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Summary

The subject of this thesis is the joint probability density of the accumulated sojourn
time in each state of a Markov process when the initial state is known. The accu-
mulated sojourn time for a Markov process is the total amount of time spent in each
state of the process during an interval [0,t).

Sojourn-time problems are notoriously difficult and relatively few explicit results
are available. In contrast to equilibrium distributions, which have been determined
for a wide range of both finite— and infinite-state Markov processes, exact formulae
for sojourn times have not been available to date even for the general three-state
Markov process, though both implicit and computationally-implementable expres-
sions are, of course, available for some processes with a larger number of states.
Furthermore, the existing results have mostly been known for some time.

The most comprehensive treatment to date is still that given over thirty years
ago by Good [12]. As will be seen, Good’s results are implicit rather than explicit,
and rendering them explicit (and usable) involves something of a peregrination.
Further, his derivation, while very elegant, may be regarded as informal by present—
day standards.

In the analysis presented in Chapter 2, the three—state problem is formulated as
a system of Kolmogorov equations. Analysis techniques for hyperbolic systems of
first-order partial differential equations are used to set up the Kolmogorov equations
rigorously. The solution is expedited using transform methods but is presented in
terms of direct quantities, not simply through the curtain of their transforins. QOur

results match those of Good. They also extend them somewhat and provide a ‘visual’

vl



methodology which aids manipulation.

In Chapters 3 and 4 we refine the expression obtained for the three-state problem
and subsequently generalise it, first to four states and finally to n states. In the
process we use techniques from combinatorics and graph theory and present some
intrinsically interesting mathematics.

The joint probability density of the total sojourn time has immediate application
to reliability problems and also to questions involving transfer times for data in
situations where transmission rates vary according to an underlying Markov process.
In particular, we can compute the probability distribution of the total amount of
data transmitted up to time ¢ when the bit rate available on a link is modulated

according to an underlying Markov chain. This is the subject of Chapter 5.



Chapter 1

Introduction

This thesis was originally motivated by real-world problems arising in the design of
communications protocols for multi-media networks and HF radio networks. Some
of these problems are described in the final chapter. The traffic streams in the rele-
vant systems are best modelled as Markov modulated fluid flows. In the early stages
of the research, it was discovered that many of these problems could be represented
by the corresponding random walk on a plane with the direction of displacement de-
termined by the state of the underlying Markov process. The accumulated sojourn
time in each state gives us the total displacement in that direction.

For a Markov process, {S(t)}, (0 < t < o) on a discrete state space, the
accumulated sojourn time up to time t is the total time spent in each state of the
process during an interval [0,t). We define the total sojourn time, z(t), in state &

by the random variable

t 1 if S =k
ni®) = [ xedu, where o= 0 00 TE

0 otherwise

The main result of this thesis is the rigorous formulation and subsequent solution

of a system of IKolmogorov equations which describe the evolution of probability of



CHAPTER 1. INTRODUCTION 2

the accumulated sojourn time for the n—state case. Our solution is in the form of
an explicit expression and includes the solution on the boundary. This constitutes
a significant extension to a result in Good [12]. Good in fact derives an expression
which, as he writes, can “in principle” be used to calculate the joint density function
for the total sojourn times in n states when all the states have been visited at least
once, that is, the interior solution. In the case of a two-state Markov chain there
are some simplifying features and Good provides an explicit evaluation of the joint
density function of the sojourn times in the two states for that case.

Bendesson [2] derives an expression for the Laplace transform, with respect to
t, of the Laplace-Stieltjes transform of the joint distribution of the times spent in
an n—state quasi Markov process. Takdcs [20] derives an explicit formula for the
cumulative distribution of the total sojourn time in a two-state Markov process.
Rossiter [18] builds on this and develops a theory of sojourn times for alternating
renewal processes. Expressions for the joint probability density function for a three-
state stochastic process appear in [15] and [10]. The former derives a more general
result but the resulting expression is not as explicit as the one we present here;
the latter present an explicit solution for the three-state Markov process with the
following restriction: only transitions to A; are allowed from states A, and Aj.

The structure of the thesis reflects the chronology of the work. In Chapter 2 the
three-state problem is formulated as a system of Kolmogorov equations. Analysis
techniques for hyperbolic systems of first—order partial differential equations are used
to set up the Kolmogorov equations rigorously. The solution arises naturally from
the inversion of the solution of the transformed equations. The partial derivatives of
these functions are shown to satisfy the original partial differential equations. This
work was presented in [8].

The solution obtained originally was in terms of infinite sums of convolutions of
modified Bessel functions. Although it could be described as a closed—form solution,
it was hoped that it would be possible to transform it into a simpler expression

involving familiar special functions. This was considered possible in view of the
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connection between closed—form solutions to problems in stochastic processes and
special functions, see [19]. In Chapter 3 we present a number of identities which are
mathematically interesting and which enable us to redefine the three state solntion
in terms of functions which, though not easily recognised as special Tunctions, are
more elegant than the original expressions and can be interpreted probabilistically.
This part. of the work entails a great deal of intuitive arguinent which was developed
while writing the code for the numerical approximation of the three-state solution.

In an attempt to recouncile the interior part of our solution with the general
result obtained by Good in [12], we manage to extract an explicit expression from
his formila (10) for the probability density of the sojourn time in the three-state
Markov process. Tlis expression agrees with our refined interior solution. and iis
numerical approximation is surprisingly close to the approximation derived for the
original solution.

The form of the refined three state solution and an inereascd understanding of
the problem make it possible to deduce the solution for the case n = 4, including
the boundary terms. Once again the interior part of the solution ix shown to he
consistent with the explicit expression derived from the implicit form obtained by
(dood. A similar, but more general, probabilistic argument enables us to derive the
general formn for the case with n states. In order to extend the argument we make
use of graph theory and the matrix-tree theorem [14] and explore some mteresting
connections between the two. Good did nol mention thig explicitly in [12], but the
conneclion was clearty known Lo him as he obtained the solution by applying a gen-
eralisation of Lagrange’s expansion to the probahility distribution of the frequency
count ol a Markov chain, while in a later publication. [L3], le applies the same
technique Lo the enumeration ol trees. In the proof of Theoren: 3 i Chapter 4, we
verify that the intuitive arguments are well-founded and that the deduced solution
satislies the coupled system of partial differential Kolimogorov equations.

[n the final chapter, we point out some potential applications of the processes

and wethodology examined in the previous chapters to the problems which originally
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motivated us. It is perhaps worth adding sotto voce that we are not suggesting that

our approach is the only one or the best one.



Chapter 2

Solving the Three-State Problem

2.1 Introduction

In this chapter we use analysis techniques for hyperbolic systems of first—order partial
differential equations to set up the Kolmogorov equations for the probability density
of the accumulated sojourn time in a three-state Markov process.

In Section 2.2 we formulate the problem rigorously. In Section 2.3 the Kol-
mogorov equations are expressed in terms of Laplace transforms and the trans-
form equations are solved as Theorem 1. Section 2.4 addresses the inversion of
the transformed solution and presents the outcome of the inversion as Theorem 2.
A demonstration that the quantities derived actually do satisfy the original Kol-
mogorov equations forms the content of Section 2.5. We conclude in Section 2.6 by
showing that for the special case of a two-state process our solution matches Good’s

explicit expression [12].
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2.2 Problem formulation

2.2.1 Preliminaries

Without further comment we shall adopt the following standard notation — IN: the
set of natural numbers; R: the set of reals; Ry: [0,00); C°: the class of all
infinitely often differentiable real valued functions on R"™.

In this section we set up partial differential equations to describe the evolution
with time of the joint distribution of the accumulated sojourn times in the three
states. The initial conditions pertaining to these equations involve both Dirac and
Kronecker deltas, so that we are in fact dealing with generalised functions (or distri-
butions). In discussing the solution of a differential equation, one must first decide
within what class of functions one is seeking a solution. A differential equation (with
its attendant side conditions) may well fail to have a solution within some class of
functions but admit one if the class is suitably expanded. The legitimacy of opera-
tions that are performed on the equation will, of course, depend on the smoothness
properties we are anticipating.

Accordingly we introduce a space D = C§° of test functions defined by
D = {¢ € C* : the support of ¢ is compact}.

We define convergence in D by the following: let ¢, k € IN, and ¢ be elements of
D, then ¢, converges to ¢ in D as k — oo, if all the ¢ vanish outside some compact
subset K of R™ and ¢ and derivatives of ¢y of arbitrary order converge uniformly
in K to those of ¢. The continuous linear functionals on D are called distributions
or generalised functions. Let D' denote the gpace of distributions on D and ([, ¢)

denote the value assigned to the test function ¢ € D, by the distribution f € D',
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2.2.2 The Problem

Consider a three-state Markov process with state space X = {0, 1,2} and transition
rate matrix A = (y;,4,7 € X), where A;; € R, fori# jand A\ = =34, Aij.

Let ©(t) = (z1(t),z2(t)) € R, where z(t) is a random variable representing
the time spent in state k& up to time ¢t € R, and let zo(t) =t — z,(t) — z2(2).

For i € X let p;(t) denote the probability density of (z;(t), z2(t)) at time t and
final state i. We then assume that p; is a continuous function of ¢t € R, valued in
D'(R?), the space of distributions with respect to @ and the support of p; is included
in R.

It can be shown (see [22], Chapter II, Section 15) that the partial derivative,
%Qt*(t), is also a distribution on R?, continuous with respect to ¢.

The first-order partial derivatives with respect to zy, k& € {1,2}, of p;(¢) are

given by
dpi - N . _f)i
(220.6) = (01 -22)
where gﬁ-(t) € D'(R?).

The evolution of probability of the sojourn time in this Markov process is given

by the following Kolmogorov equations:

dpo 2

E—(E, t) = Z /\iopi(fl!, t) (221)
i=0

Opx N 4 Opx "

5 (&1 = i};a/\mp,(m,t) Bz, T ) ke {1,2}.
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Since the process is assumed to start in state 0 at z; = zo = 0, the initial
probability density is given by pi(x,0) = xod(x), where §;; is the Kronecker delta
defined by

1 ifi=y
5y = ’
0 otherwise

and ¢ is the Dirac delta distribution at = = (0, 0), defined by (4, ¢) = ¢(0).

Remark: In the sequel d(z) is used to simplify the notation and indicates that é
is operating on test functions which themselves depend on z. Let 4; denote 3é/9z;,
that is, 6;(¢) = —0¢/dxz;(0), and H(z) denote the Heaviside unit step function.
H(x) denotes H(z,)H (z3) which is equal to 0 when either z; < 0 or 2z, < 0 and 1

when z; > 0 and z; > 0.

2.3 Solving the transformed equations

For k € X let ¢, : R* — R be defined by:
2
6(.’L‘1,3’.‘2,t) = - ZAka‘k.
k=0

We can make use of these quantities to simplify our equations. 1f we substitute
pi = o;e~ @2 i € X | in equations (2.2.1), the diagonal terms Az disappear from

the right hand side to give

a
% T,t) = Aoon(,1) + deoca(z, )

) )

—gl(m,t)+53—:(m,t) = Jocol(e, ) + Aaraz(z, 1) (2.3.2)

do Oa,

Ge@ 0+ 52t = dnoo(z,t) + Ao (a,1).

Note that, since exp(—e(z;, z3,t)) € C%, then o; € D'(R?).
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Taking Laplace transforms in (2.3.2), with respect to t, we derive the equations

S&o(ﬂ!, S) = (:B 0) + /\100{1( ) + /\200!2( S)
Gy 1(x,8) = —sd(z,s) +a(x,0) + dodo(z, s) + Aaida(z, s),
dg’g(m, 3) = —Sag(m S) =+ Cl2( 0) + /\020.’0( ) + /\1201 (:l) S)

(2.3.3)

for s € R, s > 0, where dy; is the partial derivative of & with respect to z;.

We can now incorporate our known initial conditions by substituting for oy (z, 0)

and a;(z,0), and subsequently &; in the last 2 rows of (2.3.3). We derive

Aot
dl,l(m, 8) = —Sd’l (IB, S) + — ((5 + /\1001 (fB S) + /\2002((12 S)) + /\21&2(2!, S),

A
Cﬂlziz(w, S) = —Sdz(m, S) + _S— ((5 + /\10&1 (2, S) + /\20&2(22, S)) + /\12&1 (:D, 8).

For notational simplicity we introduce

AGpA Ao A
ki(s) = ( ms L 3) , ko(s) = ( Ols 24 /\21) 5
Aoz g2

In terms of these functions, our equations become

A . A
G1a(2,8) = ki(s)da(@,8) + ka(s)da(@, 5) + =20,

A
Goo(z,s) = k3(s)ay(x, s) + ka(s)aq(z, s) + _;)_2.5_

A further substitution enables us to further simplify these equations.

(2.3.4)
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Put Bi(m, s) = &;(x, s) exp(—(k1(s)z, + kq(s)x2)) in (2.3.4), (5’t € D'(RY)),

Bl,l(mws) . kz(s)ﬁz(mys)-i-i\g—l&, (2.3.5)
132,2(33,5) = k3(3)31($,8)+/\—;]25.

Now we differentiate ﬁl with respect to x5 and ﬁg with respect to z; so as to get

expressions for (3, in terms of 8, and (2 in terms of [,

Bra(es) = kg(s)ﬁ?,g(m,s)+%62, (2.3.6)

A - A
Pai(x,s) = ks(s)Bria(x,s)+ %51-
Finally, substituting (2.3.5) into (2.3.6) we get a decoupled pair of equations

) : A
Biiz(x,s) = ko(s)ks(s)Bi(x,s) + kg(s)—;)z& + é.2152,

Brar(m,5) = ka(s)ks(s)Pa(z, s) + ks(s)-/\—glé + -/\3261'

Consider first the elementary solution G; € D'(R?) satisfying

Aoj . e
Gi,12 - kZ(S)k3(s)Gi . ki+l (S)%(sa 1,7 € {17 2})] :lé z. (237)

For z,,x9 > 0, G; satisfies the homogeneous equation

Gi,12 - kg(s)k3(s)Gi =0.
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If G; is a function of y = z,x5, then the equation is of the form

u _ ka(s)ks(s)
Y Y

u” + u =0,

which yields the power series solution

u(w) = als (2l (&)ka(sy) + ko (2y/kas)ks(2)y)

with ¢;, cp arbitrary constants and Iy, Ky modified Bessel functions of the first and

second kind respectively.

To find ¢; and ¢y, assume that Bi(O, 0,5) =0. So
A
G; 12 = k:+1(3) 015
which can be integrated to get,
Aoj
G,‘, e ki+1 (s)—s—H(m)

So let ¢, = k,-+1(s)i:iH(a:) and ¢ = 0, that is,

Gil,3) = hiss ()L (@)lo (2/la (ks ()2
Now find an elementary solution E; to
Aoj
E,',12 — kQ(S)k3(S)Ei = —8—52

We utilise the solution to (2.3.7) and obtain

ko(8)ks(s)z
Bi@s) = 2H@)ie) W) + 2 H(@) (J)m_f )71 1 (=)
ko(s)ks(s)xy
= 2 o) + 20 ) IR ),

N

where ¥ (x —2\/k2 Yks(s)z)@g.
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The complete solution is

Bl(a:,s) = Ei(=,s) +Gi(z,s)

/\01 kZ(S)k(i(S)xl

= — [H(21)d(z2) + H() Vi L(¥(2))] + /fz(S) H(w)fo(¢(m))

Substituting A3; and its derivative into (2.3.5) we obtain a symmetric expression
for Bz
kg(S)k;}(S)SL'Q
VT

For i € {1,2}, & = exp(ki(s)z; + ki(s)z2)B;, which gives us the result of

Bo(a, ) = “2{6(0) H(z) + H(z) L@@+ ks(s) "2 H (@) (8 ().

Theorem 1.

Theorem 1 The solutions to Equations (2.8.8) are given by

/\Ol kQ(S)k;;(S)IL'l

) = OO 0))3(0s) 4 H () ()
+ ko) H @) (=),

a(ey) = enOmrkn (2250 b ) 1 H () kz(iﬁ'j_j(s)””zf'l(ﬂp(m))]
+ ka(s) 2L H (@) (6(x))},

Go(x,s) = %[5*'/\10071(3”3)+)\20512(“3,3)], (2.3.8)

where Iy, I, are modified Bessel functions of the first kind with argument,

(@) = 2,/ka(s)ks(5) 7172, and
) = (204}, k) = (A2 a),

S

kB(S) = (/\108/\02 + /\12) and k4(8) = (M . S) -

S

Theorem 1 can be verified by direct substitution.
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2.4 The probability density of the sojourn time

~

For term by term inverse transformation, put &, (=, s) = fl(m, s)+g1(z, 8)+hy(z, s),

where
fl (.’l:, S) = kl(’)zl‘i‘kq 8)x2 /\;)1 H(_’L‘l)(S(xz),
A k2(s)k3(3)$1
hiz,s) = ek1(s)z1+ka(s)z2 01H z s ),
e @) Lta)
2 A
h1 (:B, S) = ekl(s)xl +k4(s)z2 k2(s)_§H(m)]0(d)(m))

Let ko(8)ka(s) = p18™2 + pas™! + pg3, with
p1 = Ao1ArodozAz0, 2 = AgeAa1dio + dorAizAz0, Ha = Arzdar,
and k,(s)z; + kq(s)z2 = v(x)s™! — 8(x)s, where

¥(x) = Ao1 A 10%1 + Aoz A20Z2 and O(z) = z; + z3.

Noting that \/; I, (2\/;) =Y WI% , we substitute for all occurrences

of Bessel functions in §;, obtaining

+ pes™! + p3)ziAor
s
y i (1872 + pas™! + pa)*(z122)*
= El(k + 1)!

fh(:l:,s) = H(w)e”f(‘” /s— 0(z)s(ﬂls

H(z)do1zy(p1s™ 2 + pas™t 4+ p )i Eragl
= 01211 H2s 3
= (k+1)!
y P B3 IS ar—ry-1 y()/s-6(2)s

Irolra!
ri+r2+ra=k T1:T2:T3:

= H(z)doam (b, 8) + poFig(x, s) + pa ki, 8).
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For m,n € N, an is given by

: (;z)* N L - oy
F, T,Ss e 1 7eFS g—2ri—ra—n v(x)/s—0(x)s
m,n( ) Z (k + m) r1+r§,-3=k 7'1"7‘2'7‘3' €

T3 OO

_ @) e (2172)" B S (@) e yin
=€ > (k +m)! > Vpolpal T
k=0 Critrgtra=k 117273 o b

= ’)sigp ) Z —p- "/‘1 W 7T (@) (ma)t
p=0i=0 j=0 k=j+3 ' (k—j—l) (p ]—27‘) (k+m)

From (7] (30.2) we can calculate the inverse Laplace Transform of the series

oo
E a,s~ WD £, Z a,,
v=

when the LHS series converges absolutely for | s IZ 0.

Using this result with v =p+n—1,for n > 1, the translation operator
e %) and the substitution zp = t — z; — 15 = t — O(x), we obtain the inverse

transform

p+n1 (3] p—2i

ZZ “’)p el Nl U2
l

p+n 'zO]—O (p— ]—21).1’ 5
00 kJ

Fm,n(ﬂ:,t) = .’130) Z

(z172)"
k=j+i (k 2 ’L) (k + m)
00 00 00 00 mg+2t+j+n—1 (:L.lmz)i+j+k ‘uilu.g”l;

p+2i+7j+n—1DG+7+k+m) iljlk!

We thus obtain this expression for the inverse transform of g

g1(z,t) = H(z) \1z1 (1 Fra(x, 1) + paFiao(, t) + pakbiq(z, 1))

By the same technique it can be shown that the inverse transform of ill is

hi(z,t) = H(x)(AoaAaoros Foo(x,t) + Age a1 Fo 1, 1)).
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Similarly fi(,t) = Aoy H (¢ —21) H (21)6(z2) o (2\/ o1 Aao1 ( — 21)). For the sake

of uniformity we write this Bessel function in terms of /g,

f](x,t) = /\01H(t . LE1)H(.’171)6(£L‘2)F(),1 (331, O,t)

Using symmetry arguments we can write similar expressions for fa, g; and hs

fg(m, t) = /’\02(5(231)1[1(5 h xQ)H(.’L-Q)fP[]!](O, Ta, t),
g2(z,t) = H(x)Agpzy (i F3(x, t) + po b o(x, t) + paFy (2, 8)],

hy(,t) = H(x) [ Ao derozFoa(x,t) + Aot A2 Fo, (2, )] .

In order to derive fy, go and hq, we make use of Theorem 1 which gives us the

relation

. 1 R .
ao(m, S) = ;{(5(33) + )\1[)(!1(2:, S) + /\ggag(m, S)]

From the definition of I}m!n, we observe that Fm,n+1 e %F’m,n. Combining this
with Theorem 1 and then using the inverse transform technique detailed above, we
get

fn(m, t) = /\OIAIOH(t = .'L'l)H(fL'l)CS(IQ)FU,g (.'El, 0, t)
+ /\02A206(1‘1)H(t e .’EQ)H(:EQ)FO,Q (0, Ta, t) y

go(z,t) = H(xz)(Ao1 AoZy + AozAzoT2)

x [ Fya(e,t) + uaF gz, t) + psFio(e, t)],

ho(x,t) = H(x) [2X01 AioAoz Ao oz (2, 1) + (MoAozAar + Ao Ao Ai2) Foo(z, )]
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We are now able to express ag, @; and a5 in terms of the component functions

Fl,n a.nd Fg,ni

le(](m,t) = (5(3}) + Agl)\loH(Jfl)é(l'g)Folg (.’131, O,t)
+ AOZ/\?Oé(Il)H(I2)FO,2 (0, Za, t)
+ H(z)y(z) [ Fra(e,t) + paFia(@,t) + paFia(z, t)]

+ H(x) [2pFos(x,t) + e Foa(x, t)],

al(m,t) — I\UIH(Il)J(ﬁCg)Fg,] (171,0, t)
+ H(x) o1y [ Fra(z, t) + poFy2(2, 1) + paFy ) (x, t))

+ H(zx) (M2 Ao ror Foa(x, t) + A2 oy Fo i (, 1)),

ag(:n, t) = /\02(5(.’L'1)H($2)F0,1 (D, Iq, t)
+ H(x)Agazz [t Fia(z, t) + po ki o(x, t) + paFi(z, t)]
+ H(x) [horAioro2Fo2(,t) + At AiaFo (2, t)] .

We may now state the main result of this chapter.

Theorem 2 The solutions to the Kolmogorov equations (2.2.1) of the evolution of

probability of the accumulated sojourn time in a three-state Markov process, are

given by

p(.’l:,t) . pﬂ(m:t)+pl(m1t)+p2(mat)

- e—f(’l,ﬂ [O_’o(m, t) -+ al(m,t) + Cl’?(mat)])

where x; is the time spent in state i, xq is defined to be t — x| — x, and

e(x,t) = — Ty Aekz-
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The generalised functions «; in Theorem 2 were derived via transform methods.
In the next section we show directly that they satisfy Equations (2.3.2), thus proving

the theorem. Accordingly we calculate the partial derivatives of F,,, , for m € {0,1}.

2.5 The Partial Derivatives of Iy, and F},

As we saw in the previous section, our solutions are a linear combination of F},
and Fj , and therefore we need to calculate the partial derivatives of these functions
in order to verify that the expressions derived satisfy our system of Kolmogorov
equations. Three key technical lemmata serve as a springboard.

In this section, we let £, , (%o, T1,T2) = Frpn(x,t). Let D; denote partial differ-
entiation with respect to the ith variable, keeping the other two variables fixed. Since
To =t — 1T, — o, then %Fm,n(m,t) Dlan($0,$1,$2) and (6z1 + ;%) Fon(z,t) =

Dy Fop (%0, 21, 22).

Remark: Since the initial state of the process is state 0, zo > 0 for all t > 0, so
that if zo = 0 then t = z; = z; = 0. Hence all §(z,) terms that arise from the

partial differentiation of H(z,) are deemed to be equal to zero.

Lemma 1
%Fm,n(m, t) = Fano(z,t), n>1L
Proof
0

—Fm,n(mat) = DIFm,n($03xla$2)

00 00 00 00 ( ):LJH‘?H‘J‘H‘ 2(x1$2)i+j+kui1‘u%#§
= Hlz Zzzzp'p+22+]+n—2)!(i+j+k+m)!i!j!k!

p=0i=035=0k=0
= Fm,n_l(m,t).
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Using the sorts of techniques which are used below to prove Lemma 3, we can

define

T 2
Fno= ’Yi )F 2+ ﬂFrn+1 3 + £2 Fm+1 2
0
which is well defined for ¢ > 0.
O
Lemma 2
0 17}
'a—' + = (CC]Fl’n((B, t)) = /\01/\10.’171F1,n+1 ((B, t) + Fo,n((l), t) (259)
T ot
d 0
‘(,E + (ngl,n(w, t)) = /\02/\20$2F1,n+1($, t) -+ Fo,n(m, t). (2510)
Proof
0 0 .
6_ + (1 Fip(z,t)) = DoFyy n(zo, 21, T2)
_ e :L_p+2i+j+n—1
- H(ﬂfo)/\m/\mﬂ?lzzz p+2z+]+n—1)

p=1:i1=0j= 0

oc :E;.’Ez)”]'lk ﬂ: IU'2H';
x 2
i+ +A+ 1)t djlk!
00 00 p+2i+j+n—1 (.'131-’172)i+j+k uqu#k

+ $0)ZEZZ (p+2(;+j+n—1)!(i+j+k)! ilylk!

|
p=0i=0j=0k=0 P

00 00 00 00 i+j+k g p+2i+j+n 3,0,k
’ HiHaH3

B v(x)P (z17)
- Hizo)dodomi 2,22 2 p+2i+j+n)(i +]+k+1)' k!

p—=0i=0 ;=0 k=0 P

+ Fo,n(m, t)

S A1 A10Z1 Finyr (2, t) + Fou(a, t).

The relation (2.5.10) is proved by symmetry.
(B
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Lemma 3

0 0
(6_— + ) (Fon(z,t) = Ao A Fonsi(z,t) +
T1

)=
I [ulFl,n+2(z, t) Fl n+1 (:l: t) + /1,3F1 n((L‘ t)] 5 (2511)
0 d
(_ + Bt) (Fon(z, ) Mo2A20Foni1(x,t) + (2.5.12)

)=
Ty [ Fyni2(®, 1) + poFypa (2, t) + p3Fy n(x, 1))

Proof Proceeding as in Lemma 1, we find that,

0
— + = | (Fon(z, 1)) = dn Ao Fonp(z, t) + (2.5.13)
or, Ot

+2i+j+n—1 i+j+k—1 i3,k
4 (z129)*" Y B 143

00 00 00 ,y(m)p
Hiwo)z22. 2.2 0 — v s on— 1) G g +h—1) a1

oo o0 00
Let the second term on the right be denoted by 203" >~ >~ Ay k-
i=0 j=0 k=0

=0 j=0k=

N
i+j+k£0
Clearly
PRIBIPILA ,sz+]+k (2.5.14)
(A
i+j+k#£0
SR E S EE S E s
- pz:OtZ;JZOkZ:O Pt H']'H“ p=0i=0j=0k=0 ST T
J+k:;é0
= Apiju——r + Y T T A
g;;é p”J’1,+J+I€ E;;g‘; p”k1+3+k
o« 00 00 OO k
+§§§’C§An ¥ ey (2.5.16)
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Now the following is clearly true

p=0i=1 =0 k=0 i4_j‘+.k
00 0o 00 00 xp+21+,]+n 1 o N
= H(zo)z, 931332)l 7 NZN H
pz‘;;]z%,;] ' p+2z+]+n—1)'( 172173

. 1 _ j+k
(t+7+k—1)laljlk! (i+j+lc)"'j'k'
00 00 00 ® :L,p+21+]+n+l

ZZZE: ( i+j+k, i+l 7,k
T
01!’—0l =0 j=0 k=0 P! P+2l+j—1—n-f—1)(l 2) By P2l

1 B j+k
G+ + R G+ DGR GHj+E+ DG+ D)5k
= Tk ().

Similar operations on the second two terms of (2.5.16) lead to the following

identity:

oo o0
DY Apiik = T2 Finga(@, ) + pozoFinii (€, 1) + psza Fip(z, t)
3=0k=0

Ms

>

p=01i

Il
—_

as required to prove (2.5.11).
O

We can now express the partial derivatives of «;, for 1 € X, in terms of Fi,,
using the results given above. Substitution of the partial derivatives of F,, , verifies

(2.3.2).

2.6 The sojourn time for the two—state process

The accumulated sojourn time for a two—state Markov process is, of course, a special

case of the one we have been studying. If we let all transition rates to and from
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state 2 equal zero, we obtain the density, w(z,t), of the total time, z, spent in state
1 of the two-state process in [0, t), given it is initially in the zero state.

Let dg2 = Ay = Az = A1 = 0 in the expression for p in Theorem 2, then

py = pg = pz = 0 and y(z) = Ao A10z. Hence

w(z,t) = e () (2.6.17)

+ /\OIC—AOI(t_z)—'\loxFo)l ((L‘, 0, t) + /\01/\we—/\m(t—z)—/\szOQ (IE, 0, t) .

This expression, with the substitutions );; = «;; and

Fo,,,(z,o,t)=( (i—zl_/\{%) Iy (2\/(/\01/\10$(t—a:))),

appears in Good [12] as the conditional probability density of the total sojourn time
in a two—state Markov process up to time ¢, given that the process is in state 0 at

t=0.



Chapter 3

Refining the Solution

3.1 Introduction

In the last chapter we obtained a solution for the three—state Kolmogorov equations
in terms of component functions F,,, which arose naturally when the Laplace-
transformed solution was inverted. We were able to find partial derivatives of these
component functions which, in turn, were a linear composition of the functions Fy, .

In this chapter we study these functions in an attempt to remove some of the
complexity and bring about a probabilistic interpretation. In the process, we obtain
as lemmata a number of identities which are mathematically interesting and whose
proof requires the use of some elegant combinatorial relations.

In Section 3.4 we study the general result obtained by Good in [12] and extract an
explicit expression for the probability density of the sojourn time in the three—state
Markov process. This matches our result.

In Section 3.5 we apply the refined solution to two special cases of the three—state
problem which arise naturally in applications.

The final section gives a discussion on some numerical aspects of this problem.
Once again we reformulate the solution, in two distinct ways, in order to obtain a

computationally feasible expression.

22
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3.2 Some Identities

In this section we adopt the convention that when the range of summation is not
specified, it is to be understood that the summation variable takes on values over
the full range for which the factorial terms are defined. This will save us having to
change the limits of summation when the variable is changed by a constant shift.

In the sequel we shall refer to the relations

iix‘l(’% n) = iifl(k, n+k), (3.2.1)

n=0k=0 n=0k=0

the Vandermonde convolution formula

2=z 023

and a particular case of (3.2.2), when p = 2,
n n—2 2 n—2
= : 3.2.3
R K ) 023

The last two identities can be found in [17], Section 1.2.

Let us now introduce some notation which will enable us to better manage un-

wieldy expressions. By definition

00 00 OO 00 pDt2itj+n— 1(

Peh T 1T2) (o1 2)? (uaz122)*
10 t §
(,8) = Hzo ZZZZ p( p+21+J+n—1)'(z+]+k+m)'z']'k'

p=0i=0 j=0 k=0

Substituting p1 = AoiAoAeeda0, H2 = Aspda1Aig + AorAizAzo, p3 = Ajpde;  and
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v(x) = Ao1 Aoy + Ao2A20Z2, and expanding the binomial factors v(x) and p,, gives

oo OO 00 00

Fon(z,t) (xO)ZZZZB;",S z,1),

p=01=0 j=0k=0

where B} (,t) represents the expression

ZZ (A10201) " (A20A02)" " (Ao1 A12A20)* (Ao2A21 1o ) ~* (A12 A1 )*
== (247 + k+m)litkl(p — r)lrl(5 — s)!s!
x8+2i+j+n—11_11'+i+j+kz;27-r+t'+j+k

Pp+2i+j+n-1)

The numerator can be written more naturally as a product of powers of the

factors

Y10 = AZo; Y20 = A20To; Yo1 = AaiT1; Y1 = AaaZ1; Y12 = A12T2; Yoz = Ag2Za.

Substituting these factors into B, and rewriting the finite summations as

infinite sums using (3.2.1) gives

2Ty Yo Yk ey Yt e
mn .
Byiix(@,t) = ;; Pl TR (3.2.4)
1

(p+21+]+r+s+n—1) (t+j+k+s+m)rist

The substitutions
a=r+i+s; b=j+k; c=s+k;, d=p+i+],
enable us to eliminate r and s from the numerator, leading to the new form
Fon(z,t) = H(zo E Z Z Cobrea®o Oy T Y Y Yyl (3.2:5)
for F, n, where

1
Cnl N 3.2-6
wbyed = (@+d+n—1) ( )

1
X Zzs: (a+b—r+m)a—s—r)b—c+s)(c—s)(d—a—b+c+r)lrls!’
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Note that since the powers of the y;;’s are non-negative in (3.2.4) we require

that a+b > cand d+ ¢ > b in (3.2.5).

Lemma 4
a+b—c, d+c—bd

b ,c ,d
_ Yo Yoo Yor1Y21Yia¥oz
Foa(w,t) = Hlzo Zzzza'b'c'd' (a+b—c)l(d+c—b)

Proof From (3.2.6)

1
0,1
C“"Cd (a + d)!

1

X ZZ (a+b—71)a—s—r)b—c+3s)(c—8)(d—a—b+c+r)irls!
_ 1 1
B (a-l—d)!b!z,.: (a+b—r)lrl(d—a—-b+c+r)l(a—r)

(@ — )bt
% Z (@ —71 —8)!s!(b—c+s)(c—s)

We use relation (3.2.2) twice in order to eliminate r and s and hence two of the
summations.

0,1 -
abec,d

1 1 a+b-r
(a+d)!b!Z(a+b—r)!r!(d—a—b+c+r)!(a—r)!< c )
1 ald!
(a + d)!alblcld! zr: (a—n)rld—a—-b+c+r)l(a+b—c—1)!

1 a+d
(@ + d)lalblc!d! \a+ b —c
1
albleld(a +b—c)l(d— b+ )V’

as required to prove the lemma.
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Lemma 5

Aor Aoz Fra(z, t) + Az Fu(,t) =
at+d—ec—1, dt+e—b+1

b e .,d
'Um Y20 Yo1Y21 Y12 Vo2
B CE LT gl A e

Proof From (3.2.5)

+ S+y-B+1
Ao1 A0z F12(z, t) zo)zzzz ﬂ,'y,J yio? Tyss P y<?1+1y21y12y02
a pg v 4
and
l I+ ! 6[+ ’ +1 6’
Az Fra(e,t) = H(zo) DD Y Cy 80 Y10 ‘i yso' " P Z‘/((ﬁygl 9?23102-
al ’ ;Y' 6/

In order to sum these two expressions we need to perform term by term matching
of the summation variables. By equating the powers of the y;; factors we arrive at

the consistency relations
a+l=d; B=0F+1 y=+,; =7
Substituting these values into the second summand, we obtain

Aoidpozi1Fig(x,t) + Az Fia(e,t) =

H(zo) Z Z Z Z [Cl 2,76 + Ci+1,ﬂ 1,7, 6] ?/Hﬂ 7?/337 ﬂHygleyzlylzym
a g 7 ¢

Using (3.2.2) once on CL?2 %ns and Coiy 41 5 gives

1
1,2
Cospirs T (a+0+ 1)

XZZ ihL,g_r+1)'r'( —la—ﬂ+7+7')!(01—1")!<’7€8)(a;T>

T (a+d+1)p!

(a+pB—-r)!
XXT:(a+ﬂ—r+1)!r!(6—a—ﬁ+’y—+—r)'(a—r) Na+ B —r— )iy
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and

1,1 1 1
Calrp-176 = (a+d+1)1(B—1)! Z ( - s)

1 a—r+1
xz,:(a+ﬂ—r+l)!r!(5—a—ﬁ+7+r)(a—r+1)( s )
1
T (@+d+1)I(B-1)

XZ (a+pB—r1)!
“(a+f-r+ )0 —a-B+v+r)l(a—r+ 1)l (a+B—r—7)y"

Adding C;f,m& and C;’ﬂl—l,ﬂ-—l,'y,d and using (3.2.2) once more gives

1
zr:(a+5+1)!r!(5—a—ﬂ+'y+7‘)!(a+ﬂ—r—'y)!'y!

x[ 1 1 ] 1
Bl (a —r)! (ﬁ—l)(a—r—l—l) (a+B—-r+1)

1
=z,:(a+1—r)!r!(6—a—,@+’7+7‘)!(a+[3—’y—r)!(a+(5+1)!,3!7!

a+1)( 4] ) 1
HZ( a+fB—v—r)(a+d+ (a+ 1)!I54!
1

T (a+ B =0 = B+y+ D (a+1)I88

So

o1 Ao Fig(®, t) + Az Fr (2, t) =
a+f-y d+v—0+1 a+l

Y10 Y20 Yo1 i‘/zl.hzyoz
Bl ZZZZ (a0 + 5 =m0 = B+ 7+ 1) a+ 1)1

and substituting a = a+1, b=, c¢=+v and d = ¢ into the expression above
completes the proof. O
By symmetry we have the following result.
Lemma 6
M2 A 0z Fig(x,t) + Apza Iy (2,t) =

a+b—c+1, d+c—b-1

c ,d
Y10 Ya0 y01y21y12yo2
H(zo ZEZE alblcldi(a+b—c+ 1) (d+c—b— 1)
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Lemma 7

Aot AroAz0Zy Fia(, t) + Ao Foo(x, t) + At Aoz Fi o, t) =

a+b—c, d+c—b+1

b ,c ,d
Yio Yo Y01Y21Y12Y02
H(zo Zzzza'b'c'd' (a+b-c)l(d+c—b+ 1)1

Proof By (3.2.5)
a ] a
/\01/\10/\20$1F13(3’ t) ZZZZ aﬂ,—y.s 10+ﬂ 7+1y (ﬁ ﬂ+lyo1+1y21y12y02,
a g v §

! 5' ’ ] u ! !
AzoFo,z(m, t) = H(:vg Z Z Z Z Ca’ B, 511/?0 Nl Y20 =8 +1y01y§1y;’2y32
of é'

I ,Yl

and

/I+ﬂll ,YII+1 6Il+,yll ﬂll ﬂll+1 Il &
Aot Aoz Fra(z, t) = H(zo) Z Z Z Z " A7 5"910 Y20 3/01 Ya1 Y12 Yoo
(l” ﬁ” ,YH 6”

Proceeding as in the proof of Lemma 5, we equate the powers of the y;; factors,

obtaining the relations
a+1:a1=all; ﬁzﬁlzﬂ”+1, 7:71:’.)/’; 6:6,:6".

Substituting these values into the dummy summation variables in the second

and third summands we get

Ao1 10201 Fi3(,t) + AgoFoo(x, t) + Aar Aoz Fio(z,t) =

‘TO ZZZZ[ aﬂ,’y,5+ca+1ﬂ'yt5+ca+lﬂ 1,76]

a+ﬂ 7+1 5+'r -B+1, a+1
X Yo Y20 Yoi y21y12y02,

where

[Caﬁ’y,ti +Ca+1 8,7,8 +C +1ﬂ 1,76]
d+1
- Zr:zs:(a+(5+2)!(6—a—ﬂ+’y+r)!(a+ﬂ—r+1)!r!
1
(@ —r—s+1)s{(B=v+s)(y—s)!
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Rewrite the last factor as a product of binomial coeflicients in order to make use

of (3.2.2). This gives

3 d+1
~(a+d+2)0—a-B+y+r)(a+B8—-r+ Diri{a—-r+1)!4!

cE(eT)

~(a—r+DIrld—a-B+v+r)l(a+8—7v—r+ Dl(a+d+2)!81!

. a+1 0+1 1
N z,: T a+pf-v+1—-71)(a+8+2)(a+ 1)34!
1

(a+B8-—v+ 16— B+v+ 1) a+1)81y8!"

Finally we get

Ao1A0A2021 F1a(e,t) + Ao Foo(x, 1) + Apn Aoz Fio(z, t) =
a+f—y+1, é+y—F+1, o+1, 0

Y10 Y20 Yo1 y21y12y02
H (o ZZZE (@+B—v+1)I(6—B+7+1)!(a+1)86"

Once again we call a, 3, and 4, a — 1, b, ¢ and d respectively, and the lemma is

proved.

O

We invoke symmetry once more to prove the following result.

Lemma 8

Aoz A0 A 1072 F) 3(, t) + AMoFoo(x, t) + Ai2Aooz2 Flo(2,t) =
a+b—c+1, d+c—b

b ¢ ,d
Y10 Y20 Y01¥21Y12Y02
H{zo Z:ZZZ:a'b'c'd' a+b—c+li(d+c—b)
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Lemma 9

o1 d20(A10)2 1 Fra(x, t) + Aoz dio(Me0) w2 Fy 4(T, t) + 2X10h20 Fo 3 (2, B)
+A12(Ao0) 2T Fy3(x, t) + Ag1 (A10) 221 Fia(x,t) =

at+b—c+1, d+c—b41

b ,ec ,d
Yio Ya0 Yo1Y21 Y1202
H(x");;;?a!b!c!d!(aw e+ Di(d+c—b+1)

Proof By (3.2.5)

)\01/\20(/\10)2:1:1F1,4(m,t) = H(xo) EZZZCI,B,%J?J?O—H’ 7+2y6+7 ﬂ“y{,’flymyuym,
a
/\02/\10(/\20)2$2F1,4(53, t) . 1170 2/: Z: z,: ; Ca B8
N y‘:*ﬂ' BT AR AT AT AT IS
/\12(/\20)2$2F1,3($, t) = H(zo Z Z Z Z & ﬁ e ayixow 71/'2537 B+2yé1y21y¥;ly(;2,
/\21(/\10)2:1:117'1,3(23, t) = H(zo E z Z Z aﬂ 559 ilo+ﬂ 7+2yg(;ﬂ ﬁyglyg;rlyizym
and

2)\10A20F0,3(m, t) = 2H 11:0 E ZZ Z u B A 8

o ﬂll 7” 8"

u+ﬁu ,.yll+1 6!/_+_,7H ﬂl(+1 o ﬂ” II 5
X Yo Y20 Yo1 Y21 y12y02

Once again we equate the powers of the y;; factors, obtaining the relations

a—}—l:a':a":a:a, /H:ﬂ':ﬂ”:ﬂ.:/@—}—l,

’y:’y':’y":’y-{—l:’)}; 6:6,-{-1_—:6”:5:5_
Upon substitution we get
Ao1r20(A10)%Z1 Fra(@, t) + Aoz dio(A20) 22 Fy 4 (2, 1) + 2X 10020 F0 3 (2, B)
+ Az(Ae0)’z2Fa(z, ) + Aor(Mo)’z1 Fra(e,t) =
a 8 a
H(zo ZZZ Zy e Y ey,

1,4
X [C1B76+C +1,8,v,6— 1+2Ca+lﬁ'y,6+ca+lﬁ'y 15+Ca+1ﬁ 176] (3'27)
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By the definition of CJ%}" ; in (3.2.6) and using (3.2.2) we obtain

a,b,c,

CI,4 — 1
B8 (o + 6 + 3)18!

xzr:z;(a+ﬂ—r+1)!r!(6—la—5+7+T)!(a—7")!<7€3)(agr>
. 1

" {a+ 8+ 3)18!Y!

(et B~
XET:(a+ﬂ—r+1)!7‘!((5—(1—[3+’y+r)!(a—r)!(a+ﬂ—r—'y)!'

Now we repeat this procedure on each of the remaining terms in the last factor

of (3.2.7).

ol N 1
arLB=1 7 (o 4+ § + 3)!81Y!
> (a+p—r+1)!
~(a+B8—-1+2Qrd—a-B+7v+r—DNa—r+ D (a+B—-1+1—7)

CL3 N 1
eHLAY-LE T (o 4§ + 3)18(y — 1)!
<3 (a+p—r+1)!
~(a+fB8—-1+2Q0—a-B+y+r—2a-r+ D (a+B-1+2-7)

L3 _ 1
arLA=1me T (o 4§+ 3)1(B — 1)1y!

x3 (a+8—r1)!
~(a+B8-r+ DIl —a-B+y+r)a—r+ Dl a+ -7 —7)!
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and

1
9 0,3 =9
Coisime (a+6+3)!81!

. 1
E,:r!(a—r+1)!(6—a—ﬂ+’y+r—1)!(a+ﬁ—r+1—'y)!

a+1 i) 1
o 2;( r )(a+[3—’y+1——r)(a+1)!ﬁ'7!6!(a+5+3)!'

Choosing the most suitable terms for pairwise addition and using (3.2.2) on each

resulting sum we obtain

1
~(a+to+3)aH!
N 1
Er:r!(a—r+1)!(6—a—ﬂ+’y+7‘)!(a+ﬂ—7'—’7)!

1,4 1,3
Cayﬂfy:& + Ca+l|ﬁ_1a7)6

_ Z(01+1)( é ) 1
o \r a+pf—v—r)(a+ 1)y (a+ 6+ 3)!

and

1
1,4 13 -
Coripasat Ca+1,ﬂ,7—1,5 - (a+ 6 + 3)!8y!
Xy 1
~rla—r+(6—a-B+y+r—2a+ -1 —7+2)

_ Z a+1 ) 1
I~ T a+fB-v+2~1/)(a+ 1) a+d+3)!

Finally, adding the three resulting terms and using the relations (3.2.2) and
(3.2.3) gives
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[(01,4,7, Ca+lﬂ 1,75) (Ccle—ﬁl,ﬂ,v,é—l+ca+lﬁ'y 15)"‘203231,@7,5]

a+1 1
_—2:(7 )M+waww+5+$!

r

Uara-i-rsa) arnrorar)*larsls-)
a+f—-vy—-—r+2 a+pf-vy—-r+1 a+fB—vy—r

(a+1 d+2 1

zr: r a+fB-v+2—1)(a+ DY e+ 6+ 3)!
1

(@+1)!89 8 a+B—v+2)(6 — B+~ + 1)1

The final substitution, a — 1,b,¢ and d for «, 3,y and é respectively, gives the

expression required to prove the lemma. 0O

3.3 A new expression for p(z,t)

In this section we derive a new and significantly simpler expression for p(x,t), of
Theorem 2 in Chapter 2. To this end we observe that the expressions on the right—
hand side of the identities derived in the last section can be referred to by the
functions L, n(x,t), m,n € {~1,0,1}, given by

atb-cim, dic—bin,

b, c ,d

Yo Y20 Y01 Y21 Y12Y02
x, t ,
L mo)zzzz alblcld! (e +b—c+m)i(d+c—b+n)!

Recall that

p(x,t) = e @ ag(a,t) + oy (x, t) + ay(z, 1)),

where €(=z,t) = — ¥ MxZk, and the a;s are defined in Chapter 2.
Using the results from Lemmata 7, 8 and 9, we can express ag in terms of the

functions L, as

ao(fl!, t) = H({B) {6(2)) + /\01)\106(.’1)2)1710’2(1131, 0, t) + /\02/\20(5($1)F0,2(0, T, t)
+ Ao doaLyi(z,t) + Aot Az Lo, (2, 1) + Ao a1 Lyo(, )} .
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Similarly, we make use of Lemmata 7, 5, 4 and 8, 4, 7 to obtain the following

expressions for «; and ay, respectively.

ar(z,t) = H(z) {Pod(z2)Fo1(z1,0,t)

+ AoAezLo(x,t) + Aot ALy 1 (2, t) + Ao A1 Loo(z, 1)}

az(z,t) = H(x) {Ao20(21)Fo,1(0, 72, 1)
+ AotAo2L1o(x, 1) + AordizLoo(, t) + AogAo1 Ly, 1 (x, 1)} .

We combine these three expressions to get

p(x,t) = e “COH(z) {5(x) + Ao16(m2)[MoFoz(x1,0,t) + Fy(21,0,8)]
+ Ao20(z1)[A20F02(0, z2,t) + Fo1(0, z2,1)]
+ Ao1doz [L1,1(x,t) + Lo (x,t) + Lio(z, t)] (3.3.8)
+ Aotz [Log(z,t) + Loy (z,t) + Loo(z, t)]

+  Aoedar [Lao(2,t) + Loo(x,t) + Ly, 1 (2, t)]}

3.4 Comparison with Good’s result

In this section we look at formula (10) in Good [12] “which provides, in principle, the
joint density function” of the time spent in k states of a continuous—time Markov
process. We take the liberty of changing the notation in Good’s paper to match
ours in order to make comparison possible. Hence we let 7. = z, for r € {0..k}
and o, 5 = A, for v, s € {0..k}, such that r # s, since Good defines a,, = 0, while
our definition follows the accepted convention A,. = —3 ;.. Ar,. This should not
present a problem since, in our solution, A, only appears in e(z,t), which we shall
rewrite as

e(x,t) = — Z Z ArsTr. (3.4.9)

T s#r
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Good first derives a probability generating function for the joint distribution of
the frequencies of the k£ possible letters in a chain, N letters long, generated by a
discrete—time Markov process with k states. The letters represent unit length so-
journs in each state. He then uses a generalisation to several variables of Lagrange’s
expansion of an implicit function as a power series to obtain a “pseudo” generat-
ing function. By making the transition from discrete to continuous—time, he then
obtains from the psendo P.G.F. an implicit solution to the k-state continuous—time
problem.

We shall investigate Good’s claim that the probability density, when I1¥_z, # 0,

is equal to the constant term in

exp (— S /\r,,zr) IEI:r > " p.D, exp (Z > /\,,,zrzs/z,) : (3.4.10)

T s#r Lt T s#r
where p; is the probability that the Markov process is initially in state ¢ and D; is

the cofactor of the ith diagonal element of the matrix

(5: Z /\urzu - /\razs) . (ar,s) .

u#r

Good gives an explicit expression for the probability density of z, and z, in
the case £ = 2 and compares it to a previously known result. He points out that
his paper is of interest for its methods and the relationship between discrete and
continuous time. Formula (3.4.10) is in fact a potentially powerful result if we can
extract an explicit form for £ > 2 which can be reconciled with our solution. To
this end we now explore the case k = 3.

If the process starts in state 0, po = 1 and p; = 0 for ¢ = 1,2. Hence we only

need to calculate Dy. For k = 3, (a,,) is the matrix

A1021 + Ag022 — o121 —Ao222
—A1020 Ao120 + A1 22 —A1222 :

—A2020 -2 Aoz20 + A2z



CHAPTER 3. REFINING THE SOLUTION 36

and hence

Dy = /\01)\0223 + Ao1A122021 + Ao2A212022.

In this case, putting e(z,t) = exp ( Sr Lstr ”z,) as defined above, Formula
(3.4.10) becomes

3 3
cen Bttt B n (Z 3 Aarrzs /z,.) : (3.4.11)

202122 T sAr

Let u = 2,/29 and v = z3/2%. To find the constant term in (3.4.11) we need to

calculate the coefficient of u%v? in

e@t exp (/\mwou + do1z1u ™! + Apoov + Agazav ™! + Agzu Tl + )\121‘21“1_1)
X [/\01)\02’&_11}_1 + /\01/\121}—1 + /\02/\21u_1 + )\01/\02'1)—1 + /\01/\12U’U-1

+ /\02/\21 + /\01/\0211.—1 -+ /‘\01/\12 + ,\02/\21114—11)] . (3412)

We now expaud the second exponential term above and write it in terms of the

factors y;; defined in Section 3.2 as

exp (/\IO.TQU + /\mzlu_l + /\20170’0 + /\02.’1721)_1 + /\21.’1?1’11,_11) + /\12.'132?“)—1)

SRS (0t (v (o™ ) rguo ) )"
i=0 j=0 k=0 {=0 p=0¢=0 ’L']'k'l'p'q'
_ Z Z iiii Z/%Jrk“ py;oﬂ l+py01y§1yf2ygzumvn
(m+k+1—-p)ln+q—1+p)klplq

m n k=01=0p=0q9=0

ZZLm,n (E,t u™ n, (3413)

where L,, , is as defined in Section 3.3. Substituting (3.4.13) into (3.4.12) provides

@ Z z Ly n(, t)u™0"
m n
X [/\01/\0211,_1’0_1 + /\01/\12’0_1 + /\02/\21U_1 + /\01/\021)*1 + /\01/\1211/0_1

+ Aoz Aa1 + Aot Aozt Agr A + /\02/\21U_1U] 3
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which enables us to write an expression for the coefficient of u®v°, that is, the

probability density of the three-state sojourn time. We obtain

e‘("’") [)\0]/\(]2 (Ll,l(m, t) + Lg,l(:z:, t) + Ll,o(aﬁ, t))
+ (Ao;)\lg (Lo!l(m, t) + L_l,l(:l!, t) + LO’(](J:, t))
+ (Ao2A2r (Lio(z, t) + Loo(®, t) + Ly (x,1))]. (3.4.14)

This is identical to our expression for p(x,t) in (3.3.8) when the “boundary”
terms (when either z, or z; or both are equal to zero) are subtracted. We compared

the solutions arising from each technique for the case k¥ = 2 in the previous chapter.

3.5 Special cases of the three—state problem

In this scction we apply the solution of the general three-state problem, (3.3.8), to
two special cases in which only particular transitions are allowed. We chose these
two examples as they often arise in applications.

In the birth-and-death process, transitions are allowed between neighbouring
states only. This process is often used to model systems that gradually degrade or
improve with time. For example, if the three states in the process represcut three
possible transmission rates on a high—frequency radio link, poor, fair and good, then
we would expect the quality of the link to go from poor to fair then to good and
vice-versa rather from poor straight to good.

As its name suggests, the cyclic transition process only allows transitions in a
cyclic fashion, that is, from state 0 to 1 to 2 and back to 0. This model is used in
certain reliability problems in which the system starts off with all components in
working order and they fail one by one until all are not functioning, at which time
they are all repaired and the system returns to state 0.

In this section and the next we conveniently make use of the function

Z n-H» k!

k:O
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Note that when z; = 0 and hence ¥y, y2; = 0, (3.2.5} becomes

g (Y20¥02)°
an 0’ ,t - H 0 20502
(0, 72,1) (“”“)Zd:m!d!(mn—l)!

n—1

r
= H(Q‘-O) 1’:’1'

Gn—l(yZ(]yOQ)-

Similarly when z; = 0,

n—1

T
Fm’n(.’E], 0, t) = H(:E()) 1:7,'

Gn—l(ywym)-

3.5.1 The birth—and—death process

Since only transitions to neighbouring states are allowed in this case, we let Agy =0
and Mgy = 0, and hence yyq = yg2 = 0. Substituting for these values, we obtain these

expressions for € and Ly ».
e?P(z,t) = —Aq170 — (Ao + Ai2)T1 — Aoy,

and

atn+m

BD Y10 v
Lina(:t) = H(zo Eza'b!(a+n+m)!(b—n)!'

We put b — n =k in the latter to get

BD _ (yzl.hz (Y10¥o1)*

= H(zo)yls(yioy21)" Gn(y21yl2)Gn+m(ylﬂy01)-

Writing p2P in terms of the above functions,

pPP(z,t) = e—eﬂb(z't)H(l’O)H(m) {0(z) + Aa10(22) (110G (y10¥01) + Go(vr0yo1)]

+ Aoz [ylﬂyZIGl(y2ly12)Gl (ywym) + yzlGl(yzlylz)Go(ywym) + Go(ymylz)Go(yloym)]}

3.5.2 The cyclic transition process

In this process transitions cycle in the order (0,1,2). We obtain an expression for

the density by letting Ayp, Az; and Mg and hence 4,9, ¥21 and yg, all equal zero. We
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first evaluate

a+n+m a+m

CcT _ Y20 Yo1Y12
Lin(®,t) = H(zo) Z al(a +n+ m)!{a +m)!

and

CT(z,t) = —AauTo — MaZ) — ATz

LCT

: CT ; cr
Defining p“* in terms of ¢ and Ly,

p°T (@, ) = e @O H (z0) H () {3 () + Xo18(x2)

y20y01y12) (y20y01y12) (y20y01y12

3.6 Numerics for the three—state problem

An important aspect of the solution of any mathematical problem is an investigation
into its numerical behaviour. In this section we do not attempt to carry out a
thorough numerical analysis which would be beyond the scope of this thesis. We
are merely concerned with whether the expressions derived for the solution of the
general three—state problem are in a feasible form for numerical computation.

We first coded p as a linear combination of the functions [}, ,, as defined in
Theorem 2 in Chapter 2. The complexity of these functions needed careful consid-
eration. Initially we attempted to code them as a sum of Bessel functions using a
recurrence relation satisfied by the sum. However this proved to be unstable. Next

we tried to compute the Fy,, as sums of products of Bessel functions, as detailed
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below, using the in—-built Bessel functions in Maple version V. Not only did this solve
the instability problem but it converged to an approximation extremely quickly.

We recall the function defined in the last section,

[e ) k

Gn(y) . kz:%(n—-fk‘)'k'_',

and note that, for n € N, G,(y) =y ™?1,(2/y).

We can express Fy, , as

Fon(z,t)

0 2.2 & y(@)Pah I (21 2) (031 2) (1m0 22)

= H
(z0) E;;; p' (p+2i+7+n—DGE+7+k+m)liljlk!

N -1 M1$0$1$2 (ﬂ2$0931$2)
‘TO xO ZZ i1
1i=0j5=0 .7
. Z 3181-’02) — (v (x)x0)P
“kl'(i+ 7 +m+k)'p_0p'(p+2z+] +n—1)!

TiTT ToT1T
. H(% IZZ ul Ll 2“1(72 Sl 2) Gi+j-:-m(ﬂ3$1$2)G2i+j+n—1(’Y(m)xo)-
1=035=0

We implemented this expression by approximating the infinite summations by
suitable finite sums. The stopping condition used was that the difference between
two consecutive partial sums must be less than the chosen accuracy. In most cases
fewer than ten terms of each sum were evaluated before the stopping condition was
met. The same results (with 15 decimal digits precision) were obtained when the
summations were interchanged. We experimented with higher precision, up to 50
decimal digits, and a constant upper limit on the summation range in place of the
stopping condition. We found, for example, that for a precision of 50 decimal digits,
the stopping criterion was met after 20 terms and produced an identical result for
a constant upper limit of 500.

In order to increase confidence in this floating point approximation we also coded

p as a linear combination of the functions L, ,, as in Equation (3.3.8). Once again
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we used the Maple Bessel functions, obtaining for L, , the form

Lypn(z,t) =
a+b-ctm, dic-bin

Yio Ya0 ?meglszng
H
(%)Zzzza'b'c'd' (a+b—c+m){d+c-—-b+n)!

— ZZ Yio " Y0 Y Y Z Z (¥10501)° (Y20y02)"
ble! T adl{a+b—c+m)l(d+c—b+n)
b—ewrm, o~ b+n

_s Yio Y20 le Yia
o~ To) Z Z Bblet Grmtb-c(Y10%01) G n—bre(Y20Y02)-
b < s

Summing was stopped under the same condition as described above. Once again
we obtained the same results for p, up to a precision of 15 decimal digits. We do not
claim that this proves convergence, merely that the solutions obtained, expressed
as detailed above, are computationally feasible, though not necessarily the most
computationally efficient.

This numerical investigation was instrumental in the construction of the Lem-
mata of Section 3.2. We were able to use probabilistic intuition to find the identities
and decide whether they were satisfied numerically before embarking on a conclusive

analytic proof.



Chapter 4

Extending the State Space

4.1 Introduction

In this chapter we use prcbabilistic interpretation of the three-state solution to
deduce the solution for the case n = 4. We then repeat the procedure detailed
in Section 3.4, this time extending the number of states from three to four, and
compare the results. The boundary terms for the four-state case are deduced from
the full solutions obtained directly from the partial differential equations in Chapter
2. We extend the probabilistic argument to derive the general form for the case
with n states. In the process we delve briefly into graph theory and the matrix-tree
theorem [14] and present some interesting connections between the two. Good has
applied a generalisation of Lagrange’s expansion to the enumeration of trees (see
[13]) as well as the probability distribution of the frequency count of a Markov chain
in the previously cited {12], so that the foundations for making the connection are
well established. We make the observation that the tree-generating determinant for
rooted trees, directed away from the root, {sce [21]), can be used to deduce the

structure for the interior part of the solution for the general case with n states.

42
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4.2 A probabilistic interpretation of p(z,t)

A close inspection of the explicit solutions obtained thus far for n = 2 and n = 3
gives an insight into a possible probabilistic structure of the solution for any n.
It will be convenient to express the functions F, ,(, t), in which one of the z;’s

equals 0, in terms of the functions

at+m

o < e S A

for i € {1,---,n}, which have a similar form to L,,,. So we have

FO,n'H-l(:I'.ll O: t) . AI‘OmLm(Il) t),

Fﬂ,erl(O: T, t) = ’\EﬂmLm(IQ! t)'

Denote by p™(z,f) the probability density of the total sojourn time in the

case of the n-state Markov process, where & = (z1, s, ,Za_1), that is, p™ has

n arguments. From (2.6.17), using the substitution defined above, the two-state

solution is

p(2)(:c,t) = e @VH(x)[5(x1) + ALy (1, 2) + Mar Lo (1, 1)].

Let us express p(¥(z, ) in terms of the component densities p(()z), p(lz). Recall that
p = St p;, where p; accounts for the probability density when the final state of

the process is . We assume that the initial state is always 0.
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P(()2)(m,t) = ec(z’t)H(m)[é(CEl)*‘/\le (z1, )], (4.2.1)
P, t) = e@IH (@)A1 Lo (z1,1). (4.2.2)

The first term in (4.2.1), the boundary solution, arises from the cases in which the
process stops before it ever leaves state 0, while the second term, ALy, represents
those events for which there are an equal number of transitions from 0 to 1 as from 1
to 0, but with one fewer sojourn in state 1. Similarly Ag, Ly arises from those events
in which there are an equal number of full sojourns in each state and an additional

transition into state 1, the final state.

Let us study the three-state solution as derived in Section 3.3. We write p(® in

terms of the component densities p((f), pﬁa) and pgs) and replace the functions F, ,

by the L,,’s defined above:

P (x,t) = e “@VH(z) {5(x) + Mr(z2) Ly (21, 1) + Ao2d(z1) Ly (22, 1)
+ AaroeLi (&) + Aot Ara Lo (2, 1) + Adge A Ly o, 1)},
pP(z,t) = e “@YVH(x) {Ao16(z2)Lo(zy, 1)
+ XotdozLoi (2, t) + Aot AiaL_11(x,t) + Aoedai Loo(z, 1)},
Pz, t) = e @VH(z) {A2b(z1) Lo(z2, t)

+ Aot Aoz Lo, t) + Aot Az Loo(®,t) + A2 A1 Ly, —1 (2, t) } .

We first look at the boundary terms. If we gather all the terms with support in

the (zo,z;) plane, including the §(z) term, we obtain
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e~ @D L6(x) + M16(22) Ly (21, 1) + Aord(z2) Lo(zy1, 1)} .

This is just §(z5)pt? (®£(2),t), where &;; is the vector & with the ith component
removed, that is, € R2 and Z(3 = z; and hence p® has two arguments as

required. In addition, the p((f) terms can be matched to the corresponding p((]S) terms

and the same holds for the p?) terms. A symmetric argument applies for the terms

with values in the (zg, z7) plane,

C_E(z’t) {5(13) + A026(£L'1)L1 (.’132, t) -+ /\02(5(331)[/0(.’[?2, t)} = 5(.’151)/)(2)(52{1}, t),

with all instances of z; replaced by z; and all subscripts of )A;; which equal 1
incremented by unity.

Let us attempt to clarify this for the general case. When the argument of p(™

is (53 and & € R}, all the z;’s with j > i are shifted along by one place and the

matrix of transition rates A is replaced by Ay, an (n x n) matrix obtained from

A= (N)ij, 4,7 € {0,1,---,n}, by removing the (¢ + 1)st row and column:

f Mo dax " doga Aaist ot Age )
X Aic1,0 Aicin ctt Aisni—i Aisnier tt Aimin
{i} =
Aiv1,0 Attt Aipnicl AikLitl 0 Aigin
\ /\n,O /\n,l iy /\n,i—l /\n,i+1 /\n,n }

In the process those subscripts of y;; which are greater than 4 are incremented by

unity.
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The value of p® on the boundary is
0(z2)p® (Z (), t) + 8(21)pP (B (1)) — d(z)- (4.2.3)

Consider the “interior” terms of p®. These represent the probability mass of
those events in which each of the three states is visited at least once. Recall the

definition of L, ,:

at+b—cim,_ dic—bin

Lmn(z,t) = H(z )ZZZZ Y10 Yo ?meglyf'zygz
mni T NN e e e e glpleld a4+ b —c+ m)(d + e — b+ )

[

In order to get a better idea of the transition paths these functions describe, we

rewrite L, , as

Yarti0)* (Yozlize)” ¥1o 3 Hzrjfﬁm :
Lnn(z,t) = yloyseH (zo) Z ZZZ lblcldila o bO_ ¢+ r(n)!(dl c(—Jb +)n)! '

We can intuitively infer that each of the factors in the numerator of the summand
represents a two-step transition event. The first two factors correspond to those
paths starting at state 0, then visiting one of the other two states before returning

to state 0. The third factor corresponds to those trausitions from state 1 to state
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Figure 4.2.1: Spanning trees of a 3-—node digraph rooted from node 0

0 with an intermediate visit to state 2. The denominator in the third factor, y,q,
ensures that these cvents replace an equal number of direct transitions from 1 to
0. The fourth factor can be similarly interpreted. In other words, Lgy counts all
possible transition cycles with state zero as the initial and final state.

The subscripts of L can be thought of as m additional transitions from 1 to 0
and n of them from 2 to 0, as well as m + n full sojourns in state 0.

Now associate with each Ay; a directed line in a three-node spanning tree. So
the coeflicients of the L,, ,’s in each of the densities p,(‘"’ correspond to the sequence
of edges which make up each directed tree rooted from node 0. There are three such
trees as can be seen in Figure 4.2.1. The coefficients then determine the subscripts
of L necessary to ensure that the final state is 4. For example, in the case of pf{", we
have the first interior term, Ag; AgaLy,1, whose coefficient represents the first tree in
Figure 4.2.1. In order to make 0 the final state we need additional transitions from
1 to 0 and from 2 to 0, hence we need m = 1 and n = 1 for this to occur. Similarly,
we require that m = 0,n = 1, that is a transition from 2 to 0, for the second term
and m = 1,n = 0, a transition from 1 to 0, for the third term.

To determine the terms in p(la) and p§3), we simply substitute i by m — 1 for the
former and n by n — 1 for the latter, thus eliminating the final transition to state 0.

This connection between spanning trecs and the probability densities can be
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traced to Good’s formula (3.4.10) in Section 3.4 and the matrix

(ar,s) . (5: z AurZy — /\rszs) .

u#r

If we replace each z;, j € {0, 1,2}, by unity in (a),, , we obtain the matrix (—A),

(6: Z )‘ur - /\rs) .
uFr 3x3

The determinant of (—A) is actually the tree-generating determinant for the
spanning trees of a digraph rooted from a given node. A corollary of the “matrix—
tree theorem” (see [14], Section 3.3 and [9], Section 11) enumerates the number
of out—directed spanning arborescences of a three—node graph rooted at node ¢ by
calculating the cofactor, cof;;(—A), of the ith diagonal element of (—A), with each
Ar,s replaced by the number of edges directed from node r to node s. Temperley
[21] goes further and explains in detail why the expansion of cof;; determines the
particular lines that make up each of these trees.

Good does not explicitly mention tree enumeration in [12], however he arrived at
the solution by using a generalisation to several variables of Lagrange’s expansion of
an implicit formula as a power series. Later, in [13], he applies Lagrange’s expansion
to the enumeration of trees. In fact he had already noted that this could be done

in [11].

4.3 The four—state solution and beyond

In this section we use the observations made in the last section to extrapolate from
the three-state to the four-state problem. For this case = (z1, 22, z3) and Ty
is  with the ith component removed, that is Z;y € Ri. Again, it is necessary to

consider the solution on the boundary separately.
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4.3.1 The boundary solution

Using the same reasoning as in the lead—up to Equation (4.2.3), we arrive at this

expression for the boundary terms of p(*):

8(z3)p® (& 3y, 1) + 6(22) P (E 2y, t) + 6(z1) PP (T 11y, t)

—2(5(3) - . ;n ,\qké(ri)é(zj)[lll(xk,t) + L{)(iEk, t)], (434)

where Q = {3, 5,k € {1,2,3} : i # k,i < j}.

We substitute the three—state solution into the above expression, thus obtaining
an explicit solution for the boundary part of p(*), Using the probabilistic interpre-
tation of the functions L,, and L,,,, with the same argument as in the three-state
case we can partition this expression into the boundary terms for the component
densities, p,(-4}, thus arriving at an explicit expression for the boundary part of p4).

Once again we start with those cases for which 0 is the final state and at least one

of the other three states is never visited:

e~ @0 H (2) {5(2) + Xo16(22)0(xs) L1 (21, 2) + Aoz6(21)8 (3) L1 (22, 1)

Aosd(zy)0(x2) Ly (T3, 1) + Aot Ao2d{(23) Ly 1 (233, ) + Agr Ai28(3) Loy (Z4sy, t)
A2 A216(x3) Ly o(E 3y, ) + Aot Aaad (22) Loy 3 (E (23, t) + Aos Aiad(22) Lo, (£ (23, 1)
o3 A310(T2) L o(T 2y, 1) + AoaAaad (1) L1 (E (1), t) + Aoz Aasd(z1) Lo (E 1y, )

AosAs28(x1) Lo (T 1y, t)} :

+ + + o+
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Consider the boundary part of p54) . Since 1 is the final state it must be visited
at least once, so we take all those terms above which do not have a §(z,) factor and

adjust the subscripts of L,,, accordingly, thus obtaining

e—e(m,l)H(m) {,\016(.’52)6(.’173)140(3;1! t)
+ AorAa2d(za) Lo (&), t) + Ao Ai2d(za) Loy 1 (£}, ) + Aoarai 8 (z3) Loo(E 3y, 1)
+ Ao Agsd(z2) Lo (Bya), ) + A Aad(z2) L_11(Eq2y, t) + »"03/\315(932)L0.0(i{2}rt)} -

Similarly for pg“

e—((.’n,t)H(m) {A025($1)6($3)L0($2, t)
+ Ao Aozd(z3) Ly o(E3y. t) + A1 A126(z3) Loo(Z 3y, t) + Moz Ae1d(za) Ly, 1 (Z3),1)
+ A02/\036($1)L0,1 (j{ll,t) + )\02/\236($1)L-1,1 (:E{l}v t) + /\03)\326(5’31)110,0(53{1}:”} :

In addition, we now have a density component, pgf), for the cascs when the final

sojourn is in state 3,

e~ @0 [ () {Ng3b(x1)8(x2) Lo (s, t)
+ AorAo3d(z2) Lio(Z (2, t) + Ao Aad(x2) Lop(Z 2y, 1) + AesAa1d(we) Ly, 1 (& 2), 1)
+ Ao2Aoad(T1)Lyo(&(1y, 1) + AoAsad(z1) Lop(Z 1y, t) + ,\03)\326(:1:1))1,1,_1(:1_:{1},t)}.



CHAPTER 4. EXTENDING THE STATE SPACE 51

4.3.2 The arborescence connection

The interior part of the solution requires that we define a function L, , ,, the equiv-
alent four-state version of L,, ,. This time there are twelve possible y;;’s and nine
summations. It is therefore convenient to introduce a notation loosely based on
multipartite numbers (see [13]) and the multi-index notation used in the partial
differential equations literature.

A multipartite number of order n, @ = (a;,as, - -,a,), is an n—component
vector with suffixes 1,2,---,nor 0,1,---,n — 1, such that each a; € R, or each
o; € Z, that is, we do not restrict the components to the non-negative integers.
Furthermore, we denote by a = (o, &2, -+, ), a multipartite vector of order
nm, that is, each a; = (a1, @i, -+, Qi) 1s a multipartite number of order m. We
define {a;} to be that subset of o such that {a;} = (a;1, @42, - -, ajn).

The multipartite number, |a|, denotes (|a|, |azl, - - -, |anl), with each |ay| de-
fined as the scalar ay; + agi + -+ - + o for ay; € Z 4, let a! denote aylag! - ay!,
in which each o;! = ay;lag;! - - - ay;!. If «, § and v are multipartite numbers of order
n, and the components of & and 3 are integers then v? is defined as 'yf ‘752 v orybn
and > 5 denotes 3.5 3 5,--+ > 5,- The sum of two multipartite numbers is again
a multipartite number defined as a + 8 = (ay + By, 2 + B2, +, 00 + (). Hence
yte = pfiterfater | yBaten and (a4 B)! = (a1 + 1) (0 + B2)! -+ (o + B!

Let us define a so-called “non—diagonal” multipartite vector, b, of order (nm —
min(n,m)), which is derived from an nm multipartite vector, 3, by deleting all
the “diagonal” components ;.. We can thus classify the variables y;;, defined in
the last chapter, as a non-diagonal multipartite vector of order n(n — 1), such
that ¥ = (Yo, Y1, *, Yn —1) and each y; = (Yoi, Y1is* * * Yi1i, Yit1i, " 5 Yn—13), With
Yij € Ry, for each i, € {0,-+,n — 1} such that 7 # j.

We shall use the three—state example as a demonstration of this notation. Let
Kk = (K, k2) be a multipartite number of order 2, b = (by, by) = (boy, ba1, boz, b12) be

a non—diagonal multipartite vector of order 4, such that each x; € Z and each b;; is a
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non-negative integer, and let b = ({b,}, {#2}) = (b2, ba1). Of course y = (¥o, Y1, ¥2)

is of order 6. Then we can rewrite L,, , as

K1+boyL+b21 —b12, Ko+boz+bra—bay
Y10 Y20

LO(z,t) = H(z
K ( ) ( 0)§§%§(K1+601+b21—b12)!(m2+b02+b12—b21)!
bo1 ,,b21, bo2, b12

Yo1 Y21 Yo2 Y12
bo11b21bo2!b12!
'€|+Ib1| {1} ro+|bg|—{b2}
Y20

_ Y"1y,
= ) X o T = () s+ oo (o)l

Yot 1bl—by b1y b2
— H xT .
(@) 2 = T o~ Db

We return to the four-state version of L. Let & = (kj,Ks,K3), ki € Z
be a multipartite number of order 3, b = (by, b, bs) be a non-diagonal multi-
partite vector of order 9, with each b; € Z,, such that 0 < 4,57 < 3, @ # j
and b = ({b:1}, {b2}, {b3}) = (b12, b13, by, ba3, ba1, bsz). For this case y is a non-
diagonal multipartite vector of order 12, and is defined as (yg, Y1, Y2, ¥3), With each

Yij = \ijz;. Then we define L) as

K+|b|~[bly, b1g, b2, b3
L@ w,t)=H Yo Ui '.'{2 Ys
w2 = Hlzo) 2 =

Applying the same probabilistic reasoning as in the last section we can write an
expression for the interior solution of p(()4). We must first list all four-node spanning
trees rooted from node 0. As remarked in the last section, we could use the cofactors
of the diagonal elements of the matrix (—A) to do this, however, in this case, it is
easier to simply write them down. All sixteen trees appear in Figure 4.3.2.

Each of these three—edged trees is represented by a product of three distinct

Aij’s, which is a coefficient of some L®. Recall that k = (ky, kg, k3) is determined
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Figure 4.3.2: Spanning trees of a 4-node digraph rooted from node 0
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by the coefficient of L, and that cach k; corresponds to a transition into or from
state i. Let 7 denote the spanning tree represented by the coefficient of Ly(,), that
is, k is determined by 7. Since we require 0 to be the final state for pg”, we must
set the support of a particular () so that it “neutralises” the spanning tree, 7.
To achieve this we increment each x; by one for each transition into state ¢ (that is,
each Aj;, representing the edges from all nodes j to node i in 7) and decrement it by

one for each transition out of state ¢ (that is, each Ay in the coefficient representing

7). Thus, for a node, i, in 7,
ki(T) = indegree(r, i} — outdegree(r, 1), (4.3.5)

where indegree(r, 1) is the number of edges directed into node i in 7and outdegree(r, i)
is the number of edges directed out of node i. However, since each node is only vis-
ited once, indegree(r,i) = 1, for all ¢ and all 7, so x;(7) = 1 — outdegree(r, ).

For example, consider the first tree in the second row of Figure 4.3.2, call it 7.
This is represented by the sequence of edges, 01, 02 and 13, that is, by the coefficient
Ao1Ao2A13. In the sequel we will, for convenience, refer to such a coefficient by the
spanning tree it represents, that is, when we talk about 7 we really mean Ag; Apa A13.
In order to make 0 the final state of the process, we need a further two transitions,
one from 2 to 0 and one from 3 to 0, that is, k(7) = (1 —1,1,1) = (0,1,1).

Using this technique we obtain as the interior part of pg” ,

e_f(m’t)H(lc) {AarrozdoaLy (e, t) + Aopdz Az Loy (2, t)
+ AppAnAaaly 11 (2, ) + AosAarAsa Ly 1 (2, ) + A2 Aor Azl (T, t)
+ AosrorAizLo (2, 8) + Aot Ao Aes Ly (@, 1) + Aoa Ao Ani Ly o (2, 1)
+ AnAozrseLy 0@, t) + Aoz Aoz Az L1 o(®, t) + MoaAsaAa Ly, t)
+ Ao2AasAsiLypo(®, t) + Aor AaAaa Lo o(E, 1) + AasAsi dzLo s o, )

+ AnAAeslop (2, 1) + Ao Ao Az Lo (2, )}
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The expressions for pg ), pgl) and p_gq) are obtained by deleting a transition from

the desired final state to state 0. Thus p(-4) is simply p(()4) with suitably adjusted
subscripts to L,(f), that is each x; in pf ) is decremented by one.

The full interior solution for the four—state case is given by

e~ @Y H (x) {Mo1 Aoz Aos[L,1,1 (2, 1) + Loi(®, 1) + Lioa(®, t) + Loz, t)]
Aon Al g2, t) + Logga(@, ) + Loyou(x,t) + Ly 0(x,t)]
AozAAas[Ly—13(x,t) + Lo 1 (x, t) + Li,—gu (2, t) + Ly —10(x, 1)]
AogAmAaz[La,1, -1 (2, 1) + Lo, 1@, B) + Lio1(z,t) + Ly, —2(z, 1))
Aoz Ao Aa[Loga (e, ) + Loy a1 (2, t) + Lop g (2, 8) + Loy oz, 1))
Aoz dorAiz[Loi (2, t) + Lopa1(2,t) + Loga (2, 1) + Loi(x, )]
Aor Aoz Aaa[La01 (2, 8) + Log,1(x,t) + Ly,11 (2, t) + Ligo(x, t)]
Aoz AozAz1[Lro (2, t) + Loga(x,t) + Ly —11(2, ) + Lygo(x,t)]  (4.3.6)
Aot Aoz sz (L1 0(2, 1) + Loy o(x, t) + Lyge(e, t) + Ly 1 (2, )]
Aoz Aoz Aa1[L1,1,0(2, ) + Logo(, t) + Ligo(®, t) + L1111 (2, t)]
Aoz Aazdar[Laoo(E, ) + Logo(z,t) + Ly _10(z,t) + L1 _1(2, )]
AozA2sAa[L100(E, 1) + Logo(z,t) + Ly —10(x,t) + Lo, 1(2,1))]
At AsAsz[Lono(2,t) + Loy 0@, t) + Logo(x,t) + Loy, 1 (2, 1)]
Aoz Az Arz[Loo(®, t) + Loy o(®, t) + Logo(x, t) + Loy,—1(z, )]
( (
( (

A1 AizAzs[Loo, (2, t) + Loy 01 (x, €) + Lo—11(x, t) + Lopo(x,t))]

+ 4+ o+ + o+ + o+ o+ 4+ o+ o+ o+ o+

/\02/\21A13[L0,0,1($; t) + L—I,O 1\, ) + Lﬂ,fl,l(mft) + Lo,o olT, )]}

Clearly, we need to devise some way of expressing this solution concisely. In the

process we will generalise it to the n-state case.
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Let A be a set whose elements are in {1,2,---,n — 1}, and let |A| denote the
order of A. We define the set function YT(A) to be the set of all out—directed
spanning arborescences of a graph with |A|+ 1 nodes, whose labels are the elements
of AU{0}, and which are rooted at node 0. If |A| = n— 1, there are n"~2 such trees
(see [14], Section 3.3.24). This set can be generated either by calculating the tree-
generating determinant, referred to earlier in the section, or by utilising a suitable
tree-generating algorithm. Let 7 € T(A) be one of these spanning trees and denote
by o(r,i), the outdegree of node i in 7. Define a function & : T(A) — Z'# such

that the components of x(7) are given by
K’i(T) =1- O(T’ 7’):

for1<i<n-1.

For N = {1,2,---,n—1} and 7 € T(N), k() gives us the values of the subscripts
of L™ for the component density pg () Let e be the n—component vector with unity
in the kth position and zeros elsewhere, and let ey denote the zero vector. For the
other component densities, p,c k€ {1,2,---,n}, we decrement each k() by 1.

(m)

That is, the required subscripts for L™ in p;" are given by

K(T) — €.
Thus if F = {1, 2, 3}, the interior part of p(* can be rewritten as

e I H (z) Z() ™ [LS (@) + L), (@, 8) + L0y, (@, 1) + LT, (2.8)]
TET(F

Generalising to n states, we obtain the interior part of p(™

e @O H(z) 3 Z TLK(T) _e,(@, ). (4.3.7)

TET(N) 1=0
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4.4 Good’s formula revisited

In the last chapter we showed that the interior part of our solution is identical to
the constant term in (3.4.10) for n = 3, which Good deduced was the probability
density function for the sojourn time in an n-state Markov process when z; > 0,
for : € {0,1,,--+,n}, and when the process starts in state 0. In this section we
use Good’s formula to derive an explicit expression for the interior solution of the
four-state Markov process and compare it with the one we derived via probabilistic
interpretation in the last section.

Recall that Good showed that the probability density when [I}_, z, # 0 is equal

to the constant term in

%Izzrr Z prDr exp (Z Z )\s,,-z,.zs/zr) 3 (448)

r s#r

exp (— 2. Az)

T s#r

where p; is the probability that the Markov process is initially in state ¢ and D; is
the cofactor of the ith diagonal element of the matrix
6: Z Aurzu . /\rszs B (ar,s) .
u#r
Once again, since the process starts in state 0, we only need to calculate Dy. For

n =4, (ars) is the matrix

3
Zizl AioZi —A0121 — o222 —A0323
3
—A1020 ):,-:o Ainzi — Az —A1222 —A1323
b
3
—A2020 —A212; Zizo Aiozi — Ap22 —A323

3
—A3020 —A3121 — 3222 Yoo AisZi — As3zs
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and hence

Dy = /\01/\02/\0323 + /\01/\12/\1320Zf + /\02/\21/\2320222 + /\03/\31/\322023
+ o2 Ao1 A3z 21 + Aoz dor Ai22e 21 + Aor AoaAaazaze + AaadozAa1Ze 22
+ /\01/\03/\322333 + /\02/\03/\312323 + Ao3As2A21 202223 + Aoz A23A31202223

+ Ao1 M3 A32202123 + A3 A31 A 12202123 + Ao1 A12A232021 22 + Ao2A21 A3 2021 22

In this case Formula (3.4.14) becomes

) 20+ 21+ 20+ 23 Dyexp (Z Z As,rl‘rzs/zr) _ (4.4.9)

20212223 T str
Let u = 21 /2, v = 23/2 and w = 23/zp. To find the constant term in (4.4.9) we

need to calculate the coefficient of u°v%w® in
™ exp (/\wl‘ou + AnZ1u”" + Az Tov + AaT2v Tt + Agazaw ™! + Azozow

+  Apziu o+ Apzuv ! + Az u T w 4 Azzsuw T 4+ Agpzav T w + /\23m3vw_1)
X [/\01)\02/\03(’!1,_1’0_1’11)_1 + v"lw_l + u_lw_l + U_I’U_l)

+ Ao dzAswr lw ! +utolw T fuw ! Fuwh)

+ do2dardas(utvw ™ Fow ™t 4w + u ')

+ Assdada(u v w+ v e + uTlw +w T e

+ (AozAo1ds + dosrorAr) (0w +uvTlw T 4+ w4 oY)

+ (MordozA2s + Agsrozde ) (u tw  + w T + T low ™ + uh) (4.4.10)
+ (Mo1dosAsz + Aozdes) A (o v +uT - um v  w)

+ (AozAzzAar + dozdasda ) (u ™t + 1+ u o + ulw)

+ (Aot AisAs2 + AgsAzn Ag) (v +uvt + 1+ v lw)

+ (AorAizAos + Ape Aot i) (w ™ +vw ™ +ow™! + 1)]
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We now expand the second exponential term above and write it in terms of the
multipartite notation of Section 4.3.2.

Let a = (ao, ay,az), such that a; € Z,, for i € {0,1,2}, b = (by, by, bs) is of
order 9, and b = ({b;}, {b2}, {b3}) = (b12, brs, b2y, bas, bsy, baa), with by; € Z4; yisa
non—diagonal multipartite vector of order 12, and is detined as (yq, Y1, Y2, ¥s), With

each y;; = Aijjz;. We obtain

€Xp (/\10.’170’11 + /\mxlu—l + /\2011701) + /\02.'1721)_1 + /\03.’1)3’11)_1 + /\30£E0'w + /\21.’13111,—11)

+ AZouv ! + Agiziu M w + Aazzuw Y 4 Aaazavlw + /\23.’L’3’U’u)_1)

Yy (y101)® (y20v)* (yaow)*? (yor v ™)’ (yaru~'v)P2 (Y3 ulw)b
a!bl!
802 (yy19uv™1)812 (ysv ™ w) 22 (yoaw 1) %03 (y3uw 1) P13 (yoavw )02

yozv
SPT)D balba!

by b3

a bl

Rewriting the expression above as a power series of u, v and w, gives

kl+lb11 l{bl}lygglfnl [{b2} k3+|b3| l{bS}ly b1y2b2y303uaxva2waa

Y G BT )G T Toal — Tl D o T b= 1ol 52T

k by bgp bg
Z Z y0k+|b| |b|y1"1 y2'12ual vt (4 4 11)
kb (k + [b] — |b])!b!

- Z L (x, t)u v®2w®
a
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The constant term is the coefficient of u®y%w® in the expression obtained by

substituting (4.4.11) into (4.4.10),

e @0 N L, t)u v w™

a
x [/\m)qog)\og,(u‘lv’lw_l +vlw ! e tw !t +u e

+ dnrda(wr ' +dfv e uw T ue )
+ dzdzdas(e low ™ How T+ w T +u )
+ s da(e v w v ' w + w e + T e )
+ (Ao2AoiA + dozrorA) (v w ™ +wv e w07
+ (AorAezdes + Aoz da2 o) (u T +wT +uThow T +u )
+ (Aot AesAaz + Aoz doada ) (v o+ uT +u T w)
+ (Aosrazdar + dozdaada ) (uw ™t + 1+ u o+ ulw)
+ (AoAsAsz + Aoz s A} (v +uv™ + 1+ 07 w)

+

(/\mAlgAg;; + Agg/\mAm)(ﬂJ—l + uw_l + 'U’u}_1 =+ 1)] .

It is evident that the coefficient of u°v°w® in the above expression is identical to

(4.3.6), the full interior four-state solution deduced in the last section.

4.5 The full n—state solution

In the last section we were able to use graph theory to derive a generalisation to n
states of the four—state interior solution and we were able to reconcile the latter with
Good’s formula. We deduced the houndary solution by extrapolating from three to

four states using probabilistic intuition. In this section we usc the same reasoning
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to obtain the full n-state solution. In conclusion we show that the solution satisfies
the Kolmogorov equations for the n—state sojourn time problem.

Recall the first expression we derived for the boundary part of p( in (4.3.4).
It seems logical to assume that since we want to calculate the probability density
for those events in which at least one of the n — 1 states is never visited (state 0 is
the initial state and therefore z, always accrues some density), the solution must be
related to the full (n — 1)-state solution. Therefore the boundary solution is simply
the sum of p(®~1 calculated over each possible combination of n — 1 of the n states
after the duplicate expressions have been subtracted. An alternative way to think
about the problem is that the solution on each boundary (that is, those hyperplanes
for which at least one of the z;’s vanishes) is simply the interior solution valued
over the number of states which are visited at least once and multiplied by the
appropriate delta distributions. Thus we can write the boundary solution by listing
each possible subset of N = {1,2,---,n — 1}, and for each subset A, multiplying
the interior part of p(l4D valued over the states in A by d(z;), for each i in the
complement of A in V.

Recall that T(N) is the set of all spanning trees whose (n + 1) nodes are the
elements of N U {0}, and which are rooted from node zero. In addition, recall that
x = (zy,Zy, -, Ty-1) for the n-state case. Let N, denote the set of all subsets of
N, which have order k, N/* denote those subsets of N which contain m, and NJ¥
denote those subsets of Ny which do not contain m. Let A = {ay,as, -, ax}, such
that A € Ni and a; < a; for all 7 < j, that is, the elements of A are ordered. We
denote by x4 the vector (z4,, %4, *, Zq, ), S0 that, when L, is valued over z 4, all
the subscripts j appearing in the expansion of L¢*+Y (x4, t) are replaced by a;, that
is, y;; becomes Yo,q,. Clearly N,y = N, and &y = (21,22, +, Tn-1)-

We claim that the boundary part of p(™ is given by the expression

@ H (z [ 533 ( 11 5(fvj)> Sy TLyr) (@)

k=1 AEN}, \jeN\A TET(A) i=0
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Let us use this expression for n = 4. In this case N = {1, 2,3}, and the power set
of Nis {{1},{2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}. If the above claim holds then

the boundary solution is given by

@0 H(z) [0(x) + 8(x2)d(zs) At [LE (21, 1) + L (21, 1)
+ 5(5'31)5(-’53)4\02[111 (za,t) + L (a2, £)] + 8(21)6(x2) Aas[ L (23, t) + L (w3, )]
+ 8(z5) (Aot Al L§ (1, 22, 8) + L (@1, 2, 8) + LY (1, 72, 1))
+ AudielLd (21, z2,t) + L) (21, 22, 1) + LiD (@1, 22, 1))
+  AprAn [L(l?(;(l'la T3, 1) + L((JS()J(iﬂl,Im t) + LES)—1(~’51, Iy, f)])
+ 6(z2) (Ao daal L) (1, 73, 1) + L (21, 72, 1) + L3 (21, 73, 8)]
+ Ag])\lg[L&?(iﬂl, T3,t) + L(_l,l(.’l,'l,ﬂ?3, t) + La,o($1, z3,1)]
+ )\03A31[LE?3(:1:1, z3,t) + L((fg(rl, T3, t) + L(l?)—l(xl, T3, t)])
+ 6(z1) ()\02/\03[14(1?1)(132,5”3, t) + L§) (%2, 23, t) + L{Y (22, 73, 1))
+ )‘02)\23[1«(3 (72, x3,1) + L(—SI 1 (T2, 23, ) + L((Jsg(ﬂ?z, z3,t)]

+ A03A3|2[Lg:,;(;(:["'k.‘373) ) + L((]0(LC2,£E3, ) + Ll _1($2,I3,t)])] )

and this is the explicit solution given in Section 4.3.1.

Hence the full n-state solution will be given by

p(e,t) = e H(x +Z > X Z I @)L, (@at)].

k=1 ACN 1T (A) i=0jeN\A
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Once again it is desirable to separate p{™ into its components p{™,

p(x,t) = e PVH(z [ +zz > I s@)rLli (a, )},

=1 AEN, T€ET(A) JEN\A

and for all m > 1,

D) = (e [z SO s, m,o}.

k=1 AeN" 1€T(A) JEN\A

We now state the main result of this thesis.

Theorem 3 Let N = {1,2,---,n — 1}, and for any B C N, we denote by B, the
augmented set B U {0}. Let T(N) be the set of all spanning trees whose nodes are
the elements of N, rooted from node zero. Each T € Y(N) is represented by [ \;j,
where each ij is an edge of the tree T.

For an n-state process, let the total accumulated sojourn time in state k up to

time t be denoted by x, with Ty =t — z;. Let ¢ = (1,29, +,2n), and let

_1 1
the joint probability density of , when the final state of the process is state m, be
denoted by p{™.

Let A = {ay,a2,---,ar} € Ni. Then x4 denotes the vector (2,4, Tay," ", Za,)-

The function & : T(A) — Z'f', is defined in terms of its components,

ki(T) =1 —o(r,1),
for1 <i<n-—1, witht € T(A) and o(r,1) defined to be the outdegree of node i
nT.

The function LV, 2 < i < n is defined as

yo""‘lbl_“—)lylbl y2b2 ey by _ 1
(= + |b] — [B])'B! !

L™ (x,t) = H(z) >
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where & = (1, %3, *,ZTxk—1), K 15 a multipartite number of order k—1, withk; € Z
for each 7, b = (by,ba, - -,bx _1) is a non-diagonal multipartite vector of order
(k — 1) and whose components are defined to be b; = (bo;, byj, -+, b(1 —1)5)), with
each b; € Z . and the elements of b = ({b}, {bg}, -+, {bk-1}) are contained in b; y
is a non—diagonal multipartite vector of order k(k — 1), such that each y;; = Aijz;.

The Kolmogorov equations for the evolution of probability of the total accumulated

sojourn time in an n-state Markov process,

6 (n) n—-1
2(2,t) = IR TR
(n) (n)
agtn (m’t) = E ’\Ikpln)(m t ap_f;-n (1}, t) k € {1’ 2) Tty n}’
k

are satisfied by the generalised functions

) (z,t) = e @YH(a [5(“3 +Z > > I 5($j)TLgEj)l)(mA,t)]a

k=1 AEN, T€T(A) jJEN\A

and for allm > 1,

n—1

M(x,t) = e “@EYH(z) [Z S o3 11 5(a:j)TLf:E:)1)e (a:A,t)}

k=1 AEN]* reY(A) jJEN\A
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Proof Let L.(zy,x) = Li(x,t), and let D; denote partial differentiation with
respect to the ith variable, keeping the other n — 1 variables fixed. Since o =t — z,
then 2L, (x,t) = Dy L(zo, ), and (afm +%) Le(®,t) = Dpmy1Le(zo, ), for all
me {1,2,.--,n— 1}

In order to differentiate L. with respect to zp we first of all observe that since

the initial state of the process is state 0, then z¢ > 0 for all t > 0, so that if zy =0
then t = z;, = 2y = -+ = 2,_; = 0. Hence all §(zg) terms that arise from the
partial differentiation of H(zy) are deemed to be equal to zero. The rest of the

differentiation becomes immediate if we expand those factors which are dependent

on g,
= by b2 g, JPi—1 -l y("k*ibkl_ubk}“
DL(‘)SL‘,:B = D, | H(zx Yi "Y2 Yi_1 k0
SO 1 ( ( 0)¥ b! LI=II (rek -+ [ox] — | {Br }])!
i—t .
= Y aoLY, (1),
=
Similarly

ad -
(T%__Ln(m/l:t) = DLW (zo,x4)

= 3 "\J'(]Lfci)—e, (€ a,1)-

JEA

We repeat the technique in order to obtain the partial derivatives with respect

to the rest of the z,,’s,
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(k+bl—(B]),, by .. bm |, bi 1
= Yo Ui Hk lykm ‘Yi-

Dy LY = D H(zo) Y 1

+1dsy (zo,m) m+1 ( (Zo) - (n—{- lbl _ |b|)!b1 HL bkm "'bi—l! )

5= Z’\JmLf:le —e, )

and, in particular,

Dm+1i’r(ci)—em (.’L'(), :BA) = Z /\JmL(t) CEA, )
j€A\{m}

The partial derivative of p((,")(a:, t) with respect to zp:

sy (2,1) + e P H () nf > 2 2 I 5($j)7/\i0Lf§:)l—)e,.(-’"A,t)]

| k=1 AEN) TET(A)i€EA JEN\A

= Ao )(:1: t) + e “@HH(x) (z /\tOZ > Y I =) *rLgE:')l)e (x4, )]

=1 AeN' T€YT(A) JEN\A
= doop{ (@, t) + zA,op:“(m t),

clearly satisfies the first Kolmogorov equation.

The partial derivative with respect to z,, requires the differentiation of H(x)
which yields a factor of §(zy,). It is therefore necessary to calculate p™(zx, t)|s,.~o.

We first of all investigate L* (x,t) with z,, = 0, which forces b,, and {b,,} to

k(T)—em

equal zero. We remark that by its definition, each component of k(7) < 1, hence



CHAPTER 4. EXTENDING THE STATE SPACE 67

all terms for which the mth component of x(7) — e,, is negative, vanish, leaving us
with the terms for which the mth component is zero. If we eliminate these k—node
spanning trees, 7, from our set, T(A), we are left with those trees for which there is
one edge directed into node m. We can therefore enumerate these trees as (k — 1)~
node trees (node m is removed) each of which has an extra edge, from one of the
k — 1 nodes in turn, to node m. That is, the domain of T does not contain m.

Using the reasoning in the previous paragraph, we obtain

S(am)pl) = e @OH () Mond(®)

+ Y Y TS I @)L @at

k=1 AeN* T€Y(A)icAjeN\A

To conclude, for 1 <m <n -1,

o 0
A= (") (n)

OTm

(
te @0 H(z) | Aomd "’)'*‘Z S>> Y I 6=) ,mTLi’E;r)l)e (za,t)

=1 AeNm T€Y(A)icAJEN\A

rnl

+e @ H@) |3 Y X X I b dmrLg) e (@at)

Lk=1 AEN" 7€ T(A) icA\{m} jEN\A

. E Alkpz T t))

as required.



Chapter 5

Applications in Communications

5.1 Fluid flow models of queueing systems

Multi-state Markov processes arise quite naturally in the study of communications.
In particular, continuous-time processes are widely used to model traffic sources as
streams of fluid flowing at a constant rate which is modulated by an underlying
Markov process. Such a process is known as a Markov modulated rate process
(MMRP). This traffic approximation is particularly suited to data traffic which is
gencrated in constant-rate bursts. Typically, messages or data files are transmitted
from source to a primary node or server at the available link rate. The data traffic
is then queued until transmitted at a constant rate over a common higher bitrate
channel. Longer buffering is allowed for data (such as file transfers) which is not
as sensitive to delay as interactive traffic. The stochastic characteristics of this
system are captured by a model of a superposition of a finite number of independent,
identical, continuous on/off sources and a constant service capacity.

An on/off fluid source is accurately modelled as a two-state MMRP. Extending
this to three states gives a good approximation of a traffic source which transmits
at three different rates, a good example of which is a video source (see [4]). In

the communications literature there are several analytical results for variants of the

68
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time—dependent two—state problem. As we show in Section 5.3, the joint probability
density of the total time spent in each of the n states of a Markov process can be
applied to the problem of finding the probability density of the data arriving in a
given interval from a source with n transmission rates. The n-state model will also
provide the basic structure for multi-dimensional intelligent queueing models. We
explore the notion of intelligent queueing in Section 5.2.

The classical one-buffer fluid model of a data-handling switch was first intro-
duced in [1]. In this model a FIFO (First-In First-Out) queue receives messages
from N on/off independent sources and buffers incoming traffic which is in excess
of the maximum transmission rate of the output link. The authors of {1] exploit
the linearity of the system to obtain closed—form expressions of the eigenvalues and
eigenvectors of the differential equations for the time-independent equlibrium prob-
abilities.

Bensaou et al. (3] study the queune-length distribution for a superposition of
on/off fluid sources. They extend a result due to Benes§ to fluid models and derive
the stationary probability that the queue size exceeds a given value in terms of the
probability density of the amount of work arriving in a given interval. Their result
can be applied to non—-Markovian arrival processes.

A time-dependent result is due to Chen and Samalam [6], who study fluid buffer
models with Markovian arrivals and a constant service rate. Their approach is to
solve a first—passage time problem described by a Fredholm integral equation of the
second kind. They obtain numerical results for the queue-length distribution for
those arrival streams which can be modelled as independent Ornstein—Uhlenbeck

diffusion processes.

5.2 Intelligent Queueing

Systems in which bandwidth is in high demand could be made more efficient by

utilising intelligent queueing. One way of doing this is to buffer the data streams
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separately on the basis of some traffic classification. For example, one might separate
bursts on the basis of length in order to prevent unnecessary delay experienced by
(typically) short bursts of interactive traffic which are held up behind long data files.
A second classification might be traffic priority, that is, allowing urgent traffic to be
sent before routine data transfers and information downloads. We look at such a
priority queneing system in Section 5.2.4.

Let us first of all present the mathematical representation of a one—buffer system.

We shall later extend this to a two—buffer mode] as required for intelligent queueing,.

5.2.1 Representation of the one—-buffer problem

We shall take the model presented in [1] as a typical example: N on/off identical
and independent sources with exponentially—distributed on, as well as off, periods.
The unit of time is taken to be the average length of an on period. The unit of
information is the amount generated by a source in an average on period.

We adopt the following notation.
A € (0,00) = rate at which an off source turns on;
z(t) € [0, 00) = buffer occupancy at time t;
¢ € [0,00) = service rate;
N € Z, = total number of sources;
P.: R — R, such that for i € {0,.., N},
Pi(t, z) = Pr{i sources are on and buffer content < z at time ¢}.

Thus when 7 sources are on simultaneously, the instantancous receiving rate at
the data switch is r and the instantancous buffer occupancy drift rate is r —e. When
all sources are off, the drift rate is —c. The buffer length is assumed to be infinite.

We can model the two-state problem, that is, when N = 1, as a continuous—time

random walk with two directions, positive when the source is on and negative when

it is off. The position at time ¢ corresponds to the buffer level at that time. This
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is analogous to using a simple random walk to model the time-dependent queucing
problem with a Poisson arrival stream and negative—exponential service times, see
for example [5]. Since we know the drift function for each state and we can calculate
the density of the accumulated sojourn times, we can solve the random walk problem
to get a solution for the probability density in the interior, that is, when the queue
is not empty. On generalising this idea to an n-state problem and by finding the
total sojourn time spent in each state of the Markov process, for each time ¢, with
a given initial state, we can get an expression for the density functions of the buffer
states between the passage times at which a boundary is first reached (when the

buffer first empties or overflows).

5.2.2 Representation of the general two~buffer problem

We can extrapolate from one buffer to two in such a way that the representation of
the new system is simply an extension of the state space. We have two classes of
traffic arriving at a node which buffers each class of traffic separately. For k& € {1, 2}
there are Ny € Z_ identical traffic sources which alternate independently between
exponentially distributed periods in the on and off states. A single output link serves
each buffer at a different rate depending on a priority weighting and/or the buffer
occupancy of each class.

Much as before we write
Ax € (0,00) = rate at which an off class & source turns on;
iy € (0,00) = rate at which an on class & source turns off;
2 (t) € [0,00) = buffer k& occupancy at time ¢;
cx(t, 21, z2) € [0,00) = class k service rate;
N, € Z, = total number of class k sources;
P;: R — Ry, such that, for i € {0, N}, j € {0, N2},

Py;(t, 21, 22) = Pr{(i, j) sources are on, z;(t) < z; and 23(¢) < z}.
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The arrival process for this system has N; x N, possible states each with its own

drift rate vector function, v;; : R} — RZ, such that,
U"J'(t’ 214 22) = [7’ - cl(t: 21, Zg),j . CZ(t, 21, 22)].

This problem can thus be represented by a continuous-time random watk on a plane,
such that the direction of displacement is defined by the drift rate for the current
state. Once again, the joint probability density of the total sojourn time in each
state gives us the probability density of the position at time ¢, (z,(¢), 22(¢)), between

absorption times when z;(2) = z2(¢) = 0.

5.2.3 Some special cases

A queueing system in which the service is shared cvenly between two queues (in
round-tobin fashion) is a particular case of the general two-buffer problem. This
is possibly the simplest in this class of problems and yet the performance analysis
of such a queue is highly non-trivial. Round-robin servicing is implemented widely
in communications systems and hence the analysis has many applications. For two
buffers, the classical round robin has a constant service rate equal to half the link
capacity while both buffers are occupied. When one of the buffers is empty, the
other is served at the full rate.

Stern and Elwalid analyse a two-buffer system representing a constant rate com-
munication channel which serves two classes of traffic modelled as continuous flow
processes modulated by an underlying reversible Markov process. Class z traffic is
stored if it cannot be transmitted immediately, while class y traffic is discarded if it
cannot have instantaneous service. The service strategy modelled is a general type
of round robin in which class z traffic is apportioned 1 — « of the service, while
class y gets the remaining a. The authors use a decomposition technique to get a
solution for the equilibrium equations for those cases in which the Markov process

is separable.
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Yadin [23] analyses a two—qucue system with alternating priorities. Each queuc
has its own independent Poisson stream of arrivals. A shared server switches its
service from one queue to the other according to a switch rule, which depends on
the current queue lengths. The state of the system is represented by an ordered
pair, (z,y) € Z2, where z the number of customers in queue I and y, the number in
queue I, The process can be modelled as a random walk on the lattice in the positive
quadrant of the plane. When the random walk enters a certain absorbing set of points
determined by the switch rule, the service switches to the other queue. The period
between switches is called a task. Since only one queue is served during a given task,
the random walk is three—directional, the two positive directions corresponding to
arrivals at each queue and the negative direction to a service.

Yadin considers three different switch rules and for each, derives the conditional

density of the time to complete a task, when the initial state is known.

5.2.4 Representation of an alternating priority system

We can apply the results from our three-state model to a two-buffer fluid system
analogous to Yadin’s discrete system. The probability density of the time taken to
complete each task is a function of the accumulated sojourn time in each of the
three states.

Two classes of data traffic are generated from the same source at independent
rates, r; and 79, alternating with off periods according to an MMRP. The states
of the underlying three-state continuous-time Markov chain, {X(?)}, correspond
either to the traffic class, i € {1,2}, of the current burst, or to an idle period
represented by 0. Recall that z,, denotes the total time spent in state m and
To+21+22 = t. If k is the initial state, then 4 > 0. We denote by pff (zk, zs,, 25,),
the joint probability density of the total sojourn time in each of the three states up to

time t, when the initial state is £ and the final state is [. When & # 0, we interchange



CHAPTER 5. APPLICATIONS IN COMMUNICATIONS 74

0 and k& whenever they occur in the subseripts of p;?_{’ and we set x,, = xo ; when
k=0, z,, = z;, for i € {1,2}. Movement among states is governed by the transition
rate matrix, A = (Ay,, 7,5 € {0,1,2}), with Az = Ay = 0.

The shared server switches from one queue to the other according to a switch
rule chosen for that queue, which serves each at a constant rate, c. We shall assume
that ¢ < ry,r,. Following Yadin’s lead we call the period during which queue I is
served, task I and similarly for task II. While the Markov chain is in state i, the
fluid rate is r;, with ry = 0; the drift rates for queue I and queue II are §!7) ~ ¢ and
827y, tespectively, for the duration of task I, and §%ry — ¢, 6}ry for queue II and I,
respectively, for the duration of task II.

We represent the current level in the two buffers by the point (u,v). We call
the high-priority buffer, queue [. It is served according to the zero switch rule,

determined by the absorbing set,

{(x,v)]u=0,v > 0}.

Since r; — ¢ > 0, we would expect the final state of task I, that is the state of
the Markov process when absorption occurs, to be in {0,2} (when the drift rate is
negative). Naturally, this state is also the initial state of task II. During task II,
queue II is served according to the constant queue suntch rule, which is defined by

the absorbing set

{(u, )0 <u<k,v=0o0ru=kv>0}

The final state of task II (and the initial state of task I) is one of {0, 1} if the first
condition holds and 1 otherwise.

Denote by «;(t|ug, v9) the probability density of the duration of task i, given that
the initial buffer state is (ug, vo), and let m, denote the probability that m is the ini-
tial state of the chain. Then, letting (1) = L”;:zﬁﬂ, lo(t) = min (’“r;l”a, mzf;uﬂ)

and (t) = Bk we obtain
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a;(tlug,v9) = Pr{fug—ect+z,7] =0,X(0) € {0,1}, X(¢) € {0,2}}

(t) ct —u ct —
= ’ITo/ [Pﬁ‘,g (Io, "—"—g,ﬂh) + P&tf (wo, ,1172)] dzxs
0 ™ ™

G ct —u ct —u
+ 71'1/ {Plo ( 01550,1'2) +p{t§ ( 01'1:0,-’321)] dle
0 T 1

and for task II,

ag(tlug, v0) = Pr{[vo — ct + zare] =0, [up + z17m1] < k, X(0) € {0,2}, X(¢) € {0, 1}}
+ Pr{{ug+ z17m:] = k, X(0) € {0,2}, X(2) = 1}

L2(2) ct — vy ct — g
- [ (0 52 ()

12(2) ct — ct
+ ’thf [pé’,ﬁ’ (_,-’El,-’ﬂo) + szq,f (_,171,1'0)] dx
0 Ty To

la(t) k—u k—u
+ / IWDPC’:{ (:CO! : ) 3:2) + WQPZA,{) (IQ) 2 3 1'(])] dﬂ?z-
0 T 1

As remarked above, in those instances for which the initial state is not zero, we

need to substitute all occurrences of 0 in the subscripts, with the label of the initial
state, k. We denote by £ (z1,,,t) and (L) (21, 22, ), the constituent functions
of pAP (zx, x,,, T,,). Since Ajg = Ay = 0, then y;; = y12 = 0. Substituting for these

values, we obtain these expressions,

564})(-'51,-’1?2, t) = —(Ao1 + Ao2)To — AoZ1 — AgoZa,
and
ya+myb+n y
oLii(xlsmz,t) . 1_0 ZZ 10 Y20 Yo1Yoa

aldl{a + m)!(b + n)!
= H(Iﬂ)?}myzogm(ymylo) »(Yo2y20),

where Gn(y) is as defined in Section 3.5.

The above expressions and the results of Chapter 3 give us

PR (zo, 2y, 22) = € 9 @R B (20)H () [5(2) + Aor6(22) 110Gy (y10vor)

+  Ap2d(21)Y20G1(Yo2y20) + Aot Ao2y10Y20G1 (Y01 ¥10) G1 (Vo2 Ya0)]
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Péf(fmwl,ﬁ) = E—an(n’z"t)H(Iu)H(m) [Ao10(22)Go(y10¥01)

+ /\01/\02?}20(;0(901?}10)01(yozyzo)],

p£§($0,$1;$2) = C-c“’m(zl'm")H(ﬂfo)H(ﬂ:) [Ao20(z1)Go(ya002)

+  +XAo1rozt10G1 (Yor1110) GolWo2ya0)] -

The component functions of px(Zx, s, , Ts,), for & € {1,2}, are obtained from
eff (z1, 22, 1) and o LL% (2k, Ts,, Ts,) by interchanging 0 and k.

In Section 3.6, we saw that the functions G, (y) can be coded as Bessel functions,
and they are computationally feasible. It follows that the expressions for «; can be

similarly coded to yield a feasible nurmerical approximation.

5.3 Total work up to time ¢

Brandt and Brandt (sec [4]) derive an expression for the distribution of the number
of arriving packets, N(t), approximated as the density of the amount of fluid or
work, A(t), in an interval of length t. They present results for a two-state Markov
modulated rate process and a superposition of M such sources. Another way to
derive the density of A(t) is to calculate the density of the time spent in each state
of the underlying two—state Markov process in [0,t). This is cquivalent to a two-
state continuous—time random walk on a continuum where the time interval between
state changes is a random variable which depends only on the state of the random
walk. The amount of work up to time t has important applications.

Consider a typical ATM (Asynchronous Transfer Mode) network in which low

priority traffic is transmitted at the available bit-rate. The higher priority traffic
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is typically transmitted at a varying rate which can be modelled as an underlying
n-state Markov chain. Thus the residual bit-rate available for low priority traffic is
also modulated by the same process. The time-dependent n-state model we have
been studying is an ideal candidate for this system, especially over short periods of
time during which the parameters of the Markov modulated process are unlikely to
change.

Omne of the quality of service measurcments required by communications man-
agers is the time it takes to transfer a quantity of data (for example a file of size w
bits) over a link. From the probability density of A(t), the total work up to time
t, we can calculate the probability that w bits can be transmitted in less than T
seconds given that the usable rate in each state is known up to time ¢t > T,

Another application for A(t) is in window control mechanisms for packet—switched
networks. In this scenario, packets are accepted for transmission only if if A(t*) is
less than a certain nominated threshold; t* needs to be chosen to reflect the reaction
time of the system.

The third application we will consider arises in HF radio networks. The usable
transmission rate on an HF radio link varies in a random fashion according to
atmospheric conditions, the time of day and geographic location. At any point in
time, it is only possible to predict the transmission rate on a given frequency over a
short interval of time. When the errored bit-rate is high the usable transmission rate
drops. Observations of the available bit-rate on HF links, linking nodes in the major
citics in Australia, show that the usable transmission rate can be modelled with
reasonable accuracy as an n—state Markov process in which each state represents a
different rate. Extensive measurements are needed to infer accurate state transition
rates for this process.

An increase in data throughput is achieved by the latest generation of HF data
modems controlled by a purpose-designed Physical Automatic ReQuest protocol
(PARQ) (see [16]). A typical mnodem operates at one of four rates: 300, 600, 1200 and
2400 bits per second. PARQ adapts the modem data rate to suit the prevailing link
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conditions. A data rate of 1200 bits per second is always selected at start-up. PARQ
subsequently makes rate changes upwards, one level at a time, when conditions
improve and downwards when they degrade. Rate changes are only implemented
after a request by one end of the link is accepted by the other end. If communications
cease after a request to change, the requesting end reverts to the suggested rate and
awaits acknowledgement. If none arrives the communications link is deemed lost.

A mathematical model of this system is needed to predict the amount of data
transmitted up to time £, given the current conditions. We will associate the four
rates with states 0, 1, 2 and 3, in this order. State transition rates can be inferred
from the protocol specification given such measurements as signal-to—noise ratios,
which are relatively constant over a short time span. Since state changes only
depend on the current state, the resulting data transmission process corresponds to
a four—state Markov process. Furthermore, since only transitions to neighbouring
states occur, the process is in fact a birth-and—-death—process.

We looked at a three—state birth—and—-death process in Section 3.5.1, so it will not
be particularly illuminating to reproduce the mathematics for a four-state example.

We may write the four-state version of L2 | as

Lleno(:v,t) = H(:EO)yI'(l)(leyﬂ)n(y10y21y32)oGo(y32y23)Gn+a(y21y12)Gm+n+o(y10y01)-

Once again the solution we are after is predominantly made up of the numerically
friendly functions G,(y). Furthermore, it is evident from the form of LEZP for the
three- and four-state models that it is easy to deduce LB” for the n-state process.
Let us denote this by LBP(n,,t). In this case, K = (k1, K2, *, Kn_1)-

Let s(k,4) = ¥7_; K5, then we have

LBP™(n,a,t) = H(z) Hyz(: Gty (Y- 0 Y(-13),

which is also computationally feasible.
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We conclude with the solution for the n-state birth-and-death process, which
we shall denote by p?P(n, x,t). This closed—form solution is of a much simpler form
than the solution for the general n—state process. For the interior solution, we have
just one coefficient which is not zero. All spanning trees with edges other than the
ones going from k to k+1, for each £ such that 0 < k¥ < n—1, feature at least one edge
represented by a A;; which equals zero. The boundary terms are similarly restricted:
if state ¢ is never visited in the interval up to time ¢, then the process never makes
a transition to states ¢ + 1,2+ 2,.--,n — 1. Let 7,, denote the spanning tree with
edges 01, 12,23, -+, (m —1)m, and represented by the coefficient Ag1 A1z < * Apn_1)m;
e,, denotes the vector with unity in the mth position and zero elsewhere, with eg
defined as the zero vector. As in the last chapter, we will conveniently let 7,, denote
either the tree or the coefficient depending on the context. It is easy to verify that

for n states pPP is given by

n—-1 m

$PP(n, 2,8) = exp(eP2(n, 2, ) H(z) |6(z) + 3 Sorm I 0(z;) L2200 |,

m=1 k=0 j=m+1

where

n—2
CBD(n, x,t) = —AaiTo — Z ()\i(i—l) + /\i(i+1)$i) - ’\(n—l)(n—2)xn—1-

i=1
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