7.2 shows the statistical information and performance characteristics of each sub-
system of the processor, with all times quoted incorporating the handshaking delay of
adjacent state pipeline stages (if relevant). The total area quoted is for the final design
prior to fabrication, and the total number of transistors includes those used for testing.
The cycle time (o), latency ()), and power consumption (P) were averaged over numerous

random instruction traces.

| Block | Size(mm) | Area (mm?) | Transistors [Fave (0S) | Agve (18) | Pave (mW) ||

ID 0.67*0.85 0.57 4722 10 8 50

OF 0.46*0.63 0.29 20568 12 20 23

ACS 0.75*%0.53 0.40 4518 25 17 37
ALU 0.40*%0.31 0.12 1307 9 7 38
REG 0.61*0.39 0.24 1866 7 4 56

SCB 0.43*0.40 0.17 2167 4 2 13

Oou 0.15*%0.62 0.09 1188 8 5 12

PC 0.34*0.44 0.15 1954 8 6 17
Total 2.30*1.64 3.78 21093 - - -

Table 7.2: Statistical information from Hspice simulations of each ECSTAC sub-system.

Note that the OF and ACS stages exhibit significant variations in cycle time and
latency due to the possibility of multiple register fetches and stack operations respectively.
The PC can also exhibit a longer latency if the carry chain is long, however this is a rare
occurrence.

One may surmise from this table that the cycle times of the ACS and OF stages

157

(when combined with register accesses) will be the dominant factor regarding the overall
processing speed. The average cycle time of the ACS stage is 25ns, and it has been
determined that when the register and scoreboarding delays are incorporated into the OF
stage, an average cycle time of approximately 16ns results. Since there is an average of
approximately 2.2 bytes per instruction the total cycle time of the OF-SCB-REG cycle
will dominate. A performance of approximately 28 Mips may therefore be anticipated,
however this will be degraded by the back propagation of a longer latency operation in
either the ACS or OF stages, as well as the delay involved in determining and resolving
a branch instruction. These effects can be quantified by a detailed simulation of the

Processor core.

7.6.2 Core simulation environments

The processor core was simulated in IRSIM but without either of the caches in place.
This enabled a shorter processing time as well as providing information on the speed of
the section of the design implemented by the author. The DC was replaced by a circuit
which returned the required data (or stored it) with an approximate cycle time of 10ns,
and is comparable to the actual cycle time of the DC unit [AML95a]. This is effectively
equivalent to assuming a DC with a 100% hit rate.

Before implementing an “at-speed” test of the core, it was necessary to determine the
functionality of the entire system for each instruction. To effect this, the data and PC
values into the ID stage (which would normally have come from the IC) were encoded
directly for each instruction, with a long cycle time between successive bytes to ensure
that each one had sufficient processing time in the worst case. Although this didn’t fully
test the scoreboarding or block interfacing control, it still enabled many aspects of the
overall architecture to be tested and fine tuned.

Once functional at this level, the IC was replaced by a FIFO in which each byte of an
instruction stream was stored. At start-up, the first FIFO value would be read out and
passed into the ID together with the PC location direct from the PC unit. The output
of the ID stage then activated the PC unit and grabbed the next value from the FIFO,
and so on. This enabled the core to be tested at its expected operating speed, and is

equivalent to using an IC with a 100% hit rate.

158

7.6.3 General purpose instruction streams

Due to processing time and memory limitations, the FIFO was restricted to 450 bytes
in length, which equates to around 200 instructions in a typical stream. This prevents
the core from being tested with reasonably complex benchmark programs to determine
its speed, therefore various sets of random instruction traces were used to gauge this
with relative instruction frequencies as given in Table 7.3. This distribution is based on
the dynamic instruction traces given in [HP90, Chapter 4]. Note that for every CALL

instruction a corresponding RETN is also eventually issued.

Special Stack ALU Branch Memory
Inst Freq || Inst Freq || Inst Freq || Inst Freq || Inst Freq
NOOP | 0.4 || POPF | 2.0 | short regl | 30.0 | CALL 3.0 ||LDreg| 4.1

FLSH | 0.3 || PSHF | 2.0 | short reg2 | 8.0 || JUMP off | 2.0 || LD off | 0.8
ICDS 0.3 || POP 2.0 |[short off2 | 2.0 || JUMP reg | 0.5 || LD dir | 2.6
ICEN 04 || PUSH | 2.0 || longreg2 | 7.0 || IMPcoff | 7.5 || STreg | 4.1

DCDS | 0.3 long off2 | 13.0 | IMPcreg | 2.0 || ST off | 0.8
DCEN | 0.3 ST dir | 2.6
total 2.0 || total 8.0 | total 60.0 || total 15.0 || total 15.0

Table 7.3: Relative instruction frequencies used for the general testing of ECSTAC.

Preceding any generated instruction stream are 5 instructions (12 bytes) which are
used to initialize the SP. The first four are ALU operations which set the relevant bits in
Q12, and the fifth executes a TRSP instruction.

A number of instruction streams were generated which used either the ALU, the DC,
or both, and with branch instructions either included or excluded from the trace. This
enabled the effects of branch delays to be measured as well as determining the relative
operating speeds for ALU and memory operations. The results of this simulation are
given in Table 7.4, and all speeds are averaged over numerous instruction traces of the

same type to enhance the accuracy.

[Stream Type || Mbps | Mips
All + branch || 29.1 | 134
All - branch 33.4 | 14.8
Cache only 32.6 | 15.8
ALU only 34.0 | 14.5

Table 7.4: Simulation speeds of ECSTAC for unit specific instruction streams, quoting the
number of bytes (Mbps) and instructions (Mips) processed per second (in millions).

159

Since there is a variable number of bytes per instruction the Mbps field (millions of
bytes per second) is also quoted. This figure gives an estimation of what the processor
speed would be were all instructions able to be encoded in one byte with equal address
and data widths. The Mips speed for “All - branch” is seen to be approximately half of
what was anticipated in Section 7.6.1, which is due to the back propagating effect of slower
operations in the OF and ACS stages, so that the overall cycle time of the processor is in
fact closer to the worst case than the average. This verifies that asynchronous pipelining
does not enable the average case processing time of each stage to be properly utilized.

It can be seen that the effect of branching operations is to reduce the Mips and
Mbps by about 10%. This is because the delay from fetching the branch instruction to
branch resolution involves propagating all the way through the processor core, and any
instructions fetched in its shadow are irrelevant. By placing not just the detection of a
branch but the updating of the PC as well at the start of the pipeline, or perhaps even
decoupling the process from the pipeline completely, the penalty for program branches
could be reduced.

It is interesting to note that the processing speeds for the ALU and cache operations
show very little variation. This implies that any bottlenecks are not unit dependent, but
are caused by other factors not evident from these simulations.

ALU operations are in fact slightly faster than cache operations in terms of Mbps. This
is because the ALU has a lower latency through the ACS stage than do cache operations,
which may require stack processing and 24 bit additions for address locations. However,
since ALU operations typically require more bytes in their encoding (2.4 bytes versus 2.0),
the Mips rate is slower than for cache operations.

It should also be noted that the effect of register hazards is minimal on the processing
speed. This is because of the low latency of an ALU operation to write back its result
from the OF, so that in general only the immediately following data dependent operation
can get stalled. Furthermore, it is common for the following instruction to source the data
dependent register on its second byte, by which time the result has often been written
back.

Given the typical speed of the processor for the most general instruction stream, it is
possible to estimate the power consumption of the processor (since this is not provided

directly by the simulator). By averaging the power dissipation for each unit (from Table

160

7.2) over the typical cycle time of the processor, and factoring in the frequency of usage
of each unit after the ACS from Table 7.3, an estimate of the total power consumption
can be made. These estimates for each unit are given in Table 7.5, from which the overall
power dissipation of the processor for a typical instruction trace is estimated to be 58

mW.

Unit ID | OF | ACS | ALU | REG | SCB | OU | PC | Total
Power (mW) || 145|106 | 124 | 2.8 | 114 | 1.5 | 0.9 | 4.0 | 58.1

Table 7.5: Power estimations of each unit for a typical instruction stream.

7.6.4 Instruction streams for determining bottlenecks

In an effort to locate any bottlenecks in the system, a series of instruction traces were
generated to test those sections of the processor that were deemed to be potentially
problematic. In particular, the following three factors were investigated: the number of
register sources per instruction (to test the effect of operand fetching); the number of
bytes per instruction (to test the effect of variable byte instruction encoding enforced by
the data and address mismatch); and the number of stack processing operations required
(to test the effect of the refetch control, again a byproduct of the mismatch between

buses). The results of these instruction traces are shown in Table 7.6.

| Stream Type || Mbps | Mips J
No reg sources || 43.1% | 22.4
1 reg sources 33.9 | 156.7
>1 reg sources || 27.7% | 12.13
1 byte insts 28.5 | 28.0°
2 byte insts 31.2 | 1585
>2 byte insts | 36.72 | 11.5%
SP insts 27.50 | 27.0°
No SP insts 33.7 14.3

Table 7.6: Simulation speeds of ECSTAC for bottlenecked instruction streams.

It is evident now that significant variations have occurred in both Mbps and Mips,
thereby enabling the causes of processor bottlenecks to be identified. By first considering
the Mbps, a low value results (note 1 in Table 7.6) when multiple register or SP fetches are
required for the one instruction. A high Mbps (note 2) results when the instruction does

not have to access the registers, or for long instructions in which bytes 3 or 4 typically

161

do no work, and pass through the pipeline directly. This implies that to achieve a high
Mbps it is necessary to remove refetching operations.

In considering the Mips a low value results (note 3) when a large number of bytes are
required per instruction (which also covers the case of >1 register sources), and conversely
a high value results (note 4) when only one byte is needed per instruction. Note that in this
instance the Mbps # Mips exactly (as would be expected) because of the 5 instructions
(12 bytes) needed to initialize the SP.

Removing the refetching operations and encoding all instructions in the same single
byte length will therefore remove the bottlenecks in the processor and improve its speed.
As could be expected, these control requirements are a direct result of the mismatch
between data and address widths. Therefore if these were identical (say, 32 bits each)
then a significant Mips improvement would result.

Although the Mbps gives an indication of this improvement, it does not incorporate
the fact that the control structures would be simpler for a matched 32 bit machine, and
therefore the processing speeds of each unit for the typical case would be even faster. As
a rough estimate, the processor speed for such a machine (ECSTAC-32) would probably
approach 50 Mips for a typical operation (approximately 1.7 times the Mbps of Table 7.4,
and equivalent to a 40% average reduction in control cycle times).

The ECSTAC processor has been fabricated using the ES2 technology, and a mi-
crophotograph of the chip is shown in Fig.7.15 with each section of the processor core
appropriately labelled at the top of the figure. Of course prior to fabrication, the core of
the processor was integrated with the DC and IC structures and tested to ensure proper

functionality between them. This chip is currently being evaluated.

7.6.5 Comparisons

Table 7.7 provides some of the important performance characteristics of the ECSTAC-32
processor together with those of other asynchronous CMOS microprocessors previously
reported. To give an estimate of the performance of a 32 bit implementation of ECSTAC,
the size and power values given in Tables 7.2 and 7.5 respectively have been scaled by
32/24 ~ 1.3 (except for the ALU which has been scaled by 32/8 = 4), and the power

dissipation has also been scaled (as relevant) by the increase in operating speed surmised

162

Figure 7.15: A microphotograph of the ECSTAC microprocessor.

in Section 7.6.4 for the architecture with a matched data and address width. Note that
scaling of the other processors into the same technology and data width as ECSTAC-32
will not enable a more accurate comparison between them because their ISAs are so vastly
different.

The transistor count and area of ECSTAC-82 is the lowest of the 32 bit processors,
and would probably still be lower than the TITAC-I [Nan95] and Caltech [MBL™89b]
processors if implemented with a 32 bit data path. The transistor density of FCSTAC-32
is less than AMULET2 [MU] but still greater than the other processors. Although there
are many factors involved here (such as technology and architectural differences), this
data still supports the hypothesis that the ECS approach enables low area circuits to be
devised.

ECSTAC-82 also gives the best speed performance and is significantly better than any
of the 2P paradigms, but this improvement is reduced when compared to a 4P paradigm.

This gives further weight to the notion that although 4P is better than 2P in delay

163

H Processor Caltech | TITAC-I | Amuletl [Amulet2 | ECSTAC-32 "
Design style 4P QDI | 2P QDI 2P SI 4P SI 2P BD
Bit width 16 8 32 32 8 & 24
Technology (um) 1.6 1.0 1.0 0.5 0.7
Vdd (Volts) 5 5 5 3.3 5
Area (mm?) 19.3 77 22.6 12.5 5.9
Transistors (k) ~20 322 58.4 93 26
Density (T/mm?) 1.0 77 2.4 74 4.4
Speed (Mips) 18.0 11.2 11.7 42 50
Power (mW) 225 212 152 150 90
Mips/Watt 80 53 7 267 556

Table 7.7: Comparison of performance characteristics of various asynchronous microprocessors.

insensitive and speed independent environments, it is not necessarily better in a bounded
delay model. In fact, the 2P BD model used in the ECS methodology is shown to be
superior to the 4P models used elsewhere. To the credit of the AMULET group however,
they have implemented a commercial ISA (of the ARM microprocessor) whereas all of the
other processors use their own ISA which obviously enables a greater degree of flexibility
in their implementation.

The AMULET processors were designed for low power operation, however the
ECSTAC-32 processor was designed for high speed with the expectation that low power
dissipation would still result without explicitly designing for it. The power dissipation

and Mips/Watt figures in Table 7.7 also support this hypothesis.

7.7 Summary

The reason for implementing an asynchronous microprocessor using ECS techniques was to
determine the speed advantage which could be achieved when applied to a complex design,
and to see whether or not low power dissipation still results. Although as implemented
ECSTAC'is only comparable to other processors in these areas, its performance has suffered
considerably due to the mismatch of address and data paths.

By considering the equivalent performance of a matched 32 bit processor, it can be
seen that the ECS approach has in fact resulted in significant speed improvements over
the SI and DI design paradigms. Furthermore, a low power implementation has resulted

without explicitly designing for it, indicating that high speed asynchronous systems can

164

be targeted which still benefit from low power operation. Although unlikely to match the
speed of a corresponding synchronous design, the difference can be greatly reduced by
using ECS techniques in preference to SI and DI control schemas.

It is worthwhile noting that the area of ECSTAC-32 is also considerably lower than
the other asynchronous processors, all of which employ a pipelined control structure.
Although in the case of AMULET this is partially due to the more complex ISA, it must
be expected that a proportion of this deviation is also attributable to the reduction in
complexity in the control circuits with a BD model. Therefore not only has the speed
been improved (without sacrificing power dissipation), but so too has the area, and this

in turn results in an important reduction in cost.

165

Chapter 8

ECSCESS: A Superscalar

Microprocessor

LMOST all early microprocessors employed a pipelined approach in their implemen-
IA tation which separated the sequential requirements of instruction decode, operand
fetch, execution, and the write back of results. This approach was convenient since the
global register file (and scoreboard) helped control data hazards, and the instruction issue
and execution order were maintained via the pipeline structure, which helped simplify the
control schema.

However as the demand for higher performance continued, the restriction of in-order
execution had to be abandoned. This is because the latency of an instruction to write
back a result for subsequent use caused the execution of further instructions to be delayed,
even if they weren’t in conflict with the stalled instruction. Consequently the trend moved
from pipelined to superscalar operation, in which the functional units (FUs) are operated
in parallel, rather than sequentially. With such an architecture there is no longer a
restriction on the instruction order (save that data hazards are still properly resolved)
and the latency of any one unit is no longer compounded by the processing delay of other
stages in the pipeline. This results in an overall increase in the system’s throughput,
and in fact almost every modern microprocessor now employs a superscalar architecture
(however some degree of pipelining is often still used, either within each FU or in the
stages prior to instruction execution).

The ECSTAC processor was constructed in a pipelined fashion primarily for ease of

166

implementation (as per the early synchronous microprocessor designs). However it became
evident during the design that such a structure could in almost every instance be clocked
faster than the asynchronous handshaking control could cycle between the stages, and as
such it would be unlikely to ever exceed a synchronous implementation in terms of speed.
Nonetheless, the advantage of reduced power dissipation is still highly favourable despite
this speed deficit, as is the removal of clock skew management for ULSI processors.

A pipelined processor also cannot take full advantage of self-timed computations, since
the system’s throughput is limited by the slowest of these units. However, if asynchrony
is to have any chance of outperforming synchronous systems in terms of speed, then
the advantage of average case computation time must be fully utilized. This therefore
requires parallelism of the self-timed units (rather than pipelining) which provides yet
another reason for implementing a superscalar architecture.

Indeed, as the synchronous realm has switched from pipelining to superscalar op-
eration, so too of recent has the asynchronous realm. While the early asynchronous
microprocessors such as the Caltech design and AMULET employed a pipelined struc-
ture, those to emerge recently have utilized superscalar operation. Unfortunately however
none of these have been fully implemented in VLSI, but have instead been implemented
in VHDL with differing granularity (from gate level to functional blocks). This chapter
describes the principle operation of these recent processors and then describes the design
and implementation of the proposed ECSCESS architecture (which is an acronym for
Event Controlled Systems CPU Employing Super-Scalarism). ECSCESS was developed
to fully exploit the potential speed advantages of both self-timed data computations and
the ECS methodology.

8.1 Other asynchronous superscalar microprocessors

8.1.1 SCALP

The SCALP processor [End95b] was developed with the primary goal of reducing power
dissipation rather than achieving high speed operation (although the latter helps this on a
per instruction basis). Its general architecture begins with an instruction issuer, which is

able to perform out-of-order and multiple instruction issues to the functional units (FUs).

167

There are four of these: ALU, memory, move, and register units, whose results are all
sent to a router. A separate unit to handle instruction branches is also employed, but
there is no facility for handling interrupts or exceptions.

There is no global register bank in SCALP. Instead, the router issues the results of
each FU operation back to the source input of a subsequent operation (a destination FU is
specified in the instruction word rather than a destination register). Since the majority of
FU results are used only once, it was hoped that this approach would improve speed and
reduce any unnecessary power dissipation associated with register storage. If a result is
needed more than once, it can either be stored explicitly in the register bank, or replicated
through the MOVE unit.

SCALP also employs its own ISA with a reduced code density, consisting of 12 or 24
bit instructions fetched in 64 bit chunks (with 4 control bits). Although this variable
instruction length complicates the control schema as in FCSTAC, it is intended to reduce
power dissipation per instruction.

The SCALP architecture’s cycle time is limited by a long branch latency (241 gates
[End95b]) and a reduced instruction rate for when a result is used more than once (often
requiring additional instructions to copy it). However one significant cause of this was that
explicit results forwarding (from the router) could only be used infrequently. Although
most results are used only once, the FU which uses it is not always known at the time
of the computation (being dependent on a subsequent branch). The SCALP architecture
can only handle this situation by storing the result in the register bank, and then reading

it out again for use when the required destination FU is known.

8.1.2 Fred

Fred [Ric96, RB96] is an asynchronous microprocessor which implements an ISA based
on the Motorola 88100 processor. Only one instruction can be issued at a time, however
if it stalls then a subsequent instruction can still be issued provided there is room in the
instruction window to store it (and if it too doesn’t stall). This approach still enables a
regular rate of instruction issue even in the event of stalls (similar to SCALP in that an
instruction stall doesn’t necessarily halt the processor, although SCALP is also able to

issue multiple instructions).

168

A global register bank is employed together with a scoreboard for handling data haz-
ards. This enables the control schema to be kept simple but increases the execution la-
tency over an explicit results forwarding mechanism (due to the store and load operations
required in the register bank). Since most programs employ a significant dependency
between adjacent instructions, this can slow down the processor speed and reduce the
utilization of the parallel FUs.

There are four FUs employed in Fred which are used for arithmetic, logical, control, and
memory operations. Branch detection and evaluation is decoupled from the F'U instruction
issuer, so that instructions can be issued in a variable delay slot until a subsequent doit
command (after the branch) is encountered. Exceptions and interrupts are both supported

in the VHDL model of the processor.

8.1.3 Rotary pipeline processor

The rotary pipeline processor (RPP) [MRWO96] circulates results around a ring which is
interspersed with a number of FUs and corresponding output latches. When the required
source operands for a FU become available the FU triggers its operation, otherwise it
passes the results through directly to the following stage of the ring (to the next FU).
This effectively removes the global register bank and implements results forwarding as in
the SCALP architecture, with a larger register bank similarly implemented as a separate
FU.

The instruction issuer can provide simultaneous instructions to any or all of the FUs
in the ring (again equivalent to SCALP), which can however be variable in number.
Branch instructions can also be decoupled from the instruction issuer as in Fred which
can therefore enable speculative operation. Interrupts and exceptions are not facilitated.

This architecture is similar to SCALP in that register forwarding is implicit, however
it is non-restrictive in the number of FUs which can be connected into the ring. Although
no performance measures are available, it appears that the essentially pipelined structure
of the ring could cause excessive latencies, since a FU may have to wait for a result to
propagate through the entire pipeline ring before being used. Furthermore pipelining a FU
equates to placing extra stages into the ring which would further reduce the processor’s

speed.

169

8.2 Characteristics of ECSCESS

It is evident that abandoning the global register bank is beneficial for reducing the latency
between data hazards and also for reducing power dissipation, therefore in ECSCESS the
register bank is implemented as just another FU. Although SCALP implements this via
results forwarding through the router, its functionality is limited in that only one FU can
receive its value, so that in the majority of cases the result must still be routed into the
register bank.

ECSCESS overcomes this problem by removing the router. Instead, each result from
a FU is placed onto its own global output bus and remains there until overwritten by a
subsequent instruction. As such it is possible for any number of latter instructions to any
FU to source its value immediately after being produced. The result only ever needs to be
written to a register if more references to its value are required after an instruction which
overwrites it (although the MOVE instruction described later provides an alternative to
this).

One other problem of SCALP (and Fred) is that the number of FUs is fixed, which
prevents additional parallelism from being incorporated. Although the RPP overcomes
this problem, it does so at the expense of an increased latency for stalls. In ECSCESS the
number of FUs for a given implementation can be anywhere from 0 to 32. Furthermore,
their functionality is non-specific: 32 ALUs could be used; or just 1 ALU and 1 memory
unit; or whatever. There doesn’t even have to be a register bank FU (although this would
undoubtedly be useful). Unlike the RPP, the latency for data hazards is not influenced
by the number of FUs implemented, as will be seen by the architectural description in
Section 8.4.

In all of the processors discussed above an instruction which stalls does not necessarily
prevent other instructions from being issued. In SCALP and the RPP the instruction
issuer only stalls if for the fetched block of instructions (given that multiple instruction
issue is possible) every target FU is stalled, and in Fred this occurs when the instruction
window fills, implying that all instructions therein are waiting for results to compute.
ECSCESS implements a technique similar to Fred, however instead of an instruction
window each FU is preceded by a small FIFO of length n. The instruction issuer will

therefore only stall if n instructions have already been issued to the same FU, all of

170

which are stalled (or if » 4 1 instructions have been issued with the first having an
extremely long computational latency within the FU). Assuming 32 FUs with n = 3, this
implies a maximum of 97 instruction issues before stalling and a minimum of 4. Multiple
instruction issue is not implemented in ECSCESS, nor are exceptions (although Section

8.11.2 describes how these can be incorporated into the architecture).

8.3 Instruction set architecture

The full ISA of ECSCESS is detailed in Appendix C and only a brief summary is given
here. A 32 bit data and address path is employed, and every instruction is encoded in
one word.

The JUMP and JCOND instructions (collectively termed JMP instructions) enable
unconditional branches and branches dependent on the result of a previous operation
(typically a comparison). A CALL instruction enables a subroutine to be entered which
is concluded with a RETC instruction (termed SUB instructions, and together with JMP
are termed branch instructions). Each of these instructions branches relative to the PC,
either using a signed 28 bit offset encoded in the instruction word or a value located on
a specific FU bus.

ECSCESS implements an on-chip stack which stores the return address for RETC
instructions and interrupt and trace routines, as well as the process status register (PSR)
for the latter. This stack can be any length, however in the event that it eventually fills
the stack must be continued off chip in main memory. The LDSP instruction enables the
start address of the off-chip stack to be specified in the SP register.

A 7 level prioritized interrupt facility is implemented, with the highest level (7) being
non-interruptible. When an interrupt occurs with a priority level (IPL) higher than that
currently stored in the processor (in the PSR), then an interrupt routine starting at the
address pointed to by IVR+IPL in memory is executed. The interrupt vector register
(IVR) can be set with an IVRL instruction to point to a set 32 byte block containing the
interrupt table. Instructions are also available to enable and disable the interrupt facility,
return from an interrupt, and to set the current IPL of the processor.

A trace mode is also available. When enabled (through an ET instruction) a trace
routine starting at the address pointed to by the IVR is executed after every instruction.

This can be helpful for customizing the analysis and debugging of instruction streams.

171

There are four basic FU instructions: MOVE, LDC, FUbus, and FUimm. The MOVE
instruction transfers the value from one FU bus onto another, bypassing the FUs activa-
tion. This enables values computed from one FU to be transferred to another for iterative
use (such as loading the variable a from memory, moving it to an arithmetic unit, and
executing a loop of a = a + ¢). The LDC instruction enables an encoded constant to be
moved onto a FU bus. Furthermore, various status registers such as the PC, SP, PSR,
and IVR can also be loaded onto a FU bus for manipulation.

The FUbus instruction activates a FU with zero, one, or two source FUs whose bus
values provide the arguments for the function, and a FUimm instruction encodes a con-
stant value in place of the second argument. The actual set of instructions which are
available within each FU is implementation dependent, since the number and type of FUs
in the architecture is variable. However, the proposed FU allocation given in Appendix
C for ECSCESS provides the following FUs and corresponding instructions.

A register bank FU is used with 4 output buses onto which the register contents can
be read. It is unique for a MOVE instruction in that a source value can be written into a
register as well as being transferred to the specified output bus. The large 16 bit register
field enables a hierarchy to be conveniently implemented within the register bank.

Various integer arithmetic units enable addition, multiplication, shifting etc., as well
as a variety of floating point operations (although specific instruction sets for these have
not been specified).

A specialized comparator unit is also implemented which compares the values of two
buses and sets the MSB (branch bit) of its output bus accordingly (which is then used
to govern conditional branches). The comparator can also implement addition and sub-
traction operations, with the result being placed onto the output bus and a collection of
flags stored in the internal FR, which gets read out with the branch bit for a compare
instruction. Another compare instruction is implemented which sets the MSB according
to the current state of the FR.

The memory unit performs load and store operations, and also has the ability to
modify the memory address of the last memory operation for use as the address for the
current one. This enables array indexing to be performed without having to use the other
FUs. Finally, there is also support for an integer and floating point co-processor to be

used.

172

8.4 General architecture

The general structure of ECSCESS is shown in Fig.8.1. The instruction issuer (termed
the sun) constantly cycles with the IC (if present) fetching a new 32 bit instruction on
each cycle. Since the ISA employed in ECSCESS is based on FUs rather than instruction
types (although the two are often similar), it is possible to decode all of the relevant
control signals from the instruction opcode in just one gate delay. If a F'U instruction is
occurring then it is sent immediately to the globe, together with the value of the constant
bus (required only for a LDC instruction) and the opcode required by the FU to specify
its operation. This process will not stall unless the preceding FU instruction was not able

to be loaded into its FIFO due to it being already filled with stalled instructions.

5 (
Sun : Instruction
y Issuer
]
- ﬁ_’ . foranch bio
: [JMP unit bus0
Inst |, - GLOBE
| STK unit
Cache |, @
(Ic) |,
] [Interrupts bus2
N | — S

Figure 8.1: General structure of the ECSCESS microprocessor.

The globe contains each of the FUs and their respective output buses, and is con-
structed as shown in Fig.8.2. Each FU has a unique output bus to which it writes its
results (although some FUs such as the floating point and the register units have more
than one output bus), and is able to read a result from any other FU’s output bus (these
buses are collectively termed the ocean). RAW and WAR hazards are handled within each
FUs preceding control block (termed the shore), which also multiplexes in the appropriate
source values for the FU as well as implementing the FIFO. WAW hazards are handled
implicitly by the in-order execution of each FU. The control structure of the shore is
rather complex, and is discussed in detail in Section 8.5. Note that regardless of how the
FU operates, the control schemas for each shore are identical.

If the globe is not triggered by the sun, then either a branch or interrupt instruction

173

Functional Functional] Functional]

L Unit 0 | Unit 1 L Unit N
:—__%%a?gg_ﬁ:ﬁllf"l ‘?? ??
i l i @ o
Shore | {RAwW| | ! RAW RAW
' | FIFO . | FIFO FIFO
! WAR| | | WAR WAR
| ! \
F Gontro LA Rl "‘%"?'“"'I'"",.'.T.‘...'""?'%""'I' e
: constant : | | é {II g [1 L |1 I
busO — y V= : ... - |
Ocean: busl J—— : 0] I |
L | Switeh Network Switch Network Switch Netwark ||
: busN : ...l ! VJ :
| . !

Figure 8.2: General structure of the globe.

(not an interrupt itself) has occurred. These units are collectively termed moons, and
their operation is closely related to the sun and is described in detail in Section 8.6. Note
that the globe does in fact have a minimal interaction with these units, since bus0 is
used for branch-bus instructions, bus2 provides the new PC location from memory for an
interrupt routine, and the MSB (bit 31) of busl provides the result of a comparison which
is used for a JCOND instruction. Typically FU2 will be the memory unit (dest = 15 from
the allocation in Appendix C), FU1 will be a comparator unit (dest = 12), and FUQ an

arithmetic unit (dest = 7).

8.5 Implementation of the shore

The shore is required to implement all of the control structures for resolving data hazards
as well as for selecting the relevant FU and multiplexing in the appropriate source values.
The shore also implements a FIFO buffer prior to the actual activation of each FU to
reduce the possibility of processor stalls.

The resolution of WAW, RAW, and WAR hazards is a complex problem since it’s
possible for many FUs to be active at once. WAW hazards are handled implicitly by the
in-order operation of each FU and its preceding FIFO, since if one instruction stalls at
the input to the FU then a following instruction in the FIFO will be forced to stall as

well until the former has begun execution. Controlling RAW and WAR hazards however

174

is rather more complex, especially since the inclusion of the FIFO increases the amount

of potential parallelism.

8.5.1 Controlling RAW hazards

The control pertinent to RAW hazards is shown in Fig.8.3. The sun supplies the input
event dfu to every FU in the globe. The relevant one to be activated is decoded from the
FU field in the instruction word (fu_isthis), which is then used to mask the activation
of the FU (9fu0). Once initiated into the first stage of the FIFO, the event 0fudone0
is returned which is used to increment the input counter Crawin. Note that using 0 fu0
for this would require an additional state in the counter (and therefore a three bit data
width). The input (and output) counter values for every FU are placed onto the ocean.
At a later time the instruction will complete in the FU, and selout will pulse high to latch
the result of the computation onto the output bus (which also goes to the ocean), and

the output counter will then be incremented.

) se_l()
fu_isthis D d_fu0) el
— 1 \
d fu—— | " pre-FU
- 1+ FIFO + | srcPl1,2 trol i |done| FU
d_fudoned i : 2+5 W] 2+32
- - “ data -
- result
Lt CrawinP1,2[2 baro selout
Crawinl.2 Dsrcl,2
rawin
‘ ° ’ le ual?
éﬁi‘;r—' 2% q rawokdy1, 32 | Dglobe
C
| 9.2 Crawin |2 Crawoutl,2| 22 2{ Crawout
SIC sl
’ I
Switch Network (OCEAN)
Craw —24
Dglobe |
32:32|

Figure 8.3: Control structure for governing RAW hazards.

Conversely, an instruction which sources a FU will first grab the relevant Crawin
value for that FU from the ocean, and proceed through the FIFO (if possible). Note that
if the instruction sources and executes from the same FU, then a counter value of 0 is read
(since the hazard will then be resolved in the same way as a WAW). Furthermore, the
minimum cycle time of the sun is such that the Crawin value from a previous instruction

will be valid before a subsequent instruction attempts to source it.

175

At the output of the FIFO, and prior to the activation of the FU, the output counter
value for the source FU Crawout is selected and compared against C'rawin P, which is the
original value of Crawin after propagating through the FIFO. If Crawout # CrawinP
then the required FU source values haven’t yet been computed, and the instruction will
stall, otherwise if they are equal then the relevant bus data will be switched onto the
source bus Dsrc and the FU activated.

Each counter needs to be wide enough to ensure that Crawout cannot overtake
CrawinP (and therefore incorrectly indicate valid data to a subsequent sourcing instruc-
tion). Since there can be three instructions present within each unit at any time (as seen
by the dashed lines in Fig.8.3 which indicate latching elements), a 2 bit counter (with 4

states) is sufficient to prevent this.

8.5.2 Controlling WAR hazards

WAR hazards are controlled in a similar method to RAW hazards, except in this case the
input counter is triggered for a FU if it’s required to be sourced, and the corresponding
output counter is triggered once the sourcing instruction has grabbed the data and begun

execution. The control schema used is shown in Fig.8.4.

Cwarin : :) fi reFU :
d_fu 2 B2x2 bitln=| | FIFO | |CwarinP p ; l: done| FU
src_isthis |counte : : 32*2‘ | CONTOL ||

_/]
32 |Demux
ez . & Or
srcl,2 Q d_fu3
nostall
Demux 32x2 bit| 273 Equal
1 i 5€) %2 |counter cwarout

fu = d_warsrc| 32|d_warfu

- Switch Network (OCEAN) |
d_warglobe

[53

Figure 8.4: Control structure for governing WAR hazards.

The WAR control can be essentially split into two phases. If an instruction to FU;
needs to source FU;, then Cwarin; of FU; will be incremented. When a subsequent
instruction to FU; takes place, the counter values will proceed through the FIFO (to

CwarinP;) and be compared against corresponding the counter values of Cwarout;.

176

Once the first instruction to FU; has sourced the data from FU; (as given by the signal
Ofu3 from the pre-FU control block), an event is sent back through the ocean to FU;.
This then generates a pulse which increments the Cwarout; counter within that unit.

Before an instruction to FU; is initiated, the Cwarout and CwarinP values for each
FU are compared. If these are all equal, then there are no preceding instructions which are
still waiting to source the data, and the instruction can proceed (nostall = 1). Otherwise,
if Cwarout; # CwarinP; for any j, then FUj still needs to source the old data from FU;
and so the instruction is stalled. Note however that in practice the computation within
the FU is still initiated regardless of the state of nostall, however only when this is high

is the result written onto the output bus (ie- the selout pulse is enabled).

8.5.3 Structure of the pre-FU unit

The pre-FU control unit is used to halt the activation of the FU until all source data is
available (as given by rawokayl,2 in Fig.8.3), generate an activation pulse for the self-
timed operation (start), and stall the writing of the result until all sources of the previous
bus value have occurred (as given by nostall in Fig.8.4). The structure of this unit is

shown in Fig.8.5.

Dsrc2
srcuP2 —— [— selD2 Tatch =
rawokay2]>—-~ T - E result

» start done
0
d_fu2 :DJD FU n

r- nostall
srcuP1 ‘ _)D CselDl | | T h
rawokayl i
?) selc Lat. c h

d_fudone2

control |Dsrcl d_fu3l —— selout

Figure 8.5: Control structure for governing the operation of the FU.

Firstly, the input event from the FIFO (0fu2) is delayed until the relevant counter
signals have been switched in from the ocean and compared to give the rawokay signals.

If this is high for srcl, or if no bus data is needed for this operand (as given by srclu = 0),

177

then an event is passed through the send gate which causes the source data to be latched.
Similar arguments apply to src2. When both operands contain valid data, the self-timed
FU is activated via 0fu3 and the until gate. This event is also sent to the WAR control
to indicate that the required source data has been latched.

At the conclusion of the ST operation done will go high, however if a MOVE or LDC
instruction is occurring (when op; = 1) then Dsrc2 is multiplexed directly to the result
and the done signal from the FU is ignored. Provided that nostall = 1, the result of
the operation will be latched onto the output bus, otherwise it will be stalled until this
occurs. A gated pulse circuit is used to generate the selout signal which latches the data,
from which the done event dfudone2 is also produced. This event resets the ST FU by
setting start = 0 and also opens the latches for new data to arrive (it is assumed that
the reset time to Sydone is less than the cycle time to the next dfu3 event). This event

is then also sent back to the preceding FIFO to fetch the next instruction in the queue.

8.5.4 Generating the return event to the sun

From Fig.8.3 it can be seen that the latch select signal sel0 of the first stage of the FIFO is
returned to the sun, rather than the acknowledge event 0 fudone0 from the state pipeline
control. If the latter were returned, then a single acknowledge event would have to be
generated by or'ing the 32 0fudone0 events from the FUs (assuming 32 such units are
used). This involves a 5 level tree of zor gates and would severely reduce the potential

cycle time of the processor. Instead, the control circuitry of Fig.8.6 is used.

fu—l

sel0;
sel0,
sel
Mux
d_fudone
selOy
|
d_fu || T

Figure 8.6: Generating a return event to the sun from 32 FUs.

The relevant latch signal is first selected through the multiplexer, and if this is still
high then the FIFO has been stalled and the event dfu is kept pending at the send gate.

This event is delayed slightly to occur after the selection (which occurs in parallel with the

178

FIFO triggering and has no effect on the cycle time). If however sel = 0, then the data
has been latched into the FIFO and the return event is generated in just ;0 + tiny +tsend,
as opposed to 5tz for the merged events scenario. It should also be noted that the slower,

merged events approach is SI, whereas that presented in Fig.8.6 is BD.

8.5.5 Switching network

The switching network is used to multiplex the data values from the ocean onto the source
buses for the FU, as well as selecting the corresponding C'raw signals for managing RAW
hazards. In practice drivers are used instead of multiplexers for reading the source data,
as this enables it to become valid earlier than the 5 level tree of multiplexers which would
be needed for 32 FUs.

This unit is governed by control signals from the shore (in particular, srcl,2 and
srcP1,2 before and after the FIFO), and given that 2 % 32 % 32 = 2048 drivers could be
needed per FU (just to multiplex the source data), it has the potential to be quite large
and perhaps inhibitive to the overall architecture. Section 8.8 analyses this possibility

and shows how it can be floorplanned in a reasonable size.

8.6 Implementation of the sun and moons

The sun is required to trigger the globe or the moon(s) with the appropriate control
signals, as well as updating the PC in preparation for the next instruction fetch. However,
to enable the rapid execution of both the globe and the moons, these are all conditionally
activated (through feed gates) from the return event Ocpu of the 1C, rather than through
a tree of select gates from the sun. This enables a much faster processor cycle time and a
lower latency for branch evaluation. The overall structure of the sun and moons is given
in Fig.8.7, with the general functionality of each unit described thereafter (except for the
decoder unit, which simply generates control signals to the other units from the op field
of the instruction word, and operates in just one gate delay). Note that the interrupt

controller is not shown in the diagram, but is discussed in Section 8.11.1.

179

Globe bypass fusel constant d_cpu d_cpudone PC pcbranch op

—————— N e e) S B,) S, Q€ e ", W
1l 19 a2 ‘ 4 |
d_fu < ‘ ' !
d__fudone—::—" Globe peincbusy PC Soniol Pecode : Sun
3 ?
oS0 *":‘,_2 controller [moonblisy controller | ggnas !
control <18 fubusy! '
i J !
:: d_jmpdone id_sikdunc — 2% 12| 32| 2 :
btaken — |1 target stackout control
PG PR R ——— T ———— e o signals
¢PC L PCinc :
bus0 :
Jump (JMP) Stack (STK) |
Craw, 1Moons
controller controller :
Craw, swnotbusy '
i 1
od e dend-2] -
offsel ctsel bsel broffset sselc sselr il SPvalue

Figure 8.7: Overall control structure of the combined sun and moons system.

8.6.1 Globe controller

This unit forms part of the sun and is used to interface to the globe, as well as providing
control signals to the PC controller for when the globe or a moon is still busy, which
are then used to stall the refetching of a new instruction. Its configuration is shown in

Fig.8.8.

Moon evaluation FU evaluation

d_stkdone
1
d_bchdone :

bypass ———
1

1
d_CpU ! d_fu I
e aa o S P S, : fubusy

d_fudone

0 1 +

I ® :

fusel | ' .
I 3

State 1 :

const32

control

Figure 8.8: General structure of the globe controller.

The event Ocpu from the IC is steered into the Moon evaluation block if the globe

is not activated by this instruction (when fusel = 0), and sets the signal moonbusy

180

high until the relevant moon (JMP, STK, or neither if bypass = 1) has completed its
operation. Otherwise, if the globe is activated then a state pipeline controller is initiated
which latches the control data onto the globe as well as the new value of the const32
bus (for a LDC instruction only). The dfu and 0fudone events to and from the globe
are used to determine the state of fubusy (essentially through an until gate), however
the signal pcincbusy is also used to prevent A fubusy from occurring until the PC has
incremented from the previous instruction. Although this is not hazardous, if the globe
also stalls then without this circuitry the PC controller will unnecessarily wait for the
globe to unstall, which is otherwise postponed to the next instruction and enables an

earlier IC fetch (maximizing parallelism).

8.6.2 PC controller

The PC controller of Fig.8.9 essentially consists of two components. Firstly, the signal
peclatch is generated from a gated pulse circuit, after which the event depudone is sent back
to the IC to fetch the next instruction. The gate to this circuit goes high when the new PC
value is valid, which is either when the increment of the PC for the previous instruction
has completed for a globe instruction, or else when the target has been computed or

fetched for a program branch which is taken.

done pcincbusy

) |

i— w2
| &
Latch]— 1 J

| Self timed
d_cpu L @— N inc’er
fusel — 32| PCinc
fubusy Complex Gated —
R pclatch
moonbusy gate pulse PC | S 3° 32
btaken = =2 = = = target
bsel ’3 573 £ 32
< — stackout
d_cpudone pcbranch sselr

Figure 8.9: General structure of the PC controller.

The second component of the controller initiates the incrementing of the PC value as
well as latching the new PC value for the next instruction when Apclatch occurs. The

incrementer is initiated when pclatch = 1 and its result is latched when done = 1 (which

181

also resets the ST incrementer to complete the cycle). Since the first instruction at PC=0
has no predecessor to initiate the increment of the PC ready for the next instruction, the

PCinc bus is initialized to “1”.

8.6.3 Branch moon controller

A PST adder is used to compute the branch target, and is initiated from dcpu (if needed)
immediately unless the value of bus0 is required for the PC offset, in which case the
addition will be stalled until the relevant FU has computed its result (when Crawing =

Crawouty). Fig.8.10 shows the control circuitry used to effect this.

bus) —2——= = e
= |
behoffset—2—— |- &
offsel ; PST 32 target
Crawing E
ompare Adder
Crawout, 5 start done
d_jmpdone
ctsel
d_cpu —s Complex
gate
. 2
Crawin Compare |
Crawout,—) btaken swnotbusy

bsel

Figure 8.10: General structure of the branch unit.

Furthermore, a conditional branch cannot indicate completion (giving djmpdone) until
the branch flag of busl has been set, which is indicated when Crawin, = Crawout,,
although the adder can still be initiated and its result ignored if the branch is not taken.
Note also that the return event djmpdone is stalled if swnotbusy = 0, which indicates
when the address for a RETN instruction (PC+1) has been stored onto the stack. Section
4.3.1 explains this technique, which can be used here since a stack load always occurs

concurrently with a branch target computation.

8.6.4 Stack moon controller

Fig.8.11 shows the control circuitry for executing the stack operations for LDSP, RETN,

and CALL instructions. The first two instructions are triggered in the stack when ap-

182

propriate (via dls and Jrs respectively), and once the SP has been loaded (or the RETN
address stackout fetched) the output events are generated and merged to give Ostkdone.
A CALL instruction is stalled at the input to the stack until the return address PClinc
has computed, and swnotbusy is sent to the branch moon to govern the generation of its

return event djmpdone.

il \ d_ls . d_Isd
d_cpu / [s
> d_stkdone
sselr —|— \ d_rs | ™
STACK d_rsd
d_ws
sselc —|— *‘d_wsd
32 stackout

R —
pcincbusy l F
p 2] swnotbusy

PCinc 22— |~

0
mux

Figure 8.11: General structure of the stack unit.

The stack itself is implemented with a separate register for the SP, and a register
structure with counters for the write and read phases governed by Ows and Ors respec-
tively. The length of this stack is implementation dependent, and once filled must execute
a subsequent write operation to the memory address pointed to by the SP. Clearly, the

larger the stack size the less frequently will such external memory operations be required.

8.7 Implementation of functional units

The FU allocation table in Appendix C provides for numerous different FUs to be incor-
porated into the architecture, and proposed implementations for some of the integer units

are described in the following sections.

8.7.1 AID unit

This unit can be implemented simply with a ST incrementer and a PST adder operating
in parallel. To enable negation and decrementing, the incrementer should have its input

and output zor'ed with the relevant control signals (Since Zgee = Tine and —2 = Tine)-

183

Flags get computed and stored in an internal FR during the reset (precharging) phase
between activations, and can be read out with a subsequent FLAG instruction.

To minimize the control overhead both ST units should be activated by start un-
conditionally, and the done signal for the appropriate unit masked at the output. This
essentially combines the and and or gates which would otherwise be used (before and
after the ST units) into a single, faster complex gate at the output, however this marginal

speed advantage may be outweighed by the additional power consumption for other FUs.

8.7.2 MEM unit

The implementation of the memory unit (ignoring the complexities of the DC) merely
consists of an incrementer and a decrementer in parallel. If a memory operation with
UL = 0 is occurring, then the address from arg?2 is placed onto the address bus as well
as being latched into the LMA (last memory address) register. As soon as this (or any
other) operation is complete, the inc and dec units are activated to provide LMA+1 and
LMA-1 for the next operation. If BA = 0 then the inc/dec result (as given by the ID
field) is multiplexed onto the address bus prior to the DC being activated, otherwise the
original LMA is used, and at the conclusion of the operation the inc/dec result is latched

into the LMA as above.

8.7.3 CMP unit

This unit consists of a ST comparator and a PST adder. Both units are activated from
start, and for the comparator the MSBs of the two operands must first be compared
and masked if a signed operation is occurring (since the comparator of Section 6.5 is for
unsigned numbers). The branch bit of the output bus is then set according to the result
of this comparison together with the current status of the FR.

An ASC instruction performs an addition or subtraction and places the result onto the
output bus. Flags are computed from the adder’s result and stored in an internal FR. A
comparison is also initiated, the results of which are also stored in the FR. A subsequent
CMPO instruction will then set the branch bit according to the state of any one of these
flags.

184

8.8 Floorplanning issues

Before proceeding with the actual implementation of ECSCESS it was necessary to eval-
uate the practicality of such an architecture in terms of its area usage. Clearly, if no
floorplan for the processor could be devised with a reasonable aspect ratio (say, ~15mm
each side) then the architecture must be revised, or abandoned. Such an investigation is
vital given that ECSCESS has only been specified and simulated in VHDL. As a guideline

for evaluation the ES2 technology was assumed.

8.8.1 Size of the ocean

Firstly, the size of the ocean must be considered, since this contains a large array of
both data and control signals and could therefore be the governing factor for the VLSI
floorplan. In the architecture as presented, each FU places 32 bits of results data, 32
events for WAR control, and 4 bits of RAW control data onto the ocean, totalling 68
wires per FU. Furthermore, the constant bus of width 32 (used for LDC instructions) is
also placed onto the ocean from the sun.

In the ES2 technology, the width and spacing required for a wire (including space
for contacts from the FU) is 28um, resulting in an ocean width of wecean = (32 * 68 +
32) * 28um = 6.2mm. Therefore the ocean will undoubtedly be a governing factor in the

floorplanning of ECSCESS.

8.8.2 Size of the switching network

Another contributing factor to the area and floorplanning of the processor is the area
required for the switching network (which must be replicated for each FU). Fig.8.12
shows the structure of a dual driver component which can be replicated across and along
the ocean to comprise the switching network. Note however that a 3-layer metal process
would be needed for such an implementation (one layer for the ocean, one to orthogonally
route back the data values, and one to supply power, control, and metal routing to and
within the circuitry).

The router feeds srcl, src2, srcP1, and srcP2 (and their inverses) across the globe

to the integrated decoder (5-input nand gate), inverter (to generate its complement), and

185

srcl,2 & inv — 4 1 T
Results & control s Router 112
srcP1,2 & inv — 60 : «L
Dsrcl,2 & Craw == Decode + invert + driver (x2) | 20
m2 |] J_
||nl I ------------------ | |
OCEAN

Figure 8.12: A driver component used in the switching network with dimensions quoted in
pm.

driver circuit. Two such driver modules can be designed in the ES2 technology in the
area as quoted on the figure.

With a 60um width a total of 6200/60 = 103 driver pairs can be implemented across
the width of the ocean. Given that 32 individual drivers are needed per bit, a total of
103 * 2/32 = 6 (integer part only) data signals can be returned to the FU in one layer
of drivers. In a separate layer of metal, this would require 6 * 2.8 = 17um which is less
than the 20um height of each decoder layer. Note that the same router can be used for
multiple adjacent driver units, placed in equal quantities on either side of the router to
minimize the polysilicon path lengths.

A total of 68 signals (64 data and 4 RAW control bits) need to be sent to the FU,
which means that 68/6 = 12 layers of drivers are needed to provide all of the source data.
This results in the height of the switching network along the ocean of hy, = 12+20+112 =
352um. Furthermore, 68 wires also need to be routed back onto the ocean, requiring an
additional height of 68 x 2.8 = 190um. However, assuming that vias between the second
and third layers of metal are possible then this can be overlapped with the height of the
router, resulting in a total minimum height for the switch network and route back block
of hgnrp = 352 + (190 — 112) = 0.43mm.

Given that the width of the ocean and the minimum width of a FU (equal to hgysp)

are now known, it is possible to investigate potential floorplans for ECSCESS.

8.8.3 A floorplan based on the minimum FU width

A general floorplan for ECSCESS based on the minimum width of each FU (as given
by henrs is shown in Fig.8.13a. The FUs are placed evenly on either side of the ocean,

186

resulting in a total possible width per FU of 2 x 0.43 = 0.86mm.

Assuming that the height of each FU is a generous hl &~ h2 = 1.4mm, and that the
height of the sun and moon circuitry is & 0.5mm (which is reasonable given the large width
of this block), the width of the processor core can be estimated at weore = 9mm. The
height of the core will depend on the number of FUs which are used. For the maximum
of 32 FUs the height will be heyrez2 = 14.3mm, and for the 18 FUs used in the proposed
allocation in Appendix C the height of the globe is h¢yre1s = 8.3mm. Therefore the size
of the processor as presented is certainly small enough for single chip fabrication.

However, the area will increase if an IC and DC are also used (as would be expected).
Assuming widths of 3.5 and 1.5mm respectively (and lengths as long or wide as the
processor depending on their orientation), the floorplan for 32 FUs would have the IC to
the right of the processor and the DC to the left, resulting in a total area of 14 x 14.3mm
(widthxheight) which is still small enough for fabrication. For 18 FUs, the IC would
instead be placed below the processor, resulting in a total area of 10.5 * 11.8mm. Note

that the aspect ratio of both of these floorplans is close to one.

hl _ 62 _ h2 hl h2 6.2 h3 h4

: ‘. FU|FU FU|FU
— | ocean | Tl OCEAN

FU :

FU FU gx
’—JQ__ — FU|FU — FU|FU||1.72
FU S:lV FU]0.86 =
=) SN =) | S.N. []
[Sun & moons J IO.S [Sun & moons J IO.S

(a) (b)

Figure 8.13: Floorplans for ECSCESS based on (a) the minimum width of a FU, and (b) a
width twice as large. All dimensions are quoted in mm.

8.8.4 Floorplanning for a larger FU width

A minimum FU width of 0.86mm provides for a single data path width in the FU of at
most 860/32 = 27um. Although this width may be reasonable for some FUs (enabling
approximately 3-4 adjacent gates in the ES2 technology), other applications may require

187

a wider data path if this cannot be compromised against the height of the FU.

Assuming then a data path twice as wide, the width of a FU (equal to 4 driver widths)
would be 1.72mm. Implementing 32 FUs across the floorplan of Fig.8.13a would result
in an excessive height (up to 28mm), therefore the floorplan of Fig.8.13b could be used
instead, in which two layers of FUs are used on each side of the ocean. Note however that
this would require the source and results buses of the second FU to route across the first
(either in a separate metal layer or feeding alongside each single data path of the first
FU).

For such a structure (assuming heights of each FU as before) the width of the processor
core would be wey. = 11.8mm with heights of higrezn = 14.3mm and heorers = 8.6mm.
The 32 FU implementation would place the IC to the right of the processor core and
the DC above it, resulting in a total area of 15.3 x 15.8mm, which is only slightly larger
than the area used assuming minimum FU widths. The 18 FU implementation would
instead place the IC below the processor core and the DC to the right, giving an area of
13.3 * 12.1mm, also only marginally larger than before.

It is argued then that the FCSCESS architecture is feasible for VLSI fabrication in
the ES2 technology. Clearly, the area usage of ECSCESS will be even less in the smaller

process technologies which are currently in use.

8.9 Simulation results

An implementation of ECSCFESS was constructed in VHDL at the gate level, and incor-
porated four integer FUs in total: a memory unit, a comparator unit, and two arithmetic
units. Although a more practical implementation would also have a register bank, mul-
tiplier, and floating point units, this basic implementation of ECSCESS still enables a
significant amount of parallelism and even more data dependencies.

Random instruction streams were used for testing FCSCESS since developing a suit-
able compiler would have been too time consuming. Given that only 4 FUs are imple-
mented, a random instruction stream will still exhibit numerous data hazards comparable
to those which would be present in most compiled programs anyhow.

Four different instruction streams were produced for testing various aspects of the

architecture: one which incorporated all possible instructions; one which executed only

1838

those instructions utilizing the FUs; one which executed 70% branch instructions (and the
rest LDC instructions); and one which executed 35% call instructions. The instruction-
type frequencies which were used for the all-instruction stream generation are shown in
Table 8.1 (based on the information contained in [HP90, Chapter 4], from which the
frequencies for the other streams can be deduced. The FUproc and FUspec instructions
were distributed as approximately 15% comparator, 25% memory, and 30% per arithmetic
unit (which correlates to the ratios used for ECSTAC), and 1 in 7 instructions (on average)

executes a potential program branch.

Jump Branch Call (Retn) Stack FUproc FUspec
Joff | 2.1% || Boff | 8.6% || Coff | 2.1% || LDSP | 0.2% || FUimm | 25.7% || LDC | 4.3%
Jbus | 0.2% || Bbus | 0.9% || Cbus | 0.2% FUbus | 51.4% || MOVE | 4.3%

Table 8.1: Instruction frequencies used in generating code for ECSCESS.

Furthermore, for the all and FU only instruction streams four different types of hazard
minimization were investigated: no minimization; minimize RAW hazards only; minimize
WAR hazards only; and minimize both RAW and WAR hazards. These last three types
also minimize WAW hazards if possible since these can also reduce the processor’s speed
by increasing the stall time of the RAW and WAR hazards. The other two types of
instruction streams implemented only the full minimization of hazards.

The simulation results for the ECSCFESS processor are given in Table 8.2, for which
the Mips (5) and Mips (10) fields imply a DC with a 5ns and 10ns cycle time respectively
(both this and the IC are assumed to have a 100% hit rate). All values quoted are averaged

over 10 instruction streams of at least 1000 instructions each.

Tnstruction stream || Hazard minimization | Mips (5) | Mips (10)
All instructions no minimization 1174 113.8
WAR and WAW 127.8 124.9
RAW and WAW 140.6 140.6
All minimized 141.7 138.8
FU only no minimization 118.9 112.8
WAR and WAW 138.7 133.0
RAW and WAW 181.0 177.3
All minimized 180.5 172.7
Branch and LDC All minimized 84.8 84.9
Call and LDC All minimized 138.7 139.8

Table 8.2: Simulation speeds of ECSCESS for varying DC times.

189

Each complex gate delay was assumed to be 1ns except where a combination of gates
with a low load was implemented in which case the overall delay was assumed to be 1ns
(such as for a nand and muz combination with the muz output driving only one gate). It
is expected that these delay assumptions will give overall delays comparable to those of
the ES2 technology when implemented at the mask level.

It is evident from this table that the low Mips for branch instructions is the governing
factor in the Mips difference experienced between the all and FU only instruction streams.
This is expected since a branch must wait for a preceding comparison to execute as well
as the branch target to be calculated (which will only marginally affect this). Therefore
to reduce the speed deficit of branch instructions a compiler ought to place a useful, non-
dependent instruction between the comparison and the branch if possible (an optional
delay slot). Note however that when no hazard minimization is implemented the effect of
branch instructions is negligible anyway. This is because the dependencies between FUs
is governing the cycle time of the processor, and the branch detection mechanism operates
in parallel with this.

Furthermore it can be seen that implementing hazard minimization can have a consid-
erable effect on the performance, improving the Mips by up to 20% for the all-instruction
type. Therefore a compiler ought to place a significant emphasis upon this, and in par-
ticular upon minimizing RAW hazards which are seen to be the most detrimental type of
hazard for the architecture.

The cycle time of the DC is also seen to have a minimal affect on the processor’s speed,
since other operations can still be executing and initiating during the longer stalls of mem-
ory accessing. Furthermore, since arithmetic operations are dominant, the dependencies

in the memory unit are less frequent so that a longer cycle time is less detrimental.

8.10 Comparisons

Table 8.3 provides the Mips performance of the ECSCESS processor together with those of
other asynchronous superscalar microprocessors previously developed, and for comparison
the performance of ECSTAC'is also quoted (although this has been implemented in CMOS
whereas the others have only been simulated in VHDL). The Fred architecture [Ric96]

was simulated with exceptionally low gate delays (0.1ns per gate, with a 32 bit adder for

190

example assumed to take merely 0.5ns), and has therefore been scaled down by a factor
of 10 to give an equivalent gate delay to that used in ECSCESS. The quoted gate delay
from the SCALP processor [End95b] (for all instructions with hazard minimization) is

48.3ns if a 1ns gate delay is again assumed.

Processor “ Fred | SCALP | ECSCESS || ECSTAC-32 |
Design style 2P SI | 4P SI 2P BD 2P BD
Speed (Mips) || 29.8 20.7 141.7 50

Table 8.3: Speed comparisons of various superscalar asynchronous microprocessors.

The ECSCESS processor gives by far the best Mips performance of the superscalar
structures, being approximately 5 and 7 times faster than the Fred and SCALP architec-
tures respectively. Both of these processors suffer from the slower SI environment used
for their control structures and the need for frequent utilization of the register bank (the
Fred architecture has a global register bank whereas the SCALP architecture requires the
local register bank to be frequently used).

The performance of FCSCESS is almost 3 times faster than FCSTAC when scaled to
a 32 bit data path, which seems to imply that a superscalar approach to asynchronous
microprocessors is in fact preferable to a pipelined approach. Given that the trend for
synchronous microprocessors has also lead to superscalar architectures it is not surprising

that in the asynchronous domain a similar trend seems necessary.

8.11 Extensions and improvements

The ECSCESS processor has in fact been designed with support for the more complex
interactions required for enabling interrupts, and a general description of the extensions
required for this, as well as ideas on how exceptions can be handled, are presented here-

after. Other improvements to the architecture are also discussed.

8.11.1 Incorporating interrupts

A block diagram of the processes which have to be executed during an interrupt is shown in
Fig.8.14. The most important consideration is to implement the detection of an interrupt

in such a way as to minimize its impact upon the usual cycle time of the processor (when

191

- . e e e o s o s e e e e e

Get new PC Interrupt Moon
from Mem

Disbable T,
(I). Set IPL

Save PSR &
PC to stack

d_cpudone :

— e e e e e e e e e e e e e e e e e e s

Figure 8.14: Block diagram for processing interrupts.

no interrupts are occurring). To effect this a scheme similar to that of Section 4.4.1 is
implemented in which the interrupt priority level of the interrupting process (IPLeg) is
latched at the conclusion of one processor cycle and analyzed on the next. In fact the
result of the comparison between IPL,; and the current IPL of the PSR is actually latched
(being usually high, and low only when an interrupt of high enough priority is detected),
producing maybeint at the output of the metastability resolver.

This signal is then and’ed into the complex gate of Fig.8.9 which governs the pro-
duction of dcpudone, and as such the detection of an interrupt (or more specifically, the
non-occurrence of one) has essentially no impact upon the processor’s typical cycle time.
Note however that doint doesn’t actually go high until the latched comparison signal
actually indicates a logic one (> 4V') whereas maybeint may still go low if this signal is
metastable (which is detected before the next dcpu event by virtue of the IC cycle time).
The send gate governed by doint+maybeint is used to halt Ocpu prior to the feed gate if
the latched signal is in fact metastable.

If doint = 1 then the interrupt processing moon is activated. This initiates a fetch
from the address IVR+IPL,,; onto a unique bus (bus2) from the memory unit whose result
gives the address of the relevant interrupt routine to be executed and is multiplexed onto
the input to the PC latch of Fig.8.9. Concurrently, the stack moon is activated twice to
store the PSR (which contains the current value of the IPL field) and the PC, since this
instruction will need to be restarted after a RETI is executed. This process increases the
delay of the processor for a CALL instruction by just tyerge-

Once these two concurrent operations have completed, the trace mode is disabled by
masking its flag in the PSR and then the new IPL is set to IPLg; (note also that interrupts
are disabled if this new IPL=7). Once this is loaded into the PSR the maybeint signal

192

will go high again, which then enables the new PC location for the interrupt routine to be
latched as well as generating dcpudone. Note that it is the responsibility of the interrupt
routine(s) to save the current state of the FU buses into memory or the local register

bank (assuming a separate window is used for interrupt storage).

8.11.2 Exception handling

Exceptions can be handled in FCSCESS by assigning a tag to each instruction which is
issued into the globe. Furthermore, each instruction which can potentially trap has its tag
sent to the exception queue (EQ) which maintains the correct order of exception handling
in the event of an out-of order initiation of exceptions. Once an instruction which could
trap completes in a FU it sends an event back to the end of the EQ which is stalled until
the corresponding instruction tag is present at the output (a similar technique to the order
unit of ECSTAC). If the FU signals no exception, then no further processing occurs, and
the next tag from the EQ is propagated to the output. Otherwise, an exception moon
is initiated, and the contents of the EQ nullified to prevent subsequent exceptions until
this one has completed. Note that to prevent stalling of the FUs from a stall at the
EQ, a 3 stage FIFO per FU is used as a buffer. The exception moon incorporates its
detection into the usual IC fetching cycle in the same way as the interrupt moon (with
preceding arbitration between these units), and therefore also has a negligible effect on
the processor’s usual cycle time.

Each FU also maintains a history buffer of its outputs (and internal registers) in a
small cyclic RAM structure whose size is governed by the maximum number of instructions
which can be issued to it during the longest possible delay for an exception to occur for
a preceding instruction (otherwise creating a processor stall). The sun also maintains a
similar history of all of its status registers. When an exception routine is entered, each
FU is initiated in turn with an EXC instruction which contains the tag for the initially
trapped instruction. The result in its history buffer whose tag is nearest but not greater
than the exception tag is placed onto the output bus (checked simultaneously across the
RAM with the latest entry having precedence), and similarly for the internal registers.
Concurrently, the SP register is reloaded with the value corresponding to its exception tag

(which is unlikely to have altered), and the corresponding PC and PSR are saved to the

193

stack so that a RETI instruction from the exception routine can begin again at the point
of exception. The address of the exception routine is fetched from the memory unit (prior
to having an EXC instruction issued to it) at location IVR+ETYPE+8, where ETYPE is
a specific identifier for the type of exception which occurred. This address is then loaded
into the PC, and once this process and that of issuing EXC instructions to all of the FUs
have completed, the gate signal for generating dcpudone is sent high which enables the

exception routine to be entered.

8.11.3 Reducing the ocean width for WAR and RAW hazards

With the architecture as presented the globe consists of 68 signals per FU, of which 32
are used for controlling WAR hazards. This can be reduced significantly by moving the
shore control which implements this into a separate WAR unit.

When an operation to FU; occurs which sources FU;, the counter Cwarin,;; is in-
cremented which therefore sets the signal nostall; low by comparing Cwarin;; against
Cwarout, j for all 4 FUs. This functionality is currently contained within F'Uy, but is now
transferred to the WAR unit which supplies the nostall signal to each FU. Furthermore,
the source FU value of “j” is stored in a 3-stage queue (corresponding to the number of
FIFO stages in each FU) within the WAR unit for FU; (a separate queue exists for each
FU).

Once FU; has sourced its data from FUj, it sends back a single event dsrc; to the
WAR unit (instead of sending 36 events to the ocean as per the current architecture),
from which a pulse is generated. The output of the queue will specify the source (FU;)
which will demultiplex this pulse to the counter Cwarout; ;, and subsequently set nostall
high.

It is evident that the only additional circuitry needed is a 3-stage queue for each FU,
however the area of the globe has been reduced from 36 wires per FU to just two (for
nostall and dsrc). Also, each FU receives just the one input signal for a WAR hazard
as opposed to 36 in the current architecture. Consequently, the ocean width is reduced
from 6.2mm to 3.5mm, however the delay for the nostall signals within the globe will be
increased slightly by the wire delay between the WAR unit and the relevant FU.

A similar principle can be applied to RAW hazards. The control within the shore of

194

each FU for managing these hazards can be moved into a separate RAW unit which in
fact requires no additional circuitry. This configuration leads to a further reduction in the
globe width for RAW hazards from 4 wires per FU to 3 (for rawokayl, 2 and 0 fudone2),
and a reduction in the number of signals multiplexed into each FU from 4 to 2. This is
however only a minor improvement in area at the cost of a marginal increase in processing
delay (due again to an increase in wire lengths), which may not be worth implementing

in practice.

8.12 Summary

The superscalar architecture of FCSCESS has demonstrated a significant speed improve-
ment over the pipelined architecture of ECSTAC, which is due to a number of factors
including greater parallelism in FU operation, removal of pipeline bottlenecks, distributed
hazard control (no global register bank), and global results forwarding. This indicates
that as in the synchronous realm a superscalar approach to microprocessor design can
yield a higher Mips performance than a pipelined approach. The issue of whether or
not an asynchronous implementation can outperform a corresponding synchronous one
remains to be answered, and requires identical ISAs and architectures to be implemented.

It should also be noted that FCSCESS has outperformed the other superscalar asyn-
chronous microprocessors by a significant factor in simulation. This can be attributed
primarily to the 2P ECS design paradigm which has been shown to result in significant

speed improvements over SI and DI implementations.

195

Chapter 9

Conclusions

HE intended focus of this thesis has been to devise fast asynchronous circuit tech-
‘Tniques, since those currently in use suffer from slow handshaking control and ex-
cessive circuit complexity. To achieve this aim a more flexible 2P bounded delay design
paradigm has been adopted, since the SI and DI paradigms of popular use do not enable
sufficiently fast structures to be devised nor enough flexibility in their implementation.

In devising these asynchronous circuits an engineered approach has been taken, since
the automatic synthesis from high level specifications does not allow for enough control to
be exercised over the low-level gate implementations. Such an approach however requires
a knowledge of the optimization techniques and the useful sub-circuits which are available
to the designer to enhance the usability of the ECS approach. Therefore this thesis has
also focussed on identifying these techniques and explaining their operation and purpose
for general use.

As has been shown by the myriad control structures discussed throughout this thesis,
the popular belief that 4P circuits are faster than 2P is not necessarily true. Although
this has been demonstrated for SI both here and elsewhere, the same cannot be said of
BD systems. The 2P ECS circuits presented here have shown an improvement upon the
4P designs in almost every instance, in some cases being up to 4 or 5 times faster.

One reason for this is the excessive control circuits used in speed independent designs.
By removing the numerous unnecessary acknowledgements present in this model, the gate
count for the 2P bounded delay environment can be significantly reduced. The elimination
of these acknowledgements is based on an estimate of comparative gate delays, which is

a completely reasonable assumption in all but the rarest of instances as evidenced by the

196

plethora of working synchronous silicon present in the current market.

Another factor responsible for this speed improvement is the fundamental gate struc-
tures which arise from the ECS representation of 2P signalling (which have been shown
to be a primitive set of the micropipeline library, among others). By viewing the design
process from the basic functionality of these gates, certain control structures can be im-
plemented faster than would otherwise be possible (such as in the splitting of a tree of
select gates into a row of feed gates).

As has also been demonstrated by the numerous control structures presented, from a
few gates to a few thousand, the power consumption of the ECS circuits has been very low
despite having focussed primarily on high speed implementations, a goal which is often in
conflict with the pursuit of low power consumption. Surprisingly, in the majority of cases
the power consumption for the faster ECS circuits has in fact been less than those of the
4P SI approaches, whose simpler gate structures are also intended to reduce their power
dissipation over 2P designs. This fact can be attributed to the significant reduction in
gate counts for the ECS designs which in turn reduce the number of switching transitions
(dynamic power dissipation). Therefore focussing on high speed designs has also reduced
power consumption, despite first thoughts indicating the contrary.

The shift to a 2P BD model in ECS has enabled pipeline structures to be developed
which improve upon the speed performance and in many instances the power dissipation
of others which have been previously reported. This is an important issue since pipelines
are a fundamental component of many practical applications. Furthermore, since this is
the crux of the reasoning behind the hypothesis that synchronous systems should always
be faster than asynchronous, the fact that ECS has reduced these handshaking delays
now brings this hypothesis into question. Indeed, it would be difficult to clock a 0.7um
CMOS FIFO as fast as the state pipeline can cycle (at 360MHz) - even ignoring the issues
of skew, routing, and driver sizes (and hence power consumption).

A new approach to self-timing has also been presented in the form of pseudo self-
timed circuits. These structures have been shown (for an adder) to be slightly faster than
their ST counterparts as well as occupying less area. The robustness of PST designs is
expected to be comparable to their ST equivalents since the matched validity path would
invariably be implemented in VLSI adjacent to the computational path, and so any process

variations are unlikely to cause erroneous behaviour. For some circuits however (such as

197

an incrementer) the PST approach is not suitable, although dedicated ST implementations
of these systems have been shown to be of benefit in reducing the typical computation
latency as well as the power dissipation over non-ST structures.

Interestingly, significantly faster synchronous circuits for multiplication than the asyn-
chronous ST implementation presented in this thesis have been reported, although the
speed of the latter is still comparable. Note that for larger data widths, the ST structures
may become faster than can be implemented synchronously due to their logarithmic de-
pendence on bit width. The ST structures are also smaller and consume less power than
their synchronous counterparts since the latter employ more redundancy in their efforts

to speed up the worst case computation time.

As an investigation into how ECS can be applied to the design of larger systems two
microprocessors have been developed. The first processor ECSTAC was implemented and
fabricated in the ES2 technology. Its performance was limited by the architecture (and
not the ECS paradigm) which utilized an 8 bit data path and a mismatched 24 bit address
path. Nonetheless the implementation of this basic pipelined processor is still comparable
to others which have been developed.

When scaled to a matched 32 bit data and address path, ECSTAC is in fact expected
to outperform all of the other 32 bit CMOS processors thus far reported in both 4P
and 2P environments (however this comparison is heavily dependent upon the scaling
assumptions). The processor has also exhibited a very low power dissipation, and in
fact improves on most other processors which have either been explicitly engineered for
low power or have been expected to achieve this through the robustness of their design
paradigm (by removing all power consuming glitches). This further supports the notion
that the ECS structures developed in this thesis are not only fast but are still low in
power consumption.

The ECSTAC processor also enabled some basic issues of verification to be addressed.
In particular, the use of a separate power bus for the delay modelled elements enables a
form of frequency tweaking as used in synchronous designs to rectify an incorrect chip.
This also reduces the required safety margins for these elements which is often a con-
tributing factor to an increase in pipeline cycle times.

The second processor ECSCESS was designed to better utilize the ST property of

198

asynchronous systems through superscalar as opposed to pipelined operation. The perfor-
mance of FECSCESS was simulated to be significantly faster than any other asynchronous
superscalar processor previously reported. This is due in part to the ST operation of the
FUs and critical computational blocks (such as incrementing the PC), but is also due to
the fast ECS control structures used in its implementation. Given that this architecture
has resulted in superior performance to other pipelined processors as well, this indicates
that future asynchronous microprocessors should (as in the synchronous realm) be based
on superscalar operation.

Finally then it is concluded that by using the techniques and fast circuits developed
in this thesis, high speed architectures can be developed which reduce (and perhaps even
reverse) the performance deficit between asynchronous and synchronous designs. Sur-
prisingly, the asynchronous structures presented here are also low in both area overhead
and power dissipation. Although not originally anticipated, these results provide further
reasons for implementing ECS circuits in favour of SI or DI equivalents. The most no-
ticeable disadvantage of ECS in comparison to these paradigms is the longer design time
to produce reliable circuits. Consequently, it is the authors opinion that automated SI
and DI techniques should be applied to ASIC designs in which a fast turn-around time
meeting low performance specifications are required, whereas ECS techniques should be

applied to the design of custom, high performance chips.

9.1 Further work

Implementing a full 32 bit version of ECSTAC would be useful to verify the scaling
assumptions made in Section 7.6.5 and to more accurately gauge its performance against
other 32 bit CMOS microprocessors. It would also be beneficial to have the ECSTAC chip
fully tested so that the resilience to operating and process variations of the ECS circuits
could be measured, as well as the usefulness and usability of the testability techniques
implemented for the processor.

Similarly, implementing FCSCESS in VLSI will enable the assumptions on which its
simulations were based to be tested, and a more accurate measurement of its area and
processing speed to be determined. This would then enable a more accurate comparison

of the superscalar architecture against the pipelined. This implementation of ECSCESS

199

should also be extended to include interrupt and exception processing which would im-
prove the viability of the architecture for commercial applications. Other extensions such
as multiple instruction issue, FU renaming (akin to register renaming), and branch pre-
diction should also be investigated and incorporated into the architecture.

Furthermore it would be useful to have a compiler (or post-processor to a current com-
piler) which enabled working instruction streams to be tested on the two ECS processors.
This would again provide for a better performance comparison.

It would also be worthwhile implementing the speed improvements to the PST mul-
tiplier discussed in Section 6.6.7, as well as investigating other multiplier algorithms for
their ability to better utilize self-timing. This also applies to the PST adder structure since
only the ripple carry approach has been self-timed, whereas it may be that by combining
ST and CLA techniques an even faster adder could be devised.

A software package should also be developed which enables the error checking and
analysis properties inherent in the ECS framework to be utilized. Such a tool would enable
the designer to specify a circuit in a TS format (with hierarchy) with IO constraints which
have to be met by the environment, as well as providing a library of useful sub-systems.
These can then be checked in the translation from the TS to the chosen simulation suite,
and errors in the event control (or the data path) flagged with commentary back to the
designer. This would then reduce the design time for developing reliable circuits and

improve its usability for new designers.

200

Appendix A

Fundamental Temporal Equations

and Corresponding ECS Gates

Table A.1 provides a list of the fundamental temporal equations together with their cor-

responding ECS gates and circuit representations.

[TE | ECS Gate | Circuit Symbol |
)) d_ina—
dout < Oina . Jinb cgate d_out
d_inb—|
) d_ina
dout < Oina + 0inb merge d_out
d_in
d_pass
Oout < Opass > 0in restore dﬁin—ﬁ—n d_out
d_in —
dout < O0in > control feed d_out
control —
d_in—
Oout < 0in . control send d_out
control —
.) d_ina
out < Oina U 0inb zor , jD—out
d_inb—
in
out < in > sel latch sel
oul
c+ F(a,b,...) logic a,b,...Uj— c
dout < a:b: ... : 0in delay d_in- . ~d_out
‘a

Table A.1: Fundamental temporal equations and their corresponding gates.

201

The following are examples of TE specifications which are invalid. This may be due to

an invalid operation between data signals and event lines, an assignment of a data signal

to an event line, or an input event occurring without a corresponding output event (or

vice versa).

0z or +c
.0z

Oa + 0Ob

T T T 71

b> 0z

or > ...

202

oxr

0z
0z

LR A A N

cC> ...
Or +b
0a.0b
a+b
aUb

Appendix B

ISA of the ECSTAC Microprocessor

There are a total of 47 distinct instruction types excluding mode variants, and 87 including
mode variants. 16 registers are available for use and there are also dedicated registers for

the program counter, stack pointer, and flags register (FR). The FR is configured as:

|| DC | IC | -] Zero | parity odd | sign \ overflow] carry ||

where DC and IC represent the state (active or bypassed) of the data and instruction

caches respectively.

B.1 Memory instructions

The 16 register banks can be partitioned into four register quadruples for data movement
instructions, denoted simply as Q0, Q4, Q8, and Q12, with the lowest numbered register
containing the lowest byte of the 24 bit address.

B.1.1 Two byte instructions

2 2 4 4 | 4
op | mode | Qx || Rz | Qy

op=00 for the LD (load) instruction, and op=01 for the ST (store) instruction. Rz
represents the register location to load data into or store data from, and mode determines

the interpretation of Qx and Qy as follows:

e mode=00 (register mode): Qx and Qy represent register quadruples, and the
actual memory address is computed as the sum of the two 24 bit values stored in

these registers.

203

e mode=01 (offset mode): Qx represents a 24 bit address as above, but Qy repre-
sents an unsigned four bit constant, which is added to the register address to give

the actual memory address.

B.1.2 Four byte instruction

2 2 4 8 8 8
op | mode | Rz | MemLow || MemMid || MemHig

op and Rz are as given for the two byte instructions, and mode=10 (direct mode).

The actual memory address is given by (MemHig || MemMid || MemLow).

B.1.3 The unused mode

mode=11 is not used for any data movement operations. It is used instead for the JUMP

instruction (see Section B.3.2).

B.2 ALU instructions

B.2.1 Two byte instruction (short mode)

2 2 4 4 | 4
op | mode | code || Rz | Ry

op=10 indicates an ALU operation, and code indicates the specific ALU operation as

given in Table B.1. mode determines the interpretation of Rz and Ry as follows:

e mode=00 (register mode): Rz represents the destination register for the result,
as well as the source register of the first argument. Ry represents the source register
of the second argument. For those functions with only one argument, this is taken
from Ry, thereby enabling maximum flexibility of register transfers. Single argument

functions will always use this mode.

e mode=01 (offset mode): Rz represents the destination register for the result, as
well as the source register of the first argument. Ry represents an unsigned 4 bit

constant value as the second argument.

204

[Code | Instruction | Arguments | Meaning

0000 NEG Arithmetic sign negation
0001 MOVE Move data between registers
0010 INC Increment by one

0011 DEC Decrement by one

0100 SHLL Shift left logical (wrap around bits)

0101 SHLA
0110 SHRL

1
1
1
1
1
1 Shift left arithmetic (pack with 0’s)
1 Shift right logical
0111 SHRA | Shift right arithmetic
1000 SUBU 2 Unsigned subtraction
1001 SUBS 2 Signed subtraction
2
2
1
2
2
2
B.

1010 ADDU Unsigned addition
1011 ADDS Signed addition

1100 NOT Logical bit negation
1101 AND And function
1110 OR Or function

1111 XOR Exclusive-or function

Table B.1: ALU instructions.

B.2.2 Three byte instructions (long mode)

2 2 4 4 | 4 4 4
op | mode | Rx || Rz | Ry || ofthi | code

op and code are as given for the two byte instructions, and mode determines the

interpretation of Rz, Rx and Ry as follows:

e mode=10 (register mode): Rz represents the destination register for the result,
Rx represents the source register of the first argument, and Ry represent the source

register of the second argument. ofthi is unused.

e mode=11 (offset mode): Rz represents the destination register for the result, Rx
represents the source register of the first argument, and (offhi || Ry) represents an

8 bit constant value as the second argument.

B.3 Branch instructions

B.3.1 One byte instruction - CALL

4 | 4
op | Qz

where op=1111 for the CALL instruction, and Qz refers to the register quadruple

containing the memory address to CALL to.

205

Code | Instruction | Meaning |
0000 JUMP Unconditional jump

0010 JMPZ Jump when result = 0 (zero bit)

0011 JMPX Jump when result # 0 (inverse zero bit)
0100 JMPN Jump when result < 0 (sign bit)

0101 JMPG Jump when result > 0 (inverse sign bit)
0110 JMPL Jump when result < 0 (sign OR zero)

0111 JMPP Jump when result > 0 (sign NOR zero)
1000 JMPV Jump when parity bit is set

1001 JPNV Jump when parity bit is not set

1010 JMPO Jump when overflow bit is set

1011 JPNO Jump when overflow bit is not set

1100 JMPC Jump when carry bit is set

1101 JPNC Jump when carry bit is not set

1110 JPOC Jump when carry or overflow bits are set
1111 JNOC Jump when neither carry nor overflow bits are set

Table B.2: Branch instructions.

B.3.2 Two byte instructions - BRANCH

4 4 4 4
op/mode | code || Qz | offlo

where op=0(mode)1l represents the conditional or unconditional jump instruction
(where the condition being tested is given by the contents of the FR), code represents the
type of comparison to be made (if any) on the contents of the FR as given in Table B.2,

and mode determines the interpretation of Qz and offlo as follows:

e mode=0 (offset mode): (Qz || offlo) represents a signed 8 bit offset address to be

branched to relative to the current PC address.

e mode=1 (register mode): Qz represents the register quadruple containing the

address to be jumped to and offlo is unused.

B.4 Stack instructions

4 | 4
op | Rx

op=1101 represents a PUSH operation, and op=1100 represents a POP. Rx represents
the register whose data is to be pushed, or to where data will be popped. Note that more

stack instructions are specified in the following section.

206

B.5 Special instructions

4

4

op

code

op=1110 represents a special instruction to be interpreted by Table B.3.

| Code | Instruction | Meaning |
0000 NOOP Do Nothing
0001 RETN Returns from a call instruction
0010 FLSH Flushes the contents of the data cache
0100 ICDS Instruction cache disable
0101 ICEN Instruction cache enable
0110 DCDS Data cache disable
0111 DCEN Data cache enable
1000 HALT Halts processor after 4 successive instructions
1100 POPF Pops the contents of the stack into the FR.
1101 PSHF Pushes the contents of the FR onto the stack
1111 TRSP Transfers Q12 to the stack pointer

Table B.3: Special instructions.

207

Appendix C

ISA of the ECSCFESS microprocessor

The ECSCESS ISA provides for 16 basic instruction types (encoded in the op field below)
of which 13 have currently been defined. Each of these instruction types are encoded in

one of the following four formats:

Bits [31528 [27 [2623 [22 [2119 [18—12 [117 6 [5—1[0
Btype op ms bramt (low 27 bits)

Ltype op dest code constant

Ftype op dest code immhi | srcl |ul | sre2 | u2
Rtype op dest wr | winreg src2 | u2

Table C.1: Instruction formats.

The op field specifies the particular type of instruction which is being executed, as

shown in the table below. Only for op’s 8 through 11 is the globe activated.

| op | instruction |] op| instruction || op| instruction ” op‘ instruction ||

0 | JUMP offset || 1 | JCOND offset || 2 | CALL offset || 3 RETC

4 | JUMP busO || 5 LDSP 6 | CALL bus0 || 7 | JCOND bus0
8 FU bus 9 FU imm 10 MOVE 11 LDC

12 - 13 - 14 - 15 INT

Table C.2: Fundamental instruction set.

C.1 Branch instructions

The branch instructions comprise op fields 0 through 7, and are all encoded as a Btype.
The JUMP instruction performs an unconditional jump to a new PC location, whereas the
JCOND instruction performs this only if the MSB of bus1 is high (which should be from

a comparator unit tested prior to the conditional jump). A CALL instruction branches to

208

a subroutine, and a RETC instruction returns from it (the ms and bramt fields for this
instruction are irrelevant).

For the branch-busO instructions, the ms and bramt fields are irrelevant, and the
branch offset is given by the value of busO which is added to the current PC value to give
the branch target. For the branch-offset instructions, the ms and bramt fields collectively
represent a 28 bit offset which is sign extended to provide the offset for the branch target
addition.

A LDSP instruction loads the stack with the 32 bit quantity ms+bramt+ 1111, which
represents the location in memory of the decrementing stack to be used if the on-chip stack
fills up. Note that ECSCESS implements a 32 register on-chip stack (although any depth
can be implemented in practice), so that the memory stack will only be needed for code
streams with more than 32 embedded levels of subroutines (although an interrupt uses 2

stack registers as well). As such the off-chip memory will rarely ever be used.

C.2 Interrupt instructions

These are also encoded as a Btype. If ms = 0 then an IVRL instruction occurs, which
loads the interrupt vector register (IVR) with bramt + 00000, otherwise the upper 5 bits

of the bramt field are used to indicate one of the following instructions:

bramt (26 — 22) | instruction | meaning

o - - - - RETI Return from interrupt

10 1 1 - EI Enable interrupts

10 1 0 - DI Disable interrupts

10 0 1 - ET Enable trace mode

1 0 0 0 - DT Disable trace mode

1 1 I, I, I SETI Set interrupt priority level to I

Table C.3: Interrupt instructions.

Interrupts can be enabled or disabled with the EI and DI commands, and the conclu-
sion of an interrupt processing routine is indicated with a RETI instruction. A 7 level in-
terrupt priority level (IPL) is facilitated, with the highest level (7) being non-interruptible.
When an interrupt occurs, its IPL is compared against that of the processor, and if greater
then the interrupt routine located at the address pointed to by IVR+IPL in memory is

executed.

209

A trace mode is also facilitated by the ISA of ECSCESS. If enabled, then at the
conclusion of each instruction the trace routine located at the address pointed to by IVR
in memory is executed. This can be useful for customizing the analysis and debugging of

instruction streams.

C.3 MOVE instruction

The MOVE instruction is analogous to register moves in most other processors, but in
this instance it transfers the bus value from one FU to the bus value of another (bypassing
the FUs operation). It is encoded as an Ftype with the code, immbhi, and srcl fields being
irrelevant. The dest field indicates the destination FU for the transfer, and the src2 field
indicates the source FU. For this operation, 41 = 0 and u2 = 1, implying that only one
source FU (src2) is needed for the instruction.

The register bank provides a slight exception to this. If the wr field is high, then the
bus value of src2 is not only transferred to dest, but is also written to the register location
specified by the 16 bit signal winreg. If low, then the value is simply transferred as with
any other FU. Note that the register unit therefore uses the Rtype of encoding (which is
very similar to the Ftype).

C.4 LDC instruction

This instruction utilizes the Ltype instruction format and is used to load a constant value
(specified in the constant field) or a status register onto the bus of the FU specified in

dest. How the constant value is interpreted is given by code in Table C.4.

o
o
[oh
[¢"]

32 bit constant to load (const32)

0 0 0 - | constd231_19 + constant

0 0 1 - |sign extended constant

0 1 0 -|constant* 2™ 4 const3219_0

0 1 1 -|constantx*2" (left shift 13 bits)
1 0 0 - |current PC

1 0 1 - [SP (for external memory stack)
11 0 -|IVR

1 11 -[PSR

Table C.4: 32 bit constants for the LDC instruction.

210

The first four codes enable the 19 bit constant field to be loaded into the upper or
lower portion of the 32 bit const32 (which goes to the FU). The other portion is either
left unchanged (enabling a full 32 bit value to be loaded in two instructions) or is sign
extended for a low portion load (enabling a 19 bit signed constant to be loaded with one
instruction) or set to zero (for a high portion load).

The latter four codes enable the process registers of FCSCESS to be loaded into the
globe for manipulation. The PSR (process status register) contains the current state of

the interrupt and trace processes in the format below:

Bit(s) | PSR entry | Meaning
31 TS Trace status (on or off)
30 IS Interrupt status
29 — 27 IPL Current interrupt priority level
26 — 0 - Unused

C.5 FU instructions

All FUs in the processor are triggered by one of two FU instructions in the ISA. The
FUbus instruction encodes two source FUs for the operation in srcl and src2 and the
destination FU in dest, whose actual functionality is decoded therein by the code field.
Instructions which use less than 2 operands will have the relevant ul and/or u2 fields set
low, indicating that the encoded source FU is not required. Note that these instructions
could also utilize the immhi and srcl fields (and sre2 for instructions with no operands) to
extend the code field for the operation. The FUimm instruction encodes a sign extended
13 bit value of immhi + srcl + ul in place of the srcl FU used in the FUbus mode.
Although the architecture of ECSCESS enables up to 32 FUs of any type to be em-
ployed, clearly these must be specified explicitly for any given implementation. A proposed
allocation is given in Table C.5, and the specific set of instructions executed within each

FU (given by the code field in general) are discussed in the following sections.

C.5.1 Register unit (reg)

The register unit is the only FU whose instructions are encoded as the Rtype. The
src2 field specifies a source FU for a write operation (when wr = 1), and for a read
operation (when wr = 0) this field is irrelevant (the u2 field will therefore be set low for

a read operation). The 16 bit winreg field specifies the register to which (or from which)

211

[dest | FU [dest| FU [dest| FU [dest| FU |

0 reg0 1 regl 2 reg2 3 reg3
4 aid0 5 aidl 6 aid2 7 aid3
8 mds0-b0 9 mds0-bl 10 | mdsl-b0 11 | mdsl-bl
12 cmp 13 shl 14 icop 15 mem

16 | freg0-b0 17 | freg0-bl 18 | fregl-b0 || 19 | fregl-bl
20 | faid0-b0 21 | faid0-bl 22 | faid1-b0O || 23 | faidl-bl
24 | fmds0-b0 || 25 | finds0-bl || 26 | fmdsl-bO || 27 | fmdsl-bl
28 | fcmp-b0 29 | fcmp-bl 30 fcop-b0 31 fcop-bl

Table C.5: Proposed FU allocations for ECSCESS.

the source FU’s data will be written (or read). Clearly 2! = 65536 registers is a lot,
therefore it could be expected that the registers will be partitioned into windows (giving
a hierarchical register structure), perhaps reserving one or more windows for storage and
retrieval during an interrupt or trace routine. Furthermore, it is possible to encode within
winreg a field which enables up to 4 multiple register reads, and another to implement
indexing as in the memory unit discussed in Section C.5.6.

The dest field contains the FU location of the register unit, and in the proposed FU
allocations this occupies units 0 to 3. Although only one actual register unit is present,
these four output buses enable a read to place its result onto a specific bus, enabling

previously read data to be retained if necessary.

C.5.2 Arithmetic unit (aid)

The AID performs basic arithmetic operations as given by Table C.6, and four separate
AlIDs are provided in the FU allocation to enhance parallelism. Note that arg2 and argl
come from the src2 and srcl source FUs respectively (although the latter may in fact
be encoded as a 13 bit signed constant), and that an internal FR is used to retain flags
information which can be read out with a FLAG instruction. The structure of the FR is

shown in Section C.5.5 (minus the branch bit).

C.5.3 Multiply, divide, and sqrt unit (mds)

This unit implements signed and unsigned multiply, divide, and square root functions

according to Table C.7.

212

Code | Instruction | Meaning
0 ADD arg2 + argl
4 SUB arg2 —argl
8 INC increment arg?2
10 NEG negate (two’s complement) arg2
11 DEC decrement arg2
15 FLAG output the FR
Table C.6: Arithmetic instructions.
Code | Instruction | Meaning
0,1 | MULU, MULS | Unsigned and signed multiplication
2,3 | DIVU, DIVS | Unsigned and signed division
4 SQRT Unsigned square root of arg2

Table C.7: Multiply, divide, and sqrt instructions.

A 32 bit multiplication can result in a 64 bit product, therefore to enable the full
result to be provided in one operation each MDS unit (of which there are two specified) is
spread across two buses (as indicated by the -b0 and -b1 postfixes). The division and sqrt

functions similarly require two buses, providing the quotient onto bl and the remainder

onto b0.

C.5.4 Shifter and logical unit (shl)

This simple unit performs arithmetic, logical, and wrapped shifts of arg2 (with the srcl

field specifying the number of bits to shift by) as well as performing logical functions as

per the following table.

Code 0 1 2 4 5 6
Instruction || SLA | SLL | SLW | SRA | SRL | SRW
Code 8 9 10 11 12 13 14
Instruction || AND | NAND | OR | NOR | XOR | XNOR | NOT (arg2)

Table C.8: Logical and shifting instructions.

C.5.5 Comparator (cmp)

The comparator unit enables three basic types of operations.
compares two signed source values and sets the branch bit (the MSB of the output bus)

according to the type of comparison required. This bit can also be set according to the

parity of arg?2.

213

The CMP2 instruction

The ASC instruction performs addition and subtraction of the two source values and
places the result onto the output bus as well as computing flags based on the result.
Furthermore, the two arguments are also compared as per a CMP2 operation (although
whether or not the arguments are signed can be specified explicitly), again setting the
relevant flags in the FR. Whenever a CMP2 or CMPO0 instruction occurs, the FR is placed
onto the output bus together with the branch bit as shown below:

Bit 31 181171161983 (2|10
Flag || branch | qc [hc | ¢ |1 po |1t [gt | eq

where each flag represents in turn: a carry out of bits 8, 16, and 32; underflow (only
relevant for the floating point units described later); overflow; odd parity for the result;
arg2 < argl; arg2 > argl; and arg2 = argl. A CMPO0 instruction sets the branch bit
according to the flags set by the previous ASC instruction. The encoding for each of these
comparator instructions is given in Table C.9. Note that the CMPO instruction utilizes

the srcl field in its decoding, which is acceptable since it has no arguments.

Code 1lab0 (ASC) labl (CMPO) Oabc (CMP2)
a b Operation srel=1]|srcl=2]|srcl =4 Operation

0 0 ADD, signed CMP eq v c arg2 = argl
0 1 || ADD, unsigned CMP gt u he arg2 > argl

1 0 SUB, signed CMP It - qc arg?2 < argl

1 1 || SUB, unsigned CMP B po - arg?2 parity odd

Table C.9: Comparator instructions.

If the ¢ bit for a CMP2 operation is high, then the inverse comparison is performed,

and similarly for CMPO if the MSB of srcl is set.

C.5.6 Memory unit (mem)

The memory unit performs load and store operations to external memory (perhaps with
an intervening DC), and the code field is segregated into the LS, UL, ID, and BA bits
(from MSB to LSB) which imply the following:

e If LS=1 then perform a LD from address arg2, otherwise perform a ST to address
arg2 with the data from argl.

e If UL=1 then use the last modified address (LMA) instead of the address of arg2,

otherwise save arg2 into the LMA as well as performing the memory operation.

214

e If ID=1 then increment the LMA, otherwise decrement it.

e If BA=1 then perform the increment or decrement of the LMA before accessing

memory, otherwise do it afterwards.

The ID and BA bits are irrelevant if UL=0. Using pre and post incrementing and
decrementing of the LMA enables consecutive memory operations (indexing) to be imple-

mented without requiring the arithmetic units.

C.5.7 Floating point units and co-processors

There is also provision in the ISA of ECSCESS for floating point (FP) units, however
since these may operate on double and single precision numbers, two output buses are
needed for each FU. There are 2 register read buses, 2 Faid units, 2 Fmds units, and a FP
comparator, each essentially analogous to their integer counterparts. Since no FP units
have been implemented in the current ECSCESS architecture no instruction codes have
been specified. A FP and integer co-processor (fcop and icop) can also be used, with field

encodings specific to whatever unit is attached.

215

Bibliography

[ABV195]

[AML95a]

[AML95b)

[AMLO96]

[App96]

[BE89)]

[Bed62]

[BKS82]

[Boob1]

[BRY5]

A. J. Acosta, M. Bellido, M. Valencia, A. Barriga, R. Jiménez, and J. L.
Huertas. New CMOS VLSI linear self-timed architectures. In Asynchronous
Design Methodologies, pages 14-23. IEEE Computer Society Press, May 1995.

Sam S. Appleton, Shannon V. Morton, and Michael J. Liebelt. Cache de-
sign for an asynchronous VLSI RISC processor. In Proc. 13th Australian
Microelectronics Conference, pages 91-96, July 1995.

Sam S. Appleton, Shannon V. Morton, and Michael J. Liebelt. The design of
a fast asynchronous microprocessor. IEEE Technical Commuttee on Computer
Architecture Newsletter, October 1995.

Sam S. Appleton, Shannon V. Morton, and Michael J. Liebelt. A new
technique for high-speed asynchronous pipeline control. FElectronics Letters,
32(21):1973-1974, October 1996.

Sam Appleton. Implementation of instruction and data caches for the EC-
STAC microprocessor. Report HPCA-ECS-96/02, Dept. of Electrical and
Electronic Engineering, The University of Adelaide, Adelaide, South AUS-
TRALIA, June 1996.

J. A. Brzozowski and J. C. Ebergen. Recent developments in the design of
asynchronous circuits. In J. Csirik, J. Demetrovics, and F. Gécseg, editors,
Fundamentals of Computation Theory, FCT’89, volume 380 of Lecture Notes
in Computer Science, pages 78-94, FCT’89, Szeged, Hungary, 1989. Springer-
Verlag.

0O.J. Bedrij. Carry-select adder. IEEFE Transactions on Electronic Computers,
EC-11:340-346, 1962.

R.P. Brent and H.T. Kung. A regular layout for parallel adders. IEEFE
Transactions on Computers, C-31(3):260-264, 1982.

A.D. Booth. A signed binary multiplication technique. Quart. J. Mech. App.
Math., 4(2):236-240, 1951.

J. A. Brzozowski and K. Raahemifar. Testing C-elements is not elementary. In
Asynchronous Design Methodologies, pages 150-159. IEEE Computer Society
Press, May 1995.

216

[BS89)]

[Chu87al

[Chu87b]

[CL86]

[CL95]

[CM73]

[CZ94]

[DA93]

[DDH91]

[DECS8]

[Den85]

[Dij76]
[Dil89)]

[DW5]

Erik Brunvand and Robert F. Sproull. Translating concurrent programs
into delay-insensitive circuits. In Proc. International Conf. Computer-Aided
Design (ICCAD), pages 262-265. IEEE Computer Society Press, November
1989.

Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic

specifications. In Proc. International Conf. Computer Design (ICCD), pages
220-223. IEEE Computer Society Press, 1987.

Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT Laboratory for Computer Science, June 1987.

Tam-Anh Chu and Clement K. C. Leung. Design of VLSI asynchronous
FIFO queues for packet communication networks. In Proc. International
Conference on Parallel Processing, pages 397-400, August 1986.

Chih-Ming Chang and Shih-Lien Lu. Design of a static MIMD data flow pro-
cessor using micropipelines. IEEE Transactions on VLSI Systems, 3(3):370—
378, September 1995.

T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and
arbiter circuits. IEEE Transactions on Computers, C-22(4):421-422, April
1973.

J.F. Chappel and S.G. Zaky. A delay-controlled phase-locked loop to reduce
timing errors in synchronous/asynchronous communication links. In Proc.

International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 156—-165, November 1994.

Hema Dhanesha and Alexander Albicki. Self-timed adder with pipelined
output. In Proceedings of the Midwest Symposium on Circuits and Systems,
pages 855858, 1993.

Mark E. Dean, David L. Dill, and Mark Horowitz. Self-timed logic using
current-sensing completion detection (CSCD). In Proc. International Conf.
Computer Design (ICCD), pages 187-191. IEEE Computer Society Press,
October 1991.

Digital Equipment Corporation: DEC. DECChip 21064-AA RISC micro-
processor preliminary data sheet. Technical report, D.E.C., Maynard, MA,
U.S.A., 1988.

Peter J. Denning. The science of computing: The arbitration problem. Amer-
ican Scientist, 73:516-518, December 1985.

E.W. Dijkstra. A Disciple of Programming. Prentice-Hall, 1976.

David L. Dill. Trace Theory for Automatic Hierachical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

Paul Day and J. Viv Woods. Investigation into micropipeline latch design
styles. IEEE Transactions on VLSI Systems, 3(2):264-272, June 1995.

217

[DWA192] D. Dobberpuhl, R. Witek, R. Allmon, R. Anglin, S. Britton, L. Chao, R. Con-

[Ebe89)

[EBGO3]

[ECFS95]

[End95a)

[End95b]

[EP92]

[FDG*93]

[FDG194]

[FES94]

[FL6]

rad, D. Denver, B. Gieseke, G. Hoeppner, J. Kowaleski, K. Kuchler, M. Ladd,
M. Leary, L. Madden, E. McLellan, D. Meyer, J. Montanaro, D. Priore,
V. Rajagopalan, S. Samudrala, and S. Santhanam. A 200 MHz 64b dual-issue
CMOS microprocessor. IEEE Journal of Solid-State Circuits, 27(11):1555—
1565, November 1992.

Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits, vol-
ume 56 of CWI Tract. Centre for Mathematics and Computer Science, 1989.

J. C. Ebergen, P. F. Bertrand, and S. Gingras. Solving a mutual exclusion
problem with the RGD arbiter. In S. Furber and M. Edwards, editors, Asyn-
chronous Design Methodologies, volume A-28 of IFIP Transactions, pages
137-147. Elsevier Science Publishers, 1993.

C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven. Hades - to-
wards the design of an asynchronous superscalar processor. In Asynchronous
Design Methodologies, pages 200-209. IEEE Computer Society Press, May
1995.

Philip B. Endecott. Parallel structures for asynchronous microprocessors.
IEEE Technical Committee on Computer Architecture Newsletter, October
1995.

Philip B. Endecott. SCALP: A Superscalar Asynchronous Low-Power Pro-
cessor. PhD thesis, Dept. of Computer Science, University of Manchester,
U.K., 1995.

Jo C. Ebergen and Ad M. G. Peeters. Modulo-N counters: Design and
analysis of delay-insensitive circuits. In Jgrgen Staunstrup and Robin Sharp,
editors, Designing Correct Circuits, volume A-5 of IFIP Transactions, pages
27-46. Elsevier Science Publishers, 1992.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A
micropipelined ARM. In T. Yanagawa and P. A. Ivey, editors, Proceedings
of VLSI 93, pages 5.4.1-5.4.10, September 1993.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, S. Temple, and J. V.
Woods. The design and evaluation of an asynchronous microprocessor. In
Proc. International Conf. Computer Design (ICCD). IEEE Computer Society
Press, October 1994.

Craig Farnsworth, Doug Edwards, and Shiv Sikand. Utilizing dynamic logic
for low power consumption in asynchronous circuits. In Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 186-194, November 1994.

S. B. Furber and J. Liu. Dynamic logic in four-phase micropipelines. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems. IEEE Computer Society Press, March 1996.

218

[Fur96]

[Gar93|

[GDS8S5]

[GJ90]

[GJ95]

[Hau93]

[Hau95]

[Haz92]

[HBBYS]

[HC95]

[HF89]

[Hoa85]
[HPYO]

[JPKJ95]

S. B. Furber. Amulet2e: Invited lecture. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems. IEEE Computer
Society Press, March 1996.

Jim D. Garside. A CMOS VLSI implementation of an asynchronous ALU. In
S. Furber and M. Edwards, editors, Asynchronous Design Methodologies, vol-
ume A-28 of IFIP Transactions, pages 181-207. Elsevier Science Publishers,
1993.

L.A. Glosser and D.W. Dobberpuhl. The Design and Analysis of VLSI Cir-
cuits. Addison-Wesley, 1985.

Ganesh Gopalakrishnan and Prabhat Jain. Some recent asynchronous system
design methodologies. Technical Report UUCS-TR-90-016, Dept. of Com-
puter Science, Univ. of Utah, October 1990.

E. Grass and S. Jones. Asynchronous circuits based on multiple localised
current-sensing completion detection. In Asynchronous Design Methodolo-
gies, pages 170-177. IEEE Computer Society Press, May 1995.

Scott Hauck. Asynchronous design methodologies: An overview. Techni-
cal Report TR 93-05-07, Department of Computer Science and Engineering,
University of Washington, Seattle, 1993.

Scott Hauck. Asynchronous design methodologies: An overview. Proceedings
of the IEEE, 83(1), January 1995.

Pieter J. Hazewindus. Testing Delay-Insensitive Circuits. PhD thesis, Cali-
fornia Institute of Technology, 1992.

Henrik Hulgaard, Steven M. Burns, and Gaetano Borriello. Testing asyn-
chronous ciruits: A survey. Integration, the VLSI journal, 19(3):111-131,
November 1995.

Calvin J. A. Hsia and C. Y. Roger Chen. Synthesis of asynchronous cir-
cuits — testing unique circuit behavior of signal transition graphs. In Proc.
International Symposium on Circuits and Systems, pages 1074-1077, 1995.

[.S. Hwang and A.L. Fisher. Ultrafast compact 32-bit CMOS adders
in multiple-output domino logic. IEEE Journal of Solid-State Circuits,
24(2):358-369, April 1989.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Mateo, California,
1990.

Sung Tae Jung, Uun Sei Park, Junk Sik Kim, and Chu Shik Jhon. Automatic
synthesis of gate-level speed-independent control circuits from signal transi-
tion graphs. In Proc. International Symposium on Circuits and Systems,
pages 1411-1414, 1995.

219

[JU90a)

[JU90b]

[KBO5]

[KdSRA91]

[Kel74]

[Kes95]

[KKTV92]

[LCT+95]

[LZB92]

[MAL94]

[MAL9S5]

[Mar86]

Mark B. Josephs and Jan Tijmen Udding. An algebra for delay-insensitive
circuits. In Robert P. Kurshan and Edmund M. Clarke, editors, Proc. Inter-
national Workshop on Computer Aided Verification, volume 531 of Lecture
Notes in Computer Science, pages 343-352. Springer-Verlag, 1990.

Mark B. Josephs and Jan Tijmen Udding. The design of a delay-insensitive
stack. In G. Jones and M. Sheeran, editors, Designing Correct Circuits, pages
132-152. Springer-Verlag, 1990.

Ajay Khoche and Erik Brunvand. Testing self-timed circuits using partial
scan. In Asynchronous Design Methodologies, pages 160-169. IEEE Computer
Society Press, May 1995.

S. Karthik, I. de Souza, J. T. Rahmeh, and J. A. Abraham. Interlock schemes
for micropipelines: Application to a self-timed rebound sorter. In Proc. In-
ternational Conf. Computer Design (ICCD), pages 393-396. IEEE Computer
Society Press, 1991.

Robert M. Keller. Towards a theory of universal speed-independent modules.
IEEE Transactions on Computers, C-23(1):21-33, January 1974.

Joep Kessels. VLSI programming of a low-power asynchronous Reed-Solomon
decoder for the DCC player. In Asynchronous Design Methodologies, pages
44-52. IEEE Computer Society Press, May 1995.

M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. On self-timed
behavior verification. In Proceedings of ACM TAU 92, March 1992.

Lavi A. Lev, A. Charnas, M. Tremblay, A. R. Dalal, B. A. Frederick, C. R.
Srivatsa, D. Greenhill, D. L. Wendell, D. D. Pham, E. Anderson, H. K. Hin-
garh, I. Razzack, J. M. Kaku, K. Shin, M. E. Levitt, M. Allen, P. A. Ferolito,
R. L. Bartolotti, R. K. Yu, R. J. Melanson, S. I. Shah, S. Nguyen, S. S. Mi-
tra, V. Reddy, V. Ganesan, and W. J. de Lange. A 64-b microprocessor with
multimedia support. IEEE Journal of Solid-State Circuits, 30(11):1227-1238,
November 1995.

J.J. Laurin, S.G. Zaky, and K.G. Balmain. EMI-induced delays in digital
circuits: prediction. In Proc. IEEE Symp. on Electromagnetic Compatability,
pages 443-448, August 1992.

Shannon V. Morton, Sam S. Appleton, and Michael J. Liebelt. An event
controlled reconfigurable multi-chip FET. In Proc. International Symposium

on Advanced Research in Asynchronous Circuits and Systems, pages 144153,
November 1994.

Shannon V. Morton, Sam S. Appleton, and Michael J. Liebelt. ECSTAC: A
fast asynchronous microprocessor. In Asynchronous Design Methodologies,
pages 180-189. IEEE Computer Society Press, May 1995.

Alain J. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed Computing, 1(4):226-234, 1986.

220

[Mar90]

[MBL*89a)

[MBL*+89b]

[McA92]

[MLO3]

[MM82]
[MMO3]
[MRW96]

[MU]

[Nan95)

[Pav94]

[PDF+92]

[Pee]

[PG93]

Alain J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in Con-

currency and Communication, UT Year of Programming Series, pages 1-64.
Addison-Wesley, 1990.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The design of an asynchronous microprocessor. In Charles L.
Seitz, editor, Advanced Research in VLSI: Proceedings of the Decennial Cal-
tech Conference on VLSI, pages 351-373. MIT Press, 1989.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The first asynchronous microprocessor: the test results. Com-
puter Architecture News, 17(4):95-110, June 1989.

Anthony J. McAuley. Dynamic asynchronous logic for high-speed CMOS
systems. IEEE Journal of Solid-State Circuits, 27(3):382-388, March 1992.

Shannon V. Morton and Michael J. Liebelt. A 100 Mips event controlled
ALU. In Proc. 12th Australian Microelectronics Conference, pages 159-164,
October 1993.

J.V. McCanny and J.G. McWhirter. Completely iterative, pipelined multi-
plier array suitable for VLSI. IFE Proceedings-G, 129(2):40-46, April 1982.

Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asynchronous
circuits. IEEE Transactions on VLSI Systems, 1(2):106-119, June 1993.

S. Moore, P. Robinson, and S. Wilcox. Rotary pipeline processors. Electronics
Letters, 143(5):259-265, September 1996.

University Of Manchester: MU. The Asynchronous Logic Home Page.
http://www.cs.man.ac.uk/amulet/async/index.html. E-mail address:
jgarside@cs .man.ac.uk.

Takashi Nanya. a quasi-delay-insensitive microprocessor: TITAC-I. In 1995
Israel Workshop on Asynchronous VLSI, pages 95-102. VLSI Systems Re-
search Centre, Technion - Israel Institute of technology, March 1995.

N. C. Paver. The Design and Implementation of an Asynchronous Micropro-
cessor. PhD thesis, Department of Computer Science, University of Manch-
ester, June 1994.

N. C. Paver, P. Day, S. B. Furber, J. D. Garside, and J. V. Woods. Register
locking in an asynchronous microprocessor. In Proc. International Conf.
Computer Design (ICCD), pages 351-355. IEEE Computer Society Press,
October 1992.

Ad Peeters. The Asynchronous Bibliography. Available for anonymous ftp at
ftp://ftp.win.tue.nl/pub/tex/async.bib.Z. Corresponding e-mail ad-
dress: async-bib@win.tue.nl.

R. Puri and J. Gu. Signal transition graph constraints for speed-independent
circuit synthesis. In Proc. International Symposium on Circuits and Systems,
volume 3, pages 1686-1689. IEEE Computer Society Press, 1993.

221

[Puc90)

[RBY6]

[Ric96]

[Ron94]

[SK93]

[SMJ+94]

[SSL*92]

[SSM94]

[Sut89]

[vB93]

[vBB96]

[VBBK*94]

Douglas A. Pucknell. Fundamentals of Digital Logic Design with VLSI Circuit
Applications. Silicon Systems Engineering Series. Prentice-Hall, 1990. Editor:
Kamran Eshraghian.

William F. Richardson and Erik Brunvand. Architectural considerations for a
self-timed decoupled processor. Flectronics Letters, 143(5):251-257, Septem-
ber 1996.

William F. Richardson. Architectural Consideration in a Self-Timed Pro-
cessor Design. PhD thesis, Dept. of Computer Science, University of Utah,
U.S.A., February 1996.

Marly Roncken. Partial scan test for asynchronous circuits illustrated on a
DCC error corrector. In Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 247-256, November
1994.

O. Salomon and H. Klar. Self-timed fully pipelined multipliers. In S. Furber
and M. Edwards, editors, Asynchronous Design Methodologies, volume A-28
of IFIP Transactions, pages 45-55. Elsevier Science Publishers, 1993.

Robert F. Sproull, Charles E. Molnar, Ian Jones, Bill Coates, and Jon Lexau.
Counterflow pipeline processor project: Special invited session notes. In Proc.
International Symposium on Advanced Research in Asynchronous Clircuits
and Systems, November 1994.

Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Ra-
jeev Murgai, Alexander Saldanha, Hamid Savoj, Paul R. Stephan, Robert K.
Brayton, and Alberto Sangiovanni-Vincentelli. SIS: A system for sequen-
tial circuit synthesis. Software Documentation Memorandum No. UCB/ERL
M92/41, Electronics Research Laboratory, University of California, Berkeley.,
May 1992.

Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar. The coun-
terflow pipeline processor architecture. IEEE Design & Test of Computers,
11(3):48-59, Fall 1994.

Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-
738, June 1989.

Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for
VLSI Programming, volume 5 of International Series on Parallel Computa-
tion. Cambridge University Press, 1993.

Kees van Berkel and Arjan Bink. Single-track handshaking signaling with
application to micropipelines and handshake circuits. In Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, March 1996.

Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
and Frits Schalij. A fully-asynchronous low-power error corrector for the
DCC player. In International Solid State Circuits Conference, pages 88—89,
February 1994.

222

[VBBK+95]

[VBH*95]

[VBKR*91]

[vBR95]

[vBS88]

[Wal64]

[WE93]

[WFF94]

[WH91]

[WPS95]

[WS58]

[YBA96]

[YHINO5]

Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
Frits Schalij, and Rik van de Wiel. A single-rail re-implementation of a DCC
error detector using a generic standard-cell library. In Asynchronous Design
Methodologies, pages 72-79. IEEE Computer Society Press, May 1995.

M. Valencia, M. J. Bellido, J. L. Huertas, A. J. Acosta, and S. Sanchez-
Solano. Modular asynchronous arbiter insensitive to metastability. IEEFE
Transactions on Computers, 44(12):1456-1461, December 1995.

Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits
Schalij. The VLSI-programming language Tangram and its translation into
handshake circuits. In Proc. European Conference on Design Automation
(EDAC), pages 384-389, 1991.

Kees van Berkel and Martin Rem. VLSI programming of asynchronous cir-
cuits for low power. In Graham Birtwistle and Al Davis, editors, Asyn-
chronous Digital Circuit Design, Workshops in Computing, pages 152-210.
Springer-Verlag, 1995.

C. H. (Kees) van Berkel and Ronald W. J. J. Saeijs. Compilation of communi-
cating processes into delay-insensitive circuits. In Proc. International Conf.
Computer Design (ICCD), pages 157-162. IEEE Computer Society Press,
1988.

C.S. Wallace. A suggestion for a fast multiplier. IEEE Transactions on
Electronic Computers, EC-13:14-17, 1964.

Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design:
A Systems Perspective. VLSI Systems Series. Addison-Wesley, 1993.

Jyh-Ming Wang, Sung-Chuan Fang, and Wu-Shiung Feng. New efficient
designs for XOR and XNOR functions on the transistor level. IEEE Journal
of Solid-State Circuits, 29(7):780-786, July 1994.

Ted E. Williams and Mark A. Horowitz. A zero-overhead self-timed 160ns
54b CMOS divider. IEEE Journal of Solid-State Circuits, 26(11):1651-1661,
November 1991.

Ted Williams, Niteen Patkar, and Gene Shen. SPARC64: A 64-b 64-active-
instruction out-of-order-execution MCM processor. IEEE Journal of Solid-
State Circuits, 30(11):1215-1226, November 1995.

A. Weinberger and J.L. Smith. A logic for high-speed addition. In National
Bureau of Standards Circular 591, pages 3-12, 1958.

K. Y. Yun, P. A. Beerel, and J. Arceo. High-performance asynchronous
pipeline circuits. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems. IEEE Computer Society Press, March
1996.

J. T. Yantchev, C. G. Huang, M. B. Josephs, and I. M. Nedelchev. Low-
latency asynchronous FIFO buffers. In Asynchronous Design Methodologies,
pages 24-31. IEEE Computer Society Press, May 1995.

223

[YS89] Jiren Yuan and Christer Svensson. High-speed CMOS circuit techniques.
IEEE Journal of Solid-State Circuits, 24(1):62—70, February 1989.

[YYN*90] Kazuo Yano, Toshiaki Yamanaka, Takashi Nishida, Masayashi Saito, Kat-
suhiro Shimohigashi, and Akihiro Shimizu. A 3.8ns CMOS 16x16b multiplier
using complementary pass transistor logic. IEEFE Journal of Solid-State Cir-
cuits, 25(2):388-395, February 1990.

224

