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Abstract

QCD is approximately invariant under chiral SU(3)L x SU(3)¿ trans-

formations. Experimental evidence (i.e., no parity doublets) tells us that

the symmetry must be broken spontaneously. The term in the Hamiltonian

which breaks chiral symmetry belongs to the (3,Ð + (3,3) representation of

SU(3)L x.9Il(3)¿. In the quark model, this term isQmoq with the quark

fields written as left and right handed fields.
'We can construct, from matrix elements which depend only on the sym-

metry breaking part of the Hamiltonian, the sigma term, and this can be (in-

directly) determined from experiment. As such, it is a powerful tool in that

it can be used to test symmetry breaking mechanisms. Bxperimentally, the

sigma term is t,r(f : 2M?) = 60 * 12 MeV (f is the square of the momen-

tum transfer). Given this value, it has been found that Er¡y(ú - 0) : 45+12

MeV.

The theoretical value (calculated at t : 0 and denoted ø,ry(0)), using

the (3, Q + €, 3) model, is approúmately 26 MeV. Using chiral perturbation

theory and dispersion relations, this value can be increased to 45 MeV. This

value includes a contribution from the leading nonanalytic term and an

estimate of higher order corrections to the sigma term (amounting to 10

MeV) and assumes tire nucleon has a small strange quark component.

We have made an exp[cit calculation of the quark and meson contribu-

tions to the sigma term rvithin the Cloudy Bag Model. Assuming a current

quark mass of L2 + 3 MeV, at the bag scale of 0.5 GeV, rve find that the



valence quarks contribute 17.5 + 4.5 MeV. Our expression for the meson

contribution includes contributions from pion, kaon and eta loops. We flnd

that the kaon and eta contribute less than 1 MeV. The pion contribution is

due to zrNy'ü and zrlf A loops. If we consider only the first loop, representing

contributions from the leading nonanalytic term, then for 0.8 < -B < 1.1 fm,

the pion contributes 12 < o[¡¡(0) S t0 MeV to the sigma term. Adding

contributions from the second loop (representing higher order corrections)

increases the pion contribution to 20( 
"i¡v(O) 

< 26MeV. Adding valence

quark contributions, we frnd 37 < o*¡y(O) < qq MeV *4.5 MeV (c.f.

trrv(ú : 0) given above). We argue that there is no strange quark compo-

nent in the nucleon, and that chiral perturbation theory omits contributions

from the second loop and, thus, underestimates the contribution from higher

order corrections by approximately 7 to lo\dsv.
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Chapter 1

Introduction

This thesis is concerned with two aspects of strong interaction theory - the

calculation of the pion-nucleon sigma term, and phenomenological models

of hadrons (the Cloudy Bag Model (CBM) in particular).

In this chapter, we introduce the idea of chi¡al symmetry, and its b¡eak-

ing. We shall also briefly introduce the theoretical models used to calculate

the sigma term. They are Quantum Chromodynamics and phenomenolog-

ical models of low- to medium-energy QCD, namely the CBM and chiral

perturbation theory. Mo¡e detail will be given in chapters 2 and 3.
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1.1 The Eight-Fold Way

According to the eight-fold way [1], baryons and mesons can be placed into

multiplets, such as the nucleon doublet or pion triplet. The members of a

multiplet differ only in mass and charge, the mass difference being due to

the electromagnetic interaction within the multiplet. As far as the strong

force is concerned, the members of a multiplet are identical.

Each multiplet corresponds to an irreducible representation of the isospin

algebra, and will contain 2I + I members. The isospin I distinguishes each

representation [2,3].

Using the Lie group t/(3), Gell-Mann (and, independently, Ne'eman)

grouped the baryons and mesons into larger groups consisting of 8 or 10

members, according to charge and strangeness (or isospin) [4].

If we assume that there exists a fundamental triplet, the baryon su-

permultiplets are found by constructing irreducible representations in the

following way [2]

3x3x3 : 6x3*3*x3.

10+g+g+1 (1.1)

To see how quarks appear, consider the reduction of 6 x 3. Define 27

basis vectors ('(1),{É(Z) and €-t(3), rvith each ( transforming as f,. If the Q

is generated by ú' (i : 1,...,6), then finding rveights [2,5] for the (o and

ry''rvill give us rveights for the products {ory''. Finding the highest weight

and applying I-spin, U-spin and V-spin operators will give us the remaining

members of the irreducible representation. This method tells us that 6x3 =
10+8. \Ä/e can introduce the idea of quarks by considering, for example, the

lrighest weight of the 10 representation. It is (1(1)€t(2Xt(3) :,r.t1!,,t1- A++.
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The members of a supermultiplet may be thought of as a single "par-

ticle". The actual members correspond to the eight or ten different orien-

tations of unitary spin. AII members of a supermultiplet are related via

unitary transformations which turn baryons into baryons, and mesons into

mesons. Although the symmetry group of the eightfold way is a unitary

group, it will be necessary to reduce this to a special unitary group in order

to produce "physical" currents. We will return to this later.

L.2 Chiral Symrnetry

At the present time, there are believed to be six quark flavours, u,d,s,c,,t

and ó. Consider the three lightest quarks whose masses are denoted rmu)rmd

and rn". The actual values of these masses are unknown as free quarks do

not exist. When we refer to the quark mass, we mean either the constituent

quark mass, or the (running) current quark mass. Constituent quark masses

are those which sum to the mass of the hadron. Current quark masses appear

in the QCD Lagrangian. In future, when we write nz* Tnd)'¡T¿s). .., we mean

current quark masses.

Consider the chiral limit rn, = TrLd = ffis = 0. Let q be a column vector

containing the z, d and s quark fields.

In addition to possessing local gauge invariance (the gauge transforma-

tions acting on the colour indices), the QCD Lagrangian also possesses a

global symmetry (acting on the flavour indices).

Define helicity projection operators [6]

(r.2)

(1

(1

1
Ql': t

1
Qn = t

,'|

'l

+ )q

)q

5

5
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Then the Lagrangian density (p is a covariant derivative)

L i4 Pq

ih Pqr * iîn þqa

is inva¡iant under [7]

QN

qR

(1.3)

(1.4)

(1.8)

with

(1.5)

satisfying UU'¡ =,I and det[J : 1. The transformation group defined here

is 5{/(3)¿ x .9U(3)p (with t/¿ € } representation of 5tl(3)¿ and t/¿ e }
representation of SU(3)R).

By Noether's theorem there will be 16 conserved currents. The eight

vector cur¡ents are [8] (tr=0,,...,3;i= 1,...,8)

v!(,) = q@)1uldj') (1.6)

and the eight axial vector currents are

Ai@) : q@)I^tutsq@) (1.7)

The charges associated rvith these currents are the vector charge,

Ut:
Un=

IQ¡Q) = 1rfçz¡ a3n
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and the axial charge

QIQ)= lalç,¡a", (1.e)

In the above, À¿ are the Gell-Mann matricês, J5 â, Dirac matrix [9]

andQ-gtTowith

lo'rs=l_r

:[å

ål

7o
0

1

L.2.L Chiral Algebra

In the chiral limit, the strong interaction Lagrangian is invariant and hence

there exists 16 conserved currents and 16 charges associated with these cur-

rents.

Gell-Mann assumed that the algebra of the strong interactions can be

generated by the hadron vector and axial vector charges given above [ ]. The

SU(3)L x ^9tl(3)¡ group is generated by forming the combination [10,11]

Qf : )fo, + oil (1.10)

with Qf = Q? and, Q; = Qf .The charges Qf obey the following equal-

time commutation relations

w!,all
wr, arl
Q!,Arl

= iÍ;¡rQLr

= if¡¡xQl

-0 (1.11)

each element separately generating an algebra, and the elements of one alge-

bra commuting with the elements of the other. That is, we have generated

5



the .9U(3)¿ x Stl(3)R algebra. The completely antisymmetric .f,¡r are the

.9U(3) structure constants [12].

The above commutation relations are easily found from the following

IQ;'Q¡l = il;¡rQr

lQ¿,Qil : if;¡*Ql,

ÏAi,Ail : if;¡*Qt (1'12)

As PQ ¿Pt - Q; ar.d PQst PI : -Q5;., with P denoting the parity operator

(e et : 1), the generators of 
^9 

U( 3)2, x.9 ¿/(3 )R are connected in the following

way

eqf rt = q7 (1.13)

and the algebra generated by equations ( 1.10) and ( 1.13) defines the chiral

SU(3)L x ^ttl(3)R algebra [13].
Symmetry is the important ingredient of this theor¡-. The symmetry of

the multiplets is broken by the small mass dilïerences and elcctromagnetic

corrections (we should note that the role of the electromagnetic inte¡action

in the breaking of the isospin symmetry is not well understood). This mech-

anism cannot be used to explain the large mass differences found within the

supermultiplets.
L.2.2 Chiral Symmetry Breaking

In order to study chiral symmetry breaking, rve rvould like to know the rep-

resentation under which the symmetry breaking part of the ÌIamiltonian,

e'Jlsn, transforms. One of the simplest models was ploposcd by Gell-Nlann,

Oakes and Renner [4] and Glashorv and \\;einberg [f4]. In this model,

e'l7sB transforms tike (3,3¡ + 13,3), and there is just one free parameter

which needs to be determined. ells¿ consists of two terms, one term rvill.
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break the .9U(3)2, x .çtl(3)R symmetry, the other will break the .9U(3)v

symmetryl. These terms are assigned to the (3,Ð + (3,3) representation of

SU(3)r, X.tU(3)E (the representation has this form as parity connects the

group generators).

Originally, Gell-Mann assumed that chiral symmetry breaking was due

to an ^9U(3) singlet and a term transforming like the eighth component of

an octet. That is,

ellsp - u6 ! cus (1.14)

The quantity c is a free parameter which can be found from meson mass

equations [15]. It is the singlet term which breaks SU(S)L x ^9tl(3)p and

the octet piece which breaks SU(3)v.

In the ideal world, we would have an exact .9U(3)¿ x ^9U(3)R symmetry.

This does not mean, horvever, tliat there are degenerate SU(3)7 x 5tl(3)p

multiplets. The dynamical realizations of this symmetry can be determined

by knowing how the invariant part of the Hamiltonian, ')ls, is realized on

the particle states. The possibilities are determined by the action of the

charges on the vacuum [7,13]. When the charge annihilates the vacuum

(Wigner-Weyl realization)

Q;lo) : o (1.15)

the symmetry manifests itself as degenerate multiplets rvhen e = 0. Tliis is

certainly true for the ba¡¡'ens where, for example, Mn x Mp.

For the case

AiW l o (1.16)

(Nambu-Goldstone reaJization) there are massless Goldstone bosons in the

symmetry limit [16,17] .

lv:L+R
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Note that we are dealing with the symmetric piece of the Hamiltonian

(or Lagrangian). When the Lagrangian is invariant, but the vacuum is not,

we say that the symmetry is spontaneously broken (or hidden). This is the

situation we have with ecluation ( 1.16).

When we have isospin invariance, a group transformation will take, say,

the proton to the neutron. Now suppose we have spontaneous symmetry

breaking. Applying the corresponding (axial) symmetry transformation to

the proton will give us a proton plus a zero energy meson.

If ( 1.16) was not satisfied and [Qf ,11] = 0, all isospin multiplets would

have at least one mass degenerate partner of opposite parity. As this is not

observed, chiral symmetry is broken spontaneously.

Breaking SU(3)L x .1tl(3)n down to ^î{/(3)v gives us eight massless

Goldstone bosons. Äs equation ( 1.15) is believed to be true for the vector

symmetry, breaking ^9U(3)v gives us degenerate supermultiplets, e.g. M¡¡ =
M¡ (this degeneracy is only within a particular representation, e.g. MN *
¡ut d,).

At this stage, we have chiral su(2)Lx su(2)pinvariance, and massive

kaon and eta mesons (M3, M3 o< e). Breaking this group down to the isospin

group saQ)v breaks the baryon supermultiplet degeneracy. However, \,\,e

still have multiplet degeneracyr €.g.r Mp : Mn, and. the pion is still mass-

lcss. The isospin symmetry is broken by quark m¿ìsses (and electromagnetic

corrections). These break the multiplet degeneracy, and gives the pion a

ntass.

8



In the quark model, the symmetry breaking part of the Lagrangian den-

sity is [18]

@+tù@u *ã,d) +?7Ì"Fs = @t+atì@u +ã"a +ss)

*(ry)@u-ad)
I,muim¿*;(tï-m")(nu*dd-2ss)

The notation used here can be related to that used in equation( 1.1a) by

deflning

u¿(r) : @(r)À¡q(ø) (1.18)

for i = 0,...,8. When i: 0, Xo = frt with l being the 3 x 3 identity

matrix.

We mentioned that the singlet broke .9U(3)¿ x .9tl(3)¿ and the octet

term broke SU(3)v. From equation( 1.17) we see that the chiral group is

broken by three quarks acquiring the same mass, and the SU(3)v symmetry

is broken by u,d and s quark mass splitting (but with rn, - m¿).

Commuting ui with the axial current ( 1.7) and using the identities [8]

IAB,C Dl = - AC {D, B} + A{C, B}D - C{D, A}B + {C, A}DB

[toÀo, f6ÀB] = ltr",f¡][À,, )p] + ;[f", fö]{À., )B} (1.19)

rvhere the I's are any of the Dirac matrices, and the equal-time qrrark com-

mutation relations

{ql("), q¡(x')}

{q¿(r), (t¡@')}

= 6¡j63(, - *')

: {q,t("), ørï(r')i : o (1.20)

I



we find(suppressing indices)

W@)*',otsq(r),ø@)^¿q(v)) = qt(,)lzuÀ¿, ^,ox,196"@ - v)

'AtÐtr{*, À¡}q(s)ó'( æ - v) (i.21)

Using ( 1.9), ( 1.7) and the above, we have

lQl(t),"¡(i,t)) = -id;¡¡Q(y)tuÀ*q(y) (1.22)

(i = 1 . . ., 8; j,lc :0, . . .8). In deriving this expression we have made use of

the following

[À¡, À¡] = 2if¿¡¡\¡

{À;' À;} = 2id¿j*Àx (1.23)

irj,k :0,. . .,8.

From this expression we can define

,¡(y) =4@)tu\;q(u) (1.24)

At equal-times we then have the following commutation relations

lQ;U),u¡(y)l = i f;¡¡u¡(y)

lQ¡U),a¡(v)) = i f;¡¡,a¡(v)

[Q! Q), u¡(y)] = - i d;¡ ¡ u ¡(y)

lQl(t),u¡(y)l =id;¡*ur(u) (1.25)

the d;¡¡ being completely symmetric under the interchange of indices.

Lising the above commutation relations and equation ( 1.14) we can

determine the extent to rvhich chiral SU(2)L x SU(z)p is broken. The

10



divergence of the axial current is

ôrAl(r)

and as, Por i"i--trzrl

: -i lQl(t), ellsB(i,t)l

: -(d;onrrt cd,¿stcu¡)

: -(d¡o¡*cd;s¡)a¡(r) (1.26)

,i:lc

,i:k (r.27)

ôrAI '/2+ " ui

(1.28)

if c = -tÆ. th,ut is, we have exact SU(2)Lx SU(2)Rif c: -J2.
Using the quark model, we would have

at"AI=*#9'' (1'2e)

which rvould vanish rvhen cs\Æ - -cs. Thus, if we define c to be the ratio of

the strength of the octet and singlet parts in the symmetry breaking term,

i.e., c : celco, we would have equation( 1.28).

How good is the SU(2)L x SU(2)p symmetry? We sarv above that the

symmetry is exact if c =-/l.Therefore the deviation of c from-¡f is an

indication of the degree of SU(2)1x SU(2)R symmetry breaking (as the

pion mass is small, c should be near -Jù. Ðxperimentally, c x -I.2g
[tl]. Thus, SU(2)Lx SU(2)R is a good symmetry, and the mass splitting

rvithin multiplets rvill be small. That is, the electromagnetic term in the

11

d;ox

d;e*

,Þß

,Fn

and zero otherwise, we obtain
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Hamiltonian wili be small and it is for this reason that we normally choose

ca : 0 in equations( 1.1a) and ( f .f z).

What do we mean by saying that symmetries are good or approximate?

It means that the terms wliich break the symmetry must be small compared

to the scale of QCD. For example, saying SU(3)v is approximate means

that mu,rnd and zr¿s are small compared with the scale of QCD, which is

chosen to be Mo (alternatively, m" - r?¿ must be small compared to M).
Similarly, the symmefty SU(2)v being approximate means that mu - rn¿

must be small compared to Me ll9).

We have said that the strong interactions are nearly invariant under the

chiral group SU(3)L x 5U(3)p. There is actually a larger symmetry, and

this can be seen by redefining the vector and axial vector curtents, ( 1.6)

and ( 1.7), so that there are now nine, instead of eight (i.e., i : 0,. . .,8).

The commutation relations ( 1.11) now generate the U(3)z x U(3)R algebra.

The i:0 case represents the baryon current.

The unitary transformations can be factored into a transformation cor-

responding to conservation of baryon number, and transformations gener-

ated by the .9Il(3) group. That is, our symmetry group is the product

SU(3)L x 5U(3)p x U(I)L x U(l)R. The left and right unitary spin and

baryon number are connected by parity (as before). Unfortunately, this

symmetry produces major problems. As the U(3)r x U(3)R algebra lias

nine generators, spontaneous symmetry breaking (in the Nambu-Goldstone

mode) is realized by nine Goldstone bosons. There is no experimental evi-

dence to support this reaüzation [13]

In the chiral limit, there are nine conserved vector and axial vector cur-

rents. The problem here is that the ninth axial current is gauge dependent.

t2



Its existence is known as the I/(1) problem [20].

It is not entirely true to say that the ninth Goldstone boson does not

exist. A gauge-dependent current can produce zeto mass bosons. Such

a current will be a sum of physical and unphysical currents. A gauge-

dependent quantity is truly unphysical only if it can be shown, via a gauge

transformation, to vanish, i.e., if it can be gauged to zero l2ll.
The largest flavour symmetry which provides "physical" currents is taken

to be ^9tl(3)¿ x .9U(3) px U(7)v.

1.3 The Quark Model

In the early 1960's, Gell-Mannl22] and Zweig [23] independently developed

a (classification) model of hadrons. They proposed that hadrons consist

of elementary particles called quarks (Zweig called them aces). According

to Gell-Mann they were mathematical entities. Zweig believed them to be

real. The quarks would have half-integral spin, but it was necessary that

they have fractional charge.

Baryons rvould consist of three quarks (qqq), and mesons would be quark-

antiquark pairs (Çq).

The mathematical basis of this theory is that the quark transforms as a

triplet representation under .tY(3). The multiplets into which the hadrons

are placed are found by constructir-rg irreducible representations of .9tl(3).

This is done by decomposing direct products of triplet representations as

mentioned above. For example the 10 rvill be identified rvith the (3/2)+

bar¡'on decuplet, the trvo B's rvith the (1/2)+ baryon octet and the (0)-
lqtToa

rÌresolì octet. Thensinglet has nevel been observed.

Unfortunately, there is a major flarv in this theory. All spin 1/2 particles

13



must obey Fermi statistics, i.e., the wavefunction must be antisymmetric

under the interchange of two quarks. It was found that the O-, with three

identical strange quarks, violated this law. This problem was solved by

introducing a new quantum number - colour [2a]. Quarks now come in three

colours, red, green and blue. Hadrons would be colourless combinations.

This meant that the O- contained three different strange quarks and its

wavefunction was indeed antisymmetric under the interchange of two quarks.

If we now define quarks to transform as a triplet representation under

the internal colour group S¿l(3)., then hadrons must transform as singlets

in order to be colourless. This .tU(3)" symmetry is exact!

The QCD Lagrangian density is .9Il(3)" invariant, and as it contains no

quark mass term, it is invariant under the chiral flavour group .9tl(1f)¿ x

SU(¡f )R x U(l)v in the fundamental representation (in what is to follow,

we will drop the U(l)v factor and take N = 3). The quark f.elds are written

in terms of left and right handed components.

In order to break the .9U(3)¿ x .9U(3)R flavour symmetry, we add a

mass term which belongs to the representation (3,Ð + (3,3) but which is an

^tU(3)" singlet. The appropriate term is

L,f, =4mqQ ( 1.30)

leaving L+ LL su(2)Lx su(2)R invariant, rvith m, = TrLd. = 0 and rn, * 0.

one of the major reasons the quark model was not popular in the 1g60's,

rvas the fact that all experimcnts designed to observe colour triplets failed.

That is, no quarks rvere found. It rvas concluded that nature only allorved

colourless particles and, for reasons unknorvn, quarks rvere confined in groups

of two or three (or any combination which produced a colourless palticle).

This is known as the "confinement problem". we will briefly review this in

14



the next section.

Before we can construct the current theory of strong interactions, one

more ingredient is required, gauge invariance [25].

Given that a Lagrangian Field theory is globally invariant, it can be made

locally invariant by introducing compensating gauge freIds 126,27]. A familiar

example is electromagnetism. The global symmetry is the t/(1) group and

making the theory localiy invariant introduces the electromagnetic vector

potential. In quantum electrodynamics this gauge fleld is associated with

the photon.

In 1954 Yang and Mills (and Shaw) [28] generalized local gauge invari-

ance from the U(1) group to a nonabelian Lie algebra. They showed that

for every group generator there is a compensating field. They also found

that a property of non-abelian groups is that the gauge frelds interact.

Almost twenty years later, Politzer [2S] and Gross and Wilczek [30]

showed that due to the selfinteraction ofthe gauge fields, non-abeüan gauge

theories exhibit asymptotic freedom, that is, the strength of the interaction

mediated by the gauge fields becomes very small at very high energies (or

very small distances). Furthermore, only non-abelian gauge theories exhibit

this property.

L.4 QCD

In the late 1960's, deep inelastic experiments were carried out at SIAC

to test the quark model [31]. If hadrons did not consist of quarks, then

the inelastic scattering cross section would dec¡ease rapidly at very high

energies. Ilorvever, it rvas found that the cross section actually decreased

slorvly suggesting the proton's electric charge was concerìtrated in point-like

15



constituents (Feynman's Partons) [32].

A second result from these experiments was that, although the strong in-

teraction of quarks was complicated (strong) at low energies, quarks behaved

as if they were free at high energies. This is exactly the asymptotic freedom

property of non-abelian gauge theories (discovered a number of years after

these experiments were performed).

It was concluded that tlie theory of strong interactions is a non-abelian

gauge theory, and that the interaction between the quarks is mediated by

eight massless, spin 1, non-abelian gauge fields called gluons [33].

If QCD is to describe the real world, the theory must be asymptotically

free, and must exhibit confi.nement. It has already been pointed out that

QCD is asymptotically free. It is an ongoing problem to prove that QCD is

confining.

One way to test this is to work on a 4-dimensional lattice (at low energies)

in Euclidean space [34]. Calculating quantities in gauge theories has nol'

been reduced to solving a statistical mechanics problem, usually the Ising

model. In lattice theories, the inverse of the lattice spacing acts as an

ultraviolet cutoff. The continuum limit (assuming it exists) is obtained b1'

taking the lattice spacing to zero.

It can be shown that a number of theories based on the 4-dimensional

Buclidean lattice are asymptotically free, and exhibit confinement [35,36].

As an exa,mple, rve briefly consider !\/ilson's confi.nement mechanism.

A test of conlìnement in a lattice gauge theory is the existence of a

phase transition. \\/ilson conjectured that, in the rveak coupling phase (large

P = IlkT)2, there rvill exist massless gauge frelds and free cluarks, and in
2If rve denote the strength of the coupling of the gauge fields to the qua"rks by g, then

9 - llg'. Therefore, large B implies small g, and hence, weak coupling.
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the strong coupLing phase, massive gauge flelds and confined quarks. There

is a phase transition at some intermediate B".

\Milson considered a QCD vacuum consisting of loops representing the

virtual creation and annihilation of quark-antiquark pairs. These loops can

be large or small. However, if they are sufficiently large, it may be possible to

detect individual quarks. Wilson has proposed that, in the strong coupling

regime, i.e., in a confi.ning phase, large loops are suppressed.

A useful quantity to work with when one has a theory with phase transi-

tions is an order parameter. The order parameter considered by Wilson was

the expectation value of the product of matrices associated with the links of

the lattice [37]. This expectation value, known as the \Milson loop (denoted

W(C),C denoting the loop), describes the creation of a quark pair at one

end of the loop, and destruction at the other end. For small B, the Wilson

loop - erp(-kRT) for linear interquark energy (k is a constant)3.

Wilson has found that, for arbitrarily shaped loops, if the weight as-

sociated with a given quark path goes hke expf-k 4], with ,4. the enclosed

area of the loop, then small loops will dominate and individual quarks will

not be observed: confi.nement. Comparing with the above, we see that this

area law leds to a linear interquark energy. This is the form of the order

parameter for strong coupling. In the rveak coupling regime, we have free

quarks and a Coulomb-like potential. From this we conclude that a gauge

theory satisfying the so-called "\4/ilson criterion" will exhibit confinement.

It rvas also pointcd out by \\¡ilson that the structure of the strong cou-

pling region is similar to that of hadronic string theories. This point was

also raised by Iiogut and Susskind [39]. They proposed that hadrons are

3It ca., be shorvn [38] that two isospin 1/2 charges separated by a distance R, have
interquark energy proportional to R.
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made up of strings with quarks at the end points (the strings are lines of

non-abelian electric flux). Confinement is due to the inability to break a

string without producing quark pairs

The above are by no means the only confinement mechanisms. A third

mechanism will be discussed in the next section.

QCD being asymptotically free means that at high energies the quark-

gluon coupling constant is small and we can apply perturbative techniques to

QCD calculations. Unfortunately, at medium to low energies the coupling

constant is large, and so quarks and gluons interact strongly. At these

energies we can no longer apply perturbation theory to QCD.

This would not be a problem if we could find another small parameter

about which we could expand Green's functions, etc. At low energies there

are two such parameters, the current quark mass and the meson momentum.

Chiral Perturbation Theory [40] - [46] allows us to make expansions in powers

of quark masses and external momentum.

This method, however, is not as straight forward as it sounds. Li and

Pagels [42] were able to show that if the Hamiltonian symmetry is ¡ealized

by Goldstone bosons (Nambu-Goldstone realization), then the S-matrix and

matrix elements of cur¡ents may no longer analytic in e (or M]) in the chiral

limit (the momentum integral becomes infrared divergent due to the strong

interaction beconing a long range force in the limit of massless mesons).

In such cases, it becomes necessary to calculate so-called Leading Non-

Analvtic Contributions (LNAC), and it is not unusual to find contributions

of ordera I,I| or A,IlhtA,I]. The LNAC (terms of order (¡f;)) are assurned

to dominate all higher order contributions (OQ,fllnMi)).
4In t"rrn" of the average running quark mass, rîr, these contributions are of order ¡i¿3l2

or rif h¡ît
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A problem with CPT is that LNAC can be quite large, making quark

mass expansions useless. This led to the creation of Improved Chiral Per-

turbation Theory [i9](ICPT) . The LNAC are due to the meson cloud sur-

rounding the baryon (and meson) and are small compared to leading analytic

terms (but are still believed to dominate higher order contributions).

The main alternatives to chiral perturbation theory are lattice theories

(mentioned above), QCD Sum Rules[47,48] and phenomenological models

of hadrons [49,50,51]. A type of phenomenological model, and the one we

consider here, is the bag model [52,53,54].

1.5 B.g Models

In bag models, the hadron is fixed in space, and the quarks are confined to

the interior of a volume of space - the bag.

One of the more familiar bag models is the MIT bag model [55]. The

quark wavefunctions are found by solving the Dirac equation for free spin

1/2 particles

(i ø - M)ú(ø) = ¡ (1.31)

within a bag of radius R. Two solutions are obtained, characterized by the

quantum number n: TU + å) = 1t [56]

\[-r : 9r"(r- tl - 
N' I a]js(a'"r) l

' 
L ) : 

J47t I n; a' fj1(c.,'"r) I

rr11 : Qrp(í,Ð = hl"r;ri:r,J:;;, l

"-iattbo(R-r)

"-iapt 
b o@ - r) (1.J2)

corresponding to 1s¡ and 1p¡ solutions. In these expressions, 1f" and 1Ío

are normalization constants (s and p refer to s- and 2-rvave),

¡/ a",o(a",o - À" ,r)
( 1.33)

"'P - ffjï(u",pa) 2a",r(a",o - t)+ À",e
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js and j1 ane spherical Bessel functions, and

o!,,:t*rå 1,-.en;
s'P

with

ots,p - l@",a)t + 
^71, 

(1.35)

and

\¿: M;R (1.36)

The suffix i denotes the quark flavour. Quark energy is denoted by u",p.

The quark energy is quantized by requiring that no current flows across

the bag surface. This requirement leads to

a! ¡o@"n) = a" j{a"R) (1.37)

For massless quarks,

jo(r"R) = j{u,R) (1.38)

is satisfied by

u"R=2.04,5.40,... (1.39)

Note the parameterization (i.e. ar".R) we have used here. An alternative

notation uses c.rr/ft as the argument of the Bessel functions. As with QCD,

we require our bag model to be confining. \Me ensure this in the following

way.

As no isolated quarks have been observed, we confine quarks in the bag

bv requiring the quark encrgy to become infinite for large bag radius, and

hence the quark mass rvill become infinite and unobservable. An important

feature of the MIT bag model is the introduction of a term which produces

just this feature.
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Conflnement means that there is no flow of colour through the bag

surface. If the quark current is 41pq, then this restriction implies that

n,,Q.ypÇ: 0 on the bag surface (n*(.i,/) is a unit four vector normal to the

surface). It can be shown that this is equivalent to the linear boundary con-

dition inrl*q - q on the bag surface. If we now consider in¡"iP, it is easy

to show that, on the bag surface, |cl = 0 (rather than the quark current).

Now consider the energy-momentum tensor inside the bag

Tt"'--iur'i'o (1.40)
2',

Inside the bag, Ôr7u" = 0. As we do not want any energy-momentum flux

to leave the bag, we have npTpv : 0 on the bag surface. Unfortunately, at

the surface, energy-momentum is not conserved

1

ôrTu" - in"r.0(qq)6, (1.41)

The solution is to define a new energy-momentum tensor

Tlí,, -- (T" * BsP')0" (L.42)

(0u is a step function - it is zero outside the bag, and unity inside) where

B - -!r.a@q) (1.43)
2

is the MIT non-linear boundary coudition. Note that we now have conser-

vation of energy-momentum at the bag surface,'t.e., ôrTp¡i¡T : 0.

The total quark energy is thus

Á.

Dr, + în'o (t-44)

rvith c^.r¿ the ground state quark'u.,"r*u (of quark flavour i). The introduced.

bag "pressure" BI æ I20 MeV ensures confinement.
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Asymptotic freedom in bag models is ensured by considering only free

quarks confined within the bag.

A problem with the MIT model is the lack of a pion (or meson) fleld.

As these flelds ensure chiral symmetry (via the sigma model [52]), this is a

serlous omlsslon

By introducing a scalar particle and pion field into the model, Chodos

and Thorn [58] made the MIT model chiral invariant. By a suitable redefr-

nition of the scalar and meson fields, the scalar field can be removed, leaving

the meson freld only coupled to the quarks. This redefinition has the effect

of making the theory non-linear (details are given in chapter 3). In this

model, the pion is allowed into the bag - as opposed to, say, the Brown and

Rho model [59] or Hybrid Cliiral Bag (HCB) models [60] which exclude the

pion from the interior of the bag. These models assume that pions (mesons)

are created and annihilated only outside the bag.

An alternative formulation is the Cloudy Bag Model (CBM).

1.5.1 The CBM

The CBM 152,61,62) is similar to the model of Chodos and Thorn in a

number of ways. Both require the bag pressure to ensure confinement, and

both treat the meson field as a plane rvave. The quark wave functions used

are the \{IT rvave functions.

The CBN{ also allows the meson field inside the bag. As it is possible

for mesons (qÇ pairs) to be created inside the bag, we allow the mesons to

entcr the bag volume. Also, since the mesorì field is treated as a plane wa\¡e,

propagating through all of space, it should not be excluded from inside the

bug. The CBlt{ is also a non-linear theory. As above, the sigma field is

removed by redefining the meson field. We describe this in more detail in
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chapter 3.

Certain assumptions are made in the formulation of the CBM. It is as-

sumed that the bag is surrounded by few mesons (as we shall see, calculating

bare bag probabilities and using this assumption allows us to determine the

radius of the bag). It was shown by Dodd, et.al. [63], that the average num-

ber of pions surrounding a bag with radius 0.82 fm is ( 0.9 + 1.0. Because of

their large masses, we do not expect a large number of kaon or eta mesons

in the meson cloud.

We can write the CBM Lagrangian density in the form

L=Lun*L"*Lt (1.45)

for massless quarks and mesons. The first term on the right is the MIT

Lagrangian. The second term contains (0rr)2, and the third term describes

the surface interaction. This final term is the major difference between the

CBM and the model of Chodos and Thorn.

1.6 The Sigma Term

In all of the above models, it has been assumed that the Hamiltonian sym-

metry is broken by a term belonging to the (3,Ð + (3,3) representation of

.9U(3)¿ x .9U(3)¡. That is, by adding the mass termQmoq.

I{orv can this be tested? \\¡e can construct a matrix element which

depends only on the symmetrl' breaking part of the Hamiltonian and which

can be found (indirectlv) from experiment. From this matrix element we can

construct the pion-ttucleon sigrna term. \\¡e shall denote the experimentally

deternrined sigma term b¡' I-N(l = 2^,11) [13,15] (t is the square of the

momentum tlansfer).
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\Me cannot actually calculate the sigma term directly from experiment.

Instead, we flnd an expression relating the sigma term to a scattering ampli-

tude. This can be done using current algebra. Unfortunately, the amplitude

will be off mass shell. We must therefore find some way to relate these am-

plitudes to on mass shell amplitudes. This was done by Cheng and Dashen

by making use of the Adler consistency relations. This solution raises an-

other problem. The Cheng-Dashen amplitude is calculated at an unphysical

point. The experimental input (e.g. phase shifts) used to calculate these

amplitudes is measured at physical points. The extrapolation from physi-

cal to unphysical points is done via forward scattering dispersion relations.

With this, E,.ru(ú = 2M?) can be found.

Theoretical calculations of the sigma term are made at the point ú : 0

and are denoted drry(0). Details are given in the next chapter.

In chapter 2, we review a number of sigma term calculations. We shall

see that the theoretical value is considerably smaller than the experimental

value. We review possible solutions to this problem. These involve chiral

perturbation theory and the HCB model. Finally, rve review the most recent

experimental derivation of the sigma term.

In chapter 3 we discuss the volume coupling .9tl(3) CBM. We derive

bare coupling constants, expressions for the baryon self-energy, bare bag

probabilìties and ¡enormalized coupling constants. With this we are able to

calculate the sigma term.

\\¡e have also included a number of appendices dealing rvith kinernatics

and dispersion relations.

24



Chapter 2

The Pion-Nucleon Sigrna
Terrn

'We define the sigma term to be the nucleon expectation value of the com-

mutator

ÐU = ÍQl,LQl, n11 (2.1)

The sigma commutator, Eij, is symmetric in the SU(3) indices i and j, and

vanishes in the chiral limit.

Using the commutation relations given in the previous chapter, the sigma

commutator can be shown to be (using the Hamiltonian given by equa-

tion( 1.14) and i, j : 1,2,3)

E;r : d¡oxd;aw ! cd¡s¡d¡Hut

: ld¡oúu ¡ d¡ozd;zt * djosd;st)ut

* cld¡atd;t¡ | d¡ezd;u * djazd;et)ut

= (i + c)({ius t us) (2.2)

summing over repeated indices and c x -1.29 the ratio of the strength of

the octet and singlet parts in the symmetry breaking term. In the limit

Ã,[n -+ 0, c : -r/2 and so E;¡ vanishes in this, the .9U(2) x ^9U(2), limit.
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The sigma term (at zero momentum transfer) is

1
3

ø,N(0) où I(¡rk)lr¿¡l¡/(p))
d=1

(2.3)

Substituting equation( 2.2) we find that

(rÆ + 
"¡

3
(2.4)ø,ry(0): (NlJiuo* zgl¡ü)

The matrix element ufl : (fflzslN) is known and has a value of 166t10

MeVl [13]. Unfortunately, zfl = (If lu6llÍ) is not known. To get around

this problem we rearrange the above expression to give

tÆ+ 
"o¡.¡y(0) :

3
(2.5)

It is believed that the magnitude of the .9U(3)y breaking is of the order

as the spontaneous breaking of SU(3)1x 5tl(3)n (so øfl will be of the same

order of magnitude as ¿Y). Hence |"il/"il| - 1 - 2 and

ø,¡y(0):17-27MeY (2.6)

with c # -'n.
We now compare this estimate with experiment.

lNote that this figure is 15 years old. We use it because, at this stage, we are only
interested in estimating the sigma term. A detailed calcul¿tion will come later.
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2.L Experimental Estimates of the Sigma Term

Before we can consider the actual calculation of the sigma term, it will be

necessary to define a transition amplitude lor a Lwo b<-rtly scattering process.

Denote the amplitude of the process (Appendix A,B) [64]

¡r(p) + M;(q) -- N(p') * M¡(q') (2.7)

by T¡t(v,t,q2,q'2) (i and j are ,SU(3) indices) where

-(p + p')' q

" = 3Mí- (2.8)

t : -(p - p')2 is (minus) the square of the momentum transfer, and I/(p)

and M¿(q) represent incoming particles (p and q are (incoming) nucleon and

meson four-momenta respectively).

An expression for the T-matrix can be found by "contracting" (or "re-

ducing") the matrix element (q', j;p',stoutlq,i;yt,sinl (s denotes nucleon

spin/charge states, and i denotes meson charge states).

The S-matrix for baryon-meson scattering is (Appendix B)

(q', j i p', s' inl S lq, i; p,s in)

- I - (zr)a6a(p + q - p' - q')(q' - M:)(q'' - tt{ aaz"-;{'z 1p'lT(ó¡(r)ó¡(o))lpl

- I +i(zr)464(p*q-p'-s')T¡¡(r,t,q2,q'2) (2.9)

rvith the off-shell transition amplìtude given by

'I¡ ;(u, I , q2 , q'2) -- i
(q' - ¡'t1) (q'' - À4)
r"M] f"À'r] f ,ta 

" "- 
io''' 

þt' lT (0 uA! e) A, Ai e))lp)
(2.10)

rvlrere rve lrave made use of PCAC, i.e.,0rA!(z): Í"À,1:ó;(z). Pulling the

derivatives through the time-ordering operator we get [11,18]
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From equations( 1.9), ( 1.26) and (2.I), we see that the last term in this

equation is the sigma term. In the soft-meson limit, Ç ---+ 0 and q' ---+ 0, this

reduces to

T¡(v,t, q2 , q.'2)

T¡;(0,0,0,0)

,(q'- u?)k'' - M?) [ ¿a""-iø,.2' f-W fM-J*o-
x (p', 

"' l(ø'rø,1: {,+l (z) Aï (0)}

+ i qt,6 (zs)l.tf (z),,4Î (o)l

- 6 (zo)lA?(z), o, Ai Q)l ) lp, ")

- fi brai,[8,r, n 1o ¡11 ¡r¡

_ E"ru(o)
Í2
Jr

(2.11)

(2.t2)

and gives an off-shell expression for the sigma term (see figure 2.1). The

5U(3) indices i and j are hidden in Ð,ry(O) (we are only interested in the

case of the (identical) mesons being pions).

We now relate this to the on shell amplitude. First note (from equa-

tion( 2.1) or (2.2)) that E;¡ - Ej;. It is therefore more appropriate to use

isospin even scattering amplitudes.

If we let ?-.,. denote the amplitude for r* * P -- 7r* { p and ?- the

amplitude for zr- * p - r- * p, we can define an isospin even amplitude

(Appendix C)

7+ (2.13)

\\'riting the amplitude in the form T+(rz, t) : A+(u,t)+vB+ (r2,1), Cheng

and Dashen [65] extrapolated equation( 2.72)on to the mass shell using the

follorving expansion (it has bcen shorvn that there are no O(Ml) terrns in

the following [66]. The leading nonanalytic term is of order À[]lnÀ[])
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?*(0, ztrfi, lt],1,t]¡ :?*(0,0,0,0) + *i#r*f0,0,0,0)

+ *:#r*(o, o, o, o) (2.14)

Substituting the Adler consistency relations (w ich can be found by con-

tracting (p'q'lpl and (p'lpq)) [67]

?*(0, ztrt|, tvt],0) : ?+(0, 0, ,o¡ + Mlh?*(0,0,0,0) - 0

?*(0, 2M|,0,u\) : ?+10,0, ,o¡+ Mi#?*(g,0,0,0) - 0

into equation( 2.14), we get

?*(0, ztw],u],ul¡ - ?*(o, o, o, o) + o(Mî)
E"N(2M?)

(2.15)

This gives the sigma term on-mass shell, but at an unphysical point (¿ > O).

The point v : 0 and f : 2M] is known as the Cheng-Dashen point.

Using a broad-area subtracted dispersion relation [68], Cheng and Dashen

were able to extrapolate to the on-shell unphysical point z = 0,t = 2M]

and

. q.g'_n
uB : -ffi :0 (2.16)

(vB is made zero, then z, to remove the nucleon pole).

A broad area subtraction method is used because of discrepancy's which

arise in the calculation of the subtraction constant at threshold [69,70]. In

this method, the subtraction is smeared (integrated) over a finite region of

the real axis, so reducing the rveight of threshold behaviour.

Using the broad-area sul¡tra,ction method, the amplitude was calculated

to be

T*(0, 2^[:, M:, M:) = L.7M;l e.rl)

29
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with å : 93 MeV ar.d Mn: 139.56 MeV [12], this gives

Ð"N(2À,1:) = 105 MeV (2.18)

compared with equation( 2.6).

Horvever, this method seems to over emphasize low energy data points,

and incompatible low-energy and high-energy phase shifts were used, making

the value obtained too large by about 30 MeV. A more reliable estimate was

found to be [71]

?*(0, 2M:,I,I:, 
^,1:) 

= r.rM;L - LsM;r (2.1e)

so that

E"¡ç(2Ãfi) = 68 - 81 MeV (2.20)

rvhich is still considerably larger than equation( 2.6). The error in equations

( 2.18) and ( 2.20) is expected to be aroundS0%.

The following diagram shows where the above amplitudes are calculated

(for v: 0)[72]. f

ùor/"¿.¡.

?oint

\tg
1

$a(l'l4etozr
?o,qt

I
edbr
Po'h(

Figurc 2.1: cherrg-Dashe¡r poiut, soft-meson point and Adle¡ points.
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Instead of using the transition amplitude given by Cheng and Dashen,

we can construct the amplitude [73,74]

(2.2r)

A+ alnd -B+ being the invariant amplitudes, C(u,t) : C(r,t, M|, M]) ar.d

C* (r,t) : A+ (r,Ð + 
- ,^MlB+ (u,,t)

al + "[t + o!r2 ¡ afv2t + ...

t{ + U{t + btr' ¡ b[u2t+ ... + Born terms (2.22)

A+(u,t):
u_l B+ (u,t) :

where the a; and ó; are real numbers. This form of the amplitude is related,

in a simple way, to the experimental cross-section. As such, the high energy

behaviour of the amplitude can be easily found from the data.

This construction has produced an amplitude in which Born terms are

confi.ned to the B+ amplitude, has a smother threshold behavior, and has a

simpler t-channel partial wave expansion.

The analysis of Hohler, Jakob and Strauss [25] involved the use of the

poly'nomial expansion ( 2.22) of the isospin-even zril ampl-itude A+(v,t).

This amplitude corresponds to the ?+(z,t) amplitude of Cheng and Dashen

at the point z = 0,f : 2lt[] (np to a constant 92IMN).

The polynomial must be even in z2 because of the crossing symmetry of

A+ (v,t)

A+(-r,t) = A+(u,t) (2.23)

Tlrat is, A* is an even function for Ll -+ -u.
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Using an expression obtained by Osypowski [76], they found (ignoring

A exchange contributions)

A+(0,'2M:)

(2.24)

with g2f 4tr2 x I4.3 the pion-nucleon coupling constant [77]. The once

subtracted flxed-t dispersion relation lor C+(v,t) is [78]

ReC+(v,t) 92 u2
+ ReC+(o,t)

M¡¡ (r' - ûÐ(r - tl4Mk)

ù - #+zMla[
D"N(2M3)

fi

with the subtraction constant

ReC+(0.¿l = ? [* 4mc+(v,.t\
r Jr, Lt,

and

ut= Mnttl4M¡¡

the branch point in the s-channel.

To obtain values for the expansion parameters, they considered

ReC+(v,o¡ : neC+(o,Ð- #"%

2v2+_
7f r (2.25)

(2.26)

(2.27)

(2.28)

(2.2e)

Orr ¡*ç+(vtrt)
yt t/'2 - v2

2v2 dut hnC+ (vt ,0)+ t.:7t ltt ut2 - y2

rvith,l?eC+(0,0;: A+(0,0): al. Rearranging the above rve get

"{ - * = Rec+(u,q. #, @, _--46,

2u2 [* dr' ImC+(ut,0)-; J,, / --;n - u,
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An advantage of using forward scattering is that we can now use the

optical theorem to relate ImC+ to the total cross-section

ImC+ (u' ,o) : lct o+ (2.30)

with ø+ the total isospin-even rtp cross-section

,1
o+ = -1(on+ri on-r) (2.31)

and fr¿ the momentum of the incident meson in the laboratory system.

Now, consider the case when Lt : o)¡ the total pion laboratory energy.

We have

,2 = M|i k?, (2.J2)

so that

udu : k7d.k7 (2.33)

and hence

Rec+(a,Ð*#r%
2.,2 [* k'Êd,ktL o+(k'r)-; J,, ,' *9=4

Hohler, Jacob and Strauss calculated ReC+(a,0) from phase shift data

and were able to calculate the integral from their table of forward zry'ù am-

plìtudes.

Using ( 2.16) we see that

,)
t/B -

A,I1

4^rk (2.35)

and the Born term in equation( 2.34) becomes

g' ,ó2 _ 92 M1
A[¡,¡ (u2 - "'Ð 

- 4^,1fu (u2 - M]l+Mfu)
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The parameter a[ is found by considering [79]

.9(cu): fin"c+1r,ú)1,:o (2.37)

at u = 0. That is,

øf : s(o) (2.38)

They were able to show that

ftmc+ç,,t¡ = f,u+ç,)k¡,o+ (2.3e)

where b+ is the slope of the diffraction peak [80]. Hohler, Jacob and Strauss

then went on to flnd an expression which relates a[ and ó* to a quantity

which can be found from phase shifts and total cross-sections in the region

Mn 1a 1õ = 2 GeV. Both ø!l and ö+ are found from a straight line fit.

The best average result gives [15]

a{ = (-1.53 +0.2)M;t - L^
a[ : (r.11+ o.o2)M;3 (2.40)

so that, from ( 2.24)

T*(0, zr[:, M?, Ml) = (0.69 + 0.2ÐM;r (2.4r)

and

E"N(21[:): 43 * 15 MeV

compared to equations ( 2.6) and ( 2.20).

(2.42)
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Nielsen and Oades [80] considered the expansion (2.22) including terms

in ya and t2 (the following expansion is identical to equation( 2.22). The

only difference is in notation)

C+ : "{ + c[t+ (cãF + c[t)u2

+ (c* + "t)"4 + "Tf Q.43)

valid in the region lt1 < +U] and lrzl 1A[nitlaMN. They use the notation

Õ+ to denote the even-isospin transition amplitude excluding Born terms,

i.e., Õ+ : C* - CÈo,n.

In exactly the same way as above, they found that

cf 92 = (-1.45 + 0.10)M;1

: (1.18 + 0.05)¡ç3
M¡¡

c[

and

(2.44)

They found

cf : (o.ors+o.ooz)M;s

Í;2E"N(21,1:) "{-#+2tuI}c[++Mlcf
(1.05 + 0.tÐM;r (2.45)

giving

D"N(2À,1:)=65*9MeV. (2.46)

In the above examples, the sigrna telm rvas obtained by extrapolating

the appropriate isospin-evelì amplitude to the Cheng-Dashen point via a

lìxed-t dispersion relation. The path of integration being along the (straight

line) s-channel cut.
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The final experimental estimate we consider, due to Koch [81], extrapo-

lates along a series of hyperbola.

Koch considered the following amplitude

D* (r' ,t) : A+ (u2,t) + u2 B+ (r",t)

The once subtracted fixed-t dispersion relation for D* is

ReD+Qz,t) : Á*(0, Ð- -t-J-MN u2 - u2n

. u2 f* dv'2 ImD+(u'2,t)
-L- '' r Jrl u ,'/r2-u2

(2.47)

(2.48)

from which

vþ
L/2 - B

¡* du'2 ImD_+(u'2_,t) 
e,g)l r7 Ltt vt2 - v2

agreeing with equation( 2.29) (which is hardly surprising as the amplitudes

?+ (or D+) and C* are identical at the point z = 0).

By deriving afrxed-u dispersion relation for A+(0, f ), subtracted at f = fr

(equation ( D.82)), and equating it with the above, an expression can be

obtained for A+ (0, t) - 92 l hf ¡¡ . It is usually from such an expression that tlie

sigma term is calculated. Instead we consider the following set of hyperbola

(u2 - v!¡(t - ro) = (ts - tùufr (2.b0)

passing tlrroughthe point v =0 and I = h:2A4. Each hyperbolarvill

givc a value for the sigma term, and the variation is given as the error.

The pararneters zfr and I are chosen so that the curves remain near the

physical region of the s-channel a,nd, for t> 4I,Il, the t-channel partial rvave

expansion converges.
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The t integrations are cut-off at some t*¿n artd ú-o, which are close to

the branch point. The remainder of the integral, that part that is far away

from the branch point, is represented by a disrepancy function [82] which is

expected to vary slowly but is unknown.

Koch, using hyperbolic dispersion relations, obtained

E*^teM1) = Ç@"n*tr',o) - +, l,; 4#'Wæ
_t - 2M1 ¡t^"" Or, IrnD+(t',a) 

1- n lnvz *' (t' - 2MÎ)(t' - ÐJ

-(t - 2M:)L(t,a) (2.51)

The last term is the disrepancy (consisting of complex poles and distant

cuts) and o,212 - ,fi(to - ú1). I(och found A(ú,ø) by solving the above for

frxed l,7y(2M:).He found that A,(ú,ø) varied the least at around 70 MeV.

His analysis gives

E"¡¡(2M1)=6418MeV (2.52)

in agreement with Nielsen and Oades. Until recently, this was considered to

be the most accurate value of the pion-nucleon sigma term. For what is to

follow, it suflìces to use this value. \\¡e rvill return to this at the end of the

chapter.

We see from the above that the sigma term at t : 2M1does not agree

rvith the value found at I :0 (equation( 2.6)). In the following section we

revierv eall-v attcmpts to explain this variation. \\¡hat we belicve to be the

correct explanation is given at the end of the chapter.
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2.2 The Sigma Terrn in QCD

The formal definition of the pion-nucleon sigma term is

(t : -(p - p')') with If (0) the strong interaction Hamiltonian

eHsn

Ho* eHsn

cgu6 f carlg

Writing

and [83]

13
o*N(t) = 

' 
D(¡r( p')llQl,[8Í, fl(0)]ll¡r(p))

d ;=1

I ot, ql(ù1o*o),,q,(s)

I o"ofmuuu + m¿ãd{ rn"ss]

H

(2.53)

(2.54)

(2.55)

(2.56)

A', = | a3nqf,(æ)0r|).pw@)

Hsn

Íe't, leut, H s Bll = - | a3, a" y qI @)T[.rr, rorrì { }, À;}s(y)ó3( u - y) (2.sT )

it can be shown, with the help of equation( 1.19), that

Using equation ( 1.23) with i : L,2,3, rve find that

lQ';,lQl,flssll = 3 tl3zfmuuu + rn¿ãcl) (2.58)

ørr¡¡(0) = ct3x þh(NlTIu + (](tlN) * ry(Nlzu - aalx¡¡ (2.5e)

having deflned

^ rnu * rnd.

2
(2.60)

and hence,
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to be the average of the renormalized running current quark mass.

The term proportional to mu - Tmd) the isospin violating piece, is small

and can be dropped. We are then left with

IarN : dsr r?r.(Nl-uu +ãdlN) (2.61)

We should point out that, although rîz andQq vary with the mass scale, the

product rilQq is scale independent.

In the quark model,

u;:Q),;q (2.62)

i : 0,...,8. For i = 1,...,8, the À; are the usual Gell-Mann matrices.

When i = 0,

(2.63)

Hence [18], It
V¡ (au + dd +ss)

and

^o: lrrr

couo * csus = f\Yl@u +Zd) + nz"ss

Ug

Ug

(2.64)

(2.65)

(2.66)

(2.67)

: 
fr@" +ãa - zss¡

The coefficients are

C6

Cg

är*.*m¿*m")
I ,mulrn¿ \

ã\ z -ms)

so that

which is the expression given in equation( 1.17)
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Now, the baryon, according to QCD [84], is a bound three quark and

gluon system surrounded by Goldstone bosons and quark-antiquark pairs.

In the case of the nucleon, the bound valence quarks are predominantly the

ø and d quarks. The Qq pairs which make up the quark sea are ûu,d,d and

ss. We now make the usual assumption (which is conf.rmed by experiment)

that the nucleon wave function is dominated by u and d quarks. This means

that only a small percentage of the quark sea consists of 3s pairs.

Hence, we assume that (Nl-sslIü) = 0 (or (,nÍløz + ddlM) >> (NlsslN))'

and the sigma term becomes

o,N(o) = fryiUl@ltu+Adryl
, n1,u I Tn¿ ,

= (î)(Nløu + d,d - 23sllr)

= 
3(r.n" * m¿) lNlcozoll\/) (2.6g)rnulrnd-2m"

thus relating the sigma term to the .9tl(3) breaking piece of the Hamiltonian.

'We can calculate the matrix element by first considering the decompo-

sition [2]

8 x 8 = 27 +70' + 10+8r *82* 1 (2.69)

\4¡e see in tliis decomposition that there are two 8's. This means that in

8 x 8 x 8 there rvill be trvo SU(3) scalars.

To see this, consider the mesotì octet M transforming as M - UA'tUt

and tlre baryon octet transforming as -D - U BUÏ . We can therefore con-

struct tlre follorving trvo invariants, T'( B 
^'I 

B) and, Tr(B B lt|) for the baryon-

nÌeson couplings. It is more con-uÌìon to consider linear combinations of these

coupliugs, and for this reason rve rvrite [8]

(Alcazsle) : aTr(BuaB) + PTr(B BuB) (2.70)
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with øs written as a 3 x 3 diagonal matrix and [85]

to,^oø'r G
B_ D- ¡o

æ

+

=O

D

t0
æ +

p

n
2Lo

'/6
Expanding equation( 2.70) and noting that (BlcazslB) is the baryon octet

mass shift due to SU(3) breaking, we find

MN : Mo*ot-2þ

Mz : lt[o*a*þ

M2 = Ms-2alB

M¡ : Mo-a-þ (2.7I)

having absorbed all common constants into o and p. From these equations

we find

(lflcauslN) :e-2þ: M¡- M¿ (2.72)

As a check of equation( 2.7L) we see that

M¡ - M¿ - 2M¡¡ - Mz - M¡ ell)2

rvhich is satisfred experimentally. Note that these relations are derived from

a Hamiltonian with mat¡ix elements linear in rî¿ and rn". This point will be

raised later.

Thus

o"N(0)
3(m" t m¿)

mu*rnd.-2m" (M¡ - M=)

t A[2 - M¡
(2.71)

nt,rfnr, - I
rvhich measures the amount by rvhich the nucleon mass shifts rvhen m,

and nz¿ are given non-zero masses (assuming that this is the only cause of

symmetry breaking).
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The quark masses we use are those found by Leutwyler [19,86,87] at a

scale of 1 GeV. Reiating matrix elements of vector cutrents to th.e pseu-

doscalar density via the SY(6) symmetry, he found

rnu lTnd

ffis

È 11MeV

x 130 MeV (2.75)

so that
rn-'x24
r?t

(2.76)

as required. Taking [12]

Mt = 1115.6 MeV

M3 = 1314.9 MeV (2.77)

we have

"?loe) ry 26.5Mev (2.78)

which is considerably smaller than the Koch value, but is in agreement

with the original estimate of equation( 2.6). We therefore interpret equa-

tions( 2.6) and ( 2.78) to be the valence quark contribution to the sigma

term.

In deriving equation( 2.68), we assumed that (Nls-slN) = 0 because we

do not knorv this matrix element (some authors invoke the Zweig rule to

justify this assumption [70,88]). Ilorvever, an alternative method of deter-

mining the sigma term exists in rvhich rve consider the parameter

^¡
ss Na- (À¡lzz + dd - 2ssl,rf )

(2.7e)

rvhich is used as a m.easure of the strange quark content of the nucleon

Instead of equation( 2.68) rve rvrite
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ø"N(0) ulo<* løu ¡ ãd- zssl.nr) (r - ffi )

(Me-¡¿n)(1-ffi) lz.so;

using equations ( 2.71) and ( 2.72). Dominguez and Langacker [89] have

calculated y using the method of Li and Pagels Í42,901. They found that g =
0.36 which implies that oflftD(O) = 36 MeV, compared to equation(2.78)

where U : 0.

Note that equation( 2.80) can also be written

o,iv(o) = 
â'r(o) 

(2.81)l-ao

where â,¡¡(0) x 26.5 MeV is given by equation( 2.74) and

^ (nlsslN)Yo=2ffiN, e'82)

is also interpreted as a measure of the strange quark component of the

nucleon.

The parameter ys can be related to the baryon bare mass (in the chiral

limit) by writing [91]

2M ¡¡ o^¡¡ (0) : rîr(pløu * ddlp) (2.83)

= 
^lr^{¡,tk 

+i# 
^r*z- ^ri) - 

M3} (2.84)

This expression is derived by using the first order mass formula

À'Ik : I[3 + rîr(B' + B, + m"B"

^'13 
: 

^[3 
+ m(Bd + B") | n'r,,Bu

r[2^: M3 +îfo" +4Bd + B") +ff{za" - nd ¡zß") (2.85)

3

rn"fñ,-I

43



wirh -Be : (plqqlù.

We use the normalization

þ,lpl: (2ù32po63(p' - p) (2.86)

Proof of ( 2.83) : (2.84):

The simplest way to prove this is to work backwards and insert equation

( 2.85) into ( 2.84), and show equations ( 2.83) and ( 2.84) are equivalent.

SO

^[3-M2^ 
: rh(Bd +,a") +nx"B"-ifu"+4Bd +8")

mzçzB, 
- Bd +28")-3

ffir-a: ïtu" + Bd _ 28")

i#rMa- M'n) =Tru" + Bd -28")

(2.87)

(2.88)

(2.8e)

hence

Tlrus, upon multiplication by 2ûzl(m" + 2rh), we get the desired result.

Bnd of proof.

\\¡e should point out that a linear lnass formula could have been used in

equation( 2.85). I{orvever, the formula for Mþ allows one to calculate the

order of magnitude of corrections due to higher terms in the quark mass

expansion.
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What are these higher terms? One might expect the next term in the

expansion for Mþ to be of otder mf,. However, Langacker and Pagels [44]

have shown that the next term is actually of order *f;/' . thl" is the leading

nonanalytic term in the quark mass expansion.2 They are usually due to a

finite number of diagrams, and may therefore be calculated exactly - without

knowledge of Hs (which is not true of the analytic terms). The nonanalytic

leading terms are believed to dominate higher order terms.

To one loop in chiral perturbation theory, Gasser calculated the Lead-

ing NonAnalytic Contributions (LNAC) and higher order (kinematic) cor-

rections to equation( 2.81) at ao - 0, i.e., he included all terms of order

*f;lz und. estimated the contribution from terms of order mf;. ilhe details

can be found in reference [91]. Gasser found that these contributions in-

crease the sigma term by approximately 10 MeV (taking m"f ñt' s 25 and

¡n¿/mu = 1.8). Hence, to one loop

õnN
onN=. r-uo (2.e0)

rvhere, now, ârN = 35 MeV.

\\¡e are now in a position to estimate Uo (or, through equation( 2.84),

Ì[o). If we are to obtain the value orN È 60 MeV, then y6 x 0.42 or

lfs = 300 MeV (we have used m" x L40 MeV). That is, it would appear that

there is a la,rge strange quark component of the nucleon, and it contributes

more than 50% to the nucleon mass!

The LNAC to equation ( 2.84) rvas calculated by Gasser. I{e found that

L\AC t -35 \{eV, i.e., lalge aucl iu tlte rvrong dilectìon. Tltis problern

is quite common rvhen calculating LNAC for baryons in an analogous way

to those found for mesol.rs (s'e have not previously mentioned LNAC for
?The mome.ttum integral is infrared divergent [19]
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mesons. Ca.lculations may be found in references [a5] and [91]).

The solution to the problem is to work with models of hadrons described

by effective Lagrangians [92]. In such models, LNAC are due to the cloud

of virtual mesons surrounding the baryon (this method can also be used

to calculate LNAC for mesons. In this case, LNAC are due to the virtual

meson cloud surrounding the meson). The LNAC ale one loop integrals,

essential the self energy of the baryon, but with the physical baryon and

meson masses in the propagators.

If we write

Bu=

Bd=

B" + 68"
_)
B" + 68" (2.e1)

then

ñ(68" + 6Bd)

rîx6Bd * m"68"

lfo u" + 46 B\ + fftzo a" - 6 Bd) (2.e2)

so thatè

Mk = M3 + rîr(-8" +d) + rn"B" + 6I[k

I[3: I[3 + rîr(Eo + B") ¡ m,"8" + 61,13

^r2^= ^r3 
+ifU +4î + B') +fffzø" -Ê +28")+6M2^ (2.e3)

rvhere ónffr is a one loop integlal given by equation(7.2) of reference [Ot]' By

subtracting the self energy term frorn these ecluations one obtains expansions

for Mþ in the quark mass analytic up to order m2nlnmo.

3E ,Ed and .B' obey Stl(3) relations in the absence of loop corrections.

6M'N =

6M3. =

6Ml, =

46



\Me are now in a position to flnd LNAC to the sigma term. Using the

expansion for M2¡¡ giveri by equation( 2.85), we can write the sigma term as

orN
2MN

(qtl-uu + ddlp)

rîL AMk
2M¡,¡ 0ñ"¿

(2.s4)

rfl

From equation( 2.93)

^W- = ?h(8" +Eo) + nfiour*

so that, combining equations ( 2.84) and ( 2.92) - ( 2.95) we have

ffi"t*k.i#ã@3- M'ì- M|l

-#kþM* -i;ÃeMz - 6M1)l

+nftoui,

2M¡¡o"¡¡(0)

(2.e5)

(2.e6)

with the second line removing loop contributions to the fi,rst line, and contri-

butions from the last two lines cancelling. That is, the second line removes

ord", ,nf;l2 terms from the first line (making the fi¡st line analytic up to

order mllnrno). The third üne is of order *f;/' unð, is therefore LNAC.

If we make the approximation ñ. x M], we can write the derivative in

the last line in terms of meson -urrurT

,i,fit rrir = M:t& - ;h + i u*-9-rv 
mn e.sl)

so that fìnally, the pion-nucleon sigma term is

9Tl . .o"ffi.ients in the RHS of this expression are the probabilities of finding a non-
strange qrrark in the rneson

47



2M¡¡o*¡,¡(0) : #?euo?'*l# 
^tu3.- 

¡øi) - u\l

-#Ï, ttu?u.i# 
^eM|.- 

otø'n)l

**:t#1.;h*!ftio** (2e8)

The cutoffin the integraLfor 6Mþ is determined by the dipole parameter-

ization of the rlvr'{ vertex form factor [93,94,95]. one finds from experiment

that the cutoff mass Â, = 1 GeV (it can be shown, in the case of a dipole

form factor, that /\n N tÆl&. We see that Â, : 1 GeV gives us a bag

radius of approximately 0.9 fm). Gasser actually calculates the above ex-

pression for various cutoffs, and finds

1. 
^, 

- 0.5 GeV

o,¡¡(0) x 42MeY (2.99)

2.lv* - 0.7 GeV

o,¡¿(0) = 44MeV (2.100)

3.^, - 1.0 GeV

o,¡r(o) = 54 MeV (2.101)

From the above, we flnd that in order to agree with the experimental

value of the sigma term either y6 is largJor, equivalen tly, Ms is smaill The

conclusion is that there is a high percentage of strange quarks in the nucleon,

and that half the nucleon mass (11¡¿ = 938.28 lr{eV) is due to the strange

quark [96].

Horvever, we feel that the above values are too large as rve do not expact

any strange quarks in the nucleon rvavefunction.
5\Àte see this by equating the values given by equations (2.99) to (2.101) with â,¡y(0)

given in equation.(2.90). we then find that ø,ry(O) = 60 MeV requires gre to be large.
"As rnentioned on Page 45, using the firs -order expression, equation (z.sl), to Jbtaino"¡ (0) æ 60 lt{cV rcquires llo r 300 À{eV. This value is increased w[en we use equation

(2.98) to calcr¡late llo. In the above calculation, Gasser usesllfs:250 l\{eV, which isstill considerably smaller than the baryon's experimentaì mass.
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We have also made a calculation of the sigma term using equation (2'98).

Using expressions for the self-energy derived in chapter 3, we found the

solutions to equation (2.98) to be unstable. \\¡e conclude that numerical

results from (2.98) become unreüable when the chiral loop corrections are

large.

In contrast to the above, we now consider a bag calculation of the sigma

term.

2.2.t Hybrid Bag Calculation

Jafe considered a Hybrid Chiral Bag (HCB) model [97,98,99]. In this model,

the interior of the bag and the exterior are separate. Inside are quarks and

gluons. Outside are the Goldstone bosons which couple to the quarks at the

bag surface in a way that ensures conservation of the axial-vector current.

It is also assumed that the ss component of the quark sea is small.

He found that

which also gave arN È 26 MeV.

\\¡e note that this expression can be derived from equation ( 2.80).

Proof:

\\¡rite the matrix elements of equation( 2.80) in the form

.>( t , 2(li lsslN) 1(Irluz +AdNl,\,r@)TN¡_""+W
_ 1( (Nlúu +ãd - 23sl/f ) + 2(NlsslN)¡ (Nlu;u +ãdlv)-"\ )@

(2.102)

iV +ã¿ - 23slr/) * 2(Nlúu +ad + ]V

(Nløu+dd-2ssl,n/)
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(N ltu + dd - 2ssl,ar) * 2(N ltu + dd + rslnr)
(Nltu +ã¿ - 2ssll/)

_ (NlQlú) @u +ãa - zss¡lw) + ^/t <¡vlJrß(øu + 7a + ss¡¡.nr¡

(Nl\[/r) (øu + dd - 2ss)lN)
(1r 

I 
z3l 1{) + \/r(N luolM)

(Nlz3l'n¡l)

:l+t/2\ (2.103)

with

À- (ffluslN)
(lf lu s l,n/ )

(2.104)

End of proof.

When considering a model of symmetry breaking, we require that the

Gell-Mann-Okubo (GMO) mass formula remain valid. This relation is de-

rived using matrix elements which are linear in the quark masses.

It is possible that the Hamiltonian has a term which is non-linear in m".

The GMO relation is violated by an operator transforming as the !-plet of

fl.avour .ttl(3). However, the effective interaction beween two valence quarks

in a flavour antisymmetric state receives no contribution from this operator.

Thus, if this part of the effective interaction dominates over the non-linear

interactions, then the GMO relation rvill be satisfied. This is possible in

Chiral Bag models.

Let H{f B - Hli'o * HlÉ"o", rvith II$ff"r' lio"u, in r?r, and, H!fi""n

highly nonlinear in rn".

Jaffe found the pion contribution to the matrix elements in /l$, to be

27 MeY for ri¿ = 15 N{ev and rn" = 325 N4ev. IIe rvas also able to shorv

tlrat the 27 component of IIIÉ'" rvas negligible, and so the GN{o relation

would still be valid.

Including contributions to ør¡¡ from the pion cloud, the sigma term
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becomes

o"¡¿(0) = 5415 MeV (2.105)

an increase of 27 MeV. That is, pion contributions increase the "effective"

sigma term (i.e., the sigma term without pion contributions) by 27 MeY,

and hence, a large strange quark content is unnecessary. The small number

of strange quark pairs is due to the non-linearity of the HCB model.

An important feature of this calculation is that the pion field is not

allowed inside the bag [53], As such, the pion field will be discontinuous at

the bag surface leading to a nonvanishing surface term (in the integrai ofthe

axial current). We feel that this may have the effect of increasing the pion

contribution. The calculation also assumes that the nucleon and delta are

degenerate. This has the effect of overestimating the A contribution. We

therefore expect the sigma term to be considerably smaller than the value

given above.

2.2.2 Latest Experimental Results

'what is the value of the sigma te¡m? Experimentarly it is given the value

Ð"N(2M*):64*8 MeV. By calculating the parameter u (or yo), we saw

that, theoretically, the sigma term ranged from 26 MeV to 54 MeV. We now

give the latest possible solution to this discrepency [100].

By considering current algebra constraints on on-mass shell amplitudes,

Brown, Pardee and Peccei [66] found that

Í: A+ Q, 2 M:) : o,¡'¡ (2 lr[]) { corrections ( 2.1 06)

rvith corrections expected to be small and of order M| (i.e., there is no

order Mf term in this expression. The leading nonanalytic term is of order
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MIIvM]). Thus, we can write (see equation( 2.24))

,,"N(2M:) = o*¡t(2M?) + ¡n (2.107)

with A¿ : 0.35 MeV to one-loop in chiral perturbation theory [101].

To compare our theoretical results with experiment, we need to know

Lo = onN(zM:) - o,N(0) (2.108)

which can be found from dispersion relations.

Write (we are using the notation of reference [100])

Ð"N(2M:) = E¿ * Â¿ (2.109)

with (c.f. equation( 2.24)) the latest experimental estimate being

Ed = f:@{o+ 2M:dt) - 48 + 12 MeV (2.110)

from experiment. The term Â¿r is determined from the curvature of the

isospin-even amplitude (minus Born terms) D*(O,r) [102]. Hence

o,N(O) = E¿*Ap-Ao-An

= D¿*A-An (2.111)

From dispersion relations, (øriy(0) and D¿ may be thought of as subtrac-

tions, with Âo and A¿r given as an integral) Â¡ = 12 MeV and Ao : lg
N{eV [10a]. Hence, neglecting the cont¡ibution from A¡, it is found that

A = -3 MeV.

Thus, rvith the most recent ex¡rerimental estimate of E^¡¡(2Lfi), namely

E"N(2^,r:) = 60 t 12 I{eV (2.Ir2)
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the experimenta,l estimate of o.7y(0) is

ø"N(0) :45I12 MeV (2.113)

These errors are expected to improve with improved experimental results.

Half the difference between the above value of o,N(O) and the valence

quark va.lue of 26 MeV is believed due to to .9Il(3) breaking effects in the

matrix elements of the scalar currents (as mentioned above, these effects in-

crease orN(0) from 26 MeV to 35 MeV). The remainder is due to the strange

quark operator. Using equation( 2.90) we find that ys x 0.2. The reason for

y6 becoming smaller is that chiral perturbation theory underestimates Ao

by around 10 MeV (if we take Ao æ 5 MeV, then the value obtained would

agree with earlier results).

Previous calculations [O6,fOS] found E¿ x 52 MeV, Lo æ 8 MeV and

Lo ñ 3.5 MeV, so that ø"N(0) = 56 MeV and, hence, Ð"N(2M:) = ø-¡¡(0)

at one-loop. The reason these values have altered is that CPT assumes that

-ID' , LD and Ao have little ú-dependence.

Chiral perturbation theory allows us to expand amplitudes in terms of

quark masses and pion momentum. The leading term of such an expansion

is the Born term and, at the threshold of the physical region (t = +MÏ),, ¡s

believed to provide a good approximation to the amplitude.

Now, ^Ap is calculated from the curvature of D+, rvith contributions

from tlre region t > 4I'I: believed to be small. Ao rvas found using CPT. It
has recently been found that the curvature of D+ receives a large contribu-

tion from the region 4^I: < I < (5001r{ev)2 [104], and that ao also receives

a large contribution from this region. It has also been found that CPT to
one loop underestimates the f-dependence of ør7y(ú). From tliis it is con-
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cluded that, to one-loop, CPT is not a good representation of the scattering

amplitude (unless we are only interested in the amplitude at small values of

the momentum transfcr).

The figures given in equations ( 2.111) and ( 2.1,L2) are the latest and

most reliable values for the sigma term. The reason for the 15 MeV variation

between E"N(2M1) and ø"¡¡(0) is the large t-dependence of ø,ry(ú).
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Chapter 3

The SII(3) CBM

As we mentioned in chapter 1, the cloudy bag model (CBM) [105,106,107]

is a low- to medium-energy model of hadrons. As we require our theory to

be invariant under chiral transformations, our starting point will be a La-

grangian which satisfies this property, namely, the Lagrangian of the sigma

model. We also require our model to describe particles observed in nature,

so we must the remove the scalar particle from the sigma model Lagrangian,

while retaining chiral invariance. We do this in the following section.

3.L The CBM Lagrangian

Scala¡ fi.elds were introduced by Schrvinger [108], and Gell-Mann and Levy

[57], in their attem.pt to produce a chiral symmetric theory of Strong Inter-

actions. The Lagrangian density they proposed was

t: i-,þ7 + - #r, * ií.i15)t+!{a-4, +151a,*), (¡.r)

plus a potential term. ht the above, rve define r/ to be the nucleon freld (this

is therefore an effective theory), ø the scalar field, and f the pseudoscalar

pion triplet freld. As usual, r- are the Pauli matrices, and ./5 was deflned in
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chapter 1. In the above

7: (ã,-6òt' Q:)

with ¡.r, taking the values 0,Ir2 and 3, and the arrowgiving the direction of

the operation. Summation over repeated indices is implied.

We can remove the scalar fleld by making the transformation (i : 1,2,3)

7t¿ : f^$;sin F(x)

o : /, cos 1'(z) (3.3)

where ô¿ : ó;ló, r = óll^ with / : (õ .4jå, and

F(x): r!asr3 +osrs +.... (3.4)

Using the identity

cos d 1 ií .î¿sing - "ií'ño (3.5)

we immediately see that

1 
- 

l- ifõrs

U^tþ(" 
I ir-.i1s)rþ : ,tÞe--t- rÞ (3.6)

In order to redefine the kinetic energy piece, we consider the chiral trans-

formation

o i ií . i^t, .-- "=* @ * ií . i¡)efÍb (3.2)

with d infinitesimal. The nucleon field is then required to transform as

,þ - "-#" rþ (3.8)

and the f and ø fields can be shorvn to transform like

ñ---+ i+od

o ---+ o - d.ñ (3.9)

56



ot

6r¡ : oot¿ : fn cos F(r)a;

6o : -r¿o; : - ln sin ,F(u )f¿ar (3.10)

These equations are found by letting the RHS of equation( 3.7) equal

ot + ií.í'^tu : (o | 6o) + ií .(i + 6i)ls (3.11)

and equating like terms. From ( 3.3) we also have

6o : -fnF'(u )sin F(r)6æ (3.12)

where

ó;6ó;
Í"ó

ô;6ó; (3.13)

SO

6o : F'(x)sinl(c)f;ó@; (3.14)

(F'("): dF(r)ldø). Equating ( 3.10) rvith ( 3.14), we find the transforma-

tion property
f

ó;6ó; = ft¡ó,", (3.15)

We now write the kinetic energy termof equation ( 3.1) in terms of the

new pion field {i. Write Ôro and. ður¡ using the above shorthand notation

ap
6o

orÔ¡
6ó¡

6r=6(*

-F'(*)sirt F@)$¡0uþ¡
6r; ^
t6rorai

(oró¡ - ô,6¡a,O¡)@r

)

f"

o

0rT¡

* F'(x) cos r@)$;$¡0rQ¡ (3.16)
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Then

Hence, we have

(0ro)' - F'(*)' sin2.r'(ø)(f¡ ôrö¡)" (3.17)

and

L*
1

,
1

t

(o,o)' + )fa,rY

{Ka,ót)'- (ô¡0,ó¡)')

+ F'(r)2($tôró¡)'\

sin2 f'(c)
12

(3"18)

(3.1e)

If we let sin-F(ø) : r : þff*, which is possible by making the choice

,F(ø) = arcsin r, then, for ,F'(o) = O(1)' the second and third terms in

equation ( 3.19 ) cancel, and we are left with

(0ro)" * (0rr;)2 = (ô*ó;)' (3.20)

Thus the sigma model Lagrangian becomesl

r = |ú7 ,t, - |V"*.t' + f,{a,o,)'-tni ø' (8.2r)

which is independent of the scalar fleld.

As a result of redefining the pion field so that it now transforms non-

linearly under the group transformations, those group transformations will

transform a one-pion state into a multi-pion state or, an z-pion state into

an zn-pion state, with n I m 1501.

The earlier Cloudy Bag Models ( a modified version of equation( 3.21))

had pions coupling to the quark fields at the bag surface, the invariant
1

SU(
l'hc last term on the RHS of this equation is p.t in b¡, hand and b¡eaks the su(2) x
2) s¡,mmetry.
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Lagrangian density for massless quarks and pions given as

.-r!'e 1 ;rõ'^ 1 -,: L;q Ø q _ B)o" _ 
5ø"--; qas + ;@,õ), (s.22)

with

O, : 1 inside the bag volume

: 0 outside (3.23)

and A" the surface delta function. In equation( 3.22), g represents a 2-

component quark field. The energy density term, -.BO,, is required for

energy-momentum conservation and confinement. Summation over quark

fields is implied.

In what is to follow, we will be interested in the volume coupling model

[109,110]. By redefrning the quark fields as

;¡'õts
yu:e-zjn q=Sq (3.24)

,I'd]a
the surface term Qe-í" qA" becomes

7-e-L" (3.25)

remembering that q = qtlo and {7o, ?s} : 0. By making the transformation

iu-7 q- + iq-(s Øsr)q- (3.26)

the quark kinetic energy term becomes

Lu.7 Ç.@u t ffu-r'rri 
.0,õq- - ffiu-^,'í 

.(õ x 0,6)q-

In deriving this equation, we used the identity [52,111]

isot"st :, 
Io' 

d^s^(at"¡ogt¡gt^

(with .9 given by ( 3.24)), and equation( 3.5).

i,:
¡4ltø |o-t7 s'q-

(3.27)

(3.28)
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3.2 The SU(3) Harniltonian

We write the 5U(3) volume coupling CBM Lagrangian density in the form

n ,i:î t -. IraÃ¡z
L = (iq Øq - B)@" - ¡0øÁ." t 2\vt.r t

+ ftør'ruiq' 
ô,õ - Ï¡ur-xq' (6 x a,õ) (3.2e)

(correct ry to O(þ2)) where ,þ'denotes the meson octet fi,eld, i are the Gell-

Mann matrices, and fr'the octet decay constants, i e (n,¡r',\Y. In what is

to follow, we use [44]

f" : 93 MeV

l* : 117 MeV

f, : 125 MeV

The term linear in /'is responsible for the absorption and emission of

mesons, while the õ x ôr 4- t"t- is responsible for s-wave meson-baryon

scattering. The quark field q is now a 3-component column vector.

'We can decompose the quark-space Hamiltonian into three parts

H = Hs+ ã" + iI.: I #x Too(æ) (3.30)

with the energy-momentum tensor defined to be

AL
o"q) - g" LTþ' :

0(Ôrq)
(3.31)

with gu" : d,iag[-L,+l,+1,f 1]. The Hamiltonia., ã6 des.tibes free bags

and mesons

nro: T rt++Ê" * Ia3n,¡oj(É)o¡G). (s.32)

ZAlthough we introduced the meson field phenomenologically, ¿nd assumed no internal
structure, the decay constant reminds us that the mesons do indeed have an internal
structure
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with c¿¿ the ground state quark energy, and ar¡ - k2 + M? the meson

energy. The operatot oj{Ë) creates a meson with 3-momentum ñ and isospin

j.
The coupling of a bare baryon and meson to a baryon state is given by

È"= - lo", ffior,ruilq-a,õ (3.33)

The contact term is

Hc I 0", o,
+ri Qt'iq.(6 x Arõ) (3.34)

The integral 1/" can be simpilfled upon integration by parts to give

ir": I a".l|¡øtuiq .dla" - f;aøror,iq.d-)]. (3.35)

by using the massless Dirac equations and the linear boundary condition.

In the above expression, nr(t,i) is the outward normal unit four vector (for

a static bag, n, = (0, î)).

The ground state wave function for a massless quark may be written in

the form (c.r, is the s-state quark energy)

qt"(í,t) = hl ou,![i,"r)",¡f "-,.uut(R - r) (3.36)

with ff" a normahzation constant,

I u"R
fr" : 

Afu'o'(r"Ð æÐ (3'37)

and js and j1 spherical bessel functions. Quark labels on ã and ó have been

suppressed. The meson field is written as a plane wave expansion

ó¡(i): I o"k , , '-' :î'; +';" -";'-
J ø;øA"W Lai(Ë)e;k'i + "ti(Ë)"-ik 1 (3'38)

61



If we consider transitions from 1s states to ls states, it is straight foward

to show that

Z'Io''rsq: o

and

e-ysq = fftø .îis(u"r)j1(u")btb0(n - r) (3.3e)

substituting this and equation( 3.38) into equation( 3.35), we flnd that ll"
reduces to

Ê"= - I o"rlirs¡çË¡o¡çÉ)+û$1ñ¡,j1ã¡1 (3.40)

at r :.r?, where

uo¡(û: 
ÐÐ 

$-*üa-. r^;ffirÉú (3 41)

is a bare vertex operator. In this expression, we have defined the bare

coupling constant, øf, to be

s?=
M¡
aÍ¡

("*-*"=) (3.42)

and the form factor

u@n) -- ti(*-!) (8.43)
KR

which rapidly approaches zero for increasing k,B (and hence acts as a natural

cutoff for the theory). In deriving equations( 3.40) and ( 3.41) we have made

use of the following [112,113j

";Ê'ñ' - l*Dll¡¡*n¡yË*(l',ó')yt*(o,ó) (J.44)
ln

and

õn.î : lT+"r),on-ryrr(0,,ó') (3.45)
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in a spherical basis ñ.= (R,0',ó'),Ë = (k,0,Ó),î - (r,0',/') (note that ,Ë

and f are in the same direction).

Hence

I de õ,. rla¡çE¡e;É'ñ ¡ ot çfi¡"-;É'É1

- Ariãn.î'¡"tçÉ¡ - "t{ÐlirtnÐ (3.46)

having used the normalization

I dQYr;(0" ót)Yy n' (0t, Ó') : 6 ¡, 6 ^^,
(3.47)

and

I d3r
¡Rt

Jor'a, J aa

¡R rr r2r

Jo,2a, / sin odo Jo dó (3.48)

Note that in equation( 3.46) only the I : 1 term survives

This means only p-wave mesons couple to the baryon.

In the space of colourless, non-exotic baryons

H"=Drrt 1ojn"1B¡B
drþ

: - t I a"nct¡qrlluo¡G)lþ)"j(ã) + þli,JjË)lp)"t¡füB (3.4e)
o,9 "

As we shall see, (ol and lB) will be SU(6) spin-flavour wave functions.

If we now define a vertex operator for the absorption of a meson (reading

the matrix element from right to left)

,if rû = @tw¡G)tp) (3.50)
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then

H": - I o"*[trs¡(É)a¡(É)+v01.(ã)øj(ã)]. (8.51)

The following figure shows a 3-point vertex for the absorption of a meson.

-)/h

ls

We define a general vertex operator to be of the form

u(kþ u"R p (3.52)uo¡(k) : D*rE"t S",B - Éi'P
ttu¡(þ)(zr)a1à 3(tr"Æ - 1)

with Àop a bare coupling constant. We now identify the above operator

with equation ( 3.41) (and ( 3.50)). In the above, S- it " spin s1 to spin s2

transition operator, and f is an isospin 11 to isospin 12 transition operator.

We stated above that only pwave mesons couple to the baryons. We

therefore define irreducible 'spin' tensors of rank 1, and tisospin' tensors of

rank p
+r

F'B = D sÍl)"u¡;
m=-l

õn = I"ftJ¡;
+rf'P = Drlnl"o¡,

r=- I

Í'¿ = Ð^:tt¡; 
(s.53)
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where .î[ and î; arc spherical basis vectors

(e, ¡ ieu)

,/,
ez (3.54)

erreo alrd ez aîe basis vectors of a polar coordinate system.

It is straight foward to show that, for fixed rn and r,

À. B sfi)^P 1{p)'e - s j Ð (alulolf; si'o' b "lp)orfl

defining

(3.55)

(3.56)

and ÀoB,,f and f to be determined. The LHS of equation( 3.55) reads

sfi)"P7(n)"' : (jo,Trùoi Io,Is,lsfi)fln)VB,*0, IB, IzBl (3.57)

with jo and mo the total spin and its z-projection of the state a, amd fo

and 13o the total isospin and its z-projection of the state a. As this matrix

element involves TndlrnBrl3¿ and IsB, it is dependent on the orientation

of the coordinate system. We can remove this dependence by using the

Wigner-Eckart theorem [112]. We ge

c(t)^Bq.(p).p - 
(i"I"llgflliplp') r?p,n\. /:!rp, I:'rh' r;" 

[2j, + t]+12r, *¡ciii" ;- ;:ui;", ì: (3'58)

with the help of the relation

ci' T, Ti = ?t)tT-rt -r2 ctn2 mt'n3 (3.5e)

Thus we can make the identification

s+r T

S6

M¡
2f¡si

c(1)'Pum

,n@)'P
tr

lnnpnrnau jo tjo

,1lsp r Iso
v IB pIa (3.60)
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and the reduced matrix element (which is independent of rn and 13 and

hence, independent of the orientation of the frame of reference)

(j.I.lliflliBIBl : l2i. + rlilzt, ¡ t1i (3.61)

substituting equation( 3.60) into equation( 3.55) we find the bare cou-

pling constant to be

(3.62)

We can simplify equation( 3.62) by restricting the baryon states to those

within the 56 representation of SU(6). As the wave functions are completely

symmetric, we may choose to operate on a particular quark, which we choose

to be quark 3, ie, ø = 3. Thus we have

À*:tr,"ffi (8.63)

with [114]

1 (À1 + iÀ2), À3

(À4 + iÀ5), +ft(ro + rÀ7)

r \- qo1u[o92x7@)u"lpl
¿taþ YJ L rtmpmm,nI3Br 136

o,n v jp l joe Ip pla

T
T

when p : 1 (pions),If 2 (kaons), and 0 (eta), respectively. Similarly

À[r) :
Àg

J2Irt

"l'ì

"Á')

+ftf", + io2)

(3.64)

(3.65)O3

The states 
"¡(al 

and lþ)"¡ uru now SU(6) spin-flavour states [ttS,tt6]. Cou-

pling constants are given in tables 1,2,3 and 4 below. The rBB coupling

constants are reproduced from references [105] and [107]. Note the correc-

tion to the Àr5.'* coupling constant.
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Table 1. Unrenormalized nBB coupling constants
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Table 3. Unrenormalized nBB coupbng constants
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We now turn to the contact Hamiltonian. To simplify matters we deal

with s-wave elastic scattering. In this case, the spatial part of the covariant

derivative vanishes (as it is p-wave), and we are left with (at the quark level)

Ê. = I a', fþofis-G x ao6) (3.66)

with the SU(3) cross product

(õ * Aoõ)n: Í¿¡*ó¡ôoó,b (3.67)

Using equation( 3.36)

q'l (3.68)

Expanding the meson field in plane waves and noting that

Í;¡nó¡(k)óx(k'): t,irot¡ft)o|(k')=0 (3.6e)

(u, f;¡* is an odd function and þ¿þ¡ even under the interchange of. two

indices) and

l¿¡*ó¡(k)ótr&') : l;iróf,6'¡6tØ) + Í¿¡*6¡¡,03çte - tc'¡

= r¿¡t ÓI&)Ó¡(k) (3.70)

we find that

'o: ffffi(c.,"r) * jl(a"r))bIbo(R - r)

la¡(k)u¡(k'))i
t¡(k)"t (t ')"¿Ê't-¿Ë''t (8.21)

(k) + c.,¡(k')la

Now, applying ( 3.  ) with / = rrt = 0(s-wave),

f aa"oi''-¿tí''¡ - 4r is(kt r)js(kx)

hence, equation( 3.66) becomes

ir. : | Ê kd3 k,us¡t"(k, k)el(Ðo*(k )

(3.72)

(3.73)
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with the bare vertex operator

(3.74)

and deflning

uop(k,tt', R) = N!lu¡(k) + c.:¡(k')] 2 ar [¡](u "r) + j? (, 
"r)Us(kr) i s(k' r)

(3.75)

Instead of deriving coupling constants from the above vertex operator,

consider the following. Defrne incoming baryon-meson states by

i: (Bt"h"ysMr¡¡r"¡ay¡¡l (3.76)

and outgoing states by

f = lBTr,hp,Yp,Mtl¡a,1"¡a,Y¡a,l Q'77)

Instead of writing the t¡ansition matrix in terms of the above states and

quantum numbers, we expand the above states in terms of "good" quantum

numbers

lBt"t""v"Mt* Ir¡,¡y¡rl : Dc'i:'fy l" ar,r"*v*lB ¡v"v M¡¡"vl (3.78)
I,Y

defining total isospin

I -- IB * I¡w,In * Inr - 1,.. .,lIe - I¡øl (3.79)

and

Iz = Iss I Izu : IzB, * fs¡ut, (3.80)

Therefore

TBB' : (Bt"t"rMt.n*lTlBIr,hr, Ml.,4r,l

= D c'i:'iy'," c'i;,''ii,''; (B t h M t nlr',h I 
al,, m 

T nl (J.8 1 )
I,IS
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(B denoting a baryon-meson pair) having omitted the hypercharge quantum

numbers and delta function. The (Bt¡¡"Mt¡r.l are .9tl(3) matrix elements.

Using the following representation of the identity

to : Ð1,þL)þþ'"1 (8.82)
R

with ¡? the dimension of the irreducible .9u(3) representations (for some

value of the isospin 1), we have

T" p - Ð c,i :,f y P c' i ;,"î #,''," (B t h M t htrphlr'¿h (rþI"l ni t" u | ù ( J.s3)
I,Is

The Tn are real numbers, and the "vectors" lrlfi) can be found in table

3.4 of reference [2]. (Note: In the 27 representation with Y = 0 and f = L,

the first entry should read Jù(UT)¡ In 81, Y : 0 and f : 1, the last

entry should read ./f1lff¡rt In 1, the SU(3) Clebsch-Gordan coefrcients

ate tf2,-Il2,t/Ala and -^/rl4).
Now, for elastic scattering

T = Iznlz¡ø +|V"V, (3.S4)

allowing matrix elements of the form (BMlflBMl to be calculated and

hence, TI'h. Once these ate known, matrix elements hke (BMlfl?'M'l
can be calculated and from these, the coupling constants are found.

Between bare baryon-meson states, the bare vertex operator becomes

vs;¡(k,k')= D ¡å(¡oluo;¡ln'ola',o (3.85)
Bo,B6

with lBj) denoting the incoming baryon-meson pair.

We make the identification

ofrf'çtt,x'¡ (BoMolVo¿¡lBLMil

(Bo Mol - i f;¡ ¡À;uopl BI Mól
(3.86)

7L
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and from equation( 3.81)

,F;?'(k,k') =D^!,p

The coupling constants

(k,k', R)

@u1rr,t"lB, ^['l

ft¡¡ \ ¡'Isg I3¡4r Is
I¡ø I v 14 I¡¡t I

(3.87)

(3.88)

elements,

(3.8e)

I,Is [2u¡(k)(2tr)3] [2w¡(kt)(zr)3]i

^I"B
4ri

are to be expanded in the form of equation( 3'83).

Following through the above with various (at least 4) matrix

it can be found that, for I : Y -- 0

mOOr2z

?ìo,o

?ìtt

?roo

1I

: _312

= -312
t_.,

and using equation( 3.83) À3p may be found

In a similar manner, for 1: 1rY:0

mlOr27 =
ølO alo
-f 19 : -t 1¡+

1

"rt:
m1O18,

:0
: _312

: _312 (3.e0)

giving .fl'. fhe same procedure can be used for .[ : L,Y = Lf 2, and so on.

The coupling constants can be found in reference [1-17].

Expressions for p- and c/-wave scattering can be found in reference [118].
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We once again consider the Hamiltonian given by equation( 3.33) but,

now, we consider the transition ls + Ip IILT), with the quark wave functions

given by

qr"(r-,1) :

8t e(r-, t)

The normalization factors are

e-i-"tboçR - r¡

"-i'r'bo(R - ,) (3.91)

¡f"
t/+o

Ne

'/4r,

io(c'o"r)
iõ .îj{u"r)

-õ .îj{urr)
ijs(urr)

(3.e2)

and. uoÈ - 3.81, 7.0,..., the energy of the frrst excited (massless) quark

state.

As the bessel functions satisfy

*r2 I u"rrV
"",p: ffi;Ðñ"",rR+r

at the bag surface, we find that

ÇtplsQt": t

we find the Hamiltonian

fo" 
sinod,o 

|o'"ore+iÉ'í = 4rio(kr)

ff V 
"ç, " 

r) j s(a, r) - i {, 
" 
r) i t(u rr))e¿ 

@ o -' ")t bt b @ ( R - r)

:b(+,")

io(uo¡

ir(¿¿")

- j{rp) (3.e3)

(3.e4)

(3.e5)

(3.e6)

will be non zero. We also find that

eto xq : -,; 
!J2[i 

o(a 
"r) 

j s(u or) + j {u 
" 

r) j {u or)]e;@ 
o- u 

")t 6t 60 (,R - r )

As

73



H" : W I *#ñ{lzn2 ¡o1,,"n)j{u,R)io(kn) - (," - ao * u¡(k))

¡R
x 

J o' 

" 

r' a, { i s(u 
" 
r) i s(a rr) + i {u 

" 
r) i, (r rr)) i o(k )l ), ¡ a ¡ (Qbt b

+ fza'¡oçr,R)j{.l.or)io(ka) - (r" - u, - u¡(k))
¡R

x 
J n' 

" 
r' a, çi s(u "r) i s(urr) + i t(u "r) i r@ où) i o( rr¡],r¡ ørt 1r¡ata) (3.e7)

at f:0.
As before (equation( 3.40)), we write

Ê 
" 
: - I o" r ¡uo,çÉ¡,,,çE) + ûotj(Ë)"j(ã)l

and if we define form factors

and

then, at the quark level,

u. B(k R) : N s N e {2 R" i oç... 
" 
R¡ ¡ r(ao R) j 6(k R) - [(t.l" - ap *, j (k))

* [ ^ r' a, ç¡ s(u "r) 
j s(arr) + j {a,r) j r@ or)) j o( k' )] } ( 3.99)

Jo

a.B@ R) - N 
" 
N e{2 R' i o@ 

" 
n)i r(uo R)js(k R) - [(r" - up -t'rj (k) )

, [*r'ar1¡s(a"r) js(urr) + ir(c¿"r )ir(rrr))io(kr)]] (3.100)
Jo

kR)

l2u¡(k)(2tr)31

íL"B(kR)

(3.e8)

(3.101)

(3.102)

(3.103)

1uo¡&): zrjbt^j

and

l2u¡(k)(2r)31
If we define a general vertex operator at the bag level

#u'^,

"if tÉl = À.,¡oe uog(kB) 
,"or \'"/ - "qP- 

[2w¡(k)(2tr)B]i

û¿(Ë):
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using the Wigner-Eckart theorem we find

,n(p)-þ 
- ¡llsPr I3a

ri - vIp p Io

and so

with

(3.104)

(3.105)

(3.106)

again choosing to operate on quark 3 (which will be a lp-quark).

These coupling constants are found in the first column of table I in

reference [117].

3.3 Mass Renorrnalization

3.3.1 Baryon self energy and bare bag probabilities

In this section, we follow the method of Chew and Low [119,120], which

allows us to deal with low-energy meson-nucleon interactions.

tet lB) denote eigenstates of the Hamiltonian corresponding to the phys-

ical baryon with observed mass Ms. That is,

HlBr: MBIBI (3.107)

Bare baryon states are denoted lBs).

As we have seen, we can write the Hamiltonian in the form

H = I[o* Ho* Ht (3.108)
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with Mo the bare mass of the baryon, .t/s describes flee quarks and mesons'

and. Ht is the interaction term. The physical mass is introduced in the

following way. Write

H = MolHo*Ht

= Mo*6Mn +Ì/o+ Ht-6Mn

= úo * Mt (3-109)

having defined

iIt: Ht - 6Mn (3'110)

and

iIo = Mo*6MnlHo
: MB * Ho (3.111)

We now decompose the physical baryon state lB) into a vector along

f 
Bs) and a vector orthogonal to lBs) which we denote lx). ff ZF@a) is the

probability that the physical baryon is a bare baryon, then

lB) = zl çnt¡ilno) + lx) (3.112)

Now, as

frolao) = MnlBol (3.113)

we have

(Ho - t tn)lB) : (Ho - Mn)lx)

-HlB) (3.114)

Remembering that l¡) is orthogonal to lB¡), we can solve this equation to

give 

^lñ: ¡ftHIlB) (3'115)
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defining a projection operator

Â:1-!lao)(rol (3.116)

lBo)

such that ÄlX) : lX), i."., ,4. projects the state l¡) onto the subspace orthog-

onal to lBs). Thus

lll: zf çn"¡ilro) + ffiU¡u¡ (3.117)

and upon iteration

lB) : zfçnn¡îg+ =. 
A 

= 
n, + =-!:HE+-=-Ét +.Mn-H;-'' Mn-Ho -Mn-Ho .)lao)

(3.118)

which is the perturbation expansion of the physical state in terms of the

bare state.

The mass shift introduced by the perturbation is found by considering

(BolHlB) : (BolH-l{olB) :o

= (BolHt - 6MBIB) (3.11e)

and as

(BolB) = zflø"¡i (3.120)

we find that

6MB - zf çnt¡i (BolHlBl (3.121)

With lB) given by equation( 3.118), we can find contributions to the mass

shift to any order.

The interaction Hamiltonian is given by equations ( 3.51) and ( 3.73).

However, as a¡(ã)las) = 0, only f/" will contribute to the mass shift and

hence (dropping the minus sign)

Hr = | as* ¡uo¡1É¡a¡(É) +u]¡É¡,tçÊ¡J ( s.t22)
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with the vertex operator given by equation ( 3.50).

The interaction Hamiltonian creates or annihilates a meson. Therefore,

to first order(or indeed, any odd order), the mass shift is zero.

To second order

6M9 = @olrt tøhrtlBo) (r.123)

with Vs¡(k)"¡(ã) tt " 
only surviving term in the Hamiltonian on the left, and

V;j@)"tj!) the only surviving term in the Hamiltonian on the right.

Now, [ãs, vo¡(k)]: 0,lvo¡(k), o¡(Ë)l : 0 and

¡no,"ttçô) : lmo,al?)l

a¡@)aj$) G.124)

with -Ë10 : Ðj ïd3krtçtc¡"t!)"j!).
Thus, using [ø¿(Ë),"¡(k-')) : 6;¡F(É - ã') and a¿çË71ao¡ : 0 equa-

tion( 3.123) becomes

6M9:+lÊk(Botff @_¡r"^rt""l(8.125)
J

or, to second order (we denote intermediate states by ø)

(3.126)

Using equation( 3.52), ( 3.60) and the results [113]

DCT:TT."CT:T,#' :6**, (3.r27)

6Ms)=?Ð l*rriW!%

na

I o" 
sirrl d,0 f o' 

" 
o ë 

"r 
r(0, ö)yr, (0, ö) : (- r)v 6 - þv (3.128)
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íh-u 3^-u : (-I)t" 3*þ 3^-, : 6 ¡"u

and

D;;.e¡î,.e¡:r
)'r

with i* and i,n spherical basis vectors, we have

u2(kR)
2a¡(k)(2n)3

(3.12e)

(3.130)

(3.131)
? Ð | a"n,f,"çn),F¡" (x) = TÐ | a* *o(E)

2

and hence

1

12r2
kau2 k

6Mgt = Ð
\no
14 u¡(k)lMe- Mn-ui k

2

)(
Io*

(3.132)

This equation is represented by the following graph. The solid line represents

a bare baryon and the dashed line the meson.

/l

Figure 3.1: Second order self energy graph for emission and absorption of a
virtual meson.

3

ßcl.ß
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The probability that a baryon of energy En is a bare baryon is found by

considering

(BlB) = 1

: zl1n"¡î(Bol1+ ir,#+ rI, Ehrr,#+...lao)
As the only surviving terms are those even in .Ël¡ we see that

zT@t)-' : (Bol1+ u,1ufuHtÞo')

: t-ftan| (3.138)

to second order. Using the second order expression for the self energy' we

find that

zl çn"¡-r = t r( )
kau2(kR)1

I-
' l2r2 l"*

Àno 2

ú M¡ u¡(k)fMs- Mo-rj(k)12
(3.134)

The probabilities for the (1/2)+ octet are shown on p 90.
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3.4 Renormalized Coupling Constants

In this section, we shall "shift" the coupling constants so that the renormal-

ized n'NN coupling constant is that given by experiment.

For physical processes, we consider matrix elements of Us¡(É) between

dressed states (al and lB). Define the renormalized vertex function tÏf bV

,îf fÊ¡= (alyoi(Ë)lp) (3.135)

As dressed states and bare states have the same quantum numbers, we can

relate the dressed vertex operator to the bare vertex operator

,îf fÐ : rfa(Eo, Eùaif G) (8.136)

with r¡'Þ(8., Ep) independent of mo, mB, Izo and I3p.

Using the perturbation expansion given by equation( 3.118) we find

,îf @: zi(n,)+zflnu¡î{,tf fn¡+ þ"l#hv",@ffilÉ.)Ì
(3.137)

(3.138)

(3.13e)

(3.140)

(3.141)

and as

ttËtdpol: Éilþol

we find, to second order

By ( 3.136), the second term must be proportional to oif @)

'ïf ro: zi(E*)izf çn¿i{,g! * q."tffir",(ÐEfulB">}

þ"1 #u",@ hløl = Àoe (E o, E òaif &)

If we define a vertex function

zîþ (n,, EB) = Ír + 
^"P 

(8,, EB)]-'
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then

,loþ(Eo,Eò: zi@ò, zf çno¡i
(E*, EB)

(,t)(8,-M"-r¡(p)) (Ep - Mu -.¡(p))

(3.142)

with the vertex function ZîP(ø.,8B) still to be d.etermined.

Using equations( 3.136), ( 3.139) and ( 3.142)

zi\(n,,, nfi-Laff,f çt) : aif $) + (""1#ñr",@#¿lBo) (3.143)

or, using equation( 3.110) and neglecting terms of order (6M)"

zîP(n.,nfi-Lafff @¡:,gf {Ð+@"lE:fur",tr) u# nlto) 
(r.t44)

Graphically, the RHS looks like

=\v,¡o"o

/Þ tl¿

+ .P

o( o(a. It lL

The purpose of the following is to write the matrix element in the above

equation in the form afff x some quantity to be determined.. From this we

easily nnd ZiP(Eo,Ep).

With If¡ defined by equation(3.122) we find that

(asl H¡(8, - Êù-,Vo¡(X)(pp - nù-, ailpol
(p (p)

-- _/. a'

ls

3.145)
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with

reducing to

,tlt*l :Ð,rH"T:Ti" s;. Ê cI¡;'o'i: ¡i . 
"o *ffi (3.146)

The spin component of the above matrix element produces the following

factor

Ð D . I n^anl aacT."T'¡T'c';:Ti"cT:T';:' 3;,,' þ 3h'Ê 3^u' þ
,no,rnb-t,m,mt," r 

(8.142)

,D_-,_Ð*{ t n^aacT,"T'ii' :T:TT," cTlT'iu s. 'É

By applying

CTr, Tr, i" : ( - t¡js-jr - iz g"?z Tt Tt

cT:i:ä' : (-r)i'--' (
and

CTr'Tr'i" = çt¡i'+'"'(
to ( 3.1a8) and by defining

2iz*r

(3.148)

(3.14e)

(3.150)2iz*t
1
2

I
2

)

)

fu: iz
rnb: r'-r¿2

jo: js
'lTùo: P"

Jot=J
'lTùo: 7n

L=j'
l: m'

L=j"
m,: n'L'l

we find that

¡tmon{ nto ¡-tn6mtnq a1ìn6mt ìfl'puiorjouiotj"viatjp

= (-l)j'+jo + t)(2ip+ 1)lå
' i" i' cT: 7," T cT: T', i' çt .tsz¡

3

83
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To this expression we apply the identity

\- rrrnr ttt2 tttt Ttmt 'm3 m /.1m2 fl1'3 rnt'
L " it iz i' u j' it i" iz is i"

ln'rm2rng

)tr.tutl

*n"r" {
Using the above, we find that ( 3.148) reduces to

++ | ,nao{-t¡iø+i'(2iB + r)içz¡, + \içroTT: s; r{t,u^t,'-',}

(3.154)

Equation( 3.145) produces the following factor for isospin

Ð D D cri:,rri;cri:,r,î:ctlJ'o'',': t;, .e¡î| .e¡î,,, .e¿

I rt,r,rtt lgo,Ig6

: D t c,i:,r,i:c,i:,r,i:c,;:,;,;; t; .", (3.15b)
r,r' I3a'136

which gives an expression similar in form to ( 3.148), and applying the

various symmetry operations, we derive and expression similar to equa-

tion( 3.154) (the isospin expression will not involve an integration).

Putting the above together, and using equation( 3.146), we finally arrive

at the following

zîB(p.,8ò-Lai,f @)

:,gf ça+(D"r\uæffi rro+\tea+1)å{t,u.ti-',}{':,':-',}

..rif@l f* dp pnu2(pv) \
^ r2o, l" r¡¿ l

with

2þ +t : (-1)ziø+zruejB + Ðerp+ r)

2a*L : (-1¡zi"+zr"(2j"+1X21"+1) (3.156)
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and p:1for pions, lf2for kaons, and 0 for the etain the 6-j symbol.

Comparing this equation with ( 3.141) we see that

zïB (n,, Bò-' - 1 + | x}f çø., no¡ (3.152)
ürb

with

^if 
@,, E ò : +W # e þ + r) i (z a+ 1 ) 

+ 
{o,u "0,0.',} {' : "' ;.',}

(tt* - Mo - r¡(p))(MB - Ma - u¡(p))
(3.158)

We now have expressions for each function in equation(3.142). \Me can

now use the above expression for the vertex function ZiP, and' the expres-

sions for the bare bag probabilities, to calculate the renormalized coupling

constants and test their energy dependence.

If we write

,if @¡ : tff @ola . É s¡Bo¡ ffir$

p4u2 R

(3.15e)

and

aîf&)=;ff<*ta., ^sø#&tÉ (8.160)

with ÀiB defined to be the renormalized coupling constant, then, by equa-

tions( 3.136) and ( 3.142), we can relate the renormalized coupling constants

to the bare coupling constants

\ r zi@ò+ zg@p)i ,ÀLB:--ffi^'o (3'161)

The ÀoB are found from tables 1,2,3 and 4 of section 3.2.
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Z{*(u¡o,,M¡,r - E (3.162)
z{ 1a*¡i z{ @* - n)

for varying E. If C,(E) æ 1 we can rearrange the above and write

ÀLB = (ffi)^t, (3.16r)

with ÀoB and Àrru known, and ,\irry given by experiment.

The ratio given by equation( 3.163) with a = y'Í and þ : a. is given in

reference [106] for pion loops only. we have included kaon and eta loops.

The result is given in figure 3.2. It can seen that the ratio decreases with

increased bag radius, allowing us to use equation( 3.163).

Now consider

r,@):ffi# (3 164)

This ratio is also shown in reference [106]. The result of including kaon and

eta loops is shown in figure 3.3. We see that lr@) = 1, and hence, we can

write

Àfu¡v(Erv, Eru) = )fuiv(Mrv, Mrv) : Àirru (3.165)

We see that the inclusion of kaon and eta loops does not significantly

alter these ratios from the SU(z) (pion only) case.

We now relate Àirr to the experimental value of the renormalized ¡'Nlf
coupling constant l1,e : 0.081 throu gh lL20,I22l

Àfu.,v : 6\ht f",e : 3.027 (3.166)

Hence

Consider the following ratio

/1 ( F\ - 
ÀLB(M", MB - E) )'N¡'t

vr\u ) - Àirnr(Mtv, MN - E) À'B

zg(u,¡i zf (Mp - Ð+
zTþQrt,, MB - E)

ÀLo x3.o3 a'B' 
^]V]V

(3.167)
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It is this value which is to be used in calculating bag probabilities and the

sigma term.

\Me mentioned in the chapter 1 that an assumption is made about the

number of mesons surrounding the bag, namely that there would be few.

We see from figure 3.4 that this assumption is true for a bag radius in the

range 0.8 < -R ( 1.1 fm.
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3.5 Quark Masses

Quark masses are calculated using sum rules ÏL23,1241. These are found

by equating the QCD calculation of a two point function to the asymptotic

expression for the dispersion relation of the same function. In particular,

one considers [19,125,126]

IP(q2) : ; d4reic' (0lTTrAp(x)(ô,4"(0))tl0) (3.168)

One is able to equate these two representations if the average quark mass

found in the dispersion relation expression is identified with the running

quark mass defi.ned by renormalization group equations.

More recent calculations have made use of the so-called "Laplace trans-

form technique" [87,127]in which one considers

L(M) : ! [ d,s e-"/M ImP(s) (3.16e)\ / rJ

with M variable. It is this method which is used by Gasser and Leutwyler

in calculating their renormalized current quark masses. Details a¡e found in

reference [19]. Using the QCD scale parameter Â : 140 MeV [125] Gasser

and Leutwyler found, for M - 1 GeV, that the average running quark mass

is r?r.(1GeV) = 712 MeV and the strange quark mass rn,(1GeV) = 180+50

MeV. The up and down current quark masses used in this thesis are taken

from frgure 2 on p. 121 of reference [19].

We now calculate the strange quark mass by considering the lambda-

nucleon mass splitting. In this calculation we consider only the valence quark

contribution. Higher order contributions, such as the hyperfine splitting due

to one-gluon exchange, is not taken into account. As such, the following is

only a flrst order calculation.
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The above up and down quark masses are calculated at the 1 GeV scale.

If we are to perforrn a bag model calculatìon, we must do so at the bag scale

whiclr we take to be 0.5 GeV [94,95]. At this scale, ti' x 1213 MeV'

Given the above avelage quark massr we can calculate the non-strange

quark contribution to the "avelage nucleon" mass. This contribution is

3,au. i ", - a.E) MeV (3.120)t\R
with

au,d, = l(r,,aL)' + (rnrdL)211/2 (3.171)

(we assume Tùit- ffiu:3 MeV).At 0.6 fm, these non-zelo quarks masses

contribute 31.4 MeV to the nucleon mass, reducing to 16'2 MeV at I.2 fm.

Now, the iambda-nucleon mass difference is 177.32 MeV. Hence, at 0.6

fm, the strange quark will contribute 146 MeV to the "average baryon" mass.

Calculating the strange quark contributioo ((o, - 2.04)lR) gives nz" :206

MeV at 0.6 fm and rn" : 281MeV at I.2 fm' We show our results in figure

3.5.

We now compale these masses to the value of ffis : 150 + 50 MeV

found by Gasser and Leutwyler. As we are performing our calculation at

a smaller mass scale, for a comparison, we will need to increase oul mass

scale. However, in increasing the scale to 1 Gev, we reduce the average

quark mass and must therefore increase 8Ç,leaving the product ñ'Qq scùe

invariant. A rough estimate of m" at 1 GeV is therefore (7 112) x 206 giving a

strange quark mass (at 0.6 fm) of approximateiy 120 MeV (the tatioTf 12\s

the ratio rît(tcev)lr?i(0.5 GeV)) . At 7.2 fm, we have m" x 164 MeV. These

values are within the range of values for the strange quark mass found by

Gasser and. Leutwyler (remembering that our calculation is a "first- ordet"

approximation).
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3.6 Bare Baryon Mass in the Chiral timit

We are now in a position to calcula,te the ba,re baryon mass in the chiral ümit,

This mass is denoted M¡ and is deflned in equation( 2.85). In calculating

Ms, we have used equation( 2.98) and taken ø.¡'/(0) : 40 MeV. The results

are given below.

a)

1 0c0

900

6C0

700

600

500
JI
1

0.€,0 o.to c.30 0.90
fm

Figure 3.6: Iìarc Baryon Mass in the Chiral Limit
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3.7 The Sigma Terrn in the CBM

In this section, we calculate quark and meson contributions to the sigma

term. The meson cloud contribution is given Ayt o** = + M Ì (N I I' d", Ða Ó' I 
N ),

with the physical states lff) written as the perturbation expansion given in

equation( 3.118).

It is straight foward to show that

I o'. ó' : I ffir""',(k)a¡(k) 
+ "ttn)"t¡(-k) + a¡(k)ai(-k)l (r.t72)

the minus sign in the second and third terms ensuring conservation of mo-

mentum.

If we define a complete set of meson states

li,*;î,n|: al(flrl(Ðlo) (3.173)

then, to second order, the physical nucleon state

l¡/) : z{çu*1î [tr.l + t lB'o;í,*)(BL;î,^l *#Ãlrù
B'orrn

+ D lB'o; í, m;in)(B's; i,*;i,"1#:ñnffitrO)
BI,m,n

with

(BL;í,*l M!]-N _ Énlrüo) 
= | o"o<u'"t 

^--%l*ù 
(3.124)

In order to calculate the third term on the RHS of the above equation, we

will need to insert another complete set of states, giving the matrix element

(B', i q', miî, nl=Jf:n-il=-l¡ro)
'MN - Ho M¡rr - Ho' vt

t H1
IBL;i,p)

n[,n I 
a"tqa¿,;d,*;i,rl

x (B'o1i,pl

MN-Ho
Hy

Mw-Êo l¡ro) (3.175)

sThe pion, kaon and eta are weighted as shown in equation (2.97) on pa.ge 4Z
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I
\4¡ith this, we find that (cf. sections 3.3 and 3.4)

(13 r (Nló2lN)

= zy(MN)D
Bo,i

(Nólvoj(k)lBo) (Boly¿(,r)l^b)
(M¡,t, - Mp - rj(k)) (MN - MB - uj(k))

(Bolyqt (-k)l¡ro)

û
-a--1t\

tvav

(1ró å) no)t
,+ (-za¡(k)) (M¡,t - M¡¡ -<'rj(k))

(Bolvoj(-e)u{o)
+

voj(k)lBo
(3.176)(-zu¡(k)) (MN - M¡¡ - rj(k))

the last two terms being identical.

R¿ther than write out the whole expression, we can simplify the above

by noting that contributions from the kaon and eta loops will be smaJl. An

explicit calculation shows that these loops contribute less than 1 MeV. We

can therefore concentrate on the zrlllÍ and ny'{A loops

Figure 3.7: Loops dominating the sigma term

Thus. the pion contribution to the sigma term is

"í¡'(o) I
!zl (u*)
2 L2tr2

d3æ(ivl62lu)
M:

2

*Cn

\7xB
(M¡v-MB-r"(k))zD [!n^,'gn¡{'î

4 ÀnB¡¡)n¡¡s
Ì (3.r77)(-2u"(k))(M ¡¡ - M p - ø"(k))
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with B € (1ü,4), c¡¡: 1 and ct:2 (these values ale ale consequence of

the sy,mrnetry operation given by equation( 3'150)'

The valerLce quark contribution to the sigma tcrm is calculated using

equation( 2.61). we do not assume this value is 26.5 Mev. Instead we use

the running quark masses of Gasser and Leutwyler at the scale/of 0.5 GeV.

Assuming an eIIoI of 3 MeV, we see that the avelage quark mass will be

ût : 72:E 3 MeV at the bag scale, and hence we flnd that the valence quarks

contribute approximately 17.5 t 4.5 MeV.

If we consider only the frrst loop in fi.gure 3.7, we find that øfry(0) = 16

MeV at 0.8fm and ofiy(0) = 12 MeV at 1.1 fm. Adding the valence quark

contribution gives us 30 ( o"N(0) I 34 MeV (+4.5 MeV). This compares

well with the value obtained by Gasser [91] using chiral perturbation theory.

Adding contributions from the second loop in figure 3.7 increases pion con-

tributions by 7 to loMeV. This gives 37 ( ø,ry(O) S ly MeV (t4.5 MeV).

This agrees well with the experimental estimate of d,N(0) derived in chapter

2.2.2 (page 51), namely 45 * 12 MeV - see equation ( 2.113). Results are

given in frgures 3.8 and 3.9.

Remember, from chapter 2, that the ICPT calculation of the sigma term

assumes that the expression is analytic up to, and including, terms of order

M|lnM!. This was done by removing terms of order M|. The LNAC were

found by considering the derivative of the nucleon mass equation( 2.93).

The contributions from terms of order UltnUl are omitted as they are

believed to be dominated by LNAC. In tlie ICPT calculation, it is assumed

that these higher order terms are contained in the first loop of figure 3.7.

We can norv relate this expression to the work of Gasser et.al. (remember

TAt th"." energies, it is usual to use the monopole representation of the form factor
when calculating the cutoff mass. It can be shown that L" = \hO/R.
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that the sigma term is scale independent). It is not difrcult to show that the

first loop in frgure 3.7 has a leading nonanalytic piece of otder Ml. Horvevet,

the leacling nona,nalytic. term in the second loop is of order M.|In,Ml- This is

because in the chiral limit, M¡¡ # Md,. As such, the second loop represents

a higher order contribution and is therefore ignored by Gasser and others

in the calculation of ø,¡(0) [128] (they do, however, include the efects

of the A-resonance in their dispersion relation extrapolations of E.¡y(0) to

E"N(2M?)).

The second loop of figure 3.7 is not considered by ICPT as this theory

assumes higher order contributions are contained in the first loop. We feel

that this is incorrect and that ICPT therefore neglects contributions from the

Delta resonance. By adding these contributions we frnd that it is no longer

necessary to assume that the nucleon has a large strange quark component

[12e].
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Figure 3.8: Pion contribution to the sigma term.

The above figure shows the pion contribution to the sigma term. The

top curve shows the contribution from both loops shown in figure 3.7 on

page 94. The lower curve shows contributions from the rtrfN loop only.
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Figure 3.9: The pion-nucleon sigma term with f¿ = 12 MeV

The above figure shows the valence quark plus pion contribution to the

sigma term. The solid curve is for an average quark mass of 12 MeV. The

dashed curves represent our error.
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Chapter 4

Conclusions

In chapter 2 we saw that the theoretical value of the pion-nucleon sigma

term varied from 26 MeV to 45 MeV. The former value being the valence

quark contribution to the sigma term. The latter value may be derived from

the former by including LNAC, estimating higher order corrections and as-

suming the nucleon has a small strange quark component. The experimental

value was found to be E-¡y(2M1) = 60 t 12 MeV.

In chapter 3 we considered this problem in the context of the cloudy

bag model. We made an explicit calculation of both the quark and meson

contributions to the sigma term. Assuming a bag scale of 0.5 GeV, so that

our current quark masses arc 12 t 3 MeV, we found the quark contribution

to be 17.5 Ì 4.5 MeV. The meson contribiution was found to be dominated

by pion loops, in particular, zr/fff and r'-l/4. Contributions from the kaon

and eta loops came to less than 1 MeV. If we consider only the nNN loop,

we find the meson contribution, for 0.8 < .R ( 1.1 fm, to be 12 < øf;r ( 16

MeV or, adding quark contributions, 30 < d,N(0) ( 34 MeV. This agrees

well with the value obtained using chiral perturbation theory.

By adding the r.f[A loop, representing higher order contributions, we
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found that the meson contribution increased to 2o < oi¡,t ( t6 MeV or,

adding quark contributions, 37 < o,N(0) < l.y MeV for the same range

of the bag radius. \Me conclude that there is no significant strange quark

component in the nucleon, and that chiral perturbation theory underesti-

mates higher order contributions by 7 to loMeY (due to omitting contribu-

tions from the Delta resonance). fbom this we conclude that contributions

from the Delta resonance to the sigma term are important, and that Im-

proved Chiral Perturbation Theory neglects such terms.
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Appendix A

Kinernatics

The follorving appendicies are included in an attempt to make chapter 2

complete. We do not go into the following in any great detail. We leave

that to the references given in the text.

The process given by equation( 2.7) is shown in the following diagram

with incoming 4-momentum Í6a) p, : (Ep,p1 ,, gp = (EcrQl and outgoing

4-momentum p'u = (Ep',F) , Q', = (Eo,ri,). Note, pu = (-Eprí).

.v2').T

? P,

Figure ,\.1: Off-shell baryon-meson scattering
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For this process, we can deflne an invariant energy

s : -(p+q)2:-(p'+q)2
: -Í-83+f - EeEq+F.i- nqnp+i.F- ni+ f)
: (Er*Eòr_(F+6, (A.1)

an invariant momentum transfer

' 
= 

/{i';;!4-rr 
-,' r2pp, c.so 

(A 2)

and an invariant exchange momentum transfer

u = -(p-q')':-(q-p')'

= (8, - Eo)2 - (i - û, (A.3)

The three invariants s, I and z (known as the Mandelstam variables) are

related by

s*t* u-- M]+ Mî + M3,+ M:, (A.4)

so there are only two independent variables.

Consider the process r+ I p --- T+ + p. In the center of mass (..*.)
frame, f* í= F + i' : 0, and hence

,ß = E, + En (4.5)

is the energy in the c.m. system.

In this system, the magnitudes of the 3-momenta are equal, i.u., lrl'l -
lql : lp'l = l2l : g", defining q" to be the c.m. B-momentum. Therefore

E, : (AIf;, + ,þ, is the nucleon energy and, En = (Ml + q?)i is the pion

energy in the c.m. system.

r04

I

Ii
I

I
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q
-+--

/-;ê. ,P

P

Figure A'.2: Center of mass system

From the above rve find that (Eo - Ep,)

t - -Zq? + 2q| cos"0

= -2,¿(t - cos" d) (4.6)

witlr d" the c.m. scattering angle. From this we see that -4q2c < ú < 0. For

physicalprocesses, -4^4 <f <0.

For pion-nucleon scattering in the lab frame,

7?'

:.. .. e.

P

Figure 4.3: Lab frame

pp: (AÍN,0), p'u - (rx,Al¡')

gp: (u,ßù, qL = (,.r,, F")
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We have deflned E : MN and

In this frame,

":Mk+M:*2uMN
Using this and equation( ,A'.4) we get

2s-2Mfu-2M?+t

u

(dN:

U)T = (A.7)

(A.8)

(A.e)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

s-u
4M¡,t 4MN

= u * tl4M¡r

In terms of the 4-momenta

s-tt'= -2(P*lP'r)q'

and defining the crossing variable

we have
s-u

'= 4MN

Alternatively, rve can define CGLN variables [130]

P,=(ry)
s=-(P+Q)2 ,

u=-(P-Q)'

and the crossing variable becomes

t=-2(qu-g'u)'=4x2

_P,Q

v

a
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In the above, we considered the process

r++p---+T++p (A.15)

which is called an s-channel process. In this channel, for physical processes

-4M?< ¿ <o

s 2(Mx*M*)2
u S(MN-M*)' (A.16)

There is, however, a f-channel process

T+T-p+p (A.17)

4M

(A.18)

for physical processes

In the ú-channel

in which ú is defined to be the squate of the energy in this channel and

I

Nt

s

u

P'u: (8r,,fi¡

ltu = (- Eo,, -Q)

so that

(A.1e)

s (8, - E)' - (í- û'
(Do * Er,)z - @+ í)',
(Eo-Eoò2-@-A)'u
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In tlre c.m. system q-+ q' = f * p' = 0, Eq = En, and ,Eo : Ep,. The

following diagram shows the f-channel process considered here

P

2'
-¿--ê-

P,
Hence

s : -q7-p?*2qfltcosot
t - 4(rrk + p7): 4(^,rl + q?)

u : -q? - p! - 2q¿p¡cosî¡ (4.21)

with g¿ the c.m. 3-momentum in the ú-channel and d¿ the f-channel scattering

angle. P¡om this we see that the total energy of the system i" Jt.
In this channel, the crossing variable is

P¿Q1 cos 01, ='-.fu; (A.22)

We can also have

r-*p-r-*p (,{.23)

rvhich is a rr-cha.unel process, rvitlr

u>
s ( (tf¡*'- il")2

t < o (A.24)

for physical processes.
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To obtain this channel,

8p * -Çl'p

and in the c.m. system we find that

u=(Ep¡8,)'

from which we defi.ne {u to be the total energy in the z-channel.

The crossing variable is
u-s
4A[¡t

Note that if

(A.25)

(A.26)

(a,.27)

(A.28)

(A.2e)

(A.30)

uè-u

then

and

sëu

gt" * -Ç't,

That is, the u-channel is the crossed s-channel.
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Appendix B

The Transition Atttplitude

We define an incoming state consisting of a pion (q, o) and nucleon (p, s) as

lq,o;p,sfn) - "!^,.k)o!*,"(p)lo) (B.1)

with af",.(g) creating a pion of energy-momentum q, charge states a and

o!r,"(p) creating a nucleon of energy-momentum p and charge-spin states s.

Final states are denoted

lq' , o't p' , s' out) = alut,o,(Q')"!,r,",(p)l0l (8.2)

and the amplitude for scattering from the initial to final state is

(q' , a'i p' , s' outlq, a; p, s in) (8.3)

We can relate lìnal and initial states through tlie S-matrix

(q' , a';qt' , s' outl = (q , a';pt' , s' inl S (8.4)

and the scattering amplìtude becomes

(q' , o';7f , s' i.rlSlq, a;7t, s inl (8.5)
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The goal of this appendix is to write the transition amplitude in the

form of equation( 2.10). To do this we require the following integral rep-

resentations of the creation and annihilation operators. \Mriting the meson

field as a plane wave expansion (equation( 3.38)), it is straight forward to

prove that

| 0"" ó¡(*)io "ik'

| 0", 6¡@)io e-ik'

assuming ørt1k) and ø¡(k) are time independent.

Defining

"j{r)

aj(k)

lzu¡(k)(arf)ï
't,

we can write

l2u¡(k)(2tr)3li

111

.i({.1-uqt)
fo(t't) = wik)Ør)T

(8.6)

(8.7)

lq' , o'i p' , s' outl : ot rr,r,(q')lP' , s' out)

: I I a", ó.,, io f o,(i,r¡1r', s' out) (8.8)
Je)

at any time ú. As single-particle incoming and outgoing states are identical,

we can write lp', st out) as lp' ,s') and by letting ó,,(r) - ó"ø(r) as I ---+ oo,

we find that

lq',o'i7t',s' outl :, 
Ir_*O"r 

go,(ã,t) io fo@,t)lp',"') (B.g)

Using the relation

l*o=, A(r) = I_*0,, A(x) + Il*o^.ryP (8.10)

taking the conjugate of ( 8.9), noting that Í[(i,t¡ satisfies the I(lein-Gordan

equation

(o,- M:)f;(i,t): eaT+v2- M:)Í;(i,r)= 0 (8.11)



pedorming double integration by parts and assuming the total divergence

vanishes at infinity, we have

(q' , n'; p' ,.s' i,n,l,9 lq, o; 7t,,s in)

- I - i, [* ¿n * (D2 - ¡ø1)þ',r'lf;@,t)ó,,(r)lq,a;7t,sin) (8.12)
J_æ

with the operator tJ2 acting only on /o,(ø) and

¡ : (ar)46o,..64(q', - q)(2r)a6","6n(p', - p) (B.13)

The procedure used to arrive at the above equation is called "contrac-

tion" or "reduction". The process is continued by contracting the incoming

meson. Rather than follow the above steps, a simplified expression is ob-

tained by moving the incoming field ó"(a) to the left of Ó,,(r). We can do

this with the help of the time ordering operator

Tla(r)b(y)l : a(r)b(y) fi L > h

= b(y)a(x) if tu > t" (B.14)

assuming ø(ø) and ó(y) commute (the second line will have a minus sign if

they do not commute).

Using ( 8.10) and noting that at f = oo;ts ) ty, rve have

(p' , "'lôo'(r)lq-, 
o; p, s in)

le: t ,t"a(í,"'lö,,@)[ó.(y-,t) 0o fo@)llp,")- 'J_*

= i I d"y(p', 
"'llö"(a-,q 

lo Io@, t))þ,,(x)lp,s)J*

-, I ]_o^, ft{Þ', s' 1116,, çx)ó.e)l io f n@)lr, q} ( B. 15)

By definition, the first term contains

aou,o(Q)lp' , s'l (8.16)
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which vanishes. By writing

rla@)b(y)l: 0(t, - to)a(r)b(a) + o(tu - t,)b(y)a(r) (8.17)

and using
a
ãtrrl: ó(¿) (8.18)

we fi.nd that, upon expanding the second line on the right of ( B.15)'

n l_:", (p',s'lþ..,(æ)[ó,@,t) io fs@,¿)]lp, ")

nl,

( A4r, Mo

E o, E rl2.r,, (2 r )3li l2u o, 
(2 r f)à

= i(q, - M:)(q,, - M:)

d3v f ,(v)(p' , "'l[ooóo(v), ó''(,))1P,, ")

- n [* ¿ny(D? - M:){(p',"'lfr(i,t)Tlþ,,(r)þ,(í,t)]lp,s) (B.re)
/_æ

The commutator term will in general be a polynomial of finite order q. It

will be dropped for now.

Thus, substituting ( B.t9) into ( 8.15) and ( 8.12), we have

(q' , a'i p' , s' inl S lq, o; p, s inl

- I - [* aa, dna li,@)Ío@)F", - M:)(o? - u])(p',s'lrl6,,@)ó,(ù)lp,"lJ-*
It is possible to write the Lorentz invariant S-matrix in the form

(q', o' i p',s' inlSlq, a; p, s in)

= I ! i (2tr)o 6n (p t - r,l( 
o!' U-' \' (q" o' ; t"' "' iTlTlq' o; p' 

" 
i")

t" t \ Er, Ep / [zuoer)z]*lzun,(2tr)s)i

from which we defi.ne the transition amplitude

1

2

6o (p ¡ - p;)(q', e' i p', s' inlTlq, a; p, s in)

t: da x cla y f |, (ù f o@) (p', 
"' lTló', þ) ó"@\lp, t)

113



(as tlre Fourier transform of ol T Í(r) : (q' - M!)x Fourier transform of

r t@)).
If we make use of

F(r*a):e-iP'F(o)"n" (8.20)

with

we find that the transition amplitude becomes

(q' ,o' ; p' , s' inlTlq, ai p, s inl

= i(q, - M1)k'' - MÐ(m)+ 
l_**anr"-'o'"(p',s'lrl6,,(z)q,(0)llp,")

from which we obtain equation( 2.10) up to a normalization factor.

If we had contracted the incoming meson first, then the outgoing meson,

we would have derived the following

(q' ,o'i p' , s' inlTlq, a; p, s inl

= i (q2 - M:)(q'' - MÐ(m¡i f an, 
"io" 

(p' , s'lTlS.e)g.,(0)llp, 
")

From these two equations we find the Gell-Mann - Goldberger crossing

symmetry law

(q', o' ; p',s' inlTlq¡ al p¡ s in) = (-q, ai p',s' inlTl - qt, a' 1 p,s in) (8.22)

i.e., if the nucleon states are unaltered, the amplitudes transform into eaclr

other rvith

a Q,

(p' , r'|"-iP" : 
"-i,'" 

(p' , "'l

"iP'lp, 
t) : lp, ")"'o'

q -q'

(8.21)

(8.23)

{:+

e
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An alternative formulation can be found if we make use of the source

equation

(o' - M:)ó.(*): - jo@) @.24)

where j.(z) has the quantum numbers of the pion.

It is found that

(q' ., o'; p' , s' inlTlq, ai p, s in)

: ;( -!z' 
E 
î), I ]*o^, "in 

" (p,, s, lrþ.e) ¡., (0)l lp, ")\ M,,M

We could also have used the retarded commutator

(8.25)

(8.26)

(q', o' i pt,s' inlTlq, a; p,s inl

: -|ffi), Iio^, ";e"(pt,s'laþ,e)¡,,(0)llp,") (8.27)

plus a polynomial of order q.

R[A(x)B(y)] = d(ro - so)[,a(c) ,8(a)]

which vanishes for øs ( 96, in place of the time ordered operator.

It can be found that
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Appendix C

The Pion Nucleon
Interaction

The pion has isospin 1, and the nucleon has isospin 1/2. Therefore, we

can form states of total isospin Il2 and.312. If these states have scattering

amplitudes T1¡2 and ?a72, then [64]

Tpo = Tt / z(h / ù B' * Ts ¡ 2(Ps ¡ ) B"

with P172 and Ps¡2 projection operators which we now find.

Define a total isospin operator

(c.1)

(c.2)

(c.3)

(c.4)

where r- are the Pauli matrices, and

(T*)¡¡ = -ie;¡k

generate the regular representation of SU(2).

Squaring ( C.2) and rear¡anging, rve have

1I=T+ rí

f.i=12-T2-ir,
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and hence

(c.5)

Thus

F .r1z¡z,r,rl2l = 13l2,t,tl2l: lJ12)

f .r¡¡z,t,rl2) : -2ltl2,r,tl2) = -2lll2) (c.6)

The projection operators we wish to define must satisfy the following

PJù = li)

P,lj) : 0 i* j
P: = P;

f¿:1
P;P¡ = 0í+i (C.7)

where i and j refer to the total isospin of the state. The following operators

satisfy the above

f .r1n,¡: (z1r + 1) - r(ú + 1) - l)w,l

ptlz: t+a , pztz

Therefore, ( C.1) becomes

Tpo : (þlrl")

2 +f 'r-
3

(c.8)

(c.e)

From ( C.3) we fìnd a traceless 3 x 3 matrix

f 'í = -i€;¡¡,r¡ (C.10)

and making use of the products r1r2 = irz etc., and {r;, rj} = 2ó;;, it is

straight forrvard to shorv that

Wli .r-la) : -|Va,,*l (C.11)

tI7

(T, /, * 2Ts¡2)6 p, + !{r"¡" - 11 /2)Wlf . il.,)
1=-
3



Thus
11

Tpo: |TúB, + f,TzlrB,r"l (C.t2)

defining

Tt : Ttlz * 2Tzlz (C.13)

the no isospin-flip amplitude, and

Tz: Tt/z - Tzlz (C.14)

the isospin-flip amplitude.

Let T.' denote the scattering amplitude for the process r+ * p ---+ T+ + p

and ?- the ampìitude for r- I p ---+ Tr- + p. As r+p is a pure isospin 3/2

state,

T+ : Tslz = Tt - Tz (C.15)

Now, defining

lrr+) = -jt", + irz), lo-) = ftl*, - ¿rzl, loo) = l?r3) (c.to)

we frnd

(r- plTþr- p) = |øW- * Tzz * iTzt - iTnlpl

= (plT + rzlp)

: (plr_lpl (c.17)

lraving used ( C.l2). !\¡e have defined

T- = Tt * Tz = Irr,, *'irr,, (C.18)

From these amplitudes, we carì define isospin-even and isospin-odd scat-

tering amplitudes

vft) = )fr- * r¡ (c.le)
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and

Te) : Q- - r+)

C.1 Crossing relations

Under the crossing operation e. +-+ ott , e * -Çt, the states

1

2
(c.20)

l"+) .*

l"-) .*
l"o) +-+

-("-l
-("+l
(tro 

I

using ( C.16). Hence, using the Gell-Mann - Goldberger crossing symmetry

law

(q', o' I p', s' lT¡(s, t, u)\q,, ai p, s) = (- q, o; p', s' lT- (u,ú, 
") I - q', a' i p, s)

(q', a' ; p', s' lT -(s, t, u)l7, al p, s) = (- q, o; p', s' lTl(u,¿, ") I - q', a' ; p, s)

and so

(q',a'ip',s'l?(+)1s,t,u).8,a;p,s)=(-q,o;p',s'lT(É\çu,¿,s)l- q',a';p,s)

(q',a'ipt,s'lTG)7s,t,,u)lg,,aip,sl=(-g,o; pt,s'lT(É)çu,s,ú)l - q',a'ip,s)

and thus, writing the amplitudes in terms of z and l, (rve can substitute z

for s or z because, in the lab frame, z reduces to the pion energy cu)

y+le,t)

7|-) e,fi : _ 7{ ) Çu,t) (C.22)
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C.2 Invariant Arnplitudes

In the previous appendix, we defined scattering amplitudes between zrN

states. We now write these states in th.e form

(q' , o'; p' , s' inlTlqt aip,t s inl : ú,(pt , st)Tu(p, s) (C.23)

with u(p, s) and u(p' , s') Dirac spinors (positive energy solutions of the Dirac

equation).

As ú(pt,st)Tu(p,s) is a Lorentz invariant, it wili be a function of the

4-momentum prptrqrq' and the 16 Dirac matrices f rlpr'lP7'r7P1s and 15'

Therefore, T car be written [131]

T: A* Bp'yP ¡ c*,''tp^l'r Dp'yq'ts* Elt rc.24)

with A, B,C, D and .Ð transforming like a scalar, vector, tensot, pseudovec-

tor and pseudoscalar respectively. They will also be functions of p, pt , q and

q'. Due to conservation of energy-momentum, p + q: p' * q', only three of

these momenta will be independent. In the third term, ¡t. f v.

As ,4 is a scalar, it will be a function of the Mandelstam variables s and

ú only. The second term must be 1Pq, or jt'qL. However, conservation of

energy-momentum requires that it have the form 1p(qu+ q't).

It can be shown that, between Dirac spinors, the third term reduces to

the sum of a scalar and vector, while the fourth term reduces to a term

rvhich transforms as a vector. Because of energy-momentum conservation,

E=0.
Thus, rve can rvrite

T : A(s,t) + -,t ,QB(s,t) (c.25)
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with Q p : (qp+ qD lZ. The amplitudes A and B are the invariant scattering

amplitudes.

Betweel Dirac spinors, using the Gordon decomposition [132]

u(p,,s,)ypu(p, ") 
: u(p', "')l# - o"* !-^lu(p,s) (C.26)

we flnd

u(p' , s')l'Q ,u(p, s) : u(p' , s') u(p, s) (C.27)aþ
M¡,1

witlr P, Q and k deflned by (.A'.13).

Thus, the transition amplitude can be written

?(s,r) : A(s, t) + uB(s,t¡ - ffla4,t) (C.28)

Choosing a system in which I = Çt, so that /c = 0, in terms of the isospin-

even amplitude

7(+)(s,ú) : A(+)(s,l + va?)þ,t) (C.29)

From ( C.22) we flnd the crossing relations ¡o. 4(+) and B(+)

¡G)e,f) = l(+)1- u,t) , BG)(u,t) = -gG)Çu,t) (C.30)

These crossing relations will be useful when w¡iting dispersion relations

u-
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Appendix D

Dispersion Relations

In equation( 8.25), j,(z) has the quantum numbers of the pion. Hence, it

will not alter the baryon number or strangeness. We may therefore consider

a complete set of states In) with baryon number unity and strangeness zero.

These states are N, N * zr, N i2r, ....

Since they form a complete set we can write

I nD
l")

n) (D.1)

(D.2)

I o^ 
" "ir' (p' , "'lTU,(

= (2r)3Dlñr¡" - rt]
l")

and therefore

total three-monenturn

Using

z)i",(o)Jlf, s)

- øl{ 13 a 0 ( zs) e; @,' - u q - E nl zs (p', 
"' U.(o)l n ) ( n 

I 
j", ( 0 ) | 

p, s )

l]*" o(xt)e-;'t =

+63(i^ - @ + n{l:^ 0(-zùe;eï,-uq{En)zs (p" 
"'uo,(0)ln)(nlj,(o)12, 

s)]

rvitlr .D,, = Í^13+ fÀ+ the encrgy of the intermediate state In) and 1i, its

+x
uaie

122



for small e ) 0, we have [133]

(D.3)

From these expressions we see that the intermediate states only exist if

tlre total momentum F*: F - q-and Fn: F* flin the first and second line

of the above equation respectively.

Can we write a dispersion relation from equation( D.3) ? In order to

answer this question we consider foward scattering

F:p'rí:q'rEp--Eo,

(D.4)

The energy denominators in ( D.3) are

En - Er, * u -ie and E, - EnI u * ie (D.5)

As e ) 0 these lead to singularities in the scattering amplitude when

u=Ep'-8"*ie (D.6)

so that

Imu)0 (D.7)

u=Er-Er-ie (D.B)

SO

Imu 10 (D.e)

0)q:(¿)q,:U

and
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That is, the scattering amplitude has singularities in the half-plane Im u 2 0

and Imcu ( 0.

However, by causality, the scattering amplitude must be singularity free

in one half-plane. Therefore, we cannot use equation( 8.25).

On the other hand, if we had used (8.27)

f an 
""'n" 

qo',s'lal¡.,(z)j.,(o)llp-, 
")

:(2n)3Ð[o'ø-,"-(/-ø¡w
I,o)

æ(6-ø+ol)@] to.rolEp-Entun-ie

If we again consider foward scattering the energy denominators in equa-

tion( D.10) lead to singularities in the scattering amplitude when

r, = Ep, - Enli¿ and u = En- Er* ie (D.11)

so that

Imu>0 (D.12)

That is, the half-plane Imc¿ ( 0 is singularity free and hence from equa-

tion( 8.27) we can write down dispersion relations for the scattering ampli-

tude.

The form of the dispersion relation can be found from the mass spectrum

of the intermediate states. If the intermediate state In) is a single particle,

rvhiclr, in our case, is the nucleon, then the mass A[n = llt[*. If lz) =
À'* zr, N ¡2r,..., then if. rvill have a continuous spectrum lt[¡¡ * A[" <

^[- 
< oo, etc. I{ence, the dispcrsion relation will be in two parts - a term

due to the discrete case ln) : nucleon, plus an energy integral from each

fine of equation( D.10).
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at

The scattering amplitude is usually written as a function of an invariant

energy .E and scattering angle d. From this point on, v/e use the notation

T¡;(8,0) : (q' , a'l p' , s' inlTlq, a; p, s in) (D.13)

D.1 Fixed-ú dispersion relations

From ( D.10) we see thatT¡;(8,0) is an analytic function of c.ro with poles

un = lM2¡ç + (F + Ð"li - Eo * ie (D.14)

and

uo : Er, - ÍMk + (F - d)\* + ¿, (D.15)

and cuts in the øn plane along the straight lines

[(M¡u + M,)2 + (i+ 41'1* - E, * íe to æ * ie (D.16)

and

- oo * ie to Er, - [(¡[ru + I[*)2 + (F - q1\t + ¿, (D.17)

In Appendix A we defined the Mandelstam variables srú and z satisfying

s*ú* u:2Mk+2M: (D.18)

For the first pole ( D.14)

s = ^rk 
(D.le)

after substituting aq = Eq and dropping the *ie term. The second pole

leads to

u = lr,I2¡,{ (D.20)
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Thus, for fixed-d, the contribution of the single particle to the dispersion

relation is
a(o)=* ó(d)= 

(D.21)s-Ia2*' u-Mk
with ø(d) and ó(d) to be determined by lowest order perturbation theory.

The cuts ( D.16) and ( D.17) give

(A[N+^[ì2<s(oo (D.22)

and

(À4¡¡ * M,)' <u ( oo (D.23)

Before we continue, we note that in the c.m frame, the Mandlestam

variable s was identified as the square of the energy in that frame. We also

showed that ú : -2q"(l - cos d") with d" the scattering angle in the c.m.

frame. Hence, instead of writing the transition amplitude as a function of

.E and d, we write it in terms of s and ú. Thus,

?(s,r) : &* ,- r-Lr,+ * I":ot î+ + Lr-t I,i^'W
for fixed-f and defining sl = (M¡,¡ + lr[n)2 and u1 = (M¡¡ * M^)2

denoninators should be read as s'- s - ie and z' - u - ie.

From lorvest order perturbation theory, it is found that

(D.24)

. The

"(t) : -s2

ô(¿) : s2

with 92 f4r the pion-nucleon coupling constant.

\4¡e norv write the denominators s - A[2¡¡ and u - lt[fu in terms of the

crossing variable z given by equation( 4.12).
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S_Mfu:

In the lab frame

F:P'=orí:Q'
the crossing variable

tv:u)+ 4M*
and at the first pole ( D.14)

utM¡¡=lMk¡oz1il ie

,=-Y-i *or'-- r** "
If rve denote v at the pole by z¡, then

vB = u)pote* å; = -#

Using equation( .4..12) and ( D.18)

Squaring both sides and defininge'to be sma,ll and positive, wefind that

(D.25)

(D.26)

(D.27)

(D.28)

(D.2e)

(D.30)

(D.31)

(D.32)

(D.33)

(D.34)

and hence

Thus

and

u-I'(fu:
At the second pole

"-M2N=2lrt¡¡(v-vB)

d,s = 2lt[¡¡dv

1 11
s-l/z¡,¡- 2^[kv-vB

u-M¡¡=MI+q2+ie
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which leads to
M1

u = ffi+ie,
In the lab frame

u: M?v + A4 - 2unM¡¡

and so, for foward scattering ( D.4)

uk+M!-"* = ___ZMl_

(D.36)

(D.37)

(D.38)

(D.3e)

(D.40)

(D.41)

(D.42)

(D.43)

and by ( ,4..12)
tu=u- 

4MN

Hence, at the second pole ( D.15)

M1 t
L/Þt :- D 2MN 4M¡'¡

Bl,@,, = Lrr.l

rvith the { refering to the process n+

Thus, at the poles

v:tuB

From the above we find

"-Mk:-2M¡,¡(v*vn)
Therefore, the pole terms in ( D.24) are

"(t) - b(¿) _ -e' - s2
s - ^,lkr 

; - Ml W;Ð'r -2MNe + vB)

If we denote the nucleon pole (Born) term by BLQ,Í ), then

1

uB-u vB*v

*lf-r++If.
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The cuts are given by ( D.16) and ( D.lZ). The first cut is along

un : lMf; + q2l* - MN * ie (D.44)

for M¡¡ I Mn S M" ( oo. This leads to

M3 - Mk_- MÎ_ + ¿e, (D.45)-q: 

-2MN
and if tlre lowest mass of the intermediate state is Mn = MN * Mn, then

the lowest energy will be uq = Mn 4 i6(. Hence

Mn*iet1wn3æ*iet (D.46)

Thus, using ( D.26), the first cut in the rz plane is along

tM"* un*<u1æ (D.4i)

In a similar manner the second cut is along

-oo( u1-Mn--:-
4MN

(D.48)

If we denote

(D.4e)

then the cuts are along

vt1 y (oo

-oo( v 1-v1 (D.50)

and overlap when z1 ( 0, or t 1 -4Ã["À[¡¡.
Finally, we rvrite the energy denominators under the integrals in ( D.24)

in terms of y.

I29
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The lower bound of the frrst cut is

s1 =(/ì/ry*M,)" (D.51)

From equation( D.30)

s :2MNu I (M¡,¡ + M*)' - 2I[¡'rM* - tl2 (D.52)

so

s1 -s:2lttN(q-u) (D.53)

with z1 defined by equation( D.49). Continuing this to higher contributions

to the first cut, we see that

s'-s =2M¡¡(ut-v) (D.54)

and thus
ds' d,u'

(D.55)
s'-s vt-1,

The lower bound of the second cut is at

u¡: (M¡¡ I M*)2 (D.56)

From equations( D.37) and ( D.38) we find

ut-u=2lt'[N(u*ut) (D.57)

and therefore

rtr'-u.-2À[¡¡(ut+u) (D.58)

Thus
dut dut

(D.5e)
rt' - 11, ut+u
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and using the above, the dispersion relation ( D.24) becomes

T(u,t) : Bfi(u,r) + ^-1-. [*or' -T(ut't) + 1

2riJrr*" u'-u-ie'2tri du'
T(u',t)

ut¡u-ie
(D.60)

vt¡u-ie
(D.61)

for fixed-ú.

Using the isospin even amplitude of the previous appendix, we write

T+(u',t)r*(,,t) = Bfi(,,Ð * * l,:*' #+ + * I_"' o,'

then, by ( C.22), we have

r*(,,t): B¡@,ù * * I,i o, r*(,',ù17:-, _ ** #-_ *l
(D.62)

The pole term Bfi was defined for n* * N -- r* + y'f , so that, when writing

an expression for T- , a new pole term B[ will have to be defined.

We saw from ( D.10) that the lower half-plane is singularity free. By

Cauchy's theorem

lroorlll
o : * J,, 

or' Tr (r',t) l r, _-L, + ¿, 
+ ¡ *, ¡ ¿l (D.63)

taking the complex conjugate and subtracting from ( D.62) we find

T*(,,t) - Bfi(u,Ð * * I,: o, 2iIntr+(ut,Ðlr:=E - ,¿41
(D.64)
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Now write

,:=E = Ph¡ i6(u' - v)

where P is the principle value of the integral. Then

l,: ,' rmr+(u',ùlr: _ -- ,; -.l
: rl,* a'' ImT+(u',Ðl*. hl
: r l,* a,'2,' I$IIP 

4 iImT+(v,t)

(D.65)

+ f,mr+ çu,t) * |mr+ (v,t)

(D.66)

(D.67)

(D.6e)

Substituting the above equation into ( D.62) and writing

T*:ReT+*iImT+

we have the dispersion relation

(D.68)

\4¡e now use the form ?+ : A+ * u B+ . A,s A+ (r,ú) has no Born terms,

ReT+(v,t) : afiQ,Ð + 
2rr 

l,: o, ,' I+9?

ReA+(u,ù: l, l,* ar'r'I4J/P
B*(r,ú), however, has a Born term and using ( C.30)

(D.70)

Combining these dispersion relations, we find

Rer+(u.t\ = e2-..-+ + ReA+(0,0+2(r I": Y'#!?\ , / M¡¡ v2 _ vþ 7t J,, yt 
(D.Zl)

a once-subtracted dispersion relation [13.1]. Subtractions are made when

thcre is sorne doubt about the convergence of the integral (and are related

to the inclusion of the polynomial in ( 8.19)). The above expression is called

"once-subtracted" because, if we had subtracted the dispersion relation for

7*(0, Í) from the RHS of ( D.68), we would get the above.
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D.2 Fixed-z Dispersion Relations

Due to a property of the amplitude for the s-channel process z- * -f{ --+

zr * N known as generalized crossing, the amplitude for the t-channel process

T +'r - 1/ * 1ü will be the same as the s-channel amplitude.

A flxed-z dispersion relation is obtained if we contract on a pion and a

nucleon, with

lp,r) : (+) [ ;"æ";tø-r-Ent)g,*(i,t)1ou(fl10) (D.72)Er/Jt
the nucleon state vector. The nucleon field obeys

1þ(0r^t'- tWN) - d(*r) (D.73)

where a(ø) is the nucleon source operator.

The spinor u(fi is a solution of the free Dirac equation

(it'pr- M¡¡)u(p): g (D.74)

It can be found that

(q' , a' ip' , s' inlTlq, a; p, s in)

= (2tr)3t þ'fo-" - @ +nflffi
lt) 

'Ú \¡ !" En-EP-ttso-ie

-6"(i,-rF+n¡ , s'ldu 0 nli",' 0 lp, "Ep,-Er-En-ôe
ln (D.75)

rvith a"(0) : a(0) ."(p).

Note that as the single particle state lzr) does not exist, there will be no

Born terms in the strict sense.

Parity dictates that there must be an even numbe¡ of pions in the inter-

rnediate state (or N/ü pairs). Ilence lr): n I r,4r,... , and therefore

2^["<þn1æ,. (D.76)2Mn3þn1æ
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(at the pole, with E* : Ít"'. + (f - F)'li) and as t : þ7, ú takes the values

4M1 <Í(oo (D.77)

Thus, for fi.xed-z,

r(s,t): * I,î0'**,r0",J94 + * l^î{, f++ (D.28)

We now write the first integral in terms of ú.

As s* t*u:2Mk+2Ml,for s2 (M¡¡ + M*)2 and z 2 (M¡t I Mn)2,

we have t < -4M¡,tMn ar,d therefore

T(tt,u1 r-AM¡¡MrT(s,t)=ñJ_* dt' +*l^îyf* (Dze)
tt-t-ie

for fixed-2.

In terms of the even-isospin amplitude and the crossing variable

T'+ ,rt') (D.80)
tt-t-ie

for fixed-2.

Using the same procedure as was used to derive a dispersion relation for

1 ¡-4M n MrT+(r,Ð=ñJ__ dt' + 1 [* dr, 
T+(v,tt)

' 2tri Jau? tt - t - ie

fixed-ú, we find that
,

ReT+(v,t\ = :P
7t

[-n'*'"0r, ItnT+(v,tt) * ?p [* dt, 
IrnT+(v,t')

J-* t'-t T- Jqu? tt-t
(D.81)

Setting u : 0 and subtracting at t = lt, we obtain the once-subtracted

dispersion relation

neT+(0,1) = Rer+(o,ú1) * '-?, l-J'.n'"or ##*
+ 2(t - tt) p [* ,tt,1t J ntrrl

hnT+ (0,tt)
(D.82)

tt -t t,-lt
Note that Born terms are contained in B+(2, ú). But, B+ (r,¿) = -B+( -v,t)

and hence must vanish at ¡z = 0. Therefore, any Born terms that may exist

in the above dispersion relation will vanish.
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