The Evolutionary Pre-Processor (version 3.0) Batch Run Report |
![]() |
Batch Details
Batch run name | abalone_2 |
Description | Abalone 2 on Gauss |
This report file | final/abalone_2/abalone_2_report.html |
data file | /home/cssip/jsherrah/EPrep3/data/abalone_2.dat |
Time of completion | Tue Jun 2 09:05:48 1998 |
Duration of Batch | 11 hours, 0 minutes, 36 seconds |
Random Seed | 167911424 (from clock) |
Average generations per run | 24.40 |
Average failed feature creations per run | 1696.90 |
Average fitness evalutions per run | 51591.00 |
Test Set Improvement | 18.09 % |
Data Partition
Class | Training | Validation | Test | Total |
0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 |
2 | 7 | 3 | 5 | 15 |
3 | 28 | 14 | 15 | 57 |
4 | 57 | 29 | 29 | 115 |
5 | 129 | 65 | 65 | 259 |
6 | 195 | 99 | 97 | 391 |
7 | 284 | 149 | 135 | 568 |
8 | 345 | 176 | 168 | 689 |
9 | 318 | 159 | 157 | 634 |
10 | 245 | 120 | 122 | 487 |
11 | 133 | 66 | 68 | 267 |
12 | 102 | 50 | 51 | 203 |
13 | 65 | 29 | 32 | 126 |
14 | 51 | 26 | 26 | 103 |
15 | 34 | 15 | 18 | 67 |
16 | 29 | 14 | 15 | 58 |
17 | 21 | 10 | 11 | 42 |
18 | 16 | 8 | 8 | 32 |
19 | 13 | 6 | 7 | 26 |
20 | 7 | 3 | 4 | 14 |
21 | 3 | 1 | 2 | 6 |
22 | 4 | 2 | 3 | 9 |
23 | 1 | 0 | 1 | 2 |
24 | 0 | 0 | 1 | 1 |
25 | 0 | 0 | 1 | 1 |
26 | 1 | 0 | 1 | 2 |
27 | 0 | 0 | 0 | 0 |
28 | 0 | 0 | 1 | 1 |
Total | 2088 | 1044 | 1045 | 4177 |
Summary of Results
Original Classification Errors (%)
Classifier | Training | Validation | Test |
Maximum Likelihood(ML) | 100.00 | 100.00 | 99.90 |
Parallelepiped(PPD) | 92.77 | 93.87 | 92.92 |
Min. Distance to Means(MDTM) | 89.89 | 89.94 | 92.06 |
|
|
|
|
|
|
|
|
|
1 | 74.33 | 75.19 | 76.08 | 0.000 | 6 | 7 | 119 | MDTM |
2 | 73.04 | 74.33 | 76.46 | 0.000 | 8 | 8 | 87 | MDTM |
3 | 76.58 | 74.43 | 78.56 | 0.000 | 5 | 8 | 527 | MDTM |
4 | 74.38 | 75.19 | 78.28 | 0.000 | 3 | 7 | 71 | MDTM |
5 | 74.19 | 75.86 | 76.65 | 0.000 | 3 | 6 | 39 | MDTM |
6 | 75.57 | 74.14 | 76.46 | 0.000 | 5 | 8 | 228 | MDTM |
7 | 76.01 | 77.39 | 77.61 | 0.000 | 5 | 7 | 77 | PPD |
8 | 73.66 | 74.71 | 75.31 | 0.000 | 4 | 5 | 31 | MDTM |
9 | 75.91 | 76.44 | 76.84 | 0.000 | 2 | 2 | 6 | MDTM |
10 | 72.51 | 73.37 | 73.97 | 0.000 | 2 | 8 | 42 | MDTM |
Ave. | 74.62 (1.29 ) | 75.11 (1.13 ) | 76.62 (1.29 ) | 0.00 (0.00 ) | 4.30 (1.79 ) | 6.60 (1.80 ) | 122.70(147.02) | MDTM |
|
|
Total | |||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Ground Truth |
|
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
1 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | |
|
1 | 0 | 3 | 9 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | |
|
1 | 0 | 3 | 6 | 8 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | |
|
4 | 0 | 0 | 0 | 5 | 25 | 21 | 8 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 65 | |
|
3 | 0 | 1 | 0 | 2 | 28 | 28 | 30 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97 | |
|
0 | 0 | 0 | 0 | 0 | 10 | 20 | 58 | 23 | 11 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 135 | |
|
6 | 0 | 0 | 0 | 0 | 1 | 13 | 37 | 44 | 27 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 168 | |
|
7 | 0 | 0 | 0 | 0 | 5 | 8 | 15 | 28 | 23 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 157 | |
|
4 | 0 | 0 | 0 | 0 | 1 | 5 | 11 | 13 | 14 | 73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 122 | |
|
2 | 0 | 0 | 0 | 0 | 0 | 3 | 6 | 9 | 5 | 41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 68 | |
|
10 | 0 | 0 | 0 | 0 | 2 | 0 | 6 | 3 | 5 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 51 | |
|
3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 6 | 3 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 32 | |
|
5 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 26 | |
|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 18 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 15 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | |
|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 8 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 7 | |
|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | |
|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | |
|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
53 | 0 | 11 | 16 | 16 | 82 | 101 | 175 | 140 | 99 | 327 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 17 | 0 | 0 | 1045 |
Average Operator Probabilities
Operator | Average Probability |
Delete-Feature Mutation | 0.100 |
Add-Feature Mutation | 0.096 |
Hoist Mutation | 0.104 |
Truncate Mutation | 0.098 |
Swap Mutation | 0.100 |
One-Symbol Mutation | 0.097 |
All-Nodes Mutation | 0.098 |
One-Node Mutation | 0.100 |
Grow Mutation | 0.099 |
High-Level Crossover | 0.108 |
Number of Run Terminations attributed to each Criterion
Termination Criterion | Number of Terminations |
TP Criterion | 0 |
GL Criterion | 4 |
Max. Generations | 6 |
Client Abort | 0 |
Zero Validation Error | 0 |
Total | 10 |
Related Data Files
Description | Filename |
abalone_2_gen.m | Matlab plot generation function |
abalone_2_bogf_ave.{eps,gif} | Best-of-generation Fitness, averaged over 10 runs |
abalone_2_bogv_ave.{eps,gif} | Best-of-generation Validation Set Error, averaged over 10 runs |
abalone_2_avef_ave.{eps,gif} | Average fitness, averaged over 10 runs |
abalone_2_stdf_ave.{eps,gif} | Standard deviation of fitness, averaged over 10 runs |
abalone_2_nftr_ave.{eps,gif} | Average number of features per individual, averaged over 10 runs |
abalone_2_nnode_ave.{eps,gif} | Average number of nodes per individual, averaged over 10 runs |
abalone_2_nint_ave.{eps,gif} | Average number of introns per individual, averaged over 10 runs |
abalone_2_ntrl_ave.{eps,gif} | Average number of RAT trials per individual, averaged over 10 runs |
abalone_2_optimp_ave.{eps,gif} | Average improvement in fitness due to optimisation, averaged over 10 runs |
abalone_2_opprob_ave.{eps,gif} | Average probability of each genetic operator, averaged over 10 runs |
abalone_2_run_x.dat | Binary data file containing results of run x (read by Matlab functions) |
abalone_2_bor_x.prep x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Best-of-run individual for run x |
abalone_2_run_x.corr x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Feature correlation file for run x |
abalone_2_tst_bor_x.pred x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Test set predictions for best-of-run individual from run x |
abalone_2_bogf_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Best-of-generation Fitness for run x |
abalone_2_bogv_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Best-of-generation Validation Set Error for run x |
abalone_2_avef_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average fitness for run x |
abalone_2_stdf_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Standard deviation of fitness for run x |
abalone_2_nftr_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of features per individual for run x |
abalone_2_nnode_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of nodes per individual for run x |
abalone_2_nint_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of introns per individual for run x |
abalone_2_ntrl_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of RAT trials per individual for run x |
abalone_2_optimp_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average improvement in fitness due to optimisation for run x |
abalone_2_opprob_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average probability of each genetic operator for run x |