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Abstract

In this thesis I develop mathematical models of commercially exploited populations.
I address the question of how to harvest a predator-prey metapopulation. Optimal
harvesting strategies are found using dynamic programming and Lagrange multipli-
ers. Rules about harvesting source/sink subpopulations, more/less vulnerable prey
subpopulations and more/less effi.cient predator subpopulations are explored.

The results suggest that if one of the prey subpopulations is a relative source and

exporter subpopulation then we should protect the relative source prey subpopulation
in two ways: directly, with a higher escapement for the prey, and indirectly, with a

lower escapement of the predator living in the same patch with this prey subpopulation.
On the other hand, if there is no exporter/importer and source/sink hierarchy, and

there is no biological variability except the vulnerability of the prey, then we should

harvest the less vulnerable prey subpopulation more conservatively than the other
prey subpopulation which is more vulnerable to predation. This is intuitive and agrees

with a belief held by many fishery biologists that we should be more protective in
dealing with critical subpopulations, such as those act as source subpopulations and

those living in spawning and refugial areas. Furthermore, if the prey vulnerabilities of
the two prey subpopulations are exactly the same, but the predator efficiencies differ
between the two predator subpopulations, then we should harvest the prey living in
the same patch with the relatively more efficient predator more conservatively than the
other prey subpopulation. This result suggests that if the predator has a high biological
efficiency, then we should leave enough prey to sustain the predator population. This
rule is more apparent when the predator species more valuable than the prey species. In
this case, a 'negative' harvest of the prey species might be optimal. A negative harvest
might be considered a seeding or feeding strategy. This is not surprising considering
the "bioeconomic role" of the prey population which can'be converted into a more
economically valuable species through the predator-prey interaction. I also discuss the
costs of not harvesting the population properly, that is, if we did not realise that the
population was a metapopulation.
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Chapter 1

Introduction

Human demands on resources have depleted world fish stocks. An example is the
depletion of Antarctic blue whales, Balaenoptera rnusculus, to the edge of extinction,
until the International Whaling Commission (IWC) banned the blue whale fishery in
1965 (Clark, 1990). The depletion of the Antarctic blue whale is an example of a

negative effect of human exploitation on a renewable resource. To avoid unwanted
impacts of the exploitation of natural resources, we need to guide their utilisation.
In the case of fish and marine mammal exploitation, prudent fisheries management is

needed.
Substantial efforts have been invested in science and research to obtain better

management of the fishery industry (Parma et a\.,1998). However, mismanagement,
over-fishing, and even stock collapse, have occurred in the industry (Danielson, 1997;

Symes, 1997; Botsford eú al., 1997). Some fishery scientists believe that the major
factors in the collapse of the fisheries industries are economic and political factors

(Ludwig et al., 1993; Holmes, 1994; Healey and Hennessey, 1998). Other scientists

argue that other factors, such as unsound biological recommendations given by scient-

ists, might equally have driven the fisheries to these undesirable situations (Daniel-
son, 1997). For this reason, a much broader appreciation of general environmental
and ecological conditions need to be acknowledged and accounted for in the process

of management formulation (Frank and Leggett, 1994; Symes, 1997; Botsford et al.,

1997; Roughgarden, 1998).

Parma et al. (1,998) pointed out that we may fail to recognise all possible factors
that regulate the nature of biological resources, let alone include all of them in the pro-
cess of management formulation. However, major factors that have significant effects

on the dynamics and distributions of the resources have to be included. One of these

factors is predator-prey interactions, which is increasingly credited as a factor which
must not be excluded in understanding and managìng biological populations. This is

because of its role in regulating the nature of the populations (Jansen, 1994; Reynolds

and Tapper, 1996; Christensen, 1996; Agnew, 1997). This is obvious for rÀarinepopula-
tions, since most exploited marine populations are part of a predator-prey interaction.
Many fish prey on other fish and most species are preyed on, especially in their juven-

ile stage (Larkin, 1979; Getz and Haigh, 1989). Furthermore, many fishing industries
target more than one species so that both species of predator-prey interaction may be

harvested.
The exploitation of multi-species fisheries, such as fisheries with predator-prey

interactions between species, is not well understood (Clark, 1976a; Stroud and Clepper,
1979; Goh, 1980; Pauly and Murphy, 1982; May, 1984; Hilborn and Walters, 1992).
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Many scientists point out that appropriate policies for fisheries management are only
possible if we have a comprehensive understanding of the underlying systems which
are exploited (Yodzis, 1994; Botsford et a\,,1997). They also argue that management
practices could be improved if we include interactions betu'een species in developing
multi-species models (Hall, 1998). For this reason) a numbel of scientists have tackled
problems on predator-prey interactions in fisheries management (Larkin, 1966; Brauer
and Sanchez, 1975; Brauer et al., 1976; Clark, 1976a; Blauer and Soudack, 1978;

Beddington and Cooke, 1982; Beddington et a1.,1985; Mesterton-Gibbons, 1988, 1996;

Ströbele and Wacker, 1991; Murphy, 1995; Azar et al., 1995; Degee and Grasman,
1ee8).

To improve our understanding of the exploitation of multi-species fisheries, in-
cluding those having predator-prey interactions, we need to delineate all factors that
may affect the decision on how we should manage those fisheries, and include these
factors into models of the fisheries. Spatial heterogeneity is recognised as a factor that
needs to be taken into account in population modelling in general (Rosen, 1977; Shukla
and Das, 1982; Allen, 1983; Takeuchi, 1986; Wilson et a1.,1995; Cantrell and Cosner,
i99S) and in fisheries modelling in particular (Beverton and Holt, 1957; May et a1.,,

1979; Clark, 1984, 1985c; Brown and Murray, 7992; Frank, 1992; Frank and Leggett,
1994). The inclusion of spatial heterogeneity in fisheries modelling may improve de-

cisions in the management of those fisheries (Tuck and Possingham, 1994; Pelletier and

Magal, 1996; Brown and Roughgarden, 1997; Botsford et a1.,1997).

The two most common frameworks for understanding the effects of spatial hetero-
geneity in ecological modelling are metapopulation theory and diffusion theory (Allen,
1983; Taylor, 1991; Nisbet et a1.,1993). Metapopulation theory assumes that suitable
habitat exists in discrete patches while diffusion theory assumes spatially continuous
habitat (Crowley, 1981). A population can be called a metapopulation if it has local
populations (subpopulations) that are connected by dispersal of individuals. Hanski
and Gilpin (1991) defined a local population as a group of individuals living in the
same patch (habitat) and these individuals are different flom the rest of the popu-
lation. Metapopulation models can include variation between patch characteristics,
e.g. patch size and patch quality, and between properties of local populations, e.g.

fecundity and mortality (Day and Possingham, 1995).

All marine populations show some degree of spatial heterogeneity. For example,
benthic marine invertebrate populations in which the species occurs in several isolated
subpopulations of sessile adults that are connected by movement of their pelagic larvae.
Sometimes this spatial heterogeneity means that modelling the species as one single
population is not adeqtrate. For example, abaione, Haliotis rubra, has a metapopulation
structure with local populations connected by the dispersal of their larvae (Prince et al.,

1987, Prince, 1992). Brown and Murray (1992) and Shepherd and Brown (i993) argued
that management for abalone should depend on the charactelistics of local populations.
Frank (1992) provided another example of metapopulation structure. He pointed out
that fish stocks like the cod of Iceland and West Greenland rvhich are separated by a
Iarge distance, and the two haddock stocks of the Scotian Shelf, are strongly coupled by
the dispersal of individuals. He also suggested that those stocks possess the property
described by Sinclair (1938) and Pulliam (1988), that is, pelsistence of the population
in a sink habitat can be maintained by the migration from a source habitat (sink
and source habitat are defined precisely in the next chapter). Furthermore, Frank
and Leggett (1994) argued that the collapse of major flsheries such as North Atlantic
cod and Atlantic and Pacific salmon, may due to the over-exploitation of the source
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population. If there is more than one subpopulation, a catch at a fixed rate can
maintain the size of one subpopulation at a certain sustainable level, but, at the same
time it may cause the size of the other subpopulation, for example the population with
a lower larval production, to decline (Policansky and Magnuson, 1998).

Despite the importance of spatial heterogeneity, increasing the complexity of a
population model by adding spatial heterogeneity is rarely done in fishery management
modelling, even for single-species (Clark, 1934). Exceptions are Clark (1976a) and Tuck
and Possingham (1994) for a single-species, and Hilborn and Walters (1987), Leung
(1995), and Murphy (1995) for multi-species. Hilborn and Walters (19S7) and Leung
(1995) are the only authors who simultaneously considered spatial structure, ecological
interactions and harvesting in their model.

In this thesis I present some models for spatially-structured predator-prey pop-
ulations. I address the issues of spatial structure and predator-prey interactions, and
study optimal harvesting for the populations. These issues are very important in the
development of prudent management for the exploitations of natural resources. The
work in this thesis explores two common features of biological populations simultan-
eously: biological interactions and spatial structure. It includes relevant features that
occur in most fish populations, that is, predator-prey interactions, and takes into ac-
count the existence of the exchange of individuals between subpopulations, which is a
common phenomenon in nature (Parma et al., 1998). To illustrate the need for this
kind of work, Parma et al. (1998) emphasised two of the ways in which a population
model can be incorrect, that is, it either ignores the biological interactions between
species, or ignores the spatial structure of the species.

I use a metapopulation approach to describe the spatial structure of the predator-
prey system. The metapopulation approach is a framework within which we can study
the movement of individuals between local populations and the consequences of this
movement for the metapopulation, in this case for the optimal harvesting strategies
of the metapopulation (Burke et al., 1995). Using this approach, differences in the
characteristics of local populations, like fecundity, mortality, vulnerability to predation
etc, can be modelled explicitly. I obtain the optimal harvest for each local population
which tells us how we should harvest a population if the management can be different
for local populations. I use the same methods used by Tuck (1994) and Tuck and
Possingham (1994) to build a single-species population model using coupled difference
equations. They found the optimal harvesting strategies for the system using dynamic
programming and the method of Lagrange multipliers, and they developed some rules
of thumb on how to deal with source/sink and exporter/importer local populations.
A similar approach is used in this thesis to find the optimal harvesting strategies for
predator-prey metapopulations. Their rules of thumb for harvesting a single-species
metapopulation are examined when predators are added to the system.

Thesis summary
Chapter 2 reviews the literature on predator-prey theory and harvesting theory. The
chapter is intended to give some background about the concepts and definitions that
are used in the subsequent chapters in this thesis. Results for the single-species popu-
lation and the single-species metapopulation harvesting theory are discussed in detail
to enable me to compare the results in this thesis with those previous results for single-
species populations and single-species metapopulations. I derive optimal escapements
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for a discrete-time one-patch predator-prey population and discuss these escapements
in details in Chapter 3.

In most of the thesis the model in Chapter 3 is extended to include spatial-
heterogeneity in a variety of ways. Chapter 4 considers a model for a two-patch
predator-prey metapopulation where the predator-prey interactions occur in the ju-
veniie life-stages of the populations and the two patches are connected by the dispersal
of juveniles. I then determine the optimal harvesting strategies for this predator-prey
metapopulation. The strategies are compared to strategies where spatial structures are

ignored, such as strategies from an unconnected two-patch predator-prey population
and a well-mixed predator-prey population.

I also investigate optimal harvesting strategies for other predator-prey metapop-
ulation models, the rationale is that I want to know how different, or how robust, the
results presented in Chapter 4 are to the kind of interactions between the populations.
Chapter 5 considers two-patch predator-prey metapopulations where the predator-prey
interaction occurs in the adult life-stages of the populations and Chapter 7 considers
two-patch predator-prey metapopulation where the adults migrate between patches.

In nature the juveniles of many exploited populations experience a delay in joining
the adult class. In Chapter 6 I extend the predator-prey model in Chapter 5 by
including a recruitment delay in juvenile recruitment to the adult class. Two different
models of delay-recruitment predator-prey metapopulations are discussed. The first
model assumes that the delay is related to the patch where the juveniles migrate and the
second model assumes that the delay is related to the patch where the juveniles come

from. Furthermore, in Chapter 7 I generalise the predator-prey model in Chapter 5

by including adult migration with M subpopulations. The last chapter in this thesis
(Chapter 8) concludes the main results in this thesis, discusses how they relate to the
previous results in harvesting theory, and suggests future directions for research.
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Chapter 2

Review

In this chapter I review the literature on predator-prey and renewable resource ex-
ploitation, emphasising a modelling perspective. I introduce the concepts, definitions
and notations that are used in the subsequent chapters, then I defrne the concept of
a "metapopulation". In general, this chapter shows that optimal harvesting strategies
for spatially-structured predator-prey populations have not been addressed explicitly.
I begin the review with the following discussion on predator-prey theory followed by
the review of the contribution of the concept of metapopulation to the development of
the theory.

2.L Predator-prey theory
Before I proceed further with the review of predator-prey population theory, I will
define the following terms: population and predator-prey interaction. A population
is a group of conspecific organisms living in the same place at the same time (Krebs,
1985; Smith, 1986). A predator-prey interaction is an interaction involving two or
more species in which one or more species acts as predator and the other acts as

prey. A predator is an animal that survives and reproduces by killing and eating
other animals, while a prey is an animal that is killed and eaten by the predator.
A more general definition of a predator-prey interaction is given by May (1976), who
defined a predator-prey interaction as an interaction in which the number of one species

becomes smaller due to the increasing number of the other species. Some predator-prey
models are reviewed in the next section followed by the discussion of the role of spatial
heterogeneity in the deveiopment of predator-prey theory.

2.L.L Early development of predator-prey population theory
Early studies on predator-prey systems can be traced back to the work of Lotka (1925),
Volterra (1926) and Gause (1934). Classic questions in predator-prey systems concern
long-term behaviour of the interaction. For example, how many predators and how
many prey will exist in the future if the initial conditions are known? Will the prey
become extinct or will it survive? Is there a co-existence condition? If there is, what
happens if predator or prey are added into the system? Is the system dynamically
stable? (Luckinbili, 1973; Maly, 1975).

Gause (1934) studied the interaction between Paramecium and Di,dinium and
showed that there are three different kinds of population dynamics arising from three
different treatments of his laboratory experiment using one predator and one prey. In
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the first experiment the predator became extinct. In the second experiment both spe-

cies became extinct, and the third experiment showed that the number of each species

oscillates. In fact, before Gause (1934) showed that the number of individual prey and

its predator oscillate, Volterra (1926) predicted this behaviour using a mathematical
model.

Volterra's (1926) predator-prey model is deterministic. It assumes that the
growth of prey without the presence of predators is exponential, and the growth of
predators in the absence of prey is exponential decay. Furthermore, the number of
prey which is consumed by the predator is assumed to be proportional to the product
of the number of prey and predators, and the birth rate of the predators is also assumed

to be proportional to the number of the prey which are consumed. The model takes

form as a system of two differential equations

(2 r)

dP
dt 

: (-b+ PN)P, (2.2)

where l{ is the number of prey, P is the number of predatots, a is the per-capita rate
of increase of the prey in the absence of the predators, aly' describes the number of
prey which is consumed per predator per unit time, ó is the per capita rate of the
predator decay due to the dependency on the prey, and B1l describes the per capita
rate of predator production. Nicholson and Bailey (1935) proposed a discrete-time
analog for host-parasitoid interaction similar to the Volterra's model. Becker (1973)

provided some examples of stochastic predator-prey models and also explained some

comparisons between these models and their analogous deterministic models.

Volterra's predator-prey differential equation system has a family of closed loops

as its solutions which means that the number of individuals of both species fluctuates
periodically. Different initial conditions may produce a different loop. In other words,

its equilibrium exhibits neutrally stable cycles, and its solution depends on the initial
value (see Figure 2.1.a). Volterra (1926) was able to use his model to explain rvhy the
selachians in the Adriatic Sea, which feed on some commercial fishes, have increased

during the Word War L During this time, fishing on commercial flsh species almost

completely ciosed. The closure of the flshery provided an abundance of food for the

selachians, and caused a dramatic increase in their population size.

Although the Lotka-Volterra model can be regarded as an advance in ecological
modelling, it does not satisfy many ecologists. Maynard-Smith and Slatkin (1973)

pointed out three reasons why it is not satisfactory. First, in the Lotka-Volterra equa-

tions there is an assumption of continuous breeding for both predators and prey which
is dependent on the rate of food intake, hence, there is no delay time between con-

sumption and reproduction. Second, the assumption that the rate at which prey are

consumed is proportional to the product of the density of prey and predators is too
simple. Third, the absence of some upper limit to the number of prey in the absence

of predators.
The Lotka-Volterra model has been revised by modifying equations (2.1) and

(2.2). In the original Lotka-Volterra model the growth of the prey in the absence of
the predator is assumed to be exponential, while the predator, in the absence of prey,

experiences exponential decay. If it is assumed that there is a carrying capacity, K, in
the growth of the prey without the presence of the predator, then the model is more

dN
dt

: (a - aP)N,
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Lotka-Vol-terra model Lesl-ie model-

Figure 2.1: The phase diagram for Lotka-Volterra predator-prey model with
parameters a : t, b : 7, a : 0.1, and B : 0.09 with certain initial values

(Figure 2.1.a). Figure 2.1.b is the phase diagram for a Leslie predator-prey
model with prey carrying capacity 1( : 100 with all other parameters as in
Lotka-Volterra model.

realistic; now the growth of the prey can be written as

dN ¡\/.
i: rr(1 - i)* - alPN (2 3)

The solution for this model will be different from the solution in the original Lotka-
Volterra model. With this modification the Lotka-Volterra system of equations (2.2)
and (2.3) has a stable equilibrium. Another modification of the predator equation,
suggested by Leslie (1948), has the form

dPP
E: s1P(1 - ft'ñ)' (2.4)

The system of equations (2.3) and (2.a) still has a stable equilibrium point (Berryman,
1992; see also Figure 2.1.b).

A predator-prey system can be described in a general form

dN
ã : /(1v)^/ - s(N , P) P, (2.5)

dP
d, 

: €7(N,P)P - ¡tP (2.6)

(Ginzburg and Akçakaya, 1992; see Freedman (1980) for other forms of the general
predator-prey model). In the Lotka-Volterra equation, 9(l/, P) : oN only depends on
the number of prey population. In some cases it may depend on the number of the
predators and other parameters. 

-The 
function g is called the "functional response"

or "trophic function" while eg is a "numerical response" (with trophic efficiency e)

which describes the per capita rate of prey attacked by and the per capita rate of birth
of the predator as a result of eating the prey, respectively (May, 1976; trhrlich and
Roughgarden, 1987).

Some generalisations of the Lotka-Volterra equation have been carried out using
various functional and numerical responses. This work was pioneered by Holling (1959,
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1965) and Ivlev (1961) who showed the significance of these responses to predator-prey
dynamics. A realistic model of a predator-prey system becomes more complex when
the functional and numerical responses are non-linear functions of prey density. In
extended models, the functional response can be a function of prey density, rate of
searching, time during which the prey are exposed to the predator, and time spent
for the predator to handle each prey (Glen, 1975). Other assumptions are introduced
in further studies of predator-prey systems, for example prey refuges and cannibalism
(Colling, 1995; Kohlmeier and Ebenhoh, 1995). The following section discusses the
effects of spatial heterogeneity on the qualitative dynamics of predator-prey systems.

2.t.2 The role of spatial heterogeneity in predator-prey dy-
namics

The Lotka-Volterra equations assume that the population distribution of predator and
prey are spatially homogeneous. This leads to an oscillatory solution of the system.
The solution predicts the periodic fluctuation of the population and agrees with many
experimental results (Taylor, 1991). Comins and Blatt (1974) showed that results
from a spatially homogeneous predator-prey system may be different to results from
a spatially heterogeneous system. For example, they studied the effect of predator
and prey movements due to habitat variations and they found that the solution of the
system is no longer cyclical as in the original Lotka-Volterra model.

Despite the importance of spatial heterogeneity in predator-prey systems, Caswell
and Etter (1993) found that few authors have considered this. Some of the authors
who have tackied the problem of spatial heterogeneity in a predator-prey system are

McMurtrie (1978), Voller (1990), Timm and Okubo (1992), CasaI et al. (199a) and
Jansen (1994). Their work was able to explain the stabilisation effect observed in
Huffaker's (1958) experiment, which is otherwise difficult to explained using a spatially
homogeneous predator-prey model. Most of the authors studied spatially-structured
predator-prey populations using diffusion theory, on a one dimensional axis. However,
Sabelis et al. (7991) pointed out that there might be patchy patterns in predator-prey
systems, in which the spatial structure occurs discretely. For this reason, diffusion
theory may be less appealing in describing such a system. A common approach to
modelling a discrete spatial structure for a population is to use the idea of a metapopu-
lation. I discuss the background of metapopulation theory as it applies to predator-prey
systems in the following section.

2.t.3 'What is a predator-prey metapopulation?
In nature many populations are spatialiy-structured and are made up of smaller pop-
ulations inhabiting different patches of habitat known as lo.cal populations or subpop-
ulations. These subpopulations are often connected by movement of individual. (e.g.

dispersal of juveniles, see Figure 2.2). Hanski and Gilpin (1991) used the terrnmeta-
population to refer to a population which has a patchy spatial structure, and defined it
as a population of populations. A metapopulation falls between two extremes of pos-
sible population structures: a well-mixed population and an unconnected collection of
populations (Harrison, 1991; Day, 1995; McCulough, 1996). In a metapopulation, the
interaction between individuals within a patch ("intra-patch interaction") should occur
more frequently than interactions between individuals from different patches ("inter-
patch interaction"). If there is no migration between patches, then the population is a

8



Figure 2.2: A. metapopulation made up of three subpopulations. Lines indic-
ate migration of individuals between patches. Dashes indicate movement of
individuals within a patch. The different sizes indicate that subpopulations

may vary in size and characteristics.

collection of unconnected populations. However, the population is better considered as

a single well-mixed population if migration between patches is very common (Hanski
and Thomas, 1994; Day, 1995).

Early studies of metapopulation dynamics concentrated on the dynamics of patch-

occupancy, that is, the study of extinction and recolonisation of patches or habitats by
the populations, like the study of Levins (1969). Levins (1969) made a clear distinc-
tion between the dynamics of a (regular) population, which deals with the number of
individuals, from the dynamics of a set of populations, which deals with the number
of extant subpopulations. Levins (1969) proposed the model

* : *p(1 - p) - ep, (2.7)
dt

where p denotes the proportion of population sites which is inhabited by a certain
species. This proportion is a function of time l, that is, p: p(t). The rate of local
extinction and colonisation of empty patches is given by e and rn. respectively. The
model assumes that the whole population has a discrete spatial structure, that is, each

subpopulation inhabits a patch with discrete boundaries, every patch is identical, and

the population within each patch is assumed to be homogeneous and well-mixed (Duy,

1995). Although in nature there is no real metapopulation which perfectly meets all
these assumptions (Hanski and Gilpin, 1997), many populations are known to form a

metapopulation structure, to some extent, for example they have several subpopula-
tions and these subpopulations are connected by the dispersal of individuals. Examples
of metapopulations of commercial fisheries are documented in Tuck (1994), some of
them are occupying positions either as prey or predator in complex food-webs as de-

scribed by Jones (1932), Estes and Van Blaricom (1985), Tegner et al. (1989), and

Kojima (1990) [see Table 2.1].

Hanski and Gilpin (199i) noted that Levins' model is analogous to the logistic
model for population growth, that is, equation (2.7) can be written in the form

#: r* - ")p(r - o -A¡ (2 s)
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Organism: Reference:

Sea urchin
Sea hare
Scallop
Copepod
Scotian Shelf haddock
Iceland and West Greenland cod

Abalone
Red sea urchin
North Atlantic cod

Slider turtles
Sturgeon fish
Barnacles
Pacific salmon

Karlson and Levitan, 1990

Pennings, 1991

Orensanz et a|.,7991
Kurdziel and Bell, 1992

Frank,1992
Frank,1992
Shepherd and Brown, 1993

Quinn et aL,1993
Frank and Leggett, 1994

Burke et a1.,1995
Planes et al., 1996

Brown and Roughgarden, 1997

Policansky and Magnuson, 1998

Table 2.1: Some known metapopulations of commercial fish

While Levins' model deals with a single-species, in nature it is possible that one site

or one habitat is occupied by two or more different species which in turn may depend

on each other. A metapopulation which describes this interaction is often called a
metacommunity. I review some models of metacommunities in the following section.

A complete review of single-species metapopulation theory can be found in Giipin and

Hanski (1991) and Hanski and Gilpin (1997).

Some examples of works attempting to understand metacommunities for predator-
prey interaction have been done by Sabelis et al. (1991), Nachman (1991), and Taylor
(1991). Following Levins (1969), Sabelis et al. (1991) studied the extension of Lotka-
Volterra models for predator-prey systems using the number of resource patches oc-

cupied by predators and prey instead of the numbers of the predators and the prey

themselves as state variables. Their equations to describe predator-prey systems in a

patchy environment are 
dN

aN -bNM - cN, (29)
dt

dM
dt:bNM-dN, (2'10)

where I/ and M denotes the number of patches occupied by prey and predator re-

spectively, a denotes the rate of successful colonisation of dispersing prey from prey
population into empty patches. The rate of predator invasion to patches occupied by
prey is bMrwherc ó is a "reaction coefficient", and c and d respectivelyrepresent the
rate of prey and predator population extinction.

Sabelis et al.'s (1991) model is analytically tractable and it has a neutrally stable
equilibrium point. This is not surprising because this system of equations is equivalent
to a Lotka-Volterra predator-prey system which also has a neutrally stable equilibrium
(Sabelis et a1.,1991). Furthermore, they concluded that the stabilising effect on the
global predator-prey interaction may be caused by "u prey dispersal phase of non-
negligible duration" (p. 272). The same result is also suggested by Diekmann (1993).
These two results indicate the significant influence of individual movement between
patches on the dynamics of the whole system.
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Levins' model focuses on the dynamics of subpopulations. Several authors also

consider the abundance of individuals in each subpopulation (St. Amant, 1970; Nis-

bet et ø/., 1993). St. Amant (1970) developed a predator-prey system, to model the

relationship between mussel clumps and starfish, using the system of equations

dN¿

I : a¿N; - a¿N;P¿ r P¡tN¡, (2'11)

+ : -b¿P¿ * þ¿N¿P¿ * q¡;P¡, (2.12)
dt

where 1/¿ and P¿ denote the number of prey and predators in patch i, respectively, and

pj¡ and qj; denote the rate of prey and predator migration from patch j to patch i,
respectively. Assuming the model has a positive equilibrium value, St. Amant (1970)

proved that the hypothetical equilibrium value is stable (Murdoch and Stewart-O4ten,

1975). This result is different from the result of the original Lotka-Volterra model,

which has a neutrally stable equilibrium point (Figure 2.I.a). Therefore, the mi-
gration introduced by St. Amant stabilises the Lotka-Volterra predator-prey system.

St. Amant's model assumes that immigrants only affect the number of animals in the

destination patch and do not interact with the local population in the destination
patch. However, if the interaction between the immigrants and the local population is

taken into account, then migration does not always stabilise the system (Allen, 1975).

Allen (1975) suggested a spatially-structured predator-prey model in which it
is assumed that immigrating predators interact with local prey and local predators

interact with immigrating prey. The model is

dN¿

dt - a¡(p¿¿N¿q¿¡P; I p¿¿N;q¡¡P¡ I p¡;N¡q¿¡P; * p¡;N ¡q¡;P¡)

la¿(p¡¿N¡ * p¡;N¡),,

# : g;(p.i¿N¿q¿oP¿ I p;¿N¿q¡¿P¡ * p¡;N¡q¿¿P¿ I p¡.;N ¡q¡tP¡),

where p;¡ and Ç;¡ denotes the probability of prey and predatol moving from patch i to
patch j, respectively, and i -- 1,2. Unlike St. Amant (1970), in which the equilibrium
point is hypotheticai, Allen (1975) found the equilibrium population size of the system.

In some cases this equilibrium population size might be unstable, howevet, Allen (1975)

believed that this instability is temporary and the orbit eventually will be trapped by

a stable limit cycle (M.y, 1972).

St. Amant (1970) and Allen (1975) assumed that emigration is lumped together

with other parameters. Chewning (1975) introduced emigration explicitly and as-

sumed that the populations may be distributed unevenly, that is, each subpopulation
has different dynamics. However, unlike Allen (1975), in Chewning's (1975) model im-

migrating predators do not interact with local prey and local predators do not interact
with immigrating prey. Chewning's model for a two-patch predator-prey system is

ry : t(¡r, - N;P¡) I p¡;N¡ - p;¡N¡, (2.15)
dt

+ : k?po + N¿pi) r q¡;p¡ - Ø¡p¡, (2.16)dt\
where h¡ arrd Ç;¡ respectively denotes the instantaneous migration rate of the prey and

the predator from patch i to patch i, i : 1,2, i :1,2. The k (k : i) on the right hand

(2.13)

(2.t4)
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side of equations (2.15) and (2.16) is indicating that the populations are distributed
unevenly.

Chewning (1975) found that for a small migration rate between patches, a stabil-
ising effect exists if at least one species migrates from patch one and at least one species
migrates from patch two, that is, p;¡ I q¿¡ ) 0 for i : 1,2 and j : 1,2. Furthermore,
if both patches are identical, that is, p;j : p¡¿ and e¿j : eji,t then the stabilising effects
on the equilibrium no longer exist, but the populations oscillate. Chewning (1975) also
provided some conditions under which the more general k-patch predator-prey meta-
population is stabilised by low migration rates. Zeigler (1977) modified Chewning's
model to include logistic growth of the prey population, similar to Leslie's predator-
prey model.

Other metapopulation models of predator-prey interactions can be found in Auger
and Faivre (1993) and Pogialle et al. (1995), in which they investigated the effects of
migration if it is assumed that animals move from one patch to another patch several
times in certain periods. They expiored the system of equations

dN¡ 
-^.r\t.t(^..A.,, - u,¿lrx -r \pt,,{¡ - p;¡N¿) - (p;¿P¡ * p¡;P¡)N¿, (2.I7)

O,L

dP,

I 
: -b¿P¡ * (q¡¿P¡ - a1P¿) * (q;¡N; * ø¡.iN¡)P¿, (2.1S)

which has quasi-periodic trajectories as the solution.
The original Lotka-Volterra model and all the predator-prey metapopulation

models derived from the Lotka-Volterra model discussed above are continuous-time
population models. In many cases) popuiation systems are more convenientiy mod-
elled by difference equations, especially when biological or non-biological mechanisms
take place periodically, such as seasonal recruitment and periodic exploitation (Basson
and Fogarty, 1996). Many predator-prey interactions have been explored in discrete-
time populations models (Maynard-Smith and Slatkin, 1973; Beddington et al., Lg75;

Beddington and Free, 1976; Hasting, 1984; Neubert and Kot, 1992; Basson and Fog-
arty, 1996). Some of them focus on the effects of expioitation on the dynamics of
predator-prey systems (Basson and Fogarty, 1996). However, the important question
of how to harvest a predator-prey metapopulation has receìved less attention.

In this thesis I study predator-prey metapopulations, in discrete-time determ-
inistic models, emphasising the optimal harvesting strategies of the metapopulations.
The predator-prey metapopulations are extensions of Tuck and Possingham's (1994)

single-species met apopulation

lú1i,+r¡ : aiN¿k * p;;F¡(N¿n) + p¡;F¡(N¡*), (2.19)

to include Lotka-Volterra's predation terms, like those in equations (2.1) and (2.2).
In the following section I review the literature on optimal harvesting and define some
concepts and symbols that I use in the subsequent chapters.

2.2 Bioeconomics modelling in fisheries management
What is fisheries management? Royce (1984) defined fishery management as an action
which uses scientific knowledge for human benefits in connection with the exploitation
of the living resources of the water. This includes marine, estuarine and freshwater
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habitats. In this context, fisheries management science is defined as the body of know-
ledge which relates to the management of living resources in the water. It is an inter-
disciplinary field that includes biologists, economists, politicians and mathematicians
(Cunningham, 1981). This collaboration among scientists from different disciplines has

lead to the emergence of a relatively new body of scientific research - b'ioeconomics,

the science that "deals with the economics of the utilisation of biological resources"

(Clark, 1990; Reed, 1991). In this case, biological resources means resources which

have a capability for regeneration (Conrad, 1980), which is the nature of all living
resources.

There are two different approaches to understanding the phenomena of nature.

Van Dyne (1969) recognised them as conceptual or methodological tools and mathem-
atical or analytical tools. The methodological approach should follow the sequence:

real world problem recognition, hypothesis designing, physical experiment execution,

data analysis, interpretation of the results, and conclusion. While the second ap-

proach, a mathematical approach, needs a model from the abstraction of the real

problem, model analysis using avaìlable mathematical arguments, and interpretation
of the resulting mathematical solution into the original problem (Van Dyne, 1969).

There are advantages and disadvantages in the use of mathematical models as a tool

in resource management, to the extent that Krebs (1985) told us not to use any math-
ematical models to understand the paradigms of population regulation, or at least be

very cautious in believing results from mathematical models (Soulé, 1987). On the

other hand, many influential works in resource management researches use mathemat-
ical models (Hotelling, 1931; Gordon, 1954; Ricker, 1954; Schaefer, 1954; Clark, 1976a;

Reed, 1979). One of the strengths of mathematical modelling is that we can predict

the influence of a change in an external variable, e.g. exploitation intensity, on the

ecological systems which are observed, in this case the resource, without doing a large

scale experiment (Jørgensen, 1983). This prediction may give a better insight into how

we should perform the management of the resource. In this thesis I discuss fishery

management using mathematical models.

What are the precise objectives of fishery management? Cunningham (1981) re-

viewed the evolution of fishery management objectives from classic maximum sustain-

able yield, which is extensively criticised but still very popular in practice, to modern

active-adaptive control management. At least until two decades ago) the practice of re-

newable resource management was based on the concept of Maximum Sustainable Yield
(MSY). This concept was first proposed by Graham (1935), the idea being to obtain the

maximum steady state harvest. Ricker (19a6) called this harvest a maximum sustain-

able yield and Schaefer (1954, 1957) formalised the concept mathematically. Despite

the common practices of MSY as an objective in managing renewable resources, the

concept of MSY itself received many critics for numerous reasons (Roedel, 1975; Clark,
1g76a; Larkin, t977; l/lay et al., 1979; Cunningham, 1981; Eltringham, 1984). con-
rad and Clark (1937) listed some of the problems with the concept of MSY, among

them are the instability of the population dynamics, it ignores all social and economics

aspects and does not make logical sense in harvesting ecologically and economically

interdependent multi-species fisheries. Similarly, Wooster (1988) argued that the man-

agement should try to maximise benefits to society not fish, hence it should incorporate
economic considerations.

Gordon (1954) was the first to add economic considerations into the analysis of
renewable resource exploitation. He argued that in open-access or common-property
stock exploitation there is a stable "bionomic equilibrium" E- at which total revenue
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from the resource exactly equals total cost to harvest the resource. In this situation,
fishers join the open-access fishery if they are making profit until no one is making a
profit. This situation is known as "the tragedy of the commons" (Hardin, 1968). For

this reason, Gordon (1954) suggested that it is important for resources, or sections of

a resource, to be under sole-ownership.
In the presence of sole-ownership, using the concept of maximum economic yield

(MtrY) proposed by Gordon (1954), there would be a level of harvesting effort at which

the marginal rate of net revenue from the resource is maximised. Gordon's (1954) work
provides a solution for over-fi.shing and it is also able to differentiate economic over-

fishing, which occurs in any open-access fishery, from biological over-fishing, which
occurs if the ratio of price to cost is high enough (Clark, 1985a). However, the model

is not adequate due to its static formulation. It overlooks the important of inter-
temporal economic benefits and the biological processes of the resource (Clark, 1976a).

Other authors who have attempted to describe policies that will prevent over-fishing

are Clark (1930) with restricted access policy and Gatto and Ghezzi (1992) with their
tax regulation policy.

Smith (1969) proposed a dynamic version of the Gordon and Schaefer model for

an open-access frshery, however, an optimal solution for managing renewable resources

was not established until Clark (1971, i973) devised an optimal harvesting strategy for
a single-species population almost four decades after the same idea was proposed for
non-renewable resource exploitation by Hoteliing (1931). Clark's approach to renewable

resource exploitation is known as "present value maximisation" (PVM). Clark (1973)

demonstrated that if the growth rate of the resource is less than the discounting rate,

then a rational sole-owner of the resource would exploit the resource to extinction.
Extinction of the exploited population is only optimai when present value maximisation
is used. The depletion of the Antarctic blue whale, Balaenoptera musculus, was caused

by the present value maximisation policy (Clark, 1973). Depletion as a result of a high
discounting rate is also known in the exploitation of any other stocks (Heal, 1985).

Clark's (1973) paper has been very influential in the development of the economic

theory of renewable resource exploitation and disproved the belief of some economists,

like Turvey (196a), who said that dynamic consideration of resource management only

complicates matters and does not give any new significant result (Munro, 1992). The

paper has pioneered a new era of fishery management within a capital investment

framework (Clark and Munro ,1975; Clark et a\.,1979; Clark, 1985b; Conrad and Clark,
19S7) and has been extended to include various economic and biological complexities
(Reed, 1979, 1982; Agnew, 1982; Gatto et al., 1982; Clark and Tait, 1982; Ludwig
and Walters, 1982; Charles, 1983; Chaudhuri, 1986; Mesterton-Gibbons, 1987, 1988,

1gg6; Lovejoy, 1988; Clark, 1990; Reed and Heras, 1,992; Botsford, 1992; Tuck and

Possingham, 1994; Ganguly and Chaudhuri, 1995)'

. In the following section, the deveiopment of mathematical models of renewable

resouïce exploitation are described in detail. This includes the three most common

objectives in fishery management, maximum sustainable yield (MSY), maximum eco-

nomic yietd (MEY) and maximum present value (MPV). I discuss different types of
model formulation such as continuous-time and discrete-time models, single-species and

multi-species models, and spatially homogeneous and spatially heterogeneous models.
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Figure 2.3: Maximum sustainable yield (MSY).

2.2.L Single-species fisheries continuous-time models
In this section, I review the development of bioeconomic models. The material in this
section can be found in more detail in Clark (1976a) which is the classic book on the
theory of renewable resource management.

Schaefer (1954) proposed a model of fish population dynamics and assumed that
the growth of the fish population is logistic. If l[ denotes the number of fish, the
Schaefer model is

# :F(¡r) : rN (t - #) , e.zo)

where r is the per capita intrinsic growth rate of the fish and ,Il is the natural or
environmental carrying capacity. F(,nf) is known as the surplus production function.
Schaefer's (1954) surplus production function is a special case of a more general form
proposed by Pella and Tomlinson (1969). Fishing is introduced to the model using a
harvesting rate h(E,l/), that is the harvest rate is a function of fish population l/ and
fishing effort E. The dynamics of the fished population is

dN
i : r(¡/) - h(8, N). (2.21)

According to Schaefer (also Russell (1931) and Graham (1935)), a stable harvesting
strategy will ensure

dN
dt - 0, (2.22)

that is, we should harvest the fish population to a point at which the size of the
population is neither increasing nor decreasing. Schaefer called the catch satisfying this
condition the "maximum equilibrium catch", however the popular name is "maximum
sustainable yield" (first coined by Ricker (t946)).

Some features of MSY are illustrated in Figure 2.3. Assume that the harvesting
rate is constant, that is, h(E,N): h: constar¿t. At equilibriumwe obtain

h: F(N): r'N lt - {)' \ ti)' Q'23)

dN
dt
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To find the MSY choose l/ that maximises h, say l/*. Substitute ly'* back to equation
(2.23) to produce å* which is the MSY. With this procedure) we find l/* : K12 and
h*:rKl4. If the MSY of the population can be determinedexactly, then harvesting
at the level MSY, that is, å : å*, does not change the size of the population in the
long-term, because the natural growth is zero, if the population is in its equilibrium
.ðy'* : I{ 12. If the population size is more than the equilibrium, long-term harvesting at
MSY level drives the population to this equilibrium. However, if the population size is
Iess than the equilibrium, harvesting drives the population to extinction. Hence, this
equilibrium is "semi-stable". Furthermore, in practice, the exact value of the MSY
is difrcult to determine. We only can estimate it roughly. Let us assume we have
estimated å* as the MSY. If we are harvesting at a slightly lower rate, å1, than the
MSY, then we would drive the population to a stable equilibrium size N2 if the initial
population size is higher than l/r and drive the population to extinction if the initial
population size is less than ¡/r. If, however, we are harvesting at a slightly higher rate,
h2, than the MSY, then we would drive the population to extinction regardless of the
initial population size before harvesting begins. Harvesting the population at the level
of its MSY, theoretically, is the best strategg from the point of producing food in the
long-term, but due to the difficulty in finding its exact value and its instability, harvest-
ing at the level of MSY is risky. This is one of the limitations of the MSY harvesting
strategy (Clark, 1976a; Larkin, 1977; May et al. Ig79; Cunningham, 1981; Caddy and
Mahon, 1995). Other limitations are that MSY ignores economic considerations and
the fact most fisheries are multi-species (Clark, 1984, i985a).

Now assume that the rate of harvesting is not constant but is a function of effort,
that is, h(8, N) : qEN where q is catchability coefficient. This is more likely for most
species where effort tends to be fixed by the number of ships. For simplicity assume

e: l. Equation (2.2I) now becomes

#:"r (r - #) - EN (224)

The equilibrium population size is found when Ñ : 0, that is,

'fy'*:n(r-E.) Q,5)\ r/
for a fixed effort E : E*, with another equilibrium at /y'* : 0 which means extinction of
the population. As before, this equilibrium is stable (see Figure 2.4). Assurne r < 8",
the equilibrium harvest is

h: E*N* : E*K E*1--
r (2.26)

This harvest is a "sustainable yield" and its glaph is called a "yield-effort curve"
(Clark, 1976a). It can be seen in Figure 2.4 tltat increasing the level of effort from
E' to E" increases the yield å' to h" until it leaches the maximum harvest MSY:
marF(N) : rK 14 at

Nvsv : Kl2, (2.27)

ol equivalently
Evsy:r|2. (2.28)

Increasing ol decreasing the level of effolt beyoncl the threshold level E : r 12 decreases
the yield.
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Figure 2.4: Yield as a function of population size and effort (upper figure)
and "yield-effort curve" (lower frgure). Details are in text.

Gordon (1954) analysed the effect of effort on the resulting yield, if economics is
incorporated, based on Schaefer's yield-effort curve. Gordon (1954) assumed the price
per unit harvested fish is constant and the cost to harvest the fish is proportional to
the amount of effort that is spent. So revenue is

P: ph(E) : pEN (2.29)

and cost is

(2.32)

dN
dt

C : cE. (2.30)

The graph of the revenue is similar to the graph of yield effort, that is, quadratic with
linear cost, with respect to effort (see Figure 2.5).

Maximum economic yield (MEY) is the yield that maximises the difference between
revenue and cost. Let Euøv be the effort that generates MEY. To find EpyBy,solve
the equati on 4ÁW@: 0 and 4g * J'Ð: 0 to give

E¡vrøv : I(:;_"' 
(2.81)

¿Lp
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Figure 2.5: Relationship among Eusv, E¡vny and bionomic equilibrium E*

This yield is a suitable objective of a sole-owner. However, in an open-access fishery,
Gordon (1954) argued that "bionomic equiiibrium" Eoo occurs (see Figure 2.5). This
is because, if C(E) < R(E) then more fishers wiil join the fishery. This is a stable
equilibrium effort which maintains the level of revenue exactly the same as the level of
cost in a long-term unregulated fishery. At this point, the marginal revenue equals the
marginal value of cost. By solving equation R(E) - C(E): 0, a bionomic equilibrium
is found at the effort

(2.33)

(2.34)
p

Figure 2.5 shows that E¡a6y is always lower than E¡asy and Eoo. As a result, a

harvesting policy based on MEY is more conservative than that derived from MSY.
Both MSY and MEY are static. They do not consider harvesting over time.

Schaefer (1954) looked at the effect of fishing effort on the dynamics of exploited
fish populations. Schaefer used Lotka-Volterra predator-prey interactions to describe
the dynamics of fish popuiations (pt"y) and fishing effort (predator). The model is

able to explain the relationship between fishing intensity and the mean population of
Californian sardine. A spiral trajectory to a stable equilibrium for that population
is observed as predicted by the solution of the Lotka-Volterra predator-prey system
(Schaefer, 1954; see also McGarvey, 1994, 1995). Smith (1969) developed a similar
model applied to open-access fishery and the model is able to describe oscillations
in the North Pacific fur seal fishery (Clark, 1985). Schaefer's (1954) and Smith's
(1969) predator-prey models can describe the growth and the decline of a fishery.
Schaefer's (i954) and Gordon's (1954) models predict that extinction of an exploited
population is never optimal. However, Clark (i971, 1973) showed that this belief can
be misleading. He argued that a rational sole-owner, in certain circumstances, may
drive the population deliber-ately to extinction, if we maximise the economic rent from
the fishery over time (dynamically). In a dynamic context, the total present value ol
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economic rent from the fishery over trme rs

pv : [* "*or(p(t) - c)E(t)dt, (2.85)
Jo

where d is a discounting rate and c is a decreasing function of the population. Assuming
6 : I0To, the inclusion of the discounting rate means one dollar now is worth about
two dollars in seven years time.

Clark (1971, 1976a) found an implicit expression for the optimal population level,
1{*, that maximises net present value PV in the form

ó:F'(l/*l+"'(N.){W.)v-)+ffi, (2'36)

known as the "modified golden rule" of resource accumulation (Clark and Munro,
1975). If F is a iogistic function such as in the Gordon and Schaefer model, Clark
(1976a, 1985a) found an explicit form for the optimal population size

l[*: !
4

6N+K 1 +
T (o*"('-i))'*ry (2.37)

with N - i. Four special cases occur. First, if there is no discounting (ó : 0), thenp

equation (2.37) reduces to

.Äy'* : 'rrfn + n: "o^!' : Nmøv. (2.3s)4' ' / 2p

Second, if in addition the cost of harvesting is also zero, then

'¡y'*: 
K:*""': t: Nvsv. (2.39)

Third, if there is discounting (á I 0) and the cost of harvesting is zero, then

¡y'* K1:-
4

1
6

(2.40)r

Therefore, in this case, it is economically optimal for the harvester to exploit the
fish down to extinction when the discounting is higher than the growth rate of the
population (d > "). Fourth, if c(1/) : ft then bionomic equilibrium ly'oo, which is
found from solving Ê - C - 0, is the limiting case if d tends to infinity. This can be
regarded as an open-access exploitation, because open-access only cares about profit
this year, same as á : oo. In this case equation (2.36) becomes

6 : rlt - ?{) *cr(I - Nl I{) 
.- \ K)+-ã ' (2'4r)

which if ó ---+ oo then ly'* ---+ I : ly'-.
What is the optimal pohåy fol harvesting a single-species population? If the

modified golden rule, equation (2.36), has a unique optimal escapement lV : //* that
determines the optimal size of stock to leave fol the next period, Munro (1992) argued
that keeping the stock at any level above ly'* would be over'-investment. On the other'
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Figure 2.6: Llfe cycle of parental survival population. Modified from Clark
(1e76a).

hand, any stock below the level .|y'" is also not optimal, for example to harvest at that
level is expensive if we assume cost is a decreasing function of the stock. Therefore,
the optimal strategy is to drive the stock to .fú* as rapidly as possible. Mathematically,
this can be written as a function

th
h^o, if ¡\r(¿) >
F(¡r) if ¡\/(¿) :
0 if ¡i(f) <

¡r*
¡y'*

¡y'*

(2.42)

This strategy is called the "most-rapid-approach" path strategy. It assumes an upper
bound of the harvest rate h : h*o,. If the stock level is above ly'* than we harvest the
stock at maximum harvest rate, if the stock is exactly at the level of optimal escapement
then it should be kept at that level, and if the stock is below the optimal escapement
then close the fishery completely until it reaches the level of optimal escapement. Other
authors who investigated harvesting policies under net present value maximisation are

Quirk and Smith (1969), Plourde (1970), Brown (1974) and Herfindahl and Kneese
(1974). Other models, such as discrete-time, delay-recruitment and cohort models and
some extensions of Clark's models are discussed in sections to follow.

2.2.2 Single-species fisheries discrete-time mode[s

Schaefer's (1954) surplus production function discussed in the previous section
is a continuous-time population model. In some cilcumstances, discrete-time models
seem to be more realistic, for example in modeliing a population which regenerates
annually, Iike salmon. In general, discrete-time models use a "stock-recruitment func-
tion" (see Figure 2.6). A stock-recruitment function is a lelation between the number
of spawning adults and the subsequent recluitment that enters the adult class, usually
known as a harvestable class. A fairly general stock-r'ecluitment function is presen-
ted by Deriso (1980) and Schnute (1985) as a generalisation of the Schaefer surplus
production function.

The discrete-time model is able to diffelentiate between two types of adult sur-
vivor-ship. The first one, the model with no adult survival for tìre next period (ø : 0 in
Figule 2.6), is called a non-overlapping glowth nodel. This moclel is best to describe
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the growth of some species of salmon, where all adult die after the reproductive plo-
cess. This model is considered as a discrete-time analog of the continuous model (Clark,
1976a). The second one, the model which is called an overlapping growth discrete-time
model. Clark (I97I, 1973, I976a) investigated optimal harvesting strategies for these
discrete-time population models. The results are presented in this section briefly and
the method is used to obtain optimal harvesting strategy in a more complex system,
that is a predator-prey system, in Chapter 3 .

The general model represents a discrete-time population dynamic that can be

written in the form
ly'*+t : aNn * Rr', (2'43)

where Rx : F(¡ú/"), see Figure 2.6. If we assume the generations of the population are

not overlapping (ø : 0) and there is harvesting with the rate H¡, then the equation
becomes

ÄI't+r : Rx - H*, (2'44)

hence fr,,+r : F(Rr - Hk) with harvest Iy'¡ satisfies 0 < ,tIÀ ( A¿. Clark (1976a)
defined economic rent from the fishery in period k as

tr(Æ,r,.9*) : fr ro- .(€))d{, (2.45)
JSr

where S¡. : R* - H¡" is defined as escapement in period k. The expression above
assumes that the price of the flsh is constant and the cost of harvesting is a function of
the fish abundance (see Appendix 4A for the formal derivation of the cost function).

The maximisation is carried out with respect to escapement Sr over ? periods
with present value 

T
PV -_ | erl(Rr, sr), (2.46)

fr=0

where p : # ir a discounting factor with a discounting rate ó. Using dynamic
programming, Clark found implicit expression for the optimal escapement S* satisfying

1 r.r - E.//q*\P - c(F(S.))
,-1 u-¡"(5-)-rrõ, Q.47)

which he called the "fundamental equation of renewable resources".
The optimal approach to this optimai escapement is the most-rapid-approach

path, exactly as before. Hence if the initial population is below the level of optimal
escapement then do not harvest the population, whiie if the stock level is above the
level of the optimal escapement then harvest the population down to this optimal
escapement. Clark (1971) and Reed (1979) showed that if the recruitment function
is concave and deterministic then the population will never fall below this optimal
escapement once it exceeds the optimal escapement. Equation (2.47) is also known as

a discrete-time analog of the modified golden rule equation [equation (2.36)].
An explicit explession of the optimal escapement can be obtained for special

cases, for example, if the cost of harvesting is negligible (clupeid fisheries, e.g. herring,
pilchard and sardine fisheries, may be considered costless to some extent (Munro,
1992)) and the recruitment function is assumed to be fltted with a Schaefer recruitment
function, that is, F(¡/) : r-ð/(1 - NIK). In this case the optimal escapement is

,s.:+_ fftr+ô). (2.48)
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From this equation? we can conclude that it is optimal to drive the population to extinc-
tion if the natural growth of the population is less than the inverse of the discounting
factor. This is consistent with the result for the continuous case discussed previously.
Both Clark's (1976a) continuous- and discrete-time single-species models are exten-
ded by other authors. For example Reed (1978, 1979) and Charles (1983) included
stochasticity and uncertainty, Reed (1982) included sex-selective harvesting, Charles
(1988, 1989) included bio-socio-economic aspects, Reed and Heras (i992) included
resource vulnerability to extinction and Jørgensen and Kort (1997) included perfectly
reversible investment, etc. (see also Clark et a\.,,1979; Agnew, 1982; Gatto et al., Lg821'

Clark and Tait, 1982; Ludwig and Walters, 1982; Chaudhuri, 1986, 19BB; Mesterton-
Gibbons, 1987, 1988, 1996; Tuck and Possingham, 1994; Ganguly and Chaudhuri,
1995). In the following section I move from single-species hai-vesting to review harvest-
ing theory for multi-species fisheries.

2.2.3 Multi-species fisheries models

This section reviews the models and qualitative results in multi-species harvesting
theory. I address questions such as: when does a multi-species strategy differ from a

single-species strategy? and is extinction of one or both species economically optimal?
I begin with the defi.nition of a multi-species fisheries.

There are two types of multi-species fisheries: "technologicaliy interdependent"
and "biologically interdependent" multi-species fisheries. The first type occurs when
the gear to harvest a species also affects mortality of another species while the second
type occurs when the exploited species in the fisheries have a biological relationship,
like competition, predation, etc., with the other species. Anderson (1975) addressed
the issue of maximum economic yield and open-access equilibrium for these two types
of multi-species fishery. Clark (1976a) solved the general problem of technologicaily
interdependent multi-species fisheries and left a conjecture for biologically interdepend-
ent multi-species fisheries, that is, the optimal control of the fisheries is attainable.
There is also another type of fishery closely related to a multi-species fishery, that is,
a multi-purpose fleet which harvests a certain fish at one season and then another fish
at another season (Huppert, 1979; Anderson, 1982) which I will not discuss further.

Gatto et al. (1982) extended Clark's technologically interdependent muiti-species
model to include the effects of a limited total effort on the exploitation. The main
differences between their model and Clark's (1976a) model is that in their model total
effort is constrained by a constant maximum effort, that is, 0 ( Er (t) + Er(t) <
E*o, for each time period t. If a constraint like this is not present, then the analysis
can be done by assuming the system consists of two separate single-species fisheries.
They found that if total maximum effort E*o" is very low, it is optimal to exploit
only one of the fisheries, if they are totally regulated. In contrast, if the fisheries
are totally unregulated, the discounting rate ó is not zero and total maximum effort
E*o, srffi.ciently large, then the fisheries reach bionomic equilibrium. They proposed a
compromise between a totally unregulated and a totally legulated fishery, a "regulated
competition" fi.shery. In this legulated competition fishery, the stock with a lowel net
return per unit effort should be exploited less.

In many situations a multi-species fishery of the second type may exhibit complex
interactions. The effect of exploitation on the population may not be straight forwald.
The indirect effect of one species on the other species can be very complex. For example,
in the North Sea fisheries, derlersal species snch as cod, hadclock and plaice feed on
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pelagic species like herring and mackerel. On the other hand, adults of these pelagic
species also feed on early larval stages of the demersal species (Gulland, 1977). Gulland
(1977) argued that increasing catches of cod reduces predation by cod on herring and
generating larger catches of herring. Larger catches of herring means the declining
of food supply for the cod, which finally reduces cod stock. Furthermore, Gulland
(1977) suggested that extensive fishing of herring increases the number of surviving
cod juveniles recruited into the adult class of the cod. This is because extensive fishing
of herring also reduces predation on the larvae of cod. These complex interactions have
made the management of multi-species fisheries difficult. Despite complex biological
interactions in the underlying systems of multi-species fisheries, concepts for harvesting
multi-species fisheries are similar to concepts for single-species fisheries (Muy et a1.,,

1e7e).

Larkin (1963, 1966) was among the first to study harvesting of multi-species
fisheries. He studied multi-species fisheries in which the species are ecologically in-
terconnected, that is, competition (Larkin, 1963) and predation (Larkin, 1966). In
both cases Larkin (1966) found equilibrium abundances of the interacting species in
the presence of harvesting as explicit functions of the fishing rate. Therefore, the effect
of exploitation on the population and the profit from fishing can be easily determined.
Jensen (1994) applied Larkin's predation model to study the dynamic of lake trout,
Salueli,nus namaycush, and sea lamprey, Petromyzon marinus, and found that in certain
circumstances extinction of one species is possible in the presence of harvesting.

Ströbele and Wacker (1991) studied the yield per unit effort curve from harvesting
an ecologically-interconnected multi-species fibhely and compared the curve to the yield
per unit effort curve from harvesting a single-species fishery. They showed that, either
under a selective or combined harvesting strategy, yield from a mutualistic system is
higher and yield from a competitive system is lower, compared to yield from a single-
species system. Furthermore, they argued that selective harvesting of the prey in a
predator-prey system is comparable to harvesting the competitive system, because the
yields from both systems are lower than the yield flom a single-species population. On
the other hand, selective harvesting of the predator is comparable to the mutualistic
system, because the yields from both systems are higher than the yield from a single-
species population. However, they derived no general rule for optimal harvesting of a
predator-prey system.

Parrish and Saila (1970) modified Larkin's models to include three species, one
predator and two competing prey. The dynamics of their model with the inclusion of
predator exploitation are explored by Azar et al. (1995). The effects of two different
harvesting strategies, namely constant harvest quota and constant harvest effort, on
the dynamics of the populations, are investigated. Azar et ø/. (1995) showed that the
system is stable when a constant halvest effort is used as a harvesting strategy, while a

constant harvest quota on the predator may destabilise the system. This result agrees
with the finding of Brauer and Sanchez (1975) fol a single-species and Brauer et al.
(1976) for a predator-prey system with only one prey and one predator, who showed
that if exploitation is introduced into a pledator-pÌey system using a constant harvest
quota and the rate of exploitation is above some clitical thleshold, then extinction
of the predator may occur. Fol this leason, B'-auel and Soudack (1978) argued that
exploitation using proportional harvesting is safer than constant rate harvesting if the
extinction of the pledatol is undesilable.

In a multi-species fisheries, the determination of the level of effort that maximises
yield is only possible if the level of effort in the other fishely is known. MSY for both
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fisheries occurs when the total yields from both fisheries is maximised. Furthermore,

combined MEY has a different combination of effort than those associated with the

individual MEYs. For this reason? multi-species fisheries should be managed ab a

whole (Anderson, 1975). Silvert and Smith (1977) pointed out that, as in the case of

harvesting a single-species flshery, MEY and MSY are the special cases of the more

general objective, that is, dynamic MEY or MPV. Silvert and Smith (1977) studied

the multi-species system previously proposed by Larkin (1963, 1966) in a dynamic

framework, with the inclusion of an interest rate. They found that a species that
might be heavily harvested in a single-species fishery, could be conserved better in
multi-species fisheries if it enhances the present value through its bioeconomic role.

For example, if the prey in a predator-prey system grows slowly then it would be

better not to harvest it and use it as food for the predator.

Extinction of species in a harvested multi-species system may be the optimal

strategy to obtain a higher harvest (Flaaten, 1988, 1989). For example, May et al.

(1g79) investigated the effect of the harvesting rate of one species on the yield of the

other species in the predator-prey population prevìously proposed by Leslie (1948).

Their model applied to the exploitation of the Antarctic kr\Il, Euphaus'ia superba,

which is also food for baleen whales. The modei is

dN 
¡v (t - T) - ,t" (2.4s)

dt:" \ l(/
dP 

=.p(t- 
P\ 

(2.50)
dt: sr\r- 

"N)
They assumed that the prey and predator are harvested under constant efforts at rate

rE7¡ ands.Ep, respectively. Both efforts arerescaled so that E¡¿ - Ep: 1 corresponds

to a fishing rate equal to the intrinsic growth rates r and s respectively. The yield for

the prey is Y¡¡ : rENN and the yield for the predator is Yp : sEpP. Introducing

X¡v : N I K and Xp : P l@K) as new scaled variables, the dynamic of the exploited

populations are 
oIï : rX¡¡ (r - E¡¡ - X¡¡ - rxe) (2.51)

dt

and
(2.52)

YË: 1-E¡v EP(L - EP)
(2.56)I*u (1 - Ep)

It is easy to see that if there is no predation (z : 0), yield from the prey is maximised
by applying a harvest rate at the levei of the prey MSY, because the system reduces

+:,x"(r -Ep-X)
for the prey and predator, respectively, with u: aaKlr. Muy et al' (7979) found the

equilibrium population sizes Xfi¡ and Xþ, and yields Yfr and Yl,

xi,:ffi' (2'53)

v* - 
(l-E¡o)('-Er)

Aþ : ,, (2.54)

r.,4 _ (r1f )E¡y(1 - E¡¿)YN::-i;ï.El' (2 55)

(ot
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to a single-species population. I1 u f 0 then the yield for the prey is maximised
by the depletion of the predator, while the yield for the predator is maximised by not
harvesting the prey at all. They argued that the appropriate MSY is one that maximises

the yield from a weighted sum of both yields. For this reason, they propose a possible

management objective by maximising the total weighted yields Y : YÑ * lYË, where

7 is the intrinsic relative value of the predator relative to the prey. Rewrite Y to give

1, C(I- E¡v)(E¡v + þEp(r - Ep))t : , ¡'2.'o7)

where C is constant and B :1a(slr). They interpret B as the intrinsic relative value

(7) discounted by the ratio of predator's intrinsic growth and prey's intrinsic growth
(s/r) and by the biological conversion (a). This discounted intrinsic relative value

determines the optimal yield combination for the prey and predator. If this value is
small, for example if the biological conversion is small and the intrinsic gro.'n,th of the

predator is also small compared to the intrinsic growth of the prey, then it is optimal
to harvest the less valuable predator heavily. In some circumstances it is optimal to
harvest the predator down to extinction and harvest the prey sustainably (Figure 2.7.a).

On the other hand, if the discounted intrinsic relative value is large, it is optimal to
harvest only the predator and the prey is more valuable as the food of the predator

(Figure 2.7.b). Figure 2.7.c illustrates the case where both species have similar values

and it is optimal to keep both species. Clark (1985c) modified May eú a/.'s (1979)

model to include a concentration effect. He assumed that the intrinsic gror,r'th of the

predator depends on the density of the prey and found that excessive exploitation of
the prey may cause the predator to go extinct even though we left them unharvested.

Beddington and Cooke (1932) investigated harvesting stlategies for the same

system (equation (2.49) and (2.50)). They assumed the prey is harvested with constant

yield while the predator is harvested with constant effort. In dimensionless form the

svstem becomes ol: : , (x.(l - x' - uxp)- y¡r) (2.5s)
d,t

and

+:"x' (r - Ep - Xp
Xt't

(2.5e)

They found that, for fixed effort Ep,, to obtain an equiiibrium prey yield, Y¡¿ needs to
satisfy YN 1ll4(l-fu(l- Ep)).Becauseit is scaled to r, thenthe "absolute" MSYis
r la$ I u(l - Ep)). Now let Ep : 0, that is, only the prey is harvested, They showed

that different from harvesting a single-species, in which harvesting the population below

MSY drives the population to a locally stabie equilibrium, here harvesting only the

prey from a predator-prey system may not produce a stable equilibrium. A stable

equilibrium is attained only if

YN: 1 - ((1 - slr)2(t -t u 2+v)-1)'
(2.60)

4(7 + u)

They referred to this yield as the "stable" MSY which is smaller than the "absolute"
MSY. They argued that this "stable" MSY is more useful than if we modify the concept

of MSY for a single-species system to apply to harvesting prey population from a
predator-prey system. Furthermore, they found that whether we harvest only the
prey or harvest both populations the difference between the "absolute" MSY and the
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Figure 2.7: Total sustainable yield, Y, is graphed as a function of prey and predator

efforts, E¡¡ and, Ep. The parameters are chosen as in May eú ø/' (1979) with B:0.1
(Figure 2.7 .a), P : l0 (Figure 2.7 .b) and B : 1 (Figure 2'7 'c) '

,,stable" MSY is greatest when the ratio of the intrinsic growth of the predator to

the intrinsic growth of the prey, sf r, is small. They proposed that if the predator is

harvested at a constant effort then it is better to harvest the prey at a level of about
g0% of the "stable" maximum sustainable yield, because the domain of attraction to
the stable equilibrium is iarger than at a higher levei, for example 99% of the "stable"

MSY. Harvesting at the "stable" MSY, to some extent, is also risky; fluctuations of

the population from natural disturbances may lead to the collapse of the system.

In harvesting a multi-species fisheries, Beddington and May (1980) pointed out

that the most common outcome of using weighted total sustainable yield, is to harvest

one species and either ignore or drive the other species to extinction. This makes

the weighted total sustainable yield approach contentious. In theory and in practice

controversies emerge in harvesting predator-prey systems. For example, Flaaten (i988)

concluded that in the Barents Sea fishery one should deliberately deplete sea mammals

to increase fish production from the frshery. The similar controversies of conservation

signifi.cance occur almost in all fi.sheries in which the stocks are also food for higher

trophic species, like sea mammals and birds (Beddington et al. 1985; Yodzis, 1994;

Greenstreet and Tasker, 1996). The increasing surplus of Antarctic krill is assumed to

be a direct effect of baleen whales depletion (Muy et a1.,1979; Nicol and de la Mare'

1993), which in turn ends in the conclusion that marine mammals are detrimental

to fi.sheries, hence their numbers should be kept as low as possible (Flaaten, 1988)'

To reach this conclusion, Flaaten used Leslie's predator-prey model, as described in

etfort0

pfeypfey

yedtota

0 effort

pr€y
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May et al. (1979). Yodzis (1994) argued that the use of this predator-prey model in
mammal-fish interactions is misleading and so the conclusion derived from this model is

biased. Leslie (1948) used a "laissez-faire" functional response (see equation (2.49)). In
this case we assume that predators do not interfere with each other in their activities,

feeding for example, but, there is also predator interference rvhich is linked with the

food availability (the numerical response in equation (2.50)). This is not appropriate

in mammal-flsh interactions, for example a recent paper reveals that predation of the

Antarctic cod, Gadus morhua, by grey seals, Halichoerus grypus, is not a major factor
in the collapse of the cod population (Mohn and Bowen, 1996)'

The harvesting theory for multi-species fisheries discussed above assumes the

system is at equilibrium and there is no economic discounting. The following part

of this section reviews multi-species harvesting theory for a more general model in a
dynamic time setting.

A multi-species fisheries model for n-species can be written in the form

dN¿ :4(¡rr,..., ¡r,) - h¿(t). (2.61)
dt

Here we assume harvesting can be done selectively. If the cost of harvesting is a function

of the population size, that is, cr(^L), then using a similar framework to the present

value maximisation for a single-species fishery, the present value of the net revenue or

economic rent from the fisheries over time is

PV : I"- (þ_-f¿ - c¿(¡/,))(F.(¡/,,..., 
^t) - #r) "-6'dt' (2'62)

Maximisation of this present value with respect to 1V¿ subject to 0 ( N¿ 3 Ni"' must

satisfy the Euler equation (Clark, 1976a: p. 39-a0)' Hence u'e have

6(po- "n): -kpo+i@¡ -,,)#, (2.63)

Using this general implicit equation of optimal escapement, Hannesson (1983) investig-

ated the effects of discounting rate on the standing stock of biomass for a predator-prey

system previously studied by Larkin (1966). Hannesson (1983) found that if predator

efficiency is relatively high then both optimal escapements, for the prey and predator,

decrease. In the other case, that is, in a partial predator-prey system in which the

predator has other foods besides the prey, the increasing of the discounting rate may

increase optimal escapement of one species while it also decleases optimal escapement

of the other species. This seems contrary to the single-species harvesting theory in
which increasing discounting rate always decreases the level of optimal escapement.

Hannesson (1933) also confirmed the need of predator extermination in the presence

of discounting if the growth of the predator is slower than the prey.

Clark (1976a) applied the same theory to obtain an optimal harvesting strategy

for a Lotka-Volterra predator-prey system

dN
ã 

: Fr(¡{, P) - hN(t), (2.64)

dP
* : Fr(¡{, P) - he(t), (2.65)
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where Fx(N, P): rrXG-XlI{x)+C-xNP, X : N,P, c-¡v ( 0 and dp } 0. Optimal
escapements ,Sfi¡ and ,Sþ are found implicitly and satisfy equations

(p' - "'(s'))ffi t @, - 'r(Sù# - CkF*: á(p¡¿ - c¡¿(S¡¡)) (2'66)

and

(p' - ""(s'))# i @, - ,rçso))ffi- c'rFr: 6(pp- "r(sr))' (2'67)

These equations are generalisations of the modified golden Lule for a predator-prgy

optimal"r"u,p"-"rrt. Clark (1976a) interpreted (pru-"ru(S¡o))ffi and(pp-ct1St))ffi
as an addition to the marginal value product of the prey and predator populations

with the increase in predator and prey population respectively. He argued that the

optimal approach path to the optimal escapement (Sfi',.9þ) is diffi.cult to obtain, but

it is possible to obtain a unique optimal trajectory passing through these optimal

escapements. He also conjectured that the optimal path from any popuiation size

(Sru,,9p) can be attained by constructing a straight line from the initial popuiation

siz" to the optimal trajectory, and then follow the optimal trajectory up to the optimal

escapement (^9Är,.9þ). For practical uses, he suggested a suboptimal approach

>sk
< .9_i,

(2.68)
ffx
ffxXh

h*o,
0

l¿)

(¿)

similar to the most-rapid-approach-path.
Clark's (1976a) analysis for optimal harvesting discussed above applies to a

predator-prey system with selective harvesting. Mesterton-Gibbons (1988, 1996) ob-

lained an analogous optimal policy to harvest a predator-prey system using a combined

harvest from the prey and predator, His work generalises the result for combined har-

vesting of independent populations (Clark, 1976a; Mesterton-Gibbons, 1987), combined

har,r"sting of competing populations (Clark, 1976a; Chaudhury, 1986) and harvesting

a predator-prey system with prey has no economic value (Ragozin and Brown, 1985).

A significant difference between strategies to harvest a single-species fishery and

strategies to harvest a multi-species fishery becomes apparent when we cannot harvest

the biologically interacting species selectively. For exampie, if a proportion of prey is

caught for effort expended to harvest the predator, then the "fundamental principle

of renewable resource economics" (Clark, 1985a), that is, that the increasing of the

discounting rate á usually decreases the optimal escapement of the fish stock, may

not hoid. In this case, extinction may be optimal as the discounting rate decreases

(Sieveking and Semmler, 1997).

2.2.4 Spatially-structured flsheries models

As explained in the previous section, all marine populations display some degree of

spatial heterogeneity. This spatial heterogeneity has been recognised since the early

development of flshery management (e.g. Beverton and Holt, 1957), but fisheries

bioeconomic models are largely based on a single homogeneous stock. Much recent

research in fisheries shows that this spatiai heterogeneity means that modelling the

species as one single popuiation is not adequate (Caddy, 1975; Hilborn, 1976; Frank,

l9g2; Frank and Leggett, 1994). This is true especially for stocks in which dispersal of
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individuals is relatively high, Iike some species of cod and haddock in West Greenland
and Iceland (Frank and Leggett, 1994)'

Early investigation of the effect of spatial heterogeneity on optimal escapement

goes back to the work of Parllk et al. (1967), Ciark (1976a), Hilborn (1976), Clark
and Mangel (1979), and Hilborn and Walters (1987). Pau.Ilk et al. (1967) studied

a harvesting strategy for multiple stocks where the fishery effort is uncontrolled -
"open-access". They assumed that each substock is governed by Ricker's reproduction

function for a single-species population. Each substock is allowed to be different from
other substocks, for example they may have different productivities. They calculated

the MSY from the fishery and found the rate of harvesting that maximises the total
sustainable yield for the population. However, Hilborn (1976) argued that the rate of
harvesting in Paulik et al. (1967) is computed when the population is in its equilibrium
state, which rarely occurs in real fish population. Furthermore, Hilborn (1976) pointed

out that a fixed escapement is more often used as a policy than a fixed harvest. In
the case of harvesting a population consists of different stocks, he concluded that
harvesting with a fixed escapement policy may not be optimal when the popuiation is
not at equilibrium.

Further development of harvesting theory for spatially-structured populations

allowed individual movement between substocks. In his inshore-offshore fishery model

Clark (1976a) assumed that diffusion occurs from the substock which has a higher

abundance to the substock with less abundance. 11 rc is the proportional constant of

diffusion, Ä[ and F',(¡/,) denote the abundance and the natural growth rate of the

substock i, and E¿ is fishing effort applied to harvest the substock i, then the model is

+ :F,(¡/,) -t n(N2- ¡/') - EtNt,

+ : Fr(Nr)+ rc(¡/r - ¡/r) - EzNr.

Using similar optimisation tools to those he developed for single-species harvesting,

Clark (1976a) found optimal harvesting strategies for both populations. If there is no

diffusion, rc : 0, then an implicit equation for the optimal escapement is exactly the

same as the equation for a single-species. Furthermote, Ciark (1976a) suggested that
if, in the absence of diffusion, the marginal cost of harvesting the inshore substock

is less than the marginal cost of the offshore substock, then it is optimal to reserve

the offshore stock. The offshore stock productivity is harvested when it comes to the

economically less expensive inshore fishery'
Clark and Mangel (1979) constructed a model of harvesting a surface population

which exchanges individuals with a subsurface school. Harvesting only targets the

surface population, while the subsurface population remains unharvested. They found

that if.the rate of migration from subsurface population ("intrinsic schooling rate")
is less than its intrinsic growth rate, then for any fishing effort the surface fishery is

sustainable. On the other hand, if this migration rate is higher than the intrinsic growth

rate, then a high level of harvesting effort may cause extinction of the population. This

modei is applied to the Skipjack tuna fishery, Euthynnus pelam'is, by Hilborn (1989a)

and extended to allow harvesting the subsurface population (Hilborn, 1989b). Further
analysis of Clark and Mangel's model can be found in Mangel (1982)'

Using the difference model of Deriso (1980) and Schnute (1985), Hilborn and

Walters (1987) simulated stock and fleet dynamics of the six major stocks of abalone

in Australia. If there is spatial movement among the stocks, they suggested that this

(2.6e)

(2.70)
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movement can be inserted into the model using a spatial transition matrix p : lp¿¡l in
form

B*: PB* (2.71)

and
R*:PR*, (2.72)

where pt¡ is the probability of successful migration from stock i to stock j, B* and

A* are biomass calculated before the movement, where B¡ and .R¡ denotes the Deriso-

Schnute biomass model and the recruitment function, respectiveiy.

Using a model analogous to Hilborn and Walters (1987), Tuck and Possingham

(1994) developed a model, assuming that the spatial movement takes place at the
juvenile or larval life stage of the stocks and that some proportion of adults survive to
the next period. Their model can be written

( u,,^*, ): f atBt l* ll" pz, \ / R'* \
\Bz(¡+r) / \azBzt)' \p,r rr;)\'ñ:";)' 

(2'73)

They investigated optimal harvesting strategies for the system and found the following
rules of thumb for harvesting a single-species metapopulation:

TP 1 If we use a single-species metapopulation harvesting theory, a relative source

subpopulation would be harvested more conservatively than a relative sink sub-

population.

TP 2 If we use a single-species metapopulation harvesting theory, a relative exporter
subpopulation would be harvested more conservatively than if we use an uncon-

nected single-species population theory, while a relative importer subpopulation
would be harvested more heavilY.

TP 3 If we use a single-species metapopulation harvesting theory, a relative source

subpopulation would be harvested more conservatively than if we use a well-

mixed single-species population theory, while a relative sink subpopulation would

be harvested more heavily.

Source/sink and exporter/importer subpopulations are defined precisely in Chapter 4.

Other models that deal with exploited metapopulations are Quinn et al. (1993)

and Brown and Roughgarden (1997). The former analyses the effects of harvest on

the metapopulation with an Allee effect, illustrated by the red sea urchin, Strongylo-
centrotus franciscanzs, and the latter investigates optimal harvesting policies for mar-
ine species with a two part life-cycle, illustrated by the barnacle, Balanus glandula.

Quinn et al. (1993) found that excessive exploitation may lead to the extinction of a
metapopulation, unless some of its subpopulations are excluded from the exploitation.
Their finding is consistent with those of Roughgarden and Iwasa (1936) and Pulliam
(19SS) who argued that persistence of sink subpopulations can be maintained by spatial

movement from source subpopulations. Brown and Roughgarden (1997) discovered an

explicit rule which states that harvesting a metapopulation described by their model
should be carried out on no more than one site. This is consistent with that of Mc-

Cullough (1996) who argued that a metapopulation can be exploited only for a limited
harvest and in generai it does not have a high potential harvest. In contrast, harvesting
strategies proposed by Tuck and Possingham (1994), e.g. TP 1 above, allow a relatively
high harvest compared to two other known harvesting strategies, namely unconnected
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single-épecies and well-mixed single-species. This is because their strategies recognise

the importance of source subpopulations, and hence these subpopulations are harves-

ted conservatively. On the other hand, we can harvest sink subpopulations heavily. In
this case, protecting the source subpopulation is also means protecting the replenish-

ment of the other subpopulation (Mangel et al., 1997; Gary eú ø/., 1998). Tuck and

Possingham (199a) also showed that these strategies could improve the economic gain

from the exploitation.

2.3 Concluding remarks

In this chapter I have reviewed the development of harvesting theory using several

dichotomies: continuous-time and discrete-time models, static and dynamic models,

single-species and multi-species models, spatial and non-spatial models, etc. One ques-

tion of interest to resource managers that still needs further investigation is that of
optimal harvesting of spatially-structured predator-prey populations. Addressing this
question is very important in obtaining adequate management for commercially ex-

ploited marine biological populations, since all the populations are part of predator-

prey interactions and they are spatially heterogeneous. Many scientists believe that a
model which does this could improve the management practices of multi-species fisher-

ies (Hall, 1993). However, this issue has not been addressed explicitly in the literature
(Semmler and Sieveking, 1994).

In this thesis I develop models of spatially-structured predator-prey populations
and investigate optimal harvesting strategies for the populations. The models are

deterministic and take the form of coupled difference equations. In Chapter 3 I dis-

cuss optimal harvesting theory for a spatially homogeneous discrete-time predator-prey
population. That chapter contains the work of other authors. I redo and review their
work to ensure that I have a base which is internally-consistent to compare the optimal
harvesting strategies for spatially heterogeneous predator-prey populations in the sub-

sequent chapters. In the subsequent chapters I extend the model from Chapter 3 to
include spatial structure of the populations.
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Chapter 3

S p at ialty- ho mogeneo us
predator-prey population

Most of the harvesting theory for predator-prey populations discussed in Chapter 2

deals with the continuous-time case. In this chapter, I review and redo the work

of other authors on a deterministic, discrete-time predator-prey harvesting model.

The chapter is intended to give a background fol comparing the optimal harvest-

ing strategies for spatially heterogeneous predator-prey populations in the subsequent

chapters. Although the model in this chapter is not new, nor are the results, I dis-

cuss an interpretation of a negative harvest as a feeding strategy which has not been

addressed explicitly by other authors.
The model in this chapter follows the structure and assumptions in Clark (1976a),

Walters and Hilborn (1976) and Tuck and Possingham (1994). I use dynamic program-

ming and the method of Lagrange multipliers to find optimal harvesting strategies for

the system considering two different types of fishing. First, I assume both species,

the prey and the predator, are harvested. Examples of fisheries with this type of ex-

ploitation are the whale and krill fishery, the cod and capelin fishery, the salmon and

pilchard fi.shery, and the Pacific herring and Paciflc hake fishery (Laws, 1977; Gulland,

Ig77; Cappo, 1987; Spencer and Collie, 1996). Second, I assume that harvesting only

targets the prey population. For example, the sandeel, Ammodytes rnarinus, fishery. In

this frshery, the sandeel is harvested while it also provides food for many seabirds, like

Arctic tern (Sterna paradisøe), kittiwakes (-Rissa tridactylø) and the puffin (Frater-

cula arcticø) (Wright, 1996). Another example is the Australasian piichard fishery,

where the pilchards (Sardinops pi,lchardus) are also a major pley for the little penguins

(Eudyptula minor) of Western Australia (Klomp and Wooler. 1988).

3.1 The model

There are two ways to incorporate predator-prey interactions into the single-species

discrete-time model discussed in the previous chapter. In the first way it is assumed

that predation occurs in the adult stage. In this case, a predation term -cly'¡,Pt is

added into the right hand side of equation (2.43) in the absence of exploitation to form

ly'*+r : ø¡ú, + F(¡/i,) - cN*Pn. The second way is to assume that predation occurs

in the juvenile stage. In this case, the predation telm is added into the recruitment
production function F(¡r/k) in equation (2.a3) to form ÀI¡+r : aNt i F(¡lrÈ)' where

F(¡/,,) : rl/¡(1 - NrlK - "Pr) 
(Walter and Hilborn, 1992).
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I assume that some proportion of adults in one period survive to the next period,
hence the model reflects an overlapping population. All adults have the same mortality
rate and their fecundity for all ages is the same. If the population size of the prey and

predator at the beginning of period k are denoted by l/¡ and P¡ respectively, then the
growth of prey and predator is given by equations

{¡,+t) - aNn + F(¡/fr) ! aN¡P¡, (3 1)

P1r+r; : bPr + G(Pk) * PN¡P¡", (3.2)

where ø and ó denote the survival rate of adult prey and adult predator. The functions
F(¡/fr) and G(P¡) are the recruit production functions of the prey and predator in
time period k. I will assume that the recruit production functions are logistic for the

remainder of this chapter, that is,

F(¡ú.) - rN*(I - NklK), (3 3)

and
G(Pr) - sP¡(r - PklL), (3.4)

where r (s) and I{ (L) respectively denote the intrinsic growth of the prey (predator)
and prey (predator) carrying capacity. In this case a ( 0 and P > 0 ensure that the

system reflects a Lotka-Volterra predator-prey interaction. In this model I assume that
the predator can survive in the absence of the prey. Many predators do not depend on

only one species. For example, Clers and Prime (1996) pointed out that harbour seals

from Lower Loch Fyne, Scotland, eat about seventeen species of fish.

To explore harvesting we need to introduce exploitation into the system. I assume

that the only possible exploitation is through a selective harvesting policy, for example

using a certain type of net and certàin size of mesh, we can harvest a pelagic predator
and leave a benthic prey unharvested, and vice-versa. If the amount of harvest taken

from the prey and predator stocks at the beginning of period k are Hx* and Ilp¡, then

,.9iv¡, : Nn_ H¡¡* and ^9p* - Pn- Hp¡ can be defined as prey and predator escapements

at the end of that period. These escapements determine the growth of the population
after exploitation. Hence, if these survivors of harvesting are substituted into equations

(3.1) and (3.2), then the model for an exploited predator-prey system is

l/(t+t) : øSruo * F(S¡n*) f o,97vo,5po' (3 5)

P(¿+r) : bspo I G(S"r) + BS¡¡oSpr (3 6)

To consider an optimal economic strategy, we need to make an assumption about
the ownership of the fishery. J assume there is sole-ownership of the fishery where the
owner uses maximum present value as the objective in managing the fishery. Using

present value maximisation, the objective of the sole-owner is to maximise the net

revenue resuiting from harvesting each subpopulation of the prey and the predator up

to time horizon t : T. If IIx represents the present value of net revenue resulting
from harvesting population X, X € {¡/, P}, and p is a discounting factor, then the
sole-owner should maximise

T

PV:Ðpr D rry(X¡,,sar)
fr=o x€{N,P}
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subject to equations (3.5) and (3.6), and 0 3 Sxo 1 Xr. I will assume p:7lG + 6)

for the reminder of the thesis, where d is the annual discounting rate. The net revenue

fI, is given by 
rxx

fIx(X*, Sx) : l- (p, - "x(Ð)de, (3.8)
J Sxh

which reflects the net revenue from the harvest Hyo in period k. Hence, it is assumed

that the price of the harvested stock X is fixed. The cost of effort to remove fI¡
amount from the stock X is assumed to be a decreasing function of X.

3.2 Optimal escapements for prey and predator

To obtain the optimal harvesting strategy I use dynamic programming (Appendix 3A).
The escapement method described by Clark (1976a) and Tuck and Possingham (1994)

is used. Let

(3.e)

be a value function which is the sum of the discounted net revenue resulting from har-
vesting both populations in both patches up to period t : T . We need to maximise this
function by choosing optimal escapements ^9¡*. Equation (3.9) is then used recursively

to obtain the value function at time T + I, /r+t(Äb, Po), which is

Jr(No,po) : o<*l{". (år-".ä,", nx(xn,rr,)

.Ir+r(l/0, Po) max
o(,5¡o lx;¡

pJ7(N1, P1)

t rlx(Xo, sx.)
x€{N,P}

(3.10)

This equation implies that the optimal revenue over 7* 1 periods can be achieved using

appropriate escapements, ,Sfto and ,Sþ., that maximise the immediate revenue in the

first period, together with appropriate escapements that maximise the revenue taken
from future harvests if the population sizes change from l/o and Po to ¡fr(SÄ{,,SÞ,)
and P1(.9lyr,,SÞr).

To find optimal escapements, a gradual step with respect to the time horizon is

carried out. First consider T : 0. In this case, the sole-owner wouid maximise the
immediate net revenue taken from immediate harvests without considering the future
value of the immediate harvested stock, in other words no discounting factor is applied.
The immediate net revenue is given by

/\
Jo(l/0, Po) : os*l{". [".ä,rrIIx(Xo, 

tr)). (3.1t)

To satisfy this maximisation, we need W : O. Let us assume that the optimal
escapement is ^9xoo, then p¡ - cx(,9x-) : 0. Hence the maximum revenue is given by

/o(Äh, Po) : Ð Ix(&,^9x."). (3.12)
X€{¡¡,P}

Two cases can occur. If the recommended escapement is greater than the actual
population size, than the sole-owner should not harvest the stock at all. While if it
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is smaller than the population size then a harvest, as much as the difference between
these two quantities, can be removed from the stock. This is the optimal strategy for
the sole-owner to exploit the resource.

Next, consider the next time horizon, ? : 1. Recall that, from equation (3.10),

"Ir+t(Àh, P6) is given by

/r(rú0, Po)

¿(^Io, Po)

av(Nb PL)

ôSvo

PJs(M, P1)max(S¡o lX6

+ t rlx(x',,9x.)
x€{N,P}

Rewrite it using equation (3.12) to obtain

(3.13)

(3.14)

(3.15)

max
0(S¡o (X¡ p Ð rlx(Xt,,9x*)

x€{N,P}

Ð rI¡(Xo,,Sx.)
x€{N,P}

The optimum value will be given by the condition

ôJr(¡ú0, Po)
-00Sxo

To find the partial derivatives, let

v(N*, Pn) : t
x€{N,P}

Using equation (3.8) for k : I we obtain

IIx(Xn,,Sx"")

T
a (t{;*(p, - ""(0)d6)

X€{N,P} 0Svo

(3.16)

t a U{}*(p' - ""(0)d() ôver")
x€{N,P} oç(sr") 0Svo

(3. 17)

where Y : N,P and V(Sxr): Xr as in equations (3.5) and (3.6). Solving the partial
derivative of the integral in equation (3.8) gives

ôIIx(Xo,,9r' I

osxo 
'or -@* - tx(sx.))' (3'18)

Substitute this result into the partial derivatives %tP to obtain the following solu-

tion for equation (3.15)

pry - cru(Sru') : (ø * F'(Sr.)+ o,s"o)(pr - "ru(l/,)) t 0Spo@, - rp(Pr)), (3.19)
p

p" - t'(Spo): 
(ó + G'(,s"o) + Ésru.)(1tp - cp(p1)) +.rs*(p¡¿ - "r(l/,)). (8.20)

p
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These equations are the general form of the optimal harvesting equation for a

predator-prey population governed by equations (3.5) and (3.6). The escapements
obtained by solving these equations, that is, .91y, and ,Sþ0, are the optimum escapements
of the prey and the predator that maximise revenue provided the Hessian matrix of
/t(,Sry., Spo), that is, J'r'(S*", Spo), satisfies

uí(six,sx -si)l .lsx-s]l < o (3.2i)

where Sx : (Sro,,S"o) and Si : (SÄb,Sä). Another alternative is using the second

derivative test where we need

r.ffi<0,
2.ffi<0,
r &#&#-(#F¿)'>0.

The detailed conditions are given in Appendix 38. As in Clark (1976a), these optimal
escapements hold for all time horizon ? I 1. The proof wili be given in the next
chapter in a more complex predator-prey system (Appendix 4B).

If the costs of harvesting is negligible, then equations (3.19) and (3.20) become

PN : (ø * F'(^9¡¡,))pr + aspopy * þSpopp, (3.22)
p

Pp : (b + G'(,9p.))p" + os¡¡op¡¿ * \s¡opp- (3.23)
p

Furthermore, if p1y - pp then the optimal escapements are given by

sÅ,: ry Q,4)

and

sþ:83!cA' (3'25)A)
provided L, : C2 -+T f 0, where A : l_ r - a, B : L - s -b,and C :
a -l 0 < 0. It can be proved that if A and B are negative, ar'd C is non-positive with
C > max{p,!}, then:

1. A is negative,

2. Sfr and Sþ are positive,

3. Sïv < .9Är" and ,5þ < ^9ä, where,9iy, and Sþ" are the optimal escapements for
single species, and

4. the second derivative test for maximum is satisfied.

The condition A ( 0 means that the escapements are positive if the reciprocal
of the discounting factor, If p, \s lower than the sum of the proportion of surviving
adults of prey, ø, and the intrinsic growth rate, r. The condition B < 0 is interpreted
similarly fol predators. If S¡¿, is an escapement if we use a discounting rate d1 and ^9¡¡,
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is an escapement if we use a discounting rate ó2, where 6r l 6r, A < 0 and B ( 0, and
in addition C , - 

"4, 
then, by considering the sign of .9;y, -^9¡¿, it can be proved that

higher discounting rates imply lower escapements. This is known as the "fundamental
principle of renewable resource economics" (Clark, I976a, 1985a) and considered as

a normal situation in single-species harvesting theory, otherwise it is best to harvest
the populations down to zero escapements (Schmitt and Wissel, 1985; Daly and Cobb,
1989; Ackerman, 1994; Dawid and Kopel, 1997). Appendix 3C shows that this rule
is also true if there are price differences between the prey and the predator. In this
case the optimal escapement for each species is affected by the "economic effi.ciency"
of the predator, øú. A similar result is also found for continuous-time predator-prey

models (Ströbele and Wacker, 1995). The "fundamentai principle of renewable resource
economics" for a single-species population generalises to the multi-species population.
This is because we assume that harvesting can be carried out selectively. This is not
always the case in harvesting a multi-species system. Sieveking and Semmler (1997)

showed that a lower discounting rate may also cause a lower escapement in harvesting
a predator-prey population, if we harvest the population non-selectively.

3.3 l{arvesting only the prey specres

In some cases we only need to harvest either the prey or the predator population. In
this section, optimal escapements for harvesting only the prey popuiation are derived
using similar method to harvesting both prey and predator. Optimal escapements for
harvesting only the predator population can also be obtained using the same method
(see Section 4.3.3 for a more complex predator-prey system).

Using present value maximisation, now the objective is to maximise the net rev-
enue from harvesting prey population up to time hor-izon t : T. As before, fl;y
represents the present value of net revenue from harvesting prey population lú, then
we need to maximise 

T
Pr'/ - Ð p*nr(¡r*, S¡ro) (3.26)

ß=0

subject to
ÄIi"+r : øS¡r* * F(Sr*) J aS¡,¡oP¡", (3.27)

P*+t : bPn * G(P*) * 7S¡voPn, (3.28)

and0lS¡¡-<I/¿. Let

lr \
Jr(No,Po) : ,s*lär, (,I n-nr(l{*, ^9rv-)J (3.2e)

be a value function from harvesting only the prey population up to period ú : 7. The
value function at time T + I can be written reculsively as

Jr+t(No,po) : .<*3ä* ØJr(Nr, P') + tlx(X0,,9x.)) . (3.30)

A step by step process with respects to time remaining ú is carried out to obtain the
optimal escapements for the system. First let us consider T :0.

/o(r/o'Po) 

: ïîI,ïr-(^b's¡o')) 
(3'31)
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Next let us consider the next time horizon., T : I,

.rt(¡rlo, Po) : ,.fr3i* [IIru(ÄIo,^9¡v.) + p/o(¡/r, Pr)]

: ..ffiîi* [II¡r(I/0,'St') + p[I¡r(l/', ^9ry-)]' (3'32)

A necessary condition for an optimum it e4ffiÐ : 0, hence the optimal escapement

is given by the equation

p'ru - "t(st') : (a +F'(sn.)t oPo)(p¡o - "r(¡/r)). (g.33)
p

This equation is the implicit equation of the optimal escapement for one period to go.

The optimal escapement for one period to go is denoted bV S,{i(Po) which is a function
of predator population size Ps. In harvesting both the prey and predator populations,
the optimal escapement is independent of the time horizon considered. But here this
is no longer true. Appendix 3D derives an equilibrium prey optimal escapement as a
function of predator equilibrium population size, P, using dynamic programming. The
appendix shows that if

lp(b+G'(P) +Bsïv)l < 1 (3.34)

then the implicit expression of the equilibrium prey optimal escapement is given by

(p¡¡ - "ru('siu)) : (ø+ F'(.gfi,) +or¡1pr - "¡r(¡'r))p

-rlffil ro,-",(¡/)) (3.35)

This implicit optimal escapement equation is similar to the implicit form of optimal
escapement for a partially reserved metapopulation discussed in the work of Tuck
(1994). The difference is that the occurrence of a nonlinear term aBPSi,, which makes
the interpretation of the equation more difficult. To find the optimal escapement we

need to satisfy condition (3.34). However, using the method of Lagrange multipliers
(Appendix 3tr), the same equation can be derived without requiring the fulfilment of
this condition. Hence, to obtain the optimal escapement ^9ft we only need to solve

equation (3.35) together with the predator dynamic

P : bP + G(P) + pSi,{P. (3.36)

Next, I will interpret equation (3.35) for some special cases.

The case of a :0. In this case, equation (3.35) reduces to

0 : -(p¡r - "r(Sïu)) + pl(p* - .r(¡/))(a + F'(.9fi,))1. (3.37)

This is the optimal escapement equation for a single-species population (Clark, 1976a).

The case of 0 :0 and a + 0. In this case, the intelaction only affects prey popu-
lation and does not give an influence to the growth of the predator and equation (3.35)
becomes

0 : -(p¡¿ - "¡¡(Siu)) 
+ pl(p* - .oo(¡/))(a + F'(Si,) + or;1, (3.3S)

which is the implicit equation of prey escapement fol one peliod to go (equation (3.33)).
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The case of a 10, P +0 andlp(b+G'(P) +BSÄ')l < 1. In this moregeneral
case, equation (3.35) is equivalent to

- (pr - "r(si,)) + pl(pt¡ - "¡n(¡/))(o * F'(,sÄ') + or)l > o, (3.39)

since ,Sft is a root of equation (3.35). Furthermore, if the cost of harvesting is negligible
(or independent of the population size) and F is a logistic recruitment function then
we obtain

F'(.9iu)
p

p

si/ <

Note that, predation is behaving like discounting. Hence, as far as economically optimal
harvesting strategies are concerned, an increase in the discounting rate is equivalent to
an increase in predation rate or to an increase in the number of predators, which means
a decreasing prey escapement. It can also be interpreted that, for the same predator
population size, the equilibrium optimal escapement is always less than the optimal
escapement for one period to go. Next, since o is negative then

sir <

By comparing this with equation (2.48), the right hand side in (3.a1) is the optimal
escapement for a single-species population. This suggests that in the presence of an
unexploited predator, assuming logistic recruitment, the stock recruitment is lower
than in the absence of the predator. This situation is intuitive and can be observed
in many fisheries that exploit only the prey population. For example, Harwood (1987)
and Harwood and Croxall (1988) observed the declining of inshore commercial fisheries
with the increase of the grey seal, Halichoerus grypus) population in the British Isles

water. Next further interpretation is obtained by recalling that (t- faBP) > 0 and
substituting predator equilibrium equation (3.36) into inequality (3.a0) to produce

2rr- K si¡

si/

t; (' - #"ur)

þ+,('-?) +pr;"]))

þ*"('-;)l))

o-Lr,.P
p

o-LraP
p

-i+"PÐ) +if;aP (t-;)
sÅ' ( - fi"Br)

The last inequality suggests that, for a fixed prey intrinsic growth, if the resulting
predator equilibrium is less than the predator carlying capacity, then increasing the
ratio of predator intrinsic growth to the pley intlinsic growth causes the right hand
side of the inequality to decrease. In other words, it causes the upper. bound of the
optimal escapement ^9iy to decrease. Numerical exanples in the section that follows
show that it may also declease the optimal escapement itself.

(3.42)
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3.4 Numerical examples: Flarvesting one or both
specres

In this section some numerical examples are given to illustlate optimai escapements for
the predator-prey population in the previous section. I consider two types of harvesting:
harvesting both species and harvesting only the prey species. These escapements are
compared to escapements if we manage the stock as a single-species population. I
use a relatively small number for the carrying capacity of each species to facilitate
comparisons between escapements derived analytically [equations (3.22) and (3.23)]
and escapements obtained by iterating Bellman's equation (3.10).

3.4.L Flarvesting both species

Let the prey population have a carrying capacity K : 2000, with intrinsic growth
rate r : 2 and adult survival per period ¿ : 0.1, while the predator has carrying
capacity L:40,, intrinsic growth rate s :2, and adult survival rate å:0.1. Let the
coefficients of predator-prey interaction be o : -0.001 and B : 0.001. To find the
optimal harvesting strategy, assume: the initial population size of the prey and predator
are at their equilibrium population size, an economic discounting rate 6 : 10%, the
cost associated with harvesting is negligible and there is no difference between prey
and predator prices.

Soiving equations (3.1) and (3.2), the equilibrium population size for the prey and
predator are found, that is, .^/ : 1057 and P : 43. Furthermore, solving equations
(3.24) and (3.25) gives optimal escapements for the prey and predator ,Siy : 500 and
SÞ : 10, respectively, with equilibrium optimal harvests flir : 295 and Hþ : It.
These optimal escapements and their equilibrium optimal harvests can be observed in
Figure 3.1. The optimal escapement for the predator is slightly different to the result
from iterating Bellman's equation (3.10), that is, SÄr : 500 and SÞ : 11, as shown in
Table 3.1. This difference is due to the rounding error involved in solving the dynamic
programming problem and using a discrete state space.

The optimal escapements for the prey and predator are the same as the optimal
escapements if we assumed the species were independent, that is, no predator-prey
interaction between the species. In this case, initial population sizes ÄLo: 1100 and
P,o :22, optirnal equilibrium escapements Siy" : 500 and ^9þ" - 10, and equilibrium
optimal harvests I1År" : 300 and Hþ" :6 are obtained. This is because we assume the
predator is very efficient, that is, lol: 0. In the next chapter, it will be shown that
this rule is also true for a spatially-structured predator-prey population.

In this example the prey's optimal harvest from the predator-prey population
escapements is lower than optimal harvest from the single-species population model.
On the other hand the predator's optimal harvest from the predator-prey population
escapements is higher than the optimal harvest from the single-species population
model. This is not surprising because in predator-p'r-ey populations the fishers are
competing with the predator, so that the numbers of the prey decreases while the
numbers of the predators may increase. In this case, it is best to harvest the predator
below its MEY.
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Figure 3.1: Contour plot of the profit function PV (Figure 3.1.a) and the
optimal equilibrium harvests (Figure 3.1.b) as functions of prey and predator

escapement .9lv and ^Sp. The dashes in Figure 3.1.b are the contour plots of
the prey equilibrium harvests, Ily, and the dots are the contour plots of the
predator equilibrium harvests, Ilp. The optimal escapements are found to be

Sfr : 500 and ,9þ : 10 with equilibrium harvests Hi'u:295 and Hi: It.

3.4.2 Variation of parameters

Impact on harvesting strategy of the variation in the prey vulnerability
parameters

In this section I discuss the effect of prey vulnerability on optimal escapements.

Rewrite the optimal escapements in equations (3.24) and (3.25) as .9fi¡ : ff and Sþ : t,
where n: T +CB, ø: T +CA. Using this notation, the first derivative of the
optimal escapements with respect to a are

4.9Ä/ D',L - L',D

and

(3.43)

(3.45)

(3.44)0a L2
In our example these reduce to

a^gÄ/: -1 +)(01+c)c
A" -Æ**-'(C2___!_soo¡

and

ryä : ==-t , * 2(9.::2 + 9)? (3 46)oa - c2 -rooo! ''(c, -uo_!),'
Using these derivatives I investigate the effect of prey vulnerability on the optimal
escapements. For simplicity, let us fix É : 0.001. With increment Aa : 0.0005 we

expect the change in escapement 4,9¡¿ : -10718(0.0005) : -5.36 at a : -0.004. The
exact value of the prey escapement Sly at a : -0.004 is 508, and at a : -0.0035 is 503.

With the same increment we expect the change in escapement 4,9¡¿ : 5000(0.0005) :
2.5 at a : -0.001. The exact value of the prey escapement ,9fi¡ at a: -0.001 is 500,
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t N P Si/ så Hi,r Hþ

0 1057 43 500 11 557 32

1 795 23 500 11 295 12

2 795 23 500 11 295 12

3 795 23 500 11 295 t2
4 795 23 500 11 295 t2
5 795 23 0 0 795 23

Table 3.1: Optimal escapements for predator-prey population derived by iter-
ating Bellman's equation (3.10). Optimal escapement for the prey and pred-

ator are ,Sir and ,Sþ, respectively, while f/fir and Hþ denote their optimal
harvests for each species. The úúá row indicates the value for 5 - ú periods to
go.

(u) (b)

p p

4 0l 4 m9 {.008 {.007 {.006 { oo5 .0.001{ 003 4.002 { 00'l {.01 {.0o9 { 000 .0.007 {.006 {.005 4.004 {.009 -0.002 -o ool

ad

Figure 3.2: Contour plots of optimal escapements Si, (Figure 3.2.a) and Sþ

(Figure 3.2.b) as the functions of prey vulnerability a and predator biological

conversion parameter B.

and at a : -0.0005 is 503. This resuit is illustrated in Figurc 3.2.a. A similar result is
also obtained for the predator optimal escapement .9Ë. With increment Aa : 0.0005

we expect the change in escapement A,9p : 5000(0.0005) : 2.5 at o : -0.001. The
exact value of Sþ : 10 is at a : -0.001 and ^9þ 

: 12.52 is at o : -0.0005. With
the same increment we expect the change in escapement 4,57y : 5400(0.0005) : 2.7

at a : -0.004 (see Figure 3.2.b). Hence, the difference in escapements from the same

increment is lower for a higher pledator efficiency, that is, C : a* þ : 0. This suggests

that a decision to adopt optimal escapements for a predator-prey population shouid

not be affected by the uncertainty about the exact value of the prey vulnerability if
the predator efficiency is high.

Now let us look at the effect of pley vulnerability a and predator efficiency C on

the equilibrium optimal harvests //fir and 1/þ. Recall that equilibrium optimal harvests
are given by equations

Hiu : (a^9fi¡ + rF(SÅ/) + a,Si,^9þ) - Sfr (3.47)
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Figure 3.3: Contour plot of equilibrium optimal harvests /ífi, (Figure 3.3.a)
and Hþ (Figure 3.3.b) as the functions of prey vulnerability a and predator
biological conversion parameter B.

and similarly
Hþ : (äsÞ + sc(sþ) + BsÄ'sÞ) - Sþ. (3.48)

Using a similar method to the previous anaiysis on the effects of variations of prey
vulnerability a and predator parameter B on optimal escapements, the following result
is obtained. At a fi.xed value of. B : 0.001, the increment of 0.0005 in a at the
point a : -0.002 decreases the optimal harvest by as much as two individuals from
Hiv : 295 to Hi,t : 293- The same increment decreases the optimal harvest by as

much as six individuals at the point o : -0.004 from Hiu :311 to f/Är : 305. This
can be observed graphically in Figure 3.3.a. As for the optimal escapements, the effect
of the variation of prey vulnerability on the equilibrium optimal harvests is less intense
when C : a* B close to zero (Figure 3.3)

Impact on harvesting strategies of the variation in the predator efficiency
and relative market price parameters

In this section I discuss the effects of the predator efficiency, þllol, and the
relative predator market value, n'¿) on the optimal escapements and harvests .giv, SÞ,
I/fi¡, and 11þ. If the ratio of the predatol market price to the prey market price is
pplpN:m,ther¡ using the same procedure to the previous analysis in which there is
no differences between the two market prices, the optimal escapements are

si¡ : AT¿ +^mC B 
(3.49)

A
and

s; : B"# 
'+ 

c l' 
(3'50)

A,I
where A,: C2 -r-i? + 0, C - a*n'113, A and B as in (3.24) and (3.25), respectively.
Partial derivatives of these escapements with respect to the relative predator market
plice are

ASiu K Ll2sAK(o' - m2 P2) ! maB B I{ L(2a t mB)l
0m L2
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Figure 3.4: Optimal escapements ,9i, and Sþ (Figure 3.4.a and Figure 3.4.b)

and equilibrium harvests I1jr and I$ (Figure 3.4.c and Figure 3.4.d) as the
functions of predator conversion coefficient B and the relative predator market
price rn, for a fixed prey vulnerability a : -0.001. Figure 3.4.c reveals that if
the predator efficiency is very high and the relative predator market price is

also very high, it is optimal to feed the predator population, indicated by the

negative harvest for the prey population.

K LlrnpBKL (+ï - Ðl (3.51)
L2

and

ASþ

0m
- K LIBAK L(a2 -t mBQa + *lt))l

+

L2
K Ll2rB L(o' - *'p') !  Aasrl

(3.52)
L2

If the predator has a high biological efficiency such that this efficiency is greater than
twice the inverse of the relative predator market price, that is, llll"l ) fr, then both
partial derivatives are positive. Hence in this case, the increase in the relative pred-
ator market price increases both the prey and the predator escapement. The prey
escapement increases because it is important as food for the predator, which is an effi-
cient biomass converter and has a better economic value than the prey. The predator
escapement increases because of the increasing escapement of the prey.

Note that a large difference in the i-elative prices of the species, where the relative
plice fol the predatol higher than the relative price for the prey, dlives the less valuable

Hþ
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Figure 3.5: Figure 3.5.a is the graph of prey escapement, Si, æ a function
of predator's relative price, rn, and the discounting rate, ô. Figure 3.5.b is

the graph of its equilibrium harvest, I1f;,. Consistent to harvesting a single-
species population, high discounting rate is likely causing the manager of the
resource to deplete the resource. This is indicated by the declining of optimal
escapement for prey population (Figure 3.5.a) as the discounting increases.

Seeding strategy into prey population which occurs for discounting rate ô :
l0% (m: 10 and É : 0.001in Figure 3.4) is not optimal for larger discounting
rates (Figure 3.5.b).

prey species to a high level of escapement. [For comparison, Agnew (1932) shows
that a large difference in the relative prices of each species in a competitive system
decreases the optimal escapement level of the less valuable species. This is because,
in a competitive system, the less valuable species does not contribute anything to
the growth of the more valuable species positively. Whiie in a predator-prey system,
the less valuable species (the prey) is converted into the more valuable species (the
predator) with respect to a certain biologicai efficiency].

Hence, if predators are more valuable than prey species, it can be concluded that
it is better to leave the prey species to be consumed by its predator than to harvest
the prey which only has a low market price compared to the predator. The consumed
prey are converted into a predator, and in turn we harvest the predator which is rn
times more valuable than the prey. However, this strategy only works when predator
efficiency is high (see Figure 3.4.a). Therefore, if the predator effi.ciency is relatively
high and the harvest from the predator is profitable (indicated by large rn) then the
harvest from the prey could be very low, due to the importance of the prey as food
for the predator. In a real fishery, capelin off eastern Canada is only harvested at
the rate of no more than ten per cent of its spawning biomass. This is because the
capelin is very important as food for other commercial fish, like cod (Caddy and Mahon,
1995). Furthermore, Shelton et al. (1993) showed that production of the cod could be
negatively affected by the excessive harvesting of the capelin.

Figure 3.4.c shows that if rn and B are even larger, for a fixed a, our equations
show that the optimal prey halvest is negative. In this case a seeding strategy for'
the prey population is an optirnal strategy. This stlategy can also be regalded as a
feeding strategy, where we put prey into the system to feed the predator. This stlategy

n'¿ô ô

45



t N P sÄ' P* Hfr Hþ

0 1057 43 476 43 580 0

1 753 1B 528 18 225 0

2 820 31 463 31 357 0

3 744 31 463 31 281 0

4 744 31 463 31 28r 0

5 744 3i 0 31 744 0

Table 3.2: Optimal escapements and their harvests derived by iterating Bell-
man's equation (3.10) with s : 2, if we harvest only the prey species. All
notations are identical to those in Table 3.1.

is economically optimal because the economic efficiency of the predator, mBllal,is
relatively large compared to the discounting rate, ó. However, when the discounting
rate is high, investment through increasing the predator population by feeding them
prey, is not likely to be profitable. As a result, a negative harvest or seeding strategy is
no longer optimal for a high discounting rate (see Figure 3.5 for m : I0 and 6 : 100%;

see also Appendix 3C).

3.4.3 I{arvesting only the prey species

Suppose that we are only harvesting the prey population. The optimai escapement from
iterating Bellman's equation is shown in Table 3.2. Different optimal escapements are

found for different periods to go and they rapidly approach an equilibrium optimal
escapement, that is, ,Siy : 463 with a predator equiiibrium population size P* :
31. This numerically calculated equilibrium optimal escapement is different from the
analytical result found by solving equations (3.35) and (3.36). The analytical method
gives a result of .9fi¡ : 480 and P* :32. Hence the numerical procedure gives an error
of about 3.5% of the analytical result. The differences are due to the rounding error
using integer numbers in dynamic programming while in the analytical method I use

real numbers as the populations sizes. The first year escapement from the numerical
result (S.fu : 476) is also lower than the first year escapement from the graphical
illustration of the analytical method (Figure 3.6).

Inequality (3.42) suggests that, for a fixed prey intrinsic growth rate, if the result-
ing predator equilibrium is less than the predator carrying capacity, then the increase

in the ratio of predator intrinsic growth to prey intrinsic growth decreases the upper
bound of the optimal escapements .9iy. Iteration of Bellman's equation for the previous
example (K :2000, lol : É : 0.001 and s : 2) with the changìng of the predator
intrinsic growth s to s : 3 gives an equilibrium prey optimal escapement of 

^9fi¡ 
: 389

(Table 3.3). The equilibrium prey optimal escapement for s : 2 is Siy : 463 (Tabie
3.2) which is higher than the equilibrium optimal escapement for s : 3. Hence, in
this example, if the resulting predator equilibrium is less than the predator carrying
capacity, then the increase of the ratio of pledator intrinsic growth to prey intrinsic
growth not only decreases the upper bound of the optimal escapements ,91y, but also

decreases the resulting optimal escapements ,9iy itself, fol a fixed prey intrinsic growth
(see inequality (3.42)).
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Figure 3.6: Profit function as a function of prey escapement with time period

T : I. The optimal escapement lies between 476-480.

Time to go 30 29 28 5 4 3 2 1 0

'9i/ 481 530 468 403 389 389 389 389 0

P 42 18 4L 13 33 33 33 33 33

Table 3.3: Optimal escapements for the prey population, ,Sfi¡, and their equi-

librium predator population size,, P, if we harvest only the prey species.These

escapements are derived by iterating Bellman's equation (3.10) with s : 3.

3.5 Concluding remarks
In this chapter I have modelled a deterministic, discrete-time predator-prey system
using coupied difference equations as a generalisation of Clark's (1976a) discrete-time
single-species population model with overlapping generations. I use dynamic program-
ming and the method of Lagrange multipliers to find optimal harvesting strategies for
the system considering two different types of exploitation: harvesting both species and
harvesting only the prey species.

In some circumstances, for example when costs are negligible, a multi-species
fishery exploiting a predator-prey population should concentrate the exploitation on
the predator species if the predator is an efficient biomass converter and more valuable
in the market than the prey. This is intuitively logical and consistent with the results
of May et al. (1979), Hannesson (1983), Ragozin and Brown (1985), and Degee and
Grasman (1998). They pointed out that if the prey has a very low value then it is better
to leave the prey as food for the predator rather than as exploited stock. In this case, if
we assume that the cost (or effort) of harvesting is the same for the prey and predator
then harvesting the predator gives a highel net retuln per unit effort than harvesting
the prey. This is known for other types of multi-species fisheries, for example Gatto eú

al. (1982) suggested that, in a multi-species fishery with non-interacting species, stock
with lower net return per unit effort should be less exploited than the other stock.
Caddy (1975), Hilborn and Ledbetter (1979) ancl Hilboln and Kennedy (1992) have
also discussed multi-species fisheries with spatially different stocks and their results
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conform to the results presented here.
Most of the conclusions in this chapter are not new. The main purpose is to

present a baseline resuit with which I can compare the spatially-structured optimal

harvesting strategies. One conclusion that has not been discussed in other work is the

interpretation of a negative harvest as a feeding strategy. A numericai example for

harvesting both species shows that if the predator has an extremely high biological

efficiency and high market value, increasing the prey species through seeding may be

optimal. This is indicated by a negative harvest Hx: Xw -,9¡,. where Xx <,S¡¡. In
this case increasing the prey species can be regarded as feeding the predator. In many

situations a seeding or feeding strategy is logistically and economically unlikely, for

example in a trans-boundary fishery in which the exploited fish stock is not governed

by a single authority or country. In this case, the benefit of seeding or feeding strategy

implemented by one authority can accrue to another authority. Another limitation of

this seeding or feeding strategy is that I assume that seeding has a cost (negative harvest

profit) equal to the price of prey. This might not be true and the seeding cost is likely

to be higher. In this case an optimal harvesting strategy is to apply a zero harvest until
the prey abundance is higher than the prey optimal escapement. Another alternative

for dealing with negative harvests is proposed by Tuck and Possingham (1994) and

discussed in chapter 5 for a more complex predator-pley population.

If we harvest the prey population, it can be concluded that an optimal harvesting

strategy is less conservative than either an optimal harvesting strategy derived from

single-species theory or a harvesting strategy derived by considering maximum eco-

noÃi" yield as the objective of harvesting management [see inequality (3.40)]. This is

because we compete with the predator, while we are also maximising the net revenue.

The right hand side of inequality (3.a0) is an upper bound on the prey optimal escape-

ment. The inequality suggests that more predators implies a lower upper bound for the

prey optimal escapement. A numerical exampie shows that it may also ca,use a lower

prey optimal escapement, which can be observed in many fisheries. For example, Har-

wood (1gS7) and Harwood and Croxall (1983) have observed the declining of inshore

commercial fisheries with the increasing of grey seaI, Hali'choerus grApusi populations

in the British Isles.

The right hand side of inequality (3.a0) can be considered an escapement associ-

ated with maximum economic yield if ô : 0. It suggests that, assuming the number of

pred.ators is in a steady state, this escapement decreases with increasing prey vulnerab-

ility. In general the number of predators would change if the number of prey changes.

However, in the model in this chapter, I assume the predator has another main food,

and if the biological conversion rate B is relatively small, then the number of predators

would not change substantiallY'
In the next chapter I add spatial structure into the model in this chapter. I

derive optimal harvesting strategies and compare them to harvesting strategies if we

incorrectiy ignore the spatial structure of the population.

3.6 Appendices

Appendix 3A: "Bellman's principle of optimality"
Dynamic programming is a technique to solve an optimisation problem. It was de-

veloped by Richard Bellman four decades ago. The core of dynamic programming is
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the foliowing "principle of optimality".

"An optimal policy has the property that whatever the initiai state and

initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision" (Bellman,

1e57).

This principle is obvious to Bellman (1957) who stated that "a proof by contradiction

is immediate". Other authors, e.g. Sniedovich (1992) proved the principle in a more

precise mathematical formulation.
In general, a dynar4ic programming problem involves a multi-stage decision pro-

cess or an n-dimensional optimisation problem. Among many advantages of the dy-

namic programming approach in solving this n-dimensional optimisation problem is

that using this approach we can obtain r¿ one-dimensional optimisation problems and

produces the global maxima or minima as the solution of the problem. Cooper and

Cooper (1981) pointed out that a dynamic programming problem as a multi-stage

decision process has the following elements:

Stage , i.e., a variable reference of when the process is taking place. For example, in a

discrete multi-stage decision processes, stages are usually associated or represen-

ied by the numbers in k : {1,2,3, ......} (see Figure 3.7). In resource management

the stage is usually time, and often the time interval is a year.

State , i..., a variable that describes the condition of the system at a certain stage

(flgure 3.7).

Decision , i.e., an action available when the system is in a certain stage and certain

state (see Figure 3.7). An ordered set of decisions is usually referred to as a

policg.

Transformation , i.e., an action that makes a process move from one stage to an-

other stage after choosing a certain decision. This transformation relates the

state in one stage to the state occurring in the previous stage. For example,

f(X*,Sr(X*),k) in Figure 3.7 determines the movement of the process from

stage k and state X¿ to the next stage by choosing a decisio" s¡(x¡).

Furthermore, because a dynamic programming problem is an optimisation problem,

then there is an objective function that generates the overall return from the imple-

mentation of any policy.
Let us consider the following dynamic programming example, taken from Conrad

and Ciark (1987). r
max I fI(Xt ,Sr, k) (3'53)
{sri rã

subject to
Xk+t : f(Xn,Sn,k), k : 0, 1, "',7 - I

^9¡ € 5, k: 0,I,"' ,T
with Xo : ø is given. If X is the state variable at a stage when only n periods remains,

define J"(X) as the maximum total value up to that stage, hence

T

D rI(x*,S¡, k)

(3.54)

(3.55)

: max
k=T-(n-r)

with X7-6-Ð : X

(3.56)

(3.57)

J.(X)
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State Xk

Decision Sn (& )

--->
Transformation

subject to (3.5a) and (3.55) but for k > T - (" - 1)'

For n : 1 and n :2 the problem above reduces to

J'(x) : H?ãtr(xt',Sr,r)
w\th X7 : X,

X¡*, = f(Xo,S*(Xr)'k) -------------->

Stage k Søge k+l

Figure 3.7: The dynamics of the decision process at the stage k (modified

from Sniedovich (1992))'

(3.58)

(3.5e)

T

Jr(x) : ri?ä",Ð.n("n,St,,,tc) (3.60)
K=I -L

with Xr-r : X', (3'61)

respectively. By substituting (3.58) into (3.60), the maximum total value in (3.60) can

be written as

Jr(X) : ,ffä" ltr(Xt-r , Sr-r,r - I)
+ 

^f 
(Xr-t,Sr-t,7 - 1))l

with X7-t: Y.

(3.62)

(3.63)

If we use a decision Sr¡ at the stage T - L, the fi.rst term on the right hand side

of (3.62) is the immediate return resulting from the implementation of the decision'

Now, having made a decision at the stage 7 - 1, we still have one period to go, in

which the state now is Xr: f (Xr-t,S?-r'f - 1). Let us rewrite Bellman's principle

of optimality in the following way.

An optimal policy (in this case {s7-1, sr}) has the property that whatever

the initial state (in this case Xr_r) and initial decision (in this case ,S7-1)

are, the remaining decisions (in this case 57) must constitute an optimal
policy for the process starting in the state Xr : f(Xr-t,Sr-t',T - 1) as

a result of the adoption of the decision S7-1 (see also Cooper and Cooper

(1es1)).

Hence if we want the policy .9r-r and ,9r to be optimal for the last two period process,

then the final decision ,Sr for the terminal period should also be chosen optimaily' The

iteration of equation (3.62) can be used to determined the entire policy if the final

decision is known. The general "n periods to go" decision is gìven by

J;(X) : - max-. [n(Xr- @-\tSr-6-\iT - (" - t))
5a-1r-1¡ to L
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+ J,-{f (X'r-('-r) , Sr-@-t),7 - (' - i)))] (3'64)

with Xa-1n-t) : X, (3.65)

which is known as "Bellman's equation". Stockey and Lucas (i989) defined dynamic

programming as a study of dynamic optimisation problems through the analysis of

Bellman's equation.

Appendix 3B: The second derivative test for a maximum net
present value

Escapements ^9i5 and .9þ" obtained by solving equations (3.19) and (3.20) give a max-

imumnet present value iflhey satisfy the second, derivative test: ffi < O, ffi < O

""d ffi e# - (#ir")' > o. Recalling that

/r(^io, Po) (p' - "'(6))d( . I:;@, -,p(Ò)d(

-, f/i- (p' - "¡r(6))d( 
* l::-@, -"'(0)d6] (3.66)

OJ,
-(p* - "r(sr.))
+ p l@ x - "ru(¡i') ) (ø * F'(.9r¡, ) + o,9po ) + (pt - ""(& )) ( þ S r")1,

(3.67)

ôS¡0.

OJ,
-(p, - cp(.9p, ))

+pl@p - ""(Pt))(b+ 
G'(Spo) + É^9¡¿.) + (pt -'n¡(¡/t))(oSt )1,

(3.68)

0Spo

then the conditions in the second derivative test equivalent to

0'Jt
(A-ñf : 

"'t(st') + n l-c'"(l'r')(a + F'(SN') + o,S'o)'

+F"(S,v.)(P¡¡ - cru(l/r)) - C,(Pr)(PSt )'] < 0,

02 Jt
(ôst )'

: 
"'p(spo) 

+ ol-'1"(Pr)(b I G'(sp") + Ésiv,)'

+G"(Sp.)( pp - cp(Pt)) - "r(¡fr)("St,)'l . O

02J, 02J, , 0'J, \2 \ ,ffiffi-(ffi)" >

(3.6e)

(3.70)

(3.71)

and

ô,J, f

ffi 
: pl-"'¡t(Nt)(o+ F'(St )*aspo)(oSt,)+*(pt -"¡o(¡r'))

-¿pe)(b * G'(Spo) + ÉSru,X BSe") + 0(pp - ""(p'))l 
.

where
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Appendix 3C: 6tFundamental principle of renewable resource
economicst' for a predator-prey population.

In single-species harvesting theory a higher discounting rate usually causes a lower

escapement (Clark, 1985a). I show here that it is also true in selective harvesting of a

predator-prey population.
Let the economic efficiency of the predator b" # > 1 and also

mg ( 21 2s 11. (s.23)
þl ' min \þK + '' 1o1r 

* t,i 
'

where rn denotes the relative value of predator to the pïe)/' If the costs of harvesting

are negligible then optimal escapements for prey and the predator are given by

si,:ry, Q,4)

s; : B'# .+ c t. 
(s.zb)A)

where L_- C2 -*T? f 0 and C : a+rn7.Partial derivativesof the prey and

predator escapements with respect to the discounting rate are

ô,9¡¿ T + c*
(3.76 )

a6

ôSp

a6

A

T+c
A

Furthermore, from (3.73) we can obtain C a i and C < |
efficiency #r 1is equivalentto C >0, this proves A < 0. Finally,weconcludefrom

(g.76) and'(3.77) that increasing the discounting rate ô decreases optimal escapements

for both the prey and predator. This is consistent with harvesting a single-species

population, that is, a high discounting rate causes the manager of the resource to

avoid high investment by leaving a lower escapement of the resource (Sieveking and

Semmler (1997) showed that this principle may fail fol non-selective harvesting of a
predator-prey population) .

Appendix 3D: "Prey equilibrium optimal escapement"

An equilibrium prey optimal escapement, when we only harvest the prey species, can

be written as a function of predator's equilibrium population size. To show this let

,SAl : Sff(Po) denotes the optimal escapement for k periods to go. First let us consider

T :2 and recall that

¿(¡/o' Po)

(3.78)

where

- _r^na4,, [II¡o(/ú0, S".) + pIlN(l/r,,9N"")]
0lS¡n (À/s "

II¡¿(Äb, Siü) + pII¡ø(l/r, ,9¡r-),

(3.77)

Since the economic

Let

¡ú'(^9iü, Po) : cS|,I * F(Si,i) + a^9liPo.

rNr
V (Nù : | (p -"nr(())d( : fl¡¡(l/r, S¡¿oo),

JSrv-
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then

IIru(ÄIo, S¡¡,) : /,.-1p - "r(6))d6 
+ /i_,r - "¡o(€))d(

: Y(¡/') - Y(Sr.)

Using this notatiot 4(Äb, Po) for i :1,2 can be written as

J'(^b, Po): Y(¡/') - Y(siü) + pv(Nv)

and

(3.80)

(3.81)

J2(No, Po) max III¡ü(t/0, sr. ) + p\$, P1)l

ty(¡t/.) - v(sr.)
O(Sru^ (No

+ply(¡¿,) - y(sff) + pv (N2)ll, (3.82)

where

t. ¡/r(S¡¡., Po) : øSryo * -F(Snt ) 1 aS¡roPo,

2. Nz(Sri,Pr): ø,9|'l * F(Siü) + oSi/Pr,

g. &(S^h , Po) : bPo -l G(Pù I BS¡¡oPs.

A necessary condition for an optimum it q%*Ð : 0, hence

0 - -(p -"^,(,9r.)) + p(p-.ru(¡/,))ffi - p"(p -"r(^b)) W#
: -(p - "r(Sr,)) + p(p - "¡o(¡/'))(ø 

* F'(^9¡,r.) + opo)

+p'(p - "¡¡(¡/r)) astf Beo. (3.83)

The optimal escapement for T :2,, that is, ,9ff, can be obtained from equation (3.83).

Next, let us consider the next time horizon, T : 3. Substitute the optimal

escapement .9fri into .,/2 in equation (3.82) to produce J3 as follows

/,(^/0, Po) : ,<RÎä, [Y(^b) - Y(sii)

+plv(¡r,) - v(sF) + pv(Nr)ll, (3.s4)

Jr(Äh, Po) : ,=*li* ltl¡r(l/o,,So¡,) + pJ2(N1, P1))

max
0lS¡vo <ÀIo

(3.85)

where

1. ¡/r(Sru.,Po): øS¡ro * F(Sn.)-¡ a^9ryoPo,

2. N2(S?ë , P) : aS2'f + F(Siü) + aSz'f Pr,

3. ¡/3(^9H, Pr) : øSli + F(Siü) * aSt¡f P2,
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a. &(Sru. , Po) : bPo * G(Po) * þSNoPo,

5. P2(5i!i, Pr) : bh -r G(P') + þS?iP,

A necessary condition for an optimum i. Cq*Ð : 0, hence

Q : -(p -.¡o(Sn¿,)) + pl@ -.¡¿(¡/'))(ø * F'(,9ry,)+ ae')l
+p'l@ " c¡¿(l/z))a S",i 0Pol

+p"l@ - c¡,,(¡rs))o^9iü(ó + G'(pù + ps?;)pP"l. (3.s6)

The optimal escapement for T :3, that is, Sff, can be found from equation (3.86).

The next further step let us consider T :4 by substituting the optimal escape-

ment ^9fii into J3 in equation (3.85) to produce ,/a as follows

"rs(No, Po) max
O(Sv^ (No ty(^¡,) - y(si¡)

plv(N') - Y(siï)
+ plv (N,) - y(s#) + py(I%)lll,

J4(No, Po) r^na1- II¡¡(Äb, Sro) + pJs(N1., Py)
o5s¡o lNo

..*ii* rry(&, snt ) + plv(Nt) - v(sii)

plv(Nz) - Y(^sii)
plv(Nz) - v(siü) -¡ p[,(rú,)llJl,

where

t. ¡/r(S¡¡., Po) : 4,9,r¡o * f (Sr.) f a^9¡¡oPs,

2. ¡rr(^giï,p') : aSf,l + r(Siï) + a^9f'l&,

3. ¡fr(,Sii, Pr): aSz¡f * f (Siï) I o"S2¡f P2,

4. 
^¡r(.94¡, 

Pr) : øS,f + F(Siü) * oSÍriPs,

f. &(Sry,, Po) : bPo * G(Po) * BS¡¡oPs,

6. Pr(^9ii, Pr) : bh I G(P') -l pS?íh,

7. h(52ñ, Pr) : bPz t G(Pr) + þS?iPz.

A necessary condition for an optimum i. q+*Ð : 0, hence

0

(3.87)

(3.88)

-(p - "r(sr,))
+pl@ -.N(¡{'))(ø * F'(^9ry.)+ ofo)J

+p'l(p - .¡r(¡úr))aS3,f Brol
+ p"l@- 

"(¡/'))a.9ff 
(b + G' (Pt) + 0 Sli) 0 pol

+ pnl@ - "¡,' 
( ¡ún))o.9ff (b + G' (P2) + P S';)(b + G' (Pi ) + 0 S?Ð þ Pol
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It can be proved by induction that for time horizon T : n the necessary condition can

be written as

0 - -(p -cru(,9¡¡.)) + pl(p- .¡,'(¡/t))(a * F'(S,v.) + oPo)l

+Dpr
Ic=2

(p -.'(¡/* ))aBPosfr+1-fr)* iÍ (b+G'(Pj) +psÍri-').)
j:t,k>2

(3. e0)

It is difficult to interpret the optimal escapement in this case. To facilitate in-

terpretation, I proceed further to obtain the equilibrium optimal escapement, Sfi¡. By

assigning ¡y'ft : 1ú¡+r : lr/ for k > 0 and P¿ : Pn+t : P for k ) 0, and the time

horizon is infinity, the following equations are obtained:

0 - -(p -"r(Si')) + pl@- 
"r(¡ú))(ø * F''(^9i') + "r¡1

+ Ë p'p*-'(p- c¡¿(//))a PPSi,{þ + G'(P) + PSîðr-'
k=2

: -(p - ""(siu)) + pl@ - "r(¡/))(a * F'(Si¡) + or¡1

+p'(p- c¡¿(.n/))a PPSivËtot, + G'(P)+ BsÄ,)l'. (3'e1)
j=o

To simplify the last equation I assume

lp(b + G'(P) + BsÄ')l < 1, (3.e2)

hence,

0 - -(p -.r(SÄ')) + pl@ - "r(¡ú))(ø * F'(Sfi') + "r;1
rp,(p-"r(¡r)) lÆ) (3.e8)

Lr - p(a + G,(P) + Bsi/l 
'

Appendix 3D: 6'Derivation of prey equilibrium optimal escape-

ment using the method of Lagrange multipliers"

This appendix shows that, using the method of Lagrange multipliers, the implicit
equation of equilibrium optimal escapement (3.35) can be obtain without requiring the

fulfi.lment of the condition (3'34).

Assume that the time horizon in the maximisation is infinite, so that rve need to

maximise net present value

PV : i o*nr{lr*, fl¡¿o) (3.94)
fr=0

subject to equations (3.27) and (3.28), and 0 3 Hwo < ¡/È, where

II¡¡(1úr, HNo) : [* (p - .¡o(6))d(. (3.95)
J N¡-H¡¡o

The Lagrangian for the maximisation is

oo

L : ¡1pÀIlru(l/r,rúvo)
,h=0

-Àrr[l/¡+, - o(¡/À - Hr,to) - ,F(¡/k - H¡¡x) - "(1Vt - /1ry-)Pt]

-ÀrnlPp+, - b(Pr) - G(P*) - þ(N* - I1¡r-)PtlÌ'
(3.e6)
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with necessary conditions for the value function PV to be maximum a e:

1. ffi:0, ffi: 0 for k 2 1, and

2.:!-:0fork>0.On Nk

These conditions are equivalent to

^ i. ôfI¡
0 : pr;ñ - À,(¿-,) * Àrr(a + F'(¡fk - Hx') -f oP¡) I ÀznþP*,

0: Àr¡a(l/¡ - Hy) - )z(¡,-r) * Àzn(b+G'(Pk)+ þ(Nn - 11ru0)),

0: prffi- )r¡(d + F,(¡/ft - H¡,tx) + orrl - Àrt"Lpn.

Eliminating )z by substituting equation (3.99) into equation (3.97) produces

À,(¡-,):r- (ffi-*-'n"*)

Place back )1¿ into the equation (3.99) to obtain

pk -pk+' (gH*ffi) (a*F'(N¡-H¡v)taP¡)âfI v
aHNk

(3. e7)

(3.e8)

(3. ee)

(3.100)

(3.101)A2lc - þPn

Recall that S1y, : Nt - Hxoand let FN* : o+F'(l/i,)* aP¡ and GPk : bIG' (Pt)+þ S¡¡o

Substitute Àu,, Àr¡, and )21¿-1¡ into equation (3.98) to produce

0

0

o-.'(#*uffi) "r*
o*-tffi- p-( ,ffiï * #h) (ø + F'(.erv*-,) + or*-,)

þ Pn-t

+

âlI v
aH Nk

Çex
þPn

(3.102)

To reduce the complexity, I only consider equilibrium escapement sivo+, - ,sNo :

^9fi¡, and equilibrium harvest H*or, - HNo with equilibrium population size P¡"¡1 :
Pt : P,k > 0 and ly'¿a1 - Nr,,/c > 0. Multiply both sides of equation (3.102) Uv ffi
to produce

pk - Pk+' (.+ * ffi) (ø r F'(s¡¿o ) + orr¡

.(;,"^''-*-(ffi.ffi) *,,)

(H.#*) aBSi¡P

ff*) aBSi¡P- iþ^r
âII¡¿

AN-
.;(

Gpx

)l(H-'*,''*) FNx-(;ffi
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,(W.#*) .'psfrP

+ 11 - pG,ntt(ffi - #*) FNo -(;#*)]
,(W.#*) aBSioP

+[r- pGpo] (ffi-#*) F,v¡- tr- pG,rt (;#"-t*)

-ffi-t(ffi-*-ul.*) F¡vo*p'
ffi + fft) aBSfrP

| - pGpr

-(p - "r(Si,)) + pl@- 
"n,'(¡ú))(ø 

* F'(Sfi¡) + or;1
I appsîv l-rp'(p-"'(¡ú)) Lffil (3.103)
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Chapter 4

Predator-prey metapopulations
with juvenile migration and
juvenile interaction

This chapter describes a deterministic, discrete-time model for a spatially-structured
predator-prey population. The model has similar structure and assumptions to the

model described in Tuck and Possingham (1994), and generalises the model in Chapter 3

by including spatial structure. I use dynamic programming to fi.nd the optimal har-

vesting strategy for the populations. The model best describes a marine population

with sessile adults and pelagic larvae in which recruitment occurs seasonally, such as

with many species of mollusc. However, the model would also be useful for any flsh

species that have relatively sedentary adults - like reef fish. It assumes predation takes

place in the early life stages of the prey. This is a common assumption in most of

the literature, because in nature younger and inexperienced animals are likely to be

more vulnerable to predation (Curio, 1976). For example, at least a quarter of juvenile

Atlantic salmon are eaten by brook trout (Symons, 1974) and most prey consumed by

silver hake are in post larval and immature life stages (Sessiwine, 1984).

In this chapter I wiil show that some of the rules of harvesting a single-species

metapopulation generalise to predator-prey metapopulations. In singie-species harvest-

ing theory (Tuck and Possingham (1994)), a relative source subpopulation should be

harvested more conservatively than a relative sink subpopuiation (TP 1 in Chapter 2).

It can be shown that if predator efficiency is relatively high then we still should harvest

the relative prey subpopulation more conservatively than the relative sink subpopu-

lation, with an addition that we should also harvest the predator living in the same

patch with the relative source subpopulation more heavily than the predator living in
the other patch. This result only applies when harvesting targets both species select-

ively. When harvesting only targets the prey species, in some circumstances, the rule

is still true for one period optimal escapements, that is, optimal escapements with only
one unit of time horizon.

I will also show that some rules for harvesting a predator-prey population when

there is no spatial structure generalise to the case where the population is spatially-
structured. For example, May et al. (1979) showed that, in harvesting a spatially
homogeneous predator-prey population, if the predator biological conversion is very

small and the predator intrinsic growth rate is also small compared to the prey intrinsic
growth, then it may be optimal to harvest the predator to extinction. It can be shown

that this rule is also true in harvesting a predator-prey metapopulation, especially for
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P,,

P,,

Patch 1 Patch 2

Figure 4.1: Predator-prey metapopulation diagram for a two-patch model.

The numbers of predator and prey subpopulation i are respectively indicated

by P¿ and N¿, their juvenile migration rate are Ç;¡ and P;¡ respectively.

a relative sink/importer predator subpopulation or a predator living in the same patch

with a relative source/exporter prey subpopulation. Other questions, such as how to

harvest a reiatively more vulnerable prey population and a relatively more efficient

predator population, are also investigated in this chapter.

4.L The model

Assume that there is a predator-prey population in each of two different patches,

namely patch one and patch two. In the ocean, population patches may exist from

scales of metres to thousands of kilometres and often occur in response to physical

and biological processes, like advection, temperature and food quality (Haury et al',

1978; Mackas et o/., 1985; Davies et a\.,1991; Maravelias eú al.,lgg6; Letcherand Rice,

1gg7). Let the movement of individuals between the local populations be caused by the

dispersal of the juveniles. Adults are assumed to be sedentary, and they do not migrate

from one patch to another patch. If the population size of the prey and predator on

patch i at the beginning of period k are denoted by Ä4r and ,P,¿ respectively, then the

growth of the prey and predator is given by the equations

l/r1i,+r¡ -- atNu" I p¡'Fr (l/t*, Ptt) * pnFz(Nzn, Pzn), (4'1)

l/21*+r¡ : azNzk * przFr(l/r n, P*) * pzzFz(Nzn, Pzn), Ø.2)

Prlt+r¡ -- hP* * qrrGr(//t t , Ptn) * qztGz(Nrn, Prn)', (4'3)

Pr&+4 : b2P2¡ * qtzG{Ntn, Pr*) * qzzGz(Nzn, Prn), Ø.4)

where ¿r and ó¿ denote the survival rate of adult prey and adult predator in patch i. Lef
the proportion of prey and predator juveniles from patch i that successfully migrate to

patch j L" p¿¡ and q;¡ respectively. The functions F,(¡f,¡,) and G¡(P¿n) are the recruit

production functions of the prey and the predator on patch i in time period k' I will
assume that the recruit production functions are logistic plus an interaction term for

the remainder of this chapter, that is,

F¡(N¿t", P¿n) : 
"nn¿* (t - Y) * .,¿N¿t"P¿t (4.5)

59



and

G¿(N¿t", P¿x) :"oe* (r - 'Ð i B¿N¿¡,P¿¡,

where 
"n 

(",) denotes the intrinsic growth of the prey (predator), and K¡ (.[¿) denotes the

prey (predator) carrying capacity in the absence ofthe other species. In this case o¿ ( 0

and, B¿ ) 0 ensures that the system is a predator-prey interaction. It is important to
note that predation is affecting recruitment for both prey and predator. The functions

in (a.5) and (4.6) are consistent with predators eating juveniles. Furthermore, the

function G¿(N¿¡,,P,¿) implies that the predator has another food resource.

To explore harvesting, we need to introduce exploitation into the system. I assume

that the only possible exploitation is through a selective harvesting policy, for example

using a particular flshing method (e.g. net type size) we can harvest a pelagic predator

and leave a benthic prey unharvested, and vice-versa. If the amount of harvest taken

from the prey and predator stocks in patch i at the beginning of period k are H¡¡,r

and. Hp,o respectively, let St,o : N¿x - Ë/¡¡,u and ^9p,n - P;t - Hp r be prey and

predator escapements on patch i at the end of that period. These escapements are

the only contributors to the growth of the population after exploitation. Hence, if
the escapements are substituted into equations (4.1) - (4.4), then the model for an

exploited two-patch predator-prey metapopulation is

l/r1t+r¡ : atSNt * ptrFr(Sru,*, S"'o) I pztF2(S¡¡"r, S,"o)

: ,fr(Sru,* , SN"o, SPr* Sprr), (4 7)

l/z1t+r) azSN"r * pnF{SN,r, Sr,r) I pz2F2(S¡'¡ro, Sero)

fr(Sxro, SNro, SP'0, SPro), (4 8)

(4.6)

(4 e)

P\k+t) btspro * qrrGr(S¡¿,0, Sp,o) I qz1G2(S¡¡"n, Srro)

gr(,9t,* , SN'r, SPro, SP,ro),

PzØ+t)

: Lz(S*ru, S¡rro, SP,o, SPro)' (4'10)

Equations (4.7) - (4.10) together with equations (4.5) and (a.6) represent a model

of a spatially-structured predator-prey population with recruitment controlled by the

predation process. In many cases, the predator-prey interaction occurs between adults

and hence predation affects prey adult survival (Shepherd and Breen, L992; McQuaid,

1994). This aduit-interaction predator-prey metapopulation will be discussed in the

next chapter.
To find an optimal economic strategy, we need to make an assumption about

the ownership of the fi.shery and we need to defrne an objective. I assume there is a

sole-owner of the fishery and the objective is to maximise present value. This objective

includes economic discounting which is criticai for managing systems with a dynamic

state variabte (Ctark, 1976a). The effect of the discounting rate on optimal harvesting

strategies for a spatially-homogeneous predator-prey system is discussed by Silvert and

Smith (1977), Mesterton-Gibbons (1988), and more recently by Sieveking and Semmler

(1ee7).
\Mith present value maximisation the objective of the sole-owner is to maximise

the net revenue resulting from harvesting each subpopulation of the prey and the
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predator up to time horizon I : T. Il fI¡¿ represents the present value of net revenue
resulting from harvesting population X in patch i, where X e {l/, P} and i e {1,2},
and p is a discount factor, then the sole-owner should maximise

T2
PV:ÐpoÐ t rry¿(X¿¡,Íy,) (4.11)

fr=o i=1 f 6{f/,P}

subject to the state variable equations (4.7) - (4.10), with non-negative escapement
less than or equal to the population size. I will assume a discounting factor of

I
(4.r2)p (t+ð)

for the reminder of this chapter, where ô denotes a periodic discount rate (e.g. 6 : 5To).

If there is no discount rate (ó : 0) then the net revenue (4.11) in any period
generated by escapements ,Sry, and ,9p, has exactly the same value as the net revenue
from the same escapements in any other period. Hence, we only need to find optimal
escapements for one period (Agnew, 1982). The resulting revenue by applying this
zero discount rate is often known as maximum economic yield (MEY). If the discount
rate is extremely high (á ---+ oo) then the net revenue (a.11) approaches

PV*:D t fIx¿(X;o,Sx,o), (4.13)
i=1 Xç{N,p}

which is the immediate net revenue without considering the future and is maximised
by optimal escapements .9| _. I use the symbol "oo' to indicate that the exploiter
only cares about profit this period, which is the same as applying a large discount rate

- it is equivalent to open-access expioitation.
The net revenue for a two-patch predator-prey population is

fIx;(X¡ ,,5x,0) : ['r @* - "x¡(€))dt, Ø.14). 
J Sx;r

where px \s the price of the harvested stock X which is assumed to be constant, and

cy; is the unit cost of harvesting which is assumed to be a non-increasing function
of X¿ and may depend on which patch the stock is in. For example, in the case of
inshore-offshore harvesting, when we treat the inshore fishery as one patch and the
offshore fishery as the other patch, the cost to run the vessel to the patch depends on
how far the vessel goes from the coastline. See Appendix 4A for a detaiied derivation
of the net revenue in equation (4.14).

4.2 Optimal escapements

To obtain the optimal harvesting strategies for a two-patch pledator-prey population,
the escapement method described by Tuck and Possingham (1994) needs to be gener-
alised. First I will look at the optimal escapement when there is no discounting. Next
I will look at the optimal escapement when there is only one time period to go and

then the resulting escapement will be used to look at the optimal escapement for a

higher time horizon. Let

t

I p* Ð t try;(X;¡, sy,r)max
k:o i=1 X€{¡/,P}

Jr(Nto, Nro, Prc., Pro) :
0(S¡;s (X;6
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be a value function which is the sum of the discounted net revenue resulting from
harvesting both populations in lioth patches up to period t : T. We need to maximise
this function by choosing appropriate optimal escapements ,S|,u for each patch and
each time period. Equation (4.15) can be used recursively to obtain the value function
at time T + I, that is,

Jr+r(l[to, N2s, Prc, P2s) pJr(Nt, N21, P11,, P21)max
0lS¡¿e(X¡s

t

+t Ð IIx¿(X¿o,Sx,o) (4.16)
i=1 X€{N,P}

Hence, the long-term optimal escapements ,9ft,0 and Sþ,0 can be found by iterating this
equation back from time ?.

First let us consider T :0. In this case, the sole-owner would maximise immedi-
ate net revenue taken from immediate harvests without considering the future vaiue of
the harvested stock. This means no discounting factor is applied, and hence the best

strategy is the strategy that maximises PV- in (4.13), that is,

Jo(l/to, Nzo, Pro, Pro) : 
o<"T,.?{",0

2

t D IIx¿(X¿,, Sx,o)
i=1 X€{N,P}

Let us assume that the optimal escapements are Sx,*, then the maximum revenue is

2
given by 

/o(r',ro, Nzo, pn, pro) : Ð r rrx¿(X¿o,,gx,-). (4.1s)
¿=l x€{N,P}

Let us consider two cases, a constant and a non-constant unit cost of harvesting, and

obtain optimal escapements ^9¡,* for each case.

Case one, a constant unit cost of haruesting, cy;(X¿) : ,t;. In this case px - cxi
in (a.la) is constant. The integral in (4.14), and hence PV* in (4.13), is maximised
by Sl,_ satisfying

';,-:{f iii::::" (4 le)

Therefore, if the unit cost of harvesting is independent of the stock density and lower
than the unit price of harvested stock then it is optimal to harvest the entire stock.
On the other hand, if the unit cost of harvesting is constant and greater than or equal

to unit price of harvested stock then we should not harvest the stock at all, which is

what we would expect.
Case two, a non-constant unit cost of haruesting. In this case PV* in (4.13) is

maximised by Sir,- and ,Sþ,- satisfying q!4#Jdlr*o="r,_ : 0. Difierentiate the

integral in (4.14) with respect to ^9|o to obtainpN-cN(SÅ',-) :0 andpp-cr(S¿-) :
0. The last two equations state that optimal escapements occur if the marginal revenue

equals the marginal value of cost. This condition is known as "bionomic equilibrium"
(Gordon, 1954). If the recommended escapement is greater than the actual population
size, then the sole-owner should not harvest the stock at all. While if it is smaller'
than the population size then the sole-owner should harvest as much as the difference
between these two quantities.

Next let us consider the next time holizon, ?: 1. First, r'ewrite equation (4.16)
1o'- T : 0 and obtain /o(l/tr, Nzr, Prr, Prt) in a similar way to -/6 in equation (a.18) to

(4.17)
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Slve

Jr(Ir/ro, N2s, P1s, P2s) os"Tå{"" (n/o(r/t" N21' P11' P21)

+t t flx¿(X¡o,Sx,o)
i=1 X€{N,P}

,

2

2

: max
O(S¡¡¡lX¡s

pÐ t fIx¿(Xn,,Sx,_)
i=1 XE{N,P}

+D t IIx¿(X¿o,Sx,o)

given by the condition
ôJr(l[ro, N2s, Pß, P2s)

(4.20)
i=r x€{N,P}

The first term on the right hand side is the discounted net revenue from last year, and

the last term is the revenue from the penultimate year. The optimum value will be

:0 (4.2r)

(4.22)
t:1X€{N,P}

Substitute equation (4.14) into (4.22), for k : 1, to obtain

0Sx¿o

To find the partial derivatives, let
2

V(Nrr, Nzk, Pu,, Prr) :D D fIx¿(X¿r,Sx,-).

a (É:- (p* -."0(6))d€)
ôSv¡o

a (Él- (p* - "",({))d6) ôvex^)

AV(N¡, N21, P11, P21)

ôSv,o

P¡,t -.tt(Sir,o)
p

2D'
i=1 X€{N,p}

t

ÐD 0Sv,oi=1 X€{N,P} ôp(sr")

Substituting this result into the partial derivatives

AV(NLL,, N21, P¡, P21)
(4.25)

0Sx¿o

generates the following solution for equation @.21) in terms of the optimal escapements
C*ùX¿o'

(4.23)

where Y : N,P and p(Sx*): X¡t as in equations (4.7) - (4.10). Solving the partial
derivative of the integral in the form equation (a.14) yields

arxiL!-jo'sx") 
- -@* - "xn(sx*)). (4.24)

ôSx,o

(r, * prrF(si,o)(sfr,o,sä,)) @* -c'(t/r))

+ (r,rFÍtñ'o)(,9Ä,,0, sä.)) @* - "¡¿r(t/r,))

+ (ø,'cÍti'o)(^9Å,,0, sä.)) Ø, - cpr(P'))

+ (ø,rclt;'o)(,si,,', sÞ,,)) Øo - cpr(Pz)) ,
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pw - rrr(SÅ,,")
p ("" * p"rFltk"ò (sfr,., säo l) Or - "¡,,r(t/rr))

qrrGf,k'"

+(

+(

+(qr,,Gf,*'ol

+ (ørrcl"Ë'o 
) (sÄ,,0, sä. ))

+ (r' rÍtÞ'o)(^gi,,o , sä. ))

+ (r,, rÍ"å") (.gi,,., sä. ))

(pr - c¡¡r(l/rr))

(p, - cpz(Pzt))

(p, - cpr(Prr)) ,

(p, - cpz(Pzt))

(pr - c¡vr(l/rr))

(pr - cruz(ÄIzr)) ,

pztF(sioto) (,sÄ,,,,

(^9ir,,'

(^giL.'

sä, ))

sä. ))

sä, ))

p, - .pt(Sþ*)
(u, * ÇrrGlsÞ,')(sñ,,,sä.)) @, - "r,(p,,))p

(4.27)

(4.28)

(4.2e)

pr - cpz(Sþ,")

p (r, * arrGf,þ^) çsfr,.,säol) o" - cpz(Pzt))

sä. ) (p, - cpr(&r))

(pr - "rur(l/rt))

(pr - c¡¡r(l/rr)) .

sä. )

sh")

+ (ø^cfþ'o)(sÄ,,0,

+ 
QtrrrltÞ'o)(,s.ilr.,

+ (n^rltË'o)(,si,,.,

In these equations I use the symbols Flsi'o) and G(sl'o) to indi"ute ffi and

ffi, respectively. The equations are the general form of the optimal harvesting

equation for a two-patch predator-prey population system. The equations are the fun-
damental result and much of the rest of this chapter will be exploring these equations.
It can be seen that if we set G¿(Srv,o,,S¿o) :0 and 4(Sr,.,,S¿o) : 4;(S¡¡,0), then Tuck
and Possingham's (1994) optimal harvesting equation fol a single-species metapopuia-
tion is obtained. Furthermore if there is no migration between patches¡ pij : e;j : 0

ror i lj and F'(^9) : ailpooF{t*'o)(S¡r,o,Sao) together with G¿(.9¡¡,o,sp.o):0, th"rt
the equations reduce to the optimal harvesting equation for a single-species population
(Cìa,rk, 1976a). Note these are implicit expressions for prey and predator escapements.
The escapements ,5|¿o found by solving these equations are the optimum escapements
of the prey and the predator on each patch that maxirnise revenue provided the Hessian
matrix 4'(Sr,o , SNro, Spro, Spro) satisfies

Uí(si)(sx - si)l '[s" -^e]l < 0, (4.30)

where Sx : (Sr,o, S¡¡ro, Sr',0 , S""o) and S| : (Sñ,0, Sñro, Sä., ,Sä. ).
Clark's (1976a) optimal escaperrent fol a single-species population and Tuck and

Possingham's (1994) optimal escapenent for a single-species metapopulation hold for-

)

)

)
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all time horizons T > l. It can be shown that the optimal escapements for the predator-
prey metapopulation are independent of the time horizon considered. This is true
because we harvest all species in all patches. Equations (4.26) - (4.29) show that
optimal escapements when there is one period to go, ^9ft and ,Sft, are functions of
prey and predator abundances -ðy'¿o and P;s, i : 1,2, from equations (4.1) - (a.a). But
since we also have state dynamics equations, that is, equations (4.7) - (4.10), then the
abundances are controlled by the exploitation, and hence optimal escapements are no
longer dependent on the population abundances (Tuck, 1994). I prove this claim, in
more detail, in Appendix 48. I will show in the next chapter that if only one species

is harvested then this independence no longer holds.

4.3 Results \r/ith negligible costs

In this section, the optimal escapements in equations (4.26) - (4.29) a'-e compared
to the strategies in which spatial structure is not recognised by the fisher managers,
when costs are negligible. The rationale for this is that I want to know how important
it is to use the theory presented here for choosing optimal escapements, that is, how
important is spatial structure in determining harvesting strategies? I consider two ways

in which spatial structure can be ignored. First, the whole system can be considered
a well-mixed homogeneous population. Second, the existence of the patches might be
recognised, but we mistakenly assume that there is no migration of individuals between
patches. Our optimal escapements from the real two-patch connected predator-prey
model are compared to those systems in which spatial structure is ignored.

I adopt the following definitions and ideas from Tuck and Possingham (199a)

about the characteristics of local populations or subpopulations.

1. Prey subpopulation i is a relatiue erporter prey subpopulation if it exports more
larvae to prey subpopulation j than it imports, that is, rtpn ) rzpzt. In this case,

prey subpopulation j is called a relatiue importer prey subpopulation. Relative
exporter and relative importer predator subpopulations are defined similarly.

2. Prcy subpopulation i is a relatiue source prey subpopulation if its per capita larval
production is greater than the per capita larval production of prey subpopulation
j, that is, r¡(p¿¿ -f p¿¡) > r¡(p¡¡ -l p¡¿). In this case, prey subpopulation j is

called a relatiue sink subpopulation. Relative source and relative sink predator
subpopulations are defined similarly.

In addition, I define the following terms:

3 Prey subpopulation i is a relati,uely more uulnerable prey subpopulation to pred-
ation if lc¿l > lo¡1. Conversely, prey subpopulation j is called a relatiuely less

uulnerab le subpopulation.

4 Predator subpopulation i is a relati,uely more efficient predator subpopulation
rt Lþl , &. Conversely, predator subpopulation 7 is called a relatiuely less

efficient subpopulation. The quantity of fi will be r-eferred to as e and called
regular predator efficiency or biological predafor" efficiency. Besides this quantity,
if a¿ : aj or 0¿ : þ¡,I also define other types of efficiency, depending whether
it is measured befole or after migration: ytre-disltersal predator efficiency C¿a :
a¿ * 0¿ and post-dispersal predator efficiency Cio : r¿(p¿t I p;z)a¿ * s¿(q¿t * q¿z)þ¿.
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Regular predator efficiency is equivalent to pre-dispersal predator efficiency, since
þ 

-t 
t a|þ 

-t 
t C

þl : 'r- lãJ- - ' r- lãi.
Tb simplify the analysis, I assume that the costs of harvesting are negligible.

Using this assumption, equations (4.26) - (4.29) for the optimal escapements become

'î : a¡Pt't*(Pn'+P;') (r,I"fr,.)1s;,, sä,)pr)

*(q¿r + ønr) (cÍ"i")(^9iu,., sä,)pr) , (4.31)

'; : b¿pp + (p;r + nnù (r!tþ.')(^9Ä,,,, sä.)pr)

*(q¿, * ø*) (clt'"" )(.9i,,., sä.)p") . es2)

Two cases are investigated in the following sections. The first case is exploitation
in which both species are harvested (Section 4.3.1). The second case considers the case

where only one species is harvested, either the prey (Section 4.3.2) or the predator
(Section 4.3.3). For the two last cases, I only present analysis of optimal escapements
for one period to go (time horizon : 1). Agnew (i982) pointed out that the optimal
escapement for one period to go is equal to the optimal escapement for any period
(greater than one) to go if there is no discounting. The analysis of optimal escapements

with more than one period to go, when harvesting targets only one species, is presented

in the next chapter for an adult-interaction predator-prey metapopulation.

4.3.L flarvesting both species rvith equal prices

In this section I will explore the behaviour of the optimal escapements if both species

are harvested. To simplify the probiem let us assume that there is no difference between

the prices of the harvested prey and predator, then equations (4.31) and (4.32) become

1 :
p

1 :
p

i : a¿ * (p¿t + pi2) (,,-'#til + .,s¡)

*(q¿r + ,t;r) (0,s;,) ,

a¿ r (pn -r p¿z) (4t*"){si,,,, sä.))

*(q¿r + ø*) (clt*" )(si,,., sä.)) ,

b¿ * (p¡ * p¿z) (4t";"1{sñ,., ^9ä. ))

*(q¿r + ø*) (cltÞ" )(,9i,,., sä.)) .

(4.33)

(4.34)

Recall that due to the time independence of the optimal escapements, there is a nota-
tional change for the remainder of the chapter, that is, we simply use ,S| to denote
optimal escapement for subpopulation X in patch i. Next, using equations (4.5) and
(4.6) for the recruitment functions, F¿ and G¿, and substituting all of their first order
partial derivatives, then the above equations become
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I
p

b¡ i (pn -f p¿z) ("nSñ,)

*(q¿r + ør,) (sr -?tr, + P$fr,)

Rearrange these equations and let

A¿

provided

(p¡+P;z)rt-a¿,

-(p¡ + r;z)ft
C¿

1

p

C¿

-(qo', + øtz)fr

(4.37)

(4.36)

(4.38)

(4.3e)

(4.40)

(4.4t)

Bi:!-(q,rlq¿z)s¡- b¡,
p

and
C¿: C¿o: (p¡ * p;z)a¿ t (qnt I q¿z)þ¿,

then equations (4.35) and (4.36) become

(p¿, -r r*)zf;siu, r c;sþ, - A¿,

C¿Siv, - (qo, * q¿z)? tr, - B¿,

which has a unique and explicit solution for the optimal escapements

sÄ',
A¿(q¿t+qi2)+r B¿c¿

A¿

and

(4.42)

A¿: +0. (4.43)

Explicit expressions of the optimal escapements ^9ft, and ^9þ¡ can be obtained
as long as A¿ does not vanish. The chance of A¿ vanishing is infinitesimally small.

ConsiderinE C¿ < 0, this condition occuïs only if h:1 + 3 (ú#ù) ("e#'")),
which can be interpreted as the predator biological efficiency exactly equal to one

plus twice the geometric mean of the ratio of the per capita larval productions to the
carrying capacity of the two species divided by the prey vulnerability. When C; :0,
that is, when the predator is extremely efficient, explicit expressions of the optimal
escapements always exist.

Equations (4.41,) and @.a2) are the generalisation of the optimal escapements for
a single-species derived by Clark (1976a) and a single-species metapopulation derived
byTuckandPossingham(1994). Byassignin8û,:þ¿:0,theoptimalharvestingfor
the single-species metapopulation is established. Furthermore, if in addition I remove
(no¡ : pj; : qij : qji: 0, and p;¿ -- P¡¡ -- Q¿i : qj j : 7) then optimal escapements fol
the single-species model (Clark, 1976a) with adult survival rates c¿ and ó; are obtained.
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In the case of a¿ : þ¿ : 0, the system reduces to a si'gle-species metapopulation
system. Tuck and Possingham (1994) concluded some rules of thumb for harvesting
a single-species metapopulation system, that is, TP 1, TP2 and TP 3 described in
Chapter 2.

To see how important spatial structure is in determining harvesting strategies, I
address two separate questions, that is, how do we treat different patches and how does

the optimal strategy from the real two-patch predator-prey metapopulation compared
to the two incorrect strategies. There are two trivial cases in which optimal escapements
are easily investigated. The first case when lo¿l : B¿, andthe second case when l",l I þ¿

but l+ _ p¡¿lp¡¡ 
.

lddl qai+qi j
The first case: la;l : þ¿. If la;l : þ¿ : 0, then C¿ : 0. The system reduces

to a couple of independent metapopulations. Each subpopulations obeys all the prop-
erties described by Tuck and Possingham (1994) (TP 1, TP 2 and TP 3 described in
Chapter 2). Furthermore, if lo¿l : 0¿ # 0, then C¡ : (p¿, i p¿")o¿ * (qot I q¿")þ; :
((p¿r-lp¿)-(qor*ø;z))a¿. In this subcase, if the predator is very efficient and both pred-
ator and prey have the same proportions of their juveniles lost from the system, then
the connected two-patch predator-prey system can be managed as two separate meta-
population systems. Their interdependence does not affect the optimal escapements
when harvesting both of them compared to the optimal escapements in a single-species
metapopulation. Hence, the rules of thumb TP 1, TP 2 and TP 3 are preserved in the
presence of predators.

The second case: la¿l I B¿ but h: i# In this case the predator efficiency

is given by the fraction of the proportion of prey juveniles and predator juveniles in
the system, and hence C¿ vanishes. In this case, a connected two-patch predator-prey
system can be managed as a couple of single-species metapopulation systems. Again,
the rules of thumb for harvesting a single-species metapopulation (TP 1, TP 2 and
TP3) are preserved in this trivial case.

In general both cases above are unlikely. It is important to derive some more
general results. The following results are the results for more general cases.

Result I (Sufficient conditions for positiue escapernents) Let Si¡ and Sþ denote the

optimal esco,penxent from predator-prey metapopulation giuen by the equations (4.41)
and (/./2). If A¿ and B¿ are negatiue, and mar{ft,,T} . C¿ 10, then:

1. L¡ is negatiue,

2. Sñ and Sþ are positiue

Proof

1. Let ^9i,. : ft and .9þ¿ : * Note that since -(p¿t * p¿z)r¿f A¡ : [(p¿r +
p¿z)r¿]ll@¡_lp¿2)r;*(on- (t +A))] 2 1, the condition C; > 28¿llÇ implies C¿ >
(-(pn'lp¿z)r¿f A;)(zBilKi), similarly we obtain Co > (-(q¡lq¿z)s¡f B;)(2A;lL¿).
Hence C; ) max{-2Bo(p¡ * tt;z)r;lIA;I{¿],,-2A;(q¡ + q;2)s;llB¿Li]} or in other'
words D¿ 10 and E; 1 0. From E; < 0 we obtain B¿(p;t -l p¿z)? a -C¿A¿
or alternatively Bo < (-C¿A)l(@l+p")'Ë) Since -C > 0 then -C¿B¿ 1

-ColGCo,+ùl (@^ + eàT)1. This means A¿(q¿, -r q;r)? . -C¿1(-C¿A¡)l
((rot + ït")?)], b".t,rr" we also hai,e A;(q;r + ø;r)fi < -C¿B¿.Finally, since A;

is negative, then we have (q¿r * ø;z)f(nn + piz)bn , C? which rìeans A; ( 0. ¡
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2. From equation (4.41) and (4.42), since D;, E¡ and A¿ are all negative. !

An interpretation of the condition A¡ < 0 is that the sum of the proportion of
surviving adults d¿ and the per capita larval production (product of intrinsic growth
and the proportion of juveniles that remain in the system (p¿; + p;¡)r;) is higher than
the reciprocal of the discounting factot, If p. This is a normal situation in single-

species harvesting theory, otherwise it is best to harvest the populations down to zero

escapements (Clark, 1976a; Dawid and Kopel, 1997). The same thing is aiso known
in single-species metapopulation harvesting theory (Tuck and Possingham, 1994). The
condition B¿ < 0 is interpreted similarly. To interpret the condition C; 1 0, let us

rewrite this condition as aiM*n*, * 0¿ < 0. This condition is satisfied if H# > l,
since lo¿l 2 0¿. Hence if C¿ < 0 the proportion of prey juveniles that remain in the
system is higher compared to the proportion of predator juveniles that remain in the
system.

Result 1 can be used to explore the relationship between escapements from the
predator-prey metapopulation presented in this chapter and escapements from the
single-species metapopulation discussed in the paper of Tuck and Possingham (1994).

The relationship is summarised in the following corollary.

Corollary L (Escapement cornparison to a si,ngle-species metapopulation) Let Si¡ and

Sþ denote the optimal escapement from a predator-prey metapopulation giuen by equa-

tions (1.11) and (4.42), and let Ífr." and Sþ," denote the optimal escapement from a

single-species metapopulation giuen by the san'¿e equa,tions by assi,gning a¿ : þ¿ : 0. If
A¿ and, B¿ are negatiue and mar{fr,,+} 1 C¡ 10, then:

1. Sîvr -.9Ä,;" : 6t,+#riTESä < 0,

2. SÞ, - Sþ,": G¿l+#r"lilSÄ', 
< 0.

Proof

1. We need to determine the sign of 
^9fir, - ,9Årr"

A;(q¡t * q¿z) I C¿B; A¡

-(Pu, + Pi2)?
,Sir, - ,9ir," :

A¿

C¿B¿(p¡ * p¡z) + c?Ai
Ln(p¿t -l p¿z) 1{;

B,(p¿t + p¿2) 2r;
K I C;A¿

L;(p¿, + a)fi) lct
C¿

(pn + rn)2r¡f K

Because ^9ä > 0 and C¿ 3 0 then we have

second part is analogous to this ploof.

sä.

^9i/ - ^9ilr < 0. The ploof of the/Y' rv'3 - tr

Escapernent comparisons between patches

Corollary 1 shows that the optimal escapement fi'om a predator-prey metapopulation
is always less than OI to the op escapenent a slng specles meta-

depending on the sign of C¿. Horvever, we can not draw any conclusion on
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whether we should harvest the relative source subpopulation more conservatively than
the relative sink subpopulation, except for one case when C¿ :0. In this case, that is,

when the predator efficiency in both patches equals the proportion of surviving prey
juveniles and surviving predator juveniles, optimal escapement from a predator-prey
metapopulation is equal to the optimal escapement if the population were managed as

a single-species metapopulation. Hence, the rules of thumb TP 1, TP 2 and TP 3 in
Chapter 2 are satisfied. The following Lemma enables us to investigate these rules of
thumb for a more general case, that is if C¿ < 0.

Lemma L (Migration trade-off equations) Let S'i,¡ and Sþ denote the optimal escape-

ment from a predator-preA metapopulation giuen by equations (1.11) and (1./¡2). If
ei : at b¡ : b, K¿ : K, L; : L, C; : C, R: T- e, S : I -b, ri* : (p;¿lp¿¡)r; and

sim : (q¿¿ + q¡)s¡ then:

1. (.9Ä,, - ^si/,)ara, : (tt|r^ - sz^) -9#(rr* -"r,",)) (T - t)
2C /_ 2^9\.

-; (C - ft)(rt*"tna - rz",s2m),

2. (sä -.sä)a1a' (t'or* - rzm) - Y#("r* -r,-)) (T - t)

-'# (, -'+) (,,*,,^ - r2,ns2rn).

Proof

1.

ùNr
(R - ,r*)uf + C(S - sr-) (R - ,"*)þT + C(S - sz*)

Ar L2

(to - ,t*)bf + c(s - "r-)) (c" - rz*sz^h)

,).¡y, :

ArAz

(f*- rr*)þf+c(s -sz*) (Ct - rt*st*h)
AtA,

where L¿: C2 - rirnsim#,, i :1,2. Completing and simplifying the numerator
of the right hand side of the above equation will end up to the form of the right
hand side of equation (1) in this lemma. The proof of the second part is analogous

to this proof. !

In general it is difficult to give a simple interpretation of the relationship of op-

timal escapements between patches. Lemma 1 suggests that there is a trade-off between
prey and predator juvenile migrations that determines the relationship between the es-

capements for the two patches. However, in some special cases, this relationship can

be determined. For example, if 11- : szm and 12^ : srm¡ that is, if prey subpop-
ulation i has the same per capita larval production with predator subpopulation 7,
then (.9fi,, - SÄr,)ArA, - Ar (rr* - ,r^)(T - C). If A¿ and B; are negative and
max{f,,?} aC¿10 then A1 is negative and! -C is positive. Hence, the sign
of the difference depends critically on the sign of r2n, -'ì"tnt. If the per capita larval
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productions are equalfor both prey subpopulations, that is, r2m: 11-, then we should
harvest the prey in both patches equally. While if 12^ ) T'rmt that is, if prey sub-
population two is a relative source subpopulation and predator subpopulation two is

a relative sink subpopulation, then we should harvest prey subpopulation two more
conservatively than prey subpopulation one. Similarly, we conclude that the predator
living in the same patch with a relative source prey subpopulation should be harves-
ted less conservatively than the predator living in the other patch. If we ignore the
predator-prey interaction, then the same rule is clearly obtained from the single-species
metapopulation's rule of thumb (TP 1).

The rules above are derived by assuming that prey subpopulation i has the same

per capita larval production as predator subpopulation j, which is unlikely. The fol-
lowing result describes a similar rule to the result above for a fairiy more general case.

It will also show that unlike a single-species metapopulation, in a spatially-structured
predator-prey population, subpopulations with symmetric migration may have differ-
ent escapements. To gain a better insight into the effect of juvenile migration on the
decision of how to exploit a spatially-structured predator-prey system, I assume the
predator has symmetric migration, that is, 3!^ : szm : s-, in all the results that
follow.

Result 2 (Escapement comparison between subpopulations) Let one of the prey sub-

populations be a relatiue source while all other parameters of the prey and the predator
are identicøl for both subpopulations. Without loss of generality let us assun'te the prey
subpopulation one is a relatiue source, that is, (prr * pn)r1 > (pr, * pzr)rz. If lal : B,
or if A¿ and, B¿ are negatiue and C > mar{2þ,!}, then:

1. ,SÄt, > ^Sftr,

2. SÞ, < Sh.

Proof

1. Let AsN : (SÄr, -,Sfur)41A,2. Using Lemma 1 we obtain

Asr : (-*n"-- ",-)) (T - c) -T Q -Ð s*(r,* - rz*)

: "- l- (*) e - 4 *T Q -'#))('"* -',*)
: ,*l?(c, -+: -'(T -?))l r",- - r,*)

: ,*lT(c, -+: -'fo -,-))] (,,^ -,,*)
: "^lTþ þ -'+) -+f)]('z*-',*)

Clearly As, ) 0, since T <C <0.

2. Let As" : (Sä - .9ä)ArAr. Using Lemma 1 we obtain

C'(rr* - rz*)

C (r"r* - rz*)

s*(rt* - rz^)
2S

K
Ðc'

K

C

C t -'+) "^l

Asp
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: c(,,^ - rz,n)KT - c) t *!#]
Clearly Asp ( 0, since zft < C < O. n

Result 2 shows that if the natural growth rates of the prey and predator are

greater than the reciprocal of the discounting factor, If p, so A¿ and B; are negative,
and the predator efficiency C is relatively high, such that C > max{þ,\}, tnen
we should protect a relative source prey subpopulation more than a relative sink prey
subpopulation in the sense that we should leave the relative source prey subpopula-
tion with a higher escapement than the sink subpopulation. Similarly, by investigating
the effect of prey migration (relative source/sink prey subpopulation) on the predator
optimal escapements, it can be shown that we protect the relative source prey subpop-
ulation in two different ways: directly, with a higher escapement of the relative source

prey subpopulation, and indirectly, with a lower escapement of the predator living in
the same patch with the relative source prey subpopulation. The importance of the
relative source prey subpopulation is intuitively reasonable.

Furthermore, Iet us assume that one predator subpopulation is a relative source

while all other parameters of the prey and the predator are identical for both sub-
populations, and lol : B, or C , +. Using predator-prey metapopulation optimal
escapements as a policy to manage the exploitation of a predator-prey metapopulation
system would ha¡vest the relative source predator subpopulation more conservatively
than the other predator subpopulation which is a relative sink subpopulation. On the
other hand, it would harvest both prey equally, or would harvest the prey living in the
same patch with the relative source predator more than the other prey subpopulation.

The analogous result for the predator is easier to interpret whenever both predator
subpopulations have the same rates of non-migrating juveniies, that is, q¿;s¿ : qjjs j.
In this case, one of the predators is a relative exporter subpopulation. Let predator
subpopulation one be a relative exporter, then we harvest this subpopulation conser-
vatively while we also harvest the prey subpopulation on the other patch conservatively.
The rationale for this result is as foliows. Since the predator in patch one is a relative
exporter, then the outflow of its juveniies to the other patch is greater than the in-
flow, consequently, we should leave the prey higher in the target patch of the exporter
predator subpopulation.

Up to this point it has been shown that the rule of thumb on how to exploit
a relative source/sink subpopulation in a single-species metapopulation generalises to
a predator-prey metapopulation for some region of parameters in which the predator
efficiency C¿ is above a certain threshold. In addition, I have also established rules

to harvest more/less vulnerable prey and more/less efficient predator subpopulations.
These rules are summarised in the following result.

Lemrna 2 (Efficiency trade-off equations) Let Sf,¡ and Sþ denote the optimal escape-

ment from a predator-prey ntetapopnlation giuen by equations (/¡.11) and (/¡.12). If
at -- clz : 0,, bt - bz: b, Kt - I{z: K, Lt - Lz: L, Ptt: P22, Ptz: Pzt, Qtr: Q2zt

Qtz : Qztt I't : T2t st : sz¡ R : Lo - a, S : I - bt Tt* : T2m : r* : (P¿¡ I p;¡)r¿, and

stm : s2rn : s^ : (Ç¿¿ I q;¡)s¡, then:

1. (.9Ä', - 5Ä',)4142 : (C, - Ct) l?r,1 cr) *!!# + Be,c,)f

lry?rt,+ c,) .ry + AG,c,))2. (Sä - ^9ä)a1A' (c2 - ct)
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Proof

The proof is similar to the proof of Lemma 1 n

Result 3 (Escapement comparison between subpopulations) Let one of the predator
subpopulations be relatiuely more efficient while all other parameters of the prey and
the predator are identical for both subpopulations. Without loss of generality let us

assun't,e the predator subpopulation one is relatiuely more efficient, that is, C1 t Cz.

If AL : Az : A and Bt : Bz : B are negatiue, and C¿ is non-positiue with C¿ )
mar{-ffi,-"'6f}, th"n

Sft, > 9fr" and Sþ, > Sþ".

Proof

From lemma 2, weonly need to show loyfCrl Cr) + lffiiÞ + B(C:C2)] . o, which

is satisfied by C¿, -#. The second part can be proved analogously. ¡

The result shows that if the migration between subpopulations is symmetric and

there is no biological variability between populations except the vulnerability of the
prey, then we should harvest a relatively less vulnerable prey subpopulation more con-

servatively than the other prey subpopulation which is more vulnerable to predation.
A special case occurs when there is no predation in one of the patches, say patch one.

In this case, patch one is a refugial habitat for the prey. This rule ensures that we har-
vest the prey living in their refugial habitat more conservatively than the prey living in
the habitat where predation occurs. Furthermore, if the prey vulnerability of the two
prey subpopulations are the same, but the predator efficiency differs between patches,

then we should harvest the prey living in the same patch with the relatively more
efficient predator more conservatively than the other prey subpopulation. It suggests

that if the predator has a high biological efficiency, then we should leave enough prey
to sustain the predator population. In the chapter that follows, it will be shown that
if the market value of the predator is large enough compared to the market value of
the prey, then the optimal strategy can be a "seeding strategy" where prey are put
into the system. This is similar to the conclusion in Chapter 3. The difference is that
in the spatial model we may not need to seed all of the prey subpopuiations. Seeding

might be optimal in only one prey subpopulation.

Escapernent comparisons between strategies

The previous results allow us to compare the predator-prey optimal escapements between
different patches. The results show that if C, predator efficiency calcuiated after dis-

persal, is relatively high, then the rule of thumb TP 1 flom singie-species metapopu-
lation harvesting theory is preserved. To see how impoltant and how different is our
predator-prey metapopulation escapement compared to the escapements if we incor-
rectly consider the population as a spatially-unstluctur-ed system, such as an unconnec-

ted two-patch predator-prey system or a well-mixed preclator-prey system, I construct
Resuits 4 and 6. These results are similar to the rules of thumb TP 2 and TP 3 for a

single-species metapopulation in Chapter 2, but they are mole restrictive.
The unconnected two-patch predator-prey system assumes that there is no migra-

tion between sub-populations, and the well-mixecl pledatol-prey system assumes that

.7.)
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there is only one 'big' homogeneous patch rather than two connected patches. Optimal
harvesting equations for an unconnected and well-mixed predator-prey population can
be obtained from equations (4.26) and (4.2S) by assignin1 p¿j : Ç¿j : 0 for i I j, and
pii : qii : lri : Ir2. However, if we incorrectly assume that there is no connection
between subpopulations, we would measure the growth rate for prey subpopulation i
AS

riu: ripii + r jpji (4.44)

if it was incorrectly believed to be an unconnected predator-prey system. If it is
considered a well-mixed predator-prey system, then let us assume the per capita growth
rate of the whole prey population is estimated by the averaged juvenile production
across the system

r-: lï'i(pi¿ * p¿¡) * r¡(p¡¡ + p;)],12. (4.45)

The growth rate for the predator is measured similarly. Both growth rates in (4.44)
and (a.a5) are measured at the end of migration period, otherwise migration does not
have any effect on the growth of the population. By comparing optimal escapements
with different growth rate measurement, I obtain the following result.

Result 4 (Comparison of strategy with an unconnected two-patch predator-prey sys-
tem) Let Sfr and Sþ denote the optimal escapement from a predator-prey metapopu-
lation giuen by equations (1./1) and (1./¡2), and let Si¡_ and Sþ. denote the optimal
escd,penxent if we incorrectly consider the system as a system consisting of two un-
connected predator-prey systems. Assume that one of the prey subpopulations is a

relatiue exporter while all other parameters of the prey and the predator are identical
for both subpopulations. Without lost of generality let subpopulation one be a relat-
iue exporter subpopulation, pnrt ) pzrrz. If A¿ and Bt : Bz : B are negatiue and
min{a+ P,C} > max{p,!} th"n'

/. ,Sir, ) Sñ,",

2. sh ) sh,,

wheneuer at þ < (poo-lp¿¡)a*(q¿¿-tq¿¡)þ. If , howeuer, a! B > (pn,In;¡)a+(q¡¿*q¿¡)þ
then:

3 Si,r" ( Sñ,",

4 Sþ, < Sþ,,.

Proof

1. All parameters are equal except pnrt ) pz{2. Recall that

qr_ _ (R-rt^)þf-+cg
"/vr C, _ n ,frf,^ )

and

Sfr,,

where C -- (pr, * pn)a * (qtt

si,,

- (A - ,t")uf + c.B
¡t2 _ 4rtust^ t
u7tr I{ L

+ ql:)p and C, - a* B. Let us define

_ (A-rru)uf +Cn
¡t2 _ 4rttstntv tt'L
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then from Lemma 2

(,9Ä,," - Si,,,)A, Lz: (C - C,)l?;rC + C') + + B(cc,)f

The condition min{C,,C,} } f; impties min{C,C.} > - o,nú which guarantees
,Af*(C +C")+gW*+ B(CC") < 0. Since C, 1C,, this means Sfr," ( Sfr,,.
Hence we only need to show .9fi¡,o q ,9fr,. We obtain
CY* CY*JNr dNro -

(f*- rr^)Þf +cB ¡t2 
- 

4rttstmVRL (R - rr,)Þf + C B) (c' - !'frf-
¡s2 _  rtust^
VKL n2 

- 
 rt-st^v Kf,

Simplify the equation to obtain

(Si,, -,Sfi¡,")Ar"A r: (rn- rt^) (trt -'þ -+Ð'+,
where Ar" : C'z - !ffi*, and A1 : C2 < 0 (this also can be derived
from Lemma 1). Since pnrt ) Pzzrz and A¿ ( 0,i : 1,2, then Ar" ( 0.

Furthermore since rtm ) 11¿ aûd 0 > C, T, then we have SÄ¡, -,Siu,- > 0.

This completes the proof. ¡

2. Using a similar procedure we obtain

(Sh - Sþ',,)L2úL2: (rz, - r2n-L)Y,

whereY: (tft-Tt-t+Ðc > 0. Hence sh-sþ,, > 0. similarlv,
Sþr, < Sþ,, can be obtained. This completes the proof. ¡

The proof for the case of a * 0 > (prn * p¿¡)a * (qou + q¿¡)0 is analogous.

The result suggests that if we use unconnected predator-prey theory to harvest a

predator-prey metapopulation, and C 2 Cu, that is, predator efficiency after dispersal
is higher than predator efficiency before dispersal, then we would harvest the source

prey subpopulation and the predator living in the same patch as the sink prey subpop-
ulation less conservatively [the condition C ] Cu can be achieved, for example, if the
proportion of surviving predator e;;*q¡¡ is higher than the proportion of surviving prey
pu I p¿¡1. Unlike the rule of thumb TP 2, in a predator-prey metapopulation we cannot
draw any conclusion for the sink prey subpopulation and the predator living in the
same patch as the source prey subpopulation. However with an additional condition,
that is, if we assume that the predator efficiency, €, proportional to the ratio of the
proportion of the lost of migrating prey fi-om the system to the proportion of the lost
of migrating predatol from the system,

P r-(Pot*P;z)a:ã:|-ffi, (4'46)

then predator efficiency before and after dispersal ale equal, that is, C¡ : C;u. Con-
sequently, following the ploof !n the previous result, we obtain ^9Är, > Sfu,", Sfr, ( ,9fur,,

^9ä < ,9þ,, and Sh > Sþr.,. This is a generalisation of the lules of thumb TP 2 for'

4Br¡s1*
KL
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a predator-prey metapopulation with juvenile-migration and juvenile-interaction. The
detail proof for the last two identities is given in a similar result for the juvenile-
migration and adult-interaction model in Chapter 5.

Other special cases are

P;; * P¿¡ : Q;¿ -l Q¿i : I (4'47)

and
a * þ :0 and p;; I p¿¡ : qii + qij. (4.48)

If either condition (4.47) or (a.48) is satisfred, then C : Cu and consequently the
analogous rule of thumb TP 2 holds. Condition @.a7) is interpreted as both prey and
predator having no mortality associated with the migration of their juveniles. While
condition (4.48) is interpreted as high predator efficiency (measured before dispersal)
together with the same proportion of prey and predator juveniles that successfully

survive in the system. The following results compare equilibrium optimal harvests

between patches and gives a sufficient condition for the predator-prey system in order
,Si, < (>)^91," implies Hi > (<)Hk,,.

Result 5 (Equi,librium haruest comparison between strategies) Let Si¡ and Sþ. denote

the optimal escapement frornthe predator-prey metapopulation giuen by equations (4.41)
and (/¡.12), and let Si¡., and Sþ. denote the optimal escapement if we incorrectly
consider the system as a systern consisting of two unconnected predator-prey systems.

Let us a,ssume that one of the prey subpopulations is a relatiue erporter while all other
parameters of the prey and the predator are identical for both subpopulations. Without
Iost of generality let subpopulation two be a relatiue erporter subpopulation, p2¡2 )
pnrz. AII other assumptions i,n result I are satisfi,ed. In addition assume that there is
no source/si.nk ytrey subpopulation with Pn : p21 and, Pzz: pn. If the resulting optimal

esca,pen'ùents satisfy pn(r¡oSä) *(o- i) < 0 ( r* c"Sþ, and,,Sïu,,,Sä .\îLrco
then Sf,¡r. ¡ Sfr, : Si/, > SÄrr, and also Hiur. I Hi¡, and Hi,r, > Hio".

Proof

From Results 2 and 4 we obtain S.fu,, ¡ ,Sfr, -- 9fr" > ^9Årr", hence part of the result is

proved. Recall that

¡1Ä,, - frÄ,,, : (a-iXSÄr,-Si,,)
+prt(Fr(Si¡,,Sä) - F (SÄ',,, Sä,))
tprr(Fr(9fr,, Sþ") - Fr(Siu"., Sh))

Let us consider the sum of the first two terms

A¡¡t a( - l)(.gir, - ,9i,,,) + Prr(Fr(SÄ','Sä) - F (,9Ä/,.,Sä"))

* a,Sfir,,SÞ, + #tU,)
* 'sñ,,sä + ?ru")]
_,9i,,,(r_#)]

Pt

("

DPrt
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where o : 't9#19). Let Fo(*) : " (t - ;*). Since we assum e p¡(r I
osä) -l (" - 1) < 0, then the function F¡ crosses the z-axis at r:0 and DK < 0.

The extreme point ß + ( 0, and since its second. derivative -#f ," greater than

zero then the function is a minimum at this extreme point. Since Fo is a logistic

function, then it must be increasing along the positive r-axis. Therefore, Sir, < SÄr,,

implies Fp(Sñ,)< F¡(SÄ'r,), and consequently Dp11(Fp(Siu,)-Fr(Sfr,,)) > 0' Now

we investigate the last term

^_t)H2 prr(Fr(Siv",Sþ,) _ F"(

0,, l("'u ('-?)
sÄ',, \
K)

sÄt' \
EK)

))Si'rr., Sþ"

-("

EPrt

where E:r+c.Sþ,. Let Fn("):r(1 -;*). Sinceweassumer*aSþ, )0,
then the function F6 crosses the r-axis uì " 

: 0'and EK > 0. The extreme point is

+ ,0, and since its second derivative -h it less than-zero then the function reaches

a maximum at this extreme point. Since 
"f 

i t" 
"logistic 

function and ^9ftr, < Sîv, a t+
then FB(^9ft,) > fE(SÄ/,,), and consequently Ep21(f"(^gÄr,) - Fø(Si,t,,)) > O. ¡

Hence, in some circumstances, incotrectly using unconnected two-patch predator-

prey harvesting theory to harvest a predator-prey metapopulation would under-harvest

the relative importer prey subpopulation while it also would over-harvest the relative

exporter prey subpopulation (in the previous result, I defined the terms over-harvest

and under-harvest with respect to escapements but in the present result the terms are

defined with respect to harvests)' In this case, Sfii,, > ,SÄr, - SÄ/, > Si/r" implies

Hîur, 1 f/fir, and Hfrr_ > Hî,,r. Numerical examples in the next section show that

this ïule is robust to fñe inciuJion of harvesting costs. Comparisons between optimal

escapements from a predator-prey metapopulation and the optimal escapement if we

incorrectly manage the metapopulation as a well-mixed predator-prey population is

given in the following result'

Result 6 (Comparison of strategy with a well-mired predator-prey system) Let Si¡,

and, Sþ, d"e'note the optimal escapement from predator-prey rnetaqtopulation giuen by

equations (4./r1) and (1./¡2), andlet Sfr- and Sþ- denotethe opti,mal escapement if the

pred,ator-prey metapopulation system is incorrectly considered as a well-mired predator-

prey system. Let us ûssurne that prey subpoytulation one is a relatiue source subpopula-

tion. All hypotheses and assumptions of Result f are satisfied, and C is the non-positiue

root of equation -3(R-r-)-f1-BC3+"-t#Yg :0' Il al0 < (p¿¿-lp;¡)a-l(q;¿Iq¿¡)þ

then:

7. sft, > Isi,_,
2. Sþ", Tsþ-.

Similarly is If a + P > (p¿¿ + p¡¡)a + (q¿¿ + q¿¡)þ then:

3 Sñ, < +Siu_,

4 Sþ,. Tsþ_.
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Proof

1. Recall that

Jly,

Hence

Let us define

then from the previous result

(R--'-)*IC-B-
/12 _ 4Q-rwv\r K-L-

(R - r-) + C-B
/12 Sufuvu- KL

7n*
2o*-:

(R-r-)?+c-B
,(12 _ 2smruovlr KL

(R-r*)-i+cB
,at2 _ 2smru 't

Lv I{L

1o*
i"N'-

(R - rt*) 2s* +CB
Sfr, : c2_

iÎ 11* ) r*. Furthermore, If C is the root of (åS¡r, - St) AoAr : -3(B -
,-)*f1 - BC3 + "4Y9: 0 then ,SÄ,, > åfiu, (o"" of the roots is the trivial
.u"""C - 0). Since C; < C, then ,e have åSÅ,_ < åSi,, This completes the

proof. The other parts can be proved similarly. n

The result suggests that if v/e use a well-mixed predator-prey theory to harvest a

predator-prey metapopulation, then we would harvest the source prey subpopuiation

and the predator living in the same patch with the sink prey subpopulation less con-

servatively. As for Result 4, if either condition (4.46) or @.a7) or (4.4S) is satisfied

then we can draw conclusions for the prey and predator in the other patch, that is

.gÄ/, > TSi,_,.9Är, < TSk_,.9ä < lSþ-, Sþ, > TSþ- The foilowing section discusses

haivesting only one species either the prey or predator

4.3.2 Flarvesting only the prey species

In the previous section I assumed that harvesting targets both species. In this section

I will look at harvesting strategies when only one species is harvested, for example

when the predator does not have an economical value. This is the situation where

birds are the predators eating commercially valuable sandeels and pilchards (Klomp

and Wooler, 1988; Wright, 1996). Harvesting only the prey can also occur in a fishery

involving predator-prey interactions between two commercial species. Many frsheries

have shifted from exploiting a top predator to exploiting a lower trophic because the

predator stock has collapsed. In the first case, where the predator does not have any

commercial value, the optimal strategy may be a strategy that may drive the predator

to a very iow population level, while in the second case the best strategy might be

to recover the predator population from depletion (Christensen, 1996; Reynolds and

Tapper, 1996).

'Why do we need to take into account the existence of predator-prey interactions
when we oniy harvest the prey? The decline of prey species due to the extensive ex-

ploitation can lead to a decreasing abundance of its predator. For example, many
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predatôry seabird species have experienced tremendous breeding failures as a result

ãt tt" declining of sandeel population as their prey (Bailey et a|.,1991). The decline

of marine mammals as a result of prey exploitation is also documented (Christensen,

igg6). A recent study revealed that the reproductive success and adult survival of

the Adelie penguin, Pygoscelis adeliae, has decreased due to a high catch of krill, Eu-

phausia superba, in the krill fishery (Manþel and Switzer, 1998). This shows the need

for multi-species considerations to be taken into account in obtaining more appropriate

harvesting strategies, as suggested by Hall (1993). In this section I investigateharvest-

ing strategies for prey exploitation whiie considering the role of the prey as food of

another species.
In the previous section, where we harvest both the prey and the predator, optimal

escapements are independent of the initial prey and predator population size. We would

expect that the optimal escapement for the prey, when we harvest only the prey, is a

function of predator population size, since in this case we cannot control the predator

population size. To compa e optimal harvesting strategies for the prey to single-species

,t*t"gi"., I simplify the resulting optimal escapements by only considering one period

to go exploitation. If it is assumed that profi.t generated from these escapements in this

perlod is the same as the profit generated from the same escapements in any periods,

that is, the discount rate ô is zero, then we only need to optimise escapement for one

period to go (Agnew, 1932). The long-term equiiibrium case is discussed in the next

chapter.
Using the same method as in the previous chapter, optimal escapements can be

found by maximising the net revenue

/T 2 \
Jr(Nro, Nro, pro,, pro) : 

o<rT,?{¡0,. lÐ o- Ð 
ilro(¡¿, r, s*,) 

) 
. (4.49)

The escapements are similar to escapements S7y,o in equation (a.31) with pp : 0 and

Sp,o -- P¿s, that is, 
I
ì: 

o,t (pn, t p¿z) (r'js'"1(sr,o,4o)) , (4'50)

where F¿ is defined by equation (a.5). Equation (4.50) has a unique solution for the

optimal escapement

,qî,-t(¡_!t;(ð+t-ø;) ,K:ço¿p;) (4.51)ù¡ú; : T - 2r\ (etr+ptù - zro\uxlx)

where 4 is the number of unharvested predator in patch i.
In the case of harvesting both species (Section 4.3.1), if prey subpopuiation i

is relatively more vulnerable than prey subpopulation 7, that is, lo,;l > lo¡1, and all

other parameters are the same for both subpopulations, then Sit, < Sit, However,

equation (4.51) suggests that, when harvesting only targets prey species, this rule

is no longer necessarily true, unless la¿lPo > loÀP¡' Thus, if the size of predator

subpopulation i is greater than, or equal to, the size of predator subpopulation 7,

thai is, P¿ Z P¡, then it can be concluded that with the optimal strategy we should

exploit the more vulnerable prey subpopulation more and the less vulnerable prey

subpopulation should be conserved. This is because optimai escapements for both

prey subpopulation are always lower than half a carrying capacity 1(, and hence a

greater recruitment will be produced by a greater prey escapement with a low prey

vulnerability, for a fixed level of predator escapement (see equation (4.5)).
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Similarly, if (poo * p¿¡)r¿ > (p¡¡ I p¡,i)r¡, that is, prey subpopulation i is a relative

source subpopulation, while all other parameters are identical for both patches, then

the result .9Årr > .9fi¡n is true only tf P; < P¡. Hence, if the size of predator subpopulation

i is less than,'or 
"qnäl 

to, the size of predator subpopulation j, that is, P¿ 1 P¡, then the

best strategy is to protect a relative source prey subpopulation more than a relative

sink prey subpopulation as in the case of optimal escapements for a single-species

metapopulation (TP 1).

Escapement comParlsons

In this section I compare optimal escapements from the pledator-prey metapopulation

with three other systems: a singie-species metapopulation, an uncorlnected two-patch

predator-prey and a weli-mixed predator-prey system. By comparing these escape-

ments we can see how important it is to use the theory presented here for choosing

optimal escapements of a predator-prey system'

First, iconsider the case where the predator-pre)¡ metapopulation is incorrectly

believed to be a single-species metapopulation system and exploited. The optimal

escapements for the system are given by

K¿ K,(6*1-ø¡)
si/,3 2 2r¿ (pot + por)

The total optimal escapement, Sfr,"+SÅrr", is higher than the total optimal escapements

from the predator-prey metapopulation theory, since

(^9i,, + sir,) - (si,," + sfu,") : #"rr, + firzPz 
10- (4.53)

Hence, the optimal escapements for a metapopulation produce a less conservative total

harvest than escapements from a single-species metapopulation. This is not surprising

because the fisher is competing with the predator'

Second, a connected two-patch predator-prey system can also be identified in-

correctly as an unconnected two-patch predator-prey s)/stem. In this case \Ã/e want to

(4.52)

(4.54)
maxlmrse

Jr(N;o, P¿o) : 
o<"T,T{r.. I r*Ilroo(1/¿¡, S¡¡,0 )

T

A=0

for each patch. The escapements are similar to escapements ,S¡¡,0 given by equation

(3.22) with pp : 0 and SP.o : P¿s, that is,

1

ì: "n-r (ris"''l(sr,o, s*. )) . (4.55)

The equation above has a unique solution

,qï. -Kn-!tr¿+1-o,\+!-ço¡e¡) (4.b6)^rN¡.- 2 zrnur" 
,. qr) | 

2r¿,

where 4 is the number of unharvested predators on patch i and r¿u : r¿pii + ripi; is

measured after migration is completed at one period. If the prey on patch i is a relative

exporter in comparison with that on patch j, that is, r¿p¿¡ ) r¡pi;t then.9fi¡, > ,SÄ/,,.

Hence, optimal escapements resulting from a connected two-patch predator-prey sys-

tem protect the relative exporter prey subpopulation more than the escapements res-

ulting from an unconnected two-patch predator-prey system, if the system is connected.
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The converse, that is, optimal escapement for the relative importer prey subpopulation

derived by the predator-prey metapopulation theory less than the escapement from un-

connected two-patch predator-prey popuiation, is true only if r¿ <r¿u' If rr : rz, this

means prr * pzt ) 1 which rarely occurs. Furthermore, if p11 : Pzz then the condition

prr * pr, > 1 is impossible. As for the case of harvesting both species, it can be shown

tttut i" the case of adult-interaction (Chapter 5) this additional condition, Pn*pzt ) l,
is not necessary.

In general the number of predators would change if the number of prey changes.

However, in the model in this chapter, I assume the predator has another main food,

and if the biological conversion rate B is relatively small, then the number of predators

would not change substantially. Consequently, if both predator subpopulations are

identicai then the difference of the predator population sizes between subpopulations

is negligible, that ir, P,o - Pjo - P. Although we can not draw any conclusion

about escapement comparisons for a relative importer/sink prey subpopulation, we can

compare totai escapement from these different methods, if the difference of the predator

pop,rlution sizes is negligible. I will show that if one of the prey subpopulations is a

ielative exporter, r¿ : rj, Pii : p¡¡ and P¿o : Pio : P, then the total escapement

from a connected two-patch predator-prey system protects the prey population more

than the total escapements from an unconnected two-patch predator-prey system, if
the system is connected.

To prove this rule we need to show that

(,si,, + sir,) - (^9ir," + si',,) > o. (4.57)

Letusrecallthat 
,e*.: L 

-{r! +t-"1+{{.,r), (4.bs)uN'- 2 2r¿(p¡Ip¿z)'2,,
I(KI(sñ,": ;-;(ð+r- a)+fi(aP), (4.5e)

where riu : ripii + ripji. Let (Siy, + SÅrr) --(Sïu,, + Sir,") - A'SN'' Following Tuck

and Possingham (1994), Iet A¿¡:r;Pij and Á : A¡* Atzl Azt* Azz ) 0 then

K.: 
-(ò2',

K+1

1 1 1

¿\,9n, + 1 a
Azz i Atz An I An Azt I Azz

(4.60)

Consider the numerator of first part of the sum.

(Arz I Arr)(Ar, + Ar2)(A2r * Azz) * (A,' -f A't)(A" + h2)(A^ ¡ A")

-(Arr -f Az)(Arz * An)(An I Azz) - (Att + A2ù(A2z -f An)(A', * Atz)

: lÃØr, ¡ Ar,)(Azz * A^)) - [41a" * Az)(Az, + Arù)

: ÃlArrArr l AzzAtz - AnAr, - ArzArtl

: Ãlrrprrrrp2l l r2p22rtpt2 - r?pnpn - rSprzprr)

: Ãlþrprt - rtpn)(rtpn - rzpzz)l

: 0. (4.61)

Since one of the prey subpopulation is a relative exporter, without loss of generality,

let us assume r2pzz * r2pzr : rtpy. * rzPzt 1 rtPn I rlpp 111 and rzPzz I T'tPtz :

(rorr') (fã+?; -#u] -tå-'å])
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rzPn * rzPn 1 r'2, ald hence A'9ru" reduces to

A^9¡¡, P

P

d.

a

(

(

T{

T
K
1
0.

)(tãià. 
^:*l 

-t*.;l)
) fl*. ål - l*. ål)

(4.62)

This completes the proof that (Siy, + SÄr,)- (^9Är,. + ^9ÄIr,) > 0'

Third, another possibility of not harvesting a predator-prey metapopulation prop-

erly is by managing it as a weil-mixed predator-prey system. In this case the existence

of th" two patches is not recognised at all. The total net revenue which should be

maximised is similar to Jr in equation (a.5a). This maximisation is satisfi-ed by the

escapemen' 
,r*. - K- 

- 5.ro+ 1 - o-) * ?@*p-¡ (+.os)r N- 2 2r_, ,2r_

where I{- -- K¿* K¡, r-:lrr(pn*ptz)*rz(pzz*pzt)112, a-: lat+ a'2112, du:
[o, + o"]12 and P- : P; I P¡. Let all parameters on both patches be equal except

,o(pno + io¡) , r¡(p¡¡ * p¡¿), that is, the prey on patch i is Then

SÄ,,- : 
-Sl-lZ 

a SÄr,, provided 2ro ? r- (thiscondition is a )' This

-"är, thif a pt"y .ùbpopulation which is a relative source i o-patch

predator-prey system would be over-harvested if it is falsely a well-

mixed p.ãd.u,to.-prey system. The converse, a relative sink prey subpopulation would

be harvested too conservatively is not always true since it needs 2r¡ 1 r- lvhich, if
rt : 12¡ it is impossible to obtain'

If there is no relative source subpopulation, the harvest from a single-species

metapopulation and a well-mixed population are the same (Tuck and Possingham,

1gg4t Ho*"r"r, optimal strategy for a two-patch predator-prey metapopulation gives a

highár total escapåment than escapement from a well-mixed predator-prey population.

To show this, let us recall that

qî,_1{_5(,ô+1-û) +!@Ð, (4.64)uN¡ 2 2r¿ (p¿, + p¿r) ' 2ro'

2I{(6+1-a-a2P)si, -I{- rr (prr * pn) I rz(Pzt -l Prz)

-K(6+1-a-c-P)
2Vz IZV 2

(4.65)

Let(Siy,+SÄ,,)-(SÅ'-) -A,S¡¡-andletV:r;(p¿¿Ip¿¡)'sincer¿)r;(p¿¿Ip¿¡):V
and. follòwing Tuck and Possingham (1994)' then we have

A,S¡r_ >

- (r - K(6+ 1- a - a2P)låV])

: -I((6+1- a-aP)tÉ -#)-åEl
-r{aPlåv)
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-r(aPÈ+ø)
: -K(6+1- a- aP)l##*l

' '' -1. (4.66)-t(aP lrn urt

Since V : Vz then A^9¡¡- > 0. This completes the proof'

To conclude, in general, the escapement comparion rules between subpopulations

and between strategies in harvesting both species do not necessariiy hold if harvest-

ing only targets the prey species. However, if the difference of predator population

,iÃ b"tw"en patches is negligible then rules of how to harvest relative source/sink,

exporter/importer and more/less vulnerable prey subpopulations in Section 4.3.1 can

be applied. The next section will discuss optimal harvesting strategies when harvesting

only targets the predator species.

4.3.3 F{arvesting only the predator species

In real fisheries, prey may not have any economic value, but its presence may have

significant effects on the optimai profit from harvesting the predator. In a newly

developed fishery, the top predators and other larger species are usually the initial
targets of exploitation (Christensen, 1996). For example, whaling was developed in

the early exploitation of the Arctic and only since the decline of the whale population

has krill expioitation begun (Pauly, 1979). In this section I will look at how optimal

escapement for a single-species would be different if we take the existence of its prey

population into account. How and to what extent does this prey population affect the

ãptimal escapement of the predator. As in the previous section I also compare this

optimal escapement to escapements derived from other strategies.

Optimal escapements for the predator population can be obtained by maximising

/T 2 \

Jr(r/ro, Nro, pro, pro) :o<.{',?{¿. (råo- Ð 
trrr(¿*, tr,) 

) 
. (4.67)

The resulting escapements are similar to escapements Spo from equation (4.32) with

PN : 0 and Sru,o : -ly'¿s, that is,

\: uo* (qo' r q;z) (cft"")1ru,', s*.)) (4.6s)
p

which has a unique solution

L¿ Li (6 + t - b;)
+ !!to,ws

(4.6e)Sþ, 2 2s¿ (qn i q¿z)

where ,^/¿ is the number of unharvested prey on patch i.
In the case of harvesting both species (Section 4.3.1), if predator subpopulation

i is relatively more efficient than predator subpopulation 7, that i", 0¿ > B¡, with
(ri : d j ¡ and all other parameters are the same for both subpopulations, then .9þ > ^9ä.
However, equation (4.69) suggests that, when harvesting oniy targets predator species,

this rule may not true, unles s þ¿N¿ > 0¡N¡. Thus, if the size of prey subpopulation i is
greater than, or equal to, the size of prey subpopulation j, that it, l/¿ ) N¡, then it can
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be concluded that the more efficient the predator population, the more it should be

conserved, the less efficient the predator population, the more it should be expioited.

Similarly, if the predator juveniles in patch i have a higher survivorship than predator

juveniles in patch j,thatis, q¿¿IQti ) q,t*q:¿, while ali other parameters are identical

for both patches, then sþ, , sÞi is true only if ¡ú, > ¡/i, which is different from the

case when we harvest boih rp"ði".. Here, a relative source predator subpopulation

is more protected than a relative sink predator population only if the prey living in
the same patch with the relative source predator subpopulation is more abundance

than the other prey subpopuiation. This is reasonable since the model in this chapter

assumes that predation takes place before the juveniles in a subpopulation migrate and

recruit to another subpopulation.
As before, I compare the optimal escapements from the predator-prey metapopu-

lation with escapements from three other systems, a single-species metapopulation, an

unconnected two-patch predator-prey and a well-mixed predator-prey system, to see

how important it is to use the theory presented here for choosing optimal escapements

of a predator-prey system.
First, assume the predator-prey metapopulation is incorrectly believed to be a

single-species metapopulation. If it is expioited under this incorrect assumption then

the optimal escapements for a connected two-patch single-species exploitation is

L¿ Li(6+'-U;) (4.70)sä": T - 2q (qo, + qor) 
'

The sum of escapements from a predator-prey metapopulation is always greater than

the sum of escapements from the incorrect consideration, that is, when the presence of

the prey is ignored, since

(sä + sþ,) - (^sä" + sþ,") : {Or*, + ?Pr1Vr ' o' (4'71)
Lö1 2sz' '

Hence, optimal escapements from a two-patch predator-prey metapopulation system

prod.uces a more conservative harvest than if we incorrectly manage the population as

a single-species metapopulation.
Second, when a two-patch predator-prey metapopulation is identifled incorrectly

as an unconnected two-patch predator-prey population. In this case we want to max-

imise / ,1, \
Jr(N;o, P,;o) : 

os#,?-1¿. (I n*nro (Pnr, Sr,) 
) 

(4.72)

for each patch. The escapement is similar to the escapement SRo in equation (3'23)

with P7y : 0 and S¡o,o : A[s, that is,

t^: 
oo* (G(s'"1(r,r,0, se.)) . (4.TJ)

p

This equation has a unique solution

L' L., tsä,: i-*,(ð+t-b)+*(þ¿N¿) (4.74)

where ÄL is the number of unharvested prey on patch i and s¿, : s¿q¡¿Isiq¡¿. Assuming

that lrl, -- N j : l/, if the predator on patch i is a relative importer, that is, s¡q;¡ 1 s¡Qjit
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and s¿ ) siu¡ then Sl 1 Sþr.. Hence, optimal escapements from a connected two-patch

predator-prey system wil hårvest the relative importer predator population more than

the escapements resulting from an unconnected two-patch predator-prey system, if the

system is connected. The converse is true only if si ( siu. Furthermore, if one of the

predator subpopulations is a relative exporter, si: si and q¡; - q¡¡, then

(sä + sä) - (sä" + sä,) < o. (4.75)

To see this recall that

sä - 2 2"; (qn, * q¿z)
+ftron,

LLLsþ,,:;- ,^(r+1- u)+fi(1w), (4.77)

where s¿u: siqii+sjqji. Let (.91 +Sä) -(^9Þ,, +Sh-) : A'9p,' Asinthecaseof
harvesting only the prey species (Section 4.3.2),Iet B¿¡: siQii and B - Bnl Bnl
Bzt * Bzz ) 0 then we have

L L (6+ 1-ó)
(4.76)

L
A^9.p"

2
(ô+1-ó)

Bzz I Bn Bt I Bn Bzt I Bzz

1 1 1

r, /t 1 I I 11+11) 
(4.2s)_;(pN) (tB" + B,; + 

-8,¡ 

suj - L" ¡ s2t/

The frrst part of this sum is zero. Since one of the predator subpopulations is a relative

exporter, without loss of generality assume s2q2z| szÇ21 : slqll I szqzt ( srqrr I stqtz 1

s1 and szQzz * stQtz: szQu, I szQtz 1s2, and hence ASp" becomes

asp, : -t¡r.,*t (tili7; *#,*r,'] - l*.;])

: 0. Ø'79)

This completes the proof that (sþ, + sä) - (,sä, + sä,) < 0. This means incorrectly

managing a predator-prey metapopulation as an unconnected two-patch predator-prey

population would under-harvest the predator population'

Third, the two-patch predator-prey metapopulation is incorrectly managed as a

well-mixed predator-prey population. In this case the existence of two patches is not

recognised at all. The total net revenue which should be maximised is similar to .I7 in

equation (4.72) with soiution

,st -L"'-!-fu+1-b-) +?@-r-), (4.80)uP-- 2 2S_\" ¡ - "-/'25_

where L- : L¿ I L¡, 3u : [rr(qr, -f qn) * sz(qzz i qzt)]12, b- : f\ * brll2', 0* :
l/t+ þrll2, and .|y'- -- N; * Ni.

Let us assume that all parameters for both patches are equal except s¿(q¿¿ I
q;j) > s¡(q¡¡ * q¡¿), that is, the predator on patch i is a relative source subpopulation.

itr"" ih_ : Sþ_12 < .9ä, provided 2r¿ 1r-, which means that a source predator

r"bpopniätion inã connected two-patch predator-prey system would be over-harvested

if it is wrongly believed to be a well-mixed predator-prey system. The converse is
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true, a relative sink prey subpopulation would be harvested too conservatively, only

if 2r¿ ) r*. Furthermore, if there is no relative source subpopulation' the harvest

from a single-species metapopulation and a well-mixed populatioi are the same (Tuck

and Possingham 1994). In contrast, in a two-patch predator-prey metapopulation,

incorrectly managing the metapopulation as a well-mixed predator-prey population

would under-harvest the predator population. To prove this we need to show (^9þ, *
Sh) - (^9ä) < o. R.ecall that

,Çï_: L__ L (!+r-r) +L@rÐ, (4.81)ÙP - z- 2t¡ (q;r+q¿r) ' 2"0

2L(ô+1-b-pzN)
(4.82)Sþ-: L - sr(qrr * qtz) I sz(qzt -l qzz)

Let (Sf + Sä)- (SÞ-) - L,Sp- and let W¿: s¡(q¡¿l q¿:)' Since s¡ ) s¿(q;¡* q¡¡) - Wi,

as in thL casáof harvesting only the prey species, I obtain

ASp_ <

- (r - L@ +1 - b - p2N)1":*,])

-L(6+1-ó-B¡0[
(w, - Wr)'

2(W, -r W2)W|W2

t 2_l (4s3)-LPN l*, * *rt
Furthermore, since W1 : W2 then LSp- < 0' This completes the proof'

In Section 4.3.1 I have discussed optimal escapements in equations (4.26) - (4.29)

by comparing them to escapements derived from other models, such as the uncon-

nlcted iwo-patch predator-prey and the well-mixed predator-prey models. In Sec-

tions 4.3.2 and 4.3.3 the results in Section 4.3.I, where harvesting targets both species,

are compared to strategies where we only harvest one of the species - the prey or

the predator. The results in Sections 4.3.2 and 4.3.3 showed that the escapement

.o¡¡pu,ri.on rules between subpopulations, that is, rules oY how to harvest relative

sorrrce/sink, exporter/importer and more/less vulnerable prey subpopulations and re-

lative source/sink, exporter/importer and more/less effi.cient predator subpopulations

may no longer hold if harvesting only targets one species, except for a limited situation.

Moreover, escapement comparison rules to other strategies only work if the population

size differences between the unexploited species are negligible, which may not be true

for many real populations. To support and illustrate the results presented in these

sections, I give some numerical exampies in the following section.

4.4 Numerical examples

In this section, I present some numerical examples to illustlate the properties of es-

capements from a predator-prey metapopulation. The examples support the analytical

results in the previous section. Some examples also reveal the properties of the escape-

ments that are not observed in the analytical results, such as the effect of parameters

variations (migration, prey vulnerabiiity and predator effi.ciency) on the optimal es-

capements. I use parameters for populations similar to those in Tuck and Possingham

(1994) to facilitate the comparisons.
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4.4.L Flarvesting both sPecies

Example l:One prey subpopulation is a relative exporter and there is no

source/sink subpopulation

Comparison of optimal strategy to single-species metapopulation strategy

Assume that prey in both patches have carrying capacities 1(r - Kz: 400000, with

intrinsic growth rates 11 : T'2:1000 and adult survival rates ø1 - a2:0.001. Prey

subpopulation two is a relative exporter population with juvenile migration coefficients

ptt :-pr, :0.001 and pn: pzz -- 0.0009. Assumethe discounting rate ó is 10%. Before

the exploitation begins, it is assumed that the population is in the equilibrium state. In

the absence of the predator, the unharvested population sizes for prey subpopulations

one and two are ¡y'l : 199116 and lú2 : 179204. The optimal escapements for the prey

subpopulations one and two are sfi¡," : 84316 and ,sfyr, : 84316 (see equation (4.41)

witi Ò¿ - 0). Both subpopulationl are harvested equally (in terms of escapement)

because it is assumed that there is no source or sink subpopulation. However, the

optimal harvests are different, that is, the fi.rst period optimal harvests are f1fii,, :
114800 and [1fir," : 94889 while the equilibrium optimal harvests are -t/fii," :-48854

and I1ftr" -- ZSS4ø, hence the relative exporter prey subpopulation is harvested more

conservatively.
Now suppose the predator is present. Let the intrinsic growth of the predator

be s¿ - ri : 1000 with the carrying capacities Lt - Lz : 40000. Let us assume

the adult survival per period of the predator are not different from the adult sur-

vival per period. of the prey. Let us also assume that those survivals are not dif-

ferent between patches, hence bt : bz: 0'001' Furthelmore, it is assumed that

both predator subpopulations are identical, with migration parameters Çtt : Qtz :
ezt J nr:0.00095. Let la;l : þ;:0.001, that is, thepredatorhas ahigh
conversion effi.ciency. Using NAG routine cO5nbf, I obtain one of the positive equi-

librium population sizes for this two-patch predator-prey metapopulation' that is,

(¡,rr, ¡/r, P,,, Pù: (188149,169334, 26118,,26113). Furthermore, using equations (4.4I)
and @.a2), I obtain the optimal escapements for the system, that is ,sfr, : sfr, : 84316

and Si,, : Sh:8432 (see Figure 4.2 and Table 4.1). As suggested by Corollary 1,

these 
"."u,p"-ättts 

are exactly the same as the escapements from a single-species meta-

population, because C : (pn I n;z)a * (qot * øtz)B : g. However, the equilibrium

optimal harvest for the prey is less than the equilibrium optimal harvest for the prey

from single-species metapopulation, that is, f/fi,, : 47433, Hir, : 34266 and for

the predator Hþ, : Hh : 557I. The difference between equilibrium harvest from

pr"dutor-pr"y -"tu,popuiation and single-species metapopulation is critically depend

on prey vulnerabilìty, a, for the prey, and depends on predator biological conversion,

B, for the predator. In this example, in which there is no source/sink subpopula-

tion for both prey and predator and C : 0, it can be shorvn that Ë/fi¡, < /1fir," and

HÞ, > f1þ," (see Appendix 4C). Hence if these additional assumptions are satisfied,

that is, prey subpopulation one is a relative exporter with p11 : Pzt ) ptz : Pzz

(no relative source/sink prey subpopulation), then the prey equilibrium han'est from

a predator-prey metapopulation is smalier than from a single-species metapopulation

and the predator equilibrium harvest from a predator-prey metapopulation is larger

than from a singie-species metapopulation, provided C :0. This means that if we in-

correctly manage a predator-prey metapopulation as two independent species we would

over-harvest the "pr"y" species and under-harvest the "predator" species.
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t ,ðy'r N2 si/, Si/" Hi'{, Hk"

0 188149 169334 84316 84316 103834 85019

1 131748 118582 84316 84316 47433 34266

2 r3r748 118582 84316 84316 47433 34266

3 t3r748 118582 84316 84316 47433 34266

4 131748 118582 84316 84316 47433 34266

5 131748 118582 0 0 131748 118582

t Pr Pz sÞ, sþ" Hþ, Hi"

0 26118 26118 8432 8432 t7687 t7687

1 14002 r4002 8432 8432 5571 5577

2 t4002 74002 8432 8432 557t 5571

3 r4002 t4002 8432 8432 5571 5571

4 14002 t4002 8432 8432 5577 5571

5 14002 t4002 0 0 14002 r4002

Table 4.1: optimal escapements and harvests for prey and predator popula-

tions derived from equations (4.41) and (a.42). optimal escapements for the

prey and predator subpopulations i are Sfi¡ and ^9þ,, respectively, while f/i,
anð. Hþ d,enote their optimal harvests. The tth row indicates the value for

5 - ú periods to go.

Note that although both prey optimal escapements from a predator-prey meta-

population are equal, their equilibrium optimal harvests are different, in this case we

harvest the relative importer prey subpopulation (subpopulation one) with a higher

harvest than prey subpopulation two (in other words less conservatively in terms of

harvest), that is, Hî,tr:47433 2 Hîvr:34266. This is generally true in harvesting

a predator-pïey metapopulation when one prey subpopulation is a relative exporter

*ith it, prey migration rate is equal to the retention rate of the other prey subpopula-

tion, there is no source/sink subpopulation, predator populations are indistinguisable,

and prey recruitment is gr"ater than the number of prey eaten by the predator (see

Appåndi* 4D). If these additional assumptions are satisfied, then using escapements

frãm predator-prey metapopulation theory would harvest a relative exporter prey sub-

population more conservatively in both senses, that is, higher escapement and lower

iru,r.r".t, than the other prey subpopulation. Furthermore, there are no harvest differ-

ences between both predator subpopulations (Table 4'1)'

Comparison of optirnal strategy to spatially-unstructured strategies

I compare optimal escapements and equilibrium harvests from a predator-prey meta-

population to optimal escapements and equilibrium harvests if spatial structure is

igrror"d. I compare the two different systems, namely the unconnected two-patch and

t|e well-mixed. First, if the predator-prey metapopulation system was incorrectly con-

sidered an unconnected. two-patch predator-prey system, then the optimal escapements

are found from equations (4.41) and (4.42) by repiacinïP¡;,,P¿i,Ç¿¿ and Ç¿¡ with 1,0, 1

and.0 respectively, and replacing (p¿¿+P;¡)r¿ and (q¡¡+ q¿l)s¿ with r¿, given by equa-

tion (4.44), and (q;¿ * q¿¡)t¿ is replaced by t;, similarly. The resulting escapements are
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Figure 4'2: using fixed escapements '9Ë,: Sþ":8432' optimal escapements

ro, th" prey si,, - si,, : 84316 are found. The point (84316,84316) is the

pointwherethecontourplotHi¡,:4T4SSintersectsthecontourplotflfi'":
34266, hence optimal harvests from these escapements are /Ifii, :47433 and

Hîu, : 34266. The shaded region in the upper-left cornel is the region in

which the combination of escapements produces a negative harvest for prey

subpopulation two, Hî,r, < 0, while the shaded region in the lower-right corner

is the region in which the combination of escapements produces a negative

harvest for prey subpopulation one, ¡1i/, < 0 (Figure a.2.a). similarly, Figure

4.2.b illustrates optimal escapements and optimal harvests for the predator'

Sñ," : 90100, SÄrr" : TTg8g, Sh. -- Sþ"" :8432. The 
.harvesting 

strategy from these

".àäþ"-""t. 
prodîc"s optimal èquilibrium harvests HT,¡,, : 41101'- Hir"- -.40187'

Hþ, : Hh :5566 with total harvest fIj : HÑ, i Hp. : 92422' This total harvest

irlär. ttraá ttr" total harvest which arises if we correctly use predator-prey metapopu-

lation escapements, that is, ,ä* : ¡Ii, + Hþ : 9284L (see Table 4.2). This is because

if we use the unconnected predator-prey theory, we fail to recognise the exporter prey

subpopulation which is important as a contributor to the other prey subpopulation.

In this case, we exploit the relative exporter prey subpopulation less conservatively

(in terms of escapement, with escapement SÅrr, : 778-89 less than SÅt, : 84316) while

ìhe relative importer prey subpopuiation is haìvested too conservatively (in terms of

escapement, with escapement ^9-ir,, 
: 90100 more than Sir' : S4316)'

In this example a lower "r"åþ"-"ttt 
means a higher harvest, that is, ,gir,, > ,9Åt,

and ,Sfyr, < Si/, means f/fir,, Table 4'2'

tt¡,- :"Ztlol ¿ Hî,¡, : 4743f is because

thä'ä*r-ple satisfies all assump incorrectly

using unconnected two-patch predator-pr -a 
predator-

prey metapopulation would under-harvest the relative importer prey subpopulation

whiie it also would over-harvest the relative exporter prey subpopulation, in terms of

harvest. Furthermore,^9fir,, > Si/, -- Sîr, > Sirr, impliesHÑ', (11fi¡' and Hfrrr'-H!,
Numerical examples rho*'thut this rule may be-true if the cost of harvesting is included'

Table 4.3 shows the comparison between escapements and harvests from a predator-

prey metapopulation and from other predator-prey systems (unconnected two-patch

and well-mixed predator prey system). In this example, I assume that the cost function
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is in the form
cx(X;) : (rnx, ! c;ny,X;)l(r*,Xt) (4.84)

which is a decreasing function with respect to X; and has a non-zero limit (c¿ I 0)

as X¡ approaches oo. Hence, with this cost function I assume that there is a constant

cost of harvesting whenever the stock size is high and the cost is lower than the cost

of harvesting in a very small stock level. I assume that the predator-prey metapopu-

lation has the same parameters as in the previous example (the example in the case

of negligible costs) with additional parameters mNt : TnLN2 : Tr¿Pr : mp, : 7000,

nNt : nNz : TLPI : nPz :0.005, ct : c2: 10000 and p¡¿ : Pp : 800'

Second, if the predator-prey metapopulation system is incorrectly considered to

be a well-mixed predator-prey system, then the optimal escapements found a e ex-

actly the same as the escapements from the predator-prey metapopulation from equa-

tions (4.41) and (4.42) by replacin g p¿;, p;j , Q¿¿ arrd Ç;¡ with 1, 0, 1 and 0 respectively, and

replacing (p¿¿ + pt¡)r¿ and (q¿¿ I øt¡)s¿ with r- given by equation (4.45), and (q¿¿ * q¿¡)t¿

is replaced by ,-. The resulting escapements are .9iy- : 168632 and .9|; : 16864 (or

Sîo*12: 84316 and Sþ_f 2 : 8432 for the prey and predator in each patch). This is

,rof surprising because there is no source or sink subpopulation for either the prey or

the predator, hence ri- : r¿ and si,,,, : si.

Example 2. One prey subpopulation is a relative source and exporter

Assume that all parameters of the prey and predator are as in Example 1, except

the migration parameters. In this example I will assume that pp : 0.002 is twice

the migration rate as all the others. Using these parameters, I compare the optimal
harvesting strategy from predator-prey metapopulation escapements to the harvesting

strategy from spatially-unstructured predator-prey escapements, that is, unconnec-

ted two-patch and well-mixed predator-prey escapements. The result is presented in

Table 4.2 (the lower table).
From the table, it can be seen that the source prey subpopulation (pt"y subpop-

ulation one) should be harvested more conservatively (with more escapement) than

the other prey subpopulation. The equilibrium harvest from the source prey subpop-

ulation is less than the equilibrium harvest from the sink prey subpopulation. On the

other hand, we should harvest the predator living in the same patch with the relative

source prey subpopulation with a lower escapement and a higher harvest than the other

predator subpopulation.
Compared to the strategy using escapements from the unconnected two-patch

predator-prey harvesting theory, the relative exporter prey subpopulation is harvested

more conservatively in terms of its escapement (SÅr, : 126217 > ,9Är,, : 90100) while

the relative importer prey subpopulation is harvested less conservatively, in terms of

its escapement (Sfy, : 90100 I Si,t,.:726733). Similarly, compared to the strategy

using escapements from the well-mixed predator-prey harvesting theory, the relative

source prey subpopulation is harvested more conservatively both in terms of escape-

ment (SÄ,, : 12621.7 > Sfr-12:22416012) and in terms of harvest (I1r\r, :28315 <
Sîv_12:17439712). The relative sink prey subpopulation is harvested less conservat-

iveiy both in terms of escapement (.9ft, : 90100 < Si,-12 :22416012) and in terms of

harvest (1/Ä', : 149808 > Siu-12: 17439112).
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PPM '9i/, : 84316
: 94316

sþ, -- 8432
sþ, :8432
5i, : 16864

Hþ,: 557r
Hþ :557t
Hþ : lll42

UPP sïv
si'

:90100
1u

-77889
-1

1{y,":41101
IIi,",,:40189

sþ,,:8432
Sþ"..:8432

ãË'":5566
Hþ",,=5564

Ili¡.. :81290 SË. :16864 Hþ..:II732
WPP Si¡... :168632 f/i,,. :81699 SË.., :16864 Hi. :71142

PPM Sfr, : 126217

Si'" : 90100

HIv, :28315
Hl¿:149808

Sþ,
sä

:7748
: 9010

Hþ, :7277
Hþ":6076

Siv :216317 Hiu : 178123 .9å : 16758 HÞ : 13293

UPP ^9it,, 
: 90100

s :126733
: 216833

HTv,.:64427
Hk', :96818

så,.
sþ",,

: 9010
: 9010

Hþ,.:6914
Hþ".. :6914

H'ïu., : 161239 Sþ.. :18020 HL. :13828
WPP ,Si'.,, : 224760 Ili'.,. : 174391 ,9Ë : 18020 Hþ"..:13960

Table 4.2: Escapement and harvest comparisons between correct and in-

correct assumptions with PN : pp, costs are negligibL, pr, : Pzt: 0'001,

ptz : pzz -- 0.0009, and q11 : Qtz : Ç.zt : Çzz : 0'00095 (upper table)

andp11 : Pzt: Pzz:¡tt:7'tz:7zt: Qzz:0.001 a,ndpp:0'002
(lower table). PPM, UPP and WPP denote predator-prey metapopulation,

unconnected predator-prey population and well-mixed predatol-prey popula-

tion, respectively.

parameter variations: migration, vulnerability and efficiency

In this section I discuss the behaviour of the predator-prey optimal escapement with

respect to the change in migration rates, prey vulnerability and predator effi.ciency. In

single-species metapopulation harvesting theory, the behaviour of the optimal escape-

ments, as the migration parameters prj change) can be determined easily because of

the simple form of the derivative of the optimal escapements. The main conclusion

in single-species harvesting theory is that the uncertainty of the exact value of the

migration parameters should not influence the decision in determining the optimal es-

capement as long as the individual's migration rate is relativelyhigh (p¿i is large), that
is, a reiative source/exporter subpopulation should be harvested with more escapement

than a relative sink/importer subpopulation (Tuck, 1994)

In the following discussion I investigate the behaviour of predator-prey metapop-

ulation escapements as the prey migration p;¡,i + i changes. I keep all parameters

fixed, the values are given as in Example 1 except the prey migration pp ar'd pzt.

Algebraic simplification gives the foilowing result for the optimal escapements.

,SiV, : -10000
-86841 +0.94199 x l0sprz

-47419 - 0.4768 x 108p12 * 0.1 x 10e p?r'

SP, : 10000 -39159 -0.5004 x 108prz*0.1 x l0"P?,

-474I9- 0.4768 x 108p12 * 0.1 x 10ep?r'

-2263 + 0.1177 4875 x I08 p21
Sr, : -16000 .*

-ou3 - 954000P2r + 0.2 x 107P27'
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PPM Sfr, : B43oB

,5L : 84308

11i/, = 47433
HÑ":34267

Sþ,:8422
sþ": 8422

ãå, : 5568
11å^ :5568

,5i, : 168616 Hiu :81700 Sþ: L6844 Hi : 11136

UPP ,9ir,": 90123

-- 77918
: 169041

/{.ir,": 41103
Hi,"..:40t82

Sþ,": 8462
Sä.,: 8461

Hi,.:5573
Hþ"..:5574

I/i,.. :81285 Sþ..: 16923 Hi..:7L147
WPP ,Sfu.. : 180246 Hio.,, :82343 ,SF... : 16924 Hþ.,,:11344

Table 4.3: Escapement and harvest comparisons between correct and in-

correct assumptions with P¡¡ : Pp : 800, cost function is given by equa-

tion (4.84), Pn: Pzt - 0.001, Ptz:Pzz:0.0009, and 911 :8t2: Qzt: Çzz:
0.00095.

-6811 -0.1048 x 108p21 +0.2 x 1010p!t
Sp, :1000

-853 - 954000p2r + 0.2 x I07 p221

Hence all escapements from patch i are not affected by the changes in prey migration
pji. The rate of change of the prey and predator escapements on patch one due to

change in prey migration pp are given by:

ryL: -0.94199 x 10"
Ap- - -47419 - 0.4768 x 108prz 10.1 x 10np7,

-86841 +0.94199 x 10eprz)(-0.4768 x 108 +0.2xl}spl2)(
+10000 (-47419- 0.4768 x 108P12 * 0.1 x 10ep?,)'

2s', :1oooo föPt', \
-0.5004 x 108 +0.2 x 1011p12

-47419 -0.4768 x 108p12*0.1 x 10s P?Z

-39159 - 0.5004 x 108prz I 1010plr¡1-0.4768 x 108 * 0-2 x l}epp)
(-474I9 - 0.4768 x 108P12 * 0.1 x 10s ¡ l"

The effect of a small increment in prey migration pn to the prey optimal escape-

ment ^9,¡y1 
and predator escapement Sp1 can be found using these partial clerivatives.

For example, with increment Lpr, : 0'000005 at the point Ptz : 0'0001 we expect

the prey's optimal escapement will increase by 896. The same increment only gives

an increment of 11 to the prey optimal escapement at pp: 0'01' Similarly' a small

increment in predator migration Lqrz: 0.000005 at the point Çrz : 0.0001 will change

the optimal escapements as much as 114, but a similar increment gives change in the

predator optimal escapements as small as 1 at the point Çrz : 0.01. Figures 4.3 and 4-4

give a graphical depiction of the changes in optimai escapements in both patches. As

in single-species metapopulation harvesting theory (Tuck, 1994), the effects of a small

change in the migration parameter of one sub-species to the optimal escapement of

that sub-species is smaller at a higher migration parameter than at a lower migration
parameter. This change does not affect any optimal escapements of the other sub-

species in the other patch (Figure 4.3 and 4.4). However, the change in either the prey

or predator migration parameters affect both sub-species in the same patch (Figure 4.3

and 4.4).
Figures 4.3 and 4.4 are interpreted as follows. If the migration rate of prey sub-

population one is significantly smaller compared to the migration rate of the predator,
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Figure 4.3: optimal escapements Sf,r,, Si,, ^9|, and ,Sþ, as functions of migration para-
meters pp and Pzt. A small variation in prey migration pp causes a lower change in optimal
escapement 5i., at a higher prey migration than at alower prey migration (Figure 4.3.a).
A small variation in prey migration p21 caus€s a lower change in optimal escapement ,Sfii,

at a higher prey migration than at a lower prey migration (Figure 4.3.b). See text for
details.

Pn K, Qtz : 0.00095, then it is optimal to harvest all individuais of prey subpopula-
tion one (upper-left part of Figure a.3). On the other hand, if it is significantly larger,
Pn Þ Qtz :0.00095, then it is optimal to harvest all individuals of predator subpopula-
tion one (lower-left part of the same figure). Similarly, if the migration rate of predator
subpopulation one is significantly smaller compared to the migration rate of the prey,
Qtz K. Pn :0.0009, then it is optimal to harvest all individuals of predator subpopula-
tion one (lower-left part of Figure 4.\. On the other hand, if it is significantly larger,
Qn Þ Ptz :0.0009, then it is optimal to harvest both prey and predator subpopulation
one with more escapements. The effects of pzt and q21are interpreted similarly. To
some extent this result agrees with the result for a single-species population (May eú

al., L979).
Similarl¡ I investigate the effect of a small increment in prey vulnerability o1 and

predator efficiency þr to the prey optimal escapement Stvr and predator escapement

^9p1 using the partial derivative of these escapement with respect to a1 atd 81. For
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Figure 4.4: Optimal escapements,Sf,i,, Sfr,,,5þ, and Sä *functions of migration para-

meters Q12 and gzt. A small variation in predator migration Ç12 causes a lower change in
optimal escapement ,Sþ, at a higher predator migration than at a lower predator migra-
tion (Figure 4.4.c). A small variation in predator migration Ç21 causes a lower change in
optimal escapement Sþ" at a higher predator migration than at a lower predator migration
(Figure 4.4.d). See text for details.

example, with increment Aa1 : 0.00001 at the point or : 0.001 we find that the
prey and predator optimal escapements will increase with the change as much as 17.

A similar increment changes the prey and predator optimal escapement as much as

23 and 18, respectively, at a1 : 0.0001, and changes the prey and predator optimal
escapements as much as -84 and 36, respectively, at a1 : 0.01. Figure 4.5 shows

that the effect of a small variation in prey vulnerability to prey and predator optimal
escapements is smaller around the line lotl : B1 than at any other region. This
suggests that in the absence of the exact value of pi-ey vulnerability, a small variation
of predicted prey vulnerability should not alter the decision on how we harvest the
prey and predator population, as long as the predator efficiency is high enough (C1 is
close to zero). As in the case of the migration parameter variation, the variation of
prey vulnerability or predator efficiency of one sub-species does not affect the choice
of optimal escapement for the sub-species in the other patch. This is clear from the
escapement equations, that is, equa,tions (4.41) and (4.42).
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Figure 4.5: Optimal escapements ,Sir, and ,Sþ, and equilibrium harvests fli" and Hþ,

as functions of prey vulnerability a1 and predator biological conversion Ér. See text for
details.

Figure 4.5 show prey and predator escapements ,9ft, and ,Sþ, and harvests I1fi¡,

and Ilþ, as functions of prey vulnerability a1 and predator conversion B1. When the
prey is very vulnerable and the predator is less efficient, the optimal strategy is to
harvest all the predator (Fig. 4.5.b) producing a relatively constant harvest of the prey
for every choice of o¿ less than approximately -0.008 (Fig. 4.5.c). W" can expect that
if predator subpopulation two is a relative exporter and source (for example, if q21 is

greater than a certain threshold), then predator subpopulation two will have a non-
zero escapement for any value of o1 and B1 in Figure 4.5 (see Result 2). This example
shows that May et al.'s (1979) suggestion to harvest a predator population which
has a low biological ef,ficiency and intrinsic growth rate generalises to a predator-prey
metapopulation. However, if there is predator migration variability between the two
patches, extinction may not be optimal for the relative source predator subpopulation.

4.4.2 Flarvesting only the prey species

In this section I provide two numelical examples to illustlate the behaviour of op-
timal escapements from predator-ple.y metapopulation theoly. The prey population
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t Ni ¡'r; Sfu' c+ÙNt Hiu, Hiu"

0 L32.73 105.02 55.00 64.00 77.73 4r.02
1 110.65 89.79 55.00 64.00 55.65 25.79

2 110.65 89.79 55.00 64.00 55.65 25.79

3 110.65 89.79 55.00 64.00 55.65 25.79

4 110.65 89.79 55.00 64.00 55.65 25.79

5 110.65 89.79 0 0 110.65 89.79

Table 4.4: Escapements and harvests from a single-species metapopulation
(Tuck and Possingham, 1994). The úúä row indicates the value for 5 - t periods

to go.

in the first example is taken from Tuck (1994), and in the second example I use the
predator-prey metapopulation from the previous example in harvesting both species

(Exampie 2).

Example 1:

Assume that prey populations in both patches have carrying capacities 1(1 - Kz :200,
with intrinsics growth rates 11 - 12:10 and adult survival per period dr: ct2:0.1.
Prey subpopulation two is assumed to be a relative source and exporter subpopulation.
The migration parameters are Pt : Ptz : Pzz :0.1 and Pzt :0.15. It is assumed that
there is no discounting, that is, d : 0. Before the exploitation commences, it is assumed

that the population is in the equilibrium state. In the absence of the predator, the
unharvested population sizes for prey subpopulations one and two are ly'1 : 133 and

Ñ, : 105 respectively. Using equation (4.41) with C; : 0, the optimal escapements

for prey subpopulations one and two are obtained, that is, ,9fi¡t : 55 and Sfr¿r : 64

with the equilibrium harvests Hivt :56 and Hi,tz : 26, respectively' It is clear that
the relative source prey subpopulation is more protected than the relative sink prey
subpopulation.

Now, suppose that the predator is present. For simplicity I choose the intrinsic
growth rates of the predator to be si : r j¡ i : L,2. The predator carrying capacities
are L1 - L2 - 10, and adult survival rate are br : bz: 0.1. The juveniles migrate
symmetrically, in this case I use the migration parameters Çrr : Qtz : Qzt : Qzz :
0.i. Assume that o1 - t2 : -0.1 and B1 : þz : 0.0L. As in the single-species
metapopulation model, I assume the unharvested equilibrium population size as the
initial population size before the exploitation begins.

The equilibrium population sizes for this predator-prey metapopulation are lú1 :
118, ¡f2 - 94, Pr :6.56, and P2:6.56. Unlikethecaseof harvestingbothspecies, here
prey optimal escapements depend on the number of unexploited predator. Howevel, as

it can be seen in Table 4.5, the equilibrium escapements and harvests exist. Table 4.6

shows the numerical result from iterating Bellman's equation.
Optimal escapements from a predator-prey metapopulation are always less than

the escapements from a single-species metapopulation. It does not mean that the har-
vests resulting from two-patch predator-prey escapements is higher than the harvests
resulting from single-species metapopulation escapements (Table 4.4 and 4.5 give a

clear example for this comparison). This is because the initial population size befole
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t Ni N; si,' Sfr, Hiu, Hiu"

0 rt7.94 93.68 48.44 57.44 69.49 36.24

1 94.r4 76.45 49.14 58.14 45.01 18.32

2 95.84 77.82 48.93 57.93 46.90 19.89

3 95.34 77.42 48.97 57.97 46.37 L9.45

4 95.44 77.50 48.96 57.96 46.47 19.54

5 95.42 77.48 48.97 57.97 46.45 L9.52

6 95.42 77.49 48.97 57.97 46.45 19.51

I 95.42 77.49 0 0 95.42 77.49

Table 4.5: Prey escapements and harvests from a predator-prey metapopu-

lation [equation (4.51)]. The úúå row indicates the value for 7 - ú periods to

go.

t cr+U^Il Siu"

0 47 58 77 36

1 49 58 4T 15

2 49 58 46 19

3 0 0 95 77

Table 4.6: Prey escapements and harvests from iterating the dynamic pro-

gramming equations. The tth row indicates the value for 3 - ú periods to go.

These escapements are only slightly different from those derived analytically
in Table 4.5.

the exploitation begins is the unharvested equilibrium population size. Meanwhile,
in the presence of the predator, this equilibrium size for the prey is less than that
in the absence of the predator. For this reason, if the actual system considered is

indeed a predator-prey metapopulation, then incorrectly using the harvests derived
from single-species metapopulation escapements may cause the prey stock to suffer

from over-exploitation (see Figure 4.7). However, Figure 4.7 also shows that if we

use optimal escapements from a single-species metapopuiation to manage a predator-
prey metapopuiation, the equilibrium optimal harvests are not too different from the
equilibrium optimal harvests using predator-prey metapopulation escapements.

Exarnple 2:

Assume that all parameters of the prey and predator are as in Example 1 for harvest-
ing both species except the migration parameters, that is, ptt : pzt : pzz : 0.001,

Ptz :0.002, and q11 : Qtz: Qzt. : Qzz: 0.001 and a¿ : -0¡: -0.00001. Us-

ing these parameters, I compare the optimal harvesting strategy from predator-prey
metapopulation escapements to the harvesting strategies from spatially-unstructured
predator-prey escapements, that is, unconnected two-patch and well-mixed predator'-
prey escapements. In this example I assume that there is no discounting. The result
is presented in Table 4.7.

As expected, Table 4.7 shows that using pledator-prey rnetapopulation escape-
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Optimal escapement is (49,58)
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Figure 4.6: Graphical illustration for optimal escapements and optimal har-

vests in Example 1. Optimal escapements for the prey are Sfr, : 49 and

Sfr, : 58. The point (49,58) is the point where the contour plot f/fi', : 46.45

intersects the contour plot IIfi', : 19.51, therefore, optimal harvests from these

escapements are //iv, : 46.45 and Hi¡" : 19.51. The shaded region on the

upper-left corner is the region in which the combination of the escapements

produce a negative harvest for prey subpopulation two, Hi,{, < 0, while the

shaded region on the lower-right corner is the region in which the combination

of the escapements produce a negative harvest for prey subpopulation one,

/1iu, < 0.

ments we harvest a relative exporter/source prey subpopulation with more escapement

(SÅr, : 128440) than if we use either an unconnected or a well-mixed predator-prey,
with escapements Sfr,, : 80040 and ^9iy,- 

: 17598412 respectively. In this example,
harvesting the relative exporter/source prey subpopulation more conservatively yields

a higher total harvest, that is, fIfir : 168952 > Hi'- : I6728L > Hfr.: 160131.

4.5 Concluding remarks

In this chapter harvesting strategies for a spatially-structured predator-prey system
were established as a generalisation of halvesting strategies for a single-species meta-
population. Some properties of the escapements for a single-species metapopulation
are preserved in the presence of predators, such as the strategies of how to harvest
a relative source/sink and exporter/importer local population. I considered two situ-
ations. In the first situation both species are harvested. In this situation I obtained
optimal escapements for the two species in both patches which are independent of the

time horizon considered. In the second situation harvesting targets only one species,

either the prey or the predator'. In this situation I obtained optimal escapements for
one period to go. If there is no discounting, then these escapements are as the same as

the long term escapements. This is because when there is no discounting, the profit in
any period generated from escapements S¡, has exactly the same value as profit from
the same escapements in any other period. Hence we only need to find escapements

for one period to go. Optimal escapements for the case where discounting is not zero

are considered and examined in the next cha,pter fol ihe model in which pledator'-prey

0
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Figure 4.7: Figure 4.7.a shows that if fixed harvests from a predator-prey metapopulation
are used as the policy to manage the metapopulation then the exploited metapopulation
reaches an equilibrium (N1 :95 and Nz - 78, see Table 4.5). However, Figure 4.7.b
shows that if fixed harvests from a single-species metapopulation are used then the meta-
population is collapses after 5 periods of exploitation. Figures 4.7.c and 4.7.d show that
equilibrium harvests, if we incorrectly assume a single-species metapopulation is always
lower than, or at most as much as, equilibrium harvests from predator-prey metapopula-
tion escapements.
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PPM ,5i', : 128440
,sL : 95107

Hfr, -- 25782
Hft" - L43L70

Siv :223547 Hiu :168952
UPP '9iu," : 80040

,sL.. : r2oo27
äfr," : 68035
Hiu".. :92096

SÏu., : 200067 Hiu.. :160131
WPP 'Siu... 

: 175984 f/i,... : L6728I

Table 4.7: Equilibrium escapement and equilibrium harvest comparisons

between correct and incorrect assumptions with p¡,t : pp¡ costs are negligible,

Ptt: Pzt: Pzz:Ttt:Ltz: Çlzt: Ç22:0.001 and Pn:0-002.

interactions take place in the adult stage.

If the following is true: harvesting targets both species, the only difference
between populations is the prey migration rate, there is no market price differences
between the two species, and the cost of harvesting is negiigible or independent of the
stock abundance, then the first rule of thumb for harvesting a single-species metapop-
ulation (TP 1 in Chapter 2) can be used to manage a predator-prey metapopulation
provided the post-dispersal predator efficiency (C¿¡) ir above a threshold. This first
rule states that we should harvest the relative source prey subpopulation more conser-

vatively than the relative sink prey subpopulation. We protect the relative source prey
subpopulation directly with a higher escapement for the prey, and indirectly, with a

lower escapement for the predator living in the same patch with this prey subpopula-
tion.

On the other hand, if the migrations between subpopulations are symmetric, and
there is no biological variability except the vulnerability of the prey, then we should
harvest a relatively less vulnerabie prey local population more conservatively than the
other prey local population which is more vulnerable to predation. A special case

occurs when there is no predation in one of the patches, say patch one. In this case,

patch one is a refugial patch for the prey. This rule ensures that we harvest the prey
living in the refugial patch more conservatively than the prey living in the habitat
where predation occurs.

Furthermore, if the prey vulnerability of the two prey subpopulations are the
same, but the predator efficiencies differ between patches, then we should harvest the
prey living in the patch with the relatively more efficient predator more conservatively
than the other prey subpopulation. This result suggests that if the predator has a
high biological efficiency, then we should leave enough prey to sustain the predator
population. In the chapter that follows, it will be shown that if the market value of the
predator is large enough compared to the market value of the prey, then the optimal
strategy can be a "seeding strategy" where prey are put into the system from another
patch.

Unlike the results of optimal harvesting for a single-species metapopulation, the
results generalised here are more restrictive. To establish the generalisation of the lule
of thumb TP 2, that is Result 4 in this chaptel, an extleme condition, that the predatol
efficiency before and aftel dispelsal is the sarne, is needed. Otherwise only some parts
of the rule are true, depending on whether the predatol efficiency before dispersal is

less, or more, than the predatol efficiency after- dispersal. In the case when the pledator'

100



efficiency before dispersal is less than the predator efficiency after dispersal t
harvest the relative exporter prey subpopulation and the predator living in the
patch with the relative importer prey subpopulation more conservatively than if we use

the strategy from unconnected two-patch predator-prey harvesting theory. Conversely,
in the case when the predator efficiency before dispersal is more than the predator
efficiency after dispersal then we harvest the relative importer prey subpopulation and
the predator living in the same patch with the relative exporter prey subpopulation
less conservatively than if we use the strategy from unconnected two-patch predator-
prey harvesting theory. The same condition is also required to establish the rule that
generalises rule of thumb TP 3.

If harvesting only targets one species then rules of how to manage a predator-
prey metapopulation might be different from rules if harvesting targets both species.

Escapement comparison rules with incorrect policies only work if the population size
differences between the unexploited subpopulations are negligible, which is unlikely.
However, escapement comparison rules between subpopulations hold in some reason-
able circumstances. The rules include a conclusion that if harvesting only targets the
prey (predator) species and if the only difference between populations is prey (predator)
migration parameters, then optimal escapements for one period to go suggest that we

should harvest the relative source prey (predator) subpopulation more conservatively
than the other prey (predator) subpopulation regardless of the value of predator effi-
ciency. Similarly, if the migrations between subpopulations are symmetric, and there is
no biological differences between the subpopulations except for the prey vulnerability
to predation (the predator effi.ciency) then we should harvest a relatively less vulner-
able prey (a more efficient predator) subpopulation more conservatively than the other
prey (predator) subpopulation regardless of the value of predator efficiency.

To establish the rules discussed in this chapter I assumed that the cost of har-
vesting is negligible or independent of the stock abundance and that the market values

of both species are the same. In one section in the next chapter I will show how the
inclusion of the cost of harvesting and market value differences may affect the results
presented in this chapter.

4.6 Appendices

Appendix 4A: Derivation of net revenue function fI
This appendix derives the net revenue function in equation (4.1a). Note that the cost

function for two-patch predator-prey exploitation can be derived analogously to the cost
function for single-species exploitation (Clark, 1990). Suppose that the instantaneous
exploitation cost Cx¿(X;,fl¡,) is linear in Hy,, then

Cx¿(X;, Hx;) : Cy¿(X¿)Hy,. (4.S5)

The total cost of the exploitation to harvest Hy,o taken from the available stock d¡
is C7(X¡¡, Hx,o), which can be formulated as

Cx¿(X¿n) * Ca¿(X¿¡"- 1) +''' ¡ Cx;(X¿* - Hx,o I r)

cr(x¿*,Irx,) = [''u cx¿(€)r]€.
J X;*-Hx¡*

l0l

(4.86)

Ifence

(4.87)



The net revenue is then given by

fIx¿(X;x, Hx,o)

J"(Nto, N2s, Prc, P2s)

/t(¡/tt , Nrr, Ptt, Prt)

px¿Hx;r - Cr(X¡n, Hx,u)

f'r @* -cxi(€))d6J X¿¡-Hy¡¡
rX¿r

Jr*,*(r* - cxi(Ë))dt (4.88)

Appendix 48: Independence of optimal escapements on time
horizon
To prove the claim of time horizon independence, first consider the time horizon T :2.
Let us rewrite the net revenue with time horizon T : l, Jr(l/to, Àbo, Pro, P2s), in
equation (4.20) above using equation (4.22) for k : 1 into the first term of equation
(4.20) and using equation (4.22) for k : 0 together with equation (a.la) into the second
term to obtain an expression for the net revenue with time horizon one

Jt(//ro, Nzo, Prc, Pro) : (pV (Nrr,, N21, P11, P21)max
0(.9¡¡e (X¡s

I V(//to, Nzo., Prc,P2s) -V(SNro, SNro, Sp,o,,S"rr)) . (4.S9)

If the optimal escapements ,S|¿¡ can be obtained from equations (4.26) - (4.29)
then the above equation becomes

"Ir (l/ro, N2s, P1s, P2s) : pV (Nir, Nir, PTr, Pi) + V (Nto, N2s, Prc, P2s)

-y(^gïu,, , sfrro , sä, , ,sä. ), (4.90)

where each stock abundance X¿i is a function of the escapement Sk;o of the previous
period. To produce the net revenue for the next time horizon, T : 2, use the following
procedure. Rewrite Jr(l/to, Nzo,Prc,P2s) in equation (4.16) in the following form

max
0(.9¡¡s (X¡¡

,

pJt(Nn, N21, Py, P21)

+t t lIy¿(X¿s,,Sy,o) (4.e1)
i=1 X€{N,P}

This represent present value revenue as a function of prey and predator populations at
the last time step. Rewrite Jr(l/rr, Nzr,P¡,Prt) in equation (4.16), in a similar way,
as follows

max
0(.5¡¡e (X;6

,

max
0(.9¡;6 SX¡s

pJo(Ntr, N22, P12, P22)

+t Ð flx¿(X¿r,S",,)
?=I X€{N,P}

2

2

p>, t frx;(x¿z,sx,_)
i:l X€{N,p}

fIx¿(X¿t, Sx,, )+t t
t:1 X€{¡¿,P}
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: 
o<,Tå{".( Pv(N"' N22' P2' P22)

*V(Nrr, Nzt, Prr, P"t) - V(Sru,,, SNr,, Sa,, Str, ))
: pV(NinNi",Pi2 Pi) + V(l\¡rr, N21,P:f_,P21)

-Y(^9ir,, , Sñr,, ,9ä,, ,Sä, ). (4.92)

Substitute this result into equation (4.91) to produce

Jr(Nto, Nzo,, P.', Pzo) : o<"T,?{"" 
p(pv (Nir, N;2, Pi2, P;2)

f 7(1{rr, Nzt,, P¡¡, Prt) - y(,Sir,,, Sfrr,, ,Sä,' ,9ä, ))

F l/(l/ro, Nzo,Prc,P"o) - V(St,.,S^bo,Sao,S"ro)). (4.93)

All terms with stars are constant with respect to 
^9x¿0, 

hence

Jr(Nro, Nzo, p:lr,, p"o) : 
o<"Tå{",, 

pv (Nrr, N21, p11,, p21)

* V(l/ro, I{zo, Pro, Pro) - V(St,o , SN"o, Spro, Spro) + pC). (4.94)

Then equation (4.89) is used to obtain

Jr(Nto, Nzo, Pn, P"o) : "It(Nro, 1y'20, Pro, Pro) + pC. (4.95)

Note that the maximisation of the discounted net revenue resulting from harvesting two
periods from the end is given by the same first period escapements of the maximisation
with only one period, that is given by Sï" which result from solving equations (4.26)

b @.29). A similar method can be used to show that the expected net revenue three
periods from the end is

/r(llro, Nzo,Prc,Pro): Jr(Nro,Nro,Prc,Pro) + p"C (4.96)

and mathematical induction can be used to show that expected net revenue T * L

periods from the end is

/r+, (l{ro, Nzo, Pto, Pro) : Jr(I/ro, Nzo, Prc, Pro) + pr C. (4.97)

To prove this claim let us recall that the optimal escapements for time horizon ú :
? is given by solving the value function of the sum of the discounted net revenue
from harvesting up to period t : T. This value function is Jr(l/ro, Nzo, Prc, P"o) :
Jr-r(Nr.o,Nzo,Pn,P"o) -l pr-rC. Using equations (4.16) the value function up to the
next time horizon is given by

/
Jr+r(l/to, N2s, Prc, P2s) : 

o<"T,?{",, ( nJr(r/rt, N21, P11, P21)

+t t fIy¿(X;s,Sy,o)
i=1 X€{N,P}

max
0(,9¡;s (X¡6

2

+t t II¡¿(X¿6,S¡,0)
i=1 xe {À/,P}

: Jr(Nro, Nzo, Pro, P"o) + pT C. (4.9s)

This proves that the optimal first-period escapements are independent on the choice
of time horizon considered.

t

p[Jr-r(Nrr, Nrr, Prr, Prr) I oT-t C]
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Appendix 4C: Optimal harvest comparisons between single-
species and predator-prey metapopulations
If there is no source/sink and exporter/importer prey subpopulation and predator
efficiency is extremely high (C :0) then prey equilibrium harvest from a predator-
prey metapopulation., HT,¡r, is lower than the one from a single-species metapopulation.
To prove this recall that

riù: (osÄ,, *nr;(rsiutt - ?l +a.sfi¡,^9i )+p¡r(rs;,(t - +) +a.9fi1,sþ,)) -si,,

If 11Är." is prey equilibrium harvest from a single-species metapopulation then

Hiu, - Hiu," : (a - lXSi/, - Sir,")

+,ltnoo- r,;)^efi,, (t - +) * @¡¿- r,¡)s¡ (t - +)]
*a(p¿¿ + pr;)Sfr,Sä

: a(p¿¡ * r¡;)Sft,^9f, < 0, (4.99)

since S¡, - Sx, and ^9¡ç, 
: SXr". Similarlyrif Hþ; and f1Ë," denote predator equilibrium

harvest from predator-prey and single-species metapopulations,respectively, then

Hþ,- Hþ* : þ(q¿¿* q¡;),Sfi',,S1 > 0. (4.100)

Appendix 4D: Optimal harvest comparisons between subpop-
ulations
If prey subpopulation two is a relative exporter subpopulation with prey migration
rate p21 is the same as the retention rate of prey subpopulation one p11, there is no
source/sink subpopulation, the predator populations are indistinguisable, and prey
recruitment is greater than the number of prey eaten by the predator, that is, r^9fir,(1-
Siu, I K) > 

| 
a 

I 
Sfir, Sþ, , then the equilibium harvest for prey subpopulation one is greater

than the equilibrium harvest for prey subpopulation two. This can be proved as follows.

Hi^ - Hi,, : (¿ - 1)(.9ñ, - Sir,)

*"((prr - p,r)Si, tt - *l -r (pr, - pzz)Siu,(l - +))
*o((prt - prz)Sfir, Sä + (pr, - pzz)Si,¡,]þ,).

: 2(pr, -prz)(r^9i,,tt - *l + osÄ,,sä) t o. (4.101)

Similarly, it can be shown that /1þ, - Hh : 2(qtt- Çrz)(s.9f, (1 - +) + BSÄr,Sä ) : 0.
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Chapter 5

Predator-prey metapopulations
with juvenile migration and adult
interaction

The model in the previous chapter assumes that the predator eats the juvenile phase of
the prey. In this chapter I assume that the predator-prey interaction occurs in the adult
stage of the prey and predator populations. More simply put, adults feed on adults. In
nature, predation on adult life stages is not uncommon. Many marine species do not
eat a particular prey species until they reach a certain age (Overholtz et ø/., 1991).

Zarct (1980) divided predators in aquatic communities into two types: "9.p"-
limited predators" and "size-dependent predators". The first type of predator eats

prey by swallowing it whole. Hence the prey needs to be smaller than the predator's
gape. There is no chance that a predator will eat prey larger than its gape. The
second type of predator eats prey by piercing, crushing or sucking it, and hence can

eat prey which is bigger than the predator's mouth diameter. Examples include sea

lamprey, Petromyzon marinus., that prey on many species of fish, like lake trout, salmon,
rainbow trout, whitefish, burbot, walleye and catfish, and octopus that prey on many
species of crustaceans and gastrophods (Cortez et aL.r 1998). However, some predators
have preferential feeding habits. For example, several species of Coregonzs and many
planktivorous fish only eat the largest prey individuals (deBernardi and Giussani, 1975;

Vanni, 1987; deBarros eú ø/., 1998). The maximum body size of the prey that is

captured by the gape-limited predators is limited by the diameter of the predator's
mouth, whiie the maximum body size of the prey that is captured by the size-dependent
predators is only limited by the predator ability in capturing and handling the prey
(Zarct, 1980). For example, large crabs can prey on large abalone, up to 200 mm
(Shepherd and Breen,1992) and large octopi eat large mussels by drilling through the
shells (McQuaid, 1994). This evidence shows that predation on prey adult life stages

is common in marine systems.
The model to describe this adult interaction predator-prey metapopulation has

a similar structure and assumptions to the previous model, except for the details of
the predator-prey interaction. Genelally food suplies may affect predator reproduction
and adult survival of the predator (Mangel and Switzer, 1998). For this reason, I
investigate optimal escapements for two cliffelent models. The first model assurnes

that predation affects predator survival and the second model assumes that predation
affects predator recruitment. I investigate both cases and compare how their optimal
escapements diffel and examine the robustness of the results in the previous chapter.
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As in the previous chapter I use dynamic plogramming and the method of Lagrange
multipliers to find the optimal harvesting strategies for the populations in both models.
The results in this chapter show that the most significant rule, that we should harvest
a relative source subpopulation more conservatively than a relative sink subpopulation,
is robust regardless of the structure of the predator-prey interaction.

Unlike the previous chapter, in this chapter I present the optimal escapement
for any period to go, when harvesting only targets one of the species. In the previous
chapter, escapement analysis for one period to go shows that the most significant rule,
that we shouid harvest a relative source subpopulation more conservatively than a
relative sink subpopulation, is true for a limited situation when harvesting only targets
one species. In this chapter, numerical examples show that this rule hoids for any
period to go. I also explore the situation where the optimai harvest for one of the
populations is negative. While at frrst glance this appears unlikely, a negative harvest
couid be implemented in some cases by seeding stock.

5.1- The first model: Predator survival model

Assume that there are predator and prey populations in each of two different patches,
namely patch one and patch two. Let the movement of individuals between the local
populations be caused by the dispersal of juveniles. Adults are assumed to be sedentary,
and they do not migrate from one patch to another. If the population size of the prey
and predator on patch i at the beginning of peliod k are denoted by ÄL¿ and P¡¡

respectively, then the dynamics of the prey and predator populations are

Iú;1r+r¡ : a¿Ni* * a;N¿*P¿n I p¿¿F¿(N¿n) * p¡¿F¡(N¡*), (5.1)

P¿(*+t) : b¿P¡n * þ¿N¿xP¿n I q¿;G¿(P¿n) + q¡¿G¡(P¡x), (5.2)

where ø¿ and ó¿ denote the survival rate ofadult prey and adult predator in patch i. Let
the proportion of prey and predator juveniles from patch i that successfully migrate to
patch j b" p¿¡ and q¿¡ respectively, as illustrated by Figure 4.1. The functions F¿(N¿r)
ar'd G¿(P¿¡) are the recruit production functions of the prey and the predator on patch
i in time period k. Different from the model in Chapter 4, I assume that the recruit
production functions are logistic and given by equations (3.3) and (3.a). To ensure that
the system is a Lotka-Volterra predator-prey interaction, I assume o¿ ( 0 and B¿ > 0.

As in the previous chapter I introduce exploitation into the system and assume

that the only possible exploitation is through a selective harvesting policy. If the
amount of harvest taken from the prey and predator stocks in patch i at the beginning
of period Ic are H¡¡,r and fIp.o respectively, let ,S¡r,u : ly'¿¡ - H¡v¡o and Sp,* - P¿n - Hp r
be prey and predator escapements on patch i at the end of that period. Hence, if
the escapements are substituted into equations (5.1) and (5.2), then the model for an

exploited two-patch predator-prey metapopulation with adult interaction is

lú1*+r¡ : a;Sx;o f a¿S¡¿,o,Se¡o I p¡;F;(Sr,*) + n¡;F¡(S¡¡,r), (5 3)

P¿(*+r) : b¿Sp,o lf¡SN,rSe,. * q;¿G;(Sp,u) + q¡¿G¡(Spr*) (5.4)

Using present value maxirnisation, the objective of the resource owner is to rnax-
imise the net present value, PV , fro:nt halvesting ea,ch subpopulation of the prey and
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the predator up to time horizon t : T. If flx¿ r'epr-esents the present value of net
revenue resulting from harvesting population X in patch i, and p is a discount factor,
then the sole-owner should maximise PV h (4.11) subject to equations (5.3) and (5.4),
with non-negative escapement less than or equal to the population size. As in the pre-
vious chapter, I assume p : Il0 { d), where ó denotes a periodic discounting rate.
The net revenue fIx¿(X;*,^9¡,*) is given by (a.la), which is the net revenue from the
harvest Hy,* of the local population X¿ in period k. It is assumed that the price of the
harvested stock is fixed. The cost of harvestitç Hxi from stock X¿ is assumed to be a
non-increasing function of X¿ and may depend on the location of the stock.

To obtain optimal harvesting strategies for the system, I use the same procedure
as in Chapter 4, and hence I do not provide the details here. This procedure yields op-
timal escapements ,Sfi¡,. and ,Sþ,0, for the prey and the predator, respectively, which can
be shown to be independent of the time horizon considered. The optimal escapements
satisfy the implicit equations

pN_cNi(,SÄr,.) (^ 
,

o* 
: 

lon * o¿sþ,, * n;;F!(sîv,.))(pt - civ¿(¡/,r))

+ (n,iFi6îv,.))(Pt - '¡¿¡(li;'))

+0¿sþ, (p, - "p¿(P¿')) , (5.5)

pP - cPi(sþ,')
p

(Uo + PnSfr,o * q;;G'o(Sþ.))(p" - "r,(P,r))

+ (øo¡c'nçs;,.))(p" - rr¡(PÐ)

+o¿S.fu,. þr - "¡vo(I/,t)).
(5.6)

These equations are the general form of the optimal harvesting equation for a two-
patch predator-prey metapopulation with adult interaction. It can be seen that if we
set a; : 0¿ : 0, then Tuck and Possingham's (1994) optimal harvesting equation
for a single-species metapopuiation is obtained. Furthermore if there is no migration
between patches, pij: e;j:0 for i I j, and F'(^9) : a¿lpnoFl(S¡u") together with
a¿ : þ¿: 0, then the equation reduces to the optimal harvesting equation for a single
population (Clark, 1976a). The escapements ,S|,0 found by solving these equations are
the optimum escapements of the prey and the predator that maximise revenue provided
the Hessian matrix Jí'(S*,o, SN,o, Sp,o,Sp,o) satisfies Uí(SïXSx-Si)] [Sx-,S]] < 0,

where Sx : (Sr,o, Sruro, S"ro, Srro) and .9| : (^9År,0, Sfrro, Sä.,,Sä.).

5.1-.1- Optimal escapements

In this section, the optimal escapements in equations (5.5) and (5.6) are compared
to the strategies in which spatial structule is not recognisecl. The comparison is car-
ried out to see how important it is to use the theory plesented here for choosing
optimal escapements. As ìrefore, I consiclel two ways in ivhich spatial structule can be
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ignored. First, the whole system can be considered a well-mixed homogeneous popu-
lation. Second, the existence of the patches is recognised, but we assume that there
is no migration of individuals between patches. The optimal escapements from a con-
nected two-patch predator-prey model are compared to those systems in which spatial
structure is ignored.

To facilitate comparisons, I use the concept of source/sink and exporter/importer
subpopulation and more/less efficient predator subpopulation and more/less vulner-
able prey subpopulation defined in Chapter 4. Optimal harvesting equations for an
unconnected and well-mixed predator-prey population can be obtained from equations
(5.5) and (5.6) by assigning pij : qij :0 for i f j, and pi¿: eii: L,i :1,2.
However, if we incorrectly consider there is no connection between subpopulations,
the growth rate for prey subpopulation i would be measured as riu : r¿p¿¡ I r¡p¡t
if it was incorrectly believed to be an unconnected predator-prey system, aîd r;- :
[rr(p,, * p¿¡) -f r¡(p¡¡ + p¡¿)]12 if it was incorrectly believed to be a well-mixed predator-
prey system, as in the previous chapter. The growth rate for the predator is measured
similarly.

6.L.2 Results with negligible costs

To simplify the analysis, I assume the costs of harvesting are negligible and there is no
difference between the prices of the prey and predator. Using these assumptions, and
substituting all derivatives of the logistic recruitment functions, fl and G¿, in equations
(3.3) and (3.4), equations (5.5) and (5.6) become

: a¿ r (p¡t -r p¿z) (r, -'f;s*,) * ('o * þ¿)sp,,

: b¿ * (q;t * q¿z) (", - ?tr,) t (ou * þ¿)sN,. (5.8)

Let A;: T-(p¡ip¿z)ri-dit B;: I-(q,t*q¿r)t;-ó¿, and C;: a;*É;. Solving equa-

tions (5.7) and (5.8) produces optimal escapements for prey and predator populations
ñ*1ñ*r,vt ano ùptr 

cr* - 
An(qn, + ø;z)fr r C¡B¿tN, 

-, 

(5'9)

I
p

I
p

(5.7)

Cr*.JP. 
-

B;(p¿t * p¿z) I C¿A¿
(5.10)

A¿

provided L¿: C? - (pot + pi2) Kzli(q¡ I q¿z)? + 0.

As expected, equations (5.9) and (5.10) are similar to equations (4.41) and (4.a2)
in Chapter 4, only now C¿ takes the form of a pre-dispersal predator efficiency be-
ing a combination of the conversion efficiency B and the predator attack rate a. In
the previous chapter the predator efficiency takes the form of a post-dispersal pred-
ator efficiency in which the value is affected by the migration parameters p¿¡ and Ç¡¡.
Equations (5.9) and (5.10) are generalisations of the optimal escapements for a single-
species derived by Clark (1976a) and a single-species metapopulation derived by Tuck
and Possingham (1994). By assìgning a; : þ;:0, the optimal harvesting strategy for
the single-species metapopulation is established. Furthelmore, if in addition we lemove
dispersal(nr¡:pji:qij:eji:0,andpii:pjj:qii:q¡¡:1)thenClarl<'s(1976a)
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optimal escapements for the single-species model, with aduit survival lates c¿ and ó¿,

are obtained. In the case of a¿ : 0¿ : 0, the escapements leduce to escapements for a

single-species metapopulation, which satisfy the rules of thumb TP 1 to TP 3 described
in Chapter 2. In the presence of predator-prey interactions, I establish the following
results as generalisations of the rules of thumb harvesting strategies for a single-species
metapopulation.

Result 7 (Sfficient conditions for positiue escapernents) Let Si¡ and Sþ denote the

optimal escapetnent from predator-prey metapopulation giuen by equations (5.9) and
(5.10). If A¿ and B¿ o,re negatiue, and C¿ is non-positiue with C¿ ) mar{#,+},
then:

1. L; is negatiue,

2. Si¡, and Sþ are posi,tiue.

Proof

1. Note that since -(put * nn)rlA: [(p¿t + p¿r)r]ll(p¡ * pn)r ¡ (o - (1 + d))l >
l, the condition C > 2Bl1l implies C > (-(pn I p,i2)rf A)(2B|I(). Hence
C¿ ) mar{-2Û;(p¿, -l p¿z)r¿llA¿K¡1,-2A¿(q¡ + qi2)s¿llBiLnl}. W" have B¡(pn *
nn)fr < -C¿A¡ or alternatively B¿ . ,## *-. 

Since -C > 0 then -C¿B¿ 1
/\

-Cn ( ^-:fu ) . Sit 
"" 

we have A;(q¿r + ø;z)| <. -C¿B¿ then A¿(q¿L + qi2)T <
\\Pir+Piz)ii f/\

-Cn [ , -,"'oil*l|. Finally, since A¿ negative, then we have (q¿1 + q¿z)?(pn +" \(r;r*u;:t4 /
no")fr > C! which means A; < 0. ¡

2. It is clear from equations (5.9) and (5.10). !
An analogous result can be obtained if A¿ and B¿ are positive and C; is non-

negative. However, C¿ > 0 is biologically unacceptable since it means that the predator
effi.ciency is more than 100%. As in the previous chapter, an interpretation of the
condition A¿ < 0 is that the natu¡al growth rate of the prey, that is, the sum of the
proportion of surviving adults and the per capita larval production, is higher than the
reciprocal of the discounting factor If p. The condition B¿ ( 0 for the predator is
interpreted similarly, while C¿ is non-positive with C¿ > mar{ff|,+} is interpreted
as a high predator efficiency. Both conditions, A; < 0 and B¿ ( 0, are fairly likely
for typically fast growing fish populations. I use Result 7 to explore the relationship
between escapements from a predator-prey metapopulation presented in this chapter
and escapements from a singie-species metapopulation discussed in the paper of Tuck
and Possingham (1994). The relationship is summarised in the following Corollary.

Corollary 2 (Escapement comparison to a single-sytecies metapopulation) Let Si¡ and
Sþ. denote the optimal escapernent from a ytredator-prey rnetapoqtulati,on giuen by equa-

tions (5.9) and (5.10), and let Sfr " and Sþ " denote th.e oqttintal escapernent fr"om a

single-species metapoytulation giuen by the same equations by assigning ai: 0¿:0. Il
A¿ and, B¡ are negatiue, and C¡ is non-pos'itiue with C¡ ) mar{?,T}, thrn'

1. 1ft, - SÄ/r" : 6;,+#r;;l,¡5ä < 0,

2. Sþ, - Sþ," : 6ufir;¡AsÄ,, < 0.
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Proof

1. The sign of SÄrJ -,9fy," needs to be determined

ñ* ñ*JN. - ùNr"
A,(q,', + qir)T * c¿B¡ A¿

A¿

c¿B¿(pa, + pir)T + c? Ai
-(pn, + p.i2)T

L¿(p¿t + n;z)2f;

B;(p¿, + piz)2r I C;A;

Lo(po' + pi2)3 lCn

Because the denominator is positive and B¡(p¿y + pi2)æ 1 -C¿A¿, then .9ft, -
SÃr," < 0. The proof of the second part is analogous to this proof. ¡

Corollary 2 suggests that the optimal escapement from a predator-prey metapop-
ulation is always greater than, or equal to, the optimal escapement from a single-species

metapopulation depending on the eficiency of the predator, C¿. However, we can not
draw any conclusion on whether we should harvest the relative source subpopulation
more conservatively than the relative sink subpopulation, except for one case when

the predator is perfectly efficient, C;: 0. In this case, the optimal escapement from
a predator-prey metapopulation is equal to the optimal escapement if the population
were managed as a single-species metapopulation. Hence, all rules of thumb described

by Tuck and Possingham (1994), i.e. TP 1, TP 2 and TP 3 in Chapter 2, are satisfied.

In many cases, the predator eficiency C¿ falls somewhere between a¿ and zero.

In this case, Corollary 2 does not give us a clear insight on how the predator-prey
metapopulation optimal escapements differ from spatially-unstructured predator-prey
optimal escapements. The following Lemma enables us to expiore these differences.

Lemma 3 (Migrations trade-off equations) Let Sfr and Sþ. denote the optirnal es-

capement from a predator-prey metapopulation giuen by equations (5.9) and (5.10). If
ctrà : &t b¿ :b, K¿ : K, L¿ : L, C¿ : C, R: I- a, S : L -b, ri* : (p¿¿*p¿¡)r; and

sirn : (q¿¿ + e;¡)s¿, for i : t,2, then:

1. (^9Ä,, - ^9i,)414, : (r'Gr^ - sz^) -9#(rr* -.,*)) (T - t)
_2C ( 2.ç\

L \C - K)(rr*"r*-r2rns2m))

2. (,9ä - .9ä)A1A' (t"0,* - rz*) -Y#(",* -",-)) (T - t)

-'f (, -? (,,*,,* - r2naszrn).

+ C(S - sr-) (R-rr*)Þy+C(S-s2^)

Proof

1.

- ^)¡¿, :.)¡¿
(Ë - "r-)

2s

a1

i10

L2



(lo - ,r*)uf + c(s - ,,-)) (c' - rz^sz*#)
ArAz

(to- rròþT+c(s -sz*) (C" - rr*st^#)
ArA,

where L¿ : C2 - rimsirnh, i :1,2. Completing and simplifying the numerator
of the right hand side of the above equation will end up to the form of the
right hand side of equation 1 in this lemma. The second part can be proved
analogously. !

In general it is difficult to compare the optimal escapements between patches.

Lemma 3 suggests that there is a trade-off between prey and predator juvenile migra-
tions to determine which patch has a higher escapement. In some special cases, we

candetermineiteasily. Forexample,if 11- --szmand12^:slrnrthatis,if preysub-
population i has the same per capita larval production with predator subpopulation
j, then (,9Är, - .9Å/,)4142 : Lt(rz* - ,rò(T - C_). If A¿ and B¿ are negative and
mar{zft,T} a C¿ <0 then A1 is negative andf -C is positive. Hence, the sign
of the difference depends critically on the sign of r2m- 11-. In this case, if 12^: rtm¡
clearly we should harvest the prey equally in both patches. While if 12* ) rr*, that is

if prey subpopulation two is a relative source subpopulation and predator subpopula-
tion two is a relative sink subpopulation, then we should harvest prey subpopulation
two more conservatively than prey subpopulation one. Similarly, it can be concluded
that the predator living in the same patch with a relative source prey subpopulation
should be harvested less conservatively than the predator living in the other patch.

If we ignore the predator-prey interaction, then the same rule is obtained from the
single-species metapopulation's rule of thumb (TP 1).

However, the rules above are derived by assumin1 ri* : s;-, which is unlikely.
The following result describes a similar rule to the results above for a more general case.

It will also show that, unlike the single-species metapopulation case, in a spatially-
structured predator-prey population subpopulations with symmetric migration may
have different escapements. To gain a better insight into the effect of juvenile migration
on the decision of how the exploitation of a spatially-structured predator-prey system
shouid be done, most parts of the following discussion will assume that there is no

difference in juvenile migration for the predator, that is, sr* : s2rn : srn. In other
words, the predator has symmetric migration. To enable comparisons to escapements
if we ignore spatial-structure, I define riu as the growth of prey subpopulation i if it
is considered an unconnected population, and has a value as given in equation @.a\.
Furthermore I define r., as the growth of the prey population if it is considered a
well-mixed population, which has a value given by equation (4.45).

Result 8 (Escaqtement cornparison betweert subqtopulations) Let one of the Ttrey sub-

populations be a relati,ue solrrce while all otlt,er parameters of the prey and the predator
are identical for both subpopulations, without loss of generality let us assurne that prey
subpopulation one is a relatiue soltrce, th.at is, (prr + ptz)r1> (p"ripzt)rr. If lal: B,
or if A¿ and B¿ are negat'iue, and C¿ is non-positiue witlt. C¡> mar{tr,,!}, th"n'

7. ,9År, > SÄL,

2 Sþ, < Sh
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Proof

1. Let A5,u: (SÄr, - SÄ/r)AtAr, then using Lemma3 Asrv can be written as

As,

SinceT<Cl0thenAs*)0.
2. Let As" : (^9ä - Sä)AlA2, then using Lemma 3 Ase can be written as

2S

(-*n,* -,,ò) e - c) -T þ -?Ð s^(run - rz^)

,- [- (*) e - Ò *T þ -'Ð](,,* -.,^)

"*l? (c' - +: -' (T- ?))l (,,* -,,^)

"^lT(c, - +: -'#tt - "-))] (,,^ -,,*)

"*l?Q Q -'+) -+*)l(,,^-,,*)
¡

Asp C'(rr* - rzm)

C (rr^ - rz^)

C(rr,- - rz^)

-'f (c -T) "^r,,m-r2rn)

c-þ(c-T)"^l

'*æl

(

(

(

K
2S

K
2B
K

c)

c)

c)

Clearly As" 10, since T <C <0. !

Result 8 shows that there is a region of parameter space where we protect a
relative source prey subpopulation more than a relative sink prey subpopulation in the
sense that we leave the relative source prey subpopulation with a higher escapement
than the sink subpopulation. Similarly, by investigating the effect of prey migration
(relative source/sink prey subpopulation) to the predator's optimal escapements, it can
be concluded that we protect the relative source prey subpopulation in two different
ways: directly, with a higher escapement of the relative source prey subpopulation,
and indirectly, with a lower escapement of the predator living in the same patch with
the relative source prey subpopulation. The importance of the relative source prey
subpopulation is intuitively reasonable.

Similarly, let us assume that one predator subpopulation is a relative source while
all other parameters of the prey and the predator are identical for both subpopulations,
and lol - 8,, or C , T. Using predator-prey metapopulation optimal escapements
as a policy to manage the exploitation of a predator-prey metapopulation system we
would harvest the ¡elative source predator subpopulation more conservatively than the
other predator subpopulation which is a relative sink subpopulation. On the other
hand, we would harvest both prey equally, or would harvest the prey living in the
same patch with the relative source predatol more than the other prey subpopulation.

The analogous result for the predatol is easier to interplet whenevel Çiis¿: qjjsj.
In this case, one of the predators is a relative exporter subpopulation. Let predator
subpopulation one be a relative exporter, then we harvest this subpopulation conser-
vatively while we also harvest the prey subpopulation in the othel patch conservatively.
The lationale is as follows. Since the predatol in patcl'r one is a lelative exporter, then
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the outflow of its juveniles to the othel patch is gleater than the inflow, consequently,
we should leave the prey higher in the targeting patch of the exporter predator sub-
population.

The previous results allow us to compare our predator-prey optimal escapements
between different patches. Up to this point, I have concluded that if predator eficiency
is relatively high, then the rule of thumb TP 1 from single-species metapopulation
harvesting theory is preserved. To see how important and how different the predator-
prey metapopulation escapement is, compared to the escapements if we incorrectly
consider the population as a spatially-unstructured system, I construct the following
results. The results are the generalisations of the rules of thumb TP 2 and TP 3 for a
single-species metapopulation.

Result 9 (Comparison of strategy with an unconnected two-patch predator-preA sAs-

tem) Let Sf¡ and Sþ. denote the optirnal escapement from a predator-prey metapopu-
Iation giuen by equations (5.9) and (5.10), and let Si¡." and Sþ., denote the optimal
esco,petnent i,f we incorrectly consider the system as a system consisting of two un-
connected predator-prey systems. Let us o,ssunle that one of the prey subpopulations
is relatiue erporter and also a relatiue source while all other parameters of the prey
and, the predator are identical for both subpopulations, Without lost of generality let

Pnrt) p21r2 and,P¡¡rt>. Pzzrz. If AL: Az: A and By- B2: B arenegati,ue and
Ct : Cz : C with C > mar{p,!} then:

1. SÄ,, ) Sfr,",

2. Si,r" 1 SIv,.,

3. SÞ, 1 Sþ,.,

4. ST," ) Sh.,

5. sÄr, + sir, < .9Ä/,, * siu",,

6. SÞ, + Sþ, > ^9ä, + Sh..

Proof

1. All parameters are equal except pnrt ) pzfz. Recall that

q1_ _ (R-rw)Þf +cB
"t\t C, _ n rftf^ '

c,* _ (Æ-rr,)þf +cn.N,, - C,

Hence, equation 1 in Lemma 3 can be written as

(^9.ir, - Sir,,)Al,Al : (rr, -rt*)(tç -'þ -+ÐT,
where Ar, : C' - n'tr:i', and A1 : C2 - "tftf* < 0. Since pnrt ) p22r2 and
A¿ ( 0,i:Ir2, then Ar,, < 0. Fulthermoresince rtm) 11, arrd 0> C, T,
then SÄr, - ,SÄr," > 0. This completes the pr-oof. !

and
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2. The proof of this part is analogous to the proof above.

3. Using a similar procedure we obtain

(Sä - .9þ,")Ar"Ar : (rr, - r¡,,.,.)Y,

where V : (CçC - 3l - +Ð C > 0. Hence Sä -,9ä, < 0

4. This part can be proved analogously.

5. Recall that from 1, we have

(sir, - siu,")

and similarly

(rtu - rm)x
Ar,Ar 1

(.9ir, - si,,) : (rru - rz*)X
LruLz

where

fl

4Rs¿*

KLX- c(c - 28 lK) - )T'o
with s1- : sz*. If

Â,Sru, : (,9i/, + Sirr) - (^9Är," + SiL"),

then

4.9.¡y"A1A ¿L'2L,2uf X
: (rr, - ,rò lCn - (rr* ! r2u)4s¿*C'z 16 L) ! r2*r2u\6sl,,l@2 L2)f

*(rr, - rz*) lC^ - (rm + r1)4s;^C2 16 L) ! r1^r',I6sl*l@2 L'?)] .

: (rr. - rt* * rzu - rz^)Ca - 2(rsr2u - rynr2¡n)4s¿r"C2 l(K L)

*(r4r2u(rlm + rzna) - r1*r2*(rtu + r2,))L6sl*l(K2 L2).

Since r"n i r2u : rtm * r2^, then the first term is zero, and the third term is

equal to (rpr2u - rr*r2^)(rt* * r2*)76s2¿*f (K'L'). Hence,

I\,Sru,
(-8s¿*C2 f (K L) * (rr^ ] r2*)76s1^l@' L"))(r1ur2u - r¡.-ar2,.) X

4141,4242,
(8s¿*l(K L¡f'!-!P- - C'))(rr.,r2u - rtmr2n-L)X

A1A1'4242,

Since A¿ ( 0 with i : 1,2, then çz - 2(rmlr.z^\s¿- a g. We can prove that
if pnrl ) pzzrz then (r1,r2u - rhnr2-) > 0. This completes the proof that
A^9¡¡. < 0. ¡

6. Using a similar procedure we obtarn

ASp, : (8s¿^l(K L)( C2))(rsr2u - rrmr2n-¿)

4141,4242,

hence (.9ä + Sh) , (:)(Sä" + Sä,), whenever prr?'r ) (:)prrr,

tt4
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Result IO (Cornparison of strategy with, a well-mired predator-prey system) Let Si,
and Sþ denote the optimal escapements frorn a predator-prey metapopulation giuen by

equations (5.9) and (5.10), and let Si¡_ and Sþ_ denote the optimal escapements if
the predator-preA metapopulation system is incorrectly considered to be a well-rnired
predator-prey system. If all hypothesis and assumptions of the Result I are satisfied
and, in ad,d,ition if C satisfi,es C(BC2 + qt?)t* C -'"-*-i*) :0, th"n,

5. ^9ir, +,SÄr, < Sfr-,

6. SÞ, + Sþ" > ^9Þ..

Proof

1. Recall that

(R--r-)*+C-B* (R-r-)!+ca
r-\2 4Q-r- 112 _ suru\rur- K",L- v I{L

Hence (R-r-)T+CB
rt /'r2 2sarsL\) - KL

Using Result 8 we obtain

q+. _ (R-rr,òT: + cg _ (R-r-)T: +cB _ 
"oùNr:@> cp_Æ, :Ð

since 11- ) r-. Furthermore, since C is the root of åSir, - ,90 : -3(A -,-)+ - BC3 + ry?e: o then ,sfr, > åsÄ'. !
Since the proof lor 2,4 and 5 are similar to 1, and for 6 is simiiar to 3, then we

only need to prove 3.

3.4^97y-:(^9Ä/,+SÄr,)-SÅr-:(,Si/,-,So) +(SÄr"-,So).Followingtheproofin
Result 3, we obtain

AS¡r. - 
(8s*ll( 4?b-iP- - c2))(r-r- - rt*rz^) *

AlAlAoAo 

-"'

where X < 0 whenever C > T. Since A¿ ( 0, i : 1,2, Lo : C2 - þfrY < 0,
and (rfl - rLnr2m) ) 0, then A^97y- ) 0. tr

Results 8, 9 and 10 are the generalisations of the rules of thumb in Tuck and
Possingham (199a) for harvesting a single-species metapopulation. Numerical examples
given in the section that follows show that a subpopulation with lower escapement may
not give a higher harvest. In addition to the rules summalised in these results, I also
establish rules to harvest more or less vulnerable prey and more or less efficient predator
subpopulations. These rules are summarised in the following result.

1. Siv, > +

2. Ífr" <+

c+-N-

sÄ¡.

3. SÞ, < +Sþ_

4. Sh > +SÞ-

1

tùN-

I15r



Lemma 4 (Efficiency trade-off equations) Let Si¡ and Sþ denote the optimal es-

capement frorn predator-prey metapopulation giuen by equations (5.9) and (5.10)' If
a1 - a2: a, bt - bz: b, Kt - Kz: K, Lt - L2: L, Ptt: P22rPtz:
pzt¡ett: e22¡qt2: Qzt¡T't: T2¡sr: szt Tt¡n: (prr + Pn)r1 : r2m: rm o'nd

stm : (qrr + etz)s1 : szm : sm then:

(.9ir, - ^9i/,)A,1A,2 
: (C, - Ct) (c2+ c,) +ryf + B(crc2)1

2As*
L

2. (sä -.sä)ala' : (c'-c,)1ry#rt,*ct) *ryf + AQ,c,)].

Result 11 (Escapement comparison between subpopulati'ons) Let one of predator sub-

populations be relatiuely more fficient while all other parameters of the prey and the

pred,ator are identical for both, subpopulations, with,out loss of generali'ty, let us as-

surne that pred,ator subpopulation one 'is relati"uely more fficient, that is, C1 ) Cz'

If A, : Az : A and Bt : Bz : B are negatiue, and C¿ is non-positiue with

C¿ > mar{-W,-ryf}, th"n

.9Ä¡, > Si¡" and Sþ, > Sþ,.

Proof

From lemma 4, we only need to show that lL+(C, + Cr) + W -l B(CQzl] . o

which is satisfled by C¿, -W.The second part can be proved analogously. !

Result 11 suggests that to harvest a predator-prey metapopulation optimally, we

should leave both subpopulations living in the patch with a relatively more efficient

predator with higher escapements than the other subpopulations. A special case is

when þ, : g, and a1 I or. In this case, we should leave both subpopulations living in

the patch with relatively less vulnerable prey with higher escapements than the other

subpopulations. I illustrate these results and the previous results with some numerical

examples in the following section.

5.1.3 Numerical examples with negligible costs

In this section, a numerical example is presented to illustrate and to compare the two-

patch pred.ator-prey optimal escapements to escapements from other methods. For the

purpose of comparisons, parameters for the prey and predator popuiation are the same

as those in the previous chaPters.

Comparison of optimal policy to a single-species metapopulation policy

Assume that the prey in both patches have carrying capacities Kt : Kz : 400,000,

with intrinsic growth rates 11 - 12 -- 1000 and adult survival rates per period ø1 :
a2 :0.001. The juveniles migrate symmetrically, that is, Ptt : Pzz:0.001 and

ptz : pzt :0.003, hence there is no relative source/sink and exporter/importer prey

subpopulation. Let the discounting rate to be 6 : L0V0. Before exploitation begins,

assume that the population is in the equilibrium state. In the absence of the predator,

the unharvested population sizes for prey subpopulation one and two are N1 : Nz :
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Figure 5.1: Contour plot for the proflt in (a.11) as a function of predator

escapements (Figure 5.1.a) and as a function of prey escapements (Figure

5.1.b), calculated in millions with a discounting rate 10%. Optimal escape-

ments ^9Ë, 
: 14505 and sä : 9010 are found as the predator optimal es-

capements (Figure 5.1.a) and escapements sfr, : sfr, : 145050 are found as

the prey optimal escapements (Figure 5.1.b). The symbol "x" indicates the

po"ition of equilibrium escapements for various discounting rates, e'g' x\To

indicates the position with no discounting rate'

300100. Using equation (5.9) with C¡ -- 0, I obtain the optimal escapements for

prey subpoprrlutiorÌ, one and two which are ^9ÄL" 
: SÄrr" : f45050, h11:" both prey

subpopulations are harvested equally with first period optimal harvests flÑ,, : Hi,¡"" --

155050 and equilibrium optimal harvests 11.fu'" : HItl¿" :224900'

Now suppose that the predator, P¿, is present. For simplicity I choose intrinsic

growth ,ut". ãi the predator s1 - sz : 1000 with carrying capacities .Lr - Lz :40000.

i ur.,r-" that the pieclator's adult survival rates per unit time is not different from the

prey's adult survival and is not different between patches, hence bt:bz:0'001' The

pr"äuto, on patch one is assumed to be a relative source and exporter subpopulation,

with the migration parameters Çil : Çzt: Qzz -- 0.001, and q12: 0.003' Let la¿l :
,6¿ : 0.0000t, that is, the predator has a high conversion effi.ciency. Using NAG routine

cgbnbf to solve equations (5.1) and (5.2), one of the positive equiiibrium po-pulation

sizes for this two-patch predator-prey system is obtained, that is, (/úr , Nz, Pr, Pr) :
(270581, 205331, 43248, 7 667 6).

Furthermore, using equations (5.9) and (5.10), the optimal escapements for the

system, ^9fr, : SÑ, : 145050, sä : 14505 and sf¡- : 9010, are obtained. These

escapementi are similu.r to the 
"r"up"rn"ttts 

for a single-species metapopulation since

*" hut" lonl : B¿ for each patch as is explained in the result. However, the optimal

harvests are different. In this case, the first period optimal harvests I/fr, : L2553I,

Hir" - 60281, Hþ, -- 28743,, ibrium optimal harvests Hi,{, --
ZOgSOt, Hî,tr:211'831, Hþ, .are 

obtaìned'

If wã ïse single-rp""i (Tuck and Possingham, 1994)'

we should. harvest ih. pr"y equaliy in ea contrast, if we use a two-patch

pred.ator-prey metapopulation, we harvest prey subpopulation two less than prey sub-

population one. This is because predator subpopulation one is a relative exporter

xfia.
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subpopulation, and consequently there would be less prey in patch two as is indic-

ated by the fact that the unharvested prey equilibrium population size in patch one is

greater than the one in patch two, that it, l/t ) Nz. As expected, because there is no

source/sink or exporter/importer prey subpopulation, using both methods we harvest

predator subpopulation one more conservatively than predator subpopulation two, and

in this case 1/þ, - 22775, and Hþr: 38784 escapements,

and 11þ," : 1735, a11d Hþr": 25715 from escapements.

Ir, 
"orrãintion, 

even though the degree of p rs weak, that

is, o and B are small, optimal harvests for a metapopulation are very different if a

predator is included in the system. In general, iÎ C¡ < 0 the optimal escapement for a

predator-prey metapopulation is less than, or equal to, optimal escapement for a single-

,p""i", metapopulation. As a result, if we use optimal escapements for a single-species

metapopulation as a policy to manage a predator-prey metapopulation system, then we

mighl ,rnd"r-h¿r,rest the stock. On the other hand, if we use the optimal harvests from

u ,irrgl"-rpecies metapopulation, we might over-harvest the prey and under-harvest the

predator.

Comparison of optimal policy to spatially homogeneous predator-prey policies

In this section, I compare the optimal escapements and equilibrium harvests from a

predator-prey metapopulation to the optimal escapements and equilibrium harvests if
spatial structure is ignored'

Firstly, if our predator-prey metapopulation system was incorrectly believed to

be an unconnected two-patch predator-prey system, then the optimal escapements

are found from equations (5.9) and (5.10) by replacirr1 P;;,pii,qii and q¡¡ with 1, 0,

1 and 0 respectively, and replacing (p¿¿ + P;)r¿ and (q¿¿ * q¿¡)"; with r;, given by

equation (4.44), and (q;¿ *q;¡)s¡ is replaced by 
"n, 

similarly. The resulting escapements

are ,Sfir,, t'SÄrr" : 145050, Sä, : 9010, and Sþ"-:.14505' The harvesting strategy

fro1¡ iËä." "."up"-"nts 
produces optimal e, uilibrium harvests HI,¡r. : 211831, HTvr, :

203861, Hä : 20294, and Hþ, : 36736 with total harvest H* -- Hfr, * He- :
472722. fþi. totut harvest is lessihan the tctal harvest if we correctly use predator-prey

metapopulation escapements, that is, fy'* : I/Ä, + Hþ : 477251(see Table 5'1). This is

b""urrr" if we use unconnected predator-prey theory, we fail to recognise the exporter

predator subpopulation which is important as a contributor to the other predator

subpoprrlation. In this case, we exploit the relative exporter predator too much, with

ur,. ãrãu,p"ment of only 9010, while the relative importer predator is harvested too

conservatively with an escapement of 14505.

Note that there is no difference in the total harvest of the prey, and that the dif-

ference is only in the harvest from each patch. If we use the harvesting stlategy from

unconnected two-patch predator-prey escapements, we would over-harvest the prey iiv-

ing in the same patch with the relative exporter predator, while the prey living in the

,u,L" patch with the relative importer predator is under-harvested. In conclusion, in

this example, comparing the strategy from unconnected two-patch predator-prey es-

capements, the harvesting strategy from a predator-prey metapopulation gives a higher

total harvest while it also leaves the relative exporter predator a higher escapement'

Secondly, if our predator-prey metapopulation system was incorrectly considered

to be a weil-mixed predator-pïey system, then the optimal escapements are found

from equations (5.9) and (5.10) by replacil1 p¡¿,p¡i,Q¿¿ and q¿¡ with 1, 0, 1 and 0

respectively, and replacing (Vt;Ip¿¡)r¿ and (q¿¿ *q¿¡)s¿ with r- given by equation (4.45)'

118



PPM si/
s

: 145050
: 145050

1

: 2901

II.fu, : 203861
Hiu. : 211831

^9Þ, 
: 14505

sä : 9oro
HÞ, :22775
Hþ" :38784

Hiu :415692 .9þ : 23515 Hþ :61559
UPP :145050

:145050
:290100

,si,,. :211831
:203961

11i,"
Hfr"

SÞ,":9010
SÞ".,:14505

Hþ'.:20294
Hþ",,:36736

Hi,t :415692 Si..:23515 Hþ,,:57030

WPP Sïv.. :290100 Ili¡... :413036 Si :25346 11å... :63391

Table 5.1: Escapement and harvest comparisons between correct and incor-

rect assumptions, where pN : pp. PPM, UPP and WPP denote predator-

prey metapopulation, unconnected predator-prey population and well-mixed

predator-prey population, respectively.

and (q¿¿ * q;¡)s¿ is replaced by r- similarly. The resulting escapements are ,Sfir- :
290100, and Sþ_ : 25346. The harvesting strategy from these escapements produces

optimal equilibiium harvests Hfr_ : 413034 and Hþ- : 63392 with total harvest

Hî, : f/Är_ + Hp- : 476426. This total harvest is less than the total harvest from

thã predatär-prey metapopulation, that is, H* : 477251 (see Table 5.1). As indicated

by Result 10, using the escapement from a well-mixed predator-prey population would

over-harvest the relative source predator subpopulation, P1, and under-harvest the

relative sink predator subpopulation, P2, since Sä : 14505 > Sþ-12:12673 > Sþ":
9010.

6.L.4 Numerical examples \Mith prey and predator differential
prices

In the previous section, I assume the prey and predator bave the same market value. In

this section, I assume that there is a different market value for each species. f assume

the price of a unit prey stock i. pr - 8000 while the price of a unit predator is flve

times the prey's price, that is, pp : 40000. I obtain optimal escapements for the system

from equations (5.5) and (5.6). These escapements are sÅr, :189196, Sfr, : 194131,

Sä : 22073 and Sþ, : 24540,, with equilibrium optimal harvests //jr, : 168682,

Hfur: 157462,,9Þ, : 39088 and ,9þ, :62287. From Table 5'2, we see that the rule of

souice/sink exploiiation no longer holds. However, from Table 5.5, the value of the total
harvest from the predator-prey metapopulation escapements is higher than those from

the unconnected two-patch predator-prey and well-mixed predator-prey escapements.

5.1-.5 Numerical examples with costs included

In the previous example, costs of harvesting are considered to be negligible. The

example illustrates the properties of the optimal escapements from a predator-prey

metapopulation. Analytically the properties illustrated by the example are described in
the previous results. However, the results ignore the costs of harvesting. In this section,

optimal escapements from the same predator-prey metapopulation are compared to

other escapements and the costs of harvesting are taken into account. To obtain optimal
escapements, I use the cost function

cx(X¿): (mx, I c¿ny,X;)l(nx,X¿) (5.11)
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PPM ^9.i', 
: 189196

Sir" : 194131
= 168682

= 157462
øi/,
Hi{"

:22073
:24540

^Så,
sä

Hþ,:39oBB
Hþ": 62287

Si' : 383327 Hi,, = 326144 ,9Ë : ¿66t9 Hi : 101375

UPP sfr," :194131
:189196

--383327

Hi¡,":L57462
f/fr"..:168682

Sþ,":245+0
Sþ",,:22073

:42502
:58057

Hþ,"
Hþ".,

Hi¡.. :326144 så,, :4661¡ I1å.,:100559

WPP Si¡., :381486 IIïv.,. :330028 Sþ... :45692 Hi. :100293

Table 5.2: Escapement and harvest comparisons between correct and incor-

rect assumptions, where o*: lpc.PPM, UPP and \MPP denote predator-

prey metapopulation, unconnected predator-prey population and well-mixed

predator-prey population, respectively.

which is a decreasing function with respect to X¿ and has a non-zero limit (c¿ I 0) as

X¿ approaches oo. Hence, with this cost function I assume that there is a constant cost

per unit stock whenever the stock size is high.

Inthisexample, Iusern]vr _ rnNz- TrLPt- rnPz - 2000, Tl'Nt:nN":0'25,
c¿:1000, and n¿ - rlpz:0.05. Since np, 1n¡v¡,I assumethat the cost of harvesting

per unit predator is higher than the cost of harvesting per unit prey. I investigate

i*o 
"ur"r, 

first when there is no difference between the price of a unit of prey and

predator, I assume pN : pp :8000. Second, I assume that there is difference between

p¡¡ urd pp;Iet pN :8000 and pp:40000. Using these parameters, I conclude that

in the pr"."rr." of a price difference between the prey and predator, the rule of thumb

about source/sink exploitation may not hold. We harvest the relative source predator

subpopulation less conservatively than the relative sink predator subpopulation.

In Result 12 I provide some conditions that must be satisfi.ed under which we

harvest the reiative source predator subpopulation conservatively. One of the condi-

tions is that the ratio of the predator adult survival in patch one to the predator adult

survival in patch two must be equal to the ratio of the marginal net revenue from

harvesting predator subpopulation two to the marginal net revenue from harvesting

pred.ator subpopulation one, that is, brlb, -- (p" - cpz)l(pp - r"t).This condition is

not satisfied. in this example. Figure 5.2 compares the predator optìmal escapements

for various combinations of market price and cost of harvesting and shows how robust

the rule is in the presence of the costs of harvesting.

As in the case of negligible costs, profit from predator-prey metapopulation es-

capements is higher than from the other predator-prey escapements (Table 5.6). In
thà fotlowing section I discuss the effects of prey vulnerability variations on the op-

timal escapements, and in Section 5.1.7 I establish rules similar to the rules of thumb

discussed above with the inclusion of harvesting'costs in the analysis.

5.1.6 variation in the prey vulnerability parameters

I consider a predator-prey metapopulation that is homogeneous, except for differences

in the prey vulnerability, a¿. Assume that all parameters of the metapopulation are

exactly the same as the previous example, except the migration parameters' In this

example, prey migration parameters are Ptt: Pzz: Çtt: Qzz: 0.001 and p12 : p2t:
etz: ezt:0.003. Assuming that costs are negligible and both the prey and predator

have the same price, I vary the prey vulnerabil\1,y, a¿, from -0.00001 to -0.00003. I
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Figure 5.2: Optimal escapement comparisons for various prices and costs of

harvesting. The Figure shows the optimal escapements for Px : pp with

negligible costs (Figure 5.2.a), the optimal escapements for Px : pp with

ct: c2 (Figure 5.2.b), the optimal escapements for nN : lnr with c1 : c,

(Figure 5.2.c), and the optimal escapement for p¡v - pp with q : \cz (Figure

5.2.d). Figure 5.2.c shows that the rule to harvest a relative source predator

subpopulation more conservatively than a relative sink predator subpopulation

may fail if hlb2 * (p, - cpr)l(pp - cpr), in this case,5þ, < .9ä (see Result

12).

plot the contours of the escapements and their equilibrium optimal harvests, both

for the prey and predator, as functions of the prey vulnerability a¿, with a constant

É¿ : 0.00001 (Figure 5.3)'
In Figure 5.3.a I plot the escapement of prey subpopulation one and the escape-

ment of pÃy ,nbpopulu,tion two. Às expected in Result 11, if C¿ ) mar{?,+}
(this is satisfied Ly o¿ >
ability causes the decrease of the prey's optimal escapement. For example, with
dt : ù,2 : -0.00001 we obtai" sÄr, : sivr: 145050, while with or : ot2 : -0.00002
we obtain ^9fu, 

: Sfr, : i41331. In this region, o¿ 2 -0.00002, the increase of prey vul-

nerability causes thé increase of prey optimal harvests (Figure 5.3.b), hence we harvest

the prey subpopulation more conservatively if it is less vulnerabie to the predator'
In Figure 5.3.c I plot the escapement of predator subpopulation one and the

escapement of the prey subpopulation two as functions of prey vulnerabilities, a1 and

a2. We see that the increase of prey vulnerability causes the decrease of the predator's
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PPM .9i,, : 145049

,Sir. : 145050

11.1', : 203861

H'iu":217824
SË, : 14505

Sä :9ot¿
:22777
: 38788

Hþ,
Hþ"

'Si' : 290099 Hiu :415685 så :235t9 Hþ :61565

UPP Sïv,":145049
:145050

I

Hiu,":211829
ãÅ',,,:203859

S_å,":9012
SË,.,:14506

Hþ,,:20296
Hþ,,,--36740

Hk.,:415682 ^9þ.. 
:23518 HL.:57036

WPP ^9ir.. 
:290098 //i.. :413033 Sþ.,, =25348 Hi.,.:63394

Table 5.3: Escapement and harvest comparisons between correct and incor-

rect assumptions, where P¡,t : Pp and costs are included'

PPM 'Si, : 196644
,Sir" : 203882

Hl,r, :159023
HI¡" :143723

,5Ë,

sþ"

:22573
:25739

Hþ,:40849
Hþ":65444

^9i¡ 
: 400526 Hfr -- 302746 sþ -- 48372 Hþ -_ 106293

UPP .9i¡,":203881
:196644

s :400525

Hi¡,.:L43724
/1i,'".,:159023

,5Ë,"

sþ".

:25739
:22573

Hþ,,:45775
Hþ",,:59202

Hfr. --302747 Si. :48312 Hþ,,:704977

WPP S,i.,, :397768 f/ïv.,, :308918 Sþ.,, :47706 Hþ.. :104734

Table 5.4: Escapement and harvest comparisons between correct and incor-

rect assumptions, where PN : lPe and costs are included'

optimalescapementuntilflnallyitreacheszeroata¿:-0.00003.trorexample,with
o, : or: -0.00001 we obtain si1 : sþr: 14505, while with a1 : d2 : -0.00002
we obtain Sä : Sh:7438. The increase of prey vulnerability causes the decrease of

the predator's optimal harvest (Figure 5.3.d). This is because I assume É¿:0.00001
is constant, hence a higher prey vulnerability means a lower predator efficiency and

from Resuit 11 we should harvest the prey subpopulation less conservatively if it is

alessefficientpredatorsubpopulation'Ãto,¿:-0.00003weharvestbothpredator
subpopulations down to extinction, because it is not optimal to waste the prey as

food tã. the predator due to the low predator efficiency in converting prey captured

into predator offspring. In this case) we oniy keep a high predator escapement if its
efficiency is relatively high.

Furthermore, if a negative harvest is interpreted as a "seeding" strategy (Tuck,

Lgg4), then for a low prey vulnerability in subpopulation one and a high prey vulner-

abiliiy in subpopulation two, there is a small range (the range between contour lines

Hpr :0 and Hp, : 0 in the lower right part of Figure 5.4.c and 5.4.d) where we

should seed the relatively more efficient predator subpopulation and then harvest all

individuals of the relatively less efficient predator subpopulation two. This is because

there is seasonal migration of predator juveniles from subpopulation one recruited by

predator subpopulation two (see also Figure 5.5).

Figure 5.4 shows contour plots of escapements and harvests for prey and predator

subpopulations if one of the predator subpopulations is a relative source and exporter

subpopulation. I assume that all parameters are the same as in the previous example,

except ezt:0.001, that is, predator subpopulation one is a reiative exporter subpop-

ulation. Figure 5.4 is interpreted as in the symmetrical migration case (Figure 5.3)'
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PPM ^9iv, 
: 119020

Si', : 164832

Hiu, :241262
Hl¿ : 163261

SË, :11903
SË-:12010

: 19040
:41285

Hi,
Hþ"

Si, : 283852 Hiu : 404523 Så :23913 Hþ :60325

UPP òNr" :145049
:145049
:2g00gg

Ili',,:211828
Hir,,,:203858

SË,,:9012
Sþ".,:I4507

Hþ,.:20296
Hþ",,:36740

/lïv,, :415686 Sþ.. :23519 Hþ,,:57034

WPP .9ir... =290098 11i¡,. :413030 .9þ.,, :25350 Hþ...:63397

Table 5.5: Escapement and harvest comparisons between correct and incor-

rect assumptions, where PN : Pp and costs between patches are different, that
is, c1: \cr.

Escapements used Without costs With costs

P¡,r : PP PN : lPe Pt't : Pp PN : lPe
cr: c2 4: Icz

PPM
UPP
WPP

3B1BO

37818
38114

66642
66315
66520

33407

33090

33350

26402
25872
26203

62646
62t32
62470

Table 5.6: Profit comparison between correct and incorrect assumptions

Numbers are in hundreds of thousands.

6.I.7 Analytical results with costs included

Iassumethatbothunitcostsof harvestiLB,Cx¿, andmarketprices, px)are constant,

but the costs may differ between patches and the prices may differ between species. A

relatively constant unit cost of harvesting is known, for example, in the clupeoids fishery

(Munro, Igg2). Furthermore, I assume that the margina,l net re\/enue from harvesting,

px - cy¡, \s always positive, so that the fishery is always profitable regardless of the

d.ensity of the fi.sh stock. Using these assumptions optimal escapements for both the

prey and predator have exactly the same form as escapements where costs are negligible,

that is,

c,* -A':Q"T+C"B:)N", : 
--tr;-' 

(5'12)

sþ",:tË84t, (b.13)

provided L"i : C3; - P.o?Q "o? I 0 wit

A.i: (pn, - "run) - lp¿¿(p,,r - cNt) * p¿¡(pN - c¡'¡¡)),¡ - a¿(p¡,¡ - c¡¡t), (5'14)
p

(pp - "p) - lqon(p, - cpi) -l q;¡(pp - ,p¡))"¿ - bo(pp - cpi),

C.i : a¿(px - crur) * þ¿(pp - cPi),

P.i: p¡¿(pN - crui) * p;¡(px - cNi),

(5. 15)

(5.16)

(5. 17)

B
p
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Figure 5.3: Contour plots of optimal escapements Sfu (Figure 5.3.a), prey

optimal harvests 11j, (Figure 5.3.b), predator optimal escapements .9þ (Figure

5.3.c), and predator optimal harvests fIþ (Figure 5.3.d) as functions of prey

vulnerability a¿ fescapements and harvests are in 1000s; vulnerabilities are in

10-õs]. contour plots for the populations in patch one are given by dashes (- -

__-) and contour plots for the populations in patch two are given by dots (....).

In this case B1 and B2 ate constant with the value 0.00001' Pn: Pzz:7tt:
Çzz:0.00I and pp: Pzr: Çtz: Çzt:0'003' See text for detail'

Q"i: q¡¿(pp - cpi) -l q¿¡(pp - cpj). (5.18)

Similar results to the four results discussed in the negligible cost anaiysis can also

be obtained, with some additional conditions such as:

I. For Result I Prey subpopulation one is a relative source subpopulation with
p¡rt ) p21r2 ald Pnrt ) Pzzr2 (or Pnrt ) p2{2 àîd Pnrt } pzzrz).

2. For Results 9 and 10 The marginal net tevenue from prey subpopulation one is

lower than, or equal to, the marginal revenue from prey subpopulation two, that
it, p¡¿ - cNr 1 p¡u - c¡¿2, and its ratio satisfies

pru_c¡¡r rrzpzz. (5.1g)
PN - cttz rtPn

d1

H

Hþ,

The details of the results are as follows
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Figure 5.4: Contour plots of optimal escapements Siu (Figure 5.4.a), Pr€)'

optimal harvests I/fi, (Figure 5.4.b), predator optimal escapements sþ (Figure

5.4.c) and predator optimal harvests I/i (Figure 5.4.d) as functions of pre)¡

vulnerability a¿ fescapements and harvests are in 1000s; vulnerabilities are in

10-6s]. Contour plots for the populations in patch one are given by dashes (- -

- - -) and contour plots for the populations in patch two are given by dots ( . ).
In this case B1 and B2 are constant with the value 0.00001, Pn: Pzz: 0.001,

ptz : pzr : 0.003 t Çtt : Lzt : 8zz: 0.001 and q12 : 0.003. See text for detail.
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predator

subpopulâtion

Small O[ 2

o=0,zI

Såt > 0 ^9þz:0
Hþr<o Hþ2> 0

Figure 5.5: Seeding strategy for predator subpopulation one (Hþ, < 0) and

clearing strategy for predator subpopulation two (Sþ, :0) if prey vulnerability

ar is low and prey vulnerability a2 is high.

Result 12 (Escapement comparison between subpopulations with costs included) Let

one of the prey subpopulati,ons be a relatiue source uhi,le all other parameters of the

prey and" the predator are identi,cal for both subpopulations ercept t\ and" a1 rna! differ

from a2 and, a2. Without loss of generali,ty let us assunl,e that prey subpopulation one

is a relati,ue so,u,rce, that is, (prr * ptz)r1> (prr l pzt)rr. Furthermore, p11r1 ) pz{z

and, pnrt ) pzzrz (or p11r1 ) pz{z and, perl } pzzrz) and there is no haruesting

cost differential between patches for the predator. If A"¿ and B"¿ are negatiul,^arf a2 -
atlaz': (px - "tv,)l@i - cNt) and C"¿ is non-positiue with' C.; ) mar{þ,T},
then:

7. ^9ft, > Sfr,,

O(,

o>0
't2

2. sÞ, < sþ,

Proof

Rewrite escapements in equations (5.12) and (5.13) in the following form

ã* (R"o - r.¿*)2rtÏ I C"¿(5"¿ - s"¿*)
-N"; - L"¿ )

ñ* (S"¿ - t.o*)Tftï I C"¿(R"¿ - r"¿*)
u P"; - L.¿ ')

(5.20)

(5.21)

where
R"¿: ( )(pr - "",),

1

--a,ip

1

^9"¿: (1 -bo)(pp - cpi),
p

rcim : lp¿o(p¡u - cNi) -t p;¡(px - cw¡)lr;,

scim : lqoo(pp - cpi) * q;¡(pp - rp¡)ls¡.

predator

subpopulation

126



1 . Let A^s¡¡ : (^9ir., - Sñ., )l\"1 l\"2. If there is no harvesting cost differential between

patches for the"þred.Ìät, that is, cpL : cp2, then S"t : 5"2 : 5", s.t* : sc2m :
scm and. B"r : B.z : 8.. since it can be shown that c"1 - c"z - c" and

R.L: Rcz: Ë", then following the proof in Result 8, we only need to show

asru : ""*l?(t.(t.-'+) -W)]?",*- r"1-) ) 0

Since þ <C" ( 0thenA5, ) 0if p11r1 ) pz{zandpprl} p22r2(or

P¡rt ) p2f2 arrd Pnrt ) Pzzrz). ¡

This part can be proved analogously. !

As for the case of negligible cost, I interpret the condition c"¿ > mar{þ,T}
in the above result as a relatively high predator economic efficiency. However, here

the predator biological efficiencV fi should be lower than or equal to the ratio of the

prey marginal revenue and the predator marginal revenue ffi Furthermore, the

conditions ptrt ) p21r2 a;rrd pnrt ) p22r2 (or Pnrt ) p2f2 àîd Pnrt ) p22r2) need

to be satisfied. In this case, prey subpopulation one contributes more to the larval

production of both prey subpopulations, for example when prey subpopulation one

is a relative source and exporter subpopulation and has intrinsic growth rate greater

than, or equal to, the intrinsic growth rate of the other prey subpopulation.

The following result is a generalisation of Result 9 in the previous section. Result

10 can also be generalised in the similar way.

Result 13 (Comparison of strategy with an unconnected two-patch predator-prey sys-

tern) Let Si¡". and Sþ. denote th,e optirnal escapement from a predator-prey metapopula-

tion giuen ty tn" 
"quãliont 

(5 12) and (5.13), and let Si¡.. and Sþ". denote the optim'al

esc¿"pernent if we i,ncorrectly cons'ider the system as a system consisting of tuo uncon-

nected" predator-prey systems. Let us a,ssume that one of prey subpopulation i's a relatiue

erporter and also a relatiue solrrce while all other pararneters of the prey and the pred-

ator øre identical for botlt, subpopulations. Without lost of generality let pnrt ) pz{z
and, p1¡1 ) pzzrz. Assume A"¿ and, B"¡ o,re negatiue and C,¡ > rnar{þ,!i} and

there is no haruesting cost di,fferential between patches for the predator. tf the marg'inal

net reuenue from the prey subpopulation one is lower than or equal to the margi'nal

reuenne from the prey subpopulation two, that it p* - c¡,¡r ( PN - c¡¡2, and its rati,o

satisfr,es pN-cNl ) rzpzz , Lhen:
" pN_cNz - rlplt.

7. ,SÄr., ) .9fir",,,

2. Sñ., I 51,t.,,,

3. Sþ", 1 Sþ.,,,

4. Sþ", ) Sþ",_.

Furthermore i,f q and ay di'ffer from a2 and a2 with a1f a2 : atlaz: (p¡r - cN,) l(px -
c¡¡r), and Pt[t ] Pztrz and, Pnrt ] p22r2 (or P:nrt ] p21r2 and' Pnrt ] p22r2)' then:

5 ,9Ä'",

6 Sþ",

+,Sir", I Sfu.," I SI,¡.",,

2

* sþ", > sþ... * sþ.",.
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Proof

1. Following the proof in Result 12, we obtain

(.9Ä,., - ^9fi7",,)A"r,,A"l 
: (r,ru - r"r*) (C"(t" -'#¡ - g#)'+,

where 4c1,, : C:-n'"trT'- ( 0 and 4"1 : g2-4r"t-2"t- < 0. Since 0 > C., +,
then we only need to show rcrm ) r¿1¿, with

rctm : lprt(p* - .rt) * pn(pN - c¡,rz)]rt,

rciu : pn(pN - c¡¿r)rr t pzr(pN - ctvt)rz.

Since Y > 1, then rú^ ) r"1, is satisfied by p¡o - cNr 1 pN - c¡,¡r. !
P2tr2

2,314. These parts can be proved similarly. n

5. Let X. - (t"Q" - 2B"lK) - *Ë/*) + .0 with sLm : s2p, â,rd A^9¡¡., :
(^9Ät", + Siu.r) - (^9ir"," + .9Är",,). Following the proof of Result 9, we obtain

4,9¡¿., -
(8s"1*l(K Det-j;P* - c'"))(r"rurc2u - r.t*rc2*) x.

A"1A"1rA"zL,z,

Since Aa ( 0 with i : 1,2, then g2 -2(r't**:-'2^)s't^ ( 0. To prove the result, we

only need to show (r.rur"ru-rctmrc2m) I O ". follow. Let A : rctmrc2n-rcturc2u
ar,d A¡¡ : r¿p¿i(pN - c'i).

A : (Ar, -f Arr)(Ar, ¡ Arr) - (Ar, + Azr)(A2z I Atz)

-_ 
t;',i:I,3','1,','_ 1,',\o" 

- A"A"

Since 
= 

>Y then Arr- Azz ) 0, and sinceperl) pztrz and p¡¿ -c¡z2pN-cN2 - rtplt '
p¡v - c7y1 ihen Ar, - Atz 1 0, which means A < 0. The last inequality can be

proved similarly. ¡

5.1-.8 Dealing lt/ith an optimal harvest that is negative

In the results presented so far, the optimal harvest for a predator-prey metapopulation
may be negative. In general a negative harvest is not possible. However, a negative
harvest can be interpreted as a seeding strategy. A seeding strategy may be optimal for
a particular year or as an equilibrium strategy. For instance, in the previous example, if
the price of the predator is seven times of the price of the prey, and the cost of harvesting
is negligible, then Sfr, : 231646, SÑ, : 216386, SÞ, : 28865 and Sþ, :23779 are

obtained. Clearly using these optimal escapements produces a negative first period
harvest for prey subpopulation two, since the initial population size is Nz:205331.
However, using this negative harvest strategy in the first period of harvesting produces
positive optimal equilibrium harvests Hi,¡, : 97203, Hfr, : 124194, Hþ, :55707 and

Hivr:61448, with total harvests Hiu:221398 and f[þ : 117155.

Another exampie is a negative equilibrium harvest. Tuck and Possingham (i994)
showed that if one subpopulation is a relative exporter but has a smaller proportion
of juveniles which do not migrate, then the optimal harvest for that subpopulation is
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negative. I use the same parameters as them to show that in the presence of a predator

this negative harvest is also optimal. In practice, a negative harvest is impossible to

be applied . There are two possible ways of dealing with a negative harvest. First, we

can use a constrained harvest function

Hk,: (5.22)

Using this harvest function, if the suggested optimal escapement is higher than the ex-

isting population size we should not harvest the population at all. Second, as suggested

by Tuck and Possingham (1994), if the optimal equilibrium harvest for subpopulation

i 1s negative) we set Hyr: 0 and find a new optimal escapement from equation (4.11)

under this zero harvest constraint.
Assume that a negative harvest occurs in prey subpopulation two. If a negative

harvest is impossible, then we need to maximise.Il(S¡¿r.,SNro,S"ro,S.ro) subject to

Hxz -- 0, that is, a zero harvest for prey subpopulation two. Assuming all optimal es-

capements ane constant, an equilibrium zero harvest for this subpopulation is obtained

if the equilibrium population size for this subpopulation is the optimal escapement,

that is, Nzt" : Srr,o_r, . Hence this problem reduces to maximisation of the net present

value pV in 
"qnuùioá 

(4.11) subject to equations (5.3) and (5.4), with non-negative

escapement less than, or equal to, the population size and

Sn ro (5.23)

with

X;-Si, if X¿> Sk

0 iÎ x¿<sft,

: N2t,

l/r,
Nzt : azSN"o* przFr(,Sivro) * prrFr(St.) ! c'2S¡¡,oSpro,

Pt¡ : brSp,o * qnG{Spr") I qrrGz(S",.)+ ÉrS¡r,oSp'.,

Pzt : brspro * qtzGt(îp,.)+ qzzGz(Sp,o) l0rSxroSp^.

The Lagrangian for the maximisation is

L : /r(Sry,., SNro, Sao, S"-) - ) [St. - (orS*ro -l- ptrF (S¡r,o)

I P22F2(S¡¡"0) + az^9ruroS"ro)] '

A necessary condition for the maximum it affi : #k : #î : fifi : 0

these necessary conditions and considering the facts that Nzt : sr.,,ro and

constant with respect to ^9¡¡ro we obtain

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Using

,S¡¡ro is

AL
ô.9¡rro - (pt - cNr(st'.))

+a f(r' - cN,(¡r,,)) ffi r (p' - c¡¿,(¡/,,))
ðN",

ôSr,o

* (p, - cp,(Prù)ffi *@, - cp,(Pzt))ffi]

-Àl-prrEi(S¡v,o)l :0.
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Since Ñr, : S¡¡ro and ^9¡¿o is a constant with respect to S;vro, then

AL : - (pr - cNr (sr,. )) + pl@¡v - cNr (¡rtt)) (o, * plFl(St . )
ô^9ivro

* arSao) + (p" - cp,(Pn))(ÉtSa,)l + 
^lpr"fi(St,.)l 

: 0

Similarly,

aL,
dS^ : -(Pt-cNr(sn,'"))

+n 
l(n' - cN,(¡r,,)) #** (p' - cNz(¡r,,)) #i

t (p, - cpt(r'D #** @, - cP2(P2rr;#)

-l[1 - (o, + pzzFl(S¡'r*) + orSp,o )]

: - (pr - cNz(S",.)) + pl@* - "7y, 
(l/tt)) (prrFi6*^))

* (pr - cNz(¡rrt)) * (p, - "r,(Prt))(þrS"^)l
-À[1 - (o, + prrFl(SN^) + azSe"o)] : O.

(5.30)

(5.31)

(5.32)

(5.33)

AL
0Spro

: -(p, - "a 
(Sa.))

AL
ðSp"o

Since Nzt - S¡¡ro, then from equation (5.31)

(p - l)(pr - cNz(Sru,.)) I ppnFl6¡¡,0)(p¡r - cr/, (¡frt))

I
+n 

f(r" - 
c/vr(¡/,,))ffi * (pr - cN2(ru',)) W

* (p, - cp,(Ptù)H* @, - "p"(Pr'))#)
-(p, - ra (Sa,)) + pl(pt¡ - "¡¿, 

(l/"))otSr,o
-l(p, - "a 

(Ptt))(ót * qttGi(Sao) * 0tSr,.)
* (p, - cp,(Pzr))qtrG'r(5p,.)] : 0.

: -(p, - cp,(Sp,o))

I
+n 

l(rr - 
cNr(lr,')) #* (pr - cNz(¡rr,)) #

t (p, - cp,(Pr,))i#* @, - "p,(Prr))æ)
: -(p, - cp2(Sp2o)) + p[(pr - .a (Ptr))(qrtG'r(Sp*)

*(p, - cp,(P21))(bz * qzzG'2(S p,o) * 0rS *,0 ) * Àaz S¡¿,0

:0.

À: | - (o, * p22Fl(S¡¡,o) + azS r,o)
pþzSp*(p, - "p,(P"r))

| - (o, * pzzFl(S ¡¡"0) + ozSr,o )
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Let X, - 1- (or+przFl(Sx,o) +azSe"o). Substitute À into equations (5.30), (5.32),

and (5.33) to obtain

(pr - "¡r,(Sru,"))
p

(pr - "¡¡, 
(¡/tt)) lot * pttFl(St,.) * ar^9¿.)]

-l(p" - ca(Pr')) l7rsr,ol

*(Pt - cNz(St.))

*(Pt - "r'¡, 
(lútt))

-l(p, - "he^Dl

xo
ptzPnFl(ÍN,") Fl(9N,")

(pP - cPz(Srr.)) (p, - "",(Prr))lbr 
l qrrG'r(Sp,.) -f þrSx^)l

*(p, - .a (P" )) lq"tG'r(S p,o)l

*(pru - cNz(sr,,)) |-"s""(1 - 1/P)l

lx"l
* (p¡o - cN, ( r/,,), l.t^ytt-)

I o,zSrrtroþzSpr)l 
-t(pr-"r"(Pu))l xo l,

(5.35)

(5.36)

p

p
(p, - ca (Pr')) lbr l q,,rG'r(Sa.) + ÉtSru,.)l

* (p, - "p"(Prt)) lqrrG'r(Sa. )]

*(pr - cN, (¡ftr)) [orSt,o] , (5.3 7)

with X. - 1 - (o, + pzzF\(S¡v^) + azSe,o). Sotving the last three equations together

with Sryro : Nzt produces new optimal escapements for the metapopulation. These

"r.u,p"-árts 
give a non-negative harvest for prey subpopulation two. The net present

,rul,rl generatàd by applying this non-negative harvest method is higher than the net

pr"r".t value resulting from the "suboptimal" zero-harvest method in equation (5.22).

To see the comparison between these two different methods, I wili present a numerical

example.
I assume all parameters for the predator-pïey system are identical to the pa a-

meters in the first example, except that there is a relative exporter prey subpopulation

which has a smaller proportion of juveniles being retained than the other prey subpop-

ulation, that is, ptt: Pzt:0.002, and pn: Pzz: 0.0001, and la¿l: þo: 0.000001'

The equilibrium optimal escapements are ^9iy, - SÄr, : 95333, .9ä : 14505 and

Sþ, : 9010, with equilibrium optimal harvests Ilfi¡, : 193828, Hit, : -81574,
ni, :3118 and Hîv" :26574. If a negative harvest is not feasible, using the first

*ãifro¿ we flnd equilibrium optimal harvests Hit, : 64685, HTt, : 0, Hþ, : 3118

and Ify, : 25789, while using the second method we frnd new optimal escapements

sft, : Íootos, si,, : 8247, Sä : 14505 and sþ, : 8927, with equilibrium optimal

(pP - cPt(Sa'))
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Figure 5.6: Contour plot for the profit as a function of prey escapements

(Figure 5.6.a) and contour plot for the prey harvests as a function of prey

escapements (Figure 5.6.b). Escapements.9ir, :95333 and Sir¡,:95333 are

found as the prey optimal escapements. These escapements produce a negative

harvest H;', -- -81574.

harvests I1ft, : 64803, HIv, : 0, Hþ, : 3L42 and ,ÉIfir, : 25826. If I assume the cost

to put flsh into the fi.shery is equal to the current price of the fish, in this example

8000/unit, then, neglecting all associated costs, the total revenue from the harvest is

(f/ry, * HN"l Hpt+ flpr)8000:1136 millions. This revenueis far above the revenue

if we use the zero harvest from either the first or second method, that is, 749 millions

from the first method and 750 millions from the second method. This shows that if
it were possible to have a negative harvest then it could improve profit significantly

(Figure 5.6). However, if it were not possible to have a negative harvest then using a

harvesting strategy from the second method (equations (5.35) - (5.37)) gives a higher

net present value than using a harvesting strategy from the frrst method (equation

(5.22)).

5.1.9 Flarvesting only the prey species

In this section, where only the prey species is harvested, I use the method of Lagrange

muitipliers (Clark, 1976a) to obtain the optimal harvesting strategy for the population.

In this method the time horizon is set to infinity, hence the value function that should

be maximised is

pV : Ð pr [IIr, (l{r¡, I1r,* ) * IIry, (Nrn, Htu,o)] (5.38)
fr=0

subject to equations (5.1) and (5'2), and 0 < H¡,t;t" ( ly';*, where

rN¡u
ll¡r,(l/,r, H*,) : l-- (p - "*,(())d(JN¡¡-Hlv;r

The Lagrangian for the maximisation is

L I{p*IIr, (l/ri., f/r,*) * IIru, (Nrn, Hx,o)

= 193828

N2- -8 1574

,k:o
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" -lt¡,[l/r(fr+l) - ør(I/r¿ - HNru) - ptr.Fr(¡it¡, - 14v,0)

-pztFz(Nzn - H¡,tu) - ar (l{r* - HN,)Prnl

-Àr*lNr(n+t¡ - a2(N2k - HN,o) - pnFt(Nt * - H¡,¡,0)

-pzzFz(Nzn - H ¡,t"o) - az(Nzn - HN") P"n]

-)s¿[Ptt*+r) - ór(Pr¡) - qrtGt(Pr*) - qztGz(Prx) - /t(Ntr - Hx,r)Pt*

-À¿*lPz(t+\ - b2(P2k) - qrrGt(Pt*) - qzzGz(Prn) - /z(Nrr - HN,o) Prn.

(5.40)

To maximise the value function PV the following necessary conditions need to be

satisfied:

t. ffi:0, #;:0 for k) 1,

2. ^9=L :0fork>0.
6n Nik

These conditions are equivalent to

0

0

n ôfl¡n, \ ,prffi- )r(¿-r) t )r¿(¿r * prrFí(l/r r - Hw,r) + or&*)

*ÀzxpnFl(¡/t¡ - H N,*) I ÀznþtP*,

,*H- Àz(*-r) I Àzt"(az i pzzFl(Nrk - HN,o) + azPzn)

I}¿pnFl(Nrr- H¡¡,) I À+nþzPzn,

t æ- 
)r¡(o' + p''Fí(N,* - flt,.) + atPu")

- ÀznpnFl(1vto - fiv,o ) - Àtn|rP*,

),(*-,):o-(ffi-ffi) ,

(5.41)

(5.42)

0 -Àe(¡-r) * )s¡(ór I qrr.G'r(Pt*) + þt(Ntn - HN,t)) I À+nønGr(Ptr)

*)r¡ar(lú¡, - I1¡¿,0)

-Àn(r-r) -l Àq*(bz I qz2G'r(P2n) + þr(Wrn - H¡v"o)) * Àyqrt G'r(Prr)

tÀz*az(Nzx - Hx"r)

(5.43)

0

0

(5.44)

(5.45)

0 - or æ - Àrt (or r pzzFl(Nu" - H¡vu) + azPzt)

-À*pnFl(Nrr - HN") - À+nþrPzx. (5.46)

We obtain Àr and Àz by substituting equation (5.41) into (5.45) and equation
(5.42) into (5.46), that is,
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)z(*-r) :n(W-æ)

Pz F; S ¡,t"o qrrG'r(Prn) þtPtx

(5.48)

(5.51)

(5.52)

a1B1S ¡¡rrP1¡,

r - pGp,o

From equations (5.45) and (5.46) we obtain Às*þtPtn and Àa¡,p2P2¿. Recall that ,5¡y* :
ll¿r - H*,r, and let

FN,* : o¿* p¿¡Fi(Sr,o)* a¿P¡*, (5.49)

Gp* : b¿ J q¿¿G'¿(P¿n) + B¿S¡0,*. (5.50)

To reduce the complexity, let us consider the equiiibriumescapement Sr,t**,1 : SN,o,

and equilibrium harvest älv,r.+,) - HN¿n with equilibriumpopulation size P¿ç¡1) : P¿n

for k ) 0 and lü1r+r¡ -- N¡* for k > 0. Multiply equation (5.43) with' 0t&rB2P2¡,, and
substitute Àt , Àr*, À"rþrPrx, and Àa¡82P2¡ from equations (5.45) and (5.46) to obtain

o - -l,r'ffi-r-(ffi.#*t) F*,r]þ,P,r

* 
[r- (ffi . #) p,z*t(s',*)fo'r'*

lnffi- Pk+'(ffi - #) **] 
"o- 

þzP,n

o*' (W- *-'-) p,z F l(s N, u)] c,, r B, r, 
^

t æ - pr+' (W* #:)'*"-fnu"''(P't')o'P'*

+

+

+ I

pk+

pk+

(1 )

ôfIr,
ôNrn

+ atS ¡,trnþtþzPt*Pzn

Next divide this equation by pr*' , and rearrange to obtain

[l -*-] l(ffi.#-) FNr¡c-Iæ]þ,P,"

. |(ffi -,- #") a1B1s¡¡,0P¡]o,r,r

. [; - "o.1 l(ffi *. #-) p,zFt(sN,o)fo,e,*

. 
lt æ - w+ *-'"), *, rf ,ur\( P, *) þ, P, 

"

0

- t(ffi - #*t) p,,Ft(sx,o)]ø-c;(P,n)o,P,*

Now multiply by plG - Gp,r), and rearrange to obtain

o - l-##.'(ffi.#F) F¡¡,,.*"(ffi-'#F)

-' (W . #*) P"Ft(s ¡v"')] o'o'*
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*p"

Similarly we can obtain

f r au* (ôn*, , ônr" \
lpãH.- - \ar* * oH-* )

F*rr

qrzG\(Pr*)þrPrr
| - pGpro(ffi.#*t) p,,rigN,)f

0

with

¿flry,

ðHNrt"

(5.53)

(5.54)

(5.55)

læ.,(w .æ)FN.**nG"-.'r-æ)Y+#
p",Fl(sx"*)) O,r,*

(ôtI*, , ôtliv, \
\at* - aH.") F¡vro

(#P* . æ) p 
" 

F t( s ¡'¡, r)l +%3

*r(
$l

P 0H¡'trr

ôII¡u, : P -.n¿(S¡¿,*),ôH¡v¡t ' t

ôII;v, ôfl¡r;
ãñ+ffi-p-"'v(l/¿r) (5.56)

These implicit escapement equations are difficult to interpret. In the following
section I give a numerical example to give some insight of how these escapements differ
from the escapements which occur if either we harvest both species using predator-prey
harvesting theory as in the previous section or if we harvest only the prey species by
ignoring the presence of the predator. Furthermore, I make the following assumptions.

1. Costs are negligible and prices are not different between the patches.

2. There is no migration between predator subpopulations, that is, Qtz: Qzt: 0.

Numerical example

In this section I present a numerical example to illustrate optimal escapements for a

two-patch predator-prey metapopulation when we harvest only the prey species. For
the purpose of comparison, parameters for the prey population are those used by Tuck
and Possingham (1994).

Assume that the prey, N¿, in both patches have carrying capacities 1{1 - Kz :
400000, with intrinsics growth rates 11 - 12 :1000 and adult survival rates per period
&r : o,2: 0.001. The prey has symmetrical migration, that is, ptt: pzz :0-007
and p12 : pzt : 0.003, hence there is no relative source/sink or exporter-/importer
prey subpopulation. The discounting rate ó is 10%. Before the exploitation begins,
it is assumed that the population is in the equilibrium state. In the absence of the
predator, the unharvested population sizes for prey subpopulations one and two are

¡y'l : Nz :300100. The optimal escapements for prey subpopulations one and two
are ,9fii," : SÄrr-" : 145050, hence both pley subpopulation are halvested equally with
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at ton meters PPM (p".y) PPM (both) SSM

Prr : 0'001

Pzz : 0.001

Prz : 0.003

Pzr : 0.003

Çrr : 0.004

Çzz:0.002
1 18348

1 1 2955

,Siu, : 145050 .9i'. : 145050

,5L : 145050 S.ir, : 145050

4rr : 0.002
gzz:0.004

: 112955
:11

,Sit, : 145050 Sit, : 145050

5Ïu" : 145050 Si'" : 145050

Ørr : 0.003

Çzz:0.003
=11
: LL6424

,5i', : 145050 Siu, : 145050

,Sit : 145050 SL : 145050

Çrr : 0.003

Qzz: 0-003

Çrz : 0.000

9zr : 0.000

Ptt : Pzz: 0.001
ptz: pzt: 0.003

,Si', : 116424 ,Si', : 145050 Si', : 145050

,5L : 116424 ,Sit" : 145050 ,5L :145050

Pn: Pt'z: 0'001
pzt : pzz: 0.003

Sir, : 50272 'Sït. : 90100 'Sit, : 90100

Si,, : 142028 Si'- : 163367 ,Si'. : 163367

ptt: ptz: 0.003
pzt : pzz: 0.001

Siu, : 142028 Sñ'. : 163367 ,Sït, : 163367

'Sit" : 50272 Si', : 90100 Si,'- : 90100

Table 5.7: Escapement comparisons from three different methods: From predator-

prey metapopulation harvesting theory when harvesting only targets the prey species

(PPM (pr"y)); From predator-prey metapopulation harvesting theory when harvest-

ing targets both species (PPM (both)); From single-species harvesting theory, that
is, when the presence of predator is ignored (SSM). In this example predator effi-

ciency is 100%.

first period optimal harvests /1fr," : HIvr" :155050 and equilibrium optimal harvests

11ñ," : HI,¡"" :224900.
Now *ppos" the predator, P;, is present. For simplicity I choose intrinsic growth

rates of the predator âs s1 - s2 :1000 with the carrying capacities Lt - Lz: 40000.

I assume the predator's adult survival per period do not different from the prey's adult
survival and do not differ between patches, hence bt : bz: 0'001' The predator in
patch one is assumed to be a relative source and exporter subpopulation, with mi-
gration parameters Qtz : Qzt : 0, Çrr : 0.004, and q22 : 0.002. Let us assume

lorl : É¿ : 0.00001, that is, the predator has a high biomass conversion efficiency. Us-

ing NAG routine cO5nbf, one of the positive equilibrium population sizes for this two-

patch predator-prey system, that is, (Ñ1 ,Ñr,Pr,,Pr) : (250123,228804,55022,,65781),

is obtained. From equations (5.53) and (5.54) together with fl1¡ar¡ : 41*¡, equi-

librium escapements when we harvest only the prey population are found. These

escapements are Sfr, : 118348 and Sfi¡, : 112955. These escapements are lower than
the escapements we get if we use single-species metapopulation theory which produces

'Sñ,, : Sfrr" : 145050 (see Table 5'7)'
Both escapements from single-species metapopulation harvesting theory are equal.

This is because both prey subpopulations are identical, for example, there is no source

or sink subpopulation. However, using escapements from equations (5.53) and (5.54),

the optimal escapement for the prey subpopulation living in the same patch with the

relative source predator subpopulation is higher than the escapement fol the other- prey

subpopulation that lives in the same patch with the relative sink subpopulation. It
suggests that the ruie of thumb to harvest a predator-prey metapopulation described

in Result 8 may no longer tlue if we only harvest one of the species. However, we

still harvest a relative source prey subpopulation more conservatively than a relative
sink subpopulation (see Tables 5.7 and 5.8 fol the value of qrr : Qzz : 0.003 with
pledator efficiency 100% and757o, respectively). Tables 5.7 ancl 5.8 show that if both
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ton arameters PPM prey) PPM both) SSM

?rr : 0.001

Pzz:0.007
Prz : 0.003

Pzr : 0.003

Çrr : 0.004

8zz = 0'002
Si', : 121077 ,Sfu, : 143461 Sir, : 145050

5L : 117813 ,Sit" : 144375 Si'" : i45050

Çrr : 0.002

8zz:0.004
Siu, : 117813 ,5L. : 144375 ,Siu, : 145050

5ïu" : I2I077 Sïu" = 143461 ,SL : 145050

ftr : 0.003

Qzz:0.003
Si,, : 119918 5L. :143765 Si', : 145050

SL :119918 S-ir, : 143765 ,SL : 145050

Çrr : 0.003

Çzz:0.003
Ørz : 0.000

9zr : 0.000

Ptr : Pzz: 0.001
ptz : pzt: 0.003

= 119918

= 119918

,Siu, : L43765 Si', : 145050

5i," : 143765 ,Sir" : 145050

ptt : ptz: 0.001

Pzt : Pzz: 0.003
N :53027

: 14496I
:87295
-1

Ptt : Ptz: 0.003

Pzt = Pzz: 0'001

: I4496L
:53027

S_i', : 162536 ,Sil. : 163367

SÏu, : 87295 ,Si^ : 90100

Table 5.8: Escapement comparisons from three different methods: From predator-

prey metapopulation harvesting theory when harvesting only targets the prey species

(PPM (pr"y)); From predator-prey metapopulation harvesting theory when harvest-

ing targets both species (PPM (both)); From single-species harvesting theory, that
is, when the presence of predator is ignored (SSM). In this example predator effi-

ciency is 75%.

predator subpopulations are identical, and so are the prey subpopulations, then both
prey optimal escapements are equal, that is, SÑ, : Sfr, : LL6424 if predator efficiency

is 100% and ^9fi¡, 
: SÄ', : 119918 if predator efficiency is 75%.

To summarise, in this section I have discussed optimal escapements for a predator-

prey metapopulation when only the prey population is harvested. Similar to optimal
escapements for one period to go discussed in Chapter 4, numerical examples in this
section suggest that the rule described in Result 8 is only partially true, when only the
prey species is harvested. That is, we still harvest a relative source prey subpopulation

conservatively if the predator populations are identical in both patches. On the other

hand, if one of the predator subpopulations is a relative source subpopulation, we

may not harvest the prey living in the same patch with the relative sink predator

subpopulation conservatively.

5.2 The second model: Predator recruitment model

In the previous section I showed that Tuck and Possingham's (1994) rules of thumb are

preserved in the presence of a predator under some circumstances. It was also shown

that if the cost of harvesting is negligible and there is no market price differential
between the prey and predator, then to establish the third rule of thumb the predator

efficiency needs to be extremely high - the predator has to be able to convert all food
from eating one prey into one offspring. This is unlikely to occur in nature. However', if
the predator is very valuable corrpared to the pley, then we can establish a rule similal
to Tuck and Possingham's (1994) thilcl r-ule of thumb, that is, we would harvest a

relative source prey/predator subpopulation more conselvatively than if we use the
strategy from well-rnixed pledator'-p.,-ey harvesting theory, without requiling extremely
high predator efficiency.
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Figure 5.7: The relationships between the dynamics of the populations in a
two-patch predator-prey metapopulation. The number of prey and predator

are Ni and Pi, respectively. The prey and predator juvenile migration rates

are p¿¡ and q;¡, respectively. The number of predator's offsprings in patch i
from the conversion of eaten prey is þ;N;P;, which is distributed into patch i
and j with proportion Ç¿¿ and Ç;¡ respectively, while someof them (1-8¿¡-Q;¡)
either die or are lost from the system.

The model in the previous section assumes that prey conversion in a patch trans-

lates into an increased reproduction in that patch only. The model can also be in-
terpreted as meaning that increased predation increases predator survival. Usually
predation wiii affect predator reproductive more than its survival. In this section, I
modify the model to allow some of the enhanced reproduction to migrate between

patches and to assume that predation affects predator recruitment (see Figure 5.7).

This section helps us to determine that the rules described in the previous model are

robust to a change in model structure. I also provide an example of dealing with a

negative harvest.
Consider a predator-prey metapopulation that coexists in two different patches,

patch one and patch two. Using the same notation as the model in the previous section,

let the dynamics of the exploited metapopulation of these two species be given by the

equations

Ä41*+r¡ : a¿S¡t¡o f a¿^9.¡y,*.94r1p¿¿F;(S¡¡,) +n¡;Fi(St,o), (5.57)

41t+r¡ : b¡Sp,u * q¿¿(G¡(Sp,o) * B¿S¡¡,oSp,o)

+q¡¿(G¡(Sr¡) I 7iSN,uSp,o), (5.58)

where the functions F¿(¡ú¡.) and G¡(P;¡)lB;S¡r,nSp,r, i : I,2, are the recruit production
functions of the prey and pledator in patch i at tirne peliod k, respectively. I will
assume that fl(l/,n): r¿N¿x(I- Niklt{i) and G¿(P;*): s¡P¿n(I- PiklL;),, where r¿
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(s;) denotes the intrinsic growth rate of the prey (predator) and /l¿ (.L;) denotes the
local carrying capacity of the prey (predator), respectively, with a¿ ( 0 and B¿ > 0.

Moreover, if IIx¿ represents the present value of net revenue from harvesting
population X in patch i, and p is a discounting factor, then to obtain the optimal
harvest from the fishery we should maximise the net present value

T2
PV:DprD D IIy;(X¿¡,,Sy,o) (5.59)

,t=0 i=t X€{N,.P}

subject to equations (5.57) and (5.58), with non-negative escapement less than, or equal

to, the population size. I will assume p :1/(1 + ð) for the remainder of this chapter,

where ð denotes a periodic discounting rate, with IIx¿(X;r, Sx,u) : Ë;ir@x -"x¡(Ð)dt,
which reflects the net revenue from the harvest Hy* of the local population X¿ in
period k. Following the previous section for the first model, implicit expression of
optimal escapements .9iy,, and ,Sþ,0 are found in the form

pN - cryi(.9Är,.)

p

+p¿¡ Fi6ft,, ) (pr - c¡r;(¡/¡r ))
+q¿¿0¿Sþ,0 (p, - .p¿(P¿t))

*ø¡B$þ* (p, - cp¡(P¡t)), (5.60)

"=# 
: (bn + qnnþnSiu,o * e;;G,n(Sþ,,))(p, - "ru(por))

* ø;¡ B;Si,*@, - cp ¡(P¡t))
-lq;¡G'o(Sþ,. ) (P. - cp¡ (P¡r))

+o¿Si,,o (pr - "¡¡;(&t)) (5.61)

These equations are the general form of the optimal harvesting equation for a two-
patch predator-prey metapopuiation. If o; - 0¿ : 0 then the optimal harvesting

equation for a single-species metapopulation (Tuck and Possingham, 1994) is obtained.

Furthermore if there is no migration between patches¡ Pii : qii : 0 for i I j and

F'(S) : o,¿ I p;;F!(S¡v,") together with a¿ : þ¿ :0 then the equation reduces to the

optimal harvesting equation for a single-species population (Clark, 1976a). Using a

similar proof to the one in Chapter 4, it can be shown that the escapements ,9| o found

by solving these implicit equations are independent of the time horizon considered. I
discuss some properties of these escapements in the following section.

5.2.t Results and discussion

In this section, I discuss some properties of the optimal escapements in equations (5.60)

and (5.61). I compare the optimal escapernents between the two subpopulations. I also

compare the optimal escapement to the escapements if the migration is ignored to see

how important it is to use the theory presented here for choosing optimal escapements.

Specifically, how important it is for the fishery manager to recognise and measure

connections between subpopulations. For the remainder of the chapter I assume that
the market price for the predator is higher than ol equal to the price for the prey, that
\" p, - rnp¡¡ with m ) I, and ple¡, vulnerability is the same in both patches, that is,
(ll : (A2: d.

(on * o¿Sþ," + p;, Fi(Sît,. )) (pr - "ro(¡r'1 ))
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Negligible costs analysis

To simplify the analysis and discussion, the costs of halvesting are assumed to be

negligible. Using these assumptions, and substituting all derivatives of the logistic
recruitment functìons, .Q and G¿, into equations (5.60) and (5.61) we can find the

optimal escapements Siy, and ,9þ,, which are given by

c,* A¿m(q¡ + qir)? * C¿B¿
rN,:-, (5.62)

B¡(p;, + piz) I C¿A¿
(5.63)

A¿

provided L¿: C? -m(p¡+p¿ù\n(q¡L+qi2)? f 0, with A¿: I- (p1rlp¿2)r¿- a¿,

B¿ : T - *(q¿, I q¡z)"; - mb¿, and C¿ : a¿ * m(q¿t + q.i2)Pi. It can be shown that if
A¿ and, B¿ are negative and C¿ is non-positive with C¿ ) mar{?,+} then A¿ ( 0

and all resulting escapements, .9fi¡, and ^9þ,, are positive. If this is the case, I can also

establish the following result.

Result 14 (Escapement and haruest comparisons between subpopulations) Assume preA

subpopulation one is a relati'ue so'urce' that is, (prr + Pn)r1 > (p2 t pzt)rz, while all

other gtarameters of the prey and the predator are identical for bo_th subpopulations. If
A¿ and, B¿ are negat'iue, and C¿ is non-positiue with C¡) mar{tf,,ff}, th"n'

.Si/, > 9fr, and Sþ, < Sþ,.

Furthermore, if, in addition, Pn 1 p¿2' qil: Qi2t ^9Ål < K¿, Sþ, 1 L; with ^giu,,Sä >
siu"sþ,, then

Hir, < Hfr" and, Hþ, > Hþ,.

Proof

The first two parts can be proved analogously to the proof of Result 8 while the last

two parts can be proved by substituting optimal escapements, .91y, and .9f'¡, into the

harvest equations 1/ñ, : 
^¡, 

- SÄr, and 11þ, - P; - ^9þ,, where I/¿ and P¡ are given by

prey and predator dynamic equations (5.57) and (5.58). n

Result 14 suggests that if the growth rate of the populations are higher than
the reciprocal of the discounting factor 1/p (indicated by A¿ 1 0 and B¿ < 0) and

C¿ ) mar{ff,\L} tnen we should protect the relative source prey subpopulation
in two different ways: directly, with a higher escapement of the relative source prey

subpopulation, and indirectly, with a lower escapement of the predator living in the

same patch with the relative source pley subpopulation. Since C¿ ) rnax{T,ry}
can be written as m(q¿; + øòft1 >

C¿ ) man{T,+:} as a relatively high predatol economic efficiency. Furthermore,
if every escapement is less than each subpopulation's callying capacity, lower escape-

ment means higher harvest. This result is similal to the result in the previous model,

only in the present model the predator-economic efficiency is discounted by the predator
migration survival e;; I q¿¡.

The following result enables us to cornpare escapements from the present methods
to escapements if spatial heterogeneity is ignoled. Thele are two different ways we could
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misinterpret the spatial structure of a metapopulation, first we could assume that there

is no connection between the two patches, and second we could lump the two patches

into one patch whose populations are well-mixed. In the following result, r;., is the

growth of prey subpopulation i if it is assumed thele is no connection between the two

prey subpopulations. This growth would be measured r¿u : Pi¿ri + pjir j. Similarly, r-
is the growth of prey if it is assumed to be a weli-mixed prey population. This growth
would be measured r- : [(prt * pn)rt I (prt -l nzz)r2]12. The growth of the predator
populations, s¿, arrd s., are measured analogously.

Result 15 (Comparison of strategy with incorrect haruesting strategies) Let Si¡ and

Sþ, denote the opti.mal escapement from the predator-preA metapopulation gi'uen by

equati.ons (5.62) and (5.63). Let Si¡., and Sþ, denote the optimal escapement if we

incorrectly consider the system as a sgstem consisting of two unconnected predator-preA

systerns and let Si¡_ and Sþ_ denote th.e opti,mal escapernent if we incorrectly consider

the system as a well-mined predator-prey system. Let us assun'¿e prey subpopulation one

is a relati,ue erporter and source subpopulation with pnrt ) pz{z and P:nrt } Pzzrzt

all other parameters of the prey and the predator are identical for both subpopulations.

Let A¿ and, B1 - Bz: B arenegatiue, Ct:Cz:C <0 withC > man{T,Y}. A
there is no predator mortality associated with migration, q;¿* q¿i:I, then

Sñ, > Sfr,,, Sfr, < ^9Ä¡r,, ^9ä < Sþ,, and Sh> Sþr".

Furthermore, if the biologi,cal predator efficiency is equal to the ratio of the prey market

price and. pred,ator marlcet price, that is, fi : L, then

sfu, > Tsfr-,.9Ä/, < Tsîu-, sä s f,sþ- and sþ,>Isþ-

I do not provide the proof of the result above, since it is analogous to the proof of a
similar result in the predator survival model (Section 5.1).

In reality, the condition that the biological predator efficiency, &, is exactly
the same as the inverse of the relative predator market price, nz, is improbable. The

biological predator efficiency could be any value equal to, or less than, as well as

more than the inverse of the relative predator market price, as long as ìt is less than
L00To. In this general case, Appendix 5A shows that, in some circumstances, if the two

prey subpopulations have a non-overlapping generation and their total natural growth,
rt(pt -f p.'.) * rz(pzt * pzr), is less than three times of the reciprocal of the annual

discounting factor, I f p, then assuming a predator-pÌey metapopulation as a well-mixed
predator-prey population would over-harvest the relative source and exporter prey

subpopulation. Note that individual natural growth r¿(p;¿ I p¿¡) should be more than
the reciprocal of the annual discounting factor to ensure that optimal escapements

from the predator-prey metapopulation are non-negative. A similar conclusion for the
predator can be drawn, that is, we would over-harvest the predator living in the same

patch with the relative sink and impolter prey subpopulation if we incorrectly manage

the population as a well-mixed predator prey system, whenevel the total glorvth of the
two predator subpopulations is less than three times of the leciprocal of the annual

discounting factor and the growths of both pledator- subpopulations do not overlap.

5.2.2 Numerical examples

Let us assume that thele is a two-patch predator'-prey rnetapopulation where the prey
in both patches have calrying capacities 1(1 : I(z: 50000000, intlinsic growth lates
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rt : 12 - 10, and adult survival rates per period &r : a2 : 0.001. Prey juveniles

migrate with p11 : ptz : 0.3 and p21 : pzz - 0.1, hence prey subpopulation one

is a relative source and exporter subpopulation. Let the discounting rate 6 be L0%.

Now suppose predators are present in both patches with intrinsic growth râ,tes s1 :
s2 : 4, carrying capacities Lt : Lz : 50000, and adult survival rates per period
bt : bz: 0.001. Predator juveniles migration is symmetrical with en : et2 : ezt :
ezz:0.5. Let lo¿l :0.000001 and,6¿:0.0000001, that is, the biological predator
efficiency is 10%. Using equations (5.57) and (5.58), it can be shown that one of the
positive equilibrium population sizes for this two-patch predator-prey metapopulation
is (lúr, Nz,Pt,P") : (36473692,36473692,83105,83105). I assume harvesting begins

with this equilibrium as the initial population size.

Using equations (5.62) and (5.63), the optimal escapements for the system, Sfr, :
20420833, Sfr, : 11262500 and .91 : Sh : 18131, are found with the first period op-

timal harvests Hi¡,, : 16052859, Hiv, : 2521IL92 and fIþ, : Hh : 64973, and the
equilibrium optimal harvests HI,¡, : 24196828, Hi,¡, : 33512055 and 11þ, : Hh :
56835. As suggested by Result 14, we should harvest the relative exporter and source

pre¡r subpopulation more conservatively than the relative importer and sink prey sub-

population (in terms of escapement ,Sfi¡, > ^SÅr, 
and in terms of harvest HÑ, < Hiu")

There is no difference in escapement and harvest between both predator subpopula-
tions. This is because the predator biological efficiency is exactly the same as the
inverse of m, (rn is the relative market value of the predator, where in this case rn : 10

and Bllal:0.1). Figure 5.8 shows that if 0 <m ( 10 then all rules in Result 14 arc
satisfied. However, if nz is sufficiently large, in our example if m ) 10, these rules may

be violated. This is because large rn causes predator economic efficiency to be more
than 100% or C > 0 (see Result 14).

Figure 5.8 shows escapements and harvests which are plotted as functions of the
ratio of the predator market price to the prey market price, rn. The figures suggest

that, in this example where the growth of the predator is relatively low (s¿ : 4 while
r¿ : 10), if there is no difference between the market price of predator and prey
(*:1) then it is optimalto harvest thepredator to extinction (Figure 5.8.b). While
if rn is very large (rn is approximately more than 550) then it is optimal to leave the
relative sink, which is also the relative importer, prey subpopulation unharvested, and
eventually it is optimal to leave both prey subpopulations unharvested if rn is even

larger (lines in Figure 5.8.c). This rule is also observed for a single patch predator-prey
system (Ragozin and Brown, 1985) and also observed in the first model in the previous
section. This situation is different if there is no relative source/sink prey subpopulation.
For example, if p11 : Pzt : 0.I2 and pe : Pzz: 0.28 then we should not harvest the
relative exporter prey subpopulation (dots in Figure 5.8.c). [Note that in the example
of the first model in Section 5.1.3, optimal equilibrium harvests are í1fir, : 97203,

Hi,¡" : I24I94, Hþ, : 55707 and f1ft, : 61448, with total harvests Hi,t :221398 and

Hþ:117155 if p¡¿: Ipp,whlle if p¡¡:pp then 11Ä': 475692 and 11þ:61559, and

if p¡¡ : åpr th"tr Hiu : 326144 and -FIþ : 101375. Thelefore, the total harvest for the
prey when pN : lp, i" lower and the total harvest for the predator is higher than the
total harvest for the prey and pledator, r'espectively, when pN : åp," u.ttd pN : pp.

This suggests that if the prey is less valuable in the malket than the predator, then it
is better to leave it as food for the predatol which is mole valuable.]

Furthermore, even when nz is vely small, that is, a high pley value compared
to predator value, if the growth of the pr-edator is sufficiently high, then predator
extinction is not optimal. For exatnple, if s; : 20 with nl, : 1 then pleclator optimal
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escapements are ,S.fu, : 656 and Sfr; : 11096. Predator escapement in patch one is
less than in patch two, this is because prey subpopulation one is a relative exporter
and source subpopulation which should be more protected by leaving a lower predator
escapement in that patch (see Result 14).

Dealing with an optimal harvest that is negative

As seen in the example above, the analysis presented here may produce negative har-
vests. A negative harvest could be interpreted as a seeding or restocking strategy.
However, in many situations such a strategy is not practical. In this case, as in single
population exploitation, we can use the harvest function

Hi,: X; - Sk, if Xi > Sjt
0 ifxi<skt

-F(p¡o - cNr (¡frt))

-l(p" - cp,(Pzt)) Ptz

*(pp -.a(&'))

(pr - .¡r, (//tt)) lot I pttFi(S7v,.) + a1^9p10]

*(p" - ca (&')) lqr'þrSp*l
* (p, - cp"(Pzt)) lqtr7 t S p,ol

*(pr_cNz(sr,.)) try]

(5.64)

Another alternative is suggested by Tuck and Possingham (1994). To avoid a negative
harvest, they use the following procedure. Assume that using the metapopulation
harvesting theory, optimal equilibrium harvest for subpopulation i is negative. They
set Hy,: 0 and find a new optimal escapement from the maximisation of the value

function under this zero harvest constraint. I apply the same procedure if the method
presented in the previous section produces a negative harvest.

A negative harvest may be optimal for the subpopulation that exports a high
proportion of larvae but only contributes a low proportion of the larvae to its own

subpopulation. For example, if the juvenile migration parameters for the prey in the
previous example are p11 : Pzt : 0.2 and pp : Pzz : 0.065 with r¿ - 10, then the
optimal equilibrium harvest for prey subpopulation two is I1ft, : -1427582, while all
other subpopulations have a positive harvest. This strategy suggests that we should
seed prey into subpopulation two and harvest the results from prey subpopulation
one and both predator subpopulations. Using the procedure suggested by Tuck and

Possingham (1994), I set ,F1¡¡, : 0 and maximise the present value in equation (5.59)

with this additional constraint. The new equiiibrium optimai escapements.9iy,, Sfrr,
,9þ, , and Sþ, are found and satisfy equations

(Pru - cru, (S¡¡,.))
p

pnpnFl(ÍN,.)Fl(Sr,,)
xo

Fí(Sr,.)qr rl3rSp"o

xo
prrF!(S N,o)qrrþrS p,o

xo

(p, - ,p,(S'p^)) (tr, - cp2(P2t)) [b, + qrrG'r(S'p^) I q"rlSrS'¡v*]
p
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Figure 5.8: Escapements and harvests are plotted as functions of ratio predator market
price to prey market price, rn. The prey numbers are in thousands. Lines indicate results if
prey subpopulation one is a relative source subpopulation and dots indicate results if prey

subpopulation one is a relative exporter subpopulation with no source/sink subpopulation
(see text for details). The figures suggest that, in this example where the growth of the
predator is relatively low, if there is no difference between both market price (rn : 1)

then it is optimal to harvest the predator to extinction (Figure 5.8.b). While if rn is
sufficiently large (rn between 550 and 600) then it is optimal to leave the relative sink prey

subpopulation (line in Figure 5.8.c) and the relative exporter prey subpopulation (dots in
Figure 5.8.c) unharvested.
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r(p, - tp, (&r)) ¡qrrG'r(Se^) * qrtþrS¡u^l

*(pp - "p,(Prt)) xo

*(p, - ca(&r))
xo

(5.66)

(p, - "a 
(Pn)) lb, -f q'rG\(Sa.) * q"þtS¡,¡*l

-l(p, - "p,(Prt))lqt 
G'r(Sp*) * qrr1tSN*)

*(pr - cry,(¡ftr))[ot,Sr,,] , (5.67)

qzzþzSp^ozSNro

S proqztþzozSNzo

(p" - ca(sa.))
p

with X, : 1 - (ot + pzrFl(Sx"o) + azSe"o). Solving the last three equations together

with ,Sryro : N2t, and assuming Xo f 0, produces a non-negative harvest for prey

subpopulation two. Figure 5.9 shows total profit differences among the three methods,
that is, a negative harvest from (5.62) and (5.63), a zero harvest from (5.64), and a

zero harvest from (5.65) - (5.67).
If it is possible to implement a negative harvest, equilibrium optimal harvests

Ilñ, : 265L7750, Hit, : -1427582, and Ilþ, : Hh : 54642 are found. However,

if we can not use a negative harvest in managing the exploitation, then using the
first method (equation (5.64)) we find that equilibrium optimal harvests are /ífi¿, -
24720979,, HIvr:0 and HÞ,: Hþr:52849, while using the second method (equation
(5.65) - (5.67)) we find new optimal escapements Sfy, : 15249769, ,Sir, : L2923857,

Sä : 18131, and Sþ, : 16045 with equilibrium optimal harvests HIv, : 24852974,

HT,r":0, Hþr:50985 and I/ft, : 53069 (see Figure 5.9). If we assume that the cost

to put fish into the fishery is equal to the profit per fish harvested, then, neglecting all
associated costs, the total revenue from the harvest, if a negative harvest is allowable,
is 11¡¡, * Hx, + 10(Ë1p, * Hp,) : 26183008 currency units. This revenue is above

the revenue if we use zero harvest from either the first or second method, that is,

25777959 from the first method and 25893514 from the second method. This suggests

the optimality of a negative harvest for the system or in other words shows that if
it were possible to have a negative harvest then it would improve profit significantly.
However, if the cost of seeding prey is higher than the profit from catching prey then

zero harvest will be the best. In the example above if the cost to put fish into the

fishery is twice the profit per fish from harvesting then the total revenue by allowing

seeding strategy is 24755426 currency units, which is smaller than if we use zero harvest
from the first or the second method.

5.3 Concluding remarks

In this chapter harvesting strategies for a spatially-structuled predator'-prey system

were established. It was assumed that the inter-action between the prey and the pred-

ator occurs in the adult stage. I investigated optimal halvesting stlategies for two
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Figure 5.9: Escapement, harvest, and profit comparisons among three different methods in

dealing with a negative harvest. In this example a negative harvest occurs in prey subpopu-

lation two. Escapements in the negative harvest column are derived from (5.62) and (5.63),

escapements in zero harvest column are derived from (5.64), and escapements in modified

PPM (predator-prey metapopulation with zero harvest constraint) are derived from (5.65) -

(5.67). Equilibrium harvests are computed using Hft,: Nn - Si', and Hþ - n -,Sþ. where

À[ and P¿ are determined by (5.57) and (5.58).
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structurally different models. The first model assumes that predation affects the pred-

ator's adult survival and the second model assumes that pledation affects the predator's

recruitment. Results show that the most significant rule in single-species metapopula-

tion harvesting theory, that is, we should harvest a relative source subpopulation more

conservatively than a relative sink subpopulation, remains true in the presence of a

predator, if we harvest both species and if the predator efficiency is above a certain

threshold, regardless of the structure of the population.
silvert and smith (L977), May et al. (1979),,and Ragozin and Brown (1985)

suggested that in a muiti-species fisheries a species may be more protected than the

other species if it enhances the profit from the fisheries through its bioeconomic role.

For example, if the prey in a predator-prey system grows slowly then it would be

better to use a zeto harvest strategy for the prey, that is, not to harvest the prey

population. The unharvested prey can increase the profit significantiy if it is left as

food for the predator. This is also observed in the result presented in this chapter

for harvesting a two-patch predator-prey metapopulation. The result in this chapter

generalises the result of Silvert and Smith (1977), May et al. (1979), and Ragozin

and Brown (1935) to include the importance of exporter/importer subpopulations in
determining the optimai harvesting strategy for the population. In the present result,

where spatial structure is taken into account, the decision to protect a prey population
applies especially to the exporter prey subpopulation, hence a zeto harvest strategy will
generally apply to only one prey subpopulation. On the other hand, if spatial structure
is neglected, such as in Silvert and Smith (1977), May et al. (1979), and Ragozin and

Brown (1985), prey protection applies to the whole prey population, which may not
be economically, politically, or socially acceptable (Gary et a1.,1998)'

In addition, a negative harvest may be optimal in harvesting a two-patch predator-

prey metapopulation. This negative harvest is interpreted as a seeding strategy. Nu-

merical examples show that if the predator market price is much higher than the prey

market price, then it is optimal to seed the prey and harvest the predator which has

a higher market price. If in addition one prey subpopulation is a relative exporter
subpopulation, then the seeding strategy should be applied to this relative exporter
subpopulation. However, the seeding strategy only works if the cost of seeding equals

the price of stock unless the relative value of the predator, nz, is even bigger. For

this reason, as in the previous chapter, I also provided an alternative procedure to
determine optimal escapements if negative harvesting is not possible.

In addition to results presented in the previous chapter, in this chapter I presen-

ted optimal equilibrium escapements when harvesting only targets one species for the

frrst model. Numerical examples suggest that the rule to heavily harvest the prey

subpopulation living in the same patch with a relative source predator subpopula-

tion may no longer hold if harvesting only targets the prey species. However, we still
harvest a relative source prey subpopulation more conservatively than a relative sink

subpopulation.
I also established rules when the cost of halvesting differs, either between prey

subpopulations, or between predator subpopulations. Fo'.. example, if prey subpopula-
tion one is a relative source/exporter subpopulation and has intrinsic growth greater'

than or equal to the intrinsic growth of the other pley subpopulation, that is, prrrr )
p21r'2 àîd pnrt ) p22r2 (or pnr-r ) pz{z and pnrt } pzzrz) then we should protect the
relative source pley subpopulation whenever the latio of adult survival in patch one to
adult survival in patch two equals the latio of the rnarginal net revenue in patch two to
the marginal net revenue in patch one. If adult sulvivals of all populations are the same
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and there is differences in the marginal net levenue status between the populations,

optimal escapements are determined by the trade-off between the source/sink status

and the marginal net revenue status, because there is a tendency for the exploiter
to conserve the subpopulation with a higher marginal net revenue. This tendency

is also observed in harvesting a single-species population with spatial structure (see

Clark (i976a) for his inshore and offshore model and Gatto et al. (i982) for their
effort-allocation model).

As in the previous chapter, populations can be protected in two different ways -
directly, with a higher escapement of the relative source prey subpopulation, and indir-
ectly, with a lower escapement of the predator living in the same patch. Furthermore,
if the marginal net revenue from the reiative source and exporter prey subpopulation is

lower than the marginal net revenue from the relative sink and importer prey subpopu-

lation, the present theory would harvest the relative source and exporter prey subpopu-

lation more conservatively than if we use unconnected predator-prey harvesting theory.

The predator living in the same patch with the relative source and exporter prey sub-

population would be harvested more heavily than if we use unconnected predator-prey

harvesting theory.
It is important to realise the limitations of the results ìn this chapter. To establish

Results 10 and 15, that using predator-prey metapopulation harvesting strategy would

harvest a relative source subpopulation more conservatively than using strategy from
well-mixed predator-prey population, we may need an extreme predator efficiency, that
is $ : 1. However, if there is a price differential between the prey and predator then

thJïule requires that the predator "bioeconomic conversion", mB, equals the absolute

value of prey vulnerabiiity, lal. If we assume that predation affects predator recruit-

ment, we need an additional requirement that there is no predator mortality during mi-
gration. If these conditions are not satisfied then the rule may not true. The models in
this chapter ignore age-structure and only consider Lotka-Volterra predator-prey func-

tional form. Future models should include age-structure and take into account various

types of predator-prey functional forms to generalise results presented in this chapter.

In the next chapter I investigate optimal harvesting strategies for a simple predator-

prey metapopulation where age-structure is included using a recruitment delay.

5.4 Appendices

Appendix 5A: Non-overlapping prey generations

If both prey subpopulations in predatoÌ-prey metapopulation with predator reruitment

model (Section 5.2) have a non-overlapping generation and their total natural growth,

rt(pn * pn) * rz(pzt I pzz), is less than three times of the reciprocal of the annual

discounting factor, lf p, and if C in Result 15 satisfies 0 > C ) mar{BlK'mAlL}
and 11(p11 * pn) I rz(pzt * pzz) < ], th"tt assuming a predator-prey metapopulation
as a well-mixed predator-prey population would ovel-harvest the relative source and

exporter prey subpopulation, that is, then |Sfir- a ,Sñ,. This can be proved as follows.

Following the proof of Result 10, we can obtain ,9År, > ,S0 for rt* ) r-, and

1
ArAo s0

2
si/-

148

+ BC3. (5.68)



It.can be proved that if rt * rz ( |, then h > 1, hence

ArAo go Ct¡*ùN-
3A*s^C /

-t

L\(
1

+ BCs > o. (5.69)
2

Since C > B lI{ and C > mAf L, following the proof in Result 9, it can be shown that
Ao ( 0. Since Ar ( 0 then So- åSïu- > 0. Finally, Si > S0 > åSi'-. Similarly, it can

be proved that if sr(qrr * qtz) * sz(qn * qzz) < | then +Sþ- < Sh.
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Chapter 6

Predator-prey metapopulations
with delayed juvenile recruitment

In the previous chapters I derived and discussed optimal harvesting strategies for several

predator-prey metapopulation models. The underlying biological models assume that
the population in each patch is a single homogeneous and well-mixed population. The
model for each patch is described by a single variable representing the number of
individuals and assumes that the offsprings of the current population are immediately
recruited to the adult population in the next period. This model has a very simple
age structure. In reality, many exploited populations consist of several different age

classes. Population models that include yearly age classes are known as "age-sttuctured
models" (Clark, 1985a).

Some examples of the early models for age-structured populations can be found
in Leslie (1945, 1948), Von Foerster (1959), Sinko and Streifer (1967) and Cushing
(1976) for unexploited populations, and Beddington and Taylor (1973), Rorres and

Fair (1975), Beddington (1978) and Reed (1980) for exploited populations. In general,

Ciark (1985a) divided age-structured population models into three groups, that is,

Leslie's matrix models, deiay-recruitment models and dynamic pool models.
Leslie (1945, 1948) pioneered the use of matrices to study age-structure in pop-

ulation modelling. The Leslie matrix model is extended by Williamson (1959) and

widely used in ecology (Lefkovitch 1965; Usher, 1971; Emlen, 1984; Casweli, 1989),

demography (Keyfrtz, 1985), forestry (Usher, 1966, 1976) and fishery (Reed, 1980;

Botsford, 1981; Horwood and Whittle, 1986). Dunkel (1970) and Mendelssohn (1976)

argued that Leslie's matrix model is ecologically uninteresting because it only models

density-independent growth of a population, and hence produces unbounded sustain-
able yield (Reed, 1930). Reed (1980) and Botsford (1981) wele among the flrst authors
who introduced density-dependence into Leslie's matlix model. They found an optimal
harvesting strategy for their system. This has solved the limitation of Leslie's model.

Leslie's age-structured model deals only with the females of a population, and

can be written ìn a matrix folm

[l/,tr+tl] : [F¡¡][l/,trl], (6 1)

where /ú1t¡ denotes the number of females of age i in yeal k and [4¡] it a transition
matrix relating the abundance of the females in generation k * 1 to the abundance of
the females in generation k. If it is assumed that N¿16¡ rvith i : 0,1, ...,'y - 1 is the
number non-reproductive females of age less than 1 in yeal k, ÄL(n) is the number of
leproductive females of age 7 or more in year k, a¿ is the survivolsìrip of the females
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Organism: Age at maturity: Reference:
Red lip abalone
Sauces scallop
Iceland scallop
Baleen whale

Sei whale
Fin whale

Orange roughy
Chinook salmon

Sturgeons
Pacific ocean perch

Atka mackerel
Squid

I 3 years
1 year
6 years

) 5 years
) 9 years

a8 years

2 23 years

3 to 7 years

10 to 20 years

B to 10 years

2 3.6 years
) 270 days

Shepherd and law, 1974

Dredge, 1981

Vahl, 1981

Clark and Lamberson, 1982

Allen, 1963; Fisher and Goh, 1984

Allen, 1963; Fisher and Goh, 1984
Francis,1992

Hankin et a1.,1993
Auer, 1996

Gunderson, 1997

McDermott and Lowe, 1997

Arkhipkin and Silvanovich, 1997

Table 6.1: Some known delay time for commercial marine populations.

of age i, and F(¡f"f*l) is the fecundity of females in year k then the transition matrix

[4¡] "utt 
be written as

lEo¡l:

000
a,s 0 0

0 ør0
00c12

0

0

0

:

(¡/.,,f*l)F
0

0

:
(6.2)

0 at-t a'.y

Many studies on the exploitation of age-structured populations use a Leslie model.

For example, Reed (1930) used Leslie's matrix in a slightly different form, where he

assumed that the first year survivai rate of the population is density-dependent. Bed-

dington (i978) showed that if the right hand side of the Leslie matrix model is solved

for l/r1*+r), it ends uP with

l{r(*+r) : o1-ra1-2. . .asF(N^t(¡-rl)I{rt¡,-'r;) + a"ÀLv1l¡, (6'3)

that is, the number of mature individuals in the next period can be obtained as a
function of the number of mature individuals in the present period and 'y periods ago.

Assuming ,F(¡iÈ-") -- a-,-te1-2...asF(N.tt¡-rl)N"yt¡-")), N¡: AL(¡),and ø : d-r,

equation (6.3) can be rewritten as

Iy'¿+r: aN** F(N*-r), (6.4)

which is known as the "delay-recruitment model". Equation (6.a) is a model where

recruitment to the reproductive population occurs ? years after birth. Clark (1976b)

used equation (6.4) to model the growth of the Antarctic fin whale, Balaenoptera
physalus, where each individual has five years delay befole it enters the mature class.

Other commercial marine populations with known delayed-recruitment are shown in
Table 6.1. Some of the species listed in the table ale either prey or predator or both
in complex food-webs (Jones, 1982).

Clark (1976b) analysed the stability of an equiliblium solution of the delay-
lecruitment model, equation (6.4), and investigated optirral harvesting strategies for

00
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the population. In Clark's (1976b) model, if the number of harvested individuals in
year k is ,t{¿ and assuming that recruitment is determined by escapement S¡, - N*- Hn,

then the delay-recruitment equation becomes

Iy'¡,+r : aS*I F(S*-r). (6 5)

As in the case of the non-delay-recruitment model, Clark (1976b) assumed that the
net economic return from exploitation in year k is

¡Nr
II(¡/*, Hx): Jrr (o -.(6))d1, (6.6)

with value function 
oo

l : Ð pklçN¡, H¡¡. (6.7)
/c=0

The parameters p, c(.) and p have the usual meaning, that is, market price, cost of har-

vesting and discounting rate, respectively. Clark (1976b) found an implicit expression

for the optimal equilibrium escapement, S*,

: (p - c(l/(^9.))(ø * plF'(S.)), (6.8)
p

where ¡ú(,S.) is given by equation (6.5). Assuming the cost of harvesting is negligible or

independent of the abundance of the population, and assuming the recruitment func-

tion, F, is logistic, then the optimal equilibrium escapement can be written explicitly
in exactly the same form as the case of the non-delay model with pr term added, that
lst

p - c(s"

(6.e)

It is ciear from the last equation that the optimal escapement for the delay model,

with a delay of more than two years, ^l 2 2, is lower than the optimal escapement for
the non-delay model. The larger the time-delay, the lower the optimal escapement. It
suggests that if the delay is large enough, then it is not optimal to wait for juveniles

to be recruited into the reproductive adult class and we should exploit the stock to
extinction (Tuck, 1994).

Tuck (1994) developed two delay-recruitment metapopulation models as general-

isations of Clark's (1976b) model for a single-species. One of his models has a similar
structure to Agnew's (1982) model. The difference is Agnew (1982) considered delay-

recruitment for two species having an interspecifi.c bioiogical interaction while Tuck

(1994) considered delay-recruitment for a species with the interchange of individuals
between subpopulations. The fi,rst model of Tuck (1994) assumes that the delay ex-

perienced by the newborn is related to the subpopuiation in which the newborn is

recruited, known as the "receptor delay model" (RDM). The second model assumes

that the delay experienced by the newborn is related to the oligin subpopulation of the
newborn, known as the "parental delay model" (PDM). Using the same symbols as the
previous non-delay single-species metapopulation model, the receptor local population
delay-recruitment model with exploitation is written as

l/r1t+r¡ : (h}il" * lrrFr(Sr¿ - 7r) i pnFz(Sz* - 1t), (6.10)

l/z1rar; : azSzk I pnFt(Stn - n) I pzzFz(Szt" - n), (6.11)

s":+-+(t#)
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and the parental delay model is written as

l/r1r+r¡ : atSft * prrFr(Sr* - ?r) * pnFz(Sz* - þ), (6.12)

l{z1r+r) : azSzk I pnF{Sr¡ - 7r) I pzzFz(Szn -'Yz), (6.13)

where 7¿ denotes the delay for subpopulation i. Optimal harvesting strategies for each

model are found by maximising the present value of net revenue

I : D pu DII¿(I/,*, 11¿¡,),

oo 2

lc=O i=7
(6.14)

subject to equations (6.10) and (6.11) for the receptor local population delay model and

subject to equations (6.12) and (6.13) for the parentai delay model, where II¿ is defined

as in the non-delay model. Using the Lagrange multipliers method, Tuck (1994) found
an implicit expression for the equilibrium optimal escapements, ,9f , for each model

as generalisations of Clark's (1976b) optimal escapement for the single-species delay

model, equation (6.3). Explicit forms are found by assuming the costs of harvesting

are independent of the population size. The escapements are

si Kt K1 I*6-at
(6.15)

rt(pt\f i PtzP1")

I*6-az

22

rz(PztP1' * PzzP1")
(6.16)

for the receptor local population delay model, and

1*ô-ør
(6.17)

rúa'(Pn * Ptz)

Ll6-az
(6.18)

rzPl'(Pzt * Pzz)

for the parental delay model.
Tuck (1994) showed that if both populations have the same carrying capacities,

adult survival rates and delays, then the escapements from both models are equal. In
this case, the presence of a delay does not alter decisions on how we should harvest

the popuiation optimally. As in the case of a non-delay model, the relative source

subpopulation should be more conservatively harvested than the relative sink subpop-

ulation. On the other hand, if the per capita larval production for both subpopulations

are equal, the parental delay model suggests that the subpopulation with the larger

delay should be harvested less conservatively than the other subpopulation. This is
not always the case in the receptor local population delay model. Furthermore, Tuck

(1994) showed that the rules of thumb for harvesting a non-delay single-species meta-

population, that is, that we would over-harvest the relative exporter subpopulation if
we incorrectly manage the population as an unconnected single population and that
we would over-harvest the relative source subpopulation if we incorrectly manage the

population as a well-mixed single population, are confirmed from the parental delay

model regardless of the differences in recruitrrrent delays. However, the same rules are

confirmed in the receptor local subpopulation delay model only if both recruitment
delays are equal.

q*-I(z-Kr(u2- 2 2 \
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Tuck (1994) added that, in some circumstances, if the difference between recruit-
ment delays are very high, both models may suggest that a seeding strategy may be an

optimal policy. For example, if subpopulation one has a large delay but subpopulation
two has a small delay, the optimal harvesting policy is to seed subpopulation one and

harvest the adults in subpopulation two as long as the receptor local population delay
model is concerned. However, the parental delay model suggests the opposite, that is,

that we should seed subpopulation two and harvest the adults in the subpopulation
one. This is logical in terms of minimising the time between seeding and getting a

harvest.
In the following section, I investigate the optimal harvesting strategy for a predator-

prey metapopulation in the presence of recruitment delays, by generalising the receptor
local popuiation delay and the parental delay models discussed in Tuck (1994).

6.1- Predator-prey receptor delay model

This section describes a deterministic, discrete-time model for a spatially-structured
predator-prey population with a time-delay. I generalise the receptor local population
delay model (Tuck, 1994) to include predator-prey interactions. In nature the delay-
recruitment of marine species may result from the need of the juveniles of a species

to travel from their original/spawning habitat to the destination habitat and also may
reflect the time needed to get big enough to breed (Potter and Hyndes, 1994). I model
this by assigning recruitment delays which are specific to the subpopulation where these

juveniles are recruited. I use the method of Lagrange multipliers to derive optimal
harvesting strategies for the population and compare the strategies to other existing
strategies in which either spatial structure or predator-prey interaction is ignored

6.1-.1- The model
As in the previous chapter, let us assume that there is a predator-prey population in
each of two different patches, namely patch one and patch two. Let the movement of
individuals between the local populations be through the dispersal of juveniles. Adults
are assumed to be sedentary, they do not migrate from one patch to another patch.
Let the population size of the prey and predator in patch i at the beginning of period
k be denoted by l/¿¡ and P¿¡, respectively. The number of mature adults of the prey
and predator subpopulation i in the time period k + 1 is the sum of adult survival from
period k and recruitment from juveniles that were born 1¿ periods ago for the prey
and r¿ periods ago for the predator. In the absence of a predator-prey interaction, the
growth of the prey and predator assuming receptor local population deiay are

1ú¿(r+r) : a;N¿k -f p¿¿F¡(N¿*-r,) * p¡¿F¡(N¡x-1), (6.19)

P¿@+t) : b¿P¡* * q¿;G¿(P¿*-",) I q¡¡G¡(P¡*-,¡), (6.20)

respectively. All parameters have the same meaning to those in the non-delay model
(Chapter 4). In addition, I model adult prey mortality and predator recruitment as

a result of predator-pïey interaction explicitly. I use assumptions analogous to those

in the paper of Wangersky and Cunningham (1957) to describe prey mortality and
adult recruitment resulting from predator-pley intelaction, bhat is, adult prey moltality
caused by predation in period k is ploportional to the number of prey and predatol
in that peliod, and pledatol recruitment as a result of biomass conversion from the
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Patch 1 Patch2

Tr '12

r,l 9zr

Qr, 9zz

Figure 6.1: Juvenile migrations and delayed recruitment diagram for a

spatially-structured predator prey metapopulation. As in Chapter 4, p¡¡ and

4;¡ is the proportion of juveniles which successfully migrate from prey sub-

population i to prey subpopulation j and from predator subpopulation i to
predator subpopulation j, respectively. The symbol <- - - -- -+ represents

predator-prey interaction in each patch, and the black boxes represent the

prey (predator) juveniles density which will be recruited to prey (predator)

adult class after a delay 7; (r;). In addition, I assume that the number of the

predator subpopulation z' depends on the number of prey o¿ time ago, where

o¡ 2 r;.

interaction is proportional to the number of contacts between prey and predator, in
which the predator successfutly kills the prey, some di periods ago. Mathematically the

prey mortality is given by a¿N¿¡P¿¡ and predator recruitment \s þ¿N¿n-o,Pik-o,, where

lonl > 0¿ > 0. With these additional assumptions, a complete model of a predator-prey
metapopulation assuming receptor local population delay can be written as

l/,;1r.+r¡ : aiNik * p¿¿F¿(N;*-r,) * p¡;F¡(N¡*-^,,) + a;N;xP;*, (6.21)

P¿&+t) : b¡P¿x I q¿¡G¿(P¿n-",) * ø¡;G¡(P¡¡"-,,) I 7¿N¿*-o,Pik-o,, (6.22)

and illustrated by Figure 6.1. Equation (6.22) assumes that the delay impacts local

predator recruitment. In this case, there is a delay of ø¿ time units between predation
and recruitment to the local predatol population. If predation only aids predator's

adult survival then ø¿ : Q.

As in the previous chapter, I assume that we harvest prey and predator sub-

population i at the beginning of period k with the rate of harvesting ä¡¿,, and Hp,o,

respectiveiy. Let Sr,o : l/.¿ - I/¡¿,0 and Sp,o: P¿n - Hp.o be prey and predator es-

capements on patch i at the end of that period. Substituting these escapements into
equations (6.21) and (6.22) produces equations for a harvested predator-prey metapop-
ulation

1/r(¡,+r): ørSN,¡ *prrFr(S¡¡,u-.,,)* pztFz(Sxro--r,)1a1,9¡¡,oSp,o, (6.23)

lúzi*+r¡ : azSNrx t p22F2(S¡¡ru--rr)+ ppFl(S¡¡ro-,r) I a2,9¡yr^Spr^, (6.24)

Prlr+r; :brspro* qnGt(St,*-,,)rq"tGr(Spro-,r)* þt,SN,u-"rSrru-or' (6'25)
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Pzu,+t) : bzSp"r I q22G2(Spru-,r) * qnGt(Sprn-) * þrSN"o-'rSP"r-o"' (6'26)

In the following sections I derive optimal escapements for the population and compare

them to escapements from non-delay predator-prey metapopulation.

6.L.2 Optimal escapements

To obtain the optimal harvesting strategy for the metapopulation I use the method of
Lagrange multipliers. The non-linearity of the net revenue function due to the inclusion

of the delays has made it difficult to use dynamic programming (Tuck, 1994). Using

the Lagrange multipliers method, the net revenue

t D fIy¿(x¿¡,sy,r) (6.27)
t=r X€{N,p}

is maximised over infinite time subject to equations (6.23) - (6.26), with a non-negative

escapement less than, or equal to, the population size. As in the previous chapter I
also assume p : ll$ + 6) where 6 denotes a periodic discounting rate and

frx,(x,*,Hx,*): [:'r @* - cx,(t))d,e . (6.2s)
J X¿¡-Hyro

The Lagrangian for the maximisation is

,-a-L' 2]{p*[Itt,(lúrr, rliv,*) * IIiv,(lúzr, HN,r)
/c=O

*IIa (Ptn, Hp,o) + IIt, (Prx, Hpr)]
-Àt¡[l/t(¿+r) - dr(l/r¡ - ä¡v,*) - p¡Fr(lúr k-'., - Ht,o--,, )

-pztFz(Nzn-1t - HN"o--,r) - ot(l/t* - HNr*)(&* - Hpr)l
-\ztlNz&+\ - a2(N2¡, - H¡vr) - pnFt(N¡,-tz - H*rr-.,-)
-pzzFz(Nzn-12 - HN"o-.,,) - or(Nr^ - HNrr)@"^ - Hrro)l

-Àrr[Pr(r+t) - ór(&* - Hpro) - qtrGt(Ptk-rt - Hrrr-r)
-qnGz(Pzx-,. - Hr"r-r)
-gt(Nr*-", - HNru-or)(Prr-", - Hrro-,r)l

-Ànn[Pr&+r) - bz(Pzn - Hprr) - qtzGt(Pt¡-rz - H rrr-n)
- qzzGz(Pzn-r2 - H rro-n)
-/r(Nrr-", - HN"r-o)(Pr*-"" - Hr*-"r)lj' (6'29)

To maximise the vaiue function PV tn (6.27), the conditions ffi : #: 0 for k > I
and uLr*. : &:0 need to be satisfied. In Appendix 6A these equations are solved

to obtail an impiicit expression for the optimal escapements in the form

pN - "ntt(Sit (pr - c¡¡r ( l{r r ) ) ( at I pn Fl(SÄ,,. )pt' + or,S.þ,0 )

* (p¡o - c¡¿z ( l/zr ) )pt, Fi(îi,,") p"'

I(pp - cp{Pn)) þrSþ,op"',

PV :î,7
/c=0

2

p
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p¡,¡ - "rr(Sfrr.)
p

pp - cr{sþ,o)
p

(pr - .¡or( ¡úrt ) ) ( az I pzz Fl(Siu") p'" t az Sþ,,)

-¡(pr - c¡vr ( l/r r ) )p", F4(Siu") p"
*(p, - cpz(Pzt)) þ25þ"o po',

(p, - crr(Prr))(b, + qrrGi(Sä o)p", ¡ þrSiv,op",)

* (p p - cpz(Pzt)) q'.rG'r(Sþ*) p"'

*(p,.n - cp (Nrr))a1,9fi¡,.,

(p" - "ry(¡ft))(Ft N I p1' D¡¡)

*(p" - cp(P1))(GtN * p"'Et¡¡),

(6.31)

(6.32)

pp - cpz(Sh) : @r- cp2(P21))(br*qrrG'r(Sþ,0)p'" + BrSfr"op"')
p

-r (p p - cp íPrt)) qnG'r(Sh) p"'

*(pr - c¡vz(l/zr))orSi¡"o. (6.33)

These equations are the general form of the optimal escapement equations for a two-
patch predator-prey metapopulation with a time-delay.

Note that in the absence the delay ('y : oi: ri:0), the equations reduce to
equations (5.5) and (5.6) from Chapter 5. If o¿ : B¿ :0, then Tuck's (1994) optimal
escapement equation for a single-species metapopulation with time delay is obtained.

On the other hand, if there is no migration between patches, Pii : Q¿i : 0 fot i I j,
and if Iü¿ : lú¡ : .lü and P¿: Pj: P, then the implicit optimal escapements equation

for patch one is

pw - "r(SÅ,.)
p

(6.34)

'p' -'p(Sh) : (pr - "rv(¡rr))(F, e * p1t Dp)
P 

I(p, - cp(Pr))(Gre I p" Erp), (6.35)

where Frru : a1 ! a$þo, Gr¡v : BrSþoP" , Dt¡,t : p11F{(^91y.), Et¡¡ : 0, Frp : o1,Sfi¡s,

Gtp : û -f hsivopo', Dtp : 0 and Etp : qttG'r(Sh). Optimal escapements for
patch two can be obtained similarly in this form. These equations are implicit optimal
harvesting equations for two species derived by Agnew (1982) in the presence of a

time-delay in the predator numerical response such as in Wangersky and Cunningham
(1957). Finally, if both juvenile migration and predator-prey interaction are ignored,
equations (6.30) - (6.33) collapse to Clalk's (1976b) optimal escapement equation for
a single-species with time-delay

pru - c¡rr(sÄ".) : (p" - "rur(lú,,))( 
at I p',Fl(,gÄ,,,)pt,). (6.86)

p

The following section discusses furthel the optimal escaperrrents and gives some inter'-
pretations of the results by comparing them with othel escapements.
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6.1.3 Results with negligible costs

To facilitate the interpretations of equations (6.30) - (6'33) I assume that there is

no difference between the prey and predator price and to simplify the analysis I aiso

assume the costs of harvesting are negligible or density and subpopulation independent.

Using these assumptions, substitute al1 derivatives of the logistic recruitment functions

O1ru*) :riN¿ts(l_ N;klI{i) and G¿(P¿t):siP¿t"(l-PiklL;) intoequations(6.30) -

(6.33), to obtain

I
p

1 :
p

a¿l(pnp1'*p¿rp") ù¡¡ * (o, -f lï;p"')Sþ¿, (6.37)
'')^.Ll x

,o - tú.

b;l(qnp"'lq¿2p"") Ðp¿ t (on -l þ¡p"')Sh¿. (6.38)

- (p¿rp" * p¿zp")ro - on, (6.3e)

- (q;rp"' * q¡2p"2)s¿ - b¡, (6.40)

2s¡

2s¡
Q. 

- 

-

¿x 
L;

Let

provided

1
A¿: -p

1B¡: -p
and

C¿: a¡ I þ¿pot. (6.41)

As in the previous chapters I interpret C¿ as a predator efficiency, but here it is discoun-

ted by the delay ø¿. Solving equations (6.37) and (6.38) produces optimal escapements

Siy¿ and 
^9þ¿

ñ* A¿(q¡p"' I q;zp"')! + C;B;
5Ã,¿:7, (6'+'l)

ñ* B¿(P¡P1' I P¿2P1")fr + CnAn
Ðpi: a¿ , (6'43)

L¡ -- c? - (p¿rp" t p¿zp1')2fi1n^0"' + q¡rp") +o (6.44)
L¡

In the following discussions I wiil only deal with posìtive escapements. I establish the

following result to guarantee that the escapements are all positive. The escapements are

then coÃpared to the escapements which occur if we ignored predator-prey interaction,

that is, escapements from single-species metapopulation harvesting theory'

Result 16 (Sfficient conditions for posi,tiue esct.peTnents) Let Si,¡ and Sþ, denote the-

optimal "r"op"-"rt from a pred"ator-prey metapopulation giuen by equati'ons (6^.12)^?\d

r'o ¿g) Ir A¿ and, B¿ are negatiue, and, c¿ is non-positi,ue with c¿ ) mar{?,+},
then:

1. L¿ is negat'iue,

2. Si'to and Sþ¿ are Positi'ue-
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Proof

1. Since -
(p¡ p1t lP;zP1z\r

A
>1 2Bthe condition C > K implies

tplr *p¡2p12 r* a-

/a -- 
- 

(P¡Pa1 lP¡2P12)r 28
v'AK Hence C¿ ) mar {- t pll

It follows B¡(p¡p" * n;zff")fr 1 -C¡A; or alternativelY B¿ (
(p¡, p1L l-P;z P1\'#

11 C :0 then clearly A¿ ( 0. If -C ) 0 then -C¿B¿ 1-C¿ (p¡p1r lp¡2p12)

On the other hand, sitce A¿(q¡tp" *q¿zp")'t t -C¡B; then A¿(q¿1p1'*q¿zp1')? 
'

_C¡A¡

_C . Finally, since A¿ negative, then (q¿1p"'*q¿2p"")fi (n;rO" +
(p¡ Plr !P;2P12)

p¿zp1')? , C? which means A; ( 0.

2. It is clear from equations (6-42) and (6'43)

As in the non-d.elay case, an analogous result can be obtained if A¿ and B¿ are

positive and. C; is non-negative. However, C¿> 0 is biologically unacceptable since it

means the discounted predator efficiency is more than 100%' An interpretation of the

condition A; < 0 is that the sum of the proportion of surviving adults, øi' and the

discounted per capita larval production, (p¿¡p" lp¿ip1')r;, is higher than the reciprocal

of the discountingfactor, lf p. As in the case of no time delay, this is the normal

situation, otherwise it is best to harvest the populations down Io zero escapements

lclark. 1g76a). The condition B¿ ( 0 is interp e c¿ is non-positive

iitrr c, > *í*{þ,7} interpreted as a high Hence, if one of the

subpopulatiorr. häl uï,"ry high adult mortality insic growth, a very

high pioportion of losing juveniles from the sys predatol efficiency,

thãn negative escapements may occur. For the remainder of this chapter, to ensure

that the optimal escapements are positive, I assume A¿ and B¿ are negative, and c; is

non-positive with C¡ ) mar{?,+}'
Using Result 16 I explore i'tr" iåt"tionship between escapements from the predator-

prey m"tu,population presented. in this chapter and escapements from a single-species

-"iupoprr1ation with the receptor population delay model discussed in Tuck (1994)'

The relationship is summarised in the following result'

Result LT (Escapement comparison wi,th a single-species metapopulation) Let Sft and

Sþ d"enote th" opil*ol escapement from a predator-prey metapopulation giuen by equa-

tíàns @.lZ) o"à ¡O.lrS¡, and, let Si¡" and Sþ" denote the optimal escapement from a

single-speci,", mriopop'ulation with recept r population delay model giuen by t¡'e same

eqiations by assigning a¿ -- þ¿:0. If A¿ and B¿ are negatiue, and C; t's non-positi'ue

wi,th C; > mar{ft,!}, th"n'

1.5Ni .9 Ip¿2p12 2ri ,Sir, < 0,

2. sþ, - sä" : (e;rP"t *QizP 2si L; ,sä<0

tr

!

C
N;.

Proof

1. We need to determine the sign of Sfu' - Si/,"'

c'* A¿(q¡P" r q¿2P"")? I C¡B¿ 
- 

A¿
ùN,-DN," : 

- 

-(p¡p1r-lp¿zprrw
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C¿B¿(pnp" I p¿zP1') +c?Ai
L¿(p¡P1' I P;2P1") K¡

B¿(p¡p" * P;zP") * C;A¿

L¡(p¡P1' * P;zP")T) tc,
C¿

lKn
s;

Because the denominator is positive and. B;(p¿1p1'*p;zp1')? a -C¿A¿, then we

have Sft, -,SÄr," < 0' ¡

2. The proof is analogous to the proof above' ¡

Hence, in general, optimal escapements from predator-prey metapopulations with

the receptor subpopulation d.elay model are smaller than the escapement from a single-

species L"t,popnlàtion with receptor subpopulation delay model and has the same

,ru,l,r" if C¿ : g.- The condition C¿: 0 is biologically unacceptable since it means that

the discounted predator efficiency is zero (oo + gtp"' : 0) which means that if there

is no delay in converting energy (food) from predation into predator organism, the

immediate predator "ffi.Ln.y 
is higher than 100% (o¡-f 0¿ > 0). However, if there are

difierences between the price of the prey and the price of the predator, say the predator

is rn times more valuablL than the prey, then C;: a¿*m7¿p"' : 0. This condition can

occur without requiring extremely high predator efficiency' It can be interpreted as a

condition where the discounted predator efficiency weighted by the relative predator

value is high.
In the next section, I compare escapements between patches if there is parameter

variability. These escapements are also compared to the escapements we get if we ignore

the spatial structure of the population. As expected, the result is a generalisation of

harvesting theory for a sirrgl"-rp".ies metapopuiation with recruitment delay (Tuck

1gg4) unã th" harvesting theory for predator-prey metapopulation discussed in the

previous chapter.

Escapement comparisons between subpopulations

To make an escapement comparison between patches, I use the following lemma, which

I do not prove hãre since it can be proved analogously to a similar lemma in the non-

delay model (Chapter 5). The lemmais also used to establish results in comparing the

"r"up"-"nt, 
iom a pred.ator-prey metapopulation to escapements where the spatial

structure is ignored.

Lemma 5 (Migrati,on trad,e-off equations) Let si,¡ and sþ denote t-h'e.optimal escape-

rnent from pred,ator-prey metapopulati,on with receptor local population delay mod,el

giuen by equatio"t ¡'O'42¡ and' (6.13)' If o¡: a, bi: b, K¿ - K, L¿: L' C¿ -- C'

n : il o,- S : L _ ù, ro^ : (pnp" I p¡2p1")r; and sim : (q¡p"' I q¿zp")s¿, .for i : !,2,

then

(sîu, - Si,,)araz : ("',",,- - sz*) -9#('r^ -',-)) (T - ')
_2c ( 2's\

L \C - K)(rr*tr*-r2mszn),

(pnp" * P¿2P12)2r¿
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and

(sä - sä)ara, : (r'?r^ - rz*) - 
y#Gr* -r,-)) H - ")

2C (^ 2Ë\,
-? (." -;)(,r*'r* - r2nas2rn),

where L;: C2 - rimsimft, I : Ir2'

Result LB (Hscapement comparison between subpopulations) LeL one of prey subpop-

ulati,on be a relatiue source whi,le all oth,er parameters of the prey and the predator are

i,d"entical for both subpopulations ercept for the delay parameters for the preg. Without

loss of ginerality let us (rssu,rne that prey subpopulation one is a relatiue sou,rce' that is

(prr * nr)rr> (prr*pzt)rz, and also rtm) r2*' If A¿ and" B¿ úre negatiue' and C¿ is

non-positiue with C > mar{P,!}, th"n'

l. sÅ,, > sñ,,

Proof

2. sÞ, s sh

1. Let A^sw : (^9îv, - Sfur)4142. Using lemma 5 Asw can be written as

As¡v : (_*r,,* -,,ò) (T - c) -T Q -'+) srm(r,^ - rz*)

: 
",_ [- æ)(+-") *'+(, -T)](,,*-,,*)

: ,,*lT(c,_w_r(T_r+))] ,",_ _r,*)

li þ, _ T _r#,,_,,_))] (,,^ _,,*)

,,*lT,Q-'+)-Tl
3l*

(,r* - "*)
Since C , T, then Asr > 0 only i|12* 1r1*' z

2. The proof is similar to above. tr

Hence, \Me can conclude that as for the non-delay case, there is a region of para-

meters where we protect a relative source prey subpopulation more than a relative sink

prey subpopulation in the sense that we aliow more escapement in the source than

ihe-rink .rbpoprlution. However, this source subpopulation has to have an additional

property, it has to be a source prey subpopulation with the time deiays inciuded, that

is
(pnpt' I pnpl')rt > (pnp1' * pzzp1")r2' (6'45)

This inequality redefines what a source subpopulation is for the receptor delay model.

It means that the per capita larval production of subpopulation one which is discounted

by its cumulative death rate, needs to be larger than the discounted per capita larval

production of subpopulation two. If both prey subpopulations have the same delay,
.fr : .yz¡ then Result 18 simply says that the relative source prey subpopulation should
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be harvested more conservatively than the relative sink prey subpopulation and that

the predator living in the same patch with the relative source prey subpopulation

should be harvest"ã -or" heavily than the predator living in the other patch. This is a

generalisation of the ruie of thumb for single-species metapopulation harvesting theory

iTrr"k, 1994). Furthermore, if the retention rate of prey subpopulation i, (i: L,2),

is eq,ral to the immigration rate in that subpopulation, that i", p¿¿ : Pii, then both

subpopulations should be harvested equaliy, regardless of the value of the recruitment

deiays 1t and Jz." 
In the single-species metapopulation harvesting theory, if there is no source/sink

subpopulations and there is no differences between the time delays for prey and pred-

uto. ;rr,r"rriles to recruit into the adult populations, or if rtpu : l"zPzi with any value

of thl delay, both subpopulations should be harvested equally. In contrast, optimal

escapements in the present theory also depend on other quantities, prey vulnerability

to predation o¿ and discounted predator efficiency C¿. I use the following Lemma to in-

,rejigut" optimal escapement differences if discounted predator effi.ciency are different

between subpopulations.

Lemma 6 (Discounted, effici,ency trade-off equations) Let Sf¡ .and Sþ denote the op-

timal escapernent from a pred,ator-prey metapopulation giuen by equations (6.12) and

(6.43). If a1 : d2 -- dt bt: bz: b' K¿ - K' L¿ : L, Pn: Pzz¡Ptz: Pzt,QTt:

ezz¡Qtz : Q2t¡T'r -- r2¡sr : s2t rim : (pnp" I p¡2p1")r¿ - rm and s¿^ : (qnp"t l
QnP"")s¿: r^ then

(.sî", - sfr,)ala' : (c, - t)l?#(cz * c,) rryf + BQ,c,))

and

¡ A(CGz)

Using this lemma I estabiish the following result'

Result Lg (Escapement cornparison between subpoTtulations) Let us assuTne one of

the pred,ator'rubpàpulati,ons is relati,uely lnore efficient with respect to ti,me delay, while

all other parameters of the prey and the predator are identical for both subpopulations,

without tiss of generality let us also assume that predator subpopulation one is relatiuely

more effici"ri, thot is Ct ) Cz' If h - Az : A and Bt' : Bz : B are negatiue' and

C; is non-posi,tiue with C¿ s *o*{ft, f}, th"r'

7. ^9Är, > ,9Ä¡r,

2. sÞ, > sh.

Proof

(sä - .sä)a1a' (Cz - Ct) lry#tt,* cr) r 4r*s^A
KL

1. From Lemma 6, we only need to show that l'yft, * Ct) + ryt + B(Cßù) <

0 which is satisfied by C¿ > -#; this is true since Ct, # and -f 2 1. ¡

2. The proof is analogous to the proof above' !
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To facilitate interpretations of the result, without loss of generality, I consider

two special cases for Ct ) Cz. First, if the predator conversion delay is the same in

both patches, that is, a1 : o2,¡ and prey vulnerabil\ty a¿ is the same for both prey

,rrbpoprrlations, then Ct ) C2 reduces to fr , '^. 
In this case I interpret that we

should harvest the prey and predator subpó¡iulatíohs living in the patch that has the

greater predator biological efficiency moïe conservatively than those living in the patch

ãnutnuralowereffi.ciency. Second,if a1 - o.2a1dþr-_ l3rthenCr )C2is satisfiedby

oy 1 02. In this case, ,rr'e should harvest prey and predator subpopulations in a lower

predator conversion delay patch more conservatively than those in a greatet conversion

ã"luy patch. The following section describes comparisons of the optimal escapements if
the mãtapopulation is incorrectly managed as an unconnected two-patch predator-prey

or a well-mixed predator-prey popuia'tion'

Escapement comparisons to incorrect escapements policies

Result 2o (Cornparison of strategy with escapements from an unconnected two-patch'

pred,ator-prey system) Let 
'fr, 

and Sþ denote optirnal escapetn r-
'prey 

metapopulation giuen by equations (6'12) and (6'/¡3)' Let te
-optimal 

escapem,ents i,f we incorrectly cons'ider the populat'ion as of

tro un"onnicted, pred.ator-preg populations. If all hypothesis in Lemma 5 are satisfied

and, also stm: s2* : s-, AS,¡v, : (SÅr' + SÅrr) - (^9it,, + SÄtr,) and L'Sp.: ('9ä +
sÐ - (^9ä" + sþ",) then:

1. 
^9Är, - Sfrr, : Ø#PL,

^ e* c* - 
(rzu-rz*)x

4, ùNz - ùNzu - Azu{z t

o e* c* - 
(rn-rt^)Y

U. r-lpt - ùPtu - ArrAl t

4. sþ, - sþ".: @#,
+ _C2

lu 2u

(ryur2u -r 1(8sm L X,

Y,

5. AS¡¿" -

6. L'Sp-:

Ar

-C2))(r ¡r2u-rrnr2n
Azu

where x : (cçc -2BlK) - +f) ! and' v : (cçc - T¡ - +i
Tnore, if A¿ and B¿ a,re negatiue, and c¡ is non-positiue with. c > mau

X<0andY>0.

I do not provide a proof of the result above since it is only a minor modifi.cation of

the proof for the similar result in the previous chapter. Assuming rr : 12t I ìnterpret the

r"rrrlt above as follows. Recall that r¿*: (p¡;p1tlp¡¡p'j)r¿ and r¿, : Pi¿r¿P1ilp¡;r¡p1i'

If pt : pzz¡ Ptz : p2tand 71 : 72 then rim :r¿.,' Hence, if there is no source/sink

an¿ no exporter/importer prey subpopulation and there is also no recruitment

delay difference between the two prey subpopulations, then optimal escapements

from a predator-prey metapopulation are exactly the same as escapements from

the two-patch unconnected predator-prey harvesting theory'

Furthe
2A
L

)c
I2BLK)

T-

ì-
J then

1
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2. If psplt ) pzzp1,, pt2 : pzt and 71 ) 'y2 then rt* ) r1u aÍtd 12^ 1 r2u¡

assuming that the discounting rate is not zero. If there is no discounting rate,

then there is no difference between optimal escapements from a predator-prey

metapopulation and from the unconnected two-patch predator-prey harvesting

theory. The following discussion assumes that the discounting rate is not zero.

Since L¿u 10, C'-2\"^l;*\"^ ( 0 and rtmr2m-r1-ur2u ( 0 (see Appendix 6B),

then:

(") Sir, ) Sfr,,,

(b) Sir, ( Sfr,,,

(") sä I Sä",

(d) sä )_ sh_,

(") (SÄ', + SÄ',) - (^9Ä'," + ^9Å',") 
< 0,

(f) (sä + sh) - (,9ä" + ,Sä") > o.

Here, as in the single-species metapopulation delay model (Tuck, 1994), the prey

subpopulation with the larger recruitment delay is over-exploited if it is managed

as an- unconnected two-patch predator-prey population. This incorrect policy also

under-harvests the prey subpopulation with the smaller recruitment delay and the

over-all prey population would be under-exploited. In contrast to single-species

metapopulation theory, incorrectiy assuming that the population is an unconnec-

ted two-patch predator-prey population would under-harvest the predator living

in the same patch with the iarger recruitment delay prey subpopulation and over-

exploit the pred.ator living in the same patch with the smaller recruitment delay

prey subpopulation.

3. If p11 ) pzz, pn ) p21 and' ''¡t:12 then 11- ) rtu and 12* 1T'2u¡ assuming that

the discounting rate is not zero. The result is the same to the case of psplr )
pzzp1r,, pt2: p21 and 1t ) lz.Therefore, incorrectly managing a predator-pley

metapopulation as an unconnected two-patch predator-prey population would

over-harvest the relative exporter prey subpopulation and the predator living in

the same patch with the relative importer prey subpopulation. On the other hand,

the relative importer prey subpopuiation and the predator living in the same

patch with the relative exporter prey subpopulation would be under-harvested.

Result 21 (Comparison of strategy with escapements from a well-mi,ted predator-prey

systern) Let Si¡, and Sþ denote optirnal escapements r-

lation gi.uen by equations (6./¡2) and (6'/¡3)' Let Si,¡- e -

rnents if we incorrectly consider the population as a we s

in Lemma 5 are sati'sfied' and, also srm : s2m : s-, 4,5¡¿- : (SÄtr + Sirr) - Sir- a1'd

¿\,9r- : (Sä +Sþ,)-Sþ-, and in ad"d,ition C satisf'es C (AC' + 4!+)-C -'"?;*) --
0 then:

7. sÄ,, - åsÄ,- : t5;P{,

2. sîv,- åsÄ,. : @RL,

3. SÞ, - ïSþ-: þ5;3jË,
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(r--rz*)Y
AoAz t

t6L) 3n
-C2))(r-r--r tmr2m)

5. ASTy- - Ar Ao
X,

6. L.Sp*: (8"* L _Cr) rsrs-r 1ar26) Y,
Ao

where x: (cçc -zBlK)-+ÐT,Y: (tft -Tl-#)c and, Lo: c2 -
n"gï- . Furthern¿ore, if A; and" B¿ o,re negat'iue, and' Ct 'is non-positiue with C >
,îí"tT,Tj, th"rx < o and Y > o'

I interpret the result above for the case of.r1 : 12 ã's follows' Recall that r;^ :

(P¿;P'' + Po¡P'')r¿ and '-: (W) P6'+'")l''

1. Ifprr:pz2tptz:p21and.1t:lzthenr¿*:ru). Hence,ifthereisnosource/sink

and no exporter/importer prey subpopulation and there is also no recruitment

delay differences between the two prey subpopulations, then optimal escapements

from a predator-prey metapopulation are exactly the same as escapements from

the well-mixed predator-prey harvesting theory'

2. If p¡ : P22¡ Ptz : p21 arld. if there is no discounting rate, then there is no

{ifierence between optimal escapements from a predator-pley metapopulation

and from the well-mixed predator-prey harvesting theory regardless of the value

of recruitment delaYs 1 and 12'

3. If p1i ) pzzt pn ) p21 and 1t: ^lz then 11- ) r- and rzm 1r-, assuming that the

discounting rate is not zero. Furthermore it can be proved that r1*r2* -,'- < 0

(see Appendix 6C), and hence:

(") Siu, , LSiu-,
(b) si,, . Tsiu-,
(.) sä < Tsþ-,
(d) sä >_ Lsþ-,
(") (SÄ', + Sir,) < Sfr.,

(f) (sä + sþ") > sÞ-.

Therefore, incorrectly managing a predator-prey metapopulation as a well-mixed

predator-prey population would over-harvest the relative exporter prey subpop-

,rlution an¿ the predator living in the same patch with the relative importer prey

subpopulation. on the other hand, the relative importer prey subpopulation

anð the predator living in the same patch with the relative exporter prey sub-

population would be under-harvested. Incorrectly managing the population as

a well-mixed predatoï-prey would. und.er-harvest the prey and over-harvest the

predator at the metapopulation level'

To illustrate the results discussed. above, I present numerical examples in the

following section. I also investigate optimal harvesting strategies for the other model,

that is,1h" pur"ttal delay predator-prey metapopulation model, in the subsequent

section. The optimal escapements in this section will be compared to the optimal

escapements from the parental delay predator-prey metapopulation.

/r. sh - Tsþ_:
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6.L.4 Numerical examPles

consid.er a metapopulation with two subpopulations, l/r and l/2. The two subpopula-

tionshavethesamãcarryingcapacitiesKt:112:5ggg00'thesameintrinsicgrowth
rates 11 : 12 :1000 and the same adult survival rates per period ar : a2 : 0'001.

The metapopulation has a symmetrical migratiotr Ptt : Pzz : Ptz : Pzt -- 0.001, hence

there is no relative source/sink and exporter/importer subpopulation. The discounting

rate á is 10%. Before the exploitation begins, it is assumed that the metapopulation

is in its equilibrium popuiation size lú1 - Ñz :250250' Optimal escapements for this

metapopulation u.r" ^g¡., : sÄrr" :112625,, hence both prey subpopulations are harves-

t"a .qrr.tty with first påriod optimal harvests Hfr," : HTtr" : L37625 and equilibrium

optimai harvests HI,¡r" : HI,¡r" :62000'
Now assum" iËåt thg.piedator, P¿, is present. Let us assume that the intrinsic

growth rate of the predator is s¿ : 1000 with the carrying capacity L¿ : 10000.

ih" pr"dutor's adult survival per period is not different from the prey's adult sur-

vivai and is not different between patches, hence bt : bz : 0'001. To see the effect

of predator's recruitment delays on the optimal escapements of prey populations, I

urrrr-" that the predator has migration parameters q11 : Qtz:Tzt: q22: 0'01'

Let la¿l : 0; -- 0.00001, that is, the predator has a high conversion efficiency. Let

Tt : T2 : 2, oL -- 3, oz : 4, and the prey do not experience recruitment delay,

that is, Jt : Jz : 0. With these parameters, a positive equilibrium population size,

1Ñr, Ñr, 
'Pr, 

Pr)- : (223702,223702,10619,10619), is obtained. using equations (6.42)

à,'á'10.+a¡ the optimal escapements for th, system are found, that is, Sir, : 11120.0'

sÄ,, : rrógta, Sä :4584 and 5Þz:4 smaller than the

escapements we gåt it we do not taÍ<e int lays (recruitment

delays z;re zero), that is, ,9Ñ, : Siy": 1126

Note that even thougË both-pt"y tn in terms of their

biological parameters, theii optimal escapements are different. We should harvest the

pr"y li.rirrj in the same patch with the predator subpopulation which has a lower con-

,r.r.ion dJu,y (in patch one) more conservatively than the other prey subpopulation

(^gÄr, > S;j 
'Weshould 

also harvest the predator subpopulation with a lower con-

version delay more conservatively than the other predator subpopulation (^9þ, ì SÞ?)

This is because predator subpopulation one has a higher discounted efficiency, that is,

Ct ) C2 dte to the lower delay in energy conversion (or < ø2) (see Result 19 and

Fþure O.Z;. ftwe ignore conversion delays, or if predation only aids predator survivaL,

opii-ul """.p"-"r,.is 
for both patches are equal. This is because in the absence of the

dll.y., pred.ator efficiency in both patches are equal, that is, Ct : Cz.

Figure 6.2.a shows a contour plot of the difference between two prey subpop-

ulation ãptimal escapements (Siy, - SÄrr) with the variation of a1 - a2 : a and

0, : þ, : þ. The contour line O it ttt" contour line where 'SÄ', 
: S&' The region

below this line is the region for ,sft, < sÄrr, where the conditions in Result 19 may

be violated. Fo, 
"xu-p1e 

if a : -o'oooí and B : 0'00001 then '9ir, < '9i¡, (see

Figure 6.2.a) and C < mar{ft,f} (r"" Result 19). If we ignore the predator-prey

inúraction, ihut is, if we 
"on"iå"ithe 

system as a single-species metapop'lation with

delay, then optimal escapements for both prey subpopulation would be the same due

to túe ,y--Ltri" delay, since 7r : 72 and rt : r2. If we only consider the presence

of predator-prey interaction but not the delays, then optimal escapements for both

prey subpoprrlutior1, would be equal along the line 0 : l"l. Figure 6.2.b is interpreted

similarly.
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Figure 6.2: Contour plot of ^9i,, - ,5i, (Figure 6.2.a) and Sä - ,Sþ, (Figure

6.2.b) with the variation of a1 - Q2: Q' and fu: þz: B and contour plot of

.9i,, - Sir, (Figure 6.2.c) and så, - sä (Figure 6.2.d) with the variation of a1

ar,d o2.

Figure 6.2.c shows a contour plot of the difference between two prey subpopulation

optimal escapements (^9îu, - Siyr) with the variation of ø1 and o2' The contour line 0

(år the lirre oz - or) is the contãur line where Sir, : SÅ/,. Th: region belou' this line

ir tfr" region for ,Sfy, < SÅrr. In this region predator subpopulation two has a lower

"orrr"rriÃ 
delay than predátor subpopulation one and hence has a higher discounted

efficiency than predator subpopulation one. In this case, we should protect both prey

and predator subpopulation in patch two more conservatively than prey and predator

in patch one (see Result 19).

As mentioned. earlier in this section, the optimal escapements in this example are

smaller than the escapements if we do not take into account the recruitment delays.

This is typical for harvesting a population with delayed recruitment in general- It is not

optimal to wait until juvenile reach maturity if the recruitment delays of the populations

u,re too large. Hence optimal escapement is zero (Clark, 1976b; Tuck, 1994). This is also

true in g"n".ul for the optimal harvesting of a predator-prey metapopulation. Other

.*u-p}", as in Figures 6.3.a and 6.3.c, where Qt : Qzt : q22 :0.002 and q12 : 0.003,

,ho* thu.t a prey subpopulation with a larger delay has a smaller optimal escapement,

until flnally ii is zero, that is, all the population should be harvested. In this example,

optimai escapements for both predator subpopulations are increasing with the increase

of the prey recruitment delay (Figures 6.3.b and 6.3.d). However, their equilibrium

harvests are decreasing, due to the decrease of their food (the PreY), until they reach

-1 00
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t N1 N2 s[. Si/" /Ifr, Hk"

0 220533 216539 111588 1 1 1718 108945 r04821

1 169831 170293 1 11588 1 1 1718 58243 58575

2 169831 t70293 11 1588 1 11718 58243 58575

3 169831 170293 1 11588 1 1 1718 58243 58575

4 169831 170293 111588 111718 58243 58575

5 169831 170293 0 0 169831 170293

t Pr P2 ,5Þ, sþ" Hþ, Hþ"

0 11659 t3717 3334 29LB 8325 10799

1 D.) 3 3334 2918 -3331 -2915

2 .) .-) 3334 2918 -3331 -29t5

ó B5B1 10803 3334 2918 5247 7885

4 12302 14063 3334 2918 B96B 11145

5 t2302 14063 0 0 12302 14063

Table 6.2: Optimal escapements and harvests from a predator-prey metapop-

ulation. The ú¿å row indicates the value for 5 - ú periods to go.

a constant harvest for any iarge values of prey recruitment delays, ?¿. In this example

predator subpoPulation two

prodt"", Hþ :6500, t hese

harvests are exactlY the
On the other hand, with the increa imal

escapements for both predator subpopulations decrease (Figures 6.4.b) while optimal

"r"ui"-"rrts 
for both prey subpopulations increase (Figures 6.4.a). Unlike the case

*h.r" the variation takes the form of prey recruitment deiays (Figure 6.3). in which

the increase of predator escapement does not mean the increase of predatol equiiib-

rium harvest, here the increase of prey escapement due to the decrease of predator

recruitment delay means the increase of prey equilibrium harvest (Figure 6.4.c) and

the d.ecrease of predator escapement means the decrease of predator equilibrium har-

vest (Figure O.+.ã). We harvest the relative exporter/importer predator subpopulations

-or")1"r, conservatively, but we no longer harvest ng within

the same patch as the relative importer/exporter more/less

conservati.r"ly (se" Figure 6.4.a). This is because efficiency

between the two subpopulations are different. It does not satisfy the condition de-

scribed in Result 1g. If there is no difference between the two discounted efficiencies,

for example if a1 - o2:3, then the rule described in the Result 18 above holds (see

Table 6.2).
To illustrate the comparison between predator-prey metapopulation policy and

the incorrect harvesting policy I give a different example where one predator subpop-

ulation is a relativ" ""port". 
and source subpopulation. For the following example I

assume that all parameters are equal to the previous example, except that q12 : 0'003,

ett : ezt : Qzz : 0.002, and o1 - o2 : 3, that is, predator subpopulation one is

a relative exporter and source subpopulation. If we correctly manage the population

as a pred.ator-prey metapopulation we find optimal escapements and harvests as in
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Figure 6.3: Contour plots of the optimal escapements (dots) and equilib-

rium harvests (dashes) for prey subpopulation one (Figure 6.3.a), prey sub-

population two (Figure 6.3.b), predator subpopulation one (Figure 6.3.c) and

predator subpopulation two (Figure 6.3.d). Prey numbers are in thousands'

Prey escapements are always smaller than escapements if there is no recruit-

ment delay and decreasing with the increase of the delays. If the delays are

extremely high (upper-right corner in the figure) then it is optimal to har-

vest all prey in both subpopulations. This is consistent with the result for

single-species metapopulation harvesting theory. Figures 6.3.b and 6.3'd show

that we should harvest the exporter predator subpopulation which has a lower

conversion delay (subpopulation one) more conservatively than predator sub-

population two.
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Figure 6.4: Figure 6.4.a shows contour plots of prey optimal escapements

S;, (aots¡ and .9i,, (dashes), Figure 6.4.b shows contour plots of predator

opiim.l escapements,g|, (dots) and Si5 (dashes), Figure 6.4.c shows contour

piots of prey equilibrium harvests f/fi,, (dots) and Hi¡, (dashes), and Figure

6.4.d shows contour plots of predator equilibrium harvests f/þ, (dots) and Hþ,

(dashes) with the variation of the predator recruitment delays 11 a'îd T2.

Table 6.2.
Because there is no recruitment and energy conversion delay differences between

subpopulations, the relative exporter predator subpopulation is harvested mole con-

servatively than the relative importer predator subpopulation. As in the case of the

non-delay predator-prey metapopulation, the prey living in the same patch with the

reiative exporter predator subpopulation is harvested less conservatively. Furthermore,

assuming ihrt i1 th" b"ginrring of the exploitation the metapopulation consists of adult

individuáls only, since both predator subpopulations experience two periods recruit-

ment delay, we should. leave both predator subpopulations unharvested for the flrst two

periods (indicated by the negative harvests Hþ, : -3331 and Hþ,: -2915). As in

the case of the non-deiay mod.el, there are two different ways to handle these negative

escapements, if they impossible to implement. However, seeding strategy using these

negative escapements gives a higher profit than the other two methods'

If we incorrectly consider the population to be an unconnected two-patch predator-

prey population, wq find that ,Sft,, - SÄr, , Sîu". : Sfr, , Sþt- - Sþr- 11d 
Sä-"- : 5Þt

witir equilibrium harvests I/fii,, 
': 

Hî,u,- Hîv"-- : Hî,tr, Hþ'. : 8923 < Ili, .and
Hþ"_ : Il0B4 < Hþr. As in thËïon-delay case, the incorrect harvesting policy fails to

o0
1001050

T1
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recognise the importance of the relative exporter and source subpopulation, hence this

impJrtant subpopulation is over-harvested while the less important subpopulation is

unãer-harvested. As a result, the total harvest from this incorrect harvesting policy is

less than the total harvest if the population is managed properly.

If we incorrectly consider the population as a well-mixed predator-prey popula-

tion, we find that ,9i,- : Sîtr- : TSîu- :110896 and ,Sþ,- : S?r, : +Sþ- : 278L

Here we see the rule'Ëolds ttrãt if ïe incorrectly manage a predator-prey metapop-

ulation as a well-mixed predator-prey popuiation we would over-harvest the relative

exporter predator subpofulation and the prey living in the same patch with the relat-

ive impo*er predator subpopulation. But, the rule that a relative importer predator

,ubpoiulu,tion and the prey living in the same patch with the relative exporter predator

subpopulation would be under-harvested, as suggested by the explanation of Result 21,

do". rrot hold. This is because the discounted predator efficiency C; does not satisfy

the assumptions in Result 21.

If now, for example, we chose þ,: þ,:0.00001331 and incorrectly manage the

population as a well-mixed. predator-prey popuiatiorr we wouid produce escapements

sïu,- : sîv"- : å,9i,- : 112625 and sþ,- : lþr- 
: tsþ- : 3522',while if we manage

thäþop"iuiîor¡ -riätiy as a two-patch*predatôr-prey metapopulation, we would find

optimal escapements ,si¿, - sÄr, -- 112625, sþr:3670 and sh:3338. Here the rule

described in Result 21 is satisfled'

The last example shows that to satisfy the rule in Result 21, we need the discoun-

ted predator efficiency,c¿, to be equal to zero (which is satisfied by 0¿:0'00001331 >

lonl : o'oooo1). In nature,
gical efficiency is greater tha
difference between PreY and

price of predator is ten times the price of t
ãr the predator biological efficiency is about thirteen per cent, which is plausible for

many .p""i", (Rand and stewart, 1998). As in the case of the non-delay model, the

uru,lyri. with the inclusion of harvesting cost is similar to the analysis where harvestìng

cost is neglected.

6.2 Predator-prey parental delay model

A predator-prey receptor delay mod.el assumes that the recruitment delays occur in the

..,rÈpoprrluti,ons that receivethe juveniles. Tuck (1994) argued that delay may occur due

to **" genetic effects, hence all juveniles from subpopulation i experience the same

delay, regardless of where they go. He called this type of delay "parental recruitment

d"luy;'. 
-fnir 

model can also describe delays related by environmental effects on a

subpopulation before the juvenile migrate to other subpopulations.

in nu,ture, there is much evidence to show that parental recruitment delays can oc-

cur, for example in Chinook salmon, Oncorh,yncltus tshawytscha (Hankin eú ø/.' 1993)'

errírr' and Hãndry (1g92) studied adult life history of Sockeye salmon, Oncorhynchus

i"rl*o, in Lake Washington which has five subpopulations. Two of the subpopulations

are native to the lake while the other three are native to a different lake, Lake Baker'

They found that spawning salmon in one of the non-native subpopulations are older

than the native .på"i"r. Th" ug" of these non-native spawning salmon in Lake Wash-

ington is relativeiy the same as the age of spawning salmon in their original habitat

(Läte Baker). Frrrth".-ore, they pointed out that the existence of local adaptation is
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difficult to prove, they argued that habitat variations are not sufficient to rnake dif-

ferences in ag" at maturity. The model in the following section is more appropriate

to describe this type of delay than the previous predator-prey receptor delay model' I

refer to the model in this section as a predator-prey parental delay model'

6.2.L The model and its optimal escapements

If atl the symbols in the predator-prey parental delay model have the same meaning as

the previous predator-prey metapopulation with receptor delay recruitment, then the

gro*th of the exploited populations in the predator-prey parental model are given by

l/r1r+r) : ørSN,o * pnFr(,9ry,*-r,) I pz1F2(S¡¡ro-.,r) I a1S¡¡,¡-9r'¡, (6.46)

lúz1r+r¡ : r,zSNrx * pz2F2(S¡¡ro-.,r) + pnFt(Sxrr--,, ) * o2S¡¡"rSp"o, (6'47)

Prlr+r) :btspro * qrrGr(^94*-",)+ qztGz(Sp"r-n) * þrS¡u,.-"rSPrr-or' (6'48)

Pz&+t) -- bzSprn * qzzGz(Spro-,r) I qtzGt(Sa*-"' ) -l þzS¡'tu-o"S,ro-or' (6'49)

Optimal escapements for the present model satisfy implicit equations

pry - c¡¡r(sÄ¡") : (pr - .¡¡r(¡/'))( at I p'.Fl1si,,.)Rt' I ar,9þ,.)
P 

*(Pt - cryz(/úzr) )P,'Fi(Siu,")P"
*(P, - cn(Pn))0rSþ,ol"', (6'50)

p¡,t - "rr(SÄrr. )

p

'p, - cp1(Sþ,")

p

(pr - c¡,'z(¡/zr))( az * pzzFlç;i,,)e'" ¡ orSþ")

t (pn¿ - crur (l/r r ) )Prt Fl(Siu,) P"
t(p, - cpz(Pzt)) 025þ,o P"'',

(p, - cpr ( & r ) ) (b t r q'G'1(sþ,) p"' + 0 tsiv,o p"' )

-l (p, - cpz(Pzr)) qrrG'r(Sþ,o) P"'

*(pt - "¡¿t(l/tt))41^9fi¡,.,

(6.51)

(6.52)

pp - cpz(Sþr") (p, - cp2(P21))(br I qrrG'r(Sh) p"' + /rSiv,o p"")

* (p, - cn(Prt)) qrt G'r(Sh) P"

*(p" - c¡,tz(Nzt))or SÄ',..

p

(6.53)

6.2.2 Results with negligible costs

As in the pred.ator-prey receptor delay model, results are interpreted by neglect-

ing all costs associated with harvesting. I also assume that there is no difference

b.i*""n the price of the prey and predator. Using these assumptions, substitute

all derivatives of the logistic recruitment functions 4(¡f,¡,) : r¿N¿k(l- N¿klKi) and

G¿(P¿t): s¡Pik(I- PiklL;), into equations (6.50) - (6.53) to obtain

1 2r;,n- 
Knp

a¿*(pn+piz)p1i
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Si/r * (on + þ¿p"')Sþ,, (6.54)



1 :
p

b¿ -l (qn + qi2)p'¿
2s¿

.s" - -L; ^9åtl * (o, + 0¿P"')Siv, (6.55)

(6.56)

(6.5 7)

(6.5e)

Solving equations (6.54) and (6.55) produces explicit expressions of optimal escape-

ments,

provided

ñ* A;(qn, + qiz)p"ifr + C¿no
ùNi:7,

L¿: c? - (po, i p¡r)p'''fi{n' + q;r)p"'T f o, (6.58)

with
A, : L 

- (po, I p¿2)p1ir¿ - a;,
p

B¿: - (qnr l ø;z)P")s¿ - b¿, (6.60)

and
C¿: a¿ I þ¿p"'' (6.61)

As in the case of the predator-prey receptor delay modei, I deal only with positive

escapements. The following result guarantees that the escapements are all positive, and

the result is used to obtain escapement comparison between the current method and

the method where we ignore the predatol-pley interaction' I do not go into the details

of the proof of the following result, since it can be proved analogously to the result in

the previous section.

Result 22 (sfficient cond,itions for positiue escapernents) Let Sfu and sþ denote the

optimal escl"peffLent from a pred,ator-prey metapopulation giuen by equations (q.!6)^??d

¡to srl If Ã¿ and, B¿ o.re negatiue, ond Cn is non-positiue with C; ) mar{?,+},
then

L¿ i,s negatiue, and Si¡ and Sþ are pos'itiue'

Result 28 (Escapement comparison to a si,ngle-spec'ies metapopulation) Let Si¡ and

sL. d,enote the optimal escapement from a predator-prey metapopulation giuen by equa-

tíåns þ.56) o"i ¡O.Sl1, and, let Sfy 
" 

and Sþ" denote tlte optimal escapement frornth'e

single-species metapopulati,on wit¡" ieceptor population delay rnodel gi'uen by the same

equations by assigÃi,ng ai: þ¿:0. If A¿ and B¿ are negatiue, and C¿ is non-positi'ue

with C¿ > mar{ft,T} , th"n

sfr, - sir,, : 6;T#þd,i?^9fr, < o and sä - sÞ,, : q¡t*q¡z
C

2si L¡ ,9ä<o

1

p

p

Hence, in general escapements from a predator-prey metapopulation with a parental

delay modãt are smaller than escapements from a single-species metapopulation with

aparentaldelaymodelandhasthesamevalueifCi:0.Thispropertiesisalsofound
fo. th" r.cepto. d,eiay model discussed in the previous section. The condition C¿: 0 is

only acceptable, biologically, if the predator is more valuable than the prey, otherwise

it requires extreme predator efficiency.
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Escapement comparisons between subpopulations

This section discusses some comparisons of escapements from the predator-prey par-

ental delay model if there is parameter variability between patches.

Lemrna T (Mi,gration trade-off equations) Let Siu and Sþ denote the 
.optimal 

escape-

ment frorn à pred,ator-preA metapopulation with receptor local population delay model

giuen by equati,ons (6.56) and (6'57). If i:1,2, Iet ai: Qt b¿: b, Kt : K, L¿: L,
"Cn: i, R: I - a, S : L -b, r¿^: (p¿rl Pn)pl'r¿ and s;^: (q¿tl q¿z)p"'s¿, for
i :1,,2, then

(,SÄ,, - .çfr,)ArA, : ("'(, t,n - s2în) - 9#('r* -",-)) (T - ')
-Y (r 2'ç\

L \) - ;)(rr*"r* - r2nls2rn),

and

(sä - .9ä)41a.2 : (r'?r* - rz^) - 
y#çr^ -",-)) (T - t)

2C / 2R\,
-; lt - î) (rr*'r* - rzrns2m)'

Result 24 (Escapement comparison between subpopulations) Let one of the prey sub-

population, b" o ielatiue source while all other parameters of the prey and the predator
'are 

identical for both subpopulations ercept delay pararneters for the prey. Without loss

of generality let us assunl,e that prey subpopulation one is th'e relatiue solt'rce' th'at is,

(ptt + prr)i, > (prrl pzt)rz,^and-also 11* ) r2*' If A¿ and' B; are negatiue' C¿ i's

non-po-siti,:,ue with C > rnar{p,T}, tt'""

Sfu, > Siy, and Sþ, < Sþ.-

Result 24 shows that, as for the non-delay case, there is a region of parameters

where we protect a relative source prey subpopulation better than a relative sink prey

subpopulation in the sense that we harvest the relative source prey subpopulation with

more escapement than the sink subpopulation. However, this source subpopulation has

to have an additional property, it has to be a source prey subpopulation with respect

to time delay, that is,

(Pn + Pn)P1'rt > (Prr l Prz)P"rz' (6'62)

In this case, the per capita larval production of subpopulation one, discounted by its

cumulative death rate, needs to be larger than the per capita larval production of

subpopulation two, discounted by its cumulative death rate' Similar to the case of

the receptor delay model (inequality (6.45)), inequality (6.62) redefines what a source

,ubpopnlation is for the parental delay model. The difference is, here migration rate p¿¡

is dlscounted by the delay of subpopulation j, while in the previous model migration

rate p;¡ is discounted by the delay of subpopulatìon 'i'

ti Uotit prey subpopulations have the same delay,,1r:'lz, ot'Yt 112, then Res-

út 24 tells us that the relative source prey subpopulation should be harvested more

conservativeiy than the relative sink prey subpopulation and that the predator living

in the same patch with the relative source prey subpopulation shouid be harvested
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more heavily than the predator living in the other patch. This is a generalisation of

the rule of thumb for singie-species metapopulation exploitation (Tuck, 1994)' In con-

trast to the predator-prey receptor delay model, here we can still establish the same

result foryr 1 ^lr. Frrtth"r-otã, if th"." is no source/sink and no exporter/importer

subpopulation, but Jr 1 1zt then we should harvest the prey subpopulation with a

lower recruitment delay (subpopulation one) mole conservatively than the prey sub-

population with a higher recruitment delay (subpopulation two). This is not the case

irr 1n" pledator-prey receptor delay model, where it suggests that we should harvest

both prey subpopulations equally'

In harvesting theory for a single-species metapopulation, if there is no source/sink

subpopulations and there is no differences between time delay for prey and predator

jrr,rårrii"g to recruit into the adult populations, or if r1p1¿ : r2p2i with any value of the

ã"lu,y, both subpopulations should be harvested equally. In contrast, in the present

theory, optimal "r"u,p"-"rts 
also depend on other quantities, prey vulnerability to

predation, d.¿, an7d. dlscounted predator efficiency, C¿. I use the following lemma to

investigate optimal escapement differences if discounted predator efficiency are different

between patches.

Lemma I (Discounted, efficiency trade-off equations) Let Si¡ .and 
sþ 

.denote 
the op-

timal esca,perr¿ent from a pred,ator-prey rnetapopulation giuen by equations (6'56) and

(6.57). If o, - a'2: a, bt - b2 -- b, K, - Kz: K' Lt: Lz: L' Pt:
pzz,tptz: pzI¡err: Qzz¡Qtz: Ç2ttTt: T2,¡st: S2s Tim: (pn+ P;z)p1tr;: rin and

sim : (q¿t + Q¿z)P"t s¿ : r* then

(.ei,, - sÄ,,)414, : (c, - t)l?P(c2 +c,) * ry* + BQ,cù]

and

(sä - sä)ala' (Cz - Ct) (cz+ c,) ïryf + AQ,c,)f2Br*
K

Using this lemma I establish the following result

Result 2l (Escapement comparison between subpopulations) Let one of the predator

subpopulatio'ns be relatiuely more efficient with respect to tirne delay, while all other

poro*"t"rs of the prey and. th.e pred,ator are identical for both subpopulations, without
'loss 

of generality we ußsurne that predator subpopulation one is relatiuely more efficient,

that is, c1) cz. Ir Ar : Az : A and B1 - Bz : B are negatiue, and c¿ i,s non-positi'ue

with c¿ 2 mar{ft,t}, th"n

,Si,, > Si¡, and Sþ, > Sþ,'

Interpretation of the result above is similar to the same result in the predator-prey

receptor delay model.

Cornparison of optimal escapement to incorrect escapements policies

Result 26 (Comparison of strategy with escapements from an unconnected two-patch'

pred,ator-pr"y ,yri"*) Let Sfr and Sþ denote optimal esc&penxents frorn a predator-
-prey 

metapopul'ati.on giuen by'equations (6.56) and, (6.57). Let Si¡* and sþ- denote^

optimal esco,petnents if we incorrectly consid,er the population as a system consisti,ng of

t75



tuo unconnected, pred'ator-prey populations' Let A^9¡¡, : ('SÄ/' +'Sîu, ) - (^9it," tST'{r,.) ""d-
A,Sp" : (,Sä +SA¡-(Sä-+Sä,) . If att assumptions-in Lernma 7 are sati'sfied' A; and

B¿ ir" ràgàitu",-Cn ¿r'"o"-potdliue witlt.c¿> mar{?,+} and also stm: s2m: sm

then:

.t e* c* 
- 

(rtu-rt^)X
r. .fNr - rNr, Arr^r t

tn e* ct< - 
(rzu-rz*)X

¿, ÐNz - ùN2u - LzuLz t

o Q* C'* - 
(rt'-rr*)Y

U. ,'tPt - ÙPtu - Arr^r t

t C* C* - 
(rzu-rz^)Y

4' oPz - ùP2u - Azu\z )

5. A^97y. -
¿)( _Cr) lur2u-r Inf2n X,

uAzLzu

6. L'Sp-: (8"- KL -C2))(r1ur2u-r tmrzm) Y,
Ar Lzu1ù

where x : (cçc - 28 I n) - +Ð + . 0, Y : (ttt - Tl - +Ð c > 0'

Assuming rL : 12¡ I interpret the result above as follows. Recall that r¿^ :
(p;¿ + P;¡)p1ir¡ ar'd r¿u: (p¡¡r¿ I p¡¿r¡)P'''

!. If pe: pzt then r¿^ -- riu regardless of the value of recruitment delays 7¿. In

contrast to the predator-prey metapopulation with receptor delay model, the

present model suggests that if there is no exporter/importer prey subpopulation

lhen r"sults from the correct and incorrect policy are the same' that is, Sit, :

^9ft,, and Sþ, : ^9þ,", regardless of the values of the discounting rate (ó), prey

discounted retentiåä ra.r- (r¿p¿¿prr) and prey recruitment delays (1¿).

2. If ps ) pzzt pn ) p21 and 1t : 'lz then 11- ) rtu and 12^ 1 rzu' The result

is the same tà the case of predator-prey receptor delay recruitment in the pre-

vious section. Therefore, incorrectly managing a predator-pley metapopulation

as an unconnected. two-patch predator-prey popuiation would over-harvest the

relative exporter prey subpopulation and the predator living in the same patch

with the reiative importer prey subpopulation. On the other hand, the relative

importer prey subpopulation and the predator living in the same patch with the

relative exporter prey subpopulation would be under-harvested. In contrast to

the parentul ,""rr,.it-ent delay model for a single-species metapopulation (Tuck,

lgg¿), to obtain the result here we need both of the delays to be equal, that

i., ?, :.y2. In the single-species metapopulation model, the same result can be

obtained regardless of the values of the delays ?; (Tuck, i994).

Result 27 (Comparison of strategy with" escapements from a well-mited predator-prey

system) Let Sfr and Sþ denote optimal escapernents from a

tion gi,uen by equations (6.56) and, (6'57)' Let Si,- and' Sþ*

ments if we incorrectly consider the population as a well-m

(sÄr, + sÄ,,) - si¡- and, LSp-: (sä +r9ä) - Sþ-. If all assumpt'ions in Lemma 7

àr'i'roü,rfiL'¿, ¿,i'änd, B; ore negati,uL, Ci"¿s non-þositiue with ci > rno,ít{?,+},
stm : s2m : s*, and, in ad,d,i,tion C satisfi,es C (øC'+gß+t-C -"3i^) : O

then:
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1. si/, -
oq*o. uNz

4. Sþ" - TSþ-:
lu-f2m Y

AoAz '

3. 5þ,

5. A^9;y. : l6L _C2 ruru-rtnr2n)
X,,

A1AeA2

6. L.Sp- -
(as^l(K L _C2 r uf u -f lnr2n Y,

Ar

where x : (cçc -2BlK) - tPÐ+ . 0, Y' (tf, - T¡ - +f) c > 0 and,

Ao : C2 - 
 q-Ki- 

'

Assuming rr : 12¡

(p¿; + P4)P1t)r¿ ard r- :

2

I interpret the result above as follows.

(W)pb'+',,)t'.
Recall that r¡^ :

1. If p11 : pz2t Ptz : p21 and 1t : 1z then r¿^ - rw' Hence, if there is no

exporter/importer prey subpopulation and there are also no recruitment delay

difierences between the two prey subpopulations, then optimal escapements from

the predator-prey metapopulation are exactly the same as escapements from the

well-mixed predator-prey harvesting theory'

2. Ir p11 : p22t ptz : p21 and if there is no discounting rate, then there is no

difierence between optimal escapements from a predator-prey metapopulation

and from the well-mixed pred.ator-prey harvesting theory regardless of the value

of recruitment delays 11 and 12.

3. If p11 ) pzz,, Prz ) Pzr and lt : 1z then 11- ) r., and rzm 1 r-, assuming

that the discounting rate is not zero. The result is the same as the case of the

receptor delay recruitment model. Hence, incorrectly managing a predator-prey

-etupopulation as a well-mixed predator-prey population would over-harvest the

relative exporter prey subpopulation and the predator living in the same patch

with the relative importer prey subpopulation. On the other hand, the relative

importer prey subpopulation and the predator livìng in the same patch with

the relative exporter prey subpopulation would be under-harvested. Incorrectly

managing the popuiation as a well-mixed predator-prey would under-harvest the

prey and over-harvest the predator at the metapopulation level.

In the single-species metapopulation harvesting theory (Tuck, 1994), the parentai

delay model adheres to the relative source/sink results for the harvest policy compar-

iron. ,"gu.rdless of the values of the delays. However, in the presence of predators, the

two mod.els in this chapter (the receptor delay and the parental delay predator-prey

metapopulation models) adhere to the relative source/sink results for the harvest policy

"o-pu,ri.ons 
in Chapter 5 only for a special case, that is, if the population delays are

"qrrul. 
The following result investigates the differences between escapements from a

predator-prey metapopulation assuming parental delay recruitment and escapements

iro- u, pr"dutot-prey metapopulation assuming local population receptor delay recruit-

ment discussed in the previous section. The result can be proved analogously to Results

26 and 27.
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Result 28 (Escapement compari,son between the predator-prea parental delay model

and, the pr"dotor-prey receptor d"elay modet) Let sfr , and sþ o denote 
. 
optimal es-

capements from a pred,ator-prey metapopulation ottu*ing parental recruitment delay,

giien by equatio"i ¡O.SO¡ and, (6.57), and, let Sfr¡" ond, lÞ,, d.enle opti,mal esca,pe-
"*rnt, 

iro* o pred,at,or-prey meta,population assuming local populat'ion receptor recruit-

rnent d,elay, giuen bE 
-equ,ations 

(6.12) and (6.13). If all h'ypotheses in Lemma 7

are satisfied,, s1^ -- 
-s2m : smt A¿ and B; are negatiue, and c¿ 'is non-positiue with

c¿ ) man{#,T}, tlr""'

7. ,SÄr," - Si/,, : ry;#,
2. Sîv"o - Si/r" : þi;#,

g. SÞ,o

4. sh,

- ùpr"

ñ* (r2"-r2e)Y
- ùPz": fi;ñ;'

where x: (cçc -2BlI{)-+Ð+.0,Y: (tft -Tl-+r)c )0, L'¿o i's

L,; in (6.58) and L,;, is L¿ in (7'52)'

To interpret the result above, let us assume that we have a predator-prey meta-

population ,uiirfyirrg all the assumptions in the resuit above, with parental recruit-

-"rt delay mode. i"t prey subpopulation one have a larger recruitment delay than

prey subpãpulation two, that is, lr t .yr. Recall that r;, : (p;¿p'' * p¿ipli)ro, ,io :

iroiOr, *-p¿¡pr,)r¿. If ^ft )'yz then 11" ) r1o and 12, 1r2r, therefore

,Srro ( SNr,, Snrro > S¡'¡r,, SPr, ) Spr' and 'Srro 1Spz,'

Hence, assuming that the metapopulation has local population receptor delay mode,

would under-harvest the prey subpopulation with the larger recruitment delay, and

over-harvest the prey .ubpopulation with the lower recruitment delay. on the other

hand, we would u,lro-o,r"r-harrr"st the predator subpopulation living in the same patch

with the prey subpopulation which has a larger recruitment delay, while the other

predator subpopulatiãn would be under-harvested (see Figure 6.5)'

6.2.3 Numerical examPles

I use a similar example to that for the receptor delay predator-prey metapopulation

model discussed in the previous section, that is, a predator-pley metapopulation with

the following parameters: I{t : Kz : 500000, Lt : Lz : 10000' rr : 12 - 1000'

st: s2: 1000, ar: a2 - 0.001' bt : bz: 0.001, Pn : Pzz: Ptz: Pzt:0.001'
ett : ezz : Qtz : Qz't : 0'01, B1 : 0z : lotl : lo.'l : 0'00001 an{ á : I0To'

Furthermore, to altow comparison between the predator-prey receptor delay model

and the predator-prey parental delay model I assume that 71 : ^12 :0, 1r : 2, 12 :3
and o1 : 02:3. For comparison reasons) I add subscript r and p to indicate results

from the pred.ator-prey releptor delay model and the predator-prey parental delay

model, respectively. With these parameters, a positive equilibrium population size,

(¡,rr, ú, P;, Pù :" (2237 02, 2237 02,1 06 1 9, 10619 ), is obtained. Using equations (6'42)

ànd (6.a3), optimai escapements, Sfy," : SÅr," : 11206 and '9þ," : Sþ,, : 4564, are
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Tt>T.

sar. = S-tt S.rt = S 
=tt

S*r. > srqlp S *r. = Sr.¡zp

Figure 6.5: Prey subpopulation one has a larger recruitment delay than prey

subpopulation two, that is, .h ) ^lz. The figure shows that assuming the

metapopulation has local population receptor delay model we would under-

harvest the prey subpopulation with the larger recruitment delay and over-

harvest the prey subpopulation with the lower recruitment delay. On the

other hand, we would also over-harvest the predator subpopulation living in

the same patch with the prey subpopulation which has a larger recruitment

delay, while the other predator subpopulation would be under-harvested'

obtained. Similarly, using equations (6.56) and (6.57) optimal escapements ^9fii,o 
:

111200, Sî,¡", -- tllzl3, Sþ,,:4584 and Sþ,,,-4542 ate' obtained'

Note ïhat the predi[ät-pr"y receptor deiay model gives equal escapements for

both patches while the predator-prey parental delay model harvests the predator sub-

pop'ùtio1 with the lower recruitment delay more conservatively than predator subpop-

ulation with the higher recruitment delay. This is because the proportion of predator

juveniles that remain in the parent patch equals the proportion of predator juveniles

ihut -igrate to the other patch, qii: qii for i : 1,2, and both subpopulations mi-

grate syLmetrically,q¿¡ : Çji.As a result, recruitment delay differences does not cause

ãr"u.p"-"rrt difierenc"s. R.call the migration trade-off equation in Lemma 5. In this

case, the equation reduces to

asp :,,^llt(c- T) -Wl(,,^-,,*), (663)

AsN : c(",*- sz*) (ttT - q +w), (6.64)

with As, : (,Sä - ^9ä)A1Ar, As' : (^9i/, - Si¡,)ArAr, sim : (q¡p"' I q¿2p"")";,

rim : (inrpn I p;2p.,)rl and rim -- (pnp" I p¿zp'")r¿. Clearly srm : s2* and hence

Sfr, : ,Sfi" ANd Sþ,: Sh.
On [h. otheihand, for the same parameters as above, the predator-prey parental

delay model harvests the predator subpopuiation with the lower delay more conser-

vatively than the predator subpopulation with the higher delay. This is because es-

capement of subpopulation one is independent of the delay in subpopulation two and

,ri.e-rrersa (see equations (6.56) and (6.57)). The increase of the delay in predator

subpopulation two only decreases escapement of predator subpopulation two and, in
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addition, it also increases escapement of the prey living in the same patch with this

pred.ator subpopulation. It can also be seen from the migration trade-off equations in

Lemma Z which reduce to equations (6.63) and (6.64), but with sim: (q¿;+ Q¿i)p"¿s¿

a.,'d r¡* : (p¿¿ I p;¡)pl'r;. Sin"" T1 1 T2 we have s1* ) s2*' Moreover, since the

assumptions'in Resuít22 ur" satisfled then we have ^9f¡, < SÄ¡, a1d..9l 
->-Sh

I compare results from the predator-prey receptor delay model and the predator-

prey parenial delay model for various cases' such as different delays and migration

puru,-"t"rs for the predator as shown in Table 6.3. The table shows tha't when the

predator migrates symmetricaliy with identical proportion or Q¿i, such as in the example

above, escapements from the predator-prey receptor delay model are always equal

for every put"t regardless of the value of recruitment delays. Escapements from the

predator-pr"y purÃtal delay model follow the general rule described above. However,

when the predator migrate non-symmetrically, in this case predator subpopulation one

is a relative source urrd 
"*porter 

subpopulation, then we shouid harvest the relative

exporter and source subpopulation more conservatively than the relative importer and

sink predu,tor subpoprrtutøtt regardless of the value of the delays' We should also

hur,r"rt the prey living in the same patch with the relative exporter and source predator

subpopulatiàn l"ss cJnservatively than the other prey subpopulation (see Table 6'3 for

,rorrlry--etric migration case). This suggests that the rule in the previous chapter on

how to harvest u ,ãlu.ti,r" source/sink and exporter/importer subpopulations is robust

if the difierence between delays is not large (see Figure 6.6).

Figures 6.6.a and 6.6.b show that the rules of thumb of how to harvest a relative

source and exporter subpopulation (in this example predator subpopulation one is a

relative source u,rrd ""porter) 
are vaiid for the predator-prey parental delay model as

long as rt 1 Tz. However, in this special case, it is valid for the predator-prey receptor

delãy model regardless of the value of r¿. Figures 6.6.c and 6.6.d show that as prey

recruitment delay ,yi varies, the effects of predator parameter differential are neutralised

by large values o1 .ln. For small values of 7¿, the rule to harvest a relative source/sink

.nd "iporter/importer 
subpopulation holds for both the predator-prey receptor delay

model and the predator-prey parental delay model'

6.3 Concluding Remarks

In nature, time-delays in recruitment occul for many species of frsh' For example'

Pacific ocean perch has a recruitment delay of at least 8 years (Gunderson, 1997)' For

this reason, the predator-prey metapopulation model in Chapter 5 was extended in

this chapter by including ã time-delay in juvenile recruitment for both species' The

model takes the form of a simple age-structured model which has only two age-classes'

juvenile and adult.
Recruitment delay can be modelled in two different ways. First, a recruitment

delay experienced by juveniles can be related to the subpopulation in which thev are

,."rrrit"J, this is referred to as the "local population recruitment delay model". Second,

the delay may be related to their original subpopulation, and this model is known as

the "parental recruitment delay model" (Tuck, 1994). I extended the basic predator-

pr"y -"tu,population model in chapter 5 by including these two types of recruitment

delay.
The results in this chapter show that if both subpopulations are identical then

models produce the same optimal escapements. However, if one of the subpop-both

180



-110

^9i¿,

(r)
- Si/, a.nd ^9þ, - S|,,

(b)

^9i/, - ,Sir, and Sþ, - Sþ,
10

10

l0

10

0

10

T2

'lz

T2

o
5oo

tl

Receptor delay model

T1

Parental delay model

(d)

^9ir, - ,5i¡, and Sþ, - Sþ,
^9ïu, - ,5

(.)
ir, and Så, - Sä

10

5

10 o

"ìit' 'Yt

Figure 6.6: Figures 6.6.a and 6.6.c show contour plots of Sir, - ,5i'" (dots) and

sÞ; - Sþ, (dashes) from the reóeptor delay model and Figures 6.6.b and 6.6.d show

.ár,to,r, ilot" of Si,, - Sir, (dots) and ^9þ, - S!, (dashes) from the parental delay

model. In this case, predator subpopulation one is a relative exporter and source

subpopulation. Figure 6.6.a shows that regardless of the value of predator delays,

the rule to harvest a relative source and exporter subpopulation conservatively holds

in the receptor delay model and Figure 6.6.b shows that the same rule holds in the

parental delay model as long às 11 1 12. The sign of si,, - si/, and sþ, - sþ,

are changed in the lower right part of Figure 6.6.b. Figure 6.6.d shows that if 7;

is sufficiently large then optimal escapements for both prey subpopulations are the

same. In all flgures Çtz - 0.03, Qn: gzz: Ç2t:0'01 with lt:'lz (Figures 6'6'a

and 6.6.b) and 11 < 12 (Figures 6.6'c and 6.6.d).
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(ã) Symmetrical migration case with q12 : Ç21= Çtt: Çlzz:0'01

Escapement Ty = 2 1Tz:3 Tt:Tz-3 1r:3 ) 12:2
RDM PDM RDM PDM RDM PDM

si',
si,,
,5Þ,

sþ"

111206
111206

4564
4564

111200
7tl2t3

4584
4542

rr72l3
111213

4542
4542

trr2t3
1 1 1213

4542
4542

111206

111206

4564
4564

111213
111200

4542
4584

(b) Non-symmetrical migration case with Çrz : 0'03, 7zt: Çtt = Çzz:0'01

Escapement Tt:2112=J T1: T2: J Tt:3)12:)
RDM PDM RDM

si',
si',
sÞ,

111140
111206
4777
4564

111135
111213

4792
4542

1.lll42
TIL2I3
4772
4542

rtrr42
III2l.3
4772
4542

11 1137

111206

4787

4564

Irll42
111200
4772
4584

Table 6.3: Escapement comparisons between the predator-prey receptor delay

model (RDM) and the predator-prey parental delay model (PDM). The table

shows that when the predators migrate symmetrically with identical propol-

tion of qij, escapements from the predator-prey receptor delay model are

always equal for every patch regardless of the value of recruitment delays'

However, when the predator migrates non-symmetrically we should harvest

the relative exporter and source subpopulation more conservatively than the

relative importer and sink predator subpopulation regardless of the value of

the delays. This suggests that the rule in the previous chapter on how to

harvest a relative source/sink and exporter/importer subpopulations is robust

if the difference between delays is not large'

ulations has a larger recruitment delay (or in general there is a biological parameter

difierence bet*een patches) then the opti nal escapements will differ' For exampie, if

prey subpopulation one has a larger recru

that is, Jr ) Jzt then escapement for prey

model is lower than escapement from the re

subpopulation two from the parental delay

receptor d.elay model. Hence, incorrectly managing a predator-pley metapopulation

hu.ring pur"rÌiul recruitment d.eiay as a me;apopulation with local population receptor

delayïodel, would under-harvest the prey subpopulation with the larger recruitment

deiry, and over-harvest the prey subpopulation with the lower recruitment delay' on

the other hand, it also would ot"r-hu,*"st the predator subpopulation living in the

same patch with the prey subpopulation which has a larger recruitment delav, while

the ot-her predator subpopulation would be under-harvested.

In a special case, if migration parameters ale uniform, that is, pii : pii)Vi, i - 1,2

anð. q;¡ : ãrnríi,i :1,2, then escapements from model are equal

fo, "ïäry f"t"tt 
ínit" th" pur"rrtal delay model escapements for

difiereni put"h"r, that is, ^9tr" < SNr' : S¡rr" ( : Stv,' ) S¡¿'o'

depending on the value of råcruitmánt delay, 'y¿' surprising if we
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look at'equations (6.42) and (6.56) for the receptor delay model and the parental

delay model, respectively. Escapemenl ,siv,o from the parental delay model is only

ufi""t"d by ?r, while escapement from the receptor deiay model is also affected by 'Yr,

which is smaller than 1i. This is consistent with single-species harvesting theory which

concludes that we should harvest a subpopulation with a greater recruitment delay

more heavily than a subpopulation with a lower recruitment delay (Tuck' 1994; see

also Table 6.3).
The parental delay model would conserve a relative source prey subpopulation

more conservatively than a relative sink prey subpopulation and harvest the predator

living in the same patch with a relative source prey subpopulation less conservatively

than the other preãator subpopulation if prey subpopulation one has a lower recruit-

ment delay, so that (pr, + pn)p1'11> (prrlPzz)p1"12. The receptor delay model needs

an additional conditìon, that is, prr ) pztt Pn 2 Pzz ot Pt ) Pzt' Ptz ) Pzz - for ex-

ample, if the proportion of migrating juvenile from patch one to patch i is greater than

th. propo.tiotr oi migrating juvenile from patch two to patch i, for i -- 7,2' However'

,r-Lriåu,t examples show that if the difference between delays is not large, then to

establish the rulã, the additional condition above is not required'

Furthermore, if there is no discounting rate or if recruitment delays in the two

patches are equal, then the rules of thumb of predator-prey metapopulation harvesting

ih"ory, such as escapement comparison between patches and escapement comparison

to incorrect harvesting policies, hoid. If the discounting rate á is not zero and there is

a difference in the r""-rnit-"nt deiay between patches (for examplef l7z), then the

rule of how to harvest a relative source/sink and exporter/importer subpopulation is

no longer necessarilY true.
I; the single-ri".i". metapopulation harvesting theory (Tuck, 1994), the parental

delay model i, ih" .u-" as the relative source/sink results for the harvest policy com-

puriron. regardless of the values of the delays. However, in the presence of predators,

the two models in this chapter adhere to the relative source/sink results for the har-

vest policy comparisons in chapter 5 only for a special case, that is, if the population

delays urã "qnul. 
If there is no exporter/importer prey subpopulation, escapements

from the preãator-prey metapopulation with parental delay recruitment are equal to

"."up"-"nts 
from the incorrect unconnected two-patch predator-prey population har-

.rerting policy, regardless of the delays, 1¿' In contrast, escapement differences between

the predator-pr"y metapopulation with receptor delay recruitment and the incorrect

unconnected. two-patch pred.ator-prey population, do depend on the delays.

The exploited population delay model discussed in this chapter was originally de-

veloped by Clark 1f-OZOU¡, especially the anaiysis of its optimal escapement. Botsford

(1gg'2) suigested that this modei can be extended by considering the spatial structure

àf tfrá poprrl.tion and larval dispersal between subpopulations' Tuck (1994) exten-

ded Clark's (19g76b) model to incorporate spatial structure, dispersal and maturation

delays. His major cánclusion was that results from the delay model may differ depend-

irrg år, whether we assume that the deiay related to the destination site or the birth site

of1h" d.ispersing larvae. In this chapter I have extended Tuck's (1994) model by adding

predator-prey int"ractions to the system. The results in this chapter show that Tuck's

irss+; ,,'u,;o, conclusion is confirmed in the presence of predator-prey interaction' if
ìn. pr"a.ttr ,.discounted" efficiency is greater than a certain threshold. It can aiso

be concluded that maturation delays di erences of one species (e.g. the prey species)

affect the optimal escapement of other species (e.g. the predator species) even when

the latter species has a uniform delay, that is, delays are equal in any patches'

183



This result is not surprising, since delayed recruitment is considered to be one

of flve possible reasons for a declining population. The other four reasons are low

adult survivorship, low fecundity, low juvenile survivorship and insufficient immigration

(Russ an{ Aicala, 1996; Hitchcock and Grattottevor, 1997)' Meanwhile, the changes

àf u .p""i"s, abundance may affect the dynamics of other species which interact with

the former species (Crawford and Dyer, 1995; Agnew, 1997), and eventually affect the

level of escapemenis of both species. Tuck (1994) showed that an increase (decrease)

in recruitment delay of a single-species decreases (increases) the optimal escapement

of that species. I have shown in this chapter that it can also increase (decrease) the

optimal escapement of the other species which interacts with the former, especially in

the predator-prey metapopulation parental delay model'

The results in this chapter are the same as those in the non-delay modeis when

the delays between subpopulations are the same. Thus, by knowing that there is no

variabiliiy in the delays between subpopulations, all strategies in the non-delay models

remain the same in the presence of the delays. The results are different only when

the deiays differ between subpopulations, for example we might not harvest a relative

source pr"y ,rrbpopulation more conservatively than a relative sink prey subpopulation

if the áa"V of the relative source prey subpopulation in the parental deiay model is

much larger than the relative sink prey subpopulation. In this case there are two

count"ra]ing forces. First, the source/sink force, that is, in the absence of the delays,

we should harvest the relative source prey subpopulation more conservatively than the

other prey subpopulation. This is intuitive, since protecting the source subpopulation

-"ur¡5 protecting the replenishment of the other subpopulation (Mangel et al., 1997;

Gary, f-SOa¡. Secànd, the recruitment delay force, that is, in the absence of source/sink

strrrttrrre, we should harvest the prey subpopulation with a larger recruitment delay less

conservatively than the other prey subpopulation. This is also intuitive, since a higher

delay in maturation can be interpreted as a higher dampener on the growth of the

poprrl.tior, (Tuck, 1994). Thus if there are differences in delay and source/sink status

t"i*""n populations, optimal escapements are determined by the trade-off between the

two forces. However, in general both results are identical if we modify the definition

of source subpopulation to include the delays. That is, a subpopulation is a relative

source if its per capita larval production, discounted by its cumulative death rate, is

Iarger than the per capita larval production of the other subpopulation, discounted by

its cumulative death rate [see inequality (6.62)]'

The model in this chapter is the simpiest form of a cohort model, that is, it only

has two age-classes: juvenile and adult. The model could be extended to a more general

model, foi 
"*u,-ple 

a population that has at least three age-classes: juvenile, subadult,

and ad.ult, with predator-prey interactions in at least one age-class. trxploitation may

not only target the adult-class, but also the subadult-class. In this chapter I assumed

that the time delays, ,yi, are constant. This could also be extended to non-constant

recruitment delays, since an increasing frshing mortality may causes some flsh species

to mature at a younger age, such as the North Sea cod population (Rowell, 1993). In

this case, recruitment delays 7; could be extended to be functions of fi.shing mortality

or constant times 11¡,. Another possibility for future work is to consider sex-structured

delay-recruitment. The literature confirms that differences in male and female delays

to recruitment affect population stability (Cruywagen, 1996). In effect' optimal es-

capements for each sex-class may be different. Sex selective harvesting ìs common

in game or hunting practices. An example of sex selective harvesting in fi.sheries is

the exploitation of Dungeness crabs, Cancer rnagister, along the west coast of North
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America, where only the males are harvested (Higgins et a\.,1997).

So far I only considered optimal harvesting strategies f'or predator-prey meta-

populations with juvenile migration. The next chapter considers optimal harvesting

,tåt"gi", for predator-prey metapopulations with adult migration' Optimal harvest-

ing stiategi", Ìo, predator-prey metapopulations with more than two patches are also

"*;plor"d 
by u,rrrrming that both the adults and juveniles migrates, which often occurs

in nature.

6.4 Appendices

Appendix 6A: optimal escapements derivation

This appendix solves the necessary cond.itions for maxim,rm ãffi : ffi: 0 for k > I

anð, ffi: ,h: 0 with ,C in equation (6.29). The above conditions are equivalent

to

0

0

n ôfln¡, \p AN*- ^1(,î-1) * Àr¡ør * )rt+r'PrtFl(St,r) { )1¡41'9p,0

! À2¡¡yprzFí(st,- ) -F Àe¡+o, þtS P,r,

,rW- Àz(r-r) I \zt"az r Àzt+trpzzFl6,rr) | \2¡"a2Sp"o

* À*+t,pztFl6 *) * À+n+o, 0zS p"o,

o ôIIa \,rffi- )s(k-r) * Àe¡br * )sk+"' qtG'r(Sa-)* )ek+or þtSN,o

I Àa,+,,etzG\(S r,) { )1¡ o1,S¡,7,0,

tW- )n(¡-t) I À+xbz r \+t"+"Qz'G'r(Sp,) * \+t"+o'0zSN"*

*)ak+", quG'z(Sprr) t ÀzxazSNrr',

t æ - Àtt at- Àt¡.+r'PttFí(St,,) - À1¡a1Sp,*

- À2¡¡1"ptzFí(St,* ) - Àt*+o' 0rS Pro,

,ræ- Àzt"az - Àzu+t"pzrFí(s¡u"*) - )'2¡a2Sp,*

- Àv¡,¡1rPzt'Fi6 x") - \a¡¡o" BzS er*,

(6.65)

(6.66)

(6.67)

0

0

(6.68)

0

(6.6e )

0

i85

(6.70)



0
n ôfrr, \ ,: er ffi- 

Àeftór - )ek+", qrrG'r(Sp,r) - Àtl,+o,ÉtS¡r,o

- \¿t +,"QtzG'r(S rro) - )1¡41'S¡Y,*,

' ?rrrre' 
- À+xbz - Àqk+,rqzrG'z(spro) - Ào*+""þrS¡v*0 _ p^ 

ðnr,o

- )a/.+", qrtG'z(S P"o) - À2¡"a2 S ¡¡ro'

Solving equations (6.65) to (6.71) produces

. ¿. ( ðlIx, ôII¡v, \À'(¡-') : p" (ã¡,ü + aH*) ,

Àz(¡.-r) :u(ffi-æ),
)s(--r) :u(H-ffi),
À¿(--r):u(H-ffi)

Substituting Àr¡, Àrt, À2t", and )a¡ into equation (6'69) produces

o - tæ-a,pØ*) (ffi-#ï)
-p' Fí(srv,*)p(**'*t'' (ffi - 4L)

-otsp,rp(-.', (ffi-#-)
-prrFi(S x,o)p&*'*", (ffi - æ)
-,,,s r,rpØ1J*ør) (åH - ffi)

Divide this equation by .Pkt',and recall that ffi - p -"¡o('9¡0,,) u"d ffi + ffi :

(6.71 )

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

p - c¡t(N¿r) thett

P¡¿ - c¡¡r(S¡¡,0) : (pno - ,rut(¡útt))(at I p¡¡4l(S¡o,o)pt' + ar,Sao)
p

* (Pt - c¡¿z (l/zr ))Pt, F!(S ¡'t,) P'"
-l(p, - cn(Pù)þtSP,oPo'. (6'78)

Similarly, substituting Àr*, Àz¡., Àsk, and Àa¡ into equations (6.70) to (6'72) produces
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pN - cNz(Swro)

p

pp - cpt(Sa. )

p

Pp - cPz(SPro)

p

(pr - c¡,'z (¡/zr ) ) ( az * pzz Fl(S x^) p'" + azS p"o)

*(p" - crul (Ntr))p¡Fl(St o)P''

l-(p, - cpz(Pzt)) þrS p"o P"',

(p, - crr ( & r ) ) (b t I qttG|(Sao )p"' * {J rS x,o p"' )

t (p p - cpz(Pzt)) qtrG'r(S 
"*) 

P'"

*(pn¡ - c¡¿r(/úrr))ot St,o,

(p, - cp2(P2))(b, * qrrG'r(S p^) p"" I þrS N,o p"")

t(p, - cn(P't)) qrtG'r(S P^) P"

*(pru - cruz(l/zr))orSt o.

(6.7e)

(6.80)

(6.81)

Appendix 6B: Escapement comparisons with the escapements

from the unconnected metapopulation

Recall that r¡^ : (p¿¡p'' *p¿ipti)r¿, riu: p¿irip1'*p¡;r¡pL, Ai : C? -'¡*?s¿*fr 10'
Liu: C? -r¿,Ts¿*?, and 11 : T'2. Let us assume that p¡p1'>- pzzpa't Ptz: Pzt¡

'ft )'lz and 11 : rz, then:

l. rn 1 Tt* an.d r2u ) Tz*

Proof:

't'Lu : PnTtPlr I Pztrz7lt

| lm,

Hence, rru 111-. Similarly, it can be proven that r2u) 12*

2. L.;" 10
Proof:

rtu : pnrtplr Ipztrz1lt

T2m.

Hence, Ar., ( Lz 10. Furthermorer since 12, ) rz^ then 42, ( At < 0'

q f:2 - 2(rt^Irz^)s* a g0. U ---KL
Proof:
It is clear since r2,r, a "'"P* 1rt^ and A¿ ( 0'
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4. r¡*r2* - r¿r2y ! 0

Proof:
Let A¿¡ : r¿P¿iP1i, then

TLmT2rn - TluT2u : (Arr -l- Arr)(Ar, -f Azz) - (Att i Art)(An ¡ Azr)

: ArrA"r I AtzAzz - AnAtz - AztAzz

: Arr(Ar, - A.",) * Azz(Atz - Arr)

: (Atr - Arr)(Art - A¡.¡.)

: r2(pnpl' - Pzz{")(Prtû' - Ptzll')'

Since ptpl' ) pzzp1" t PL2 : p21 and 71 > 72 then

T1mT2m_ r1¿T2u1Q (6.82)

Appendix 6C: Escapement comparisons \Mith the escapements

from the well-mixed metapopulation

If prr ) pzz, Pn 2 p21 and ^ft:12 t'hen r1^r2* - 
"* 

< 0'

Proof:

Reca11thatr¿*:(p¿¿p1,*Pl¡p1j)r¿andr.:(W)p@,+.,,)/,.
A¿j : ripijp'tj, B¿j : r¿p¿¡ andfi - B¿¿ f B¿;' then

rynr2,n - 12- : (Arr * Ar")(Ar, ¡ Arr) - (8" 
* B" ! B" + B")' 

ço'""*'"'

Let

)

Since 1t : ^lz - 'Y then

(Br, * Brr) * (Bn -f Brz)
2

TynT2¡n - T* p" (Brr t Btr)(Br, * Bzz) - 2 )']

-'40', lr: *v: - 2vtwl: -t40" ltv: - vv,) + (u; - v'vùl

-t10" lvr(v - vz) * vz(vz- yr)l : -rro" {v, - vr)" 3 0'
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Chapter 7

Predator-prey metapoPulations
with adult migration

I discus
have a
the dis

migration is not uncommon in many com:

tions are often seasonal. Examples including Pacifrc salmon, Sockeye salmon, Atlantic

salmon, Bull trout, shrimp and turtles, and man are related to

hominj from feed.ing habitat to spawning habitat rannon' 1984;

Harden Jones, 19S4iWooton, 1990; Creasev et al' Croz\er et al''

1997; Quinr et al-,1997; Sakamoto et al',1997; Swanberg' 1997)'

Sturgeon ur" u goád ""u-ple 
of a fish that is highly mobile and utilises several

distinct habitats throirghout its life. Different types of habitat are needed: to develop

eggs and larvae in the ãu,rly stage of their life, to feed during their body size develop-

ment and to spawn in the mature stage (Auer, 1996). Auer (1996) showed a positive

relationship between maximum migration distance and body size of sturgeon' This

suggests that the adults of sturgeon are highly dispersive.

The salmonids of the Northtern Pacific and Atlantic are anadromous) that is'

they hatch in freshwater but grow and mature in the ocean. After they reach maturitv

they home, that is, they return again to the freshwater habìtat where they hatched, in

ordä, to .pu,wn (Policansky and Mu.gnrrrott, 1998). The freshwater and oceanic habitat

used by tûe salmonids thråughout their li : can be described as a dendritic or tree-like

structure, consisting of one trunk, in this case the oceanic feeding habitat, and many

freshwaterctr"u,m, *here they spawn as the branches (Tallman and Healey, 1994)'

Although the tendency of the salmonids fishes to find the site where they hatched is

weil knãwn (Hartman and Raleigh, 1964), many studies show that some of them stray

or fail to hÀe (Quinn et a1.,1991; Pascual and Quinn, 1994). Straying levels vary

from species to species. certain species, like the chum salmon, have a significant stray

level, n"u,rly 50% or the population (Tallman and H_ealey, 1994). The salmonids that

stray ,pu,*n elsewhere, usually in nearby habitat. some authors have considered the

pluå, *h"r" the saimonids hatched as local populations (Schaffer and Elson' 1975)' If

in addition we also consider that these habitats are connected by the migration of the

strays, then we have a metapopulation with adult migration (Tuck, 1994).

In this chapter I develop predator-prey metapopulation models connected by

adult migration (e.g. stray migration in the case of salmonids). Optimal harvesting

strategies u.r" irrì"rligated for three different models. The flrst model assumes that
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only the adults of the populations migrate, the second model assumes that both age-

"luJr"r, 
the adults and juveniles, migrate. In the third model, I extend the second

mod.el by assuming that the metapopulation is made of more than two subpopulations

and determine the optimal harvesting strategies for this general model'

7.L Adult migration without juvenile migration

Many of the examples of marine metapopulations in the previous chapters are made up

of several subpopulations connected by the dispersal of their larvae or juveniles. The

adults are sedentary. There are also some examples of marine metapopulation where

the connection is .urr."d by the dispersal of adults, not by the dispersal of juvenìles -
for example, the Squat lobster (Pleuroncodes monodon). Roa and Bahamonde (1993)

observed that the old", .lus of this species migrate while the younger class occupied

the site vacated by the older class. The first model in this chapter considers this type

of metapopuiation, that is, a metapopulation with adult migration where the juveniles

ur" urrrr-ed to be immobile or sedentary. This model is extended in the subsequent

chapter to include the juvenile migration'

7.I.L The model and its optimal escapements

Let us assume that there is a predator-prey population in each of two different patches,

namely patch one and patch two. Let us also assume that a proportion of the surviving

p."y -rã predator adult stock from subpopulation i migrates to subpopulation 7' The

proportion of the surviving prey and predator adult which migrates from patch i to
put.f, j is define ð. by m¿¡ áid, no¡, respectively. If it is assumed that a proportion of

adults are lost from the"system therr n1,¿1 I m¿z ( 1 and n¡ I n¿z 1 l. If ø¿ and

b¿ afe the pre-migration adult survivals of the prey and predator subpopulations z,

respectively, using the same notation as in the previous chapters, then the dynamic of

the population is given bY

1/r(r+r) : atm1'Nt¡" I a2m21N2t' l Ft(l/t*) | a1N¡'P;¡" (7 1)

l/z1t+r¡ : aúrlnNt¡! a2m22N2nl Fz(Nzx) + azNznPzt"' 3 2)

Pr1*+r; : btwPt* I bznztPzt" + Gr(&t) I 7tN*Ptn' (7 3)

PzØ+t) : btnnPtt ! b2n22N2¡ + G2(P2k) * BzN2¡P2¡"', (7'4)

where a¿ { 0 and É¿ > 0'

If SÄ¡i and Sþ¿ are optimal escapements for prey and predator subpopulation i,

respectivåiy, then fä1o*ing the same method in the previous chapters, implicit optimal

escapement equations are found and given by

pN - c¡rr(,sÄ/,.) : (or*no+ Fi(sfr,.)+ a;Sä.)(p¡¿ - cw¿(l{,r))
p'

la¿n¿¿j (pt - c¡¿¡(&'r))

+þ¿SÞ^(P,-"P¿(P¡'))' (7'5)
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pP - cPi(sþ,") :
p

lb¿n¿j (p, - cp¡(P¡t))

+a;SÄr,. (pr - "¡,.¿(l/,t))
(7.6)

These equations are the generai form of the optimal escapement equation for a two-

patch prådutor-prey metapopulation with adult migration. Solving these equations pro-

ãrr.", ãptimal equilibrium escapements, ^9fi¡, 
and ,9þ,. Like optimal escapements in the

pr",rio,r, chapters, these escapements are independent of the time horizon considered.

It "u' be seen that if there is no migration between patches, that is, mv2: T't-L2r:0¡

rrl11 : rrl22 : l, nn - n2t : 0 and rttt : TL22 : 1 then the optimal escapement

equations reduce to equations (3.i9) and (3.20) in chapter 3. If we set a¿ : þ; : 0,

then Tuck's (1994) optimal escapement equation for a single-species metapopulation is

obtained.
As in the case of juvenile migration, interpretations of the optimal escapements

can be derived by neglecting the costs of harvesting and price differences between the

prey and predator, which now satisfy equations

Ir : a¿(m¿¿ + rnij) + Fi (Sfr,.) * (oo t g;)Sþ,,, (7'7)
p

b¿(n¿¿ I n¿¡) -f G'o(Sþ,o) * (oo + þ¿)Siv^ (7.8)

Furthermore, explicit expressions of the optimal equiiibrium escapements are obtained

by assuming that recruitment production functions, fl and G¿, are logistic as in equa-

tions (3.3) and (3.4). The optimal escapements are now given by

q* - 
loT I C;B¿ 

rZ.9)u¡l- 
A¿ t \ /

sþ,: 
B:Ë;tnoo 

, (2.10)

provided L¿ : C? - ?T f 0, where

A, -- 
| 

- ri - a¿(m¡ I m¿z),, (7'11)
p

o-1.Di - - - si-bo(n;rtn;z), ]'LZ)
p

andC¿--a¿lþ¿<0.
Using the same method as in the previous chapters, sufficient conditions for the

metapopulation to have non-negative optimal escapements can be obtained- The con-

ditions are written in the following result.

Result 2g (Sufficient cond,itions for positiue escapernents) Let Si¡ and Sþ denote the

optirnal esco,,[)ernent from a pred,ator-prey metapopulation giuen by equat'ions (7a9)^9'nd

(7 l0). IÍ Ã¡ and, B; are negatiue, anil C¿ is non-positiue with C¿ ) max{?,+},
then

(bnnno * G'o(Sþ,.) + g;Sîv.,)(pp - ""¿ 
(P,, ))

1 :
p
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L,¿ is negatiue' o'nd Ski a"nd Sþi a're positiue'

The condition A¿ ( 0 has a similar interpretation to the same condition in the

previous chapters, that is, the sum of the proportion of surviving adult prey and

ih" p", capita prey larvai production is higher than the reciprocal of the discounting

factår, llj. In otú", *ordr, the natural growth rate of the prey population is higher

than the reciprocal of the d.iscounting factor. only here the natural growth rate of

the ends on adult prey (m¿¿ + rn¿¡), while

intthenaturalgrowthationdependedon
theonsurvival,r¡(p¿¿Iodel,inwhichitis
assumed. that there is adult prey migration be concludes that the

lower the adult prey survival rate the higher the possibility that the prey population

has a non-negative optimal escapement. This is similar to the rule in the previous

chapters, wh"r" it can be concluded that the lower the juvenile prey survival rate the

higher the possibility that the prey population has a non-negative optimal escapement'

Bo=th u.r"rtions reitårate the well known result in single-species harvesting theory which

points out that it is best to harvest the popuiation down to zero escapement if the

gro*th rate of the population is lower than the discounting rate (clark, 1976a)' The

ãondition B¿ < 0 for the predator population is interpreted similarly.

The relationship between escapements from a predator-prey metapopulation presen-

ted in this chapt", .rrd. escapements from a single-species metapopulation discussed in

the paper of Tuck and Possingham (1994) can be expiored using Result 29 as follow'

Result 3O (Escapement comparison with a single-species metapopulation) Let Sl¡, and

redator-prey metapopulation gi'uen by equa-

þ, denote the optirnal escapement frorn a

a',me equations by assigning a¿: 0¿:0' If
C¿ 10, then

^9fr, - Si,,": #^Sþ, 10 antl Sä - Sä, : #eSfu'<0'

Result 30 can be proved, in the same way as in the case of juvenile migration. The result

suggests that optimal escapement from a predator-pley metapopulation is always less

th;;, or equai to, optimal escapement from a single-species metapopulation depending

on the predator "ffi"i"n"y 
or the sign c;. In the case where the predator efficiency

is extrernely high, C; : 0 or fr : 1 s are equal' This is unlikelv

to occur, ho*"r"., if there ir'iii." d prey and the predator then

C; : a¿ * mþ¿, *h"r" rn is the relative p to the prey price' Hence' in

many normal situations, where þo < lool and rn ) 1, we can manage a predatol-pley

m"tapopulation as a single-species metapopulation \f Co : g'

To draw ,o-" 
"onãiusions 

about escapement comparisons between patches and

between methods (for example an unconnected two-patch predator-prey population and

a well-mixed predìtor-prey population), the same procedures as in juvenile migration

are used. in the following rl"tion. These escapement comparisons aïe intended to show

the importance of 
"onrid"ring 

spatial structure in obtaining optimal escapements for

the popuiation.

7.L.2 Escapement comparisons between subpopulations

To compare optimai escapements between patches, I use the following lemma'
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Lemma 9 (Migration trad,e-off equations) Let Si¡ and sþ denote the opti.mal escape-

ment from'a pred,ator-prey metapopulatio t giuen by equations (7.9) and (7.10)' Ir
K;: K, L¿: L, C¿: C, d;m: a¿(mt*m;z), bi^:b,(n"+.¿i2), r;: rt and s¿:3

fori:l,2,then:

1

2s
(sÅ,, - sfr,)4, lor* - ot^f + clb2^ - bt*),

L

2 (^9Þ, - Sä)41 lbr^ - bt*l
2r
K * Cla2^ - at^f

A1

(Ê, - o,)'; + c6,- s,)

lor^ - or^l? * Clbz^ - br^l

Proof

1. Notethat Ar - A'2. If Ri:l_ oo(*rr+rni2) and 'S; 
:T-b¿(n¿t f n¿2)' then

DNr
(At - ,) ,Þ I C(^91 - s) (R, - r)? * C(.92 - s)

Ar

(si", - sfr,)4,

The second. part of the lemma can be proved analogously. !

It can be concluded from Lemma 9 that if A; and B; ar.e negative and c >

møx{þ,T} ""a 
both predator subpopulations have the same adult migration sur-

vival, ti"t ír ir(nrr*nn) : bz(nzt.:-nzz),, then we should harvest a prey subpopulation

with high adult migration survival more conservatively than one with lower adult mi-

gration survival. Oì ttr" other hand, we should harvest the predator subpopulation

ii.,riog with in the same patch with the prey subpopulation which has a high adult

-igr"¿¡ioo survival less conservatively than the other predator subpopulation. This

is an analogous result to that in the previous chapters, where we should harvest the

relative source prey subpopulation more conservatively than the relative sink subpop-

ulation and we should harvest the predator living in the same patch with the relative

source prey subpopulation less conservatively than the other predator subpopulation.

I rewrite this conclusion in the following result. I do not provide the proof, since it is

similar to the proof for the analogous theorem in the previous chapters'

Result 81 (Escapement comparison between subpopulations) Let one of the prey sub-

populations'haue-a higher ailult migration suruíual while all other parameters of the
'pny 

ond, the pred,ator (rre id.entical for both subpopulations. Without loss of generality,

Iet us assurne that prey subpopulation one has a higher adult migration suruiual, that

is, ay*: út(mn*mn) ) az^: az(mzz*mz). If @l - 0, or if A¿ and' B¿ are

negatiue and C > mar{þ,T}, th",

.9i,, > Si¡, and Sh < Sþ,

Result 31 assumes that both predator subpopulations have identical adult migra-

tion survival. In addition, by investigating the sign of the right hand side of equations

(1) and (2) in Lemma 9, we can obtain Tabie 7.1 illustrating how we should harvest

àach subpopulation if adult migration survival is different between patches for various
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Migration survival Optimal escapement ,A.dditional conditron
Prey Predator Prey Predator

a1^ ) a2* b bz^lm- sþ, > sL SË, < SË,

ú16 ) A2^ b1* 1 b2* s;u, > sir, sÞ, < sä
A1a ) 0'2a by* ) b2^ siu, > sir, sÞ, < sä ffi: > mar{ff,&}
&l*: a2* b1* ) b2^ sïu, < sir" sÞ, > sä
A16 1 A2a b1* ) b2* Sfu, < Si'" si, > sä
ú1rn ) 0'26 b1* ) b2^ sir, < siu, så, > sä ffi: < min{l!,Ék}

Table 7.1: Prey and predator optimal escapements for various combinations of ad ult

prey and predator migration survival. The additional condition column contains

conditions other than the conditions or hypotheses mentioned in Result 31'

combination of adult prey and predator migration survival a,;^ andb¿*. The first two

rows in the table show that we should harvest the prey subpopulation with high adult

migration survival more conservatively than that with lower adult migration survival.

O" ttr" other hand, we should harvest the predator subpopulation living in the same

patch with the prey subpopulation which has a high adult migration survival less con-

servatively than the other predator subpopulation. This is an analogous result to the

result in the previous chapters, where we should harvest the relative source prey sub-

population more conservatively than the relative sink subpopulation and u'e should

Lu,r,r"rt the predator living in the same patch with the relative source prey subpopu-

lation less conservatively than the other predator subpopulation. However, here adult

predator migration survival is allowed to be different between patches, as long as the

.a..rtt migration survival of the predator subpopulation living in the same patch wiih

the relativety high migration survival prey subpopulation is not moïe than the other

pred.ator subpopulation migration survival, otherwise we need an additiona,l condition

such as the shown in the last column of the table'

7.L.3 Escapement comparisons to incorrect policies

As in the case of juvenile migration, I also perform escapement comparisons between

optimal escapements from a predator-prey metapopulation and escapement if we in-

cãrrectly manage the population by ignoring its spatial structure. I use Lemma 9

from the previous section to compare the optimal escapement in this section either

with escapement resulting by assuming the population as an unconnected ts'o-patch

predator-prey population or with escapement which results from assuming the popu-

lation to be a well-mixed predator-prey population'

First, let us assume that each prey and predator subpopulation are managed as

two unconnected predator-prey populations. I use all the assumptions described in

Result 31, that is the only biological differences between patches is the adult prey

migration survival, aina. I also assume that adult prey survival in subpopulation i are

measured as
aiu: a¿rn¿¡ * (rjrnji. (7.13)

When spatial structure is not recognised, the optimal escapement for unconnected

patches are ^9fir,, and Sþ,, given in Appendix 74. As before, the differences between

ihe optimal escaþements from predator-prey metapopulation harvesting theory and the
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n survival Optimal escapement Ad nal cond n
rey Predator

btmn: bzn:¿ztd1.|TLn ) A2m21
si/

a{fttz ) A2ITI21 btnLn 1b2nù21 > si/ s <s
sfu" < sïv,,. Sb" > Sþ",,

atTft'tz ) CLzrnZt b{nn ) b2rn21 si', > si',, sÞ, <^9Þ," ) mar{ 2s , )
sir, < '9iu"" Sþ"> Sþ"" ) mar{

2s

AtfiLtZ: AZTyL2L btrnn ) b2m21 siu, < ^9ir,, så, > sË,.,

sïu, > si,," Sþ" < Sþ,"

atTTtrtz 1 A2m21 b1nn ) b2rn21 sfu. < .9ïv,,, sÞ, > sÞ,'
sfu" > sïv,., sÞ" < sÞ",,

ültTLtz ) a2m21 b{nn } b2rn2y sïu' < ^9ïu'"
sÞ, > så," n'L L n{

-t

Jb

sïu, > ^9i,," Sþ. < Sþ." < min{ t

"fable 7.2: comparison between escapements obtained by considering spatial stlucture

and escapements obtained by ignoring spatial structure using unconnected two-patch

predator-prey population harvesting theory (with index z), for valious combinations of

udrrlt p."y and predator migration survival. The additional condition column contains

conditions other than conditions A¡ and B¿ arenegative and C > man{þ,7}'

escapements from two-patch unconnected predator-prey population harvesting theory

are
-2s

(Sir, - Si,,")A : lon, - "o*lï + Clbi, - b;*f , (7 '14)

).r
(Sä - Sä")A : lb¿. - bnÀ"+ I Cla¿' - a¿*1, (7'15)

where A : A¿ and C - Cl. In the following discussion I assume A; and B; ale

negative and c > rnar{þ,T} t" ensure that the resulting optimal escapements are

poãiti,r". By explorittg àqiutiã"r iZ.f+¡ and (7.15) I obtain Table 7.2 showing optimal

escapement comparir=orrr- fo, several combinations of prey and predator adult export

survival o,irmij and b¿n¿¡ for i : I,2'
Table 7.2 shows that when prey (predator) subpopulation one has a higher adult

export survival, that is, o,{np ) (bfln } b2n21), the optimal escapement of

präy (pr"dator) subpopulation one dator-prey

L"irilp,rlation i, gr"ut", than the r) subpop-

ulation is incorrectl-y -unuged as two unco In other

words, a subpopuluiion with high export survival should be harvested more conservat-

i.r"ly than if we use harvesting policy as an unconnected

1r¡rq-patch predator-pr"y popol.tion. rule in harvesting

predator-prey -"taiopulation with juven assuming the pop-

ulation to be u,n ,rn"otnected predator-prey population would over-harvest a relative

exporter prey (predator) subpopulation. However, here I establish a more general rule

*h"r" boih species may have different export survival rates between patches. Table 7'2

also suggests th.t incorrectly managin8 the population as an unconnected two-patch
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pr"datår-prey population would under-harvest the predator living in the same patch

with the prey which has a higher export survival. Again, compared to a similar rule

when subpopulations are connected by the dispersal of juvenile, here the rule is de-

veloped for a more general case, where both species may have different export survival

rates between Patches.
Total escapements of each species, either from predator-prey metapopulation har-

vesting theory or from unconnected two-patch predatol-pley population harvesting

theory are equal, that is, Sîu, + Sfr, : '9ir', + Sfirr, and Sä + gÞ: :'Sä, + '9þn (see

"q.,rutiorr, çZ.i+¡ and (7.15)). Ho*"""r, numèrical examples show that their equilibrium

hur,r".t. may be difierent (see Table 7.3). This is because escapements from predator-

prey metapopulation harvesting theory recognise the importance of the subpopulation

which has a greater ad.ult export survival as a contributor to the abundance of other

subpopulations, while the two-patch predator-pley population harvesting theory over-

iooks it.
In a special case, where both subpopulations are identical except prey subpopu-

lation one has a greater adult export survival with ø1rn12 ) a2m21 and alms : Q2rrL22,

it can be shown that the total harvest of each species from the predator-prey metapop-

ulation harvesting theory is at least as great as the harvest if we incorrectly manage

the population as a two-patch predator-pr claim above' we

need to show that A¡¡N : (I1Å,, + Hîo) - hat '9iv' a1d 
^9þ,

are given by equatio". 1z.si u"ä iz.to), * n Appendix 7A'

F.oi. 
"q,ruiion. 

(7.11),'(7.12) and (7'13) A'u' Bt: B2u'

and. Bz-: Bru. It foíowà that Sfi¡, : ifr,,, SÄr, : SÄ,,,, 'Sä : Sh.l utd- Sþ,:.5þr,-

Sirr." Hiu,:"N¿(Sfr,,Sñn,Sä) - S'¡, *héi" lú¿ us in equations (7.1S) and (7'19), and

similarly Þfi, , : ¡'to (sÄr,,, Slr, , sä, ) - Sfu,,, then considering both subpopulations are

identical, we conclude

Aø¡,, : (or*r, - a2m2)(Sir, + ,SÄ,,,) > 0' (7'16)

Escapement comparisons to weli-mixed predator-prey harvesting theory can be ob-

tained in a similar way.

7.L.4 Numerical examPles

In this section I present numerical examples to illustrate and to compare our two-patch

predator-p."y opti-al escapements with other escapements. The results in these ex-

u-p1", conform to the rules described in the analysis discussed above. Some interpret-

ations that are not clearly seen in the previous analytical results can also be obtained.

Assume that there i, u .oopl" of predator-pïey populations occupying two differ-

ent patches. The populations are connected by adult migration. The carrying capacity

of the prey in 
"u"h 

pu,t"h is K¿:500000, wi.th intrinsic growth rate r¿ :4 and adult

survival rate per period measured. before migration is ø¿ : l' The adults migrate

non-symmetrically with rærr : rrtr2r - Trlzz: 0'025 and me: 0'050' that is' prey

subpopulation one has a greater export survival than prey subpopulation two. The

pr"àu,io, population is assumed to be identical in both patches with the following bio-

iogical parameters: carrying capacity \s L¿:1000, predator intrinsic growth is s¿ :4,
pJ"--ijru,tion adult survival b¿ = I and adult migration survival rate is n¡:0.25. The

pu,rr-"t".s for the predator-prey interactions are a¿:0.00001 and,6¿:0'000001'

Before the commencement of exploitation, I assume that the population is in the

equilibriumpopulation size. Usingequations (7.18) and (7.21), theequilibriumpopula-
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PPM ,9i/, : 185816

,Si', : 184253

I1,ir, : 290078

HiL - 294662
,sÞ,

sþ"
:216
:2IB

Hå' : 610

Hþ": 612

,Sfu : 370069 Hiv -- 584740 Sþ : 434 Hþ:1222
UPP si

^9Å'

:184253
:185816

1

:J

H.l',,:2900t6
Hi¡",,:294684

sä"
sþ",,

:218
:216

Hþ,":612
Hþ".,--670

Ili¡.. :584700 sþ..:434 Hi..:7222

WPP Si,¡... :370294 //fu. :585523 si. :17 HÞ'=6t

Table 7.3: Escapement and harvest cornparisons between correct and incor-

rect assumptions, where p¡,t : pp and costs are negligible. PPM, UPP and

wPP denote predator-prey metapopulation, unconnected predator-pley pop-

ulation and well-mixed predator-prey population, respectively.

tionsizeforeachspeciesarely'l:380063,1úz:383112,P1:970andP2:971'Note
that the equilibrium population size of the prey subpopulation with a greater export

survival is smaller than the other prey subpopulation. This is because it exports more

adults than it imports. Next I will explore the optimal escapement for the population

by considering that the costs of harvesting are negiigible with the discounting rate

6 : l0%. The results will be compared to the previous analytical results. The effects

of the inclusions of the costs of harvesting will also be explored.

optimal escapements for the population are sfu, : 185816, sÑ, : 184253, sä :
Zl,6 añ, S¿ : 218 found. by substituting all biological parameters into equations

(Z.g) and 1Z.fO¡. Al1 escapements are positive because it is assumed that both species

ùu,rá ,"lutirr"ly high intrinsic growths. Result 29 implies that if natural growth rates

or adult survival rates are relatively low compared to the discounting rate, then the

optimal escapements may be non-positive. For example if s¿ - 4 is replaced by si :2
then we obtain new optimal escapements ^9iy, 

: 185976, Siv, : 184412, and ,9þ, and

sþ, are negative. [Note that here it is optimal to harvest all predators. This is not

túá "u." 
if we incorrectly believe that the population does not have any predator-

prey interactions, where we would harvest both predator subpopulations equally, that

ir, ^9¿" -- Sþ," - 280, although we still harvest the prey subpopulation with a iarger

aduli äigtuii,o¡¡ more conservatively than the other prey subpopulation (SÄrr" : 185938

and ,Siy," : 184375)].
Ñãw let us take the cost of harvesting into consideration. Let the cost of harvest-

ing be given by
cx(X¿) : (mx, ! c;ny,X¿) l@*,X)' (7 '17)

If the cost of harvesting is independent of species and location with rnxi:30, n1,:
1.3 x l0-2, c¿: 0, and.. ptice py - 70, then optimal escapements ,9fi¡, : 185819,

SÄ/, : 184256, Sþ, : 222 and ,Sfy, : 224 are obtained (see Table 7'4)' We can

,é" ttrut the rules 
-of 

ho* to harvest prey and predator subpopulations with different

adult migration survival remain true in the inclusion of the costs of harvesting. In

this example, the rule is also robust if there are price differences between species, for

example if p¡¡ : 70 but pp : 10 x p¡¿, where in this case new optimal escapements

,sfr, : I85g44, sfr, : 184382 and sl : sÄr, : 426 are found (see Table 7.5).
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PPM si,
stu"

: 195919
: t94256

I14,, : 290066

Hil:29465I
,5;,
sþ"

- ,t,
:224

Hþ,
Hþ.

622
624

Sit : 370075 Hiu : 584717 Sþ: 446 Hþ: L246

UPP si,,,
s

:184256
: 1g5g1g

s :37

Ili,,,: 290005

Hiu,.,:294673
så,.
sþ".,

- ttl

-tn
Hi,":624
HÞ,,:622

Hiu.. :584678 Sþ., : 446 Hþ..:1246

\,VPP ,Sir.,, : 370273 Hiu..:585477 Sb. :41 Hþ.,,:146

Table 7.4: Escapement and harvest comparisons between correct and incor-

rect assumptions, where pN -- pp and costs are given by equation (7.17) with

'rrùy, : 30, nv : 1.3 x 10-2, c¿ : 0 and price Px : 70' The rules of how

to harvest prey and predator subpopulations with different adult migration

survival are robust with the inclusion of the costs of harvesting.

PPM ^S.ir, 
: 185944

'Sir, : 184382

: 289697
:294294

Hfr
Hi,t

I
4

4
sÞ,
sL

26

26

Hþ, -- 844
Hi,:844

,5i' : 370326 Hio : 583991 Så = Bsz ãË : 1689

UPP si,"
s

: 184382
:185944
: 370326

Hi,r,,:289646
Hfr".-- 294307

sþ,.: 426

Sþ"..: 426

Hþ,.-- 844
Hþ-..:844

Hi,.. :583953 sþ. -- 852 Ë1i..:1688

WPP ,Sfu.. : 370318 Hk', :583982 så., : B5o ãå.,,: 168g

Table 7.5: Escapement and harvest comparisons between correct and incor-

rect assumptions, where p¡v : pp and costs are given by equatîon (7.17) with

TLxi = 30, ny : 1.3 X 10-2, c¿ = 0r PN -- 70 and pp : 10 X p¡¡. The table

shows that the rules of how to harvest prey and predator subpopulations with

different adult migration survival are robust with the inclusion of the costs of

harvesting.

Impact of variation of parametets rn;¡, û¿ and {Jo on optimal strategies

In this section I investigate the change to optimal escapements as a result of adult

migration parameter .ruii.tiorrr. From equations (7.9) and (7.10) we can see that if

all-arsumpliorr. i' Result 29 arc true^,^that \s, A¿ and B¿ are negative and C; is non-

positive, then the ;;;;;t ¿"ri,ru,ti,r" ffi "páriti,r" 
and the partial derivative ffi rc

non-positive. This implies that prey optimal escapement,gi¡ .increases 
with the increase

of thl adult migration parameter n'Lii àîd predator optimal escapement Sþ, doe_s not

increase with the increure of the adult migration parameter m¡¡' As an example, I plot

contour lines of escapements sft, and sþ of the predator-prey metapopulation in the

previous example .. .dl-,lt migraiion parimeters TrLt2 and m2l vary in Figure 7'1' This

fi.grrr" shows that as adult migration parameter mT2increases, the optimal escapement

fo", pr"y subpopulation one, ^9fir,, increases (Figure 7.I.a, dashes)' Optimal escapement

for pr"y srrbpoprrlu,tion two, Sfirr, cutt be found by reflecting the contour about the line

rfùr2: rn21, which is aiways lower than .9fy, whenever TrLn ) rrLzt.

Adult migration survival in patch i does not affect the optimal escapement in

the other patch. However all equilibrium harvests /1fir, and Hþ in both patches are

influenced. For example, I plot the equilibrium harvest ,t/fii, for prey subpopulation
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Figure 7.1: Figure 7.1.a shows the contours of the escapement ,Sir, (dashes)

anã the equilibrium harvest fIfi,, (dots) for prey subpopulation one (in thou-

sands). Figure 7.1.b shows the contours of the escapement ^9þ, (dashes) and

the equilibrium harvest Ifi, (dots) for predator subpopulation one' The con-

tours for prey and predator subpopulation two can be obtained by reflecting

the flgure about the line rft12: rrl2¡'

one. This equilibrium harvest increases as the adult migration parameters for the other

species irr"råur", (Figure 7.I.a, dots). Figure 7.1.b (dashes) shows that, if the adult

migration survivaL of prey subpopulation one increases then the optimal escapement of

the-predator living in the same patch with this prey subpopulation decreases' This is

consistent with the result from the case of juvenile migration predator-prey metapopu-

lation. All regions in Figure 7.1 satisfy the condition C¿ > mar{!,?}' A similar

rule can also be observed \f C¿ < min{!,ffi}, .n.h as shown in Figure 7'2 where the

contour of escapements and equilibrium huir"rts are plotted as the prey ad'lt survival

migration and vulnerability vary.

As in Figure 7.1, Figure 7.2.a shows that, for a fixed prey vulnerability, prey

escapement ^gl, increases as the adult survival migration increases (dashes). This

-.u,n, that wà^should harvest the prey more conservatively as the prey has a larger

adult survival migration. It can also be observed in Figure 7.2'b, where the harvest

of the prey decreases as the adult survival migration increases (dashes). Predator

"."u,p"Å"ni 
Sþ, is relatively unaffected a all values of adult

,rr..rirru.l -igr.tìon (dots). Both prey and patch two are also

unafiected (nignt" 7.2.c). However, altho patch two remains

the same, fàr u fl""¿ o1, â,s adult survival migration increases, its equilibrium harvest

increases (Figure 7 .2.d, dashes).

Most of the values of a1 produ ce zero escapements of the predator in both patches.

This is because I choose a low value of B¿ : 0'000001, which means that predator

efficiency for most values of B¿ is very small. Since it is also assumed that the price of

prey and the predator are equal (the relative predator price is m : I), then it is not

ãpti-ul to leave the prey to be consumed by the predator. By generating a similar

filrrr" for m - 10, that is, the price of the predator ten times the price of the prey, it

"u,r,. 
b" shown that predator escapements are positive for various value of mp and a1

in Figure 7.2.
We observe that, for a fixed adult survival migration rnp, pre! optimal escape-

ment increases as the prey vulnerability increases (Figure 7.2.a). This is contrary to

TfLtZ

0
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Figure 7.2: Figure 7.2.a shows the contours of the escapement ,9fr, for prey

subpopulation one (dashes) and ,sÞ, (dots) for predator subpopulation one.

Figure 7.2.b shows the contours of the harvest .I1fir, for prey subpopulation

onã 1a*n"s) and 1lþ, (dots) for predator subpopulation one. In this figure we

assume c,r: c,2, *rr:0'025, and' B¡:0'000001' Figure 7'2'c shows Si" and

,5þ,, and Figure 7.2.d shows f/i,, and 11þ,' The contours for the prey are in

thousands.

the result in the previous chapter where we shouid harvest a pley subpopulation which

has a lower vulnerability more conservatively than a pley sub-population with a higher

vulnerability. The reason is because in this case C¡ < min{!,?} for most regions

in the Figure 7.2.a. If the condition C¿ > mar{+,?} is satisfred, Figure 7'3 shows

that, all ih" ,o1". of harvesting a more (less) vulneiable prey and a more (less) efÊcient

predator subpopulation are observed as in the case of juvenile migration'

Figure 7.3.a shows that, for a frxed þt, PteY optimal escapement sfi¡, diminishes

as the p1.y ,roln"rability increases (lower a1). The increase of sfi¡, is also observed,

if we fi.xed the value of a1 at a certain level, as the value B1 increases. It can be

observed in Figure 7.3.b that for a flxed B1, predator escapement,sä diminishes as the

predator effi.ciãncy d.ecreases (lower a1), and for a fi'x-ed o1, predator escapement sþ,

i.r"r"ur". as the predator efficiency increases (higher Ét). A[ of these observations are

well established in the previous chapter. A similar result to Result 11 can be obtained

analyticaily.
The rule that we should harvest prey subpopulations with larger adult survival

migration is observed in Figure 7.3.c. In this fi.gure the difference between escapement

o
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Figure 7.3: Figure 7.3.a shows the contours of the escapements sir, (dashes)

u,nã hurrr""ts ,t/ft, (dots) for prey subpopulation one. Figure 7.3.b shows the

contours of the escapements Sþ, (dashes) and harvests I{,, (dots) for predator

subpopulation one. Figure 7.3.c shows the contours of the difference siu, -,sit,
(dashes) and the difference Hk,-IIfir, (dots). Figure 7.3.d shows the contours

of the difference ,5å, - Sþ, (dashes) and the difference Hþ, - 1$, (dots) Th,"

region below the line h:lo;l is the region which is biologically meaningful,

that is, the region where predator efficiency does not exceed 100% (a¿ and B¡

are in 10-u).

of prey subpopulation one, which has a larger adult survival migration, and escapement

of pr"V ,tbpoprrtution two, ^9År, - ,SÄrr, value of a and B

(d.sh"s). while in Figure z.g.¿ th" ¿i t of the predator

ii.rirrg in the same pr,tch with the prey urvival migration

u,rd ãr"upement of ih" other predator subpopulation is ahvays negative, as expected,

regardless of the value of a and B (dashes)'

7.2 Adult and juvenile migration

In this section I extend the model of the previous section to include juvenile migration in

the system. Much of the literature shows that the adults and juveniles of many marine

,p""i". migrate between habitat. For example, the intertidal gastropod, Bambi'cium

iurotu*,hãs high adult and juvenile migration rate (Crowley, 1996). Other examples

u,r" 
"rortu.""u,rrr, 

Callinectes sapidus, in Chesapeake Bay, USA and Maja squinad'o in
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Ria de Arouse, Spain. Both adults and juveniles of these crabs species migrate between

different types of habitat (Hines et a1.,1995)'

7.2.t The model and its optimal escapements

As in chapter 5, I assume p;¡ and Ç;j denote the proportion of the juveniles of prey

and predafor miglating from patch i to patch j, respectively. Using the same notation

as that in the pre,rious section, the dynamic of the population is given by

Nr(¡,+r) : a{rlnNt¡"} a2m2¡N2r *prrFr(Nr*) * pnFz(Nz*) * orly'r¡Pr¡.,

Nz(r+r) -- a{npN1¡ ! a2m22N2* * ptzFr(l/r *) * pzzFz(¡/zl) + a2N2¡'P2¡',

Prlr+r¡ :btnnPt lbznztPzt * qr'Gr(P,*)* q2¡G'(P'*)* 7'N*Ptn'

Pz$+t) : btnnPú * bznzzNz¡ * qnGr(Pt*) * qzzGz(P,r) * þzNz*Pzn'

where a; ( 0 and 0¿ > 0.

Following the same method in the previous section, optimal escapements for the

prey and pr"duto, populations, .9i/, and ^9þ,, can be obtained in the implicit expressions

pN -cNi(SÃ1.) : (on*,n+p¿;Fi6iuo) +o;Säo)(p" - "rn(¡/,r))p

-t (op¡¡ + p;¡4(Sft,.)) (r" - "¡v¡(Iv¡r))

+0;Sþ*(p"-cr,(P¿t)) , (7'22)

(7.18)

(7.1e)

(7.20)

(7.2t)

(b,n,u + q¿¿G';(Sþ,o) + ,6;^9iy,,)( pp - cp¿(P;ù)

+ (b;r;¡ * ø;¡G';(Siu,.)) Þr - "p¡(P¡))

*a¿Sfr,. (pr - "¡v;(N;t)).

These equations are the general form of the optimai escapement equation for a two-

patch predator-prey metapopulation with adult and juvenile migration. As expected,
:rf *r" - Trtr2r : 0, *r, - TTLzz : l, nt2 - Ítzt : 0 and Tùrt : Ttr22 : 1 then the

optimal escapement equations reduce to equations (5.5) and (5.6) in chapter 5 and

\l pr": p2t:0, pt: Pzz -- I, Qtz: Qzt: 0 and Qn: Qzz:1 then the optimal

"uåu,p"-ånt 
equations reduce to equations (7.5) and (7.6) in the previous section'

As in the case of juvenile migration only or adult migration only, explicit ex-

pressions of the optimaL escapements .9iy and s!1 can be obtained by neglecting the

costs of harvesting and price differences b :tween the prey and predator and assuming

that recruitment production functions, .4 and G¡, are logistic as in equations (3.3) and

(3.4). These escapements are

A,(q,,. + q¿)fi + Conn (7 ,A\O* t t /,+t
-N; 

^. 

t

B¿(p;t * P¿z)

pP - cPi(Sþ,o)

p

(7.23)

A;
sä
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provided L¿: C? - (po, + ei2)?(qn t ø';z)fr f 0, where

1Ao:'-(pnrlp¿r)r¿-a¡(mn*m¿z), Q'26)
p

Bn:I -(qorlq¿z)s¿-b¿(n¿rln¿z), (7'27)
p

and 
C¿ : a¿ * þ¿. (7 '28)

Using the same method as in the previous chapters, sufficient conditions for the

metapopulation to have non-negative optimal escapements are obtained. The condi-

tions are written in the following result'

Result 32 (sfficient cond,itions for positiue escT'pernents) Let Si¡ and sþ, q:":!: th"-

optimal "r"rpr*"rt from a pred,ator-prey metapopulati,on giuen by equations (!!Ð^9"a

¡l zs¡. Ir A¿ and, B¿ o,re negatiue, and, c¿ is non-positiue uitl¿ c¿ ) mar{?,+}'
then

L,¿ i,s negatiue, and Si¡¿ and Sþ¿ are positiue'

The condition A¿ ( 0 has a similar interpretation to the same condition in the previous

section. The relationship between escapements from a predator-prey metapopulation

presented in this chapiei and escapements from a single-species metapopulation with

.arrtt and juvenile migration discussed in Tuck (1994) can be explored using Result 2

in chapte, 5 *h"r" A; anð, B¿ are given by equations (7.26) and (7.27). To draw some

conclusions about escapement comparisons between patches I construct the following

lemma.

Lemma lO (Mi,grations trad"e-off equations) Let Si¡, and sþ denot.e tlt'e optimal es-

capement from a pred,ator-prey metàpopulation giuen by equations (7.21 and (7.25)'

If-K¿: K, L¿: i, Cn -- C, *¿*: (p¿¿*p¿¡)'¿l(*¡o*m¿¡)a¿ andy¡*: (q¿¿*q¿¡)t¿+

(n¿¿ + n¿¡)b¿ then:

1. (^9Ä,, - SÄ/,)A1A2

2c(^ 2\.
-r ('" - fR)(*'*a'^ - 

r2ma2m))

z. (sä - sä)ala, : (r'(*r* - rz*) -y#:(vr^ -v,-)) (ft - t)
2c/ 2\

-î \t - ñ)(*'*a'* - rzmYzm)'

In a special case, where both predator subpopulations are identical, we can com-

pare optimu,l "r"up"-ents 
if one of the prey subpopulations has a higher adult export

.o.rri,rut or is a relative exporter subpopulation, so that the total surviving individuals

of that popuiation, that ir, (pnr I p¿r)r¿ I (*^ + rni2)ai, is greater than the total sur-

viving individuals of the other patch. This comparison is summarised in the following

result.
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Resulï 33 (Escapement comparisons between subpopulati'ons) Let prey subpopulation

one be a relatiue erporter suipopulation or haue a higher adult migration suruiual, so

that the total suruiiing ind,i,ui,d,uals of that prey subpopulati,on is higher than the total

suruiuing ind,iui,d,uals à¡ tt " other prey subpopulation. All other parameters of the prey

and, the pred,ator are id,entical for both subpopulati,ons. If lol: þ, or if A¿ and B¿ 0,re

negatiue and C > mar{þ,T}, th"n

^9fr, > Si¡, and Sþ, < Sþ"'

Lemma 10 can aiso be used to compare escapements given by equations (7.24) and

(7.25) to the escapements we get if we incorrectly manage the metapopulation as an

ir"onn""ted. two-patch predator-pïey population. In this case we would measure the

adult survival of subpopulation 'i as a¡u given by equation (7'13) and the growth rate as

r;,, given by equatio Ã ç+.++¡. The adult survival and growth rate of the predator would

b" ,,'"urured similarly. fn" comparison between these escapements are summarised in

the following result.

Result 84 (Escapement Comparison to an unconnected two-patch predator-preA popu-

lation). Let'lfr and, Sþ denote the op rnetapop-

ulatio,n giuen'by 
"q"otiåns ft.2/¡) and, e opti'rnal

"r"op"*"nt 
if we incorrectly consider tl¿e ng of two

ur"orn"cted, pred,ator-prey populations. Let, prey subpopulat'ion one be a relatiue er-

porter ond, oiro be a relati,ue source subpopulation or haue a lt'igher adult mi'qration

suruiual, so that the total suruiu'ing indiuiduals of that prey subpopulati'on is higher

than the total surui,uing ind,iuiduals of the other prey subpopulation, that is 11* ) r2^,

wi,th pprl t pzfz and, ptrr )_ pzzrz. All other parameters of the prey and the pred-

ator are id,entical fo, úU, subpopulations' If 4o and B1 - Bz : B are negati'ue and

C, : Cz: C is nán-positiue with C > mar{?,T} tt'""'

1. Sïu, ) Sfr,,,

2. Si,r" 1 S't'¡r-,

3. sh 1 sþ,.,

5. ^9År, + sÄr, ( S-fu,. + ,9i,/r,,

6. sh+ sh > sä" + sþ,..

The proof of this result is analogous to the proof of Resuit 9.

It can be conclud.ed from Result 33, that we should harvest a relative source prey

subpopulation that has a higher adult migration survival more conservatively than a

,"luti,r" sink prey subpopulation that has a lower adult migration survival. It can

also be concluded that we should harvest the predator living in the same patch with

the relative source prey subpopulation that has a higher adult migration survival, less

conservatively than the other predator subpopulation. In generai, if adult migration

survival and the per capita larval production for both species are different between

subpopulations, then the difference in escapements are determined by the migration

trade-off equations in Lemma 10.

/r. sþ,> sh_,
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Furthermore, Result 34 concludes that if we ignore spatial structure and man-

age the metapopulation as two unconnected predator-prey populations then we would

oi"r-hurrr"st the relative source prey subpopulation that has a higher adult migration

survival and under-harvest the relative sink prey subpopulation that has a lower adult

migration survival. on the other hand, we wouid also under-harvest the predator liv-

irrg in the same patch with the relative source prey subpopulation that has a higher

u¿-,-,tt migration survival and over-harvest the predator living in the same patch with

the relative sink prey subpopulation that has a lower adult migration survival. A

similar result can also be obtained if we incorrectly manage the metapoprrlation as a

well-mixed predator-prey population'

7.2.2 Numerical examPles

In this section I present numerical examples to illustrate the analytical results in the

previous section. The examples are similar to examples in the previous section in order

to 
"o-pure 

how the escapements would change if the migration of juveniles is included

into the system.
As in the previous section I assume that there are a couple of predator-pley

populations occupying two different patches. The populations ale connected both bv

ihå -igrution of ua"tt1 and the migration of juveniles. All parameters are the same as

the paåmeters in Section 7.1.4 with the addition that the parameters of the juveniles

migration are given by pr, : p27 -- Pzz : 0'050 and p12 : Qii : 0'065' As before'

hairesting begins *h"n ih" poprrlutions are at their equilibrium population size. Next,

I determine optimal escapement for the metapopulation by considering that the costs

of harvesting are negligible with the discounting rate 6 : l0%. The results will be

compared to ttre unulytì"ul results of the previous section' The effects of the inclusion

of the costs of harvesting wiil also be explored'

Substituting all the parameters above into equations (7 '24) and (7'25) produces

negative escapements for both prey subpopulations, that is, sfr,. : _-320244 
and

Siu; : -426582, with C¿ < min{ft,+}. To obtain positive optimal escapements,

the condit ion C¿ > mar{þ,t#} needs to be satisfled. This can be attained by set-

ting a higher intrinsic gto*tÏr it ttr" population. Let us assume that the population

has-a higher intrinsic growth rate, for example, ten times the original intrinsic growth,

that is, ri : si : 40: then new optimal escapements ^9iv, 
: 194159' {;, : 784216'

sä : 
'274 

anð. sþ, :283 are f9u1d As suggested by Result 33, we should harvest

the relativ" .o,rr"åirey subpopulation that has a higher adult migration survival more

conservatively than the relative sink prey subpopulation that has a lower adult migra-

tion survival. We can also observe that the optimal escapement for the predator living

in the same patch with the relative soulce prey subpopulation that has a higher adult

migration survival is less than the optimal escapement for the other predator subpop-

,rl.tiorÌ. Profit generated from these escapements is greater than proflt generated by

escapements if we ignored the spatial structure (see Table 7.6).

Next, let us ták" the costs of harvesting into consideration, where the costs of

harvesting are given by equation (7.17). The parameters in the costs function are

rmx. : 30, ny,: 1.3 x 10-2, Çi :0, and price p¡ : 70' Using this cost function

optimal escapements Sft, : 194163, Si,, : 184221, Sä : 279 and.SÑ, :.288.are

found (see Table 2.7). 
-We 

can see that ihe inclusion of the costs of harvesting does

not change the rules described in Result 33. Tables 7.7 art'd 7.8 compare escapements

fro-.q,rãüons(7.22) and (7.23) toescapementsif weignoredthespatialstructureof
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PPM Sfr, :194159

-- L84276

i, : 378375

¡1i/, :284985
Hfu" :37L052
Hiu :656037

sþ, :274
sþ, :283
Sþ = 552

Hå, : 963
Hþ": gss

I{Ë : 1916

UPP Ïv.":184216
sir :194159

:378375

Hiv,":294939
lli¡"..:359397

^9þ,":283
sþ,,,:274

HË'":953
Hþ",,:963

Ili'.. :654336 sþ.,:ssz Hþ.,:1916
WPP Siv :379122 11i¡.,, :65631f SË... :1210 f1Ë..:98t

Table 7.6: Escapement and harvest comparisons between correct and incor-

rect assumptions, where p¡,t -- pp and costs of harvesting are negligible. PPM'

UPP and WPP denote predator-prey metapopulation, unconnected predator-

prey population and well-mixed predator-prey population, respectively.

PPM .9ïv, : 194163

,5i'" : 78422L

Hi,{, -- 284976
Hiu. :371043

.9Þ,

sþ"

:279
- 288

Hþ':973
Hi^:963

S.fu : 378384 Hiu :656019 sb : 567 Ilþ: 1936

UPP S.fu,": 184220

SL,,: 194163

I1fr,": 294930
Hio".,:359389

sË,": 2BB

Sþ"..:279
HË,": 963

Hi"..:973
Siu,, : 378383 Hio., :654319 Sþ.. = 562 Hi.=1936

WPP ,5i'... : 379L22 Hk.,. :656300 Sþ...:234 Hþ..,: 1002

Table 7.7: Bscapement and harvest comparisons between correct and incor-

rect assumptions, where pN : pp and costs are given by equation (7.17) with

n1,x¡:30rny,:1.3 x I0-2, c¡:0 and price p¡:70. compared to escape-

ments with negligible costs of harvesting, the escapements in this table are

slightly higher, but the rule to conserve the relative exporter prey subpopula-

tion that has a higher adult migration survival remains unchanged.

the population for various parameters of the costs of harvesting.

I plot the contour of the optimal escapements and the equilibrium harvests as the

adult and juvenile migration survivals, me ar'd pe, vary in Figure 7.4. Figure 7.4.a

shows that the optimal escapement for prey subpopuiation one increases as the adult

and juvenile migration increase (dashes), while the equilibrium harvest decreases as

the adult and juvenile migration increase (dots) as suggested by Result 33. The vari-

ations of the adult and juvenile survival of prey subpopulation one do not affect the

optimal escapements of prey and predator subpopulation two. However, their equilib-

rium harvests are affected (Figures 7.4.b and 7.4.d). The equiiibrium harvest of prey

subpopulation two increases as the adult and juvenile migration survival of the prey

subpopulation one increase (Figui-e 7.4.b). As expected optimal escapement of the

predator subpopulation one decreases (Figure 7.a.c).
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Figure 7.4: Contour plot of the optimal escapements and the equilibrium harvests

as the adult and juvenile migration survivals' m¡2 and pp, Ya'r!. Figure 7.4.a shows

that the optimal escapement for prey subpopulation one increases as the adult and

juvenile migration increase (dashes), while the equilibrium harvest decreases (dots).

The variations of the adult and juvenile survival of prey subpopulation one do not

affect the optimal escapements of prey and predator subpopulation two. However,

their equilibrium harvests are affected (Figures 7.4.b and 7.4.d). The equilibrium

harvest of prey subpopulation two increases as the adult and juvenile migration

survival of the prey subpopulation one increase (Figure 7.4.b). As expected by the

Result 33 optimal escapement of the predator subpopulation one decreases (Fig-

ure 7.4.c).
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PPM '5i, : 194299

S.l'" : 184382
ff,Ïr, : 284674
Hk":370770

sË,
sþ"

443
443

Hþ': ll49
Hþ,: LI43

Si' :378681 Hi, : 655444 sÞ : g8o Hþ :229t
UPP ^9ir,": 184382

Siu,,,:194300
/lir,": 294636
Hiu".,:359117

sþ,.:443
Sþ...:443

Hþ,
Hþ"

: lI43
: 1147

Sir., : 378682 Ili,.. : 653753 Så.. : 886 Hþ.,:229I
WPP ,Siu... : 379366 Hfr. -- 655089 SË.,. : 886 Hþ..:2291

Table 7.8: Escapement and harvest comparisons between correct and incor-

rect assumptions, where p¡,t : pp and costs are given by equation (7.17) with

'trtx;:30, n¡- : 1.3 x l0-2, c¡: 0, Pr : 70 and Pp : I0 X p¡¡' In this case

the equilibrium harvest level for both prey subpopulations decline suggesting

that some proportions of these prey should be conserved for the consumption

of the predator, which is more valuable than the prey.

7.3 Adult and juvenile migrations with more than
two subpopulations

In the previous section I discussed optimal harvesting strategies for a two-patch predator-

prey metapopulation connected by aduit and juvenile migration. In this section I
extend the model to a predator-prey metapopulation consisting of more than two

subpopulations. Many commercial aquatic population consist of more than two sub-

populations. For example, Sockeye salmon, Oncorchynchus nerka in Lake Washing-

ton has five subpopulations (Quinn and Hendry, 1997). Other examples are red

sea urchin, Strongylocentrotus frønciscanus, and southern Australian abalone (genus

Hatiotis) which are reproductively connected among subpopulations (Shepherd, 1973;

Shepherd and Brown, 1993; Quinn et a1.,1993). Authors who investigated harvesting

strategies for stocks with multiple subpopulations include Hilborn (1985), Hilborn and

Walters (1gS7), Quinn eú ø/. (1993) and Tuck (1994). Most of these authors studied

harvesting strategies using simulation techniques and they did not find analytic solu-

tions. In contrast, Tuck (1994) found analytic solutions of optimal harvesting strategies

for a genel:ll M patches single-species metapopulation and also considered the costs

of harvesting, which depend on locations, explicitly. In this section, I extend Tuck's

(1gg4) model to include predator-prey interactions in the metapopulation.

7.3.t The model and its optimal escapements

Let us assume that prey and predator populations both occupy M different patches

connected by the dispersal of their juveniles and the migration of the adults. The

dynamics of the metapopulation is modelledby 2M coupled diffelence equations,

MM
lú1r+r¡ : t tl¿rm¿;N¿¡ *lfu4t(¡/¿¡) + a¿N¿¡,P;¡, (7.29)

l=l

M

l=1

M
P¡Q"+t): t b¡n¡;P¡¡, -lløuGíG*) I g¿N¿nP¿n, (7.30)

¿:r I=r

where a¿ 10, 0¿ t 0,DYro¡t ( 1 ald ÐYtp¿t ( 1, fo¡ i : l''2,"',M' As in the

two-patch case, N¿1¡1r¡ and P¿@+t) are the adult abundances of pley and predator

208



subpopulation i in generation k * 1 while -F,(¡f,r) and G¿(P¿r) .." the numbels of
juveniles produced by pley and pledator subpopulation i in generation k' Including

harvesting and recalling that the escapement of prey and predator subpopulations i are

givenby S¡¡,.: ly'¿¡ _ HN¡o and,Sr,* - P¿n-Hpx, thedynamicsof themetapopulation
become M M

N;1i,+r¡ : t a¿m¡¿S¡¡,o *lpuFt(St,o) * a¿S¡¡,oSp,r' (7'31)
l=1

M
P¿$+t): t b¡n¡¿Sp,r l-Dqt¿GúSt,*)* þ¿SN,rSp.,*. (7'32)

l=l l=1

Optimai harvesting strategies are found by maximising the net present value from

harvesting all species from all patches, that is, by maximising

TM
PV:Ðp*I t lIx;(x¿n,sx¿n) (7.33)

À=0 i=l X€{N,P}

subject to the state variable equations (7.31) and (7.32), with non-negative escape-

ment less than or equal to the population size, where fIx¿(X¿n,Sx¿x) is given by equa-

tion (4.14). As in the two-patch models, the discounting factor is given by p : 
G+rI

Following the same method as in the previous section, optimal escapemedts for

the prey and predator populations, ,9iy, and .9ft, are found in their implicii expressions

M

Ðl("0*0, + p;t1i6îv,,)) (rt - "t,(¡/,'))]
l=1

*a;sþ^ (p" - "run(Iú,t))
+þ¿Sþ,0 (P, - "p¿(P¿r)) 

,, (7.34)

l=1

M

PN - cN¿(,Si/,.)

p

pp - cp¿(Sþ,")

p

M

i f 
(an".,, + q¿tG'¿(Sh.)) (pr - "r,(P,'))]l=I

+13;Siv. @, - "p¿(P¿t))
+a¿Sfr,. (pr - "ru,(l/,t)) , (7.35)

for i : I,2,..., M. These equations are the general form of the optimal escapement

equation for a M-patch predator-prey metapopulation with adult and juvenile migra-

tions. To obtain explicit expressions of the optimal escapements, Sfi¡, and ^9i1, I assume

that the costs of harvesting are negligible or independent of the population abundance

and that there is no price difference between prey and predator. Furthermore I also

assume that the recruitment production functions, 4 and G¿, are logistic as in (3.3)

and (3.a). using these assumptions, optimal escapements are found as

q* - 
A¿TÐYtq¿t -f C;B¿

DN,: Ao , (7.36)

sî- : B;TÐY\P¿: -f c;A¡ g 37)ùp._ a¿ )

for i : Ir2r..., M, where

L¿:c?_(?å,,,) (?Ð,,,), (738)
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1MM
An: _-"oIp¿t-a4D*u,P l-t r=r

(7.3e)

1B¿: -p - "n Ð qu - b¿Drr,
M

l=I

M

l=1

l=l

(7.40)

and
C¿:a¿*\¡, g-41)

provided L¿ # 0. Using the same method as in the previous chapters, u/e can obtain

sufficient conditions for the metapopulation to have non-negative optimal escapements.

The conditions are written in the following result.

Result 85 (Sufficient conditi,ons for positiue esca[)enxents) Let Si¡ and Sþ, d.enote the,

optimal esc(rpenxent from a predator-prey metapopulation giuen by equations (7:!6)^??d

¡l.Sl¡. If Ã¿ and. B¿ o,re negatiue, and, C¿ is non-positiue with C¿ ) mar{æ,+},
then

L4 is negatiue, and Si¡¿ and Sþ¿ are positiue'

To draw some conclusions about escapement comparisons between patches I use

Lemma 10 in the previous section with additional definitions

M M
tim: r¿Dp¿t + o;Ð*¿t (7.42)

l=l

andMM

aim: t;Dq;t|b¿D'¡t, g'43)
I=L l=1

and, following Tuck (1994), I redefine and generalise the concept relatiue erporter/

irnporter and. relatiue source/sink subpopulations in the following way.

A prey subpopulation i is called a relatiue erporter (importer)prey subpopula-

tion if it exports (imports) a greater per capita number of larvae to the other prey

subpopulations than it imports (exports), that is,

M M
,¿Ðp¿t > (<)Ðr,p,o (7.44)

A prey subpopulation i has ¿ higher (lower) adult erport suruiual if

M M
qÐ** > (<)Ðot*,n

l=1

l=1

l=L

l=1

(7.45)

A relatiue erporter (importer) and ø higher (lower) adult erport suruiual are defined

analogously for the predator population.
A prey subpopulation i is called a relatiue source (sink) prey subpopulation if it

has a greater (lower) per capita larval production than that ofthe other subpopulations,

that is, M M
,uDpa > (<)"¡ Ðp¡,, vi i + i (7 '46)

l=ll:r
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A prey subpopulation i has ø higher (tower) adult migration suruiual if

MM
a;Ðm¡¿ > (<)o¡ lmit, Vi i + i. (7 '47)

l=1 J=l

A relatiue source (sink)and ¿ higher (tower) adult migration suruiual ate defined ana-

logously for the predator population.
In a special case, where all predator subpopuiations are identical, we can compare

optimal escapements if one of the prey subpopulations, say prey subpopulation i' has

a higher adult export survival or is a relative exporter subpopulation, so that the total

surviving individuals of that population, that is, r¿, is greater than the total surviving

individuals of the other prey subpopulation. The comparison is summarised in the

foilowing result.

Result 86 (Escapernent cornparison o,nLong subpopulations) Let prey subpopulation i
be a relatiue source subpopulation or haue a higher adult migration suruiual, so that the

totøl suruiuing ind,iuiduals of that prey subpopulation is higher than the total suruiuing

ind,iuiiluals of the other prey subpopulation, that is, n¿ ) rjt vii + i. AII other

parameters of the prey and the predator are identicg,l for both subpopulations.. If lal: B '
or if A¿ and, B¡ are negatiue and' C > mar{?,'#) with l: 1, ", M, then

/. sÄ,, > ^9i{,,

2. sL < så.tt 
- 

tJ

Proof

1. Let 45¡v;r : (siv, - ,sîvr)a;a¡. Following the proof of Result 8, we only need to

show

asN¡j : r-l?(" {" -'+) W)] ,",- - rina) > 0, (T 48)

which is satisfi.ed by *¿^ ) rimt since f; < C < 0. The second part can be

proved analogouslY. ¡

Using the same method as above, we can compa e the escapements in this sec-

tion to escapements if we ignore the spatial structure of the population and incorrectly

consid.er the predator-prey population to be an unconnected M-patch predator-prey

population. In this case, the optimal escapements for the prey and predator subpopu-

iation i are given by Sfr,, and ^9þ," in Appendix 7A with the growth rates r¿, and s¿,,,

and adult survival after migration, a¿u and b¿¿, àle given by

,ou :fr,p,n, 
"0. 

:f",n,0, a¿u:fo,*,n, bn.:fb,',n' (7'4g)
l=1 t=l l:l l=l

Result 37 (Escapernent Compari,son to an unconnected M -patch predator-prey popu-

lation). Let Si¡ and Sþ denote the optirnal escapement from a predator-prey metapop-

ulatiot-t giuen by equations (7.36) and (7.37), and let Si¡, and Sþ. denote the optim,al

esc(rpernent if we incorrectly cot-¿sider the metapopulatiorr, as a systern con'sisting of M
unconnected predator-prelJ populations. Let prey sub1to1tu"lati.ort i be a relatiue etporter
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(importer) prey subpopulation or haue a high,er (tower) adult erport suruiual, so that

ì0,*'+ din ) (<)"n, * a¿u with the total suruiuing indiuiduals of that prey subpopulation

h¿gher (tow") ihan the total suruiui,ng i.ndiuiduals of the other prey subpopulation, that

is"x¿,n > (<)"0, * aiu, with c2 - ?T All other parameters of the prey and the pred-

ator are ìdentical for both' t"tpopú'tolions' If At and' Bt : B are negatiue and Ct : C

is non-positiue with C > mar{T,T} tlr""

.9Ä/, > (<).9Å',, and Sþ I (>),9ä".

The proof of this result is analogous to the proof of Result 9.

7.3.2 Numerical examPles

In this section I present a numerical example to illustrate the'analytical results in the

previous section. In this example I use M : 3, that is, the predator-prey metapopu-

iation consists of three different patches. Let us assume that the three subpopulations

are connected by the migration of adults and the migration of juveniles, where the

migration parameters for the prey and predator given by pt1 : pt3: Pzt: Pz2: P3r :
pzz: Psz:0.050, Ptz: Pzs: Ç¿¡ :0.065, rrù11 : rrl13: rT?'21 :TrL22: rrl31 : rn32:
-TTt43: 

n¿j 0.025, rÍLrz -- 0.050 and rn23 : 0.035. All other parameters for the three

subpopulations are indistinguisable as in Section7.2.2. As before, harvesting begins

when ih" pop,riutions are at their equiiibrium population size. Next, I determine the

optimal escapement for the metapopulation by considering the costs of harvesting as

nlgligible *iih th" discounting rate 6 : !0To. The results wiil be compared to the

urãty1i"rt results in the previous section. The effects of the inclusions of the costs of

harvesting will also be exPlored.

Subtituting all the parameters above into equations (7.36) and (7.37) produces

optimal escapements,Sfy' :272000, Sfr, : 211432, SÅ'. : 207157, Sä.:3!5, .9i¡ 
-

3å6 and Sä :8b8. Inihi. "*u-plez1*) rz*) rz* and as suggested by Result 36,

the relation, sfr, ) si/, > ^9iy. and sþ, < sþ, <,9þ. ,are 
obtained. Hence, we should

harvest the relaiiv" *nr"" prey subpópulation which has a higher adult migration

more conservatively than the other prey subpopulations and we should harvest the

predator living in the same patch with this relative source prey subpopulation less

conservatively than the other predator subpopulations. If we incorrectly manage the

population as a three-patch unconnected predator-prey population then we would over-

Lu.,r".t the relative source prey subpopulation while under-harvesting the other prey

subpopulations and also we would. under-harvest the predator living in the same patch

with the relative source prey subpopulation while under-harvesting the other predator

subpopulations (see Table 7.9). This rule is also observed when the costs of harvesting

are included in the analysis (see Table 7.10).

7.4 Concluding Remarks

In this chapter I generalised the predator-prey metapopulation model introduced in

Chapter b by inciuding the migration of adults. The fir'st section in this chapter

.orrrld"r"d only the migr-ation of the adults and the second section considered both the

migration of the adults and juveniles.

Optimal escapement pr^opelties for predator-p'..ey metapopulation with adult-only

migr.ation are a¡alogous to optirnal escapements when only juvenile al'e able to rniglate.
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PPM

:207157

'Siu' : 212000
,Si, : 217432

= 630589

H';,r, = 533944
Hlu" : 613080
Ilir^ : 614127

SÞ, :355
'9i', : 356

sä : g5B

Hþ, :1776
Hþ" : 1776
Hþ": 1772

Hiu : 1761151 Så :1069 Hi:532+
UPP Siu,":207I57

Sfir," =212000
Si¡"..:2II432

Hfr,":538798
Hfr""--611920
11i"..:609900

s
sþ,.
c+ù P"-.

:358
=355
:356

Ptu Hþ,.:l
Hþ"":t
Hi"..:t

772
776
(to

Si¡.. :630589 lli¡.. :1760618 så,,:1069 Hþ..:532+

WPP Si¡.,, :731601 Hi't.., :7727302 Sþ.,.: 1254 11Ë. :5685

Table 7.9: Escapement and harvest comparisons between correct and incor-

rect assumptions, where pw : pp and costs of harvesting are negligible. PPM,

UPP and WPP denote predator-prey metapopulation, unconnected predator-

prey population and well-mixed predator-prey population, respectively.

PPM .9i',
sfr,

:212004
:217435
:207t6r
:63

Hi,{, -- 533937
Hi{,:613074
Hiu^:614120

sÞ, :359
Sä = 3sg

SË" :36t

Hþ,: L7B4

Hþ": 1783
Hþ": l7B0

Hk :1761131 5å : 1079 Hþ: 5347

UPP ,Si,,": 20716I
Sfr,"= 212004
Si'".,: 2It435

Hfr,"-- 538791
Hiu".:611913
f/iu..,:609894

sä": gor

Sä": 3¡g
sË"..:359

f1þ,": 1780

Hþ,":1784
Hþ"..:1783

,Siu.. : 630600 Hiu., : 1760598 Så.. : 1079 Hi.= 5347

WPP Si'.,, : 731601 Hiu.,,: 1727300 Sþ',: 125+ 1{Ë...: 5680

Table 7.10: Escapement and harvest comparisons between correct and in-

correct assumptions, where pN : pp and costs are given by equation (7.77)

with rn¡, - 30, TLx; : 1'3 x 10-2, c¡ : 0 and price Px : 70' Compared

to escapements with negligible costs of harvesting, the escapements in this

table are slightly higher, but the rule to conserve the relative esporter prey

subpopulation that has a higher adult migration survival remains true.

For example, we should harvest a prey subpopulation with a high adult migration sur-

vival more conservativeiy than that with a lower adult migration survival. On the other

hand, we should harvest the predator subpopulation living in the same patch with the

prey subpopulation which has a high adult migration survival less conservatively than

the other predator subpopulation. If both age-classes are able to migrate then there

is a trade-off between high/low adult migration survival and sink/source properties of

the populations.
Many commercially exploited aquatic populations are believed to be made of

several separate subpopulations, for example the Sockeye salmon ìn Lake Washington

which has five subpopulations (Quinn and Hendry, 1997). These populations are often

reproductively connected (Shepherd and Brown, 1993; Quinn et al., 1993)' The two

most common or typical structures of non-symmetric reproductive connection among

subpopulations are the "uni-directional migration" structure, where migration occurs in

one direction, and the "mainlancl-island" stlucture, where migration occurs only from

one subpopulation (Tuck, 1994). Bxamples of populations with the first stlucture are a
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mollusc, Aplysia californica, along the coast off California and the Eastern king prawn,

Penaeus plebejus, in New South Wales. These populations are well-known to migrate

northward. The northern subpopulations recruit individuals from their spawners and

also from the southern subpopulations (Penning, 1991; Gordon et a/., 1995). Examples

of populations with the second structure are scallops (Orensanz et a\.,1991).
The third section in this chapter generalises the model for a predator-prey meta-

population with adult and juvenile migrations where the metapopulation consists of
' M subpopulations, incuding the uni-directional migration and mainland-island spatial

structures as special cases. For these special cases, harvesting theory for an M-patch
single-species metapopulation with uni-directional migration (Tuck, 1994), assuming

that the migration of the juveniles occurs from subpopulation one to subpopulation
two, from subpopulation two to subpopulation three, and so forth, suggests that if
no juveniles are retained in the last subpopulation (subpopulation M) then we should

harvest all individuals in the last subpopulation. However, in the presence of a pred-

ator, the optimal escapement for the last prey subpopulation need not be zero, unless

C ¡r¡ :0 (see equation 7.36). In the presence of the predator, the theory in this chapter

suggests that the optimal escapement for the last or the terminal prey subpopulation

should not be greater than the optimal escapement for any other prey subpopulations,

as long as the assumptions in Results 36 are satisfied.

Similarly, if the population has a mainland-island structure, for example all mi-

gration of juveniles occur from subpopulation one and no juveniles are retained in any

subpopulation other than subpopulation one, the harvesting theory for an M-patch
single-species metapopulation, assuming the costs of harvesting are negligible, sug-

gests that we should harvest all individuals from ail the subpopulations other than

subpopulation one. Again, in the presence of the predator, the theory in this chapter

suggests that the optimal escapement for prey subpopulation one should be bigger than

the optimal escapements for any of the other subpopulations, as long as the hypotheses

in Result 36 are satisfied. In the previous section I argued that adult-migration meta-

populations are common. Among the examples are salmonid populations connected

by straying individuals. Although the straying behaviour of these salmonids is well

documented, it is still not certain whether the strays can successfully reproduce. Po1-

icansky and Magnuson (1998) believed that the connection among local populations

by straying is responsible for the current dynamics and distributions of the salmonid

populations. However, Tallman and Healey (1994) showed that a high level of straying
does not necessarily reflect a high level of genetic migration among local populations.

This can be interpreted to mean that the salmonids that stray do not necessarily suc-

cessfully reproduce. The difficulty the strays have in reproducing may be due to the

difficulty of the stray in finding a mate, because "stray only mated with stray through

some unknown mechanism of mate choice" (Tallman and Healey, 1994). Another pos-

sibility is that interbreeding between stray and the local population does occur,, but
their offsprings are too weak to sur-vive. Fol example, hybrids between Kokanee and

Sockeye salmons have poor swimming capabilities (Taylor and Foote, 199i) which may

Iead to a problem in pledator avoidance. For this reason, Tallman and Healey (1994)

argued that strays do not reproduce successfully in nature.

The models in this chapter assume that the strays successfully reproduce. Futule
models of adult-migration predator-prey metapopulations may include the assumption

that strays do not successfully leproduce and other relevant factors, such as different

functional forms of the predator-pley interaction, environmental stochasticity, etc., to
improve the undelstanding of optirnal harvesting strategies fol the metapopulations.
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7.5 Appendices

Appendix 7A: General escapements formula for an unconnec-

ted M-patch predator-prey population

Consider an M-patch predator-prey metapopulation. If the only differences between

patches are adult and juvenile migration parameters, and if we incorrectly manage
' the metapopulation as M patches unconnected predator-prey populations, assuming

the costs of harvesting are negligible, then optimal escapements for subpopulation i
(i : 1, 2,..., M) are given bY

sir," : A¿'T * B¡'c¿' 
(7.50)

Å77r.

and

(7.51 )

(7.57)

(7.58)

¡ n2 2r¿"2s:y 
+ 0,!)iu : uiu _ 

fç Ln
(7.52)

Aiu:t -,ru-aiu¡ (7.53)
p

Biu:' - "ou - biu, (7 -54)
p

C¿: a¿ I þ¿. (7.55)

In this case, riu and s¿., are the growth rate of the prey and predato-r subpopulation i
measured. after migration and given by ,¿u : DYr,r¡p¡¿ arld siu -- ÐYt sgt¿. Similarly,

a,¿u a.nd. b¿u are adult survival after migration of the population i and given by oiu :
ÐY-tatmt¿ and ó¿., :l{tb¿n¡¿.

Appendix 7F: General escapements formula for a well-mixed
predator-prey PoPulation
Consider an M-patch predator-prey metapopulation. If the only differences between

patches are adult and juvenile migration parameters, and if we incorrectly manage

lhe metapopulation as a well-mixed predator-prey population, assuming the costs of

harvesting are negligible, then optimal escapements for the metapopulation are:

A- 2s- I B-C-
(7.56)a-

where

CY*JN- 
-

and
CA-+2r-

K*B- u
.9

au,

t n2 2r-2s"z:.-:ur,- - -!10,I\u Lu

P-

1
:--Tu-atu¡

p

where

A*

2Il'¡

(7.5e)



B-: t 
-"- -b-, (7-60)

p

C-: a.l þ-. (7'61)

In this case, rür and s., are the average growth rate of the prey and predator population

given by

(7.62)

(7.63)

The average adult migration survivals, c- and bg^?." defined similarly. Predator-prey

coeff.cients are taken as the average value r.tn :4t and' B- : Dh Ot .The carrying

capacities for the prey and predator population are the total carrying capacities /(- :
DY, K; and. L- --DY-t L¡.
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Chapter 8

Conclusron

In this thesis I have developed mathematical models of commercialiy exploited popuia-

tions. I have addressed the question of how to harvest a predator-prey metapopulation.

Ruies about harvesting source/sink subpopulations, more/less vulnerable prey subpop-

ulations and more/less efficient predator subpopulations were found. The costs of not

harvesting the population properly, that is, if we did not realise that the population

was a metapopulation, were also discussed.

Although in general it is impossible to include all relevant details in simple popula-

tion models (-Spetrcer and Collie, 1996), major factors need to be included in population

modelling if the models are intended to give a better understanding of the behaviour

an¿ management of the populations. Among the major factors we need to include are

biological interactions, such as predator-prey interactions, and the spatiai structure of

the p-oputation (sih et a1.,1998; czárán, 1998; Parma et a1.,1998; Hall, 1998).

Expiicit study on optimal harvesting strategies for spatiaily-structured predator-

p."y poprrlations has received little attention (Semmier and Sieveking, 1995; Shea eú

ol., fOOa¡. In this thesis I simultaneously incorporated predator-prey interactions and

spatial ,[ructure into population models and investigated optimal harvesting strategies

of th" populations. At fi.rst glance, examining spatial structure and biological interac-

tions in ãxploited living marine resources will only complicate the management task

(OECD, 1gg7). However, some authors have shown that this kind of study produces

results which can be summarised in simple rules and used to improve the existing

management of the resources (Tuck and Possingham, 1994; Pelletier and Magal, 1996;

Brown and Roughgarden, 1997).

In nature, many populations have a discrete spatial structure (Quinn et a1.,1993;

Quinn and Hendry, 1997; Brown and Roughgarden, 1997). The populations occupy

.å,r"rul distinct habitat patches separated by aialge distance (Frank, 1992). Metapop-

ulation modelling has became a popular- and impor-tant tool in understanding these

kinds of populations and has contributed better alternatives in managing the pop-

ulations (t""k and Possingham, 1994; Lindenmayel and Possingham, 1996; Hanski

and Gilpìn, 1gg7). In Chapter 4 I developed predator-prey metapopulation models

assuming the popuiations live in two diffelent patches, and there are predator-prey

interactùns in both patches. Both the pley and predator populations are connected

by the dispersal of the juveniles. I modelled the dynamics of the metapopulation using

coupled difference equations.
Several assumptions have been made, including the assumptions that exploitation

can be carriecl out selectively, for each species in each patch, and optimal harvesting

str-ategies wer.e sought by maximising the discounted net revenues generatecl from both
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species in two different patches. The predator-prey interaction was modelled in a very

,i-pl" form, that is the classic Lotka-Volterra predator-prey interaction, so that an

explicit form of the optimal escapements could be obtained. Following Tuck and Pos-

singham (1994), interpretations of the resulting optimal escapements are facilitated by

classifying subpopulations according to the per capita larval production, PreY vulner-

ability and predator efficiencY.

I call a prey subpopulation which has a greater (lesser) per capita larval produc-

tion a relative source (sink) prey subpopulation. A prey subpopulation which exports

more (less) per capita number of larvae than it imports is called a relative exporter (im-

porter) p."y rnbpopulation. A relative source (sink) and a relative exporter (importer)

pt"duto. subpopuiation are defrned similarly. A prey subpopulation that is more (less)

vulnerable to predation than the other prey subpopulation is called a more (less) vul-

nerable prey subpopulation. Furthermore, I cali a predator subpopulation that is more

(tess) efficient in converting biomass, from the prey they eat into new predator indi-

viduals, than the other predator subpopulation as a more (less) biologically efficient

predator subpopuiation.
In the absence ofpredator-prey interactions, Tuck and Possingham (1994) invest-

igated optimal harvesting strategies for a metapopulation and found the following rules

of thumb:

TP 1 A relative source subpopulation should be harvested more conservatively than a

relative sink subPoPulation.

TP 2 If we use single-species metapopulation harvesting theory, a relative exporter sub-

population would be harvested more conservatively than if we use unconnected

.ingl"-rp""ies population theory, while a relative importer subpopulation would

be harvested more heavilY.

TP B If we use single-species metapopulation harvesting theory, a relative source sub-

population would be harvested more conservatively than if we use weli-mixed

,irrg1"-.p""ies population theory, while a relative sink subpopulation would be

harvested more heavilY.

Although, in general, rules derived from single-species harvesting theory are not neces-

sarily true in harvesting ecologically interrelated stocks (Semmler and Sieveking, 1994),

in this thesis, in the presence of predator-prey interactions, I established harvesting

strategy rules for a predator-prey metapopulation as a generalisation of the harvesting

strategy rules for a single-species metapopulation. Some properties of the escapements

for a single-species metapopulation are preserved in the presence of predators, such

as the strategies of how to harvest a relative source/sink and exporter/importer local

population, similar to the rules of thumb TP 1 to TP 3 above. With two species an

import.nt issue throughout the thesis is which species is being harvested, or both, and

if both what is the relative profrt per unit biomass for each species. This adds another

dimension to the problem not present in the single-species work.

Interpretations of the resulting optimal escapements are delived for two different

cases. In the first case I assume that both species ar..e harvested. In this case optimal

escapements for the two species in both patches ale obtained and they are independent

of the time horizon considered. In the second case I assulne that harvesting targets only

one species, either the prey or the preclator. In this case optirnal escapements for the

exploited species are functions of the abundance of the unexploited species. However-, if
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there is no discounting then these escapements are equal for any period of exploitation.

This is because when there is no discounting, profit in any period generated from

escapements has exactly the same value to profit from the same escapements in any

other period.
When harvesting targets both species, I generalised the concept of predator bio-

logical efficiency to inãlude a delay in predator biomass conversion, a predator survival

,u,i" rrrd a predator relative value to the prey in the following way. Assume that the
' the predator is rz times more valuable than the prey. I defined predator economic

eflìciency as the predator biological efficiency weighted by the relative value of the

predator, rn. Furthermore, if the predator has a delay of ø in converting biomasses

irom eating the prey into predator's offsprings, assuming that the discounting factor

is p, I defined discounted predator efficiency as the predator economic efficiency dis-

counted by p" . Post-dispersal predator efficiency can take three forms: either as the

predator biological efficiency discounted by the proportion of the surviving predators,

the pred.ator economic efÊciency or the discounted predator effi.ciency'

If the post-dispersal predator efficiency is above a threshold, the two prey (pred-

ator) subpopulations are indistinguishable except for the prey migration rate and the

cost of harvesting is negligible or independent of the stock abundance, then the first

rule of thumb fo. hur,r"rting a single-species metapopulation (TP 1) can be used to

manage a predator-prey metapopulation. In other words, in this case, we should har-

vest the relative .olrì"" prey subpopulation more conservatively than the relative sink

prey subpopulation. Furthermore) we protect the relative source prey subpopulation

ãirectly with a higher escapement for the prey, and indirectly, with a lower escapement

of the predator living in the same patch with this prey subpopulation. If, in addition,

the relative source prey subpopulation is aiso a relative exporter subpopulation then

incorrectly managing the metapopulation as an unconnected two-patch predator-prey

population *orrlj o,rer-har.rest the relative exporter and source prey subpopulation

while under-harvesting the relative importer and sink prey subpopulation, as long as

the predator efficiency measured before and after dispersal is the same for both patches.

This rule generalises the second rule of single-species metapopulation harvesting theory

(Tp 2). õn the other hand, if the migrations between subpopulations are symmetric

irro "*po.ter/importer 
and source/sink hierarchy), and there is no biological variability

à*""pt the vulnerability of the prey, then we should harvest the less vulnerable prey

subpopulation more conservatively than the other prey subpopulation which is more

vulnerable to predation. A special case occurs when there is no predation in one of

the patches. This rule makes sense because it shows we should harvest the prey living

in a refugial habitat (as reflected by low vulnerability) more conservatively than the

prey living in the habitat where predation occurs. This is intuitive and agree with

the belief of many fishery biologists that we should be more protective in dealing with

critical subpopulations, such as those act as source subpopulations and those living in

spawning and refugial areas (Hali, 1998).

Furthermo.", if th" prey vulnerabiiities of the two prey subpopulations are exactly

the same, but the predator efficiencies differ between the two p..'edator subpopulations,

then we should harvest the prey living in the same patch with the relatively more

efficient predator more conservatively than the other prey subpopulation. This result

suggests that if the predator has a high biological efficiency, then we should leave

"trá"gh 
prey to sustain the predator population. This result is well known in harvesting

theory for homogeneous predator-prey populations (Silvelt and Smith, 1977; May et

al., lgTg; Ragozin and Brown, 1985). I{owever, with two patches here there can be
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a conflict between a high predator efficiency (also a high predator naturai growth)

and the source/sink or exporter/importer properties of the prey populations. A prey

living in the same patch with a relatively more efficient predator might not need to be

more protected than the othel prey subpopulation if it is a relative sink or importer

subpopulation.
Another complication arises when we consider the relative market prices of prey

and predator. If the market value of the predator is large enough compared to the
- market value of the prey, then the equilibrium harvest for the prey can be negative. A

negative harvest might be considered a "seeding strategy", where prey are put into the

system from another patch. In many situations a seeding strategy is impracticable, so in

this case an aiternative strategy of imposing zero harvest, for the popuiation which has a

negative harvest, is the best that can be done. However, if it is possible to implement

a negative harvest, numerical examples show that this strategy increases the total

net revenue compared to a zero prey harvest strategy. Again, this is consistent with

the belief of many fisheries managers that proper harvesting strategies which include

biological interactions, such as predator-prey interactions, may have a positive effect on

overall yield (Christensen, 1996). This is not surprising considering the "bioeconomic

role" of the prey population which can be converted into a more economically valuable

species through the predator-prey interaction.
The seeding or feeding strategy discussed here has another limitation' that is

it assumes that the cost of seeding (negative harvest profit) equals the price of prey.

This might not be true. In this case the optimal harvesting strategy is to apply a zelo

harvest until the prey abundance is higher than the prey optimai escapement. I also

provide an alternative method for dealing with a negative harvest by considering a zero

harvest as a constraint in the maximisation.
If harvesting only targets the prey (predator) species and if the only difference

between the populations is prey (predator) migration parameters, assuming that there

is no discounting, then the rules described above hotd (that is, we should harvest the

relative source prey (predator) subpopulation conservatively) regardless of the value of

the predator ef,ftciency. Hence, in this case, a high predator efficiency is not a neces-

sary condition for this rule. Protecting a relative source subpopulation, by harvesting

it conservatively, is intuitively sensible; protecting the source subpopulation means

protecting the replenishment of the other subpopulation, so that the exploitation can

be carried out sustainably (Mangel et al., L997; Gary et ø/', 1998)'

In Chapter 5 I looked at optimal harvesting strategies for predator-prey meta-

populations which have different biological structures. The rationale is that I want to

know the robustness of the results in Chapter 4 to the biological relationships between

predator and prey. In Chapter 4 I assumed that predator-prey interactions occur in the

juvenile life-stage of the population while in Chapter 5 I assumed that the intelactions

take place in the adult life-stage of the population. Predation \'r'as modelled in two dif-

ferent ways depending on the effect on the dynamics of the pledator. The first model

assumes that predation affects the predator survival while the second model assumes

that predation affects the predator recruitment, which is probably more likely than the

frrst one (this is because both models also assume that the predator- has another main

food and hence pÌedation is likely to affect birth more than death).

The results in Chapter 5 show that the most significant rule, that we should har-

vest a r-elative source prey subpopulation more conservatively than a relative sink prey

subpopulation, while we should also harvest the pledator living in the same patch with
the relative source prey subpopulation more heavily than the other predator subpop-
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ulation, is robust regardless of the biological structure of the population. If predation

occurs in the adult life-stage and it affects the survival of the predator, then incorrectly

managing the metapopulation as an unconnected two-patch predator-prey population

would over-harvest the relative exporter and source prey subpopulation while under-

harvesting the relative exporter and sink prey subpopulation. On the other hand, we

might unãer-hu,rvest the predator living in the same patch with the relative exporter

and source prey subpopulation while over-harvesting the other predator subpopulation.
' Unlike the case where predation occurs in the juvenile life-stage of the popuiations, this

result was derived without requiring equal predator efficiencies measured before and

after migration.
In Chapter 4, when harvesting only targets one species, we only investigated

optimal escapements for one period to go. These escapements may give useful inform-

ation if there is no discounting, since in this case profit generated from any escapements

in one period is the same as the profrt generated from the same escapements in any

periods (Agnew, 1982). However, they might be less informative if there is a non

zero discounting rate. In Chapter 5 some properties of the optimal escapements with

a non-zero discounting rate were explored. Numerical examples suggest that, when

harvesting only targets the prey population, the rule to harvest the prey subpopula-

tion living in the same patch with a reiative source predator subpopulation may no

longer hold.. However, in some circumstances, we still harvest a relative source prey

subpopulation more conservatively than a relative sink subpopulation'

ihe results mentioned above are derived by assuming the costs of harvesting are

negligible. In the absence of the predators, Tuck (1994) argued that the analogous

results for the single-species metapopulation harvesting theory would not change if
the costs of harvesting are taken into account. However, in this thesis, that is in the

presence of the predators, when the costs of harvesting are included in the analysis,

severu,l requirements need to be satisfred to obtain the same results. For example, Iet the

prey subpãpulation one be a relative source subpopuiation and the costs of harvesting

of the prey population be constant but different between patches. In this case we

should still protect this relative source prey subpopulation in the two different ways

explained above if: (1) the retention rate of the reiative source prey subpopulation

larval production ,t prtrL, is greater than the larval immigration rate from the other

prey subpopulation, pz{zi (2) the larval emigration rate of the relative source prey

subpopulation, pnrt, is greater than the retention rate of the other prey subpopulation

larvìl production, pzzrzi (3) the product of the predation rate, Q¿, and the marginal

net revenue, pN - c¡¡,, is the same for the two patches'

Furthermore, if the costs of harvesting for the predator are the same regardless of

the location of the populations and the marginal net revenue from the relative source

prey subpopulation is lower than, or equal to, the marginal net revenue from the relative

,ink p."y subpopulation, then incorrectly managing the population as a well-mixed

predator-prey population or an unconnected two-patch predator-prey population would

over-harvest the relative source prey subpopulation while it would also under-harvest

the relative sink prey subpopulation. The predator living in the same patch with the

relative source prey subpopulation would be under-harvested and the pledator living

in the same patch with the relative sink prey subpopulation would be over-harvested'

At the metapopulation level, the prey subpopulation would be over-harvested and the

predator subpopulation would be under-harvested. As a result, the total profit from

predator-pr-ey metapopulation halvesting theory is greater than the total profit flom

strategies that ignore the true spatial structule of the populations.
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The biological structule of the models in Chaptels 4 and 5 was very simple,

ignoring the age structure of the population. The model for each patch is described by

a singlevariable representing the number of individuals and assumes that the offspring

of the current population are immediately recruited to the adult population in the next

period. In other words the population in each patch is a single homogeneous and well-

mixed population. In reality, many exploited populations consist of several different

u,g" "Iurr"r. 
In Chapter 6 I derived and discussed optimal harvesting strategies for

' the simplest form of age-structured predator-prey metapopulation, by considering that

either the prey or predator juveniles may experience a delay in recruitment. I modelled

the recruitment delay in two different ways. First, a recruitment delay experienced by

juveniles can be related to the subpopulation in which they eventually recruit, this

is referred to as "local population receptor delay model". Second, the delay may be

related to their origin subpopulation, and the model is known as "parental recruitment

delay model" (Tuck, 1994). I extended the basic predator-prey metapopulation model

in Chapters 4 and 5 by including these two types of recruitment delay.

The resuits in Chapter 6 show that if there is no discounting rate then the ruies

of thumb of predator-prey metapopulation harvesting theory, such as escapement com-

parison between patches and escapement comparison to incorrect harvesting policies,

Lold regardless of the delays. However, if the discounting rate ð is not zero then the

rule on how to harvest a relative source/sink and exporter/importer subpopulation

is no longer necessarily true unless the delays of the two subpopulations are equal- If
there is no exporter/importer prey subpopulation, escapements from the predator-prey

metapopulation with parental delay recruitment are equal to escapements from the in-

correct unconnected two-patch predator-prey population harvesting policy, regardless

of the popuiation delays, .y¿. In contrast, escapement differences between the predator-

prey metapopuiation with receptor delay recruitment and the incorrect unconnected

two-patch predator-prey population do depend on the deiays'

The results in Chapter 6 also show that if both subpopulations are identical then

both models produce the same optimal escapements. However, if one of the subpopu-

lations has a larger recruitment delay then results from both models are different. For

example, if prey subpopulation one has a larger recruitment delay than prey subpopu-

lation two, that is, .y1 ) 72, then the escapement for prey subpopulation one from the

parental delay model is lower than the escapement from the receptor delay model and

the escapement for prey subpopulation two from the parental delay model is greater

than the escapement from the receptor delay model. Hence, incorrectly managing a

predator-prey metapopulation having parental recruitment delay as a metapopulation

with local population receptor delay mode, would under-harvest the prey subpopula-

tion with larger recruitment delay, and over-harvest the prey subpopulation with the

lower recruitment delay. On the other hand, it also would over-harvest the predator

subpopuiation living in the same patch with the prey subpopulation which has a larger

recruitment delay, whiie the other predator subpopulation would be under-harvested.

The exploited population delay model discussed in Chapter 6 was originally de-

veloped by Clark (1976b). Botsford (1992) suggested that this model can be extended

by consid.ering the spatial structule of the population and larval dispersal between

subpopulations. Tuck (1994) extended Clark's (1976b) model to incorporate spatial

structure, dispersal and maturation delays. His majol conclusion is tha,t results from

the delay model may differ depending on whether we assume the delay related to des-

tination site or birth site of the dispersing larvae. In Chapter 6 we have extended

Tuck's (1994) model by adding pledator-prey intelactions into the system. Our results
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show that Tuck's (1994) major conclusion is confirmed in the present of predator-prey

interactions, if the predator "discounted" efficiency is greater than a certain threshold.

Tuck (1994) showed that an increase (decrease) in recruitment deiay of a single

species d.ecreases (increases) the optimal escapement of that species. We have shown

in Chapter 6 that it can also increase (decrease) the optimal escapement of the other

species which interacts with the former, especially in the predator-prey metapopulation

parental delay model. In other words, maturation delay differences in one species (e.g'

pr"y ,p""ies) influences the optimal escapement of the other species (e.g. predator

species) even though the later species has a uniform delay, that is, the delays are equal

in any patches. The result is not surprising, since delayed recruitment is considered

one of the important factors in declining fish populations (Russ and Alcala, 1996;

Hitchcock and Grattotrevor, 1997). The collapse of these flsh populations may affect

the abundance of other species which interact with them, as observed by Crawford and

Dyer (1995) and Agnew (1997).

Chapter 7 considered predator-prey metapopulation models connected by adult

migration, such as strays migration in the case of salmonids. Optimal harvesting

strátegies were investigated for two different models. The frrst model assumed that

only the adults of the populations migrate and the second model assumed that both

age-classes, the adults and juveniles, migrate. The results in Chapter 7 indicate that

opti-.t escapements properties for predator-prey metapopulation with adult-only mi-

gration are analogous to optimal escapements with juvenile-only migration. For ex-

ámp1" we should harvest prey subpopulations with high adult migration survival more

conservatively than those with lower adult migration survival. On the other hand, we

should harvest the predator subpopulation living in the same patch with the prey sub-

population which has a high adult migration survival less conservatively than the other

p.åd.tot subpopulation. If both stages are able to migrate then there is a trade-off

tetween high/low adult migration survival and source/sink properties of the popuia-

tions.
Many commercially exploited aquatic populations are made up of more than two

subpopulations, for example the sockeye salmon in Lake Washington has five sub-

popìl.tiotts (Quinn and Hendry, 1997). These populations are often reproductively

"o^.r""t"d 
to each other (Shepherd and Brown, 1993; Quinn et al., 1993)' The two

most common or typical types of reproductive connection among subpopulations are
,,uni-directional migration", where migration occurs in one direction, and a, "mainland-

island" structure, where migration occurs only from one subpopulation (Penning, 1991;

Orensanz et a1.,1991; Gordon et ø/., 1995). In Chapter 7I have also generalised the

model for a predator-prey metapopulation with adult and juvenile migrations assum-

ing the metapopulation consists of M subpopulations, including the uni-directional

migration and mainland-island spatial structures as special cases.

For the case of uni-directional migration, (Tuck, 1994) suggests that if no juven-

iles are retained in the last subpopulation (subpopulation M) then we should harvest

all ind.ividuals in the last subpopulation. However, in the presence of a predator, the

optimal escapement for the last prey subpopulation need not be zero, unless the bio-

logical predator efficiency in that patch is extremely efficient. In the presence of the

pr.dutor, the result in this chapter suggests that the optimal escapement for the last

ãr the terminal prey subpopulation should not be greater than optimal escapement for

any other prey subpopulations.
Throughout the discussion in the thesis I assumed that pley and predator spe-

cies operate at the sarne scales. In leality, they often operate at different scales' Fol
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example, the prey population may be patchily distributed but the predator may be

completely well-mixed. Detaiied investigation of optirnal harvesting strategies for this

system is not included in this thesis, however, many rules discussed in this thesis will
also hold for this system, with some minor modifications. We stili should harvest a

relative source prey subpopulation (and also a relatively less vulnerabie prey subpop-

ulation) more conservatively than the other prey subpopulations. Conversely, in the

case where the predator is patchily distributed with a well-mixed prey, then the rule to

harvest a relative source predator subpopulation (and also a relatively more efficient

predator subpopulation) more conservatively than the other predator subpopulation

will also hold.
In this thesis, not all important economic and biological aspects of the resources

are included.. Future research should include other important economic and biological

aspects of the resources and see how these aspects may influence the results derived

here. For example, the last section in the iast chapter assumed that the strays suc-

cessfully reproduce. Future models of adult-migration predator-prey metapopulation

may include an assumption that strays do not successfully reproduce as often observed

in many real situations (Taylor and Foote, 1991; Tallman and Healey, 1994). Other

relevant factors, such as different functional forms of the predator-prey interaction,

environmental stochasticity, etc., need to be included into the models to improve the

understanding of optimal harvesting strategies for the metapopulations. Other con-

straints could also be added in the optimisation process to ensure population size can

be maintained above a certain level, which may be relevant in the case where harvest-

ing only targets the prey population if the prey is also the main food for a protected

p.àduto, species, as in krill and whales interaction (Krishna et a\.,1998).

Other limitations that I realise in this thesis include the following biological and

economical aspects. Throughout the thesis I have assumed that dispersal rates are

constant. In reality the dispersal rates may not constant. Many studies revealed that

prey dispersal rate responses to predation. The prey may increase or decrease their

movement rate depending to predation intensity (Wooster et a1.,1997). Dispersal can

also be affected by the size of individuals, hence dispersal rate may differ between

different age-classes (Roa and Bahamonde, 1993). Weather and tides may cause a

huge variation in dispersal rate and recruitment success. In this case modelling optimal

solutions would be best found using stochastic dynamic programming.

All results in this thesis are derived by assuming that predator-prey interactions

are those of the Lotka-Volterra type. Although the Lotka-Volterra model has proved

to be useful in deriving insights in studying predator-prey interactions, there are some

objections from some scientists. One drawback of the Lotka-Volterra predator'-prey

model is what is known as the "paradox of enrichment", whete an increase of nutrients

may destabilise the predator--prey system (Hairston et al., 1960; Rosenzweig' 1971;

Brauer, 1976). Whenever this type of pledator-prey interaction is applied to multi-
species fishery management, a controvelsial conclusion may occur, that is, in some

circumstances predator extermination is an "optimal" strategy (Flaaten, 1988; Yodzis,

1gg4). This situation is undesirable for conset'vation. Berryman (1992) and Ginzbulg

and Akçakaya (1992) pointed out that this paladox can be avoided by using different

types of functional responses ol trophic functions. The original Lotka-Volterra model

uses what they call "prey-dependent" trophic function, that is, the rate of predator

consumption on prey depends only on the density of the prey. They suggested that the

paradox can be eliminated if we use the "ratio-dependent" trophic function, that is' the

functional responses should be a function of the latio of the prey and predator. Using
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this functional response, predator density will respond proportionately to changes in
prey density (Arditi and Ginzburg, 1989; Arditi and Berlyman, 1991; Ginzburg and

Akçakaya, 1992). The work in this thesis could also be extended to consider this type

of predator-prey systems, and assess the robustness of the results.

Economic assumptions in this thesis are simple. For example, all interpretations
were derived with the assumption of a fixed market price of the harvested resource. A

more realistic model may include the possibility that the market price depends on the

amount of harvested biomass. In this case I suspect that demand elasticity may affect

the optimal escapement. Another possibility to extend and improve the model in this

thesis is to allow the resource to be owned by at least two bodies (countries), which

is relevant for a highly migratory or transboundary stock (Brander and Taylor, 1998),

and might be best tackled within a game theoretic framework rather than the dynamic

programming approach used in this thesis. Other fishing controls, such as taxes, quotas

an{ licences, could also be considered in future development of the models.

In this thesis I kept the models simple and general insights into how we should

harvest a spatially-structured predator-prey population were obtained. In general,

spatially-structured models can produce a better understanding of natural resource

management (Dunning et ø/., 1995). However, even the simplest spatially implicit
models, such as the models in this thesis, may be difficult to parameterise and test -
especially when we need dispersal parameters and recruit production functions, things

which are difficult to measure (Conroy et a1.,1995; Spencer and Collie, 1996; Blondel

and Lebreton, 1996). However, by recognising the metapopulation structure of the pop-

ulation, the basic rules of thumb I describe are still worthwhile guidance for managing

the populations if one can identify which subpopulation is a relative exporter/importer,
source/sink, more/less vulnerable or more/less efficient.

To conciude, the results presented in this thesis represents a start on a theory

of harvesting complex stocks. Further understanding of optimal harvesting strategies

for spatially-structured and biologically-interconnected populations is still needed. I
hope that this work motivate others to extend and improve the models so that better

management of our natural resources can be attained.
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