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The connectionist modelling framework enables the construction of cognitive models

which are situated, embodied, and support emergent cognitive phenomena. Coupled with

the potential to learn complicated internal representations, these abilities endow

connectionism with significant promise as a means of modelling the nature, acquisition

and utilisation of mental representations. After arguing for the validity of the established

'psychological space' theory of mental representation, this thesis develops and evaluates

two models which explore the connectionist learning of this type of representation. The

first model provides the groundwork for the second, by demonstrating a. way in which the

representational structures dictated by the psychological space theory may be learned by a

connectionist network. This model effectively implements a metric multidimensional

scaling algorithm by assuming that psychological similarity exponentially decays in

relation to distance in psychological space. The model is shown to be capable of operating

under the Minkowskian family of distance metrics, and autonomously determines the

appropriate dimensionality of the derived representational space. The second model

atempts to provide a more realistic account of the learning of psychological spaces by

internally generâting the similarity indices provided externally to the first model. It is

argued that such indices may be derived from representational constraints implicit in the

cognitive operation of the model in its environment, particularly from information

regarding the categorical associations and sensory properties of stimuli. This second model

is shown to be capable of deriving appropriate representations through learning these

associations and properties, and its behaviour is also demonstrated in noisy and

dynamically changing environments. The relationship of the models both to general

psychological learning theory and to other connectionist models is discussed, and several

possible extensions and refinements to the models are explored.
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Chapter 1: Mental Representation And Connectionist Modell

There is nothing more important to human mental life than its representational foundations.

Mental representations provide the information structures with which we characterise and

comprehend the external world, through which we plan and preview our interaction with that

world, and upon which we can create and construct imaginary objects, events, and other wodds.

So pervasive is the role of mental representation that an understanding of what it is, how it is

learned, and how it is used is necessary - it has almost been suggested sufficient (llofstadter 1988) -

for the explanation, prediction, and emulation of human cognition.

This thesis examines the nature, acquisition and utilisation of mental representation through

describing and evaluating two connectionist models. The first model provides the groundwork for

the second by developi ng a way in which mental representational structures may be accommodated

within a connectionist network. As such, the first model primarily considers the nature of mental

representarion. The second model, however, also incorporates the inter-related abilities of

acquisition and utilisation, and thus constitutes a more complete attempt to model the learning of

human mental representation.

1.1. The Connectionist Modelling Framework

connection weight

representational unit

Figure 1,1, A connectionist netuork. Dffirent shadings of the representational units correspond to dffirent
actiaation palues.

Since all of the modelling undertaken in this thesis is conducted within a connectionist

framework, it is worthwhile providing a brief summary of this framework, and examining its

cognitive modelling advantages. As shown in Figure 1.1, connectionist models consist of simple

representational elements, referred to as 'units' or 'nodes', which are linked by a set of directed

'connection weights' to form a netwoilr. Information is represented within the network by

associating a numerical 'activation value' with each unit, which is determined both by the
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activation values of connected units, and the strengths of these connections. Connectionist models

are also subject to learning rules which act to modify connection weights, thus altering the

information processing properties of the network.

The 'neural inspiration' underlying the connectionist modelling framework - in which units

correspond to generic neurons and connection strengths model synaptic junctions (see Rumelhart

t989, pp. 133-136) - is entirely appropriate, given the assumed biological basis of mental

representation. This is not to suggest, however, that the models presented in this thesis are

intended to be biologically realistic, or even biologically plausible. Some connectionist research (eg.

Lynch, Granger, Larson Bc Baudry 1989, McClelland, O'Reilly 8c McNaughton 1995) strives for

the detailed alignment of connectionist models with neurological brain structures. In this thesis,

however, connectionism is employed merely as a modelling vehicle with which to develop a

psycbologicølþ based understanding of the nature, acquisition and utilisation of mental

representations. In this sense, the approach adopted here accords with Hofstadter's (1985) belief

that:

"A model of thought ... need not be based so literally on brain hardware that there

are neuron-like units and axonlike connections between them" þ. 659)

Rarher, the two models developed in this thesis are intended to exist at what Smolensky (1988a,

1988b) rerms the 'sub-symbolic' level, which is asserted to be distinguishable from a 'neural'

modelling level. From this perspective, the fundamental advantages of connectionist modelling lie

in its ability to model emergent cognitive phenomena, and its accommodation of embodied and

situated cognition.

1. 1. 1. Emergent Cognitive Phenomena

Through their compatibility with the sub-symbolic approach, connectionist models are

natvally able to accommodate the notion that mental representations are active and emergent

phenomena (see Hofstadter 1985, chap. 26). This view derives from observed deficiencies in the

traditional symbolic approach to cognitive modelling (eg. Newell 1980, Newell 8¿ Simon t976). As

summarised by Chalmers, French and Hofstadter (LlSl), the symbolic approach:

"posits that thinking occurs through the manipulation of symbolic
representations, which are composed of atomic symbolic primitives" þ. 6)

corresponding to mental representations. The weakness of this conceptualisation is that the mental

representational symbols are modelled as passive and inflexible data structures, reliant upon the

action of external processing to caPture meaning.

The alternative sub-symbolic approach to modelling human cognition argues that:

"cognitive behavior emerges as a statistical property of many small things designed

to interact with one another" (Casti 1989, p. 305)
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In other words, sub-symbolic models do not attempt to explicitly model either cognitive processes

or mental representations, but seek instead to provide a formal computational substrate from

which these features of cognition emerge as collective phenomena. Importantly, this substrate can

be constructed from a set of local interactions between units, meaning that the need for an

overarching cognitive executive is alleviated. Similarly, within the sub-symbolic approach, mental

representâtions are conceived of as:

"ACTIVE SUBSYSTEMS of a complex system, and they are composed of lower-
level active subsystems ... They are therefore quite different from PASSIVE

symbols, external to the system ... which sit there immobile, waiting for an active

system to process them" ftIofstadter 1979, p.326)

As detailed by Smolensky (1988a, 1988b) and Cussins (1990) amongst others, connectionist

modelling is entirely compatible with the sub-symbolic approach. \Thilst the representational

capabilities of units in a connectionist network are too limited to maintain symbolic

representations, an interconnected concerts of units is well suited to realising emergent

representational structures. Thus, within connectionist models, it is patterns of activation across

sets of units, rather than particular activation values of individual units, which are amenable to

psychological interpretation as mental representations. As Smolensky (1988a) summarises:

"cognirive descriptions [are] built up of entities that correspond to constituents of
the symbols used in the symbolic paradigm; these fine-grained constituents ... are

the activities of individual processing units" þ. 3)

Accordingly, the mental representations learned by both of the models developed in this

thesis are distributed across a number of units. The adherence to the principle of emergent

cognitive modelling this promotes is evident in at least two tangible benefits. First, the distribution

of representational information enhances the ability of the models to generalise (see, for example,

French L99!,Hinton, McClelland 8c Rumelhart 1986, Kruschke 1993b). Secondly, the fact that a

number of units are involved in any given mental representation assists in relating the models to

the geometric 'psychological space' view of mental representation (see Shepard I987a) v¡hich is

espoused in this thesis.

7.7.2. Embodied And Situated Cognition

Connectionism can also readily accommodate a 'situated' approach to cognitive modelling

(see Brooks !99Ia, Igglb, Norman 1993, Russell 8¿ Norvig L995, chap. 2) which asserts that

cognition can only exist within an embodied agent operating in a structured external environment.

This belief has its origins in observing that mental representations continually interact with the

external world in that they form as adaptations to the external world, and in that the actions they

induce directly affect the external world. As Norman (L993) notes, the situated approach to

cognition focuses:
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"entirely upon the structures of the world and how they constrain and guide

human behavior. FIuman knowledge and interaction cannot be divorced from the
wodd" þ.4)

Connectionist models, through specifying subsets of input' and 'output' units within the

nerwork, are capable of being both embodied and situated. Input or 'sensor' units may be lilçened

to human perceptual systems in the sense that they receive information from an external source,

whilst output or 'effector' units may be likened to human motor systems in that they are able to

alter that information source. The remaining units are generally termed 'hidden' units, and mediate

the flow of information between the input and output units.

In the context of modelling situated cognition, a real or simulated external environment is

appropriately employed as the external information source. In this v¡ay, as indicated in Figure 1.2,

the exrernal world may interact with, and be affected by, the connectionist model. As is also

shown in Figure 1.2, it is natural to endow embodiment upon such models, through identifying the

points at which exchanges of information take place with the boundary between the model and the

external world.

Figure 1,2. An embodied ønd situated connectionist model, incorporøting input, bidden, dnd output units

The second model developed in this thesis, which considers the acquisition and utilisation of

mental represenrations, is heavily reliant upon information provided by an external environment.

As such, the model is constructed as an embodied and situated cognitive âgent, operating in a

srrucrured world, and incorporates input, output and hidden units fulfiling precisely the roles

described byFigure L2.

On the basis of these considerations, therefore, the connectionist framework appears to be

well suited ro rhe modelling of the learning of human mental representation. Not only does

connecrionism provide a means for the interaction between a cognitive agent and the world to be

4
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explicitly modelled, but the distribution of information throughout a connectionist network offers

the promise of enabling mental representations to emerge naturally as an result of this interaction.
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Chapter 2z Mental Representation In Connectionist Models

This chapter provides a summary of the ways in which mental representations have been

incorporated into previous connectionist modelling. It has convincingly been argued (eg. Hanson

8¿ Burr 1990, Hinton 1989) that much of the impetus for the widespread adoption of the

connectionist modelling framework can be seen as the result of the development of learning

procedures which allow connectionist models to develop appropriate internal representations. As

such, part of this chapter is concerned with examining those networks which attempt to model the

development of mental representations by coupling these learning procedures with particular

network architectures.

The connectionist framework has, however, also been more generally employed in the

modelling of psychological processes such as identification (eg. McClelland 8c Rumelhart 1981),

categorisation (eg. Shanks 799t), and selective attention (eg. Kruschke L992). Although the primary

focus of these models is, naturally, on the process or processes which they are attempting to model,

they do, necessarily, involve the specification of some form of mental representational structure. A

complete examination of mental representation in connectionist modelling must, therefore, also

consider the representational approaches of these models.

\Øith regard to this second source of connectionist representational approaches, a legitimate

initial reservation might be that the focus on different psychological processes would serve to

confound the representational structures extracted from the models. Fortunately, many of the

models under consideration are appropriately regarded as members of the broad class of 'cognitive

process models' (Nosofsky 1992).In essence, cognitive process models are ones in which cognitive

processes operate on fixed stimulus representations. Cognitive process modelling, for example,

readily allows the same representational structure to be employed in both identification and

categorisation tasks, with different transformational processes being employed to produce the

required performance for each task. Similarly, categorisation data across two different sets of

stimuli can be modelled by altering the representational structure, but leaving unchanged the

categorisation processes which act upon these stimulus representations. Thus, although both a

transformational process and a representational structure are necessary to model identification,

categorisation, or any other type of cognitive performance, these two components of a cognitive

process model maintain a certain degree of independence. As such, it is possible to survey the

representational structures employed in previous connectionist modelling of this type, without

being overly susceptible to the danger of the different aims of these previous models confounding

the survey's conclusions. Accordingly, this chapter commences by examining the two dominant

approaches to incorporating mental representation into connectionist cognitive process models.
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2.1.. Representation Through Pre-Abstracted Features

Perhaps the simplest approach to incorporating mental representation into a connecrionisr

model is to measure each stimulus in terms of a set of relevant psychological features. For example,

a set of stimuli drawn from the natural kind 'animals' can be characterised in terms of their size,

how many legs they typically have, their colouring, whether they have webbed feet, or gills, or

claws, and so on. \Øithin the connectionist model, allocating each of these features to a sensor (or

input) representational unit provides a simple means of indicating to a model that it is encountering

a certain animal in the environment: these featural units need only be set to appropriate, pre-coded,

values in accordance with the psychological features of each animal.

2. 1. 1. Connectionist Models Employing Featural Stimulus Representations

This form of connectionist representational structure, despite its obvious shortcomings, has

been widely employed in connectionist models. Three such models are described below to clarify

the nature of this approach, and to allow a discussion of its weaknesses. Furthermore, the learning

algorithms and modelling goals of these three models vary substantially, giving some indication of

the pervasive breadth of this representational practice.

Shanks (199I) describes a series of connectionist models which learn to diagnose each of a set

of patients into one of a number of disease categories on the basis of each patient's physical

condition. This condition is described in terms of the presence or absence of a finite number of

symptoms, such as'skin rash','puffy eyes','dizziness', and so on. The architecture of these models

is particularly simple, and is shown in Figure 2.1.

Figare 2.1. The general architecture

Figure 1.

' (199 disease diagnosis rnodek. Adøpted from Sbanþ.s (199t,

Each unit in the bottom 'layer' of these models corresponds to one of the symptoms, and,

for each patient the model encounters, their physical condition is represented by the pattern of

activation values across this layer. The presence of a particular symptom results in the appropriate

unit being activated, whilst its absence leaves the unit inactive. Clearly, the representations utilised

by the model in learning to diagnose the patients are solely based upon a set of pre-abstracted

psychological features, in the form of symptoms.

7
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A second example is the ARTMAP model (Carpenter, Grossberg 8c Reynolds 1991), based

on Adaptive Resonance Theory (for an overview, see Carpenter !989, Carpenter & Grossberg

1988), which learns to categorise a set of mushroom stimuli as either poisonous or edible. The

architecture of the ARTMAP model is considerably more complicated than that of Shanks' (I99I)

model, and the learning methods employed are also entirely different, but the represenrarional

approach is virtually identical. Each mushroom is presented to the model as a bit string, with each

bit encoding the presence or absence of one of.126 different mushroom features such as 'conical cap

shape', 'green cap colour', 'fishy odour', 'urban habitat', and so on. Again, the representational

structure of the model is one based entirely upon the presence or absence of a set of pre-abstracted

psychological features.

A final example is Rumelhart, Smolensky, McClelland and Flinton's (1986) demonstration of

a model of human conceptual structure, formalising a connectionist interpretation of previously

established psychological constructs such as schemata (Rumelhart 1980), scripts (Schank 8¿ Abelson

\977), and frames (\4insky t975,1986). The model realises the emergence of room schemata, such

as 'kitchen', 'dining room', and 'bathroom', in terms of household furniture and room properties

such as 'small', 'cupboard', and 'table'. The architecture of this model is shown inFigure 2.2.

small

cupboard

table

toilet sink

Figure 2,2, Tlte arcbitecture of Rumelbart, Smolensky, McClelland, and Hinton's (1986) room schemata model.

Only fi.ve of tbe forty, completeþ interconnected, featural roorn desuiptors are sbown.

Each unit in Figure 2.2 corresponds to a piece of furniture or a room property, a number of

which are initially activated, and are'clamped' to remain active, indicating that they arc part of the

current room description. The model is then iteratively updated, transferring activation values

between units through the connection weights, until the activation value at each unit stabilises as

either entirely active or entirely inactive. The connection weights betv¡een each pair of units are set

according to a Bayesian analysis (see Hinton 8c Sejnowski 19S3) of the probability that the two

pieces of furniture or room properties represented by the units co-occur in any given household

room. The stable activation state of the model represents the model's generation of a completed

room description. Rumelhart et. al. (1986) convincingly argrte that these room descriptions can also

be viewed, at a psychological level, as the outcomes of a schematic memory structure. They view

the model's information processing technique, which is essentially a constraint satisfaction

algorithm, as allowing:
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"schemata [to] emerge at the moment they are needed from the interaction of large
number of much simpler elements all working in concert with one another"
(Rumelhart et. al. 1986, p. 20).

In terms of the schematic room concepts, 'kitchen', 'dining room', 'bathroom', and so on,

this model is clearly employing â more sophisticated representational approach than either Shanks'

(\99t) model, or the ARTMAP model. Indeed, the generation of emergent mental represenrarions

in this way was nominated as one of the principal aftractions of the connectionist modelling

approach in Chapter 1. As has been noted by Dyer (1983) and McCarthy (1988), however, the sub-

conceptual room 'microfeatures' such as 'small', 'cupboard', and 'table' are represented by the

model in a fundamentally different manner. In fact, they take the form of pre-abstracted

psychological features.

2.1.2. The Problems \flith Pre-Abstracted Psychological Features

\Øhilst the practice of realising mental representation in connectionist models through

identifying units with psychological features has the advantage of being straight-forward and

transparent, it is, in many ways, an unsatisfactory approach. The representational structure of

connectionist models is widely believed (see, for example, Anderson 1995, Hinton 1989, Smolensky

1988a) to influence grearly their ability to perform the task for which they designed, whether that

task involves learning to categorise stimuli, learning to accurately identify stimuli, or whatever. As

Smolensky (1987, cited in Smolensky 1988b) ârgues:

"a poor representation will often doom the model to failure, and an excessively
generous representation may essentially solve the problem in advance" (p. 69).

Hertz, Krogh and Palmer (I99I), in a non-psychological context, make essentially this point by

demonstrating that the most primitive neural network can learn to solve the most difficult

problem, given an appropriate set of pre-processors.

The act, on the part of an experimenter, of abstracting a set of relevant psychological features

from a stimulus set constitutes a powerful form of pre-processing. In fact, it is reasonable to suggest

that this abstraction makes an inappropriately large contribution to the successful performance of

connectionist models employing this type of representation. As Komats,r (1992) argues, the

processes of featural selection "bear the bulk of the explanatory burden" ftr. 514). Brooks (I99La)

identifies the problem more bluntly in asserting:

"this abstraction is the essence of intelligence and the hard pan of the problems
being solved" (p. 143).

These criticisms 
^ppear 

to be well founded, and certainly cast doubt on the appropriateness

of connectionist models of psychological processes built on such psychological featural

representational structures. Furthermore, the "generally ... ad hoc" (Smolensky 1988, p. 8) ways in

which these features are generated suggests that the entire representational strategy is fraught with

9



danger. Brooks (199Ia) summarises this danger thus:

"it may be the case that our introspective descriptions of our internal
representâtions are completely misleading and quite different from what we really
use" þ. 144)

It seems reasonable to require that an approach to accommodating mental structures within

connectionist models meet at least three criteria. First, the approach must be explicit - that is, the

way in which the representations are derived should be formalised within the model. Secondly, the

approach must be objective - that is, the representations that are derived should not depend on who

or what implements the model. Thirdly, the approach must be principled - that is, there should be

some clear and compelling basis according to which the claim can be made that the model's derived

representations are appropriate. The practice of representing stimuli in terms of pre-abstracted

psychological features meets none of these requirements.

2.2. F:epr esentation Throu gh Sensory Description

A different approach to realising mental representation in connectionist models of

psychological processes is to characterise stimuli in terms of their sensory properties. This

approach is particularly amenable to modelling tasks involving simple visual or auditory stimuli -

such as line segments or tones - which have been commonly employed in the study of 'low-level'

perceptual processes, but which have also been used in the study of 'highJevel' cognitive processes.

2.2.7. Connectionist Models Employing Sensory Stimulus Representation

Figure 2.3. An exømple of a dot pøttem stimulus, of the rype ernployed in Knapp ønd Anderson (195a) Adapted

from Knøpp and Anderson (1954), Figure 2.

A first example of this representational approach is Knapp and Anderson's (19S4)

connectionist modelling of prototype formation in categorisation. The stimuli encountered by the

model take the form of artificial dot patterns, of the type originally described by Posner and Keele

(L968, t970), as depicted in Figure 2.3. These stimuli are used to develop similarity rating and

categorisation tasks through which the model is evaluated. Given the highly abstract nature of the

stimulus set, the representation of the stimuli is, necessarily, formulated in terms of the physical

properries of the stimuli. In particular, the location of all of the dots across the stimulus set is the

sole determinant of the model's representâtional structure.

a oo
o

a
o
o a

10



A second example is found in the widespread connectionist modelling of the psychological

process of character recognition. \Øhilst is true that some connectionist modelling of character

recognition eschews psychological considerations altogether in pursuit of the classificatory

accvracy required for practical application (eg. LeCun, Boser, Denker, Flenderson, lloward,

Hubbard & Jackel 1990), other models either claim or imply some degree of psychological realism

in the stimulus representations they employ. For example, the Neocognitron connectionist model

(Fukushima 1980, 1988), having been designed as "a network with the same functions and abilities

as the brain" (Fukushima 1988, p. 65) could, in its application to character recognition tasks, be

considered to belong to this latter class.

Figure 2.4. Tuo contrnonly employed metbods of representing a charøcter stintulus in connectionist rnodels of
cb aracter rec o gnition.

As indicated by Figure 2.4,there is some considerable scope with regard to the precise means

by which characters can be represented within these models. The letter '\üØ' on the left is

consrructed from a set of line segments, whilst the letter 'T' on the right is composed upon a grid

of circular pixels. Typically, each line segment and each pixel would correspond to an input unit of

a connecrionist model. The important point is that all of the representational structures employed

are entirely based upon the physical properties of the character stimuli.

Finally, General Recognition Theory (Ashby 8¿ Perrin 1988), although not originally

conceived within the connectionist framework, is certainly amenable to connectionist

implementation', and provides a clear example of a cognitive process model founded upon a

sensory representational structure. In essence, General Recognition Theory represents a stimulus as

a probabilistic distribution in a multidimensional 'perceptual' space. As a concrete example,

consider the simple geometric objects depicted in Figure 2.5, are employed as stimuli in Experiment

1 of Ashby and Perrin (1988). \Øithin General Recognition Theory, such stimuli are represented as

a probability distribution in a two dimensional space, where the axes in the space are identified

with the length of the line segments.

1 
The feasibility of this refo¡mulation can be ftaced, for example, by ftstly obsewing the fundamental architectural and procedural

similarities between General Recognition Theory and Nosofsþ's (1986) Generalised Context Model (see Ashby & Maddox 1993),

and then noting the ease with which a connectionist implementation of the Generalised Context Model has been developed

Q.Iosofsþ & Kruschke 1992,p.2"13)
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Figwre 2.5. The representation of stimuli within General Recognition Theory.

General Recognition Theory then formalises means by which these stimulus representations

may be processed, enabling a model to perform judgments of stimulus similarity, or category

membership, or other cognitive tasks. Like Knapp and Anderson's (1984) model, and connectionist

models of character recognition, General Recognition Theory is effectively a cognitive process

model founded upon stimulus representations which are directly derived from the sensory

properties of the stimuli.

2.2.2. Ev aluatin g The Sens ory Description Representational Approach

Evaluating the appropriateness of basing representational structure on sensory properties

requires a certain degree of subtlety. As a representational approach, it certainly does not suffer

from the problem of inappropriate pre-processing inherent in the abstraction of psychological

features. Indeed, sensory information is essentially the most primitive and unprocessed information

that can be made available to a model from an environment. Neither is the validity of the way in

which this information might be described as problematic as it is with regard to psychological

features, since well established measurement techniques developed in the physical sciences seem

directly applicable. The problem with the sensory representation approach is that, whilst a model

must experience its environment to form mental representations of that environment, a convincing

argument can be mounted that, in the overwhelming mqority of cases, sensory description alone

will not serve as an appropriate mental representation of stimuli in that environment.

Rips (1989) provides a partial demonstration of the inadequacies of sensory descriptions as

mental representations in arguing that similarity-based cognitive processes operating on sensory

representations are incapable of modelling human categorisation. For example, in one experiment,

participants are asked whether a circular object, three inches in diameter, is appropriately
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categorised as a pizza or a quârter. Not surprisingly, the object tends to be considered to be a pizza

despite the fact that its diameter is closer to that of a quarter than that of most, if not all, pizzas.

The conclusion Rips (1989) draws from a number of experiments of this type is that similarity-

based processes are unable to explain categorisation. This view is one of some considerable

contemporary popularity, and is employed as a basis on which to argue for so called 'explanation-

based' theories of human conceptual structure $(omatsu L992, Medin 1989, Smith 1989). An

equally valid conclusion to draw from Rips' (1989) experiments, however, may be that it is the

sensory representations, rather than the similarity-based categorisation processes, which are

inadequate.

In any case, Rips (1989) also argues that sensory descriptions are clearly inappropriate when

dealing with 'goal-derived' and 'ad-hoc' categories @arsalou 1983, 1985) such as 'things to remove

from the house if it is on fire'. A similar disassociation between the sensory properties of stimuli

and their mental representations has been noted with respect to words (Shepard 1980, Rumelhart

& Todd t993), which have semantic classifications almost entirely unrelated to their perceptual

features. Finally, as argued by Medin (1989), the sensory representational approach is clearly

completely inadequate if connectionist models are ever to attempt moving beyond representing the

external wodd to accommodate the mental representation of stimuli such as 'ideas', 'emotions', and

so on, which do not themselves even have sensory descriptions.

It seems reasonable to suggest that representational structures based on sensory description

may be adequate for some modelling, as is evidenced by the notable successes of the three models

described in Section 2.2.I. It also seems certain, however, that this sensory representational

approach is a limited one, applicable only to a narrow range of stimuli and cognitive processes. As

confirmation, consider Knapp and Anderson's (1984) concession that their choice of stimuli is

based on the belief that: "Dot patterns seem to be sufficiently unfamiliar and impoverished to be

approximated with simple [ie. sensory] representation" þ. 624). Although humans encounter their

environment through sensory information, that information must typically undergo a radical

upheaval before it becomes a mental representation. As Chalmers, French and Hofstadter (L99I)

argue:

"Representations are the fruits of perception. In order for raw data to be shaped

into a coherent whole, they must go through a process of filtering and

organization, yielding a structured representation that can be used by the mind for
any number of purposes" þ. L)

So as not to understate the validity of the three models described earlier, it should be noted

that they all incorporate stimulus representations which, although very directly derived from

sensory description, are slightly more psychologically sophisticated than the canonical description

which might be adopted from the physical sciences. Knapp and Anderson's (1984) model

manipulates measures of the physical characteristics of the dot pattern stimuli in order to generate
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the continuous analogue of the sum of a set of vector inner products which serves as the actual

representational structure on which the model operates. \Øith regard to connectionist châracter

recognition modelling, the interactive activation model developed by McClelland and Rumelhart

(1981, see also Rumelhart B¿ McClelland t982) represents characters not only in terms of sensory

line segments, but also accommodates 'top-down' conceptual priming by incorporating word-based

representational influences. Finally, Ashby and Perrin (1988) explicitly recognise that the axes of

General Recognition Theory's 'perceptual' representation space in the experiment mentioned can

be identified with, but will not be identical to, the height and width physical dimensions of the

stimulus set. In particular, they expect a monotonic relation between the two sets of dimensions. In

this way, the perceptual space representations of General Recognition Theory can accommodate

psychological phenomena such as the size-weight illusion.

Nevertheless, it seems reasonable to suggest that the representational structures of all of these

models are so tightly linked to sensory description as to be unable to overcome completely the

problems raised by Rips (1989) and others (eg. Medin 1989, Smith 1989, see Goldstone 1994,

Komatsu 1992 f.or discussion). It is difficult to imagine exadly how a characrer recognition model

could be extended to be able to categorise words in accordance with their meaning, or how

General Recognition Theory could successfully assign a toothbrush and a newspaper to the

category 'things to take on vacation' on the basis of any sort of perceptual representation.

Thus, an appropriate conclusion would âppear to be that neither of the two most widely

adopted representâtional approaches of connectionist cognitive process models are eîtirely

satisfactory. Therefore, this chapter's survey of previously adopted representational structures in

connectionism concludes by examining the approaches of connectionist models which are

primarily focused upon the learning of mental representations.

2.3. Connectionist Models tüíhich Learn Internal Representations

\Øithin the connectionist modelling framework, learned internal representations are

typically accommodated by the presence of a layer, or layers, of 'hidden' units which indirectly

link the input and output units (recall Figure 1.2). Perhaps the simplest example of a connectionist

architecture of this type is the 'bottleneck' or 'encoder' architecture (Ackley, Hinton & Sejnowski

1985, Rumelhart E¿ Todd 1993), an archetypal instantiation of which is shown in Figure 2.8. The

network is trained, typically using a learning procedure such as backpropagation (R.umelhart,

Hinton 8¿ \Øilliams t986), to produce acerrain activation pattern across the output layer of units

when presented with any one of a set of activation patterns across the input units. By forcing this

association to be made through an internal representationlayer which has significantly fewer units

than both the input and output layers, the network is compelled to form a distributed

representation of the input stimuli. If the input and output activation patterns âre set to be
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identical, the network is referred to as an autoencoder, and effectively realises a principal

components analysis of the data contained in the activation patterns Qaenz, Krogh & Palmer

199I). In either case, however, the efficiency of coding demanded of the network's internal

representation suggests that such bottlenecks may serve to model some aspect of the

representâtional structure of the domain from which the inputs and outputs are derived.

output layer ooo

i ntern al repre se ntation I ayer

input Iayer ooo

ooo

Figure 2.8. The bottlenecþ, or encoder architecture.

Beyond simple bottlenecks, connectionism affords a considerable degree of modelling

flexibility with regard to the exact nature of the internal representations realised by hidden units.

The entire network architecture of a model, the learning procedure or procedures employed by a

model, and the representations used at the input and output units by a model all influence the

internal representations that are learned by that model. Not surprisingly, therefore, previously

described connectionist models constitute a plethora of different approaches to learning internal

representations. The focus here, however, is on the acquisition of. mental representation. More

surprisingly, perhaps, such a focus significantly limits the models which can be examined. There

are few detailed connectionist models which primarily address the way in which mental

representations can be learned through the formation of appropriate internal representations.

The two models examined below, the connectionist semantic network and the semântic

map, are exceptions in this regard. Both seek the development of internal representâtions which

can, in some way, be justifiably regarded as realising a form of mental representational structure.

2.3. 1. Connectionist Semantic Networks

Hinton (1989, see also Rumelhart, Hinton 8¿ \Øilliams 1986) describes a five layer

connecrionist model which learns to mentally represent the familial relationships of a group of. 24

people from two family trees. The architecture of the network is shown in Figure 2.9. There is a

one-ro-one correspondence between the 24 people and the 24 units in both the 'person 1' and

'person 2' layers. There is a similar direct relationship between 12 famiy relationship terms, such

as 'has-father', and the 12 units in the relationship layer. On the basis that "the information in a

familytree can be expressed as triples of the form (<person 1), (relationship>, <person 2>)"

(Flinton t989, p.200), the network is trained, on a set of 100 such triples, by activating the

appropriate 'person 1' and 'relationship' units and supplying a teacher value giving the correct
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ans'wer at the 'perso n 2' layer. Any error in the activation levels at the 'person 2' level results in the

application of the backpropagation learning procedure', so that, over all 100 triples, the network

learns the information contained in the two family trees, and is able to produce the correct 'person

2' answer for four triples not presented during training.

person 2
(24 units)

ooo

(12 unit layer)

internal
representation

person 1

(24 units)
ooo relationship

(12 units) aoo

aoa

Figure 2.9. The architecture of Hinton's (1959) model for learning mental representations of farniþ members.

Based on Hinton (1989), Figure 5.

\Øithin the network, the learning of mental representations of the people is accommodated

by the bottleneck 6-unit layer which is fully connected to the 'person I'layer. As was noted above,

such bottlenecks force the network to construct a distributed representation of the people, and, to

the extent that the individual units correspond to meaningful familial characteristics, this

bottleneck layer can be viewed as modelling mental representational structure. The results reported

by Hinton (1989) provide some evidence of this occurring. For example, one unit in the bottleneclc

layer produces activation values consistent with an encoding of the generation of the 'person 1'

under consideration.

Rumelhart and Todd (1993, see also McClelland, O'Reilly & McNaughton 1995) extend

Flinron's (1939) modelling approach to its natural conclusion in their development of connectionist

semantic network models. In essence, these models are connectionist implementations of classic

representation systems known as semantic networks (see Collins Ec Loftus t975 for an overview).

The information captured by semantic nets typically concerns the properties of natural kinds and

the inter-relationship between these objects. For example, a semantic network involving plants and

animals might be founded on information such as 'an oalc is a tree', 'a bird has feathers', 'a fish can

swim' and'a rose is red'. Clearly, the task domains under consideration are broader in scope than

the family tree stnrcture used by Hinton (1989). Not surprisingly, therefore, Rumelhart and

2 In fact,a slightly more complicated learning procedure was employed, in which weights were given a tendency to decay towards

zero. This type of approach to optimising the representations leatned by the model is considered in Chapter 4.
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Todd's (1993) connectionist semantic network, whilst employing essentially the same architectural

and learning principles as Flinton's (1939) bottleneck backpropagation network, allows a far more

general interpretation of the input and output units in order to accommodate the richness of the

traditional task domains of semantic networks.

This re-interpretation is evident in Figure 2.10, which details the generic connectionist

semantic network. The input layer which receives information about which stimulus the model is

encountering is again connected to a bottleneck layer across which a distributed representation is

learned. The structure of this representation is effectively constrained by the relationships of the

stimulus to other stimuli and its qualities, capabilities, consequences and other general properties.

Specifically, the internal representations are generared by applying backpropagation to modify the

connection weights in such a way that the network correctly completes a number of stimulus-

relationship input pairs with the appropriate stimulus, property, quality, and so on, as required.

Figure 2,10, TIte generic connectionist sernantic netuorþ,. Adaptedfrom Rwmelhart and Todd (199q, Figure 1.9.

As with Ffinton's (1989) model, there is some significant basis on which it could be argued

that the internal representations learned by a connectionist semantic network model can be

considered to be mental representations. Both Rumelhart and Todd (1993) and McClelland,

O'Reilly and McNaughton (1995) present analyses of the representational structure developed by

models of this type. Not only are substantive and intuitively plausible psychological interpretations

given for many of the units in the representational layer, but the application of hierarchical

clustering techniques (see Shepard 1980 for an overview) reveals that the learned representational

structure incorporates similarity-based psychological hierarchies. Thus, for example, one unit in

the representational layer might be interpreted as indicating the size of a given stimulus, whilst the

representational activation patterns for 'oak', 'rose', 'plant' might suggest, upon analysis, that the

oak and rose belong to the superordinate concept of plant.

stimulus properfies

ooo

qualities

OOO

actions
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2.3.2.The Semantic Map

A different approach to the connectionist modelling of mental representational structure is

the semantic map (I(ohonen 1990, Ritter 1990). Semantic maps are effectively an application of

Kohonen's (1982, 1984, L990) self-organising map connectionist model to the problem of

developing mental representational structures. The basic architecture of a self-organising map is

shown in Figure 2.Lt, and consists of. alayer of input units, each of which is connected to every

unit in a spatially structured internal representational layer. This spatial stnrcture takes the form of

a local, topological ordering whereby a 'neighbourhood' function is defined which establishes, for

each unit in the internal representational layer, a set of neighbouring units. Typically, the size of

the actual neighbourhood defined by the neighbourhood function decreases during a network's

training, with only the topological nature of this neighbourhood remaining constant. Figarc 2.tL

depicts the commonly employed'rectangular lattice' neighbourhood function, in which each unit's

neighbours are those located spatially one unit away either vertically or horizontally in a two

dimensional grid. Other neighbourhood functions, such as linear linkages, or hexagonal lattices,

which impart different topologies upon internal representational layers of different dimensionality,

have also been employed.

Figure 2.11. Tbe architecture a s e If- o r ganis ing rn d,p.

The self-organising map's learning procedure involves the adjustment of the weight vectors

associated with each internal representational unit, which are of a dimensionality determined by

the number of units in the input layer. \üØhen information is presented through the setting of

activation values at the input layer, a competitive process establishes which internal representation

unir's weight vector is, in some sense, the most similar to this input information. The weight

vector of this 'winning' unit, as well as the weight vectors of each of the units in its current

neighbourhood, are then adjusted by a learning rule so as to match the input more closely. In this

v¡ay, the self-organising map creates a fundamentally topological structuring of the input

information it receives.

winning unit

ooainput layer

units
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The architectures and learning procedures of the self-organising map are entirely replicated

in the semantic map. The application of the self-organising map to the problem of developing a

mental representational structure of a set of stimuli, therefore, hinges solely on the form of the

input information describing these stimuli. In practice, semantic maps are provided with

information at the input layer which continually presents stimuli in context, meaning that the

mental or semantic similarity which emerges in the internal representation is effectively one which

has been equated with contextual similarity.

As a concrete example, consider the semantic map of a set of words described by Kohonen

(L990). The input information provided to the model takes the form of coded representations -

which are essentially arbitrary and certainly do not specify any form of psychological structure - of

every grammatically and semantically sensible three word sentence which can be generated from

the set of words. During the learning process, therefore, sentences such as "dog drinks water" and

"dog drinks beer" afford the words "water" and "beer" a degree of semantic similarity in

accordance with their common neighbouring words. As such, in the stable state of a thoroughly

trained network, these semantically similar words will tend to correspond to 'winning' units in the

internal representational map which are topologically near each other. Results reported by

Kohonen (1990) for a set of 30 words using a 10x15 two dimensional semantic map are shown in

Figure 2.L2. The added partitions indicate the semantic grouping of words in the map in terms of

their grammatical classification as nouns, verbs and adverbs. Furthermore, the shaded regions

discern additional semantically-based arrângements within the map in which nouns are divided into

people, animals, and food and drink classifications. Similar additional arrangements could probably

also be suggested in other areas of the map.

Figure 2.12. TIte mental representational structure of a 15x10 senxd.ntic map Adapted from Kohonen (1990),

Figure 12.

2.3.3. Evaluating The Connectionist Models

The featural and sensory description approaches were criticised in Sections 2.7 and 2.2 as,

respectively, enacting inappropriate and incomplete theories of mental representation. In contrast,

both connectionist semantic netwodrs and semantic maps suffer from the fact that they seem
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accepting of virtually any representational structure. Put simply, the connectionist models

described above learn internal representations which are insufficiently constrained by psychological

theory to be considered as models of human mental representation.

\Øithin connectionist semantic networks, 'mental' representations essentially emerge from

the representational constraints imposed by the learning of a set of input/output pairings. It is

tempting, therefore, to dismiss this type of modelling on the grounds that any given set of input-

output pairings could be accommodated by any number of internal representations. Such a

dismissal would be simplistic, given results from mathematical systems theory regarding the

existence, amongst all of these possible internal representations, of a unique canonical

representation which has some legitimate claim to being the appropriate mediating representation

of the input/output pairings (see, for example, Casti L992b). Nevertheless, the internal

representations of connectionist semantic networks do not seem to be constructed in a sufficiently

principled way. In particular, their network architectures, apart from the inclusion of bottleneck

layers, are intuitively appealing, but essentially ad-hoc, constructions designed to accommodate the

specific form of the input and output information found in the taslç domain. The final

representational structure developed by a connectionist semantic network is highly dependent

upon many features of the netwodr - such as the number of layers, the number of units in each

layer, the interconnection of the units, the activation function, and so on - which do not appear to

be sufficiently constrained by an analysis of desired representational outcomes. Thus, there may

well be network formulations involving bottleneck hidden layers, other than those shown in

Figures 2.8,2.9, and2.t0, which cân more readily be regarded as realising mental representations.

Initially, it seems reasonable to suggest that the representational deficiencies of connectionist

semantic networks could partially be remedied by the application of established methods from

general connectionist modelling which focus on generating internal representations by more direct

meâns. For example, learning processes could be introduced which operate directly on internal

representation layers, rather than indirectly constraining these layers by training a network on a

set of input/output pairings (see, for example, Lengellé 8¿ Denæux L996). Furthermore, the

connectionist semantic network models could be endowed with the ability to modify their

network architectures in accordance with the mental representations they accommodate. There is

significant non-psychological precedent for this type of. approach (eg. \Øeigend, Rumelhart 8r

Fluberman, 1991, see Ash B¿ Cottrell L995, Haykin L994, pp. 207-209, }Jertz, Krogh E¿ Palmer

199I, p. 158, Reed & Marks, L995 f.or overviews). Such prospective solutions, however, effectively

amount to more focused re-statements of the fundamental weakness of connectionist semantic

network models, namely, that they are not based on an explicit and detailed theory of mental

representation. It is precisely such a theory which is required to develop an appropriate learning

rule for the internal representation layers, or to describe the mechanisms which alter a model's
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networL. architecture.

A similar situation is evident in relation to the semantic map's property of placing

psychologically or semantically similar stimuli near each other in the internal representation layer.

\íhilst this practice clearly does constitute the enactment of a mental representational principle of

sorts, it is not sufficiently developed to generate the type of constraints on the learned

representations which would allow the final representationâl structure to be considered a 'mental'

structure. For example, no attempt is made to describe a quantitative relationship between

psychological similarity and topological similarity in the internal representational layer, nor have

the relative merits of different neighbourhood topologies been articulated. In addition, as noted by

Flexer (1996), the quantised nature of the internal representations learned by self-organising and

semantic maps limits the resolution with which mental representational structures could be

specified.

Furthermore, Bezdek and Pal (1995a) demonstrate that many of the details of the semantic

map described by Kohonen (1990) are essentially unimportant in the generation of the final

representational structures. This suggests that further analysis or refinement is unlikely to be

particularly helpful. It appears that the semantic map's explanatory burden is entirely borne by its

similarity-based representational principle. \Øhilst this principle is not inappropriate, it is neither

sufficiently explicit nor sufficiently detailed to be considered a complete theory of mental

representation. Consequently the representational structures learned by semantic maps, as with

connectionist semantic networks, could not be considered to constitute appropriate models of

human mental representation.

2.3.4. Conclusion

Thus, the conclusion to be drawn from this chapter's survey of previously developed

connectionist approaches to modelling mental representations is that neither representations based

on pre-abstracted psychological features, nor on sensory descriptions, are appropriate, and that

models which learn mental representations tend to do so without recourse to any detailed theory

of mental representation. Clearly, therefore, progress in the development of both cognitive process

connectionist models, and those models which learn mental representations, requires an

appropriate theory of the structure of human mental representations. Chapter 3 proposes for this

role the'psychological space' representational construct.
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Chapter 3: Psychological Space

This chapter presents the 'psychological space' approach to the modelling of mental

representation developed by Shepard (1957,1958b, t987a, I987b,1994) which is adopted for the

remainder of this thesis. First, the representational concept of psychological space is described and

evaluated, and means by which these spaces can be constructed are outlined. Secondly, a number of

connectionist models which employ psychological space representations are examined.

3.1. Foundations Of Psychological Space

The psychological space representational construct is best understood as an attempt to

approach the modelling of human cognition in the same way that the physical sciences approach

the modelling of natural physical phenomena. Under this view, cognition is conceived of as an

array of human mental phenomena which can be explained and predicted through their encoding

in an abstract representational space, known as psychological space. Such abstract representations

form the basis for maîy models in the physical sciences. For example, the physical state of an

enclosed homogenous gas can be represented by a point in a three-dimensional coordinate space

measuring the pressure, volume and temperature of the gas (Casti I992a, p. 2).In the same wây, the

psychological space construct attempts to provide a means for the psychological sciences to model

human mental representation in an appropriately formulated abstract coordinate space. Moreover,

just as the pressure, volume, and temperature of a gas af equilibrium are not independent but,

rarher, conform to the ideal gas law, the possibility arises of the development of general

psychological laws in relation to psychological space.

Typically, abstract physical pa:.ameter spaces âre structured around quantities such as

remperature, mass, and length which closely correspond to sensory descriptions of the type

considered in the Section 2.2.t. The previous rejection of these sensory descriptions as mental

representations, therefore, amounts to the preclusion of physical parameter spâces as candidate

psychological spaces. The basis for this rejection is, in essence, that whilst the representational

structure of physical space is appropriate when considering physical phenomena, it is inappropriate

with regard to a large number of psychological phenomena. For example, consider a measure of the

physical similarity of two objects, generated by a comparison of their representations in physical

space. This physical similarity predicts and explains quantitative measures of various physical

phenomena with regard to these objects. In fact, this is the basis of the representational structure of

physical space: objects are parrially represented in terms of, say, their mass to enable the prediction

and explanation of their gravitational behaviour, and objects with similar masses are similarly

represented and display similar gravitational behaviour. Unfortunately, these physical

representations tend not to exhibit the same predictive and explanatory pov¡ers in relation to
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psychological phenomena. The cognitive ability of humans to remember a list of words denoting

objects is largely unrelated to the mass, length, colour, temperature, pressure, and so on, of either

these words or the objects themselves. Put simply, physical similarity and psychological similarity

imply different abstract representational structures.

The construction of psychological spâces, therefore, is founded upon the notion of

representing stimuli to reflect their psychological similarity in relation to psychological

phenomena. Shepard (1987b) argues that the most important of all such psychological phenomena

is that of generalisation: the cognitive act of behaving (not necessarily overtly) towards one

stimulus as if it were another, despite the possible possession of the sensory acuity to discriminate

between the two stimuli. This argument is compelling, since all psychological phenomena must be

considered in the context of an understanding of their operation under altered conditions, and this

understanding must, ultimately, be founded upon an understanding of the phenomena of

generalisation.

Moreover, the adoption of generalisation as the most fundamental of cognitive acts renders

tenable the construction of psychological space. This construction becomes possible because the

abstract notion of psychological similarity which underpins the formation of psychological space is

now assumed to dictate, and therefore be implicit in, measures of the cognitive process of

generalisation. That is, observed measures of generalisation behaviour, across a stimulus set, âre

assumed to reflect those patterns of psychological similarity across stimuli which determine

psychological space representations, in the same way thar physical similarities characterise physical

space representations.

3.1.1. The Construction Of Psychological Spaces By Multidimensional Scaling

This approach to the construction of psychological spaces is realised by algorithms which

implement the family of statistical techniques known as multidimensional scaling (see, for example,

Borg 8c Lingoes 1987, Coombs 1958, Cox 8¿ Cox L994, Hofmann 8¿ Buhmann t994, Shepard

1980). In relation to a particular set of stimuli, multidimensional scaling operates upon

generalisation-based experiment al data, such as confusion matrices or similarity ratings, and

represents each stimulus as a point in a coordinate space. This space is constructed to be of

arbírrary, but minimal, dimensionalíty, such that the psychological similarity of two stimuli, as

measured by the data, is a monotonically decreasing function of the distance between their

representative points. In this v¡ay, stimuli which are more similar with regards the crucial cognitive

process of generalisation are afforded more similar representâtions.

As an example of the construction of a psychological space by multidimensional scaling,

consider a similarity matrix generated by an experimental task requiring the rating of the similarity

of each possible pair of. a set spectral colours corresponding to the colour labels 'red', 'yellow',
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'blue', 'green' and 'violet'. Introspectively, it seems reasonable to expect red and violet colours to

be considered more similar than red and green colours, and this intuition is supported by empirical

evidence (eg. Ekman 1954, Fillenbaum 8¿ Rappenport t97L). Note, however, that the wavelengths

which represent the colours red, violet and green in the physical sciences do not predict this

pattern of similarity, as the red and violet wavelenghs are at opposite ends of the visible spectrum.

To accommodate the entire pattern of similarities captured by the confusion matrix, therefore, the

application of multidimensional scaling creates a two-dimensional psychological space in which the

one-dimensional wavelen$h spectrum is 'bent' to form a 'horseshoe' or 'colour circle', as depicted

for the five colour labels in the left panel of Figure 3.1. This means that the points representing red

and violet in psychological space are closer than the points representing red and green. Indeed, in

this two-dimensional psychological representâtion, the distances between all points 
^te

monotonically related to the similarities of the colours they represent, and it is these similarities

which are presumed to be responsible for the observed confusion behaviour.

Figare 3,1, Two psycbological spøce rEresentatrcns.

A second example of a psychological space derived through multidimensional scaling is

shown in the right panel of Figure 3.1. In this example, the stimulus set consists of four geometric

objects which vary with respect to both size and shape. The psychological space representation

generated by the application of multidimensional scaling to measures of the similarity of these

stimuli is readily interpretable in terms of shape and size dimensions. Note, however, that these

dimensions are only implicit in the similarity measures, and are revealed by the multidimensional

scaling algorithm seeking a configuration in which inter-stimulus distances monotonically decrease

with respect to inter-stimulus similarity. Attainment of such monoticity is the structural principle

which drives multidimensional scaling techniques.

This characterisation of multidimensional scaling, however, would seem to imply that some

precise quantitative relationship between psychological similarity and distance in psychological

space must be assumed before a quantitatively precise psychological space can be derived. As such,

the entire psychological space representational process appears to risk circularity and vacuity. It

seems inappropriate to define psychological distances in terms of psychological similarities (implicit
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in the generalisation data), construct a representational space on the basis of these distances, and

then employ these representations for the prediction of cognitive phenomena which are

determined by the patterns of similarities. Lashley (1942, cited in Gregson t975) articulates this

criticism by asserting that explaining generalisation in terms of similarity:

"simply begs the question of the generalizing process, since it assumes that
generalization is a function of similarity, whereas similarity is an unexplained
result of generalisation" þ, 93)

Multidimensional scaling does appear to do exactly this: psychological similarities are predicted and

explained in terms of similar psychological space representations, but these representations are

determined through generalisation data which is assumed to be determined by the psychological

similarities themselves.

3.7.2.The Universal Law Of Generalization

As Shepard (1987a, t987b,19SSb) argues, however, this difficulty is circumvented by a result

referred to as the 'IJniversal Law of Generalization' which specifies an invariant relationship

between the psychological similarity of an arbitrary pair of stimuli and the distance between these

stimuli in psychological space. Specifically, psychological similarity is given as an exponential decay

function of distance in psychological space. This result averts the potential circularity involved in

generating psychological spaces through multidimensional scaling because it relieves the need for an

ad hoc assumption to be made which affects the derived representational structure. As noted by

Shepard (1958b), there are an infinite number of monotonically decreasing functional forms which

satisfy the similarity principle of multidimensional scaling. Clearly, each such function will imply a

different psychological space representation for any given stimulus set v¡ith an associated similarity

marrix. The Universal Law of Generalization, however, provides principled grounds for the choice

of an exponentially decaying function and, therefore, significantly contributes to the veracity of

the psychological space construct as a fheory of mental representation. As such, it is important to

outline both its empirical and theoretical derivation.

Non-metric (also referred to as interval) multidimensional scaling algorithms (Shepard I962a,

I962b,Krus1çal !964a,I964b), in contrast to metric multidimensional scaling algorithms, essentially

construct the metric distance relationships which form psychological spaces from ordinal

generalisation data which merely provide a ranking of similarities or confusions across a stimulus

set. Thus, no requirement beyond monoticity is made of the function relating distance in

psychological space to psychological similarity. Nevertheless, it has been observed across a wide

range of empirical generalisation data that the monotonic function derived by the application of

non-metric multidimensional scaling is always closely approximated by an exponential decay

function (see Shepard I987a, Figure Lf.or a summary). Importantly, Shepard (L987a) reports that it

has been demonstrated that this apparent invariance is not a consequence of constraints implicit in
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the actual algorithms', but, rather, reflects a property of the cognitive process of generalisation

implicit in the data.

The theoretical basis for the Universal Law of Generalization is provided by Shepard

(L987a), and hinges on the probabilistic geometry of structures in psychological space termed

'consequential regions'. At the most general level, consequential regions in psychological space

correspond to the sets of stimuli in the external world which form natural kinds. More specifically,

a consequential region describes the range of different stimuli which share a particular consequence

of importance to an individual - consequences such as poisonous, valuable, heavy, and so on - by

forming a connected, convex and centrally symmetric region which encompasses all of the points

in psychological space representing stimuli with this consequence.

Shepard (L987a) employs consequential regions to derive the lJniversal Law of

Generalization by focusing upon the situation in which a novel stimulus is encountered, and is

found to be have an important consequence. In this scenario, the lack of information means that

the precise extent and position of the consequential region encompassing the point representing the

novel stimulus is not known. Rather, the experience of finding a novel stimulus to be consequential

is consistent with the existence of a range of potential consequential regions with different degrees

of extension. Therefore, the ensuing cognitive process of generalisation involves an evaluation of

the probability that other stimuli are encompassed v¿ithin this range of potential consequential

regions. Figure 3.2 depicts this process by showing a black point in psychological space

corresponding to the novel stimulus, and a rânge of surrounding potential consequential regions.

The probability that the consequence of this novel stimulus also applies to the stimulus represented

by the white point is given by the probability that the white point is encompassed by a

consequential region.

Figure 3.2. Consequential regions in psychological space.

Clearly, this probability monotonically decreases with respect to distance in psychological

space. As the distance between the white point and the black point increases, the probability that a

consequential region will encompass both points decreases. The exact quantitative form of the

3 Although there is some evidence (eg. Klock & Buhmann 1997, GoodhTI, Simmen & Willshaw 7994) that non-rnetric

multidime¡sional scaling can impose an¡ular representational configurations, this problem seems limited to binary ordinal data. It
is reasonable to assume that psychological space data consists of a larger numbets of ordinal levels.
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relationship between the generalisation probability and psychological distance, however, depends

upon the assumed prior likelihoods of the possible degrees of extension of the various potential

consequential regions. The crux of Shepard's (1982a) derivation is the demonstration that, in fact,

this dependence is a very weak one and that, across a number of different distributions, the

generalisation probability is closely approximated by an exponential decay function of

psychological distance.

Strictly speaking, the method employed for demonstrating this apparent insensitivity relies

on the assumption that consequential regions have geometric structures which are both convex and

centrally symmetric. Shepard (L987a), however, presents some evidence suggesting the reliance on

convexity, at least, may also be weak. In particular, it is shown that the relevant probabilities of

encompassment of non-convex, centrally symmetric consequential regions closely approximate

those of the convex, centrally symmetric consequential regions employed in the formal derivation.

Interestingl)¡, the argument for an exponential decay relationship between psychological

similarity and psychological distance space has also been developed through a number of other,

quite different, approâches. Nosofsky (198a) provides a compelling argument for the exponentially

decaying functional relationship in seeking to reconcile the psychological space representations

consrructed by multidimensional scaling with the empirically successful Context Model of

categorisation developed by Medin and Schaffer (L978). This argument utilises the fact the

exponential decay function is uniquely able to accommodate the Context Model's multiplicative

rule for calculating stimulus similarity, given the additive manner in which distances in

psychological space are determined. Shepard (1958b, see also Shepard I990a, Staddon Sc Reid 1990)

derives an exponentially decaying gradient of generalisation on the basis of the 'diffusion'

properries of 'stimulus trace' model in which the cognitive effects of the presentation of a stimulus

simultaneously spread through psychological space as their strength decays - although this

approach has been criticised @rantz t967, see also Gregson t975, p. 103). Finally, support for the

Universal Law of Generalization exists in the independent proposal of an exponential decay

function to determine stimulus similarity given by Knapp and Anderson (1984), although this

evidence could also be criticised, in this case on the grounds that the representational structure

employed is not consistent with the psychological spâce representational construct.

3.1.3. Distance Metrics In Psychological Space

To this point, reference has been made to measures of psychological distance without

specifying the metric by which such distances are determined. In fact, the appropriate distance

metric depends upon properties of the stimulus set, in a manner which serves to reinforce the

veracity of the psychological space representational construct.

Typically, psychological spaces are constructed in coordinate spaces employing one of the
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family of Minkowski r-metrics, which define the distance in an N-dimensional space between

points x = (Il ,...,xN) and y = (!t,...,!¡¡) to be:

N

ll*,vll" : (Il'' -tl') (3.Ð
i=1

although Shepard (L974) provides an insightful discussion of the possibility of psychological

representation in other types of metric or semi-metric spaces, and multidimensional scaling

algorithms have been developed (eg. Lindman 8¿ Caelli 1928, Cox & Cox 1991) which operate in

non-Minkowskian spaces. Nevertheless, tþe multidimensional scaling techniques by which

psychological spaces are commonly constructed usually only accommodate Minkowski metrics (eg.

Kruskal I964a).

The particular Minkowski metrics most often used correspond to the familiar Euclidean (r :

2) and City-block (, : L) distance metrics because of their respective association with'integral' and

'separable'stimuli (Garner 1924, Nosofsky L992, Shepard I99I).Integral stimuli are those, such as

colours, which are relatively unanalyzable, in the sense that they are not readrly perceived in terms

of their component dimensions. Separable stimuli, in contrast, are those in which a number of

component dimensions can be considered independently, such as the set of geometric stimuli

varyingin size and shape considered earlier.

Figure 3.3 demonstrates this relationship between distance metrics in psychological space and

the nature of the stimuli represented in the space, by indicating the appropriate metric operating

within the sample psychological spaces shown in Figure 3.1. The distance between the points

representing the red and blue coloured stimuli is Euclidean, whilst the distance between the small

circle and large square is measured using the City-block metric.

Figure 3.3, Distance rnetrics in psychological Eace.

Shepard (I987a) demonstrates that consequential regions, the theoretical tool employed to

derive the tlniversal Law of GeneralizàtiorL, can naturally be extended to account for the operation

of different Minkowskian distance metrics in psychological space. Consequential regions with

completely uncorrelated degrees of potential extension give rise to City-block metrics, whilst
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perfectly correlated ones imply the Euclidean metric. These results are appealing, since the

presence or absence of a correlation of component dimensions seems closely related to notions of

stimulus separability and integrality. Separable stimuli, for example, ate precisely those stimuli

with component dimensions which can be considered independently.Between the extremes of

perfect correlation and no correlation, where the degrees of extension of consequential regions

along orthogonal axes in psychological space are parrially correlated, Minkowski r-metrics with r

values between one and two are realised. It has been suggested (see Shepard I99I, p. 6I f.or a list of

references) that the separable/integral distinction may represent the endpoints of a continuum

rather than a dichotomy. If this is the case then some stimulus sets, at least in some circumstances,

may be appropriately modelled in a psychological space employing a distance metric with an r

value between one and two. Shepard (I987a,I99L, see also Gati Bc Tversky 1982) also discusses the

possibility of some stimulus sets in which the components of the stimuli 'compete' for attention

being modelled by consequential regions with negatively correlated degrees of extension,

corresponding to r values less than one, whilst noting that in this case the distance function is no

longer metric because the triangle inequality is violated.

3. 1.4. Empirical Evaluations Of Psychological Space Representations

Empirically, the appropriateness of psychological space representations has been

demonsrrated by evaluations involving a comparison of the performance of cognitive process

models, founded on multidimensionally scaled representations, with data gathered from human

performance on equivalent experimental tasks (see, for example, Getty, Swets, Swets 8¿ Green

1979, Nosofsky 1984, 1986, 1988a, 1988b). Typically, the tasks involved concern the identification,

recognition or categorisation of a set of stimuli. Identification and recognition processes are

implemented using the biased similarity choice model (Ltce 1963, Shepard 1957), which transforms

psychological space representations into identification responses. The modelling of categorisation

processes is achieved by employing an extension of the similarity choice model, implicit in the

work of Getty et. al. (L979) and explicitly developed in Nosofsky's (1984, 1986) Generalized

Context Model, which incorporates the effects of selective attention to the components of

separable stimuli.

Inevitably, these empirical evaluations do not constitute conclusive demonstrations that

psychological space representations are entirely adequate mental representations. It is, however,

fair to conclude that these studies consistently demonstrate an impressive ability of models founded

on psychological space representations to model human performance across a r^flge of important

psychological phenomena.

More importantly, appending these empirical successes to arguments made earlier for the

psychological space representational approach finalises a compelling case: The initial notion that
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mental representations are appropriately embedded in an abstract psychological space constructed

explicitly for the explanation and prediction of psychological phenomena is an appealing one; the

empirical indication of the Universal Law of Generalization, and its subsequent theoretical

derivation significantly $rengthen this appeal by suggesting that this approach may yield a means

of modelling mental representâtional invariants; the close and naturâl correspondence between

psychological space's distance metrics and the established understanding of the analyzability of

component dimensions of different stimuli provides further impetus for adopting psychological

space as a theory of mental representation. Empirical demonstrations of the success of cognitive

models founded on these representations serve to complete an impressive argument.

3.1.5. Criticisms Of The Psychological Space Position

Before adopting the psychological space model of mental representation, however, several

criticisms need to be addressed. The majority of these challenges are founded on limitations

inherent in the geometric approach adopted by the psychological space theory. More specifically,

each of the axioms which define a metric space have been reported to be empirically violated, as

have theoretic limitations on the number of possible 'nearest neighbours' in psychological spaces.

In addition, the validity of method by which the dimensionality of psychological spaces are usually

found has been challenged, casting doubts upon the validity of psychological space representations

in general.

If a distance measure / underpins a metric space, it may be considered to satisfy the following

three axioms:

d¡¡> d¡¡ =o positivity (3.2)

d¡¡=d¡; symmetrY

d,, < d¡p + d ¡n triangle inequality

where d,, ísthe distance between two distinct points i and j. The positivity axiom, which asserts

both that the distance between a point and itself is zero, and that the distance to afly other point is

strictly positive, has been shown (eg. Tversky 1977) to be violated by experimental data gathered in

relation to stochastically varying stimuli. The source of these violations would seem to reside in the

f.act that stimuli which are inherently 'noisy' in this way arc not appropriately represented by a

single, fixed point in a psychological space. Rather, such stimuli should be represented by a

probabilistic distribution of points in a manner similar to that adopted by General Recognition

Theory (recall Figre 2.7).

fn fact, the implications of noisy stimulus sets for psychological space modelling have been

thoroughly considered. Ennis (1988a, 1988b, 1992) e>*ends the Universal Law of Generalization by

repearing Shepard's (I987a) derivation under the assumption that stimuli are represented by
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Gaussian probability distributions, establishing that, in these circumstances, the invariant

generalisation function assumes an inflected Gaussian rather than exponential decay form. This

result has been used (see Nosofsky 1988c, 1992, Shepard 1988a, 19S8c) to provide a convincing

explanation of Nosofsky's (1986) empirical finding that categorisation performance on highly

confusable separable stimuli is most accurately modelled by a Gaussian similarity function

operating over the Euclidean distance metric.

Extended to stochastically varying, confusable stimulus sets in this way, psychological spaces

naturally accommodate experimental data which âpparently do not conform to the positivity

metric axiom. Allowing momentary fluctuations in the psychological space location of each

stimulus, the distance between a partia;Jar instance of a stimulus point, and the mean of the

distribution of stimulus points from which it is drawn can be nolr-zero. Similarly, the points

representing two distinct stimuli may temPorarily coincide.

The symmetry axiom, which asserts that the distance between two points is independent of

the direction in which it is measured has also been observed to be violated by experimental data

(eg. Gati & Tversky L982, Tversky t977, Tversky 8¿ Gati t982). Nosofsky (1992), however,

presents a convincing argument that such asymmetries are accommodated by the principled

modification of the bias parameters in the choice decision model.

The triangle inequality, which asserts that the distance between two points is less than the

sum of the distances from those two points to a distinct third point, is also violated by some

similarity data. Although, as noted in Section 3.1.3, this axiom is not necessarily strictly associated

with psychological space representations, its empirical violation has been employed (eg. Tversky &

Gati t982) to criticise the psychological space theory of mental representation. Again, however,

Nosofsky (1992) argues that the weight of such criticism is substantially alleviated by considering

psychological space representations as a part of cognitive process models. In particular, the process

of selective attention, formalised in Nosofsky's (1984) Generalized Context Model, which acts to

stretch and shrink the component dimensions of an underlying psychological space representation,

facilitates the detailed quantitâtive modelling of the systematic distortions of similarity evident in

data which violate the triangle inequality.

Another criticism of psychological space representations relates to the mathematical

equivalence or 'quasi-equivalence' of different Minkowski metrics (see Borg & Lingoes 1987, pp.

230-233 for an overview). City-block (, : L) and Ultra-metric (r -+ .o) distance metrics are capable

of achieving different, but equally error free, psychological space representations. Similarly, for

Minkowslçi metrics with r 1 2, there is a lawfully related r value gre ter than 2 which can

accommodate a different representational structure with essentially the same minimum error.

These results could be taken to suggest that psychological space representations may be somewhat

arbitrary, in the sense that the problem of finding aî appropriate distance metric and
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representational configuration is underdetermined. Such a criticism, however, does not place a

psychological interpretation upon the operation of a distance metric with r ) 2, and it is difficult

to conceive of such an interpretation. Pure integrality at r : 2 would seem to constitute a

psychological limit upon the degree to which underlying stimulus dimensions can be combined. In

contrast, distance metrics corresponding to all r values 0 1 r < 2 can be given a substantive

psychological meaning, as outlined in Section 3.1.3. Thus, it seems reasonable to suggest that the

distance metric underpinning a psychological space be restricted to the range 0 1 r < 2, in which

case the problem of metric equivalencies does not arise. Such a restriction would have the

advantage of being consistent with Shepard's (1987a) demonstration of the relationship between the

correlation of dimensions of consequential regions and the distance metric, since the correlational

limits of +1 correspond to the metric parameters 0 1 r <2.In fact, the metric equivalency results

could perhaps be seen as further impetus for restricting 0 ( r 1 2, since they demonstrate that

metrics with r ) 2 do not afford further representational possibilities.

Another critique of psychological space representations is provided by Tversky and

Hutchinson (1986), who argue that limitations inherent in the geometric representations prevent

the appropriate modelling of some conceptual structures. In particular, it is shown that a

geometrically imposed upper limit for the number of nearest neighbours of. any given

representational point must be exceeded to accommodate some similarity data. This difficulty

seems most prevalent in the case of conceptual stimulus domains which are amenable to a

hierarchical structuring. For example, Tversky and Hutchinson (1986) analyse a stimulus domain

consisting of the word 'fruit' and a set of 20 individual fruits words, such as 'lemon', 'orange', and

'banana'. The empirical similarity ratings require that 'fruit' be the geometric nearest neighbour of

18 of the individual fruit words, yet an otherwise appropriate multidimensionally scaled

representation locates 'fruit' closest to only two other stimulus points. Even more fundamentally,

Tversky and Hutchinson (1986) note that it is, in principle, impossible for a point to be the nearest

neighbour to more than 5 points in a two dimensional space, or 11 points in a three dimensional

space. Thus, to accommodate the nearest neighbour relationships evident in the similarity ratings,

multidimensional scaling solutions would need to be derived in spaces of inappropriately high

dimensionality.

The insight provided by the nearest neighbour measure developed by Tversky and

Hutchinson (1986) is readily appreciated by considering the judgments involved in the collection of

similarity rating across hierarchical stimulus domains of this type. The decision processes involved

in judging the similarity of 'orange' and 'lemon', or 'orange' and 'date', would seem to differ

fundamentally from those involved in judging the similarity between 'fruit' and 'orange'. The first

type of judgment involves only a judgment of similarity, whilst the second judgment essentially

requires a determination of the typicality of 'orange' as a member of the superordinate concept
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'fruit', perhaps through the judgment of similarity to a prototype. Employing the terminology of

Pipkin (1982), the first comparison is a point-point comparison, whilst the second is a point-set

comparison. In effect, therefore, the analysis of Tversky and Flutchinson (1936) highlights the

inability of multidimensional scaling to operate on point-set similarity data. Thus, nearest

neighbour measures reveal limitations in the ability of psychological space representations to

represent stimuli which exist at different levels of a conceptual hierarchy.

As Shepard (1994) notes, these limitations may be derived from the assumption that

consequential regions are connected in the sense that:

"between the points correspondingto 
^ny 

two objects of [a] kind ... there is always

a continuous path in the representational space which falls entirely within the
consequential region for that kind" þ. 23).

Such a prescription relates to the notion of the 'basic' level in conceptual hierarchies (see Mervis 8c

Rosch 1981, Rosch 1978 f.or overviews), which may be considered as the most general level at

which stimuli belonging to a given concept can be perceptually continuously deformed into one

another. Consequential regions, therefore, can only model concepts up to the generality

represented at the basic level. Concepts which exist at a superordinate level of a conceptual

hierarchy, such as those explored by Tversky and Hutchinson (1986), cannot be accommodated by

consequential regions, and hence are not amenable to psychological space representation. \Øhilst

the exension of the psychological space theory to accommodate such conceptual structures

remains a priority for future research, it should be noted that the critique of Tversky and

Flutchinson (19S6) does not discredit psychological space representations involving non-

hierarchical stimulus domains.

Figare 3,4. An error elbout.

Finally, a sustained criticism of the psychological space theory relates to difficulties in

determining the appropriate dimensionality of the derived representational structure. Early

research (eg. Kruskal 1964a, Shepard 1962b) suggested that an examination of the minimum error

(or 'stress') values across representational spaces of increasing dimensionality reveals ân error

'elbow' of the type illustrated in Figure 3.4. Clearly, the (fictitious) data which are being

multidimensionally scaled in Figure 3.4 are best represented in a four dimensional space, since the
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addition of the fourth dimension accommodates a significant reduction in error, but the subsequent

addition of dimensions does not achieve any significant further reduction in the minimum

attainable error. Graphically, this state of affairs is apparent in the sharp reduction of the gradient

at the point corresponding to the four dimensional space, coupled with the relatively low absolute

value of the error at this point.

IJnfortunately, it has been widely noted (eg. Borg & Lingoes, p. 68, Grau 8¿ Nelson 1988)

that the application of multidimensional scaling to many data sets reveals a gradually decreasing

error minimum as dimensionality increases, thus making a decision regarding the 'true'

dimensionality of the space subjective and problematic. It is, however, worth noting that the

malority of these data sets either consist of psychologically integral stimuli, or are implicitly treated

as such through the employment of the Euclidean distance metric. Given that psychological spaces

which assume this metric are of intrinsically arbitrary rotâtion, it seems unlikely that attempts to

provide an objective specification of the dimensionality of the space are warranted. Since

psychological spaces representing integral stimuli have no substantive dimensional structure, in the

sense that component dimensions cannot be given psychological interpretation, the exact number

of dimensions which are ultimately included is of little import. The primary function of the

derived psychological space is to accommodate the pattern of inter-stimulus similarities given by

the data. Thus, psychological spaces employing the Euclidean metric should simply employ the

minimum number of dimensions required to achieve a sufficiently low error value, and need not be

concerned with the presence or absence of an error elbow.

Psychological spaces which operate under non-Euclidean distance metrics, in contrast, do

contain a preferred dimensional structure which must be evident in any derived representation.

For example, the application of the process of selective attention to the component dimensions of

separable stimuli, as described earlier, relies upon the existence of the appropriate coordinate axes

in the representational space. As such, non-Euclidean psychological spaces would seem to require

an error elbow for their principled derivation. Evidence that real data does not reveal such an

elbow, however, is less than conclusive due to well documented (eg. Arabie L99L,Borg 8c Lingoes

1987, Huberr, Arabie & Hesson-Mcinnis L992, Shepard L974) doubts concerning the ability of

many multidimensional scaling algorithms to derive valid psychological sPaces under these

conditions. Put simply, there are compelling grounds on which to doubt the asserted minimality of

error values for non-Euclidean spaces.

Given these doubts, derived error values afford no insight with regard to the presence or

absence of error elbows. It remains possible that error elbows are a ÍLafvrally emergent property of

the interplay of the representational principle which underpins multidimensional scaling and the

srrucrure of natural kinds in the world from which the stimuli are drawn. This issue remains an

open research question, which is further discussed in Section 5.2.L For the moment, it should be
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concluded that purported demonstrations of the absence of error elbows when real data is

multidimensionally scaled do not discredit the psychological space model of human mental

representation.

Having addressed these criticisms, the remainder of this thesis adopts the position that

human mental representation can be appropriately modelled in psychological spaces, and assumes

the Universal Law of Generalization and its associated distance metric results. The aim of

developing a connectionist model which learns mental internal representations thus becomes the

aim of developing a connectionist model which learns psychological space internal representations.

An appropriate starting point, therefore, is to examine previously suggested connectionist models

which have employed psychological space representations.

3.2. Connectionist Models Using Psychological Space Representations

The first two connectionist models employing psychological space representations to be

considered are directly interpretable in terms of Shepard's (1982a) description of the psychological

space construct. Rather than assuming the Universal Law of Generalizafion, these models faithfully

implement the consequential regions employed in Shepard's (1987a) derivation, allowing the

exponential decay function relating psychological similarity to distance in psychological space to

emerge epiphenomenally. In this sense, the way in which both models realise the lJniversal Law of

Generalization, described here as the 'consequential region' approach, could also appropriately be

characterised as being a'first principles' approach.

3.2.1. The Consequential Region Model

Figwre 3.4. The Consequential Region model. Adaptedfront. Sbanhs and Glwck (1994), Figure 2.

The architecture of the first of these models, the Consequential Region Model (Shanks 8c
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Gluck 1994) is shown in Figure 3.4. The dimensionality of psychological space is pre-determined,

and stimuli are presented to the model in pre-determined psychological space coordinates. The

model's second layer consists of a set of 'consequential region' units which are constructed in one-

to-one correspondence with the potential consequential regions in psychological space, which is

quantised through the imposition of a square grid. The compact, convex and centrally symmetric

consequential regions thus consist of all possible rectangles in the case of separable stimuli, but are

limited to squares when integral stimuli are being presented.

In either case, the presentation of a stimulus activates only those consequential region units

which correspond to regions containing the stimulus' representing point in psychological space.

The activation of the consequential region units, in turn, activates a layer of output units, generally

associated with categorical responses, as mediated by a set of connection weights.

Learning in the Consequential Region Model is restricted to the adjustment of these

connection weights by a learning rule, generated by gradient descent on an error derived from

appropriate categorical feedback. This learning rule differs from the standard gradient descent

approach - also known variously as the 'least mean squares', 'delta', or 'rù(/idrow-Hoff' learning

rule (see Anderson 1995) - to the extent that separate learning rate parameters are maintained for

the increment and decrement of the connection weights. \Øhilst Shanks and Gluck (1994) detail the

Consequential Region Model's ability to accurately emulate human categorisation performance on

a varíety of tasks, these demonstrations are limited in scope by the model's inability to incorporate

the effects of selective attention, although Shanks and Gluck (1994, pp. 8a-85) do suggest briefly

how this shortcoming might be remedied.

3.2.2. Shepard And Kannappan's Model

A more sophisticated first principles approach to the connectionist representation of

psychological space mental representation is described by Shepard and Kannappan (199L). The

architecture of this model is shown in Figure 3.5. The model deals only with sets of uni-

dimensional stimuli; that is, with stimuli which can be appropriately represented in a one-

dimensional psychological space. The input layer of. the model contains units which are in one-to-

one correspondence with the elements of the stimulus set. The output of the model is determined

by the pattern of activation across a layer of response units. Mediating the flow of information

from the stimulus input layer to the response output layer are a pre-determined number of layers

containing units which correspond to potential consequential regions within the psychological

space. These layers are arraîged according to the size of the potential consequential region they

represent, with smaller regions being positioned in layers closer to the stimulus input layer.

A stimulus is presented to the model by activating the unit corresponding to that stimulus,

and leaving all other units in the input layer inactive. The activation of an input unit is propagated

36



upwards through the network, serving to activate those consequential region units which lie in the

input unit's established 'cone of activation', as shown in Figure 3.5. The magnitude of this

activation exponentially decays with respect to the consequential region unit's distance, in terms of

layers, from the stimulus input layer. Finally, the pattern of activation across the response units is

determined by the activation of both the stimulus input and consequential region units, as

mediated by a set of connection weights.

Figare 3.5. Sbepard and Kannappan's (1991) generalisation model. Actioe units lie uitbin the 'cone of
d.cti'uation'.

Learning within this model primarily involves the adjustment of these connection weights.

Once again, the learning rule, in effect, employs gradient descent on an error function derived

from the reinforcement or non-reinforcement of the response produced to the presented stimulus.

Shepard and Kannappan (L99I) also describe an extension of the basic model in which connection

weights are added between the input and consequential region units, and are adjusted using

backpropagation.

'ùØhereas Shanks and Gluck's $99a) Consequential Region Model is primarily applied to

category learning tasks, the evaluative focus of Shepard and Kannappan's (1991) model centres on

the learned adjustment of gradients of response generalisation for uni-dimensional stimulus sets.

The results reported by Shepard and Kannappan (199t) demonstrate that the model captures a

range of established properties of generalisation gradients, although they appropriately conclude

that "this is just the beginning of the connectionist exploration of the implications of the

generalisation theory in more complex cases" (p.670).In particular, the model's restriction to uni-

dimensional stimuli is a severe one, evidently addressed by Shepard and Tenenbaum (I99L),

although their multidimensional extension of the model remains unpublished (fenenbaum,

personal communication, October 1995).

Nevertheless, it could be argued that Shepard and Kannappan's (1991) interpretation of the

consequential region approach has a fundamental advantage over that of Shanks and Gluck's (1994)

Consequential Region Model in that the layering of the consequential region units captures what
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are presumably important topological properties of psychological space. Effectively, the

Consequential Region Model collapses all of the consequential region units which are layered

according to size in Shepard and Kannappan's (1991) model into a single layer and, in so doing,

discards this potentially useful information. Intuitively, it seems likely that this information could

contribute to a model's realisation of psychological space, although the exact nature of this

contribution remains to be demonstrated.

3.2.3.The Radial Basis Function Approach

A different approach to the connectionist realisation of psychological space is achieved if the

Universal Law of Generalization and its associated distance metric results are assumed, and are not

required to be continually re-derived by the model. Indeed, if these assumptions are made, a

connectionist network with a particular architecture, known as a 'raáial basis function'

architecture (Lowe 1995, Moody 8¿ Darken 1989, Poggio & Girosi \990), is naturally able to

implement psychological spaces.

As mentioned in Chapter l, connectionist models can accommodate the fundamentally

geometric representational structure required by the notion of psychological space. The

representation of any point in a coordinate space of. any dimensionality can be achieved through

the activation of a layet of units in a connectionist network, where there is one unit for each

dimension in the space, and the activation value of each unit corresponds to the coordinate value,

on rhat dimension, of the point being represented. This is precisely the way in which a radial basis

function networL represents input information.

radial basis function layer ooo

input layer ooo

Figare 3.6. Part of the rad'ial basßfunction architectare.

Furthermore, radial basis function networks assume that each unit in the subsequent layer is

positioned in the same coordinate space as the point corresponding to the input information. Once

such an input is presented, the activation value of each unit in this subsequent 'radial basis

function' layer is determined by measuring the distance between the input point and the unit's

locarion, and then evaluating a fixed basis function, using this distance measure as the independent

variable. Figure 3.6 depicts this process by detailing the correspondence between the standard

layered interpretation of the network, and its geometrical re-interpretation.

38



Therefore, within a radial basis function architecture, by adopting a one-to-one

correspondence between elements of a stimulus set and units in the radial basis function layer,

placing the units in their psychological space positions as determined by multidimensional scaling,

ascribing an appropriate Minkowskian distance metric, and specifying the basis function to be one

which exponentially decays as distance increases, a connectionist network realises a complete

model of the psychological space representational construct.

3.2.4.The ALEX Model

Figure 3.7. The ALEX rnodel.

This approach is the one employed by the ALEX model (Iftuschke t990, t992, Nosofsky &

Kruschke L992), which is, in essence, a connectionist implementation and extension of Nosofsky's

(1984,1986) Generalized Context Model. The architecture of the ALEX model is shown in Figure

3.7. An element of the stimulus set is presented to the model by setting the activation values of the

input layer to the previously derived psychological space coordinates of that stimulus. These

coordinates are then transformed by non-negative weightings which model the process of selective

atrention, effectively scaling the axes of the psychological space. This transformed stimulus

representation then activates 'exemplar' units in the radial basis function layer, each of which

corresponds to a stimulus, using the computational approach described in Section 3.2.30. Once

activated, the exemplar units geîerafe, through a set of connection weights, a paftern of activation

at a layer of output units. Since the ALEX model has been almost exclusively applied to

categorisation tasks, the output units are usually identified with categorical associations. In

parricular, Kruschlce (1990, 1992) rolttinely uses the activations in the output layer to derive

response probabilities for each of the various categories to which the stimulus may belong.

Learning in the ALEX model involves both the adjustment of the connection weights

linking exemplar units to the category output units, and the adjustment of the selective attention

weightings. Both of these adjustments are accomplished by learning rules which perform gradient
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descent on the sum squared error between the values of the output units, and a set of 'teacher' units

which specify the correct categorical association of the presented stimulus.

Empirical evaluations of the ALEX model demonstrate an impressive ability to emulate

human performance across a wide range of categorisation related tasks (see Kruschke t990, 1992,

!993a, I993b, Nosofsky 8¿ Kruschke 1992, Nosofsky, Kruschke & McKinley 1992). These include

the seminal attentional category learning taslç examined by Shepard, Hovland and Jenkins (196\),

filtration and condensation tasks (Garner L974), tasks involving the potential for catastrophic

forgetting (Ratcliff t990), tasks requiring the exhibition of three-stage learning (Rumelhart 8c

McClelland 1986), tasks involving the differentiation between linear and non-linear caregory

boundaries ${edin B¿ Schwanenflugel 1981), and tasks requiring sensitivity to correlated stimulus

dimensions (lr4edin, Altom, Edelson 8¿ Freko 1982). The model is also able to successfully account

for human performance in a limited subset (Lewandowsky 1995) of those categorisation tasks

which require the utilisation of base-rate information (lt4edin E¿ Edelson 1988). Finally, Choi,

McDaniel and Busemeyer (1993) demonstrate that the principled initialisation of the ALEX

model's connection weights results in the impressive emulation of differences in human

performance on tasks involving the learning of conjuctive, disjunctive, and a range of other

caregories formulated through the logical operations of a predicate calculus (Bourne L974).

3.2.5. The ALCOVE Model

Figwre 3.8. The ALCOW rnodel.

Kruschke (L992), however, observes that the ALEX model's pre-positioning of exemplar

units in psychological space is inappropriate to the extent that "the model cannot assume

knowledge of the exemplars [stimuli] before it has been exposed to them" (p. 39). A variant of the

ALEX model, known as the ALCOVE model, addresses this weakness by disassociating units in

the radial basis function layer from specific stimuli, instead placing a 'covering map' of units across

psychological space. This covering map is constructed by deciding upon the appropriate

a In fact, the applications of AIEX described in K¡uschke (1990) employs a Gaussian, rathe¡ than exponential, basis function. The

results reported in Kruschke (1,990) arc, howevet, subsequently replicated (eg. Kruschke 1992) using the exponential decay

function.
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dimensionality of psychological space on the basis of the multidimensional scaling of the stimulus

set, partitioning the space into equal (hyper)cubes in accordance with a density paramefer, and then

randomly placing a unit within each of these partitions.

In all other architectural and procedural respects, the ALCOVE and ALEX models are

identical, as can be seen in the depiction of the ALCOVE model in Figure 3.8. Evidently (see

Kruschke 7993a, p. 63, footnote 1), the categorisation performance of the ALCOVE model closely

parallels that of the ALEX model, although the ALCOVE model's performance is detailed only by

Kruschke (1990).

Again, however, Kruschke (1990, pp. L32-I33) observes limitations in the representational

srructure which realises psychological space. In the case of the ALCOVE model, the exponential

increase in the number of covering map units required as the dimensionality of psychological space

increases would seem to require potentially unrealistic architectural resources of the network. In

addition, it should be noted that the pre-determinâtion of the dimensionality of psychological space

is inappropriate.

As a suggested remedy to the requirement of excessive numbers of covering map units,

Kruschke (1990) provides some discussion of another form of learning which might be

implemented within the ALCOVE model, involving the adjustment of the location of the covering

map units in psychological space, to "distribute them over only those regions of the ...

[psychological] space in which stimuli occur" G,. I32). These discussions note that those learning

techniques identified with self-organising map networks (I(ohonen L982, 1988a, L990), as

previously applied within radial basis function architectures (eg. Moody 8¿ Darken 1989), may be

more appropriate than those based on gradient descent on error. Finally, again attempting to limit

the required number of covering map units, Kruschke (1992) raises the possibility of a mechanism

which creares or recruits units in psychological space in accordance with the location of stimuli,

and is mediated by some form of novelty parameter. In reported applications of both the ALEX

and ALCOVE models, however, the exemplar and covering map units, respectively, are

permanently fixed at pre-determined psychological space locations'.

3.2.G. Comparing The Consequential Region And Radial Basis Function Approaches

In one sense, it is difficult to compare the consequential region and radial basis function

approaches because they differ more in the level at which they attempt to model psychological

spaces than in the features of these spaces which they actually model. In this light, the assertion of

Shanks and Gluck (1994) that the Consequential Region Model should be viewed as an alternative

ro, rather than a competitor of, the ALEX and ALCOVE models appears well founded.

Essentially, the consequential region approach provides a first principles alternative to the radial
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basis function approach for the implementation of the psychological space representational

construct.

There are, however, at least three reasons for preferring the radial basis function approach,

despite the consequential region approach's close adoption of the theoretical machinery employed

by Shepard (L987a). The 'first principles' approach is advantageous only to the extent that it

provides the modelling flexibility to capture important features of psychological spaces which are

not sufficiently well approximated by the Universal Law of Generalization and its associated

results. \Øhilst Shepard and Kannappan (L99t) suggest that the modelling of chronometric

cognitive tasks might be accomplished using the consequential region approach and could not be

accommodated by the radial basis function approach, it seems reasonable to assert that, at present,

such abilities remain to be conclusively demonstrated. On this basis, the parsimonious realisation

of the psychological space representational construct provided by the radial basis function

approach is to be preferred.

Secondly, the representational resources required by the consequential regions approach, as

measured by the number of units in the consequential region layer(s), tends to be prohibitively

large. For example, in modellinga 1.5x2I psychological space grid, the Consequential Region Model

employs 33,264 consequential region units. \Øhilst Shanks and Gluck (L994) do explore the

possibility of not establishing a consequential region unit for every potential consequential region,

which clearly reduces the architectural and processing demands on the model, its seems likely that

this economising would concurrently serve to degrade the emergent generalisation gradient's

approximation to an exponential decay function. In any case, the number of units required in the

consequential region layer increases rapidly as the number of quantised cells in psychological space

is increased. This situation arises when either the bounds on psychological space are extended, or

the resolution within the space is improved. Much the same type of criticism could be directed at

Shepard and Kannappan's (1991) model, particularly with regard its multidimensional extension.

Furthermore, the representational approach of Shanks and Gluck's (1991) Consequential

Region Model affords little freedom with regard either the complete internal development or

ensuing learned adjustment of psychological space representations. The consequential region units

activated by the presentation of a stimulus are completely determined by the psychological space

representation of that stimulus, and the association of the consequential region units with regions

of psychological space. Thus, the propagation of information from the input layer to the

consequential region layer is both invariant and pre-determined. Effectively, a stimulus could be

presented to the model solely in terms of its associated pattern of activation across the

consequential region units.

s In unreported simulations (Kruschke, personal communication, February 1995), a gtadient descent based leatning rule for
adjusting parameters in the radial basis function, as derived in Kruschke (1990), has been implemented within the AIEX model.
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The model described by Shepard and Kannappan (199t) would appear to fare a little better in

this regard. The layered representational structure employed allows the possibility of the principled

adjustment of connections between stimulus points in psychological space and the consequential

region units. Nevertheless, neither of the models adopting the consequential region approach

provides a mechanism for the adjustment of the location of the consequential regions within

psychological space. This weakness, which again constitutes a shortcoming since practical

considerations regarding network resources limit the resolution and extent of the modelled

psychological space, is potentially addressed by the learned adjustment of the exemplar and

covering map units in, respectively, the ALEX and ALCOVE models.

Finally, the radial basis function approach appears to hold the most promise with regard to

overcoming the most fundamental weakness of all of the models discussed above. This weakness

concerns the models' inability to learn the psychological space representations they employ, and

their subsequent inability to modify these representations in accordance with experience. The

ALEX and ALCOVE models share with the models founded on the consequential region approach

a reliance on the pre-determination of appropriate psychological space representation of the

stimulus sets with which they are presented. The radial basis function approach, however, through

its explicit modelling of the process whereby information represented at an input layer is

transformed into a different internal representation, seems to offer a means of rectifying this

shortcoming. The possibility exists of developing of a set of learning rules which modify the

connection weights which perform these transformations, in such a way as to create internal

psychological space representations.

3.3. The Connectionist Learning Of Psychological Space Representations

Guidance in the construction of such learning rules is assisted by noting that the pre-

determination of stimulus representations in connectionist models employing the psychological

space representational constnrct is primarily achieved through the use of the multidimensional

scaling family of statistical techniques. Thus, a first step towards developing a connectionist model

which is able to learn and modify psychological space internal representations is the development

of a connectionist implementation of an appropriate multidimensional scaling algorithm. Flanson

& Burr (1990) raise this possibility in acknowledging the "close analogy between multidimensional

scaling and fconnectionist] nets with hidden units" (p. 4S9), and further note that the error

minimisation approach of multidimensional scaling (Iftuskal L964a, see also Shepard 1974) is

particularly amenable to implementation using standard connectionist learning rules.

Smolensky (1988a) suggests that this task be approached directly and logically by developing

"a version of multidimensional scaling based on a connectionist model of the process of producing

similarity judgments" (p. S). One attempt at precisely such a model is described by Rumelhart and
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Todd (1993), and is slightly extended by Todd and Rumelhaft (1995).

3.3.1. Rumelhart And Todd's Model

The basic architecture of the model employed by Rumelhan and Todd (1993) is shown in

Figure 3.9. The model operates by generating a predicted similarity value following the pairwise

presentation of stimuli from a stimulus set, then altering its internal representation of these stimuli

in accordance with feedback provided concerning the 'correct' similarity value obtained from

human subjects on an analogous task. The network architecture and connection weights which

compare the internal representations of the two stimuli are both fixed, and adhere to the structural

principle of multidimensional scaling that the derived similarity value varies monotonically with

the similarity of the internal representations. Specifically, the comparison 'sub-network' or

'module' determines the featural similarity between the stimuli across each of their internally

represented dimensions, before combining these dimension similarities into a final similarity

measure. The learned mappings from the stimulus input layer to the internal representationlayer

are generared by backpropagation on the error imposed by feedback giving the 'correct' pairwise

similarity value. These mappings are constrained to be identical for both of the 'modules' which

perform this transformation - that is, the analogous connection weights between input and internal

representation units for the first and second stimuli are always equal. In this way, the model learns

a unique means of converting stimulus information into principled internal representâtions based

on the psychological similarity of these stimuli.

Figure 3.9. Rurnelhart and Todd\ (1993) connectionist implementation

fron't. Rumelhart and Todd (1993), Figures 1.15 and 1.17,
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Rumelhart and Todd (L993) provide several demonstrations of the ability of their model to

learn appropriate internal stimulus representations which resemble those derived from traditional

multidimensional scaling techniques. Both local and distributed stimulus input representations are

employed in these demonstrations, with the distributed representational approach accommodating

an impressive generalisation ability within the model. After learning a mapping from input to

internal representation for 31 members of a Morse code stimulus set, previously examined using

traditional multidimensional scaling techniques ("g. Shepard 1980), the model exhibits

generalisation capabilities by appropriately internally representing the 5 remaining stimuli without

receiving feedback. In this, and all of these instantiations of the model, however, the

dimensionality of the internal representational space is pre-determined.

Todd and Rumelhart (1995) explore various extensions and refinements of this basic

modelling approach. The model is adapted to consider the 'feature matching' modelling of various

cognitive phenomena founded on set theoretic manipulations of discrete mental representational

srrucrures (Iversky \977). Todd and Rumelhart (1995) also discuss the natural way in which the

model can learn to differentially weight stimulus dimensions, in response to both selective

amention shifts of the type discussed above, and more permanent individual differences in

dimensional salience, of the type usually revealed by INDSCAL þee Shepard 1980 for an overview)

multidimensional scaling techniques. The limited ability of the model to mimic the 'stress' error

minimisation of non-metric multidimensional scaling (Kruskal t964a) is also explored, and the

possibility of extending the model to perform the types of analyses identified with other clustering

algorithms such as INCLUS and ADCLUS (again, see Shepard 1980) is also mentioned.

Todd and Rumelhart (L995) note that the inter-stimulus relation between similarity and

distance generated by the model does not, beyond being monotonically decreasing, resemble a

negative exponential function, in an apparent violation of the Universal Law of Generalization. As

a remedy, the replacement of sigmoid activation functions with exponential decay activation

functions for those units which calculate psychological similarity from featural differences is

proposed. Subsequently, means by which both the City-block and Euclidean metrics could be

accommodated by the model are also described although, unfortunately, the approach which is

claimed to realise an Euclidean metric âppears to correspond to the City-block metric, whilst the

proposed City-block approach is difficult to reconcile with any familiar metric. More enlightening

is Todd and Rumelhart's (1995) discussion of the means by which the model might be extended to

self-determine the appropriate dimensionality of the psychological space in which its learned

internal representations are embedded. In particular, the introduction of an additional term in the

error function which seryes to 'penalise' unnecessary internal representation units is suggested.

Appropriately, the minimisation of such an augmented error by the model's learning rules would

act to generate multidimensionally scaled internal representations in a psychological space of the
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minimal possible dimensionality

3.3.2. Connectionist Multidimensional Scaling In A Radial Basis Function Architecture

Despite the obvious merits of the connectionist multidimensional scaling modelling

approach developed by Rumelhart and Todd (1993) and Todd and Rumelhart (1995), the

previously articulated natural implementation of the psychological space representational construct

and its associated generalisation functions and distance metrics by appropriately formulated radial

basis function architectures maintains considerable suggestive force. In particular, the natural way

in which the ALEX and ALCOVE models can be applied to the emulation of cognitive processes

such as identification, recognition, categorisation, seems to contrast rather starkly with the

contrived pairwise similarity measure production of Rumelhart and Todd's (1993) modelling

approach. . By focusing upon developing a canonical connectionist implementation of

multidimensional scaling, the Rumelhart and Todd (1993) model sacrifices the possibility of. ready

exrension to the modelling of broader human cognitive processes. In effect, Rumelhart and Todd's

(1993) nerworlç fulfils the same role for cognitive connectionist modelling as traditional

multidimensional scaling - that of the offline derivation of psychological spaces which can be

installed into other models.

As was argued in Chapter 1, an attempt to develop a connectionist model of the learning of

human mental representational must conceive of conceptual structures as emergent phenomena,

arising from the general cognitive action of humans in the world. Chalmers, French and

Hofstadter (199 L) suggest:

"In order to provide the kind of flexibility that is apparent in cognition, any fully
cognitive model will probably require a continual interaction between the process

of representation-building and the manipulation of those representations" þ. 8)

This argument that, conÍrary to the philosophy underpinning cognitive process models, mental

representation and cognitive processing are inextricably intertv¡ined is further developed in

Chapter 6. There it is suggested that mental representations are appropriately conceived of as being

reflecrions, as mediated by human cognitive processing, of the abstract physical principles which

operate in the external world.

It would, therefore, seem highly desirable to develop a connectionist implementation of

multidimensional scaling formulated within the radial basis function architecture utilised by the

ALEX and ALCOVE models, with an ultimate goal of not only modelling the acquisition of

psychological space internal representations, but of subsequently being able to accommodate

within the same model the identification, categorisation, and other cognitive performance which is
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underpinned by these newly acquired representations. Chapter 4 develops such a model.u

c 
Since the nodel described in Chapter 4 was developed, rwo futther contributions to the connectionist multidimensional scaling

literature h¿ve been teported. Webb (1995) presents a radial basis fu¡ction implementation of multidimensional scaling which is

entireþ non-psychological in its construction and application, does not incotporate the notion of psychological space

reptesentation, and differs substantially ftom the model developed here in most aspects of its computational approach.

Meanwhile, Bezdek and Pal (1995b) contribute analysis which further advances, without realising, the possibility of a self-
otganising map model learning multidimensionally scaled reptesentational structures.
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Chapter 4: A Connectionist Multidimensional Scaling Model

This chapter describes and evaluates a connectionist model, formulated within a radial basis

function architecture, which learns to represent internally a set of stimuli in terms of their

multidimensionally scaled psychological space locations. The acceptance of the Universal Law of

Generalization has strong implications for the development of such a model. Most fundamentally,

the adoption of a radial basis function architecture becomes tenable because the metric nature of

this architecture's internal representational space is justified. Effectively, the ability of non-metric

multidimensional scaling techniques to recover metric information from ordinal data

accommodates the assumption that psychological space is a coordinate metric space. As such, the

model developed in this chapter constitutes a connectionist implementation of a metric

multidimensional scaling algorithm.

The architecture of the model, and much of the nomenclature employed to describe the

model, are displayed in Figure 4.1. The number of stimuli in the set which the model encounters is

given by the number N, and N units are placed in the stimulus input, exemplar, and feedback

layers. The units in each of these layers are creafed in one-to-one correspondence with the stimulus

set, whilst each unit in the internal representation layer represents a single dimension of the

internal representational space. In general, there are P such units in the internal representation

layer, although Figure 4.1 assumes P : 2 to assist in the graphical depiction of the representational

sPace.

Figure 4,1. The architecture and nomenclature of tbe radial basis fanction connectionist implemenution of
muhidimensional scaling.

The operation of the model is conveniently subdivided into processing and learning phases.

\Øithin the processing phase, the model generates a paftern of inter-stimulus similarity measures

relating to a particular presented stimulus. \Øithin the learning phase, externally derived

information regarding appropriate values for these similarity measures is provided, and a learning

rules modifies connection weights within the model to alter the internal representation of the

presented stimulus.
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4.1. Processing Phase

The processing phase consists of three main operations. First, a stimulus from the pre-

determined stimulus set is presented to the model through the setting of activation values across the

stimulus input layer. Secondly, the current internal representation of the presented stimulus is

determined, using the connection weight matrix C, at the internal representation layer. Finally, the

similarity between the internal representation of the presented stimulus, and the internal

representations of all other members of the stimulus set, is calculated at the exemplar layer.

4.1.1. Stimulus Presentation

One of the most pervasive conclusions to be drawn from Section 2.I concerns the self-

delusionary dangers inherent in any utilisation of pre-abstraction in developing connectionist

representations. Almost all 'common-sense', 'logical' or 'intuitively reasonable' stimulus

representations, particularly ones which are not directly based on sensory description, contain

some meâsure of psychological information. Clearly, it is inappropriate to provide the model with

this type of information, since it constitutes a part of the mental representational structure which

the model is supposed to learn.

\ühilst, in some instances, it is probably true that this effect could be minimised, a model

which is explicitly designed to model the acquisition of mental representation cannot afford to

straddle the narrow divide between canonical stimulus description and solution-providing pre-

abstraction. Thus, it would appear that the most expeditious approach to adopt, at least initially, is

one in which the representation of stimuli contains absolutely no stnrctural information.

Fortunately, connectionist modelling can achieve this state of affairs if a model is required to learn

the psychological internal representations of a finite number of stimuli: that is, if the stimuli can be

described as a stimulus set.

The basis of such a representational scheme is depicted in Figure 4.2, which shows a stimulus

input layer consisting of a number of units, created in one-to-one correspondence with the

elements of the stimulus set. rVhen a particulâr stimulus is presented to the model, the activation

value of the input unit associated with that stimulus is made active, and all other units are made

inactive. The rationale underlying this localist representational scheme is that connectionist

modelling does not confer any sense of direction or other relation between unconnected units

within alayer. That is, from the perspective of the internal operations of the model, there is no

topological stnrcture to distinguish a unit in the stimulus input layer f.rom any other unit, despite

the obvious relations that may be perceived from the graphical depiction of a linear array

employed to describe the layer. As such, a representational scheme in which, following the

presentation of a stimulus, one unit is active, and all others are inactive, conveys nothing more

than nominal level information to the model. Effectively, the stimuli are presented as tokens, in

49



that their presence is unambiguously indicated, but no further information regarding their

representational structure or relation to other stimuli is provided. Put another way, under this

representational scheme, each stimulus representation is equally dissimilar (or similar) to every

other representation, and hence the imposition of a similarity metric upon the stimulus input layer

affords no representational insight.

layer of stimulus input units ooooooo ooo

Figwre 4,2. TIte localist input representation of thefourtb mem.ber of a stirnulus set.

It should be conceded that this local approach to stimulus representation does impose some

limitations on the model. Primarily, it requires that stimulus domains which are nattrally

described by a set of continuous parameters be quantised in some way. This restriction is

particularly severe with regards sensory or physical stimulus domains of the type described in

Section 2.2. For example, if the stimuli presented to a model take the form of vertical line segments

of variable length, the necessity of replacing a description based on the value of a single (length)

parameter with a potentially large discrete set of stimuli with different fixed lengths clearly does

not constitute modelling parsimony.

Nonetheless, it is reasonable to assert that, at least initially, the advantages of the localist

representational scheme outweigh the disadvantages. Psychology in general, and connectionist

psychology in particular, has placed considerable emphasis on the representational structure of task

domains - most notably members of various natural kinds - which are appropriately described as

stimulus sets. In any case, the over-riding concern should be one of avoiding inappropriate pre-

abstraction at almost any cost, and it is primarily on these grounds that this representational

scheme is adopted for much of this thesis. In Chapter 9, however, consideration is given to ways in

which the constraints of local representation can be overcome, and alternative schemes are used to

exend the model towards addressing continuous stimulus domains.

For the moment, however, a particttlar stimulus is presented to the model by setting the

corresponding unit in the stimulus input layer to an activated value of one, and deactivating all

other stimulus input units with a value of. zero. Formally, if stimulus z is presented (1< ,. N),

then the activation values of the stimulus input units, s 1.s 2 2.. . , s N are:

c,-,
L if i=n
0 otlterutise

(4.t)

4.7.2. Determining The Current Internal Representation

The pattern of activation across the stimulus input layer generates activation values at the
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internal representation layer through the connection weight matrix C=lc¡j] with P rows and N

columns. These activation values correspond to the coordinate values of the current internal

representation of the presented stimulus. The lth such coordinate is given by:

Zt tro, 
: snc¡n = c¡n (4.2)

j=1

where the simplification is a direct result of the adoption of local representation. Thus, the internal

representation of thepresentedstimulus is given by p" =(cn, c2,, ..., cpr).

4.1.3. Calculating Psychological Similarity

Once the internal representational location of the stimulus has been established, the model

activates the units in the exemplar layer. These units correspond to the elements of the stimulus

set, and maintain a location within the internal representational space. Again, from the

simplification evident in Equation 4.2,it is clear that the location of theTth exemplar unit within

psychological space is given by p¡ =(ctj, c2j,

denoted by V ¡, measures the psychological similarity of the ¿th element of the stimulus set to the

currently presented stimulus, and is calculated using the radial basis function linkage between the

internal representation and exemplar layers. The complete specification of this linkage, however,

requires both the adoption of a basis function and e decision regarding the distance metric

operating within the representational sPace.

As was anticipated in Section 3.2.3, an acceptance of the Universal Law of Generalisation

consrrains the form of the basis function. In particular, the function relating psychological

similarity to distance in psychological space should be an exponential decay function. Exponential

decay functions, however, could sensibly be formulated to include at least three parameters, as

follows:

f(D)=a+bexp(-cD)

N

(4.3)

where / is the radial basis function determining psychological similarity, D is the distance in

psychological space, and a, b, and c are, respectively, translation, amplitude and decay parameters.

There are, however, compelling grounds on which each of these three þarameters can be

assumed to take particular fixed values. Following Shepard (1972, p. 73), it appears entirely

reasonable to constrain the measures of psychological similarity arising from the application of this

basis function to lie between values of zero, indicating complete dissimilarity, and one, indicating

complete similarity. This assumption immediately fixes the values of. a and b to be zero and one

respectively.
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The decay parameter, c, relates to what has variously been described as the "sensitivity",

(Nosofsky L992, p. 33) or "specificity" (I(ruschke t992, p. 23) of psychological space, and

effectively manipulates the spread of derived psychological similarity values. If c takes the value

zero, f.or instance, all measures of psychological similarity, regardless of distance, will assume the

value one. Conversely, as the value of c tends towards infinity, all psychological similarity measures

approach zero. For intermediate c values, a broad spectrum of psychological similarity measures are

derived. Clearly, however, manipulations of the distance variable, D, can achieve precisely the same

effects. If all of the inter-stimulus distances in psychological space are increasedby a large constant

factor, the geometric equivalent of 'spreading out' all of the points in the space by a multiplication

of the coordinate axes, and the value of c is held constant, the psychological similarity measures

will again tend towards zero. Similarly, a contractive clustering of points will reduce distance

values and generate psychological similarity values near one. Such rescalings are entirely

permissible since the units of measurement within psychological spaces are essentially arbitrary.

Thus, it seems clear that any variation in the value of c in Equation 4.3 can be counter-balanced by

a distance manipulating rescaling of the axes of psychological space. Algebraically, this is reflected

bythefactthatanalterationof thevalueof either corD willnotaltertheproduct cD,andhence

will not alter the ultimate measure of psychological similarity, f(D), providing the other value

undergoes a compensatory modification. The implication of this relationship is that c can validly be

fixed to any value greafü than zero. For simplicity, the fixed value chosen is one.

The radial basis function assumed by the model is significantly simplified as a result of these

considerations of appropriate pârameter values f.or a, b, and c, and becomes:

f (D): exP(-D) (4.4)

IJnfortunately, it is difficult to provide a similarly conclusive specification of the distance

merric operating within the internal representational space. Primarily, these difficulties arise from

the fact that no workable mechanism for the determination of the appropriate distance metric

strucrure of the psychological space representation of a set of stimuli has been developed.

Often, the form of a distance metric employed within a psychological space is assumed on

the basis of some knowledge or intuition regarding the nature of the stimuli involved (eg. Kruschke

1992, Nosofsky 1988b, Todd 8¿ Rumelhart 1995).fi, however, more principled efforts are made to

determine an appropriate form for the underlying metric, they usually take the form of the

repeated application of a multidimensional scaling algorithm operating under various metrics

(Ikuslral I964b, Shepard L974, \99I). The final choice of distance metric then resides in observing

which metric best accommodates the psychological space representation of the stimuli, in terms of

minimising the error (or 'stress') measure. In some instances this may be a valid means of metric

determination, in the sense of conducting a statistical analysis of psychological similarity data,
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although it does appear susceptible to significant difficulties (see Arabie t99I,BorgL982, Borg &

Lingoes 1987, pp.230-23I). Specifically, the assumption that error values attained under the

operation of different metrics can be compared directly is generally invalid, and this difficulty is

enhanced by the suggestion that the likelihood of deriving sub-optimal representational solutions

with artificially high error values also varies across different metrics.

In any case, the entire approach certainly does not constitute a reasonable model of a

cognitive process. Unfortunately, a more realistic model of the way in which humans determine

the appropriate metric basis for the mental representations they form has yet to be developed.

Progress in this area probably requires theoretical advances in understanding the relationship

between separable, integral and other types of stimuli and the developmental effects on these

distinctions arising from processes such âs the evolutionary internalisation of mental

representation. Perhaps Shepard's (1987a) reconciliation of the Minlcowskian family of distance

metrics with the degree of correlation in the dimensional extension of consequential regions, as

discussed in Section 3.1.3, could be viewed as the beginnings of the necessary theoretical

development. Even more promising is Baxter's (1996) notion of 'canonical distance metrics' in

representational spaces. This notion is founded upon the suggestion that the appropriateness of

distance measures in a representational space may be determined from the functions which ope:.af.e

within that space. That is, the representations in a domain which are regarded as similar by the

particular set of functions applied across that domain, should also be the representations which the

disrance metric regards as being similar. In this sense, the distance metric operating in a

psychological space may well be the one which best reflects the cognitive functional

transformations which are applied to a particular stimulus domain. Given the impressive

quantitative detail of Baxter's (1996) development of these ideas, the construction of a workable

mechanism for distance metric determination based on the notion of 'canonical distance metrics'

should be a priority for future research.

Meanwhile, however, the construction of a model which learns psychological space

representations is forced to assume the operation of one or other of the various possible

Minkowski distance metrics by specifying, with reference to Equation 3.1, a value between 0 and 2

for the parameter r. Coupling a distance metric assumption made in this way with the basis

function described by Equation 4.4, the generation of a pattern of inter-stimulus similarities across

the exempl ar layer is achieved by evaluating:

V ¡ = exPÇlþ"'Ptll,) (4.5)

4.1.4. Provision Of Feedback

The indices of psychological similarity generated across the exemplar layer effectively
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constitute the output of the model. To the extent that these 'predicted' similarity values do not

concur with values that are regarded as 'correct', whether empirically or otherwise generated, the

current internal representation of the presented stimulus requires adjustment. The correct measures

of psychological similarity are provided through the activation values, fr,fr,...,f* of the

similarity feedback layer.

4.2.Learning Phase

Following the provision of feedback regarding the correct pattern of inter-stimulus

psychological similarities, a learning phase alters the internal representation of the presented

stimulus through the operation of a learning rule which adopts a gradient descent approach to

optimisation, and is derived from an error measure which encapsulates the representational

principles of multidimensional scaling. This error measure is appropriately conceived of as the sum

of two components, the first of which, called the similarity error, penalises the departure of the

current representational structure from the required relationship between psychological similarity

and distance in psychological space, and the second of which, called the dimensional error,

penalises the use of surplus dimensions by the representational structure. The roles of the similarity

and dimensional error components are essentially analogous to those of the 'alpha' and 'beta'

forces, respectively, used in the original non-metric multidimensional algorithm described by

Shepard (1962a).

4.2. 1. Similatity Error

The similarity ercor, E"*, is defined to be þroportional) to the sum of the squared

difference between the predicted similarity values given across the exemplar layer, and the actual

similarity values provided by the feedback layer, as follows:

(4.6)

4.2.2. Dimensional Error

As noted in Section 3.3.1, connectionist analogues of the 'beta' forces employed for

dimensionality reduction by Shepard's (L962a) algorithm are most readily found in learning rules

derived from error functions which contain penalty terms designed to optimise, in some sense, the

srructure of a network (see Ash 8¿ Cottrell L995, Haykin t994, pp. 207-209, }J.ertz, Krogh Bc

Palmer I99L, p.158, Reed 8¿ Marks 1995 f.or summaries). Given the correspondence between units

in the internal representation layer and psychological space dimensions, the dimensional error

measure employed by the model serves to reduce the dimensionality of psychological space by

N
E'i*:/rZU¡-v)t

j=1
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defining a learning rule which modifies the connection weights in such a way as to allow the

removal (or 'pruning') of units in this layer. A direct connectionist re-interpretation of 'beta' forces

would involve an error measure which sought to maximise the variance of the set of distance

measures in psychological space. Unfortunately, this approach seems constrained, through its

reliance on a global variance measure, to the generation of learning rules which are significantly

non-local in their operation, and thus negates one of the fundamental strengths of connectionist

cognitive modelling identified in Chapter 1. The model developed here employs a different

dimensional error measure, based on a 'conjugate space' analysis of the representational significance

of the various dimensions of the current psychological space, which results in the specification of a

learning rule requiring access to only those connection weights locally available from each internal

representation unit.

This important difference in the requirements of the two approaches is graphically depicted

in Figure 4.3. Measuring the variance of the entire set of inter-stimulus distances obviously requires

access to the psychological space location of every stimulus, and hence, as is shown on the left of

Figure 4.3, involves all of the weights connecting the stimulus input and internal representation

layers. The approach formalised here, in contrast, adjusts each coordinate value of the location of

the presented stimulus using only the so-called 'instar' (see Grossberg 1982) of connection weights

arriving at the corresponding internal representation unit, as shown on the right of Figure 4.3.

Admittedly, since the location of the current stimulus on each internal representational dimension

is considered, every connection weight is at some point involved in the learning process.

Nevertheless, the fact that a globally calculated variance measure is not required means that the

connection weights need only be successively locally available. The key by which this more

satisfactory state of affairs is attained is through developing an understanding of the relative

representational importance of the various stimulus dimensions from the instar of connection

weights.

Figare 4.3. Locality of connection weigbt acces required for dimensionality reduction uhen a sti.mulus, uith
stimalus node shoun in bløcþ, is presented. The rnaximum pariance approach, on tbe left, requires access to øll
ueights wbikt tbe proposed conjugate space method, on the right, requires access to onþ tlte instar of ueights.

The representational role of the individual stimulus dimensions in the internal representation

layer can be gauged by considering the multidimensional coordinate space which is conjugate to the

currenr psychological space. A conjugate space is constructed by associating elements of the

stimulus set with the coordinate axes of the space, and representing the various stimulus

ooo psychological internal representation aaa

ooa stimulus input layer ooo
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dimensions as points in this space, as defined by the values they assume with respect to each of the

stimuli. As a simple example, consider a psychological space consisting of two three-dimensional

points (a,b,c) and (d,r,l). As is shown in Figure 4.4, the conjugate space consists of three two-

dimensional points (od), þ,r) and (c,fl. In this conjugate space, the axes correspond to the two

stimuli, whilst the points themselves represent the three original stimulus dimensions of the

psychological space. In terms of the connection matrix C, the psychological space representation

consists of the P N-dimensional points defined by the P N-dimensional vectors which are the rows

of C, whilst the conjugate space consists of the N P-dimensional points defined by the N P-

dimensional vectors which are the columns of C.

Figure 4.4. The relationsbip betueen prychological sPa'ce, on the left, and its conjugate Eøce with the line of non-

contribution, on the rigbt.

Effectively, the conjugate space reflects information regarding the representational

contribution of the various stimulus dimensions of a psychological space. In particular, stimulus

dimensions which assume relatively similar values for all stimuli are clearly making relatively less

of a contribution towards accommodating the representational structure required by the similarity

error measure. Geometrically, the line in an N-dimensional conjugate space, corresponding to an

N-dimensional stimulus set, given by the parametric form:

(d, d2 d *) = (t t ... t) , t is a real number (4.7)

describes the set of points at which a particular stimulus dimension of psychological space is

contributing no information to the representational structure. Consequently, this line will be

termed the line of non-contribution, and any stimulus dimension coinciding with this line in

conjugate space can be considered not to constitute a dimension of the relevant psychological space.

In Figure 4.4, f.or example, the line of contribution is the familiar two-dimensional line described

by the equation ! : x, and the relative distances of the points (ad), þ,e) and (c,fl from this line
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indicate that the bold axis of the psychological space is making the most significant contribution to

representational structure.

Furthermore, by defining the distance between a point and a line in the conjugate space to be

proportional to the square of the usual Euclidean lençh of the perpendicular line segment from the

point to the line involved, as indicated in Figure 4.4, the representational contribution of a

stimulus dimension can reasonably be assumed to monotonically increase as this distance increases.

Through using standard algebraic techniques (see, for example, Leithold 7986, p. 1033), this value

can be calculated to give a measure of the representational importance of each stimulus dimension,

which is denoted for the lth stimulus dimension by m¡, as follows:

rni=y2Vc,-*å.-, (4.8)

The dimensional error term developed here is based on this measure of the relative

contribution of the stimulus dimensions. In essence, the dimensional error seeks to attract stimulus

dimensions which aÍe rLear the line of non-contribution until they coincide and are therefore

eliminated from the representational structure of psychological spâce. Clearly, the application of

gradient descent minimisation techniques to any error measure which increases as the various

stimulus dimensions become more distant from the line of non-contribution would constitute an

instantiation of this approach. Beyond the requirement that the dimensional error measure results

in the minimisation of the dimensionality of psychological space, however, it is also desirable that

it interacts appropriately with the similarity error measure, in the sense that stable representational

structures are readtly derived.

To meet these ends, the dimensional error measure should produce attractive forces which

decrease in magnitudevery rapidly as the representational contribution measure increases. Loosely

speaking, stimulus dimensions near the line of non-contribution should be subjected to strong

artracrive forces designed for their removal from the psychological space representation, whilst

distant stimulus dimensions should remain essentiâlly unaffected by these forces, thus being free to

accommodate the representational structure required by the similarity error measure. The

implication of these requirements for the form of the dimensional error measure is that it should

monotonically increase as the representational contribution measure increases, but that the rate of

this increase should monotonically decrease towards an asymptote of. zero. These properties are

pafr.ly evident in the form of the complexity penalty term introduced by \Weigend, Rumelhart 8c

Fluberman (199I), which may recast in this context as:
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where ø is a const^ît and m is a measure of representational contribution. The behaviour of this

error measure, and its first derivative, are shown in Figure 4.5. \Øhilst the error measure clearly

increases as m increases and also tends towards a gradient of. zero, the behaviour of the gradient for

small values of m is inappropriate. Specifically, the decrease in the gradient as the representation

error measure approaches zeto may prevent stimulus dimensions near the line of non-contribution

in conjugate space from being subjected to the necessary strong attractive forces required for their

removal from psychological space.

Figure 4.5. Tlte er"ror nTeasure desuibed by Equation 4.9, utitb a:2 þolid line), and itsfirst derioatioe (dotted line).

The dimensional error measure used in this model, therefore, employs a negative exponentiâl

decay function of the form:

Error=-aexp(-þn)+a (4.10)

with parameters d and B, on the grounds that, as is evident from Figure 4.6, it completely satisfies

the dual requirements of exhibiting a monotone increase in error, and a monotone decrease in the

:,ate of change of this error, as the representational contribution measure increases. The function

given in Equation 4.10 has the advantage of possessing a manipulable range of the interval (0, a]

across the relevant domain of non-negative real numbers, and is continuous, differentiable and

analytically easy to manipulate. Consequently, the dimensional error measure for the ith stimulus

dimension, denoted by t!'*, takes the form:

2-rnLrror = ,a+m-

E!'*=-t""nUM.; (4.r1)

where the value of the u parameter, as discussed in Sectio n 4.2.3, has been chosen to simplify the
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derivation and interpretation of the learning rule
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Figure 4.6. Tbe er"ror trTea.sure described hy Equation 4.10, uitb a:B:I þolià line), and itsfirst derivøtiae
(doned line).

Finally, the total dimensional error measure across all of the stimulus dimensions, denoted by

Edi* , cannow be defined as:

dim (4.r2)

4.2.3.Derivation Of The Learning Rule

The learning rule employed by the model is derived from a total error measure, Etot , given

simply by:

(4.t3)

and acts to change the P connection weights in the zth column of C, which define the internal

representâtion of the currently presented stimulus. The gradient descent optimisation principle

adopted by the model results in a learning rule of the form:

õE' (4.t4)

P

Edi* =>E
i=1

Etot:¿sim*¿dim

ôc
LC 

¡,,

where )", is the learning tafe parameter anticipated in Equation 4.11. The calculation of the

required parrial derivative is achieved by first observing:

+=+(E'i* + Edi*) (4'1s)

ãi, Gio

o
çE'i* + Ef*)a tn

6sirn AEli-
ã,, &,,
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The partial derivative of the similarity is found as follows:

T=*y,i,v,-v)'
(f ,-v,)lLdi,

(f ¡ - v ) *""r¡lln",n ¡ ll,)

NI
j=r

NI
j=t

(4.t6)

(4.t7)

=ZU¡-w)v¡

NI
j=t

NI
j=1

NI
j=r

N

j=t

U¡ - v )""P(-llP",Pill")

u, -v,)v- 4lP"'P'll'
' di,

(f ¡ - w )v' +r}-k - -, u,l' )i

4þ",p,11,
ã

ã,, 1,,, -,,,

tfl

t p rl-r

;fZr=,lr* -'n¡l ) ' a f

=Vrr, - v ¡)v ¡]iln",n, ll7' fiþ," -,,,1'

N

=iU, - v )v ¡lln",n,lli'þ,, - r,,1'-' sgn(c,n - c¡¡)
j=t

where sgnQ is the signum operator which takes the value -1 for a negative argument, + 1 for a

positive argument, and is 0 otherwise. The partial derivative of the dimensional error, through

ignoring the effect a change on the given stimulus dimension for the presented stimulus has on the

average taken across all stimuli, is appropriately approximated by:

#=*u#"*rr-þ*,).-ol
=l'*o'-o*)*

: î "*nr- o*) * v,î,c u - *ä, u'

* 
l"*v?ø"¡ fir,(,, - *ä,*r'

- L"*p(_þ*,)(r, _*år_,

It is the first of these approximations which allows the learning rule to act locally, as discussed in

Section 4.2.2.

Substituting Equations 4.16 and 4.L7 into Equation 4.15 defines the required partial
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derivative, which, upon further substitution into Equation 4.14, results in the learning rule:

^neaLin
old. n AE 

to'

c i, - Ac --7-
di,

(4.18)

(4.re)

(4.20)

(4.21)

N

= ci:! - L(tU ¡ - v )w; p,rp;',' r,, - r¡,'-' rgn(r¡, - r,¡)

- exP?fu¡)(

j=1

L+- T

,"-ñ
N

2,
exp(-þn)(c I'*))

h=r

N

'ill - n,i(f ¡ - v )v |ln",p,ll:'1.,* -,,j1'-' sgn(c,, - c,¡)
j=1

T

'r"-ñ
N

Zt,u)
þ=r

The precise form of the learning rule is dependent upon the specification of a value for the

parameter r, in accordance with distance metric assumed to operate within psychological space. Of

particular interest are the values r : L and r : 2, corresponding to separable and integral stimulus

sets. The specific learning rules for these two cases may be evaluated through substituting the

appropriate rvalue into the partial derivative of the similarity error given in Equation 4.16, since

the partial derivative of the dimensional error is fixed over all possible distance metrics.

'tü(/hen r : I, the partial derivative of the similarity error becomes:

#|,=,=Vtr, - v )v ¡sgn(c,, - c,,)

(f ¡ - w )w; lþ",p¡ ll;'l' * - c ¡¡lssn(c,* - c,,)

giving the separable stimulus learning rule:

N
,ä = ri:! - l,fff¡ - v )v ¡sgn(c,, -,,¡) - exP(þn¡)(,* - +2'Sj=1

\Øhen r : 2, the partial derivative of the similarity error is given by:

dEn*

ã,,
r=2

NI
j=1

NI
j=t

NI
j=1

(f,-v,)v,'tÉ 
*Él''n - 

"'l 
sgn(c" - c4)

ff¡-w¡)V¡G;,-ci¡)
lln"'n,ll,

resulting in the integral stimulus learning rule
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,ä=ril! -t,Z -exp(-þn)(c

j=r

t
tn-ñ 2,,,)

N

(4.22)
le=7

4.3. Construction And Interpretation Of The Model

Given a particular set of stimuli, and known inter-stimulus similarity relationships, a model

is constructed by establishing stimulus input, exemplar, and feedback layers which contain units in

one-to-one correspondence with the elements of the stimulus set. The internal representation layer

is constructed so as to contain enough units to overestimate the appropriate dimensionality of the

psychological space representation of the stimulus set. It seems reasonable to assert that there is an

upper bound on the dimensionality of the psychological spaces employed by humans, although the

definitive quantification of this bound appears problematic. Perhaps some guidance might be

sought in estimates of short term memory capacity (eg. Miller 1956). For the moment, however, it

should be noted that the psychological spaces employed in this thesis resemble the vast majority of

those discussed in the literature in the sense that they have low dimensionality. Therefore, it does

not seem inappropriate to somewhat arbitrarily construct models with, saI, six internal

representation units, on the grounds that the psychological spaces the model must learn contain

significantly fewer than six dimensions.

The psychological space representation developed by the model stabilises when the tendency

towards dimensionality reduction is counterbalanced by the requirement to achieve the specified

inter-stimulus patterns of similarity. At this point, the measures of representational contribution

for the various stimulus dimensions are readily divided into two classes. One set of stimulus

dimensions will have dimensional error values near zero. The remaining stimulus dimensions will

have significantly larger dimensional error values, and are appropriately considered to be the axes

of the derived psychological space representational structure.

It is the choice of. a in Equation 4.10, when coupled with the general form of the

dimensional error measure, which gives rise to this division between included and removed

stimulus dimensions, as an analysis of the final term of the learning rules given in Equation 4.18

reveals. This final term arises solely from the differentiation of the dimensional error component

of the total error measure, and is appropriately interpreted through an examination of its two

factors. The second factor acts to move the currently considered stimulus dimension of the

presented stimulus towards the line of non-contribution at which the stimulus dimension can be

removed from the derived psychological space representation. The first factor, therefore, acts as an

adaptive learning rate parameter which varies according to the measure of representational

contribution. Stimulus dimensions near the line of non-contribution will quickly converge towards
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the line, resulting in their removal from the psychological space representation. In contrast,

stimulus dimensions with large measures of representational contribution correspondto near-zero

learning rate parameters, and will remain essentially unaffected by the dimensional error measure.

Graphically, this state of affairs is evident from an examination of the constnrction of the

total error measure in terms of its similarity and dimensional components. Consider, for example,

a two dimensional internal representation layer in which two stimulus points are to be located such

that they are one unit apart. \Øithout loss of generality, one of these points may be fixed at the

origin, and the second point denoted by the coordinates (x,1). Although the unit 'circle' (the form

of which depends upon the distance metric operating within the space) consists of an infinite

number of points on which (x,y) could be located to satisfy the inter-point distance constraint, the

requirement of minimal dimensionaliry implies that the four points (1,0), (0,1), (-1,0), (0,-1)

constitute the appropriate representational solution.

Assuming the Euclidean distance metric, the similarity error surface as the location of the

second point varies is shown in Figure 4.7, and contains a circular 'trough' one unit from the origin

which corresponds to a minimum error. It is this trough which consists of all points satisfying the

inter-point distance constraint, as discussed above.

similarity error 1

Figure 4.7. The form of the similarity enor n edsu.re across d tuo dimensional internal rEresentdtional layer for
the tuo point problem. The surface bas been tbresholded at an error value of 3 to øssist graphical depiction.

Since one point is fixed at the origin, the measure of representational contribution reduces to

a measure of the distance of the point (x,y) from each of the coordinate axes. Thus, the dimensional

error surface generated as the location of the second point varies is of the general form shown in

Figure 4.8. Recalling that the learning rule performs gradient-descent on this surface, the large

'plateau' across the region in which either or both stimulus dimensions are making a significant

representational contribution implies that the dimensional error has negligible impact on the

alterations made by the learning rule in this case. The deep 'valleys' along the coordinate axes,
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however, indicate that, when a stimulus dimension is making ^ îeal-zero contribution, the

application of gradient-descent principles through the learning rule will result in the rapid removal

of that stimulus dimension.

2

1

dimensional error
u

Figwre 4.8. Tbe form of tbe dirnensional error rnea.srlre rrcross a. two dimensional internal representationøl layer

for the two point problem.

The construction of the total error through the summation of the similarity and dimensional

errors for this two point problem is shown in Figure 4.9.It can be seen that the basins of attraction

under a gradient-descent scheme correspond to the appropriate solutions points (1,0), (0,1), (-1,0),

(0,-1) as described earlier. In addition, the negligible influence of the dimensional error when both

stimulus dimensions are representing information is again evident by noting that the total error

surface has the same form as the similarity error surface in those regions of the two dimensional

domain in which both x andy are not near their respective coordinate axes. In this sense, the way

in which the total error is defined can be seen to seek the accommodation of the similarity

relations between stimulus points before attempting to remove surplus stimulus dimensions.

total error 1

Figare 4.9. The forrn of the total eTTor trTeasure across a treo dimensional inte'rnal representational layer for the

tzøo point problem. The surface bas been thresbolded at an error pølue of 3 to assist graphical dqiction.
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Chapter 5: Evaluation Of The Connectionist Multidimensional Scaling
Model

This chapter presents several demonstrations of the model developed in Chapter 4, involving

both psychologically separable and integral stimulus sets, then considers the model's sensitivity to

the values of its various parameters, and finally evaluates the model's ability to avoid the generation

of representational configurations which are only locally optimal.

5.1. Demonstrations Of The Model

5.1.1. Colour Model

To demonstrate the model's ability to learn the psychological space internal representation

of integral stimuli, data reported by Ekman (1954, Table 1) was used. These data are replicated in

Table 5.1, and gives the judged similarities between 14 colours with the wavelengths (measured in

nanometres) specified.

Table 5.1. Colour similarity matrix

The colour model consisted of 14 units in the stimulus input, exemplar and feedback layers,

and 6 units in the internal representation layer. The initial location of each stimulus in the internal

representational space was generated by selecting a random number in the range (0,0.5)

independently for each stimulus on each representational dimension. The learning rafe parameÍer

1, and dimensionality reduction parameter B were set to values of 0.1 and 10 respectively.

On each of 1,000 trials, a randomly selected stimulus was presented to the model, causing the

generation of predicted similarity values across the entire stimulus set. The appropriate row (or,

equivalently, column, since the matrix is symmetric) of inter-stimulus similarities from Table 5.1

was then provided in the feedback layer, and the Euclidean learning rule was applied to modify the

internal representation of the presented stimulus.

434 445 465 472 490 504 537 555 584 600 610 628 651 674
434 1.000 0.860 0,420 0.420 0.180 0,060 0.070 0.040 0.020 0.070 0.090 o.120 0.1 30 0.1 60

445 0.860 1.000 0.500 0,440 0.220 0.090 0.070 0.070 0.020 0.040 0.070 0.110 0.1 30 0.1 40

465 0.420 0.500 1.000 0.810 0.470 0.1 70 0.1 00 0.080 0.020 0.010 0.020 0.010 0.050 0.030

472 0.420 o.440 0.810 1.000 0.540 0.250 0.1 00 0.090 0.020 0.010 0.000 0.010 0.020 0.040

490 0.1 80 0.220 0.470 0.540 1.000 0.610 0.310 0.260 0.070 0.020 0.020 0.010 0.020 0.000

504 0.060 0.090 0.170 0.250 0.610 1.000 0.620 0.450 0.140 0.080 0.020 0.020 0.020 0.010

537 0.070 0.070 0.100 0.1 00 0.310 0.620 1.000 0.730 0.220 0.1 40 0.050 0.020 0.020 0.000

555 0.040 0.070 0.080 0.090 0.260 0.450 0.730 1.000 0.330 0.190 0.040 0.030 0.020 0.020

584 0.020 0.020 0.020 0.020 0.070 0.140 0.220 0.330 1.000 0.580 0.370 0.270 0.200 0.230

600 0.070 0.040 0.010 0.010 0.020 0.080 0.1 40 0.1 90 0.580 1.000 0.740 0.500 0.410 0.280

610 0.090 0.070 0.020 0.000 0.020 0.020 0.050 0.040 0.370 0.740 1.000 0.760 0.620 0.550

628 0.120 0.110 0.010 0.010 0.010 0.020 0.020 0.030 0.270 0.500 0.760 1.000 0.850 0.680

651 0.130 0.1 30 0.050 0.020 0.020 0.020 0.020 0.020 0.200 0.410 0.620 0.850 1.000 0.760

674 0.160 0.140 0.030 0.040 0.000 0.0't0 0.000 0.020 0.230 0.280 0.550 0.680 0.760 1.000
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Figure 5.1, The pattem of cbange of the three eTror rneasures across 1,000 triak for the colour model.

Figure 5.2. Tlte breaþdown of dimensional error auoss tbe 6 component stimulus dimensions for the colour model.

Figure 5.3. Tbe fi.nal two-dimensionøl internal representdtion deaeloped by the colour model.

The pattern of change of the three error measures - total error, dimensional error, and

similarity error - across the 1,000 trials is shown in Figure 5.1. The similarity error decreases

rapidly to a negligible value which it maintains. The dimensional error initially increases as the
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internal representations of the stimuli are altered to satisfy the representational dictates of the

similarity error, but then decreases to a final stable value of 2.

It is most instructive to decompose the dimensional error measure across the six stimulus

dimensions (recall Equation 4.t2), as shown in Figure 5.2. Three of the stimulus dimensions,

corresponding to first, third and fifth unit in the internal representation layer, quickly attain

negligible dimensional error values and hence are removed from the derived representational

structure. A fourth stimulus dimension is removed after about 400 trials, resulting in a learned

internal representation of the stimulus set which consists only of stimulus dimensions two and six.

This two-dimensional representation is shown in Figure 5.3, and closely accords with the 'colour

circle' representational structure previously revealed through the application of traditional

multidimensional scaling algorithms to the same data (eg. Shepard \962b).

5.1.2. Flower Pot Model

Figure 5.4. Tlte 16 flouer pot stimuli. Based on Gøti and Taersþ (19s2), Figure 6.

To demonstrate the model's operation with the city block learning rule, the dissimilarity

datareported by Gati and Tversky (t?tZ, Table 1, upper-triangular half) was employed. This data

consists of the mean dissimilarity ratíngs oî 29 subjects on a 20 point scale, for all 120 possible

pairings of a 76 element stimulus set of drawings depicting flowers in flower pots. As shown in

Figure 5.4, the drawings differ solely with respect to the depiction of the 'elongation' of the flowers

and the 'form' of the pots. Both of these features have four possible realisations, labelled 'a', 'b', 'c'

and 'd' for the form of the pots, and 'p', 'q', 'r' and 's' for the elongation of the flowers, which are
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independently and exhaustively varied across the stimulus set. Because of this method of

generation, it seems reasonable to assume that the stimulus dimensions are appropriately regarded

as psychologically separable.

The fact, however, that the feedback provided to the model is assumed to consist of

similarity measures necessitates a transformation of the provided dissimilarity measures. Following

Shepard (I962b, p.232), this was accomplished simply by reflecting each dissimilarity value about

the mid-point of the measurement scale. These similarity values were then normalised to lie

between zero and one. The resultant similarity matrix is given in Table 5.2.

Table 5.2. Rescaled flower pot similarity matr.ix

The flower pot model consisted of 16 units in each of the input, exemplar and feedback

layers, in accordance with the number of stimuli, but was identical to the colour model with regard

ro rhe number of units in the internal representation layer, the initial placement of stimuli in the

representational space, the choice of parameter values, and the number of trials employed.

Figure 5.5, The pattern of change of the three elror Tnedsures ooer 1,000 trialsfor theflower pot model.

The pattern of change of the three error measures across the 1,000 trials is shown in Figure

5.5. Once agaîn, the similarity error measure exhibits arapid decrease towards a negligible value

which is maintained, indicating that the required patterns of inter-stimulus similarity have been

ap aq aÍ as bp bq br bs cp co cr GS dp dq dr ds
ap 1.000 0.630 0.555 0.535 0.735 0.290 0.305 0.170 0.620 0.290 0.265 0.1 45 0.605 0.200 0.190 0.135
ao 0.630 1.000 0.740 0.650 0.295 0.650 0.475 0.295 0.215 0.640 0.395 0.255 0.1 90 0.545 0.305 0.2'to
ar 0.555 0.740 1.000 0.750 0.260 0.460 0.670 o.475 o.240 0.405 0.635 o.420 0.1 85 0.290 0.555 0.395

as 0.535 0.650 0.750 1.000 0.1 85 0.330 0.390 0.700 0.1 55 0.260 0.310 0.660 0.130 0.245 0.270 0.570

bp 0.735 0.295 0.260 0.1 85 1.000 0.635 0.550 0.495 0.795 0.395 0.420 0.310 0.700 0.295 0.305 0.200

bq 0.290 0.650 0.460 0.330 0.635 1.000 0.755 0.680 0.385 0.785 0.585 0.460 0.290 0.690 0.425 0.300

br 0.305 0.475 0.670 0.390 0.550 0.755 1.000 o.775 0.365 0.555 0.785 0.575 0.230 o.445 0.670 o.445
bs 0.170 0.295 0.475 0.700 0.495 0.680 o.775 1.000 0.360 0.475 0.535 0.775 0.200 0.275 0.420 0.720

CD 0.620 0.215 0.240 0.1 55 0.795 0.385 0.365 0.360 1.000 0.610 0.565 0.515 0.800 0.430 0.400 0.335

cq 0.290 0.640 0.405 0.260 0.395 0.785 0.555 0.475 0.610 1.000 0.795 0.610 0.450 0.750 0.590 0.450

cr 0.265 0.395 0.635 0.310 0.420 0.585 0.785 0.535 0.565 0.795 1.000 0.7'15 0.420 0.570 0.735 0.605

cs 0.1 45 0.255 0.420 0.660 0.310 0.460 0.575 0.775 0.515 0.610 0.715 1,000 0.305 0.450 0.565 0.795

dp 0.605 0.190 0.185 0.1 30 0.700 0.290 0.230 0.200 0.800 0.450 o.420 0.305 1.000 0.625 0.580 0.570

do 0.200 0.545 0.290 0.245 0.295 0.690 o.445 o.275 0.430 0.750 0.570 0.450 0.62s 1.000 0.795 0.710

dr 0.190 0.305 0.555 o.270 0.305 0.425 0.670 0.420 0.400 0.590 0.735 0.565 0.580 0.795 1.000 0.775

ds 0.135 0.210 0.395 0.570 0.200 0.300 0.445 0.720 0.335 0.450 0.605 0.795 0.570 0.710 0.775 1.000
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accommodated by the learned internal representational structure.

The decomposition of the dimensional error shown in Figure 5.6 indicates that the final

learned internal representâtion consists only of stimulus dimensions I and 2. The resultant two-

dimensional psychological space is shown in Figure 5.2. \Øith reference to the stimulus set depicted

in Figure 5.4, the appropriateness of the learned representation is evident. The stimulus dimensions

developed by the model correspond precisely to the stimulus dimensions employed to construct

the stimulus set: those of flower elongation and pot form. Furthermore, the relative spacing of the

learned representations on this 4x4 grid seem entirely reasonable. For example, in relation to the

form of the flower pot, the relatively larger distance between types 'a' and 'b' could be seen to

correspond to the relatively greater transition of form involved in the departure from squareness.

Similarly, the difference between flower elongations 'q' and'r' seems smaller than the difference

between 'r' and 's', and this is also evident in the learned psychological space representations.

Figwre 5.6. Tbe breaþdown of dimensional error across the 6 component stimulus dimensions for the flower pot
rnodel.

Figure 5.7. The fi.nal trøo-dimensional internal representation deaeloped by the flower pot model.
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5.2. Evaluation Of The Model

An evaluation of the model must consider at least three aspects of its apparent ability to learn

appropriate psychological space internal representations. First, it is necessary to examine the effects

various settings of the two free parameters - the learning rate paramerer A,, and the dimensionality

reduction parameter B - have upon the learned representations. Secondly, because the model can

assume that the multidimensional stimuli it encounters are psychologically separable by employing

the City-block distance metric in psychological space, the serious doubts raised by Arabie (1991, see

also Hubert, Arabie 8¿ Flesson-Mcinnis 1992, Shepard L974) concerning problems inherent in

developing City-block multidimensional scaling algorithms within a gradient descent optimisation

framework need to be addressed. Finally, it is important to examine the model's capabilities in

relation to entrapment in local minima, a more widely appreciated limitation of gradient based

optimisation strategies.

5.2.1. Sensitivity To Parameter Values

From the outset, it should be noted that the setting of the learning rate parameter )", is f.ar

less problematic than the dimensionality reduction parameter B. The component of the learning

rule derived through gradient descent on the similarity error measure is essentially an iterative

correction procedure. Such procedures are generally accepted to be relatively insensitive to the

precise value of the learning rafe parameter, providing this value is not so large as to result in

oscillatory or degenerative behaviour. Values such as 0.01, 0.05, 0.1 are commonly employed

without recourse to further principled justification on the grounds of this insensitivity. Simulations

of the model confirm that the learned internal representations are extremely insensitive to the

precise value of the learning rate parameter, although the rate of convergence can be significantly

increased by the adoption of.larger values.

The setting of the dimensionality reduction parameter, however, would appear potentially to

have a greater influence on the satisfactory operation of the model. Indeed, extreme dimensionality

reduction values will clearly prevent the model from deriving appropriate internal representations.

An excessively small dimensionality reduction parameter value will hinder the model's ability to

discern reliably the relative representational contribution made by each stimulus dimension, v¡hilst

an overly large value will prevent the dimensional error measure from identifying stimulus

dimensions which fail to make significant representational contributions. In terms of the sensitivity

of the model's performance to the dimensionality reduction parameter, therefore, it is important to

develop some appreciation of the actual values of these upper and lower bounds which correspond

to'ovedy large' and'excessively small' values.

To this end, the flower pot simulation described above v¡as repeated with the learning rate

parameter maintaining the value 0.1, but with the dimensionality reduction parameter assuming
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the values 5 and 15. The significant variation of the dimensional error measure affected by this

spread of values is evident by recalling the role of. p in parameterising a negative exponential decay

function. As shown in Figure 5.8., with a dimensionality reduction parameter value of 5, the total

error stabilised at a minimum value after about 200 trials, with both the similarity and dimensional

errors decreasing rapidly during this period.

Figare 5.8. The pattern of chønge the three elTor tneasures ooer 1,000 triak for tbe flower pot model witb a

dimensionality reduction parømeter oalue of 5.

The representational space formed by the model in reaching this stable state was once again

two-dimensional, as is evident from the patterns of dimensional error across the component

stimulus dimensions shown in Figure 5.9.

Figwre 5.9. The breaþdoutn of dimensional error into the 6 component stimulus dimensions for tbe flower pot

model uith a dimensionality reduction Para'Tneter Qalue of 5.

The two-dimensional representational structure developed by the model is shown in Figure

5.10. Appreciation of the appropriateness of this result hinges upon a comprehension of the fact

that, from the model's perspective, representational structures are unique only up to the arbitrary

decisions made regarding their placement and conferred directionality, as required for graphical

depiction. Thus, any derived representational structure can legitimately be manipulated by

interchanging axes and by reversing the order in which the represented stimuli are displayed.

Given the isomorphism between representational structures attainable through the application of
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any sequence of such transformations, it is clear that Figure 5.7 andFigure 5.10 are merely different

graphical manifestations of the same psychological space representation.

As shown in Figure 5.11, with a dimensionality reduction parameter value of 15, despite the

fact that the similarity error is essentially zero from trial 200 onwards, the total error and

dimensional error measures do not stabilise until approximately 600 trials have elapsed.

Figure 5.10. Tlte fi.nal tuo-dirnensional internal representation deoeloped by the flouer pot model uitb a

dirnensionality reduaion pørømeter value of 5.

Figare 5.11, The pattem of change of the three error rnerísares oper 1.,000 tiak for the flouer pot model uitb a

dimensionality reduction pararneter oølwe of 15.

This delay is caused by the removal of one the stimulus dimensions from the representational

structure between trials 300 and 500, as shown in the breakdown of the dimensional error across

the component stimulus dimensions in Figure 5.12.

Once this change has been affected, however, the psychological space developed by the

model is again two-dimensional, and contains the pattern of representations shown in Figure 5.13.

Clearly, this derived set of internal representations does not significantly differ from those derived

with dimensionality reduction parameter values of 5 and 10, and constitutes an appropriate

psychological space representation of the stimulus set.
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Figwre 5.12, Tbe breaþdo<øn of dimensional error into the 6 component stimulus dimensions for the flower pot
model uith a dimensionality reduction ptuameter ealue of 15.

Figure 5.13. Tbe fi.nal tan-dirnensiona,l internal representa.tion developed by tbe Jlouer pot model røith a
dimensionality reduction parørteter oalue of 15.

Given the ability of the model to develop the same representation across the parameter

regime described, it seems reasonable to suggest that the appropriateness of this representation is

not particularly dependent upon the value of the dimensionality reduction parameter. Of course,

repeated simulation does not amount to a general demonstration of the relationship between

learned representations and parameter settings. Nevertheless these demonstrations do show that, at

least in relation to the flower pot similarity data, the representations being learned can be regarded

as being a robust outcome of the application of multidimensional scaling principles, rather than

parameter specific idiosyncrasies of the model. Since each of these additional simulations of the

flower pot model involved different random initial representational configurations, a second

inference which could be drawn is that the potential problem of sensitivity to initial conditions in

connectionist models (see Kolen 8¿ Pollack 1991) seems not to be particularly prevalent within the

model. The validity with which this conclusion can be generalised to other data sets probably

depends, at least in part, on the nature of those data sets - and particularly upon the underlying

73



presence of an error 'elbow', as discussed in Section 3.1.5. Therefore, examining the ability of the

model to develop the same representational structure from other data sets, across a wide range of

dimensionality reduction parameter values, would appear to be a worthwhile exercise.

In any case, extending the model to allow the adaptive modification of the dimensionality

reduction paramefer during the model's operation offers a means of further reducing the reliance of

representâtional outcomes on parameter values. By initially setting the dimensionality reduction

parameter to a small value, the extent to which it should be increased is readily gauged from the

pattern of change of the dimensional error measure. Specifically, the dimensionality reduction

parameter value is appropriately increased by a small amount whenever the dimensional error

stabilises, until a situation is reached in which further increases in the dimensionality reduction

parameter cease to induce a further decrease in the dimensional error. This type of adaptive

approach to parameter setting is widely adopted in general connectionist modelling (eg. \Øeigend,

Rumelhart 8¿ Huberman I99I, see Haykin L994 for an overview), has previously been pursued

with regard to multidimensional scaling algorithms (eg. Kruskal L964b), and would certainly

constitute a v¡ofthwhile extension of the model.

5.2.2. Ov etcoming Separable Stimulus Difficulties

Shepard's (1974) discussion of the problems and prospects of multidimensional scaling

algorithms places considerable emphasis on difficulties evident in multidimensional scaling using

the City-block metric. More recently, these difficulties have been emphatically restated and

significantly developed by Arabie (I99L) and Hubert, Arabie and Flesson-Mcinnis (L992). Clearly,

given that the model has the scope to represent psychologically separable stimuli through

employing the City-block metric in psychological space, it is important that these concerns are

addressed.

In essence, the claimed difficulties inherent in multidimensional scaling over the City-block

metric are founded upon apparent inadequacies in the gradient-descent optimisation framework.

Specifically, Hubert et. aL (1992) argue that:

"gradient strategies in a city-block application lead to the satisfaction of necessary

conditions that are simply too weak to be used as the core of an adequate

optimisation algorithm" (p. 2I2).

The theoretical arguments presented in support of this claim, however, assume that the

multidimensional scaling algorithm operates in a representational space of fixed dimensionality.

Under this scenario it is demonstrated (FIubert et. aI. \992, pp. 2t6-2I7) that the gradient descent

optimisation approach does not sufficiently constrain the set of appropriate representational

configurations, in the sense that a large number of configurations which do not constitute

appropriate 'solutions' are stable states of the optimising system.
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It is, however, at least plausible to argue that the model described here does not suffer from

such shortcomings. The requirement of minimal dimensionality with regard to the derived

representâtion, as formalised by the dimensional error measure, constitutes precisely the type of

additional constraint which the analysis of Hubert et. al. (1992) suggests is needed. The evaluation

of this possibility is most directly achieved by applying the model to the type of task presented as a

concrete demonstration of the theoretically suggested deficiencies by Hubert er. aI. (L992).

This task involves examining the ability of a multidimensional scaling algorithm to recover a

pre-determined representationâl structure which, assuming the City-block distance metric in the

representational space, has been employed to generate similarity data. Hubert et. al. (1992) provide

convincing demonstrations of the inability of traditional, fixed dimension, gradient descent based

multidimensional scaling algorithms to reveal the representational structure which is, by its

method of generation, known to underlie such similarity data.

The particular choice of representational structure used by Hubert et. al. (7992) is an evenly

spaced 5x5 square lattice with stimuli randomly placed at 15 of the 25 available positions. The

actual configuration examined in detail by Hubert et. al. (1992), with normalised axes, is shown in

Figure 5.14. The reason for the scaling of the configuration will become clear in Chapter 7,btfi, for

rhe moment, it suffices to note that this alteration does not in any way modify the reconstruction

problem. There is no reason to believe that the choice of scale adopted by Hubert et. al. (1992) is

an¡hing other than arbitrary, and the normalisation evident in Figure 5.14 does not alter the

representational configuration in any other way.

Figure 5.14. The normalised initial confi.guration 15 points employed by Habm et. al. (1992). Adapted from
Hubert et. al. (1992), Figure la.

The similarity matrix provided to the model, given in Table 5.3, was derived from the pre-

determined representational configuration. This was done by determining the City-block distance

berween each pair of stimuli, and then applying this distance as the argument to the exponential

decay function given in Equation 4.4, as assumed by the model in accordance with the Universal

1.0

0.8

0.6

0.4

0,2

0.0

¡10 r5 r9

t2 t14 r 15

r3 .4 t1 r6

t7ll1

r8 r12 r13

0.8o.4 1.000 o.2 0.6

75



Law of Generalisation

Table 5.3. The lattice reconstruction similarity matrix

The model consisted of 15 units in each of the input, exemplar and teacher layers, and again

had 6 units in the internal representation layer. The learningl.ate parameter was set to 0.1, whilst

the dimensionality reduction parameter took the value 10. The value of the three error meâsures

across 1,000 trials is shown in Figure 5.15 below. \Øhilst the similarity effot rapidly falls to a

negligible value, the dimensional and total error measures, after reaching an early plateau,

experience a further significant decrease around the 400 trial stage.
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Figure 5,15, Tbe pattern of change of tbe three error nTea'srffes otter 1,000 triak for tbe lattice reconstrøction

rnodels.

The cause of this pattern of change is, once again, evident from an examination of the

individual stimulus dimensions, as presented in Figure 5.16. The belated removal of a stimulus

dimension from the representation being developed by the model results in the further decrease in

both error measures, and results in a final representational structure which is clearly two-

dimensional.

This two-dimensional representational structure is graphically depicted in Figure 5.17. \Øith

reference to the pre-determined initial configuration shown in Figure 5.1.4, and recalling the

allowable manipulations of derived representations, it is evident that the model has successfully

'l 2 3 4 5 6 7 I 9 10 11 12 13 14 15
,l 1.000 0.549 0.670 0.819 0.549 0.819 0.819 0.449 0.449 0.670 0.549 0.549 0.449 0.670 0.549
2 0.549 1.000 0.819 0.670 0.449 0.449 0.449 0.549 0.368 0.549 0.670 0.449 0.247 0.549 0.449
3 0.670 0.819 1.000 0.819 0.368 0.549 0.549 0.670 0.301 o.449 0.819 0.549 0.301 0.449 0.368

4 0.819 0.670 0.819 L000 0.449 0.670 0.670 0.549 0.368 0.549 0.670 0.670 0.368 0.549 0.449
5 0.549 o.449 0.368 0.449 1.000 0.670 0.449 0.247 0.819 0.8'19 0.301 0.301 0.368 0.819 0.670

6 0.819 0.449 0.549 0.670 0.670 1.000 0.670 0.368 0.549 0.549 0.449 0.449 0.549 0.819 0.670

7 0.819 0.449 0.549 0.670 0.449 0.670 1.000 0.549 0.368 0.549 0.670 0.670 0.549 0.549 o.449

I 0.449 0.549 0.670 0.549 0.247 0.368 0.549 1.000 0.202 0.301 0.819 0.819 0.449 0.301 0.247

I 0.449 0.368 0.301 0.368 0.819 0.549 0.368 0.202 1.000 0.670 0.247 0.247 0.449 0.670 0.819

10 0.670 0.549 0.449 0.549 0.819 0.549 0.549 0.301 0.670 1.000 0.368 0.368 0.301 0.670 0.549

1'l 0.549 0.670 0.819 0.670 0.301 0.449 0.670 0.8'19 0.247 0.368 1.000 0.670 0.368 0.368 0.301

'12 0.549 0.449 0.549 0.670 0,301 0.449 0.670 0.819 0,247 0.368 0.670 1.000 0.549 0.368 0.301

13 0.449 0.247 0.301 0.368 0.368 0.549 0.549 0.449 0.449 0.301 0.368 0.549 1.000 0.449 0.549

14 0.670 0.549 0.449 0.549 0.819 0.819 0.549 0.30'l 0.670 0.670 0.368 0.368 0.449 1.000 0.819

15 0.549 0.449 0.368 o.449 0.670 0.670 0.449 0.247 0.819 0.549 0.301 0.301 0.549 0.819 1.000
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recovered the initial configuration. In particular, if the direction conferred on the ordinate is

reversed, and the tv¡o axes are subsequently interchanged, then the representational structure

learned by the model coincides with the configuration from which the similarity matrix was

derived.

Figure 5.16, TIte breah.doun of dimensional error into the 6 component stirnulus dimensions for the lattice
reconstruction mo dels.

t2o'6 r3 t11 r8

t4 112

¡ '10 r1 t7
Dimension 2

-0.5 05
¡5 t14 r6

r9 ¡ 15 r 13

-0.5

Dimension 6

Figure 5.17. Tbe fi.nal tuo-dimensional internøl rEresentation deaeloped by the lattice reconstuction rnodel.

The ability of the model to reconstnrct the appropriate lattice configuration provides a basis

on which to claim that the model developed in this chapter reliably and validly applies gradient

descent optimisation principles to multidimensional scaling representational principles, despite the

f.act that it operates under the City-block distance metric. It is difficult to provide a detailed

explanation of the model's success with regard the claimed metric specific difficulties, although

clearly it is related to the form of the dimensional error component of the total error measure.

5.2.3.Entrapment In Local Minima

The adoption of a gradient-descent based optimisation strategy also introduces the possibility

of inappropriate psychological spaces being derived because of the presence of local minima in the

total error measure. In this context Intrator and Edelman (1996) suggest that the deterministic
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annealing multidimensional scaling approach developed by Hofmann and Buhmann (1994, see also

Klock 8¿ Buhmann L997) may be superior to gradient-descent approaches. Simple explorations

provide preliminary support for this view, indicating that the large numbers of inter-point distance

constraints which constitute the similarity error measure may be conducive to the creation of local

nunlma.

For example, consider the geometric locations of three stimulus-points, x, y and o, in a one-

dimensional space, required to meet the following similarity constraints: ,c must be 1 unit from o, y

must be Ll/z :urrrits from o, and x and / must be r/z a unit from each other. \Tithout loss of generality,

the location of stimulus point o may be fixed at the origin. Clearly, the pattern of similarities is

attainable in a one dimensional space, with (x, y) values of. (I,IVz) or (-I,-Lr/z) achieving an error

measure of. zeto.

6

similarity error
component

Figure 5.18. Tlte error surface implied by the similarity of x and y in relation to o.

Figwre 5.19. Tbe error
graphical depiction.

implied by the similarity of x and y, thresholded at an error oalue of 6 to assist

To understand the nature of the error measure, as a function of the location of ¡ and /, it is

useful to decompose the measure into two parts. First, consider the constraints involving the

similarity error
component
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distance f.rom o to both x and y, as shown on the left of Figure 5.18. This error surface has four

points at which the error is zero, namely (L,yr), (L,r/z), (-l,t/z), (1,-yr), corresponding to the four

ways in which x. may be 1 unit from the origin whilst y is tr/z units from the origin. Secondly,

consider the error surface implied by the requirement that x and y be separated by Vz a unit, as

showninFigure 5.19. This surfacehastwoparallel'troughs'onthelinesy : x-L/z andy: x + L/2.

The similarity error surface for this three point problem is the sum of these component

error surfaces, and is shown in Figure 5.20. The important point to note regarding this surface is

rhe presence of local minima which, within a gradient-descent framework, are the basins of

attraction for a significant proportion of possible initial values of. x and y.

similarity enor

Figare 5.20. Tbe combined error surfacefor tbe tbree point problem. Once again, tbe surface høs been tbresbolded

at an error aalue of 6 to assist grapbical depiction.

This demonstration suggests that the form of similarity error which characterises gradient-

descent based multidimensional scaling is certainly not immune to the presence of local minima.

Thus, the potential problem of finding sub-optimal solutions using gradient-descent optimisation

techniques through entrapment in these local minima must be addressed. Indeed, such difficulties

are widely asserted (eg. Arabie 1991, ShepaÅ L974) to be particularly prevalent in the one-

dimensional case. As such, the possibility arises of the model encountering difficulties when

deriving a psychological space for a set of stimuli which is appropriately characterised in terms of a

single psycholo gical dimension.

a b c de î gh i I

0

Fi.gure 5.21. The initial random placernent of the ten stirnuli on tbe number line.

To examine this possibility, a one-dimensional reconstruction task was developed by

randomly placing ten stimuli (abelled with the letters 'a' through 'j') ot a number line extending

from the value zero through the value three, as shown in Figure 5.21.
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The model was given ten units in the input, exemplar, and feedback layers, and again

employed six internal representation units. The dimensionality reduction parameter took the value

10, whilst the learning rate was set to 0.05 râther than 0.1, primarily to provide some

demonstration of the model's asserted insensitivity to the precise value of this parameter. Figure

5.22 drsplays the behaviour of the three error measures over the first 500 trials. All three measures

have stabilised by the conclusion of these trials, with the similarity error measure again showing a

negligible value.

b

4

+Total Enor

.-ù- Dinensional Enor

-o- Similarity Etor
k
kk

FI

1

0

100 200 300 400 500
Trials

Figure 5.22. Tbe pdttern of change of tbe three elror rneaswes oaer 500 trials for the one-dimensional

reconstruction model.

The breakdown of the dimensional error measure, as shown in Figure 5.23, indicates that the

model's derived psychological space is one-dimensional, consisting solely of dimension 3.

Figure 5,23. Tbe breaþdoun of dimensionøl error into tbe 6 component stirnulus dimensions for tbe one-

dimensional reconstruction model.

Finally, the representational values assumed by the ten stimuli on dimension 3, as shown in

Figure 5.24, accord, once their arbitrarily conferred direction is reversed, with the initial structure

of.Figtre 5.2I.

The fact that the model correctly reconstructs the one-dimensional locations of stimuli in

this way strongly suggests that it has some considerable ability with regards the avoidance of local

minima. In relation to this avoidance, Shepard (1974) has argued that the inclusion of mechanisms
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for dimensionality determination within multidimensional scaling algorithms confer considerable

advantages. Specifically, it is argued that, in representational spaces of a dimensionality which is

higher than ultimately proves necessary, the ability of the model to avoid local minima is

significantly enhanced. Intuitively, this argument suggests that a local minimum in a

representational space of. a certain dimensionality is unlikely to remain a local minimum in spaces

of higher dimensionality, and, therefore, the application of gradient descent optimisation principles

in these higher dimensional spaces may serve to appropriately position the various stimuli before

the'descent'into fewer dimensions is made.

Dimension 3 
¡ i hs fed c b a

, 2

Figure 5.24. TIte fi.nal one-dimensional intemøl rEresentation deoeloped by tbe one-dimensional reconstruction

model.

error

4

3

-1 1 2 3 effor

1

v
-1 3

!t
Figure 5.25. The one-dimensional and tuto-dimensional error surfaces for the three point problem in uhicb both

o andxarefixed.

Simple preliminary examinations of this intuition tend to provide encouraging affirmation

and are graphically suggestive. Consider for example, the three point problem described above in

which ,c must be 1 unit from o, y must be lL/z units from o, and x and y must be t/z a unit from each

other. To allow graphical depiction suppose, in this instance, that not only is o fixed at the origin,

but that x is fixed at +L. The similarity error function for the point y, if restricted to one

dimension, is shown on the left of Figure 5.25. As indicated by the arrows, the application of

gradient-descent to any negative starting position for 2 results in the generation of an inappropriate

solution through entrapment in a local minimum. If, however, a solution is initially sought in two-

dimensions through locating o at (0,0) and x at (1,0), then an error surface for the point

! = (!uy) of the type shown on the right of Figure 5.25 is constructed. \Øithin this surface, the

local minima have become 'saddle-points' which are readily avoided by gradient-descent

10 2
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optimisation principles. Indeed, the final location of y f.or the two-dimensional case is the point

(Ir/2,0) which corresponds to zero similarity error. The line on the right of Figure 5.25 indicates

progress to this minimum for a case in which the initial /, is negative.

Once y has reached this location, or one in the vicinity, the operation of the dimensional

error would be expected to remove the surplus second dimension, since all three points assume the

same value (ie. zero) on this dimension. In this way, the possibility of error minimisation in a

higher-dimensional space seems to facilitate the derivation of an appropriate lower-dimensional

representational structure. In this regard, the model developed in this chapter fares particularly

well, since the units in the internal representationlayer are not permanently removed once they

coincide with the line of non-contribution, and remain available to temporartly act in representing

structural information to allow the avoidance of a local minimum. For these reasons, it is suggested

that the model developed in this chapter may be particularly impervious to entrapment in local

Irun1ma.

The results presented in Sections 5.2.2 and 5.2.3 suggest, therefore, that the additional

representational requirements provided by the dimensional error measure are sufficiently

consrraining to prevent the derivation of degenerate solutions, whether associated with metric-

specific or local minima difficulties. A worthwhile topic of further study would be the

development of a rigorous understanding of those features of the dimensional error which

constitute these constraints. Such an understanding would have the immediate practical application

of furrher refining the dimensional error measure. Although the measure of representational

contribution and the broad features of the dimensional error measure have been developed in a

principled manner, Equation 4.L0 clearly represents only one of many functions exhibiting the

necessary properties. A more detailed understanding of the interaction of the dimensional and

similarity error meâsures might suggest alternative functions which would result in more

appropriate measures of dimensional error. This issue is further discussed in Section 9.1.5.
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Chapter 6: The Internal Derivation Of Psychological Similarity

\Øhilst the model described in Chapter 4 appears to be capable of successfully learning

psychological space internal representations, it does not constitute a reasonable model of the way

in which humans acquire these representations. As was arguedin Section 3.2.6,the reliance of the

model on a pre-determined similarity matrix is inappropriate. Such indices of inter-stimulus

similarity simply are not continually presented to humans by the external world. Therefore, if

human mental representations are to be appropÄately modelled by psychological spaces, a method

must be found by which connectionist models are able to derive autonomously the measures of

psychological similarity required for the construction of these spaces. Through considering the

relationship between the human mind and the external world, this chapter arrives at a first

tentative formalisation of such a method.

6.1. The Relationship Between The Mind And The \Øorld

The basic premise developed in this chapter is one with both a long-standing and an accepted

currency within psychology: that the structure of mental representation reflects its function More

specifically, it is argued that, since one of the most important roles played by mental

representational structures is to endow its possessor with some form of adaptive advantage, it

follows that these structures must be significantly influenced by a set of representational

constraints implicit in the external world. As summarised by Anderson (1990):

"the argument is that ... memory phenomena and the mechanisms that produce
them are caused by the goals of the [human cognitive] system interacting with the
structure of the environment" þ. 43)

Shepard's (1990b) overview is that

"'Süe may look into that window on the mind as through a glass darkly, but what
we are beginning to discern there looks very much like a reflection of the world"

þ.2r3)

It seems uncontroversial to asseft that human and animal behaviour is influenced by the

exrernal world. Vickers' (L979, pp. SS-89) description of an elementary organism with the capacity

to move towards light on the basis of rudimentary processing of the sensory information it receives

provides a simple demonstration of this relationship. Clearly, the behaviour of this organism is

completely determined by presence or absence of light in the immediate environment.

Similarly, Simon (19SÐ provides a description of the path traversed by arL aît moving along

a beach in terms of the structure of the beach itself. In particular, the ant's proclivity to avoid

immediate obstacles is viewed as the adaptive ability which shapes the movement of the ant. Under

this conception, the complexities evident in the path traversed by the ant, when viewed as a whole,

are caused by the complexities of the beach environment in which the ant is situated. Simon (198Ð
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neatly summarises this relationship as follows:

"An ant, viewed as a behaving system, is quite simple. The apparent complexity of
its behavior over time is largely a reflection of the complexity of the environment
in which it finds itself' þ. 64)

Presumably, the means by which both Vickers' (1979) organism and Simon's (1981) ant

produce behavioural action following environmental stimulation is through some form of innate

neural information processing system. It also seems reasonable to assert that the evolution of such

systems can profitably be viewed in terms of their provision of adaptive advantages. Guidance

towards life-sustaining light, in the case of the organism, and the avoidance of immediate obstacles,

in the case of the ant, are clearly both desirable behavioural capabilities. Given this scenario, the

crudest application of evolutionary theory suggests that neural structures accommodating the

appropriate behavioural abilities will become 'hard-wired' in future generations of the organisms

and ants.

Such an adaptively driven process of internalisation, however, is equally well applied to

information processing structures which do not simply serve to associate a stimulus with a

response. There is also much to be gained from the development of neural structures which

provide information about enduring, and possibly more abstract, regularities of the external world.

As an example, consider Shepard's (1984, p. a22) discussion of the internalisation of the temporal

níght/day cycle in hamsters, as evidenced by their continuation of regular periods of activity and

sleep within the artificial lighting conditions of a laborarory. The adaptive advantage of

internalisations of this type arises from the endowment of an ability to produce appropriate

behaviour in the absence of direct environmental stimulation. Indeed, in general, neural

information processing structures which alleviate direct dependence upon sensory stimulation are

desirable, if not indispensable, in a dynamic, unreliable, and often capricious world.

A recognition of the importance to human visual perception of enduring properties in the

external environment underpins the notion of 'ecological optics' (see Gibson t966, t979). \X/ithin

this theory, visual perception is conceived of as the process of extracting abstract invariants from

the sensory stimulation provided by an external optic array. These invariants, in turn, are

considered in terms of their various significances, or 'affordances', in relation to humans. A good

example of evidence in favour of this conceptualisation of visual perception is found in empirical

research involving the human perception of gaits (see, for example, Cutting 1981, Cutting, Proffitt

8¿ Kozlowski 1978). In essence, it is suggested that sensitivity to abstract invariants relating to joint

movements underlies impressive human perceptual abilities in identifying other humans through

the comprehending detection of their movement. Such abilities clearly afford adaptive advantages,

and the detailed articulation of the responsible perceptual invariants in the form of joint

movements - which are environmentally constrained through physical laws - reinforces the
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potential of the ecological optics approach.

In an argumenr consonant with that of ecological optics, Shepard (7975,1981b, 7984, L987b,

L989, L992a, 1994) proposes that evolution results in the development of neural systems which

process information in a manner entirely constrained or determined by physical properties of the

world. For example, human propensities to conceive the world as three-dimensional, locally

Euclidean, subject to three degrees of both translational and rotational freedom, and having a

unique downward direction conferred by gravity may all be cast as ones which are beneficial, if not

necessary, for the successful comprehension of the external world. As Carlton and Shepard (I990a)

summarlse:

"If the internal process is to yield an adaptive outcome, its constraints cannot be

determined by purely arbitrary limitations on the information processing system.

Rather, the system must have been shaped, by natural selection and individual
learning, to embody the most relevant constraints that govern the external world"
(p. 128)

As with ecological optics, the structure of perceptual information processing systems is seen as

being inextricably intertwined with the structure of the world. Shepard's point of departure from

the Gibsonian notion of ecological optics, however, arises when the neural systems responsible for

such internalisations are subsequently viewed as being appropriately modelled as cognitive

structures (see, in particular, Shepard t984).

'\üØhether or not the internalisation of the abstract structure of salient properties of external

stimuli is profitably viewed as implying the existence of a cognitive system, or is considered simply

a biological fact, it is clear that the internalisation process itself constitutes a fundamental departure

from the pairing of stimuli and responses evident in Vickers' (1979) organism and Simon's (1981)

anr. Rarher than determining behaviour solely through simple associations, the environment is

now viewed as a structured system, with abstract properties which are all-pervasive in their

influence on human life.

A further fundamental difference between Simon's (198Ð ant and humans is developed by

Vera and Simon (L993) through noting that the:

"ant does not need (and almost certainly does not have) a centralized and

permânent representation of its environment" (p. 34)

and then suggesting that:

"higher organisms, however, apPear to oPerate on more robust rePresentations of
the world than the ant This requires a significantly more complex
representation than the ant's, one that is more permanent and can be manipulated
to abstract new information" þ. 35)

Essentially the same argument is advanced by Shepard (1984)

"higher organisms are not merely observers; they are active explorers and

manipulators of their environment. If such exploration and manipulation is not
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just random trial and error, it must be guided by some internal schema or
hypothesis. At this point, a new type of function emerges that is related to
perceptual and to motoric functions, but is not identical to either. I refer to ... the
ability to remember, to anticipate, and to plan objects and events in their absence"

(Shepard 1984,p.421)

In other words, not only do properties of the world constrain perceptual processes, but

properties of the various objects or stimuli within that world also affect human life. Successful

interaction with the external environment requires both the ability to perceive that environment,

and the ability to comprehend the properties and consequences of the myriad of objects

encountered within that environment. Following the recognition of learning theorists (eg. Rescorla

8c \üØagner t972) "that it is the predictive or informational significance of events rather than mere

contiguity that is the basis of learning" (Shepard 1992b, p. 420), it is clearly imperative that humans

develop neural information processing structures which allow the prediction of the properties and

consequences of external objects. Shepard (1988b) lucidly refers to the process of acquiring such

abilities as the development of a 'metric of functional equivalence'.

At this point, the evidence supporting the adoption of a cognitive conceptualisation of

environmentally induced neural structures becomes overwhelming. \ühatever stance is adopted in

relation to the association of stimuli with responses, or the autonomous perception of invariant

and fundamental properties of the world, the effects that the various properties of individual

objects in the world have upon humans must be viewed in terms of the constraints they impose

upon mental representational stnrctures. The development of an understanding of the form of

these constraints, therefore, constitutes a first step towards the specification of a mechanism which

enables the modelling of the human acquisition of psychological spaces. Accordingly, the

remainder of this section presents a survey of established psychological theory which âttempts to

formalise such an understanding.

6.1.1. The Rational Approach

Anderson (L990, 1997, L992) describes an attempt to formalise the relationship between the

mind and the world through the application of the 'rational man' approach commonly identified

with the field of economics. The essence of this approach involves considering human behaviour as

rarional, in the sense of realising the pursuit of human goals in a manner which, within a set of

inherent information availability and processing capacity limitations, can be regarded as optimal.

Consequently, under this view, the cognitive structures which underpin human behaviour are

regarded as constituting optimal solutions to constrained representation problems. As Anderson

(1992) argues:

"if we know that behavior is optimized to the structure of the environment and

we also know what that optimal relationship is, then a constraint on mental
mechanisms is that they must implement that optimal relationship" þ. 186)
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Thus, the application of rational approach to the development of a model of memory

retrieval (Anderson L990, 1992, Anderson 8¿ Schooler 1991) suggests thar the probability of

information recall from memory reflects the relative cognitive costs of retrieval, and the expected

behavioural benefit resulting from the availability of the information. Similarly, a rational

approach to modelling the categorisation process (Anderson t990, 199I, t992) dictates rhar

conceptual structures constitute maximally informative groupings of a set of memory elements.

Anderson (L990, L992) also develops rational models of processes of causal inference and problem

solving based on the same principle of adaptation through constrained optimisation.

The ability of cognitive models formulated under the rational approach to emulate empirical

data is convincingly demonstrated in the extensive evaluation provided by Anderson and others

(see, for example, Anderson L990, L99I, 1992, Lnderson & Schooler 1991, Oaksford & Chater

1994). The performance of such models is, necessarily,Iargely a function of the means by which

human information processing constraints and the structure of the environment are formalised.

Nevertheless, in many applications the specification of such formalisms, at least in the sense of

constituting a reasonable first approximation, is relatively unproblematic, and it is difficult to

mount a substantive criticism of the rational approach on these grounds.

Interestingly, there appears to be a significant correspondence between the mental

representational structure implied by a rafional analysis and those derived through the

construction of psychological spaces. Nosofsky (199I) details the relationship between the

Generalized Context Model and the rational model of categorisation, demonstrating, in particular,

that the former may be regarded as a special case of the latter. Furthermore, Anderson (1990)

argues that the rational approach to categorisation mirrors Shepard's (I987a) analysis of

psychological spaces in terms of consequential regions and resultant generalisation gradients, in the

sense that:

"both start with minimal, reasonable assumptions about the structure of the
environment, then derive the probability that a generalization is vaiid given that
structure, and then make the assumption that behavior will reflect this objectively
derived probability" (p. 133)

In an extension of this observation, Anderson (1992) proposes that the fundamental difference

between the two approaches involves Shepard's (L987a) assumption that each point in a

psychological space is equally likely to represent a stimulus, reflecting a uniform distribution of

stimulus probability within a given consequential region, whilst the rational approach assumes a

normal distribution of stimulus probability within a given consequential region. Unfortunately,

Anderson (L992, p. 423, personal communication, May L995) reports that the effect of this

difference upon the theoretically derived generalisation gradients has not been conclusively

determined, and hence an empirical determination of the relative appropriateness of the two

approaches has not been conducted. \Øhilst such discrepancies potentially exist, the application of
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the quantitative formalisation employed under the rational approach to the learning of

psychological space representations v¡ould appeú to lack complete justification. In any case, the

focus of rational models upon stimuli which assume discrete values on component dimensions

makes their application to the continuously varying dimensions of psychological spaces less than

straight forward.

At a general level, nevertheless, both the rational and psychological space approaches clearly

have much in common, and constitute powerful Bayesian analyses of the adaptive relationship

between human mental representation and the structure of the environment. In this sense, the

impressive ability of rational models to emulate human cognitive processes serves to reinforce the

appropriateness of the psychological space representational constnrct. Ultimately, however, the

difficulties involved in employing the quantitative detail of the rational approach to the modelling

task at hand means that other formalisations of the relationship between the mind and the world

must be examined.

6.1.2. Psychological Essentialism

Medin and Ortony (1989) propose the theory of 'psychological essentialism' as a means of

explicating the relationship between the mental representations of objects and the consequences

and properties of those objects. Basically, psychological essentialism suggests that although a

conceptualisation of the structure of the world based upon notions of Platonic forms - a

philosophical stance known as essentialism - is inappropriate as a model of the nature of reality,

humans do tend to perceive the objects in their environment as possessing 'essences' because of the

predictive and explanatory advantages afforded by this representational framework. Put simply,

Medin and Ortony (1989) suggest that essentialism may properly be regarded as bad ontology, but

may also happen to constitute good epistemology.

Psychological essentialism does not assert that humans necessarily are able to specify the

precise nature of the essence associated with a particular object, but rather suggests that "people

find it natural to assume, or to act as though, concepts have essences" (\4edin Ec Ortony, t989, p.

184). Consequently, some considerable flexibility exists in describing the way in which mental

representational essences become linked to stimuli in the external environment. In fact,

psychological essentialism suggests that the abstract structures to which human mental

representation ultimately takes recourse are causally linked to sensory stimulus descriptions. This

establishment of a meaningful relationship between abstract mental representation and sensory

stimulation allows Medin and Ortony (1989) to make the insightful observation that:

"organisms have evolved in such 
^ 

w^y that their perceptual (and conceptual)
systems are sensitive to just those kinds of similarity that lead them towards
deeper and more central properties" (p. 186)
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As a concrete example of this relationship, consider a natural kind such as 'tree'. It seems

likely (see Rosch L978) that if sets of outline drawings of trees are suitably averaged, the resuhant

outline drawings are, in general, recognisable as trees. In terms of psychological essentialism, this

result suggests that the mental representational ascription of a tree essence to each instance of tree

encountered through evolutionary history has resulted in the construction of perceptual

machinery which has been fineIy tuned to view the outline drawings as a collection of physical

features which constitute a tree. Sensory description which is biased in this way clearly serves the

adaptive advantage of immediately providing information regarding the similarity of. a stimulus to

previously encountered stimuli. Indeed, to the extent that "psychological similarity is tuned to

those superficial properties that are likely to be causally linked at a deeper level" (lr4edin 8c Ortony,

1989, p. 186), the sensory description approach to mental representation is, through the

evolutionary adaptation of human perceptual structures, largely appropriate.

This conclusion is not incompatible with those reached in Section 2.2.2, where the primacy

of sensory stimulation as a means of encountering the world, and the occasional appropriateness of

physical descriptions as models of mental representation was noted. Nevertheless, particularly with

regard to humans, the arguments advanced in Section 2.2.2 in reladon to the frequent

inappropriateness of the sensory description approach do imply that human perceptual machinery

has not evolved to the point where conceptual structure can always be inferred directly from

sensory experience. \ühilst the composite outline of a number of trees may be recognisable as a

tree, the same is not tnre for the composite outline of a number of pieces of furniture (again, see

Rosch 1978). The perceptual amalgam of a chair, table, closet and bookcase, for instance, is

extremely unlikely to resemble any discernible object, and almost certainly will not evoke the

concept 'furniture'.

Observations of this type, of course, form the foundation of the notion of a 'basic' level in

conceptual hierarchies (see Mervis & Rosch 1981, Rosch t978, recall Section 3.1.5). It is interesting,

therefore, to observe evidence that basic level concepts are the first learned by humans, and are

assigned linguistic labels which are relatively simpler (Rosch, Mervis, Gray, Johnson 8c Boyes-

Braem 1976). As Neisser (1987) notes: "categorisation at the basic level is categorisation by

appearances" (p. L4).In terms of the evolution of mental representation, such results suggest that

perceptual similarity may provide an initial basis for the representation of the external world. This

basis can subsequently be manipulated to form the more abstract representational structures which

provide further predictive and explanatory advantages.

This is essentially the conclusion reached by Goldstone (1994) in developing a

'bootstrapping' model of the acquisition of conceptual structure. Having identified the problems

with sensory description and featural abstraction discussed in Chapter 2, by suggesting that

similarity-based cognitive models:
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"must successfully navigate between the Scylla of a purely perceptual basis and the
Charybdis of an unconstrained set of postulated aspects" (p. 1,46)

Goldstone (1994) then argues that:

"There exists a continuum from lowJevel perceptual features to highly abstract
theories. Explanatory progress occurs when concepts at more abstract levels are
explained, in part, by concepts at lower levels" (p. 146)

The weight of empirical developmental evidence and theoretical explanarory power

presented by Goldstone (1994) in support of this view of the evolution of conceptual structures is

considerable, and indicates, in part, that sensory description has an important role in defining the

relationship between the mind and the world. Clearly, however, the acceptance of the existence of

abstract causal linkages underscores the fact that sensory description is incomplete âs an approach

to the modelling of human mental representation.

In this regard, Medin and Ortony (1989) emphasise that the theory of psychological

essentialism recognises that the physical properties of stimuli are potentially superficial, and need

not be the sole determinant of the mental representation of those stimuli. Rather, it is suggested

that the same representation may be ascribed to a set of stimuli on the basis of some common

consequence, where that consequence is causally associated with a particular representational

essence. Averill's (1993) discussion of psychological essentialism is more explicit in this regard,

identifying plausible manifestations of underlying essences with regard to natural kinds, biological

kinds and functional lçinds. In all cases, however, the proposed nature of the causation linking an

essence to its emergent property is presented in terms of intervening 'theories', of the type which

characterise the explanation-based approach to understanding human conceptual structure

(I(omatsu t992, Medin L989, Smith 1989). Thus, all stimuli which prove to be poisonous when

eaten by a particular individual become associated with a 'poisonous' essence, and the successive

realisation of these associations promotes the individual's mental development of a theory of

poisonousness. Such a theory would, presumably, encapsulate an association of certain physical

properties with poisonous stimuli, and include a belief that the nature of poison itself, through

chemical or other means, is causally related to the development of these physical features in

poisonous stimuli.

6. 1.3. Psychophysical Compleme ntaÅty

Shepard (1975,1981b, t984, I987b) has developed, primarily under the title 'psychophysical

complementarity', a set of notions which arelargely consonant with psychological essentialism. In

particular, Shepard's (19S1b) advocacy of psychophysical complementarity incorporates the

fundamental insight of psychological essentialism, that of the existence of a causal linkage between

mental representation and the perception of the world:

"selective pressures of biological evolution ... have shaped, in higher organisms, a
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PercePtual mechanism whereby objects are represented in a way which preserves
the information most essential for survival - information about the inherent
properties of objects and the organism's spatial relations to them" G,.29L)

Rather than employing a formalisation of linking theories, however, psychophysical

complementarity conceives of the relationship between objects and their mental represenrations in

terms of abstract functional isomorphisms. \üithin this conceptual scheme, whar are termed rhe

'inherent properties' of objects possess a structure which necessitates a complemenfary mental

representational structure. Appropriate complementarity is not achieved, however, through a

'first-order' isomorphism (Shepard I975), in which the components of mental represenrational can

be canonically mapped onto components of the inherent structure of the external environment.

Instead, 'second-order' isomorphisms (again, see Shepard L975) are invoked, in which canonical

functional relationships are established between mental representations and the world.

In describing this notion of complementarity, Shepard (1981b) employs the metaphor of a

lock's functional relationship to a key.

"just as a lock has a hidden structure that is to some extent complementary to the
visible contour of the key, the internal [mental representational] structure that is

uniquely activated by a given object must have a structure that somehow meshes

with the pattern manifested by this object" (p.29L)

The functional isomorphisms of psychophysical complementarity define a relationship

between the mind and the world which appears very similar in spirit to the notion of abstract

causal association which underpins psychological essentialism. As with the linking theories of

psychological essentialism, the functional isomorphisms between mental representations and the

external environment confer adaptive advantage. Specifically,anatural outcome of the operation of

internal cognitive processes upon functionally based representations is a heightened perceptual and

physical preparedness, following stimulation, on the part of. an organism. A mental representation

which is functionally 'tuned' to make immediate the poisonousness of a spider, for example, is

ideally constructed to realise the appropriate attentional strictures required of perceptual

mechanisms in gauging the danger inherent in such an experience, and also to issue the necessary

motor actions based upon consequent perception. Effectively, the mental representation of the

spider, and the sensory stimulation provided by the spider itself, form a 'mesh', in which cognitive

conceptual structures and physical realities are coherently bound to predictive, explanatory and

adaptive advantage. As Garner (1993) concludes:

"[the] complementarity idea is that the real world and the Mind can function
together in a way which neither could alone ... the two must mesh so they can
jointly perform a needed function" (p. L70)

6. 1.4. Process-Based Representation

Carlton and Shepard (1990a) note that the representational dictates of theories such as
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psychological essentialism and psychophysical complementarity suggest thar "ir is not objects, but

their transformations which are primary" (p. L29). The notion that mental representations

correspond to the parameters of some form of reconstructive process, thus forming an efficient and

informative abstract coding of stimuli in the external world is intuitively appealing, and has

received considerable empirical and theoretical support.

For example, studies of apparent motion (see Shepard 8c Cooper 1982, Carlton & Shepard

t990a,1990b), including particularly those involving mental rotation, provide strong evidence in

favour of modelling the mental representation of stimuli in terms of the geometric rransformarions

which are applied to the stimuli. Notions such as 'representational momentum' (see, for example,

Freyd L987) provide a complementary impetus for viewing mental representation in dynamic

terms. Similarly supportive is Leyton's (L992) conceptualisation of the processes which acr on non-

rigid stimuli as being mentally encoded through the symmetry properties of the geometric

transformations which deform the stimuli (see also Palmer 799I, f.or a related set of ideas).

Vickers' (1996, see also Vickers, Vincent E¿ Medvedev 1996) proposed'Erlanger'program for

psychology further develops this general approach, in seeking to apply notions of geometrical and

topological invariants to cognitive modelling. The name 'Erlanger' reflects the inspiration of this

approach in the influential and powerful 'Erlanger Program' for geomet ry artic;'rlated by Felix

Klein in L872. Yickers (1996) identifies the foundations of the Erlanger approach in Klein's

conceptualisation that:

"different geometries can be characterised by different groups of transformations,
and the important relationships within each geomefry arc defined by the
syrnrnetries or set of properties which remain inuariant under the corresponding
group of transformations"þ. 3)

and argues that this view has successfully been employed to systematise and extend both the fields

of mathematics and physics. The insight afforded by the Erlanger approach is neatly captured by

Kac and lJlam's (1968) observation that:

"[t]he fruitfulness of this point of view stems from the fact that algebraic
properties of the group of transformations that leave a certain ... structure
invariant may reflect many of the properties of the sructure itself" þ. 72)

Thus, in applying the Erlanger conceptualisation to psychology, Vickers (1996) proposes that:

"the single most important function carried out by the brain is to perform
multiple geometric transformations on patterns of incoming sensory excitation,
and all significant mental events and processes are determined by invariants
associated with these transformations or to which they give rise through
continued iteration" þ. 2)

This view of the relationship between the mind and the world closely accords with that

advanced in Section 3.3.2 - that of the mind reflecting the world as mediated by cognition and

perception, ensuring an integration of the learning of mental representational into the general
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cognitive operation of human in the world - to justify the development of a radial basis function

implementation of multidimensional scaling. The Erlanger approach suggests thar mental

representations correspond to those parameters, or seed elements, of complex perceptual and

cognitive processes which allow the reconstruction of, or otherwise 'resonate' with, the sensory

experiences being represented. The mental representational of a distal stimulus, under this view,

constitutes a 'tuning' or 'meshing' of cognitive and perceptual processes to the associated proximal

stimulus.

6. 1.5. Physical Constraints

A final contribution of psychological theory towards understanding the relationship

between the human mind and the world emphasises the importance of the actual physical structure

of the human body. Glenberg (in press) neatly encapsulates this contribution by arguing that:

"conceptualization is the encoding of patterns of possible physical interaction with
a three-dimensional wodd. These patterns are constrained by the structure of the
environment, the structure of our bodies, and memory. Thus, how we perceive
and conceive of the environment is determined by the types of bodies we have" þ.
Ð

Glenberg (in pres$ provides an analysis of a range of memory and language phenomena in

terms of their dependence upon the exact nature of the human sensors and effectors through which

they are realised. Lakoff (1987) places similar importance on the structure of the human body in a

linguistically based analysis of conceptual structure. For example, the whole-part dichotomy which

underpins mental hierarchies is viewed as being closely related to the natural subdivision of human

body parts. Such approaches are not inconsistent with views such as psychological essentialism and

psychophysical complementarity. Clearly, all incorporate attempts to understand the development

of human mental representation in terms of existing cognitive structures and information provided

by the external environment. The introduction of the structure of the human body as an additional

influence on mental representation, however, constitutes a significant extension of this position.

llumphrey's (1992) consideration of the evolution of consciousness and mental

representation argues for the primacy of the structure of an organism as a means of explicating the

relationship between the mind and the brain. From an evolutionary standpoint, the argument is

that:

"boundaries - and the physical structures that constituted them, membranes, skins
- were crucial. First, they held the animal's substance in, and the rest of the wodd
out. Second, by virtue of being at the animal's surface they formed a frontier: the
frontier at which the outside wodd impacted upon the animal, and across which
exchanges of matter and energy and information could take place" (Flumphrey
1992, p. 18)

In other words, an understanding of the way in which the external world constrains mental

representation must necessarily incorporate some understanding of the medium through which the
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physical world interacts with the mental. In terms of accounting for the incremental development

of cognitive structures across evolutionary history, Humphrey's (1992) emphasis on rhe physical

structure of organisms affords considerable insight and is largely convincing - particularly in

relation to the initial emergence of rudimentary cognitive capabilities in the most primitive

organisms. At this level, Humphrey's (1992) argument is somewhat reminiscent of Goldstone's

(L994, recall Section 6.t.2)'bootstrapping' conception of the development of mental structures in

humans. Despite this apparent correspondence, however, the importance attached to the physical

structure of human bodies by Glenberg (in press), Lakoff (1987) and others could be questioned.

Doubts regarding the primacy of the form of the human body as an explanatory mechanism

in relation to human mental structure are, perhaps, best articulated in terms of the appropriateness

of the so called'Turing Test'for artificial intelligence (Turing 1950, see also Hofstadter 1985, chap.

22).In essence, the Turing Test involves the human interrogation of a purportedly intelligent agent

by means of a typed 'conversation' conducted through computer terminals. The view espoused by

Turing (1950) is that if the human interrogator cannot, after prolonged interaction with the agent

in this way, determine whether or not the agent is human, and the agent is in fact some type of

artificial system, then that system is properly regarded as exhibiting artificial intelligence.

The Turing Test has been criticised (eg. Broolcs I997b, p. 573) for its general compliance

with symbolic approaches to artificial intelligence (eg. Newell 1980, Newell & Simon 1976), and

particularly with regard to the disembodied notion of intelligence it appears to encapsulate. Many

aspects of intelligent behaviour would appear to be inaccessible to the interrogator of a Turing Test

because of the significantly impoverished means of communication upon which the test relies.

Nevertheless, intelligence does seem capable of maintaining a certain degree of abstraction from

partiatlar physical manifestations. Certainly,rhe view that intelligence can only be accommodated

within the physical structure of a human is unjustifiably anthropocentric. Indeed, given the close

coupling between mental representation, cognitive processing and intelligence asserted in Chapter

1, this thesis' subsequent modelling of mental representational structure in non-biological hardware

involves the implicit assumption that intelligent information processing can be realised in a variety

of computational media.

Thus, the Turing Test may be considered as occupying one end of a spectrum of intelligence

testing approaches which progresses towards successively more natural forms of human interaction

between the interrogator and agent. It is impossible to determine the point at which the

consequent involvement of physical human structure in such a gradation ceases to allow the

assessment of important aspects of intelligence, and begins to inappropriately handicap an artificial

agent merely on the basis of its physical appearance. This dilemma is, in essence, a restatement of

the difficulty inherent in assessing the appropriate emphasis to place on the human body's

influence upon mental representation.
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Perhaps a reasonable position to adopt on this issue is the following: \Øhilst the explication

of mental structure directly in terms of body structure overstates the role human physical structure

plays in conveying environmental information, the general approach adopted by Glenberg (in

press), Lakoff (1987), Humphrey (1992) and others serves to emphasise that environmental

constraints on mental representation arise through both the perceptual and motor interactions of

humans with the world. Theories such as psychological essentialism and psychophysical

complementarity sometimes appear susceptible to considering the relationship between the mind

and the world solely in terms of the perceptual constraints sensation imposes upon cognition. In

principle, however, both theories are completely capable of also incorporating - and, indeed, they

occasionally explicitly recognise - representâtional constraints arising from human interaction with

the world generated through movement. To the extent that an emphasis on the physical structure

of the human body serves to reinforce the existence and importance of these haptic constraints it

should be regarded as a valuable contribution towards an understanding of the relationship

between the mind and the world.

6.1.6. Conclusion

There appeârs to be a significant basis for viewing the impact of the external world upon

human behaviour as extending to the structuring of mental representation. Moreover, the

conceptualisations of the relationship between the mind and the world considered above arelargely

compatible with the psychological space approach to modelling mental representation advocated in

Chapter 3. \What psychological essentialism describes as the representational 'essence' of a stimuli

seems to parallel the 'mental elements' of the rational approach, the 'inherent properties' of

psychophysical complementarity, and the 'transformational invariants' or 'seed elements' of the

Edanger program. Such abstract representational essences would, in turn, appear to be

appropriately modelled in abstract representational psychological spaces.

There also appears to be some broad agreement on the nature and purpose of the

relationship between the world and the mental representational structures it constrains. Simon and

Kaplan (1989) provide aneat summary:

"Intelligent systems are ground between the nether millstone of their physiology
or hardware, which sets inner limits on their adaptation, and the upper millstone
of a complex environment which places demands on them for change" þ. 38)

Essentially, therefore, the relationship between the mind and the world is one based on adaptation.

The development of mental representational structures releases an organism from reliance on the

continual provision of sensory information, and allows the organism to predict and comprehend

the world in a significantly enhanced way. However, the precise means by which such

environmental constraints on mental representetion are appropriately formalised remain elusive.
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The difficulties inherent in applying the rational approach to a connectionist model of the

development of psychological spaces were discussed in Section 6.1.2. \Øith regard to psychological

essentialism, the explaîafory flexibility achieved by considering conceptual structure as a

conglomeration of theories in this 'way comes at the expense of the possibility of developing formal

modelling mechanisms. As noted by Komatst (1992), the means by which the requisite linking

theories of an explanation-based approach such as psychological essentialism are appropÅately

implemented in a connectionist network, or atty other formal modelling framework, are

enormously difficult to determine. Psychophysical complementarity's notion of a second order

isomorphism forming a functional mesh between a distal object and its mental representation is

also not readrly amenable to connectionist implementation. Shepard (1989) is explicitly concerned

with such modelling possibilities, but, in general, provides an insightful programmatic discussion

rather than proposing specific netv¡ork mechanisms and structures. Similarly, Glenberg (in press),

in relation to the development of models which incorporate the human bodies influence upon

mental structure, states that:

"it may well be that connectionism will be the surest route to formalizing these
ideas. Nonetheless, it will have to be a connectionism that differs from the sorts

currently in use" þ. 19)

Thus, it is difficult to apply psychological theory directly to the development of

connectionist mechanisms which internally derive indices of psychological similarity. Therefore,

the most promising approach towards the construction of a workable mechanism would appear to

involve examining standard connectionist practices regarding the representation of information

which has its source in an external environment, and then refining and extending these techniques

under the guidance of the psychological theory surveyed above.

6.2. Connectionist Internalisation Of Psychological Similarity

The ability to construct models which are embodied and situated in an environment was

advanced in Chapter 1 as one of the primary cognitive modelling attractions of connectionism. It is

not surprising, therefore, that the majority of connectionist cognitive models incorporate feedback

which can, in some sense, be considered as modelling information provided by a simulated external

world. In particular, the learning processes which operate within previously developed models are

commonly driven by information regarding what may be described âs the categorical associations

and sensory properties of presented stimuli.

6.2.7. Catesorical Associations And Sensory Properties

The prototypícal connectionist approach to the provision of categorical associations involves

alayer of output units which are constructed in one-to-one correspondence with a set of categories
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to which elements of the stimulus domain may belong. The pattern of category membership of a

presented stimulus across these categories is then formalised through feedback which specifies

appropriate activation values for the output units, in accordance with some representational

convention. The only restriction typically placed on such conventions is, in accordance with the

isomorphism between environmental categories and network units, that a local representational

scheme be employed - although there is some evidence (eg. Markman 1989) that relatively more

minor representational details can significantly influence the capabilities of a model. In any case, a

number of models described in Chapter 2 and Chapter 3 provide examples of this general category

unit approach, including the disease diagnosis model, the ARTMAP mushroom model, the

Neocognitron model of letter recognition, and the ALEX and ALCOVE models. Each of these

models is essentially concerned with the cognitive process of categorisation, and relies upon

feedback which provides correct categorical associations through activating category units

corresponding to the disease categories 'burlosis' or 'terrigitis', the categories 'poisonousness' or

'edible', the letters 'a'through 'z', ot whatever range of. environmental categories must be

accommodated by the model.

Connectionist semantic networks (eg. Rumelhart 6r Todd t993, recell Section 2.3.7) employ

a different approach of the representation of categorical associations. The theoretical heritage of

connectionist semantic networks results in external feedback being formalised in terms of the

relational properties and attributes of the stimuli. \Øhether or not this approach significantly

extends the category unit approach depends upon the degree to which it can be approximated

through the combinatorial construction of category units which combine relational, property and

attribute units (recall Figure 2.10). For example, it may be the case that the environmental feedback

provided by a connectionist semântic network through the dual activation of a relational 'has-a'

unit and a 'beak' unit can be emulated by the creation of a lone 'has-a-beak' or, simply, 'beaked'

category unit. It is also possible, however, that the semantic network approach's introduction of

what effectively amounts to distributed caregory representation creâtes significant differences in the

computational properties and representational abilities of the two approaches. At the very least,

the representational distribution of environmental information evident in connectionist semantic

networks allows for the parsimonious construction of network architectures.

A second approach towards the formalisation of the external feedback received by

connectionist models involves the provision of physical or sensory information which describes the

various properties of stimuli. This approach is partialJarly prevalent in non-psychological

modelling involving the training of networks to correctly predict specified sensory properties (eg.

Lawrence, Tsoi & Back t996), but is, in principle, equally applicable in psychological contexts. The

NETtalk model of speech production (Sejnowski 8c Rosenberg 1987), for example, employs

feedback which is formalised in terms of phonemic codes and, as such, is closely related to sensory

97



acoustic information. A similar state of affairs is evident in the connectionist speech recognition

model described by Kohonen (1988b), which establishes a phonemic space through self-organising

map learning techniques, and then recognises spoken words on the basis of the trajectories they

impart upon this space. Clearly, the provision of information through sensory description allows a

relatively simple and effective means of modelling the external environment in terms directly

adapted from the physical sciences. Furthermore, this approach is entirely compatible with the

embodied view of human cognition, in which sensory boundaries between humans and the world

serve as the primary mediators of environmental information.

It could reasonably be argued, however, that the lack of detail involved in connectionist

models employing either categorical associations or sensory properties approach often results in an

uncomfortably arbitrary correspondence between the provided feedback and the environmental

events which are being modelled. In particular, simulated environments are often entirely static, in

one, or both, of the following two senses.

First, the environment is often not viewed as being inherently dynamic, in that the

presentation of a particular stimulus is always followed by the provision of complete and invariant

feedback information. Simulated environments seldom contain any notion of the continually

changing nature of the external world. As Brooks (L99Ib) argues, the potential for this type of

deficiency in any simulated model of an environment is only circumvented through the

construction of cognitive models which physically interact with the real world. Employing

Brooks' (L99Ib, p. 583) slogan "the world is its own best model", this is precisely the approach

adopted by the 'Artificial Life' sub-field of Anificial Intelligence which, in general, pursues the

development of robots and other physical agents which perform elementary behavioural tasks in

real world environments. IJnfortunately, this research tends to eschew the consideration of

cognitive representation (see Brooks t99la) and, indeed, it is difficult to reconcile many mental

representational modelling goals with the Artificial Life approach.

There is, however, no fundamental barrier preventing the employment of simulated

environments which are significantly more realistic than is currently standard connectionist

practice. It is possible to provide incomplete feedback with regard to the categorical associations of

a stimulus on some trials, reflecting, for example, the fact that not every real world observation of

a robin necessarily indicates whether or not it is a member of the caregory'capable of flight'.

Similarly, feedback regarding the sensory properties of a stimulus is amenable to psychophysically

principled formalisations, incorporating, for example, the presence of stochastically varying

sensory noise (see Rumelhart & Todd 1993, p. L2, f.or an example).

Secondly, simulated environments are often static in the sense that the information

processing being performed by a connectionist model does not alter the feedback patterns it

receives. It is in this context that a recognition of the relationship between mental representation
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and the physical structure and actions of the human body, as discussed in Section 6.1.5, is

particularly valuable. By viewing connectionist models as embodied and situated agents, it is

possible to incorporate the belief that "inseparable from the perceived attributes of objects are rhe

ways in which humans habitually use or interact with those objects" (Rosch \978, p.33). In

particular, as was outlined in Chapter 1, it is possible to associate output units within a network as

representing the activation of motor responses which, through an appropriately sophisticated

simulation of the model's environment, alter the subsequent feedback information provided to the

model.

Therefore, whilst accepting inherent limitations in modelling interaction with the external

world in terms of information regarding the categorical associations and sensory properties of

stimuli, it appears reasonable to suggest that such 
^n 

approach offers a basic technique for

introducing environmental information to a connectionist network which learns psychological

space representations.

The architectural basis of this proposed approach is schematised in Figure 6.1. In essence, the

presentation of a stimulus to the model at the stimulus input layer results in the prediction of the

categorical associations and sensory properties of that stimulus across the output layer. \Øith

reference to Figures 3.7 and 3.8, it is clear that the ability to make such prediction partly involves

the learning of weighted connections between the exemplar and output layers, as is evident in the

ALEX and ALCOVE models. It is from these connection weights that indices of inter-stimulus

psychological similarity may be derived.
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Figwre 6.1. Tlte proposed approach to enaironrnentally constraining tbe learning of mental representation.

Given appropriate measures of psychological similarity, the model architecture shown in

Figure 6.1 also indicates the way in which mental representational structures can be developed. In

particular, the stimulus input, internal representation, and exemplar layers correspond precisely to

those of the connectionist multidimensional scaling network developed in Chapter 4, as depicted in

Figure 4.1. Thus, the learning of the psychological space representational locations of the stimulus
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set involves the adjustment of the connection weights linking the stimulus input and internal

representation layers.

6.2.2. A First Approximation Of Psychological Similarity

Having described a formalisation of the external environment's influence upon a

connectionist model, it is appropriatero examine the plausibility of this formalisation in terms of

the general theoretical development of the relationship between the mind and the world presented

in Section 6.1. Fortunately, the provision of the categorical associations and sensory properties of

stimuli does appear to be in broad agreement with the established theoretical conception of this

relationship. The sensory information provided by a stimulus, and the higher-level cognitive

concepts to which that stimulus belongs, seem to constitute precisely the type of information

humans acquire from interaction with the environment which serves to constrain the adaptive

development of their mental representational structures.

Moreover, considerable specific precedent may be found with regard to the derivation of

indices of psychological similarity from categorical and sensory information. 'Wallach's 
(1958)

survey of various measures of psychological similarity, for example, argues for the partial

appropriateness of definitions cast in terms of "common environmental properties" þ. 105), and

the cognitive tendencyto "assign items to a common cafegory" (p. 106). Clearly, these definitions

closely correspond to the notions of sensory properties and categorical association, respectively, as

developed above. It is, therefore, reassuring to note that Gregson's (1975) critique of rVallach's

(1953) survey identifies the possibility of psychological similarity being defined in terms of

common cafegory assignment as a "serious theoretical contender" (p. 14).

Further support for the notion of measuring psychological similarity in terms of categorical

associations is provided by so-called 'classificatory theories' of similarity (eg. Sjöberg E¿ Thorslund

t979). Essentially, such theories, supported by empirically observed relationships between

classificatory responses and similarity ratings (eg. Hande| L967), suggest that the psychological

similarity of two stimuli is a function of the classificatory properties, or categorical associations, of

those stimuli. A set of closely related assumptions underpin additive clustering techniques (Shepard

1980, Shepard 8¿ Arabie L979, Tenenbaum L996) f.or describing conceptual structures. These

techniques assume that:

"stimuli are represented as members of salient subsets þresumably corresponding
to natural classes or features in the wodd) and similarity is treated as a weighted
sum of common and distinctive subsets" (Íenenbaum 1996)

In other words, as with classificatory theories, the psychological similarity of two stimuli is viewed

as arising from their common categorical associations.

Finally, the notion of consequential regions (recall Section 3.I.2) provides considerable

support for seeking to derive psychological similarity from both the categorical associations and
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sensory properties of stimuli. Not only are psychological space representations

adaptively constructed subject to environmental constraints (Shepard t987a, 7

consequential regions can rea{tly be identified with both categorical and sensory information. The

postulated learning processes which establish the boundaries of consequential regions operate

through the revision of gradients of generalisation based upon information provided by an external

environment (Shepard 1994, Shepard 8¿ Kannappan 1991, Shepard 8¿ Tenenbaum 1991). This

information may be purely sensory in nature, as in the determination of a 'poisonousness'

consequential region through monitoring of sensory experiences of gustatory pain. It seems equally

plausible, however, to suggest that environmental information may be of a more abstract

categorical nature, characterising the type of feedback which a parent might provide to a child, or,

indeed, which any informed source might provide to a cognitive agent. Under this scheme, for

example, a student's consequential region corresponding to the natural kind 'communist' is refined

through information regarding the categorical associations of various historical figures in relation

to the concept 'communist', as provided by lecturers, textbooks, and so on.

Thus, the process by which the boundaries of consequential regions are modified may be

related to the development of increasingly accrfiate measures of psychological similarity, as

information regarding the categorical associations and sensory properties of stimuli is accrued (cf.

Shepard L965). Therefore, given the assumption which underpins the model developed in Chapter

4 that human mental representation is appropriately modelled by psychological spaces, the

introduction of environmental information to constrain the learning of such representational

stnrctures seems appropriately formalised through the dual notions of categorical association and

sensory properties. In particular, it would appeú to be reasonable to generate indices of inter-

stimulus psychological similarity from internalised measures of categorical association and sensory

proPerties.

6.2.3. An Anticipatory Rejoinder

At this point, it should be acknowledged that the proposed technique for internally deriving

the measures of psychological similarity appears to risk the "vacuity and circularity" described by

Rips (1989). The definition of psychological similarity in terms of the sensory properties of stimuli,

and the categories to which they belong, seems to necessitate the model assuming the information

it is designed to learn. As Rips (1989) argues:

"if you explain why people classify bats as mammals by saying that bats are similar
to other mammals, you cannot simultaneously explain that similarity by invoking
shared predicates such as is a mammal (p. 51).

Indeed, it could be maintained that the specification of the range of potential categorical

associations of a stimulus set amounts to precisely the type of pre-abstraction which was criticised

in Section 2.I as a means of modelling mental representation within connectionist networks.
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Ultimately, this line of reasoning might conclude that the proposed approach to developing

internal measures of psychological similarity simply involves the transferal of inappropriate pre-

abstraction from the input to the output units of a model.

As plausible as this criticism may seem, it fails to recognise a fundamental difference between

the proposed scheme for environmentally constraining mental representation, and the featural

approach to stimulus representation. Put simply, the important distinction to be drawn concerns

the subject of the pre-abstraction. In the case of the featural approach, it is the mental

representations themselves which are being modelled through the articulation of sets of

psychological features. In the categorical association and sensory property approach, it is the

srructure of the world which is being abstracted in preparedness for presentation to a model. In the

first case, the model assumes the mental representations it should seek to learn. In the second case,

the model is being provided with the information it requires to learn.

As discussed in Section 6.2.L, models which are not physically embodied and able to interact

with the real world must operate in some type of simulated environment. The specification of

relevant categorical associations and sensory properties constitutes a series of ontological

assumptions which render tenable such simulation. For example, the reliance of connectionist

semanric netv/orks upon categorical associations, in the form the various properties, qualities,

actions, and so on, of a stimulus set constitutes an entirely justifiable approach to modelling the

world. As Rumelharr and Todd (1993) argue:

"the network essentially ends up reflecting the structure of the world (as we
human parse it, since we make the training sets)" þ. 19)

The fact that, in some cases, the range of categorical associations formalised within such models

may 
^ppeú 

dangerously close to providing the mental representâtional structure the model is to

acquire simply reflects an introspective accuracy in the pre-abstraction of the modeller.

It is probably f.air to suggest, however, that the modelling of the world solely in terms of a

fixed set of categorical associations and sensory properties of stimuli is inherently limited. Indeed,

the intricacies of the external environment, and their impact upon mental representation, would

appear to be somewhat trivialised by the proposed approach. In this sense, the approach constitutes

a first tentative formalisation of a method for modelling the acquisition of connectionist mental

representation. \ühilst the principles of environmentally constraining mental representation, and

modelling the world through the categorical associations and sensory properties of stimuli are well

founded, there remains considerable scope for the development of more sophisticated and realistic

formalisations. In this regard, the addition of noise to such sensory information and the

incorporation of dynamic aspects in the model of the environment, as discussed earlier, constitute

ways in which an environment might be more realistically simulated.

Nevertheless, even static formalisations of the sensory properties and categorical associations
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of a set of stimuli, as employed in previous connectionist modelling, provide a means of allowing

an external environment to constrain the representation learned by a model. This information

allows a simulated world - however primitive - to dictate and impinge upon the simulated mind

modelled by a connectionist netv¡ork. Thus, incorporating the learning of sensory and categorical

information into the model developed in Chapter 4 offers the promise of developing a

connectionist model of the learning of environmentally constrained mental representation.
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Chapter Z: A Model Of The Learning Of Mental Representation

This chapter describes a connectionist model which develops psychological space internal

representations using environmental information concerning the categorical associations and

sensory properties of a set of stimuli. The model is founded upon the connectionist

multidimensional scaling model developed in Chapter 4, appending mechanisms which allow the

model to categorise stimuli and predict their sensory properties. The acquisition of knowledge

required for such prediction enables the model to derive internal indices of inter-stimulus

psychological similarity, which replace the externally derived measures required by the

multidimensional scaling model.

The architecture and nomenclature of the model are shown in Figure 7.L. The stimulus

input, internal representation and exemplar layers are directly adapted from the multidimensional

scaling model. The exemplar layer is now connected to a response layer, through a second

connection weight matrix \1. The R units in the response and environmental feedback layers are

constructed in one-to-one correspondence with the range of possible environmental categorical

associarions and sensory properties of the stimulus set. The N units in the response exemplar layer,

however, correspond to the elements of the stimulus set, and share a radial basis function linkage

with the response layer.

Figure 7,1, The arcbitectare and nomenclature of tbe connectionist model of the enoironrnentalþ constrained

Ieaming of rnental representøtion.

Once again, the model's description is readily divided into processing and learning phases. In

the processing phase, a stimulus is presented, causing the generation of predicted categorical

associarions and sensory properties at the response layer. Following the provision of
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environmentally derived information at the environmental feedback layer, the learning phase

serves to adjust both the model's predictive abilities and its internal representation of the presented

stimulus.

T.l.Processing Phase

The processing phase consists of six main stages: stimulus presentation, internal

representation determination, similarity calculation, response generation, farget similarity

derivation, and environmental feedback provision. The first three of these stages are identical to

those of the multidimensional scaling model, as detailed in Sections 4.t.I, 4.t.2 and 4.1.3, so it is

only necessary to describe to the final three stages.

7. 1.1. Response Generation

The pattern of activation values across the exemplar layer, which measures the current

psychological similarity of each member of the stimulus set to the presented stimulus, cause the

generation of activation values across the response layer through the connection weight matrix

lVt =lw¡j] with R rows and N columns. These response units correspond to the possible categorical

associations and sensory properties of the stimulus set, with the lth unit's activation value, denoted

r,, being given by:

N
(7.r),, --Lw ¡*,¡

j=r

7 .1.2. T aryet Similarity Derivation

The radial basis function linkage shared by the response and response exemplar layers

requires the units in the response exemplar layer to maintain a position within a'response space'.

As depicted in Figure 2.1, this is an R dimensional space, with coordinate axes corresponding to the

units in the responsetayer. The response exemplar units assume positions within this space in

accordance with the currently predicted categorical associations and sensory properties of the

stimulus set. Thus, the location of the zth response exemplar unit, corresponding to the currently

presented stimulus, is updated to be given by the R dimensional vector to=(r1, 12, ..., ,n),

reflecting the categorical and sensory expectations ofthe model generated at the response layer.

Effectively, the positioning of the response exemplar units in response space represents the

model's internalisation of categorical and sensory information relating to the stimulus set, as

provided by the environment. The spatial distribution of the response exemplar units directly

reflecrs the constraining effect of the external environment upon the model. Following the

discussion of Chapter 6, therefore, it is from the structure of the response space, particularly the
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locations of the response exemplar units, that indices of stimulus similarity may be derived.

More specifically, the activation values assumed by the response exemplar units, in

accordance with their radial basis function linkage to the response layer, should provide rarget

measures of psychological similarity between the currently presented stimulus and the other

members of the stimulus set. In effect, the activation values of the response exemplar units fulfil the

role played by the external feedback layer ol the multidimensional scaling model described in

Chapter 4.

Clearly, a formal specification of the means by which the response exemplar units acquire

appropriate activation values involves describing both the distance metric operating within

response space, and the form of the radial basis function applied to distances measured according to

this metric. \øith regard to the distance metric, it seems reasonable to argue that the categorical

associations and sensory properties which define the component dimensions of response space âre

appropriately regarded as independent, in essentially the same sense that separable stimuli have

independent component dimensions. Indeed, the fact that certain categories and properties are

selected to simulate an external environment suggests that they are capable of unitary and coherent

description and, consequently, may be considered in one-to-one association with units in a

connectionist layer. Such injective mappings, in turn, are indicative of the representational

independence of the categories and properties which underpin the response space. There is,

rherefore, considerable justification in assuming the operation of the City-block distance metric in

resPonse sPace.

The determination of an appropriate basis function, however, is markedly more problematic.

In essence, the basis function must calculate an appropriate target value of the similarity between a

member of the stimulus set and the presented stimulus, given the distance between the response

exemplar units of the two stimuli. That is, having been provided with a distance gauging the

similarity of the model's expectations with regards the categorical associations and sensory

properties of two stimuli, the basis function is required to generate a measure of inter-stimulus

psychological similarity.

A number of demands can reasonably be made of this basis function. Most fundamentally,

the implication of Chapter 6 in general, and Section 6.2.2 in particular, is that the derived

psychological similarity should monotonically decrease as distance in response space increases.

Essentially, such a stricture implements the notion of mental representation being environmentally

constrained by requiring that derived measures of psychological similarity reflect the shared

categorical associations and proximal sensory properties of stimuli. In particular, the similarity oÍ.

two srimuli - in the sense of being expected to belong to the same category, or providing the same

sensory information - affords a degree of psychological similarity to be accommodated by the

mental representational structure.
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In addition to implementing target psychological similarity as a monotonically decreasing

function of distance in response space, it also seems reasonable to suggest that the basis function

should have a restricted range between, say, the values zero, indrcating complete psychological

dissimilarity, and one, indicating complete similarity. Therefore, denoting the response space radial

basis function as g(D), where D is the provided distance, the following restrictions may be imposed:

g:[0,co) F+[0,1]

s(o) = t
lim,. ,- g(D) = 0

s'(D) < 0

v.2)

There are, however, an enormous variety of functional forms which satisfy these

requirements, even when only continuous and otherwise 'well-behaved' functions are considered.

Unfortunately, it is difficult to find convincing psychological evidence, of either an empirical or

theoretical origin, which places additional constraints upon the response space basis function.

Some guidance, however, is provided by studies of response generalisation, which examine

the exrenr to which a stimulus ellicits responses other than that which has been learned or is

otherwise intended. As noted by Shepard (L957), observed confusions in a paired-associates learning

task may derive from stimulus generalisation (or confusion), response generalisation (or confusion),

or a combination of both. Predominantly, empirical studies of paired-associate learning have

focused upon stimulus generalisation, by allowing a raîge of stimuli but restricting response

behaviours to a limited, discrete, and highly discriminable set of alternatives. It is possible,

however, to alter this approach towards the consideration of response generalisation by restricting

rhe range of presented stimuli to a discrete and highly discernible set, and allowing a continuum of

response behaviour.

For example, Noble and Bahriclc (L956) employ a pressure control as a means of producing

identification responses for stimuli which signify target response pressures. Similarly, a paired

associate learning task reported by Shepard (1958a, Experiment II) involves responses being made

by the physical placement of an electric probe upon a linear array of contacts. Both of these studies

provide empirical confirmation of the suggestion that response generalisation monotonically

decreases as 'response distance' - as measured by the difference between tatget and actual pressure,

or the distance between the correct and actual contact point - increases. Shepard's (1958a) analysis

extends to the construction of a representational space in which the various resPonses are

represented by points in one dimension. This representational structure is largely equivalent to the

actual physical configuration of the contacts, except that the contacts at each end of rhe array are

relatively more distant from their neighbours (see Shepard L958a, Figure 5). Thus, in this case,

there is a close relationship between physical response descriptions and psychological response
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descriptions, and it appears plausible that such a finding might generalise across other forms of

responding.

Shepard's (1958a) further finding that the obtained response generalisation measures are well

modelled by an exponential decay function over the derived psychological response configuration,

is, therefore, highly suggestive of a general form for the basis function in response space.

Additional impetus is provided by Shepard's (1958b) observation that the trace model of

generalisation mentioned in Section 3.t.2, although primarily developed in terms of stimulus

generalisation, is equally applicable to response generalisation. That is, the conclusion of the trace

model that stimulus generalisation is given by an exponentiâl decay function of distance in

psychological (stimulus) space can be taken to imply that generalisation in response space also

exponentially decays. Finally, Shepard (L957) arrives at the same conclusion, evidently on the basis

of inferred symmetries or likenesses between stimulus and response spaces. Thus, what evidence is

available suggests that the generation of measures of psychological similarity in terms of response

differences might be appropriately generated using ân exponentially decaying radial basis function.

Certainly, exponential decay functions satisfy the conditions imposed in Equations 7.2.

Indeed, it might be argued that exponential decay functions canonically meet these requirements.

In any case, the model developed here assumes that the radial basis function operating in response

space is given by:

p¡=exp(rcltt -t"1,) (7.3)

where r is a non-negative parameter controlling the information properties of response space, and

is discussed in detail in Section 7.3.The activation values generated across the response exemplar

layer in this way constitute the model's internalised measure of the psychological similarity

between the presented stimulus and every other member of the stimulus set.

7 .7.3. Environmental Feedback Provision

The interpretation of both the environmental feedback and the response layer's activation

values relies upon the adoption of some form of representational convention. Effectively, this

convention reflects the assumptions made in simulating the environment within which the model

is situated. 
'SØith regard to categorical associations, for example, activation values of + 1 might be

taken as indicating that a stimulus is a member of a particular category, whilst activation values of -

1 signify non-membership. \Øith regard to sensory properties, less abstract coding schemes are

readtly applicable, such as the representation of a line segment through an activation value

proportional to the segment's length.

Following the determination of such a representational code, the environmental feedback

received by the model following the presentation of a stimulus is formalised by setting the
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activation values of the environmental feedback layer to appropriate values. As discussed in Section

6.2.L, the provision of environmental information in this way allows for the possibility of

incomplete, erroneous, or noise-perturbed feedback being received by the model.

7.2.Learning Phase

The learning phase consists of two main stages. First, the connection weight matrix \l is

adjusted according to ar external error which meâsures the discrepancy between the categorical

associations and sensory properties predicted by the model and those provided by the

environment. Secondly, the connection weight matrix C is adjusted according to aî internøl error

which measures the discrepancy between the current internal representational structure, and that

required to realise a psychological space representation..

7.2.7.External Error

The external error, EE , is defined to be þroportional) to the sum of the squared difference

between the predicted categorical association and sensory property values given across the response

layer, ar,dthe values provided by the environmental feedback layer, as follows:

,IR

EE : yr>çt, -r¡)' (7.4)

j=r

The learning rule derived from the external error measure acts upon each weight in the

connection weight matrix '\1, and again adopts the gradient descent approach to optimisation.

Thus, the learning rule takes the form:

ne@ old , âEE
Ø;¡ :U; - Lw-7-

ru¡j
v.5)

where ),. is a learning rate parameter.

Specifically, the required partial derivative, with reference to Equations 7.L and 7.4, is

calculated as follows:

#=*räç'l,-'¡)' ?.6)

NI G,-')+
j=1

N

=-Iþ,-r¡)v¡
j=t
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which results in the learning rule:

N

N

-l* =.ilo *t,Zþ¡-r)vi Q.7)
j=1

7.2.2.Intetnal Error

The internal error, 18, fulfils the role played by the total error measure, E'ot , in the

multidimensional scaling model, and seeks to generate a psychological space internal representation

through the adjustment of the connection weight matrix C. Thus, the internal error incorporates

an internal similarity error component, IE"-, and an internal dimensional error component,

IEd'* , as follows (cf. Equation 4.L3):

IE=IE'i*+IEdi- (z 8)

The similarîty error component meâsures the discrepancy between the pattern of inter-

stimulus psychological similarities in the current internal representational structure, given by the

activation values across the exemplarlayer, and the target similarity values internally generated at

the response exemplar layer. In particular, the error meâsure is proportional to the sum of the

squared difference between these two sets of values (cf. Equation 4.6)t

¡¿sin-%ZØ¡-v)' (7.e)

j=1

The dimensional error component of the internal error measure is identical to the

dimensional error developed for the multidimensional scaling model. Thus, with reference to

Equations 4.8, 4.lI and 4.!2, the dimensional error component may be defined simply as follows:

¡gd.im - ¿dim (7.Lo)

It seems reasonable to consider the internal derived measures of inter-stimulus similarity

generated across the response exemplar Iayer as being momentarily stable, at least during the

processing and learning phases which follow the presentation of one particular stimulus. In this

sense, the effect of modifications of the connection weight matrix C upon response exemplar

activations is justifiably ignored. This simplification, in turn, allows the partial derivative of the

dimensional error component of the internal error measure to be equated with that of the

multidimensional scaling model's dimensional error, as derived in Equation 4.t7. Thus, the

learning rule associated with the internal error measure is closely related to the learning rule

employed in the multidimensional scaling model, and is given by (refer Equations 4.15, 4.16,4.L7
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and 4.18):

m old . AIECi, =Crn -Ac-7-din
(7.rt)

N

= cil! .t,iØ¡ - v )v ¡llp",p,ll','V, - r,jl'-' sgn(c,, - c,,)
j=1

1N
- expçfu,)(r, - *Z'*)A ¿=t

where r, as before, defines the Minkowski distance metric assumed to operate within psychological

space.

2.3. Model Construction And Parameter Setting

Much of the construction and interpretation of the model developed in this chapter parallels

that of the multidimensional scaling model described in Chapter 4. In particular, the units in

stimulus input, exemplar and response exemplar layers are creaÍ,ed in one-to-one correspondence

with the members of a pre-determined stimulus set, and the initial dimensionality of psychological

space is over-estimated by the number of units in the internal representation layer. The foundation

of the current model in the multidimensional scaling model enables the interpretation of the

learned psychological space representation to be undertaken in the same way in both models.

Additional architectural concerns, however, arise from the current model's simulation of the

environment. Specifically, units in the response and environmental feedback layers are established

in one-to-one correspondence with appropriate categorical associations and sensory properties of

the stimuli.

In terms of parameter values, many of the conclusions reached in relation to the

multidimensional scaling can also validly be applied to the current model. The interaction of the

two learning rules does, however, suggest that some care might be taken in setting the learning rate

parameters ),, and ).,. Ls the internal learning rule alters the psychological space location of the

exemplar units, the connection weights previously set by the external learning rule become

inaccurare. It may, therefore, be prudent to employ a value of. )"rwhich is relatively larger than )",

ro ensure that the model's environmental predictions maintain sufficient accr)racy to give rise to

meaningful target similarity values. Beyond this consideration, however, both of the learning rate

parameters are appropriately set to small but essentially arbitrary values.

\Øhilst the dimensionality reduction parâmeter remains capable of significantly influencing

the learned internal representational structure, there does not seem to be any reason for believing

that the observed insensitivity of the multidimensional scaling model to this parameter, as

demonstrated in Section 5.1.1, will not prevail in the current model. Of more concern is the
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information parameter, rç introduced in Equation 7.3, which is also capable of significantly

affecting the model's behaviour. Accordingly, the following section develops a principled meâns

for setting the value of this pârameter.

2.3.1. Basis For Setting The Information Parameter

The information parameter influences the distribution of the internal indices of

psychological similarity maintained at the response exemplar layer. Recall from Equation 7.3 that rc

parameterises the exponential decay basis function employed in generating similarity measures

from response space distances. As was discussed in Section 4.I.3 in relation to psychological spaces,

serring K to îe Í-zero values will result in all similarity indices being close to one, whilst large r
values will result in near-zero similarity indices, with the sole exception of self-similarities which

will maintain the appropriate value of one.

Such considerations suggest that the setting of the K parametü might best be accomplished

through considering the response space in general, and the target similarities in particular, as the

internally maintained information source from which the psychological space representation is

developed. Clearly, if rwere set to zero, the resultanttarget similarities, all assuming the value one,

would provide little information regarding the appropriate psychological space representational

structure. Similarly, large values of 6 causing one target similarity to be one, with the rest being

zero, also provide relatively little information to the remainder of the model. In information

theoretic terms, both of these parameter values restrict the flow of information from the

environmental feedback layer to the internal representational layer. The response space is, in

essence, being limited in its ability to convey the information necessary to develop appropriately

detailed psychological space internal representations.

There is some considerable precedent regarding the analysis of human cognitive processes

and representations in terms of information theory (see Garner L962, chap. 1, for an overview),

and this practice maintains contemporary popularity. As broad recent examples, consider Linsker's

(1938) use of information maximisation principles in modelling the development of orientation

specific visual cells, Myung's (1994) employment of entropy measures in analysing various

categorisation models, and Corter and Gluck's (1992) explanation of conceptual structure and basic

levels in terms of the relative informativeness of candidate representational structures. The general

success of these, and other, analyses bears testimony to the potential insights gained from the

application of information theory in general, and the entropy measure in particular, ro a

psychological context. Thus, the approach to setting the information parameter rwhich is pursued

here views the response space as an information carrying channel, and seeks to maximise an

entropic measure of the information represented âcross the response exemplar layer. That is, lc

assumes values producing patterns of target similarities which, in terms of an entropy measure, are
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maximally informative.

Clearly, the formalisation of this approach requires the development of a quantitative

understanding of the way in which target similarities are influenced by changes in the value of r.

Since a general means of parameter setting is sought, it is not possible to specify in advance the

location of the response exemplar units within the response space. Thus, it is necessary to measure

the probability distribution of r,arget similarities given minimal assumptions regarding the position

of the response exemplar units.

7 .3.2. Distribution Of Target Similarities

The derivation of the required probability distributions uses the fact that response space is a

coordinate space of dimensionality R operating under the City-block distance metric, and that

target similarities are generated from the position of the response exemplar units in the way

defined by EquationT.3.It is further assumed that, first, every point in response space constitutes

an equally likely location for a response exemplar unit and, secondly, that the probability of

generalisation between the categorical associations or sensory properties of any two stimuli, whilst

possibly negligibly small, is non-zero.

A direct consequence of this second assumption is that every response exemplar unit in

response space lies within a finite distance of every other unit. Therefore, there exists a minimal

positive number z, such that response exemplar units in response space differ by at most z with

respect to their positions on each of the coordinate axes. Geometrically, z; is the value of the length

of the side of the smallest possible (hyper)cube which encompasses all of the response exemplar

units in response space. Given this characterisation, it is clear that only the values of. R, a and r
affect the distribution of the patterns of derived target similarities.

Since the target similarities are calculated as an exponential decay function of various

distances in response space, it is necessary to determine the probability distribution of these

distances. Considering first the case of a one-dimensional response space, the cumulative density

function of the distance between two points drawn from a uniform distribution on a line segment

of lençh ø is required. This can be found by allowing a point p to move from 0 to z along the

segment, and integrating the probability that a second point, p', chosen independently of. p, will fall

within a distance d of p.

As depicted in Figure 7.3,there are three cases to be considered. The first applies whenp is

between d anda-d.In this case, the p'can lie anywhere in the marked region betweenp-d andp+d,

of lençh 2d, and be within d of p. The second case applies when p is between 0 and d. Here, p'

must lie between O and p+d to be within d of. p, a region of lençhp+ d.The final case applies when

p is between v-d andp' must lie between p-d and zt, a region of length d+("-p).Given that p and p'

take each point on the line segment with equal probability, and that the locations of p and p' are
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independently chosen, the required cumulative density function is derived as follows:

D,(d) = l-'+**+ Ë+"#* l_o+"4-+L

= it¿plTo .+lt+]i".+l*"rt]: 
,

-- -(+)' *2(+)

V.T2)

(7.r3)

This result can be used to derive the cumulative distribution function for distance in higher

dimensional response spaces. Because of the operation of the City-block metric is that the distance

between two points located in a R dimensional space is simply the sum, across all R coordinate

axes, of the distance between the two points on each individual dimension.

Figure 7.3, Tltree cases in deoeloping the distribution of disønce betueen tu)o Points on a line segment.

For example, consider two points, p and p', in a two-dimensional response space. Let the

difference berween these two points on one dimension be u. Then the probability that the total

distance berween p and p' is less than d can be found by allowing u ro move from its minimum of 0

to its maximum of o, and integrating the probability that the sum of the distance on the first

dimension and the distance on the second dimension is less than d.

There are now two cases to be considered. In the first case, where 0 < d 3 zt, u must lie

between O and d, and the second dimension's distance must be less than d-u. Thus, f.or 0 < d < ø:

D,,,(d) = ( rl@). D,(d - u).d,u

= ((-#.?)"(-#*2!!P
=+(+)r -+(+)' *2(+)'

du

In the second case, where p < d < 2o, either u lies between d-a and z¡ and the second

dimension's distance is less thand-u, or uis less than d-a andthe second dimension's distance can

assume any value. Thus, for ø < d < 2rs:
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The results of Equations 7.73 and7.L4 constitute a piece-wise definition of the distribution of

distance in a two dimensional response space.

A general means of deriving the distance distribution in a response space of arbitrary

dimensionality is evident from the construction of the two dimensional distribution. For a

response space of dimensionality -R, the distance distribution is comprised of .R functions, each of

which can be expressed in terms of the distribution of distance in ,R-1 and one dimensional spaces,

as follows:

Dr,r(d) = Dt(d -o¡ + (_,o¡(r).Dr(d. -u).d.u

: zsp - + * f,_,(- #. +) " (- + ¡ zu:ø\. ¿,

:-+(+)r *+(+)' -4(+)' .+(Ð-i

D 
^,r(d) 

: ( oh.@). Dr(d. - u).d.u

D o,r (d),.. ., D 
^,^-,, 

(d) = D o-r@ - r) * Í _,oh-r@). Dr (d, - u). du

D^,^(d) = Da_t@ - o) * fl,')" o;_r(r).Dr(d. - u).d.u

Do,r@) = ( oh-r,r(r). Dr(d - u). d,u

Do,.@) = DR-t,*-t@ - r) * l'--,0" 
oh-r,*r(u).Dr(d. - u).d'u

* Í,*r,Dh-r,*(u).Dr(d - u).d,u

Do,o@) = Da-t,a-t@ - o) * fo|]"" o;-r,^-r(u)'Dr(d' - u).du

V.I4)

?.15)

(7.16)

where Do,.@) applies on the closed interval l(x-I)v, xzl. Since the distribution function D^.(d)

will be similarly comprised of R-l functions, Equations 7.I5 can be given more precisely as follows:

where x : 2,3,..., R-1. In this way, the cumulative density function of distance in an arbitrary

dimensional response can be built up recursively from the distribution of distance on a line

segmenr, as given in Equation 7.t2. It is possible to show that, despite their piece-wise definition,

these functions are both continuous and differentiable on the relevant interval [0,.Rø].

The distribution of target similarities represented by the activation values across the response

exemplar layer can be derived from the distance distributions. \Øith reference to Equation 7.3,the

cumulative density function of target similarities in a.R dimensional response space is given by:

A^(o) : p(target similarity in R dimensions < a)

1,1,5
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: p(exp(r.distance in R dimension$ < a)

: p(r.distance in R dimensions < ln ø)

: ¡r(distance in R dimensions ,-+)

: 1 -p(distance in.R dimensio"t <+)
: L - DRFþL)

Clearly, the cumulative distribution function for target similarity will be piece-wise

comprised of R functions, following the piece-wise definition of distance distribution. Specifically:

Ao,.@) =L- D^,*(tu) (7.18)

where x : L,2,...,R, A^,.(o) applies on the interval lexp{-rc.xo},exp{-r.(x-1)v}f, and A*(ø) as a

whole applies to the interval [exp{-r.Rz},1]. For example, the distance distributions given in

Equations 7.t2,7.I3 and7.L4 give rise to the following cumulative distribution functions for target

similarities in one and two dimensional response sPaces:

4@) =(*)' *z(ff)+t

4,,@) : - +(*)r - +(*)' - z(ff)'z + t

A,,,(o) = +(*)r * +(*)' * 4(*)' . +(*) - i

(7.re)

The continuity and differentiability of these piece-wise defined target similarity distributions

follows from the continuity and differentiability of the distance distributions, and the method of

construction detailed in Equation 7.16.

7 .3.3. Maximising Entropy

The cumulative probability distribution functions of target similarity given in Equations 2.19

indicate that all such functions can be expressed as polynomials in the indeterminate S. More

specifically, it is clear that, for a response space of given dimensionality -R, the distribution of target

similarities is completely characterised by the single value rcz¡ - the product of the information

parameter and the maximum spread of the response exemplar units. \ühilst the value of rt cannot

reasonably be pre-determined by the model, and, indeed, is potentially subject to variation it can,

nevertheless, be measured at any stage during the model's operation from the various positions of

the response exemplar units in response space. Thus, the setting of r should be interpreted in terms

of ensuring that the product ¡ø maintains an apProPriate value.

Following earlier discussion, an appropriate value [or xv is assumed to be one which
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maximises the analog interpretation of the entropy measure (Shannon 8¿ 
'Weaver 

1949), which, for

a random variable Xwith a probability density functionp@ is given by:

H- -f-lt{)tn(p(x)).dx v.20)

For a one dimensional response space, the target similarities have the probability density function

(refer EquattonT.Ig):

Ai@)=i(ffi*t-; (7.21)

allowing the definition of an entropy measure:

H(*)= - f . . Ai@).rn(Ai@)).dø
.exP(-Kll,

=ln(¡<z) -++!-ln(z)

(7.22)

which, in turn, is maximised when rczt : 3. Thus, when R : 1, the information parameter r is

appropriately set to the value ]. Imponantly, as is evident from the graphical depiction of

Equation 7.22 shown in Figure 7.4, the entropy measure is relatively large for a considerable range

of. rcu values surrounding 3. Accordingly, it seems reasonable to suggest that the information

providing capabilities of a one-dimensional response space would not be significantly impeded by

the setting of r to a value which resulted in a rca value somewhat different from 3. This state of

affairs is highly desirable, given the potential variation in the value of ?r as response exemplar units

are moved within response space to accommodate information newly received from the

Figure 7.4. The entropy rnertsure of target similarities in a one-dim.ensional retponse sPr¿ce as afunction of rcrt.

It is possible, in principle, following the method detailed in Section 7.3.2, to derive

probability distributions for target similarities in a response space oI any dimensionality, and then,

as outlined in this section, use these distributions to define an entropy measure which can be

maximised to give appropriate values for the information parameter. Unfortunately the analytic

evaluation of the entropy measure undertaken for the one-dimensional case in Equation 7.22

envlronment.
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proves to be considerably more elusive in higher dimensional cases. The general difficulty of the

necessary integrations, coupled with the piece-wise definition of the probability distribution

functions involved, renders the manual derivation infeasible, and specialised software f.or

performing symbolic mathematics seems incapable of generating plausible (ie. non-complex!)

solutions. Furthermore, numerical calculations of the entropy measure appear particularly volatile,

presumably because of the large numbers involved in evaluating the limiting behaviour of the

logarithmic function, and do not provide reliable approximations.

Therefore, in order to develop some understanding of appropriate parameter values for the

information parameter in multidimensional response spaces, recourse is taken to two less

principled, but computationally tractable approaches, which remain based upon the notion of

maximising the information carrying capacity of response space. The first of these approaches

involves finding the value of rco which most closely aligns the target similarity probability density

of a multidimensional response space with the probability density which is known to be optimal in

the one-dimensional case. That is, by considering the distributions given in Equation 7.!9 as

functions of both a and xv, a rcv value is sought which minimises the difference between the target

similarity distribution in a response space with .R dimensions, and the distribution Ai(a,3) , as

measured by:

M (*) : lte'*@,*) - Ai@,3))'z .d.ø (7.23)

where both target similarity distributions take the value zero across the interval of their domains

for which they arc not otherv¡ise defined. Numerical analysis of Equation 7.23 indicates that rcv

valuesofapproximatelyt7sandL.2TminimiseMf.orR:2andR:3respectively.FigureZ.5

shows the optimal one-dimensional distribution, Ai@,3) and the best fitting two-dimensional

distribution,Ai@,L78) as solid and broken lines respectively. Unfortunately, in response spaces

with four or more dimensions, the numerical integration techniques employed again appear to

become too unstable to provide reliable estimates.

Figure 7.5. Tbe optirnal target sirnilarity probability density in a one-dimensional response space, and

tbe best fitting tuo-dimensional distribution, shoren, reEectioeþ, by solid and dotted lines.
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The second approach towards finding appropriate information parameter settings in

multidimensional response spaces hinges upon a recognition that, of all probability densities with

bounded domains, it is the uniform distribution which maximises the entropy measure given in

Equation 7.20' .Indeed, the observed insensitivity of the entropy measure to variations of ¡<z in the

one dimensional case, as shown in Figure 7.4 above, may be interpreted in terms of the relative

uniformity of the rarget similarity probability density functions across these values. Figure 7.6

provides a graphical representation of this state of affairs, showing the family of similarity

distributions realised in the one-dimensional case by varyingthe value oÍ mt. Between the extremes

of small ru values, in which only large similarity indices are geîerated, and large mt values, in

which the similarities are almost all small, there lies a significant region in which most similarity

values occur with some non-negligible probability density. Allowing for a wide range of target

similarity values, all of which are approximately equally likely, ensures, ultimately, that a response

space contains enough information to oversee the development of a non-degenerate psychological

space representation.

I
A'r(a,ru)

Figure 7.6. Tbe family of probability density functions oftarget sirnilarities in a one-dirnensional response sPdce,

across dffirent aalues of rca.

Thus, ir seems reasonable to seek xz values which, rather than directly maximising entropy,

are mosr similar to the uniform distribution, according to a difference analogous to that defined by

Equation 7.23. More specifically, in a response space with R dimensions, the minimum of the

following function is found:

u (*) : lte'^@,*) - r)2 .d.ø Ø.24)

The application of numerical techniques to Equation 7.24 yields rcu values of approximately

t Thi. .on be established, for example, using Lagrangian multipliers.
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2.69, 1..40,0.95, and 0.72 for one, two, three and four dimensional response spaces, respectively.

The discrepancy between the known optimal value of 3 f.or a one-dimensional response space, and

the value of.2.69 derived by this method is an immediate corollary of the fact that the probability

density ,,4í(3) is not uniform. The one and two-dimensional target similarity distributions which

best fit the uniform distribution are shown inFígtre7.7.

\
\¡

1

0 4 I

Fi.gure 7.7. The rnost unifornT tørget similørity probabiliry densiry function for one and two-dimensional

response spaces, shoun, respectiveþ, in solid and dotted lines.

Both of these approaches to finding values for the Kparameter which maximise the entropic

flow of information through the model are appropriately regarded as ad hoc, and neither could be

seen as being particularly accurate in its own right. Nevertheless, the preceding analysis, viewed as

a whole, suggests a pattern of results which accords well with intuition, and provides something

approximating a principled means for setting the information parameter. By setting r in such a

way as to maintain a rcu value of 3 for a one-dimensional response space, the pattern of target

similarities are capable of being sufficiently varied to allow the construction of an appropriate

psychological space.

The desired rca value in multidimensional response spaces is more difficult to quantify, but its

general range is more consistently identified. As the dimensionality of response space increases, the

r<,u value monotonically decreases in a negatively accelerated manner. By making essentially

arbitrary assumptions about the functional form corresponding to this change in ¡<z values, a fitted

curve could be generated which specified an appropriate xv value as a function of the number of

response space dimensions, R. This specification would merely serve to ensure that rc was set in

such a v¡ay as to avoid the extreme distributions of target similarity associated with overly small or

largewt values (recall Figures 7.4 andZ.6). Such specifications can, in light of the results presented

above, also be made by hand, and made explicit in the construction of a model. Vhilst awaiting a

technique to employ the principle of entropy maximisation in a quantitatively precise way, the

second approach seems to represent more accurafely the achievements of the analysis presented

above, and is adopted in the demonstrations, evaluations, and extensions of the model described in

following chapters.
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At this point, it is worth noting that the normalisation of the axes of the configuration

examined by Hubert et. al. (1992, refer Section 5.2.2) was undertaken for essentially the same

reasons which dictate the adaptive setting of the information parameter. The similarity matrix

generated by the application of the exponential decay function to the original distances in Hubert

et. aL (tleZ, Figure 1a) is not sufficiently informative - in the sense that most values are t:'eàr zero -

to enable the connectionist multidimensional scaling model to recover the lcnown configuration.

The rescaling of the axes depicted in Figure 5.14, whilst not changing the configuration, does alter

the derived similarity matrix given in Table 5.3, to one which contains a greatü range of target

similarity values. In effect, both the normalisation and the adjustment of the information

parameter perform the same role: that of making the entropy of an information source, whether it

is a similarity matrix or a response spâce, sufficiently large so as to allow a psychological space

representâtion to be derived.

7.4. Overview Of The Mental Representation Learning Model

Before conducting a quantitative evaluation of the model of mental representation learning

through simulation, however, it would seem appropriate to reflect upon its relationship to the

previously suggested models on which it is partly based, and to discuss the model in terms of the

more general psychological considerations which have guided its construction.

2.4.1. Relationship To Connectionist Semantic Networks And The ALEX Model

The way in which the mental representation model incorporates environmental information

is motivated, as was discussed in Section 6.2, from previously developed connectionist models. In

particular, Section 6.2.L identll[ied similarities with connectionist semantic networks, as described

in Section 2.3.I, and the ALEX model, described in Section 3.2.4.Therefore, having now fully

developed the model, it would seem appropriate to examine these relationships in greater detail.

Both connectionist semantic networks and the mental representation model effectively learn

a set of input/output pairings which relate members of stimulus set to their various environmental

properties. Most generally, connectionist semantic networks are trained to learn the properties,

qualities and actions of a stimulus, as well as the relationship of that stimulus to other stimuli

(recall Figure 2.10). Essentially the same environmental information is formalised within the

currenr model in terms of the sensory properties and categorical associations of each of the stimuli.

Both models acquire the same information regarding the stimulus set they must learn to internally

rePresent.

The fundamental difference between the two models, as anticipated in Section2.3.3, is that

the current model places psychologically motivated constraints upon the internal representations it

develops. Connectionist semantic networks, in seeking the derivation of 'mental' structures, rely
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solely on the representational economy promoted by the inclusion of internal 'bottleneck' layers.

The representations derived at the internal representation layer of the mental representarion

model, however, strictly adhere to the representâtional dictates of the psychological space theory.

In this way, the derived internal representational structure is subjected to constraints other than

those demanded by the learning of input/output pairings. These additional constraints are

particularly strong, and effectively posit psychological grounds for preferring one mediating internal

representation above all others. In particular, the internal representation of the stimuli must meet

the similarity requirements of the Universal Law of Generalization in a space of minimal

dimensionality.

The difference between the two models is readily cast in terms of the learning rules they

employ. The backpropagation-based learning rule used by connectionist semantic networks

effectively amounts to an extension of the external error learning rule of the current model and,

therefore, solely acts to allow the prediction of a stimulus' environmental properties. The mental

representation model, however, restricts the use of the external error learning rule to refining the

associations between the internal representation of stimuli and their environmental properties. A

separate learning rule, defined in relation to the internal error measure, acts to develop these

internal representations, and it is this learning rule which enforces both the similarity and

dimensionality dictates of the psychological space theory. Interestingly, the incorporation of a

bottleneck layer, perhaps the primary representational strength of connectionist semantic

networks, arises naturally in the current model, since the adoption of the principle of

dimensionality reduction results in the internal representational layer generally containing

significantly fewer units than the stimulus input layer.

Overall, however, the current model does not merely match the mental representational

claims of connectionist semantic networks. Through strict and focused adherence to a

psychologically principled theory of internal representational structure, the current model presents

significant grounds for being viewed as a model of the learning of mental representation.

In contrast, the similality between the current model and the ALEX model is founded upon

their shared adoption of psychological space representations. The architectural similarities which

follow from this adoption, already alluded to in Section 6.2.I, are evident from an examination of

Figure 2.8. Both models incorporate a layer which corresponds to the psychological space

representation of a presented stimulus, and employ a radial basis function architecture to

implement the Universal Law of Generalization.In addition, both models adopt an exemplar

approach to the modelling of conceptual structure, with units corresponding to each element of the

stimulus set being placed in the psychological space. Finally, both models are virtually identical

with regard to their association of exemplar units with output responses through a set of

connection weights, and the operation of a learning rule which modifies these associations

1,22



following externally provided feedback.

The fundamental difference between the current model and the ALEX model, as is also

evident from FigureT.8, relates to the way in which stimuli are presented to the model. The ALEX

model is exposed to a stimulus through the setting of input activation values which correspond to

the psychological space representation of that stimulus, as previously derived through some

external means. The mental representation learning model, in contrast, learns to internally

represent a stimulus in terms of an appropriate psychological space position. As was emphasised in

Section 4.1.1, the current model receives only a nominal indication of the presence of a particular

stimulus in a manner entirely devoid of structural or representational information. The inclusion

of comprehensive connection weights between the stimulus input and internal representation

layers, coupled with the addition of a second radial basis function structure at the response layer,

allows the model to derive a psychological space representational structure.

Fi.gwre 7.8, Comparison of the current model, shoun on the left, and tbe ALEX ntodel, shoun on tbe rigbt.

This difference is largely a reflection of the cognitive task domains to which the ALEX

model is applied. As noted in Section 3.2.4, the ALEX model is a model of human category

learning which afiempts to explain and predict the way in which a given set of stimuli are, under

supervision, identified as belongingto a given set of categories. In this limited situation it may be

reasonable to assume that mental representations of the stimuli already exist. The mental

representation learning model, however, seeks to formalise a way in which such mental

representarions might be learned. Indeed, given these disparate goals, the f.act that the architecture

and operation of the two models have much in common suggests that the impressive categorisation

performance of the ALEX model, also detailed in Section 3.2.4, mryht also be displayed by the

menral representation learning model. This is highly desirable, since the psychological space

mental representation
learning model ALÐ( model

feedback units aoa ooo feedback units

response
exemplar units

response units

oao
oao ooo output (category) units

exemplar units ooa
ooo

ooo
aoo

exemplar units

i nte rn al re p re se ntation
psychological space representation

after selective attention weighting

ooa psychological space
representation input

stimulus input aoo

123



representations developed by the model rely, in part, on the effective learning of the categorical

associations of the stimulus set.

In fact, there are some grounds for suggesting that the mental representâtion learning model

might better accommodate human categorisation phenomena in some circumstances. Because of

their pre-determination, the psychological space representations employed by the ALEX model

remain fixed during the operation of the model. Once again, this may be a reasonable assumption

in relation to many categorisation tasks; but it is also possible to envisage a stimulus domain in

which the psychological space representationâl structure is appropriately modified during the

course of the task. Repeating the multidimensional scaling analysis to maintain the appropriateness

of the ALEX model's representational structure each time such an alteration occurs would clearly

be unreasonable in terms of plausibly modelling human cognition. Equally inappropriate would be

the incorporation of previously developed 'offline' techniques (lr4iyano & Inulcai 1982) for

incremenrally adjusting multidimensional scaling solutions. The current model's integration of

categorisation performance and internal representation development, in contrast, seems

particularly suited to situations in which stimuli do not have fixed psychological sPace

rePresentations.

It is worth noting, however, that the mental representation learning model does not

incorporate the selective attention mechanisms which significantly contribute to the performance

of the ALEX model. The architectural relationships detailed in Figure 7.8 suggest that the

accommodation of these abilities within the current model is feasible. In particular, if the internal

representation layer of the current model were aligned with the psychological sPâce

representational input Iayer of. the ALEX model, the inclusion of an additional layer would allow

the 'primary' psychological space locations developed by the current model to be altered by the

effects of selective attention.

7 .4.2. Relationship To Piagetian Learning Principles

In broader psychological terms, the learning processes adopted by the mental representation

model may be likened to Piagetian notions of human cognitive development. Piaget (1920, see

Hilgard & Bower 1975 f.or an overview) noted the impact on human learning of biological

maturation, experience of the physical environment, and experience of the social environment.

The mental representation model does not substantially address issues of biological development or

maruration, since it is intended to model the acquisition of mental representational structure in

normal adult humans possessing cognitive structures which are, in the evolutionary sense,

contemporary. The environmental information by which the model's learning is constrained,

however, corresponds precisely to those listed by Piaget. Being provided with the sensory

properries of the stimuli which are encountered constitutes experience of the physical
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environment, whilst categorical associations often encode social conventions, such as identifying

which members of a stimulus set are correctly regarded as 'valuable'. Given that Piaget (1970)

discusses these three learning principles in the context that they are both fundamental and

common to classical theories of human development, the adherence of the mental representation

model ro the experiential principles reinforces the appropriateness of the formalisation of

environmental information developed in Section 6.2.

Despite perceiving these sources of learning as being necessary, however, Piaget (1970) ârgues

that they are insufficient and consequently proposes a fourth learning process of 'equilibration'. In

essence, the development of the notion of equilibration constitutes a theoretical attempt to specify

the way in which environmental information sources are integrated within an existing conceptual

structure. In Piagetian terms, equilibration describes the continuing cognitive adjustment which

arises from attempting to reconcile two competing learning processes termed 'assimilation' and

'accommodation'. Assimilation refers to the process whereby newly encountered environmental

information is incorporated into current conceptual structures, whilst accommodation refers to the

modification of these conceptual structures in accordance with environmental experience.

Assimilation, therefore, involves a direct reaction to current experience through the incremental

adjustment of mental structures designed to enhance their predictive and explanatory acouracy'

Importantl/, these adjustments are made in the context of existing conceptual structures,

emphasising the cognitive utility of interpreting the present in terms of the past. Effectively,

assimilation is the fine tuning of an established mental world view to currently available

environmental information. Accommodation, in contrast, involves a direct modification of

underlying mental representational structures, typically necessitated by more fundamental

inconsistencies between cognitive predictions and environmental feedback.

The learning principle of equilibration articulated by Piaget (L970), in seeking to balance the

representational effects of these assimilatory and accommodatory processes, is entirely consistent

with the relationship between the mind and the world espoused in Chapter 6. The process of

accommodation insists the mind reflect the world, whilst assimilation ensures that, given such a

represenrational foundation, cognition can serve to allow the adaptive prediction and explanation

of the encompassing environment.

Furthermore, the learning processes which operate within the mental rePresentation model

bear striking similarities to those of assimilation and accommodation. The learning rule based on

the external error measure, which serves to modify the associative connections between mental

representations and the predicted environmental properties of stimuli, would seem to correspond

to a process of assimilation. This learning rule does not alter the psychological space

representational structure but, directly on the basis of current environmental feedback,

incremenrally adjusts the cognitive predictions made by the model. The learning rule based on the
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internal error measure, in contrast, modifies the internal representational structure of the model in

a process reminiscent of accommodation.

The concurrent action of the external and internal learning rules within the mental

representation model, therefore, would appear to correspond closely to the equilibration process

summarised by Hilgard and Bower (1975) as':

"An adjustive process ... needed to fit external reality into an existing structure
(assimilation), and to modify that structure while this is taking place
(accommodation)" þ. 323)

Clearly, these two processes are formalised by the two learning rules operating within the

model. The internal learning rule acts to reposition the psychological space representations of the

stimulus set to 'accommodate' the target similarities derived in the response space, and these target

similarities are, in turn, generated from knowledge regarding the external world which is

'assimilated' in the associative weights maintained by the external learning rule. In this way, the

learning of mental representation is realised as an outcome of the cognitive interaction of the

model with its environment.
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Chapter 8: Demonstrations Of The Mental Representation Learning
Model

This chapter demonstrates and evaluates the model of the learning of mental representation

developed in Chapter Z. First, two models which receive environmental feedback in the form of

sensory information are examined. Secondly, three models which rely solely on categorical

associations in learning psychological space representations are described. Finally, the ability of the

model to adapt its internal representational structure to a dynamically changing environment is

explored.

8.1. Sensory Properties

8.1.1. The Bug Model

As a first example of the mental representation model's ability to learn psychological space

representations on the basis of sensory information, an environment was constructed consisting of

six 'bugs' which the model could encounter. Each of the different types of bugs possessed

characteristic thermal and auditory properties, as detailed in Table 8.1. Therefore, the bug model

consisted of two units in the output and environmental feedback layers, corresponding to these

sensory properties, and maintained six units in the stimulus input, exemplar, and response

exemplar layers in accordance with the number of bugs. Once again, six units were placed in the

internal representation layer. Learning rate parameters of A" : 0.L and ),* : 0.1 were employed,

and the dimensionality reduction parameter, p,was set to 10. The information parameter Kwas

altered during the model's operation to maintain e târget rv value of 1.5, and the operation of the

City-block distance metric in psychological space was assumed.

Table 8.1. Sensorv Properties of Six Bugs

The coding of the sensory properties evident in Table 8.1 is particularly simple, and may be

interpreted literally. For example, the first and fourth bugs can be considered to impart the greatest

heat upon the model's 'sensory receptors', whereas the third and sixth bugs are relatively cold.

Similarly, whilst the first three bugs emit a noise upon presentation to the model, the remaining

three bugs are mute.

The addition of noise to these sensory properties, as discussed in Section 6.2.t, is important

in the sense of contributing to a realistic simulation of the model's sensory experience of the

_# N "/
_* N

Thermal +2 +1 -1 +2 +1 -1

Auditorv +1 +1 +1 -1 1 -'l

127



environment. llnfortunately, however, the model's assumption of an exponential decay

generalisation gradient is inappropriate, ar least in principle, in noisy environments. Recall from

Section 3.1.5 that Ennis' (1988a, 1988b, 1992) re-derivation of the lJniversal Law of Generalisation

for stochastically varying stimulus points in psychological space suggests that a Gaussian radial

basis function should be employed. The model's reformulation in these terms appears

straightforw ard, and is a worthwhile topic for further research. Meanwhile, however, it seems

sensible to examine the ability of the model to operate in noisy environments provided the

strength, or variation, ofthe incorporated noise is not too great.

Therefore, the sensory properties encoded in Table 8.1 were subjected to noise before being

made available as environmental feedback to the model. Specifically, noise sampled from a

Gaussian distribution with zero mean and a variance of 0.1 was independently added to each unit

in the environmental feedback layer. The effect of this noise upon the auditory and thermal

sensory information received by the model is shown in Figure 8.1.

Figure 8.1. The na.ture of the sensory information receiaed by the bug model. 50 samples for eacb bug type are

shoun.

The pattern of change of the external error measure across 3,000 trials is shown in Figure

8.2. Lfter approximately t,2OO trials, the model is able to make reasonably accurate predictions of

the sensory properties of each of the six bug types. \7hilst the external error measurc may become

negligibly small, careful inspection indicates that it does not consistently achieve a value of zero.

This is because predictions being made by the model correspond to the sensory values given in

Table 8.1, meaning that the stochastic variation of the sensory feedback causes small errors.

Nevertheless, the model's predictions are appropriate in the sense that they identify the mean of

the distribution of sensory properties for each bug type, and constitute the best estimate of the

2

1

1

Auditory

o

.:ffi-

-ffi-

x

A

."-efr

A

^
oo

Thermal

I 2

o

I+

o N A _*

+ # o _*

1,28



property values possible within the noisy environment. An important feature of the external error

learning rule is its ability to minimise the effect of noise in this way, particularly when relatively

small )". values are employed. At a similar stage, the model develops a representational structure

which satisfies the internally derived indices of psychological similarity, as evidenced by the

negligible value of the internal similarity error, shown in Figure 8.3. Furthermore, the stepwise

decrease of the internal dimensional error indicates that this representational structure is being

accommodated within a space of reduced dimensionality.

Figure 8,2. Tbe pattern ofcbange oftbe external error rneasure across 3,000 trials for the bug model.

Figure 8.3. TIte pattem change oftbe tbree internal error n ed.sttres across 3,000 triak for the bug model.

dirnen s io nal enor a, cro s s the 6 component stirnulus dimensions for the bug model.
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Once again, the dimensional structure of the internal representation is readily appreciated

through an examination of the pattern of change of the dimensional error measure for each

possible component dimension. It is evident from Figure 8.4 that the final representational space is

two dimensional, consisting of the coordinate values assumed by the six bug types at the second

and fifth units in the internal representation layer.

This internal representation is depicted in Figure 8.5, and clearly reflects the sensory

properties of the bugs which were deemed to be of importance in simulating the encountered

environment. Importantly, the relative spacing of the representations of the different bug types are

stable, and accord with the quantitative codings given in Table 8.1. This correspondence

demonsrrates the model's insensitivity to momentary fluctuations in the sensory properties of the

bugs resulting from the addition of noise.

2,5

-_#

6
ã
o
ø
É
o
È

â
.N .N

0

0 Dimension 2 2,5

Figwre 8.5. The fi.nal intemal representation learned by the bug model.

8.1.2. The Berry Model

A second model in which the model received environmental information relating to sensory

properties involved a stimulus set of three berries with various gustatory and olfactory properties,

as detailed in Table 8.2. The berry model employed learning rate parameters of l, : 0.0I and )".

: 0.01, a Bvalue of 10, and again assumedthe City-block metric and altered rto maintain rcu at

L5.

Table 8,2. Sensory Properties of Three Berries

ô ô ô
Gustatory +2 +1 0

)lfactoru +2 +1 0

Noise was independently added to both of the environmental feedback units, and was again

sampled from a Gaussian distribution with zero mean and a variance of 0.1. The effect of the
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incorporation of this noise is evident from the sample of sensory feedback for each of the three

berry types, as shown in Figure 8.6.

Figure 8,6, Tbe na.ture of the sensory information received by the berry rnodel. 50 sa.rnples for eacb berry type d.re

sboun.

The pattern of change of the external error measure, as shown in Figure 8.2, indicates that

within 200 trials the model is able to predict, as accurately as the noise allows, both sensory

properties of the three berry tyPes.

Figure 8.7. The pattern of cbønge the external elyor rneasure across 3,000 trinlsfor tbe berry model.

Figure 8.8 depicts the various internal error measures, and suggests that after approximately

150 trials the berry model has accommodated the target similarity values, as derived in response

space, within a representational psychological space of reduced dimensionality.
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Figure 8,8. Tlte pattem of cbange of tbe three intemal error rreøsures duoss 3,000 trials for tbe berry model.

The breakdown of the dimensional error values of the six component dimensions, shown in

Figure 8.9, indicates that the final representationâl structure is one dimensional, consisting only of

the second unit in the internal representation layer.

Figure 8.9. Tbe breaþdoun
model.

dimensional error Across the 6 cornponent stimølus dimensions the berry

This representation is displayed in Figure 8.10, and indicates that the model fails to

distinguish between the gustato ry and olfactory sensory properties of the three berry types. The

source of the one-dimensional treatment of the berries relates to the correlation between the

sensory properties âcross the berry types evident in Table 8.2. In the limited environment

encounrered by the model, the smell of a particular berry type completely determines the taste

associated with those berries. Never having experienced a separation of olfactory and gustatory

sensarion, the model collapses these two properties into a unitary representational whole. Thus, if

the gustatory sensation given by the coded property value of -1 is identified with the pain

associated in consuming a poisonous berry, then the smell of -1 value for that berry type is directly

linked to rhe pain. In effect, the model considers the smell À that of the poison which caused the

gustatory pain.
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Figure 8.10, The fi.nal one dirnensional intemal rEresentation learned hy the berry n'todel..

It is important to emphasise that the integration of sensory properties in this manner is

predicated upon complete correlation. If a fourth berry type were to be encountered by the model

which had the olfactory sensation of one previous type, and the gustatory effect of another, then

the model would develop a two dimensional representation - with axes corresponding to the two

sensory properties - across all four berry types. Thus, the model only collapses potentially

independent representational dimensions if, within the environment experienced by the model, the

maintenance of the dimensional distinction affords no predictive or explanat ory advantage.

The model's behaviour, in its elimination of redundant information through the detection of

correlation, is reminiscent of Miller's (1962) suggestion that:

"[t]he kaleidoscopic flux of our experience is laced through with correlations we

call objects, and it is the task of our perceptual system to discover and identify the

correlations, dependencies, and redundancies that signal an object's appearance. In
the process of accomplishing this task it seems that the amount of information we

are able to handle must be quite small. Because we are limited, the small amount of
information that we can handle must be carefully refined to represent just those

aspects that 
^re 

significant for guiding behaviour" (P. 178)

8.2. Categorical Associations

To examine the model's ability to develop psychological space representations from the

environmental constraints implicit in the categorical associations of a stimulus set, three taslç

domains were employed. In each case, the environment was simulated by abinary relation defined

between the stimulus set and a set of categorical associations, such that the relation indicated

whether or not a particular stimulus was a member of a particular category.

Rather than treat the various categorical associations as stimulus dimensions to be learned as

part of. a separable psychological space representation, an internal representational structure was

sought which viewed the stimuli in terms of the holistic similarity judgments which characterise

integral representations. Multidimensional scaling is frequently employed in this way in

applications which are not explicitly concerned with the modelling of mental representations (eg.

Schiffman, Reynolds & Young 19SÐ. It seems reasonable, however, to apply this approach to the

construcrion of the graded conceptual structures which appropriately model mental representation

in many cognitive tasks (eg. Rosch L978).Indeed, the notion that humans form low-dimensional

integral representational structures which summarise the similarity relationships implicit in high-

dimensional separable categorical associations has considerable psychological appeal. In particular,
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capacíty limitations and general requirements of cognitive economy suggest that the development

of such representations may constitute the best approach to modelling some stimulus domains.

8.2.1. The Bird Model

As a first example of this general approach, the categorical associations of six birds, as given

in Table 8.3, were adapted from Smith (1989, Table 13.2).

Table 8.3. Sensory Properties of Six Birds

The bird model consisted of six units in the stimulus input, exemplar, and response exemplar

layers, corresponding to the six different birds. Six units were also placed in the response and

environment feedbaclç layers, in accordance with the various categorical associations. Finally,

following the practice adopted in previous models, six units were placed in the internal

representation layer. Learning rate parameters of 2, : 0.0t and Â., : 0.05 were used, Bwas set to

5, and the Euclidean metric was assumed. The information parameter, 6 was adaptedto maintain a

rca value 0.5, reflecting the fact that the response space was six-dimensional.

The pattern of change of the external error measure, shown in Figure 8.11, indicates that,

after approximately 2,500 trials, the model has learned the categorical associations of all six bird

stimuli.
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Figure 8.11. The pattern of change of the extemal error measure auoss 3,000 niak for tbe bird ntodel.

The internal error measure, depicted in Figure 8.12, show that the rarget similarity values

arising from these learned categorical associations have been accommodated by the model within a

representational space of reduced dimensionality.

flies srnqs lavs eqqs is small nests in trees eats insects
robin I I ¡ I I T

starlinq t I I I T

vulture T T I
sandpiper T I I I I
flaminqo
penquln I
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Figwre 8,13. The breaþdown of dimensional error across the 6 component stirnulus dim'ensions for the bird

model.

Figwre 8,14. Tbefi.nal npo dirnensional internal representation learned by tbe bird model.

An examination of the individual dimensions of the internal representation layer, given in

Figure 8.13, reveals that the final representation is two-dimensional, consisting of the first and sixth
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the appropriateness of the internally derived indices of psychological similarity. In particular, the

distance between the various stimulus points seems to reflect an overall similarity between the

birds they represent. For example, the fact that 'vulture' is relatively separated from the remainder

of the stimulus set could be suggested to reflect the relatively large psychological difference

between vultures and the other birds. Similarly, the clustering of 'sandpiper', 'robin' and 'starling',

and of 'penguin' and'flamingo', also accord well with intuition.

8.2.2.The Animal Model

A more detailed model of the learning of mental representations through categorical

associations extended the bird task domain to incorporate a set of 25 animals. The 14 categorical

associations of these animals, as given in Table 8.4, were adapted from the 'Zoo' data base (\4erz 8c

Murphy 1996).

Table 8.4. Categorical Associations of 25 Animals

The animal model contained of 25 units in the stimulus input, exemplar, and response

exemplar layers, 14 units in the response and environmental feedback layers, and six units in the

internal representation layer. Learning rate parameters of ),, : O.O5 and )'. : 0.1 were employed,

p was set to 4, and the Euclidean metric was assumed. The information Parameter, K, vias

conrinually modified to maintain a xzt value 0.3, in accordance with the high dimensionality of the
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antelope I I T I I I
T I t I I T

chicken T T I I I T I

crow I T I I I I I

deer T I T I T T

dolphin I T T I T I T T

duck I I I I I I T

elephant T I I I T I
flaminqo T T I T I T

froq T I T I I I
qiraffe I I I I I I
qoat T I T I T T I

qorilla T I I I I

hawk I T I I I I T

lion I I T T I T I

lobster T T I
ostrich I I I I I
penguln I I T I I I I
piranha T I I T T T I

Dlatvous I T T I I I I I

scorpton ¡ T T I
seal I I I T I T I I

sparrow T I T I I I
¡ T I T I I T I

swan T I I I T I I
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As is evident from Figure 8.15, the model required more than 10,000 trials before the

external error measure consistently indicated that the model was able to make reasonable

predictions regârding the categorical associations of the animals.

Figure 8.15. Tbe pattern of chønge of the extemal e'rror measure r¿cross 18,000 triakfor tbe anirnal model.

Figure 8.16. TIte pattem cbange of tbe three intemal er"ror trTedsures across 18,000 trials for the animal model.
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Figures 8.16 and 8.17 suggest that, after the elimination of four representational dimensions, the

model was able to accommodate the current target similarity values. Nevertheless, an appropriate

psychological space representation cannot be developed until the target similarity values derived in

the response space are based upon accurate knowledge regarding the categorical associations of the

stimulus set.

This final representational structure is shown in Figure 8.18, and constitutes a more detailed

example of the representational appropriateness evident in the bird model. Once again, the

proximity of stimulus points in the psychological space reflects the subjective similarity of the

various animals, and the discernment of clusters of closely related animals is also possible. For

example, the close proximity of 'piranha' and 'stingray' seems appropriate given their shared

aquatic and dangerous nature. The birds in the stimulus set - 'crow', 'hâwk', 'sparrow', 'ostrich',

'duck', 'flamingo' and 'chicken' - are also clustered together. In addition, 'penguin' is located at the

periphery ofthis cluster, thus creating an appropriately graded structure for the concept 'bird'.

Figare 8.18, Tbefi.nal two dimensional internal representation learned by tbe animal model.

An evaluation of the representations learned by the animal and bird models can only be

made in terms of their intuitive reasonableness. This is unfortunate, since the inability to evaluate

the derived representational structure in a more precise manner results in greater justificatory

burden being placed on the principles which underpin the model's constnrction. In particular,

establishing the appropriateness of the representations learned by the bird and animal models

requires an acceptance of the general psychological space construct, and of the notion that

measures of psychological similarity can be generated from the categorical associations of a set of

stimuli. Chapters 3 and 6, respectively, constitute detailed attempts to promote such acceptance,

and srrengthen the inferential chain on which any evaluation of the performance of the current

model musr rest. Thus, to the extent that the current model is capable of empirical and theoretical
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examination, the relevant empirical evidence and theoretical development is presented in those

chapters.

In defence of this state of affairs, it is worth recalling that previously developed connectionist

models which learn 'psychologicaf internal representations - such as connectionist semantic

networks and semantic maps - have been subjected to equally indirect forms of evaluation. As

noted in Section 2.3, the semantic map's derived structure is accepted on the basis of intuitive

reasonableness, whereas the representations learned by connectionist semantic networks are

typically evaluated through the post-hoc application of clustering or other statistical analysis. There

is nothing to be gained by conducting similar analyses upon the representations learned by the

current model since, by their method of construction, they adhere to the representational

constraints of psychological spaces. As has already been noted in Section 7.4.l,the fundamental

distinction between connectionist semantic networks and the current model is that the current

model operates in explicit accordance with a psychologically principled theory of human mental

representation. The merits of the internal representations developed by the current model reside in

their adherence to the empirically and theoretically justified psychological space construct, and a

direct evaluation of particular representational structures is, in general, not possible.

8.2.3. The Senator Model

A direct examination of the current model's performance is, however, possible in the

situation where a particular representational outcome is known to be appropriate given the

environmental feedback the model receives. Such an environment is developed by MacRae (1968,

cited in Borg Ec Lingoes 7987,pp. I72-I75) through the specification of the voting patterns of 30

(fictitiou$ senators across 26 (fictitiou$ bills, as shown in Table 8.5.

As observed by Borg and Lingoes (1982), these voting patterns imply certain patterns of

organisation across groups of senators. In particular, "senators 1 through 5 are ordered in the sense

of the simplex ... senator 1 is more similar in his for her] behavior to senator 2rhan to senator 3 ...

senators 6,...,10 and 11,...,15 etc. are orderedinthe same way" (p. L72). Further exploration reveals

that "the various simplexes [sic] discussed above are interrelated in the form of a very regular

network" (8,. t74), a suggestion which is pursued to analytic confirmation. Specifically, the

appropriate geometric representation of the senators consists of. a 6 x 5 rectangular lattice with

senators 1-5, 6-10, and so on forming the rows/columns, and senators t,6,IL,t6,21,26 comprising

the first column/row (see Borg 8r Lingoes 1987, p. L74,Figure LL.L).

To test the ability of the current model to recover this desired representational structure, a

senaror model was developed, consisting of thirty units in the stimulus input, exemplar, and

response exemplar layers, twenty-six units in the response and environment feedback layers, and

six units in the internal representationlayer. Learning rate parameters of l,:0.05 and )"*:0.05
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were used, B was set to 5, the Euclidean metric wâs assumed, and the information parameter, K,

was adapted to maintain a xzt value 0.3, reflecting the high dimensionality of the response space.

Table 8.5. Voting patterns of 30 senators across 26 bills

The change in the external error measure, shown in Figure 8.19, indicates that, even after

5O,OOO trials, the model has not learned to predict the voting patterns of the senators, in the sense

of producing the precise activation values supplied by the environmental feedback layer. The errors

which remain, however, are aIl caused by activation values being produced which are of the

appropriate sign, but of insufficient magnitude to be measured as error-free. Thus, in the sense that

any reasonable decision rule which acted upon the respons elayer would produce voting pâtterns in

accordance with Table 8.5, the model can be regarded to have acquired this information.

An examination of the internal error measure, depicted in Figure 8.20, and its breakdown by

stimulus dimension, shown in Figure 8.21, reveal that by the time 20,000 trials have been

completed, the target similarity values have been accommodated by the model within a two-

dimensional representational space

This final representational structure is shown in Figure 8.22, and may be evaluated in terms

of its compliance with the rectangular lattice structure known to be appropriate. Topologically,

the model's representation is largely consistent with the desired representational outcome. The

location of the stimulus points corresponding to the 30 senators generally accords, in an ordinal

sense, with the layout described earlier. For example, the connection of points 6 through 10 does

A B c D E F G H I J K L M N o P o R s T U V W x Y z
1 I I T I t t I I I T I I
2 I T I T I T I T

3 I I T I T

4 I
5
6 I I I T T T T I I T I I I I I ¡
7 ¡ T T T I I I I I T T I
I T T I I T I ¡ T T

I T T I T T

l0 T

11 I I I I T T T T I I I T T T I I I I

'12 I I T I T ¡ I I T I T I I I
13 I T I I T I T I T I T

14 I I I T T T I

t5 I I I I I

l6 I I T T T T I t I T I I T I I T I I I I I I I

'17 I I I T T ¡ I I I I I ¡ I T I I I I

18 T T T I I T ¡ I T T I I I I T

19 T I I T I T T T I I I

20 I I I I I I I I I I
21 I I I t I T I I I T I I ¡ I I T I I I I I I I T T

22 I T T T T T I I T I I I I I I T T I I T I T

23 I T T I I I I T I I T T T I I I I I
24 T I T T I I I T T T I T I I

25 I I T I I I I I I I I T

26 I I I T I T I ¡ ¡ T ¡ I T I I I I I I T I I I I I T

27 I I I T I I T ¡ I I I I I I I I I I T I t I I I T

28 T T I I I I I T I T T I T T I T T I T I I I I

29 I T T T T I I I I I I I ¡ I I I I I
30 T T I I I I I T I T T I T I I

1,40



not intersecr with the connection of points 1 through 5, nor with the connection of points 11

through 15, and lies between these tv¡o connections. Similar statements can be made regarding

much of the remainder of the representation, including connections made along the other axis of

the lattice involving, for example, the points 5, 10, 15, 20 and25'

Figure 8.19. Tbe pøttern of cbange of the external error rneasure dcross 50,000 triakfor the senator model.

Figure 8.20. The pattern of change of the three internal elYor rrrerßures across 50,000 ti¿b tbe senator model.

Figure 8,21. The breaþdoutn of dimensional error aross tbe 6 cotnponent
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Figure 8,22, Tltefi.nal tuo dirnensional internøl representation learned hy tbe senator model.

Clearly, however, some metric information implicit in the environmental feedback received

by the model is not accommodated by the learned internal representation. \Øith reference to

Figure 8.19, the cause of this deficiency resides in the model failing to generate response output

values sufficiently close to + 1 and -1. The result of this shortcoming is that, whilst the model

remains capable of generating appropriate (binary) predictions regarding the senators' voting

patterns, the equivalent importance which must be ascribed to each vote in order to generate a.

regular lattice is not recognised. In effect, if the vote of a particular senator in favour of a particular

bill is learned to be made in the affirmative, but the response output activation which signals this

knowledge is significantly less than + 1, this vote will exert less influence than it should uPon the

derived metric representational structure.

Admittedly, there is probably some scope for debate regarding whether or not such metric

equivalence is implied by the nature of Table 8.5, which essentially exists at an ordinal level. As

emphasised in Chapter 3, however, one of the fundamental tenets of the psychological space

position is that mental representational structures are appropriately modelled by attempting to

recover metric structure from ordinal information. Thus, the failure of the senator model to derive

an entirely regular lattice structure should be interpreted as a weakness. Given the topological

success of the model, however, this weakness is relatively minor and is not indicative of

fundamental shortcomings of the model's operation. Indeed, it seem reasonable to suggest that a

reduction in learning rate parameters, possibly coupled with an increased number of learning trials,

would be likely to result in the required metric information being successfully internalised.

Consequently, the external error would become negligibly small, and the regular rectangular lattice
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representational configuration would be recovered.

8.3. Adaptation To A Dynamic Environment

Section 6.2.t identlfied the practice of developing static models of the environment as a

primary weakness of attempts to impose external representational constraints upon connectionist

nerworks. All of the preceding demonstrations of the current model have, however, been based on

essenrially static characterisations of the environment. \Øhilst Section 8.1 incorporated

stochastically varying feedback, this variation was super-imposed upon the world models,

presented in Tables 8.1 and 8.2, which remained fixed during the model's operation.

8.3.1. The Dynamic Bug Model

To examine the mental representation learning model's ability to derive appropriate internal

representations in a dynamic environment, the thermal and auditory sensory properties of six bugs

were defined to assume the values given in Table 8.6 for 3,000 encounters, and then to adopt the

values given in Table 8.7. This scenario may be conceived as one corresponding to a model of a

world in which, after a certain time, the bugs which previously had varied with regard to the

noises they made, become mute.

Table 8.6. Initial Sensorv Prooerties of Six Bues

Table 8.7. Final Sensorv Prooenies of Six Bues

The dynamic bug model was of identical construction to the bug model described in Section 8.1.1,

except that the value of p was set to 15, and was operated for 6,000 trials.

The pattern of change of the external error measure across these trials is shown in Figure

8.23, and demonstrates that the initial sensory properties of the various bugs are learned within

about 1,500 trials. Of particular interest is the rise in the external error immediately after 3,000

trials have been completed, reflecting the incompatibility of the model's knowledge at that time

with the information it is receiving from environmental feedback. Clearly, however, the model is

able to learn to predict correctly the new sensory properties of the bugs, since the external error

quickly achieves a negligible value which it maintains.

-* N "/
_* N

Thermal 0 -1 +1 0 7 +7

Äuditory +1 +1 +7 0 0 0

_* N / _* N

Thermal 0 -7 +1 0 t +7

-A.uditory 0 0 0 0 0 0
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The pattern of change of the internal similarity error measure, shown in Figure 8.24,

suggesrs that the model accommodates the internalised psychological similarities after 1,000 trials

and is further able to adapt its representational structure to accommodate the new environment it

encounters. The internal dimensional error, also shown in Figure 8.24, indicates that the initial

represenrarional space is two dimensional whilst, after the environment alters at trial 3,000, a

stimulus dimension is removed, resulting, ultimately, in a one dimensional representational
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structure.

The breakdown of the internal dimensional error measure in terms of the individual units in

the internal representation layer, given in Figure 8.25, reveals that the two dimensional

configuration consists of stimulus dimensions two and four, with dimension four being removed

following the adaptation of the model's knowledge to the altered environmental information.

The stable internal representation derived by the dynamic bug model between trials 1,500

and 3,000 is shown in Figure 8.26. \Øith reference to Table 8.6, it can be seen that, as with the

demonstrarions given in Section 8.1, this representational structure appropriately reflects the

sensory information available to the model at this time.

Figure 8.26. The tuo dimensional internal representøtion of the dynarnic bug model betueen 1,500 and 3,000

triak, before the enpironmenalfeedback is ahered.

Similarly, the stable representational configuration derived after the sensory properties of the

bugs has been altered, which is displayed in Figure 8.27, recognises the lack of information

provided by considering the auditory properties of the bugs, and constitutes a one dimensional

representation corresponding solely to their thermal properties. Effectively, since all of the bugs in

the new environment are mute, the model discards its auditory receptors as a source of information

capable of usefully distinguishing between the bugs it encounters.

Fi.gure 8,27. Thefinal one dimensional internal representation learned by the dynamic bug model.

S.3.2. Adaptational Possibilities And Interpretations

There is no reason why the model's adaptation to a dynamically changing environment must

involve the removal of stimulus dimensions. Some environmental changes may be able to be

absorbed within a psychological space of the dimensionalîty already established, whilst others may
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require the incorporation of additional stimulus dimensions. In principle, the mental

representation learning model can accommodate both of these scenarios. Realising a different

representational structure across the same number of internal representation units is

straightforward, whilst the fact that units in this layer are never permanently removed means that

they can assume a representational role af arly stage during the model's operation. In terms of the

conjugate space analysis (recall Figure 4.4), stimulus dimensions which lie on the line of non-

contribution may be moved from this line if the demands of the similarity error outweigh those of

the dimensional error. The primary way in which such demands might arise is through a change in

the environmenral properties of the stimuli, which creates a different set of similarity relationships

for the similarity error to satisfy.

It is worrh noring that the ability of the model to incorporate e><tra dimensions potentially

circumvenrs the arbitrariness of initially placing 6 units in the internal representationlayer (recall

Section 4.3). Since the model can construct or remove internal representation units as required,

there is little reason to attempt to determine a principled upper bound upon the number of

dimensions required for the psychological space representation of a stimulus set. Conceptually, the

model may be considered as operating with an infinite upper bound on the number of internal

representarion units. The only alteration that is required, therefore, is the installation of a

mechanism which creates as many internal representation units beyond six as are demanded to

minimise the total error measure. Under this slightly extended scheme the model is simply enacting

'pruning' and 'growing' techniques of the form previously employed in connectionist modelling

(see Ash B¿ Cottrell 1995, Reed & Marks t995 Lor summaries)'

It is interesring ro note that, when the model does alters its internal representational

srructure through the addition and removal of stimulus dimensions, the adaptive process is

somewhat reminiscent of the stage-wise developmental theory espoused by Piaget (1970, see also

Lewis !994, van der Maas E¿ Molenaar 1992). Under this view, human cognitive development

involves a series of abrupt changes punctuating periods of stability, rather than a continual Process

of gradual improvement. These sudden changes arise from the learning process of equilibration

which seeks ro balance assimilatory and accommodatory tendencies (recall Section 7.a.2). The

equilibrium usually achieved by this process is disturbed when the assimilation of environmental

information is impossible, even with the action of accommodatory processes. In such

circumstances, a dramatic restructuring of underlying mental rePresentâtional structure is

required, and it is the emergence of this new structure which corresponds to cognitive

development.

The type of fundamental change involved in stage-wise development could, at least

metaphorically, be likened to modification of the dimensionality of a psychological space

represenrarion. \Øhilst, as detailed in Section 7.4.2, assimilation corresponds to updating the
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model's learned associations, and accommodation corresponds to the adjustment of the internal

representations of stimuli, the modification of the nature of the psychological space underpinning

these representations constitutes a more significant event. Changing the dimensionality of a

previously stable psychological space heralds the adoption of a fundamentally different

representational approach, since, unlike moving the location of a single stimulus, it immediately

affects the entire set of similarity relationships embodied within the space.

The difference in the environmental properties of the stimuli encountered by the dynamic

bug model creates inconsistencies in the model's representation which are best removed through a

dimensional change. More specifically, the absence of noise emanating from the bugs after 3,000

trials is incompatible with the auditory dimension of the psychological space representation which

has been learned. In a Piagetian developmental context, therefore, the rapid removal of the fourth

stimulus dimension loosely corresponds to a fundamental reorganisation of the model's internal

representational structure to resolve tensions or stresses between this structure and incoming

environmental information.
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Chapter 9: Extensions To The Mental Representation Learning Model

This chapter considers various extensions to the model of mental representation learning

described in Chapter 7 and evaluated in Chapter 8. First, a series of refinements to the model are

discussed. Secondly, preliminary investigations are presented of a more significant extension which

allows the model to encounter continuous stimulus domains through learning psychophysical

mappings.

9.1. Model Refinements

The various refinements to the model described in this section constitute modifications the

archirectural, processing and learning foundations developed in Chapter 7. Most of these

refinements have been alluded to in previous chapters, and many have already been preliminarlly

canvassed. Having now completed the demonstration and evaluation of the final model, however,

the reconsideration and consolidation of these suggested improvements appears worthwhile.

9.1.1. Adaptive Parameter Setting

All of rhe parameters incorporated within the model, with the exception of the information

paramerer K, assume fixed, pre-determined values throughout the model's operation. The

information parameter, in contrast, is continually adaptively modified on the basis of entroPic

considerations detailed in Section 7.3, since its value is capable of significantly influencing the

model's behaviour. \flhilst, for the other parameters, some effort has been made to demonstrate

that the results attained by the model are relatively insensitive to their precise values, there remains

considerable scope for improving the model by allowing these values to change in systematic ways

during the course of the model's operation'

The possibility of adaptively modifying the dimensionality reduction parameter of the

connectionist multidimensional scaling model was discussed in Section 5.2.1, where it was suggested

that appropriate changes might be derived from the pattern of change of the dimensional error

meâsure. The subsequent extension of the multidimensional scaling model to learn

environmentally constrained mental representations provides further impetus for the development

of such a technique. Through being capable of continually changing the dimensionality reduction

parameter in accord with the internal dimensional error measure, the ability of the model to learn

and modify a mental representational structure whilst encountering a dynamically changing

environment m y well be enhanced.

The learnin g rare parameters incorporated within the current model, which serve to adjust

the model's prediction of the environmental properties of stimuli, and adjust the internal

represenrations of those stimuli, could also be subjected to adaptive modification during the course
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of the model's operâtion. Such modification could potentially enhance the reliability and efficiency

with which the learning rules appropriately alter the various connection weights on which they

act. Once again, the information necessary to make these changes would appear to be contained

within the pattern of change of the error measures which are being minimised by the learning rules

associated with these parameters.

In one sense, incorporating adaptive modification of these learning rate parameters simply

constitures an attempt to improve the model as a learning machine. More fundamentally, however,

this exension offers the hope that the time course of human learning of mental representations

might be effectively modelled. The current model attempts only to develop stable psychological

space representational stnrctures on the basis of modelling the relationship between the human

mind and the external world. In seeking to develop a more detailed model which accounts for the

momentary changes in mental structures following environmental experience, it would seem likely

that the flexibility afforded by adaptively changing learning rate parameters might be required.

9.1.2. Selective Attention Response Space \Øeighting

Section 7.4.1 discussed the possibility of extending the model by introducing selective

attentional mechanisms which act to 'stretch' and 'shrink' the axes of the psychological space

represenrational structure (see Kruschke 1992, Nosofsky 19S4). Given the architectural equivalence

of the psychological and response spaces, the addition of a similar mechanism to the resPonse sPace

is straightforward, and is consistent with the operation of the City-block distance metric. More

importantly, the scaling of axes in the response space would seem to have a natural and potentially

useful psychological interpretation. Given that the various dimensions of response sPace

correspond to the environmental information being learned by the model, the association of

scaling factors would seem to model the conferral of measures of salience or importance uPon the

sensory properties and categorical associations involved.

There are at least two situations in which the ability to accommodate the relative importance

of environmental information in this way might be desirable. First, in relation to sensory

properries, ir seems reasonable to suggest that there is some adaptive advantage in innately

registering some measure of relative salience between different sensory experiences. It could also be

argued, for example, that the primacy of vision as a human modality implies that a greater

sensitivity or resolution with regards the visual sensory properties, rather than, say, the olfactory

properries, of stimuli is desirable. The inclusion of fixed weightings associated with each axis of

response space would accommodate precisely this form of 'hard-wired' distinction.

Secondly, differential weights could be introduced to response space axes which correspond

to categorical associations. These weights would influence the summary concePtual structures, such

as the birds and animals presented in Chapter 7, f.ormed in the model's psychological space' For
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example, the categories 'predator' and'venomous'in Table 8.4 might be assigned relatively greater

emphasis than the other associations. These weightings, in distinction to the sensory domain, are

nor innate, since the categories involved are learned over the time scale of individual lifetimes,

rather than on an evolutionary scale. Thus, any consistency across individuals in the assignment of

saliencies should be regarded, once more, âs the outcome of the application of general adaptation

rendencies ro rhe experiences of those individuals. Furthermore, the possibility remains that

different individuals confer different sets of weightings to the various categorical associations.

Potentially, the different representations resulting from any such 'subjective' saliencies might be

reconciled with individual differences in conceptual structures, of the type explored by INDSCAL

(see Shepard 1980) and related multidimensional scaling techniques.

From a modelling perspective, the introduction of response space dimensional weightings has

the additional advantage of allowing the code through which environmental information is

conveyed to be normalised. Particularly with regard to sensory proPerties, the ability to

quantitatively confine a continuum of stimulation within, say, the unit interval, and then

accommodare various inter-sensory differences with response space weightings is highly desirable.

This approach to coding environmental feedback would help to reduce the somewhat arbitrary

narure of the way in which the environment v¡as modelled in Sections 8.1 and 8.3, and would also

introduce explicit measures of dimensional salience which might well have predictive and

explanatory significance in terms of understanding the relationship between environmental

experience and mental representation.

9.1.3.Learning The Metric Structure Of Psychological Space

The models described in Chapters 4 andZ are both forced to assume the operation of one of

the Minlçowski family of distance metrics within the psychological space rePresentations they

learn. 'S7hilst consequential regions afford considerable insight regarding the way in which the

interaction of internal stimulus dimensions corresponds to these various metrics, they do not

prescribe an obvious method by which the model might be extended to learn an appropriate metric

srructure. As was noted in Section 4.!.3,the notion of 'canonical distance metrics'developed by

Baxrer (1996) is more promising in this regard. Since the inability of the model of mental

representarion learning to self-determine the distance metric it employs could be regarded as one of

its most fundamental deficiencies, it seems worthwhile further exploring the potential application

of the canonical distance metric formalism.

Recall that the guiding principle for the construction of a canonical distance metric is that

representarive points in an 'input' space are not a priori subject to a similarity metric. Rather, the

similarity berween pairs of stimuli - which Baxter (1996) terms 'subjective' similarities, but which

could equally approp riately be labelled 'psychological' similarities - are determined by the
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environment of functions which are learned across the representational input space. Specifically,

stimulus points which are, in some sense, similarly classified by the various functions are regarded

as similar and are afforded a relatively smaller inter-point distance by the derived canonical distance

metric. In general, the environment functions take the form of classificatory mechanisms which

assign stimuli to various categories of importance to the model. Clearly, such functions are closely

related ro the notion of consequential regions, âs both essentially encapsulate regions of the

representational space which correspond to important environmental kinds.

More formally, following the notation of Baxter (1996, p. 6), the definition of the canonical

distance metric may be characterised as follows. Given a representational input space (ie. a

psychological space) denoted X, a set of functions (ie. consequential regions) to be learned denoted

F,thentheclassificationsof tworepresentationalpoints x,x'eX f.or afunction f .F aregiven

bV f@) and f(x'). Further assume that a function o:YxY-+R determines the difference

between these classifications (ie. imposes a metric upon the response space), and that a probability

measure Q determines the probability (ie. some form of salience) of each of the classificatory

functions. Then, the canonical distance metric, denoted here by f , defines the distance between

xand x' to be:

Ë(*,*') = loo(f (*),f (*')).d{,f) (e.Ð

Thus, the distance between the two representational points in psychological space is determined by

integratively measuring their similarity across the set of environmental ProPerties, weighted

according ro their salience. Stimuli with common classifications within the environment in which

the model operares are placed near each other by the canonical distance metric, whilst stimuli with

different classifications are assigned large inter-point distances.

The motivations underpinning canonical distance metric measures and psychological space

representations would appear to share much in common. Both attempt to develop representational

structures on rhe basis of similarity measures derived from the adaptively learned environmental

properries of those stimuli. Multidimensional scaling focuses upon manipulating the location of

stimulus points to achieve such representational structures, whilst canonical distance metric

research develops distance metrics which reflect stimulus similarity. The possibility arises,

therefore, that the canonical distance metric formalism could profitably be applied to the learning

of psychological space distance metrics.

As suggestive preliminary evidence that an ecumenical integration may indeed be achievable,

consider the relationship between canonical distance metrics and the separable/integral stimulus

distinction. Figure 9.L depicts t'wo two-dimensional representational spaces containing

classificatory functions which identify shaded regions of consequence to the model. The classifier
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on rhe left takes the form of a linear threshold function y = f (*), whilst the classifier on the right

requires description as a Boolean combination of linear threshold functions in the form

x > ¿ XOR y < b . The linear threshold function environment is shown by Baxter (L996) to imply

a canonical distance metric based on the angle between representative points, a measure which is

closely related to the Euclidean distance metric which characterises integral stimuli. The

incorporation of Boolean combinations of linear threshold functions, however, seems likely

@axter, personal communication, Octobe r 1996) to correspond to the City-block metric associated

with separable stimuli. It certainly âppears reasonable to suggest that both of the scenarios depicted

in Figure 9.1 might correspond to the learning of functions which confer some form of adaptive

advantage.It is, therefore, reassuring that the two distance metrics with significant Psychological

precedent emerge from these functions.

Figure 9. 1. Contrasting tuo-dimensional p ry cb ological

brt, b! a linear thresboldfunction, ønd, on the right, by

\Øhilst this observation is promising, however, there is clearly a need f.or a far more detailed

examination of the relationship between canonical distance metrics and consequential region

structures before a connectionist mechanism which learns appropriate distance metrics in

developing psychological space internal rePresentations can be formalised.

9.1.4. Response Space Basis Function

The response space basis function given by Equation 7.3 generates target indices of

psychological similarity from environmental information internalised in response sPace. Clearly,

therefore, the values produced by this function have the potential to influence the representational

srructures derived by the model. As discussed in Section7.I.2, however, the exponenrial decay

form chosen for this function does not have the same strong theoretical and empirical

underpinnings of its psychological space counterPart'

One means by which this situation might be redressed is through further empirical study of

response generalisation, of the generic type undertaken by Shepard (1958a, Experiment II) and

Noble and Bahrick (1956). Given improvements in multidimensional scaling techniques since this

research was undertaken, particularly in the form of non-metric algorithms, it is possible that the

Eaces in ubich decision boundaries are desuibed, on tbe

ø Boolean corubination of linear thresholdfunctions.

Y Y

X X

!=b
v = Í(x) X=A
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form of the response generalisation function might be revealed by such data.

On the theoretical front, there would appear to be considerable merit in examining the

sensitivity of the psychological spaces derived by the model to the form of the response space basis

function. This could be done by simply employing other functions which meet the requirements of

Equations 7.2, and comparing the resultant psychological space representations. Observed

insensitivity of the representations to the basis function would remove the imperative to discover

the generalisation function, whilst differences in the representations could be employed in relation

to empirical data to further constrain the set of appropriate functional forms.

A more enterprising theoretical development of the model which addresses shortcomings of

the current response space basis function involves the incorporation of notions from non-metric

multidimensional scaling. Radial basis functions assume that a metric relationship exists between

the argument (distance in response space) and the output (target similarity). \Øhilst the Universal

Law of Generalization justifies this assumption within psychological space, the essence of the

difficulties in deriving a basis function is that no such firm guarantee exists in response space.

Recalling that the ability of non-metric multidimensional scaling to reveal metric generalisation

gradients implicit in ordinal similarity data contributed to the development of the Universal Law

of Generalizatiott, it would appear sensible to incorporate this ability within the current model.

That is, the location of response units within response space could be used to generate ordinal level

data, in the form of topological orderings, rather than distance measures, thus removing entirely

the need for a response space basis function.

One way in which the current model might be extended in this way is evident in Schneider's

(Ig92) approach to multidimensional scaling, which allows metric and non-metric techniques to be

treated as two ends of a continuum. This approach hinges upon the properties of a parameterised

sigmoid function, of the form:

f "(r)
7L
2 L+ e-*

(e.2)

where the parameter c¿ is positive. As is shown in Figure 9.2, drfferent values o¿ corresPond to what

might be described as qualitatively different forms of the function 1". \{lhilst intermediate values

of ø result in the characteristic sigmoid shape, very large values of. a give rise to a curve closely

approximating a step function, and very small values of ø correspond to a functional form which is

essenrially linear. Examples of these three cases are shown on the left, middle and right,

respectively, of. Figtre 9 .2.

The insight provided by Schneide r's (1992) approach is that, by applying the function f o to

paired similarity dafa, variations in the parameter ø impose different levels of measurement uPon

these pairwise discrepancies. In particular, a small value of a performs only a linear scaling upon
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the differences, thus embodying metric assumptions, whilst a large value of d corresponds to non-

merric multidimensional scaling, since only the rank order of the similarity values is captured in

the effectively discrete output of the sigmoid. Choosing values of ø between these two extremes,

therefore, allows for a continuum of multidimensional scaling techniques encapsulating

measurement assumptions which are stronger than ordinal, without being fully metric.

Figare 9.2. The form of tbe parønteterised sigmoi.d oaer intermedia.te large (middle), and small (right)

P o sith)e pa.rdmeter aalu e s.

Of parricular relevance here, however, is the application of the step-function sigmoid to

allow only the topological properties of response space to constrain the psychological sPaces

derived by the model. There is certainly no difficulty introducing units with sigmoidal activation

functions ro the model, since this is the most widely employed activation function within

connecrionist modelling. Similarly, the setting of the c{, parameter to a large value is unproblematic.

Indeed, one motivation for the incorporation of sigmoidal activation functions is to approximate

the step functions used in Perceptrons (Rosenblatt 1958), the ADALINE fVidrow 8¿ Hoff t960),

and other early 'neural' networks with a functional form which was differentiable.

A preliminary formulation of the way in which these units could be used to extend to the

currenr model is depicted in Figure 9.3. The radial basis function architecture of both the

psychological and response spaces has been appended with a layer of. step function sigmoidal units.

There is one such unit for each pair of stimuli, each taking as its input the difference between the

similarities of these two stimuli, as generated across the exemplar and resPonse exemplar layers.

Thus, the sigmoidal units act to compare the relative similarity of each pair of stimuli to the

current stimulus, both in terms of the current psychological space representation, and in terms of

the environmental constraints contained in response sPace.

For example, the sigmoidal unit which compares stimuli 1 and 2 in either space has an

excitarory connection of + 1 to the similarity of stimulus 1 and an inhibitory connection of -1 to

the similarity of stimulus 2, with the net input correspondingly being the difference between the

two similarity values. Therefore, with reference to Figure 9.2, the derived activation of the

sigmoidal unit will be either a fixed positive value if the difference between the similarities is

positive (ie. if stimulus 1 is more similar to the presented stimulus than stimulus 2), or a fixed

negarive value if the difference between the similarities is negative (ie. if stimulus 1 is less similar to

outputoutput output

input inpulinput
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the presented stimulus than stimulus 2). The fundamental feature of these activation values is that

they do nor contain any information regarding the magnitude of the difference between the

similarity values. Rather, the sigmoid layers encode the topological ordering of the exemplar and

response exemplar units. For each pair of stimuli, the value of the corresponding sigmoid unit

indicates which of the two is closer to the currently presented stimulus.

Figare 9.3. Tbe enoisaged extension to the current

perform pairatise ordinøl similørity comparisons of the

Having extended the model in this way, the similarity error component of the internal error

is appropriately ref.ormulated as measuring the sum of the squared difference between the

corresponding psychological and response space sigmoid units' activation values, rather than

comparing the 'raw' similarity values. This form of error function is closely related to that

employed by non-metric multidimensional scaling algorithms, since it only extracts ordinal level

information from available target similarity measures. The gradient descent learning rule arising

from the new internal error measure would operate to reposition stimulus points, seeking a

configuration in which the ordering of the exemplars in psychological space matched the associated

ordering of response exemplars in response sPace.

Clearly, under this scheme, the form of the basis functions used to generate the similarity

measures in the exemplar and response exemplar units are largely irrelevant. Any monotonically

decreasing basis function will produce the same pattern of activation across the introduced sigmoid

layers. In particular, whilst the Universal Law of Generalisation implies that the final psychological

space representational structure will relate distance to similarity with an exPonenrial decay

functional form, this structure will not be influenced by the form of the resPonse space basis

function.

9. 1.5. Dimensional Error

Secrion 5.2.3 concluded with the observation that the form of dimensional error given by

model, in
exemplar

ubich additional sigmoid layers are added to

and response exernplar activøtions oalues.
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Equation 4.10 is wofthy of further investigation. The method by which the error measure was

derived, as documented in Section 4.2.2,hinges upon the notion of removing stimulus dimensions

in such a way as to interfere minimally with the representational dictates of the similarity error.

This motivation, in turn, suggested two qualitative features be required of the dimensional error

form - that it increase as representational contribution increases, and that the rate of this increase

should asymptotically approach zero. \Øhilst the functional form chosen meets these requirements,

and the dimensional error measure ultimately employed in both the multidimensional scaling and

mental representation learning models appears to be effective, there remains considerable scope for

the establishment of more detailed theoretical foundations.

Progress in this area might be made through placing additional constraints, which embody

reasonable assumptions regarding psychological space representâtions, upon the form of the

dimensional error function. One source of such constraints derives from Bayesian considerations of

optimal 'regularising' or 'penalty' functions within connectionist models (lr4acKay t992a, t992b).

These funcrions, such as the weight decay term employed by Hinton (1989, see Section 2.3.7) and

orhers, and the penalty term developed by \Øeigend, Rumelhart and Huberman (1991, see

Equation 4.9) act to simplify or otherv¡ise optimise the structure of. a network. Clearly, the

dimensional error measure fulfils precisely this sort of regularising role, since it effectively serves to

remove units from the internal representation layer. As such, MacKay's (1992b) observation that:

"fa]lternative regolarizers... implicitly correspond to alternative hypotheses about

the statistics of the environment" (p. 452)

suggests the development of a dimensional error measure which corresponds to the expected

structure of psychological space representations.

For a given set of potential psychological space dimensions, there are perhaps two structural

assumprions which could reasonably be made. First, the subset of potential dimensions which

eventually constitute actual representational axes assume values drawn from a uniform

distribution. This assumption follows directly from Shepard's (1987a) axiomatic postulation that

each point in a psychological space is equally likely to be a stimulus point. Secondly, as argued in

Section 4.3, each dimension in the subset of potential dimensions which are ultimately discarded

from the derived representational structure assumes a þotentially) different constant value across

all presented stimuli. The development of a regularising function which, in a Bayesian sense,

optimally modified the connection matrix C in accordance with these two assumptions would

seem to offer significant promise as a dimensional error measure.

In fact, rwo previously developed connectionist regularising functions reflect assumPtions

closely approximating those embodied by psychological spaces. First, Buntine and \Øeigend (I99I)

develop a learning rule which assumes connection weights are drawn from a mixture of a uniform

distribution and a small variance zero-mean Gaussian distribution. The net effect of this
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combination of distributions is neatly summarised by ZemeI (1995)

"The Gaussian encourages small weight values to approach zero; the uniform
distribution takes responsibility for larger weights and provides little pressure to
change these values" (p.574)

The incorporation of both a uniform distribution for representing information, and a

Gaussian distribution for removing connections through weight decay, accords well with the

representational requirements of psychological space. Even more encouraging is the explicit

consideration of the interaction of the effects of these two distributions, which is reminiscent of

the discussion in Section 4.2.2 from which desirable qualitative features of the dimensional error

measure were derived. There are, however, several significant differences between the assumptions

underlying Buntine and 'Weigend's (199t) regularising function, and those required by

psychological space representations.

Most fundamentally, the focus of Buntine and \Øeigend's (1991) regulariser upon the removal

of individual connection weights is not necessarily compatible with a focus upon the removal of

the sels of connection weights which comprise individual stimulus dimensions, as required for

psychological space dimensionality reduction. A potential stimulus dimension can only be removed

when its entire 'instar' of connection weights have been relieved of the requirement to rePresent

information. In addition, the use of a zero-mean Gaussian distribution is not entirely appropriate,

since it removes connection weights by forcing the adoption of the specific value zero, rather than

allowing an arbítrary fixed value. \Øith reference to Figure 4.4, this lack of generality corresponds

to collapsing the 'line of non-contribution' into the origin within conjugate psychological space.

The second regularising form, developed by Nowlan and Hinton (1992) fares significantly

better in both of these regards. This approach involves fitting a mixture of Gaussian distributions

ro rhe connection weights. As noted by Nowlan and Hinton (1992, p. 476), since uniform

distributions may be approximated by large variance Gaussian distributions, such a mixture is

capable of approximating a mixture of uniform and Gaussian distributions, as required by

psychological space representation. Furthermore, the limitations of zero-mean Gaussian

distributions do not arise, since the various means of the distributions are modified during the

course of learning. Even more importanfly, the approach allows weights to be clustered "into

subsers with the weights in each cluster having very similar values" (p.473). By constraining these

clusters of weights to correspond to the component dimensions of a psychological space, the

regularising approach of Nowlan and Hinton (1992) offers considerable promise as the basis of a

dimensional error measure. The development of these ideas should be a priority for future

research.

There is a close relationship between Bayesian approaches to optimising the structure of a

connecrionist network, and approaches derived from complexity theory. Indeed, in some
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circumstances, these two approaches give rise to formally equivalent conceptualisations of the

optimality of connectionist models (Zemel 1995). It is interesting, therefore, to examine the

implications of complexity theory for the models developed in this thesis.

The application of complexity theory to general connectionist modelling is most readily

achieved through the 'minimum description length' approach (see Zemel \995 for an overview).

This approach formalises a measure which incorporates both the size, and the modelling accuracy,

of a connectionist network. \Øhen optimised, this measure corresponds to the minimally

complicated network which is capable of sufficient modelling accrlracy.In effect, the minimum

description length measure embodies the modelling principle variously known as the 'Principle of

Parsimony' or 'Ockham's razof , which insists that a model should only be as complicated as is

necessary to account for the phenomena it seelcs to explain and predict (see Casti t992b, pp.314-

315 for an overview).

This tradeoff betweeÍL acc:ura.cy and simplicity corresponds to the interaction of the

similarity and dimensional errors in the connectionist multidimensional scaling and mental

representation learning models. Indeed, given the embodiment of classical multidimensional scaling

principles in these error measures, the minimum description length formalism may be applied

directly to psychological space representations. The similarity error meâsures relates to the

Universal Law of Generalization, seeking a representational configuration in which the distances

between the stimulus points are appropriate. The dimensional error relates to the requirement that

this representational configuration is of the minimum possible dimensionality. Psychological space

representation as a whole, therefore, seeks to model similarity data in a way which is largely

consistent with the minimum description length approach.

Indeed, under this view, the only way in which the fundamental principles of psychological

space representation might be regarded as sub-optimal involves the strict adherence to geometric

represenrarion. Notions of algorithmic complexity can be taken to suggest that "the point of a

scientific theory is to reduce the arbitrariness in the data" (Casti I992b, p. 315), in the sense of

providing a more compact means of reproducing the data. The psychological space theory of

human mental representations certainly involves the compacting of information. For a set of N

stimuli, a psychological space representation converts N x N inter-stimulus similarity measures

into ,ly' x P coordinate locations, where P is the final dimensionality of the derived space. Since P is

typically significantly smaller than N, this conversion constitutes a reduction in the resources

required ro represent the data. Furthermore, the invariant function specified by the lJniversal Law

of Generalizatioî provides a particularly efficient means of generating the similarity matrix from

the coordinate values.

It does, however, seem possible that the restrictions placed upon a representational structure

by the requirement that it be geometrically interpretable r.r,ay sometimes be inappropriate. For
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example, the critique of psychological space representation provided by Tversky and Hutchinson

(1986, recall Section 3.1.5) suggests that nearest-neighbour constraints imposed by the nature of

geometric representation do not allow for an optimal coding of some similarity matrices. It may

well be the case that, for some stimulus sets, the optimal description of their similarity

relationships, as formalised within complexity theory, also happens to be amenable to the

geometric representation specified by the psychological space theory. For other stimulus sets,

however, it is possible that these two theories imply different abstract representational structures.

In this case, from the perspective of cognitive modelling, the advantage of psychological space

theory - that of providing a graphically interpretable structure - seems less important than the ideal

of cognitive economy promoted by complexity theory. An exploration of the relationship between

these two approaches, and the possibility of developing mental representational structures based on

notions of coding efficiency, appears to be a worthwhile undertaking.

9.2. Learning Psychophysical Mappings

As was noted in Section 4.t.I, the adoption of a local coding scheme at the stimulus input

layer is theoretically well motivated, given the dangers inherent in representational pre-abstraction,

but does limit the ways in which stimuli can be presented to a model. Both the multidimensional

scaling and mental representation learning model adhere to this scheme, and are consequendy are

restricted to operating in stimulus domains which consist of a fixed and pre-determined stimulus

set. Ultimately, however, the stimulation provided by the external world cannot be accommodated

within a set srructure. The continuous variation possible in sensory information is fundamentally

incompatible with the discrete nature of sets. To be able to accommodate such stimulus domains, a

coding scheme must be employed at the stimulus input layer which allows for continuous

activation values and distributed stimulus representation.

\Øith stimulus information being provided to a model in this way, the development of a

psychological space representational structure requires the learning of a 'psychophysical mapping'

between the stimulus input and internal representation layers. This mapping, in effect, transforms

primitive sensory stimulation into abstract mental representation. As Daugman and Downing

(L995) summarise:

"The external world presents itself only as physical signals at the sensory surface,

which explicitly expresses very little of the information required for intelligent
interaction with the environment. These signals must be converted into ...

representations whose manipulation allows the organism or machine to bring an

appropriate model of its external environment into contact with its external goals

andpurposes" G,.414)

It is, therefore, of considerable importance to examine the possibility of extending the

current model to operate in continuous stimulus domains through learning psychophysical
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mappings. This possibility is, however, best approached through first examining the way in which

a similar extension might be made to the multidimensional scaling model upon which the mental

representation learning model was built.

9.2. 1. Multidimensional Scaling Model

The only feedback available to the connectionist multidimensional scaling is that present in

the pre-determined similarity matrix. Therefore, the model is only capable of directly learning

with regard to those stimuli about which the matrix contains information. It is, however, possible

to adapt the coding scheme employed at the stimulus input layer to allow an arbitrary number of

stimuli ro be presented to the model. As such, the possibility arises of extending the model to learn

a psychophysical mapping of sorts, which allows the model to generate interpolated psychological

space locations for novel stimuli.

For example, considering the colour stimulus domain examined in Section 5.1.1, the stimulus

input layer could be reduced to a single unit, the activation value of which corresponded to the

defining wavelength of the presented colour stimulus. The model could then learn psychological

space locarions for each of the fourteen particular wavelenghs employed by Ekman (1954), as

detailed in the similarity matrix given in Table 5.1. In so doing, a psychophysical mapping would

be established between the stimulus input layer, where the stimulus is described in terms of a

physical measurement of wavelength, and the internal representationlayer, where the stimulus is

described in terms of its psychological space location. The advantage of developing such a mapping,

as discussed in relation to the model developed by Rumelhart and Todd (1993 , ref.er Section 3.I'L),

is that the model has the ability to generalise from the fourteen learned locations to derive

appropriate psychological space locations for other stimuli with different wavelengths. Effectively,

the model learns a continuous mapping from sensory to psychological description, in the form of

an interpolative function, using the finite number of stimulus points about which it receives

information.

Clearly, therefore, the ability of the extended model to develop psychophysical mappings

resides in the ability of the network to accommodate appropriate functional mappings between the

stimulus input and internal representâtion layers. Exactly what forms these mappings must be able

ro assume is difficult to determine. Merely assuming continuity might seem sufficiently general to

encompass the functional forms which ultimately prove to be appropriate, although the

characrerisarion of psychophysical mappings espoused by Gregson (1988, t992, 1995) lies beyond

these bounds. There are however, many stimulus domains for which assumptions such as

continuiry and smoothness would appear to suffice. For example, the colour stimulus domain

involves a psychophysical mapping from a one-dimensional wavelengh sPectrum into a two-

dimensional 'horseshoe' or 'colour circle' (recall Figure 3.1) which seems likely to meet both of
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these assumptions.

In such cases, the function approximation capabilities of the radial basis function

connectionist architecture (Hertz, Krogh 8¿ Palmer L99l,pp. 142-1.43, Poggio E¿ Girosi 1990) are

well suited to the modelling task. Consequently, the envisaged extension of the connectionist

multidimensional scaling model to learn psychophysical mappings, as depicted in Figure 9.4, inserts

a 'psychophysical mappíng' layer which shares a radtal basis function linkage with the stimulus

input layer. This modification means, in principle , rhat any real-valued continuous mapping from a

compact sensory domain into a psychological space may be accommodated by the model

(Hartman, Keeler 8¿ Kowalski L990).

feedback units aoo

exemplar units OOO

ooointemal
representation

connection matrix C = lc ;¡)

psychophysical mapping

stimulus input

ooa
ooo

Figure 9.4. Envßaged psychoplry sical extension of tbe connectionist muhidimensional scaling model.

The architectural extension of the model necessitates the development of a new learning rule.

The total error measure employed in the original model remains entirely appropriate, and there is

no reason not to continue to apply a gradient descent optimisation approach. The calculation of

the required partial derivative, however, is made considerably more difficult by the adoption of a

distributed representational scheme at the stimulus input layer. In particular, the effects of

modifying rhe connection matrix C upon the locations of the non-presented stimuli in

psychological space âre not easy to determine. Nevertheless, given the information available from

the exemplar units' locations, this difficulty does not seem insurmountable, possibly through the

use of some suitable approximation. It is worth noting, however, that the pairwise stimulus

presenration method employed in Rumelhart and Todd's (1993, recall Figure 3.9) model is

particularly convenient in this regard.

Having adopted the radial basis function architecture, the possibility arises of incorporating

an additional learning rule to move the psychophysical mapping units. Using the well established

self-organisation approach (I(ohonen !982, 1984, L990, Moody & Darken t989, cf, Section 3.2.5),

rhese units could be moved in such a. w^y as to approximate the density distribution of stimulation

being presented at the stimulus input layer. Thus, for example, if the model encountered coloured

stimuli with wavelengths in a restricted range of the visible spectnrm, the psychophysical units

1.61,



would be adjusted to lie within this rânge. Through this prudent application of network resources,

rhe'resolution' with which the psychophysical map may be learned is improved. An even more

promising possibility in this regard involves the introduction and deletion of psychophysical units

during the model's operation as required. Using automatic complexity determination techniques

such as those described by McMichael (1995), the covering map of psychophysical units might be

able to accommodate a mapping of some desired resolution using a minimal amount of network

resources.

A more significant impact of the connectionist multidimensional scaling model's extension

to learn psychophysical mappings involves the placement of additional constraints upon the

dimensional error measure. As discussed in Section 9.t.5, the form of the dimensional error

employed in both models is somewhat arbitrary, and requires the development of additional

consrraints for further refinement. \Øhilst the sources derived from Bayesian and complexity

considerations remain relevant, the interpolative form dictated by psychophysical mappings could

also guide the construction of the dimensional error measure. One of the impacts of regularising

terms, such as the dimensional error, relates to the manner in which a continuous mapping is

interpolated from a set of learned point-to-point mappings (see, for example, Poggio & Girosi

tgg1). Since the extended model constructs psychophysical mappings in precisely this way,

assumptions regarding the appropriate form of these mappings, as derived from more general

psychophysical theory, are appropriately embedded within the dimensional error measure.

9.2.2. Mental Representation Learning Model

In one sense, the psychophysical extension of the multidimensional scaling model is equally

applicable ro rhe mental representation learning model. Architecturally, as is evident from Figures

4.! and7.!,the two models have identically connected stimulus input and internal representation

layers. Consequently, as is shown in Figure 9.5, a psychophysical mapping layer could also be

incorporared into the mental representation learning model. Suitable learning rules for the

psychophysically extended multidimensional scaling model could also readily be adapted to extend

the mental representation learning model.

This approach, however, does not fully realise the potential for psychophysically extending

the mental representation learning model. In particular, the capability of the mental rePresentation

learning model to encounter a complicated external environment is significantly under-utilised.

The multidimensional scaling model, through its canonical re-interpretation of classic techniques,

relies on a similarity matrix for the provision of information. This restriction malces the

assumprion that the feedback received by the model is derived from a discrete matrix structure

unavoidable. It is, however, inappropriate for a psychophysical extension of the mental

representation learning model to maintain this practice.
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Figure 9.5. Possible prycboplrysicøl extension of tbe mentøl rEresenta'tion learning model.

A corollary of the primary motivation for developing psychophysical extensions - to allow

the models to encounter continuous stimulus domains - is that the environmental feedback be

made available for arbttrary stimuli. In other v/ords, the way in which the environment is

modelled should have the sophistication to gener^te aî appropriate pattern of sensory Properties

and categorical associations for any of presented stimulus selected from a continuous stimulus

domain. As was discussed in Section 6.2.t, the realism with which the encompassing environment

is simulated directly influences the model's claim to be a model of the learning of mental

representarions. Allowing every stimulus, rather than a set of pre-determined stimuli, in a

continuous domain to be encountered constitutes a significant advancement in this regard.

Unforrunately, the way in which this might be achieved in the mental representation learning

model is far from clear.

Clearly, the adoption of continuous stimulus domains is incompatible with the way in which

the exemplar and response exemplar layers are constructed, since the units in these layers have a

one-ro-one association with elements of a stimulus set. In one sense this difficulty is not

insurmounrable, since a 'covering map' of units in both the psychological and response sPaces

could be introduced. In this way, the mental representational learning model would be able to

approximate the information content of both its psychological and response sPaces without

reliance on a pre-determined stimulus set. Effectively, such an extension is analogous to that

involved in the ALCOVE model's extension of the ALEX model (recall Section 3.2.5). The

difficulty arises, however, in attempting to maintain the crucial relationship between the

psychological and response spaces. As was emphasised in Section 7.3.L,the resPonse sPace acts as

the informarion source from the which the representational stnrcture in psychological space is

derived. The means by which the necessary exchange of information talçes place is through the

canonical alignment of the units in exemplar and response exemplar layers. Specifically, since each
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stimulus in the environmental domain corresponds to a pair of units - one in the response exemplar

Iayer and one in the exemplarlayer - the former unit appropriately provides information to the

latter. The similarity error component of the internal error measure directly reflects this

relationship in its comparison of the activation of associated exemplar and response exemplar units

(recall Equation 7.9).

\Øithin a covering map representational scheme, however, such canonical alignment is not

available. There is no way of determining the way in which the information contained in response

space should constrain the representations derived in psychological space on the basis of common

invariant relationships to environmental stimuli. Instead, each point in response space is properly

associated with a continuous multivariable function which indicates the psychological similarity

between that point and every other point in the space. The learning of an appropriate

psychophysical mapping, therefore, involves developing a psychological space representational

strucrure in which these similarity functions are accommodated in as few dimensions as possible.

Although there is some possibility such constraints might be able to be implemented using

interpolative approximation techniques, the way in which the relationships in the general case

would change over time, and operate in spaces of potentially changing and different dimension,

makes the true psychophysical extension of the mental representation learning model a difficult

topic for future research.
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Chapter 10: Concluding Remarks

Having introduced, developed, evaluated, and discussed a range of possible extensions to

both the mental representation learning model, and the multidimensional scaling model upon

which it was based, it would seem appropriate to conclude by reflecting upon the general cognitive

modelling principles set forth in Chapter 1. In particular, it is interesting to measure the degree to

which the purported strengths of the connectionist framework have been utilised in the

development of the final mental representation learning model.

The model is certainly consistent with the notions of situated and embodied agency. The

enrire emphasis of the model's development from its connectionist multidimensional scaling base is

one based on environmentally constraining the mental representations it learns. Indeed, the

model's ability to learn principled psychological space structures through â process of general

cognitive interaction with an external world is potentially one of its greatest strengths. It should be

resrated, however, that the presented demonstrations of the model fall well short of this ultimate

goal. As was acknowledged in Section 6.2.3., the simulated environments provided to the model

conrain neither the complexity nor the inherent dynamism of the real world. \Øhat they do

provide is a manageable and manipulable means of examining the learning properties of the model,

particularly in relation to its basis in environmentally constrained mental representation. The

introduction of successively more sophisticated simulated environments, culminating in the

application of real world constraints through genuine physical situatedness and embodiment,

constitutes a natural and worthwhile extension to the current model.

\üith regard to the principle of modelling mental representations as emergent cognitive

phenomena, rhe success of the mental representâtion learning model is more difficult to gauge.

Certainly, the psychological spaces learned by the model arise from a complicated interaction with

response space. From a non-linear dynamical perspective, the model's learning may be viewed in

terms of an attempt to stnrcture its psychological space to 'resonate' with the environmental

information captured in response space. The final mental structures developed by the model, under

this conception, correspond to the attractors defined by the sensory properties and categorical

associations of the stimulus set, whilst the continually changing environment serves to periodically

reshape the surrounding basins of attraction. This type of interaction, as highlighted in relation to

the notion of equilibration (recall Section 7.4.2), seems broadly consistent with the notion of

emergent mental structures.

It is less clear, however, that the final mental representations themselves adhere equally well

to this principle. In particular, the extent to which the mental representations are "statistically

emergenr acrive symbols" (Flofstadter 1985, p. 659) could validly be questioned, since the

specification of a point in a coordinate space as the representation of a stimulus does not seem to
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confer any inherent capability of activity. Any deficiency of the model in this regard, of course,

amounrs to a shortcoming of the psychological space theory which postulates this form of mental

representational structure. The criticism of psychological space representations, from the emergent

cognition perspective, is that which Hofstadter (1985) directed at symbolic approaches to cognitive

modelling, in asserting that they:

"bypass epiphenomena ("collective phenomena" if you prefer) by simply installing
strucrures that mimic the superficial features of those epiphenomena" ftIofstadter
1985, p. 642)

It is not rhe case that psychological spaces are symbolic cognitive models, as is evident from

rhe ease of their connectionist interpretation (recall Section 3.2.3) as distributed representational

strucrures. \Øhat is rrue, however, is that the adoption of the radial basis function approach negates

the possibility of. psychological spaces being sub-conceptually modelled through their underlying

consequenrial regions. Indeed, this limitation was explicitly discussed in Section 3.2.6, where it was

suggested that the consequential region modelling approach afforded no additional flexibility which

was required to model the acquisition of human mental representation. For example, the

generalisation gradient which emerges from the action of consequential regions was considered, on

the basis of Shepard's (1987a) derivation, to be sufficiently well approximated by the Universal

Law of Generalization. To the extent that the mental representation learning model fulfils its

cognitive modelling goal, this assumption is well grounded, and notions of modelling parsimony

continue to take preference over those of emergent cognition.

It remains, however, entirely possible, if not likely, that the extension of the mental

represenration learning model to model a more comprehensive range of cognitive phenomena

might require the adoption of the sub-conceptual consequential region approach. For example, as

was mentioned in Section 3.2.6, chronometric considerations do not seem readily addressable

within the radial basis function approach. Indeed, simply attempting to accurately model the time

course of mental representation learning, as canvassed in Section 9.1, might require more flexibility

than is currenrly available. 'SØhilst, in such situations, it is tempting to impose the newly required

capabilities upon the established psychological space structure, this practice has its limitations.

Gregson (Ig95) is emphatic in this regard, asserting that such an over-extension of cognitive Process

modelling constitutes:

"an evasive argument by some writers committed to the notion of an undedying

psychological space. Instead of trying to find a new model of such a space ...

ãbserued ... data are then postulated to be in some way biassed by attention and

memory weighting variables, which proliferate prodigiously" þ. 206)

It is difficult to specify a precise point at which psychological spaces, as incorporated in the

mental represenrarion learning model, become overly rigid and static characterisations of those

realised by the 'first-principles' modelling of consequential regions. This boundary between
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parsimony and flexibility is both inherently subtle, and dependent upon the cognitive modelling

goals at hand. 'tlØhat can be acknowledged, however, is that the mental representation learning

model developed in this thesis is limited by its deliberate failure to incorporate fully the principle

of sub-conceptually modelling mental representations as emergent phenomena. Future sufficiently

ambitious modelling goals might require the model to be rebuilt, rather than extended.
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