Optimal Harvesting Theory for
Predator-Prey Metapopulations

Asep K. Supriatna, B.Sc. (UNPAD) M.Sc. (ITB)

Thesis submitted for the degree of
Doctor of Philosophy
in
Applied Mathematics
at
The University of Adelaide
(Faculty of Mathematical and Computer Sciences)

Department of Applied Mathematics

November, 1998



Acknowledgements

Although writing a thesis is an individual work, it would have been impossible for me
to bring the work to the completion without the help of many people during my PhD
candidature.

I am indebted to my supervisor Professor Hugh Possingham from the Depart-
ment of Environmental Science and Management, for his inspiration, encouragement,
guidance and criticism throughout the candidature. His tireless efforts and patience in
supervising me are greatly appreciated.

I thank Associate Professor David Clements for his invaluable help during my
first year as a higher degree student. Being an overseas student it was not easy to
work in a new environment. Fortunately, everybody in the Department of Applied
Mathematics, especially Dr. Peter Gill and Ms. Dianne Parish, provided a friendly
working environment. I thank David Beard who provided a prompt answer for all
my questions about computing aspects. I also wish to thank my fellow postgraduate
students from various departments, who have come regularly to the “PHLEM” informal
meeting, from whom I have learned many things about nature and ecology. They also
have provided help in some stages of the thesis writing. I also extend my thanks to
Ian Ball for his editorial assistance and to the staff from the ACUE of the University
of Adelaide for their help during the first stage of writing this thesis.

I gratefully acknowledge financial support from the AusAID of the Australian
Government, without which I might not have been able to undertake this PhD candid-
ature in Australia.

Moral support from my parents is also acknowledged. Finally, the presence of
my family throughout the period of my candidature has made the hard time of my
candidature less stressfull. Special thanks to my wife Hennie and my sons, Yarits and
Dede, for their love, support, and understanding.



Declaration

This work contains no material which has been accepted for the award of any other
degree in any university or other tertiary institution. To the best of my knowledge
and belief, it contains no material previously written or published by any other person,
except where due reference has been made in the text.

I give consent to this copy of my thesis, where deposited in the University Library,

being available for loan and photocopying.

Date LS /“ /[Iqu

Signature

ii



Publications arising from the work
included in this thesis are:

1. Supriatna, A.K. and H.P. Possingham. Optimal harvesting for a predator-prey
metapopulation. Bulletin of Mathematical Biology 60(1): 49-65, 1998.

9. Supriatna, A.K. and H.P. Possingham. Harvesting a two-patch predator-prey
metapopulation. Presented to the 1997 World Conference in Natural Resource
Modelling, Hobart, Tasmania, Australia 15-18 December 1997. Full paper is
submitted to the journal of Natural Resource Modeling.

3. Supriatna, A.K. Application of dynamic programming in harvesting a predator-
prey metapopulation. Bulletin of Indonesian Sciences Technology and Economics
5(2) (in press).

4. Supriatna, A.K. and H.P. Possingham. The exploitation of marine metapopula-
tion: a modelling perspective. Marine Research in Indonesia (submitted).

5. Supriatna, A.K., G.N. Tuck and H.P. Possingham. Optimal harvesting strategies
for metapopulations with delayed juvenile recruitment (in preparation).

111



Abstract

In this thesis I develop mathematical models of commercially exploited populations.
I address the question of how to harvest a predator-prey metapopulation. Optimal
harvesting strategies are found using dynamic programming and Lagrange multipli-
ers. Rules about harvesting source/sink subpopulations, more/less vulnerable prey
subpopulations and more/less efficient predator subpopulations are explored.

The results suggest that if one of the prey subpopulations is a relative source and
exporter subpopulation then we should protect the relative source prey subpopulation
in two ways: directly, with a higher escapement for the prey, and indirectly, with a
lower escapement of the predator living in the same patch with this prey subpopulation.
On the other hand, if there is no exporter/importer and source/sink hierarchy, and
there is no biological variability except the vulnerability of the prey, then we should
harvest the less vulnerable prey subpopulation more conservatively than the other
prey subpopulation which is more vulnerable to predation. This is intuitive and agrees
with a belief held by many fishery biologists that we should be more protective in
dealing with critical subpopulations, such as those act as source subpopulations and
those living in spawning and refugial areas. Furthermore, if the prey vulnerabilities of
the two prey subpopulations are exactly the same, but the predator efficiencies differ
between the two predator subpopulations, then we should harvest the prey living in
the same patch with the relatively more efficient predator more conservatively than the
other prey subpopulation. This result suggests that if the predator has a high biological
efficiency, then we should leave enough prey to sustain the predator population. This
rule is more apparent when the predator species more valuable than the prey species. In
this case, a ‘negative’ harvest of the prey species might be optimal. A negative harvest
might be considered a seeding or feeding strategy. This is not surprising considering
the “bioeconomic role” of the prey population which can-be converted into a more
economically valuable species through the predator-prey interaction. I also discuss the
costs of not harvesting the population properly, that is, if we did not realise that the
population was a metapopulation.
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Chapter 1

Introduction

Human demands on resources have depleted world fish stocks. An example is the
depletion of Antarctic blue whales, Balaenoptera musculus, to the edge of extinction,
until the International Whaling Commission (IWC) banned the blue whale fishery in
1965 (Clark, 1990). The depletion of the Antarctic blue whale is an example of a
negative effect of human exploitation on a renewable resource. To avoid unwanted
impacts of the exploitation of natural resources, we need to guide their utilisation.
In the case of fish and marine mammal exploitation, prudent fisheries management is
needed.

Substantial efforts have been invested in science and research to obtain better
management of the fishery industry (Parma et al., 1998). However, mismanagement,
over-fishing, and even stock collapse, have occurred in the industry (Danielson, 1997;
Symes, 1997; Botsford et al., 1997). Some fishery scientists believe that the major
factors in the collapse of the fisheries industries are economic and political factors
(Ludwig et al., 1993; Holmes, 1994; Healey and Hennessey, 1998). Other scientists
argue that other factors, such as unsound biological recommendations given by scient-
ists, might equally have driven the fisheries to these undesirable situations (Daniel-
son, 1997). For this reason, a much broader appreciation of general environmental
and ecological conditions need to be acknowledged and accounted for in the process
of management formulation (Frank and Leggett, 1994; Symes, 1997; Botsford et al.,
1997; Roughgarden, 1998).

Parma et al. (1998) pointed out that we may fail to recognise all possible factors
that regulate the nature of biological resources, let alone include all of them in the pro-
cess of management formulation. However, major factors that have significant effects
on the dynamics and distributions of the resources have to be included. One of these
factors is predator-prey interactions, which is increasingly credited as a factor which
must not be excluded in understanding and managing biological populations. This is
because of its role in regulating the nature of the populations (Jansen, 1994; Reynolds
and Tapper, 1996; Christensen, 1996; Agnew, 1997). This is obvious for marine popula-
tions, since most exploited marine populations are part of a predator-prey interaction.
Many fish prey on other fish and most species are preyed on, especially in their juven-
ile stage (Larkin, 1979; Getz and Haigh, 1989). Furthermore, many fishing industries
target more than one species so that both species of predator-prey interaction may be
harvested.

The exploitation of multi-species fisheries, such as fisheries with predator-prey
interactions between species, is not well understood (Clark, 1976a; Stroud and Clepper,
1979; Goh, 1980; Pauly and Murphy, 1982; May, 1984; Hilborn and Walters, 1992).



Many scientists point out that appropriate policies for fisheries management are only
possible if we have a comprehensive understanding of the underlying systems which
are exploited (Yodzis, 1994; Botsford et al,, 1997). They also argue that management
practices could be improved if we include interactions between species in developing
multi-species models (Hall, 1998). For this reason, a number of scientists have tackled
problems on predator-prey interactions in fisheries management (Larkin, 1966; Brauer
and Sanchez, 1975; Brauer et al., 1976; Clark, 1976a; Brauer and Soudack, 1978;
Beddington and Cooke, 1982; Beddington et al., 1985; Mesterton-Gibbons, 1988, 1996;
Strobele and Wacker, 1991; Murphy, 1995; Azar et al., 1995; Degee and Grasman,
1998).

To improve our understanding of the exploitation of multi-species fisheries, in-
cluding those having predator-prey interactions, we need to delineate all factors that
may affect the decision on how we should manage those fisheries, and include these
factors into models of the fisheries. Spatial heterogeneity is recognised as a factor that
needs to be taken into account in population modelling in general (Rosen, 1977; Shukla
and Das, 1982; Allen, 1983; Takeuchi, 1986; Wilson et al., 1995; Cantrell and Cosner,
1998) and in fisheries modelling in particular (Beverton and Holt, 1957; May et al.,
1979; Clark, 1984, 1985c; Brown and Murray, 1992; Frank, 1992; Frank and Leggett,
1994). The inclusion of spatial heterogeneity in fisheries modelling may improve de-
cisions in the management of those fisheries (Tuck and Possingham, 1994; Pelletier and
Magal, 1996; Brown and Roughgarden, 1997; Botsford et al., 1997).

The two most common frameworks for understanding the effects of spatial hetero-
geneity in ecological modelling are metapopulation theory and diffusion theory (Allen,
1983; Taylor, 1991; Nisbet et al., 1993). Metapopulation theory assumes that suitable
habitat exists in discrete patches while diffusion theory assumes spatially continuous
habitat (Crowley, 1981). A population can be called a metapopulation if it has local
populations (subpopulations) that are connected by dispersal of individuals. Hanski
and Gilpin (1991) defined a local population as a group of individuals living in the
same patch (habitat) and these individuals are different from the rest of the popu-
lation. Metapopulation models can include variation between patch characteristics,
e.g. patch size and patch quality, and between properties of local populations, e.g.
fecundity and mortality (Day and Possingham, 1995).

All marine populations show some degree of spatial heterogeneity. For example,
benthic marine invertebrate populations in which the species occurs in several isolated
subpopulations of sessile adults that are connected by movement of their pelagic larvae.
Sometimes this spatial heterogeneity means that modelling the species as one single
population is not adequate. For example, abalone, Haliotis rubra, has a metapopulation
structure with local populations connected by the dispersal of their larvae (Prince et al.,
1987, Prince, 1992). Brown and Murray (1992) and Shepherd and Brown (1993) argued
that management for abalone should depend on the characteristics of local populations.
Frank (1992) provided another example of metapopulation structure. He pointed out
that fish stocks like the cod of Iceland and West Greenland which are separated by a
large distance, and the two haddock stocks of the Scotian Shelf, are strongly coupled by
the dispersal of individuals. He also suggested that those stocks possess the property
described by Sinclair (1988) and Pulliam (1988), that is, persistence of the population
in a sink habitat can be maintained by the migration from a source habitat (sink
and source habitat are defined precisely in the next chapter).\ Furthermore, Frank
and Leggett (1994) argued that the collapse of major fisheries such as North Atlantic
cod and Atlantic and Pacific salmon, may due to the over-exploitation of the source



population. If there is more than one subpopulation, a catch at a fixed rate can
maintain the size of one subpopulation at a certain sustainable level, but, at the same
time it may cause the size of the other subpopulation, for example the population with
a lower larval production, to decline (Policansky and Magnuson, 1998).

Despite the importance of spatial heterogeneity, increasing the complexity of a
population model by adding spatial heterogeneity is rarely done in fishery management
modelling, even for single-species (Clark, 1984). Exceptions are Clark (1976a) and Tuck
and Possingham (1994) for a single-species, and Hilborn and Walters (1987), Leung
(1995), and Murphy (1995) for multi-species. Hilborn and Walters (1987) and Leung
(1995) are the only authors who simultaneously considered spatial structure, ecological
interactions and harvesting in their model.

In this thesis I present some models for spatially-structured predator-prey pop-
ulations. I address the issues of spatial structure and predator-prey interactions, and
study optimal harvesting for the populations. These issues are very important in the
development of prudent management for the exploitations of natural resources. The
work in this thesis explores two common features of biological populations simultan-
eously: biological interactions and spatial structure. It includes relevant features that
occur in most fish populations, that is, predator-prey interactions, and takes into ac-
count the existence of the exchange of individuals between subpopulations, which is a
common phenomenon in nature (Parma et al., 1998). To illustrate the need for this
kind of work, Parma et al. (1998) emphasised two of the ways in which a population
model can be incorrect, that is, it either ignores the biological interactions between
species, or ignores the spatial structure of the species.

I use a metapopulation approach to describe the spatial structure of the predator-
prey system. The metapopulation approach is a framework within which we can study
the movement of individuals between local populations and the consequences of this
movement for the metapopulation, in this case for the optimal harvesting strategies
of the metapopulation (Burke et al., 1995). Using this approach, differences in the
characteristics of local populations, like fecundity, mortality, vulnerability to predation
etc, can be modelled explicitly. I obtain the optimal harvest for each local population
which tells us how we should harvest a population if the management can be different
for local populations. I use the same methods used by Tuck (1994) and Tuck and
Possingham (1994) to build a single-species population model using coupled difference
equations. They found the optimal harvesting strategies for the system using dynamic
programming and the method of Lagrange multipliers, and they developed some rules
of thumb on how to deal with source/sink and exporter/importer local populations.
A similar approach is used in this thesis to find the optimal harvesting strategies for
predator-prey metapopulations. Their rules of thumb for harvesting a single-species
metapopulation are examined when predators are added to the system.

Thesis summary

Chapter 2 reviews the literature on predator-prey theory and harvesting theory. The
chapter is intended to give some background about the concepts and definitions that
are used in the subsequent chapters in this thesis. Results for the single-species popu-
lation and the single-species metapopulation harvesting theory are discussed in detail
to enable me to compare the results in this thesis with those previous results for single-
species populations and single-species metapopulations. I derive optimal escapements



for a discrete-time one-patch predator-prey population and discuss these escapements
in details in Chapter 3.

In most of the thesis the model in Chapter 3 is extended to include spatial-
heterogeneity in a variety of ways. Chapter 4 considers a model for a two-patch
predator-prey metapopulation where the predator-prey interactions occur in the ju-
venile life-stages of the populations and the two patches are connected by the dispersal
of juveniles. I then determine the optimal harvesting strategies for this predator-prey
metapopulation. The strategies are compared to strategies where spatial structures are
ignored, such as strategies from an unconnected two-patch predator-prey population
and a well-mixed predator-prey population.

I also investigate optimal harvesting strategies for other predator-prey metapop-
ulation models, the rationale is that I want to know how different, or how robust, the
results presented in Chapter 4 are to the kind of interactions between the populations.
Chapter 5 considers two-patch predator-prey metapopulations where the predator-prey
interaction occurs in the adult life-stages of the populations and Chapter 7 considers
two-patch predator-prey metapopulation where the adults migrate between patches.

In nature the juveniles of many exploited populations experience a delay in joining
the adult class. In Chapter 6 I extend the predator-prey model in Chapter 5 by
including a recruitment delay in juvenile recruitment to the adult class. Two different
models of delay-recruitment predator-prey metapopulations are discussed. The first
model assumes that the delay is related to the patch where the juveniles migrate and the
second model assumes that the delay is related to the patch where the juveniles come
from. Furthermore, in Chapter 7 I generalise the predator-prey model in Chapter 5
by including adult migration with M subpopulations. The last chapter in this thesis
(Chapter 8) concludes the main results in this thesis, discusses how they relate to the
previous results in harvesting theory, and suggests future directions for research.



Chapter 2

Review

In this chapter I review the literature on predator-prey and renewable resource ex-
ploitation, emphasising a modelling perspective. I introduce the concepts, definitions
and notations that are used in the subsequent chapters, then I define the concept of
a “metapopulation”. In general, this chapter shows that optimal harvesting strategies
for spatially-structured predator-prey populations have not been addressed explicitly.
I begin the review with the following discussion on predator-prey theory followed by
the review of the contribution of the concept of metapopulation to the development of
the theory.

2.1 Predator-prey theory

Before I proceed further with the review of predator-prey population theory, I will
define the following terms: population and predator-prey interaction. A population
is a group of conspecific organisms living in the same place at the same time (Krebs,
1985; Smith, 1986). A predator-prey interaction is an interaction involving two or
more species in which one or more species acts as predator and the other acts as
prey. A predator is an animal that survives and reproduces by killing and eating
other animals, while a prey is an animal that is killed and eaten by the predator.
A more general definition of a predator-prey interaction is given by May (1976), who
defined a predator-prey interaction as an interaction in which the number of one species
becomes smaller due to the increasing number of the other species. Some predator-prey
models are reviewed in the next section followed by the discussion of the role of spatial
heterogeneity in the development of predator-prey theory.

2.1.1 Early development of predator-prey population theory

Early studies on predator-prey systems can be traced back to the work of Lotka (1925),
Volterra (1926) and Gause (1934). Classic questions in predator-prey systems concern
long-term behaviour of the interaction. For example, how many predators and how
many prey will exist in the future if the initial conditions are known? Will the prey
become extinct or will it survive? Is there a co-existence condition? If there is, what
happens if predator or prey are added into the system? Is the system dynamically
stable? (Luckinbill, 1973; Maly, 1975).

Gause (1934) studied the interaction between Paramecium and Didinium and
showed that there are three different kinds of population dynamics arising from three
different treatments of his laboratory experiment using one predator and one prey. In
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the first experiment the predator became extinct. In the second experiment both spe-
cies became extinct, and the third experiment showed that the number of each species
oscillates. In fact, before Gause (1934) showed that the number of individual prey and
its predator oscillate, Volterra (1926) predicted this behaviour using a mathematical
model.

Volterra’s (1926) predator-prey model is deterministic. It assumes that the
growth of prey without the presence of predators is exponential, and the growth of
predators in the absence of prey is exponential decay. Furthermore, the number of
prey which is consumed by the predator is assumed to be proportional to the product
of the number of prey and predators, and the birth rate of the predators is also assumed
to be proportional to the number of the prey which are consumed. The model takes
form as a system of two differential equations

dN

dt = (a - O.’P)N, (2'1)
dP
o =(=b+BN)P, (2.2)

where N is the number of prey, P is the number of predators, a is the per-capita rate
of increase of the prey in the absence of the predators, a/N describes the number of
prey which is consumed per predator per unit time, b is the per capita rate of the
predator decay due to the dependency on the prey, and BN describes the per capita
rate of predator production. Nicholson and Bailey (1935) proposed a discrete-time
analog for host-parasitoid interaction similar to the Volterra’s model. Becker (1973)
provided some examples of stochastic predator-prey models and also explained some
comparisons between these models and their analogous deterministic models.

Volterra’s predator-prey differential equation system has a family of closed loops
as its solutions which means that the number of individuals of both species fluctuates
periodically. Different initial conditions may produce a different loop. In other words,
its equilibrium exhibits neutrally stable cycles, and its solution depends on the initial
value (see Figure 2.1.a). Volterra (1926) was able to use his model to explain why the
selachians in the Adriatic Sea, which feed on some commercial fishes, have increased
during the Word War 1. During this time, fishing on commercial fish species almost
completely closed. The closure of the fishery provided an abundance of food for the
selachians, and caused a dramatic increase in their population size.

Although the Lotka-Volterra model can be regarded as an advance in ecological
modelling, it does not satisfy many ecologists. Maynard-Smith and Slatkin (1973)
pointed out three reasons why it is not satisfactory. First, in the Lotka-Volterra equa-
tions there is an assumption of continuous breeding for both predators and prey which
is dependent on the rate of food intake, hence, there is no delay time between con-
sumption and reproduction. Second, the assumption that the rate at which prey are
consumed is proportional to the product of the density of prey and predators is too
simple. Third, the absence of some upper limit to the number of prey in the absence
of predators.

The Lotka-Volterra model has been revised by modifying equations (2.1) and
(2.2). In the original Lotka-Volterra model the growth of the prey in the absence of
the predator is assumed to be exponential, while the predator, in the absence of prey,
experiences exponential decay. If it is assumed that there is a carrying capacity, K, in
the growth of the prey without the presence of the predator, then the model is more
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Figure 2.1: The phase diagram for Lotka-Volterra predator-prey model with
parameters ¢ = 1, b = 1, « = 0.1, and § = 0.09 with certain initial values
(Figure 2.1.a). Figure 2.1.b is the phase diagram for a Leslie predator-prey
model with prey carrying capacity K = 100 with all other parameters as in
Lotka-Volterra model.

realistic; now the growth of the prey can be written as

dN N

E:TI(I—E)N—OQPN. (23)
The solution for this model will be different from the solution in the original Lotka-
Volterra model. With this modification the Lotka-Volterra system of equations (2.2)
and (2.3) has a stable equilibrium. Another modification of the predator equation,

suggested by Leslie (1948), has the form

dP P

E = Slp(l - ,BIN) (2.4)
The system of equations (2.3) and (2.4) still has a stable equilibrium point (Berryman,
1992; see also Figure 2.1.b).

A predator-prey system can be described in a general form

‘2—7 = f(N)N — g(N, P)P, (2.5)
%]; = ¢g(N,P)P — uP (2.6)

(Ginzburg and Akcakaya, 1992; see Freedman (1980) for other forms of the general
predator-prey model). In the Lotka-Volterra equation, g(N, P) = aN only depends on
the number of prey population. In some cases it may depend on the number of the
predators and other parameters. The function g is called the “functional response”
or “trophic function” while eg is a “numerical response” (with trophic efficiency ¢)
which describes the per capita rate of prey attacked by and the per capita rate of birth
of the predator as a result of eating the prey, respectively (May, 1976; Ehrlich and
Roughgarden, 1987).

Some generalisations of the Lotka-Volterra equation have been carried out using
various functional and numerical responses. This work was pioneered by Holling (1959,
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1965) and Ivlev (1961) who showed the significance of these responses to predator-prey
dynamics. A realistic model of a predator-prey system becomes more complex when
the functional and numerical responses are non-linear functions of prey density. In
extended models, the functional response can be a function of prey density, rate of
searching, time during which the prey are exposed to the predator, and time spent
for the predator to handle each prey (Glen, 1975). Other assumptions are introduced
in further studies of predator-prey systems, for example prey refuges and cannibalism
(Colling, 1995; Kohlmeier and Ebenhoh, 1995). The following section discusses the
effects of spatial heterogeneity on the qualitative dynamics of predator-prey systems.

2.1.2 The role of spatial heterogeneity in predator-prey dy-
namics

The Lotka-Volterra equations assume that the population distribution of predator and
prey are spatially homogeneous. This leads to an oscillatory solution of the system.
The solution predicts the periodic fluctuation of the population and agrees with many
experimental results (Taylor, 1991). Comins and Blatt (1974) showed that results
from a spatially homogeneous predator-prey system may be different to results from
a spatially heterogeneous system. For example, they studied the effect of predator
and prey movements due to habitat variations and they found that the solution of the
system is no longer cyclical as in the original Lotka-Volterra model.

Despite the importance of spatial heterogeneity in predator-prey systems, Caswell
and Etter (1993) found that few authors have considered this. Some of the authors
who have tackled the problem of spatial heterogeneity in a predator-prey system are
McMurtrie (1978), Voller (1990), Timm and Okubo (1992), Casal et al. (1994) and
Jansen (1994). Their work was able to explain the stabilisation effect observed in
Huffaker’s (1958) experiment, which is otherwise difficult to explained using a spatially
homogeneous predator-prey model. Most of the authors studied spatially-structured
predator-prey populations using diffusion theory, on a one dimensional axis. However,
Sabelis et al. (1991) pointed out that there might be patchy patterns in predator-prey
systems, in which the spatial structure occurs discretely. For this reason, diffusion
theory may be less appealing in describing such a system. A common approach to
modelling a discrete spatial structure for a population is to use the idea of a metapopu-
lation. I discuss the background of metapopulation theory as it applies to predator-prey
systems in the following section.

2.1.3 What is a predator-prey metapopulation?

In nature many populations are spatially-structured and are made up of smaller pop-
ulations inhabiting different patches of habitat known as local populations or subpop-
ulations. These subpopulations are often connected by movement of individuals (e.g.
dispersal of juveniles, see Figure 2.2). Hanski and Gilpin (1991) used the term meta-
population to refer to a population which has a patchy spatial structure, and defined it
as a population of populations. A metapopulation falls between two extremes of pos-
sible population structures: a well-mixed population and an unconnected collection of
populations (Harrison, 1991; Day, 1995; McCulough, 1996). In a metapopulation, the
interaction between individuals within a patch (“intra-patch interaction”) should occur
more frequently than interactions between individuals from different patches (“inter-
patch interaction”). If there is no migration between patches, then the population is a



Figure 2.2: A metapopulation made up of three subpopulations. Lines indic-
ate migration of individuals between patches. Dashes indicate movement of
individuals within a patch. The different sizes indicate that subpopulations
may vary in size and characteristics.

collection of unconnected populations. However, the population is better considered as
a single well-mixed population if migration between patches is very common (Hanski
and Thomas, 1994; Day, 1995).

Early studies of metapopulation dynamics concentrated on the dynamics of patch-
occupancy, that is, the study of extinction and recolonisation of patches or habitats by
the populations, like the study of Levins (1969). Levins (1969) made a clear distinc-
tion between the dynamics of a (regular) population, which deals with the number of
individuals, from the dynamics of a set of populations, which deals with the number
of extant subpopulations. Levins (1969) proposed the model

dp

- =mp(l —p) —ep, (2.7)

where p denotes the proportion of population sites which is inhabited by a certain
species. This proportion is a function of time ¢, that is, p = p(¢). The rate of local
extinction and colonisation of empty patches is given by e and m respectively. The
model assumes that the whole population has a discrete spatial structure, that is, each
subpopulation inhabits a patch with discrete boundaries, every patch is identical, and
the population within each patch is assumed to be homogeneous and well-mixed (Day,
1995). Although in nature there is no real metapopulation which perfectly meets all
these assumptions (Hanski and Gilpin, 1997), many populations are known to form a
metapopulation structure, to some extent, for example they have several subpopula-
tions and these subpopulations are connected by the dispersal of individuals. Examples
of metapopulations of commercial fisheries are documented in Tuck (1994), some of
them are occupying positions either as prey or predator in complex food-webs as de-
scribed by Jones (1982), Estes and Van Blaricom (1985), Tegner et al. (1989), and
Kojima (1990) [see Table 2.1].

Hanski and Gilpin (1991) noted that Levins’ model is analogous to the logistic
model for population growth, that is, equation (2.7) can be written in the form

&= tm— el - ) (23)



| Organism: | Reference: |

‘Sea urchin Karlson and Levitan, 1990
Sea hare Pennings, 1991

Scallop Orensanz et al., 1991

Copepod Kurdziel and Bell, 1992
Scotian Shelf haddock Frank, 1992

Iceland and West Greenland cod | Frank, 1992

Abalone Shepherd and Brown, 1993
Red sea urchin Quinn et al., 1993

North Atlantic cod Frank and Leggett, 1994
Slider turtles Burke et al., 1995

Sturgeon fish Planes et al., 1996

Barnacles Brown and Roughgarden, 1997
Pacific salmon Policansky and Magnuson, 1998

Table 2.1: Some known metapopulations of commercial fish.

While Levins’ model deals with a single-species, in nature it is possible that one site
or one habitat is occupied by two or more different species which in turn may depend
on each other. A metapopulation which describes this interaction is often called a
metacommunity. 1 review some models of metacommunities in the following section.
A complete review of single-species metapopulation theory can be found in Gilpin and
Hanski (1991) and Hanski and Gilpin (1997).

Some examples of works attempting to understand metacommunities for predator-
prey interaction have been done by Sabelis et al. (1991), Nachman (1991), and Taylor
(1991). Following Levins (1969), Sabelis et al. (1991) studied the extension of Lotka-
Volterra models for predator-prey systems using the number of resource patches oc-
cupied by predators and prey instead of the numbers of the predators and the prey
themselves as state variables. Their equations to describe predator-prey systems in a
patchy environment are

dN

dM

where N and M denotes the number of patches occupied by prey and predator re-
spectively, a denotes the rate of successful colonisation of dispersing prey from prey
population into empty patches. The rate of predator invasion to patches occupied by
prey is bM, where b is a “reaction coefficient”, and ¢ and d respectively represent the
rate of prey and predator population extinction.

Sabelis et al.’s (1991) model is analytically tractable and it has a neutrally stable
equilibrium point. This is not surprising because this system of equations is equivalent
to a Lotka-Volterra predator-prey system which also has a neutrally stable equilibrium
(Sabelis et al., 1991). Furthermore, they concluded that the stabilising effect on the
global predator-prey interaction may be caused by “a prey dispersal phase of non-
negligible duration” (p. 272). The same result is also suggested by Diekmann (1993).
These two results indicate the significant influence of individual movement between
patches on the dynamics of the whole system.
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Levins’ model focuses on the dynamics of subpopulations. Several authors also
consider the abundance of individuals in each subpopulation (St. Amant, 1970; Nis-
bet et al., 1993). St. Amant (1970) developed a predator-prey system, to model the
relationship between mussel clumps and starfish, using the system of equations

dN;

o = ailVi = o N; P; + p;i N, (2.11)
dP;

7 = —b;F;, + B;N; P, + q;; F;, (212)

where N; and P; denote the number of prey and predators in patch ¢, respectively, and
p;; and ¢;; denote the rate of prey and predator migration from patch j to patch 1,
respectively. Assuming the model has a positive equilibrium value, St. Amant (1970)
proved that the hypothetical equilibrium value is stable (Murdoch and Stewart-Oaten,
1975). This result is different from the result of the original Lotka-Volterra model,
which has a neutrally stable equilibrium point (Figure 2.1.a). Therefore, the mi-
gration introduced by St. Amant stabilises the Lotka-Volterra predator-prey system.
St. Amant’s model assumes that immigrants only affect the number of animals in the
destination patch and do not interact with the local population in the destination
patch. However, if the interaction between the immigrants and the local population is
taken into account, then migration does not always stabilise the system (Allen, 1975).

Allen (1975) suggested a spatially-structured predator-prey model in which it
is assumed that immigrating predators interact with local prey and local predators
interact with immigrating prey. The model is

dN;
== —a;(piiNigii P + piiNig;i P; + pji N;qii P + pji N; ¢ ;)
+a;(pi Ni + pji N;), (2.13)
dP;
i Bi(pii Nigii P; + pis Nig;i Py + pjiN; ¢ Pi + pjiN;q;: Fj), (2.14)

where p;; and ¢;; denotes the probability of prey and predator moving from patch ¢ to
patch j, respectively, and 1 = 1,2. Unlike St. Amant (1970), in which the equilibrium
point is hypothetical, Allen (1975) found the equilibrium population size of the system.
In some cases this equilibrium population size might be unstable, however, Allen (1975)
believed that this instability is temporary and the orbit eventually will be trapped by
a stable limit cycle (May, 1972).

St. Amant (1970) and Allen (1975) assumed that emigration is lumped together
with other parameters. Chewning (1975) introduced emigration explicitly and as-
sumed that the populations may be distributed unevenly, that is, each subpopulation
has different dynamics. However, unlike Allen (1975), in Chewning’s (1975) model im-
migrating predators do not interact with local prey and local predators do not interact
with immigrating prey. Chewning’s model for a two-patch predator-prey system is

dN;

5 = PN = NiPy) + pjiNj = pij s, (2.15)
dPp;
7 = k(=P NP + giiPy — qii B, (2.16)

where p;; and g;; respectively denotes the instantaneous migration rate of the prey and
the predator from patch ¢ to patch 7,i = 1,2, 7 =1,2. The k (k = ¢) on the right hand
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side of equations (2.15) and (2.16) is indicating that the populations are distributed
unevenly.

Chewning (1975) found that for a small migration rate between patches, a stabil-
ising effect exists if at least one species migrates from patch one and at least one species
migrates from patch two, that is, p;; + gi; > 0 for ¢ = 1,2 and 7 = 1,2. Furthermore,
if both patches are identical, that is, p;; = pj; and g;; = ¢;i, then the stabilising effects
on the equilibrium no longer exist, but the populations oscillate. Chewning (1975) also
provided some conditions under which the more general k-patch predator-prey meta-
population is stabilised by low migration rates. Zeigler (1977) modified Chewning’s
model to include logistic growth of the prey population, similar to Leslie’s predator-
prey model.

Other metapopulation models of predator-prey interactions can be found in Auger
and Faivre (1993) and Pogialle et al. (1995), in which they investigated the effects of
migration if it is assumed that animals move from one patch to another patch several
times in certain periods. They explored the system of equations

dN;
5 = @iV + (piiN; = pisNi) = (pis i + pii B3 ) s, (2.17)
dP;
o = 0B+ (6B — g B) + (4 Ni + ¢ N5) B, (2.18)

which has quasi-periodic trajectories as the solution.

The original Lotka-Volterra model and all the predator-prey metapopulation
models derived from the Lotka-Volterra model discussed above are continuous-time
population models. In many cases, population systems are more conveniently mod-
elled by difference equations, especially when biological or non-biological mechanisms
take place periodically, such as seasonal recruitment and periodic exploitation (Basson
and Fogarty, 1996). Many predator-prey interactions have been explored in discrete-
time populations models (Maynard-Smith and Slatkin, 1973; Beddington et al., 1975;
Beddington and Free, 1976; Hasting, 1984; Neubert and Kot, 1992; Basson and Fog-
arty, 1996). Some of them focus on the effects of exploitation on the dynamics of
predator-prey systems (Basson and Fogarty, 1996). However, the important question
of how to harvest a predator-prey metapopulation has received less attention.

In this thesis I study predator-prey metapopulations, in discrete-time determ-
inistic models, emphasising the optimal harvesting strategies of the metapopulations.
The predator-prey metapopulations are extensions of Tuck and Possmgham s (1994)
single-species metapopulation

Niky1) = aiNag + pii Fi(Ni) + pji 5 (Nji), (2.19)

to include Lotka-Volterra’s predation terms, like those in equations (2.1) and (2.2).
In the following section I review the literature on optimal harvesting and define some
concepts and symbols that I use in the subsequent chapters.

2.2 Bioeconomics modelling in fisheries management
What is fisheries management? Royce (1984) defined fishery management as an action

which uses scientific knowledge for human benefits in connection with the exploitation
of the living resources of the water. This includes marine, estuarine and freshwater
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habitats. In this context, fisheries management science is defined as the body of know-
ledge which relates to the management of living resources in the water. It is an inter-
disciplinary field that includes biologists, economists, politicians and mathematicians
(Cunningham, 1981). This collaboration among scientists from different disciplines has
lead to the emergence of a relatively new body of scientific research — bioeconomics,
the science that “deals with the economics of the utilisation of biological resources”
(Clark, 1990; Reed, 1991). In this case, biological resources means resources which
have a capability for regeneration (Conrad, 1980), which is the nature of all living
resources.

There are two different approaches to understanding the phenomena of nature.
Van Dyne (1969) recognised them as conceptual or methodological tools and mathem-
atical or analytical tools. The methodological approach should follow the sequence:
real world problem recognition, hypothesis designing, physical experiment execution,
data analysis, interpretation of the results, and conclusion. While the second ap-
proach, a mathematical approach, needs a model from the abstraction of the real
problem, model analysis using available mathematical arguments, and interpretation
of the resulting mathematical solution into the original problem (Van Dyne, 1969).
There are advantages and disadvantages in the use of mathematical models as a tool
in resource management, to the extent that Krebs (1985) told us not to use any math-
ematical models to understand the paradigms of population regulation, or at least be
very cautious in believing results from mathematical models (Soulé, 1987). On the
other hand, many influential works in resource management researches use mathemat-
ical models (Hotelling, 1931; Gordon, 1954; Ricker, 1954; Schaefer, 1954; Clark, 1976a;
Reed, 1979). One of the strengths of mathematical modelling is that we can predict
the influence of a change in an external variable, e.g. exploitation intensity, on the
ecological systems which are observed, in this case the resource, without doing a large
scale experiment (Jgrgensen, 1983). This prediction may give a better insight into how
we should perform the management of the resource. In this thesis I discuss fishery
management using mathematical models.

What are the precise objectives of fishery management? Cunningham (1981) re-
viewed the evolution of fishery management objectives from classic maximum sustain-
able yield, which is extensively criticised but still very popular in practice, to modern
active-adaptive control management. At least until two decades ago, the practice of re-
newable resource management was based on the concept of Maximum Sustainable Yield
(MSY). This concept was first proposed by Graham (1935), the idea being to obtain the
maximum steady state harvest. Ricker (1946) called this harvest a maximum sustain-
able yield and Schaefer (1954, 1957) formalised the concept mathematically. Despite
the common practices of MSY as an objective in managing renewable resources, the
concept of MSY itself received many critics for numerous reasons (Roedel, 1975; Clark,
1976a; Larkin, 1977; May et al., 1979; Cunningham, 1981; Eltringham, 1984). Con-
rad and Clark (1987) listed some of the problems with the concept of MSY, among
them are the instability of the population dynamics, it ignores all social and economics
aspects and does not make logical sense in harvesting ecologically and economically
interdependent multi-species fisheries. Similarly, Wooster (1988) argued that the man-
agement should try to maximise benefits to society not fish, hence it should incorporate
economic considerations.

Gordon (1954) was the first to add economic considerations into the analysis of
renewable resource exploitation. He argued that in open-access or common-property
stock exploitation there is a stable “bionomic equilibrium” E, at which total revenue
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from the resource exactly equals total cost to harvest the resource. In this situation,
fishers join the open-access fishery if they are making profit until no one is making a
profit. This situation is known as “the tragedy of the commons” (Hardin, 1968). For
this reason, Gordon (1954) suggested that it is important for resources, or sections of
a resource, to be under sole-ownership.

In the presence of sole-ownership, using the concept of maximum economic yield
(MEY) proposed by Gordon (1954), there would be a level of harvesting effort at which
the marginal rate of net revenue from the resource is maximised. Gordon’s (1954) work
provides a solution for over-fishing and it is also able to differentiate economic over-
fishing, which occurs in any open-access fishery, from biological over-fishing, which
occurs if the ratio of price to cost is high enough (Clark, 1985a). However, the model
is not adequate due to its static formulation. It overlooks the important of inter-
temporal economic benefits and the biological processes of the resource (Clark, 1976a).
Other authors who have attempted to describe policies that will prevent over-fishing
are Clark (1980) with restricted access policy and Gatto and Ghezzi (1992) with their
tax regulation policy.

Smith (1969) proposed a dynamic version of the Gordon and Schaefer model for
an open-access fishery, however, an optimal solution for managing renewable resources
was not established until Clark (1971, 1973) devised an optimal harvesting strategy for
a single-species population almost four decades after the same idea was proposed for
non-renewable resource exploitation by Hotelling (1931). Clark’s approach to renewable
resource exploitation is known as “present value maximisation” (PVM). Clark (1973)
demonstrated that if the growth rate of the resource is less than the discounting rate,
then a rational sole-owner of the resource would exploit the resource to extinction.
Extinction of the exploited population is only optimal when present value maximisation
is used. The depletion of the Antarctic blue whale, Balaenoptera musculus, was caused
by the present value maximisation policy (Clark, 1973). Depletion as a result of a high
discounting rate is also known in the exploitation of any other stocks (Heal, 1985).

Clark’s (1973) paper has been very influential in the development of the economic
theory of renewable resource exploitation and disproved the belief of some economists,
like Turvey (1964), who said that dynamic consideration of resource management only
complicates matters and does not give any new significant result (Munro, 1992). The
paper has pioneered a new era of fishery management within a capital investment
framework (Clark and Munro, 1975; Clark et al., 1979; Clark, 1985b; Conrad and Clark,
1987) and has been extended to include various economic and biological complexities
(Reed, 1979, 1982; Agnew, 1982; Gatto et al., 1982; Clark and Tait, 1982; Ludwig
and Walters, 1982; Charles, 1983; Chaudhuri, 1986; Mesterton-Gibbons, 1987, 1988,
1996; Lovejoy, 1988; Clark, 1990; Reed and Heras, 1992; Botsford, 1992; Tuck and
Possingham, 1994; Ganguly and Chaudhuri, 1995).

In the following section, the development of mathematical models of renewable
resource exploitation are described in detail. This includes the three most common
objectives in fishery management, maximum sustainable yield (MSY), maximum eco-
nomic yield (MEY) and maximum present value (MPV). I discuss different types of
model formulation such as continuous-time and discrete-time models, single-species and
multi-species models, and spatially homogeneous and spatially heterogeneous models.
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Figure 2.3: Maximum sustainable yield (MSY).

2.2.1 Single-species fisheries continuous-time models

In this section, I review the development of bioeconomic models. The material in this
section can be found in more detail in Clark (1976a) which is the classic book on the
theory of renewable resource management.

Schaefer (1954) proposed a model of fish population dynamics and assumed that
the growth of the fish population is logistic. If N denotes the number of fish, the
Schaefer model is s

— =F(N)=rN (1 - %) , (2.20)

where r is the per capita intrinsic growth rate of the fish and K is the natural or
environmental carrying capacity. F(NN) is known as the surplus production function.
Schaefer’s (1954) surplus production function is a special case of a more general form
proposed by Pella and Tomlinson (1969). Fishing is introduced to the model using a
harvesting rate h(E, N), that is the harvest rate is a function of fish population N and
fishing effort E. The dynamics of the fished population is

dN
— = F(N) = h(E, N). (2.21)

According to Schaefer (also Russell (1931) and Graham (1935)), a stable harvesting

strategy will ensure

dN
— =0, (2.22)

that is, we should harvest the fish population to a point at which the size of the
population is neither increasing nor decreasing. Schaefer called the catch satisfying this
condition the “maximum equilibrium catch”, however the popular name is “maximum
sustainable yield” (first coined by Ricker (1946)).

Some features of MSY are illustrated in Figure 2.3. Assume that the harvesting
rate is constant, that is, h(F, N) = h = constant. At equilibrium we obtain

h=F(N)=rN <1 _ %) . (2.23)



To find the MSY choose NV that maximises h, say N*. Substitute N* back to equation
(2.23) to produce h* which is the MSY. With this procedure, we find N* = K/2 and
h* = rK/4. If the MSY of the population can be determined exactly, then harvesting
at the level MSY, that is, h = h*, does not change the size of the population in the
long-term, because the natural growth is zero, if the population is in its equilibrium
N* = K /2. If the population size is more than the equilibrium, long-term harvesting at
MSY level drives the population to this equilibrium. However, if the population size is
less than the equilibrium, harvesting drives the population to extinction. Hence, this
equilibrium is “semi-stable”. Furthermore, in practice, the exact value of the MSY
is difficult to determine. We only can estimate it roughly. Let us assume we have
estimated h* as the MSY. If we are harvesting at a slightly lower rate, Ay, than the
MSY, then we would drive the population to a stable equilibrium size IV, if the initial
population size is higher than N; and drive the population to extinction if the initial
population size is less than N;. If, however, we are harvesting at a slightly higher rate,
hy, than the MSY, then we would drive the population to extinction regardless of the
initial population size before harvesting begins. Harvesting the population at the level
of its MSY, theoretically, is the best strategy, from the point of producing food in the
long-term, but due to the difficulty in finding its exact value and its instability, harvest-
ing at the level of MSY is risky. This is one of the limitations of the MSY harvesting
strategy (Clark, 1976a; Larkin, 1977; May et al. 1979; Cunningham, 1981; Caddy and
Mahon, 1995). Other limitations are that MSY ignores economic considerations and
the fact most fisheries are multi-species (Clark, 1984, 1985a).

Now assume that the rate of harvesting is not constant but is a function of effort,
that is, h(F, N) = ¢EN where q is catchability coefficient. This is more likely for most
species where effort tends to be fixed by the number of ships. For simplicity assume
g = 1. Equation (2.21) now becomes
d—N =rN (1 e

K

= > _EN. (2.24)

The equilibrium population size is found when N = 0, that is,

E*
N*=K (1 - ) (2.25)

T
for a fixed effort £ = E*, with another equilibrium at N* = 0 which means extinction of
the population. As before, this equilibrium is stable (see Figure 2.4). Assume r < E*,
the equilibrium harvest is

h=E"N* = E*K (1 - ET) . (2.26)
This harvest is a “sustainable yield” and its graph is called a “yield-effort curve”
(Clark, 1976a). It can be seen in Figure 2.4 that increasing the level of effort from
E' to E" increases the yield A’ to A" until it reaches the maximum harvest MSY=
mazF(N) =rK/4 at

Nyrsy = I(/2, (227)

or equivalently
EMSY = T‘/2 (228)

Increasing or decreasing the level of effort beyond the threshold level F = r/2 decreases
the yield.

16



) hll — EHNII

hl — E/NI
»[N\(N)

Yield A

, = EK(1— E/r)

Effort F

Figure 2.4: Yield as a function of population size and effort (upper figure)
and “yield-effort curve” {lower figure). Details are in text.

Gordon (1954) analysed the effect of effort on the resulting yield, if economics is
incorporated, based on Schaefer’s yield-effort curve. Gordon (1954) assumed the price
per unit harvested fish is constant and the cost to harvest the fish is proportional to
the amount of effort that is spent. So revenue is

R = ph(E) = pEN (2.29)

and cost is

C =cE. (2.30)

The graph of the revenue is similar to the graph of yield effort, that is, quadratic with
linear cost, with respect to effort (see Figure 2.5).

Maximum economic yield (MEY) is the yield that maximises the difference between
revenue and cost. Let EMEy be the effort that generates MEY. To find EMEy, solve

the equations —(-Ii(%ﬂ—c(@ and M = 0 to give
Kp—cr
E e e 31
MEY 2K p (2.31)
and .
Kp+c

Nupy = P (2.32)
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Cost C(E),

and R(E) - C(E) i

Figure 2.5: Relationship among Eysy, Eyxpy and bionomic equilibrium F.

This yield is a suitable objective of a sole-owner. However, in an open-access fishery,
Gordon (1954) argued that “bionomic equilibrium” Eo, occurs (see Figure 2.5). This
is because, if C(E) < R(E) then more fishers will join the fishery. This is a stable
equilibrium effort which maintains the level of revenue exactly the same as the level of
cost in a long-term unregulated fishery. At this point, the marginal revenue equals the
marginal value of cost. By solving equation R(E)— C(F) = 0, a bionomic equilibrium

is found at the effort
_Kp—ecr

Foo :
Kp (2.33)
and bionomic equilibrium population size
c
Noo = - 2.34
‘ 230

Figure 2.5 shows that Eppy is always lower than FEpysy and Fo,. As a result, a
harvesting policy based on MEY is more conservative than that derived from MSY.
Both MSY and MEY are static. They do not consider harvesting over time.
Schaefer (1954) looked at the effect of fishing effort on the dynamics of exploited
fish populations. Schaefer used Lotka-Volterra predator-prey interactions to describe
the dynamics of fish populations (prey) and fishing effort (predator). The model is
able to explain the relationship between fishing intensity and the mean population of
Californian sardine. A spiral trajectory to a stable equilibrium for that population
is observed as predicted by the solution of the Lotka-Volterra predator-prey system
(Schaefer, 1954; see also McGarvey, 1994, 1995). Smith (1969) developed a similar
model applied to open-access fishery and the model is able to describe oscillations
in the North Pacific fur seal fishery (Clark, 1985). Schaefer’s (1954) and Smith’s
(1969) predator-prey models can describe the growth and the decline of a fishery.
Schaefer’s (1954) and Gordon’s (1954) models predict that extinction of an exploited
population is never optimal. However, Clark (1971, 1973) showed that this belief can
be misleading. He argued that a rational sole-owner, in certain circumstances, may
drive the population deliberately to extinction, if we maximise the economic rent from
the fishery over time (dynamically). In a dynamic context, the total present value or
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economic rent from the fishery over time is
PV = /0 e~ (p(t) — ) E(1)dt, (2.35)

where d is a discounting rate and ¢ is a decreasing function of the population. Assuming
§ = 10%, the inclusion of the discounting rate means one dollar now is worth about
two dollars in seven years time.

Clark (1971, 1976a) found an implicit expression for the optimal population level
N*, that maximises net present value PV in the form

¢(N*)F(N*)
p—c(N*) ’

b

§ = F'(N*) + (2.36)

known as the “modified golden rule” of resource accumulation (Clark and Munro,
1975). If F is a logistic function such as in the Gordon and Schaefer model, Clark
(1976a, 1985a) found an explicit form for the optimal population size

> -
N+K(1—§)+J<N+K(1—g)) +¥V—5

with N = =. Four special cases occur. First, if there is no discounting (6 = 0), then
equation (2.37) reduces to

1
N* == 2.

Kp+c
2p

1 —
N* = 22N +K) = = Nusy. (2.38)

Second, if in addition the cost of harvesting is also zero, then

K
N* =5 = Nusy. (2.39)

Third, if there is discounting (§ # 0) and the cost of harvesting is zero, then

I A

Therefore, in this case, it is economically optimal for the harvester to exploit the
fish down to extinction when the discounting is higher than the growth rate of the
population (6 > r). Fourth, if ¢(N) = & then bionomic equilibrium N, which is
found from solving R — C = 0, is the limiting case if § tends to infinity. This can be
regarded as an open-access exploitation, because open-access only cares about profit
this year, same as ¢ = oo. In this case equation (2.36) becomes

B 2N cr(l — N/K)
5_r(1_fi’)+ ¢c—pN

: (2.41)

which if § — oo then N* — i = Ng.

What is the optimal policy for harvesting a single-species population? If the
modified golden rule, equation (2.36), has a unique optimal escapement N = N* that
determines the optimal size of stock to leave for the next period, Munro (1992) argued
that keeping the stock at any level above N* would be over-investment. On the other
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Figure 2.6: Life cycle of parental survival population. Modified from Clark
(19762).

hand, any stock below the level N* is also not optimal, for example to harvest at that
level is expensive if we assume cost is a decreasing function of the stock. Therefore,
the optimal strategy is to drive the stock to N* as rapidly as possible. Mathematically,
this can be written as a function

hmes  if N(t) > N*
h*(t)={ F(N) if N(t) = N* (2.42)
0 if N(t) < N*.

This strategy is called the “most-rapid-approach” path strategy. It assumes an upper
bound of the harvest rate A = hqz. If the stock level is above N* than we harvest the
stock at maximum harvest rate, if the stock is exactly at the level of optimal escapement
then it should be kept at that level, and if the stock is below the optimal escapement
then close the fishery completely until it reaches the level of optimal escapement. Other
authors who investigated harvesting policies under net present value maximisation are
Quirk and Smith (1969), Plourde (1970), Brown (1974) and Herfindahl and Kneese
(1974). Other models, such as discrete-time, delay-recruitment and cohort models and
some extensions of Clark’s models are discussed in sections to follow.

2.2.2 Single-species fisheries discrete-time models

Schaefer’s (1954) surplus production function discussed in the previous section
is a continuous-time population model. In some circumstances, discrete-time models
seem to be more realistic, for example in modelling a population which regenerates
annually, like salmon. In general, discrete-time models use a “stock-recruitment func-
tion” (see Figure 2.6). A stock-recruitment function is a relation between the number
of spawning adults and the subsequent recruitment that enters the adult class, usually
known as a harvestable class. A fairly general stock-recruitment function is presen-
ted by Deriso (1980) and Schnute (1985) as a generalisation of the Schaefer surplus
production function.

The discrete-time model is able to differentiate between two types of adult sur-
vivorship. The first one, the model with no adult survival for the next period (¢ = 0 in
Figure 2.6), is called a non-overlapping growth model. This model is best to describe
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the growth of some species of salmon, where all adult die after the reproductive pro-
cess. This modelis considered as a discrete-time analog of the continuous model (Clark,
1976a). The second one, the model which is called an overlapping growth discrete-time
model. Clark (1971, 1973, 1976a) investigated optimal harvesting strategies for these
discrete-time population models. The results are presented in this section briefly and
the method is used to obtain optimal harvesting strategy in a more complex system,
that is a predator-prey system, in Chapter 3 .

The general model represents a discrete-time population dynamic that can be
written in the form

Niy1 = aNg + Ry, (243)

where Ry = F(Ny), see Figure 2.6. If we assume the generations of the population are
not overlapping (¢ = 0) and there is harvesting with the rate Hj, then the equation
becomes

Nigr = Re — Hy, (2.44)
hence Ripy1 = F(Ry — Hi) with harvest Hj satisfies 0 < Hy < Ri. Clark (1976a)

defined economic rent from the fishery in period k as

(R, S0 = [ (o= ), (2.49

where S, = Ry — Hy is defined as escapement in period k. The expression above
assumes that the price of the fish is constant and the cost of harvesting is a function of
the fish abundance (see Appendix 4A for the formal derivation of the cost function).

The maximisation is carried out with respect to escapement Sj over T' periods
with present value

T
PV =3 p*II(Ry, Sk), (2.46)
k=0
where p = 11? is a discounting factor with a discounting rate §. Using dynamic

programming, Clark found implicit expression for the optimal escapement S* satisfying

_ g — c(F(SY)
R R e O

which he called the “fundamental equation of renewable resources”.

The optimal approach to this optimal escapement is the most-rapid-approach
path, exactly as before. Hence if the initial population is below the level of optimal
escapement then do not harvest the population, while if the stock level is above the
level of the optimal escapement then harvest the population down to this optimal
escapement. Clark (1971) and Reed (1979) showed that if the recruitment function
is concave and deterministic then the population will never fall below this optimal
escapement once it exceeds the optimal escapement. Equation (2.47) is also known as
a discrete-time analog of the modified golden rule equation [equation (2.36)].

An explicit expression of the optimal escapement can be obtained for special
cases, for example, if the cost of harvesting is negligible (clupeid fisheries, e.g. herring,
pilchard and sardine fisheries, may be considered costless to some extent (Munro,
1992)) and the recruitment function is assumed to be fitted with a Schaefer recruitment
function, that is, F/(N) =rN(1 — N/K). In this case the optimal escapement is

(2.47)

. K K
§* =5 = 5-(1+9). (2.48)
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From this equation, we can conclude that it is optimal to drive the population to extinc-
tion if the natural growth of the population is less than the inverse of the discounting
factor. This is consistent with the result for the continuous case discussed previously.
Both Clark’s (1976a) continuous- and discrete-time single-species models are exten-
ded by other authors. For example Reed (1978, 1979) and Charles (1983) included
stochasticity and uncertainty, Reed (1982) included sex-selective harvesting, Charles
(1988, 1989) included bio-socio-economic aspects, Reed and Heras (1992) included
resource vulnerability to extinction and Jgrgensen and Kort (1997) included perfectly
reversible investment, etc. (see also Clark et al., 1979; Agnew, 1982; Gatto et al., 1982;
Clark and Tait, 1982; Ludwig and Walters, 1982; Chaudhuri, 1986, 1988; Mesterton-
Gibbons, 1987, 1988, 1996; Tuck and Possingham, 1994; Ganguly and Chaudhuri,
1995). In the following section I move from single-species harvesting to review harvest-
ing theory for multi-species fisheries.

2.2.3 Multi-species fisheries models

This section reviews the models and qualitative results in multi-species harvesting
theory. I address questions such as: when does a multi-species strategy differ from a
single-species strategy? and is extinction of one or both species economically optimal?
I begin with the definition of a multi-species fisheries.

There are two types of multi-species fisheries: “technologically interdependent”
and “biologically interdependent” multi-species fisheries. The first type occurs when
the gear to harvest a species also affects mortality of another species while the second
type occurs when the exploited species in the fisheries have a biological relationship,
like competition, predation, etc., with the other species. Anderson (1975) addressed
the issue of maximum economic yield and open-access equilibrium for these two types
of multi-species fishery. Clark (1976a) solved the general problem of technologically
interdependent multi-species fisheries and left a conjecture for biologically interdepend-
ent multi-species fisheries, that is, the optimal control of the fisheries is attainable.
There is also another type of fishery closely related to a multi-species fishery, that is,
a multi-purpose fleet which harvests a certain fish at one season and then another fish
at another season (Huppert, 1979; Anderson, 1982) which I will not discuss further.

Gatto et al. (1982) extended Clark’s technologically interdependent multi-species
model to include the effects of a limited total effort on the exploitation. The main
differences between their model and Clark’s (1976a) model is that in their model total
effort is constrained by a constant maximum effort, that is, 0 < E;(t) + E,(¢) <
E,.q.z for each time period t. If a constraint like this is not present, then the analysis
can be done by assuming the system consists of two separate single-species fisheries.
They found that if total maximum effort F,,,. is very low, it is optimal to exploit
only one of the fisheries, if they are totally regulated. In contrast, if the fisheries
are totally unregulated, the discounting rate  is not zero and total maximum effort
E,.: sufliciently large, then the fisheries reach bionomic equilibrium. They proposed a
compromise between a totally unregulated and a totally regulated fishery, a “regulated
competition” fishery. In this regulated competition fishery, the stock with a lower net
return per unit effort should be exploited less.

In many situations a multi-species fishery of the second type may exhibit complex
interactions. The effect of exploitation on the population may not be straight forward.
The indirect effect of one species on the other species can be very complex. For example,
in the North Sea fisheries, demersal species such as cod, haddock and plaice feed on
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pelagic species like herring and mackerel. On the other hand, adults of these pelagic
species also feed on early larval stages of the demersal species (Gulland, 1977). Gulland
(1977) argued that increasing catches of cod reduces predation by cod on herring and
generating larger catches of herring. Larger catches of herring means the declining
of food supply for the cod, which finally reduces cod stock. Furthermore, Gulland
(1977) suggested that extensive fishing of herring increases the number of surviving
cod juveniles recruited into the adult class of the cod. This is because extensive fishing
of herring also reduces predation on the larvae of cod. These complex interactions have
made the management of multi-species fisheries difficult. Despite complex biological
interactions in the underlying systems of multi-species fisheries, concepts for harvesting
multi-species fisheries are similar to concepts for single-species fisheries (May et al.,
1979).

Larkin (1963, 1966) was among the first to study harvesting of multi-species
fisheries. He studied multi-species fisheries in which the species are ecologically in-
terconnected, that is, competition (Larkin, 1963) and predation (Larkin, 1966). In
both cases Larkin (1966) found equilibrium abundances of the interacting species in
the presence of harvesting as explicit functions of the fishing rate. Therefore, the effect
of exploitation on the population and the profit from fishing can be easily determined.
Jensen (1994) applied Larkin’s predation model to study the dynamic of lake trout,
Salvelinus namaycush, and sea lamprey, Petromyzon marinus, and found that in certain
circumstances extinction of one species is possible in the presence of harvesting.

Strobele and Wacker (1991) studied the yield per unit effort curve from harvesting
an ecologically-interconnected multi-species fishery and compared the curve to the yield
per unit effort curve from harvesting a single-species fishery. They showed that, either
under a selective or combined harvesting strategy, yield from a mutualistic system is
higher and yield from a competitive system is lower, compared to yield from a single-
species system. Furthermore, they argued that selective harvesting of the prey in a
predator-prey system is comparable to harvesting the competitive system, because the
yields from both systems are lower than the yield from a single-species population. On
the other hand, selective harvesting of the predator is comparable to the mutualistic
system, because the yields from both systems are higher than the yield from a single-
species population. However, they derived no general rule for optimal harvesting of a
predator-prey system.

Parrish and Saila (1970) modified Larkin’s models to include three species, one
predator and two competing prey. The dynamics of their model with the inclusion of
predator exploitation are explored by Azar et al. (1995). The effects of two different
harvesting strategies, namely constant harvest quota and constant harvest effort, on
the dynamics of the populations, are investigated. Azar et al. (1995) showed that the
system is stable when a constant harvest effort is used as a harvesting strategy, while a
constant harvest quota on the predator may destabilise the system. This result agrees
with the finding of Brauer and Sanchez (1975) for a single-species and Brauer et al.
(1976) for a predator-prey system with only one prey and one predator, who showed
that if exploitation is introduced into a predator-prey system using a constant harvest
quota and the rate of exploitation is above some critical threshold, then extinction
of the predator may occur. For this reason, Brauer and Soudack (1978) argued that
exploitation using proportional harvesting is safer than constant rate harvesting if the
extinction of the predator is undesirable.

In a multi-species fisheries, the determination of the level of effort that maximises
yield is only possible if the level of effort in the other fishery is known. MSY for hoth
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fisheries occurs when the total yields from both fisheries is maximised. Furthermore,
combined MEY has a different combination of effort than those associated with the
individual MEYs. For this reason, multi-species fisheries should be managed as a
whole (Anderson, 1975). Silvert and Smith (1977) pointed out that, as in the case of
harvesting a single-species fishery, MEY and MSY are the special cases of the more
general objective, that is, dynamic MEY or MPV. Silvert and Smith (1977) studied
the multi-species system previously proposed by Larkin (1963, 1966) in a dynamic
framework, with the inclusion of an interest rate. They found that a species that
might be heavily harvested in a single-species fishery, could be conserved better in
multi-species fisheries if it enhances the present value through its bioeconomic role.
For example, if the prey in a predator-prey system grows slowly then it would be
better not to harvest it and use it as food for the predator.

Extinction of species in a harvested multi-species system may be the optimal
strategy to obtain a higher harvest (Flaaten, 1988, 1989). For example, May et al.
(1979) investigated the effect of the harvesting rate of one species on the yield of the
other species in the predator-prey population previously proposed by Leslie (1948).
Their model applied to the exploitation of the Antarctic krill, Euphausia superba,
which is also food for baleen whales. The model is

ﬂ =rN (

N
= |- —> —4NP, (2.49)

K

dt aN

They assumed that the prey and predator are harvested under constant efforts at rate
rEy and sEp, respectively. Both efforts are rescaled so that Exy = Ep = 1 corresponds
to a fishing rate equal to the intrinsic growth rates r and s respectively. The yield for
the prey is Yy = rEnyN and the yield for the predator 1s Yp = sEpP. Introducing
Xy = N/K and Xp = P/(aK) as new scaled variables, the dynamic of the exploited
populations are

P _ p (1_i), (2.50)

dX
d—tN:TXN(l—EN—XN—I/Xp) (2.51)
and dX X
P P
—— =3sX —FEp — — .
at o <1 d XN) (2.52)

for the prey and predator, respectively, with v = aaK/r. May et al. (1979) found the
equilibrium population sizes Xy and Xp, and yields Y3 and Yz,

X =1 +1V(_1E_NEP), S

X3 = (11—+€f\8(i;£1’), (2.54)

Y = (TlKEJ(V1(1—_EfI)V)’ (2.55)

ys = (oK )(llJr—foiv)_Eg}(j) — Ep), (2.56)

It is easy to see that if there is no predation (v = 0), yield from the prey is maximised
by applying a harvest rate at the level of the prey MSY, because the system reduces
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to a single-species population. If v # 0 then the yield for the prey is maximised
by the depletion of the predator, while the yield for the predator is maximised by not
harvesting the prey at all. They argued that the appropriate MSY is one that maximises
the yield from a weighted sum of both yields. For this reason, they propose a possible
management objective by maximising the total weighted yields ¥ = Y5 + vYp, where
7 is the intrinsic relative value of the predator relative to the prey. Rewrite Y to give

C(1— En)(En + BEp(1 — Ep))

Y =
1—}-1/(1—EP) ’

(2.57)

where C is constant and 3 = ya(s/r). They interpret 8 as the intrinsic relative value
(7) discounted by the ratio of predator’s intrinsic growth and prey’s intrinsic growth
(s/r) and by the biological conversion («). This discounted intrinsic relative value
determines the optimal yield combination for the prey and predator. If this value is
small, for example if the biological conversion is small and the intrinsic growth of the
predator is also small compared to the intrinsic growth of the prey, then it is optimal
to harvest the less valuable predator heavily. In some circumstances it is optimal to
harvest the predator down to extinction and harvest the prey sustainably (Figure 2.7.a).
On the other hand, if the discounted intrinsic relative value is large, it is optimal to
harvest only the predator and the prey is more valuable as the food of the predator
(Figure 2.7.b). Figure 2.7.c illustrates the case where both species have similar values
and it is optimal to keep both species. Clark (1985¢) modified May et al.’s (1979)
model to include a concentration effect. He assumed that the intrinsic growth of the
predator depends on the density of the prey and found that excessive exploitation of
the prey may cause the predator to go extinct even though we left them unharvested.

Beddington and Cooke (1982) investigated harvesting strategies for the same
system (equation (2.49) and (2.50)). They assumed the prey is harvested with constant
yield while the predator is harvested with constant effort. In dimensionless form the
system becomes

dXn

— - =7 (X (1= Xy —vXp) = Yy) (2.58)
and dX X
P . - P
dt = S)(p (1 Ep —-N> § (259)

They found that, for fixed effort Ep, to obtain an equilibrium prey yield, Y» needs to
satisfy Yy < 1/4(1+v(1 — Ep)). Because it is scaled to r, then the “absolute” MSY is
r/4(1 +v(1 — Ep)). Now let Ep = 0, that is, only the prey is harvested. They showed
that different from harvesting a single-species, in which harvesting the population below
MSY drives the population to a locally stable equilibrium, here harvesting only the
prey from a predator-prey system may not produce a stable equilibrium. A stable
equilibrium is attained only if

1= (1= s/r2(1+ W)/ +v) — 1)

Yy = A1+ )

(2.60)

They referred to this yield as the “stable” MSY which is smaller than the “absolute”
MSY. They argued that this “stable” MSY is more useful than if we modify the concept
of MSY for a single-species system to apply to harvesting prey population from a
predator-prey system. Furthermore, they found that whether we harvest only the
prey or harvest both populations the difference between the “absolute” MSY and the
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Figure 2.7: Total sustainable yield, Y, is graphed as a function of prey and predator
efforts, Ey and Ep. The parameters are chosen as in May et al. (1979) with § = 0.1
(Figure 2.7.a), 8 = 10 (Figure 2.7.b) and § =1 (Figure 2.7.¢).

“stable” MSY is greatest when the ratio of the intrinsic growth of the predator to
the intrinsic growth of the prey, s/r, is small. They proposed that if the predator is
harvested at a constant effort then it is better to harvest the prey at a level of about
90% of the “stable” maximum sustainable yield, because the domain of attraction to
the stable equilibrium is larger than at a higher level, for example 99% of the “stable”
MSY. Harvesting at the “stable” MSY, to some extent, is also risky; fluctuations of
the population from natural disturbances may lead to the collapse of the system.

In harvesting a multi-species fisheries, Beddington and May (1980) pointed out
that the most common outcome of using weighted total sustainable yield, is to harvest
one species and either ignore or drive the other species to extinction. This makes
the weighted total sustainable yield approach contentious. In theory and in practice
controversies emerge in harvesting predator-prey systems. For example, Flaaten (1988)
concluded that in the Barents Sea fishery one should deliberately deplete sea mammals
to increase fish production from the fishery. The similar controversies of conservation
significance occur almost in all fisheries in which the stocks are also food for higher
trophic species, like sea mammals and birds (Beddington et al. 1985; Yodzis, 1994;
Greenstreet and Tasker, 1996). The increasing surplus of Antarctic krill is assumed to
be a direct effect of baleen whales depletion (May et al., 1979; Nicol and de la Mare,
1993), which in turn ends in the conclusion that marine mammals are detrimental
to fisheries, hence their numbers should be kept as low as possible (Flaaten, 1988).
To reach this conclusion, Flaaten used Leslie’s predator-prey model, as described in
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May et al. (1979). Yodzis (1994) argued that the use of this predator-prey model in
mammal-fish interactions is misleading and so the conclusion derived from this model is
biased. Leslie (1948) used a “laissez-faire” functional response (see equation (2.49)). In
this case we assume that predators do not interfere with each other in their activities,
feeding for example, but, there is also predator interference which is linked with the
food availability (the numerical response in equation (2.50)). This is not appropriate
in mammal-fish interactions, for example a recent paper reveals that predation of the
Antarctic cod, Gadus morhua, by grey seals, Halichoerus grypus, is not a major factor
in the collapse of the cod population (Mohn and Bowen, 1996).

The harvesting theory for multi-species fisheries discussed above assumes the
system is at equilibrium and there is no economic discounting. The following part
of this section reviews multi-species harvesting theory for a more general model in a
dynamic time setting.

A multi-species fisheries model for n-species can be written in the form

dN;
% = Fi(Na, ey Na) = D). (2.61)

Here we assume harvesting can be done selectively. If the cost of harvesting is a function
of the population size, that is, ¢;(}N;), then using a similar framework to the present
value maximisation for a single-species fishery, the present value of the net revenue or
economic rent from the fisheries over time is

o (2 dN;
PV = / (Z(Pi — ci(N))(Fi(Ny, -y Ni) — —dt—)> e Otdt. (2.62)
0 \i=t1
Maximisation of this present value with respect to N; subject to 0 < N; < N/** must

satisfy the Euler equation (Clark, 1976a: p. 39-40). Hence we have

dci n 8F
§(pi—ci) = —IN. Fi+ > (p; - c])a—[\J (2.63)

i=1

Using this general implicit equation of optimal escapement, Hannesson (1983) investig-
ated the effects of discounting rate on the standing stock of biomass for a predator-prey
system previously studied by Larkin (1966). Hannesson (1983) found that if predator
efficiency is relatively high then both optimal escapements, for the prey and predator,
decrease. In the other case, that is, in a partial predator-prey system in which the
predator has other foods besides the prey, the increasing of the discounting rate may
increase optimal escapement of one species while it also decreases optimal escapement
of the other species. This seems contrary to the single-species harvesting theory in
which increasing discounting rate always decreases the level of optimal escapement.
Hannesson (1983) also confirmed the need of predator extermination in the presence
of discounting if the growth of the predator is slower than the prey.

Clark (1976a) applied the same theory to obtain an optimal harvesting strategy
for a Lotka-Volterra predator-prey system

¥ = F(N, P) — hu(t), (2:64)
‘2—1; = Fp(N, P) — hp(t), (2.65)
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where FX(N, P) = rxX(1—-X/Kx)+axNP, X = N,P,ay <0and ap > 0. Optimal
escapements S% and Sp are found implicitly and satisfy equations

(o — e (Sw) S+ (pp = ca(7)) g = CioFy = 6o — en(Sw)) (269
and
(pv — CN(SN))% + (pp — CP(SP))Z% ~ CplFp = 8(pp — cp(Sp))- (2.67)

These equations are generalisations of the modified golden rule for a predator-prey
optimal escapement. Clark (1976a) interpreted (pN—cN(SN))g—};f and (pP—CP(SP))%;%
as an addition to the marginal value product of the prey and predator populations
with the increase in predator and prey population respectively. He argued that the
optimal approach path to the optimal escapement (Sx,Sp) is difficult to obtain, but
it is possible to obtain a unique optimal trajectory passing through these optimal
escapements. He also conjectured that the optimal path from any population size
(Sn,Sp) can be attained by constructing a straight line from the initial population
size to the optimal trajectory, and then follow the optimal trajectory up to the optimal

escapement (S%,5%). For practical uses, he suggested a suboptimal approach

Pmaz if X(t) > S%
hx = { 0 it X(1) < 5%, (2268)
similar to the most-rapid-approach-path.

Clark’s (1976a) analysis for optimal harvesting discussed above applies to a
predator-prey system with selective harvesting. Mesterton-Gibbons (1988, 1996) ob-
tained an analogous optimal policy to harvest a predator-prey system using a combined
harvest from the prey and predator. His work generalises the result for combined har-
vesting of independent populations (Clark, 1976a; Mesterton-Gibbons, 1987), combined
harvesting of competing populations (Clark, 1976a; Chaudhury, 1986) and harvesting
a predator-prey system with prey has no economic value (Ragozin and Brown, 1985).

A significant difference between strategies to harvest a single-species fishery and
strategies to harvest a multi-species fishery becomes apparent when we cannot harvest
the biologically interacting species selectively. For example, if a proportion of prey is
caught for effort expended to harvest the predator, then the “fundamental principle
of renewable resource economics” (Clark, 1985a), that is, that the increasing of the
discounting rate & usually decreases the optimal escapement of the fish stock, may
not hold. In this case, extinction may be optimal as the discounting rate decreases

(Sieveking and Semmler, 1997).

2.2.4 Spatially-structured fisheries models

As explained in the previous section, all marine populations display some degree of
spatial heterogeneity. This spatial heterogeneity has been recognised since the early
development of fishery management (e.g. Beverton and Holt, 1957), but fisheries
bioeconomic models are largely based on a single homogeneous stock. Much recent
research in fisheries shows that this spatial heterogeneity means that modelling the
species as one single population is not adequate (Caddy, 1975; Hilborn, 1976; Frank,
1992; Frank and Leggett, 1994). This is true especially for stocks in which dispersal of
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individuals is relatively high, like some species of cod and haddock in West Greenland
and Iceland (Frank and Leggett, 1994).

Farly investigation of the effect of spatial heterogeneity on optimal escapement
goes back to the work of Paulik et al. (1967), Clark (1976a), Hilborn (1976), Clark
and Mangel (1979), and Hilborn and Walters (1987). Paulik et al. (1967) studied
a harvesting strategy for multiple stocks where the fishery effort is uncontrolled -
“open-access”. They assumed that each substock is governed by Ricker’s reproduction
function for a single-species population. Each substock is allowed to be different from
other substocks, for example they may have different productivities. They calculated
the MSY from the fishery and found the rate of harvesting that maximises the total
sustainable yield for the population. However, Hilborn (1976) argued that the rate of
harvesting in Paulik et al. (1967) is computed when the population is in its equilibrium
state, which rarely occurs in real fish population. Furthermore, Hilborn (1976) pointed
out that a fixed escapement is more often used as a policy than a fixed harvest. In
the case of harvesting a population consists of different stocks, he concluded that
harvesting with a fixed escapement policy may not be optimal when the population is
not at equilibrium.

Further development of harvesting theory for spatially-structured populations
allowed individual movement between substocks. In his inshore-offshore fishery model
Clark (1976a) assumed that diffusion occurs from the substock which has a higher
abundance to the substock with less abundance. If k is the proportional constant of
diffusion, N; and Fy(N;) denote the abundance and the natural growth rate of the
substock 7, and E; is fishing effort applied to harvest the substock ¢, then the model is

dN
d—tl = F1(N1) + k(N2 — Ni) — E1 Ny, (2.69)
dN.
d—t2 = FZ(NZ) —|— K,(Nl — Ng) - E2N2. (270)

Using similar optimisation tools to those he developed for single-species harvesting,
Clark (1976a) found optimal harvesting strategies for both populations. If there is no
diffusion, x = 0, then an implicit equation for the optimal escapement is exactly the
same as the equation for a single-species. Furthermore, Clark (1976a) suggested that
if, in the absence of diffusion, the marginal cost of harvesting the inshore substock
is less than the marginal cost of the offshore substock, then it is optimal to reserve
the offshore stock. The offshore stock productivity is harvested when it comes to the
economically less expensive inshore fishery.

Clark and Mangel (1979) constructed a model of harvesting a surface population
which exchanges individuals with a subsurface school. Harvesting only targets the
surface population, while the subsurface population remains unharvested. They found
that if the rate of migration from subsurface population (“intrinsic schooling rate”)
is less than its intrinsic growth rate, then for any fishing effort the surface fishery is
sustainable. On the other hand, if this migration rate is higher than the intrinsic growth
rate, then a high level of harvesting effort may cause extinction of the population. This
model is applied to the Skipjack tuna fishery, Futhynnus pelamis, by Hilborn (1989a)
and extended to allow harvesting the subsurface population (Hilborn, 1989b). Further
analysis of Clark and Mangel’s model can be found in Mangel (1982).

Using the difference model of Deriso (1980) and Schnute (1985), Hilborn and
Walters (1987) simulated stock and fleet dynamics of the six major stocks of abalone
in Australia. If there is spatial movement among the stocks, they suggested that this
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movement can be inserted into the model using a spatial transition matrix P = [p;;] in
form

By = PB* (2.71)

and

Ry = PR, (2.72)

where p;; is the probability of successful migration from stock 1 to stock j, B* and
R* are biomass calculated before the movement, where By and Ry denotes the Deriso-
Schnute biomass model and the recruitment function, respectively.

Using a model analogous to Hilborn and Walters (1987), Tuck and Possingham
(1994) developed a model, assuming that the spatial movement takes place at the
juvenile or larval life stage of the stocks and that some proportion of adults survive to
the next period. Their model can be written

Bi(k+1) a1 Big P11 P21 Ry

= . 2.73
( B2(k+1) ag Bay, + Pi2 P22 Ry ( )
They investigated optimal harvesting strategies for the system and found the following
rules of thumb for harvesting a single-species metapopulation:

TP 1 If we use a single-species metapopulation harvesting theory, a relative source
subpopulation would be harvested more conservatively than a relative sink sub-
population.

TP 2 If we use a single-species metapopulation harvesting theory, a relative exporter
subpopulation would be harvested more conservatively than if we use an uncon-
nected single-species population theory, while a relative importer subpopulation
would be harvested more heavily.

TP 3 If we use a single-species metapopulation harvesting theory, a relative source
subpopulation would be harvested more conservatively than if we use a well-
mixed single-species population theory, while a relative sink subpopulation would
be harvested more heavily.

Source/sink and exporter/importer subpopulations are defined precisely in Chapter 4.

Other models that deal with exploited metapopulations are Quinn et al. (1993)
and Brown and Roughgarden (1997). The former analyses the effects of harvest on
the metapopulation with an Allee effect, illustrated by the red sea urchin, Strongylo-
centrotus franciscanus, and the latter investigates optimal harvesting policies for mar-
ine species with a two part life-cycle, illustrated by the barnacle, Balanus glandula.
Quinn et al. (1993) found that excessive exploitation may lead to the extinction of a
metapopulation, unless some of its subpopulations are excluded from the exploitation.
Their finding is consistent with those of Roughgarden and Iwasa (1986) and Pulliam
(1988) who argued that persistence of sink subpopulations can be maintained by spatial
movement from source subpopulations. Brown and Roughgarden (1997) discovered an
explicit rule which states that harvesting a metapopulation described by their model
should be carried out on no more than one site. This is consistent with that of Mc-
Cullough (1996) who argued that a metapopulation can be exploited only for a limited
harvest and in general it does not have a high potential harvest. In contrast, harvesting
strategies proposed by Tuck and Possingham (1994), e.g. TP 1 above, allow a relatively
high harvest compared to two other known harvesting strategies, namely unconnected
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single-species and well-mixed single-species. This is because their strategies recognise
the importance of source subpopulations, and hence these subpopulations are harves-
ted conservatively. On the other hand, we can harvest sink subpopulations heavily. In
this case, protecting the source subpopulation is also means protecting the replenish-
ment of the other subpopulation (Mangel et al., 1997; Gary et al., 1998). Tuck and
Possingham (1994) also showed that these strategies could improve the economic gain
from the exploitation.

2.3 Concluding remarks

In this chapter I have reviewed the development of harvesting theory using several
dichotomies: continuous-time and discrete-time models, static and dynamic models,
single-species and multi-species models, spatial and non-spatial models, etc. One ques-
tion of interest to resource managers that still needs further investigation is that of
optimal harvesting of spatially-structured predator-prey populations. Addressing this
question is very important in obtaining adequate management for commercially ex-
ploited marine biological populations, since all the populations are part of predator-
prey interactions and they are spatially heterogeneous. Many scientists believe that a
model which does this could improve the management practices of multi-species fisher-
ies (Hall, 1998). However, this issue has not been addressed explicitly in the literature
(Semmler and Sieveking, 1994).

In this thesis I develop models of spatially-structured predator-prey populations
and investigate optimal harvesting strategies for the populations. The models are
deterministic and take the form of coupled difference equations. In Chapter 3 I dis-
cuss optimal harvesting theory for a spatially homogeneous discrete-time predator-prey
population. That chapter contains the work of other authors. I redo and review their
work to ensure that I have a base which is internally-consistent to compare the optimal
harvesting strategies for spatially heterogeneous predator-prey populations in the sub-
sequent chapters. In the subsequent chapters I extend the model from Chapter 3 to
include spatial structure of the populations.
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Chapter 3

Spatially-homogeneous
predator-prey population

Most of the harvesting theory for predator-prey populations discussed in Chapter 2
deals with the continuous-time case. In this chapter, I review and redo the work
of other authors on a deterministic, discrete-time predator-prey harvesting model.
The chapter is intended to give a background for comparing the optimal harvest-
ing strategies for spatially heterogeneous predator-prey populations in the subsequent
chapters. Although the model in this chapter is not new, nor are the results, I dis-
cuss an interpretation of a negative harvest as a feeding strategy which has not been
addressed explicitly by other authors.

The model in this chapter follows the structure and assumptions in Clark (1976a),
Walters and Hilborn (1976) and Tuck and Possingham (1994). T use dynamic program-
ming and the method of Lagrange multipliers to find optimal harvesting strategies for
the system considering two different types of fishing. First, I assume both species,
the prey and the predator, are harvested. Examples of fisheries with this type of ex-
ploitation are the whale and krill fishery, the cod and capelin fishery, the salmon and
pilchard fishery, and the Pacific herring and Pacific hake fishery (Laws, 1977; Gulland,
1977; Cappo, 1987; Spencer and Collie, 1996). Second, I assume that harvesting only
targets the prey population. For example, the sandeel, Ammodytes marinus, fishery. In
this fishery, the sandeel is harvested while it also provides food for many seabirds, like
Arctic tern (Sterna paradisae), kittiwakes (Rissa tridactyla) and the puffin (Frater-
cula arctica) (Wright, 1996). Another example is the Australasian pilchard fishery,
where the pilchards (Sardinops pilchardus) are also a major prey for the little penguins
(Budyptula minor) of Western Australia (Klomp and Wooler, 1988).

3.1 The model

There are two ways to incorporate predator-prey interactions into the single-species
discrete-time model discussed in the previous chapter. In the first way it is assumed
that predation occurs in the adult stage. In this case, a predation term —cNgP 1s
added into the right hand side of equation (2.43) in the absence of exploitation to form
Njs1 = aNy + F(Ng) — cNgPi. The second way is to assume that predation occurs
in the juvenile stage. In this case, the predation term is added into the recruitment
production function F(Ng) in equation (2.43) to form Ny = alNg + F(Ng), where
F(Ny) = rNi(1 — Nx/K — cP;) (Walter and Hilborn, 1992).
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I assume that some proportion of adults in one period survive to the next period,
hence the model reflects an overlapping population. All adults have the same mortality
rate and their fecundity for all ages is the same. If the population size of the prey and
predator at the beginning of period k are denoted by Ny and Py respectively, then the
growth of prey and predator is given by equations

N(k+1) =S5 aNk+F(Nk) + alNg Py, (31)

P(k+1) =bP; + G(Pk) + BNy Py, (32)

where a and b denote the survival rate of adult prey and adult predator. The functions
F(Ny) and G(Py) are the recruit production functions of the prey and predator in
time period k. I will assume that the recruit production functions are logistic for the
remainder of this chapter, that is,

F(Nk):T‘Nk (l—Nk/[{), (33)

and

G(By) = sPy (1 — P/ L), (3.4)

where r (s) and K (L) respectively denote the intrinsic growth of the prey (predator)
and prey (predator) carrying capacity. In this case @ < 0 and 8 > 0 ensure that the
system reflects a Lotka-Volterra predator-prey interaction. In this model I assume that
the predator can survive in the absence of the prey. Many predators do not depend on
only one species. For example, Clers and Prime (1996) pointed out that harbour seals
from Lower Loch Fyne, Scotland, eat about seventeen species of fish.

To explore harvesting we need to introduce exploitation into the system. I assume
that the only possible exploitation is through a selective harvesting policy, for example
using a certain type of net and certain size of mesh, we can harvest a pelagic predator
and leave a benthic prey unharvested, and vice-versa. If the amount of harvest taken
from the prey and predator stocks at the beginning of period k are Hyy and Hpy, then
Snk = Np— Hyy and Spr = Py — Hpy, can be defined as prey and predator escapements
at the end of that period. These escapements determine the growth of the population
after exploitation. Hence, if these survivors of harvesting are substituted into equations
(3.1) and (3.2), then the model for an exploited predator-prey system is

N(/C+1) = aSNk + F(SNk) + aSNkSPk7 (3'5)

P(k+1) S bSPk + G(Spk) + ,BSNkSpk. (3.6)

To consider an optimal economic strategy, we need to make an assumption about
the ownership of the fishery. I assume there is sole-ownership of the fishery where the
owner uses maximum present value as the objective in managing the fishery. Using
present value maximisation, the objective of the sole-owner is to maximise the net
revenue resulting from harvesting each subpopulation of the prey and the predator up
to time horizon ¢ = T'. If Ilx represents the present value of net revenue resulting
from harvesting population X, X € {N, P}, and p is a discounting factor, then the
sole-owner should maximise

PV = ZT: pk E HX(Xka SXk) (37)

k=0  Xe{N,P}
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subject to equations (3.5) and (3.6), and 0 < Sx, < Xj. I will assume p = 1/(1 + ¢)
for the reminder of the thesis, where § is the annual discounting rate. The net revenue

I1, is given by I

(X, Sx,) = [, (px = ex(§))d, (338)

Xk
which reflects the net revenue from the harvest Hx, in period k. Hence, it is assumed

that the price of the harvested stock X is fixed. The cost of effort to remove Hy
amount from the stock X is assumed to be a decreasing function of X.

3.2 Optimal escapements for prey and predator

To obtain the optimal harvesting strategy I use dynamic programming (Appendix 3A).
The escapement method described by Clark (1976a) and Tuck and Possingham (1994)

is used. Let

T
JT(No, Po) = max (Z pk Z Hx(Xk, Sxk)) (3.9)
0<Sx0<Xo \ ;25 Xe{N,P}
be a value function which is the sum of the discounted net revenue resulting from har-
vesting both populations in both patches up to period ¢t = T'. We need to maximise this
function by choosing optimal escapements Sx,. Equation (3.9) is then used recursively

to obtain the value function at time 7'+ 1, Jr41(No, Fo), which is

Jri1(No, Po) = (o max (pJT(Nl,Pl)

SSXO SXiO

+ Y Hx(Xo, SXO)) . (3.10)

Xe{N,P}

This equation implies that the optimal revenue over T'+1 periods can be achieved using
appropriate escapements, Sy, and Sy, that maximise the immediate revenue in the
first period, together with appropriate escapements that maximise the revenue taken
from future harvests if the population sizes change from Ny and Fy to Nl(S,*VO, S;SO)
and P,(Sy,,SF,)-

To find optimal escapements, a gradual step with respect to the time horizon is
carried out. First consider 7' = 0. In this case, the sole-owner would maximise the
immediate net revenue taken from immediate harvests without considering the future
value of the immediate harvested stock, in other words no discounting factor is applied.
The immediate net revenue is given by

Jo(No, Po) = Mx(Xo, Sx.) | - 3.11
o(No, Po) o (XG{ZA;,P} x(Xo Xo)) (3.11)

To satisfy this maximisation, we need %}-ﬁ = 0. Let us assume that the optimal
escapement is Sxco, then px — cx(Sxeo) = 0 Hence the maximum revenue is given by

Jo(No,Po) = Z HX(X07SX00)- (312)
Xe{N,P}

Two cases can occur. If the recommended escapement is greater than the actual
population size, than the sole-owner should not harvest the stock at all. While if it
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is smaller than the population size then a harvest, as much as the difference between
these two quantities, can be removed from the stock. This is the optimal strategy for
the sole-owner to exploit the resource.

Next, consider the next time horizon, T' = 1. Recall that, from equation (3.10),
JT+1(N0, P()) is given by

Jl(No,Po) = max (pJo(Nl,Pl)

0<Sx, <Xo

+ Z Hx(Xg,SXO)) ] (313)

Xe{N,P}

Rewrite it using equation (3.12) to obtain

Ji(No, Py) = e
1( 0y 0) OSEI}(?}S(XO(pXE{XI\%P} X( o )

-} Z HX(XO,SXO)) . (3.14)

Xe{N,P}

The optimum value will be given by the condition

0J1(No, Po)
o= (3.15)
To find the partial derivatives, let
V(Ne, )= > Tx(Xk, Sxco)- (3.16)
Xe{N,P}
Using equation (3.8) for k =1 we obtain
OV(N, P) 5 0 (32 (px — cx(&))de)
95, Xe{N,P} 95y,
_ 5 9 (f_g{x’w(PX - Cx(ﬁ))dé) 9p(Sx,)
X€e{N,P} d(Sx,) 98y,
(3.17)

where Y = N, P and ¢(Sx,) = X1 as in equations (3.5) and (3.6). Solving the partial
derivative of the integral in equation (3.8) gives

OTLx (Xo, Sx,)
5%,

= —(px — ex(Sx,)). (3.18)

Substitute this result into the partial derivatives MVS%Z to obtain the following solu-
0
tion for equation (3.15)

TL‘ZV(_*';N_O) = (a+ F'(Sn) + Sk )(pv — en(N1)) + BSr(pp — cp(F1)),  (3.19)
pp _CP(SPO)

. = (b+G'(Sr,) + BSNn,)(pr — cp(P1)) + aSng (v — en(N1)).  (3.20)



These equations are the general form of the optimal harvesting equation for a
predator-prey population governed by equations (3.5) and (3.6). The escapements
obtained by solving these equations, that is, S}, and Sf, , are the optimum escapements
of the prey and the predator that maximise revenue provided the Hessian matrix of

J1(Sny, Sp, ), that is, J{'(Sn,, Sk, ), satisfies
[J1(Sx)(Sx — S%)] - [Sx — §%] <0 (3.21)

where Sx = (Sn,,Sp,) and S% = (Sk,,Sp,)- Another alternative is using the second
derivative test where we need

82Jy  _9%J, 92J; 2
3. (85N )? (85R,)? (3SN033P0) > 0.

The detailed conditions are given in Appendix 3B. As in Clark (1976a), these optimal
escapements hold for all time horizon T' > 1. The proof will be given in the next
chapter in a more complex predator-prey system (Appendix 4B).

If the costs of harvesting is negligible, then equations (3.19) and (3.20) become

p-7N = (a + FI(SNO))pN —+ C(SPUPN + /BSPOPP, (322)
%P = (b+ G'(Sk,))pp + aSn,pN + BSNopP- (3.23)

Furthermore, if pyy = pp then the optimal escapements are given by

:A%+CB

SN A (3.24)
and BE L oA
% T
Sp=—L _—— .
2 A (3.25)
provided A = C? — 22 oL (, where A = ; —r—a, B=32—s—5 and C =

a+ [ <0. It can be proved that if A and B are negative, and C’ is non-positive with
C > ma:c{ZI]{B, 241 then:

1. A is negative,
2. S} and Sp are positive,

3. Sy < S}, and Sp < Sp,, where Sy, and Sp, are the optimal escapements for
single species, and

4. the second derivative test for maximum is satisfied.

The condition A < 0 means that the escapements are positive if the reciprocal
of the discounting factor, 1/p, is lower than the sum of the proportion of surviving
adults of prey, a, and the intrinsic growth rate, r. The condition B < 0 is interpreted
similarly for predators. If Sy, is an escapement if we use a discounting rate é; and Sh,
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is an escapement if we use a discounting rate &, where &; # §;, A < 0 and B < 0, and
in addition C > —%s, then, by considering the sign of Sy, — Sk, it can be proved that
higher discounting rates imply lower escapements. This is known as the “fundamental
principle of renewable resource economics” (Clark, 1976a, 1985a) and considered as
a normal situation in single-species harvesting theory, otherwise it is best to harvest
the populations down to zero escapements (Schmitt and Wissel, 1985; Daly and Cobb,
1989; Ackerman, 1994; Dawid and Kopel, 1997). Appendix 3C shows that this rule
is also true if there are price differences between the prey and the predator. In this
case the optimal escapement for each species is affected by the “economic efficiency”
of the predator, %ﬁ A similar result is also found for continuous-time predator-prey
models (Strébele and Wacker, 1995). The “fundamental principle of renewable resource
economics” for a single-species population generalises to the multi-species population.
This is because we assume that harvesting can be carried out selectively. This is not
always the case in harvesting a multi-species system. Sieveking and Semmler (1997)
showed that a lower discounting rate may also cause a lower escapement in harvesting
a predator-prey population, if we harvest the population non-selectively.

3.3 Harvesting only the prey species

In some cases we only need to harvest either the prey or the predator population. In
this section, optimal escapements for harvesting only the prey population are derived
using similar method to harvesting both prey and predator. Optimal escapements for
harvesting only the predator population can also be obtained using the same method
(see Section 4.3.3 for a more complex predator-prey system).

Using present value maximisation, now the objective is to maximise the net rev-
enue from harvesting prey population up to time horizon ¢ = T. As before, Iy
represents the present value of net revenue from harvesting prey population N, then
we need to maximise

T
PV = AZ: p" TN (Nk, Sn,) (3.26)
t=0
subject to
Nit1 = aSn, + F(Sn,) + aSn, P, (3.27)
Piy1 = 0P + G(Py) + BSn, Pr, (3.28)
and 0 < Sy, < Ni. Let
T
Jr(No, Po) = o (}; PRI SNk)) (3.29)

be a value function from harvesting only the prey population up to period t = T. The
value function at time T' 4 1 can be written recursively as

JT+1(N0, Po) = maXx (pJT(Nl, Pl) + HX(X(), SXO)) . (330)

0< SNy <No

A step by step process with respects to time remaining ¢ is carried out to obtain the
optimal escapements for the system. First let us consider 7' = 0.

Jo(No, Po) =  max_ (IIn(No, Sn,)) (3.31)

OSSNOSNO
b HN(N(), SNOO)
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Next let us consider the next time horizon, 7' =1,

(Mo, Fo) = 0<§I;,a)<(1v [N {(No, Sny ) + pJo( Ny, Py)]
Sy <No
= oaxy, [v(No, Sno) + pTIN (N1, Sno)] - (3.32)

A necessary condition for an optimum is ajlag‘;’P" = 0, hence the optimal escapement
0

is given by the equation

PN — CN(SNO)

IO = (0t () + o) (p = en(Ma)). (3.33)

This equation is the implicit equation of the optimal escapement for one period to go.
The optimal escapement for one period to go is denoted by SA(Fs) which is a function
of predator population size Fy. In harvesting both the prey and predator populations,
the optimal escapement is independent of the time horizon considered. But here this
is no longer true. Appendix 3D derives an equilibrium prey optimal escapement as a
function of predator equilibrium population size, P, using dynamic programming. The
appendix shows that if

lp(b+ G'(P) + BSy)| < 1 (3.34)
then the implicit expression of the equilibrium prey optimal escapement is given by

(PN . CN(SXI))

) (e + F'(S§) + aP)(pv — en(N))

afPS}
1 —p(b+ G'(P) + BSY)

+p (pv —en(NV)).  (3.35)

This implicit optimal escapement equation is similar to the implicit form of optimal
escapement for a partially reserved metapopulation discussed in the work of Tuck
(1994). The difference is that the occurrence of a nonlinear term o3PSy, which makes
the Interpretation of the equation more difficult. To find the optimal escapement we
need to satisfy condition (3.34). However, using the method of Lagrange multipliers
(Appendix 3E), the same equation can be derived without requiring the fulfilment of
this condition. Hence, to obtain the optimal escapement S} we only need to solve
equation (3.35) together with the predator dynamic

P =bP + G(P) + BS}P. (3.36)

Next, I will interpret equation (3.35) for some special cases.
The case of o = 0. In this case, equation (3.35) reduces to

0 =—(pn — en(Sy)) + pl(pn — en(NV))(a + F'(SK))). (3.37)

This is the optimal escapement equation for a single-species population (Clark, 1976a).

The case of B =0 and a # 0. In this case, the interaction only affects prey popu-
lation and does not give an influence to the growth of the predator and equation (3.35)
becomes

0 =—(pnv —en(5¥)) + pllpv — en(N))(a + F'(SK) + aP)], (3.38)

which is the implicit equation of prey escapement for one period to go (equation (3.33)).
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The case of a # 0, B # 0 and |p(b+ G'(P) 4+ BSy)| < 1. In this more general

case, equation (3.35) is equivalent to
— (v — en(S§)) + pl(py — en(N))(a + F'(Sy) + aP)] > 0, (3-39)

since Sy is a root of equation (3.35). Furthermore, if the cost of harvesting is negligible
(or independent of the population size) and F' is a logistic recruitment function then
we obtain

1
FI(S;]) > ;—a——aP

e 1
r—?SN > ;—a——aP
. K K i
SN < '2—+ ?2; <a—;-|—ozP) . (3.40)

Note that, predation is behaving like discounting. Hence, as far as economically optimal
harvesting strategies are concerned, an increase in the discounting rate is equivalent to
an increase in predation rate or to an increase in the number of predators, which means
a decreasing prey escapement. It can also be interpreted that, for the same predator
population size, the equilibrium optimal escapement is always less than the optimal
escapement for one period to go. Next, since « is negative then

. K K 1
S < 7Jrz—r(cz—;). (3.41)

By comparing this with equation (2.48), the right hand side in (3.41) is the optimal
escapement for a single-species population. This suggests that in the presence of an
unexploited predator, assuming logistic recruitment, the stock recruitment is lower
than in the absence of the predator. This situation is intuitive and can be observed
in many fisheries that exploit only the prey population. For example, Harwood (1987)
and Harwood and Croxall (1988) observed the declining of inshore commercial fisheries
with the increase of the grey seal, Halichoerus grypus, population in the British Isles
water. Next further interpretation is obtained by recalling that (1 — %aﬁp) > 0 and
substituting predator equilibrium equation (3.36) into inequality (3.40) to produce

N K | il ) .
S < 5 (14-?1 (a—;+aP[b+s(1—f>+ﬁSN]))

S,*\,(1—£—iaﬂP> < %(1+%(a—%+ap[b+s<l_§)]))

%(] +%((£~%+0Pb))+f%ap(l_%)
(1-—§—‘;aﬁp) ‘

Sy < (3.42)

The last inequality suggests that, for a fixed prey intrinsic growth, if the resulting
predator equilibrium is less than the predator carrying capacity, then increasing the
ratio of predator intrinsic growth to the prey intrinsic growth causes the right hand
side of the inequality to decrease. In other words, it causes the upper bound of the
optimal escapement Sy to decrease. Numerical examples in the section that follows
show that it may also decrease the optimal escapement itself.
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3.4 Numerical examples: Harvesting one or both
species

In this section some numerical examples are given to illustrate optimal escapements for
the predator-prey population in the previous section. I consider two types of harvesting:
harvesting both species and harvesting only the prey species. These escapements are
compared to escapements if we manage the stock as a single-species population. I
use a relatively small number for the carrying capacity of each species to facilitate
comparisons between escapements derived analytically [equations (3.22) and (3.23)]
and escapements obtained by iterating Bellman’s equation (3.10).

3.4.1 Harvesting both species

Let the prey population have a carrying capacity K = 2000, with intrinsic growth
rate r = 2 and adult survival per period a = 0.1, while the predator has carrying
capacity L = 40, intrinsic growth rate s = 2, and adult survival rate b = 0.1. Let the
coefficients of predator-prey interaction be @« = —0.001 and 8 = 0.001. To find the
optimal harvesting strategy, assume: the initial population size of the prey and predator
are at their equilibrium population size, an economic discounting rate § = 10%, the
cost associated with harvesting is negligible and there is no difference between prey
and predator prices.

Solving equations (3.1) and (3.2), the equilibrium population size for the prey and
predator are found, that is, N = 1057 and P = 43. Furthermore, solving equations
(3.24) and (3.25) gives optimal escapements for the prey and predator Sj = 500 and
Sp = 10, respectively, with equilibrium optimal harvests Hy, = 295 and Hp = 11.
These optimal escapements and their equilibrium optimal harvests can be observed in
Figure 3.1. The optimal escapement for the predator is slightly different to the result
from iterating Bellman’s equation (3.10), that is, Sy = 500 and Sp = 11, as shown in
Table 3.1. This difference is due to the rounding error involved in solving the dynamic
programming problem and using a discrete state space.

The optimal escapements for the prey and predator are the same as the optimal
escapements if we assumed the species were independent, that is, no predator-prey
interaction between the species. In this case, initial population sizes Ny = 1100 and
Py = 22, optimal equilibrium escapements S3, = 500 and Sp = 10, and equilibrium
optimal harvests HY, = 300 and Hp = 6 are obtained. This is because we assume the
predator is very efficient, that is, |o| = . In the next chapter, it will be shown that
this rule is also true for a spatially-structured predator-prey population.

In this example the prey’s optimal harvest from the predator-prey population
escapements is lower than optimal harvest from the single-species population model.
On the other hand the predator’s optimal harvest from the predator-prey population
escapements is higher than the optimal harvest from the single-species population
model. This is not surprising because in predator-prey populations the fishers are
competing with the predator, so that the numbers of the prey decreases while the
numbers of the predators may increase. In this case, it is best to harvest the predator

below its MEY.
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Figure 3.1: Contour plot of the profit function PV (Figure 3.1.a) and the
optimal equilibrium harvests (Figure 3.1.b) as functions of prey and predator
escapement Sy and Sp. The dashes in Figure 3.1.b are the contour plots of
the prey equilibrium harvests, Hy, and the dots are the contour plots of the
predator equilibrium harvests, Hp. The optimal escapements are found to be
S = 500 and Sp = 10 with equilibrium harvests H}, = 295 and Hp = 11.

3.4.2 Variation of parameters

Impact on harvesting strategy of the variation in the prey vulnerability
parameters

In this section I discuss the effect of prey vulnerability on optimal escapements.
Rewrite the optimal escapements in equations (3.24) and (3.25) as Sy = 2 and Sp = £,
where D = % +CB, E = % + CA. Using this notation, the first derivative of the
optimal escapements with respect to « are

8Sy; D'A—A'D

o Az (3.43)
and 98y  E'A— A'E
a; =— (3.44)
In our example these reduce to
osy = -1 0.1+ C)C
Ber _02_ﬁ+2( R (3.45)
- 95; 1 0.002 + C)C
P _ < +2( ; +1 ) (3.46)
b C' =g (C°— gg)?

Using these derivatives I investigate the effect of prey vulnerability on the optimal
escapements. For simplicity, let us fix § = 0.001. With increment Aa = 0.0005 we
expect the change in escapement ASy = —10718(0.0005) = —5.36 at @ = —0.004. The
exact value of the prey escapement Sy at @ = —0.004 is 508, and at « = —0.0035 is 503.
With the same increment we expect the change in escapement ASy = 5000(0.0005) =
2.5 at a = —0.001. The exact value of the prey escapement Sy at a = —0.001 is 500,
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[t [N [P [Sk [St[Hx|H:]
0] 1057 |43 | 500 | 11 | 557 | 32
11795 23 |1 500 | 11 | 295 | 12
21795 231500 | 11 | 295 | 12
3795 231500 | 11 | 295 | 12
4 | 795 23 | 500 | 11 | 295 | 12
51 795 2310 0 795 | 23

Table 3.1: Optimal escapements for predator-prey population derived by iter-
ating Bellman’s equation (3.10). Optimal escapement for the prey and pred-
ator are Sy and Sy, respectively, while HY, and Hy denote their optimal

harvests for each species. The #** row indicates the value for 5 — ¢ periods to
go.
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Figure 3.2: Contour plots of optimal escapements S} (Figure 3.2.a) and Sp
(Figure 3.2.b) as the functions of prey vulnerability « and predator biological
conversion parameter 3.

and at o = —0.0005 is 503. This result is illustrated in Figure 3.2.a. A similar result is
also obtained for the predator optimal escapement S%. With increment A« = 0.0005
we expect the change in escapement ASp = 5000(0.0005) = 2.5 at oo = —0.001. The
exact value of Sp = 10 is at & = —0.001 and Sp = 12.52 is at a = —0.0005. With
the same increment we expect the change in escapement ASy = 5400(0.0005) = 2.7
at o = —0.004 (see Figure 3.2.b). Hence, the difference in escapements from the same
increment is lower for a higher predator efficiency, that is, C' = a+§ = 0. This suggests
that a decision to adopt optimal escapements for a predator-prey population should
not be affected by the uncertainty about the exact value of the prey vulnerability if
the predator efficiency is high.

Now let us look at the effect of prey vulnerability a and predator efficiency C' on
the equilibrium optimal harvests Hjf; and Hp. Recall that equilibrium optimal harvests
are given by equations

HYy = (aSyy + rF(S%) + aS5Sh) — 8% (3.47)
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Figure 3.3: Contour plot of equilibrium optimal harvests Hy (Figure 3.3.a)
and H} (Figure 3.3.b) as the functions of prey vulnerability o and predator
biological conversion parameter 3.

and similarly

Hp = (bSp + sG(Sp) + BSNSp) — Sp. (3.48)
Using a similar method to the previous analysis on the effects of variations of prey
vulnerability « and predator parameter 3 on optimal escapements, the following result
is obtained. At a fixed value of § = 0.001, the increment of 0.0005 in « at the
point & = —0.002 decreases the optimal harvest by as much as two individuals from
H) = 295 to Hy, = 293. The same increment decreases the optimal harvest by as
much as six individuals at the point @ = —0.004 from Hy = 311 to H} = 305. This
can be observed graphically in Figure 3.3.a. As for the optimal escapements, the effect
of the variation of prey vulnerability on the equilibrium optimal harvests is less intense

when C' = a + f close to zero (Figure 3.3).

Impact on harvesting strategies of the variation in the predator efficiency
and relative market price parameters

In this section I discuss the effects of the predator efficiency, £/|a|, and the
relative predator market value, m, on the optimal escapements and harvests Sy, Sp,
HY;, and Hp. If the ratio of the predator market price to the prey market price is
pp/pn = m, then, using the same procedure to the previous analysis in which there is
no differences between the two market prices, the optimal escapements are

A2ms CB
Sti= % (3.49)
and —
Sy = —%, (3.50)

where A = C?—m22 4 0, C = a+mfl, Aand B as in (3.24) and (3.25), respectively.
Partial derivatives of these escapements with respect to the relative predator market
price are

ISy  KL[2sAK(a® —m?(?) + mafBKL(2c + mf3)]

om A?
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Figure 3.4: Optimal escapements Sj and S} (Figure 3.4.a and Figure 3.4.b)
and equilibrium harvests Hy and H} (Figure 3.4.c and Figure 3.4.d) as the
functions of predator conversion coefficient 8 and the relative predator market
price m, for a fixed prey vulnerability & = —0.001. Figure 3.4.c reveals that if
the predator efficiency is very high and the relative predator market price is
also very high, it is optimal to feed the predator population, indicated by the
negative harvest for the prey population.

 KL[mpBKL (Y — )]

- (3.51)
and
@,— _ —KL[BAKL(a? + mB(2a + mp))]
am A?
N KL[2rBL(o? —Ar2n2,32) + 4Aasr] ' (3.52)

If the predator has a high biological efficiency such that this efficiency is greater than
twice the inverse of the relative predator market price, that is, 5/|a| > %, then both
partial derivatives are positive. Hence in this case, the increase in the relative pred-
ator market price increases both the prey and the predator escapement. The prey
escapement increases because it is important as food for the predator, which is an efhi-
cient biomass converter and has a better economic value than the prey. The predator
escapement increases because of the increasing escapement of the prey.

Note that a large difference in the relative prices of the species, where the relative
price for the predator higher than the relative price for the prey, drives the less valuable
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Prey optimal escapement Prey equilibrium harvest

Figure 3.5: Figure 3.5.a is the graph of prey escapement, S}, as a function
of predator’s relative price, m, and the discounting rate, §. Figure 3.5.b is
the graph of its equilibrium harvest, Hy. Consistent to harvesting a single-
species population, high discounting rate is likely causing the manager of the
resource to deplete the resource. This is indicated by the declining of optimal
escapement for prey population (Figure 3.5.a) as the discounting increases.
Seeding strategy into prey population which occurs for discounting rate § =
10% (m = 10 and B = 0.001 in Figure 3.4) is not optimal for larger discounting
rates (Figure 3.5.b).

prey species to a high level of escapement. [For comparison, Agnew (1982) shows
that a large difference in the relative prices of each species in a competitive system
decreases the optimal escapement level of the less valuable species. This is because,
in a competitive system, the less valuable species does not contribute anything to
the growth of the more valuable species positively. While in a predator-prey system,
the less valuable species (the prey) is converted into the more valuable species (the
predator) with respect to a certain biological efficiency].

Hence, if predators are more valuable than prey species, it can be concluded that
it is better to leave the prey species to be consumed by its predator than to harvest
the prey which only has a low market price compared to the predator. The consumed
prey are converted into a predator, and in turn we harvest the predator which is m
times more valuable than the prey. However, this strategy only works when predator
efficiency is high (see Figure 3.4.a). Therefore, if the predator efficiency is relatively
high and the harvest from the predator is profitable (indicated by large m) then the
harvest from the prey could be very low, due to the importance of the prey as food
for the predator. In a real fishery, capelin off eastern Canada is only harvested at
the rate of no more than ten per cent of its spawning biomass. This is because the
capelin is very important as food for other commercial fish, like cod (Caddy and Mahon,
1995). Furthermore, Shelton et al. (1993) showed that production of the cod could be
negatively affected by the excessive harvesting of the capelin.

Figure 3.4.c shows that if m and B are even larger, for a fixed «, our equations
show that the optimal prey harvest is negative. In this case a seeding strategy for
the prey population is an optimal strategy. This strategy can also be regarded as a
feeding strategy, where we put prey into the system to feed the predator. This strategy
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[t]N [P]Sy [P [Hy][Hp]
0| 1057 |43 | 476 |43 | 580 | O
753 18 | 528 | 18 | 225
820 31| 463 | 31 | 357
744 311|463 | 31 | 281
744 311463 | 31 | 281
744 31 (0 31 | 744

QY | O DN =
(e ] Nen] en) fan] Now]

Table 3.2: Optimal escapements and their harvests derived by iterating Bell-
man’s equation (3.10) with s = 2, if we harvest only the prey species. All
notations are identical to those in Table 3.1.

is economically optimal because the economic efficiency of the predator, mgB/|«|, is
relatively large compared to the discounting rate, . However, when the discounting
rate is high, investment through increasing the predator population by feeding them
prey, is not likely to be profitable. As a result, a negative harvest or seeding strategy is
no longer optimal for a high discounting rate (see Figure 3.5 for m = 10 and § = 100%;
see also Appendix 3C).

3.4.3 Harvesting only the prey species

Suppose that we are only harvesting the prey population. The optimal escapement from
iterating Bellman’s equation is shown in Table 3.2. Different optimal escapements are
found for different periods to go and they rapidly approach an equilibrium optimal
escapement, that is, Sy = 463 with a predator equilibrium population size P* =
31. This numerically calculated equilibrium optimal escapement is different from the
analytical result found by solving equations (3.35) and (3.36). The analytical method
gives a result of Sy = 480 and P* = 32. Hence the numerical procedure gives an error
of about 3.5% of the analytical result. The differences are due to the rounding error
using integer numbers in dynamic programming while in the analytical method I use
real numbers as the populations sizes. The first year escapement from the numerical
result (Sx = 476) is also lower than the first year escapement from the graphical
illustration of the analytical method (Figure 3.6).

Inequality (3.42) suggests that, for a fixed prey intrinsic growth rate, if the result-
ing predator equilibrium is less than the predator carrying capacity, then the increase
in the ratio of predator intrinsic growth to prey intrinsic growth decreases the upper
bound of the optimal escapements Sy. Iteration of Bellman’s equation for the previous
example (K = 2000, |a| = f = 0.001 and s = 2) with the changing of the predator
intrinsic growth s to s = 3 gives an equilibrium prey optimal escapement of S} = 389
(Table 3.3). The equilibrium prey optimal escapement for s = 2 is S5, = 463 (Table
3.2) which is higher than the equilibrium optimal escapement for s = 3. Hence, in
this example, if the resulting predator equilibrium is less than the predator carrying
capacity, then the increase of the ratio of predator intrinsic growth to prey intrinsic
growth not only decreases the upper bound of the optimal escapements S%;, but also
decreases the resulting optimal escapements Sy, itself, for a fixed prey intrinsic growth
(see inequality (3.42)).
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Figure 3.6: Profit function as a function of prey escapement with time period
T = 1. The optimal escapement lies between 476-480.

Timetogo || 30 [29 [28 |...|5 4 3 2 1 0
Sk 481 | 530 | 468 | ... | 403 | 389 [ 389 | 389 | 389 | 0
P 42 |18 |41 |[...[13 |33 [33 |33 |33 |33

Table 3.3: Optimal escapements for the prey population, Sj, and their equi-
librium predator population size, P, if we harvest only the prey species.These
escapements are derived by iterating Bellman’s equation (3.10) with s = 3.

3.5 Concluding remarks

In this chapter I have modelled a deterministic, discrete-time predator-prey system
using coupled difference equations as a generalisation of Clark’s (1976a) discrete-time
single-species population model with overlapping generations. I use dynamic program-
ming and the method of Lagrange multipliers to find optimal harvesting strategies for
the system considering two different types of exploitation: harvesting both species and
harvesting only the prey species.

In some circumstances, for example when costs are negligible, a multi-species
fishery exploiting a predator-prey population should concentrate the exploitation on
the predator species if the predator is an efficient biomass converter and more valuable
in the market than the prey. This is intuitively logical and consistent with the results
of May et al. (1979), Hannesson (1983), Ragozin and Brown (1985), and Degee and
Grasman (1998). They pointed out that if the prey has a very low value then it is better
to leave the prey as food for the predator rather than as exploited stock. In this case, if
we assume that the cost (or effort) of harvesting is the same for the prey and predator
then harvesting the predator gives a higher net return per unit effort than harvesting
the prey. This is known for other types of multi-species fisheries, for example Gatto et
al. (1982) suggested that, in a multi-species fishery with non-interacting species, stock
with lower net return per unit effort should be less exploited than the other stock.
Caddy (1975), Hilborn and Ledbetter (1979) and Hilborn and Kennedy (1992) have

also discussed multi-species fisheries with spatially different stocks and their results
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conform to the results presented here.

Most of the conclusions in this chapter are not new. The main purpose is to
present a baseline result with which I can compare the spatially-structured optimal
harvesting strategies. One conclusion that has not been discussed in other work is the
interpretation of a negative harvest as a feeding strategy. A numerical example for
harvesting both species shows that if the predator has an extremely high biological
efficiency and high market value, increasing the prey species through seeding may be
optimal. This is indicated by a negative harvest Hy = Xy — Sy where Xy < Sy. In
this case increasing the prey species can be regarded as feeding the predator. In many
situations a seeding or feeding strategy is logistically and economically unlikely, for
example in a trans-boundary fishery in which the exploited fish stock is not governed
by a single authority or country. In this case, the benefit of seeding or feeding strategy
implemented by one authority can accrue to another authority. Another limitation of
this seeding or feeding strategy is that I assume that seeding has a cost (negative harvest
profit) equal to the price of prey. This might not be true and the seeding cost is likely
to be higher. In this case an optimal harvesting strategy is to apply a zero harvest until
the prey abundance is higher than the prey optimal escapement. Another alternative
for dealing with negative harvests is proposed by Tuck and Possingham (1994) and
discussed in Chapter 5 for a more complex predator-prey population.

If we harvest the prey population, it can be concluded that an optimal harvesting
strategy is less conservative than either an optimal harvesting strategy derived from
single-species theory or a harvesting strategy derived by considering maximum eco-
nomic yield as the objective of harvesting management [see inequality (3.40)]. This is
because we compete with the predator, while we are also maximising the net revenue.
The right hand side of inequality (3.40) is an upper bound on the prey optimal escape-
ment. The inequality suggests that more predators implies a lower upper bound for the
prey optimal escapement. A numerical example shows that it may also cause a lower
prey optimal escapement, which can be observed in many fisheries. For example, Har-
wood (1987) and Harwood and Croxall (1988) have observed the declining of inshore
commercial fisheries with the increasing of grey seal, Halichoerus grypus, populations
in the British Isles.

The right hand side of inequality (3.40) can be considered an escapement associ-
ated with maximum economic yield if § = 0. It suggests that, assuming the number of
predators is in a steady state, this escapement decreases with increasing prey vulnerab-
ility. In general the number of predators would change if the number of prey changes.
However, in the model in this chapter, I assume the predator has another main food,
and if the biological conversion rate 3 is relatively small, then the number of predators
would not change substantially.

In the next chapter I add spatial structure into the model in this chapter. 1
derive optimal harvesting strategies and compare them to harvesting strategies if we
incorrectly ignore the spatial structure of the population.

3.6 Appendices

Appendix 3A: “Bellman’s principle of optimality”

Dynamic programming is a technique to solve an optimisation problem. It was de-
veloped by Richard Bellman four decades ago. The core of dynamic programming is
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the following “principle of optimality”.

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision” (Bellman,

1957).

This principle is obvious to Bellman (1957) who stated that “a proof by contradiction
is immediate”. Other authors, e.g. Sniedovich (1992) proved the principle in a more
precise mathematical formulation.

In general, a dynamic programming problem involves a multi-stage decision pro-
cess or an n-dimensional optimisation problem. Among many advantages of the dy-
namic programming approach in solving this n-dimensional optimisation problem is
that using this approach we can obtain n one-dimensional optimisation problems and
produces the global maxima or minima as the solution of the problem. Cooper and
Cooper (1981) pointed out that a dynamic programming problem as a multi-stage
decision process has the following elements:

Stage |, i.e., a variable reference of when the process is taking place. For example, in a
discrete multi-stage decision processes, stages are usually associated or represen-
ted by the numbersin k = {1,2,3, ......} (see Figure 3.7). In resource management
the stage is usually time, and often the time interval is a year.

State , i.c., a variable that describes the condition of the system at a certain stage

(figure 3.7).

Decision , i.e., an action available when the system is in a certain stage and certain
state (see Figure 3.7). An ordered set of decisions is usually referred to as a
policy.

Transformation , i.e., an action that makes a process move from one stage to an-
other stage after choosing a certain decision. This transformation relates the
state in one stage to the state occurring in the previous stage. For example,
f(Xk, Se(Xk), k) in Figure 3.7 determines the movement of the process from
stage k and state X to the next stage by choosing a decision Sk(Xk).

Furthermore, because a dynamic programming problem is an optimisation problem,
then there is an objective function that generates the overall return from the imple-
mentation of any policy.

Let us consider the following dynamic programming example, taken from Conrad

and Clark (1987).

T
max Y II(Xk, Sk, k) (3.53)
{Sk} k=0
subject to
Xk+1 :f(Xk)Sk>k)7 k:07177T—1 (354)
S.eS,k=0,1,---,T (3.55)

with Xo = a is given. If X is the state variable at a stage when only n periods remains,
define J,(X) as the maximum total value up to that stage, hence

T
Jn(X) = Imax Z H(Xk,Sk,k) (3.56)
k=T—(n—1)
with Xr_(n—1) = X (3.57)
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Decision Sy (X )

— State X, = | Xy= f(Xk,Sk(Xk),k) —_—
Transformation

Stage k Stage k+1

Figure 3.7: The dynamics of the decision process at the stage k (modified
from Sniedovich (1992)).

subject to (3.54) and (3.55) but for & > T' = (n — 1).

For n = 1 and n = 2 the problem above reduces to

Ji(X) = Lrgn%)égﬂ(XT, St,T) (3.58)
with Xp = X, (3.59)
T
Jo(X) = max_ Y, I(Xg, Skk) (3.60)
Sr—1€5  Zr
with Xr_; = X, (3.61)

respectively. By substituting (3.58) into (3.60), the maximum total value in (3.60) can
be written as

Jo(X) = Fnan. M(X7-1,S7-1,T = 1)
b I(F(Xms, S0, T = 1) (362
with X7_; = X. (3.63)

If we use a decision S7_; at the stage T'— 1, the first term on the right hand side
of (3.62) is the immediate return resulting from the implementation of the decision.
Now, having made a decision at the stage T' — 1, we still have one period to go, in
which the state now is X7 = f(Xr-1,57-1,T — 1). Let us rewrite Bellman’s principle
of optimality in the following way.

An optimal policy (in this case {S7_1, S7}) has the property that whatever
the initial state (in this case Xr_,) and initial decision (in this case Sr-1)
are, the remaining decisions (in this case S7) must constitute an optimal
policy for the process starting in the state Xo = f(X7-1,87-1,T — 1) as
a result of the adoption of the decision S7_; (see also Cooper and Cooper

(1981)).

Hence if we want the policy S7_; and St to be optimal for the last two period process,
then the final decision St for the terminal period should also be chosen optimally. The
iteration of equation (3.62) can be used to determined the entire policy if the final
decision is known. The general “n periods to go” decision is given by

Ja(X) = max [H(XT_(H_l), Sr—(n-1), T — (n — 1))

ST—(n—l) €S
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4 o1 (f(X7—(n=1), ST=(n=1), T — (n — 1)))] (3.64)
with X7_(n_1) = X, (3.65)
which is known as “Bellman’s equation”. Stockey and Lucas (1989) defined dynamic

programming as a study of dynamic optimisation problems through the analysis of
Bellman’s equation.

Appendix 3B: The second derivative test for a maximum net

present value

Escapements Sy, and Sp, obtained by solving equations (3.19) and (3.20) give a max-

imum net present value if they satisfy the second derivative test: (—8%% <0, (;TQ:J)—z <0
0 Q

82Jy _0%J 82, \2 i
and CETRE i (3 7o alspo) > 0. Recalling that

Mo, B) = [ (o = ewl©)de + [ (or = col€)de

o[ ow - ent@e + [ e - ertiie] 60

Neo

0J
s = (o —en(Sw)
+pl(pn — en(N))(a+ F'(Sn,) + aSp,) + (pp — cp(F1))(BSR)]
(3.67)
0J
85«; == —(pP - CP(SPO))
+p[(pp — cp(P))(b+ G'(Sp,) + BSN,) + (pv — en(N1))(Sno )],
(3.68)
then the conditions in the second derivative test equivalent to
82‘]1 / ! ! 2
Goy = NS Fo[e(N)(at F(Sw) + aSa)
+F"(Sn, ) (PN — en(N1)) — C’p(Pl)(ﬂSPo)Q] <0, (3.69)
82‘]1 ' ’ ' 2
G5y = Sn)t e [=ch(P)(b+ C(Sh) + 5w
+G"(Sr,)(pp — cp(P)) — ciy(N1)(exSw,)*| < O (3.70)
and
82J1 82J1 82J1 2
@5 @5n)y  \BSmasm) " (3.11)
where
9*Jq ] ]
35n a5, P [~ (N1)(a + F'(Sn,) + aSk,)(aSn,) + alpy — en(N1))

—cp(P)(b+ G'(Sr,) + BSN,)(BSR,) + B(pp —cp(P1))] . (3.72)
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Appendix 3C: “Fundamental principle of renewable resource
economics” for a predator-prey population.
In single-species harvesting theory a higher discounting rate usually causes a lower

escapement (Clark, 1985a). I show here that it is also true in selective harvesting of a
predator-prey population.

Let the economic efficiency of the predator be | > 1 and also
mp . 2r 2s
< 1, 1y, .
o <™ { ok Tt } -8B

where m denotes the relative value of predator to the prey. If the costs of harvesting
are negligible then optimal escapements for prey and the predator are given by

, A4+ mCB
S = —L——", (3.74)
BZr 4 CA
Sn = K—;—, (3.75)

where A = C? — m%Z2 £ 0 and C = a + mf. Partial derivatives of the prey and
predator escapements w1th respect to the discounting rate are

0Sy 24 Cm

_ _L
Y (3.76)
8Sp Iy (
= el (3.77)

Furthermore, from (3.73) we can obtain C < % and C < %. Since the economic

efficiency % > 1 is equivalent to C' > 0, this proves A < 0. Finally, we conclude from
(3.76) and (3.77) that increasing the discounting rate 6 decreases optimal escapements
for both the prey and predator. This is consistent with harvesting a single-species
population, that is, a high discounting rate causes the manager of the resource to
avoid high investment by leaving a lower escapement of the resource (Sieveking and
Semmler (1997) showed that this principle may fail for non- selective harvesting of a
predator-prey population).

Appendix 3D: “Prey equilibrium optimal escapement”

An equilibrium prey optimal escapement, when we only harvest the prey species, can
be written as a function of predator’s equilibrium population size. To show this let
Sk = Sk*(Py) denotes the optimal escapement for k periods to go. First let us consider
T = 2 and recall that

Ji(No, o) = | max [In(No, Sny) + pLN (N1, Sheo)]
= Tn(No, SN) + plln(N1, Snes), (3.78)
where
Ni(Sx, Po) = aSy + F(SN) + aSN Po.
Let

Nk
V) = [ (p— en(©)d = TIw(Ny, Syoo), (3.79)
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then

SN

Mu(Mo,Sw) = [ (p—en(@Nde + [ (p— ewle)de
T Sng SNeoo
= V(No) — V(Sm,)- (3.80)
Using this notation J;(No, Py) for i = 1,2 can be written as
Ji(No, Po) = V(No) — V(SN) + pV(D1) (3.81)

and

JQ(NOaPO) = max [HN(NOaSNo)_I_le(NIaPl)]

0< SNy <No
= oax, [VINo) = V(Sm)
+p[V(N1) = V(SK) + pV(N2)]); (3.82)
where
1. Ni(Sny, Po) = aSn, + F(Sn,) + SN, Fo,
2. Ny(SK, P1) = aSy + F(SN) + oSy P,
3. Pi(SN,, Po) = bPo + G(Fo) 4 BSN, Fo.

o . . 3Jy(No, P
A necessary condition for an optimum is 85 (NouPo) 0, hence

0 = —(p—en(Swo) + b — NN S0 + o~ en(N) G2 -
— (p— en(Sn)) + plp — en(Ni)(a + F(Sw,) + aB)
+02(p — en(N2)aSKBPs. (3.89)

The optimal escapement for T' = 2, that is, S¥’, can be obtained from equation (3.83).
Next, let us consider the next time horizon, 7' = 3. Substitute the optimal
escapement S% into J in equation (3.82) to produce J3 as follows

Jo(No, Po) = og%??m,[V(Aro) — V(5%)
+plV(N) = V(SK) + pV(M2)]], (3.84)
J3(N0, Po) = OSE'},?)S(NO [HN(N(), SNO) + sz(Nl, Pl)]

= o ax, [V(No) = V(Swo) + plV(N:) = V(S¥)
+o[V(N;) = V(SN) + pV (N3], (3.85)
where
1. Ni(Sno, Po) = aSn, + F(Sny) + aSn, Po,
2. Ny(S%r, P,) = aSy + F(SX) + aS¥ P,

3. N3(S]1\;‘, Pz) = aS}\}" + F(S}l\;) + O_’S}\;‘PQ,
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4. Pl(SNo,PO) =bFy + G(PO) + IBSNOPO’

A necessary condition for an optimum is 8J38§V}3’P 0/ = (0, hence
0

0 = —(p—cn(Sm)) +pl(p — en(N1))(a + F'(Sn,) + aFo)]
+0*[(p — en(N2)) oSy BFy]
+p°[(p — en(No))aSy (b + G'(Py) + BSK)B o). (3.86)
The optimal escapement for T = 3, that is, S}, can be found from equation (3.86).

The next further step let us consider T' = 4 by substituting the optimal escape-
ment S3¥ into J3 in equation (3.85) to produce Jy as follows

To(Noy Po) = max [V(No) = V(SF)
plV (M) = V(SY)
+o[V(N2) = V(W) + pV (N3)lll, (3.87)
Js(No, Po) = O<§%?§NO ~(No, Swny) + pJa(Ny, P1)
o025, (Mo, Sne) + plV(N1) = V(SN)
plV (N2) = V(SK)
plV(Ns) = V(SN + plv(NIT, (3.88)
where
1. Ny(Sn,, Po) = aSn, + F(Sn,) + aSn, Fo,
2. No(S3, Py) = aS3r + F(S¥) + aS¥ P,
3. N3(S%, P) = aS¥ + F(S¥) + oS} Py,
4. Ny(SY, Ps) = aSK + F(S¥) + Sk Ps,
5. P(Sn,, Po) = bPy + G(Po) + BSn, Po,

(
6. P2(S?\;<,P]_)—_— Pl—*-G(Pl)-’rﬁS Pl,
5(SN

I . . aJ P
A necessary condition for an optimum 1s J‘asi]g’—‘ll = 0, hence
0

0 = —(p—cn(Sw))
+pl(p — en(N1))(a + F'(Sn,) + oFo)]
+0°[(p — en(N2))aSF B R
+0°[(p — en(Ns))aSF (b + G'(Py) + BSN)BFo]
+p[(p — en(Na))aSK (b + G'(P2) + BSK) (b + G'(P1) + BSK)BPo).
(3.89)
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It can be proved by induction that for time horizon 7' = n the necessary condition can
be written as

0 = —(p—en(Swm)) +ol(p— en(N1))(a + F'(Sno) + o))
+Zp p — en(Ny)) RS 170" kff b+ G'(P)+BST™).

(3.90)

It is difficult to interpret the optimal escapement in this case. To facilitate in-
terpretation, I proceed further to obtain the equilibrium optimal escapement, Sx- By
assigning Ny = Ngpa = N for & > 0 and P, = Py = P for k 2 0, and the time
horizon is infinity, the following equations are obtained:

0 = —(p—en(Sy) +pl(p — en(N)(a + F'(Sk) + aP)]

+§¥W”@—WMWWR%®+G@HW$W4

— —(p— en(S})) + pl(p — en(N))(a + F'(Sk) + aP)]
+ﬁ@—mmeR%§?w+Gun+mmw (3.9)

To simplify the last equation I assume

lp(b+ G'(P) + BSK) < 1, (3.92)
hence,
0 = —(p—en(Sy)) +pllp — en(N))(a + F'(SK) + aP)]
af PSY

+0%(p — en(I)) (3.93)

—p(b+G'(P)+ BSK ]

Appendix 3D: “Derivation of prey equilibrium optimal escape-
ment using the method of Lagrange multipliers”

This appendix shows that, using the method of Lagrange multipliers, the implicit
equation of equilibrium optimal escapement (3.35) can be obtain without requiring the
fulfilment of the condition (3.34).

Assume that the time horizon in the maximisation is infinite, so that we need to
maximise net present value

PV =" p"lIn(Ni, Hy,) (3.94)
k=0
subject to equations (3.27) and (3.28), and 0 < Hy, < Ny, where
Ny
Mn(Ni, i) = [ (p = en(€))de. (3.95)
Nk_HNk

The Lagrangian for the maximisation is

£ = > {p"In(Nk, Hy,)
k=0

_)\lk[Nk-H it a(Nk — HNk) == F(Nk — HNk) bl Oé(Nk s HNk)Pk]
—A2k[Per1 — b(Py) — G(Pr) — B(Nk — Hn, ) P},
(3.96)
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with necessary conditions for the value function PV to be maximum are:

1. W 0,%—0f0rk>1 and
ac
2. 8HNk—Ofork>0

These conditions are equivalent to

o1l ,
0=p" 8NN Mk=1) + Ark(a + F'(Ng — Hpn,) + oPy) + AP, (3.97)
0= /\1ka(Nk — HNk) — )\g(k_l) + )\zk(b + G,(Pk) + ﬁ(Nk — HNk))) (3.98)
. 011 .
0= o — _ A(a+ F'(Ny — Hy,) + aPy) — AaxBPr. (3.99)
O0Hn,
Eliminating A, by substituting equation (3.99) into equation (3.97) produces
olly  Olly
Mgoy) = p° | = ; :
1(k=1) =P ((9Nk + 8HNk> (3.100)

Place back Ay; into the equation (3.99) to obtain

P BHy I
Aok = £ : .
2k P, (3.101)
Recall that Sy, = Nx—Hp, and let Fiy, = a+F'(Ni)+aPy and Gp, = b+G'(Pe)+B5y,.
Substitute Aig, Mgk, and Ag(x—1) into equation (3.98) to produce

Lk Olly _pk+1 (B_Hﬂ_}_ oIl > (a+ F’(Nk _ HNk) -|—Osz)

8HN aHN
0 = prtt ( + ) aS
o 8Nk+1 aHNk+l e
ot = o (S + ) (o P + @Pic)
B Py

Pk—Maa;l;[Nk prtl (%vf + _Man ) (a + F'(Sn,) + aFPr)
B Py

+ Gp,.

(3.102)

To reduce the complexity, I only consider equilibrium escapement Sy, o= SN, =
S%, and equilibrium harvest Hy, , = Hy, with equilibrium population size Ppi1 =
P, = P,k >0 and Ngy1 = Ni,k > 0. Multiply both sides of equation (3.102) by ﬁi"l
to produce

_ (ony | ol 1 oy 1 (8Ty  lly
e (BNk+8HM)aﬁ&“ % OHy, (aNk+anM)PWK
1 OHN 8HN 6HN
(e - (o + 5m) o) o

olly Ol )

1 Oll N Oll N 1 9lly
[r-on (G ) oo (o)
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8HN OHN *
p (aT + 8HNk) aBSKEP

B olly Olly 1 olly
1= #Grl vak * aHN) Five = (ZaHNk)]

p (aNk * BHNk) PSP
Olly  Olly 1 olly
L1 - oG] (L Fr, — [1 - bl
[1—p P]<6Nk +8HNk> v, — [1 — pGr,] (PaHNk>

 Olly (anN | Ol ) . (%v‘i + —szENk) aBS5 P
8HNk P aNk OHNk : 1— pka
—(p — en(S¥)) + pl(p — en(N))(a + F'(Sy) + aP)]
pS:
+ 2, N aIB N ]
Plo v |5 T 5]
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Chapter 4

Predator-prey metapopulations
with juvenile migration and
juvenile interaction

This chapter describes a deterministic, discrete-time model for a spatially-structured
predator-prey population. The model has similar structure and assumptions to the
model described in Tuck and Possingham (1994), and generalises the model in Chapter 3
by including spatial structure. I use dynamic programming to find the optimal har-
vesting strategy for the populations. The model best describes a marine population
with sessile adults and pelagic larvae in which recruitment occurs seasonally, such as
with many species of mollusc. However, the model would also be useful for any fish
species that have relatively sedentary adults - like reef fish. It assumes predation takes
place in the early life stages of the prey. This is a common assumption in most of
the literature, because in nature younger and inexperienced animals are likely to be
more vulnerable to predation (Curio, 1976). For example, at least a quarter of juvenile
Atlantic salmon are eaten by brook trout (Symons, 1974) and most prey consumed by
silver hake are in post larval and immature life stages (Sessiwine, 1984).

In this chapter I will show that some of the rules of harvesting a single-species
metapopulation generalise to predator-prey metapopulations. In single-species harvest-
ing theory (Tuck and Possingham (1994)), a relative source subpopulation should be
harvested more conservatively than a relative sink subpopulation (TP 1 in Chapter 2).
It can be shown that if predator efficiency is relatively high then we still should harvest
the relative prey subpopulation more conservatively than the relative sink subpopu-
lation, with an addition that we should also harvest the predator living in the same
patch with the relative source subpopulation more heavily than the predator living in
the other patch. This result only applies when harvesting targets both species select-
ively. When harvesting only targets the prey species, in some circumstances, the rule
is still true for one period optimal escapements, that is, optimal escapements with only
one unit of time horizon.

I will also show that some rules for harvesting a predator-prey population when
there is no spatial structure generalise to the case where the population is spatially-
structured. For example, May et al. (1979) showed that, in harvesting a spatially
homogeneous predator-prey population, if the predator biological conversion is very
small and the predator intrinsic growth rate is also small compared to the prey intrinsic
growth, then it may be optimal to harvest the predator to extinction. It can be shown
that this rule is also true in harvesting a predator-prey metapopulation, especially for
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Figure 4.1: Predator-prey metapopulation diagram for a two-patch model.
The numbers of predator and prey subpopulation 7 are respectively indicated
by P: and Nj;, their juvenile migration rate are ¢;; and p;; respectively.

a relative sink/importer predator subpopulation or a predator living in the same patch
with a relative source/exporter prey subpopulation. Other questions, such as how to
harvest a relatively more vulnerable prey population and a relatively more efficient
predator population, are also investigated in this chapter.

4.1 The model

Assume that there is a predator-prey population in each of two different patches,
namely patch one and patch two. In the ocean, population patches may exist from
scales of metres to thousands of kilometres and often occur in response to physical
and biological processes, like advection, temperature and food quality (Haury et al.,
1978; Mackas et al., 1985; Davies et al., 1991; Maravelias et al., 1996; Letcher and Rice,
1997). Let the movement of individuals between the local populations be caused by the
dispersal of the juveniles. Adults are assumed to be sedentary, and they do not migrate
from one patch to another patch. If the population size of the prey and predator on
patch 7 at the beginning of period k are denoted by N;. and Py respectively, then the
growth of the prey and predator is given by the equations

Ni(kt1) = a1 Nk + p11 Fi (N1g, Pik) + pa1 Fo( Nag, Pag), (4.1)
Na(kt1) = aalNog + P12 F1 (Nig, Pik) + p22Fao(Nag, Pax), (4.2)
Py(ky1) = b1 Py + q11G1(N1k, Pix) + q21G2(Nak, Par), (4.3)
Pyki1y = by Poy, + q12G1 (N1, Pix) + q20G2(Nak, Pog), (4.4)

where a; and b; denote the survival rate of adult prey and adult predator in patch . Let
the proportion of prey and predator juveniles from patch 1 that successfully migrate to
patch j be p;; and ¢;; respectively. The functions Fi(Nix) and G; (Pi) are the recruit
production functions of the prey and the predator on patch ¢ in time period k. I will
assume that the recruit production functions are logistic plus an interaction term for
the remainder of this chapter, that is,

Fi(Nik, Pig) = riNy, ( .

ik
I{i ) + aiNikPik (45)
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and P
Gi(Nig, Pix) = s: Pix (1 = Ijk

> + BiNik Pik, (4.6)

where r; (s;) denotes the intrinsic growth of the prey (predator), and K; (L;) denotes the
prey (predator) carrying capacity in the absence of the other species. In this case a; < 0
and B; > 0 ensures that the system is a predator-prey interaction. It is important to
note that predation is affecting recruitment for both prey and predator. The functions
in (4.5) and (4.6) are consistent with predators eating juveniles. Furthermore, the
function G;(Nik, Pix) implies that the predator has another food resource.

To explore harvesting, we need to introduce exploitation into the system. I assume
that the only possible exploitation is through a selective harvesting policy, for example
using a particular fishing method (e.g. net type size) we can harvest a pelagic predator
and leave a benthic prey unharvested, and vice-versa. If the amount of harvest taken
from the prey and predator stocks in patch ¢ at the beginning of period k are Hy,,
and Hp, respectively, let Sn, = N — Hy,, and Sp,, = Py — Hp, be prey and
predator escapements on patch ¢ at the end of that period. These escapements are
the only contributors to the growth of the population after exploitation. Hence, if
the escapements are substituted into equations (4.1) - (4.4), then the model for an
exploited two-patch predator-prey metapopulation is

Nigery = 18wy, + puFi(Sw, Spy) + p2r Fa(Sw;,s Spy)
= fl(Sle’SNzk’SP1k7SP2k)’ (4'7)

Noey1y = a25n,, + p12F1 (S, Sp.) + P22 Fa(Sny Spy)
= f2(SN1k7SN2k7SP1k7SP2k)? (4'8)

Pl(k+1) = biSp, + q11G1(SNy.» SPlk) + ¢21G2(SN;s» SPuk)
- gl(SNw)SNzkaSPw’Ssz)) (4'9)

Pykt1) = b2Spy + @12G1(Sny,, Spy) + q22G2(SNy» SPy1 )
= g2(Sle7SN2k’SP1k?SP2k)' (4'10)

Equations (4.7) - (4.10) together with equations (4.5) and (4.6) represent a model
of a spatially-structured predator-prey population with recruitment controlled by the
predation process. In many cases, the predator-prey interaction occurs between adults
and hence predation affects prey adult survival (Shepherd and Breen, 1992; McQuaid,
1994). This adult-interaction predator-prey metapopulation will be discussed in the
next chapter.

To find an optimal economic strategy, we need to make an assumption about
the ownership of the fishery and we need to define an objective. I assume there is a
sole-owner of the fishery and the objective is to maximise present value. This objective
includes economic discounting which is critical for managing systems with a dynamic
state variable (Clark, 1976a). The effect of the discounting rate on optimal harvesting
strategies for a spatially-homogeneous predator-prey system is discussed by Silvert and
Smith (1977), Mesterton-Gibbons (1988), and more recently by Sieveking and Semmler
(1997).

With present value maximisation the objective of the sole-owner is to maximise
the net revenue resulting from harvesting each subpopulation of the prey and the
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predator up to time horizon t = T'. If IIx; represents the present value of net revenue
resulting from harvesting population X in patch i, where X € {N, P} and ¢ € {1,2},
and p is a discount factor, then the sole-owner should maximise

PV = XT: p* 22: > Ixi(Xik, Sxy) (4.11)

k=0 =1 Xe{N,P}

subject to the state variable equations (4.7) - (4.10), with non-negative escapement
less than or equal to the population size. I will assume a discounting factor of

B 1
P+

for the reminder of this chapter, where § denotes a periodic discount rate (e.g. § = 5%).

If there is no discount rate (§ = 0) then the net revenue (4.11) in any period
generated by escapements Sy, and Sp, has exactly the same value as the net revenue
from the same escapements in any other period. Hence, we only need to find optimal
escapements for one period (Agnew, 1982). The resulting revenue by applying this
zero discount rate is often known as maximum economic yield (MEY). If the discount
rate is extremely high (§ — 00) then the net revenue (4.11) approaches

(4.12)

2
PV, = Z > xi(Xios Sxi), (4.13)

i=1 Xe&{N,P}

which is the immediate net revenue without considering the future and is maximised
by optimal escapements S%, . I use the symbol “co” to indicate that the exploiter
only cares about profit this period, which is the same as applying a large discount rate
- it is equivalent to open-access exploitation.

The net revenue for a two-patch predator-prey population is

Xik
Oxi(Xik, Sxi) = /Sx. (px — cxi(&))d¢, (4.14)

where px is the price of the harvested stock X which is assumed to be constant, and
cx; 1s the unit cost of harvesting which is assumed to be a non-increasing function
of X; and may depend on which patch the stock is in. For example, in the case of
inshore-offshore harvesting, when we treat the inshore fishery as one patch and the
offshore fishery as the other patch, the cost to run the vessel to the patch depends on
how far the vessel goes from the coastline. See Appendix 4A for a detailed derivation
of the net revenue in equation (4.14).

4.2 Optimal escapements

To obtain the optimal harvesting strategies for a two-patch predator-prey population,
the escapement method described by Tuck and Possingham (1994) needs to be gener-
alised. First I will look at the optimal escapement when there is no discounting. Next
I will look at the optimal escapement when there is only one time period to go and
then the resulting escapement will be used to look at the optimal escapement for a
higher time horizon. Let

T

2
Jr(Nyo, Nao, Pro, on)=0<sm_a><(/\,} ( DY H,\'z‘(Xik,SX,»k)) (4.15)
SOXi0 >0 k=0

i=1 X e{N,P}
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be a value function which is the sum of the discounted net revenue resulting from
harvesting both populations in both patches up to period ¢ = T'. We need to maximise
this function by choosing appropriate optimal escapements S%,, for each patch and
each time period. Equation (4.15) can be used recursively to obtain the value function
at time T + 1, that 1s,

JT+1(N107N20,P10,P20) = max (PJT(N11,N21,P11,P21)

0<Sxi0<Xio

+§: > HXi(XiO,SX.-o))~ (4.16)

i=1 X€{N,P}

Hence, the long-term optimal escapements Sy, and Sy, can be found by iterating this
equation back from time T'.

First let us consider T' = 0. In this case, the sole-owner would maximise immedi-
ate net revenue taken from immediate harvests without considering the future value of
the harvested stock. This means no discounting factor is applied, and hence the best
strategy is the strategy that maximises PV, in (4.13), that is,

2
Nao, Pro, Pao) = Mxi(Xio, Sxc) | - 41
Jo(N1o, Nao, Pro, Pao) OSSI)%?)S(X.-O (;XG{ZI\%P} xi(Xio X.O)) (4.17)

Let us assume that the optimal escapements are Sx, ., then the maximum revenue is
given by

2
Jo(Nig, Nao, Pio, Pao) =Y > Txi(Xio, Sx.s.)- (4.18)
i=1 Xe{N,P}

Let us consider two cases, a constant and a non-constant unit cost of harvesting, and
obtain optimal escapements Sy,  for each case.

Case one, a constant unit cost of harvesting, cx:(X;) = cx;. In this case px —cx;
in (4.14) is constant. The integral in (4.14), and hence PV, in (4.13), is maximised
by 5%, satisfying

(4.19)

« ) Xi ifpx <exq
Xico ™ 0 ipr > cx;-

Therefore, if the unit cost of harvesting is independent of the stock density and lower
than the unit price of harvested stock then it is optimal to harvest the entire stock.
On the other hand, if the unit cost of harvesting is constant and greater than or equal
to unit price of harvested stock then we should not harvest the stock at all, which is
what we would expect.

Case two, a non-constant unit cost of harvesting. In this case PV, in (4.13) is

maximised by Sx. and Sy satisfyin Mxi(Xio,Sxio) = 0. Differentiate the
NIOO Ptoo g SX‘.(’:S*

dSxio .

integral in (4.14) with respect to S%, to obtain py —cN(S,*{,l.oo))ﬁz 0 and pp—cp(Sp,_ ) =
0. The last two equations state that optimal escapements occur if the marginal revenue
equals the marginal value of cost. This condition is known as “bionomic equilibrium”
(Gordon, 1954). If the recommended escapement is greater than the actual population
size, then the sole-owner should not harvest the stock at all. While if it is smaller
than the population size then the sole-owner should harvest as much as the difference
between these two quantities.

Next let us consider the next time horizon, T' = 1. First, rewrite equation (4.16)
for T' = 0 and obtain Jo(Ny1, Nai, P11, Ps1) in a similar way to Jo in equation (4.18) to
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give

J1(N10,N20,P10,P20) = maX <PJ0(N11,N21,P11,P21)

0<Sxi0<Xio

+22: > HXi(XiO,SX,-o))

i=1 Xe{N,P}

2
- IIxi( X1, Sx;
o5, (P2 3 TS,

2

+ Z Z ITxi(Xio, SX-‘o)) . (4-20)
i=1 X&{N,P}

The first term on the right hand side is the discounted net revenue from last year, and

the last term is the revenue from the penultimate year. The optimum value will be

given by the condition

0J1(N1o, Nao, Pro, Pao)
= 0. 2
5%, (4.21)
To find the partial derivatives, let
2
V(Niky Noky Piy Par) = > Txi(Xiky Sxioo)- (4.22)
=1 Xe{N,P}

Substitute equation (4.14) into (4.22), for & = 1, to obtain

8V(N11,N21,P11,P21) . i Z 8( s)féioo(px . CXi(f))dg)
dSy,, B 95,

i=1 Xe{N,P}
i & (35 (px — exi(©)dE)  Dp(Sx,)
i=1 X€{N,P} 0p(5xi) O5va

(4.23)

where Y = N, P and ¢(Sx,,) = Xi1 as in equations (4.7) - (4.10). Solving the partial
derivative of the integral in the form equation (4.14) yields

Ol x;(X; ,S e
120 5o) — (py — exi(Sx). (1.24)
0Sx;
Substituting this result into the partial derivatives
OV (Ni1, Noy, Py, P
(Ni1, Noty Pry, Por) (4.25)
0Sx;

generates the following solution for equation (4.21) in terms of the optimal escapements
S -

pn — envi(Siy,)
P

= (a4 puFC(S5,,57,) ) (o — ena(Vin))
+ (PP (S, Sh,) ) (o1 = ena(Var))
n (uniSf'WO’(S;,m, S}Sw)) (pp — cp1(Pi1))

+ (qwggsw(%, Sha)) (br —cpa(Pn),  (426)
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PN — ena(Sh,,)

= ((12 + pZQFés;V20)(S],.§720’ SFQQ)) (pN - CN2(N21))
+ (mez(S;’”)(SRm,SEO)) (pN — en1(N11))
+ (quGgS;""](S}(,m, 5'1*320)) (pp — cp2(Pay))

+ (@G (S5, 55,) ) (o —em(Pr)),  (420)

pp — cpi(Sp,)

= (bl N unES;m)(S}Qw,S}m)) (pp — cpy(Pu1))
+ (qlgGES;’“’)(S}'{ho, S}*:w)) (pp — cp2(Pa1))
+ (qul(S;m)(S;(]m,S;alo)) (pv — enn(Nar))

n (plel(S;alo)(SI’:[w’ ‘91*310 )> (pN . CN2(N21)) R (428)

pp — cp2(Sp,,)

- (b2 + q22G§S;’20)(SJ’§,20, 5'1*320)) (pp — cp2(Pa1))
+ <q21G§S7°2°)(S;‘V20,S;20)> (pp — cp1(Pi1))

n <p22F2(57°2°)(5,*Vm, 5;20)) (pn — cna(Nat))

St * %
+ (PP (S5, 88,) ) (o — e (). (4.29)
In these equations I use the symbols F;-(S;“O) and GZ(-S;“") to indicate %’L and
Xio
8%#, respectively. The equations are the general form of the optimal harvesting
Xi0

equation for a two-patch predator-prey population system. The equations are the fun-
damental result and much of the rest of this chapter will be exploring these equations.
It can be seen that if we set G;(Sn,, Sp,) = 0 and Fi(Sny, Sp,) = Fi(SNy ), then Tuck
and Possingham’s (1994) optimal harvesting equation for a single-species metapopula-
tion is obtained. Furthermore if there is no migration between patches, p;; = ¢;; =0
for i # j and F'(S) = a; + Piiﬂ(smo)(SN,-o,SPgo) together with G;(Sn,, Sp,) = 0, then
the equations reduce to the optimal harvesting equation for a single-species population
(Clark, 1976a). Note these are implicit expressions for prey and predator escapements.
The escapements S¥,, found by solving these equations are the optimum escapements
of the prey and the predator on each patch that maximise revenue provided the Hessian
matrix Ji'(Snyes SNzos SPros Py ) satisfies

[J1(S%)(Sx — S%)]- [Sx — Sk] <0, (4.30)
Where SX . (SNIO’ SN20’ SPIO’ SP?O) a'nd Sj\’ . (S;{ho? S}:&o’ S;;lo’ '3;320)'

Clark’s (1976a) optimal escapement for a single-species population and Tuck and
Possingham’s (1994) optimal escapement for a single-species metapopulation hold for
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all time horizons T' > 1. It can be shown that the optimal escapements for the predator-
prey metapopulation are independent of the time horizon considered. This is true
because we harvest all species in all patches. Equations (4.26) - (4.29) show that
optimal escapements when there is one period to go, Sy; and Sp;, are functions of
prey and predator abundances Ny and Py, 1 = 1,2, from equations (4.1) - (4.4). But
since we also have state dynamics equations, that is, equations (4.7) - (4.10), then the
abundances are controlled by the exploitation, and hence optimal escapements are no
longer dependent on the population abundances (Tuck, 1994). I prove this claim, in
more detail, in Appendix 4B. I will show in the next chapter that if only one species
is harvested then this independence no longer holds.

4.3 Results with negligible costs

In this section, the optimal escapements in equations (4.26) - (4.29) are compared
to the strategies in which spatial structure is not recognised by the fisher managers,
when costs are negligible. The rationale for this is that I want to know how important
it 1s to use the theory presented here for choosing optimal escapements, that is, how
important is spatial structure in determining harvesting strategies? I consider two ways
in which spatial structure can be ignored. First, the whole system can be considered
a well-mixed homogeneous population. Second, the existence of the patches might be
recognised, but we mistakenly assume that there is no migration of individuals between
patches. Our optimal escapements from the real two-patch connected predator-prey
model are compared to those systems in which spatial structure is ignored.

I adopt the following definitions and ideas from Tuck and Possingham (1994)
about the characteristics of local populations or subpopulations.

1. Prey subpopulation 1 is a relative exporter prey subpopulation if it exports more
larvae to prey subpopulation j than it imports, that is, rypi1z > rop2;. In this case,
prey subpopulation j is called a relative importer prey subpopulation. Relative
exporter and relative importer predator subpopulations are defined similarly.

2. Prey subpopulation ¢ is a relative source prey subpopulation if its per capita larval
production is greater than the per capita larval production of prey subpopulation
7, that is, ri(ps + pij) > rj(pj; + pji). In this case, prey subpopulation j is
called a relative sink subpopulation. Relative source and relative sink predator
subpopulations are defined similarly.

In addition, I define the following terms:

3 Prey subpopulation ¢ is a relatively more vulnerable prey subpopulation to pred-
ation if |oy;| > |ej|. Conversely, prey subpopulation j is called a relatively less
vulnerable subpopulation.

4 Predator subpopulation 1 is a relatively more efficient predator subpopulation
if |ﬁ‘| > |—g-JL| Conversely, predator subpopulation j is called a relatively less
Bi

efficient subpopulation. The quantity of o will be referred to as ¢ and called
reqular predator efficiency or biological predatm efficiency. Besides this quantity,
if a; = a; or B; = B, I also define other types of efficiency, depending whether
it is measured before or after migration: pre-dispersal predator efficiency Cy, =

a; + B; and post-dispersal predator efficiency Cio = ri(pir + piz) o + si(qi1 + ¢i2) Bi
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Regular predator efficiency is equivalent to pre-dispersal predator efficiency, since
=Lt Rr =1

To simplify the analysis, I assume that the costs of harvesting are negligible.
Using this assumption, equations (4.26) - (4.29) for the optimal escapements become

(8%,,) * *
Py = aipN + (pu +pi2) (Fz . (SN.'07 SP:‘o )pN)

P
+ai + ) (G5 (S, Spopr) (431)
1% = bipp + (pir + pi2) (Fi(S;‘O)(S}kV.-Oa SPa )PN>

+(Qi1 + qi2) (GES;;O)(S&O, S}*’.vo)PP> . (4-32)

Two cases are investigated in the following sections. The first case is exploitation
in which both species are harvested (Section 4.3.1). The second case considers the case
where only one species is harvested, either the prey (Section 4.3.2) or the predator
(Section 4.3.3). For the two last cases, I only present analysis of optimal escapements
for one period to go (time horizon = 1). Agnew (1982) pointed out that the optimal
escapement for one period to go is equal to the optimal escapement for any period
(greater than one) to go if there is no discounting. The analysis of optimal escapements
with more than one period to go, when harvesting targets only one species, is presented
in the next chapter for an adult-interaction predator-prey metapopulation.

4.3.1 Harvesting both species with equal prices

In this section I will explore the behaviour of the optimal escapements if both species
are harvested. To simplify the problem let us assume that there is no difference between
the prices of the harvested prey and predator, then equations (4.31) and (4.32) become

1 s
; = a;+ (pil + pi?) <F}(SN'0)(S;(\];07 S}k’io ))
i+ a2) (G55, 53,)) (133)
1 (Shio) 1 ox *
; = ba,, + (pll + plZ) <F1, l (SN,'O ) SP,’()))

Han +a2) (GF(Sk,57,)) - (4.34)

Recall that due to the time independence of the optimal escapements, there is a nota-
tional change for the remainder of the chapter, that is, we simply use S%, to denote
optimal escapement for subpopulation X in patch ¢. Next, using equations (4.5) and
(4.6) for the recruitment functions, F; and G;, and substituting all of their first order
partial derivatives, then the above equations become

1 27‘1' % %
; = a; + (pa + pi2) <7"i = ESN‘ + aiSpl.)
+(gi1 + ¢i2) (ﬂiS}S,-) ) (4.35)
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; = b + (pi + pi2) (a,-S}{,',)
28 = N
+(Qi1 + Qiz) (Si . %Sp,- + ,HiSN,-) i (4-36)

Rearrange these equations and let

1
A= E - (pu + Piz)ri — a4, (4-37)
1
B; = ; — (g1 + gi2)si — b, (4.38)
and
C; = Cio = (pa + piz)os + (¢ + ¢i2) 5, (4.39)

then equations (4.35) and (4.36) become

27‘,5 % "
- (pil +P12)?SN' + CiSP'- = Ai,

(4.40)
* 25,’ 5
CiSN,‘ - (qil + in)'E—.'SP‘ = Bz',
which has a unique and explicit solution for the optimal escapements
Ai(qin + gi2) % + B;C;
Sy = (i + ) 5 (4.41)
t Ai
and A ) e
_ i(pir + piz) 7 + AiCs
sp, = s TR , (4.42)
L Ai
provided
Ci —(pi + Piz)2—r?
A= s Rl #0. 4.43
—(qi1 + qz'z)?L—; C; a (4.43)

Explicit expressions of the optimal escapements S5, and Sp can be obtained
as long as A; does not vanish. The chance of A; vanishing is infinitesimally small.
Considering C; < 0, this condition occurs only if T% =14 %\/(N(P;}{TP&)) (ﬂgegq.-zl)’
which can be interpreted as the predator biological efficiency exactly equal to one
plus twice the geometric mean of the ratio of the per capita larval productions to the
carrying capacity of the two species divided by the prey vulnerability. When C; = 0,
that is, when the predator is extremely efficient, explicit expressions of the optimal
escapements always exist.

Equations (4.41) and (4.42) are the generalisation of the optimal escapements for
a single-species derived by Clark (1976a) and a single-species metapopulation derived
by Tuck and Possingham (1994). By assigning o; = f3; = 0, the optimal harvesting for
the single-species metapopulation is established. Furthermore, if in addition 1 remove
(pij = pji = ¢ij = gq;i = 0, and pi; = p;; = ¢ = ¢;; = 1) then optimal escapements for
the single-species model (Clark, 1976a) with adult survival rates a; and b; are obtained.
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In the case of a; = f; = 0, the system reduces to a single-species metapopulation
system. Tuck and Possingham (1994) concluded some rules of thumb for harvesting
a single-species metapopulation system, that is, TP 1, TP2 and TP 3 described in
Chapter 2.

To see how important spatial structure is in determining harvesting strategies, I
address two separate questions, that is, how do we treat different patches and how does
the optimal strategy from the real two-patch predator-prey metapopulation compared
to the two incorrect strategies. There are two trivial cases in which optimal escapements
are easily investigated. The first case when |o;| = 3;, and the second case when |o;| # B
but Li = PictPii

The first case: |a;| = B;. If |og] = B; = 0, then C; = 0. The system reduces
to a couple of independent metapopulations. Each subpopulations obeys all the prop-
erties described by Tuck and Possingham (1994) (TP 1, TP 2 and TP 3 described in
Chapter 2). Furthermore, if |o;| = §; # 0, then C; = (pi + pi2)i + (i1 + ¢i2)Bi =
((pir+piz) — (gi1+gi2) ). In this subcase, if the predator is very efficient and both pred-
ator and prey have the same proportions of their juveniles lost from the system, then
the connected two-patch predator-prey system can be managed as two separate meta-
population systems. Their interdependence does not affect the optimal escapements
when harvesting both of them compared to the optimal escapements in a single-species
metapopulation. Hence, the rules of thumb TP 1, TP 2 and TP 3 are preserved in the
presence of predators.

The second case: |o;| # B; but I—aﬁ—'l = ’—;—:ﬂ%’;:}i In this case the predator efficiency

is given by the fraction of the proportion of prey juveniles and predator juveniles in
the system, and hence C; vanishes. In this case, a connected two-patch predator-prey
system can be managed as a couple of single-species metapopulation systems. Again,
the rules of thumb for harvesting a single-species metapopulation (TP 1, TP 2 and
TP3) are preserved in this trivial case.

In general both cases above are unlikely. It is important to derive some more
general results. The following results are the results for more general cases.

Result 1 (Sufficient conditions for positive escapements) Let Sy, and Sp. denote the
optimal escapement from predator-prey metapopulation given by the equations (4.41)

and ({.42). If A; and B; are negative, and ma:c{gl%, %} < C; <0, then:

1. A; is negative,

2. Sy, and Sp, are positive.

Proof

1. Let S} = % and Sp;, = f—: Note that since —(pi1 + pi2)ri/A: = [(pin +
pi2)Ti)/l(pa + pi2)ri + (ai — (1 4+ 6))] > 1, the condition C; > 2B;/K; implies C; >
(—(pir +pi2)rs/A:)(2B; | K;), similarly we obtain C; > (—(qi1 +qi2)si/ Bi)(2Ai/ L:).
Hence C; > max{—2B;(pi + pi2)ri/[A: K], —2A:(gi1 + qi2)s:/[B:Li]} or in other
words D; < 0 and E; < 0. From E; < 0 we obtain B;(p;; + pig)% < —C;A;
or alternatively B; < (—C;A;)/ ((pil +pi2)%). Since —C > 0 then —C;B; <

~Ci [(~CiA)/ ((pa + pi2)35)|- This means Ai(gn + gi2) % < —Ci[(—CiAy)/

((pil + plz)%ﬂ, because we also have A;(gi; +qi2)2fl? < —C;B;. Finally, since A;
is negative, then we have (qi; + qig)%s'?(pil + pig)% > C? which means A; < 0. O
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2. From equation (4.41) and (4.42), since D;, F; and A; are all negative. |

An interpretation of the condition A; < 0 is that the sum of the proportion of
surviving adults a; and the per capita larval production (product of intrinsic growth
and the proportion of juveniles that remain in the system (p;; + ps;)r:) is higher than
the reciprocal of the discounting factor, 1/p. This is a normal situation in single-
species harvesting theory, otherwise it is best to harvest the populations down to zero
escapements (Clark, 1976a; Dawid and Kopel, 1997). The same thing is also known
in single-species metapopulation harvesting theory (Tuck and Possingham, 1994). The
condition B; < 0 is interpreted similarly. To interpret the condition C; < 0, let us

rewrite this condition as ai;"i—igf—;- + B; < 0. This condition is satisfied if -Z"—i;"—: >1,
1 1 t

since |a;| > B;. Hence if C; < 0 the proportion of prey juveniles that remain in the
system is higher compared to the proportion of predator juveniles that remain in the
system.

Result 1 can be used to explore the relationship between escapements from the
predator-prey metapopulation presented in this chapter and escapements from the
single-species metapopulation discussed in the paper of Tuck and Possingham (1994).
The relationship is summarised in the following corollary.

Corollary 1 (Escapement comparison to a single-species metapopulation) Let Sy and
Sp. denote the optimal escapement from a predator-prey metapopulation given by equa-
tions ({.41) and (4.42), and let Sy, and Sp,, denote the optimal escapement from a
single-species metapopulation given by the same equations by assigning o; = B; = 0. If
A; and B; are negative and ma:r:{yEjL %} < C; L0, then:

L Sk, = Sk, = Garmaparion <0

* * Ci *
2. SP" B SP (Qll+Qt2)2st/L SN S O

Proof
1. We need to determine the sign of S§, — Sy,

Ai(gin + gi2) T + CiB; Ai

A; —(pir + Piz)r‘%‘i
CiBi(pa + pin) 3 + C A,

Ai(pa + pia) 7
Bi(pia + Pi2)%:: + C;A;
(Ai(Pn +Pi2)%) /C;
C. =5%..

(pix + piz)2ri/ Ki

Because S;Sl, > 0 and C; < 0 then we have .5’]*\,‘_ — SI*V,‘S < 0. The proof of the
second part is analogous to this proof. ]

* %* .
SNi - SNI'S -

Escapement comparisons between patches

Corollary 1 shows that the optimal escapement from a predator-prey metapopulation
is always less than, or equal to, the optimal escapement from a single-species meta-
population depending on the sign of C;. However, we can not draw any conclusion on
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whether we should harvest the relative source subpopulation more conservatively than
the relative sink subpopulation, except for one case when C; = 0. In this case, that is,
when the predator efficiency in both patches equals the proportion of surviving prey
juveniles and surviving predator juveniles, optimal escapement from a predator-prey
metapopulation is equal to the optimal escapement if the population were managed as
a single-species metapopulation. Hence, the rules of thumb TP 1, TP 2 and TP 3 in
Chapter 2 are satisfied. The following Lemma enables us to investigate these rules of
thumb for a more general case, that is if C; < 0.

Lemma 1 (Migration trade-off equations) Let S¥, and Sp, denote the optimal escape-
ment from a predator-prey metapopulation given by equations ({.41) and (4.42). If
¢i=abi=b K=K, Li=L Ci=C, R=3—a,5=1—b rim=(pi+pi)r: and
Sim = (qii + qij)si then:
* * 4fSlmSZm 2R
L. (SN1 - SNg)A1A2 = (02(Slm — S9m) — T('r?m - T‘1m)> <T — C)
25

- & (C - T(—) (Tlmslm = "'2m32m)7

4r1mTom 25
2. (S}k’l - S;’z)AIAZ = (02(T1m - "'2m) - %(*ﬁm - Slm)) (’I—(' - C)

2C 2R
_? (C _’T> (rlmslm - r2m32m)-
Proof
1.
S* _ S* _ (R - rlm)2_s["'/m + O(S - Slm) _ (R - r,~2m)ﬁ[2/m + C(S - 52m)
N1 N2 A]_ A2
(R =rim)2= 4 C(S = s1m)) (C? = ramsamEr)
- AlAg
((R - 7‘2m)ﬁfﬂ + C(S - 32m)) (02 - Tlmslm%)
B A A,

where A; = C? — rimsim%, 1 = 1,2. Completing and simplifying the numerator
of the right hand side of the above equation will end up to the form of the right
hand side of equation (1) in this lemma. The proof of the second part is analogous
to this proof. a

In general it is difficult to give a simple interpretation of the relationship of op-
timal escapements between patches. Lemma 1 suggests that there is a trade-off between
prey and predator juvenile migrations that determines the relationship between the es-
capements for the two patches. However, in some special cases, this relationship can
be determined. For example, if r1,, = $2n and 19, = S1m, that is, if prey subpop-
ulation ¢ has the same per capita larval production with predator subpopulation j,
then (S¥, — Sh,)A182 = Ay(rom — rim)(32 — C). If A; and B; are negative and
mam{%, %} < C; < 0 then A; is negative and % — (' is positive. Hence, the sign
of the difference depends critically on the sign of ra, — r1,. If the per capita larval
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productions are equal for both prey subpopulations, that is, ro,, = r1,,, then we should
harvest the prey in both patches equally. While if rg,, > 71, that is, if prey sub-
population two is a relative source subpopulation and predator subpopulation two is
a relative sink subpopulation, then we should harvest prey subpopulation two more
conservatively than prey subpopulation one. Similarly, we conclude that the predator
living in the same patch with a relative source prey subpopulation should be harves-
ted less conservatively than the predator living in the other patch. If we ignore the
predator-prey interaction, then the same rule is clearly obtained from the single-species
metapopulation’s rule of thumb (TP 1).

The rules above are derived by assuming that prey subpopulation ¢ has the same
per capita larval production as predator subpopulation j, which is unlikely. The fol-
lowing result describes a similar rule to the result above for a fairly more general case.
It will also show that unlike a single-species metapopulation, in a spatially-structured
predator-prey population, subpopulations with symmetric migration may have differ-
ent escapements. To gain a better insight into the effect of juvenile migration on the
decision of how to exploit a spatially-structured predator-prey system, I assume the
predator has symmetric migration, that is, $;m = S2m = 8m, in all the results that
follow.

Result 2 (Escapement comparison between subpopulations) Let one of the prey sub-
populations be a relative source while all other parameters of the prey and the predator
are identical for both subpopulations. Without loss of generality let us assume the prey
subpopulation one is a relative source, that is, (p11 + p12)r1 > (P22 + pa1)ra2. If |o| = B,
or if A; and B; are negative and C > maw{%, 221"5}, then:

1. Sy, > S,

2. Sy < Sh,.

Proof
1. Let Agy = (Sk, — Sa,)A14;. Using Lemma 1 we obtain

452 2R 2C 25
ASN . (_7;_7;(7'27” - Tlm)) <T - C) - T (C - F) Sm(rlm - r2m)

r 4s,, 2R 2C 25
= w- () (F-o)+ T (0-%)] tram=rin)

2 (o 4suR (28 2,
-z (C T KL _C(K K >)](”’“_“m)

2 (., 4smR 2C
L (C T KL K (S_Sm)>] (r2m = T1m)

9 9B\  4s, R
= “mp (C (C - ?) T KL >] (ram = Ttm).

. 2B
Clearly As, > 0, since 72 < C <0. 0

= Sm

2. Let Ag, = (Sp — Sp,)A14;. Using Lemma 1 we obtain

9 e )
As, = C¥(rim—rom) ( o c) 3 (C _ ﬁ) sm(Fm — Tam)

K K L
25 ;2 2R
= Cln=r) (=€) -7 (0= ) o
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2B 4Rs.,
= C(rim ~ Tam) [(T - c) C+— ] .
Clearly As, <0, since % <C<0. o

Result 2 shows that if the natural growth rates of the prey and predator are
greater than the reciprocal of the discounting factor, 1/p, so A; and B; are negative,
and the predator efficiency C is relatively high, such that C' > maz{2%, 2}, then
we should protect a relative source prey subpopulation more than a relative sink prey
subpopulation in the sense that we should leave the relative source prey subpopula-
tion with a higher escapement than the sink subpopulation. Similarly, by investigating
the effect of prey migration (relative source/sink prey subpopulation) on the predator
optimal escapements, it can be shown that we protect the relative source prey subpop-
ulation in two different ways: directly, with a higher escapement of the relative source
prey subpopulation, and indirectly, with a lower escapement of the predator living in
the same patch with the relative source prey subpopulation. The importance of the
relative source prey subpopulation is intuitively reasonable.

Furthermore, let us assume that one predator subpopulation is a relative source
while all other parameters of the prey and the predator are identical for both sub-
populations, and |a| = 3, or C > 2—5—' Using predator-prey metapopulation optimal
escapements as a policy to manage the exploitation of a predator-prey metapopulation
system would harvest the relative source predator subpopulation more conservatively
than the other predator subpopulation which is a relative sink subpopulation. On the
other hand, it would harvest both prey equally, or would harvest the prey living in the
same patch with the relative source predator more than the other prey subpopulation.

The analogous result for the predator is easier to interpret whenever both predator
subpopulations have the same rates of non-migrating juveniles, that is, gi;s; = g¢j;5;.
In this case, one of the predators is a relative exporter subpopulation. Let predator
subpopulation one be a relative exporter, then we harvest this subpopulation conser-
vatively while we also harvest the prey subpopulation on the other patch conservatively.
The rationale for this result is as follows. Since the predator in patch one is a relative
exporter, then the outflow of its juveniles to the other patch is greater than the in-
flow, consequently, we should leave the prey higher in the target patch of the exporter
predator subpopulation.

Up to this point it has been shown that the rule of thumb on how to exploit
a relative source/sink subpopulation in a single-species metapopulation generalises to
a predator-prey metapopulation for some region of parameters in which the predator
efficiency C; is above a certain threshold. In addition, I have also established rules
to harvest more/less vulnerable prey and more/less efficient predator subpopulations.
These rules are summarised in the following result.

Lemma 2 (Efficiency trade-off equations) Let S¥, and Sp, denote the optimal escape-
ment from a predator-prey metapopulation given by equations (4.41) and (4.42). If
ag=ay=a,by=by=b, Ky =Ky=K, Ly =Ly = L, p11 = p22, P12 = P21, Q11 = G2,
Q12 = q21, "1 = T2, S1 = 82, R = %— a, S= %— b, rim = Tom =Ty = (pn' +pij)'r'i; and
Sim = Sam = Sm = (Gii + ¢i;)si, then:

2As,, 4B1 5y,

1. (84 — Su)Miby = (C—C) [ (G + C) + T B(clcg)] ,
2B o 4A mem

2. (Sh — S5)MA; = (Co—C)) [ (o Cr) o+ = A(clcQ)] |



Proof

The proof is similar to the proof of Lemma 1. O

Result 3 (Escapement comparison between subpopulations) Let one of the predator
subpopulations be relatively more efficient while all other parameters of the prey and
the predator are identical for both subpopulations. Without loss of generality let us
assume the predator subpopulation one is relatively more efficient, that is, C; > Cj.
If A, = Ay, = A and By = B, = B are negative, and C; is non-positive with C; >

rimB SimA
maz{—tp>, —Hm2l, then

Sy, > Sy, and Sp > S, .

Proof
From lemma 2, we only need to show [%M(CQ + C1) + % 4 3(0102)] < 0, which
is satisfied by C; > —TKB . The second part can be proved analogously. O

The result shows that if the migration between subpopulations is symmetric and
there is no biological variability between populations except the vulnerability of the
prey, then we should harvest a relatively less vulnerable prey subpopulation more con-
servatively than the other prey subpopulation which is more vulnerable to predation.
A special case occurs when there is no predation in one of the patches, say patch one.
In this case, patch one is a refugial habitat for the prey. This rule ensures that we har-
vest the prey living in their refugial habitat more conservatively than the prey living in
the habitat where predation occurs. Furthermore, if the prey vulnerability of the two
prey subpopulations are the same, but the predator efficiency differs between patches,
then we should harvest the prey living in the same patch with the relatively more
efficient predator more conservatively than the other prey subpopulation. It suggests
that if the predator has a high biological efficiency, then we should leave enough prey
to sustain the predator population. In the chapter that follows, it will be shown that
if the market value of the predator is large enough compared to the market value of
the prey, then the optimal strategy can be a “seeding strategy” where prey are put
into the system. This is similar to the conclusion in Chapter 3. The difference is that
in the spatial model we may not need to seed all of the prey subpopulations. Seeding
might be optimal in only one prey subpopulation.

Escapement comparisons between strategies

The previous results allow us to compare the predator-prey optimal escapements between
different patches. The results show that if C', predator efficiency calculated after dis-
persal, is relatively high, then the rule of thumb TP 1 from single-species metapopu-
lation harvesting theory is preserved. To see how important and how different is our
predator-prey metapopulation escapement compared to the escapements if we incor-
rectly consider the population as a spatially-unstructured system, such as an unconnec-
ted two-patch predator-prey system or a well-mixed predator-prey system, I construct
Results 4 and 6. These results are similar to the rules of thumb TP 2 and TP 3 for a
single-species metapopulation in Chapter 2, but they are more restrictive.

The unconnected two-patch predator-prey system assumes that there is no migra-
tion between sub-populations, and the well-mixed predator-prey system assumes that
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there is only one ‘big” homogeneous patch rather than two connected patches. Optimal
harvesting equations for an unconnected and well-mixed predator-prey population can
be obtained from equations (4.26) and (4.28) by assigning p;; = ¢;; = 0 for 1 # 7, and
pi = qii = 1,1 = 1,2. However, if we incorrectly assume that there is no connection
between subpopulations, we would measure the growth rate for prey subpopulation ¢
as

Tiu = TiPii + TiPji (4.44)
if it was incorrectly believed to be an unconnected predator-prey system. If it is
considered a well-mixed predator-prey system, then let us assume the per capita growth
rate of the whole prey population is estimated by the averaged juvenile production
across the system

rw = [ri(pi + pij) + ri(psi + pie)l/2. (4.45)
The growth rate for the predator is measured similarly. Both growth rates in (4.44)
and (4.45) are measured at the end of migration period, otherwise migration does not

have any effect on the growth of the population. By comparing optimal escapements
with different growth rate measurement, I obtain the following result.

Result 4 (Comparison of strategy with an unconnected two-patch predator-prey sys-
tem) Let Sy, and Sp, denote the optimal escapement from a predator-prey metapopu-
lation given by equations ({.41) and (4.42), and let S}, and Sy, denote the optimal
escapement if we incorrectly consider the system as a system consisting of two un-
connected predator-prey systems. Assume that one of the prey subpopulations is a
relative exporter while all other parameters of the prey and the predator are identical
for both subpopulations. Without lost of generality let subpopulation one be a relat-
we exporter subpopulation, piary > pare. If A; and By = By = B are negative and
min{a+ B,C} > maz{22, 22} then:

1. 8% > SN
2. Sp, > Sp,,»

whenever a4 B < (pii+pij)a+(qi+qi;)08. If, however, a+8 > (pi+pij)a+ (qi+q:;) B3
then:

8 Sy, < Sn,.s
4 Sp, < Sp,-
Proof

1. All parameters are equal except p1ar; > paira. Recall that

(R— T‘lm)z—sl]:m‘ + CB

S]):fl = TIlmSim ?
c? -1 KL
and
X (R e Tlu)'zi[]:m + CUB
SNlu =

2 _ 4AriuSim )
CU KL

where C' = (p1; + pi2)a + (q11 + q12)3 and Cy = a + B. Let us define
" (R — 'T'lu)2—sl‘—1‘m —|— CB

Nig = 02 4riuSim 1
- KL
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then from Lemma 2

2A1u51m
L

4B7‘1u81m

(SNlu - SNlﬁ)AlA2 . (C - Cu) I{L

(C+Cu)+ + B(CC.)| -
The condition min{C,C,} > 22 implies min{C,C\,} > —fl-‘:% which guarantees

Mudim (O C, )+ 2Bwam 4 B(CC,) < 0. Since C, < C, this means S, < Sy, .

Hence we only need It{oL show Sx,. < S¥,. We obtain
S}k‘fl - S;;fm =
((R — rim)2m + CB) (02 = 4_r1f{4£L1m) — ((R — 1) 2w 4 C’B) (02 _ 4r,sz]m)
(€7 - tygpm) (€2 — *pp=) '

Simplify the equation to obtain

2 4 . .
(S;Il - S]):ll.—‘)AlﬁAl — (7'1u — rlm) (C(C _ B . RS1 ) 281

K) KL L’

where Az = C? — #usim and Ay = C? — #miim < () (this also can be derived

KL KL
from Lemma 1). Since pyir1 > pgers and A; < 0,7 = 1,2, then Ay < 0.
Furthermore since 71, > 71, and 0 > C > %, then we have S}'{,l - S, > 0.
This completes the proof. O

2. Using a similar procedure we obtain
(5;2 - S;;za)AZ'EA2 . (TZu - TZm)l/,

where YV = (C(C— 2B) — 4—%3%”“) C > 0. Hence Sy — Sp,. > 0. Similarly,

Sp,, < Sp,, can be obtained. This completes the proof. O
The proof for the case of o + 3 > (pii + pij)a + (gii + ¢ij)P is analogous.

The result suggests that if we use unconnected predator-prey theory to harvest a
predator-prey metapopulation, and C' > C,, that is, predator efliciency after dispersal
is higher than predator efliciency before dispersal, then we would harvest the source
prey subpopulation and the predator living in the same patch as the sink prey subpop-
ulation less conservatively [the condition C > C, can be achieved, for example, if the
proportion of surviving predator g;; +¢;; is higher than the proportion of surviving prey
pii +pi;]. Unlike the rule of thumb TP 2, in a predator-prey metapopulation we cannot
draw any conclusion for the sink prey subpopulation and the predator living in the
same patch as the source prey subpopulation. However with an additional condition,
that is, if we assume that the predator efficiency, €, proportional to the ratio of the
proportion of the lost of migrating prey from the system to the proportion of the lost
of migrating predator from the system,

B _ 1 — (pia + pi2)
|cvi] 1 — (ga + qi2) ’

€ =

(4.46)

then predator efficiency before and after dispersal are equal, that is, C; = Cy,. Con-
sequently, following the proof in the previous result, we obtain S%, > Sy, ., Sk, < Sh,.
Sp < Sp,, and 51*32 > S}S-h.. This is a generalisation of the rules of thumb TP 2 for
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a predator-prey metapopulation with juvenile-migration and juvenile-interaction. The
detail proof for the last two identities is given in a similar result for the juvenile-
migration and adult-interaction model in Chapter 5.

Other special cases are

Pi+pi;=qi+qg;=1 (4.47)

and

a+ =0 and Pii + Pij = Qi + Qij- (4.48)

If either condition (4.47) or (4.48) is satisfied, then C = C, and consequently the
analogous rule of thumb TP 2 holds. Condition (4.47) is interpreted as both prey and
predator having no mortality associated with the migration of their juveniles. While
condition (4.48) is interpreted as high predator efficiency (measured before dispersal)
together with the same proportion of prey and predator juveniles that successfully
survive in the system. The following results compare equilibrium optimal harvests
between patches and gives a sufficient condition for the predator-prey system in order
S%. < (>)S%,, implies Hy, > (<)HY,, .

Result 5 (Equilibrium harvest comparison between strategies) Let Sy, and Sp, denote
the optimal escapement from the predator-prey metapopulation given by equations (4.41)
and (4.42), and let S}, and Sp, denote the optimal escapement if we incorrectly
consider the system as a system consisting of two unconnected predator-prey systems.
Let us assume that one of the prey subpopulations is a relative exporter while all other
parameters of the prey and the predator are identical for both subpopulations. Without
lost of generality let subpopulation two be a relative exporter subpopulation, pairs >
p1are. All other assumptions in result 4 are satisfied. In addition assume that there is

no source/sink prey subpopulation with pyy = pa1 and py = p12. If the resulting optimal
. r+aS}
escapements satisfy pii(r + aSp )+ (a —1) < 0 < r 4+ oSy, and Sk, Sp < —5—K;

then Sy, > Sk, = Sx, > Sk,, and also Hy, < HY, and HY, > HY, .
Proof

From Results 2 and 4 we obtain S§, > S%, = Sy, > S},,, hence part of the result is
proved. Recall that

Hy, — Hy,, = (a—1)(S}, — Si.)
+p11(F1(S]=§]17 ;’1) - Fl(S]*VhN S;;lu))
+P21(F2(S}kv27 S;’Q) - FZ(S;V%’ S}k’zu))‘
Let us consider the sum of the first two terms

AHl —4 (a - 1)(31):[1 - S}:Jlu) + pll(Fl(S}lea S;;l) - Fl(S}i’lu’ S-;;lu))

S -1
= pu [(1-5;,] (] = ;\’s) + aSy, Sp, + (a ).Sj*\,l>
it P11

(T - S:' * * - 1 *
A RN

i P11
ISI';" ‘S’*
= Dpyy |8y (1= D) —g7 (1 2D
i [ N ( I)h‘) Nlu( DA’)]’
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' 1 T‘+aS* )+(a_]-)
where D = pu( i . Let Fp(z) = :c(l DK) Since we assume p;(r +

aS3,) + (a — 1) < 0, then the function Fpp crosses the z-axis at z = 0 and DK < 0.
The extreme point is D—Q— < 0, and since its second derivative — % is greater than
zero then the function is a minimum at this extreme point. Since Fp is a logistic
function, then it must be increasing along the positive z-axis. Therefore, S, < SNy
implies Fp(Sx,) < Fp(Sh,,), and consequently Dpi(Fp(Sy,) — Fp(Sy,,)) > 0. Now
we investigate the last term

Ay = pa(F(Sn,,Sp,) — Fa(Sh,., 55,))

= P2 l:(T'SN2 < - ]; ) '+' {.YS;;?S::,Z)
_ (7«5;\,2“ (.1 N“) + a.S';QuS}“qz)l

Sh
Epgl {SR& (1 . N2

where E = r + aSp,. Let IFp(z) = = (1 EK) Since we assume r + aSp > 0,
then the function Fg crosses the z-axis at z =0 and FK > 0. The extreme point is
EK > 0, and since its second derivative -

is less than zero then the function reaches

R
a maxunum at this extreme point. Since Fg is a logistic function and S¥, < Sk, < < EE
then Fg(Sy,) > Fe(Sk,,), and consequently Epyu(Fe(S¥,) — FE(SNM)) > 0. 0

Hence, in some circumstances, incorrectly using unconnected two-patch predator-
prey harvesting theory to harvest a predator-prey metapopulation would under-harvest
the relative importer prey subpopulation while it also would over-harvest the relative
exporter prey subpopulation (in the previous result, I defined the terms over-harvest
and under-harvest with respect to escapements but in the present result the terms are
defined with respect to harvests). In this case, Sy, > Sy, = Sk, > Si,, implies
HY < Hy and HY, > HE,. Numerical examples in the next section show that
this rule is robust to the inclusion of harvesting costs. Comparisons between optimal
escapements from a predator-prey metapopulation and the optimal escapement if we
incorrectly manage the metapopulation as a well-mixed predator-prey population is
given in the following result.

Result 6 (Comparison of strategy with a well-mized predator-prey system) Let SY.
and Sp. denote the optimal escapement from predator-prey metapopulation given by
equations (4.41) and (4.42), and let S}, and Sp, denote the optimal escapement if the
predator-prey metapopulation system is incorrectly considered as a well- mized predator-
prey system. Let us assume that prey subpopulation one is a relative source subpopula-
tion. All hypotheses and assumptwns of Result 4 are satisfied, and C is the non-positive

root of equation —3(R— T‘w)s’”c —BC3+ B;’“’—ZS'”—C =0. Ifa+pB < (pi+pij)o+(qit+q;)B
then:

1. Sy, > 35N,
2. Sp, > 153, .
Similarly is If o + B > (pis + pij)o + (s + qi;)0 then:
3 S}'{,z < %S;{,w,
4 Sp, < 3Sp,-

(i



Proof
1. Recall that

(Rw - rw)st + Cwa

S* == Ly
A
B (R— rw)if'— +C.B
S a-wm
Hence
1., (R—ry)2+C,B
_SNU) = 2 28mrw :
2 oL — E ==
Let us define
1 .. (R—ry)®+CB
_SN«J; = 2 2SmTw ’
2 e = =

then from the previous result

(R—rim)%= +CB _ (R—ru)%® +CB

S* _ L = SU
Ny T 2 — 4smnim (2 — 4smre -
KL KL

if ri,, > Ty. Furthermore, If C is the root of (%S]*vw — SO) AoAg = —3(R —

frw)s—"-;:gi — BC® + h}%ﬁ = 0 then S}, > 1S5%, (one of the roots is the trivial
case C = 0). Since C, < C, then we have SN, < %S]*Vw. This completes the
proof. The other parts can be proved similarly. |

The result suggests that if we use a well-mixed predator-prey theory to harvest a
predator-prey metapopulation, then we would harvest the source prey subpopulation
and the predator living in the same patch with the sink prey subpopulation less con-
servatively. As for Result 4, if either condition (4.46) or (4.47) or (4.48) is satisfied
then we can draw conclusions for the prey and predator in the other patch, that is
Sh, > 35n., SN, < 1Sn., Sp < 35p,, S, > 1S, The following section discusses
harvesting only one species either the prey or predator

4.3.2 Harvesting only the prey species

In the previous section I assumed that harvesting targets both species. In this section
I will look at harvesting strategies when only one species is harvested, for example
when the predator does not have an economical value. This is the situation where
birds are the predators eating commercially valuable sandeels and pilchards (Klomp
and Wooler, 1988; Wright, 1996). Harvesting only the prey can also occur in a fishery
involving predator-prey interactions between two commercial species. Many fisheries
have shifted from exploiting a top predator to exploiting a lower trophic because the
predator stock has collapsed. In the first case, where the predator does not have any
commercial value, the optimal strategy may be a strategy that may drive the predator
to a very low population level, while in the second case the best strategy might be
to recover the predator population from depletion (Christensen, 1996; Reynolds and
Tapper, 1996).

Why do we need to take into account the existence of predator-prey interactions
when we only harvest the prey? The decline of prey species due to the extensive ex-
ploitation can lead to a decreasing abundance of its predator. For example, many
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predatory seabird species have experienced tremendous breeding failures as a result
of the declining of sandeel population as their prey (Bailey et al., 1991). The decline
of marine mammals as a result of prey exploitation is also documented (Christensen,
1996). A recent study revealed that the reproductive success and adult survival of
the Adelie penguin, Pygoscelis adeliae, has decreased due to a high catch of krill, Fu-
phausia superba, in the krill fishery (Mangel and Switzer, 1998). This shows the need
for multi-species considerations to be taken into account in obtaining more appropriate
harvesting strategies, as suggested by Hall (1998). In this section I investigate harvest-
ing strategies for prey exploitation while considering the role of the prey as food of
another species.

In the previous section, where we harvest both the prey and the predator, optimal
escapements are independent of the initial prey and predator population size. We would
expect that the optimal escapement for the prey, when we harvest only the prey, is a
function of predator population size, since in this case we cannot control the predator
population size. To compare optimal harvesting strategies for the prey to single-species
strategies, I simplify the resulting optimal escapements by only considering one period
to go exploitation. If it is assumed that profit generated from these escapements in this
period is the same as the profit generated from the same escapements in any periods,
that is, the discount rate ¢ is zero, then we only need to optimise escapement for one
period to go (Agnew, 1982). The long-term equilibrium case is discussed in the next
chapter.

Using the same method as in the previous chapter, optimal escapements can be
found by maximising the net revenue

T 2
JT(NIO,NQO,P]_O,P20) — max ( PkZHNi(Nik,SN,-k)) . (449)
0 =1

0<Snio<Nio \ ;=

The escapements are similar to escapements Sy, in equation (4.31) with pp = 0 and

Sp,, = Pio, that is,
1 .
_ = ait (pa +pa) (FE"0 (S, Poo)) » (4.50)

where F; is defined by equation (4.5). Equation (4.50) has a unique solution for the
optimal escapement
K; K; (5 +1-— a,-) K;

Sh. = — — ~  — +—( B 4.51
. 2 2r; (pi + pi2) 2% (aiF2) ( )

where P; is the number of unharvested predator in patch 1.

In the case of harvesting both species (Section 4.3.1), if prey subpopulation 1
is relatively more vulnerable than prey subpopulation j, that is, lai| > ||, and all
other parameters are the same for both subpopulations, then 5%, < S]*VJ,. However,
equation (4.51) suggests that, when harvesting only targets prey species, this rule
is no longer necessarily true, unless |o;|P; > |a;|P;. Thus, if the size of predator
subpopulation i is greater than, or equal to, the size of predator subpopulation j,
that is, P, > P;, then it can be concluded that with the optimal strategy we should
exploit the more vulnerable prey subpopulation more and the less vulnerable prey
subpopulation should be conserved. This is because optimal escapements for both
prey subpopulation are always lower than half a carrying capacity K, and hence a
greater recruitment will be produced by a greater prey escapement with a low prey
vulnerability, for a fixed level of predator escapement (see equation (4.5)).
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Similarly, if (ps + pij)ri > (pj; + pji)rj, that is, prey subpopulation ¢ is a relative
source subpopulation, while all other parameters are identical for both patches, then
the result Sy, > Sy, is true only if P; < P;. Hence, if the size of predator subpopulation
i is less than, or equal to, the size of predator subpopulation j, that is, P; < P;, then the
best strategy is to protect a relative source prey subpopulation more than a relative
sink prey subpopulation as in the case of optimal escapements for a single-species
metapopulation (TP 1).

Escapement comparisons

In this section I compare optimal escapements from the predator-prey metapopulation
with three other systems: a single-species metapopulation, an unconnected two-patch
predator-prey and a well-mixed predator-prey system. By comparing these escape-
ments we can see how important it is to use the theory presented here for choosing
optimal escapements of a predator-prey system.

First, I consider the case where the predator-prey metapopulation is incorrectly
believed to be a single-species metapopulation system and exploited. The optimal
escapements for the system are given by

” K; K; (5 +1—= a,-)

R i A ——— 4.52
s 2 2r; (pi+ piz) ( )

The total optimal escapement, Sk, +S%,,, is higher than the total optimal escapements
from the predator-prey metapopulation theory, since
K, K,
(Sn, +Sn,) — (Sn, +58,.) = 2—a1P1 + —an Py < 0. (4.53)
1 27‘2
Hence, the optimal escapements for a metapopulation produce a less conservative total
harvest than escapements from a single-species metapopulation. This 1s not surprising
because the fisher is competing with the predator.
Second, a connected two-patch predator-prey system can also be identified in-
correctly as an unconnected two-patch predator-prey system. In this case we want to
maximise

T
JT(Nio,Pig) = max (Z ,DkHNi(NimSN;k)) (454)
k=0

0<Snio<Nio

for each patch. The escapements are similar to escapements Sy;, given by equation
(3.22) with pp = 0 and Sp,, = P, that is,

1 |
S=at (FE7 (Snigs Spa)) (4.55)

The equation above has a unique solution

K, K;

*

Niy - 2

K;

27‘,‘u

(5 41— ai) —+ (Oz,'Pi) (456)

27y
where P; is the number of unharvested predators on patch ¢ and riy = ripii + 7;pj is
measured after migration is completed at one period. If the prey on patch ¢ is a relative
exporter in comparison with that on patch j, that is, ripi; > rjpji, then S3. > Sy,
Hence, optimal escapements resulting from a connected two-patch predator-prey sys-
tem protect the relative exporter prey subpopulation more than the escapements res-
ulting from an unconnected two-patch predator-prey system, if the system is connected.
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The converse, that is, optimal escapement for the relative importer prey subpopulation
derived by the predator-prey metapopulation theory less than the escapement from un-
connected two-patch predator-prey population, is true only if r; < riy. If 7y = 13, this
means piy + pz1 > 1 which rarely occurs. Furthermore, if p;; = p2e then the condition
P11 + par > 1 is impossible. As for the case of harvesting both species, it can be shown
that in the case of adult-interaction (Chapter 5) this additional condition, pi1+pa21 > 1,
is not necessary.

In general the number of predators would change if the number of prey changes.
However, in the model in this chapter, I assume the predator has another main food,
and if the biological conversion rate f is relatively small, then the number of predators
would not change substantially. Consequently, if both predator subpopulations are
identical then the difference of the predator population sizes between subpopulations
is negligible, that is, P = Pjo = P. Although we can not draw any conclusion
about escapement comparisons for a relative importer /sink prey subpopulation, we can
compare total escapement from these different methods, if the difference of the predator
population sizes is negligible. I will show that if one of the prey subpopulations is a
relative exporter, r; = r;, pi = pjj and Pio = Pjo = P, then the total escapement
from a connected two-patch predator-prey system protects the prey population more
than the total escapements from an unconnected two-patch predator-prey system, if
the system is connected.

To prove this rule we need to show that

Let us recall that
K K@+1—a) K

Sy == — ————+ —(aP), 4.58

N2 2 (pa + pi) a7, F) (4.58)
. K K K

SN;,“ = 7 — 2riu (5 —|— 1— (1) —|— - (OZP), (459)

where i = ripi + 55 Let (Sx, + Sx,) — (S, + Sh,.) = ASw,. Following Tuck
and Possingham (1994), let A;; = rip;; and A = Ay + Ao + Az + Agg > 0 then

K 1 1 1 1
N 2 ( @) A+ Ay A+ A A+ A Aun+ A
K 1 1 1 1
2 (|l P) A+ Azn Axp+ An ry o T ( )

Consider the numerator of first part of the sum.

(Agz + Ar2)(An + Ap)(An + Az) + (A + Ag1) (A1 + Avg)(Aor + Azs)
—(Asr + An) (A + Ap2)(Ax + Azz) — (A + Ag1)(Agz + A12)(Ann + Ar2)
= [A(An + A1) ( Az + A21)] - [1‘_1(1411 + Az1) (A + A12)]
A[A1Agr + AszAra — ApArz — Az Ayl
A [7'1}7117"21721 + rop2aTiPi2 — Tfpupw - "‘%p22p21]
= A [(szzl - 7“1P12)("’1P11 - 7’21’22)]
= 0. (4.61)

Since one of the prey subpopulation is a relative exporter, without loss of generality,
let us assume TgPay + r2pa1 = rip11 + T2Par < T1pu + riprz < rioand roper +riprz =
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ropi1 + Topi2 < T2, and hence ASy, reduces to

K . 1 1 1
- S -2d)
ASN, 2 (|a| ) A+ An + Agze + Arg Ty i T2
K 1 1 1 1
> 5P ([ o] -+ =)

= 0. (4.62)

This completes the proof that (S, + S¥,) — (Sk,. +S%.) > 0.

Third, another possibility of not harvesting a predator-prey metapopulation prop-
erly is by managing it as a well-mixed predator-prey system. In this case the existence
of the two patches is not recognised at all. The total net revenue which should be
maximised is similar to Jr in equation (4.54). This maximisation is satisfied by the
escapement . P .

55 = —2ﬂ — ﬁ(d +1—ay)+ 57—%(%1%”) (4.63)
where K, = Ki + K;, ro = [r1(p11 + p12) + ra(pa2 + p21)1/2, ¢ = [01 + as]/2, oy =
[a1 + a3]/2 and P, = P; + P;. Let all parameters on both patches be equal except
ri(pi + pij) > ri(pj; + psi), that is, the prey on patch 7 is a relative source. Then
Snw = St 2 < S provided 2r; > r,, (this condition is always guaranteed). This
means that a prey subpopulation which is a relative source in a connected two-patch
predator-prey system would be over-harvested if it is falsely considered to be a well-
mixed predator-prey system. The converse, a relative sink prey subpopulation would
be harvested too conservatively is not always true since it needs 2r; < 7y which, if
ry = rq, it is impossible to obtain.

If there is no relative source subpopulation, the harvest from a single-species
metapopulation and a well-mixed population are the same (Tuck and Possingham,
1994). However, optimal strategy for a two-patch predator-prey metapopulation gives a
higher total escapement than escapement from a well-mixed predator-prey population.
To show this, let us recall that

- K K({+1—a) K
SNi 2 2r; (pa + pia) N 2ri(aP), (4'64)
2K(§+1—a—a2P)
r1(pi1 + p12) + ra(pa1 + P22)
Let (Sk, +Sw,) — (Sk,) = ASN, and let V; = ri(pii + pij). Since r; > ri(pis + pi;) = Vi
and following Tuck and Possingham (1994), then we have

St =K - (4.65)

ASy, > I(—]{(

§+1—a—aP) [L+L]
2 Vi sz
- wnmaan )
_ _I((5+1—G—O‘P)[<§t—1+2—1¥72>_%—2+%]
__KaP[Vl_l_VZ] I ,
i _K(5+1—a—a1’>[ ix;:wl_m%]
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_EKaP [ 2 ]

Vi 1V,
(Vi — V2)?
= —K(f+1—a—aP
(0F+1-a-a )[2(v1+v2)v1v2
2
_K P[ ] 4.66
v (4.66)

Since V; = V; then ASy, > 0. This completes the proof.

To conclude, in general, the escapement comparion rules between subpopulations
and between strategies in harvesting both species do not necessarily hold if harvest-
ing only targets the prey species. However, if the difference of predator population
size between patches is negligible then rules of how to harvest relative source/sink,
exporter /importer and more/less vulnerable prey subpopulations in Section 4.3.1 can
be applied. The next section will discuss optimal harvesting strategies when harvesting
only targets the predator species.

4.3.3 Harvesting only the predator species

In real fisheries, prey may not have any economic value, but its presence may have
significant effects on the optimal profit from harvesting the predator. In a newly
developed fishery, the top predators and other larger species are usually the initial
targets of exploitation (Christensen, 1996). For example, whaling was developed in
the early exploitation of the Arctic and only since the decline of the whale population
has krill exploitation begun (Pauly, 1979). In this section I will look at how optimal
escapement for a single-species would be different if we take the existence of its prey
population into account. How and to what extent does this prey population affect the
optimal escapement of the predator. As in the previous section I also compare this
optimal escapement to escapements derived from other strategies.

Optimal escapements for the predator population can be obtained by maximising

T 2
JT(Nlo,Ngo,Plo,Pgo) e max (Z kaHPi(Pik,SP‘.k)> : (467)
k=0 =1

0<Spio <P

The resulting escapements are similar to escapements Sp,, {rom equation (4.32) with
pn = 0 and Sy, = Nio, that is,

1 .
~ = bit (g +qa) (G (Nio, Sp,)) (4.68)

which has a unique solution

L, L;(6+1-b L;
S*_:___(_+—)+_

2 28 (g + qi2) 23i(ﬂiNi) (1.69)

where N; is the number of unharvested prey on patch 1.

In the case of harvesting both species (Section 4.3.1), if predator subpopulation
i is relatively more efficient than predator subpopulation j, that is, 8; > B;, with
o; = aj, and all other parameters are the same for both subpopulations, then Sp, > Sp..
However, equation (4.69) suggests that, when harvesting only targets predator species,
this rule may not true, unless 3;N; > 3;N;. Thus, if the size of prey subpopulation ¢ is
greater than, or equal to, the size of prey subpopulation j, that is, V; > N;, then it can
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be concluded that the more efficient the predator population, the more it should be
conserved, the less efficient the predator population, the more it should be exploited.
Similarly, if the predator juveniles in patch ¢ have a higher survivorship than predator
juveniles in patch j, that is, g +gi; > ¢j; + gji, while all other parameters are identical
for both patches, then Sp, > Sp, is true only if V; 2> N;, which is different from the
case when we harvest both species. Here, a relative source predator subpopulation
is more protected than a relative sink predator population only if the prey living in
the same patch with the relative source predator subpopulation is more abundance
than the other prey subpopulation. This is reasonable since the model in this chapter
assumes that predation takes place before the juvenilesin a subpopulation migrate and
recruit to another subpopulation.

As before, I compare the optimal escapements from the predator-prey metapopu-
Jation with escapements from three other systems, a single-species metapopulation, an
unconnected two-patch predator-prey and a well-mixed predator-prey system, to see
how important it is to use the theory presented here for choosing optimal escapements
of a predator-prey system.

First, assume the predator-prey metapopulation is incorrectly believed to be a
single-species metapopulation. If it is exploited under this incorrect assumption then
the optimal escapements for a connected two-patch single-species exploitation is

N L; ﬂ(é—l—l—bz)

= — — . 4.70
Pe ™0 28 (g + giz) (4.70)

The sum of escapements from a predator-prey metapopulation is always greater than
the sum of escapements from the incorrect consideration, that is, when the presence of
the prey is ignored, since

L L
(S5, + ) — (Sh, +55,,) = 5—BiN1 + 5—F:N; > 0. (4.71)
i 231 232

Hence, optimal escapements from a two-patch predator-prey metapopulation system
produces a more conservative harvest than if we incorrectly manage the population as
a single-species metapopulation.

Second, when a two-patch predator-prey metapopulation is identified incorrectly
as an unconnected two-patch predator-prey population. In this case we want to max-
imise

T
. Pl K o ( P
Jr(Nio, Pio) - (};)P HPZ(sz,SP..k)> (4.72)
for each patch. The escapement is similar to the escapement Sp,, in equation (3.23)
with py = 0 and Sy,, = N, that is,
1

= b+ (G (Nio, Spy)) - (4.73)

This equation has a unique solution

*

L; L; L;
(6+1=b)+ 5=

Pu = 9 28iu 280

(BilN:) (4.74)

where N; is the number of unharvested prey on patch 7 and sy, = $:gii+5;q;;- Assuming
that N; = N; = N, if the predator on patch ¢ is a relative importer, that is, sigij < s;4;i,
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and s; > iy, then S < Sp, . Hence, optimal escapements from a connected two-patch
predator-prey system will harvest the relative importer predator population more than
the escapements resulting from an unconnected two-patch predator-prey system, if the
system is connected. The converse is true only if s; < su. Furthermore, if one of the
predator subpopulations is a relative exporter, s; = s; and ¢;; = gjj, then

(Sh, + S3,) — (Sp + Sp) < 0. (4.75)

To see this recall that

St =——————2+4+—(BN), 4.7
. 2 2s; (Qi1+Qi2) 2s; (IB ) ( 6)
. L L L

Fu =3 " g5 0+ 1 =8+ 5 (BN), (4.77)

where s; = sigii + 8- Let (Sp, + Sp,) — (Sp., + Sh,.) = ASp,. Asin the case of
harvesting only the prey species (Section 4.3.2), let B;; = s;qij and B = By + By, +
Bs; + Bys > 0 then we have

L 1 1 1 1
ASp, = Z(6+1-0b [ + - = ]
d 2 ( ) Biy+ By By+ Bz Bu+ Bz Ba+ By,
L 1 1 1 1
——(BN <[ + ] - [—-i———]). 4.78
2 8 ) By + By Bag + By 81 82 ( )

The first part of this sum is zero. Since one of the predator subpopulations is a relative
exporter, without loss of generality assume s3¢z2+82g21 = S1q11+ 52921 < 81q11 181912 <
s; and $2q22 + $1q12 = S2G11 + S2q12 < S2, and hence ASp, becomes

L 1 1 1 1
ssn = b0 [ g+ bl 2)
d 2 (BN) Bi1 + By Baa + Bio $1 82

< gem ([ +5]-+3)
= 0. (4.79)

This completes the proof that (S, + Sp,) — (Sp,, + Sh,,) < 0. This means incorrectly
managing a predator-prey metapopulation as an unconnected two-patch predator-prey
population would under-harvest the predator population.

Third, the two-patch predator-prey metapopulation is incorrectly managed as a
well-mixed predator-prey population. In this case the existence of two patches is not
recognised at all. The total net revenue which should be maximised is similar to Jr in
equation (4.72) with solution

: L., Ly L.,

Sp, = > " 2. (6 +1—by)+ 55, (BuwNuw), (4.80)
where L, = L; + Lj, sy = [s1(q1 + qi2) + 32(qa2 + q21)]/2, by = [by + b2]/2, Buw =
[51 +,82]/2, and Nw = Ni -+ N_]

Let us assume that all parameters for both patches are equal except s;(qi +
i) > s;(q;; + gji), that is, the predator on patch i is a relative source subpopulation.
Then Sp = Sp, /2 < Sp, provided 2r; < r,, which means that a source predator
subpopulation in a connected two-patch predator-prey system would be over-harvested
if it is wrongly believed to be a well-mixed predator-prey system. The converse is

85



true, a relative sink prey subpopulation would be harvested too conservatively, only
if 2r; > r,. Furthermore, if there is no relative source subpopulation, the harvest
from a single-species metapopulation and a well-mixed population are the same (Tuck
and Possingham 1994). In contrast, in a two-patch predator-prey metapopulation,
incorrectly managing the metapopulation as a well-mixed predator-prey population
would under-harvest the predator population. To prove this we need to show (Sp, +
Sp.) — (Sp,) < 0. Recall that

L(+1-b), L

2s; (qi + Giz) 2s;
9L(§ +1—b— B2N)

Sp. =L — : 4.82

s s1(qu1 + qi2) + s2(qar + q22) ( )

Let (Sp, +Sp,) — (Sk,) = ASp, and let Wi = si(gii + ¢i;)- Since si > si(gi + i) = Wi

as in the case of harvesting only the prey species, I obtain

§+1—b—pBN) [_1_+ 1]

* —_—
Sp, =

-;i (BN, (4.81)

ASp, < L1

9 Wy W,
_ (L_L(6+1—b—ﬂ2N) [ﬁ/ﬁ_@])
= —L(E+1-b-pN) [Q(M(/:/I:l- I_/VZ/I)/IZ/Y)/?WJ
18N [ (4.83)

Furthermore, since Wy = W, then ASp, < 0. This completes the proof.

In Section 4.3.1 T have discussed optimal escapements in equations (4.26) - (4.29)
by comparing them to escapements derived from other models, such as the uncon-
nected two-patch predator-prey and the well-mixed predator-prey models. In Sec-
tions 4.3.2 and 4.3.3 the results in Section 4.3.1, where harvesting targets both species,
are compared to strategies where we only harvest one of the species — the prey or
the predator. The results in Sections 4.3.2 and 4.3.3 showed that the escapement
comparison rules between subpopulations, that is, rules of how to harvest relative
source/sink, exporter/importer and more /less vulnerable prey subpopulations and re-
lative source/sink, exporter/importer and more/less efficient predator subpopulations
may no longer hold if harvesting only targets one species, except for a limited situation.
Moreover, escapement comparison rules to other strategies only work if the population
size differences between the unexploited species are negligible, which may not be true
for many real populations. To support and illustrate the results presented in these
sections, I give some numerical examples in the following section.

4.4 Numerical examples

In this section, I present some numerical examples to illustrate the properties of es-
capements from a predator-prey metapopulation. The examples support the analytical
results in the previous section. Some examples also reveal the properties of the escape-
ments that are not observed in the analytical results, such as the effect of parameters
variations (migration, prey vulnerability and predator efficiency) on the optimal es-
capements. I use parameters for populations similar to those in Tuck and Possingham
(1994) to facilitate the comparisons.
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4.4.1 Harvesting both species

Example 1:One prey subpopulation is a relative exporter and there is no
source/sink subpopulation

Comparison of optimal strategy to single-species metapopulation strategy

Assume that prey in both patches have carrying capacities K1 = K, = 400000, with
intrinsic growth rates ry = r, = 1000 and adult survival rates ¢; = a, = 0.001. Prey
subpopulation two is a relative exporter population with juvenile migration coefficients
p11 = pa1 = 0.001 and p12 = pa2 = 0.0009. Assume the discounting rate §1s 10%. Before
the exploitation begins, it is assumed that the population is in the equilibrium state. In
the absence of the predator, the unharvested population sizes for prey subpopulations
one and two are Ny = 199116 and N, = 179204. The optimal escapements for the prey
subpopulations one and two are Sy, = 84316 and S, = 84316 (see equation (4.41)
with C; = 0). Both subpopulations are harvested equally (in terms of escapement)
because it is assumed that there is no source or sink subpopulation. However, the
optimal harvests are different, that is, the first period optimal harvests are Hy, =
114800 and Hj, = 94889 while the equilibrium optimal harvests are HY,, = 48854
and HY,, = 35546, hence the relative exporter prey subpopulation is harvested more
conservatively.

Now suppose the predator is present. Let the intrinsic growth of the predator
be s; = r; = 1000 with the carrying capacities Ly = L, = 40000. Let us assume
the adult survival per period of the predator are not different from the adult sur-
vival per period of the prey. Let us also assume that those survivals are not dif-
ferent between patches, hence by = b, = 0.001. Furthermore, it is assumed that
both predator subpopulations are identical, with migration parameters g1 = qi2 =
g1 = qa = 0.00095. Let |oy| = f; = 0.001, that is, the predator has a high
conversion efficiency. Using NAG routine c05nbf, I obtain one of the positive equi-
librium population sizes for this two-patch predator-prey metapopulation, that is,
(N1, Ny, Py, P;) = (188149, 169334, 26118,26118). Furthermore, using equations (4.41)
and (4.42), T obtain the optimal escapements for the system, that is Sk, = Sy, = 84316
and Sp = Sp, = 8432 (see Figure 4.2 and Table 4.1). As suggested by Corollary 1,
these escapements are exactly the same as the escapements from a single-species meta-
population, because C' = (pi1 + piz)a + (g1 + gi2)B = 0. However, the equilibrium
optimal harvest for the prey is less than the equilibrium optimal harvest for the prey
from single-species metapopulation, that is, HY, = 47433, Hy, = 34266 and for
the predator Hy = Hp = 3571 The difference between equilibrium harvest from
predator-prey metapopulation and single-species metapopulation is critically depend
on prey vulnerability, e, for the prey, and depends on predator biological conversion,
B, for the predator. In this example, in which there is no source/sink subpopula-
tion for both prey and predator and C = 0, it can be shown that Hy, < Hy, and
Hp. > Hp, (see Appendix 4C). Hence if these additional assumptions are satisfied,
that is, prey subpopulation one is a relative exporter with p11 = pa1 > p12 = p22
(no relative source/sink prey subpopulation), then the prey equilibrium harvest from
a predator-prey metapopulation is smaller than from a single-species metapopulation
and the predator equilibrium harvest from a predator-prey metapopulation is larger
than from a single-species metapopulation, provided C' = 0. This means that if we in-
correctly manage a predator-prey metapopulation as two independent species we would
over-harvest the “prey” species and under-harvest the “predator” species.
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N.__ [N, [Sw, [Sh, [Hiw [ Hi, |
188149 | 169334 | 84316 | 84316 | 103834 | 85019
131748 | 118582 | 84316 | 84316 | 47433 | 34266
131748 | 118582 | 84316 | 84316 | 47433 | 34266
131748 | 118582 | 84316 | 84316 | 47433 | 34266
131748 | 118582 | 84316 | 84316 | 47433 | 34266
131748 | 118582 | 0 0 131748 | 118582

[ NS IRICT i NC) ) e ) | B

(1P [P [Sh [S, [Hp [Hp |
26118 | 26118 | 8432 | 8432 | 17687 | 17637
14002 | 14002 | 8432 | 8432 | 5571 | 5571
14002 | 14002 | 8432 | 8432 | 5571 | 5571
14002 | 14002 | 8432 | 8432 | 5571 | 5571
14002 | 14002 | 8432 | 8432 | 5571 | 5571
14002 | 14002 | O 0 14002 | 14002

Y |WI N O

Table 4.1: Optimal escapements and harvests for prey and predator popula-
tions derived from equations (4.41) and (4.42). Optimal escapements for the
prey and predator subpopulations 7 are Sx. and Sp, respectively, while H}
and Hp, denote their optimal harvests. The t** row indicates the value for
5 — t periods to go.

Note that although both prey optimal escapements from a predator-prey meta-
population are equal, their equilibrium optimal harvests are different, in this case we
harvest the relative importer prey subpopulation (subpopulation one) with a higher
harvest than prey subpopulation two (in other words less conservatively in terms of
harvest), that is, Hy, = 47433 > Hy, = 34266. This is generally true in harvesting
a predator-prey metapopulation when one prey subpopulation is a relative exporter
with its prey migration rate is equal to the retention rate of the other prey subpopula-
tion, there is no source/sink subpopulation, predator populations are indistinguisable,
and prey recruitment is greater than the number of prey eaten by the predator (see
Appendix 4D). If these additional assumptions are satisfied, then using escapements
from predator-prey metapopulation theory would harvest a relative exporter prey sub-
population more conservatively in both senses, that is, higher escapement and lower
harvest, than the other prey subpopulation. Furthermore, there are no harvest differ-
ences between both predator subpopulations (Table 4.1).

Comparison of optimal strategy to spatially-unstructured strategies

I compare optimal escapements and equilibrium harvests from a predator-prey meta-
population to optimal escapements and equilibrium harvests if spatial structure is
ignored. I compare the two different systems, namely the unconnected two-patch and
the well-mixed. First, if the predator-prey metapopulation system was incorrectly con-
sidered an unconnected two-patch predator-prey system, then the optimal escapements
are found from equations (4.41) and (4.42) by replacing pii, pij, ¢ and ¢;; with 1, 0, 1
and 0 respectively, and replacing (pi; + pi;)ri and (g + gij)si with ry, given by equa-
tion (4.44), and (gii + gi;)s: is replaced by siy similarly. The resulting escapements are
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Figure 4.2: Using fixed escapements Sp, = Sp, = 8432, optimal escapements
for the prey Sy, = Sk, = 84316 are found. The point (84316,84316) is the
point where the contour plot Hj, = 47433 intersects the contour plot HY, =
34266, hence optimal harvests from these escapements are HY = 47433 and
Hy, = 34266. The shaded region in the upper-left corner is the region in
which the combination of escapements produces a negative harvest for prey
subpopulation two, Hy, < 0, while the shaded region in the lower-right corner
is the region in which the combination of escapements produces a negative
harvest for prey subpopulation one, Hy <0 (Figure 4.2.a). Similarly, Figure
4.2.b illustrates optimal escapements and optimal harvests for the predator.

S, = 90100, S¥,, = 77889, St,. = Sp,, = 8432. The harvesting strategy from these
escapements produces optimal equilibrium harvests Hy, . = 41101, Hy, = 40187,
Hp = Hp, = 5566 with total harvest H = Hy_ + Hp, = 92422. This total harvest
is less than the total harvest which arises if we correctly use predator-prey metapopu-
lation escapements, that is, H* = Hx + Hp = 92841 (see Table 4.2). This 1s because
if we use the unconnected predator-prey theory, we fail to recognise the exporter prey
subpopulation which is important as a contributor to the other prey subpopulation.
In this case, we exploit the relative exporter prey subpopulation less conservatively
(in terms of escapement, with escapement S¥, = 77889 less than SN, = 84316) while
the relative importer prey subpopulation is harvested too conservatively (in terms of
escapement, with escapement Sy == 90100 more than S}, = 84316).

In this example a lower escapement means a higher harvest, that is, St > SN
and Sy, < Sk, means HY < Hy, and Hy, > Hy,. Note that in Table 4.2,
Hjp, = 41101 < Hy, = 47433 and Hp, = 40189 > Hy, = 34266. This is because
the example satisfies all assumptions in Result 5. Hence, in this example, incorrectly
using unconnected two-patch predator-prey harvesting theory to harvest a predator-
prey metapopulation would under-harvest the relative importer prey subpopulation
while it also would over-harvest the relative exporter prey subpopulation, in terms of
harvest. Furthermore, Sk,. > Sk, = Sk, > Sk, implies Hy, < Hy, and HY, > Hy,.
Numerical examples show that this rule may be true if the cost of harvesting is included.
Table 4.3 shows the comparison between escapements and harvests from a predator-
prey metapopulation and from other predator-prey systems (unconnected two-patch
and well-mixed predator prey system). In this example, I assume that the cost function
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is in the form

ex(Xi) = (mx; + anx, Xi) [ (nx; X:) (4.84)

which is a decreasing function with respect to X; and has a non-zero limit (¢; # 0)
as X; approaches co. Hence, with this cost function I assume that there is a constant
cost of harvesting whenever the stock size is high and the cost is lower than the cost
of harvesting in a very small stock level. I assume that the predator-prey metapopu-
lation has the same parameters as in the previous example (the example in the case
of negligible costs) with additional parameters my, = mn, = mp, = mp, = 1000,
ny, =nn, =np, =np, = 0.005, c; = ¢ = 10000 and pny = pp = 800.

Second, if the predator-prey metapopulation system is incorrectly considered to
be a well-mixed predator-prey system, then the optimal escapements found are ex-
actly the same as the escapements from the predator-prey metapopulation from equa-
tions (4.41) and (4.42) by replacing pii, pij, ¢ii and gi; with 1, 0, 1 and 0 respectively, and
replacing (pi; + pij)ri and (gi + gij)s: with r,, given by equation (4.45), and (qi; + ;)
is replaced by s,. The resulting escapements are Sy, = 168632 and Sp, = 16864 (or
S%. /2 = 84316 and Sp, /2 = 8432 for the prey and predator in each patch). This is
not surprising because there is no source or sink subpopulation for either the prey or
the predator, hence r, = r; and 55, = s;.

Example 2. One prey subpopulation is a relative source and exporter

Assume that all parameters of the prey and predator are as in Example 1, except
the migration parameters. In this example I will assume that pi;; = 0.002 is twice
the migration rate as all the others. Using these parameters, I compare the optimal
harvesting strategy from predator-prey metapopulation escapements to the harvesting
strategy from spatially-unstructured predator-prey escapements, that is, unconnec-
ted two-patch and well-mixed predator-prey escapements. The result is presented in
Table 4.2 (the lower table).

From the table, it can be seen that the source prey subpopulation (prey subpop-
ulation one) should be harvested more conservatively (with more escapement) than
the other prey subpopulation. The equilibrium harvest from the source prey subpop-
ulation is less than the equilibrium harvest from the sink prey subpopulation. On the
other hand, we should harvest the predator living in the same patch with the relative
source prey subpopulation with a lower escapement and a higher harvest than the other
predator subpopulation.

Compared to the strategy using escapements from the unconnected two-patch
predator-prey harvesting theory, the relative exporter prey subpopulation is harvested
more conservatively in terms of its escapement (Sy, = 126217 > Sy, = 90100) while
the relative importer prey subpopulation is harvested less conservatively, in terms of
its escapement (Sp, = 90100 < S%,, = 126733). Similarly, compared to the strategy
using escapements from the well-mixed predator-prey harvesting theory, the relative
source prey subpopulation is harvested more conservatively both in terms of escape-
ment (S¥, = 126217 > S§, /2 = 224160/2) and in terms of harvest (Hy, = 28315 <
S%. /2 = 174391/2). The relative sink prey subpopulation is harvested less conservat-
ively both in terms of escapement (Sx, = 90100 < Sy, /2 = 224160/2) and in terms of
harvest (Hy, = 149808 > S}, /2 = 174391/2).
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PPM || 5%, = 84316 | Hy, = 47433 | Sp, = 8432 [ Hp, = 5571
Sy, = 84316 | Hy, = 34266 | Sp, = 8432 | Hp, = 5571
S: — 168632 | Hy = 81699 | Sp = 16864 | Hp = 11142
UPP || S%..=90100 | Hj, =41101 | Sp,,=8432 | Hp, =5566
Si..=77889 | Hj, =40189 | Sy, =8432 | Hp =5566
Sy, —167989 | Hi, =81290 | Sp, =16864 | Hy =11132
WPP || Sk, =168632 | Hy,_ =81699 | Sp =16864 | Hp =11142
PPM || Sk, = 126217 | Hy, = 28315 | Sp, = 7748 [ Hp, = 17277
Sk, = 90100 | Hj, = 149808 | Sp, = 9010 | Hp = 6016
Sy = 216317 | Hy = 178123 | Sp = 16758 | H} = 13293
UPP || S;. =90100 | Hy,, = 64421 | S, =9010 | Hp, = 6914
Sk.. = 126733 | Hj, = 96818 | Sy, =09010 | Hp = 6914
Si, = 216833 | Hy, = 161239 | Sp = 18020 | H; = 133828
WPP || Sk, = 224160 | Hy, = 174391 | Sp_= 18020 | Hp, = 13960

Table 4.2: FEscapement and harvest comparisons between correct and in-
correct assumptions with py = pp, costs are negligible, p;; = pan = 0.001,
pia = Pz = 0.0009, and ¢11 = 12 = ¢a1 = ¢a2 = 0.00095 (upper table)
and p11 = P21 = P22 = qu qi2 = Go1 = q22 = 0.001 and py, = 0.002
(lower table). PPM, UPP and WPP denote predator-prey metapopulation,
unconnected predator-prey population and well-mixed predator-prey popula-
tion, respectively.

Parameter variations: migration, vulnerability and efficiency

In this section I discuss the behaviour of the predator-prey optimal escapement with
respect to the change in migration rates, prey vulnerability and predator efficiency. In
single-species metapopulation harvesting theory, the behaviour of the optimal escape-
ments, as the migration parameters p;; change, can be determined easily because of
the simple form of the derivative of the optimal escapements. The main conclusion
in single-species harvesting theory is that the uncertainty of the exact value of the
migration parameters should not influence the decision in determining the optimal es-
capement as long as the individual’s migration rate is relatively high (p;; is large), that
is, a relative source/exporter subpopulation should be harvested with more escapement
than a relative sink/importer subpopulation (Tuck, 1994)

In the following discussion I investigate the behaviour of predator-prey metapop-
ulation escapements as the prey migration p;;,7 # j changes. I keep all parameters
fixed, the values are given as in Example 1 except the prey migration pi2 and pai.
Algebraic simplification gives the following result for the optimal escapements.

—86841 4+ 0.94199 x 10%py,
—47419 — 0.4768 x 108p;5 + 0.1 x 10%p2,’

Sy, = —10000

—39159 — 0.5004 x 10°p;2 +0.1 x 10"'p},

"47419 — 0.4768 x 10%ps; + 0.1 x 10°p2,
2963 + 011774875 x 10%py,

853 — 954000p2; + 0.2 x 107pZ, "

Sp, = 10000

Sn, = —16000
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PPM || Sk, = 84308 | Hy, = 47433 | Sp = 8422 | Hp, = 5568
Sy, = 84308 | Hj, = 34267 | Sy = 8422 | Hp = 5568
S, = 168616 | Hy, = 81700 | Sp — 16844 | H; = 11136

UPP || Sy.= 90123 | Hy, = 41103 | Sp,_= 8462 | Hp = 5573
Si..= 77918 | Hj, = 40182 | Sp = 8461 | Hp = 5574
Sy, = 168041 | Hj, =81285 | Sp = 16923 | Hy = 11147

WPP || Si. = 180246 | Hy, = 82343 | Sp = 16924 | Hp = 11344

Table 4.3: Escapement and harvest comparisons between correct and in-
correct assumptions with py = pp = 800, cost function is given by equa-
tion (4-84), P11 = P21 = 0.001, py2 = po2 = 0.0009, and ¢11 = q12 = @21 = @22 =
0.00095.

—6811 — 0.1048 x 108pg; + 0.2 x 10*°p3,
—853 — 954000p21 + 0.2 x 107p3;

Hence all escapements from patch 7 are not affected by the changes in prey migration
pji. The rate of change of the prey and predator escapements on patch one due to
change in prey migration p;, are given by:
0Sn,
Op12

Sp, = 1000

1

— 47419 — 0.4768 x 108pyz + 0.1 x 10°p2,

(—86841 + 0.94199 x 10%p1,)(—0.4768 x 10° + 0.2 x 10°p12)
(—47419 — 0.4768 X 10%py; + 0.1 x 109p%,)? ’

= —0.94199 x 103

+10000

8Sp, —0.5004 x 108 + 0.2 x 10y
Opra 47419 — 0.4768 x 10%pyz + 0.1 x 10°92,
(—39159 — 0.5004 x 10%p;; + 101°p3,)(—0.4768 x 10° + 0.2 x 10%py,)
(—47419 — 0.4768 x 108py; + 0.1 x 10%p3,)? ‘

= 10000 (

The effect of a small increment in prey migration pi2 to the prey optimal escape-
ment Sy; and predator escapement Sp; can be found using these partial derivatives.
For example, with increment Ap;; = 0.000005 at the point p;, = 0.0001 we expect
the prey’s optimal escapement will increase by 896. The same increment only gives
an increment of 11 to the prey optimal escapement at pi; = 0.01. Similarly, a small
increment in predator migration Agip = 0.000005 at the point ¢;2 = 0.0001 will change
the optimal escapements as much as 114, but a similar increment gives change in the
predator optimal escapements as small as 1 at the point g2 = 0.01. Figures 4.3 and 4.4
give a graphical depiction of the changes in optimal escapements in both patches. As
in single-species metapopulation harvesting theory (Tuck, 1994), the effects of a small
change in the migration parameter of one sub-species to the optimal escapement of
that sub-species is smaller at a higher migration parameter than at a lower migration
parameter. This change does not affect any optimal escapements of the other sub-
species in the other patch (Figure 4.3 and 4.4). However, the change in either the prey
or predator migration parameters affect both sub-species in the same patch (Figure 4.3
and 4.4).

Figures 4.3 and 4.4 are interpreted as follows. If the migration rate of prey sub-
population one is significantly smaller compared to the migration rate of the predator,
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Figure 4.3: Optimal escapements Sy, , Sy,, Sp, and Sp, as functions of migration para-
meters p;; and ps;. A small variation in prey migration p;, causes a lower change in optimal
escapement Sy, at a higher prey migration than at a lower prey migration (Figure 4.3.a).
A small variation in prey migration p,; causes a lower change in optimal escapement S¥,

at a higher prey migration than at a lower prey migration (Figure 4.3.b). See text for
details.

P12 < @12 = 0.00095, then it is optimal to harvest all individuals of prey subpopula-
tion one (upper-left part of Figure 4.3). On the other hand, if it is significantly larger,
P12 > q12 = 0.00095, then it is optimal to harvest all individuals of predator subpopula-
tion one (lower-left part of the same figure). Similarly, if the migration rate of predator
subpopulation one is significantly smaller compared to the migration rate of the prey,
q12 < p1z = 0.0009, then it is optimal to harvest all individuals of predator subpopula-
tion one (lower-left part of Figure 4.4). On the other hand, if it is significantly larger,
q12 > p12 = 0.0009, then it is optimal to harvest both prey and predator subpopulation
one with more escapements. The effects of py; and gy are interpreted similarly. To
some extent this result agrees with the result for a single-species population (May et
al., 1979).

Similarly, I investigate the effect of a small increment in prey vulnerability a; and
predator efficiency f; to the prey optimal escapement Sy; and predator escapement
Sp1 using the partial derivative of these escapement with respect to o and 1. For

93



(a) (b)

Prey escapement in patch one Prey escapement in patch two

102000
100000
98000
96000
94000
92000
90000
88000
86000
84000

102000
100000
8000
96000
F4000
S2000
LLLEE
BaoOO
86000
BCGDB(

200004

150001

10000

5000

=5000

Figure 4.4: Optimal escapements Sy, , Sy,, Sp, and Sp, as functions of migration para-
meters g2 and ¢y;. A small variation in predator migration ¢, causes a lower change in
optimal escapement Sp, at a higher predator migration than at a lower predator migra-
tion (Figure 4.4.c). A small variation in predator migration ¢,; causes a lower change in
optimal escapement S}, at a higher predator migration than at a lower predator migration
(Figure 4.4.d). See text for details.

example, with increment Aca; = 0.00001 at the point oy = 0.001 we find that the
prey and predator optimal escapements will increase with the change as much as 17.
A similar increment changes the prey and predator optimal escapement as much as
23 and 18, respectively, at a; = 0.0001, and changes the prey and predator optimal
escapements as much as -84 and 36, respectively, at a; = 0.01. Figure 4.5 shows
that the effect of a small variation in prey vulnerability to prey and predator optimal
escapements is smaller around the line |oy| = (; than at any other region. This
suggests that in the absence of the exact value of prey vulnerability, a small variation
of predicted prey vulnerability should not alter the decision on how we harvest the
prey and predator population, as long as the predator efliciency is high enough (C} is
close to zero). As in the case of the migration parameter variation, the variation of
prey vulnerability or predator efficiency of one sub-species does not affect the choice
of optimal escapement for the sub-species in the other patch. This is clear from the
escapement equations, that is, equations (4.41) and (4.42).

94



(a) (b)

Prey escapement in patch one Predator escapement in patch one
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-01

Figure 4.5: Optimal escapements Sy, and Sp and equilibrium harvests Hy,; and Hp,
as functions of prey vulnerability a; and predator biological conversion ;. See text for
details.

Figure 4.5 show prey and predator escapements S}, and Sp and harvests Hy,
and Hp, as functions of prey vulnerability a; and predator conversion ;. When the
prey is very vulnerable and the predator is less efficient, the optimal strategy is to
harvest all the predator (Fig. 4.5.b) producing a relatively constant harvest of the prey
for every choice of «; less than approximately -0.008 (Fig. 4.5.c). We can expect that
if predator subpopulation two is a relative exporter and source (for example, if go; is
greater than a certain threshold), then predator subpopulation two will have a non-
zero escapement for any value of a; and £ in Figure 4.5 (see Result 2). This example
shows that May et al’s (1979) suggestion to harvest a predator population which
has a low biological efficiency and intrinsic growth rate generalises to a predator-prey
metapopulation. However, if there is predator migration variability between the two
patches, extinction may not be optimal for the relative source predator subpopulation.

4.4.2 Harvesting only the prey species

In this section I provide two numerical examples to illustrate the behaviour of op-
timal escapements from predator-prey metapopulation theory. The prey population

95



[t I~y [Ny [Sxki [ Sk | Hw | Hiy |
0| 132.73 | 105.02 | 55.00 | 64.00 | 77.73 41.02
110.65 | 89.79 55.00 | 64.00 | 55.65 25.79
110.65 | 89.79 55.00 | 64.00 | 55.65 25.79
110.65 | 89.79 55.00 | 64.00 | 55.65 25.79
110.65 | 89.79 55.00 | 64.00 | 55.65 25.79
110.65 | 89.79 0 0 110.65 | 89.79

QY W N

Table 4.4: Escapements and harvests from a single-species metapopulation
(Tuck and Possingham, 1994). The ¢** row indicates the value for 5 —t periods
to go.

in the first example is taken from Tuck (1994), and in the second example I use the
predator-prey metapopulation from the previous example in harvesting both species

(Example 2).

Example 1:

Assume that prey populations in both patches have carrying capacities K; = K, = 200,
with intrinsics growth rates r; = ro = 10 and adult survival per period a; = a; = 0.1.
Prey subpopulation two is assumed to be a relative source and exporter subpopulation.
The migration parameters are p1; = p12 = p22 = 0.1 and py; = 0.15. It is assumed that
there is no discounting, that is, § = 0. Before the exploitation commences, it is assumed
that the population is in the equilibrium state. In the absence of the predator, the
unharvested population sizes for prey subpopulations one and two are N; = 133 and
N, = 105 respectively. Using equation (4.41) with C; = 0, the optimal escapements
for prey subpopulations one and two are obtained, that is, S§; = 55 and Sy,;; = 64
with the equilibrium harvests Hy,; = 56 and Hy, = 26, respectively. It is clear that
the relative source prey subpopulation is more protected than the relative sink prey
subpopulation.

Now, suppose that the predator is present. For simplicity I choose the intrinsic
growth rates of the predator to be s; = r;, 1 = 1,2. The predator carrying capacities
are Iy = L, = 10, and adult survival rate are by = by = 0.1. The juveniles migrate
symmetrically, in this case I use the migration parameters qi1 = qi2 = g1 = ¢q22 =
0.1. Assume that o = a; = —0.1 and §; = B2 = 0.01l. As in the single-species
metapopulation model, I assume the unharvested equilibrium population size as the
initial population size before the exploitation begins.

The equilibrium population sizes for this predator-prey metapopulation are Ny =
118, N = 94, P, = 6.56, and P, = 6.56. Unlike the case of harvesting both species, here
prey optimal escapements depend on the number of unexploited predator. However, as
it can be seen in Table 4.5, the equilibrium escapements and harvests exist. Table 4.6
shows the numerical result from iterating Bellman’s equation.

Optimal escapements from a predator-prey metapopulation are always less than
the escapements from a single-species metapopulation. It does not mean that the har-
vests resulting from two-patch predator-prey escapements is higher than the harvests
resulting from single-species metapopulation escapements (Table 4.4 and 4.5 give a
clear example for this comparison). This is because the initial population size before
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[t Ny [N; [Sii [ Sk | Hin | His |

0| 117.94 | 93.68 | 48.44 | 57.44 | 69.49 | 36.24
1]94.14 | 76.45 | 49.14 | 58.14 | 45.01 | 18.32
2 (9584 |[77.82|48.93 | 57.93 | 46.90 | 19.89
3195.34 | 77.42 | 48.97 | 57.97 | 46.37 | 19.45
419544 | 77.50 | 48.96 | 57.96 | 46.47 | 19.54
5195.42 | 77.48 | 48.97 | 57.97 | 46.45 | 19.52
6| 9542 | 77.49 | 48.97 | 57.97 | 46.45 | 19.51
719542 | 77.49 (0 0 95.42 | 77.49

Table 4.5: Prey escapements and harvests from a predator-prey metapopu-
lation [equation (4.51)]. The ¢* row indicates the value for 7 — ¢ periods to

go.

BEAEAENEN
41 58 77 36

t
0
149 |58 |41 15
2
3

49 | 58 | 46 19
0 0 95 77

Table 4.6: Prey escapements and harvests from iterating the dynamic pro-
gramming equations. The t** row indicates the value for 3 — ¢ periods to go.
These escapements are only slightly different from those derived analytically
in Table 4.5.

the exploitation begins is the unharvested equilibrium population size. Meanwhile,
in the presence of the predator, this equilibrium size for the prey is less than that
in the absence of the predator. For this reason, if the actual system considered is
indeed a predator-prey metapopulation, then incorrectly using the harvests derived
from single-species metapopulation escapements may cause the prey stock to suffer
from over-exploitation (see Figure 4.7). However, Figure 4.7 also shows that if we
use optimal escapements from a single-species metapopulation to manage a predator-
prey metapopulation, the equilibrium optimal harvests are not too different from the
equilibrium optimal harvests using predator-prey metapopulation escapements.

Example 2:

Assume that all parameters of the prey and predator are as in Example 1 for harvest-
ing both species except the migration parameters, that is, p1; = pa; = p22 = 0.001,
prz = 0.002, and q1; = q12 = g21 = @22 = 0.001 and o; = —F; = —0.00001. Us-
ing these parameters, I compare the optimal harvesting strategy from predator-prey
metapopulation escapements to the harvesting strategies from spatially-unstructured
predator-prey escapements, that is, unconnected two-patch and well-mixed predator-
prey escapements. In this example I assume that there is no discounting. The result
is presented in Table 4.7.

As expected, Table 4.7 shows that using predator-prey metapopulation escape-
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100

Figure 4.6: Graphical illustration for optimal escapements and optimal har-
vests in Example 1. Optimal escapements for the prey are S} = 49 and
Sy, = 58. The point (49,58) is the point where the contour plot Hy, = 46.45
intersects the contour plot Hy, = 19.51, therefore, optimal harvests from these
escapements are Hy = 46.45 and HY, = 19.51. The shaded region on the
upper-left corner is the region in which the combination of the escapements
produce a negative harvest for prey subpopulation two, Hy, < 0, while the
shaded region on the lower-right corner is the region in which the combination
of the escapements produce a negative harvest for prey subpopulation one,
Hy <O0.

ments we harvest a relative exporter/source prey subpopulation with more escapement
(Sx, = 128440) than if we use either an unconnected or a well-mixed predator-prey,
with escapements Sy, = 80040 and S, = 175984/2 respectively. In this example,
harvesting the relative exporter/source prey subpopulation more conservatively yields
a higher total harvest, that is, Hy = 168952 > HY, = 167281 > HY, = 160131.

4.5 Concluding remarks

In this chapter harvesting strategies for a spatially-structured predator-prey system
were established as a generalisation of harvesting strategies for a single-species meta-
population. Some properties of the escapements for a single-species metapopulation
are preserved in the presence of predators, such as the strategies of how to harvest
a relative source/sink and exporter/importer local population. I considered two situ-
ations. In the first situation both species are harvested. In this situation I obtained
optimal escapements for the two species in both patches which are independent of the
time horizon considered. In the second situation harvesting targets only one species,
either the prey or the predator. In this situation I obtained optimal escapements for
one period to go. If there is no discounting, then these escapements are as the same as
the long-term escapements. This is because when there is no discounting, the profit in
any period generated from escapements Sy, has exactly the same value as profit from
the same escapements in any other period. Hence we only need to find escapements
for one period to go. Optimal escapements for the case where discounting is not zero
are considered and examined in the next chapter for the model in which predator-prey
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Figure 4.7: Figure 4.7.a shows that if fixed harvests from a predator-prey metapopulation
are used as the policy to manage the metapopulation then the exploited metapopulation
reaches an equilibrium (N; = 95 and N, = 78, see Table 4.5). However, Figure 4.7.b
shows that if fixed harvests from a single-species metapopulation are used then the meta-
population is collapses after 5 periods of exploitation. Figures 4.7.c and 4.7.d show that
equilibrium harvests, if we incorrectly assume a single-species metapopulation is always
lower than, or at most as much as, equilibrium harvests from predator-prey metapopula-

tion

escapements.
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PPM |[ Sy, = 128440 | Hj, = 25782
Sk. = 95107 | Hj, = 143170
Sy, = 223547 | Hj, = 168952
UPP |[ Sy,, = 80040 | Hj,. = 68035
St.. = 120027 | Hy,. = 92096
Sy. = 200067 | Hy, = 160131
WPP || S, = 175984 | Hy, = 167281

Table 4.7: Equilibrium escapement and equilibrium harvest comparisons
between correct and incorrect assumptions with py = pp, costs are negligible,

P11 = P21 = P22 = Q11 = Q12 = o1 = @22 = 0.001 and P12 = 0.002.

interactions take place in the adult stage.

If the following is true: harvesting targets both species, the only difference
between populations is the prey migration rate, there is no market price differences
between the two species, and the cost of harvesting is negligible or independent of the
stock abundance, then the first rule of thumb for harvesting a single-species metapop-
ulation (TP 1 in Chapter 2) can be used to manage a predator-prey metapopulation
provided the post-dispersal predator efficiency (Cy) is above a threshold. This first
rule states that we should harvest the relative source prey subpopulation more conser-
vatively than the relative sink prey subpopulation. We protect the relative source prey
subpopulation directly with a higher escapement for the prey, and indirectly, with a
lower escapement for the predator living in the same patch with this prey subpopula-
tion. ‘

On the other hand, if the migrations between subpopulations are symmetric, and
there is no biological variability except the vulnerability of the prey, then we should
harvest a relatively less vulnerable prey local population more conservatively than the
other prey local population which is more vulnerable to predation. A special case
occurs when there is no predation in one of the patches, say patch one. In this case,
patch one is a refugial patch for the prey. This rule ensures that we harvest the prey
living in the refugial patch more conservatively than the prey living in the habitat
where predation occurs.

Furthermore, if the prey vulnerability of the two prey subpopulations are the
same, but the predator efficiencies differ between patches, then we should harvest the
prey living in the patch with the relatively more efficient predator more conservatively
than the other prey subpopulation. This result suggests that if the predator has a
high biological efficiency, then we should leave enough prey to sustain the predator
population. In the chapter that follows, it will be shown that if the market value of the
predator is large enough compared to the market value of the prey, then the optimal
strategy can be a “seeding strategy” where prey are put into the system from another
patch.

Unlike the results of optimal harvesting for a single-species metapopulation, the
results generalised here are more restrictive. To establish the generalisation of the rule
of thumb TP 2, that is Result 4 in this chapter, an extreme condition, that the predator
efficiency before and after dispersal is the same, is needed. Otherwise only some parts
of the rule are true, depending on whether the predator efficiency before dispersal is
less, or more, than the predator efficiency after dispersal. In the case when the predator
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patch with the relative importer prey subpopulation more conservatively than if we use
the strategy from unconnected two-patch predator-prey harvesting theory. Conversely,
in the case when the predator efficiency before dispersal is more than the predator
efficiency after dispersal then we harvest the relative importer prey subpopulation and
the predator living in the same patch with the relative exporter prey subpopulation
less conservatively than if we use the strategy from unconnected two-patch predator-
prey harvesting theory. The same condition is also required to establish the rule that
generalises rule of thumb TP 3.

If harvesting only targets one species then rules of how to manage a predator-
prey metapopulation might be different from rules if harvesting targets both species.
Escapement comparison rules with incorrect policies only work if the population size
differences between the unexploited subpopulations are negligible, which is unlikely.
However, escapement comparison rules between subpopulations hold in some reason-
able circumstances. The rules include a concluston that if harvesting only targets the
prey (predator) species and if the only difference between populations is prey (predator)
migration parameters, then optimal escapements for one period to go suggest that we
should harvest the relative source prey (predator) subpopulation more conservatively
than the other prey (predator) subpopulation regardless of the value of predator effi-
ciency. Similarly, if the migrations between subpopulations are symmetric, and there is
no biological differences between the subpopulations except for the prey vulnerability
to predation (the predator efficiency) then we should harvest a relatively less vulner-
able prey (a more efficient predator) subpopulation more conservatively than the other
prey (predator) subpopulation regardless of the value of predator efficiency.

To establish the rules discussed in this chapter I assumed that the cost of har-
vesting is negligible or independent of the stock abundance and that the market values
of both species are the same. In one section in the next chapter I will show how the
inclusion of the cost of harvesting and market value differences may affect the results
presented in this chapter.

4.6 Appendices

Appendix 4A: Derivation of net revenue function II

This appendix derives the net revenue function in equation (4.14). Note that the cost
function for two-patch predator-prey exploitation can be derived analogously to the cost
function for single-species exploitation (Clark, 1990). Suppose that the instantaneous
exploitation cost Cx;(X;, Hx,) is linear in Hy,, then

Cxi(Xi, Hx,;) = Cxi(Xi)Hx,. (4.85)

The total cost of the exploitation to harvest Hy, taken from the available stock X
is Cr(Xik, Hx,, ), which can be formulated as

Cxi(Xie) + Cxi(Xie — 1) + - - - 4+ Cxi(Xie — Hx,,, +1). (4.86)

Hence
X

Cr(Xik, Hx,,.) %/ N Cx;(€)d¢. (4.87)

Nik—Hx ik
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The net revenue is then given by

Oxi(Xik, Hx,,) = pxiHx, — Cr(Xix, Hx,,)

Xik
) i (px — exi(€))de. (4.88)

Appendix 4B: Independence of optimal escapements on time
horizon

To prove the claim of time horizon independence, first consider the time horizon T' = 2.
Let us rewrite the net revenue with time horizon T = 1, J1(Nyo, Nao, Pro, P2o), in
equation (4.20) above using equation (4.22) for k£ = 1 into the first term of equation
(4.20) and using equation (4.22) for k = 0 together with equation (4.14) into the second
term to obtain an expression for the net revenue with time horizon one

Jl(Nm, Nao, Pro, P20) - 0 max ; (PV(NIh Nay, Py, le)

<Sxio<Xi

+ V(N10> Nao, Pro, P20) —V(SNIO’ SNzo) SPIO’ Son)) : (489)

If the optimal escapements S%,;, can be obtained from equations (4.26) - (4.29)
then the above equation becomes

J1(N1o, Nog, Pro, Pao) = pV (N, Nay, Py, Pyy) + V(Nio, Noo, Pro, Pao)
_V(S}’:Ilo’ SX’QQ’ S;’m ¥ 5;20)’ ) (4-90)

where each stock abundance X} is a function of the escapement S%,, of the previous
period. To produce the net revenue for the next time horizon, 7' = 2, use the following
procedure. Rewrite Jo(N1g, Nog, Pio, Pao) in equation (4.16) in the following form

Jz(Nm, Nzo, Plo, on) = max (le(Nn, N21, P11, P21)

0<Sxi0< X0

"‘22: > HXi(XiOaSX,-o))- (4.91)

i=1 Xe{N,P}

This represent present value revenue as a function of prey and predator populations at
the last time step. Rewrite Ji(Ni1, Nay, Pi1, Pe1) in equation (4.16), in a similar way,
as follows

J1(N11, N21, P11, le) = OSSI)]?{?_}S(XM <PJ0(N12, N22, Plz, Pzz)
2
+ Z Z HXi(Xilv SXu))
1=1 X€{N,P}

2
= II iXi ,S :
ossaﬁgxi()(f’;m{zw} xi(Xiz, Sxice)

2
+ Z Z HXi(Xﬂ)SX"l))

1=1 Xe{N,P}
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= max_ (pV/ (N2, Naz, Pr2, P2)

0<Sxi0<Xio
+V(Ni1, Nat, Put, Pot) = V(Swiys Shays S Spoy))
= pV(Nfz, N;Z, P1*27 P2*2) + V(Nlh N21’ P117 P21)
—V (SN, s SNy s SPyy > SPyy )- (4.92)
Substitute this result into equation (4.91) to produce

Jz(Nm, Nayo, Pyo, on) e ogsr,r(l.-?)gcx.-o P(PV(Nfza Ny, Py, Pz*z)

+ V(NII.) NZ].) Pl].) P21) - V(S}k\]u’ S]’:le ? S.;;ll’ S}';zl))
+ V(Nm, Nao, Pro, P20) - V(SNma SN207 SPIO’ Son))' (493)

All terms with stars are constant with respect to Sx;o, hence

Jz(Nm, Nzo, P10, on) . 0<SmaX PV(NIb Nzl, P11, P21)

<Sxin<Xio
+ V(Nloa N207 PIO’ P20) - V(SNIO) SNzoa SP107 SP20) + pC) (494)
Then equation (4.89) is used to obtain
J2(N1o, Nag, Pro, Pao) = J1(N1o, Nao, Pro, Pao) + pC. (4.95)

Note that the maximisation of the discounted net revenue resulting from harvesting two
periods from the end is given by the same first period escapements of the maximisation
with only one period, that is given by S%, which result from solving equations (4.26)
to (4.29). A similar method can be used to show that the expected net revenue three
periods from the end is

Js(N1o, Nao, Pro, Po) = J2(N1oy Nao, Pro, Pao) + p°C (4.96)

and mathematical induction can be used to show that expected net revenue T + 1
periods from the end is

JT-l—l(NlO) N20’ PlO) P20) = JT(NIO’ NZO, PlO) P20) + PTC (497)

To prove this claim let us recall that the optimal escapements for time horizon ¢ =
T is given by solving the value function of the sum of the discounted net revenue
from harvesting up to period t = T. This value function is Jr(Nyo, Nao, Pio, P2o) =
Jr_1(N1o, N2o, Pro, Pao) + pT71C. Using equations (4.16) the value function up to the
next time horizon is given by

JT+1(N10, Nzo, P107 P20) = max (PJT(NM, N21, P11, P21)

0<Sxi0< X0
2
+Z Z HXi(Xi07SX"0))
i=1 Xe{N,P}

= max (P[JT—1(N11,N21,P11,P21) +OéT_lC]

0<Sxi0<Xio

-I-XZ: > HXi(XiOaSX;O))

=1 Xe{N,P}
= Jr(Nio, Nao, Pro, Pao) + p" C. (4.98)

This proves that the optimal first-period escapements are independent on the choice
of time horizon considered.
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Appendix 4C: Optimal harvest comparisons between single-
species and predator-prey metapopulations

If there is no source/sink and exporter/importer prey subpopulation and predator
efficiency is extremely high (C' = 0) then prey equilibrium harvest from a predator-
prey metapopulation, Hy , is lower than the one from a single-species metapopulation.
To prove this recall that

S*‘ * * * S* ] * * *
Hy = (aSx, + pa(rSy,(1 - T(N') + Sy S5) + pii(rSa,(1 - I’;J ) + &Sy Sp.)) — Sk

If Hy,, is prey equilibrium harvest from a single-species metapopulation then
Hy, — Hy, = (a—1)(Sx, — Sn..)

[ sk L[ Sk
+r [(Pu' — pii)SN, (1 - II;’) + (pji — pij) SN, (1 - II;’)]

+a(pi; + pii) Sy, Sp.
= alpi + pji) Sy, Sp, <0, (4.99)

since Sx, = Sx, and Sx; = Sx,,. Similarly, if Hp, and H}, , denote predator equilibrium
harvest from predator-prey and single-species metapopulations,respectively, then

HI*’,- = H};‘.s - ,B(Qii + (Iji)S}kvl-S}gl- > 0. (4100)

Appendix 4D: Optimal harvest comparisons between subpop-
ulations

If prey subpopulation two is a relative exporter subpopulation with prey migration
rate py; is the same as the retention rate of prey subpopulation one py;, there is no
source/sink subpopulation, the predator populations are indistinguisable, and prey
recruitment is greater than the number of prey eaten by the predator, that is, 7Sy, (1~
Sy, [ K) > |a|Sx, Sp., then the equilibium harvest for prey subpopulation one is greater
than the equilibrium harvest for prey subpopulation two. This can be proved as follows.

Hy, —Hy, = (a—1)(Sy, —5h,)

SK S
+r((pu — p12)Si, (1= —22) + (P2 — pao) Sy, (1 — =2))

K K
+a((p11 — p12)Sn, Sp, + (P21 — p22)Sy, S5, )-
S*
= 2(p1u1 — p12)(rSy, (1 — I"Y‘ ) + Sy, Sp) > 0. (4.101)

Similarly, it can be shown that Hp — Hp, = 2(q11 — q12)(s5p, (1 — S—}:DL) +B8Sx,Sp ) = 0.
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Chapter 5

Predator-prey metapopulations
with juvenile migration and adult
interaction

The model in the previous chapter assumes that the predator eats the juvenile phase of
the prey. In this chapter I assume that the predator-prey interaction occurs in the adult
stage of the prey and predator populations. More simply put, adults feed on adults. In
nature, predation on adult life stages is not uncommon. Many marine species do not
eat a particular prey species until they reach a certain age (Overholtz et al., 1991).

Zaret (1980) divided predators in aquatic communities into two types: “gape-
limited predators” and “size-dependent predators”. The first type of predator eats
prey by swallowing it whole. Hence the prey needs to be smaller than the predator’s
gape. There is no chance that a predator will eat prey larger than its gape. The
second type of predator eats prey by piercing, crushing or sucking it, and hence can
eat prey which is bigger than the predator’s mouth diameter. Examples include sea
lamprey, Petromyzon marinus, that prey on many species of fish, like lake trout, salmon,
rainbow trout, whitefish, burbot, walleye and catfish, and octopus that prey on many
species of crustaceans and gastrophods (Cortez et al., 1998). However, some predators
have preferential feeding habits. For example, several species of Coregonus and many
planktivorous fish only eat the largest prey individuals (deBernardi and Giussani, 1975;
Vanni, 1987; deBarros et al., 1998). The maximum body size of the prey that is
captured by the gape-limited predators is limited by the diameter of the predator’s
mouth, while the maximum body size of the prey that is captured by the size-dependent
predators is only limited by the predator ability in capturing and handling the prey
(Zaret, 1980). For example, large crabs can prey on large abalone, up to 200 mm
(Shepherd and Breen, 1992) and large octopi eat large mussels by drilling through the
shells (McQuaid, 1994). This evidence shows that predation on prey adult life stages
is common in marine systems.

The model to describe this adult interaction predator-prey metapopulation has
a similar structure and assumptions to the previous model, except for the details of
the predator-prey interaction. Generally food suplies may affect predator reproduction
and adult survival of the predator (Mangel and Switzer, 1998). For this reason, 1
investigate optimal escapements for two different models. The first model assumes
that predation affects predator survival and the second model assumes that predation
affects predator recruitment. I investigate both cases and compare how their optimal
escapements differ and examine the robustness of the results in the previous chapter.
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As in the previous chapter I use dynamic programming and the method of Lagrange
multipliers to find the optimal harvesting strategies for the populations in both models.
The results in this chapter show that the most significant rule, that we should harvest
a relative source subpopulation more conservatively than a relative sink subpopulation,
is robust regardless of the structure of the predator-prey interaction.

Unlike the previous chapter, in this chapter I present the optimal escapement
for any period to go, when harvesting only targets one of the species. In the previous
chapter, escapement analysis for one period to go shows that the most significant rule,
that we should harvest a relative source subpopulation more conservatively than a
relative sink subpopulation, is true for a limited situation when harvesting only targets
one species. In this chapter, numerical examples show that this rule holds for any
period to go. I also explore the situation where the optimal harvest for one of the
populations is negative. While at first glance this appears unlikely, a negative harvest
could be implemented in some cases by seeding stock.

5.1 The first model: Predator survival model

Assume that there are predator and prey populations in each of two different patches,
namely patch one and patch two. Let the movement of individuals between the local
populations be caused by the dispersal of juveniles. Adults are assumed to be sedentary,
and they do not migrate from one patch to another. If the population size of the prey
and predator on patch ¢ at the beginning of period k are denoted by N;; and Py
respectively, then the dynamics of the prey and predator populations are

Nite+1) = aiNix + i Nip P + pi Fs(Nig) + pi F5(Njx ), (5.1)

Pitky1) = biPir + BiNup Pi + ¢::Gi(Pix) + ¢;:G5(Pjx)s (5.2)

where a; and b; denote the survival rate of adult prey and adult predator in patch 7. Let
the proportion of prey and predator juveniles from patch i that successfully migrate to
patch j be p;; and g;; respectively, as illustrated by Figure 4.1. The functions F;(N)
and G;(P;) are the recruit production functions of the prey and the predator on patch
7 in time period k. Different from the model in Chapter 4, I assume that the recruit
production functions are logistic and given by equations (3.3) and (3.4). To ensure that
the system is a Lotka-Volterra predator-prey interaction, I assume o; < 0 and S; > 0.

As in the previous chapter I introduce exploitation into the system and assume
that the only possible exploitation is through a selective harvesting policy. If the
amount of harvest taken from the prey and predator stocks in patch i at the beginning
of period k are Hy,, and Hp, respectively,let Sy, = Ny, — Hy,, and Sp, = Py, — Hp,
be prey and predator escapements on patch ¢ at the end of that period. Hence, if
the escapements are substituted into equations (5.1) and (5.2), then the model for an
exploited two-patch predator-prey metapopulation with adult interaction is

Nigr1) = aiSny + SNy SPy + PaFi(Sny) + pii F5(SN,, ), (5.3)

Pi(k+1) b biSPik + ﬁiSNik SPik + qiiGi(SP.'k) + qjiGj(Sij)' (5‘4)

Using present value maximisation, the objective of the resource owner is to max-
imise the net present value, PV, from harvesting each subpopulation of the prey and
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the predator up to time horizon ¢ = T. If Ilx; represents the present value of net
revenue resulting from harvesting population X in patch ¢, and p is a discount factor,
then the sole-owner should maximise PV in (4.11) subject to equations (5.3) and (5.4),
with non-negative escapement less than or equal to the population size. As in the pre-
vious chapter, I assume p = 1/(1 + §), where § denotes a periodic discounting rate.
The net revenue Ilx;(Xi, Sx,,) is given by (4.14), which is the net revenue from the
harvest Hx,, of the local population X; in period k. It is assumed that the price of the
harvested stock is fixed. The cost of harvesting Hy, from stock X; is assumed to be a
non-increasing function of X; and may depend on the location of the stock.

To obtain optimal harvesting strategies for the system, I use the same procedure
as in Chapter 4, and hence I do not provide the details here. This procedure yields op-
timal escapements Sy, and S§, , for the prey and the predator, respectively, which can
be shown to be independent of the time horizon considered. The optimal escapements
satisfy the implicit equations

PN — CNZ.(S}“V.'())
)

= (ai + a;Sp, + i F{(Sx,)) (v — CNi(Ni1)>

+ (Pis FY(S3))(pw — eni(Njn))

+8:Sp,, (pp — cpi(Pi)), (5.5)

pbp — CPi(S;;.'o)
p

= (bi + BiSn,, + 6:iGi(Sp,)) (PP — CPi(Pz'l))

+ (4 GH (S ) (PP = cpi(P))

-I-OéiS;,‘,O (pN — CN,'(N“)) . (56)

These equations are the general form of the optimal harvesting equation for a two-
patch predator-prey metapopulation with adult interaction. It can be seen that if we
set oy = fB; = 0, then Tuck and Possingham’s (1994) optimal harvesting equation
for a single-species metapopulation is obtained. Furthermore if there is no migration
between patches, p;; = ¢;; = 0 for ¢ # 3, and F'(S) = a; + pii F/(Sn,,) together with
a; = fB; = 0, then the equation reduces to the optimal harvesting equation for a single
population (Clark, 1976a). The escapements S, found by solving these equations are
the optimum escapements of the prey and the predator that maximise revenue provided
the Hessian matrix J{'(Snyo, SNyes SPros O Py ) satisfies [J](S%)(Sx —S%)]- [Sx—S%] <0,
where SX S (SN10’SN20’ SPIO)SPQO) and S;( B (Sltlw’SR’zo’S;’m’S;;zo)'

5.1.1 Optimal escapements

In this section, the optimal escapements in equations (5.5) and (5.6) are compared
to the strategies in which spatial structure is not recognised. The comparison is car-
ried out to see how important it is to use the theory presented here for choosing
optimal escapements. As before, I consider two ways in which spatial structure can be
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ignored. First, the whole system can be considered a well-mixed homogeneous popu-
lation. Second, the existence of the patches is recognised, but we assume that there
is no migration of individuals between patches. The optimal escapements from a con-
nected two-patch predator-prey model are compared to those systems in which spatial
structure is ignored.

To facilitate comparisons, I use the concept of source/sink and exporter/importer
subpopulation and more/less efficient predator subpopulation and more/less vulner-
able prey subpopulation defined in Chapter 4. Optimal harvesting equations for an
unconnected and well-mixed predator-prey population can be obtained from equations
(5.5) and (5.6) by assigning p;; = ¢;; = 0 for ¢ # 7, and pi = ¢ = 1,1 = 1,2.
However, if we incorrectly consider there is no connection between subpopulations,
the growth rate for prey subpopulation : would be measured as r;, = ripi; + r;pji
if it was incorrectly believed to be an unconnected predator-prey system, and r;, =
[ri(pii + pi;) +7i(p;; +pji)]/2 if it was incorrectly believed to be a well-mixed predator-
prey system, as in the previous chapter. The growth rate for the predator is measured
similarly.

5.1.2 Results with negligible costs

To simplify the analysis, [ assume the costs of harvesting are negligible and there is no
difference between the prices of the prey and predator. Using these assumptions, and
substituting all derivatives of the logistic recruitment functions, F; and Gj;, in equations

(3.3) and (3.4), equations (5.5) and (5.6) become

1 2455
= = a;+ (pia + pi2) (Ti - LSN;) + (ai + B:) Sk, (5.7)
3 K,
1 2s;
[—) = b + (g1 + gi2) (Si — FSP;) + (ai + Bi)Sn;- (5.8)

Let A; = % — (pil +pi2)’f'i —a;, B; = ;1)-—- (Qil + qig)si 3 bi, and C; = o; —i—ﬁ, Solving equa-
tions (5.7) and (5.8) produces optimal escapements for prey and predator populations
Sy, and Sp,

Ai(qia + Qiz)gﬁF + C;B;

Sp = 2 , (5.9)
Bi(pir + pia) % + Ci A
St = (Pt 7 Z)j"- , (5.10)

provided A; = CF — (pia + pia) Fi(gin + qia) 3 # 0.

As expected, equations (5.9) and (5.10) are similar to equations (4.41) and (4.42)
in Chapter 4, only now C; takes the form of a pre-dispersal predator efficiency be-
ing a combination of the conversion efficiency 8 and the predator attack rate «. In
the previous chapter the predator efficiency takes the form of a post-dispersal pred-
ator efficiency in which the value is affected by the migration parameters p;; and g;;.
Equations (5.9) and (5.10) are generalisations of the optimal escapements for a single-
species derived by Clark (1976a) and a single-species metapopulation derived by Tuck
and Possingham (1994). By assigning «; = §; = 0, the optimal harvesting strategy for
the single-species metapopulation is established. Furthermore, if in addition we remove
dispersal (pi;; = pji = ¢;; = q;i = 0, and pi; = pj; = qii = ¢;; = 1) then Clark’s (1976a)
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optimal escapements for the single-species model, with adult survival rates a; and b;,
are obtained. In the case of o; = 3; = 0, the escapements reduce to escapements for a
single-species metapopulation, which satisfy the rules of thumb TP 1 to TP 3 described
in Chapter 2. In the presence of predator-prey interactions, I establish the following
results as generalisations of the rules of thumb harvesting strategies for a single-species
metapopulation.

Result 7 (Sufficient conditions for positive escapements) Let Sy. and Sp, denote the

optimal escapement from predator-prey metapopulation given by equations (5.9) and
(5.10). If A; and B; are negative, and C; is non-positive with C; > ma;c{w‘ %}
then:

1. A; is negative,

2. S¥, and Sp, are positive.

Proof

1. Note that since —(pi1 + pi2)r/A = [(pir + pi2)7}/[(pir + piz)r + (a — (1 + 8))] >
1, the condition C > 2B/K implies C > (—(pi1 + pi2)r/A)(2B/K). Hence
C; > max{—2Bi(pi1 + pia)ri/[A: K], —2A; (q,l + qi2)s:/[BiL:]}. We have B;(pi; +

plz)z_rl < —C;A; or alternatively B; < (p—+p‘—)'-§ Since —C > 0 then —C;B; <
il 2

_C; (;C&E_> . Since we have A;(gia + qn)Li',‘ < —C;B; then A;(qin + ql'2)2;: <

(pl1+pl'2) 5 e
(m__i_c;'_‘:)'_}% Finally, since A; negative, then we have (g + qu)%(pil +
pig)% > C? which means A; < 0. m|
2. It is clear from equations (5.9) and (5.10). ]

An analogous result can be obtained if A; and B; are positive and Cj is non-
negative. However, C; > 0 is biologically unacceptable since it means that the predator
efficiency is more than 100%. As in the previous chapter, an interpretation of the
condition A; < 0 is that the natural growth rate of the prey, that is, the sum of the
proportion of surviving adults and the per capita larval production, is higher than the
reciprocal of the discounting factor 1/p. The condition B; < 0 for the predator is
interpreted similarly, while C; is non-positive with C; > mam{%gi, %‘} is interpreted
as a high predator efficiency. Both conditions, A; < 0 and B; < O,' are fairly likely
for typically fast growing fish populations. I use Result 7 to explore the relationship
between escapements from a predator-prey metapopulation presented in this chapter
and escapements from a single-species metapopulation discussed in the paper of Tuck
and Possingham (1994). The relationship is summarised in the following Corollary.

Corollary 2 (Escapement comparison to a single-species metapopulation) Let Sy, and
Sp. denote the optimal escapement from a predator-prey metapopulation given by equa-
tions (5.9) and (5.10), and let Sy, and Sp., denote the optimal escapement from a
single-species metapopulation given by the same equations by assigning o; = 3; = 0. If
A; and B; are negative, and C; is non-positive with C; > max{%, 23‘}, then:

L S = Sk, = Grrmaimrmiok <0,
* * Ci *
2. SP-’ o SPis T (gitai2)2si/Li SNi <0.
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Proof

1. The sign of S}, — Sy, needs to be determined.

Ai(gin + (Iiz)zL—sl." + C;B; A;
A - —(pian + Pi2)%
CiBi(pi1 + pi2) 3 + CPA;
Ai(pa + pia) B
Bi(pi + piz)% + C; A;
(Ai(Pu -I-Piz)%) /Ci

* * =
SN.‘ - SNis -

Because the denominator is positive and B;(p; + piz)% < —CjiA;, then Sy, —
Sx., < 0. The proof of the second part is analogous to this proof. 0

Corollary 2 suggests that the optimal escapement from a predator-prey metapop-
ulation is always greater than, or equal to, the optimal escapement from a single-species
metapopulation depending on the efficiency of the predator, C;. However, we can not
draw any conclusion on whether we should harvest the relative source subpopulation
more conservatively than the relative sink subpopulation, except for one case when
the predator is perfectly efficient, C; = 0. In this case, the optimal escapement from
a predator-prey metapopulation is equal to the optimal escapement if the population
were managed as a single-species metapopulation. Hence, all rules of thumb described
by Tuck and Possingham (1994), i.e. TP 1, TP 2 and TP 3 in Chapter 2, are satisfied.

In many cases, the predator efficiency C; falls somewhere between o; and zero.
In this case, Corollary 2 does not give us a clear insight on how the predator-prey
metapopulation optimal escapements differ from spatially-unstructured predator-prey
optimal escapements. The following Lemma enables us to explore these differences.

Lemma 3 (Migrations trade-off equations) Let S¥. and Sp, denote the optimal es-
capement from a predator-prey metapopulation given by equations (5.9) and (5.10). If
a; = a, bi=b, K, =K, L;=1L, C;i=C,R= %—a, SZ-};—I), e B (Pii'i‘pij)'ri and
Sim = (@i + qij)si, for 1 =1,2, then:

481mSam 2R
L (S~ St)Mids = (Cstm = sam) = 2 1y — 1)) (S = C)
2C

25
L (C - f) (Tlmslm - r2m32m)a

2. (S~ St)AAs = (C¥rim = 1am) = T2 (51— 1) ) (52 = C)

KL K
% (0= Cinsin = ).
Proof
1.
Sy s, = EZ Pin) 242 4 C(S = 81m) (B = ram)2m + C(S — s3m)

Al A2
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((R — Tim)28m 4+ C(S - 51m)> (C? — ramsSamyr)

A1A,
_ ((R - T2m)ﬁlz’m + C(S - S2m)) (02 - rlmslmﬁf)
AlAz

where A; = C? — rimSimzg, ¢ = 1,2. Completing and simplifying the numerator
of the right hand side of the above equation will end up to the form of the
right hand side of equation 1 in this lemma. The second part can be proved
analogously. O

In general it is difficult to compare the optimal escapements between patches.
Lemma 3 suggests that there is a trade-off between prey and predator juvenile migra-
tions to determine which patch has a higher escapement. In some special cases, we
can determine it easily. For example, if ry,, = so, and rom = S1m, that is, if prey sub-
population 7 has the same per capita larval production with predator subpopulation

7, then (Sx, — S, )A182 = Ay(rem — rlm)(% — C). If A; and B; are negative and
max{%, Z—L—} < C; € 0 then A; is negative and % — (' is positive. Hence, the sign
of the difference depends critically on the sign of rq,, — r1m. In this case, if rop = 71,
clearly we should harvest the prey equally in both patches. While if r;,,, > r1,,, that is
if prey subpopulation two is a relative source subpopulation and predator subpopula-
tion two is a relative sink subpopulation, then we should harvest prey subpopulation
two more conservatively than prey subpopulation one. Similarly, it can be concluded
that the predator living in the same patch with a relative source prey subpopulation
should be harvested less conservatively than the predator living in the other patch.
If we ignore the predator-prey interaction, then the same rule is obtained from the
single-species metapopulation’s rule of thumb (TP 1).

However, the rules above are derived by assuming 7, = S;m, Which is unlikely.
The following result describes a similar rule to the results above for a more general case.
It will also show that, unlike the single-species metapopulation case, in a spatially-
structured predator-prey population subpopulations with symmetric migration may
have different escapements. To gain a better insight into the effect of juvenile migration
on the decision of how the exploitation of a spatially-structured predator-prey system
should be done, most parts of the following discussion will assume that there is no
difference in juvenile migration for the predator, that is, sy = Som = Sm. In other
words, the predator has symmetric migration. To enable comparisons to escapements
if we ignore spatial-structure, I define r;, as the growth of prey subpopulation : if it
is considered an unconnected population, and has a value as given in equation (4.44).
Furthermore I define r,, as the growth of the prey population if it is considered a
well-mixed population, which has a value given by equation (4.45).

Result 8 (Escapement comparison between subpopulations) Let one of the prey sub-
populations be a relative source while all other parameters of the prey and the predator
are identical for both subpopulations, without loss of generality let us assume that prey
subpopulation one is a relative source, that is, (p11 + p12)r1 > (P22 + pa1)r2. If || = B,
or if A; and B; are negative, and C; is non-positive with C; > max{%, %}, then:

1. SN, > SN,

2. Sp < Sp,.
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Proof
1. Let Ag, = (S§, — S¥,)A1A,, then using Lemma 3 Ag, can be written as

4 2R 2C 25
ASN = ( [;L (T‘zm T‘1m)) (T - C> L (C - I() Sm ("'Im T2M)
[ /45,\ (2R 2C 25
= s |~ (57) (T -0)+ 7 (- %) am = rim)

[ 2 o 4spR 25 28,
= el (C ~ &L ¢ (7 - 7))] (ram = rim)
(2 [ o 4smBR  2C
7 (C A A S"‘))] (ram = Tim)

o 9B\  4s, R
= sn |7 (C (0—7) s )] — |

— Sm

Smce B < C <0 then Ag, > 0. O
2. Let ASP = (Sp, — Sp,)A14,, then using Lemma 3 Ag, can be written as

S 2R
ASP = 02(7'1771 — ’r‘gm) (7 B C) I( <C . "L_) Sm('rlm - 7'2m)

- Gl [(E-c)o- 2o~ ).,

2B 4Rs,,
= Clrim —rom) [( K C) 57 ]
Clearly As, <0, since 22 < C < 0. ]

Result 8 shows that there is a region of parameter space where we protect a
relative source prey subpopulation more than a relative sink prey subpopulation in the
sense that we leave the relative source prey subpopulation with a higher escapement
than the sink subpopulation. Similarly, by investigating the effect of prey migration
(relative source/sink prey subpopulation) to the predator’s optimal escapements, it can
be concluded that we protect the relative source prey subpopulation in two different
ways: directly, with a higher escapement of the relative source prey subpopulation,
and indirectly, with a lower escapement of the predator living in the same patch with
the relative source prey subpopulation. The importance of the relative source prey
subpopulation is intuitively reasonable.

Similarly, let us assume that one predator subpopulation is a relative source while
all other parameters of the prey and the predator are identical for both subpopulations,
and |a| = 3, or C > %. Using predator-prey metapopulation optimal escapements
as a policy to manage the exploitation of a predator-prey metapopulation system we
would harvest the relative source predator subpopulation more conservatively than the
other predator subpopulation which is a relative sink subpopulation. On the other
hand, we would harvest both prey equally, or would harvest the prey living in the
same patch with the relative source predator more than the other prey subpopulation.

The analogous result for the predator is easier to interpret whenever g;;s; = g¢;;s;.
In this case, one of the predators is a relative exporter subpopulation. Let predator
subpopulation one be a relative exporter, then we harvest this subpopulation conser-
vatively while we also harvest the prey subpopulation in the other patch conservatively.
The rationale is as follows. Since the predator in patch one is a relative exporter, then
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the outflow of its juveniles to the other patch is greater than the inflow, consequently,
we should leave the prey higher in the targeting patch of the exporter predator sub-
population.

The previous results allow us to compare our predator-prey optimal escapements
between different patches. Up to this point, I have concluded that if predator efficiency
is relatively high, then the rule of thumb TP 1 from single-species metapopulation
harvesting theory is preserved. To see how important and how different the predator-
prey metapopulation escapement is, compared to the escapements if we incorrectly
consider the population as a spatially-unstructured system, I construct the following
results. The results are the generalisations of the rules of thumb TP 2 and TP 3 for a
single-species metapopulation.

Result 9 (Comparison of strategy with an unconnected two-patch predator-prey sys-
tem) Let Sy, and Sp, denote the optimal escapement from a predator-prey metapopu-
lation given by equations (5.9) and (5.10), and let Sy, and Sp_ denote the optimal
escapement if we incorrectly consider the system as a system consisting of two un-
connected predator-prey systems. Let us assume that one of the prey subpopulations
is relative exporter and also a relative source while all other parameters of the prey
and the predator are identical for both subpopulations: Without lost of generality let
P1aT1 > P17 and pyiry > paare. If Ay = A = A and By = By, = B are negative and

C1 = Cy = C with C > maz{32,24} then:

1. S5, > SN,
- SN, < SN,
. Sp <SP

2
3
4- 5p, > Sk
5. Sw, + Sk, < Sw+ S
6

. 85, +15% /> 5% +ISE..

Proof

1. All parameters are equal except p1ar; > porra. Recall that

(R - T‘lm)gii‘m + CB

57V1 = rimSlm 2
cr -4 KL
and
% (R - T'lu)2—sll:m‘ + CB
SNlu . .

2 _ 4AriuSim
C KL

Hence, equation 1 in Lemma 3 can be written as

2B 4R31m> 281m

(Si = Sin )b = (= ran) (000 - ) = Him) 2o,

where Ay, = C% — #wsim and A; = C? — Lhmdim < (. Since pyiry > poars and

KL KL
A; < 0,2 = 1,2, then Ay, < 0. Furthermore since ry,, > r, and 0 > C > %,
then S3 — S%,. > 0. This completes the proof. O

113



. The proof of this part is analogous to the proof above. 0

. Using a similar procedure we obtain

(Sh, = 5P )AWAL = (11w — 11m)Y,

where Y = (C’(C’ —28) %m) C > 0. Hence Sy, — Sp,, <0. o
. This part can be proved analogously. O

. Recall that from 1, we have

. ey (rw—rm)X
(SNl SNlu) - AluAl ?

and similarly

* * _ (’r2u - TZm)X
(SNz SN2u) - Agy s )

where

<0

X = (O(C —2B/K) - 4?2’”) 25’1’;’"

with 81 = Som. If
ASNu = (S;ﬁ + S}:fz) - (S}:Ilu. + va2u)’
then

ASn. At AraBoAgu/ X
= (riw—rim) [C = (r2m + r2u)48imC?/(K L) + romrau16s2, /(K*L?)]
+(row — T2m) [C’4 — (rim + r1u)48:mC?* /(K L) + rlmr1u16sfm/(I(2L2)] .
= (r1y — Tim + 2w — Tom)C* — 2(T14Tou — TimTom )48im C* /(K L)
+(r1urau(Tim + Tom) — TimPam(T1u + T24)) 1685, /(K *L?).

Since Tiy + T2w = Tim + T2m, then the first term is zero, and the third term is
equal to (T1uT2y — TimT2m)(Tim + Tom)16s%, /(K2 L?). Hence,

(—88imC?/(KL) 4 (rim + rom)1682, /(K*L*))(T1uT2u — T1mT2m)

A =
S A rAs, X
_ (Bsin/(KL)(Hnnfrgemltin: — C))(ryurae — rimram) o
AIAIuAZAZu )
Since A; < 0 with ¢+ = 1,2, then C? — ﬂ%& < 0. We can prove that
if p1ir1 > poora then (riur2y — Timr2m) > 0. This completes the proof that

ASn, <0. O
. Using a similar procedure we obtain

ASp, = (88im /(K L)(2rtmtramdtin _ 02Yy() p, — rlmrzm)y o
A1A1 A Ag,

hence (S5 + Sp,) > (=)(Sk, + Sp,,), whenever p1ir1 > (=)paara. O
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Result 10 (Comparison of strategy with a well-mized predator-prey system) Let Sy,
and Sp, denote the optimal escapements from a predator-prey metapopulation given by
equations (5.9) and (5.10), and let S}, and Sp, denote the optimal escapements if
the predator-prey metapopulation system is incorrectly considered to be a well-mized
predator-prey system. If all hypothesis and assumptions of the Result 9 are satisfied
and in addition if C satisfies C(BC? + AB=rulsm > 2Brusm) = (), then:

1. Sy > 2Sn.»
2. Sy, <3SN
8. Sp < 35pu
4. Sp, > 15p,
5. S%, + Sk, < Sk
6. Sp, + Sp, > Sp, -
Proof
1. Recall that
o = (R, —rw)%erCwa _(R—ru)$ + CB
: C2 - Gur C? — 2z
Hence
Lo (R—rw)sf;”-{-C’B'
2 e 202 — #prw

Using Result 8 we obtain
(R— rlm)z—sﬂ+CB (R—rw)2s'” +CB

Sy, = = 5°
2 4smrim 2 4smrw
' C? — =3 C?— %t
since Ty, > Tw. FPurthermore, since C' is the root of %S}'{,w —8% = —3(R -
ry)imS — BC® 4 Bre2emC — ( then Sy, > 15k, . O

Since the proof for 2, 4 and 5 are similar to 1, and for 6 is similar to 3, then we
only need to prove 3.

. ASn, = (Sx, + S,) — Sk, = (S, — 5°) + (Sk, — S°). Following the proof in
Result 3, we obtain
A — (8 /K L(Hmiremlim _ G2))(p 1) — 11y ) %
e A1A AgAo ’
where X < 0 whenever C > 2. Since A; < 0,5 = 1,2, Ay = C? — Sppe <0,
and (r2 — rimram) > 0, then ASy, > 0. O

Results 8, 9 and 10 are the generalisations of the rules of thumb in Tuck and

Possingham (1994) for harvesting a single-species metapopulation. Numerical examples
given in the section that follows show that a subpopulation with lower escapement may
not give a higher harvest. In addition to the rules summarised in these results, I also
establish rules to harvest more or less vulnerable prey and more or less eflicient predator
subpopulations. These rules are summarised in the following result.
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Lemma 4 (Efficiency trade-off equations) Let Sy, and Sy denote the optimal es-
capement from predator-prey metapopulation given by equations (5.9) and (5.10). If
a = ay =a, b =b =0b K=K =K L =1L=1Lpu= pap2 =
P21, Q11 = Q22,12 = G21,71 = T2,81 = 82, Tim = (pr1 + pra)rL = Tom = m ==
s1m = (qu1 + q12)81 = S2m = Sm then:

9As,, 4r,.5,,B

L (Sk — Si) A8 = (C2— C) | (0o C1) + Ly B(C’ng)] ,
9Br. dry 5 A

2. (S~ Sh)AA = (G- C) | I (04 C) + et A(clcg)] .

Result 11 (Escapement comparison between subpopulations) Let one of predator sub-
populations be relatively more efficient while all other parameters of the prey and the
predator are identical for both subpopulations, without loss of generality, let us as-
sume that predator subpopulation one is relatively more efficient, that is, C; > C,.
If Ay, = Ay = A and By = By = B are negative, and C; 1s non-positive with
C; > ma:c{—ijf’Kﬁ, —ﬁéﬂLA}, then

Sy, > Sy, and Sp > Sp,.

Proof
From lemma 4, we only need to show that [2—’45—"‘(02 +C1) + 4’”_7;{%& n B(0102)] <0
which is satisfied by C; > —%. The second part can be proved analogously. a

Result 11 suggests that to harvest a predator-prey metapopulation optimally, we
should leave both subpopulations living in the patch with a relatively more eflicient
predator with higher escapements than the other subpopulations. A special case is
when 81 = 32 and o1 # . In this case, we should leave both subpopulations living in
the patch with relatively less vulnerable prey with higher escapements than the other
subpopulations. I illustrate these results and the previous results with some numerical
examples in the following section.

5.1.3 Numerical examples with negligible costs

In this section, a numerical example is presented to illustrate and to compare the two-
patch predator-prey optimal escapements to escapements from other methods. For the
purpose of comparisons, parameters for the prey and predator population are the same
as those in the previous chapters.

Comparison of optimal policy to a single-species metapopulation policy

Assume that the prey in both patches have carrying capacities K; = K, = 400,000,
with intrinsic growth rates r; = ro = 1000 and adult survival rates per period a1 =
a; = 0.001. The juveniles migrate symmetrically, that is, p;jy = p2a = 0.001 and
P12 = par = 0.003, hence there is no relative source/sink and exporter/importer prey
subpopulation. Let the discounting rate to be § = 10%. Before exploitation begins,
assume that the population is in the equilibrium state. In the absence of the predator,
the unharvested population sizes for prey subpopulation one and two are Ny = N, =
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Figure 5.1: Contour plot for the profit in (4.11) as a function of predator
escapements (Figure 5.1.a) and as a function of prey escapements (Figure
5.1.b), calculated in millions with a discounting rate 10%. Optimal escape-
ments Sp = 14505 and Sy = 9010 are found as the predator optimal es-
capements (Figure 5.1.a) and escapements Sy, = Sy, = 145050 are found as
the prey optimal escapements (Figure 5.1.b). The symbol “x” indicates the
position of equilibrium escapements for various discounting rates, e.g. x0%
indicates the position with no discounting rate.

300100. Using equation (5.9) with Ci = 0, I obtain the optimal escapements for
prey subpopulations one and two which are Sk, = Sk,, = 145050, hence both prey
subpopulations are harvested equally with first period optimal harvests Hy, = Hy,, =
155050 and equilibrium optimal harvests Hy, = Hy, = 224900.

Now suppose that the predator, F;, is present. For simplicity I choose intrinsic
growth rates of the predator s; = s; = 1000 with carrying capacities Ly = Ly = 40000.
I assume that the predator’s adult survival rates per unit time is not different from the
prey’s adult survival and is not different between patches, hence b; = b, = 0.001. The
predator on patch one is assumed to be a relative source and exporter subpopulation,
with the migration parameters q11 = a1 = Q22 = 0.001, and g1 = 0.003. Let |ou| =
B; = 0.00001, that is, the predator has a high conversion efficiency. Using NAG routine
c05nbf to solve equations (5.1) and (5.2), one of the positive equilibrium population
sizes for this two-patch predator-prey system is obtained, that is, (N1, Ny, P, P) =
(270581,205331,43248, 76676).

Furthermore, using equations (5.9) and (5.10), the optimal escapements for the
system, Sp, = Sy, = 145050, Sp = 14505 and Sp, = 9010, are obtained. These
escapements are similar to the escapements for a single-species metapopulation since
we have |og| = B; for each patch as is explained in the result. However, the optimal
harvests are different. In this case, the first period optimal harvests Hy, = 125531,
Hp, = 60281, Hp = 28743, Hp, = 6766, and the equilibrium optimal harvests Hy, =
203861, Hy, = 211831, Hp, = 22775, and H}, = 38784 are obtained.

If we use single-species metapopulation theory (Tuck and Possingham, 1994),
we should harvest the prey equally in each patch. In contrast, if we use a two-patch
predator-prey metapopulation, we harvest prey subpopulation two less than prey sub-
population one. This is because predator subpopulation one is a relative exporter
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subpopulation, and consequently there would be less prey in patch two as is indic-
ated by the fact that the unharvested prey equilibrium population size in patch one is
greater than the one in patch two, that is, N; > N,. As expected, because there is no
source/sink or exporter/importer prey subpopulation, using both methods we harvest
predator subpopulation one more conservatively than predator subpopulation two, and
in this case Hp = 22775, and Hp, = 38784 from two-patch predator-prey escapements,
and Hp = 1735, and Hp, = 25715 from single-species metapopulation escapements.
In conclusion, even though the degree of predator-prey interaction appears weak, that
is, a and @ are small, optimal harvests for a metapopulation are very different if a
predator is included in the system. In general, if C; < 0 the optimal escapement for a
predator-prey metapopulation is less than, or equal to, optimal escapement for a single-
species metapopulation. As a result, if we use optimal escapements for a single-species
metapopulation as a policy to manage a predator-prey metapopulation system, then we
might under-harvest the stock. On the other hand, if we use the optimal harvests from
a single-species metapopulation, we might over-harvest the prey and under-harvest the
predator.

Comparison of optimal policy to spatially homogeneous predator-prey policies

In this section, I compare the optimal escapements and equilibrium harvests from a
predator-prey metapopulation to the optimal escapements and equilibrium harvests if
spatial structure is ignored.

Firstly, if our predator-prey metapopulation system was incorrectly believed to
be an unconnected two-patch predator-prey system, then the optimal escapements
are found from equations (5.9) and (5.10) by replacing pi;, pij, ¢ and gi; with 1, 0,
1 and 0 respectively, and replacing (pi + pii)ri and (i + gi;)si with 7y, given by
equation (4.44), and (gii + ¢i;)si is replaced by siu similarly. The resulting escapements
are Sx,, = Sk,, = 145050, Sy, = 9010, and Sp,, = 14505. The harvesting strategy
from these escapements produces optimal equilibrium harvests Hy, = 211831, HE,, =
203861, Hp = 20294, and Hp, = 36736 with total harvest H} = Hj + Hp, =
479722. This total harvest is less than the total harvest if we correctly use predator-prey
metapopulation escapements, that is, H* = Hy + Hp = 477251 (see Table 5.1). This is
because if we use unconnected predator-prey theory, we fail to recognise the exporter
predator subpopulation which is important as a contributor to the other predator
subpopulation. In this case, we exploit the relative exporter predator too much, with
an escapement of only 9010, while the relative importer predator is harvested too
conservatively with an escapement of 14505.

Note that there is no difference in the total harvest of the prey, and that the dif-
ference is only in the harvest from each patch. If we use the harvesting strategy from
unconnected two-patch predator-prey escapements, we would over-harvest the prey liv-
ing in the same patch with the relative exporter predator, while the prey living in the
same patch with the relative importer predator is under-harvested. In conclusion, in
this example, comparing the strategy from unconnected two-patch predator-prey es-
capements, the harvesting strategy from a predator-prey metapopulation gives a higher
total harvest while it also leaves the relative exporter predator a higher escapement.

Secondly, if our predator-prey metapopulation system was incorrectly considered
to be a well-mixed predator-prey system, then the optimal escapements are found
from equations (5.9) and (5.10) by replacing pii,pij, ¢ and gi; with 1, 0, 1 and 0
respectively, and replacing (pi; +pi;)ri and (gii +gij)s: with ry, given by equation (4.45),
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PPM || 53, = 145050 | Hy, = 203861 | Sp, = 14505 | Hp, = 22775
Sk, = 145050 | HY, = 211831 | Sp, = 9010 Hy = 38784
Sk = 290100 Hy = 415692 | Sy = 23515 | Hp = 61559
UPP || 5%,.=145050 | Hy, —211831 | §3,_=9010 | Hp,,=20294
St =145050 | Hy. =203861 | S =14505 | Hp, =36736
S, =290100 | Hy, —415692 | 55, =23515 | Hp =57030
WPP || 5% =200100 | Hy, —413036 | Sp, =25346 | Hp =63391
Table 5.1: Escapement and harvest comparisons between correct and incor-

rect assumptions, where py = pp. PPM, UPP and WPP denote predator-
prey metapopulation, unconnected predator-prey population and well-mixed
predator-prey population, respectively.

and (gi + gi;)si is replaced by s, similarly. The resulting escapements are Sy =
200100, and Sp, = 25346. The harvesting strategy from these escapements produces
optimal equilibrium harvests Hy = 413034 and Hp = 63392 with total harvest
HY = Hy, + Hp, = 476426. This total harvest is less than the total harvest from
the predator-prey metapopulation, that is, H* = 477251 (see Table 5.1). As indicated
by Result 10, using the escapement from a well-mixed predator-prey population would
over-harvest the relative source predator subpopulation, P;, and under-harvest the
relative sink predator subpopulation, Py, since Sp, = 14505 > Sy, /2 = 12673 > Sp, =
9010.

5.1.4 Numerical examples with prey and predator differential
prices

In the previous section, I assume the prey and predator have the same market value. In
this section, I assume that there is a different market value for each species. I assume
the price of a unit prey stock is py = 8000 while the price of a unit predator is five
times the prey’s price, that is, pp = 40000. I obtain optimal escapements for the system
from equations (5.5) and (5.6). These escapements are S¥, = 189196, S5, = 194131,
Sy = 22073 and Sp, = 24540, with equilibrium optimal harvests Hy, = 168682,
Hy, = 157462, Sp = 39088 and Sp, = 62287. From Table 5.2, we see that the rule of
source/sink exploitation no longer holds. However, from Table 5.5, the value of the total
harvest from the predator-prey metapopulation escapements is higher than those from
the unconnected two-patch predator-prey and well-mixed predator-prey escapements.

5.1.5 Numerical examples with costs included

In the previous example, costs of harvesting are considered to be negligible. The
example illustrates the properties of the optimal escapements from a predator-prey
metapopulation. Analytically the properties illustrated by the example are described in
the previous results. However, the results ignore the costs of harvesting. In this section,
optimal escapements from the same predator-prey metapopulation are compared to
other escapements and the costs of harvesting are taken into account. To obtain optimal
escapements, | use the cost function

cx (X)) = (mx, + cinx, Xi)/(nx, Xi) (5.11)
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PPM || Sy, = 189196 | Hy, = 168682 Sp, = 22073 | Hp, = 39088

Sy, = 194131 | HY, = 157462 Sp, = 24540 | Hp, = 62287

S% = 383327 | Hy = 326144 | Sp = 46613 | Hp = 101375
UPP || Sy, =194131 | Hj, =157462 Sp,,=24540 | Hp =42502

S, =189196 | HY =168682 Sp,. =22073 | Hp, =58057

Sy, =383327 | HY =326144 Sp =46613 | Hp =100559
WPP || S; =381486 | Hy =330028 Sp. =45692 | Hp =100293

Table 5.2: Escapement and harvest comparisons between correct and incor-

rect assumptions, where py = tpp. PPM, UPP and WPP denote predator-
prey metapopulation, unconnected predator-prey population and well-mixed
predator-prey population, respectively.

which is a decreasing function with respect to X; and has a non-zero limit (¢; # 0) as
X; approaches co. Hence, with this cost function I assume that there is a constant cost
per unit stock whenever the stock size is high.

In this example, I use my, = mpy, = mp, = mp, = 2000, ny, = nn, = 0.25,
¢; = 1000, and np, = np, = 0.05. Since np, < nn;, I assume that the cost of harvesting
per unit predator is higher than the cost of harvesting per unit prey. I investigate
two cases, first when there is no difference between the price of a unit of prey and
predator, I assume py = pp = 8000. Second, I assume that there is difference between
py and pp; let py = 8000 and pp = 40000. Using these parameters, I conclude that
in the presence of a price difference between the prey and predator, the rule of thumb
about source/sink exploitation may not hold. We harvest the relative source predator
subpopulation less conservatively than the relative sink predator subpopulation.

In Result 12 T provide some conditions that must be satisfied under which we
harvest the relative source predator subpopulation conservatively. One of the condi-
tions is that the ratio of the predator adult survival in patch one to the predator adult
survival in patch two must be equal to the ratio of the marginal net revenue from
harvesting predator subpopulation two to the marginal net revenue from harvesting
predator subpopulation one, that is, bi/bs = (pp — cpa2)/(pp — cp1). This condition is
not satisfied in this example. Figure 5.2 compares the predator optimal escapements
for various combinations of market price and cost of harvesting and shows how robust
the rule is in the presence of the costs of harvesting.

As in the case of negligible costs, profit from predator-prey metapopulation es-
capements is higher than from the other predator-prey escapements (Table 5.6). In
the following section I discuss the effects of prey vulnerability variations on the op-
timal escapements, and in Section 5.1.7 I establish rules similar to the rules of thumb
discussed above with the inclusion of harvesting costs in the analysis.

5.1.6 Variation in the prey vulnerability parameters

I consider a predator-prey metapopulation that is homogeneous, except for differences
in the prey vulnerability, o;. Assume that all parameters of the metapopulation are
exactly the same as the previous example, except the migration parameters. In this
example, prey migration parameters are p11 = p22 = qu = q22 = 0.001 and py1; = pa1 =
Q12 = go1 = 0.003. Assuming that costs are negligible and both the prey and predator
have the same price, I vary the prey vulnerability, o, from -0.00001 to -0.00003. I
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Figure 5.2: Optimal escapement comparisons for various prices and costs of
harvesting. The Figure shows the optimal escapements for py = pp with
negligible costs (Figure 5.2.a), the optimal escapements for py = pp with
¢, = ¢y (Figure 5.2.b), the optimal escapements for py = %pp with ¢ = ¢y
(Figure 5.2.c), and the optimal escapement for py = pp with ¢; = %cz (Figure
5.2.d). Figure 5.2.c shows that the rule to harvest a relative source predator
subpopulation more conservatively than a relative sink predator subpopulation
may fail if b1/by # (pp — cp2)/(Pp — cp1), in this case Sp < Sp, (see Result
12).

plot the contours of the escapements and their equilibrium optimal harvests, both
for the prey and predator, as functions of the prey vulnerability «;, with a constant
B; = 0.00001 (Figure 5.3).

In Figure 5.3.a I plot the escapement of prey subpopulation one and the escape-
ment of prey subpopulation two. As expected in Result 11, if C; > max{%%, %’l
(this is satisfied by o; > —0.000025 in Figure 5.3), the increase of prey vulner-
ability causes the decrease of the prey’s optimal escapement. For example, with
a; = ay = —0.00001 we obtain Sy, = Sy, = 145050, while with a; = a; = —0.00002
we obtain Sy, = Sy, = 141331. In this region, o; > —0.00002, the increase of prey vul-
nerability causes the increase of prey optimal harvests (Figure 5.3.b), hence we harvest
the prey subpopulation more conservatively if it is less vulnerable to the predator.

In Figure 5.3.c I plot the escapement of predator subpopulation one and the
escapement of the prey subpopulation two as functions of prey vulnerabilities, ; and
ay. We see that the increase of prey vulnerability causes the decrease of the predator’s
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PPM || Sy, = 145049 | Hy, = 203861 | Sp = 14505 | Hp = 22777
Sy, = 145050 | Hy, = 211824 | Sp, = 9014 | Hp = 38788
S = 290099 | Hy = 415685 Sy = 23519 | Hj, = 61565
TPP || Sy, =145049 | Hy, —211820 | Sp,_=9012 | Hy, =20296
Sk, =145050 | Hj, =203858 | S, =14506 | Hp, =36740
S%. =290099 | Hy, =415687 | Sp, =23518 | Hy =57036
WPP || 53 =290098 | H, —413033 | Sp _=25348 | Hy =63394
Table 5.3: Escapement and harvest comparisons between correct and incor-

rect assumptions, where py = pp and costs are included.

PPM | Sy, = 196644 | Hy, = 159023 Sp, = 22573 | Hp, = 40849

Sy, = 203882 | HY, = 143723 Sp, = 25739 | Hp, = 65444

Sy = 400526 | Hy = 302746 | Sp = 48312 Hp = 106293
UPP || Sy,.=203881 | Hy, =143724 Sp,,=25739 | Hp =45775

Sy, =196644 | Hy, =159023 Sp,, =22573 | Hp, =59202

Sp. =400525 | Hy =302747 Sp =48312 | Hp =104977
WPP || Sy, =397768 | Hy =308918 Sp, =47106 | Hp =104734

Table 5.4: Escapement and harvest comparisons between correct and incor-

rect assumptions, where py = épp and costs are included.

optimal escapement until finally it reaches zero at o = —0.00003. For example, with
a1 = a; = —0.00001 we obtain Sp = Sp, = 14505, while with ¢ = ay = —0.00002
we obtain Sp = Sp, = 7438. The increase of prey vulnerability causes the decrease of
the predator’s optimal harvest (Figure 5.3.d). This is because I assume G; = 0.00001
is constant, hence a higher prey vulnerability means a lower predator efficiency and
from Result 11 we should harvest the prey subpopulation less conservatively if it is
a less efficient predator subpopulation. At a; = —0.00003 we harvest both predator
subpopulations down to extinction, because it is not optimal to waste the prey as
food for the predator due to the low predator efficiency in converting prey captured
into predator offspring. In this case, we only keep a high predator escapement if its
efficiency is relatively high.

Furthermore, if a negative harvest is interpreted as a “seeding” strategy (Tuck,
1994), then for a low prey vulnerability in subpopulation one and a high prey vulner-
ability in subpopulation two, there is a small range (the range between contour lines
Hp, = 0 and Hp, = 0 in the lower right part of Figure 5.4.c and 5.4.d) where we
should seed the relatively more efficient predator subpopulation and then harvest all
individuals of the relatively less efficient predator subpopulation two. This is because
there is seasonal migration of predator juveniles from subpopulation one recruited by
predator subpopulation two (see also Figure 5.5).

Figure 5.4 shows contour plots of escapements and harvests for prey and predator
subpopulations if one of the predator subpopulations is a relative source and exporter
subpopulation. I assume that all parameters are the same as in the previous example,
except go; = 0.001, that is, predator subpopulation one is a relative exporter subpop-
ulation. Figure 5.4 is interpreted as in the symmetrical migration case (Figure 5.3).
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PPM [ Sy, = 119020 | HY, = 241262 | Sp, = 11903 | Hp, = 19040
S, = 164832 | Hy, = 163261 | Sp, = 12010 | Hp, = 41285
Sy = 283852 | Hy = 404523 | Sp = 23913 H; = 60325
UPP || Sy, =145049 | HY =211828 | Sp =9012 | Hp =20296
Si,,=145049 | HY =203858 | Sp, =14507 | Hp, =36740
Sk, =290098 | Hy =415686 | Sp =23519 | Hp =57036
WPP || Sy =290098 | Hy =413030 | Sp =25350 | Hp =63397
Table 5.5: Escapement and harvest comparisons between correct and incor-

rect assumptions, where py = pp and costs between patches are different, that

is, ¢; = icz.

Escapements used Without costs With costs
Pn =DpPp | PN = %PP PN = Pp PN = épp
co=c | ¢ = }ZCQ
PPM 38180 66642 33407 26402 62646
UPP 37818 66315 33090 25872 62132
WPP 38114 66520 33350 26203 62470

Table 5.6: Profit comparison between correct and incorrect assumptions.
Numbers are in hundreds of thousands.

5.1.7 Analytical results with costs included

I assume that both unit costs of harvesting, C'x;, and market prices, px, are constant,
but the costs may differ between patches and the prices may differ between species. A
relatively constant unit cost of harvesting is known, for example, in the clupeoids fishery
(Munro, 1992). Furthermore, I assume that the marginal net revenue from harvesting,
px — cxi, is always positive, so that the fishery is always profitable regardless of the
density of the fish stock. Using these assumptions optimal escapements for both the
prey and predator have exactly the same form as escapements where costs are negligible,

that 1s,
) Acchi% + Ccchi

ol 12
SN A ) (5.12)
BiPu%i + CuiAc
SE = K. 1
2 Aci ? (5 3)
provided A, = C% — Pci% Ci%s'? # 0 with
Ay = (v —evs) _ [pii(pn — envi) + pij(pN — enj)lri — ai(py — eni), (5.14)
.

B = (pr—P) — [gis(pp — cpi) + @is(pp — cpj)lsi — bi(pp — cpi), (5.15)
C. = ai(py — en:) + Bi(pp — cpi), 5.16)
Pii = pi(pn — i) + pij(Pn — cnj), (5.17)
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Figure 5.3: Contour plots of optimal escapements Sy, (Figure 5.3.a), prey
optimal harvests H}, (Figure 5.3.b), predator optimal escapements Sp. (Figure
5.3.c), and predator optimal harvests Hp, (Figure 5.3.d) as functions of prey
vulnerability «; [escapements and harvests are in 1000s; vulnerabilities are in
10~%s]. Contour plots for the populations in patch one are given by dashes (- -
-.) and contour plots for the populations in patch two are given by dots (.....).
In this case f1 and 3, are constant with the value 0.00001, p1; = pa2 = ¢11 =
g2o = 0.001 and p13 = P21 = q12 = g1 = 0.003. See text for detail.

Qe = qii(pp — cpi) + ¢ii(pP — cpj)- (5.18)

Similar results to the four results discussed in the negligible cost analysis can also
be obtained, with some additional conditions such as:

1. For Result 8 Prey subpopulation one is a relative source subpopulation with
P1iT1 = P21T2 and P12T1 > P22T2 (Of P1iT1 > P12 and PlaTi = P227°2)-

2. For Results 9 and 10 The marginal net revenue from prey subpopulation one is
lower than, or equal to, the marginal revenue from prey subpopulation two, that
is, py — cy1 < PN — Cn2, and its ratio satisfies

PN —CN1 > r2P22 (5.19)

PN —CN2  TiP11

The details of the results are as follows.
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Figure 5.4: Contour plots of optimal escapements S5, (Figure 5.4.a), prey
optimal harvests Hy, (Figure 5.4.b), predator optimal escapements Sp, (Figure
5.4.c) and predator optimal harvests Hp, (Figure 5.4.d) as functions of prey
vulnerability ; [escapements and harvests are in 1000s; vulnerabilities are in
107%s). Contour plots for the populations in patch one are given by dashes (- -
---) and contour plots for the populations in patch two are given by dots (.....).
In this case B, and (3, are constant with the value 0.00001, p;; = ps2 = 0.001,
P12 = P = 0.003, q11 = ¢21 = a2 = 0.001 and ¢;; = 0.003. See text for detail.
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Figure 5.5: Seeding strategy for predator subpopulation one (Hp < 0) and
clearing strategy for predator subpopulation two (S}, = 0) if prey vulnerability
a; is low and prey vulnerability o, is high.

Result 12 (Escapement comparison between subpopulations with costs included) Let
one of the prey subpopulations be a relative source while all other parameters of the
prey and the predator are identical for both subpopulations except a; and oy may differ
from ay and ay. Without loss of generality let us assume that prey subpopulation one
is a relative source, that is, (p11 + p12)r1 > (P22 + p21)re. Furthermore, puri 2 paira
and pyaT1 > Peare (0T p1iTi > PaTe and pyar1 > paar2) and there is no harvesting
cost differential between patches for the predator. If Ae; and Be are negative, aifaz =
ai/ay = (py — en,)/(pn — cn,) and Cg is non-positive with Coy; > max{ﬁ%‘i, 2—‘%1},
then:

1. S5, > SN,
2. Sp, < Sp,-

Proof

Rewrite escapements in equations (5.12) and (5.13) in the following form:

(Rci . T'cim)Lsf%m + Cci(Sci - Scim)

St = = , (5.20)
Sci — Scim M + Cci Rci — Teim
5 ! e+ Ol ) B

where
1

Ry = (; — a;)(pN — eni)s

1
Sla= (; —b)(pp — cpi),

Tem = [Pi(PN — cNi) + pij(Pv — enj)ri,
Seim = |qii(pp — cpi) + qij(pp — cpj)]si.
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1. Let Agy = (Sx,, =Sk, )Dale. I there is no harvesting cost differential between
patches for the predator, that is, cp1 = ¢pa, then S, = Sea = S¢, Scim = Scam =
Sem and B = B.; = B.. Since it can be shown that Caq = Cp = C, and
R.i = R.; = R., then following the proof in Result 8, we only need to show

2 2Bc 430ch
ASN = Sem [—E (CC <Cc - I{ ) = KL )] (TCZm - rclm) > 0

Since 2% < C, < 0 then Ag, > 0 if pyry > poirs and piary > paare (or

puir1 > paire and pyary 2> P227"2)- O
2. This part can be proved analogously. O

As for the case of negligible cost, I interpret the condition Cg; > maw{Q?‘, %

in the above result as a relatively high predator economic efficiency. However, here
the predator biological efficiency |g—"| should be lower than or equal to the ratio of the

prey marginal revenue and the predator marginal revenue ’;’:{%’f. Furthermore, the

1

conditions pyir1 > paire and piary > poare (or puri > pairz and prary 2 P22r2) need
to be satisfied. In this case, prey subpopulation one contributes more to the larval
production of both prey subpopulations, for example when prey subpopulation one
is a relative source and exporter subpopulation and has intrinsic growth rate greater
than, or equal to, the intrinsic growth rate of the other prey subpopulation.

The following result is a generalisation of Result 9 in the previous section. Result
10 can also be generalised in the similar way.

Result 13 (Comparison of strategy with an unconnected two-patch predator-prey sys-
tem) Let Sy, and St denote the optimal escapement from a predator-prey metapopula-
tion given by the equations (5.12) and (5.13), and let S, and Sp denote the optimal
escapement if we incorrectly consider the system as a system consisting of two uncon-
nected predator-prey systems. Let us assume that one of prey subpopulation is a relative
exporter and also a relative source while all other parameters of the prey and the pred-
ator are identical for both subpopulations. Without lost of generality let piary > pairs
and piiry > poara. Assume Ag and B are negative and Cy > maa:{z—gﬁi, %ﬂ} and
there is no harvesting cost differential between patches for the predator. If the marginal
net revenue from the prey subpopulation one is lower than or equal to the marginal
revenue from the prey subpopulation two, that is py — cn1 < pn — ¢, and ils ratio

satisfies BMN—SNL > [2P22 ihen;
PN~—CN2 — Ti1P1n1

1. 53, > SNuws
2. S}(,C2 < SN.,.
8. Sp, < Sk,
4. Sp, > Sp,,-

Furthermore if a1 and oy differ from az and oy with ay/ay = a1/ay = (py—cn, )/ (pv —
cNy), and piir1 > paire and piaTi > PaaT2 (or p1iT1 > paiTe and piar1 > paata). then:

5 S;(Vcl + S]*VC2 S S;;rclu + S}:[CQU;

6 S;;cl +S;;c2 Z S;;clu +S;;c2u'
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Proof

1. Following the proof in Result 12, we obtain

9B..  4R.5um 251
(S]tfcl - S],:Iclu)AcluAcl = (Tclu — rclm) (CC(CC _ Scl > Sc1

K)_ KL =’

where Ay, = C2— —Qllgfm<0andAcl—C'2 ——legf‘—‘m<0 Since 0 > C. >@Q

then we only need to show rcim > ey, with
Teim = [p11(pN — CN1) + P12(PN . CNz)]ﬁ,

Teiw = P11(pN — en1)T1 + P21 (pyv — CN1)T2

Since Z;?:é > 1, then 7, > 7oy is satisfied by py — en, < pyv — ¢, O
2,3,4. These parts can be proved similarly. O

5. Let X, = (Co(Ce — 2B/ K) — HBgteim ) 22m < 0 with s1n = s3m, and ASp,, =

(S%k., +Sn,) — (Sk.,. + SN.,.) Following the proof of Result 9, we obtain

grclm rc2m!Sc m
(SSclm/(I(L)(2 +KL o Cf))(rclurdu - Tlclmrc2'm.)

ASNu . A01Ac1uAc2A02u

X..

Since Ay < 0 with 7 = 1,2, then C*— %@ < 0. To prove the result, we
only need to show (re1urezu — TeimTeam) = 0 as follow. Let A = reimroam — eturczu
and A,’j = 'r‘ipij(PN = CNj)-

A = (A + Ap)(Au + Ap) — (Au + Az1) (A2 + Agl)
= Anda + AnAgy — AnnAig — ApAay
= (A — A)(Az — A).

Since B e Zﬁ; > ”z?f then A1 — Agp > 0, and since p1ary > porr2 and py — eng 2>
pny — cn1 then Ay — Ay < 0, which means A < 0. The last inequality can be
proved similarly. !

5.1.8 Dealing with an optimal harvest that is negative

In the results presented so far, the optimal harvest for a predator-prey metapopulation
may be negative. In general a negative harvest is not possible. However, a negative
harvest can be interpreted as a seeding strategy. A seeding strategy may be optimal for
a particular year or as an equilibrium strategy. For instance, in the previous example, if
the price of the predator is seven times of the price of the prey, and the cost of harvesting
is negligible, then S}, = 231646, Sy, = 216386, Sp = 28865 and Sp, = 23779 are
obtained. Clearly using these optimal escapements produces a negative first period
harvest for prey subpopulation two, since the initial population size is N, = 205331.
However, using this negative harvest strategy in the first period of harvesting produces
positive optimal equilibrium harvests Hy, = 97203, Hy, = 124194, Hy = 55707 and
Hj, = 61448, with total harvests Hy = 221398 and Hp = 117155,

Another example is a negative equilibrium harvest. Tuck and Possingham (1994)
showed that if one subpopulation is a relative exporter but has a smaller proportion
of juveniles which do not migrate, then the optimal harvest for that subpopulation is
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negative. I use the same parameters as them to show that in the presence of a predator
this negative harvest is also optimal. In practice, a negative harvest is impossible to
be applied . There are two possible ways of dealing with a negative harvest. First, we
can use a constrained harvest function

X; — Sy, if X;> S,

Hx =1 if X; < S,

(5.22)

Using this harvest function, if the suggested optimal escapement is higher than the ex-
isting population size we should not harvest the population at all. Second, as suggested
by Tuck and Possingham (1994), if the optimal equilibrium harvest for subpopulation
i is negative, we set Hx, = 0 and find a new optimal escapement from equation (4.11)
under this zero harvest constraint.

Assume that a negative harvest occurs in prey subpopulation two. If a negative
harvest is impossible, then we need to maximise J1(Sny, SNys SPros SPy) Subject to
Hpy, = 0, that is, a zero harvest for prey subpopulation two. Assuming all optimal es-
capements are constant, an equilibrium zero harvest for this subpopulation is obtained
if the equilibrium population size for this subpopulation is the optimal escapement,
that is, Nox = SN2(k_1). Hence this problem reduces to maximisation of the net present
value PV in equation (4.11) subject to equations (5.3) and (5.4), with non-negative
escapement less than, or equal to, the population size and

SNy, = Nat, (5.23)
with

Niy = a15n, + P11F1(SN10) +p21F2(SN20) + 15Ny, O Py (
2SN, + P12F1(SNyo) + P22 Fa( Sy ) + Q2SN Py s (5.25
b1Sp,, + q11G1(Spy,) + q21G2(Spy ) + B1SN1 SP» (

Py = bySpy, + CI12G1(SP10) + q22G2(Son) + B25N205Pao - (

ol
[

The Lagrangian for the maximisation is

£ = JI(SNIO’ SNzoa SP107 Son) - A [SNzo - (G2SN20 + p12F1(SN10)

i p22F2(SN20) + 025Nz 5Py )] : (5'28)
A necessary condition for the maximum is agﬁ = 8316 = 835 = agf = 0. Using
10 20 10 2
these necessary conditions and considering the facts that Na; = SNmO and Sp,, 1s
constant with respect to Sy,, we obtain
oL
aSNlo = - (pN - ch (SNIO))
8N11 aA]\/v21
— N. _ —L
+p | (v — eny (V1)) o + (pv — cn, (Na1)) T
6P11 aP21
- P — cp, (P
+ (pp — cn(P1)) 35w T (pp — cp,(Pa1)) EX
—Al=p12F1(Sm,)] = 0. (5.29)
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Since Na1 = Sn,, and Sy, is a constant with respect to Sw,,, then

0

Similarly,

oL
SN10

oL
O0SNyo

oL

oL
8‘S’on

= - (pN - CNI(SNIO)) +p [(PN - CN1(N11)) (al + pllFll(SNlo)
+ O[1'511310) + (pP - CPI(PII))(ﬁl’S’PIO)] + /\[p12F1/(SN10)] = 0.

(5.30)

- (PN - CN1(SN20))

0Ny,

ON.
+p |(pv — eny (N11)) pIe + (v — ey (Na1)) 5o—

851\720
0Py
0SN,,

8P11
0SSNy,
—M1 — (az + p22Fi(Snzo) + @25py,)

— (pn — ev, (Swao)) + 2 [(pv — ey (N11)) (P21 F2(S o))

+ (pv — cny(N21)) + (pp — ¢p, (P21))(B25py )]

— M1 = (ag + p22F5(Snye) + 225p, )] = 0. (5.31)

+ (pp — cp (P11))

+ (pp — cp,(Pa1))

—(pP — Cp (SPIO))

aNll
a5p,
0P
0Spy, 9SPpy,

—(pp — cp, (Spw)) + P l(pn — ey (N11)) o1 S

+(pp — cp, (P11)) (b1 + ¢11G1(Spy) + B15nNy0)

+ (pp — cp,(P1))12G1(Spy, )] = 0. (5.32)

+p |(pv — eny (N11)) + (pv — vy (Na1))

+ (pp — cp, (P11)) + (pp — cp,(P21))

—(pp = cr,(Spy))

0Ny

0Sp,,

+ (or = o (P)oi ™+ (pp — e, (P)
Po

—(pP —Cp, (szo)) i P[(pP - cPl(Pll))(Q21GI2(SP20)

+(pp — cpy (Pa1)) (b2 + q22G5(Spy ) + B2SNz0) + A2 S

0. (5.33)

+p |(pv — eny (N11)) + (pn — en,y (Na1))

Since Ny = Sn,,, then from equation (5.31)

A =

(p— 1)(pn — eN, (SNao)) + P21 F5(Sny ) (pv — vy (N11))

1- ((1,2 + p22F2I(SN20) + aZSon)
plB2SP20 (pP - ch(PZI))

1- (a2 + p22F2I(SN20) + 0‘2‘511320) .

(5.34)
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Let X, = 1 — (az + P22 Fy(Sny, ) + @2Sp,, ). Substitute A into equations (5.30), (5.32),
and (5.33) to obtain

(PN — €Ny (SNlo ))
p

= (pN - ch(Nll)) [al + pllFll(SNlo) + alSPlo)]
)

+(pp — cp (P11)) [B1 5Py
F‘IZF{(SNm)(l — 1/!9)]

How — (5 |

X(.k

+(pn — en, (N11)) [pupﬂF{(S)](V:)Fé(SNQO)]

+(pp — CP2(P21)) [FJIZF;(S{;‘] )ﬁZSP”)} . (5.35)
e CI;:(SPZO)) = (pp — cp,(Pa1)) [b2 + 422G5(Sps) + P25, )]

+(pP - CP1(P11)) [q21G/2(SP20)]

+(pn — vy (Sngo ) [szSNgoga— l/p)]

+(pn — v, (N11)) [leFé(Sﬁi)QZSNM]

+(pp — cp, (Pa1)) [%—)] : (5.36)
(pP - Cl;l (SP‘O)) = (pP - CPI(Pll)) [bl + qllGll(SPm) + IBISNm)]

+(pp — cp,(P21)) [912G1(Spyo)]

+(pnv — ey (N11)) [e1Sn,0) 5 (5.37)

with X, = 1 — (ag + p22Fs(Snye) + @25py,). Solving the last three equations together
with Sy,, = Na1 produces new optimal escapements for the metapopulation. These
escapements give a non-negative harvest for prey subpopulation two. The net present
value generated by applying this non-negative harvest method is higher than the net
present value resulting from the “suboptimal” zero-harvest method in equation (5.22).
To see the comparison between these two different methods, I will present a numerical
example.

I assume all parameters for the predator-prey system are identical to the para-
meters in the first example, except that there is a relative exporter prey subpopulation
which has a smaller proportion of juveniles being retained than the other prey subpop-
ulation, that is, p11 = pa1 = 0.002, and p1z = pa2 = 0.0001, and || = B; = 0.000001.
The equilibrium optimal escapements are Sy, = Sy, = 95333, Sp = 14505 and
Sp, = 9010, with equilibrium optimal harvests Hp = 193828, Hy, = —81574,
Hp = 3118 and Hy, = 26574. If a negative harvest is not feasible, using the first
method we find equilibrium optimal harvests Hy, = 64685, Hy, = 0, Hp = 3118
and Hp, = 25789, while using the second method we find new optimal escapements
Sy, = 100103, Sy, = 8247, Sp, = 14305 and Sp, = 8927, with equilibrium optimal
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Figure 5.6: Contour plot for the profit as a function of prey escapements
(Figure 5.6.a) and contour plot for the prey harvests as a function of prey
escapements (Figure 5.6.b). Escapements Sy, = 95333 and 53, = 95333 are
found as the prey optimal escapements. These escapements produce a negative
harvest H}, = —81574.

harvests Hp, = 64803, Hy, =0, Hp = 3142 and HY = 25826. If | assume the cost
to put fish into the fishery is equal to the current price of the fish, in this example
8000/unit, then, neglecting all associated costs, the total revenue from the harvest is
(Hy, + Hn, + Hp, + Hp,)8000 = 1136 millions. This revenue is far above the revenue
if we use the zero harvest from either the first or second method, that is, 749 millions
from the first method and 750 millions from the second method. This shows that if
it were possible to have a negative harvest then it could improve profit significantly
(Figure 5.6). However, if it were not possible to have a negative harvest then using a
harvesting strategy from the second method (equations (5.35) - (5.37)) gives a higher
net present value than using a harvesting strategy from the first method (equation

(5.22)).

5.1.9 Harvesting only the prey species

In this section, where only the prey species is harvested, I use the method of Lagrange
multipliers (Clark, 1976a) to obtain the optimal harvesting strategy for the population.
In this method the time horizon is set to infinity, hence the value function that should
be maximised is

PV = Z pk [HNl(N1k7 Hle) + HNz(NZk’ HNzk)] (5'38)
k=0
subject to equations (5.1) and (5.2), and 0 < Hy,, < Ny, where
N;
HN;(Nik’ HN.'k) == / (p - CN.'(f))dg' (5'39)

ik—Hn,,

The Lagrangian for the maximisation is

£ = S {p*"In (N, Hny,) + N, (Nak, Hivyy,)

k=0
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—Mk[Ni(ks1) — a1(Nie — Huy,, ) — pruFi(Nu — Hivyy)

—p21 F2(Nay — Hn,,) — i (N1 — Hyy, ) Pix]

—Azk[Nz(k+1) - aZ(N2k - HNQk) - P12F1(N1k - Hle)

—P22F2(N2k - HNzk) - az(Nzk - HN2k)P2k]

— Ak Pr(kt1) — b1(Pik) — quiG1(Pir) — ¢21Ga(Par) — Bi(Nik — Hny, ) Prk

—Aak[Po(rt1y — b2(Pax) — q12G1(Pix) — q22Ga(Par) — Bo(Nok — Hi,, ) Pag.
(5.40)

To maximise the value function PV the following necessary conditions need to be
satisfied:

oL 9L
1. 8N‘k=0,m—0f01‘k21,

2. 25 —(for k>0.

6Hn,,

These conditions are equivalent to

o1l
0 = pf aNN; — AMk-1) + Mw(ar + pu F{ (N — Hyy,) + o1 Prg)
1
+Aokpr2 Fi (Nik — Hy,, ) + AsefBiPu, (5.41)
kaHNz '
0 = p O—N; — Ao(k-1) + Aak(ag + paa Fy(Nog — Hp,, ) + a2 Pag)
2
+Mkp2i Fo(Nok — Hn,, ) + AaxB2Pak, (5.42)
0 = —Ask-1) + Ase(br + quiG (Pre) + Bo(Nue — Hny,)) + Aakq12G (Prik)
+Mken (N — Hy,,)
(5.43)
0 = —Xge-1) + Aak(b2 + q22G(Par) + Bo(Nok — Hnyy)) + Aakqaa Gy ( Pak)
+Aokaa(Nok — Hy,, )
(5.44)
o1l
0 pF= Mir(ar + pu (N, — Hy, ) + a1 Pig)

6HN1k

—Asz12F{(N1k - Hle) - >\3k/81P1k’ (5-45)
Ol N,

0 p* L. Aak(az + poaFy(Nog — Hp,, ) + a2 Pag)

8HN2k

—Akpar Fo(Nog — Hiy, ) — AawfBPag. (5.46)

We obtain A; and Az by substituting equation (5.41) into (5.45) and equation
(5.42) into (5.46), that is,

i Tl
oM | N‘), (5.47)

_ k
Al(k-—l) - p (ale 8HN1k
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A2(k_1) _ pk 8HN2 8HN2 .
ON,y,  OHn,,

From equations (5.45) and (5.46) we obtain As;01 Pix and Agpf2Pak. Recall that Sy,
Nix — Hpy,,, and let

(5.48)

Fy = a; + pii F{(Sny) + @i P, (5.49)
Gp,, = bi + quGi(Pix) + BiSn,- (5.50)
To reduce the complexity, let us consider the equilibrium escapement Sy, ,,, = Sn,,
and equilibrium harvest Hn,,,,) = Hn,, with equilibrium population size Pi(t+1) = Fix

for k> 0 and Ni(kt1) = Nix for k > 0. Multiply equation (5.43) with By P18z Pok, and
substitute A1x, A2k, AakB1Pik, and Ay B2 Por from equations (5.45) and (5.46) to obtain

o (B
+ | p* (ZIJ{TZE ggj\;) P12F1'(5N1k)] B2 Pax
o i =0 (G + ) P Ot
-| St (glzlv]:k ggg) pia Fl’(Sle)} Gpy B2 P
n o §§§ kL (g?vfk a"’gg) FNZk] 012G (P1)B1 Pu
e (gii gg}:&) me;(sN%)} 412G’ (Puk)B1 Pox
+ -Pk‘H (g?\;:; + ggi’k) 0415N1kﬁ1ﬁ2P1kP2k] - (5.51)
Next divide this equation by p**!, and rearrange to obtain
(B )
+ (gljlvjl\r; gg}i\;) 011/315N1kpk] B2 Pax
5= 0n] (@ + o rorton | e
i (2 8 inien
o PO PRETERTY W 1
Now multiply by p/(3 — Gp,,), and rearrange to obtain
11 :
o = [amm e Tae + g e+ (T ) 2
+p (8851\/]:; + 882[;];) PIZF{(SN”.\—)} B2 Py,
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1 Olln. Oll olln.
2= 2 2 2 F
£ lp 8HN2k (aNZk * aHch Nar
<I12G'1(P1k),31p1k

Oy, Olly, ,
- (ale - aHle) p21F2(5N2k)] 1— IOGPlk

(5.53)

Similarly we can obtain

II II II
0 = l @N_?+p<a N2+ Y Nz)FN2K+p2 (8 N2+ aHNz) azﬁzsNzkpzk

" 9Hp,, ONy. ' OHn,, Ny | 9y, ) 1—pCr,
o (G + i) i) P
10 e~ (5 )
(e 2 | T
(5.54)
with
gggk =P = en(Sna), (5.55)
ZIJIVN,C + gg,fk = p — cn(Nik). (5.56)

These implicit escapement equations are difficult to interpret. In the following
section I give a numerical example to give some insight of how these escapements differ
from the escapements which occur if either we harvest both species using predator-prey
harvesting theory as in the previous section or if we harvest only the prey species by
ignoring the presence of the predator. Furthermore, I make the following assumptions.

1. Costs are negligible and prices are not different between the patches.

2. There is no migration between predator subpopulations, that is, ¢g12 = g21 = 0.

Numerical example

In this section I present a numerical example to illustrate optimal escapements for a
two-patch predator-prey metapopulation when we harvest only the prey species. For
the purpose of comparison, parameters for the prey population are those used by Tuck
and Possingham (1994).

Assume that the prey, IV;, in both patches have carrying capacities K; = Ky =
400000, with intrinsics growth rates r; = ro = 1000 and adult survival rates per period
a1 = ay = 0.001. The prey has symmetrical migration, that is, p1; = p22 = 0.001
and p13 = pa; = 0.003, hence there is no relative source/sink or exporter/importer
prey subpopulation. The discounting rate ¢ is 10%. Before the exploitation begins,
it is assumed that the population is in the equilibrium state. In the absence of the
predator, the unharvested population sizes for prey subpopulations one and two are
Ny = N, = 300100. The optimal escapements for prey subpopulations one and two
are Spx,, = Sy, = 145050, hence both prey subpopulation are harvested equally with
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Migration parameters PPM (prey) | PPM (both) | SSM
11 = 0.004 Sy, = 118348 | Sg, = 145050 | Sy, = 145050
p11 = 0.001 | g2z = 0.002 Sk, = 112955 | Sy, = 145050 Sy, = 145050
Paz = 0.001 | g1 = 0.002 St = 119955 | S, = 145050 | S, = 145050
1o = 0.003 | gz5 = 0.004 S%. = 118348 | Sy, = 145050 | Sy, = 145050
P21 = 0.003 | ¢;1 = 0.003 Sy, = 116424 | S5, = 145050 | S§, = 145050
q22 = 0.003 Sy, = 116424 | S}, = 145050 | Sy = 145050
P1s = Prs = 0.001 || Si, = 116424 | S, = 145050 | Sy, = 145050
g1z = 0.003 | pra = pay = 0.003 || Sk, = 116424 | Sy, = 145050 | Sy, = 145050
g2 = 0.003 [ p1y = p1 = 0.001 || Sk, = 50272 | Sy, = 90100 | Sy, = 90100
q12 = 0.000 | py; = pap = 0.003 || S}, = 142028 | S}, = 163367 | Si, = 163367
ga1 = 0.000 | p1; = p1o = 0.003 || Sy, = 142028 | S}, = 163367 | Sy, = 163367
Pay = pas = 0.001 || 5%, =50272 | S, = 90100 | Sg, = 90100

Table 5.7: Escapement comparisons from three different methods: From predator-
prey metapopulation harvesting theory when harvesting only targets the prey species
(PPM (prey)); From predator-prey metapopulation harvesting theory when harvest-
ing targets both species (PPM (both)); From single-species harvesting theory, that
is, when the presence of predator is ignored (SSM). In this example predator effi-
ciency is 100%.

first period optimal harvests Hp, = Hj, = 155050 and equilibrium optimal harvests
HY,, = Hy,, = 224900.

Now suppose the predator, P;, is present. For simplicity I choose intrinsic growth
rates of the predator as s; = s = 1000 with the carrying capacities Ly = Lo = 40000.
I assume the predator’s adult survival per period do not different from the prey’s adult
survival and do not differ between patches, hence by = by = 0.001. The predator in
patch one is assumed to be a relative source and exporter subpopulation, with mi-
gration parameters ¢12 = qa1 = 0, g1 = 0.004, and g2 = 0.002. Let us assume
|| = B; = 0.00001, that is, the predator has a high biomass conversion efficiency. Us-
ing NAG routine c05nbf, one of the positive equilibrium population sizes for this two-
patch predator-prey system, that is, (N1, Ny, Py, P;) = (250123, 228804, 55022, 65781),
is obtained. From equations (5.53) and (5.54) together with P41y = Fig), equi-
librium escapements when we harvest only the prey population are found. These
escapements are Sy, = 118348 and Sy, = 112955. These escapements are lower than
the escapements we get if we use single-species metapopulation theory which produces
S, = Sh,, = 145050 (see Table 5.7).

Both escapements from single-species metapopulation harvesting theory are equal.
This is because both prey subpopulations are identical, for example, there is no source
or sink subpopulation. However, using escapements from equations (5.53) and (5.54),
the optimal escapement for the prey subpopulation living in the same patch with the
relative source predator subpopulation is higher than the escapement for the other prey
subpopulation that lives in the same patch with the relative sink subpopulation. It
suggests that the rule of thumb to harvest a predator-prey metapopulation described
in Result 8 may no longer true if we only harvest one of the species. However, we
still harvest a relative source prey subpopulation more conservatively than a relative
sink subpopulation (see Tables 5.7 and 5.8 for the value of ¢11 = go2 = 0.003 with
predator efficiency 100% and 75%, respectively). Tables 5.7 and 5.8 show that if both
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Migration parameters PPM (prey) | PPM (both) | SSM
g11 = 0.004 Sy = 121077 | Sy, = 143461 | Sx, = 145050
p11 = 0.001 | g5 = 0.002 Sy, = 117813 | Sp, = 144375 Sk, = 145050
P22 = 0.001 | ¢;; = 0.002 Sk, = 117813 | Sy, = 144375 | S5, = 145050
P12 = 0.003 | g23 = 0.004 Sx, = 121077 | Sp, = 143461 Sy, = 145050
P21 = 0.003 | g1, = 0.003 Sy, = 119918 | Sy = 143765 Sy, = 145050
g22 = 0.003 Sy, = 119918 | Sy, = 143765 | S, = 145050
P11 = Paz = 0.001 || Sp, = 119918 | Sy, = 143765 Sy, = 145050
qi1 = 0.003 | p1a = pa; = 0.003 || Sy, = 119918 | Sy, = 143765 | Sp, = 145050
gza = 0.003 | p11 = p12 = 0.001 || Sj, = 53027 Sy, = 87295 Sk, = 90100
g1z = 0.000 | pay = pyy = 0.003 || T3, = 144961 | Sy, = 162536 | Sy, = 163367
g1 = 0.000 | p;; = p12 = 0.003 || S}, = 144961 | Sy, = 162536 | Sy, = 163367
P21 = P2z = 0.001 || S}, = 53027 Sy, = 87295 Sk, = 90100

Table 5.8: Escapement comparisons from three different methods: From predator-
prey metapopulation harvesting theory when harvesting only targets the prey species
(PPM (prey)); From predator-prey metapopulation harvesting theory when harvest-
ing targets both species (PPM (both)); From single-species harvesting theory, that
is, when the presence of predator is ignored (SSM). In this example predator effi-
ciency is 75%.

predator subpopulations are identical, and so are the prey subpopulations, then both
prey optimal escapements are equal, that is, Sy, = Sy, = 116424 if predator efficiency
is 100% and Sy, = Sk, = 119918 if predator efficiency is 75%.

To summarise, in this section I have discussed optimal escapements for a predator-
prey metapopulation when only the prey population is harvested. Similar to optimal
escapements for one period to go discussed in Chapter 4, numerical examples in this
section suggest that the rule described in Result 8 is only partially true, when only the
prey species is harvested. That is, we still harvest a relative source prey subpopulation
conservatively if the predator populations are identical in both patches. On the other
hand, if one of the predator subpopulations is a relative source subpopulation, we
may not harvest the prey living in the same patch with the relative sink predator
subpopulation conservatively.

5.2 The second model: Predator recruitment model

In the previous section I showed that Tuck and Possingham’s (1994) rules of thumb are
preserved in the presence of a predator under some circumstances. It was also shown
that if the cost of harvesting is negligible and there is no market price differential
between the prey and predator, then to establish the third rule of thumb the predator
efficiency needs to be extremely high — the predator has to be able to convert all food
from eating one prey into one offspring. This is unlikely to occur in nature. However, if
the predator is very valuable compared to the prey, then we can establish a rule similar
to Tuck and Possingham’s (1994) third rule of thumb, that is, we would harvest a
relative source prey/predator subpopulation more conservatively than if we use the
strategy from well-mixed predator-prey harvesting theory, without requiring extremely
high predator efficiency.
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Patch 1

Figure 5.7: The relationships between the dynamics of the populations in a
two-patch predator-prey metapopulation. The number of prey and predator
are N; and P;, respectively. The prey and predator juvenile migration rates
are p;; and g;;, respectively. The number of predator’s offsprings in patch 1
from the conversion of eaten prey is §; N;P;, which is distributed into patch ¢
and j with proportion g; and ¢;; respectively, while some of them (1 —g;; —¢i5)
either die or are lost from the system.

The model in the previous section assumes that prey conversion in a patch trans-
lates into an increased reproduction in that patch only. The model can also be in-
terpreted as meaning that increased predation increases predator survival. Usually
predation will affect predator reproductive more than its survival. In this section, I
modify the model to allow some of the enhanced reproduction to migrate between
patches and to assume that predation affects predator recruitment (see Figure 5.7).
This section helps us to determine that the rules described in the previous model are
robust to a change in model structure. I also provide an example of dealing with a
negative harvest.

Consider a predator-prey metapopulation that coexists in two different patches,
patch one and patch two. Using the same notation as the model in the previous section,
let the dynamics of the exploited metapopulation of these two species be given by the
equations

Nigs1y = aiSny, + @iSnySpy + piFi(Sny) + pii Fi(Sn,y), (5.57)
Pi(k+1) = biSPik + Qii(Gi(SPik) + ﬁiSNikSP.’k)
+4ii(G(Spy) + BiSniuSpin ), (5.58)
where the functions F;(N;) and G;(Pi)+8iSn, SPy, ¢+ = 1,2, are the recruit production

functions of the prey and predator in patch 7 at time period k, respectively. I will

assume that Fy(N;z) = 7Ny (1 — Niw/K;) and Gi(Pi) = siPix (1 — Pie/L;), where r;
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(s;) denotes the intrinsic growth rate of the prey (predator) and K; (L:) denotes the
local carrying capacity of the prey (predator), respectively, with o; < 0 and §; > 0.

Moreover, if IIx; represents the present value of net revenue from harvesting
population X in patch i, and p is a discounting factor, then to obtain the optimal
harvest from the fishery we should maximise the net present value

PV = ET: P 22: Y Txi( Xk, Sxii) (5.59)

k=0 i=1 Xe{N,P}

subject to equations (5.57) and (5.58), with non-negative escapement less than, or equal
to, the population size. I will assume p = 1/(1 + 4) for the remainder of this chapter,
where § denotes a periodic discounting rate, with Ix;(Xix, Sx,.) = fé(.:‘k (px —cxi(€))dE,
which reflects the net revenue from the harvest Hyx, of the local population X; in
period k. Following the previous section for the first model, implicit expression of

optimal escapements Sy, and Sy, are found in the form

pn — eni(Siy, )
p

(i + @iSp, + pi F{(Siiy))(pn — envi(Nir))
+pi; F{ (SN, )(pn — eni(Ni1))

+4ifiSp, (pp — cpi( Pi1))

+4i;0:Sp,, (pp — cpi(Pi1)) s (5.60)

— Cpy; S* * ! *
pr = oPilBe) _ (4,4 quBiSy, + aGl(Sh)) (pr — cri( Pa))

)
+4i;8:Sx,, (pp — cpi(Pj1))
+4;;Gi(Sp,) (PP — cpi(Pj1))
+o; Sy, (PN — eni(Nir)) - (5.61)

These equations are the general form of the optimal harvesting equation for a two-
patch predator-prey metapopulation. If o; = §; = 0 then the optimal harvesting
equation for a single-species metapopulation (Tuck and Possingham, 1994) is obtained.
Furthermore if there is no migration between patches, p;; = ¢;; = 0 for ¢ # j and
F'(S) = a; + pi: F{(Sn,,) together with o; = §; = 0 then the equation reduces to the
optimal harvesting equation for a single-species population (Clark, 1976a). Using a.
similar proof to the one in Chapter 4, it can be shown that the escapements S%, found
by solving these implicit equations are independent of the time horizon considered. I
discuss some properties of these escapements in the following section.

5.2.1 Results and discussion

In this section, I discuss some properties of the optimal escapements in equations (5.60)
and (5.61). I compare the optimal escapements between the two subpopulations. T also
compare the optimal escapement to the escapements if the migration is ignored to see
how important it is to use the theory presented here for choosing optimal escapements.
Specifically, how important it is for the fishery manager to recognise and measure
connections between subpopulations. For the remainder of the chapter I assume that
the market price for the predator is higher than or equal to the price for the prey, that
is pp = mpy with m > 1, and prey vulnerability is the same in both patches, that is,
] = (g = .
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Negligible costs analysis

To simplify the analysis and discussion, the costs of harvesting are assumed to be
negligible. Using these assumptions, and substituting all derivatives of the logistic
recruitment functions, F; and Gj, into equations (5.60) and (5.61) we can find the
optimal escapements Sy, and Sp,, which are given by

- Aim(gi + gi2) 3 + CiB;

5y, = Amiga +go)y; , (5.62)

[ Al

Bi(pi + pia) 3 + CiAs

5, = Bilea tpia)g , (5.63)

1 A1
PI‘OVIded A = 02 - m(pzl + p12)K (%1 + %2)23 fé 0 with A = (pzl +P12)7'z Ay,
Bi =2 —m(ga + ¢i2)si — mb;, and C; = o + m(qzl + qgi2)Bi. It can be shown that if

A; and B; are negative and C; is non-positive with C; > ma:t:{ﬁl 2'"A'} then A; <0
and all resulting escapements, S}, and Sp,, are positive. If this is the case, | can also
establish the following result.

Result 14 (Escapement and harvest comparisons between subpopulations) Assume prey
subpopulation one is a relative source, that is, (p11 + pi2)r1 > (p2g + p21)r2, while all

other parameters of the prey and the predator are identical for both subpopulations. If
A; and B; are negative, and C; is non-positive with C; > max{zKB, 2mA} then:

Sx, > Sy, and Sp < Sp,.

Furthermore, if, in addition, piy < pia, qi1 = G2, SN, < Ki, Sp < Li with Sy Sp, >
S, Sp,, then

Hy, < HY, and Hp > Hp,.

Proof

The first two parts can be proved analogously to the proof of Result 8 while the last
two parts can be proved by substituting optimal escapements, Sy, and Sf,, into the
harvest equations Hy. = N; — Sy, and Hp, = P; — Sp,, where N; and P; are given by
prey and predator dynamic equations (5.57) and (5.58). O

Result 14 suggests that if the growth rate of the populations are higher than
the reciprocal of the discounting factor 1/p (indicated by A; < 0 and B; < 0) and
Ci > max{w 2’”A} then we should protect the relative source prey subpopulation
in two different ways: directly, with a higher escapement of the relative source prey
subpopulation, and indirectly, with a lower escapement of the predator living in the
same patch with the relative source prey subpopulation. Since C; > mam{w QmA
can be written as m(qi + qij)l‘%l > 1+ maz{22,224}/|a|, then we can 1nterpret

C; > maz{22, 2mAY as a relatively high predator economic efficiency. Furthermore,
if every escapement is less than each subpopulation’s carrying capacity, lower escape-
ment means higher harvest. This result is similar to the result in the previous model,
only in the present model the predator economic efficiency is discounted by the predator
migration survival ¢; + gij.

The following result enables us to compare escapements from the present methods
to escapements if spatial heterogeneity is ignored. There are two different ways we could
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misinterpret the spatial structure of a metapopulation, first we could assume that there
is no connection between the two patches, and second we could lump the two patches
into one patch whose populations are well-mixed. In the following result, ry, is the
growth of prey subpopulation ¢ if it is assumed there is no connection between the two
prey subpopulations. This growth would be measured ry,, = pir; + pjir;. Similarly, ry,
is the growth of prey if it is assumed to be a well-mixed prey population. This growth
would be measured 7, = [(p11 + p12)r1 + (P21 + p22)r2)/2. The growth of the predator
populations, s;, and s, are measured analogously.

Result 15 (Comparison of strategy with incorrect harvesting strategies) Let Sy, and
Sp. denote the optimal escapement from the predator-prey metapopulation given by
equations (5.62) and (5.68). Let Sk, and Sp, denote the optimal escapement if we
incorrectly consider the system as a system consisting of two unconnected predator-prey
systems and let Sx_ and Sp denote the optimal escapement if we incorrectly consider
the system as a well-mized predator-prey system. Let us assume prey subpopulation one
is a relative exporter and source subpopulation with piary > paire and pury 2 paars,
all other parameters of the prey and the predator are identical for both subpopulations.

Let A; and B, = B, = B are negative, C; = Cy = C <0 with C > max 2}\?, %} If

there is no predator mortality associated with migration, ¢; + qij = 1, then

St > Sther St < Skaus S& <85, and 83, = Sk,

Furthermore, if the biological predator efficiency is equal to the ratio of the prey market

price and predator market price, that is, % =1 then

St > 1S%., Sk, < 25%., S, < 355, and S§, > 355,

I do not provide the proof of the result above, since it is analogous to the proof of a
similar result in the predator survival model (Section 5.1).

In reality, the condition that the biological predator efficiency, I%l’ is exactly
the same as the inverse of the relative predator market price, m, is improbable. The
biological predator efficiency could be any value equal to, or less than, as well as
more than the inverse of the relative predator market price, as long as it is less than
100%. In this general case, Appendix 5A shows that, in some circumstances, if the two
prey subpopulations have a non-overlapping generation and their total natural growth,
ri(p11 + p12) + m2(p21 + p22), is less than three times of the reciprocal of the annual
discounting factor, 1/p, then assuming a predator-prey metapopulation as a well-mixed
predator-prey population would over-harvest the relative source and exporter prey
subpopulation. Note that individual natural growth r;i(pi; + p;;) should be more than
the reciprocal of the annual discounting factor to ensure that optimal escapements
from the predator-prey metapopulation are non-negative. A similar conclusion for the
predator can be drawn, that is, we would over-harvest the predator living in the same
patch with the relative sink and importer prey subpopulation if we incorrectly manage
the population as a well-mixed predator prey system, whenever the total growth of the
two predator subpopulations is less than three times of the reciprocal of the annual
discounting factor and the growths of both predator subpopulations do not overlap.

5.2.2 Numerical examples

Let us assume that there is a two-patch predator-prey metapopulation where the prey
in both patches have carrying capacities Ky = Iy = 50000000, intrinsic growth rates
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ry = ro = 10, and adult survival rates per period a; = a; = 0.001. Prey juveniles
migrate with p;; = pia = 0.3 and py; = pa2 = 0.1, hence prey subpopulation one
is a relative source and exporter subpopulation. Let the discounting rate § be 10%.
Now suppose predators are present in both patches with intrinsic growth rates s; =
sy = 4, carrying capacities L; = L, = 50000, and adult survival rates per period
by = by, = 0.001. Predator juveniles migration is symmetrical with g1 = q12 = ¢q21 =
q22 = 0.5. Let |o;| = 0.000001 and B; = 0.0000001, that is, the biological predator
efficiency is 10%. Using equations (5.57) and (5.58), it can be shown that one of the
positive equilibrium population sizes for this two-patch predator-prey metapopulation
is (Ny, Ny, Pr, Py) = (36473692, 36473692,83105,83105). I assume harvesting begins
with this equilibrium as the initial population size.

Using equations (5.62) and (5.63), the optimal escapements for the system, S, =
20420833, Sy, = 11262500 and Sp = Sp, = 18131, are found with the first period op-
timal harvests Hp, = 16052859, Hpy, = 25211192 and Hp = Hp, = 64973, and the
equilibrium optimal harvests HY, = 24196828, Hy, = 33512055 and Hp = Hp =
56835. As suggested by Result 14, we should harvest the relative exporter and source
prey subpopulation more conservatively than the relative importer and sink prey sub-
population (in terms of escapement Sy, > S%, and in terms of harvest HY, < Hy,).
There is no difference in escapement and harvest between both predator subpopula-
tions. This is because the predator biological efficiency is exactly the same as the
inverse of m, (m is the relative market value of the predator, where in this case m = 10
and B/]a| = 0.1). Figure 5.8 shows that if 0 < m < 10 then all rules in Result 14 are
satisfied. However, if m is sufficiently large, in our example if m > 10, these rules may
be violated. This is because large m causes predator economic efficiency to be more
than 100% or C > 0 (see Result 14).

Figure 5.8 shows escapements and harvests which are plotted as functions of the
ratio of the predator market price to the prey market price, m. The figures suggest
that, in this example where the growth of the predator is relatively low (s; = 4 while
r; = 10), if there is no difference between the market price of predator and prey
(m = 1) then it is optimal to harvest the predator to extinction (Figure 5.8.b). While
if m is very large (m is approximately more than 550) then it is optimal to leave the
relative sink, which is also the relative importer, prey subpopulation unharvested, and
eventually it is optimal to leave both prey subpopulations unharvested if m is even
larger (lines in Figure 5.8.c). This rule is also observed for a single patch predator-prey
system (Ragozin and Brown, 1985) and also observed in the first model in the previous
section. This situation is different if there is no relative source/sink prey subpopulation.
For example, if p;; = pa1 = 0.12 and p12 = paa = 0.28 then we should not harvest the
relative exporter prey subpopulation (dots in Figure 5.8.c). [Note that in the example
of the first model in Section 5.1.3, optimal equilibrium harvests are Hy, = 97203,
Hy, = 124194, Hp = 55707 and Hy, = 61448, with total harvests HY = 221398 and
Hp =117155 if py = %pp, while if py = pp then H} = 415692 and Hp = 61559, and
if py = %pp then H¥ = 326144 and Hp = 101375. Therefore, the total harvest for the
prey when py = %pp is lower and the total harvest for the predator is higher than the
total harvest for the prey and predator, respectively, when py = épp and py = pp.
This suggests that if the prey is less valuable in the market than the predator, then it
is better to leave it as food for the predator which is more valuable.]

Furthermore, even when m is very small, that is, a high prey value compared
to predator value, if the growth of the predator is sufficiently high, then predator
extinction is not optimal. For example, if s; = 20 with m = 1 then predator optimal
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escapements are Sy, = 656 and Sy, = 11096. Predator escapement in patch one is
less than in patch two, this is because prey subpopulation one is a relative exporter
and source subpopulation which should be more protected by leaving a lower predator
escapement in that patch (see Result 14).

Dealing with an optimal harvest that is negative

As seen in the example above, the analysis presented here may produce negative har-
vests. A negative harvest could be interpreted as a seeding or restocking strategy.
However, in many situations such a strategy is not practical. In this case, as in single
population exploitation, we can use the harvest function

" X; — 8%, if Xi > 5%,
Hx, = { 0 if X; < 5%. (5.64)
Another alternative is suggested by Tuck and Possingham (1994). To avoid a negative
harvest, they use the following procedure. Assume that using the metapopulation
harvesting theory, optimal equilibrium harvest for subpopulation : is negative. They
set Hx, = 0 and find a new optimal escapement from the maximisation of the value
function under this zero harvest constraint. I apply the same procedure if the method
presented in the previous section produces a negative harvest.

A negative harvest may be optimal for the subpopulation that exports a high
proportion of larvae but only contributes a low proportion of the larvae to its own
subpopulation. For example, if the juvenile migration parameters for the prey in the
previous example are p;; = po1 = 0.2 and py2 = py2 = 0.065 with m = 10, then the
optimal equilibrium harvest for prey subpopulation two is HY, = —1427582, while all
other subpopulations have a positive harvest. This strategy suggests that we should
seed prey into subpopulation two and harvest the results from prey subpopulation
one and both predator subpopulations. Using the procedure suggested by Tuck and
Possingham (1994), I set Hy, = 0 and maximise the present value in equation (5.59)
with this additional constraint. The new equilibrium optimal escapements S}, Sy, ,
Sp,, and Sp, are found and satisfy equations

(PN — N, (SNIO))
p

(pN - ch(Nll)) [al it pllFll(SNw) s 0(15]310]

+(pp — cp, (P11)) [911515p;,]
+(pp — ch(le)) [qu/BISPlo]

+(pn — Ny (Shy,)) [me{(SN}O(i(l — l/p)]

F{(Sny ) F5(Sny,
+(pn — eny (N11)) [plzpm il )](V JE(Sw )}
pl?F{(SNlo)QZ2ﬁ2SP20

Xa
P12F1'(SN10)Q21,325P20]

+(pp — cp,(Pa1)) [

(5.65)

+(pp — cp (P11)) [ X,

(PP — Cp, (szo ))
P

= (pp —cp,(Po1)) b2 + (122G'2(5'P20) + G2202.5Ny |
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Figure 5.8: Escapements and harvests are plotted as functions of ratio predator market
price to prey market price, m. The prey numbers are in thousands. Lines indicate results if

prey subpopulation one is a relative source subpopulation and dots indicate results if prey
subpopulation one is a relative exporter subpopulation with no source/sink subpopulation
(see text for details). The figures suggest that, in this example where the growth of the

predator is relatively low, if there is no difference between both market price (m = 1)
then it is optimal to harvest the predator to extinction (Figure 5.8.b). While if m is
sufficiently large (m between 550 and 600) then it is optimal to leave the relative sink prey

subpopulation (line in Figure 5.8.c) and the relative exporter prey subpopulation (dots in

Figure 5.8.c) unharvested.
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+(pP —Cp (Pll)) [q21G12(SP20) + Q21ﬂ2SN20]

+(;UN - CN:(SNzc)) lva?'SN?U;} - l/p):]

R! 39 0 S 50
+(pn — eny(N11)) l})m 2 ;f )25
S S
+(pp — cp,(Pa1)) laz N2°§252 on)]
S S
+(pp — cp (Pr1)) [a2 ng?ﬁz P2°)] ; (5.66)
— S
(pP Clp’l( Pm)) - (pp — cpl(Pu)) [b1 + Q11G,1(SP10) + QIlﬂISNm]
+(pP B CP2(P21)) [qlzGll(SPm) + Q12,31SN10]
+(pv — eny (N11)) [ Sngo] (5.67)

with X, = 1 — (az + p22F3(Snye ) + @2Sp, ). Solving the last three equations together
with Sy,, = Ny, and assuming X, # 0, produces a non-negative harvest for prey
subpopulation two. Figure 5.9 shows total profit differences among the three methods,
that is, a negative harvest from (5.62) and (5.63), a zero harvest from (5.64), and a
zero harvest from (5.65) - (5.67).

If it is possible to implement a negative harvest, equilibrium optimal harvests
Hj, = 26517750, Hy, = —1427582, and Hp = Hp, = 54642 are found. However,
if we can not use a negative harvest in managing the exploitation, then using the
first method (equation (5.64)) we find that equilibrium optimal harvests are HY, =
24720979, H¥, = 0 and Hp = Hp, = 52849, while using the second method (equation
(5.65) - (5.67)) we find new optimal escapements Sy, = 15249769, Sy, = 12923357,
Sp, = 18131, and Sy, = 16045 with equilibrium optimal harvests Hy, = 24852974,
Hj, =0, Hp = 50985 and Hy, = 53069 (see Figure 5.9). If we assume that the cost
to put fish into the fishery is equal to the profit per fish harvested, then, neglecting all
associated costs, the total revenue from the harvest, if a negative harvest is allowable,
is Hy, + Hn, + 10(Hp, + Hp,) = 26183008 currency units. This revenue is above
the revenue if we use zero harvest from either the first or second method, that is,
25777959 from the first method and 25893514 from the second method. This suggests
the optimality of a negative harvest for the system or in other words shows that if
it were possible to have a negative harvest then it would improve profit significantly.
However, if the cost of seeding prey is higher than the profit from catching prey then
zero harvest will be the best. In the example above if the cost to put fish info the
fishery is twice the profit per fish from harvesting then the total revenue by allowing
seeding strategy is 24755426 currency units, which is smaller than if we use zero harvest
from the first or the second method.

5.3 Concluding remarks

In this chapter harvesting strategies for a spatially-structured predator-prey system
were established. It was assumed that the interaction between the prey and the pred-
ator occurs in the adult stage. I investigated optimal harvesting strategies for two
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Figure 5.9: Escapement, harvest, and profit comparisons among three different methods in
dealing with a negative harvest. In this example a negative harvest occurs in prey subpopu-
lation two. Escapements in the negative harvest column are derived from (5.62) and (5.63),
escapements in zero harvest column are derived from (5.64), and escapements in modified
PPM (predator-prey metapopulation with zero harvest constraint) are derived from (5.65) -
(5.67). Equilibrium harvests are computed using Hf, = N; — Sy, and Hp, = P; — Sp, where
N; and P; are determined by (5.57) and (5.58).
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structurally different models. The first model assumes that predation affects the pred-
ator’s adult survival and the second model assumes that predation affects the predator’s
recruitment. Results show that the most significant rule in single-species metapopula-
tion harvesting theory, that is, we should harvest a relative source subpopulation more
conservatively than a relative sink subpopulation, remains true in the presence of a
predator, if we harvest both species and if the predator efficiency is above a certain
threshold, regardless of the structure of the population.

Silvert and Smith (1977), May et al. (1979), and Ragozin and Brown (1985)
suggested that in a multi-species fisheries a species may be more protected than the
other species if it enhances the profit from the fisheries through its bioeconomic role.
For example, if the prey in a predator-prey system grows slowly then it would be
better to use a zero harvest strategy for the prey, that is, not to harvest the prey
population. The unharvested prey can increase the profit significantly if it is left as
food for the predator. This is also observed in the result presented in this chapter
for harvesting a two-patch predator-prey metapopulation. The result in this chapter
generalises the result of Silvert and Smith (1977), May et al. (1979), and Ragozin
and Brown (1985) to include the importance of exporter/importer subpopulations in
determining the optimal harvesting strategy for the population. In the present result,
where spatial structure is taken into account, the decision to protect a prey population
applies especially to the exporter prey subpopulation, hence a zero harvest strategy will
generally apply to only one prey subpopulation. On the other hand, if spatial structure
is neglected, such as in Silvert and Smith (1977), May et al. (1979), and Ragozin and
Brown (1985), prey protection applies to the whole prey population, which may not
be economically, politically, or socially acceptable (Gary et al., 1998).

In addition, a negative harvest may be optimal in harvesting a two-patch predator-
prey metapopulation. This negative harvest is interpreted as a seeding strategy. Nu-
merical examples show that if the predator market price is much higher than the prey
market price, then it is optimal to seed the prey and harvest the predator which has
a higher market price. If in addition one prey subpopulation is a relative exporter
subpopulation, then the seeding strategy should be applied to this relative exporter
subpopulation. However, the seeding strategy only works if the cost of seeding equals
the price of stock unless the relative value of the predator, m, is even bigger. For
this reason, as in the previous chapter, I also provided an alternative procedure to
determine optimal escapements if negative harvesting is not possible.

In addition to results presented in the previous chapter, in this chapter I presen-
ted optimal equilibrium escapements when harvesting only targets one species for the
first model. Numerical examples suggest that the rule to heavily harvest the prey
subpopulation living in the same patch with a relative source predator subpopula-
tion may no longer hold if harvesting only targets the prey species. However, we still
harvest a relative source prey subpopulation more conservatively than a relative sink
subpopulation.

I also established rules when the cost of harvesting differs, either between prey
subpopulations, or between predator subpopulations. For example, if prey subpopula-
tion one is a relative source/exporter subpopulation and has intrinsic growth greater
than or equal to the intrinsic growth of the other prey subpopulation, that is, p;iry >
pa1T2 and praTy > Paara (O priry > pairy and prary > p2272) then we should protect the
relative source prey subpopulation whenever the ratio of adult survival in patch one to
adult survival in patch two equals the ratio of the marginal net revenue in patch two to
the marginal net revenue in patch one. If adult survivals of all populations are the same
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and there is differences in the marginal net revenue status between the populations,
optimal escapements are determined by the trade-off between the source/sink status
and the marginal net revenue status, because there is a tendency for the exploiter
to conserve the subpopulation with a higher marginal net revenue. This tendency
is also observed in harvesting a single-species population with spatial structure (see
Clark (1976a) for his inshore and offshore model and Gatto et al. (1982) for their
effort-allocation model).

As in the previous chapter, populations can be protected in two different ways -
directly, with a higher escapement of the relative source prey subpopulation, and indir-
ectly, with a lower escapement of the predator living in the same patch. Furthermore,
if the marginal net revenue from the relative source and exporter prey subpopulation is
lower than the marginal net revenue from the relative sink and importer prey subpopu-
lation, the present theory would harvest the relative source and exporter prey subpopu-
lation more conservatively than if we use unconnected predator-prey harvesting theory.
The predator living in the same patch with the relative source and exporter prey sub-
population would be harvested more heavily than if we use unconnected predator-prey
harvesting theory.

It is important to realise the limitations of the results in this chapter. To establish
Results 10 and 15, that using predator-prey metapopulation harvesting strategy would
harvest a relative source subpopulation more conservatively than using strategy from
well-mixed predator-prey population, we may need an extreme predator efficiency, that
is Tg_l = 1. However, if there is a price differential between the prey and predator then
the rule requires that the predator “bioeconomic conversion”, mg, equals the absolute
value of prey vulnerability, |a|. If we assume that predation affects predator recruit-
ment, we need an additional requirement that there is no predator mortality during mi-
gration. If these conditions are not satisfied then the rule may not true. The models in
this chapter ignore age-structure and only consider Lotka-Volterra predator-prey func-
tional form. Future models should include age-structure and take into account various
types of predator-prey functional forms to generalise results presented in this chapter.
In the next chapter I investigate optimal harvesting strategies for a simple predator-
prey metapopulation where age-structure is included using a recruitment delay.

5.4 Appendices

Appendix 5A: Non-overlapping prey generations

If both prey subpopulations in predator-prey metapopulation with predator reruitment
model (Section 5.2) have a non-overlapping generation and their total natural growth,
ri(p11 + p12) + r2(pa1 + pa2), is less than three times of the reciprocal of the annual
discounting factor, 1/p, and if C' in Result 15 satisfies 0 > C > maxz{B/K,mA/L}
and r1(p11 + pi2) + r2(pa1 + p22) < %, then assuming a predator-prey metapopulation
as a well-mixed predator-prey population would over-harvest the relative source and
exporter prey subpopulation, that is, then %S}‘Vw < Sy,- This can be proved as follows.
Following the proof of Result 10, we can obtain Sy, > SO for rim > rw, and

1 3Aw' m n ZB "w
AL A (50_55}%> _SC_:( . 7

i 3
7 C 0 (—3/1.”_)) + BC”. (5.68)
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It can be proved that if ry + r; < %, then 54— > 1, hence

B
Ale(So—%S}‘vw) > M(C 2

_«b 3
2 =) +BC* >0, (5.69)
Since C > B/K and C > mA/L, following the proof in Result 9, it can be shown that

Ao < 0. Since A; < 0 then S°—18% > 0. Finally, Sf > §° > 1Sy, . Similarly, it can
be proved that if s;(qi1 + qi2) + $2(qa1 + ¢22) < % then %S}w < Sp,.
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Chapter 6

Predator-prey metapopulations
with delayed juvenile recruitment

In the previous chapters I derived and discussed optimal harvesting strategies for several
predator-prey metapopulation models. The underlying biological models assume that
the population in each patch is a single homogeneous and well-mixed population. The
model for each patch is described by a single variable representing the number of
individuals and assumes that the offsprings of the current population are immediately
recruited to the adult population in the next period. This model has a very simple
age structure. In reality, many exploited populations consist of several different age
classes. Population models that include yearly age classes are known as “age-structured
models” (Clark, 1985a).

Some examples of the early models for age-structured populations can be found
in Leslie (1945, 1948), Von Foerster (1959), Sinko and Streifer (1967) and Cushing
(1976) for unexploited populations, and Beddington and Taylor (1973), Rorres and
Fair (1975), Beddington (1978) and Reed (1980) for exploited populations. In general,
Clark (1985a) divided age-structured population models into three groups, that is,
Leslie’s matrix models, delay-recruitment models and dynamic pool models.

Leslie (1945, 1948) pioneered the use of matrices to study age-structure in pop-
ulation modelling. The Leslie matrix model is extended by Williamson (1959) and
widely used in ecology (Lefkovitch 1965; Usher, 1971; Emlen, 1984; Caswell, 1989),
demography (Keyfitz, 1985), forestry (Usher, 1966, 1976) and fishery (Reed, 1980;
Botsford, 1981; Horwood and Whittle, 1986). Dunkel (1970) and Mendelssohn (1976)
argued that Leslie’s matrix model is ecologically uninteresting because it only models
density-independent growth of a population, and hence produces unbounded sustain-
able yield (Reed, 1980). Reed (1980) and Botsford (1981) were among the first authors
who introduced density-dependence into Leslie’s matrix model. They found an optimal
harvesting strategy for their system. This has solved the limitation of Leslie’s model.

Leslie’s age-structured model deals only with the females of a population, and
can be written in a matrix form

[Nig+1)] = [Fij][Nigwy), (6.1)

where Nj() denotes the number of females of age 7 in year k and [[/;] is a transition
maftrix relating the abundance of the females in generation k£ + 1 to the abundance of
the females in generation k. If it is assumed that Ny with « = 0,1,...,7 — 1 is the
number non-reproductive females of age less than v in year &, Ny is the number of
reproductive females of age v or more in year k, a; is the survivorship of the females
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Organism: Age at maturity: Reference:
Red lip abalone > 3 years Shepherd and law, 1974
Sauces scallop 1 year Dredge, 1981
Iceland scallop 6 years Vahl, 1981
Baleen whale > 5 years Clark and Lamberson, 1982
Sei whale > 9 years Allen, 1963; Fisher and Goh, 1984
Fin whale +8 years Allen, 1963; Fisher and Goh, 1984
Orange roughy > 23 years Francis, 1992
Chinook salmon 3 to 7 years Hankin et al., 1993

Sturgeons
Pacific ocean perch
Atka mackerel
Squid

10 to 20 years
8 to 10 years
> 3.6 years
> 270 days

Auer, 1996
Gunderson, 1997
McDermott and Lowe, 1997
Arkhipkin and Silvanovich, 1997

Table 6.1: Some known delay time for commercial marine populations.

of age 1, and F'(N,)) is the fecundity of females in year & then the transition matrix
[F;;] can be written as

(000 0 ...0 F(Ny)]
% 0 0 ...0 0
0 a 0 ...0 0
[Fil=]0 0 a ... 0 0 (6.2)
|0 0 O Gyl Gy ]

Many studies on the exploitation of age-structured populations use a Leslie model.
For example, Reed (1980) used Leslie’s matrix in a slightly different form, where he
assumed that the first year survival rate of the population is density-dependent. Bed-
dington (1978) showed that if the right hand side of the Leslie matrix model is solved
for Ny(+1), it ends up with

No(bt1) = @y=10y-2 - - G0 F (Ny(k—) ) Ny(e—r)) + 3y Noy(i) (6.3)

that is, the number of mature individuals in the next period can be obtained as a
function of the number of mature individuals in the present period and 7 periods ago.
Assuming F'(Ng—y) = @y—1Gy—2 ... 00 F (Nyth—y))Nyk—y)), Nr = Nyx), and a = ay,

equation (6.3) can be rewritten as

Niy1 = alNi + F(Nk_ﬂl), (6.4)

which is known as the “delay-recruitment model”. Equation (6.4) is a model where
recruitment to the reproductive population occurs v years after birth. Clark (1976b)
used equation (6.4) to model the growth of the Antarctic fin whale, Balaenoptera
physalus, where each individual has five years delay before it enters the mature class.
Other commercial marine populations with known delayed-recruitment are shown in
Table 6.1. Some of the species listed in the table are either prey or predator or both
in complex food-webs (Jones, 1982).

Clark (1976b) analysed the stability of an equilibrium solution of the delay-
recruitment model, equation (6.4), and investigated optimal harvesting strategies for
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the population. In Clark’s (1976b) model, if the number of harvested individuals in
year k is Hy and assuming that recruitment is determined by escapement Sk = Ny— Hy,
then the delay-recruitment equation becomes

Nk+1 = aSk + F(Sk_’y). (65)

As in the case of the non-delay-recruitment model, Clark (1976b) assumed that the
net economic return from exploitation in year k is

Ni
(N, Hi) = [ (p = e€))de; (6.6)
with value function =
J =" pFII( Nk, Hy). (6.7)
k=0

The parameters p, ¢(-) and p have the usual meaning, that is, market price, cost of har-
vesting and discounting rate, respectively. Clark (1976b) found an implicit expression
for the optimal equilibrium escapement, S*,

p—¢ S* * *

2= AT) — (p - V(S )at AF(S), (6.9
where N(S*) is given by equation (6.5). Assuming the cost of harvesting is negligible or
independent of the abundance of the population, and assuming the recruitment func-
tion, F, is logistic, then the optimal equilibrium escapement can be written explicitly
in exactly the same form as the case of the non-delay model with p” term added, that

1s,
. K K(1+§-a
5_2—2( = ) (6.9)

It is clear from the last equation that the optimal escapement for the delay model,
with a delay of more than two years, v > 2, is lower than the optimal escapement for
the non-delay model. The larger the time-delay, the lower the optimal escapement. It
suggests that if the delay is large enough, then it is not optimal to wait for juveniles
to be recruited into the reproductive adult class and we should exploit the stock to
extinction (Tuck, 1994).

Tuck (1994) developed two delay-recruitment metapopulation models as general-
isations of Clark’s (1976b) model for a single-species. One of his models has a similar
structure to Agnew’s (1982) model. The difference is Agnew (1982) considered delay-
recruitment for two species having an interspecific biological interaction while Tuck
(1994) considered delay-recruitment for a species with the interchange of individuals
between subpopulations. The first model of Tuck (1994) assumes that the delay ex-
perienced by the newborn is related to the subpopulation in which the newborn is
recruited, known as the “receptor delay model” (RDM). The second model assumes
that the delay experienced by the newborn is related to the origin subpopulation of the
newborn, known as the “parental delay model” (PDM). Using the same symbols as the
previous non-delay single-species metapopulation model, the receptor local population
delay-recruitment model with exploitation is written as

Niggt1) = @151k + pirFi(Sie — 1) + par I2(Sak — ), (6.10)
Na(kt1) = @252k + P12 F1(S1k — 72) + P22 Fo(Sak — 72), (6.11)
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and the parental delay model is written as
Ni(ks1) = @151k + pra F1(Suk — 71) + par Fa(Sax — 712), (6.12)

Noet1) = @282k + praFi(Sik — 1) + P22 Fa(Sak — Y2), (6.13)

where «; denotes the delay for subpopulation i. Optimal harvesting strategies for each
model are found by maximising the present value of net revenue

2

J = ikaHi(Nik,Hik), (6.14)

subject to equations (6.10) and (6.11) for the receptor local population delay model and
subject to equations (6.12) and (6.13) for the parental delay model, where II; is defined
as in the non-delay model. Using the Lagrange multipliers method, Tuck (1994) found
an implicit expression for the equilibrium optimal escapements, S, for each model
as generalisations of Clark’s (1976b) optimal escapement for the single-species delay
model, equation (6.8). Explicit forms are found by assuming the costs of harvesting

are independent of the population size. The escapements are

I(l I(l ( 1 + 6 — a1 )
S =———— 6.15
' 2 2 \ri(pup + p12p™) (6.15)
I{z I{z 1 + (5 — ag )
S =-—F——= 6.16
22 2 (7‘2(1’21/0““ + p22p?) (6.16)
for the receptor local population delay model, and
’ (S‘ _
Sr:&._ﬁ( 1+d—a )1 (6.17)
2 2 \rip"(p11 + p12)

.{{2 I‘irg ( 1 + (5 — ay )
S =——— ; 6.18
? 2 2 \r2p"(pa1 + p22) (6:18)

for the parental delay model.

Tuck (1994) showed that if both populations have the same carrying capacities,
adult survival rates and delays, then the escapements from both models are equal. In
this case, the presence of a delay does not alter decisions on how we should harvest
the population optimally. As in the case of a non-delay model, the relative source
subpopulation should be more conservatively harvested than the relative sink subpop-
ulation. On the other hand, if the per capita larval production for both subpopulations
are equal, the parental delay model suggests that the subpopulation with the larger
delay should be harvested less conservatively than the other subpopulation. This is
not always the case in the receptor local population delay model. Furthermore, Tuck
(1994) showed that the rules of thumb for harvesting a non-delay single-species meta-
population, that is, that we would over-harvest the relative exporter subpopulation if
we incorrectly manage the population as an unconnected single population and that
we would over-harvest the relative source subpopulation if we incorrectly manage the
population as a well-mixed single population, are confirmed from the parental delay
model regardless of the differences in recruitment delays. However, the same rules are
confirmed in the receptor local subpopulation delay model only if both recruitment
delays are equal.
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Tuck (1994) added that, in some circumstances, if the difference between recruit-
ment delays are very high, both models may suggest that a seeding strategy may be an
optimal policy. For example, if subpopulation one has a large delay but subpopulation
two has a small delay, the optimal harvesting policy is to seed subpopulation one and
harvest the adults in subpopulation two as long as the receptor local population delay
model is concerned. However, the parental delay model suggests the opposite, that is,
that we should seed subpopulation two and harvest the adults in the subpopulation
one. This is logical in terms of minimising the time between seeding and getting a
harvest.

In the following section, I investigate the optimal harvesting strategy for a predator-
prey metapopulation in the presence of recruitment delays, by generalising the receptor
local population delay and the parental delay models discussed in Tuck (1994).

6.1 Predator-prey receptor delay model

This section describes a deterministic, discrete-time model for a spatially-structured
predator-prey population with a time-delay. I generalise the receptor local population
delay model (Tuck, 1994) to include predator-prey interactions. In nature the delay-
recruitment of marine species may result from the need of the juveniles of a species
to travel from their original /spawning habitat to the destination habitat and also may
reflect the time needed to get big enough to breed (Potter and Hyndes, 1994). I model
this by assigning recruitment delays which are specific to the subpopulation where these
juveniles are recruited. I use the method of Lagrange multipliers to derive optimal
harvesting strategies for the population and compare the strategies to other existing
strategies in which either spatial structure or predator-prey interaction is ignored

6.1.1 The model

As in the previous chapter, let us assume that there is a predator-prey population in
each of two different patches, namely patch one and patch two. Let the movement of
individuals between the local populations be through the dispersal of juveniles. Adults
are assumed to be sedentary, they do not migrate from one patch to another patch.
Let the population size of the prey and predator in patch ¢ at the beginning of period
k be denoted by N;; and Py, respectively. The number of mature adults of the prey
and predator subpopulation 7 in the time period k +1 is the sum of adult survival from
period k and recruitment from juveniles that were born «; periods ago for the prey
and 7; periods ago for the predator. In the absence of a predator-prey interaction, the
growth of the prey and predator assuming receptor local population delay are

Niky1) = aiNik + pis Fi(Nik—, ) + P Fi(Njk—,), (6.19)
Pites1y = biPu + qiGi( Pir—r,) + ¢G5 ( Pik—r.), (6.20)

respectively. All parameters have the same meaning to those in the non-delay model
(Chapter 4). In addition, I model adult prey mortality and predator recruitment as
a result of predator-prey interaction explicitly. I use assumptions analogous to those
in the paper of Wangersky and Cunningham (1957) to describe prey mortality and
adult recruitment resulting from predator-prey interaction, that is, adult prey mortality
caused by predation in period k is proportional to the number of prey and predator
in that period, and predator recruitment as a result of biomass conversion from the
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Figure 6.1: Juvenile migrations and delayed recruitment diagram for a
spatially-structured predator prey metapopulation. As in Chapter 4, p;; and
gi; is the proportion of juveniles which successfully migrate from prey sub-
population i to prey subpopulation j and from predator subpopulation : to
predator subpopulation j, respectively. The symbol <— — — —— — represents
predator-prey interaction in each patch, and the black boxes represent the
prey (predator) juveniles density which will be recruited to prey (predator)
adult class after a delay v; (r;). In addition, I assume that the number of the
predator subpopulation ¢ depends on the number of prey o; time ago, where
(o] 2 Ti-

interaction is proportional to the number of contacts between prey and predator, in
which the predator successfully kills the prey, some o; periods ago. Mathematically the
prey mortality is given by o; Ny P, and predator recruitment is BiNik—o; Pik—s;, Where
|| > B; > 0. With these additional assumptions, a complete model of a predator-prey
metapopulation assuming receptor local population delay can be written as

Niget1) = @i Nig + pis Fi(Nik—v,) + pji F5(Njk—) + 0iNi Pig, (6.21)

Pikt1y = biPi + qiiGi( Pir—r;) + 4iGi(Pik—r) + BiNik—o; Pit—o,, (6.22)

and illustrated by Figure 6.1. Equation (6.22) assumes that the delay impacts local
predator recruitment. In this case, there is a delay of ¢; time units between predation
and recruitment to the local predator population. If predation only aids predator’s
adult survival then o; = 0.

As in the previous chapter, I assume that we harvest prey and predator sub-
population 7 at the beginning of period k with the rate of harvesting Hy,, and Hp,,
respectively. Let Sy, = Ny — Hy,, and Sp, = Py — Hp, be prey and predator es-
capements on patch ¢ at the end of that period. Substituting these escapements into
equations (6.21) and (6.22) produces equations for a harvested predator-prey metapop-
ulation

Ni(ks1) = a1Sny, + puFi(Sny_y,) + P Fa(Sngi_,, ) + 0158, 5Py (6.23)
N2(Ic+1) =S GQSN2k + P22F2(SN2,€_72) + ])12F1(SN“€_72) + az,S’N% Ssz’ (6.24)
Pykyry = biSp, + quGri(Spy_,, ) + a1Ga(Spy_,, ) + BrSng, SPisy s (6.25)
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Paky1) = b25p,, + Q22G2(SP2k_,2) + q12G1(Splk_72) + ,32SN2k_,2 Sng_oz- (6.26)

In the following sections I derive optimal escapements for the population and compare
them to escapements from non-delay predator-prey metapopulation.

6.1.2 Optimal escapements

To obtain the optimal harvesting strategy for the metapopulation I use the method of
Lagrange multipliers. The non-linearity of the net revenue function due to the inclusion
of the delays has made it difficult to use dynamic programming (Tuck, 1994). Using
the Lagrange multipliers method, the net revenue

PV = EPE > Txi(Xik, Sxii) (6.27)

k=0 i= IXE{NP}

is maximised over infinite time subject to equations (6.23) - (6.26), with a non-negative
escapement less than, or equal to, the population size. As in the previous chapter I
also assume p = 1/(1 + ) where é denotes a periodic discounting rate and

M (Xir, Bra) = [ (o = ex(©) (6.29)

Xik—Hx,,

The Lagrangian for the maximisation is

L = E{pk[nf\ﬁ(le?Hle)+HN2(N2kaHN2k)
k=0

+11p, (P, Hp,,) + ILp,(Pak, Hp,, )]

—}\lk[Nl(k+1) - a1(N1k - Hle) - 29111[’11(N1/1c—71 - Hle_ﬂ)
—p21F2(N2k——n - HNzk_A,l) — a1 (N — Hle)(Plk HPw)]
—Xok[Nogkg1) — a2(Nak — Hny,) — pr2Fy(Nig—y, — Hivy_,)
—P22F2(N2k—n/2 = HNZ,C_A&) - Oéz(Nzk - HNzk)(P% Hsz)]
_)\Sk[Pl(k+1) - bl(Plk - HPlk) - qllGl(Plk—T1 - HPlk—rl)
_QZ1G2(P2k—n . HP2k—‘r1)

—B1(Nik—oy — Hnyyg ) (Prk—oy — Hpy_, )]

~Aak[Po(kt1) — b2(Pax — Hp,,,) — 12G1(Prk—r, — Hpy,_,,)
_Q22G2(P2k—T2 - HP?k—'rz)

_/BZ(NZk—Uz - HNZk—a2)(P2k_U'2 - Hsz—02 )]} (6'29)
To maximise the value function PV in (6.27), the conditions % =3 P =0fork>1
and aH = 3H = 0 need to be satisfied. In Appendix 6A these equations are solved

to obtam an 1mpllclt expression for the optimal escapements in the form

pn — en1(Shy,)
P

(pv — eni(Nu))(ar + puFY(Shy, )p™ + a1 Spy,)

+(pn — ena(Na1))pi2 F{(Sy,, ) p™
+(pp — cp1(P11))B1Sp, 0" (6.30)



pN — cn2(Sh,,)
p

= (pn — en2(Nar))(az2 + paa F3(Siy, )07 + @25p,,)

+(pn — en1(N11))p21 Fy (S )p™
+(pp — cp2(P21))B25p,, 0%, (6.31)

pp — cp1(Sp,)

= (pp —cp1(P11))(b1 + quGi(Sp,)P™ + BrSN,,p"!)

+(pp — cp2(Pn))912G1(Sp,, )P
+(pn — en1(N11))ar Sy, (6.32)

rp — CPz(S}%O )

= (pp — cpa(Pa1))(b2 + q22G5(SE,, )p™ + B25N,,P"?)

+(pp — cp1(P11))guGy(Sh,, )P
+(pn — cn2(Na1)) o2 Si,, - (6.33)

These equations are the general form of the optimal escapement equations for a two-
patch predator-prey metapopulation with a time-delay.

Note that in the absence the delay (y; = 0; = 7 = 0), the equations reduce to
equations (5.5) and (5.6) from Chapter 5. If a; = §; = 0, then Tuck’s (1994) optimal
escapement equation for a single-species metapopulation with time delay is obtained.
On the other hand, if there is no migration between patches, p;; = ¢;; = 0 for ¢ # j,
and if N; = N; = N and P; = P; = P, then the implicit optimal escapements equation
for patch one is

—en(S® .
W = (pv — en(N1))(Fin + p" Din)

+(pp — cp(P1))(Gin + p™ Exn), (6.34)

p—P_C:—(S;%) = (pn — en(N1))(Fip + p" Dip)
+(pp — cp(P1))(Gip + p™ Erp), (6.35)

where Fiy = a1 + a15p,, Gin = B1Sh, 07, Div = puFi(Sy,), Eanv =0, Fip = a1 Sy,
Gip = by + B1Sy,p°", Dip = 0 and Eip = qu1G1(Sp,). Optimal escapements for
patch two can be obtained similarly in this form. These equations are implicit optimal
harvesting equations for two species derived by Agnew (1982) in the presence of a
time-delay in the predator numerical response such as in Wangersky and Cunningham
(1957). Finally, if both juvenile migration and predator-prey interaction are ignored,
equations (6.30) - (6.33) collapse to Clark’s (1976b) optimal escapement equation for
a single-species with time-delay

pn — en1(SK,,)
p

The following section discusses further the optimal escapements and gives some inter-

(pnv — en1(Ni1))(ay 4 puF{(Sq,,)e™ ) (6.36)

pretations of the results by comparing them with other escapements.
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6.1.3 Results with negligible costs

To facilitate the interpretations of equations (6.30) - (6.33) I assume that there is
no difference between the prey and predator price and to simplify the analysis I also
assume the costs of harvesting are negligible or density and subpopulation independent.
Using these assumptions, substitute all derivatives of the logistic recruitment functions
Fi(N,' ) = riNik (1 . Nik/I(i) and Gi(Pik) = S,'Pik (1 — Pik/Li) into equations (630) =
(6.33), to obtain

1 27'1' * e *
; = a; + (pip™ + pi2p™) (Ti - '[?__SN:') + (e + Bip”*) Spss (6.37)
T T 25i % oi *
- = b+ (Qilp Y+ ginp 2) <5i - ’ETSPi) + (Oli + Bip ')SNz‘- (6-38)
Let 1
A= 0 (parp™ + piap™)ri — ai, (6.39)
1
B, = 5 (gip™ + qizp”?)si — bi, (6.40)
and
Ci = oy + i (6.41)

As in the previous chapters I interpret C; as a predator efficiency, but here it is discoun-
ted by the delay o;. Solving equations (6.37) and (6.38) produces optimal escapements

S}‘(Jz a,nd S.TD’L
Ai(gip™ + qi2p™) % + CiB;
S = g qup. )% : (6.42)
Bi(pap™ + piap™) 3 + CiA;
55, = (pap pié )&% , (6.43)
provided
2 1 Y2 2r; T T2 2si
Ai = Cf = (pap™ + piap™) o (qp™ + Gizp )1, # 0. (6.44)

In the following discussions I will only deal with positive escapements. I establish the
following result to guarantee that the escapements are all positive. The escapements are
then compared to the escapements which occur if we ignored predator-prey interaction,
that is, escapements from single-species metapopulation harvesting theory.

Result 16 (Sufficient conditions for positive escapements) Let Sy, and Sp, denote the
optimal escapement from a predator-prey metapopulation given by equations (6.42) and
(6.43). If A; and B; are negative, and C; is non-positive with C; > mam{%,ZL—Af},
then: o

1. A; is negative,

2. Sy, and Sp; are positive.
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Proof

1. Since — {pire™ -;pizp"’ik = {p;lp'ygﬂi;)?:;j;r;?j;:')‘r{l+‘SD > 1, the condition C' > 22 implies
. . “ T2 Yy . . T . "
C > _S%PM%TB. Hence C; > mam{_zB-(P‘xp;t;_fqu ‘}:.‘ 24, (q.;ﬂBli-ll::hzﬂ'“!]s‘ }
It follows Bi(pip" + piap™) 35t < —CiA; or alternatively B; < ( —Cidi

g
pi P +pizp2) T

If C = 0 then clearly A; < 0. If =C' >0 then —C;B; < —C; ( =G d; ,,..).
(Pil/ﬂl +pi2p’12) K;

On the other hand, since A;(gi1p™ —|—qi2p72)—2l—i—‘ < —C;B; then Ai(qip"+qinp™) 5 <

i —CiAg : ] . : AT T2\ 288 )
—C; ((mpn +p.-2p“'2)2,—f.§>' Finally, since A; negative, then (gi1p™ +qi2p 2) ” (pap™+
pigp”)% > C? which means A; < 0. O
9. Tt is clear from equations (6.42) and (6.43). O

As in the non-delay case, an analogous result can be obtained if A; and B; are
positive and C; is non-negative. However, C; > 0 is biologically unacceptable since it
means the discounted predator efficiency is more than 100%. An interpretation of the
condition A; < 0 is that the sum of the proportion of surviving adults, a;, and the
discounted per capita larval production, (piip"™ + pij p")r;, is higher than the reciprocal
of the discounting factor, 1/p. As in the case of no time delay, this is the normal
situation, otherwise it is best to harvest the populations down to zero escapements
(Clark, 1976a). The condition B; <0 is interpreted similarly, while C; is non-positive
with C; > max{%, %‘} interpreted as a high predator efficiency. Hence, if one of the
subpopulations has a very high adult mortality, or a very small intrinsic growth, a very
high proportion of losing juveniles from the system, or a very small predator efliciency,
then negative escapements may occur. For the remainder of this chapter, to ensure
that the optimal escapements are positive, [ assume A; and B; are negative, and C; is
non-positive with C; > maz %Bf, 27:4,—" X

Using Result 16 T explore the relationship between escapements from the predator-
prey metapopulation presented in this chapter and escapements from a single-species
metapopulation with the receptor population delay model discussed in Tuck (1994).
The relationship is summarised in the following result.

Result 17 (Escapement comparison with a single-species metapopulation) Let Sy, and
Sp. denote the optimal escapement from a predator-prey metapopulation given by equa-
tions (6.42) and (6.43), and let Sy, and Sp,, denole the optimal escapement from a
single-species metapopulation with receptor population delay model given by the same
equations by assigning o; = B = 0. If A; and B; are negative, and C; is non-positive
with C; > ma:n{%Bii, ZTA'_L}, then:

1. S§.—Sx. <

J— i *
is  (pup M +pizpT2)2ri/ K SN; <0,

< 0.

Y L C; *
2. SPi SP-'s (qupfl+q¢2p"2)2sefLeSPi

Proof

1. We need to determine the sign of Sy. — Sy,

S* G _ Ai(%‘lpn + qi2PT2)'2if‘ + CiB; Ai
N; Nis Ai —(pilp’h + pi2p’72)2?r:.
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CiBi(pip™ + piap™ ) 3 + C2Ai
Ai(pip™ + piap™) i
Bi(pirp™ + pmp”)?r—;f + CiA;
(Ai(pap™ + papm) %) /C:
C;

= oy
(pip™ + piap)2ri/ Ki™

Because the denominator is positive and Bj(pi1p™ +p,~2p'72)% < —C;A;, then we
have Sy, — Sy, <0. ]

2. The proof is analogous to the proof above. O

Hence, in general, optimal escapements from predator-prey metapopulations with
the receptor subpopulation delay model are smaller than the escapement from a single-
species metapopulation with receptor subpopulation delay model and has the same
value if C; = 0. The condition C; = 0 is biologically unacceptable since it means that
the discounted predator efficiency is zero (s + Bip” = 0) which means that if there
is no delay in converting energy (food) from predation into predator organism, the
immediate predator efficiency is higher than 100% (o + B > 0). However, if there are
differences between the price of the prey and the price of the predator, say the predator
is m times more valuable than the prey, then C; = a; +mpBip” = 0. This condition can
occur without requiring extremely high predator efficiency. It can be interpreted as a
condition where the discounted predator efficiency weighted by the relative predator
value is high.

In the next section, I compare escapements between patches if there is parameter
variability. These escapements are also compared to the escapements we get if we ignore
the spatial structure of the population. As expected, the result is a generalisation of
harvesting theory for a single-species metapopulation with recruitment delay (Tuck
1994) and the harvesting theory for predator-prey metapopulation discussed in the
previous chapter.

Escapement comparisons between subpopulations

To make an escapement comparison between patches, I use the following lemma, which
I do not prove here since it can be proved analogously to a similar lemma in the non-
delay model (Chapter 5). The lemma is also used to establish results in comparing the
escapements from a predator-prey metapopulation to escapements where the spatial
structure is ignored.

Lemma 5 (Migration trade-off equations) Let Sy, and Sp, denote the optimal escape-
ment from predator-prey metapopulation with receptor local population delay model
given by equations (6.42) and (6.43). If ai = a, by=b K, =K, Li=1L, C; = C,
R=1—q,8=;-b rim=(pap™ +pinp®)ri and sim = (gup™ + gi2p™)si, fori=1,2,
then

* 4 m m 2R
(S3 — Si) Dl = (02(31m ~ o) = 2 (1, — rlm)> (T . c)

2C 2.5
_T <C — f) (rlmsl'm - r2m32m))
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and

N : 47 1mT2m 25
(S, — Sp)A1A2 = <C2(7"1m — Tom) — %{L—?(Sm - Slm)) (7{‘ - C)
2C 2R
—7 <C - T) (Tlmslm - 'r2m52m)a
where A; = C? — rimsim%, 1=1,2.

Result 18 (Escapement comparison between subpopulations) Lel one of prey subpop-
ulation be a relative source while all other parameters of the prey and the predator are
identical for both subpopulations except for the delay parameters for the prey. Without
loss of generality let us assume that prey subpopulation one is a relative source, that is
(p11 + p12)m1 > (p22 + p21)T2, and also Tim > Tom. If A; and B; are negative, and C; is
non-positive with C > mam{zk—l?, %}, then:

1. Sy, > SN, »

2. Sp, < Sk,

Proof
1. Let Agy = (Sy, — Sh,)A14,. Using lemma 5 Ag, can be written as

45? 2R 2C 25
Asy = (——IS{T (ram — ﬁm)) (T - C) A (C - f) Sim(T1m — T2m)

e[ () (7 -0)+ 7 (0 )] 0om =r

o 2 2 431mR - 25 _ 231m>):|
B [L (O KL ° <K % ))| ram = rim)

2 2 431mR 2C
= an[7 (05 -~ o) [ =i

2 2B 431mR
- S [ZC (C - 7?) T KL ] (rom = Tim)

Since C > %, then Ag, > 0 only if rop < 71p. O

2. The proof is similar to above. O

Hence, we can conclude that as for the non-delay case, there is a region of para-
meters where we protect a relative source prey subpopulation more than a relative sink
prey subpopulation in the sense that we allow more escapement in the source than
the sink subpopulation. However, this source subpopulation has to have an additional
property, it has to be a source prey subpopulation with the time delays included, that
is

(prap™ + pr2p™)r1 > (p21p™ + pazp™)ra. (6.45)

This inequality redefines what a source subpopulation is for the receptor delay model.
It means that the per capita larval production of subpopulation one which is discounted
by its cumulative death rate, needs to be larger than the discounted per capita larval
production of subpopulation two. If both prey subpopulations have the same delay,
41 = 72, then Result 18 simply says that the relative source prey subpopulation should
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be harvested more conservatively than the relative sink prey subpopulation and that
the predator living in the same patch with the relative source prey subpopulation
should be harvested more heavily than the predator living in the other patch. This is a
generalisation of the rule of thumb for single-species metapopulation harvesting theory
(Tuck, 1994). Furthermore, if the retention rate of prey subpopulation ¢, (¢ = 1,2),
is equal to the immigration rate in that subpopulation, that is, p; = pji, then both
subpopulations should be harvested equally, regardless of the value of the recruitment
delays 1 and 2.

In the single-species metapopulation harvesting theory, if there is no source/sink
subpopulations and there is no diflerences between the time delays for prey and pred-
ator juveniles to recruit into the adult populations, or if ripy; = rapa with any value
of the delay, both subpopulations should be harvested equally. In contrast, optimal
escapements in the present theory also depend on other quantities, prey vulnerability
to predation o; and discounted predator efficiency C;. I use the following Lemma to in-
vestigate optimal escapement differences if discounted predator efficiency are different
between subpopulations.

Lemma 6 (Discounted efficiency trade-off equations) Let Sy, and Sp, denote the op-
timal escapement from a predator-prey metapopulation given by equations (6.42) and
(6.43). If a1 = ag = a, by = by = b, K; = K, Li = L, pi1 = pa2,P12 = P21, 411 =
G2y Q12 = Qa1,T1 = T2, 81 = Sz, Tim = (Pnp™ + pizp™)ri = o and Sim = (gip™ +
Qiop™)8; = Tm then

2As8m 471 Sm B
(St — St)Aide = (G 0)[Z52(C+ 1) + 5222 4 B(G1C)
and
2Brm, dr, s A
(S~ St = (Ca— ) |20y ) + T2 1 (01

Using this lemma I establish the following result.

Result 19 (Escapement comparison between subpopulations) Let us assume one of
the predator subpopulations is relatively more efficient with respect to time delay, while
all other parameters of the prey and the predator are identical for both subpopulations,
without loss of generality let us also assume that predator subpopulation one is relatively
more efficient, that is Cy > Cs. IfAy = Ay=Aand By = By = B are negative, and
C; is non-positive with C; > maw{%, %}, then:

1. Sy, > S,
2. Sp > Sp, -
Proof

1. From Lemma 6, we only need to show that [%fﬂ(cg + Cy) + trmemB B(Clcg)] <
0 which is satisfied by C; > —"A”I?; this is true since C; > % and - > 1. O

2. The proof is analogous to the proof above. O
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To facilitate interpretations of the result, without loss of generality, 1 consider
two special cases for Cy > Ca. First, if the predator conversion delay is the same in
both patches, that is, oy = 03, and prey vulnerability o is the same for both prey
subpopulations, then Cy > C reduces to % > % In this case I interpret that we
should harvest the prey and predator subpopulations living in the patch that has the
greater predator biological efficiency more conservatively than those living in the patch
that has a lower efficiency. Second, if oy = o3 and B; = 2 then C; > Cs is satisfied by
o1 < 04. In this case, we should harvest prey and predator subpopulations in a lower
predator conversion delay patch more conservatively than those in a greater conversion
delay patch. The following section describes comparisons of the optimal escapements if
the metapopulation is incorrectly managed as an unconnected two-patch predator-prey

or a well-mixed predator-prey population.

Escapement comparisons to incorrect escapements policies

Result 20 (Comparison of strategy with escapements from an unconnected two-patch
predator-prey system) Let Sy, and Sp, denote optimal escapements from a predator-
prey metapopulation given by equations (6.42) and (6.48). Let Sy, and Sp,, denote
optimal escapements if we incorrectly consider the population as a system consisting of
two unconnected predator-prey populations. If all hypothesis in Lemma § are satisfied
and also Sym = Som = Sm, ASn., = (Sh, + S¥,) — (S¥,. + Sh.) and ASp, = (Sp, +
SE,) — (Sp. + St,,) then:
L Sy, —Sh. = (y=rim)X

Ay

* x  _ (rou—ram)X

A2uA2 2
* * . !rlu—rlm!y
3' SPI SPlu - AluAl )

* w«  _ (rou—rom)Y
4. SP2 - SPZu Sl

Azl !

_ (8sm/(KL)(Armiramlim _c2)

](rlur2u —rmﬂ‘zm}
2 ASN“ ASRAS AT YA X,

- {(rim+romlem 2
 (8sm/(KL)(RTmArzmlin _ 02))(ryyrpu—rimram)
6. ASP“ - Ay Ayudaloy Y’

where X = (C(C = 2B/K) - #4p) B2 and ¥ = (C(C— ) - 4=) C. Further-
more, if A; and B; are negative, and C; is non-positive with C > mam{%, %}, then
X <0andY > 0.

I do not provide a proof of the result above since it is only a minor modification of
the proof for the similar result in the previous chapter. Assuming r; = 2, [ interpret the
result above as follows. Recall that ri, = (pip™ +pijp™ )i and ri = purip™ + PP

1. If p11 = paz, p12 = par and 11 = 72 then 7, = riu. Hence, if there is no source/sink
and no exporter/importer prey subpopulation and there is also no recruitment
delay difference between the two prey subpopulations, then optimal escapements
from a predator-prey metapopulation are exactly the same as escapements from
the two-patch unconnected predator-prey harvesting theory.
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assuming that the discounting rate is not zero. If there is no discounting rate,
then there is no difference between optimal escapements from a predator-prey
metapopulation and from the unconnected two-patch predator-prey harvesting
theory. The followin% discussion assumes that the discounting rate is not zero.
Since Ay, < 0, C2— 2 r“"}rﬁ’" sm < 0 and TymTem — a2 < 0 (see Appendix 6B),
then:

2. If pllp’n > p22p’72’ P12 = P21 and Y1 > Y2 then Tim > Tiu and Tom < T2y,

(a) Si > Sk
(b) Sk, < Shews
(c) Sp < Shi
(d) 5§ 2 Sk
(€) (Si, +5%,) — (Sin, + 5F.) 0,
(f) (Sp, +Sh) — (S, +5h.) 2 0.

Here, as in the single-species metapopulation delay model (Tuck, 1994), the prey
subpopulation with the larger recruitment delay is over-exploited if it is managed
as an unconnected two-patch predator-prey population. This incorrect policy also
under-harvests the prey subpopulation with the smaller recruitment delay and the
over-all prey population would be under-exploited. In contrast to single-species
metapopulation theory, incorrectly assuming that the population is an unconnec-
ted two-patch predator-prey population would under-harvest the predator living
in the same patch with the larger recruitment delay prey subpopulation and over-
exploit the predator living in the same patch with the smaller recruitment delay
prey subpopulation.

3. If p11 > pag, p1z > par and 11 = 72 then rim, > e and Tom < T2y, assuming that
the discounting rate is not zero. The result is the same to the case of pj1p™ >
D22p™, p12 = pa1 and vy > 2. Therefore, incorrectly managing a predator-prey
metapopulation as an unconnected two-patch predator-prey population would
over-harvest the relative exporter prey subpopulation and the predator living in
the same patch with the relative importer prey subpopulation. On the other hand,
the relative importer prey subpopulation and the predator living in the same
patch with the relative exporter prey subpopulation would be under-harvested.

Result 21 (Comparison of strategy with escapements from a well-mized predator-prey
system) Let S}, and Sp, denote optimal escapements from a predator-prey metapopu-
lation given by equations (6.42) and (6.43). Let Sy, and Sp, denote optimal escape-
ments if we incorrectly consider the population as a well-mized system. If all hypothesis
in Lemma & are satisfied and also Sy = Sam = Sm, ASN, = (S}(,l + S}(,z) — Sy, and

ASp, = (S +Sp,)—5p,, and in addition C' salisfies C (302 4 Mruom iy _ 23”’5"1) =

L KL
0 then:
1. §* — Llgx _ (ru—rim)X
: Ny 2% Nw — Aoy ’

* 1ox  _ (rw—ram)X
2. Sy, — Loy, = LegramlX

AVYAV I

x 1ok __ (rw—rim)Y
3. 53, — 15y, = (rezrmll

Aoy ’
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1 (rw— !Y
4. S};z e ES;;w == 4 iz

JAVYADS ’

2Hrimtramlem rulfw—"r1im"2m
5. ASy, = Eem/EDCgEr e mrzn) X,

_ (8sm /(K L)(Zmtrmlen 2

))(f'w'f'w—'f'lmr m)
6. ASp, = i m)y,

where X = (C(C —2B/K) - Ren) 2m, Y = (C(C - 28) - fsn) ' and Ao = C? —
dsmrw  Fyrthermore, if A; and B; are negative, and C; is non-positive with C' >

maz{22,2}, then X <0 and Y > 0.

I interpret the result above for the case of r; = ry as follows. Recall that ry, =
(piip’w + pz’jP’Yj)'ri el - (rl(P11+p12)-;r2(P21+P211) p('yl+ﬂ/2)/2.

1. If piy = paz, P12 = P21 and 1 = 72 then rim = 7w Hence, if there is no source/sink
and no exporter/importer prey subpopulation and there is also no recruitment
delay differences between the two prey subpopulations, then optimal escapements
from a predator-prey metapopulation are exactly the same as escapements from
the well-mixed predator-prey harvesting theory.

2. If p11 = p22, P12 = P and if there is no discounting rate, then there is no
difference between optimal escapements from a predator-prey metapopulation
and from the well-mixed predator-prey harvesting theory regardless of the value
of recruitment delays 71 and 7z.

3. If py1 > paz, P12 > par and 71 = 72 then ri,; > ry and rom, < 7y, assuming that the
discounting rate is not zero. Furthermore it can be proved that rimrem — 72, <0
(see Appendix 6C), and hence:

(6 <55 2 R s

(b) S¥, < %S}t,w,
(C S;;l S %S}kjw’
(d) Sp, = 35k,

Therefore, incorrectly managing a predator-prey metapopulation as a well-mixed
predator-prey population would over-harvest the relative exporter prey subpop-
ulation and the predator living in the same patch with the relative importer prey
subpopulation. On the other hand, the relative importer prey subpopulation
and the predator living in the same patch with the relative exporter prey sub-
population would be under-harvested. Incorrectly managing the population as
a well-mixed predator-prey would under-harvest the prey and over-harvest the
predator at the metapopulation level.

To illustrate the results discussed above, I present numerical examples in the
following section. I also investigate optimal harvesting strategies for the other model,
that is, the parental delay predator-prey metapopulation model, in the subsequent
section. The optimal escapements in this section will be compared to the optimal
escapements from the parental delay predator-prey metapopulation.
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6.1.4 Numerical examples

Consider a metapopulation with two subpopulations, Ni and N». The two subpopula-
tions have the same carrying capacities Ky = K, = 500000, the same intrinsic growth
rates r; = ro = 1000 and the same adult survival rates per period a; = a2 = 0.001.
The metapopulation has a symmetrical migration pjy = pa2 = P12 = P21 = 0.001, hence
there is no relative source/sink and exporter/importer subpopulation. The discounting
rate § is 10%. Before the exploitation begins, it is assumed that the metapopulation
is in its equilibrium popﬁlation size N; = Ny = 250250. Optimal escapements for this
metapopulation are S¥, = Sk,, = 112625, hence both prey subpopulations are harves-
ted equally with first period optimal harvests Hy, = Hy,, = 137625 and equilibrium
optimal harvests Hp, = Hy, = 62000.

Now assume that the predator, P;, is present. Let us assume that the intrinsic
growth rate of the predator is s; = 1000 with the carrying capacity L; = 10000.
The predator’s adult survival per period is not different from the prey’s adult sur-
vival and is not different between patches, hence b; = b, = 0.001. To see the effect
of predator’s recruitment delays on the optimal escapements of prey populations, I
assume that the predator has migration parameters ¢;1 = g1z = @21 = 22 = 0.01.
Let |a;] = 8; = 0.00001, that is, the predator has a high conversion efficiency. Let
™" =1 =2, 0 =3, o =4, and the prey do not experience recruitment delay,
that is, 71 = 72 = 0. With these parameters, a positive equilibrium population size,
(Ny, Ny, P, Py) = (223702,223702,10619,10619), is obtained. Using equations (6.42)
and (6.43) the optimal escapements for the system are found, that is, S}, = 111200,
Sk, = 110818, Sp, = 4584 and Sp, = 4561. These escapements are smaller than the
escapements we get if we do not take into account the recruitment delays (recruitment
delays are zero), that is, Sy, = Sk, = 112625 and Sp, = Sp, = 4668.

Note that even though both prey subpopulation are identical, in terms of their
biological parameters, their optimal escapements are different. We should harvest the
prey living in the same patch with the predator subpopulation which has a lower con-
version delay (in patch one) more conservatively than the other prey subpopulation
(Sh, > Sk,). We should also harvest the predator subpopulation with a lower con-
version delay more conservatively than the other predator subpopulation (Sp, > Sp,)-
This is because predator subpopulation one has a higher discounted efliciency, that is,
C, > O due to the lower delay in energy conversion (01 < 02) (see Result 19 and
Figure 6.2). If we ignore conversion delays, or if predation only aids predator survival,
optimal escapements for both patches are equal. This is because in the absence of the
delays, predator efficiency in both patches are equal, that is, Cy = Ch.

Figure 6.2.a shows a contour plot of the difference between two prey subpop-
ulation optimal escapements (Sx, — Sy,) with the variation of oy = @ = «a and
B, = B, = B. The contour line 0 is the contour line where Sy, = S%,- The region
below this line is the region for Sy, < Sh,, where the conditions in Result 19 may
be violated. For example if & = —0.0001 and B = 0.00001 then Si, < S3, (see
Figure 6.2.a) and C' < maz{£,4} (seec Result 19). If we ignore the predator-prey
interaction, that is, if we consider the system as a single-species metapopulation with
delay, then optimal escapements for both prey subpopulation would be the same due
to the symmetric delay, since v = 72 and 71 = T3. If we only consider the presence
of predator-prey interaction but not the delays, then optimal escapements for both
prey subpopulations would be equal along the line B = |a|. Figure 6.2.b is interpreted
similarly. ‘
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Figure 6.2: Contour plot of Sy, — Sy, (Figure 6.2.a) and Sy, — Sp, (Figure
6.2.b) with the variation of a; = a3 = & and B, = B, = B and contour plot of
Sy, — Sk, (Figure 6.2.c) and Sp, — Sp, (Figure 6.2.d) with the variation of o,
and o,.

Figure 6.2.c shows a contour plot of the difference between two prey subpopulation
optimal escapements (Sk, — Sk,) with the variation of oy and 3. The contour line 0
(or the line o3 = 1) is the contour line where Sy, = Sh,. The region below this line
is the region for S, < S%,. In this region predator subpopulation two has a lower
conversion delay than predator subpopulation one and hence has a higher discounted
efficiency than predator subpopulation one. In this case, we should protect both prey
and predator subpopulation in patch two more conservatively than prey and predator
in patch one (see Result 19).

As mentioned earlier in this section, the optimal escapements in this example are
smaller than the escapements if we do not take into account the recruitment delays.
This is typical for harvesting a population with delayed recruitment in general. It is not
optimal to wait until juvenile reach maturity if the recruitment delays of the populations
are too large. Hence optimal escapement is zero (Clark, 1976b; Tuck, 1994). This is also
true in general for the optimal harvesting of a predator-prey metapopulation. Other
examples as in Figures 6.3.a and 6.3.c, where qi1 = @21 = ¢22 = 0.002 and ¢;2 = 0.003,
show that a prey subpopulation with a larger delay has a smaller optimal escapement,
until finally it is zero, that is, all the population should be harvested. In this example,
optimal escapements for both predator subpopulations are increasing with the increase
of the prey recruitment delay (Figures 6.3.b and 6.3.d). However, their equilibrium
harvests are decreasing, due to the decrease of their food (the prey), until they reach
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CE]M  [Na  [Sh, [ [Hi, [Hy |
0 | 220533 | 216539 | 111588 | 111718 | 108945 | 104821
169831 | 170293 | 111588 | 111718 | 58243 | 58575
169831 | 170293 | 111588 | 111718 | 58243 | 58575
169831 | 170293 | 111588 | 111718 | 58243 | 58575
169831 | 170293 | 111588 | 111718 | 58243 | 58575
169831 | 170293 | 0 0 169831 | 170293

Y N =

((]P_[P [Sk [Sh [Hp [Hb |
0] 11659 | 13717 | 3334 | 2918 | 8325 | 10799
3 3 3334 | 2918 | -3331 | -2915
3 3 3334 | 2918 | -3331 | -2915
8581 | 10803 | 3334 | 2918 | 5247 | 7885

12302 | 14063 | 3334 | 2918 | 8968 | 11145
12302 | 14063 | 0 0 12302 | 14063

(28 BN OCY () S

Table 6.2: Optimal escapements and harvests from a predator-prey metapop-
ulation. The #** row indicates the value for 5 — ¢ periods to go.

a constant harvest for any large values of prey recruitment delays, vi. In this example
predator subpopulation one produces Hp = 5500 and predator subpopulation two
produces Hp, = 6500, regardless of the values of 7; (Figures 6.3.c and 6.3.d). These
harvests are exactly the same as harvests from a single-species metapopulation.

On the other hand, with the increase of predator recruitment delays, optimal
escapements for both predator subpopulations decrease (Figures 6.4.b) while optimal
escapements for both prey subpopulations increase (Figures 6.4.a). Unlike the case
where the variation takes the form of prey recruitment delays (Figure 6.3), in which
the increase of predator escapement does not mean the increase of predator equilib-
rium harvest, here the increase of prey escapement due to the decrease of predator
recruitment delay means the increase of prey equilibrium harvest (Figure 6.4.c) and
the decrease of predator escapement means the decrease of predator equilibrium har-
vest (Figure 6.4.d). We harvest the relative exporter/importer predator subpopulations
more/less conservatively, but we no longer harvest prey subpopulations living within
the same patch as the relative importer/exporter predator subpopulations more/less
conservatively (see Figure 6.4.a). This is because the predator discounted efficiency
between the two subpopulations are different. It does not satisfy the condition de-
scribed in Result 18. If there is no difference between the two discounted efficiencies,
for example if o3 = 05 = 3, then the rule described in the Result 18 above holds (see
Table 6.2).

To illustrate the comparison between predator-prey metapopulation policy and
the incorrect harvesting policy I give a different example where one predator subpop-
ulation is a relative exporter and source subpopulation. For the following example I
assume that all parameters are equal to the previous example, except that ¢12 = 0.003,
qun = Qa1 = Go2 = 0.002, and 01 = 03 = 3, that is, predator subpopulation one is
a relative exporter and source subpopulation. If we correctly manage the population
as a predator-prey metapopulation we find optimal escapements and harvests as in
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Figure 6.3: Contour plots of the optimal escapements (dots) and equilib-
rium harvests (dashes) for prey subpopulation one (Figure 6.3.a), prey sub-
population two (Figure 6.3.b), predator subpopulation one (Figure 6.3.c) and
predator subpopulation two (Figure 6.3.d). Prey numbers are in thousands.
Prey escapements are always smaller than escapements if there is no recruit-
ment delay and decreasing with the increase of the delays. If the delays are
extremely high (upper-right corner in the figure) then it is optimal to har-
vest all prey in both subpopulations. This is consistent with the result for
single-species metapopulation harvesting theory. Figures 6.3.b and 6.3.d show
that we should harvest the exporter predator subpopulation which has a lower
conversion delay (subpopulation one) more conservatively than predator sub-
population two.
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Figure 6.4: Figure 6.4.a shows contour plots of prey optimal escapements
Sy, (dots) and SR, (dashes), Figure 6.4.b shows contour plots of predator
optimal escapements Sp (dots) and Sp, (dashes), Figure 6.4.c shows contour
plots of prey equilibrium harvests Hy, (dots) and Hj, (dashes), and Figure
6.4.d shows contour plots of predator equilibrium harvests Hp, (dots) and Hp,
(dashes) with the variation of the predator recruitment delays 7 and 7.

Table 6.2.

Because there is no recruitment and energy conversion delay differences between
subpopulations, the relative exporter predator subpopulation is harvested more con-
servatively than the relative importer predator subpopulation. As in the case of the
non-delay predator-prey metapopulation, the prey living in the same patch with the
relative exporter predator subpopulation is harvested less conservatively. Furthermore,
assuming that in the beginning of the exploitation the metapopulation consists of adult
individuals only, since both predator subpopulations experience two periods recruit-
ment delay, we should leave both predator subpopulations unharvested for the first two
periods (indicated by the negative harvests Hp = —3331 and Hp, = —2915). As in
the case of the non-delay model, there are two different ways to handle these negative
escapements, if they impossible to implement. However, seeding strategy using these
negative escapements gives a higher profit than the other two methods.

If we incorrectly consider the population to be an unconnected two-patch predator-
prey population, we find that S¥,, = S}, Sk, = S¥.» Sp. = Sp, and Sp, = S5p,
with equilibrium harvests Hy = Hy,, Hy,, = Hy, Hp, = 8923 < Hp and
Hp, =11034 < Hp,. As in the non-delay case, the incorrect harvesting policy fails to
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recognise the importance of the relative exporter and source subpopulation, hence this
important subpopulation is over-harvested while the less important subpopulation is
under-harvested. As a result, the total harvest from this incorrect harvesting policy is
less than the total harvest if the population is managed properly.

If we incorrectly consider the population as a well-mixed predator-prey popula-
tion, we find that Sk, = Sk,, = 3%, = 110896 and 53, = Sp,, = 185, = 2781
Here we see the rule holds that if we incorrectly manage a predator-prey metapop-
ulation as a well-mixed predator-prey population we would over-harvest the relative
exporter predator subpopulation and the prey living in the same patch with the relat-
ive importer predator subpopulation. But, the rule that a relative importer predator
subpopulation and the prey living in the same patch with the relative exporter predator
subpopulation would be under-harvested, as suggested by the explanation of Result 21,
does not hold. This is because the discounted predator efficiency C; does not satisfy
the assumptions in Result 21.

If now, for example, we chose 1 = 2 = 0.00001331 and incorrectly manage the
population as a well-mixed predator-prey population we would produce escapements
Sty = Shpw = 1%, = 112625 and St = Sh, = 185, = 3522. While if we manage
the population correctly as a two-patch predator-prey metapopulation, we would find
optimal escapements Sx, = Sy, = 112625, Sy, = 3670 and Sp, = 3338. Here the rule
described in Result 21 is satisfied.

The last example shows that to satisfy the rule in Result 21, we need the discoun-
ted predator efficiency, Ci, to be equal to zero (which is satisfied by 8; = 0.00001331 >
|| = 0.00001). In nature, this is impossible, since it means that the predator biolo-
gical efficiency is greater than 100%. This is because it is assumed that there is no price
difference between prey and predator. If we take price differences into account, say the
price of predator is ten times the price of the prey, then we only need 3; = 0.000001331
or the predator biological efficiency is about thirteen per cent, which is plausible for
many species (Rand and Stewart, 1998). As in the case of the non-delay model, the
analysis with the inclusion of harvesting cost is similar to the analysis where harvesting
cost is neglected.

6.2 Predator-prey parental delay model

A predator-prey receptor delay model assumes that the recruitment delays occur in the
subpopulations that receive the juveniles. Tuck (1994) argued that delay may occur due
to some genetic effects, hence all juveniles from subpopulation i experience the same
delay, regardless of where they go. He called this type of delay “parental recruitment
delay”. This model can also describe delays related by environmental effects on a
subpopulation before the juvenile migrate to other subpopulations.

In nature, there is much evidence to show that parental recruitment delays can oc-
cur, for example in Chinook salmon, Oncorhynchus tshawytscha (Hankin et al., 1993).
Quinn and Hendry (1997) studied adult life history of Sockeye salmon, Oncorhynchus
nerka, in Lake Washington which has five subpopulations. Two of the subpopulations
are native to the lake while the other three are native to a different lake, Lake Baker.
They found that spawning salmon in one of the non-native subpopulations are older
than the native species. The age of these non-native spawning salmon in Lake Wash-
ington is relatively the same as the age of spawning salmon in their original habitat
(Lake Baker). Furthermore, they pointed out that the existence of local adaptation is
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difficult to prove, they argued that habitat variations are not sufficient to make dif-
ferences in age at maturity. The model in the following section is more appropriate
to describe this type of delay than the previous predator-prey receptor delay model. 1
refer to the model in this section as a predator-prey parental delay model.

6.2.1 The model and its optimal escapements

If all the symbols in the predator-prey parental delay model have the same meaning as
the previous predator-prey metapopulation with receptor delay recruitment, then the
growth of the exploited populations in the predator-prey parental model are given by

Nikq1) = a1 SNy, + P11F1(SN1,€_71) + p21F2(SN2k_72) + a1SN,. P (6.46)
Nz(k+1) . a2SN2k -+ P22F2(SN2,¢_72) & plZFl(Sle—‘yl) + a2SN2k Ssz’ (6'47)
Pl(k+1) = b1SP1,c + Q11G1(SP1k_T1) + QZ1G2(SP2)<—T2) + ﬁlSle—-o'l SPlk—al ’ (6'48)
P2(k.|_1) = bQSPQk + Q22G2(5P2k_,2) + Q12G1(SP1;<_T1) i /825N2k—02 SP2k—a'2' (6-49)
Optimal escapements for the present model satisfy implicit equations
— cn1(SR
il ];1( ) = (pn — eni(N11))(ar + P Fy(Sn,,)p™ + a15p,, )
+(pn — eva(Na1))prz 1 (Sh,, )P
+(pp — CP1(P11))515;10P017 (6.50)
— cno2(Sk
— ];2( fa) (pv — ena(Na1))(az + P22 F3(SK,, )™ + 025F,,)
+(pn — ent(N11))pa1 Fy(Si, )™
+(pp — cp2(P21))B2Sp, 07 (6.51)
p —cC S*lo * T * a
N 1;1( = ) = (PP - CP1(P11))(b1 + (Z11GI1(SP10)P '+ ﬁlSNmP 1)
+(pp — cp2(Pa1))q12G1(Sp,, )P
+(pn — CN1(N11))06157\710, (6.52)
— cpa(SE
= };2( Bl (pp — cpa(Pa1))(b2 + q22G5(Sh,)p™ + BaSNyp”)
+(pp — cp1(P11))qaG5(Spy, )P™
+(pn — en2(Na1)) o2 Sy, - (6.53)

6.2.2 Results with negligible costs

As in the predator-prey receptor delay model, results are interpreted by neglect-
ing all costs associated with harvesting. 1 also assume that there is no difference
between the price of the prey and predator. Using these assumptions, substitute
all derivatives of the logistic recruitment functions Fi(Ni) = rilNak (1 — N/ K;) and
Gi(Py) = siPix (1 — P,/ L;), into equations (6.50) - (6.53) to obtain

1 ; 27"5 * T4 *
S = + (pir + piz)p™ (m - FSN") + (a; + Bip”)SE, (6.54)
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1 o 2Si - L .

; = bi + (Qil + Qi2)P ¢ (Si - —[TSP") + (Oli + /31p ')SN," (655)
Solving equations (6.54) and (6.55) produces explicit expressions of optimal escape-
ments,

Ai(gir + qi2)p™ 2;" + C;B;

Sk = e , (6.56)
Bi(pir + pia)p™ % + CiA;
Sh = —— Q)A_ K. : (6.57)
provided .
A o 28
A; = CF — (pi + piz)p™ 72 (gin + gi2)p ‘f # 0, (6.58)
with 1
A == —(pa + pi2)p™ri — ais (6.59)
)
1 ,
B; = o (gir + qi2)p™)si — bi, (6.60)
and
Ci=o;+ ﬁipai. (6.61)

As in the case of the predator-prey receptor delay model, I deal only with positive
escapements. The following result guarantees that the escapements are all positive, and
the result is used to obtain escapement comparison between the current method and
the method where we ignore the predator-prey interaction. I do not go into the details
of the proof of the following result, since it can be proved analogously to the result in
the previous section.

Result 22 (Sufficient conditions for positive escapements) Let Sx. and Sp, denote the
optimal escapement from a predator-prey metapopulation given by equations (6.56) and
(6.57). If A; and B; arc negative, and C; is non-positive with C; > maz {22, 2_;,-_ ]
then

A; is negative, and S¥. and Sp, are positive.

Result 23 (Escapement comparison to a single-species metapopulation) Let Sy, and
Sp. denote the optimal escapement from a predator-prey metapopulation given by equa-
tions (6.56) and (6.57), and let Sy, and Sp,, denote the optimal escapement from the
single-species metapopulation with receptor population delay model given by the same
equations by assigning o; = B; = 0. If A; and B; are negative, and C; is non-positive
with C; > max{%, ZTAE'L}, then '

* _ Qx C; * x Q% Ci *
St = SN, = (pirtpi2)pi2ri/K; Sk, <0 and Sp, — 5p, (gir+gi2)p" 25i /L Sk <0

Hence, in general escapements from a predator-prey metapopulation with a parental
delay model are smaller than escapements from a single-species metapopulation with
a parental delay model and has the same value if C; = 0. This properties is also found
for the receptor delay model discussed in the previous section. The condition C; =0 is
only acceptable, biologically, if the predator is more valuable than the prey, otherwise
it requires extreme predator efficiency.
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Escapement comparisons between subpopulations

This section discusses some comparisons of escapements from the predator-prey par-
ental delay model if there is parameter variability between patches.

Lemma 7 (Migration trade-off equations) Let Sy, and S, denote the optimal escape-
ment from a predator-prey metapopulation with receptor local population delay model
given by equations (6.56) and (6.57). If i = 1,2, let a; = a, b; = b K;=K, L;=1L,
Ci=C,R=1%—0a,5="2=brim=(pa+pa)™ri and sin = (qu + gia)p" s, for
1=1,2, then

4 me2m 2R
(S}k\fl - S}k\&)AlAZ = (Cz(Slm — ng) — S1m 52 (r2m . ’rlm)> (__ _ C>

~ KL L
2C 28
<O - f) (rl'mSlm - T2m32m),

L

and

AT 1mTom 25
(51— Si)Mde = (C2(rum = ram) = 2T (53— 1) (G = ©)
2C 2R
K (C_ L

) (rimSim — T2mS2m)-

Result 24 (Escapement comparison between subpopulations) Let one of the prey sub-
populations be a relative source while all other parameters of the prey and the predator
are identical for both subpopulations excepl delay parameters for the prey. Without loss
of generality let us assume that prey subpopulation one is the relative source, that s,
(p11 + p12)r1 > (pa2 + pa1)re, and also ri, > Tom. If A; and B; are negative, C; is

non-positive with C > maz {22, 241 then

S, > Sk, and Sp < Sp,.

Result 24 shows that, as for the non-delay case, there is a region of parameters
where we protect a relative source prey subpopulation better than a relative sink prey
subpopulation in the sense that we harvest the relative source prey subpopulation with
more escapement than the sink subpopulation. However, this source subpopulation has
to have an additional property, it has to be a source prey subpopulation with respect
to time delay, that is,

(p11 + pr2)p™r1 > (P21 + p22)p ™2 (6.62)

In this case, the per capita larval production of subpopulation one, discounted by its
cumulative death rate, needs to be larger than the per capita larval production of
subpopulation two, discounted by its cumulative death rate. Similar to the case of
the receptor delay model (inequality (6.45)), inequality (6.62) redefines what a source
subpopulation is for the parental delay model. The difference is, here migration rate p;;
is discounted by the delay of subpopulation j, while in the previous model migration
rate p;; is discounted by the delay of subpopulation .

If both prey subpopulations have the same delay, y1 = 72, or 1 < 73, then Res-
ult 24 tells us that the relative source prey subpopulation should be harvested more
conservatively than the relative sink prey subpopulation and that the predator living
in the same patch with the relative source prey subpopulation should be harvested
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more heavily than the predator living in the other patch. This is a generalisation of
the rule of thumb for single-species metapopulation exploitation (Tuck, 1994). In con-
trast to the predator-prey receptor delay model, here we can still establish the same
result for 7y < 2. Furthermore, if there is no source/sink and no exporter/importer
subpopulation, but y1 < 72, then we should harvest the prey subpopulation with a
lower recruitment delay (subpopulation one) more conservatively than the prey sub-
population with a higher recruitment delay (subpopulation two). This is not the case
in the predator-prey receptor delay model, where it suggests that we should harvest
both prey subpopulations equally.

In harvesting theory for a single-species metapopulation, if there is no source/sink
subpopulations and there is no differences between time delay for prey and predator
juveniles to recruit into the adult populations, or if ripy; = rap2; with any value of the
delay, both subpopulations should be harvested equally. In contrast, in the present
theory, optimal escapements also depend on other quantities, prey vulnerability to
predation, a;, and discounted predator efficiency, C;. I use the following lemma to
investigate optimal escapement differences if discounted predator efficiency are different
between patches.

Lemma 8 (Discounted efficiency trade-off equations) Let Sy, and Sp, denote the op-
timal escapement from a predator-prey metapopulation given by equations (6.56) and
(6.57). Ifar = ay = a, by = by = b, K1 = Ky = K, Iy = Ly = L, pu =
Pa2, P12 = P21, qu1 = Q22,12 = Q21,71 = 72,81 = S2, Tim = (pir + pi2)p i = Tm and
Sim = (g1 + Qi2)p™ 8i = T'm then

2A8m, Ay, 8m B
(St - Si)dds = (Co—C0)[22m(Ca 4 C) + 222+ B(GIC)|
and
2Br,, dr s A
(S, = S1,)A10, = (Co—C1) [ T (Co+ O) + o A(Cng)]

Using this lemma I establish the following result

Result 25 (Escapement comparison between subpopulations) Let one of the predator
subpopulations be relatively more efficient with respect to time delay, while all other
parameters of the prey and the predator are identical for both subpopulations, withoul
loss of generality we assume that predator subpopulation one 1s relatively more efficient,
that is, C1 > Ca. If Ay = Ay = Aand By = By = B are negative, and C; is non-positive
with C; > maz{Z, 4}, then

Sy, > Sk, and Sp > S5p,.
Interpretation of the result above is similar to the same result in the predator-prey
receptor delay model.
Comparison of optimal escapement to incorrect escapements policies

Result 26 (Comparison of strategy with escapements from an unconnected two-patch
predator-prey system) Let Sy, and S, denote optimal escapements from a predator-
prey metapopulation given by equations (6.56) and (6.57). Let Sy, and Sp, denote
optimal escapements if we incorrectly consider the population as a system consisting of
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two unconnected predator-prey populations. Let ASy, = (S]*\,1+S}(,2)—(5'}*Vlu+5}'§;2u) and
ASp, = (Sp, +S;2)—(Sj;lu +5%,,)- If all assumptions in Lemma 7 are satisfied, A; and

B; are negative, C; is non-positive with ¢; > masc{%‘, %A.L} and also Sy = Soam = Sm
then:
* * — {rlu_rlm!X
1' SNI SNlu - AluAl J
ok (rou—rom)X
2. SNz SNzu AV 75V

* * . !rlu—rlm!Y
3' SP1 Splu - AluAl ’

4 S* _S* — [f‘2u—T2m)Y
' Py P2u —

Agulbo !

— (Ssmf(f(L)(zmm‘%nm—c2)](rlur2u—rlmr2m]

5. ASw. Ay BiuboAsy X,
e (ssm;"(KL](_Ln - T{r[‘ -‘m_02))(7‘1u”2u—7“1m7”2m)
6. ASP“ - ArAr. D2 A, Y’

where X = (C(C —2B/K) — &) 22 <0, Y = (c(c-22) - &) C > 0.

K

Assuming r; = r2, | interpret the result above as follows. Recall that r;, =
(pis + pis)p¥ri and riy = (piri + piiTs) P

1. If piz = p then rim = iy regardless of the value of recruitment delays «;. In
contrast to the predator-prey metapopulation with receptor delay model, the
present model suggests that if there is no exporter /importer prey subpopulation
then results from the correct and incorrect policy are the same, that is, SN, =
Sy., and Sp = Sp,, regardless of the values of the discounting rate (6), prey
discounted retention rate (ripiip™) and prey recruitment delays (:).

2. If p11 > paz, P12 > P2 and v; = 72 then 71 > 71w and 79, < T2u. The result
is the same to the case of predator-prey receptor delay recruitment in the pre-
vious section. Therefore, incorrectly managing a predator-prey metapopulation
as an unconnected two-patch predator-prey population would over-harvest the
relative exporter prey subpopulation and the predator living in the same patch
with the relative importer prey subpopulation. On the other hand, the relative
importer prey subpopulation and the predator living in the same patch with the
relative exporter prey subpopulation would be under-harvested. In contrast to
the parental recruitment delay model for a single-species metapopulation (Tuck,
1994), to obtain the result here we need both of the delays to be equal, that
is, 71 = 72. In the single-species metapopulation model, the same result can be
obtained regardless of the values of the delays ; (Tuck, 1994).

Result 27 (Comparison of strategy with escapements from a well-mized predator-prey
system) Let Sy, and Sp, denote optimal escapements from a predator-prey metapopula-
tion given by equations (6.56) and (6.57). Let S§, and Sp, denote the optimal escape-
ments if we incorrectly consider the population as a well-mived system. Let ASn, =
(Sy, + Sx,) — Sk, and ASp, = (Sp, + Sp,) — Sp,. If all assumptions in Lemma 7

are satisfied, A; and B; are negative, C; is non-positive with ¢; > max{%ﬂ%’;},
t t
0

Sim = Sam = Sm, and in addition C satisfies C (BCZ—l— 3—(—11_%@0— %)
then:

il
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where X = (C(C - 2B/K) — %) B2 < 0, Y = (C(C - 2By 4m) C' > 0 and

_ 2 __ 4smr
Ao = C? — 43ars.

Assuming r; = 79, | interpret the result above as follows. Recall that ry, =
(pii + pij)P’Yi)ri and r, = (rl(p11+P12)-12-r2(p21+PQ)) P(’YI+’Y2)/2'

1. If pjy = pa2, P12 = par and 11 = 72 then r;, = rw. Hence, if there is no
exporter/importer prey subpopulation and there are also no recruitment delay
differences between the two prey subpopulations, then optimal escapements from
the predator-prey metapopulation are exactly the same as escapements from the
well-mixed predator-prey harvesting theory.

2. If p11 = pagz, prz = par and if there is no discounting rate, then there is no
difference between optimal escapements from a predator-prey metapopulation
and from the well-mixed predator-prey harvesting theory regardless of the value
of recruitment delays v, and 7..

3. If pi1 > pag, prz > par and v = 72 then rim > 1y and 7o, < 7y, assuming
that the discounting rate is not zero. The result is the same as the case of the
receptor delay recruitment model. Hence, incorrectly managing a predator-prey
metapopulation as a well-mixed predator-prey population would over-harvest the
relative exporter prey subpopulation and the predator living in the same patch
with the relative importer prey subpopulation. On the other hand, the relative
importer prey subpopulation and the predator living in the same patch with
the relative exporter prey subpopulation would be under-harvested. Incorrectly
managing the population as a well-mixed predator-prey would under-harvest the
prey and over-harvest the predator at the metapopulation level.

In the single-species metapopulation harvesting theory (Tuck, 1994), the parental
delay model adheres to the relative source/sink results for the harvest policy compar-
isons regardless of the values of the delays. However, in the presence of predators, the
two models in this chapter (the receptor delay and the parental delay predator-prey
metapopulation models) adhere to the relative source/sink results for the harvest policy
comparisons in Chapter 5 only for a special case, that is, if the population delays are
equal. The following result investigates the differences between escapements from a
predator-prey metapopulation assuming parental delay recruitment and escapements
from a predator-prey metapopulation assuming local population receptor delay recruit-

ment discussed in the previous section. The result can be proved analogously to Results
26 and 27.
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Result 28 (Escapement comparison between the predator-prey parental delay model
and the predator-prey receptor delay model) Lel SN and Sp, denote optimal es-
capements from a predator-prey metapopulation assuming parental recruitment delay,
given by equations (6.56) and (6.57), and let S§, and St denote oplimal escape-
ments from a predator-prey metapopulation assuming local population receptor recruit-
ment delay, given by equations (6.42) and (6.43). 1If all hypotheses in Lemma 7
are satisfied, Sim = Sam = Sm, A; and B; are negative, and C; is non-positive with
¢ > max{%, ZL’%F}, then:

Y < - (rir—rip)X
1' SNlp SNlr - Aerlp J
* o Qx _ (7'2r—7‘2g)X
2' SN2p SN2r - Aerzp ’

«  _ ax o (nr—rip)¥
5. Sp, — Sp, = Cypalt

ﬁll'Alp :
* o Qx _ (7'21‘—7'2E)Y
4' SP2p SP2r - A2,-A2p ’

where X = (C(C —2B/K) — 2 B2 <0, Y = (C(C—2B)—2m)C >0, Ay is
A; in (6.58) and Aq is A in (7.52).

To interpret the result above, let us assume that we have a predator-prey meta-
population satisfying all the assumptions in the result above, with parental recruit-
ment delay mode. Let prey subpopulation one have a larger recruitment delay than
prey subpopulation two, that is, 71 > 2. Recall that ry = (pisp™ + pij ™7 )iy Tip =
(pisp™ + pijp™ )ri- L1 > 72 then rqi, > r1p and 72, < 72y, therefore

SNlp < SN1r7 Ssz > SN2r7 SPlp > SPlr and SP2p < SPzr'

Hence, assuming that the metapopulation has local population receptor delay mode,
would under-harvest the prey subpopulation with the larger recruitment delay, and
over-harvest the prey subpopulation with the lower recruitment delay. On the other
hand, we would also over-harvest the predator subpopulation living in the same patch
with the prey subpopulation which has a larger recruitment delay, while the other
predator subpopulation would be under-harvested (see Figure 6.5).

6.2.3 Numerical examples

I use a similar example to that for the receptor delay predator-prey metapopulation
model discussed in the previous section, that is, a predator-prey metapopulation with
the following parameters: K; = K, = 500000, L; = L, = 10000, ry = r2 = 1000,
81 = 89 = 1000, ay = ag = 0001, bl = b2 = 0001, P11 = P22 = P12 = P21 = 0001,
Q11 = Q22 = 12 = 21 = 001, ﬁl = ,82 = IO[ll = lOlzl = (.00001 and § = 10%
Furthermore, to allow comparison between the predator-prey receptor delay model
and the predator-prey parental delay model I assume that vy =72 =0, 11 =2, 72 =3
and o, = g, = 3. For comparison reasons, 1 add subscript r and p to indicate results
from the predator-prey receptor delay model and the predator-prey parental delay
model, respectively. With these parameters, a positive equilibrium population size,
(Ny, Ny, Py, By) = (223702,223702,10619,10619), is obtained. Using equations (6.42)
and (6.43), optimal escapements, S5, = Sk, = 11206 and Sp, = Sp,, = 4564, are
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Figure 6.5: Prey subpopulation one has a larger recruitment delay than prey
subpopulation two, that is, v1 > 72. The figure shows that assuming the
metapopulation has local population receptor delay model we would under-
harvest the prey subpopulation with the larger recruitment delay and over-
harvest the prey subpopulation with the lower recruitment delay. On the
other hand, we would also over-harvest the predator subpopulation living in
the same patch with the prey subpopulation which has a larger recruitment
delay, while the other predator subpopulation would be under-harvested.

obtained. Similarly, using equations (6.56) and (6.57) optimal escapements Sty =
111200, Sy,, = 111213, Sp,, = 4084 and Sp, = 4542 are obtained.

Note that the predator-prey receptor delay model gives equal escapements for
both patches while the predator-prey parental delay model harvests the predator sub-
population with the lower recruitment delay more conservatively than predator subpop-
ulation with the higher recruitment delay. This is because the proportion of predator
juveniles that remain in the parent patch equals the proportion of predator juveniles
that migrate to the other patch, ¢; = g for 1 = 1,2, and both subpopulations mi-
grate symmetrically, ¢i; = ¢ji- Asa result, recruitment delay differences does not cause
escapement differences. Recall the migration trade-off equation in Lemma 5. In this
case, the equation reduces to

2 2A Ar1m S
e [20(0-2) B o, (080
2A 4rymS
ASN = O(Slm - Szm) (C(—L— - C) + [;L ) ; (664)

with Ag, = (Sp — Sp,)A102, Asy = (Sk, — S%,)A12, sim = (gup™ + qi2p™)si,
Fim = (Pirp" + Pizp™)ri and rim = (pirp™ + pizp™)ri. Clearly sim = Som and hence
Sy, = Sk, and Sp = 5p,

On the other hand, for the same parameters as above, the predator-prey parental
delay model harvests the predator subpopulation with the lower delay more conser-
vatively than the predator subpopulation with the higher delay. This is because es-
capement of subpopulation one is independent of the delay in subpopulation two and
vice-versa (see equations (6.56) and (6.57)). The increase of the delay in predator
subpopulation two only decreases escapement of predator subpopulation two and, in
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addition, it also increases escapement of the prey living in the same patch with this
predator subpopulation. It can also be seen from the migration trade-off equations in
Lemma 7 which reduce to equations (6.63) and (6.64), but with sim = (gii + qi)p™ s
and rim = (pu + pij)pTri. Since 1y < T2 we have s, > Sam. Moreover, since the
assumptions in Result 22 are satisfied then we have S, < Sx, and Sp, > 5p,.

[ compare results from the predator-prey receptor delay model and the predator-
prey parental delay model for various cases, such as different delays and migration
parameters for the predator as shown in Table 6.3. The table shows that when the
predator migrates symmetrically with identical proportion of g;;, such as in the example
above, escapements from the predator-prey receptor delay model are always equal
for every patch regardless of the value of recruitment delays. Escapements from the
predator-prey parental delay model follow the general rule described above. However,
when the predator migrate non-symmetrically, in this case predator subpopulation one
is a relative source and exporter subpopulation, then we should harvest the relative
exporter and source subpopulation more conservatively than the relative importer and
sink predator subpopulation regardless of the value of the delays. We should also
harvest the prey living in the same patch with the relative exporter and source predator
subpopulation less conservatively than the other prey subpopulation (see Table 6.3 for
non-symmetric migration case). This suggests that the rule in the previous chapter on
how to harvest a relative source/sink and exporter/importer subpopulations is robust
if the difference between delays is not large (see Figure 6.6).

Figures 6.6.a and 6.6.b show that the rules of thumb of how to harvest a relative
source and exporter subpopulation (in this example predator subpopulation one is a
relative source and exporter) are valid for the predator-prey parental delay model as
long as 7, < To. However, in this special case, it is valid for the predator-prey receptor
delay model regardless of the value of 7;. Figures 6.6.c and 6.6.d show that as prey
recruitment delay «; varies, the effects of predator parameter differential are neutralised
by large values of ;. For small values of 7, the rule to harvest a relative source/sink
and exporter/importer subpopulation holds for both the predator-prey receptor delay
model and the predator-prey parental delay model.

6.3 Concluding Remarks

In nature, time-delays in recruitment occur for many species of fish. For example,
Pacific ocean perch has a recruitment delay of at least 8 years (Gunderson, 1997). For
this reason, the predator-prey metapopulation model in Chapter 5 was extended in
this chapter by including a time-delay in juvenile recruitment for both species. The
model takes the form of a simple age-structured model which has only two age-classes,
juvenile and adult.

Recruitment delay can be modelled in two different ways. First, a recruitment
delay experienced by juveniles can be related to the subpopulation in which they are
recruited, this is referred to as the “local population recruitment delay model”. Second,
the delay may be related to their original subpopulation, and this model is known as
the “parental recruitment delay model” (Tuck, 1994). I extended the basic predator-
prey metapopulation model in Chapter 5 by including these two types of recruitment
delay.

The results in this chapter show that if both subpopulations are identical then
both models produce the same optimal escapements. However, if one of the subpop-
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Figure 6.6: Figures 6.6.a and 6.6.c show contour plots of Sy, — Sk, (dots) and
S% — Sp, (dashes) from the receptor delay model and Figures 6.6.b and 6.6.d show
contour plots of Sy, — Sy, (dots) and Sp — Sp, (dashes) from the parental delay
model. In this case, predator subpopulation one is a relative exporter and source
subpopulation. Figure 6.6.a shows that regardless of the value of predator delays,
the rule to harvest a relative source and exporter subpopulation conservatively holds
in the receptor delay model and Figure 6.6.b shows that the same rule holds in the
parental delay model as long as 71 < 7. The sign of S}, — Sy, and Sp, — Sp,
are changed in the lower right part of Figure 6.6.b. Figure 6.6.d shows that if
is sufficiently large then optimal escapements for both prey subpopulations are the
same. In all figures g12 = 0.03, q11 = @22 = g1 = 0.01 with v, = 7, (Figures 6.6.a
and 6.6.b) and 7, < 7, (Figures 6.6.c and 6.6.d).
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(a) Symmetrical migration case with ¢i2 = ga1 = Q11 = q22 = 0.01.

Escapement n=2<1,=3 =Ty =3 M=3>Ty=2
RDM | PDM | RDM | PDM | RDM | PDM
St 111206 | 111200 | 111213 [ 111213 | 111206 | 111213
SN, 111206 | 111213 | 111213 | 111213 | 111206 | 111200
Sp, 4564 4584 4542 4542 4564 4542
Sp, 4564 4542 4542 4542 4564 4584

(b) Non-symmetrical migration case with ¢1p = 0.03, ¢21 = q11 = g22 = 0.01.

Escapement m=2<T=3 T=Ty=3 Hn=3>1=2
RDM ] PDM RDM ] PDM | RDM l PDM
S, 111140 | 111135 [ 111142 | 111142 | 111137 | 111142
S¥, 111206 | 111213 | 111213 | 111213 | 111206 | 111200
Sh, 4777 4792 4772 4772 4787 4772
Sk, 4564 4542 4542 4542 4564 4584

Table 6.3: Escapement comparisons between the predator-prey receptor delay
model (RDM) and the predator-prey parental delay model (PDM). The table
shows that when the predators migrate symmetrically with identical propor-
tion of g;;, escapements from the predator-prey receptor delay model are
always equal for every patch regardless of the value of recruitment delays.
However, when the predator migrates non-symmetrically we should harvest
the relative exporter and source subpopulation more conservatively than the
relative importer and sink predator subpopulation regardless of the value of
the delays. This suggests that the rule in the previous chapter on how to
harvest a relative source/sink and exporter/importer subpopulations is robust
if the difference between delays is not large.

ulations has a larger recruitment delay (or in general there is a biological parameter
difference between patches) then the optimal escapements will differ. For example, if
prey subpopulation one has a larger recruitment delay than prey subpopulation two,
that is, 71 > 72, then escapement for prey subpopulation one from the parental delay
model is lower than escapement from the receptor delay model and escapement for prey
subpopulation two from the parental delay model is greater than escapement from the
receptor delay model. Hence, incorrectly managing a predator-prey metapopulation
having parental recruitment delay as a metapopulation with local population receptor
delay model, would under-harvest the prey subpopulation with the larger recruitment
delay, and over-harvest the prey subpopulation with the lower recruitment delay. On
the other hand, it also would over-harvest the predator subpopulation living in the
same patch with the prey subpopulation which has a larger recruitment delay, while
the other predator subpopulation would be under-harvested.

In a special case, if migration parameters are uniform, that is, p;; = pji, V2,7 = 1,2
and q; = gji, Vi, = 1,2, then escapements from the receptor delay model are equal
for every patch while the parental delay model produces different escapements for
different patches, that is, Sn,, < SNy, = SNz, < SNy, OF Shyp > SNy, = Shar > Shay
depending on the value of recruitment delay, v;. This result is not surprising if we
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look at equations (6.42) and (6.56) for the receptor delay model and the parental
delay model, respectively. Escapement Sp,, from the parental delay model is only
affected by 71, while escapement from the receptor delay model is also affected by 2,
which is smaller than ;. This is consistent with single-species harvesting theory which
concludes that we should harvest a subpopulation with a greater recruitment delay
more heavily than a subpopulation with a lower recruitment delay (Tuck, 1994; see
also Table 6.3).

The parental delay model would conserve a relative source prey subpopulation
more conservatively than a relative sink prey subpopulation and harvest the predator
living in the same patch with a relative source prey subpopulation less conservatively
than the other predator subpopulation if prey subpopulation one has a lower recruit-
ment delay, so that (pi1 +pi2)p"71 > (P21 + paz)p™r2. The receptor delay model needs
an additional condition, that is, p11 > pa1, P12 = P22 OF P11 = P21, P12 > P22 — for ex-
ample, if the proportion of migrating juvenile from patch one to patch ¢ is greater than
the proportion of migrating juvenile from patch two to patch 7, for ¢ = 1,2. However,
numerical examples show that if the difference between delays is not large, then to
establish the rule, the additional condition above is not required.

Furthermore, if there is no discounting rate or if recruitment delays in the two
patches are equal, then the rules of thumb of predator-prey metapopulation harvesting
theory, such as escapement comparison between patches and escapement comparison
to incorrect harvesting policies, hold. If the discounting rate § is not zero and there 1s
a difference in the recruitment delay between patches (for example v1 # v2), then the
rule of how to harvest a relative source/sink and exporter /importer subpopulation is
no longer necessarily true.

In the single-species metapopulation harvesting theory (Tuck, 1994), the parental
delay model is the same as the relative source /sink results for the harvest policy com-
parisons regardless of the values of the delays. However, in the presence of predators,
the two models in this chapter adhere to the relative source/sink results for the har-
vest policy comparisons in Chapter 5 only for a special case, that is, if the population
delays are equal. If there is no exporter /importer prey subpopulation, escapements
from the predator-prey metapopulation with parental delay recruitment are equal to
escapements from the incorrect unconnected two-patch predator-prey population har-
vesting policy, regardless of the delays, v;. In contrast, escapement differences between
the predator-prey metapopulation with receptor delay recruitment and the incorrect
unconnected two-patch predator-prey population, do depend on the delays.

The exploited population delay model discussed in this chapter was originally de-
veloped by Clark (1976b), especially the analysis of its optimal escapement. Botsford
(1992) suggested that this model can be extended by considering the spatial structure
of the population and larval dispersal between subpopulations. Tuck (1994) exten-
ded Clark’s (19976b) model to incorporate spatial structure, dispersal and maturation
delays. His major conclusion was that results from the delay model may differ depend-
ing on whether we assume that the delay related to the destination site or the birth site
of the dispersing larvae. In this chapter [ have extended Tuck’s (1994) model by adding
predator-prey interactions to the system. The results in this chapter show that Tuck’s
(1994) major conclusion is confirmed in the presence of predator-prey interaction, if
the predator “discounted” efficiency is greater than a certain threshold. It can also
be concluded that maturation delays differences of one species (e.g. the prey species)
affect the optimal escapement of other species (e.g. the predator species) even when
the latter species has a uniform delay, that is, delays are equal in any patches.
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This result is not surprising, since delayed recruitment is considered to be one
of five possible reasons for a declining population. The other four reasons are low
adult survivorship, low fecundity, low juvenile survivorship and insufficient immigration
(Russ and Alcala, 1996; Hitchcock and Grattotrevor, 1997). Meanwhile, the changes
of a species’ abundance may affect the dynamics of other species which interact with
the former species (Crawford and Dyer, 1995; Agnew, 1997), and eventually affect the
level of escapements of both species. Tuck (1994) showed that an increase (decrease)
in recruitment delay of a single-species decreases (increases) the optimal escapement
of that species. I have shown in this chapter that it can also increase (decrease) the
optimal escapement of the other species which interacts with the former, especially in
the predator-prey metapopulation parental delay model.

The results in this chapter are the same as those in the non-delay models when
the delays between subpopulations are the same. Thus, by knowing that there is no
variability in the delays between subpopulations, all strategies in the non-delay models
remain the same in the presence of the delays. The results are different only when
the delays differ between subpopulations, for example we might not harvest a relative
source prey subpopulation more conservatively than a relative sink prey subpopulation
if the delay of the relative source prey subpopulation in the parental delay model is
much larger than the relative sink prey subpopulation. In this case there are two
counteracting forces. First, the source/sink force, that is, in the absence of the delays,
we should harvest the relative source prey subpopulation more conservatively than the
other prey subpopulation. This is intuitive, since protecting the source subpopulation
means protecting the replenishment of the other subpopulation (Mangel et al., 1997;
Gary, 1998). Second, the recruitment delay force, that is, in the absence of source/sink
structure, we should harvest the prey subpopulation with a larger recruitment delay less
conservatively than the other prey subpopulation. This is also intuitive, since a higher
delay in maturation can be interpreted as a higher dampener on the growth of the
population (Tuck, 1994). Thus if there are differences in delay and source/sink status
between populations, optimal escapements are determined by the trade-off between the
two forces. However, in general both results are identical if we modify the definition
of source subpopulation to include the delays. That is, a subpopulation is a relative
source if its per capita larval production, discounted by its cumulative death rate, is
larger than the per capita larval production of the other subpopulation, discounted by
its cumulative death rate [see inequality (6.62)].

The model in this chapter is the simplestr‘form of a cohort model, that is, it only
has two age-classes: juvenile and adult. The model could be extended to a more general
model, for example a population that has at least three age-classes: juvenile, subadult,
and adult, with predator-prey interactions in at least one age-class. Exploitation may
not only target the adult-class, but also the subadult-class. In this chapter I assumed
that the time delays, 7;, are constant. This could also be extended to non-constant
recruitment delays, since an increasing fishing mortality may causes some fish species
to mature at a younger age, such as the North Sea cod population (Rowell, 1993). In
this case, recruitment delays 4; could be extended to be functions of fishing mortality
or constant times Hx,. Another possibility for future work is to consider sex-structured
delay-recruitment. The literature confirms that differences in male and female delays
to recruitment affect population stability (Cruywagen, 1996). In effect, optimal es-
capements for each sex-class may be different. Sex selective harvesting is common
in game or hunting practices. An example of sex selective harvesting in fisheries is
the exploitation of Dungeness crabs, Cancer magister, along the west coast of North
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America, where only the males are harvested (Higgins et al., 1997).

So far I only considered optimal harvesting strategies for predator-prey meta-
populations with juvenile migration. The next chapter considers optimal harvesting
strategies for predator-prey metapopulations with adult migration. Optimal harvest-
ing strategies for predator-prey metapopulations with more than two patches are also
explored by assuming that both the adults and juveniles migrates, which often occurs
in nature.

6.4 Appendices

Appendix 6A: Optimal escapements derivation

This appendix solves the necessary conditions for maximum % = % =0fork>1
and 3135 — = a—% — 0 with £ in equation (6.29). The above conditions are equivalent
to tk tk
oll
= Pka——NI:—; — AMr-1) + Mgar + )\1k+71p11F11(SN1k) + MkeSpy,
+>\2k+’¥2p12F1/(Sle) S }‘3k+0’1 ﬁlSPlk’ (665)
0y,
0 = p* BNNk — Aa(eo1) + A2k + Aokt P22 I3 (Sgi ) + A2k@2Spy,
2
+)\1k+'71p21F2’(SN2k) + /\4k+02/62SP2ka (666)
o1l
= Pk 8PP; — A1) + Aagb1 + Askgr; qu1G1(Sp,) + Askto B1SN,,
1
+ Akt q12G1(SPy ) + Ak Sy, (6.67)
kaHP2 '
0 = »p m — Mr—1) + Aarbs + Mkyr, 2G5 (SPy,) + Ak+oy P25 Ny
2
+ Askar q21Go(SPy ) + A2k SNy (6.68)
o0lly,
Pk BHN — Aka1 — )\1k+71p11F1I(SN1k) - )\1k0415'P1k
Nik
_A2k+’72p12F1,(SN1k) - /\3k+01ﬁISP1k? (6'69)
o1l
0 = pf aH;V? — Aakz — Aakip P22 F5(SNa ) — A2k @25y,
2k
_)‘lk+’11p21F£(SN2k) . )‘4’6—{-02/82513%) (670)
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k 8].—.[}31

0 =p 9Hp — Askb1 — Askgn Q11GI1(SP1k) - /\3k+01/815N1k
1k
—>\4k+T2CI12G'1(SPIk) — Ag01 SNy (6.71)
oIl
0 = [)k BH}? — Aakbz — Akt Q22G/2(5P2k) — Mktor P25y,
2k
_)‘Bk-l—‘rl QZlGlz(Sng) - AZkaQS’]\hk) (672)

Solving equations (6.65) to (6.71) produces

Mo = 7 (glj'lvflvk X gg}:) (6.73)
Mage-1) = p° (Z?VIZZ * aag;\tk) ’ .
Aoty = 7 (grjii n gg:k) : (6.75)
Nagg-1) = 9" (32:2 gg}i) o
Substituting A1k, A2k, Ask, and Ak info equation (6.69) produces
0 = p’“g—;v% — ) (g?vllv; * ggjvvll)

uRlno o (G )

et (G

—pua (S ) (g?vN aagfj)

s (G die) o

Divide this equation by p**!, and recall that N — p— en(Sn,) and %IV% + %%"‘— =
: i : ik

BHy,,
p — cn(Ni1) then

pn — eN1(Shy,)
P

(pv — envi(N11)) (a1 + P Fy (S )p™ + 1Sy,

+(pN - CNz(N21))p12F1/(SN10)p%
+(pp — cp1(P11))B1Sp,p7" - (6.78)

Similarly, substituting A1k, A2k, A3k, and )4 into equations (6.70) to (6.72) produces
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PN — CNQ(SNzo)
P

- (pN - CNZ(N21))(G2 + p22F2/(SN20)p’72 + O‘251320)

+(pn — en1(N11))p21 Fo(Sho )™
+(pp — cp2(P21))B2SPe0 P (6.79)

pp — cp1(SPy)

(pp — cp1(Pr))(b1 + 4G (Spo)p™ + B p™)

+(pp — cp2(P21)) 912G (SPy )p™
+(pN - ch(Nll))a18N107 (680)

pp — cP?(szo)
0

= (pp — cpa(P21)) (b2 + q22G5(Spy ) 0™ + B2SN5007)

+(pp — cp1(P11))a21G2(Spy )P™

+(pn — en2(Na1)) 2SNy - (6.81)
Appendix 6B: Escapement comparisons with the escapements
from the unconnected metapopulation
Recall that rim = (piip™ +pip¥ )i, Tiw = prip” +Purip", Di = C?—rimBisim P < 0,
Ay = C2 — mu%simzﬁi, and r; = 7. Let us assume that p11p”™ > p22p™, P12 = P21,
y1 > 72 and r; =79, then:

1. 714 < Tim and 724 > Tom
Proof:

1

"
Tiu pir1p"t + parap”

< purip™t + prarip”

Tim.
Hence, r1y < T1m. Similarly, it can be proven that roy > rom.

2. N <0
Proof:

pririp™ + parep”
> paarep™ + paiTep ™

Tu

I

Tom-

Hence, Ay < Ay < 0. Furthermore, since roy > Tom then Ag, < Ay < 0.

2 2(rim+ram)sm
3. C* — i——L—KL <0
Proof:
It is clear since T2, < Um%’}ﬂ < ry, and A; < 0.
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4. TymTom — T1uT2u <0
Proof:
Let A;; = ripijp™, then

FimTom — T1uT2u = (A + Aq2)(An + Ag) — (A + A )(Asz + Ags)
Ap1Ag + AgAzy — AnnAra — AsiAn

A1(Az1 — Arz) + Aza(Arz — Aj1)

(A1 — Ag2)(Aar — Ai2)

= r(p11p™ — Pa2p™)(p2p™ — Pr12p™):

Since p11p™ > p22p™, P12 = P21 and v; > 72 then

FmPem — T1al2u < 0. (6.82)

Appendix 6C: Escapement comparisons with the escapements
from the well-mixed metapopulation

If p11 > paz, P12 > par and 11 =72 then rymram — 2, < 0.

Proof:

Recall that Fim = (pii/ﬂ‘ _I_pijp,yj)ri Sivd ry = (rl(P11+p12)-i2-r2(P21+P22)) p('yl+'yz)/2- Let
Ay = ripijp ™, Bi; = ripi; and'V; = By + By, then

By + Big + B + 322)2 (p(“r1+72)) :

TimTom — Ti, = (An+ A12)(Ag + Agz) — ( 5

Since 71 = 2 = then

Biy + Big) + (Bar + B2)\’
'r'1m’r‘2m—7"fu = p2'y (B11+B12)(B21+Bn)—(( 11 12) 2( 21 22)):\

1 1
= 2[R+ VE - 20N = e [ - W)+ (V- Ve

1 1
= 2P A = V) + Va(Va = )l = (- ) <0,
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Chapter 7

Predator-prey metapopulations
with adult migration

In the previous chapters I discussed optimal harvesting strategies for some predator-
prey metapopulations. I have assumed throughout these chapters that local popu-
lations are connected by the dispersal of juveniles and adults are sedentery. Adult
migration is not uncommon in many commercial fish stocks, although these migra-
tions are often seasonal. Examples including Pacific salmon, Sockeye salmon, Atlantic
salmon, Bull trout, shrimp and turtles, and many of these migrations are related to
homing from feeding habitat to spawning habitat or nursery ground (Brannon, 1984;
Harden Jones, 1984; Wooton, 1990; Creasey et al., 1996; Crowley, 1996; Crozier et al.,
1997; Quinn et al., 1997; Sakamoto et al., 1997; Swanberg, 1997).

Sturgeon are a good example of a fish that is highly mobile and utilises several
distinct habitats throughout its life. Different types of habitat are needed: to develop
eggs and larvae in the early stage of their life, to feed during their body size develop-
ment and to spawn in the mature stage (Auer, 1996). Auer (1996) showed a positive
relationship between maximum migration distance and body size of sturgeon. This
suggests that the adults of sturgeon are highly dispersive.

The salmonids of the Northtern Pacific and Atlantic are anadromous, that 1s,
they hatch in freshwater but grow and mature in the ocean. After they reach maturity
they home, that is, they return again to the freshwater habitat where they hatched, in
order to spawn (Policansky and Magnuson, 1998). The freshwater and oceanic habitat
used by the salmonids throughout their life can be described as a dendritic or tree-like
structure, consisting of one trunk, in this case the oceanic feeding habitat, and many
freshwater streams where they spawn as the branches (Tallman and Healey, 1994).
Although the tendency of the salmonids fishes to find the site where they hatched is
well known (Hartman and Raleigh, 1964), many studies show that some of them stray
or fail to home (Quinn et al., 1991; Pascual and Quinn, 1994). Straying levels vary
from species to species. Certain species, like the Chum salmon, have a significant stray
level, nearly 50% of the population (Tallman and Healey, 1994). The salmonids that
stray spawn elsewhere, usually in nearby habitat. Some authors have considered the
places where the salmonids hatched as local populations (Schaffer and Elson, 1975). If
‘1 addition we also consider that these habitats are connected by the migration of the
strays, then we have a metapopulation with adult migration (Tuck, 1994).

In this chapter I develop predator-prey metapopulation models connected by
adult migration (e.g. stray migration in the case of salmonids). Optimal harvesting
strategies are investigated for three different models. The first model assumes that
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only the adults of the populations migrate, the second model assumes that both age-
classes, the adults and juveniles, migrate. In the third model, I extend the second
model by assuming that the metapopulation is made of more than two subpopulations
and determine the optimal harvesting strategies for this general model.

7.1 Adult migration without juvenile migration

Many of the examples of marine metapopulations in the previous chapters are made up
of several subpopulations connected by the dispersal of their larvae or juveniles. The
adults are sedentary. There are also some examples of marine metapopulation where
the connection is caused by the dispersal of adults, not by the dispersal of juveniles —
for example, the Squat lobster (Pleuroncodes monodon). Roa and Bahamonde (1993)
observed that the older class of this species migrate while the younger class occupied
the site vacated by the older class. The first model in this chapter considers this type
of metapopulation, that is, a metapopulation with adult migration where the juveniles
are assumed to be immobile or sedentary. This model is extended in the subsequent
chapter to include the juvenile migration.

7.1.1 The model and its optimal escapements

Let us assume that there is a predator-prey population in each of two different patches,
namely patch one and patch two. Let us also assume that a proportion of the surviving
prey and predator adult stock from subpopulation i migrates to subpopulation j. The
proportion of the surviving prey and predator adult which migrates from patch ¢ to
patch j is defined by m;; and nij, respectively. If it is assumed that a proportion of
adults are lost from the system then mi 4+ miz < 1 and n; + nie < 1. If a; and
b; are the pre-migration adult survivals of the prey and predator subpopulations 4,
respectively, using the same notation as in the previous chapters, then the dynamic of
the population is given by

Ni(kt1) = army Nig + agmay Nog + Fi(Nix) + a1 Nig Pr, (7.1)
Nyt = armiaNig + aamaaNok + Fy(Nak) + aaNox Pay, (7.2)
Piks1y = bini Pik + banor Pok + G1(Pig) + Bi1 N1k Prg, (7.3)
Paer1y = binizPre + banga Nok + G2(Par) + BaNok Pak, (7.4)

where «; < 0 and g; > 0.

If S, and Sp; are optimal escapements for prey and predator subpopulation 1,
respectively, then following the same method in the previous chapters, implicit optimal
escapement equations are found and given by -

— ‘ S*
PN C}; (S = (aimii + F{(Sy,) + a;Sp, ) (PN — CNi(Nﬂ))

+aimi; (py — eni(Nj1))

+B:Sp,, (pp — cpi( Pir)) (7.5)
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— cpi(Sp.
PP CI; (Sk,) - (binii + Gi(Sp,) + B:S% ) (pp — CPi(Pi1)>

+bini; (pp — cpj(Pi1))
+ai5}kv|.o (pN — CNi(Nil)) . (76)

These equations are the general form of the optimal escapement equation for a two-
patch predator-prey metapopulation with adult migration. Solving these equations pro-
duces optimal equilibrium escapements, Sy, and Sp.. Like optimal escapements in the
previous chapters, these escapements are independent of the time horizon considered.
Tt can be seen that if there is no migration between patches, that is, miz = ma1 =0,
myy = Moz = 1, ni2 = ngp =0 and ny; = ng; = 1 then the optimal escapement
equations reduce to equations (3.19) and (3.20) in Chapter 3. If we set a; = B; =0,
then Tuck’s (1994) optimal escapement equation for a single-species metapopulation is
obtained.

As in the case of juvenile migration, interpretations of the optimal escapements
can be derived by neglecting the costs of harvesting and price differences between the
prey and predator, which now satisfy equations

1
riia ai(my +mi;) + F{(Sn,,) + (ai + Bi)SEy (7.7)
1

S~ bi(ni + nij) + Gi(Sp,) + (i + Bi) S, (7.8)

Furthermore, explicit expressions of the optimal equilibrium escapements are obtained
by assuming that recruitment production functions, F; and G;, are logistic as in equa-
tions (3.3) and (3.4). The optimal escapements are now given by

A%+ OB,
S}kv‘, = Li A , (79)
o Bi%: + CiA, .
IS N ’ ( : )
provided A; = C? — %%‘ # 0, where
1 ;
A= ; —r; — a;(ma + ma), (7.11)
1
B = . si — bi(ni + nia), (7.12)

and C; = o; + 3; < 0.

Using the same method as in the previous chapters, sufficient conditions for the
metapopulation to have non-negative optimal escapements can be obtained. The con-
ditions are written in the following result.

Result 29 (Sufficient conditions for positive escapements) Let Sy. and Sp, denote the
optimal escapement from a predator-prey metapopulation given by equations (7.9) and
(7.10). If A; and B; are negative, and C; is non-positive with C; > maw{%‘,zﬁ'@},
then o
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A; is negative, and Sx; and Sp; are positive.

The condition A; < 0 has a similar interpretation to the same condition in the
previous chapters, that is, the sum of the proportion of surviving adult prey and
the per capita prey larval production is higher than the reciprocal of the discounting
factor, 1/p. In other words, the natural growth rate of the prey population is higher
than the reciprocal of the discounting factor. Only here the natural growth rate of
the prey population depends on adult prey migration survival, a;(mi; + m;), while
in the previous chapters the natural growth rate of the prey population depended on
the juvenile prey migration survival, ri(pii + pi;)- In the present model, in which it is
assumed that there is adult prey migration between patches, one can concludes that the
lower the adult prey survival rate the higher the possibility that the prey population
has a non-negative optimal escapement. This is similar to the rule in the previous
chapters, where it can be concluded that the lower the juvenile prey survival rate the
higher the possibility that the prey population has a non-negative optimal escapement.
Both assertions reiterate the well known result in single-species harvesting theory which
points out that it is best to harvest the population down to zero escapement if the
growth rate of the population is lower than the discounting rate (Clark, 1976a). The
condition B; < 0 for the predator population is interpreted similarly.

The relationship between escapements from a predator-prey metapopulation presen-
ted in this chapter and escapements from a single-species metapopulation discussed in
the paper of Tuck and Possingham (1994) can be explored using Result 29 as follow.

Result 30 (Escapement comparison with a single-species metapopulation) Let S}, and
Sp. denote the optimal escapement from a predator-prey metapopulation given by equa-
tions (7.9) and (7.10), and let Sy, and Sp,  denote the optimal escapement from a
single-species metapopulation given by the same equations by assigning a; = B; =0.If
A; and B; are negative and mat{%%, QT"‘;L} < C; <0, then
St — Sk, = 50z Sk <0 and Sp — Sp, = oSk, < 0.

Result 30 can be proved in the same way as in the case of juvenile migration. The result
suggests that optimal escapement from a predator-prey metapopulation is always less
than, or equal to, optimal escapement from a single-species metapopulation depending
on the predator efficiency or the sign of C;. In the case where the predator efficiency
is extremely high, C; = 0 or I%-_I = 1, both escapements are equal. This is unlikely
to occur, however, if there is price differential between prey and the predator then
C; = o; + mpB;, where m is the relative predator price to the prey price. Hence, in
many normal situations, where f; < |o;] and m > 1, we can manage a predator-prey
metapopulation as a single-species metapopulation if C; = 0.

To draw some conclusions about escapement comparisons between patches and
between methods (for example an unconnected two-patch predator-prey population and
a well-mixed predator-prey population), the same procedures as in juvenile migration
are used in the following section. These escapement comparisons are intended to show
the importance of considering spatial structure in obtaining optimal escapements for
the population.

7.1.2 Escapement comparisons between subpopulations

To compare optimal escapements between patches, I use the following lemma.
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Lemma 9 (Migration trade-off equations) Let Sy, and Sp, denote the optimal escape-
ment from a predator-prey metapopulation given by equations (7.9) and (7.10). If
K; = I{, L; = L, C; = C, = ai(mil + mig), bim = bi(nil + nig), ri =T, and s; = s
fori=1,2, then:

2
L (Si, — Sk)A1 = [azm = @]+ Cloam = bim)

2
2. (Sp —Sp)A1 = [bam — blm][—; + Claam — G1m)-

Proof
1. Note that A; = Aq. If R; = % — a;(mi; + mig) and 5; = % — bi(ni + niz), then

(Ri—r)2+C(S1—s) (Ra— r)2 + C(Sz — s)

S =5 = A, ) A,
(S~ Sw)D1 = (Ra— Ba) o +C(S5: - )
~ [azn — aa] o + Clbam = bin
The second part of the lemma can be proved analogously. O

It can be concluded from Lemma 9 that if A; and B; are negative and C' >
maaz{%, 2—‘2—‘ and both predator subpopulations have the same adult migration sur-
vival, that is by(n1; +n12) = bz(na1+n492), then we should harvest a prey subpopulation
with high adult migration survival more conservatively than one with lower adult mi-
gration survival. On the other hand, we should harvest the predator subpopulation
living with in the same patch with the prey subpopulation which has a high adult
migration survival less conservatively than the other predator subpopulation. This
is an analogous result to that in the previous chapters, where we should harvest the
relative source prey subpopulation more conservatively than the relative sink subpop-
ulation and we should harvest the predator living in the same patch with the relative
source prey subpopulation less conservatively than the other predator subpopulation.
I rewrite this conclusion in the following result. I do not provide the proof, since it is
similar to the proof for the analogous theorem in the previous chapters.

Result 31 (Escapement comparison between subpopulations) Let one of the prey sub-
populations have a higher adult migration survival while all other parameters of the
prey and the predator are identical for both subpopulations. Without loss of generality,
let us assume that prey subpopulation one has a higher adult migration survival, that
is, apn = a1(mu + mi2) > agm = az(maz + ma1). If laf = B, or if A; and B; are
negative and C > mam{%, %'L}, then

S%. > Sk, and Sp, < Sp,.

Result 31 assumes that both predator subpopulations have identical adult migra-
tion survival. In addition, by investigating the sign of the right hand side of equations
(1) and (2) in Lemma 9, we can obtain Table 7.1 illustrating how we should harvest
each subpopulation if adult migration survival is different between patches for various
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Migration survival | Optimal escapement | Additional condition
Prey Predator Prey Predator

Aim > Gom | bim = bam | Sk, > Sk, | Sp, < Spy —
A1y > Qom blm < b2m SR{[ > S;V2 S;‘Dl < 5;2 —

= Tl 2
trm > Gam | bim > bam | Sk, > Sk, | Sp, < Sp, | 2n=gm > mas{I5F, 25
Aim = Qom bim > bom Sj*vl < Sj*\[2 S;Dl > S;Dz —
A1y < Qom blm > me S;“ < S;‘V? S;)l > S;‘:,v2 —

- —CIL 2
a1m > Gam | bim > bam | Sk, < Sk, | Sp, > Sk, | pmzem < man{SE, e

Table 7.1: Prey and predator optimal escapements for various combinations of adult
prey and predator migration survival. The additional condition column contains
conditions other than the conditions or hypotheses mentioned in Result 31.

combination of adult prey and predator migration survival a;, and bim. The first two
rows in the table show that we should harvest the prey subpopulation with high adult
migration survival more conservatively than that with lower adult migration survival.
On the other hand, we should harvest the predator subpopulation living in the same
patch with the prey subpopulation which has a high adult migration survival less con-
servatively than the other predator subpopulation. This is an analogous result to the
result in the previous chapters, where we should harvest the relative source prey sub-
population more conservatively than the relative sink subpopulation and we should
harvest the predator living in the same patch with the relative source prey subpopu-
lation less conservatively than the other predator subpopulation. However, here adult
predator migration survival is allowed to be different between patches, as long as the
adult migration survival of the predator subpopulation living in the same patch with
the relatively high migration survival prey subpopulation is not more than the other
predator subpopulation migration survival, otherwise we need an additional condition
such as the shown in the last column of the table.

7.1.3 Escapement comparisons to incorrect policies

As in the case of juvenile migration, I also perform escapement comparisons between
optimal escapements from a predator-prey metapopulation and escapement if we in-
correctly manage the population by ignoring its spatial structure. I use Lemma 9
from the previous section to compare the optimal escapement in this section either
with escapement resulting by assuming the population as an unconnected two-patch
predator-prey population or with escapement which results from assuming the popu-
lation to be a well-mixed predator-prey population.

First, let us assume that each prey and predator subpopulation are managed as
two unconnected predator-prey populations. I use all the assumptions described in
Result 31, that is the only biological differences between patches is the adult prey
migration survival, a;m. I also assume that adult prey survival in subpopulation ¢ are
measured as

Qi = QM5 + AjMji.

(7.13)

When spatial structure is not recognised, the optimal escapement for unconnected
patches are Sy, and Sp, given in Appendix 7A. As before, the differences between
the optimal escapements from predator-prey metapopulation harvesting theory and the
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Migration survival Optimal escapement Additional condition
Prey | Predator Prey | Predator

a1Myy > @zMaoy | bimaz = bama Sk, > Shy, | Spy S Sp... —
Sl*V? < IS'FUQu S}"n 2 S};ﬂu —
a1MM1g > GaMyy | bimia < byma | Sy > Sk, Sp < Sk -
S;V'Z < SR’zu SFD: > S;’zu _
a1y > GzMay | bimag > bamar | Sk, > Sk, | Sk, < Sp.. | gt > maz {5, 2

biu—bim 2s ) |ClK
* P * * g, —a €L _2r
S < Shau Sy, > Sp,. | Poeam > maz{ 5t  TOHR

4y Mys = G3May | bimaz > bamay | Sy, < S¥. | Sp.> Sp,, —
Sxy > Siau | Sby < Sh, —
a1y < G3Ma1 | bimaz > bamar | Sk < Sk | S > Sp.. =
S S | S5, < S =
a1y > @aMar | bimiz > bamar | Sk, < Sk, Sy, > Sh,., | o= < min{ICIE, 2

biu=b1m 2.5t IC!I{
* * * * agy—adgm : ClL 2r
SN; > SN2u Sp2 < Squ bau—bam < m’ln{ 5 ,—-]CIK

Table 7.2: Comparison between escapements obtained by considering spatial structure
and escapements obtained by ignoring spatial structure using unconnected two-patch
predator-prey population harvesting theory (with index u), for various combinations of
adult prey and predator migration survival. The additional condition column contains

conditions other than conditions A; and B; are negative and C' > maz %i, 2—2&}

escapements from two-patch unconnected predator-prey population harvesting theory

are
* 25
(Sk: = Sw)A = laiw— @im] 7+ Clbi = Dim), (7.14)
2r
(5%, = Sp)A = b — biml 7z + Claw — ainl, (7.15)

where A = A; and C = C;. In the following discussion 1 assume A; and B; are
negative and C' > maz{22i, 2} to ensure that the resulting optimal escapements are
positive. By exploring equations (7.14) and (7.15) T obtain Table 7.2 showing optimal
escapement comparisons for several combinations of prey and predator adult export
survival a;m;; and bin;; for = 1 %2,

Table 7.2 shows that when prey (predator) subpopulation one has a higher adult
export survival, that is, aimis > @Mz (bynig > byna1), the optimal escapement of
prey (predator) subpopulation one from harvesting the population as a predator-prey
metapopulation is greater than the optimal escapement if the prey (predator) subpop-
ulation is incorrectly managed as two unconnected predator-prey populations. In other
words, a subpopulation with high export survival should be harvested more conservat-
ively than if we use harvesting policy which assumes the population as an unconnected
two-patch predator-prey population. This rule is analogous to the rule in harvesting
predator-prey metapopulation with juveniles migration, in which assuming the pop-
ulation to be an unconnected predator-prey population would over-harvest a relative
exporter prey (predator) subpopulation. However, here I establish a more general rule
where both species may have different export survival rates between patches. Table 7.2
also suggests that incorrectly managing the population as an unconnected two-patch

195



predator-prey population would under-harvest the predator living in the same patch
with the prey which has a higher export survival. Again, compared to a similar rule
when subpopulations are connected by the dispersal of juvenile, here the rule is de-
veloped for a more general case, where both species may have different export survival
rates between patches.

Total escapements of each species, either from predator-prey metapopulation har-
vesting theory or from unconnected two-patch predator-prey population harvesting
theory are equal, that is, Sk, + S&, = Sy, T SN, and Sp + Sp, = Sp,, + Sk, (see
equations (7.14) and (7.15)). However, numerical examples show that their equilibrium
harvests may be different (see Table 7.3). This is because escapements from predator-
prey metapopulation harvesting theory recognise the importance of the subpopulation
which has a greater adult export survival as a contributor to the abundance of other
subpopulations, while the two-patch predator-prey population harvesting theory over-
looks it.

In a special case, where both subpopulations are identical except prey subpopu-
lation one has a greater adult export survival with a;myz > asmeg; and aymi = azmas,
‘t can be shown that the total harvest of each species from the predator-prey metapop-
ulation harvesting theory is at least as great as the harvest if we incorrectly manage
the population as a two-patch predator-prey population. To prove the claim above, we
need to show that Ay = (Hy, + Hy,) — (Hj,, + Hy,,) 2 0. Recall that Sy, and Sp,
are given by equations (7.9) and (7.10), while Sy, and Sp, are given in Appendix 7A.
From equations (7.11), (7.12) and (7.13) we obtain Ay = Agy, As = A, By = Ba,
and By, = Bi.,. It follows that Sy, = Sx,.» Sk, = Shiw Oh = S%,,»and Sp, = Sp,-
Since H¥, = Ni(S¥,,Sk;»SB) — Sk where N; as in equations (7.18) and (7.19), and
similarly Hp. = Ni(Sh,.> SNyu> S¥..) — Sk, then considering both subpopulations are
identical, we conclude

AHN = (almlg — (lemgl)(s;‘\fl + S}k\]iu) > 0. (716)

Escapement comparisons to well-mixed predator-prey harvesting theory can be ob-
tained in a similar way.

7.1.4 Numerical examples

In this section I present numerical examples to illustrate and to compare our two-patch
predator-prey optimal escapements with other escapements. The results in these ex-
amples conform to the rules described in the analysis discussed above. Some interpret-
ations that are not clearly seen in the previous analytical results can also be obtained.
Assume that there is a couple of predator-prey populations occupying two differ-
ent patches. The populations are connected by adult migration. The carrying capacity
of the prey in each patch is K; = 500000, with intrinsic growth rate r; = 4 and adult
survival rate per period measured before migration is a; = 1. The adults migrate
non-symmetrically with my; = mo1 = map = 0.025 and miy = 0.050, that is, prey
subpopulation one has a greater export survival than prey subpopulation two. The
predator population is assumed to be identical in both patches with the following bio-
logical parameters: carrying capacity is L; = 1000, predator intrinsic growth is s; = 4,
pre-migration adult survival b; = 1 and adult migration survival rate is n; = 0.25. The
parameters for the predator-prey interactions are a; = 0.00001 and SB; = 0.000001.
Before the commencement of exploitation, I assume that the population is in the
equilibrium population size. Using equations (7.18) and (7.21), the equilibrium popula-
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PPM || 5%, = 185816 | Hy, = 290078 [ S, = 216 | Hp, = 610
Sk, = 184253 | Hy, = 294662 | Sp, = 218 | Hp, = 612
i, = 370060 | Hy = 584740 | Sp = 434 | Hp = 1222

UPP || Sk,.=184253 | Hy,,=290016 | Sp, =218 | Hp, =612
Sk. =185816 | Hy, =294684 | Sp, =216 | Hp =610
S%, =370060 | Hy, =b84700 | Sp =434 | Hp =1222

WPP || Sy, =370294 | Hj, =5855623 | Sp, =17 | Hp =61

Table 7.3: Escapement and harvest comparisons between correct and incor-
rect assumptions, where py = pp and costs are negligible. PPM, UPP and
WPP denote predator-prey metapopulation, unconnected predator-prey pop-
ulation and well-mixed predator-prey population, respectively.

tion size for each species are Ny = 380063, N, = 383112, P, = 970 and P, = 971. Note
that the equilibrium population size of the prey subpopulation with a greater export
survival is smaller than the other prey subpopulation. This is because it exports more
adults than it imports. Next I will explore the optimal escapement for the population
by considering that the costs of harvesting are negligible with the discounting rate
§ = 10%. The results will be compared to the previous analytical results. The effects
of the inclusions of the costs of harvesting will also be explored.

Optimal escapements for the population are 5%, = 185816, Sy, = 184253, Sp, =
216 and Sp = 218 found by substituting all biological parameters into equations
(7.9) and (7.10). All escapements are positive because it is assumed that both species
have relatively high intrinsic growths. Result 29 implies that if natural growth rates
or adult survival rates are relatively low compared to the discounting rate, then the
optimal escapements may be non-positive. For example if s; = 4 is replaced by s; = 2
then we obtain new optimal escapements Sy, = 185976, S, = 184412, and Sp and
St, are negative. [Note that here it is optimal to harvest all predators. This is not
the case if we incorrectly believe that the population does not have any predator-
prey interactions, where we would harvest both predator subpopulations equally, that
is, Sp,, = Sp,, = 280, although we still harvest the prey subpopulation with a larger
adult migration more conservatively than the other prey subpopulation (S§,, = 185938
and S}, = 184375)].

Now let us take the cost of harvesting into consideration. Let the cost of harvest-
ing be given by

Cx(Xi) e (mX'. + C,"I’LX'.XZ')/('N,X!.X{). (717)

If the cost of harvesting is independent of species and location with my; = 30, nx, =
1.3 x 1072, ¢; = 0, and price px = 70, then optimal escapements Sy, = 185819,
Sy, = 184256, Sp = 222 and S%, = 224 are obtained (see Table 7.4). We can
see that the rules of how to harvest prey and predator subpopulations with different
adult migration survival remain true in the inclusion of the costs of harvesting. In
this example, the rule is also robust if there are price diflerences between species, for

example if py = 70 but pp = 10 x pn, where in this case new optimal escapements
Sx, = 185944, S}, = 184382 and Sp, = Sy, = 426 are found (see Table 7.5).
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PPM || Sk, = 185810 | Hy, = 200066 | Sp, = 222 | Hp, = 622
St = 184256 | Hy, = 294651 | Sp = 224 | Hp = 624
% = 370075 | Hj = b8AT17 | Sp = 446 | Hp = 1246
UPP || Si..= 184256 | Hy, = 290005 | Sp, = 224 | Hp, = 624
St..= 185819 | Hy, = 204673 | Sp = 222 | Hp = 622
Sk, = 370075 | Hy, = 584618 | Sp = 446 | Hp = 1246
WPD || Sy, = 370273 | Hy, = 585477 | Sp =41 | Hp = 146

Table 7.4: Escapement and harvest comparisons between correct and incor-
rect assumptions, where py = pp and costs are given by equation (7.17) with
mx, = 30, nx, = 1.3 X 1072, ¢; = 0 and price px = 70. The rules of how
to harvest prey and predator subpopulations with different adult migration

survival are robust with the inclusion of the costs of harvesting.

PPM || Sg. = 185944 | Hy, = 289697 | Sp = 426 | Hp, = 844
Sy, = 184382 | Hy, = 294294 | Sp =426 | Hp =844
Si = 370326 | Hy — 583991 | Sp =852 | Hp = 1688
UPP || Si..= 184382 | Hy,,= 289646 | Sp, = 426 | H}, = 844
St = 185944 | Hy, = 294307 | Sp =426 | Hp = 844
S, = 370826 | Hy, = 583953 | Sp = 852 | Hp = 1688
WPP || S = 370318 | H}, = 583982 | Sp = 850 | Hp = 1688

Table 7.5: Escapement and harvest comparisons between correct and incor-
rect assumptions, where py = pp and costs are given by equation (7.17) with
mx, = 30, nx, = 1.3 x 107%, ¢; = 0, py = 70 and pp = 10 X py. The table
shows that the rules of how to harvest prey and predator subpopulations with
different adult migration survival are robust with the inclusion of the costs of
harvesting.

Impact of variation of parameters m;;, o; and (3; on optimal strategies

In this section I investigate the change to optimal escapements as a result of adult
migration parameter variations. From equations (7.9) and (7.10) we can see that if
all assumptions in Result 29 are true, that is, A; and B; are negative and C} is non-

positive, then the partial derivative Z—% is positive and the partial derivative Z—:f'% is
non-positive. This implies that prey optimal escapement S}, increases with the increase
of the adult migration parameter m;; and predator optimal escapement Sp, does not
‘nerease with the increase of the adult migration parameter m;;. As an example, 1 plot
contour lines of escapements Sy, and Sy, of the predator-prey metapopulation in the
previous example as adult migration parameters m12 and mq; vary in Figure 7.1. This
figure shows that as adult migration parameter mi; increases, the optimal escapement
for prey subpopulation one, Sy, , increases (Figure 7.1.a, dashes). Optimal escapement
for prey subpopulation two, Sy,, can be found by reflecting the contour about the line
myg = Mo, which is always lower than Sk, whenever mqz > may.

Adult migration survival in patch ¢ does not affect the optimal escapement in
the other patch. However all equilibrium harvests Hy, and Hp, in both patches are
influenced. For example, I plot the equilibrium harvest Hy, for prey subpopulation
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Figure 7.1: Figure 7.1.a shows the contours of the escapement S, (dashes)
and the equilibrium harvest Hp, (dots) for prey subpopulation one (in thou-
sands). Figure 7.1.b shows the contours of the escapement St, (dashes) and
the equilibrium harvest H} (dots) for predator subpopulation one. The con-
tours for prey and predator subpopulation two can be obtained by reflecting
the figure about the line my = mo;.

one. This equilibrium harvest increases as the adult migration parameters for the other
species increases (Figure 7.1.a, dots). Figure 7.1.b (dashes) shows that, if the adult
migration survival of prey subpopulation one increases then the optimal escapement of
the predator living in the same patch with this prey subpopulation decreases. This 1s
consistent with the result from the case of juvenile migration predator-prey metapopu-
lation.  All regions in Figure 7.1 satisfy the condition Cj > maw{ZL—‘t", 27?'—‘} A similar
rule can also be observed if C; < min{%", 27{3_‘,-}, such as shown in Figure 7.2 where the
contour of escapements and equilibrium harvests are plotted as the prey adult survival
migration and vulnerability vary.

As in Figure 7.1, Figure 7.2.a shows that, for a fixed prey vulnerability, prey
escapement Sy, increases as the adult survival migration increases (dashes). This
means that we should harvest the prey more conservatively as the prey has a larger
adult survival migration. It can also be observed in Figure 7.2.b, where the harvest
of the prey decreases as the adult survival migration increases (dashes). Predator
escapement Sp, is relatively unaffected and remains the same for all values of adult
survival migration (dots). Both prey and predator escapements in patch two are also
unaffected (Figure 7.2.c). However, although prey escapement in patch two remains
the same, for a fixed oy, as adult survival migration increases, its equilibrium harvest
increases (Figure 7.2.d, dashes).

Most of the values of a; produce zero escapements of the predator in both patches.
This is because I choose a low value of §; = 0.000001, which means that predator
efficiency for most values of §; is very small. Since it is also assumed that the price of
prey and the predator are equal (the relative predator price is m = 1), then it is not
optimal to leave the prey to be consumed by the predator. By generating a similar
figure for m = 10, that is, the price of the predator ten times the price of the prey, it
can be shown that predator escapements are positive for various value of my2 and o
in Figure 7.2.

We observe that, for a fixed adult survival migration m,, prey optimal escape-
ment increases as the prey vulnerability increases (Figure 7.2.a). This is contrary to
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Figure 7.2: Figure 7.2.a shows the contours of the escapement Sy for prey
subpopulation one (dashes) and S}, (dots) for predator subpopulation one.
Figure 7.2.b shows the contours of the harvest H}, for prey subpopulation
one (dashes) and Hp, (dots) for predator subpopulation one. In this figure we
assume oy = @iz, Moy = 0.025, and f3; = 0.000001. Figure 7.2.c shows S%, and
Sp,, and Figure 7.2.d shows H}, and Hp,. The contours for the prey are in
thousands.

the result in the previous chapter where we should harvest a prey subpopulation which
has a lower vulnerability more conservatively than a prey subpopulation with a higher
vulnerability. The reason is because in this case C; < min{%‘, %B'L} for most regions
in the Figure 7.2.a. If the condition Cj; > mam{%’i, %B‘L} is satisfied, Figure 7.3 shows
that, all the rules of harvesting a more (less) vulnerable prey and a more (less) efficient
predator subpopulation are observed as in the case of juvenile migration.

Figure 7.3.a shows that, for a fixed (1, prey optimal escapement S, diminishes
as the prey vulnerability increases (lower ;). The increase of Sy, is also observed,
if we fixed the value of a; at a certain level, as the value B increases. It can be
observed in Figure 7.3.b that for a fixed Bi, predator escapement Sp, diminishes as the
predator efficiency decreases (lower ), and for a fixed a1, predator escapement Sk,
increases as the predator efficiency increases (higher 8;). All of these observations are
well established in the previous chapter. A similar result to Result 11 can be obtained
analytically.

The rule that we should harvest prey subpopulations with larger adult survival

migration is observed in Figure 7.3.c. In this figure the difference between escapement
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Figure 7.3: Figure 7.3.a shows the contours of the escapements Sy, (dashes)
and harvests Hy, (dots) for prey subpopulation one. Figure 7.3.b shows the
contours of the escapements S, (dashes) and harvests Hp, (dots) for predator
subpopulation one. Figure 7.3.c shows the contours of the difference S}, —S¥,
(dashes) and the difference Hy, — I, (dots). Figure 7.3.d shows the contours
of the difference Sj — Sp, (dashes) and the difference Hy — Hp, (dots). The
region below the line §; = |o| is the region which is biologically meaningful,
that is, the region where predator efliciency does not exceed 100% (a; and f;
are in 107°).

of prey subpopulation one, which has a larger adult survival migration, and escapement
of prey subpopulation two, Sy, — SK,, is always positive for every value of a and
(dashes). While in Figure 7.3.d the difference between escapement of the predator
living in the same patch with the prey which has a larger adult survival migration
and escapement of the other predator subpopulation is always negative, as expected,
regardless of the value of a and 8 (dashes).

7.2  Adult and juvenile migration

In this section I extend the model of the previous section to include juvenile migration in
the system. Much of the literature shows that the adults and juveniles of many marine
species migrate between habitat. For example, the intertidal gastropod, Bambicium
auratum, has high adult and juvenile migration rate (Crowley, 1996). Other examples
are crustaceans, Callinectes sapidus, in Chesapeake Bay, USA and Maja squinado in
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Ria de Arouse, Spain. Both adults and juveniles of these crabs species migrate between
different types of habitat (Hines et al., 1995).

792.1 The model and its optimal escapements

As in Chapter 5, I assume p;; and ¢;; denote the proportion of the juveniles of prey
and predator migrating from patch ¢ to patch j, respectively. Using the same notation
as that in the previous section, the dynamic of the population is given by

Ni(k41) = axmu Nig + aama1 Nok + pri Fi(Nik) 4 pai Fa(Nak) + aa Nk P, (7.18

Piky1) = binii Pig + bangy Py, + qu1G1(Pux) + q21G2(Pak) + Bi N1k P, (7.20
Pyky1) = binig Pig + banaa Nox + q12G1(P1i) + q22G2(Pax) + BaNok Par, (7.21

where a; < 0 and §; > 0.
Following the same method in the previous section, optimal escapements for the
prey and predator populations, S¥, and S, can be obtained in the implicit expressions

)

Na(kg1) = aymizNik + agmaaNog + praFi(Nig) + paaFo( Nok) + g Noy Pag, (7.19)
)

)

pN — cni(Sk,,)
p

= (aimii + piF{(Sn,, ) + S, ) (PN — CNi(Nil))

+ (aimij W pijFiI(STV.'o)> (PN - ch(le))

+BiSp, (PP — cpi(Pi)), (7.22)

—_ : S*. ) . L
pp C}; (SPy) = (bi’nii + ¢::Gi(Sp,) + BiSn, ) (PP — cpi(Pil))

+ (bini; + ¢i;Gi(Sn, ) (pp — cpi(P1))
+a; Sy, (pv — eni(Nan)) - (7.23)

These equations are the general form of the optimal escapement equation for a two-
patch predator-prey metapopulation with adult and juvenile migration. As expected,
if Mmig = Ma1 = 0, my1 = My — 1, Ny = Ngy1 = 0 and N1 = MNg2 — 1 then the
optimal escapement equations reduce to equations (5.5) and (5.6) in Chapter 5 and
fpe=pn=0pu=p2=1q=qg =0 and q1; = g2 = 1 then the optimal
escapement equations reduce to equations (7.5) and (7.6) in the previous section.

As in the case of juvenile migration only or adult migration only, explicit ex-
pressions of the optimal escapements Sy, and Sp, can be obtained by neglecting the
costs of harvesting and price differences between the prey and predator and assuming
that recruitment production functions, F; and G;, are logistic as in equations (3.3) and
(3.4). These escapements are

o Adga + ) B+ CiB;
SN.' = A ’

(7.24)

Bi(pi1 + pia) §* + Cids
Sp = (Pt p Z)_"- , (7.25)
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providéd A;=Ct—(pa + pn)%(q“ + Qi2)2L_s: # 0, where

1
A, = ; — (Pn + piz)'ri — ai(mn + mi2), (726)
1
B; = o (gi1 + Giz)si — bi(nix + niz), (7.27)
and
Ci = o + i (7.28)

Using the same method as in the previous chapters, sufficient conditions for the
metapopulation to have non-negative optimal escapements are obtained. The condi-
tions are written in the following result.

Result 32 (Sufficient conditions for positive escapements) Let Sx. and Sp, denote the
optimal escapement from a predator-prey metapopulation given by equations (7.24) and
(2.25). If A; and B; are negative, and C; is non-positive with C; > mam{%{%,%ﬁ},
then

A; is negative, and Sk, and Sp; are positive.
) ’ N1 Pi p

The condition A; < 0 has a similar interpretation to the same condition in the previous
section. The relationship between escapements from a predator-prey metapopulation
presented in this chapter and escapements from a single-species metapopulation with
adult and juvenile migration discussed in Tuck (1994) can be explored using Result 2
in Chapter 5 where A; and B; are given by equations (7.26) and (7.27). To draw some
conclusions about escapement comparisons between patches I construct the following
lemma.

Lemma 10 (Migrations trade-off equations) Let Sy, and Sp, denote the optimal es-
capement from a predator-prey metapopulation given by equations (7.24) and (7.25).
IfKi=K,Li=L,Ci=C, zim = (pis + pij)ri + (mi; + mij)a; and Yim = (gis + gij)si +
(nis + ngj)b; then:

4yimYam 2
1. (SRH - SJ’%)AIA2 = <O2(y1m — Yom) — LIK_ZZ/Z_(Q:M - $1m)> (;E — C)

2C 2
5 (C — p?) (T1mY1m — TamY2m ),

. ) 421 mTam 2
2 (5= ShAd = (e 1) - i)} (5 =)

2C 2
—? (C - p—L> ($1my1m - $2my2m)-

In a special case, where both predator subpopulations are identical, we can com-
pare optimal escapements if one of the prey subpopulations has a higher adult export
survival or is a relative exporter subpopulation, so that the total surviving individuals
of that population, that is, (pi1 -+ pi2)ri + (M1 + mi2)ai, is greater than the total sur-
viving individuals of the other patch. This comparison is summarised in the following
result.
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Result 33 (Escapement comparisons between subpopulations) Let prey subpopulation
one be a relative ezporter subpopulation or have a higher adult migration survival, so
that the total surviving individuals of that prey subpopulation is higher than the total
surviving individuals of the other prey subpopulation. All other parameters of the prey
and the predator are identical for both subpopulations. If |a| = B, or if A; and B; are

negative and C > maz {28, 24}, then

Sy, > S, and Sy, < St,.

Lemma 10 can also be used to compare escapements given by equations (7.24) and
(7.25) to the escapements we get if we incorrectly manage the metapopulation as an
unconnected two-patch predator-prey population. In this case we would measure the
adult survival of subpopulation i as a;, given by equation (7.13) and the growth rate as
ri given by equation (4.44). The adult survival and growth rate of the predator would
be measured similarly. The comparison between these escapements are summarised in
the following result.

Result 34 (Escapement Comparison to an unconnected two-patch predator-prey popu-
lation). Let Sy, and Sp, denote the optimal escapement from a predator-prey metapop-
ulation given by equations (7.24) and (7.25), and let Sy, and Sp, denote the optimal
escapement if we incorrectly consider the metapopulation as a system consisting of two
unconnected predator-prey populations. Let prey subpopulation one be a relative ez-
porter and also be a relative source subpopulation or have a higher adult migration
survival, so that the total surviving individuals of that prey subpopulation is higher
than the total surviving individuals of the other prey subpopulation, that is Tym > Tom,
with p1ar1 > p21Te and puri 2 PaaTe. All other parameters of the prey and the pred-
ator are identical for both subpopulations. If A; and B = B, = B are negative and
Cy = Oy = C is non-positive with C' > maz{22, 24} then:

1. S¥, > Shyus

2. S, < S
S;;l S S;;lu)

S}gz Z S}.;gu J

S}:’l + S}kVQ S S}:{lu + S;(V%A’

SO T

SFDI + 5332 Z S}kjlu + 51*3211'

The proof of this result is analogous to the proof of Result 9.

Tt can be concluded from Result 33, that we should harvest a relative source prey
subpopulation that has a higher adult migration survival more conservatively than a
relative sink prey subpopulation that has a lower adult migration survival. It can
also be concluded that we should harvest the predator living in the same patch with
the relative source prey subpopulation that has a higher adult migration survival, less
conservatively than the other predator subpopulation. In general, if adult migration
survival and the per capita larval production for both species are different between
subpopulations, then the difference in escapements are determined by the migration
trade-off equations in Lemma 10.
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Furthermore, Result 34 concludes that if we ignore spatial structure and man-
age the metapopulation as two unconnected predator-prey populations then we would
over-harvest the relative source prey subpopulation that has a higher adult migration
survival and under-harvest the relative sink prey subpopulation that has a lower adult
migration survival. On the other hand, we would also under-harvest the predator liv-
ing in the same patch with the relative source prey subpopulation that has a higher
adult migration survival and over-harvest the predator living in the same patch with
the relative sink prey subpopulation that has a lower adult migration survival. A
similar result can also be obtained if we incorrectly manage the metapopulation as a
well-mixed predator-prey population.

7.2.2 Numerical examples

In this section I present numerical examples to illustrate the analytical results in the
previous section. The examples are similar to examples in the previous section in order
to compare how the escapements would change if the migration of juveniles is included
into the system.

As in the previous section I assume that there are a couple of predator-prey
populations occupying two different patches. The populations are connected both by
the migration of adults and the migration of juveniles. All parameters are the same as
the parameters in Section 7.1.4 with the addition that the parameters of the juveniles
migration are given by p11 = pa1 = P22 = 0.050 and piz = qi; = 0.065. As before,
harvesting begins when the populations are at their equilibrium population size. Next,
I determine optimal escapement for the metapopulation by considering that the costs
of harvesting are negligible with the discounting rate § = 10%. The results will be
compared to the analytical results of the previous section. The effects of the inclusion
of the costs of harvesting will also be explored.

Substituting all the parameters above into equations (7.24) and (7.25) produces
negative escapements for both prey subpopulations, that is, S§, = —320244 and
Sy, = —426582, with Ci < min{z—K]%‘, %Af} To obtain positive optimal escapements,
the condition C; > max{%, %’L} needs to be satisfied. This can be attained by set-
ting a higher intrinsic growth of the population. Let us assume that the population
has a higher intrinsic growth rate, for example, ten times the original intrinsic growth,
that is, r; = s; = 40, then new optimal escapements Sy, = 194159, 5§, = 184216,
Sy = 274 and Sp, = 983 are found. As suggested by Result 33, we should harvest
the relative source prey subpopulation that has a higher adult migration survival more
conservatively than the relative sink prey subpopulation that has a lower adult migra-
tion survival. We can also observe that the optimal escapement for the predator living
in the same patch with the relative source prey subpopulation that has a higher adult
migration survival is less than the optimal escapement for the other predator subpop-
ulation. Profit generated from these escapements is greater than profit generated by
escapements if we ignored the spatial structure (see Table 7.6).

Next, let us take the costs of harvesting into consideration, where the costs of
harvesting are given by equation (7.17). The parameters in the costs function are
myx, = 30, nx, = 1.3 X 1072, ¢; = 0, and price px = 70. Using this cost function
optimal escapements Sy, = 194163, Sy, = 184221, Sp, = 279 and 5§, = 288 are
found (see Table 7.7). We can see that the inclusion of the costs of harvesting does
not change the rules described in Result 33. Tables 7.7 and 7.8 compare escapements
from equations (7.22) and (7.23) to escapements if we ignored the spatial structure of
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PPM || Sk, = 194159 | Hy, = 284985 | Sp, = 274 | Hp, = 963
Sk, = 184216 | H}, = 371052 | Sp, =283 | Hp, = 953
S = 378375 | Hy, = 656037 | Sp = 557 | Hp = 1916

UPP || S..=184216 | Hy, =294939 | Sy, =283 | Hp, =953
Sk, =194159 | Hj, =359397 | Sp, =274 | Hp =963
Sy, =318375 | Hy, =654336 | Sp =b57 | Hp =1916

WPP || S, =379122 | Hj, =656311 | Sp =1210 | Hp =981

Table 7.6: Escapement and harvest comparisons between correct and incor-
rect assumptions, where py = pp and costs of harvesting are negligible. PPM,
UPP and WPP denote predator-prey metapopulation, unconnected predator-

prey population and well-mixed predator-prey population, respectively.

PPM || Sk, = 194163 | Hy, = 284976 | Sp, = 279 | Hp, = 973
Sy, = 184221 | Hy, = 371043 | Sp =288 | Hp = 963
St — 378384 | Hj = 656010 | Sp = 567 | Hp = 1936
UPP || S,.= 184220 | H, = 294930 | Sp,= 288 | Hp,,= 963
Sk, = 194163 | Hy, = 359389 | Sp, =279 | Hp =973
Sy, = 378383 | Hy, = 654319 | Sp = 567 | Hp = 1936
WPP || S, = 379122 | Hj, = 656300 | Sp, = 234 | Hp = 1002

Table 7.7: Escapement and harvest comparisons between correct and incor-
rect assumptions, where py = pp and costs are given by equation (7.17) with
myx, = 30, nx, = 1.3 X 10~2, ¢; = 0 and price px = 70. Compared to escape-
ments with negligible costs of harvesting, the escapements in this table are
slightly higher, but the rule to conserve the relative exporter prey subpopula-
tion that has a higher adult migration survival remains unchanged.

the population for various parameters of the costs of harvesting.

I plot the contour of the optimal escapements and the equilibrium harvests as the
adult and juvenile migration survivals, my; and pig, vary in Figure 7.4. Figure 7.4.a
shows that the optimal escapement for prey subpopulation one increases as the adult
and juvenile migration increase (dashes), while the equilibrium harvest decreases as
the adult and juvenile migration increase (dots) as suggested by Result 33. The vari-
ations of the adult and juvenile survival of prey subpopulation one do not affect the
optimal escapements of prey and predator subpopulation two. However, their equilib-
rium harvests are affected (Figures 7.4.b and 7.4.d). The equilibrium harvest of prey
subpopulation two increases as the adult and juvenile migration survival of the prey
subpopulation one increase (Figure 7.4.b). As expected optimal escapement of the
predator subpopulation one decreases (Figure 7.4.c).
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Figure 7.4: Contour plot of the optimal escapements and the equilibrium harvests
as the adult and juvenile migration survivals, mi, and pyz, vary. Figure 7.4.a shows
that the optimal escapement for prey subpopulation one increases as the adult and
juvenile migration increase (dashes), while the equilibrium harvest decreases (dots).
The variations of the adult and juvenile survival of prey subpopulation one do not
affect the optimal escapements of prey and predator subpopulation two. However,
their equilibrium harvests are affected (Figures 7.4.b and 7.4.d). The equilibrium
harvest of prey subpopulation two increases as the adult and juvenile migration
survival of the prey subpopulation one increase (Figure 7.4.b). As expected by the
Result 33 optimal escapement of the predator subpopulation one decreases (Fig-
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PPM || Sk, = 194299 | Hy, = 284674 | Sp = 443 | Hp, = 1148
Sy, = 184382 | Hj, = 370770 | Sp =443 | Hp = 1143
Sk = 378681 | Hy = 655444 | Sy, = 886 | Hp = 2291
UPP || Sy,.= 184382 | Hj, = 204636 | Sp, = 443 | Hp, = 1143
Sk, = 194300 | Hy, = 359117 | Sp, =443 | Hp = 1147
Sy = 378682 | Hj, = 653753 | Sp = 886 | Hp = 2291
WPP || i, = 379366 | Hy, = 655089 | Sy =886 | Hp = 2291

Table 7.8: Escapement and harvest comparisons between correct and incor-
rect assumptions, where py = pp and costs are given by equation (7.17) with
my, = 30, nx, = 1.3 X 1072, ¢; = 0, py = 70 and pp = 10 X py. In this case
the equilibrium harvest level for both prey subpopulations decline suggesting
that some proportions of these prey should be conserved for the consumption
of the predator, which is more valuable than the prey.

7.3 Adult and juvenile migrations with more than
two subpopulations

In the previous section I discussed optimal harvesting strategies for a two-patch predator-
prey metapopulation connected by adult and juvenile migration. In this section I
extend the model to a predator-prey metapopulation consisting of more than two
subpopulations. Many commercial aquatic population consist of more than two sub-
populations. For example, Sockeye salmon, Oncorchynchus nerka in Lake Washing-
ton has five subpopulations (Quinn and Hendry, 1997). Other examples are red
sea urchin, Strongylocentrotus franciscanus, and southern Australian abalone (genus
Haliotis) which are reproductively connected among subpopulations (Shepherd, 1973;
Shepherd and Brown, 1993; Quinn et al., 1993). Authors who investigated harvesting
strategies for stocks with multiple subpopulations include Hilborn (1985), Hilborn and
Walters (1987), Quinn et al. (1993) and Tuck (1994). Most of these authors studied
harvesting strategies using simulation techniques and they did not find analytic solu-
tions. In contrast, Tuck (1994) found analytic solutions of optimal harvesting strategies
for a general M patches single-species metapopulation and also considered the costs
of harvesting, which depend on locations, explicitly. In this section, 1 extend Tuck’s
(1994) model to include predator-prey interactions in the metapopulation.

7.3.1 The model and its optimal escapements

Let us assume that prey and predator populations both occupy M different patches
connected by the dispersal of their juveniles and the migration of the adults. The
dynamics of the metapopulation is modelled by 2M coupled difference equations,

M M
Nigksr) = 9 amiNi + Y piFi(Nig) + i Nig Pig,

=1 =1

(7.29)

M M
Pigerry = 2 bmii P + Y qiGi(Gi) + BiNik Pix,

=1 =1
where o; < 0, 6; > 0, SM aq < 1 and Zf\ilpu < 1,fori=1,2,...., M. As in the
two-patch case, N1y and Pigy1) are the adult abundances of prey and predator

(7.30)
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subpopulation i in generation k + 1 while F;(Ny) and Gi(Py) are the numbers of
juveniles produced by prey and predator subpopulation i in generation k. Including
harvesting and recalling that the escapement of prey and predator subpopulations ¢ are

given by Sy,, = Nix — Hn,, and Sp, = Py — Hp,, the dynamics of the metapopulation
become
M M
Nigir) = D amiSn, + > puiFi(Sny) + 2SNy 5Py (7.31)
=1 =1
M M
Pi(k+1) = Z biniiSpy, + E q’iGl(SGtk) + BiSNy S Pik - (7'32)
=1 =1

Optimal harvesting strategies are found by maximising the net present value from
harvesting all species from all patches, that is, by maximising

Pl= sz > Ixi(Xik, Sxix) (7.33)

k=0 i=1 Xe{N,P}

subject to the state variable equations (7.31) and (7.32), with non-negative escape-
ment less than or equal to the population size, where II xi( Xk, S sz) is given by equa—
tion (4.14). As in the two-patch models, the discounting factor is given by p = (1+6
Following the same method as in the previous section, optimal escapements for
the prey and predator populations, Sy, and Sp,, are found in their implicit expressions

— enil S5 M /
PN 61; (Shio) = Z [(aimu +qui(S}*\,l_0)) (pN — CNI(NI1))]
=1
+0;Sp, (pnv — cni(Nir))
+B:Sp,, (PP — cpi(Pi)), (7.34)

pe = cpilSha) _ S~ [(bng + 4uGi(Sh,)) (pr — ona(P))

P =1
+B:iSx., (pp — cpi( Pi))
+0; S5, (pv — eni(Ni)) (7.35)

for i = 1,2,..., M. These equations are the general form of the optimal escapement
equation for a M-patch predator-prey metapopulation with adult and juvenile migra-
tions. To obtain explicit expressions of the optimal escapements, Sy, and Sp,, I assume
that the costs of harvesting are negligible or independent of the population abundance
and that there is no price difference between prey and predator. Furthermore I also
assume that the recruitment production functions, F; and Gj, are logistic as in (3.3)
and (3.4). Using these assumptions, optimal escapements are found as

2&'2! 1Q1I+CB

SN‘_ = A, , (7.36)
2
1_rl Zl 1 Pl + C A
S*, — K; '
P; A; > (7 37)
fori=1,2,..., M, where
2r; 28;
A :cg_( zpﬂ) ( L zqﬂ) (7.38)
i Li i3
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1 M M
Ai=— =1y pa—aiy, mi, (7.39)

p 1=1 =1

1 M M
Bi=——sy qu—b) na, (7.40)

P =1 =1

and

Ci = a; + s, (7.41)

provided A; # 0. Using the same method as in the previous chapters, we can obtain
sufficient conditions for the metapopulation to have non-negative optimal escapements.
The conditions are written in the following result.

Result 35 (Sufficient conditions for positive escapements) Let Sy, and Sp, denote the
optimal escapement from a predator-prey metapopulation given by equations (7.36) and
(7.87). If A; and B; are negative, and C; is non-positive with C; > maw{%,%—i},
then

A; is negative, and Sy, and Sp; are positive.

To draw some conclusions about escapement comparisons between patches I use
Lemma 10 in the previous section with additional definitions

M M
Tim =Ti D pit +ai y_ My (7.42)
=1 =1
and
M M
Yim = 8i 9 qit + bi ) nit, (7.43)
=1 =1

and, following Tuck (1994), I redefine and generalise the concept relative exporter/
importer and relative source/sink subpopulations in the following way.

A prey subpopulation ¢ is called a relative exporter (importer) prey subpopula-
tion if it exports (irﬁports) a greater per capita number of larvae to the other prey
subpopulations than it imports (exports), that is,

M M
iy pa > (<)Y Tipi (7.44)
=1 =1

A prey subpopulation ¢ has a higher (lower) adult export survival if

M M
aiZm“ > (<)Zalm”. (7.45)
=1 =1

A relative exporter (importer) and a higher (lower) adult ezport survival are defined
analogously for the predator population.

A prey subpopulation i is called a relative source (sink) prey subpopulation if it
has a greater (lower) per capita larval production than that of the other subpopulations,
that is,

M M
riy o > (<)ri d_opit, Vij# 1. (7.46)
=1 =1
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A prey subpopulation ¢ has a higher (lower) adult migration survival if

M M
a,-Zmiz > (<)aj2mﬂ, ij 7& .. (7.47)
=1 =1

A relative source (sink) and a higher (lower) adult migration survival are defined ana-
logously for the predator population.

In a special case, where all predator subpopulations are identical, we can compare
optimal escapements if one of the prey subpopulations, say prey subpopulation ¢z, has
a higher adult export survival or is a relative exporter subpopulation, so that the total
surviving individuals of that population, that is, z;, is greater than the total surviving
individuals of the other prey subpopulation. The comparison is summarised in the
following result.

Result 36 (Escapement comparison among subpopulations) Let prey subpopulation 1
be a relative source subpopulation or have a higher adult migration survival, so that the
total surviving individuals of that prey subpopulation is higher than the total surviving
individuals of the other prey subpopulation, that is, z; > zj, Vjj # 1. All other
parameters of the prey and the predator are identical for both subpopulations. If|a| = B,

or if A; and By are negative and C' > ma:v{%‘, %L with l =1,.., M, then

1. Sy, > Sy

2. Sp, < Sp,.
Proof
1. Let Agy, = (S — Sk;)AiA;. Following the proof of Result 8, we only need to
show
2 2B 4ym(%
ASN"J' = Ym [f (C <C — 7) — —ﬁ— (:I}jm . Zlﬁim) > 0, (748)
which is satisfied by zim > 2jm, since % < C < 0. The second part can be
proved analogously. a

Using the same method as above, we can compare the escapements in this sec-
tion to escapements if we ignore the spatial structure of the population and incorrectly
consider the predator-prey population to be an unconnected M -patch predator-prey
population. In this case, the optimal escapements for the prey and predator subpopu-
lation 7 are given by Sy, and Sp, in Appendix 7A with the growth rates riy and sy,
and adult survival after migration, a;, and b;,, are given by

M M M M
Piw = 3 TPl Siw = D Siqliy Giu = S"amui, b= binai. (7.49)
=1 =1 =1 =1

Result 37 (Escapement Comparison to an unconnected M-patch predator-prey popu-
lation). Let Sy, and Sp, denote the optimal escapement from a predator-prey metapop-
ulation given by equations (7.86) and (7.87), and let Sy, and Sy, denote the optimal
escapement if we incorrectly consider the metapopulation as a system consisting of M
unconnected predator-prey populations. Lel prey subpopulalion i be a relative exporter
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(importer) prey subpopulation or have a higher (lower) adult export survival, so that
Fim + @Gim > (<)Tiu + iy with the total surviving individuals of that prey subpopulation
higher (lower) than the tolal surviving individuals of the other prey subpopulation, that
i8 Tim > (<)Tiu + Giu, with Cc?— 21—';{12—2':1 All other parameters of the prey and the pred-
ator are identical for both subpopulations. If A; and By = B are negative and C;=C

is non-positive with C > maz{32,22} then

Sx. > (<)S%,., and Sp < (=)5h, -

The proof of this result is analogous to the proof of Result 9.

7.3.2 Numerical examples

In this section I present a numerical example to illustrate the analytical results in the
previous section. In this example I use M = 3, that is, the predator-prey metapopu-
lation consists of three different patches. Let us assume that the three subpopulations
are connected by the migration of adults and the migration of juveniles, where the
migration parameters for the prey and predator given by pj1 = pi3 = pa1 = pa2 = Pa1 =
P32 = P33 = 0.050, p12 = p23 = qij = 0.065, m1; = my3z = Mgy = Mgz = M31 = M32 =
mas = ny; = 0.025, myz = 0.050 and mos = 0.035. All other parameters for the three
subpopulations are indistinguisable as in Section 7.2.2. As before, harvesting begins
when the populations are at their equilibrium population size. Next, I determine the
optimal escapement for the metapopulation by considering the costs of harvesting as
negligible with the discounting rate é = 10%. The results will be compared to the
analytical results in the previous section. The effects of the inclusions of the costs of
harvesting will also be explored.

Subtituting all the parameters above into equations (7.36) and (7.37) produces
optimal escapements Sy, = 212000, Sy, = 211432, S, = 207157, Sp, = 359, Sp, =
356 and Sp, = 358. In this example Tim > Tam > Tanm and as suggested by Result 36,
the relations Sk, > Sy, > S, and Sp < Sp, < Sp, are obtained. Hence, we should
harvest the relative source prey subpopulation which has a higher adult migration
more conservatively than the other prey subpopulations and we should harvest the
predator living in the same patch with this relative source prey subpopulation less
conservatively than the other predator subpopulations. If we incorrectly manage the
population as a three-patch unconnected predator-prey population then we would over-
harvest the relative source prey subpopulation while under-harvesting the other prey
subpopulations and also we would under-harvest the predator living in the same patch
with the relative source prey subpopulation while under-harvesting the other predator
subpopulations (see Table 7.9). This rule is also observed when the costs of harvesting
are included in the analysis (see Table 7.10).

7.4 Concluding Remarks

In this chapter I generalised the predator-prey metapopulation model introduced in
Chapter 5 by including the migration of adults. The first section in this chapter
considered only the migration of the adults and the second section considered both the
migration of the adults and juveniles.

Optimal escapement properties for predator-prey metapopulation with adult-only
migration are analogous to optimal escapements when only juvenile are able to migrate.
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PPM || Sy, = 212000 | Hy, = 533944 | Sp, =356 | Hp, = 1776
Sy, = 211432 | HY, = 613080 | Sp, =356 | Hp, = 1776
Sy, = 207157 | Hy = 614127 | Sp =358 | Hp =1772
St = 630589 | Hy = 1761151 | Sp =1069 | Hp = 5324

UPP || Sk,.=207157 | Hy, =538798 | Sp, =358 | Hp,,=1772
Sy, =212000 | Hy, =611920 | Sp, =355 | Hp, =1776
St =211432 | Hf, =609900 | Sp =356 | Hp =1776
S, —630589 | Hy, =1760618 | Sp =1069 | Hp =5324

WPP || Si, =731601 | Hy, =1727302 | Sy, = 1254 | Hp =5685

Table 7.9: Escapement and harvest comparisons between correct and incor-
rect assumptions, where py = pp and costs of harvesting are negligible. PPM,
UPP and WPP denote predator-prey metapopulation, unconnected predator-

prey population and well-mixed predator-prey population, respectively.

PPM || g, = 212004 | Hy, = 533937 | Sp, = 359 | Hp, = 1784
Sy, = 211435 | Hj, = 613074 | Sp, =359 | Hp, = 1783
Si. = 207161 | Hy, = 614120 | Sp =361 | Hp = 1780
S:, = 630600 | Hy = 1761131 | Sp = 1079 | Hp = 5347
UPP || S, = 207161 | Hy, = 538791 | Sp, =361 | Hp, = 1780
Si,.= 212004 | Hy, = 611913 | Sp, =359 | Hp, = 1784
S, =211435 | Hi, = 609894 | Sp =359 | Hp = 1783
Sy, = 630600 | Hy, = 1760598 | Sp = 1079 | Hp = 5347
WPP || S;,, = 731601 | Hy, = 1727300 | Sp, = 1254 | Hp = 5686

Table 7.10: Escapement and harvest comparisons between correct and in-
correct assumptions, where py = pp and costs are given by equation (7.17)
with mx, = 30, nx, = 1.3 x 107%, ¢; = 0 and price px = 70. Compared
to escapements with negligible costs of harvesting, the escapements in this
table are slightly higher, but the rule to conserve the relative esporter prey
subpopulation that has a higher adult migration survival remains true.

For example, we should harvest a prey subpopulation with a high adult migration sur-
vival more conservatively than that with a lower adult migration survival. On the other
hand, we should harvest the predator subpopulation living in the same patch with the
prey subpopulation which has a high adult migration survival less conservatively than
the other predator subpopulation. If both age-classes are able to migrate then there
is a trade-off between high/low adult migration survival and sink/source properties of
the populations.

Many commercially exploited aquatic populations are believed to be made of
several separate subpopulations, for example the Sockeye salmon in Lake Washington
which has five subpopulations (Quinn and Hendry, 1997). These populations are often
reproductively connected (Shepherd and Brown, 1993; Quinn et al., 1993). The two
most common or typical structures of non-symmetric reproductive connection among
subpopulations are the “uni-directional migration” structure, where migration occurs in
one direction, and the “mainland-island” structure, where migration occurs only from
one subpopulation (Tuck, 1994). Examples of populations with the first structure are a
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mollusc, Aplysia californica, along the coast off California and the Fastern king prawn,
Penaeus plebejus, in New South Wales. These populations are well-known to migrate
northward. The northern subpopulations recruit individuals from their spawners and
also from the southern subpopulations (Penning, 1991; Gordon et al., 1995). Examples
of populations with the second structure are scallops (Orensanz et al., 1991).

The third section in this chapter generalises the model for a predator-prey meta-
population with adult and juvenile migrations where the metapopulation consists of
" M subpopulations, incuding the uni-directional migration and mainland-island spatial
structures as special cases. For these special cases, harvesting theory for an M-patch
single-species metapopulation with uni-directional migration (Tuck, 1994), assuming
that the migration of the juveniles occurs from subpopulation one to subpopulation
two, from subpopulation two to subpopulation three, and so forth, suggests that if
no juveniles are retained in the last subpopulation (subpopulation M) then we should
harvest all individuals in the last subpopulation. However, in the presence of a pred-
ator, the optimal escapement for the last prey subpopulation need not be zero, unless
Car = 0 (see equation 7.36). In the presence of the predator, the theory in this chapter
suggests that the optimal escapement for the last or the terminal prey subpopulation
should not be greater than the optimal escapement for any other prey subpopulations,
as long as the assumptions in Results 36 are satisfied.

Similarly, if the population has a mainland-island structure, for example all mi-
gration of juveniles occur from subpopulation one and no juveniles are retained in any
subpopulation other than subpopulation one, the harvesting theory for an M-patch
single-species metapopulation, assuming the costs of harvesting are negligible, sug-
gests that we should harvest all individuals from all the subpopulations other than
subpopulation one. Again, in the presence of the predator, the theory in this chapter
suggests that the optimal escapement for prey subpopulation one should be bigger than
the optimal escapements for any of the other subpopulations, as long as the hypotheses
in Result 36 are satisfied. In the previous section I argued that adult-migration meta-
populations are common. Among the examples are salmonid populations connected
by straying individuals. Although the straying behaviour of these salmonids is well
documented, it is still not certain whether the strays can successfully reproduce. Pol-
icansky and Magnuson (1998) believed that the connection among local populations
by straying is responsible for the current dynamics and distributions of the salmonid
populations. However, Tallman and Healey (1994) showed that a high level of straying
does not necessarily reflect a high level of genetic migration among local populations.
This can be interpreted to mean that the salmonids that stray do not necessarily suc-
cessfully reproduce. The difficulty the strays have in reproducing may be due to the
difficulty of the stray in finding a mate, because “stray only mated with stray through
some unknown mechanism of mate choice” (Tallman and Healey, 1994). Another pos-
sibility is that interbreeding between stray and the local population does occur, but
their offsprings are too weak to survive. For example, hybrids between Kokanee and
Sockeye salmons have poor swimming capabilities (Taylor and Foote, 1991) which may
lead to a problem in predator avoidance. For this reason, Tallman and Healey (1994)
argued that strays do not reproduce successfully in nature.

The models in this chapter assume that the strays successfully reproduce. Future
models of adult-migration predator-prey metapopulations may include the assumption
that strays do not successfully reproduce and other relevant factors, such as different
functional forms of the predator-prey interaction, environmental stochasticity, etc., to
improve the understanding of optimal harvesting strategies for the metapopulations.
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7.5 Appendices

Appendix TA: General escapements formula for an unconnec-
ted M-patch predator-prey population

Consider an M-patch predator-prey metapopulation. If the only differences between
patches are adult and juvenile migration parameters, and if we incorrectly manage
" the metapopulation as M patches unconnected predator-prey populations, assuming
the costs of harvesting are negligible, then optimal escapements for subpopulation ¢
(: =1,2,..., M) are given by

Aiuz_siﬁu + BiuCiu
S = —B— (7.50)
and BiuZiit + AuC.
’.uL"._v. + Al
Sha=—""% ; (7.51)
where 9. 9
Tiu 4Siu
Ay = CE — % 1 #0, (7.52)
1
Aiu = ; — Tiu — Gy, (753)
1
Biu = ; — Sy — biu, (754)
Ciu = o + Bs. (7.55)

In this case, ri, and s, are the growth rate of the prey and predator subpopulation ¢
measured after migration and given by i, = M v and si, = S°M. s;qy;. Similarly,
a;, and by, are adult survival after migration of the population ¢ and given by a; =
M amy; and by, = 0L b

Appendix 7B: General escapements formula for a well-mixed
predator-prey population

Consider an M-patch predator-prey metapopulation. If the only differences between
patches are adult and juvenile migration parameters, and if we incorrectly manage

the metapopulation as a well-mixed predator-prey population, assuming the costs of
harvesting are negligible, then optimal escapements for the metapopulation are:

_ AuP+ BuCu

Sia = .
Ny A (7.56)
and B, % A,C
S* — Ky ]
Py Aw ? (7 57)
where o 9
Aw - ) - ’rw _S_w .
C. K. L. # 0, (7 58)
1
A, = ; — Ty — Gy, (7.59)
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B, = = — 54 — by, 7.60
5 (7.60)

Cuw = Qy + Bu- (7.61)

In this case, ry, and s,, are the average growth rate of the prey and predator population
given by

E?-{i T4 Z_?ix Pij
y = — =, 7.62
? M (7.62)
Z: 18i2, ; Ly g
w . 7.63
. =z (7.63)
The average adult migration survivals, a,, and bw, are defined mmﬂarly Predator-prey
coefficients are taken as the average value o, = Z’ﬁ— and B, = Lﬁi The carrymg

capac1t1es for the prey and predator population are the total carrying capacities Ky
v M, K; and L, o ol
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Chapter 8

Conclusion

In this thesis I have developed mathematical models of commercially exploited popula-
tions. I have addressed the question of how to harvest a predator-prey metapopulation.
Rules about harvesting source/sink subpopulations, more/less vulnerable prey subpop-
ulations and more/less efficient predator subpopulations were found. The costs of not
harvesting the population properly, that is, if we did not realise that the population
was a metapopulation, were also discussed.

Although in general it is impossible to include all relevant details in simple popula-
tion models (Spencer and Collie, 1996), major factors need to be included in population
modelling if the models are intended to give a better understanding of the behaviour
and management of the populations. Among the major factors we need to include are
biological interactions, such as predator-prey interactions, and the spatial structure of
the population (Sih et al., 1998; Czaran, 1998; Parma et al., 1998; Hall, 1998).

Explicit study on optimal harvesting strategies for spatially-structured predator-
prey populations has received little attention (Semmler and Sieveking, 1995; Shea et
al., 1998). In this thesis I simultaneously incorporated predator-prey interactions and
spatial structure into population models and investigated optimal harvesting strategies
of the populations. At first glance, examining spatial structure and biological interac-
tions in exploited living marine resources will only complicate the management task
(OECD, 1997). However, some authors have shown thaf this kind of study produces
results which can be summarised in simple rules and used to improve the existing
management of the resources (Tuck and Possingham, 1994; Pelletier and Magal, 1996;
Brown and Roughgarden, 1997).

In nature, many populations have a discrete spatial structure (Quinn et al., 1993;
Quinn and Hendry, 1997; Brown and Roughgarden, 1997). The populations occupy
several distinct habitat patches separated by a large distance (Frank, 1992). Metapop-
ulation modelling has became a popular and important tool in understanding these
kinds of populations and has contributed better alternatives in managing the pop-
ulations (Tuck and Possingham, 1994; Lindenmayer and Possingham, 1996; Hanski
and Cilpin, 1997). In Chapter 4 I developed predator-prey metapopulation models
assuming the populations live in two different patches, and there are predator-prey
interactions in both patches. Both the prey and predator populations are connected
by the dispersal of the juveniles. I modelled the dynamics of the metapopulation using
coupled difference equations.

Several assumptions have been made, including the assumptions that exploitation
can be carried out selectively, for each species in each patch, and optimal harvesting
strategies were sought by maximising the discounted net revenues generated from both
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species in two different patches. The predator-prey interaction was modelled in a very
simple form, that is the classic Lotka-Volterra predator-prey interaction, so that an
explicit form of the optimal escapements could be obtained. Following Tuck and Pos-
singham (1994), interpretations of the resulting optimal escapements are facilitated by
classifying subpopulations according to the per capita larval production, prey vulner-
ability and predator efficiency.

I call a prey subpopulation which has a greater (lesser) per capita larval produc-

" tion a relative source (sink) prey subpopulation. A prey subpopulation which exports

more (less) per capita number of larvae than it imports is called a relative exporter (im-
porter) prey subpopulation. A relative source (sink) and a relative exporter (importer)
predator subpopulation are defined similarly. A prey subpopulation that is more (less)
vulnerable to predation than the other prey subpopulation is called a more (less) vul-
nerable prey subpopulation. Furthermore, I call a predator subpopulation that is more
(less) efficient in converting biomass, from the prey they eat into new predator indi-
viduals, than the other predator subpopulation as a more (less) biologically efficient
predator subpopulation.

In the absence of predator-prey interactions, Tuck and Possingham (1994) invest-
igated optimal harvesting strategies for a metapopulation and found the following rules
of thumb:

TP 1 A relative source subpopulation should be harvested more conservatively than a
relative sink subpopulation.

TP 2 If we use single-species metapopulation harvesting theory, a relative exporter sub-
population would be harvested more conservatively than if we use unconnected
single-species population theory, while a relative importer subpopulation would
be harvested more heavily.

TP 3 If we use single-species metapopulation harvesting theory, a relative source sub-
population would be harvested more conservatively than if we use well-mixed
single-species population theory, while a relative sink subpopulation would be
harvested more heavily.

Although, in general, rules derived from single-species harvesting theory are not neces-
sarily true in harvesting ecologically interrelated stocks (Semmler and Sieveking, 1994),
in this thesis, in the presence of predator-prey interactions, I established harvesting
strategy rules for a predator-prey metapopulation as a generalisation of the harvesting
strategy rules for a single-species metapopulation. Some properties of the escapements
for a single-species metapopulation are preserved in the presence of predators, such
as the strategies of how to harvest a relative source/sink and exporter/importer local
population, similar to the rules of thumb TP 1 to TP 3 above. With two species an
important issue throughout the thesis is which species is being harvested, or both, and
if both what is the relative profit per unit biomass for each species. This adds another
dimension to the problem not present in the single-species work.

Interpretations of the resulting optimal escapements are derived for two different
cases. In the first case I assume that both species are harvested. In this case optimal
escapements for the two species in both patches are obtained and they are independent
of the time horizon considered. In the second case I assume that harvesting targets only
one species, either the prey or the predator. In this case optimal escapements for the
exploited species are functions of the abundance of the unexploited species. However, if
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there is no discounting then these escapements are equal for any period of exploitation.
This is because when there is no discounting, profit in any period generated from
escapements has exactly the same value to profit from the same escapements in any -
other period.

When harvesting targets both species, I generalised the concept of predator bio-
logical efficiency to include a delay in predator biomass conversion, a predator survival
rate and a predator relative value to the prey in the following way. Assume that the
" the predator is m times more valuable than the prey. I defined predator economic
efficiency as the predator biological efficiency weighted by the relative value of the
predator, m. Furthermore, if the predator has a delay of o in converting biomasses
from eating the prey into predator’s offsprings, assuming that the discounting factor
is p, I defined discounted predator efficiency as the predator economic efficiency dis-
counted by p°. Post-dispersal predator efficiency can take three forms: either as the
predator biological efficiency discounted by the proportion of the surviving predators,
the predator economic efficiency or the discounted predator efficiency.

If the post-dispersal predator efficiency is above a threshold, the two prey (pred-
ator) subpopulations are indistinguishable except for the prey migration rate and the
cost of harvesting is negligible or independent of the stock abundance, then the first
rule of thumb for harvesting a single-species metapopulation (TP 1) can be used to
manage a predator-prey metapopulation. In other words, in this case, we should har-
vest the relative source prey subpopulation more conservatively than the relative sink
prey subpopulation. Furthermore, we protect the relative source prey subpopulation
directly with a higher escapement for the prey, and indirectly, with a lower escapement
of the predator living in the same patch with this prey subpopulation. If, in addition,
the relative source prey subpopulation is also a relative exporter subpopulation then
incorrectly managing the metapopulation as an unconnected two-patch predator-prey
population would over-harvest the relative exporter and source prey subpopulation
while under-harvesting the relative importer and sink prey subpopulation, as long as
the predator efficiency measured before and after dispersal is the same for both patches.
This rule generalises the second rule of single-species metapopulation harvesting theory
(TP 2). On the other hand, if the migrations between subpopulations are symmetric
(no exporter/importer and source/sink hierarchy), and there is no biological variability
except the vulnerability of the prey, then we should harvest the less vulnerable prey
subpopulation more conservatively than the other prey subpopulation which is more
vulnerable to predation. A special case occurs when there is no predation in one of
the patches. This rule makes sense because it shows we should harvest the prey living
in a refugial habitat (as reflected by low vulnerability) more conservatively than the
prey living in the habitat where predation occurs. This is intuitive and agree with
the belief of many fishery biologists that we should be more protective in dealing with
critical subpopulations, such as those act as source subpopulations and those living in
spawning and refugial areas (Hall, 1998).

Furthermore, if the prey vulnerabilities of the two prey subpopulations are exactly
the same, but the predator efficiencies differ between the two predator subpopulations,
then we should harvest the prey living in the same patch with the relatively more
efficient predator more conservatively than the other prey subpopulation. This result
suggests that if the predator has a high biological efficiency, then we should leave
enough prey to sustain the predator population. This result is well known in harvesting
theory for homogeneous predator-prey populations (Silvert and Smith, 1977; May et
al., 1979; Ragozin and Brown, 1985). However, with two patches here there can be
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a conflict between a high predator efficiency (also a high predator natural growth)
and the source/sink or exporter/importer properties of the prey populations. A prey
living in the same patch with a relatively more efficient predator might not need to be
more protected than the other prey subpopulation if it is a relative sink or importer
subpopulation.

Another complication arises when we consider the relative market prices of prey
and predator. If the market value of the predator is large enough compared to the
" market value of the prey, then the equilibrium harvest for the prey can be negative. A
negative harvest might be considered a “seeding strategy”, where prey are put into the
system from another patch. In many situations a seeding strategy is impracticable, so in
this case an alternative strategy of imposing zero harvest, for the population which has a
negative harvest, is the best that can be done. However, if it is possible to implement
a negative harvest, numerical examples show that this strategy increases the total
net revenue compared to a zero prey harvest strategy. Again, this is consistent with
the belief of many fisheries managers that proper harvesting strategies which include
biological interactions, such as predator-prey interactions, may have a positive effect on
overall yield (Christensen, 1996). This is not surprising considering the “bioeconomic
role” of the prey population which can be converted into a more economically valuable
species through the predator-prey interaction.

The seeding or feeding strategy discussed here has another limitation, that is
it assumes that the cost of.seeding (negative harvest profit) equals the price of prey.
This might not be true. In this case the optimal harvesting strategy is to apply a zero
harvest until the prey abundance is higher than the prey optimal escapement. I also
provide an alternative method for dealing with a negative harvest by considering a zero
harvest as a constraint in the maximisation.

If harvesting only targets the prey (predator) species and if the only difference
between the populations is prey (predator) migration parameters, assuming that there
is no discounting, then the rules described above hold (that is, we should harvest the
relative source prey (predator) subpopulation conservatively) regardless of the value of
the predator efficiency. Hence, in this case, a high predator efficiency 1s not a neces-
sary condition for this rule. Protecting a relative source subpopulation, by harvesting
it conservatively, is intuitively sensible; protecting the source subpopulation means
protecting the replenishment of the other subpopulation, so that the exploitation can
be carried out sustainably (Mangel et al., 1997; Gary et al., 1998).

In Chapter 5 I looked at optimal harvesting strategies for predator-prey meta-
populations which have different biological structures. The rationale is that I want to
know the robustness of the results in Chapter 4 to the biological relationships between
predator and prey. In Chapter 4 I assumed that predator-prey interactions occur in the
juvenile life-stage of the population while in Chapter 5 I assumed that the interactions
take place in the adult life-stage of the population. Predation was modelled in two dif-
ferent ways depending on the effect on the dynamics of the predator. The first model
assumes that predation affects the predator survival while the second model assumes
that predation affects the predator recruitment, which is probably more likely than the
first one (this is because both models also assume that the predator has another main
food and hence predation is likely to affect birth more than death).

The results in Chapter 5 show that the most significant rule, that we should har-
vest a relative source prey subpopulation more conservatively than a relative sink prey
subpopulation, while we should also harvest the predator living in the same patch with
the relative source prey subpopulation more heavily than the other predator subpop-
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ulation, is robust regardless of the biological structure of the population. If predation
occurs in the adult life-stage and it affects the survival of the predator, then incorrectly
managing the metapopulation as an unconnected two-patch predator-prey population
would over-harvest the relative exporter and source prey subpopulation while under-
harvesting the relative exporter and sink prey subpopulation. On the other hand, we
might under-harvest the predator living in the same patch with the relative exporter
and source prey subpopulation while over-harvesting the other predator subpopulation.
" Unlike the case where predation occurs in the juvenile life-stage of the populations, this
result was derived without requiring equal predator efficiencies measured before and
after migration.

In Chapter 4, when harvesting only targets one species, we only investigated
optimal escapements for one period to go. These escapements may give useful inform-
ation if there is no discounting, since in this case profit generated from any escapements
in one period is the same as the profit generated from the same escapements in any
periods (Agnew, 1982). However, they might be less informative if there is a non
zero discounting rate. In Chapter 5 some properties of the optimal escapements with
a non-zero discounting rate were explored. Numerical examples suggest that, when
harvesting only targets the prey population, the rule to harvest the prey subpopula-
tion living in the same patch with a relative source predator subpopulation may no
longer hold. However, in some circumstances, we still harvest a relative source prey
subpopulation more conservatively than a relative sink subpopulation.

The results mentioned above are derived by assuming the costs of harvesting are
negligible. In the absence of the predators, Tuck (1994) argued that the analogous
results for the single-species metapopulation harvesting theory would not change if
the costs of harvesting are taken into account. However, in this thesis, that is in the
presence of the predators, when the costs of harvesting are included in the analysis,
several requirements need to be satisfied to obtain the same results. For example, let the
prey subpopulation one be a relative source subpopulation and the costs of harvesting
of the prey population be constant but different between patches. In this case we
should still protect this relative source prey subpopulation in the two different ways
explained above if: (1) the retention rate of the relative source prey subpopulation
larval production, py;71, is greater than the larval immigration rate from the other
prey subpopulation, paire; (2) the larval emigration rate of the relative source prey
subpopulation, pior1, is greater than the retention rate of the other prey subpopulation
larval production, pzars; (3) the product of the predation rate, o, and the marginal
net revenue, py — cn;, is the same for the two patches.

Furthermore, if the costs of harvesting for the predator are the same regardless of
the location of the populations and the marginal net revenue from the relative source
prey subpopulation is lower than, or equal to, the marginal net revenue from the relative
sink prey subpopulation, then incorrectly managing the population as a well-mixed
predator-prey population or an unconnected two-patch predator-prey population would
over-harvest the relative source prey subpopulation while it would also under-harvest
the relative sink prey subpopulation. The predator living in the same patch with the
relative source prey subpopulation would be under-harvested and the predator living
in the same patch with the relative sink prey subpopulation would be over-harvested.
At the metapopulation level, the prey subpopulation would be over-harvested and the
predator subpopulation would be under-harvested. As a result, the total profit from
predator-prey metapopulation harvesting theory is greater than the total profit from
strategies that ignore the true spatial structure of the populations.
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The biological structure of the models in Chapters 4 and 5 was very simple,
ignoring the age structure of the population. The model for each patch is described by
a single variable representing the number of individuals and assumes that the offspring
of the current population are immediately recruited to the adult population in the next
period. In other words the population in each patch is a single homogeneous and well-
mixed population. In reality, many exploited populations consist of several different
age classes. In Chapter 6 I derived and discussed optimal harvesting strategies for
" the simplest form of age-structured predator-prey metapopulation, by considering that
either the prey or predator juveniles may experience a delay in recruitment. I modelled
the recruitment delay in two different ways. First, a recruitment delay experienced by
juveniles can be related to the subpopulation in which they eventually recruit, this
is referred to as “local population receptor delay model”. Second, the delay may be
related to their origin subpopulation, and the model is known as “parental recruitment
delay model” (Tuck, 1994). I extended the basic predator-prey metapopulation model
in Chapters 4 and 5 by including these two types of recruitment delay.

The results in Chapter 6 show that if there is no discounting rate then the rules
of thumb of predator-prey metapopulation harvesting theory, such as escapement com-
parison between patches and escapement comparison to incorrect harvesting policies,
hold regardless of the delays. However, if the discounting rate § is not zero then the
rule on how to harvest a relative source/sink and exporter/importer subpopulation
is no longer necessarily true unless the delays of the two subpopulations are equal. If
there is no exporter/importer prey subpopulation, escapements from the predator-prey
metapopulation with parental delay recruitment are equal to escapements from the in-
correct unconnected two-patch predator-prey population harvesting policy, regardless
of the population delays, ;. In contrast, escapement differences between the predator-
prey metapopulation with receptor delay recruitment and the incorrect unconnected
two-patch predator-prey population do depend on the delays.

The results in Chapter 6 also show that if both subpopulations are identical then
both models produce the same optimal escapements. However, if one of the subpopu-
lations has a larger recruitment delay then results from both models are different. For
example, if prey subpopulation one has a larger recruitment delay than prey subpopu-
lation two, that is, 71 > 72, then the escapement for prey subpopulation one from the
parental delay model is lower than the escapement from the receptor delay model and
the escapement for prey subpopulation two from the parental delay model is greater
than the escapement from the receptor delay model. Hence, incorrectly managing a
predator-prey metapopulation having parental recruitment delay as a metapopulation
with local population receptor delay mode, would under-harvest the prey subpopula-
tion with larger recruitment delay, and over-harvest the prey subpopulation with the
lower recruitment delay. On the other hand, it also would over-harvest the predator
subpopulation living in the same patch with the prey subpopulation which has a larger
recruitment delay, while the other predator subpopulation would be under-harvested.

The exploited population delay model discussed in Chapter 6 was originally de-
veloped by Clark (1976b). Botsford (1992) suggested that this model can be extended
by considering the spatial structure of the population and larval dispersal between
subpopulations. Tuck (1994) extended Clark’s (1976b) model to incorporate spatial
structure, dispersal and maturation delays. His major conclusion is that results from
the delay model may differ depending on whether we assume the delay related to des-
tination site or birth site of the dispersing larvae. In Chapter 6 we have extended
Tuck’s (1994) model by adding predator-prey interactions into the system. Our results
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show that Tuck’s (1994) major conclusion is confirmed in the present of predator-prey
interactions, if the predator “discounted” efficiency is greater than a certain threshold.

Tuck (1994) showed that an increase (decrease) in recruitment delay of a single
species decreases (increases) the optimal escapement of that species. We have shown
in Chapter 6 that it can also increase (decrease) the optimal escapement of the other
species which interacts with the former, especially in the predator-prey metapopulation
parental delay model. In other words, maturation delay differences in one species (e.g.
" prey species) influences the optimal escapement of the other species (e.g. predator
species) even though the later species has a uniform delay, that is, the delays are equal
in any patches. The result is not surprising, since delayed recruitment is considered
one of the important factors in declining fish populations (Russ and Alcala, 1996;
Hitchcock and Grattotrevor, 1997). The collapse of these fish populations may affect
the abundance of other species which interact with them, as observed by Crawford and
Dyer (1995) and Agnew (1997).

Chapter 7 considered predator-prey metapopulation models connected by adult
migration, such as strays migration in the case of salmonids. Optimal harvesting
strategies were investigated for two different models. The first model assumed that
only the adults of the populations migrate and the second model assumed that both
age-classes, the adults and juveniles, migrate. The results in Chapter 7 indicate that
optimal escapements properties for predator-prey metapopulation with adult-only mi-
gration are analogous to optimal escapements with juvenile-only migration. For ex-
ample we should harvest prey subpopulations with high adult migration survival more
conservatively than those with lower adult migration survival. On the other hand, we
should harvest the predator subpopulation living in the same patch with the prey sub-
population which has a high adult migration survival less conservatively than the other
predator subpopulation. If both stages are able to migrate then there is a trade-off
between high/low adult migration survival and source/sink properties of the popula-
tions.

Many commercially exploited aquatic populations are made up of more than two
subpopulations, for example the sockeye salmon in Lake Washington has five sub-
populations (Quinn and Hendry, 1997). These populations are often reproductively
connected to each other (Shepherd and Brown, 1993; Quinn et al., 1993). The two
most common or typical types of reproductive connection among subpopulations are
“uni-directional migration”, where migration occurs in one direction, and a “mainland-
island” structure, where migration occurs only from one subpopulation (Penning, 1991,
Orensanz et al., 1991; Gordon et al., 1995). In Chapter 7 I have also generalised the
model for a predator-prey metapopulation with adult and juvenile migrations assum-
ing the metapopulation consists of M subpopulations, including the uni-directional
migration and mainland-island spatial structures as special cases.

For the case of uni-directional migration, (Tuck, 1994) suggests that if no juven-
iles are retained in the last subpopulation (subpopulation M) then we should harvest
all individuals in the last subpopulation. However, in the presence of a predator, the
optimal escapement for the last prey subpopulation need not be zero, unless the bio-
logical predator efficiency in that patch is extremely efficient. In the presence of the
predator, the result in this chapter suggests that the optimal escapement for the last
or the terminal prey subpopulation should not be greater than optimal escapement for
any other prey subpopulations.

Throughout the discussion in the thesis I assumed that prey and predator spe-
cies operate at the same scales. In reality, they often operate at different scales. For
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example, the prey population may be patchily distributed but the predator may be
completely well-mixed. Detailed investigation of optimal harvesting strategies for this
system is not included in this thesis, however, many rules discussed in this thesis will
also hold for this system, with some minor modifications. We still should harvest a
relative source prey subpopulation (and also a relatively less vulnerable prey subpop-
ulation) more conservatively than the other prey subpopulations. Conversely, in the
case where the predator is patchily distributed with a well-mixed prey, then the rule to
" harvest a relative source predator subpopulation (and also a relatively more efficient
predator subpopulation) more conservatively than the other predator subpopulation
will also hold.

In this thesis, not all important economic and biological aspects of the resources
are included. Future research should include other important economic and biological
aspects of the resources and see how these aspects may influence the results derived
here. For example, the last section in the last chapter assumed that the strays suc-
cessfully reproduce. Future models of adult-migration predator-prey metapopulation
may include an assumption that strays do not successfully reproduce as often observed
in many real situations (Taylor and Foote, 1991; Tallman and Healey, 1994). Other
relevant factors, such as different functional forms of the predator-prey interaction,
environmental stochasticity, etc., need to be included into the models to improve the
understanding of optimal harvesting strategies for the metapopulations. Other con-
straints could also be added in the optimisation process to ensure population size can
be maintained above a certain level, which may be relevant in the case where harvest-
ing only targets the prey population if the prey is also the main food for a protected
predator species, as in krill and whales interaction (Krishna et al., 1998).

Other limitations that I realise in this thesis include the following biological and
economical aspects. Throughout the thesis I have assumed that dispersal rates are
constant. In reality the dispersal rates may not constant. Many studies revealed that
prey dispersal rate responses to predation. The prey may increase or decrease their
movement rate depending to predation intensity (Wooster et al., 1997). Dispersal can
also be affected by the size of individuals, hence dispersal rate may differ between
different age-classes (Roa and Bahamonde, 1993). Weather and tides may cause a
huge variation in dispersal rate and recruitment success. In this case modelling optimal
solutions would be best found using stochastic dynamic programming.

All results in this thesis are derived by assuming that predator-prey interactions
are those of the Lotka-Volterra type. Although the Lotka-Volterra model has proved
to be useful in deriving insights in studying predator-prey interactions, there are some
objections from some scientists. One drawback of the Lotka-Volterra predator-prey
model is what is known as the “paradox of enrichment”, where an increase of nutrients
may destabilise the predator-prey system (Hairston et al., 1960; Rosenzweig, 1971;
Brauer, 1976). Whenever this type of predator-prey interaction is applied to multi-
species fishery management, a controversial conclusion may occur, that is, in some
circumstances predator extermination is an “optimal” strategy (Flaaten, 1983; Yodzis,
1994). This situation is undesirable for conservation. Berryman (1992) and Ginzburg
and Akgakaya (1992) pointed out that this paradox can be avoided by using different
types of functional responses or trophic functions. The original Lotka-Volterra model
uses what they call “prey-dependent” trophic function, that is, the rate of predator
consumption on prey depends only on the density of the prey. They suggested that the
paradox can be eliminated if we use the “ratio-dependent” trophic function, that is, the
functional responses should be a function of the ratio of the prey and predator. Using
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this functional response, predator density will respond proportionately to changes in
prey density (Arditi and Ginzburg, 1989; Arditi and Berryman, 1991; Ginzburg and
Akcakaya, 1992). The work in this thesis could also be extended to consider this type
of predator-prey systems, and assess the robustness of the results.

Economic assumptions in this thesis are simple. For example, all interpretations
were derived with the assumption of a fixed market price of the harvested resource. A
more realistic model may include the possibility that the market price depends on the
- amount of harvested biomass. In this case I suspect that demand elasticity may affect
the optimal escapement. Another possibility to extend and improve the model in this
thesis is to allow the resource to be owned by at least two bodies (countries), which
is relevant for a highly migratory or transboundary stock (Brander and Taylor, 1998),
and might be best tackled within a game theoretic framework rather than the dynamic
programming approach used in this thesis. Other fishing controls, such as taxes, quotas
and licences, could also be considered in future development of the models.

In this thesis I kept the models simple and general insights into how we should
harvest a spatially-structured predator-prey population were obtained. In general,
spatially-structured models can produce a better understanding of natural resource
management (Dunning et al., 1995). However, even the simplest spatially implicit
models, such as the models in this thesis, may be difficult to parameterise and test —
especially when we need dispersal parameters and recruit production functions, things
which are difficult to measure (Conroy et al., 1995; Spencer and Collie, 1996; Blondel
and Lebreton, 1996). However, by recognising the metapopulation structure of the pop-
ulation, the basic rules of thumb I describe are still worthwhile guidance for managing
the populations if one can identify which subpopulation is a relative exporter /importer,
source/sink, more/less vulnerable or more/less efficient.

To conclude, the results presented in this thesis represents a start on a theory
of harvesting complex stocks. Further understanding of optimal harvesting strategies
for spatially-structured and biologically-interconnected populations is still needed. 1
hope that this work motivate others to extend and improve the models so that better
management of our natural resources can be attained.
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