
\t' t(. q "ll!

Fast Asynchronous VLSI Circuit Design Techniques

and their Application to Microprocessor Design

Shannon V. Morton, B. tr. (Hons.)

Department of Electrical and Electronic Engineering
The University of Adelaide
Adelaide, South Australia.

January 22, L997

Addenda

Section 2.2 - Asynchronous hardware

This thesis is focussed on practical asynchronous circuit design with an emphasis on micro-
processors, and therefore only those processors which have been designed to fabrication have

been included in the literature discussion. Fabricated test structures and coded microproces-

sors do not provide enough reliable data to justify their discussion in this context, although in

Section 8.1 a description of coded superscalar processors, as compared to the author's, is given.

Section 2.2.2 - AMULET I and II

The AMULET I design was the first generation attempt at implementing a sixth generation

commercial ARM6 processor, and was built with significantly less man-power and resources.

This makes comparisons between them difficult, and the performance gap of 5OVo should be

treated cautiously. The subsequent AMULET II processor has since demonstrated improved
performance over the ARM6.

Section 3.5 - The ECS representation

The ECS representation is intended to enable asynchronous circuits to be specified in a clear

and concise format which models the interaction of data and control wires. It is not intended as

a formal tool for synthesis, and as such has not been developed using formal methods. Instead,

an intuitive description of the representation has been presented based on the practical imple-
mentation of asynchronous circuits, as this is the major focus of the thesis.

Sectíon 4.1 - Algebraíc improvements of a TS

The simplifications described in this section are synonymous with those of boolean logic.

Section 5.3.1 - Dynamic logic

The nature of the data stream will also impact the power dissipation of a dynamic versus a

static gate.

Section 5.3.3.2 - Self-timed pseudo-nmos logic

This circuit has a fast completion detection time compared to the static logic tree, as evidenced

in Table 6.8. Compared to a typical dynamic gate however, it will be slow.

Chapter 6 - Self-tímed Architectures

The pseudo self-timed architectures presented in this chapter do not require additional safety

margins. The computation and completion paths are closely matched in layout, and an implicit
margin is already included in the handshaking overhead to compensate for any variations.

Errøta

Page 47,line l: "sinks input" should read "sink's input"

PageTT,line 2: "though" should read "through"

Page 86, line 3: "is" should read "are"

Page 99,line 29: "need" should read "needed"

Page l23,line I 1: "best the there" should read "best there"

Page 155,line 11: "blocks" shouldread "block"

Contents

Abstract

Declaration

Preface

Acknowledgements

List of Figures

List of Tables

1 Introduction

1.1 Advantages of asynchronous systems

1.1.1 Global communication

7.1.2 Data dependent computation times

1.1.3 Resilience to operating conditions

7.1.4 Reduced power dissiPation

1.1.5 Incremental improvements

1.1.6 Synthesis and verification

7.L7 Power spectrum

L2 Disadvantages of asynchronous systems

7.2.7 Control complexity

1.2.2 Testability

L.2.3 Area overhead .

1.2.4 Operating speed

1.2.5 Integration and software support

lx

x

xi

xll

xiii

xvi

1

2

2

3

Ð
t)

4

4

4

5

5

5

5

6

6

7

1.3 Asynchronous paradigms

1.3.1 Timing assumptions

7.3.2 Control signalling .

1.3.3 Signal encoding

1.3.4 Summary

7.4 Thesis outline

2 Related Work

2.I Synthesis and verification

2.I.7 Tangram

2.7.2 Communicating processes

2.I.3 Signal transition graphs (STGs)

2.7.4 STG related synthesis

2.7.5 Other contributions

2.2 Asynchronous hardware

2.2.1 Micropipelines and the CFPP

2.2.2 AMULET I and II

2.2.3 DCC error detector

2.2.4 Caltech microprocessor

2.2.5 Other contributions

2.3 Summary of related works

2.4 A need for speed

3 Event Controlled Systems (ECS)

3.1 Conventions

3.2 Event controlled elements

3.2.I Muller-C element

3.2.2 Merge gate

3.2.3 Send gate

3.2.4 Feed gate

3.2.5 Restore gate .

3.2.6 Until gate

3.2.7 Latching element

Design Representation

7

I

8

I
10

10

L2

t2

13

13

74

15

15

15

16

t7

77

18

18

18

19

2L

27

22

22

23

24

25

26

27

28

3.3

3.4

3.5

3.6

3.2.8 Delays and logic functions

3.2.9 Relative gate speeds

3.2.10 Micropipeline module exceptions

Some formalisms for gate representations

Analysis of methodologies

The ECS representation

3.5.1 Transforming signals into the temporal domain

3.5.2 ECS operators and temporal equations

3.5.3 Some ECS gate examPles

3.5.4 Comparative gate representations

3.5.5 Some example TS's and their corresponding circuits

3.5.6 Precedence and properties of temporal operators .

3.5.7 Interconnectivity of gates in ECS

3.5.8 Principles of error detection

Summary

Asynchronous Circuit Techniques

Algebraic improvements of a TS .

4.7.t Useless TE substitutions

4.7.2 Useful TE substitutions

4.7.3 Taking advantage of the typical scenario

Improving acknowledge times

4.2.I Example: sharing of a common unit

4.2.2 Example: data latching circuits

4.2.3 Comments on improving acknowledgements

Activating functional units

4.3.1 Conditionally activated parallel units

4.3.2 Generating a ôout event in the general sense

4.3.3 Generating a ðout event for exclusively triggered units

4.3.4 Splitting a tree of. select gates into individual feed gates

Reducing event path delays

4.4.I Moving metastability detection out of the event path

29

29

29

30

31

33

34

36

40

43

43

45

46

47

50

4 Fast

4.7

4.2

4.3

4.4

51

51

54.

55

55

56

59

60

63

64

64

66

68

69

69

69

lll

b

4.5 Summary

Asynchronous Pipelines

5.1 FIFO pipelines

5.1.1 Micropipeline 2P FIFOs

5.7.2 4P FIFO circuits

5.1.3 A fast ECS FIFO

5.1.4 Comparison of FIFO designs

5.2 Pipelines with processing delays

5.3 Precharge pipelines: general concepts

5.3.1 Dynamic Logic

5.3.2 Requirements of a PP for dynamic logic

5.3.3 Methods of completion and precharge detection

5.4 Decoupled 4P precharge pipelines

5.4.7 Implementations for PPo, PP P, and PP7

5.4.2 Performance comparisons

5.5 ECS precharge pipelines

5.5.1 PPa implementation

5.5.2 PPp implementation

5.5.3 PP7 implementation

5.5.4 Performance comparisons

5.6 Comparison of ECS and D4P PP structures

5.7 Summary

6 Self-Timed Architectures

6.1 Strict self-timing requirements

6.2 Designing and utilizing self-timed units

6.3 Adder Structures

6.3.1 Self-timed ripple carry implementation

6.3.2 Self-timed ripple select implementation

6.3.3 Comparison of ST adders

6.3.4 Pseudo self-timing (PST)

6.3.5 PST ripple carry implementation

F7'
lL)

74

75

75

76

77

79

80

82

83

84

86

90

90

91

92

92

93

94

95

96

97

98

99

101

102

103

105

106

107

108

lv

6.3.6 PST ripple select implementation

6.3.7 Comparison of PST and ST adders

6.4 Incrementer structures

6.5

109

110

L72

113

t74

115

116

tr7

119

t20

72L

727

r22

t24

t25

726

128

130

131

732

133

135

r37

r37

138

t42

747

148

I49

151

154

6.6

6.7

6.4.1 Self-timed incrementer

6.4.2 Incrementer performance

Comparator structures

6.5.1 Possible implementations

6.5.2 Comparator tree

6.5.3 Comparator performance

Multiplier structures

6.6.1 Exploiting self-timed operation

6.6.2 Simple partial product generation

6.6.3 Radix 4 Booth encoding for generating partial products

6.6.4 Recoding Booth's algorithm to improve performance

6.6.5 Implementation, floorplanning, and area usage

6.6.6 Performance and comparisons

6.6.7 Potential improvements

Summary

7 ECSTACI A, Pipelined Microprocessor

7.I Design considerations .

7.2 Instruction set architecture

7.3 Architectural overview

7.4 Processor sub-systems

7.4.7 Instruction decode

7.4.2 Operand fetch .

7.4.3 Adder, comparator, and stack processor

7.4.4 Arithmetic and logical unit

7.4.5 Order unit .

7.4.6 Registers and scoreboarding

7.4.7 Program counter

7.5 Testabilitv issues

v

7.6

7.7

7.5.7 Delay modelled VÍú bus

7.5.2 Interface delays

7.5.3 Scan testing . . .

Simulation results

7.6.7 Sub-system simulations .

7.6.2 Core simulation environments

7.6.3 General purpose instruction streams

7.6.4 Instruction streams for determining bottlenecks

7.6.5 Comparisons

Summary

. t54

. 155

. 155

. 156

. t57

. 158

. 159

. 161

. 762

. 164

166

. t67

. 167

. 168

. 169

. 170

. 777

. r73

. 774

. 775

. L76

. t77

. 178

. t79

. L79

. 180

. 181

. t82

. 782

. 183

. 183

8 ECSCESS: A Superscalar Microprocessor

8.1 Other asynchronous superscalar microprocessors

8.1.1 SCALP

8.1.2 Fred

8.1.3 Rotary pipeline processor

8.2 Characteristics of ECSCESS

8.3 Instruction set architecture .

8.4 General architecture

8.5 Implementation of the shore

8.5.1 Controlling RAW hazards

8.5.2 Controlling WAR hazards

8.5.3 Structure of the pre-FU unit .

8.5.4 Generating the return event to the sun

8.5.5 Switching network

8.6 Implementation of the sun and nùoons

8.6.1 Globe controller

8.6.2 PC controller

8.6.3 Branch moon controller

8.6.4 Stack moon controller

8.7 Implementation of functional units

8.7.1 AID unit

vl

8.8

8.9

8.10

8.11

8.L2

8.7.2 MEM unit

8.7.3 CMP unit

Floorplanning issues

8.8.1 Size of the ocean

8.8.2 Size of the switching network

8.8.3 A floorplan based on the minimum FU width

8.8.4 Floorplanning for a larger FU width

Simulation results

Comparisons .

Extensions and improvements

8.11.1 Incorporating interrupts

8.77.2 Exception handling

8.11.3 Reducing the ocean width for WAR and RAW hazards

Summary

. 184

. 184

. 185

. 185

. 185

. 186

. 187

. 188

. 190

. 191

. 191

. 193

. 794

. 195

196

199

203

. 203

. 203

. 204

. 204

. 204

. 204

. 205

. 205

. 205

. 206

. 206

. 207

I Conclusions

9.1 Further work

A F\rndamental Temporal Equations and Corresponding ECS Gates 2OL

B ISA

B.1

8.2

8.3

8.4

8.5

of the ECSTAC Microprocessor

Memory instructions

8.1.1 Two byte instructions

8.7.2 Four byte instruction

8.1.3 The unused mode

ALU instructions

8.2.I Two byte instruction (short mode)

8.2.2 Three byte instructions (long mode)

Branch instructions

8.3.1 One byte instruction - CALL

8.3.2 Two byte instructions - BRANCH .

Stack instructions

Special instructions

vlI

C ISA

c.1

c.2

c.3

c.4

c.5

Bibliography

of the ECSCES,S microprocessor

Branch instructions

Interrupt instructions

MOVE instruction

LDC instruction

FU instructions

C.5.1 Register unit

C.5.2 Arithmetic unit

C.5.3 Multiply, divide, and sqrt unit .

C.5.4 Shifter and logical unit

C.5.5 Comparator unit

C.5.6 Memory unit

C.5.7 Floating point units and co-processors

208

. 208

. 209

. 270

. 2t0

. 27t

. 2t7

. 272

. 2r2

. 273

. 273

. 214

. 275

2L6

vlil

Abstract

Over the past decade a variety of asynchronous synthesis techniques have been pro-

posed. The majority of these have been concerned with generating provably correct

circuits with high retiability, whereas others have focussed on producing circuits with low

po\ryer dissipation. However in taking such approaches the resulting circuits are usually

swamped with a large number of gates in the critical paths and are consequently inefñcienb

in terms of speed.

This thesis describes a collection of novel design techniques engineered for high speed

operation (such as fast pipeline control circuits and pseudo self-timed computations). In

addition, a new gate representation is proposed to better reflect their functionality in an

asynchronous domain. As an illustration of these design techniques two microprocessors

have been implemented:

o ECSTAC is styled as a linear pipeline with a load/store architecture and an 8 bit

data path and a 24 b\I address path. It employs fast pipeline control circuits and

utilizes some interesting asynchronous techniques for bypassing stages, controlling

data hazards, and register fetching. ECSTAChas been fabricated using ES2's 0.7 ¡-tm

DLM CMOS process and demonstrated a peak operating speed of 28 Mips.

o ECSCES^9 is structured to take advantage of self-timed data dependent compu-

tations and to employ functional parallelism. It has a 32 bit data path and can

provide for up to 32 single precision (16 double precision) functional units which

interact directly with each other, thus enabling out-of-order execution and global

results forwarding. Their operation is fully decoupled from branches and interrupts

to minimize stalling. Emphasis has been placed on maintaining a high throughput

to the functional units. It employs novel design techniques for rapid data hazard

detection between units, PC updating, and decoupled branch evaluation and branch

target determinalion. ECSCESS has been simulated in VHDL with delays compara-

ble to those of the 0.7¡,tm standard cell library used in ECSTAC, and demonstrated

a peak operating speed of 181 Mips.

IX

Preface

The author obtained his degree in Electrical & Electronic Engineering at the University

of Adelaide in 1991, graduating with first class honours as dur of the class. He then

enrolled in the degree of Doctor of Philosophy at that same university in 1992 of which

this thesis is the culmination. The author also took one year's intermission to work in

England on the EXACT project which involved a collaboration between a number of

European companies and universities investigating asynchronous systems.

S.V. Morton

January 22,7997

xl

Acknowledgements

I would firstly like to thank my partner in crime Sam S. Appleton with whom I've

worked on this project for the last few years, and who kept himself out of trouble by

designing a beastly fast cache system for the ECSTAC processor (so if it doesn't work,

it's his fault) as well as numerous other groovy control structures. He's been a great man

to bounce ideas off (as well as rubber balls) and a pretty good raver to boot. Thanks

Sammy.

A special thanks too to my supervisor, Mike Liebelt, who unlike his stunt double

"Andrew Denton" has not treated the project as comic relief. His guidance and expertise

has kept me on the bright, technicolour highway and out of the dark alleyed dead-ends

I'd have probably trod without him. He's also been great at getting us well-needed funds

for this research, as well as being very understanding of my nocturnal instincts.

I'd also like to thank those others who have come and gone along the way: Dr. Pucknell

for his pioneering work in this field and some rather humourous final year lectures; Andrew

Johnson for helping the project get off the ground to start with; Jungwook Yang for his

initial work in devising a suitable cache architecture; and all the final year students who

got the best projects ever in the known andu'nknown universes to work on.

Let me also thank the English connection. In particular Dr. Mark Josephs of South-

bank University in London who gave me the opportunity to work with their group for a

year (as well as giving me lots of pounds), and the whole AMULET crew of Manchester

University whose brilliance in this field is truly admirable. Even the fat one.

Lastly, Iet me thank my parents for leverything!, the guys in the HiPCAT and VLSI

Labs for letting me play groovy music and exchanging filthy comments, and the two most

wonderful women in the world (Debz and Joolz) for lots of other stuff...

S.V. Morton (always jammin')

xll

List of Figures

The clock skew problem and an alternative asynchronous protocol

The isochronic fork.

Four and two phase handshaking protocols. .

Signal transition and state graphs for the cgate.

A micropipeline architecture with a logic-level latch controller

Symbol, timing, and VLSI layout of a cAate.

Symbol and timing of a merge gate.

VLSI layouts for an ror gate.

Symbol and timing of a send gate. .

VLSI layouts f.or a latch

Symbol, timing, and circuit diagram of a feed gate.

Symbol of a select gate. .

Symbol and timing of a restore gate.

Circuit diagrams for the restore gat'e.

Symbol and timing of the until gate.

Two implementations of an event driven latch.

Representations of the cgate, send, and feed gales using STGs.

A typical transitioning sequence of a gate in ECS.

Waveforms for the send and feed gates in the voltage and temporal domains

Waveforms for the cgate and a latch in the voltage and temporal domains.

An ECS reconfigurable FIFO

A slice of the input circuitry for a discrete Fourier transform unit.

An illustration of a /event line.

Examples of EV errors for the send and rnerge gates.

1.1

L2

1.3

2.7

2.2

2

8

9

74

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.72

3.13

3.74

3.15

3.16

3.r7

3.18

3.19

16

22

23

24

24

25

26

26

26

27

28

29

32

36

4t

42

44

44

46

48

xlll

3.20 Determining a CV error using rise and fall times

3.21 Example of a potential glitch for the and gate.

49

49

76

77

78

78

80

81

83

86

87

88

4.7

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.r0

4.77

4.t2

4.73

4.t4

4.15

4.16

4.t7

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

Simple gated pulse circuit and its temporal specification. 52

Degraded gated pulse circuit and its temporal specification. . 53

Improved gated pulse circuit and its temporal specification. 54

An example system constructed in a SI environment. 57

An improved ECS version of the example system. 58

SI and ECS circuits for sharing a common unit. 59

Two SI micropipeline control structures for the data latching circuit. . . . 60

An ECS implemented SI version of the data latching circuit 61

Two optimized ECS implementations of the data latching circuit 62

Conditional activation of unit)/ in parallel with unit X. 64

Two SI implementations for generating a)out event 65

An ECS implementation for generating a)out event 66

A generalized conditional trigger structure using SI and ECS approaches. 67

Generating)out lor exclusively triggered units using SI and trCS approaches. 68

A halting circuit with metastability and its transfer characteristic. 70

An improved halting circuit with metastability and its transfer characterislic. 77

An Hspice simulation of the improved halting circuit with metastability. . 72

A micropipeline stage also indicating a fast-forward implementation. .

A simple four phase FIFO controller.

A decoupled four phase FIFO controller.

An ECS micropipeline and the state pipeline FIFO controller.

A typical delay-modelled pipeline.

A delay element for positive transitions only.

A general dynamic logic computational block.

A self-timed static logic method for generating cdone and pdone

A self-timed pseudo-nmos logic method for generating cdone and pdone. .

A method for generating cdone and pdone which closely models the worst

case pull-down time.

A delay modelled method for generat\ng cdone and pdone

xrv

89

5.12 Precharge pipelines implemented with a decoupled four phase controller

5.13 An a precharge pipeline implemented in ECS

5.14 A p precharge pipeline implemented in ECS

5.15 A 7 precharge pipeline implemented in ECS

91

93

93

95

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.t2

7.7

7.2

-tl.J

7.4

7.5

7.6

7.7

7.8

7.9

7.70

7.77

7.12

7.73

7.t4

7.75

A self-timed ripple carry implementation of an adder cell.

A self-timed ripple select implementation of an adder cell.

Self-timed and pseudo self-timed generalized views of an adder cell.

A pseudo self-timed ripple carry implementation of an adder cell'

A pseudo self-timed ripple select implementation of an adder cell.

The adder cell and validity detection used in the AMULET processor

A self-timed incrementer without unnecessary carry propagations'

A 2 bit comparator node and the generation of its initial inputs.

Symmetric and asymmetric tree structures for a full comparator.

Configuration of a self-timed multiplier. .

Two possible floorplans of a self-timed multiplier.

A low area implementation of a self-timed multiplier.

The general structure of the ECSTAC microprocessor.

A block diagram of the Otr stage.

Control circuit for routing the data from the ID into the OF stage.

Event bypass method for controlling register accesses

Logic bypass method for controlling register accesses.

Control circuit for the first stage of the ACS.

Control circuit for the second stage of the ACS.

Refetch control for the second stage of the ACS.

General structure of the low-latency FIFO used in the order unit.

A tag cell used in the register scoreboard

General architecture of the PC unit.

Interface circuitry for the DC and ACS write back phases to the PC

Control schema for the PC unit.

Register cell used for scan testing the outputs from each stage

A microphotograph of the ECSTAC microprocessor.

. 104

. 106

. 107

. 108

. 109

.111

. t74

. 118

. 118

. t26

. 727

. t29

. 135

. 138

. 139

. 74L

. 742

. 744

. t46

. 747

. t49

. 150

. 151

. 752

. 153

. 156

. 163

/xv

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.r4

General structure of the ECSCESS microprocessor.

General structure of the globe.

Control structure for governing RAW hazards.

Control structure for governing WAR hazards.

Control structure for governing the operation of the FU

Generating a return event to the sun from 32 FUs.

Overall control structure of the combined sun and moons system

General structure of the globe controller.

General structure of the PC controller.

General structure of the branch unit.

General structure of the stack unit.

A driver component used in the switching network.

Floorplans for ECSCES^9 based on two different widths of a FU'

Block diagram for processing interrupts.

773

t74

175

776

177

178

180

180

181

t82

183

186

187

r92

XVI

List of Tables

1.1 Dual-rail encoding of a binary value. 10

Relative gate delays in ECS assuming similarly sized transistors and loading. 29

Representations of the cgate, send, and feed gates in various other paradigms. 31

Representations of the cgate, send, and feed gates using Martin's CSP. ' . . 31

Order of precedence for the ECS operators. 45

Various properties of the ECS operators. 45

Relative speeds of three gated pulse circuits. ' ' ' . . 54

Relative speeds of five implementations of the data latching circuit. 63

Relative speeds of three implementations of a conditional triggering circuit. 66

Relative speeds of two implementations of a generalized conditional trig-

gering circuit. 67

Relative performance of six FIFO circuits. 79

Relative performance of four delay modelled pipeline circuits. 82

Three different design paradigms for precharge pipelines. 85

Comparison of precharge pipelines implemented with a decoupled four

phasecontroller. ..'.. 92

Comparison of precharge pipelines implemented using ECS. . 95

Comparison of the ECS and decoupled four phase precharge pipelines as-

suming 1ns computation, precharge, and detection delays. . ' . ' - 97

3.1

3.2

3.3

3.4

3.5

4.t

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

Conditions for generating the output carry of a full adder

Three states required for implementing self-timed logic'

State encoding of dual rail carry propagation signals.

State table for the dual rail carry propagation signals. .

98

100

t02

103

xvll

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.72

6.13

6.L4

7.7

7.2

l.J

7.4

7.5

7.6

7.7

ttz
174

119

t22

t24

t25

. t27

189

189

191

106

110

111

Comparison of three self-timed adders.

Comparison of three pseudo self-timed adders.

State encoding of the AMULET carry propagation signals.

Comparison of ECS and AMULET adders, detection mechanisms, and a

known fast adder

Simulation results of a self-timed incrementer.

Simulation results of. a 32 bit comparator tree.

Radix 4 Booth's algorithm for encoding partial products.

Combinations of two partial products which produce an output sum.

Recoding of Booth's algorithm to provide the partial products

Simulation results and comparisons of. a 32 bit signed integer self-timed

multiplier.

Instruction frequencies used in generating code for ECSCESS

Simulation speeds of ECSCE9^9 for varying DC times.

Speed comparisons of various superscalar asynchronous microprocessors.

4.1 Fundamental temporal equations and their corresponding gates

8.1 ALU instructions.

82 Branch instructions.

8.3 Special instructions.

C.1 Instruction formats.

C.2 Fundamental instruction set

Register accessing requirements of the fundamental instruction set. 140

Statistical information from Hspice simulations of each ECSTAC sub-system.157

Relative instruction frequencies used for the general testing of ECSTAC. . 159

Simulation speeds of ECSTAC for unit specific instruction streams. 159

Power estimations of each unit for a typical instruction stream. . . . 161

Simulation speeds of ECSTAC f.or bottlenecked instruction streams. . . . 161

Comparison of performance characteristics of various asynchronous micro.

processors764

8.1

8.2

8.3

201

205

206

207

xvlll

208

208

c.3

c.4

c.5

c.6

c.7

c.8

c.9

Interrupt instructions.

32 bit constants for the LDC instruction.

Proposed FU allocations for ECSCESS. .

Arithmetic instructions.

Multiply, divide, and sqrt instructions.

Logical and shifting instructions.

Comparator instructions.

209

270

2r2

2t3

273

2L3

274

XIX

Chapter 1

Introduction

¡q Vnn the last decade asynchronous systems have received a resurgence of interest

\-rf u-orrgst the scientific community [MBL+89a, FDG+94, Kes95]. This has largely

been spurred by the difficulties currently encountered in clocking large systems [DWA+92],

issues which will only complicate further as feature sizes reduce, die sizes increase, and the

use of multi-chip modules (MCMs) increases. Furthermore at the dawn of digital circuit

design a synchronous approach was chosen since it avoided the race and deadlock hazards

of asynchrony. However, automated techniques have since been developed which avoid

these hazards entirely, and in fact can now provide greater reliability in their asynchronous

synthesis [Mar86, vBS88].

Asynchronous systems also possess a number of properties which make them more ad-

vantageous for certain applications than their synchronous counterparts. However, given

that there are numerous approaches to asynchronous design which are as different from

each other as they are with synchronous approaches, the ability to utilize these advantages

varies. Conversely, an asynchronous implementation also introduces difficulties which are

avoided in a synchronous one, and again the degree of disadvantageous behaviour exhib-

ited by each of the asynchronous paradigms can be significantly different.

It is therefore the focus of this chapter to discuss the relative merits of both asyn-

chronous and clocked systems, as well as the relative merits of the many different

paradigms which can be used in the design of asynchronous circuits.

1

1.1 Advantages of asynchronous systems

1.1.1 Global communication

In a fully asynchronous systems there is no global clock routing. Instead, the control

signalling between blocks is effected by localized communication employing a form of

request/acknowledge (handshaking) protocol. The task of routing these localized com-

munication signals is significantly less arduous than that of global routing.

Furthermore, in routing a global signal one must be wary of the effects of clock skewing,

which can cause some parts of a system to latch newly arriving data rather than the old

data from the last clock phase (Fig.1.la). For large systems this phenomenon requires

special attention [DWA+92]. In an asynchronous system however the signalling protocol

ensures that no part of a system begins computing new data until all subsequent stages

which use that data have latched it (Fig.1.1b).

0

rl

drivers &
wlre

drivers &
wire delays

j-L

Processing-between Processed

stages (delay = tf)

Unit I

Unit 2

at source

ack

'f}
O¡2

(u) (b)

Figure 1.1: In (a) to prevent system failure the delay between t2 and ú-1 must be less than the

fastest processing time ú/. In (b) Unit 1 cannot process new data (issue req) until Unit 2 has

latched the data from the previous phase (issued ack).

Global clock signals are also required to drive alarge number of gates, and to produce

fast clock edges at these gates requires many driver stages which occupy a lot of silicon

area ([DEC88] devotes approximately 30To of its die to this task). Cascading these driver

stages to different parts of the system also complicates the skewing problem. Removing

the global clock then potentially reduces the die size of a chip (however this must be

countered by the silicon increase in providing the additional control for handshaking).

2

Unit 2

L.L.2 Data dependent computation times

Some functional units (such as adders, comparators, and incrementers) employ some

degree of signal propagation in computing their result, and as such the computation time

of that unit is dependent on the values of its source operands. For example, an incrementer

with random input data will have no carry propagation 50% of the time (for data with

an LSB of "0"), a one bit propagation 25% of the time (for data with an LSB of "01"),

and so on, resulting in an average propagation length approaching only 1 bit as the data

width approaches infinity. This is significantly shorter than the worst case propagation

delay which is equal to the data width!

Self-timed computational units can therefore utilize this property in their architecture

and provide a completion signal (such as req in Fig.1.1b) as soon as the computation is

complete. Synchronous systems cannot utilize this property as the computation time for

any one stage is fixed by the global clock period. Furthermore, this period rnzsú be long

enough to account for the longest possible delay of the slowest stage of the entire system,

which could be significantly longer than is necessary elsewhere.

Note however that in these instances it is the overall latency of the computation which

is improved, not the throughput. This is because in terms of throughput, the rippling

computation can be pipelined down to an arbitrary propagation length, to the extent

that a synchronous implementation can out-perform an asynchronous one (due to the

handshaking control overhead of the latter). However in terms of latency, the worst case

scenario must still be accommodated by the synchronous systern, which is only made worse

by pipelining because of the larger number of stages required. This is especially so for large

data widths, such as the 512 bit word size used in cryptography. By reducing the latency

of computation through self-timed asynchrony, processor delays such as data hazards,

branch target computations and program counter incrementing can all be improved.

1.1.3 Resilience to operating conditions

As a further extension to data dependent operations, self-timed asynchronous computa-

tions are also more resilient to operating conditions than are their synchronous equiva-

lents. Factors such as temperature, supply voltage, and process spread all serve to alter

the computation times of the same operation between chips (or even between different

3

locations on the same chip), so that the clock period must have an additional safety mar-

gin to encompass the vast majority of deviations. Those outside of this will not meet

specification, and those within it will not be running at their maximum speed.

With self-timed logic the completion signal from any one stage is, like the computation

itself, dependent on the operating conditions. Therefore a slower operating point will not

cause failure, and a faster operating point will, in contrast to the synchronous case,

improve the speed of the chip.

L.L.4 Reduced power dissipation

Power reduction in an asynchronous system results from the fact that inactive units do not

generate any logic transitions and therefore have no power dissipation due to switching

currents. In comparison, a synchronous system will have a significant portion of its power

dissipated by the conti,nually active clock pulses which drive a very large capacitance.

Techniques such as clock gating can reduce this considerably, however it is infeasible to

clock gate every hierarchical element of the design (due to the increase in area, skew,

and complexity) to approach that achieved implicitly with asynchrony. With the use

of dynamic logic, the removal of unnecessary precharge and activation phases can also

further reduce power dissipation in the asynchronous case [FES94].

1.1.5 Incremental improvements

The fact that a synchronous chip must supply a clock period at least as great as its

slowest component means that a new, faster design for some other part is redundant (in

terms of clock speed) unless the slowest component(s) can also be improved (which may

well require a complete re-design of the chip). Introducing a faster component into an

asynchronous system however can in fact produce an improvement in the overall speed,

since this is not purely governed by the slowest module as in a clocked design.

1.1.6 Synthesis and verification

Control circuits for asynchronous systems can be readily specified in a formal nota-

tion, such as transition equations [Puc90, Appendix 2], signal transition graphs (STGs)

4

[ChuSTa] and trace theory [Ebe89]. Furthermore, VLSI programming languages for asyn-

chronism such as Tangram [vBKR+91] and CSP [Mar90] have recently emerged as a

means for an even higher level of design abstraction. These formalisms enable the rapid,

automated synthesis of asynchronous control circuits which can also be formally verified

to prove their correctness. Consequently, asynchronous systems can also be more reliable.

I.I.7 Power spectrum

Synchronous systems have a power spectrum dominated by multiples of the clock fre-

quency, whereas asynchronous systems approximate a whi,te no'ise spectrum. This is

especially advantageous for microwave applications, where the integration of logic onto

an antenna is required to have a negligible effect on the antenna characteristics. Further-

more, a self-timed asynchronous system is less susceptible to low-level electro-magnetic

interference (EMI), because the propagation delays introduced by this will only slow down

an asynchronous system |LZB\2], but can cause failure in a synchronous one lCZ94).

!.2 Disadvantages of asynchronous systems

L.2.L Control complexity

Although the problems associated with global clock routing are removed in an asyn-

chronous system, other problems associated with the localized communication strategy

are introduced. In particular, each individual stage of the design must have its associated

control schema explicitly designed and tested to ensure its correct operation (this is in

addition to the testing of the data path). Furthermore, each hierarchical composition of

these stages must also be thoroughly tested. A synchronous system requires only one

equivalent condition (in theory): that the clock period be greater than the stage delay.

L.2.2 Testability

If a synchronous design doesn't work because the clock frequency is too high then it's a

simple matter to reduce this post-fabricati,on to achieve correct functionality. This cannot

be done with an asynchronous system since no global control signal exists (techniques for

mimicking this approach however are discussed in Section 7.5.1).

5

Asynchronous circuits are, by virtue of their greater number of interacting control sig-

nals, more susceptible to races, deadlock, and metastability than are synchronous circuits.

Therefore the incorporation of testability is not only a more arduous task, it may also

excessively reduce system speed, increase area, and may even create additional circuit

hazards. Furthermore, many commercial test approaches rely on the fact that a finite

number of clock pulses will occur between data inputs and data outputs, whereas in a

self-timed system this is an unknown quantity, and can be especially problematic when

integrated into a synchronous environment [WPS95].

The use of partial scan testing has reportedly been used with success in some ap-

plications of asynchronous logic already |HBB95, K895, Ron94], as have other aspects

of asynchronous gate-level testing [8R95, Haz92). However the use of built-in self-test

(BIST) techniques, which are used extensively in synchronous systems, remain untouched

in the realm of asynchrony.

I.2.3 Area overhead

Although asynchronous implementations reduce silicon area by the removal of clock

drivers, some asynchronous paradigms (in particular, dual rail logic) require approxi-

mately twi,ce as many gates to be placed in the data path (incorporating both data and

timing information with each bit). This is a considerable increase and a serious detriment

to this particular paradigm. Furthermore, for small systems the area saved by removing

the clock drivers (which in such cases may be minimal) could be overridden by the area

introduced by the handshaking control.

L.2.4 Operating speed

In an asynchronous system there is a communications overhead which is required to

implement handshaking between stages. This overhead can be quite excessive (in terms

of the number of gates in the critical path) for a system with complex interconnectivity,

and in many instances is a limiting factor to the overall system speed. A synchronous

system however is only limited by the data processing delay of its slowest stage which,

by careful design, can be made faster than the handshaking overhead of an otherwise

asynchronous implementation.

6

I.2.6 Integration and software support

Another factor that discourages the use of asynchronous logic is that the market is over-

whelmingly dominated by synchronous systems. Therefore integrating an asynchronous

chip into such an environment requires the additional overhead of asynchronous to syn-

chronous interfacing lCZ94, AML95b]. There is also a plethora of software programs

geared towards easing the design of synchronous systems, and very little targeted for

asynchrony.

1.3 Asynchronous paradigms

The pro's and con's of asynchrony outlined above give an indication of its more important

properties, and if the advantages can be utilized without significant detriment from the

disadvantages, then the topic of asynchrony becomes worthy of pursuit.

To this end it is imperative to investigate the range of asynchronous control schemas,

signalling protocols, and operating modes which are available, particularly since not all

paradigms share the same degree of advantageous (and disadvantageous) behaviour.

1.3.1 Timing assumptions

There is essentially a choice of three timing-related models which may be applied when

designing asynchronous systems. A. delay-i,nsensi,t'iue (DI) model assumes that both the

gate delays and the wiring delays are unbounded. This model is the most robust as it

implies correct functionality regardless of both the place and route schema used and the

drive strength of the gates themselves. However it is also the most expensive in terms of

area and communication overhead, and in practice cannot be used without compromising

the assumption of wire delays. In particular, the isochronic fork [Mar86] is often tolerated

(albeit in contradiction to the DI assumption) as shown in Fig.1.2. Here, the delay

between nodes ,4 and B is assumed equal (but still unbounded) to the delay from node ,4

to C.

A DI model with an isochronic fork is often dubbed quasi-delay-insensitive (QDI).

However, this is in essence nothing more than a restrictive class of the speed i,ndependent

(SI) model, whereby gate delays are still assumed to be unquantifiable, but the wiring

7

A
fork

Figure 1.2: The isochronic fork.

delays are assumed to be zero. The SI model is better suited to practical circuit design

than the DI model since a wider range of gates can be employed'

Finally, the least restrictive model assumes that the gate delays have an upper bound

and is dubbed the bounded delay (BD) model. This is the assumption used in synchronous

designs. It is less robust than the other two models and is therefore generally unsuitable

for methods of formal synthesis and verification. In practice however it is the most realistic

approach to use, since gate delays can in almost euerA circumstance be reliably quantified.

As is evidenced by the uast anay of synchronous chips, the BD model can be employed

with relative ease to design functional, reliable circuits.

There are also two modes of operation which may be used with these timing models

which specify the restrictions on the environment (that which supplies the stimulus to the

design). The fundamental (FM) mode of operation requires that after an input change no

further inputs be applied to a system until all its internal signals have settled, whereas

Lhe input-output (IO) mode enforces no such restriction. A fundamental mode circuit is

easier to synthesize because it's guaranteed to be in a safe state when each new input is

applied (thereby simplifying hierarchical composition), whereas an IO component requires

a careful evaluation of each individual instance to meet this criterion. The IO mode

however provides for greater design flexibility by being less restrictive on the environment's

input signalling.

L.3.2 Control signalling

There are three main methods of effecting the handshaking protocol of Fig.1.1b. The first

approach is dubbed four phase (4P) signalling and requires two control wires (one for req

and one f.or ack) operating as shown in Fig.1.3a.

The rising edge of req (Areq) signifies to the receiver that its data is valid, and once

the receiver has finished with this data it issues Aack, at which time the sender's data

8

req

ack

data

req

ack

data

One complete cycle i Next cycle One complete cycle i i Next cycle i

(u) (b)

Figure 1.3: (a) A four phase handshaking protocol, and (b) a two phase protocol. Solid arrows

indicate the sender's actions, and dashed arrows indicate the receiver's.

may become invalidated. To then complete the 4P signalling, the sender issues a falling

edge on req (yreq) which is then followed by the receiver issuing yack. Similar schemes

exist in which the data validity cycle is spread across different phases of the 4P signalling

(for example, from Areq to Yack).

A. two phase (2P) signalling protocol as shown in Fig.1.3b also requires two wires,

and is identical to the 4P protocol until the receiver issues Aaclc. In contrast to the 4P

protocol, this then completes the handshaking cycle, and a new cycle is initiated when

Vreq occurs. Consequently the signalling direction is irrelevant in a 2P environment,

and only one data validity scheme is possible. Although in one sense a 2P protocol can

achieve a higher speed then a 4P protocol by removing the redundant return-to-zero (RTZ)

phase, the control circuits necessary to implement the handshaking are more complex and

therefore slower. In [DW95] it was shown that, in a speed independent model, 4P pipeline

circuits actually run faster than 2P circuits.

Finally, in [vBB96] a method 1r4/as proposed for executing a 2P handshaking protocol

with only one wire, driven high by the sender and low by the receiver. This technique is

relatively new and remains to be thoroughly investigated.

1.3.3 Signal encoding

Two different forms of signal encoding are predominant in asynchrony. The frrst is dual

roil (DR) encoding, in which three data states are encoded onto two wires as in Table 1.1.

This approach enables timing (validity) to be coupled with each bit of data and therefore

allows accurate self-timed computations to be devised. It guarantees that a completion

signal can only occur from a unit after the data is valid: a property that is often exploited

in SI and DI synthesis. However, a doubling of the data width (which results from 2 wires

9

being needed per bit) and an increase in gate complexity means that approximately twice

the area of a synchronous implementation is used.

Wires State
encodedw0 w1

1

1

0

0

1

0

1

0

not valid
logic 1

logic 0

error

Table 1.1: Dual-rail encoding of a binary value

Singte røzl (SR) encoding is used almost universally in synchronous systems, in which

one wire is used for each binary data value and timing information is decoupled. In an

asynchronous system, this timing is then represented by additional handshaking signals

to which the data information is bundled. This approach is less suited to formal methods

as it can only approximate data validity (and therefore prevents self-timing), however its

area usage is significantly less than with dual rail encoding.

L.3.4 Summary

Given the range of asynchronous implementations available it's not surprising that dif-

ferent styles are used for different purposes. For example, SI and DI models are popular

amongst formalists because of their mathematical provability and are also commonly used

in the design of complex systems (where automation from a set of rules is time saving).

Single rail encoding is often used in the bulk of designs except where aspects of self-

timing are to be exploited, when dual rail encoding is used (note that a conversion and

area penalty is sometimes then suffered). BD models are often used in engi,neered de-

signs (or as a form of post-processing to a synthesized SI circuit), for which gate level

optimization techniques can be incorporated to increase system performance.

L.4 Thesis outline

This chapter has presented an overview of the merits of asynchrony, as well as introducing

the many different design methods which can be used to implement asynchronous systems.

The following chapter will present a summary of the most important contributions to

10

asynchrony, focussing on their paradigms, goals, results, and significance. The focus of

the author's event controlled systems (ECS) methodology will also be outlined.

Chapter 3 will present an asynchronous library of gates and different approaches to

their representation. The ECS representation developed by the author, which is intended

to simplify and properly reflect asynchronous circuit behaviour, will also be introduced.

Aspects of error detection based on this representation will also be given.

Chapter 4 will present a number of asynchronous design techniques which should

be used in the design of high speed circuits, and chapter 5 will present some very fast

pipelining circuits for use with both static and dynamic logic. Chapter 6 will introduce

some novel self-timed design techniques and architectures as well as a new single rail

approach to self-timing, dubbed pseudo self-ti,ming (PST).

Chapter 7 will detail the design of a pipelined asynchronous processor called EC-

STAC, including its ISA, high level implementation, control structures, test strategies,

and simulation and fabrication results. Chapter 8 will likewise detail the implementation

of another processor ECSCES$ aimed at increasing parallelism and fully utilizing PST

techniques. Both of these chapters will compare the performance of these ECS processors

against others previously reported.

Chapter 9 will then present conclusions from the work presented in this thesis as well

as some ideas on how it can be extended for future applications.

11

Chapter 2

Related Work

has been a vast amount of research on asynchlonous systems design, and to

review every aspect of this discipline is impractical and unnecessary, since excellent

comprehensive reviews can be found in [Pee, MU, Hau95, GJ90]. Only a summary of the

most important contributions which have been made to the field is therefore presented in

this chapter, with an emphasis on those aspects of asynchrony which have been tackled

by various research groups, and why their results have been significant.

From such a review it should be possible to determine those areas of asynchronous

systems design which have proved inferior when compared to clocked systems. This will

then indicate directions for further investigation from which the focus of this thesis will

be drawn.

2.L Synthesis and verification

The applicability of asynchrony to formal methods has spawned a vast network of research

groups who have endeavoured to harness this property into algorithms for both synthe-

sis and verification. Synthesis begins with a high-level system specification and reduces

this through various processes into a circuit-level implementation (this also incorporates

aspects of verification at the high-level). Verification often begins with a low-level spec-

ification of a system (usually incorporating a SI or DI model) and then determines the

locations of potential hazards.

t2

2.L.L Tangram

Tangram [vBKR+91, vBR95] is a high-level programming language basecl on Hoare's

communicating sequential processes (CSP) [HoaS5] and Dijkstra's guarded command lan-

guage [Dij76]. A specification in Tangram is similar to a conventional programming model,

enabling procedures, loops, conditional execution, sequentiality and parallelism, etc.

A Tangram program is translated into a set of handshalce components which provide

an intermediary system description prior to gate-level synthesis [v893]. Handshake com-

ponents communicate along locali,zedrequest and acknowledge channels initiated by active

and passive elements respectively. Some examples of handshake elements include a JOIN

(to synchronize two or more concurrent processes), a SEQ (to enable signal transfers

between passive and active components), and a VAR (to store the value of a variable).

Compilers have been devised by Philips which translate these handshake circuits into

different asynchronous targets, including both four and two phase single and dual rail

circuits. Their design approach provides for a very fast and reliable compilation of asyn-

chronous circuits, and they have used it to design a number of variations of asynchronous

error detector chips for digital compact cassette and CD players (see Section2.2.3). Their

work has shown conclusively that an asynchronous circuit can dissipate significantly less

power than a synchronous equivalent, however their automated approach tends to result

in a large number of gates in the control path, and is therefore unlikely to be of benefit

in the design of high speed circuits.

2.I.2 Communicating processes

Alain Martin [MarS6] has also devised a high-level programming language similarly based

on the work of Hoare and Dijkstra. It also translates the original specification into a

series of handshaking elements and then decomposes these (using techniques akin to trace

theory [DilSg]) into simple conditions which can be used to construct the final gate-level

circuit. The target paradigm is however restricted to a 4P QDI implementation, which

demands a large number of gates in the control path and is therefore unlikely to be of

benefit for high speed circuit design. A number of systems, including an asynchronous

microprocessor) have been fabricated using this synthesis technique (see Section 2.2.4).

13

2.L.3 Signal transition graphs (STGs)

STGs are interpreted Petri Nets whereby places become nodes, transitions become arcs

linking the nodes, and the number of tokens in a place is limited to one. They were first

developed by Chu [ChuSTb] and have since gained considerable popularity amongst the

asynchronous community [PG93, HC95, JPKJ95] as a verifiable specification for SI circuit

synthesis.

As an example a STG specification of a Muller C element (or cgate for short) is shown

in Fig.2.1a, where the symbols * and - indicate positive and negative transitions of

the associated variable. The cgate is often dubbed lhe AND gate to events, as it only

generates an output event when transitions on both of its inputs (in the same direction)

have occurred. Techniques exist for verifying that a STG meets the required criterion for

a decomposition into a hazard-free SI circuit [Chu87b].

00

a+

\r/-
z+ 110

lll

Z- ll

(u) (b)

Figure 2.1: (a) A signal transition graph and (b) a corresponding state graph for the cgate,

with inputs ¿ and b and an output z.

A STG is first contracted into a subset of STGs for each variable, and these are then

transformed into a state graph with unique state assignment (such as in Fig.2.lb) for

synthesizing the logic function, which for the cAate is: z : a.b + z(a + b).

t4

2.L.4 STG related synthesis

Myers [MM93] has extended the STG synthesis routine to incorporate timing information

onto each arc. This enables timing-redundant arcs to be removed from the STG which

subsequently reduces the complexity (and increases the speed) of the synthesized circuits.

A group at the University of Berkeley have produced an extensive design environment

called SIS [SSL+92] which incorporates the use of STGs as well as other specification

methods. SIS provides an X-interface for STG based synthesis and incorporates a range

of optional optimization programs to improve the final circuit's performance (through

logic minimization and timing assumptions).

An independent extension to the graphical specification of STGs is called Change

Diagrams (CDs) [KKTV92]. CDs enable an initial input phase of the graph to be specified

prior to the cyclic phase required by STGs. Furthermore, the arcs between nodes are

given additional properties which enable AND and OR transitions as well as the ability

to remove pending events. These extensions improve upon the restrictiveness of a STG

specification.

2.L.5 Other contributions

Josephs and Udding UU90a] have devised an algebraic approach to the design of DI, SI,

and handshake circuits which has been used to synthesize some simple systems (such as

a toggle and a FIFO), however the algebra is rather cumbersome even for simple gate

specifications. Ebergen [Ebe89] has provided a synthesis technique based on trace theory

specifications. His approach has been used to generate 2P, dual rail circuits [EP92] which

are extremely area intensive. For example, a simple half-adder cell requires over 190

transistors [Hau93] in its implementation.

2.2 Asynchronous hardware

The majority of asynchronous research groups have focussed their attention on the topics

of synthesis and verification. Consequently there are relatively few examples of fabricated

asynchronous chips, and those that have been done are mostly small, experimental design

projects. However there have been a few significant milestones in this area.

15

2.2.L Micropipelines and the CFPP

The micropipeline design style was first introduced by Sutherland lSut89], and has since

been used by a number of research groups as a basic architecture for pipelined processor

implementations [KdSRA91, FDG+93, CL95]. Micropipelines use a 2P, speed indepen-

dent, bundled data protocol to control the activity between adjacent stages (utilizing the

cgate) and incorporate dedicated event controlled latches between stages (Fig.2.2a).

c P

enable

Data
Out

Data
lnData

In Out

PdCd

(u)

Figure 2.2: (a) A simple micropipeline architecture with delay-modelled processing between

stages, and (b) an alternative controller for use with smaller, Iogic-driven latches.

A selection of macromodules exist which enable more complex designs to be con-

structed. Examples of these are a selecú, which steers input events to one of two output

events depending on a governing control signal; a call, which enables two separate event

streams to access a common unit; and a toggle, which alternately steers input events to

its two outputs. As an example construction of these units, an alternative latch controller

for the event driven latch is shown in Fig.2.2b. The enable signal of this design can be

used to interface to conventional logic-driven latch designs, which are significantly smaller

than the event-driven latch (for which various implementations are given in Fig.3.11).

An extension to the micropipeline is the counter-flow pipeline processor (CFPP)

[SSM94], which is a micropipeline style architecture devoted to processor implementa-

tions. The fundamental difference is that the CFPP enables both the forward and reverse

flow of information through its pipeline (for instructions and data results respectively),

thus reducing the need to stall for register write-backs. An issue against the CFPP is

that arbitration between flows is needed at every stage (which increases the cycle time),

and the data path is large (requiring a lot of latches per stage)'

(b)

U
rìl
oJ

O

J

O
rl
o¡

cPd

Event

Latches

cdP

Driven

cPd

Event

L¿tches

cdP

DELA

Logc
Level

16

2.2.2 AMULET I and II
The AMULET group at Manchester University developed an asynchronous microprocessor

[FDG+93, Pav94] based on the (almost entire) ISA of an already commercial processor,

the ARM6. Their processor, AMULET1 utilized a 2P micropipeline style architecture

and incorporated some interesting design techniques for register-locking and interrupt

handling. In implementing the ARM6 asynchronously the group focussed on exploiting

the properties of low power consumption.

Although the AMULET1 design failed to improve upon the synchronous ARM6 im-

plementation in all aspects, it did demonstrate the feasibility of implementing complex

systems asynchronously. Furthermore, this was the first asynchronous attempt at a sixth

generation synchronous machine, and as such the fact that their performance (in most

critical areas such as power and speed) came within a factor of two is encouraging.

The AMULET group have recently completed a 4P implementation of the ARM6

processor called AMULET2, which has provided almost double the speed of the 2P mi-

cropipeline approach (using a SI control model). Branch prediction and caching have

also been incorporated, along with more refined low-power techniques, to improve perfor-

mance.

2.2.3 DCC error detector

The group at Philips who devised the Tangram VLSI programming language have also

used this to generate a number of asynchronous chips. In particular, an error detector

chip for a digital compact cassette player [vBBK+9a]. The group have targeted their

designs for low power dissipation, which is convenient since the DCC chip has a very slow

speed specification.

Since the first "first-time-right" chip was fabricated the designers have aimed at im-

proving the area usage, testability, and portability of their approach. In particular, the

initial dual rail design has been re-implemented using single rail data [vBBK+95], and the

asynchronous cell library has been implemented using a generic gate library to facilitate

technology remapping.

They have integrated this chip into a DCC player and have demonstrated its func-

tionality. The SR chip consumes approximately 20% of the power of its synchronous

equivalent with only a 20% area overhead.

t7

2.2.4 Caltech microprocessor

The VLSI programming language developed at Caltech has been used to design a simple

16 bit asynchronous RISC-style microprocessor [MBL+89a,]. The language is targeted

primarily at producing a verifiably correct design, and the chip was reported to operate

(at 5V supply) at 18 Mips drawing 45mA of current [MBL+Sgb]. Being a QDI design the

chip exhibited a high tolerance to operating conditions such as temperature and voltage.

2.2.5 Other contributions

A self-timed floating-point divider has been implemented using a SI model in [WH91],

which has also been incorporated into the commercial SPARC64 processor reported in

[WPS95]. Current-sensing has been investigated by [DDH91, GJ95] as an alternative

means of signifying completion detection in an asynchronous pipeline, and numerous

gïoups have worked on the design of sub-systems such as buffers [CL86, YHJN95] and

adders [Gar93, DA93]. Some work on processor design has also been done at the archi-

tectural level in [ECFS95, End95a], and the author reports on the implementation of an

asynchronous FFT and a high speed microprocessor in [MAL94, MAL95].

2.3 Summary of related works

A lot of the work done in asynchrony has been in the area of synthesis and verifica-

tion, and in particular using the SI and DI models. Furthermore the trend recently has

shifted from 2P micropipeline style architectures to 4P pipeline control (which under such

paradigms has been shown to generate smaller and faster circuits). There has also been

a shift towards using single rail data with combinational logic between stages (as in a

synchronous machine) rather than dual rail data, and then bundling this to SI control

with the computation time between stages modelled as a lumped delay (as in Fig.2.2a).

This approach compromises the SI control by assuming a BD model for the computational

delay only.

The focus of most hardware groups has been on utilizing asynchrony for low power

consumption, with system speed as a secondary concern. Aspects of testability and self-

timing have also been of interest to these groups.

18

2.4 A need for speed

In considering the research groups who are involved with hardware design it is evident

that asynchronous logic has in fact demonstrated improvements over synchronous designs

in the area of power consumption. When specific efforts are made towards implementing

low-power circuits, these improvements are substantial, however it seems also that power

reductions can still be achieved even without a significant focus on this.

In contrast, asynchronous designs have not been shown to exhibit any marked speed

improvements over synchronous designs (except for a few rare instances). In fact, the con-

verse is generally true. The bulk of asynchronous hardware has been speed limited by the

control overhead and has therefore exhibited a notably slower speed than could be imple-

mented synchronously. This issue is a severe impediment to the adoption of asynchrony,

since processor speed is often a more important issue than power consumption.

It is therefore of interest to devise techniques which enable faster asynchronous control

circuits to be implemented. In this quest it is hoped that the speed deficit of asynchrony

will be reduced, perhaps even to the point in which the speed surpasses a corresponding

synchronous implementation for certain architectures. Furthermore, it is anticipated that

the additional benefits of low power consumption will still occur in an asynchronous design

even without explicitly designing for it. This then is the focus of this thesis: to devise fast

asynchronous control systems which, if needs be, compromise other issues such as power

dissipation.

The question which must then be asked is which of the asynchronous paradigms and

design approaches presented thus far is most suited to the design of high-speed systems?

To implement high speed circuits one must have a great deal of control over the low-level

implementations. Consequently the synthesis techniques available are unsatisfactory, as

they are restricted to a given set of rules and building blocks (such as handshake elements).

The ideal behind synthesis \s to shelter the designer from low-level design aspects and deal

only with the high-level architecture (such as inter-connectivity and system functionality)

and this is in direct contrast to the requirements for high speed circuits. Although post-

optimization techniques exist for many synthesis approaches they still do not provide for

complete control over the low-level implementation and are limited in their scope.

It is of course possible to further optimize synthesized circuits at the gate level. This

19

may involve incorporating dynamic logic, removing unnecessary gates based on timing as-

sumptions, re-implementing complex structures etc., but it is still to be expected that the

initial synthesis routine could be bettered by an engi,neered approach whereby all aspects

of the design process are controllable and more implementation options are available at

all stages of design.

It seems necessary then to abandon formal synthesis techniques and concentrate on

devising engineered control circuits, since these provide for greater design flexibility. Con-

sequently the asynchronous environment considered by the author will in general be a

bounded delay system operating in the IO mode, as this is the least restrictive model

available.

A single rail encoding of the data stream will also be used for a number of reasons.

Firstly, the gate complexity of single rail circuits is simpler than for dual rail which should

therefore result in faster circuit speed, and the area usage is less which therefore reduces

cost. Furthermore, the familiar gate structures used in clocked designs may be employed

which facilitates the use of current standard and generic cell libraries.

The last issue to resolve then is whether or not to implement 4P or 2P control circuits.

Now although 4P has been demonstrated to be faster than 2P for speed independent

circuits, the same is not necessarily true if bounded delay assumptions are used. This is

because low-level engineered circuit design has not been extensively applied to both 4P

and 2P approaches to enable an accurate comparison. It has been quoted that a lot of the

speed reduction in 2P is due to the greater gate complexity, however in a BD model many

of these gates can be non-acknowledged (given timing assumptions) and can therefore

be removed from the critical path. The same can be said of 4P of course, however the

addi,ti,onalRTZ phase must also be accounted for which complicates the design process and

reduces the number of gates which can be non-acknowledged. The 2P design paradigm is

therefore used which, as will be shown, can result in faster circuit implementations than

is possible in a 4P paradigm.

To summarize then, the design environment considered by the author to facilitate

high-speed circuits is a two phase, single rail, bounded delay, bundled data, input-output

model.

20

Chapter 3

Event Controlled Systems (ECS)

Design Representation

ITOR engineering asynchronous control systems one must have both a li,brary of basic

J
"t.-ents

for circuit composition as well as a means of representing the functions

of these elements for verification. Now although these elements can be represented in

terms of binary logic equations (as per the cgate of Fig.2.1), this may not be the best

representation to use for simplicity and descriptiveness.

This chapter will first outline the basic set of event controlled gates used by the

author in the composition of asynchronous circuits, of which many are synonymous to

the basic elements of micropipelines [SutS9] but with some significant exceptions. These

exceptions arise from a new gate representation which is explained in Section 3.5 and

which is considered by the author to best reflect their functionality. Techniques for circuit

verification and error detection will then be presented.

3.1 Conventions

In the gate descriptions to follow a number of conventions have been adopted. Firstly,

a distinction is made between event lines, which are used to effect the 2P communica-

tion protocol and for which only the \og\c transiti,ons are relevant, and data lines, which

transmit conventional binary information and whose logical state is of relevance. Con-

sequently, the event lines are drawn diagrammatically with arrowheads and data lines

without. Similarly, the name of an event Iine is prefixed with either a "d-" ot a u0'

2T

symbol, to differentiate them from data lines.

Secondly, primed events are indicated on the gate symbols by a filled dot, and in a

temporal specification (described in Section 3.5) with an overline. These are events which

ãre assurned to have occurred at initialization and therefore set the initial state of that

gate. A primed event equates to an inversion of the signal at the gate input, although in

some instances an alternative gate implementation is used.

3.2 Event controlled elements

The range of basic event controlled gates used in the composition of asynchronous circuits

is described below. To further facilitate their understanding, each gate description is

accompanied by a timing diagram, symbol, and one or more VLSI schematics or circuit

diagrams. Relevant variations from the micropipeline gate library are also discussed.

It is important to note that a number of gates have the same logical functionality

but are treated differently due to their conceptual differences in the ECS framework.

Consequently, some gate symbols also differ from those in the corresponding micropipeline

library. This issue is further compounded by the fact thaI2P event control wires (called

euent ti,nes) and binary data signals (called data li,nes) are conceptually different in the

ECS framework.

3.2.L Muller-C element

This is often known simply as the cgate, or rendezuozs. Its logical function is to transfer

the state of its inputs to the output when all of these are at the same state (as indicated

in Fig.3.1).

d ina
VDD

d out

(u) d inb

d out

d ina

d inb

d out (.) GND

(a) Circuit symbol, (b) timing diagram, and (c) static VLSI schematic of the cAate.

(b)

Figure 3.1:

22

The cgate's behaviour is however better described in terms of its transitions (which is

also more relevant to the 2P control schema being employed). In this respect, a transition

on its output ðout is produced once transitions have occurred (in the same direction) on

all of its inputs. For this reason the cgate is often considered to be lhe AND function for

events, hence the similarity in the circuit symbol. Note that in the ECS design framework

discussed in Section 3.5, two successive events on an input event line are prohibited unless

an output event occurs between them. An n-inpul cgate can be constructed by extending

the r¿ and p transistor trees in Fig.3.lc, or by a combination of these basic 2-input elements.

3.2.2 Merge gate

The merge gate performs the O,R function for events) as a transition on either of its inputs

is translated into a transition on its output. Note however that it is unrealistic (in terms of

the VLSI implementation) for two input transitions in close proximity (one on each event

line) to result in two transitions on the output, as propagation delays and rise and fall

times prevent this from happening. This scenario must therefore be prevented, and input

transitions must be adequately time-separated so they can be processed individually by the

subsequent circuitry (Section 3.5.8 provides a method for detecting when this requirement

is violated).

d ina
d ina

d out d inb

d out

(u) (b)

Figure 3.2: (a) Circuit symbol, and (b) timing diagram of the merge gate.

It is evident from the timing diagram in Fig.3.2b that the rnerge gate is nothing

more than an ror in binary logic, and an n-input rnerge gate can be constructed from a

combination of these basic 2-input gates. Two VLSI implementations of an ror are shown

in Fig.3.3.

The 6 transistor design is the most compact of the two but does not have a very good

drive capability, so for driving high loads a similarly structured rnor \s often used with

an inverter buffer on the output. The 8 transistor design is faster and can drive higher

23

VDD

d ina d inb
d ina d out d inb

d out GND

Figure 3.3:
gate.

(u) (b)

(a) 6 transistor design, and (b) fast pseudo-nmos B transistor design of an ror

Ioads than its 6 transistor counterpart, but its noise margin is worse and it dissipates

more power. It is only used in critical event paths or where trees of ïors aîe required

(such as in parity detection or the merging of numerous events), for which the sequential

pass transistor paths of the 6 transistor design produce excessive delays. Conventional

multiplexer based rors aîe also used on rare occasions, and for some control circuits the

fast and small 6 transistor ror of. [WFF94] is used (although this was only discovered after

the majority of designs were already completed).

3.2.3 Send gate

This gate passes an input event to the output when a controlling data signal is high.

Furthermore, an input event which occurs when the controlling signal is low will be kept

pending until the control eventually does go high, at which time the pending event will

be propagated through to the output. Fig.3.4b illustrates the send gate's operation.

din

d out control
control

d out

r-(

ï

(u) (b)

Figure 3.4: (a) Circuit symbol, and (b) timing diagram of the send gate

This gate is not to be found in the micropipeline library although its implementation

is identical to that of a logic-driven latch. The distinction is made however since the

send gate operates with event lines whereas a latch operates only on data. Also, the send

24

gate must be initialized to force the output into a known state. Two VLSI schematics of

a send gate (or latch) are shown in Fig.3.5, and initialization for an output low can be

incorporated by inserting a pull-down (or a pull-up for Fig.3.5b) transistor at the node

labeled i,ni,t.

VDDd_in

control
d out

d out
d-in d out

d out GND

(u) (b)

Figure 3.5: (a) Compact latch circuit and (b) a fast inverting Svensson latch design.

The circuit of Fig.3.5a is very compact and is therefore often used as data latches or

for non-critical event paths. The circuit of Fig.3.5b IYSS9] is a faster (but larger) design

used in critical event and data paths.

The send gate provides a useful method for stalling an event until some other con-

trolling condition becomes true, as well as enabling fast bypass techniques for conditional

pipeline execution (see Section 7 .4.3 for example). Note that in the ECS design framework

explained in Section 3.5, successive input events are prohibited unless an output event

occurs between them.

3.2.4 Feed gate

The feedgate is similarto the sendgate in that it too passes an input event to the output

when a controlling data signal is high, however in this instance an input event which

occurs when the control is low is not kept pending, and is therefore neuer propagated

through to the output. This fundamental difference can be seen by comparing the second

event in the timing diagrams of Figs.3.4b and 3.6b. In the former, an output event is

eventually generated (when control goes high) whereas in the latter no such event occurs.

By combining two feed gales (driven by control and its complement), the select module

in the micropipeline library is created. Note however that in the design of the feed gate

init

25

(u)

din

cont¡ol

din

control

d out

r> d out
din

(") control(b)

Figure 3.6: (a) Circuit symbol, (b) timing diagram, and (c) circuit diagram of the feed gate

(shown in Fig.3.6c) the complement-driven event output is also available from the top

latch, so that only one feed gate is actually needed in practice for its implementation

(although conceptually two feed gates are still used). The symbol chosen for a select

module is shown in Fig.3.7.

d outO

d outl

Figure 3.7: Circuit symbol of the select gate.

The feed gate is often used in practice as a select module as well as for conditionally

triggering the operation of a sub-system.

3.2.5 Restore gate

The restore gate is similar in functionality to the send gate but with a controlling event

instead of a controlling data line. That is to say, an event which is pending at the input to

the restore gate will propagate through to the output when u svþs¿quenú event occurs on

the controllíne }pass, as shown in Fig.3.8. Note that if no input event is pending, then

an event on the control line will have no effect on the output. For example, the second

event on }pass in Fig.3.8b.

d_pass
din

d out d-pass

d out

(u) (b)

Figure 3.8: (a) Circuit symbol, and (b) timing diagram of the restore gate.

O
Cü

O
cC

26

The restore gate has no synonymous module in the micropipeline library however it

is similar in functionality to lhe decisi,on-wait unit popular in other paradigms lKel74,

JU90b], whose more restrictive functionality can be replicated by using two restore gates.

Note however that lhe deci,si,on-waitelement is often used to construct a call module in the

micropipeline library (which grants access of a sub-system to one of two non-conflicting

input requests), of which the restore gate is therefore primitive.

Figure 3.9 shows two different circuit diagrams for the restore gate. The first design

simply generates a short pulse (using a self-timed pulse circuit as described in Section

4.2.2) each time an event on }pass occurs, and if an event on ði,n is pending, propagates

this to \out via the send gate. This design is small in size but incurs a delay of 3 gates

between õpass and \out, and is therefore used in non-critical event paths.

d_pass

d out

d out

(u) (b)

Figure 3.9: (a) Pulse driven circuit, and (b) sequential logic circuit for the restore gate.

The second design is derived from a state transition graph using asynchronous se-

quential logic techniques [Puc90, Chapter 6], and consequently views the events as binary

signals. Note that a C-elemer¿ú is used in this implementation but that its functionality

should be interpreted differently from that given in Section 3.2.7, since in this instance

it's used as a logical block (obeying the logic equation given in Section 2.7.3) and not as

an event controlled unit. This second implementation is larger than the first but incurs

only a 2 gate delay between ðpass and ðout, and is therefore used in critical event paths.

3.2.6 Until gate

The unti,l gate can be crudely viewed as a two to four phase converter for event lines. It

sets an output data signal high after an event on one input occurs, and then sets it low

27

d_pass

d_in

d_in

X

O

X)

*X

OÈ

again after an event on the other. It is quite obvious from this that the unti,l gate can be

implemented as an ror if the events on the two input lines are alternating (an enforced

restriction), however it is viewed conceptually as a different gate because its inputs are

event lines, not data lines.

It is useful to be able to ascertain from the circuit diagram which of the two input

events to an unti,l gate sets the output data high (or low, as the case may be), and also

to see what the i,niti,al state of the data is prior to any events occurring. For this reason

the circuit symbol of Fig.3.10a is used for the unti,l gale, as opposed to the conventional

zor symbol. The event which strikes the outer bar of the symbol sets the output low, and

the primed event (signified by the dot) indicates the initial state of the output data.

d ina

d ina
d inb

out

(u) (b)

Figure 3.10: (a) Circuit symbol, and (b) timing diagram of the until gate

Whether an unti,l gate is implemented as an ror oï rnor gate depends on the initial

states of the inputs and the required initial state of the output, however if the conven-

tion is adopted whereby all evenl lines are initialized low, then the until gate shown in

Fig.3.10a is implemented as ar :ror (if the dot were placed on the other input, then an

rnorimplementation would result). Note also that the first input event to occur must be

on the non-primed event line (since they're constrained to alternate).

3.2.7 Latching element

Some event driven latching elements are proposed in the micropipeline library and can be

implemented as shown in Fig.3.11. Both circuits assume Lhe)hold and)pass events are

initially low and are alternating, and that the latch is initially transparent. The problem

with these designs is that they occupy a lot more silicon area than the logic driven latches

shown in Fig.3.5, have a high load on the event lines, and also require the event line's

complement to be generated. Logic driven latches are therefore used in almost every

instance (except for when the data path is very small), and their circuit symbol can be

seen in Fig.3.6d.

out

28

o x

x

O x

ln out ln out

lo-nota la-pu* d hold d_pass

Figure 3.11: Two implementations of an event driven latch.

3.2.8 Delays and logic functions

It is often necessary (particularly in a bounded delay, IO paradigm) to insert lumped

delays into an event stream, such as for the modelling of logic functions or to wait for

some associated data to become valid. Delays are implemented simply as inverter chains

and the symbol adopted for them was shown in Fig.2.2a.

Binary logic functions (such as nand and nor) are also used in devising control schemas

but can only be applied to data lines.

3.2.9 Relative gate speeds

In an effort to quantify the operating speed of a circuit it is necessary to determine the

relative delays of the above-mentioned gates. These gates have been simulated using

Hspice for similarly sized transistors and output loading in a 0.7pm CMOS process, and

lhe approrimaterelative delays are given in Table 3.1 (each delay unit roughly corresponds

to 0.15ns in this process).

Gate Delay Gate Delay Gate Delay Gate Delay

multiplexer
p-nmos xor
Svensson latch
restore

2

6

6

t7

inverter
p-nmos xnor
small latch

2

6

7

nand
small xor
cgate

3

'.,I

10

nor
small xnor
feed

5

I
13

Table 3.1: Relative gate delays in ECS assuming similarly sized transistors and loading

3.2.IO Micropipeline module exceptions

The select and call modules in the micropipeline library are not a part of the ECS library

of gates. Their functionality can however be reproduced by constructing circuits out of

X

x
o

o x
É

29

the more primitive feed and restore gates.

The most interesting omission from the micropipeline library is that of the toggle

module, which is there used to alternately steer an input event between two output paths.

Its use in SI design paradigms often occurs in situations where a 4P signal (which may

have earlier been produced from a 2P conversion) is split into two, 2P signals [Ebe89,

FES94, DW95]. In the ECS design framework all control lines utilize 2P signalling only,

and therefore the function of the toggle module is not required.

Another module which has not yet been considered is the arbiter. This important unit

ensures that only one of two output event lines is active at any time even if events occur

simultaneously on its two input lines. To this end Lhe arbiter must resolve its potential

internal metastability whilst ensuring that its output states remain valid. Numerous issues

dealing with metastability and the implementation of 4P arbi,ters (of which 2P arbi,ters

can be built) can be found in [CM73, Den85, EBG93, VBH+95].

Instances of arbitration should be avoided, or minimized in frequency, whenever possi-

ble, although in some cases the problem is either unavoidable or too costly to avoid (such

as in accessing memory from split caches, or incorporating an interrupt request into a

control stream). Although the arbitration function is still needed in the ECS paradigm,

it is only used in ercepti,onal cases, and such occurrences are therefore dealt with outside

of the general design framework.

3.3 Some formalisms for gate representations

A library of gates has been presented from which asynchronous 2P circuits can be con-

structed. These can obviously be represented graphically using the circuit symbols pro-

vided, however it is often convenient to represent their functionality and interconnectivity

in a more concise and algebraic (textual) form, such as in terms of transitions, logic levels,

or event traces.

To this end it is worthwhile investigating some currently popular design methodologies

to see how they represent the 2P functionality of the above gates. One can then select a

representation which is the most appropriate or, if needs be, devise a new representation.

An important issue to bear in mind is the fact that these methodologies are being

analyzed for their gate-representati,ue qualities only, such as conciseness (the number of

30

terms required), complexity (the number of operators required), and indicativeness of

transitional 2P behaviour (which is a subjective issue). They are not being analyzed from

a synthesis perspective as an engi,neering paradigm has already been chosen for attaining

the primary goal of high-speed circuitry.

Of the vast array of methodologies possible, the following five have been chosen for

consideration: binary logic, Pucknell's transition equations, Chu's STGs, Ebergen's trace

specifications, and Martin's CSP production rules. These five approaches are in popular

use and exhibit significantly different gate representations.

To illustrate these approaches, a cgate, a send, and a feed gate have been chosen for

the analysis. Table 3.2 shows these representations for all but the CSP rules (shown in

Table 3.3) and the STG approach (which is shown graphically for clarity in Fi9.3.12).

Gate Binary Logic Pucknell's TEs Ebergen's TÌaces

CGATE z:ab+z(a+b) Az> AaAb+Aayb*Abyo
vz> b+ a\b * yb\a

prefx [(a? llb?);z!]

SEND o:icloc Ao>AcAi+LcAi*ycAz
yo)AcAi,+gcyi

prefr [* [(c?)'z]; (i? llc?) ;

o!;pref* [i?;o!];c?]
FEED o:oé+c(a@i)

0,: ac + c(o O i)
Ao)ycA¿+VcVi
Vo>VcAi+VcVi

pref* [c? ;prefx [i?;o!] ;

c?;*[i?]l

Table 3.2: Representations of the cgate (assuming non-prefixed input events of ø and b and

an output of z), send, and feed gates (assuming input and output events of i and o respectivel¡
and a control signal of c) in various design methodologies.

CGATE SEND FEED

aAb-+ zf
-aA-b-+zl,

c Ai, -+ of
cA-'i-+o+

(i, tt,-o V -'i A o) A -c -) 01
(inoV-iA-o) A-c-l¿I
(itt,-aV-iAa)Â-c-+o1
(inaV-iA-ø) A-c-loJ

Table 3.3: Representations of lhe cgate, send, and feed gates using Martin's CSP

3.4 Analysis of methodologies

The gate expressions in binary logic are comparatively concise but it is difficult to grasp

the gate's transitional functionality, particularly for the feed gahe (which also expresses

a micropip eline selecú module). Furthermore, feedback equations are also required which

complicates the representation.

31

\,/

c

õ
a+

r+
c

c
l-

c

i+ <---t}-o-

c

o+-t-

c l-

"/\
\,,/_

z+

Z-

(u)

c

o+o-o+o-

cc

(b)

Figure 3.12: Representations of (a) the cgate, (b) send, and (c) feed gates using STGs

Pucknell's transition equations express the functionality of a gate in terms of the

conditions for positive and negative events. Four states are possible: a transition in either

direction or to remain at a logic level. Expressing the gate's operation in this manner

removes the feedback and internal states implicit in the binary representation and also

provides an event-based description as desired. However, the increase in the number of

states to four results in a less concise format and also means that two equations are no\M

needed for the representation of a gate rather than one (in fact, four equations are required

if the "remain at" conditions are also expressed).

Ebergen represents a gate's allowable traces (the sequence of inputs and outputs) in

a concise format using such operations as prefixing (pref), repetition (*[]), sequencing(;),

and weaving (ll), with gate signals being defined as either inputs (?) or outputs (!). This

specification is more complex than the previous two descriptions (given the number of

operations required), and it is still difficult to grasp lhe transitionalbehaviour of the gate

from the trace specification (particularly for lhe feed and send gates, whose conceptual

behaviour is particularly straightforward).

CSP can also express the functionality of a gate in terms of its allowable traces (sim-

ilar to Ebergen's approach), but is shown at the final gate specification level (involving

production rules) in Table 3.3. This representation is highly favourable for the first two

gates in which, similar to Pucknell's transition equations, input conditions are specified

for each output event. However in contrast to Pucknell the conditions are given in terms

of their binary states which therefore improves its conciseness. The major disadvantage

of this representation can be seen in the greater complexity of the feed gate, for which the

internal states of the gate must again be specified (as in the binary logic representation).

(.)

32

STGs also specify the transitional behaviour of a gate's output and consider the inputs

to be transitional as well (untike CSP which expresses these as binary signals and Pucknell

who expresses them in four possible states). An exception to this is when input choice has

to be specified, causing logic level signals to be placed on certain arcs and the inclusion of

places. Note however that this delineation between data signals and transitioning events

is pleasantly indicative of the same distinction which is also made in ECS. Unfortunately

however the specification of an ECS gate as an STG is seen to be rather complex and

unwieldy, which is especially true when translated into an algebraic (textual) format.

In short then it can be said that none of the above representations are fully suitable in

terms of brevity, simplicity, and descriptiveness. Binary logic falls short in descriptiveness,

Pucknell's TEs are not concise, Ebergen's traces are neither descriptive nor simplistic, and

Martin's CSP and STGs suffer in brevity. Although any of these methodologies could be

used (and are used elsewhere) for representing the ECS library of gates, it is worth while

investigating new approaches in an attempt to improve upon them. Such an investigation

has lead to the ECS representation explained in the following sections.

3.5 The ECS representation

One of the problems encountered in the above methodologies is in modelling an event

line's transitory behaviour with logic levels. The positive and negative transitions of this

event have been considered independently when in essence the two are identical (as can

be seen by the timing diagrams in Section 3.2,in which event line transitions are treated

identically regardless of their direction). By somehow combining these two transitions

into a single term the complexity of an STG-like representation could be halved, and

it may also become possible to implement CSP and TE-like descriptions with a single

equation.

Another problem arises from the difference in functionality between data lines and

event lines. Since one is state based and the other is transitory the effect of combining

the two can introduce excessive complexity (for example, compare the traces of the feed

and. sendgates against that of lhe cgate). A representation in which the behaviour of these

two signal types can be similarly modelled should then improve the conciseness of a gate's

33

representation and subsequently enable its functionality to be more easily understood.

These are some of the issues dealt with by the ECS representation and which result

in the simple, descriptive specification of a gate's operation. In brief, the technique used

is to transform the signal types into a new domain (called Lhe temporal domain) and

introduce some new operators in this domain which then enable concise gate descriptions

to be made.

3.5.1 TYansforming signals into the temporal domain

Both event lines and data lines have thus far been represented in conventional binary logic,

which will henceforth be termed the uoltage domain (the terms binary or logi,c domain

are not used because the temporal domain also uses binary logic levels, but which are

interpreted differently from those in the voltage domain). In this voltage domain, an

event occurs on the signal line õ'in when a transition in either direction occurs:

A,}'in I y,ði,n

where Arð,in evaluates true after a positive edge transition occurs on)i,n in the

voltage domain (as indicated by the subscript u), and similarly for y,?i,n, and "+" is the

conventional boolean OR operator. As was mentioned before, the actual logic levels ought

to be irrelevant, and therefore the direction of the transition ought also be irrelevant, it

being merely the occurrence of a transition which is used for control signalling. Therefore,

in the ECS representation, a simple transformation is made whereby the occurrence of an

event in the voltage domain is converted into a temporal truth (ie- a positive transition

of the event line) in the temporal domain:

Atôi,në Au?i,n+Vo}in (3.1)

where the subscript ú indicates the temporal domain and the symbol {* merely indi-

cates the equivalence of the two statements through the transformation. Note that this

transformalion only applies to event lines. The logic state of a data line (and therefore the

direction of any transitions on that line) is relevant, and consequently the transformation

of these lines into the temporal domain is simply an identity operation (ie- their logical

interpretation is unchanged):

34

L¿i,n e Lu'in Y¿i'n ë Yoin (3 2)

It will be noted then that an event line's transition in the voltage domain is now

considered as a binary "L" level in the temporal domain. This then enables a data level

to be combined with the occurrence of a transition in a simple manner) using conventional

logical operators such as and and, or. This reduces the complexity of gate specifications

and subsequently improves their descriptiveness.

The temporal transformation for event lines produces ân as yet unresolved issue: if

an occurrence of a transition on an event line in the voltage domain is used to set its

temporal state high, how then is it to be subsequently set low, and furthermore, what

are the consequences if, before being set low (by whatever means is devised), another

transition occurs in the voltage domain which attempts to force a positive transition

when the signal is already (temporally) high??

The first issue to resolve is that of the conditions for producing a y¡ði,n event. One

approach is to force this transition immediately after the output of a gate has responded

to its input. That is:

Vtõi,n + A¿\out (3.3)

where '€' indicates that a negative transition on õ'in is produced after a positive

transition on)out (in the temporal domain) . ðout is assumed to be the gate's output

event and is generated from ôi,n according to the gate equation (discussed in Section

3.5.3). This definition for producing y¡?i,n is referred to as lhe Gate Representation

(G-Rep), and it can be verified that for all ECS gates the following byproduct results:

l¡\out + y¿}i,n (3 4)

The event outputs of a gate in the temporal domain will therefore always be pulses (ô

functions), the ramifications of which will be discussed in Section 3.5.7. To convert the

temporal interpretation of a gate's output back into the voltage domain, the following

simple transformation can be used:

L¡)outë A,)out*lo)out

35

(3 5)

which is rather obvious since a logic "1" level in the temporal domain is used to

indicate the occurrence of an event in the voltage domain. Fig.3.13 illustrates the different

representations of the input and output events of a gate in the voltage and temporal

domains, with the solid arrows between signals indicating the equation number responsible

for each transition, and the dashed arro\rys indicating a transition of the (as yet unspecified)

gate.

Voltage Domain
3.1

Temporal Domain

3.3
d out Voltage Domain

3.5
d out Temporal Domain

Figure 3.13: An example of the voltage and temporal representations of a gate's input and

output signals, and the equations which cause them.

A framework is now in place whereby the interaction of event line transitions and data

line states are similarly modelled. It is then hoped that the subsequent representation

of ECS gates within this framework will become both simple and descriptive, however

before this issue can be resolved it is necessary to introduce methods whereby the nature

of these interactions can be specified.

3.5.2 ECS operators and temporal equations

Thus far the temporal description of the inputs and outputs of a gate has been presented,

however the actual operation of individual ECS gates is still to be addressed. In conven-

tional logic, functions are represented by equating the logical state of an output signal

(either high or low) with the logical combination of a group of input signals using the

basic functions of and and or. Similarly, other asynchronous methodologies also employ

a collection of predefined operators which are used to specify a gate's functionality. For

example, the weaue operator (ll) i" Ebergen's traces, the and operator (n) of CSP, and

the positive (4, 1, +) and negative (V, J, -) transitional operators used throughout.

d_in

d_in

36

In ECS, a similar set of operators are employed to enable the correct specification of

ECS gates. Many of these operators are analogous to those used in conventional logic,

which is primarily due to the way in which event lines and data lines are modelled. There

are however a few additional operators which are introduced to properly delineate between

different types of inputs. For example, the restore gate has two input events, however one

of these has no effect on the output unless the other has already occurred (ie- they each

affect the output in a different manner).

After'>'
o lJsage: 7; > T;

where f is termed the temporal effect and consists of an ass'ignmenú operation (described

below), andTí is termed the temporal cause.

The after operator is used to govern conditional operations. Specifically, if the tem-

poral cause is true (T. : 1) then the temporal effect to the left of the after operator is

processed. Exactly what this effect is depends on the assignment contained within it.

Assignment (becomes) 6<-'

o lJsage: T" <- Ti

Assignment operations are always present to the left of the after operator and specify the

function (ie- the temporal effect f as given above) to be performed when the temporal

cause evaluates true. It is analogous to the ':' operator in conventional logic, and together

with the after operator results in the general specification of a gate (termed a temporal

equat'ion, or TE) as being:

T.<_T;>T;

which reads "To becomes fr provi ded T" is true" . This general format enables a broad

range of functions to be developed. In particular, conventional binary logic functions may

be merged with latching operations in a simple manner. For example:

a <- @l_b) > c.d

In this case, the term c.d would be used to govern the latch, with an input of a I b

and an output of g. Note also that the analogous TE of a conventional function such as

U : a * b may be specified in two identical forms:
37

0,+b
a<-a+b>1

a,+b

The assignment g <- 1 is abbreviated to just y, and similarly A <- 0 is abbreviated to

y. The left-hand specification then appears to have the better functional correlation to

the conventional form, however it suffers from having to specify two TEs for the gate's

functionality, since both the y and E terms must be present. The second approach requires

only the one TE, however the permanently true temporal cause seems like overkill.

As a better solution, the convention is adopted in which if no after term is specified,

then "> 1" is assumed. Therefore specifying A +- a * ó is identical to specifying y <-

a I b) 1. Note that one could adopt the convention whereby specifying y > a * b implies

the existence of the converse TE: y > al b, however this approach still essentially deals

with two TEs rather than one.

Consider now the general specification of a TE in which all temporal signals are events:

Tot <- T: > T"t

In this instance, T.E is termed a causal i,nput event, ToE \s termed an effectual input

event, and ToE is termed lhe effectual output event. By virtue of the fundamental premise

of the after operator, if T"E is false (ie- no causal input event has occurred) then an event

(a temporat truth) which occurs on T¡E will not be processed.

This issue can present difficulties when one considers that the temporal transformation

used for event lines requires that each input event must have a corresponding output

event. For T! this is given by Tot , however it is not generally acceptable Lo defrne ToE

as also being the output event for '[8, since when T"t : 0 this term is not processed,

and consequently no output event occurs. Therefore only one such event (in the voltage

domain) would be permitted to occur on T¡E (which then sets its temporal signal high)

even when T"t : 0 when ideally, since the assignment isn't processed, any number of

events ought to be allowed to occur.

One solution to the problem is to define an attempt to force ATot when ToE is already

high as having no effect, however this is unacceptable as it's equivalent to making T¿E

a causal term and therefore prevents some ECS gates (such as feed and restore) from

38

being modelled. Furthermore, this then prevents the incorporation of error checking into

the ECS representation (see Section 3.5.S). The correct solution is to define 7¿E as its

own output event, so that its temporal input to a gate always appears as a ô pulse.

This definition then enables any number of events to occur orl TE independently of the

temporal state of T.E , which therefore enables the feed and restore gates to be properly

modelled. Note however that lf. TiE is in fact a combinational term of input events (such

as ôø.0b), then it is the combinational term which is the output event for these signals,

not the individual signals themselves. In essence, such a combinational term is treated as

its own enclosed TE.

Logical AND ('.') and OR('+')
o lJsage: T¿a .T¿.2 or f¿"1* Tt"z

The "and" and "or" logic functions are analogous to those used in conventional logic

Until '[/'
o lJsage: f*3 U T*P,

The until operator has no equivalent function in conventional logic because it is used

explicitly on event lines. The result of the operation is temporally true when T¿fl evaluates

true and computes false when T¡!2 evalrtates true. On this basis, the result of an until

operation is effectively a data signal which is used to govern the effect of a TE. For

example, the following two temporal specifications (which are a collection of one or more

TEs, and dubbed a TS), are equivalent:

select +-)pass U ðhold
y<-ï>ðpassUðhold

a<-r >

Note also that to facilitate ease of implementation, the event T*!, is defined to be the

output event of Tf1, and vice versa. Defining each signal to be its own output event

would be equally valid (and in fact produces a more versatile gate representation) but

doing so results in a more complex implementation, which is unjustified since almost

every application of this gate uses alternating events (hence the restriction). Note that a

non-alternating event stream could simply be masked with a feed gate controlled by the

result of the until operation to transform it into an alternating one.

39

Colon t:'

o lJsage: Tt, Té, ... : T"

The colon operator performs no logical operations, but rather signifies the validity of an

output signal fr which results from some earlier input signal [,. That is, it specifies a

computation path which exists between these signals, and ought therefore be considered

as a conceptual timing operator. It is often used to specify the requirements of a lumped

delay element, as exemplified by the TE below:

ðz:ôy:0r<-a:b:c:0r

In this instance, the event ôø results in the data signal a being set as well as indepen-

dently resulting (through some other path) in an event on ðz (the TEs for these operations

would be given elsewhere in the TS). The colon operator indicates that ¿ should be valid

before ðz occurs, and consequently a delay may have to be inserted from õr to ð2. Typ-

ically, another TE would exist in the TS in which an output depends on both 0z and lhe

new value of ø (otherwise no such timing constraint would need to be specified). Note

also that specifying the intermediate signals ðA,b, and c is optional, and is included only

to highlight the relevant control and computational paths.

3.5.3 Some ECS gate examples

The set of operators just described can be used to combine both data and event lines

into a collection of TEs which each correspond to one (or more) of the gates in the ECS

library. Note however that TEs which are constructed with an output event that can occur

without an input event (and vice versa) are prohibited, as these violate the requirements

imposed by the temporal transformation. For example, a TE which or's an event line and

a data line is prohibited, as are TEs which assign data lines to event lines (or vice versa).

The complete set of fundamental TEs and their corresponding ECS gates is given in

Appendix A. Example waveforms for the send and feed gates are shown in Figs.3.14a and

3.14b respectively to illustrate the different representations of signals in the voltage and

temporal domains.

Consider the first 7'in evenl which occurs. For the send gate, the occurrence of this

event is transformed into a logical one in the temporal domain, which when ar¿d'ed with

40

din

control

din

Voltage Domain

Temporal Domain

Voltage Domain

Temporal Domain

din

control

d-in I I

d-out I
d out

Voltage Domain Voltage Domain

d out d out

d out d out
control

Figure 3.14
domains.

ðout <- }i,n.control Aout <- ði'n > control

(u) (b)

\Maveforms for the (a) send and (b) feed gates in the voltage and temporal

control: 1 (as required by the TE) results in the effectual input term of the TE being

high. This is assigned to the temporal state of the output)out (s\nce the causal term is

permanently true), and by virtue of Eq.3.3 this then forces the temporal state of õ'in low

again. The effectual input term is now false, and therefore VAout then occurs.

For the f eed gahe, the occurrence of an event in the voltage domain sets ô'dn temporally

high, and since the causal !,erm control is also high, this gets assign ed lo ðout Since ô'dr¿

is an effectual input event (and therefore acts as its own output event), yðin occurs

immediately, which subsequently sets the state of ðout low again. Therefore both gates

generate a \out transition for the first event on)i'n.

With the second event however things are somelryhat different. For the send gate, the

combined term 7i,n.control remains low until the control signal goes high. At this point

the output also goes high and as before then results in yôzn and y)out. îor the feed

gate however the causal term is low. As such, the assignment on the left is not processed

when A'?i,n occursT and since it acts as its own output event, y)i,n occurs immediately

thereafter. It is evident then that in this instance, no output is generated on ôouú. The

analysis for the third and fourth input events are identical to the first. Referring to the

waveforms in the temporal domain it can be seen that the output events from both gates

are in the form of infinitesimal pulses (assumin g zero gate delay).

47

The results of the analysis performed in the temporal domain may be converted into

the voltage domain by the simple inverse transformation given in Eq.3.5. It can be seen

that the resulting output waveforms for the send and feed gates in the voltage domain are

identical to those shown in Figs.3.4b and 3.6c respectively, which indicates that the TEs

given above do in fact represent the required logical functionality of these gates.

To further exemplify the specification and functionality of the ECS gates in the tempo-

ral domain, the TEs and timing diagrams for the cgate and a latch are given in Figs.3.15a

and 3.15b respectively. Note that for the cAate,)outis the corresponding effectual output

event of both ði,na and ði,nb. It is a simple matter to follow the analysis above and thereby

demonstrate that the TEs again properly represent the gate's logical functionality.

Voltage Domain

d ina

d inb

Temporal Domain

d ina

d inb

d out

Voltage Domain

d out

Voltage and
Temporal Domains

out

ln

sel

outd out

d ina

din

ln

sel

\out <- ð'ina.}inb out <- i'n > sel

(u) (b)

Figure 3.15: \Maveforms for (a) the cgate and (b) a latch in the voltage and temporal domains.

In summarv, the representation of ECS gates consists of the following steps

1. Transform the input signals into the temporal domain using Eqs.3.1 and 3.2.

2. Determine the causality of the TE and hence assign the state of the output.

3. If high, reset the state of the event inputs using Eq.3.3, and re-assess the output

4. Convert the temporal output into the voltage domain using Eq.3.5.

42

3.6.4 Comparative gate representations

By comparing the gate specifications given in Section 3.3 for the send, feed, and cgate

against those given in the previous section using the ECS representation, it becomes evi-

dent that a significant improvement has occurred. For every ECS gate only one equation

is now required to represent its functionality, whereas at least two are required in general

in all other paradigms except Ebergen's.

Another advantage of the ECS representation is in the conciseness of the description.

Only a few terms are needed in general to represent a gate in ECS whereas many more are

needed in all of the methodologies considered earlier. This has the subsequent advantage

of also making the representation more readable and understandable. This is especially

evident in the TEs for the cgate and merge gate, which are often dubbed the and and

or functions to events in the literature. None of the other paradigms mirror this effect,

whereas in the ECS representation these are the eract same operations employed in their

specification. This ECS representation is therefore adopted for the future specification of

2P asynchronous circuits.

3.5.5 Some example TS's and their corresponding circuits

Fig.3.16 shows an event control circuit for one stage of a reconfigurable FIFO [MAL94].

This circuit operates such that when the control signal stage is high, an incoming event

from the preceding stage is fed to the output ðf i,f odone. This prevents any further stages

from triggering, and hence the FIFO length is given by the number of stages preceding

it. A return event (from whatever circuit the FIFO output triggers) is fed back via the

feed and rnerge gates to complete the handshaking with the previous stage. If however

the control signal stage is low, then the event control simply passes through to the next

stage.

The important point to note with regard to the methodology is the correlation between

each TE and its ECS gate implementation in the circuit. For example, the last TE

corresponds to the rnerge gate immediately prior to the handshaking with the previous

stage. It is therefore evident that the TS is representative of the circuit topology, and

specifies this in a clear and concise format.

Another example of the correspondence between a TS and its circuit topology is shown

43

S

d fifo

d-fifq

next

d_fifofone d-fiforeturn

d_regulate

d fifodone

stage

0fifo1

Ônstart

0f i,f odone

}ptri.gger

ôpreturn

previous
stage

<- Ôpdone) stage

<- Ôpdone) stage

<- Ôf if o1+ ... + Ôf ilo"

<- 0fiforeturn) stage

<- Ônbegun I)ptriggerd_preturn
stage

d fiforeturn d_ptrigger

(u)

Figure 3.16: (a) Circuit design and (b) the corresponding TS of a reconfigurable FIFO

in Fig.3.17, which shows a sli,ce of the input control circuitry for a Discrete Fourier Trans-

form (DFT) unit [MAL94]. Again, the simplicity and readability of the TS, and its

equivalence to the control circuit, is evident. Note also that the overline on 0f if oreturn

is used in the TS to indicate a primed event and not an inverse of the event in the temporal

domain (which is non-sensical).

}trigI <-

Ôtri,g2 <-

?preDFT <-

ADFT <_

retactiue <-

(b)

}start) act

ôfiforeturn) act

?tri,g7 -l?tri,g2

ôpreD FT.retactiue

fvok
regulate

retactlve

act

d_tng2

d_trig1

regulate.fuok

d DFT fuok <- ôfiforeturnU 7fifodone
d_preDFT

0fif oreturn <- 0fi,f odone.Ôregulated start

Figure 3.17:
for a DFT unit

(u) (b)

(a) Circuit design and (b) the corresponding TS of a slice of the input circuitry

It should also be noted that TEs can be combined (or split) to produce a temporal

specification with fewer, but more complex, terms (or the converse when splittingTEs).

For example, the 3"d through 6¿ä TEs of Fig.3.17b could be combined and re-written as:

ADFT <- (ðtrigt + Atuigz).(resulate.(0f i,f oreturn U ðf i'f odone))

(}trtst + õtrig2).(resulate + @f i,f odoneU õf if oreturn)<-

44

Combining and splitting TEs can help produce a TS which is faster and/or smaller

than initially conceived (see Section 4.1).

3.5.6 Precedence and properties of temporal operators

The order in which the temporal operators are processed is defined in Table 3.4, in which

the operator precedence decreases from left to right.

Precedence Highest -+ Lowest

Operator And Or Colon Until Assignment After
Symbol + U <-

Table 3.4: Order of precedence for the ECS operators

For example, the TE shown to the left below could equally well be written as per the

TE on the right with the brackets removed, given the precedence rules above.

(set<- ((oA) +.)) > ((Ar.d)U (Au:ðz)) sel<-a.b+c>7r.dU ðy:02

The associative, commutative, and distributive properties of the and, or, and until

operators are summarized in Table 3.5. For the "and" and "or" operations these properties

are almost identical to their binary logic counterparts, however deviations exist when event

lines are considered. Note that the colon, assignment, and after operators do not exhibit

such properties.

Signal Types data / data data / event event

Property Or And Until Or And Until Or And Until
Associativity l\/
Commutivity IJ x
Distributivity X (d,e,e) over AND X x

Table 3.5: Various properties of the ECS operators

A tick (rD o. a cross (x) in the relevant box means that the property is valid or invalid

respectively, and a dash (-) means that the property has no meaning because the TE is

erroneous. The special distributive conditions "(d,e,e)" and "over AND" respectively

imply the following rules:

45

0a -l 0b.õc (0a+AQ.(Aa+ðc)

By manipulating TEs according to the above properties it becomes possible to reduce

circuit complexity and increase system speed algebraically (see Section 4.1).

3.5.7 Interconnectivity of gates in ECS

By considering the timing diagrams of the gates in the temporal domain, it appears that

two problems may exist with regard to connecting them together to form circuits. Firstly,

if the temporal outputs of a gate are always pulses, then how is it possible for a subsequent

gate (such as a send or a cgate) to function properly when the input is required to be

kept pending (and therefore kept high in the temporal domain)? Secondly, if the output

of a gate is determined by its inputs, and yet when connected to a subsequent gate as an

input its temporal level can be set low via Eq.3.3, then is there not a conflict with regard

to driving the signal level on this line?

To overcome these problems an explicit ECS definition is made for the global view of

the event line output of a gate (data line outputs do not suffer from these problems). The

configuration of gates shown in Fig.3.18 illustrates this principle.

Figure 3.18: A /event line which connects a gate's output to the inputs of subsequent gates

The local output of source gate G0 (ðout) is connected to the global event line þout.

This is then distributed to each of the subsequenl si,nk gates Gl . . . Gn, where it then

connects onto each gate's local inpuf (õi,n1..."). The temporal state of þout is given by

the temporal signal)out as well as the input signals 0'in1...n of each sink gate according

to the following equations:

a.(0b + 0c)

a.(ôb.0c)

a.õb + a.0c

(a.ðb).(a.õc)

d out

d_inouto

d_in

ate Gl

46

Aþout >

ysout >

with the temporal state of a sinks input being given by A'?i,n > Lþout (remembering

Ihat yði,n is then set locally according to the gate's TE, and in particular, the firing of its

corresponding output event). Equation 3.6 propagates the truth of an event only from lhe

sourceT as this indicates that an event has occurred in the voltage domain, and equation

3.7 indicates when all subsequent gates have responded to this input and therefore a new

output is permitted to occur.

An alternative to the introduction of global event lines (dubbed /event lines) is to

convert back to the voltage domain at each gate's output, then propagate this to each of

the subsequent gate's inputs and then transform back into the temporal domain. This

approach however is somewhat unsavoury in that it requires a mixed voltage/temporal

interpretation.

3.5.8 Principles of error detection

It is now apparent that a means for error detection is possible. If an attempt is made to

force a /event line high when it is already high then an error has occurred (similarly for an

attempt to force low an already low event line). This error is dubbed an erclus'ion uiolation

(EV) and represents the case whereby two successive events in the voltage domain have

occurred at the input of a gate before a corresponding output event has occurred.

With the infinitesimal gate delays shown thus far, an EV error can only occur for the

send and cgate, however if gate delays are now introduced into the model, then any gate

can exhibit this error when the time between inputs is less than the gate's propagation

delay (t',on). For example, in the timing diagrams of the send and ïnerge gates of Fig.3.19,

an EV error is detected on the third input event. This assumes an inertial delay model

for both the positive and negative transitions of the input events in the temporal domain,

which means that the positive transition of ði,na for the nxerge gate is still queued to

effect A1out, even though it gets reset low before this can occur. Note that the yðina

transition results from Eq.3.3 and is not affected by the gate delay model.

47

Voltage Domain Voltage Domain

din

control

A
EV error

d ina

d inb

d ina

d inb

Temporal Domain Temporal Domain

din

d out

¿ sul t l'o;' A

Voltage Domain

EV error

Voltage Domain

d out d out

(u) (b)

Figure 3.19: (a) A send gate with infinitesimal delay, and (b) a rnerge gate with a finite delay

tprop, both exhibiting EV errors.

Incorporating propagation delays into the temporal representation merely involves

delaying the assignment operation in the TE by the given amount, as is indicated by the

first output event of Fig.3.19b. This then enables system speeds to be modelled in parallel

with the detection of system errors.

Consider also the sendgate of Fig.3.19a in the situation where the control signal goes

low at the same time as the first input event occurs (as shown by the dashed line). In

theory the and term of the TE will remain low and hence no output event will occur,

however in practice signals exhibit finite rise and fall times, so that as long as these two

signals change state within a certain time frame, the output will in fact be inrleterminate

(ie- metastability exists). This situation is known as a coinci,dence uiolation (CV)

To enable this violation to be detected each gate must also be given a slope time t,

for its output (although a global slope time applicable to all gates may also be assumed

for simplicity), which is used to represent the gate's finite rise and fall times.

Given that two input signals T1 ànd T2 transition (temporally) at times ú1 and ú2 (with

h < tz) and have slope times of t,1 andt,2 respectively (Fig.3.20b), then if ¿1 + t,rl2>

t2 - t"2f 2 (which indicates that their slopes overlap) a potential CV error exists, and can

be resolved as follows:

o Let tar : fi - t¡f 2, tat : tz - trzl2, toz : tz I tr2f 2, and t62 : tt I fif 2, and define

condition Co such that the transitions on T1 and T2 occur instead at times f¿1 and

t62, aîd similarly for conditionC6 but with times t61 andt62.

48

A CV error is then detected when the output of the gate (given by its TE) for C"

is different to the output which results for C6. Note that 1f 11 or T2 are event lines

then a CV only needs to be investigated for a positive temporal transition of the

signal.
tat tt tÞz

ti
I1 i ---"

-tsl- tú l2ta2

tsi
-

(u)

I2

Figure 3.20: (a) A transition ú¿ with a shaded slope time ú"¿, and (b) two transitions which

may exhibit metastability.

This technique essentially considers an instantaneous transition at time ú¿ as occurring

(still instantaneously) at either extreme of its slope time úe¿, âs shown in Fig.3.20a. If a

transition on another input line (also considered at its extremes) occurs within this region,

then the gate needs to be checked for indeterminacy. By assuming that the transitions

could occttr at their extremes, and then checking the resultant output for both cases, the

potential for metastability (when these are different) is revealed.

When applied to data nodes a CV returns the occurrence of a potential glitch whose

duration may be as long as the overlapping region. Fig.3.21 illustrates this situation for

a 2-input and gate.

ina tui---

glitch

Figure 3.21: Example of a potential glitch for the and gate.

Although the output of this gate should remain low, a consideration of the slope times

of the inputs shows otherwise. For condition Co (with transitions occurring at times úo1

and úo2) the output of the gate does in fact stay low, however for condition C6 (with times

ú61 and t6r) the output goes high for a duration equal to the overlap time, indicating that

<-
--ts2-

(b)

ta2
t6inb

out

49

a glitch may occur. Glitching of data nodes may not however be of detriment to the

system (especially when in the data path) and should therefore be treated as warn'ings

rather than errors.

3.6 Summary

This chapter has introduced a library of asynchronous gates which are used in the con-

struction of ECS circuits. Interestingly, these gates have been shown to be a primitive set

of the asynchronous modules used in other design methodologies.

The ECS representation which has spawned this gate library enables them to be ex-

pressed algebraically in a clear and concise form using the temporal transformation. It

should be noted however that this transformation merely enables a concise and descrip-

tive representation to be developed (as well as incorporating principles of error checking)

and is not used to synthesize ECS circuits. This latter issue is discussed in the following

three chapters which provide a range of novel engineering techniques for the design of

high speed asynchronous systems.

50

Chapter 4

Fast Asynchronous Circuit

Techniques

Cl+tn ECS design methodology has thus far provided for a unique set of fundamental

J gates, a simple and convenient approach to their representation, and a means by

which circuit errors can be identified. With this basis it is possible to construct simple

two phase, bounded delay circuits, however without a knowledge of advanced techniques

these are likely to be inefficient with regards to speed, and most likely with regards to

other factors such as power dissipation and area too.

It is therefore necessary to explain in detail the range ofdesign techniques developed by

the author which enable high speed two phase asynchronous circuits to be implemented.

Although high speed operation is the focus of the techniques described in this chapter,

an emphasis has also been placed on the area and power dissipation of the resulting ECS

circuits, and in particular how they compare against corresponding SI design approaches.

4.L Algebraic improvements of a TS

The most formal method for improving the speed of a design is through algebraic ma-

nipulation. This involves substituting the terms of a TE (to the right of the assignment

operator) with the TE definitions for those signals appearing elsewhere in the TS. This

newly formed TE is termed compler, because it now provides a description for the signal

which requires more than one gate in its implementation. By then massaging this complex

TE with the laws of associativity, commutivity, and distributivity given in Section 3.5.6,

51

it is often possible to devise a new implementation which, for the majority of conditions,

is faster. Determining whether or not this is the case usually requires an understanding

of relative gate speeds (as estimated in Table 3.1) as well as the environmental input

constraints.

As a simple example of this process, consider one implementation of a gated pulse

circuit and its TS as shown in Fig.4.1. This circuit is used to prevent the activation of a

self-timed pulse until some governing condition go becomes true.

self-timed
pulse circuit

ôa <-

pulse +-

õout <-

ð'in.go

}aU }out

ða.pulse

pulse (4 1)

(4.2)

(4 3)

d out
(u) (b)

Figure 4.1: (a) Circuit design and (b) the corresponding TS of a gated pulse circuit

Temporal equations 4.1 and 4.3 can be combined to produce a complex TE for }out:

ô out <- (}i,n. g o) .pul se

The brackets merely indicate the substitution made, and due to the associativity of

the and operator for both events and data, can equivalently be placed around the logic

signals, giving:

õout <- ðin.(go.pulse)

Renaming this and term as a TE for r then results in the circuit implementation and

TS of Fig.4.2. Note that the TE for 0a is still included in the TS, as it's also used in the

generation of the pulse signal.

At this level of substitution it can be seen that the circuit speed has in fact been

slowed by the delay of the andgate, and as such is a worse implementation than that of

Fig.4.1. However, the substitution process need not stop here. TE 4.4 can be substituted

into TE 4.5 to produce a complex TE for the pulse signal:

pulse <- (}i,n.go) U ðout

52

0a

pulse

lx

0out

(4 4)

(4.5)

(4 6)

(47)

<- ði,n.go

<- 0a U ðout

<- go.pulse

<- }i,n.r

d out
(u) (b)

Figure 4.2: (a) Circuit design and (b) the corresponding TS of a degraded gated pulse circuit.

Assuming now that the signal go does not transition low again until the event ðout

has occurred (which places a constraint upon the operation of the environment, albeit

one which is invariably obeyed), then the TE f.or pulse can be re-written as:

pulse <- (}i,n U ôout).go

A simple evaluation of the traces will reveal this equivalence. An important point to

note now is that the event ô¿ is no longer used in the TS, and its TE can therefore be

removed (thus reducing complexity and increasing system speed).

Further, T,he unti,l term of the TE for pulse can be renamed as a TE for p (p <-

}i,ntl)out), and by substituting the new TE above for pulse into TE 4.6,the signal z

can be reduced:

ï <- go.pulse

<- go.(p.so)

<- go.p

<- pulse

Consequently the signal r is no longer required in the TS, and can instead be sub-

stituted by the pulse signal. The final circuit and TS which then results is given in

Fig.4.3.

Table 4.1 summarizes the system speeds (from ði,n to õout) for the above three im-

plementations of the gated pulse circuit, for the two cases in which ôør¿ occurs both

before and after Ago (the relative gate speeds are taken from Table 3.1, and assume

tand:tnon¿It¡nu).

53

go

p
p

pulse

ðout

<- ði,n U õout (4.8)

<- p.so (4.e)

<- ð'in.pulse (4.10)

Figure 4.3

(u) (b)

(a) Circuit design and (b) the corresponding TS of an improved gated pulse circuit

Circuit
Implementation

Lgo 1
ate Delay Path Delay

ôin < Lgo
Gate Delay Path Delay

Initial 2tr"nd, * tro, 19 2tr"nd, I tro, 19

Degraded 2tr.nd,*tro, ltond, 24 2tr"rd.ltrorlton¿ 24

Improved tr.nd,*t¡6¡ lt¿n¿ 18 ts¿n¿ I t¿n¿ 11

Table 4.1: Relative speeds of three gated pulse circuits

It is evident that the circuit of Fig.4.3 provides the fastest system speed, with an

improvement of up to 42To over the initial implementation (note also that an improved

pulse signal can be generated with this circuit due to the nandand inuerterdriver). As

such it is evidenced that through the use of algebraic manipulation a faster TS can be

achieved.

4.LJ lJseless TE substitutions

In the preceding example there was no mention of constraints on whether or not a TE can

be substituted into another, however there is in fact one important rule which should be

obeyed: any TE with an explicit after (>) clause should not be substituted into another

TE. This is because the assignment to the left of the operator is only valid under certain

conditions (as given to the right of the operator) and these cannot be separated without

altering the initial functionality. As such, there can be no algebraic manipulation of this

term and hence, the substitution is futile. For example, substituting TE 4.11 below into

TE 4.72 to produce TE 4.13 is redundant, since no simplifications can be made to this

0a <- 0b>c

0c <- 0a.0e

(4.11)

(4.12)

term.

54

ðc <- 0e.(0b > c) (4.13)

4.L.2 Useful TE substitutrons

One of the most commonly occurring improvements which can be made is driving an

event through two send gates driven by different control signals. By combining the two

TEs as shown from the left below, and then splitting them into a send gate and an and

gate as shown by the TS on the right, a faster implementation will result. At best, an

improvement of tr.n¿ can be gained (a50 % speed increase), and at worst an improvement

of tr"n¿- tond, (a marginal increase). Note however that this reduction technique requires

that yr doesn't occur before y goes high (a constraint on the environment), otherwise

lhe and of these signals will not produce a ôc event which would have been produced in

the initial TS.

Ab <-)a.r

ôc <- ôb.y

co?lie ðc <- \a.r.y ry

ôab <-

AFU <-

z <- r.a
0c <- õa.z

ða+ðb

0ab.ualid

Another useful improvement involves simplifying a nxerge gate driven by two common

sendgates (as described by the left-hand TS below). By substituting the top two TE's

into the TE for AFU, and then factoring out the common ual'id signal, the smaller and

faster TS given on the right results. In this instance, a best case improvement of. t,n",n"

(over 50% speed increase) is the result.

0au

õbu

AFU

<-)a.uali,d

. 1r t . r combine and split<- oo.aq,L?,O, +

<- ôau +]bu

4.1.3 Taking advantage of t}re tgpico¿ scenario

In some instances a complex TE can be split in a variety of ways which at first glance

may all seem equivalent in terms of speed. However it is often possible to choose one

such implementation which provides the greatest speed for what is anticipated to be

the most common case (either by proof or intuition). As an example, consider the TE

)ok <- ôa.\b.begi,n, which can be split into either of the two TS's shown below:

}i,nt <-

)ok <-

0a.ðb

ôi,nt.begi,n

<- ôa.begi,n

<- õb.)i,nt

0i,nt

0ok

55

Although both circuits employ the same number of gates and the same worst case

delay (tr"n¿+t"no¿"), their best case speeds can be substantially different depending on the

usual signalling sequence. If Lbegi,n is most likely to occur after both of the input events,

then the left-hand TS will give the better typical performance (of just ú",,,¿), however if

it's likely to occur before the input events, or if one event (say, ôb) is usually the last to

occur, then the right-hand TS will give the better circuit speed (of t"no¿") '

It is clear then that although some algebraic reductions will for all cases give improved

speed performance (as per the gated pulse circuit example given previously), others will

however require a greater understanding of the typical environmental conditions to pro-

duce the fastest circuit implementation.

Another example of this is a multiple input rnerge gate, given by the TE:)out <-

ða -l 0b -f 0c -l 0e. Although for a random trace the best approach would be to use a

binary tree of 2-input rnerge gates (giving an average delay of 2 gates), if it is known that

one of these events (say, ôo) occurs most frequently, then a chai,n of gates may give the

best typical performance (with ôø triggering the last of these). Similar arguments also

apply to a multiple input cgate, when it is known that one of the inputs is typically the

Iast to occur.

4.2 Improving acknowledge times

One of the most fundamental causes of delay in a SI system is the overhead introduced

through acknowledgements. For a SI system to be safely composed from modular blocks,

each block must ensre that it has reached a stable, final state before sending an acknowl-

edgement back to its environment [8E80] (this, as much as anything, results from the

definition of speed independence). The latency (from input to output) imposed by any

one block can be quite substantial, and this in turn can increase the overall cycle time of

the system since any subsequent, dependent blocks cannot be activated until they receive

this acknowledgement.

Consider for example a typical event controlled SI system as shown in Fig.4.4, where

I indicates the event latency for each unit (from input event to output event), and d

indicates the data latency (from input event to worst case output data):

The cycle time for this system (taken as the sum of the latencies) is o -- 36ns,

56

Environment
l=lOns

U2
À=1Ons

d out

d Uldone

l=1ns

Figure 4.4: An example system constructed in a SI environment

and cannot be reduced if one assumes a speed independent paradigm. This is because

the latency information for each block cannot be utilized, and instead the provision for

unbounded gate delays must be adhered to. Therefore theoretically, the figures for À and

d must still be considered to be anywhere in the range from 0 -+ oo!

In practice however such extreme variations in gate delays almost never occur, and

they can in fact be reliably quantified (as evidenced by synchronous designs). Therefore

in an ECS environment, common-sense improvements can be made to the above system

to improve the cycle time (albeit at a very high level of abstraction, involving just the

interconnection strategy) .

One technique is to remoue unnecessary acknowledgements. It can be seen from the

latencies lhat U2 will always produce its output event after U3, and therefore ðU2done

can be used to feed directly into ðout (discarding }U3done) without having to go through

lhe cgate. This approach cannot be used in a SI environment because, however unlikely,

the possibility of)USdone occurring after ôU2done must still be provided for.

Another technique involves prouiding an earl'ier acknowledgement back to the environ-

ment, and requires that the settling time of any subsequently triggered unit is less than

the resulting cycle time. Consider for example U2 in the above system. Once triggered U2

takes at most 10ns to settle into a final, stable state, however once ôU2done occurs there

d

57

is another 25ns of dead time before U2 \s triggered again. Therefore the cycle time f.or U2

could be safely increased by up to 25ns, and by providing }U[done as the ?out signal,

a 10ns improvement is achieved. The activation of U2 is now performed in parallel wilh

the handshaking and control logic of the environment. Fig.4.5 shows the resulting ECS

system, with an improved cycle time of o --25ns (a 31% improvement). Note also that

the control logic within U2 and [/3 is simplified since there is now no need to generate a

done event.

d out

Figure 4.5: An improved ECS version of the example system

For this scenario it is not possible to take this approach to its extreme and issue ô'in

directly as the returning acknowledgement ôout to the environment (although in other

situations this may be possible). This is because the latency of U1 is 15ns but a new

input event can occur after only 10ns, therefore the first operation could easily become

corrupted by the next.

It may however be possible to improve the i,nternal latency of Ul to just greater than

d:8ns. This is because at present U./ is still implemented as a SI unit, with)out being

issued once all internal states have settled. However, there exists a 10ns dead time before

its next activation (due to the environment's latency), and so õout can safely be provided

earlier by U1, whilst its internal states settle in parallel with the handshaking and control

logic of the environment. For example, assuming an internal event ftom Ul can be used as

)out afler 8ns (to coincide with the data output), then the cycle time of the new system

will be reduced to just o : lSns (a 50% improvement on the original SI implementation).

Environment
ì=10ns

U3

58

4.2.L Example: sharing of a common unit

As a simple example of the improvement which can be attained by removing acknowl-

edgements, consider the circuit shown in Fig.4.6a, which shows one way in which a com-

putational block X can be shared by two processes.

db dbda da

d adone

dx

d bdone

d xdone

(u)
d bdone

(b)

Figure 4.6: (a) A SI and (b) an ECS circuit for sharing a common unit

For the SI circuit)adone and õbdone cannot be generated until }rdone has occurred,

however no such restriction is present in ECS. If it is known that the data produced from

X does not interact with the subsequent event control of either)adone or)bdone for at

least t,o, * tx,, where t,o, and ty are the processing delays of the ror gate and block X

respectively (a convention regularly adopted throughout this thesis), then ôø and ôó can

in fact feed out directly as the don,e signals.

The ECS implementation is shown in Fig.4.6b. As a result of removing the acknowl-

edgement from X, the latency of the design has been improved by tro, * tx -f t,."tore,

and the complexity of X has been reduced by the redundancy of ðrdone and the shift in

paradigm from SI to ECS. The control area has also been reduced from three gates to

one, which in turn results in a reduction in power dissipation (from two gates having to

switch per cycle down to just one).

This type of optimization is especially applicable when X has a low processing delay,

since there is then a greater probability of the data being used by lhe done circuitry after

tro, -f ty.

59

4.2.2 Example: data latching circuits

As a more comprehensive example of the speed improvements that can be achieved

through the removal and reduction of acknowledgements, and also to further expound

the advantages of ECS over SI designs, consider now the specification for a data latching

circuit (DLC). An incoming event ôi,n is required to latch the data present on the i,nput

bus to the output bus, and then issue)out when complete.

The simplest and fastest SI approach utilizes the event-driven latches (as shown in

Fig.3.11) of the micropipeline methodology [Sut89]. This is shown with inverter drivers

in Fig.4.7a.

din
din d dot

sel

d out
output

(b)

Figure 4.7: Two SI micropipeline control structures for the DLC using (a) event-driven latches,

and (b) logic-driven latches.

This is perhaps the fastest SI implementation of a data latching circuit, with a latency

of I : 4t¿n, * 2t-¿r" + 2t"sot", where t-¿r. rêpresents the propagation delay of the signal

through the latches. The problem however is that each event-driven latch requires at best

18 transistors, which makes for a rather large implementation of the design for all but the

smallest of data widths. A more economical solution is to use the logic-driven latches of

Fig.3.5a, and use a combination of ror and toggle to generate the select line pulse from

the incoming 7i,n event. This implementation is shown in Fig'4.7b.

The toggleoperates such that the first event to occur on its input (Asel, as generated

by the ror of ði,n and \dot) is steered to the doú output, and subsequent input transitions

oscillate between this and õout. The occurrence of õdot causes ysel to occur) which

is then steered to)out via the toggle to indicate completion of the latching cycle. This

design requires only 6 transistors per latch and is therefore a much smaller implementation

than the event-driven latch design. Furthermore, its speed is still comparable to that of

output

(u)

60

Fig.4.7a, with a latency of À : 2(tro, I t¿n, I twire * ttoss¿").

In ECS no toggle element exists, however its functionality can be mimicked by using

two send gates driven by complimentary control signals, as shown in Fig.4.8.

din

d send

sel

d out

output

Figure 4.8: An ECS implemented SI version of the DLC

In this instance the incoming event 7i,n is passed through three phases: the first raises

the select line, the second lowers the select line (once Asel is detected at the first send

gate), and the third issues)out (once ysel is detected at the second send gate). This

implementation is known as a spli,t toggle, and results in a SI implementation with a

latency of) : 2(tro, I t,rir.l tr"ra) + 3tiro.

Although the above three implementations operate using SI control, il must however

be noted that this still does not guarantee that the data has been latched! To do this

would require comparing 'input wilh output for ALL bits and enabling }out (through

a send gate) when they are all identical. This in practice would severely complicate the

control schema (in terms of both speed and area) and is therefore rarely ever implemented.

However without this, although the control schema alone may satisfy SI criteria, the data

path does not, but satisfies instead a BD model. Therefore despite claims to SI designs

[8589, SMJ+94, ABV+95], such as those given above, the reality is that the overall system

is in fact a BD implementation!!

Given the circuit of Fig.4.8, there are still a number of improvements which can be

made to improve the cycle time by removing BD redundancies and making assumptions

about the environments operation. The most obvious improvement is to use ôser¿d1 as

)out , and so remove the delay imposed by waiting for the circuit to settle to its final state.

This implementation assumes that ysel can occur in parallel with the control circuitry of

the environment, and imposes a limit upon the minimum re-activation time of the circuit

(from)out to the appearance of new data on input) of t,o, I t¿r, I t-ir"'

Furthermore, it is usually possible to ignore the wiring delay through the latches, since

61

this is typically very small in comparison to the gate delays (except for very long data

bus widths, which would be extensively buffered anyway), and also because the Asel

propagation delay is not problematic to the circuit unless the ysel delay is significantly

less (which would destroy the select pulse for the furthest latches), and this rare occurrence

can be easily solved through alternative transistor sizing. As a consequence, the ECS

circuit implementation of Fig.4.9a results, which is basically identical to the self-timed

pulse circuit shown shaded in Fig.4.1.

din din

sel
d out

d later

sel

output output

d out
(u) (b)

Figure 4.9: (a) A semi-optimized and (b) a fully optimized ECS implementation of the DLC

By ignoring the wiring delay, all of the event control can now be placed on the same

side of the latching array. This enables a better VLSI floorplan and implementation of

the circuit, since only one control block must be designed and is effectively independent

of the data path. The latency of this ECS implementation is only À: t,o, I t¿n,l t,.nd,.

In some instance the speed of this circuit can be improved even further. If it is known

that within the environment the data on output does not interact with the subsequent

event control of. ôout for at least ú"o, -l t¡n, i tht.n (an identical consideration to that

discussed in the previous section), then the event 7i,n can in fact be fed out di'rectly as

)out, resulting in a zero latency implementation of the DLC.

In fact, if within this subsequent event control an event ðlater is generated, then the

send gate can be removed and 7later fed back to the DLC to activate ysel. This also

requires that the delay between }i,n and ôlater is at least as long as the pulse width

necessary for the latching of the dala: 7'in -+ õIater) tht.h. This circuit optimization

is shown in Fig.4.9b, and although it does not (and cannot) further reduce the latency of

the design, it does reduce the area of the control circuitry by a send gate.

Table 4.2 shows a comparison of the DLC implementations in terms of the gate delays

Latches Latches

62

and relative speeds, using the results of Table 3.1 and assuming a relative toggle delay of

13 [Pav94, page 53], and t.¿,":0.

Circuit Implementatron Gate Delay Path (À) Delay

Micropipeline with event latches (SI)

Micropipeline with data latches (SI)

ECS using a split toggle (SI)

2(2t¿n, I twir e I t"sot")
2(tro, * t¿n * t.ir" I ttosst")

2(tro, * tuire i tr"na) i 3t¿n

28

44

32

ECS with initial optimization
ECS assuming a ÙIater event

tror*t¿nylts¿n¿
0

15

0

Table 4.2: Relative speeds of flve different implementations of the DLC.

It is evidenced that even the least optimized ECS design results in over a 46% \m-

provement in latency over the fastest SI implementation, as \4/ell as considerably reducing

the circuit area and control complexity. At best, the ECS methodology results in the

minimum possible latency of Ons and the minimum control area of just an ror and a

dri,uer. Furthermore, for this circuit the number of gates switching per cycle has been

reduced from six in Fig.4.7b down to four in Fig.4.9b, which also indicates a reduction in

power dissipation.

4.2.3 Comments on improving acknowledgements

Providing earlier acknowledgements, or removing unnecessary ones, has been shown to

result in significantly faster system speeds in ECS than can be achieved using a SI im-

plementation, however to use these techniques also requires some knowledge of the en-

vironment's operation. In particular, the time taken before the results of the optimized

circuit are again utilized, and the delay time between successive activations. Typically,

even at the architectural level, these time frames are reasonably well known (at the least,

a minimum delay can be determined), and as such these techniques can be regularly

applied.

These optimizations can be applied successively to each sub-component of a system

(beginning with the most critical), and if possible verifying through high-level simulation

that the system's functionality is still correct. As new components of the system are

designed, a greater knowledge of their environment will become available, and so the

optimization techniques can be re-applied with progressively better results, and recursively

applied to previously designed components to further improve system speeds.

63

4.3 Activating functional units

It is often the case that two or more functional units (FUs) are required to be activated

(perhaps conditionally) by an incoming event, and to produce a completion event which

covers all possible activation scenarios. This problem can be somewhat complex (es-

pecially for a large number of FUs and controlling conditions), and requires the use of

advanced techniques to provide for low latency solutions.

4.3.L Conditionally activated parallel units

Figure 4.10 shows a typical situation in which under all circumstances unit X is activated,

however unit Y is only activated (in parallel with X) when a governing signal c is high.

The implementation of this is obvious, however the problem posed is how best to generate

a)out event for this system?

c din

d_y

d_ydone d xdone

Figure 4.10: Conditional activation of unit Y in parallel with unit X

One approach would be to devise a control circuit based on the log'ical necessities for

ðout : if , -- 0 then)out <- ôrdone else (wi,th c:7))out <- ðrdone.)ydone. Each of

the expressions in this logical description can be translated into an ECS gate. The process

ofselection(iÍ...else...) translatesintoaselectgate,theassignmentwhenc:1is

clearly a cgate, and the assignment to)out under both cla:uses of the selection statement

translates into a rnerge gate (an OR function to events) to produce a õout event under

both exclusive conditions.

This control circuit is shown in Fig.4.11a, and is in fact a SI implementation of the

design. Its functionality is clearly as required by the logical description given earlier,

wilh \out being triggered by ôrdone when Yisn't activated (for c:0), and by the and

of 7ndone and 7ydone when it is (for ": 1). The best case latency for this circuit is

64

Àbe"t: t.got"*t^"rs., and the worst case latency is À.r"r¿ : t¡ee¿lt.got"It*"rs", given

that the select and feed gates have identical VLSI implementations (see Section 3.2.4).

c din

d_ydone c d_xdone

d-vd
d xdone

d_ydone

d out

d out

Figure 4.11:
implementation

(u) (b)

(a) A SI implementation for generating a Ôout event, and (b) an improved SI

Note that ðrdone is used in all circumstances in the generation o1)out, and it therefore

seems inefficient to have to split this signal via the select gate only to merge it again later.

In fact, it can be observed that rf a }ydone signal could be produced for both c: 0 and

c:7, lhen ðout would be given simply by:)out <- ðrdone.)ydone.

The logical requirements for generating ðydone under these conditions can be specified

as: if c -- 0 then }ydone <- }i,n else õydone <- }yd : õy : Ôi,n, where ðyd is now the done

signal provided from unit Y. As before, the selection clause of this statement translates

into a select gate, and the two separate assignments lo)Edone translates into a rnerge

gate. Fig.4.1lb shows the resulting circuit for this implementation, which is still speed

independent.

It will be observed that whereas in Fig.4.10 only a feed gate was used to trigger unit

{ this has now been replaced by a select gate. This effectively generates a bypass event

Lo 7ydone when unit Y isn't activated, and ensures that regardless of the state of c, an

output event is always produced.

By viewing the design problem as a whole, and not as two separate components for the

input and output circuitry, a faster and smaller implementation has been produced. The

best case latency is now Àb.st:t.sot", and the worst case latency is À.o""¿ :trnerselt"sot.,

d_y

65

both of which are an improvement on the completion generation of Fig.4.11a.

An ECS technique can be used which reduces the latency even further. As already

mentioned,, ðrdone is always used in the generation of)out, and so a send gate can be

used to effect this. The governing control signal can be given by whether or not unit Yis

active, since if it is, then \rdone must be kept pending (if it has occurred) until unit Y

becomes inactive, otherwise it can pass through immediately as ôouú. This control circuit

is shown in Fig.4.12.

d_y d xdone

d_ydone

d out

Figure 4.12: An ECS implementation for generating a)out event

This design assumes a minimum operating time for unit X which enables yacti,ue to

be set: tx) t¡""a I t"o,, and is usually valid for all but the smallest of circuits. This

ECS implementation results in a faster generation of ôout than can be achieved with the

fastest SI design. Table 4.3 summarizes the completion latency (from ðdone -+ ôout) for

when unit X alone is triggered, and for when both units are triggered with their)done

events occurring to give the worst case latency, again assuming the relative gate delays

quoted in Table 3.1.

Circuit
Implementation

unit X
Gate Pa

Both units: worst case

Gate Delay Path Delay

Initial SI L f eed -f Lmeree 20 t f..¿ I tcsotu * trn"ro" 30

Improved SI tcqat. 10 trn"ro" I tcoate 77

ECS t send 6 tr.r¿ I ts6¡ 13

Table 4.3: Relative speeds of three different implementations of a conditional triggering circuit.

Yet again, the ECS implementation has surpassed the best SI design by a significant

factor (up to 40% in this instance).

4.3.2 Generating a ðout event in the general sense

The technique of the previous section can be extended to the general case in which p units

are always triggered when a }i,n event occurs, and q units are conditionally triggered

66

according to q separate, but not exclusive, control signals. This situation is shown in

Fig.4.13a, which indicates how a SI generation of)out is performed as extended from

Fig.4.11b. Figure 4.13b shows the corresponding trCS implementation as extended from

Fig.4.12.

din

q controls q controls

p events p events

q events

q events

d and acti ve

d-in

d out

d out

(u) (b)

Figure 4.13: A generalized conditional trigger structure with (a) a SI implementation for
generating \out, and (b) an ECS implementation.

Table 4.4 indicates the best and worst case latencies for the SI and ECS implemen-

tations, assuming that the (p + q)-input cAate is implemented as a binary tree, and that

the q-input, nor gate is implemented as a pseudo-nmos structure (with a single pull-up

transistor tied to ground), with an estimated relative delay of tpno,àtnnr:3. Note that

f.or p 1 1, the best and worst case latencies for the ECS implementation are swapped,

the floor (l I) and ceiling (['l) functions round to the nearest lower and upper integers

respectively, and the delay values are quoted for the specific case of P:4 and q:5. For

larger values of p and q, the relative improvement of the ECS approach increases (and

conversely for smaller values).

Circuit
Implementation

Best case (p > 7

Gate Delay Path Delay
Worst case >1

I Gate Delay Path Delay

SI
trCS

Iogz I q)).t.sot. 30

16
llogr(p I 8)f .t"sot" i t^.,s"

tro, I I tsend. ltosz(p)1 * t".nd.

47

26

Table 4.4: Relative speeds of two different implementations of a generalized conditional trig-
gering circuit.

q selects

triggered

unlts
tionall

q merges

p+q-1
C gates

q selects

q units

triggered

q xors

q-mput nor
p-1

C gates

67

The ECS implementation has in this instance resulted in a 47To improvement over

the SI design. The only constraint on this circuit is that T"^^) t¡eed. * tro, i tpro, -
llogr(p)).t"sot", where Tp^n- is the minimum latency of the fastest p unit. This ensures

lhat yact'iue has occurred (if at all) before ôand.

4.3.3 Generating a ôout event for exclusively triggered units

As a frequently occurring variation on this theme, consider now the case in which only

one of r functional units can be exclusively triggered by the)'in evenl. It is possible to use

the generalized SI circuit above (with p : 0 and q : r), but a faster SI implementation

results if a tree of select gates is used to conditionally trigger each unit, and their outputs

merged together to generate)out (instead of andi,ng a merge from each gate as before).

This is shown in Fig.4.14a.

¡ controls

r controls

r events r events

d out actlve

d out

(u) (b)

Figure 4.14: Generating ôoutfor exclusively triggered units in (a) SI and (b) ECS

A similar ECS design to that of the previous section can also be employed, with the

only difference being that instead of triggering the send gate from a tree of cgates, a delay

unit ?is employed which simply delays the input event until the act'iue signal is set. This

places no constraints on the operating speed of any of the units, but instead places a

design constraint on the delay: T > llog2(r)l.t¡*alt,o,ltpno,.This implementation is

shown in Fig.4.14b.

d_in

din

r selects

r merges

r selects

T r xors

r-input nor

68

The average completion latency of the SI design (from)rdone¿o,¿ -+)out) is given by

Àor" N (log2r).t^.rse àr,d that of the ECS design is Àor" : tro, *tpno, ttr"rd, which can

be shown to be faster than the SI implementation for r) 4, assuming the relative gate

delays of Table 3.1.

4.3.4 Splitting a tree of selecú gates into individual feed gates

The previous section referred to a tree of select gates which was used to exclusively trigger

one of r FUs. Although this keeps the control logic for the data path simple, the event path

latency to trigger can become quite large: À.o,,t: llog2(r)l.t¡""a,.A better solution is to

generate a selection signal for each separate FU (perhaps with a decoder), and individually

trigger each FU through a feed gate. Although this approach complicates the data path,

the event latency is significantly improved to a constant À-orrt : t¡eeit. This would also

improve on the design constraint for the delay ?, to simply: T)t¡eedltror*tpno,'

4.4 Reducing event path delays

All of the previous sections have provided general techniques for improving system speeds

by typically reducing the complexity of gates in the critical event path. There are still

other techniques which can be applied in more application specific circumstances to further

reduce the event path delays of a circuit.

4.4.t Moving metastability detection out of the event path

Consider now the situation in which a signal is used to halt an event (as per a send

gate), however in this instance the data and event are not associated. That is, a negative

transition of this signal may occur at any time and is uncorrelated to the occurrence of

the event. Clearly then, an implementation involving just a send gate is unacceptable,

since the output may become metastable when the input event and negative transition

of the control signal occur in such close proximity that the output may hover indefinitely

between the new and old logic levels.

To ensure that a ualidlogic level is seen by the subsequent control circuitry, a metasta-

bility resolver (MR) must be placed after the send gatre as shown in Fig.4.15a. The

69

MR must ensure that a transition on)out is not activated until ôsend is out of the

metastable region. This could be implemented by a VLSI circuit which doesn't trigger a

logic high transition on its output until its input has exceeded some high voltage threshold

VHT, which is outside of the metastability region (which itself is typically near VDDf 2

[CM73]). Similar arguments apply for triggering the logic low transition. For example,

withVDD - 5V, one may design the MR f.or VHT :3'5V atdVLT : I.\V-

ext

d send

din d out

2S

=o-

=o1

¡nåut itlta'ge

(b)

Figure 4.15: (a) An implementation of the unassociated halting circuit, and (b) the transfer

characteristic of its MR.

The important point to note about such a circuit is that a hysteresis loop is present,

as described by the transfer characteristic of Fig.4.15b. This requires a rather complex

design (such as a Schmitt trigger [GD85]) which can significantly increase the latency from

}i,n to \out for the case when the signal ert remains high. In many instances, this may in

fact be by far the most frequent scenario (such as for interrupt or exception processing),

and it is therefore worth investigating alternative architectures which reduce the typi'cal

case latency.

One such approach is illustrated by Fig.4.16a, which operates as follows. The incoming

event ôi,n places the event driven latch into the pass state, which enables lhe ert signal

to propagate through !,o ertmeta (although its inverted output ¿úmãa is actually used).

Concurrently, based on the previous value of ertolc which is here assumed to be high, the

event }inis sent through to)out,, which then forces the latch back into the hold state to

retain the latched value of ert (the delay element is used merely to ensure a sufficiently

long latching time of t,",¿ +
").

It witl be observed that the signal ertrneta now has the potential for metastability,

05 1 15 35 43

(u)

valid low

oulput
valid high

output :

70

p elatch h

T

extok

ext

25

f
o_2

=o15

1

os 15 2 25 3

input voltage

(u) (b)

Figure 4.16: (a) An improved implementation of the unassociated halting circuit, and (b) the

transfer characteristic of its MR.

and so a MR is needed after this to ensure that ertolc presents a valid signal lo lhe send

gate. This MR has a simpler requirement than the previous one, since in this instance a

problem only exists for when ertmeta is transitioning high (a low transition implies that

ði,n \s already stalled at the send gate), whereas previously bothtransitions of lhe)send

signal had to be resolved. The transfer characteristic for this MR is shown in Fig.4.16b,

and it can be seen that no hysteresis is present. Therefore the MR can be implemented

simply as an inverter with a low switching threshold (say, VTL:L.5V), which requires

nothing more than a high n:p transistor width ratio and is a significantly less complex

implementation than required previously!

The important issue however with regards to this circuit is that, for the typical case

when ertok: 1, the latency of the circuit is merely À : tr"nd. There is however a

requirement on the environment, to ensure that a newly latched value of ertmeta reaches

VTL in the worst case (causing yertok) before the next }'in event occurs:)out -+

)i,n > LvrLt"tot.n * Vt¿n (un¡ - tr"ro. This constraint in practice imposes a negligible

minimum latency on the environment, which is usually obeyed without any additional

design effort. A requirement on the circuit is that ðout occurs before yertok in the same

cycle, implying: tr"nd. 1 LvTtt"tot"nIYt¡rr(Lran¡, which is also usually obeyed without

any extra design effort. Note also that the initial state of the inverting latch must be set

(typically low).

Consider now the other case in which }i,n occurs when ertok is low, either due to

continuing metastability of erlrnæa from the previous cycle, or a valid logic high of this

din dout 3.5 4 45 5

, and valid low

valid high

output :

77

signal. In this instance the output ðout \s simply stalled until such time as eøú goes high

again, as this then propagates through to ertok since the latch is in the pass state.

An Hspice simulation of the new architecture is shown in Fig.4.17a for a sweep of times

for yert through the metastability region and an n:p width ratio of the MR inverter of

15:1. This was implemented in VLSI using the 0.7¡-r,m DLM CMOS ES2 technology, with

a 5V supply, a temperature of 75"C, and using "typical" process parameters (hereafter

simply referred to as the ES2 technology).

5

I

lnr¡sr-o rn
txlÍETA_

-

HRIESI IR O

EXI
A-

¿[nr¡sr rno
EXIHEIA-

-lnrrsr,rno
EXTOK

-TT

"r*tr' l*o
D_1il

-xlrr¡sr rno
O OUT

c0

oL30
I 50

20
I 50

IO
I-0¡

0

5,0
I 50

{0
r.so=

c 0-

rinrtsr-o rn.
"
I

EXIOK

-

o ''

30
I 50

20
I 50

l0

{.0 -

2 0-

O Lr I

t-oN ^ L , I --,.. rN u zo oN
l9 0N

1-

),oil -
.L,,!?! oN

2l 0N TIIT LIN
,l
3 0 0NTI

(u) (b)

Figure 4.17: (a) An Hspice simulation around the metastability region of the improved halting

circuit, and (b) the circuit's operation once the next }'in event is applied.

Around the metastabitity region of ertmeta (at about 1.9V for this process), the signal

ertok has safely been set low, and therefore metastability can exist indefinitely without

causing a problem for the send gale. The potential danger now however is when ertmeta

rises to a peak of around 1.1V, which causes ertolc to dip to around 2V and may then

cause a problem for the send gate. However, being outside the metastable region, it is

known that ertrneta will falt again and hence ertok will rise. Therefore although ertok

dips it is notmetastable, and as can be seen from the simulation, is in all instances always

rising after t : 22ns. The next ð'in event can safely be applied to the send gale after this

time (since being concurrent with a rising edge of the control signal is not a hazard) as

shown in Fig.4.17b (with }'in occuruing at t:23ns). Since the latch is now in the pass

state, the low value of. ert is sent through lo ertok. If it was already low, then no ðout

event will occur :until Aert occurs (ie- the interrupt has been effective on this cycle, as

shown by the)out events at ú : 29ns), otherwise if it was high then a ðout event will

72

occur at once (at ú : 24ns) and the interrupt will be effective on the next }in event.

Given that)out occurs at about t -- 27ns, the minimum latency constraint on the

environment is therefore 1.0r¿s, which is of the order of a typical gate delay and would

invariably be met by the environment's circuitry (requiring no extra design effort). The

circuit constraint explained earlier has also been met without effort.

By moving the control complexity out of the critical event path and into the data path,

the implementation of the MR has been drastically simplified, and more importantly, the

typical case latency has been improved.

4.5 Summary

The most recurring theme in all of the techniques presented in this chapter is the min-

imization of gates in the critical event path. This can be achieved through the basic

principles of algebraic reduction, issuing earlier acknowledgements, and transferring com-

plexity from the event path into the data path.

It is clear then that the ECS designer needs to earnestly investigate his or her initial

implementation of a circuit (which should first be verified through simulation as func-

tional) to ascertain where it is possible to apply these optimizations and produce a faster

(and often smaller) design. As has been shown by the examples given, significant speed

improvements of the order of 50% can often be achieved through the use of these tech-

niques. Furthermore, an area reduction has also resulted in the majority of cases which

in turn implies fewer gate transitions per cycle and a reduction in power dissipation.

73

Chapter 5

Asynchronous Pipelines

f.þfnlINING is an important aspect of systems design and is emploved in almost

.) every modern commercial processor. By partitioning a computation into smaller

and faster components (such as a 32 bit addition into 32 one bit adder cells) each can be

made to function concurrently but on different operations. When one component finishes

its part of the computation, it latches its results into the next stage (which does the

next part of the computation) and then repeats this process for the next operation. By

pipelining a design in this fashion, the throughput can be made to be as fast as any one

component rather than their sum, which often results in a substantial improvement in

cycle time. This is however at the cost of an increase in latency (due at the least to

the propagation delay of the latches between stages), although for many applications this

is of less importance than the need for achieving a high throughput. The importance

of pipelining is therefore critical to the design of both synchronous and asynchronous

systems, of which the latter forms the focus of this chapter.

In the synchronous domain pipelining is effected by subdividing the computational

requirements into blocks of approximately equal delays, and then clocking the results

of one block into another with a clock period at least as great as the longest delay.

Ideally there is no additional control overhead apart from that imposed by this minimum

clock period, however in practice a number of other constraints such as skewing, power

dissipation, and a large clock driver load all serve to complicate the global clock paradigm

(see Section 1.1.1). Furthermore, it is not possible to take advantage of data dependent

computation times, and the throughput and latency are governed by the computation

time of the slowesú stage (hence the need to equalize stage delays as much as possible).

74

Asynchronous pipelines employ the same partitioning principle as a synchronous

pipeline, however the requirement of equalized stage delays is relaxed and the regulation

of data between blocks is locally controlled. Typically a request-acknowledge (req-ack)

protocol is employed, such that one stage signals to the next when its data is ready (r"q),

and that stage signals back (ack) to indicate when its next operation may begin. A vari-

ation on this theme, in which no acknowledgements are necessary and timing constraints

are propagated back to the input stage, is proposed in [AML96].

A number of different pipeline structures have been designed by various researchers

based on the req-ack protocol using both two and four phase SI and BD models. The

following sections discuss some of these designs and illustrate their comparative perfor-

mance. Furthermore, some 2P ECS pipeline structures are presented which provide a

faster throughput than any others previously reported.

5.1 FIFO pipelines

A FIFO (first-in, first-out) pipeline is one which employs no processing of data between

stages, therefore the only limitation on the pipeline's latency is the propagation delay

of data through the latches (tmr.n). FIFOs are often used as storage buffers to a circuit

which may exhibit occasionally long cycle times (such as writing to a cache or buffering

prefetch logic [LCT*95]), so that these variations do not typically impinge upon the cycle

time of the source which continues to supply the buffer during these long cycles.

5.1.1 Micropipeline 2P FIFOs

Perhaps the most famous implementation of an asynchronous FIFO is the mi,cropipeli,ne

proposed by Sutherland [Sut89], as shown in Fig.2.2 of Section 2.2.1 (with processing).

One stage of the micropipeline control using logic driven latches is shown in Fig.5.1.

The micropipeline utilizes a 2P SI control schema and operates as follows. Initially

the select line sel is high so that all of the latches are transparent (enabling input data

to filter through), and lhe cgate is primed. An incoming)reqi,n event will therefore

propagate through lhe cgate and force the select line low, thereby latching the input data

(which must be valid prior to this). The ysel transition then proceeds through the toggle

and emerges as an event from the doú output }reqout, which initiates the operation of

75

d_reqin

d_prime

d_ackin input data

sel

latched data
-ì

t Processing t

lrot i, o FIFoll

',I
Id_reqout d_ackout output data

Figure 5.1: A micropipeline stage also indicating a fast-forward (dashed line) implementation.

the next stage. This same event is also fed back to the preceding stage as)acki,n to

indicate that the data has been latched and that new data may now be supplied. At some

Iater time the following stage will provide a)ackout event to indicate this same situation

(that new data may be supplied), which then causes sel to go high via the ror and hence

enables new input data to propagate through the latch. This transition then re-primes

lhe cgate via the toggle (emerging now as)pri.me). A new cycle begins when the next

ôreqi,n event occurs, or if one is already pending at the input of the cgate. Note that

if a latch structure is utilized which requires both sel and its inverse, then a SI control

implementation would require a primed cgate to join their opposing transitions prior to

the toggle [Sut89, Fur96], however the latch structure of Fig.3.5a avoids this additional

overhead since it only requires the sel signal.

One of the problems associated with the micropipeline is the long stage latency from

7reqi,n to õreqout (t.sot" I t,o, * 2t¿nu -f ttosst.), which is significantly greater than the

minimum allowable latency of t¿o¿.¡. As an improvement, the dashed event of Fig.5.1 can

be used to provide an early õreqout event to the next stage. This improves the stage

latency to just t.no¿" (wh\ch is still slightly greater than the latch propagation delay) and

also subsequently improves the cycle time. Note however that this alternative control

implementation (dubbed a fast-forward micropipeline [SutS9]) is no longer SI.

5.L.2 4P FIFO circuits

A very simple 4P control circuit [FES94] is shown in Fig.5.2, and consists merely of a

cgate. Much of the control circuitry of Fig.5.1 has been made redundant since a 4P

a

toggle

76

signalling protocol has a RTZ phase, thereby removing the need for a two-to-four phase

conversion for the sel signal (though the ror and toggle). Instead, the cAate can be used

directly to drive the latches (through a driver) and to signify the ack'in and reqouf signals

to adjacent stages.

reqrn ackin input data

sel

latched data

sel

t Processing t

lnot in a FIFTJ,

reqout ackout output data

Figure 5.2: A simple four phase (S4P) FIFO controller

Although this SI control schema is extremely simple it suffers from the fact that it is

only ever possible to have alternate stages storing data. This is because the closing of

stage i (ysel¿) causes the opening of the preceding stage (through the path: ysel¿)
Aacki,n¿ -+ y sel¿-1) Asel¿_1) which in turn causes the closing of the one before that

(yset¡-2). Thus, it is only ever possible for every second stage to be latching data (ysel).

A highly optimized 4P improvement on this implementation is shown in Fig.5.3

lDW95]. This circuit introduces additional control complexity to enable the latch to close

before the following stage becomes open (meaning that y sel¿4 is no longer dependent

on Ase/¿), and to also decouple the RTZ handshaking phase with the preceding stage. As

such the cycle time and latency of this circuit is improved, despite being a significantly

larger design. The asymmetric cgate notation used is such that an input striking the *
bar affects only the rise of the gate's output (on a positive transition), and one striking

the - bar affects only its fall (on a negative transition). Both transitions are controlled

by an input striking the body of the gate, as in a conventional cgate ímplementation.

5.1.3 A fast ECS FIFO

It was observed for the micropipeline of Section 5.1.1 that by removing the SI constraint

on the circuit (in providing an earlier 0reqout event) a faster design could be produced. By

77

reqrn ackin input data

sel

+
latched data

t Processing t

reqout ackout output data

Figure 5.3: A decoupled four phase (D4P) FIFO controller

taking this ideal one step further, and removing the extra logic necessary for re-converting

lhe sel signal back into events (through Lhe toggle gate), a much simpler implementation

can be produced as shown in Fig.5.4a. In this instance, the output of the cAale is used

to provide the }reqouú and)aclci,n events directly. To enable a sufficiently long high

signal on sel after a)aclcout event occurs when a ôreq'in event is pending, a small delay

must be inserted prior to the priming of the cAate (gling a minimum latch pulse width

of T * t.sotu).

d_reqin input data d_reqin input data

sel sel

latched data latched data
-t

t Processing t
t¡not

in a FIFo)t,

-t
Processing t

(not in a FIFO ,l
)t

d ackout output data out d ackout output data

(u) (b)

Figure 5.4: (a) An ECS implementation of the micropipeline and (b) the ECS state pipeline

A similar structure is proposed in [YBA96] which uses very large (24 transistors)

double-edge triggered flip-flops in place of the ror and logic driven latches (which use

only 6 transistors). This results in a substantially bigger design with a slightly slower

speed than the circuit of Fig.5.4a (due to the increased load on the select line).

latches

78

It can be seen that the)ackout event of Fig.5.4a results in Asel, and so to enable a

more reliable latch pulse width to be generated, this could be used instead of the cgate

structure to produce \acki,n through a send gate. This implementation is known as the

state pi,peli,ne IMAL95] and is shown in Fig.5.4b. As well as producing a better sel pulse

(in a self-timed fashion, since Asel is now guaranteed to occur before ysel), the latency

and cycle times of the pipeline are also improved (since tr"nd '-t¿s¿¡¿à,\d there is less load

on the õackout event).

5.L.4 Comparison of FIFO designs

The micropipeline, four phase, and ECS FIFOs were all simulated in Hspice using the

ES2 technology, with four stages implemented and a data width of 32 bits. Identical

gate structures and sizes were used between designs which enhanced the accuracy of the

comparison. The simulation results are given in Table 5.1, for which the cycle time (ø),

latency (À), power (P), and power-delay (Pø) values are all quoted per stage-

Circuit o NS À (ns P (mw) Po (m\Mns)

Micropipeline 12.5 4.4 1.8 22.5

F-forward micropipeline 9.3 1.3 2.6 24.2

Simple 4phase 8.1 2.0 1.5 t2.2
Decoupled 4phase 7.8 1.6 3.4 26.5

ECS micropipeline 3.5 1.5 3.0 10.5

ECS state pipeline 2.8 1.3 2.2 6.2

Table 5.1: Relative performance of six FIFO circuits

These figures verify the claim in [DW95] that 4P SI control circuits outperform 2P

SI circuits (giving a38% improvement in cycle time), however the same cannot be said

against a BD model. In fact, the ECS state pipeline's cycle time is shown here to be

64To Iower (almost 3 times faster) than the best 4P implement ation and consumes 35%

less power! Furthermore, the latency of the state pipeline is also significantly faster than

this design (by 35%). It is also interesting to note that the decoupled 4P FIFO is only

marginally faster than the single cgateimplementation, which also consumes considerably

less power (56% Iess). The power-delay value Po is an often quoted figure of merit which

indicates the trade-off between speed and power, and in this category the ECS FIFO is

again superior.

79

It is clear then from these figures that, for a FIFO implementation, a 2P ECS pipeline

is significantly faster than a 4P pipeline, and that employing a BD model enables higher

circuit speeds to be attained than is possible with a SI model.

5.2 Pipelines with processing delays

The preceding FIFO circuits illustrate the control schemas which can be employed to

construct a pipeline, however without incorporating any data processing their applications

are limited. Typically, each stage of the pipeline will perform some kind of operation on

the data which may take longer than the latency of the FIFO, so the output event to the

next stage ðaclcout must be stalled until its output data is valid.

In the simplest case for which the data processing delay is bounded and regular (ie-

does not exhibit significant variations in computation time) , the req signal can simply be

stalled by the use of a delay element, as shown in Fig.5.5. Note however that it is not

strictly necessary for req to be delayed until its output data is valid. Rather, it must be

delayed to the extent that the next stage will activate ysel after all valid output data

has propagated through the latch. This means that the delay element Z of Fig.5.5 can be

Iess than the worst case processing delay (plus a safety margin for process variations and

simulator errors) by an amount equal to the forward propagation latency of the pipeline

control (from req) ysel).

ack

req

ack

req

CË

(ó
!
!o
o
(d

(d

o.

o

(d

a

d
(d

o.À

ack ack

sel

cd
(Ë

!o

(d

(d
(d
É
o
o
d

Figure 5.5: A typical delay-modelled pipeline

The implementation of this delay element is different for 2P circuits than it is for

4P. With a 2P design an approximately equal delay is necessary for both positive and

negative transitions, and so a simple inverter chain giving the required delay time can be

controlcontrol controlT T T

U)
C)

O
cd

oo

(n
(h
c)
C)o
À

(â
0)

O
(€

ào

U)
ct)
a.)
Oo

Êi

U)o
O
cd

ao

(â
(t)
()
O

0-.

80

used. However for the 4P designs, the delay is only necessary for the positive transition

of reqout, and the negative transition should ideally have no delay. Obviously an inverter

chain could still be used, however the delay imposed on the negative propagation would

be severely detrimental to the cycle time. Instead, a structure such as that shown in

Fig.5.6 can be employed, which enables a positive edge to propagate through the inverter

chain, but a negative edge will cause every second inverter to be pulled low, including the

output, thereby resulting in a very low propagation latency as desired.

input output

Figure 5.6: A delay element for positive transitions onl¡ as required by 4P controllers.

Note that it is also possible to implement the delay by propagating the output request

through a series of gates which mirrors the worst case computation path. By doing this

the effects of process variations and simulator errors are reduced, since both control and

data delays will vary almosú identically which cannot be said of the inverter chain delay.

This approach is more suited to the use of dynamic logic (discussed in Section 5.3.3.3),

since for static logic the worst case computation path cannot always be replicated for

both positive and negative transitions of a 2P event, and a 4P control signal cannot

usually propagate a fast low signal without altering the delay model. Furthermore, this

approach prevents absorbing some of the data modelled delay into the event control (from

req -+ ysel in Fig.5.5, which can be used to reduce the stage latency) unless the delay

model is truncated, however this would mean that it no longer accurately mirrors the

data path which contradicts its intended purpose.

The FIFO circuits of the preceding section (excluding the micropipeline and ECS

micropipeline) were simulated using the ES2 technology and are shown in Table 5.2.
^

peak data processing delay of 10ns was assumed (which includes any safety margins), and

an inverter chain delay model was used on each stage's output request.

The latency of these circuits is now almost identical, since their processing delay model

has been absorbed into the event control fromreq -+ ysel (which is just greater than the

processing time plus latch propagation delay: l7.3ns) 10ns *tmt.n). As could also be

81

Circuit lø(ns À (ns P m\M Po (mWns

Simple 4phase 26.3 11.3 1.6 40.9

Decoupled 4phase 18.0 11.3 2.2 39.6

F-forward micropipeline 79.2 11.3 1.5 28.7

ECS state pipeline 72.5 77.2 1.1 13.8

Table 5.2: Relative performance of four delay modelled pipeline circuits.

expected, the cycle times of these circuits is, for all but the simple 4P (S4P) pipeline,

approximately 10ns greater than their FIFO cycle times.

It can be shown that in a pipeline with processing, the cycle time is limited only by the

return event processing time (from õaclcout -+)ack'in), and notby the forward latency

(from }req,in -+ }reqout), since this can be incorporated into the delay model. This is

why the ECS state pipeline is so fast, since there is a very short return processing time

(1.3ns), whereas the decoupled 4P (D4P) pipeline suffers considerably from its RTZ phase

(6.7ns).

The advantage of the D4P pipeline over the S4P structure however is now evident.

The latter is seen to exhibit a very long cycle time since, as already stated, it can only

have each alternate stage processing data, whilst the intermediate stages remain idle. In

essence, the processing delays of the current stage and the one following are incurred in

the cycle time. However, the ECS state pipeline still outperforms the D4P pipeline by a

significant margin.

5.3 Precharge pipelines: general concepts

The previous pipeline structures are useful for data computations which incorporate only

static logic. However it is often useful to implement dynamic logic structures to reduce

power consumption and increase performance. Furthermore, the use of dynamic logic (or

at the least, a pipeline with reset and activate phases) enables self-timed computations to

be performed. Using a delay-modelled approach in the control path as thus far presented

does not allow the speed advantages of self-timing to be utilized, since the worst case

delay must be accounted for, and not the typical case which may be significantly faster.

For example, a 32 bit self-timed adder has a typical delay for random data of 4.4 adder

cells [Gar93], which is 86% faster than the worst case (32 cells), and for an incrementer

the improvement is almost 97% (7 incrementer cell versus 32).

82

It is therefore of importance to devise precharge pipeli,ne (PP) structures which can

be used together with dynamic logic to implement self-timed (as well as non self-timed)

computations.

5.3.1 Dynamic Logic

A general dynamic logic computational block is shown in Fig.5.7. When act is low (which

implies that no processing is taking place) lhe output signal is precharged high through the

p-transistor. The computation begins when ô'act occurs, prior to which all input signals

to the nmos pull-down tree must be valid (coming either directly from the preceding

latch stage or through a small amount of static logic). If a pull-down path through the

nmos tree exists, then output will compute low, otherwise it will remain in the logic high

precharge state.

inputs
_ act

Charge
Retention
Circuitry

output

Figure 5.7: A general dynamic logic computational block.

When dynamic logic is used inside a PP structure, it must be remembered that if

the present stage has begun its computation wilh outpuú remaining high, but is stalled

by the following stage (which may still be computing, or is similarly waiting for its next

stage to unstall), it is possible that due to charge leakage output will eventually decay

low. Although this situation may be extremely rare, if it is at all possible for the pipeline

to stall for longer than the charge retention time, then some kind of state holding logic

(for the high level) is necessary. The shaded circuitry in the oval of Fig.5.7 provides this

function, by maintaining a logic high level through the weakpull-up (trickle) transistor via

the weak inverter when output is high. Note that this will slightly increase the capacitive

load on output and also the pull-down time.

weak

output

83

An alternative is to prevent initiating øcf until the following stage is open [FL96] (so

that the results are able to be latched before the influence of charge decay), however this

approach is unsuitable for ECS since the increased wait time before activation severely

increases the processor cycle time (for the D4P controller the effect is minimal since this

can be incorporated into the RTZ phase). Another approach is to compute both output

and output through an nmos tree, and use each to activate the others trickle transistor.

Although useful for some self-timed architectures (in which the pull-down of one of these

bits indicates the "completion" of the cell) it has the disadvantage of using approximately

twice the area [vBBK+95] and requires the inverse of all input signals to be routed.

Dynamic logic has been shown to be of benefit to asynchronous pipelines in terms

of both speed and power [McA92, FES94]. By reducing the capacitive load on output

through removing the static logic pull-up tree, the switching (low) time of the output

is improved. Furthermore, due to precharging, the time to a logic high is (obviously)

zero. Speed advantages can also result through the use of self-timed logic (see Chapter

6). Power is reduced because of the reduction in capacitance on Lhe output node as well

as the reduced capacitance on the input signals (which only drive 1 transistor per cell

instead of 2 for static logic). Furthermore, since the output remains precharged until all

inputs are valid, there is no switching power loss due to glitching of the inputs.

At the global pipeline level it can be noted that if static logic is employed, then with

all pipeline stages initially open, a signal change at the input may propagate through the

entire pipeline, even if no input control event has occurred. This can result in a significant

power wastage. One solution is to have each pipeline stage initially closed, however the

extra phase of opening and clos\ng the latches (instead of just closing them) increases the

system latency. Dynamic logic however provides a natural buffer since all outputs are

precharged, therefore significant power savings can be made without compromising the

system speed.

5.3.2 Requirements of a PP for dynamic logic

Clearly from Fig.5.7 the PP is required to produce an activation (and precharge) signal

act lo the dynamic logic, which starts the computation when high and returns the system

to a precharged state when low. This then raises the question: when is it known that the

84

dynamic logic has precharged or that the computation has completed?

These questions can be answered in two ways depending on the assumptions made

on the dynamic computation. If it can be assumed that the precharge time is bounded,

then some kind of delay inserted into the PP control can be used to ensure a minimum

precharge time, otherwise a signal pdone must be returned from the dynamic logic to the

PP to indicate when all nodes are precharged (this is necessary for a SI control schema).

Similar arguments apply to the computation, with the dynamic logic returning a signal

cdone to the PP if an unbounded computation time is assumed, or for when the extreme

processing variations of a self-timed computation are to be exploited.

Table 5.3 indicates the three different paradigms which result from the above assump-

tions, dubbed alpha, beta and garnrnl, The combination of unbounded precharge time

and bounded computation time is not included, since it would rarely be of use.

Paradigm Timing assumptions made Signals required

pha PPc Bounded precharge computatron act

Beta (PPB) Bounded precharge & unbounded computation act, cdone

Gamma (PPry Unbounded precharge & computation act, cdone, pdone

Table 5.3: Three different design paradigms for precharge pipelines.

PPa is the least robust of the three paradigms and assumes that both the precharge

and computation times are bounded. Assuming the former is reasonable since this usually

happens in parallel across the dynamic logic arra,yj and assuming the latter (although

still reasonable for many applications) prohibits the application of PPa to self-timed

structures.

Conversely, PPP is well-suited to implementing self-timed architectures since it re-

quires a completion signal to be generated. The assumption of a bounded precharge time

is still reasonable for self-timed architectures, however in the rare instance that it is not

then PP7 can be used. This is the most robust paradigm and is necessary if a SI control

model is implemented.

The requirements on the PP for generating act are obvious: the dynamic nodes cannot

be returned to precharge (yacú) until their computed data has been latched into the

following stage; and the computation cannot be activated (Aøcú) until the data nodes

have been precharged and new data has arrived (as signalled by the input request of the

control schema).

85

The signal pdone (for PP7) is used to govern the activation of Lact on a positive

transition only, and the signal cdone (for PP1,B) is used to govern the output request

of the pipeline also on a positive transition. The negative transitions of these signals is

therefore unnecessary, and should ideally occur as soon as possible after Aact and yact

respectively so that they have a minimal effect on the cycle time.

5.3.3 Methods of completion and precharge detection

There are essentially four methods by which cdone and pdone can be generated, each of

which gives a different level of robustness in terms of its resilience to process and operating

point variations.

5.3.3.1 Self-timed static logic (STSL)

The most robust method of determining when a computation has completed is to generate

both the required signal (say, r¿) and its inverse (r¿), since under all conditions (barring

stuck-at faults) one of these two signals must pull low. By nand'ing these two signals

together, and then and'ing the result for all signals, a self-timed generation of cdone can

be produced, as shown in Fig.5.8a. To enable a fast pull-down path from yact -+ ycdone,

an or'ed pull-down transistor in the frnal and gate is used (drivenby rrct).

act act

x0 xl xn xn xnx0 x1

act

(u)

pdone

(b)

Figure 5.8: A self-timed static logic method for generating (a) cdone and (b) pdone.

Figure 5.8b shows a similar method for generating pdone. In this instance the

precharge is detected by and'ing all of the output nodes r¿ (and r¿), since these must

Dynamic
lo!ic

xo xl

Logic

86

all be high to indicate completion. As before ,, an or'ed pull-down transistor is used on the

and gate of pdone to produce a very small delay from Aact -+ ypdone.

Although both of these circuits are suitable for SI control models and self-timed com-

putations, they require a substantial amount of logic in the detection path, especially

when one considers that for a large number of bits the high fan-in and gate must be re-

implemented as a tree of smaller gates. It is therefore evident that self-timed completion

detection using static logic is a slow process, and could easily become longer than the

dynamic logic computation which would then completely negate its speed advantage over

static logic.

5.3.3.2 Self-timed pseudo-nmos logic (STPL)

To overcome the speed deficiency of the self-timed static logic detection, a pseudo-nmos

style [Wtr93, Chapter 5.4.3] implementation can be used as shown in Figure 5.9.

VDD act
VDD

Xo'
--l pdone

weak
, act

act !4

9
GND

(u) (b)

Figure 5.9: A self-timed pseudo-nmos logic method for generating (a) cdone and (b) pdone.

For generating cdone, the initial condition is that all r¿ and r¿ signals are high, and

the pull-up transistor is off so that cdone is low and no po\4/er (other than from leakage

currents) is drawn. When act goes high, the pull-up transistor turns on and static power is

dissipated. This transistor is sized such that in the worst case situation, when only one of

the pull-down paths is on, the output cdone still provides a suitable logic-low level. When

eventually all paths are off, which occurs when for all bits either lr¡ or r¡ has computed low,

cdone will be pulled high. This circuit therefore enables very fast completion detection

but at the cost of static power dissipation only during the computation phase (which

can be minimized by suitable transistor sizing), and is independent of any pipeline stalls.

Note also that the n-transistor connected to act is used to provide a fast pull-down path

during precharge.

Ll

xt,
---l \

GND

xn'
---l

87

The same technique is used for generating pdone, howevet in this instance all nodes

are connected to a parallel row of pull-up transistors. If any one of these signals is

Iow, then pdone will be pulled high and pdone will stay low (static power is similarly

consumed during the precharging process through the weak, appropriately ratio'ed pull-

down transistor governed bV "ã). As soon as all signals are high, pdone will pull low and

pdone will rise indicating precharge completion. No static power will then be drawn. Note

again thal pdone has its pull-down transistor governed by act to provide a fast pull-down

time.

5.3.3.3 Computation modelled completion detection (CMCD)

For the case in which one computational node can be identified as exhibiting the worst

case pull-down (WCPD) time (as is often the case when each bit computes a similar

function) then the detection mechanisms shown in Fig.5.10 can be used to generate cdone

and pdone. This approach can be expected to closely mirror any circuit deviations arising

from variations in process and operating conditions, since the affected pull-down path is

replicated in the completion strategy.

act

cdone
lnputs inputs

(u) (b)

Figure 5.10: A method for generating (a) cdone and (b) pdone which closely morlels the worst

case pull-down time.

In Fig.5.10, act is initially low and hence (since cdone is precharged) cdone will be

low. Within the WCPD tree, all gate inputs are connected to either GND or VDD,

depending on the WCPD path of the computation to be mirrored. When øcf goes high

this path will connect to GND and therefore pull down the node cdone, causing cdone

to go high (the n-transistor of this inverter is connected to act to enable a rapid pull-

down delay fromyact). Completion detection is therefore rapidly and reliably signalled.

Similar arguments apply to the circuit for generaling pdone, although in this instance the

VDD
act

"T
cdone

act

GND

VDD

worst case

nmos tree

GND

88

inverter is not used, and the n-transistor network must be constructed to mirror the worst

case pull-up time.

5.3.3.4 Delay modelled completion detection (DMCD)

The simplest and least robust method of signalling completion is to use a delay model,

as shown in Fig.5.11. In this instance, a worst case pull-down (and pull-up path for

precharging) must be identifiable which, as per the CMCD approach, prevents it from

being used for self-timed computations.

act cdone

Figure 5.11: A delay modelled method for generating cdone

The signal cdone is generated simply by a delay of the ocú signal through the inverter

chain, and to enable a fast pull-down path, every second inverter is driven low by acú

(which is connected to its n-transistor). The same circuit can be used for generating

pdone when preceded by an inverter. Note that this circuit is identical to that of Fig.5.6.

5.3.3.5 Summarizing the completion detection approaches

For generating the cdone and pdone signals for self-timed computations it is best in

terms of speed (which is the primary focus of ECS) to use the STPL mechanism, which

is significantly faster than using the static logic approach. Note that the static power

dissipation of this circuit can be controlled through transistor sizing, and is only incurred

during the actual computation time and is therefore not affected by pipeline stalls. The

STSL method should not be used for high speed applications unless the data width is

small.

If however a worst case node can be identified for the computation and precharge

times, then it is faster and more reliable to use the CMCD mechanism. If there is any

static logic circuitry present before or after the dynamic logic, then a DMCD approach

should be used to model this.

89

5.4 Decoupled 4P precharge pipelines

The D4P pipeline has been shown to be the fastest of the 4P implementations, and has

therefore been used in the construction of o, B, and 7 precharge pipelines, with the

intention of comparing the performance of these D4P structures against those which can

be devised in ECS.

These PP structures can be designed by first considering the more stringent require-

ments imposed upon the D4P when implementing a PP7 and then simplifying this circuit

for the other paradigms.

5.4.I Implementations for PPo, PPP, and PP7

Consider firstly the generation of act, for which the conditions for generating its positive

and negative transitions can be stated as:

c A'act cannot occur until Areqout of Fig.5.3 has occurred, which indicates that new

input data has been latched.

o A,act cannot occur until Apdone has occurred, which indicates that the processing

nodes are in a precharged state and are ready for dynamic computation.

o lact can be initiated after Lackout, wh\ch indicates that the data from the previous

dynamic computation has been latched. This signal must stay low until yackout

occurs to prevent the subseqrenl Apdor¿e transition from causing a premature rise

in act (resulting from the two preceding requirements).

An asymmeLric cgate can be constructed from these three conditions and coupled to

the D4P pipeline as shown in Fig.5.12a to create a PP'y structure. The output request of

this new pipeline is given directly by the 4P cdone signal emerging from the computational

block.

A PPB structure can be devised simply by removinglhe pdone signal from the asym-

metric cgate (since the precharge time is now assumed bounded), and inserting a delay into

the return acknowledge path which enables the precharge time from Aackout -+ Areqout

(prior to the caate for act) to be controlled. Note that if the handshaking control of the

RTZ phase is longer than the required precharge time, then no delay element is necessary.

90

Decoupled
4 phase

Controller

reqln

ackin
act

ackout

out
(cdone)

(u) (b)

Figure 5.12: (a) PP7 and (b) PPB structures implemented with a D4P controller

Otherwise, the additional delay 7 could be implemented by an inverter chain of delay T f 2

(since both transitions of ackout occur during the precharge phase), or a positive edge

only delay of 7. The shaded control section of Fig.5.12a is therefore replaced by that of

Fig.5.12b to produce aPPB structure.

The simplification into a PPa paradigm is simple. The signal cdone is removed (as

a bounded computation time is now assumed) , and act is simply delayed (positive edge

only) to give the output request signal. Note that the control of the next stage from

Areqi,n -+ ysel can now be incorporated into the overall bounded control delay, hence

reducing the pipeline latency and the cycle time.

6.4.2 Performance comparisons

These three PP structures were all simulated in Hspice using the ES2 technology for a

4-stage pipeline with 32 bit buses, and assuming a dynamic computation delay (from

Aact -+ data valid) of 10ns, and a precharge time (from yact -+ data high) of 3ns. A

STPL approach was used for the generation of cdone (resulting in an additional x lns

delay for detection), and a CMCD strategy was used for generating pdone (which incurred

a negligible delay since it modelled the 3ns precharge time). Identical drivers for sel and

act were also used between each implementation. Table 5.4 provides the results of these

simulations, with all values quoted per stage.

It can be seen that the latency and cycle times of the PPB and PP7 structures are

almost identical. This is because a D4P controller inherently provides for a precharge

time of greater than 3ns (actually, about 6ns) in its RTZ phase, so that no delay element

\ryas necessary. As such, the only difference in implementation is in the removal of the "+"

91

D4P Circuit a (ns) À (ns) P (mw) Po (mWns)

PPo 18.0 11.6 2.6 46.0

PPP t9.4 13.0 2.5 48.7

PPr 19.6 L3.2 2.8 54.5

Table 5.4: Comparison of precharge pipelines (o,þ,1) implemented with a D4P controller

bar to pdone in the asymmetric cgate (hence the slight difference in speed of 0.2ns). PPo

enables a latency closer to the ideal of ttoth-lt"o^, (wheret"o*r:10ns in this example)

because the latency of the event control has been absorbed into the delay model. The

cycle time is therefore similarly improved by the same amount. Note that in practice a

longer delay time would be implemented to provide a suitable safety margin.

5.5 ECS precharge pipelines

The ECS state pipeline discussed in Section 5.1.3 has been shown to give a much faster

latency and cycle time than any of the other pipelines. Structures similar to this can be de-

vised which enable all three PP paradigms to be realized. The operation of these pipelines

can become complex, therefore it is convenient to begin with the simplest paradigm: PPa.

5.5.1 PPa implementation

The PPa structure in ECS is in many ways similar to that of the D4P approach. In par-

ticular, since no pdone or cdone signals are provided, the computation time and precharge

times are controlled with a delay element as shown in Fig.5.13. In contrast however to

the D4P approach these delay elements now operate on events, and therefore the delay

now applies to both transitions rather than just the positive one.

The requirements for generating act are simple: Lact cannot occur :untll)ack'in oc-

curs, which signifies that a nelv operation is underway and the input data is latched;

and yact cannot occur tnlil Ôaclcouú occurs, which indicates that the following stage has

latched the current data. Note that using these events requires ysel to occur before yøcú

of the preceding stage has been able to invalidate its data (precharge high). This takes a

finite time, so that in practice ysel and yact can safely occur concurrently. Note that

¿cú could simply be generated by the inverse of. sel, however by decoupling the activation

92

d_reqin d ackin

sel

Handshaking

act

Activation

act

Activation

d ackout

Figure 5.13: An ECS PPa structure.

from the handshaking, an acknowledge can be sent to the previous stage without having

to wait for the precharging phase as would have to happen otherwise.

5.5.2 PP p implementation

A design of aPPB structure is presented in Fig.5.14, and is similarly seen to decouple the

handshaking (generation of sel) and activation (generation of act) phases of the design.

cdone in d ackin

Handshaking

sel

+

prech
¡ (from dynamic logic)

cdone out d ackout

An ECS PPB structure.Figure 5.14

The most striking difference between the handshaking phase of this structure and

that of the PPa is that a forward propagating event path is no longer present! This fact

is best explained by first considering the PPo structure with a send gate placed before

ôreqout governed by cdone. This then produces an initial PPB structure which can then

be modified into this one through the following observations.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

93

A new operation in stage i cannot begin until Acdone-i,n has occurred, which would

then also produce a õreqi,n event to stage z. As such the occurrence of this event is

irrelevant, since Acdone:in signifies the same thing (and the sendgate is only of use to

maintain a forward event flow). However the new operation in stage z still cannot proceed

:rrnlil)aclcout has occurred. Instead of indicating this occurrence via Asel as in PPa,

the event can be temporally and'ed wilh cdone-in using a send gate to begin the new

operation. These improvements then result in a faster handshaking operation, since the

redundant õackout -+ Lsel and Lcdone:in -+ õreqin delays have been removed. Note

that a small delay of. Tlatch is necessary to enable a sufficiently long sel pulse to be

generated in the worst case (when)aclcout occurs w\th cdone-i,n aheady high), which

can usually be coupled with the precharge delay since this is invariably longer (although

they're shown separately in Fig.5.14 for clarity).

In most situations a pipeline will be embedded inside a higher level of abstraction,

which may require that an input õreqin event be used to trigger the first stage (stage 0),

and a }reqout event be produced from the last (stage n). In this case, the initial cdone

signal to the first stage can be generated by the TE: cdone:ins <- ðreq'ins U ðack'ins;

and the frnal }reqout event can be generated by: ðreqout, <-)ackout,cdone-outn (re-

membering that the overline indicates a pri,med event, not an inverse).

The activation phase of this circuit is in some ways similar to the PPo, which employs

an ror gate and a delay to model the precharge time. In this instance however the rise of

act is postponed until Acdone:in from the preceding stage has occurred, since this now

indicates that new data is available. Furthermore, an asymmetric caate is employed to

rapidly produce A¿cf once Acdone-i,n has occurred, and the signal from the ror gate is

now used to ensure that, regardless of the state of cdone, a sufficiently long precharge phase

still occurs. Implementing the activation circuitry in this manner enables the latency of

the design to be substantially reduced.

5.5.3 PPZ implementation

For the PP7 implementation shown in Fig.5.15 the same basic handshaking structure

as per PPB is used, however the activation circuitry deviates from PPB because the

precharge time is no longer bounded, and hence the pdone signal is used to indicate when

94

the dynamic logic has precharged. This is incorporated into the asymmefiic cgate by

using Lpdone to govern the positive edge of act.

cdone in d ackin

Handshaking

sel

+ Activation

pdone

(from dynamic logic)

cdone out d ackout

Figure 5.15: An ECS PP'y structure

The purpose of. prech now is slightly different from PPB. In this instance it is only

necessary lor yprech to i,niti,ate the precharge phase, whereas before it had to mai,ntain

it, since now Apdone is used to indicate precharge completion (Aprech had to be used

for this purpose in PPp). It is therefore safe to set prech high again as soon as ¿cú has

gone low, and the send gate governed b.y act is used to effect this.

5.5.4 Performance comparisons

These three PP structures u/ere all simulated using the ES2 technology with identical

design parameters to those given for the D4P pipelines of Section 5.4.2. Table 5.5 provides

the results of these simulations, with all values quoted per stage.

ECS Circuit o (ns) À (ns) P (mW) Pø (mWns)

PPa 74.4 rt.4 1.3 19.3

PPO 76.2 17.7 2.7 43.7

PPr 77.0 11.9 2.7 45.9

Table 5.5: Comparison of precharge pipelines (o,þ,1) implemented using ECS.

As could be expected, the cycle time of PPo is given by the sum of the computation

time, latch propagation, arr ror delay, and the precharge time (with the latency given by

act

act

95

the first two components). The latency is not influenced by the control structure since this

has been absorbed into the delay model for the computation, and the cycle time is only

influenced by the delay of an ror gate's negative transition. It is surmised that this ECS

PPo implementation is optimal in terms of speed. Interestingly, this circuit also consumes

less than half the power of the other paradigms, since there is less control activity and no

need for completion detection. Note again that in practice the latency (and cycle time)

would be increased by the safety margin incorporated into Tcomp'

The cycle time of PPB is increased by the STPL detection time of the data and the

increased delay of the asymmetric cgateover the inverter driver used in PPc. For PP7 this

is increased further by the slightly slower cgate (which has an additional control signal)

and by the increased precharge time which results from having to wait f.or Apdone before

activating Aact (an additional cgate delay).

The latencies of PPp and PP7 are given by the delays of the computation, the com-

pletion detection (which occurs in parallel with the data propagation through the latch),

and the asymmetric caate. Since the STPL provides for a very fast completion detection

which is comparable to the latch propagation delay, these latencies are very similar to

those of PPo .

5.6 Comparison of ECS and D4P PP structures

By comparing Tables 5.4 and 5.5 it can be seen that the ECS implementations of these

PP paradigms give significantly better cycle times and slightly better latencies than the

D4P circuits in all cases. Specifically, the cycle times for the a, B, atd 7 implementations

have been improved by 20, 17, and 13 percent respectively for the design parameters used

in the simulations.

In fact, the advantages of the ECS implementations become more pronounced as the

computation and precharge times decrease. Table 5.6 provides a calculated estimate

of the cycle times and latencies of the ECS and D4P circuits when the computation,

precharge, and detection times are all reduced to 1ns (if zero delays are assumed, the

handshaking circuitry of the ECS designs becomes predominant and limits any further

performance increase).

96

ø (ns) PPa PPP PP'l, À (ns) PPa PPP PPr
D4P
ECS

9.0
2.8

70.2
4.8

10.4

5.6

D4P
ECS

2.6

2.7

3.8
2.5

4.0
2.7

%better 69 53 46 Tobetter 19 34 D'JJ

Table 5.6: Comparison of ECS and D4P PP structures (a,B,7) assuming lns computation,
precharge, and detection delays.

Under these conditions the improved speed performance of the ECS designs are clearly

evident, as given by the "%better" row.

5.7 Summary

Numerous pipelining circuits have been presented for use with both static and dynamic

logic (or neither in the case of a FIFO), and in all circumstances the 2P ECS implemen-

tations have surpassed those of the best 4P designs (as well as any other 2P pipelines

previously reported). In particular, improvements of up Io64% in the case of static logic

and6gTo for dynamic logic have been demonstrated, which translates into approximately

a three times speed up. Furthermore, the power consumption of these ECS circuits is also

considerably less than the D4P implementations.

Some fast techniques for implementing the completion detection necessary for dynamic

logic have also been presented. In particular, the STPL approach allows for self-timed

architectures to be implemented without incurring the excessive overhead resulting from

conventional static logic detection mechanisms.

97

Chapter 6

Self-Timed Architectures

(THE previous chapter on asynchronous pipelines made numerous references to the

J use of self-timed architectures, and in particular to their ability to execute at a data

dependent rate. These architectures can therefore take advantage of the best and typical

case computation times (being data dependent), which for certain applications can be

significantly faster than for the worst case situation. Furthermore, if the data is such

that the worst case occurrence is infrequent, then the average case computation time will

approach the best case. In contrast, a BD architecture will still be governed by the worst

case computation time regardless of the data, so that typi,cally a much slower execution

rate results.

As an illustration of a data dependent computation, consider the conditions for gener-

ating a full adder cell's output carry from two input signals and an input carry, as detailed

in Table 6.1.

a b Cout

Table 6.1: Conditions for generating the output carry of a full adder.

When a is equal to ó there is no need for C¿n to propagate through to the next bit,

since Cou¡ can be computed directly from the inputs. In fact, if this is the case for all of

the bits in the input operands, then there is no need for any carry propagation to occur

at all!

0

0

1

1

0

1

0

1

0

C¿n

C¿n

1

98

A self-timed architecture can take advantage of this scenario by generating a ualidi,ty

signal for all bits which are free of carry propagation. Any carries (and corresponding

validity bits) which are generated only need to propagate as far as the next cell in which a

carry (and validity) was also generated. It can be shown that for random input data the

average carry propagation length of an adder is approximately 0.9log2n for input operands

with n bits [Gar93], which is considerably faster than the worst case BD propagation of

n bits, especially when n is large (such as in cryptography applications). One drawback

of self-timing is the need for completion detection across all bits of the computation

(from each bit's validity signal), however the techniques of the previous chapter, and in

particular the STPL mechanism, enable this function to be performed rapidly.

Although synchronous systems (and asynchronous systems employing a BD compu-

tational model) require the full n bit propagation to be accommodated, techniques such

as carry look-ahead [WS58], carry selection [Bed62], and parallel decomposition [BKS2]

can be used to decrease the propagation delay of the carry chain, though often at the

cost of an increase in area and a loss of regularity. Despite these techniques, self-timed

architectures still enable a performance benefit for the best and typical cases especially

for operands with large n. Only when the typical and worst case scenarios are similar

does the self-timed approach become inconsequential.

This chapter will present the design and implementation of a range of self-timed sub-

systems which are commonly used in a number of processor architectures, with particular

emphasis on those structures used in critical portions of microprocessors (such as PC

incrementing, branch target calculations, and integer processing units). Furthermore a

faster and lower area method of self-timing (dubbed pseudo self-timing) is also presented.

6.1 Strict self-timing requirements

For an operation to be self-timed, it requires there to be at least three states for any one

signal, as indicated in Table 6.2. Two states are used to convey the conventional binary

logic information (states 0 and 1), and the third state is used to encode the timing, or data

validity of the signal (state 2). It is therefore evident that to design a strictly self-timed

system, two wires are need for each bit to encode these three states. This convention is

known as dual rai,l (DP-) logic, and although circuits based on this paradigm are highly

99

robust (since all signals have timing encoded with them) they have also been shown to

require approximately twice the area of their single rail (SR) counterparts [vBBK+95].

State Meaning

0

1

2

(3)

Logic 0

Logic 1

Invalid
(unused)

Table 6.2: Three states required for implementing self-timed logic.

Note that since two wires are used to encode the three states, there is a fourth unused

state which can be used for other purposes. In particular, an error síate may be encoded

here which indicates when both a logic high and a logic low level are erroneously being

transmitted on a signal (as in Table 6.3). Alternatively, this extra state may be used to

implement ternary logic, in which a bit may take the values of 0, 1, or 2. This technique

reduces the bit length of words by log23 = 1.6 times, however since most self-timed

computations are proportional to the log of the bit size (as in the adder), this then results

\n a constant redtclion in propagation length of only lo927.6 x 0.7 bits regardless of

the data width. Given that the implementation of VLSI gates in ternary logic is more

complex (and slower) than for binary logic, the net result may well be an overall increase

in the propagation delay.

Dual rail logic must be used to implement strictly self-timed systems, however as stated

in Section 2.4 Lhe ECS design paradigm uses single rail data. How then is it possible to

implement self-timed computations in such an environment?

One solution is to compromise the requirements of self-timed systems as follows. The

input and output signals of the computation are provided in SR format together with

an activation signal act which indicates their validity, and a completion signal cdone is

generated when the output data is valid. However withi,n the computation itself any prop-

agating signals between bit cells are implemented in DR format, so that the completion

of the computation can be detected. This approach then enables an 'internølly self-timed

unit to interface to the SR paradigm of ECS, and in particular, may be utilized directly

as a computational element in the pipeline structures of Chapter 5.

100

6.2 Designing and utilizing self-timed units

Dynamic logic is ideal for implementing self-timed logic, since during the

all DR nodes are forced (in parallel) into lhe i,nuali,d state as required. When the compu-

tation is activated, the logic is designed such that only one of the two wires encoding the

data can change state (the precharged dynamic node pulls low), indicating lhat a ualid

logic level is now present. This will then initiate a change in state of the following cell's

DR signal if one hasn't already occurred independently of this. Although this functional-

ity can be implemented with static logic, it becomes more cumbersome and is significantly

slower than the dynamic logic approach.

The environment supplies its data in SR form and initiates Aøcú when these are

valid, which then causes the self-timed computation to begin by discharging the relevant

dynamic nodes. Once complete, the self-timed unit will generate a cdone signal back

to the environment using the STPL approach of Section 5.3.3.2, and some time later

(depending on the environment's structure), yøcf will occur to invalidate the DR data

through precharging in preparation for the next operation.

In a pipelined architecture self-timed logic is of no use in improving throughput, but

it can be beneficial in improving the latency. This latter fact is obvious, since by reducing

the typical propagation length the computation time is decreased, however to understand

why the throughput is not improved it is worth considering again the operation of a 32

bit adder.

In a synchronous system implementing two stages each of 16 bits will approximately

double the throughput, since the worst case propagation delay of each stage is halved.

However, a self-timed system is governed by the typical case, which gives a reduction from

4.5 bits to 0.9lo9216 = 3.6 bits. This is only a marginal improvement in throughput, and

has occurred at the expense of a significant increase in the latency t'o 2* 3.6:7.2 bits

plus the pipeline control delay (totalling over 60% more for just one extra stage)!

In the extreme case a non self-timed system can be pipelined down to a small number

of bits per stage which can all be computed in parallel, therefore resulting in a very high

throughput, whereas the self-timed approach cannot match this even when pipelined down

to 1 bit per stage, since there is an overhead in completion detection. Furthermore, such

an implementation will also exhibit a significantly longer latency than the non self-timed

101

design (which is evident by extrapolating the two stage example above).

Therefore a self-timed circuit is of little use when the throughput of the design is of

prime concern, since this can be better achieved using conventional SR logic techniques.

The advantage of self-timing derives from its latency improvement, and should be limited

in use to situations in which such an improvement is beneficial even if it results in a

reduction in throughput.

6.3 Adder Structures

A very commonly used structure which can be self-timed is that of an adder, whose

carry propagation requirements were given in Table 6.1. Using this table and the state

allocation requirements of Table 6.2, it is possible to devise an encoding for the DR carry

signals as shown in Table 6.3.

Wires State
encodedc0out clout

1

1

0

0

1

0

1

0

not valid
logic 1

logic 0

error

Table 6.3: State encoding of dual rail carry propagation signals.

Encoding the invalid state as "11" enables the precharge phase to invalidate the carry

signals directly. A (¿0" or "!" propagation of the carry can then be detected (indicating

validity) by a logic low level on the respective w\re c\out oî c7out. The resulting state

table for generating an output carry from the two input carry wires and the input operands

ø and ö is shown in Table 6.4.

If c},in and clin are both low then an error has occurred, and the value of cout is

irrelevant. If ø is equal to ö then a carry of either zero or one is generated onto the

appropriate wire, otherwise the input carries (ci,n) are propagated directly to the output

carries (cout). These signals can be determined from the state table as follows:

c0out
cTout

g * cji'n.h :
h + clin.g :

g t cli'n.P
h + cli,n.p

702

(6.1)

c0in clin ab c0out clout
0

0

0

0

0

0

0

0

00
01
10
11

0

0

0

0

1

1

1

1

00
01
10
11

0

0

0

1

1

1

1

0

1

1

1

1

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

1

0

1

0

1

1

1

1

1

1

0

Table 6.4: State table for the dual rail carry propagation signals

with all carry signals initially precharged high and g: a.b, h: a.b, andp - a@b:
g + h. The sum value, which for SR data is given by s - p Ø c'in, can now be generated

using DR carry signals as:

s:pØc}i,n:pØclzn

It is also necessary to detect when each bit has completed its carry propagation. Since

this occurs when either of the DR signals goes low, this can be generated simply by

nand'ing c)out and c\out.

6.3.1 Self-timed ripple carry (RC) implementation

In implementing an adder cell based on the DR carry ripple equations it is imperative to

minimize the carry propagation time across the cell. An implementation which results in

even a small improvement in this delay is of relevance, since the effect is magnified n times

when extrapolated across the full operand width (in the worst case), and 0.9log2n times

for the typical case. A short propagation time can be achieved by providing a fast pull-

down path for the dynamic logic with a minimal capacitive loading. Furthermore, since

any subsequently driven gates only require a fast pull-up time, they can be implemented

with a large p:n width ratio.

103

The carry equations could be implemented simply by generating cout with a complex

dynamic logic gate, however this approach results in a significant load on the carry signal

and a 3 transistor pull-down path (including the activate transistor beneath the nmos

tree). Instead, the implementation shown in Fig.6.1 is used.

VDD VDDob ûbb_ act 3
c0out

c1 out

h h õrbt
h

clin L-- otÞ I_-h
p

sum

clsin c0sin

valid

Figure 6.1: A self-timed ripple carry implementation of an adder cell.

In essence, the combinational terms g, h, and their inverses are computed using dy-

namic logic (as indicated by the D symbol inside the gates), which are then applied to

the dynamic computation of couú. Note also that since p is computed from the dynamic

nodes of g and h, any spurious transitions on the inputs ø and b will be prevented from

propagating through to the output sum, thereby conveniently reducing power consump-

tion.

The implementation shown for cout varies from conventional dynamic circuits in that

there is no activation transistor governed by act (as per Fig.5.7). Instead, all signals to

the dynamic logic block are initially low which allows this transistor to be removed and

hence reduces the carry propagation delay. Note however that the signal to transistor T2

is in fact initially high, but since T1 is off the precharging phase can still reliably occur.

Once A¿cú occurs, T2 turns off (depending on the values of ø and b) before T1 can turn

on, so that an erroneous glitchi,ng pull-down path is prevented. If however a pull-down

path is validly activated (either through T2 staying on or when the input signal c'in goes

high), then the relevant cout signal will go low through only 2 transistors. By sizing the

inverter to cout with a large p:n ratio a very fast carry propagation delay results.

Although this design provides a short propagation delay there is a potential problem

with regards to charge distribution. During activation, if T1 turns on but T2 and T3

remain off, then the charge stored on cout will redistribute onto node cd, and reduce the

logic high level of cout to:

704

v.out:vaaffic"a

where C, represents the capacitance of node r. To ensure a suitable logic high level on

the output the capacitance of node cd must be small compared to cout (4 times smaller

for a 20% reduction in V"ou¿). The VLSI implementation of this carry generation circuit

is therefore a critical design issue.

Note also that if T1 is moved to the bottom of the dynamic logic tree then the charge

distribution problem is avoided (T1 then acts as an activation transistor). Since this

results in a slightly slower carry propagation delay, and since the charge sharing problem

can be controlled, transistor T1 is left in the design at the top of the nmos stack.

6.3.2 Self-timed ripple select (RS) implementation

One technique used in the design of single rail adder structures is to precompute the

output carry for both possibilities of the input carry (low or high), and then select the

appropriate one through a multiplexer when the input carry value arrives. A similar ideal

can be used for implementing a ST adder, by precomputing the carry values at each bit (as

opposed to a group of bits in the SR carry select approach) and selecting the appropriate

one when the input carry becomes valid. For such a structure, the ripple carry equations

of Eq.6.1 are re-structured as:

c0out

clout

: c}i,n.h + c}i,n.g

: cI?,n.g + cLxn.n

The input carry signal can now be used to select between one of two precomputed

outputs, as shown in Fig.6.2. Dynamic logic is again used for computing the multiplexer

inputs to ensure that all cout signals are initially high (invalid) after precharge. Note that

the signals p) surn) and uali,d are all generated as shown in Fi9.6.1.

This design may be enhanced further by removing the inverter delay from ci,n to

c¿n. This is achieved by implementing another layer of multiplexing which produces cin

directly from the inverse of the inputs to the multiplexers of Fig.6.2. This implementation

is referred to as a dual ripple select (DRS) adder.

105

I 0
mux

a

b

h h

clin

c0out clout

c0sin clsin

Figure 6.2: A self-timed ripple select implementation of an adder cell.

6.3.3 Comparison of ST adders

These three self-timed 32 bit adder structures have been implemented with STPL com-

pletion detection using the ES2 technology, and simulated in Hspice (level 13) using simi-

larly sized transistors for the dynamic pull-down nodes (approximately a 9:1 n-transistor

width:length ratio) and pull-up inverters (using an 11:1 p-transistor width:length ratio,

with a small n-transistor). The results are shown in Table 6.5.

ST Adder
Design

Delay NS

ave worst
Area/cell

(transistors)
RC
RS

DRS

2.5

3.2
3.2

3.5
6.5
5.0

10.6
27.5
77.9

50

56

64

Table 6.5: Comparison of three self-timed adders

The best and worst case scenarios are for carry propagation across 0 and 32 bits

respectively, and the average case assumes a carry propagation length of 5 bits (which is

close to the random data average of 4.5 bits). All times quoted include the delay of the

STPL completion detection, which is approximately 1ns.

It is clearly evident that the RC design gives by far the best speed performance,

being almost 3 times faster than RS and 2 times faster than DRS, as well as utilizing

fewer transistors (implying less power and area usage). The reason for this is that the

multiplexer outputs of the RS approach drive a higher load (up to 4 transistors versus 2

transistors for the RC design) and with less drive strength than the dynamic computation

of the RC approach.

tob
c0in

106

Nonetheless, the speed improvement of the DRS over the RS approach is evident, being

29Yo faster. This is due to the removal of an inverter delay per stage and the smaller load

on the multiplexer (since the transistors of the extra transmission gate are smaller than

is otherwise needed for the inverter).

6.3.4 Pseudo self-timing (PST)

As stated in Section 6.1, a strict self-timing environment requires all signals to use dual

rail encoding, whereas the adder designs thus far presented assume single rail input signals

and initiatethe i,nternally self-timed DR carry propagation after Lact. This process can

be taken one step further by using SR signals for the carry propagation, and initiating a

matched path straíegy for completion detection once Aact occurs. Figure 6.3 illustrates

this approach.

abab

c0out cout

clin clout

vout

valid validl

(u)

Figure 6.3: (a) A self-timed and (b) a pseudo self-timed generalized view of an adder cell

A PST design decouples the carry propagation circuitry from the validity detection,

whereas a ST design unifies these two functions. This decoupling enables conventional

SR designs to be used for the addition process resulting in a reduced load on the cout

signals (since they no longer initiate cell validity), which ought to subsequently improve

the propagation time and reduce the area usage. Furthermore, the load on the act signal

can be significantly reduced since it must only drive the validity detection, although it

may still be used for the carry generation if dynamic logic is preferred. If however static

logic is used in their computation then the sum values will emerge from the adder before

Acdone by approximately the same margin as the inputs arrive before Aact. This then

c0in

act

cln

vin

act

(b)

Carry &
Validity

Cell

Ca.ry
Cell

Validity
Cell

707

ensures greater reliability in their validity and more flexibility in when the environment

can process the outputs.

The disadvantage of the PST approach is that if static logic is used for the carry

generation then the validity circuitry, which only propagates a high level, must be im-

plemented to give at least the same stage delay as the carry circuitry for both the high

andlow logic levels, which significantly restricts its implementation. Another problem is

that there is less resilience to operating variations since the validity is no longer directly

computed from the carry propagation, although having these beside each other in the

layout, as would be expected, renders this problem inconsequential.

To illustrate the PST methodology, it is worth re-considering the ST adder designs

thus far presented.

6.3.5 PST ripple carry (RC) implementation

The SR carry equation cout : g * p.ci,n can now be implemented directly using the same

dynamic logic block as in the ST design, and is shown in Fi9.6.4. Note that in this

instance both p and p are low after precharging, which prevents the potential glitching

path to ground that was present in the ST design.

VDD VDD

act -{ act
cout vout

õi Iõt

vln

sum csrn
valid

Figure 6.4: A pseudo self-timed ripple carry implementation of an adder cell.

The matched path validity detection must now be designed to correlate to the carry

propagation path. Since the carry value of a cell is known when p : 0, an input validity

signal (which indicates that the previous carry value is valid) only needs to propagate

to the output validity signal when p : 7, so that: uout : p -f uin. However, since all

uout signals must pull low when act : l, uout must actually be computed as: uout :

(p + ui,n).act. This equation is in the same form as that for generating cout, and can

therefore be implemented using the same logic structure so that both propagation paths

a

b

oÞ

p

g
Þ

p

cln t-- p pt--

108

arc rnatched. The inverters to cszn (which buffers the sum generation from the critical

carry path) and ualid are identical, and are designed to provide a low load to ci,n and u'in

respectively.

6.3.6 PST ripple select (RS) implementation

To implement a ripple select adder the carry equation must first be re-structured to give

precomputed terms for c'in and ci,n:

cout:ci,n.hlci,n.g

As opposed to the ST implementation of a RS adder, there is now no need for the

multiplexer inputs for cout to be dynamic. This then reduces the load on act which

can be especially beneficial for large data widths. The validity equation must also be

re-structured to give the appropriate multiplexer inputs, which must again be forced low

when act:0.

uout: ui,n.act + nin.(act.p)

Figure 6.5 shows an implementation of the PST RS adder in which the inverse of the

carry and validity signals are propagated.

a

b
act

p

h

cln vln

vout

vatl¿

sum

Figure 6.5: A pseudo self-timed ripple select implementation of an adder cell.

The carry signals now compute independently of. act since static logic is employed.

This has the benefit of producing the output sum earlier than the output validity and

reducing the load on act, but suffers in that spurious transitions on ø and b now propagate

l0
mux

cout

109

through the design and waste po\ryer. If this is a problem then dynamic logic could again

be used for generating p and h, (which then also requires a dynamic ror gate to generate

p from ø and b).

A dual ripple select (DRS) adder can again be formed with another layer of multiplex-

ers for cout and uout with inverted input signals.

6.3.7 Comparison of PST and ST adders

These three PST adder structures have been simulated under the same conditions as those

of Section 6.3.3, and the results are shown in Table 6.6.

PST Adder
Design

Delay NS

best ave worst
Area/cell

(transistors)
RC
RS

DRS

1.9

3.0
2.7

2.8
6.2
4.4

9.9
26.0

16.8

40

38

50

Table 6.6: Comparison of three pseudo self-timed adders

As expected, the relati,ue performance of these three adders is identical to the ST

designs of Table 6.5, with the RC approach giving approximately 2 and 3 times faster

latency than the DRS and RS approaches respectively.

The PST RC design exhibits the same propagation delay as the ST design which is

expected since they both use the same circuitry. If however the carry signals to the sum

and completion detection of both designs weren't buffered, then the PST circuit would

have a faster propagation time since there is less load on the carry signal (no validity

circuit to trigger). The PST design is however still slightly faster, due to the removal

of the c,in -+ uout path (a constant offset). Furthermore, for a slight increase in speed

the PST design also uses 20To fewer transistors, which implies a reduction in both power

consumption and area usage.

The RS and DRS designs using PST are also slightly faster than their ST counterparts,

due again to the removal of the ci,n -+ uout path. For these designs the area saving using

PST is even greater, being 32To and 22To respectively. It can be concluded then that

PST adder circuits are more favourable than ST circuits for high speed applications, and

probably for low po\4/er and area applications as well.

As a further comparison the ST adder design used in the AMULET processor at

110

Wires State
encodedc0out clout

0

0

1

1

0

1

0

1

not valid
logic 1

logic 0

error

Table 6.7: State encoding of the AMULET carry propagation signals.

Manchester University was implemented [Gar93, FDG+93]. This enables the relative

performance of the fastest ST and PST adders (being the RC versions) thus presented

to be determined, as well as the performance of the STPL detection mechanism (since a

different scheme is used in their design). The AMULET adder uses the carry encoding

scheme of Table 6.7 (which is the inverse of that given in Table 6.3), and the circuit

implementation for addition is reproduced in Fig.6.6.

VDD sum

act
VDD c0out

I
c 1in,

,a

+

c lin,

a,

q

VDD
c lout

VDD act,a

+ vout

clin, ,c0in

This design uses a significant amount of precharging in its dynamic implementation,

resulting in a large load on the act signal but providing a fast propagation time for the

carries. The dynamic pull-down path for the inverse carry signal requires 3 transistors as

opposed to only 2 in the ECS designs, which indicates that its speed will be slower.

The completion strategy implemented for the AMULET processor is indicated by the

right-most pass transistor structure. To prevent excessive RC delays across the 32 bit

propagation path, four of these gates are connected serially from every fourth bit, and

the resulting eight outputs are logically nor'ed (through 3 nor and l dynamic andgate)

to produce the cdone signal. This approach then prevents the best case scenarios from

being properly utilized, since detection at the first stage of the chain must still propagate

through 3 other pass transistors and a tree of gates before Acdone occurs.

Figure 6.6:

vln

The adder cell and validity detection used in the AMULET processor'

VDD VDD

c0in,

Fs

b

,a

b

31

b

111

The AMULET adder \¡¡as implemented using identical design conditions and param-

eters to those of the previous sections, and the simulation results for both the AMULET

detection mechanism and STPL are shown in Table 6.8. For reference the fastest ECS

design and one of the fastest known adders are also reproduced'

Adder
Design

Delay (ns) Area/cell
(transistors)best ave worst

AMULtrT (n-pass)
AMULET (STPL)

6.0
2.2

6.3
Ðt7J,t

16.5

75.4

43

44

ECS PST) 1.9 2.8 9.9 40

MODL 3.1 simulated 0.\Lmm'

Table 6.8: Comparison of ECS and AMULET adder designs (as well as their detection mech-

anisms) and a known fast adder scaled to a 0.7 ¡L'm technology'

The STPL validity detection has resulted in a distinct speed advantage for the

AMULET adder, giving 63T0,47To, andTTo improvements for the best, typical, and worst

case scenârios respectively. However the PST adder is still significantly faster, giving

improvements of 68%, 56%, and 40% respectively over the AMULET adder. It is also

marginally smaller.

The MODL design (multiple-output domino logic) of [HFS9] was implemented in a

0.9p,m technology, and their simulation results as quoted have been appropriately scaled

to indicate performance in a 0.7p,m technology. The delay has been scaled by o'and the

area has been scaled by o (where a : 0.710.9) according to the lateral scaling method

applicable to sub-micron devices [WE93, Section 4.13]. In the typical case the PST adder

is almost 10% faster, and given that its VLSI layout (including STPL control) occupies

only 0.72mm2, it is also 76% smaller.

6.4 Incrementer structures

A 32 bit self-timed adder gains a performance advantage over a single rail adder because

the average carry propagation length is approximately 7 times less than for the worst case,

which must always be accommodated for by the latter. \ /ith regards to an incrementer,

which simply adds "1" to an input operand ø, this advantage is even greater. The worst

case propagation length for an incrementer is still 32 bits, but the averâge case is given

¡V Dl3,þ_ 7)lzt = l bit: a 32 times improvement! Furthermore, although the average

t72

propagation length is 1 bit, the median case (most often occurring) requires no carry

propagation at all (when the LSB of ø is zero), which occurs 50% of the time for random

data.

An incrementer is essentially nothing more than an adder, but with the operand b

masked to zero and an input carry of one. In a single rail paradigm the only disadvantage

in using an adder as an incrementer is a slight increase in propagation delay. This is

because a dedicated SR incrementer can take advantage of the known state of b : 0, and

hence reduce the carry logic and improve the propagation time across the full data width.

However, a self-timed adder suffers yet another problem when used as an incrementer.

Consider for example the case in which a : L7. . .10 is to be incremented. Since b : 0,

a carry of zero (yc}out) will have to propagate through all of the upper 31 bits before

completion is detected! However it is obvious that since the LSB is zero, no propagation

should be necessary. The ST adder can therefore substantially increase the average prop-

agation delay when used as an incrementer, since carries must propagate through all of

the "1" chains present in a. This same argument applies to a PST adder, although in this

instance the propagation is for uout, and not necessarily for cout (depending on whether

static or dynamic logic is used for the latter).

It is therefore worth implementing a ST incrementer which does not suffer from un-

necessary carry propagation delays through any "1" chains present after the first zero.

6.4.L Self-timed incrementer

Given that ó : 0, the carry and sum equation for the incrementer cell can be reduced to:

cout : a.czn

sun1, : a@ci,n

A ST incrementer should not have to propagate a carry "1" any further than the first

zero, since it is known that after this bit all subsequent carries will be low. This can be

effected by first setting ci,n Iow for all bits when act : 0 (implying the use of dynamic

logic, and effectively and'íng the above equation for cout with acú), since this prevents

any unnecessary carry "0" propagations and also provides a correct initial ci'n valte to

the sum. Furthermore, it is no longer necessary to implement DR logic for the carries,

since the only possible propagation is now f.or cout:7.

113

It is also necessary to determine how completion can be detected given that SR carry

propagation is now used. Since it is known that for all incrementer cells c'in :0 initially,

the validity can be detected by the first cell which has ci,n: 1 (implying that a carry has

propagated to this cell) and a:0 (implying that the carry propagation chain is finished),

so that: uali,d : a.c'in. This cell is unique, and as such a simple dynamic NOR gate

can be used to generate cdone from the 32 uali,d signals. This approach draws no static

current during operation, and therefore consumes less power than the STPL detection

mechanism which has to be employed if an adder were used as an incrementer.

Figure 6.7 shows one possible implementation of the ST incrementer. As per the

fastest of the ST adder designs, the inputs to the nmos tree for cu.tt are forced low

initially, thereby removing the need for an activation transistor. Similar arguments with

respect to charge distribution between nodes cd and cout are therefore also of relevance

here. Since it is known that for an incrementer c'in: 1 for the first cell, the logic for that

unit can be reduced, as shown by the left-most circuitry f.or couts, uali'ds, and sums.

VDD

acf-n
cout

cout s

cd

SUÍII g valids

valid sum

Figure 6.7: A self-timed incrementer without unnecessary carry propagations

6.4.2 Incrementer performance

The incrementer has been implemented in the ES2 technology with the same design

parameters used for the adders. The Hspice (level 13) simulation results are shown in

Table 6.9 for the best, average, and worst case scenarios.

Incrementer
Design

Delay NS Area/cell
(transistors)best average worst

Self-timed 1.1 2.2 10.6 22 (t2)

Table 6.9: Simulation results of a self-timed incrementer

cout
a

cln

174

If a PST adder were used instead, the average delay time would be over approximately

5 cells (the typical maximum length of a carry "1" chain), rather than for just 1 cell in

the incrementer. As such, by comparing these results with those of Table 6.6, it is evident

that the best and average case delays for the special-purpose incrementer are better than

those of a PST adder. The worst case scenario is slightly slower, but would only happen 1

\n232 times. In the most frequent case of no propagation, the special-purpose incrementer

is 42% faster than if a PST adder were used. Furthermore, the area has also been reduced

from 40 transistors down to 22 (with only 12 transistors in the first cell). This almost

halves the area requirements and implies less power consumption as well.

It can also be shown quite easily that the decrementer function: a-l: al l, which

can be implemented with a special-purpose incrementer and an inversion of the input and

output values.

6.5 Comparator structures

An adder (or more specifically, a subtracter) can also be used as a comparator. For

example, to determine whether a) b one can simply subtract ó from ¿ and then check if

the result is greater than zero (similarly for comparing a : ö and o < b). This information

is often supplied as fl,ags from the arithmetic unit of a microprocessor, and can be easily

deduced from the sign of the result and a post-processing "test-for-zero" (logical nor).

For a non self-timed adder, in which the worst case propagation delay must be ac-

counted for, there is no major drawback in using it as a comparator. Although a special-

purpose design may be slightly faster, the additional area usage is often unjustified. How-

ever using a self-timed adder as a comparator can result in a severe performance deficit.

As an example, consider the comparison for a) b, where ø and b are similar in magnitude

(sa¡ ø : 31 and b:28). The adder will then have to subtract 28 from 31, which results

in the following arithmetic operations:

0

+1
+0

0001 1111

1110 0011

0000 0001

31

28

1

0...0000 0011 sums

1...1111 1111

p...pppp ppgg
carries
generated (S) or propagated (p)

115

Clearly the performance of this comparison is almost the same as the worst case

performance of the adder, since all of the higher-order bits have to propagate a carry

value. This type of operation occurs frequently in software programs, particularly for

short loops and logical comparisons (true or false). In lGar93] it was shown that, for

the Dhrystone benchmark on the ARM processor, almost 50% of all data processing

operations involving the adder required carry chains of over 28 bits in length!

A self-timed adder therefore is generally unsuitable for use as a comparator because

of these long carry chains, and it is therefore necessary to implement a special-purpose

self-timed comparator.

6.5.1 Possible implementations

A comparator must operate by comparing corresponding bits of ø and ó from the MSB to

the LSB. If ø and b are signed, then the sign bit must first be compared, and if equal, the

comparator initiated. One possible implementation then is to simply start from the MSB

and progress down the operand width comparing each pair of bits, and stopping as soon

as a difference is detected. However, this presents no improvement in detection time for

when the bits only differ at the low end of the operand: a frequent occurrence as already

explained.

One method of speeding this up is to use a "forward-backward" comparator. In this

implementation the comparison is also initiated from the LSB upwards, with a bit in-

dicating which of the two operands has thus far been detected as the greatest. If the

forward comparison (from the MSB downwards) hasn't detected a difference when it co-

incides with the backward comparison, then the result of the latter is used. This approach

approximately halves the worst case propagation time by effectively "precomparing" the

Iower half of the operand. The disadvantage of this approach is that even a one-half

improvement is still approximately 16 bits in length (for a 32 bit operand), and the logic

required for its implementation is considerably more complex.

The concept of precomparing can be extended. One approach is to use, for example,

eight 4 bit subtracters which operate on adjacent slices of the operands, and to then

initiate a simple ripple comparator based on the eight results. The logic requirements of

this implementation are rather simple, and the worst case comparison time is reduced to

116

a 4 bit add and an 8 bit comparison (which has a latency somewhat less than a 12 bit

carry propagation).

A better approach however is to extend the idea of precomparing down to an atomic 2

bit comparison, and reduce these through a successive tree of identical units to arrive at

the result. This has the benefit of reducing the worst case comparison path to log2n: 5

atomic units for a data width of n : 32 bits. However the best case comparison is

now increased to this same length which then defeats the purpose of self-timing. The

following section explains this comparator tree structure, and how the best case result

can be improved using an asymmetric tree.

6.6.2 Comparator tree

A self-timed 2 bit comparator node can be implemented with the following equations:

Uout : a1 *e1.ug

gout

€out : et.€O

where u indicates that the comparison at this node is valid, g indicates lhat a > b,

and e indicates that a : b thus far, with all inputs to the first row of 2 bit comparators

initially low. The node to input 1 must be of a higher order than the node to input 0.

Since all input signals are initially low, so too are the outputs. At any stage u or e,

but not both, could go high after activation. If u1:1 then it is known that the preceding

node has completed, and its result is passed out of this node immediately since it is of

a higher order than input 0 (this is in conjunction with 9 to indicate which input is the

greater). If however et - 1, then the upper tree has computed an equality of the operands.

The result of the lower tree then (oo : 1 or es : 1) will be passed out to the next stage as

either 1)6¿¡ ot eo,r¿. Note that even if input 0 computes first, the result of the comparison

is not known until input 1 computes.

A dynamic logic implementation of the 2 bit comparator node is given in Fig.6.8a,

and the circuitry for generating the initial inputs to a node from the operands ø and ô is

given in Fig.6.8b.

From this 2 bit comparator structure a full 32 bit comparator can be constructed

using a binary tree. This configuration is shown in Fig.6.9a, in which each circular node

177

V1

V6

O1

e0

Vout a

b
Vout

v out

I out

v out

I ootùÞ
ûb t.t

Figure 6.8:
initial inputs

(u) (b)

(a) An implementation of a 2 bit comparator node, and (b) the generation of the

represents a 2 bit comparator. However as mentioned in the previous section, this results

in the best and worst case comparisons propagating through the same number of nodes,

and therefore exhibiting similar computation times (although the best case will in fact be

slightly faster since the pull-down node for r.r1 of the 2 bit comparator requires 2 transistors,

rather than 3 for u¡).

(u) (b)

Figure 6.9: (a) A symmetric and (b) an asymmetric tree structure for a full comparator

To enable the best case scenario to be improved, an asymmetric tree structure such

as that shown in Fig.6.9b can be used. In this instance, the best case (when the MSBs

are different) comparison only propagates through 2 comparator nodes, although this is

now at the cost of increasing the \ryorst case comparison to a 6 node path. Whether or

not this increase is detrimental to the overall system speed depends on the frequency of

low order versus high order comparisons.

It is tempting to effectively "flip" the tree structure shown in Fig.6.9b to give only a 2

node propagation path for the low-order comparison (which is frequent), in the hope that

its latency will be improved. However this does not happen, since even if the low-order

comparison is ready, it must sti,ll wail for the upper tree to compute before its result can

be passed out. A speed reduction therefore results, since a 6 node propagation pa,th must

always be incurred.

118

6.5.3 Comparator performance

The simulation results of the comparator tree (implemented using the ES2 technology

with the same design parameters as the preceding sections) are shown in Table 6.10 for

both the symmetric and asymmetric tree structures. The best and worst case times are

for bit variations at the MSB and LSB respectively, and the "bit 16" time is for when a

difference is first detected at the 16th bit.

Comparator
Design

Delay NS

best bit 16 worst equal

Symmetric
Asymmetric

2.3

1.1

3.1

3.5

3.3

3.9

3.2

3.8

PST Adder 9.7 5.6 9.7 9.9

Table 6.10: Simulation results of a 32 bit comparator tree.

By using an asymmetric tree structure the best case comparison time has been im-

proved by 52To, however all other comparison times have subsequently been increased

(due to an extra comparator node) by up Io 79% (for when a : b). Since the worst

case scenarios are most frequent for a comparator, the symmetric implementation will

probably give the best overall performance.

It is interesting to note that although in the symmetric structure all comparisons pass

through the same number of nodes, there is still a significant variation in computation

time (up fo 30% of worst case). The reason for this has already been stated as being

due to the 2 transistor pull-down time of the dynamic nodes for a best case operation. It

is also interesting to note that it's marginally quicker to detect when a : b rather than

when ø and ó differ only in the LSB. This is again due to the faster implementation of

the equality path which has less capacitance on the output of the dynamic nand gale.

If a PST adder were used instead as the comparator, then the comparison times of

Table 6.10 would result, each corresponding to propagation delays of 31, 15, 31, and 32

bits respectively (with the first value being the worst possible in a range from 1 to 31

bits). In all circumstances the special purpose comparator gives significantly better perfor-

mance, with best case improvements of 76% and 89% for the symmetric and asymmetric

comparator trees respectively.

119

6.6 Multiplier structures

One of the fastest approaches to implementing a multiplier is to use a carry-save array

[MM82], in which a 32 bit multiplier is constructed from an array of 32x32 gated full

adder cells, each computing the functions:

PPt,¡

SUT|L¿,¡

CQ,rr!¡,¡

: on'bj

surn¿¡1,¡-1Ø pp¿,j @ carry¿,¡_y

l't-LTtL¡¡1,¡ - 1.PP n, ¡ t Ca,r r ! ¡,¡ - 1(S UT\L¿ ¡1,¡ -1 + pp i,j)

for bit i in row j. The lower 32 bits of the multiplier product emerge from the szrn

outputs of bit 0 in each stage, and the upper 32 bits of the product are computed with

a vector-merging adder, which simply adds the sum and carrA outputs of the last stage.

Alternatively, a triangular array of gated full-adder cells could be used, although this

increases the latency of the array.

The carry-save approach is inherently parallel and can be pipelined at each stage.

This removes any carry propagations until the final adder is used, so there is no speed

advantage in using self-timed techniques for'the carry-save array, however the latency of

the design could be improved slightty by self-timing the vector-merging adder (although

this then increases the cycle time). Asynchronous carry-save multipliers designed for high

throughput have been reported in [SK93, ML93]

Although the carry-save approach enables deep pipelining and therefore high through-

put, its latency is significant. This is because 32 pipeline stages are needed in the array

as well as pipelining of the adder to match the throughput requirements. Self-timing is

only of benefit with regards to improving latency often at the cost of throughput, and

therefore a carry-save multiplier is unable to take advantage of self-timed techniques.

Another popular multiplier structure is the Wallace tree [Wal64]. This approach be-

gins with a set of 32 (or 16) partial products (PPs, which are discussed in the Section

sec:ppsimpgen) and reduces these to just 2 PPs which are once again added to form the

final product. The process of reduction involves taking three inputs at bit z and passing

these through a full-adder cell (otherwise called a 3:2 compressor) to produce an output

(sum) of order i and another (carry) of order ø * 1. By chaining these 3:2 compressors in

an appropriate way the initial set of PPs can eventually be reduced to the two required

720

for the final adder. Although this design approach is quite irregular it requires less logic

than the carry-save technique, since fewer compressors are used to compute the upper

and lower bits of the PP set.

Once again however the reduction to two PPs is an inherently parallel operation,

which can have no performance gain through self-timing (except for a latency reduction

in the final adder, which would again limit the throughput if the array of compressors

were pipelined).

It is evident that the algorithms currently used to produce fast multipliers are not

suited to self-timing, and it is therefore worth while considering an alternative implemen-

tation which enables self-timed logic to be used, in the hope of improving the multiplier

latency.

6.6.1 Exploiting self-timed operation

Essentially the reduction techniques thus presented postpone the addition operation to

the final stage, since for synchronous applications using a tree of such units to add the

PPs is both time and area intensive (the adder structures required are up to 64 bits long

and therefore need to be large and complex to provide for a sufficiently fast throughput).

Ironically, this may be the óesú approach to take for implementing a self-timed multiplier,

since the full data-dependency of the operation can then be exploited.

Furthermore, since the PST RC adder is small and simple, the area overhead in im-

plementing a tree of such units is significantly less than for a synchronous approach.

This could be further reduced by implementing fewer PST adders and multiplexing in

previously computed PP additions, although this then increases the multiplier's latency.

Before investigating the overall implementation of such a multiplier structure, it is

necessary to determine how the initial set of PPs can be generated.

6.6.2 Simple PP generation

Given that two input operands X and Y, each 32 bits long, are to be multiplied, it is

possible to generate a sequence of 32 PPs by using the simple approach of multiplying

each bit of X by Y. For example, assuming only a 4 bit width with X : 0101 (S) and

Y : 1101 (13), a set of 4 PPs can be produced as:

t2t

1101
0000

PPO
PP1
PP2
PP3

Xs xY
X1*Y
X2 *Y
Xs *Y

: L*Y
: 0*Y
: L *Y
: 0*Y

1101
0000

o 1 o o o o o 1 R Di=oziPPi 5Y

Note that each PP is actually shifted according to the bit location of X before the

addition. A self-timed adder tree could then be implemented with the first row of 2 adders

computing 80 -- PP0+2*PPI and Q1 : PP2I2*PP3, and the second row computing

the result as R:80+ 4*Ql. Note that although the result is 8 bits wide, the first row

of adders only needs to be 4 bits wide (with the LSB of the result passing out directly as

PP\s, and the MSB emerging as the carry output)'

The problem with this simple approach is that it doesn't handle signed two's comple-

ment numbers, and produces a number of PPs equal to the bit width n. If this can be

reduced, then the number of adders required (" - 1) can also be reduced which would

improve the speed and area of the design.

6.6.3 Radix 4 Booth encoding for PP generation

A radix 4 Booth's algorithm [Boo51] for producing the PPs is given in Table 6.11. Whereas

in the previous encoding only 1 bit of the X operand was examined to determine the PP,

in this instance 3 bits are used in an overlapping fashion to produce a range of PPs from

-2Y -+ 2Y . Bitz is paired with bit z - 1 (with i even, and bit -1 set to zero) to determine

the magnitude of the PP, and bit ¿+ 1is used to determine the sign offset (0 or -2Y).

X operand bits PP
X¿+t X¿ X¿-t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

Y
Y
2Y

-2Y_Y

-Y
0

Table 6.11: Radix 4 Booth's algorithm for encoding the PPs

t22

To illustrate this procedure, consider again the example of the previous section with

X : 0101. In this instance, the first triplet of X to be considered to produce PPO is

X :010 (bit locations 1, 0, and a zero extension), and the second triplet to produce PP1

is also X :010 (bit locations 3, 2, and 1).

The radix 4 algorithm therefore halves the number of PPs required for signed 32 bit

operands to 16 rather than 32. Generating the PPs of value 2Y , Y , and 0 is trivial (simply

shifts or masking of the input operand Y), however to general,e -Y and -2Y requires a

two's complement inversion which involves using an incrementer (since -Y - Y + t).

In a Wallace tree architecture the incrementing function can in fact be implemented

with additional compressors for the input carry. For an adder tree a similar technique

can be used, however at best the there will still need to be an incrementer after the final

adder. To illustrate why this is, consider the case in which PP) : -Y and PPI : -2Y.
The result of the addition Q0: PP0+4PPI will need to compute the function: Q0:
Y + 4(2Y + 1) + 1, which clearly involves two carries at bit locations 0 and 2, whereas

the PST adder structure allows for only one input carry. Since the lower two bits of the

addition can be passed out directly, the carry at bit location 2 is applied to this adder,

and the other carry has to be postponed to the following stage. AII PPs can have their

carry postponed to a subsequent adder stage if necessary except for PPO (since there are

8 possible carries from the first layer and only 7 subsequent adders), which therefore has

to use an incrementer after the final adder. Since a self-timed incrementer is typically

fast the increase in latency is small. Furthermore this delay is only incurred when PPO

is negative $or 37.5% of cases) whereas it would almost always be incurred if used to

generate negative PP values to the first adder stage.

A self-timed adder computes in the fastest time when both of its operands are equal.

For the Booth encoding of Table 6.11 this can only occur when PP\: PPt:0, which

happens only 6To of the time for random data. The following section describes a technique

in which the Booth's algorithm is recoded to give a 22To frequency of best case adder

performance, and also reduces the frequency of use of the final incrementer to just 3% of

Xr,o,-r -+ 010 Y
Y1+010

PPi 5Y

PPO

PP1
1101

1101
01000001 R

CASES

723

6.6.4 Recoding Booth's algorithm to imprirve performance

Given the Booth encoding of Table 6.11, it is a simple matter to determine the range of

outputs from the first adder stage of Q0 : P P0 + 4P PI (and similarly for QI . . . QT), as

given in Table 6.12. Note that for each value of PPO there can only be 4 possible values

of PP1, since adjacent triplets overlap at the central bit (as indicated by the boxed value

in the table).

PPo (+Y) Possible PP1 values Q0 (*Y)
000:0
001 :1
010:1
011:2

000: 0 Oiln: 1 100: -2 110: -1 0

1

1

2

4

5

5

6

-8
-7
-7
-6

-4
-3
-3
-2

[I00 : -2
liDl : -1
il10 : -1
il11:0

00{n : 1 01fl: 2 1ün: -1 11[il: 0 2

3

3

4

6

7

7

8

-6
-5
-5
-4

-2
-1

-1
0

Table 6.12: Combinations of PPO and PP1 which produce an output sum Q0

It is clear from this that the range of values for Q0 is -8Y -+ 8y, and by considering

both triplets for PPO and PP1 together (that is, 5 bits of X at a time) it is possible

to recode the PP values to improve the adder's performance, and yet still produce the

correct output sums for Q0. For example, the combination of PP\ : 0 and 4PPl : 4Y

(for X56¿¿":01000) can be recoded to give PP\ -- PPI:2Y. As required the sum is

unchanged (4Y) however by recoding both PPs to be identical the self-timed adder will

now compute in the fastest time regardless of the value of Y. All summations resulting

in Q0 -- 0,2Y,4Y, and 8Y can be thus recoded, resulting in 7 out of 32 cases (22%)

computing in the fastest time. Note that PPO and PPl are now of equal weight (80 :

PPO+PPI) which requires the first stage adders to be of the same bit width as the PPs.

Furthermore, recoding can reduce the incidence of carry propagations to the subse-

quent incrementer. For example, the combination of PP\ : -2Y and PPI: -Y (for

Xsu¿t,: 10100) can be recoded to give Q0 : 2Y - 8Y : -6Y. This can now be imple-

mented with an input carry of one to the first stage and preuents the need for a carry of

"1" to propagate through to the next stage, and eventually to the incrementer, as would

otherwise be needed. Table 6.13 gives the PP recoding used in the self-timed multiplier

design for each X quintuplet.

724

Xsu¿t, PPO PP1 Xsbor, PPO PP1 Xsu¿r, PPO PP1 Xsu¿t, PPO PP1

00000
00001

00010

00011
00100

00101
00110

00111

0

0

0

Y
Y
Y
Y
2Y

0

Y
Y
Y
Y
2Y
2Y
2Y

01000
01001

01010

0101 1

01 100

01 101

01110

01111

2Y
Y
Y
2Y
8Y
8Y
8Y
8Y

2Y
4Y
4Y
4Y
-2Y
-Y
-Y
0

10000
10001

10010

10011
10100

10101
101 10

10111

0

Y
Y
2Y
2Y

-8Y
-8Y
-8Y
-8Y
-8Y

11000
1 1001

1 1010

11011
11 100

1 1101

11110

11111

0

Y
Y
2Y
0

0

0

0

-4Y
-4Y
-4Y
-4y
-2Y
-Y
-Y
0

Y
Y

4Y
4Y

0 -4Y

Table 6.13: Recoding of Booth's algorithm to provide the PPs

All values for Q0 in the range -8Y -+ 8Y can be recoded to remove any carry

propagation to the next stage, except for Q0 : -5Y : 5Y + 7. For this case (shown

boxed in the table) a value of 5Y is computed and inverted, and a carry then propagated

to the following stage. Since for PPO this can only happen when X : 10110 (because a

zero extension is applied) the final stage incrementer will be used in just 3% of cases (1

in 32 times).

Given the recoded requirements for PPO and PPl it's possible to produce from X5¡¿¿"

various control signals which multiplex in the appropriate bit-shift of Y, perform masking,

inversion, and issue the carry in and carry propagate signals.

6.6.5 Implementation, floorplanning' and area usage

Figure 6.10 shows the overall implementation of the multiplier, indicating the adder widths

required (in the shaded boxes), their relative bit positions in the product generation, and

the bypassing of data values. For such a structure it is important to consider how it

should be floorplanned in VLSI. Two possible approaches are shown in Fig.6.11.

The floorplan of Fig.6.11a has a breadth governed by the first layer of eight adders.

The adders of the second layer are placed beneath this, and those of the last 2 layers are

slotted into the remaining gaps. Due to the increasing width of the adders this second

array is approximately the same width as the first.

The floorplan of Fig.6.11b simply flips the upper half of the adder array beneath the

lower half, and implements the extraneous 48 bit adder and 64 bit incrementer to the right

of this. This approach gives an aspect ratio much closer to one, which may be required

in an embedded application.

725

36 bit 36 bit 36 bit 36 bit36 bit 36 bit 36 bit36 bit

36 bit 36 bir36 bit36 bit

40 bir40 bit

48 bit

64 bít inc'er

PPO PPI PPz PP3 PP4 PP5 PP6 PN PP8 PPg

Q2 147" Q3 tsl Q4

PP1O PPlI PP12 PP13 PP14 PPI5

35 35 35

Q7

tss R2 127 R3

[55:24 Í63:24)

163:24 S1

t35 Q0 139:4

[3:0]

35353535

43135 4

T

ert Q6Qs

tar 8l 147 Rl [19:16]

'[5I

(139"4 RO

Í39 Í47:81

17 [47:8] SOolf í23 16) 4
Í63tls ou[47

Result

Figure 6.10: Configuration of a self-timed multiplier

The multiplier has been implemented in the ES2 technology using PST adders and

a special-purpose incrementer. The floorplan of Fig.6.11a results in an area of 6.42mm2

with an aspect ratio of 6.2, and that of Fig.6.11b results in values of 7.72rnm2 and L7

respectively.

6.6.6 Performance and comparisons

The self-timed multiplier has been simulated using the switch-level simulator IRSIM with

a parameter file designed to give the closest approximation to various Hspice (level 13)

simulations of smaller circuits. The results of this simulation are shown in Table 6.14

together with the best known asynchronous and synchronous CMOS signed integer mul-

tipliers [SK93, YYN+90]. For the self-timed ECS multiplier, the best case multiplication

occurs for 0x0, and the worst case occurs for 1x-1. The average case time was determined

from a long test sequence of multiplications with random data.

The 4P LDPL design [SK93] implements a 16 bit multiplier in a7.0ptm technology, and

uses a pipelined carry-save array and a pipelined Manchester carry adder to compute the

result. The synchronous design [YYN+90] also implements a 16 bit multiplier ina0.5¡-r'm

technology, but uses a Wallace tree and carry lookahead adders to compute the result.

726

36 bit 36 bir 36 bir36 bit 36 bit 36 bir 36 bit 36 bir

36 bit36 bit 48 bir 36 bit 40 bit36 bir 40 bit
64 bit inc'er

36 bir 36 bit 36 bit 36 bit

36 bit 40 bit 36 bit a

ú

Result

(u) (b)

Figure 6.11: (a) A possible floorplan for a self-timed multiplier, and (b) a floorplan with an

aspect ratio closer to one.

Multiplier
Design

Latency ns) Throughput
("t)

Area
(**')

Density
(T lmm2)best ave worst

ECS self-timed t7.2 2L.5 47.6 latency*3 6.42 7300

4P LDPL 59.6 3.2 7.25 ??

Synchronous 10.4 70.4 + ?? 22.6 1500

Table 6.14: Simulation results and comparisons of a 32 bit signed integer self-timed multiplier

Since these designs are implemented in different technologies than the ECS design, their

results have been scaled as described in Section 6.3.7 to correspond to a multiplication in

a 0.7¡,r,m technology to enable a more accurate comparison.

To scale the synchronous design to a32 bit data width, its latency has been increased

by 40% which accounts for the increase in Wallace tree depth (from 6 layers to 8, giving a

33% increase) and an increase in the final adder's latency. For the LDPL design, 18 extra

stages have been added to the pipeline (for which 20 were used in the 16 bit impleménta-

tion) to account for 16 extra multiplier array stages and 2 extra carry propagate stages.

Both designs have had their area (and number of transistors) scaled by a factor of 4 due

to the quadratic increase in the array size.

Interestingly, both of these designs use complementary pass transistor logic, in which

dual rail signals are computed from two complementary nmos pull-down trees (as men-

tioned in Section 5.3.1), but with their sources connected to the input signals (as well

as their gates) rather than to ground through an activate transistor. This can however

result in significant power dissipation during precharging and a slow serial precharge time

(since at precharge all pull-down paths will initially be on)'

-o
oos

L
0)

C)

+\o36 bit 40 bit 36 bit

36 bit 36 bit36 bir 36 bit

r27

The ECS multiplier has a significantly lower latency than the LDPL design even in

the worst case, with a best case improvement of 7lYo, and the area usage has also been

reduced. The cycle time of the LDPL design is of course faster since a deep pipeline has

been used, whereas the ECS multiplier has none. As previously stated, self-timing is not

beneficial in improving the throughput over non self-timed structures (only the latency

can be improved), a fact acknowledged in [SK93] in which a corresponding synchronous

design gives a faster throughput of 2.9ns (scaled).

In contrast the multiplier in [YYN+90] is not pipelined and results in a better latency

than the ECS multiplier even in the best case scenario, however its area usage is sub-

stantially more. Given that the transistor density of this design is almost 80% less, it

could be expected that significantly larger transistor widths have been used to obtain the

high throughput (although wiring and irregularity in the Wallace tree structure will also

contribute to the density difference). Resizing the transistors in the ECS multiplier could

potentially produce a typical latency closer to that of the synchronous design whilst still

occupying less area. Since the precharge time of the synchronous design is not quoted its

effect on the cycle time is unknown.

6.6.7 Potential improvements

The ECS self-timed multiplier as presented could be further improved by implementing

the following structural and algorithmic modifications.

6.6.7.I Area reduction

To approximately halue the area usage it is possible to re-use the first layer of 8 adders

to implement the additions which would otherwise be required in the subsequent layers.

This can be done with a minimal effect on the latency, since an adder in the second layer

cannot be activated anyway until its two source operands from the first stage adders are

available. As such the only possible delay incurred will be in waiting for the re-used

adder to precharge, which can occur whilst the new source operands are multiplexed

in. Note also that since multiplexers are already used at the inputs to this layer, the

overhead in introducing another multiplexer signal is negligible. Fig.6.12 shows such an

implementation, with the first set of adder inputs given by the thick inner wires and the

L28

40 bit36 bit 36 bit

second by the thin outer wires, and the first set of adder outputs given by the solid wires

and the second set by the dashed. Reducing the number of adders any further introduces

additional delays since the first stage additions will have to share a common unit.

Result

Figure 6.12: A low area implementation of a self-timed multiplier

6.6.7.2 Cycle time reduction

Similarly, since each layer of the multiplier must wait for the previous layer to compute,

these layers can be pipeti,ned to increase the throughput. This is not in contradiction to

previous statements regarding self-timing and pipelines since the partitioning is placed

between, and not within, the self-timed units. The average throughput then will be gov-

erned by the maximum of the average latency of any one layer, which can be determined

from the statistical distribution of a single adder in [Gar93] as being: 7.6,6.7,6.0, and

5.0 bits for the first through last layers respectively. Therefore a cycle time of about 10ns

could be expected with an ECS PPB pipeline controller (assuming a 3ns precharge time,

2ns driver time, 3.2ns computation time from Table 6.6, and a control overhead of 1.8ns

from Table 5.6), with a small increase in latency of about 2ns (0.5ns per stage from Table

5.6). Note that implementing this optimization precludes the area reduction technique

previously mentioned.

6.6.7.3 Latencyreduction

Aside from transistor and layout optimizations to improve latency, there is a simple

algorithmic improvement which could also be made. The recoding in Table 6.13 enables

6 of the 32 operations (19%) to compute in the minimum time, however it can also be

observed from Table 6.12 that half (50%) of the sums for Q0 have a magnitude equal

to either a bit shift or masking of the Y operand. For these instances the sum can be

multiplexed directly from Y (and conditionally inverted for a negative value) without

36 bit 40 bit 36 bit 36 bir

64 bit inc'er

729

having to activate the adder at all! A minor drawback is that 9 in 32 operations (28%)

would now require the final incrementer. Implementing this optimization would result in a

significant power saving as well as improving the latency (and the cycle time if pipelined)

by about 1ns (again computed from the statistical distribution in [Gar93]).

The latency of the incrementer can also be removed for almost euery operation. Since

the lower 16 bits of the result are available before the final 48 bit adder is activated, an

increment on these bits can be initiated in parallel with the addition. In the majority of

cases this will complete before the final adder, and will not need to be activated on the

adder's result unless a carry from bit 15 is generated (a very rare occurrence).

6.7 Summary

This chapter has presented a range of fast self-timed adders and various other derivatives

which are typically faster, less power consuming, and smaller than any that have been

previously reported. This enables various microprocessor operations such as branch target

calculations, branch detection, and PC incrementing to be implemented quickly without

the need for complex logic structures. For these kind of operations, a low computation

latency is especially desirable.

A majority of programs also exhibit a significant amount of data dependency between

subsequent (or nearby) instructions. In such instances enabling low latency execution

through self-timing could reduce the stall time of the following instruction, and hence

increase the processor speed. Although the throughput of self-timed units is less than

could be achieved by pipelining, employing a degree of parallelism (having more than one

such unit) could overcome this problem. It may therefore be construed that a superscalar

processor structure is naturally suited to self-timed computations, whereas in contrast,

BD computational units would be ideally suited to a pipelined processor structure. Such

an investigation is embodied in the following two chapters.

130

Chapter 7

EC S TAC: A,Pipelined Microprocessor

Ã
* asynchronous microprocessor called ECSTAC (Event Controlled Systems Tem-

./ L porally specified Asynchronous CPU) has been designed using a predominantly

pipelined architecture. Although asynchronous pipelined processors are not new, the

goals behind the design of ECSTAC, and the techniques used in its implementation, are

sufficiently different to those of other processors to justify the new design.

In particular, designing a microprocessor is an extremely complex task involving a

plethora of control and data interactions. Such a complex system enables the potential of

ECS as a design framework to be properly examined, since the investigation of the com-

paratively small sub-systems thus far merely hints at this, despite having demonstrated

significant advantages at this level. Furthermore, since other asynchronous microproces-

sors have been developed, an accurate and reliable comparison of ECS can then be made.

Issues such as design area, instruction execution rate, power dissipation, etc. can all be

quantitatively measured to support such a comparison.

Another reason for undertaking the design of a complex microprocessor was to provide

a vehicle for the creation of new ideas and techniques. As new design problems arose so too

did new solutions, and out of this progressive development have arisen many of the design

approaches and methodology issues presented in the preceding chapters. In particular this

development has lead to the refinement of the ECS representation, early implementations

of the ECS pipelines and PST structures, and the majority of fast asynchronous circuit

techniques.

Since the ECS paradigm is geared towards implementing high speed control structures,

it is logical that an example system be chosen which needs to operate at high speed, and

131

yet is still challenging enough to provide some difficult design problems. Microprocessor

design has invariably been driven by the need for high speed operation, and as such

it becomes an obvious choice. This is further supported by the fact that low power

consumption is a secondary concern of ECS, and is similarly an important (yet secondary)

topic for most microprocessors. The issue of whether or not low power consumption still

results from a paradigm geared primarily for high speed can then also be determined.

There is lastly the issue of architectural alternatives, although this was not of concern

at the inception of ECSTAC but developed during its fruition. ECSTAC is constructed

as a pipelined processor not unlike the majority of early synchronous designs, however as

new information unfolded, it became apparent that perhaps the best method of exploiting

asynchrony in a microprocessor \ryas to implement a superscalar structure. Therefore if the

latter were also implemented then a comparison could be made between both architectural

approaches, and a direction for future asynchronous microprocessors might result.

7.L Design considerations

The cost of fabrication restricted the amount of silicon area which could be used for the

processor, and this in turn resulted in some restrictions being placed upon the architecture.

Firstly, to keep the processing area down only an 8 bit data path was used, which is

reasonable since the processor's operating speed is governed almost entirely by the event

control and would therefore be only marginally different to a 32 bit implementation.

However, to enable sufficiently complex program codes to be compiled it was decided to

use a 24bi| address path. In retrospect it is clear that this mismatch of data and address

widths seriously affected the resulting performance by complicating numerous critical

control structures, and it would have been more practical to have these be identical.

Furthermore, since an on-chip cache was implemented (to facilitate high speed instruction

issue) and is relatively much larger than the processor core, implementing a full 32 bit

data and address path would not have been significantly more area intensive than first

thought. Unfortunately since these factors were not realized until after the design was

well under \/ay, a 24bit address and 8 bit data path remained.

Due to the expected high speed of the processor it was deemed necessary to incorpo-

rate an on-chip cache, as already mentioned. Separate instruction and data caches were

732

employed since a combined cache requires a significant amount of arbitration between in-

struction fetching and data operations, which could then limit the processor's speed. This

work was undertaken by Sam Appleton, and is not described in any detail in this thesis

since the author's contribution was in the architecture of the processor core. Specifics

of the cache design can be found in [AML95a, App96]. The core simply interprets both

caches as black bor memory units.

To simplify the design there were no interrupt or exception handling facilities incorpo-

rated. Nor was there any provision for floating point operations, since these seem rather

pointless in a prototype 8 bit machine. Only integer operations are supported by the core,

excluding integer multiplication and division.

Sixteen general-purpose 8 bit registers were provided as well as a flags register (FR),

and a 24 bit stack pointer (SP) and program counter (PC) A custom RISC-like ISA was

implemented to enable the complexity of the design to be adequately managed (although

this then complicates the issue of performance comparisons).

7.2 Instruction set architecture (ISA)

Only an overview of the ISA for ECSTAC is given here, however a complete description

of all instruction codes, operating modes, and bit encoding is given in Appendix B. There

are a total of 47 distinct instruction types excluding mode variants, and 87 including

mode variants.

The first class of instructions include the memory accessing LD and ST instructions,

which retrieve and store data from and to memory respectively. Each of these instructions

have three mode variants: register mode (in which the address is computed as the sum of

two register quadruples); offset mode (address: register quadruple * offset); and direct

mode (a24b\f address is encoded in the instruction). The first two modes require only

2 bytes for their encoding but the third requires 4 bytes, of which the address itself uses

3 (to specify a24 bit address width).

The dissimilarity between bus sizes results in a number of awkward situations through-

out the microprocessor architecture, one of which is the fact that the modes involving

register accesses in fact have to fetch data from three separate registers as opposed to

only one if the bus widths were compatible. To alleviate this problem the 16 registers are

133

grouped into four register quadruples (Q0, Q4, Q8, and Q12) for the three byte register

accesses (termed a "Qfetch", although the last byte of the quadruple isn't actually used),

and the read port from the register bank provides three output buses. Note however that

because each Qfetch starts from just one of four possible registers, the output bus loca-

tions of its three register accesses are known, and therefore the register cells themselves

only require a two read port cell design.

The next class of instructions involve the ALU, incorporating left and right arithmetic

and logical shifts, signed and unsigned additions and subtractions, four logical operations

(nand, nor, xoï, and not), and negation, increment, and decrement operations. The move

instruction also passes through the ALU, although no processing is performed. ALU

instructions may be encoded in the short mode (which requires two bytes) or the long

mode (which requires three), however the former requires the destination register and one

source register to be identical, whereas the latter does not. Note that all ALU instructions

with only one operand (9 of the 16 available) will be encoded as short, since a unique

source and destination register can still be specified. Two further modes are also available:

register mode (specifying a source register for the second ALU operand) and offset mode

(encoding a constant 8 bit value instead); however for the short mode encoding, the offset

may only be 4 bits long instead of 8, and is considered as an unsigned constant.

The branch instructions form yet another class. The CALL instruction has a one

byte encoding with the branch address contained in a register quadruple, and the RETN

instruction is also encoded with one byte and reloads the PC with the last value stored

in the stack (which should always be PC+1 from the calling instruction). The JUMP

instructions (encoded in two bytes) allow both unconditional branches and branches de-

pendent on any one of 14 combinations of the contents of the FR, which contains zero,

parity, sign, overflow, and carry flags. Two different jump modes are also available: reg-

ister mode, in which the branch address is contained in a register quadruple; and offset

mode, which enables jumps of +727 or -128 locations relative to the current PC value.

Four stack operations are provided (each encoded as a one byte instruction) which

enable the contents of a register (including the FR) to be PUSHed or POPped. Finally

there is a group of miscellaneous one byte instructions which include NOOP (do nothing),

TRSP (transfer the contents of Q12 to the SP, which enables this register to be initialized

before use), HALT (to stall the processor through software), FLSH (to invalidate the

134

contents ofthe data cache), and four instructions to enable or disable the instruction and

data caches.

7.3 Architectural overview

A block diagram of the microprocessor architecture is shown in Fig.7.1. The arrows

between modules indicate the general data flow and the ti,clcs on each module represent a

row of latching elements between pipeline stages.

Figure 7.1: The general structure of the ECSTAC microprocessor

Separate instruction and data caches (IC and DC) are used in the design to delineate

between program control and data accessing, and to enable arbitration to be placed at

the cache outputs to external memory as opposed to the input of a joint instruction and

data cache. This significantly reduces both the arbitration frequency and the effect of

metastability delays, as external memory accesses are comparatively slow anyway.

The IC continuously fetches bytes from the PC address and places the data into the

instruction decode (ID) pipeline. This is heavily pipelined so that it effectively acts

as a FIFO buffer (the decoding in each stage is minimal). The results then pass into

the operand fetch (OF) stage which, from the information provided by the ID pipeline,

controls the number of register fetches required and the organization of these (together

with any immediate input values and the PC if required) onto a minimal set of output

buses.

The adder, comparator, and stack processing (ACS) stage performs address offset

additions (which are 24 bits long and would be awkward to compute with the ALU's

Operand
Fetch

r
Comparator &

Stack Proce

nstructnn
Decode

Registers &
Scoreboard

Order
Unit

ALU
Cache

lnst

Program
Counter

Data

Cache

135

8 bit adder) in two stages employing 12 bit Manchester carry adders (MCAs) in each.

The second stage (the upper 12 bit addition) is bypassed if the intermediate carry is

zero (as the result of this prediction is determined in the first stage). The first stage

also determines whether or not a JUMP operation is to be taken. If it's not, then this

operation is converted into a NOOP (therefore bypassing any 24 bit additions that may

have commenced) which then terminates at the ACS output. Otherwise, a signal is sent

back to all preceding stages which converts any instructions therein into NOOPs, since

they are now invalidated due to the branch. The IC-PC interaction is also instructed to

halt until a ne\M PC value has been written to it. The second stage of the ACS incorporates

the SP, which places the relevant address onto the bus to the DC for writing and reading

from memory. The CALL and RETN instructions present a problem here as they require

the pushing and popping of the PC, which is 24 bits wide (whereas the data width is

only 8 bits wide), therefore special refetch control is incorporated into this stage to effect

this. At the output of the ACS stage the appropriate execution unit (DC, ALU, PC, or

nothing for a NOOP) is selected.

The ALU is a single pipeline stage employing a dedicated shifter and logical unit and

a dedicated 8 bit MCA. The operation time of this unit will vary depending on which of

these, if any, is required by the operation. The DC is also a single pipeline stage which

will generally write back to registers except for a RETN instruction which writes back to

the PC.

The register bank employs a standard two read port and one write port cell design,

and each register array has associated with it a corresponding tag which enables data

dependencies to be properly handled (scoreboarding). When an instruction passes through

the OF it attempts to read the source register and, if the tag is high, is successful.

Otherwise it must wait until such time that the tag does go high. When all of the

required data is read it then tags (sets low) its destination register if one exists, and then

proceeds through the rest of the pipeline. Any subsequent instructions wanting to access

this register will therefore be stalled until it is later written to and the tag removed. Thus

there can never be simultaneous read and write operations for the same register, although

for different registers this is still possible.

The PC is a simple incrementing 24 bit register, which can have data written to it

from the ACS stage or the DC. Note that these can never occur simultaneously (therefore

136

avoiding arbitration) because the detection of a program branch in the ACS stage will

convert all preceding instructions into NOOPs, and will stall all subsequent PC reads

until it is re-written to. There is however a degree of arbitration with regards to halting

the IF-PC interaction once a branch is detected, which is resolved using the technique of

Section 4.4.7.

7.4 Processor sub-systems

This section gives a more complete description of the logic blocks of Fig.7.1, focussing on

the control design techniques used to improve throughput and reduce latency.

7.4.I Instruction decode

The ID stage receives a constant stream of 8 bit data values from the IC (as well as

the corresponding 24bit PC location of the data), which have to be decoded to provide

numerous control signals for use in the latter stages, such as which functional unit to

trigger, how many bytes in the instruction, how many and what registers to source, etc.

It was also deemed necessary to have a FIFO buffer after the IC for two reasons. Firstly,

if the IC missed then there would be a store of instructions still in the FIFO which could

get executed whilst the IC fetched the next stream of instructions from external memory,

and secondly so that if a latter stage stalled (due perhaps to a miss in the DC, or a refetch

operation for the SP or register sourcing) then the FIFO could fill up and thereby reduce

the frequency of stalls in the IC. Both issues help to maintain a steady flow of instructions

through the processor core. Note however that implementing a FIFO here does have the

drawback of creating a longer branch latency (from when the branch instruction is first

fetched to when the branch target instruction is fetched), which can reduce performance.

Consequently, the ID process is actually combined with the FIFO, resulting in a 7

stage pipeline design. To enable the pipeline to still act as a FIFO, which requires a very

low processing latency in each stage, the decoding process was reduced to a minimal tree

of 2-input nand and nor gates with only one such gate in each stage. This ensured a high

throughput and low latency of the ID and FIFO combination.

Note that with the ISA of ECSTAC the decoding process only needs to be applied

to the first byte of any instruction, since any subsequent bytes if present only contain

737

register Iocations, immediate values, or function codes (which are decoded in their relevant

functional unit). However to implement this requires the instruction length to be initially

decoded (so that the start of the next instruction can be determined) and then de-activated

for any subsequent bytes. Implementing this would complicate the control circuitry and

increase the stage latency, but would decrease the power consumption. Since the former

is of most importance this design alternative is not implemented, and instead every byte

in the instruction stream is decoded. Only in the OF stage are the correct control signals

latched from the first byte of the instruction, and for any subsequent bytes discarded.

7.4.2 Operand fetch

The OF stage sources the required register values and then tags the destination register if

used. The register values are then multiplexed with the immediate operands (from bytes

2, 3, or 4) to provide the following stages with the appropriate data values. A block

diagram of the structure is shown in Fig.7.2.

Registers & Scoreboard

PC, data, control Output buses, control

ID d start

stage d_begun

d done ACS
stage

no

d_beguna d return

Figure 7.2: A block diagram of the OF stage.

It will be seen from this that the OF unit uses a single pipeline stage operating at

the byte rate (as per the ID stage), however all subsequent stages are activated at the

instruction rate. Using a single stage for the register operations removes the contention

which would otherwise be present if they were spread over more than one stage. To

maintain a high throughput however it is essential that the router and register control

blocks (and the registers themselves) operate quickly.

The router is used to interface the OF stage to the ID, and is required to latch the

control bits, PC location, and data value from the first byte of each instruction, and only

138

the data value for any subsequent bytes. The control circuit used for this is shown in

Fig.7.3.

instbyte nõ@6it
d start

d_beguna

bussel
reset

Bus
elects ByteLast

PC & control PC & control

data Bus I
Bus 2
Bus 3
Bus 4

Figure 7.3: Control circuit for routing the data from the ID into the OF stage.

The 2 bit control signal 'instbyte specifies the number of bytes which are present in

the instruction, which from Appendix B is between 1 and 4 in length. A 2 bit counter is

used to keep track of the number of bytes which have thus far been processed, and when

equal to,instbyte gets reset tozero ready for the start of the next instruction. The noopbi,t

signal also resets the counter for when the instruction gets converted to a NOOP (when

it's in the shadow of a taken branch).

From this counter the relevant output bus for the data values can be selected, by

appropriately masking the latch select signal bussel which is generated by the TE:

bussel <- \beguna U 7starú, so that the relevant bus data gets latched on each õstart

event. The only latency incurred by this unit is in incrementing the counter before pro-

viding a return event back to the ID stage, since if ðbeguna were used instead then the

counter may not properly mask bussel before the next instruction arrives. Note that the

forward latency from ðstarú is zero, since the delay from this to ybussel is significantly

Iess than the delay to \beguna (as will be seen by the structure of the register controller)'

The register accessing requirements for each of the 16 fundamental instructions (as

given by the first 4 bits of the first byte) are presented in Table 7.t,in which Qi specifies

a24bit source (Qfetch), Ri specifies an 8 bit source (Rfetch), and T(Ri) specifies that

register i must be tagged once all sourcing operations are complete'

cl

Þ
C)

sel3

139

Code Instruction + Mode Byte 1 Byte 2 Byte 3 Byte 4
0000
0001
0010

0011

0100

0101

0110

011 1

1000
1001

1010

101 1

1100
1 101

11 10

1111

Qx
Qx

r(Rz)
FR
Qx
Qx
Rz
FR

Rx
Rx

r(Rx)
Rx

spec'ial2

Qz

LD register
LD offset
LD direct
JUMP offset
ST register
ST offset
ST direct
JUMP register
ALU short/register
ALU short/offset
ALU long/register
ALU long/offset
POP
PUSH
SPtrCIAL
CALL

Qv & r(Rz)
r(Rz)

Rz&Qy
Rz

Qz
Ry, Rz1 & T(Rz)

Rz &, T(Rz)
Ry & T(Rz)

r(Rz)

1: a second register source (Rz) is only necessary for ALU operations with 2 operands.

2: a register access of Q12 is needed for TRSP, the FR for PSHF, and a FR tag for POPF

Table 7.1: Register accessing requirements of the fundamental instruction set

It can be seen that register operations are only ever required for the first 2 bytes of an

instruction, and that for the second byte there may in fact be 2 register source operations

which have to occur, as well as potentially having to tag a register. Implementing such a

register controller is therefore a reasonably complex task.

One approach is to activate the register accesses using select and merge gates, as shown

in Fig.7.4. The signals go1 and go2 are used to indicate whether one or two register sources

are required for each byte (although the latter is rare), and go0 and go3 indicate ifthe FR

or register bank has to be tagged. These signals are generated from control bits decoded

in the ID stage and the current counter value. Since the tagging functions can be done

in a fast, constant time they are triggered without acknowledgement. Merge and restore

gates are used to combine the two possible source operations prior to the register bank.

Note that tagging of the registers must occur after the register fetching and hence these

operations must be serially connected, although for the FR a fetch and a tag can never

occur together in the same instruction, therefore it can be initiated immediately.

This approach gives a best case latency from 0start -+ }startcof 2(t,"¡+t*",s.) -- 40

using Table 3.1 as a guide, a nominal latency of 40+t*.rs"*tr.r: 64 (for just one register

source), and a worst case latency of 64 + t^"rs.l tr", : 88 (for two register sources),

140

Tag FR

d start

d_regstart d_regdone

Combine

Source l

d_tagFRstart

d starta

Source 2

d startc

rl-tagstart

reset

Tag registers

d done

I

go3go0 gol go2

d_beguna
d returnLast Byte?

Figure 7.4: Event bypass method for controlling register accesses

excluding the delay of the registers themselves. Although this may be the most intuitive

implementation (which also happens to be a SI design excluding the tag operations), a

better implementation based on conditional gating of logic signals, rather than events, is

given in Fig.7.5

Essentially, the sourcing circuitry involves generating a logic level signal from an input

event (via the unti,l gate), which causes Agoreg to occur if the go signal is high. Otherwise,

the register triggering is bypassed through the done signal by immediately passing out

the event through the send gate. The signal goreg is used to trigger the register access

operation, which therefore requires the registers themselves to be logic level triggered.

This is in many ways advantageous, since bus precharging is easily accommodated without

any additional control overhead, whereas for the strategy of Fig.7.4 the precharge signals

would still have to be generated from the)regstart event.

The register unit then must also supply a logic level completion signal (which is sim-

ilarly advantageous), which then results in Ldone and sends out the initial input event.

This d"one signal then resets the initially generated logic signal (from the unti,l gate) which

in turn resets the subsequent gates. The correlation between source and tag structures

for this method and the previous is indicated by the shaded boxes. Note that an extra

send gate is used here between sourcel and source2 because a high signal on regdone sets

both donel and done2 high, so that were it not present the event)startb would emerge

prematurely as 0startc.

t47

regstart regdone

Combine

goregl

Source l

goreg2

Source 2

tagFRstart tagstart

Tag FR Tag registers

d start d startb
d starta d startc d done

gol

d_beguna
d ¡etum

lnst Byte?

Figure 7.5: Logic bypass method for controlling register accesses

This design results in a best case latency of Str"n¿ - 18, a nominal latency of 3tr"r¿l

tro, l2tnond, I tandnor -l t¿nu - 38, and a worst case latency of 3(t""na I t"o, * 2tnon¿ I
tondno,) I t¿no : 74. Comparing these results against those of the SI schema results in

speed improvements of 55T0,41T0, and 76T0 respectively (for which the first two scenarios

are the most frequent), which are in fact further enhanced by the removal of a precharge

generation phase from the event control. It should also be noted that the design area has

been considerably reduced.

7.4.3 Adder, comparator, and stack processor (ACS)

The ACS is a 2 stage unit primarily used to compute the address offsets for LD and ST

instructions using the register and offset modes, as well as computing PC relative branch

locations. Since these operations involve 24 bit data signals it is necessary to implement

a dedicated adder rather than re-use the 8 bit adder of the ALU (with 3 cycles), which

would require greater complexity and hence slow down the processor Speed.

The ACS stage also performs two other important tasks: branch detection and stack

processing, in the first and second stages respectively. In the first stage, the contents of

go2go0
I

go3
reset

L42

the FR which were fetched from the preceding OF stage are compared to the branch code,

and if a branch doesn't occur then the instruction is converted into a NOOP and the 24

bit adder is bypassed, otherwise the instruction proceeds as normal and all subsequent

instructions âre converted into NOOPs instead.

The second stage generates the SP addresses for the DC. A decrementing stack is

used for which the top memory location can be set using the TRSP command. For a

PUSH (or POP) operation the SP (or SP+1) address is supplied to the DC together

with the fetched data from the OF stage, and then SP-1 (or SP+1) is stored as the new

SP. A RETN instruction is more complex in that three POP operations are necessary to

retrieve the new 24bif PC location from memory, which can only store 8 bit data values.

A CALL instruction is similarly problematic, requiring three PUSH operations to store

the current PC location as well as having to reload the new PC address (giving a total of

4 operations for the one instruction). The following sections describe the operation and

control schemas of the 24bit adder, comparator, and stack processor in turn.

7.4.3.1 T}ne 24 bit adder

The 24 bit adder is implemented in two stages each of which executes a 12 bit Manchester

carry adder (MCA) [W893, p322]. Although this requires a long chain of r¿ transistors in

the worst case, a large width:length ratio is used to reduce the computation time. Fur-

thermore, since at best the execution rate of each stage will be for a two byte instruction

(LD offset) the cycle time (and latency) of this adder is not critical, and merely needs to

be less than twice the cycle time of the OF stage with one register fetch.

The first stage addition also pre-computes the output for the upper 12 bits assuming

an input carry of zero. If this proves to be correct, then the second stage 12 bit adder

does not need to be activated, thereby improving the system speed.

The control circuit for the first stage of the ACS unit is shown in Fig.7.6, and includes

the control for managing both the adder and comparator sections of the design (shown in

the shaded oval and square respectively). The state pipeline structure is used to implement

the basic handshaking requirements between adjacent stages'

The control for the adder is simple. Once the pipeline begins its operation, as signalled

by yacsselO, the activation signal act\ for the MCA is set high provided that the instruc-

tion does in fact require Lhe24 bit adder (as given by doadd). A positive-edge only delay

743

TI oq)
O
l-{

restnoop

control in

d_compdone

T2t¡

d_acslbegun control out

Branch control
d acsl

State
pipeline t d acsldone

doadd Adder control

d acsret

Figure 7.6: Control circuit for the first stage of the ACS

unit is used to model the computation time of lhe 72 bit MCA, which is also partially

absorbed into any subsequent control delays before the next stage's latching operation.

Once the delay model signifies completion, the event ðcompdone (delayed slightly from

õacsLbegun to occur after the branch detection logic, as will be discussed next) is passed

to the output event \acsldone. Note however that if a branch comparison indicates that

it's not taken, then this instruction is converted into a NOOP (as signified by a high level

on th'istonoop), and ôacsLdone is then passed out immediately since the result of the

addition in this instance is irrelevant.

7.4.3.2 Comparator

The comparator is used to determine whether or not a branch is to be taken. This is

implemented using a simple static logic tree which compares the flags from the FR against

the branch code. Referring to Fig.7.6, if a branch is detected Lhenrestnoopwrll go high,

otherwise th'isnoop will go high instead. To prevent glitches on these signals from causing

erroneous behaviour they are and'ed with the noopuali,d signal, which is itself generated

from \compdone and indicates when the branch detection logic is complete (using a simple

delay model).

lf thi,stonoop then goes high (indicating that the branch isn't taken), the instruction

is converted into a NOOP by bypassing the addition (as already mentioned) and masking

the relevant control bits to indicate a NOOP to the next stage. If instead the noopou

signal goes high, then a branch has occurred, and all preceding stages are to be converted

into NOOPs.

744

To implement this, the noopou signal is fed back to all preceding stages and sets

a control signal noopbi,t high in every stage. The control state of each preceding stage's

Iatches (opaque, transparent, or somewhere in between) is irrelevant, since the propagation

of this signal through a stage is less than the pulse width of noopou. There are only two

places where a potential problem exists: in halting the PC until its new location has been

loaded, and in the tagging operation of the preceding OF stage.

The first problem involves a metastability issue in the PC unit, which is discussed

in Section 7.4.7.2, and the second involves ensuring that a tag operation for the next

instruction is not initiated before it has been converted into a NOOP. A register fetch

would be okay, since its results could be discarded, however undoing a tag operation would

be a complex procedure. This problem is in fact solved without effort, since the time from

ôacslbegun to Anoopou is less than the the return time to handshake with the OF stage

and initiate a tag. If it were not, then the tag operations in the OF stage would merely

have to be delayed slightly, an issue which again does not influence the critical control

path of the OF unit.

7.4.3.3 Stack processing - single operations

The stack pointer is a 24 bit address indicating the current location of the top of the

stack, and is multiplexed onto the address bus at the ACS output for a stack operation.

This can be set with a TRSP instruction, which loads the SP with the contents of Q12.

The stack is implemented with an incrementer and a decrementer. For a PUSH opera-

tion the current SP value is required, whereas a POP operation requires SP+1. Therefore

for a POP operation SP+l is loaded into the stack pri,or to the next stage being activated,

and for a PUSH operation SP-1 is loaded in after the next stage is activated.

Figure 7.7 shows the control circuit used for this operation, together with the state

pipeline controllers for the handshaking with adjacent stages and the control for the

upper 12 bit adder (which is essentially the same as that already described, except that

in this instance doaddhi, is low if the pre-computation f.or cL2: 0 in the previous stage

was correct). A pulse is generated for when the stage is first activated (from)acslret

through the merge and send gates) and also after the next stage has been activated (from

ðacs2done through a send gate). A POP operation selects the first of these to reload the

SP (provided that a SP operation is occurring), and a PUSH selects the second.

145

Stack
control

d_spredo

d acslret

d acsldone
I

State
pipeline

doaddhi
d ackout

State \----F-----
pipeline d acs2ret

Figure 7.7: Control circuit for the second stage of the ACS

Once loaded, the increment and decrement of the SP are initiated (from Lhe sel pulse).

These units are not self-timed and use a simple static logic chain for their computation,

which requires the worst case propagation time to be managed. This is implemented with

a delay on the pulse signal to indicate completion (which requires careful management to

ensure that the negative edge propagation is no faster than the positive edge) from which

the i,ncok and decolç signals are produced. These go high when SP+1 and SP-1 are valid,

and prevent their re-loading into the SP from a subsequent operation until such time.

The CALL and RETN instructions require 3 stack operations to store or retrieve the

PC, which complicates the control schema. A refetch controller is needed to repeat the

SP operation 2 more times (via õspredo), and for the CALL instruction an additional

operation is required to load the PC with its new location (}pseudoBI). These signals

are incorporated into the single operation control schema with the two merge gates, and

are generated as follows.

7.4.3.4 Stack processing - refetch control

The control circuitry for implementing the CALL and RETN instructions is shown in

Fig.7.8. Once the following stage has been initiated ðacs2done occurs, which then prop-

agates through a select gate for which spref etch is initially high for a CALL or RETN

instruction (as given by pcwri.te), and which stays high until the second event on 0spredo

selT
T1

logic
mux
10

lsepulse

decoksp sel

incokpop

acssel 1

It Adder control
I

actl
T2u;p

acssel2Reletch
control

146

0l

I
mux

0 I
mux

reset

occurs. Assuming call2is low (for a RETN instruction), this willcause 2 events to occur

on \spredo before ðackout occurs to indicate completion to stage 1, giving a total of 3

SP operations as required.

Sbit data Referch control pcwrite
PC low

PC mid
PC high Bus muxing d-acs2done

d_spredo

d_pseudoBI

d ackout

data
masking

PClor
reloading

data bus out

Figure 7.8: Refetch control for the second stage of the ACS

If however a CALL instruction is occurring, then the first event on ôrepeaf will be

transferred to ðpseudoBI (call2 is high for this first event only, and low thereafter). This

masks the control signals to initiate a reload of the new PC location until ôøcs2done

occurs (once the control signals have been latched). For the next iteration ca,Il2:0

and the control masking is removed, so that as per the RtrTN instruction 2 more SP

operations are initiated before ðackout.

The purpose of these iterations is to enable the PC to be loaded onto the stack in

three 8 bit segments. Each time ðacs2done occurs a one-hot counter is incremented

which selects the appropriate segment onto the data bus. The high byte is stored first

and the low byte last, so that when a RETN instruction reloads these into the PC the

incrementing can occur immediately on the low byte (since PC+1 is actually required as

the RETN target).

7.4.4 Arithmetic and logical unit

The ALU performs addition operations (including subtraction, negation, incrementing,

and decrementing), logical functions, and shifting of 8 bit operands, as well as passing

out the input data directly to the output for a move instruction. An 8 bit MCA is used

747

to implement the additions, and since the ALU is at best triggered at a rate equal to two

cycles of the OF stage with one register fetch, the latency of this unit is not critical.

The ALU is structured such that the logical, shifting, and move operations are all

performed in parallel, and the dynamic adder is only triggered (also in parallel) when

necessary. The appropriate result is then multiplexed onto the output bus and the rel-

evant flags computed (any flags which are not of relevance for a given operation remain

unchanged), which are then written back to the register bank.

The control circuitry for the ALU is essentially the same as the adder control of

Fig.7.6, with a constant delay element in the event path (equivalent to T1) to model the

computation time of the logical and shifting operations, and a positive edge delay used

to model the computation time of the adder. If the adder is not used, then the delayed

event is passed out directly through the send gate (effectively replacing thi,stonoopwith

add).

7.4.5 Order unit

The ACS stage can issue an instruction to either the ALU or the DC (and the PC too

for a branch), which after processing may then wish to write back a result to the register

bank. Since these units can initiate a write back at any time there is a contention issue

to be resolved, for which there are two possible solutions: using an in-order execution

model ensures that the units write back their results in the same order as the original

instruction stream; whereas an out-of-order execution model allows these to occur at any

time, provided only that writes to the sarne register remain in-order.

Although the latter model prevents unnecessary stalls for when one unit has to wait for

a slower, but earlier, computation to finish in another unit (as may happen in ECSTAC

if a miss in the DC causes a subsequent ALU operation to stall), the control strategy

for initiating a write back and especially for maintaining the register scoreboard is more

complex. In ECSTAC the frequency of out-of-order write backs is expected to be low,

therefore a simple in-order execution model is used, and the OU is employed to effect this.

When a DC or ALU operation is activated from the ACS stage (which will eventually

initiate a write back), a flag is also loaded into the OU which records which unit was used.

The OU is essentially a FIFO and maintains the instruction order from the ACS. When

748

the ALU or DC then initiate their register write, the output of the OU is first checked

to ensure that the correct execution order is being achieved. If a latter ALU instruction

completes before an earlier DC instruction it will stall until the DC has completed.

To implement such a design it is necessary to have a FIFO length at least as long

as the maximum number of stages which can be filled after the ACS, otherwise the OU

may unnecessarily create a stall at the ACS output (and must then also issue a return

acknowledgement). By considering Fig.7.1 there are at most 5 stages which can be filled

before the ACS stage itself stalls, therefore the OU is designed with a 7 stage FIFO.

The general structure of the OU is shown in Fig.7.9. This design enables the latency

of the FIFO to be very small and independent of the FIFO length, which is advantageous

since an ALU operation can potentially occur very quickly, and may therefore stall un-

necessarily before writing back if the FIFO latency was longer. Note that the OU also

multiplexes the appropriate data bus to the register unit as well as generating the return

events for the ALU and DC from the register bank.

input
busesd cachedone d aludone

d fifo
(from ACS)

input

dwb

wb bus

d wbdone
data

d cacheret d aluret

Figure 7.9: General structure of the low-latency FIFO used in the order unit.

7.4.6 Registers and scoreboarding

The register bank (designed by Sam Appleton) is simply a 16x8 bit array of register cells

employing a standard two read port, one write port design. Note that although only two

read ports exist, a Qfetch (fetching 3 register values instead of just one) can still occur

since the extra two fetches always go to a unique output bus (bus2 or bus3 only). A

separate register is also implemented for the flags, which reads onto busl (as does a one

byte Rfetch) and can be written to at the same time as a write back to a data register.

alu

data

Store "one-hot" counter

tAH/
Control

and data
muxing

Retreive " one-hot" counter

749

For any microprocessor it is essential to prevent the reading of a register when new data

values are still to be written, termed a "read after write" (RAW) hazard. Conveniently,

a "write after read" (WAR) hazard is handled implicitly by the pipeline structure as is

a "write after write" (WAW) hazard in conjunction with the OU, however RAW hazards

require specific attention. One possible method of handling these is to have two log2n

bit counters per register (where n is the number of pipeline stages between reading and

writing) which continually increment whenever a tag set or reset occurs. When these two

counter values are equal the register contents may be sourced, however this approach is

significantly area intensive. Another solution is presented in [PDF+92] in which a FIFO of

width rn (where rn is the number of registers used) and length n is used to store a bit for

each register indicating if it needs to be written to. These are then or'ed across each FIFO

stage to determine the readability of each register. This approach is still area intensive

and scales linearly with the number of registers and the number of pipeline stages.

ECSTAC employs a very different method which uses a row of latches at least as

numerous as the number of potential pipeline stages, and stores the actual encoded desti,-

nati,onreg,isteritself (of width log2m) asshowninFig.7.10. Providedthattheorderingof

instructions is maintained (an issue demanded by this strategy), then the hold and pass

states of any one latch may be regulated by the tag's start and reset signals in a simple

"one hot" fashion. The number of cells is simply replicated for at least as many pipeline

stages as necessary.

tagstart tagreset destreg Rx

I

I

I

I

I

I

I

I

I

I

\

Cell i

hotset hotreset

Figure 7.10: A tag cell used in the register scoreboard.

When a request to read register ßr occurs, it is compared against the previously

latched destination register in each cell and sets ok¿ low if they match. All of the ok¡

U

t-l

q)
L
qs
Þ.

U

q) +¡*¡ qJ
q3s)
Ë

*
<dJ

150

signals in the array are then and'ed together to give the readability of the source register

rRr (in practice, a single complex gate is used to perform the match and OR operation),

and if low then the read cycle into the register bank is halted. When a write back occurs,

the earliest cell's select signal will go high invalidating the previously latched destination

register (which has just been written to), and subsequently setting ok¿ high to activate the

register read with valid data (unless another cell indicates that yet another write back to

this register is still to occur). Note that in practice there are actually three comparators

with inputs Rdtag, Rdtag - 1, and Rdtag - 2 respectively, which are used to determine

the readability for the three source registers of a Qfetch.

This scoreboarding (SCB) scheme requires significantly less area than the two methods

mentioned above and yet still enables the rapid detection of the readability of a particular

register. Furthermore, this implementation scales logarithmically with the number of

registers used.

7.4.7 Program counter

The PC unit interacts with three separate entities: the DC and ACS outputs for writing

to the PC (for RETN and BRANCH instructions respectively); and the IC for reading the

next PC location. Therefore the PC structure is broken down into two sections as shown

in Fig.7.11, with the first being used to distinguish between a PC write from the Cache

unit or a branch instruction (Wri,te Interface), and the second being used to distinguish

between a PC read or write operation (PC Controller).

d_pccached PCcache
PCbi

d-pcbi

d_pccache 24 d_pcbid

DC ACS

stall I

d pccbi

noopov

d_pcfd d_pcf PC

Figure 7.11: General architecture of the PC unit

24

D

Write Interface

,+ stall0

PCwrite

PC Controller

151

7.4.7.I'Write interface

This unit receives request events from the ACS and DC units together with the associ-

ated data which is to be written to the PC, and then initiates this write cycle and upon

completion generates the return event to whichever unit called it. Note that it is impos-

sible for coincident input events from these two units to occur, because as soon as a PC

write is detected in the first ACS stage, all subsequent instructions (in preceding stages

of the pipeline) are then converted into NOOPs and the PC fetching cycle (from the IC)

is halted until the new PC value has been written. The write interface circuitry is shown

in Fig.7.12.

\
t,nefetch Control

d_pcbid d_pcbi

oh2

PCbi

cl6

ST incrementer control

I

la
¡l Generate

return
events

act

PC write

I

I

I

I

I

I

I

I

I

valid

'bi I

Figure 7.12: Interface circuitry for the DC and ACS write back phases to the PC

The data which comes from the ACS output is the new 24 bit location of the branch

instruction (PCbi), but the data which comes from the DC (PCcache) is in three streams

of 8 bits, each of which represents the new PC value from low byte to high byte respec-

tively. Therefore additional refetch control must be implemented for the DC events which

enables the full 24 b\f PC address to be latched before sending out the write event to

the PC unit itself. This can be done in similar vein to the SP refetch control used for

CALL and RETN instructions in Section7.4.3.4, using a "one-hot" counter to multiplex

the incoming byte into the appropriate portion of the 24 bif address.

Pulse

oh0..2

ohsel

l6bit
tnc

sr
tnc

cdonel

Pulse

I

I
I

752

An increment of this address must still be performed. This is implemented with a

simple static logic incrementer for the low 16 bits, since an 8 bit increment can safely

occur before the next byte is loaded from the DC. If the increment isn't yet completed

when the last byte is loaded (implying ct6:1, and occurring only l in 216 times), then

the last 8 bits are incremented in a self-timed fashion.

Once the new PC location to be written is available, the PC write operation is activated

via \pccbi,. The signal stall} is used to halt this write phase until the instruction fetch

cycle has been stalled, and stallT is used to halt the acknowledge events until the new

PC address has been loaded.

7.4.7.2 PC controller

When a branch occurs the signal noopou pulses high, which causes hpf y in Fig.7.13 to go

high and therefore halt the PC-IC instruction fetch cycle according to the metastability

resolving technique of Section 4.4.1 (as indicated in the figure)'

PCwrited_pccbi

hofv

valid
act

Selection
ST inc'er control

hpfz

stall0

proceed IFbusy stalll

d_pcfd d_pcf PC

Figure 7.13: Control schema for the PC unit

Once the new PC location is ready to be loaded, }pccbi, occurs and generates a write

pulse to the logicgate which then sets hpfylow. This event also sets pcmursel high to

multiplex in the new PC location (PCwri,te), as opposed to PC * 1 as would otherwise

be used in a typical fetch cycle. The signal hpf y will eventually propagate through to

lhe send gate and produce õpcf d0, which then latches in the new PC location and then

ST inc'er
Pulse

Logic
0l
MUX

Latch Latch- -I-trn-

I
Logic

153

restarts the PC-IC instruction fetch cycle.

If however there was no program branch and therefore no noopou pulse, then the

input event 7pcf d will simply propagate through to latch in PC-ll for the next fetch

cycle. Whilst the IC is fetching new data, the next incremented PC location is generated

using a self-timed incrementer, and the ual'id signal is used to prevent the latching of the

new value until this incrementing has completed.

7.5 Testability issues

In an asynchronous system each section of the design has to have an explicit control

schema designed for it, whereas a synchronous system is globally governed by the clock.

This increase in control complexity means that there is a greater chance of design failure,

either within each section of the design or in the interfacing between them. In addition to

this there is still the same possibility of a failure in the data path logic (say, for stuck-at

faults) which could also result in the design not functioning to specification.

If after fabrication it is found that the chip does not function correctly, it is of course

necessary to determine the cause of the problem(s). This might then enable corrective

measures to be applied to the chip to give at least some degree of functionality, or at

worst should enable the problem to be rectified in a subsequent design iteration.

The ECSTAC processor employs three primary methods for analyzing and repairing

circuit faults, which were developed in co-operation with Sam Appleton.

7.5.L Delay modelled 7úú bus

It is sometimes the case that a chip may be fabricated with transistor characteristics

which differ significantly from those that were used in the simulations. If this is the case

then it's possible for the computations in the data path to take longer than anticipated,

or alternatively the control path may be faster. In a synchronous system a slower process

corner can be overcome by reducing the clock frequency so that the data has sufficient

time to compute, however since an asynchronous system is locally controlled this same

principle cannot be employed.

Instead, fhe ECSTAC processor utilizes a separate Vtt power bus which drives all of

the delay modelled elements in the design (such as T1 and T2up of Fig.7.7). If the control

154

path operates faster than the data path due to a hazardous process corner, then the delay

elements which are used to model this can be increased by lowering the supply voltage of

Vtt. As such it may then be possible for an erroneous chip to function properly.

Note that it is not possible to rectify any problems which arise from non-acknowledged

control structures which were deemed to have a shorter latency than cycle time, how-

ever the likelihood of this problem is expected to be low. Although not implemented in

ECSTAC, a prudent solution could be to use a separate po\r/er bus for the cyclic and

non-acknowledged control paths, and slow down the former (reduce its supply voltage) if

the non-acknowledged paths are sufficiently slow enough to cause a problem.

7.6.2 Interface delays

During the design process every major functional blocks of Fig.7.1 was simulated in detail

using Hspice, which enabled accurate timing information to be attained. However, since

the complete design required too much memory and processing time to properly simulate

in Hspice, an event-driven simulator IRSIM was used to test the entire system.

Although this simulator uses a parameter file which closely matches the Hspice sim-

ulations of smaller systems, it is still less reliable. As such it is possible that although

each functional block is simulated as confidently as possible, there is less confidence in the

accuracy of the interfacing between blocks. It is conceivable that assumptions regarding

the timing of the input data and events for any one block may in fact be violated by the

block preceding it.

To overcome this potential problem, a simple selection unit was placed in the forward

event paths between each sub-system which enabled a lumped delay to be switched in

prior to start-up (when the initialization signal 'irz'dú goes low). Therefore if the input

event to a unit occurred before the data had been fully computed, then inserting this

delay may solve the problem and enhance the chip's functionality'

7.5.3 Scan testing

Computational errors in the data path (as opposed to control errors in the event path

as have thus far been addressed) can be identified using scan test registers, of which one

such register cell used in ECSTAC is shown in Fig.7.14.

One of two data signals (which may include the data level of an event line, for testing)

155

phil phi2

II
reg rn reg out

data 1 data2-tT
testload testload2

Figure 7.14: Register cell used for scan testing the outputs from each stage.

is first loaded into the scan register by pulsing testload or testload2 high. This loads

parallel data into the r¿ register cells used in the scan chain, which can then be read out

serially by activating the two phase non-overlapping clock signals (which must both be off

when data is first loaded in). Scan registers are placed at the outputs ofeach sub-system to

determine whether or not the control and data signals have computed correctly, therefore

isolating the source of any problems to the block level. This can then be pin-pointed

within the block via simulation and rectified in a subsequent iteration of the design.

Note that the data must be valid when loaded into the registers, however since an

asynchronous control schema is used it is not possible to know exactly when this is so.

Therefore it is necessary to have each stage's output stall when scanning is required, and

to pulse each unit's output event (if pending) into the following unit once the data for each

instruction has been scanned. Since this pulse width (to a send gate) ought to be small

to prevent the possibility of more than one cycle occurring, it is generated on-chip from

an external input event. If this event is initially low, then the chip is running "at speed"

with no scanning (and therefore no stalling between stages), otherwise each subsequent

input event after start-up will generate an on-chip pulse. In many 'ways, the block level

hierarchy of the system then acts like a clocked design, with each unit processing one

cycle per external event, if required. Clearly, the events must be sufficiently spaced to

allow the worst case processing of a stage, and the loading and subsequent scanning of its

data.

7.6 Simulation results

The control structures presented in the preceding sections were first simulated in VHDL

with code produced from a tool which converted from a temporal specification of the

156

circuit. Once these \ryere deemed functional they were then custom implemented in the

ES2 technology using the mask Iayout editor MAGIC.

For each sub-system the data path was first implemented and simulated in Hspice.

Then the control schema was floorplanned and laid out to match the height of the data

path and to produce the required control signals (such as for multiplexing, masking, and

latching) as near as possible to their location in the data path. The control layout was then

simulated with capacitive loads for control signals taken from the data path simulations,

and then finally the entire block was simulated with instruction traces designed to test

the full functionality required of the unit.

7.6.L Sub-system simulations

Table 7.2 shows the statistical information and performance characteristics of each sub-

system of the processor, with all times quoted incorporating the handshaking delay of

adjacent state pipeline stages (if relevant). The total area quoted is for the final design

prior to fabrication, and the total number of transistors includes those used for testing.

The cycle time (ø), Iatency (À), and power consumption (P) were averaged over numerous

random instruction traces.

Block Size(mm) Area (**') Transistors oor" (ns) Àoo" NS Prr" (mW)

ID
OF

ACS
ALU
REG
SCB
OU
PC

0.6 .85 0.57
0.29
0.40
0.72
0.24
0.77
0.09
0.15

0.46+0.63
0.75*0.53
0.40*0.31
0.61+0.39
0.43*0.40
0.15*0.62
034*0.44

4722
2058
4518
1307
1866
2t67
1 188

1954

10

t2
25

I
7

4

8

8

8

20

17

7

4

2

5

6

50

23

ót
38

56

13

12

t7
Total 2.30x7.64 3.78 21093

Table 7.2: Statistical information from Hspice simulations of each ECSTAC sub-system.

Note that the OF and ACS stages exhibit significant variations in cycle time and

latency due to the possibility of multiple register fetches and stack operations respectively.

The PC can also exhibit a longer latency if the carry chain is long, however this is a rare

occurrence

One may surmise from this table that the cycle times of the ACS and OF stages

r57

(when combined with register accesses) wilt be the dominant factor regarding the overall

processing speed. The average cycle time of the ACS stage is 25ns, anrl it has been

determined that when the register and scoreboarding delays are incorporated into the OF

stage, an average cycle time of approximately 16ns results. Since there is an average of

approximately 2.2 bytes per instruction the total cycle time of the OF-SCB-REG cycle

will dominate. A performance of approximately 28 Mips may therefore be anticipated,

however this will be degraded by the back propagation of a longer latency operation in

either the ACS or OF stages, as well as the delay involved in determining and resolving

a branch instruction. These effects can be quantified by a detailed simulation of the

processor core.

7.6.2 Core simulation environments

The processor core was simulated in IRSIM but without either of the caches in place.

This enabled a shorter processing time as well as providing information on the speed of

the section of the design implemented by the author. The DC was replaced by a circuit

which returned the required data (or stored it) with an approximate cycle time of 10ns,

and is comparable to the actual cycle time of the DC unit [AML95a]. This is effectively

equivalent to assuming a DC with a I00% hit rate.

Before implementing an "at-speed" test of the core, it was necessary to determine the

functionality of the entire system for each instruction. To effect this, the data and PC

values into the ID stage (which would normally have come from the IC) were encoded

directly for each instruction, with a long cycle time between successive bytes to ensure

that each one had sufficient processing time in the worst case. Although this didn't fully

test the scoreboarding or block interfacing control, it still enabled many aspects of the

overall architecture to be tested and fine tuned.

Once functional at this level, the IC was replaced by a FIFO in which each byte of an

instruction stream was stored. At start-up, the first FIFO value would be read out and

passed into the ID together with the PC location direct from the PC unit. The output

of the ID stage then activated the PC unit and grabbed the next value from the FIFO,

and so on. This enabled the core to be tested at its expected operating speed, and is

equivalent to using an IC with a 700% hit rate.

158

7.6.3 General purpose instruction streams

Due to processing time and memory limitations, the FIFO was restricted to 450 bytes

in length, which equates to around 200 instructions in a typical stream. This prevents

the core from being tested with reasonably complex benchmark programs to determine

its speed, therefore various sets of random instruction traces were used to gauge this

with relative instruction frequencies as given in Table 7.3. This distribution is based on

the dynamic instruction traces given in [HP90, Chapter 4]. Note that for every CALL

instruction a corresponding RETN is also eventually issued.

Special Stack ALU Branch Memory

Inst Freq Inst Freq Inst Freq Inst Freq Inst Freq

NOOP
FLSH
ICDS
ICEN
DCDS
DCEN

0.4

0.3
0.3
0.4
0.3
0.3

POPF
PSHF
POP
PUSH

2.0

2.0
2.0
2.0

short regl
short reg2

short off2
long reg2

long off2

30.0

8.0
2.0

7.0
13.0

CALL
JUMP off
JUMP reg
JMPc off
JMPc reg

3.0
2.0

0.5
7.5
2.0

LD reg

LD off
LD dir
ST reg

ST off
ST dir

4.7

0.8
2.6

4.7

0.8
2.6

total 2.0 total 8.0 total 60.0 total 15.0 total 15.0

Table 7.3: Relative instruction frequencies used for the general testing of. ECSTAC

Preceding any generated instruction stream are 5 instructions (12 bytes) which are

used to initialize the SP. The first four are ALU operations which set the relevant bits in

Q12, and the fifth executes a TRSP instruction.

A number of instruction streams were generated which used either the ALU, the DC,

or both, and with branch instructions either included or excluded from the trace. This

enabled the effects of branch delays to be measured as well as determining the relative

operating speeds for ALU and memory operations. The results of this simulation are

given in Table 7.4, and all speeds are averaged over numerous instruction traces of the

same type to enhance the accuracy.

Stream Type Mbps Mips

All + branch
All - branch

29.1

33.4

73.4
14.8

Cache only
ALU only

32.6
34.0

15.8

14.5

Table 7.4: Simulation speeds of ECSTAC for unit specific instruction streams, quoting the

number of bytes (Mbps) and instructions (Mips) processed per second (in millions).

159

Since there is a variable number of bytes per instruction the Mbps field (millions of

bytes per second) is also quoted. This figure gives an estimation of what the processor

speed would be were all instructions able to be encoded in one byte with equal address

and data widths. The Mips speed for "All - branch" is seen to be approximately half of

what was anticipated in Section 7 .6.1, which is due to the back propagating effect of slower

operations in the OF and ACS stages, so that the overall cycle time of the processor is in

fact closer to the worst case than the average. This verifies that asynchronous pipelining

does not enable the average case processing time of each stage to be properly utilized.

It can be seen that the effect of branching operations is to reduce the Mips and

Mbps by about 10%. This is because the delay from fetching the branch instruction to

branch resolution involves propagating all the way through the processor core, and any

instructions fetched in its shadow are irrelevant. By placing not just the detection of a

branch but the updating of the PC as well at the start of the pipeline, or perhaps even

decoupling the process from the pipeline completely, the penalty for program branches

could be reduced.

It is interesting to note that the processing speeds for the ALU and cache operations

show very little variation. This implies that any bottlenecks are not uni,t dependent, but

are caused by other factors not evident from these simulations.

ALU operations are in fact slightly faster than cache operations in terms of Mbps. This

is because the ALU has a lower latency through the ACS stage than do cache operations,

which may require stack processing and 24 bit additions for address locations. However,

since ALU operations typically require more bytes in their encoding (2.4 bytes versus 2.0),

the Mips rate is slower than for cache operations.

It should also be noted that the effect of register hazards is minimal on the processing

speed. This is because of the low latency of an ALU operation to write back its result

from the OF, so that in general only the immediately following data dependent operation

can get stalled. Furthermore, it is common for the following instruction to source the data

dependent register on its second byte, by which time the result has often been written

back.

Given the typical speed of the processor for the most general instruction stream, it is

possible to estimate the power consumption of the processor (since this is not provided

directly by the simulator). By averaging the power dissipation for each unit (from Table

160

7.2) over the typical cycle time of the processor, and factoring in the frequency of usage

of each unit after the ACS from Table7.3, an estimate of the total power consumption

can be made. These estimates for each unit are given in Table 7.5, from which the overall

power dissipation of the processor for a typical instruction trace is estimated to be 58

mW.

Unit ID OF ACS ALU REG SCB OU PC Total
Power (tt W. 14.5 10.6 12.4 2.8 17.4 1.5 0.9 4.0 58.1

Table 7.5: Power estimations of each unit for a typical instruction stream.

7.6.4 Instruction streams for determining bottlenecks

In an effort to locate any bottlenecks in the system, a series of instruction traces were

generated to test those sections of the processor that were deemed to be potentially

problematic. In particular, the following three factors were investigated: the number of

register sources per instruction (to test the effect of operand fetching); the number of

bytes per instruction (to test the effect of variable byte instruction encoding enforced by

the data and address mismatch); and the number of stack processing operations required

(to test the effect of the refetch control, again a byproduct of the mismatch between

buses). The results of these instruction traces are shown in Table 7.6.

Stream Type Mbps Mips

No reg sources
1 reg sources

)1 reg sources

43.12

33.9
27.71

22.4
15.7

!2.r3
1 byte insts
2 byte insts
>2 byte insts

28.5

37.2
36.72

29.04

15.5
11.53

SP insts
No SP insts

27.51

33.7

27.04

74.3

Table 7.6: Simulation speeds of ECSTAC for bottlenecfred instruction streams

It is evident now that significant variations have occurred in both Mbps and Mips,

thereby enabling the causes of processor bottlenecks to be identified. By first considering

the Mbps, a low value results (note 1 in Table 7.6) when multiple register or SP fetches are

required for the one instruction. A high Mbps (note 2) results when the instruction does

not have to access the registersT or for long instructions in which bytes 3 or 4 typically

161

d,o no work, and pass through the pipeline directly. This implies that to achieve a high

Mbps it is necessary to remove refetching operations.

In considering the Mips a low value results (note 3) when a large number of bytes are

required per instruction (which also coveïs the case of >1 register sources), and conversely

a high value results (note 4) when only one byte is needed per instruction. Note that in this

instance the Mbps I Mips exactly (as would be expected) because of the 5 instructions

(12 bytes) needed to initialize the SP.

Removing the refetching operations and encoding all instructions in the same single

byte length will therefore remove the bottlenecks in the processor and improve its speed.

As could be expected, these control requirements are a direct result of the mismatch

between data and address widths. Therefore if these were identical (say, 32 bits each)

then a significant Mips improvement would result.

Although the Mbps gives an indication of this improvement, it does not incorporate

the fact that the control structures would be simpler for a matched 32 bit machine, and

therefore the processing speeds of each unit for the typical case would be even faster. As

a rough estimate, the processor speed for such a machine (ECSTAC-SZ) would probably

approach 50 Mips for a typical operation (approximately 1.7 times the Mbps of Table 7.4,

and equivalent to a 40% average reduction in control cycle times).

'fhe ECSTAC processor has been fabricated using the ES2 technology, and a mi-

crophotograph of the chip is shown in Fig.7.15 with each section of the processor core

appropriately labelled at the top of the figure. Of course prior to fabrication, the core of

the processor was integrated with the DC and IC structures and tested to ensure proper

functionality between them. This chip is currently being evaluated'

7.6.5 Comparisons

Table 7.7 provides some of the important performance characteristics of the ECSTAC-?Z

processor together with those of other asynchronous CMOS microprocessors previously

reported. To give an estimate of the performance of a 32 bit implementation of ECSTAC,

the size and power values given in Tables 7.2 and 7.5 respectively have been scaled by

32124 = 1.3 (except for the ALU which has been scaled,by 3218:4), and the povver

dissipation has also been scaled (as relevant) by the increase in operating speed surmised

t62

Figure 7.15: A microphotograph of the ECSTAC microprocessor

in Section 7.6.4for the architecture with a matched data and address width. Note that

scaling of the other processors into the same technology and data width as ECSTAC-S2

will not enable a more accurate comparison between them because their ISAs are so vastly

different.

The transistor count and area of ECSTAC-?Z is the lowest of the 32 bit processors,

and would probably still be lower than the TITAC-I [Nan95] and Caltech [MBL+Sgb]

processors if implemented with a 32 bit data path. The transistor density of ECSTAC-?Z

is less than AMULET2 [MU] but still greater than the other processors. Although there

are many factors involved here (such as technology and architectural differences), this

data still supports the hypothesis that the ECS approach enables low area circuits to be

devised.

ECSTAC-|Z also gives the best speed performance and is significantly better than any

of the 2P paradigms, but this improvement is reduced when compared to a 4P paradigm.

This gives further weight to the notion that although 4P is better than 2P in delay

163

Processor Caltech TITAC-I Amuletl Amulet2 ECSTAC-32

Design style
Bit width
Technology fum)
vdd

4P QDI
16

1.6
5

2P QDI
8

1.0

5

2P
32

1.0

5

4P SI
32

0.5

3.3

2P BD
8k24

0.7
5

Ãrea (mm2)
Transistors (k)
Density (f lmm2)

19.3
x20
1.0

??

x22
??

22.6

58.4
2.4

72.5

93

7.4

5.9
26

4.4

Speed (Mips)
Power (-W)
Mips/Watt

18.0
225

80

7r.2
2t2
53

77.7

752
tata
tl

42

150

267

50

90

556

Table 7.7: Comparison of performance characteristics of various asynchronous microprocessors.

insensitive and speed independent environments, it is not necessarily better in a bounded

delay model. In fact, the 2P BD model used in the ECS methodology is shown to be

superior to the 4P models used elsewhere. To the credit of the AMULET group however,

they have implemented a commercial ISA (of the ARM microprocessor) whereas all of the

other processors use their own ISA which obviously enables a greater degree of flexibility

in their implementation.

The AMULET processors were designed for low power operation, however the

ECSTAC-SZ processor was designed for high speed with the expectation that low power

dissipation would still result without explicitly designing for it. The power dissipation

and Mips/Watt figures in Table 7.7 also support this hypothesis.

7.7 Summary

The reason for implementing an asynchronous microprocessor using ECS techniques was to

determine the speed advantage which could be achieved when applied to a complex design,

and to see whether or not low power dissipation still results. Although as implemented

ECSTAC is only comparable to other processors in these areas, its performance has suffered

considerably due to the mismatch of address and data paths.

By considering the equivalent performance of a matched 32 bit processor, it can be

seen that the ECS approach has in fact resulted in significant speed improvements over

the SI and DI design paradigms. Furthermore, a low power implementation has resulted

without explicitly designing for it, indicating that high speed asynchronous systems can

764

be targeted which still benefit from low power operation. Although unlikely to match the

speed of a corresponding synchronous design, the difference can be greatly reduced by

using ECS techniques in preference to SI and DI control schemas.

It is worthwhile noting that the area of ECSTAC-SZ is also considerably lower than

the other asynchronous processors, all of which employ a pipelined control structure.

Although in the case of AMULET this is partially due to the more complex ISA, it must

be expected that a proportion of this deviation is also attributable to the reduction in

complexity in the control circuits with a BD model. Therefore not only has the speed

been improved (without sacrificing power dissipation), but so too has the area, and this

in turn results in an important reduction in cost.

165

Chapter 8

ECSCESSz A Superscalar

Microprocessor

4
LMOST all early microprocessors employed a pipelined approach in their implemen-

./ L tation which separated the sequential requirements of instruction decode, operand

fetch, execution, and the write back of results. This approach was convenient since the

global register file (and scoreboard) helped control data hazards, and the instruction issue

and execution order were maintained via the pipeline structure, which helped simplify the

control schema.

However as the demand for higher performance continued, the restriction of in-order

execution had to be abandoned. This is because the latency of an instruction to write

back a result for subsequent use caused the execution offurther instructions to be delayed,

even if they weren't in conflict with the stalled instruction. Consequently the trend moved

from pipelined to superscalar operation, in which the functional units (FUs) are operated

in parallel, rather than sequentially. With such an architecture there is no longer a

restriction on the instruction order (save that data hazards are still properly resolved)

and the latency of any one unit is no longer compounded by the processing delay of other

stages in the pipeline. This results in an overall increase in the system's throughput,

and in fact almost every modern microprocessor now employs a superscalar architecture

(however some degree of pipelining is often still used, either within each FU or in the

stages prior to instruction execution).

The ECSTAC processor rffas constructed in a pipelined fashion primarily for ease of

166

implementation (as per the early synchronous microprocessor designs). However it became

evident during the design that such a structure could in almost every instance be clocked

faster than the asynchronous handshaking control could cycle between the stages, and as

such it would be unlikely to ever exceed a synchronous implementation in terms of speed.

Nonetheless, the advantage of reduced power dissipation is still highly favourable despite

this speed deficit, as is the removal of clock skew management for ULSI processors.

A pipelined processor also cannot take full advantage of self-timed computations, since

the system's throughput is limited by the slowest of these units. However, if asynchrony

is to have any chance of outperforming synchronous systems in terms of speed, then

the advantage of average case computation time must be fully utilized. This therefore

requires parallelism of the self-timed units (rather than pipelining) which provides yet

another reason for implementing a superscalar architecture.

Indeed, as the synchronous realm has switched from pipelining to superscalar op-

eration, so too of recent has the asynchronous realm. While the early asynchronous

microprocessors such as the Caltech design and AMULET employed a pipelined struc-

ture, those to emerge recently have utilized superscalar operation. Unfortunately however

none of these have been fully implemented in VLSI, but have instead been implemented

in VHDL with differing granularity (from gate level to functional blocks). This chapter

describes the principle operation of these recent processors and then describes the design

and implementation of the proposed ECSCESS architecture (which is an acronym for

Event Controlled Systems CPU Employing Super-Scalarism). ECSCESS was developed

to fully exploit the potential speed advantages of both self-timed data computations and

the ECS methodology.

8.1 Other asynchronous superscalar microprocessors

8.1.1 SCALP

The SCALP processor [End95b] was developed with the primary goal of reducing power

dissipation rather than achieving high speed operation (although the latter helps this on a

per instruction basis). Its general architecture begins with an instruction issuer, which is

able to perform out-of-order and multiple instruction issues to the functional units (FUs)'

767

There are four of these: ALU, memory, move, and register units, whose results are all

sent to a router. A separate unit to handle instruction branches is also employed, but

there is no facility for handling interrupts or exceptions.

There is no global register bank in SCALP. Instead, the router issues the results of

each FU operation back to the source input of a subsequent operation (a destination FU is

specified in the instruction word rather than a destination register). Since the majority of

FU results are used only once, it was hoped that this approach would improve speed and

reduce any unnecessary power dissipation associated with register storage. If a result is

needed more than once, it can either be stored explicitly in the register bank, or replicated

through the MOVE unit.

SCALP also employs its own ISA with a reduced code density, consisting of 72 or 24

bit instructions fetched in 64 bit chunks (with 4 control bits). Although this variable

instruction length complicates the control schema as \n ECSTAC, it is intended to reduce

power dissipation per instruction.

The SCALP architecture's cycle time is limited by a long branch latency (241 gates

[End95b]) and a reduced instruction rate for when a result is used more than once (often

requiring additional instructions to copy it). However one significant cause of this was that

explicit results forwarding (from the router) could only be used infrequently. Although

most results are used only once, the FU which uses it is not always known at the time

of the computation (being dependent on a subsequent branch). The SCALP architecture

can only handle this situation by storing the result in the register bank, and then reading

it out again for use when the required destination FU is known.

8.L.2 FYed

Fred [Ric96, RB96] is an asynchronous microprocessor which implements an ISA based

on the Motorola 88100 processor. Only one instruction can be issued at a time, however

if it stalls then a subsequent instruction can still be issued provided there is room in the

instruction window to store it (and if it too doesn't stall). This approach still enables a

regular rate of instruction issue even in the event of stalls (similar to SCALP in that an

instruction stall doesn't necessarily halt the processor, although SCALP is also able to

issue multiple instructions).

168

A global register bank is employed together with a scoreboard for handling data haz-

ards. This enables the control schema to be kept simple but increases the execution la-

tency over an explicit results forwarding mechanism (due to the store and load operations

required in the register bank). Since most programs employ a significant dependency

between adjacent instructions, this can slow down the processor speed and reduce the

utilization of the parallel FUs.

There are four FUs employed in Fred which are used for arithmetic, logical, control, and

memory operations. Branch detection and evaluation is decoupled from the FU instruction

issuer, so that instructions can be issued in a variable delay slot until a subsequent doi't

command (after the branch) is encountered. Exceptions and interrupts are both supported

in the VHDL model of the processor.

8.1.3 Rotary pipeline processor

The rotary pipeline processor (RPP) [MRW96] circulates results around a ring which is

interspersed with a number of FUs and corresponding output latches. When the required

source operands for a FU become available the FU triggers its operation, otherwise it

passes the results through directly to the following stage of the ring (to the next FU).

This effectively removes the global register bank and implements results forwarding as in

the SCALP architecture, with a larger register bank similarly implemented as a separate

FU.

The instruction issuer can provide simultaneous instructions to any or all of the FUs

in the ring (again equivalent to SCALP), which can however be variable in number.

Branch instructions can also be decoupled from the instruction issuer as in Fred which

can therefore enable speculative operation. Interrupts and exceptions are not facilitated.

This architecture is similar to SCALP in that register forwarding is implicit, however

it is non-restrictive in the number of FUs which can be connected into the ring. Although

no performance measures are available, it appears that the essentially pipelined structure

of the ring could cause excessive latencies, since a FU may have to wait for a result to

propagate through the entire pipeline ring before being used. Furthermore pipelining a FU

equates to placing extra stages into the ring which would further reduce the processor's

speed.

169

8.2 Characteristics of ECSCESS

It is evident that abandoning the global register bank is beneficial for reducing the latency

between data hazards and also for reducing po\ /er dissipation, therefore in ECSCESS the

register bank is implemented as just another FU. Although SCALP implements this via

results forwarding through the router, its functionality is limited in that only one FU can

receive its value, so that in the majority of cases the result must still be routed into the

register bank.

ECSCESS overcomes this problem by removing the router. Instead, each result from

a FU is placed onto its own global output bus and remains there until overwritten by a

subsequent instruction. As such it is possible for any number of latter instructions to any

FU to source its value immediately after being produced. The result only ever needs to be

written to a register if more references to its value are required after an instruction which

overwrites it (although the MOVE instruction described later provides an alternative to

this).

One other problem of SCALP (and Fred) is that the number of FUs is fixed, which

prevents additional parallelism from being incorporated. Although the RPP overcomes

this problem, it does so at the expense of an increased latency for stalls. In ECSCESS the

number of FUs for a given implementation can be anywhere from 0 to 32. Furthermore,

their functionality is non-specific: 32 ALUs could be used; or just 1 ALU and 1 memory

unit; or whatever. There doesn't even have to be a register bank FU (although this would

undoubtedly be useful). Unlike the RPP, the latency for data hazards is not influenced

by the number of FUs implemented, as will be seen by the architectural description in

Section 8.4.

In all of the processors discussed above an instruction which stalls does not necessarily

prevent other instructions from being issued. In SCALP and the RPP the instruction

issuer only stalls if for the fetched block of instructions (given that multiple instruction

issue is possible) every target FU is stalled, and in Fred this occurs when the instruction

window fills, implying that all instructions therein are waiting for results to compute.

ECSCESS implements a technique similar to Fred, however instead of an instruction

window each FU is preceded by a small FIFO of length n,. The instruction issuer will

therefore only stall if n instructions have already been issued to the same FU, all of

770

which are stalled (or if n 17 instructions have been issued with the first having an

extremely long computational latency within the FU). Assuming 32 FUs with r¿ : 3, this

implies a maximum of 97 instruction issues before stalling and a minimum of 4. Multiple

instruction issue is not implemented in ECSCESS, nor are exceptions (although Section

8.11.2 describes how these can be incorporated into the architecture).

8.3 Instruction set architecture

The full ISA of ECSCESS is detailed in Appendix C and only a brief summary is given

here. A 32 bit data and address path is employed, and every instruction is encoded in

one word.

The JUMP and JCOND instructions (collectively termed JMP instructions) enable

unconditional branches and branches dependent on the result of a previous operation

(typically a comparison). A CALL instruction enables a subroutine to be entered which

is concluded with a RETC instruction (termed SUB instructions, and together with JMP

are termed branch instructions). Each of these instructions branches relative to the PC,

either using a signed 28 bit offset encoded in the instruction word or a value located on

a specific FU bus.

ECSCESS implements an on-chip stack which stores the return address for RETC

instructions and interrupt and trace routines, as well as the process status register (PSR)

for the latter. This stack can be any length, however in the event that it eventually fills

the stack must be continued off chip in main memory. The LDSP instruction enables the

start address of the off-chip stack to be specified in the SP register.

A 7 level prioritized interrupt facility is implemented, with the highest level (7) being

non-interruptible. When an interrupt occurs with a priority level (IPL) higher than that

currently stored in the processor (in the PSR), then an interrupt routine starting at the

address pointed to by IVR+IPL in memory is executed. The interrupt vector register

(IVR) can be set with an IVRL instruction to point to a set 32 byte block containing the

interrupt table. Instructions are also available to enable and disable the interrupt facility,

return from an interrupt, and to set the current IPL of the processor.

A trace mode is also available. When enabled (through an ET instruction) a trace

routine starting at the address pointed to by the IVR is executed after euery instruction.

This can be helpful for customizing the analysis and debugging of instruction streams.

L77

There are four basic FU instructions: MOVE, LDC, FUbus, and FUimm. The MOVE

instruction transfers the value from one FU bus onto another, bypassing the FUs activa-

tion. This enables values computed from one FU to be transferred to another for iterative

use (such as loading the variable a from memory, mouing it to an arithmetic unit, and

executing a loop of a : a + i). The LDC instruction enables an encoded constant to be

moved onto a FU bus. Furthermore, various status registers such as the PC, SP, PSR,

and IVR can also be loaded onto a FU bus for manipulation.

The FUbus instruction activates a FU with zero, one, or two source FUs whose bus

values provide the arguments for the function, and a FUimm instruction encodes a con-

stant value in place of the second argument. The actual set of instructions which are

available within each FU is implementation dependent, since the number and type of FUs

in the architecture is variable. However, the proposed FU allocation given in Appendix

C for ECSCESS provides the following FUs and corresponding instructions.

A register bank FU is used with 4 output buses onto which the register contents can

be read. It is unique for a MOVE instruction in that a source value can be written into a

register as well as being transferred to the specified output bus. The large 16 bit register

field enables a hierarchy to be conveniently implemented within the register bank.

Various integer arithmetic units enable addition, multiplication, shifting etc., as well

as a variety of floating point operations (although specific instruction sets for these have

not been specified).

A specialized comparator unit is also implemented which compares the values of two

buses and sets the MSB (branch bit) of its output bus accordingly (which is then used

to govern conditional branches). The comparator can also implement addition and sub-

traction operations, with the result being placed onto the output bus and a collection of

flags stored in the internal FR, which gets read out with the branch bit for a compare

instruction. Another compare instruction is implemented which sets the MSB according

to the current state of the FR.

The memory unit performs load and store operations, and also has the ability to

modify the memory address of the last memory operation for use as the address for the

current one. This enables a,rcay indexing to be performed without having to use the other

FUs. Finally, there is also support for an integer and floating point co-processor to be

used.

t72

8.4 General architecture

The general structure of ECSCE^9^9 is shown in Fig.8.1. The instruction issuer (termed

the szn) constantly cycles with the IC (if present) fetching a new 32 bit instruction on

each cycle. Since the ISA employed in ECSCE9^9 is based on FUs rather than instruction

types (although the two are often similar), it is possible to decode all of the relevant

control signals from the instruction opcode in just one gate delay. If a FU instruction is

occurring then it is sent immediately to the globe, together with the value of the constant

bus (required only for a LDC instruction) and lhe opcode required by the FU to specify

its operation. This process will not stall unless the preceding FU instruction was not able

to be loaded into its FIFO due to it being already filled with stalled instructions.

F

Moons

Figure 8.1: General structure of the ECSCESS microprocessor

The globe contains each of the FUs and their respective output buses, and is con-

structed as shown in Fig.8.2. Each FU has a unique output bus to which it writes its

results (although some FUs such as the floating point and the register units have more

than one output bus), and is able to read a result from any other FU's output bus (these

buses are collectively termed the ocean) RAW and WAR hazards are handled within each

FUs preceding control block (termed the shore), which also multiplexes in the appropriate

source values for the FU as well as implementing the FIFO. WAW hazards are handled

implicitly by the in-order execution of each FU. The control structure of the shore is

rather complex, and is discussed in detail in Section 8.5. Note that regardless of how the

FU operates, the control schemas for each shore are identical.

If the globe is not triggered by the sun, then either a branch or interrupt instruction

unS
Insfruction

Issuer

JMP unit

STK unit
Inst

Cache

(rc)
Interrupts

busl MSB
(branch bit)

GLOBE

bus0

bus2

773

Functional
Unit 0

Functional
Unit l

RAW
FIFO

WAR

FIFO

WAR

horeS

t-
I constant

Ocean
bus0
bus I

busN

Functional
Unit N

FIFO

WAR

Figure 8.2: General structure of the globe

(not an interrupt itself) has occurred. These units are collectively termed moons, and

their operation is closely related to the sun and is described in detail in Section 8.6. ltlote

that the globe does in fact have a minimal interaction with these units, since busO is

used for branch-bus instructions, bus2 provides the new PC location from memory for an

interrupt routine, and the MSB (bit 31) of busl provides the result of a comparison which

is used for a JCOND instruction. Typically FU2 will be the memory unit (dest:15 from

the allocation in Appendix C), FU1 will be a comparator unit (dest:12), and FUO an

arithmetic :untt (dest -- 7).

8.5 Implementation of the shore

The shore is required to implement all of the control structures for resolving data hazards

as well as for selecting the relevant FIJ and multiplexing in the appropriate source values.

The shore also implements a FIFO buffer prior to the actual activation of each FU to

reduce the possibility of processor stalls.

The resolution of WAW, RAW, and WAR hazards is a complex problem since it's

possible for many FUs to be active at once. WAW hazards are handled implicitly by the

in-order operation of each FU and its preceding FIFO, since if one instruction stalls at

the input to the FU then a following instruction in the FIFO will be forced to stall as

well until the former has begun execution. Controlling RAW and WAR hazards however

L74

is rather more complex, especially since the inclusion of the F IFO increases the amount

of potential parallelism.

8.5.1 Controlling RAW hazards

The control pertinent to RAW hazards is shown in Fig.8.3. The sun supplies the input

event ðf uto every FU in the globe. The relevant one to be activated is decoded from the

FU field in the instruction word (/z-z sthi,s), which is then used to mask the activation

of the FU (A/uO). Once initiated into the first stage of the FIFO, the event 0f udone}

is returned which is used to increment the input counter Crawi,n. Note that using ðf u0

for this would require an additional state in the counter (and therefore a three bit data

width). The input (and output) counter values for every FU are placed onto the ocean.

At a later time the instruction will complete in the FU, and selout will pulse high to latch

the result of the computation onto the output bus (which also goes to the ocean), and

the output counter will then be incremented.

fu isthis

dfu

src I ,2

Craw
Dglobe

d fuO start

result

Dglobe

Crawin2+5

32*4

32*32

Figure 8.3: Control structure for governing RAW hazards

Conversely, an instruction which sources a FU will first grab the relevant Crawin

value for that FIJ from the ocean, and proceed through the FIFO (if possible). Note that

if the instruction sources and executes from the same FU, then a counter value of 0 is read

(since the hazard will then be resolved in the same way as a WAW). Furthermore, the

minimum cycle time of the sun is such that lhe Crawin value from a previous instruction

will be valid before a subsequent instruction attempts to source it.

srcP1,2

2 bit

doneFIFO FU
245 2*32

data

Pulse
2*32 Latch

32

2 Crawoutl 2*2 Crawout

pre-FU
control

CrawinPl,2 2*2

I 2 bitequal?
Dsrcl,2

Crawin1,2
2*2

Switch Network (OCEAN)

775

At the output of the FIFO, and prior to the activation of the FU, the output counter

value for the source FU Crawozú is selected and compared against Crawi,nP, which is the

original value of Crawi,n after propagating through the FIFO. If Crawout I CrawinP

then the required FU source values haven't yet been computed, and the instruction will

stall, otherwise if they are equal then the relevant bus data will be switched onto the

source bus Dsrc and the FU activated.

Each counter needs to be wide enough to ensure Lhal Crawout cannot overtake

Craw'inP (and therefore incorrectly indicate valid data to a subsequent sourcing instruc-

tion). Since there can be three instructions present within each unit at any time (as seen

by the dashed lines in Fig.8.3 which indicate latching elements), a 2 bit counter (with 4

states) is sufficient to prevent this.

8.5.2 Controlling WAR hazards

\MAR hazards are controlled in a similar method to RAW hazards, except in this case the

input counter is triggered for a FU if it's required to be sourced, and the corresponding

output counter is triggered once the sourcing instruction has grabbed the data and begun

execution. The control schema used is shown in Fig.8.4.

Cwarin
start

dfu

src isthis
result

32

src7,2
2+5

nostall

32
32 Cwarout

fu d warsrc 32 d warfu

d_warglobe

Figure 8.4: Control structure for governing \MAR hazards

The WAR control can be essentially split into two phases. If an instruction to FU¡

needs to source FU¿, then Cwarin¡ of FU¿ will be incremented. When a subsequent

instruction to FU¿ takes place, the counter values will proceed through the FIFO (to

CuarinP¡) and be compared against corresponding the counter values of Cwarout¡.

32*Z32Pulse done
2+32

FIFO control
pre FU

FU

32

selout

data

Lcttch
Demux
&Or

32*2

CwarinP

Equol
Demux

Pulse
2x2 bi

Switch Network (OCEAN)

776

Once the first instruction to FU¡ has sourced the data from FU¿ (as given by the signal

ôfu3 from the pre-FU control block), an event is sent back through the ocean to FU;.

This then generates a pulse which increments the Cwarouúj counter within that unit.

Before an instruction to FU¿ is initiated, the Cwarout and CwarinP values for each

FU are compared. If these are all equal, then there are no preceding instructions which are

stilt waiting to source the data, and the instruction can proceed (nostall: 1). Otherwise,

if. Cwarout¡ I CwarinP¡ for any i, then FU¡ still needs to source the old data from FU¿

and so the instruction is stalled. Note however that in practice the computation within

the FU is still initiated regardless of the state of nostall, however only when this is high

is the result written onto the output bus (ie- the selout pulse is enabled).

8.5.3 Structure of the pre-FU unit

The pre-FU control unit is used to halt the activation of the FU until all source data is

available (as given by ratuolcayT,2 in Fig.8.3), generate an activation pulse for the self-

timed operation (start), and stall the writing of the result until all sources of the previous

bus value have occurred (as given by nostall in Fig.8.4). The structure of this unit is

shown in Fig.8.5.

srcuP2 selD2

result

d ft2
oQ

nostall

srcuPl

rawokay 1

d fudone2

control

selDl gate

selc

selout

Figure 8.5: Control structure for governing the operation of the FU

Firstly, the input event from the FIFO @f u2) is delayed until the relevant counter

signals have been switched in from the ocean and compared to give the rawolcay signals.

If this is high for srcl, or if no bus data is needed for this operand (as given by srcTu:0),

lorr"t d-fúl

Latch x

start done

T

Intch

Intch
gated
pulse

777

then an event is passed through the send gate which causes the source data to be latched.

Similar arguments apply to src2. When both operands contain valid data, the self-timed

FU is activated via 0f u3 and the unti,l gate. This event is also sent to the WAR control

to indicate that the required source data has been latched.

At the conclusion of the ST operation done will go high, however if a MOVE or LDC

instruction is occurring (when opt : 1) then Dsrc2 is multiplexed directly to the result

and the done signal from the FU is ignored. Provided that nostall : 1,, the result of

the operation will be latched onto the output bus, otherwise it will be stalled until this

occurs. A gated pulse circuit is used to generate the selouf signal which latches the data,

from which the done event õfudone2 is also produced. This event resets the ST FU by

setting start : 0 and also opens the latches for new data to arrive (it is assumed that

the reset time to ydone is less than the cycle time to the next ô/23 event). This event

is then also sent back to the preceding FIFO to fetch the next instruction in the queue.

8.6.4 Generating the return event to the sun

From Fig.8.3 it can be seen that the latch select signal selO of the first stage of the FIFO is

returned to the sun, rather than the acknowledge event 0fudone\ from the state pipeline

control. If the latter were returned, then a single acknowledge event would have to be

generated by or'ing the 32 0f udone\ events from the FUs (assuming 32 such units are

used). This involves a 5 level tree of øor gates and would severely reduce the potential

cycle time of the processor. Instead, the control circuitry of Fig.8.6 is used.

sel0t
sel

d fudone

dfu

Figure 8.6: Generating a return event to the sun from 32 FUs

The relevant latch signal is first selected through the multiplexer, and if this is still

high then the FIFO has been stalled and the event 0fuis kept pending at the sendgale.

This event is delayed slightly to occur after the selection (which occurs in parallel with the

fu

sel0t

778

FIFO triggering and has no effect on the cycle time). If however sel: 0, then the data

has been latched into the FIFO and the return event is generated in just t^ur*t¡no*tr"nd.,

as opposed to \tro, for the merged events scenario. It should also be noted that the slower,

merged events approach is SI, whereas that presented in Fig.8.6 is BD.

8.5.5 Switching net\Mork

The switching network is used to multiplex the data values from the ocean onto the source

buses for the FU, as well as selecting the corresponding Craw signals for managing RAW

hazards. In practice drivers are used instead of multiplexers for reading the source data,

as this enables it to become valid earlier than the 5 level tree of multiplexers which would

be needed for 32 FUs.

This unit is governed by control signals from the shore (in particular, src7,2 and

srcP7,2 before and after the FIFO), and given lhat2x32*32:2048 drivers could be

needed per FU (just to multiplex the source data), it has the potential to be quite large

and perhaps inhibitive to the overall architecture. Section 8.8 analyses this possibility

and shows how it can be floorplanned in a reasonable size.

8.6 Implementation of the surù and m,oons

The sun is required to trigger the globe or the moon(s) with the appropriate control

signals, as well as updating the PC in preparation for the next instruction fetch. However,

to enable the rapid execution of both the globe and the moons, these are all conditionally

activated (through feedgates) from the return event)cpu of the IC, rather than through

a tree of. select gates from the sun. This enables a much faster processor cycle time and a

lower latency for branch evaluation. The overall structure of the sun and moons is given

in Fig.8.7, with the general functionality of each unit described thereafter (except for the

decoder unit, which simply generates control signals to the other units from the op field

of the instruction word, and operates in just one gate delay). Note that the interrupt

controller is not shown in the diagram, but is discussed in Section 8.11.1.

779

Globe

const32

control

btaken

bus0

Crawo

Crawt

fusel constant PC op

tl
tl

l9

d_fu

¡l control

signals
unS

l8

I

l--
tl
tl

control
signals

tl
tl

32

4

4

I

I

I

I

I

I

I

I

I

I

I

Moons

32 32

offsel ctsel bsel broffset sselc sselr il SPvalue

Figure 8.7: Overall control structure of the combined sun and moons system.

8.6.1 Globe controller

This unit forms part of the sun and is used to interface to the globe, âs well as providing

control signals to the PC controller for when the globe or a moon is still busy, which

are then used to stall the refetching of a new instruction. Its configuration is shown in

Fig.8.8.

Moon evaluation FU evaluation
d stkdone

bypass

d_cpu
d_fudonea----

I

I

fusel

State
pipeline

ldc

control
l0 control 19 32

const32
l0 constant

Figure 8.8: General structure of the globe controller

The event)cpu from the IC is steered into the Moon evaluation block if the globe

is not activated by this instruction (when fusel: 0), and sets the signal moonbusA

32

PC

32 32

Globe

controller

PC

controller

Stack (STK)

controller

Iump (IMP)

controller

T

U
ç3*ì

a
bo

{
Q

{

180

high until the relevant moon (JMP, STK, or neither if bypass : 1) has completed its

operation. Otherwise, if the globe is activated then a state pipeline controller is initiated

which latches the control data onto the globe as well as the new value of the constS2

bus (for a LDC instruction only). The)fu and ïfudone events to and from the globe

are used to determine the state of fubusy (essentially through an until gate), however

the signal pci,ncbusy is also used to prevent Lf ubusy from occurring until the PC has

incremented from the previous instruction. Although this is not hazardous, if the globe

also stalls then without this circuitry the PC controller will unnecessarily wait for the

globe to unstall, which is otherwise postponed to the next instruction and enables an

earlier IC fetch (maximizing parallelism).

8.6.2 PC controller

The PC controller of Fig.8.9 essentially consists of two components. Firstly, the signal

pclatch is generated from a gated pulse circuit, after which the event)cpudone is sent back

to the IC to fetch the next instruction. The gate to this circuit goes high when the new PC

value is valid, which is either when the increment of the PC for the previous instruction

has completed for a globe instruction, or else when the target has been computed or

fetched for a program branch which is taken.

start pcincbusy

d-cpu

fusel
fubusy

moonbusy
btaken

bsel

PCinc

32

target

stackout

pcbranch

Figure 8.9: General structure of the PC controller

The second component of the controller initiates the incrementing of the PC value as

well as latching the new PC value for the next instruction when Apclatch occurs. The

incrementer is initiated when pclatch: 1 and its result is latched when done : 1 (which

done

T
SeIf timed

ínc'er þ
I

Gated
pulse

32

PCgate

+

pclatch

32

181

also resets the ST incrementer to complete the cycle). Since the first instruction at PC:O

has no predecessor to initiate the increment of the PC ready for the next instruction, the

PCinc bus is initialized to "1".

8.6.3 Branch moon controller

A PST adder is used to compute the branch target, and is initiated frorn ðcpu (if needed)

immediately unless the value of busO is required for the PC offset, in which case the

addition will be stalled until the relevant FU has computed its result (when Craw'ins:

Crawouts). Fig.8.10 shows the control circuitry used to effect this.

bus0

bchoffset

offsel

32 32 PC

32

target
Crawin

Crawout

djmpdone

ctsel

d_cpu

32

2

2

Crawin t
Crawout, btaken swnotbusy

bsel

Figure 8.10: General structure of the branch unit.

Furthermore, a conditional branch cannot indicate completion (giving }jmpdone) until

the branch flag of busl has been set, which is indicated when Craw'in1 : Crawoutl,

although the adder can still be initiated and its result ignored if the branch is not taken.

Note also that the return event }jmpdone is stalled if swnotbusA : 0, which indicates

when the address for a RETN instruction (PC+l) has been stored onto the stack. Section

4.3.1 explains this technique, which can be used here since a stack load always occurs

concurrently with a branch target computation.

8.6.4 Stack moon controller

Fig.8.11 shows the control circuitry for executing the stack operations for LDSP, RETN,

and CALL instructions. The first two instructions are triggered in the stack when ap-

2

)

Compare
PST

Adder

T

Compare

782

propriate (via âls and ôrs respectively), and once the SP has been loaded (or the RETN

address stackout fetched) the output events are generated and merged to give }stkdone.

A CALL instruction is stalled at the input to the stack until the return address PCi,nc

has computed, and swnotbusy is sent to the branch moon to govern the generation of its

return event Ôjmpdone.

il

d_cpu

d lsd

d stkdone
sselr - drs

d rsd
dws

sselc - d wsd
12 stackout

d_ls

pcincbusy

SP

PCinc

swnotbusy
32

32

Figure 8.11: General structure of the stack unit

The stack itself is implemented with a separate register for the SP, and a register

structure with counters for the write and read phases governed by 0ws and ôrs respec-

tively. The length of this stack is implementation dependent, and once filled must execute

a subsequent write operation to the memory address pointed to by the SP. Clearly, the

larger the stack size the less frequently will such external memory operations be required.

8.7 Implementation of functional units

The FU allocation table in Appendix C provides for numerous different FUs to be incor-

porated into the architecture, and proposed implementations for some of the integer units

are described in the following sections.

8.7.1 AID unit

This unit can be implemented simply with a ST incrementer and a PST adder operating

in parallel. To enable negation and decrementing, the incrementer should have its input

and output, ror'ed with the relevant control signals (since rdec: rn. and -r : r¡r").

x
É

183

Flags get computed and stored in an internal FR during the reset (precharging) phase

between activations, and can be read out with a subsequent FLAG instruction.

To minimize the control overhead both ST units should be activated by start w-

conditionally, and the done signal for the appropriate unit masked at the output. This

essentially combines the and and or gates which would otherwise be used (before and

after the ST units) into a single, faster complex gate at the output, however this marginal

speed advantage may be outweighed by the additional power consumption for other FUs.

8.7.2 MEM unit

The implementation of the memory unit (ignoring the complexities of the DC) merely

consists of an incrementer and a decrementer in parallel. If a memory operation with

UL -- 0 is occurring, then the address from arg2 is placed onto the address bus as well

as being latched into the LMA (last memory address) register. As soon as this (or any

other) operation is complete, the inc and dec units are activated to provide LMA*1 and

LMA-1 for the next operation. If BA: 0 then the inc/dec result (as given by the ID

field) is multiplexed onto the address bus prior to the DC being activated, otherwise the

original LMA is used, and at the conclusion of the operation the inc/dec result is latched

into the LMA as above.

8.7.3 CMP unit

This unit consists of a ST comparator and a PST adder. Both units are activated from

start, and for the comparator the MSBs of the two operands must first be compared

and masked if a signed operation is occurring (since the comparator of Section 6.5 is for

unsigned numbers). The branch bit of the output bus is then set according to the result

of this comparison together with the current status of the FR.

An ASC instruction performs an addition or subtraction and places the result onto the

output bus. Flags are computed from the adder's result and stored in an internal FR. A

comparison is also initiated, the results of which are also stored in the FR. A subsequent

CMPO instruction will then set the branch bit according to the state of any one of these

flags.

184

8.8 Floorplanning issues

Before proceeding with the actual implementation of ECSCES,S it was necessary to eval-

uate the practicality of such an architecture in terms of its area usage. Clearly, if no

floorplan for the processor could be devised with a reasonable aspect ratio (say, =15mm

each side) then the architecture must be revised, or abandoned. Such an investigation is

vital given lhat ECSCES^9 has only been specified and simulated in VHDL. As a guideline

for evaluation the ES2 technology was assumed.

8.8.1 Size of the ocean

Firstly, the size of the ocean must be considered, since this contains a large array of

both data and control signals and could therefore be the governing factor for the VLSI

floorplan. In the architecture as presented, each FU places 32 bits of results data, 32

events for WAR control, and 4 bits of RAW control data onto the ocean, totalling 68

wires per FU. Furthermore, the constant bus of width 32 (used for LDC instructions) is

also placed onto the ocean from the sun.

In the ES2 technology, the width and spacing required for a wire (including space

for contacts from the FU) is28p,m, resulting in an ocean width of u)o."or: (32 *68-f

32) * 28p,m:6.2rnrn. Therefore the ocean will undoubtedly be a governing factor in the

floorplanning of ECS CESS.

8.8.2 Size of the switching network

Another contributing factor to the area and floorplanning of the processor is the area

required for the switching network (which must be replicated for each FU). Fig.8.12

shows the structure of a dual driver component which can be replicated across and along

the ocean to comprise the switching network. Note however that a 3-layer metal process

would be needed for such an implementation (one layer for the ocean, one to orthogonally

route back the data values, and one to supply power) control, and metal routing to and

within the circuitry).

The router feeds src7, src2, srcPl, and srcP2 (and their inverses) across the globe

to the integrated decoder (5-input nand gate), inverter (to generate its complement), and

185

OCEAN

src1,2 & inv

Results & control

srcPl,2 & inv
m3

Dsrcl,2 & Craw
mZ

OCEAN

Figure 8.12

þLrn.

A driver component used in the switching network with dimensions quoted in

driver circuit. Two such driver modules can be designed in the ES2 technology in the

area as quoted on the figure.

With a60p,rn width a total of 6200160:103 driver pairs can be implemented across

the width of the ocean. Given lhat 32 individual drivers are needed per bit, a total of

703 * 2132: 6 (integer part only) data signals can be returned to the FU in one layer

of drivers. In a separate layer of metal, this would require 6 x 2.8 : 17 p,m which is less

than the 20ptm height of each decoder layer. Note that the same router can be used for

multiple adjacent driver units, placed in equal quantities on either side of the router to

minimize the polysilicon path lengths.

A total of 68 signals (64 data and 4 RAW control bits) need to be sent to the FU,

which means that 68/6 : T2layers of drivers are needed to provide all of the source data.

This results in the height of the switching network along the ocean of. h,n : L2*20+L72 :

352pm. Furthermore, 68 wires also need to be routed back onto the ocean, requiring an

additional height of 68 * 2.8: I90¡-tm. However, assuming that vias between the second

and third layers of metal are possible then this can be overlapped with the height of the

router, resulting in a total minimum height for the switch network and route back block

of h,n 6:352 + (190 - 172) :0.43mm.

Given that the width of the ocean and the minimum width of a FU (equal lo h,n 6)

are now known, it is possible to investigate potential floorplans for ECSCESS.

8.8.3 A floorplan based on the minimum FU width

A general floorplan for ECSCE^9^9 based on the minimum width of each FU (as given

by h,n u is shown in Fig.8.13a. The FUs are placed evenly on either side of the ocean,

T
rt2

+
20
I

Router

60

Decode + invert + driver (x2)

186

resulting in a total possible width per FU of 2* 0.43:0.86mm.

Assuming that the height of each FU is a generous hL x h2 : 7.4mm, and that the

height of the sun and moon circuitry is x 0.5mm (which is reasonable given the large width

of this block), the width of the processor core can be estimated at ucore:9mm. The

height of the core will depend on the number of FUs which are used. For the maximum

of 32 FUs the height will be h"ore¡2: l4.3mm, and for the 18 FUs used in the proposed

allocation in Appendix C the height of the globe is h.o,.1s : 8Smm. Therefore the size

of the processor as presented is certainly small enough for single chip fabrication.

However, the area will increase if an IC and DC are also used (as would be expected).

Assuming widths of 3.5 and 7.5mm respectively (and lengths as long or wide as the

processor depending on their orientation), the floorplan for 32 FUs would have the IC to

the right of the processor and the DC to the left, resulting in a total area of L4*743mm

(widthxheight) which is still small enough for fabrication. For 18 FUs, the IC would

instead be placed below the processor, resulting in a total area of 10.5 * 11.8rnm. Note

that the aspect ratio of both of these floorplans is close to one.

hL 6.2 hz hl h2 6.2 h3 h4

FU

Sun & mootts

FA FU

OCEAN

s.N.

FAlru
S.M

FU
s.N.

s.M

Sun & rnoons

0.86

0.5

1.72

0.5

(u) (b)

Figure 8.13: Floorplans for ECSCE^9^9 based on (a) the minimum width of a FU, and (b) a
width twice as large. All dimensions are quoted in mm.

8.8.4 Floorplanning for a larger FU width

A minimum FU width of O.Sîmmprovides for a single data path width in the FU of at

most 860/32:27ttm. Although this width may be reasonable for some FUs (enabling

approximately 3-4 adjacent gates in the ES2 technology), other applications may require

FA

OCEAN

s.N.
F

787

a wider data path if this cannot be compromised against the height of the FU.

Assuming then a data path twice as wide, the width of a FU (equal to 4 driver widths)

would be \.72mm. Implementing 32 FUs across the floorplan of Fig.8.13a would result

in an excessive height (up to 28mm), therefore the floorplan of Fig.8.13b could be used

instead, in which two layers of FUs are used on each side of the ocean. Note however that

this would require the source and results buses of the second FU to route across the first

(either in a separate metal layer or feeding alongside each single data path of the first

FU).

For such a structure (assuming heights of each FU as before) the width of the processor

core would be u)"or" : 77.8mm with heights of h"o""3z : t43mm and hcorets : 8.6mm.

The 32 FU implementation would place the IC to the right of the processor core and

the DC above it, resulting in a total area of 15.3 * 75.8mm, which is only slightly larger

than the area used assuming minimum FU widths. The 18 FU implementation would

instead place the IC below the processor core and the DC to the right, giving an area of

13.3 * 72.7mm, also only marginally larger than before.

It is argued then that the ECSCESS architecture is feasible for VLSI fabrication in

the ES2 technology. Clearly, the area usage of ECSCESS will be even less in the smaller

process technologies which are currently in use.

8.9 Simulation results

An implementation of ECSCES,9 was constructed in VHDL at the gate level, and incor-

porated four integer FUs in total: a memory unit, a comparator unit, and two arithmetic

units. Although a more practical implementation would also have a register bank, mul-

tiplier, and floating point units, this basic implementation of ECSCES.9 still enables a

significant amount of parallelism and even more data dependencies.

Random instruction streams were used for testing ECSCESS since developing a suit-

able compiler would have been too time consuming. Given that only 4 FUs are imple-

mented, a random instruction stream will still exhibit numerous data hazards comparable

to those which would be present in most compiled programs anyhow.

Four different instruction streams \ryere produced for testing various aspects of the

architecture: one which incorporated all possible instructions; one which executed only

188

those instructions utilizing the FUs; one which executed T0Tobranch instructions (and the

rest LDC instructions); and one which executed 35To call instructions. The instruction-

type frequencies which were used for the all-instruction stream generation are shown in

Table 8.1 (based on the information contained in [HP90, Chapter 4], from which the

frequencies for the other streams can be deduced. The FUproc and FUspec instructions

were distributed as approximately 15% comparator, 25To memory, and 30% per arithmetic

unit (which correlates to the ratios used for ECSTAC),, and 1 in 7 instructions (on average)

executes a potential program branch.

Jump Branch Call t Retn Stack FUproc FUspec

Joff
Jbus

2.t%
0.2%

Boff
Bbus

8.6%
0.eY

Coff
Cbus

2.|Yo
0.2%

LDSP 0.2% FUimm
FUbus

25.7%
5t.4%

LDC
MOVE

43%
4.3%

Table 8.1: Instruction frequencies used in generating code for ECSCESS

Furthermore, for the all and FU only instruction streams four different types of hazard

minimization were investigated: no minimization; minimize RAW hazards only; minimize

WAR hazards only; and minimize both RAW and WAR hazards. These last three types

also minimize WAW hazards if possible since these can also reduce the processor's speed

by increasing the stall time of the RAW and WAR hazards. The other two types of

instruction streams implemented only the full minimization of hazards.

The simulation results for the ECSCESS processor are given in Table 8.2, for which

the Mips (5) and Mips (10) fields imply a DC with a 5ns and 10ns cycle time respectively

(both this and the IC are assumed to have a700% hit rate). All values quoted are averaged

over 10 instruction streams of at least 1000 instructions each.

Instruction stream Hazard minimization Mips (5) Mips (10)

All instructions no minimization
WAR and WAW
RAW and WAW
All minimized

LT7.4
t27.8
140.6

74r.7

113.8

L24.9
140.6

138.8

FU only no minimization
WAR and WAW
RA\ / and WAW
All minimized

118.9
138.7
181.0

180.5

112.8

133.0

t77.3
t72.7

Branch and LDC All minimized 84.8 84.9

Call and LDC All minimized 138.7 139.8

Table 8.2: Simulation speeds of ECSCESS for varying DC times.

189

Each complex gate delay was assumed to be 1ns except where a combination of gates

with a low load was implemented in which case the overall delay was assumed to be 1ns

(such as for a nand and mur combination with the mur output driving only one gate). It

is expected that these delay assumptions will give overall delays comparable to those of

the ES2 technology when implemented at the mask level.

It is evident from this table that the low Mips for branch instructions is the governing

factor in the Mips difference experienced between the all and FU only instruction streams.

This is expected since a branch must wait for a preceding comparison to execute as well

as the branch target to be calculated (which will only marginally affect this). Therefore

to reduce the speed deficit of branch instructions a compiler ought to place a useful, non-

dependent instruction between the comparison and the branch if possible (an optional

delay slot). Note however that when no hazard minimization is implemented the effect of

branch instructions is negligible anyway. This is because the dependencies between FUs

is governing the cycle time of the processor, and the branch detection mechanism operates

in parallel with this.

Furthermore it can be seen that implementing hazard minimization can have a consid-

erable effect on the performance, improving the Mips by up to 20To for the all-instruction

type. Therefore a compiler ought to place a significant emphasis upon this, and in par-

ticular upon minimizing RAW hazards which are seen to be the most detrimental type of

hazard for the architecture.

The cycle time of the DC is also seen to have a minimal affect on the processor's speed,

since other operations can still be executing and initiating during the longer stalls of mem-

ory accessing. Furthermore, since arithmetic operations are dominant, the dependencies

in the memory unit are less frequent so that a longer cycle time is less detrimental.

8.10 Comparisons

Table 8.3 provides the Mips performance of the ECSCESS processor together with those of

other asynchronous superscalar microprocessors previously developed, and for comparison

the performance of ECSTAC is also quoted (although this has been implemented in CMOS

whereas the others have only been simulated in VHDL). The Fred architecture [Ric96]

was simulated with exceptionally low gate delays (0.lns per gate, with a 32 bit adder for

190

example assumed to take merely 0.5ns), and has therefore been scaled down by a factor

of 10 to give an equivalent gate delay to that used in ECSCESS. The quoted gate delay

from the SCALP processor [End95b] (for all instructions with hazard minimization) is

48.3ns if a 1ns gate delay is again assumed.

Processor Fred SCALP ECSCESS ECSTAC-32

Design style 2P SI 4P SI 2P BD 2P BD
Speed (Mips 29.8 20.7 14r.7 50

Table 8.3: Speed comparisons of various superscalar asynchronous microprocessors

The ECSCESS processor gives by far the best Mips performance of the superscalar

structures, being approximately 5 and 7 times faster than the Fred and SCALP architec-

tures respectively. Both of these processors suffer from the slower SI environment used

for their control structures and the need for frequent utilization of the register bank (the

Fred architecture has a global register bank whereas the SCALP architecture requires the

local register bank to be frequently used).

The performance of ECSCE9,9is almost 3 times faster than ECSTACwhen scaled to

a 32 bit data path, which seems to imply that a superscalar approach to asynchronous

microprocessors is in fact preferable to a pipelined approach. Given that the trend for

synchronous microprocessors has also lead to superscalar architectures it is not surprising

that in the asynchronous domain a similar trend seems necessary.

8.11 Extensions and improvements

The ECSCES,S processor has in fact been designed with support for the more complex

interactions required for enabling interrupts, and a general description of the extensions

required for this, as well as ideas on how exceptions can be handled, are presented here-

after. Other improvements to the architecture are also discussed.

8.11.1 Incorporating interrupts

A block diagram of the processes which have to be executed during an interrupt is shown in

Fig.8.14. The most important consideration is to implement the detection of an interrupt

in such a way as to minimize its impact upon the usual cycle time of the processor (when

191

gpulse Determine
interruptmay

IPL"*t Interrupt Moon

d_cpu

doint

d_cpudone \

Figure 8.14: Block diagram for processing interrupts

no interrupts are occurring). To effect this a scheme similar to that of Section 4.4.7 is

implemented in which the interrupt priority level of the interrupting process (IPL",¿) is

latched at the conclusion of one processor cycle and analyzed on the next. In fact the

result of the comparison between IPL",¡ and the current IPL of the PSR is actually latched

(being usually high, and low only when an interrupt of high enough priority is detected),

producing maybei,nt at the output of the metastability resolver.

This signal is then and'ed into the complex gate of Fig.8.9 which governs the pro-

duction of \cpudone, and as such the detection of an interrupt (or more specifically, the

non-occurrence of one) has essentially no impact upon the processor's typical cycle time.

Note however that doi,nt doesn't actually go high until the latched comparison signal

actually indicates a logic one (> 47) whereas maybe'int may still go low if this signal is

metastable (which is detected before the next ôcpu event by virtue of the IC cycle time).

The send gate governed by doi,ntlmaybei,nt is used to halt ðcpu prior to the feed gate rf

the latched signal is in fact metastable.

If. doi,nt : 1 then the interrupt processing moon is activated. This initiates a fetch

from the address IVR+IPL,,¿ ooto a unique bus (óus2) from the memory unit whose result

gives the address of the relevant interrupt routine to be executed and is multiplexed onto

the input to the PC latch of Fig.8.9. Concurrently, the stack moon is activated twice to

store the PSR (which contains the current value of the IPL field) and the PC, since this

instruction will need to be restarted after a RETI is executed. This process increases the

delay of the processor for a CALL instruction by jttst tr,,..,n".

Once these two concurrent operations have completed, the trace mode is disabled by

masking its flag in the PSR and then the new IPL is set to IPL",¿ (note also that interrupts

are disabled if this new IPL:7). Once this is loaded into the PSR the maybei.nt signal

Get new PC
from Mem

Disbable T,
(I). Set IPL

Save PSR &
PC to stack

t92

will go high again, which then enables the new PC location for the interrupt routine to be

latched as well as generating)cpudor¿e. Note that it is the responsibility of the interrupt

routine(s) to save the current state of the FU buses into memory or the local register

bank (assuming a separate window is used for interrupt storage).

8.11.2 Exception handling

Exceptions can be handled in ECSCE9^9 by assigning a tag to each instruction which is

issued into the globe. Furthermore, each instruction which can potentially trap has its tag

sent to the exception queue (EQ) which maintains the correct order of exception handling

in the event of an out-of order initiation of exceptions. Once an instruction which could

trap completes in a FU it sends an event back to the end of the EQ which is stalled until

the corresponding instruction tag is present at the output (a similar technique to the order

unit of ECSTAC).If the FU signals no exception, then no further processing occuts, and

the next tag from the EQ is propagated to the output. Otherwise, an exception moon

is initiated, and the contents of the EQ nullified to prevent subsequent exceptions until

this one has completed. Note that to prevent stalling of the FUs from a stall at the

EQ, a 3 stage FIFO per FU is used as a buffer. The exception moon incorporates its

detection into the usual IC fetching cycle in the same way as the interrupt moon (with

preceding arbitration between these units), and therefore also has a negligible effect on

the processor's usual cycle time.

Each FU also maintains a history buffer of its outputs (and internal registers) in a

small cyclic RAM structure whose size is governed by the maximum number of instructions

which can be issued to it during the longest possible delay for an exception to occur for

a preceding instruction (otherwise creating a processor stall). The sun also maintains a

similar history of all of its status registers. When an exception routine is entered, each

FU is initiated in turn with an EXC instruction which contains the tag for the initially

trapped instruction. The result in its history buffer whose tag is nearest but not greater

than the exception tag is placed onto the output bus (checked simultaneously across the

RAM with the latest entry having precedence), and similarly for the internal registers.

Concurrently, the SP register is reloaded with the value corresponding to its exception tag

(which is unlikely to have altered), and the corresponding PC and PSR are saved to the

193

stack so that a RETI instruction from the exception routine can begin again at the point

of exception. The address of the exception routine is fetched from the memory unit (prior

to having an EXC instruction issued to it) at location IVR+ETYPE+8, where ETYPE is

a specific identifier for the type of exception which occurred. This address is then loaded

into the PC, and once this process and that of issuing EXC instructions to all of the FUs

have completed, the gate signal for generat\ng ôcpudone is sent high which enables the

exception routine to be entered.

8.11.3 Reducing the ocean width for \MAR and RA\M hazards

With the architecture as presented the globe consists of 68 signals per FU, of which 32

are used for controlling WAR hazards. This can be reduced significantly by moving the

shore control which implements this into a separate WAR unit.

When an operation to FU¿ occurs which sources FU¡, the counter Cwarin¿,¡ is in-

cremented which therefore sets the signal nostall¡ low by comparing Cwarin¡,¡ against

Cuarout¿,¡ for all i FUs. This functionality is currently contained within FU¡, but is now

transferred to the WAR unit which supplies the nostall signal to each FU. Furthermore,

the source FU value of 'T" is stored in a 3-stage queue (corresponding to the number of

FIFO stages in each FU) within the WAR unit for FU¿ (a separate queue exists for each

FU).

Once FU¿ has sourced its data from FU¡, it sends back a single event }src¡ to trhe

WAR unit (instead of sending 36 events to the ocean as per the current architecture),

from which a pulse is generated. The output of the queue will specify the source (FU¡)

which will demultiplex this pulse to the counter Cwarout¿,3, and subsequently set nostall

high.

It is evident that the only additional circuitry needed is a 3-stage queue for each FU,

however the area of the globe has been reduced from 36 wires per FU to just two (for

nostall and ðsrc). Also, each FU receives just the one input signal for a WAR hazard

as opposed to 36 in the current architecture. Consequently, the ocean width is reduced

from 6.2mm to 3.5mm, however the delay for the nostall signals within the globe will be

increased slightly by the wire delay between the WAR unit and the relevant FU.

A similar principle can be applied to RAW hazards. The control within the shore of

794

each FU for managing these hazards can be moved into a separate RAW unit which in

fact requires no additional circuitry. This configuration leads to a further reduction in the

globe width for RAW hazards from 4 wires per FU to 3 (for rawokayl,2 and ôf udone2),

and a reduction in the number of signals multiplexed into each FU from 4 to 2. This is

however only a minor improvement in area at the cost of a marginal increase in processing

delay (due again to an increase in wire lengths), which may not be worth implementing

in practice.

8.L2 Summary

The superscalar architecture of ECSCES,9 has demonstrated a significant speed improve-

ment over the pipelined architecture of ECSTAC, which is due to a number of factors

including greater parallelism in FU operation, removal of pipeline bottlenecks, distributed

hazard control (no global register bank), and global results forwarding. This indicates

that as in the synchronous realm a superscalar approach to microprocessor design can

yield a higher Mips performance than a pipelined approach. The issue of whether or

not an asynchronous implementation can outperform a corresponding synchronous one

remains to be answered, and requires identical ISAs and architectures to be implemented.

It should also be noted fhaf ECSCES^9 has outperformed the other superscalar asyn-

chronous microprocessors by a significant factor in simulation. This can be attributed

primarily to the 2P ECS design paradigm which has been shown to result in significant

speed improvements over SI and DI implementations.

195

Chapter I

Conclusions

(THE intended focus of this thesis has been to devise fast asynchronous circuit tech-
I

Lt niques, since those currently in use suffer from slow handshaking control and ex-

cessive circuit complexity. To achieve this aim a more flexible 2P bounded delay design

paradigm has been adopted, since the SI and DI paradigms of popular use do not enable

sufficiently fast structures to be devised nor enough flexibility in their implementation.

In devising these asynchronous circuits an engineered approach has been taken, since

the automatic synthesis from high level specifications does not allow for enough control to

be exercised over the low-level gate implementations. Such an approach however requires

a knowledge of the optimization techniques and the useful sub-circuits which are available

to the designer to enhance the usability of the ECS approach. Therefore this thesis has

also focussed on identifying these techniques and explaining their operation and purpose

for general use.

As has been shown by the myriad control structures discussed throughout this thesis,

the popular belief that 4P circuits are faster than 2P is not necessarily true. Although

this has been demonstrated for SI both here and elsewhere, the same cannot be said of

BD systems. The 2P ECS circuits presented here have shown an improvement upon the

4P designs in almost every instance, in some cases being up to 4 or 5 times faster.

One reason for this is the excessive control circuits used in speed independent designs.

By removing the numerous unnecessary acknowledgements present in this model, the gate

count for the 2P bounded delay environment can be significantly reduced. The elimination

of these acknowledgements is based on an estimate of comparative gate delays, which is

a completely reasonable assumption in all but the rarest of instances as evidenced by the

196

plethora of working synchronous silicon present in the current market.

Another factor responsible for this speed improvement is the fundamental gate struc-

tures which arise from the ECS representation of 2P signalling (which have been shown

to be a primitive set of the micropipeline library, among others). By viewing the design

process from the basic functionality of these gates, certain control structures can be im-

plemented faster than would otherwise be possible (such as in the splitting of a tree of

select gates into a row of feed gates).

As has also been demonstrated by the numerous control structures presented, from a

few gates to a few thousand, the power consumption of the ECS circuits has been very low

despite having focussed primarily on high speed implementations, a goal which is often in

conflict with the pursuit of low power consumption. Surprisingly, in the majority of cases

the power consumption for the faster ECS circuits has in fact been less than those of the

4P SI approaches, whose simpler gate structures are also intended to reduce their power

dissipation over 2P designs. This fact can be attributed to the significant reduction in

gate counts for the ECS designs which in turn reduce the number of switching transitions

(dynamic po\l/er dissipation). Therefore focussing on high speed designs has also reduced

power consumption, despite first thoughts indicating the contrary.

The shift to a 2P BD model in ECS has enabled pipeline structures to be developed

which improve upon the speed performance and in many instances the power dissipation

of others which have been previously reported. This is an important issue since pipelines

are a fundamental component of many practical applications. Furthermore, since this is

the crux of the reasoning behind the hypothesis that synchronous systems should always

be faster than asynchronous, the fact that ECS has reduced these handshaking delays

now brings this hypothesis into question. Indeed, it would be difficult to clock a 0.7 ¡tm

CMOS FIFO as fast as the state pipeline can cycle (at 360MHz) - even ignoring the issues

of skew, routing, and driver sizes (and hence power consumption).

A new approach to self-timing has also been presented in the form of pseudo self-

timed circuits. These structures have been shown (for an adder) to be slightly faster than

their ST counterparts as well as occupying less area. The robustness of PST designs is

expected to be comparable to their ST equivalents since the matched validity path would

invariably be implemented in VLSI adjacent to the computational path, and so any process

variations are unlikely to cause erroneous behaviour. For some circuits however (such as

r97

an incrementer) the PST approach is not suitable, although dedicated ST implementations

of these systems have been shown to be of benefit in reducing the typical computation

Iatency as well as the power dissipation over non-ST structures.

Interestingly, significantly faster synchronous circuits for multiplication than the asyn-

chronous ST implementation presented in this thesis have been reported, although the

speed of the latter is still comparable. Note that for larger data widths, the ST structures

may become faster than can be implemented synchronously due to their logarithmic de-

pendence on bit width. The ST structures are also smaller and consume less power than

their synchronous counterparts since the latter employ more redundancy in their efforts

to speed up the worst case computation time.

As an investigation into how ECS can be applied to the design of larger systems two

microprocessors have been developed. The first processor ECSTAC was implemented and

fabricated in the ES2 technology. Its performance was limited by the architecture (and

not the ECS paradigm) which utilized an 8 bit data path and a mismatched24bil address

path. Nonetheless the implementation of this basic pipelined processor is still comparable

to others which have been developed.

When scaled to a matched 32 bit data and address path, ECSTAC is in fact expected

to outperform all of the other 32 bit CMOS processors thus far reported in both 4P

and 2P environments (however this comparison is heavily dependent upon the scaling

assumptions). The processor has also exhibited a very low po\¡/er dissipation, and in

fact improves on most other processors which have either been explicitly engineered for

low power or have been expected to achieve this through the robustness of their design

paradigm (by removing all power consuming glitches). This further supports the notion

that the ECS structures developed in this thesis are not only fast but are still low in

power consumption.

The ECSTACprocessor also enabled some basic issues of verification to be addressed.

In particular, the use of a separate po\l¡er bus for the delay modelled elements enables a

form of frequency tweaking as used in synchronous designs to rectify an incorrect chip.

This also reduces the required safety margins for these elements which is often a con-

tributing factor to an increase in pipeline cycle times.

The second processor ECSCESS was designed to better utilize the ST property of

198

asynchronous systems through superscalar as opposed to pipelined operation. The perfor-

mance of ECSCE^9^9 was simulated to be significantly faster than any other asynchronous

superscalar processor previously reported. This is due in part to the ST operation of the

FUs and critical computational blocks (such as incrementing the PC), but is also due to

the fast ECS control structures used in its implementation. Given that this architecture

has resulted in superior performance to other pipelined processors as well, this indicates

that future asynchronous microprocessors should (as in the synchronous realm) be based

on superscalar operation.

Finally then it is concluded that by using the techniques and fast circuits developed

in this thesis, high speed architectures can be developed which reduce (and perhaps even

reverse) the performance deficit between asynchronous and synchronous designs. Sur-

prisingly, the asynchronous structures presented here are also low in both area overhead

and power dissipation. Although not originally anticipated, these results provide further

reasons for implementing ECS circuits in favour of SI or DI equivalents. The most no-

ticeable disadvantage of ECS in comparison to these paradigms is the longer design time

to produce reliable circuits. Consequently, it is the authors opinion that automated SI

and DI techniques should be applied to ASIC designs in which a fast turn-around time

meeting low performance specifications are required, whereas ECS techniques should be

applied to the design of custom, high performance chips.

9.1 Further work

Implementing a full 32 bit version of ECSTAC would be useful to verify the scaling

assumptions made in Section 7.6.5 and to more accurately gauge its performance against

other 32 bit CMOS microprocessors. It would also be beneficial to have the ECSTACchip

fully tested so that the resilience to operating and process variations of the ECS circuits

could be measured, as well as the usefulness and usability of the testability techniques

implemented for the processor.

Similarly, implementing ECSCE9,9 in VLSI will enable the assumptions on which its

simulations rvere based to be tested, and a more accurate measurement of its area and

processing speed to be determined. This would then enable a more accurate comparison

of the superscalar architecture against the pipelined. This implementation of ECSCESS

199

should also be extended to include interrupt and exception processing which would im-

prove the viability of the architecture for commercial applications. Other extensions such

as multiple instruction issue, FU renaming (akin to register renaming), and branch pre-

diction should also be investigated and incorporated into the architecture.

Furthermore it would be useful to have a compiler (or post-processor to a current com-

piler) which enabled working instruction streams to be tested on the two ECS processors.

This would again provide for a better performance comparison.

It would also be worthwhile implementing the speed improvements to the PST mul-

tiplier discussed in Section 6.6.7, as well as investigating other multiplier algorithms for

their ability to better utilize self-timing. This also applies to the PST adder structure since

only the ripple carry approach has been self-timed, whereas it may be that by combining

ST and CLA techniques an even faster adder could be devised.

A software package should also be developed which enables the error checking and

analysis properties inherent in the ECS framework to be utilized. Such a tool would enable

the designer to specify a circuit in a TS format (with hierarchy) with IO constraints which

have to be met by the environment, as well as providing a library of useful sub-systems.

These can then be checked in the translation from the TS to the chosen simulation suite,

and errors in the event control (or the data path) flagged with commentary back to the

designer. This would then reduce the design time for developing reliable circuits and

improve its usability for new designers.

200

Appendix A

and Corresponding ECS Gates

Fundamental Temporal Equations

Table 4.1 provides a list of the fundamental temporal equations together with their cor-

responding ECS gates and circuit representations.

TE ECS Gate Circuit Symbol

)out <- ðina . ði,nb cAate \o nu,

õout <-)i,na * õi,nb nxerge d out

)out <- õpass > ôi,n restore
cl_pass

d out

ðout <- }'in > control feed
d in--

control -
\¿ out

ðout <- õin . control send
d in-

control -
out 1- 1i,na U õi,nb roT out

din

out <-'in > sel latch
ln

sel latch

c <- F(a,b, . . .) logi,c â,b,. F c

ôout <- a: b ôi,n delay
din d out

À

Table A..1: Fundamental temporal equations and their corresponding gates

20L

The following are examples of TE specifications which are invalid. This may be due to

an invalid operation between data signals and event lines, an assignment of a data signal

to an event line, or an input event occurring without a corresponding output event (or

vice versa).

c<-
ðz <-

c<-
c<-
a+-

0r>..
0rtc
r.0z

õa+ôb

b>ôz

0n <-

c<-
c<-

0z +-

0z <-

c>..,

0r-lb

0a.0b

a*b

aUb

202

Appendix B

ISA of the ECSTAC Microprocessor

There are a total of 47 distinct instruction types excluding mode variants, and 87 including

mode variants. 16 registers are available for use and there are also dedicated registers for

the program counter, stack pointer, and flags register (FR) The FR is configured as:

DC IC zef0 parity odd srgn overflow carry

where DC and IC represent the state (active or bypassed) of the data and instruction

caches respectively.

8.1 Memory instructions

The 16 register banks can be partitioned into four register quadruples for data movement

instructions, denoted simply as Q0, Q4, Q8, and Q12, with the lowest numbered register

containing the lowest byte of Lhe 24 bit address.

8.1.1 Two byte instructions
2 2 4 4 4

op mode Qx Rz Qv

op:00 for the LD (load) instruction, and op:01 for the ST (store) instruction. Rz

represents the register location to load data into or store data from, and mode determines

the interpretation of Qx and Qy as follows:

o mode:O0 (register mode)r Q* and Qy represent register quadruples, and the

actual memory address is computed as the sum of the two 24 bif values stored in

these registers.

203

. mode-Ol (offset mode): Qx represents a 24 bit address as above, but Qy repre-

sents an unsigned four bit constant, which is added to the register address to give

the actual memory address.

8.I.2 Four byte instruction
2 2 4 8 8 8

op mode Rz MemLow MemMid MemHig

op and Rz are as given for the two byte instructions, and mode:10 (direct mode)

The actual memory address is given by (MemHig ll MemMid ll Memlow).

8.1.3 The unused mode

mode:ll is not used for any data movement operations. It is used instead for the JUMP

instruction (see Section 8.3.2).

8.2 AtU instructions

8.2.I Two byte instruction (short mode)

2 2 4 4 4

op mode code Rz Ry

op:10 indicates an ALU operation, and code indicates the specific ALU operation as

given in Table 8.1. mode determines the interpretation of Rz and Ry as follows:

o mode:OO (register mode): Rz represents the destination register for the result,

as well as the source register of the first argument. Ry represents the source register

of the second argument. For those functions with only one argument, this is taken

from Ry, thereby enabling maximum flexibility of register transfers. Single argument

functions will always use this mode.

o mode-Ol (offset mode): Rz represents the destination register for the result, as

well as the source register of the first argument. Ry represents an unsigned 4 bit

constant value as the second argument.

204

Code Instruction Arguments Meaning
0000
0001

0010
0011

NEG
MOVE

INC
DEC

1

1

1

1

Arithmetic sign negation
Move data between registers

Increment by one

Decrement by one

0100

0101

0110

0111

SHLL
SHLA
SHRL
SHRA

1

1

1

1

Shift left logical (wrap around bits)
Shift left arithmetic (pack with 0's)

Shift right logical
Shift right arithmetic

1000

1001

1010

101 1

SUBU
SUBS
ADDU
ADDS

2

2

2

2

Unsigned subtraction
Signed subtraction
Unsigned addition

Signed addition
1100

1 101

11 10

1111

NOT
AND
OR

XOR,

1

2

2

2

Logical bit negation
And function
Or function

Exclusive-or function

Table 8.1: ALU instructions

8.2.2 Three byte instructions (long mode)

2 2 4 4 4 4 4

op mode Rx Rz Ry offhi code

op and code are as given for the two byte instructions, and mode determines the

interpretation of Rz, Rx and Ry as follows:

o mode:10 (register mode): Rz represents the destination register for the result,

Rx represents the source register of the first argument, and Ry represent the source

register of the second argument. offhi is unused.

o mode:11 (offset mode): Rz represents the destination register for the result, Rx

represents the source register of the first argument, and (ofihi ll nV) represents an

8 bit constant value as the second argument.

8.3 Branch instructions

8.3.1 One byte instruction - CALL
4 4

op Qz

where op:1111 for the CALL instruction, and Qz refers to the register quadruple

containing the memory address to CALL to.

205

Code Instruction Meaning
0000
0010
0011

0100
0101

01 10

0111
1000

1001

1010
101 1

1100

1 101

1110
1111

JUMP
JMPZ
JMPX
JMPN
JMPG
JMPL
JMPP
JMPV
JPNV
JMPO
JPNO
JMPC
JPNC
JPOC
.]NOC

Unconditional jump
Jump when result: 0 (zero bit)

Jump when result l0 (inverse zero bit)
Jump when result < 0 (sign bit)

Jump when result) 0 (inverse sign bit)
Jump when result < 0 (sign OR zero)

Jump when result > 0 (sign NOR zero)
Jump when parity bit is set

Jump when parity bit is not set

Jump when overflow bit is set

Jump when overflow bit is not set

Jump when carry bit is set
Jump when carry bit is not set

Jump when carry or overflow bits are set

Jump when neither carry nor overflow bits are set

Table 8.2: Branch instructions

8.3.2 Two byte instructions - BRANCH
4 4 4 4

op/mode code Qz offio

where op:O(mode)11 represents the conditional or unconditional jump instruction

(where the condition being tested is given by the contents of the FR), code represents the

type of comparison to be made (if any) on the contents of the FR as given in Table B.2,

and mode determines the interpretation of Qz and offio as follows:

o mode:O (offset mode): (a, ll offio) represents a signed 8 bit offset address to be

branched to relative to the current PC address.

o mode:1 (register mode): Qz represents the register quadruple containing the

address to be jumped to and offio is unused.

8.4 Stack instructions
4 4

op Rx

op:1101 represents a PUSH operation, and op:1100 represents a POP. Rx represents

the register whose data is to be pushed, or to where data will be popped. Note that more

stack instructions are specified in the following section.

206

E}.5 Special instructions
4 4

op code

op:1110 represents a special instruction to be interpreted by Table 8.3

Table 8.3: Special instructions.

Code Instruction Meaning
0000

0001

0010

0100

0101
0110
01 11

1000

1100
1 101

1111

NOOP
RETN
FLSH
ICDS
ICEN
DCDS
DCEN
HALT
POPF
PSHF
TRSP

Do Nothing
Returns from a call instruction

Flushes the contents of the data cache
Instruction cache disable
Instruction cache enable

Data cache disable
Data cache enable

Halts processor after 4 successive instructions
Pops the contents of the stack into the FR

Pushes the contents of the FR onto the stack
Transfers Q12 to the stack pointer

207

Appendix C

ISA of the ECSCESS microprocessor

The ECSCESS ISA provides for 16 basic instruction types (encoded in the op field below)

of which 13 have currently been defined. Each of these instruction types are encoded in

one of the following four formats:

Bits 31-+28 27 26-+23 22 27-+79 18-+12 7l-+7 6 5-+1 0

Btype op MS bramt (low 27 bits)
Ltvpe op dest code constant
Ftype op dest code immhi srcl u1 src2 t:,2

Rtype op dest \ryI wlnreg src2 12

Table C.1: Instruction formats.

'|he op field specifies the particular type of instruction which is being executed, as

shown in the table below. Only for op's 8 through 11 is the globe activated.

op instruction op instruction op instruction op instruction
0 .IUMP offset 1 JCOND offset 2 CALL offset t.) RtrTC
4 JUMP busO 5 LDSP 6 CALL bus0 7 JCOND busO

8 FU bus 9 FU imm 10 MOVE 11 LDC
12 13 74 15 INT

Table C.2: Fundamental instruction set

C.1 Branch instructions

The branch instructions comprise op fields 0 through 7, and are all encoded as a Btype.

The JUMP instruction performs an unconditional ju-p to a new PC location, whereas the

JCOND instruction performs this only if the MSB of bzsl is high (which should be from

a comparator unit tested prior to the conditional jump). A CALL instruction branches to

208

a subroutine, and a RETC instruction returns from it (the rns and bramt fields for this

instruction are irrelevant).

For the branch-bus0 instructions, the rns and bramú fields are irrelevant, and the

branch offset is given by the value of óusO which is added to the current PC value to give

the branch target. For the branch-offset instructions, the rns and bramt fields collectively

represent a 28 bit offset which is sign extended to provide the offset for the branch target

addition.

A LDSP instruction loads the stack with the 32 bit quantity mslbramú+ 1111, which

represents the location in memory of the decrementing stack to be used if the on-chip stack

fills up. Note that ECSCESS implements a 32 register on-chip stack (although any depth

can be implemented in practice), so that the memory stack will only be needed for code

streams with more than 32 embedded levels of subroutines (although an interrupt uses 2

stack registers as well). As such the ofi-chip memory will rarely ever be used.

C.2 Interrupt instructions

These are also encoded as a Btype. If. ms : 0 then an IVRL instruction occurs, which

loads the interrupt vector register (IVR) with bramú + 00000, otherwise the upper 5 bits

of the bramt field are used to indicate one of the following instructions:

bramt (26 -+ 22) instruction meanrng
0 RETI Return from interrupt
1

1

0

0

1

1

1

0

EI
DI

Enable interrupts
Disable interrupts

1

1

0

0

0

0

1

0

ET
DT

Enable trace mode
Disable trace mode

111211Io SETI Set interrupt priority level to I
Table C.3: Interrupt instructions.

Interrupts can be enabled or disabled with the EI and DI commands, and the conclu-

sion of an interrupt processing routine is indicated with a RETI instruction. A 7 level in-

terrupt priority level (IPL) is facilitated, with the highest level (7) being non-interruptible.

When an interrupt occurs, its IPL is compared against that of the processor, and if greater

then the interrupt routine located at the address pointed to by IVR+IPL in memory is

executed.

209

A trace mode is also facilitated by the ISA of ECSCESS. If enabled, then at the

conclusion of each instruction the trace routine located at the address pointed to by IVR

in memory is executed. This can be useful for customizing the analysis and debugging of

instruction streams.

C.3 MOVE instruction

The MOVE instruction is analogous to register moves in most other processors, but in

this instance it transfers the bus value from one FU to the bus value of another (bypassing

the FUs operation). It is encoded as an Ftype with the code,'immh'i, and srcl fields being

irrelevant. The dest field indicates the destination FU for the transfer, and the src2 field

indicates the source FU. For this operation, u1 : 0 and u2 : l, implying that only one

source FU (src2) is needed for the instruction.

The register bank provides a slight exception to this. If the r¡r field is high, then the

bus value of src2 is not only transferred to dest,bnl is also written to the register location

specified by the 16 bit signal w'inreg.If low, then the value is simply transferred as with

any other PU. Note that the register unit therefore uses the Rtype of encoding (which is

very similar to the Ftype).

C.4 LDC instruction

This instruction utilizes the Ltype instruction format and is used to load a constant value

(specified in the constant field) or a status register onto the bus of the FU specified in

dest. How the constanú value is interpreted is given by code in Table C.4.

code 32 bit constant to load const32
000-
001-
010-
011-

const3231-ß I constant
sign extended constant
constant * 2r3 + const32n-s
constant * 213 (left shift 13 bits)

0

1

0

1

0

0

1

1

1

1

1

1

current PC
SP (for external memory stack)
IVR
PSR

Table C.4: 32 bit constants for the LDC instruction.

270

The first four codes enable the 19 bit constanú field to be loaded into the upper or

lower portion of the 32 bit const32 (which goes to the FU). The other portion is either

left unchanged (enabling a full 32 bit value to be loaded in two instructions) or is sign

extended for a low portion load (enabling a 19 bit signed constant to be loaded with one

instruction) or set to zero (for a high portion load).

The latter four codes enable the process registers of ECSCES,S to be loaded into the

globe for manipulation. The PSR (process status register) contains the current state of

the interrupt and trace processes in the format below:

Bit(s) PSR entry Meaning
31

30
29 -+ 27

26-+0

TS
IS

IPL

Trace status (on or off)
Interrupt status
Current interrupt priority level
Unused

C.5 FU instructions

AII FUs in the processor are triggered by one of two FU instructions in the ISA. The

FUbus instruction encodes two source FUs for the operation in srcl and src2 and the

destination FU in desú, whose actual functionality is decoded therein by the code freld.

Instructions which use less than 2 operands will have the relevant ul andf or u2 fields set

low, indicating that the encoded source FU is not required. Note that these instructions

could also utilize lhe i,mmhi, and srcl fields (and src2 for instructions with no operands) to

extend the code field for the operation. The FUimm instruction encodes a sign extended

13 bit value of i,mmhi,I srcl f z1 in place of the srcl FU used in the FUbus mode.

Although the architecture of ECSCESS enables up to 32 FUs of any type to be em-

ployed, clearly these must be specified explicitly for any given implementation. A proposed

allocation is given in Table C.5, and the specific set of instructions executed within each

FU (given by the code fr.eld in general) are discussed in the following sections.

C.5.1 Register unit (t"g)

The register unit is the only FU whose instructions are encoded as the Rtype. The

src2 ß,eld specifies a source FU for a write operation (when u)r : 1), and for a read

operation (when u)r :0) this field is irrelevant (the u2 field will therefore be set low for

a read operation). The 16 bit w'inreg field specifies the register to which (or from which)

277

dest FU dest FU dest FU dest FU

0

4

8

t2

reg0
aid0

mds0-b0
cmp

1

5

I
13

regl
aidl

mdsO-b1

shl

2

6

10

74

reg3

aid3
mdsl-b1

mem

reg2
aid2

mdsl-b0
icop

3

7

11

15

16

20

24

28

freg0-b0
faid0-b0
fmds0-b0
fcmp-b0

L7

27

25

29

freg0-b1
faid0-b1
fmds0-b1
fcmp-b1

18

22

26

30

fregl-b0
faidl-b0
fmdsl-b0
fcop-b0

19

23

27

31

fregl-b1
faidl-b1
fmdsl-b1
fcop-b1

Table C.5: Proposed FU allocations for ECSCESS.

the source FU's data will be written (or read). Clearly 216 - 65536 registers is a lot,

therefore it could be expected that the registers will be partitioned into windows (giving

a hierarchical register structure), perhaps reserving one or more windows for storage and

retrieval during an interrupt or trace routine. Furthermore, it is possible to encode within

tui,nreg a field which enables up to 4 multiple register reads, and another to implement

indexing as in the memory unit discussed in Section C.5.6.

The dest field contains the FU location of the register unit, and in the proposed FU

allocations this occupies units 0 to 3. Although only one actual register unit is present,

these four output buses enable a read to place its result onto a specific bus, enabling

previously read data to be retained if necessary.

C.5.2 Arithmetic unit (aid)

The AID performs basic arithmetic operations as given by Table C.6, and four separate

AIDs are provided in the FU allocation to enhance parallelism. Note that ar92 and argl

come from the src2 and srcl source FUs respectively (although the latter may in fact

be encoded as a 13 bit signed constant), and that an internal FR is used to retain flags

information which can be read out with a FLAG instruction. The structure of the FR is

shown in Section C.5.5 (minus the branch bit).

C.5.3 Multiply, divide, and sqrt unit (mds)

This unit implements signed and unsigned multiply, divide, and square root functions

according to Table C.7.

21.2

Code Instruction Meaning
0

4

8

10

11

15

ADD
SUB
INC
NEG
DEC

FLAG

arg2 I argl
ar92 - argl
increment arg2
negate (two's complement) ar92
decrement arg2
output the FR

Table C.6: Arithmetic instructions

Code Instruction Meaning
0, 1

2,3
4

MULU, MULS
DIVU, DIVS

SQRT

Unsigned and signed multiplication
Unsigned and signed division
Unsigned square rool of. arg2

Table C.7: Multiply, divide, and sqrt instructions.

A 32 bit multiplication can result in a 64 bit product, therefore to enable the full

result to be provided in one operation each MDS unit (of which there are two specified) is

spread across two buses (as indicated by the -b0 and -b1 postfixes). The division and sqrt

functions similarly require two buses, providing the quotient onto b1 and the remainder

onto b0.

C.5.4 Shifter and logical unit (shl)

This simple unit performs arithmetic, logical, and wrapped shifts of ar92 (with the srcl

field specifying the number of bits to shift by) as well as performing logical functions as

per the following table.

Code 0 1 2 4 5 6

Instruction SLA SLL SL\A/ SRA SRL SRW

Code 8 I 10 11 72 13 T4

Instruction AND NAND OR NOR XOR XNOR NOT (ars2)

Table C.8: Logical and shifting instructions

C.5.5 Comparator (.-p)
The comparator unit enables three basic types of operations. The CMP2 instruction

compares two signed source values and sets the branch bit (the MSB of the output bus)

according to the type of comparison required. This bit can also be set according to the

parity of. ar92.

2t3

The ASC instruction performs addition and subtraction of the two source values and

places the result onto the output bus as well as computing flags based on the result.

Furthermore, the two arguments are also compared as per a CMP2 operation (although

whether or not the arguments are signed can be specified explicitly), again setting the

relevant flags in the FR. Whenever a CMP2 or CMPO instruction occurs, the FR is placed

onto the output bus together with the branch bit as shown below:

Bit 31 18 17 16 I 8 3 2 1 0

Flag branch qc hc c u v po It gt eq

where each flag represents in turn: a carry out of bits 8, 16, and 32; underflow (only

relevant for the floating point units described later); overflow; odd parity for the result;

arg2 < argl; arg2 > argl; and arg2 : arg[. A CMPO instruction sets the branch bit

according to the flags set by the previous ASC instruction. The encoding for each of these

comparator instructions is given in Table C.9. Note that the CMPO instruction utilizes

the srcl field in its decoding, which is acceptable since it has no arguments.

Code 1ab0 (ASC' lab1 (CMPO) Oabc (CMP2)
ab Operation srcl -- 7 srcl :2 srcT: 4 Operation
00
01
10
11

ADD, signed CMP
ADD, unsigned CMP

SUB, signed CMP
SUB, unsigned CMP

eq

gt
It

v
u

po

c

hc
qc

ar92: argT
ar92 > argl
ar92 < argl

ar92 parily odd

Table C.9: Comparator instructions.

If the c bit for a CMP2 operation is high, then the inverse comparison is performed,

and similarly for CMP0 if the MSB of srcl is set.

C.5.6 Memory unit (mem)

The memory unit performs load and store operations to external memory (perhaps with

an intervening DC), and the code fr,eld is segregated into the LS, UL, ID, and BA bits

(from MSB to LSB) which imply the following:

o If LS:1 then perform a LD from address arg2, otherwise perform a ST to address

ar92 with the data from argl.

o If UL:1 then use the last modified address (LMA) instead of the address of arg2,

otherwise save ar92 into the LMA as well as performing the memory operation.

2t4

o If ID:1 then increment the LMA, otherwise decrement it

o If BA:1 then perform the increment or decrement of the LMA before accessing

memory, otherwise do it afterwards.

The ID and BA bits are irrelevant if UL:0. Using pre and post incrementing and

decrementing of the LMA enables consecutive memory operations (indexing) to be imple-

mented without requiring the arithmetic units.

C.5.7 Floating point units and co-processors

There is also provision in the ISA of ECSCESS for floating point (FP) units, however

since these may operate on double and single precision numbers, two output buses are

needed for each FU. There are 2 register read buses, 2 Faid units, 2 Fmds units, and a FP

comparator, each essentially analogous to their integer counterparts. Since no FP units

have been implemented in the current ECSCESS architecture no instruction codes have

been specified. A FP and integer co-processor (fcop and icop) can also be used, with field

encodings specific to whatever unit is attached.

275

Bibliography

IABV+e5l

[AMLe5a]

lAMLesbl

lAMLe6l

[Appe6]

lBEsel

IBed62]

lBK82l

[Boo51]

A. J. Acosta, M. Bellido, M. Valencia, A. Barriga, R. Jiménez, and J. L.
Huertas. New CMOS VLSI linear self-timed architectures. In Asynchronous
Design Methodolog'les, pages 74-23.IEEE Computer Society Press, May 1995.

Sam S. Appleton, Shannon V. Morton, and Michael J. Liebelt. Cache de-
sign for an asynchronous VLSI RISC processor. In Proc. 13th Australian
Mi,croelectronics Conference, pages 91-96, July 1995.

Sam S. Appleton, Shannon V. Morton, and Michael J. Liebelt. The design of
a fast asynchronous microprocessor. IEEE Technical Committee on Computer
Archi,tecture N ewsletter, October 1995.

Sam S. Appleton, Shannon V. Morton, and Michael J. Liebelt. A new
technique for high-speed asynchronous pipeline control. Electroni,cs Letters,
32(21):1973 L974, October 1996.

Sam Appleton. Implementation of instruction and data caches for the EC-
STAC microprocessor. Report HPCA-ECS-96102, Dept. of Electrical and
Electronic Engineering, The University of Adelaide, Adelaide, South AUS-
TRALIA, June 1996.

J. A. Brzozowski and J. C. Ebergen. Recent developments in the design of
asynchronous circuits. In J. Csirik, J. Demetrovics, and F. Gécseg, editors,
Fundamentals of Computation Theory, FCT'89, volume 380 of Lecture Notes
in Computer Sc'ience, pages 78-94, FCT'89, Szeged, Hungary, 1989. Springer-
Verlag.

O.J. Bedrij. Carry-select adder. IEEE Transacti,ons on Electronic Computers,
EC-11:340-346, 7962.

R.P. Brent and H.T. Kung. A regular layout for parallel adders. IEEE
Trans acti,ons on C omputers, C-31 (3) :2 60-264, 1982.

A.D. Booth. A signed binary multiplication techniqte. Quart. J. Mech. App.
Math., aQ) :236-240, 1951.

J. A,.Brzozowski and K. Raahemifar. Testing C-elements is not elementary. In
Asynchronous Des'i,gn Methodologies, pages 150 159. IEEE Computer Society
Press, May 1995.

lBResl

276

lBSsel

IChu87a]

[Chu87b]

lcL86l

lcLesl

lcM73l

Icze4)

lDAe3l

lDDHell

lDECssl

IDens5]

[Dij76]

lDilsel

lDwesl

Erik Brunvand and Robert F. Sproull. Translating concurrent programs
into delay-insensitive circuits. In Proc. International Conf. Computer-Ai,ded
Design (ICCAD), pages 262-265.IEEE Computer Society Press, November
1989.

Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic
specifications. In Proc. International Conf. Computer Desi,gn (ICCD), pages

220 223.IEEE Computer Society Press, 1987.

Tam-Anh Clint. Synthesi,s of Self-Timed VLil Circuits from Graph-Theoreti,c
Speci,ficati,ons. PhD thesis, MIT Laboratory for Computer Science, June 1987.

Tam-Anh Chu and Clement K. C. Leung. Design of VLSI asynchronous
FIFO queues for packet communication networks. In Proc. International
Conference on Parallel Processi,nq, pages 397 400, August 1986.

Chih-Ming Chang and Shih-Lien Lu. Design of a static MIMD data flow pro-
cessor using micropipelines. IEEE Transacti,ons on VLil Systems,3(3):370-
378, September 1995.

T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and
arbiter circuits. IEEE Transact'ions on Computers, C-22(4):421-422, April
1973.

J.F. Chappel and S.G. Zaky. A delay-controlled phase-locked loop to reduce
timing errors in synchronous/asynchronous communication links. ln Proc.
International Symposium on Aduanced Research i,n Asynchronou,s Ci,rcuits
and Systems, pages 156-165, November 1994.

Hema Dhanesha and Alexander Albicki. Self-timed adder with pipelined
output. In Proceedi,ngs of the Mi,dwest Symposi,urn on Ci,rcuits and Systems,
pages 855 858, 1993.

Mark E. Dean, David L. Dill, and Mark Horowitz. Self-timed logic using
current-sensing completion detection (CSCD). In Proc. International Conf.
Computer Design (ICCD), pages 187-191. IEEE Computer Society Press,
October 1991.

Digital Equipment Corporation: DEC. DECChip 27064-AA RISC micro-
processor preliminary data sheet. Technical report, D.E.C., Maynard, MA,
u.s.A., 1988.

Peter J. Denning. The science of computing: The arbitration problem. Amer-
i,can Sc'ientist, 73:576-518, December 1985.

E.W. Dijkstra. ,4 Disciple of Programming. Prentice-Hall, 1976.

David L. Dill. Trace Theory for Autornat'i,c Hi,erachi,cal Verifi,cati,on of Speed-

Independent Ci,rcui,ts. ACM Distinguished Dissertations. MIT Press, 1989.

Paul Day and J. Viv Woods. Investigation into micropipeline latch design
styles. IEEE Transacti,ons on VLil Systems,3(2):264-272, June 1995.

277

[End95a] Philip B. Endecott. Parallel structures for asynchronous microprocessors.
IEEE Technical Commi,ttee on Computer Archi,tecture Newsletter, October
1995.

[DWA+e2]

IEbe8e]

lEBGe3l

lECFSesl

IEndesb]

[EPe2]

IFDG+e3]

IFDG+e4l

lFESe4l

lFLe6l

D. Dobberpuhl, R. Witek, R. Allmon, R. Anglin, S. Britton, L. Chao, R. Con-
rad, D. Denver, B. Gieseke, G. Hoeppner, J. Kowaleski, K. Kuchler, M. Ladd,
M. Leary, L. Madden, E. Mclellan, D. Meyer, J. Montanaro, D. Priore,
V. Rajagopalan, S, Samudrala, and S. Santhanam. A 200 MHz 64b dual-issue
CMOS microprocessor. IEEE Journal of Solid-State Ci,rcuiús, 27(11):1555-
1565, November 7992.

Jo C. Ebergen. Translati,ng Programs 'i,nto Delay-Insensi,ti,ue Ci,rcui,ts, vol-
ume 56 of CWI Tract. Centre for Mathematics and Computer Science, 1989.

J. C. Ebergen, P. F. Bertrand, and S. Gingras. Solving a mutual exclusion
problem with the RGD arbiter. In S. Furber and M. Edwards, editors, Asyn-
chronous Desi,gn Methodolog'ies, volnme A-28 of IFIP Transactior¿s, pages
137-t47. Elsevier Science Publishers, 1993.

C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven. Hades - to-
wards the design of an asynchronous superscalar processor. In Asynchronous
Design Methodolog'ies, pages 200-209. IEEE Computer Society Press, May
1995.

Philip B. Endecott. SCALP: A Superscalar Asynchronous Low-Power Pro-
cessor. PhD thesis, Dept. of Computer Science, University of Manchester,
u.K., 1995.

Jo C. Ebergen and Ad M. G. Peeters. Modulo-N counters: Design and
analysis of delay-insensitive circuits. In Jørgen Staunstrup and Robin Sharp,
editors, Designing Correct Ci,rcui,ts, volume A-5 of IFIP Transactions, pages
27-46. Elsevier Science Publishers, 7992.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A
micropipelined ARM. In T. Yanagawa and P. A. Ivey, editors, Proceedzngs
of VLil 93, pages 5.4.7-5.4.70, September 1993.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, S. Temple, and J. V.
Woods. The design and evaluation of an asynchronous microprocessor. In
Proc. Internati,onal Conf. Computer Desi,gn (ICCD).IEEE Computer Society
Press, October 1994.

Craig Farnsworth, Doug Edwards, and Shiv Sikand. Utilizing dynamic logic
for low power consumption in asynchronous circuits. In Proc. International
Symposi,um on Aduanced Research in Asynchronous Ci,rcuits and Systems,
pages 186-194, November 1994.

S. B. Furber and J. Liu. Dynamic logic in four-phase micropipelines. In Proc.
International Symposium on Aduanced Research in Asynchronous Circui,ts
and Systems. IEEE Computer Society Press, March 1996.

278

IFur96]

IGare3]

lGD85l

lGJeol

[GJe5]

IHau93]

[Hau95]

lHazg2l

lHBBesl

lHCesl

lHFsel

IHoa85]

IHPe0]

S. B. Furber. Amulet2e: Invited lecture. In Proc. Internati,onal Symposium on
Aduanced Research in Asynchronous Circuits and Systems. IEEE Computer
Society Press, March 1996.

Jim D. Garside. A CMOS VLSI implementation of an asynchronous ALU. In
S. Furber and M. Edwards, editors, Asynchronous Desi,gn Methodologies,vol-
ume A-28 of IFIP Transact'ions, pages 181-207. Elsevier Science Publishers,
1993.

L.A. Glosser and D.W. Dobberpuhl. The Desi,gn and Analysi,s of VLSI Cir-
cuits. Addison-Wesley, 1985.

Ganesh Gopalakrishnan and Prabhat Jain. Some recent asynchronous system
design methodologies. Technical Report UUCS-TR-90-016, Dept. of Com-
puter Science, Univ. of Utah, October 1990.

E. Grass and S. Jones. Asynchronous circuits based on multiple localised
current-sensing completion detection. In Asynchronous Desi,gn Methodolo-
gies, pages I70 I77.IEEE Computer Society Press, May 1995.

Scott Hauck. Asynchronous design methodologies: An overview. Techni-
cal Report TR 93-05-07, Department of Computer Science and Engineering,
University of \Mashington, Seattle, 1993.

Scott Hauck. Asynchronous design methodologies: An overview. Proceedi,ngs
of the IEEE,83(1), January 1995.

Pieter J. Hazewindus. Testi,ng Delay-Insensi,ti,ue Ci,rcuits. PhD thesis, Cali-
fornia Institute of Technology, lgg2.

Henrik Hulgaard, Steven M. Burns, and Gaetano Borriello. Testing asyn-
chronous ciruits: A survey. Integrati,on, the VLil journal, 19(3):111-131,
November 1995.

Calvin J. A. Hsia and C. Y. Roger Chen. Synthesis of asynchronous cir-
cuits testing unique circuit behavior of signal transition graphs. In Proc.
International Symposium on Ci,rcui,ts and Systems, pages 7074 7077, 1995.

I.S. Hwang and A.L. Fisher. Ultrafast compact 32-bit CMOS adders
in multiple-output domino logic. IEEE Journal of Soli,d-State Circu'i,ts,
2a(2) :358-369, April 1989.

C. A. R. Hoare. Communicati,ng Sequenti,al Processes. Prentice-Hall, 1985.

John L. Hennessy and David A. Patterson. Computer Archi,tecture: A Quan-
ti,tati,ue Approach. Morgan Kaufmann Publishers Inc., San Mateo, California,
1990.

Sung Tae Jung, Uun Sei Park, Junk Sik Kim, and Chu Shik Jhon. Automatic
synthesis of gate-level speed-independent control circuits from signal transi-
tion graphs. In Proc. Internati,onal Sympos'ium on Ci,rcuits and Systems,
pages 7477-141{ 1995.

uPKJesl

279

IJUe0a]

IJUeob]

lKBesl

lKdsRAell

IKel7a]

IKese5]

lKKrve2l

ILCT+e5l

lLZBe2l

lMALe4l

lMALesl

IMars6]

Mark B. Josephs and Jan Tijmen Udding. An algebra for delay-insensitive
circuits. In Robert P. Kurshan and Edmund M. Clarke, editors, Proc. Inter-
national Worleshop on Computer Aided Veri,ficati,on, volume 531 of Lecture
Notes in Computer Sci,ence, pages 343-352. Springer-Verlag, 1990.

Mark B. Josephs and Jan Tijmen Udding. The design of a delay-insensitive
stack. In G. Jones and M. Sheeran, editors, Design'ing Correct Circuits, pages

132-152. Springer-Verlag, 1990.

Ajay Khoche and Erik Brunvand. Testing self-timed circuits using partial
scan. In Asynchronous Desi,gn Methodologies, pages 160-169.IEEE Computer
Society Press, May 1995.

S. Karthik, I. de Souza, J. T. Rahmeh, and J. A. Abraham. Interlock schemes

for micropipelines: Application to a self-timed rebound sorter. In Proc. In-
ternati,onal Conf. Computer Desi,gn (ICCD), pages 393 396. IEEE Computer
Society Press, 1991.

Robert M. Keller. Towards a theory of universal speed-independent modules.
IEEE Transacti,ons on Computers, C-23(I):21-33, January 7974.

Joep Kessels. VLSI programming of a low-power asynchronous Reed-Solomon
decoder for the DCC player. In Asynchronous Desi,gn Methodologi,es, pages

44-52.IEEE Computer Society Press, May 1995.

M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. On self-timed
behavior verification. In Proceedi,ngs of ACM TAU 92, March 1992.

Lavi A. Lev, A. Charnas, M. Tremblay, A. R. Dalal, B. A. Frederick, C. R.
Srivatsa, D. Greenhill, D. L. Wendell, D. D. Pham, E. Anderson, H. K. Hin-
garh, I. Razzack, J. M. Kaku, K. Shin, M. E. Levitt, M. Allen, P. A. Ferolito,
R. L. Bartolotti, R. K. Yu, R. J. Melanson, S. I. Shah, S. Nguyen, S. S. Mi-
tra, V. Reddy, V. Ganesan, and W. J. de Lange. A 64-b microprocessor with
multimediasupport. IEEE Journal of Soli,d-State Ci,rcui,ts,30(11):1227-7238,
November 1995.

J.J. Laurin, S.G. Zaky, and K.G. Balmain. EMl-induced delays in digital
circuits: prediction. In Proc. IEEE Symp. on Electromagneti,c Compatabi,li,ty,
pages 443-448, August 7992.

Shannon V. Morton, Sam S. Appleton, and Michael J. Liebelt. An event
controlled reconfigurable multi-chip FFT. In Proc. International Symposi,um
on Aduanced Research in Asynchronous Circui,ts and Systems, pages 144-753,
November 1994.

Shannon V. Morton, Sam S. Appleton, and Michael J. Liebelt. ECSTAC: A
fast asynchronous microprocessor. In Asynchronous Design Methodologi,es,
pages 180-189. IEEE Computer Society Press, May 1995.

Alain J. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. D i,stri,b uted C omp uting, I (4) :226-234, 1986.

220

lMare0l

[MBL+8ea]

[MBL+8eb]

[McAe2]

lMLe3l

[MMs2]

[MMe3]

lMRwe6l

[MU]

[Nane5]

IPav9a]

[PDF+e2]

IPee]

lPGe3l

Alain J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editor, Deuelopments in Con-
currencA and Commun'icat'ion, UT Year of Programming Series, pages 1 64.
Addison-Wesley, 1990.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The design of an asynchronous microprocessor. In Charles L.
Seitz, editor, Aduanced Research in VLSI: Proceedi,ngs of the Decennial Cal-
tech Conference on VLSI, pages 351-373. MIT Press, 1989.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The first asynchronous microprocessor: the test results. Com-
puter Archi,tecture News, 17():95-110, June 1989.

Anthony J. McAuley. Dynamic asynchronous logic for high-speed CMOS
systems. IEEE Journal of Soli,d-State Ci,rcui,ts, 27(3):382-388, March 1992.

Shannon V. Morton and Michael J. Liebelt. A 100 Mips event controlled
ALU. In Proc. 12th Australi,an Microelectron'ics Conference, pages 159-164,
October 1993.

J.V. McCanny and J.G. McWhirter. Completely iterative, pipelined multi-
plier array suitable for VLSI. IEE Proceedi,ngs-G,129(2):a0-46, April 1982.

Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asynchronous
circuits. IEEE Transactions on VLil Systems,l(2):106 119, June 1993.

S. Moore, P. Robinson, and S. Wilcox. Rotary pipeline processors. Electroni,cs
Letters, 143(5) :259 265, September 1996.

University Of Manchester: MU. The Asynchronous Logic Home Page.
http : / /www. cs . man. ac . uk/amulet/async/index . html. E-mail address:
j gars ide@cs . man . ac . uk.

Takashi Nanya. a quasi-delay-insensitive microprocessor: TITAC-L In 1995
Israel Workshop on Asynchronous VLSI, pages 95-102. VLSI Systems Re-
search Centre, Technion - Israel Institute of technology, March 1995.

N. C. Paver. The Desi,gn and Implementati,on of an Asynchronous Micropro-
cessor. PhD thesis, Department of Computer Science, University of Manch-
ester, June 1994.

N. C. Paver, P. Day, S. B. Furber, J. D. Garside, and J. V. Woods. Register
locking in an asynchronous microprocessor. In Proc. Internati,onal Conf.
Computer Desi,gn (ICCD), pages 351-355. IEEE Computer Society Press,
October 7992.

Ad Peeters. The Asynchronous Bibliography. Available for anonymous ftp at
f.tp : / /ftp.win.tue. nllpub/tex/ async .bib. Z. Corresponding e-mail ad-
dress: async-bib@r¿in. tue . nI.

R. Puri and J. Gu. Signal transition graph constraints for speed-independent
circuit synthesis. In Proc. Internati,onal Symposium on Ci,rcuits and Systems,
volume 3, pages 1686-1689. IEEE Computer Society Press, 1993.

227

IPuce0]

lRBe6l

IRice6]

IRon94]

IsKe3]

lsMJ+e4l

lssL+e2l

lssMe4l

ISut8e]

[vBe3]

[vBBe6]

[vBBK+9a]

Douglas A. Pucknell. Fundamentals of Di,gi,tal Logi,c Desi,gn wi,th VLil Ci,rcui,t
Applicati,ons. Silicon Systems Engineering Series. Prentice-Hall, 1990. Editor:
Kamran Eshraghian.

'William F. Richardson and Erik Brunvand. Architectural considerations for a
self-timed decoupled processor. Electronics Letters, 1a3(5):251-257 , Septem-
ber 1996.

William F. Richardson. Archi,tectural Consi,derati,on i,n a Self-Ti,med Pro-
cessor Design. PhD thesis, Dept. of Computer Science, University of Utah,
U.S.A., February 1996.

Marly Roncken. Partial scan test for asynchronous circuits illustrated on a
DCC error corrector. In Proc. International Sympos'ium on Aduanced Re-
search i,n Asynchronous Ci,rcui,ts and Systerns, pages 247-256, November
L994.

O. Salomon and H. Klar. Self-timed fully pipelined multipliers. In S. Furber
and M. Edwards, editors, Asynchronous Desi,gn Methodologies, volume A-28
of IFIP Transact'ior¿s, pages 45-55. Elsevier Science Publishers, 1993.

Robert F. Sproull, Charles E. Molnar, Ian Jones, Bill Coates, and Jon Lexau.
Counterflow pipeline processor project: Special invited session notes. In Proc.
International Sympos'ium on Aduanced Research i,n Asynchronous Ci,rcui,ts
and Systems, November 1994.

Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Ra-
jeev Murgai, Alexander Saldanha, Hamid Savoj, Paul R. Stephan, Robert K.
Brayton, and Alberto Sangiovanni-Vincentelli. SIS: A system for sequen-
tial circuit synthesis. Software Documentation Memorandum No. UCB/ERL
M92f 4I, Electronics Research Laboratory, University of California, Berkeley.,
May 1992.

Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar. The coun-
terflow pipeline processor architecture. IEEE Design €j Test of Computers,
11(3):a8-59, Fall 1994.

Ivan E. Sutherland. Micropipelines. Communi,cations of the ACM,32(6):720*
738, June 1989.

Kees van Berkel. Handshake Ci,rcui,ts: an Asynchronous Archi,tecture for
VLil Programming, vohme 5 of International Series on Parallel Computa-
tion. Cambridge University Press, 1993.

Kees van Berkel and Arjan Bink. Single-track handshaking signaling with
application to micropipelines and handshake circuits. In Proc. Internat'ional
Symposi,um on Aduanced Research i,n Asynchronous Ci,rcuits and Systems.
IEEE Computer Society Press, March 1996.

Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
and Frits Schalij. A fully-asynchronous low-power error corrector for the
DCC player. In Internat'ional Solid, State Ci,rcuits Conference) pages 88-89,
February 1994.

222

[vBBK+95]

lvBH+e5l

[vBKR+91]

[vBRe5]

[vBS88]

[wal6a]

lwEe3l

lwFFe4l

lwHell

lwPSesl

lwsssl

IYBAe6]

Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
Frits Schalij, and Rik van de Wiel. A single-rail re-implementation of a DCC
error detector using a generic standard-cell library. In Asynchronous Desi,gn
Methodolog'ies, pages 72-79.IEEE Computer Society Press, May 1995.

M. Valencia, M. J. Bellido, J. L. Huertas, A. J. Acosta, and S. Sanchez-
Solano. Modular asynchronous arbiter insensitive to metastability. IEEE
Trans acti,ons on C omputers, 44(12) :7456-1461, December 1995.

Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits
Schalij. The VlSl-programming language Tangram and its translation into
handshake circuits. In Proc. European Conference on Desi,gn Automati,on
(EDAC), pages 384-389, 1991.

Kees van Berkel and Martin Rem. VLSI programming of asynchronous cir-
cuits for low power. In Graham Birtwistle and AI Davis, editors, Asyn-
chronous Digital Ci,rcuit Desi,gn, Workshops in Computing, pages 752-210.
Springer-Verlag, 1995.

C. H. (Kees) van Berkel and Ronald W. J. J. Saeijs. Compilation of communi-
cating processes into delay-insensitive circuits. In Proc. International Conf.
Computer Desi,gn (ICCD), pages 757-762. IEEE Computer Society Press,
1988.

C.S. Wallace. A suggestion for a fast multiplier. IEEE Transacti,ons on
Electroni,c C omputers, EC-13: 14-77, 1964.

Neil H. E. Weste and Kamran Eshraghian. Pri,nciples of CMOS VLil Design:
A Systems Perspectiue. VLSI Systems Series. Addison-Wesley, 1993.

Jyh-Ming Wang, Sung-Chuan Fang, and Wu-Shiung Feng. New efficient
designs for XOR and XNOR functions on the transistor Ievel. IEEE Journal
of Solid-State Ctrcuits, 29(7):780-786, July 1994.

Ted E. Williams and Mark A. Horowitz. A zero-overhead self-timed 160ns
54b CMOS divider. IEEE Journal of Soli,d-State Circui,ts, 26(11):1651-1661,
November 1991.

Ted Williams, Niteen Patkar, and Gene Shen. SPARC64: A 64-b 64-active-
instruction out-of-order-execution MCM processor. IEEE Journal of Soli,d-
St at e C i,rcui,t s, 30 (77) :7275-1226, November 1 99 5.

A. Weinberger and J.L. Smith. A logic for high-speed addition. In National
Bureau of Standards C'ircular 591, pages 3-12, 1958.

K. Y. Yun, P. A. Beerel, and J. Arceo. High-performance asynchronous
pipeline circuits. In Proc. Internati,onal Symposium on Aduanced Research tn
Asynchronous Circui,ts and Systems. IEEE Computer Society Press, March
1996.

J. T. Yantchev, C. G. Huang, M. B. Josephs, and L M. Nedelchev. Low-
latency asynchronous FIFO buffers. In Asynchronous Design Methodologi,es,,
pages 24-3l.IEEE Computer Society Press, May 1995.

IYHJNes]

223

[YS8e]

IYYN+eol

Jiren Yuan and Christer Svensson. High-speed CMOS circuit techniques.
IEEE Journal of Solid-State Circui,ts,24(l):62-70, February 1989.

Kazuo Yano, Toshiaki Yamanaka, Takashi Nishida, Masayashi Saito, Kat-
suhiro Shimohigashi, and Akihiro Shimizu. A 3.8ns CMOS 16x16b multiplier
using complementary pass transistor logic. IEEE Journal of Soli,d-State Cir-
cuits, 25(2) :388-395, February 1990.

224

