The Evolutionary Pre-Processor (version 3.0) Batch Run Report |
![]() |
Batch Details
Batch run name | abalone_3 |
Description | Abalone 3 on Cortex |
This report file | final/abalone_3/abalone_3_report.html |
data file | /home/cssip/jsherrah/EPrep3/data/abalone_3.dat |
Time of completion | Tue Jun 2 09:04:51 1998 |
Duration of Batch | 10 hours, 58 minutes, 17 seconds |
Random Seed | 2829754408 (from clock) |
Average generations per run | 22.20 |
Average failed feature creations per run | 1693.40 |
Average fitness evalutions per run | 46813.30 |
Test Set Improvement | 16.84 % |
Data Partition
Class | Training | Validation | Test | Total |
0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 |
2 | 7 | 3 | 5 | 15 |
3 | 28 | 14 | 15 | 57 |
4 | 57 | 28 | 30 | 115 |
5 | 129 | 68 | 62 | 259 |
6 | 195 | 99 | 97 | 391 |
7 | 284 | 143 | 141 | 568 |
8 | 346 | 172 | 171 | 689 |
9 | 320 | 157 | 157 | 634 |
10 | 245 | 122 | 120 | 487 |
11 | 134 | 67 | 66 | 267 |
12 | 101 | 51 | 51 | 203 |
13 | 63 | 33 | 30 | 126 |
14 | 51 | 27 | 25 | 103 |
15 | 33 | 16 | 18 | 67 |
16 | 29 | 14 | 15 | 58 |
17 | 21 | 10 | 11 | 42 |
18 | 16 | 8 | 8 | 32 |
19 | 13 | 6 | 7 | 26 |
20 | 7 | 3 | 4 | 14 |
21 | 3 | 1 | 2 | 6 |
22 | 4 | 2 | 3 | 9 |
23 | 1 | 0 | 1 | 2 |
24 | 0 | 0 | 1 | 1 |
25 | 0 | 0 | 1 | 1 |
26 | 1 | 0 | 1 | 2 |
27 | 0 | 0 | 0 | 0 |
28 | 0 | 0 | 1 | 1 |
Total | 2088 | 1044 | 1045 | 4177 |
Summary of Results
Original Classification Errors (%)
Classifier | Training | Validation | Test |
Maximum Likelihood(ML) | 100.00 | 100.00 | 99.90 |
Parallelepiped(PPD) | 92.43 | 93.77 | 93.68 |
Min. Distance to Means(MDTM) | 92.48 | 92.24 | 91.48 |
|
|
|
|
|
|
|
|
|
1 | 77.54 | 76.25 | 79.04 | 0.000 | 5 | 8 | 77 | MDTM |
2 | 75.14 | 74.62 | 77.51 | 0.000 | 4 | 8 | 96 | MDTM |
3 | 73.23 | 73.56 | 74.64 | 0.000 | 6 | 6 | 102 | MDTM |
4 | 75.67 | 75.19 | 78.47 | 0.000 | 3 | 4 | 9 | MDTM |
5 | 79.45 | 80.46 | 79.62 | 0.000 | 2 | 6 | 31 | MDTM |
6 | 77.92 | 79.69 | 80.29 | 0.000 | 5 | 5 | 30 | MDTM |
7 | 74.52 | 75.10 | 74.64 | 0.000 | 4 | 7 | 35 | MDTM |
8 | 75.86 | 76.44 | 79.23 | 0.000 | 5 | 8 | 48 | MDTM |
9 | 74.38 | 74.33 | 75.89 | 0.000 | 6 | 8 | 72 | MDTM |
10 | 73.90 | 73.95 | 75.79 | 0.000 | 4 | 5 | 14 | MDTM |
Ave. | 75.76 (1.88 ) | 75.96 (2.24 ) | 77.51 (2.01 ) | 0.00 (0.00 ) | 4.40 (1.20 ) | 6.50 (1.43 ) | 51.40 (31.59 ) | MDTM |
|
|
Total | |||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Ground Truth |
|
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | |
|
0 | 0 | 3 | 4 | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | |
|
0 | 0 | 1 | 6 | 13 | 8 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | |
|
0 | 0 | 1 | 1 | 10 | 29 | 16 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | |
|
0 | 0 | 0 | 1 | 7 | 22 | 31 | 28 | 6 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97 | |
|
0 | 0 | 0 | 0 | 2 | 11 | 26 | 56 | 26 | 10 | 4 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 141 | |
|
0 | 0 | 0 | 0 | 0 | 6 | 9 | 49 | 48 | 19 | 30 | 4 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 171 | |
|
0 | 0 | 0 | 0 | 0 | 5 | 6 | 26 | 23 | 27 | 52 | 9 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 157 | |
|
0 | 0 | 0 | 0 | 0 | 1 | 3 | 13 | 13 | 18 | 50 | 7 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 120 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 2 | 6 | 9 | 5 | 24 | 1 | 0 | 0 | 0 | 1 | 3 | 1 | 0 | 1 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 66 | |
|
0 | 0 | 0 | 0 | 0 | 1 | 0 | 10 | 1 | 3 | 15 | 5 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 51 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 3 | 2 | 11 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 30 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 2 | 4 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 25 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 5 | 1 | 0 | 0 | 2 | 0 | 0 | 18 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 15 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 7 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
|
0 | 0 | 10 | 14 | 38 | 85 | 96 | 202 | 134 | 90 | 198 | 36 | 1 | 11 | 0 | 14 | 4 | 1 | 0 | 17 | 1 | 0 | 73 | 15 | 0 | 0 | 5 | 0 | 0 | 1045 |
Average Operator Probabilities
Operator | Average Probability |
Delete-Feature Mutation | 0.099 |
Add-Feature Mutation | 0.100 |
Hoist Mutation | 0.099 |
Truncate Mutation | 0.100 |
Swap Mutation | 0.103 |
One-Symbol Mutation | 0.097 |
All-Nodes Mutation | 0.100 |
One-Node Mutation | 0.097 |
Grow Mutation | 0.103 |
High-Level Crossover | 0.101 |
Number of Run Terminations attributed to each Criterion
Termination Criterion | Number of Terminations |
TP Criterion | 0 |
GL Criterion | 5 |
Max. Generations | 5 |
Client Abort | 0 |
Zero Validation Error | 0 |
Total | 10 |
Related Data Files
Description | Filename |
abalone_3_gen.m | Matlab plot generation function |
abalone_3_bogf_ave.{eps,gif} | Best-of-generation Fitness, averaged over 10 runs |
abalone_3_bogv_ave.{eps,gif} | Best-of-generation Validation Set Error, averaged over 10 runs |
abalone_3_avef_ave.{eps,gif} | Average fitness, averaged over 10 runs |
abalone_3_stdf_ave.{eps,gif} | Standard deviation of fitness, averaged over 10 runs |
abalone_3_nftr_ave.{eps,gif} | Average number of features per individual, averaged over 10 runs |
abalone_3_nnode_ave.{eps,gif} | Average number of nodes per individual, averaged over 10 runs |
abalone_3_nint_ave.{eps,gif} | Average number of introns per individual, averaged over 10 runs |
abalone_3_ntrl_ave.{eps,gif} | Average number of RAT trials per individual, averaged over 10 runs |
abalone_3_optimp_ave.{eps,gif} | Average improvement in fitness due to optimisation, averaged over 10 runs |
abalone_3_opprob_ave.{eps,gif} | Average probability of each genetic operator, averaged over 10 runs |
abalone_3_run_x.dat | Binary data file containing results of run x (read by Matlab functions) |
abalone_3_bor_x.prep x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Best-of-run individual for run x |
abalone_3_run_x.corr x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Feature correlation file for run x |
abalone_3_tst_bor_x.pred x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Test set predictions for best-of-run individual from run x |
abalone_3_bogf_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Best-of-generation Fitness for run x |
abalone_3_bogv_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Best-of-generation Validation Set Error for run x |
abalone_3_avef_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average fitness for run x |
abalone_3_stdf_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Standard deviation of fitness for run x |
abalone_3_nftr_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of features per individual for run x |
abalone_3_nnode_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of nodes per individual for run x |
abalone_3_nint_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of introns per individual for run x |
abalone_3_ntrl_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average number of RAT trials per individual for run x |
abalone_3_optimp_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average improvement in fitness due to optimisation for run x |
abalone_3_opprob_x.{eps,gif} x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
Average probability of each genetic operator for run x |