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Abstract

This thesis is in two parts, both of which are concerned with the design and opti-

misation of telecommunication networks.

The first part discusses the physical design of telecommunication networks in

which the links of the network form a tree structure. Networks of this form, known

as spanning trees, are of importance in many cases. One of these occurs when link

installation is expensive (for instance, due to digging trenches) compared to routing

costs. In this case the cheapest design will be the minimum spanning tree. Further,

minimum spanning trees may also be used as the backbone structure of more com-

plex networks. Several optimisation techniques are used in the investigation of this

problem.

The second part of the thesis discusses the optimal dimensioning and tariffing

of telecommunication networks. In this part an underlying physical structure is

assumed, but the operating company has the freedom to allocate capacity to the

various links and to set tariffs for users. The usual objective used in dimension-

ing such networks is that of minimising network cost subject to grade-of-service

constraints. However, many telephone companies are now operating in a private

enterprise environment and hence wish instead to maximise their profit. This is the

approach we take here. Both analytical and numerical approaches are presented.
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Chapter 1

Introduction

This thesis is in two parts, both of which are concerned with the design and opti-

misation of telecommunication networks.

In the design of telecommunications networks one usually has a set of nodes with

associated traffic demands, and it is desired to connect the nodes by links such that

certain specifications are met and the network cost is minimised. The specifications

usually include a requirement that the capacity of the links included in the design

must be sufficient to carry the traffic demands between every pair of nodes. A cost

per unit of capacity is given for each link, and the cost of the network is then a

function of this unit cost and the traffic carried by each link. We will assume that

the cost of a link is proportional to its capacity.

In Part I of the thesis we will assume that one unit of traffic requires one unit of

capacity, that is, traffic is a deterministic flow which can be completely accommo-

dated if there is enough capacity. In Part II traffic will be assumed to be stochastic

and hence subject to link or path blocking. When this happens capacity may be a

non-linear function of traffic.

One specific type of network design problem, in which the links of the network

form a tree structure, known as a spanning tree, will be discussed in Part I of the

thesis. A spanning tree is a network in which there is a single path from any node to

any other. The case in which the traffic demands and unit costs are arbitrary (not

1



CHAPTER 1. INTRODUCTIO¡\I

all zero and not all equal) and in which the minimum cost spanning tree is desired,

is known as the Optimum Communication Spanning Tbee (OCST) problem.

Networks of this form are of importance in many cases. One of these occurs

when link installation is expensive (for instance, due to digging trenches) compared

to routing costs. In this case the cheapest design will be the minimum spanning

tree. Further, minimum spanning trees may also be used as the backbone structure

of more complex networks or as an initial design for a network. Finding a good

backbone or initial network design is critical.

We will use several optimisation techniques in the investigation of this problem.

They include two random search techniques, namely simulated annealing and genetic

algorithms. Several heuristics will also be discussed. Suggestions for the network

design and solution method to use will be made.

Part II of the thesis discusses the optimal dimensioning and tariffing of telecom-

munication networks. An underlying physical structure is assumed, which may be

designed using the techniques in Part I of the thesis. The operating company has

the freedom to allocate capacity to the various links and to set tariffs for users. The

usual objective used in dimensioning such networks is that of minimising network

cost subject to grade-of-service constraints. However, many telephone companies

are now operating in a private enterprise environment and hence wish instead to

maximise their profit. This is the approach we will take.

In our discussion of optimal tariffing we incorporate the concept of a traffic

elasticity function. This function acknowledges the fact that the traffic offered to the

network is a decreasing function of the tariff charged to users. We also incorporate

the notion of logical links. A logical link uses capacity on a set of physical links

but has a separate link blocking probability and capacity. We have knowledge of

a telecommunications company that is currently investigating incorporating logical

links into their network and hence this work is timely.

A numerical approach is presented to this problem which uses a standard NAG

library routine. An analytical approach is also given which supports the numerical

2



CHAPTER 1. INTRODUCTION

results.

We will discuss the form the thesis will take.

In Chapter 2 we introduce the minimum cost spanning tree problem. Given a

set of nodes and a list of offered traffic between OD pairs a communication tree is a

spanning tree such that each link has sufficient capacity to carry all traffic assigned

to it. The cost of the tree is the sum of the link costs. Each link cost is taken to

be the product of the length of the link and its capacity. The problem of finding

the minimum cost spanning tree is NP-complete. We discuss the representation of

solutions to this problem and the application of a heuristic.

Chapter 3 discusses the first random search technique, simulated annealing. Sim-

ulated annealing algorithms move from one solution to another, with moves that

câ,use a decrease in cost always being accepted and moves which cause a cost in-

crease being accepted with a certain probabilit¡ related to a 'temperature schedule'.

We then discuss the application of this algorithm to the minimum cost communica-

tion spanning tree problem and discuss similar applications.

The second random search technique, namely a genetic algorithm, will be dis-

cussed in Chapter 4. Genetic algorithms are based on the notion of biological

evolution and work with a set of solutions which are combined in some way to form

a new set. We will again discuss the application of the method to the problem and

discuss similar applications.

The results of applying the solution methods are presented in Chapter 5. It is

noted that in a more restrictive formulation of the problem for which the cost per

unit of traffic for each link is uniform, the optimal solution to the problem is in

general a star network. Results are shown for the unrestricted problem for both

Euclidean and non-Euclidean traffic.

Chapter 6 starts the second part of the thesis. In this chapter we present an

approach to optimal dimensioning and tariffing of communication networks. We

choose link capacities, tariffs and the routing strategy in order to maximise the

profit for the company operating the network. The tariffs and grade of service are

3



CHAPTER 1. INTRODUCTION

subject to regulatory constraints. It is assumed that we have an existing network

structure consisting of a set of nodes and physical links. By cross-connecting traffic

through nodes at a high bandwidth rather than multiplexing and de-multiplexing it,

a logical link (consisting of capacity on several physical links) is created. However, it
may be better for an OD pair to take advantage of existing physical links rather than

to initiate its own logical link. In this chapter \rye will also look at an optimisation

procedure for the problem and give a numerical example.

Several results are presented in Chapter 7. The inverse of the Erlang fixed point

approximation is used throughout the analytical and numerical work, and proofs

both with and without the use of an approximation to the derivative are shown.

The main results include a simple formula for the optimal tariff and the fact that

only one of the possible routes (logical or physical) for each OD pair will be used in

the optimal solution.

The problem formulation is extended in Chapter 8 to allow a larger number

of path choices. Traffic may now use a combination of logical and physical links.

We again find a simple formula for the optimal tariff. We also find a formula for

the splitting probabilities at which there is a stationary point. However, it is not

possible to determine whether these splitting probabilities are feasible or whether

the objective function is maximised or minimised at this point. Thus we use a

numerical example to conjecture that the splitting probabilities will be zerof one,,

with only one path for each stream being used. In fact, in the chosen network

design which incorporates logical links, the routing will be shortest path.

Chapter 9 discusses the main results of the thesis and the implications for the

network designs. General strategies for designing and optimising telecommunica-

tions networks that have arisen from the work in this thesis are given.

4
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6

In this part of the thesis, we introduce the minimum cost spanning tree problem,

in which there is a single path from any node to any other. Given a set of nodes and

a list of offered traffic between OD pairs, a communication tree is a spanning tree

such that each link has sufficient capacity to carry all traffic assigned to it. The cost

of the tree is the sum of the link costs. Each link cost is taken to be the product

of the length of the link and its capacity. The problem of finding the minimum cost

spanning tree is NP-complete. We discuss the representation of solutions to this

problem and the application of a heuristic. Two random search techniques, simu-

lated annealing and genetic algorithms, are discussed along with their application

to this problem. The results of applying the algorithms are presented and their

performance discussed.



Chapter 2

Problem formulation

2.L Introduction

In this part of the thesis we will consider one specific type of network design problem,

namely the spanning tree problem. A spanning tree is a network in which there

is a single path from any node to any other. The case in which the traffic demands

and unit costs are arbitrary (not all zero and not all equal) and in which the min-

imum cost spanning tree is desired, is known as the Optimum Communication

Spanning Tþee (OCST) problem.

Hu [36] considered two sub-problems of the OCST problem in detail. The first

sub-problem consisted of the case in which the costs are all equal to one and the

demands are arbitrary, known as the optimum requirement spanning tree. The

second case occurs when the costs are arbitrary while the demands are all equal

to one, known as the optimum distance spanning tree. Hu gave a polynomial-time

algorithm for the first case, which we will discuss later, and stated that the optimal

tree in the second case is a star network.

Many variations of the OCST problem have been considered. One of these is the

Capacitated Optimum Communication Spanning T[ee (COCST) problem in which

an added specification is that each link capacity has an upper bound. Zhang and

,a
I



CHAPTER 2. PROBLEM FORMULATION

Indulska [65], amongst others, have considered this problem and Papadimitriou [55]

has shown it to be NP-complete.

Another specification that can be added is that certain nodes can be connected

by at most a certain number of links, known as a node degree constraint ([25],[45]).

A variation of this, given by Agarwal et al. [4], is that certain nodes are required

to be outer nodes, thus having degree one. They also considered a requirement that

certain pairs of nodes must be directly connected.

Myung et al. [51] considered a variation in which nodes are partitioned into

mutually exclusive and exhaustive node sets and exactly one node from each set

must be included in the tree.

A good summary on trees is the book by Magnanti and Wolsey [49] which dis-

cussed some of the problems above. In particular, the authors discussed the mini-

mum spanning tree problem (link weights, no traffic demands), the rooted subtree

problem (a certain node is chosen as a root node), the Steiner tree problem (nodes

other than terminal nodes may be incorporated in the network), the K-median prob-

lem (limits on the number of node disjoint subtrees), and the C-capacitated problem

(subtrees can contain at most C nodes). They did not, however, discuss the OCST

problem which Johnson et aI. la}] have shown to be NP-hard.

Of the work done on the OCST problem there have been three classes of solution

methods used : exact branch and bound techniques ([5], [20]), a genetic algorithm

(t54]) and a variety of heuristic approaches ([5], [20], [54], [57]). A simulated anneal-

ing algorithm has been used for a similar problem ([21]). Ahuja et al. l5] stated that

the branch and bound algorithm is suitable only for small problem sizes as solution

times gro\4/ exponentially with problem size. We shall discuss these approaches in

further detail in this chapter and in Chapters 3 and 4.

As the number of spanning trees in the solution space for an r¿ node problem

is nn-2,, enumerating all solutions to find the optimum is feasible only for small

problems. Lower bounding techniques have been used to give an idea of the quality

of the solutions obtained by these methods, but in general they do not give very good

8



CHAPTER 2. PROBLEM FORMULATION

bounds and are computationally expensive ([13], [21], [5]). Hence, in the majority

of the literature, the algorithms have been tested against each other.

Algorithms have been tested with both Euclidean and non-Euclidean link costs.

Ahuja et al. [5] stated that the Euclidean problems are more difficult to solve as

there is a large number of near-optimal solutions in Euclidean problems which makes

them inherently difficult. This is a good reason for using simulated annealing and

genetic algorithms for the OCST problem as they are designed to avoid getting

trapped in local minima.

In the next section of this chapter, we formulate the OCST problem and discuss

representations for solutions to the problem. We also discuss various heuristic tech-

niques which may be applied to the problem. In Chapter 3, a general overview of

simulated annealing is given, along with a discussion of its application to the OCST

problem. In Chapter 4, a general overview of genetic algorithms is given, along

with a discussion of its application to the OCST problem. The results from the

implementation of these algorithms for the OCST problem are shown in Chapter 5,

and they are compared with a heuristic detailed in Brown et al. 113]. The genetic

algorithm and the simulated annealing algorithm were also reported in [13]. Inde-

pendently of [13], Palmer and Kershenbaum [54] developed a genetic algorithm for

this problem using, amongst other things, a different representation. The differences

between the two algorithm implementations will be discussed further in Chapter 4.

2.2 OCST problem formulation

Consider a network in which there is a group of cities or nodes n e N joined by a set

of undirected links j e J. A spanning tree ? is a connected network which consists

of the nodes n e N and r¿-1 links j e J.We shall define this set of links that make

up tree 7 to be {7. Defrne s e ,S to be the set of streams or origin-destination pairs

which can be represented by the unordered node pair (o,dr) where or,d, eN.
The arrival rate of calls to stream s is defined to be z" where all calls must be

I



CHAPTER 2. PROBLEM FORMULATTO]V 10

carried. As the network has a tree structure, all calls for stream s g ,S have a unique

path, denoted p' through the tree ?.

When a link j e Jr is removed from the spanning tree two sub-trees are formed.

The set of nodes belonging to one of these sub-trees is defined as ¡/j and the set

of nodes belonging to the other is defined as Fj. The set of links, lc e J, wilh

one end in N¡ and the other inÑ¡ is known as a fundamental cutset of tree ? and

is denoted by (N¡,F¡). For every spanning tree ? there arc (n - 1) fundamental

cutsets labelled (N¡,ñ¡) for j e Jr.
Define (o,,d") € ,S¡ to be the set of streams such that when link j is removed

from tree 7,, o, € "A/¡ and d, eÑ¡. Thus the amount of traffic that uses link j in

tree T is equal to the traffic across this cutset and is denoted by p¡ where

(2.2.1)

Defining the cost per unit of traffic on link j € J to be rn¡ gives the total cost of

the spanning tree 7 to be

Cr: D p¡*¡. (2.2.2)
j€Jr

The optimal communication spanning tree (OCST) problem is the problem of finding

the minimum cost spanning tree ?. There are often numerous closely matched

solutions, which can make solving the problem more difficult.

2.2.L Tree representations

The most obvious choice for encoding solutions to the tree problem is a bit string

where each position in the encoding represents a particular link. A one in a position

implies the link is included in the solution, a zero that it is not. For example see

Figure 2.2.7.

The predecessor encoding is a simple and short way of encoding a tree. To

find the predecessor representation of a tree it is first necessary to choose a root

node. For each node i there is a unique path from that node to the root node. The

uspj D
s€S¡
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Link 1,2 1,3 (1,4) (2,3) 214 3,4)
Link no. 1 2 3 4 5 6

Binary 1 1 0 0 1 0

Figure 2.2.I: Binary encoding for a tree

Figure 2.2.2: Predecessor encoding for a tree

node adjacent to node 'i on this path is called the predecessor of node ,i. The list of

predecessors for all nodes 1, . . . ,.1ü forms the predecessor representation. The root

node is given a predecessor of 0. Figure 2.2.2 gives an example of this.

However, this is not a unique representation for a tree as the encoding will differ

depending on the choice of root node. There are, in fact, l{ different encodings for

each tree, where each node L,. . .,ly' can be the root node. An example of this can

be seen in Figure 2.2.3. By always choosing node 1 to be the root node we have a

unique encoding for trees.

The Prüfer encoding for a tree ? with l/ nodes is a list of N -2 numbers stored

in P("). To obtain the Prüfer encoding from a tree choose the lowest numbered leaf

node i in the tree. Let the node to which node i is connected in the tree be node

i. Add j to the right end of P(T), and remove node i and link (i, j) from the tree.

This is repeated until only two nodes remain in the tree. An example of this can be

seen in Figure 2.2.4.

To obtain the tree from the Prüfer encoding, firstly let P(") be the list of nodes

I 1 2 3 4 5

pred[il 0 1 1 2 3
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(u)

(")

(b)

(d)

4321

a

(b)
(")
(d)

pred[i]
pred[i]
pred[i]

0172
20L2
3102
2 410

Figure 2.2.3: Root choice with predecessor representation

P(T):2 P(T):2 5 P(T):z S Z

Figure 2.2.4: Finding the Prüfer encoding from a tree

not in P(T). Let i be the lowest numbered node in PQ) and j be the leftmost digit

of PQ). Add link (i,, j) to the tree. Remove i from P(") and j from Pg). If j
no longer occurs in P(7) add it toPQ). This is repeated until P(?) is empty and

P(T) contains two nodes, i and j. Add (i,, j) to the tree which is now complete. An

example of this can be seen in Figure 2.2.5.

Another representation, used by Palmer and Kershenbaum [54], uses a node and

link weight encoding. These weightings are used to create a new cost matrix. An

optimisation algorithm is applied to this cost matrix (ignoring the traffics) to find

the minimum spanning tree. To find the evaluation of the solution represented by

this encoding, the minimum spanning tree is then evaluated using the original cost

matrix and the traffic matrix.

This representation encourages certain nodes to be interior and others to be leaf

nodes. The encoding for each solution contains a bias b¿ for every node and b¿¡ for
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P(r):p53 P(T):þ3 PQ):þ P(T):Ø
Pg):/.4 PQ):+2 PQ¡:¡5 Pg):þþ

Figure 2.2.5: Obtaining the tree from a Prüfer encoding

every link in the network. The cost matrix then becomes

C'u¡ : C¿¡ + P1b¿¡C¡s¿v + P2(bi -l b¡)Cyyy¿y (2.2.3)

where Pr and P2 are multiplier parameters for the link and node biases respectively

and C¡¡¡¿¡ is the maximum link cost. The tree that the encoding represents is found

by applying Prim's algorithm l27l to find a minimum spanning tree using the biased

cost matrix. This tree is then evaluated using the original cost matrix to find the

cost of the communication spanning tree.

2.2.2 TYee and star generation

To seed a solution method for the OCST problem, it is often necessary to be able to

generate random feasible trees. It is also often valuable to be able to generate the

best star as its evaluation is often within 10% of the optimal tree's evaluation.

The best star is found by comparing the n star networks. Each node is taken in

turn as the hub node and the cost of this star, where all other nodes are connected

to the hub node, is calculated.

Randomly generated trees are formed by keeping a list of nodes which are in the

tree and a list of the rest which are not. At the start node 1 is the only node in the

'in tree' Iist. A node 'i is then randomly selected from the 'in tree' list and a node

j from the 'out of tree' list. Node j is moved to the 'in tree' list and link (i, j) is



CHAPTE,R 2. PROBLEM FORMULATION l4

tree
In Out of

tree
Links which

can be added
Pred array
1234

1

13
t34

I342

234
24
2

7,4)

)(3,4)
4,2

(1,2)(1,3) (

(r,2)(r,4)(3,2
(1,2)(3,2) ( )

0

01
0 13
0313

Figure 2.2.6: Creating a random tree

added to the tree. This is repeated until the 'out of tree' list is empty and the tree

is complete. This guarantees a feasible solution. An example of this is shown in

Figure 2.2.6. This method also gives a directed tree and thus no repairing is needed

to get a tree or the predecessor array. Starting with node 1 in the 'in tree' list and

adding from there guarantees a feasible directed tree, rooted at node one, but does

not rule out any possible trees.

2.3 Heuristic algorithms for the OCST problem

The heuristics that have been used for this problem have been discussed in Palmer

and Kershenbaum [54], Brown et al. [13], Ahuja et aI. l5l and Dionne and Florian

[20].

Palmer and Kershenbaum's heuristic works on the principle "that one or two

stars are good". The heuristic performs three searches. The first search finds the

best star tree, the second, the best two-hub tree. The third search starts with a

minimum spanning tree (as opposed to a minimum communication spanning tree)

and tries to reduce the number of interior nodes by redirecting links from leaf nodes

until there are no further improvements possible. The heuristic then chooses the

best of these three solutions as its final solution.

The heuristic of Ahuja et al. chooses a node and builds the tree by successively
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adding the link which causes the smallest increase in the cost of the tree as it is so

far. Every link of the tree is then examined, and if interchanging it with a link not

in the tree reduces the overall cost, the link is replaced. This continues until there is

no possible interchange which results in a cost reduction. Ahuja et al. report that

this heuristic is reasonably good computationally and has good accuracy.

This is similar to a heuristic by Camerini et al. 1741. However, the heuristic of

Camerini et al. requires a specialised form of demand matrix and doesn't perform

as well as that of Ahuja et aI. Dionne and Florian's heuristic uses a variation of the

branch and bound algorithm which is computationally very expensive.

Salzborn's heuristic ([57], [13]) is not heavily star based as any star can be

completely reduced and rebuilt to improve the cost of the tree. It is similar to the

heuristic of Ahuja eú al. in that both are two phase algorithms. The heuristic of

Ahuja et al. has a tree-building and a tree-improvement phase; Salzborn's has a tree-

reduction and a tree-improvement phase. It would be expected that these heuristics

would have similar performance and produce similar results, and that both would

outperform the other heuristics.

2.3.I Our heuristic

The heuristic we use by itself and in conjunction with the genetic algorithm and the

simulated annealing algorithm is one designed by Salzborn ([57],[13]) which uses as

its basis a polynomial algorithm and the concept of two-hub trees. The starting tree

for the heuristic is the best two-hub tree. The output is a single solution.

A two-hub tree is a spanning tree in which the hubs h1 and h2 arc connected by

a link and all the nodes are connected to either h1 or h2.

For given hubs, h1 and h2,lhe nodes must be divided into two sets where ht e Xt

and h2 € Xz with the nodes Xn-{h¿} connected to node h¿, i : 1, 2. This division of

the nodes is done by finding the cutset (Xt, Xr) with minimum value. By Ford and

Fulkerson's Theorem [2a] this is known to be equivalent to finding the maximum
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X1 X2

(u) (b) (.)

Figure 2.3.7: Heuristic

flow from hl to h2, for which there are polynomial algorithms of complexity O(n3).

To find the minimum cost two-hub network this process is simply repeated for

each possible pair of hubs, of which there ur" '!þ).

The heuristic then proceeds by selecting a node h with more than one neighbour.

Every neighbour, g¿, of h, and the nodes connected to g¿ when node h is removed

from the tree, is then considered to be a pseudo-node. A pseudo-node is a set of one

or more nodes which is considered to be a single node with the properties of the set

of nodes it contains. The traffic between two pseudo-nodes for instance is the sum

of all the traffics between the two sets of nodes the pseudo-nodes represent.

If we selected node ä1 from (a) in Figure 2.3.7 for this process, the new network

would be (b) with the appropriate properties.

The algorithm repeats the process of choosing every possible pair of nodes in

this new network as hub nodes in an attempt to find a cheaper two-hub network.

If one exists, the links of the network are replaced with those of the cheaper one.

For instance, (b) in Figure 2.3.7 may now become (c). This process continues until

none of the stars can be split with a further reduction in cost.

This heuristic can also be applied such that once this process has stopped, the

reverse procedure is applied. That is, a two-hub network is combined to form a

star if this results in a lower cost network. Again, this continues until no further

reduction in cost can be made.
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2.3.2 Greedy algorithm

A possible addition to the end of a heuristic is a greedy algorithm. The starting

tree for the greedy algorithm is the best tree found by the heuristic. The greedy

algorithm attempts to improve upon this solution by only accepting moves which

cause an improvement in cost. The predecessor representation is used and moves

from one solution to another are performed by choosing one link to remove from the

tree and replacing it by another link which retains the tree structure.

2.4 Other solution methods

For problems in which the search space is discrete and the number of elements is

factorially large it is not possible to explore the search space exhaustively or use

many of the conventional optimisation techniques.

Simulated annealing and genetic algorithms are random search techniques which

differ from other methods in that they allow moves which cause an increase in cost.

This allows them to extricate themselves from (non-global) local minima. They are

also not heavily dependent on the initial solution and are relatively simple to use.

Genetic algorithms are based on the ideas of natural evolution and work with

a set of solutions which are combined in some way. Simulated annealing uses the

concepts of statistical mechanics and moves from solution to solution accepting all

cost decreasing moves and some cost increasing moves.

We will discuss each of these techniques in more detail in Chapters 3 and 4.



Chapter 3

Simulated annealing

3.1 Simulated annealing background

Simulated annealing is a random search technique based on the principles of sta-

tistical mechanics and thermodynamics. These were first linked to combinatorial

optimisation problems by Kirkpatrick et al. 146l in 1983. The explanation of statis-

tical mechanics which follows is mainly taken from [17] and [56].

Statistical mechanics is the study of the behaviour of very large systems of in-

teracting components such as atoms in liquids. At high temperatures the molecules

of a liquid move freely, but if the liquid is cooled slowly enough, known as anneal-

ing, the atoms can line themselves up to form a pure crystal. This is the minimum

energy state.

Let s be a state represented by a list of the spatial positions of the components,

and ,9 be the set of all possible states. If a system is in thermal equilibrium at a

temperature T, the probability p-r(r) of being in configuration s e ,S depends on

the energy E(s) and Boltzmann's constant k, which relates temperature to energy.

This probability follows the Boltzmann distribution giving

FrG): - -7Ðt:-.
Dt¡es s-E(w)lkr (3'1'1)

In 1953, Metropolis et al. [50] applied these principles for use in numerical

18
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calculations. The Metropolis algorithm gives the probability p of moving from con-

figuration s' at time t to a randomly selected configuration s at time ú f 1 as

Prls)
(3.1.2)

(3.1.3)

Hence, if

o E(s) < E(r'), then as p) I, configuration s is automaticallyaccepted.

o E(s) > E(t'), then as p 17, configuration s is accepted with probabilityp.

Thus higher energy configurations can be accepted to avoid entrapment in local

minimums, but this becomes less likely as the temperature decreases and low energy

states dominate due to the Boltzmann distribution. As ú -+ oo, the probability of

being in configuration s is p-7(s), regardless of the starting configuration. Thus the

distribution of configurations generated converges to the Boltzmann distribution,

see [26].

Enough time must be spent at each temperature, especially freezing point, to

reach thermal equilibrium, otherwise the probability of obtaining a very low energy

configuration is reduced. This is known as the annealing schedule.

For a given sequence of temperatures {[], Geman and Geman [26] showed that

the annealing schedule with Tt + 0 as ú -+ oo and T¿ > cllog(t) for a large constant

c is sufficient for convergence. The probability that the system is in configuration s

as ú J oo is then p-o(s) but to get acceptable results less conservative schedules can

be used.

In optimisation problems, the energy function is the objective function, the con-

figuration is the solution representation, the temperature is the control parameter

which regulates the probability of accepting a cost increasing move, and a low en-

ergy state is a near optimal solution. There are four components of the simulated

annealing algorithm which are listed below.

p
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1. The representation of solutions.

2. A move set to replace one solution by another.

3. An objective function

4. An initial value for the control parameter ?s and an annealing schedule to

lower T¿ after a certain number of attempted or accepted moves.

These are no\¡/ discussed in more detail.

3.1.1 Representation

The encoding used to represent the solutions to the problem can influence the sim-

ulated annealing algorithm greatly. It must be chosen with the other components

of the simulated annealing algorithm, such as the move set and the evaluation, in

mind. Any possible solution must be able to be encoded and decoded quickly and

easily. It is preferable that each solution is represented uniquely to avoid unnecessar-

ily enlarging the solution space. The representation must facilitate quick and easy

moves as the simulated annealing algorithm will try a very large number of moves

even though it will only accept a small proportion of these. For the same reason

the encoded solution's evaluation, or the difference between it's evaluation and the

current solution's evaluation, must be able to be calculated quickly. Small changes

to the representation should also cause small changes to the solution it represents

to allow the algorithm to take both small steps, when nearing the optimal solution,

and large steps, when further âway.

3.t.2 Move set

Let ,S be the set of all feasible states. Replacing the current solution s € S with

another solution s' € ,S is known as a move. For each s e S there is a set of possible

moves that can be made. These define the neighbourhood of s. The move set must
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be such that any state can be reached from any other state via a sequence ofmoves.

Like the representation, the move set is very important and as previously discussed,

the moves and their evaluations must be able to be performed quickly and easily.

3.1.3 Objective function

Each of the solutions should be associated with a unique value via an objective

function.

3.L.4 Schedule

The main concepts of the annealing schedule have been mentioned in the discussion

of statistical mechanics. It was noted there that the simulated annealing algorithm

works by starting with an initial temperature T¡ which is decremented after a certain

number of moves until a stopping criteria is met. Whilst moves that cause a cost

decrease are always accepted, moves which cause a cost increase are accepted with

probability p which is dependent on the magnitude of the cost increase, Boltzmann's

constant, k, and the current temperature, ?. As ? decreases the probability p of

accepting a cost increasing move also decreases.

There âre several ways of determining how many moves should be investigated
ftoouun qs aStp.

at a certain temperature,n One is'to choose a certain number of solutions to be

accepted before decreasing the temperature. In this case the number of solutions

examined at each step will increase as the temperature decreases and the criteria

for accepting moves becomes tighter. Another method is to examine a number

of moves comparable to the size of the neighbourhood. It is also possible to use

experimentation. One way of doing this is to slowly increase the number of ,¡oves

taken at each temperature. When the average scores of the solutions are independent

of the number of moves made, it is possible to assume that enough moves have been

made to scan the cost distribution at equilibrium.

There are also several ways of choosing a method of reducing the temperature
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at each step. A quick and simple method is to replace T¡ by o7¡. Several authors

have used this method, amongst them, Ackely [3, p177] and Press eú ¿1. [56] with

a : 0.9, and Ersoy [21] and Aarts and Korst [1] with 0.75 < o < 0.gg. Other

methods suggested by Press eú ø/. include selecting a total number of moves K
to investigate and after m moves at that temperature and k moves in total, set

Tk+t:7ì(1 - klK)" where d,:7,2 or 4. Larger values of o cause the simulated

annealing algorithm to spend more iterations at a lower temperature. Press eú ø1.

also suggest that after every 7r¿ moves, Tk+t: þ6- /6), where B is a constant of

order 1 determined by experimentation, fi is the best function value at the current

temperature and /6 is the best function value so far. Another method would be to

consider the number of moves that are being accepted at each temperature and the

cost distribution at that step.

The initial temperature ?¡ should be chosen such that the majority of moves are

accepted. This can be calculated by generating random solutions and setting ?o to

be considerably larger than the largest difference in cost encountered.

As ? -+ 0 the simulated annealing algorithm moves between solutions with costs

close to or equal to the global minimum. A possible stopping criteria is when the cost

remains constant, that is, no moves are accepted, after a fixed number of changes in

temperature. It is possible to then examine all the solutions in the current solution's

neighbourhood or to restart the algorithm with the current solution. The results of

restarting the algorithm hawbeen examined in [56] where it is found to be beneficial

on some occasions and not on others.

The following schedules are amongst those that have been used for optimisation

problems. Ackley 13,p7771used To - 100,Qrrirr:0.1,a:0.9 and set the number

of rqo,re= per temperature to be n, which is the number of variables in the problem.

Selman and Hirst [60, p151] used ?o : 10000, T': 4.0,TL: 2.0 and then decreased

T by 0.2 until T : 0.6. The number of rnoves per temperature was 2000. Touretzky

and Hinton [63, p16 ] used ?:300 for 2sl<ps ,T:32 for 10 sËps, and ?:0.1
for 4 sleps. Although this is not a true annealing schedule they reported obtaining
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good results. Press et al. 156l changed the temperature ? after 100r¿ moves or 10r¿

successful moves.

A rule of thumb suggested by Ackley [3, p173] that can be used if the simulated

annealing algorithm is to be used for many problems is to choose parameters such

that they have constant value, or are dependent on /t (dimensionality of the function

space) or the value depends on the other parameters. These are then hand-tuned.

However, Ackely also notes that "It is perfectly possible that there are parameter

values that would produce better average performance than the values I arrived at.

Parameter tuning is more of an art than a craft."

Hajek [32] showed that for simulated annealing to find the global optimum an

infinite number of moves are required.

3.1.5 Application to Markov chains

As seen in the previous section, the schedule is usually determined by trial and error.

By modelling the simulated annealing algorithm as a Markov chain, and using some

, weak assumptions, a schedule can be devised which is problem independent. In

simulated annealing there is a current state. The probability of being in this state

depends only on its score, the score ofthe previous state and the value ofthe control

parameter ?. Thus, the sequence of states generated is a Markov chain in which

the next state does not depend on the states that preceded the current state. The

transition probability that s will be the next state given that s' is the current state is

r(s, s',7). Two states that are not connected by a move have a transition probability

of zero. By requiring chain reversibility, and symmetric and reflexive moves, the

simulated annealing algorithm can be modelled as a homogeneous Markov chain,

see [53].

Using expected values, average scores, score variance and the accessit$t#"*ì
in the algorithm's run, the initial value, the decrements and the final value of ? can

be estimated and updated during the run of the algorithm.



CHAPTER 3. SIMULATED A]V¡\IEA¿I]VG 24

Although this guarantees good results, it appears that there is little necessity

for using this more complicated schedule as, in general a suitable schedule can be

found with relative ease.

3.1.6 Heuristic

It is also possible to use a heuristic at the start or end of the algorithm. Using a

heuristic at the start of the simulated annealing algorithm is similar to starting from

a local minimum. Therefore it is possible to use a lower temperature than usual,

and it is as though the algorithm is being started part way through.

A heuristic can also be used at the end of the algorithm with the final tree as

input. The heuristic then attempts to improve upon this solution.

3.2 Simulated annealing for the OCST problem

3.2.L Representation

Among the possible representations in Section 2.2.1that could be used for the OCST

Problem, we chose the predecessor representation with node one being the root

node.

3.2.2 Move set

The move from one solution to another consists of replacing a randomly selected link

from the tree with another belonging to its fundamental cutset. This is equivalent

to adding a link not in the tree and removing a link in the cycle that is formed.

The links in the cycle may need to be redirected if the link added has node one

as an endpoint. The other links will not need to be redirected. This move ensures

feasibility and allows quick calculation of A, which is the change in cost between

the current solution and the one being examined.
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As any link may be replaced by any other link that creates a feasible tree using

this representation, using node one as the root node does not restrict the move set

in any way.

We also tried restricting the moves to a smaller set where the only links that

can be removed are those that are incident with a leaf node. This still allows every

possible solution but leads to premature convergence due to the small step size and

restricted move set.

3.2.3 Initial tree

The initial tree can be selected in several ways. It can be randomly generated, the

lowest cost star can be used, or the heuristic can be used as in Sections 2.2.2 and

2.3. The cost of this initial tree is then calculated by finding the n - 1 fundamental

cutsets and the traffic crossing them using equations (2.2.1) and then using (2.2.2).

The traffic on each cutset is recorded.

3.2.4 Objective function

A move is then made from this tree fi to a new tree 71. The change in cost can

be calculated without calculating the traffic on each of tree 72's links. The traffic

on the link that is added to tree Tz will be the same as that of the link that was

removed from tree ?r as they have the same fundamental cutset. The traffic on

links that are not in the cycle will be unchanged as their fundamental cutsets will

remain unchanged and thus these are known from tree fi. Hence it is only the

links in the cycle, excluding the link that was added, for which we need to find the

new fundamental cutsets, and hence the traffic they carry. This makes finding the

change in cost A between the two trees very quick which is necessary for simulated

annealing algorithms as they try a very large number of moves.
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Figure 3.2.1: Simulated annealing move

3.2.6 Example

Figure 3.2.1 shows how the moves are performed. The link that has been chosen to be

removed is (1,2). The fundamental cutset is then represented by ({2,4},{1,8,5})

and consists of the links (2,7),,(2,3), (2,5), (4,1), (4,3), (4, b). Any of these links

can be chosen to replace the one being removed, except itself. Link (3,4) has been

chosen. The links in the cycle in the predecessor array are then redirected.

Link (3,4), which was chosen to be added must now carry all the traffic link

(1,2) was carrying since these two links have the same fundamental cutset. The

other links in the cycle, namely (1,3) and (2,4) must have the traffic they carry

re-evaluated as their fundamental cutsets have changed. Link (3,5) is not in the

cycle and hence carries the same amount of traffic as before the move and does not

need re-directing. The paths from the root node, node one, to the nodes in the cycle

have changed causing the links in the cycle to need to be redirected. The cutsets

and the predecessor arrays for both trees can be seen in Figure 3.2.L.

pred[i]
72345
0 413 3
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3.2.6 Schedule

Through extensive testing of the simulated annealing algorithm, we decided to use

a quasi simulated annealing algorithm to decide on the initial temperature. This

was done by choosing the temperature which accepted I of the moves at the first

temperature which resulted in a solution with higher cost than the previous solu-

tion, and rejected J of these solutions. This temperature was then passed to the

simulated annealing algorithm. Better results were achieved using this method than

the generally accepted I , I method. We also ran the simulated annealing algo-

rithm with a temperature of 10n and compared the results, where n is the number

of variables. The algorithm was tested using 100n steps per temperature, with each

temperature r being replaced by 0.9r after these 100n steps. The algorithm was

allowed to run until a minimum number of 40 temperature steps had been tried or

until no change occurred in the best solution after 10 temperature changes.

3.2.7 Simulated annealing for a similar problem

Erosy and Panwar [21] used a simulated annealing algorithm to design minimum-

delay spanning tree topologies for the interconnection of LANs. They assumed

that there was a certain number of LANs which need to be connected and a traffic

requirement matrix. They attempted to find the spanning tree with the minimum

average network delay for the given requirements. They also extended this to design

the overall LAN/MAN topology.

The move set that Ersoy and Panwar used is the same as ours, but as they

assumed fixed capacities, they only considered the move if it was feasible. Their

control parameter was decremented usingT¡¡1: o¿T¡1 k:0,7,2... where 0.75 <

o ( 0.99, after acceptance of a set number of moves. Hence, the schedule they used

is also similar to ours.

They tested their simulated annealing algorithm on problems with 6, . . . ,90

LANs, and various traffic patterns, and compared their solutions to a local search



CHAPTER 3, SIMULATED A]V¡úEA¿I¡\IG 28

algorithm and a lower bounding technique. The gap between the simulated anneal-

ing algorithm and the lower bounding was between 18.2 ond67.6%. They conjectured

that this gap was mainly due to the lack of tightness of the lower bound.

The simulated annealing algorithm outperformed the greedy local search in all

cases. They also compared their results to 10,000 randomly generated solutions and

found that the simulated annealing solution was always better than the best random

solution. Ersoy and Panwar stated that they believed, based on these comparisons,

that the simulated annealing algorithm results were very close to optimal. As their

implementation and schedule are similar to ours, this givesus further faith in this

method.



Chapter 4

Genetic Algorithms

4.t Genetic algorithm background

A genetic algorithm is a random search technique which deriues from the idea of

biological evolution. A population evolves and changes by parents having children

which replace the previous generation. The ne\4/ generation is hopefully fitter than

the previous one due to a bias which causes fit parents to produce more offspring
Da¡eñts

than thos'enwhich are less fit.

Genetic algorithms are different from other optimisation procedures because they

work with a set of solutions rather than an individual current solution.

In a genetic algorithm the parents and children are represented by chromo-

somes, each of which encodes a particular solution to the problem in question.

The cost of each chromosome is calculated by an evaluation function. A fitness

function is then used to scale the evaluations so that the best chromosomes do not

dominate the population.

An initial population of size P is generated first. Each of the P chromosomes

is chosen to be either a random feasible solution to the problem or a heuristically

created solution encoded as necessary. A number of children, C, no larger than P,

to be created at each generation is also chosen. P - C is known as the generation

29
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gap. These children are created by combining or changing parents via reproductive

methods called operators, where each of the operators has a certain likelihood of

being used.

When C children have been created any duplicate children are removed and new

children created as before to replace them. These C distinct children now replace the

least fit C parents in the generation. The C new members of the population are then

evaluated and the ne\ry generation is complete. This process of creating C children

and updating the population continues until a user-specified total of T chromosomes

has been created. The best solution found is recorded and updated during the run

of the algorithm. At the start of the run the chromosomes are extremelv varied.

Towards the end the population begins to converge.

The number of children to be created, the population size, the total number of

children to create, the generation gap and the operator rates are the main param-

eters of the genetic algorithm.

In the next five sections we will look at the main components of the genetic

algorithm in greater detail.

4.LJ Chromosome encoding

As noted earlier, solutions to the problem in question are encoded in a string called a

chromosome. The encoding used to represent the solution must be chosen carefully

as it has a large impact on the performance of the genetic algorithm. The several

rules with which the encoding must comply are now described.

Each chromosome must represent a solution to the problem which can be decoded

easily to allow its evaluation. Any possible solution must be able to be encoded

by the representation and created using the operators. The representation should

be unbiased, by representing each solution an equal number of times, preferably

uniquely. The encoding should also allow good components of the solutions to be

combined in an attempt to create better solutions. Small changes to the chromosome
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should only cause small changes to the solution which it represents. This requirement

is known as locality.

If a chromosome represents an infeasible solution, it can either be repaired to

represent a feasible solution or left as is. Repairing chromosomes is time consuming

and allowing infeasible solutions may confuse the genetic algorithm. Thus most

genetic algorithm theory suggests that allowing infeasible solutions is best avoided.

Davis [16, p88] stated that "An algorithm that generates many illegal solutions will

perform $/orse than one that generates no illegal solutions".

The most frequently used genetic algorithm encoding, and the one about which

there is the most theory, is the bit string. (For example, if the decimal number 11 is

encoded as a bit string it would be 1011.) However, many researchers have obtained

better results by using other encoding techniques. Davis [16, p62] explained that the

reâson that bit strings retain their popularity in spite of this is that their simplicity

makes them easy to create and manipulate and allows genetic algorithm theories

to be more easily proven. Another advantage is that, as they are not problem

specific, they allow a genetic algorithm to be used for multiple problems without

modification.

The success of genetic algorithms is due to their ability to combine the good

components of solutions to create better ones. Goldberg [30, p19] and Holland [34],

[35] described these solution components as schem ata, and the set of possible values

an element of a chromosome may contain as the alphabet. A bit string encoding

has the alphabet {0,1,*}, where * is known as the don't care symbol and 00110 and

10111 contain, for example, the schema *011*. Alternatively, we can say that the

schema *011* represents the set of strings {00110, 00111, 10110, 10111}.

Goldberg [30] gave a rule for choosing the alphabet called the "Principle of Min-

imal Alphabets". This suggests that the smallest alphabet which can represent the

problem should be used. Using this principle encourages use of the binary alphabet

since the smallest alphabet that can be used to represent any problem would have

two symbols. Goldberg also states that the binary encoding maximises the num-



CHAPTER 4. GENETIC ALGORITHMS 32

ber of schemata available to the genetic algorithm. This can make recognition of

patterns that lead to good solutions easier.

4.I.2 Evaluation and fitness functions

Each chromosome is uniquely associated with a score obtained by an evaluation func-

tion. In optimisation problems this is the objective function. Using these values as

the fitnesses of the chromosomes, however, may lead to fit chromosomes dominating

the population to too great an extent, causing a loss of diversity and entrapment in

a local minimum. For this reason the evaluations are scaled to obtain the fitnesses.

There are several ways of doing this, including linear scaling, sigma truncation and

power law scaling [30, p124], [16], [18].

Let us define / to be the fitness or evaluation, /' to be the scaled fitness and /
to be the average fitness.

In linear scalrng , the scaled fitnesses are f' : a,f +b. The coefficients a and

å are chosen such that the evaluation and scaled average fitnesses are the same, and

the maximum scaled fitness is an integer multiple of the average fitness. Caution

must be taken to avoid negative fitnesses.

sigma (o) truncation uses pop,lationd'laffi'g;ttik*lnß# l ut

using the equatioî Í' : f - (î - ""),where 
c is a constant which is a reasonable

multiple of the population standard deviation (usually between 1 and 3). Negative

results are then arbitrarily set to zero.

In power law scaling, the scaled fitness is some specified power of the raw fitness

/. Thus f' : fk where k is problem dependent and may need to be changed during

the course of the run.

Baker [8] also tried a method in which each chromosome in the population was

given a fitness value which \4ras a function of the chromosome's objective function

value only. He showed that this method gives the same resistance to early conver-

gence and domination as normal selection schemes used with scaling procedures.
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Goldberg [30] noted that "This method essentially disassociates the fitness function

from the underlying objective function; however, the direct link assumed between

fitness and objective function is not grounded in theory and the ranking procedure

does provide a consistent means of controlling offspring allocation. "

Thus, chromosomes are ordered by their evaluations from best to worse (in a

minimisation problem this is from least costly to highest cost). They are then

assigned a fitness from .F' to / decreasing AV(F - f)Íp - !, for instance. This gives

a larger spread in the solutions than using I,2,...,P as the fitnesses. Some higher

weighting may be given to the best chromosomes to encourage best schemata to

reproduce and combine.

4.L.3 Selection of mates and operators

There are several ways of choosing chromosomes to mate. Goldberg [30, p122] listed

S ix of these which we will discuss below. The expected number of offspring for

each string is e¿ : f¿lÍ assuming that the entire population is reproduced each

generation.

1. Stochastic selection with replacement. This is also known as roulette selection

where each parent is allocated a sector of the roulette wheel depending on

their fitness. The wheel is then, in effect, spun to choose a parent.

2. Stochastic sampling without replacement. Each time a string is selected for

mating, it's expected offspring count is decreased by 0.5. When the offspring

count is less than zero, the individual is not available for selection. This forces

the number of offspring for each string to be less than f I Í + t.

3. Deterministic sampling. Each string receives int(e¿) offspring. The population

is then sorted according to the fractional part of e¿ and the remainder of the

offspring are drawn from the top of the list.
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4. Stochastic remainder sampling with replacement. Each string receives int(e¿)

offspring. The fractional parts of the expected values are used in a roulette

wheel to give the remainder of the offspring.

5. Stochastic remainder sampling without replacement. Each string receives

int(e¿) offspring. The fractional parts of the expected values are treated as

probabilities. Bernoulli trials are performed using the fractional parts as suc-

cess probabilities. For instance, if a string has an expected value of 1.5 then

it gets one copy for certain and another with probability 0.5. This continues

until the population is full.

6. Stochastic tournament. Successive pairs of individuals are selected using a

roulette wheel. The string with higher fitness is inserted into the population.

Goldberg states that stochastic remainder sampling without replacement appears

to be the mostly widely used and accepted method.

4.I.4 Initial population

It is widely accepted by most genetic algorithm practitioners that the initial popu-

lation should be randomly generated. There are two main reasons for this. Firstly,

much of the work done on genetic algorithms to date involves their qtility under

the most challenging circumstances, where there is no problem specific knowledge

available. However, Davis and Steenstrup [17, p3] suggested that "For industrial

applications, it may be expedient to initialize with more directed methods."

The second reason for random generation is that incorporating high value chro-

mosomes into the initial populatifipínqilà'Fìâ''."rly convergence due to good

schemata dominating the population. However, it has been acknowledged by Grefen-

stette [31, p45], Braun [12, p131] and Lienig and Brandrl4T, pbg6] amongst others,

that as long as there is sufficient variety in the initial population, seeding can be

a valuable tool for the genetic algorithm. Used in conjunction with operators and
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operator rates that encourage diversity and a fitness function that does not allow

fit chromosomes and schemata to dominate, seeding can speed up convergence and

help to obtain better solutions.

4.L.6 Reproductive operators

Reproductive operators are used as a means of increasing the fitness of the pop-

ulation by changing a chromosome by some means or by combining together the

good schemata. The most commonly used operators are crossover and mutation.

Problem specific heuristics are sometimes used as operators to incorporate problem

specific knowledge into the genetic algorithm. These operators are no\M discussed in

more detail.

Crossover

Crossover is used to combine together the good schemata in chromosomes. Gener-

ally, two parents are chosen to mate creating two children which have some of the

characteristics of each parent. It is hoped that the child will receive the best of the

schemata from each parent thus creating a fitter child chromosome.

There are many different ways of performing crossover but the ones which are

most often used, and about which there is the most theory, are 1-point, n-point and

uniform crossover. These have been designed for, and mainly used in conjunction

with, binary string representations. In l-point crossover two parents are selected

and a crossover point is randomly chosen. One child receives the schemata of the

first parent before the crossover point and the schemata of the other parent after

the crossover point. The second child receives the opposite of this. For example,

performing crossover on the two bit strings below

1 1 0 1 1 011 1 1 0 0 0

0 1 0 0 1 110 1 0 1 0 1

1
crossover point
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glves

Similarly, n-point crossover is performed by selecting n crossover points with

schemata taken from each parent in turn at these points. Uniform crossover differs

in that each bit fl gæ of the child chromosome is taken randomly from either

parent 1 or parent 2. In the example below the crossover pattern indicates from

which parent child 1 receives each bit (with child 2 receiving the opposite). A '-'
indicates the bit is the same in both parents. Performing uniform crossover on two

strings where

parent 1 :

parent 2 :

with
gives

crossover pattern : 2 2 27 72 1

child 1

child 2

One-point crossover works on the assumption that interacting genes are placed

together on the chromosome, and so uniform crossover is much more disruptive

as it breaks up these genes. However, for many problems it is not known at the

outset which genes are interacting and should be placed together. Thus in uniform

crossover, whether the schemata are short or not is irrelevant. With l-point crossover

this is an important requirement for the encoding.

Until recently much of the work done involving genetic algorithms used l-point

crossover. More recent work has investigated the ability of uniform crossover and

has found it to be superior in several situations. One of these is when disruption

is necessary due to the population converging. For instance, when the population

size is small the genetic algorithm will converge more quickly, possibly to a local

minimum. This is overcome by using uniform crossover which allows the genetic

algorithm to visit a more diverse range of solutions in the search space.

110110
010011

010101
111000

110110111000
010011010101

010011111100
110110010001
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Uniform crossover is also more likely than l-point crossover to produce children

that differ from their parents when the population is converging. De Jong and

Spears [19, p43] stated that "long term performance can frequently be improved

at the expense of short term performance by selecting more disruptive crossover

operators."

Syswerda [62] and Eshelman eú ¿/. [22] also investigated the use of uniform

crossover and both tested it against 1 and 2 point crossover on several problems.

They both concluded that in general it is superior and when in doubt should be

used.

Mutation

The mutation operator changes one parent in some way to form a child. Mutation

introduces variety into the population to avoid premature convergence, and possible

loss of solutions, or parts of solutions ([SO]).

Mutation changes a chromosome in an attempt to introduce diversity into the

population. In binary string mutation, a bit is mutated in a chromosome by flipping

its value from a 1 to a 0 or vice versa. Mutation allows schemata, other than those

already present, to be introduced into the population and can cause relatively small

or large changes to the evaluation of the chromosome and the solution it represents.

For instance, using binary notation and simply letting it represent its equivalent

base 10 number, gives 0111 : 7. Mutating the first bit to a 1 gives 1111 : 15,

whereas mutating the last bit gives 0110 : 6. Bit mutation is usually applied after

crossover to the chromosomes that are created. Each bit is mutated with a certain,

usually small, probability.

Heuristic

In hybrid genetic algorithms, a heuristic is incorporated to provide guidance to an

otherwise random search technique. This can take the form of an operator known

as knowledge based mutation, where a parent is altered via the heuristic, [61], or
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the heuristic can be applied to the chromosome of the final generation which has

the best evaluation [47].

Another alternative is applying the heuristic to every member of every genera-

tion ([16, p57],[62],[64]). Inayoshi and Manderick 137, p623] used this method and,

comparing their results with a local search method, simulated annealing and a non-

hybrid genetic algorithm, find the hybrid genetic algorithm, in conjunction with

uniform crossover, consistently outperforms the other algorithms.

Jog et al. [39, p113] investigated whether this superior performance of hybrid

genetic algorithms is simply due to the effectiveness of the heuristic or a combination

of the properties of the genetic algorithm and the heuristic. They concluded that

incorporating the features of the genetic algorithm, such as crossover, substantially

improved the performance with convergence time decreasing. The combination of

the heuristic with operators such as crossover allows good schemata to be combined

early whilst still allowing worse offspring to be introduced thus avoiding convergence

to a local, but not global, minimum.

Although a heuristic may outperform a genetic algorithm [33, p231], a hybrid

genetic algorithm guarantees solutions at least as good as the heuristic.

4.L.6 Parameters

There are many parameters in a genetic algorithm which need to be set. They

have a large controlling effect over how the genetic algorithm works and how well

it performs. Although some work has been done on finding universally acceptable

parameters for bit strings with l-point, n-point and uniform crossover, choosing

parameters is still a difficult and time consuming task about which little is known

[5S]. Each of the parameters is dependent on the others and the operators used,

making this a still more difficult task.

The parameters which need to be set include those listed below, although there

are many more which can be used or required which further influence the perfor-
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mance of the genetic algorithm.
-I", <oni.rn<tb", 

^ri*h 
tlr t<nolt^ r+ +h" chmnosa.'¡cs.

The population size gives the number ofchromosomes in e"ach generation.nit

determines the size of the search space and the number of schemata present in each

generation with which the genetic algorithm can work. One would think that a

population size which is too small may lead to early convergence due to lack of

diversity in the population, and a population size which is too large would take a

long time to run and converge, although it would be more likely to reach the global

minimum. Davis [16, p3a7] stated that his experience indicates, however, that this is

not necessarily true, and that "the most effective population size is dependent on the

problem being solved, the representation being used, and the operators manipulating

the representation."

By performing reproductive operations on the current population to form off-

spring, which are then incorporated into the population, a ne\l/ generation is formed.

The genetic algorithm is run until a certain number of generations has been cre-

ated. It is expected that the more generations for which the genetic algorithm is

run, the fitter the population.

The generation gap determines how many of the current population will be

replaced by their offspring. The r least fit chromosomes in the current popula-

tion are removed and replaced by offspring. Replacing all but one of the current

population by offspring is known as elitism. Retaining a small number of the best

chromosomes from generation to generation ensures that good schemata survive en-

couraging higher fitness in future populations. This may lead to early convergence

if these fit chromosomes are allowed to dominate and for this reason the evaluations

of the chromosomes are scaled.

The next two parameters relate to the operators and their frequency of use. The

crossover rate is the probability that crossover is selected to mate two chromo-

somes. As crossover is used to combine the good schemata in the population, a high

crossover rate will generally lead to quick, but possibly premature, convergence. In

general, crossover is used to create two children. If it only creates one this will affect
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the rate at which it is used.

The mutation rate is the probability that each of the genes of a child created

by crossover is mutated. There is an alternative definition which states that it
is the probability that mutation is performed on one randomly chosen gene of a

chromosome from the population. This definition makes it possible to keep track

of how many times each operator is used by keeping the operators separate. Davis

[16] suggested this as a less confusing way of defining operator rates. As mutation is

used to introduce diversity and new schemata into the population, a high mutation

rate will slow down convergence but maximise diversity, avoiding early convergence.

Many experiments and some theoretical work have been done on the optimal

parameter settings for a genetic algorithm. In general, population sizes have ranged

from 20-100, generations from 40-100, mutation rates from 0.0001-0.5 and crossover

rates from 0.65-0.85. Larger populations and generation numbers have been tried,

for instance [58], with such experiments recorded as taking anything up to 1.5 CPU

years on a Sun.

Part of the difficulty in determining parameter values lies in their interaction.

Changing one parameter changes the performance of all the others. For instance,

increasing the generation gap is a guaranffioo¿ schemata will remain in the pop-

ulation from generation to generation [16, p38]. This allows the mutation rate to

be increased and the crossover operator used to be more disruptive. Alternatively,

a larger population can be combined with operators which are less disruptive than

a smaller population [58, p52]. Also using a heuristic will cause higher convergence

in the population so the operator rates can be increased to increase diversity.

It can be useful to modify the operator rates over the run of the genetic algorithm.

At the start when the population is random and hence diverse, a high crossover rate

and a low mutation rate will guide the genetic algorithm's search. Increasing the

mutation rate, and decreasing the crossover rate, towards the end of the run will

avoid premature convergence by maintaining diversity. This can be done by linear

interpolation with the rates at the start and the end of the genetic algorithm's run
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set.

Meta genetic algorithms have been used to set parameter values, with the chro-

mosomes containing values for the parameters. The evaluation function value is

determined by running the original genetic algorithm with these values. However,

this is extremely time consuming as it will require the original genetic algorithm to

be run mâny times.

It has been acknowledged that this difficulty with setting the parameters is a

downfall of genetic algorithms. Davis [15, p61] noted that "It could take longer to

derive parameter values tailored to one's problem than the time available for solving

the problem itself." It looks unlikely that this will change. De Jong and Spears [19,

p47] also noted that "there is very little likelihood of finding globally correct answers

to questions such as the choice of population size and crossover operators." A final

comment worth noting from [16] is "At present genetic algorithms are as much an

art as a science".

4.2 Genetic algorithm for the OCST problem

4.2.L Chromosome encoding

As discussed in the general representation section earlier, using the widely accepted

bit string encoding enables us to incorporate the wealth of knowledge and experience

already gained in their use. However, there are problems associated with the use of

the bit string encoding for this problem.

Palmer and Kershenbaum [54] noted that, for a network with ,n/ nodes, the

process of transforming a tree to a bit string representation and vice versa takes

o(N') steps and that a randomly created bit strins - 
îîtä.t#Li$:.îî,¿[r..

In fact, they stated that the probability that a random frítimËp;ir-f J'i-åie.t

represents a tree is O(Z-tw(N/2-tos2(N))l). Specialised crossover operators are also

required using this representation to avoid infeasible non-tree solutions from being
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Figure 4.2.7: Binary crossover

created. An example of how this can occur is given in Figure 4.2.7 where crossover

is performed on the two strings shown. Davis [16, p55] stated that "Although

genetic algorithms using binary representation and single-point crossover and binary

mutation are robust algorithms, they are almost never the best algorithms to use

for any problem." This leads us to investigate the other encodings in Section 2.2.L

The Prüfer representation is unique, unbiased and always represents a tree. How-

ever, this encoding possesses little localit¡ allowing offspring to differ greatly from

their parents. Julstrom [41] used this representation for the Steiner tree problem

with limited success. For this reason, this encoding will be discussed no further here.

Palmer and Kershenbaum [27] used the node and link weighted representation

and tested their GA with the parameter P1 set to zero. They noted in their conclu-

sions that this "representation has an inherent bias towards star-based networks"

and stated that it may be better to use one of the other possible encodings and

repair the solutions.

We have chosen to use the predecessor encoding with the root node being node

one. This gives a unique encoding for trees, has locality and covers the set of all

solutions. The value in each gene and its position also give the actual link, making

the transformation between the representation and a link list unnecessary.
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The disadvantage in using this encoding is that many infeasible non-trees arise

when generating a random initial population and using standard operators. This

can be avoided by using simple specialised operators and initialisation techniques.

These allow every feasible tree to be created that could be formed using the binary

representation whilst avoiding all the infeasible tree solutions that the binary link

representation allows. Thus this encoding is more compact than the binary encoding.

In a hybrid genetic algorithm it is generally accepted that the same representation

should be used by the heuristic and the genetic algorithm. The heuristic we use,

described in Section 2.3 uses a list of links representation which is equivalent to the

predecessor array.

The main advantage of this representation, with specialised operators, over

Palmer and Kershenbaum's representation is that a transformation between the

encoding and the tree it represents is not necessary, whereas Palmer and Kershen-

baum's encoding requires the use of Prim's algorithm for every encoding. As the

predecessor array can also represent a directed graph it is easier to find the cutsets

necessary for use in the evaluations. Palmer and Kershenbaum do not give details of

their operators, selection of mates or test data in their paper so further comparison

with the work in this thesis is not possible.

4.2.2 Evaluation and fitness functions

The evaluation of each chromosome is the cost of routing the traffic on the tree

represented by the chromosome. This cost is calculated using equations (2.2.1) and

(2.2.2).

As explained in Section 4.1, using these evaluations as chromosome fitnesses may

allow a chromosome with a much higher evaluation than the rest of the population

to dominate and cause premature convergence. To avoid this we tried using two

scaling functions, rank scaling and linear scaling, see Section 4.7.2.
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4.2.3 Selection of mates and operators

We implemented two of the selection methods from Section 4.1.3 in our genetic

algorithms. They are stochastic selection with replacement and stochastic remainder

sampling without replacement. The first is very simple to implement and it is easy

to ensure that the two parents selected for crossover differ to avoid chromosome

domination. The later is more widely accepted and ensures that a certain number

of offspring are created using a certain parent. However, this method works on the

principle that for each parent selected to mate, a child is created. Since our crossover

operator combines two parents to create one child only, this causes some difficulty.

This was circumvented by creating two children, which may be the same, by using

the crossover operator twice with the same parents. Using this method, it is also

harder to avoid having two parents which are the same selected for crossover. Thus

this selection method appears to have more chance of causing early convergence.

4.2.4 Initial population

Our initial population is a collection of P - 1 randomly generated trees and the

lowest cost star all of which are encoded using the predecessor labeling and created

as in Section 2.2.2.

A diverse initial population with a guarantee of some good schemata is thus

formed.

4.2.6 Reproductive operators

The three operators which are used by our genetic algorithm are explained below.

As has been mentioned in the encoding section, specialised operators are required

to guarantee feasible trees are created. Repairing chromosomes is possible with

standard operators, but as noted in the general section, is best avoided.
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Figure 4.2.2: Invalid predecessor crossover

Crossover

In Figure 4.2.2 we can see how it is possible to obtain invalid solutions using l-point

crossover on the predecessor representation. Other standard crossover operators also

give many invalid solutions when using the predecessor representation. Hence we

have devised a specialised crossover operator that always creates valid solutions, is

quick and easy and is as though we rryere performing uniform crossover on the binary

encoding but only such that feasible child trees are created.

This specialised crossover operator chooses two parents and selects links from

each parent to create one child chromosome. The child is disregarded if it is a copy

of either of its parents.

The procedure for combining the parents is similar to that of creating the initial

population, except that the links that may be chosen are restricted to those in the

two parents. For instance, if node i is selected from the 'in tree' list, then node j
must be selected from the 'out of tree' list such that link (i, j) exists in one or both

of the parents. As before, the link (e, j) is then added to the tree and node j is

moved to the 'in tree' list. An example of this can be seen in Figure 4.2.3. Only one

child is created as we can only guarantee one feasible child solution by this method.

Example 4.2.4 shows two results of the specialised crossover performed on parent

chromosomes (a) and (b). The genes/schemata that are taken from each parent are

shown in bold face. In creating child (c) using the predecessor encoding, it can

(.)
(d) ls

413
tlz

1

4
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Figure 4.2.3: Performing specialised crossover on (a) and (b) to get (c)

be seen that the links need to be reordered. Thus, this child could not be created

using a standard crossover operator with the predecessor encoding. Investigating the

results of the same crossover performed using the binary link encoding, shows that

it is ¿s though one-point or uniform crossover is being performed. In creating child

(d) using the specialised operator, the links of the predecessor array do not need to

be reordered, and the crossover operator appears to be the same as one-point. The

crossover using the binary link encoding appears to be uniform crossover.

It can be seen from these examples that the crossover operator is combining the

underlying schemata of the binary encoding using uniform crossover. As interacting

genes will not necessarily be placed together in either encoding there would be no

advantage in using one-point crossover, and uniform crossover has the advantage

of being more likely to create children that differ from their parents and allowing

diversity. Thus we have the benefit that all the schemata of the binary encoding

that can be combined to give feasible trees are available to the predecessor encoding

using this operator.
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Figure 4.2.4: Predecessor crossover and binary link crossover

LINK 72345678910
(a
(b
(c

)

)

)

110000110 0

0011010010
1100010010

PRED r2 3 4 5
(a
(b
(d

)

)

)

01132
0 4 511
01111

LINK 72345678910
(u)
(b)
(d)

110000110 0

0011010010
111100000 0



CHAPTER 4. GENETIC ALGORITHMS 48

Mutation

The mutation operator chooses one parent via roulette selection and creates a

child which differs from its parent by selecting a link in the tree to remove and

replacing it by an appropriate link not in the tree. This can be done as in the

simulated annealing moves, but it is possible to use a variation of this which is

slightly more restrictive, but does not require the cycle to be redirected.

A link (z,j) is chosen to be removed from the tree where pred[]:i. The dif-

ference from the simulated annealing moves is that, when selecting a link from the

fundamental cutset to replace link (i,7), only links (j,k) which have node j as an

endpoint may be selected. This gives predfi]:¡ in the new tree, which is the only

change to the predecessor array. The only case in which this move will not be possi-

ble is when node one is a leaf node and the link that has been chosen to be removed

is (1, j). In this case a new link will be selected to be removed.

This mutation method will always give a feasible tree which differs from its par-

ent, without the need to redirect the tree. However, it does not allow as many

mutation possibilities as the simulated annealing moves. Testing two genetic al-

gorithms, one with each mutation type, for 100 problems with between 10 and 55

nodes, showed that the more restrictive mutation described here gave superior re-

sults.

If the link that is chosen to be removed is incident with a leaf node, the changes

to the tree and its evaluation may be quite minor. In other cases there may be quite

considerable changes in both the tree and its evaluation.

In the binary encoding this mutation operator changes one gene from a 1 to a 0

and one from a 0 to a 1 such that a feasible tree is created. In Figure 4.2.5 we can see

the results of performing mutation on a tree. The link that has been chosen to be

removed is (1,2). The fundamental cutset is then represented by ({2,4}, {1,3,b})
and consists of the links (2, 1),(2,3), (2,5), (4,1), (4,3), (4,5). Only links (2,3) and

(2,5) can be chosen to replace (7,2). Link (2,3) has been chosen in Figure 4.2.5.
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Figure 4.2.5: Predecessor mutation and binary link mutation

Thus, the predecessor of 2 becomes 3

Heuristic

The heuristic used is one designed by Salzborn [57]. This is explained in Section

2.3. The starting tree for the heuristic when used with the genetic algorithm is a

parent chosen from the current population.

4.2.6 Parameters

We noted earlier that the issue of setting parameters is a very difficult one, which

is dependent on the problem, the representation and the operators used. We tuned

(selected) our parameters by running the genetic algorithm hundreds of times with

different combinations, taking note of the diversity of the population, the conver-

gence rate and the final solution.

By choosing the predecessor representation, we \¡¡ere led to choose a form of

uniform crossover that always gives legal solutions. It has been acknowledged that

uniform crossover is reasonably disruptive, which encourages diversity and hence

allows a smaller population size to be used.

As we have a generation gap we can also have reasonably large crossover and

mutation rates. This is a trade off between diversity and disruption and keeping

LINK t2345678910
(u)
(b)

1100010010
0100110010
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good schemata to encourage convergence. Choosing a reasonable size generation

gap also suggests that the fitness function for the chromosomes should not lead the

fittest to be dominating. The smaller population size allows us to run the genetic

algorithm for more generations. Hence we can see the interaction and trade-off

between the parameters.

It is worth noting that, for an n node problem, each chromosome has r¿ - 1 links

represented of a possible tþ+ links for the problem. For a population size p there

are p(n- 1) Iinks represented in the population and hence with p : nl2 it is possible

to have every link (not every schemata) present in the population.

Using the rank fitness compared to the linear fitness method gave similar re-

sults as did using the stochastic selection with replacement compared to stochastic

remainder sampling without replacement. The results that will be shown used the

rank fitness and stochastic selection with replacement.

We chose the genetic algorithm parameters by running hundreds of test prob-

lems. We tried population sizes of n and nf 2 chromosomes which were kept constant

throughout the run, and created 4nl5 and 2nf 5 children each generation for the re-

spective population sizes. The algorithm was run until 3000n children had been

created, which is similar to the number of solutions the simulated annealing al-

gorithm will investigate. The crossover and mutation rates were linearly adjusted

throughout the run. The mutation rate was set to 30% at the start of the run,

finishing at 70%. The crossover rate was set to 70% at the start of the run, finishing

at 30%. If the heuristic is used, it has a ITo chance of being used and the mutation

rates are reduced by I%.



Chapter 5

Results

For problems in which the number of nodes is larger than say 10, it is impractical

to enumerate all the possible solutions to a problem to find the optimum. Hence, in

an attempt to investigate the performance of our algorithms when the optimum is

known, u¡e ran some problems where the distances \ryere set to one and the traffics

were random. In Chapter 2 we noted that there is a polynomial algorithm (see [36])

to find the optimum for this case. It was surprising to note that the optimal solution

to all our test problems \ryas a star. We will attempt to ascertain reasons for this in

the next section.

5.1 Polynomial case

Forannnodeproblemthere atenn-2 possibletrees, wherenofthesearestars (each

node can be the hub of a star). This means that l00nf n"-z : 1001n"-3To of the

total solutions are stars. For example, for n : 10, Lll05% of the total solutions

are stars. This is a very small percentage, however when using randomly allocated

evenly distributed traffics on 160 random test problems (for n : L0,. . ., b0), the

optimal solution was always a star. This is a striking result src. $a¡ ,"¿fr^¡.ks form

sxJn asma/l p"rcø.,ib3e of 1+*pssibLsoftlons. If we consider the cost of a star and

a non-star, the reasons for this result become clearer.

51
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The cost of a tree, T, is

Cr:DtTr, (5.1.1)

where tT : D¡ro"rn¡, which is the .or, j.. unit of traffic of the unique path for

stream s in tree ?. Let Ts be any star tree, ?r be any non-star tree. If the cost

per unit of traffic for each link is set to be one, then lf, is the number of links in

the path the stream s uses. Let this be h! , the number of hops. For any tree ?, if
stream s is connected by a direct link in the tree, then hf, : 1. For a star tree, any

stream s not connected by a direct link in the tree will be connected by a two link

path, that is hTt :2. For a non-star tree, any stream s not connected by a direct

link in the tree will be connected by a path which is two or more links long, that is

hT* > 2. Af least one path will consist of more than two links, otherwise the tree

will be a star. Thus, there exists a stream s such that hlN > 2.

The total number of streams for a network is ry The number of streams

with a direct link in a tree is n - 1, the number of streams with a non-direct link is
(n-7)!n-2\ . Let us define s € T to mean that stream s has a single link path in the

tree, and s ø T to mean that stream s does not have a single link path in the tree.

For m¡: 1, for all j e {,andus:u, for all s €,S, the cost of a star tree,7s, is

Crs ,DL+2ult
s€?s s/Ts

,((n- 1)+(n -t)(n-z))
u(n - 7)2.

The cost of a non-star tree, 7, is

Cr* u \ \+u I n,
s€?lv sØTw

: ult-tzu I t+ul(n,-z)
s€T¡,t slTx sÉT¡,t

,((n - 1) + (rz - 1)(" - z)) + u | (h, - z)
slrN
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: ,(n-r)'+ul(n,-z)
sØTw

: Crr+u l(h,-2).
s4T¡¡

Thus, as there is an h" > 2 for at least one stream s in the non-star tree, the

non-star tree is more expensive than the star tree.

For m¡ : 1, for j € J, and u, random, for s € ^9, the cost of a star is

crs : Dr,i2lu, (5.1.2)
s€?s slTs

: Dr, t D ,, (5.1.3)
s€^9 sØTs

2Dr,-Dr,. (b.1.4)
s€,9 s€Ts

The cost of a non-star is

Crn D r,+2D r,* D(h! -2)u, (5.1.5)
s€fiv sØTx slTw

Dr,+ t ,,-r E(h! -2)u, (5.1.6)
s€,9 slT¡¡ slTw

2Dr,- D ,,-r D(h! -2)u, (5.1.7)
s€,5 s€?ry slTw

where hT >2 for all søT andat leastone s lTw has hf, >2for thetreeto be a

non-star.

The percentage of streams which do not have a direct link in the tree is 100f .

For r¿ : 10 this is B0%, for n : 50 it is 96%. So since the majority of the total

streams are included in the sums DsÉrn z, and Ds/Tsz, (equations (b.1.6) and

(5.1.3)), and the traffics are evenly distributed, it can be expected that these sums

are approximately equal. Since the term D,tr*(hT - 2)2" (equation (5.1.6)), is the

summation of several (in fact it will be shown later, at least (" - g)) traffic streams,

which may include some multiples, and this term is added only to the non-star's

cost, it can be expected that the non-star tree will be more expensive.

So, if we wish to find examples in which a non-star will be less expensive than

any star tree we need

Cr,-Cr* : D r,- t u,- D(hT -2)u,>0
s€Tiv s€?s sØTw
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Figure 5.1.1: Changing one link in a star

from equations (5.1.4) and (5.1.7). Hence, for a non-star to be less expensive it is

necessary that there are some high traffic streams with no end-points in common, so

that the majority of them cannot be included together in any star. These streams

will then be given a direct link in the non-star tree. The rest of the traffic streams

need to be fairly inexpensive such that the sum of the traffics on streams with paths

longer than length two in the non-star plus the sum of the traffics that are direct in

the star is less than the sum of the traffics that are direct in the non-star.

To see that the sum f,s7, (hT - 2)u, (eqtations (5.1.5)-(5.1.7)) will involve at

least (rz - 3) traffic streams, consider the difference between a star and a non-star

that differs by one link only. If link (i, /r,) is removed from a star tree, where h, is the

hub node, and is replaced by link (i,, j) to create a non-star (see Figure 5.1.1), then

equation (5.f .0) gives

Cr* E
s€S

u,* \ u,* D
sØTw k=I,k*i,j,h

u¡t

where D},=t,n+¿,j,nu¿¡, involves (n - 3) terms and the difference in cost between the

star and the non-star tree is C7* - Crs : D[=t,t+t,¡u,;.k - u¿¡. A non-star which

differs from any star by more than one link will have more than (" - 3) streams

which have paths longer than 2 links.

Figure 5.1.2 gives an example in which a non-star tree is less expensive than

any star tree, (r : 1), and an example in which the least expensive star tree has

the same cost as the least expensive non-star tree (ø - 4). Both examples are for

ffij :1, V j € J and the traffi.cs 2", Vs e S are as shown in the first diagram, with
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x

10

10

10

Figure 5.7.2: Tlee costs using equations (5.1.4) and (5.1.7)

any traffics not shown having value zero. It can be seen that the second star shown

is less expensive than the first star in both cases as it includes two of the high cost

links in its star. It can also be seen that the traffics in the non-star tree need to

be considerably higher than those not in this tree, for the non-star tree to be less

expensive.

We created several examples in which the optimal tree would not be a star, such

as the one above, for different problem sizes (number of nodes n : 5,. . .,50) and

ran all our algorithms on these examples. The optimal solution was found by using

the polynomial algorithm mentioned at the start of this section. In every case the

simulated annealing, with and without the heuristic, the genetic algorithm with the

heuristic, the heuristic and the heuristic with the greedy algorithm obtained the

optimal solution. The genetic algorithm did not perform as well, but was within 1%

of the optimal solution in all cases. This gives us some confidence in the performance

of our algorithms, when the costs, rnj) are not restricted to be uniformly one and

thus the optimal solution is not known.

Tlaffics Cr, Crr" Cr*

x 1 2(44)-t3:76 2(44)-27:67 2(44)-40+t(r)

+2(1)+1(1):52

x 4 2(56)-22:eO 2(56)-24:88 2(56)-40+1(4)

+2(4)+r(4):8s
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6.2 Computational results

We then tested our simulated annealing, genetic algorithm and heuristic (with and

without the greedy algorithm) on randomly generated test data, with both Euclidean

and non-Euclidean distances. To generate Euclidean distances a list of nodes and

their positions on a grid was created and the distances between them calculated.

The non-Euclidean distances were randomly generated. The traffic between node

pairs was also randomly generated, with the majority of traffic pairs having non-zero

traffic. For all the methods, input is the inter-node distance and the traffic matrix.

All problems were run on a Sparc IPX.

The simulated annealing, genetic algorithm and heuristic (with and without the

greedy algorithm) were run on 100 problems with Euclidean traffic and 100 problems

with non-Euclidean traffic. The problems ï¡ere divided up by the number of nodes

n : 5,. . . ,50, with 10 problems being run for each set fl,. . . ,n -15. The simulated

annealing and genetic algorithms were run twice each with different parameters,

which were discussed in Sections 3.2.6 and 4.2.6. The best of the two results for

each algorithm was recorded. Both algorithms were then run once each incorporating

the heuristic. The heuristic and the heuristic with greedy algorithm were also run

once each, and finally an algorithm to find the best star cost was run.

For problems with less than 10 nodes \¡¡e ïvere able to calculate the optimum by

enumerating all possible solutions. This can be done in under ten minutes for g node

problems. However, since the number of possible trees for a problem with n nodes

is nn-2, the increase in time in using this method for larger problems is impractical.

The best solution (" > 9) was taken to be the best solution from all the algo-

rithms. Each solution was then expressed as a percentage of the best (or optimal)

solution for each of the ten problems. These percentages \ryere then averaged over

the ten problems to give each algorithm's average performance for that problem

size. The results can be seen in Tables 5.2.1 and 5.2.2. A quick look at these tables

shows that the results of some of the algorithms varies greatly depending on whether
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Euclidean or non-Euclidean traffics are used. Thus we will examine the results for

the two cases separately.

5.2.L Discussion of results - Euclidean traffic

Table 5.2.1 shows that the genetic algorithm, with the aid of the heuristic, consis-

tently gives the best results. AII the algorithms, for all problem sizes, are within

approximately |% of the best solution found. The best star is approximately 7%

higher than the best solution. For problems with less than g nodes, where the exact

solution is enumerated, all algorithms found the optimal solution every time.

The simulated annealing algorithm with the heuristic sometimes performs better

than the simulated annealing algorithm and sometimes worse. There appears to be

little advantage in adding the heuristic to the simulated annealing algorithm.

Adding the heuristic to the genetic algorithm is definitely advantageous. For the

larger size problems, the genetic algorithm often finds the worst solution of all the

algorithms. However, with the addition of the heuristic, it finds the best solution of

all the methods for every problem size.

The performance of the heuristic is comparable with, but slightly better than,

the genetic algorithm. Adding the greedy algorithm to the heuristic improves its

performance, making it comparable with the simulated annealing algorithm and

better than it for larger problem sizes.

For the small to medium problem sizes, all the methods gave their results within

approximately 30 seconds. Some of the larger problems took up to 30 minutes to

solve.

5.2.2 Discussion of results - Non-Euclidean traffic

Table 5.2.2 shows that the algorithms perform rather differently with non-Euclidean

traffics. The genetic algorithm with the heuristic is certainly no longer the best

method. The simulated annealing algorithm with the heuristic consistently out-
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NO

OF

NODE

SA

AVER

%

SA+H

AVER

%

GA

AVER

%

GA+H

AVER

%

HEUR

AVER

%

H+GR

AVER

%

STAR

AVER

%

5-9 100.00 100.00 100.00 100.00 100.00 100.00 100.97

10-14 100.00 100.00 100.03 100.00 100.19 100.16 706.72

15-19 100.01 100.05 100.04 100.04 100.12 100.07 107.09

20-24 100.06 100.00 100.13 100.00 100.28 100.18 107.66

25-29 100.07 100.20 100.18 100.00 100.16 100.09 108.72

30-34 100.00 100.01 100.15 100.00 700.22 100.11 r07.49

35-39 100.21 100.37 100.52 100.06 100.44 100.35 t07.45

40-44 100.20 100.18 100.48 100.01 100.34 100.08 r07.75

45-49 100.15 100.05 100.37 100.00 100.25 100.07 r07.04

50-54 100.38 r00.27 700.42 100.06 100.33 100.25 106.26

Table 5.2.t: Performances of the algorithms with Euclidean traffic
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NO

OF

NODE

SA

AVER
M
/o

SA+H

AVER

%

GA

AVER

%

GA+H

AVER

%

HEUR

AVER

%

H+GR

AVER

To

STAR

AVER

%

5-9 100.00 100.00 100.00 100.00 108.80 100.00 169.19

10-14 100.00 100.00 100.00 100.00 L26.72 100.00 229.98

15-19 100.00 100.00 100.00 100.50 154.90 100.00 330.43

20-24 100.02 100.05 100.10 100.57 t7t.84 100.30 392.18

25-29 100.00 100.00 100.00 101.33 190.72 100.14 465.74

30-34 100.00 100.07 100.00 702.76 198.95 100.00 502.18

35-39 100.02 100.01 100.17 107.18 224.62 100.48 566.17

40-44 100.36 100.00 100.85 106.98 27L.74 104.82 566.83

45-49 100.20 100.00 10t.22 105.76 244.87 102.95 727.82

50-54 100.32 100.19 101.06 108.34 284.69 105.76 832.88

Table 5.2.2: Performances of the algorithms with non-Euclidean traffic

performs the other methods, although its performance is very close to that of the

simulated annealing algorithm.

The genetic algorithm performs very well for the small problem sizes but not

quite as well for the larger problems. The addition of the heuristic to the genetic

algorithm causes it to perform worse. This is due to the fact that the performance

of the heuristic is extremely bad and thus it misguides the genetic algorithm.

The greedy algorithm improves the performance of the heuristic greatly. The

reason for this and the poor performance of the heuristic can be seen in the average

star percentage. These show that the solutions of these problems are certainly not

star based. The heuristic is based on creating sub-trees which are two-hub trees and

hence may lead to star based solutions.
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5.3 Conclusions

It is worth noting that although extensive testing has been used to determine the

parameters for our methods, other choices of parameters may lead to improvements

in performance of some methods. Method performance may also depend on the

characteristics of the solution space, the problem type, and the data used as input.

In Sections 3.1.4 and 4.1.6 the difficulty of setting the parameters for both so-

lution methods was discussed. It is interesting to note that there are quotes about

both methods stating that setting the parameters is more an art than a craft or

science. Simulated annealing has fewer parameters than genetic algorithms though

and appears to be less dependent on the parameter choice.

The performance of the algorithms is also very dependent on the solution space

and therefore no general conclusions should be drawn about which method is better

for any problem in general. Ackley [3, p177] performed a large study comparing

genetic algorithms and simulated annealing for several problem types and concluded

that none of the strategies was the best all the time as their performance is dependent

on the search space. Schweitzer et aI. 159, pgaal discussed this dependency on the

search space stating that "the Boltzmann strategy is able to detect the appropriate

potential minima even in an unknown, rugged landscape as long as the potential

barriers between local minima are not too high, which forces the locking in side

minima. On the other hand, the Darwin strategy is able to cross high barriers by

tunneling if the next minimum is close enough."

It is possible to determine which method is better for a particular problem though

if the parameters are chosen carefully. For this problem it appears that the best

solution method, if the traffic is Euclidean, is the genetic algorithm combined with

the heuristic. If the traffic is non-Euclidean the simulated annealing algorithm in

conjunction with the heuristic performs best. However, in both cases the simulated

annealing by itself performs very well, and is a good choice as it is reasonably simple

to find reasonable parameters and implement.



Part II

Maximal Profit Dimensioning and

Tariffing
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In this part of the thesis an approach to optimal dimensioning and tariffing of

communication networks is presented. The link capacities, tariffs and the routing

strategy are chosen in order to maximise the profit for the company operating the

network. The tariffs and grade of service are subject to regulatory constraints. It is

assumed that there is an existing network structure consisting of a set of nodes and

physical links. By cross-connecting traffic through nodes at a high bandwidth rather

than multiplexing and de-multiplexing it, a logical link (consisting of capacity on

several physical links) is created. However, it may be more efficient for an OD pair to

take advantage of existing physical links rather than to initiate its own logical link.

Several results will be presented. These include a simple formula for the optimal

tariff and a result that only one of the possible routes for each OD pair will be used

in the optimal solution. A numerical investigation will also be discussed.



Chapter 6

Problem formulation

6.1 Introduction

Loss networks can be used to model circuit switched telephone networks, along

with many other practical networks. A loss network consists of sets of resources

accessed by users of different types. If the required resources are not available, one

or more alternative sets may be tried, but ultimately a user whose request cannot be

satisfied is lost from the system. Many references to research on the dimensioning

of loss networks were given in Bean and Taylor [10] (see for example Girard [29] and

Kelly [aa]). This work is an extension of the work presented there and in Bean eú

at. lsl.

As explained in Bean and Taylor [10], the usual method used in loss network

dimensioning is to minimise network cost subject to grade of service constraints.

However, the approach used there, and also here, maximises the network profit

which is the difference between the revenue generated by network users and the cost

of providing the network. This takes into account the fact that many telephone

companies are no\ry operating in a private enterprise environment.

Although this approach has been discussed previously (see Kelly [a3] and Girard

[29]), Bean and Taylor [10] and Bean et al. l9l incorporated the concept of a traffic

63
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elasticity function. This function acknowledges the fact that the traffic offered to

the network is a decreasing function of the tariff charged to users. Such a traffic

elasticity function could reflect factors such as a competitor's tariff structure or the

grade of service offered by the network.

In this thesis we consider the introduction of logical links. A logical link consists

of reserved capacity on a set of two or more physical links. TYaffic using the logical

link is cross-connected through intermediate nodes rather than being multiplexed

and de-multiplexed at these nodes. For instance, in a possible Australian network

(see Figure 6.1.1), traffic travelling from Perth to Melbourne on the logical link

would use reserved capacity on the Perth to Adelaide and Adelaide to Melbourne

links and be cross-connected through Adelaide. Although this may be an advantage

in some cases, it also introduces inefficiencies as the reserved capacity is allocated

when the network is configured rather than being used on demand.

In the next sections \rye define our model and discuss methods of network analysis.

We then look at the optimisation procedure and give a numerical example. Chapter

7 contains theoretical results concerned with optimal tariffing and route choice. In

Chapter 8 we define a model in which more than two path choices are allowed, and

give both theoretical and numerical results.

6.2 The model

In this section we introduce the notation and concepts of a circuit-switched telephone

network. Both physical and logical links may be used. Note that a list of the notation

used is given in Appendix A.

Consider a network in which there is a group of cities or nodes n e N joined by a

set of links j e l. This set of links ,7 consists of two subsets: the physical links .7p

and the logical links .7¿, which use reserved capacity on the physical links. Each link

j comprises C¡ circuits and has a link blocking probability E¡. Define S to be the set

of all streams (origin-destination pairs), ,9p to be the set of streams connected by a
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Hill (BH)

(cs)

(B)

Macquarie (PM)

(s)

(c)

Figure 6.1.1: An example loss network

single physical link (and hence for which no logical link is created) and 
^9¡ to be the

set of remaining streams which consequently have an indirect physical path as well as

a direct logical path. For example, in Figure 6.1.1, Perth-Adelaide is connected by a

single physical link and hence belongs to the set Sp. Perth-Melbourne is connected

by an indirect physical path and hence belongs to the set ,9¡.

For s € ^9 
let P, be the subset of paths that stream s may use and tet P: UPr.

The set P can also be partitioned into subsets in another ïvay. Define Pp lo b." th.

set of paths consisting of a single physical link, P¿ to be the set of logical paths

consisting of a single logical link and P¡ lo be the set of physically indirect paths,

that is, paths consisting of more than one physical link. Our routing scheme allows

calls for stream s € ,S¡ to use the physical path with probability d, and the logical
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path with probability 1 - 0,. The parameter 0, is called the splitting probability.

Path p requires go circuits on link j. The arrival rate of calls to stream s is a

Poisson stream of rate ur. A call on stream s requesting path p e P, is blocked

and lost if there are less than go circuits free on any link j. Otherwise, the call

is connected and simultaneously holds s¡o circuits from link j for the call holding

time. The call holding time for calls on stream s are identically distributed with

unit mean and are independent of all earlier arrival times and holding times.

If a call for stream s is connected, it is charged a tariff of a" per unit of time.

Note that regardless of which path p e P, a call for stream s € ,S¡ uses, it must

be charged the same tariff since a user does not choose which path their call takes

in the network. The arrival rate may depend on the tariff since a higher tariff may

lead to fewer calls being made. It may also depend on the grade of service : if the

blocking probability is high then the arrival rate might be lower. Therefore, we allow

the arrival rate to depend on as and B" and denote it by u"(dr,B"), where B, is

the blocking probability of stream s, obtained by averaging the blocking probability

over all paths p € Pr.

In designing our network we are interested in finding the link capacities C¡, j e J,
the stream tariffs o' s € ,9 and the splitting probabilities 0,, s € ^9¡. Bold face will

be used to represent vectors, for instance 0 : (0t,...,01t,1), where lS¡l denotes the

number of streams s € ,S¡.

An exact analysis for such a network exists (see Bean and Taylor [10], Kelly

[a ]). However, although the equilibrium distribution has a very simple form, it has

been shown by Louth et aI. [a8] that determination of the normalising constant is

fP-complete in the number of distinct routes. This makes the analysis impractical

for realistically sized networks. Hence we shall use the well-known Erlang fixed point

technique (see Kelly [aa]) for approximating the blocking probabilities.

Let E¡,i e J be the unique solution to the equations

E¡: E(p¡,C¡) , (6.2.1)



CHAPTER 6. PROBLEM FORMULATIO]V 67

where

p¡:E t s¡ef!u,(a,,8")(1 - E¡)-t II(t - E¿)'no ,
se.S peP,:jep iep

the probabilities f! are given by

(6.2.2)

(6.2.3)r-0,,
0,,

and the function .E is Erlang's formula

PePpnP',
P€PtnP',
PePtnP',

j € J.

B,:L - D /í II (t- E,¡'i,.
p€P" j€J

1

TP
Js

E(p,c)--5[å#] '

EjIIjeJ
ap:7 - bp:

(6.2.4)

Then the vector (E¡, j e J) is called the Erlang fired, point and an approximation

for the acceptance probability on path p, ap, is given b¡

(6.2.5)

(6.2.7)
P€P"

and is used to describe the grade of service. This then enables ur(a,,B") to be

written as u,(a,,.E) since equations (6.2.5) and (6.2.6) show that B, is a function

of the link blocking probabilities ,E giving

)(1 - sjp

where óo is the blocking probability on path p.

The average blocking probability for a stream s is given by

B,:D #br. (6.2.6)
p€P,

The average acceptance probability of calls into the network for stream s is

A":l-Br:DÍ|;oo,

(6.2.s)

This approximation assqmes that all requests for circuits are independent from
as q.rc ñqresls ß" rur"hrþL oh"rËr uriltn¡asrhqle lri€

link to linknand for áll streams thdt have paths that use"that link. Thus the traffic
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offered to link j by stream s using path p is Poisson with rate ftrr(or,B") but will be

thinned at every link z on the path by a factor of (1-8) for the number of circuits ç¿o

required, except link j, before being offered to link j. Kelly's [44] reasoning for this is

that the level of carried traffic on link j will be Ðses Ðpep":jeps¡rf!u,(ar,B") ll¿.o(1-
E¿)t*. The blocking probability on link j given by equation (6.2.1) should then be

consistent with the level of carried traffic given by equation (6.2.2), under the Erlang

model of a single link offered Poisson single-circuit traffic. Ziedins and Kelly [66]

have shown that this approximation is more accurate the more diverse the paths

that pass through the link.

6.3 Formulation

We noted earlier that we wish to maximise network profit, which is the difference

between revenue received from users and the cost of providing the network.

The rate at which calls for stream s € ,S are accepted into the network, when

the tariff charged is o", is given by u"(a",.E)(1 - Br). Thus the network provider

can expect to receive revenue per unit time for stream s of. a"u"(ar, .Ð)(1- B"), and

the total expected revenue per unit time is

la,u,(a,,8)(1 - B,): t D #o,r,(o,,8) II(t - E¡)sio. (6.3.9)
s€S s€Sp€P, jep

The cost of installing the network consists of a fixed cost, involving such factors

as the digging of trenches and laying of cables, and a variable cost, which depends

on the capacity. It is possible to ignore the fixed cost in the problem formulation as

it can be incorporated after the optimisation procedure is complete.

Define the cost per circuit of cross-connecting to be ø and the cost per circuit

of multiplexing/de-multiplexing to be m. If. these costs are capital costs, then they

must be åe written off over a period of time and so can be described as a charge

per unit time. Also, if capacity is leased, these costs are implicitly a charge per unit

time. Calls on a physical path are multiplexed at the origin node, de-multiplexed
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at the destination node and both multiplexed and de-multiplexed at every inter-

mediate node. Assuming that the cost of multiplexing is equivalent to that of de-

multiplexing, the number of multiplexes/de-multiplexes on a physical path is twice

the number of links on the path. Hence, the cost of providing all the physical paths

is 2mD¿rø C¡

Consider a logical path which consists of the logical link ¿. The number of

intermediate nodes through which calls must be cross-connected is given by q¡ - I,

where 4¿ is the number of physical links on which logical link ¿ uses capacity. Calls

on a logical path must also be multiplexed at the origin node and de-multiplexed at

the destination node. Therefore, the total cost of all the logical paths isÐ¿et"Qm+

(q¿ - I)r)C¿.

The total cost of providing the network is therefore

2*D C¿+ D(2m+(q¿-7)r)C¿:2mDCo+, t þtn-t)Cn. (6.3.10)
ieJp ieJr, ieJ i,€J¡,

The network provider wishes to maximise profit and thus wishes to maximise

la,u,(a,,.E)(1 - B,) -2mDCn- r l(rt -t)C¡ (6.9.11)
s€,S ieJ i€h

We shall assume that there are regulatory constraints. That is, for all s € ,S the

tariff a, must lie in the interval [q' a"] and the average stream blocking probability

B" defined in equation (6.2.6) must lie within [8,,8,]. Obviously, the link blocking

E¡, i e J and the splitting probabilily 0,, s €,S¡ must lie in the interval [0,1].

Before presenting our optimisation formulation it is important to note a further

feature used by Bean and Taylor [10] which we shall apply. By using link block-

ing probabilities, rather than link capacities, as variables in our formulation a large

efficiency gain is achieved. There are two reasons : first, the network analysis per-

formed by the Erlang fixed point approximation is no longer iterative in nature, and

second, it is immediately obvious whether a proposed set of link blocking probabili-

ties is feasible, that is, whether they lie in [.B,,B"]. In contrast it requires a full and

iterative network analysis to check whether a given set of capacities lead to feasible

blocking probabilities.
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In order to make use of this, for fixed ,Ð¡ we require the inverse function C :

R+ -+,R-.,., such that

C¡: C(p¡,Ð¡), j e J. (6.3.12)

C¡ is then the capacity required in an Erlang loss system to carry an offered traffic

of p¿ with a blocking probability of E¡. We will discuss the method and formulae' r 
rhE lvn#¿'^

for calculation ofnC in Section 6.4.

Using the function C, the formulation of the non-linear program is as follows.

Variables

dst s€,S,

Ej, ieJ,
0r, s€^9¡.

(6.3.13)

(6.3.14)

(6.3.15)

Objective

max :

s€S p€P,

Constraints

z:DD Í!o,r,(o,,8) II(t - E¡)cio -2mDcu- r \(rtn-r)co. (6.3.16)
jep ieJ ieh

o1E¡1r, jeJ, (6.3.17)

e,, 1d*(G, se ,S, (6.3.18)

0ld,<1, s€,Sr, (6.3.19)

B, 18"(Br, s€^S, (6.3.20)

where p¡, Í!, B, and C¡ are given by equations (6.2.2), (6.2.3), (6.2.8), and (6.3.12)

respectively.

6.4 Numerical discussion of C(p, E)

In Section 6.3 we noted the advantages of using link blocking probabilities, rather

than link capacities, as variables in our formulation. We also noted that in order to
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make use of this, for fixed E¡ we require the inverse function C : R¡ -+ .R.., such

that

C¡: C(p¡,E,), j e J. (6.4.2I)

We need a method of determining Ce, such that for a given p¡ and Eo, E(po,Co) :
Eo.

Atkinson and Anido [7] gave a continuous function for C(p), for fixed link block-

ing, E. They created this expression by fitting a function to curves generated by

using Kaufmann's model [a2]. They also give the first and second derivatives of this

function with respect to p. However, it would be preferable to have a function which

is dependent on the link blocking.Ð as well as the offered traffic p.

Bean and Taylor [10] used recursion on the iterative form of Erlang's function

E(p,c): =PE(þ9 
-t) ' .c + pn(p,c - 1)' (6'4'22)

with the boundary condition E(p,O) : 1, until E(p,C) is less than the required

blocking. They then use linear interpolation to find Co : C(po,Eo).

However, in order to obtain better accuracy we have chosen to follow the method

given by Farmer and Kaufmann [23]. This method attempts to find the zero of

ó(c): E(po,c) - Eo (6.4.23)

by using the regula falsi method [2], which will be discussed shortly and the following

formulae for E(p,C). The specific formulae for E(p,C) arc chosen due to the fact

they are defined for C € ft+ and are differentiable with respect to C. For p ) 1,

E(p,C) is calculated using

exp(Ct"(¿{1) - p*C +L-
2tr(C + t)Q({o)

1+
F- t2 c+r

(€' - 3)

(6.4.24)

2 €(€'- 1)

C+I

where

€ 3\/e 4
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F : (r o \tra* .i--rls..,æl,s - \\c+1/ -e(c+Ð -)""" 'r'
a(€) : rlzlt+ €(dr + €(dz+ €(ds + t@t+ {(ds+(¿u)))))l-'u +.(€),

ll.(€)ll <

and

ù:0.0498673470,

d¿ : 0.0000380036,

dz : 0.0211410061,

d¡ :0.0000488906,

ds :0.0032776263,

do :0.0000053830,

For p < l, E(p,C) is calculated using

D-
c+t)

Cln -p+C+r- +
roo oh
¿- k=I (C *t)(C +2)...(C +k)

1

For the regula falsi method it is first necessary to choose two initial points, such

that they are close as possible to Cs, and þ(C1) and þ(C2) have opposite signs.

When Eo > lF^, the initial points are chosen such that

C E1 -pol*Po1 1

(6.4.25)

(6.4.26)

and C2: ps, n2: ffi.
When Eo < t[7^, the initial points are chosen such that

c, x î{1,^+(zr,
and

Cz : Ct I l,when,Ð(ps ,Ct) ) Eo

or C2 : Ct - I,when.Ð(p¡,Cr) < Eo.

E(po,C2) can then be calculated by means of the recurrence relation

E(po,C") : E(po,Ct+ 7) : m
E(Po,Ct)Ctor E(po,Cr) : E(po,CL - l) : po I - E(po,Ct)'

(6.4.27)
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C3 is now calculated using

cs:cz-#ffióQ,). (642s)

The next iteration is continued with C3 and either C1 or C2 for which ó(Cr) or þ(C2)

is of opposite sign to þ(Cs).

Farmer and Kaufman stated that using the initial two points C1 and C2, the first

regula falsi iteration (6.4.28) yields a very good approximation to the exact value

C6, and in general only one or at most two additional iterations are required. In fact

the formula for C1, in the case where Eo 1 \[=^, yields results which differ from

the exact value Coby no more than f .

Figures 6.4.2 and 6.4.3 have been plotted using data from Akimaru and Nishimura

16]. Figure 6.4.2 shows the dimensioning curve of required capacity C for offered

traffic (Erlangs) p, with fixed blocking probability E : 0.01. Figure 6.4.3 shows the

difference between the required capacity C, and the offered traffic (Erlangs) p, with

fixed blocking E : 0.01, as p varies. We have included Figure 6.4.3 to emphasise

that although C looks linear in p for p > 10, say, it is in fact quite non-linear.

A further study of the function C(p,E) was carried out in Berezner et aI. l7I].

They showed that p(l - E) < C(p,E) < p(L- E)+LlE and moreover that, for

fixed -8, limp-+oo C(p, E) : p(l - E).

6.5 Optimisation procedure

We now have a formulation with a smooth objective function subject to constraints.

The constraints consist of simple bounds on the variables and smooth non-linear

constraints, (6.3.20). Often, an advantage to solving such optimisation problems is

to have first partial derivatives for the objective function and constraint functions.

As C¡ : C (p¡(0, E, u(a, E)), E¡), lhe dependency of the function C on both o

and d is due to p. Thus, to find the partial derivative of the objective function Z

(6.3.16) with respect to either of the variables a or 0, it is necessary to be able to



CHAPTER 6. PROBLEM FORMULATION 74

o
x-P
6úÈ
d()

50

45

40

35

30

25

20

15

10

5

0
0 5 10 15 20 25 30

Offered traffic (Erlangs) p
35 40

Figure 6.4.2: Dimensioning curve

evaluate ffi which can be rewritten ", ffil#.
Bean and Taylor [10] used equations (6.2.4) and (6.4.22) to define a formula for

the partial derivative ffi, which is not continuous. They also used

aE ,(g-l+E) (6.b.2e)ap:"\7-L-rD)
which is defined in Jagerman [3S] and Akimaru and Nishimura [6]. Use of these two

partial derivatives, then gives ffi: Hl# - 1-,8. This is no longer afunction of

p, and will prove to be a useful approximation in Chapter 5.

To obtain a formula for ffi which is dependent on E and p¡ wê can use equation

(6.5.29), but it is necessary to choose a different formula for ffi. By differentiating

equation (6.4.24), withrespecttoC, itispossibletoobtainafunctionfor ffi with
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the aid of Maple. As this function is complicated, it is presented in Appendix B.

These two formulae are then used to obtain 
urAg 

: H l#, which is a function of p.

Figure 6.5.4 shows the marginal capacity increase required for an increase in

offered traffic when the link blocking is fixed at E :0.01. This figure was created

using data from Akimaru and Nishimura [6], who only gave data for p ( 40. This

is a reasonably small arrival rate for a realistic network. As the offered traffic

increases, the marginal capacity increase required approaches 1 - ,8. However, it

can be seen that, for small p, this approximation is inaccurate. This graph also

shows the economy of scale factor : as the offered traffic increases, the marginal

capacity increase required decreases.
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The derivatives of the non-linear constraint (6.3.20), for s € S are

OB,

oE¡

0,ç¡pG)(7- E¡)-t ll¿ep(")(l- E'¡,,uo<"¡, j ep(s),

(1 -d,)s¡r1,)(1 - E.)sitl'r-t, jet(s),
0, otherwise,

Vs'€ ,S,

(l - ErfE)tr(s)!(s) - ll¡.r(,) (I - Er)tioøt,

0,

0
08"
a*t

S:3/,

otherwise.

(6.5.30)

(6.5.31)

(6.5.32)
08"
a0sl

Thus we now have a formulation with a smooth objective function subject to

simple bounds on the variables and smooth non-linear constraints. It is also now

possible to obtain formulae for the first partial derivatives of the objective function Z

(6.3.16) and the constraints. Keeping these facts in mind, we selected NAG routine

EO4UCF as our optimisation package. The specification for this routine is given

below.

6.5.1 NAG routine

This NAG routine is essentially identical to the subroutine SOL/NPSOL described

in Gill et al. 1281. The NAG documentation [52] described EO4UCF in the following

way.

" I |E} UCî I I is designed to minimize an arbitrary smooth function subject to

constraints, which may include simple bounds on the variables, linear constraints

and smooth nonlinear constraints. (l |E} UCF I I may be used for unconstrained,

bound-constrained and linearly constrained optimization.) The user must provide

subroutines that define the objective and constraint functions and as many of their

first partial derivatives as possible. Unspecified derivatives are approximated by

finite differences. I |F,} UCF// uses a sequential quadratic programming (SQP) al-

gorithm in which the search direction is the solution of a quadratic programming
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Figure 6.5.4: Marginal capacity increase for an increase in oflered traffic

(QP) problem. The algorithm treats bounds, linear constraints and nonlinear con-

straints separately. "

6.6 Example

We will now work through an example, using an artificial network and setting the

costs, cost function and constraint bounds artificially also, but such that they satisfy

any necessary requirements.

Consider the network shown in Figure 6.1.1. There are 9 nodes and 36 streams,

of which 10 have only the direct physical path available and 26 have a choice between

physical and logical paths. That is, there are 10 streams in ,Sp, and 26 streams in

,Sr. The logical path consists of the single logical direct link, and the physical path

is the unique shortest possible path in terms of the number of links used.

Exact 0C l0p
7 - E: 0.99
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We have set the multiplexing cost coefficient to be m : 7.07 and the cross-

connecting cost coefficient to be u : 2.00. These values have been chosen to en-

courage calls on some streams to use their physical paths and on others their logical

paths. Since the multiplexing coefficient always occurs in multiples of two, the

two costs are approximately equal making neither path highly desirable, while still

reflecting the fact that multiplexing is more expensive than cross-connecting.

The average stream blocking probability for all streams is bounded above by

0.01, with no lower bould imposed, giving 0 ( B" < 0.01, s € ,S. The tariff has not

been bounded above or below, hence 0 ( o, ( oo. The number of circuits required

by a stream, s €,S, using path p € P, on link j e J hasbeen set to be zero or one;

that is ç¡p:011. This implies that each path p requires either zero circuits or one

circuit on link j and so provides the physical description of the path p.

The function ur(a,B") has been defined such lhat arur(ar, Br) decays rapidly as

e" ) oo for all s € ,S, to avoid the network being highly profitable whilst accepting

a very small number of calls, and is bounded above as os -+ 0 for all s € ,S, to avoid

an infinite number of calls being accepted. "Economic models for such a function

use a sigmoid shape, representing the fact that under competition there will usually

be a marked reduction (increase) in demand if your tariff is more (less) expensive

that your competitor's" [10]. The function we use is

ur(ar,, Br) :
1

4exp;(d, - 0,), if lo,2 d,,

,i,(2 -"*o]1o, - d")), otherwise

which is similar to that used by Bean and Taylor [10]. This function is continuous

and differentiable with respect to o, € (0, oo), and is bounded above by u,(2 -
exp(-d"/f)when 0s :0.

We have defined the tariff of the competitor d", s € ,9, to be 3. The point of

inflexion will then be at o" : 3. We define the values of the base traffic demand, /r,

which is the traffic demand if the tariff is dr, as in Bean and Taylor. These demands

are based on approximate subscriber figures and are given in Table 6.6.1.

(6.6.33)
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6.7 Results

To find the optimal tariffs, splitting probabilities and link blocking probabilities we

have used the standard routine available in the NAG Library of routines discussed

earlier. The values of the tariffs and the splitting probabilities are given in Table

6.7.2. The full names of the cities abbreviated in Table 6.7.2 can be seen in Figure

6.1.1. The splitting probability in the table is the probability that the physi,cal path

is used. The streams, ,s € ,S¡, have been ordered from those with the lowest accepted

traffic (CS-C) to those with the highest (B-M).

An inspection of Table 6.7.2 rcveals that the optimal tariffs are close to integers.

In the simple model, in which the logical path is not offered as an alternative, Bean
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Streams

s€,9¡
Base

Tlaffic

opt.
Traffic

Streams

s€,S¡
Base

Traffic

opt.
Traffic

Streams

s€^Sp

Base

Traffic

opt
Traffic

CS-C

C-P

C-PM

BH-C

A-C

B-C

CS-P

A-CS

P-PM

BH-P

BH-CS

B-P

A-PM

475.0

660.0

562.0

580.7

677.7

848.2

6858.0

7040.3

8111.9

8380.6

6034.6

L2232.0

8327.5

63

86

L44

L49

174

2t7

232

47L

543

561

793

819

1098

A-BH

CS-PM

A-B

BH-PM

B-BH

P-S

CS-M

CS-S

A-S

M-PM

BH-M

M-P

B-M

8603.4

5840.9

12556.8

7138.0

10764.6

25086.7

27t47.t

18081.2

25750.9

32086.4

33143.9

37638.5

48263.7

1135

1508

1656

1848

2788

3344

3620

47L2

67t7

8371

8648

9823

12600

C-S

C-M

B-CS

A-P

B-PM

PM-S

BH-S

B-S

A-M

M-S

7744.0

2622.4

8967.0

9776.6

104L9.7

27378.L

22084.7

32191.0

38632.8

98224.4

882

1326

4555

4966

5296

70877

11238

16383

19663

50024

Table 6.6.1: Table of base traffic demands and optimal traffic demands.

and Taylor [10] showed that these optimal tariffs consist of a term representing the

cost of carrying a call and a term depending only on the elasticity function of the

traffic u,(a,,8). It appears that this is still the case, with the addition of logical

Iinks.

For instance, from Table 6.7.2, it can be seen that traffic for stream Cairns to

Canberra (CS-C) uses its physical path (Ocs-c : 1). Hence, traffic for this stream

is multiplexed at Cairns, de-multiplexed and then re-multiplexed at Brisbane and

Sydney (as these are not the traffic's destination) and is finally de-multiplexed at

Canberra. Given that the cost of multiplexing is assumed to be equivalent to that

of de-multiplexing, we have the cost of multiplexing/de-multiplexing traffic on this

path as 6m :6.06. By guessing that the form of the term depending on the elasticity

function will be as in Bean and Taylor [10], this term is equal to -u,(k)-t : t.

Hence traffic for the stream CS-C using its physical path, would have a cost of 9.06.
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Streams

s€,S¡
Tariff

Q,S

Split Prob

0,

Streams

s€^9¡

Tariff

Qs

Split Prob

0"

Streams

s€,Sp
Tariff

Q,g

CS-C

C-P

C-PM

BH-C

A-C

B-C

CS-P

A-CS

P-PM

BH-P

BH-CS

B-P

A-PM

9.05

9.10

7.07

7.07

7.07

7.08

13.15

11.11

11.11

11.11

9.09

11.11

9.08

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

A-BH

CS-PM

A-B

BH-PM

B-BH

P-S

CS-M

CS-S

A-S

M-PM

BH-M

M-P

B-M

9.07

7.06

9.08

7.05

7.05

9.05

9.04

7.03

7.03

7.03

7.03

7.03

7.03

1.00

1.00

1.00

1.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

C-S

C-M

B-CS

A-P

B-PM

PM-S

BH-S

B-S

A-M

M-S

5.04

5.04

5.03

5.03

5.03

5.03

5.03

5.03

5.03

5.03

Table 6.7.2: Table of optimal tariffs and splitting probabilities.

This is extremely close to the value of 9.05 given by the numerical results found by

NAG in Table 6.7.2.

It can also be seen from Table 6.7.2 lhat traffic for stream Perth to Sydney (P-

S) uses its logical path (dp-s : 0). Hence, traffic for this stream is multiplexed

at Perth, cross-connected at Adelaide and then at Melbourne and is finally de-

multiplexed at the destination, Sydney. Thus the cost of multiplexing and cross-

connecting traffic on this stream is 2m l2r : 2.02 + 4 : 6.02. Adding the cost

due to the elasticity function gives the cost of traffic for stream P-S using its logical

path as 9.02, which is close to the value of 9.05 given by the numerical results found

by NAG in Table 6.7.2.

This seems to suggest that there is a simple formula which the tariffs o", s € ,S

obey. It can also be seen in Table 6.7.2 that the splitting probabilities 0",s € S7

all have value zero or one, indicating that all the traffic for the streams s € ,S¡ uses
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either the logical or physical path. We shall investigate these conjectures in the next

chapter.



Chapter 7

Analytical results

7.L Exact optimisation

We now wish to use analytical methods to find -either explicit formulae for the tariffs

aj, s € S and the splitting probabilities 0], s € ^9¡ or equations which they must

satisfy. By doing this we hope to be able to investigate whether the same properties

which arose from the numerical results in the previous chapter hold in general.

As we know that our objective function Z, (6.3.16), is differentiable, we will use

simple differential calculus in an attempt to find any stationary points for a and 0

and classify them. However, it is necessary to discuss some notation and concepts

that will be used in the analysis first.

7.2 Further notation

In the following work, it is necessary to know the functional dependencies of the

variables. For notational convenience we will suppress these dependencies but list

them here for future reference.

u"(a",8), C(p¡,t¡), p¡(0,8,v), arç,¡(E), aqq(E), A,(8,0,), ft@,). (7.2.1)

For stream s € ,Sp, there is a unique direct physical path, say d(s), which consists

83
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of a single link ô(s). For stream s € ^9¡ 
there is a unique physical path, say p(s), and

a unique logical path, say l(s), which consists of a single logical link /(s). Although

this notation may appear superfluous, it will turn out to be necessary to avoid

unnecessary summations over a single link.

Hence, using equation (6.2.5), for a stream s € ,Sp, the acceptance probability

for the unique path d(s) is given by ¿¿(") : (1 - Eo1";)tt<'l't"). For stream s € ,9¡,

the acceptance probabilities on the logical and physical paths are given by ¿¿(") :
(1 - E frl)çz('),(.) and apç¡: fljep(r) (L - Er¡,ir(") respectively.

The expressions below will arise frequently during the work to follow, and thus

it will be beneficial to have defined them and to have an understanding of their

physical interpretation. For E¡ 1l,let us define

Mr(#,8) : 
,à,2-rirffi(r - 

ø,)-' * 
,Ð,*n(rti 

- t)çj,#G - E)-' (7 '2'2)

Hence,

tw¿t,l(ffi, E¿(")) : 2mç¿þ)t(")ffil- Eu(,))-t,

tw,(,)(ffi, E¿(")) : (2m + r(n¿(")- 1))s21"¡r1, ,#(1 - E t,l)-t,

Mr(,)(#, E) : .Ð,r*r,rr,lffiO - E¡)-t.
jep(s)

\Me will write M¿G), M¡1r¡ and Mo1,¡ ín future.

The quantify # is the marginal extra capacity required to support a unit of

extra traffic on link j and M, is the cost of this marginal extra capacity on all the

links used by path p. If traffic behaved like a fluid flow, then that marginal extra

capacity would be (1 - E¡). Therefore, ffi(l - E¡)-t can be thought of as the

penalty to be paid for the stochastic nature of the link. Berezner et ø1. [11] showed

that this ratio is bounded below by 1.

Berezner et al. also showed that the marginal extra capacity required to support

extra traffic on the link is given bV (1- E¡) in the limit as p¡ tends to oo. Therefore,

this ratio can also be thought of as the penalty that has to be paid due to the
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finiteness of the traffic on the link. Under this interpretation, the ratio plays the

role of a measure of the inefficiency of the link.

7.2.t Optimal tariffs

We will assume that zr(ar,.Ð) is a strictly decreasing function of a" and hence

k a O. Only a minor technical adjustment is needed if this assumption is not

made. In general, demand functions tend to zero as o -+ oo but do not equal zero

at any finite value, giving u, ) 0. It is further possible to argue that we can assume

that ur l 0 since if there is no traffic for a stream, that stream can be ignored.

To find the optimal tariff al which maximises network profit we will assume rffe

have fixed, feasible link blocking probabilities,E and splitting probabilities 0. The

objective function (6.3.16) is then differentiated with respect to o". For s € ,9p this

gives

az 
-E¿r"l)',(s)d(s)f oro" u-z*!9-ap:@%d* : 

'"(l - Ea1"¡)t't'l'<"' + "'ffi(1 - E61r¡)scr'rat 
op¿G) ous 0.',

where

0px"t

tr : Ço1s¡a(s) (1 - Eot'l)ç¡(')¿(')-1.

Any stream s € ,Sp has only one possible path which consists of the single link

ô(s). If E¿G) :1, no traffic will be accepted on the link. This implies that no traffic

will be accepted for stream s, and hence its tariff c" is inconsequential.

Using our earlier arguments in this section, we can assume that ft I 0 and

from above, we can assume Eu(r) < 1. To find the stationary point or, #" is set to

zero. Hence the optimal tariff a], s € ^9p, must satisfy

ds: -I)s(H-' + MuG)' g'2'3)

Malr¡ is given by equation (7.2.2), and, as discussed in Section 7.2, is the cost of

marginal extra capacity required to support extra traffic on path ð(s). The term

-r,e^u)-l depends only on the elasticity function of the traffic u".
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For s € ,S¡,

K : 
Fu",!,,Ð(t 

- E,)sio *Æ. fi""k1l,(t - E¡)sio

-r^,à,HHk - r*#Wk -,(n¿r,t - t#Wk
where

ôp¡ t çipÍ!(r - E¡)-' II(t - E,)'* (7.2.4)
0u, p€P.:j€p xep

giving

Ç¡pç,¡0,(7- E¡)-t ll¿.r(,)(1 - Eo)tn,<"¡, i ep(s), s €,S¡,

gr1,¡(1 -d")(1 -Û.)sirç,-t ie l(s), s€,9¡,

0 otherwise.

(7.2.5)

Hence, setting K :0 and rearranging gives

.,ko, : -u"A, * r*,Ð,n#nk + (2m -t r(q¿(") - Ð) #Wk
As 0 and .E have already been set such that they are feasible solutions, there are

only two cases in which A" could have the value zero. The first possibility is that

there is at least one link in both the physical and the logical paths for which the link

blocking probability is one, and hence apþ) : &tþ) :0. The second is that only one

of the two paths has at least one link for which the link blocking probability is one,

but that that same path carries all the traffic. In both cases the stream acceptance

probability will be zero. If this is the case, there will no need to determine the

optimal tariff o" for that stream.

Thus, using this assumption and our earlier assumption that k + 0, the optimal

tariff ol, s € ^9¡, must satisfy

}pt :
0u,

Qs: -Us 0as
* Mep¡

0u,
(

-1 0 rap1"¡
(7.2.6)

A,

The first term again depends only on the elasticity function of the traffic u". MpG)

and M¡çr¡ are given by equation (7.2.2) and, as discussed in Section 7.2, represent
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the cost of marginal extra capacity required to support extra traffic on the physical

and logical paths respectively. Thus, the next two terms are the cost of marginal

extra capacity, required for an increase in traffic, for the physical and logical paths

weighted by the proportion of the traffic that is accepted on the path.

It is interesting to note that if all the traffic for stream s € ^9¡ uses its logical

path, l(s), then 0, : 0 and A" : aKù. This causes equation (7.2.6) which the

optimal tariff ol, s € S¡, must satisfy, to be ds : -t)s(Ð-t + M,þ).Similarly,

if all the traffic for stream s € ^9¡ uses its physical path, p(s), then d" : 1 and

Ar: øp1s¡. In this case, equation (7.2.6) which the optimal tariffoj, s € ,S7, must

satisfy becomes arr: -tt (0"\-' *- -I)s(ã*/ t Meç,¡.

These equations are similar to the forms we expected from the numerical results

in Section 6.7. Recall that from our numerical results we were expecting the value of

the optimal tariffs to depend on a term due to the elasticity function and a term due

to the cost of multiplexing and/or cross-connecting the traffic. The only difference

between this and the formulae above is that the cost terms are weighted by the

cost of marginal extra traffic required to support extra traffic on each link, which is

#(1 -,8). Using the bounds for C(p,-E) given by Berezner et al. [11] (see Section

6.4), we know that as p increases, 
uo@ 

upproaches l- E, and hence this marginal

weighting approaches 1.

Note that if we place upper and lower bounds on the tariff, then the optimal tariff

occurs at the upper bound if ol > d" or at the lower bound if ol < or. This can be

shown by using similar arguments on the Lagrangian relaxation of the formulation.

7.2.2 Optimal splitting probabilities

We now turn to the problem of determining the optimal splitting probabilities given

that the tariffs, a, and the link blocking probabilities, .8, are fixed and feasible. We

wish to show that there is only one stationary point for the revenue as a function of

0, and to classify this stationary point.
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Differentiating the objective function (6.3.16) with respect to 0,, s € ^9¡ 
gives,

AZ
00,

: a,u"(arç,) - o¿(,)) - r* ,Ður#k - Q^i r(r¿(,)- 1))
ac 9!!Ð

ðp¿þ) 00,

where

Ç¡pþ)usapþlí - E¡)-t j e p(t), s €,S¡

-Ç¡t1s7u,a¡ç,1(1 - E¡)-t je l(s), s€,S¡

0 otherwise.

Hence
AZ

Uil 
: usz'pþ) (o, - MpA) - u,a¿ç,¡(a, - M,G)). (7 '2.7)

The o which satisfies equation (7.2.6), maximises Z for any feasible 0. Thus

we wish to find the 0 that maximises Z using the fixed a which satisfies equation

(7.2.6).

Substituting oT, s € ,S¡, from equation (7.2.6) into this equation gives

ðpt :
ô0,

AZ 7ur-r
- Us-Ã-

OQ"
+ (Mq't - Mp@)

(1 - 0,)a¿1"¡
u'ap(ù

00, A,
0ra,pçr¡

A"
us

\ur-r
+ (Mp@ - M,f')

Hence,

AZ , ,, /0rr\-' ,
# : a'Y lú) (o,,", - apr,)) - eX-) @^,, - u,(,)) . (7.2.8)

We now set ffi to zero in equation (7.2.S) to find the stdionlypoints. In solving

this equation, we assume d" is no longer restricted to [0,1] and it is possible that

A" will equal zero. From equation (6.2.7) this gives a vertical asymptote of Z at

á, : T" : ffir. We shall investigate this possibility later in our proof, but for

the moment we shall assume that A, + 0. Note that if ø¿1r¡ : 0, T" : 0 and if
ap(r) :0, T" : 1. If apþ) : atþ) :0, no traffic will be accepted from stream s and

hence the splitting probability for that stream will be irrelevant.

using our arguments in section 7.2.L, we can assume that fu l0 and u +0.
If ao1,¡ - o¿(s) : 0, the traffic for stream s will simply use the path p € P, with

-usarþ) 0a"
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Iower cost rendering this analysis unnecessary for stream s. Thus \rye can rearrange

equation (7.2.8) to find

A, (1- 0")aa1,¡ * 0,ap1,¡

-us,,@)ar(q (MrO - tWr(q)

Q)' (k) -' 
(oo,,, - o,r,r)

(rou, - twn(E) "rr,r(k)

Hence, for all s € ,S¡, dl must satisfy

0, +1 (7.2.e)
(a'.p(s) - 0,t(s)) u8

The optimal splitting probability dl is not given explicitly by equation (7.2.9) as

M,p1,7 and. M¡ç,¡ a,re both functions of ffi, which is the cost of marginal extra

capacity, required for an increase in traffic. The traffic on each link j is dependent

on the percentage of the traffic for each stream, ß, I e ,S¡ which uses each path

p € P" where link j e p(s). Since as p increases, *& -+ 1-,Ð, this dependency is

weak.

In this section, we have assumed that the tariffs, as, are fixed and feasible.

However, it is possible that the tariff ol, at which we evaluate the optimal splitting

probabilities, is not feasible. In Section 7.2.I we stated that if the tariff o] is not

feasible, the optimal tariff occurs at the upper bound if ol > õ, or at the lower

bound if a] < ar. In this case the analysis becomes more involved, as it is not be

possible to rearrange % to find an equation for dl. We will discuss this eventuality

in detail in Section 7.4.2, in which \Me use an approximation.

We would now like to proceed by finding the second derivative of the objective

function (6.3.16) with respect to 0", at 0" , if equation (7 .2.9) gives a single stationary

point. This would allow us to determine whether the objective function evaluated

al 0* gives a maximum or minimum. If a maximum \Mere obtained, it would then

be necessary to investigate whether the vector 0 was feasible or not. If a minimum

were obtained, then an end-point of the feasible region for 0 would be chosen for
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each á;. We are unable to proceed in this manner as we do not have an explicit

expression for 0! at which we could evaluate the second derivative.

In Section 7.4 we will use an approximation for ffi that removes the dependency

from equation (7.2.8). This will enable us to proceed as described above, and thus

determine the optimal vector 0*. However, before doing so, ìrr'e will examine equation

(7.2.9) to see what information can be gleaned.

7.2.3 Investigation of 0 equation

When solving the optimisation problem there is a trade-off between the route with

the best performance (that is, lowest blocking) and the route with the best cost. If
the acceptance probabilities on the routes are equal, then it would be expected that

the route choice problem would simply come down to choosing the best cost route.

If the cost coefficients are equal it would be expected that the traffic would simply be

routed on the path with the higher acceptance probability. F\rrthermore, if both the

acceptance probabilities and the costs are equal then it is expected that the route

choice (choice of splitting probabilities) is arbitrary. We now wish to investigate

whether \.ve can show that this is so.

If 0 < 0, 1 I and there is only one stationary point, we need to know whether

the stationary point gives a maximum or a minimum. If there is only one stationary

point 0 and 0, 1 0 or 0, > 1, that is, d, is not feasible, we know to choose an

endpoint of the feasible region as d]. However, we need more information about the

solution space to know which end-point to choose.

Note that, rather than stating that one of the points 0, : 0 or 0" : 1 will be

chosen, we state that we will choose an end-point of the feasible region for d". This

is due to the fact that, in some rare cases, á" will be constrained to a tighter region

than [0,1], by constraint (6.3.20) in the problem formulation. We will investigate

this possibility in the next section, for the moment continuing to use a term such as

within the feasibility region.
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Earlier we defined the point at which A, : 0, and hence at which there is a

vertical asymptote of Z, as

T,
_atþ)

(7.2.10)
apþ) - aIþ)

For ools¡ - o¿(s) ) 0 we have T, ( 0. For apþ) - ø¿(r) ( 0 we have T, ) 1.

Let us now define

t^ - 
ora¡oorq(%u*)

"-loo(") - at(ù)'u,'
(7.2.rt)

Using our arguments from Section 7.2.7, we may assume u, ) 0 and ff < 0. In

Section 7.2.2 we explained that it is possible to assume apG) - an * 0. Hence,

using these assumptions, k, ) 0. Thus equation (7.2.9) can be written as

,": (*rul - mt(ù) k, + T,. (7.2.12)

Note that if opir¡:0, then k":0 and á" - Tr:1. Also, if ø¿i"¡:0, then kr:0
and d" - T" : 0. In both these cases the splitting probability is set and no further

analysis is necessary. Thus, we will exclude these two cases in the following, giving

fr")0.
In order to investigate equation (7.2.72) further, we will assume we have found

d, thut satisfies this equation for s € ,S¡. Although g will maximise the objective

function, it will not necessarily be the optimal 0* for our problem formulation as one

or more of the á, values may not be feasible, due to not satisfying the constraints

(6.3.19). Thus, we will investigate several cases in turn, and in each case attempt to

determine whether or not âr, s e ,S¡, is feasible. This will enable us to make some

assertions about the value of d], s € ,9¡.

o Case t: Meç,¡-M¿G) >0and ap¡)- ø¿1r¡ (0
In this case the cost of marginal extra capacity on the physical path, p(s), is

more expensive than on the logical path, l(s), and the acceptance probability

on the physical path is lower than that on the logical path. Thus we would

expect to use the logical path as much as possible within feasibility. Using

equation (7.2.12), and the fact that T" ) 1, gives á, > l which is not feasible.

Therefore the lo,rer end-point of the feasible region will be chosen.
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o Case 2: Meçr¡- Mqr) <0and apþ)- ø¿1r¡ )0
In this case the cost of marginal extra capacity on the logical path, l(s), is

more expensive than on the physical path p(s), and the acceptance probability

on the logical path is lower than that on the physical path. Thus we would

expect to use the physical path as much as possible within feasibility. Using

equation (7.2.12), and the fact that T, ( 0, gives á, < 0 which is not feasible.

Therefore the upp"- end-point of the feasible region will be chosen.

. CaseS: Mp1,¡-M¿G) (0andap¡)-ø¿1r¡ (0or
Mp(,) - M¿G) ) 0 and apþ) -a¿1r¡ ) 0

In this case the cost of marginal extra capacity on one path is more expensive,

but that path has a higher acceptance probability. Hence which path we

use, or whether we use a combination of the paths, would be expected to be

dependent on the magnitude of the differences in the marginal costs and the

differences in the acceptance probabilities. Using equation (7.2.12) it is not

possible to know whether á, is feasible or not without knowing the magnitudes

of the terms. Thus, we have no information about which path will be chosen

or whether the traffic will be split.

o Case 4: Meçr¡ - MUr): ap(r) - (rtþ)

In this case the difference in the costs of marginal extra circuits for the paths

is equivalent to the difference in the acceptance probabilities. Thus, we may

expect that, as there is no advantage in using one path over another, r¡/e could

possibly have the traffic split over the paths. Using equation (7.2.12) we find

that

f. if øo1,¡ _ at(s) ( 0, then 0 <ê, < 1if arls¡ 1-r,(k)-' < ø¿(").

2. if. ao6¡ - o"t¡) ) 0, then 0 < á" < 1 if atþ) 1-r,(k)-t 1apþ).

Since ørç,¡ 31 and o¿(,) I l, if -u,(ft)-l > 1 then d" witl not be feasible,

that is, A, < 0 or á, > 1. In the example Section 6.6, -u"(fu)-t : 3 and
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hence 9" would not be feasible and dj would be an end-point.

o Case 5 : aols| - atþ): €, € -+ 0

If the acceptance probabilities are nearly equivalent we would expect to use

the path with lower cost as much as possible. Equation (7.2.12) shows that

á, -+ too depending on the sign of MpG) - M¿G).Hence á, is not feasible, and

again an end-point of the feasible region would be chosen.

o Case 6: ar6¡ - ø¿(") :0
If the acceptance probabilities on the physical and logical paths are equal for

any stream s € ,S¡, then choice of splitting probability would simply be a

matter of choosing the path with the lower cost, and analysis would not be

necessary.

o Case 7 : Meçr¡ - MKr): €, é -+ 0

If the costs are nearly equal we would expect to use the path with the higher

acceptance probability as much as possible. In this case equation (7.2.L2) gives

á, -+ T, which is either ( 0 or > 1 depending on the sign of. apçr¡ - atþ). Hence

á, is not feasible again and an end-point of the feasible region will be chosen.

o Case 8: M,1r¡- Mqù : 0 If the costs of marginal extra capacity on the physical

and logical paths are equal for any stream s € ,S¡, traffic for the stream would

use the path with the higher acceptance probability and the analysis would

not be necessary.

Thus, even without an explicit equation for d], we have found that there are

many cases in which d" will not be feasible and therefore an end-point of the feasible

region for 0, will be selected as á]. In Section 7.4we will be able to extend this to

show that gj will always be an end-point of the feasible region. However, first we

will investigate what are the end-points of the feasible region for 0r.
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7.3 End-points of the feasible region for á"

In attempting to find the optimal splitting probabilities \rye have assumed that the

link blocking probabilities, J9, and tariffs, o, are fixed. Thus it is possible to rear-

range constraint (6.3.20) to find the feasible region lor 0,, s € ^9¡.

Using equations (6.2.5) and (6.2.6) gives

B,(0,, E) : (1 - 0,)(1 - o¿t,l) + d"(1 - ap¡)),

which we will write as B, in future. Hence inequality (6.3.20) becomes

atþ)- (1 -å") 10"(a4,¡-øp(,)) 1a\ù-(1 -8").

Thus there are nol¡¡ two possibilities. The first is when arþ) - aoçs¡ t 0 and hence

0¿(s)-(1 -å*) o,t¡)-(1 -F,)<0"<
0,¿1s¡ - apþ) arþ) - apþ)

This can constrain he value of d, to an interval tighter than the interval [0,1].

Specifically

0¿(s)-(1 -Asl
øt(s)-oo') )o if ø¿('))(1 -¿')

ur,¿ 
o,(:) - (1a B,) . t if aols¡1 (1 _ B,).

0'¿1r¡ - apþ)

The second possibility is when aqs) - aols¡ 10 and

a4ù-O-B
")

aqs)-(1 -8")0,
0,¿1'1 - 0"p(s) 0,¿1r) - 0,pþ)

Again, this can constrain the value of d" to a tighter interval than [0, 1], where

at4)-(1 -8,)
a7s)-oo¡) )o if ø¿(')((1 -B')

un¿ ''("-) - (la 4) < t if aoçs¡ ) (1 - B").
{L¿çr¡ - 0,pþ)

In both cases, if the acceptance probabilities on the logical and physical paths,

ø¿1"¡ and apþ)1àrê between l-8, and 1-.B, then 010, ( l and there are no tighter

bounds imposed on d" than those in constraint (6.3.19) in the original formulation.
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7.4 Optimisation using an approximation

In Sections 7.2.7 and 7.2.2 we found formulae that the optimal tariffs and splitting

probabilities must obey. However, as the formulafor 0, was not an explicit equation

for 0i, \¡¡e were only able to form certain theories about the optimal value of 0,,

s €,9¡, rather than fully analyse it. In Section 7.2.2we noted that the dependency

on 0 in equation (7.2.9) is weak and hence removing this dependency would allow

us to obtain further information about 0*.

Bean and Taylor [10] and Berezner et al. [71] stated that a good approximation

for ffi, when p¡ is large, is

AC

Ur,*[-E¡' (7'4.73)

This approximation has already been mentioned in Section 6.5 and Figure 6.5.4

shows a comparison of ffi to this approximation.

Using this approximation, Moin equation (7.2.2) becomes a fixed cost, and will

now be called $. Thus,

Fp:2m I Ç¡pln D ?t¡-l)çio, (7.4.14)
jelep jeJn€p

and hence, F¡(") : 2mç¿þ)d(,), fì1"¡ : (2m+r(r¡t(r;-1)s21"¡r1"¡ and FpG) : Dj.r(,) 2mçjp(,)

These costs are no longer dependent on the marginal capacity increase due to extra

traffic as equation (7.a.13) does not vary a,s p varies. Hence $ now represents the

cost of the circuits required by path p, regardless of the amount of traffic on the

path.

7.4.t Optimal tariffs using an approximation

We now wish to examine the changes that using this approximation causes in the

analytical work of Section 7.2.I, where we found an equation that the optimal tariffs

must satisf¡ without the approximation.

For fixed link blocking probabilities .E and splitting probabilities 0, the optimal
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tariff ol, s € ,9p must now satisfy

..',: -Y,æ)-'+ Fo(,)' (7'4'15)

The term -r,(k)-t depends only on the elasticity function of the traffic 2", as in

equation (7.2.3), but the second term F61r¡ is now the fixed cost of carrying the call

on the physical path, consisting of a single link, rather than being a marginal cost,

as in equation (7.2.3).

For s € ^9¡, the optimal tariff ol must satisfy

ds: -r,,s(k)-' + Foç,rï.!@* 41"¡ 
g.*-. 

e.4.16)

Once again the term -r,e^u)-l depends only on the elasticity function of the traffic

2". The difference between this equation and equation (7.2.6) is that the next two

terms now represent the fixed weighted cost of carrying a call on the physical and

logical paths respectively, as against a marginal cost. It is interesting to note that

this is the form of the equation we observed for o, from our numerical results in

Section 6.7.

7.4.2 Optimal splitting probabilities using an approxima-

tion

We now wish to examine the changes that using this approximation câ,uses in the an-

alytical work of Section 7.2.2, where we found an equation that the optimal splitting

probabilities must satisfy, without the approximation.

As 0, is no longer a functionof 6r&, instead of having equation (7.2.9) which g]

must satisfy, we now have an explicit equation for 0!, s € ,S¡. Thus

-(4t"1 - fì1"¡)øp1"¡o¿1"¡
0u,

A""oi: 0,tG)

0''p1s¡ - 0'¿1t¡
(7.4.77)2

ap?) - o't(s) u8( )

where F,pç¡ - F¿çr¡ is the difference in the fixed costs of the physical and logical paths.

This replaces the term Moç,)- Mt(,) from Section7.2.2, which wa,s a marginal cost
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difference. Although ál is a critical point for revenue, it is may not be a viable

physical solution with 0 < di < 1, for all s € ^9¡.

Using the approximation (7 .4.I3), equation (7 .2.7) becomes

AZ
Uil: ,,ar1,¡(a, - $f"l) - usa1ù(o" - fif'l). (7.4.18)

In Section 7.2.7, we found a formula for the optimal splitting probability, without

approximation (7.4.13). There we discussed the possibility that the tariff a], at

which we evaluate the splitting probability, mây not be feasible. We noted that

the optimal tariff occurs at the upper bound if al > o, or at the lower bound if

a! < ør. In these cases, we know from equation (7.4.18) that ffi : c, where c is

a constant. Thus the second derivative ffi will have value zero and d, will be a

point of inflexion. Since there is no maximum or minimum, the optimal splitting

probability dl will be an endpoint of the feasible region for d,.

For feasible oj, substitution of (7.a.16) into (7.4.18) gives

K:rr(k)
1

(Foç4 - 4lç,¡)urar1,¡a4s¡a¿çr¡ - o,p(s) (7.4.1e)
A,

Differentiating this with respect to 0, and noting that ffi : ap(r) - ø¿1"¡ gives

a2z .-o
*?: A,¿u"aoç,¡a¿(')(Fot"l - fÌt"l)(oo(") - ø¿(,))' (7.4.20)

Using equation (7.4.77) for dj and substituting it into the equation for the average

stream acceptance gives

A,(0:) : [i(aoç,¡- ø¿(")) r a¿(") - -(Feal-- 
Fttù)aerù-atalk 

e.4.2r)') (apþ) - atþ))u,

and hence the second derivative of the objective function, with respect to 0,, at 0i,

IS
3

] s 42z)
(or(,) - o¿þ))' usA'Z l o.p(s) - o,r(s) |

M?lr.:rr- (4('FEt,l)t
"oa¡orc¡(k)

Let g,(r,(o,,8)) : -r?(k)-t urrd h,(8,u,(a,,8)) : uso,p(s)o,t(s). Recall

from Section7.2.3, that if apG):0, then 0i:t or if ø¿1,¡ :0, then 0i:0. Using
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these facts and the arguments in Section 7.2.I, 'we can assume that g" and h" are

strictly positive. Hence, suppressing the dependencies we have

0i : (4t,1 -fil,¡)k"a1', and

AZ
(7.4.23)

(7.4.24)
00,

: 9,(ae1,¡- ¿¿(,)) - h,(F'þ):,4ç))

where lc,,g" and h, are positive and k, and T, are given by equations (7.2.11) and

(7 .2.10) resp ectively.

It is now necessary to determine whether the critical value áj maximises or

minimises revenue as a function of 0. If á] gives a minimum then the value of á,

that maximises the revenue will be one of the end-points of the feasible region for 0r.

If d] gives a maximum then the optimal value of d" will still be one of the end-points

of the feasible region for 0, if dl is outside this feasible region.

If, for any stream s € ,S, the fixed cost of the physical path, p(s), is equal to the

fixed cost of the logical path, l(s), that is Fp1,¡ - fì(r) : 0, traffic for that stream will

simply use the path with the higher acceptance probability. Thus for that stream the

analytical analysis will not be necessary. Similarly, if the acceptance probabilities

on the two paths are equal, that is apþ) - o¿(") : 0, traffic for that stream will use

the path with lower cost. Again, the analytical analysis for this stream will not be

necessary. Thus we can assume that 4t"l - n@ l0 and apþ) - arcl10.

Using these arguments and the arguments in Section 7.2.7 we can assume that

the denominator and numerator of the expression in the square brackets in equation

(7.4.22) are strictly positive. Thus, there are two cases in which ffi r" negative and

hence dj gives a maximum.

Before considering the two cases, it is worth noting that the only difference

between these two cases and Case 1 and Case 2 in Section 7.2.3 is that the costs

are fixed rather than marginal. We also know that these cases cause d] to be a

maximum. As we have an equation for ffi \rye are able to determine which end-

point will be used. We now know that all the other cases in Section 7.2.3 give a

dj which minimises the objective function. Thus, whether gj was feasible in these
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cases or not was irrelevant as an end-point of the feasible region would be chosen

regardless. We will nolu examine the two cases.

o Case 1 : Fplr¡ - trÌ(") ) 0 and apþ) -a¿1"¡ ( 0

In this case the fixed cost of the physical path, p(s), is more expensive than

that of the logical path, l(s), and the acceptance probability on the physical

path is lower than that on the logical path. Thus we would expect to use the

logical path as much as possible within feasibility.

Using equation (7.4.23) gives 1 < T, < d]. Therefore,0! is infeasible and we

know that the optimal splitting probability will be one of the end-points of

the feasible region. Knowing that dj gives a maximum, we know what the sign

diagram of ffi looks like for d, ) Tr. For d" ( T", say g, - T" - b, for some

positive number ô,

A,: (=9 - b)(oo¡¡ - ø¿(,)) + ¿¿(s) : -b(a,1"¡ - o¿(,)) > 0." \ alp(s) -a¿¿(s)

Hence using equation (7.4.24) we know that ffi < 0 for 0, ( T". Thus the

sign diagram, for -* i,

tttT01T"0i

Hence, the maximum value of Z(0") is obtained at the lower bound, which in-

dicates that as much of the traffic uses the logical path as is possible within

the feasibility conditions as expected.

o Case 2: Frç¡ - fì(,) ( 0 and ap¡) - ø¿1r; ) 0

In this case the fixed cost of the logical path, l(s), is more expensive than that

of the physical path p(s), and the acceptance probability on the logical path

is lower than that on the physical path. Thus we would expect to use the

physical path as much as possible within feasibility.
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Using equation (7.4.23) gives 0l < T, < 0. Therefore,0! is infeasible and we

know that the optimal splitting probability will be one of the end-points of

the feasible region. Knowing that 0l gives a maximum, we know what the sign

diagram of ffi looks like for d, ( T". For d, ) Tr, say g, : T" * ó, for some

positive number b,

A,:(fr$*;+ó)(oe1,¡ -ø¿(,)) +o¿(s) :b(a,pç,¡ -o¿(")) > 0.

Hence using equation (7.4.24) we know that ffi > 0 for d, ) T,. Thus the

sign diagram, for -* it

+ + + +
I

T
I

0i I

I

0
I

1

Hence, the maximum value of Z(0r) is obtained at the upper bound, indicat-

ing that as much of the traffic uses the physical path as is possible within the

feasibility conditions as expected.

Hence the value of d" that maximises the revenue as a function of 0 is one of the

end-points of the feasible region of 0".

rffe will now investigate which end-point will be used in all other cases. This will

be dependent on the relation of the value of áj to T,,0 and 1. All eight possibilities

are shown below, where the possible value of 0] is represented by X.

s 0 1 0 1 s

By using these possibilities and the following conditions

T"(0 iff apþ)-0¿1r¡)0,

Tr)0 itr apþ)-a¿1,¡(0,

di < T, iff Fpþ) - trì1"¡ < 0,
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d; > T' iff Fpþ) - fì1,¡ > 0

and

Z" > 0 iff apG) - at¡) 10 and Fpþ) - tri1,¡ < 0

or ap¡) - ø¿(,) ) 0 and FpG) - tri1"¡ ) 0,

Z" <0 iff úpþ) -ø¿(") ) 0 and $t,l - fil,¡ < 0

or ap¡) - ø¿(,) ( 0 and 4t") - fì1"¡ > 0,

we obtain Table 7.4.2.

Table 7.4.2 informs us that if d; < 0, the feasible dl that maximises revenue

is at the upper bound of the feasible region for d,. If Pi > 1, the feasible ál that

maximises revenue is at the lower bound of the feasible region for d,. If 0 < 0i < I
it represents a minimum and so it will be necessary to substitute each end-point of

the feasible region into the objective function to find which end-point gives a larger

valte of Z.

Sign 0: Position a,pþ) - aqs) Fp(') - fì('l Z" 0i

di<0
dT<T,<o
T,<pi<o

P;<0(1(T"

+

+ + +

+

max

min

min

upper bound

upper bound

upper bound

0i>1
1<T,<di
1<A;<T"

T,(0<7<0i +

+

+

+

+

max

min

min

lower bound

lower bound

lower bound

0<di<1 T"(0<di<1
0<d;(1(T,

+ + *:min
+ mln

?

?

Table 7.4.L: Feasible optimal values of 0!.
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7.5 Threshold theory

Observing Table 6.7.2 again, and noting that the traffic streams s € ^9¡ are ordered

from the lowest to the highest amount of traffic accepted, it appears that the splitting

probability for each stream depends on the magnitude of traffic accepted by that

stream. This is logical since there is an Economy of Scale trade-off for the capacity

function C(p¡,8¡) defined in equation (6.4.21). At traffic on the logical links does

not mix with other traffic, using the logical path is less efficient but cheaper (in

our example) than using the physical path. Hence, there is a certain threshold at

which the amount of traffic accepted by a stream is high enough to justify creating

a logical path.

The fact that this threshold appears to depend only on the magnitudes of the

accepted traffic is in part due to the Quality of Service requirements being uniform

for all paths, and the costs coefficients being approximately equal in our example.

If the grades of service or cost coefficients were significantly different, it would be

expected that whether a stream satisfies the threshold at which a logical link is

created would also depend on the path blocking probabilities for the stream and the

cost coefficients.

For instance, if a stream has a very low upper bound on the stream blocking (i.e.

4 -+ 0), a higher level of traffic will need to be accepted to take advantage of the

Economy of Scale trade-off for each path, p € Pr, than if the upper bound is less

stringent. This is due to the derivativeÐ¡r0ffi.

If the cost of multiplexing is much higher than the cost of cross-connecting, the

gains due to the cheaper cost of using the logical path may outweigh its inefficiency

which is due to traffic being unable to mix. Thus there are many trade-offs for each

stream which determine if they are above the threshold at which creating a logical

link is cost effective. The trade-off of these terms can be seen in equation (7.2.9)

which is the equation that d] must satisfy. The numerical example in Section 6.6

gives a clear illustration of the physical/logical threshold when the effects of the
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costs and the path blocking probabilities are insignificant and the traffic magnitude

is the dominating factor.



Chapter 8

Multi-path formulation

8.1 Theory

In Chapter 4 we introduced the concept of logical links which have their own link

blocking probability but use reserved capacity on some set of physical links. In the

work to date, it has been assumed that traffic on logical paths, which consist of a

single logical link, is not able to interact with traffic from other streams. Hence each

stream s € ,S¡ has been assumed to have a logical path associated with it, which is

solely for its use. This logical path is in effect a direct link between the origin and

the destination nodes, with its own blocking probability and capacity.

Due to the fact that the traffic on the logical links was unable to interact, the log-

ical links were unable to make use of the economy of scale trade off, unlike the phys-

ical links. If cross-connecting is assumed to be less expensive than multiplexing/de-

multiplexing, then there is a trade-off between the marginal cost of circuits and

the difference in the costs of cross-connecting and multiplexing, as to whether each

logical link is cost effective.

This leads one to wonder what the effect would be on the network if traffic on

the logical links was allowed to interact. By allowing streams to use paths which

are a combination of logical and physical links, this is a possibility. For example,

t04
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traffic for the stream Perth-Sydney could use the physical link Perth-Adelaide, and

then use the logical link from Adelaide-Sydney. This logical link may also carry,

for instance, traffic from the stream Adelaide-Sydney. This now means that the

logical links are able to take advantage of the economy of scale by carrying traffic

from more than one stream, making the logical links more cost-effective. Thus the

question now is whether there is an advantage in streams splitting traffic over more

than one path or whether they will continue to make use of a single path.

Allowing traffic to mix on the logical links means that in effect we have a fully

meshed network, where each link has its own blocking probability and capacity. We

will now investigate this extension, firstly discussing the changes in the definitions

and some new notation. Most of the definitions and formulation remain unchanged.

In Section 6.2 we defined s € ,S¡ to be the set of streams which have an indirect

physical path as well as a direct logical path. These streams may now also use paths

which are a combination of logical and physical links.' We also defined Py to be the

set of physically indirect paths, which consist of more than one physical link. This

set now includes paths which are a combination of physical and logical links. Note

that this does not include logical direct paths, as these are in the set P¿. In the

previous work, for each stream s € ,S¡, the set Ps a Pr contained one path only.

However, with our new definition there will be some streams for which this is no

longer true. Thus we will now define the set of paths that stream s € ^9¡ may use

from the set of paths P¡ as P! : Psa Pr.

The routing scheme now allows calls for stream s € ,9¡ to use each path p e P:

with probability 0e, and the logical direct path with probability 1 - Dpepj df . The

á" variables from (6.3.15) become

0'r, s€,Sr, pe P! , (8.1.1)

constraint (6.3. 19) becomes

0ldl<1 s€,S¡, P€P! , (8.1.2)
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s€,9¡,
peP!

and the splitting probabilities given by (6.2.3) become

1,

r- DÉ,o,,
peP!

0!,

(8. 1 .3)

rp-Js -

Ðpep,:jepßç¡r(r- E¡)-t ll¿.o(1 -E¿)'0,, j epe P,,

0, otherwise,

Vs' € ,S,

P€Pp,

P€Pt,

P€h.

(8.1.4)

The derivatives of the non-linear constraint (6.3.20), for s € ,S are now

OB,
(8.1.5)

ôE¡

OB,
0, (s.1.6)

0a,,

OB,

ãø
7 - Eqù)rr(s)r(s) - ll¡ep(")(1 - E¡)sio<"t, p € Pr,

(8.1.7)
otherwise

The rest of the formulation remains unchanged except that the summations over

the paths now include a larger number of paths. We sti[ have a logical direct

path l(s), consisting of a single logical link and a path p(s) which consists solely of

physical links for each stream s € ,S¡. The expressions for the marginal costs, Mp,

and the fixed costs, Fo are still as in equations (7.2.2) and (7.4.14), but there are

more possible paths. In fact, for a stream s, there ¿¡s )4t1"7-r possible paths.

In the next two sections we will make some assumptions similar to those in the

previous chapter. Rather than re-state these assumptions for this formulation, we

will take them as given.

8.1-.1 Optimal tariffs

To find the optimal tariffoj which maximises network profit, we will again assume we

have fixed link blocking probabilities.E and splitting probabilities 0. Differentiating

the objective function (6.3.16) with respect to o", s € ^9p 
gives the same equation

that a] must satisfy as in Section 7.2.I, which is equation (7.2.3).
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The objective function (6.3.16) differentiated with respect to o", s € ^9¡ 
gives

K : Fu"rl,,[I,(t 
- E,)sio*,ä ff ",k[,(t - E¡)sio - r*P"#nk

-*,Du"(ni-t#nk
As in Section 7.2.7, as 0 and.E have already been set such that they are feasible

solutions, we have A, ) 0. Hence, setting QZa* :0 and rearranging, gives

æ)
* (r*>HHk+r \-"(r¡¡-L)

-1
Qs: -Us

ôC 0p¡ 0u"

ôp¡ õu" ða,

A-1
s

Substituting H, which is given by equation (7.2.4), into this equation and noting

that ffi is non-zero only if there is a path p e P, such that the link j is in the path

p and /f l0 gives

..s: ,,(k)-' + (z*D"ffIIG - Eu),* 
,à,r,,#G - ,,1-') or'

+ ,D #I1
p€P' àÇp

(t - ø,¡'ø 
,P"ror,o(rt, 

- Ð 
U,ÜG 

- tr-t) o-1
s

Using equation (7.2.2) for Mp, the optimal tariff al must satisfy

H-'.(,t* ft",*,)ds: -Us (8.1.8)

This differs from the equation (7.2.6), only in that there are now more terms due to

the extra paths. Again, the first term depends only on the elasticity function of the

traffic ur. The summation term is the cost of the marginal extra capacity, required

for an increase in traffic, for each path weighted by the proportion of traffic that is

accepted on the path.

8.1.2 Optimal splitting probabilities

We now wish to determine the optimal splitting probabilities given that the tariffs

c, and link blocking probabilities E are constant. In Section 7.2.2 we found that the
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optimal splitting probabilities \ryere such that one of the two available paths, physical

or logical, was used as much as possible subject to the feasibility conditions. Now

that traffic is allowed to mix on the logical links and there are extra paths we wish

to determine if this is still the case.

Differentiating the objective function (6.3.16) with respect to 0!' , s € ^9¡, p' e

Prl gives

ffi: a,u"(ao, - o¿(")) -r^F" r_ryt# - * 
,!"Øi - u##

where

Ç¡r,u,(L-E¡)-tar, jep',

-Çtç,¡t1,¡u,(l - E¡)-ra4,¡ i : [(s)

0 otherwise

0p¡

a0g'

Thus, substitutin g # into the equation for ffi Sives

ffi : a,u,(ao' - ¿¿(")) - u,arr2rn .Ðrr,r,o#(1 - E¡)-t

L'sao,n 

,rÐro,çip,(qi 
- t¡#ft - E¡)-'

+ usa¿(s) (z^ + r(qq,)- 1)) Çz1s¡r(s¡ ffiO- ür,l)-t.

Using equation (7.2.2) for Mo gives

AZ

UE: 
ur(ao, - ø¿("))o, - usartMot I usa4r¡M¡çr¡. (8.1.9)

As in Section 7.2.2, we wish to find 0 at the point o*. Thus substituting equation

(8.1.8), that al must satisfy, for a, gives

# : î{("- o,r,)) (-o,', H + t #ooMo* (, - 
F*,t )o,,,,t,,,)

a,p,Mo, A, t a¿ç,¡M¿ç,, 

[à 
#oo +(r - 

¿ 
q)r,,,,) 

]
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In solving this equation, we shall assume that d" is no longer restricted to [0,1] and

thus it is possible that A, will equal zero. FYom equation (6.2.7) this gives a vertical

asymptote of. Z at 0l' : T3' : -atG)-Drep! 0! (ao-a¡ç¡) . For the moment we willad -o'tG\

assume lhat A" 10.
It is possible to cancel0!' from all the terms except A, giving

ffi : e,)"(oo,- o,r,)) W) + #;{ (", - o,r,)) (,,àrr#',M,)

+ a¿(,)Mq,)( p,,#oo*(t- p, ,f:)w,)'peP!,p*p' ' peP!,ptp'

aP'MP'( 
rrP**rftao 

* (t - 
"."ì ro,ft)'""') )

Similar to the previous work, if there are two paths for which ap, - aKù: 0, the

path with higher cost will not be considered. Setting ffi to zero and assuming as

in Section 7.2.1lhat 0^r* + 0 and z, f 0 gives

0u,

ða" D Í! ("o"¡(M, - Mo,) + a¿ç"¡ao(M¿çù - Mò + (rptat(s)(Mo, - u,(ù))
p<P!,p*p'0!' :

I ff@, - ø¿(,)) 0u,

0a"peP!,p*p'

,, (oo, - at(,))2

ap,atþ)(Mr,- MrG)

(or'- o,t,¡) ,, (oo, - or(,))'

aKs)

(or' - o,r,l)

Note that lf Í!:0 for all p e P!,ptp'then this equation is equivalent to (7.2.9)

in Section 7.2.2 except for the fact that path p' may not be the path which consists

of physical links only, but may be a combination of logical and physical links. This

is then a choice between two paths, the logical and path p' e P!.

Using approximation (7.4.13), which causes the marginal costs to become fixed

costs, as they are no longer a function of 0, gives

0l' D 0vrYr,r,o,(u, E) + Xr,o,(u* E) (8.1.10)
peP!,p#p'
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where

Yr,r,o'(ur, E)

Xr,r,(ur, E)

ap - aqr)

aor - a¿çr¡

us ap' - at(t)

a¿

k(*"r,(Fo - Fo,) + atþ)ap(Ftþ) - Fp) * ar,a¿6¡(Fr, -¡it"l))
(

2

)

and

ftoo,ou"r(Fr, - F4,¡)

ûpt - o,t!))
ap' - a¿þ)(

2
uE

In the case where the stream has only two paths it may use, that is, the physi-

cal and logical paths, equation (8.1.10) becomes equation (7.4.17) and hence, from

Section 7.4 we know that in this case the optimal feasible dl is an end-point of the

feasible region for d".

For streams s € ,S¡, which have more than two possible paths, we could solve the

equations (3.1.10) for p € P! to find a formula for each 9f. This will be an explicit

formula and hence we could substitute the 0" into the second derivative given by

AZ' Ils / (
: - -tar,_ a¿þ))1 t ff(oooo,(Mr-Mo,) (s.1.11)A0!' A3\ \pep!,ptp,

*a¿p¡ar(M¿G) - Mp) I ar,a¿ç¡(Mr, - Urþ))) - aora¿6¡(Mo, - *U")I

to determine whether 0, maximises or minimises the objective function. Using

Maple gives a solution for 0! but it is complicated.

For a particular stream s € S¡, for which \qs¡:3, we have

0p' : D ?pY,o,o,rxo,
peP!,p*p'

There are four possible paths for this streams. Let path 1 be the logical path, and

the paths p e P: be path 2,3, and 4. Solving equations (S.1.10) using Maple gives

Y2sYs2X a - Y2aYs2Xs - YsaY2sX2 - Yz¿Xz - YsaX3 - Xa
0a

W
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Y2aYa2X3 - Ya3Y2aX2 - Y2sYa2Xa - YztXz - YasX a - Xs
W

YsaYasX2 - Ys2Ya3X a - Ya2Y3aX3 - YnXz - Ya2X a - X2

W

-1 + Y2aYs2Yas I Y3aY2sYaz I Y2aYa2 I Y2sYs2 I Y3aYas

Thus each 0e"' is in terms of the acceptance probabilities ø? and the fixed costs Fp,

and the choice of path will again be a trade off between these values.

Substituting the explicit equations for 0! into the second derivative we could

attempt to find whether these values maximise or minimise the objective function.

However, it is unlikely that this will allow us to determine whether the traffic for a

stream uses a combination of paths or a single path. Thus we will attempt to get

further information by using a numerical example instead.

8.2 Example

We will again consider the network shown in Figure 6.1.1. As in Section 6.6, there are

9 nodes and 36 streams, of which 10 have only the direct physical path available.

Some of the other 26 streams no\M have a larger number of paths from which to

choose. There are 13 streams with 2 paths, 8 streams with 4 paths, 4 streams

with 8 paths and 1 stream with 16 paths. The possible path choices can be seen

in Appendix C. The logical path consists of the single logical direct link, and the

physical path is the unique shortest possible path in terms of the number of links

used. The other paths are a combination of physical and logical links.

To find the optimal tariffs, splitting probabilities and link blocking probabilities

we have used the standard routine EO4UCF available in the NAG Library of routines

discussed earlier.

We have set the multiplexing coefficient to be rn : 1.0001 and the cross-connecting

coefficient to be u :2.0. These values have been chosen to encourage calls on some

streams to use their physical paths and on others their logical paths. Since the

multiplexing coefficient always occurs in multiples of two, the two costs are approxi-

03

0z

W
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mately equal making neither path highly desirable. The costs are closer than in the

example in Section 6.6 as both physical and logical links can now take advantage of

the economy of scale trade-off.

The average stream blocking probability for all streams is bounded above by

0.01, with no lower bound imposed, giving 0 ( B" < 0.01, s € ,S. The tariff has not

been bounded above or below, hence 0 ( a" ( oo. The number of circuits required

by a stream, s € ,S, using path p € P, on link j e J has been set to be zero or one;

that is ç¡p:017.

We use the same traffic elasticity function as in the example in Section 6.6. This

defines the tariff of the competitor ã.,, s € ,S, to be 3, and thus the point of inflexion

will be â,t o, : 3. The values of the base traffic demand, which is the traffic demand

if the tariff is d", are again as in Bean and Taylor. These demands are based on

approximate subscriber figures and are given in Table 8.2.1.

Streams

s€,Sr
Base

Traffic

opt
Traffic

Streams

s€,9¡
Base

Traffic

opt.
Traffic

Streams

s€,Sp
Base

Traffic

opt.
Traffic

CS-C

C-P

C-PM

BH-C

A-C

B-C

CS-P

A-CS

P-PM

BH-P

BH-CS

B-P

A-PM

475.0

660.0

562.0

580.7

677.7

848.2

6858.0

7040.3

8111.9

8380.6

6034.6

t2232.0

8327.5

63

88

746

151

t77

22t

242

486

560

579

813

845

7t23

A-BH

CS-PM

A-B

BH-PM

B-BH

P-S

CS-M

CS-S

A-S

M-PM

BH-M

M-P

B-M

8603.4

5840.9

12556.8

7138.0

70764.6

25086.7

27L47.L

18081.2

25750.9

32086.4

33143.9

37638.5

48263.7

1161

1530

1693

1875

2829

3382

3657

4748

6773

8437

8716

9894

72695

C-S

C-M

B-CS

A-P

B-PM

PM-S

BH-S

B-S

A-M

M-S

L744.0

2622.4

8967.0

9776.6

L04r9.7

2t378.t

22084.1

32191.0

38632.8

98224.4

887

1336

4589

5002

5333

10958

1t32t
16505

19807

50390

Table 8.2.1: Table of base traffic demands and optimal traffic demands
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Due to the extra complexity of the new formulation the NAG routine has dif-

ficulty in obtaining the optimal solution. It is possible to run the routine several

times and obtain solutions in which the splitting probabilities differ greatly. In some

solutions the splitting probabilities are non-integer, in others they arc zerof one. It

is interesting to note that if the set of links that is used by the paths is similar in

two solutions, then whether the splitting probabilities are integer or not seems to

have a relatively small influence on the objective function value. The set of links

that is used appears to be more important than the splitting probability values.

To encourage NAG to find the optimal solution, it is possible to put tighter

bounds on the tariffs to help guide the routine without disallowing the optimal

solution. Using equation (8.1.8) it is possible to find an upper and lower bound on

the value for the tariff o" for any stream s e S. These bounds can then be loosened

to guarantee the optimal tariff will be within the chosen bounds. This guides the

NAG routine enough to obtain optimal solutions or near optimal solutions. Using

this approach it appears that the optimal splitting probabilities are zerof one, that

is, only one path from the set of possible paths for a stream is used.

The optimal tariffs can be seen in Table 8.2.2. These tariffs are what we expect

from equation (8.1.8). They consist of a term representing the cost of carrying a

call and a term depending only on the elasticity function of the traffic u,(a,,.E). As

the multiplexing and cross-connecting coefficients are almost equal, the fixed costs

for using any path for a stream are almost equivalent. The term depending on the

elasticity function is equal to -u" (#)-t : 3. Thus for s € ,S, the expected optimal

tariff, for this example, is approximately 3 + 2qqr).

Due to the large number of possible paths for some streams, and the fact that

only one path for each stream had a non-zero splitting probabilit¡ only the path that

is used is shown, rather than a list of splitting probabilities. The path is represented

by the list of links that it uses, with logical links shown in bold.

The streams are in the same order as in the example in Section 6.6 and again

are in the order of the magnitude of the accepted traffic for each stream.
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Stream

s€,S¡
Tariff

Q,S

Chosen path

0or' : I
Stream

s€,S¡
Tariff

Qs

Chosen path

0l' :L
Stream

s€^9p

Tariff

Q,s

CS-C

C-P

C-PM

BH-C

A-C

B-C

CS-P

A-CS

P-PM

BH-P

BH-CS

B-P

A-PM

9.03

9.02

7.04

7.04

7.02

7.03

L3.02

17.02

71.02

11.01

9.01

11.01

9.01

C-S CS-S

M-P C-M

C-S PM-S

C-S BH-S

A-M C-M

B-S C-S

M-P M-S CS-S

A-M M-S CS-S

M-P M-S PM-S

M-P M-S BH-S

BH-S CS-S

M-P M-S B-S

A-M M-S PM-S

A-BH

CS-PM

A-B

BH-PM

B-BH

P-S

CS-M

CS-S

A-S

M-PM

BH-M

M-P

B-M

9.01

7.02

9.01

7.07

7.01

9.01

9.01

7.01

7.01

7.0L

7.07

7.07

7.0t

A-M M-S BH-S

B-PM B-CS

A-M M-S B-S

BH-S PM-S

BH-S B-S

M.P M-S

M-S CS-S

CS-S

A-M M-S

M-S PM-S

M-S BH-S

M.P
M-S B-S

5.03

5,02

5.01

5.01

5.01

5.00

5.00

5.00

5.00

5.00

C-S

C-M

B-CS

A-P

B-PM

PM-S

BH-S

B-S

A-M

M-S

Table 8.2.2: Table of optimal tariffs and splitting probabilities.

In Table 8.2.2 bhere are only two logical links that are used : all the paths that

are a combination of physical and logical links use these two logical links only and

a selection of the physical links. The choice of the two logical links that are chosen

is interesting. They are both from the extreme nodes of the network (Perth and

Cairns) to a node further towards the center of the network (Melbourne and Sydney

respectively). All the streams that have paths which can use these links do actually

use the path that uses one or both of these links. Thus, the network becomes as

in Figure 8.2.L, where the two logical links are represented by bolder lines, and the

traffic is routed via the shortest path.

It is also interesting to note that the objective function value of the example in

Section 6.6, for which there is no traffic mixing on the logical links, is Z :585978

with rn : 1.01 and r : 2.0. Running the same example, but setting rn : 1.0001

and u : 2.0 gave an objective function value of. Z : 590462. The example in
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this section, where traffic can mix on the logical links, gave an objective function

value of. Z : 592567 with rr¿ : 1.0001 and r : 2.0. Hence there is an increase in

profit for the operating company caused by allowing traffic to mix on the logical

links. Although it appears that this increase in profit is small, a large portion of

the objective function value is fixed. This is due to streams s € ,Sp which only have

one possible path but carry a large amount of traffic. Hence, this change in profit

is significant.

(cs)

(B)

Macquarie (PM)

(s)

(c)

Figure 8.2.7: Optimal loss network incorporating logical links.

Hill (BH)



Chapter I

Conclusions

In both parts of this thesis we were able to formulate general strategies for the design

and optimisation of the network problems considered.

In Part I of the thesis we used three solution methods to solve the optimal com-

munication spanning tree problem. We also applied these methods to the optimum

requirement spanning tree, in which the costs are all equal to one, but the traffic

demands are arbitrary. Using analytical and numerical approaches, we conjectured

that, for random evenly distributed traffics, the optimal network will be a star in

this case.

We then presented the results of testing the three solution methods, and com-

binations of the solution methods, on both Euclidean and non-Euclidean traffic. In

general, for Euclidean traffic the best star solution appears to be approximately 7%

higher than the optimal, or best known, solution. For non-Euclidean traffic, the

best star solution is up to 800% higher than the optimal, or best known, solution.

It was noted that the performance of some of the solution methods varied greatly

depending on the traffic type. The difficulty of choosing suitable parameters for

the two random search techniques, simulated annealing and genetic algorithms r /as

noted. For this problem it appears that the best solution method, if the traffic is

Euclidean, is the genetic algorithm combined with the heuristic. If the traffic is

non-Euclidean the simulated annealing algorithm in conjunction with the heuristic
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performs best. However, in both cases the simulated annealing by itself performs

very well, and is a good choice as it is reasonably simple to find parameters and

implement it.

In Part II of this thesis we presented a formulation for the determination of the

optimal capacities, tariffs and splitting probabilities for a loss network in order to

maximise the operating company's profit. We allowed the traffic arrival rate on a

stream to depend on the tariff charged for that stream and the blocking probability

of the links used by that stream. Our formulation used the Erlang fixed point

approximation and used link blocking probabilities rather than link capacities as

variables, which provided large computational savings. As a result we were able to

solve problems of a realistic size.

By using this formulation we proved a result that explains the optimal tariff

as the cost to the network of carrying the call plus a term depending only on the

elasticity function. We also proved that, if the acceptance probabilities on the

physical and logical paths are within the regulatory constraints set for the acceptance

probabilities, then for any given stream either all calls will use the physical path

or all calls will use the logical path. We also noted that if the quality of service

requirements are similar for all streams, there is a threshold which is dependent

on the magnitude of traffic on a stream, at which a stream switches from using its

physical path to using its logical path.

Finally, we extended the problem formulation to allow a larger number of path

choices. T[affic in this formulation was allowed to use a combination of logical and

physical links. We again found a simple formula for the optimal tariff and a formula

for the optimal, but not necessarily feasible, splitting probability. Using a numerical

example, 'we were led to conjecture that the splitting probabilities in this formulation

will again be zerof one, with only one path for each stream being used. In fact, in the

chosen network design which incorporates logical links, the routing will be shortest

path. This network design gave the network provider a higher profit than the two

path formulation.
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Although the NAG routine had some difficulty finding the optimal solution, it

was possible to guide the routine's search by placing tighter bounds on the tariffs.

The NAG routine was then able to find the optimal solutions for both formulations,

thus proving to be a suitable solution technique.



Appendix A

Notation

¡r

J
Jp

Jr
s

Sp

^9¡

P

Pp

P7

P¡

P,

P!

Çjp

cj
Ej

sg^9

s€^9¡

¡ e J, p e P

jeJ
jeJ

Set of nodes.

Set of links.

Set of physical links.

Set of logical links.

Set of all OD pairs.

Set of OD pairs connected by a single physical link.

Set of OD pairs not connected by a single physical link.

Set of all paths.

Set of paths which consist of a single physical link.

Set of paths which consist a single logical link.

Set of paths which consist of more than one link.

Set of paths that stream s may use.

Set of paths stream s may use from the set Pt; P! = P" I P1

Number of circuits path p requires on link j.
Number of circuits on link j.
Link blocking probability on link j.
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rTÙ

lx

d,s

us

0,

pj

qj

ap

be

A,

S€,9

S€,9

s€,9r

jeJ
jeJt
peP
p€P
S€,S¡

The cost per circuit of multiplexing/de-multiplexing.

The cost per circuit of cross-connecting.

Tariff for stream s per unit of traffic sent.

Arrival rate to stream s.

Probability that stream I uses its physical path.

Reduced load on link j.

No of physical links on which logical link ¿ uses capacity.

Acceptance probability on path p.

Blocking probability on path p.

Acceptance probability of calls into the network

for stream s averaged over all paths p e Pr.

Blocking probability for stream s averaged over all

paths p e P,.

Unique direct physical path for stream s.

Physical link which forms unique direct physical path

for stream s.

Unique logical direct path for stream s.

Logical link which forms unique logical direct path

for stream s.

Unique physical path for stream s.

Vertical asymptote of objective function 8,t 0, : d#ä
giving A, :0.
Cost of marginal extra capacity required to support extra

traffic on path p.

B, s€^9

d(')

ð (')

¿ (")

('(')

s€,Sp

s€^9p

s€,9¡

s€,S¡

p(s) s € S¡

T" s€,S¡

Me peP

Fp p € P Fixed cost of path p with approximation or@:I- E
0e" s € ,9¡, p e P: Probability that stream s uses path p.



Appendix B

Derivative of C (p, E)

The derivative of .8, given by equation (6.4.24), with respect to C found using Maple

is now presented.

AE
AC '(^(h)-*+1+

t2 31 H
(rz(c + 1)), 360 (c + l)n

where

(r + pr(d, + prprr))tu _ 6.28318b 3gr@
@-u'¿o.,rod""r@
.ffi 

þ,r(a, 
t paptz)+ ra 

þrorr 
z t pa

þ'or,' 
+ r, 

þ'o 
(a q + paps) + naQtons+ r, (o.ooo 07674ep2(c + r¡å

+0.80745 ,. ro-u 
Offry 

+ 0.1ee370 3704 x to-u &
-o lee'zo 3To4 x 

'o-uou))))))

("h) - pic +r- 
"årr+o'oz.T.????s@h)

ff: exp Cln

d"1 : 0'049867347

d'2 : 0.0211410061

t27

and
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d,s : 0.0032776263

d'+ : 0.0000380036

d's : 0.0000488906

d'a : 0.0000053830

and

P,: (dh)å*ffi-'
rpig

Pz : -5(c+1F-(e-@ry
Pz: LSppz(C+1) +9p?

P¿

Ps: sp?(c+1) -1
Pa:(

2Pz:ã

2pz
3ct -'re - o.Tlpzp+(c + r) + - 0.s?5 (;fîj, - o.Tupns(c + Ði) p

#-o.75ps4c+1)å
pe : Jp{c+ 1)+ - #:å
ps : d,s i 1.6149 x 10-5p1 (C + t¡i - 0.199370 3704 x to-uoå

pto : zp2(c+ 1)å +L5 etr,. ##
ptt : dt, -f pa(dq + plps)

Ptz : dzløa?r



Appendix C

Possible paths for multi-path

formulation

In Chapter 8, streams were allowed to use any combination of physical and logical

Iinks. All possible paths for streams with ?z1r¡ links in the physical path are shown.

A straight line represents a physical link, a curved line represents a logical link.

Paths for streams with Tq,1 :1

Paths for streams with Tqr¡ :2

Paths for streams with \q,7 :3

723
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Paths for streams with Tqr¡: 4

Paths for streams with TqrT:5

Continued on next page
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