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SUMMARY

A new device, called a Dynamic Template Translator

(DTT), for the specificatÍon of programming languages is

defined, and some of its properties at e investigated.

DTTs are extensions of context free translation schemes

in two directions: ( 1 ) tfrei: dynamic structure enables

production rules to be created and destroyed according to

the context seen as the pat'se progresses, and (2) their

Lemplate structure enables information contained within

symbols to be manipulated.

The purposes of a formal definition are discussed in

relation to the notation that a formal definition should

have useful human and mechanical eharacteristies. That is,

that the definition should be easily understandable, and

that it should be amenable to mechanical processing.

0ther work in the area of formal definitions is

reviewed, and it is shown. that two main streams of :^esearch

have evolved: ( 1 ) proposals encapsulating the synt,actic

structure of programming languages as a basis for semantic

models, and Q) semantic models based on context free

Ianguages. The i'eview is followed by an informal

int: oduction bo DTTs which shows that DTTs belong to the

former category.

A formal model of a DTT is presented, and the

10



S U MMARY

rerationship between the input and output Ìanguages of a DTT

is defined in terms of the concept of a derivation. This is

then used to show that DTTs describe bhe recursivery

enumerable Ianguages.

Although this is a property shared by many other

proposals, DTTs have in addition the characberisbic that

babre driven devices may be constructed from a large crass

of DTT specifications. To gene:'ate the driving tabres, the

construcbion algorithm extracts a context free gÌ ammar from

the DTT, and applies to it an algorithm that takes account

of information in the DTT lost to the context free grammar.

The other components of these devices are straightforwar-d

generalizations from context free translation schema.

A demonstration of the apprication of DTTs to the

languages Aspre and Pascar is provided. Aspre hlas chosen as

it has already been used to compare the meribs of several

definition methods, and can therefore be used in the

evaluation of DTTs. Pascar was chosen to ilrustrate that

DTTs are capable of describing the structures found in

realistÍc languages.

The strucbure of the DTT moder is investigated and

compared with that of othe:- models. In particula: , bhe

mechanism of handring syntactic restrictions involving

idenbifier names is found to have a unified approach in DTTs

11



SUMMARY

not found in most othe: proposars. The descriptive
properties of DTTs are compared with that of other modeÌs,

and DTTs are seen to have usefur human and mechanicat

properties not generally shared by other models.

The thesis concludes by summarizLng the characteristics

of DTTs, discussing the extent bo which they are a useful

model for t,he definition of programming ranguages, and by

suggesting some directions for further research.

12
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Chapter 0ne

T NTRODU CTI ON

{

J ìltr

1.1 Translators

The term translator has a long history. With the advenL

of computer languages, the term hras quickly applied to

devices developed to convert the evolving notations into
machine code. However, whereas the the traditional role of a

translator was in operating between two welI defined

languages, the new applications concerned source languages

that brere poorly defined. For example, problems with the

definition of AlgoI 60 are documented by Knuth [24]. The

task of constructing a translator from an inadequate

definition has always been formidable, especially when even

smaLl differences in the translation may have significant
implications. The problems this causes are well known. PooIe

t 46 I has exhÍbited differences between Fortran conipilers ,

and SaIe t51l has compared several PascaI implementations

for inconsistencies. The dÍfficulty of specifying an

adequate definition is such that no model of definition has

yet been generatly accepted as U?i'úg satisfactory.

1.2 DefinitÍons of Programming Languages

A model for the formal definition of programming

languages must, given an alphabeb of symbols V, provide a

method for selecting the set L of lega1 programs ( a subset

of VlÊ ) and the model must

program p in L.

also specify the meaning of each

15



INTRODUCTION

Considerably differing interpretations have been

applÍed to the terms tlegal' and 'meaningr in the above.

These differences give rise bo the fottowing questions:

( 1 ) What is a valid program? Is it one that satisfies
the syntactic restrictions of the Ianguage, or one

that does not infringe the run-time semantic

requirements r oF one that always berminates with
rcorrect I output for aIl inputs?

(2) In what terms is the t meaningr of a program

specified? Is it in terms of a compiler, or of the

transitions of an abstract machine, or of a

mathematical mapping from the input to bhe output

of a prôgram, or of a logical system that defines

alI true statements about the program?

( 3 ) How should a formal model reject erroneous

programs? ShouId this be irnplicit, by giving rules
for generating correct programs onl_y, oF should the

model give a method for distinguishing correct
programs from incorrect?

( 4 ) Should a formal model acknowledge reali stic
restrictions such as bounded storage and finite
numeric ranges? If so, how should it specify whe:e

restrictions or choices can be made by an

implemenluot, and where the language must be

modelled exactly?

The answers to these quesbions depend very much on

oners standpoint. The view taken in this thesis is that the

16



I NTRODUCTION

formal definition of a programming ranguage must be useful.
rt must be usefur in relation to both human and mechanicar

factors, as explained beIow.

It must be useful in terms of human faetors in the

sense of being able to suppry information about the language

that a user may request. A human user musb be abre to obtain

anshters to questions, both general and specificr concerning

fhe language from the definÍtion. The quarity of the answers

obtained, and the ease of obtaining them, are measures of
the usefurness and success of the human aspects of the

definition.

The definition must be useful- in terms of mechanical

factors by providing a basis that is amenabre to automatic

processing. The areas of apptications of a mechanicarly

useful- systêm incrude compirer generators and program

verifiers. The quality of the systems generated, and the

ease of producing bhem, are measures of the usefurness and

success of the mechanicat aspects of the definition.

There are three important applications which justify
considerabl-e effort to find a successfur model_ for the

formal definition of programming languages. They are:

( 1 ) the theoretical study of the foundations of
programming Ianguages,

(2) the automatic implementation of compil_ers, and

(3) the automatic verification of programs.

17



I NTRODU CTI ON

Any formal model that is useful_ in the above sense, wÍI1

also be relevant to these applications, since a model that
presents accessible i nformation about the language it
defines may be expected to provide insights into Lhese

areas.

1.3 Scope of the V'lork

This dissertation reports the result of an experiment

in the design of a rnodel for the formal specification of
programming languages. The aim of the experiment is to

produce a formal model that Ís useful in the above sense.

A new device, calLed a Dynamic Template Translator
(DTT), for specifying programming Ianguages is introduced in
this thesÍs as the result of the above experiment.

DTTs are informally described in chapter two after a

review of the development of the fieId. DTTs are rigorously

defined in chapter three, and important results that can be

derived frorn the formal model presented. Chapter four shows

how a table driven DTT may be constructed and evaluates such

an implementation. Chapter five demonstrates the

practicality of DTTs with two substantial examples, Asple

17l and PascaI t211. AspIe uras chosen because it has already

been used to compare definitional methods, and PascaI to
show DTTs are designed for reaListic languages. An

evaluation of DTTs and comparison with the most prominent of

existing definitional methods is given in chapter six. The

concluding chapter, chapter seven, provides a summary of the

18



Ï NTRODUCTION

characteristics of DTTs, discusses the extent

have achieved the goals mentioned above,

outline of direcfions for further research.

to which DTTs

and gives an

19



Chapter Two

R EV I EV'I

2.1 Introduction

The formar definition of programming ranguages had its
genesis in the Algor 60 Report t411. Although tÍnguists had

long divided natural ranguage into syntax, semantics and

pragmatics [ 34,39] , it was not until ALgoI 6O that t,he

distinction between syntax and semantics was established in
programming languages. The formar notation BNF (which is
equivalent to Chomsky t s context free grammars [ 6] ) v,Ias

introduced to specify the syntactie structure of Argol 60.

rts semantics and the syntactic component not expressibre in
BNF were described by prose text. Despite the eonsiderabre

effort that hras put into the formulation of the prose text,
it !.Jas incompl-ete, inconsistent and ambiguous I 25),

characteristics inherent of naturar ranguage descriptions.
These deficiencies were, however, offset by the crarity and

simpricity of BNF. The success of BNF and its variants was

so great, that it is stil-1 being used to define contemporary

languages even though the above problems ar e werr known. For

example, SimuIa [8], Pasc,aI lZ1l, Modula-2 [63] and BpL t61l
have this diehotomous form of definition.

2.2 FormaI ModeLs

A formal model may be the basis of a theory. BNF

provided the foundations for the deveì-opment of the theory
of parsing that r^Ias to eontinue for over a decade. The

20



R EVI EW

automated LL( 1 ) and LALR( 1 ) parsing strategies and syntax

directed transration schemes were resurts of the mosb

fruitful areas of this research (see t4l for some historicat
notes) which has transformed the probrem of parsing conbexL

free grammars into a well understood process.

In contrast however, prose descriptions are not

amenable to formal treatment. The resulting theoretical voÍd

has provided no sound basis for automated sysLems of any

form.

The theoretical work inspired by AlgoI 60 on the formal

specifications of programming languages therefore progressed

in two directions. 0ne group of workers proposed formal

models with the syntactie structures of programming

ranguages as a basis for a (to be developed) semantic mode1.

other workers investigated sernantie moders using context,

free grammars as a basis. In addition, engineers found in
conbext free grammars a sufficient basis to imptement some

context dependent language semantics by grafting on symbol

tabre management schemes; names encountered in a program and

attributes describing them and the contexb of their
occurrence were entered in t,ables so that context sensitive
syntax requÍrements couLd be enforced.

2.3 Restricted RewrÍting

The

s tructu re

modeLs which tried to encapsuJ-ate the syntactic
of programming languages were gener.ally of a

nature and obtained their power by placing somege nerat i ve

21



R EV I El4l

restrictions on the method of rewriting nonterminal symbols.

Control Grammars [5] iflustrate the type of mechanism found

in the sÍmpler proposals of this nature.

Each production rule of a Control- Grammar has a context

free structure and is assigned a label. The order in which

productions may be used in a derivation is specified by a

regular set over the production IabeIs. For example the

Control Grammar of table 2.1 generates sentences of the

language L=[anbncn I n)=1]

Table 2.1

rule number

Control Grammar for L=tanbn.n

product i o n

I n)=1Ì

contro I

o(135)*eq6

0

1

¿

3

4

5

6

s->

A-)

A+
B+
B->

c->

c-à

ABC

aA

d

bB

b

cC

The order of production applications in the derivation is
controlled by the regular set O(135)*Zl+6. As productions 1,

3 and 5 must be applied t,he same number of times, it, is
clear bhat this grammar generates precisely L.

Control- Grammars generate the recursively enumerable

languages, which is their downfallr âs it is in general not

22



R EV I EV,I

possible to construct a recognizing device equivalent to the

generative model. This failure disqualifies Control Grammars

from being useful in the sense given in chapter one, and is

a common characteristie of restrictÍve rewriting techniques.

To show the variety of such devices that have been

investigated, the following Iist ( in approximately

chronological order) ¡riefly identifies the restrictive

mechanism of each model.

( 1 ) Matrix Grammars [ 1 ,20] - Produetions are grouped

into sequences cal1ed matrices. V'lhen a matrix is

ehosen during a derivation all of its rules must be

applied Ín sequence.

Q) Order Grammars [ 13] - A partial ordering is def ined

over the production Iabel" pj, and a production pi

is never applied if there is another production pj

that can also be applied such bhat pj < pi

(3) Indexed Grammars t3l A string of indices may be

associated with non-terminal symbols. The

descendants of a nonterminal inherit its i ndices ,

thus allowing distant parts of the derivation to

share common information (index strings). Although

index Ianguages are properly contained within the

context sensitive languages, a practieal

recognizing device for bhem has not been put

forward .

Programmed

Iabel,s, S

Grammars t 491

and F are

23

Two sets of production
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(5)

(6)

R EV I EV\r

production. If an atbempt to apply a production in
the derivation is successful, then the IabeI of bhe

next production to be tried must be in S, otherwise

in F.

W-Grammars Two sets of rules, the meta-

productions and the hyper-rules ãre used to

generate a potenbially infinit,e set of context free

productions. The original use of V'I-grammars in the

AIgol 6B Report t 581 r^ras to def ine the context

sensitive syntax of the language. The importance of

Algol 68 ensured that there r,ras substantial

research i nto the implementation of !'l-grammars .

This took the form of translating a !ù-grammar into
an Affix Grammar 127), for which parsing strategies

had been constructed. More recent work t 4¡ l

however, has shown that W-grammars are sufficiently
powerful to completely specify the semantics of

programming languages, even to the extent that
programs with infinite loops can not be generated.

Unfortunately recognizers for these grammars can

not be constructed, and therefore they are

impractical and not useful.

Macro Grammars [ 1 1 ] Parameter lists may be

appended to nonterminal symbols which are treated

as macros and expanded according to a chosen

strategy.

24



(7)

(B)

(e)

(10)

(11)

REVIEI,J

Scattered

Chomskyrs

adjacency

applied if
sequence )

symbo I .

Context Grammars t16l An extension of

context sensitive grammars where the

requi:^ement is removed. A rule may be

its context symbols are somewhere (in

to the Ieft or right of the rewritten

Properby Grammars [56] - An extension of context

free grammars to aIlow an infÍnite set of terminal

symbols. Symbols contain two parts, a fÍnite part

and an element of an infinite set, caIIed a table.

Time-Varying Grammars [52] - The active productions

of a grammar are a function of the Iength of the

derivation.

State Grammars t24l A state is associated with

each side of a production. A production may only be

used in a derivation if the generating device is in

the state of the Ieft hand side. The nev{ state is
that of the right hand side.

DynamÍc Syntax t 1 7l Productions may be added to

the grammar as the parse progresses, allowing the

production set to reflect the context seen. The

dynamic mechanism that provides production rules

mapping syntactic categories ( such as variables)

into sets of identifiers is formulated in terms of

the lambda calculus.

Canonic

of Post

Systems l32l Based

t 47 I and Smullyan

25

on the

[55],

formal

thes e

systems

devices

( 12)



(13)

(14)

(15)

REVIEW

consist of a set of canons ( togieal ruLes stating
that certain premises imply certain conclusions) in

which variables of predicates may be n-tuples. This

allows information to be passed throughout a

derivatÍon tree. Language restrictions are

manifested by tests for containment of a particular

symbol or string in a list.

Direction Controlled Grammars [50] - An extension

of programmed grammars in which not only is the

next production to be used in a derivation

specified, but also whether it is to be applied to

fhe left or right of the current production.

Random Context Grammars [59] SÍmilar to Scattered

Context Grammars except that the context symbols

may appear anywhere in the sentential form.

Production Systems [30,31] - A powerful generative

device, based on Canonic Systems, but with

similarities to BNF. A globaI Iist, called an

environment, rather than the strucLures passed

through the derivation tree in Canonic Systems, is

used to enforce context sensitive language

restricbions. This power enabl-es the definition of

syntactically legal programs and their translation

into a target language. A syntactically complex

subset of PL/1 has been described using Production

Systems.

26



(16)

(17)

(18)

(19)

(20)

R EV I El,l

Coupled Grammars [57] - A generative device that
obtains its power by Ínterrelating paraIIeI

sequences of context free derivations.

Dynamic Grammar Forms [15] This is a two Ievel

device in which the grammar form is a templabe of

context free ruIes. The program is scanned to

determine an interpretation of the grammar form

which includes a function for mapping entities such

as Ídentifiers into syntactic classes. The dynamic

nature of the device allows a different mapping for

different parsing environments. A subset of PL/1

has been described in this notation.

Notation for Static Semanties t61l - A formal

notation derived from BNF that defines static

semanbics using acbions associated with productions

to explicitly manipulate data structures such as

stacks, variables and strings.

Interdependent Translations t14l A scheme for

specifying translations dependent on the structure

of bobh the input and output languages. Although

these are assumed context free, the contextual

dependence yields greater power.

Dynamic Production Grammars

context free grammars where

t 441 An extension

used within productions. The

allowed to reference sets of

may modify the grammar as the

27
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REV] EW

AII of the above models r^rere initially defined as

syntacbic devices; Production Systems and Vl-grammars only

have been substantially extended. AII of the authors of the

above proposals were hoping to obtain a formalism that

reflecLed the syntactic structure of real prógramming

languages which would then provide a useful basis for a

semantic theory. However the formalisms were generally not

useful enough to solve the problem of distinguishing legal

from i11ega1 sentences, even though some could ansuler more

profound questions about the Ianguage defined. Henee

interest in these models has diminished.

2.4 Semantics for Context Free Languages

The alternative approach of building a semantic

framework upon a context free basis and then extending it to

encompass real programming languages has also attracted much

attention and has, in contrast, produced many significant
results. These methods include:

(1) Attribute Grammars [26] - Values (catled

attributes) are associated with symbols of the

gÌ arnmar, and rules to evaluate attributes are

associated with produetions. Informalion is passed

through the parse tree by evaluation rules which

may reference the attributes of the parent symbol

(inherited attributes) or of descendant symbols

(synthesized atLributes). The meaning of a program

Ís associated with the attribute of the goal symbol

of the grammar.

2B



REVI El,ü

(2) Operational semanties - The centrar aim of fhis
approach is to define an abstract machine for
interpreting (abstracted) programs of the language.

The moder consists of the definition of an abstract
machine state that contains arr essentiar
information about the progress of the computation,

and of the specification of alrowabre transitions
between states (a transition function).

(3) Denotationar semantics The denotationar approach

considers a program as speci fying a function
mapping input to output. A denotational description
consists of abstract syntax, domain definitions to

deseribe data structures, and function definitions
to spe'cify the meaning of nonterminal symbols.

(4 ) Axiomatic semantics An axiomatic definition
enables the the proof of any true statement ( and no

false ones) about bhe execution of any program or

program segment by using a set of axioms which

provide a minimal set of constraints about the

language and rules of inference for every language

construct. An axiomatic definition is most useful

for the construction of proofs that a program

possesses certain formal properties, but gives no

detail of how they can be achieved.

0perational definitions have been used in many forms.

Two of the most important are (1) Landin's sEcD machine lz9)
which v'Ias used to provide semanties for Argor 60, and Q)

29



REVIEW

the technique which became known as the Vienna Definition
Language t 601 developed at the IBM Vienna laboratory to

define the formal semantics of PL/1. Denotational

definitions can be traced back to McCarthy [35,36]. However

bhe recent work is based on the theory of Scott and Strachey

t531. Denotational semantics have been used to describe a

wide variety of Ianguages including AlgoI 60, CLU, SnoboI 4

and Pascal. Axiomatic semantics developed from FIoyd' s

inductive assertion method L12) for program verification.
Hoarers axiomatic approach t18l uses the program text to

specify relations between assertions.

The formal nature of these systems has provided a basis

for compiler generation schemes. Many of the early systems

were litt,le more than parser generators. YACC l23l for
example, requires the user to place code bo check semantic

restrictions immediately following each rule. A user

procedure is ealled each time a reduction occurs in the B0BS

system t101. The CDL system t2Bl accepts input in the form

of an affix grammar and generates a recursive descent parser

that uses each nonterminal as an action or a predicate

defined by a macro with parameters and locaI variables.

NEATS 122) is an attribute grammar based compiler writing
system that has fixed domains for language constructs such

as types and environments. NEATS translates the source

program into an output stream by calling a user provided

procedure every time an output symbot is generated. HLP t4Bl

constructs a parse tree and evaLuabes attributes, which are

AlgoI procedures, in alternating passes. HLP has generated
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compilers for many Ianguages including Simula and EucIid,

however it is too large and slow for practical use. SIS iq0l

bras the first compiler generator that did not require the

user to encode semantic routines. It uses formal

descriptions of syntax and denotational semantics of the

Ianguage to construct the parse tree of a program and then

applies the semanbic functions to it and interprets the

result. SIS uses an untyped lambda calculus extended with

Iisbs and tuples to represent programs and compilers. It has

processed several smalI languages such as Loop and M-Lisp,

but takes several minutes to process a six Iine program.

Semantic Grammars [45] combine denotational semantics and

attribute grammars and have been applied to Pasca1 and

Fortran subsets to generate compilers that can handle

proBrams of several pages in length.

In just over a decade, semantic models relying on a

context free basis have developed significanbly. However the

models proposed do not fuIIy satisfy the requlrenent of

being useful as presented in the introduction. For example,

definitions using denobatio naI semantics are frequentì-y

impossible to read and even harder to understand.

0perational definitions require an inquisitive user to be

familiar with the detail of the interpretation states and

transitions, which is very low IeveI information and tedious

to use. Axiomatic semantics give no detail of how to

implement a language. Lack of clarity is one of the greatest

impediments bo understanding and using the above models.
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2.5 Overview of DTTs

2.5.1 Introduction

DTTs were developed from context free translation

schemes such thab the clarity that built BNFrs success bras

cornpromised as little as possible. 0ne of the benefits of

retaining BNF I s simpliciby is that a practical

implementation of a ]arge class of DTTs can easily be

eonstructed. The accessibility of a DTT to its reader

(whether.human or mechanicat) is one of its most useful-

eharacteristics, and one not generally shared by the above

models. As insufficient detail of DTTs has been presented so

far, detailed criticism must be deferred until ehapter six

when an evaluation and comparison of DTTs with other

definitional methods is presented (although passing comments

wilt be made in the following). Below is an intuitive

description of DTTs; a rigorous definition is given in

chapber þhree.

2.5.2 Structure

DTTs are an extension of a context free lranslation

sehemes in two dÍrections; DTTs have dynamic structure and

DTTs have template structure.

2,5.2.1 Dynamic Structure

The dynamie structure is specified by action sequences

which may be assoeiated with production ruIes. There are

four basic actions that may be composed into sequences. They

32



are

R EVI EI,I

which inserts an action

an existing production,

into the action

and

( 1 ) add production, which creates a produetion

(2) delete production which removes a production frorn

the production set

( 3 ) add aetion ,

sequence of

( 4 ) eontinue which does not alter bhe production

mark a recovery point insystem, but is used to

ease an action fails.

The action sequence of a production is interpreted when

the production is recognized. Each aetion of the sequence is

interpreted in turn, except that if an action fails (such as

an att,empt to delete a production that does not exist, or to

add an action to a production that does not exist) then

further actions are skipped until a eontinue action is
encountered.

As an example of bhis first extension, table 2.2

contains a DTT that reeognizes the language L= {anbn"n I

n)=1) using the dynamie nature. To illustrate the mechanism

by which the DTT recognizes an element of the language L, a

trace of the parse of the string raabbcct is given in table

2.3. A trace of the parse of the string'aabct is given in

table 2.4 to show how the DTT may reject a string which is

not in the language.
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Table 2.2 A DTT for L = {anbnon I n)=11

(goal -) s)

(s+ a b c

(aÐ asym

(a-) a asym

Idelete production ,(b+ b bsym)l

,(goal-) s)lIdelete production

I eont i nue ]

Idelete production (cÐ c csym)J

(goaI-à s)lIdelete production

Iadd production (b+ bsym)J

( c -à csym) JIadd production

Iadd producbion

(b+ b bsym

Idelete roductio n ,(b-) b bsym)J)J

I add roduction,
(c-à c csym

Idelete production ,(c-+ csym) J ) J

)

)

)

Seven meta-symbols are used in the

this thesis. Parentheses are used to

The arrolJ + is used to separate the

sides of a production. Square brackets

no t ation

de I imit
left and

for DTTs in

product ions .

right hand

to encl-ose

34
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ct

Table 2.3

input remaining

Parse of raabbcel

act ionstack

asym

a asym

ct

a bsym

ab
a b bsym

aabbcc

abbcc

abbcc

bbcc

bbce

bec

bce

cc

shi ft

reduce by (aÐ asym)

and add productions

(b+ bsym) and

(e -) csym)

shift

reduce by (aÐ a asym) and

add productions

(b+ b bsym

Idelete production

(u+ b ¡sym)l)

and

(cì c csym

Idelete production

(c-à e csym)l)

shi ft

reduce (b+ bsym)

shi fb

reduce by (b+ b bsym) and

delete production

(b-à b bsym)

shi ftab cc

35



REVIEW

a b csym

abc

abcesym

abc

S

goal

c

C

reduee by (eÐ csym)

shi ft

reduee by (c-) c csym) and

delete production

(c-) e csym)

reduce by (sÐ a b c) and

attempt to delete

(b+ b bsym),

however this fails, so skip

the next action and recover

aL continue. Attempt to

delete (cì e csym),

however this also fails and

so skip the last aetion.

reduce (goal-) s)

accept input as a sentence

of L.

an action of an action sequence. Braces are used

the translation string (there are no translation
the example of table 2.2).

to enclose

strings in

The mechanism of a DTT is similar to that used by a

shift-reduce parser recognizíng a sentence. symbors are

shifted onto a stack, and when the right hand side of a

production matches the stack, it is reduced (symboJ-s

corresponding to the right hand side of the production are

popped off of the stack, and the Ieft hand side symbol
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pushed onto the stack) . The proeess of symbol matching is

described below in the section on the template structure of

DTTs. A reduction must also interpret bhe action sequence of

the production and write its translation string.

In the above DTT, asym is to correspond to the token

rar on input, bsym to rbr and csym to rcr.

Dynamic character is included in three exisbing models,

Dynamic Syntax, Dynamic Grammar Fortns and Dynamic Production

Grammars. However the dynamic mechanism of DTTs differs frotn

these in that the dynamic control is part of a DTT

production, and may itself change as the parse progresses t

and is not, as in the former models, part of bhe external

driving control of the device.

TabIe 2.4 Parse of raabcl

st ack input remaining action

a sym

aabe

abc

abca

shi ft

reduce by (a? asym) and

add productions

(¡-+ bsym) and

( c I csym)

shi ft

reduce by (aÐ a asym) and

add produetions

(b+ b bsym

a asym bc
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a

a bsym

ab

a b csym

abc

bc

Idelete production

(b+ b usym)l)

and

(cl c csym

Idelete production

(ct c csym)J)

shi ft

reduce by (b+ bsym)

shi ft

reduce by (cÐ csym)

reduce by (sÐ abc) and

attempb to delete

(b+ b bsym) whieh

succeeds and then attempt bo

delete (goal-) s) whieh

succeeds. Continue by

attempting to delete

(cÐ e csym) which

succeeds, then atbempt to

delete (goalÐ s)

which faiIs.

As the parse can not

progress and is not in the

accept state, the input is

rejected as a member of L.

c

e

S
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2.5.2,2 Template Sbructure

The second extension is in the structure of DTT

symbols. Vrlhereas a symbol in a eontext f ree grammar is

considered as an indivisible token (even if its usual

representation is a string) within a DTT a symbol is

considered as a string. That is, a single token in the input

stream is given a string representation within the workings

of a DTT. Further, subject to some constraints, symbols in

DTT productions may also contain templates to correspond to

arbilrary substrings. The constraints and correspondence are

described beIow.

As an example of this second exLension, table 2.5

contains a DTT that recognizes the language L=tanbn^n i

n)='l ] using the template structure. TabIe 2.6 illustrates

the mechanism of the DTT with a parse of the string
t aabbccr .

The parse of any string that is not in L would proceed

until the reduction by production five fails (e.9. the first

application for raabc'), whenr âs no obher production wiIl

succeed, the device hal-ts rejecting the validiby of, the

i nput .
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Tab]e 2. 5-ADTTfor
(s.a. -) asym)

L={anbncn I n)=i}

1

2

3

4

5

6

7

(s.Qa. Ð s.Q. asym)

(s.Qb. -) s.Q. bsym)

(s.Qc. Ð s.Q. csym)

( s.aXbYcZ, ) s.aaXbbYceZ.)

( goal Ð s. aabbcc . )

( goal Ð s. abc. )

The notion used throughout this thesis is that upper

case characLers denote templates, whereas lower case

characters and punctuation marks are used in bhe working

string, When recogni zing a sentence the templates on the

right hand side wilI mateh strings on the stack. Templates

on the left hand side (and bhose in translation strinBsr and

those to be substituted in productions contained wÍthin

action sequences) witl have the string matched by their

namesake on the right hand side of the production

substituted in the construction of the symbol to be pushed

on the stack. Thus every template used on the Iefb must

appear at Ieast once on bhe right. MuItip1e occurrences on

the right require identical strings to be matched. Templates

can not start symbols, end symbols, be adjacent to another

template in the symbol, or match the nulI string.
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Tab1e 2.6 Parse of raaabbbcccl

sfack

asym

s.a.

s. a. asym

s. aa.

s. aa. asym

s. aaa.

s. aaa . bsym

s. aaab.

s. aaab. bsym

s. aaabb.

s. aaabb. bsym

s. aaabbb .

s. aaabbb. csym

s. aaabbbc .

s. aaabbbc. csym

s. aaabbbcc.

s.aaabbbcc. csym

s. aaabbbcec .

s . aabbcc.

go aI

Ínput remaining

a aabbbccc

aabbbccc

aabbbccc

abbbccc

abbbccc

bbbccc

bbbccc

bbccc

bbcc c

bccc

beec

ccc

ccc

ce

cc

c

actio n

shi ft

reduce 1

shi ft

reduce 2 (0 = 'at )

shi ft

reduce2(a=taa')

shi ft

reduce3(a=raaat)

shi ft

reduce3(0=taaabt)
shi ft

reduce3(a=raaabbt)

shi ft

reduce 4 (a = raaabbbt)

shi ft

reduce 4 (a = raaabbbct )

shi fb

reduce 4 (O = raaabbbcct )

reduce 5

(X=tat ,Y=,b, ,Z=rel )

reduce 6

accept input as in L.

41



REVIEI,'J

The mechanism of a template match is similar to the

BREAK pattern of Snol>oI4, where the rbreak charactert is the

character immediately to the right of the temptate. The

string matched is aIl characters from the starting position

up to, but not incJ-uding the first occurrence of the rbreak

character I .

The template nature of DTTs has paraIIeIs in two

existing models, W-grammars and Property Grammars. The

notation used for DTTs is very similar to fhat used for hr-

grammars, and one could wrongly gain the impression that â

DTT template is like a !,1-grammar meta-notion with a much

weaker structure. However a DTT is a single level device and

quite different from a W-grammar. A DTT symbol is notionally
much eloser to the symbol of a property grammar. Every DTT

symbol has a prefix which can never be matehed by a template

of a production (since a symbol may not commence with a

template), and the set of these prefixes is finite. The

remainder of the symbol eorresponds to fhe table of a

property grammarr âs ib is a member of a possibly infinite
set. This view of a DTT symbol becomes very important when

considering table driven DTTs as it is the parb of the

symbol that belongs to the finite set that is used as the

handle to turn the driving mechanism of the recognizing

device.

2.5.3 Conclusion

AI though

nature or the

it has just

template

been shown that either the dynarnic

nature of a DTT is sufficient to
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describe contexl dependent features, both are needed when

describing programming languages. The dynamic nature i s

essential in catering for the changes to the parsing

environment, and the template nature is needed to enforce

complex context dependent restrictions.

As an introduction, this discussion of DTTs has been

informal. A rigorous definition of DTTs wilI be given in

chapter three. Chapter four wiII describe in detail the

table driven parser on which the above parses are modelIed,

and give criteria to determine which parsing action should

be performed in any partieular instance.

2.6 Summary

The review of other relevant work has shown that two

main approaehes to research in the area of formal

definitions have developed: (1) proposals that encapsulate

the syntactic structure of programming languages as a basis

for a semantie modeI, and (2) semantic models based on

eontext free languages. It was also seen that no existing

model provides a satisfactory method of defining programming

I anguage s .

The overview of DTTs has demonstrated that DTTs are a

strong syntactic device with the ability to define language

semantics via a translation Ínto a known Ianguage. DTTs

therefore belong to bhe first of the two approaches

mentioned above.
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Chapter Three

FORMAL MODEL

3. 1 Introduetion

In this ehapter the definitions of

toeoneepts are presented,

results about the nature of the Ianguages

3.2 Notation

The notation used in thÍs thesis for cartesian produets

and diseriminated unÍons is similar to that of Hoare [9],

and follows very closely the reeord and record variant data

structures of PaseaI by naming components of tuples.

Denote the eartesian product C of sets X1, X2, Xn by

C = (s1:X1 , s2:X2

If for each i = 1, 2r..., n xi is an arbitrary element of

Xi, then

X = (x1, xlr..., xn)

is an arbitrary element of C, and write X.s1 - x1, X.s2 =

xZ, X.sn - x¡.

Denote the union U of sets X1, XZ, Xn discriminated by

set Y = iY1, YZ¡ YmÌ bY

and are used

DTTs and related

derive some formal

proeessed by DTTs.

where C1

If aL is
element

S.sr ='p

arb i trary
U, and we

element of

write t. si 
1

S.sjk is

44

U = ([y:YJV1:C1;

(s1., :Xit; s1r:X12i

y 2: czi Yt¡: C¡¡ )

"ip'xip)
C1 then S = (yi,ci) ls an

- xi1, t.si2 = xi.,
undefined for j different

an

of

Xi,p ( note that
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from i).

Frequently it is necessary to denote

characters that are adjacent to each

ambiguities, the symbol $ is inserted as

required. {$} is also denoted by $ if

ari se .

The function first which is used in

defined here.

L if n

(1)

(2)

(3)

several strings of

other. To avoid

a separator where

no confusion can

the following, is

)= 1
1

firsL(z, rz

nul-I string if

3.3 Definition of a Dynamic Template Translator

3.3. i Specification

A DTT is a 9-tup1e (I,S,T,0,v,po,LI,Lg,s) where

I , S, T and 0 are alphabets , caIled the input,

symbol, template and output alphabets respectively.

S and T are disjoint and finite.

v is a set of finite elements of S*, calIed the

terminal prefixes.

po is the initial set of productions, which are

defined beIow.

'n)
n= 0

(4) L1 and

i nput

output

Lg are one to one

lexical function

Iexical function.

functions. LI:I-)S+ is

and L9: ( s*$ ) *+o i s

the

the
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(5) s is an element of S+ and is called the

distinguished (or goal) symbol.

The motivation for these concepts and names is derived

from the intended use of DTTs to translate programs into

object code. Each input token (an element of I) is mapped

into entities calIed symbols, which are strings over the

alphabet S (the DTT working alphabet), by the input Iexical

function L1. The recognition process is defined by the

initial set of productions po, which is expressed in terms

of v, S, T and s, and is described in detail below. During

this process the translation is produced; inibially as

strings over S, but these are later mapped Ínto the output

language 0 by the output Iexical function Lg. The process

halts when the mechanism successful-1y constructs the

distinguished symbol s, or it can proceed with no legaI

operation.

3.3.2 Production Rules

A DTT

P=(1hs:M;rhs

(1) M =

production is an element of the set

M*;q:A*;w:M*) where

s*(T*s*)x

Elements of M are called template symbols.

(2) q is called the action sequence and A is the set of

actions which are defined below.

(3) w is called the output string.

(4) Ihs may not be prefixed by any eLement of v
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(5) eLements of T*, called templates, ir¡ ths and w must

appear at least once in rhs.

The context free grammar basis of DTTs is evident in

the ( ths, rhs) structure of DTT productions. The context

free equivalent of requirement (4) is not allowing terminal

symbols to define productions. Restriction (5) comes from

the intended mechanism of DTTs matching the right hand side

of a production against a sentential form and then

substituting for templates in the Ieft hand side and output

string w.

3.3.3 Actions and Action Sequences

The dynamic nature of a DTT is specÍfied entirely in

the action sequences associated with productions.

Let action = {add production,

delete producLion,

add action,

continue].

Using the notation presented above for discriminated unions,

define A ( [a : action]

add production: ( pa:P);

delete production: (pd: P) ;

add action: (q:A;p:P);

continue:()).

That is, an acbion may either add the production Pâr delete

the production pd, add the action q to production Pr or

continue (without attering any productions in the system).
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The effeet of these aetions on a production set is

formalized beIow.

If 0 is an element of A then !{e may define a funetion

Kq: P ÐP caIIed the aetion function, describing the ef f eet

of an action on a production set p by

p+ Io.pa] if

if
Q. a=add production

p-tQ. p)+ [ (1hs,rhs, QpoQ. q,w) ] Q.a=add action and

Kq Q.p = (lhs,rhsreprvù)

if Q.a=delete productionp-{a.pdi

p if Q. a=continue

where + denotes set union, - set difference, and o is the

sequential composition of aetions, whieh is defined below.

( Note that the seeond alternative deletes the exisbing

production Q.p and adds the production which is formed by

appending the acbion Q.q to produotion a.p)

The evaluation of Kq is said to be successful unless

the result of either set subtraction is the original set

(i.e. the production bo be removed does not exisb) when it

Ís said to be unsuccessful.

The sequential composition (denoted by o) of the action

Q1 to be followed by Q2, applied to produetion set p is

defined by
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a2(at(p)) if Qt is successful, and is
successful if Q2 is, or

if Q1.a is continue and is
successful if Q2 is.

Q1(n) otherwise (that is, Ql(p) is
unsuccessful and Q2.a is not

continue) and is unsuccessful

3.3.4 SymboI Matching and Template Substitution

The pov,Ier of a DTT production is in its template

structure. Templates a] e designed to match arbitrary
substrings and allow the information so found to be

manipulated. InformaIIy, for a template symbot to mateh a

string, each template must correspond to a non nuII
component of the string that does not contain the eharacter

that follows the t,emplate (c.f. BREAK in Snobol 4), and the

strings between templates must appear between the strings
matched by the temprates (art matches must be in sequence).

The mechanism of matching templates is now formalized.

A template symbol

T+) is said to match a

s+) if "i = ti (i=0..n)
(j=1..n). Such a match

symbol I'rl = "oS 1"
and if s. does

J

is denoted Y I'J, and s is said

to81t1Y st,
n

(t 1nI

. srnn
contain

S*, gi

(ri, si

first( r

in

in

.)
J.
to

1

not

be associated with g j'
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recogni zed ,

hand side

symbol.

the templates

template symbol

This mechanism

mat ched

need to

i s no\^Jbe substituted to form a

defined.

Let X and Yi (i=1..n)

Wi (i=1..n) be symbols (e.9.

production, Y the rhs and !,1 the

be template symbols and

X could be the lhs of a

symbols matched) where

x = "o,o8o,1ro,1 8o,N(o)ro,N(o)

Yi = "i,ogi,1ri,1 8i,N(i)ri,N(i)
wi = "i,oti,1ri,1 ti,N(i)ri,N(i)

such that Yi - l,li (i=1..n) [therefore "u,u is associated

with 8r,ul. Nobe that double subscripting is necessary as

there are many rhs symbols and that N(i) is t,he number of

templates in Yi (for i > 0), or in X (if i = 0).

Define the symbol, denobed by Î formed by substitubing X's

templates with theit associated strings by

Î = "o,ofiro,1 f¡¡(i)ro,t¡(o)

wher" fi = "r,u if BO,i = Br,u for some u > 0.

That is, Î is formed by substituting alI templates with

associated strings in X by their associated strings. Note

that if a tempì-ate name has several occurrence" ( 80 
, i =

g.. for at least two urv with u > 0), then lhe same string-UrV
must be associated with each occurrence.

There

that needs

a more general

be considered,

of template

thal is in

substitution
a production

is
to

case

and
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that is a parameter of an action.

three possible interpretations

template:

(A)

(B)

( c)

Templates A and B in the paratneter

action correspond to case ( A) , X

and ZZZZ to case ( C) .

and

the

ïn this case there

any template.

are

Theof

may be associated with a string in the right hand

side of the recognized production and is to be

substituted. These templates are sometimes referred

to as being bound to their occurrence.

may denote a template in the production (e.g. the

production to be added may contain temptates) .

may be used to match a substring of a production

that is to be found in the production set (e.g. a

production to be deleted may be referenced in the

action by a parameber with templates to match

substrings) . Note that these templates can not be

referenced elsewhere in the action sequence or the

production.

For example, eonsider the production

(ths A. -> : hs A B

[delete production,(I A B CCCC X. + r X Y ZZZZ.)])

production of

and Y to case

the delete

(B), CCCC

Case (A) can easily be distinguished from cases (B)

(C) by the scope of the template name; if the name of

template appears anywhere in the right hand side of the
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recognized production, it is to be substituted. There is
however no such convenient rule for choosing between (B) and

(C). The following convention is used: If a search is to be

made of the production set to find a production, and the

production parameter contains a template whose name contains

four or more letters, then that template may match a

substring ( tfrat may not contain templates) of existing
productions ( i .e . case C) , otherwise the template must

correspond to a similar template (i.e. A template that has

the same effect. Names only distinguish templates within a

production a systematic renaming of templates does not

alter a production) in the objecb production (i.e. case B).

The substituted symbol is defined similarly to above

except that fi could be the template gO,i if no associated

string exists (case B), and that (case C) Wi would have to

be generalized to template symbols. As the generalization is
cIear, superfluous notation is not introduced.

A related problem occurs in the interpretation of

production parameters of actions. For example, in the action

I add action , (p1 ), Idelete production ,(p2)ll

the production to be deleted could be either

(a)

(b)

This

I add

p2 IiteralIy, or

a production in the sysbem that matches p2.

second alternative is denoted by

Idelete production ,'(p2)llaction,(p1)
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3.3,5 Derivation

Having discussed aII the pa:ts of a DTT, it is now

shown how they fit together and relate to the input and

output Ianguages with the relation called derivation. This

is made cl-earer by introducing the notion of a proto-

derivation, which is a generalization of the context free

derivation to incorporate the template nature of the DTT

(i.e. not considering the dynamic nature of the DTT). The

proto-derivation is defined in terms of a set of productions

Pr that contain alI productions that could ever possibly be

added to the system (and possibly some that the dynamic

nature would preclude) .

Define Pr recursively by: Pr is a set of productions

containing

( 1 ) all productions in po, and

Q) alI productions that could be added to the DTT.

More specifically, the production pa from every

action Iadd production ,(pa)l in (1) Pr and in (2)

the set C, where C contains alI actions in action

sequences of productions in Pt, and C also contains

bhe action q of every action Iadd acbion,p,e)] in

However, if pa contains any templates that are

bound to their occurrence, then a rule is added to

P I for each possible string that each of the

templates could mabch.
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( 3 ) no other productions.

A proto-derivation is, roughly speaking,

transitions, each from a form ai in (S+)+

application of a production in Pf.

by

a sequence

to ai+1 by

of

the

Formally, the relation proto-derivation -+ is defined

( where

exits a

r=Iñs

a r cè a t
a, c and t are in (S*$)*, and r is
production ( tlrs, rhs , e, w) in P I such

c

in S+$) if there

t andthat rhs

tn$ where each sk is Prefixed

L1(s1 )L1(s2) L1(s6) is in

= Lg(w¡ wZ w1) is in the

The dynamic nature of a DTT dernands that a producLion

exists when used in a reduction. This characteristic is not

cheoked in the proto-derivation as Pr contains aII possible

productions and does not model the changes that occur with

time. This characteristic is however incorporated in bhe

notion of derivation.

A derivation, denoted â, is a sequence of transitions

as in a proto-de: ivation, but with the added restraint, that

in the ith step of the derivation, if production

(lhsirrhsi,eirwi) is used, bhen it must be in the production

set pi and pi+1 = Kqi(pi), where K is the action function

defined earlier.

Further, if aj

by an element of v

the input language

output language 0.

= s1$

then i

I, and o
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of derivation has defined the input

of a DTT in terms of the mechanism of

and

the

3.4 Scope of DTT Languages

The importance of the derivation is Ín formulat,ing the

mechanism of a DTT, and particularly in enabling a precise

specification of the input and output languages of a DTT.

Such a formal characterization of DTT Ianguages aIlows

formal results concerning the scope of DTT Ianguages to be

obta i ned .

In this section it is shown that:

(1) For any Turing Machine that accepts a language L,

there exists a DTT D with input language I¡: L.

(2) For any DTT D with input language ID, there exists

a Turing Machine that accepts a language L = ID.

(3) For any DTT D with input Ianguage I¡ and output

language 00, there exists a DTT Dr with input

language IDt and output Ianguage 0Dt such that Ip =

0D' and 0p = IDr.

The importance of these three results is in

establidfring that the input and output languages of a DTT

belong to the class of recursively enumerable languages.

It r^,as shown in chapter two that most of the

restrictive rewriting systems proposed as models of

programming Ianguages generated the recursively enumerable
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languages, and that this hras the cause of their f aiJ-ing as

it is not in general possible to construct recognizing

devices equivalent to the generative model. DTTs do not

share this fate as it wiII be shown in chapter four that

there is a subclass of DTT whose initial production set

po satÍsfies some constraints which enable table driven

translators to be automatically constructed. It is this
subclass of DTTs that provide a useful model for the

definition of programming languages. Proofs of the above

theorems showing the necessity of constructing a subcLass

foL low .

Theorem 3. 1

For any

exists a

Turing Machine that accepts a

DTT with input language I¡ = L.

language L, the:'e

Proof:

ldithout l-oss of generality assume that Lhe Turing Machine

has only one tape, and that the transition function is
specifÍed by quadruples (qi,x,V,Qf) [Notation : (qi,x,yref)

denotes an aIlowabIe transition from state qi with x under

the read/wrile head, lo state qf. If y is a symbol of the

Turing Machines alphabet, it is written aL the current head

position. Al-ternatively y may be either of L or R, which are

special symbols not in the Turing Machine's alphabet. If y

is L, the head moves one square teft, oF if y is R, the head

moves one square right. J

The proof consists of constructing a DTT that uses a

specially constructed symbol to represent bhe state, tape
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contents and head position of the Turing Machine, and has

productions for each transition quadruple of the Machine.

The strueture of the symbol is shown by the template symbot

tape_Q_L.LEFT^H.R.RIGHT_ which wilI match a tape that has at

least two symbols to the left of the head (the one adjacent

to the head is associated with the template L) and at least

two to the right (th.e one adjacent to the head is associated

with the bemplate R, and the character under the head with

H). Q matches a string representation of the machine states.

It is assumed that the blank symbol of the Turing Machine is

b, and that the puncbuation marks _, ^ and . are not in the

alphabel of the Turing Machine.

( to avoid an excess ofConstruct

notation, only

DTT as follows

production set will be given):

the transition function
po the productions

a

the Po

For

for
each quadruple (q1,x ,L,gZ) of

the Turing Machine, construct in

( tape_q2_LEFT^Y. x RIcHT_ + tape_q1_Y. LEFT^xRIGHT_)

( tape_q2_. ^Y. xRIGHT_ì tape_q1_Y. ^xRIGHT_)

( tape_q2_.^b. xRIGHT_l tape_q1_.^xRIGHT_)

For each quadruple (q1,x,R,q2) construct

( tape_q2_x . LEFT^ RIGHT_+ tape_q1_LEFT^x. RIGHT_)

( tape_q2_x. LEFT^b._ -> tape_q1_LEFT^x._)

For each quadrupJ-e (q1rx¡yre2) whe:e y is not L or R,

construct
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(tape_q2_LEFT^yRIGHT_Ð tape_q1_LEFT^xRIGHT )

AIso include in po the productions

(s + tape

Machi ne ,

(tape_qs.^4._-+ g_A_) for each starb state gs of the Turing
Machine,

( e_A . x_ -) g_A_ x ) and

(g_x_ -9 x) for every symbol x in the Turing Machiners

alphabet.

po contains no other productions.

The DTT wilI derive a string i if and only if the

Turing Machine it simurates can hart accepting i. Thus the

inpub language of bhe DTT is exactry that accepted by the

Turing Machine.

Theorem 3.2:

For any DTT D with input ranguage rl there exisbs a Turing
Machine that accepts a language L = fD.

Proof:

Let n be the maximum number of distinct temprates that occur

in the right hand side of any production of D.

The proof consists of constructing an n+3 tape

nondeterministic Turing Machine which simurates the DTT. To

avoid an excess of notation, instead of risting a rarge

number of transition quadrupres, the mechanism of the Turing

Machine will be discussed.

5B
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Tape 1 contains the input (a sequence of tokens from

the input alphabet of the DTT)

Tape 2 is used for a standard representation of the

active productions; templates are systematically replaced by

special symbols referring to tapes 4 to n+3.

Tape 3 is used as a parse stack.

Tapes 4 to n+3 are used to remernber strings matched by

templates; for each production a particular template name is

assocÍated with a particular tape.

The states, tapes, alphabet and transition function of

the DTT are constructed to do the following:

( 1 ) Initially have po on tape 2 in the appropriate

format (this could be done by finite control).

(2) To hatt when tape I contains the goal symbol and

all the input has been read.

(3) To repeatedly non-deterministically ehoose bebween

readÍng the next input symbol or attempting to

recognÍze an arbitrary production. The machine may

halt as in Q) above, however if it chooses to read

when aII the input has been consumed, or the match

as described below faÍIs at any point, then the

Turing Machine must enter an infinite loop.

If it chooses to read the next input symbol, the

Turing Machine must advance tape 1 and write the

string form of bhe symbol onto tape 3.

If it chooses to recognize a production, the Turing
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Machine must initialize tapes 4 to n+3, non-

deterministically decide which production to

recognize, move the head of tape 2 to the last
symbol of the right, hand side of the production,

and match each symbol of the production against the

symbols on the top of the stack (tape 3). Strings

corresponding to templates must be copied (with end

markers) onto the appropriate tape (tapes 4 to

n+3). Vühen the matching is complete tapes 4 to n+3

must be checked to ensu:^e that multiple occurrences

of any template matched the same string, and also

that the nu11 string r,ras not matched. The stack

(tape 3) must be popped and fhe associated symbol

of the Ieft hand side of the production pushed onto

tape 3. The action sequence must be interpreted;
any productions or actions to be added must be

written onto tape 2 appropriately (shifting other

productions if necessary), and deleted productions

removed from tape 2.

The Turing Machine wilI recognize an input string and

halt if and only if the DTT Ít simulates can derive the

string. Thus the language accepted by the Turing Machine

contains only and aII sentences in the DTTs input language.

Theorem 3 .3:

For any DTT D with input language Ip and output language 0D,

there exists a DTT Dt with input Ianguage IDt and output

language ODt such that I¡ - 0¡r ând 0¡ = IDt.
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Proo f

Let D = (f,S,T,0,V,po,L1,Lg,s) be a DTT.

The proof constructs A DTT

except

D I vùhose derivations have a

similar structure to D that

(1) aII Ieaves of the parse tree of D ( string
representations r:f tokens of I ) are rev\rritten to

null in Dt, and they are also written to the

translation in Dr .

(2) AII translation strings D are appended bo bheof

in

and

parse tree as terminals Dr.

This effectively sr^Iaps bhe input output Ianguages.

Construct Dt = (O,S U t_],T,I,vr,pot,LO-1,LI-1,s) where

(1) is a character not is S or T,

(2) pot contains all productions of po modified as

f ollows : ( Ihs, rhs r g, w) :.n po becomes ( Ihs , f hs w,

Qr ) in Po',

(3) pot also contains the following rules for each x

member of v:

(xr,,x)

(x/É, , ,x//) for each character /l in S

(xXll ,, ,xX/l) for each character lÍ in S

(4 ) v I is al-I elements of w appended to rhs in (Ð .

It follows from the construction

requirements. An illusbration of the

in Diagram 3. 1 .

that Dr satisfies the

construction i s given

61



FORMAL MODEL

Dlagram 3.1 Schemablc of parse brees

lzl

tt{,) {Y}

tAÌ V'I B}
\/\\

Parse Tree in D

fnput String: ABCD

0utput String: I,rlXYZ

Parse Tree in Dr

fnput String: VüXYZ

0utput String: ABCD

D

BA t

Y

c) x

ì

\
C

z¡
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Corollary 3.4:

The input and output languages of a DTT belong to the class

of recursively enumerable languages.

Proo f :

From theorems 3. 1 and 3.

languages are equivalent

Machines, namely bhe

Theorem 3.3 shows that

recursively enumerable.

2 it can be seen that the DTT input

to the languages accepted by Turing

recursively enumerabLe ì-anguages.

bhe DTT output languages are also
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Chapter Four

TABLE DRIVEN DTTS.

4. 1 Introduction

The weakness of the resbrictive rewriting systems

described in chapter two is thei:'inability to be be used to

construct a recognizLng device equivalent to the generative

model for â language. This chapter describes a Iarge

subclass of DTTs which do not share this property, as table

driven translators may be eonstructed for them. After

describing the construction of such a translator, âfl

appraisal is given of a wor king implementation of an

aubomated DTT generator system.

4.2 Constructing a Translator

4.2.1 Extending a Conbext Free Basis

As context free grammars were extended to DTTs, it is

reasonable to expect that the recognizing device for a

contexb free grammar, the push-down automaton, may be

extended to form a recogni zing device for DTTs. Before

discussing these extensions, some of the terms used in the

recognition of context free grammars by table driven

shift/reduce parSers and translators wilI be Íntroduced, as

these wilI be used in desc: ibing the translating devÍce for

DTTs.
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4.2.2 Context Free Translation

4.2.2.1 Shift/Reduce Translators

A push-down automaton consists of a push-down stack,

input tape and finite control. A shift/reduce parser is a

particular form of a push-down automaton in which the

control is defined by a universal driving rouline and a set

of data called parse tables that are dependent on the

grammar defining the Ianguage. There aÌ'e two sets of tables,

the IfI tables, which aÌ^e arrays indexed by terminal symbols

to obtain a parsing action, and the 'g' tables, which are

arrays indexed by termÍnaI and non-terminal symbols to

obtain a pair of tfr and tgt tables. The driving routine

continually consults the tables to determine which pal'se

action should be performed. A parsing action may eithe:'

(1) indieate a successful parse: the success action,

Q) indicate an unsuccessf uI parse: the eÌ'Ì or action,

(3)

(4)

The driving routine is described by the

table 4. 1 where insymbol :^eturns the next

sym. 0ther entities have meanings implied by

indicabe that a

onto the stack:

indicate that a

that the right

is currently on

replaced by its

symbol is to be :'ead and pushed

the shift actÍon, or

producbion has been recognized, and

hand side of the production (which

the top of the stack) should be

left hand side: the : educe action.

code segment in

input token in

their names.
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Table 4.1 Driving Routine of a ShífL/ Reduce Parser

insymbol(sym);

current_tables : = start_tables;
i niti ali ze_stack ( current_tables) ;

cyõle

begi n

action i= current tables.fIsym];
case action of

accept : exit(success);

error :

shift :

begi n

exit( failure)

push_stack( sVffi r current bables) ;

insymbol(sym);

current tabl-es := current babtes.gIsym]

end;

reduee( production) :

begin

for length(production.rhs) steps do pop stack;

current tables : =

top_of_stack_tables . g I production . t hs ] ;

push stack(production .lhs,current_tables)

end

end

end
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Translation sehemes based on shift-reduee parsers

produce a portion of output whenever a produetion is

recognized, i.e. when a reduetion is performed.

4.2.2.2 TabIe Generation

Several strategies for eonslrueting the I f I and tg t

tables have been proposed. These methods aII have a common

basis; they iterate aII possible parse eonfigurations and

group them into equivalenee classes called item sets. As the

driving routine for DTTs works on tables that are

constructed by a modified parse table generator, it is

necessary to introduee the method of parse table

eonstruetion in order t,o diseuss the modifications. This

diseussion of LR(1) table generation is based on Aho [4],
where greater detail may be found.

Each item of an item set represents a partially

recognized produetion. For example, the LR ( 1 ) item tX

-àA.B,aJ denotes a state where A has been reeognized, and if
symbols derivable from B are reeognized next on input wilh

right eontext of 'â', then X wiII have been recognized. ral

is caIIed the Iook-ahead. Two functions, tClosurer and

rSuccessorr, are important in eonstrueting the collection of

item sets.

Closure adds items to the current set that eould be

recognÍzed in the currenL context. For example, Closure of

the above item would add items of the form Ig l.Q,aJ to

reeognize B. Closure of an item set I is defined by the
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procedure in table 4.2.

TabIe 4.2

procedure Closure( I);

begi n

repeat

for each item [A+ x B z, f] in I and

pr^oduction B+ Y in the grammar

each b in first(Zf) such bhat

IBÐ . Y, b] is not alreadY in

each

and

I

do add [B+ . Y, bl lo I
can be added tountil no more items

return I
end

SuccessoÌ^ is the function that defines which item set

will represent the sbate of bhe parse in the next step. The

successor of item set I on recognÍtion of symbol X i s

def ined by bhe procedu:^e in table 4.3.

The procedure to construct, by iteration of aII

possible parse configurations, the collection of item sets

of a gÌ ammaì G wifh goal production GOAL -> S is given in

table 4.4.

I
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TabIe 4.3

procedure Suceessor( I,X) ;

begin

Iet O be the set of all items [A+ J X. K, f]

sueh that [e-> J X K, f] is in I;
return closure(Q)

end

The rff and tg' tables that drive a shift-reduce parser

are constructed from the eollection of item sets; eaeh set

eorresponding to a pair of f fr and 'gt tables. The rfr table

represents the informabion contained in the items of the set

and the tgt table represents the item sets formed by the

successor operation on t,he set. The following rules are used

to eonstruct the rfr and tgt tables for item set I.

If [A -à J a K, b] is in

terminal symbol of the grammar,

shi ft .

If [A + X

by A -àX.

If IGOALÐS

aecept.

I where

then f[ a]

15 a

set to

I ^ta

is

2

3

al is in I, then set f[a] to reduee

, nulIl is in I, then set f[ null] to
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TabIe 4. 4

procedure Items( G) ;

begi n

C := [Ctosure(ttGOAL+ . S,

re peat

for each set of items I in

symbol X such that

not empty and not

do add Suecessor(I,X) to C

until no more sets of items

nulIl])];

C and each grammar

Successor(I,X) is

already in C

can be added to C

end

4 All entries in the I fr table not defined by the

above are set to error.

5. If SuccessoÌ'(I,X) returns item set T' then gtXl is

set to bhe tables corresponding to set T.

Unfortunately some context free grammars can give i'ise

to item sets that contain items which result in conflicting

entries in the I fr table; either a reduce action conflicting

with a shift action (a shift/reduce conflict) or a reduce

action conflicting with a different reduce action ( a

reduce/reduce conflict) . In this ease the tables produced

are inadequate for parsing aS there is at least one sentence
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of the Ianguage for which the choice in the case statement

of the shift-reduce parser i n table 4. 1 i s not uniquely

defined. Such instances aÌ e called parse table conflicbs and

their absence (or presence) defines that the grammar is (or

is not) LR(1 ).

The LR ( 1 ) tabte generation algorithm produces an

impractically large number of tables when applied to

programming languages. An economical generator that is only

slightly less general, is the LALR(1 ) table generator.

LALR(1) tables may be geneÌ^ated from item sets formed by

merging LR(1) item sets with common cores (items without

Iook-aheads), however more efficient algorithms for LALR(1)

table construction exist (see t4l for detail on LALR(1 )

devices).

4.2.3 Strategy for Constructing a TabIe Driven DTT

4.2.3.1 Introduction

The dynamic and template characteristics of DTTs are

extensions of a context free basis. It is this underlying

structure that provides the handle to a table driven

mechanism for DTTs. The following p:'ocedure is used to
exploit this structure to obtain a table driven DTT.

( 1 ) A context free grammaÌ- is extracted from the DTT.

(2) Using algorithms derived from the standard table

generation algorithms given in bables 4.2, 4.3 and

4.4 above, rfr and tgt parse tables are constructed
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for the context free grammar. These algorithms a:'e

augmented fo use information in the DTT that is

lost in the conLext free gramma)^ to resolve table

conf] icts .

(3) The shift-reduce paÌ seÌ described in table 4.1 Ís
extended to cater for the structure of DTT symbols,

for the dynamic nature of a DTT, and also for two

additional parsing actions that the augmented

generator may generate to resolve conflicts.

Provided that there are no unÌ"esolvabIe confl-icts in the

parse tables, the translator so produced is a faithful

implementation of the DTT. Each of the above extensions is

described below. As (3) is the easiest to describe, it is
presented f i:^st.

4.2.3.2 Extensions bo the Parser

Some conflicts in the parse tables may only be

resolvable at parse time. To cater for this, the repertoire
of parser actions has been augmented by two. In addition to

the actions described in section 4.2.2.1 an action may

indicate that the parser should:

( 1 ) choose between conflicbing reduce actions depending

on which one exists in the production set (it will

indicate an ei^ror in a similar manner to reduce if

no matching production exists, but is undefined in

the case thab more than one production exists as

this should never happen i f the tables are
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correctly generated ) the :^esolve r /r action, and

(2) choose between confl-icting reduce actions and a

shift action depending on whether or not a

production for the reduction is present (the table
generator must ensure that the default shift is
always appropriate if a reduction produetion can

not be found) : the resolve s/r action.

The extensions to the shift-reduce translator to cope

wÍth the string nature of DTT symbols require that the shift
action should convei'b a token on input into its string form

when pushed onto the stack, which has also been modified to
accommodate strings. The reduce action must match the right
hand side templates against the stack symbols and

appropriately substitute the strings matched.

Extending the parseÌ' to cope with the dynamic nature is
slightly more demanding. As the driving routine caIIs for
reduction by a production class only, the parser must be

extended to maintain copies of the active productions so

that the matching mechanism can determine that a production

exists which matches the top of stack. The reduce cycle of

the parser must also interpret the acti.on sequence of a

recognized productionr âs well as writing the translation
string.

The modified driving routine is shown in table 4.5. In

that segment of eode, the routine insymbol incorporates the

input Iexical function of the DTT and returns the string
form of lhe input token in sym. The routine execute
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cor responds to the action function K of chapter 3.

CIass(sym) is the corresponding symbol in the context free

grammar obtained fron the DTT, the match function returns a

production with the Ì'equi:"ed syntactic structure that

matches the top of stack, but is undefined if no production

matches, and the procedure execute interprets the action

sequence of the recognized p:'oduction. The s/r and r/r

actions can only distinguish between two conflicting

actions, however the generalization is apparent.

The question of effÍciency of a DTT may be raisedr âs

the overheads in both time and space required by the

extensions could be 1arge. These costs can be reduced as the

context free part of the system need not be stored. Hoi^¡ever

the term rusefulr from the introduction was not restricted

to meaning 'most efficientr . Indeed, that a formal

definition can provide a model for recognizing a language is

a very useful charaeteristic. It is never doubted that more

efficient mechanisms can be found to recognize particular

Ianguages; a formal model provides a general rule fha!

others can use as a standard.

4.2.3.3 Extraeting a Context Free Grammar from a DTT

The symbols of the context free

constructed from a DTT are simple lexical

syntaetic classes, of DTT symbols. If t is

denote its syntactic class by class(t).

grammar to be

prefixes, caIled

a DTT symbol then

For example, if
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Table 4.5 Driving Routine for a DTT

insymbol(sym);

current_tables : = start_tables;
push_stack ( current_tables) ;

cycle

begi n

action := current tables.fIc1ass(sym)];

case action of

accept : exit(success);

error : exit(failure);
shift, I

begin

push_staek( sVm r current_tables) ;

insymbol(sym);

current tables := current tables.gIclass(sym)]

end;

reduce(prod class) :

begin

prod_match : = match( staek, prod_ctass) ;

if undefined(prod_match) then exit(failure) ;

for length(prod_class.rhs) steps do pop_stack;

current_tables : =

top_o f_stack_tables . g I prod_c lass . I hs] ;

push stack(prod match.Ihs,current tables) ;
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execute(prod match.action seq)

end;

resolve s/r(prod class) :

begin

prod_match : = match( stack, prod class) ;

if undefined(prod_match) then

begin

push_stack( sym, current_tables) ;

insymbol(sym);

current tables : =

current tables.gIclass( sym) ]

end

e] se

begi n

for length(prod_class.rhs) steps do

pop_stack;

current tables :=

top_o f_stack_table s . g I prod_class . I hs ] ;

push_stack(prod_match.Ihs,eurrent tables) ;

execute(prod match.action seq)

end

end;

resolve r(prod_c1ass_1 )/r(prod class 2) :

begin

prod_mateh_l : = match( stack, prod_class_1 ) ;

prod_mateh_Z : = match(stack,prod_class_2) ;

if undef ined(prod_match_1 )

and undefined(prod_maLch_2) then
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exit(failure)
eI se

if undefined (prod_match_Z) ttien

begi n

for length(prod_cIass_1.rhs) steps do

pop_stack;

current_tables : =

top_o f_stack_tables . g I prod_cIas s_1 . Ihs ] ;

pu sh_stack ( prod_match_1 . I h s, c uì're nt_t abI es ) ;

exeeute(prod match l.action seq)

end

eI se

begi n

for length( prod

pop_stack;

current bables:

class_2. rhs) steps do

top_o f_stack_tables . g I prod_cla ss_2 . I hs] ;

push_stack ( prod_mat ch_2 . I hs, e urre nt_t abl e s ) ;

execute(prod match 2.action seq)

end

end

end

end

class( term reaI. ) is term,

int.) is fact bhen

class(multop) is multop and

the DTT productionclass( fact
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(term_reaI. ì term_rea1. multop fact

wilI:'esuIt in bhe following context free

term Ð term multop fact

_int. )

rule.

To avoid ambiguities, no syntactic class can be a prefix of

any other.

The choice of the function cl-ass can affect the

effectiveness of the context free Srammar in reflecting the

structure of the DTT. If not enough characters are included

then many DTT symbols of differing context may be allocated

to the same syntactic eIass. Such redundancy hides strueture

that could be used in parsing. Conversely, taking the

Iongest string possible may result in unnecessary

distinctions being drawn between symbols that should have

the Same syntactic cIass. Just aS a tgoodt BNF definition

wilI provide meaningful names for its symbols, a rgoodr DTT

will provide meaningful prefixes (syntactic classes) which

will aid a human readerrs understanding of the IanguaEêr and

be useful props for a mechanical interpretation.

Formally, Iet G = (V,N,S,p) be the context free gralnmar

obtained from a DTT, D = (I,SS,T,O,V,po,LI,Lg,s), where

V = {c1ass(f) it is a symbol of Di

N = tclass(Ihs) l(Ins,rhs,9,w) is in P'i

S = class( s)

p = t(class(Ihs),cIass(rhs) ) i(Ihs,rhs,q,w) is in P'i

where s is the distinguished symbot of D, and Pr is the set

of aII possible DTT productions,as defined in chapter three.
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4.2.3.4 Conflict Resolution

4.2.3.4. 1 Introduction

Applying a standard parse table generation algoribhm to
G may produce tabres without confricts, ih which case they

are adequate for driving the translator. However conflicts
may be present in the parse tables, and these could

ind icate :

( 1 ) an inappropriate choice of the syntactic classes

obscuring the structure of the Ianguage,

(2) information eontained in the symbol structure or

dynamic nature of the DTT which could be used to

resolve confl-icts being unavailable to fhe table
generator, oF

(3) t,he structure of the DTT beÍng such that tables

adequate for parsing can not be constructed.

Unfortunatelyr the interpret,ation of a conflict is not

always immediately apparent. If it does belong to (Z) and we

are sufficiently astute, hre may be able to see a mechanism

for resolving the conflict. However conflicts belonging to
( 1 ) and (3 ) , and those of (2) for which a suitable
resolution procedure can not be found require a

restructuring of lhe context free grammar or of the DTT, if
adequate driving tables are to be found. The absence (or

existence) of conflicts for which resolution methods can not

be found shows that a particular DTT does (or does nob)

berong to the subclass for which table driven transLators
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can be constructed. The class of Ianguages for which table

driven DTTs can be constructed the: efore contains those

Ianguages for whieh at Ieast one DTT LhaL has adequate

driving tabLes can be construcbed. It is clear that as

recognizers for this class of Ianguages exist, they ai'e

'contained in the set of recursive languages, however the

exact characterization of the class is an open quesfion.

Hence it is possible that the structure of the language that

the DTT describes is sueh that no adequate parse tables ean

constructed for it ( i . e . belonging to bhe class of

recursively enumerable Ianguages, but not the recursive

Ianguages).

4 ,2.3.4.2 Categories of Resolution

4.2.3.4.2. 1 InLroduction

Part of the work of this thesis has been lo study

mechanisms for using information in the DTT to resolve

conflicts in the parse tables. The techniques naturally faIl

into two categories:

( 1 ) Those that resolve conflicts by considering the

dynamic nature of the DTT.

(2) Those that resolve conflicts by eonsidering the

symbol (including template) sbructure of the DTT.

0f course, some conflicts may need consideration of both the

dynamic and symbol structure of the DTT to be ] esolved.
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rn some cases the correct path to be taken may depend

on the input, seen and only be resorvabre at transration
time. However, for such resorution to be acceptabl-e, the
generator must be able to ensure that arr occurrences of the
confrict wilr be resorvable. rn such cases the actions in
confricb wilr be repraced by a nebr action, eithe; resorve

s/r or resorve r/r. The mechanism of these actions has

aI: eady been presented.

4.2.3.4.2.2 Resolution using the Dynamic Structure

confricts in the parse bables produced by the syntactic
structure of a pair of productions which can never eoexist
as active productions duri ng a parse are exampres of
eandidates of this category of resotution. Determining aL

generation time that two productions can not coexist is
however not trivial. 0ne approaeh is to extend an item set

to Íncl-ude bhe configuration of active productions. The

standard LR(1) taure generation argorithm (or one of its
variants) courd be exlended to keep track of added and

dereted productions ( and every productionrs action
sequence), and whenever different paÌ^se paths courd lead to

different production setsr produce item sets for each parse

configuration formed.

Any item like

[x+ . B, f]
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whieh has been added in the cl-osure of an item such as

[l-> J x K, s] (z)

will mean that X-> B will be reeognized before A -> J X K.

Any changes the aetion field of ( 1 ) makes to the active

productions will have to be passed on to the successor set

on X of the item set containing Q). Other items like

tx+ . Q, hl (3)

with different action sequences may also be added in closure

of (2). As the recognibion of the productions in (1) or (3)

wiII result in different parse states, two vei sions of the

successor set on X of the set containing (2) a] e needed to

correspond to the two different configurations. The parse

tables formed from this Iarger collectÍon of item sets wiIl

not contain any conflicts of type (1) above.

The practieality of thÍs approach is however in serious

doubt. The LR ( 1 ) famity of generators is known to be

exceedingly greedy in ibs space and time requirements. This

met,hod further differentiates between parse states and forms

even more item sets, which only exacei'bates the problem.

4.2.3.4.2.3 ResolutÍon using Symbol Structure

Confliets in the parse tables produced by the syntactic

st,t'ucture of a pair of productions that have symbols whose

structure is such that both productions can not

simultaneously match any stack configuration is an example
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of candidates for this category of resolution. To illustrate

this table 4.6 contains DTT rules that yÍeld a reduce 3 /

reduce 4 conflict. Yet it is clear that productions 3 and 4

could never both be recognized, and so bhere is in fact no

conf l-ict.

Table 4. 6

DTT Rules

(sl a)

(s Ð b)

(a+ x_.)
(b+ x.)

Syntactic Cl-asses

s, a, b, x

(1)

(2)

(3)

(4)

TabIe 4.7

DTT Rules

(s9 a)

(s Ð b)

(aÐ x A. y)

(b+ x_.)

Syntaebic Classes

s, a, b, x, y

(1)

Q)

(3 )

(4)
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A second illustrafion is given in table 4.7 which wiIl
produce a shift / reduce 4 conflict. In this case it is the

inability of a template to match the null string that ensure

that there is no eonflict. The inclusion of templates in a

symboL makes the task of determining resolvability much more

complex.

It has aI:^eady been noted that an inappropriate choice

of syntactie classes can result in unresolvable conflÍcts.
As this is related to symbol structure, the exarnple in table

4.8 to iIIusLraLe that exLension of the syntactic class may

resolve conflicts, has been included in this secbion.

Table 4.8

DTT Rules

(sl
(s -+

(al

(b-à

a)

b)

ident a. )

ident b. )

(1)

(2)

Syntactic Classes

class(s) = s

class(a) = a

class(b) - b

elass( ident a. ) ident
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class( ident b. ) ident

Resultlng Context Free Grammar

s* a

s-) b

a Ð ident (a)

b + ident (b)

The parse tables associated with this grammar contain

conflÍets as the parser can not decide whieh of the two

productions ( a) or (b) has been recognized after the

syntactic class ident is recognized. Extension of the

syntactic class for ident to the entire symbol wiII resolve

the conflicts of this example, however it is not considered

a pracLical general method of resolution.

4.2.3.5 Error Recove¡^y

The translator constructed above wiII be (if the parse

tables do not contain unresolvable conflicts) a faithful

implementation of the DTT. However, to be a practical too1,

even for Ianguage designers,the system must have some form

of error recovery built into it.

Being driven by a parseÌ" based on a context, free

strategy, error recovery for DTTs naturally faIIs into two

categories.

Co ntext

driving
free errors which are detected by

routine when an error action

the

is

(1)
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encountered.

(2) Context sensitive errors that are delected by a

mismatch of the production set with eithe: lhe

stack when a reduction is ca11ed, or an action
production parameter when the action is executed

during a :'eduction.

There is also a third category of errors, execution semantic

errors such as values out of range and non-terminating

programs, that are not handled explicitly by the DTT, but

are only deteeted i n relation to the semantics of the

Lranslation Ianguage when the translation is interpreted.

Context free error recovery in the shift-reduee parser

that table driven DTTs are based on has been exbensively

studied (e.g. see reference Iist of t54l). The techniques

that have been developed are aII applicable to the reoovery

from context free errors in table driven DTTs, and can be

easily accommodated.

Context sensitive information is stored in the trailing
strings of DTT symbols. This may be tested explicitly during

a reduction, or implicitly by using the recovery mechanism

of failed actions. An explicit error is manifested by a

mismatch of the stack with aII of the active productions of

the required synbactic str ucture during a reduction ( note

that a context free error occurs if the syntactic classes

donrt match). The skipping after an action execuled as parb

of an acbion sequence faÍIs, may be used to test the state

of the system. If an error is detected, a vital production
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rule may be deleted, with the effect of blockÍng a

successful parse.

The implicit meehanism is imp: actical as a basis if an

error recovery scheme because the point of recognitÍon of an

error (when the vital production is caIled in a reduction)

is distant form the point of occurrence (and detection). A

better approach would be to aIlow an action to report an

error explicitly so that recovery could starb at the point

of detection.

A simple approach to the r ecovery mechanism for context

sensitive errors manifested by a mismatch of the staek, is

to reve: t bo eontext free parsing untit the effect of the

error is eliminated. In this method, whenevei" a reduction

can not be performed because a match can not be found, a

general reduction aecording to the syntactic structure of

the requi: ed rule is per"formed. If the left hand side symbol

requires template subsbitution that can not be satisfied, it
is fJ"agged so that in any future matches its syntactic class

only is used (but other stack symbols are treated fulIy) and

symbols that reference the templabes of the faulty symbol

are also flagged. hlhen aIl fIagged symbols are popped from

the stack, the effect of the error wilI have been completely

eliminated from the parse (with the exception of any added

productions).
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4.3 An Implementation

4.3. I organi zalLon

A table driven DTT generator system has been

successfully implemented at the University of Adelaide on a

VAX-11 system, and the implementation of this generator is

now discussed.

The major components of the generator system (aII

written in Pascal) are

(1) the analyser,

(2) the table generator, and

(3) the translator.

The relation between the various components is shown in

diagram 4.9.

4.3.2 The Analyser

The analyser has as its input, the initial production

set po, the goal symbol s and also files to indicate the

syntactic classes (i.e. the function class) and instead of

LI, a tist of reserved words for a lexical routine (which

assumes the domain of programming languages and handles

standard special symbols as welI as the given reserved

words).

The analyser has to produce four files:
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Dlagram 4.9 Schemattc of a Table Drtven DTT Generator

INPUT OU T PUTTRANSLATOR

CONFL I CT
CHECKITIG

TABLESCONS-
TANTS

CONFL I CTS
FOR

CH ECKI N G

G EN ERATOR
TABL E

EXTE RN ALLY
RESOLV ED
CONFLI CTS

LEXI CAL

ROUT I NEC ON STANTS

CONTEXT

FR EE
GR AMMAR

STANDAR D
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P RODU CTI ON

ANALYS ER

SYNTACT 1 C

CLASSES

RESE RVED

VüORDS

]NITIAL
PRODU C TION

SET

GOAL

SYI"lBOL
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( 1 ) a eontext free grammar for the lable gene: ator,

(2) a Iexical : outine for the branslator,

(3) a Iist of eonstants for the table generator and

translator, and

(4) the initial produetion set for the translator.

4.3.3 The TabIe Gene: ator

The tables generated at'e based on the LALR ( 1 ) tables,

however they have been extended to include the resolve s/r

and resolve r/r actions.

The method of resolving conflicts by considering the

dynamic structure of a DTT is of dubious value and has not

been implemented. Conflicts that are resolvable by

considering the symbol structure of a DTT have been only

implemented in a rest:^icted form that is described below.

Consider the following DTT rules:

( x -à start
(Iistì a

(a REM. -)

Syntactic elasses

Iist end)

x .)
a X REM.)

i x, start, Iist, end, a

( a)

(b)

(This could be an extract from list

DTT. In rule (b) X corresponds to bhe

and REM to the remainder of the list,

underscores. )

pr ocessing rules of a

head item j-n the list,

each item sepaÌ ated bY
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Examining the rules we see that there is no stack

configuration that could simultaneously satisfy bot,h of

rules ( a) and (b) since templates cant t match nuII

strings. However the collection of item sets would contain

the following item sets (where g is in first(END f)).

t X + START LIST END fl (*)

succes sor of ( rÉ ) on START

X + START LIST END

LIST+ A , I l

A+ A , I l

fl
(rÊx)

suceessor of (*x) on A

I lrST+ A . , g ] (1)

I n+ A s ] (2)

Items (1) and (2) form a :educe/reduce conflict. Nobe that

if DTT rules had inÍtially been

(xÐ start 1Íst)
(list? a X end)

(a REM.+ a X REM.)

t

t

t

then a shift/reduce conflict would have occurred.

Clearly these conflicts can be resolved by

generator. Sufficient conditions are:

( 1 ) one of the productions in the conflicf

recurslve, and
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(2) that the first DTT symbol of a1l possible

occurrences of both productions can not

simultaneously match any stack string.

Checking the recursive nature of a ru1e, as required in

criterion ( 1 ) is straightforward. However, criterion Q) can

not be determined by the gene:'ator described above as it has

access to the underlying context free grammal , but not the

DTT productions. Although a fuIIy integrated system would

immediately consult the DTT productions, the simpler

approach by this system is to note the conflict for

subsequent checking, and generate the app: opriate resolve

action if criterion (1) is satisfied. When table generation

is completed, the DTT productions are consulted to determine

if the noLed conflicts at e satisfy criterion (2). No action

is taken if they do, however if criterion (2) is nob

satisfied, the generation process is aborted and the tables

that have been constructed erased.

OnJ-y this resbricted case of conflicts using the symbol

structure that has been implementedr âs the effort of

implementing further strategies does not seem worthy of the

diminishing return.

The generator does have the facility to aIlow the user

to specify thab partieular confliet pairs are resolvable at

parse time. Although this is a compromise of the automatic

nature of the system, there aÌ'e resolvable conflicts, such

as those due to the dynamic structure that is used bo ensure

uniqueness of declared identifiers, whose Ìesolvability is
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guaranteed by the strucbure ( i . e. uniqueness) but is
extremely difficult to prove formal1y. This facility is

necessary to aIlow the user to point out that such conflicts

are resolvable as a sufficiently powerful deductive system

has not been produced.

4.3. l+ The Translator

The translator is a straightforward

the algorithm given in table 4.5 with

represented as scalar types.

implementation of

syntacbic classes

4.4 Summary

This chapter has shown the construction of table driven

devÍces from DTT definitions. Further, the construction has

been almosb completely automatic. The points where user

intervention is required aÌ"e:

( 1 ) Supplying the syntactic categories for the

generator, and

(2) Specifying that particular conflicts (particularly

those related to dynamic structure) aÌ'e resolvable.

The first point is so fundamental that it could be

considered as part of a tuple definition of a table driven

DTT.

The second point maybe seen as a weakness of DTTs r âs

it can be expected that in prog: amming language applications

a use! will need to take some action, as the complexity of a

deductive system seems intractable. However the author
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contends that for a welr written DTT with crear syntactic
classes, it, is nob difficult for one to decide the

resolvability of conflicts.

Establishlng the construction of table driven DTTs is
important because it provides a mechanism for determining

the behaviour of a DTT (i.e. can be used to ansþIer questions

about the Ianguage) . In pa:.ticular it defines the set of

strings that are not in the language. It is bhis

characteristic that is absent in most alternative proposars.
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Chapter Five

APPLICATIONS OF DTTS

5.1 Introduction

This chapter discusses the application of DTTs to

and Pascal.describe the languages AspIe

5.2 AspIe

5.2.1 0verview

Asple h¡as designed t 7l as a vehicle to demonstrate

clearly the power of VJ-grammars. To meet this end, it has

reasonable eomplexity without being too lengthy. Asple is

therefore, a language whieh can be used as a metrie of the

usefulness of a definitional rnethod. Indeed it has already

been used to evaluate the merits of various definitional

methods [37]. For this reason, Asple was chosen as the first

ma jor example of a DT'I, and a comparison and evaluation of

the DTT for Asple with alternative definitions for the

Ianguage is given in ehapter six.

To give the reader an overview of the language r âû

informal deseription of Asple foIIows. The definitive

specification of AspIe can however, be found in t7l.

Aspl-e is a simple AIgoI-1ike language. An AspIe program

eonsists of two parts; a declaration section and a statement

section. AII identifiers used in the statement section musL

be declared exaetly once in the deelaration section.

95



AP PL I CAT ION S

A declaration associates a mode with an identifier.

There are two primitive modes in Asple; integer and Boolean.

Unsigned integers are denotations of mode integer. Boolean

denotations are true and faIse. From the primitive modes an

infinite number of modes may be constructed. These take the

form integer ref erence-to-integer, re fere nc e- to -re ference-

to - i nteger re ference-to -re fer enc e- to -reference -to- i nt eger

ete. , and

of these

poi nters .

similarly for BooIean.

are commonly ca1led

Values of the first three

constants, variables and

Integer expressions may be formed from integer values

with the operators addition and multiplication. Boolean

expressÍons may be formed from Boolean values with the

operators and and otr r or by comparing integer vafues wiCh

the operators eq and ne. Addition and or are both denoted by

+, multiplication and and by ,É.

An assignment statement has a value on the right hand

side which becomes the value referred to by the identifier

on the left hand side (thus the right hand side mode must be

that referenced by the mode of the left hand side).

AspIe aIIows one kind of mode eoereion caIIed

dereferencing, When, oD the right hand side of an assignment

statement, an identifier of mode referenoe-to-M is in a

context requiring a value of mode M, it may be dereferenced

to obt,ain the val-ue the identif ier ref erences. Deref erencing

may be applied several times if necessary to obtain a value

of the required mode.
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Asple has two transput stabements, input and output,

for communication between Asple program and external files.

In l7l, an Asple file is defined as a sequence of integral
and Boolean constants separated by commas, however for our

purposes the commas wiII be replaced by end of line markers.

The object for the translation is a weII known

intermediate code, p-code [42]. P-code was ehosen as it is

weII documented, well defined by a machine implementation,

and easy to use. A lower IeveI object for the translation,

such as machine code or assembly instruction was not ehosen

as they can be extremely difficult to read, and are not

always convenient to use. A higher leveI object for the

translation uras not ehosen because the question of its
definition could be open. The possibility of choosing a non-

machine based object is discussed in chapter six, however a

code based translation was chosen to demonstrate the

application of DTTs to compiler generation.

FuII details of p-code may be found in [42], however an

overview of the structure of a p-code program is foIlows. A

p-code program consists of bwo assembly records; the first

contains the program code, the seeond is a contains a jump

to the start of the main program eode. Each assembly record

consists of a sequence of assembly instruetions terminated

by the identifieation line tq'. These generally have three

fields, an instruction mnemonic and two operand fields whieh

may be symbolie. Instructions may define values for

constants such as labels. Code segments also have every
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tenth rine identified by its number preceded by the letter
ti I

5.2.2 FormaI Description

The DTT for AspIe is Dasple (I,S,T,0rpo rV, L1,Lg,s)
where

I {begin, 9nÈ, int , booI, ref ,

then, e1se, fi, while, 99, 9d ,

*, =, <>Ì + {aII
sum, etcl + {0, 1,

identifiers,

Ì

t atLt

tpt,

tzt,

rFrrt

rDl¡t

tzt\

input ,

true ,

sueh

tg I ìtJr

tttvt

2

S

T

{tat, tbt, tct, tdt, tet,

tkt, t1t, tmt, tot, tot,

tut, tvt, tr,It, txt, tyt,

{tAt, tBt, tct, tDt, tEt,

tKt , tLt, tl{t, tl{t, t0t,

tUt, tVt, tWt, tXt, tYt,

S

I I t^l

tq

tGr,

rQt,

tht,

I Ft
t,

rHt,

tRt,

rir,

lel
9,

.r]

tTr
L,

rst,

I ltot

tTr
I¡

0

Po is

V=

shown in Appendix A. A1I lines (other than

comments) are labeIIed for reference ( labeIs are

not part of the productions) .

Ibeginsym , endsym, intsym, boolsym, inputsym,

outputsVffi r ifsym, thensVffi r elsesym, fisym,

þIhiIesym , dosym, odsym, becomessym, plussym,

starsym, eqsym, nesym, constant, identÌ

S = goal
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L1 is tabulated in table 5.1

Lg maps any character other than I I or t$t into itself.
I I is mapped into the blank character. A string of

'$'s is mapped int,o the decimal representation of

one less than the length of the string (so that

zeyo may be represented). A l-ine number

identification is inserted every ten lines.

5.2.3 Discussion

5.2.3.1 Introduetion

As the productions are the heart of a DTT, most of the

discussion wiII be centred on t,hem. The other components of

the DTT for AspIe are straightforward and will not be

commented on in detail.

The first point to note about the production set of

Appendix A is its small size ( 1 38 Iines containing 62

produetion cl-asses), whieh means that reading the DTT is not

an awesome task. None the ]ess, the action sequences of some

productions are verbose, and a more compaet notation is

desirable. Although the use of a macro mechanism was

considered, it þIas not found to be suffieiently general to
justify the extension to bhe basic model. The second is that

there is a degree of modularization of the productions, each

module giving insight onto one aspect of the Language.

Although the modules are interrelated and do not stand

aIone, the DTT could not be eriticized for being monolithie.

The benefit of bhese two feature are in the ease of
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comprehension of the DTT by a human reader.

It is the form of individual produetions that determine

bhe readability and henee the usefulness of a definition.

The following discussion is broken into sections commenting

on the productions in each of the main modules.

5.2.3.2 Modes and Declarations

The infinite number of modes Ín Asple is not a problem

within itself. However, âs will- be discussed in the section

on the assignment statement, in order to obtain eonflict

free parse tables, it i s neeessary to syntacLically

distinguish between identifiers bhat referenee a primitive

mode, and other identifiers. This causes some redundaney Ín

the DTT, as rules describing a single aspect of the language

must be repeated for both syntactie cases. The syntactic

el-asses I moder and I rmoder both correspond to rnodes, and

'legaI' and rrlegalr eorrespond to identifiers. Despite this

redundancy, the treatment of modes ( Iines A6 1 Lo 464 ) is

clear and cleanly handled by the DTT.

SimilarIy, the addition of a produetion lo the system

for eaeh identifier declared is straightforward, however the

volume of similar rules ( Iines A1 3 to 460 ) makes this

section taborious. The action sequen¿e of these productions

can be thought of as procedural algorithms for checking bhe

state of the system, and reporting an error by modifying the

productions if the uniqueness crÍteria are viol-ated. This

process, while not at aII complex, becomes quite cumberSome

100



AP PLI CAT]ONS

because of the redundancy in the syntaetie categories

modes causing duplication of produetion ruIes. This results

in the description of what is a small part of the language

taking up almost one third of the physical size of fhe

definition.

Table 5.1 L1 for Dasple.

Token L1(Token)

begi nsym

endsym

i ntsym

bool sym

refsym

i nsym

outsym

i fsym

thensyrn

elsesym

fisym

whilesym

do sym

odsym

constant_booI_true .

constant bool faIse.

int
boo I

ref

the n

eI se

fi

while

do

od

true

faI se
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+

*

identifier X

(e.g. count

becomessym

plussym

starsym

eqsym

nesym

ident X.

count. )i dent

eonstant int Vinteger constant V

(e.e. 2 constant int 2.)

The arlocation of addresses to identifiers must be

carried out during the processing of decrarations. The

incrementar arrocation of these addresses is handled as a

'side effectr of using the allocation symbol tloct (4130-

4133). l{hen, in situations Iike this, information stored in
productions is manipurated by executing an action sequence,

it should be thought of as being similar to invoking a

procedure, rather than a surreptitious side effect of the

parsing proeess.

5.2.3.3 Statements and Expressions

The best aspects of Off" may be seen in the handling of
statements and expressions as the produebions suecinctly
embody the structure they describe. The productions ( tines
A65 to A109) are almost context free; the only extension is
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the inclusion of the mode in eXpressions to enforce context

sensitive restrictions. These productions (which take up

about a quarter of the physical size of the DTT) very

Successfully convey to a reader the Structure of AspIe

statements and expressions (which comprise the bulk of the

Ianguage structure) .

There are however two points that detract from bhe

sueeess of this part of the definition. The first is the

need to break productions ( sueh as those for iterative and

conditional statements) whenever a labeI needs to be

generated for the p-code. This clouds the structure of the

constructs involved. ThiS is a common characteristie of LR

based systems as it is only permissible to perform an action

when a structure (i.e. a produetion) has been recognized,

but not during its recognition ( as in LL systems) . The

second i s that the strings I i I and 'b I used to denole

integer and Boolean modes eould have more meaningful names,

thereby aiding elarity. This approach has been used to show

how expediency may compromise objectives. In this case the

p-code instructions for loadÍng values end with the first

]etter of the mode of the data type being moved. Thus a

single rule wÍth a template to match a single letter mode of

the object and substitute it in the insbrucbion generated,

will adequately replaee the iteration of cases that is

otherwise needed ( as for example in the case of

multiplication whose mnemonie is rmultt and and whose

mnemonie is t andt ) .
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5.2.3.4 Assignment

As a toy Ianguage used as the vehiele to demonstrate

the pohler of l,rr-grammars, AspIe hJas designed to show how well

a smaII fragment, c€ntred on the assignment statement, of a

Ianguage could be defined. The relationship between the

modes of the source expression and destination variable can

be stated simply: The mode of the source expression must be

that referenced by the destinabion variable, where the

source expression may be dereferenced if necessary.

For a DTT to follow this literally, requires the

parsing of the source expression to be familiar with the

mode of bhe destination so that appropriate dereferencing

can be performed. This requires the formation of a

conglomerate symbol eontaining the source and destination

lnodes that has to be manÍputated by several obseure

productions with complex template matching and substitution.

Not only does this make the secbion on assignment extremely

burgid, but it also has the undesirable effecb of distorting

the form of the produetions for expressions.

The souree of the problem is in knowing when to

dereference a value. The approach taken here is to divide

assignment into those caSeS where the Source value is of a

primitive mode and may involve arithmetic expressions, and

those where the mode of the Source has a reference mode. To

obtain eonflict free parse tables, this neeessitates a

distinction on the syntactie level between references to

primitive modes and other modes. The implementation of this
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has already been discussed in section 5.2.3.2.

The productions for assignment therefore reflect the

different syntae|Lc caSes. The rul-e to correspond to the

conventional ftvariable : = expressionrr assignment ( lines

4110,4111) is about as simple as this eould be. The

syntaetie distinetion of rlegalr or rrlegalr for ident,ifiers

results in the need for rules (on Iines 4113 to 4118) to tie

the elasses together, and given the redundaney, they do it

quite welI. However the remainder of the productions

describing assignment between two identifiers of syntaeLíc

cl-ass 'rIegaIr are not particularty easy to follow, as fhey

involve processing of eonglomerate symbols (although not as

obscure as the above mentioned case) . The rules involving

the synbactic elass rrefasst check that the Source mode is

compatible with the destination. The rules involving the

syntactie cl,asS I assderefr dereferenee the Source if

appropriate.

Assignment is a relatively simple concept and should

therefore be defined by simple productions. In AspIe, the

infinite number of modes coupled with automatic

dereferencing complieate the issue and result in the DTT

specification of AspIe 1-acking clarity at this point. This

could be flaw in DTTs, otr it eould be the design of Asp1e

that is at fautt, âs it can be argued that a good model for

a Ianguage definition wÍ1I highlight weaknesses in a

tanguage. This is a significant point and wiII be raised

again in chapter six.
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5.2.3.5 Allocation of space and labels

The rules for al-Iocating space and IabeIs are quite

straightforward (the side effect characteristic has already

been discussed in section 5.2.3.2>. The only comment needed

is that arithmetic is difficult within the DTT (although

arithmetie eould be defined in a string form, it is nof

helpful and certainly not useful to do so; a further eomment

on this wiII be made in relation to W-grammars in chapter

six). Numeric quantibies such as addresses and lengths of

objects are best represented in a DTT by the Iength of a

string of special eharacters that is eonverted into its

decimaL representation by the lexical output function LO.

For example, the output string I $$$$$$$$ maps into L 7 .

5.2.4 Examples

IO Íllustrate the DTT for Asple, examples 5.1 and 5.2

[ 37 ] ) are presented .( after

Example 5.

begi n

inb X, Y

input X;

Y := 1;

z l1

(x <>

whil e

z

The Faetorial Funetion.

the n

z

0)

(z

Z

if

+

106



APPL I CATI ONS

Y Y*Z
od

fi;
out,put Y

end

Parsing of the seeond line of this Asple program causes

the produetions

( Iegal $$$$$$$$$ Z ref i . -> ident z.)
(Ieeat $$$$$$$$$$ Y ref i. + ident Y. )

(Ieea1 $$$$$$$$$$$ X ref i. Ð ident X. )

to be added to the system so that subsequent oeeurrenees of

these identifiers may be reeognized. For example, the

reference to Z ín line' nine results in the top stack symbol,

ident 2., being reduced to Iegal_$$$$$$$$$_Z_ref_int.. The

next reduetion (using the production on line 492 of the DTT)

will be to faeL int. whieh also generates p-code to Ioad the

appropriate Iocation at runtime.

Example 5.2 Reference Modes and Dereferencing

begin

int INTA, INTB;

ref int REFINTA, REFINTB;

ref ref int REFREFINTA, REFREFINTB;

INTA := 100'

INTB := 200i

REFINTA := INTA;

REFINTB := INTB;
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REFREFINTA : = REFINTA;

REFINTA := INTB;

INTB := REFINTA;

input REFREFINTA;

output REFINTB

end

This program illustrates referenee

derefereneing in the assignment statement of

parsing of lines two to four adds the following
to fhe system.

( legal_$$$$$$$$$$_INTA_ref_i . ì ident_INTA. )

( Iegar_$$$$$$$$$_INTB_ref_i . + ident_INTB. )

modes and

Asp1e. The

pro ductio ns

(rIegaI_$$$$$$$$$$$$_REFINTA ref ref i. -> ident REFINTA.)

(rlesal_$$$$$$$$$$$_REFINTB_ref ref i. + ident REFINTB. )

(rIegaI_$$$$$$$$$$$$$$_REFREFINTA ref ref ref i.
-) ident REFREFINTA.)

( rlegaI-$$$$$$$$$$$$$-nEnREFINTB ref ref ref i.
+ ident REFREFINTB.)

The assignments on l-ines five, six and eleven of the

program are recognized by the production on lines 4110 of

the DTT. In the case of the line eleven assignment, the

source expression will be dereferenced by the productions on

Iine 496 and Iine A9B. The assignments on Iines seven, eight

and ten are handled by the production on line A1 13. In

processing the assignment on line nine, the production on

Iines 4123 is applied to produce the symbol

refass $$$$$$$$$$$$$$ ref ref ref i ^$$$$$$$$$$$$ ref ref i
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produetion on l-ine A,125 woul-d be applied twice to obtain

symbo I

refass $$$$$$$$$$$$$$ ref i ^$$$$$$$$$$$$ i

on Iine Ã121 i s applied ( noteThe production

not have been

line A125 ean

that the

that it eoul-d

produetion onpreviously, and

be applied) to

applied

not now yi.eId

assderref $$$$$$$$$$$$$$^i

As the produetion on Iine A1 1 9 is not applicabJ-e, no

dereferencing is to be performed. The rule on line 4112 is

however applicabl-e, and can be used to recognize the

assignment.

5.2.5 TabIe Driven Asple Translation

Dasple has been processed by the generator described in

chapter 4 using syntactie elasses given in table 5.2. The

generator produeed 99 tables ( tfie item set collection

eonsisted of 99 sets eontaining 2789 items) ttrat contained

no unresolvable conf l-icts.

1 1 B instanoes of eonfliet were able to be resol-ved. 4 1

of these were due to the pair of oontext free productions

LEGAL I IDENT

RLEGAL ->, IDENT

As the dynarnie nature of the DTT ensures the uniqueness of

deelared identifiers, this category of eonflict will always
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be resol-vable at parse time, and henee these :onflicts were

TabIe 5.2 Syntaetic elasses for the table driven Dasple.

goal beginsym deetrain semieolonsym strain endsym whst ifst

ifthst sym lab addr loc deelist deco mode idlist whsym ident

commasym legal dref rdece intsym rmode boolsym rlegaI refsym

stt assignment i nn conditional iteration transput faet

beginpart lparensym exp rparensym eount space relop endpart

eqsym nesyrn refass eonstant assref assderef term starsym

pl-ussym ifsym thensym elsesym fisym whilesym dosym odsym

outsym insym beeomessym

resolved

eonfli ets

externally
were due to

the generator'.

following pairs

The remaining

o f oontext free

to

the

produetions

FACT ->
DREF _>

D REF

DR EF

TRANSPUT -> INN

]NN + ]NN

ASSIGNMENT + ASSDERREF

ASSDERREF + ASSDERREF

ASSDERREF + REFASS

REFASS _> REFASS
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DECLIST + DECC ADDR

DECC -> DECC ADDR

DECLIST + RDECC ADDR

RDECC + RDECC ADDR

0f the two criteria of seetion 4.3.3, each of the above

satisfy eriterion (1 ) for resolution, and by 3onsultation of

the corresponding DTT produetions r criterion Q) is al-so

shown to be satisfied. Henee these confliets are al1

resolvable at parse Lime.

5.2.6 Sumrnary

The dis:ussion of Dasple given above has aimed to

demonstrate how the DTT works, and Lo thereby highlight

aspeots of the definition. These wilI be diseussed further

in ehapter six.

5.3 Pasoal

5 .3. 1 Introduction

The most complex syntaetio struetures found in

programming languages are those that ineorporate a nalne

seoping meehanism whereby inner deelarations temporarily

override outer ones. The diffieuJ-ty this poses 3an be seen

in the parsing of field identifiers of reeord structures in

PaseaI for example, where substantial ohanges to the parsing

environment (altering the set of 1egal identifiers and

111



attributes
transition

APPLICATIONS

to be assoeiated with them) o3our in lhe

of the rspotr symbol.

Struetures containing seoping rnechanisms are most

naturally deseribed by a Stack meehanism. However aS DTTs

do not provide staek faciJ-ities, the des:ription of this

sort of strueture is a major test of their ability to define

struetures that 3an not be given a natural internal

representation, and is iIl-ustrated below.

Another example of a J_anguage feature without a

oorresponding structure in a DTT is in Ianguage restrictions

involving subrange cheeking. If p_code (whi:h does not

oontain any representation of arithmetie 3oncepts) is the

target language, this requires the DTT Lo contain production

rules to assosiate arithmetÍcaI properties wiLh the digit

eharacterS. HoweVer, sueh productions have features that are

diffieul-t to reeoncile with the goals of :hapter one. The

definition of aribhmetieal eoncepts within DTT productions

is pointl-ess, âs welI as being eumbersome (resulting in the

difficutty mentioned above), and is therefore an

inappropriate use of a DTT.

This problem is further anal-ysed l-ater in the thesis,

however rather than present an inappropriate DTT for

compl-ete Pascal, DTT produetions for a subset of Pascaf

including record types and block strueture may be found in

Appendix B. Other formal eomponents of the definition of the

DTT are straightforward, and they have noL been j.n:]uded.

The form of these productions is discussed in section 5.3.2.
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For compactness, features of Pascal- that eould be defined in

sueh a DTT but do not illustrate any addj-tj-onal features of

a DTT have been Ieft ouL, however they have been described

in section 5.3.3.

5.3.2 The Productions

5.3.2.1 Introduetion

The disoussion of the form of bhe productions

Appendix B is broken into sections oorresponding Lo

major Ianguage components.

1n

the

5.3.2.2 Statements

Statements ( P45B to P53B ) are very weIl described in

the DTT. Note that the dangllng relser problem has been

overcorne by structuring the productions ( e .g . P4B 1 , P4B2) so

that the t if-thent without an telset strueture is not

permissible as the fthenf cornponent of an I if-then-efser

eonstruet. In the processing of oase statements, rul-es of

syntactic class triple (e.g.P524) are added and tested (e.g.

P521 ) to ensure uniqueness of case IabeIs. Assignment is

also easily handled. Note the distinetion between assigning

a scalar value ( P485, P4B6 ) and assigning a variable of a

named structured type ( P487 , P538 ) .

5 .3.2.3 Expressions

The strueture

expressions is very

of t,he produetions (P539-P579) fon

cIear. Mixed mode arithmetie is treated
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partieularly cleanIy.

5 .3 .2.4 Label s

The syntactic nature of , tabels is well stated in the

DTT (P009-P032). However restrietions involving jumps into
struetured statements are difficult to specify. This is a

welI known diffieulty with Pascal.

5.3.2.5 Record Types

As the produetion rul_es (p580-p709) to describe reeord

types are lengthy, a commentary of their strueture is
provided.

The substantial ehanges to the parsing environment that
oecur during the reoognition of a reeord fierd identifier
are processed by a series of unit reductions. The sequence

of symbols that would appear on the top of the parse stack

during the recognition of a integer field named freq in a

reeord struoture named stats are shown below (except that
spotsym and idenb_freq. have been shifted onto the staek in

line (4), the reduotion !,Ias from recname to re:id).

name staLs.

Iegal rec.

re cn ame

reoid spotsym

recfld int.
Iegal int.

(1)

(2)

(3)

(4)

(5)

(6)

ident freq.
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The chaÍn of unit reduetions is used as a vehicle to

make the necessary :hanges to the produetions to model the

ehanging parsing environment. For eaeh field identifier, a

ruÌe of the form (4) to (5) is added by the reduetion (3) to

(4), and eaeh of these added productions is deleted by the

reduet,ion (5) to (6). The rules to perform (3) to (4) and

(5) to (6) are added by the reduction (2) to (3). The

production defining the reduction (1 ) to (2) is added during

the variable deelaration, and contains an aetion to add the

rutre for (2) to ( 3 ) that eontains appropriate action

sequences. AII transienl produetions are deleted when their

funetion has passed, so not to interfere with the parse of

future reeord struetures.

The processing of the reeord type deelaration initial-1y

adds rules to aIl-ow the (3) Lo (4) (e.g. P590) and (5) Lo

(6) (e.g. P595) transilions above, and then for eaeh field

identifier adds aotions (e.g. P63B-P640) to the (3) to (4)

production to add, and (e.g.P641-P643) to the (5) to (6)

produetion to deJ-ete, appropriate productions recognizing

field identifiers ( of type (4 ) to (5 ) above ( e.g. P640-

P643 ) ) . On eqmpletion of the record declaration (P603-

P611), a rule is added that allows (2) to (3) above

( P604, P605) and includes aetions adding copies of the

eonstructed (3) to (4) and (5) to (6) (P606,P610) rules

whieh are deleted (P607,P611). For each variable declared to

be of the reeord Lype a rule of the (1) Lo (2) form (e.9.

P263 ) is added that contains an action to add the Q) to (3 )

rul-e just oonstrueted, and that is deleted after the
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variable list is processed.

Uniqueness of field identifiers is ensured by adding a

rule of the syntaetic el-ass single ( P635) for eaeh field

identifier. Subsequent deelarations check ( P632) for

existing rules of this form ( indieating a uniqueness

violation) and inhibit (P633) a suceessful parse if found.

To cope with nesbed reoords, a staek structure must be

ineorporated into the DTT rules. 0n entry to a nested

strueture (P581-P601 ), all existing rul-es are saved (to be

restored) in the aebion sequenee of the exit production of

the inner declaration, and approp.riate productions

initialized for the inner declaration. The depth of nesting

is maintained in the production (depth D. ->

The cornplexity of the syntaetie strueture of records

resul-ts in the productions for this cotnponent of the

Ianguage oonLaining Iong and highly struetured action

sequenoes, and having rnany nontrivial- lnteractions with

other productions. The result is that these productions do

not have the transparent clarity thab was a feature of the

simpler strucLure such as expressÍons and statements. None

the 1ess, record types are adequately deseribed.

5.3.2.6 Block Strueture

As with reoord types, it is the effeet of looal

declarations temporarily overriding global ones requÍring a

stack meehanism that complicates the form of the

produetions. This mechanism is similar to that already
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d iscussed for nested reoords, and will not be discussed in
detail. 0n bIo:k entry all conflieting entries are saved in

the aetion sequence of ( bloek ->

varpart pfpart stpart) for latter restoration. Bl-ook

strueture is adequately described by these productions.

5.3.3 0ther Features of Pascal-

5.3.3. 1 Introduotion

The problems of the semantie aspeets of a Paseal to p-

code DTT do not detract from the description of the

syntactic features of PascaI by a DTT, which contains

clarity sirnil-ar to that demonstrated for AspIe. The

features of sueh a DTT that were not j.ncluded in the exampJ_e

of Appendix B beeause they do not illusLrate any additional
aspects of a DTT, are des¡ribed below.

5.3.3.2 Code GeneraLion

't'Jith the f ew exoeptions ref erred Lo above, eode

generation for PascaI is very easily implemented; statemenLs

and expressions in partioular are very eleanly handled.

5.3.3.3 Enumerated Types

Except for anonymous enumerated types (those where the

type deelaration occurs at the point of the variable

deelaration), there is no problem in defining enumerated

types in DTTs. The dynami: nature spe3j-fical1y oaters for
informatÍon 1Íke this that is eneountered during a parse.
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Anonymous enumerated type are diffieult as

integrate the names of the 3onstants of

DTT, however thi s can be overcome with

utility of anonyrnous enumerated types

criticized in [ 45] .

it is not easy

fhe type into

some effort.

has also

to

the

The

been

5.3.3.4 FiIe Types

There is no inherent difficulty in implementing file

types within a DTT. The need to prohibit file of file

str:uctures, and the requirement that all- f ile program

parameters are used in a tfile ofr declaration resul-ts in

some syntaeti.cally similar rul-es having slightly differing

action sequenoes. The effeet of this is to in:rease the

physi oal l-ength of the DTT.

5.3.3.5 Array Types

Arrays can easily be imptemented. The equival-enee of

the form of a multidirnensional array defined with dimensions

separated by commas and the array of array form ean be

trivially accommodated .

5.3.3.6 Forward Deelared Proeedures and Funetions

As a table driven parser 3an not be direeted to perform

a reduction that does not progress towards the acoept state,

eheeking for parameter Iists proeessed in a forward

dectaration must be done by an action sequence, which is

cumbersome. Changing the language design to incorporate

parameters on the aetual- declaration only :reates a
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consisteney cheoking problem. A d ifferent keyword on the

the parsing ambiguity.actual definition would overcolne

5.3.3.7 Constant Deolarations

In a manner similar to type deolarations r oonstant

aooommodated.deelarabions can easily be

5.3.3. 8 Parameters

Prooessing parameters is not generally difficult,
however subtlety Ís needed in the distinction of value and

variable parameters to avoid a parse table conflict in the

processing of a variable actual parameter in a parameter

list (i.e. should a reduetion to factor (for a value for¡nal-

parameter) be performed, of should the the variabl-e be

passed as is (for a variable formal- parameter). This

diffieuJ-ty may reflect on the poor distinction between

variables and values in Pascal.

Proeedure and funetion valued parameLers are very

difficult to implement as there is i.nsuffieient information

about their parameters available.

5.3.3.9 Pointer Types

ïn most other sases, the symboJ- representing a type

eontains a eomplete el-aboration of the type, even when the

type has been defined by a pseudonym. This is not possible

in the case of forward declared pointer types, and requires

a produetion rule to be added to replaee a forward

declaration by its type (whioh may be a pseudonym) when
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used. For consistency it is desirabLe for alL pointers to be

treated in the same manner, requiring the generabion of a

tag name for anonymous pointer types.

5.3.4 TabIe Driven PascaI Parsing

D___^^, has been processed by the generalor described
in of,"pp1%tt"t,J. The generator produced 268 tables (268 sets
contain:.ng 14549 j.tems) that contained no unresolvable
conflicts.

There brere 28O conf licts that bre!^e resolved. The vast
majority of these were due to the following pairs of oontext
free productions:

LEGAL + NAME

FUNCC + NAME

LEGAL + NAME

DEST.à NAME

The scoping of identifier names is ha¡dled by the dynamic
nature of the DTT (by hiding over!^idden declaraLions) , and

provides that these conflicts will always be resolvable at
p""te time. Thus the resolvability of these conflicts is
determ j-ned exLernal- l-y to the generator.

Corflicts were also due to the rules:

FACT + LEGAL
NEXP + LEGAL

The string structure of the symbols of this DTT has been

constructed so that it is always possible to distinguish
between identifiers declared to be of a named type and those
of an anonymous type, thus alIowjng these confl-icts are
resolvable al parse time. The .esolvability of these
conf licts was determÍned external l¡'- to the generator.

The remaining conflicts vtere due to the following pairs
of rules:

VARDEC + VDEC
VDEC + VDEC

FIELD + RLÏST
RLIST + RLIST

The oriteria of seotion 4.3.3 are satisfied in these cases 
'

and hence the generato:- determines that the conflÍcts are
!'esolvable at parse tirne.
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5.3.5 Conclusion
The specification of a translation from Pascal to p-

code involves structures that have no natural representation
withÍn a DTT. Structures involving syntactic specifications,
such aS sLack mechanisms, can be conVeniently be synthesized
within the DTT model. However ' as those that involve
Semantic structures, such aS restrictions requiring
arithmetic concepts by the recognizer, cân not be given an

app:^opriaLe representation within the DTT mode1, a

satisfactory DTT translating Pascal into p-code can not be

constru cted .

There Ís a point here that needs amplifying: a DTT is a

syntactic device that defines the semantics of a language by
a translation into a target language. Hence it is not
appropriate to define semantic concepts such as arithmetic
within the production rul-es. This raises the question of
role of lhe target languâBê ¡ which although treated in
chapter six , i s mentioned here in relation to coded
translations. Some problems ( e.g. addressing fields of
nested records) may be avoidecl by using a more powerful (yet
realistlc) coded target language. Howeve:' others, such as
those invoLving range checking would stil1 be

inapprop:'iately expressed in the produciion struoLure of the
DTT. Possible extensions to the structure of the DTT model ,

may be envisaged to invest the necessa:'y information for
these deei sions in aCditional actions ' thereb¡' exLerding
p!'ocessirg povJer of action SequenêeS. Although consi'dered,
thls approach was r^ejected aS an rad hoct extensicn that
woulci reec to be adapted to particular applications.

5.4 Sunnary

The DTT for Asple has shown t,hat DTTs can successfulLy
be usec es a basis to define a LransLatÍon. The DTT for the
subset of Pascal- has shown that DTTs are capable of
deso: ibing the most complex syntactio st:-uctures found in
p!^ogÌ'anrirg L anguages .

P-code was chosen as the target language fo:'Asple as a

straightforward means of demonstrating the appli¡ability of
DTTs tc compi I er generation . De fects with the coded
translatior were noted i n the fragmentation of the
pr-oductions for Asple statements, and also in the
app'!-op:^ia+-eneSS of a PascaI to p-code DTT. The role of a

code,j'uarget language will be examined further in chapter
six.
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6. 1 Introduction

This chapter lnvest igaLes sc'veral aspecLs ol DTTs as a

model for bþe dellnltion of protsrarnmlng, Ianguages, and

compares slmlLar treatments in ot,her models. Tl're dlscusslon

1s presented 1n seetions considering: eonLrol Structures 
'

symbol management, inforuration representations, descriptive

propertles, language deslgn, and Lhe cholce of targeb

Ianguages.

6.2 Cont,roI Structure

Di agram

oornponents 1n

shows tl'rat

1s vested 1n

6.1

a DTT

eontrol of aIl active

the productlons aLone. The

Dlagram 6.1 Control SLrucl,ure of a DT'I

I

I

I

I

I
¡

¡

IN PUT OUT PUT
PARSE

STACK

PR ODU CT I ONS
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productlons speclfy bhe changes that may oceur durlng a

reductlon to bhe parse stack, whlch also dellnes Uhe changes

Lo the productlon set. Produetlons also lmpllelLJ.y eontrol

bhe flow of tokens t,hrough th'e (passive) Iexical functions

Lt and LO from lnput to output. The salient features of thls

centrallzed conLrol are ibs symmebry and ibs sirnplicity, and

are refl-ected 1n the perspleulty of DTT deflnlblons.

It ts lnberesblng to conLrast bhe above strucl,ure wlth

that, of a compller constructed from a conventlonal BNF plus

prose deflntblon.

Diagram 6.2 Control Structure of a Convent lonal Compiler

PROSE TEX\

BNF /
PARSE

STACK

ÏNPUT OUT P UT

LEX.

NALYS] S

SEMANTIC

A NALYS I S

SYMBOL

TABLE
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In such devices the BNF describes the lexical nature of

tokens, defines the strueture of the parse tree and eontrols

the ehanges that occur on t,he parse staek. The prose section

defines the eontext sensitive syntax and eode generation,

and thereby controls the symbol table management seheme

implementing these requirements as s ide effects o f the

eontext free driving mechanism.

The eomplieated and eompound nature of this approach is

apparent from the diagram. Neifher the control of the device

nor the specification of the eontrol is centralized. Indeed'

this can be seen as a elassie example of coroutines t 3Bl .

This dislocation of control is a consequence of the

perturbing effeet that forcing a symbol table management

seheme onto a context free basis has on lhe entire system.

The eontrast that has been shown between the unity of the

eontrol of a DTT and the heteroarchical eontrol of the BNF

plus prose models results in greatly differing mechanisms

for the manipulation and storage of information within these

systems. The variety of mechanisms used in these, and

several other prominent proposals that were mentioned in

ehapter two wilt be investigated in sections 6.3 and 6.4.

6.3 SymboI Management

6.3. t Introduetion

As Ledgard has pointed out [30], the most diffieult

syntaetic aspeet of programming languages is the

restrictions on the use of identifier names. Any model that
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addresses bhis issue must, in one form or another, have a

symbol tabIe, and the question of implementing syntaetic

restrictions then resides in the management of the symbol

tabIe. In this seetion, the struebures that correspond to a

symbol table and to its management are identified for the

rnost prominent models that have been proposed. In section

6.4 these structures are examined to find any eommon

underlying eharacteristies.

6 .3.2 DTTs

As DTTs have only been introduced in this thesis, the

role of productions and aetion sequences will be diseussed

before identifying struetures corresponding lo a symbol

table and its management.

A DTT produetion encapsulates a pieee of information

about the tanguage. Recognition of a production eorresponds

to recognition of the fact (or structure) of the produetion

by the system.

The role of aetion sequences in DTT productions is to

provide a procedural algorithm to process the piece of

information that has been reeognized. The flow of control-

structure for actions blas designed to be weak; only strong

enough to allow minitnal processing power. Although stronger

control eould be provÍded, the nature of DTTs would be

substantially be altered i f the role of knowledge

recognition v,¡as transferred from the meehanism of

recognition of produetions to bhe execution of high pohler
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An exLreme example of this would be a

a program into a single eonglomerate stack

then processed entirely by an aetion

The sbring nature of DTT symbols may be used for

storage of struetured inforrnation (whereas in a eontext free

system a symbol can only represent a scalar). Thus a

dynamically ereated produetion may be used to sbore

information for future reference. If the production is used

in a reduetion then the information it eontains maybe

explieitly manipulated, however, information that is

conlained in productions may also be tested during execution

of aetion sequences, although nol explicitly manipulated.

Dynamieally created productions ean therefore take the

role of a symbol table in a DTT, and the actÍon sequences of

productions can define the management of a such a symbol

table. This has already been illustrated in chapter five

where the actions of the DTTs for Asple and PascaI

explicitly showed the meehanism used to proeess names

encountered in a program by adding a production for each

identifier declared, and testing exisbing produetions to

enforce constraints such as uniqueness.

6 .3. 3 BNF plus prose

The structure of devices developed from this category

of models has been oublined in seetion 6.2. However the

eoncepts of a symbol table and its manipulation are not
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explieitly discussed in these definitions. fn these

definitions the Ianguage restrLeEions are deseribed in

general terms (e.g. tall labeIs declared in a bloek must be

distinct'), Ieaving the detait of sueh constraints up to the

implementor.

6 .3. t+ l^l-grammars

W-grammars, like DTTs, are string based. However the

pohJer of the W-grammar meta-notion enables highly structured

information to be stored within a symbol. Using this
approaeh, the lrl-grammar compacts the eomplete symbol table

into every symbol that needs to eonsult it for ensuring

context sensitive restrictions. These restrietions are

enforced by a sequence of derivations (speeified by rul-es of

the !'r-grammar) that only yields a f inite subtree ( a !t-

grammar criteria for a Iegitimate derivation) if the

restrictions are satisfied.

l,l-grammars bherefore represent the symbol table in

string form in grammar symbols and define its management by

rules of the !ü-grammar.

6.3.5 Production Systems

The concept of an environment ( a gIobaI Iist) Ín

Production Systems eontains aIl information that would be

found in a symbol table structure. Functions whose domains

are environments are defined to specÍfy the eontext

sensitive restrictions and it is the use of these functions

in productions that is equivalent to the management of a
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symbol table

6.3.0 Dynamie Grammar Forms

In this approach producbions mapping syntactie elasses

into identifiers are dynamieally managed by the

interpretation of the grammar form aceording to the parsing

environment. The eontext free rules added correspond to the

symbol table and the specifieation of fhe dynamic mechanism

of the interpretation function corresponds to the symbol

table management.

6.3.T Dynamic Produetion Grammars

In this approaeh productions mapping syntacELe elasses

into ident,ifiers are dynamieally controlled by guarded

eommands (whieh may referenee gtobal data structures sueh as

lists) within productions. The context free rules added

eorrespond to the symbol- table, and the guarded commands to

the symbol table management.

6.3.8 Attribute Grammars

Although the original proposal 126) was directed

towards semantics for context, free grammars, various

extensions have proposed systems that enforee constraints on

Lhe values to attributes (whieh may be tists). In sueh

systems it is an attribute (list) that eorresponds to the

symbol table, and the specifieation of the eonstraints and

attribute eval-uation rules that oorrespond to the symbol

table management.
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6.3.9 Notation for Statie Semantics

The concept of a symbol table is clearly embodied in

the struetures (such as staeks, strings and variables) that

may be manipulated by the actions associ ated with

produetions, whieh are equivalent to the managemenL of the

symbol table. As the strueture of this model is very similar

to that of the devices of section 6.3.3, this teehnique ean

be seen as a formalization of the aspeets of the definitions

of seetion 6.3.3 that þrere left to the implementor.

6.3. 1 0 Conelusion

The structure eorresponding to a symbol table, and

those that define its management i n the most prominent

models have been identified. 0nIy DTTs and !ù-grammars were

able to bring these aspeets within a single conceptual

framework; alI the other proposals were eompound in nature,

usually defining structures auxiliary to the production

basis.

It is worth noting that the models for Ianguage

semanties r^rere not considered in this secLion beeause they

usually assume a syntaebieally valid program, and therefore

do not address questions relabing to restrictions involving

identifier names.
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6.4 Information Representation

6.4. 1 Introduction

It is interesting to further examine the basic

techniques used by the models discussed in section 6.3, to

represent non context free information that is processed

during a parse. Insight may be obtained into the structure

of not only definitional rnethods, but also of programming

languages, if any underlying similarities or common features

ean be found.

An invesbigation of bhe sbructures used

of the models diseussed in section 6

are two basie approaehes:

for

3

the symbol

shows bhat,tables

there

( 1 ) to tag such information onto the existing eontext

free structure (discussed in section 6.4.2), and

(2) to form an additional structure specifically to

contain such i nformation ( di scussed in section

6.4.3).

The meehanisms used for the management of these

structures may similarly be studied, and the above diehotomy

is also apparent (and is discussed in seetion 6.4.4).

6.4.2 Tagging

Tagging mechanisms

eontext free symbol so

represented. ìd-grammars

generalize the scalar value of a

that structured informabion may be

and DTTs replaee the sealar symbol
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by a string. The approaeh by Attribute Grammars is to

replaee the scalar symbol by a reeord strueture eontaining

speeifically typed data items.

The string mechanism is the more concise as it does not

require the additional evaluation rules of Attribute

Grammars. Hohlever a string representation is not aÌways the

most appropriate as it ean be diffieult to manipulate if

unnatural struetures are used. Arithmetic in l,l-grammars, for

example, illustrates how cumbersome and complex a definition

may become if unnatural struetures are used. A general point

may be drawn from this: that the utility of a system suffers

if it uses unnatural structures for the objects it

describes. This is particularly pertinent to !'l-grammars as

they use strings for aII struetures, including those sueh as

arithmetic whieh are inappropriate in stri ng form. This

problem does not arise in Attribute Grammars as the

attributes may be defined to have natural structures for the

data they eontain. In DTTs, âs shown in the exampJ-es of

chapter five, the string nature of DTT symbols vùas generally

used only bo represent identifier names. As strings are the

appropriate structure for identifier names, no awkwardness

results in this aspecb of the DTT. In the ease of PascaI

eode generation, the need to use such sbruetures vlas seen as

i nappropri ate .

6.4.3 Adding

St ruelure s

during a parse

cre ated to hold information eneountered

divided into two eategories:
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( 1 ) information added in the form of extra produetion

ruIes, and

(2) information contained in auxiliary struetures.

DTTs, Dynamie Production Grammars and Dynamie Grammar

Forms aIl add produetion rules to the system to eontain

information encountered during a parse.

The Notation for Static Semanties uses auxiliary data

information. The

another example

struetures (sueh as staeks) to contain such

environment eoncept of Production

of an auxiliary structure.
Systems is

6.4.4 Management Control

The representation of information needed to manage the

symbol tables deseribed above may al-so be categorized in
terms of tagging existing structures and of creating

additional structures. However, whereas tagging in section

6.4.2 was to extend the symbol strueture, in this case it is
associated with the control struct,ure. In DTTs , Dynamie

Produetion Grarnmars, Notation for Statie Semanties and

Attribute Grammars , aaLions or evaluation rules are tagged

onto produetion ruIes.

Additional structures were created in some models, and

also relate to the eontrot of bhe device. In Dynamic Grarnmar

Forms the speeification of the interpretation function
ineludes structures bhat dynamically manage the productions.

In Production Systems, the additional structures are in the

form of functions whose domains are envÍronments.
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6.4.5 ComPlexitY

Thecomplexityofadefinitioncan,inSomecases'be

traced to the structures a model provides for the expression

of detail , rather than to i ntrinsic properties of the

language. such complexÍty can be broken into two categoriest

that whi ch i s due to the eomplex ity of the control

structu! e, âDd that due to the structures from which the

definition is built.

In models such as Ll-granmars' the control complexity is

exacerbated by using a universal tagged structure, strirì8sr

to express detail such as arithmetic inappropriately.

Conp}exityinadefinitionaddstothediffÍcu}tya

user encounters in initially understanding how the devÍce

wot.kS,ancinthedifficultyofusingit,andthe:-efore

dett'aof,s from its utilitY.

6.4.6 Conolusion

TuomethodSofrep].esentingnoncontextfree

information pt-ooessed in a parse have been identified;

tagging of existing structures and the adding of neii ones'

of the models examined in section 6.3, DTTs He!-e the

only mcdel to exhibit both mechanisms in the representation

of the s]'mbol table. This can be seen to give DTTs a greater

flexibi.lity in the choice of st¡uctures available for the

representation of information.

These two methods were also

used tc represent information that
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6.5 Deseriptive Properties

6.5.1 Introduetion

The most eommon metric that has been used to

eharacterize the achievements of formal mcdels in past work

has been measures of the scope of applicabíIity of the

model. Aho has pointed out l2l , tthe elass of Ianguages

suitable for for completely representing programming

languages undoubtedly Iies within the class of context

sensitive Ianguagesr. However, the seope of applieability is
not an appropriate measure of the benefit of a definitional
method as even the exact charaeterization of this class by a

formal model wilI not guarantee that the model_ has any any

other useful properties. The deseriptive properties of a

mode1, i.e. its ability to describe the language in a manner

that enables the user to obtain an understanding of the

concepts involved, are olosely related to the human aspeets

mentioned in chapter one.

0bjective evaluations of the descriptive properties of

a definitional model are diffieul-t to formul-ate as there are

no numerical measures of the benefits in sueh a model. Any

evaluation must therefore be subjeetive. Given this, it is
desirable to base sueh an evaluation on neutral criteria. In

a survey paper [37] a eomparison of the several different
formal definitions of AspIe are presented and evaluated. The

criteria used eover a wide range of eharaeleristics and were

designed to be fair; not hightighting the good points of cne

model to the exelusion of those of another. These criteria,
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detached from DTTs, provide an unbiased means of assessment

of DTTs.

6.5.2 Evaluating Definitional ModeIs

6 .5.2.1 Introduction

The criteria to be used for assessing a model are:

completeness, simplieity, elarity of the defined syntax,

elarity of the defined semantics, ability to show detail,

ability to show errors, and ease of modifieation. The survey

cited above assessed W-grammars, Produetion Systems, Vienna

Definition Language and Attribute Grammars, and presented

its results in tabular form. Reproduced in table 6.3 is bhe

summary table of the survey with an additional column for
DTTs. Brief eornments about each of t,he eategories of the

evaluation follow.

6 .5 .2.2 Completeness

This is the ability of the formal system to define the

entire programming language. A DTT defines the semanties of

a programming language by a translation intc a Ianguage

whose semanties are welI defined. Thus a DTT definition is
relative rather than absolube. In this sense a DTT is not

trying tc complebely speeify a Ianguage. The realm of DTTs

is the syntaetic specifieation of a language eoupled a with

means of a translabion into another form whieh specifies the

semanties.
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6.5.2.3 Simplicity of the model

This criterion assesses the initial diffieulty that a

user eneounters in understanding the model. DTTs structure

has been shown to be simpler than that of other models. This

is undoubtedly due to its closeness to its eontext free

basis.

6.5.2.4 Clarity of def ined syntax

This category includes context sensitive syntax. DTTs

strongest points are in the olear manner in whieh syntax is
completely defined.

6.5.2.5 Clarity of def ined semantics

This describes the ability of the model to specify the

meaning of a program. DTTs do not direetly address this
question as they presuppose a üarget language whose

semanties are weII understood. Í'lhile this could be seen as a

weakness of the model, it eould also be seen as a sbrength,

as it does noL introduee esoteric concepts and notations

whieh hinder the userst eomprehension. Tnstead it gives a

mechanism, the branslation Ianguage, for fhe specifieation
of the semanties in the most appropriate form for the user.
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Table ó.3 Evaluation of severar DefrnrLlorrar Methods
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6.5.2.6 AbilitY to show errol s

Theabilitytoconstructarecognízíngdevicefroma
DTT description is a very strong point in their favour ' âs

it is a characteristic not shared by oLher proposals' As

questionsaboutprogramlegalitywculdbethemostcommona
user would ask, the ability to mechanically show errors must

be seen as an advantage of DTTs '

6.5.?.7 AbilitY to show detail

This criterion measul'es the ease with which a user may

obtain answers to questions abou! the Ianguage. To highlight

the inportance of thÍs facet of a definition, a set of

questi.cns about Asple were presented in the survey together

v¡ith detailed ansvJels for one question- The question has

been answered for DTTs ir table 6.4. Thi s ans-*er is shorter

a:j cLearer than that p:^cvided by other methods'

6.t.2.8 Ease of mod if ioation

DTTssimpIestru3.Uu]^eandrnodu]aribyenhancestheir
ease of modification, however objective neasures of this

quar']tityareverydifficulttoobtaj.n.Asasimple
i,ìi.r:stration of the ease with which DTTs can be mcciified ' a

ma;cr change to the way the DTT of Appendix A recognizes

ds:iarations so that ide¡tifiers a!'e pl csessed as

er:cu:ltered rather than after the enLi:'e deela:-ation has

beer pt ooe.ssed requires on1.v superficial changes to a smal1

n'¿aber of rules.

Ncne the less, thi's is not suf f ici ent to

pcsitive rating for DTTs, especially since aÌ1

rncCels were rated neutrai, and hence DTTs have

E-ver a neutral rating.

justify a

the other
aLsc been
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Table 6.4

Question : Is the assignment of the constant 2 Lo t,he

variable x valid in the following Asple program?

begi n

ref int x;

x

end

This question is answered ( 1 ) as a table driven DTT

would, and (2) as a human using the DTT definition would.

(1) The parse would proceed nornrally until afLer the
rbeeomesr symbol is read. At this stage the top

stack symbol is beeomessym. The only forward move

that is defined by the parse tables for this
parfieular state is with a lookahead syntactic

elass of ident. As the lookahead synLaeLic elass is
rconstantr , the devioe reports an error ( the

earliest point possible) and either attempts error

recovery or haIts.

(2) A human user would notice that in parsi ng fhe

declaration, a rule
(rlegal_x_ref_ref_int, -) ident x. )

is added to the produetion set. In the parsing of

the assignment statement, this production is used

to recognize the Ieft hand side of an assignment,

139

2



redueing it to

only Legitimate

hand side have either rlegal or legaJ- on the right

i nputhand side, a human user would

is not a legal Asple program.

deduee that the

6.5.3 Conclusion

The most signifieant observation froln bhe above

comparison is in the diversity of objectives of the various

models. Produetion Systems, Iike DTTs , are a powerful

syntactic device that provides a relative semantie

definition via a transl-ation rather than an absolute one.

Axiornatie Semanties does not attempt to define syntax, only

semantics. I,tr-grammars provide a eomplete speeif ieation

within a fcrmal system. VDL provides a complebe

specification based on a model of an abstraeL machine.

Attribute Grammars provide only a relative semantie

definition.

The different objectives and priorities of these models

makes an evaluation of their descriptive properties

difficult. However it is clear that DTTs are not inferior to

the above in terms of either objeetives or achievements, and

can even be seen to be superior in having useful human and

mechanieal characteristies not generally shared by the other

models.

E VAL U ATION

the syntaetie elass rlegal. As the

assignments with r1egaI on the Ieff
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6.6 Language Design

The criteria in section 6.5 were deveroped to compare

the performances of formar moders at specifying a language.

rt is interesting to turn this around and use a formal model

to determine the appropriateness of the design of ranguage

construeLs, as it can be expected that comprexities in a

definition wirr refreet overry complex ranguage constructs.
A further point is that the highrighting of problem areas of
programming ranguage design by this method would pinpoint
areas where effort is needed for improvement.

This aspect of DTTs has arready been mentioned in
reration to anonymous types and forward decrared procedures,

and arso in the more important case of modes and

derefereneing in Aspre. Allowing an infinite number of rnodes

causes an overry comprex definition. rn rearity, onry the

modes corresponding to eonstants, variabres and pointers
have any valuer âs the rest are quite useless.

A cynie courd suggest that faeed with the alternatives
of a pedestrian definition (that iterates arr modes) of a

desired ranguâg€, or a sophisticated definition (modes

defined by a singre recursive rule and base rules) of a

modified ranguâg€, the designers of Argol 68 (on which Aspre

was based) were goaded into ehoosing the Iatter.

l'lhether based on any substance or not , thi s suggestÍon

does raise the question of the varues perceived to be

desirabre in the design of a language and its definition.
0f more Ínterest is the apparent confrict between the above
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suggestion ( that ehoosing a succinet definition red to

language complexities) and the objective of the first
paragraph of this seetion (trrat a good modeL wourd highright
eomplexities of a language) .

The faurt here lies with the use of very powerfur

constructs that have the appearance of simprifying the

specifieation when in fact they onry hide detair. rn

instances ( such as in Vù-grammars) where the powerful

construets have no rearizable representations, the

simpricity of the description is a sham. rt is onry a moder

which describes its objects by construets that are

realizabre that are useful, and that wirt be abre to
highright overly eomprex components of a definition. The

theoretieal identification of definitional- structures that
correspond to reali zable structures is not eonsidered

further in this thesis, however some obvious empirical
resurts can be cited. For exampre, ib has been shown that
DTTs do ref rect the design fraws of Aspre, and that ri'l-

grammars do not.

6.7 Target Languages

A transrator operates between !wo ranguages. Arthough

an intermediate code ( p-code) was chosen for the Asple

exampl-e as a means of easiry demonstrating the application
of DTTs to compiler generation, a machine independent

nofation eourd have been used. The defieieneies of using a

coded transration are in its machine dependent nature, its
low l-evel struetures, and in (possibty) the nature of the
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definition of the target language. These deficieneies were

apparent in the demonstration wilh p-eode, as it hlas seen

thab the form of the produetions for Asple statements was

fragmented, and that there were diffieulties with a

translabor for PaseaI tc p-eode.

Alternatively, it is possible to have as the target

language any formalism that wilI adequately define the

semanties of the programming Ianguage. The most obvious

oLher choiees are target languages which are based on either

axiomatio semanties or denotational semantics. An axiomatie

approaeh would produee a Iogical system thaf defined al-I

true statements (and no false ones) about the program. A

denotational approaeh would yield a funetion specÍfying a

mapping from the input of the program to its output. As an

example of the advantages over coded translations' it can be

seen that denolational semanties, for example, eontain

suffieiently powerful mathematieal structures that the

definition of arithmetieal concepLs within the DTT

productions is not necessary. Although some rcornpile timel

range ohecking would be passed to bhe translation, Ít seems

quite feasible to propose a DTT with a denotational target

language as a basis for a eompiler generator, or a DTT wÍth

an axiomatic target as the basis for a program verifier.

Combining a syntaetieally strong model sueh as

with a semantieally strong model seems sensible, and

DTTs

modularity contrasts well with the monolithie approach

môdeIs Iike !ü-grammars. Such a eombination is howeve¡,

its
of

not
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a nell idea. Ledgard et aL t37l have used axiomatic semantics

as the target of a specÍfication using Produetion Systems.

Paulson [45] has used denotational semantics as the target

of a system based on attribute grammars.

The question of whieh is the best form for the

translation language of a DTT is not simply answered. It is

easy to find particular forms of translation languages that

are suitable for parbieular applications. However, a model

that encapsulates semanties in a general form which may be

generally amenable to mechanieal proeessing (rather than for
specific applíoaíions) is not available.

Suggesting that the ehoiee of the translation Ianguage

depends on the intended applieation is not reaIIy
satisfactory. This can be related to the ooneept of

eonsistent and eomplemenLary definitions introdueed in t191.

However, not only is it a major task tc prepare several

different definitions for different audienees, but the job

of determining that they are consistent (i.e. that they aII
define exaetly the same Ianguage) is overwhelming.

Therefore it is necessary to ehoose just one form for

fhe translation Ianguage. The objectives of ehapter one were

to produee a definition with useful human and meehanieal

properties. The problem of ohoosing an adequate model is

exaoerbated by the variety of uses a formal definition must

serve, and with human users, by their personal preferenees.

Theoretieians would find in denotational semanties the

answers to most of their questions, whereas applieations
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programmers (bhe vast majority of users) would find none. As

none of the currently available semantie models or coded

translat,ions seem to meet the chapter one eriteria of being

useful (in either bhe human or meehanieal aspects, let alone

both) , the formulation of an adequate semantie model must be

Ieft for further researeh.

6. B Conelusion

This ehapter has evaluated DTTs and eonsidered them in

relation Lo other models. Control stru¿tures and meehanisms

for representing symbol bables and their management I^Iere

investigated in the most prominent models, and DTTs found to

have a simpler and more unified approaeh. The variety of

meehani sms used in the models v'rere f ound to be bullt on two

basie strategies, the tagging of existing struetures and the

adding of ner^¡ ones. DTTs were the only device to use both

strategies in the representation of the symbol tab1e, whieh

allowed the greatest possibilities for using natural

representations of the objects involved. The deseriptive

capabiLities of various models in relation to AspIe vJere

compared and DTTs found to syntaetioally strong. It hlas

also demonstrated that DTTs have the ability to hightight

anomalies in bhe design of programming languages. The

possibility of choosing a semantie model for the translation

language ulas also discussed, and the human properties of

eurrent semantie models uJere not found to be aLtractive as

the ultra-mathematieal formalism can result in meaning being

hidden beneath abstruse noLation. As eoded translations
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also have flaws r âo optimal ehoice of the translation
language does not seem to be possible at present, and

further work in the area of semantie models is required.
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Chapter Seven

CON CL USION

7 .1 Introduction

In section 1 .3, DTTs !{ere presented as the result of an

experiment into the design of a formal model for the

Speaification of programming Ianguages. The aims of the

experiment $Iere bo find a model that posSeSSed useful human

and mechanicat characteristics. This chapter discuSses the

achievements of DTTs in respecb of these criteria. Some

areas for further research are also discussed. The thesis

concludes by summarizing the qualities of DTTs.

7.2 Human Factors

The meaSures of Success of a formal definition in its

human characteristios vJere taken in section 1.2 to be the

quality of, and the ease of obtaining answeÌs to questions

about the Ianguage defined.

It is not easy to quantify the quality of an answe] to

such questions r oF the ease of obtaining them'

Characteristics such aS accurâcVr detail, and Succi-nctneSS

all relate to bhis measurement. Although the discussion of

section 6.5 gave much space to this issue, the sample of

table 6.4 showing DTTs to be superior to exÍsting methods is

not sufficient evidence to justify a conclusive result '

None the less, the author contends that DTTs have useful

human characteristics.
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7.3 Mechanical Factors

The measures of success of a formal definition in its

mechanical characteristics \.\rere taken in sectÍon 1.2 to be

the quality of , and the ease of obtaining automated systems

concerning the Ianguage defined.

The automatic generation of a compiler for AspIe has

been demonstrated in chapter five. This compiler vüas

produced very easily, and although not of commercial qualiby

in terms of speed and size, it none the Iess performed its

task satisfactorily.

Although the genel^ation of other systems has not been

investigated, the formal basis provided by DTTs could

provide a basis for the implementation of systems such as

prograrn verifiers, especially if the translaLÍon language

were expressed in terms of a semantÍc mode1. Therefore the

author contends that DTTs have useful mechanical

characteristics.

7 .4 Further Vlork

that

this

(1)

There are however, stilI some points relating to DTTs

need to be investigated and have not been pursued in

dissertation. These include:

An exact characterizatÍon of the class of Ianguages

processed by tables driven DTTs,

An investigation of alternative actions to see if

the current repertoire p: ovides the most succinct

description, and the best strategy for error
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An investigation of efficiency mechanisms (although

the system described in chapter four is table

driven, it does perform a substantial amount of

parse time pattern matching t,hat is just mechanical

substitution, and could undoubtedly be

streamlined ) ,

An investigation of more general methods for

resolving conflicts by considering the dynamic and

template charaoteristics of a DTT, and

The formulation of an ideal- model to be used as the

translation language for DTTs. Such a model should

incl-ude sufficient structures for fhe appropriate

representation of all semantic information. In

addition it should satisfy the requirements of a

wide variety of users: theoreticians, implementors,

programmers, and Ianguage designe: s. This is the

most pressing need of DTTs r âs they are an adequate

syntactic model needing a suibable semantic target.

(4)

(5)

7 .5 Summary

The review of : elated work in chapter two showed that

no satisfactory model for lhe definition of programming

languages has been put forward, despite the large volume of

research that has been invested in this problem.

In this thesis, DTTs have been compared with other

proposals and found to be superior in many respects relating
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to human and mechanical factors. In particular, some

potentially powerful alternative systems suffer from having

no equivalent recognizing device, however the design of DTTs

has overcome this inadequacy. DTTs are abIe, within an

unified f:amework, to completely specify the most difficult

of syntactic components, the management of identifiers

eneountered in a program. Also DTTs have the ability Eo

highlight anomalies in the design of programming languages.

Although not the ultimate solution bo the problem of

programming Ianguage definition, DTTs are certainly more

useful than exÍsting methods, and therefore provide a

positive contribution to the theory of programming

languages.
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400

401

APPENDIX A

The initial production set, p0, of DaspIe,

mapping legal programs into p-eode.

Goal production

( goal -)

beginparb dectrain semieolonsym strain endpart)

Initialization and finalizabion

(beginpart è beginsym

tr 3] { entl 14] ient2 I 5i)
(endpartÐ endsym loc S. count T.

402

403

A04

405

A06

{ retp} {r 4

ti 0] i mst

{ r_5 =_T_}
i cup 0 1 3]

tqÌ

{ stPi iq} )

Si
0]

Productions to recognize declarations and modes

A production is added to the system for each

identifier declared to renember its name,

mode and allocated address (e.9. A24, 436,

A58, A6o) .

- Multiple declarations of an identifier result

in bhe goal production being deleted, thereby

inhibiting a successful pa: se (e.g. 416, l''21,

A,28, A33, A4o, A45, A52, L57).

Symbols with the syntactic class rlegall

correspond to an identifier that references
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a primitive mode. These symbols also contain

the name, allocated address and mode of lhe

identifier (e.g. 424).

Symbols with the syntactie class trlegalt

correspond to other identifiers. These

symbols al-so contain the name, allocated

address and mode of the identifier
(e.e. A4B).

The mode integer is denoted in a symbol by

_i. ( A6 1 ) , the mode Boolean by _b . ( A62) ,

a reference mode by _ref (463, 464).

Unique addresses are allocated by 4130

4133 Ín the symbol with syntactie class
I addi'I

407

A08

A0g

410

Al l

412

Ai3

A14

415

A16

417

A1B

A1g

(decbrain I declist)
(dectrain-) dectrain semioolonsym declist)
(decc_M^L_. -> mode_M. idlist_L. )

(rdecc_M^L_. + rmode_M. idlist_L. )

( idlist N. + ident N. )

(idlist_N_L. ì idl-ist_L. commasym ldent_N. )

(decc_M^L. + decc_M^N_L. addr A.

I delete_production,

(IegaI_AAAAA_N_ref_MMMMM. + ident_N. ) l
I delebe_prod ucbion , ( goal Ð begi npart dectrai n

semicolonsym strain endpart) J

I continue]

I delete_production,
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420

421

4.22

A23

A24

425

A26

a'27

A2g

429

430

A3t

432

433

A34

L35

A3o

437

438

439

A40

A41

A42

A43

A44

A45

A46

A47

APPENDIX A

(rIegaI_AAAAA_N_ref_MMMMM. + ident_N. ) l

Idelete production, ( goal I beginpart dectrain

semicolonsym strain endpart) I

I conti nue ]

Iadd_production, (1egaI_A_N_ref_M. + ident_N. ) ])
(declist -) decc_M^N_. addr A.

I delete production,

( IegaI_AAAAA_N_ref_MMMl"lM. -) ident N. ) l

I delete production , ( goal Ð beginpart dectrain

sernieolonsym sbrain endpart) l

Icontinue]

Idelete producbion,

( rlegaI_AAAAA_N_ref_ MMMMM. + ident N. ) l

I delete production , ( goa]- -) beginpart dectrain

semicolonsym strain endparb) I

Icontinue]

Iadd_production, ( tegal_A_N_ref_M. + ident_N. ) ] )

(rdecc M^L. -> rdecc M^N L. addr A.

I delete production ,

( Iegal_AAAAA_N_ref_MMMMM. -) ident N. ) l

Idelete_production, ( goal -) beginparb dectrain

semicolonsym strain endpart) J

Icontinue]

I delete production,

(rIegal_AAAAA_N_ref_MMMMM. -) ident_N . ) l

Idelete production, ( goal Ð beginpart dectrain

semicolonsym strain endpart) J

Icontinue]
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A48

A49

450

451

452

453

A54

455

A56

457

A5B

Ã59

A60

A61

A62

A63

A64

A65

A66

A67

A6B

A69

APPENDIX A

Iadd_production, ( rlegaI_A_N_ref_M. -) ident_N . ) ] )

( decli st I :'decc M^N addr A.

Idelete producbion,

( legal AAAAA N ref MMMMM. + ident_N. ) l

Idelete production, ( goal Ð beginpart dectrain

semicoLonsym strain endpart) l

I co nti nue ]

I delete_production ,

(rlegal AAAAA N ref MMMMM. + ident N.)l

Idelete production, ( goal Ð beginpart dectrain

semieolonsym strain endpart) I

Icontinue]

Iadd_production,(r1egal_A N ref M. -> ident N.)])
(mode i. + intsym)

(mode b. + boolsym)

(rmode_ref_M. + refsym mode M.)

(rmode ref M. + refsym rmode M.)

Produetions to translate Statements

Unique IabeIs are generated by A,126-29

in symbols of syntaetic class r1abr.

Templates are used to remember

destinations of jumps.

(strain-) strain semicolonsym stt)
(strain -) stt)
(stt Ð assignmenb)

( stt Ð conditional )

(stb Ð iteration)
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A7o

Ã7t

ATz

473

A7l+

AT5

AT6

477

478

479

ABO

A81

A82

AB3

AB4

AB5

AB6

A87

A8B

A89

A9o

A9l

{

{

t

i

uJp

APPENDIX A

(stb -à transput)
( iteratÍon -) whst_S_T.

{ ujp 15 i irr
dosym strain odsym

(whsym T. + whilesym Iab T. iIT ))
(whst_S_T. + whsym_S. exp_b. tab_T.

(conditional-) ifst T. thensym stra
(ifst_T. + ifsym exp b. Iab T. t fj

i)

{_f jp l-r_i )

in fisym {lT i )

p r r Ì)
(condibional-) ifthst T. strain fisym tIT i)
(ifthst L. -> ifst T. thensym strain elsesym Ìab L.

lL ] {rr })
(transput Ð outsym exp M. space T.

{ ldci

(transput -)
ttOa0
[ Ida 0

i

Ai{Ida0 5}

10 i lda 0

wrM ]

5 i { cs

{ inda

5 ] { csp

space S.

6]

wIn ] )

i cs

i

CS

{Ida0 6Ì csp

insym Iegal A N ref M.

rIn ] )

rdM i

A ])(inn_M_. -) insym r^legal A N ref M. { Iao

(inn_M. -) Ínn_ref_M.

(transput -) inn M

0 i)

Ida 0 rdMiilda0 5i
csp rIn ] )

Productions to recognize expressions

- productions defining tlegalt and rrlegall

are added to the system dur ing the

processing of decLarations (AZ - 464)

- !'lhenever a value is loaded onto the stack
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(fact_M. -> Iegat A N ref M. space T.

I ldoM A i)
(fact_M.Ð constant M-V. space T. { ldcM

(fact M.+ dref M t indM

APPENDIX A

a location is reserved via the symbol

I spacer .

0 Ì)

A9z

493

A94

495

496

Ã97

4.102

A 103

A 104

41 05

A 106

(dref_M_. -) rIegaJ-_A N ref ref M. space T.

I Idoa A ])
498 (dref_M. -> dref ref M. { inda 0 ])

v ])

rparensym)

eqsym exp i. rparensym

exp i. rparensym

{ mpi })

{ and })

499 (fact M. + lparensym exp M.

4100 (fact b. + lparensym exp i.
4101 [ equi i)

(fact_b.l lparensym exp 1. nesym

t neqi i)
( berm_M. -) f act_M. )

(term_i. -) term_i. starsym f act_i.
(term_b. -) term_b. starsym fact b.

4107 (exp_M. -) term_M.

4108 (exp_i. I exp_i.

4109 (exp b. + exp b.

)

plussym term i.
plussym term b.

{ adi Ì)

{ ior i)

Productions to process the assignment statement

These are grouped into the three categories

of assignment depending on the syntactic

classes of the source and destination.
( 1 ) the destination mode references a

primitive mode ( syntactic class t legaI t ) ,
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(A110).

(Z> the destination rnode references a

reference to a primitive mode (syntactic

elassrrlegalr), and the source mode is

a reference to the same prirnitive mode

( syntactic class I legaI t ) (there is sueh

a rule for both primitive modes), (4113

A116).

(3) other cases (both souree and destination

have syntactic cl-ass t rlegal r ) ( 41 12,

A119-A125).

Category I productions ensure that the mode

of the source is compatible wibh that of bhe

destination (4123-4125), and dereference the

source if necessary ( A1 1 9-A 1 22) .

4110

4111

A1 12

4113

A114

41 15

A116

41 17

A11g

A11g

A 120

4121

( assignment -à

t sroM

Iegal A N ref M. becomessym exp M.

A Ì)

becomessym

(assignment -) assderef AD^MS { sroa AD })
(assignment -) rlegaI AD ND ref ref i. becomessym

J-ega1 AS NS ref i.

I lao AS ] t sroa AD ])
( a ssi gnment -) r1 egal_AD_ND_re f_ref_b .

legaI_AS_NS_ref_b.

i lao AS i i sroa AD i)
(assderef AD^MS. + assde:'ef AD^ref MS.

{ inda 0 })
(assderef AD^MS. -> refass AD MD ^AS MS.
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4122

A123

A 124

4125

a,126

4,127

A 128

A129

41 30

A 131

4132

A 133

A134

A 135

A 136

A 137

{ rao AS })
(refass_AD_MD_

beeome s sym

(refass AD MD^

^AS_MS_. + rIegaI_AD_ND_ref_MD.

rIegaI_AS_NS_MS. )

AS MS.+ refass AD ref MD^AS ref MS.)

Produetions allocating IabeIs for p-code

( sym_

( lab

$$$$$$. -) )

T. + sym T.

Idelete_production,(sym_T. Ð )]

Iadd production, (sym $T. + ) ] )

Productions that allocate identifier addresses

(Ioc $$$$$$$$$. + )

(addr_T. Ð Ioc_T.

Idelete_production, (Ioc_T. I )]

Iadd_production, (Ioc_$T. Ð ) ] )

Productions to reserve space for temporary vaLues

(count_$$$$$. + )

(space T. + count_T.

I delete_production, ( count_T. -à ) ]

Iadd production, ( count $f. -, ) ] )
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The initial produetion

Paseal based on record

(programme >

(progheader >

set

and

for a

bloek

subset of

st rueture

GoaI Produetion

P000 (goal >

Productions to Reeosnize a Proeram

P00 1

P002

spot sym )

semicolonsym)

Produetions to Proeess Bloek Structure

-the
fhe

trailing

depth of

string in LEVEL identifies
nesb i ng

P003

P004

P 005

P006

P 007

P008

( blokk >

Idelete produetion,(leveI $t. >

Iadd_produetion,(Ievel_L. >

( level $$. >

(bloek >

labpart eonstpart typepart varpart pfpart stpart)

Produetions to Proeess LabeI Declarations

P009 (Iabpart >
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P010

P01 1

P 012

P013

P014

P015

P01 6

P017

P018

P01 g

P0 20

PO21

P022

P023

P024

P025

P026

P027

P028

PO2g

P030

P03 1

P03 2

APPENDIX B

( labpart >

( deelabs ->
(declabs >

( labdee >

I delete_production,

( labIegaI_L_V. >

Idelete_production,(goal >

Icontinue]

Iadd_aetion,

( bloek >

varpart pfpart stpart),

Iadd_productÍon,

' ( lablegal LLLL V. >

I delete produetion,

(labIega1 LLLL V. >

Icontinue]

I add_ae t ion ,

(bloct< >

varpart pfpart stpart) ,

I delete_produetion ,

(Iablegal L V. >

Iadd_produetion,

(Iablegat L V. >

Produotions to Proeess Type Declarations

atype_N:T. matches a type T with name N

atype_:T. matches an anonymous type T

setype T. matches a scalar type T
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P034

P035

P036

P 037

P038

P039

P040

P04 1

P042

Po43

P044

P045

P046

P047

PO4B

P04g

P050

P05 1

P052

P053

P 054

P055

P056

P057

PO5B

P05g

APPENDIX B

(typepart >

( typepart >

(deetypes -) typedec)

(dectypes -) deetypes semieolonsym typedee)

( typedee >

Idelete_produetion, (atype_XXXX. >

Idelete_produetion, (goaI >

I eontinue]

I add_aetion ,

(block >

varpart pfpart stpart) ,

Iadd_produetion,

' ( atype XXXX. >

Idelete_produetion,
(atype XXXX. >

I continue]

I add_act ion ,

(bIock >

varpart pfpart stpart) ,

I add_produetion ,

'(legal XXXX. >

Idelete_produetion,
(Iegal XXXX. >

I eo nli nue ]

Iadd_aetion,

( bloek >

varpart pfpart stpart) ,
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P06 1

P062

P063

P064

P065

P066

P067

P068

P 069

P070

P07 1

PoT z

P073

P074

P075

P076

P077

poTB

P07g

P080

P08 1

P082

POB3

POB4

P0g5

P0g6

p oBZ

APPENDIX B

Iadd_produetion,

'(funec XXXX. >

Idelete_produetion,(funee XXXX. >

Ieontinue]

Iadd_aetion,

(b1ock >

varpart pfpart stpart) ,

I add_production,

'(procc XXXX. >

Idelete_produetion, (procc_XXXX. >

Icontinue]

Iadd_aetion,

( block >

varpart pfpart stpart) ,

I de]-ete_produetion,

( atype N t- | t. -, name N L$P. ) I l

Iadd_production,(atype Nt-lt. -, name N L$P.)])

( typedee >

Idelete_production, (atype_XXXX. >

Idetete_production, (goal >

I cont i nue ]

I add_act i on ,

( bloex >

varpart pfpart stpart) ,

I add_production ,

' ( atype XXXX. >

Idelete_production,(atype XXXX. >
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P099

P 100

P101

P 102

P103

P104

P105

P 106

P107

P 1OB

P 109

P110

P111

P 112

P113

P114

P115

APPENDTX B

I continue ]

Iadd_action,

( block >

varpart pfpart stpart) ,

Iadd_produetion,

' ( Iegal XXXX. >

I delete_production, ( Iegal XXXX. >

I eont i nue ]

Iadd aetion,

( bIoek >

varpart pfpart stpart) ,

I add production,
r(funcc XXXX. >

I delete_production, ( funce_XXXX. ->

Icontinue]

Iadd_action,
( block >

varpart pfpart stpart) ,

I a d d_pr o d ue t i o n ,

'(proee XXXX. >

Idelete_production,(proce_ XXXX. >

Icontinue]

Iadd_action,

( bloek >

varpart pfpart stpart) ,

[ôeIet,e_production,

(atype N:-rIT. >

Iadd produetion,
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P116

P 117

P118

P11g

P 120

P 121

P 122

P 123

P124

P 125

P 126

P 127

P 128

P 129

P 130

P 131

P 132

P 133

P 134

APPENDIX B

( atype N: -r l T. >

Iadd production, r(reename >

(atype int:-lint. >

( atype real: - l reaI . >

( atype char: - l ehar. ->

( atype bool: - I bool. >

(sctegal int. >

(seIegaI char. >

( selegal bool. >

(subrange_N. -) conslt_N-VV. rangesym constt

( atype char: - | char. -) subrange char. )

(atype bool-:-|booI. >

( abype int: - I int . >

( sctype int . >

( sctype ehar. -) atypeX: - | ehar . )

( sctype_bool. >

(abype :-lset T. >

N-Vlrr. )

Productions to Proeess Variable Declartions

(but not of structures that eontain

eomponents of type record)

-the template symbol IegaI N:T. matches a declared

identifier of type T that is named N

-the template symbol legal :T. matehes a declared

ident,ifier of the anonymous type T
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P 139

P 140

P141

P 142

P143

P 144

P145

P 146

P 147

P 148

P 149

P 150

P 151

P 152

P 153

P 154

P 155

P156

P 157

P15B

P 159

P 160

P 161

P162

APPENDIX B

( varpart >

( varpart >

( decvars >

( deevars >

( vdecNT: - iX_; T. >

( vardec >

Idelete_produetion, ( atype XXXX. >

IOetete_produetion, (goaI >

I eontinue]

I delete_produetion, ( legaI XXXX. >

Idelete_production,(goaI >

I continue]

Iadd_action,

(bloek ->

varpart pfpart stpart) ,

Iadd_production,

' ( atype_XXXX. > LLLL$K. ) I l

Idelebe_produetion, ( atype_XXXX. -

Ieontinue]

Iadd_action,

) name N LLLL$K. ) l

(bIoek >

varpart pfpart stpart) ,

Iadd_production,

' ( Iegal XXXX. >

Idelete_production , ( IegaI_ XXXX. >

Icontinue]

Iadd_aetion,

( block >
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P 164

P 165

P166

P 167

P 168

P16g

P 170

P171

P1T2

P173

P 174

P 175

P176

P 177

P 178

P179

P 1BO

P 181

P 182

P 183

P 184

P 195

P186

P 187

P18B

P 189

APPENDIX B

varpart pfpart stpart) ,

Iadd_produetion,

'(funcc XXXX. >

Idelete_production, ( funec_XXXX. ->

Icontinue]

Iadd_action,

( block >

varpart pfpart stpart) ,

Iadd_produelion,

'(procc XXXX. >

Idelete_produetion, (proce_XXXX. >

Ieontinue]

Iadd_aetion,
(bIock >

varpart pfpart stpart) ,

Idelete produetion,(IegalNT:T. >

Iadd_produetion, ( IegalNT: T. >

name N L$P.)ll

N L$p.)l)

(vdecNT:-iL_REM;T. >

Idelete_production, (atype_XXXX. >

Idetete_produrLion, ( goal >

I continue]

Idelebe_produetion, (IegaI_XXXX. >

Idelete_produetion,(goal >

I eontinue]

Iadd_aetion,

(block >

varpart pfpart sLpart) ,
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P 190

P1g1

P 192

P 193

P 194

P1g5

P1g6

P 197

P19B

P199

P20 1

P202

P203

P20 4

P205

P206

P207

P2OB

P20g

P21 0

P211

P213

P214

P 215

P 216

P 217

P21B

P21g

APPENDIX B

Iadd_produetion,

' ( atype XXXX. >

I delete_produetion , ( atype_ XXXX. >

Ieontinue]

Iadd_aetion,

( bloek >

varpart pfpart stpart) ,

Iadd_produotion,

'(1ega1 XXXX. ->

Idelete_produetion, (J-egaI XXXX. >

I oontinue]

Iadd_aetion,
( bIoek >

varpart pfpart stpart) ,

I add produetion ,

r ( funce XXXX. >

Idetete_produetion, ( funcc XXXX. >

I continue]

Iadd_aetion,
( blook >

varpart pfpart stpart) ,

Iadd_produetion,

'(proeo XXXX. ->

I delete_production , ( procc XXXX. >

Ieontinue]

Iadd_aetion,

(bIoek ->

varpart pfpart stpart) ,
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P220

P 221

P222

P 223

P224

P 225

P226

P227

P22B

P 229

P230

P231

P232

P233

P234

P235

P236

P 237

P23 B

P239

P24 0

P24 1

P 242

P2U3

APPENDIX B

Ide]ete produetion, (legalNT:T. -) name N L$P.)ll
L$P.)l)I add produetion, ( legalNT: T. -) name N

Productions to Proeess Deelarations of Variables

with Components of type reeord

(vdecNT:-rlX ;T. >

(vardec >

Idelete produotion,(atype_XXXX. >

I delete produetion , ( goal- >

Ieontinue]

tdelete production,(legal_XXXX. >

Idelete produetion, ( goal >

I continue]

Iadd aetion,

( bloek ->
varpart pfpart stpart) ,

I add produetion ,

'(atype XXXX. >

IOetete_produetion,(atype XXXX. >

Ieontinue]

Iadd action,
( block ->

varpart pfpart stpart) ,

I add produetion ,

'(legaI XXXX. ->

Ide]ete produetion, ( legaI XXXX. >

I eonti nue ]
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P 244

P2u5

P246

P247

P24B

P249

P 250

P 251

P252

P253

P254

P255

P256

P 257

P25B

P25g

P260

P261

P262

P263

P264

P 265

P 266

P267

P26B

P269

PzT O

APPENDIX B

Iadd aetion,
(bLoek >

varpart pfpart stpart),

I add produet j-on 
,

' ( funee XXXX. >

Idelete_production,(funee XXXX. >

I continue]

Iadd_action,

( bl-ock ->

varpart pfpart stpart) ,

Iadd produetion,

'(proce XXXX. -) name N LLLL$K. )ll
Ide]ete_produetion,(proce XXXX. >

Icont,inue]

Iadd_aetion,

( blook ->
varpart pfpart stpart) ,

I Oetete_produotion, ( IegaINT: T. >

I add_produetion,

( legaINT: T. -) narne N L$P.

I add productiotr , t ( re oname >

Idelete_produotion,(recnarne >

(vdecNT:-rlL REM;T. -) vdeeNT:-rlL N REM;T.

Ide]ete_production, ( atype XXXX. ->

I de]ete produetion , ( goal- ->

I continue]

Ide]ete production, ( 1ega1 XXXX. ->
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P271

P2T2

P273

P27 4

P275

P27 6

P27 7

P27B

P27g

P2BO

P2B 1

P2B2

P283

P2B4

P2B5

P286

P2B7

P2BB

P2B9

P290

P29 1

P292

P 293

P294

P295

P z9o

P297

pz9B

APPENDIX B

Idelete_produetion, (goa]- -> programme) l

I continue ]

Iadd aetion,
( bloek ->

varpart pfpart stpart) ,

I add produetion,

' ( atype XXXX. >

I delete_produetion , ( atype_ XXXX. ->

I eontinue]

I add aetion ,

(bloek >

varpart pfpart stpart) ,

I add_produetion,

' ( Iega1 XXXX. ->

I de]ete production, ( J-ega] XXXX. ->

Ioontinue]

Iadd aotion,
(bIock ->

varpart pfpart stpart) ,

I add produetion,
r ( fun ee XXXX. >

Ide]ete production, ( funee XXXX. >

I contÍnue]

Iadd aetion,

(bloek ->
varpart pfpart stpart) ,

I add_production,

'(proeo XXXX. >
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P299

P 300
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P30 4

P305

P3o6

P307

P3OB

P309

P310

P311

P31 2

P313

P314

P315

P316

P317

P31B

P319

P320

P3zl

P322

APPENDIX B

Idelete production, (prooe XXXX. >

I continue]

Iadd aotion,

( bl-oek >

varpart pfparl stpart) ,

Ide]ete produetion,(IegalNT:T. -) nalne N L$P.)ll

Iadd produetion,

( legal-NT: T. -) name N L$P.

I add produetion , t ( reonan]e ->

Produetions to Proeess Proeedure and

Function Declarations

(pfpart ->

(pfpart -> decpfs semicolonsym)

( decpfs >

( decpfs >

(pfdec -) pheader blokk)

(pfdec -) fheader blokk)

(pheader >

procsynr nname N L. parlist PP. semi:ol-onsym

Idelete produetion, (atype_XXXX. ->

t delete productÍon, ( goal- ->

I continue]

Idelete produetion,(1egal_XXXX. >

I de]ete produetion , ( goal ->

I continue]

Idelete production, (procc XXXX. ->
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P327

P328

P329
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P332

P333

P334
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P336

P337

P33B

P339

P340

P341

P342

P343

P344

P345

P346

P347

P34B

P349

P3lo

APPENDIX B

Ide]-ete_produetion, ( goaI ->
I oontinue]

Ide]-ete produetion, ( f unee XXXX. ->

Idelete produetion, (goal ->
I continue]

Iadd aetion,

( bloek ->
varpart pfpart stpart) ,

I add produotion ,

'(atype XXXX. ->

Idelete_production, ( atype_XXXX. ->

I continue]

Iadd aetion,

( bIoek >

varpart pfpart stpart) ,

Iadd_produetion,

'(legaI XXXX. >

Ide]ete_produetion, (1ega1_XXXX. >

I continue]

Iadd aetion,
(blosk >

varpart pfpart stpart) ,

Iadd_production,

' ( funcc XXXX. >

Ide]ete produetion, (funec XXXX. ->

I continue]

Iadd_action,
(bloek >
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P35 1
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P 355

P356

P357

P358

P359
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P361
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P364

P365

P366

P367

P36B

P369

P370

P37 1

P37z

P37 3

P3 74

P37 5

P37 6

P377

P37 B

APPENDIX B

varpart pfpart stpart),

Iadd_production,

'(proec_XXXX. >

Idelete_produetion, (proce XXXX

LLLL$K. ) ] ],

I conti nue ]

Iadd_produrtion, (proee P. >

Iadd_aotion,

( blook >

varpart pfpart stpart) ,

Idelete_produetion, (procc_P. ->
Iadd_action, (bl-okk >

I add_produetion,

' (block ->
varpart pfpart stpart) 1 J

I de]ete_produ:tion ,

( blo ek ->
varpart pfpart stpart) l

I add_produetion,

(bloek >

varpart pfpart stpart) l
Iadd_aclion,

( blo ek ->
varpart pfpart stpart) ,

I Oetete_produetion , ( b]okk ->

Iadd aetion,

( blo ek ->
varparL pfpart stpart) ,

Iadd_produetion, t (blokk ->
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P3B4

P3B5

P3 B6

P3B7

P3BB

P3 B9

P390

P39i

P392

P393

P394

P395

P396

P397

P39B

P399

P400

P401

P402

P 403

P404

P405

APPENDIX B

Idelete production,(blokk >

I add produotion , ( blokk >

Idelete_produetion, (Ieve]_L. ->)l
Iadd produetion, ( IeveI $l-. ->

( fheader >

eolonsym sctype T. selnieol-onsym

Idelete production,(atype_XXXX. >

I delete production , ( goaI - >

I continue]

Idelete production, ( Iegal_XXXX. >

Idelete production, ( goal >

I eontinue]

Ide]ete produetion, (proee XXXX. >

I de]ete production, ( goal >

I continue]

Ide].ete produetion,(funee_XXXX. >

I delete produetion , ( goal - >

I continue]

Iadd_aetion,

(bloek >

varpart pfpart stpart) ,

Iadd produotJ.on,

' ( atype XXXX. >

I delete production , ( atype XXXX. ->

I continue]

I add aotion,

(block >
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P407
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P40g

P410

P411

P412

P413

P41 4

P41 5

P416

P 417

P41B

P41 g

P420

P 421

P422

P 423

P 424

P 425

P 426

P427

P 428

P429

P43o

P43l

P43z

P433

APPEND]X B

varpart pfpart stpart) ,

I a d d_pr o d u e t i o n ,

' ( legal_XXXX. ->

Idelete_produetion, ( 1ega1 XXXX. >

I oontinue]

Iadd_aetion,

(bloek >

varpart pfpart stpart),

I add_produetion ,

t ( func e_XXXX. >

I de]-ete_production, ( funec XXXX. ->

Ieontinue]

Iadd_aetion,

( bIoek >

varpart pfpart stpart) ,

Iadd_produotion,

'(proec_XXXX. >

Idelete produetion, (proce XXXX. ->

I continue]

Iadd_produetion,(funee P:T. >

LLLL$K. ) ]

LLLL$K. ) ]

LLLL$K. ) ]

L$P. ) l

I add_aetion,

( bIoek ->

varpart pfpart stpart) ,

I delete_produetion, ( funee_P : T .

I add. action , ( bIokk ->

Iadd_production,

'(bIook >

varpart pfpart stpart) I J

175

N LgP.)ll

typepart



P434

P435

P436

P 437

P43 g

P439

P440

P441

P44 2

P443

P444

P445

P446

P447
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P449
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P 451

P 452

P453

P45 4

P455

P456

P 457

APPENDIX B

I delete_produetion ,

( bloek >

varpart pfpart stpart) J

Iadd_produetion,

( bIock ->
varpart pfpart stpart) J

Iadd aetion,
( blo ek ->

varpart pfpart stpart) ,

Idelete_produetion, ( blokk ->
Iadd_aotion,

( blo ek ->
varpart pfpart stpart) ,

Iadd_produetion, I (btoXX ->

Idelete_production, ( bIokk >

Iadd_produotion, (bIokk >

I Oetete_produetion , ( leve]- L. -> ) l

I add_production, ( ]evel_gL . >

Iadd_produetion, (dest_:T. >

Iadd_aetion,

( bIoek ->

varpart pfpart stpart) ,

Idelete_produetion, (dest :T. >

(parlist $. >

Produetions to Proeess Statements

P45B ( st,part >
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P473
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P475

P476

P 477
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P4B4

P485

P4B6

APPEND]X B

( stlist >

(stlist ->

( statement ->
( lbaIst >

(1ba1st >

(elemst ->

(baIst >

ifsyrn exp booI. thensym lbalst elsesym lbaIst)
( balst ->
( elemst ->
( elemst >

tosym exp T. dosym Ibalst)
( elemst >

downtosym exp T. dosym lbalst)
( bal- st >

(elemst -> assignmenL)

( elemst >

(elemst ->

( elemst >

( elemst >

( Istt ->

( l-stt ->

( stt >

( stt >

( stt ->

( stt ->

( assignment >

( assignment ->
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P48g
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P49l
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P494

P49 5

P4g6

P 497

P4 9B

P49 9

P500

P50 1

P502

P5o3

P50 4

P505

P506

P507

P5OB

P509

P51 0

nest

P51 1

P512

P513

APPENDIX B

( assignment ->
(dest_X. >

( nest $$. ->
( casest >

IOetete_produetion, ( nest_$D. >

Iadd_produotÍon, (nest_D. -) )])
( ohoiee >

( casenest >

I delete_production, ( nest_D. >

Iadd_production, ( nest_gD. -> ) ]

I add action, ( easest >

seLect T. endsym)

$DD. ),
Iadd_production,

' ( choice ->
select_T. endsym)Jl

I delete_produetion,

(choiee >

easenest sclegal T. ofsym select T.

Iadd. production,

( ehoice >

easenest selegal-T. ofsym select-T.

I add aetion ,

( ehoice >

easenest selegal T. ofsym seleet T.

I delete_produetion, (.3asest -) 'choice

$DD.)ll

Iadd_aetion,
( choiee >

easenest sclegal T. ofsym seLeet T.

endsym ) J

endsym) J

end syrn ) ,
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P525

P526

P52T

P528

P 529

P530

P53 1

P532

P533

P534

P535

P536

P537

P53B

APPENDIX B

Iadd_produetion, t (oasest ->

Idelete_produetion, ( easest ->

Iadd_produetion, ( easest >

(sel-eot_T. -) eonstlist_T. colonsym statement)
(seleet_T. >

eolonsym statement)

(constlist_T. -) eonstt_T-V. nest D.

Iadd_aetion, (triple_D_V. >

Idelete_production, ( goa] ->
I continue]

Iadd_production, (trip]e_D V. ->

Iadd_action,

(choiee ->

easenest sclegaJ_ T. ofsym seleet_T. endsym),

Idelete_produetion,(triple D V. ->
( eonstlist T. >

eonstlÍst_T. commasym eonstt

Iadd_aotion, ( triple_D_V. ->
Idelete produetion, ( goal ->

_T-V. nest_D.

),Icontinue]l
programme) l

I eontinue]

Iadd_produetion , ( triple_D_V. ->

Iadd_action, ( ehoice ->

easenest sclegal_T. ofsym seleet_T

I delete_production, ( triple_D_V. >
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