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Abstract

Source rock evaluation based on Rock-Eval pyrolysis and organic petrography was
undertaken on silty shales, carbonaceous shales and coal samples from the Early Jurassic
fluviolacustrine Poolowanna Formation in oil fields located along the western edge of the
Fromanga Basin, South Australia. Potential source rock lithofacies were delineated using
gamma ray and sonic wireline logs. Their total organic carbon (TOC) values range from
1.5% in silty shales to 70% in coal facies. Maceral analysis data show that vitrinite (notably
fluorescent desmocollinite) is the dominant maceral group (vitrinite=liptinite>inertinite). The
liptinites are mainly resinite and sporinite in the Poolowanna Trough . In the Patchawarra
Trough, inertinite is the dominant maceral group (inertinite>liptinite>vitrinite) and the
liptinite group comprises mainly Botryococcus-like telalginite, indicative of lacustrine
’depositional environments. Generally the whole study area seems to have been subject to
fluvial and paludal processes leading to a variety of sub-oxic to oxic terrestrial depositional
environments, as illustrated by a wide range of vitrinite to inertinite ratios (V/I = 0.13-13.0).
Low V/I ratios suggest either intense oxidation of autochthonous humic organic matter prior
to burial, or a strong input of reworked allochthonous inertodetrinite. Both Rock-Eval and
organic petrographic data indicate the presence of oil-prone Type II/II (or, more rarely,
resinite-enriched Type IT) kerogen. The maturity of source rock lithofacies range from early
mature (Rg = 0.5-0.6%) in the Patchawarra Trough to mature (Ro = 0.9%) in the

Poolowanna Trough.

In order to ascertain whether the potential source rocks of the Poolowanna Formation have
actually contributed hydrocarbons to adjacent basin-edge reservoirs, fifteen representative
rock samples and eighteen oils from five oil fields (Poolowanna, Tantanna, Sturt, Sturt East
and Taloola) were selected for comparative isotopic and biomarker analysis. Three of these
fields produce from stacked reservoirs which range in age from Cambrian (Mooracoochie
Volcanics), through Permian (Patchawarra Fm), to Jurassic (Poolowanna Fm, Hutton Sst,
Birkhead Fm and Namur Sst). All the oils appear to be early expulsion products (R¢ = 0.5—
0.8%). A primary higher plant input to both oils and source rocks is shown by the relative
abundances of acyclic isoprenoids and n-alkanes (Pr/n-Cy; versus Ph/n-Cyg) and the
presence of conifer resin-derived diterpenoid hydrocarbons. Intense microbial activity in the
depositional environments of the source rocks is indicated by high hopane/sterane ratios and
the presence of 20t-, 2B-, and 3B-methyl-170(H), 21B(H)-hopanes in the Cy9-Csy

pseudohomologous series.

Pristane/phytane values and the relative concentrations of a suite of aromatic biomarkers
characteristic of organic matter derived from the conifer family Araucariaceae (Vviz.
1,2,5-trimethyInaphthalene, 1-methylphenanthrene, 1,7-dimethylphenanthrene and retene)
allow recognition of four oil families: pre-Permian, Permian, Jurassic and mixed
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Permian/Jurassic. The distinction of Jurassic from Permian and pre-Permian hydrocarbons is
substantiated by cross plots of calculated reflectance (Rc) versus aromatic isotopic signature
(8"’ Caro) and methylphenanthrene index (MPI) versus trimethylnaphthalene ratio (TNR-2).
In these plots the Poolowanna source rocks coincide with most of the oils in Jurassic
reservoirs. However, an unusually high abundance of 30-norhopane (Cyo/C3o hopane ~1)
was observed in the intra-Poolowanna shales and coals at Sturt, Sturt East and Tantanna, a
feature seen in none of the oils. The Poolowanna-1 (Poolowanna) crude has a distinctively
light isotopic signature, analogous to that of one of the waxy Jurassic source facies in Sturt
Field. Sterane distributions are without exception ethylcholestane-dominant in both oils and

source rock extracts.
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