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1. II\TRODUCTION

Gauss' inequality, dating from 1821, is one of the most seminal in mathematics,

as we shall see with our somewhat encyclopaedic Chapter 2 on history. Two major

lines of generalization have come from it, one due to \Minckler (but not proven

correctly until decades later by Faber), and the other springing from a pair of results

of Pólya. Both carry the probabilistic interpretation of the original Gauss result.

In 1990, Alzer discovered a surprising and elegant way to generalize one of

the two Pólya results. This has stimulated fresh work by Peðarió, Varoðanec and

Pearce, who have found a variety of extensions. The generality of these ideas is

shown by the fact that there exist also operator versions of at least some of them,

as demonstrated by recent work with Mond.

This thesis consists of six chapters.

After an introductory Chapter 1, Chapter 2 presents an historical overview of

the subject.

Chapter 3 deals with generalizations of Gauss-Pólya inequalities, and inequal-

ities involving means (weighted, quasiarithmetic and logarithmic).

Chapter 4 concentrates on further generalizations of results given in Chapter 3,

involving Stolarsky and Gini means. Integral and summation results are also given,

as well as results involving generalized quasiarithmetic means and some further

generalizations.
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Chapter 5 contains operator versions of a number of classical inequalities with

special attention being given to Pólya inequalities for positive linear operators'

Chapter 6 looks at Abel type inequalities with application to the Gauss-Pólya

results.

The reader will note that to avoid undue traditionalism and at the same time

honour my teachers and heritage, I use Cebyðev as a Romanized form rather than

the nineteenth century Tchebychev or Tchebycheff'

As we will repeatedly make use of the Jensen and Jensen-Steffensen inequali-

ties, this is a good place to remind the reader of them.

Jensen inequality If f is a conuel function on &n interual I C R, r :
("r,.. .,rn) €. 1", (n > 2) and' p is a positiue n-tuple (rr :Df=rnn), then

TL
1

ÐP.'o
1

-Pn
n

Dp'f @o)
i=L

(1 .1) r Pn i=l

If f is strictly conuet, then inequality (1.1) is strict etcept when t1- "'- tn.

Jensen-Steffensen inequalit¡ If f : I -+R is a conuer function, t is a real

monotone n-tuple such that x¿ € I, (i :7, "'',n), and p is a real n-tuple such that

03Px1P^ (1<k1r), Pnt0,

then (1.1) holds. If f is strictly conner) then the inequality (1.1) is strict ercept

when æ1: "' : ln.

For details on the above inequalities and reverse results, (see [26],p. 6). The

thesis contains many new results which complement and generalize established ones.

Several papers have been accepted by or submitted to journals for publication (see

[9], [10], [30], [31], [32], [36], [3S], [39], [40], [59], [60] in the consolidated list of

references).



2. HISTORY

2.1 The Gauss inequality. The Gauss inequality concerns the absolute moments

of a probability distribution with nonnegative support. Suppose the distribution

function involved is denoted UV 8('). That Q is a distribution function with non-

negative support means that Q : [0, oo) + [0,1] is a nondecreasing function such

that Q(0) : 0 and lim'-¡oo Q@) : l.

The r-th absolute moment is defined for r ) 0 by

(2.1.1) ,,: lo r'd'Q@).

In the limiting case r : 0 we have us - l.

A variety of interesting results exist connecting absolute moments. Thus the

fact that the variance of a probability distribution is nonnegative may be expressed

AS

(2.r.2) u2) ul

This is in fact the simplest case of the fundamental inequality for power means,

which states that

(2.1.3) ul/" 3 ul/' for n 1r.

The primitive result (2.1.2) is at heart a manifestation of Jensen's inequality. Sup-

pose X is a random variable , g the convex function given lr¡ g@) : 12 (r €,R) and
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4
I

E expectation. Then (2.1.2) may be expressed as

nþØ)) > s(E(x)).

In the case when Q' is continuous and nonincreasing on (0, *oo), that is, the

distribution has a nonincreasing density function, Gauss [15] gave without proof the

improvement

(2.t.4)

for Q.L.2).

2.2 Gauss-Winckler Inequality. A generalization of (2.1.3) was given by Winck-

ler [63].

11 Q' is continuous and nonincreasing on (0,aoo), then

(2.2.t) ((" + I)u)tt" I ((" * t)u,)t/' for n < r.

This subsumes (2.1.4) in the case n :2¡ r: 4. winckler obtained (2.2.1) by

an invalid argument. Faber published the first proof in [11]. Another proof of the

Gauss-Winckler inequality was given by M. Fujiwara [14], while S. Narumi [33] gave

a generalization of (2.2.1').

Other proofs of (2.1.2) and (2.2.1) were given by F. Bernstein and M. Krafft

[5], S. Izumi [17] and M. Krafft [18].

2.3 Pólya Inequalities. In the book "Problems and Theorems in Analysis I, II"
by G. Pólya and G. Szego [49], Pólya gave two theorems which were to become

seminal.

Theorem 2.9.\. Let the function,f ' [0,1] -+rt be nonnegatiue and, increasing. If
a and b are nonnegatiue real numbers, then

9-,n2 srí

,

)¿

a-b 1

(2.3.1) (1,' **u r(r)d") 1 e+b+I
2

12' ¡ (r)dr 
lot 

*to ¡ ç*¡a*.
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Theorem 2.3.2. Let the function "f t [0, oo) +A be nonnegatiue and decreasing. If
a o,nd b are nonnegatiue real numbers, then

(2.8.2) (lo* *"*ur(ùd.)'= (r - (#)') l- u2"¡(r)dr lo*,,,rç*¡a*

wheneuer the integrals erist.

It is, of course, implicit in both theorems that / is Lebesgue integrable. With

applications in mind, we remark that this will be the case if / is continuous.

Theorem 2.3.2 is a generalization of the Gauss inequality (2.I.4), which arises

as the special case b :0, a :2.

Let us pause to consider the significance of these theorems. Theorem 2.3.2 is

closer to (2.2.7) so \rye address it first.

We may divide both sides or Q3.2)or l/ Í@)dr]'. No* ,"t

l@): r@)l lo* l{*)0,.

Then (2.3.2) can be written as

(lo* *,*ur(ùd.)'= (r - ffii)') l- r2"i(x)d,r 
lo* 

*,bT@)d,'.

This is of the same form as (2.3.2) but has / in place of /. Now / is nonegative

and satisfies

[* iç*¡d' : r',
Jo

so / represents a probability density function. Thus without loss of generality the

function f in (2.3.2) -.y be interpreted as a probability density function Q'. If
r¡/e assume continuity of Q' as noted above, then the conditions are just those of
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Gauss-Winckler and moreover the result of the theorem may be written compactly

AS

,z+us('- (*)')***
Theorem 2.3.2 rnay thus be viewed as a sort of three-parameter version of the

Gauss-Winckler result.

Suppose we set ó : 0 in this result. Then since zs : 1, (2.3.3) simplifies to

l(a + I)u"l' < (2o I I)uzo.

Taking 2a-th roots yields

l(a + l)u"ltl" < l(2a -17)ur,lt/(2")

which is, of course, just (2.2.1) for the case ?? : a) r :2a.

The original Gauss result (2.1.4) is recovered when we further restrict to a : 2.

Thus Theorcrn 2.3.2 is a natural three-parameter offspring from the original

Gauss result that reduces to a special case of the Gauss-Winckler result as a two-

parameter specialisation.

The other obvious specialisation ø : ó gives only the tautology

,1" 3 r3".

We now turn to Theorem 2.3.1.

Again v,'e may divide both sides in (2.3.1) ¡v ["Ë f (r)dr]2 etc. as argued above

to show that without loss of generality we can take

[' ¡ç*¡d* : t,
JO

that is, \rye may assume / is a probability density function on [0,1]. Here the density

is increasing, which represents a breakaway from Gauss. It is because

[* ¡ç*¡a* : t
Jo
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cannot occur for an everywhere increasing function / that the theorem for / in-

creasing has to be for / over a finite interval only. A simple change of scale reduces

the interval to [0,1], which is thus a standardised format for the general case.

For a distribution Q with finite support [0,1], the r-th absolute moment as

given by (2.1.1) becomes 
¡t,r: 

Jo 
n,de@),

so that (2.3.1) can now be recast as

.3+u2('-(*)')*".,,

This is just the reverse inequality to (2.3.3).

It is now clear that the two Polya inequalities, although couched abstractly,

are in fact elegant probabilistic inequalities covering the important cases of distribu-

tions with nonnegative support and respectively increasing and decreasing density

functions. This probabilistic interpretation has largely been lost sight of in the lit-

erature but is not far from the surface. It is tedious to draw it out with every result

in this thesis, but we shall occasionally refer to it lest it be overlooked.

2.4. Volkov's fnequalities. V.N. Volkov [62] proved a general result and obtained

the following special cases.

1) If ø ) 0,ó 20,p ) L,p-r * q-t : 1, and g is a nonnegative and decreasing

function, then

(2.4.r) 
Io* ""*on(r)dr 

< "(1"* x"ps(n)d,r)''' (lr* *uonl*¡d*)'/o ,

where c: (ap ¡ t)rln bq+ t¡tlo

2)If a,b,prQare defined as in 1) and if g is a nonnegative, nonincreasing convex

function, then (2.4.1) holds with constant
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(("p + r)(op + 2))t t n 
ççuq + t)(bq * 2))t / o

a: .

Generalizations of Volkov's general result are obtained by Mitrinovió and

Peðarió [25]. A further generalization was obtained by Varoðanec [5a].

Since p-r + q-r :1, we may divide through both sides of Q.a.\) to obtain the

same result with g replaced by

s(*): g@)l 
lo* s@)a*.

Since

[* E@)dt: t'
Jo

we again may without loss of generality interpret g as a probability density function

and rewrite (2.4.L) as

uo+b 1 
""!t,")(0.

Theorem 2.4.L. Let f¿: [0,oo) ì R, i:L,2,...,2n, be nonnegatiue functions

and f : [0, oo) -+ R ilefi,ned by

f @): lo* 
,@,,t)dh(t),

where K(x,t) >

i: I,2,...,n be positiue numbers such thatlit* :1 and Kfi...fn, Kl,+j €

,Ct ([0, æ)2, þn x )) (j - 1, . . . ,n). Then

l"* Ef¡@)f 
(x)d'r 1c,q (/- f*+¡@)r@)o*)''o' ,

where

K(r,t)f{æ). ..f"ç*¡a,
C: sup

,U fi- 
K @,t) f,¡¡(*)d'*)'
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2.6. Generalizations of the Gauss-'Winckler Inequality. P.R. Beesack [a]

proved implicitly the following result.

Theorem 2.6.1. 1/ (-1¡t-tQ@ it positiue, continuous and d,ecreasi'ng on (0,+oo)

for lc : 1,2,...¡tu, then f¡(r) - log((r+k) u,) is o' conuer Junction for lc -
rr. . . rfl.

This leads to the following generalization of Gauss-Winckler's inequality

(Mitrinovió and Peðarió [24]).

(2 51) (f ; 
*)"-)''" .(("; *)"")''' ('=')

It leads also to the following results.

Ifmln(r,then

(("; 
-)^)'-* - ((* I 

-)^) lL-r r*le
k ) "")

TL_TN

If.mlnandr(sthen

(("; 
*)",,( mllc

k

s*k
k

n*le
k

r/(s-n)r -n1,r/(

Moreover for Q defined and nondecreasing on [0, o] (0 < a ( foo) , 8(0) : 0,

Q@) -- 1, and

(2.5.2) ,,: Io {d8þ),

D.S. Mitrinovió and J. Peóarió lzal in the same paper proved the following result.

Theorem 2.5.2. Let f : [0,1] -+R be a nondecreasing positiue function. If the

function r r+ f (Q@\lx is nondecreasing, then

(2.b.3) ul/, ¡vr,/, = 
(/' r(Ð'dt)''' , (1"' ¡çt¡ar)''" (, =,).

If the function r -> f (Q@\ln is nonincreasing, then the reuerse inequality holds.
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2.6. ,þ¡lzer's Inequality. H. Alzer [1] gave the following generalization of Polya's

inequality (2.3.1).

Let f : la,bl -+R be nonnegatiue and increasing and let g z la,ó] -+,R and h ;

la,b] -> R be nonnegatiue and increasing functíons with a continuous fi'rst deriuatiue.

IÍ g(") : h(a) and s(b) : h(b), then

(2.6.1) (/'( )å(")

(1"'ø+ô+ r)r"+br@)dr)

This can be expressed as

(1"'(*"'*'*') r@d')

> 
l"u o'@)f (r)d'x 

I,u 
o'(*)r(u)d'r'

),rao" l"' (fi*'*') r{ùo*

2

g(, f(x)dn

The introduction of the derivatives is novel. This motif runs through much of this

thesis. Where did this idea come from? That it is a natural (and simple) progression

from Pólya's inequalities can be seen as follows.

First, rewrite (2.3.1) as

' a 
¡o' 

,ro + r)n2'f (r¡a* 
lo'{zu 

+ t)r2b f (u)dr

d

d".I 2a|lr

Now observe that
a2a*lA2b*L.

This immediately suggests

(1"' (*,t-'ù r@d')' . Io' (#) r@)dr l"' (#) r@)dr'

which is simply a standardization of (2.6.1). The relevant properties of g(*) : ï'olt,
h(r) : r2brr on [0,1] that need to be carried over turn out to be 9(0) : ä(0),

g(1) : å(1) and grh increasing and nonnegative with continuous first derivatives.

2,7. lrnprovement of Polyats Inequality. A. M. Fink and M. Jodeit Jr. [12]

showed that inequality (2.3.1) holds not only for nonnegative ø and b, but for ø, ó

greater than -If 2.
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In fact they proved that (2.3.1) can be written as

1

(a-tb+D'I" Í@)f @)*"tby"*bd*d,a
(2.7.1)

(2a*r 2b+t)
lrt lrt ilùr@)l*'ov'u + r'bv'"ld*d,v.

2

Using the idea of their proof, J. Peðarió ([26], p. 261) noted that the product

l@)Í@) can be replaced by a function /(r, y) whose partial derivatives f1, f2, and

fp arc nonnegative. See also [46].

A further generalization was obtained by S. Varoðanec and J. Peðarió [55].

Theorem 2.7.L. et n be o,n euen natural number, a,b ) 0 and / : [0,1] x

[0, 1] -+ R function with continuous partial ileriuatiues lt,lz,, fp such that f{nr0) 2
0,.fr(O,y) > 0 and, fp(r,y) > 0 for all r,U €10,,t1. Then

É(-t''* ( :\ t' [' rçrænî"*,y'Å',ñ)d,rd* < 0 .

k=o \k)lolo'

2.8. Stolarsky's Inequality. K.B. Stolarsky [52] proved the following result.

If g is a nonnegatiue and nonincreasing function on l0,l], then for all positiue

numbers a and b we haue

(2.8.1) (ø + b)e(0) 
Io' 

*'*u-'n@)d,r > ob l" *"-t o@)d,* lo
rb-t g(r)dx.

Moreover, J. Peðarió [45] proved that if g is a nonnegative nondecreasing func-

tion on [0,1], then the inequality in (2.S.1) is reversed. Peðarió [44] also gave a

generalization of (2.S.1) including several constants and integrals.

Z.g. Generalizations of Ãlzefs Inequality. J. Peðarió and S. Varoðanec [47]

proved the following two theorems.

I,
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Theorem 2.9.L. Let f : la,bl + R be nonnegatiue and increasing, and let r¿ :

fa,bl -> R, i : 1,. . . , n be nonnegatiue increasing functions with continuous first

d,eriuatiues. Il p;,i : l,. . . ,n are positiue real nurnbers such that DT=, j : I' then

¡b / n \'(2.e.1) J,(úf,,t,ll''") Í(t)dt.þ-U"' æ'o(t)f(t)dt)'''' .

If r¿(a) :0 for aII i:1,..., n and if f is a decreasing function, then the reuerse

inequality holds.

We are now perhaps sufficiently far from our starting point that a further

reference to probabilities may not be unwelcome. We offer a physical interpretation

for (2.9.1).

Imagine a collection of n physical quantities x¿(t)(i - 1,. .. ,n) varying with

time ú, which runs from a to b. A time point is chosen in accordance with the density

function

'a

rþ)l l" rþ)dt

on [ø, b]. The numbers If p¿ are regarded as probability weights. Then the expression

in large parentheses on the left in (2.9.1) is the weighted geometric mean of the values

of our quantities taken at time f , while that on the right is the expected value of the

derivative of the i-th quantity. Inequality (2.9.1) thus states that the average of the

derivative of the weighted geometric mean of the quantities exceeds the weighted

geometric mean of the average of the derivatives of those quantities. In terms of

applicability, we have come a long way from a comparison of two moments of a

single random variable, which is where we started.

Theorem 2.9.2. Let f : la,bl + R be nonnegatiue and decreasing, and let r¿ :

la,b) -+R, i:1,...)n be nonnegatiue increasing functions with a continuous first
deriuatiues and r¿(a) : 0 for all i :1,..., n. Il p;(i :1,..., n), are positiue real

numbers such thatDLtJ*: l, then

¡b /n' \'(2.s.2) J"(|I f",t,ll','') t(t)dt =!_,(1"' 
x'o(t)f (t)dt)'''' .
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S. Varoðanec [53] also gave a generalization of Alzer's inequality (2.6.1) in which

instead of a geometric mean we may have power means of arbitrary orders.

2.1O. Gauss-'W'inckler and Stolarsky's Inequalities. J. Peðarió and S.

Varoðanec [48] have used (2.5.1) and (2.5.3) in proofs of the following results of

Stolarsky type.

Theorem 2.10.1. Let Q be a probability distribution function with Qþ) : g

for x ( 0, lim,-r*Q@) : I and suppose (-1)k-18(k) is positiue, continuous and

decreasing on (0,æ) for k : Lr2,...,n. Il ?'1,... ¡rn ) 0, then

for lc : 1,2,... rft, where u, is def'ned by (2.1.1).

Theorem 2.10.2. Let f : [0,1] -+ R be a nondecreasing positiue function. If the

function æ r+ f (Q@\lr is nondecreasing and rL¡. ..,rn ) 0, then

t 
(,f("))"'* "'+rn d,r

("' 
+ "' *r'**),.,* +.^2("';-) ('"f 

*)*,"'t"rn

(/(r))"' d,r... 
lo' u{r))'" o,

where u, is defined by (2.5.2). If the function r -+ f (Q@\ ln is nonincreasing, then

the reuerse inequality applies.

Z.1-1,. G neraliza ions of tolarsky's Inequality. A g neralization of Sto-

larsky's inequality ( .S.1) whi has general weights was given by L. Maligranda, J.

Peðarió d L.E. Pe:sson [23].

Letrsdefinearatio
¡l

Q@''): Jo 
g@)'(*) * 

'
Jo 

w(x)dr

I"
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where w e Lr(10,1], )) is a nonnegative weight function and g a function of bounded

variation such that gw e lt([0,1], )) . If to1, 1I2,t lth are weight functions, we

introduce

w¿(t)dt
w¿(r) : , i : Ir2r3.

t, w¿(t)dt

Theorem z,Ll.L. Let g be a function of bounded uariation such that 0 I g(t) I
g(") < g(0) for all a € l0,ll and let

Wt(*) -Wr(") : W(*) for all ø € [0, 1].

Then

e(0) . Qþ,.") > Q@,,w1)Q@,w").

A modified version of this result and a similar generalization of Peðarió's reverse

result was given by S.Varoðanec [53].

Theorem 2.L1.2. Suppose I , lo,ô] -+ is a function of bounded, uariation such

that 0 < /(ó) S l@) < f@) for all n e. la,bl. If s,hla,,bl -+.R are nonnesatiue

nondecreasing function with continous f'rst deriuatiues and g(a): h(a):0, then

(2.11.1) f @) l"' (s(t)h(t))' f þ)dt > l,o s(t)'l¡)at l" hþ)' l(t)dt.

U0 < /(o) f /(") I f (b), the inequalitv is reuersed.

2.12. Inequalities for Concave F\rnctions. S. Varoðanec and J. Peðarió [57]

proved the following.

Theorem 2.12.L. If f is a nonnego,tiue differentiable function on l0,ll with nonin-

creasins first ileriuatiue, then the function r è (' ;') lot 
*'l@)d'r is log-concaue-
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Many inequalities arise as simple consequences of well-known inequalities for

concave functions. For example, Jensen's inequality gives the reverse inequality to

(2.4.1) with integrals on [0,1], where the constant c is defined as in 2) of 2.4.

In [57] some generalizations of inequalities of Gauss type are obtained involving
rb

(r + 1) J, s@)'f (r)dx.

2.13. Inequalities Involving Derivatives of Higher Order.

s. varoðanec and J. Peóarió [58] have proved the following results.

Theorem 2.13.1. Let f ,x;:la,bl-+R,i - 1,. ..rn'¿, be nonnegatiue functions with

continuous deriuatiues of the n-th order, n ) 2, which satisfy the conditions:

1" (-1)",f(")(t) > 0 anil"Í")(t)t0 for alltela,bl,i- 1,. ..,mí

2' (-I)*f(k)(b) > 0 for k : 0,1,..., n - l;

e" 
"ffr)1r¡ 

:0 and, *lk)çu¡> 0 fork--0,1,...,n-l and'i:1,...,ffi.

If p¿,i - 1,. .. rn'¿, are positiue numbers such thatD'i\tllp¿:1, then

(2.13.1) I"' (fr*i,,,þ))'"' ¡çr¡0, =fr(|"' 
*l')qt¡¡çt¡ar)'/o' + t,

where

¡,: I(-1)*/ (fr)(¿) ((rtt,,,0t) - iL þY-r-') (t))'/
n-2

È=0

(n-È-r)

t=bi=l

Theorem 2.13.2. Let f ,r¿ : la,bl -+R,i - 1,. ' . ,m, be nonnegatiue functions with

a continuous deriuatiue of the n-th order, n ) 2, which satisfy the conditions:

1" (-1)'"f(")(r) < 0,*Í")(¿) > 0,/(ó) > 0 for all t e la,bl,,i- 1,. ..,mi

2. (-Ð*l(k)(b) < 0 for euery lc : !,. . . ,n - li
a" ,jfr)14¡ ) 0 anil *f)þ) :0 for i :1,... )r"n and k: 0,1, . .. ,n - 7.

Then the inequality (2.13.1) is reuersed.
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Theorem 2.13.3. Let f ,x¿ : fa,bl -+R,i - 1,. ..,ffit be nonnegatiue functions with

continuous ileriuatiues of the n-th ord,er such that (-t¡"-r¡t"), (ttL, *l/o')(") ord

*1") ri - 1,. . . )n'¿, a,re nonnegatiue continuous functions. Then

r/P;fL

* Ar,

where

2.L4. Inequalities of Minkowski Type. S. Varo5anec [56] has proved the fol-

lowing result.

Theorem 2.14.1. Let f : larbl -+R be o, nonnegatiue and nondecreasing function,

and r¿ : la,bl +R, (i - 1,. ..rn), nonnegatiue and nondecreasing functions with

continuous f,rst deriuatirte. If p > l, then

(2 t4 r) (¿' ( (å ",,,,)')',ov,)''' .ä(1"' o,r,¡' tç,¡0,)'''

If f is a nonincreasing function and r¿(a) :0 for all i :1,..., n, then the reuerse

inequality applies.

Results involving derivatives of higher order have also been given.

2.16. Pearce, Peðarió and Varo5anec inequalities. The following results are

given in [37].

Theorem 2.16.L. Let f ,9,g : la,b) -+ R be nonnegatiue functions with g nond,e-

creasing and possessing a continuous fi,rst deriuatiue. Further let p,q be real numbers

satisfyingplq:L

Ar : Ït-,1'- k-r ¡(n-k-t,,,, (å l.Í-'Al É"1''(,))-) l'

xl,/'' çt¡ .fr(|"' *["tçt¡¡p¡at)
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(o) Il g is nond,ecreasing and p,q) 0, then

¡b

J" Kr@) + go('))l [(/'(') + gn(,))]'e@)dr

ì t(f f' (n)e@)d,*)' + (t! o' @)v(Qan)'l

, l(f f' @)e@)a*)o + (l! s' @)v(")d")') .

Here the conuention is that the greater than or equal possibility is associated with

taking the plus throughout and the less than or equal with the minus.

@ U g is a nonincreasing functio\ P,Q ) 0 and f@) : g(o) : 0, the inequality is

reuersed.

(") tl g is nondecreasing and pq I 0, the inequality is reuersed.

Theorem 2.L6.2. Let p and q be real numbers such that p + q: t and let g, f ,g :

la,bl + R be nonnegatiue functions with continuo'tls deriuatiues of n-th order and,

properties (1)-(Ð below.

1. (-I)"ç,"', . 0, l@) > 0, g@) > 0, (fo + g\Uo L f)Ø) 2 g'

2. (-l)rp(fr)(ó) < 0 for lc :1,2,. ..,n - L, p(b) > 0;

3. f(k)(a) : g(k)(a) : 0 for lc : 0,1, . . . , n - I and for n ) 2;

4. ¡{Ð(b) > 0, s(À)(ó) > O for k : 0,1,...n - 1.

We haue the following.

þ) If p and q are positiue nurnbers, then

(2.15.1)

l"o Kr{ù + go(*))Uo(*) reo(')))(") e@)dx

ì r+ 
l(1"' 

,r,rùe@d*)' *(1,'g(')(,)p(,,*) 
]

x 
[(/'r,",, ùe@)d.)' *(1"' ¡{ùçee@)r') ],
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where

A_

0
n-l

D(-r)*et*r(a) [((/, * g\Un + ss))("-fr-r)(b)
/c=0

- ((¡r-r-t) 1a¡¡r L (s@-x-r) (b))')

* (i¡t"-*-r)(a¡¡ø L (s@-n-r)(b))')]

forn:I

forn)2.

@ U¡{t)(b) : g(k)(b) for allle :0,1,.. .,n-l then A:0.

þ) If pq 10, then the sign in (2.15.1) is reuersed.

Theorem 2.16.3. Letp andqberealnumbers suchthatp+q: I andlet

g,f ,,g : la,bl -+ R be nonnegatiue functions with continuous deriuatiues of n-th

order possessing properties (1)-(Ð below

1.(-l)"p,", t 0, l@) >0, g(") >0, (f'tg')(fo L9\@) 2g'

2. (-I)rv(/')(b) > 0 for lc: 0, 1, 2,. . .,n - I;
g. l(k)@) : g(k)@) : 0 for k : 0,,1,..., n - l;

4. ¡{Ð(b)>0, s(k)(b) > 0 fork:0,1,...n-t.

We haue the following.

þ) If p and q are positiue numbers, then (2.15.1) holds with the inequality reuersed;

(b) if pq 10, then (2.15.1) holds.

2.].6. Overview. We have now completed our preliminary overview and are ready

for some new results of our own. We shall begin the next chapter with some gener-

alizations of Theorem 2.9.2.



B. soME NEw GAUSS-Pór,yn
INEQUATITIES

3.0. Overview

Like Caesar's Gaul, this chapter is divided into three parts. The first involves

integral results and is being prepared for publication under the banner of general-

ized quasiarithmetic means [3S]. The second concerns discrete inequalities and has

already been published [59]. The third achieves some special results via the use of

the Hölder inequality, and it is again in preparation for publication [10].

3.1-. Results for weighted means

In this section we provide generalizations of Theorem 2.9.2 in a number of

directions. In Subsection 1 we first derive an inequality for weighted means. We

note that, as is suggested by the notation for means, our result extends to the case

when the ordered pair of weights (pt,pr) is replaced by an n-tuple. We derive also

a version of our theorem for higher derivatives.

Subsection 2 treats some corresponding results when the mean M is replaced

by a quasiarithmetic mean. This can be done when the function involved enjoys
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appropriate convexity properties. A second theorem in Subsection 2 allows one

weight p1 to be positive and the others negative.

Subsection 3 addresses the logarithmic mean.

3.1.1. Results connected with weighted means

MYf @) denotes the weighted mean of order r and weights P : (pt,. . .,,Pn) of

a positive sequence o: (or,...rún).The n-tuple p is of positive numbersp¿ with

ÐT=¿p¿:1, that is we deal with probability weights. The mean is defined by

r/,
Pia; for r +0

rwfiça¡:

II"l' for r:0.
fT

i=1

In the special cases r - -1,0,1 we obtain respectively the familiar harmonic, geo-

metric and arithmetic means.

The following theorem, which is a simple consequence of Jensen's inequality for

convex functions, is one of the most important inequalities between means.

Theorem 3.1.1. If a and p o,re positiuen-tuples and s 1t, s,t e R, then

(3.1.1) (o) < Ml'l lo, s(t,

with equality il and only if a1- o,n

A well-known consequence of the above statement is the inequality between

arithmetic and geometric means. Previous results and refinements can both be

found inl27l and [7].

The following theorem is a generalization of Theorem 2.9.2.

Theorem 3.L.2. Let g, h : la,ó] -+ R be nonnegatiue nondecreasing functions such

My (")
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that g and h haue a continuous first deriuatiue and g(o): h(a), g(b): h(b). Let

p: (h,pz) be a pair of positiue real numbers Ptt p2 such that pllpz:L.

ù ï I :la,bl -) R is o, nonnegatiue nondecreasing function, then for r,s ( 1

(3.1.2) 
'y, (1"' s,(t)f (t)d,t, 

I,u 
o'(r)r(r") 

= l"' {*r,tn(,),å(r)))' rþ)dt

holds, and for r,s ) L the inequality is reuersed.

b) If f :larbl-+ R is anonnegatiue nonincreasing functionthenfor r < 1< s

(3.1.2) holds and for r ) 1 > s the inequality is reuersed.

Proof. Let suppose that r,s 11 and / is nondecreasing. Using inequality (3.1.1)

we obtain

M^ (1"' on rþ)dt, l,' n,6rp¡ar)

< M[r (1,' ourrþ)dt, l"o 
n'çr¡rçr¡ar)

24

l,u {orn'{r) + p2h'(t))f (t)d,t

: f (ÐM[r(g(a), å(b)) - l@)M['t(g(a),h(a)) -

< f (q MI'r (g(a), å(b)) - f @) Mlt (g(a), h(a)) -
: I (b) MFr (g(a), å(ó)) - T @) M['] (g(a), h(a))-

m|t@þ),h(ùdrQ)

myþ(t),h(t))dtþ)

- (rowfr(g(a), å(b)) - r@)¡wfi(s(a),h(a)) - l"' (*'ur(g(¿), ñ(t)))' rØdr)

: f þ) (u[']@(u),h(b)) - Mþt(g(b), å(b))) -

-r@) (u[',@(o),h(o)) - Mt't@@),å(,))) + l"' (MY](g(¿),ñ(r)))' rþ)dt

-- l,o (u|tØþ),hþ)))' rþ)dt.

I"o

1",
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A similar proof applies in each of the other cases. !

Remark 3.1.3. In Theorem 3.1.2. we deal with two functions g and ä. Obviously

a similar result holds for r¿ functions 11, .. . ,,tn which satisfy the same conditions as

g and h.

Remark 3.1.4. It is obvious that on substituting r : s : 0 into (3.1.2), we have

inequality (2.9.2) for r¿:2. The result for r: s:0 is given in [47].

In the following theorem we consider an inequality involving higher derivatives.

Theorem 3.1.5. Let f : la,,b] -+ R t ni 1la,bl -+ R (i:1,...,m) be non-

negati,ue functions with continuous n-th d,eriuatiues such that *Í^) , (i : 1,. . . ,m)
a,re nonnegatiue functions and pi, (i - 1,. ..rrn) be positiue real nurnbers such that

ÐLtP¿ : L.

a) If (-I)"-t ¡(") is a nonnegatiue function, then for r,s ( 1

-y, (l: *Pçt¡¡1t¡dt,..., 
I"o 

*9,þ)r@dr)

(3.1.3)

holds, where

n-l

< A + l,' (*Y,(r,(¿), ...,n^(t)))'"' lþ)0,

"Í*) @) : "f) ço) o"a *lk) (u): 
"j*)1a; for i, i e {r,. . .,m}

andk -0,...)n-I,then

b

A : D(- L)n-rc-r ¡(n-¡-1) (ú) (ir*Í-'rÐ - (ttytçrt(t),. . ., "-(r)))'*')
,k=0

rr

(3.1.4)

*ftiçt¡¡çt¡at
(3.1.5)

(,) )) 
(")

r(t)dt.
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If r,,s ) !, then the inequalities (9.1.3) and (9.1.5) are reuersed.

b) If eÐ" l(") it a nonnegatiue function, then for r 11 < s the inequalities

(3.1.3) and, (3.1.5) hold and forr ) 1 > s they are reuersed-

Proof. a) Let r and s be less than 1. Integrating by parts n-times and using

(3.1.1), we obtain

-y, (l: *Pçt¡¡1tldt,..., I"' *g,þ)rØdr)

< MI\ (1,' .?,uy4)dt,,..., 
l"o 

.g)þ)r@dt)

: (Ï r-tl" -kt ¡(n-k-r' þ)i o*f-' (r)) 
l'

- I 
"u 

*F, (n{t), . . . *,,(t))(-t;("-r)¡( ù çt)dt

- l,o 
*yt(r,(¿), . . . *^(t))(-t;("-r)¡( ù çt)dt

- A + l"' ç*Yr(",(¿), ...,r*(t)))'"' rþ)or.

We shall prove that A : 0 if r¿, i : L,...,2n, satisfy (3.1.4)'

Let us use the notation A¡ : 
"lk)6¡ for k : 0,1,...,n - \.Then

D'i!rp¿üÍk)(o) : A¡. Consider the k-th order derivative of the function ye wherc y

is an arbitrary function with k-th order derivative. First, there exists function /fl
such that

çrn¡(@ : ó?l@,a',.. .,v&)).

This follows by induction on k . For k : lwe have (yo)' : pY'-ry' : Ó?l@,y').
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Suppose that proposition is valid for all j < k * 1. Then using Leibniz's rule we get

(ge)(e+l) : (pyr-t .A')(r)

: ef^(|) tn-'l' il 1r'l¡(x-i)
(3.1.6) r-o \Jr

: PL(*,) o?-u tu' a"'''''(i)¡'@- i+r)

J=0 \r '/

: ó?Ir(Y,Y',''', s(fr+t))'

Suppose that s I 0 and use the abbreviated notation M(t) for the mean

MYi (rít),. ..,a*(t)). Then M"(t) : DLrp¿r"¿(t). The statement "M(k)(o) : An"

will be proved by induction on k. It is easy to check for k : 0 and lc : I.

Suppose it holds for all i < k * 1. Then

(f,0,,:t 
) 

'**" 
1,=" 

: f,o,otd*,r (",(¿), x'¿(t),. ' . , ,Í**')(r,) 
1,=,

: d["J*'l (Ao' A''''''' At'+')

: 
" å f)tf " 

(Ao' A" "'' A¡)Ar-¡+'
j=l

*4,1;-rl (Ao, Ar, . . .,, At ) An+r.

On the other hand, using (3.1.6) we get

(M" (t) ¡(e+1) lt="

:, 
å (]) ør-"t M(o), M'(o),. . ., MØ ça¡¡m&-i+t) qa1

+ óf-'r (M þ), M' (a), . . ., M(k) (a))ø{r+t) 1ø¡

: 
" É (1) tf-" (Ao, Ar,. . ., A¡)An-i+r * óti-'tçqo, At,.. ., A¡)¡4Q'+')(r).

J=l) \J /
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Comparing these two results we obtain that M(k+l)(¿) : A*+t, which is enough to

concludethatA:0.

In the other cases the proof is similar, except in the case s : 0, when l[T=t oT',

should be used instead of (DLr pnoi)'/'. .

Applications. Now we will restrict our attention to the case when r : 0 and the

ri are power functions.

The case when n: I.
Set: r : 0, n : r, o, : 0, b : l, r¿(t) : ta¡p;+r in (3.1.3), where a; > _L^ for

i :1,.. . )n'¿) p; > g and fpr *, :7. We obtain that A : 0 and

n'¿

lIþoP, i r)ttnt
:_a

fo' 
,-'*"'*'^ rþ)dt > fr(|"''"'n'¡çt)dt)

r/p¿

(3.1.7)

(3.1.8)

| *\a¿
NL

'i=l

if / is a nondecreasing function. This is an improvement of Pólya's inequality (2.3.1)

Some other results related to this inequality can be found in [ S] and [61].

For example, combining (3.1.7) and the inequality

n'L n'L

i=l i--t

which follows from the inequality between arithmetic and geometric means, we ob-

tain
rn

D"n + 2 r- n@,p¿ + 2)'/" ,

I[("opo t r)(o¿p¿ +2))'to' 
^

fo' 
.-'*"'*'* lþ)dt >

-('.Ë,"X,*ä",)

(1,' r"'tçt¡at)
r/P¿

i=7 il
i=l

The case when n:2.
Set r : 0, n : 2, a : 0, b : r, r¿(t) : ta;p¿+z in (3.1.3), where a; > -fi for
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i:1,...,ffi¡p;>g and fp, *: L. After somesimplecalculation, weobtain that

A : 0 and inequality (3.1.8) holds if / is a concave function. So inequality (3.1.8)

applies not only for / nondecreasing, but also for / concave.

3.t.2. Results for quasiarithmetic means

Definition 3.1.6. Let f be a monotone real function with inverse f-r, P:
(pr,"',Pn): (po)u,, o: (at,,"',an): (o;)¿ be real n-tuples. The quasiarithmetic

mean of the n-tuple ø is defined by

M¡(o;p): r-L (*þ'.r,r(,0)) ,

where Pn: DT=tp¿.

Forp¿ ) O,Pn:L,f(r): r'(r l0) and l@): lnr (r:0) the quasiarith-

metic mean M¡(o;p) is the weighted mean MYI(a) of order r.

Theorem 9.1.7. Letpbe apositiuen-tuple, x¿:la,ó] -+ R (i:L,"',n) benonneg-

atiue functions with continuous first deriuatiue such that æ¿(a) : r¡(a), r¿(b) : ri(b),

i,i :1, "',tu'
o) If V is a nonnegatiue nondecreasing function on la,bl and if f and g &re

conuefi increasing or concaue d'ecreasing functions , then

29

(3.1.e) M¡
b

l" ri4)eþ)at),' r) . l"o 
M'n @t(t);; fi eþ)d,t

If f and g are concaue increasing or conuet decreasing functions, the inequality

is reuersed,.

b) If e is a nonnegatiue nonincreasing function on la,b], f conuer increasing

or concaue decreasing and g concaue increasing or conuer decreasing, then (3.1.9)

holds.

If f is conco,ue increasing or conuer decreasing function and g conuer increasing

or concal)e decreasing, then (3.1.9) is reuersed.



3 soME NEw cAUSS-pólvn INEQUALITIES 30

Proof. Suppose that g is nondecreasing and / and g are convex functions. We shall

use integration by parts and the well-known Jensen inequality for convex functions.

The latter states that if (pn) ir a positive n-tuple and ø¿ € 1, then for every convex

function f : I -+,R we have

1
n

(3.1.10) Dp'f @n)Pn i=1

We have

,(+Ð,,",)=

¡b1:l-
Jo Pn

1n

-r\-D /-¿tn;=7

ri.Ðe@dt)

e(t)dt

')

*þ_r', (l "',,ro 
r(,) ") )

,- +Ð,, I,
b

ri(t)e(t)dt

pn"i(t)

Ðno"n(t)e(r)13 -

l"' +(ir,",rtt) o16

l,o n-' (å (å ens(*oþ))) o,u,

l"o 
*n(r¿(t))r; p) dv|)

p¿r¿(t)e(t)lb" -

1

-Pn
1

Pn

n

i=l
fL

i=1
n

\n;"ít)v(r)13 -
1

l"
b

D no"{t¡e(r) 13 - Mn (x¿(t)) ¿ ; ùeþ)12 + rw[ ((r¿(t))¿;fl e(t)dt
Pn i=l

Mtr (@{t))¿; fl e(t)dt.

Theorem 3.1.8. Let r¿,i : L,... ,D, satisfy the assurnptions of Theorem 3.1.7 and

Iet p be a real n-tuple such that

tr:1,

(3.1.11) Pr)0, P¿10 (i:2,...,n), P*>0.
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a) If V is a nonnegatiue nonincreasing function on la,b] and if f and g &re

conct,ue increasing or conuet decreasing functions, then (9.1.9) holds, while if f and,

g are conuet increasing or conca,ue decreasing then (9.1.9) is reuersed.

b) If p is a nonnegatiue nondecreasing function on la,bl, f conuer increasing

or conca,ue decreasing and g conco,ue increasing or conuer decreasing, then (3.1.9)

holds.

If f is concl,ue increasing or conuer decreasing and g conuer increasing or

concaue decreasing, then (3.1.9) is reuersed.

The proof is similar to that of Theorem 3.1.7. Instead of Jensen's inequality, a

reverse Jensen's inequality 127 , p. 6] is used: that is, if p¿ is a real n-tuple such that

(3.1.11) holds, a¿ € I,i : 1,. . . ,fr¡ and (IlP") DLt piai Ç..I, then for every convex

function f : I -+R (3.1.10) is reversed.

Remark 3.1.9. In Theorems 3.1.7 and 3.1.8 we deal with first derivatives. We

can state an analogous result for higher-order derivatives as in Section 3.1.

Remark 3.1.10. The assumption that p is a positive n-tuple in Theorem 3.1.7

can be weakened to p being a real n-tuple such that

k

(3.1.12) 0<DpilPn (1 <kSn), Pn)0
i=l

."0 (/ r'¿(t),pþ)dt) and (ø¿(t))¿,t e la,b] being monotone n-tuples.

In that case, \rye use Jensen-Steffensen's inequality instead of Jensen's inequal-

ity in the proof.

In Theorem 3.1.5, the assumption on the n-tuple p car be replaced by p being

a real rz-tuple such that for some k e {1, "' ,rn}
kn

(3.1.13) D_roo = 
0 (k < rn) and D_roo = 

0 (k > m)

una ( [ *'n1t¡91t¡at\ ,(x¿(t))¿,t e [ø,ó] being monotone n-tuples.
\/ '\ /' \' /¿'
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we use the reverse Jensen-Steffensen's inequality (see [27, p. 6] and [42]) in

the proof. This states the following.

Let (p¿) be a real n-tuple such that (9.1.19) is ualid and (a;) is a monotonic

n-tuple such a¿ € I and (IlP")DT=tp¿a¿ € I. Then (3.1.10) is reuersed.

3.1.3. Results for logarithmic means

We define the logarithmic mean L,(t,g) of distinct positive numbers r,U bY

(--t#::)''' , + -r,o
,.1t"(#)"-' r:oL,(*,y):

ln gr-ln c
a-t f:-L

and take L,(*,*): r. The function r *+ L,(*,y) is nondecreasing.

It is easy to see that L1(a,y) : # and using a method similar to that of the

previous theorems we obtain the following result.

Theorem 3.1.11. Let g,h : la,b] -+ R be nonnegatiue nondecreasing functions with

continuous first ileriuatiues and g(a): h(a),g(b): h(b).

ù If f is a nonnegatiue increasing function onla,b], and if r,s 1I, then

(3.1.14) t, (1,' st(t)f (t)d,t, 
I,u 

o'(r)r(r)") 
= l"o 

,'"(g(t),,h(t)) lþ)dt.

If r,s ) l, then the reuerse inequalitg holds.

b) ï f is a nonnegatiue nonincreasing function then for r 1I < s (3.1.11)

holds, and for r ) 1 ) s the rel)erse inequality holds.

Proof. Let f beanonincreasingfunctionandr < 1< s. Using F: -f ,integration
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by parts and inequalities between logarithmic means we get

L, (1"' ourtQ)dt, l,o 
n'çr¡rç¡ar)

= 
t,(1"' s'(t)f(t)dt, l"u 

o'(r)r1r¡rr)

:tu I"'frt) + h(t))'rQ)dt

:f,øta+ å(¿))/(¿) (g(¿) + h(t))dF(t)
L

t.

L

* 
l"u

* l"u

1

2

<f,øra + hþ))tþ) L"(s(t),h(t))dF(t)

1

2 - L "(g(t), nç¡¡ ¡ lt¡1i + l" L'"(g(t),h(t))f U)dt
b

(g(t) + h(tDf (t)

1,"' "@ 
(r), h (t)) f (t) dt .

3.2. Some discrete inequalities

3.2.L. Results involving general inequalities

For our next theorem we shall make use of Popoviciu's inequality. For an

accessible reference see ([26], p.11S). Popoviciu's inequality states the following.

Let a¡ : (o¡¿), (i : 1,...,nii :1,...,m) and, w: (.n) (i:7,..',n) be

nonnegatiue n-tuples, such that

uLail - u20,j2 wna¡n ) 0, i : I,. .. )n1,.

") If 
p¡ > 0,, j - 1,. ..,m, then

(3.2.1) II
nL

(,
nfn

1 wlaerlrall, . . ."'#t - D.o II ûri.
i=2 lc=l

fL

D-,:-, "rr)j=l
tail -



3 SOME NEW GAUSS-PóLYA INEQUÀLITIES 34

b) IÍ p, ) 0 and Pi 1 0, i :2,. . . )n'L' (9.2.1) is reuersed.

Theorem 3.2.1. Letw : (wrr... run), at: (anr... ¡an)¡... ra*: (a^tr... ra^n)
be nonnegatiue n-tuples and let the sums li=l w¿La¡; be nonnegatiue for all i :
1,. . . , m. Further, let p¡ (j :1,. . . ,m) be real numbers such that D?-tP¡ : l.

a) Suppose pj > 0 (j : 1,...,rn). Il w is nondecreasing, then

pj

(3.2.2) lw¿L,(o'ri..."'#) > II
/n-l \

(Ð.'o,,')
n-l

i=l

ITL

j=l

where L,a¡,;: a¡6+r) - a¡¿ and

L@Tì...a,!,,#) : ú11¿+\.. .affir+Ð - a,li. ..affi.

If w is a nonincreasing and, a¡t:0 lor i:1,...)n"ù, (3.2.2) is reuersed.

b) Letpr ) 0 and p¡ <0,i - 2,... )n'¿. If w is nonincreasing and a¡ : 0 for
j :1,. . . )n1) then (3.2.2) holds.

Proof. To prove assertion a), define Lw¿-t - ui u¿-y. lf t¿ is nondecreasing,

then Au¿-r ) 0 and we have

n-l

D rn L(oTi . . ."',#)
i-l n

: wnall,alzi . . . 
"o,#h - w1a!'ral", . . . affi - Ð-oii "ii .' . aly L'u¿-1

dji(Ð''"

>II
j=l

ITL:II
j=l

n

u)na¡n - wñ'jL -\a¡;Lw;-t
i=2

pi

Here inequality (3.2.2) is used. If t¡ is a nonincreasing n-tuple then Hölder's in-

equality is used instead that of Popoviciu's. The proof of assertion b) is similar to

the previous one. !

Our next result employs Bellman's inequality 127, p. 118]. This states the

following.
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Let a : (a¿) and ô : (ó¿) be nonnegatiue n- tuples such that

wherep>I orp10. Then

/e r ?\ (øl-al-...-oo^)'/'+ (ói- b?r- ..--q)t/o)'
\r.¿.d/ . 

<

If 0 < p 11, the reuerse inequality holds.

Theorem 3.2.2. Let u : (w¿),a¡ : (a¡;) be nonnegatiue n-tuples such that for
sorne p eR the sums Df-t w¿Lal;, i : I, . . . )n'¿t are nonnegatiue.

a) Let w be nondecreasing. If p > I or p 10, then

/^ /n-l \

EEut\a!;)
1 p

(3.2.4) ! u.';A(ø1¿i... i a^¿)P 2
n-l

i=l

If 0 < p 1I, then the reuerse inequality holds.

b) Letw be noní,ncreasing anda¡:0, i - 1,...,m If 0 <p 1l then (3.2.3)

applies. If p > I, then the reuerse inequality holds.

Proof. To prove assertion a) we use the same idea as in the previous theorem with

Bellman's inequality.

An analogous formula applies lot m tuples aj,i:7r...rffi.

Assertion b) can be proved analogously using the Minkowski inequality. tr

Remark 9.2.3. An integral version of the previous theorem is given in [56].

Theorem 3.2.4. Let g: (h,...,gn), h: (ht,...,h^) be nonnegatiue and nonde-

creasing n-tuples such that gt : ht :0. If f : (/,,.. .',1.) i" a nonnego,tiue and

nonincreasing n-tuple with fi f 0, then

r,i Í¿l.(s;h¿)- (Þ=, r,nn,) (Ð r^r,)
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Proof. Using Õebyðev's inequality we obtain

D f¿L(g¡h¿) : lns.h" - D g¿h¿Ll¿-,
n-l

i-l

n

i=2

: fngnhn+lgh,;Lfi

> r#-l- ' (r-n^* ¿t'on--) (

:; (Ð r,nno)(ïr,oo,) ,

f*h* *Ðnn
n

i-ô

where f¿ : - f¿. a

3.2.2. Results for weighted, quasiarithmetic and logarith-
mlc means

The preceding results are connected with general inequalities such as Hölder's,

Minkowski's and Õeby5ev's and their reverse versions. In the following theorem we

deal with a weighted mean. Let us recall the definitions of weighted, quasiarithmetic

and logarithmic means which are given in Section 3.1.

Theorem 3.2.6. Leta: (oo),i - 1,. ..,n andb: (b¿),i:1,...)n be nonnegatiue

and nond,ecreasing n-tuples such that &t: bt and an - bn. Let p1 and p2 be positiue

real numbers such that p1 * p, : 7, and let r and s be arbitrary real numbers'

Further, let f : U¿)r¿ - 1,. ..,n be o, nonnega,tiue n-tuple.

a) Suppose f is nondecreasing. If r,s 11, then

(3.2.5) D nm[](a¿,b¿)f¿ r- Myl E l¿Lo;,D fntU,
n-l

i=l

n-l

i=7

If r,s > I, (3.2.5) is reuersed.

b) Suppose f is nonincreasing. If , < 1 < s then (3.2.5) applies, while and if
r)l)sitisreuersed.
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Proof. To prove assertion a) let us suppose first that r, s ( 1. Using the inequality

between means, we obtain

M["] l¿Lo¿,D f,nU,
n-l

i=l

M['l
/n-l

(Ð f¿La¿,Ð fonu
n-l

'i,=l

: t(pt\o¿+p2\b¿)li
n-l

i=l

i=l
n-I

i=l

: ¡ n Mlrl (a n, b.-) - f , MItl @r,ó, ) - D løtll @,i, b¿) L I ¿

n

n

i=2
< I * M['] ("n, bn) - f , M['] (or,ó' ) - D MFt @ o, b ù L f ¿

: ¡,mf;)@n,bn) - frM['l(or,Ð - (f"MY](o,,b*) - frmf,iþr,,br)

n-l

- D A M|tþ,,tòfn)

: t a,Mf,l(a*,b)fi,

which is the first assertion. The other cases can be proved analogously. fl

Theorem 9.2.6. Let p : (p¿) be a positiue n-tuplet r,i : (*¿¡) i : I,...,n,
nonnegatiue m-tuples with r¿,1 : t,i',r and, x¿,r, : ti,,m for I I i'ri" 1 n, and

. : (r¡), j :1,. . . ,ffi a, nonnego,tiue m-tuple. Further, Iet f and g be real functions

and suppose that all the quasiarithmetic means below are well-d,efined.

a) Suppose us is nondecreasing. If f and g a,re conuer increasing or concn,ue

decreasing, then

(3.2.6) *, ((E-ro.,-),,o) = Þ=, 
w¡L,Mn(@¿n)¿;p).

If f and g are conco,ue increasing or conuer decreasing, then (3.2.6) is reuersed.
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b) Let w be nonincreasing. ff f is conuet increasing or conco,ue d,ecreasing and

g is concaue increasing or conuer decreasing, then (3.2.6) applies. If f is conc&ue

increasing or conuer decreasing and g conuer increasing or conco,ue decreasing, then

(3.2.6) is reuersed.

Proof. Let us suppose that / and g are convex increasing. We use Jensen's

inequality to obtain

M¡ ((Þ=: .,rn*,r) ;p

:t-'\(tä'" 1

(å (å"*@*)))'r

I u¡L,n;¡
Ic=l

1*r" - p*

1um-T
In

: D w¡"L,Ms(("¿*)¿;p),
/c=1

which is the first assertion. The other cases can be proved analogously. tr

Remark 3.2.7. If py ) 0 and p; < g for all i : 2,. .. )n then using the reverse

version of the Jensen inequality \rye can state similar results. For further weaker

conditions on p see 127, p.6].

Theorem 3.2.8. Let a : (a¿) and b: (b¿) be nonnega,tiue and nondecreasing n-

tuples such that at : bt and an : bn, and . : (r¡) a nonnego,tiue n-tuple. Further,

Iet r and s be real numbers.

Pirim

li*

ä+(io,.,r)o,r
-ä"' (+,(D*nø,-l)) o,,,.+(ä,,

m-l: t Ls-'
À=1

m-l
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(3.2.7) L,

a) Suppose w is nondecreasing. If r,,s 11, then

/n-r

l,l
n-7

j=L

n-l

j=L
w¡L,a¡,lw¡Lb¡ < t w¡A,L"(a¡,b¡).

If r,st l, then (3.2.7) applies. IT, > 1 ) s, it is reuersed.

b) Letus benonincreasing. If , < 1<s then (9.2.7) holds. Ilr>L> s, itis
reuersed.

Theorem 3.2.8 can be proved using the inequal\ty L,(r,y) < L"(*,y) for r ( s

for logarithmic means.

Remark 3.2.9. Integral versions of Theorems 3.2.4,3.2.5 and 3.2.7 arc given in

the previous section.

3.3. A special case of a Gauss-Pólya type inequal-
itv

In this section Gauss-Pólya type inequalities are established by the use of

Hölder's inequality. We have the following.

Theorem 3.3.1 Let f : la,b] -+ R be ú nonnegatiue and increasing function and

r¿ : la,bl -+R, (i :1,. ..,n) be functions with a continuous first deriuatiue. Suppose

P,e) I andT+i:t. If p¿ þ - 1,.....,n) are positiue real numbers suchthat
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t
i=l

then1P¿

(3.3.1)

Proof. First, let observe that, by an integration by parts,

(3.3.2)

(å-)'' (å ll,' 
.oxro,

(nn

nn l"o 
*içt¡rþ)dt: 

l,o (Éo,",trl)

+/(a)

l)"'
/ n rl/s " f
(D t",fal ',¡ -D_,no"oï)))'''

dt(¿)

D
p,;

''o 
I,u

+ f(") -Dn;x';(a)
n

i=l

n

d=1

and

Dpo

t

n

r(t)dt

(Ér",t,lr')

where X(b) :: ("t(b), . . . ,""(b)) and X(o) : (*t(o),. . .,x"(o))

If we apply Hölder's discrete inequality, we derive

: (iv,.,rtt) rr'wl' - l.'(þ-eruaçt¡)a¡çt¡

: rþ)Ap(x(ä)) - Í(o)A,(x(,)) - ["' (þ__r,.nØ) dÍþ),

I"' *o(,),(t)dt <(årr)''' (äll.' .,Ør(Ðo,l')
n

i=l

fL

Dn'*u(t¡ < Dpi
i=l i=l

r/P r/q

for all t ela,b]
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Thus by (3.3.2) we have that

(å,r)''' (äll,'',n ,,')"1 )

r/c

> Í(b)Ao(x(ó)) - t@)A,(x(o)) - l,'(Ðn)''' (Ët',t,1,')"'

: tþ)Ae(x(b)) - r(o)A,(x(,)) - l"'(ärr)''' (Ét",t,lt')"'

(å n)''' ltl r"o(,)r,)''' ¡(,)ll'1"- /' l(år*¿(¿)r

: rþ)Ae(x(b)) - r@)Ao(x(,)) (å n)''' (É r",tult,)"'r{u)

- (å,r) ''' (ät*¿(o),,)"' t(o)+(årr)''' Iu l(=1,,(r)r,)''n)' 
,r,,0,,

d,t (t)

d,r (t)

')"'] dtr(t)

which is clearly equivalent to (3.3.1).

Applications.

1. Choose p: q:2 in the above theorem. This gives

(þ--,r)''' (= 
l 
¿' r'nþ) r (t) dtl')'''

+/(a) lÉ,r)''' (,-r,o(ó) r')
n

n

(ir",r,lr')

i=l

n

- Dn"';(")

r/2

l(t)dt

r/2

- DP¿t¿(b)

Dl*o(t)l'
i=L

r/2

+ f(")

which is related to the Cauchy-Buniakowski-Schwarz result

i:1
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2. If in the above theorem we put Pt: "' : Pn: f,, we deduce that

I
nP É l/ .^t)rØdtl)'/'

r/q n

lr,(ó)ln
i-l

t (å n)''' t"t- "]

i=l

+ /(ó)
þ

t
P - D"'(ó)

þ

)

> ,tl' (lå t",(¿)l'] 
''')' 

,r,ro, + r@)þt (= þo(")t')'^ - D"n(o)
n

i=l

3. If we assume x¿(a) : A, *¿(b) : B, i - I,. . . ,n in (3.3.1) we deduce that

1 r/q

(å-)
P

+ /(b)",ç¡tç¡orl')

= (å,') ' I(fÉr.,r,rr']
l,/

r(t)dt+r@)f'(
r/q fL r/P

Dú IAI- A

If we further set in this inequality Pt : "' : Pn: j, we get

, (:-l rt ,... ^.. . ¡ør 
1/ø

F \Ð ll"" 'MttÐ"|) + /(a) ttBt- Bl

>+ r((lw, r1/q\'

,T J" \ \í '-'(Ðr ) ) rþ)dt + r@) tlal - Al '

Moreover, if A > 0, B ) 0, this gives

É ll' r'nQ)rþ)dtl')"' . Io ((i 1",(')t') 
''')' 

,r'ro',

which holds for all q > I.

Remark 3.3.2. Many particular inequalities can be obtained if we choose the

mappings r¿ in an appropriate way.

Suppose that all the functions are defined on [0, 1] and let n : 2, rt(t) - to,

x2(t):tb, a,b ) 0, pr, pz) g with p1 lpr:1 and P,Q as above. Then we get
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@T + pt)'/, (ll,' ""-'

> (ú + nî)'to l"

r(

+

,¡ar]' * f/' utb-'\ ¡ çt¡at]') "'
tlp ztlq _ @, + n))Itol ú)+/(t)

b

[(r" * ,*)'''] l(t)dt,

which is equivalent to

(ú + ú)'/' (" ll"' t"-'\f þ)atfn + bo ll"' u-' ,(r)"]')

+/(r) lz'/' (f, + p\)'/o - r)

> (ú*fi¡tln 
lo' 

(r"n+¿,0)-'/o çarn-'+btuo-') fþ)dt,

since

l(r" * ru,)'"1' : 
I(t"ø 

+ r*)i-' x (aqt'e-t * bøttu-t)

: (t"o + *r)-t/n (afø-t + b¿,n-t) .

If we choose pr : p": I in (3.3.3) we get

|"U",f_|l(t)dt)'*un(l,'u-,,roa,)'f,,n.lo'ffil(t)dt
assuming that the last integral does exist.

t/q

(3.3.3)



4. FURTHER
GEI\ERALTZATIOI\ OF TI{E

2

FIRST POTYA INEQUALITY

4.O. Overview

We now return to Pólya's results to embark on generalizations in terms of

more general means than in the previous chapter. In the first section we shall

address Stolarsky means and in the second Gini means. The third section considers

quasiarithmetic means. As in the previous chapter we conclude with some special

results. In Section 4 we look at some further generalizations involving functions

instead of means.

If f : l0,ll -+ IR is a nonnegatiue and nondecreasing function, then

(lo' *"*u, (.)d')' 
= (r - ffii)') /' x'" ¡ (*¡d* 

lo','o t ç*¡a*.

For nonnegative real numbers o,y define G(*rA):: (ry)1/2. The first Pótya result

can be expressed in terms of G as

l"'1ft, (,'o*',"'o*')] r@)'x., (1"' (*o*') r@)d,n, I"' (fr*'.') tr"l,")

Alzer's generalization (see Section 2.6) reads as follows.
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Let f ,g,h:la,bl-+ n be nonnegatiue, increasing functions such that g,h and

1/gE are continuously differentiable on la,b]. Il gþ) : h(a) and g(b) : h(b), then

(2.6.1) is ualid,, that is,

rb

J" G @@),h(*)))' f (x)d,x. * (1,' s'(r)f (x)d,*, 
l,o 

r,'ç*¡r@d") .

In next section we aim at replacing G in this result by more general means.

Material in this chapter is being prepared for publication in three papers [38],

[3e] and [40].

4.L. Results involving Stolarsky means

4.I.L. Prelimiriaries

Suppose arb are real numbers and r,y positive numbers. The Stolarsky mean

Eo¡(r,gr) is definedby 8",6(x,y) : r for r : y, and for n f y by

1

ø-b

o(*b - vb)

ro-yo

if ab(a - b) + 0,
,)b(*" - y

a(lnr - ln g)
ifal0,b:0

if b+ 0,ø:0

r/"

Eo,u(rrA):

ifa:b+0
iÎ a:b:0.

We remark that

and

Et,r(r,y) : Ez,t(r,U) : + : A(r,A)

Eo,-o(*,a) -- E-o,o(",a): \/w : G(*,y)
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A fundamental question is when is it the case that

(4.1.1)

(4.r.2)

(4.1.3)

e(a, þ) :

Er,(*,y) 1 8,,,(nry)

for all positive and distinct n,y? This question has been solved by Leach and

Sholander [20]. See also Páles [35], who treats a more general question that subsumes

this problem. For clarity, we expand and reword their enunciation slightly.

Lemma 4.L.1. Let r, s) 'u,r 't) be real numbers with r f s and u # u.

@ ï either 0 ( min(r,s,u,u) ormax(r,s,u,u) 10, then (4.1.1) hold,s for all

d,istinct positiue r,A if and only íf

r*s(u+u

e(r,s) 1e(u,u),

where

and

@ - þ) I Ln(al B),
0,

foraB>0,o10
if aB :9.

@ U min(r, s,u,u) < 0 < max(r, s,u,u), then (1.1.1) holds for all distinct

positiue r,y if and only if
r*s(u+u

and

e(r,s) 1 e(u,u),

where

"(o,þ): (lol -lþDl@- 0) for al B

We define sets A, A* by
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and

(4.1.4)

A : {(r,s)lr * s ( 3 and e(r,s) < e(1,2)}

Æ : {(r,s)lr*s 2 3 and e(r,s) I e(1,2)},

(see Figure 1),

Figure I

A
r*s=3

where "(*,y) is defined by (aJ.2) if r,s ) 0, and by (a.1.3) if min(r,s) < 0

Note that
e(1,2) :

3

3

Lf ln2, if min(r, s) > 0;

1, if min(r, s) < 0.
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We now establish our basic lemma.

Lemma 4.t.2. Let rrs be real numbers. If (r,s) e. A then

(4.1.5)

(4.1.7)

8,,"(x,y) 1 81,2(xry),

while if (r, s) e A*, then

(4.1.6)

Proof. The first fact is immediate from Lemma (4.1.1). We note that

max(r, s,1,2) ( 0 cannot occur and so e is given by (4.1.2) if r, s ) 0 and by

(4.1.3) if min(r, ") < 0.

The second part follows similarly.

Remark 4.1.3. Lemma 4.1.1 is a generalization of the fact that 8,,(*,y) is a

nondecreasing function of r and s. So (a.1.1) holds if r ( u and s 1u, that is,

(4.1.5) holds if r ( l and s<-2 and (4.1.6) if r 21and s)2.

4.L.2. Integral results

Theorem 4.L.4. Suppose g,h : la,b] -+ IR ûre nonnegatiue nondecreasing functions

with continous fi,rst deriuatiues and g(a): h(a),g(b): h(b).

a) Let f be a nonnegatiue, nondecreasing, differentiable function on la,bl. If
(r, s) e A and (u,u) €. A, then

,"(*,y) 2 Et,r(*,v).E,

,,, " (l 
"u 

s' (t) f (t) d,t, | 
"o 

o' (r), (u 
") = | "u 

{ E',, ln(, ), ä (ú ) ) )' f (t) dt .
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If (r, s) € A* and (u,r) € A* , the inequality is reuersed.

b) Let f be a nonnegatiue, nonincreasing, d,ifferentiable function. If (r,s) e A

and (u,,u) e A*, then (1.1.7) holds, while if (r, s) e A* and (u,r) e A, the inequality

is reuersed.

Proof. a) Suppose (", 
"), 

(u,u) € A. We have

,,," (l"u s'(t)f (t)dt, l"o 
n'çr¡rçr¡ar)

=r(1,' s'(t)f (t)dt + l"' n'!t¡¡Øor)

:'¡fnfÌ+ å(¿)) rþ)f, - l"' t(g(¿) + h(Ð) drþ)

=t¡øAl+ 
å(ú)) rþ)Ê- I"o 

,,,,(g(¿), h(Ð)drþ)

:trtntÐ+ å(¿)) rØP,- Eu,u(g(t),hQ)) rþ)lo"+ l,u 
(8,,,(g(t),h(t)))' lþ)dt

: 
f,u {8u,,(g(t),h(t)))' rþ)dt.

If (r, s), (u,r) € A*, we have trivially that the inequality is reversed
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",,, (l"u s'þ)rþ)dt, l"u 
n'çr¡rçr¡ar)

= l"' ,(g(¿) + h(t))' f (t)dt

:tr{ntù+ å(¿)) rþ)12* l"' {n{r)+ r¿(,)) dF(t)

='røfrl+ 
â(ú)) rþ)l'"* f"o 

u,,,(g(r), h(t))dF(t)

: trtnlÐ 
+ h(t)) r@l:" - Eu,, (g(t),,hþ)) rþ)Ê + 

l"u 
(8,,, (g(t),å(¿)))' lU)dt

: 
l"u 

(8,,,(s(t),h(t)))' rþ)dt.

b) Suppose (r, s) € A and (u,u) e A*. Put F : -f . Then we have

If (r, s) € A" and (u,r) € A, the inequality is clearly reversed

Corollary 4.1.ó. Let g,,h be defined as in Theorem y'.1.1

a) Let f be a nonnegat'iue,

rru 1l and s,u ( 2, then (1.1

reuersed.

b) Let f be a nonnegatiue,

r(l1uands121uthen
U.1.7) is reuersed.

nondecreasing, differentiable function on la,bl. If
7) holds. If r,u 2I and s,u ) 2, then (1.1.7) is

nonincreasing, differentiable function on [a,b]. If
(4.1.7) holds. I.f u< 1(r andu<2<s,then(r / ¿

Proof. This follows from Theorem 4.I.4 and Remark 4.1.3.
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4.L.3. Summation results

\Me set La¿: ai+t - d¿¡ L,a¡,i: o,¡,i¡t - a¡i.

Theorem 4.L.6. Suppose a and b are nonnegatiue, nondecreasing n-tuples (n > 2)

such that an: bn and a1 : þr.

a) Let ut be a nonnegatiue, nondecreasing n-tuple. If (r,s),(u,r) e A then

n-l n-l
(4.1.8) Er," w¡L.a¡,lw¡Lb¡ < t u;¡LÐu,u(a¡,b¡),

j=l j=l

while if (", 
"), 

(r,r) Ç A*, the inequality is reuersed.

b) Let u be a nonnegatiue, nonincreasi,ng n-tuple (" 22). If (r,s) €. A and

(u,r) e A* then (j.1.8) holds. If (r,s) e A" and (u,u) e A the inequality is

reuersed.

Proof. a) Let (","), (u,u) € A. We have
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Er,"
/ n-r

l,Ð
w¡L,a¡,lw¡Lb¡

n-l

j:I

1 Et,, lw¡L,a¿,lw¿Lb¿
n-l

j--t

n-l

i=L

n-I

i=l
:å{ lw;A,a¿+ D u¿Á'b¿

n-l

i=l

:E'"(+)
dn*bn at*bt å ø¡ *b¿ 

^-?t)n 2 -ut 2 -k , I\wi-t

' an I bn at I bt 
- i 8,,,,(a¿,b¿)Lw¿-1Sun- 2 *r-2 -LL,,,\c

únlbn at*bt-w" 2 -wt-n-

rnn Eu,r(an, br) - u1Ûu,u(ay,bt ) - D L'Eu,u(a¿, b¿)u ¿

n-l

i=l

: D w¿L,Eu,u(a¿rb¿).
n-\

i=l

If (r, s), (u,,u) € Æ, the inequality is clearly reversed.
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b) Let (r,s) e A and (u,r)eA*. SetW¿- -wi (i-L,,...)n -1). Wehave

*," (Ð us¿L,a¿,Ï,,ou,)

=Þ: -'^(+)
: .,eo* - .,+L * ä.,* LW¿-t

= 
r-þiþ - *rgt* +in',,(a¿,b¿)LW¡-1

an*bn at * bt: *n--T- - *t 2

-u)nÐu,, - ran Eu,, (an + b*) - ut 1 Eu,r(ar, br ) - D L4,,,(a¡, b¿)w ¿

n-I

i=l

: D w¿L,Eu,u(a¿rb¿).
n-l

i=l

If (r,s) € A* and (u,r) e A , the inequality is clearly reversed

As before, we can make the following deduction

Corollary 4.1.7. Suppose n-tuples a andb are as in Theorem 4.1.6.

a) Let u be a nonnegatiue, nondecreasing n-tuple.

If r,u 11 and s,,u 12, then (4.1.8) holds. If r.,u ) 1 and s,u ) 2, then

(/r.1.8) is reuersed.

b) Let w be a nonnegatiue, nondecreasing n-tuple.

ïr<l1u ands<2<u,then (4.1.8) holds. If ,>-Ilu ands)2)u,
then (1.1.8) is reuersed.



4 FURTHER GENERALIZATION OF THE FIRST PóLYA INEQUALITY 54

4.2. Results involving Gini means

4.2.L. Notation and preliminary results

Let a,b be real numbers. The Gini mean [16] of an rz-vector x: (æt,,...,r2)

with weights \M : (-r,. . . ,,wn) with coordinates in .R : (0, *) is defined by

Go,u(xiw) : Gop(rtr. ..rt',iw)

upl + ...+ u)nrl.

wp\1...+unrbn
iÎ afb,

exp ifa:b.

Ifw:(1,
Gb,o.

,1) we write Go,a(xiw) : G',¡(*). Note that we always have Go,6 :

Lemma 4.2.1. [8] Let a, b,, c, d be real numbers. Then in order that

(4.2.1) G,,u(x) ( G",¿(x)

be ualid for alln€ IN andx: (rt,...,rn) with 11,...¡rn>0, it is necessary and

sufficient that

(4.2.2) min(ø, ó) < min(c, d) and max(ø, ó) < max(c, d).

A simple consequence is as follows.

Lemma 4.2.2. Let a,, b, c, d, be real numbers satisfying (4.2.2) . If the n-uectors

x: ("r, ...,rr) andw: (*r,...,un) haue all positiue coordinates, then

Goþ(x;w) I G",¿(x;w).

The case n :2 in (a.2.1) is of special interest.
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Lemma 4.2.9. [31] Let o,, b, c, d, be arbitrary real numbers such that a f b and

c f d,. Then

(4.2.3) aIb 1c+ d and m(a,b) < m(c,d)

is a necessary and sfficient condition that

(4.2.4) Go,u(r,Y) ) G",¿(x,,Y)

hold for all positiue x and y. Here

(4.2.5) m(a, B) :
min(o,B) ü 0<min(ø,b,c,d)
(l"l - l/Dl@- þ) if nrin(a,b,,c,d) < 0 < max(ø,b,c,d)
:max(a, B) if max(a,b,,c,d) 1 0.

We shall consider the two special cases

(4.2.6) Go,u(r,y) 1 Go,t(*,v) : ry
and

(4.2.7) Go,a(r,y) ) Go,t(*,ù : +.
Suppose (without loss of generality) that a 1 b. For (4.2.6) we should set c : 0, d, :
1 in Lemma 4.2.3. From (4.2.3) we get

(4.2.3') a I b 11 and m(a,b) < rn(O, 1).

As max(ø, b,0, 1) cannot be ( 0, we only have the first two cases in the definition

(4.2.5) of m(æ,y).

As 0 ( min(ø, b,0,1) is equivalent to ¿ ) 0, we have

m(a,b):q and nz(¡,1):¡

Applying this to (4.2.3') we get a :0 and b ( 1.
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Similarly min(ø, ó,0,1) < 0 < max(ø, ó,0,1) is equivalent to ¿ ( 0. Then

m(a,b):W and rn(O,1) : 1.

Using this in (4.2.3') we have

lal - lol 1b - a,

that is,

(4.2.8) lól +ø1b-a

If ó > 0, (4.2.8) becomes

b+a1b-a,
while for ó < 0, (4.2.8) becomes

-b+a1b-a,

which is obviously true

We have thaf (4.2.6) holds in the case o < ôif ¿ ( 0 and ø+ó < 1. Because

of symmetry we have that (4.2.6) holds if (a, b) € B, where

(4.2.9) B:{(o,b)lø+b<1 A (o<0vbS0)}

(see Figure 2). Now let us consider (4.2.8).

For ø ( b, set a, :0, b:7,, c: a¡ d,: b in @.2.\. Then (4.2.3) becomes

(4.23't) a -f b 2I and m(a,b) > rn(O, 1),

where *(n,A) is now defined as above by

min(o, B)
l'l - lþl

if ¿)0
if ø(0.m(a, B) :

a-B )
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So for a 20, (4.2.3") becomes

whilefor¿(0wehave

lal - l,l 2b - a,

that is,

(4.2.10) lbl+alb-a.

From (4.2.10) there is a contradiction for b ) 0 (which gives ø > 0) and for b < 0

(whichgivesb(a).

We have fhat (4.2.7) holds when a <bif a* b > l from (4.2.3") and ø ) 0

applies. Because of symmetry we have that (2.10) holds if (ø, b) e B*, where

(4.2.11) B*: {(a,b)la+ b ) 1,¿ ) 0,b > 0}

(see Figure 2).

a) 0
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Figure 2

b=a
b

B*

I

I a

B

a+b=1

Therefore, we have the following special case of Lemma 4.2.3

Lemma 4.2.4. If (a,b) € B, where B is defi'ned by (1.2.9), then (1.2.6) hold,s, while

if (a,b) € B*, where B* is d,efined by ('l¡.2.11), then (4.2.7) applies.

We shall also use the following special cases of (4.2.1)

(4.2.r3)

Go,u(rtr... ¡rniw) < Go,r.(rtr... ¡rniw) : 
wtrt I "' l wnxn

' ?Dt*...*wn

and

(4.2.14) Go,a(ït,...¡ïniw) 2 Go,t(rr.,...¡rniw) : 
wt'Út* "'lwnrn

wt+'...lwn

(:: A(r1r. ..,r*jw))
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Figure 3

b

I

0 I

cx

a

C

The following Lemma is a simple consequence of Lemma 4.2.2

Lemma 4.2.6. If (a,b) € C, where C is d'efined by

C : {(o,¿)l((, < 0) 
^ 

(ó < 1)) v ((, < 1) 
^ 

(ó< 0))}

(see Figure 3), then (4.2.13) holds, and if (a,b) e C*, where

C* : {(a,a)l((o > 0) 
^ 

(b > 1)) v ((o > 1) 
^ 

(ó> 0))},

then (1.2.1/) applies.

4.2.2. Results

Theorem 4.2.6. Let 91, . . . ¡ gn : la,bl -+ IR be nonnegatiue nondecreasing functions

with continuous f,rst d'eriuatiues and g1(a): ... : S,(a),gr(b):... : g"(b).



4 FURTHER GENERALIZATION OF THE FIRST PóLYA INEQUALITY 60

Suppose w is a positiue n-tuple.

a) Let f be a nonnegatiue nondecreasing function on la,bl. If (", t), (uru) e B,

then

¡b\
", J" s'"(t)Í(t)dt;w )
..,g,(t);w))t f (t)dt.

If (r,s), (u,r) €. B*, then the reuerse inequality holds.

b) Let f be a nonnegatiue nonincreasing function. If (r, s) € B and (u.,r) e B* ,

then inequality (1.2.15) holds, while if (r,s) e B* and (u,r) € B then the reuerse

inequality applies.

The proof is the same as that of Theorem 4.L.4, except in that \¡re use Lemma

4.2.5 in place of Lemma 4.I.2.

Similarly we can prove the following

Theorem 4.2.7. Let g and h be nonnegatiue nondecreasing functions with contin-

uous f,rst deriuatiues and g(a) : h(a),g(b) : h(b).

a) Let f be a nonnegatiue nondecreasing function onla,bl. If (","), (u.,u) e B,

then

(4.2.t6) ,,"(l,u s'(t)f(t)dt, I"u 
n'(r)r(r") 

= l,u ","(g(t),h(t))' 
r|)dt.

If (r,s),(u,r) e B*, then the reuerse inequality holds.

b) Let f be a nonnegatiue nonincreasing function. If (r,s) € B and (u,u) e B*

then inequality in (4.2.16) hold,s, while if (r,s) e B* and(u,o) € B thenthe reuerse

inequality applies.

Now we shall give discrete analogues to the above results
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Theorem 4.2.8. Let a1r.. .¡ã," be nonnegatiue nondecreasing n-tuples such that

aLt: ...: amt and a1r: .. . : &nnn o,nd let w be a positiue n-tuple.

a) Letf be a nonnegatiue nondecreasing n-tuple. If (r,s),(r,u) e C, then

/n-r n-r \ l_1
(4.2.17) G,"" ( D f¿Lor¿,.. .,t f¿La^¿;w ) I D fo\G,"(orn,.. .,û*¿iw).

\¿=r i=! / i=t

If (r,s), (u,r) € C* then the reuerse inequality holds.

b) Letf be a nonnegatiue nonincreasing n-tuple. If (r,s) € C and (u,r) € C*,

then (1.2.17) applies. If (r,s) € C* and (r,r) e C, then the inequality is reuersed.

Theorem 4.2.9. Let a and b be nonnegatiue nondecreasing n-tuples such that

an: bn and a1: þr.

a) Letf be a nonnegatiue nondecreasing n-tuple. If (r,s),(u,r) e B, then

/n-l n-l \ t-l
(4.2.13) G""f t f¿La¿,Dr,ttol <t f¿L,G,,(a;,b¿)

\i=1 i=t / i=t

If (r,,s), (u,r) € B*, then the inequality is reuersed.

b) Let f be a nonnegatiue nondecreasing n-tuple.

If (r,s)€B and(u,r)e B*,then (1.2.18) applies. If (r,s)€.8* ønd(u,u)e
B, then the reuerse inequality holds.

4.3. Inequalities involving generalized quasiarith-
metic means

Suppose IR+: (0,-) and þ : (ót,...,,ó") t (lR+)" + (Æ+). Also suppose

IR+ -+ -R..,. is strictly monotonic. We define generalized quasiarithmetic meansM
by

Mn(^,ó) :: Mn(or,. . .¡anió) : M-t
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The following results hold (see [21], [6], [7, pp 265-266]).

Lemma 4.3.1. Let M, K : IR¡ -+ IR+ be differentiable strictly monotonic functions

and y, S functions from (lR+)" to (lBa)". Then

(4.3.1)

(4.3.2)
þí")
ó"(t)'

I1i1n

Mn(a,X) 3 K"(",ó)

for all a e (.8¡)' if for all u,t € IR+

M(") - M(t) K u) - K(t)
Mt t I{'(t)

If U.9.2) is reuersed, than so is (1.3.1)

Definition 4.3.2. We shall say that a generalized quasiarithmetic mean M"(a;X)
is subarithmetic if

(4.3.3) Mn(a,x) < A^(a, w) :: uttat * "' * u;nan
'"'t'- wtl...lu)n '

that is, if for all u,t € IR¡

M(u)-M(t)@<!!(u_t\.
M'(t) x"(t) - ,,)n'- -/-

.4) is reversed, then Mn(a,a) is superarithmetic.

Theorem 4.3.3. Let gy, . . . ¡ gn : la,bl -+ IR be nonnegatiue nondecreasing functions

with continuing fi,rst d'eriuatiues and g1(a): " ' : 9*(a),9r(ó) : "' : g"(b).

(4.3.4)

rf (4.3

a) Let f be a nonnegatiue nondecreasing function on la',b]. If Mn(a,7) and

Ln(a,S) are subarithmetic, then

rb\. 
J" s"(t)f (t)at;7)

..,o,(t);Ð)'f(t)dt.

If M*(a,y) and Ln(^,þ) are superarithmetic then (1.3.5) is reuersed
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b) Let f be a nonnegatiue nonincreasing function. If M,(", X) is subarithmetic

and Ln(a,þ) superarithmetic, then (1.9.5) holds, while if Mn(a,X) it superarith-

metic and Ln(a,,þ) subarithmetic (/r.9.5) is reuersed.

Proof. a) Let Mn and Ln be subarithmetic. Then by (a.3.3) we have

1

{-, I' s'Lþ)f @at+...+ ., l"u s'-Øf @dt\
Uy

l"'

*"'*w"

(A(g'(t), . . .,, g"(t); w)' f (t)dt

: A(gt(t), . . .,, s,(t);*)/(r) l:, - l,' A(sr(t), . . ., ø(t);w)d'f (t)

< A(sr(t),. ..,s*(t);*)/(¿)l: - I,u 
t*(n{t),s2(t); ó)df|)

: A(g{t), . . ., g,(t);*)/(¿) 1b, - L"(ø(t), . . ., s*(t); Ð f (t)l'"

¡b
+ J" Ø"(sl(r),. ..,0*(t);Ð)' f (Ðdt

b

(L"(gr(t), . - ., o*(t); óÐ' I (t)dt.

I1 M* and Ln are superarithmetic, we have reversed inequalities.

b) Let Mnbe subarithmetic, Ln superarithmetic and F: -f . We have

:T,
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*, (1"' sl(t)lØdt, . . ., l"' s',Q) Í(r¡or, *)

1 An (1"' n þ)tþ)dt,..., Iu s;çt¡¡1t¡at;*)

: 
l"u 

(A(s1(t)dt,. . ., e,(t);w)' f (t)d't

: A(st(t),. . .,g,(t);*) /(¿)13 * I"u 
o(a'1t¡, ...,0*þ);w) dF(t)

. A(gr(t), . . ., g^(t);*) /(¿)13 * l,u 
r^ (s'çt¡,.. ., g,(t); ó) dF(t)

: A(gr(t),. . ., e*(t);*) /(¿)11 - L, (sL(t),. . ., e^(t); Ð f (t)lZ

* l,u {t^ Ørçt¡, . . . , o*(t); ó))' lþ)dt

: 
l"u 

(L*(gr(t),,. . .,,s.þ);ó))' rþ)dt.

lf M^ is superarithmetic and Ln subarithmetic, we have reversed inequalitres.

A discrete analogue of Theorem 4.3.3 is the following.

Theorem 4.3.4. Let a1,. . . ,tã* be nonnegatiue nondecreasing n-tuples such that

CtrIl : "' : Arnl And, A1n : "' : A'Tnn,

a) Let f be a nonnegatiue nondecreasing n-tuple. If M^(a,y) and L*(a,Ó)
are subarithmetic, then

/"-r n-r \ t_t(4.3.6) M^lÐ l¿Lar¿,...,t f¿La^¿;xl <D foU'*(or0,...,a^¿,Ó).
\Ër i=t / i=t

If M,,(a,y) and L*(a,þ) are superarithmetic, then (1.3.6) is reuersed.

b) Letf be a nonnegatiue nonincreasing n-tuple. If M*(a,X) i" subarithmetic
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and L*(a,þ) superarithmetic then (1.3.6) holds, while if M^(a,X) it superarith-

metic and L^(a,þ) subarithrnetic, the reuerse inequality applies.

Proof . a) Let M*(^,a) and L^(a,ó) b" subarithmetic. Then we have

*- (E t¿Lau,, b,=: rn^o*;x)

1 A^ (Er,o",i¡...¡T, roo"*0,*)

n-l

I fotl^(otn, . . ., a*iiw)
i=L

fnA^(an,. .. ¡dmniw) - lrA*(orr,. . . ra^úw)

- D A^("ti¡ . . . ¡ a*¿; w) L,f¿-1
n

;-,

f1,

i=2

n-l

i=I
n-l

1 f^A*(aLn). .. ¡ú^niw) - ItA*(otrr. . .ra*úw)

- D L*(ori¡. . ., a*¿i ó)Lf¿-t

: fnA^(atn¡... ¡dmni w) - ftA*(ott,,... ra^rìw)

-frL*(otn,)... )a**; Ó) - frL*(atlr. . . r aø; Ó)

+ t f¿L'L^(a¡,...,a^¿i ó)

Dr LL* A1 ,a^¿iÓ)(
i=l

If M^(a,a) and L*(a,þ) are superarithmetic, then the reverse inequalities

apply.

b) Let M*( 
^,X) 

b" subarithmetic and L^( ^,{) superarithmetic. Write fl :
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- l;,U - 1, . . . n). Then we have

*^ ('"=i_r¿Lau,

n-L
...,t f¿La^¿;X

1A*

n-l

i=l

ti¡...,D fnLo^u;*
n-l

i=I

: D f¿LA^(orn,...,a*ii w)

: fnA*(ornr...¡amni w)- TtA^(ott,...ra*ú w)

*D l^ (oro,. . . ¡ amiiw) A4-r
n

i=2

fL

n

1 f*A^(ornr...¡d*ni w) - hA,. (ott,. .. ,,a*t, w)

iD l,* (oro,, . . . ¡ amii Ó) LF¿-t
i=2

: lnA,n(ornr...,¡üm,i w) - ItA^(ottr... ra^ti w)

- fnL* (orn,. . .,¡amni ó) + ftL* (ott,. . .,a*ú Ó)

+l f[l* (oro,. . ., a^¿i Ó)
i=I

A1 ,a*¿iÓ)

If M^(a,¡) is superarithmetic and L^( 
^,@) 

subarithmetic, then the reverse ln-

equality holds.

Remark 4.3.6 Our results supply generalizations of related results for Gini means

given in Section 4.2 as well as of related results for quasiarithmetic means from

Subsection 3.I.2.

Of special interest are the following special cases.

t
i=l

LL^f¿ (

Corollary 4.3.6. Let gy, . . . ,, gn : la,b] + IR be nonnegatiue nondecreasing functions
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with continuousf,rst deriuatiues anil g1(o) : "': g,(o), g{b): '. ' : g"(b), andlet

f be a nonnegatiue nondecreasing function on la,bl. If Mn(^,X) it a subarithmetic

generalized, quasiarithmetic mean, then

Mn
(4.3.7)

(l^',n',ra r þ)dt, . . ., 
l,o s;çt¡ ¡ çt¡at; v)

S J" 
*" @rçt¡, . . . , g^(t); y)' f (t)dt.

Il M" is superarithmetic then (1.3.7) is reuersed.

Corollary 4.3.7. Let a1,,. ..rã* be nonnegative nondecreasing n-tuples such that

er!:.'. : a,,,-1 o,nil arn:... : o,*n, and letf be a nonnegatiue nondecreasing

n-tuple. If M,"(", X) is a subarithmetic generalized quasi,arithmetic mean, then

/n-r n-r \ tt(4.3.s) M^ lD f¿Lot¡,..., D f¿La,n¿;xl <D lot¡w^(or0,...,a^¡,X).
\i=r i=t / i=t

If M^(",d) is superarithmetic, then (1.3.8) is reuersed.

4.4. Some further generalizations

We can give further generalizations of results in the previous section.

In place of means our results involve arbitrary functions which satisfy some

special properties.

Definition 4.4.L. Let u1, . . . ¡u*¡ be given real numbers such that lpt 'It)i : I.

We shall say that a function F : I^ -+r? (I is an interval from R) belong to the

class Ir7, if and only if the following conditions are satisfied

(i) F(*,...,r) : r

and

(ii) F(*r,. . . ,ï^) SDTLtu¿x¿.

If in (ii) inequality is reversed, we say that .F belongs to the class I,7*.
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Theorem 4.4.2. Let F,G : I^ -+R and I ,lo,ó] +,R be real functions. Let

gt,. . ., g* : ld,b] -+ I be continously differentiable functions such that G(gt,.. ., g,,)

is also continously differentiable and gr(a): "' : 9^(a),9{b): "' : g^(b),

l"u íu{r)rlr)dt e I, i : r,...,ffi.
o) If f is a nondecreasing function on la,b] and,f F,G €. W, then

(4.4.t) , (1"' s',(t)¡Øat,. .., l"o s*{ÐrtÐdt) s l"' t*{n,(¿),. . .,s*(t)))t lþ)dt.

Il F,G €W*, then Q.1.1) is reuersed.

b) Letf beanoninueasing function. IÍF eW andG eW* then (l.l-1)
holds. If F e W* and G e W , the inequalitg is reuersed.

Proof. The proof is similar to that of Theorem 4.3.4, so rrye shall give only the proof

of part a).
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a) Let F,G e I,tr¡. Then we have

l" l,'s^@rØat)

= i,,o l"o si|)l|)dt

: 
l,u (ä-'n^'r) rt'ia'

: 
l"o (ä-'n'ut)' troo'

: (ä.,n,ø) rr,ll' - I'(Ð.onoç,¡)o¡ç,¡

: s,þ)r(b) - g,(o)t(,) - I"' (ä.noo{Ð) arçt¡

3 g'(b)f (b) - gr.-)r(r) - I,u 
,(nrþ),,...,e^(t))d'rþ)

: s{qf (b) - s'(o)l(o) - G (s'(t),...,mþ¡¡ f (Ðf"

* 
l"o {c{n'(¿),. ..,g^(t)))'rþ)dt

b

F s't(t)f (t)dt,

(G(g'(¿), . . .,s*(t¡¡¡' f(Ðdt.

lf F,,G €W*, we have reversed inequalities.

A discrete analogue of Theorem 4.4.2 is as follows.

Theorem 4.4.3. Let a1,...,,&* , be realn-tuples with components from I such

that ay1: ... : ttpl a,nd, (ttn : "' : amn and' Iet f be a real n-tuple such that

n-l

I fnLo¡ e I,i - 1,. ..,,ffi.
i=l

:1"
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t) If f is a nondecreasing n-tuple and if F,G eW, then

/n-l

(Ð l¿Lar.¿,...,t f¿Lo^¿

(Ð f¿Lau,. . .,t l¿La*,

) = 
b,- l¿Lc (o,n,. . .,a*i) .

) = b,- r¿Lp (o,,,. . .,,a^t)

n-L

i=l

n-l

i=l

If F,G eW*, then (1.1.2) is reuersed

b) Letf be anonincreasingn-tuple. IIF e W andG e W",then (1./¡.2)

holds. If F e W" and G e W, then the reuersed inequality applies.

Proof. The proof is similar to that of Theorem 4.3.4.

Note that in (2.6.1') we have the same mean on the both sides of the inequality.

So the following special cases of Theorem 4.4.2 and 4.4.3 arc of special interest.

Corollary 4.4.4. Let F : I* -+R, gt,...¡gm: fa,bl à I, f ,lo,b] -+R be

real functions such that 91,...,gn, F(gt,...irg") are continuously differentiable and

et(a):... : o^@),s1(b): "': e*(b), J" d(t)f{t)df(t) e I,i - 1,...,m and f
is nondecreasi,ng.

If F €W, then

(4.4.s) , (1"' s't(t)¡Øat,..., l"o s*þ)rØdr) 
= l"' @(g,(t),. . .,s^(t))' r|)dt.

If F eW*, then the reuerse inequality applies.

Corollary 4.4.6. Let a1,. . . ,ã^ be real n-tuples with components in I such that

aLt,t...: amr and let (trtn... : arnn andf be a nondecreasing realn-tuple such that
n-l

lloÁ'"¡o€ I, i - 1,. ..,n. If F €W, then
i=l

(4.4.2)

(4.4.4)

F

F

Il F e W* , then the reuerse inequality applies.



5. OPERATOR VERSIONS
OF PÓLYA'S INEQUALITIES

5.0. Overview

Inequalities are relatively difficult to establish for operators. The development

of a consolidated theory and indeed any theory at all is largely due to the genius of

Kubo and Ando [19]. We begin this chapter by noting some of their key concepts.

From their foundation we develop a variety of results paralleling those of our earlier
' chapters. This material is the content of two published papers [30], [31] and a further

paper [32] accepted for publication.

5.1_. Operator versions of some classical inequali-
ties

5.1.L. Preliminaries

Let us consider bounded, linear and positive (that is, positive semi-definite)

operators on an infinite-dimensional Hilbert space. A scalar multiple of the identity

operator is denoted by the scalar itself; in particular, 1 is the identity operator. The

orderrelation A< B meansthat B-Aispositive. That A1 > A2>-...,and An

converges strongly to A is denoted by A" l, A.
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A binary operator ø on the class of positive operators, (A,, B) -+ AoB is called

a connection if the following requirements are fulfilled [19]:

(I) ASC andB < D+ AoB 1CoD,

(r) C(AIB)C < (CAC)o(CBC),

(ilI) A"+Aand BnIB + (A"oB.) tAoB.

A mean is a connection with normalization condition

(ry) 141 : 1.

The following results are also valid [19]:

Every mean d possesses the property

(ry') AoA: A lor every A.

Every connection ø possesses the property

(D @oB) + (coD) < (A + c)o(B + D).

The simplest examples of means are

ARITHMETIC MEAN: AVB : +(A+ B),

HARMONIC MEAN: At B : Z(A-L * B-t¡-t,

GEOMETRIC MEAN: AfB : At/2(A-r/2 B A-r/2)tl2 At/2

for invertible A and B.

Moreover, weighted versions of these means can also be defined'

Let A,B be invertible and ) e (0,1) be a real number. Then the arithmetic,

geometric and harmonic means are defined, respectively by

AV^B : ÀA+ (1 - À),B,

A# xB : At 12 (A-t/z B ¡-r lz)t-^ At/2,

AtxB : (ÀA-1 + (1 - ))A-t¡-t.
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We know that

(5.1.1) At ¡B < A#¡B < AV xB.

Every mean possesses the property [29] AoA: A for every A. A mean is symrnetric

by definitionif. AoB: BoA.

Arithmetic, geometric and harmonic means (V,! and S) are symmetric [29].

The arithmetic mean is the maximum of all symmetric means while the har-

monic mean is the minimum, that is, the following generalization of (5.1.1) holds

l2el.

For every symmetric mean ø, we have

(5.1.1ø) AtB<AoBlAVB.

5.L.2. Operator versions of Cauch¡ Hölder and other clas-
sical inequalities

Mathematical induction from (I') gives the following.

Theorem 5.1.1. Let A¿, B¿,i :1,.. . , n, be bounded linear and positiue operators

and let o be a connection. Then

(b 1 2) i14oan, = (å A,),(å 
")

In the next examples, we assume lhat A¡ and B¿ are invertible

Examples: [30]

1o. Cauchy's inequality:

(b 13) 
äo,uu, = (å o?)+(Ð"t)

2". Hölder's inequality:
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Let p,q > 0 with p-l * q-1 : 1

(5.1.4)
i=1

3o. Minkowski's inequality:

n

i=2

DtT#,øBl < (å^r) +,,,(rur)
n

(b 1 5) äro* 
B,)-' 

= l(å 
or') . (å ",-')-']-'

Indeed, this last inequality follows by letting o be the parallel sum, that is,

AoB : (A-t + B-t)-t and A¿ : A¿', B¿ : B¿ | 
.

Theorem 6.1..2. Let A¿rB¿,i:1,...,n be bounded, linear and posi,tiue operators

such that

(5.1.6) Ar- Az A,> 0 and Bt- Bz Bn) 0

Then

(5.1.7) ApBt -lA¿on¿> -Ð'q B' -DBn
TL

:-o )"(

n

:-o

Proof. With the substitutions

Atl At-Az An, Btl Bt-82-...-Bn,

(5.I.2) becomes

n

(Ar- Az-...- A^)"(Bt- Bz B,)-l\A¿oB;1A1oBy,
=2

that is, (5.1.7).

In the following examples A¿ and B¿ arc again invertible.

Examples.

4" . AczéI's inequality:
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If
A?-AZ ,t?">o and B?-83 B',>0,

then

A?#B? -D t?+ai ¿ A?_DA? B? -DB?
fL

i=2

n

n

:-. )-(

n

i=2

5o. Popoviciu's inequality:

Ifp,q)0,p-1 lq-':land

A,r- Ao, A!"> o, BÏ, - Bi - ... - B!^> o,

then

A'r#r/rBL-tAT#røBl 2 Ai_DAi #t/, Bi -ÐBi
fL n

ö=2

If

then
fL

(ht B')-'- Dçq + B¿)-'

(5.1.S) i=2

> [(Ai' -f or')-'+ (ai'-
:-t

Remark 5.1.3.

1o. Note that (5.1.5) and (5.1.8) can be given in the forms

i=2

6o. Bellman's inequality:

(5.1.5') (þ-,o,+ B,)-')-' - (å ot') . (å ut')

A,,t - A;t -...- A;t > 0 and Brt - B;t -... -8,,-t > 0,

Da¡
i=2

i=2

= (or' -Ðor') * (',-' -Ð"r')-'

1

) -1 -1

-1

and
n

[(,4, + Br)-'- DÇqo + B¿)-']-'

(5.1.8')
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Note that the following generalization of (5.1.5') is obtained in [3] for positive

invertibleoperators A¡¡,(i - 1,...,n; i - 1,...,m)i

We can use (5.1.9) in the proof of the following extension of (5.1.8').

If positive invertible operators Ao¡ (i - 1,. ..,ni i : 1,...,n) satisfy the

conditions

Arì - A;; - ... - A^'¡ > o, i : r,...,n,

then
-1

(5.1.e)

Remark 6.t.4.

x r+fAi

å(å 
Aù') '= 

(å(å^,,)-')-'

A
\ -r 

') = lË'o't -f^;ti) '/ lj=r i=2

A simpl Hölder's inequality is

I
) -1

(5.1.4,) Do,#,",= (å a,)+.(å",

where0(o(1.

Setting A¿ 1 Aí, B¿ + Ai in (5.1.4') we get

)

)(

where we have used (5.1.1).

This proves that the function

n

i=l

ls convex
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5.1.3. Inequalities for solidarities

An extension of the Kubo-Ando theory was given by J.I. Fujii, M. Fujii and

Y. Seo [13].

A binary operation s on positive operators is an abstract solidarity if it
satisfies, assuming the existence of AsB as a bounded operator, conditions

(S1) B < C implies AsB 1AsC,

(S2r) 8".-L B implies AsBn t AsB,

(52¿) A" --> A strongly implies Ansl -+ Asl strongly and

(s3) 
".(.4sB)T 

1 T" AT sT* BT.

The solidarity s is superadditive in that

(5.1.10) (A + B)s(C + D) ) AsC t BsD.

Of special interest is the relative operator entropy S(AlB) for invertible A, B defined

by

S(AlB) : ¡t/2(log A-r/2 B A-rlz¡¡r/z .

Using (5.1.10), \4¡e can prove the following by mathematical induction.

Let A¿,, B¿ri :1, . . . , n be positive operators. Then

(b 111) içaæa¡= (å4,) " (år,)

Also, if (5.1.5) holds, then

(5.1.12) A1sB1-i,+,"n,= (r, -þ_^,)" (", -þ_",)

For operator entropy, we have

lsçe,,1ai) < ,s Ð'q¡Dnn
n n n

i=l i=li=l
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'a

and, if (5.1.6) holds,

s(AllBr) -!s(A;lB,)>s Ar-DA¿lBr- B
TL

i=2

n

-'-o
t
i=2

5.2. Pólya inequalities for positive linear opera-
tors

5.2.L. Main results

We shall also use the classical notation for a finite difference

A.A¿ - A¿+, - A¿ (i :1,...,n - l)

and

A.A¡t: A¡¡¡r - A¡n.

Theorem 5.2.1. Let At < ...
equal) be bound,ed linear positiue and inuertible operators on an infinite dimensional

Hilbert spa,ce such that Ar : 81 and, An : Bn, and let q < ...
numbers. If o and rn are symmetric means, then

(b 21) (E",oo,) " (E "o^8,) = E a¿L(A¿mB¿)
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Proof. We have, using the second inequality of (5.1.1) or (5'1'la),

la¿L(A¿mB¿) : an(AnmB,) - a¡(A1mB1) -DØ¿*B¿)La¿-1
n-L

i=l

fL

i=2
n

i=2
2 a,(AnmB*) - a1(A1mB1) - D(A,V B¿)o;-t

: an(A,mB*) - a1(A1mB1) - a"(A"Y B") + a{A1Y Bv)

+ | ø¿A(AiV Bi)
n-1,

i=l
n-I: t a¿L(A¿Y B¿)

Corollary 6.2.2. Let {A¿},{B¿} and {ø¿} satisfy the conditions of Theorem 5.2.L.

Then

(5.2.2) (8","o,) u (= "o^Bo)= b,=: a¿L(A¿frl¿).

Theorem 6.2.9. Let At < ...
all equal) be bounded, linear and positiue operators and let a: {ot,...,an} be a

nondecreasing positiue n-tuple of real numbers and let o be a connection. Then

(5.2.3) (8","o,) " (E ",nno) r f ,¿a( A¿oB¿).

If a is a nonincreasing positiue n-tuple of real nurnbers and A1 - By:0, then

(5.2.9) is reuersed.

Proof.

i=l

: (b,- "o^Ao)" (b,- ',^Bo)

= (b,= ,^Au)" (E 'n^Bo)
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(i) We have

I a¿L(A¿oB¿) : an(AnoB^) - a1(A1oB) -l(e'¿on;)Aro-t
n-l

i=L

fL

n
: an(AnoB*) - a1(A1oB) - D[(¿,na¿-1)o(B¿Loo-r)]

) (anAn)o(o"B^) - (a1A1)o(orBt)

(by (r.t.z))

2 (anA, - atAt - ionna¿-1)o(a,Bn - arBt -f nonoo-r¡
i=2 i=2

(by (5.t.7) for 3 terms)

= E "n^An)" (Þ- "o^Bo)

(ii) Moreover, suppose ¿ is nonincreasing and At : Bt : 0. Since -a is nonde-

creasing, we have as a consequence of (5.1.2) that

A¿La¿-1 o (Ðt,o",-,)

I a¿L(A¿o B¿) : an(Ano B") + D(A ;o B¿)L(-a¿-)
n-l

i=l

fL

: (a n An) o (o. B,) + t [( Ac A ( - o,- t ) ) " 
( B¿ A ( - ø;- 1 ) )]

fL

;-a

1 (a^An)o(o*B^). (å A¿L(-a¿-,,) " (Ð B,^(-,c-,))

1 (anAn+ t A¿L(-a¿-))o(a*8,+ D BcA(-o,-,))
fL

;-n

IL

:-c

: (b*, 'o''+n)" (E *^Bo).

Remark 5.2.4. Theorem 5.2.3 gives the inequality (5.2.1) for m: ø for arbitrary

connections (not only symmetric means) and also without the conditions At : Bt

and An - Bn. Also, we have a converse result in our theorem.
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Corollary 6.2.ó. Let A1< . ..

equal) be bounded, Iinear, positiue and inuertible operators anil let À € l0,l). If a is

a nondecreasing n-tuple of positiue numbers, then

(52 4) (8","o,) +^ (Ð,,"",) = Ð a¿(A¿ft¡,l¿),

(5.2.5) (8","o')'^ (E "n^Bo)= b,=: a¿(A¿txB¿).

If a is a nonincreasing n-tuple of positiue numbers anil At - B1 : 0, then (5,2.4)

and (5.2.5) are reuersed.

As in Theorem 5.2.3, we can also prove the following, as a consequence of

(5.1.11) and (5.1.12).

Theorem 6.2.6. Let At < . ..

all equal) be bounded, Iinear and positiue operators and, let a: {or,...,a,'} be a

nondecreasing n-tuple of positiue numbers and let s be an abstract solidarity. Then

(5'2.6) (8","o') " (å 'o^Bo) = b,=i a¿L(A¿sB¿)'

If a is a nonincreasing n-tuple of positiue numbers and A1 - 81 :0, then

(5.2.6) is reuersed.

In the case of operator entropy, (5.2.6) becomes

s
n-l

i=l
(Ð a¿AA¿ll a¿/.B¿ < t a¿S(A¿lB¿).

n-l

i=l

6.2.2. A generalization of the geometric mean inequality

A weighted generalization of (5.1.1) was recently obtained for matrices in [51].

A related result also holds in the operator case.
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Let tl1 ¡...,tu, be positive numbers such that t r *...iw, :1 and let

Ct,. . . rC, be bounded, linear positive and invertible operators. Consider the arith-

metic, geometric and harmonic means of the operators C¿ defined by

A,(Ct,...,C,) : wtCt+'.' + lr,C,,

G,(Cr,. . ., C,) : C:/2(C;t/,C:/: . . . (C;'/tCl/2 çg;r/2 çtCrr/2¡'

Ct/2 C-r/2)" . . .C!!'rc;ttr),-'Cllr,

H,(Cr,...,C,) : (ta1C1t + . . . + .,C,t)-t,

where u¿ : I - u¿+tl Di\-r for i : 1,. . ., r - I. Then

(5.2.S) H,(Cr,...,C,) 1 G,(C1,,...,C,) 1 A,(C1,. . .,C,).

(see [51]).

Note also thal G,(C,,...,C): A,(C,...,C): H,(C,...,C): C.

Theorem 6.2.7. Let A¡ < . . .

Iinear, positive and inuertible operators on an infi,nite-dimensional Hilbert space

such that An : ... : A¡ and, Atn : ... : Arn and let q < .. .

numbers. Then

(5.2.e) 
", 

(i a¿LA1¿, ,i o,Aa",) 
= 
i a¿LG,(A1¿, . . . ,, A,¿).

\ i=l i=l / ¿=t

Proof. We proceed as in the proof of Theorem 5.2.L, but in place of (5.1.1), we
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shall use (5.2.S), that is, the second inequality in (5.2.8). Thus we have

n-7

i=l
D on A,G,(A1¿,. .., A,¿) : AnG,(Arn¡.. ., A,n) - a1G,(A1t,.. ., A,t)

-D C,çqri¡ . . ., A,¿) La¿-1
^'-o

2 a*G,(Atn¡. . . , A,n) - a1G,(An r. . . , A,r) -i o,(orn,.. . , A,¿)La¿-1
i=2

: anc,(Atn¡. .., A,n) - a1G,(A1tr.. ., A,t)

-anA,(A1n,. . . ) A,^) * ayA,(A11r..., A,t)+ t a¿LA,(At¿,..., A,¿)
n-]-

i=l

: t a¿LA,(Ayi,.. ., A,i)
n-l

i=l

a¿LA1¿,...,!orA

a¿L,A1¿,...,t a¿LA,¿
n-l

i=I
n-l

i=I

Remark 5.2.8. Similarly, using (5.2.8), we can prove

(5 2 10) ', (t= ) = E a¿LH,(A1¿,...,A,¿),a¿L,A¡r...,t a¿LA,¿
n-t

i--L

n-l

i=l

n-l

i=l

n-lt
i=l

n-]^

D
i=l

and

(5 211) 
""(E

(see [30]).

a¿L,A1¿,...,Ð a¿LA,¿ a¿LH,(A1¿,. . ., A,¡)i

(5212) 
"(Ð

a¿A,A1¿,...,t a¿LA,¿ a¿LG,(Ay¿,..., A,¿)
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5.3. F\rrther inequalities of Pólya type for positive
linear operators

In this section, we give various generalizations of (5.2.10) by using results from

[29]. The results are published in Mond, Peðarió, Sunde and Varoðanec [31].

We denote by S(J) the set of all self-adjoint operators on a Hilbert space

whose spectra are contained in an interval J.I1 J: (0,oo), we write S(0,oo).

Let X : (Xr,...,X*) be an rn-tuple of operators from S(0,oo), A¡(i :
1, . . . , rn) be contractions such that

(5.3.1)

where ^I is the identity operator, and let .4 denote the rn-tuple (,41,. . ., A-). The

power means

84

i o;o, : ,,
j=l

m$rçx;.t¡ : Aix; Ai
r/,

of X with weights A of order r(e Ë\{0}) were considered in [29].

Theorem 5.3.1. The inequality

ut|t(x; A) < MEt(x; A)

holds, if either

(o) ,<s,rÉ(-1,1), tÉ(-1,1); or

(b)s)1)rlIl2or\/
(c)r1-l<s1-I12.

5.3.1. Pólya-type inequalities for power means

Let h: (-oo, -1] U 11l2,ll and Jz: [1, oo). We prove the following
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Theorem 6.3.2. Let C¡ < . ..

S(0,oo) such that Cn :... : C^t and, Ctn :... : C*",, A¡(i - 1,. ..,m) be

contractions suchthat (5.3.1) holds andlet&t1...1an (ot > ...) ctrnt resp.) be

positiue nurnbers. If r,s € J{r € h anil s e J2, resp.), then

(5.3.4) *8, (E a¿L.cç, ,Ea¿LC*¿;o) 
= E",o*fi(c,,,. 

. . ,c*;i A).

If r,s € J2(r € Jz and' s € Jt, resp.), then the inequality is reuersed.

Proof. Let rrs € "/r and a1 I ... < an. We have, by Theorem 5.3.1,

n-l

Ð "u 
nntfrl(Cu,. . . ,C^¿, A)

i=l

: o^M!Ål(ctn,.. . ,c^ni A) - a1Mfil(crr,. . . ,cn, A)

-Ð tw|)(Crn,. .. ,C*ii A)La¿-1
fL

i=2

n-l

i=l
n-l

> 
",MEl(ctn,...,c*ni 

A) - a1Mfl(ctr,. ..,c^ú A)

-D twl)l(Ct¿,. . . ,C^ii A)La¿-1
i=2

: o,MIÅl(crn,...,c^ni A) - aflfil(crr.,... ,c*ú A)

-a,mfl(ctn¡. . .,c^ni A) + atMl)l(crr,. . .,c^ú A)

+l a¿LMftl(Cro,. . . ,C*¿i A)

: t a¿nmfl(Cr¡¡. . .,C*¿i A)

a¿L,Cç,. .., D a¿LC,,¿; A
n-l

i=l
n-l

,l a;LC^¿;A>ME (î",nc,o,
i=L
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If r, s € J2, we have reverse inequalities in the above argument.

lf a1) ...) an and if r € h and s € J2rlhe above argument stillholds, since

Lo¿-, ( 0, while if r € J2 and s e Jr, we have the reverse inequalities.

5.3.2. Inequalities involving quasiarithmetic means for op-
erators

The following result also holds [29].

Theorem 5.3.3. Let f be a continuous real-ualued function on J, an interual of

R. If f is operator conl)er, X¡ € S(/) (j - 1,...,m) and A¡ (i:I,...,m) are

contractions such that (5.3.1) holds, then

(5.3.5) f AîxjAj\ 
= Ë Ajté)Ai.

/ j=t

If f is operator concal)e, the inequality is reuersed.

Henceforth, we shall use the expression an "operator increasing" function for

an ttoperator monotone" function, while if -f is operator monotone, we shall say

that / is an operator decreasing function. The inverse function of /, denoted by

,f-t, ir assumed to exist with range "I.

A simple consequence of (5.3.5) is the following.

Corollary 6.3.4. If either

(i) f is an operator conuer function and f-L is operator increasing, or

0ü f is øn operator concaue function and f-r is operator decreasing, then

(5.3.6) ia;x,e,j < r-'(io;rr*,1¿,) .

Èt \i=t /

Moreouer, if either

0iù f is operator conuer and f-r is operator decreasing, or
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ftr) f is operator concaue and f-r is operator i,ncreasing, then

the inequality is reuersed.

Of course the expression on the right hand side of (5.3.6) can be used as the

definition of the quasiarithmetic mean

/^ \(5.3.7) M¡(x;A): l-'llelf 6)1'tl
\'- /

for contractions A¡ satisfying (5.3.1).

Corollary 5.3.4 gives only inequalities between the quasiarithmetic mean and

the arithmetic mean. However, we can use Theorem 5.3.3 to obtain a related result

between two quasiarithmetic means. The following result holds.

Theorem 5.3.5. Let f , g continuous real-ualued functions on J, X¡ e S(J), i:
1,. .. , m and A¿(i : 1,. . ., m) contractions such that (5'3.1) holds. If either H :
Í og-' is operator conuer and F : f-r operator increasing or H is operator conca,ue

anil F operator d,ecreasing, then

(5.3.s) Mn(X; A) 3 M¡(x; A).

Moreouer, if either H is operator conuer and F operator decreasing or H is operator

conco,ue and F operator increasing, then (5.3.8) is reuersed.

Proof. Let H be operator convex. Then we have, from (5.3.5), for f -+ H and

X¿ ) g(X¿), that

that is,

t 
{n-' läo,,,r,,^,] } =f 4r@-'(g(x¡)))A¡,

, 
{u, läo, n,,,,^,] 

} = i, A} r 6 ) Ai

If F is operator increasing, we have

I -1

þ-o;nrr,)o,] 
< r-' 

LË 
Aî16)Ar)
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that is, (5.3.S). The other cases are proved similarly.

Another generalization of (5.2.9) is the following. See [31].

Theorem 5.3.6. Let f ,g be continuous real-ualued functions on J, c¡ 1 ... 1 c¡n

(not all equal) j :1,... )n't be operators from S(J) such that C¡: . . . : Cmt and

ctn : ... : c*n, and A¡(j - I,...,m) contractions such that (5.3.1) holds.

(i) Let at 1 . .. 1 a* be positiue numbers. If either f and g o,re operator conuer

and, f-r and g-r operator increasing or f and g o,re operator conco,ue and f-I and

g-r operator decreasing, then

/n-r n-r \ t-l
(5.3.9) U¡ lÐ a¿LCt¿," . , t a¿LC^; Al > | a;LMn(Cr¿,. ..,C*¿i A)'

\I=r i=l / i=t

If either f and g a,re operator concaue and f-r and g-r operator increasing or f
and g are operator conuer and f-r and g-r operator decreasing, then the reuerse

inequality applies.

(ii) Let at 2 . .. ) an be positiue real numbers.

(a) f is operator conuer and f-r operator increasing

(b) f is operator concl,ue anil f-r operator decreasing

(c) g is operator concaue and g-r operator increasing

(d) g is operator conuer and g-r operator decreasing

U (þ) or (b)) and ((c) or (d)) then (5.3.e) is uatid-

(e) f is operator conco,ue and f-r operator increasing

0 I ¿t operator conueî and f-r operator decreasing

(g) g it operator conuet and g-L operator increasing

(h) g is operator conco'ue and g-r operator decreasing,

ï (@ or ff)) and ((s) or (h)) then (5.3.9) is reuersed.
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Proof. (i) We make use of Corollary 5.3.4.

Mr

i
j=l

n-].t
'i=l

a¿LC1¿,. .. , t a¿LC^¿; A
n-l

i=I

n-l /* \: t atl l\ e;c,t,t ol
i=t \i=r /

A¡LCon

qÐ AILC¡,;A¡
j=l

Alc¡,A¡ - or D Alc¡A¡ -l: o^f
j 

r,.t

> a^Ð
j=l

na

- a^Ð
j=l

m

j=l
n1,

j=l
n'L

j=l

ti=
n

n

i=2

A,a¿-t

n-l

Alc¡*Ai - ot I Alc¡A¡ -D u'(cti¡. . . ,c^¿i A)

AIC¡*A¡ -r'D AIC¡Ai

-anMn(C1n)... )C^*; A) | alMn(C11,..' ,C^tiA) + t a¿LMn(C1i¡. ..¡C*¿; A)
i=L

n-l
: t a¿LMs(C1i¡. . .¡C^¿; A).

i=7

(ii) The proof is similar, but now Ao¿-, ( 0, that is, -Aø¿-r I 0.

In inequality (5.3.5), ïrr'e can have real numbers as weights instead of contrac-

tions. If u¿ arc positive numbers such that ur*. ..lut*: 1, then by mathematical

induction, we derive

/^ \ -(5.3.b') i f Iw¡X¡l <lw¡l(x¡),
\j=r / j=,

while the quasiarithmetic means are defined by

/* \
(5.3.7') M¡(x;r): f-' (i.tf 6)l" 

\Íí "')
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instead of (5.3.7).

Theorems 5.3.5 and 5.3.6 hold with the same substitutions (Mn(X;ul) instead

of Mn(X;A), etc.).

Moreover, the following reversal of (5.3.5') was obtained in [28].

Theorem 6.3.7. Let w be a real n-tuple such that

(5.3.10) to1 ) 0, w¿ 10, i :2,... )n"¿) t¿r * . ..|w*: L

IÍ X¡ € ^9(J), 
j:I,...,ffi,Ðþrw¡Xt e S(J)' then we haue the inequality i'n

(5.3.5), is reuersed, that is,

/^ \ -
/f tut¡x¡l >l-¡l(x¡)

\i=r / i=r

holds for euery operator conuer function f on J.

Similar to the proof of Theorem 5.3.5, we can establish the following.

Theorem 5.3.8 Let C¡ < ... <
S(J) such that C¡: ... : C,¡ and' Ctn : ... C^n, -¡(i :1,..., m) real numbers

such that (5.3.10) holds.

(i) Let at 1 . .. 1 an be positiue numbers. If f and g a,re operator concaue and

f-r and g-t operator increasing or f and g o,re operator conuer and f-r and g-r

operator decreasing, then

/n-r n-r \ tt
(5.3.12) m¡ lDa¡L,C1¿,...,t a¿L,C*¿;tr; ) 2 \ar\Mn(Crn,...,C^¿tw).

\¿=r i:t / i=t

@ ï f is operator conuer and f-r operator increasing

(b) f ts operator conc&ue and f-r is operator decreasing

(c) g is operator conco,ue and, g-r operator increasing

(d) g is operator conuer and g-r operator decreasing

U (@ or (b)) and, ((c) or (d)) then (5.3.12) is reuersed.
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(ii) Let at 2 . . . ) an be positiue numbers.

(e) f and g úre operator concaue and, f-r and g-L operator increasing

(f ) f and g a,re operator cont)er and f-r and g-r operator decreasing

ï (") or ff) then (5.3.12) holds.

(g) f and g a,re oyterator conueÍ and f-r and g-L operator i'ncreasing

(h) f and g o,re operator conco'ue and f-r and g-r operator decreo,sing

f @ or (h) then the inequality ís reuersed,.

91



6. ABEL, POPOVICIU and
ÕpeYSEV II\EeUAIITIES

6.0. Overview

For our concluding chapter we again dig deep into the history of inequalities,

and make extensive use of Abel's inequality. In Section 1 we develop the Abel

motif and employ the results of our efforts to obtain fresh leverage on inequalities

of Gauss-Pólya type. These efforts spilled over into additional insights, which are

used to improve the Õebysev and Popoviciu inequalities in Section 6.2. This seems

fitting, as the Õebyðev inequality is one of the most fundamental in probability and

statistics, that fertile ground from which the Gauss-Pólya results originally sprung.

The substance of Section 6.1 constitutes a paper in preparation [9], while that of

6.2 has already been published as [36].

6.1 fnequalities of Abel type and application to
Gauss-Pólya type integral inequalities

The following result is well-known in the literature as Abel's inequality (see

[27], p. 335).

Theorem 6.1.1 Let p be a real n-tuple, a be a nonnegatiue nonincreasing n-tuple.
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Then for P¡ ;: Df=tp¿ we haue

ot 
r1l*'å, 

Pfr S I P¿a¿ 1 ot ,1PäPr.

The following generalization of Abel's result was proved by Bromwick (see [27],

p. 337).

Theorem 6.L.2. For a giuen real n-tuple p, and giuen integer , (1 < u I n)

d,efi,ne H1 : hr : 0,H,: max(Pr,...,Pu-t),hu : min(Pr,...,P'-r),H'":
max(P,, ...rPn)rh'u : min(P,, ...rP,). U " is a positiue nonincreasing n-tuple,

then we haue

fL

n

i=l
h"(o, - o,) I h'oo,f D p¿a¿ 1 H,(o, - o,) * H',a".

These inequalities contain in their proof the following identities due to Abel:

(6.1.1)

L,a¿,¡

where La¿: a¡.+t - ai.

In this chapter we will point out some other inequalities of Abel type which

hold for nondecreasing n-tuples ø : (otr. . . ,an). Some applications to Gauss-Pólya

type inequalities are also given.

6.1.1. Inequalities for real numbers

io,on : o,tpn.Ð(å-) La¿-,

: o^ip,-i,(å-)

We will start with the following theorem
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Theorem 6.L.3. Let a : (au...ran) and p: (ptr...,Pn) be n-tuples of real

numbers such that at1...1an andlft=¿pr ì 0 fori -2,...rn- Then

94

fL

lËo,t,,t - l,,lP'l(6.1.2) Dp'o ) atPn t
'i,=l

Proof. As ø is nondecreasing, we have that

La¿¡ -- &¿ ai-r : lou - o¿-rl 2 llr¿l - loo-tll : lAlø;-tll > 0

forall i:2r...,nand

Pn

for all 'i, :2,.. . )n.

Thus, by the first equality in (6.1.1)' we have

¡*ou - atPn : 
ä(å-) 

La¿-t

_+l-a I: 
LIH*Ilao,-'l

tflå-llalou-'ll

:älÉ-) rr''-'rl
' 

' låÉ0,) or,,-,ll

By Abel's identity for løl we also have

Ë
lc=i

olDP¡:
Ic=i

Dp¿!"¿l- lo'lDp :
n n

i=1 i=l
alo¿-r 

I
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Thus

As

n

'i=l

n

i=1

n

à-l
Dp, - atÐp¿ 2 Ðpl"nl - lo'lP, 0

and the inequality (6.1.2) is proved.

The second result is embodied in the following theorem.

Theorem 6.1.4. Let a: (at,...,an) and p: (pt,...,pn) be n-tuples of real

numbers such that at 1 ... 1 an and I'o-rPn ) }ri : Lr...rn - l. Then we haue

the inequality

(6.1.3) >0.

Proof. By the second identity in (6.1.1) we can write

TL fT

únPn -Dpno u dn Pn _ Dp oo

i=L i=L

n-l n-l / t

-tPiai:D(ti=l ¿-r \¡-r
dnPn Pt La¿.

L.a¿- ai+t - a¿: la¿+t - a,il> llo¿+tl- looll : lAla;ll

and ! pn )- 0 for i : 1,.. ., n - I,we have that
À=1

= 
(p ,*) o,o: b,=: 

l__f_rrl 
ro,,r

':'Ë|Ë;lïÏl

= lEÉ-) ^r,,rl
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By Abel's identity written for løl we also have

Dnj"|: la,lP, - Pt alo¿1.
fL

i=l

n-l/i

ÐLE
Hence we get

anPn -

anPn -Ðproo > lo*lP, -Ðp¿lo¿l
ft

i=l

fT

i=l
0

and the inequality (6.1.3) is proved

Remark 6.1.5. The condition ![=¿ pn 2 0,(i : 2, . . . ,n) is equivalent to P' -
P¿-t ) 0,(i: 2,...,n) or P,> n for i:1,...,n-1. The condition li=rp¡ 2
0,(i : I,...,n - l) is equivalent to 4 > 0,(i - 1,. ..,n -I).

The following corollary also holds.

Corollary 6.1.6. Let a be nondecreasing and p e m with P* )- P¿ ) 0 for all

i :1r. . . )n - L. Then

lo^lP* -Ðpl",l t
i=l

n

i=l
P¿a¿ ) atPn I Deolql - lo'lP*

fL

i-r

Remark 6.1.7. Note that the above inequality is similar to Abel's result as it
provides an upper and a lower bound for the sum fþ, p¿a¿ when the sequence a is

nondecreasing and p is such that 0 < n < Pn for all i : 1,...,n - l.

6.t.2. Inequalities for complex numbers

We now point out some similar results valid for complex numbers
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Theorem 6.1.8. Let z : (rtr...rzn)ru : (rr,...run) € Cn and a :
(ot,. . . ,an) € IR such tha

'a

for all i :2,,. . . )n. Then we haue the inequality:

Proof. By Abel's identity we have

f,@l"o -',tt,nt > -." {lä.,,,, -,'Ð,'1, lå 
.¿t,¿t - t,'tå,,1,à=t i=t 

ll),,|,'--t,,t2'i,tl,iË,;,, Þot-r,,rlr,,,rl)

(6.1.4)

n

i=l

and so

Also, we can write

l"o-r¿-tl3o¿-ûi-t

Dltool"o - otDl-| :
n

i=l
É
i=2

IL

D
i-2

La¿-t

'ark l\r'-tl:: A

(by (0.t.+)).

Now, by the properties of the modulus mapping, we have

I lr*l 2 lD.rl
n

k=i

ft,

k=i

A> Ðl(E'-) o',-,1

lå(å,r)o,,-,1

lä',',- ',ä',1'

Lz¿-t ) A, z;-t
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fori:2,...,n+1.Thus

,-) o

,-) o

(å

$
\r=i

nlrl
i=2 I

ln

It
li=z

lå

A>

,o-rll
I

Dto
i=l

A

Z1

zi-t

'tL

zi-t

-¿lt¿l - l"tlD.n

In the same way we have

A

i=1

lL"¡-tl

i;$:1.r¡) ^,o-,

1Lz¿-

Dl',nlro- rrDl-¿l
i=l i=l

and

lalr¿-'ll

and the proof of the theorem is thus finished.

Tn the same \¡¡ay (using the second part of Abel's identity (6.1.1)) we can prove

the following theorem.

Lz¿-t
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Theorem 6.1.9. Let z,ut,a be as aboue. Then we haue the inequality

"-Ðl,,ol-il*^"u)max{1""þ_-,0- i,u,ol,l,,^P--.0- D1,,@ol,

l,"ät,nl - it s",l,l,,^ät ot-Ë1,,,I1,,II)

6.1.3. Application to integral inequalities of Gauss-Pólya
type

Theorem 6.1.10. Let f : la,,bl -+ IR be a nonnegatiue and increasing function

and, r¿: [ø,ó] -+ IR be functions with a continuous fi,rst deriuatiue such that

1) r1(t) <...<
2) q(t) < "'<
Suppose also p¿ ) 0 and,iro: I. Then we haue the inequality

i=l
(6.1.5)

i 
= l-ä 

,,(ll,' r'nþ)r(t)dtl - l¿' 
æ',(t)r(t)d,|)l - 

lþ_-r, l,o {t*o{,)t - t",(ú)t) dr.ol

< /(b) Dp¿ @¿(u) - ",(b)) - f@)Dp;@¿(") - ø1(ø)).
n,

i=l

fL

i=L

Proof. We observe, by an integration by parts, that

(6.1.6)

þ^r, 1"' 
r'ng) f (t)dt: 

l"u (io,.,frl)' ,AV,

: (å eo*o(t)) /(,)l' - I(äe;*,çt¡)a¡lt¡

: ï(b)ip,*o(b) - l@)f,pn*n(o) - l,' (är0',,Ø) d,r (t).

We can apply the inequality (6.1.2) to obtain
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(6. I .7)
IL

I 
"u, 

n(Ð, (r)d.t > I 
"u 

*,Q), (t)dt +lå r' ll "',,ur 
r rÐ"1-ll 

"' " 
xo l,l"ll

lär,@¿(t)t- 
t",tr)tl

Dp
'i=l

and

(6.1.8)

Dv;"¿(t¡ > ø1(ú) *
n

i=l
for all t efa,bl.

Intergrating this last inequality, we deduce that

Dn;*n(t¡ dr(t)
fI

i-l

. l"o

. I"o

r1(t)d,f (t) * l"'läpoþ,,(t)¡ - ¡rrlr¡¡la¡1t¡

r1(t)d,f(t)- lå vo l"u l*oçt¡ld/Ø - l"o l*,1r)ldl(¿)l

: f (t)x1(t)l'"- I,' r'r(t)f (t)dt+
lår, l"u l,u(t)ldf (t) - I"' t.,t>torl

Using the identities (6.1.6), (6.1.7) and (6.1.8) we get

l,u P¿;LfU)dt+ t
i=l

< /(b)Dp¿r¿(b)- f@)Ðn",;(a) - (/(ó)"'(b)- f(a)r{a))

ll "' 
r,, u, o,l - ll,' "', r Ø *ll

fL

i=l

n

i-l

+ 
l"b 

*,f (t)d,t -lår' l-u l*oØlo¡t¡ - l,u l',{r)ldl(¿)l ,

that is,

l*r,ll"' 
.,Ør(Ðo,l-ll"' ,ur,r,)"ll* 

lår, l"u t*,,tÐtd'rØ - l"o t*,{,)tott)
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r /(ó) (in*,tul -',(u)) - r@)(ä0,.^") -,,(')) ,

which is clearly equivalent to (6.1.5).

Remark 6.1.11. Similar results can be obtained if we use the second Abel- type

inequality (6.1.3). We omit the details'

2. On a refinement of the Cebyðev and Popovi-
ciu inequalities

We establish a refinement of the discrete Õebyðev inequality and an analogous one

for the Popoviciu inequality.

The discrete Cebyðev inequality is a fundamental inequality in probability. It

states the following.

Theorem 6.2.1. Suppose a and b are n-tuples of real numbers, both nondecreasing

or both nonincreasing, and p is an n-tuple of positiue numbers. Then

6

(6.2.1) Tn(o,b;p) :: Ipo D pjajbj -DpnonDp¡u¡ > 0.
n n

i=l j=I

T¿ 7L

i=\ j=I

Recently an improvement has been derived by Alzer [2]

Theorem 6.2.2. If a,b and p are defi,ned as aboue, then

(6.2.2) Tn(a,b;p) 2 ,t)¡2,1@o - o¿-t)(b¡ - b¿-')l 'Tn(e,e;p),

where ": (1,2,...,n). Equality holds if and only if

(6.2.3) cli: Qt + (i - t)a and b¿: bt + (i - I)P (i :1,. . . ,n),

where a and B are positiue or negatiue real numbers according as a and b are both

nondecreasing or nonincreasing n-tuples.
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In fact it is possible to give a corresponding upper bound for Tn(aró;p). set

m(a) : p,i¿(o;+' - a¿), M(o): 
,?,?î(on+t - a¿)'

Lupaq [22] has shown that with the same conditions on a,b and p

y,4p\ ! M(a)M(b).m(a)m(b)s r@,e;p)_ \,

We note that the first inequality is equivalent to (6.2.2).

The condition that p is a positive n-tuple can be weakened to the condition

(6.2.4) 0<P.<Pk (lc:I,2,...,n-I),

where P¡, :: Df=rp¿ (k : 1, 2,...,n) (Peðarió, [43]).

The result was established uia an Abel-type identity. This appears to be of

a more general applicability, and we shall employ it to derive two new results: a

refinement for the Õebyðev inequality and one for Popoviciu's inequality.

Since the identity is not proved in [43], we present a proof in Subsection 6.2.1.

An interesting feature is that although this generalizes Abel's identity, it can be

established by repeated use of the basic Abel identity. The latter therefore appears

to hold a key role in connection with the cluster of results mentioned above. In

Subsection 6.2.2 weprove our new refinements of the Cebyðev and Popoviciu results.

6.2.L. An Abel-type identitY

Lemma 6.2.3 below is a useful consequence of the repeated use of Abel's iden-

tity
n n-l

j=r j=t
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where Lc¡ z: cj+t - c¡ and P¡ is defined as in the previous subsection.

It will be useful to introduce also a variant. Put P, :D?=¡P¿ U :1,...,n)'

On substituting for the definitions oL P¡, P¡ and interchanging the order of summa-

tion, we derive

ni-ln

Dp¡"¡ : c,iPn -l P¡L,c¡ * | P¡Lc¡-r (1 < i 1 n),
j=l i=l i=¿+l

which is an extension of Abel's identity.

Lemma 6.2.3. [36] Suppose o,: ("¿)T, b: (b¿)T, p: (p¿)T are real n-tuples and

Tn(o,,b;p) is defined by the left-hanil relation in (1). Then

T(a,b;p):

Proof. From its definition, we have

P¿*rP¡Lb¡ + \ P¿P¡Lb¡-t

P¿h¿a¿,É
i=l

La¿
j=i+t

r(a,,b;o¡ :in'",(ip¡(a, - a¡))
i=L \i=t /

where

(6.2.5)

Accordingly, by Abel's identity,

and since

r(a,b;r, : (å e,h,) "- -E

t o,--f,pjJ,o
j=L

b)

P¿h¿ La¿,

we thus have

n fL

i--L i=7

n-l

Dp.t o: t p¿Dp¡(b¿ - ó¡) : o,
n

i=l

T(a,b;p) : - D(6.2.6)
i--t

La¿
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(6.2.7) Dp¡h¡ : h¿P¿ -l f,tt j : h¿P¿ - | eof"tU .

Again by Abel's identity,
i-L i-r

j=l j=l j=L

Further, from (6.2.5) and our extension of Abel's identity,

i-r n

(6.2.8)
j=L j=i+t

and so (6.2.6) yields

n-l i-L

i=I

ho:ÐP¡Lb¡- | P¡Lb¡t,

T(a,b;p) : D h¿P¿ - | ror"tut La¿ bs (6.2.7)
j=l

n__sL
i=l

n-l
P¡Lb¡ - \ P¡Lb¡-t

j=i+t

i-r

n-l

-l rtr"Lb, La* by (6.2.8)
j=l

.í-r fL

i=l j=l j-i+r

and we are done.

6.2.2. Refinements of Õeby5ev and Popoviciu inequalities

We now proceed to an application of Lemma 6.2.3 to give a refinement of

Õebyðev's inequality. With the notation

løl : (lø11,... ,lo"l),

we have the following result.

Theorem 6.2.4. [36] Let a and b be n-tuples of real numbers, both nondecreasing

or both nonincreasing, and p a real n-tuple satisfying (6.2.1. Then

T^(o;b;p)> lT"(lol',1ól,p)l I o.

D P*rD P¡Lb¡ + P¿ D P¡Lb¡-t L,a¡¡
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Proof. For a nondecreasing n-tuple we have

so that by Lemma 6.2.3

T(a,b;p) :

La¿: o,;+r - (ri: a¿+r - a,¿ > ü¿+t - d¿ - L a¿ )

n-l

D
Ic=L

n-l

ft-I "\,,1r¡nu¡ t P* D P¡tu¡-'l to
j=r j-k*r /
k-l fL

,DP¡ lalójl +Pft D P¡lalb¡-rl

k

>t
lc=1 j=l

fr-l

j=lc*l

4*'D Pillbrl+ Pk t 4aló¡-'l
j=k+t

: lT"(lal,lbl;p)1,

giving the required result.

We conclude by considering Popoviciu's inequality [50], which states the fol-

lowing.

Theorem 6.2.6. Suppose

lalo*ll

n

j=l

fL na

F(a,b;") : D lr¿,¡a¿b¡,
i=\ j=l

where all the quantities inuolued are real numbers. Then

(6.2.9) F(a,b;") > 0

for all sequences o: (or,...,an) andb: (br, ...rb*) which are monotonic in the

so,rne sense if and, only if
X,,r) 0 (" -2r...¡frj s-2r...rm)',

(6.2.10) X,J :0 (r : L, . . . ,n),,

XL," :0 (s : 2r -.. ,m),
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f¿ TTL

where X,,":DD*u,¡.
i=r i=s

Remark 6.2.6. For the case rn : n) we recover Ceby5ev's inequality under condi-

tion (6.2.4) with the choice

n'i(P" - ,u¡
-p¿pj

Relation (6.2.9) is a simple consequence of the identity

earJ
for i: j
forilj.

F(a,b;x) : atbtXr,r * ø1 )ì X1,"4ó"-1
n1,

(6.2.11) fI

r=2

n fn

r=2 s=2
+br I X,,1La,-1 + t Ð X","4ø"-14ó"-1

(see Peðariê,,l4ll and also Mitrinovió, Peðarió and Fink, l27l,p. }al).

Interpolations of (6.2.9) which contain (6.2.2) and (6.2.3) are obtained in [43]

Finally we derive an analogue of Theorern 6.2.4 for F.

Theorem 6,2.7. Supposer,i,j (1 <i<n,L1i 3m) arereal numbers satisfying

(6.2.10). If the sequences a andb are monotone in the sa,nle sense, then

F(a,b;æ) 2 lr(lø1, lbl;")l > o.
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Proof. By (6.2.10) F reduces to the last term in (6.2.11), so

Remark 6.2.8. [36] As in Remark 6.2.6 we can obtain Theorem 6.2.4 from Theorem

6.2.5.

F(a,b;") : Ë i",,,L,o"-rAó"-r
¡=2 s=2

> tDX,," Alr,-r x Alb"-l
r--2 s=2

: lAlo"-r x Alô"-l

: F(o,lb;*) .
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