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SUMMARY

To enable the production of recombinant chloramphenicol acetyl transferase
(CAT) in Escherichia coli IM101, a number of promoter::cat transcriptional fusions were
constructed. These fusions contained either IPTG-inducible or stationary-phase inducible
promoters in a bidirectional promoter probe vector. Recombinant protein expression in the
engineered systems was quantified using validated assays developed in this thesis.
Furthermore, mathematical models were employed to establish the relative efficiencies of

transcription and translation.

The detection of bacterially-expressed car mRNA by slot-blotting was found to be
highly dependent on total RNA immobilised onto the solid support, as well as mRNA
concentration. mRNA quantitation by comparison with a pure standard resulted in gross
underestimation because of this possible steric hindrance. A new method to quantitate cat
mRNA was therefore developed. The new protocol for cat mRNA detection included a
three-dimensional standard calibration curve, constructed for each assay, and overcomes

the confounding effect of contaminating RNA.

The French press was more efficient at disrupting cells and releasing proteins than
sonication. French pressing disrupted all cells in suspension whereas a maximum of 80%
of the cells were disrupted following sonication. The level of CAT release was highest
when cells were totally disrupted. Additional treatment with the detergent Triton X-100

was necessary to maximise CAT recovery.

Promoters induced by IPTG are commonly used but have both cost and
environmental penalties. Nevertheless, an IPTG-induced system was included in this work
as a control, to compare the relative efficiency of a system with commercial potential
(stationary phase promoter system). Maximal protein expression was achieved for 0.1 mM
IPTG after induction at ODggy = 0.8 in both shake-flask and fermentation experiments. A
concentration of 0.4 mM IPTG yielded maximal expression for induction at ODgy = 2.4.
Maximum CAT protein expression was independent of oxygen concentration. However,
CAT protein production was highly dependent on the growth phase of the culture at

induction. Induction close to stationary phase produced lower levels of CAT compared to

iii



induction in logarithmic phase. Also, inoculation with a stationary-phase culture gave

better CAT protein yield than fermenters inoculated with a logarithmic phase culture.

CAT protein production under control of the zac promoter was clearly limited at
the translational level. This was shown by constant CAT protein levels after induction for
decreasing ribosomal (16S rRNA) levels. Furthermore, induction with IPTG concentration
beyond optimal resulted in a concomitant increase in mRNA level but not CAT protein.
Translational limitation was confirmed by a simple mathematical model to establish the

relative efficiencies of transcription (16-81 %) and translation (0.2-1 %).

Separation of the growth and CAT production phase was achieved using the
stationary phase katE gene promoter. Batch fermentation experiments in minimal media
showed that the transition from logarithmic growth phase to stationary phase stimulated
katE expression. However, despite published material to the contrary, no inducers of the
katE gene promoter were identified in minimal media. Acetate and o-hydroxybenzoate did
not stimulate promoter activity.  O-hydroxybenzoate actually inhibited translational
activities. Glucose addition did improve CAT protein levels, but this was probably due to

increased translational activity.

Final CAT protein levels per cell for the IPTG inducible tac promoter system were
about 250 times higher than the stationary-phase inducible katE gene promoter in batch
fermentation experiments. However, CAT protein levels under control of the katE gene
promoter was limited at the translational level in batch experiments. Protein yield was
improved by continuously feeding glucose, thus establishing a growth-limited culture for
CAT protein production. A 3-fold increase in CAT protein, and a 10-fold increase in cat
mRNA levels, was achieved. Future work to define a critical growth rate below which the
stringent control is induced, may allow the katE gene promoter to be employed for
commercial purposes. Furthermore, more information regarding promoter regulation is

needed.
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