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Abstract

This thesis describes the application of shunting inhibitory cellular neural networks to the

problems of edge detection and enhancement. Edge detection is needed in many

mammalian and computer vision systems to reduce the vast amounts of incoming data to a

relatively small number of features. Shunting inhibition describes the nonlinear

interactions between sensory cells, and has been used to explain many nonlinear visual

phenomenon as found in the mammalian visual system. A cellular neural network (CNN)

is a grid of locally connected, nonlinear parallel processing elements, able to process

information in both space and time. CNN with shunting inhibition as the nonlinear

interaction are referred to as SICNN.

This thesis begins with a general investigation of recurrent and feedforward SICNN

systems. By linearising the feedforward SICNN using perturbation analysis, the frequency

and impulse response characteristics are derived and its response to random (noisy) inputs

is investigated. We also discuss how the SICNN can be designed to perform edge

detection, and how the factors of the output and the SICNN parameters affect the

performance.

Following this, we investigate how the SICNN parameters can be chosen to maximise

edge detection performance given some optimality criteria. The SICNN weight

distribution affects the edge detection performance, in particular the edge standard

deviation and the hit rate. Hence an optimal weight distribution is derived using

constrained optimisation to simultaneously optimise a number of criteria, namely the

statistical measures of hit rate and edge standard deviation.

We also derive the SICNN decay factor which gives zero edge bias in the l-D edge

detection performance, which also optimises the hit rate and edge standard deviation. For

input edges with multiplicative noise, this optimal decay factor is zero, but for additive

noise, it is proportional to the noise standard deviation and the sum of weights. The

constant of proportionality is empirically derived and tabulated for various weight

distributions for both l-D and 2-D synthetic edges. The SICNN performance with a

number of different nonlinear activation functions is also investigated.

Next we investigate a number of postprocessing methods for the SICNN output. Most of



the methods involve the combination of the outputs of different SICNNs to improve the

edge detection performance. The edges in the SICNN output are tracked as the

neighbourhood size and the width of the weight distribution are slowly reduced, resulting

in an improvement in the l-D and 2-D edge detection performance.

The outputs of SICNNs with different weights and th¡esholcling schemes are combined to

give significant improvement in the performance, particularly for l-D edges. The outputs

of SICNNs with reversed weight distributions are also combined to improve the

performance, especially for edges with small contrast. Finally, by examining the number

of edges in the local neighbourhood of each edge pixel, spurious edges which may arise

from noise can be eliminated resulting in improved performance.

Having designed and optimised the SICNN for edge detection we compare it to a number

of standard edge detectors on both synthetic l-D and 2-D images, as well as real 2-D

images. The results indicate that the SICNN has better performance than the linear

operators, particularly for inputs with multiplicative noise and on real images with both

multiplicative and additive noise.

Finally, we look at the edge enhancement capabilities and properties of the SICNN. We

investigate a number of different enhancement measures, and propose a new measure for

step edges, called the Edge Enhancement Product (EEP). The EEP measures not only the

edge enhancement, but also the difference in the background intensity levels of the step

edge. When solving for the SICNN steady-state, the solution can be found using an

iterative approach using a recursive sequence. The SICNN decay factor that maximises

the EEP after 1 iteration of the sequence is derived and was shown to be the largest for

different number of iterations. Thus, the output after 1 iteration is always used for image

enhancement. The EEP is also used to find optimal parameters for other edge enhancers

when the value of their parameters is not clearly defined. Finally, we compare the

enhancement of both synthetic and real images using the SICNN and a number of standard

edge enhancement techniques, and show that the SICNN is in general superior to the

others, particularly for inputs with multiplicative noise.
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Vision and

Cñøpter 1- lntroduction

1.1 Vision and lnhibition

For many years now, both insect and mammalian visual systems have been a constant

source of inspiration for computer vision researchers. The ability of these visual systems

to successfully operate under a wide range of operating conditions has drawn both envy

and admiration from neurobiologists, computer scientists, and engineers alike.

Taking edge detection as an example, both the mammalian and insect visual systems are

able to represent the vast amounts of incoming data in terms of edges, as well as other

primitives (Marr & Hildreth, 1980). The neurons in the visual system are able to interact

with each other in a complex or nonlinear way, known as inhibition. Linear inhibition has

been shown to remove redundancy in the input, increase sensitivity, improve efficiency

and resolution, and also enhance or deblur edges (Srinivasan et al., 1982). It can also

explain many visual phenomena, such as Mach bands. However, for some visual

phenomena, nonlinear or shunting inhibition is needed whereby each neuron in the visual

system interacts in a nonlinear way with its neighbours.

In this section we begin by describing the basic structure of the mammalian eye, followed

by a description of linear and nonlinear inhibition. We discuss its usefulness to the

biological visual system, followed by a brief biological and electrical description of

shunting or multiplicative inhibition. Finally, we discuss the role of inhibition in the early

visual system.
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Chapter 1 : lntroduction

1.1.1 The Structure of the Eye

Figure 1.1 shows a crude schematical representation of a cross-sectional slice of the

human eye. The eye is nearly spherical in shape, and has a diameter of the order of 20mm.

Lens

Sclera

Visual Axis-

Retina

/
Cornea

Figure 1.1 Simple cross-section of human eye.

The eye is enclosed by three membranes, the choroid, sclera, and retina. The sclera is an

opaque membrane which covers part of the optic globe. The choroid lies directly beneath

the sclera, and its main function is to give nutrition to the eye and to reduce the amount of

back-scattered light within the eye by being heavily pigmented. The iris has a central

opening, the pupil, which can be controlled to vary the amount of light entering the eye.

For instance the iris contracts under conditions of dim-light to enable more light to enter

the eye aiding visibility. Behind the pupil (and iris) is the /ens consisting of layers of

fibrous cells containing mostly water, suspended fromfibres. Its role is to focus light onto

the back part of the eye.

The innermost membrane is the retina, and when the optical system is properly focused

the external object is imaged onto it. To detect the distribution, and intensities, of the

incoming light the surface of the retina is covered with discrete light receptors called the

cones and rods.

Cones are responsible for colour vision, and they number in the order of 6 to 7 million.

Most cones are located in a portion of the retina called the fovea. As a result of this the

eyeball usually orientates itself so that the object of interest falls onto the fovea. The

resolution is very good since each cone is connected to only one nerve ending. Cone

vision is usually called photopic or bright-light vision.

rS

Ootic
Nerve
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Rods, on the other hand, number in the order of 75 to 150 million. They are spread

throughout the retina, with many rods connected to a single nerve ending, thus reducing

their resolution. They give an overall picture of the field of view, and are sensitive to low-

levels of illumination. This phenomena is known as scotopic or dim-light vision.

Electrical impulses from all the nerve endings exit the eyeball through the optic nerve.

There are no receptors in the location of this exit, hence vision is poor when this exit is

aligned with the visual axis. This region is called the blind-spot and occurs about 20

degrees away from the fovea.

1.1.2 Linear and Nonlinear Lateral Inhibition

Lateral inhibition is frequently encountered in the preliminary stages of sensory processes

such as touch and vision (Deutsch & Deutsch, 1992). It is a concept that explains

interactions and information processing between neighbouring sensory nerve cells. Linear

lateral inhibition was first proposed by Ernst Mach to explain the border contrast effects

commonly referred to as Mach bands (Mach, 1886a; Mach, 1886b). Figure 1.2 shows an

example of Mach bands at the transitions between regions of different intensities. Mach

bands are the illusory dark and light bands on either side of each transition. This

phenomena is essentially due to inhibition causing the perceived brightness to differ from

the actual luminance. Mach proposed a receptive field similar to that shown in Figure 1.3

which causes the brightness to undershoot and overshoot at the transition borders.

Perceived
Brightness----r,,.,

Luminance

(a) (b)

Figure 1.2(a) An image consisting of regions of increasing intensity. f4qch bands
ca-n be seèn to the -left and to the right of each transition. (b) Shows the
corresponding plot of luminance and perceived brightness.
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05

h(x)

-8 -6 0

x
-2 I

Figure 1.3 An impulse response depicting lateral inhibition

The first extensive studies on inhibition, however, were performed by Hartline and Ratliff

on the compound eye of the horseshoe crab, Limulus (Hartline & Ratliff, 1957; Hartline &

Ratliff, 1958; Ratliff et al., 1963). The function, or role, of linear lateral inhibition has

been concisely outlined by Srinivasan et al. (1952). They include:

. redundancy removal to improve the efficiency on the supply of information through the

optic nerve (Barlow, 1981).

. removal of the DC bias in the input - to increase sensitivity (Brodie et al., 1978)

. deblurring and edge enhancement - e.g. the Mach bands phenomena.

. predictive coding to improve efficiency and resolution (Srinivasan et al.,1982).

For many neural cells and visual phenomena, linear lateral inhibition is an insuff,cient

model. A nonlinear model is more appropriate in these cases. When the membrane

conductance is controlled by the synaptic voltage of neighbouring cells, the mathematical

equation describing the lateral inhibitory neural network becomes nonlinear, or more

commonly referred to as multiplicative. The system of state equations is

dx. l
*'=,,(t) -a,x,- 2.,,f,,Q) x, i = 1,2, ..., fl

l=-n

where -r, is the state of the itå neuron, 1, is the input to tbe ith neuron, a, is the decay factor

of the itå neuron activity, w,, is the coupling strength of postsynaptic activity of the jth
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neuron to the lt¿ neuron, and f,, is the activation function which determines the inhibitory

action exhibited on the ¡tå neuron by the j /å neuron.

Nonlinear, or multiplicative lateral inhibition has been used to explain selectivity of visual

units in the ventral nerve of insects for small objects (Pinter, 1983a; 1983b), and to explain

adaptation of the receptive field spatial organisation and the spatial modulation transfer

function (Pinter, 1984; 1985). Nonlinear lateral inhibitory neural networks have also

found application in image processing, mainly for image enhancement (Jernigan &

Mcl-ean, L992; Paradis & Jernigan 1994).

1.1.2.1 Biological and Electrical Description of Shunting lnhibition

The neuron is the fundamental processing unit in the human nervous system. Each neuron

is connected to many thousands of other neurons through nerve fibres called dendrites.

The dendrites "connect" to the cell body, or soma, via synaps¿s. The neuron itself

communicates with other neurons through the axon, which is connected in turn to many

dendrites. Figure 1.4 shows a simple diagram of a neuron to illustrate qualitatively the

principles involved in shunting inhibition.

=- synapses

nucleus

axon

cellbody

dendrites

Figure 1.4 Schematic drawing of a typical neuron (from Hertz et al', 1991).

An equivalent electrical circuit for a cell is shown in Figure 1.5 (Bouzerdoum & Pinter,

1993). Note that we shall call a path from the synapses to the soma a channel. Such a

circuit is an approximation to a uniform lump of membrane, where each cell may

correspond to a subunit, i.e., a piece of dendritic field that is isolated from other such

fields, and on the whole has a uniform potential within. 'When this is the case the

resistance between synapses is negligibly small, and the entire excitatory and inhibitory
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synapses can be lumped together into a common circuit element. We denote by V^ and

C^ the membrane voltage and capacitance, respectively.

R

û
Þe

VS % Vm

ie1s

g
Þs

Figure 1.5 An equivalent e ectrica representation of a biological cell, or neuron

lr

ûÞr

v.

lc

cm

When the neuron is not excited, or at rest, the corresponding resting conductances and

batteries of all possible channels can be lumped together into the resting conductance g,

and potential V,. Thus the conductances of all excitatory and inhibitory channels are zero.

Now exciting the excitatory synapses increases the conductance of the corresponding

ionic channels, or the membrane conductance, causing sodium Na+ ions to enter the soma.

This flow of ions is represented by a modulation of the conductaîce ge, with the polarity

of the potential V" reflecting the direction of ionic flow. In actual fact V" is a measure of

the flow of ionic charge across the channel.

The inhibitory synapses are assumed to be of the shunting type since this branch of the

circuit consisting of g, and V, shunts the rest of the circuit. When the inhibitory synapses

are excited, more chloride C/- ions are able to enter the soma through their ionic channel.

This also increases the outer membrane potential with respect to that on the inner

membrane. The voltage V, represents the flow of Chloride ions across thc channcl. The

changing C/- ionic channels can be represented electrically as a modulation of the

conductance gr. Another ionic channel also exists for potassium K+ ions to exert inhibition

by leaving the soma and increasing the outer membrane potential, but the Ct- ions are the

dominant one in causing shunting inhibition.
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Note that there is always a constant diffusion of charge across the membrane due to the

inherent potential difference across it. At rest (or steady-state) the amount of charge

diffusing into the soma is equal to the charge flowing out of the cell body, represented by

the inhibitory and excitatory potentials.

Thus when the cell is excited, the excitatory conductance ge becomes larger, indicating an

excitatory effect, urtd g, increases to divert current from i, to ir. This diversion causes the

circuit to clamp the cell to its resting potential, in other words, it attempts to maintain a

constant equilibrium voltage v, = v,. This is what we shall refer to as inhibition.

1.1.3 Role of Inhibition in Early Visual Processing

The peripheral visual system of mammals has a hierarchical organisation - from the retina

to the lateral geniculate nucleus (LGN) and to the visual cortex. Information from the

retina is relayed via the LGN to the striate cortex; there also exists massive feedback

throughout the whole system, such as from the visual striate cortex to the cortex.

There exist two distinct parallel pathways from the retina to the striate cortex: the

magnocellular pathway for motion information and the parvocellular pathway for contrast

and shape information. Each pathway consists of ON and OFF-centre receptive fields. The

ON-centre cell increases its activity, or firing, when the light intensity over the centre of its

receptive field increases, while the OFF-centre cell increases its activity when the light

intensity decreases over the centre of its receptive field.

Retinal ganglion cells and LGN cells both have receptive field profiles with Centre-

Surround (CS) organisation, i.e., a small excitatory band surrounded by an annular

inhibitory band. Cortical cells (or simple cells) have receptive fields that can be

subdivided into alternating excitatory and inhibitory regions resembling the ON and OFF

subregions of a CS field. They are selective to orientation stimulus - thus termed

Orientation Selective (OS); see Spillman & Werner (1990). A hierarchical model was

presented by Bouzerdoum (1994) that can synthesise both the CS receptive field of retinal

and ganglion cells, and the OS receptive f,eld of cortical cells, for both ON and OFF-

channels in the parvocellular system using shunting inhibition.
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1.2 Shunting Inhibitory Cellular Neural Networks

Lateral inhibition describes the complex mechanism by which sensory cells interact with

each other, and was first proposed by Ernst Mach (1886a, 18S6b) to describe the edge

effects observed at the discontinuity between two different intensity bands. This

phenomenon is now referred to as Mach bands. Since the pioneering work of Mach,

inhibition has been shown to have an important part in the early visual processing system.

Multiplicative or shunting inhibition describes the case where the interaction between

neighbouring cells is of a multiplicative nature; thus, it is inherently nonlinear. Pinter

(1983a, 1983b) used lateral inhibition to explain the selectivity of visual units in the

ventral nerve of insects for small objects, and also to explain the adaptation of the

receptive spatial organisation and the spatial modulation transfer function (Pinter 1984,

1985). Shunting inhibition has also found applications in image enhancement (Jernigan &

Mclean, 1992;Paradis & Jemigan, 1984), as well as in motion detection (Bouzerdoum,

19e1).

Cellular neural networks (CNNs) were presented by Chua & Yang (1988) as a framework

for analogue, nonlinear processing arrays. A CNN consists of a nonlinear processing node

in a grid layout, with each cell being locally connected to its neighbouring cells. Many

possible CNNs have been described, and they have found many applications in image

processing, as CNNs have an excellent ability to process information locally, in both time

and space.

The architecture and nonlinear processing ability of the CNN makes it ideal for modelling

nonlinear inhibition in the mammalian system which typically consists of neurons in a

grid-like structure, with many local interconnections. Bouzerdoum & Pinter (1993) S.

Bouzerdoum (1994) were able to adapt and design a CNN to model shunting inhibition.

Using a hierarchical model of such CNNs, Bouzerdoum (1994) was able to synthesize

both the centre-surround receptive field of retinal and ganglion cells, and the orientation

selective receptive of cortical cells, in the ON- and OFF- channels of the parvocellular

system. Iannella & Bouzerdoum (1996) used a hierarchical network of shunting inhibitory

cellular neural network (SICNN) to synthesize the spatiotemporal receptive fields of the

early mammalian visual system.
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1.3 SICNNs for Edge Detection and Enhancement

Edge detection is the detection of significant intensity changes corresponding to

physically underlying edges in a visual scene. It is a low-level process as it operates

directly on the incoming data and makes no assumptions about it.

Any vision system, either mammalian or otherwise, must deal with enorrnous amounts of

incoming visual data. For example, a 5l2x5l2 greyscale image quantised using 8 bits

consumes over 250 kBytes. Thus, it is beneficial if the system can avoid processing such

huge amounts of data. One way of doing this is to identify salient features in the input, and

then process only these features, rather than the entire input image. There is some

evidence that the primitives which the mammalian visual system identifies are edges

(Marr & Hildreth, 1980). Edge detection is an important part of many image processing

algorithms, such as image segmentation, as well as many computer vision applications as

described in the following Chapter on edge detection.

Traditionally, most edge detectors described in the literature have been linear operators,

with no ability to adapt to the characteristics of the input signal. Indeed, there is no real

need to adapt to the input if we assume that the input image is corrupted with additive

white noise. Although this is a reasonable assumption, in many cases it does not hold. For

example, it is well known that images produced from coherent imaging systems, such as

radar, have multiplicative noise present, which is not additive in nature. That is, the noise

intensity depends upon the signal's intensity. Clearly, a linear edge detector is not optimal

for inputs with multiplicative noise. Furthermore, most edge detectors only have a few

parameters to adjust for achieving the best possible performance.

In this thesis, we will take the shunting inhibitory CNN (SICNN) developed by

Bouzerdoum & Pinter (1993) and adapt and redesign it for the problem of edge detection.

We will show that the SICNN edge detector has the ability to adapt its impulse response to

the input signal's intensity, giving it an inherent advantage over linear edge detectors for

signals comrpted with multiplicative noise. Furthermore, the SICNN developed here has

many parameters which can be tuned and adjusted to obtain the best performance for any

given input image.

9
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1.4 Thesis Overv¡ew

In Chapter 2, we begin this thesis with an overview of edge detection theory and

applications. We present a general review of the more popular edge detectors as found in

the literature, a number of performance measures, and the applications of edge detection.

we also describe how edges are formed from various types of surfaces.

Chapter 3 presents a general overview of cellular neural network (CNN) theory, and

discusses a number of different implementations as found in the literature. Importantly, we

present the shunting inhibitory cellular neural network.

Chapter 4 presents a general investigation into shunting inhibitory CNN (SICNN)

systems, both recurrent and feedforward. V/e describe how the recurrent SICNN can be

solved for the steady-state, and what this steady-state is, for both uniform and step edge

inputs. 'We 
derive the SICNN impulse and frequency responses, and then present a

detailed investigation into the SICNN response to random inputs.

In Chapter 5 we discuss how the SICNN is designed and adapted for edge detection. 'We

begin by defining the edge detection performance measures which are used throughout

this thesis. We then outline a number of issues related to the design and implementation of
the SICNN. The factors affecting the performance are investigated, as well as the effect of
each SICNN parameter on the performance.

Chapter 6 presents a study into how various SICNN parameters are optimised, according

to certain criteria, to maximise the SICNN edge detection performance. In Chapter 7, we

present a number of post-processing methods for the SICNN that can be used to improve

its performance. Particular emphasis is placed on how various outputs of the SICNN can

be constructively combined to achieve an improvement in performance.

In Chapter 8, we present the culmination of the previous Chapters work, by comparing the

SICNN edge detection performance with that of a number of other standard edge

detectors. The results are presented for synthetic l-D and 2-D edges, as well as for 2-D

real images.

In Chapter 9, we apply the SICNN to edge enhancement. We begin by developing a new

edge enhancement measure, and then review a number of standard edge enhancement

schemes as found in the literature. We describe the various ways in which the SICNN can

10
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be used for edge enhancement, and finally we compare its enhancement abilities to those

of standard edge enhancement operators.

Finally, we present the conclusions of this thesis and a sunìmary of its major contributions,

and also describe a number of recommendations for future work.
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Cftøpter 2 Edge Detection: a

Review

2.1 lntroduction

Before reviewing a number of edge detectors proposed in the literature, we explain the

generation of image intensity prof,les, and show how image intensity understanding can

provide us with the fundamental knowledge of the creation of edge intensity profiles. It is

important to know which profiles are most frequently generated by physical edges, rather

than attempting to detect all edge profiles - some of which may be of no real use to higher

level computer vision tasks. Thus, we begin with the generation of typical edge profrles;

that is, those that we should concentrate on detecting. It is also more satisfying if we can

appreciate which physical edges produce what profiles.

Edge detection is a critical component of many computer vision systems. It reduces the

vast amounts of visual data presented to a vision system by locating and highlighting only

the salient edges. These edges can be used by the higher-level processes of the system to

make decisions about navigation, obstacle avoidance, etc. In this Chapter, we discuss a

number of the more important edge detectors found in the literature, and how they operate.

Common performance measures which can be used to rank or compare different edge

detection schemes are also reviewed.

2.2The Generation of Edges

In this section we begin with the fundamental definitions of light, luminance, and

brightness, along with some background of how intensity profiles, or edges, are generated,

13
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i.e., what physical underlying scenery generates the most conìmon edge profiles which we

should detect.

2.2.1 Light, Luminance & Brightness

Light is an electromagnetic radiation that stimulates the visual system. Its wavelength, À,

is of the order of 350nm to 780nm. The primate visual system does not respond equally to

light of all frequencies. It is tuned to the raîEe of wavelengths (frequencies) stated above.

This characteristic of the visual system can be described by the function V (t"), the relative

luminous fficiency function, which usually has a bell-shaped curve (Gonzalez & Woods,

1992). The eye appears to be most sensitive to light with wavelengths centred around

600nm.

The luminance oÍ intensity of an object is measured in lumens (lm) and is a measure of the

light energy perceived by an observer. For example, the luminance of an infra-red source

would be almost zero to a human observer, even though the source is emitting energy.

The brightness (or apparent brightness) of an object is defined as the perceived

luminance, and depends upon the luminance of fhe surroundings of that object. Thus, two

objects can have identical luminance but different brightness depending upon their

backgrounds. Phenomena such as simultaneous contras/ and Mach bands illustrate this

effect.

2.2.2 Edge Generation

In most papers dealing with edge detection, the actual physical source of an edge profile is

often overlooked or ignored. In general, this has not restricted the progress of edge

detection theory since the most commonly studied edge profiles (i.e., the simplest ones)

are indeed those readily found in natural scenes.

We shall now qualitatively discuss a number of luminance profiles, or edges, and the

underlying physical scene events, or physical edges, which give rise to them. Although the

theory is not crucial to our work, it gives us a greater understanding of edges and hence

edge detectors.
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g1om (1971) showed, under some simplifying assumptions, that an edge can be described

in terms of the underlying physical edges. These assumptions are:

. the reflectance of objects is Lambertian, i.e., the brightness from any surface patch is

proportional to the incident light on that patch, and is equally bright from all directions.

. The illumination is mainly coherent, i.e., a single light source subtending a small solid

angle.

Such assumptions rarely hold in practice but they do yield useful models.

Figure 2.1 shows three of the most common edge profiles according to Horn. They are the

step, peak and roof profiles. A study by Herskovitz & Binford (1970) also showed such

edges to be very coÍìmon in real scenes. In general, most edges can be decomposed into a

combination of these fundamental edges, so we do not need to consider others.

Step Peak Roof

Figure 2.1 Commonly found intensity profiles

A step prof,le is generated when two faces of an object occlude each other, as shown in

Figure 2.2(a). The border between the faces is very sharp (from the illuminating light's

frame of reference), hence the luminance profile of the edge will change abruptly, or like a

step function (Horn, 1971).

'With convex edges, such as Figure 2.2(b), the luminance profile is constant along surfaces

A and B, and then peaks somewhere along the curved edge in between A and B. This

usually results in a peak-like edge profile (Horn, l97l).

With an elongated concave edge such as in Figure 2.2(c), the luminance profile decreases

gradually along both surfaces, generally resulting in a ramp-like edge profile (Horn,

t97t).
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Background Lioht
Sõurce

object
A B

(a) (b) (c)

Figure 2.2. lllustration of (a) an obscuring edge, (b) a convex edge, and (c) a
concave edge.

2.3 Applications of Edge Detectors

In this section we begin by discussing the need for edge detectors in vision systems. The

vast amounts of incoming data need to be represented in terms of a few primitives, which

can then be acted upon or interpreted by the higher levels parts of the vision system.

Following this we describe a number of industrial applications of edge detection, such as

electronic manufacturing and parts inspection. We also describe the use of edge detection

for consumer electronics and other computer vision applications.

2.3.1 The Need for Edge Detectors

Computer vision systems are designed to recover useful information of a scene from one

or more 2-D images of that scene. Such systems are often considered as consisting of three

processing levels: low, intermediate, and high level vision. A common belief is that low-

level processes (or early processes), such as edge detection, are data-driven whereas the

high-level processes use explicit knowledge. A simplc analogy is that low-level vision

performs the same tasks as the human eye, whereas high-level processes have a role

similar to that of the brain.

It is clear that the success of many computer vision systems is critically dependent upon

the accuracy of the low-level processes (which supply the high-level processes with the

necessary scene information). Errors at such low-level may propagate through the higher
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levels of the system. As a consequence, a great deal of research effort has been applied to

developing these early processes, and in particular edge detection.

In simple terms, edge detection is the identification of intensity changes that correspond to

physically underlying edges, some of which we have discussed above. Detecting edges is

useful for image segmentation and registration, robotics, character recognition, and

medical and industrial applications to name a few. Notwithstanding such a simple

description, research has yet to produce an edge detector of any real sophistication that can

yield satisfactory results, particularly when applied to real images and whose results are

viewed objectively by humans. The lack of good results has been a major source of

frustration for researchers developing higher level algorithms for computer vision systems

(Nalwa & Binford, 1986).

Although not an important aspect of this work, edge detection also reduces the amount of

information that must be communicated within any visual or computer vision system. The

quantity of incoming data is enormous for any system, and edge detection reduces the

amount of data to be transmitted by identifying only the salient edge points. Thus only the

location of edges need to be transmitted.

2.3.2 I ndustrial Appl ications

The advent of modern mass production techniques and automated production line

technology has initiated substitutes for the traditional human inspectors. It is impossible

for these inspectors to inspect parts or components for both cosmetic and functional

defects, whilst still maintaining l\OVo quality assurance. For example, in the

manufacturing of PCB, a human inspector must monitor the results of over 50 process

steps in the fabrication. Not only is this work labour intensive, but it is also subjective

since the operator must compare the fabricated part to a "standard" part. Thus, automatic

visual inspection systems are used to:

. remove the subjectivity of human operators,

. relieve human inspectors of tedious jobs,

. achieve daily inspection consistency and high quality assurance levels,

. reduce rework cost,
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. reduce excessive (and costly) scrap-rates ofdefective parts,

. achieve production rates beyond the human inspection capability,

. inspect tolerances which are too tight for humans,

' can categorize defect types to control and improve the manufacturing process, and

' in critical applications, it can identify a faulty product before it reaches the customer.

See Moganti et al. (1996), Ejiri (1989), and Novini (1995) for more details. Thus, rhe net

result of replacing a human inspector with an automated visual inspection system is to
produce a cheaper product ofbetter quality.

Electronic Manufacturing

Computer vision has become popular for automatic visual inspection of electronic devices

and components, as the physical dimensions are always decreasing, it provides a useful

auditing facility, with such systems now being cost-effective.

As the physical dimensions of the devices and components decrease, it is becoming

increasingly difficult for a human inspector to inspect and measure components quickly

and accurately. As we mentioned above, automated inspection can be used to determine

how and why faults occur in the manufacturing process. Not only does this improve the

process, but it also eventually reduces the number of discarded components, which

represents a direct saving of money. Visual inspection is also a solution of PCB inspection

due to its ability to process information of a high data rate and resolution, and its ability to

inspect PCBs with no contact or damage to the board (West, l9B4).

Edge detection has an important role in the metrology of electronic devices and substrates

(Pau, 1990). Edges are used to measure linewidths of tracks to determine if they are within

a prescribed tolerance limit. The peak local slope of an area of interest, along with other

measurements, is also used to determine if the flatness is within a prcscribed tolerance.

Flatness measurement is essential for semiconductor wafers, multi-layered PCBs, and for

surface mounted devices (SMD). For IC inspections, edges are located and used to

measure features which are then compared to the reference CAD layout.
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By identifying components and their placement, edge detection is useful for component

insertion, wafer or board repairs, desoldering, probers of automatic test equipment, PCB

drilling, connector mountings, wafer saw alignment, etc. (Pau, 1990).

West (1984) proposed a system for the automatic visual inspection of bare PCBs using a

hierarchy of tests for different types of faults. To detect "large faults", such as missing

tracks or pads, the inspected board is compared to a "standard" board held in memory. The

board is segmented into grids, and edges are then used to measure the area of tracks in

each grid. By comparing the areas in each grid to the areas found using the standard board,

errors can be located. Edges are also used to measure the track width over a long length of

track, and detect where the track width is too narrow.

Kaufmann et al. (1984) describe a method of inspection using a feature based description

of the image and model. Edge detection is used to generate line segments which are used

to describe all the parts being inspected. These line segments are then used to symbolically

describe the part, and then comparing this description to the one of the stored model. Parts

which can be detected include PCBs, IC chips, capacitor and battery contacts, while

defects include broken PCB, missing IC, missing capacitor, and misplaced or missing

battery contacts.

Parts Inspection

Figure 2.3 below shows a typical machine vision system for parts inspections or robot

control. The system consists of an imaging system or sensor (camera and optics), a

preprocessor for feature enhancement and extraction, and an intelligent processor to either

orientate the inspected part or to guide robot's gripper.

Kelley (1992) describes the bin-picking problem as acquiring a part from a bin and then

presenting the part, in its correct orientation, to a robot or the following stage of the

assembly process. Not only does this remove the limitations of human performance, but it

also relieves humans of monotonous jobs, and it can remove them from an environment

which may be unhealthy or hazardous. For acquisition, he describes how features, such as

edges, are used to provide reliable indicators for good holdsites for a robot's grippers. An

example is presented where edges are used for the robot gripping of automobile engine

connecting rod castings which are then placed onto a conveyor belt.
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Figure 2.3 A^machine vision system for automated inspection or control (Batchelor
& Braggin, 1992).

Perkins (1983) describes a very simple system which can be trained to inspect parts, and

then inspect new parts automatically. During training, the system forms a model of the

part by using edge detection to determine identifying points which characterise the part.

The system can then distinguish between good and bad parts by comparing the intensity or

edge distribution of the inspected part compared to the training set of parts.

Other Automatic lnspection Systems

Suresh et al. (1983) describe an automatic visual inspection system for the detection of

imperfections on hot steel slabs being produced in steel mills. By inspecting the steel slabs

while they are still hot, they not only remove the need for time-consuming human

inspection, but there can be significant savings in operating costs. Edges are used in their

algorithm to identify imperfections on the incoming piece of steel slab, and to determine if
these imperfections are localised, or are part of a larger, more serious, imperfection.

Ala et al. (1992) provide a systematic study of the use of line and edge detection for real-

time inspection of masonry units, such as blocks or bricks. They fit a model to the edge

data, which can be used to determine the quality of the masonry unit.

Nowak et al. (1992) describes an implementation of a vision system for the classification

of halved pig carcasses. The meat quality is estimated by measuring the fat thickness in

the nape area. This is done by first imaging the nape area, then performing edge detection,

edge thinning and line following to determine the fat's boundaries.
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2.3.3 Consumer Electron ¡cs

Paik et al. (I992a) propose a new digital image stabilization system, based on an edge

pattern matching technique, and a new adaptive motion decision method. Such a system is

particularly useful for digital cameras, where small motions of the camera can seriously

degrade the picture quality. In the system, once a motion estimation block (MEB) is

located, local motion vectors (LMVs) can be estimated. These LMVs are estimated by

correlating the edges in the MEB in a given frame of the input sequence to the edges in the

same region, of previous frames. A number of LMVs are computed, each for a different

MEB. All these LMVs are then averaged in the appropriate manner to produce the field

motion vector (FMV).

To stabilize more than two image sequences, the FMVs of consecutive fields are

accumulated, and the resulting motion vector is called the accumulated motion vector

(AMV). These AMVs can then be used to compute the field memory read address, and the

corresponding data from the field memory can be used to stabilise the image sequence.

Uchiyama et al. (1992) use edge detection in their decoding scheme for a digital still

camera. The camera applies adaptive differential pulse code modulation (ADPCM) for

each of the red, green and blue fields. This allows for a significant reduction in the

hardware, i.e., a smaller camera, whilst still maintaining picture quality. Edge detection is

used in the decoding scheme to obtain the Y (luminance) component of the picture.

Inamori et al. (1993) describe a new control method which uses edge detection and motion

detection, to eliminate noise, blur and picture trails in moving pictures without degrading

picture quality. The method has uses in all video applications such as TY VCR and

cameras

Typical noise reduction systems for these applications average the pixels of the present

and previous frame. Thus, when there is a moving picture, i.e., a temporal signal

fluctuation, this technique generates a perceptually noticeable picture trail. The new noise

suppression techniques makes use of the fact that these picture trails generally occur at the

edges of the picture. So, by locating the edges, the noise reduction can be inhibited or

disabled at the neighbouring pixels of these edges. The new method improves the noise

reduction for moving pictures, and has been implemented for use on MUSE (Japanese

HDTV).
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Appelhans & Schroder (1995) use edge detection for equalisation or ghost cancellation for

stationary and mobile television. The ghost or echo signal can be removed by estimating

the channel using an LMS filter, and then performing equalisation. The authors present a

blind equalisation algorithm where edge positions are candidates for echo parameter

estimation. At these points, the algorithm estimates the delay of any echo signal as well as

the echo amplitude by minimising the mean square error between the scaled original

signal and the corresponding echo distortion. Edge detection is also used in the iterative

algorithm to improve the estimation of the channel's impulse response.

Lee et al. (1992) describe a new multi-purpose two-layered video compression system

which uses edges in its encoding scheme. Video signal compression is essential for

applications such as DSM (Digital Storage Media), ISDN (Integrated Services Digital

Network) and HDTV (High-Definition TV). The proposed encoding scheme achieves

greater compression, without loss of picture quality, by only focusing on those areas of the

video which have the greatest detail or complexity. Most of the information is lost in the

areas of the video where the complexity is negligible. The complexity of the video

sequence is determined by the number of edges in any given area. Thus, a block of the

sequence is only fully encoded without loss of information if the number of edges exceeds

a threshold.

Kadono & Yamamitsu (1993) also use edge detection for the efficient coding of HDTV.

HDTV usually requires a transfer rate of l.2Gbps, hence compression must be used to

remove redundant information. The authors propose new techniques to encode HDTV at

50 Mbps. The encoder essentially consists of a DCT, quantizer and variable length

encoder, but first, the chrominance signal of the input is decimated. Typical decimation

filters introduce distortion, thus an adaptive decimation filter is designed. For each input

pixel, the filter searches for an edge in the following pixel. The filter then selects from one

of four filters depending on whether there is an edge in the previous pixel, an edge in the

following pixel, edges on either side, or no edge at all. Results on images show that this

adaptive decimation scheme significantly reduces the amount of distortion in the encoding

process.
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2.3.4 Other Computer Vision Applications

Regazzoni et al. (1996) present a system able to provide accurate quantitative estimates of

the number of people present in a scene monitored by a set of cameras. This information is

useful in any transport station for crowd control and traffic planning. The task is

performed using a distributed multisensor data-fusion approach, with a probabilistic

Bayesian network implementing the crowd estimation system. The system consists of two

networks: one with low-level nodes, and another with high-level nodes. The low-level

nodes use edge detection to provide estimates for the number of people in a camera's

scene. The high-level nodes combine the information from all the low-level nodes to

provide an estimate for the total number of people in a scene. Due to the computational

overhead, edge detection is also used to focus the system's attention on to the dynamic

foreground ofthe scene, and not the static background.

Govindaraju et al. (1990) look at the problem of face recognition in the newspaper

domain. They model the face with features such as edges, lines, arcs, etc. as well as the

structural relationship between these features. These features are then matched against the

features of a face model, and successful matches form hypotheses. Each hypothesis is

checked to determine if it is a face using a cost-functional approach.

Schneiderman & Nashman (1992) presented a successful algorithm for autonomous

driving on freeways, large local roads, and two-lane rural roads. The algorithm extracts

edges from the road scene. These edges are then matched to a road model in order to

associate edges with valid lane markings, and remove any edges not associated with lane

markings. Essentially, the autonomous vehicle is steered by tracking lane markings on the

road.

Barnes & Liu (1995) also implemented a vision system to guide an autonomous robot

around objects of arbitrary pose. From a camera, the robot's preprocessor extracts relative

features such as the length of edges, their orientation, and the relative location of edges.

These features are then matched against the object model to determine the pose and

distance of the object relative to the model, and then to plan the robot's next position, to

which it should move.
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2.4 Performance Measures

The issue of measuring the performance of an edge detector is one that has not been

resolved adequately in the literature. One of the main stumbling blocks is the very wide

range of possible edge detectors, as we shall see in the next section. How do we develop a

measure which can be applied to maxima-based edge detectors, zero-crossing based edge

detectors, or even heuristic edge detectors, amongst others? This has not been achieved to

date; usually each author defines an optimality criteria which is most relevant to their

particular detector, hence the abundance of "optimal" edge detectors throughout the

literature. These optimality conditions are all quantitative, and incorporate nothing of the

psychovisual aspects of human vision and perception. Signif,cant progress has been made,

however, in explaining qualitatively what a good edge detector should achieve, though it

is often impossible to express such criteria mathematically.

Eventually, however, the merits of any edge detector should be judged on its performance

with real images rather than synthetic ones. Fundamental questions then arise, such as:

does optimality of an edge detector on a simple, isolated edge prof,le tell us how it will
perform on real images consisting of very complex structures? Indeed, what do we mean

when we talk about optimality? To complicate matters even further, the set of real images

used to evaluate edge detectors often varies from author to author; see e.g. Price (1986) for

a good discussion on this point. There appears to be no standard of any sort when

evaluating performance of edge detectors.

Thus, the ultimate test for any edge detector is how well its output correlates to those

edges that are perceived as being signif,cant by a human observer. The results from such

tests are very objective, so in order to compare the edge detectors with some sort of solid

mathematical background, a number of performance measures can be used, even if they

tend to be overly simplistic or heuristic in nature. The following measures that we shall

discuss are applicable only to synthetic images since the true edge position needs to be

known a priori. They include distance and statisticøl measures (van Vliet et al., 1989),

Canny's criteria (Canny, 1986), and a related measure proposed by Tagare & deFigueiredo

(1eeO).
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2.4.1 Distance Measures

Distance measures are based on edge deviations, or error distances (the minimum distance

between the detected edge and the "ground truth"). This requires the edge positions to be

known a priori, which, in general, can only be done for synthetic images. Some distance

measures are (van Vliet et al., 1989; Abdou & Pratt, 1979; Peli & Malah, 1982)

ND

. the mean square deviation: MSD = i>0,' ,

t= I

ND

. the mean absolute deviation: MAD = ü,ì ld,l, and

ND

. pratt,s Figure of Merit: FoM = #,N,IZr#:
where N, is the number of detected edge points, N, is the number of ideal edge points,

cr > 0 is a scaling constant, and d, is the edge deviation for edge point i. All three

measures are intuitive, though there is no mathematical derivation to Pratt's FOM. This

measure was used quite frequently in early papers on edge detection, but has now come

into disuse, replaced by more sophisticated measures (such as Canny's criteria (Canny,

1e86)).

2.4.2 Statistical Measures

Some simple quantitative statistical measures that can be found, generally by numerical

simulations on synthetic images, include:

. the percentage ofedge points detected on the ideal (desired) edge,

. the number of edge points which do not coincide with true edges,

. the mean width of a detected edge, i.e., the ratio of the total number of detected edge

points to the number of ideal edge points, and

. the noise-to-signal ratio (NSR), i.e.,

NSR=W EO (2.1)

where FPE is the number of false positive edges, FNE is the number of false negative

edges, and TPE is the number of true positive edges. A FPE is a non-edge pixel which

is declared to be an edge pixel, a FNE is a true edge pixel which is not declared to be an
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edge pixel, while a TPE is a true edge pixel which is indeed declared to be an edge pixel.

The problem with these measures is that it is often impossible to find analytical

expressions for them, and hence they must be obtained by Monte Carlo simulations.

2.4.3 Ganny's Criteria

Canny (1986) was the first to summarise the three criteria that a "good" edge detector

should satisfy. Although they may appear straightforward and "obvious", Canny was the

first to concisely state them and incorporate them into his edge detection formulation. The

criteria are:

. Good Detection: i.e., maximising the probability of detecting a true edge point (or

pixel), and minimising the probability of identifying a false edge pixel. Both of these,

in fact decrease with output signal to noise ratio (SNR), hence the objective is really to

maximise the output SNR,

. Good Localization: all edge pixels should be as close as possible to the true edge posi-

tion, and

. Single Response Criteria: there should only be one response for every true edge pixel

(this is clearly linked to the first criteria).

Byapplyingalinearfrlter h(¡) of support [-W,Wl totheidealstep ø(.r) withadditive

Gaussian noise of variance ol, Canny obtained the following expressions for his criteria:

SNR =

Localisation =

J*-*'r-o h (Ð d.l

h21x¡ dx

and

on
-w

lf-r"'(x)h'(x) 
(dx)

on h'2çx¡ dx -w
I tt' (x) dx

J _ry

EO(2.2)

/n

the third

with an average inter-maxima spacing of noise peaks of xou"

h "(x) dx

Generally the f,rst two criteria are simultaneously maximised, keeping

expression as large as possible. Note the assumptions made in deriving these expressions:

that h (x) is linear and has a maximum response at the edge position, and that the additive
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noise is Gaussian. These assumptions are not always valid, or applicable, hence these

measures (of good detection, localisation, and a single response) are limited in their

usefulness.

2.4.4 Tagare & deFigueiredo's Measure

Although Canny's criteria made a significant impact on the edge detection community,

Tagare & deFigueiredo (1990) correctly pointed out an error in the derivation of one of

Canny's equations for his criteria measures, namely the localisation measure given in

EQQ.2). For h(-r) an odd-filter with only one zero (at x = 0), they suggested instead

maximising the measure

T-
2

Q= (l - |L,nt@)) dx EO (2.3)

where þ,,t(x) is the relative density of maxima of the filters output, which is to be

minimised in order to obtain a single re_sponse to an edge. For a filter h(x),

þ,,r = "*p[-l' <a \zoi,)J *nere o?, = 
"?, J 

n'' 6¡ a' '

As with Canny's measures, the difflculties with this measure is that it pertains only to the

authors' particular filter, and there is no rigorous justification for their proposed measure

(EQ (2.3)). Indeed their proof is not entirely satisfactory (see also Tagare & deFigueiredo

(1994) and Boyer & Sarkar (1994) for an interesting discussion on this particular

performance measure).

2.5 Edge Detectors

In this section we give a summary of a number of edge detectors proposed in the literature.

We shall discuss in some detail the most coÍrmon edge detectors found in the literature.

The simplest edge detectors, such as the differential edge operators which are discrete

approximations to either the first or second derivative, are discussed first. We then

describe the biologically inspired Marr-Hildreth Laplacian-of-Gaussian (LoG) filter,

which is based on finding the optimal filter that minimises the time-frequency bandwidth

product, and Canny's operator developed to optimise a set of mathematical criteria (output
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SNR, localisation, etc.). We shall also look at Deriche's operator, which is a recursive 1st

derivative, and finally we review the neural network approaches to edge detection.

2.5.1 Differential Operators

We have already discussed that the most common type of intensity profile is the step edge.

Intuitively, the easiest way to detcct such a prolìle is to differentiate it, and then to detect

the maximum (or zero-crossing in the case of the second derivative). Most of the early

edge detectors were formulated along these lines, i.e., masks (or filters) that approximate

either the lst or Znd derivatives. The downfall of such derivative based edge detectors, as

we shall discuss, is their poor performance with noisy data.

2.5.1.1 Formulation

Consider the general 3 x 3 edge templates A and B that correspond to discrete derivatives

in the x and y directions respectively.

t3

23

33

and an image window

o
Q¡ Qp Qg

Q21 Q22 Q23

Q31 Q32 433

Then by def,nition (White & Schowengerdt, 1992) we can approximate the directional

derivatives in the x- and y-directions as

Qa* = r, QqQ) # = rr @Q)

where "?" represents the Trace of a matrix. The estimate of the edge orientation is given

by

ô = at¿ 
(ào/ã!\

^\ïota) Eo(2'4)

Clearly ô is unchanged by any scaling of the input, but to make it also invariant to bias

(i.e. input + constant) the sum of the template coefficients must equal zero. Thus
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h r r]o[ t r]r= o and [r I r]Bh t t]r= o

It is also reasonable to assume that the derivatives are symmetric, i.e., A = Br. Finally,

further restrictions (Lyvers & Mitchell, 1988) on the templates reduces them to the form

01
Ow
0l

EO (2.5)

where w is the only free parameter. 'When w = 2 we have the Sobel operator (Jain, 1989),

the Prewitl operator when w = l, and the so-called Frei-Chen isotropic operator when

* = ,,1-2. For instance, the Sobel operator is

^ Ei 

'l
and

and the Prewitt operator is

and

The approximations to the first (and second derivatives) are not only limited to these

classes of templates; other templates include Robert's Cross operator (Gonzalez &
'Woods, 1992):

il

[rol [0il
Lo -il L-' ol

and arso the discret e rnptacia" (#. #) |l I ïcv) Lrrol
This operator is not uniquely defined since there may be many discrete approximations to

the Laplacian. Davies (1992) showed that if each pixel in the image window is subjected

to noise of the same variance, then the Laplacian mask that gives minimal output noise

-t -4
1

2 I

1

vaflance ls

2
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2.5.1 .2 lmplementation

These ternplates can be thought of as matched filters, giving a large output whenever the

input is similar to the template. For all the edge detectors discussed above (Sobel,

Prewitt's, Robert's, etc.), we convolve each template with the input image and compute

the overall gradient (for two templates) using either the z, , L, or L_ norm, i.e., if 1" and

I, are the partial derivatives with respect to the x andy coordinates respectively, then the

overall gradient can be approximated by one of the following:

Mt=ll,l +llrl

Mr= m
M* = max{ 11,1,llyl}

The edge orientation (e ) may be estimated using the ratio of the magnitudes of the partial

differential equations (EQ (2.4)). In the simplest case, a pixel is defined as belonging to an

edge if its edge magnitude is greater than some preset threshold. More sophisticated

techniques are available that also take into account the local edge structure within a small

neighbourhood when considering whether a pixel belongs to an edge, but such techniques

are usually reserved for multi-template edge detection as we shall see.

2.5.1.3 Precision of ft Derivative Operators

Since we approximate the derivative with a finite set of discrete templates, it is easy to see

that errors will be introduced in the estimation of the gradient magnitude and orientation.

V/hite and Schowengerdt (1992) investigated the effects of blurring on the accuracy of

various operators for various realistic point spread functions (PSFs). Considering only the

effors in the edge orientation 1ê;, they found that the Sobel operator performed the best

for small PSF sizes, but the Prewitt operator outperformed others for larger PSF sizes.

Kitchen & Malik (1989), extending the study by Abdou & Pratt (1919), investigated the

reported edge orientation and magnitude detected by the edge detector (using three

different norms). They showed that often the reported edge magnitudes depend solely

upon the edge orientation, and that the results were critically dependent upon the type of

norm used. Lyvers & Mitchell (1988) showed that for the case where only single-pixel

width edges were sought, the edge orientation effor was a minimum with the weighting
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factor of w = 2.03, where w is defined in EQ (2.5). Note how close this is to the Sobel

operator.

White & Schowengerdt (1992) also found that the Sobel operator had a smaller edge

orientation error for blurred inputs, than Robert's Cross operator. They postulated that its

superior performance was due to the higher weighting of pixels close to the centre element

(w = 2 rather than 1). Lyvers & Mitchell (1988) showed that the minimum angular error

occurred for a weighting factor of w = 2.62 (for their single pixel wide edges).

2.5.1.4 Noise Analysis

Most of the discussion to this point has not included the effects of noise. Abdou & Pratt

(1979) performed a limited investigation using Pratt's Figure of Merit (FOM) they

observed that the Prewitt and Sobel operators gave substantially higher FOMs than

Robert's operator. Although the Sobel operator is the best finite difference edge operator,

an analysis by Lyvers & Mitchell (1988) clearly showed that it was overall the worst edge

detector amongst those considered (of the non-derivative type filters) for a large range of

signal-to-noise ratios (SNRs). Their conclusions are not surprising since it is well known

that differentiating an unfiltered noisy signal only accentuates the noise. Thus, we can

expect second derivative operators, such as the Laplacian, to have even worse

performance in the presence of noise since taking the second derivative increases the noise

level even further compared to applying the first derivative alone. Of course the effect of

noise can always be reduced by increasing the support size of the operator, but this

invariably leads to poorer resolution or accuracy.

2.5.1.5 Multi-template Edge Detection

Multi-template edge detection is an extension to the gradient based edge operators, in that

rather than employing one or two masks, a large number ate used, each being sensitive to

gradient changes in a particular direction.

Examples of multitemplate edge detectors can be found in Robinson (1977) who uses

among others, the Kirsch masks shown below (where the approximate gradient direction

is shown beneath each mask):
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The advantage in using more templates is the increase in accuracy of edge orientation

estimation, along with greater flexibility in the post-processing of the outputs.

Disadvantages include the increase in the amount of computation and complexity in

handling the many outputs. The approach used by Robinson is fairly typical of

multitemplate edge detection schemes, and is shown in Figure 2.4.

lnput
lmage

Edge
Map

Figure 2.4 4¡ .example of a multitemplate edge detection scheme as used by
Robinson (1977).

The input image is convolved with each of the masks in turn, with the mask yielding the

greatest magnitude response defining the edge direction. Thus, for each pixel the

magnitude of the gradient is stored along with its corresponding "direction". The

magnitude is then thresholded to obtain a binary image, which in turn passes to some sort

of decision logic. This decision logic may be of the form of an edge-linking process i.e., a

pixel is labelled as an edge if it conforms to a predefined edge pattern specified by the

surrounding edge pixels. For instance isolated edge pixels may be discarded, or the

Gradient
Picture

3x3
Masks

Decision
LogicMap

Edge
Direction

Thresholded
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directions of edge pixels must not vary greatly from those of the surrounding edge pixels

(see Gonzalez &. 
'Woods (1992) for more information on edge- or line-linking).

Other multi-template approaches have been performed by Mclean & Jemigan (1988),

who use a coarse-to-fine template approach, Nevatia & Babu (1980) who extracted linear

features, Brzackovic et al. (1991) who use templates of varying size, and Meer at al.

(1989) who define masks that respond to only 1 stimulus.

2.5.2 The Laplac¡an-of-Gaussian (LoG) Operator

Neurophysiological studies of the primate visual system (Spillman & 'Werner, 1990),

together with pyschophysical studies of phenomena like Mach Bands, have indicated that

there exist two types of retinal ganglion cells in cats that have receptive fields with the

shape of the Difference-of-Gaussians (DoG), the Laplacian-of-Gaussian (LoG), or the

Mexican 'sombrero', as shown in Figure 2.5.

Figure 2.5 Laplacian-of-Gaussian (LoG).

Marr & Hildreth (1930) proposed that the output of one of the cells in the primate visual

system, the X cell, is equivalent to the convolution of the DoG with the intensity image

falling upon the receptors. At the visual cortex there are supposedly a variety of cells able

to detect the zero-crossings in the output of the X cells.

2.5.2.1 Formulation

In accordance with these findings, Marr & Hildreth (1980) proposed applying the second

derivative of the Gaussian to the input image, and then detecting the resulting zero

crossings. They used the Gaussian to principally smooth the image and remove any high-
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frequency noise. In general, the smoothing filter needs to compromise between attenuating

high frequency noise, while not blurring the edges sought within the image (edges are

inherently of a high frequency nature). Thus, the filter's spectrum needs to be bandpass

with as small a bandwidth as possible, i.e., its frequency variance Aol should be as small

as possible. The zero-crossings in the spatial domain also need to be localised to the true

edge positions; thus, the filter in the spatial domain should be smooth and localised, andits

variance Â; in this domain should be small too. These two requirements are inherently

conflicting, and are shown to be related by the uncertainty principle (Man & Hildreth,
1

1980): A^xL^a> r.

The unique real filter that minimises this uncertainty product is the Gaussian (Torre &

Poggio, 1986)

1l
8\x,y) = 

-exp¡2no' \. 2o2

x +y

whose Fourier transform is G (ø, u) = exp(-Lo' <r1* rrrl ), where o2 is the variance of

the filter and determines its spatial spread, while co, and rrly are the spatial frequency

variables. Thus, the filter g@,y) provides the optimal trade-off between the two

conflicting requirements stated above. The zero-crossings of the second derivative D2 are

then sought in the smoothed image

f(x,y) = D2 (g (x,y) * I (x,y)) .

By using the derivative rule for convolution, this is equivalent to convolving the image

with the second derivative of the Gaussian

g" (x) = D'(g Q,Ð) * I (x,y)

and then locating the zero-crossings of the output.

Thus, the only parameter left to choose for the filter is the Gaussian space constant o.

Hildreth (1983) suggested using an operator of central width w = 2Jio as shown in

Figure 2.6. The variance itself is intimately related to the resolution of the edge detection

process.'When w is small, fine or "steep" edges can be detected, whereas when w is large,

broad or ramp edges can be detected. The variation of this width is exploited in the scale-

space approaches to edge detection (Bergholm, 1987 ; Goshtasby, 199 4).

34



Edge Detectors

w

Figure 2.6 LoG with centralwidth w = 2,J-2o

There is, however, no clear or easy method to determine the optimal filter size. Lunscher

& Beddoes (1986) give a selection criteria in the ideal case of an infinite staircase model

and square-wave edges.

2. 5.2.2 Fast I m plementati o n

The original LoG proposed by Man & Hildreth has theoretically a very large support, and

hence is quite time consuming to convolve with an image. Fast implementations of the

LoG (Huertas & Medioni, 1986; Chen et aL.,1987; Sotak & Boyer, 1989) make use of the

fact that the 2-D Gaussian can be written as the sum of two separable 1-D Gaussians

Y2g (", y) = hn(x, y) + hrt (x,l)

where hrr(x,y) = ht@)hz(y) , hzt(x,y) = hr(x)h1(y) ,and

ht(ç) -- 1

a

-5
*

r2:
-o

exp

h2(Ç = J-Kexp
12

-S
;"-

When o is large, LoG ûlters require very large supports, but they can only extract low-

frequency information since they are bandpass, hence further computational savings can

be achieved by reducing the sampling frequency. The procedure is to reduce the resolution

of the original image by a decimation factor of k (either through subsampling, or by

averaging), then convolving this reduced image with a LoG of reduced space constant

o/k, and finally the output is expandedby the f.actor k.

Sotak & Boyer (1989) use a decimation factor depending upon the amount of aliasing

allowable. They use bilinear interpolation to obtain the original scale. Chen et al. (1987)
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claim no aliasing effect by their decimation method, and report speed-ups of two orders of

magnitude over the original decomposed signal, while Huertas & Medioni (1986) also

decimate the image and filter as usual, and then use the facet model (Haralick & Watson,

1981) to achieve subpixel accuracy.

2.5.2.3 Accuracy of the LoG

In Marr & Hildreth's original formulation (Marr & Hildreth, 1980) they showed that the

orientation formed locally by the zero-crossings corresponds to the zero-crossings with

maximum slope, providing the condition of linear variation holds, i.e., the intensity

variation near and parallel to the edge should be linear. This assumption can break down at

corners, curves, for nonlinear illumination, finite camera resolution and obviously noise.

An analysis by Berzins (1984) describes the possible effors when using the LoG.

2.5.3 Canny's Operator

The motivation in Canny's (1986) formulation was to obtain mathematical expressions

that correspond to criteria that a good edge detector should possess. These have already

been discussed, but in summary they are (1) good detection, (2) good localization and (3)

a single response to an edge. Canny was one of the first to express these concisely, and to

attempt a mathematical derivation based upon a numerical optimization approach. Note

that while these criteria are applicable in general, it is often difficult to derive

mathematical expressions similar to those of Canny for an arbitrary filter.

2.5.3.1 Formulation

For a linear, anti-symmetric filter of support [-w, wl operating on an edge g (-r) , with the

edge located at x = 0, Canny (1986) shows that to achieve the first two criteria, both the

signal-to-noise ratio (SNR) and the localization need to be maximised simultaneously, i.e.,

.SNR =
ll' r <-a h e) dxl
lJ-w I

o lr'(*)n
-w

Localization is the inverse of the standard deviation of the spatial spread of detected edges

about their true positions, so clearly the greater the localisation the better the edge

detectors performance. Thus,
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Localization =

g'(-x) h'(x)

w1
h''(x)

-w

-w

on

where o, is the standard deviation of the additive Gaussian noise. Note that increasing the

SNR decreases the localization, and vice versa, hence there is an inherent trade-off

between these two measures or criteria. A simple (but not unique) strategy is to optimise

the producr of these two, i.e., ,SNR x Localisation . The third criterion, while not included

in this product, is usually made as large as possible, i.e., the distance between noise

generated peaks should be as large as possible. Expressed mathematically,

t h'(x) dx
r/2

x =2nmax t h" (x) dx

If this is some fraction k of the edge detector's width IV, then x^or(h) = kW, and the

average number of noise maxima in this region is N" = 2/k ' So fixing k also fixes the

number of noise maxima that could lead to false responses.

2.5.3.2 Finding the Optimal Detector

In practice it is impossible to find a closed-form operator that maximises both the SNR

and localisation, subject to the multiple response criteria. A solution can be found,

however, using numerical optimization (or constrained optimization). For the case of a

simple step edge profile, expressions for å can be derived, however the resulting

expressions are very long and complicated. The general solution in the range [-I7', 0] is

(Canny, 1986)

h (x) = areo" sinlo¡¡x + orrot 
"orlrJx 

+ are-o* sin<ox + oo"-o* 
"ortù* 

.

Note that å (x) is anti-symmetric, so that h (-¡) = -h(x). The boundary conditions can

be used to determine the unknown quantities

/r(0) = g h(-lil) =0 h'(0) - s h'(-W) =9.

Thus, an optimization over an infinite range of functions can be reduced to a nonlinear

optimization over a few variables. Canny noted that his "optimal" step edge detector has a

very similar shape to the first derivative of the Gaussian. The latter is much simpler to
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implement, but is "suboptimal" in its performance, as compared to the numerical solution

derived by his measures.

2.5.3.3 ln Two Dimensions

Canny also chooses to approximate his filter with the lst derivative of the Gaussian, since

an n-D Gaussian can be separated into n l-D Gaussians, thus providing a much faster

implementation. In2-D the Gaussian is

I z z\
s(x,y)="-o[-?,l

with the first derivative taken in some direction ry, i.e., ,, =#= ry.Vg. For edge

detection, 4 should be orientated normal to the edge surface. As the ãdge orientation is not

known a priori, a good estimate is

D
EO (2.6)

This is accurate, even for smoothed step profiles, since they usually have a strong normal

component. The convolution of gn with the image t has a local maximum at the position

of an edge point, thus

a

òry
(8n *1) = g

or

w

(

(

*
*oò

V
Vn

-)ò-.
ærr*1) 

=o Eo(2'7)

with an edge strength of ls, 
* 4 = lv (s * 1) | . Thus, EQ Q.1) can be used to find the edge

position, with EQ (2.6) providing an estimate of the edge strength. An edge detector can

then be implemented in an arbitrary number of dimensions by f,rst convolving the image

with an n-D separable Gaussian f,lter.

2.5.3.4 Canny's Localisation Measures

Canny's derivation of localisation makes use of the formula

EIH;@")'l = qlh'2çx¡dx
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where E is the expectation operator, H n@) is the root-mean-square response to the noise

only, i.e.,

w

oH ! n'o¡ a'
n

-w

and xo is the detected edge position, whose spatial variance is inversely related to

localization.

Tagare & deFiguerado (1990) correctly pointed out that EQ (2.8) only holds when

evaluated at the same position for each realisation, i.e., xo needs to be constant, but the

variation in xo is exactly what is sought by Canny. Clearly, Canny's localisation measure

is in error, and a suggested correction is given by Tagare & deFiguerado (1990).

Kakarala & Hero (1992) show that the Cramer Rao lower bound on achievable edge

localization, for the lst derivative of the Gaussian, is about 2.2 times smaller than that

achievable with Canny's "optimal" operator. The Cramer Rao bound is a lower bound on

the variance of an unbiased estimator.

2.5.4 The Deriche Operator

Deriche (1990) in his paper introduced a recursive filtering structure that reduces the

computational effort for smoothing an image and performing the first derivative of an

image. The key to his approach is first the use of recursive filtering and using an

exponentially based filter family. The aim was to improve the computational efficiency as

compared to the direct or frequency domain methods.

2.5.4.1 Recursive Filtering

Consider the convolutional operation relating the input sequence -r (i) to the output

sequence y (;) of a causal, non-recursive system is

N-l
y(i) = 2rro>x(i-k).

n

k=0

The transfer function of this system is:

N-l

k=O
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To implement this requires a large number of operations particularly if the length of the

sequence is large. Recursive filtering deals with the problem of finding a recursive system

whose transfer function matches as closely as possible the transfer function of the non-

recursive system. Thus, the problem is of finding the coefficients of the recursive sequence

y, (i) of order n, where

m-1 n

toG) = Zuo*U-k) -2ooroU-k)
k=O k=l

whose transfer function H o(z-r) ,

m-7 n

k=l
HoQr) = > I + \ aoz-k

best approximates the transfer function H çz-r¡. This is done by finding the coefficients of

the sequence ho(k) which minimises the least-squares error

E=L(h&)-h"(Ð)2.

k=O

k=O

where the sequence ho(k) is the impulse response of the recursive system as defined by

H o (z-t),

k=O

By using a recursive system instead of a non-recursive one reduces the number of

operations per output element from N to n + m . The coefficients can be chosen so that the

recursive filters matches the Gaussian filter, but Deriche found it better to use a new family

of exponential filters as it has good edge detection properties and more importantly, they

can be implemented exactly using recursive filters. Furthermore, the coefficients of this

filter can be easily determined analytically.

2.5.4.2 Smoothing with a Second Order Recursive Filter

The smoothing filter proposed by Deriche is given by

,S (n) = k (ulnl + 1) exp (-cxlrl)

The normalisation requirement is I t tnl = 1 , which leads to the constant
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t-_A_
(1-exp(-cr))2

| + 2uexp (-a) - exp (-2o)

The second order recursive realisation of the smoothing filter S (n) is given by

y(n) = yt@) +yz@) for n = 1,...,M, where

yt@) = kÍx (n) + exp (-cr) (cr - l) x (z - 1) l

+ 2exp (-o) yr @ - l) - exp (-2u) t 1 @ - 2),

l2@) = k Iexp (-c) (c¿+ 1)x (n+ l) - exp (-2cr) x(n+2)]

+ 2exp (-a) yz@ + I) - exp (-2cr) l2@ + 2) ,

with initial conditions x(0) =9, )1 (0) =0, )1(-l) =0, x(M+l) =0,
x(M+2) = 0,t2(M+1) = 0,and lz(M+2) = g.

The above equations represent an efficient way of smoothing a signal with a recurslve

filter. The parameter ü can also be adjusted to vary the amount of smoothing or noise

suppression, without increasing the number of operations per output.

2.5.4.3 First Derivative with the Second Order Becursive Filter

The first derivative of the smoothing operator as given by EQ (2.9) is

D (n) = knexp (-al"l) n = -r, ...,-l,o,l, -.', r Eo (2'10)

where k is a constant chosen to ensure no response to a constant input signal. Its value is

- / 1 - "*p 
({)-) I 

, where cr is a parameter which determines the shape ofgiven bY k = 
-"*n ,-o,

the filter, i.e., the filter's energy. A small value of a yields a large-sized operator which

can deal well with noise, whereas a large value of a yields a small-sized filter which has

good resolution, but poor noise properties.

If we consider a Gaussian filter of width o, then the Deriche filter has the same energy as

the Gaussian if a is chosen according to the following:

2.5U,=-
oJg.z

EO (2.11)

With this value of cr, the Deriche first derivative appears very similar to Canny's operator

(although it is not intended to emulate iÐ. We can see the comparison between the two

filter in Figure 2.7."lypical values of cr lie in between 0.5 and 1.5, depending upon the

amount of smoothing desired.
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2.5.5 Neural Network Edge Detectors

A neural network is a massively parallel distributed processor that can acquire knowledge

through a learning process and store it for future use (Haykin, 1994). Such neural

networks are, in general, not easily adapted to image processing tasks such as edge

detection due to the dynamic and random nature of the input. We will now discuss two

neural network edge detectors found in the literature that have achieved some success.

They are the Adaptive Linear neural network (ADALINE) and the Hopfield-Tank neural

network.

2.5.5,1 ADALINE

The Adaptive Linear Neuron, or ADALINE (Widrow et al., 1988), is an adaptive

threshold logic unit. The ADALINE can operate either in the retrieval phase (as shown in

Figure 2.8) or inlearning phase. ADALINEs have found applications in adaptive filtering,

adaptive channel equalisation, and speech recognition among others.

For an N-element input vector [(t) = [ ,o e) xt|) ... x*(t)

vU) = [wo(r) wr(t) ...wN(Ð ].theoutputisgivenby

, with weights given by

ZQ) = xQ)w U)r = lx,Q)w,(t)
N
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The basic weight wo, and the constant input xo, control the threshold level used to obtain

thebinaryoutputviathenonlinearfunction G,q(t) - 6(Z(Ð) where G istypicallythe

sign, step or sigmoidal function. In the retrieval phase, we have the desired output, and the

weights are chosen to minimise the difference between this desired output and the actual

output using the Least-Mean-Squares (LMS) algorithm.

Wg

Wxn

Figure 2.8 Block diagram of the retrieving phase of the ADALINE

Its application to edge detection is given in Paik et al. (1992b).If 1,, which is a small

window of the input, is the lexicographically ordered input with local mean rn,, then the

input to the ADALINE is defined as belonging to either the low side of the edge, no edge,

or the high side of the edge respectively, i.e.,

-l if Ij<*¡-õ
0 if *¡-õ{1,3m,+õ
I 1f lj2m,+õ

where vj = -1,0 or 1 for the low side of an edge, no edge, or high side of an edge,

respectively. Also õ = + + 82, wher. t is the probability of occurrence of an edge, 2E is

the edge amplitude, and o2 is the noise variance. These parameters must all be estimated

or guessed heuristically.

For 3 x 3 input windows there are 12 possible pairs of bidirectional edges corresponding

to edges in the direction 0o,45o,90o, 135o, and their complements. For example, the

0o,/180o pair of edges are

[iltlîl

w
X

v q

,=[
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where X represents don't care, a 1 signifies a high part of an edge, and -1 signifies the low

part of an edge.

The 12 templates are then compared to the input v, - if any of these templates have a

minimum number of matching elements with the template, then an edge is said to be

present. The problem with this method is in determining r, the probability of edge

occtrrrence, which must be guessed (for real images). The edge amplitude 28, and the

noise variance o2, also need to be estimated. There are restrictions also on the types of

edges that can be detected since the templates must be specified a priori. Also, by going to

larger neighbourhood sizes, such as 5 x 5 windows, many more templates are needed,

hence the computational load increases considerably.

2.5.5.2 Hopfield Edge Detection

The Hopfield-Tank (H-T) neural network (Hopfield & Tank, 1986) has been used in many

areas such as associative learning, or computational networks, to solve optimization

problems. For edge detection the principal papers are by Chao & Dhawan (I994a,1994b)

In a H-T network there is a neuron for every input pixel, and each neuron is connected to

all other neurons except itself. The state of each neuron represents the normalised gray

scale of the input pixel. The weight of connection between two neurons represents the rate

of change of pixel intensity between those neurons. Edge detection is performed as

follows:

r. initialise the state of neurons as stated above,

2. randomly pick a neuron, and

3. calculate the dynamic function for that neuron

#,'o = -?.22r,0¡,v¡,

Y, = t('. "'(i))
+. Update the state of the neuron using EO (2.12).

s. Repeat from step (2) until convergence.

where u is the state of the neuron, 7,0,, is the connection strength between

neurons ik and jl and x , Io are constant. V, is given by

*lo
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Conclusions

The authors show that when the energy of the H-T network converges to a minimum, the

neuron state values close to I represent edges, while state values close to 0 represent no

edges. Thresholding then produces the binary edge map.

The problem with this network is the difflculty in analysing the output with relation to the

network parameters. The algorithm is also very computationally intensive, taking many

millions of iterations before converging.

2.6 Conclusions

This Chapter has summarised and reviewed many important concepts that are to be used

throughout the thesis. 'We began with a simplified description of some properties of

electromagnetic light, followed by a discussion of the most common edge intensity

profiles found in real images, and also what underlying physical edges most likely give

rise to such profiles. Vy'e showed that the step edge is often found in practice, being

generated from occluding edges.

V/e discussed a number of edge detection performance measures, and then we reviewed

why edge detection is important for biological and computer vision, followed by some

applications of edge detection. In particular we looked at the industrial applications such

as parts or component inspection, as well as the applications to consumer electronic,

among others. Clearly, edge detection is very widely used in industry and constitutes an

important part of many computer vision systems.

Finally we presented a comprehensive review of edge detection theory, followed by a

review of the more popular and successful edge detector schemes available in the

literature. They include derivative schemes as well as two neural network approaches.
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Cftøpter 3 Cellular Neural
Networks: a Review

3.1 lntroduction

The Cellular Neural Network (CNN) paradigm is a powerful framework for analogue

nonlinear parallel processing arrays defined on a grid. CNNs are suited to problems which

are defined in space-time e.g., image processing tasks, and partial differential equations

(PDEs). These problems are all characterised by the fact that the necessary information

and interactions are generally constrained to small local areas, rather than large global

ones.

Thus, the main difference between CNNs and other Neural Network (NN) paradigms is

that all information is processed locally, although global processing is still indirectly

possible by dynamic diffusion of information. This local processing property of CNNs

makes them amenable to either electronic or optical implementations, which is generally

impossible, or very difficult, to achieve with the other forms of neural networks.

Traditionally, if operations are logical and requiring only a few bits, then the von

Neumann cellular automaton is the ideal tool. If the operations are numerical (typically 8,

16,32, or 64 bits) then systolic arrays are the best approach. If however, the signal values

are continuous and/or analogue real-time operations are necessary, then the CNN is a good

solution with respect to both speed and time. CNNs are also ideally suited for VLSV

CMOS implementations.

In this Chapter we present an overview of the CNN architecture and system operation in

the general case, and then look at a number of particular variants of this general model.

The stability of some of these variants is discussed, as well as their application. Finally
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shunting inhibitory Cellular Neural Networks (SICNN) are introduced and discussed in

some detail, in particular their derivation and stability issues.

3.2 Cellular Neural Networks

In this section a brief general overview is given of both CNN system architecture and

operation, including some fundamental definitions and the most general equations

defining its operation. This section also includes a discussion on the numerous types of

cell grids possible, and how local interactions can cause a global flow of information

throughout the network. We also briefly mention the stability issue of CNNs.

3.2.1 CNN Architecture

The basic unit of the CNN is referred to as a cell. It generally contains linear and non-

linear circuit elements, usually in the form of resistors and capacitors in its electrical

implementation. Each cell is only connected to the cells in its local neighbourhood, hence

only local interaction occurs; though global processing is still possible via dynamical

information diffusion.

CNNs can be defined over any dimension, though it is much easier to visualise them in 1-

D or 2-D. In Figure 3.1 we show a 2-D CNN defined on a square grid, with each cell

connected, or interacting, with only its immediate neighbours.

If we consider a2-D M xN CNN with atotal of MN cells in M rows andNcolumns, then

we denote the cell in the ith row and jth column as C (i, j). Each cell is only connected to

other cells within its local neighbourhood, hence the inherent local processing property of

CNNs. This neighbourhood of C (i, j) is called its r-neighbourhood or neighbourhood size

and is defined by Chua & Yang (1988):

N,(i,i) = {C (k, l) lmax {lk- il,V -jl} 1 r, I 1 k< M,1 < /<N} EO (3.1)

where r is a positive integer. It is easy to show that this neighbourhood system exhibits a

symmetry property; that is, if c(i,j) is a member of N,(k,l), then c(k,l) is also a

member of N, (l,i).
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c(1,4)c(1 ,3)c(1,1)

c(2,4)c(2,1) c(2,3)

c(3,4)c(3,1) c(3,2) c(3,3)

c(4,4)c(4,1)

Figure 3.1 2-D CNN defined over a 4x 4 square lattice

The cell grid can be a planar array with rectangular, triangular, or hexagonal geometry, a

torus, or a 3-D afray. Cells may also be identical or they may belong to one of a few

different types. More than one connection network may also be present, each with

different neighbourhood sizes - such as short range interaction and subsystem

connections. The neighbourhood size may be as large as the network, in which case we

have a fully connected network. Cellular networks, however, are generally implemented

with only small neighbourhoods.

3.2.2 System Operation

The CNN is a dynamical system operating either in continuous or discrete time. A general

form of the cell dynamical equations, as given in (Chua & Yang, 1988), is as follows:

For continuous time:

loi = slx,(t), * 
ol-.ou,("r¡,,_., ,t,yjlr,_",,r,01)

* 
o\,t ",(,,1 r, - ",, t, 

I il ç - ",, r, 
rf) + u, (t)

t¡G) =/(."r1,,_",",J

EO (3.2)

EO (3.3)
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For discrete time

x,(n) = g[xt(n), ._åro-,( *¡l 
r, - ^, 

n l' J jl (n - m, n r''î)

'',l rn - ^, ^ r' 
of) + u, (n)

EO (3.4)

+ ,(x.
J

B
ke N,

(n-m,nl

EA (3.s)

In EQ Q2) to EQ (3.5) x, !, I and u denote the cell state, output, input, and bias

respectively; j and k are the cell indices; g is the local instantaneous feedback function,. N

is the neighbourhood function; l andpB are arrays of parameters; and the notation zl,
denotes the restriction of the function z to the interval Z In EQ Q.2) and Ee (3.3), r is

time, Â, is the differential operator, t is the memory duration, while in Ee e.5) n is time

and m is the units of delay. In both sets of equations A is the neighbourhood feedback

functional, and similarly B and f are the input and output functionals, respectively. These

equations represent the most general dynamic equations possible for CNNs. A number of

particular implementations are discussed in the next section.

3.2.3 Stability

As with all dynamical systems, stability is an important issue with CNNs. For stability, the

network must converge to a finite number of states. To date, the most general form of the

CNN cannot be proven to be stable, but stability can be shown tbr some subsets of the

general model. The interested reader may find further details in (Chua & Wu, 1992).

3.3 Variants of CNNs

From such a broad and general definition of the CNN many variants are clearly possible.

Generally each of these variants is developed to suit a particular application. We shall

review the variations of the general model such as the specific forms of the activation

function, cell grid structure, template model, and discrete time implementation. Examples

of these include polynomial or linear activation functions, uniform and non-uniform gritl

structures, and space-invariant and time-variant templates.

t¡tu) = llr,l,,_*,, ,)
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3.3.1 Polynomial GNN (P-CNN)

A variant of the general CNN is the Polyno¡mial CNN (P-CNN) described by Barone et al.

(1993),which has as its local feedback function an odd-order polynomial function. A third

order polynomial function is shown in Figure 3.2.In the case of pattern recognition such

functions act as shape attractors. The use of higher order polynomials also raises the

number of possible distinct equilibria of the cell.

g(x)

X

Figure 3.2 A third order polynomial local feedback function.

3.3.2 Non-linear, Delay Type and Non-Uniform Grid CNNs

Rather than having two linear controlled sources

A (i, j;k, l) v ,rt and B (i, i;k, l) v u*t

associated with cell C(i,j) and neighbours C (k,l), non-linear and delayed controlled

sources can be employed (Roska & Chua, 1992), such as

À ¡¡, ¡¡ (v ra,vru) + Aa ¡¡, *tY y*t Q - t) and B ¡¡, *t (v u¡p v u¡) + Br ¡i, t t! r*t Q - t) .

We can possibly have r = xkr. The structure of the non-linearity is that it is at most a

function of two variables: the output voltages of cell C (i, j) and its neighbour C (k,l).

Motivated partly by neurobiological structures, Roska & Chua (1992) introduced a non-

uniform grid CNN, or a Non-(Jniþrm Processor CNN (NUP-CNN). An example of a

NUP-CNN is shown in Figure 3.3 for two different processors (black and white). All

interprocessor connections are space-invariant.

51



Chapter 3: Cellular Neural Networks: a Review

Figure 3_.3 Example of Non-uniform Processor cNN (NUP-ONN). The black and
white cells indicate two different types of processing units.

CNNs can have more than one type of cell processor and./or more than one neighbourhood

size, thus they are referred to as Multiple Neighbourhood Stz¿ CNNs (MNS-CNNs).

Figure 3.4 is a diagram of a MNS-CNN. Layer A (white cells) is a finely connected CNN

with neighbourhood size r = 1. While layer B (dark cells) is a coarser grid with a

neighbourhood size of r = 2 (connected to grid A). Only one cell of layer B is shown for

simplicity.

LayerA: E
Layer B: I

Figure.3._4 Example of a Multiple Neighbourhood size cNN (MNS-ONN). white
nodes indicate a finely connected CNN, and black nodes indiiate a coarser grid.
The r-neighbourhood for the white cells is 1, and 2 for the black ones

3.3.3 Discrete-Time CNNs (DT-CNNs)

As opposed to continuous-time CNNs, discrete time CNNs (DT-CNNs) (Harrer & Nossek,

1992) have clocked variables and a comparator for their non-linear function. They are

def,ned by the following l-D algorithm:
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( t if x,(n- l) >0
t¡@) =f(x,(n-l\\:l r

" [-t if x,(n- l) <o

Here j denotes the cell of interest, i is the cell in the neighbourhood of cell i, andn is the

discrete time variable The distinction from cellular automata is the continuously valued

template coefficients and inputs.

In continuous time CNNs, the propagation speed depends upon the derivative of x;, which

in turn depends upon the template and inpuloutput signals. Advantages of DT-CNNs

include constant propagation time, simpler simulation (no numerical integration required),

and insensitivity to template coefficients if they are chosen wisely.

3.3.4 Time-Variant Template DT'CNN

A more generalised architecture for DT-CNN is the extension to time-variant templates

(Harrer, 1993). A template is normally a matrix with numerical values describing the

amount of interaction between neighbouring cells. Time variant DT-CNNS have cyclic

templates, that is, templates whose coefflcients are changed at every iteration step, and

with the entire set of templates applied periodically in a cyclic manner. 'With such a

paradigm, the hardware can be reduced, hence the realisation can be simplified. Some

applications of time variant template DT-CNNs include half-toning and skeletonization.

3.3.5 Applications of CNNs

Many CNNs have been proposed, each designed with a particular task in mind. CNNs

have found wide applicability in image processing, particularly where local processing of

information is either necessary or advantageous. Significant and successful applications of

CNNs include:

. Feature extraction: Slot (1992) demonstrated the application of CNNs to binary

images. The user specifies the feedback and feedforward operators depending upon the

desired features to be extracted, and the CNN is then able to reconstruct an output

which is a modifred version of the input, with the desired outputs emphasised in greater

detail.
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. Character recognition: Sziranya & Csicsvari (1993), and Suzuki et al. (1992)

employed CNNs to extract the necessary features of the input, which can then be used

by a classification network to identify handwritten characters. The recognition rates for

both networks are around the 90Vo level, with extremely fast recognition speeds due to

the inherent parallelism. Sziranya & Csicsvari (1993) were able to identify 100,000

characters/second with a recognition rate of 95Vo when implemented in hardware.

. Motion detectors: Cimagalli et al. (1993) detect, in real-time, the trajectory of moving

objects in a noisy environment. Roska et al. (1992) define various templates to detect

different types of motion, where the discrete-time inputs are fed into the network, and

the resulting steady-state outputs give the necessary information for estimating the

direction and magnitude of the velocity vector. see also Shi et al. (1993).

. Spatial recognition: Perez-Munuzuri et al. (1993) use a Chua circuit to implement

spatial recognition, i.e., recognising open curves from closed ones, and locating the

shortest path between the two locations.

. Evaluation of logical boolean functions'. Galias (1993) employs a time varying

template CNN to define an arbitrary boolean function on the r-neighbourhood.

. Halftoning: Crounse et al. (1993) were able to reproduce more faithful binary

reproductions of the original image with a CNN, than those produced by error

diffusion, a standard algorithm for half-toning.

. Hole-rtiler (Matsumoto et al., 1990a); shadow-detector (Matsumoto et al., 1990d);

image thinning (Matsumoto et al., 1990b); connected component detector (Matsumoto

et al., 1990c; Cruz & Chua, l99I), and Associative memories (Liu & Michel, 1993).

3.4 Shunting lnhibitory CNNs (SlCNNs)

Another particular variant of the general CNN architecture defined above, is the Shunting

Inhibitory Cellular Neural Network (SICNN) (Bouzerdoum,1994; Bouzerdoum & Pinter,

1993). V/e discuss it here in greater detail since our edge detection and enhancement

operator will be developed from such a network. This nonlinear network can reasonably

model the shunting inhibition phenomenon as discussed previously and evident in the
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Mach bands. Shunting inhibition is characterised by the local interactions, hence they are

clearly more amenable to be modelled by CNNs than the usual NNs.

We begin by reviewing the derivation of the SICNN, eventually arriving at the state

equation that will be used throughout this thesis. Following this we shall state the

necessary conditions for this system to be BIBO stable and convergent.

3.4.1 Derivation

The equivalent electrical circuit of a biological cell, or neuron, was given previously in

Figure 1.5. The nodal equation for this circuit is (Bouzerdoum, 1991):

EO (3.6)

where V r, and g r are the lumped resting potential and conductance respectively, B, and g,

are the excitatory and inhibitory synaptic conductances, respectively, in series with the

synaptic batteries V" and V", respectively, while C^ and V. are the membrane

capacitance and voltage, respectively.

Now if we designate AV to be the deviation of the membrane voltage from the resting

potential, i.e.,Vr-V^ = L,V,andwith V, = V,,thenthechangewithtime of V^ relative

to V, is described by the differential equation

,.1: + s"(V"+v^) - s,(v,-V^) -s, (% -V^) = 0

*o, = fiw"+v^) - ro^ro, -l^ro, EO (3.7)

Each cell may then be represented by an electrically independent circuit, as in Figure 1.5,

with -r,, representing the deviation of the membrane voltage from the resting potential of

the cell C (i, j) at the (i, Ð ,h position of the lattice, and f (x,¡) denoting its firing rate. 'We

assume that the inhibitory synapses of a cell are controlled by the activity of neighbouring

cells. 'We also assume that the shunting conductance of a cell is the sum of the

conductances of all the individual inhibitory cells. If each one of these is proportional to

the firing rate of the cell controlling it, then we can write the shunting conductance g" of

C(i,j) as

o
ò.ç

C C(k,l) e N,(i,j)
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where the coefficients wfi and C 
^ 

are positive constants, f (, u) is the output of cell kI, and

,!j i"the weighting given to its inhibitory effects on cell 7. In orher words, the inhibition

exerted on a cell is a weighted sum of the outputs of surrounding cells within the

appropriate neighbourhood.

The conductance g" is controlled by the excitatory inputs that work to increase the

memhrane conductance to sodium Na+ ions. We assume that the cell's input, IU, controls

the excitatory current i", in which case we have

t'=t'
cm ,^('"+V^) = Iii?) '

The remaining term is the decay factor of excitation:

I

Then EQ (3.7) becomes

r
= 4..

UC

* = Iije) -o¡j*¡j- I .o,jf{*o¡*,, EO (3.8)

C(k,t) e N,

It is clear from this equation that the interaction effects come from all cells in the local r-

neighbourhood of cell (i, j), hence the local nature of information exchange. Also note

that this is a particular implementation of the general CNN, given by EQ (3.2)-Ee (3.5).

In EQ (3.8), x,, represents the input intensity to cell ij, 1,, is its input, a,, determines the

rate at which any excitation decays away, *!j i"the weighting given to the output of cell kl

to cell ij , and f (, *ù is the output of cell kl.

3.4.2 Stabil ity Analysis

A dynamical system is one where the state of that system changes with time and depends

upon both the state itself and the input to that system (Sandefur, 1990). A dynamical

system is bounded-input bounded-output (BIBO) stable if the output, initialised at an

arbitrary initial state, is bounded when the input is bounded (ogata, r9s7).

Bouzerdoum & Pinter (1993) were able to prove that if the activation function / is

continuous and non-negative on the entire real axis, that is,
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then the SICNN is a BIBO stable dynamical system.

Given a dynamical system i = f (x, t) where ¡ is the state vector, then the equilibrium

state is the state x, where f (x", t) = 0. Such a dynamical system is said tobe convergent

if every trajectory converges in the steady-state to an. equilibrium point (Sandefur, 1990).

The Lyapunov function V (x, r) (Ogata, l98l) is a positive definite scalar function which is

continuous, along with its first partial derivatives, in a region about the origin. It has a time

derivative which, when taken along the trajectory, is negative definite (or negative

semidefinite). If V(x,r) is positive definite and its derivative V(x,t) is negative

semidefinite, then the system is stable (though not necessarily asymptotically stable).

Now suppose the following conditions are satisfied:

t. Symmetry in the SICNN interaction weights, ,!j = ,"0,.

z. The activation function/is continuous, nonnegative, and decrescent; thatis,

åftel>o for (e (--,-¡,

then the SICNN is a dynamical system with a global Lyapunov function itt f*n defined as

V(x) = - EO (3.e)

Every trajectory of this function asymptotically approaches the set of all equilibrium

points. Furthermore, if the input pattern has the same polarity, then each of these

trajectories converges to an isolated equilibrium point (Bouzerdoum & Pinter, 1993).

3.5 Conclusions

Since the entire work of this thesis is based upon a particular model of the CNN, we began

by reviewing CNN theory. 'We started with the general CNN system architecture,

operation and stability, and then reviewed a number of variations and applications of this

model.

We discussed the use of CNNs for modelling visual phenomenon such as Mach bands.

The cellular structure of CNNs and their local interactions make them particularly suitable

x¡j

2,,I rG@)) /çtdE+ \a,,f (xù *t> >
<Ul ó <¡¡¡ '(¡'i) c(*'D e N,
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for modelling such visual effects, as each cell of the CNN consists of the equivalent

electrical circuit of a biological neuron. From this circuit, the cell's state equation can be

derived, showing clearly inhibition of the shunting or multiplicative type. The stability of

such a model was also discussed.
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Cftøpter 4

4.1 lntroduction

This Chapter presents a detailed analysis of SICNN systems - both recurrent and

feedforward - which is the first step to understanding how such systems behave along with

their operating characteristics. Although a large part of the theory and results presented

here is of a general nature and not necessarily related to edge detection or enhancement,

we shall use it throughout the remainder of this thesis.

We begin by describing the recurrent SICNN, which was defined in the previous Chapter,

and give a means of solving for its steady-state. 'We also investigate its response to various

inputs, such as constant and step-edge signals.

We define the feedforward SICNN and describe how it performs shunting inhibition on

step edges.'We discuss the implementation and thresholding issues, and the advantages of

the SICNN over some existing edge detectors.'We also derive its impulse response using

perturbation analysis and linearisation. From this impulse response, the frequency

response is derived and plotted for the symmetrical and asymmetrical weight distributions,

and the DC gain is also investigated. V/ith the frequency response, we define and discuss a

number of quantities related to its passband ripple and cutoff frequency.

'We then look in detail at the SICNN response to both step edges and constant signals with

some perturbation, such as a noisy DC signal. Using the impulse response, an expression

is derived for the output-input noise variance ratio, which is compared to the experimental

ratio for various SICNN parameters, such as decay factor, neighbourhood size, sum of

weights, as well as signals of varying SNR and mean input intensity.
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Finally we compute the noise figure (NF) of the SICNN, which provides a measure of

degradation of any input signal. We compare the theoretical NF with the experimental one

for various activation functions, and illustrate how this function can be chosen to obtain a

small noise figure in the SICNN output.

4.2The Recurrent and Feedforward SICNNs

In this section we define the recurrent and feedforward SICNNs, of which the latter will

form the basis of our edge detector, and whose properties shall be analysed in the

subsequent sections of this Chapter. We begin by showing that the steady-state of the

recurrent SICNN can be solved using an iterative-type solution, where if the initial

"solution" is chosen appropriately, then an architecture similar to that of the feedforward

SICNN is implemented. We then show the recurrent SICNN response to constant and step

edge inputs. Finally, we define the feedforward SICNN and show how it performs

shunting inhibition on step edges.

4.2.1 The Recurrent SICNN

We previously discussed the derivation and stability of the Shunting Inhibitory Cellular

Neural Network in Section 3.4. We showed that the differential equation in l-D for the

state of each cell is:

d^xi

d, = I,- aix¡- 2 ,,, f (x.,) x, i = 1,2, ..., M Eo (4.1)
j e N,(i)

where -r, is the state of cell i, 1, is its input, ø, is its passive decay factor of excitation, / is

the activation functiorr, w ik is the interaction weight between cells j and i, N," is the

neighbourhood function, and M isthe total number of nodes which corresponds to the total

length of the input. Such a network is recurrenr, as each x, depends upon the value of the

neighbouring xj, which in turn depend upon that cell's state itself. The network can be

represented pictorially as in Figure 4.I, where for simplicity only three nodes are shown

with each node interacting directly with its two nearest neighbours.

60



The Recurrent and Feedforward SICNNS

li-r l¡*t

Xi+1

y¡_r y¡ y¡+r

Figure 4.1 The recurrent SICNN architecture. Only three nodes and nearest
neþhbour interactions are shown for simplicity- / is the inp_ut, x is the cell's state,
and y is the output. P is a processing node implementing EQ (a.1).

The steady-state solution of EQ (4.1) to a time invariant input 1, satisfies

je N,(,)

Converting the neighbourhood function into the distance of separation between cells, or

input units, we can write the previous equation as

Ii i = 1,2,.-.,M EO (4.2)xi= r

o¡+ 2 w¡f @¡*¡)
I =-r

where r is the neighbourhood size which represents the range of cells that can have a

direct inhibitory effect on cell i. Thus, the inhibitory effects of neighbouring cells on cell i

is a weighted linear combination of their respective outputs. We should recall that, in

general, there is no feedback from any cell to itself, hence wi = 0 for all i.

4.2.1.1 Steady-State Response

The steady-state value of each cell of the recurrent SICNN can be obtained by numerically

solving the system of differential equations given in EQ (4.1), which is normally

computationally intensive. Alternatively, we can define an equivalent discrete-time

dynamical system that has a steady-state solution equal to the steady-state solution of

F;QØ.2). For the recurrent SICNN such a discrete-time dynamical system is described by
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T.
Ix¡(k + I) = k = O, 1,2, æ EO (4.3)r

o,+ 2 wrf (x,*,(k))
J =-r

where k is the discrete-time step, or iteration number. The sequence is solved iteratively,

i.e., given an initial estimate of the steady-state solution x, (0), we use EQ (4.3) to derive

x,(l), which in turn is used to obtain x,(2)by the same process, and so-on. A simple

initial value to choose is x, (0) = I,,for all i. That is, the input to each node also serves as

the initial value of the steady-state value for that node, provided the SICNN converges.

We now discuss the convergence of such a network defined by the above discrete

equation.

4.2.1.2 Convergence

It was showed by Bouzerdoum & Pinter (1993), and noted in Section 3.4.2, that under

certain conditions the continuous SICNN converges to an equilibrium point (from a

possible set of many). If the discrete SICNN given by EQ (4.3) converges, then it will

converge to an equilibrium point of the continuous SICNN. Due to the nonlinear nature of

EQ (4.3), the general conditions required for convergence are unknown; it can be shown

for special cases, such as when the weight distribution is asymmetric, as we now proceed

to do.

Consider an asymmetrical weight distribution such as lu = [t o o] . If we consider the

left-most node of the network, then we note that the output after I iteration r, ( 1) only

depends upon the input intensity and the decay factor of that node, since there is no node

to the left of this one, i.e., xo( 1) does not exist. As both a, and I , are constant, then so is

.rt (l). Looking at the next node, we see that xr(1) depends upon .r, (0), a, and I, all of

which are constant, so r, ( 1) is also constant. Thus, by induction, the entire output x, ( 1) is

constant, i.e., it converges. This same results holds for asymmetrical weights of any size,

and even in the reverse order such as lr,' = [o o ,] (since we can repeat the above

argument for the right-most node rather than the left-most one). Thus, a SICNN with any

asymmetrical weight distribution is convergent.

An Example

Consider the l-D example where all inputs to the SICNN are constant and equal to 10, and

the decay factor of excitation is a, = I for all nodes. For the sake of simplicity we choose
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aÍt r = 1 neighbourhood, with w_, = wr = I and linear activation function lQ) = x.

Ignoring any boundary effects, let

Ii=xi(O)=5 Vi

where x, (0) is the initial estimate of the steady-state value. Better approximations to the

steady-state solution are provided by continually iterating the network as we discussed

above. For instance the flrst two estimates are

and

By repeating the process the sequence eventually converges to a value given by

Io

o,+ 2 w,f (x!*¡)
j=-t

where -r! is the steady-state value of node l. Figure 4.2 shows the value of x, (k) for the

network described above for an increasing number of iterations, with a steady-state value

of x! = 1.35 afterapproximately20iterations.
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Figure 4.2 Value of x,$) of EQ (4.3) until convergence, for an input of intensity 5

4,2,1.3 Step Edge Response

Now consider the extension of the above discussion to a step edge input as shown in

Figure a3@). Some nodes or cells in the network have the lower intensity part of the edge

(denoted I r) as their input, while the remaining nodes have the upper step intensity (1, ) as

their input. Consider the case of an input sequence 2M elements long with the step
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discontinuity exactly half-way along its length, i.e., the first M nodes of the SICNN have

1, as their inputs, and the remaining M nodes have I u as their inputs. Thus,

ift<i<M
if M+l<i<2M

't0

I

12

0.810 20 30 40 50 10 20 30 40 50
(a) (b)

Figure 4.3 The (a) step edge input and (b) the output of the recurrent STCNN with
asymmetrical weights after 1 iteration of EQ (4.3). The network parameters are
given in the text.

Neglecting the effects of the sequence's boundaries and the step discontinuity itself, the

output of all nodes can be computed in an analogous manner to that given above for a

constant input, since the step edge is piecewise constant. That is, the output of the nodes in

each of the constant parts of the step edge input can be found using the iterative method

outlined above, with each node's state approaching its steady-state value as the number of

iterations increases. Obviously, the interesting effects occur at the edge discontinuity. For

aÍt r = I SICNN recall from EQ (4.3) that the output at iteration t for node i is

I,
I . a,+w_rf (x¡_t(k- l) ) + wrf (x¡*l (k- 1) )

for i = 1,2, 2M

where all boundary effects have been ignored. As a numerical example, if we choose

It= 5,lu= 10, w = [oO l,o¡=0.1 V¡,f alinearfunction, and,M - 25,thenwe

have for the edge point,

xru(r)=ffi=Ó'-*3 =1.e6

Similarly, the outputs of neighbouring nodes are x2s(1) = 0.980 and x.rr(l) = 0.990.

Figure 4.3 shows the initial step input and the first iteration output for the SICNN with an

asymmetrical weight distribution. Figure 4.4 shows the first and second iteration outputs

for the SICNN with symmetrical weight distribution e.g., w = [r O r] . SICNNs with borh
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symmetrical and asymmetrical weight distributions shall be discussed in greater detail

later on.

o.7 11

0.6

0.5

o4

0.3

I
7

6

5

4

10 20 30 40 50 10 20 30 40 50
(b)(a)

l=-r

with the steady-state of each cell given by

Figure 4.4 The recurrent SICNN output after (a) one iteration.ang (b) tytto iterations
of-Ea(a.3). The SICNN has asymmetrical weightr, and the other network
parameÌer áre given in the text; the input step edge is shown in Figure 4.3(a).

#,' = ',- 
aixi- f', r(1,-,) ',

Clearly the output after one iteration of the SICNN with asymmetrical weights, as shown

in Figure 4.3(b), can be used for edge detection if the maximum output is located. For the

output of the SICNN with symmetrical weights as shown in Figure 4.4, the first iteration

output can be used for edge detection by finding where the 'zero-crossings' in the output

are (once demeaning has been performed), while the second iteration output can be used

for image enhancement, in particular edge enhancement.

Observing the output for different iterations, we see that for the SICNN with symmetrical

weights that the first iteration, and all subsequent odd-numbered iterations, give a large

response at the position of the edge, whereas the second and all subsequent even-

numbered iterations give an output that is similar to the original edge but with the edge

enhanced. This is characteristically similar to the Mach band effect, and is not totally

unexpected as, after all, the SICNN is designed to perform inhibition.

4.2.2 The Feedforward SICNN

By analogy to the recurrent system given in EQ (4.2),we can also define afeedforward

system as

EO (4.4)i = 1,2,...,M
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I.
Ixi=

X¡-t

i-1

r EO (4.5)

o,+ \*,f(r,_¡)
J=-r

This is also equivalent to the output of the discrete-time solution of the recurrent SICNN

after 1 iteration of its steady-state solution, or EQ (4.2) assuming the initial state is the

input intensity. This feedforward architecture is shown in Figure 4.5. The input to each

node depends upon the inputs of adjacent nodes rather than their outputs, as is the case

with the recurent SICNN. So, the inputs to each node of the feedforward SICNN is the

input signal, which is known; the state of each cell can be easily derived in terms of the

input signal. Compare this to the recurrent SICNN, whose state equations is nonlinearly

dependent upon the outputs of neighbouring cells, so the equations are much more

difficult to analyse. As we shall see, the computational step in calculating the feedforward

SICNN output is essentially one convolution and a small number of matrix operations.

1
li +1

tk ll

X¡ Xi+1

Y¡+t

Figure 4.5 The feedforward SICNN architecture corresponding to EQ (4.5). The
node P represents a processing unit implementing Ea (a.5).

The outputs of this feedforward SICNN to edge inputs are identical to the corresponding

recurrent SICNN output after 1 iteration, as given in Figure 4.3(b) and Figure 4.4(a) for

asymmetrical and synlnettical weights, respecl.ively.

4.2.2. 1 I m plem entati on

If we choose the weighting or weight distribution to be space-invariant, that is the

weighting on the output of neighbouring inhibitory nodes is dependent only upon their

relative position and not their absolute position with respect to a node of interest, then the
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weights can be represented by a vector w, often referred to as a template ot mask. The

interaction between all cells is then achieved by the convolution of the weight template

with the vector /(1) where / is the activation function and 1 is the input intensity vector.

If Y is the output vector, X a vector of state values, 1 a vector of inputs, w the weight

template, and A the vector of decay factors, then X, , the ith element of X, is given by

x,=, =l',=r=,= Eo(4,6)--t A,+ lw *f U)) ¡

Y = f (X ¡) Eo (4.7)

where * denotes l-Dconvolution, andf(I) isavectorwith [/(1))¡=lU).Thus,the
output of the feedforward SICNN is obtained by using a few simple vector operations.

These operations generally are not very computationally intensive, and can be

implemented rapidly in either hardware or software.

4.2.2.2 Step Edge Response

The feedforward SICNN output is identical to Figure 4.3(a), and shunting inhibition on

this edge can be easily explained by considering a step edge input to an r = |

neighbourhood SICNN, for example. The state of each cell or node is inhibited by the

inputs of both its nearest neighbours. The feedforward SICNN output is given by:

I,
--t a,+ [waf (1,-r)+wrf(1,*)) EO (4.8)

where the termfw_1f (1¡_ r) + wrf (I¡* 1)l represents the inhibitory effect from

neighbouring inputs. The output of each node also depends upon its input intensity and its

decay factor.

Asymmetrical Weight Distribution

Consider first a feedforward SICNN with asymmetrical weights of [o o t] . IntriUition is

effected by only those nodes to the immediate left of any given node. Figure 4.6 illustrates

the effects of inhibition in different regions of a step edge. Figure 4.6(a) shows the

inhibitory effects away from the discontinuity. For the node to the left of the discontinuity,

both the input intensity and the inhibition signal are weak, hence the total output tends to

be small. For nodes to the right of the discontinuity, both the input intensity and the

inhibition signals are large, but from EQ (4.8) the total output again tends to be small.
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Figure 4.6(b) shows what happens at the edge point. Although the inhibition is weak, the

intensity of the input is large, hence the output is large. This results in the peak in (c), the

overall output of the SICNN.

STRONG

Weak l¡Veak

(b)(a) (c)

Figure 4.6 The inhibitory effects on a step edge
asymmetric weight distribution of [0 0 1]. The inhibito
indicated and (c) is the SICNN output.

input for a SICNN with an
ry effects of some nodes are

Symmetrical Weight Distribution

Figure 4.7 shows the output for a SICNN with symmetrical weights of [r o r]. fne effect

on an input step edge, away from the actual edge is shown in (a). Consider first the input to

the left of the discontinuity. On this part of the edge the inhibition on each node is small,

as is the intensity, hence ,r, in general will be small. Figure 4.1(a) also shows the effect on

the input to the right of the edge and away from the discontinuity. Both the inhibitory

effects and intensity are now larger, so the response here also tends to be small, but may be

somewhat larger than the response to the left of the discontinuity.

STRONG
STRONG

Weak (a) Weak (b)

STRONG

Weak
(d)(c)
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Figure 4.7 The.inhibitory effects on a step edge for a SICNN with symmetrical
we¡ghtsm while (d) is the overall output.
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Now consider the case shown in (b), where the node has a small amount of inhibition from

the node to its left (to the left of the edge), but a large inhibitory effect from the adjacent

node to the right on the edge. As the intensity of the pixel itself is still small, the net effect

of the increased inhibition is to reduce the output compared to those nodes further to the

left of the edge. In (c) the node again has both a large and a small inhibitory influence from

its neighbouring cells, but the value of input intensity is now large, hence the output

suddenly increases greatly compared to that of (b). The overall output is shown in (d).

Like the case of the SICNN with asymmetrical weights, this is a gross simplification since

the amount of inhibition also depends on other network parameters (see EQ (a.8)). The

edge is located at the zero-crossing of this output once the local mean has been removed.

Clearly from the three previous figures the SICNN can perform edge detection. More

precisely the SICNN is an edge enhancer, but we shall call it an edge detector hereafter

whenever used for this purpose. Thus, for a step-edge the feedforward SICNN can be used

for both edge detection and enhancement. The output, in the edge detection case, can be

thresholded, or the zero-crossings located, to detect the position of edges. Also note from

EQ (4.5), Figure 4.6 and Figure 4.7 that the number of output pixels affected by the step

edge is r pixels to the left of the discontinuity, and r pixels to the right of it (or r - 1 if we

exclude the edge pixel itself).

4.2.2.3 Advantages

The SICNN has many tunable parameters, such as the weight distribution, decay factor of

excitation, activation function, and neighbourhood size. This may give us greater

flexibility in adapting the network to a particular type of input edge and./or noise, hence

achieving better results than most linear filters that cannot adapt or have very few tuneable

parameters, such as a gradient operator. Another advantage over some edge detectors,

such as the neural network edge detectors discussed in Section 2.5.5, is the speed at which

the output of the feedforward SICNN can be computed. It essentially requires one vector

convolution, and one vector addition and division, all of which can be implemented

rapidly.

A drawback of the SICNN is that its output intensity varies nonlinearly for different step

edge inputs and SICNN parameters. Thus, its edge detection performance will also vary

for different SICNN parameters and different inputs. 'We cannot test the effect of every
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possible combination of these parameters and inputs on the performance since there are

infinitely many. We can, holever, thoroughly test and observe the effects of each

individual parameter in isolation, though there will always remain the small possibility of

overlooking a potentially good combination of parameters. Fortunately, this will become

less of an issue as we understand the role of each parameter on the edge detection

performance.

4.3 lmpulse & Frequency Response

Having described the feedforward SICNN and discussed its application to edge detection,

we are now at a position to derive its impulse and frequency responses by linearising the

feedforward SCINN using perturbation analysis.

4.3.1 lmpulse Response of the Linearised, Feedforward SICNN

Consider a l-D feedforward SICNN. Letthe average intensity of the inputbe 10, with a

deviation at the ith node or cell of the SICNN equal to u,. Thus, the total input to this cell

is 1o + u,. Clearly any input signal can be decomposed into these two components: a

constant signal and a signal of the derivation from this. From EQ (4.5) the output at node i

due to the constant input component 1o is

xi,o =
Io

r EA (4.e)

a,+f (rs) L r,
l=-r

Let the perturbation from the constant component of the ith output of the SICNN be x,.

Inserting these values into the dynamical equation of EQ (4.4), and with all derivatives

equal to zero at steady-state, gives

0 = 1o*o¡- a,(X,,.+x¡) - (X¡,+x,) \wrf (ts+oi*r) EO (4.10)

r

J =-r

Using the fact that, from EQ (4.9) it follows that 1o and X,.o satisfy

0 = Xi,o = 1o -a¡X¡,0-X,,0\wrf (to)
J =-r
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and the Taylor expanslon rs

I Qo+oi*7) = f (Io) + f' (lo) o¡+j + h.o.t.,

where "h.o.t" denotes higher order terms, then applying these to EQ (4.10) gives

EO (4.12)

r r

J=-r

r

r

l=-r

0 = o¡ -aixi-x,,0 ) w,f'(Is)\ir¡-xiZrtVQù +f'(Is)o,*rJ + h.o.t.

J =-r

Ignoring the h.o.t., we obtain

r

0 = j¡ - 'Dr a,x,-x,,olw¡f'(Io)o,*j -*,Lw,VQù +f'(I)rt,*¡)
J =-r

_*r =

Ð¡ - X¡, o\ w¡f' (I o) 0¡ *.r
l---r

o,+ 2w,f7s)
r

J =-r

The impulse response of the linearised, feedforward SICNN at the ith node is given by

ô (") -X,,0 ) w,l'gs) ô (n +j)
h¡(n) = , n = 1,2, ..., M EO (4.13)

o,+ 2 w,f (Is)
J =-r

where M is the total number of nodes in the SICNN, and õ (n) is the (impulse) unirsample

sequence. Note that the response is clearly dependent upon both the SICNN parameters

and the input mean intensity. Figure 4.8 shows the impulse responses for both the

symmetrical and asymmetrical rectangular weight distributions. The overall length of the

impulse response is 2r + I , since this is the size of the weight distribution. Beyond this,

the weight distribution is zero, hence the impulse response is also zero.
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Figure 4.8 Two examples of the linearised, feedforward SICNN impulse responses
h ¡(n) given by EO (4.13) for the (a) symmetrical and (b) asymmetrical, rectangular
wbights, with r = 5, a -- l, and lo = 10

4.3.2 Frequency Response

Taking the discrete-time Fourier transform of EQ Ø.13) gives the frequency response of

the linearised SICNN as

r

n=-r
0<or(n

Hi@ù = h¡(0) + \ tn,(n) exp (-inlo) + h,(-n) exp (7nor) l

r

n=l

1
Xi,oÍ'Uo)

i tr-""*n (ina) + lrnexp (-jna))
r r

a,+f(Is) 2r, a,+f(Is) 2*,"=t
J=-r J=-r

assuming w0 = 0. This frequency response can be written as

r

H¡(a) = u. | -xi,¡f'Qo) ) tr-,"xp (7nro) + lvnexp (-rnro) l EO (4.14)

n=l

1where cr. =I

a,+f (Is) 2 r,
r
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4.3.2.1 Symmetric and Asymmetrical Weight Distribution Cases

Asymmetrical Weight Distribution Case

If we consider the linearised, feedforward SICNN with asymmetrical weights, that is

wn = 0 for n<0, then the frequency response of EQ (4.I4) becomes

11, (ro) = cr, 1 t,,. i wnexp (-ina)
n=7

EO (4.1s)

Figure 4.9 shows the magnitude response lI1, 
( ro) 

| 
for mean intensities I o = l, 5, and 10 ,

with asymmetrical, rectangular weights, and a decay factor of a, -- 1 . These responses are

all similar in shape, though their magnitude values are different. Note the highpass nature

of this frequency response, which is what we expect for an edge detector and enhancer.

o.6

0.5

. o'4
Øcoo
Øo

I0..þ
P-col
(ú

= o.z

_lo=1
-- lo=5

lo=10

o.1

0o 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Normalised Frequency

0.4 0.45 0.s

Figure 4.9 The magnitude response of H(a) giygn by EQ (4..15) fgr asyry.metrical,
reõtangular weights; decay factor 1, and three different mean input intensities.

Symmetrical Weight Distribution Case

If we now consider the linearised, feedforward SICNN with symmetrical weights, that is

w , = w -n for all valid n, then from EQ (4. 14), we obtain
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Ht(a) = u, | -X,,02.^[exp (7nro) + exp (-jnro) ]

r

n=1
r

n=O

n=-r

r
ct.

I
| -X,, ) ,n"orrt ) .n"osnro

n=l

The magnitude of this frequency ¡esponse is, interestingly, very similar to those shown in

Figure 4.9; once again it is highpass in nature.

4.3.2.2 DC Gain

It is clear from Figure 4.9 that the DC gain, defined as lH, (0) 
| , varies for different input

mean intensities. \ù/e will now explore this relationship in a little more detail. From

EQ (4.14), the DC gain is

11, (0) = cx, t-x,,oí w
n

Io\.,
1

a,+f (ls) \ *,
x I

a,+f (Is) \ r,
n=-r

Figure 4.10 shows the DC gain as the mean intensity is varied. From the above equation,

assuming a linear activation function, and for large 1o the DC gain is roughly inversely

proportional to the mean intensity 1o. This is confirmed in the plot below where we can

see the gain decreasing with 10. Interestingly, identical results are obtained for both

symmetrical and asymmetrical weight distributions, provided the total sum of the weights

is the same.
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Figure 4.10.DC gain of the feedfonruard SICNN magnitude response as the mean
intensity varies. The slcNN symmetrical, rectangulãr weights, â = I , and r = s.
The result is also identical for ásymmetrical, recta-ngular wðigfrts.
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4.3.2.3 Passband Ripple and Cutoff Frequency

We have already derived the feedforward, linearised impulse response for the ith cellof the

network to be

ô (") - x,,o\w¡f'(I.) õ (n +.t)

h¡(n) =
a,+\w,f (Is)

.t

I

A typical magnitude of its Fourier transform is shown in Figure 4.11. Observe from this

plot that the SICNN is essentially a highpass filter, which is required for edge detection.

Passband Ripple

-l

Passband Region

Cutoff Frequency

Normalised Frequency

Figure 4.11 Linearised, feedforward SICNN impulse magnitude response with the
paèsband region ripple, and the cutoff frequency indicated.

From this plot we can define two quantities:

. the Passband Ripple, which is the difference in magnitude between the largest maxi-

mum and smallest minimum in the passband region of the magnitude response, and

. the Cutoff Frequency, which defines where the passband region coÍtmences. It corre-

sponds to the smallest frequency where the magnitude response equals the magnitude

of the smallest minimum in the passband region.
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The cutoff frequency determines the bandwidth of the SICNN. We shall show later how

this affects the edge detection performance. The passband ripple obviously measures the

amount of ripple in the magnitude response.

4.4 SICNN Response to Random Inputs

Having developed the linearised feedforward SICNN impulse response, we can now

investigate its response to random signals (noise). We begin with deriving the variance of

the SICNN output in response to a random input, using the impulse response derived

above, and then experimentally verify the validity of this derivation for a range of network

parameters using noisy input signals.

4.4.1 Variance of the Random Output

Previously, we derived the linearised, feedforward SICNN impulse response to be

õ,-XJ'Uo) ) ,7õ,*;
r

h¡(n) =
a,+f (Is)2 r,

r

where õ, is the unit sample sequence. Assume now that the constant input signal is

corrupted with noise denoted by u¡. We can compute the noise variance (or energy) of the

ith output of the SICNN using the relation

c',,o,, = ø[ {u, * h,(n))'l = nl"?] Z o? t¡>

r

J = -r

where E is the expectation operator. The above formula can be easily proved by starting

with the left-hand side of the equation:

r[ {u, * h,(n))'f = "[[_i_r,,,,",--)']

Assuming the noise o, is i.i.d. (independent, identically distributed) then the noise is

statistically independent in the spatial sense, i.e.,
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E[u,u-] =0 forn*m.

Using this we obtain

vanance ratrc ts

'[[_i_r,ttru"-o)'] = _i 
,?,0, nl"?,-À

r

= n¡rlt 2 ,? to¡

since nl"?,-J = ø1"?,fwhen on is identically distributed. Thus the output-input

k=-r

r

l=-r
t + (X¡,sf'(IoÐ2> t4

2'?@) =

r

J =-r
EO (4.r6)

EO (4.17)

r

a,+f (I) 2 r,

then

r

I =-r

4

)'

Recalling that Xi,o = Io/ a,+f (I) L r,

a, + f (1") w.
l + (Iof'Qs))'>'4

I =-r
r

)'

r

2
ci,out 

-
2

6i,in a,+f (t) 2.,
r

J =-r

An interesting point to note about this equation is that the variance ratio depends in a

nonlinear way on a,, the mean intensity 10, and the interaction weighß )wr. Note that

these equations still apply for a noisy signal of non-zero mean, since the noise can be de-

meaned and its mean added to the mean intensity /0. The noise variance can then be

computed using the above equations.

4.4.1.1 Experimental Validation

In all the following experiments, the theoretical values of the output noise variance were

computed using EQ (4.17), while the experimental ones were obtained by computing the

input signal's noise statistics and then computing the corresponding noise statistics of the

SICNN output.

Signalto Noise Ratio (SNR)

Before we discuss any results, the signal-to-noise ratio (SNR) needs to be defined.

Consider a constant (DC) signal with superimposed additive noise. The SNR is defined as
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.SNR = 20log
Io

o
IN

where 1o is the mean input intensity, and o,2, is the input noise variance averaged over all

nodes.

Results for varying SNR

'We now investigate the validity of EQ Ø.11) for the SICNN output-input noise variance

ratio as the input SNR is varied for two different neighbourhood sizes of r = 5 and 10.In

all cases a linear activation function is used, with symmetrical, rectangular weights, and a

decay factor of 1. The mean input intensity is 10, and the noise is additive white Gaussian.

_1
10'

- 
Theoretical (r=5)

- - Experimental (r=5)

- - Theoretical (r=10)
Experimental (r=10)

10 "051015
sNR (dB)

Fig.ure 4.12 Comparison of the theoretical and experimental output-input noise
variance ratio for the SICNN as a functiol of the SNR. The SICNN þarameters are
symmetrical, rectangular weights with a - 1, to = t0 ãtld additive white Gaussian
norse.

As expected, it is clear from Figure 4.I2 that the theoretically derived noise variance ratio

values ¿ìre very close to the experimental ones, particularly at large SNR values since the

errors from any approximations made, obviously become more insignificant. Overall, the

differences between the experimental and theoretical ratios are also smaller for SICNNs
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with larger neighbourhood sizes, especially for small SNR values. The likely reason for

this will be explained in the next subsection.

Results for Varying Neighbourhood Size

We have just observed that the differences between the theoretical and experimental noise

variance ratios appear to diminish as the neighbourhood size increases. To test this, the

output-input noise variance ratio is measured as the neighbourhood size, r, is varied

between 1 and 15, which can be considered as both "small" and "large", respectively.

Again consider a SICNN with symmetrical, rectangular weights, and a decay factor of 1,

operating on an input signal of mean intensity 10, and SNR of 5 dB with additive white

Gaussian noise.

The results are shown below in Figure 4.13(a). Clearly the difference between the

theoretical and experimental noise variance ratios decreases as the neighbourhood size

increases; in fact it appears that the difference asymptotically approaches zero as r

increases. The reason for this is the following: recall that the smallest order term of the

neglected terms of the Taylor series EQ (4.12), in our derivation of the linearised impulse

response was

r

*,L.¡D,*¡ Eo (4.18)

J=-r

where o is the input noise sequence. Thus, we have a weighted sum, or average, of the

input noise. Clearly, the greater the number of terms that we add togetheÍ, i.e., the greater

the value of I then the greater the likelihood that the noise will tend to average itself out.

Hence its effect on the output noise statistics diminishes, and our approximations become

better. The weight vector w j canbe thought of as a smoothing ûlter: the greater its support,

the smaller the output noise variance.

'We also note that the noise variance ratio decreases slightly as the neighbourhood size

increases, which can be explained from EQ Ø.17).If the SICNN has constant decay factor

and sum of weights, then the output-input noise variance ratio is only dependent on the

sum of squares of the weight distribution. We have used a rectangular weight distribution

here, so by increasing the neighbourhood size, the sum of squares of the weights

decreases, which results in a decrease in the noise variance ratio.
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Result with Varying Sum of Weights

EQ (4.18) above, which is the most significant term discarded from our Taylor series

expansion, also appears to decrease as we make the value of the weights w, smaller. Thus,

we would expect the theoretical noise variance ratio to be much closer to the experimental

one the smaller we make the absolute value of the weights.

Consider an r = 5 SICNN with a symmctrical, rectangular weight distribution of varying

sum, and a decay factor of 1. The input signal has a mean intensity of 10, and a SNR of 5

dB. The comparison of the theoretical and experimental noise variance ratios is shown in

Figure 4.13(b). Although it is the sum of the weights that is being varied in this plot, as we

use a rectangular weight distribution then each individual weight w, will also vary

proportionally. From this Figure we can see that a large sum of weights, i.e. large w,,

causes there to be a difference between the theoretical and the experimental noise variance

ratios, although this is still very small. This simply confirms what we stated above: that

smaller weights give more accurate results, or negate the effect of noise to some extent.

We also note that the output-input noise variance ratio decreases as the sum of weights

increases. From EQ (4.17), and ignoring the term involving the sum of squared weights,

then for very large sum of weights the output-input noise variance ratio is inversely

proportional to the sum of the weights. Thus, if the decay factor is kept constant, then

increasing the sum of weights clearly decreases the output-input noise variance ratio.

Results with Varying Decay Factor of Excitation

Now we consider the comparison of the theoretical and experimental noise variance ratios

with varying decay factor of excitation ai. From EQ (4.10), the SICNN dynamical

equation, at steady-state, can be rewritten as

0 = 1o * 0¡ - (X,,r+ x,) o,+ 2w,f (lo+ 0¡*j)
r

l=-r

To obtain the impulse response of the SICNN, and hence its noise variance ratio, we

discarded the higher order terms of the Taylor expansion of f (I o + oi *;) . It is these higher

order terms which cause the difference between the theoretical noise variance ratio and the

experimental one. Thus, the larger the decay factor is, the smaller the effect of the

discarded terms of I w,f (I s+ ùi *7) , hence the closer the match between the theoretical

and experimental r{o=iiå variance ratios. This is illustrated in Figure aß@) where we
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consider a SICNN with a neighbourhood size of 5, symmetrical, rectangular weights, and

an input signal with mean intensity of 10 and a SNR of 5 dB. Clearly, the error between

the theoretical and experimental values is large for smaller decay factors, since the

discarded terms become more insignificant.

As with increasing the sum of weights, increasing the decay factor decreases the output-

input noise variance ratio. From EQ (4.17), if the weight distribution is kept constant, then

for large decay factor, the output-input noise variance ratio is inversely proportional to the

square of the decay factor, hence as the decay factor increases, so does the output-input

noise variance ratio.
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Figure 4.13 SICNN theoretical and experimental output-input noise var¡ance ratio
foivarying (a) neighbourhood size, (b) sum of weights, (c) decqyJactor, qnd (d)
mean input intensity. The input has additive Gaussian noise with SNR of 5 dB.

Results with Varying Mean lnput lntensity

Finally, we consider the comparison between the theoretical and experimental output-

input noise variance ratio as the mean input intensity 1o is varied. Figure 4.13(d) shows

the results for a SICNN with a neighbourhood size of r = 5, linear activation function,

symmetrical rectangular weight distribution summing to 1, a decay factor of 1, and an

input SNR of 5 dB. Overall, the match between the theoretical and experimental noise

variance ratio is very close for a large range of 10. From EQ (4.17) we can see that for
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very large input intensities the noise variance ratio is approximately inversely proportional

to the square of the mean input intensity, and this is clearly evident in (d). Compare this to

linear filters, who for a given input SNR have an output noise variance ratio independent

of the mean input intensity. This illustrates the capability of the SICNN to nonlinearly

adapt to its input signal, which we shall find useful later in this thesis for both edge

detection and enhancement.

4.4.2 Noise Figure

Definition

Another useful measure in the investigation of the SICNN performance with random

signals, is to measurc its noise figure (NF) characteristics. The NF is normally applied to

amplifiers in communication systems, and measures the amount of degradation of the

signal caused by the receiving system. It is defined as (Adamson,1992)

NF = 's'n/N'n
\,,/ N 

"r, 
Eo (4'19)

or in decibels, NF (dB) = 10log (NF) , where 5,,, Sor,, N,n, and Nor, are the input and

output signal strength, and input and output noise strengths, respectively. An ideal

amplifier would have a NF of l, or 0 decibels.

The SICNN with a constant input can be thought of as an amplifier - it has a noisy input

signal and it amplifies both the signal component and the noise component of this input.

\ù/e define the NF as

NF = 'i'o?'
,'^rr, 

"r"r, 
Eo (4'20)

where 1o is the mean input component or intensity, oln and olu, are the variances as given

by EQ (4.17), and I o,, is equal to the output mean Xo in EQ (4.9). Using these equations,

the theoretical NF of the SICNN is

a+f(Is)2r,)'t a +f (Is) 2 r, + (t¡f (Is)), \ r?
NF=ßr*"%=tlx

' I'ou, ol,
I =-r =-r

2 r

X r

J =-r
a+f (Is) 2.,
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where ai = a for all nodes. Simplifying this expression we obtain,

(rof 'Qù), z ,?
r

=-rNF= 1+ EO (4.21)

EO(4.221

a+f (Is) 2 *,
J =-r

If we can make the second term of EQ (4.21) small, then the NF will also be small for a

constant sum of weights, though not necessarily equal to the smallest possible NF. If we

choose f (x) = x/ (l +-r) l, then the above equation becomes

r
1 2

Io

2.,)'

2'î
J=-rNF = l+ r

J =-r

We can see that for large 10, the numerator approaches zero. 'We also choose to use

x/ (l + x) to avoid the possibility of dividing by zero intensity.

Experimental Results

To determine over what range of noisy input signals EQ (4.2I) is valid, the NF was

determined experimentally for two different activation functions, f G) -- x and

fþ) = x/(I+-r), and then compared to the expression above. In Figure4.I4, the

theoretical NF of the two activation functions are compared with the experimentally

obtained NF for various SNR values as the mean input intensity 1o is varied. To aid the

visual comparison we in fact plot (NF-l), which is the second term of EQ(4.22).

Figure 4.14(a) is for the linear activation function, f(x) = x, and shows that the

experimental NF values are the same, or very close to, the theoretical values for input

signals with SNRs of 10 and 20 dB. For the input signal with 0 dB SNR, the comparison is

poor, for a large range of 1o

Figure 4.14(b) shows the results for the nonlinear activation function, f þ) = x/ (I + x) .

Once again the input signal with 20 dB SNR has a NF essentially identical to the

theoretical one, while the input for 10 dB SNR has a NF which is similar for small 10, but

l. The derivative of this function has Io only in its denominator and it is also squared. Thus, the numerator of the 2nd

term on EQ (4.21) in inversely related to Io, hence NF is small for large Io.
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much larger for large /0. The 0 dB SNR input signal again gives an experimental NF

which is very different to the theoretical one, being more inaccurate as 1o increases.

These results show that the theoretically derived NF is only valid, or accurate, for input

signals of SNRs of at least 10 dB for the linear activation function and 2O dB for the

nonlincar acl"ivation function. Nevertheless, the two plots clearly indicate that the NF can

have vastly clifferent forms, depending upon the activation function used. Both plots also

indicate that the smaller the input SNR, the greater the NF, i.e., the larger the input to

output SNR. Also, the NF for the nonlinear activation function is, in general, less than the

NF for the linear activation function. The experimental NF, however is more inaccurate

for the nonlinear activation function than the linear one. This is particularly true for low

SNR inputs and large /0, because the NF with the nonlinear function is more sensitive to

noise than the NF with the linear function, since we have 1o in the denominator.

1oo

- 
Theoretical
Expt (SNR=20 dB)

- - Expt (SNR=10 dB)
- - Expt (SNR=o dB)

100 1ot
(a) Mean lntensity, lo

102 103

100

'10 '

10 -

I

Tl-z

10 -

,.1- I o-o
z

10

100 1ot
(b) Mean lntensity, lo

102 1o'

Figure 4.14 Comparison of the theoretical and experimental NF values for (a)
f(x) --x,.âñd (b) f1x¡ - x/(t+x). !n bofh cases, r = S, â = t, with symmetricâ|,
rectangular weights, and additive white Gaussian noise.
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4.5 Conclusions

This Chapter presented a detailed analysis of SICNN systems as well as their

characteristics, providing the foundation for the work used throughout this thesis. We

began by defining the recunent SICNN, and showed how its steady-state solution is

nonlinear, that is, the output of any node is dependant on the output of its neighbouring

nodes. To solve such a system, an equivalent discrete-time dynamical system was deflned

with a steady-sate equal to that of the continuous time SICNN. From this sequence we

showed that the output after one and two iterations is suitable for edge detection and

enhancement, respectively.

We then defined the feedforward SICNN, and showed that its output is identical to that of

the recurrent SICNN output after I iteration. Using this feedforward SICNN, we described

and illustrated the shunting inhibitory nature of the SICNN on step edge inputs. We also

discussed the thresholding techniques, the implementation and advantages of the SICNN

over existing edge detectors.

Using perturbation analysis and linearisation, the impulse response of the feedforward

SICNN was derived, as well as its frequency response. Both the impulse and frequency

responses vary with the mean input intensity, hence indicating the ability of the SICNN to

adapt to its input. Also from this frequency response we defined the passband ripple and

cutoff frequency, and using the impulse response we derived the variance of its output for

a noisy DC input. The derived equation shows that the SICNN is a highly nonlinear

function of the network parameters, as well as the mean input intensity.

We showed that the experimental output-input noise variance ratio is similar to the

theoretical one for large SNR, large neighbourhood sizes, large decay factor, small sum of

weights, and for a large range of mean input intensities. When the network parameters are

chosen in this way, the approximations used in the linearisation process to derive the

impulse response, and thus the output-input noise variance ratio, all become more valid.

The discarded terms become insignificant, hence we expect better agreement between the

experimental and theoretical noise variance ratios.

Finally, we derived an expression for the SICNN NF, which measures the amount of

degradation in the signal after passing through the SICNN. 'We compared the theoretical

value of the NF to the experimental one for both the f (x) = x and the nonlinear

85



Chapter 4: Response Properties of SICNN Systems

lQ) = x/ (l + x) activation functions. The experimental value of the NF compared well

with the theoretical ones, especially for large SNRs.'We also showed that the SICNN with

the nonlinear activation function gave a smaller NF than the SICNN with the linear

activation function, but the NF was much more sensitive to noise on the input and the

mean input intensity.
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Cftøpter 5

5.1 lntroduction

In Chapter 4 we introduced both the recurrent and feedforward SICNNs and presented a

detailed investigation into the response properties of the linearised feedforward SICNN. In

this Chapter, this analysis is extended to investigate the effect of the SICNN parameters on

its edge detection performance.

We begin by deflning the mean intensity and contrast of a step edge used throughout this

investigation, as well as the edge to noise ratio (ENR). Then three statistical measures that

are used throughout this thesis to quantify the performance of any edge detector for a 1-D

step edge are defined, along with three weight distributions with well known shapes: the

rectangular, triangular and Gaussian distributions.

In Section 5.3 we investigate the factors affecting the SICNN edge detection performance,

namely the output noise variance, the shape of its edge response, and the ratio of the peak

response to output noise variance (PNR). These three measures are all inter-related with

each other. By changing the shape of the edge response, we also change its output noise

variance, and both of these affect the PNR.

Using the noise variance, the shape of the edge response and the PNR, the effect of the

weight distribution on its edge detection performance is investigated. We indicate how

these parameters can be chosen to maximise the SICNN performance.
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5.2 Definitions

Before beginning the design of the SICNN for 1-D edge detection, a means of quantifying

the edge detection performance is needed so that the effect of different SICNN parameters

can be observed. Although a number of measures already exist in the literature, they are

either not applicable for the SICNN, or they are not intuitive to understand. In this section

three statistical measures are defined which can be used with any edge detector for l-D
step edges, which are both intuitive and easy to measure. We also define variables that

characterise an edge and the amount of noise present, and three weight distributions with

well-known shapes.

5.2.1 Hit Rate, Edge Standard Deviation, and Edge Bias

In Section 2.4 a number of measures used in developing and comparing the performance

of edge detectors were reviewed. Many of these measures are ambiguous, e.g. Pratt's

figure of merit (FOM), where many possible scenarios can lead to the same FOM value.

Other performance measures appear specifically tuned to a particular type of edge

detector, such as Canny's measure (Canny, 1986), which does not apply to zero-crossing

based edge detectors such as the LoG. For these reasons, performance measures are

sought that can be applied to a wide variety of edge detectors, and without ambiguity. For

a l-D step edge, we use statistical measures based on the deviation of the detected edge

position from its true position. These are actually a variation of the statistical measures

described in Section 2.4.2. Thus, we define:

. Hit rate (HR) - a count, normalised to one, of the number of edges that have been

detected in exactly the correct position, i.e., a hit-miss scenario. This is the probability

of correct edge detection.

. Edge standard deviation (ESD) - or localisation, is the standard deviation of the spatial

spread of the ensemble of the detected edges about their mean position. Canny uses this

measure as one of his optimality criteria.

. Edge bias (EB) - the average distance of the detected edge from the true edge position.

Clearly, the greater the HR, and the smaller the ESD and EB, the better is the edge

detector. Ideally, a HR of one, an ESD of zero, and an EB of zero about the true edge

position are all desired.
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5.2.2 Step-Edge

Consider a l-D step edge with mean intensity 10, with the lower and upper background

intensities of the edge as I 
^,n 

and I *or , tespectively. The contrast of the edge is defined as

c - 
I^o"-I*in
I 
^o*r 

I 
^in

-c = 0.25

' c=0.5

200

EO (s.1)

EQ (5;2)

which implies that I*o, = 1o(1+c) and l*in = 10(1-c). Figure 5.1 shows l-D noiseless

edges of meanintensities 1o = l0 and 100, andcontrasts c = t/4 and l/2.

c)
!
l
=o-
E

16

14

12

10

8

6

4

-c = O.25

c=0.5

o)Þ
f

o-
E

160

140

120

100

80

60

2000 50 100 150
(a) Spatial Coordinate

50 100 150
(b) Spatial Coordinate

Figure 5.1 Noiseless edges of mean intensity (a) 10, and (b) 100.

For a step edge with additive noise of variance o2, the Edge-to-Noise Ratio (ENR) is

defined as

ENR = 20log
,lo
o

dB

This should not be confused with the SNR value def,ned previously, which applies only to

constant signals corrupted with noise, and not noisy step edges.

Figure 5.2 shows a number of noisy step edges with various ENR values. Clearly the edge

is virtually indistinguishable in the -10 dB case, and just discemable in the 0 dB case,

while for an ENR greater than 0 dB the step edge is certainly distinguishable from the

noise. Thus, we note that for an ENR less than 0 dB (particularly for ENRs of -10 dB and

less), the noise is so great in magnitude that it becomes difficult to visually determine

whether or not an edge is actually present.
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Figure 5.2 Noisy'étep edgel with additive white Gaùésiañ nõìse, lo
c = 0.25.

5.2.3 Rectangular, Triangular and Gaussian weight Distributions

In our investigations we use three common weight distributions:

. Rectangular distributions: wn = I -õ,, where ð, is the Kronecker delta function, and

the index n is in the range -r 3 n ( r, where r is the neighbourhood size.

. Triangular weight distribution I w, = (l _ ln/ rl) , with w0 = 0 .

. Gaussian distribu ' Ition: wn = ffi.*p 
(-n2/2oz) where w0 = 0 and o = r/3 is the

Gaussian spread. This value of o ensures that both w_, and wr ate almost zero.

These distributions are all symmetric, i.e., w_, = wn for all valid n, while the asymmetric

version of the weight distributions is wn* = w nun, where ø, is the unit step function.

5.3 Factors Affecting the SICNN Performance

In this section we investigate how the output noise variance, shape of the output edge

response and the PNR affect the edge detection performance of a SICNN. These factors do

not affect the performance independently, rather they are all inter-related.
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We begin by investigating the effect of the SICNN output noise variance on its

performance and show its relation to the sum of squared weights (SSW). The SSW also

determines the shape of the weight distribution, provided the sum of weights (W) is

constant, and thus determines the shape of the edge response, which in turn affects the HR.

The third indicator to the performance is the peak response to noise ratio (PNR), which is

affected by both the SICNN and edge parameters. We experimentally show how the

performance is related to the PNR, and investigate the dependence of the PNR on the

SICNN parameters, and the mean input intensity and contrast.

5.3.1 Output Noise Variance

It is clear that the output noise variance of any edge detector plays an important part in the

detector's performance. If there is no noise in the output, then the edge is always detected

in its correct position, but when we increase the output noise variance, the performance

begins to deteriorate since the edge is detected away from the true position more often.

Thus, as the output noise level increases, the HR should decrease and the ESD should

lncrease.

Recall from EQ Ø.I7) that the output noise variance of the linearised, feedforward

SICNN with decay factor ai = a Vi, and weights w,,to a constant input of intensity 1

and input noise variance oln, is

J=-r
,r]

r

J=-r

r 2

a+f (I) \ + [If'(I)PL *?

ol ol, EO (s.3)
u

l=-r
,r]

r 4

a+f@ |

If all of the SICNN parameters are kept constant, then the output noise only changes in

direct response to a change in the input noise. Figure 5.3 shows the edge detection

performance as a function of the input ENR, which is inversely proportional to the input

noise variance, see EQ (5.2). As the ENR increases, the HR increases and the ESD

decreases. This is expected since decreasing the output noise variance, by increasing only

the input ENR, must have a positive effect on the edge detection performance.
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asymmetrical, rectangular weight distribution with t4l = l, r = 5, a - l, lo = 10,
c = 0.25 and additive white Gaussian noise.

Minimising the Output Noise Variance

It is clear from EQ (5.3) that if the decay factor and W are kept constant, then the only

possible way to change the output noise variance is to vary the sum of squared weights

(SSW), 2r?. So from EQ (5.3), we minimise the output noise variance by minimising

SSW, i.e.,

minimise Z'i
subject to )w, = n¡

where y is a constant. We use the Lagrange multiplier method which converts a

constrained optimisation problem into an unconstrained one. The finctional to minimise is

' = l,i,*i-^['-,!,'')
where I is the Lagrange multiplier. Differentiating w.r.t. I and w, gives

5

òL
a¡, =T- > ,j=0

j=-,
= Z', =,

r

l=-r

òL
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Thus, f -, = Zrw, = 7" àrj = Ir,rt,w' = 0. So, the weight distribution which

minimlsêsthe output noise variance is in fact the rectangular distribution.

Figure 5.4 shows the ESD of the SICNN with the rectangular, triangular and Gaussian

weight distributions, whose SSW are 0.2,0.244 and 0.298, respectively. The SICNN with

the rectangular weight distribution has the smallest ESD followed by the SICNN with the

triangular distribution and then the SICNN with the Gaussian distribution. Although

minimising the output noise variance results in a smaller ESD, this does not necessarily

improve the HR. The reason is that for a given W, varying the SSV/ changes the shape of

the weight distribution, and hence the shape of the edge response, which in turn affects the

HR as we shall see shortly.
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Figure 5.4 SICNN ESD for asymmetrical rectangular, triangular and Gaussian
weight distributions with W= 1, t=5, â= 1, lo=10, c=0.25 and additive
Gaussian noise.

5.3.2 Shape of the Edge Response

We described above how the SSV/ of the weight distribution affects the output noise

variance and hence its performance, in particular the ESD. For the HR, it is insightful to

look at the shape of the edge response, which depends upon the shape of the weight

distribution. The HR is a "hit-or-miss" measure, so a signifrcant number of misdetections

comes from the edge being detected only a few pixels away from its true position. For

example, if the edge is always detected just one pixel away from the true position, the

ESD would be very small, but the HR would always be zero, indicating very poor

performance according to this measure alone. These misdetections are due to the "shape"

of the response to a step edge, or how quickly this output falls away from the maximum

response as the distance from this maximum increases. Thus, the shape of the weight
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distribution affects both the shape of the edge response and the SSW thereby influencing

both the HR and the ESD.

Figure 5.5 shows the response to a step edge of a SICNN with the asymmetrical

rectangular, triangular and Gaussian weight distributions. Now consider the edge response

magnitude a small distauce away fronr the Lrue edge position, denoted as Ây, , Ly, and

Ay, for the rectangular, triangular and Gaussian weight distributions, respectively. We

define Ay to be the peak response, i.e., the maximum response which occurs at the edge

position.
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Figure 5.5 SICNN edge response for rectangular, triangular and Gaussian weight
distributions. 

^y 
is the peak response, and Âyr, Ây, and Âyo are the edge

responses at an arbitrary distance away from the'edge'point, for"the SICNN with
asymmetrical rectangular, triangular and Gaussian weights, respectively.

Clearly, the smaller Lyr, Ly, and Ây, are compared to ay, the greater will be the HR, i.e,

the HR increases the faster the edge response decreases away from the true edge position,

or the position with the maximum response. Say, for example, that ay, is close in

magnitude to Ay . If noise is also present on the output, then there is a large probability that

the overall magnitude "Ay, +noise" is greater than "A_y +noise". This misdetection, even if
only by a few pixels, causes the HR to decrease significantly. Thus, the shape of the

weight distribution is an important factor in determining the HR.
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Figure 5.6 shows the HR for three different weight distributions. The SICNN with the

Gaussian weight distribution has the largest HR followed by the SICNN with the

triangular weight distribution and then the SICNN with the rectangular weight

distribution. For low ENR, however, the HR of all three SICNNs is approximately the

same since the HR is dominated by the output noise variance, which we showed above to

be minimum for the rectangular weight distribution. The difference, though, is

insignificant.
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Figure 5.6 SICNN HR for asymmetrical rectangular, triangular and Gaussian
weightdistributionSwith W=1, t=5, êt=1,lo=10, c=0.25. and additive
Gaussian noise.

5.3.3 Peak Response to Noise Ratio

In the subsections above we discussed how the SICNN output noise variance affects its

edge detection performance, particularly the ESD, and how the shape of the weight

distribution or edge response affects the HR. By considering only the output noise

variance and shape of the weight distribution, however, we are ignoring another important

factor which determines the performance: its peak response relative to the output noise

variance. Thus, to gain a better understanding of the edge detection process, the ratio of

the peak response to the output noise variance, PNR, needs to be investigated.

For the SICNN edge detector, as for most other edge detectors, the magnitude of the peak

response compared to the background output noise variance affects the performance. If the

edge response is large compared to the output noise level, then the performance will tend

to be good. Conversely, if the edge response is small compared to the output noise level,

then the performance will be poor.

0
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Figure 5.7 (a) The input step edge of mean intensity to, and contrast c, and (b) the
corresponding SICNN output. ly is the peak response.

If a' = a Vi, then from Figure 5.7(b) the peak response with respect to the lower and

upper background intensities are, respectively

In(1+c)
ayl =

Ly2 =

Io cI )

a + > [w-,f Us(1 - c) ) +w,f (Is(1 + c) ) ]
a+f(IoQ -c))W'

1o(1+c)
a +f(Io(l + c))W

j=r

EO (5.4)

EO (s.s)

EO (s.6)

1o(1+c)
r

a + > [w-,f (ls(1 - c) ) +w,f (Is(1 + c) ) ]
j=r

For symmetrical weights (w, = *_j, j = 1...r) and a linear activation function, we have

^-. _ 1o(1+c) 1o(1-c) 2aclo+c(l - )ftWutt ;T7Í- "¡¡¡1-r¡y¡ 
- '

In(1+c)
a+ Is(l + c)W a2 + aIo(2+ c)W + I(e + c)W

EO (5.7)

For asymmetrical weights (ri= 0, j = 1...r) and a linear activation function, the edge

responses become

c(1+ Òt|w
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EO (5.e)

In Appendix A, we derived the pdf of the random variable (RV) y = max {y r, ! u}, where

! ¡ and ! ry are the RVs for the maximum output to the left ("lower") and to the right

("upper") of the edge discontinuity, respectively.If I , = ! u * Ây, is the RV for the output

edge pixel, then the HR is defined as

HR = P(y">y) = P(tu¡ Lrz>J) = P(y-yu<Lyz)

We show in Appendix A that this evaluates to
Lyz

J
(s) ds

^ Io(l+c) 1o(1+c) 2c(l+c)lfrW
^lz = 

"+ry -"W- a¡¡o11 ¡"¡1y = o-42o¡¡4r*q1-rr¡1yr'

HR ft
U

where *rr,rr,(s) is the correlation of the ndfs | (y) and f , u(u). 
It is intuitively clear that

the HR increases as Ly, increases. If Ly, is made large compared to the background

noise, then clearly the HR will approach 1, but it is not explicitly clear how the output

noise variance affects the HR. It is intuitive, however, that changing only the output noise

variance must affect both the HR and ESD. Thus, we cannot investigate the edge response

alone. As stated above, we really need to investigate the peak response to noise ratio

(PNR), defined relative to the lower and upper background intensities as

pNRr = 
6:!)'-, and PNR2 - 

(L!)2
- - --r oïut.t ^' --¿ 

6?u,,2

where o\ut,t and o]r,,, are the output noise variance in the lower and upper part of the

edge and are foundby replacing 1 in EQ (5.3) with 1o(1-c) and 1o(1+c), respectively.

Thus, for a linear activation function, from EQ (5.8) and EQ (5.9), the PNR for an

asymmetrical weight distribution is

ENR EO (s.10)

4 (r + Ò' t|w' fa+IoQ+c)W)a NR Eo (s.1i)PNR, =
fa2 + 2aI ow + t! {t - c\ Wl2 lo +/o ( 1 + c) v{12 + t( (l + c)' s

where ENR = czll/ol^ is the edge-to-noise ratio. Clearly, both PNRs are directly

proportional to the ENR. In general, the value of PNR, is different to PNR'.'When the

effect of these PNRs on the performance is considered it is actually the smaller of PNRI

4la+/o(l-ÒW)2
DA/D'rrYrtl - ggy¡
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Chapter 5: SICNN Parameter Design for Edge Detection

and PNR, which is critical in determining the performance. Thus, the overall PNR is

defined as

PNR = min{PNR¡PNR2}.

All PNR values used henceforth are this minimum value.

EO (s.12)

Performance w¡th Io/ a

Note that we can readily eliminate the decay factor from the expression of PNR, and

PNR2 by letting îo = Io/o.EQ (5.10) and EQ (5.11) can then be rewritten as

EO (s.13)

4(t +r¡2 îlWz [l *lo ( +c)W]a
PNR2 =- ENR. Eo(s.14)" lt +zîow * ß0 - r\w'ft[' *lotl * r)wf' * î: (t + c)2ssw

Figure 5.8 shows the PNR, which is the minimum of PNRI and PNR, as a function of d,
c, w, and sSW. In both EQ (5.13) and EQ 6.14), { is raised ro rhe same power in rhe

numerator and denominatot, as is the case for W Thus, increasing îo or W eventually

causes the PNR to saturate and approach a constant value (Figure 5.8(a)). Both PNR, and

PNR2 are also inversely related to SS\ñ/, so increasing SSW decreases the PNR, but this is

not obvious on the scale shown in (b). Likewise in (c), increasing c also increases the PNR

gradually. In both (b) and (c), the PNR eventually saturates as d increases, for the reasons

explained above.
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Figure 5.8 PNR (normalised by the ENR) as a function oÍ lo/a and (a) w, (b) ssw,
and (c) contrast.
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Factors Affecting the SICNN Performance

In Figure 5.9 we take slices of Figure 5.8(c) and plot the PNR as a function of 10. As 1o

increases, so too does the PNR, until eventually the PNR either decreases slightly or

remains constant, as expected from Figure 5.8. A constant PNR indicates constant edge

detection performance. It is interesting to note that the peak PNR values occur where the

curves for PNR, and PNR, intersect. This is illustrated in Figure 5.10 for c = 0.1 .

8

6

-c=0.25' C=0.5
- - c = 1.0

2

0
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102 10310
_l
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lola

Figure 5.9 PNR as a function of (a) io, for W = 1, SSt4/ = 0.2 âtld ENR = 5 dB for
additive Gaussian noise.
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Figure5.lO PNB1 and PNR2 asafunctionof lo for W = 1, SSW = 0'2, c = 0'1

and ENÆ = 5 dB for additive Gaussian noise.

Figure5.ll shows the perfornance as a function of d fo. different contrasts. From

Figure 5.9, increasing d increases the PNR, and this is reflected in an improvement in the

performance. For very large d the PNR saturates, hence the performance remains

constant with varying d. fhe most important observation from Figure5.11, however, is

that we obtain the optimum HR, ESD and EB for values of d which correspond almost

4
É.z
fL

c)
=õ
cÍz
fL

5

0

5

1

1
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Chapter 5: SICNN Parameter Design for Edge Detection

exactly to the peaks of the PNR curves shown in Figure 5.9. These peaks occur at the

intersection of the curves for PNR, and PNRr. Thus, for a given 10, the decay factor that

gives equal values of PNR, and PNR, is close in value to the decay factor that optimises

the performance. This will be discussed in more detail shortly.
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c=0.75
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0

Figure 5.11 SICNN pedormance as a function oÍ îo. The SICNN has asymmetrical,
rectangular weights with W = 1, SSl4/ = 0.2, r = S, ENR = S dB and additive
Gaussian noise.

102

EO (s.1s)

ENR. Eo (s.16)

Performance w¡th Ðw-,!a 
_r

If we assume that SSW is negligible, and with Û = W/a = \ r,lo, we can readily

eliminate the decay factor from the expression of thepNR, and 
t;Ñh, 

thus Ee (5.10) and

EQ (5.11) can be re-written as

D^rD 4ll +10(l _ c)fu12
r rYrrl -

4 (t + c¡2 t(WDÀTD""'2 [l + 2low+t3(t-çz¡yz1z
0

Figure 5.12 illustrates the PNR, which is the minimum of PNRI and PNR, as a function

of fu, ssW 10 and c.In EQ (5.15) and EQ (5.16) for large W,, the pNR has û raised to
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Factors Affecting the SICNN

equal powers in both the numerator and denominator, hence when Û increases

eventually saturates. The PNR is inversely related to SSW, so by increasing SSW we

decrease the PNR but the variation is too small to be observed in Figure 5.I2(a).In (b) the

PNR also saturates as 1o increases since we have equal powers of 1o in both the numerator

and denominator of PNR, and PNR* and in (c) the PNR increases gradually as the

contrast increases from 0 to 1. A contrast of I gives the largest PNR with respect to

contrast. From this figure we conclude that the PNR saturates for large 1o and IÎ¡, hence

we expect the performance to remain constant for these values of /o and Û.

50
PNR (dB)

100 PNR (dB)
50

PNR (dB)

0

-50
1

00

-50
100

-100
10 2

SSW -1 ^-2U![//a lo 1Oo

-10

Wa
0.5

c10
1

0
.,10- wa10
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Figure 5.12 PNR as a function of Wa and (a) SSW, (b) /o and (c) contrast.

Figure5.l3 shows the PNR as a function of îV, for different values of c and 10. As

expected, in (a) the PNR increases as Û increases, and levels off for larye fu . Likewise in

(b), the PNR increases as IÎz increases, and levels off for larye fu reaching this constant

value more rapidly for larger /o . As in the case of varying .io above, the PNR peaks at the

point where the curves of PNR, and PNR, intersect.

Figure 5.14 shows the performance as a function of îv. From Figure 5.13(a), increasing

IÎz causes the PNR to increase, resulting in an improvement in the performance as evident

in Figure 5.14. For very large îV,the PNR levels off and hence the performance does not

vary much as Û increases. As with the results for varying i above, the performance is

optimal at the value of fu which also corresponds to the peak PNR as shown in

Figure 5.13. This peak value corresponds to the value of Û where both PNRI and PNR,

are equal. Thus, for a given 1o and W, the decay factor which gives equal PNR with

respect to the lower and upper output edge backgrounds, appears to be close to the

experimental decay factor that optimises the performance.
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Figure 5.13 PNR as a function of 'ûv tor different (a) contrast and (b) /o
SICNN has r -- 5 and SSW = 0.1 .
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Figure 5.14 SICNN performance as a function of W/a for different input contrast.
The SICNN has asymmetrical, rectangular weights with r = S , lo = t0 and additive
Gaussian noise.

To investigate this, we now compare the experimental value of 'fu that gives optimal

performance, with the value of Û for which PNRI - PNR2. Table 5.1 gives the value of

I7 which optimises the performance for a number of different 1o and c. This value of ty is

deemed to be the optimal value. It is immediately obvious from the table that the optimal
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Factors Affecting the SICNN Performance

I7 is inversely proportional to 1o . Thus, for a given W, the optimal decay factor appears to

be directly proportional to In.

Table 5.2 shows the value of fu for which PNRI - PNR2 for the same 1o and c as in

Table 5.1. The experimental values of the optimal îV are very close to the theoretical

values, however the experimental values seem to be consistently larger, though by only a

small amount. Some possible reasons for the discrepancies are that the performance was

not simulated on a fine enough scale of fu, or the noise variance equations used to

compute PNR' and PNR, are not exactly equal to the actual output noise variances.

Furthermore, the PNR does not take into account the shape of the weight distribution and

thus the shape of the edge response, which we know from Section 5.3.2 affects the HR.

Table 5.1 Experimentally optimal 'ûv Íor various lo and c.

Table 5.2 Theorelical fu for which PNR t = pNH2 for various to and c.

Figure 5.15 shows the performance as I7 is varied for different 1o and a contrast of 0.25.

From Figure 5.13(b) increasing Û causes the PNR to increase, peak and then eventually

levels off, reaching this constant value more quickly for larger 10. These characteristics

Mean lnput Intensity, to

1 10 20 50 100 200

Contrast

0.1 5.95 0.617 o.294 o.128 0.0595 0.0316

0.25 2.26 0.235 0.116 o.o474 o.0244 0.0120

0.35 1.68 0.175 0.0862 0.0326 0.0175 0.008ô2

0.5 1.20 0.116 0.0595 0.0239 0.0116 0.00595

0.75 0.771 o.o771 0.0381 0.0155 o.0077 0.00381

1.0 0.573 0.0573 0.0294 0.0113 0.0057 0.002936

Mean lnput lntensity, lo

1 10 20 50 100 200

Contrast

0.1 5.11 0.511 0.256 0.102 0.0511 0.0256

0.25 2.07 0.207 0.1 04 o.0414 0.0207 0.0104

0.35 1.48 0.148 o.0741 o.0297 0.0148 0.00741

0.5 1.O4 0.104 0.0519 o.0207 0.0104 0.00519

0.75 0.688 0.0688 0.0344 0.0138 0.00688 0.00344

1.0 0.513 0.0513 0.0256 0.0103 0.00513 0.00256
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Chapter 5: SICNN Parameter Design for Edge Detection

are also observed in the experimental results. Increasing Û causes the performance to

improve, peak, and eventually level off, with the performance reaching this constant value

more quickly for larger 10. As with the results above, the optimum performance occurs

approximately at the value of IîV where the PNR peaks, or where PNRr = PNRz.
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Figure 5.15 SICNN performance as a function of îu Íor different /o. The SICNN
has asymmetrical, rectangular weights with r = 5, c = 0.2s and additive white
Gaussian noise.

5.4 Effect of Weight Distribution on the Performance

We now investigate the effect of the weight distribution on the edge detection

performance. In particular we look at the effect of the weight's symmetry, SSV/ and

neighbourhood size on the performance.

5.4.1 Symmetric versus Asymmetric Weight Distributions

The symmetric weights are chosen such that *_j=rj, j = 1,2,...,t. For an input step

edge the output of such a SICNN was shown in Figure 4.3(b). If this output is first

demeaned, then the position of the edge corresponds to the zero-crossing in the output.

Using symmetrical weights also gives a peak at the edge position, hence the edge can also

0

o=1
o = 10
o = 100
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Effect of Weight Distribution on the Performance

be located at the position of the maximum output. Thus, for a SICNN with symmetrical

weights either zero-crossing or maximum thresholding can be used to detect edges.

Anasymmetricalweightdistributionhaswr=0forj>0'ASICNNwithasymmetrical

weights has a peak in its output at the position of the edge as shown in Figure 4.4(a) - so

maximum-based thresholding is used to locate the edge. Of course, if the weights are

chosen randomly, then any edge in the input may not appear as a peak in the output. The

step edge responses for both the symmetrical and asymmetrical rectangular weight

distributions are compared in Figure 5.16, where the sum of weights (W) for both

distributions is equal to l.
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Asvmmetric Weiohts
Syínmetric Weigñts

à
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Figure 5.16 SICNN step edge responses for the asymmetrical and symmetrical
rectangular weight distributions. ln both cases, W = 1, r = 5, â = 0.01, lo = 10,

and c = 0.25.

Figure 5.17 compares the edge detection results of the SICNN with asymmetrical and

symmetrical, rectangular weight distributions. For the SICNN with the symmetrical

weights, the edge is detected using both zero-crossing thresholding (ZCT) and maximum

thresholding (MT). The SICNN with asymmetrical weights has, in general, better

performance than the SICNN with symmetrical weights using either ZCT or MT. For ENR

greater than about 10 dB the SICNN with symmetrical weights and ZCT has slightly

better HR than the SICNN with asymmetrical weights but worse ESD and EB. For the

SICNN with symmetrical weights, using zero-crossing thresholding is always better than

using maximum thresholding.

2 68101214161820
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An obvious factor which causes the performance of the SICNN with symmetrical weights

and ZCT to be worse than that of the SICNN with asymmetrical weights, is the extra

processing step needed for locating the largest zero-crossing. This is essentially a

derivative-like operation, and it can cause the performance to deteriorate.

- 
Asymmetric w(j)
Symmetric wû) - ZCT

- - Symmetric w(i) - MT
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Figure 5.17 SICNN performance with the asymmetrical and symmetrical
rectangular weight distributions with zero-crossing (zcT) and maximum
thresholding (MT). Both SICNN have W = 1, t = 5, a = 0.01, lo = 10, c = 0.25
and additive Gaussian noise.

5.4.2 Varying Weight Distribution Shape

We discussed in Section 5.3.3 that the PNR decreases as the sum of squared weights,

SSW increases. By increasing SSW the peak response does not change, only the output

noise increases, provided the decay factor andW are constant. Thus, when SSW varies we

only need to consider the output noise variance and not its peak response.

'We showed in Section 5.3.1 that by increasing SSV/, the output noise variance increases,

causing the ESD to increase. When we increase SSW for a fixed W, the width of the

SICNN edge response decreases and from Section 5.3.2 this increases the HR.

Figure 5.18 shows the performance of the SICNN with the Kaiser weight distribution

(Proakis and Manolakis, 1992). The Kaiser distribution has a free parameter p which
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varies the shape of the weights and hence the SSV/' F = 0 gives the rectangular weight

distribution, and as p increases, the width of the edge response reduces causing both the

SSW and output noise variance to increase.

The decay factor is chosen to ensure that the value of Û gives optimal performance

according to Table 5.1. The results in Figure 5.18 indicate that increasing p increases the

ESD since a larger p gives a weight distribution with larger SSW and output noise

variance. Increasing p causes the edge response to become natrower, hence the HR

increases, as discussed in Section 5.3.2.
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Figure 5.18 SICNN performance as a function of p for the asymmetrical Kaiser
Weight distribution, with fu=0.239, r=5, lo=10, c=0.25 and additive
Gaussian noise.

'We can also interpret the results in Figure5.18 by examining the weight distribution's

spectrum. Although the SICNN is not linearly related to that of weight distribution, it is

still insightful to examine the characteristics of the weight's spectrum, such as the main-

lobe width and sideJobe heights, and quantitatively link them to the performance. V/hen

Þ = O the Kaiser distribution is identical to the rectangular weight distribution, hence the

main-lobe width is smallest.'We saw in Section 5.3.1 that the SICNN with this rectangular

distribution has the smallest ESD which we can see in Figure 5.18. It also has poor HR,

which we expect from the shape of the edge response with the rectangular weight
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distribution. By increasing p, the main-lobe width increases and the side-lobes decrease,

resulting in both the HR and ESD increasing. Thus, B gives a trade-off between

spectrum's main-lobe width and the side-lobes, which is reflected in the trade-off between

the HR and ESD.

5.4.3 Neighbourhood Size

For any linear filter with a fixed shape of weight, the size or support of the filter

determines its frequency characteristics and hence its performance with noisy signals.

Consider a linear edge detector, such as Canny's operator; by increasing the

neighbourhood size we reduce the output noise, but we also reduce the resolution of the

edge response. Thus, there is an inherent trade-off between the amount of noise smoothing

and the resolution of the edge response. Likewise for the SICNN, if we change only the

neighbourhood size, then both the output noise variance and its resolution to any input

edge must be affected.

For a given decay factor andW, the neighbourhood size does not affect the peak response,

whereas, from EQ (5.3), it does affect the output noise variance by varying SSW. For

example, for the asymmetrical, rectangular weight distribution with constant W, the SSW

is (I/r) where r is the neighbourhood size. Hence, we expect that by increasing 6 and thus

decreasing SSW and the output noise variance, we can improve the HR and ESD. As the

neighbourhood size increases, the edge response becomes broader as evident in

Figure 5.19, hence the HR decreases.

In Figure 5.20 the HR decreases as its neighbourhood size increases since we are

continually increasing the width of the edge response. The ESD also decreases as its

neighbourhood size increases since increasing the weight distribution's neighbourhood

size with fixed Wcauses the output noise variance to decrease, which fiom Section 5.3.1,

causes the ESD to decrease. For very noisy inputs, the HR is affected by the output noise

variance, so increasing r causes the HR to actually increase slightly.
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Figure 5.19 SICNN edge response for neighbourhood sizes of 5, 10 and 15. The
weight distribution in all cases is asymmetrical and rectangular, with tal = 0.239,

lo= 10,and c = 0.25.
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Figure 5.20 SICNN pedormance as the neighbourhood s¡ze varies. The SICNN
haé an asymmetrical, rectangular weight distribution with fu = 0.239, lo= 10,

c = 0.25 and additive Gaussian noise.
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5.5 Conclusion

This Chapter provided an in-depth analysis of the factors of the SICNN edge response

which affect its edge detection performance, and how the SICNN parameters affect these

factors, and hence the edge detection performance. We first defined three performance

measure, trattrely the HR, ESD and EB, as well as the parameters associated with an input

erlge, snch as the contrast and ENR.

The edge detection performance is essentially determined by three factors:

. the output noise variance,

. the shape of the weight distribution and hence the edge response, and

. the peak response to noise ratio (PNR)

Increasing the output noise variance increases the likelihood of misdetecting the edge,

hence the performance decreases. Making the shape of the edge response naffower

increases the HR, while increasing the PNR also improves the HR and ESD. The three

factors listed above are not always independent. For example, changing the shape of the

edge response also changes the output noise variance and the PNR. The PNR was defined

as the minimum of PNR, and PNR, with respect to the lower and upper output

background intensities, respectively. For a given 1o and W, the decay factor that gives

maximum PNR approximates the optimal decay factor, and it was found to be proportional

to 10. The SICNN with the asymmetrical weight distribution, in general, performs better

than the SICNN with the symmetrical weight distribution. The weight distribution's SSW

determines both the output noise variance and the shape of the edge response. Increasing

SSW causes the output noise variance to increase which increases the ESD. Also,

increasing sSV/ gives a narrower edge response, hence the HR increases.

Finally we investigated the effect of the neighbourhood size on the edge detection

performance and found that increasing the neighbourhood size decreases both the HR and

ESD. For a fixed W and shape of weights (e.g. rectangular weights), increasing the

neighbourhood size decreases the SSW and output noise variance, hence the ESD

decreases. Increasing the neighbourhood size also increases the width of the edge

response, hence resulting in a decrease in the HR.
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Cftøpter 6 Choice of Optimal

S/CNN Parameters

6.1 lntroduction

In the preceding two Chapters we investigated the effects of varying the SICNN

parameters on the output noise variance and edge detection performance. In this Chapter

we investigate how these SICNN parameters can be chosen to optimise the edge detection

performance. We begin with the SICNN weight distribution. Vy'e observed in Chapter 5

that, for a given sum of weights, its shape affects both the HR and ESD. The weight

distribution which simultaneously optimises both the HR and ESD is constructed as a

constrained numerical optimisation problem, and is then solved using Lagtange

multipliers. The optimal weight distribution and the corresponding performance is

compared to that of the SICNN with the rectangular, triangular and Gaussian weight

distributions.

In Section 6.3 we investigate the decay factor, which we showed in Chapter 5 affects the

edge detection performance. The experiments in Section 5.3.3 showed that for a given

sum of weights, mean input intensity and contrast, there exists a decay factor which

maximises the HR, minimises the ESD, and results in zero EB. The optimal decay factor is

then defined as the decay factor which gives zero EB. In Chapter 5 the optimal decay

factor was found to be approximately equal to the decay factor that maximises the SICNN

PNR. However, since the decay factor from the PNR method is slightly different to the

experimentally optimal one, we are likely to obtain suboptimal performance. Thus, in this

Chapter we investigate another technique of estimating the optimal decay factor by

considering the strength of the SICNN output on either side of the discontinuity.

Analytical expressions are derived for this decay factor which relate it to the edge and
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SICNN parameters, for both multiplicative and additive noise. Empirical estimates for the

optimal decay factor are presented for both l-D and 2-D synthetic edges and for different

noise and weight distributions.

Up to this point a linear activation function has been used since it simplifies the

mathematics considerably. In Section 6.4 we investigate a number of nonlinear activation

functions and their effect on the 1-D erlge detection performance.

6.2 Optimal Weight Distribution

We observed in Chapter 5 how the sum of the squares of the weights SSW affects the

SICNN output noise variance, and hence its performance, particularly the ESD. The shape

of the weight distribution, which is related to SSW for a given I4z, also has a signif,cant

influence on the HR. These two conditions actually oppose one another. In general, if the

weight distribution is chosen to maximise the HR, then the output noise variance and ESD

will also be large. Thus, in this section we formally define the conditions needed to

maximise the HR and minimise the ESD, and derive the weights simultaneously optimise

both measures using Lagrange multipliers.

We show that the shape of the resultant optimal weight distribution depends upon the

amount we choose to penalise a broad weight distribution in the optimisation process. The

edge detection performance is then compared using the optimal weight distribution as well

as the Gaussian and rectangular weight distributions.

6.2.1 Optimal ity Criteria

In the experiments of Chapter 5, the relationship between the shape of the weight

distribution and the SICNN edge detection performance was investigated. In particular it

was found for a given W that, the smaller the SSW is, the smaller the SICNN output noise

variance and hence the smaller the ESD. A narrower weight distribution shape, however,

has larger SSW and hence results in a larger HR. These two requirements for the weight

distribution are inherently conflicting.

To determine the weights that simultaneously has a small SSW and narrow edge response,

we need to
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z*?
J=-r

, and
U2

minimise S, =

maximise S, = Z.,rl¡lo,p>0, i+0
r

l=-r
r

subject to > *j = | ,rjrT Yi, i +0.
j =-r

p is the weight attenuation factor or simply the attenuation factor. The first condition

seeks to minimise SSW, i.e., minimise the ESD, while the second term attempts to make

the weight distribution's shape or edge response as naffow as possible. The first term has a

square root to maintain consistency in the dimensions of w, in the optimisation process.

The term [7l in the above expression to be maximised, measures the distance of pixel i
from the centre element of the mask. Thus, p, determines how nalTow the derived

distribution is: a larger p gives smaller weighting to those weights w, with large j, hence

the distribution is forced to be narrower. In fact, it is easy to show that increasing p

increases SSW. Note that when p = O in the above formulation, there is no longer any

means of making the weight distribution narrow since þla = 1 Vj, hence we only

minimise the SSW, which from Section 5.3.1, results in the rectangular weight

distribution.

The above optimisation problem can be re-expressed as

maximise f =

L't'l¡l'
EO (6.1)

2,?
I =-r

I t2' p>0, j *os2

E

r

subjectto > .j = l,*jrO,wo*O
l=-r

Using the Lagrange multiplier method (Reklaitis et al., 1990), the problem can be written

as

^(

r

maximise F = l+ 2,,
J=-r

The equations to solve for the extremum are

l-
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òF
ò*¡ EO (6.2)

EO (6.3)

eN¡

To show that F is maximised, its Hessian matrix Ë1is first computed, where

òF

-dlv (1- ,j - 0.
)J

H =Y2F =

The stationary point found from EQ 6.2) and EQ (6.3) is a maximum if F1 is negative

semidefinite, otherwise the stationary point is either a minimum or a saddlepoint (Reklaitis

et al., 1990). To solve EQ (6.2) and EQ (6.3), and to compute and check that the Hessian is

negative semidefinite, aÍe both tedious and difficult for r > 2. Instead, these equations are

solved numerically using optimisation programs while the Hessian is computed first by

using a symbolic maths software (Maple V), evaluated numerically, then checked to

determine if it is negative semidef,nite.

From the above derivation, it might appear that we can optimise EQ (6.1) with respect to

the weight attenuation factor as well. Now, as the attenuation factor only affects the

numerator of EQ (6.1), we would only need to maximise the term w,/l¡ln for 7 > 1 , or in

other words minimise the value of p, which is zero. However, we noted above that if
p = 0, then the term that penalises a broad weight distribution no longer has any influence

in the optimisation process, hence we only minimise SSW which results in the rectangular

weight distribution.

6.2.2 Performance w¡th Varying Weight Attenuation Factor, p

Figure6.1 shows the optimal l-D weight distribution obtained from the above

optimisation for r = 5 and various values of the weight attenuation factor. Note that for

the weights derived here, the Hessian is always negative semidefinite. For p = 0.5, the

weight distribution is almost rectangular - in fact if p = 0 we obtain the rectangular

weight distribution. As p increases, the weight distribution becomes naffower.

Figure 6.2 shows the edge detection performance for a step edge input with the weight

distributions shown in Figure 6.1. The smaller the value of p, the smaller is the resulting

ESD and HR. Thus, varying the weight attenuation factor p, provides a trade-off between

good ESD performance and good HR performance.

l-ar It_t
lòw,òw,l
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To further illustrate the trade-off between the HR and ESD, Figure 6.3 shows the edge

detection performance of the SICNN with the optimal weight distribution as a function of

_p=0s
-- P=1""'P=2
'- -P=5
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the weight attenuation factor, p. In general, as p increases, both the ESD and HR increase.

This is expected since for p = 0 the optimal weight distribution is in fact rectangular in

shape, and we showed in Section 5.3.1 that a SICNN with the rectangular weight

distribution has the smallest ESD and HR compared to the SICNN with the triangular and

Gaussian weight distributions.
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Figure 6.3 SICNN performance with the optimal weight as the weight attenuation
factor varies. The input edge has lo = 10, c = O.25, ENR = 10 dB with additive
Gaussian noise.

6.2.3 Comparison w¡th Other Weight Distributions

Now we compare the performance of the SICNN with the optimal weight distribution to

that of the SICNN with the rectangular and Gaussian weight distributions. Figure 6.4

shows the rectangular, Gaussian, and optimal weights for p - 0.5 and 1. Note that both

optimal weight distributions decrease more rapidly than the Gaussian distribution, but

tend to level off for large j.

r=5
r=10
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Figure 6.5 shows a performance comparison of the SICNN with these weight

distributions. Overall, the SICNN with the rectangular weight distribution has the smallest

HR and ESD, as expected. The SICNN with the P = | optimal weight distribution gives

the largest HR, while the SICNNs with the Gaussian and optimal (p = 0.5 ) weight

distributions have almost the same HR. For the ESD, the SICNNs with the Gaussian and

optimal (p = I) weight distributions are very similar, whereas the SICNN with the

p = 0.5 optimal weight distributions has slightly smaller ESD, though still worse than the

SICNN with the rectangular distribution.

Thus, the performance of the SICNN with the optimal weight distribution is, in general, in

between that of the SICNN with rectangular and Gaussian weight distributions. This

comes from our optimisation process for deriving the optimal weight distribution, where

varying the weight attenuation factor provided the trade-off between good ESD and good

HR. Note, however, that the p = Loptimal weight distribution is better than the Gaussian

weight distribution since the SICNN with this optimal weights has the same ESD but

larger HR than the SICNN with the Gaussian weights.
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6.3 Optimal Decay Factor

The experimental results in Section 5.3.3 showed that for a given sum of weight and mean

input intensity, there is a decay factor that simultaneously optimises the HR, ESD and EB.

The optimal HR and ESD occur for the decay factor that gives zero (or near zero) EB. V/e

also showed that this decay factor is approximately equal to the decay factor that

maximises the PNR.I

Although it is easy to compute the decay factor that maximises the PNR, because it is
different to the experimentally optimal value, it would still result in a suboptimal edge

detection performance. Therefore, in this section we describe an alternative approach to

computing the optimal decay factor that, even though it is computationally more intensive

and mathematically not as elegant, can give better performance than the decay factor

obtained from the PNR.

The decay factor that maximises the PNR is only approximately equal to the experimentally optimat decay factor
because the PNR does not take into account the shape of the weight distribution, which affects the HR, and also the
expression for the PNR used the linearised SICNN output noise variance which may not hold for very noisy inputs.
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\ü/e begin with the general derivation of the optimal decay factor and then consider the

cases for additive and multiplicative noise. We compare the performance of the SICNN

with the empirically optimal decay factor, the decay factor that maximises the PNR, and

the decay factor derived in this section. Finally, the analysis of the optimal decay factor is

then extended to a 2-D synthetic image consisting of step edges of different mean

intensities and contrasts.

6.3.1 Derivation

Recall from the experimental results in Section 5.3.3 that the decay factor that gives zero

EB also maximises the HR and minimises the ESD. Our objective now is to find a means

of determining the decay factor that gives zero EB, and thereby optimises the

performance. A simple approach is to find the decay factor that gives uniform noise

intensity across the entire output. When this occurs, it is likely that the noise does not bias

the location of the detected maximum neither to the left or right of the true edge position,

resulting in near-zero EB.

This is illustrated in Figure 6.6 where (a) shows a noisy step edge input to the SICNN, and

(b) shows the output when a << IoW;the EB will be negativel for this output. Figure 6.6(c)

shows the case when a >> IoW , where the output is almost a scaled version of the input and

hence the EB will be positive, while (d) shows the output when the decay factor is selected

so that the EB is close to zero. The total noise level is roughly uniform across the entire

output, resulting in zero EB.

In this derivation, we use the "-" symbol to denote all pixel to the left of the edge

discontinuity and the "+" symbol for all pixels top the right of the discontinuity. With the

results of Figure 6.6 in mind, the SICNN response to a noisy step edge should

approximately satisfy

p_ + ì"o_ = F* * Ào* Eo (6.4)

where ì, is a constant, and p_ + Ào_ and F* + Io* are the total noise intensity to the left

and right of the discontinuity, respectively. ¡r_ and p* are the lower and upper output

background intensities, respectively, and o_ and o+ are the output noise variance to the

l. The EB is measured relative to the edge position, which occurs at pixel number 101 in Figure 6.6.
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left and right of the edge discontinuity. Using the shorthand notation I_ = Io(l-c),
I * = Io(1 + c), and assuming a linear activation function, we can write

In(l-c) I_
tt 

- 

-:_

r-- a+ls(l-c)W a+l_W'

1o(1+c) I+

a+10(l+c)W a+I*W

EO (6.5)

EO (6.6)

EO (6.8)

þ*=

250

200

't 50

50

2.5

2

't.5

1

0.5

o

-o.5

x 1O'

4

3

2

1

o

0 50 100 150 200

50 100 150 200
(a)

(a+I_W)2+I?SSW

0 50 100 150 200

100
(b)

150 200

(a+I*W)2+IISS W

-'l

1.5

-0.5

050

o5

o

(c) (d)

Figure 6.6 SICNN output for different decay factor values. (a) shows the input, and
the output is shown when the decay factor is (b) much smaller than the to, (c) much
larger than lo, and (d) chosen so that the EB is zero.

Using the expression for the output noise variance derived in EQ (4.17), we can write the

output noise variance to the left and right of the discontinuity as, respectively,

C2=
(a+I_W)2+I?SS

(a + I_W)a
EO (6.7)

^ (a + I*W2 + IISSW 
^ol=6oî,,

where o!, is the input noise variance. using these expressions, Ee (6.4) becomes

120
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The decay factor that solves this equation is a root of a 5th order polynomial, the

coefficients of who depend upon À , Io, c , W and SSV/. In fact, we have already seen the

dependence of the decay factor on 10, c, and lV in Section 5.3.3. Unfortunately, the roots

of this polynomial can only be found numerically, but if we assume that SSV/ is

negligible, then the solution to EQ (6.9) is

a = }uO,rW. EO(6.10)

Thus, the optimal decay factor, i.e., the decay factor that gives zero EB, is only dependent

upon the ?" , 6 in, and W . The value of I4z is set by the user, and o can be estimated from

the input, the task now is to estimate 1,.

Multiplicative Noise

V/ith multiplicative noise the standard deviation of the input noise's distribution is

proportional to the intensity of the underlying signal. Thus,

6rn,- = Q'I-

6¡n,* = QI*

where Q is aconstant of proportionality, and olr,- and oln,, are the noise vatiance to the

left and right of the edge discontinuity, respectively. Rearranging EQ (6.7) and EQ (6.8)

and inserting the above expressions for the noise, we obtain

(a + I_W)2 +I?SSW
QI -, andO=

(a + I-W)

(a+I*W2+llSS w
QI *-O. =+ (a + I *W)2

From EQ (6.5), EQ (6.6), and these two equations above, if we set a = O, then

I_ Iþ--lw-w'

p ÐF+ = F-'

QI (I-W)2 + ssw

I+ 1

I*W W+

o

QI*
z
+

+

Pw2

(I *W)2 +o I w
+ ssw

w +O, = O+-
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So, choosirrs a = 0 ensures that both the output background intensities and the output

noise variances are equal on both sides ofthe edge discontinuity, the condition needed for

zero EB, as desired.

6.3.2 Determining l, for 1-D Edges

We derived above the decay factor that gives zero EB, and showed that it depends on the

constant À. This constant cannot be derived analytically, so in this section we

experimentally or empiricallyl determine its value. These À values are tabulated for the

SICNN with the rectangular, triangular, Gaussian, and optimal weight distributions for

inputs with different noise and ENR.

To determine the optimal decay factor using EQ (6.10), the input noise strength needs to

be estimated. For a 1-D step edge, the noise is first estimated by computing the local noise

varianceateachpixelof theinputusingaslidingwindowof length 2r+I,where r isthe

neighbourhood size. The noise variance for the entire signal is then taken to be the median

value of all these local noise variance estimates.

Additive Noise

Figure 6.7 shows the SICNN edge detection performance for four different l. values used

to estimate the optimal decay factor for a step edge with additive Gaussian noise. Different

À values result in slightly different EB, but both the HR and ESD are essentially the same.

The optimal 1", i.e., the À that results in near zero EB, is between 2.8 or 2.9 in this case.

Also note that the EB is only large for very noisy inputs, i.e., for very low ENR values.

This result suggests that small perturbations to the value of À have a negligible effect on

the performance, particularly the HR and ESD. Figure 6.8 shows the performance for the

rectangular, triangular and Gaussian weight distributions, as a function of 1,. As À or the

decay factor increases, the HR decreases slightly, while the ESD decreases by about only I

pixel. Thus, large variations in l, cause only small changes to the edge detection

performance.

1. By empirically determining the decay factor, we vary the decay factor until we obtain zero EB by Monte Carlo
simulations.
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Figure 6.7 SICNN performance when the optimal decay factor is estimated using
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r = 5, with lo = 10, c = 0.25, and additive Gaussian noise.
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Figure 6.9 shows the edge detection performance for step edges with uniform noise, using

the optimal decay factor estimated for four different values of À. In this particular case,

the value of l, which gives zero EB is about 2.3. Again although the different À values

cause the SICNN to have different EB, both the HR and the ESD are essentially identical.
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Figure 6.9 SICNN pedormance when the optimal decay factor is estimated using
four values of À. The SICNN has asymmetrical, rectangular weight distribution,
r = 5,with lo = 10, c = 0.25 andadditive uniform noise.

Figure 6.10 shows the performance for the rectangular, triangular and Gaussian weight

distributions as a function of À. The input has uniform noise. Although the EB can vary

over a large range, both the HR and ESD change by only very small amounts.

Thus, in this section we have derived a simple equation and method of determining the

decay factor from the input signal to give near zero EB for step edges with additive

Gaussian and uniform noise. Furthermore, the SICNN edge detection performance is very

robust to variations in the value of I used to estimate the optimal decay factor.

Regardless of this robustness of variations of HR and ESD with respect to I, we would

still like to choose l, so that the EB is as small as possible. Table 6.1 gives the empirical

values of À that result in the smallest EB over a wide range of ENR for the rectangular,

triangular and Gaussian weight distributions. Table 6.2 gives the optimal 1. values for the

À=
À=I=
À=

2.2
2.3
2.4
2.5
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SICNN with the optimal weight distribution with p - 0.5, I and 2. In each case, the

indicated value of À minimises, in the mean square sense, the aggregate of the EB

computed for noisy step edges with ENR varying from -35 dB to 50 dB. This optimal l,

value is also given for step edges smoothed with a Gaussian filter of length 2r + I . The

performance plots from which these values are derived are given in Appendix B.
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Figure 6.10 SICNN performance when the optimal decay factor is estimated for
differentvaluesof À.TheS|CNN has r = 5,withlo = 10, c = 0.25, ENR = 10 dB

and additive uniform noise.

Table 6.1 Optimal À for rectangular wp, triangular w¡ and Gaussian w6weight

distributions.
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Table 6.2 Optimal À for the optimal weights with attenuation factors 0.5, 1 and 2

Multiplicative Noise

Figure 6.11 shows the performance on step edges with multiplicative noise when the

decay factor is set to zero.Ceafly the EB is, in general, less than about 1.5 pixels and often

less than 1 pixel. Thus, choosing a = 0 appears to be the appropriate choice for zero EB,

as predicted from the derivation above. Obviously such a detector is also easy to

implement in practice as no noise parameters need to be estimated from the input signal.
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These findings should not surprise us since we saw in Section 4.3.1 that the SICNN acts as

a nonlinear filter with respect to the input intensity. In particular, from EQ g.l7) or large

input intensities, the output noise variance is inversely proportional to the square of the

input intensity. Thus, the SICNN has an in-built automatic gain control of sorts. For

multiplicative noise, the SICNN tends to "urìdo" the nonlinearities of the input noise.

Later we will see the advantage of this network compared to linear filters for edges with

multiplicative noise.

6.3.2.1 Comparison of Optimal Decay Factor Using thelu and PNR Methods

In Section 5.3.3 the decay factor that theoretically maximised the PNR was shown to be

close to the empirically optimal decay factor. Although it is easy to solve this equation to

obtain the decay factor, the small difference between this value and the optimal one may

result in significant suboptimal performance. The "lambda" method of deriving the

optimal decay factor as described in this section, however, may be computationally more

intensive and not as elegant as the method given in Chapter 5, but it does appear to give a

smaller EB over a wide range of ENR.

Figure 6.12 compares the performance with the decay factor from the PNR method, the

lambda method with l, - 2.8, and also using the empirically optimal value. The SICNN

with the decay factor estimated using the lambda method has almost identical

performance to the SICNN with the empirically optimal decay factor. Both these SICNNs

have near zero EB, even for very low ENR. The decay factor estimated from the PNR

method gives a smaller HR than either of the other two SICNNs for ENR greater than

about 5 dB, and also has a very large negative EB for ENR less than about 5 dB. This EB

causes the ESD with the PNR method to be smaller than that of the other two SICNNs,

particularly for ENR less than about 5 dB.

6.3.3 Optimal Decay Factor lor 2'D lmage

The results for the optimal À for l-D step edges are extended to the 2-D case by

investigating the SICNN performance on the 2-D synthetic image shown in

Figure 6.13(a). The image consists of a series of step edges of different contrast. The mean

intensity of the entire image is 62, while the contrast averaged over all edges is

approximately O.52. The ENR of the image is computed as per the l-D edges but with

these values of intensity and contrast.
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Figure 6.12 SICNN pedormance with the decay factor computed in three different
ways. The SICNN has symmetrical, rectangular weight distribution with r = 5,
lo = 10, c = 0.25 and additive Gaussian noise.

In 2-D, the usual l-D measures such as the HR, ESD and EB are no longer applicable, so

we need a new performance measure. Consider the SICNN output to an input containing

one or more edges. If we threshold this output, then all pixels whose intensities are greater

than the threshold are declared to be edge pixels. Consider the two hypotheses : H, , the

hypothesis that a SICNN output pixel is an edge pixel, and É10, the hypothesis that a

SICNN output pixel is not an edge pixel. 'we 
can then define (Poor, 1988, pp. 3l-33):

. False alørm (FA) probøbility or rate as the probability that we accept F1, given that

ËIn is true.

. Probøbílity of detection (PD) or the detection rate is the probability that we accept f/,
given that H, is true.

Thus, given that we threshold the output of the SICNN, the FA is the probability that any

pixel whose intensity exceeds the threshold is actually a non-edge pixel, while the PD is

the probability that the intensity of the true edge pixel in the output will exceed the

threshold. Ideally, the FA should be zero and the PD should be one. The PD vs. FA curvc

can be obtained by varying the threshold and measuring the PD and FA for the output with
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each particular threshold. Figure 6.13(b) shows the PD vf . FA curves for two different

ENR values.
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Figure 6.13 (a) The 2-D synthetic image, and (b) shows typical probability of

detection vs. false alarm curves for two different ENRs.

In order to compare the 2-D edge detection performance, the area under the PD vs. FA

curve for a given ENR is measured, as expressed by EQ (6.11). For a given FA, we would

like the PD to be as large as possible, hence curves with larger integrals or areas indicate

better edge detection performan""l. Note that when there is no noise we obtain the

maximum possible area of 1, whereas the minimum possible area of 0.5 is obtained when

there is so much noise present on the signal that it is equally probable to detect the edge

pixel as it is to detect a non-edge pixel.

EO (6.11)

Table 6.3 gives the value of ì. which maximises the area under the PD vs. FA curve for a

SICNN with the asymmetrical, rectangular weight distribution, while Table 6.4,Table 6.5,

and Table 6.6 give the values of l, and also the weight attenuation factor which maximise

the area for the SICNN with the asymmetrical, optimal weight distribution. Due to

computational considerations it is not possible to test every possible value of À for the

optimal weight distributions (as p must also be varied), hence the performance is only

simulated for À equal to 0, 0.5, 1, I.5,2,2.5,3,3.5 and 4. The results are also presented

1. This makes the assumption that the PD vs. FA curves for different ENR do not have irregular shapes, hence the area

is a valid reflection ofthe performance.

Dd
I

=Jr
0

reaA FA(
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for the case when the input is smoothed with a Gaussian filter of length 2r + l. The

relevant Figures used to determine these tables are presented in Appendix B.

Table 6.3 Optimal ?u tor 2-D synthetic image for the SICNN with the rectangular
weight distribution.

Table 6.4 Optimal ì. and p for the synthetic 2-D image with multiplicative noise

Table 6.5 Optimal À and p for the synthetic 2-D image with additive Gaussian noise.
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Tabte 6.6 Optimal À and p for the synthetic 2-D image with additive uniform noise.

6.4 Activation Function

To this point in all our work we have only considered the linear activation function

l@) = .r. The simplicity of its form not only eases the implementation of the SICNN, but

it also greatly simplifies, in many cases, the resulting algebraic equations. By using this

function, however, we may be implicitly ignoring other functions which may give better

edge detection performance. We now look at two other functions and their effects on the

edge detection performance.

The linear activation function, in the biological neural network sense, implies

unconstrained firing as the cell's state becomes unconstrained (or infinitely large). A more

biologically plausible activation function, and one used more often in neural networks, is

the sigmoidal activation function. Here we are particularly interested in the hyperbolic

tangent function, f (x) = tanh (x,/B) and the saturating exponential function,

f@) = (1-exp (x/þ)), where p is a constant related to the slope of the curve at the

origin.

For each of these activation functions, we consider three different functions, as shown in

Figure 6.14. For each particular function we are interested in one that rapidly reaches

saturation, another that reaches saturation extremely slowly, and a third that is somewhat

in between these two and similar in shape to the linear activation function. The three

different implementations of the functions are produced by varying the slope parameter p .

Here, B equal 1, 10 and 100.
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Figure 6.14 comparison or (a) the t".ÁtLlifî¡il$lactivat¡on runctions, and (b) the
saturating exponential and linear activation functions. ln both cases Þ = 1, 10 and
1 00.

6.4.1 The Saturating Exponential Function

Consider first the function f (x) = (1-exp (-x/þ)). The SICNN performance with this

activation function compared to the linear activation function is shown in Figure 6.15. The

decay factor for each SICNN is varied until the smallest possible edge bias is achieved.

The SICNN with the linear activation function clearly produces the best results when

compared to the performance using the other three functions. Only the performance with

Þ = 100 is comparable, though still inferior. The results for B = 1, l0 are so bad that the

best possible EB is about 50, resulting in large ESD and zero HR. So the performance with

the saturating function is clearly inferior to that with the linear function. The performance

also appears to vary significantly with B ; a change of one order of magnitude in p causes

the performance to change from good to very bad. We also found that the performance

curves vary with the mean input intensity, though the performance is still inferior to the

SICNN with the linear activation function.

0(1 -e^(-x))
0(1 -e^(-xl1
0(1 -en(-xl1

f=1
f=1

-- f=1
f=x
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Figure 6.15 SICNN performance with the 
'saturating exponential and linear

activation functions. The SICNN has asymmetrical, rectangular weights with r = 5,
lo = 10, c = 0.25 and additive Gaussian noise.

6.4.2 The Hyperbolic Tangent Function

Now we investigate the performance of the hyperbolic tangent function, tanh(x/þ).

Again three different functions were implemented by varying the value of p. Figurc 6.16

shows the results for an input edge with additive Gaussian noise. Once again the edge

detection performance of the SICNN with linear activation function is the best of all those

considered. The performance with the tanh function with Þ = 100 is relatively close' but

still inferior. The results with the other two functions, Þ = 1, 10' are both very bad with

large EB, even for large ENR. This results in a large ESD and zero HR, both of which are

bad. Once again the performance of the SICNN with the tanh activation function depends

critically on the value of P. Small variations in B can result in large changes in the

performance, which is highly undesirable. As with the saturating exponential activation

function, the performance curves vary with the mean intensity, though they are still

inferior to that of the SICNN with the linear activation function.

In this subsection, we have investigated two different activation functions, both of which

exhibit saturation. The SICNN performance is clearly inferior to that of the SICNN with

the linear activation function. The performance of these SICNNs also varies greatly with
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the value of p, implying that the activation function must be chosen carefully to obtain

good results, results which are still not as good as those obtained with the linear function.

Another advantage of the linear activation function is that the derived mathematical

expressions are relatively simple, which would not be the case were we to use a nonlinear

activation functittn. We have also seen that using a linear function makes the selection of
certain SICNN parameters, such as the decay factor, very easy and straightforward to

compute.
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Figure 6.16 SICNN performance with the tanh and linear activation functions. The
SICNN has asymmetrical rectangular weights with r = 5, lo = 10, c = O.2S and
additive Gaussian noise.

6.5 Gonclusions

This Chapter has provided algorithms to determine the SICNN parameters which optimise

both its l-D and 2-D edge detection performance. 'We began with the weight distribution,

and using constrained optimisation derived the weight distribution that simultaneously

optimises the HR and ESD. The shape of this optimal weight distribution can vary, but is

somewhat in between that of the rectangular and Gaussian weight distributions. The shape
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of this optimal weight distribution is varied using the weight attenuation factor, thus

allowing us to trade-off good HR for good ESD.

Next we derived the decay factor which gives zero EB in the l-D edge detection process.

For multiplicative noise, the optimal decay factor is zero. For additive noise, the optimal

decay factor was shown to be proportional to the product of the noise intensity present on

the input signal and the sum of weights. The value of this constant of proportionality 1,,

computed by numerical simulations, was presented for both l-D and 2-D synthetic edges

and for different weight distributions. The optimal value of À was also found for the

optimal weight distribution with various values of the weight attenuation factor. The

SICNN performance with the decay factor estimated with this method had comparable

performance to that of the SICNN with the empirically optimal decay factor. Both of these

decay factors gave better performance than the decay factor estimated using the PNR

method from Chapter 5.

Finally, we briefly investigated the perfornance of the SICNN with nonlinear activation

functions, namely the saturating exponential and hyperbolic tangent functions. The

SICNN with either of these two weight distributions performed very badly compared to

the linear activation function. In fact, in many cases it was not possible to select the decay

factor to ensure zero bias. Given that these functions are nonlinear, and that they give poor

performance, for the remainder of our work we use the linear activation function.
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Cftøpter 7 Postprocessing

Methods for Edge
Detection

7.1 lntroduction

In this chapter we investigate ways in which the SICNN output can be processed to

improve its edge detection performance. For different SICNN parameters, different

outputs are obtained, and if these outputs are appropriately combined, then the overall

performance can be improved. Some of the methods discussed here are not only relevant

to the SICNN, but can also be applied to other edge detectors.

\ü/e begin the investigation of scale-combination postprocessing by first briefly reviewing

the scale-space literature and showing its relevance to the SICNN.'We already know that

the SICNN has different edge detection performance depending upon its scale, or

neighbourhood size. Indeed, this is also true of most edge detector operators. Large scale

operators have good noise reduction properties, whereas small scale operators have good

resolution. Thus, by combing them both good resolution and good noise-reduction can be

achieved. An algorithm is presented for tracking the edges in the SICNN output or both 1-

D and 2-D synthetic images, as its neighbourhood size is gradually and continually

decreased.

In a similar manner, the SICNN output, and hence its edge detection performance, varies

as a function of the shape of its weight distribution. We investigate tracking the edges in

the output as the weight distribution's shape is varied from a very broad one to a very

narrow one. Again, for a broad weight distribution, the SICNN has good noise reduction

properties, whereas for a narrow distribution it has good resolution. By tracking the edges

as the weight distribution is varied, both high accuracy and good noise reduction
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properties can be obtained. The optimal weight distribution with varying weight

attenuation factor is used, and results are presented for both 1-D and2-D synthetic edges.

Next we investigate combining the outputs for different weight distributions and

thresholding. The SICNN can have either symmetrical or asymmetrical weights, and the

edges in either output can be deLected by either maximum or zero-crossing thresholding.

The increase in the edge cletection performance by combining various outputs is

investigated.

In Section 7.5 we investigate the increase in the edge detection performance by combining

the outputs of SICNNs with identical, but reversed in direction, weight distributions. The

edge responses of such SICNNs have opposite polarity compared to the background mean

intensity, hence they can be appropriately combined to produce an edge response which is

greater than either of the two edge responses alone.

Finally, a simple postprocessing technique which can be used with most edge detectors is

investigated. The performance can be greatly improved by identifying and eliminating

edge pixels in the output which are isolated from the other edge pixels, or have reasonably

few neighbouring edge pixels. Such isolated edge pixels are most likely to arise from

noise, and hence can be removed.

7.2 Scale Gombination

All objects in the world only exist as meaningful entities over a certain range of scales (or

sizes). For example, atoms viewed at a larger scale are water molecules, and at a yet still

larger scale may form a cloud. Thus, the object that we observe is intrinsically related to

the scale at which we observe it. For real images, edges can exist at many different scales.

Scale-space processing can represent the multiscale nature of the edge detection problem.

We saw in Section 5.4.3 that varying the neighbourhood size, or scale, varies its edge

detection performance. For l-D step edges, a SICNN with a large scale has good noise

suppression ability, which results in a low ESD. This good localisation, however, comes at

the expense of poor resolution, i.e., the HR is low. As the scale of the SICNN is decreased,

both the HR and ESD increase.
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The basic procedure with scale-combination is to first apply a SICNN with a large scale to

the input in order to achieve the best possible edge localisation (at the expense of

resolution). Once the edges are located, they are tracked in the output as the scale is

gradually decreased. By reducing the scale, the resolution of the edge detection process

increases, but we retain the good edge localisation. Thus, this procedure provides a

compromise between good resolution and localisation.

7.2.1 Scale-Space Process¡ng w¡th the Laplacian'of-Gauss¡an

An object in an image can appear as different entities depending upon the scale used to

view the object. Consider a single pixel of a real image. If we view it and its immediate

neighbours we may only see a short noisy segment. Viewing the pixel at a larger scale

(more nieghbouring pixels) we may be able to identify an edge discontinuity with added

noise, and at a still larger scale the edge discontinuity and ultimately the original pixel,

may form part of a man-made or real object in the image. Thus, the meaning of any object

is inherently dependent upon the scale at which it is viewed. Scale-space processing

allows us to deal with inherent property of any measured data or object.

Scale-space has developed immensely in the last few years, but we will only review a few

of the more important results. For an in-depth review of scale-space processing, the reader

is referred to Lindeberg (1994).

Bergholm (1987) was one of the first researchers to apply the basic principle of scale-

space to the problem of edge tracking or focusing, i.e., a coarse-to-fine tracking of edges

in a continuous manner. He noted that every edge detector has a built-in conflict, that of

achieving high accuracy or resolution while still removing noise, i.e., simultaneously

making the HR large and the ESD small.

In his edge focusing algorithm, Bergholm begins by smoothing the input with the coarsest

possible Gaussian filter (large scale) and then performs edge detection. A threshold is

applied to detect the edges, and then the process is repeated at a smaller scale in only local

windows about the previously detected edges. Thus, the edge focusing algorithm attempts

to reverse the effects of the initial bluning without increasing noise.

Goshtasby (1994), following on from the work of Bergholm and others, proposed an

algorithm to accurately track edges from the Laplacian-of-Gaussian operator, from low to
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high resolution. The algorithm is very robust, and can even track edges which may split or

merge during the scale-space process. It also allows large scale step sizes to be taken when

moving from low to high resolution, which increases the speed of the edge-focusing

algorithm.

Lindeberg (1994) provides a rigorous treatment of scale-space filtering. In particular, he

gives the conditions nece.ssary for a discrete filter, or kernel, to be a scale-space kernel. In

1-D, he defines a scale-space kernel as one where, for an input signal f ¡n , the number of

extrema in f ou, = fin * å does not exceed the number of local extrema in f ¡r. Furthermore,

it must satisfy (Lindeberg, 1984):

^i-' 
(n) 7n = 

"k"(Q-'24. 
n't' 

Û ffi
where c)0, keZ, e_1,e1,s¡,F¡,I,ô,)0, Þ¡,y,<1 and I (o,*Þ,+y.+ô¡) <-. This

results in 5 primitive functions: I = I

. two-point weighted ayeÍage, or generalised binomial smoothing

fou, = f¡n@) +a¡f¡n(¡- 1) (ct¡>0),

fo,,@) = f¡n(x) +õ¡f¡n(x + 1) (ô¡ > o) ,

. moving average or first-order recursive filtering

fou,(x) = f¡,(x) + þ,fou,(¡- 1) (0 < Þ¡ < 1) ,

lo,,(x) = f ¡,(x) + T¡fou,(-r + 1) (0 s y, < 1) ,

. infinitesimal smoothing, rescaling, and translation.

These requirements, along with a number of others, impty that the only smoothing

function that can be used for scale-space processing is the Gaussian. The application of

this theory to sICNN scale-processing is discussed in the next section.
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7.2.2 Scale Space Processing w¡th SICNN

7.2.2.1 One Dimension

We begin by investigating scale-space combination for a l-D step edge. The basic

approach is to first apply a SICNN with a large neighbourhood size or scale, and then re-

apply to the same input the SICNN with continually decreasing neighbourhood size. For

each step in this process, the maximum output for a given neighbourhood size is used to

determine where the edge can lie in the following output, i.e., the output of a SICNN

whose scale is slightly smaller than the previously applied SICNN. By this method, a

significant performance increase, in terms of both HR and ESD, can be achieved over the

ordinary SICNN.

On the surface, it may appear that the scale-space process described here for the SICNN is

very similar to the paradigm discussed above by Bergholm (1989) and Lindebetg (1994)'

However, a number of significant differences exist. Scale-space involves applying the

Gaussian filter to the input, and then tracking the edges as the scale of this filter is reduced.

In our approach, we do not necessarily smooth the input with a Gaussian. For the SICNN,

the neighbourhood size is reduced without necessarily changing the shape of the weight

distribution. Furthermore, the shape of this weight distribution need not be Gaussian.

Another significant difference is that the edges are detected as the maxima in the output,

rather than the zero-crossings. So, it is obvious that the SICNN does not satisfy the strict

conditions to be a scale-space filter as defined by Lindeberg (1994), however, tracking the

edges in the output does lead to significant performance improvement, and is still a valid

postprocessing technique to use.

The l-D scale-combination algorithm is

1. Perform edge detection using a SICNN with the largest desired scale or

neighbourhood size.

2. Find the maximum output of this SICNN (assuming asymmetrical

weights).

3. Define a local "valid region" about the edge pixel. The edge in the

following steps can only be found in the valid region.

¿. Reduce the scale or neighbourhood size and re-apply the SICNN with

this new neighbourhood size to the original input.

s. Find the maximum output of this SICNN within the valid region'
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e. Define a new valid region about this new maximum output.

z. Repeat steps 4 to 6, until the smallest desired scale has been applied to

the input.

It was found that selecting only the largest output to define the valid region in the above

algorithm, gives the best results. When the two (or more) largest outputs are used, the

performance deteriorates markedly. The postprocessing performance for different number

of maxima is given in Appendix C.

In Figure 7.1, the performance both with and without scale-combination is shown, for a

step edge input with Gaussian noise; further results for different ranges of scales combined

and different noise types can be found in Appendix C.
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Figure 7.1 SICNN performance with and without scale-combination as the scale is
reduced from 15 to 1. An asymmetrical, rectangular weight distribution, with optimal
decayfactor, lo = 10, c = 0.25, ENR = 1dB,-andGauéSian noiSe.

This Figure shows that, as the scale is reduced from 15 down to 1, the HR of both SICNNs

with and without scale-combination, increase slightly. The HR of the normal SICNNI

output, however, decreases towards zero for very small scales, while the HR with scale

combination continues to rise to a value of just over 0.3. The maximum HR of the normal

1. The normal SICNN has no postprocessing of its output.
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SICNN is less than 0.2. The ESD of the combined SICNN remains constant, while the

ESD of the normal SICNN continues to increase as the scale decreases down to 1. Clearly,

signif,cant performance improvement can be achieved by combining the outputs of

different scales. In particular, the HR can be improved without sacriûcing the low ESD.

Similar improvements to the performance through scale-combination for inputs with

multiplicative and uniform noise are evident and are presented in Appendix C.

7.2.2,2 Two Dimensions

For the 2-D scale-combination processing we investigate the performance of the algorithm

on the synthetic image shown Figure 7.2. The 2-D scale-combination algorithm is very

similar to the l-D algorithm, but it differs in a number of ways. ln 2-D, edge detection is

performed in each of the image's four orthogonal directions (with the weight distribution

appropriately chosen), and no limit is imposed on the number of detected edges in each

output, rather the number of edges is determined by the arbitrary threshold. Local valid

regions are defined about each edge, which are then used to determine where the edges can

lie when the following SICNN is applied to the input image, i.e., the SICNN with a scale,

or neighbourhood size, slightly smaller than that of the previously applied SICNN.

50

100

150

200 50 100 150 200

Figure 7.2 Synthetic image with mean intensity 62 and mean contrast 0.52

Another difference is that, rather than measuring the performance in terms of the HR, ESD

and EB, we measure the area under the false alarm (FA) rate vs. probability of detection

(PD) curves as discussed in Section 6.3.3. As in the l-D scale-combination case, we begin

the algorithm by applying a SICNN with the largest desirable scale - this ensures that the

edges in the output are well localised. Of course, with a large scale the resolution of the
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output will also be poor, but this improves as the scale gradually decreases. For the 2-D

case, we generally expect the area under the FA vs. PD curves to increase as we decrease

the scale. Increasing area implies improving performance. Even if this area does not

increase we can still expect the output of the SICNN with scale-combination to appear

better than the normal SICNN output, due to the fact that at the termination of the

algorithm a small scale SICNN is applied to the input, thus the output will appear more

detailed than the output of a large scale SICNN. Thus, tracking the edges in the output as

the scale is reduced, ensures that the final output has good noise suppression, like for the

output with large scales, and good localisation like the output for small scales.

The scale-combination algorithm for each of the SICNNs applied to one of the image's

four orthogonal directions is:

r. Apply the SICNN with the largest desirable scale to the input.

z. Apply a threshold to the output to detect the edges, and then define

"valid regions" about each of these edge points.

s. Reduce the scale of the slcNN and re-apply this slcNN to the original

input.

e. Apply a threshold to this new SICNN output to detect any edges which

lie in the previously defined valid region.

s. Define new valid regions about these edge pixels and return to step 3

until the slcNN with the smallest desired scale has been applied to the

input.

Figure 7.3 shows the performance of this algorithm when the input synthetic image has

Gaussian noise of .ENR = 5 dB. The SICNN outputs are combined for scales decreasing

from (a) 5 down to 1, (b) 10 down to 1, and (c) 15 down to 1. The normal SICNN output is

similar to the combined output for large scales, and as the scale decreases to a low value

the area for both SICNNs slowly decreases too. The difference in performance between

the SICNNs, however, increases as the scale decreases. Further plots for different ENR

and noise types can be found in Appendix C.

Although the absolute numerical difference in the performance of both SICNNs is not

large, and the area has not increased during the combination process, the difference in the

appearance of the output edge maps is very noticeable. Figure 7.4 shows the edge maps

fortheoutputwhenr = l0 (nocombination), r= 1 (nocombination),and r= I (after
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the scale combination process for scales from l0 down to l). For the r = 10 output with

no scale-combination, most of the true edges are found, but some of these are quite thick,

i.e., not a single pixel wide. On the other hand, the output of the r = | SICNN with no

scale-combination is quite noisy due to the small scale. Also shown is the output for r = 1

after applying the scale-combination algorithm. Clearly, this algorithm manages to retain

most of the valid edges, but it also removes much of the spurious edges. Thus, the output

after scale-combination is better than either output with r = 10 or r = | with no scale-

combination.

- 
Combined
Normal

3
(a) Neighbourhood Size

.08
E

(ú
o

4 2

08

38
0.6

1

0.9

0.8o
E

o.7

0 o

15 14 13 12 11

7 b
(b) Neighbourhood Size

't0 9 I 7 6
(c) Neighbourhood Size

2

s4321

5 4

without scale-combination for scales
c) 15 down to 1 . For each scale, the
istribution with the weight attenuation

Another measure of the amount of improvement in the output after using the scale-

combination process is the Noise-to-Signal Ratio (NSR), as defined in Section 2.4.2.It is

the ratio of the sum of the total number of false positive edges (FPE) and false negative

edges (FNE), to the total number of true positive edges (TPE). For convenience the NSR

is repeated here,

EO (7.1)
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The smaller this value is, the better is the edge detection process. The NSR is computed for

the outputs shown in Figure 7.4.In (a) for the r = l0 output we have NSR = 3.15 , for the

r = I output in (b) N,SR = 5.60, while for the postprocessed output in (c), NSR = 2.11.

These NSR values provide objective evidence of the improvement in the quality of the

output edge maps with scale-combination processing.

More convincing evidence of the improvement of the quality of the output edge map is

evident for multiplicative noise, as shown in Figure 7.5. For the r = 10 output in (a),

NSR = 1.13, for the r = I output in (b) NSR = 1.25, while for the output after

combining the outputs for scales from 10 to I in (c) NSR = 0.38. There is clearly a

significant improvement, which is also evident when inspecting the images.
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SICNN both used. The NSR is
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7.3 Gombination w¡th Variable Weight Distribution

'We saw in the previous section how the SICNN performance can be improved by the

combination of the outputs with different neighbourhood sizes, or scales. In that case, the

weight distribution for each SICNN was the same. Now we look at a slightly different

approach to postprocessing - that of combining the outputs of SICNNs of the same

neighbourhood size, but with different weight shapes. In Chapter 5 we showed how the

shape of the weight distribution affects the performance. For 1-D signals, a very "broad"

or flat weight distribution, such as the rectangular one, results in both low ESD and low

HR. Also, making the weight's shape or edge response narrower causes both the HR and

ESD to increase. This is also evident in Section 6.2.2, where changing the optimal weight

distribution's weight attenuation factor causes the width of the edge response to vary, with

a coffesponding variation to the performance.

Thus, the basic procedure is to apply a SICNN with the broadest possible weight

distribution, which ensures that the ESD is as small as possible. The detected edges are

used to track edges in the output as the weight's shape is gradually made narrower. By

narrowing the weight's shape, the HR of the SICNN increases, and using information

about the edge position from the previously applied SICNN (with slightly broader weight

distribution), the ESD can be maintained at a low value.

V/e begin by looking at the performance increase with the optimal weight distribution as

the weight attenuation factor is varied, and then investigate the corresponding

performance increase with a 2-D synthetic input image.

7.3.1 One Dimens¡on

We saw in Section 6.2.2 that varying the optimal weight distribution's attenuation factor

(p) varies both the shape of the distribution and consequently affects the edge detection

performance. The SICNN with the optimal weight distribution with a small value of p has

a small ESD, but also a small HR, whereas a SICNN with the optimal weight distribution

with a large value of p has a large HR, but a large ESD too.

As with scale-combination described in the previous section, by combining the outputs

with different optimal weight shapes, a large HR can be achieved whilst maintaining a low

ESD. The following algorithm begins by applying a SICNN with the optimal weight
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distribution with p = 0 (to achieve low ESD). The maximum output is then located, and

hence determines where the edge from the following output can be found, i.e., the output

of the SICNN with the optimal weight distribution with slightly larger value of p. The

constraint of the region where the edge can be located maintains the ESD at its low value

during the entire combination process, and by incrementally decreasing p, the HR during

the combination process is slowly increased. Thus, the combination process should

increase the HR, and maintain the ESD at a low value.

The algorithm is:

1. Choose the "broadest" possible weight distribution (e.g. rectangle or

optimal with weight attenuation factor p = 0) and perform edge

detection with the SICNN.

z. Find the maximum output.

s. Define a "valid region" about this pixel (the edge in the following slcNN
output can only be found in this region).

a. Make the shape of the weight distribution slightly narrower (reduce the

weight attenuation factor for the optimal weight distribution) and re-

apply the SICNN with this new weight distribution to the input.

s. Find the maximum in this output which lies in the valid region of the

previous output, i.e., the SICNN whose weight shape was slighfly

broader than that of the weight distribution used in step 4).

6. Repeat steps 4 and 5 until the weight distribution is as narrow as

desired.

In the above algorithm, selecting the largest output in order to define the valid region of

step 3 gives the best results. These results and those for selecting a larger number of output

pixels to define the valid region, are presented in Appendix C.

Figure 7.6 shows the performance with and without the combination of the outputs of the

SICNN with varying weight shape. Note that the combination process begins with a
weight attenuation factor equals to zero, i.e., a rectangular weight distribution, which

ensures that the ESD is as low as possible to begin with.

The ESD of the normal SICNN increases as the weight attenuation factor increases, but

the ESD of the SICNN with the combined output remains approximately constant. Also,
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the HR of the normal SICNN also decreases, but the HR of the SICNN with the combined

output actually increases slightly for values of p less than about 2, and then levels off.

As with the scale combination algorithm, by combining the outputs with different weight

shapes, ìwe are able to increase the HR whilst maintaining a fixed ESD, which is not

possible with the normal SICNN output. The improvement in the performance of the

SICNN with combination over the normal SICNN is also evident for the inputs with both

multiplicative and uniform noise models; these results are present in Appendix C.
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Figure 7.6 SICNN performance with and without combination of the outputs as a
fuñction of the atteriuation factor. The decay factor is chosen to give near zero EB,
and the input has lo = 10, c = 0'25, ENR = )dB, with Gaussian noise'

7.3.2 Two Dimens¡ons

As with the 2-D scale-combination algorithm, we investigate the 2-D combination

algorithm with varying weight distribution for the standard synthetic image. The

performance is again measured in terms of the area under the PD vs. FA curve. Also, four

SICNNs are applied to the image, one to each of the four orthogonal directions, with the

weight distribution appropriately chosen.

The algorithm begins with the broadest possible weight distribution (with p = 0 for the

optimal weight distribution), which ensures that all edges in the output are well localised.

149



Chapter 7: Postprocessing Methods for Edge Detection

The edges are detected by applying an arbitrary threshold to the output. A small local valid

region is defined about each edge pixel. A SICNN with a slightly narïower weight

distribution, i.e., slightly larger p, is then applied to the same input, and the edges are

detected. This time, however, the new edges can only lie in the valid regions as defined by

previous output. The new edges in turn define new valid regions, which determine where

the edges can be found in the following output. This process repeats until the SICNN with

the narrowest desired weight distribution has been applied to the input. By reducin g p, the

resolution of the detected edges increase, and by tracking the edges good localisation of
the detected edges is maintained.

Thus, the algorithm for each SICNN applied to one of the four orthogonal directions is:

r. Apply the SICNN with the broadest desired weight distribution (p = O).

z. Apply a threshold to detect edges in the output, then define a valid

region about each edge pixel.

s. Make the weight distribution slightly narrower, and re-apply this slcNN
to the input.

+. Apply the threshold, and detect the new edges which rie in the valid

region.

s. Define new valid regions about these new edges and go back to step 3

until the SICNN with the narrowest desired weight distribution has been

applied to the input.

Figure 7.7 shows the 2-D performance results for an r = 5,10, and 15 SICNN whose

outputs are combined as the weight distribution's shape varies. The image has Gaussian

noise of ENR = 5 dB. The weight attenuation factor for the optimal weight distribution is

varied from 0 up to 4. For p beyond about 1.25, the performance of the SICNN with the

combination of the outputs outperforms the SICNN with no combination of outputs,

although for low p the reverse is true. As p increases from zero, the performance of the

normal SICNN improves quickly, but the performance with postprocessing does not

improve as quickly since the location of the detected edges are constrained by the valid

regions of the previous combined output. Conversely for large p, the performance of the

normal SICNN decreases rapidly, whereas the performance of the combined output

decreases gradually since, once again, the position of the detected edges are constrained

by the valid region of the previous combined output. Further plots for different ENRs and

noise are given in Appendix C.
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Although the numerical difference in the performance between the two outputs with and

without postprocessing is not large, the appearance of the edge maps is significantly

different. Figure 7.8 compares the 2-D edge maps of the SICNN both with, and without

the output combination. Figure 7.8(a) shows the output of the SICNN with the optimal

weight distribution with p - 0. Many of the true edges are detected, but they are quite

thick and there is also noise present. The reason for this is that, for this value of p, the

weight distribution is rectangular, and we have seen before that the SICNN with a

rectangular weight distribution has good localisation of edges, but poor resolution,

resulting in thick edges with few spurious edges. The NSR is O-342.
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Figure 7.S(b) shows the output with the optimal weight distribution fot p - 4, and no

postprocessing. Some of the true edges are detected, but the image is very noisy, even

noisier than the output in (a). This is expected, because in this case the weight variation is

very narow - thus, the SICNN has good resolution but poor noise perfonnance. This is

reflected in the NSR which has increased to 0.401.

Figure 7.8(c) shows the SICNN output with the optimal weight distribution for p = 4,

when the outputs with p increasing from 0 to 4 arc combined using the above algorithm.
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By beginning the combination process with the output for p - 0, which has some noise

but thick edges, and tracking these edges as p increases to 4, where this output has thin

edges with considerable more noise, an output can be obtained which is both relatively

noise-free and has thin, well-localised edges. Although the output with postprocessing still

has some edges missing, there is clearly an improvement over the outputs shown in (a) and

(b), and this is reflected in the NSR of 0.178, which is smaller than the NSR of the other

two outputs.
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The improvement is even more evident for the image with multiplicative noise shown in

Figure7.9.The output in (a) for p - 0 is very clean, but the detected edges are quite

thick. The output in (b) for p - 4 is very noisy, however, most of the edges are thin.

Finally, the output after postprocessing in (c) is both clean and the detected edges are thin

and well-localised. It's NSR is 0.30, which is clearly superior to 1.63 and 1.40, the NSR of
the outputs in (a) and (b), respectively.
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7.4 Combination of SICNN OutPuts

'We have already mentioned in Section 5.4.1 that the SICNN can perform edge detection in

a number of different ways, i.e., by detecting the maximum output with asymmetrical

weights, detecting the maximum output with symmetrical weights, and the maximum

zero-crossing in the output with symmetrical weights. If any two of these outputs contain

information about the same source, then combining them may give better performance

than using either output alone. This is the basic principle of data-fusion, where multiple

observations are combined to obtain improved results.

7.4.1 One Dimens¡on

We begin by looking at the combination of the SICNN outputs for l-D step edge inputs.

Consider any two outputs, i.e., the outputs from any of the two different SICNNs

mentioned above. The basic procedure is to locate the n largest outputs in one of the

output (where n2l), and then def,ne small local "valid regions" about each of these n

edge pixels. The edge is then located in the valid region of the output of the lst SICNN.

By introducing valid regions about the n maxima of the output, we limit the search space

where the edge is sought in the 2nd output, thereby increasing the performance.

Four different combination schemes of the SICNN outputs are investigated:

. combining the maximum output of the SICNN with asymmetrical weights, with the n

largest zero-crossings of the SICNN with symmetrical weights (we call this "MAW -

nZCS'W", which denotes Maximum Asymmetrical Weights and n-Zero-Crossing Sym-

metrical Weights).

. combining the largest zero-crossing of the SICNN with symmetrical weights with the n

largest maxima in the output of the SICNN with asymmetrical weights (we call this

"ZCSW - nMAW"),

. combining the maximum output of the SICNN with asymmetrical weights, with the n

largest maxima in the output of the SICNN with symmetrical weights (we call this

"MAW - nMSW"),
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' combining the maximum output of the SICNN with symmetrical weights with the n

largest maxima in the output of the SICNN with asymmetrical weights (we call this

"MSW - nMAW").

The algorithm for the MAW-nZCSW scheme, for example, is

r. Apply the SICNN with symmetrical weights.

z. Find the n largest zero-crossings in this output, and then define valid

regions about each one.

s. Find the maximum output with asymmetrical weights, which lies in the

valid region defined in 2).

The algorithm for the nZCSV/-MAW, MAW-nMSW and MSW-nMAW combinations are

analogous to this one.

For each combination scheme, selecting approximately the l0largest values in the output

to define the valid region, gives the best results. The combination scheme's performance

for different number of maximum outputs can be found in Appendix c.

Figure 7.10 shows a comparison of the edge detection performance for the four different

combination schemes. The MAW-nZCSW combination of the outputs has the largest HR,

and also the lowest ESD. The other combination schemes all have comparatively smaller

HR, and equal or larger ESD. Further results of combinations for inputs with

multiplicative and uniform noise are given in Appendix C.

Figure 7.11 shows the improvement in the performance using the combination technique.

The performance with asymmetrical weights (maximum thresholding), and the

performance with zero-crossing with symmetrical weights, are both clearly inferior to the

performance of these two outputs combined (MSW-nZCSW), as given by the algorithm

above. Appendix C shows the improvements of the other three combination schemes over

the performance with no combination.
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7.4.2 Two Dimensions

\V'e have just seen how combining different SICNN outputs can greatly improve its l-D
edge detection performance. Now we investigate the same combination schemes, but for

the 2-D synthetic image. Thus, for any two SICNNs one output is thresholded to detect the

edges, and about each edge a local valid region is defined. We then apply a threshold to thc

second SICNN output, and detect any edges which lie in the valid region of the first

SICNN output.

As with the l-D case, there are four possible combination schemes: MAW-nZCSV/,

ZCSW-nMAW, MAW-nMSW and MSW-nMAW. Thus, the edges in the lst output are

sought in the valid region of the 2nd output. In the 2-D implementation of each scheme,

we apply a SICNN to each of the four orthogonal direction of the image. Thus, the

algorithm for the SICNN applied to one of these directions, for the MAW-nZCSV/, is

given by

r. Apply a SICNN with symmetrical weights to the input.

2. Apply a threshold to the magnitude of the zero-crossings to detect

edges.

s. Define valid regions about each edge output.

a. Apply a slcNN with asymmetrical weights and find the edges which lie

in the valid region.

The edge detection performance for the four possible schemes was computed and by

comparing all of them, the MAW-nZCSV/ combination scheme performed the best. The

performance comparison between the four schemes can be found in Appendix C.

Figure 7.12 shows the performance comparison between the MAW-nZCSW scheme and

the individual performance of the SICNN with MAW and the SICNN with ZCSW. We can

clearly see that combining the MAW and ZCSW outputs produces gives the same

performance as MAW. Thus, there appears to be no benefit in combining the output of the

SICNN with MAW and ZCSW. (Further plots of the combination performance with

different schemes and noise types can be found in Appendix C).
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Figure 7.13 shows the edge map outputs for the two SICNNs (MAW and ZCSW) as well

as the combination scheme's output. Figure 7.13(a) shows the output with MAW (b)

shows the output with ZCSV/, while (c) shows the output after combining the MAW and

ZCSV/ outputs. All three outputs have detected some of the edges very well, but the

amount of noise present in all outputs is very large. The image in (a) has noise uniformly

spread within it, while both outputs in (b) and (c) have some regions which are very clean,

but other regions which are very noisy. Unfortunately, by combining the SICNNs outputs
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we cannot improve the quality of the detected edges at all. The NSR values for the three

outputs are (a) 4.34, (b) 8.59, and (c) 5.77. These values again show the inability of the 2-

D combination scheme to improve the edge detection performance. Similarly bad results

are obtained for different combination schemes and noise types.

7.5 Complementary Output Processing

It is easy to show that the peak response to an edge relative to the background intensity of
a SICNN with asymmetrical weights depends upon the direction of the weights. For

example, the weight distribution [o o t] is "reversed" in direction compared to h O O]

Figure 7.14(a) and (b) show the SICNN responses to a step edge for two weight

distributions, which are identical in shape, but reversed in direction. Note that the

background intensities are identical in both cases, while the position of the edge response

is displaced by only 1 pixel. We call these two outputs complementary outputs, and it is
possible to combine these two to obtain an overall better output, i.e., an output which

results in better edge detection performance.
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7.5.1 One Dimens¡on

From Figure 7.14, the only difference in the SICNN output with reversed weight

distribution to a step edge is the magnitude of the edge responses, and the l-pixel

separation between the responses. Thus, a simple approach to enhancing the output is to

subtract from each pixel, such as the signal in (a), by the adjacent pixel intensity of the

complementary output, as shown in (b). This subtraction process not only removes the
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background intensity, but it increases the edge response compared to the background

intensity. Unfortunately, if noise is also present, then the noise variance of the output after

the subtraction process may also increase.

It can be shown that for a SICNN with asymmetrical weights summing to 1 and a step

edge input of contrast c, subtracting the complementary outputs (after shifting) increases

the peak edge response relative to the background noise intensity if the input edge's

contrast satisfres

I
s 
(t- 3)2>-t

â c13-2J2=0.17. Eo(7.2)

Figure 7.15 compares the edge detection performance of the normal SICNN with the

performance after subtracting the complementary outputs. Subtracting the complementary

outputs certainly improves the overall performance as the HR is larger and the ESD is

smaller. The EB, however, is much larger for the output after postprocessing than the

normal output, but this occurs only for very low ENR. Further results for different weight

distributions and noise model types can be found in Appendix C'
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Figure 7.15 SICNN performance with and without complementary ..output
poétprocessing. The SICNN has an asymmetrical, rectangular weight distribution,
with'optimal dècay factor, r = 5, lo = 10, c = 0.1, and Gaussian noise.

159



Chapter 7: Postprocessing Methods for Edge Detection

7.5.2 Two Dimens¡ons

We now extend the l-D complementary output postprocessing technique to the 2-D case.

In 2-D, the SICNN is applied to each of the two orthogonal directions of the image. The

asymmetrical weight distribution is appropriately selected to perform edge detection in

these two directions. The complementary output images are formed by applying the same

SICNN in each direction, but with the weight distribution reversed. Each complementary

output for each direction is then shifted and subtracted from the normal output for that

particular direction.

Figure7.16 shows the 2-D performance on the synthetic image both with and without

complementary postprocessing. The performance of the output with postprocessing is

always equal to or worse than the normal output's performance. The most likely reason for

this was described in Section 1.5.1. We showed that, for step edges, the noise strength

decreases for complementary postprocessing only when the contrast of the edge is less

than about 0.17. However for the synthetic image, the average contrast is over 0.52, so it is

clear that complementary postprocessing will not yield better performance than the

normal SICNN output for this particular image. The comparison for different noise types

is presented in Appendix C.
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asymmetrical, optimal weights and decay factor. Thê image has Gaussian noise.
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Figure7.17 shows the comparison of the edge maps for the normal output and also the

output after complementary postprocessing. The normal output is very noisy, but some

edges are still identifiable, however, they are somewhat broad. The output after

postprocessing has also identified these edges, but they now much thinner and well

localised. This output also has regions which are clean and other regions which are very

noisy. The NSR values of 3.86 and 3.62 for (a) and (b) respectively, indicate that the

output after postprocessing is slightly better than the normal output.

100 100
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50 100
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5050

Figure 7.17 SICNN output with (a) no postprocessing, (b) complem.entary output
po'stprocessing. The SICNN has an asymmetricaloptimal weights.anq qe-cey factor,
'r 

= 
'5, 

ENR ---5 dB and Gaussian noise. The NSR is (t ) 3.86 and (b) 3.62'

7.6 Neighbourhood Processing

The algorithms described above to improve the SICNN l-D and 2-D edge detection

performance are both quite sophisticated and computationally expensive. There is,

however, a simple postprocessing technique which can greatly improve the performance.

In what we call "neighbourhood processing" we assume that we have the output edge

map, and we then simply look at the number of neighbours in the vicinity of each edge

pixel to determine if that edge pixel should be retained or discarded.

The rationale is that, if an edge pixel has very few neighbours or none at all in its vicinity,

then it is likely that the edge pixel is noise and is not part of a valid edge segment in the

input. Of course, such an assumption is highly dependent upon the input, but if the local

window size is kept small and the number of edges required in each of these local

windows is not large, then we can assume that the above rationale is reasonable. For
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Chapter 7: Postprocessing Methods for Edge Detection

example, if there is an isolated edge pixel in a local 5 x 5 window, then it is likely to be a

spurious edge and is not a valid edge pixel, thus it can be eliminated.

The algorithm for neighbourhood processing is the following.

1. For each edge pixel in the input image, find the number of edge pixels

in its Nx N neighbourhood.

z. lf the number of neighbouring edges in the local window is greater than

or equal to n, where n> 0, then it is deemed to be part of a valid edge

structure and thus retained, otherwise, the edge pixel is declared not to

be a valid edge pixel and is removed.

Figure 7.18 shows the performance using 2-D neighbourhood processing. The input image

has Gaussian noise and a 3 x 3 local neighbourhood is used. The performance is measured

for different number oflocal neighbours, and for various neighbourhood sizes.
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For large ENR, the performance peaks when thresholding for a minimum of two

neighbouring edge pixels, while for low ENR the performance peaks for 2, 3 and, 4

neighbouring pixels. Thresholding beyond these minimum number of edge pixels only
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decreases the performance. Further plots for 5 x 5 local neighbourhood processing and

different noise types are given in Appendix C.

The improvement in the performance by using neighbourhood processing is evident from

the output edge maps in Figure 7.19 when the input has multiplicative noise of ENR = 10

dB. Figure 1.19(a) shows the normal output which is very noisy but has identified some of

the edges. With 3 x 3 local neighbourhood processing with a minimum of 2 neighbour as

shown in (b), most of the noise has been removed, whilst the edges have been retained. A

similar output is obtained in (b) for 5 x 5 local neighbourhood processing and a minimum

of 4 neighbouring edge pixels. The NSR values for (a), (b) and (c) are 3.42,1.89, and 1.98,

respectively, indicating significant performance improvement with this simple

postprocessing technique.

It is clear that neighbourhood processing improves the output, as edges in the image are

part of some line, i.e., there are no isolated true edges. All isolated edges are very likely to

be from noise. For an arbitrary input image, the improvement would not be so dramatic,

but there would still be an improvement, nonetheless.
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7.7 Conclusions

In this Chapter we investigated a number of postprocessing methods which can be used to

improve the SICNN edge detection performance. Some of the methods are quite general

and can be applied to a broad range of edge detectors, such as the Laplacian-of-Gaussian.

We began by reviewing the scale-space literature, and implemented a similar algorithm for

the SICNN output. In the output, the edges were tracked as the scale was continually

decreased. For l-D step edges, the HR improved dramatically without increasing the ESD.

Although the area under the PD vs. FA curye for the 2-D synthetic image did not increase

as the scale was reduced, the area was always greater than the area for the normal output.

The quality of the detected edges did improve with postprocessing as was evident from the

edge maps. The output after scale-space processing was much cleaner with better quality

edges than the output of the normal SICNN. For one particular ENR, the NSR of the

postprocessed output was 2.11 compared to 3.15 for the normal output, indicating

significant performance improvement.

Next we looked at tracking the edges in the output as the width of the optimal weight

distribution was gradually decreased by decreasing the attenuation factor. By tracking the

edges, the HR increased whilst the ESD was kept constant. For the 2-D synthetic image,

the output after weight combination process gave, in general, greater area under the PD vs.

FA curve than the normal output. Furthermore, the edge maps were much cleaner and the

edges far better defined for the output after postprocessing than the normal output,

particularly for multiplicative noise. For Gaussian noise, the NSR was 0.178 with

postprocessing, and 0.342 without postprocessing, while for multiplicative noise, the NSR

was 0.30 and 1.63 for the outputs with and without postprocessing, respectively.

'We then looked at improving the SICNNs performance by combining the outputs of
SICNNs with different weight distributions and different thresholding schemes. The best

combination performance was achieved when the maximum of the output with

asymmetrical weights was combined with the zero-crossings of the output with

symmetrical weights. Also, combining these two outputs gave far better performance than

either output alone. In 2-D, the best combination of outputs was again the output with

asymmetrical weights and maximum thresholding and the output with asymmetrical

weights and zero-crossing thresholding. The performance after combining the two

outputs, however, was always equal to or worse than maximum thresholding the output
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with asymmetrical weights, hence there is no benefit in combining these outputs. This was

illustrated for an image with Gaussian noise, where the NSR values were 4.34,8.59 and

5.77 for the output with maximum thresholding, zero-crossing thresholding and the

combination of these two, respectively.

Next we investigated the combination of the outputs with the same weight distribution

shape but reversed in direction. This scheme improved the performance, particularly for

inputs of low contrast. For this reason, when this technique was applied to the synthetic

image, which has an average contrast of about 0.52, the performance was always slightly

smaller than the performance of the output with no postprocessing. A small improvement

was observed, however, in the output edge maps for Gaussian noise with a particular ENR,

where the NSR values werc 3.62 and 3.86 for the output with and without postprocessing,

respectively.

Finally, we investigated a simple technique to improve the appearance of the output. We

counted the number of edge in a local neighbourhood, and then discarded all edges which

had fewer than a certain number of neighbouring edge pixel. Although this method is very

simple, it dramatically improved the appearance of the output, particularly when the

output was very noisy. Using a 3 x3 local neighbourhood postprocessing improved the

NSR from 3.42to 1.89, for examPle.

165



Ghapter 7: Postprocessing Methods for Edge Detection

166



Cftøpter I

8.1 lntroduction

Throughout the previous Chapters we described how to apply the SICNN to edge

detection and how to choose its parameters to maximise the edge detection performance.

Now we combine that work and understanding in order to compare the edge detection

performance of the SICNN with and without Gaussian pre-smoothing, with that of the

discrete differentiator, and the Deriche operator. The differentiator is the simplest linear

edge detector, while our experiments showedl that the Deriche operator outperforms even

Canny's operator, which is widely regarded as being one of the best edge detector. See

Section 2.5.4 for a review of the Deriche operator.

We begin by comparing the performance of the various edge detectors on l-D step edges

with multiplicative and additive noise. The performance is measured using the HR, ESD,

EB, the PD vs. FA curve and the area under this curve, and also another measure of

performance (MOP). Then the performance of these edge detectors on the 2-D synthetic

image with multiplicative and additive noise is compared. Again, we measure the

performance in terms of the PD vs. FA curve and the area enclosed by it, and also the

MOP.

Finally in Section 8.4, we compare the output edge maps of the edge detectors on two real

images: a SAR image, which has multiplicative noise, and the standard Lenna image,

which has additive noise. Both of these images are fairly typical of what we might

encounter in the real world.

1. The actual comparison between the Deriche and Canny operators is not presented in this thesis
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8.2 One Dimensional Comparison

We begin with a comparison of the SICNN with two standard edge detectors for l-D step

edges. The four edge detectors investigated are:

. The SICNN with the asymmetrical, optimal weight distribution with attenuation factor

p = l, aÍr r = 5 neighbourhood size, and a linear activation function.

. A SICNN, as above, but with Gaussian filtering or smoothing of the input. The Gaus-

sian's support size is 2r + l, where r is the neighbourhood size.

. A discrete approximation to the ideal differentiator. The length of the filter is Zr + I ,

and is defined by:

D(n) =
(;) (-l) n,

0,

if n = -f r ..., -1, I, ..., r

otherwise

' the Deriche 2nd order lst derivative of length 2r+I. This operator was discussed in

Section 2.5.4, and is defined by EQ (2.10) as

De(n) - knexp (-sl"l) n = -r, ...,-1,0,1, ...,r

where È = -(r - (-a) ) 2

The parameter cx, is given by EQ Q.ll) and is related toexp (-cr)
the width of the Gaussian filter used for smoothing the input.

To obtain a fair numerical and empirical comparison between these different edge

detection schemes, a number of different performance measures are used to compare the

edge detection performances. These measures are computed from numerical simulations

ofthe edge detection process. They are:

. the HR, ESD, and EB as a function of the ENR,

. the FA rate and the PD for a given ENR,

. the area under the PD vs. FA curve as a function of the ENR, and

. a Measure of Perþrmance (MOP), which is related to the PD and FA, and defined as

MOp = (I+PD-FA)
2 EO (8.1)

for a given ENR. This is a modified version of the performance measure presented by

Azevedo & Longini (1980) and Efeachor & Jervis (1993, pp. 704). Nore that rhe
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maximum MOP is I when the PD is one and the FA is zero. This measure gives a larger

value for a greater number of true edge pixels detected (PD) and for a fewer number of

non-edge pixels detected (FA).

8.2.1 Multiplicative Noise.

Figure 8.1 shows the results for a step edge inputl with multiplicative noise. Figure 8.1(a),

(b) and (c) show the HR, ESD and EB, respectively. The EB of the linear differentiator

and Deriche operator are both very large for low to medium ENR. This is due to the

nonuniform intensity of the multiplicative noise, which is larger for larger input

intensities, resulting in inherent biasing. Thus, their ESD is fixed at about 30 pixels for low

ENR. The SICNNs, on the other hand, have nonlinear characteristics which enable them

to cope well with the multiplicative nature of the noise. The SICNNs can be thought of as

inverting the nonlinear noise, which results in a uniform noise intensity across their

output, hence giving zero EB. For the HR, the SICNN with smoothing performs best,

followed by the Deriche operator, the SICNN, and then the discrete differentiator. In

Figure 8.1(d), the MOP is plotted as a function of the threshold multiplier, such that the

overall threshold 7 is

T = F+ (thresholdmultiplier)Q

where p and Q are the mean and standard deviations of the edge detector output. The

results in this Figure, for an ENR of -5 dB, show that both the SICNN with smoothing and

the Deriche operator have similar peak values of the MOP.

Figure 8.1(e) shows the PD vs. FA curve for the corresponding step input with ENR of -5

dB. Again, the curve of the SICNN with smoothing is slightly above that of the Deriche

operator, followed by the curves for the SICNN and differentiator. Figure 8.1(Ð shows the

area or integral under the PD vs. FA curves. For large ENR, the SICNN with smoothing

performs slightly better than the Deriche operator, whereas the reverse is true for low

ENR. The areas for the SICNN and discrete differentiator indicate that these two edge

detectors have inferior performance compared to the other two'

The most obvious reason why the SICNN with smoothing and the Deriche operator

perform better than the other two edge detectors, is that they incorporate some form of

l. The input has a total length of 200 pixels, with the edge located halfway along this.

169



Chapter 8: Edge Detection Comparisons

smoothing, which clearly must improve their performance compared to the other two edge

detectors which have no smoothing of the input at all.

8.2.2 Gaussian Noise

Figure 8.2 gives the performance comparison for the Gaussian noise case. Figure 8.2(a)

shows that the HR of the Deriche operator is best for large ENR, closely followed by the

SICNN with smoothing, and then the SICNN and differentiator. In (b) the ESD of the

SICNN with smoothing is smallest, followed by that of the Deriche operator, then the

SICNN and differentiator. In (c), the EB of all four operators is almost zero, except for the

SICNN with smoothing. (For both SICNNs, the optimal decay factor is estimated in a

local window of size 2r + 1, using the value of À as given in Section 6.3). Although the

EB is less than zero for the SICNN with smoothing, we showed in Section 6.3.2 thatthe

SICNN HR and ESD are not adversely affected by this.

Figure 8.2(d) shows the MOP plots. The Deriche operator peak MOP is clearly the largest,

followed by that of the SICNN with smoothing, the SICNN and then the discrete

differentiator. Consequently the PD vs. FA curve in (e) for the Deriche operator has the

largest area, followed by the curves for the SICNN with smoothing, the SICNN and then

the discrete differentiator.

In (Ð, both the Deriche operator and the SICNN with smoothing have the largest area

under their PD vs. FA curve, with both curves being very similar. For medium to high

ENR, the Deriche operator area is slightly larger than that of the SICNN with smoothing,

whereas for low ENR the SICNN with smoothing area is greater than that of the Deriche

operator. The normal SICNN and the differentiator both have much smaller areas.

Thus, both the Deriche operator and the SICNN with smoothing appear to perform equally

well. Some measures indicate that the Deriche operator is slightly better, while other

measures indicate that the SICNN with smoothing is better. The performance of the

SICNN and differentiator is inferior to that of the other two.

8.2.3 Uniform Noise

Figure 8.3 shows the performance results for uniform noise. The Deriche operator has

slightly better HR than the SICNN with smoothing, whereas for the ESD measure, the
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SICNN with smoothing always has smaller ESD than the Deriche operator. For both the

HR and ESD, the SICNN and differentiator perform worse than the other two operators.

The EB of the four edge detectors are all very close to zero.

Although for an input with ENR of -5 dB, the Deriche operator MOP has the largest peak

value, though the MOP of the SICNN with smoothing is somewhat close. Also, the area

under the Deriche operator PD vs. FA curve for the same input is greater than that of the

others. Consequently, the area under the Deriche operator PD vs. FA curve in (Ð is greater

than the other edge detectors over the range of ENR. The SICNN with smoothing area is

comparable for large ENR, but the remaining two edge detectors have signif,cantly

smaller areas under their PD vs. FA curves.

Thus, it appears that for uniform noise, the performance of the Deriche operator and

SICNN with smoothing are very similar, though some performance measures indicate that

the Deriche operator is slightly better. The performance of the SICNN and differentiator

are clearly inferior to the other two operators.
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8.3 Two-Dimensional Comparison on Synthetic lmages

In this section we investigate the performance of the differentiator, the Deriche operator,

the SICNN and the SICNN with Gaussian smoothing on the2-D synthetic image shown in

Figure 6.13. For fairness of comparison, the support size of each edge detector is 2r + I ,

where r is the neighbourhood size of the SICNN. The support size of the Gaussian

smoothing filter is also 2r + I .

8.3.1 Two-Dimens¡onal Algorithm

For 2-D edge detection the algorithm for each edge detector is:

r. Choose appropriately the edge detector so that it detects edges in each of the

four orthogonal image directions, corresponding to 0o, 90o, 180" and 27O" .

Thus, there are four output images for each edge detector.

z. Apply a global threshold to each of these output images, giving four binary

edge maps or images for each edge detector. The threshold for each image is:

T = p+rlQ

where p and Q are the mean and standard deviations of the image, and 1 is

the so-called threshold multiplier.

s. Logically OR the four binary edge maps to produce the overall edge map.

For an input image with a given ENR, the threshold is varied to produce the PD vs. FA

curve, which is the primary performance measure that we use. The area under this curve

can be computed, and the whole process repeated for a different ENR. This area, as the

ENR varies, is another measure that we use to compare the edge detection performance of

the four edge detectors. For a given ENR, the MOP, as is given by EQ (8.1), is also

computed for different thresholds, while the NSR given by EQ (2.1) is used to compare

the edge maps.

The discrete differentiator and the Deriche operator are calculated as in the l-D case. The

parameter cr of the Deriche operator is computed according to EQ (2.I1), assuming that

c = r/3.5, where o is the width of the Gaussian filter used to smooth the input of the

SICNN. Both SICNNs have linear activation functions, with optimal weight distribution

and decay factor, as described in Section 6.3.
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8.3.2 Multiplicative Noise

Figure 8.4 shows the performance results for the synthetic image with multiplicative

noise. The neighbourhood size of the SICNN is r = 5, so the mask size of all four edge

detectorsis2r+1 =11 pixels.FigureS.4(a)showstheMOPofeachedgeoperatorasthe

threshold multiplier is varied, where the curves for both SICNNs have larger peak values

than those for the differentiator and Deriche operators. Interestingly, the MOP curve for

the SICNN is better than that of the SICNN with smoothing. Figure 8.4(b) shows the FA

vs. PD for an ENR of 5 dB. Again, the curves for both SICNNs are better than those of the

other two linear edge detectors. For low FA rates, the SICNN with smoothing has a greater

PD than the SICNN, but the reverse is true for large FA rates.

Figure 8.4(c) shows the area under the FA vs. PD curve as a function of ENR. Both

SICNNs have the best performance for ENR greater than about -2 dB, followed by the

Deriche operator and then the differentiator. For medium ENR, the SICNN with

smoothing gives better performance than the normal SICNN, whereas the reverse is true

for larger ENR. Thus, it appears that Gaussian smoothing only improves the SICNN

performance when the input is very noisy.
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Before investigating the performance of the edge detectors for the input with additive

noise, a number of important points need to be made for Figure 8.4(c). For large ENR, the

area is less than 1, which is the expected maximum area. An area of I is obtained only

when the PD is 1 for all FA.

The synthetic image consists of many edges of differing contrasts. Thus, when the

threshold is set to detect the small responses from the low-contrast edges, it will not only

detect the large response from large contrast edges, but also the neighbouring pixels on

either side of these large responses (the total width of each edge response is equal to

2r + I, the size of the edge detector mask size). These false alarms (since the edge is only

defined as being I pixel wide) cause the PD vs. FA to lose its sharp step-like shape, so the

area is less than one. FurtheÍnore, smoothing the input compounds the problem by

making the edge responses even broader, as evident for the SICNN with smoothing. Note

that, a neighbourhood size of r = 1 would avoid this problem.

Figure 8.5 shows the output edge maps for each edge detector with the threshold set to

maximise the respective MOP, as given in Figure S.a(a). Due to the multiplicative noise,

both the differentiator in (a) and the Deriche operator in (b) detect large patches or regions

of the input as edges. The corresponding input regions have large intensity, thus large

noise variance too, so most of these output points will lie above the threshold, particularly

if the threshold is set low to detect the input edge discontinuities of low contrast.

The SICNN in (c), however, detects most of the edges well, but the overall output is noisy,

though not as noisy as in (a) or (b). The SICNN with smoothing in (d) is able to eliminate

most of the spurious edges, but the detected edges are very thick, which is expected since

the input is smoothed. This smoothing effect is also observable in the Deriche operator

output.

The NSR values for these edge maps are (a) 12.30, (b) 8.63, (c) 2.24, and (d) 4.22, which

clearly indicate the SICNN output is the best. From these NSR values, Figure 8'4,

Figure 8.5, and from the results for different ENR as presented in Appendix D, both

SICNNs perform best, followed by the Deriche operator and then the differentiator.
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Using these edge maps we can point out and explain a number of features of the curves in
Figure 8.4. The area is not 0.5 for low ENR, primarily because the output noise is not

uniform in intensity across the entire output. For a linear edge detector operating on an

input with multiplicative noise, the output noise variance is much stronger in regions

where the input intensity is large compared to where the input intensity is small. Thus, for

a given threshold, the majority of edges are detected only in certain regions of the input, as

evident in Figure 8.5 (a) and (b). The SICNNs area, however, would be 0.5 for low enough

ENR. The differentiator and Deriche operator would not have such a problem for inputs

with additive noise.

Another interesting point is that the MOP curves for both SICNNs have similar peak

values, whereas this was not the case for the l-D results observed before. It is difficult to
state exactly why this is the case since the 2-D edge detection algorithm and outputs are

not as easy to analyse as those for the l-D case. Although the peak MOP values of both

SICNNs are similar, their edge outputs are certainly different as evident from Figure 8.5.
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Two-Dimensional Comparison on Synthetic lmages

Thus, the numerical results do not tell the complete story, so the output edge map should

be observed.

8.3.3 Gaussian Noise

The comparison is now presented for the input synthetic image with Gaussian noise. The

edge detection algorithm is identical to that used for the inputs with multiplicative noise,

as are the edge detectors and the Gaussian smoothing filter.

Figure 8.6 shows the performance curves for the edge detectors for the synthetic image

with Gaussian noise. The curves in (a) and (b) are computed for an ENR of 10 dB.

Figure S.6(a) shows the MOP curves, where the SICNN for this particular ENR is far

better than the other edge detectors since it has a higher peak value.
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Figure S.6(b) shows the PD vs. FA curves, and as expected from the MOP, the PD vs. FA

curves for the Deriche operator and both SICNNs are somewhat similar, so it is difficult to

rank their performance. The curve for the differentiator, however, is clearly inferior to the

other edge detectors. Figure 8.6(c) shows that the Deriche operator has the largest area for
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ENR less than about l0 dB. The performance of the two SICNNs are very close, but the

SICNN with smoothing appears to be slightly better for low ENR, while the SICNN is

better for large ENR. The curve for the differentiator is far below those of the other edge

detectors.

Figure 8.7 shows Lhe edge maps of all four edge detectors for a threshold selected such

that the MOP is maximised as shown in Figure 8.6(a). The outputs of all four edge

detectors are generally not very good. The output of the differentiator is noisy, with many

edges missing, whereas the output of the Deriche operator is not as noisy but still has

many edges missing and the detected edges are very thick. The output of the SICNN is

very noisy in some regions, and many edges are also missing. The same is also true for the

SICNN with smoothing, although the output is less noisy and the detected edges are quite

thick and not well-defined. To enable us to objectively compare the outputs, we compute

their NSR. The NSR values for these outputs are (a) 5.23, (b) 4.64, (c) 3.91, and (d) 4.4j ,

which clearly indicates the superior quality of the SICNN output for the input with ENR

of 10 dB over the outputs ofthe other edge detectors.
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The_outPuts a.re chosen for thresholds according to Figure 8.6(a). The NSR values
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Two-Dimensional Comparison on Synthetic lmages

Some regions of both SICNNs outputs are noisy compared to other regions, since the

output noise intensity is inversely related to the input intensity. Hence, input regions of

low input intensity have very large output noise as compared to regions of the input with

large intensity. Thus, when a global threshold is applied, in order to detect the responses

from small contrast edges, the noise pixels in the regions of low input intensity are also

unavoidably detected, hence we obtain regions in the output which are very noisy.

In any case, from the measure of the area under the PD vs. FA curve for the synthetic input

image with Gaussian noise, the Deriche operator is best, followed by the SICNN and the

SICNN with smoothing, and finally the discrete differentiator. Nevertheless, the edge map

of the SICNN may be superior to those of the other edge detectors for a particular

threshold, and ENR.

8.3.4 Uniform Noise

As for both the multiplicative and additïve Gaussian noise results, we compare the edge

detection performance of the discrete derivative, Deriche operator, the SICNN and the

SICNN with Gaussian smoothing. Again, the support size of all edge detectors and the

Gaussian f,lter is 2r + l, where r is the neighbourhood size of both SICNNs.

Figure 8.8 shows the comparison using the usual performance measures. Figure 8.8(a)

compares the MOP curves for an ENR of 10 dB. The peak MOP value for the Deriche,

SICNN and SICNN with smoothing are all very similar, while the peak value for the

differentiator is much smaller than the other three.

Figure S.S(b) compares the corresponding PD vs. FA curves for an ENR equal to 10 dB.

For large FA rate, the curves for the Deriche operator and the SICNN are very similar, but

the SICNN has a much greater PD for small FA rates. The SICNN with smoothing PD is

similar to that of the Deriche operator for small FA rates, but is slightly less for large FA

rates. The curve for the differentiator is clearly inferior to those of the other three edge

detectors.

Figure 8.S(c) compares the area under the PD vs. FA curve as a function of ENR. For

inputs with low to medium ENR, the Deriche operator has the best performance, followed

by the SICNN with smoothing, the SICNN, and then the differentiator. For large ENR,

however, the SICNN has the best performance, followed by the SICNN with smoothing,
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the Deriche operator and then the differentiator. Further results for different ENR are

presented in Appendix D.
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Figure 8.9 shows the output edge maps of all four edge detectors for inputs with ENR of
10 dB, and thresholds selected to maximise the MOP shown in Figure S.8(a). The output

of the differentiator in Figure 8.9(a) is very noisy, although some true edges are clearly

visible, while the output of the Deriche operator is less noisy with more true edge

detected, though these edges are very broad. The SICNN output in (c) has some of the true

edges well localised, but the output is still quite noisy in some regions. The output of the

SICNN with smoothing, as shown in (d), is not as noisy as the normal SICNN, but the

detected edges are very thick and not localised well (the reason why the output of the

SICNNs is noisy in certain regions only, was explained above for the 2-D results for
Gaussian noise). To quantitatively compare the edge maps, the NSR values are (a) 4.31,

(b) 4.38, (c) 2.81, and (d) 4.93. These values indicate that the SICNN outpur is much

better than that of the other outputs.
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Thus, it appears that, using the measure of the area under the PD vs. FA curve, both the

SICNN and Deriche operator have similar performance, followed closely by the SICNN

with smoothing, and then the discrete differentiator. Nevertheless, for a given ENR and

threshold that maximises each edge detector's MOP, the SICNN output is clearly the best.
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8.4 Two-Dimensional Comparison of Real lmages

All of the investigations and experiments to this point have been performed on either l-D

or 2-D synthetic edges, which allowed us to quantitatively analyse the SICNN

performance and compare it to other edge detectors. 'We now compare the four edge

detectors with 2-D real images. Figure 8.10 shows two real images used for this purpose.

Figure 8.10(a) is a SAR image of a road junction located somewhere in South Australia.

Due to the coherent imaging nature of SAR, it is well known that the dominant noise is

multiplicative in nature. Figure S.l0(b) shows the Lenna image which is popularly used to

compare the performance of edge detectors. Its noise is mostly assumed to be additive.
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Figure 8.10 (a) shows a sAR image of a road junction, and (b) shows the Lenna
rmage.

8.4.1 Results for SAR lmage

It is well known that synthetic aperture radar (SAR) images have multiplicative noise, i.e.,

the noise intensity is proportional to the intensity of the pixel. Consequently, linear edge

detectors that work well with images with additive noise, are not particularly suited to

radar images. The advantages that the nonlinear properties of the SICNN give it over

linear filters for synthetic l-D and 2-D edges has already been observed, especially for

inputs with multiplicative noise.

FigureS.ll shows the comparison between the different edge detectors for the road

junction SAR image as given in Figure 8.10(a). For both SICNNs the neighbourhood size

is r = 5, thus the support size for each edge detector is 2r+ I = 11 pixels. Since the

image has predominately multiplicative noise, a decay factor of zero was used for both

SICNNs. The optimal weight distribution is also used, with attenuation factor set to 1. The

threshold for each edge detector's output is selected such that approximately equal number

ofedges are detected in each output.

Figure 8.11(a) shows the output of the differentiator, which is very noisy because we are

differentiating an image which is very noisy, hence the noise is amplified, resulting in a
poor probability of detecting a true edge. Figure 8.11(b) is the Deriche operator output.

The road junction is clearly visible, although the road edges are quite noisy and broken.

There is also some noise throughout the image, and there are many edges which appear to

identify peripheral objects, but the image is too noisy to assert this with any confidence.
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Figure 8. 1 I (c) shows the output of the SICNN. The road is clearly identified and, like the

output of the Deriche operator, the quality of detected edges is not good with the overall

image being noisy. Interestingly, the main cross-diagonal road is a single pixel wide,

whereas for the Deriche operator it appears as two sets of parallel lines very close together.

The output of the SICNN with smoothing is shown in (d). This output is the least noisiest

of the four edge detector outputs. Furthermore, the edges corresponding to the road are

clearly visible, and it is likely here that the peripheral objects would not be confused with

noise. Like the Deriche operator output, the road is detected as two parallel lines of edge

pixels. The only problem with this SICNN output is that the edges appear quite thick,

which is due to the fact that the input is smoothed with a Gaussian filter.

Thus, for both the synthetic l-D and 2-D edges, the SICNN with smoothing has the best

performance as compared to the SICNN with no smoothing and the linear edge detectors.

Again, this is due to the ability of the SICNN to nonlinearly adapt to the varying intensity

in its input.
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8.4.2 Results for Lenna lmage

We now compare the performance of the edge detectors on the Lenna image shown in

Figure 8.10(b). The differentiator and Deriche operator are identical to the ones used for

the SAR image. We assume that the image has additive noise, so the optimal decay factor

for both SICNNs is estimated in small, local regions. Once again, for a fair comparison the

threshold for the outputs of each edge detector are selected so that the number of detected

edges is approximately equal for each output.
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Figure 8.12 Comparison of the edge detector outputs on the Lenna image. The
outputs are.for the (a) differentiator, (b) Deriche operator, (c) slcNN, and (dfslcNN
with Gaussian smoothing.

Figure 8.12(a) shows the output of the discrete differentiator. The edges in both the face

and hat region are identified well, but many of the background features are missing.

Similarly for the output of the Deriche operator shown in (b), the face and hat are detected,

but not as well as the differentiator. The Deriche operator, however, is able to detect more

background features. Figure 8.12(c) shows the output of the SICNN. In this case, the

decay factor with a value of À = I was found to give a good output. Although most of the

edges in the face, hat and background regions are detected, the image is quite noisy.

Figure 8.12(c) shows the output of the SICNN with Gaussian smoothing. Its best output is

achieved with l, = 0.5 . Clearly, because of the smoothing, this output is much less noisier
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than that of the other SICNN, but some of the fine details of the face and hat have been

lost. Nevertheless, most of the background features are still detected.

For the Lenna image, it is difficult to say which edge detector is best. The main problem is

that the ground truth is not known, i.e., the position of the true edges in the image, thus it

is difficult to accurately compare the different detectors. Nevertheless, it appears that the

SICNN is able to detect most of the edges, even though there are many spurious edges

compared to the other outputs. The SICNN with smoothing output is much cleaner and has

also detected most of the edges, although these edges are now thicker due to the Gaussian

smoothing. The outputs of the Differentiator and Deriche operator are very clean, but they

do not detect some edges, particularly in the background regions.

8.5 Conclusions

In this Chapter we compared the performance of various edge detectors on both l-D and

2-D synthetic edges, and two real images. For the l-D step edges with multiplicative

noise, the SICNN with smoothing performed the best followed by the SICNN with no

smoothing, and then the Deriche operator and the differentiator. The SICNNs have an

advantage over the linear edge detectors in that they can nonlinearly adapt to their input.

For inputs with additive noise, both the Deriche operator and the SICNN with smoothing

gave the best performance followed by the SICNN, and then the differentiator. Some

performance measures indicated that the Deriche operator was best, while other measures

indicated the SICNN with smoothing was best.

For the 2-D synthetic image with multiplicative noise, the SICNN with smoothing

performed the best for low ENR, but for large ENR the SICNN performed best. Following

these two were ranked the Deriche operator and the differentiator. The edge maps of both

SICNNs were clearly better than those of the Deriche operator and the differentiator. The

SICNN with smoothing output has less noise and thicker edges, while the outputs of the

Deriche and differentiator were quite bad, due to the multiplicative nature of the input

noise. The NSR values were 12.30, 8.63, 2.24, and 4.42 for the differentiator, Deriche

operator, SICNN, and SICNN with smoothing, respectively. These values clearly indicate

the superiority of the SICNN outputs over the outputs of the linear edge detectors.
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For the input image with additive noise, the Deriche operator performed best in terms of

the area under the PD vs. FA curve, followed by the SICNN with smoothing for low ENR,

and then the SICNN and the differentiator. For ENR greater than about 10 dB, the normal

SICNN performed the best. Looking at the output edge maps for an ENR of 10 dB, all

outputs had many spurious edges, though the SICNN output had many clean regions, and

localised the edges well. The NSR values for Gaussian noise werc 5.23, 4.64,3.91, and

4.47 for the outputs of the differentiator, Deriche operator, SICNN, and SICNN with

smoothing, respectively. The corresponding values for uniform were 4.31, 4.38,2.8I, and

4.93. These values objectively indicate that the SICNN output was clearly the best.

These results also indicate that for the SICNN, smoothing the input with a Gaussian

improved the performance, particularly for low ENR by removing much of the noise. For

large ENR, the blurring effect of the filters appeared to be more significant and it caused

the performance to deteriorate, so in this case it is better to use the SICNN without

smoothing.

Finally we compared the outputs of the edge detectors on a number of real images. For a

SAR with multiplicative noise, the SICNN with smoothing performed the best, while the

SICNN and Deriche operator gave outputs of similar quality. The differentiator was not

able to detect any significant edges at all. For the Lenna image, which has additive noise,

the SICNN was able to detect most of the edges in the face and background region, though

there were many spurious edges. The SICNN was smoothing output was very clean with

most of the edges detected too, though they were thick due to smoothing. The outputs of

the linear edge detectors were very clean, but missed many of the edges in the background

regions.
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Cftøpter 9 Edge Enhancement

using the S/CNN

9.1 lntroduction
'When a real scene is acquired by a camera of some sort, there is invariably a degradation

in the image quality. This may be due to bad lighting, poor camera calibration, or low

dynamic range in the viewing device. Enhancement is used to generate a more visually

pleasing and informative image, though not necessarily a more accurate image of the

original scene. Of all the image enhancement techniques, we are only interested in those

that perform edge enhancement.

We begin by reviewing a number of image enhancement techniques, such as histogram

processing, point processing, highpass filtering and homomorphic filtering. In particular

we look at contrast transformation methods and nonlinear unsharp masking. Different

image enhancement measures are reviewed, and we shall show that these are not entirely

useful to us. Thus, a new measure is defined, the edge enhancement product (EEP), which

measure both the enhancement of the edge pixel's intensity and the difference between the

background intensity levels.

The edge-enhancing SICNN is then presented in Section 9.4. For the recurrent SICNN, we

use an iterative approach to obtain its steady-state response, and it is the output of this

iterative process which we use for edge enhancement. For the SICNN output after 1

iteration we show how the decay factor can be chosen to maximise the output EEP. The

SICNN enhancement for different iterations is also investigated, and finally the

performance of the SICNN (with and without smoothing) is compared to two other edge
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enhancement schemes: the gradient-like enhøncement and hyperbolic tangent contrast

enhqncemerql schemes.

9.2 Review of lmage Enhancement

When capturing an image of any real-world scene, we can expect many degradations in

the resulting image. These degradations may be due to the environment, such as poor

lighting, or they may arise from inadequacies and limitations of the actual imaging device,

such as poor camera calibration and insufficient dynamic range. These degradations result

in a direct reduction of the image quality.

To generate a more perceptually pleasing and informative image, enhancement is used.

Enhancement improves the quality of the original image - making it more suitable for a
particular application or purpose. Note that enhancement does not restore the degraded

image to its original state - this is image restoration. We are only interested in

enhancement techniques that improve the edge contrast of the original image.

9.2.1 Spatial Domain Methods

Histogram Processing

We now review the techniques that attempt to modify the image so that its histogram has a

desired shape. The histogram of an image represents the relative frequency of occurrence

of the gray levels in the image. Mathematically, the histogram of an image is given by

h, = n,/N

where N is the total number of pixels, and n, is the number of pixels in the image with

gray-levelj.

A popular and simple technique is histogram equalization, which transforms the input

image in such a way that the output image's histogram is roughly uniform. Histogram

equalization tends to increase small contrasts, and decrease large ones. If we let the output

after histogram processing be I' , and the output histogram to be uniform over the range of
desired intensities Ll'*in, I'*orf , then the desired transformation for an input pixel of
intensity 1is then (Sonka et al., 1993):

! ¿.+r.L¿ I mln

I
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Review of lmage Enhancement

where N is the total number of pixels, aîd I^,n is the minimum input gray level

A simple adaptive version of this technique would apply equalisation over small local

regions rather than over the entire image. More complex adaptive schemes can be found in

Paranjape et al. (1992), and Pizer et al. (1987), while an evaluation of histogram

equalisation for medical purposes was described by Zimmerman et al. (1988).

A slightly different approach is linear histogram stretching, where the smallest input

intensity in the original image is stretched down to a desired minimum I'^ín, and the

maximum input intensity is linearly scaled up to a desired maximum ljo,. Thus, the

required transformation for an input pixel of intensity 1 and for a desired output gray scale

range lI*,n,1*or) is

(I_I .\
I' = I'*¡n + 

ùh 
(l'*o, - I'^t,) '

Once again an adaptive approach can be implemented by processing the image over a

small, local neighbourhood.

Point Processing

There exist many spatial filtering enhancement schemes such as mean and median

filtering, but we shall not consider those here as they primarily remove noise and do not

enhance edges. A simple, but effective, algorithm to enhance edges is known as high-

frequency boosting (Gonzalez &'Woods, 1992) or unsharp masking (UM), where the high-

frequency contents of the input are partially added to the input. The enhanced output is

given by

IB"" 

= Hlt',.'r:'
where I, I,oort, I* and I* are the original input, the boosted output, and the low-pass

and high-pass versions of the input image, respectively. The parameter ct controls the

amount of the original image added to its high-passed version. A typical mask used to

obtained the high passed version of the original input image is

, |--t -t -t-l
el-t w -tl

L-r -t -il
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wherew=9a.-l,o>l.Thistechniquereliesonthefactthatedgesareusuallyofhigh

frequency in nature, hence this approach increases their strength compared to the

background; ofcourse noise is also boosted since it is ofa high-frequency nature.

9.2.2 Frequency Domain Methods

Enhancement in the frequency domain is, in principle, straightforward. 'l'he f,ourier

transform of the image to be enhanced is computed, then it is multiplied by the filter's

Fourier transform, and finally the inverse Fourier transform of this product is taken to

obtain the enhanced image in the spatial domain. The filter is a high pass one, which

implies that it only enhances the high frequency components of the input signal, such as

edges and noise.

Highpass Filtering

To sharpen an image, the image's Fourier transform can be multiplied by the transform of

a high-pass frequency filter such as the Butterworth highpass filter.

IH (@x, tr) =
o:2 +x

(r)

2n')
1+

o

where or, oy are the frequency variables, oo is the cutoff frequency, and n is the filter

order. Again, this approach emphasises the high frequency components (edges) of the

image, which invariably includes noise too.

Homomorphic Filtering

A typical homomorphic approach to image enhancement is illustrated in Figure 9.1 (see

Oppenheim et al., 1968; Jernigan & Mclean, 1992); it is a special case of a class of

systems known as homomorphic systems. The main motivation for this field of work is to

apply concepts and structures of abstract linear algebra to image processing. It has found

applications in image restoration, speech processing, and seismic signal processing,

among others, and has also been psychologically connected to Fechner's law (see Pinoli,

1997).

Here it is assumed that the input image f (x,y) can be written in terms of its illumination,

i (x, y), and reflectance,r (x, y) , components
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f(x,Y) = i(x,Y)r(x,Y)'

It is also assumed that the reflectance component changes abruptly at discontinuities,

while the illumination component does not. Thus, the reflectance component is associated

with high frequency edges and the illumination component is associated with the slow-

changing background. Homomorphic filtering allows us to separate both of these

components of the input. The filter H (u, v) is designed to affect the low and high

frequency components differently, and is typically a highpass filter in order to accentuate

the edges. The natural logarithm allows us to apply classical linear image processing

techniques to each component of the input.

f(x,y) g(x,y)

Figure 9.1 Homomorphic filtering for image enhancement (see Gonzalez & Woods,

1 ee2).

9.2.3 Contrast Transformat¡on Methods

A number of schemes (Gordon & Rangayyan,lgS4; Dhawan et al., 1986; Beghdadi & Le

Negrate, 1989; Dash & Chatterji, 1991) aim to explicitly vary the local contrast of an edge

in an image. All of the proposed methods begin by computing the local contrast in a small

window, and then changing that contrast according to some function or transformation.

The intensity of the central element of the local window is then recomputed according to

the new contrast value for that pixel. Thus, the function or transformation determines the

relationship between the output and input contrasts.

The local contrast of the original image at pixel (i, j) is defined as (Peli, 1990)

c lI,¡- Iol

It,,+ tol
EO (e.1)

u

where Iu is the intensity of the pixel and 1o is the local mean intensity. This is also known

as Michelson's formula. Numerous transformations for this contrast have been proposed.

Dhawan et al. (1986) investigate a number of transformation functions, including the

tangent (tan (nc ¡¡)), hyperbolic tangent ( tanh (nc,r) ), exponential ( I - exp (-nc,,) ), natural

logarithm (ln(1 +nc¡¡)), and the square root ([c,r) transformations, where n is a real

(FF1¡-1 expH(u,v)ln FFT
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number. The only necessary property of the transformation is that it must map the input

contrast to output contrasts in the range of [O f] , the extreme limits of the contrast value

for any edge.

These transformations not only increase the contrast but they also increase the noise

intensity, so the choice of the transformation function is usually a trade-ofï between the

amotlnt of contrast enhancement desired and the maximum allowable increase in noisc

intensity. Later we show how the value of n can be chosen to maximise the output EEP.

Whichevercontrasttransformation F(c,r) isused, where F(c¡¡) >cu and F(c,¡) e [0, l]
for c,,e [0, 1], the pixel's intensity is modif,ed as

if Ii.<Io

I

where ci, = F(c¡¡)

9.2.4 Nonlinear Unsharp Masking

A classical contrast enhancement f,lter is the so-called Unsharp Mask (UM) which

increases the contrast by adding a high-pass version of the input signal to itself, as we

discussed above. Naturally, the edges are enhanced, but so is any noise present in the

signal. Guillon et al. (1996) developed a new family of non-stationary filters, whose

impulse response at each point depends upon the neighbouring pixels' intensities, i.e., it is

adaptive to the input signal. The filter mask then processes the pixel by a combination of
high-pass and low-pass filter versions of the input.

ConsiderafiltermaskMof size KxL centredonthepixel (i,fi.Eachcoefficient mfj ot
this mask is viewed as a level of confidence of the current pixel belonging to the mask.

Thus, *!j - l for pixels similar to the centre pixel and mfl -+ o for others, and

M = {*!je [0, 1] / (k,t) e KxL] .

Let Io, be the intensity of pixel (k, l) inthe mask M, andlu be the intensity at the current

position, which is at the centre of the mask. The algorithm needs a discriminating function

that tends to 1 when the pixel values are similar, and tends to zero otherwise. A suitable

function is,

I:.
U

otherwise
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*o,l ="-r(ry)
where o controls the width of the Gaussian curve. The mask M is then computed for each

pixel in the image. The proposed filter structure is shown in Figure 9.2.The multiplier cr

is a weighted factor driving the contrast enhancement effect. The low and high pass

versions of the input are computed as, respectively,

f,r
I
l)e

*!jI,¡
M

(k, I) e M

I l*!j-^,,)',,
M

ij
(k, l) e M

KL

Enhan c e m ent (GLE) technique.

k.

m..
U

k

PH
ijI

(k, I) e

1wltn m

l,j ,!j,
I
U

tHP
'ij

Figure 9.2 Gradient-Like Enhancement (GLE) as proposed by Guillon et al. (1996)

The low-pass component IL,f is a weighted mean over the mask M. The high-pass

component II!,P can be interpreted as local estimate of the gradient at that pixel. The

overall output of the system is

ti¡ = ttÏ 1t + utlltP )' Eo (e'2)

This techniques attempts to improve the performance over the usual Unsharp Masking

algorithm by multiplying the low-pass version of the input with the high-pass version of

the input, rather than multiplying the input directly with the high-pass version of the input.

Thus, the same edge enhancement can be achieved with this method as with the classical

c[

Low-Pass

High-Pass
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unsharp masking, but the effect of noise can be reduced. Later, we show how the value of

ü can be selected to maximise the output EEP.

9.3 Edge Enhancement Measures

We have seen that there exists a large number of image enhancement algorithms, there are

few means or methods that can quantify the amount of enhancement. Many papers use

visual inspection to compare different enhancement schemes - which is a qualitative

measure and not a quantitative one.

Visual inspection is ultimately the best means of rating the improvement in the quality of

an image compared to the original, but the means for determining the performance are not

entirely adequate. For example, humans are subjective - people may measure the quality

of an image in different ways. We desire a means of rapidly and automatically measuring

the improvement in an image with good repeatability in the measures. For these reasons,

we shall only consider quantitative measures of enhancement, and not subjective ones.

Furthermore, the-quantitative measure will not be based on any properties of the human

visual system, but solely on the statistics of the image. The enhancement schemes

investigated here will primarily enhance the contrast, or edges, of the input image, thus we

review and describe only measures which relate to such enhancement schemes.

9.3.1 Enhancement Measures

Contrast lmprovement lndex

Assuming that there is a step edge in a local neighbourhood, the contrast at pixel (i,l) is
defined as (Peli, 1990)1:

where I.o" it the maximum background intensity of the edge, and I 
^,n 

is the minimum

background intensity of the edge. This is sometimes referred to as Michelson's formula.

1. The contrast, as defined here, measures the contrast in a small window centred on pixel (ij), whereas the contrast
defined in EQ (9.1) is the contrast of the acrual pixel (ij).
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A popular measure of enhancement is to compute the contrast of the enhanced image, and

compare it to the original image (Dash & Chatterji,Ig9l; Dhawan et al., 1986; Gordon &

Rangayyan, 1984; Beghdadi & Le Negrate, 1989). Laine et al. (1994) define the contrast

improvement index (CII) in a region of interest as:

cll - ":yl,
cin

where cou,, and cin ate the contrast at an edge in the output (enhanced) image and the

original input image, respectively.

Relative Edge Enhancement

Paradis & Jernigan (1994) used a measure called the relative edge enhancement (REE) for

l-D step edges. This measure is primarily used when the intensity of the edge points

themselves increase relative to the background intensity. For enhancement of a step edge,

as shown in Figure 9.3, Paradis & Jernigan (1994) define the REE as

Avnng=Ë

where Ayo is the distance between the edge peaks, and Ay is the difference between the

background intensities.

Ây
Âyp

Figure 9.3 A step edge whose edge pixels are enhanced relative to the

background.

When measuring the enhancement in an image compared to the original image we can use

a variation of the above formula:

REE = 
LY'/LY

-" - L, /Lxp
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where Ay, is the peak-to-peak edge variation and Ay is the background difference in the

vicinity of the enhanced edge in the enhanced image, while Â;o and A; are the

corresponding measures for the unenhanced original input.

Gradient Enhancement Measure

Another possible image enhancement measure is the Gradient Enhancement Measure

(GEM) as proposed by Hanis (1977). This is simply a measure of the increase in the

gradient of the edge after image enhancement.

9.3.2 New Performance Measure

For SICNN enhancement, we are only interested in the enhancement as shown in the edge

in Figure 9.3, i.e., enhancement of the edge pixel intensity relative to the difference in the

background intensities. The measures described above are inappropriate for measuring

this type of enhancement. The CII measures only the enhancement of the background

intensities - it does not take into account the enhancement of the edge pixels relative to the

background. Conversely, the GEM only measures the enhancement of the edge pixel's

gradient, with no account of the change in the background intensity. The REE measure is

possibly the best of these measures as it takes into account both the edge responses and the

background intensities, however it can increase without bounds as Ây -+ -. Thus, we can

make the REE arbitrarily large by simply forcing the difference in the background

intensities (Ay ) to be as small as possible. We would prefer a measure which gives a high

value when both the edge enhancement and the difference between the background

intensities are as large as possible.

A better measure for the type of enhancement that we desire, and related to the REE, is

given by EQ (9.3), which we call the Edge Enhancement Product (EEP). The multiplier of

4 is a normalisation constant. The EEP measures the ratio of the peak-to-peak intensity

difference (Lyp) relative to the background intensity difference (Ay) as shown in

Figure 9.3. By maximising this measure we make the enhancement of the edge pixel's

intensity as large as possible and also keep the difference between the background

intensity levels large too. Thus, by maximising this measure we trade-off edge

enhancement with background contrast enhancement.
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EEP = +( t-4l-14¿ Eo(s.3)
\ LJp)^tp

Figure 9.4 shows the EEP as the ratio Ay/ Lvo varies. We assume here that the maximum

value of the difference in background intensities does not exceed the peak-to-peak

intensity magnitude, i.e., Ly<Ltp. V/hen Ây or the difference in the background

intensities is zero, we have no background contrast, hence the EPP is zero.'When Ly/ Lyo

is 1, then the background intensity levels are equal to the intensity levels of the edge

pixels, thus there is no edge enhancement, and hence the EEP is also zero. Maximum

enhancement occurs when Ây = 0.54!0, in which case the difference in background

intensities is exactly equal to half of the peak-to-peak intensity difference between the

edge pixels. The constant of 4 in EQ (9.3) ensures that the maximum EEP is 1 and not

t/4.

0.8

o.2

0
10 0.5

Ly/ Lyo

Figure 9.4 EEP as a function of the ratio of Ly/Lyo.

9.4 The SICNN Edge Enhancer

In this section we present our analysis of the SICNN for edge enhancement. We begin

with the recurrent SICNN and show that an iterative approach can be used to calculate its

steady-state values. It is the output of this iterative approach that we can use for edge

enhancement. Using the EEP measure defined in EQ (9.3), the SICNN decay factor that

maximises the EEP of its output for I iteration is found. 'We then compare the optimal

decay factor to the decay factor which maximises the experimental EEP of both l-D and

2-D edges. Finally, we obtain by simulations the maximum EEP of the SICNN for

different iterations, and discuss why it is advantageous to use the lst iteration output only.

1

È
LrJ
tu

0.6

0.4
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9.4.1 Defining the Edge-Enhancing SICNN

Much of the background theory used in this Chapter was presented in Section 4.2, so the

reader is referred to that section of the thesis for more details.

The differential equation for each cell of the l-D SICNN is given by Ee(4.1) and

repeated here:

dx

dt 2.,,f(x,)x, i = 1,2,...,M EO (s.4)
jeN,(i)

where .r, is the state of cell i, 1, is its input, c, is its passive decay factor of excitation, / is

the activation functiort, wik is the interaction weight between cells j and i, N,' is the

neighbourhood function, and M is the total number of nodes, which corresponds to the

total length of the input. Clearly, this equation is nonlinear as each cell state x, depends

upon the output states of its neighbours, who in turn are also a function of x,. The steady-

state solution to EQ (9.4) is given by EQ (a.2):

x
I.

t i = 1,2,...,M EA (s.s)

= I.-a.x.-
I ,'

r

o¡+ 2 w,f (x,*,)
J =-r

This equation can be solved using an iterative approach where an initial estimate of xi+ j
in the denominator of EQ (9.5) is used to compute the value of .x, on the left-hand side of

the equation, whose value in turn replaces the value of .r, in the numerator. Eventually, we

expect this value of x, to approach the steady-state value of EQ (9.4). This iterative

approach can be cast as the discrete-time dynamical system as given in EQ (4.3), which is

slightly modified here so that the time index k corresponds directly to the number of

iterations:

x¡(k) =
I.

I for k = O,L,2, EO (e.6)r

o,+ Zw,f (x *j(¿- l))
l=-r

The initial value of x, (0) is chosen to be 1,, the input intensity to node i. Thus, our initial

"guess" for the SICNN steady-state is its input intensity. Consider, for example, a constant

input of intensity 10, and a SICNN with decay factor ai = l, neighbourhood size r = 5 ,

and a symmetrical rectangular weight distribution. Figure 9.5 shows the value of .r, (k) as
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k increases . x, (k) initially oscillates greatly, but as k increases it eventually converges to

its steady-state value.

.Y
x

10

8

6

4

2

0
20 4 68 10 12

llerations, k
14 16 18 20

Figure 9.5 x,(k) as given by EQ (9.6) for different number of iterations. The input
has /o = 10, and the SICNN has a symmetrical rectangular weight distribution,
r=5âhdâ=1.

9.4.2 Enhancement w¡th 1 lteration

We now look at the edge enhancement capabilities of the SICNN output after only 1

iteration, i.e., when k = 0 in EQ (9.6), which is, in fact, identical to the one that has

already been used for edge detection. For a given input, by varying the decay factor, the

shape of the its output can be varied, as shown in Figure 9.6. By varying the decay factor,

both the edge enhancement and the background intensities of this output are varied. Thus,

by appropriately selecting the value of the decay factor, an output which maximises the

EEP measure as given in EQ (9.3) can be obtained.

_1
x 10'

o.09 12
0.13

o.1
o.o7 o

o.o7 o.05
6

50
(a)

100 0 50
(b)

100 0 50
(c)

10c

Figure 9.6 SICNN output when its decay factor is (a) a " ,0, (b) a= lo and (c) a " /0,

where /o is the mean input intensity.

o
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9.4.2.1 Derivation of Optimal Decay Factor for I lteration

We now derive an expression for the decay factor that maximises the EEP of the first

iteration output. That is, we want to find the decay factor which maximises EQ (9.3) for a

step edge input. Assuming a linear activation function and symmetrical weights, and from

of the SICNN output as shown in Figure 5.7,the peak-to-peak edge intensity (Âyo) ancl

the difference in background intensities (Ây) are, respectively:

/o(1 +c) Io(1-c) 2cIo
r

a+Io\w,
I =-r

a+Io\w, a+Io\w,
J=-r

1n(1 +c) Io(l - c) 2acInay=
a+Iç(I+c) \w, a+Is(I-c) \w, a+Io(1+c) 2*, a+Io(1-c) 2*,

r r

)t

r

J=-r

The EEP is then given by

4aIo a+Iolw,
)t

a+Io(-12) 2*,
r r

EEP=4 1
Ly
Âv

Ay
Âv

*j

In this equation we can maximise either w.r.t. the decay factor or the sum of weights. V/e

choose to maximise w.r.t. the decay factor only since the sum of weights is normally f,xed.

Furthermore, if the maximum EEP is obtained by optimising w.r.t. the decay factor, then it
is pointless to optimise w.r.t. the sum of weights, or indeed any other parameter. To find

the value of the decay factor which maximises the EEP, we need to solve dEEp/da = 0.

This solution is a quartic in a, and so has four possible solutions. Two of the solutions are

complex conjugates, whilst the remaining two solutions are real and equal in magnitude,

but they differ in polarity. The only non-negative, real root of EEP, and thus the optimal

value of the decay factor, can be shown to be

(r\2(r

la+to(l+c) L.,l l"*/o(1-') Ia ,=-, / \ ¡=-,

2

oop, = toJ-- cz i *,,
I = -r

and the corresponding value of the EEP measure for this value of decay factor is

EO (e.7)

202

EEp = 
+dT-c\ (Jt -cz-Ð (Jt -7 + t -c\ _,

1J-t-rz+ 1+c)'f- Jt -rr- t +c)2 ^'



The SICNN Edge Enhancer

Thus, the maximum possible value of the EEP wirh the SICNN, for a l-D step edge input,

is equal to 1. In fact from Figure 9.4, this is the maximum EEP that we expect to get when

Ly/ Ly, - 0.5, hence EQ (9.7) could have been obtained by solving EEP = 1 instead.

To check the validity of this derivation and equations, the optimal theoretical values of the

decay factor and the EEP are compared to the values obtained experimentally.

Figure 9.7(a) shows the EEP value for a step edge input as the decay factor of the SICNN

is varied. The SICNN has a linear activation function, symmetrical weights that sum to

unity, while the edge input has mean intensity 1o = l0 and contrast c = 0.25. This gives

the theoretically optimal values of a = 9.68 and EEP = 1 . From Figure 9.7(a) in the

ENR = 10 dB case, the optimal value of the decay factor is around 10, and the optimal

value of the EEP is about 0.96. Clearly, these agree very well with the theoretical values.

For an input with ENR = 0 dB, the optimal decay factor is again approximately 10, but

the EEP is 0.80 which is less than the theoretical optimal value. This is because in our

definition of the EEP we assumed that Ây 
= 

Ltn, but this may not be true when the input is

very noisy. Hence the EEP for some edge may in fact be negative, which causes the

overall EEP, when averaged over many edges, to be less than l.
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(a) Decay Factor, a

-1 1oo 101

(b) Decay Factor, a

Figure 9.7 EEP as a function of the decay factor. (a) is for l-D step edges with
l^= 10, c = 0.25, while the SICNN has symmetrical weights summing to 1, and

r"= s . (b) is for the 2-D synthetic image. The SICNN has symmetrical 2-D weights
summing to 1. ln (a) and (b), the noise is multiplicative.

For the 2-D synthetic image shown in Figure 6.13(a), Figure 9.7(b) shows the EEP as the

decay factor, which is the same for each pixel of the image, is varied. In 2-D, the EEP is

calculated by computing Ây and Ly, in small local regions about each edge pixel of the

ENR=0dB
ENR = 10 dB
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image. The maximum EEP is about 0.63 for ENR = 10 dB. If, however, the decay factor

is chosen according to EQ (9.7) in a small local neighbourhood, the overall EEP of the

enhanced image for ENA = 10 dB is approximately 0.76. Thus, by using a locally optimal

value of the decay factor, the edge enhancement is increased by approximately 2OVo.

9.4.3 Enhancement with Varying lterations

We introduced in Section 9.4.I tbe discrete sequence x, (k) given by EQ (9.6) and used for

edge enhancement, as:

Ii
x¡(k) = EO (e.8)

o,+ 2 wrf (x,_¡(fr - 1) )

r

J = -r

where k = 1,2,...,*
0.7 13

Ø
o
c
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Figure 9.8 SICNN edge response for (a) * = / iteration, (b) k -- 2 iterations, (c)
k = 5 iterations, and (d) k = 25 iterations. The decay factor is chosen to maximise
the EEP of the output edge. The input step edge has /o - 10, and c = 0.25.

Figure 9.8 shows the SICNN output to a step edge input, as given by Ee (9.8), after r,2,
5, and 25 iterations. For each iteration, the decay factor is chosen to maximise the EEP of

the enhanced output edge. From these values of the EEP, and from observing the output

step edges, we can clearly see that the edge enhancement after 1 iteration of the SICNN is
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almost the same as the enhancement after 25 iterations. The enhancement is only small for

two iterations of the SICNN. The EEP for k = 1,5 and 25 is l, while for k = 2 itis0.37.

Figure 9.9(a) shows the EEP of the SICNN output to a step edge input for different

number of iterations, k. For the output of each iteration, the decay factor is again chosen to

maximise the EEP. We showed in Section 9.4.2.I how to analytically derive the optimal

decay factor for I iteration (k - 1 ), however due to the nonlinear nature of the SICNN it

is not possible to find an analytical expression for the EEP for k > I . Thus, the optimal

results shown in the Figure are obtained by simulations. Note that when k = 0, x, (k) is

equal to the step edge input to the SICNN, thus the EEP is zero since there is no

enhancement.

As observed from Figure 9.8, Figure 9.9(a) again indicates that the EEP for odd iterations

is always equal to 1, while the EEP for even-numbered iterations increases asymptotically

to 1. We note that the enhancement of the output, once it has reached steady-state, is

exactly the same as the enhancement after I iteration. This fact, combined with the

impossibility of deriving the optimal decay factor for k > I and the ease with which the

optimal decay factor can be computed for I iteration, implies that the ûrst iteration of the

SICNN output can be used for edge enhancement without any loss in actual enhancement.

Figure 9.9 (b) shows the simulated EEP values of the output as its decay factor is varied

for l, 2, and 25 iterations of EQ (9.8).
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Figure 9.9 (a) The optimum EEP as a function of its decay factor, and (b) the EEP

as a function of the decay factor lor 1,2, and 25 iterations. The input is a step edge
with /o = 10, and c = O.25.
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9.5 Compar¡son w¡th Other Schemes

We compare the edge enhancement abilities of the SICNN with those of other edge

enhancers for l-D step edges with noise. The performance is measured in terms of the

usual EEP of the output step edge. The four edge enhancers considered are

' a SICNN with a neighbourhood size of r, linear activation function, rectangular

symmetrical weight distribution, and optimal decay factor as given in Ee e.T,

oop, = trJt - cz Z *, Eo (s.s)

l=-r
. a SICNN with Gaussian pre-smoothing. The Gaussian has a support size of 2r + I ,

with width o = r/3.5. The other SICNN parameters are as for the SICNN with no

smoothing.

. the gradientJike enhancer (GLE) as described in Section9.2.4.In the same way that

the optimal decay factor for the SICNNs was derived in Section9.4.2.1, the value of c¡¿

in EQ (9.2) which maximises the EEP of the GLE's output to a l-D step edge is

derived. This derivation of the optimal cr is presented in Appendix E, and is given by

EQ (E.1).

. hyperbolic tangent (tanh) contrast enhancement, F (c,) = tanh (nc,), which was

described in Section 9.2.3. Using the same approach as for the SICNN optimal decay

factor and the GLE's optimal cr, the optimal value of nthatoptimises the output EEP is

derived in Appendix E, and is given by EQ @.2).

For the l-D comparison, the GLE and tanh contrast enhancement schemes have support

size 2r + I , where r is the neighbourhood size of both SICNNs. The width of the Gaussian

smoothing filter is also 2r + 1 . For the 2-D comparison, the size of the SICNNs weight

distribution is (2r+ 1) x (2r+l), where ris again the neighbourhood size. The support

of the Gaussian smoothing filter, the GLE and tanh contrast enhancement schemes is also

(2r + l) x (2r + 1) . The locally optimal decay factor, cr and n for the SICNNs, the GLE

and tanh contrast enhancement schemes, respectively, are computed as in the l-D case by

estimating the mean input intensity and contrast in a small local window of size

(2r+ I) x (2r + 1) about each pixel.
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One contribution of this Chapter is to provide means of estimating the optimal values of

both cr and n for the GLE and tanh enhancement schemes, respectively. The authors of

both these edge enhancers did not give any sound basis for choosing the values of these

parameters, even though these parameters greatly affect the edge enhancement properties;

a means is needed of selecting them according to some criterion, rather than choosing

them haphazardly. Our criterion of maximising the output EEP allows us to choose values

of these important parameters for not only these schemes, but for a number of others

which are not described; see Appendix E.

9.5.1 One Dimens¡onal Results

Multiplicative Noise

Figure 9.10 shows the l-D comparison for step edges with multiplicative noise. The step

edge has overall length of 200 pixels. The neighbourhood size of both SICNNs is r = 5 ,

hence the local window size of the GLE and tanh contrast enhancement operators is

2r + I = 11 pixels. All four edge enhancers have optimal parameters as explained above.
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Figure 9.10 EEP comparison for the four edge enhancers as the ENR is varied.
The input step edge has /^ = 10, c = 0.25, and multiplicative noise. see text for
the parameters used for eaöh edge enhancer.
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For ENR greater than about -17 dB, the SICNN with smoothing gives the greatest EEP,

followed by the GLE (except for very large ENR), the SICNN and finally the tanh contrast

enhancer. For ENR less than about -15 dB, however, the input step edge is extremely

noisy, so much so that it is hard to visually discern any edge at all in the input. Inputs with

so much noise cause the enhancement algorithms to become somewhat numerically

sensitive, hence the EEP of edge enhancers do not rapidly decrease to zero as the ENR is

made very small. Simulations on a far greater number of edges would rectify the problem,

but this is very time-consuming. Consequently, all results for very low ENR should be

discarded as being insignificant, since they do not give us any insight into edge

enhancement properties of the enhancers.

Thus, the SICNN with smoothing appears to be the best for edge enhancement, followed

by the GLE algorithm. We note that both these edge enhancers have some form of
smoothing which enables them to achieve superior enhancement to either the SICNN with

no smoothing and the tanh enhancement operator.

Additive Gaussian Noise

Figure 9.11 shows the results for step edge with Gaussian noise. Once again, the SICNN

with smoothing is by far the best enhancer, followed by the GLE, the tanh contrast

enhancer and finally the normal SICNN. For ENRs between -20 and -10 dB, the SICNN

outperforms the tanh contrast enhancer. As with the multiplicative noise results above,

however, the EEP of the edge enhancers for very low ENR are not very meaningful.

Uniform Noise Result

Finally, Figure 9.12 shows the EEP comparison for step edge inputs with uniform noise.

Again, the EEP of the SICNN with smoothing is vastly superior to all three remaining

edge enhancers. The second best edge enhancer is the GLE, followed by the tanh contrast

enhancer, and finally the normal SICNN.

In summarY, we showed that for l-D step edges with either multiplicative or additive

noise, the SICNN with smoothing is always the superior edge enhancer, followed by the

GLE method. For multiplicative noise, the SICNN outperforms the tanh contrast

enhancer, whereas for additive noise, the tanh contrast enhancer outperforms the normal

SICNN. Clearly, from the superior enhancement of the SICNN with smoothing and the
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GLE method (which also has smoothing), filtering the input to remove some of the noise

can improve the edge enhancement performance enormously.
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Figure 9.11 EEP comparison for the four edge enhancers as the ENR is varied.
The input step edge has /o = 10, c = o'25, and additive Gaussian noise'
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Figure 9.12 EEP comparison for the four edge enhancers as the ENR is varied.
The input step edge has /^ = 1O , c = O.25, and additive uniform noise. See text for
the parameters used for eách edge enhancer.
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Chapter 9: Edge Enhancement using the SICNN

9.5.2 Two-Dimens¡onal Gomparison

The above l-D enhancement comparison is now extended to the 2-D synthetic image

shown in Figure 6.13. The edge enhancers compared are identical to those used for the 1-

D step edge case: the SICNN with and without smoothing, the GLE and tanh contrast

enhancement schemes.

9.5.2.1 Synthetic lmage Simulations

Multiplicative Noise

Our comparison begins with the synthetic image with multiplicative noise. In the results,

all the EEP values below zero aÍe truncated to zero; we now explain the reasoning behind

this. We know that, theoretically, for a clean input the smallest EEP is zero, which occurs

when there is no enhancement of the input image edges. For the 2-D synthetic image, the

EEP is estimated around every edge pixel using a window size of approximately

(2r + l) x (2r + 1). Thus, when the input is very noisy, the output of the enhancer is also

noisy, and this causes the locally-computed EEP to become numerically sensitive, or to

vary considerably, so much so that it can be negative for low ENR. So, we do not display

the negative EEP values since the actual enhanced output images are so noisy that the EEP

values do not convey any significant information. This problem can be avoided if we

simulated on thousands of images, but this is too time-consuming.

From Figure 9.13 for low ENRs, the performance of the SICNN is clearly the best, which

is expected for Gaussian pre-smoothing. Following this is the SICNN, while boththe tanh

contrast enhancement and the GLE schemes perform badly for these low ENRs. As the

ENR increases, the performance of the tanh contrast enhancement scheme rapidly

increases to its maximum value, as eventually the GLE scheme does too. For very large

ENR, both the tanh contrast enhancement and GLE schemes have larger EEP than either

SICNNs.

The maximum EEP of each edge enhancer is different due to the difference in EEP values

at the intersection points of the edges in the synthetic image. These corner pixels can have

neighbouring regions with up to four different intensities. This in particular affects the

SICNN because its output intensity is nonlinearly related to the intensity in its local

neighbourhood. In fact, in the SICNN algorithm, the local intensities about the edge pixel

are multiplied with the weights and then summed, hence the corner pixels are inhibited by
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pixels with up to four different intensities. This causes the SICNN EEP to be less than I

for large ENR. For the SICNN with smoothing we have the added effect of edge blurring

which reduces the sharpness of the enhanced edges, thereby causing the EEP to be even

smaller than the normal SICNN EEP. For the tanh contrast enhancement scheme, we only

need to estimate the local contrast in the input, hence the output EEP almost reaches l. For

the GLE, the EEP slowly increases to 1 as there is some form of smoothing too in this

case.
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Figure 9.13 Comparison of the EEP for four different edge enhancers for the input

synthetic image with multiplicative noise. See text for further details.

Thus, for low ENR the SICNN with smoothing performs best followed by the SICNN, and

then the tanh contrast enhancement and GLE schemes, whereas for very large ENR, the

tanh contrast enhancement scheme has the best performance followed by the GLE,

SICNN and SICNN with smoothing.

Gaussian Noise Results

As for the results for multiplicative noise, all negative EEP values are truncated to zero.

Again, for low ENR the SICNN with smoothing clearly has the best EEP, followed by the

SICNN and the GLE scheme, and finally the tanh contrast enhancement scheme. As the

ENR increases, the EEP of the tanh contrast enhancement increases rapidly, such that for

20
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Chapter 9: Edge Enhancement using the SICNN

very large ENR the tanh contrast edge enhancer has the greatest EEP, followed by the

GLE, SICNN and then the SICNN with smoothing. The difference in EEP values for large

ENR was discussed above. The only major difference between the results here and those

shown above for multiplicative noise is that for small ENR, the EEP of the GLE scheme is

greater than zero and greater than the EEP of the tanh contrast enhancement scheme.
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Figure 9.14 Comparison of the EEP for four different edge enhancers for the input
synthetic image with Gaussian noise. See text for further details.

Uniform Noise Results

The enhancement results of the input synthetic image with uniform noise is very similar to

that for Gaussian noise. Again all EEP values which lie below zero for very low ENRs are

truncated; the enhanced images are so noisy at these ENRs that the numerical value for the

EEP are essentially meaningless. Once again for inputs with very small ENR, the SICNN

with smoothing performs best followed by the SICNN. The GLE scheme has a slightly

non-zero EEP, whereas the contrast enhancement scheme has zero EEP. As the ENR

increases, however, the EEP of the tanh contast enhancement scheme rapidly increases to

its maximum value. In fact, for very large ENR, the tanh enhancement scheme performs

best followed by the GLE scheme, the SICNN and finally the SICNN with smoothing.

20
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Figure 9.15 Comparison of the EEP for four different edge enhancers for the input
synthetic image with uniform noise. See text for further details.

9.5,2,2 Real lmage

The above comparison on 2-D synthetic images is now extended to that of an image of a

real scene.'We investigate the "Gatlin" image, as shown in Figure 9.16, consisting of three

men in front of a quite detailed background. V/e note that very little detail of the jackets of

two of the men is visible. The edge enhancers compared are exactly as above and the

neighbourhood size of each SICNN is r = 5 , hence the support size of the other two edge

enhancersis2r+ 1 = 11.
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Figure 9.16 "Gatlin" image used to test the edge enhancers
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Chapter 9: Edge Enhancement using the SICNN

The procedure is to first determine the edges in the input image, which can be done with a

simple Sobel operator. Then in small windows of size (2r+ l) x (2r + l) at each edge

pixel, the optimal parameters for each scheme are estimated. For the two SICNNs, the

local mean intensity and contrast are estimated to obtain the optimal decay factor given by

EQ (9.9), the local intensity and contrast are estimated to compute the GLE's optimal a

using EQ (E.1), and the local contrast is estimated for the optimal n for the tanh

enhancement scheme using EQ (E.2).

From the results of the edge enhancers on the Gatlin image shown in Figure 9.17, clearly

the output of the SICNN with smoothing is of the poorest quality. The image is very

blurry, which is expected since the input is smoothed with a Gaussian filter. The output of

the tanh contrast enhancement scheme in (a) is better than that of the SICNN with

smoothing, while the output of the GLE scheme and SICNN as shown in (b) and (c)

respectively, are very similar in quality.
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Figure 9.17 Output to the "Gatlín" image for (a) the tanh contrast enhancement
scheme, (b) GLE scheme, (c) slcNN, and slcNN with smoothing. see text for
more details.

The overall output of the GLE scheme is slightly brighter than that of the SICNN, which

gives it a more pleasant visual appearance, however, the output of the SICNN clearly

shows the patterns on the suit of the man in the centre and the man immediately to his
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right. Furthermore, many of the features on these two suits, such as the collars and features

defined by edges, are clearly more visible in the SICNN outputs than the output of the

GLE scheme. Thus, overall the output of the SICNN is arguably better than the output of

the GLE, though such a comparison is subjective. 'We point out that these schemes only

enhance the edges of the input image, and not the entire image itself. So, we should not

expect an improvement of the entire image's quality, rather just the edges or sharpness of

the image.

9.6 Conclusions

We began this Chapter by reviewing a number of different image enhancement schemes

and algorithms, with particular attention to the contrast transformation methods and

nonlinear unsharp masking. The image enhancement measure used in the literature were

reviewed and found to be unsuitable for our needs, so the Edge Enhancement Product

(EEP) was def,ned, which measures both the enhancement of the edge pixels' intensities

and the difference in the background intensities.

We then proceeded to derive the discrete-time sequence whose steady-state equals the

recurrent SICNN steady-state output. For the output after I iteration, an expression for the

SICNN decay factor which maximises its output EEP was derived.'We then investigated

the maximum EEP of the SICNN for different iterations and found that all odd-numbered

iteration outputs have the maximum EEP, while the even-numbered iterations output's

EEP gradually increases to the same maximum value. Thus, the output after I iteration has

an EEP greater than or equal to the EEP of the output after 1 iteration, implying that there

is no obvious advantage in using the SICNN output after more than 1 iteration.

Using the same approach as for the SICNN optimal decay factor, the expressions for the

free parameters of the GLE and contrast enhancement schemes which maximised their

output EEP were derived; these are presented in Appendix E.

Next we compared the l-D EEP performance of the SICNN, the SICNN with smoothing,

the GLE and contrast enhancement schemes. In general, the SICNN with smoothing

performed best followed by the GLE, and finally the SICNN and tanh contrast enhancers.

For the 2-D synthetic image with low ENR, the SICNN with smoothing performed best
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followed by the SICNN, with both the GLE and contrast enhancement schemes having

bad performance. For large ENR, the tanh contrast enhancement scheme had the greatest

EEP followed by the GLE, then the SICNN and finally the SICNN with smoothing. For

the real "Gatlin" image, the SICNN with smoothing and the tanh contrast enhancement

scheme both did not enhance the edges in the image very well, in fact the quality of their

output was quite poor. The outputs of the GLE scheme and the SICNN appeared roughly

equal in quality; the GLE's output was slightly brighter and thus a little more clearer,

whereas in the SICNN output many of the features of the jackets and overall image were

enhanced, became much more clearer, and showed more detail.
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10.1 Summary

In this thesis we studied the design and application of shunting inhibitory cellular neural

networks to the problem of edge detection and enhancement. The work presented in this

thesis is summarised below.

. In Chapter 1, we briefly introduced vision, shunting inhibition, and the shunting

inhibitory cellular neural network (SICNN) for edge detection and enhancement.

. Chapter 2 presented a description of the underlying physical processes involved in the

generation of intensity or edge profiles, and then described the many applications of

edge detections in industry, consumer electronics and other computer vision systems. A

comprehensive review of edge detectors was also presented.

. Chapter 3 gave an overview of cellular neural networks, their different

implementations and applications. The derivation and stability analysis of the SICNN

was also reviewed and discussed.

. In Chapter 4,we investigated the response properties of both recurrent and feedforward

SICNN systems. The convergence and step edge response of the recurrent SICNN were

investigated, while the step edge response of the recurrent SICNN was discussed in

detail. By linearising the feedforward SICNN, its impulse response was derived and

using this, a detailed analysis of the SICNN response to noise was performed. The

feedforward SICNN was then used throughout the remaining Chapters of this thesis.
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. Chapter 5 introduced and discussed the application of the SICNN to edge detection.

First, we defined three performance measures for edge detectors, namely the HR, ESD,

and EB. These measures were used to described the effect of the SICNN output noise

variance, shape of edge response and PNR on its performance. 'We 
then investigated the

effect of the SICNN parameters, i.e., the decay factor and weights, on these factors and

hence the edge detection performance.

. In Chapter 6, the SICNN decay factor and weight distribution that maximised the l-D
edge detection performance according to certain criteria were derived. The SICNN

performance with various nonlinear activation functions was also investigated.

. Chapter 7 presented a number of postprocessing methods to improve the SICNN edge

detection performance. The techniques were mainly concerned with combining the

outputs of different SICNNs to improve the performance. Two edge tracking methods

were introduced, where the edges in the SICNN output ate tracked as the

neighbourhood size or weight distribution width are decreased. We also investigated

the combination of SICNN outputs with various permutations of weight distributions

and thresholding schemes. Finally, we examined postprocessing the output edge map to

eliminate spurious edges in small, local window. Most of these postprocessing

techniques improved the performance of the SICNN.

. In Chapter 8, the SICNN edge detection performance was compared with the

differentiator and Deriche operator on both 1-D and 2-D synthetic edges, as well as two

real images.

' Finally, in Chapter 9 the edge enhancement properties of the SICNN was investigated.

We reviewed a number of edge enhancement algorithms and measures, and then

proposed a new edge enhancement measure, the EEP. The decay factor and the

parameters of the other edge enhancers that maximise the EEP were derived. Finally,

the edge enhancement performance of the SICNN (with and without smoothing) was

compared with the GLE and tanh contrast enhancement schemes on both synthetic

edges and a real2-D image.
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1O.2 Results and Contributions

The results and contributions of knowledge of this dissertation are:

. the application of a feedforward cellular neural network to edge detection, and a

description of how the inhibitory effects of the network on the input allow it to detect,

or enhance, intensity discontinuities.

. The impulse response of the SICNN was derived by linearising the feedforward

SICNN using perturbation analysis. This impulse response was shown to be a nonlinear

function of the mean input intensity, among other parameters, hence indicating the

ability of the SICNN to adapt itself to its input signal.

. Using the SICNN impulse response, the transfer function was derived. Also with this

impulse response, we derived an expression for the SICNN output noise variance for a

noisy DC input, and showed that this equation is valid for all but very low SNR, small
-neighbourhood 

sizes, small decay factor, large sum of weights, and large mean input

intensities (for a given SNR). 'We also derived a theoretical expression for the SICNN

noise figure (NF) for a linear and nonlinear activation function, and showed that the

theoretical NF compared very closely to the experimental values for medium to high

SNR inputs.

. By considering the intensity of each of the SICNN output pixels as a random variable,

the output pdf for each pixel was derived, as were the expressions for the hit rate,

probability of detection and false alarm rate. These theoretical values closely matched

the experimental ones for different noise types, and even for low ENR inputs.

. The SICNN l-D edge detection performance depends upon three factors: the output

noise variance, the shape of the edge response, and the PNR. Increasing the output

noise variance increases the ESD, while decreasing the width of the edge response

increases the HR. Although we could not find an explicit relationship between the PNR

and performance measures, the shape of the PNR does provide us with a good

indication of the shape of the PNR curves, such as where the performance increases,

peaks and levels off. We also showed that it is the ratio of the sum of weights and mean

input intensity to the decay factor which determines the performance. For a given sum
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of weights and mean input intensity, we experimentally showed that one particular

decay factor gives zero EB and also optimises the HR and ESD. This optimal decay

factor was shown to be close to the decay factor that maximises the PNR.

. We observed that reducing the sum of squared weights (SSV/) reduces the SICNN

output noise variance, which in turn decreases the BS.D. Making the edge response or

weight distribution as narrow as possible by increasing SSV/, howcvcr, increases the

HR. The shape and SSW of the weight distribution have conflicting effect on the

performance. Using a constrained optimisation approach with Lagrange multiplier

method, we numerically derived the weight distribution that attempts to simultaneously

optimise the HR and ESD. The resultant optimal weight distribution has one free

parameter that determines the shape of the weight distribution, and provides a trade-off

between good HR and good ESD.

. 'We defined the optimal decay factor as the value that results in the SICNN having zero

EB, i.e., the decay factor which ensures that, on average, the detected edge is not biased

to the right or left of the true position. For multiplicative noise, the optimal value was

shown to be zero. For additive noise, the optimal decay factor was proportional to the

product of the noise standard deviation and sum of weights. The constant of

proportionality, 1", was then empirically derived for different edge, noise, and SICNN

parameters for both 1-D and 2-D synthetic edges.

. A number of postprocessing methods were presented which significantly improved the

SICNN performance. In scale-space processing, the edges in the SICNN output are

tracked as the neighbourhood size decreases, while in the variable weight combination

scheme, the edges are tracked as the width of the weight distribution is slowly reduced.

Both of these two methods start with low ESD and HR and then gradually increase the

HR whilst maintaining the ESD at its low value. In 2-D, the area under the PD vs. FA

curve was maintained or increased, with a distinct improvement in the appearance of

the resultant output edge map. Combining the outputs of SICNNs with different weight

distributions and thresholding schemes was also investigated, with the output of one

SICNN limiting the search region for the edges of the second SICNN. For l-D edges

only, detecting edges in the SICNN with asymmetrical weights (and maximum

thresholding) with the SICNN with symmetrical weights (and zero-crossing

thresholding) significantly improved the performance. For inputs with low contrast,
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combining the outputs of SICNNs with identical but reversed weights, improved the

performance too. In neighbourhood processing, the visual appearance of the edge map

was improved by eliminating spurious edges in small, local windows.

. Finally for edge detection we compared the performance of various edge detectors on

the synthetic image. For multiplicative noise, the SICNN with smoothing performed

better than the normal SICNN, discrete differentiator and Deriche operator. Both

SICNNs performed better, as their impulse response is nonlinearly dependent upon the

local mean input intensity, and hence they are well suited to overcome the effect of

multiplicative noise where the noise strength is proportional to the input intensity. For

additive noise, the SICNN with smoothing and the Deriche operator appeared to

perform equally well. For the Lenna image, the SICNN detected the most edges

although its output was quite noisy. For the SAR image, the output of the SICNN with

smoothing was clearly better than any of the other edge detector outputs.

. A new edge enhancement measure, the EEP was proposed, which measures the

difference in the edge pixel intensities and the difference in the background intensities

for a step edge. Using this measure, the decay factor which maximises the SICNN EEP

was derived. This criterion of maximising the EEP was also used to derive optimal

parameters for a number of other standard edge enhancers, such as the GLE and tanh

contrast enhancement schemes.

. The EEP of the SICNN output after 1 iteration was greater than or equal to the EEP of

the output for more than I iteration. Furthermore, the equations for the optimal decay

factor, for enhancement, could be derived, whereas this is not possible for more than2

iterations. Thus, the output after 1 iteration is the best for edge enhancement.

. For l-D edges with both multiplicative and additive noise, the SICNN with smoothing

performed better than the normal SICNN, GLE and tanh conttast enhancement

schemes. For the 2-D synthetic image, the SICNN with smoothing performed best for

low ENR, whereas the tanh contrast enhancement scheme gave the best enhancement

for large ENR. For the real image investigated, both the SICNN and the GLE scheme

had good outputs but in different respects, though overall the SICNN produced greater

enhancement of the edges.
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10.3 Future Work

Although this thesis has presented a comprehensive review of the applications and design

of the SICNN for edge detection and enhancement, there is still much work to do. We now

outline a number of issues which need to be addressed in order to further our

understanding of the SICNN and also to improve its edge detection and enhancement

performance. Possiblc futurc work includes:

. Deriving an analytical expression for the optimal À: we derived the optimal SICNN

decay factor for additive noise, and showed that it is proportional to the input noise

standard deviation and sum of weights. However, we could not derive an exact

analytical expression for constant of proportionality, I. Rather, for both l-D and 2-D

synthetic edges, its value was empirically computed for different edge and SICNN

parameters. For real images the value of I needs to be guessed, although it is not

difficult to choose an adequate value by systematically trying a small number of
different values. For real and complex synthetic images, only a finite number of values

of I can be tested for computational reasons, so wo are never fully certain that the

value of i. is in fact optimal. Thus, it would be very beneficial if an analytical

expression could be derived for À which related it to the input edge parameters, such as

the mean intensity and the contrast.

' Nonlinear activation function: 'We investigated a small number of nonlinear

activation functions and showed that they did not improve the SICNN edge detection

performance. In fact, these activation functions made the performance worse than with

the linear function. A more detailed investigation, however, could reveal why these

activation functions were unsuitable, and if indeed there does exist an optimal

activation function, apart from those tested here.

' Optimising the other SICNN parameters: Vy'e have observed throughout this thesis

that the SICNN has many free parameters, each of which can affect the edge detection

performance in a different way. Further work is needed to investigate the possibility of
adaptively selecting these parameters to maximise the performance. Although we have

presented some means of adaptively choosing the SICNN decay factor, we have not

investigated at all how to adaptively choose the weight function and neighbourhood

size according to the characteristics of the input image. This would enable the SICNN

to be applied to a larger range of inputs with less intervention from the user.
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FutureWork

. Variable Gaussian smoothing: For the SICNN performance with the synthetic 2-D

image, we observed that Gaussian smoothing the input improved the performance,

particularly for low ENR. Thus, the performance could be improved by varying the

amount of smoothing according to the amount of noise present in the input. The input

noise could be easily estimated using a number of techniques, such as Wiener filtering,

and the noise strength could then be used to determine the width of the Gaussian filter.

For example, the filter's width could be made proportional to the noise variance.

. 2-D implementation of the SICNN: in the 2-D implementation, we applied the l-D

SICNN to each of the four orthogonal directions of the image, and then combined these

outputs to obtain the overall output. There may, however, be advantages in applying

only one SICNN with isotropic weight distribution, in which case the SICNN is equally

likely to detect edges in all directions. This would, however, restrict us to using only a

symmetrical weight distribution and zero-crossing thresholding scheme.

223



Ghapter 1 0: Conclusions

224



Abdou, LE., & Pratt, V/.K. (1979). "Quantitative Design and Evaluation of Enhancement/

Thresholding Edge Detectors." Proc. of the IEEE, vol. 67 , no. 5, pp.753-763, May.

Adamson, T.A., (1992). Electronic Communications.2nd Edition, Delmar Publishers, Inc.

Ala, S.R., Chamberlain, D., & Ellis, T.J. (1992). "Real Time Inspection of Masonry Units."

IEE Int. Conference on Image Processing and its Applications, no. 354, pp. l8l-184,
Maastricht, The Netherlands, April.

Appelhans, P. &. Schroder, H. (1995). "Ghost Cancellation for Stationary and Mobile

Television." IEEE Trans. on Consumer Electronics, vol' 41, no. 3, pp. 472-415,

August.

Azevedo, S. & Longini, R.L. (1980) "Abdominal-LeadFetal Electrocardiographic R-wave

Enhancement of Heart Rate Determination." IEEE Trans. on Biomedical

Engineering, vol. 27,no.5, pp. 255-260,May.

Barlow, H.B. (19S1). "The Ferrier Lecture. Critical Limiting Factors in the Design of the

Eye and the Visual Cortex." Proc. R. Soc. Lond.,vol.B2l2,pp. l-34.

Barnes, N. & Liu, Z.Q. 0995). "Vision Guided Circumnavigating Autonomous Robots."

Third Int. Computer Science Conference: Image Processing Applications and

C omput e r Graphic s, HongKong.

Barone, A., Balsi, M., & Cimagalli, V. (1993). "Polynomial Cellular Neural Networks: A

New Dynamical Circuit For Pattern Recognition." Proc. of Int. Specialist Workshop

on Nonlinear Dynamics of Electronic Systems, Jluly Dresden, Germany.

Batchelor, 8.G., & Braggin, D.\ry'. fl992). Commercial Vision Systems, in "Computer

Vision: Theory and Applications.", Torras, C (ed.) pp.405-452, Springer-Verlag.

Beghdadi, A. & Le Negrate, A. (1989) "Contrast Enhancement Technique based on Local

Detection of Edges." ComputerVision, Graphics and Image Processing, vol. 46, pp.

225



References

162-174.

Bergholm, F. (1987) "Edge Focusing." IEEE Trans. on Pattern Analysis and Machine
Intelli g ence, v ol. 9, no. 6, pp. 7 26-7 4l, November.

Berzins, V. (1984). "Accuracy of Laplacian Edge Detectors." ComputerVision, Graphics
and Image Processing, vol.27 , pp. 195-210.

Bouzerdoum, A. (1991). Nonlinear Lateral Inhibitory Neural Networks: Analysis and
Application to Motion Detection. PhD thesis, University of Washington, July.

Bouzerdoum, A. (1994). "4 Hierarchical Model for Early Visual Processing ." Proceedings
of SPIE on Human Vision, Visual Processing, and Digital Display V, vol. 2179, pp.
lO-17,8-10 February, San Jose, California, USA.

Bouzerdouffi, 4., & Pinter, R.B. (1993). "shunting Inhibitory Neural Networks: Derivation
and Stability Analysis." IEEE Trans. on Circuits and Systems-I, vol. 40, no. 3, pp.
215-22I, March.

Boyer, K.L. & Sarkar, S. (1994). "On the Localization Performance Measure and Optimal
Edge Detection." IEEE Trans. on Pattern Analysis and Machine Intelligence,vol. 16,

no. 1, pp. 106-108, January.

Batchelor, B.G. & Braggin, D.w. (1992). Commerical Vision Systems, in "Computer
vision: Theory and Applications.", Torras, c (ed.), pp.4o5-452, springer-verlag.

Brzackovic, D., Pattor, R., & wong, R.L. (1991). "Rule Based Multi-Template Edge
Detection." computer Vision, Graphics and Image Processing, vol. 53, no. 3, pp.
258-268.

Brodie, S.E., Knight, 8.w., & Ratliff, F. (1978). "The spatiotemporal Function of the
Limulus lateral Eye." J. General Physiology, vol.72, pp. 167-202.

Canny, J. (1986). "A Computational Approach to Edge Detection." IEEETrans. on Pattern
Analysis and Machine Intelligence,vol. S, no. 6, pp. 679-698, November.

Chao, C-H. & Dhawan, A.P. (1994a). "Edge Detection Using Hopfield Neural Network."
Proc. of SPIE Conference on Applications of Artificial Neural Networks % vol. 2243,
pp. 242-251, Orlando, Florida, April.

Chao, C-H. & Dhawan, A.P. (1994b). "Edge Detection using a Hopfield Network." Optical
Engineering, vol. 33, no. 11, pp. 3139-3747, November.

Chen, J.S., Huertas, 4., & Medioni, G. (1987). "Fast Convolution with Laplacian-of-
Gaussian Masks." IEEE Trans. on Pattern Analysis and Machine Intelligence,vol. 9,
no.4, pp. 584-590, July.

Chua, L.O. & Wu, C.W. (1992). "On the Universe of Stable Cellular Neural Networks."
Int. J. of Circuit Theory and Applications, vol. 20, pp. 497-517.

226



References

Chua, L.O. & Yang, L. (1938). "Cellular Neural Networks: Theory." IEEE Trans. on

Circuits and Systems, vol. 35, no. 10, pp. 1257-1272, October'

Cimagalli, V., Bobbi, M., & Balsi, M. (1993). "MODA: Moving Object Detecting

Architecturc." IEEE Trans. on Circuits and Systems-.I/, vol. 40, no. 3, pp. ll4-183,
March.

Crounse, K.R., Roska,T., & Chua, L.O. (1993). "Image Halftoning with Cellular Neural

Networks." IEEE Trans. on Circuits and Systems-.Il, vol. 40, no. 4, pp.267-283,

April.

Cruz, J.M. & Chua, L.O. (1991). "A CNN Chip for Connected Component Detection."

IEEE Trans. on Circuits and Systems, vol. 38, no. 7,pp. 812-817, July'

Dash, L. &. Chatterji, B.N. (1991). "Adaptive Contrast Enhancement and De-

enhanceme nt." P attern Reco gnition, vol. 24, no. 4, pp. 289-302.

Davies, E.R. (1992). "A Skimming Technique For Fast Accurate Edge Detection." Signal

Processing, vol. 26, no. 1, pp. 1-16, January.

Deriche, R. (1990). "Fast Algorithms for Low-Level Vision." IEEE Trans. on Pattern

Reco gnition and Machine Intelligence, vol. 12, no. 1, pp. 78-87, January.

Deutsch, S. & Deutsch, A. (1993). Understanding the Nervous System. An Engineering

P e r s p e ctiv e . IEF.E Press.

Dhawan, 4.P., Buelloni, G., & Gordon, R. (1986). "Enhancement of Mammographic

Features by Optimal Adaptive Neighbourhood Image Processing." IEEE Trans. on

Medical Imaging, vol. 5, no. l, pp. 8-15, March.

Ejiri, M. (1939). Machine Vision. A Practical TÞchnology for Advanced Image Processing.

Gordon and Breach Science Publishers, Japanese Technology Reviews, vol. 10.

Galias, Z. (1993). "Designing Cellular Neural Networks for the Evaluation of Local

Boolean Functions." IEEE Trans. on Circuits and Systems-Il, vol. 40, no. 3,pp.219-
222,M.arch.

Gonzalez, R.C., & Woods, R.E., (1992). Digital Image Processing. Addison-Wesley.

Gordon, R. & Rangayyan, R.M. (1984). "Feature Enhancement of Film Mammograms

Using Fixed and Adaptive Neighborhoods." Applied Optics, voI.23, no. 4, pp' 560-

564, February.

Goshtasby , A. (1994). "On Edge Focusing." Image and Vision Computing, vol. 12, no. 4,

pp. 247-256.

Govindaraju, V., Srihari, S.N. & Sher, D.B. (1990). "A Computational Model for Face

Location." Third Int. Conference on Computer Vision, pp.718-721, Osaka, Japan,

December 4-7.

227



References

Guillon, S., Baylou, P., & Najim, M. (1996). "Robust Nonlinear Contrast Enhancement
Filters." Proc. IEEE International Conference on Image Processing, vol. I,pp.757-
760, Lausanne, Switzerland.

Haralick, R.M. & Watson, L. (1981). "A Facet Model for Image Data." Computer Graphics
and Image Processing, vol. 15, pp.lI3-I29.

Harrer, H. (1993). "Multiple Layer Discrete-Time Cellular Neural Networks Using Time-
variant Templates." IEEE Trans. on circuits and systenrs-{ vol. 40, no. 3, pp. 191-
199, March.

Harrer, H. & Nossek, J.A. (1992). "Discrete Time Cellular Neural Networks." Int. J.

Circuit Theory and Applications, vol. 20, pp. 453-467 .

Harris, J.L. (1977). "Constant Variance Enhancement: A Digital Processing Technique."
Applied Optics, vol. 16, no. 5, pp.1268-127L,May.

Hartline, H.K. & Ratliff, F. (1957). "Inhibitory Interactions of Receptor Units in the eye of
Limulus." J. General Physiology, vol. 40, pp. 357-376.

Hartline, H.K. & Ratliff, F. (1958). "spatial Summation of Inhibitory Influences in the Eye
of Limulus, and the Mutual Interaction of Receptor Units." J. General Physiology,
vol.41, pp. 1049-1066.

Haykin, S. (1994). Neural Networks, A Comprehensive Foundation Macmilllan.

Herskovitz, A. & Binford, T.O. (1970). "On Boundary Detection." Technical Report AI
Memo no. 183, MIT.

Hertz, J., Krogh, A., & Palmer, R.G. (1991). Introduction to the Theory of Neural
C omp utati on. Addison-Wesley.

Hildreth, E.C. (1983). "The Detection Of Intensity Changes by Computer and Biological
Vision Systems." Computer Vision, Graphics and Image Processing, vol. 22, pp. l-
27.

Hopfield, J.J. & Tank, D.W. (1986). "Computing with Neural Circuits: A Model." Science,
vol.233, pp. 625-633.

Horn, B.K.P. (1917). "Understanding Image Intensities." Artificial Intelligence, vol. 8, no
2, pp.20l-231, April.

Huertas, A. & Medioni, G. (1986). "Detection of Intensity Changes with Subpixel
Accuracy using Laplacian-Gaussian Masks." IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 8, no. 5, pp. 65I-664.

Iannella, N. & Bouzerdoum, A. (1996). "Time Evolution of Receptive Fields." Proceedings
of the 1996 Australian New Zealand Conference on Intelligent Information Systems,
pp. 105-108, 18-20 November, Adelaide, South Australian, Australian.

228



References

Ifeachor, E.C., & Jervis, 8.W., (1993). Digital Signal Processing: A Practical Approach.

Addison-Wesley.

Inamori, S., Yamauchi, S. & Fukuhara, K. (1993). "A Method of Noise Reduction on Image

Processing." IEEE Trans. on Consumer Electronics, vol.39, no' 4, pp' 801-805,

November.

Jain, A.K. (19S9). Fundamentals of Digital Image Processing. Prentice-Hall

Jernigan, M.E., & Mclean, G.F. (1992). Lateral Inhibition and Image Processing,

chapter 17,pp.451463. CRC Press, Boca Raton, USA.

Kadono, S. & Yamamitsu, C. (1993). "A Study on High Effîciency Coding of GDTV at 50

Mbps." IEEE Trans. on Comsumer Electronics, vol. 39, no. l,pp.49-56, February.

Kakarala, R. & Hero, A.O. (1992). "On Achievable Accuracy in Edge Localization." IEEE

Trans. on Pattern Analysis and Machíne Intelligence, vol.14, no. 7, pp.717-781,

July.

Kaufmann, P., Medioni, G. & Nevatia, R. (1984). "Visual Inspection Using Linear
' Feature s." Pattern Recognition, vol. 17 , no.5, pp. 485-491.

Kelley, R.B. (1992). Bin-Picking Techniques, in "Computer Vision: Theory and

Applications.", Torras, C (ed.) pp. 337 -37 5, Springer-Verlag.

Kitchen, LJ. &.Malik, J.A. (1989). "The Effect of Spatial Discretization on the Magnitude

and Direction Response of Simple Differential Edge Operators on a Step Edge."

Computer Vision, Graphics and Image Processing, vol. 47 , pp.243-258.

Laine, A.F, Schuler, S., Fan, J., & Huda, V/. (1994). "Mammographic Feature

Enhancement by Multiscale Analysis." IEEE Trans. on Medical Imaging, vol. 13, no.

4, pp. 7 25-7 40, December.

Lee, C.L., Lee, D.H., Park, J.S., & Kim, Y.G. (1992). *A New Two-Layered Video

Compression Scheme for Multiple Applications." IEEE Trans. on Consumer

Electronics, vol. 38, no. 3, pp.424-427, August.

Lindeberg, T. (1994). "Scale-Space Theory: A Basic Tool for Analysing Structures at

Different Scales." Journal of Applied Statistics, vol. 2L, no.2, pp.225-270.

Supplement Advances in Applied Statistics: Statistics and Images: 2'

Liu, D. & Michel, A.N. (1993). "Cellular Neural Networks for Associative Memories."

IEEE Trans. on Circuits and Systems-Il, vol. 40, no. 2,pp. ll9-121, February.

Lunscher, V/.H.H.J. & Beddoes, M.P. (1986). "Optimal Edge Detector Design I: Parameter

Selection and Noise Effects." IEEE Trans. on Pattern Anølysis and Machine

Inte lli g enc e, v ol. 8, no. 2, pp. 164-186, March.

Lyvers, E.P. & Mitchell, R. (1988). "Precision Edge Contrast and Orientation Estimation."

229



References

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp.927-
937, November.

Mach, E. (1886a). "IJber den Physiologischen Effect Raumlich Verteiler Lichtrieze."
Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen
Akademie der Wissenschaften, vol. 54 II, no. 134, pp. I3l-144.

Mach, E. (1886b). "I-Iber die physiologische Wirkung raumlich verteilter Lichtreize III."
Sitzungsbcrichte der mathematisch-natumvissenscltaftlichen Classe der kaiserliclrcn
Akademie der Wissenschaften, vol. 54 II, no. I34, pp. 393408.

Marr, D. & Hildreth, E.c. (1980). "Theory of Edge Detection." proc. R. soc. Lond. B,
vol.207,pp. 187-217.

Matsumoto, T., Chua, L.o., & Suzuki, H. (1990a). "CNN Cloning Template: Hole-Filler."
IEEE Trans. on Circuits and Systems, vol. 37 , no.5, pp. 635-638, May.

Matsumoto, T., Chua, L.O., & Suzuki, H. (1990b). "Image Thining with a Cellular Neural
Network." IEEE Trans. on circuits and systems, vol. 37 , no.5, pp. 638-640, May.

Matsumoto, T., chua, L.o., suzuki, H. (1990c). "cNN cloning Template: Connected
component Detector." IEEE Trans. on circuits and systems, vol. 37 , no. 5, pp. 633-
635, May.

Matsumoto, T., chua, L.o., & Suzuki, H. (1990d). "cNN cloning Template: Shadow
Detector." IEEE Trans. on circuits and systems, vol.37, no.8, pp. lolo-1073,
August.

Mclean, G.F. & Jernigan, M.E. (1983). "Hierarchical Edge Detection." Computer Vision,
Graphics and Image Processing, vol. 44, pp. 350-366.

Meer, P., wang, S., & wechsler, H. (1989). "Edge Detection by Associative Mapping."
P atte rn Re c o gnition, v ol. 22, no. 5, pp. 49 I-503 .

Moganti, M., Ercal, F., Dagli, c.H., & Tsunekawa, s. (1996). "Automatic pcB Inspection
Algorithms: A Survey." Computer Vision and Image (Jnderstanding, vol.63, no.2,
pp. 287-313, March.

Nabet, B. & Pinter, R.B. (1991). Sensory Neural Networks: Lateral Inhibition. CRC Press

Nalwa, v.s., & Binford, T.o. (1986). "on Detecting Edges." IEEE Trans. on pattern

Analysis and Machine Intelligence,vol. S, no. 6, pp. 699:7lL,November.

Nevatia, R. & Babu, K.R. (1980). "Linear Feature Extraction and Description." Computer
Graphics and Image Processing, vol. 13, pp.257-269.

Novini, A.R. (1995). "Vision Technology in Food & Beverage Container Manufacturing."
Vision, vol. 11, no.4.

230



References

Nowak, 4., Florek, 4., & Piascik, T.^. (1992). "Computer Vision System Applied to Meat

Classificatton." IEE Int. Conference on Image Processing and it Applicationt, no.

354, pp. 579-585, Maastricht, The Netherlands, April.

Ogata, K. (19S7). Discrete-time Control Systems. Prentice-Hall, New Jersey.

Oppenheim, A.V., Schafer, R.W., & Stockham Jr, T.G. (1968). "Nonlinear Filtering of
Multiplied and Convolved Signals." Proc. of the IEEE,vol. 56, no. 8, pp. 1264-1291,

August.

Paik, J.K., Park, Y.C., & Kim, D.W. (1992a). "An Adaptive Motion Decision System for

Digital Image Stabilizer Based on Edge Pattern Matching." IEEE Trans. on

Consumer Electronics, vol. 38, no. 3, pp. 60l-615, August.

Paik, J.K., Brailean, J.C., & Katsaggelos, A.K. (1992b). "4n Edge Detection Algorithm

Using Multi-State Adalines." Pattern Recognition,vol.25,no.12,pp.1495-1504.

Pal, S.K. (L952). "A Note on the Quantitative Measure of Image Enhancement Through

Fuzziness." IEEE Trans. on PatternAnalysis and Machine Intelligence,vol. 4,no.2,
pp.2O4-208, March.

Papoulis, A. (1991). Probability, RandomVariables, and Stochastic Process¿s. McGraw-

Hill.

Paradis, M.A.K., & Jernigan, M.E. (1994). "Homomorphic vs Multiplicative Lateral

Inhibition Models for Image Enhancement." pp. 286-29l.IEEE Int. Conf. Syst.,

Man, and Cybernetics.

Paranjape, R.8., Morrow,'W.M., & Rangayyan, R.M. (1992)."Adaptive-Neighbourhood

Histogram Equalisation for Image Enhancement." CVGIP: Graphical Models and

Image Processing, vol. 54, no. 3, pp. 259-267,May.

Pau, L.F. (1990). Computer Vision for Electronics Manufacturing. Plenum Press, New

York.

Peli, T., & Malah, D. (1982). "A Study on Edge Detection Algorithms." Computer

Graphic s and Ima ge P roc e s sin g, v ol. 2O, pp. I-21.

Peli, E. (1990). "Contrast in Complex Images." Journal of the Optical Society of America,

vol.7 , no. 10, pp.2032-2040, October.

Perez-Munuzuri, V., Perez-Villar, V., & Chua, L.O. (1993). "Autowaves for Image

Processing on a Two-Dimensional CNN Array of Excitable Nonlinear Circuits: Flat

and Wrinkled Labyrinth." IEEE Trans. on Circuits and Systems-f vol.40, no. 3,

pp.174-181, March.

Perkins, W.A. (1933). "INSPECTOR: A Computer Vision System that Learns to Inspect

Parts." IEEE Trans. on Pattern Analysis and Machine Intelligence,vol.5, no. 6,

pp. 584-592, November.

231



References

Pinoli, J-C. (1997). A General Comparative Study of the Multiplicative Homomorphic,
Log-Ratio and Logarithmic Image Processing Approaches"." Signal Processing,
vol.58, pp. 11-45.

Pinter, R.B. (1983a). "Product Term Nonlinear Lateral Inhibition Enhances Visual
Sensitivity for small objects or Edges." J. Theoretical Biology, vol. 100, pp. 525-
531.

Pinter, R.B. (1983b). "Thc Elcctrophysiological Bases for Linear and Nonlinear Procluct
Term Lateral Inhibition and the Consequences for Wide Field Textured Stimuli." /.
Theoretical Biology, vol. 105, pp. 233-243.

Pinter, R.B. (1984). "Adaptation of Receptive Field Spatial Organisation viaMultiplicative
Lateral Inhibition." J. Theoretical Biology, vol. 110, pp. 435444.

Pinter, R.B. (1985). "Adaptation of Spatial Modulation Transfer Functions via Nonlinear
Lateral Inhibition." Biological Cybernetics, vol. 51, pp. 285-29I.

Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A.,Greer, T., Romeny,
B.T.H., Zimmernan, J.B., &. Zuiderveld, K. (19S7). "Adaptive Histogram
Equalisation and its Variations." Computer Vision, Graphics and Image Processing,
vol.39, pp. 355-368.

Poor, H.V. (1988). An Introduction to Signal Detection And Estimation. Springer-Verlag.

Price, K. (1986). "Anything you can do, I can do better (no you can't)." computer vision,
Graphics and Image Processing, vol. 36, pp.387-39I.

Proakis, J.G., &. Manolakis, D.G. (1992). Digital Signal Processing: Principles,
Algorithms and Applications,2nd edition. Macmillan Publishing Company, New
York.

Ratliff, F., Hartline, H.K., & Miller, w.H. (1963). "spatial and remporal Aspects of
Retinal Inhibitory Interactions." J. Opt. Soc. Am., vol. 53, pp. 110-120.

Regazzoni, C.S., Tesei, A., &Yemazza, G. (1996). "A Bayesian Networkfor Automatic
Vìsual Crowding Estimation in Underground Stations." by Sanz, J.L.C. (ed.) in Image
Technology, pp. 203 -230.

Reklaitis, G.V., Ravindran, 4., & Ragsdell, K.M. (1990). Engineering optimization:
Methods and Applications. John'Wiley and Sons.

Robinson, G.s. (1977). "Edge Detection By Compass Gradient Methods." Computer
Graphics and Image Processing, vol. 6, pp.492-50I.

Rodieck, R.W. (1965). "Quantitative Analysis of Cat Retinal Ganglion Cell Response to
Visual Stimuli,Laminar Origins and Termination of Cortical Connections of the
Movement Detectors." Vision Research, vol. 5, pp. 583-601.

232



References

Roska, T., Boros, T., Radvanyi, 4., Thiran, P., & Chua, L.O. (1992a). "Detecting Moving

and Standing Objects Using Cellular Neural Networks." Int. J. Circuit Theory and

Applications, vol. 20, pp. 613-628.

Roska, T. & Chua, L.O. (1992b). "Cellular Neural Networks with Non-linear and Delay-

Type Elements and Non-Uniform Grids." Int. J. Circuit Theory and Applications,

vol.20, pp. 469481.

Sandefur, J.T. (1990). Discrete Dynamical Systems: Theory and Applications. Clarendon

Press.

Schneiderman, H. & Nashman,M. (1992). "Visual Processing for Autonomous Driving."

IEEE Workshop on Applications of Computer Vision, pp.164-171, Palm Springs,

USA, Nov. 30 -Dec.2.

Shi,8.E., Roska, T., & Chua, L.O. (1993). "Design of Linear CellularNeural Networks for

Motion Sequence Filtering." IEEE Trans. on Circuits and Systems-Il, vol. 40, no. 5,

pp.32O-321, May.

Slot, K. (1992). "Cellular Neural Network Design for Solving Specific Image-Processing

Problems." Int. j. Circ. Th. Appl., vol. 20, pp.629-637.

Sonka, M., Hlavac, V., & Boyle, R. (1993). Image Processing, Analysis and Machine

Vision. Chapman & Hall.

Sotak Jr, G.E. & Boyer, K.L. (1939). "The Laplacian-of-Gaussian Kernel: A Formal

Analysis and Design Procedure for Fast Accurate Convolution and Full-Frame

Output." Computer Vision, Graphics and Image Processing, vol. 48, pp. 147-189.

Spillman, L. &'Werner, J.S. editors. (1990). Visual Perception: the Neurophysiological

F oundations. Academic Press.

Srinivasan, M.V., Laughlin, S.8., & Dubs, A. (1982). "Predictive Coding: a Fresh View of
Inhibition in the Retina." Proc. R. Soc. Lond., vol. 8216, pp.427459.

Suresh, 8.R., Fundakowski, R.4., Levitt, T.S., & Overland, J.E. (1983). "A Real-Time

Automated Visual Inpection System for Hot Steel Slabs." IEEE Trans. on Pattern

Analysis and Machine Intelligence,vol.5, no. 6, pp. 563-572.

Suzuki, H., Matsumoto, T., & Chua, L.O. (1992). "A CNN Handwritten Character

Recognizer." Int. J. Circ. Th. AppI., vol. 20, pp.6OI-612.

Sziranya, T. & Csicsvari, J. (1993). "High-Speed Character Recognition Using a Dual

Cellular Neural Network Architecture (CNND)." IEEE Trans. on Circuits and

Systems-Il, vol.40, no. 3, pp. 223-231, March.

Tagare, H.D. & deFiguerido, R.J.P. (1990). "On the Localization Performance Measure

and Optimal Edge Detection." IEEE Trans. on Pattenx Analysis and Machine

Intelligence, vol. 12, no. 12, pp. 1186-1190, December.

233



References

Tagare, H.D. & deFigueiredo, R.J.P. (1994). "Reply to "On the localization Performance
Measure and Optimal Edge Detection"." IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 16, no. 1, pp. 108-110, January.

Torte, V. & Poggio, T. (1986). "On Edge Detection." IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 8, no. 5, pp. 651-664.

Uchiyama, M., Itoh, F., Niwa, H., Kawagoe, Y., Takizawa, S., Tsuge, S., Ohki, M. &
Hasiguchi, S. (1992). "A Digital Still Camera." IEEE Trans. ott Cornsurrcr
Electronics, vol. 38, no. 3, pp. 698-701, August.

van Vliet, L.J., Young, I.T., & Beckers, G.L. (1989). "A Nonlinear Laplace Operators as

Edge Detector in Noisy Images." Computer Vision, Graphics and Image Processing,
vol.45, pp. 165-195.

'West, G.A.W. (1984). "A System for the Automatic Inspection of Bare-Printed Circuit
Boards." IEEE Trans. on system, Man and cybernetics, vol. 14, no. 5, pp. 767-773,
September/|{ovember.

White, R.G. & Schowengerdt, R.A. (1992). "Effect of Point-Spread Functions on the Edge
Orientation Precision of First-Derivative Operators." Optical Engineering, vol. 31,
no. 10, pp. 2239-2245, October.

'widrow, 8., winter, R.G., & Baxter, R.A. (1988). "Layered Neural Nets for pattern

Recognition." IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.36,
no.7, pp. 1109-1118, July.

Zimmerman, J.8., Pizer, S.M., Staab, E.V., Perry, J.R., McCartney, Vy'., & Brenton, B.C.
(1988). "An Evaluation of the Effectiveness of Adaptive Histogram Equalization for
contrast Enhancement." IEEE Trans. on Medical Imaging, vol.7 , no. 4, pp. 304-
312, December.

234



Appenli4A Derivation of the
S/CNN pdf, HR, PD
and FA.

4.1 Theoretical SICNN Output pdf

A.1.1 Gaussian Noise Case

First, consider a constant input to the feedforward SICNN with additive Gaussian noise,

denoted by the randomvariable(Rv) 1. Also let the RV z be z = a *Z*/¡ such that the

SICNN output is given by the RV l

Iv--

Frompg. 138 of Papoulis (1991), the probability densityfunction (pdf) of y is

fr(Ð = IVVru, z) d.z = Ikîr(zv, z) dz EO (A.1)

Let I - N (F¡, or) and , - N (lLr, o.), that is

If both I andz are independent, then

frQ, z) = fr(I)fr(z) = #,"*r( ry +j
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Appendix A: Derivation of the SICNN pdf, HR, PD and FA.

+fr(ry,Ò = 7fi-;xp
1

2no,o,

I
2noro..

exp

exp
z2 (yzo? + ol) - 2z (y¡tro2, + ¡t2o?) + \L?o? + p"Lol)

v2a2 + ol ylLp? + lL,.o?Letting u- =' =' =, - v = ....-.----:-¿oío; ¿oío; , then

fr(zl,z) = pexp (-u(22-2zy))

= pexp (-a(22-Zzy+f -1f))
= Aexp (-a(z_Ð2)

where A - pexp (-1f). Now, using this expression,

fr(t) = ! r+(zy,z)dz = AT . *n Gu(z-y)2)dz

J
0

AJsexp(-us2)ds= = ,and
_"t -Y

0

= A J (-z) exp (-u(z-Ð\ dz + A zexp (-a (z-y)2) dz

Changingvariableswith s = Z-"1 -dz = ds ,we obtain

-rY

frT) = -A I (s + T) exp (-as2) ds + AJ t" * T) exp (-us2) ds

-"1

-^t -t

- - Ay J exp (-crs2) ds - A 
J 

r"*p (-us2) ds

* af 
|exp 

(-as2) ds + AJ 
""^p 

(-us2) ds

-v

Evaluating each term of this expression:

-v

-^l

-AJsexp(-a"2)r'=#l 
_

_ Aexp (-af)
2u
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Theoretical SICNN Output pdf

-"{ 'l

- Ay 
Iexp 

(-os2) ds + 1¡ylexp (-crs2) at = AT 
Iexp 

(-as2) ds .

-'l-"1

EO (4.2)

EO (A.4)

EO (A.5)

EO (A.6)

If we change variables ( = fis - ds = d\/ J-u, then EQ (4.2) becomes

"l

AyJ exp (-crr2) Ot = 
yJ-o 2Ay

J-a
exp (-Ë2) de = Ay 

ÆerÍ1J-a)
de2)9

5

exp (--r2) dx. Combining these we obtain the pdf of the SICNN output

vJ-o

J ex'

-vJ-o

(

vJ-o

J
0-v

where erf(x) =

AS

J
0

EO (A.3)

A.1.2 Uniform Noise

Suppose that ¡ is a uniformly distributed RV with mean p and variance o, i.e

x - U (p, o). The pdf of x is

fri) = evf"rftv^Æl *AexP t-or2) 
'

I
fr(x) = f*, - ßo + Lt < r' 

^Æo 
* P

= -l-u(x - p + J3o) Íl - u(¡ + -p-^Æo) l
2J3o

Itrlrre, z) d.z = [kVrky, z) d.z

where rz (.r) is the unit step function.

As we did for the Gaussian noise case, we assume a constant input to the SICNN with

additive uniformly distributed noise. Let f be the RV for this input signal, and z be the RV

where z = a *\r/¡, such that the RV of the SICNN output is y - I/z.We recall from

Papoulis (1991)/that the pdf of y is given by

rr(J)

If the RVs / and z have distributions I - U ([r¡, or) and z - U (lLz, o.), then using EQ (4.4)

we can write their pdfs as

ryQ) = #,"(r - vt +Æ"r) lt - ur + -¡t,-,f,2o l,

237
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(z)

If we assume that I andz are independent, then

fy (t) f, (1, z)

= #,"(7 - v, + ß",)1 -,(, * -u,- ß o,)lfz

(r)fzk)ry(1, z)fy

EO (A.7)

EO (4.8)

EO (A.e)

= #,"(r - rrt +Æ"1 1 -,(r-¡r,-^r",)J

(r- u,* 
"e 

o.) 1 -(,,-w,-Jio,

f, (zt, ò = å,o,'(r, - p, + ßo,)J - u(zv-þ,-ßo,)l

, *(, - þ,+ ß",)¡, - ,(r-v,-,rzo,))

The pdfs fyU), frk) and fr(1, z) are shown in Figure 4.1.

)r,

ILT o1

v
$,-Jlo, þt+ J5o,

v

f, (z)

v,+ J1o,

+

z

Figure 4.1 The pdfs f u(t) , f ,,(z) and f ,,(t, z) which are given by Ee (A.6),
Eo(4.7) and EQ(4.8) fespectlvely. The closs-hatched area is where f..(/) and
f ,(z) overlap, corresponding to f ,(t, z) . We assume lhal y > o. v

To obtain the pdf fr 0) , the integral of lzlf, (zy, z) given in Ee (4.1) must be performed

in 3 parts: for y>0, y<0 and ) = 0. Weevaluate the integral foreachof theseyinturn.

For y>0

We first assume that, given any value of y > 0, the two pdfs fr(I) and$ (z) must overlap,

i.e., from Figure 4.1 we have
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Theoretical SICNN Output pdf

If this condition does not hold, then f , (Ð is zero for that particular value of y. If it does

hold, then we can evaluate the integral given by EQ (4.5). In fact, the integral only exists

in the overlapping region shown in Figure A.l, given by

-".1+,v,-Æo,l lzlmint+ ,þ,+ Jj
".1

w,-ßo,l ,and MIN = mint+ ,v,+ J3

O MIN

frl)= J Gz)fi,ar+Jr#,0,
MAXIzo'

= +, l mex,*#,.l um,

= + (MAX2+ MIN2)
24o,or.'

MIN

fr|) = I r#d, = +;MIN2- MAX2)

MAX

..ÌLet MAX = max

If MAX<0,then

If MAX>O,

tr'or v< 0

For y .0, ft (y) is defined in the domain

t#)=.=t+)
'We again assume that the ldfs t (1) and | (z) overlap, i.e.,

tt+J.(u._n".)] *.[_[ w,+ JTo,

If the pdfs do not overlap, then frj) = 0 for this value

integral exists and can be evaluated. Let MAX = max

).(u..n".)1
of y. If this does hold, then the

{-( 
-';fq I 

,v,-,t-so,} and

MIN = min

If MAX<o,

V¡-J\o,
w,+ J1o,
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0

fr') = J
MAX

1

eò nqo,o'* I
MAX2 1

(-z)

MIN

+l2o,o, 2 I2o,o, 2

Tf MAX>0,

MIN

fr') = J
MAX

= +;MAX2+MINz¡

1l,úd, = 24#,(MIN2- MAX2)

Ify=0.

From EQ (4.9), the joint pdf of 1 and z becomes,

fr(o,z) = +,"(e-F, * ßo,)[t -,(o-u,-Æo,)]

* ,(, - þ,+ Ji",)1 - ,(r* -u.-^Æo.)l

Thus, f, (0, z) = 0 if either þrJio t> 0 or w, + J\o,< 0 . The second condition can never

be true (assuming F¡ ) 0 ), so the necessary condition for fr(y) = 0 is p, , Jjo,.

If Þ¡3J3a,, then fr(O,z) is non-zero over the range Fr-Jlor<7<Fr+J\or. If
Vr- Jlar< o, then

¡ J1o,

[,fi3
=+,[(r,.-^ø"

= #¡wl+3ol)
Jf F. - Jio,, o ,

v,+ J1o,

J

0 lLz

fr(o) = J
Þ"- J3o,

+

o,)'*(u,*

[(u.* ßo,)'*(*,-ßo,)'] = *

ß )tz

0)
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Theoretical SICNN Output pdf

4.1 .3 Multiplicative Noise

The pdf of the SICNN output when the input has multiplicative noise is derived in exactly

the same way as for the Gaussian noise case, using EQ (4.3). In this case, however, the

input noise variance is made dependent upon the underlying signal intensity of that pixel,

i.e.

lO-ENR/to
where Q -

o=eI

, and c is the contrast of the input step edge to the SICNN.(l + c2)

4.1 .4 Experimental Compar¡son

We now compare the theoretical and experimental pdfs of the edge pixel of the SICNN

output for an input step edge. Figure 4.2 shows the comparison for Gaussian noise as the

input ENR is varied. Vy'e can see that for all the values of the ENR, the theoretical curves

compare extremely well to those obtained experimentally. Even for very small input ENR

signals, the difference between the two curves is hardly observable. As expected, for low

ENR, the pdf is very broad (as the noise variance is large), but as the ENR increases the

pdf becomes narrower and larger in height, which maintains the unit area of the pdf.

Figure 4.3 shows the comparison between the experimental and theoretical curves for

input step edges has additive uniform noise. Once again, the difference between the two

curves are negligible, indicating the accuracy of the derived equations. The pdfs have a

square-like shape, which is expected since the input pdf is square. Like for the Gaussian

noise case, the pdf is broad for low ENR values (indicating large variance due to noise),

while for large ENR the pdf becomes naffower and larger in height.

Figure 4.4 shows the comparison when the input has multiplicative Gaussian noise. In

this case, we do in fact see some differences between the theoretical and experimental

curves, although they are still very close to each other. As for the other noise distributions,

the pdf is very broad for low ENR, but becomes narrower and larger for larger ENR.

The overall accuracy of the theoretical pdfs compared to the experimental ones confirms

the accuracy of the derived analytical expressions for the SICNN output pdf, under a wide

range of noisy input signals.
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Figure A.2 The output pdf of the slcNN edge pixel when the input step edge has
Gaussian no¡se with different ENR. The SICNN has asymmetrical rectangular
we¡ghts,with t/y = 7, r -- 5,optimal decayfactor, lo= l0 and c = 0.25.

-Exot. IENR=-101
Thbor. (erun=-to) -Exot. IENR=-5)

Thbor. (ENR=-s)

4

3

4

3

>z
*t

>¿
I

-1
0

4

01
(a) Output lntensity, y

-Exot. IENR=01
Thbor. (erun=o)

01
(c) Output lntens¡ty, y

01
(d) Output lntensity, y

22
0

4

3

>¿
_t

0

3

>z
I

2 2
0

Figure 4.3 As per Figure 4.2 but for uniform no¡se.

Exot IENR=S)
Thbor (ENR=s)

242



Theoretical Hit Rate (HR)

4

3

4

3

>¿
*t

>¿
*t

-Exot. IENR=-10)
Thbor. IENR=-10)

012
(a) Output lntensity, y

-Exot. IENR=01
Thbor. lerun=o)

012
(c) Output lntensity, y

N

-Exot. IENR=-51
Thbor. (ENR=-5)

012
(b) Output lntens¡ty, y

-Exot IENR=S)
Thbor (ENR=s)

012
(d) Output lntensity, y

0

4

3

0

4

3

0

>¿
*t

>¿
I

0
-1

Figure A.4 As per Figure 4.2 but for multiplicative noise

A.2 Theoret¡cal H¡t Rate (HR)

The HR is def,ned as the probability that the intensity of the edge pixel is greater than the

intensity of any other pixel (or greater than the maximum intensity of any non-edge pixel).

From Papoulis (1991, pg. l4l), the pdf of the maximum of N independent variables,

! = max (! 1, ! 2, . . ., J¡u) is given by

fr0) = Vy,0) Fr,(v) ...Fy*(r)] + (r,0) Fr,(t)

* Vyr0) Fr,(r) ...{r"_, (r)]

F
ln

(r)1+

where f , 0) is the cumulative distribution of Í, (y). We saw in the previous subsections

how to compute fr(Ð for various types of input noise, while frly) is the integral of

fr0).

(y)
i--1
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Appendix A: Derivation of the SICNN pdf, HR, PD and FA.

Consider a step edge input to the SICNN of mean intensity 10, contrast c and overall

length M = 2N, i.e., the firstNpixels have ameanintensity of Is(l-c) - wenominally

refer to these collectively as the "lower" part of the edge, while the next N pixels have a

mean intensity of 1o ( 1 + c), which we refer to as the "upper" part of the edge.

It should be noted that only 2r SICNN output pixels are affected by the input step edge

discontinuity: r pixels to the left of the discontinuity and r pixels on the right (or ( r - 1)

pixels if we exclude the edge pixel itselfl. Using the above equation we can find the pdf of

the maximum value of the output intensity of the upper and lower parts of the SICNN

output, denoted b, fr, und fru, where

,1, Ir. IN.
!t = ftlax t-, -r..., -l" ZtZz ZN

.I**, I**, Ir.*-
! U = 'tta¡ ,-, )-, . '.' l- t

-1y+2 -1ú+3 ZZN

Jy does not include I * * r/ r* *, as this is the output edge pixel itself, and its distribution

will eventually be compared to the distribution of the non-edge pixel.

The RV of the overall maximum output of all non-edge pixels is y - max{y,yr}
Assuming that y, and y u are independent, then y has pdf

fr,0) F r,(t) + fr,0) r r,0)

where Frr(t) und rrr(y) are the cumulative distribution functions of /rr(y) and fru1) ,

respectively. The HR is then the probability that the intensity of the edge pixel's RV y" is
greater than y = max {J¿,Jy}. So,

HR = P (y">y)

= P(y -J,<o)

To find this probability, we first need to determine the pdf of the RV s = !-!". Thus,

J = s +y" and ds = dy. From Papoulis(l99I,p9.136), the pdf of s is given by

fr 0)

{{") = Jf1,t,)d.y" = !f{' *t",t)dt".

If the RVs y and y , are independent, then f 0, y,) = fr 0) f, 
"(1") 

and
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Theoretical Hit Rate (HR)

"f, 
(s) = I frG + t)fr"(t) dt, = R/,,6, (")

where 
^rr,rr" 

i" the correlation function of the pdfs of the RVs y and Jn . Thus, the HR is

0

HR=P(y-y".ol = J4

0æ

(s)ds = J J

0

t/, (" + y 
") 

fy 
"(! ") 

dt 
"ds 

= RÍr,îr"(t) dt '

i.e., the HR for the SICNN can be computed as the area from -- to 0 of the cross-

correlation of the pdfs of the RVs y and y 
".

A.2.1 Experimental Comparison

We compare the theoretical and experimental HR for the SICNN for a step edge input as

the neighbourhood size of the SICNN is varied. Figure A.5 shows the comparison for

additive Gaussian noise; the agreement between the theoretical and experimental HR

curves is very good, even for large neighbourhood sizes where we would expect the

dependence between neighbouring output pixels to be stronger, and hence the assumptions

to break down.
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Figure 4.5 Comparison of the SICNN theoreticaland experimental HR. The SICNN
has asymmetrical rectangular weights, with W = 7 , r = 5, optimal decay factor,
lo = 10, c = 0.25 and additive Gaussian noise.
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Figure 4.6 shows the same comparison, but for the step edge with uniform noise. In this

case, there are minor differences between the experimental curves and theoretical ones,

particularly for r = 2 and r = 5, but the difference is still not great. Small differences

between the experimental and theoretical HR curves are also observed when the input has

multiplicative noise, as shown in Figure 4.7, although these differences are not large.

Thus, the overall agreement of the theoretical plots to the experimental ones, as is evident

in all three figures, demonstrates the accuracy of the derived analytical expression for the

HR.
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Figure A.6 As per Figure A.5 but for uniform no¡se.

(Í
I

0.8

0.6

0.4

o.2

0.8

0.6

o.4

0.2

rÍ.
I

00

246



Theoretical PD and FA

0.8

0.2

0

-Exot. (r=11
Thbor. lr=1)

-Exot. (r=21
Thbor.lr=z)

08

06

0.4

1Í.I
fr
I

0.4

0.2

0
-20 -10 010

ENR (dB)
-20 -10 010

ENR (dB)
20 20

1

0.80.8

0.6

o.4

o.2

-Exot. (r=5)
Thbor. lr=s)

-Expt. (r=10)
Theor. (r=10)

0.6

o.2

0 0
-20 -10 0 10

ENR (dB)
20

ENR (dB)

Figure 4.7 As per Figure A.5 but for multiplicative no¡se.

A.3 Theoret¡cal PD and FA

Let H, be the hypothesis that the SICNN output pixel is an edge pixel, and É10 be the

hypothesis that a SICNN output pixel is not an edge pixel. We can then define (Poor, 1988,

pg.31-33):

1Í.I
(Í- o4

-20 -10 0 10 20

False alnrm (FA) rate is the probability that we accept F1, given that llo is true, and the

Probability of Detection is the probability that we accept I/, given that H, is true.

Thus, given that we threshold the output of the SICNN, the FA is the probability that the

pixel whose intensity exceeds the threshold is actually a non-edge pixel. The PD is the

probability that the intensity of the output edge pixel will exceed the threshold.

The probability that any given output pixel intensity y, exceeds the threshold t is

P (y ¡> 
.c) = IÍy 

(y) dy

7

where the pdf frj) of the SICNN output was previously derived for an input with

Gaussian, uniform and multiplicative noise. The PD is then given by
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P(y">ù = Ify"(y)dy

Let y * denote the non-edge pixels, then the FA is

P(t,,>t) - P(!,,">tlyr)P(yr) +... + P(tn,>rly¡) P(y¡) +...+P(Jn,ralyzìP(yzN)

where i+N+ I , i.e., weexcludethe outputedgepixel, and P (y,) istheapriorlprobability of y,
occurring in the total input. Since all non-edge pixels are equally probable to occur, then

p(y¡) = #
for all valid i (we use 2N-I rather than 2N as we exclude the edge pixel). Furthermore,

P (lnrr tly¡) =Îrr,(y) dy

where fr,0) was derived previously. Thus, the FA is

2Nl-.hA : 

- 

\
2N_1 L

i=l
l+N+ I

lr, 0) ¿v

Again, the value of f, (y) will be different for the upper and lower parts of the edge, and

also for the non-edge pixels affected by the discontinuity.

4.3.1 Experimental Gompar¡son

We compare the experimental and theoretical PD vs. FA curves for the SICNN as the ENR

of the step edge input is varied. Figure 4.8 shows the results when the input edge has

Gaussian noise. The theoretical curves matches the experimental ones even for very small

ENR. Any differences between the two curves are negligible. Figure 4.9 shows the same

comparison, but for a input with uniform noise. There is a small difference between the

theoretical and experimental curves, particularly for low ENR. Overall, however, the

match is very close. Figure 4.10 is for multiplicative noise. Again, the two curves match

extremely well, with only very small differences at low ENR inputs. The accuracy shown

in all these three figures attests to the validity of the derived analytical expression for the

PD and FA.
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SICNN has asymmetrical rectangular weights, with l4l = 7 , r = 5, optimal decay
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Appunli4ß Estimation of
Optimal Lambda

8.1 Estimation for the Rect., Gauss., and Triang. Weights
'We now give the value of ì.that optimises the SICNN performance with the rectangular,

triangular and Gaussian weights. In l-D, I is chosen to minimises the EB over a range of

ENR, while in2-D, À which maximises the area under the PD vs. FA curve.

8.1.1 One Dimensional Results
Without Gaussian Smoothing

É É

ô

_ t=28
L=29

--- l=!

-ã-15-t0{0510
ENA ¡dBI

ENR IdBI

-æ -ls

m -15-10J0510152025
ENF ¡dBì

-æ-15-10J051015202s
ENR fdBì

-1s-10-50510lsæ25
ENR ¡dEì

_ t=23
T=24_-- 1=25

- - L-26

ENF IdBì

ENR IdBI

ENR (dB)

(a)

-505r015æx
ENR(d8)

(b)

-æ -t5 -10 -5 0 5 10 t5 20
ENR (dB)

(c)

c É

o

-æ -15 -10 -5 0 5 10 15 20
ENF IdSI

-æ -t5 -10 -5 0 s
ENR IdBI

-Ð

25 -2s -N -15 -10 -s

-20 -15 -r0 -5 0 5 10
ENF IdBì

20

0510152024
ENB(dB)

(e)

-25 -20
ENB (dB)

(d)
ENR (d8)

(f)

Figure 8.1 1-D performance using four different values of À , for asymmetrical rectangular,
Gaussian, and triangular weights from left right. The SICNN has r = 5, ln= 10, and
c = 0.25. Top row is for Gaussian noise and the bottom row is for uniform noi5e.
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Estimation for the Optimal Weight Distribution

8.2 Estimation for the Optimal Weight Distribution
In this section we present the value of 1" that optimises the SICNN with the optimal

weight distribution's performance. In l-D, for the optimal weight distribution with

attenuation factor of 0.5, I and 2, we give the values of l, which minimises the EB over

the range of ENR. In 2-D, we give both the value of the attenuation factor and À which

maximises the area under its PD vs. FA curve. Results are also given for Gaussian

smoothing.

8.2.1 One Dimens¡on Results
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bottom row is for uniform noise.
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8.2.2 Two Dimens¡onal Results
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With Gaussian Smoothing
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Appunli4C Postprocessing
Resulfs

C.l Scale Combination

C.1.1 One Dimension
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C.1.2 Two Dimensions
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Weight Variation Combination
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C.2.2 Two Dimens¡ons
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C.3 Combination of Different SICNN Outputs
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C.3.2 Two Dimens¡ons
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C.4 Complementary Output Processing
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Appunli4D Edge Detection
Comparison Results

D.1 One Dimension
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Appendix D: Edge Detection Comparison Results
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Two Dimensions

D.2 Two Dimensions

L)
E

1

0.9

0.8

o.7

0.9

50

100

150

200

a

o

ô
o
¡i
P
o-

'-- r-:-i =:= -¡

0.5
False Alarm Bate (FA)

50 100 150 200
Different¡ator

0

0

Threshold muttiplier
5

-10 -5

10

'10

0

I

II

50 100 150 200
Der¡che

50 100 I50 200

50 100 150 20
Der¡che

0

o
È
ao

L

f
L
o
o
l
do
{

08

06

100

150

200

ENH- (dB) srÇNN slcNN w¡th Smooth¡ng(a) (b)

Figure D.a (a) compares edge detectors' performance for multiplicative noise.
Both slcNNs have asymmetrical rectangular weights, r -- 5, and optimal decay
factor. The MoP and PD vs. FA curves are for ENR = 5 dB. (b) shows the edge
maps lor ENR -- 5 dB and a threshold that maximises the Mop in (a). The NSR
values are (a) 12.76, (b) 8.57, (c) 2.23, and (d) 4.25.

510152025 50 100 150 200

50 100 150 200
SICNN

Èo r!
It

50

'100

co
o
oo
o
¡i
ec

- Differentiator
Deriche

- - SICNN
- Smooth+SICNN

0.5
False Alarm Rate (FA)

50 100 150 200
D¡flerent¡atorThreshold multiplier

1

09

08

0

o
è
o

L

oÈ
oÞc-
õo

50

100

150

2005-10-50 5
ENB (dB)

(a)

10 15 20 25 s0 100 1s0 20

(b)
SICNN w¡th Smoolh¡ng

Figure D.5 As per Figure D.4 but for Gaussian noise. The Mop, pD vs. FA curves
and the images in (b) are for an ENR = t0 dB. The NSR is (a) 5.07, (b) 4.s9, (c)
4.28, and (d) 4.51.

Dedche
D¡fferenliator

- - SICNN
- Smoolh+SICNN

277



Appendix D: Edge Detection Comparison Results

È
o

0.8

0.7

0.ô

0.5

100

150

200

co
oo
oo
o
¡tIÀ

- Diflerentialor. Deriche
- -SICNN
'- Smooth+SICNN

0.5
False Alarm Rate (FA)

50 100 150 200
D¡lfer€nliator

0 510
Threshold multiplier

50 100 150 200
Deriche

o
è
o

I

ô
o-
oÞ

õo

..-....

0

.-...-=.1i:

-10-50510152025
EN¡ (dB)

(a)

50 100 150 200
SICNN

(b)
50 100 150

SICNN wlth Smoolh¡ng

Figure D.6 As per Figure D.4 but for uniform noise. The MOP, PD vs. FA curves

and the images in (b) are for an ENR = 10 dB. The NSR is (a) 4.29, (b) a.a3, (c)

3.06, and (d) 4.33.

278
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Schemes

E.l Derivation of Optimal Parameters

We showed in Section9.4.2.1 how to choose the SICNN decay factor to maximise its

output EEP for I iteration. Using the same optimization criterion, we now derive the

optimal values for a of the GLE scheme (Guillon et al., 1996). Consider Figure E.1 which

shows a l-D step edge of mean intensity 1o and contrast c .

I¡,t = Io(1 + c)

Ibrtur= 1o (1 + c)

Ib^inur= Io(l - c)

IN-r= Io(l - c)

Figure E.l A step edge of mean intensity /o and contrast c.

Let M, be a filter mask of total length Z centred on the pixel j. Each coeffi cient ml of this

mask, where k e Lj - L/2, j + L/2), indicates the level of confidence that each pixel in that

mask belongs to the mask. Thus, *f - 1 for pixels with intensities similar to that of pixel

j, and *l - 0 otherwise. So, we need to define a function for the mask which satisfies

M, = {m!e [0, 1] lo. [i -Art *i]t " 
suirable function is (Guillon et al., tg96)

*¡ = "-"i"!"
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where o is the width of the Gaussian. The overall output of the GLE scheme at point j,

which has intensity 1r, is

Y¡ = I!' 1t + utllP )

where

þyor\^¡
ke M, ke M,

\*i-m¡rk
ke Mj

At the edge pixel N, we have

r
4"=

^, =!*\^l
ke M,

*rt
-(lo- I (l + c))2

e 2o2

ke Mr

= reY + (r+ 1),

r -(/n(l -c) -l(l+c))2 ¡ -(lo(l +c) -/(l +c))2

\ "--------;æ-- + \ e- z"'
k=0

4',

1 s ,--, re'al + U+l)nr¡,t= LL"fu = z7*'l
ke Mr

Z*futo
ke Mr re'{Io(l -c) + (r+ 1)10(1 +c)

Z *f, re'v + (r + I)
ke Mr

=\ {^f,r-ñN)rk
ke M*

= fret{Io(1-r) + (r+1)10(1+c)l

( ) ttoft - c) +(r+ 1)10(1 + c)),

4,',

-4c2ll

reY + r+l
2r+I

where ry = . The overall output is then( )o22

YN = Ik'(t+alftP )

For the lower edge pixel at position (N- 1) , we do the same procedure as above to

obtain:
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tLPIN-r =

*fr_, = (rr I) + rev,

(r+ 1)10(1 - c) +reYlo(1 +c)
re'v+ (r+I)

I#!t = ( (r+ t)10(1 -c) + revlo(l +c))

_( rev + (r+ 1)\
\ 2r+ I ){rto(l +c) + (r+ l)10(l -c)),

)Y¡,t_t= I*lr (t + utffP_).

The background intensities remain unaffected by the GLE algorithm as the local contrast

is zero in these regions. Thus,

Ybptu, = Ibplu, = 1o (l + c) '

Yb.inrr= Ib^inr, = 1o(1-c)

The difference between the intensity of the edge pixels and the difference in the

background intensities are' respe"jilsrtlrtcl-2r-12 
+(1+ r) (r + rev)ev)u

Lyp = Y*-Y*_t =

2loc (- I - 3r - 2r2 + reY (l + 2r))
(l +2r) (1 + r + re'{)

LY = Ybrtrr-Yb^inr, - 2clo

Thus, the EEP is

EEP=4 I Ly
Âv

Ly
Àv

-8r [10 (- I - 2r-r2 * õ,ev + rõre2v¡ a+ õrevl (ô, + rev) ô2

l2lor(-I-2r-12 + ô, (1+ ysv)ev)o- (1 +3r+2r2) +õrrevfz

where õ, = (l +r) and ô2 = (1+2r). Solving for ü when EEp = l, which is the

maximum l-D step edge enhancement, we obtain the optimal value of cr, i.e., the value of

cr which maximises the GLE's output EEP. This optimal value is:

EO (E.1)

)

ü=opr
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E.2 Optimal n lor Contrast Transformation Functions

We showed in Section 9.4.2.1and Section E.1 how to choose the decay factor to maximise

the SICNN output EEP for 1 iteration and how to choose o( to maximise the GLE's EEP,

respectively. Using the same optimization criterion, we norw derive the optimal values n

forcontrastenhancementedgeenhancerssuchas F(c) = tanh(nc),F(c) = ln(l+nc) '

and F (c) = c' , where c is the edge contrast.

The general algorithm for local contrast enhancement is given by Gordon & Rangayyan

(1934). Consider the step edge shown in Figure E.1. Let the contrast transformation be

F(c¡), where c, is the local contrast at pixel i, such that F satisfies: cre [0, 1]:

F (c¡) > c, and F (c,) e [0, 1]. We assume that the edge occurs at positions N and N- I

as shown in Figure E.1. The local mean, at these pixels, computed over a window of size

2r+l is

(r+ 1)/o(1 + c) + rlo(1 -c) 1o (1 + 2r+ c)m¡,t=T=--1;;1-,

rln(l +c) + (r+1)10(1-c) 1o(1 +2r-c)
ffiN-r = 2r+I 2r+7

The corresponding local contrasts at these pixels, as defined by Gordon and Rangayyan

(1984), are

Itv-*¡t 1o(l+c)-mN rccN= l-*+rn*= tolt*-r¡*^= 7¡7;;;;'

cN-r = 
*¡t-t- I:t-t 

= 
*N-t- I=o\l- t!

- *r-r-I--r- ^--r+10(l-c) 
- -1-2r+rc+c

The intensity of these pixels after transforming the contrast is given by Gordon &

Rangayyan (1984)

YN

YN-t = 1-F(c"_1)

The input background intensity, Ibprr, = 10(1 + c) and lb*inu, = 1o(1 -c) remain

unchanged, as the contrast in the background regions is zero. Thus, Ybptur= Ibo¡u, a;îd
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Optimal n for Contrast Transformation Functions

Yb^inrr= Ib^inu,. The difference in the background intensities and the peak-to-peak

difference in intensities are:

Ay = Ybotur- Yb^irrr= 2clo,

Âv
m*(l + F (c¡¡)) m¡,t_1 (1 +F(c"_1))

I-F(c*) I -F(c"_1)

The EEP is then

- YN-Yu-t =

Solving EEP = 1, the maximum possible EEP for a step edge, we obtain the optimal

value of n, i.e. the value of n which maximises the EEP. The above procedure can, in

theory, be used to find the optimal value of n for any transformation ,j = F (cr) . we

present the EEP and optimal n for a number of different transformations, below. It is
almost impossible to determine the optimal value of n analytically without the use of a

symbolic maths software.

We will see that all of the expressions for the optimal n depend only on the neighbourhood

size r, and the input edge's overall contrast c. Thus, to speed up the execution time, the

optimal value of n can be stored in a lookup table as both r and c vary.

Tan h Conlrast Enhancement

Consider the tanh contrast transformation function, F (c) = tanh (nc) . With this

transformation, the EEP can be derived as

8 I
2cIo

--
Òt-òz

EEP =

/ Âv \Ayo
EEP = 41 1_ ,p l_\ [y/Ay

ôs = tanh , ô¿ = tanh

The value of n which maximises the EEP, i.e., the value which gives an EEP of I is:

( ).,,

ô
1o(1+2r+c)1t+ôo)

(t+2r)(1-õ4)

n",, = (rn( ).rt.)(
rc+c 2 2r+l

) EO (E.2)
rc2 (l + r)

2

283



Appendix E: Derivation of Optimal Enhancement Schemes

where Z+ is the root of

where Z* istherootof

2(-l -2r + rc + c)Z- (l +2r + rc + c) ô, = g

4c l+2r + e2Z 7 +2r-c
(õ ln

5 l+2r+c

Logarithmic Contrast Enhancement

Considernowthe logarithmictransþrmationgivenby F(c) - ln(I+nc),where nisa

positive number. We add 1 to the argument to avoid the case of take the logarithm of 0.

Using the method outlined above, the EEP of the output using this transformation is

EEP= '

ðr = 1 +2r-2rc-c, ô2 = l+2r+2rc+c,

ô^=ln
J

l+2r+rc(n+l ) +c
ô+ = ltt t+2r+rc+c( )

Solving EEP for n which give the maximum enhancement of 1, we obtain

opt
- I -2r - rc -c+ (1 +2r +rc+ c) ô,

= rc
n EO (E.3)

(- 1- 2r+rc+c)ez + (1+ 2r+rc +c)õ, -2c(1 +c) - 0

ôt = exP

- 1 -2r + 4rc +2c)Z+ 4rc + c
ô

Ĵ c(3+4r)Z+l+2r+4rc+2cexp (

Contrast Power Enhancement

Consider now the contrast power transþrmation given by F (c) = cn, where n is a

positive number. Using the method outlined above, the EEP of the output using this

transformation is
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2cIo ,Io
EEP=8 I( )õl ôr

where

1o(1+2r+c) 1+( l+2r+rc+c)') 1o(1+2r-c)(l-ô2)
rc

ô

(l + 2r) ('-( rc
l+2r+rc+c )')

(l + 2r) 1t + ôr)

-rcô2
-l-2r+rc+c

Solving EEP for the value of n which give the maximum enhancement of 1, we obtain

z*
8;optn EO (E.4)

where Z* istherootof

(l +2r + 4cr +2c) ez + c (3 + 4r) eõe+ (1 + 2r-4rc-2c) ôr-c(1 + 4r) = g

-Zln ( -rc
-l-2r+rc+c )rcõ¿=ln l+2r+rc+c ,ôr=exp( ) ôr

Zlnexpô-
o ( ( -rc

(- 1 - 2r + rc+ c) (I +2r+ rc + c) )
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