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Abstract

One of the central issues in Artificial Intelligence (AI) in general-and in the

area of knowledge representation and reasoning in particular-is corrùrnon sense

reasoni,ng. This includes logics of knowledge and belief, non-monotonic reason-

ing, truth-maintenance and belief revision. Within these fields the notion of a

consistent belief state is the crucial one. Additionally, there is a growing interest

in parti,al informati,on states, with an i,nformati,on orderi,ng being the key notion.

The issues of inconsi,stency and part'iality of i,nformati,on ate central to this
work. The thesis proposes a logical knowledge representation formalism employ-

ing parti,al objects and parti,al worlds on its semantic side. The syntax includes a

Ianguage, formulae, and partial theori,es, theories associated with partial worlds.

Partial worlds and theories are consistent, and contradictory i,nformati,on is

assumed to arise ín multiple agent situations. Relevant mathematical structures

are discussed, in particular partial theories are related to partial worlds.

A multiple agent case is considered. A set of agents is assumed to provide

multiple description sets, where description sets represent parti,al syntactic in-
formation about partial worlds. A set of description sets gives rise to a set of
theories, equipped with an information ordering-a lattice containing all those

theories (and some alternatives) can be derived. This demonstrates that partial

theories can be partially ordered by an information ordering and the obtained

lattice structure facilitates the theory selection process based on informati,on

ualue and truthness of theories. It is also suggested how to derive a numeric

measure (and hence a linear order) on the theories'
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Chapter 1

Introduction

This thesis proposes a framework for knowledge representation and reasoning,

with a particular interest in dealing wilh contradi,ctory and parti,a/ information.
The framework allows one to represent and reason about conterts involving
objects having attri,butes. Bolh semantic and syntactic information about such

contexts are considered. Models correspond to contexts, and syntactic informa-
tion gives rise to theori,es consisting of sentences prouable in formal systems. We

then focus on theories and consider related structures that permit dealing with
information provided by multiple agents.

1.1 Motivation and goals

The motivation for this work was to develop a simple logical framework that
would allow one to represent information about agents' worlds, with a particular
emphasis on partial and contradi,ctory information. It was also perceived as

desirable to be able to relate worlds-or information about the worlds-of
different agents, compare them, decide how si,milar they are, and which of them
should be preferred.

The specific goals were as follows.

1. Decide an appropriate semant'ics, or model theory.

2. Propose a corresponding formal system, o proof theory.

3. Relate model theory and proof theory to each other.

4. Analyse a multiple agent case.

The first three points result in the logical framework discussed in Chapters 4, 5

and 6. The last one gives rise to Chapter 7.

I.2 Overview and structure
A formal contert in Formal Concept Analysis (FCA)-see [GW96]1 and a chap-
ter in [DP90]-is a triple (G,M,I), where G is a set of objects, M is a set

1An English translation is expected to be published by Springer this year

1



2 CHAPTER 1. INTRODUCTION

of. attri,butes and I c G x M is lhe i,nci,d,ence relati,on assigning attributes to
objects. FCA also defines formal concepts, and given a context 1l its set of con-
cepts L(K) forms a complete latti,ce, called a concept latti,ce of K. We however
also consider parti,al conterts and abstract conterts, involving abstract objects.
Vali,d sentences/descri,pt'ions determine which abstract objects are present in
the context, and which are not. Given a seL o[ tlescriptit-rns D¿ ç D, the set
D¿ determines a formal systemwith arioms D¿ and inference rules Õ. Hence,
we introduce formal systems, and a set of their theories 1t is equipped with
an information ordering relation (. Theories, when associated wilh agents,
are called belieued theori,es IB, and there is a minimal lattice C of theories that
includes the believed theories, together with their meets and joins, C : CIn,v(B).
Such lattices provide a framework for common sense knowledge representation
and reasoning. In particular, given such a lattice C, it captures contradicti,ons
and partiøli,ty. Given C we can consider C+ : C U {0, 1}, where 0 is an empty
theory and 1 is àn ",inconsi,stent theory." Then if T2 > ?1 then ?1 ib more
parti,al than 72, and if T2VT1: 1 then the theories are contradictory. Further,
the lattice C1 is a concept lattice, theories in C and sentences in D can be
partially ordered, and a numeric rneasure u '. T -+ [0, 1] can be derived. Hence,
given that theories can be ordered (partially ordered, linearly ordered by their
numeric measure), \rye can derive preference relations on theories-this allows
us to decide which information to accept or reject, or) more generally, how to
order information, where in our case information is expressed by theories.

The thesis can be seen as consisting of three main parts.
The first part consists of the background Chapter 2. In that chapter we pro-

vide the necessary information on order and latti,ce theory. Then a framework
of Formal Concept Analysis (FCA)is presented. Finally, a bi,latti,ce approach to
truth-values is discussed.

The second part consists of Chapters 3, 4, 5 and 6. Together, the chapters
provide the logical framework employed to deal with the multiple agent case of
the last part of the thesis.

In particnlar, Chapter 3 provides some discussion on objects, language and
beli,ef,, and can be seen as an informal introduction to Chapter 4, which precisely
defines the semantic side of the framework worlds, or models are introduced,
they are called abstract conterts, and are a variant of FCA contexts. Two
important aspects of this chapter is an informati,on orderi,ng on contexts, and
a notion of validity-they are related, because validity is preserved when more
information is acquired about the same world.

Chapter 5 is aimed at providing the appropriate syntactic, proof-theoretic
formal system for reasoning about abstract contexts. Formal systems give rise
lo theori,es and there is an information ordering on theories. Given a fixed set
of properties (attributes) the set of all consistent theories forms a lattice with
respect to the information ordering.

Chapter 6 relates abstract contexts and theories to each other. This is an
appropriate place to reconsider the issues of models and language. Given that
sets of contexts and theories are equipped with their respective information
orderings, the chapter includes a short discussion on how the two orderings are
related. The chapter concludes with the soundness and completeness result.



1.2. OVERVIEW AND STRUCTURE

The third and last major part of the thesis is constituted by Chapter 7. It
introduces belieued theories-these result from sets of sentences, or description
seús provided by agents. Given the results of Chapter 5, it is natural to extend
the set of believed theories to a lattice generated by the set. Several examples

are provided. Then truth-ualues of sentences (theorems, or descriptions) and

theories are discussed-this chapter is an attempt to apply the bilattice approach

reviewed in Section 2.3 of Chapter 2. Then we consider a question of whether
lattices of theories can be seen as concept latti,ces in the FCA sense. Section 7.4

then suggests how a numeric nl,el,sure on theories can be derived, employing
a marimum entropy principle. Finally, Section 7.5 presents lattices of theories
as epistemic states, and a preference relation on theories as deriuaóle from the
lattice.

Chapter 8 provides a short summary, indicates further research, and dis-

cusses some related work other than that reviewed in Chapter 2.

.)
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Chapter 2

Background

This chapter provides necessary background on latti,ce and order theory, on

Formal Concept Analysi,s, and on a bi,latti,ce approach to reasoning.

In particular, Section 2.1 introduces basic notions in order theory, singles

out a specific kind of ordered sets known as latt'i,ces, and presents them as both
order-theoretic and algebraic structures. The issue of i,nformation ordering is

discussed.
Section 2.2 reviews the area of Formal Concept Analysi,s. It provides a notion

of an FCA contert, a concept of a context, and a concept latti,ce of concepts.

Two relevant issues, although less standard, are also mentioned-these are three-

ualued conterts, and the area known as attri,bute erploration.
Section 2.3 discusses the bilattice approach proposed by Ginsberg [Gin88].

In particular, we discuss world-based bilattices.

2.L Lattices and order
In this section we first include the basic definitions of order and lattice theory.
Then we discuss i,nformati,on orderi,ngs. Finally, we recall that lattices can be

seen as ordered seús and as algebraic structures. The section is mainly based

on [DP90], but other classic references are [Grä71, Bir48].
Let X be a set and ( be a binary relation on X, that is a subset of X x X.

The relation ( is called refleri,ue iff¿.r Vrex r 1 r, antisymmetri,c iff¿"r

Vr,aexif r l yandA <:r thenr - y,andtransi,tiue iffa"r Vr,y,zeXif.r <
y and A < z then r I z. LelX be a set and ( be a binary relation on X. The
pair (X, (), or just X, is referred to as a partially ordered set, or poset iffa"r
the relation ( is reflexive, antisymmetric and transitive; The binary relation (
itself is called apartial order on X, or simply an order (cf. [DP90]).

Let (X, <) b. a poset and let Y ç X. Then a e Y is a marimal element

of Y iff¿"r if.a 1A e Y lhena: U, a e Y ísaminimalelementof
Y iff¿.r if.a) y eY lhena:Ai a e Y isthe greatestelement,or
marimum of.Y, written a:maxY iffa"r Vrçy a) g; a €Y is the /eøsú

element, or minimum of Y, written a : minY iffa"r Voçy a 1 y; ø is
called lhe top element of X, and is denoted by the symbol T, if maxX exists

and ø: maxX, ø is called lhe bottom element of X, and is denoted by the
symbol I, if minX exists and a - minX; a € X is an upper bound of Y

5



6 CHAPTER 2. BACKGROUND

iffa"r Yoçy a ) y. a €. X is an lower bound of. Y iff¿"r Vsçv a 1 y. Let
Yu :d"r {a e X lVaeva > A} : {a e X | øis anupperboundof Y}, and
Yt :d"r {a e X lVaeva < A}: {a e X | øisalowerbound of Y}, Then
a e X is the least upper bound, or the suprernurn of Y, written ø : sup Y iff¿"¡
min Y" exists and a : min Y"; dually, a e X is the greatest lower bound, or the
'infi,mum of )", written a: inf )' iff¿"t maxl'Í exists and ¿: max)'li

LeI X and Y be posets. A map ,þ t X ---+ Y is: order-preserui,ng (or
monotone, orisotone) iffr"t if 11 { 12 in X then ,r/(r1) < rþ("r) in Y; order-
embeddi,ng iffa.r 11 1 12 in X if and only lf tþ(r1) < ,þ("r) in Y; order-
i,somorphi,sm iff¿"¡ it is an order-embedding mapping X onto Y.

We now consider an information orderi,ng-an ordering that a set can be
equipped with, with the intended meaning that objects higher in the infor-
mation ordering convey more i,nformati,on. Further, given sets equipped with
information orderings, we introduce information orderings on the power sets of
the initial sets.

There are many situations in which a set X of elements is naturalty equipped
with an information ordering (, where given tr,t2 € X the relation 11 112
has interpretations such as "r2 provides more information than r1," or "is more
defined," or "is a better approximation." Some examples see [DP90]-include
approximating a real number with closed intervals, and approximating strings of
characters by their initial substrings. An information ordering on maps provides
another example, with total maps containing a maximum amount of information
and some partial maps being partial determinations of the total ones.

Let (X, <) b. a set X equipped with an information ordering (. Does
the information ordering ( on X induce an information ordering on P(X)?
Although the question is a reasonable one to ask, it seems that one needs more
specific knowledge of X and ( to introduce an information ordering onP(X).
Indeed, we consider two cases that suggest two different orderings on the power
sets of the initial sets.

In the first case we consider, let X be a set of tokens of i,nformation-each
token conveys information about ob.jects of the world. Then (X, <) is the set X
equipped with an information ordering relation-lf 11 1 12 thenu2 represents a
more precise information about objects less precisely described by 11. Clearly,
to describe some sets of objects, one might need more than single elements of
X. The following paragraphs comment on information ordering on the set of
subsets of X.

Let (X, <) bu a set equipped with an information ordering, where elements of
X convey information about objects of the world. LetY : P(X) and y1,Uz e Y ,

í.e., At,Uz C X. One might attempt to introduce an inforrnation ordering on
Y : P(X) as follows. We say that y1 1 y2 iff the following two conditions are
satisfied:

l. Vr2€ar=rt€yt rr 1 :Lz,

2. Vrreyr=rzeaz t2>. rr.

It seems that this provides a reasonable way of introducing information orderings
on the set of subsets of. X , with the given interpretation of X. Indeed, condition



2.1. LATTICES A¡úD ORDER

(1) requires that if new information appears in gt2 then !1 must "allow" it,
i.e., if :rz € Az \ E1 then there must be an element 11 €. !1 such that 12 is a

further refinement of r1-hence moving from E1 to gr2 never results in the need

to reject/reuise information already conveyed by at. The condition (2) in turn
requires that the information conveyed by ,r is not lost when r'rye move up from

At to Az. However, one needs to be careful, as the introduced ordering might
fail to be anti-symmetric, and therefore some additional requirements might be

needed-see Section 4.2, Definition 13.

In the second case \¡e consider, Iet there be a single object we want to locate,
and let X be a set of tokens of information lhaL partially locate the object. Then
(X, <) is the set X equipped with an information ordering relation-Lf 11 1 12

Lhen 12 gives a more precise location of the object than rl1 does. Given that one

might not be able to provide a single (even if partial) Iocation, but rather a set

of alternatives, a set of locations such that the object is in one of them, then
one might need to employ subsets of X. The following paragraphs comment on
information ordering on the set of subsets of X in this case.

Let there be a single object that needs to be located. Let (X,<) be a
set equipped with an information ordering, where elements of X are possible,

partially specified locati,ons of the object. Let Y : P(X) and y1,Uz e Y,
i.e., At,Az C X. It seems that one might attempt to introduce an information
ordering on Y : P(X) as follows. We say that At I Uz iff the following
condition is satisfied:

L Vr"ear=rt€at rr 4 rz.

This seems to provide a reasonable way of introducing information orderings on

the power set of X, with the given interpretation of X. Indeed, the condition
(1) requires that if new information appears in E2 then !1 must "allo',v" it, i.e.,
Lf. 12 e Az\n then there must be an elemení rl e !1 such lhal n2 is a further
refinement of 11. Note that some tokens of gr1 can disappear-this corresponds

to dismissing some alternative locations for the object we are trying to locate,
and corresponds to a gain of information. It is clear that the maximum elements

of the po\4/er set of X are the singleton sets of the maximum elements of X.
We make use of the above considerations in two different places. We employ

the former idea to introduce an information ordering on conterts K, given an

information ordering on objects G-this is done in Section 4.2, Definition 13.

We employ the latter idea to introduce an information ordering on n-models

{K, I f e T} given an information ordering on conterús K-rc-models can

be identified with sets of total models (total contexts), and a rc-model carries

maximum information if it specifies a singleton set of total models, i.e., it points
to exactly one total model of the world-this is done in Section 6.5, Definition 20.

We now present lattices as ordered seús, and as algebrai,c structures.
Let X be a poset. X is a latticer iff¿"¡ V,,,"r6¡ sup{zt,rz} and inf{rurz)

exist.
1X is a complete lattice iff¿.1 Vy6¡¡ supY and inf Y exist.

It is easy to see that every finite lattice is complete-indeed, in any lattice sup Y
and inf Y exist for any finite Y Ç X, and hence for any finite lattice X we have that
Vycx supY and inf Y exist.

7



8 CHAPTER 2. BACKGROUND

Let (X, A, V) be an algebra, where X is a set, and A, V : X2 --+ X. The
operators A, V are: associat'iue, if (aAb)A c : aA(b\c), and (aVb) v c : aY (bY c);
commutatiue,if a Ab: b Aa, and ø V b:bV a; i,dempotent,lf. a Aa: ø, and
aY a: a; satisfy absorption identities, if a A (a V ö) : ø, and ay (a A ô) : o.

Let (X,4, V) be an algebra. X is a latti,ce iffa.r X is nonempty, and A, V
are associative, commutative, idempotent and satisfy the absorption idenl,i[ies.

Lattices can be seen as posets, and as algebras. Let the poset (X, <) be a
lattice. Put ¿ Ab: inf{a, ö} and ay b: sup{ø, ö}. Then the algebra (X, n, v)
is a lattice. Let the algebra (X,A,V) be a lattice. Put ø ( ó iff¿.¡ a Ab: a.
Then (X, <) is a poset, and the poset is a lattice. Hence, to show that X is a
Iattice, it suffices to define ( on X, show that (X, <) is a poset, and define sup
and inf such that sup{ø, ö} and inf{a, ó} exist for all a,b e X. Then the algebra
(X,A,V)-where a Ab: inf{a,ó} and aY b: sup{a, b}-is a lattice.

Let (X,A,V) be a lattice and let ø +Y C X. Then Y is a sub-lattice of. X
if.r1,12 e Y implies z1 V t2,rLA12€. y. Of course, a sub-lattice of a lattice is
a lattice.

2.2 Formal Concept Analysis
In this section we provide background information on the area known as Formal
Concept Analysis (FCA), developed by a research group of ErnstSchröderZentrum
at TH Darmstadt, led by Rudolf Wille. The main, up-to-date reference is [GW96],
and its English translation is to be published by Springer soon. Other references
include [Wil92], and a chapter in [DP90].

We first give the basics of FCA, including the notions of conterts, concepts,
and concept lattices. To visualise concept lattices one draws labelled, li,ne di,a-
gro'rnsi but usually the labelling is reduced-we get line diagrams with reduced
labelli,ng. All these basic notions are illustrated with an example-the example
is taken from a tutorial on FCA given by Rudolf Wille during the Conceptual
Knowledge Processing Conference CKP'96 in Darmstadt, but it can also be
found in [GW96]. We then cc¡nsider three-ualued conterts, and a knowledge
acquisition method called attribute erploration.

A, formal contert in FCA is defined as consisting of a set of objects G, a set
of. attri,butes M, and an inci,dence relation I C G x M assigning attributes to
objects, where gIm means "the object g has the attribute rù." Then a formal
contert K is the triple (G,M,I). An example of a formal context is given in
Table 1, presenting the context "Living Beings and Water" in a form of à cross-
table-tf g has m then this is denoted by a cross-sign x in the appropriate row
and column of thc tablc.

Deri,uation operators, denoted simply by the ' sign, are employed to find
concepts of the given context-they map sets of objects to sets of attributes,
and sets of attributes to sets of objects. Let Gt Ç G be a set of objects, and
Mt Ç M be a set of attributes. The derivation operators are defined as follows.

Gr':{*eMlYsecrgIm},
As we will be dealing exclusively with finite lattices, those lattices will obviously be

complete.
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2.2. FORMAL CONCEPT A]VA¿YSIS I

a needs water to live

b lives in water

c lives on land

d needs chlorophyll to prepare food

e two little leaves grov/ on germinating

/ one little leave grows

on germinating

g can move around

h, has limbs

i suckles its offsprings

Table 1. Context "Living Beings and Water"

Mr'-{geClV^<tw,glm}.
There are several useful facts about the derivation operators. Let G1,Gz Ç G
and. My, Mz Ç M . Then we have, for instance, that if Gl C Gz then Gr' ) G2';

rf ML Ç Mzthen Ml ) Mz'; Gt Ç G1" andGt' : Gr"'; Mt Ç M1" and

Mr' - Mr"'; (Gr u Gr)' : Gt'lG2' and (Mt¿ Mr)' : M1' l) M2'.
(Gr, Mr) is said to be a formal concept of K 1tr Gt -- M1' and Mt : G1'-in

such a case G1 is referred to as Lhe ertent of the concept (Gt,Mr), and M1

is called íts i,ntent. Hence, this formal notion of a concept corresponds to a

philosophical understanding of a concept as consisting of objects sharing some

attributes, and the set of attributes shared by the objects. To obtain a formal
concept one can start with an initial set of objects, a subset of the set of all
objects G, apply the derivation operator to find a maximal set of attributes
shared by the objects, and then apply the derivation operator to that set of
attributes to obtain øll objects (possibly a superset of the initial set of objects)

having the set of attributes.
Given a context K, a set of all formal concepts of 1l is denoted by ^C(K). This

set can be equipped with an ordering relation ( given by (Gr, Mr) 3(Gr,Mr)
iff Gr ÇGz; in this case (G1, M1) is called a subconcept of (G2,M2), and < is
referred to as a subconcept-superconcept relation. Note that, equivalently, we

have that (Gt,Mr) < (Gr,Mr) iff Mt 2 Mz. The ordered set (4(K)'<) is

denoted by L(K), and called the concept latti'ce of. K, as it turns out to be a
complete lattice.

Given a concept lattice L(K), the lattice can be visualised by a corresponding

labelled line di,agrarn, usually drawn with a reduced labelling.
Let L(K) be a concept lattice of the context K from Table 1. The cor-

responding line diagram is presented in Figure 1. The circles of the diagram
represent nodes of the concept lattice, i.e., they represent concepts. The line
segments between the circles represent the subconcept-superconcept relation,
and labels provide the extents and intents of the concepts. Namely, given a
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concept, the objects (in the extent of the concept) are attached (from below)
to the circle representing the concept, and the attributes (in the intent of the
concept) are attached (from above) to the circle. Hence, we obtain the labelled
line diagram of the context, so far with a full labelli,ng.

a

ad
78

acgh abdf
56

acAhi

ghi

Figure 1. Line diagram for context of Table l-full labelling

To obtain a diagram with a reduced labelling,, a slight modification of the
above procedure is needed. Let 19 : ({g}", {g}') b" the smallest concept having
g in its extent, and let lnn : ({^}', {*}") be the largest concept having rn in
its intent-7g is called the object concept of g, while ¡,lm is called the attribute
concept of rn. Then, the name of an object g is attached only to the circle of its
object concept 19,and the name of an attribute rn is attached only to the circle
of its attribute concept Lrm. This results in a reduced labelled l,ine diagrarn, which
still allows us to find extents and intents of all the concepts-the extent of a
concept C consists of all objects g whose names can be reached by a descending
path starting from the circle of. C, and the intent of a concept C consists of all
attributes rn whose names can be reached by an ascending path starting from
the circle of C. A reduced labelled line diagram for our example is presented in
Figure 2.

It should also be noted that a reduced labelled line diagram allows us to
reconstruct the formal context, because gIm ltr .yg < prn.

Let us now consider three-ualued conterús. It is clear that in many cases the
incidence relation is not fully known-there can be an object g such that it is
not known whether or not it has a given attribute m. As the incidence relation
I can be seen as a functi,on from G x M to a two element set, hence the case
of underdetermi,ned objects requires employing a partial incidence function, or a
function from G x M to a three element set. We assume an epistemic reading of

ag
1234

adlagh

34

4 tt

ac
34678

678

acdJ

abcah
3

acde
7
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a

I d,

h Í

l)

Figure 2. Line diagram for context of Table 1-reduced labelling

the "partiality" of objects, i.e., it is assumed that g either has rn or it does not
have it, but it is simply not known which of the two cases happens. Hence, by
parti,al conterts, or three-valued contexts, we mean contexts with an incidence
relation given by

I(s,^) --

if g is known to have m,
if g is known not to have m,
otherwise.

Three-valued contexts are discussed by Burmeister in [Bur91]-ut English ver-

sion of it is [BurS9]. We employ partial contexts on the semantic side of our
logical formalism, although we assume objects to be abstract-see Sections 3.7

and 4.1.

Another interesting aspect of FCA is a knowledge acquisition technique
known as attribute erploration-see [Gan96a, Gan96b, G\ /96, Stu96]. The
basic idea is that given a context, a certain set of attributes Mz Ç M can
i,mply another sel M1 ç M . This is related2 to our O-ualid formulae introduced
in Section 4.3.

2.3 Bilattices
In this section we provide some basic information on bilatticesj ar approach
developed by Ginsberg-the section is based on [Gin88]. We first consíder truth
and information ordering on truth-ualues and state a definition of a structure

{i

11

L

4

2As said in [Gan96a], the two approaches were developed independently, and have not been

merged, yet.
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called a bi,lattice. Then, we focus our attention on world-based-bilatti,ces, struc-
tures we return to in Section 7.2.

The basic idea behind Ginsberg's bilattices is to label sentences-or rather
our degrees of belief in sentences-as more than simply "true" or "false."

Ginsberg mentions previous attempts in this direction. For instance, Dana
Scott considers in [Sco82] situations where sbatemenls cal be parlially orderetl
by their truth and falsity-let such a truth orderi,ng be denoted by (r. Sandewall
introduces in [San85] ordering on statements based on the amount of inf'ormation
they contain3-let such an i,nformati,on ordering be denoted by (¡r. One can
note that if D is a set of statements-sentences in a language we consider
then the orderings (¿ and (¡ are orderings on the elements of D. However, as

many statements can have the same truth-value, it is appropriate to associate
the orderings with orderings on the truth-values. Then statements have their
corresponding truth-values, and the orderings (¿ and {¿ on statements is given
by the orderings (¿ and (¡ on the statements' truth-values,4 more precisely,
the orderings on truth-values determine the orderings on equivalence classes of
sentences, where two sentences are equivalent if they have the same truth-value.
Hence, we want to consider an ordered set (f, 1¡1n), the set f of truth-values
equipped with truth-ordering and information-ordering. Additionally, there is a
negati,on operator -:l ---ì f, We expect the followingto hold: if r 1.¿y then
-:x )t -y, if :r 1n U then -ø 1k -U, and --ø : r. We want the orderings (¿
and (¿ to be such that the corresponding ordered sets are lattices-hence, the
corresponding algebraic operations of meet and jo,ins, denoted by A¿, V¿ and A¿,
V¿, respectively. These considerations lead to the following formal definition of
a bi,latti,ce, [Gin88].

Definition 1 ,4 bilattice is a sertuple (f , Ar, V¿, Ak, Vr, -), where I is the set
of truth-ualues, such that (l,A¿,V¿) and (l,A*,Vr) are complete latti,ces. The
negat'ion mapping ¡ : I ---+ f satisfies Yrçy --a - a, and - is a lattice
homomorphism from (f , Ar, v¡) to (f , Vr, A¡) and from (1, An,V *) to itself .

Note thal givel Lhat the two lattices (f , A¿, V¿) and (f , A*, V¿) are complete
lattices,therearefourdistinguishingelementsoff,namely0¿:A¿f, 1¿:\,/¿f,
0*:A*f,and1¡:!¿f.

Figure 3 presents two bilattices of truth-values. The bilattice on the left con-
sists of truth-values of a four-valued logic, ¡amely the truth values 1¿ (true), 0¿

(false), 1¡ (contradiction/both true and false), and 0¿ (unknown). The bilattice
on the right consists of truth-values of a default logic, namely the truth values
1¿, 0¿, 7n,0* (representing true/false/contradiction/unknown, respectively), dt
(truc by dcfault), d¡ (falsc by default), and d¿¡ (both true and false by default).

It can be noted that the negation operator corresponds to reflection around
the axis joining 1¡ and 0¿. In Figure 3 we have for instance that -1¿ : 0¿,

-0ú: 7t, -ln: 1*, and -0* :0f.
3More precisely, it is assumed that truth-values are subsets of the [0, 1] interval-the truth-

value indicates the interval the probability of the statement lies in. Then, any increase in
knowledge results in a contraction of the truth-value interval.

aFormally, we will have a truth assignment mapping p that maps statements into their
truth-values, i.e., p: D ---+ f .
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I¡'
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Figure 3. Bilattices-four-valued and default logics

Let us no\¡/ consider uorld-based bi,latti,ces, bllaltices with truth-values con-
structed from worlds, see Figure 4.

({"r, "z},
s1. s,

({"r } '
slt

({"r}'
{"t, tz

({},
{"1, "z

({"r } '
{"r })

({"r },
{", })

({"2}'
{'r })

( {"2 }, "tr 
tZÌ,

{"2 } Ì)

({ },
{"r })

({"r},
{})

({ },
{})

Figure 4. World-based bilattice of truth values (2 worlds case)

Ginsberg points out that a large class of bilattices can be obtained by
considering sets of. worlds. Let S be a set of worlds and let U,V ç S. Let
D be a set of sentences. If D e D then we associate with D apaír (UD,VD) e
P(S) xP(S), whereUpis asetof worldsinwhichDistrue, andVp isaset
of worlds where D is false. Then given D e D, the pair (Uo,Vo) of sets of
worlds is considered to be atruth-uo,lue of. D. Let f :P(S) xP(S) be the set

of all truth-values, and let Q i D ---+ f be a truth o,ss'ignrnent functi,on given by
p(D): (Uo,Vo).

In general, neither UoUVo:,S nor UolVo: I is required-even though
any world in S \ (Uo¿Vp) is "incomplete," or under-determined w.r.t. D,

{"2 },
{})
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and any \4/orld in (UpnVo) is "inconsistent," or over-determined/contradictory
w.r.t. D.

The truth ordering (¿ and the information ordering (¿ on truth-values are
introduced as follows. Let (U1, V), (Ur,Vr) e f . Then (Ur,Vr) {, (Uz,V2) tfr Ur
Ç Uz and V1 ) V2, and (Il,V) <* (Ur,Vr) itr UL Ç Uz and Vt ÇVz.

Thc four bilattice operations associated with {¿ and <.¿, i.e., the operations
A¿,V¿,4¡ and V¡ are given as follows. (Ut,Vr) N(Uz,Vz): (UrnUz,VtUVz),
(Ur,Vt)Yr(Uz,Vr): (t¡r U (Jz,VttVz), (Ur,Vt) Ax(Ur,Vr): (Ut n (Jz,VttVz),
and (U1,V) y n (Ur,V") : (Ut u Uz,Vr u V2).

The four distinguished elements 0¿, It,0n and 1¡ of the bilattice i.e., the
ú-minimal, ú-maximal, k-minimal and k-maximal elements of f-are as follows.
ü: (Ø,S), 1r : (,9, Ø),0r: (ø,ø) and 1¡ : (.9, 

^9).
The negation operator - on f is given by--(U,V): (V,U), i.e., if p(D):

(Uo,Vo) then p(-D) : (Vo,Uo).
Given the above, the following result is proven in [GinS8].

PropositionL Let S be a set of worlds. Letl:P(S)xP(S) be a set of
the correspondi,ng truth-ualues, and let A¿,Vt, Ak,Vft, - be appropriately defi,ned.
Then (l,A¿, V¿, Ak,Yk,-) i,s a bilatti,ce.

Figure 4 presents a world-based bilattice, for a set of worlds 5: {s1,s2}.
In Section 7.2 we consider world-based bilattices that employ worlds of a

specific kind.



Chapter 3

Ontology and belief

The aim of this chapter is to introdrce sernanlic entities called abstract conterts,
and syntacúic ones called descripti,on sets.

An abstract context can be identified with a set of abstract objects, where

a single abstract object represents a set of objects sharing some attributes but
indistinguishable with respect to all other attributes (a fixed set of attributes is

assumed).
A description set is a set of. sentences in a language, and provides information

about an abstract context.
This chapter consists of two parts. In the first part, in Sections 3.1-3.3, some

philosophical considerations are provided, In particular, Section 3.1 suggests

how a group of agents can 'inuent a language of attributes, where an attribute is a

"label" the group agrees to associate with some objects, but not with some other
ones-when this happens it is appropriate to say that the group has reached a
language consensus (on the attribute).

There are two distinct language-related phases. Firstly, in a phase of de-

veloping the language agents uniquely identify objects and agree on assign-

ing attributes to some of them-this involves the issue of language consensus

discussed in Section 3.1. Secondly, there is a phase employing the language

for communicati,ng, or transferri,ng lenowledge-the language developed in the
first phase is employed, but some of the communicating agents may use the
language inappropriately, others may be wrong about the objects they report.
Hence, in Section 3.2 we consider the issue of. misrepresentat'ion, which in turn
demonstrates that it is possible that the syntactic "pictures" agents have of
their worlds might have very little in common with the agents' "real worlds."
Having no final authority on how the worlds look, we have to limit ourselves to
the pictures provided by the agents, but these correctly describe only agents'

"believed rÃ/orlds"-Section 3.3 discusses this. At the end of Section 3.3 some

more detailed linguistic, ontological and epistemological analysis is included,
with references to the relevant philosophical literature.

In the second part of this chapter Sections 3.4-3.7 introduce and analyse

abstract context and description sets (belonging to abstract worlds and literate
worlds respectively, entities discussed in the first part of the chapter). In
Section 3.4 we define formulae that are sets of non-contradictory attributes,
and specify reg'ions (of the worlds) corresponding to the formulae. A structure

15
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of the r',l/orld can be described by specifying which of such regions are empty,
and which are not-this can be expressed using "marked formulae," or de-
scri,pti,ons introduced in Section 3.5. Given a formula-a set of attributes-the
corresponding region is a set of objects that all have the attributes collected
in the formula-an abstract object is a single entity employed to represent such
objects, Section 3.6 provides the details. One should note that abstract objects
are indeed abstract in the sense that they allow us to avoid the need to identify
objects uniquely. Furthermore, two agents can have the same abstract object in
their contexts, even if their worlds are disjoint. This is the consequence of the
fact that abstract objects correspond to sets of "partially identified" objects-
an abstract object can turn into another (more specific) abstract object when
some new information is provided. Section 3.7 collects the considerations of the
chapter, relates abstract contexts to description sets, and provides examples.

3.1 Language consensus

Let ,9 : {s¿,. . ., sr,"} be a finite set of agents, and call S a societg. For every
agent s € ^9 there is a world, or set of. objects, denoted G' seen by the agent.
Let G¡ : l-lses G, be a set of objects seen by the society ,9.

Let P : {pt, . . . ,pno} be a finite set of attributes the society ,S invents. When
p e P is an attribute, it is assumed that some objects of the world G¡ have the
attribute, and others do not. Objects that do not have p are assumed to have
an attribute associated with p and denotedl p. Hence, P: {fr,...,p^}, and
let M : P U P. Furthermore, 1f. m €. M then rn is given by:

lp if m:pe P,*: 
\-o if m:p€-P.

Elements of the seL M: pU p: {pr,...p"}U{pr, ...p;} are called attri,butes.
Given a set of attributes and a world (of objects), attributes are associated
with sets of objects that have the attributes. If for every rn e M the following
conditionshold: (1) m: {g e Gn l,Ssays2 that g has rn}, (2) m: {g€ Gn 

I

S says that 9 has D), (3) *ll m : þ, and (a) -Urn= ç Gn, then we say that
,9 has reached a language consensus on M.3

We also introduce a language consensus mappi,ng e : P(M) ---+ P(G¡) by
requiring rhal e({rn}) : *, and e ({m}) : m. If e({m}): m then the set of
objects m is called a property, and the attribute name rn cl.n be seen as the
property's name.

Figure 5 shows how agents can reach a language consensus.

llt is appropriate to understand p as a negated p, but p- is treated as a single symbol.
2",S says that g has rn" means that the agents of 

^9 
agree, e.g., bI voting, that the object

g has the attribute rn.
3One might argue that even if agents agree on the criteria for assigning attributes to

objects they might not know for some object whether or not the object has the attribute.
This means that-even at the stage of forming the language-for some attributes a language
consensus is possibly reached at a smaller set of objects. Then-at the stage of. employing the
language-some objects might stay partial w.r.t. some attributes.
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Figure 5. Reaching language consensus

Suppose that three agents sr, s2 and s3 observe the same world W. Call
W a perce'iaed world and its objects perceiued objects. Suppose that-as a

matter of fact-the world W consists of a yellow square, a green square, two red

squares and two blue squares, as shown in Figure 5. Neither of the agents can

distinguish between the colours green and yellow-all perceive the two colours

as green. Moreover, the agent s1 is unable to distinguish between red and

blue-suppose she perceives both of them as magenta. The agent s2 perceives

blue correctly, but red is perceived by her as pink. The agent s3 perceives

red correctly, but blue is perceived by her as cyan. WtWz and lds contain
the agents' percepti,onsa of. the perceived objects of W; hence, the worlds are

aNote that to know what the perception worlds are, one would need to inspect the
subjective experiences, or perceptions of the agents, rather than just be informed about them.
We limit ourselves to what üre are told by the agents.
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called the percepti,on worlds. Let the agents have their priuate labels for the
colours and let Vt,o, Vz,o and V3,¡ contain the labels. If the agents want to
communicate, they need to introduce cornnlon labels,labels they all accept and
use consistently, according to an agreement they make. Such common labels
are referred to as attributes and are employed by the agents s1, s2 ând s3 to
build their so called li,terate worlds Vt,Vz and V3. The language agreenrenL
is referred to as a language consensns, and reaching it necessitates using the
language. The example demonstrates how a language consensus can be reached.
The agents attempt to find such a partition of objects of W they all accept.
Given that they have a label-or attribute-po they want to "attach" the label
to the same objects of W and say that the label must not be attached to any of
the remaining objects. Suppose one of the agents first attaches po to the yellow
square. As they all perceive green and yellow squares as green) they will all
agree to continue the process of associating labels with objects in such a way
lhat po will be attached to green and yellow squares, but not to any other square
of W. Suppose then that s3 attaches a labelpb to one of the red squares and the
agents attempt to reach an agreement again. All agents agree to label the red
squares with p6. Note that the fact that s2 perceives red as pink is undetectable.
However, s1 attempts to label blue squares with p6 as well-the only solution
is that s1 introduces her own label p" to label both red and blue squares. The
agents s2 and s3 introduce pd to label blue squares-the fact that s3 perceives
blue as cyan is undetectable.

The agents have reached an agreement upon partitioning all objects into
those that have po, and those that have not.5 It seems appropriate to say that a
language consensus has been reached w.r.t. po. Then, belieued worlds of agents
consist of their belieued objects-objects the agents report to us. If we ignore
how many objects indistinguishable w.r.t. the given attributes there are in the
believed worlds, then we are dealing with so called abstract worlds, containing
abstract objects. Wt,Wz and Ws of Figure 5 denote the agents' abstract
worlds.6

Subsequent sections-in particular Sections 3.2 and 3.3-provide some clar-
ifications on perceived, perception, literate, believed and abstract world.

3.2 Misrepresentation
From now on, we understand agents not as members of a society that develops
a language-by reaching language consensus-but as sources of informati,on.
Given a set of information sources ,S and a source s € ,S, we often refer to s as

an agent that describes her world. Similarly as with agents in Section 3.1, the

sNote that the agents' usage of p6, p¿ and p¿ is not uniform. But if s2 and s3 were the
only agents, an agreement would be reached.

oRegarding partitioning of objects, the agents partition the perceived objects. Some
remarks can be made. Firstly, the perceived objects might be incorrectly partitioned.
Secondly, even if they are, it is the agreement, rather than the actual partition that matters.
Thirdly, agreement makes everyone happy-this is reflected by a correct partition of the
abstract world, even though the abstract world might be an incorrect representation of the
perceived world.
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sources/agents can misrepresent their worlds. Some clarification on worlds and

misrepresentation is offered.
We consider two ways in which agents can misrepresent objects they perceive.

Firstly, an agent might misperceive the objects-perceiving them not as they
should (e.g. seeing green objects as yellow). Secondly, an agent might m'isuse7

the language-employing improper attributes to refer to her perceptions of the
objects (e.g. calling yellow objects the objects she perceives as green).

We assume that misrepresentations are undetectable, i.e. there is no "oracle"
that can say whether a misrepresentation has occurred. For the purpose of this
section, we introduce an oracle, and explicate the notion of misrepresentation
by comparing an agent's view of her world with the view the oracle would have

of the same world.
Figure 6 shows an example in which some agents misrepresent the objects

they perceive.

u.(Wr) ivt Vz,

U1
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Figure 6. Misrepresentation

Before we analyse the example, Iet us recall some notation. Let s € ^9 be

an agent. Then the world actually perceived by the agent s is denoted by W'
and called a perceiued world. The world of perceptions of s is denoted by W",

Wt

Ws wo

reen t

TThis amounts to not following the language consensus.
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called a percepti,on world, and is assumed to be an image of W " 
in a percepti,on

mappi,ng ?r", i.€., W" -- ur(Wr). The world containing a world description s
provides is denoted by V r,, called a li,terate world, and is assumed to be an
image of.W, in a li,terate mappi,ng ur, i.e., Vr: u,(Wr).4 similar convention
applies to an oracle, an entity that has access to any worlds and objects and has
perfect knowledge of them. Ilence, Wo,Wo and Vo are the olacle's pet'ceived,
perception and literate worlds, and u.to and uo are her (perfect) perception and
literate mapping. Given the perception mappings ,u, and ,u.ro and the literate
mappings ø" and uo, the corresponding representati,on mappings are naturally
defined as ?t, -'t)solt)s andT9, --uoozlo. Thus, the representation mappings send
perceived worlds to literate worlds, ,9"(W") -- V, and ú.(W.) : Vo. The oracle
o forms her worlds Wo, Wo and Vo in such a \l/ay that they are bi,g enough. Irt
particular, they contain Ws : U"e s Wr, Ws : Ure s W" and Vs : U"e s Vr.
The oracle does not put into the worlds Wo, Wo and Vo anything that is not
related to the agents representational activity. Hence, we have the following.

Wo: Ws U w;I(Ws) U rg;I(Vs),
wo: w"(ws) u ws u u;I(vs),
Vo : t,(Wt) u u,(Ws) u Vs.

We have u.(W,) : Wo, u,(W") : Vo and ,9"(W") - Vo. The oracle can also
apply her (perfect) mappings uo, uo and ûo to the worlds of agents, and thus
can perceive/represent what the agents would see, if they make no mistakes.s
Let us say that an agent s is:

o m'ispercei,u'i,ng,if w"(W") # W,:u"(W,),
o m'isusing the language,lf u"(W,) I V, : u,(W,),

o m'isrepresent'ing,if û"(W,) + V,:ú,(W,).

We can now analyse the example given in Figure 6. The worlds W1 and
Wzàre perceived by two agents s1 and s2. Suppose that the only object of.Wt
is a green triangle, and the only object in the world Wz is a red square. The
process of forming the literate worlds I/1 and V2 of the worlds Wt and Wz
by the agents s1 and s2 is two-step. Firstly, the agents form their perception
worlds Wt andJ/y'z without using the language. Let s1 be good at perceiving
colours, but bad at perceiving shapes, and thus the agent's internal, language-
free perception world Wt of W1 be a perception the agent should form while
seeing a green square, i.e., s1 incorrectly perceives the object of Wt as a square
rather than a triangle. Let in turn s2 be good at perceiving shapes, but bad at
perceiving colours, and let the agent's perception world Wzbe a perception the
agent should foru while seeitìg a blue squale, i.e.,, s2 incon'ectly perceives the
object of Wz as a blue object rather than red. In the second step, the agents
employ the language-the agent s1 is a bad language user, and although she

sNote that the classification is weak an agent might be misperceiving some objects of the
perceived world W", without misperceiving the world as a whole. Similarly, an agent might be
misusing the language on some perceptions of the perception world )4", without misusing the
language on the perception world as a whole. Indeed, we consider only i,mages of the mappings.
Apart from that, and surprisingly, an agent might "compensate" her misperception by her
further language misuse, avoiding misrepresentation.
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perceives the object of Wt as'green'she associates with the object an attri,bute

llke IsBlue, or EstBleu. The agent s2 üs€s the language properly. The agents

form their literal representations V1 and V2 of the worlds Wt and Wz they
perceive, and the mistakes they make are summarised by and hidden in the
Iiteral worlds V1 and V2. Employing the oracle, it is evident that the agents

misrepresent their worlds, e.g., the agent sr misperceives her perceived world-
Wy: w{Wt) 1."(Wt)-and she misuses the language when applied to her
perception world-V r :'t)r(W ù ¡ u.(W t).s

Given that agents can misrepresent the worlds they perceive, it is natural
to accept belieued worlds and objects as all that is (correctly) described by the
agents, abandoning the perceived objects, the objects that "really are there"
(but are possibly misrepresented). Such a shift is addressed in the next section,

Section 3.3.

3.3 Believed worlds, or paradigm shift
Taking into account that agents can misrepresent their worlds-as demonstrated
in Section 3.2-it is inevitable that the perceived worlds of agents are given up,
or abandoned. Instead, what we can reason about, based on world descriptions
provided by the agents, are believed and abstract worlds and objects-c.f. Fig-
tre 7, that corresponds to Figure 6 of Section 3.2.

ú,(Wr) û"(Wz) u,(l//t) Vt:Vz

w"(Wt) w "(Wz) Wt

Wt Wz w"-t(]//t) w"-r(w2):wt-w2

Figure 7. Abandoning perceived worlds

In fact, most of the considerations in this thesis are concerned with the
relationship between literate worlds and abstract worlds, where literate worlds
can be identified with language formulated descriptions, while abstract worlds
can be identified with sets of abstract objects. Hence, we make a paradigm shift,
as shown in Table 2.

Let s € ^9 be a source of information (an agent), and let W,, W,,, V,,
W , and W, be the perceived, perception, literate, abstract and believed world
of s, respectively. W" can be identified with a set of perceived objects 9,. If

eNote also that beli,eued objects of sr and s2 âr€ blue squares, even though there are no
such objects in Wt or Wz. The oracle however can "create" objects indistinguishable with
objects of the agents.

W2: Wt - Wz
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v,
literate world

l r" t¡;t l. v-t

lr"

W,
perception world

W,
a,hstra,ct worìd

¿;r I Y¿-t

W,
believed world

W,
perceived world

Table 2. Paradigm shift

perceptions of the objects Ç" are denoted by 9", then 7V" includes the set of
perceptions 9s. The literate world I/, can be identified with a pair (M,D"),
where M is a set of attributes employed to report on the perceptions Ç", and
D, is a description set, a set of expressions in a language that forms the s's
representation of her world 7V". The abstract world W" can be identified with
a pair (M, G,), where M is a set of attributes and G" is a set of abstract objects,
a subset of the set of all abstract objects G that can be formed over M . Finally,
the believed world W, contains believed objects G,.

It was indicated at the beginning of this chapter that agents can perform
various, language-related activities. More precisely, the following activities are
of interest.

1. The society S of agents inuents a language .L.

2. An agent s € S employs the language ,L to describe its world.

(u) A description provided by s is uerified by S.

(b) A description provided by s is not uerified.

Discussing these activities will further clarify the meaning of perceived, percep-
tion, literate, abstract and believed worlds.

Inventing a language (activity 1) amounts to inventing attributes, and agree-
ing on associating them with objects-this is done via language consensus, as

discussed in Section 3.1. For a given attribute m lhe agents of ,S need to agree
which objects have m, and which do not. However, neither all objects need to
be labelled (with m or m), nor, for an object that is labelled, have all the agents
to agree uniformly on whether the object has m or m. All that is required is
that they reach agreement (language consensus), as this allows them to make
the invented labels publi,c, so everyone can understand them. The objects S
labels with the attributes are access'ible to S, and the labels, or attributes, are
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newly created (orinuented) symbols. Note that although the agents' perceptions

(sense data) are priuate, the invented attributes (words) ate public.

Suppose s provides a description of its world, and the description is verified

by S (activity 2a). Assume that the perceived world of s-the "real world"
s perceives-is the same as the perceived worldlO of ,S. On the one hand,

when this kind of activity is performed, the society .9 can actually detect

misrepresentation, i.e., can detect misperception and misusage of language, as

described in Section 3.2. II is true that perceptions (or sense data) are priuate,

but misperception can nevertheless be detected. It is not important what the
perceptions actually are, but whether they change or not when the objects

being perceived change. For instance, given a single object, for an agent s not
to misperceive, the agent s should report different colour perceptions iff the

colour of the object changes. Hence, the society ,S can detect that the mapping
from the perceived world of s to its perception world is erroneous. On the other
hand, when this kind of activity is performed ,S can actually detect that s is
misusing the language. For instance, if ^9 agrees that the only object of the

world is red, but s reports a yellow object, it is simply a matter of "educating"
s, or making s follow the language consensus, to ensure that the language is not
misused. The perceived world gives rise to perceptions (experience data), but
is not otherwise accessible, itself. Perceptions are private, but misperception

is not undetectable. Attributes (words) are public, as it is assumed that the
employed attributes are those on which S has reached language consensus.

Suppose now that s provides a description of its world, but the description
\s not verifiedl1 by S (activity 2b). In this case neither misperception nor
language misusage can be detected. We have to stick to the worlds presented

in the rightmost column of Table 2. The literate world of s accounts to the

description s provides. The believed world corresponds to the perception world,
in the sense that if the agent did not misrepresent, the worlds would be identical.
Restrictions imposed on the language unable to differentiate between objects

indiscernible w.r.t. the employed set of attributes. Hence, given the language,

the semantic entities corresponding to description sets are abstract objects,

where a single abstract object corresponds to a set of believed objects that
are indiscernible w.r.t. the attributes-it is this indiscernibility relation that
converts the believed world of the agent to its abstract world. It is this form
of agents' activity (activity 2a) that interest us; furthermoreT we want to know

the structure of the world (i.e., what kind of objects are in the world, and

what are not, rather than how many indiscernible objects are there) and the

restricted language suits us well. The end result is that it is literate worlds

(syntactic descriptions) and abstract worlds (abstract objects and contexts) that
we focus on. The remaining sections of this chapter provide further clarification
on literate and abstract worlds.

One could argue that the perceived world (roughly, the noumenal world
in Kantian terms) is being set aside for present purposes, and that it would

10The world perceived by both s and ,S can consist of a single object, say a red cube.
11S might not verify the description provided by s because the world of s might be

inaccessible to the other agents of ,S, or 
^9 

might fail to verify the description for some other
reason.
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be a mistake to accord any logical or semantic importance to the perceptual
apparatus that mediates between it and the believed and 'literate' worlds.
Indeed, noumena are "the external source of experience but are not themselves
knowable and can only be inferred from experience of phenomena," [Fle84], see
also [Cay95]. Perceived worlds are such noumenal worlds. They are sources
of cxperience for our agents, but given that the agents can misrepresent, infer-
ring the perceived worlds from experience is not guaranteed to be error-free.
Therefore, what we infer from agents' reported experience are believed worlds,
or rather abstract worlds (because of the language we accept), and hence the
paradigm shift of Table 2.

In the rest of the thesis we will focus our attention on literate worlds (and the
syntactic entities called description sets) and abstract worlds (and the semantic
entities called abstract objects and abstract contexts). Summarising, we will
be dealing with literate and abstract worlds (cf. Table 2), without any access
to the real worlds of the agents. In other words, any imperfections of agents
are hidden inside their literate worlds, i.€., within the description sets they
provide. This means that agents can possibly lie, can misrepresent (misperceive
and misuse the language), and can be placed in and describe distant worlds.12
This is however what this thesis is aiming at: proposing a framework in which
syntactic world descriptions provided by multiple agents, and the corresponding
semantic entities, can be investigated and explained. Apart from modest, and
not intended to be exhaustive, philosophical considerations, there is a well-
defined mathematical content of the thesis. The rest of the thesis demonstrates
the mathematics of conceptual reasoning, including defining a language, formal
syntactic systems, corresponding semantic structures, and relating syntax to
semantics. A concise formulation of these mathematical considerations can be
found in [Now98].

Having said this, let us nevertheless include some related philosophical con-
siderations.13 An agent perceives an external world (perceived world) indirectly
through direct experience of essentially private sense data-this can be seen
as similar to the traditional empiricism of Locke [Woo83]. Locke is known as

attacking innateness of ideas, or rather innateness of knowledge itself, [Woo83],
and advocating knowledge derived from experience. Clearly, experience provides
us with ideas about the world, and is a significant source of our knowledge of
the world, even if there were some innate ideas that could not be obtained from
experience. It should be noted that we allow our agents to misperceive, and
thus an agent can perceive, e.g., "blue" as "magenta" but we do not intend to
detect misperceptions. Regarding the use of language, we accept that the agents'
minds are private, but do not require them to be accessible, so that it can be
checked whether expressions are used correctly-we do not intend to detect
that the language is misused. Misperception in turn is discussed not to suggest
that we intend to detect it, but to say that our agents might be imperfect.

12If an agent is imperfect in any of these ways, then the reported world is expected to be
distant from an "average" or commonly accepted world-and this is the only way we can
"verify" the agent, given that we assume no final authority (society, oracle, God) that can
uncover agents' imperfections.

l3what follows is an attempt to clarify our philosophical standpoint.
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Certainly, it is evident that we want to "combine" the experience reported by
multiple agents, but we do not expect all the reports to be compatible (non-

contradictory), and therefore we want to derive a "dominating" view of the

world, rather than a perfect one. The problem of privateness of sense data
is removed by our language consensus assumption-given that it is publicly
known how to associate labels (words, attributes) with objects, we expect the

agents to follow the consensus, although we do not assume that agents are

perfect language users. Talking about knowledge derived from experience, it
should also be noted that we do not assume that agents report pure sense data.
Following [SH67], the notion of erperi,enti,al data covers objects of direct expe-

rience, such as sense data, and experiences themselves (sensations, emotional
feelings, thoughts); psychological states include such experiential data, but also

mental phenomena (beliefs, attitudes, moods, intentions, mental abilities), see

also [Dan8S]. An agent might report not only some raw sense data, but employ
attributes denoting some psychological states, e.g., beliefs-the ultimate goal is

to "combine" descriptions of multiple agents, see how they are related, whether
they are compatible or contradictory, and find the dominating view(s).

The priuate language argurnenú is a related philosophical problem. Usually
credited to Wittgenstein ([Aye85, Ken73]), with his Philosophi,cal Inuestigati,ons

being the most cited reference, it can take a form of a seemingly simple question:

can there be a private language? In a private language, the words (terms) are

defined to refer to the private sense data of an agent, and thus the meanings

of the terms are only understood by the agent, and no-one else. In [SH67], it
is said that Locke "had a theory about words and their meanings that made

out public languages to be somehow derived from numerous private languages."

Wittgenstein argues in his Philosophi,cal Inuesti,gati,ons that a logically private
language is impossible. Many different opinions on the argument are presented

in [Jon71]; according to the Cartesian view all psychological states are private,
they are private objects, and there are words for private objects (like tooth-
ache), just as there are words for public objects (like chair). Jones, in the
introduction to [Jon71] says: "Firstly, it is fairly generally agreed that the
existence of a language involves the following of rules [...] Secondly, it is agreed

that rule-following presupposes the possibility of checking on the application of
words, thereby making sure that the rule is being correctly followed," and then
he says: "Could there be any possible check on the application of words used

to refer to private objects such as the Cartesians take sensations and feelings

to be? Wittgenstein, I think, is suggesting that it would not be possible if the

objects were privat. [...]" In the collection ([Jon71]), Strawson accepts that
naming a sensation involves a practice in applying the name, but also believes

that an agent can do this privately, and that memory is sufficiently reliable to
perform the checkings. Malcolm in turn distinguishes between following a rule
and being under the impression that one follows the rule-therefore, memory

checks are insufficient. Rhees (same collection) claims that rule-following could
not be done privately. Jones himself submits a nice example ([Jon71], pp.19-20):

Suppose my friend claims that he can recognise a certain property of
an iron bar simply by grasping it with his hand. I am told, however,
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that what he recognises is not one of the well-known properties like
roughness or shape, but something which he calis 'ponk.' The first
difficulty here is not the difficulty about knowing if my friend is right
when he says that a particular bar of iron is ponk. There is a more
fundamental difficulty that comes before that. The difficulty is that
one cannot make any sense of the notion of his l-reilg righL t-rr wr'ong;

On thc onc hand, the example invites to reject the possibility of a private
language; however, it also indicates that a private object can become public,
with a publicly knowable word, and a possible check on the application of the
word.

Kripke [KriS2] also sees the importance of the private language argument
in the issue of following the rule (and therefore the ability to perform a check
on the rule application). In both [Kri82] and [SH67], the following quote from
the Philosophical Investigations is given: "To think one is obeying a rule is not
to obey a rule. Hence, it is not possible to obey a rule 'privately;' otherwise,
thinking one \ryas obeying a rule would be the same thing as obeying it." The
di,ary-keeper argument discussed in [Sme70] is of similar mode it is said the
the diary-keeper has no "acceptable means of distinguishing between correct
and incorrect use of [...] sign."

Many instructive comments on the private language problem can be found
in a collection edited by Martinich [Marg6], especially in the last part of the
book devoted to the nature of language. Martinich says:

Linguistic communication, [Wittgenstein] believes, is rule-governed
behavior, and it does not make sense to say that someone is following
a rule unless there is some way of judging whether the rule has been
followed or broken. The speaker himself cannot be the final arbiter
of this. The judge of whether a rule has been followed or not, like
any standard of evaluation, must be separate from and independent
of the matter to be decided.

Locke's theory of meaning suggest that language is private-cf. Locke's paper
titled "Of Words" in [Marg6]. John Cook, in his "Wittgenstein on Privacy"
discusses private and public objects, rejecting the possibility of a private lan-
guage. Martinich refers to a paper by A. J. Ayer titled "Can There Be a
Private Language?" explaining that "[Ayer] said that there is nothing privileged
about the publicness of the meaning-verification that Wittgenstein seems to
rcquire. All justification and verification of whatever sort must end somewhere.
Further, all justification must end with some sense perception-for example,
seeing or hearing the judgment of other people that one has or has not followed
a rule of speaking correctly-so one may just as well end with one's o\¡¡n
private sensation." As Martinich notes, Saul Kripke in "On Rules and Private
Language" (reprinted in [Mar96]) replies to Ayer "by saying that Wittgenstein
recognizes that all verification ends somewhere and that one might always doubt
the veracity of one's perceptions. But Wittgenstein's point is that, skepticism
notwithstanding, he has correctly described how human languages work; that
humans in fact do end their justification will certain rule-governed publicly
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observable behavior and not with private sensations; and such a practice does

not require any justification."
In lHac72], it is claimed that a justification for a proper use of the language

needs to appeal to something independent, suggesting that memory checks

performed privately by a single agent might not be sufficient.

It seems that one of the main points for (or against) the possibility of a
private language is whether a check can be performed on the application of the
rules for using the language. Certainly, obeying a rule privately is not as good

as doing it publicly, but this does not mean that the public, or society, does not
make mistakes, failing to check the correctness of the rule application. Maybe
there are not just the two extremes: purely private and purely public objects,
but the whole spectrum of objects in between-as with justifications, they could

be ordered, rather than simply accepted or rejected-as we shift from knowledge

(justified beliefs) to beliefs (possibly incorrect), maybe \rye can shift from public
verification to private, even if less secure, verification. This suggests that maybe
requiring public verifiability of languages is too strong a request, even though it
is clear that verifiability is associated with how good a communication tool the
language is.

Referring to our framework, agents are supposed to follow the language

consensus, and thus employ public words (attributes). Clearly, public words
can be successfully used to describe agents' sense data (primary candidates for
private objects)-therefore, it seems that it is a public language that is in use,

here. However, even if a private language was possible, it would not affect the
framework-agents are not forced to use public words, but by using private
ones they risk moving themselves a\4/ay from the other agents. If there was

a private language, if there were private objects, private words for referring
to them, private application rules with possible (private, relying on memory)
checks, the framework would still do its job, although the produced output
would be of similar quality to the private language inputs of the agents, quality
of the communication language the agents employ.

3.4 Formulae and regions

Before we introduce formulae and regions, we need to make a connection between

a society that develops a language, and a single agent, or source of information
that employs the language to describe her world.

Suppose that a language containing attributes M has already been formed,
i.e., a language consensus has been reached, and hence it is commonly agreed

how attributes associate with objects. Let now S be a set of agents that are

sources of information, that employ the language to describe their worlds, but
do not modify or develop it any more. Let s € S be one of such sources of
information, and G be a world-or set of objects-of s. We assume that s

observes the language consensus to the extent that there is no object in G"

believed by s to have both m and Tn-i.e., e(m) a e(m) : Ø-but it is not
assumed that the agent, provided with rn Ç M, partitions the world G" into
complementing subsets-i.e., it is not assumed that e(m)oe(m): G. In other
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words, \Me allow the agent s to have partial i,nformat'ion of her world. This
seems reasonable-when forming a language, the society selects such objects it
can agree uponT and can completely classify, or partition the objects, leaving
troublesome objects aside. But when a single agent observes her world, it is
necessary to account for partiality of the agent's knowledge-if g e G, and
m€ M then s accepts that g has exactly one of the alLribuLesrrt anvJ,m,, but s
might not know which of the two the object has. Consider the situation depicted
in Figure 8.

objects known
to have p

objects not known
to have prp

objects known ffi objects known
to havep ffi to have p andp

(u) (b) (")

Figure 8. Restrictions on objects

The case (a) of Figure 8 is disallowed-objects must not have both p and
p-. If the agent can classify every object w.r.t. which of p and p- the object has,
then she partitions the world G, as shown in Figure 8 (b) We allow the agent
to have partial knowledge of her world: given an attribute p she divides G" into
three regions (some of them might be empty), as shown in Figure 8 (.). One
could say that s's knowledge of the objects of G, is "consistent" but does not
need to be "complete."

Note that G" should be understood as the set of objects believed by s to
be in her world, and in "reality" the agent's world might be different than she
believes and describes it to be. In particular, she might be misperceiving the
world, and misusing the language, as discussed in Section 3.2. Note however,
that we have abandoned perceived objects-cf. FigureT-and are satisfied with
believed objects. Hence, s describes her believed world Gr, and all we want to
know is what this believed world looks like. This allows us to assume that s's
knowledge of G" is unmistaken, even though it might be partial. Hence, the
agent can correctly partition her world into three regions, and can correctly
report the nonemptiness of the regions-she lcnows her believed world, and her
believed world is all we are interested in. As a result, the believed world is not
misrepresented, even though it might be distant from the "real" world of s.

Assuming that we are dealing with a single agent, and her corresponding
world, we omit the subscript s and denote the world by G and its "regions" by
fi|-instead of G" and .R..

o a O a
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Consider now the situation depicted in Figure 9. Let G be a set of objects,
and let P: {pt,pz,ps} be a set of (non-negated) attributes. Further, let e be a
mapping from attributes to subsets of G, and hence h : €(pL),. . .,Ps: e (p)a/-\ /-\
and pr : €lPt),. . .,,Ps: €\Ps).

Pz

G Pz

Figure 9. World G and its properties

The subsets pr, ...,p3,pt,...,pt of G arc called propert'ies, and constitute
some of the "regions" of the world. Let us introduce formal definitions of
formulae and regions.

LeL M : P l) P be a set of attributes. We define a corresponding set of

formulae as follows.

Definition 2 Let M be a set of attributes. Then

p:{FCMlVrrpF2{p,Þ}}

is a correspondi,ng set of formulae.

Lelcldenotethecardinalityof P,i.e.,lPl :candlMl: lPl +lPl :2a. An
example of a set of formulae -F for a:3 is presented in Figure 10.

Let G be a world, or set of objects. Given a set of attributes M-and hence

also the corresponding set of formulae .F -one can consider certain subsets of
the set of objects G, as determined by .F.

DefinitionS Let G,M and F be sets of objects, attributes and formulae, re-

spectiuelE. Let e be a language consensus mapping singleton subsets of M to
subsets oÍ G-xf m € M then e({m}) C C. Ertend e as follows:

if f'u {*} e.F then e(,F' u {*}) : e (F) n t({-}),

i.e., e: F ---+P(G). Then defi,ne:

R: {R¿ç G I F¿ e F and -R¿ : e(4)},

i,.e., R: e(F) . If R e R then R i,s called ø region þf G).
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\ {n,,n,,ø} {e,,ø,e"} {p,,ø,ø} {ø,o,,0"} {m,p,,ø} {m,ø,r"} {ø,ø,ø}Fzzo Fzoz Fzoo Fozz Fozo Fooz Fooo
{Pt,Pz'Pz

Fzzz

{o' }

{0,,r,} {e,,ø} {o,,o,} {o,,ø;} {m,0,¡ {n,ø} {n,0") {er,ø} {o,,0,) {e",n} {ø*,} {ø,ø}Fzzt Fzr'I Fztz Fzto Fozt Foor Fotz Foto Ftzz Ftzo Frcz Froo

{ø} {,,}
Fztt Ftzt

{ø} {o,} {ø}
Fr roFzt t Fror Fnz

{}
Fr rr

Figure 10. Formulae, lPl :3

An example of a set of regions .El for lPl : a:3 is presented in Figure 11.
Note that the extended mapping e of Definition 3 maps formulae to regions,

i.e., e: .F --+ .R, and given an ,F' € .F we have e(tr') - R, where the region R"
is a set of objects that have all the elements of F as their attributes. Note that if
attributes in F are all that matters to us, then ,R" consists of indistinguishable-
or indi,scerni,ble-objects. Note also that -F' not only determines the region R"
but also partitions G into a set of regions, and -R" is one of those regions. To say
this formally we introduce a relation of. F-i,ndi,scerni,bili,ty, characterised by the
following property: g, and 92 ale F-indiscernible if, for any attribute m € F,
g, has m iff g, has m.

Definition 4 Let gt,gz e G and F e F. We say that 91 and g, are F-
indiscernible, denoted gt x, gz ifl¿.¡ attrs(gr) n -å' : attrs(gr) ¡ F, where
attrs(g) i,s the set of attri,butes of the object g.

Gi,uen F e F we use the notation Gfx, to denote the set of equiualence
classes determi,ned by xr, 'i.e., Gl=r: {G¿ _C G I gt,9z e G¿ ifr gt x, gz}.

Note that Gl=, is indeed a set of equivalence classes, because =. clearly is an
equivalence relation (i.e., it is reflexive, symmetric and transitive). We have
that ,R" € Gfx, but Gl=, is usually not a singleton set. Consider the
example of Figure 11-see also Figure 10. Consider the case of Fzn : {pr,pr}-
then Gf=F22t: {Rrr,R"o,Ror,,,ftoor} : G/=rror: G/=rorr: Gfxroor. In
general, we have that,R: Urer Gl*r, and so every region of the world is an
equivalence class of indiscernible objects.
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Figure 11. Regions, lPl :3

If G is a set of objects aîd M is a set of attributes, then there is a set of
regions corresponding to formulae over M. If R is a region corresponding to an

F e F then the simplest question one might ask is whether or not -B is empty.
In fact, information about nonemptiness of regions of the world is all we want
to know. In Section 3.5 we provide a language which allows us to formulate
claims about the nonemptiness of regions. Such claims, when made about a

world, form a description set of the world. In Section 3.6 we introduce abstract

objects. These correspond to (some) nonempty regions of the world and allow
us to provide the same description of the world as the world itself does.

3.5 Language of descriptions
Let M : P U P be a set of attributes, and let F be the corresponding set of
formulae, as given by Definition 2. This pair of M and .F gives a language.

Definition 6 Let M and F be attri,butes and formulae, respectiuely. Then

L: (M,F)

is referred to as a language of formulae.
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Hence, M itself determines the language, but it is the elements of F-these are
called formulae-that are seen as elements of the language.

Recall now that if G is a set of objects-the world under consideration-then
-F determines regions of the world, as given by Definition 3 (but note that two
regions corresponding to two different formulae might happen to be exactly the
same set of objects of the world). What we want to l-re able Lo say abt-rut the
world is whether or not regions corresponding to formulae are empty. Hence,
given a formula F e F we would like to "mark" the f'ormula with a symbol,
say, O, if the corresponding region Re e .R is non-empty, and mark it with a
symbol O, if the region is empty. Hence the following definition.

Definition 6 Let F be a set of formulae. Let

D:Fx{e,e}.
Call elements of D descriptions. Moreoner, when denot'ing descriptions, employ
the followi,ng conuent'ion,

@F :notation (.F, g) and O .F :notation (,F, e),

yi,eldi,ns D: {ØF,eF I F e F}. Call

y: (M, D)

ø language of descriptions.

Hence, M itself determines the description language, but it is the elements of
D lhat are seen as elements of the language.

Formally, considering the language L: (M,.F), the seL M : PlJPis a set
of symbols, and .F is a set of formulae built using the symbols of. M according
to Definition 2, i.e., if m e M then {*} e -F, and recursively, if F1, F2 e F and
Vpep Ftu Fz y' {p,F) then ,F.1 ¿ F2 € F.

Considering the language t : (M,D) the procedure is similar, but instead
of bare .F we employ two "copies" of -F consisting of marked, formulae, namely

{ef I F e F} and {O.F I F' e .F }, and the union of these forms the set of
all possible descriptions (over M), i.e., ¿l : {eF,e¡' I f. e .F}. Hence, the
elements of D can be seen as "formulae" formed in two stages: at first, .F is
built, and next every formula of F is preceded with O, O, or replaced by two
pairs (F., e), (F, e).

Note that we treat all elements of M as symbols: if p,p e M : P U P
tlren not only p but also p is treated as a single symbol. Alternatively, and
equivalently, we could explicitly employ a negation, opero,tor - which, when
applied to P gives P: M \P. Indeed, -of the symbolp can be interpreted as

"a kind of negation"-cf. Section 3.1. Suppose we treat - as such. Then the
negation operator only applies to elements of P, or to elements of M given that
(p) : p, but not to formulae of F-we do not intend to have something like

{pr,pr} even though we have O{pt, pz) and O{pr, pz} in D, because formulae
of -F, e.8., {pt,pz} or {pt,p"} refer to regions of the world, while descripti,ons
in D make claims about the nonemptiness of regions. If - had indeed been
employed as a negation operator then such steps would have been taken.
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Note also that althorgh symbols like p or pt are treated as atom'ic, they will
inevitably be composed of. characters, or symbols of an alphabet-and so they will
be strings over the alphabet. For instance, an alphabet D: {A,...,2,a,...,2}
could be employed and then an attribute, say p : IsÀed, would be a string
over E, or an element of D*, or D+. This is indeed what we do for most of
the examples involving attributes, whenever the attributes are associated with
natural language words.

Consider the following instances of attributes, formulae and descriptions.
Let pl : IsRed and p2 : IsCar be attributes, P : {pt,,pz}. Consider some of
the formulae of F, e.8., Fo : {pt,pr} : {Isfued,IsCar} and F6 : {Pt,pr} :
{Isfued,IsCar}. These formulae determine two regions of the world, namely
the region of those objects that are "red cars", and the region of those that
are "not-red cars," respectively. Consider some of the descriptions of D, e.8.,

D": oFo : o{pr,pz} : o{IsRed,IsCar} and D¿: OFa : O{pl,pz} :
Q{IsRed,IsCar). These descriptions make "nonemptiness claims" about the
corresponding regions of the world, namely the claim that the "region of red
cars" is empty, and that the "region of not-red cars" is not empty, respectively.
Note that e.g., the description @{Isfued,IsCar} is by the convention adopted
in Definition 6-equivalent ro ({IsRed,IsCar},e) e f x {e,e}.

Consequently, if s € S is a source of information, or an agent describing her
world, rve can say the following about the description s provides. Let D" Ç D be

the descri,pti,on set of s. Recall that D, Ç,F x {O, O}. Subsequently, given D"
we can find a corresponding pair of subsets of -F as follows. Define .F'ro : {F e
.F' IOF €D,\ and-F"e:{F € .F leF € D"}. Clearly,thedescriptionsset
D" can be identified with the pair (F"*, F,u) The sets -F"o and F"e are referred
to as the set of @-formulae of s and the set of O-formulae of s, respectively.
Conversely, given a pair (F"*, F"t) of the set of O-formulae and the set of O-
formulae of s, the corresponding description set is given by D, - .Fre x {e} u
F"t t {e}. One might think that this is complicating the notation unnecessarily.
However, consider a simple example of a description set consisting of the two de-

scriptions of the preceding paragraph, i.e., let D" : {D", Do} : {e4, e-Fa} :
{e{pt, pz}, ø{Tt, pz}} : {e{/s,R ed, IsCar}, @{Isiled, IsCar}) and note that
the description set presented in this way is much more readable than the equiv-
alent form of (.F"o,F"t) : ({Fr},{f;}) : ({{pt, pz}},{{pt,pr}}) : ({{IsRed,
IsCar)\, {{IsRed, IsCar}}). However, it is convenient to refer to -F"o and F"e of
D, : (.F"*, .F"") For instance, \Me can say that a description set D, is consistent
if -F"o I F"t - Ø, or that s makes global cla'ims tf Fl I 6.

The issue of language-in particular, the question whether a different lan-
guage should be employed-is taken up in Section 5.1, where specifying a
language is a part of defining a formal system, and again in Section 6.4, where
a comparison with propositional languages is made.14

1aA propositional language for dealing with sets of attributes is employed by Ganter
in [Gan96b].
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3.6 Information ordering on abstract objects

In this section we introduce abstract objects associated with equivalence classes
of indiscernible objects mentioned in Section 3.4. The idea is that abstract
objects correspond to nonempty regions-or equivalence classes of indiscernible
objects-but we keep abstract objects as "specialised," or as little "partial" as
possible.

Consider Figure 72-cf. also Figure 8.

(u) (b) (")

Figure 12. Restrictions on abstract objects

As discussed in Section 3.4, given a single attribute p we divide objects into
three sets, as shown in Figure 8 ("). What \rye are then interested in is which
of these sets are nonempty. Knowing this we can replace sets of indiscernible
objects with single "abstract" objects; for example, objects of Figure 8 (c) can
be replaced with abstract objects as shown in the top line of Figure 8, where
if some of the sets are empty then a smaller set of abstract objects is used,
as shown in Figure 12 (b,c). The bottom line of Figure 12 shows the same
abstract objects, but "partial," or undetermined abstract objects. These are
placed on the "border" separating objects that have p from those that have p-
a partial object can fall on either side, when it becomes determined w.r.t. the
attribute. For instance, in Figure 12 (a) there are three abstract objects-one
has the attribute p, another one has p-, and [he lasl, one has an ernpty set of
attributes-nothing is known about it, but it could give rise to a less "partial"
abstract object, as soon as we received more information.

Note that restrictions on abstract objects reflect the restrictions on objects
as discussed in Section 3.4-abstract objects can be partial, but not i,ncons,istent.

Formally, we introduce abstract objects as follows. Let M be a set of
attributes, and let ,F be the corresponding set of formulae. Given a formula
F e F, we associate with F an abstract object, denoted by gr, such that it has

p p

I

p p p
T

p

p p
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-F as its set of attributes.ls Hence, given M lhere is a set of abstract objects
associated with elements of .F.

Definition 7 Let M and F be attributes and formulae, respecti,uely. Defi"ne a

set of abstract objects (ouer M), denoted by G, or G¡4, 0,s follows:

G: {g¡, | ,F e .F, and attrs(gò: F}.

Note that the construction of ,F disallows inconsistent abstract objects that
have "opposite" attributes m and m.

Figure 13 shows abstract objects, where o : lPl : l. Note that given a

finite set of attributes, there is a finite number of abstract objects determined
by the attributes, regardless the number of objects we consider. Indeed, a single

abstract object could "represent" an infinite number of objects. (Figure 13

seems to demonstrate that sets of abstract objects, when lPl increases, quickly
become difficult to visualise. However, looking ahead to Section 3.7, abstract

conterts are employed to represent them. The cardinality of P is the number of
columns in the table representing the context together with its objects.)

ÇFrr" Iqrro IFr* g g g 9Fnnr 9Fooo

@ @ @ @ @ @
9 F"", I Fro, I Frr, I Frro I Fo^ 9 Fnn, I For, I Fo'o I Frr" I Frro I Fr,o, I Froo

9 Frr, I For., I Frr, I Fr,or, I F,r, I Frr.o

9 Frn

Figure 13. Abstract objects, lPl : 3

lsGiven an abstract object gp, the set ofattributes ofthe object is exactly f', for ifattrs(g¡)
is a set of attributes of 9" then lattrs(g¡)l : lf'l.
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Given the above definition of abstract objects, it is easy to see that abstract
objects convey information, and some of them convey more information than
others. For instance, using the notation of Figures 13 and 10, the abstract
object gr,,,-corresponding to the formula F¡¡t: Ø-tells us nothing but that
the world is not empty. Any other abstract object tells us more, as \rye are
also told that some attributes are "instantiated." This leads to the following
definition of informati,on ordering on abstract objects.

Definition 8 Let M - PU P and G be a set of attributes, and a set of all
abstract objects (ouer M ), respecti,uely. Define øn information ordering relati,on
1 on G by gr, l gr, iff¿"t h Ç Fz. Then the ordered set (G,1) represents
i,nformation orderi,ng on abstract objects.

LetlPl: q. If go'is suchthatlFl: athengo'is calledM-tolal, otherwi,se
i,t i,s called (properly) partial. We also say that gr, is more partial than gpr,
wheneuer gpr 3 g12.

If we add a top element 1ç to G then we get a lattice:

Proposition2 Letl"besuchthat vsec g ( 1c. Then(Gu{1c},<) isa
latti,ce.

The set of abstract objects of Figure 13, when extended by adding a top
element 1ç as said in Proposition 2, forms a lattice. The ordering relation
is the information ordering-moving up in the lattice corresponds to further
"specialising" objects. Specialisation takes place when additional information
about the world becomes available. The lattice is presented in Figure 14.

Our intention is to have sets of abstract objects employed as abstract worlds,
or abstract conterts-this gives us the semantic side of the knowledge represen-
tation formalism proposed. Note that on the one hand, if an agent claims the
presence of certain abstract objects in her (abstract) world, then we know that
the agent believes that some corresponding objects, having certain attributes,
are present in the agent's believed world. On the other hand, if some abstract
objects are absent then we know that certain objects, so is believed by the agent,
must not appear in the world.

Although abstract objects correspond to equivalence classes of indiscernible
objects, abstract objects should not be seen as simply sets of objects. This is
because two agents with disjoint worlds can still share certain abstract objects.

We conclude this section by providing a method of building a set of abstract
objects G, corresponding to thc sct of objccts G" believed by the agent s to be
in her world. What we really want to know is how to construcl G, out of G",
so that the corresponding description sets Dç and Dç" are identical.16

Proposition 3 Let s be an agent, and G, be a set of beli,eued objects of the
agent. Let G, be a set of correspondi,ng abstract objects. Let Dç, and, Dç" be

descri,ptions of the world of s in the language n , as impli,ed by the sets G, and
Gr, respectiuely. Then Dç" - DG".

16ProofofProposition 3 contains a method offinding abstract objects, given believed objects
(and a set of attributes of interest).
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\G

I zzt

101 tt2

I ttt

Figure 14. Information ordering on abstract objects

For convenience, we include Figures 15 and 16, containing formulae, the
corresponding regions, and the corresponding abstract objects, for lPl : e,:2
and lPl : (x -- 1, resPectivelY.
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{e,,, e"} {e,, ø} {m, o,} {ø, ø} c.) í,Ð

Fzz Fzo Foz Foo Rzz Rzo Ig g I

{o'} {n} {r,} {ø} o") iÐ
Fzt For Ftz Fro Rzt Aor Rtz Ãro g I I g

{}
Frrr Àrrr I Frr.r.

Figure 15. Formulae, regions and abstract objects, lPl: Z

{o'} {ø}
F2 -Fo

{}
Fr

o
.RoR2 9p, 9po

9p,

5

_R1

Figure 16. Formulae, regions and abstract objects, lPl : t

3.7 Descriptions and contexts
In this section we summarise the contents of the chapter, introduce descriptions
and contexts (ofabstract objects) via examples, and sketch the rest ofthe thesis.

4

\_-¡=-/

1 2 3

literate world
Y, : (M, Dr)

no objects focus
on lang.

lang. consensus
Y:(M,D)

description set
DsCD

abstract world
w" - (M,G")

abstract objects
G,

focus
on obj

abstract objects
G'ÇG

abstract context
K, : (Gr, Mr,I")

believed world
w: ç,

believed objects
G,

Table 3. Introducing descriptions and contexts
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Consider Table 3. We have introduced believed worlds and abstract worlds
as a result of the paradigm shift of Section 3.3 and the introduction of abstract
objects in Section 3.6, respectively. Let s € ^9 

be an agent. Then the believed
world W, of s can be identified with the set G, of believed objects of s. Given
that M is a set of attributes of interest, objects of G fall into equivalence classes

(regions) of indiscernible (w.r.t. the formulae of Fr) objects-abstract objects
are associated with such equivalence classes. Hence, \f M is fixed then the
abstract world W" of. s can be identified with the set G" of abstract objects of
s.17 If M is fixed then the literate world V, of s can be identified with the set

D" of. descriptionsls of the world of s.

As emphasised by columns 2 and 3 of Table 3, we abandon believed worlds
and stick to abstract worlds-the latter provide semantics for our formalism.
Regarding literate worlds, or worlds of descriptions, the focus is on language
rather than objects, and thus description sets provide syntactic information
about the world.

On the semantic side, as shown in columns 4 and 5 of Table 3 (middle row),
the agent s selects a subset G" of the set G of all abstract objects over M to
form her abstract world. A convenient way of presenting abstract worlds is via
abstract conterts.re

On the syntactic side (the top row of Table 3), we assume a language

consensus-this means that language formulated descriptions have the same

"meaning" for all agents, cf. Section 3.1. If a set M of attributes is fixed
then the set of all possible descriptions D is a set of all marlced formulae,
i.e., D : -F x {9, g}. A description set D, the agent s forms of her world is

a subset of D. Agents employ descriptions to convey information about their
worlds, more specifically, information about nonemptiness2o of regions of the
worlds. In other words, descriptions are a syntactic means for communicating
information about the semantic entities: worlds and objects.

Consider the following examples involving description sets and contexts.

Example L Let s be an agent, P : {pt)p2,ps} and M : P¿P : {pt,pt,pz,pz,
pz,Fl\ be a set of attributes, andW, be the agent's world, as shown i'n Table l.
The table proui,des the correspondi,ng abstract world Wr, abstract contert I{r,
li,terate worldV, and descripti,on set D,.

In Example l-presented in Table 4-some objects of W, are indiscernible,
and hence "collapse" into equivalence classes of indiscernible objects. For exam-
ple, the objects gro and 916 "collapse" into a single abstract object gt-leading

17Note that G" is a subset of the set G of all abstract objects (over M).
l8The descriptions in D" are correct descriptions of the believed world 17", but can

misrepresent the perceived world W" of s, the world of objects that "actually are there."
leAbstract contexts are formally introduced in Section 4.7 of Chapter 4. Informally, an

abstract context .tl" consists of the set of abstract objects G", the resulting set of attributes
M", and the incidence relation.I" that associates the attributes with the objects.

2oLet F be a formula and R" be a region (of the world) determined by the formula. If
the region is nonempty then this information about the world takes the form of a description
D : ØF, i.e., the formula is marked with O. Similarly, if the region is empty then the
information takes the form of D : OF, i.e., the formula is marked with O.
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Pt Pt Pz Pz Pe PtK,

K" : (Gr, Mr,I,)

Table 4. Worlds, description and context (Example 1)

to the abstract world I;I¡, with the set G" - {gr,gr} of abstract objects. X[,
is the set of involved attributes, and it can easily be found, given G,.21 The
incidence relation 1, associates abstract objects with attributes, as shown by
the table on the right hand side of middle row of Table 4: the * and - signs
are used to show whether the object in the row has the attribute in the column.
Given the abstract world V[¡" one can find the corresponding literate world I/,
by marking with O those regions inhabited by abstract objects, and with O

2rMore precise, and formal treatment of abstract contexts awaits Section 4.1
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un-inhabited regions, as shown in Table 4. Given the set of attributes, there is
an exact correspondence between the literate world V" and the description set

D,-the descriptions in D" can be read from the diagram showing V". (One

should think of the circles in Table 4 as representing regions of believed objects,
but in W" and V, they are employed as means to give meaning to abstract
objects and descriptions, respectively; indeed, believed objects are neither to be
found in W, nor in V".)

Example 2 Let s be an agent. Let P : {IsFord, Isfued, IsSedan), and M :
P UP : {IsFord, IsFord, IsRed, IsRed, IsSedan, IsSedan be a set of attri,butes
Let the abstract world W" of s be as shown i,n Table 5. The table prouides the

corresponding abstract contert I{r, literate worldV, and descripti,on set Dr.

IsRed

OO

IsFord

e
IsSedan v,

W

| 9zoo
9no

110

{ O{r'n"a, Issedan} t

e{t'nA, trn"d, Irs"don) ,

Ø{nn"a,i;S"l'"} ,

(ÐllsFord, Is&ed, IsSed,an j ,

Ø{trfora, nn"a, ns"a"n} }

D"

9no
9no
9zoo

9zoz

a

a

+
+

o

o

o

+
o

+
+

+
+
+

+
IsFord IsFord Isiled IsRed, IsSedan IsSedanI<,

r<" - (G,, M,,1,)

Table 5. Worlds, description and context (Example 2)

In Example 2-presented in Table 5-given Wr, the corresponding abstract
context I{, can be found. Note that this time, in the context table, we also

employ the o sign, to denote that it is not known whether the object in the
row (of the o) has the attribute in the column-this is necessary to account for
(properly) partial abstract objects, objects located on borders between regions.22

22For instancÊ, gtzo is placed "on the border" between the region fsFord (of objects that
have the attribute IsFord) and the region fsFord (of objects that have the attribute IsForQ.
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Given the abstract world W" one can find the corresponding literate world
% by marking the regions with O or O, as shown in Table 4, to account for
nonemptiness of the regions. Note that some regions are not marked, e.g.,
R1r"r",a,r,n.a,hs;à*\ : IsFord lì IsRed r^l IsSedan is not marked, as it is not
known-thanks to the presence of grro in G"23-whether the region is empty.
Again, there is an exact correspondence between the literate world V, and the
description set D".

The rest of the thesis makes use of abstract contexts and description sets
introduced in this chapter. In particular, in Chapter 4 abstract contexts are
employed to provide a model theory for the formalism. Chapter 5 treats de-
scription sets as axiom sets, and the proof theory developed in the chapter
expands description sets into theories-sets of formulae provable from the axiom
sets. Chapter 6 further elaborates on models (abstract contexts) and theories
(of description sets) by showing how they are related. Chapter 7 employs
the formalism built in the other chapters to attack the problem of combining
description sets (and theories) of multiple agents.

To follow the notation, treat the digits I,2 and 0 in grro as an encoding that the object is "on
the border," "inside" and "outside" of the consecutive regions, respectively. (By consecutive
regions here we mean singleton set formulae regions, or properties, namely the regions IsFord,
IsRed and fsSedan, with the same ordering as the placement of the attributes in the set P.)

23More precisely, thanks to the presence of grro, and absence of gooo. Note that g1r0 can
"fall" into Rç;n;a.,,;aa., l,s"d"^\ (or rather a more specialised copy of the object can fall into
that region).



Chapter 4

Model theory

This chapter provides a model theory for the logical formalism of the thesis. In
Section 4.1 we formally introduce abstract conterts. Section 4.2 starts with a
set K of all possible contexts, and introduces an i,nformati,on ordering ( on K.

Since contexts can be identified with sets of abstract objects, or with abstract
worlds, the information ordering { on K can be understood as information
ordering on abstract worlds. In Section 4.3 the notion of. ualidi,ty is introduced,
and justified. It is usually expected that valid formulae correspond to formulae
prouable in the syntactic, proof-theoretic side of the logic-this is made precise

in Chapter 6 (in particular, in Section 6.6), after providing a proof theory in
Chapter 5. Consequently, contexts (which validate formulae) are employed as

models for theories, where theories are sets of theorems, or provable formulae.
A proper account of models and contexts awaits Section 6.3, because there we

are equipped with both the model theory of this chapter, and the proof theory
of Chaptèr 5.

4.L Abstract contexts and models

Let P : {pr,...,po},P -- {pt,...,,po}, and M : Pl) P be a set of attributes.
The sets P and P were introduced in Section 3.1, refer also to Section 3.5. In
particular, P can be seen as a result of applying a - operator t'o P, i.e., for
any p € P, there is a corresponding p e P. The - operator should be seen

as a negati,on operator, but as it only applies to single elements of. P, rather
than to sets or conjunctions of them, thus P is treated as a set of symbols.

Recall from Section 3.1 that if m e M : P U P then 7ñ is p, if. m e P, and

it is p, if m e P. Recall from Section 3.6 that a set G of abstract objects
(over M) consists of objects with attributes identified with formulae in -F, i.e.,

G: {g" I F e tr, and attrs(ge): ,t'}. The following definition constructs an

abstract contert.lf¿ out of a set G, of abstract objects, q ç G.

Definition 9 Let G be a set of abstract objects, and let G, ç G. An absfiact
context I{¿ corresponding to the set of abstract objects G¿ i,s constructed as

follows.

1. M¿: {rn,m I * e M"}, where M": UgeGu {m I g has m}.

43
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2. I¿: G¿ x M¿ ---+ {0, 1,2} is gi,uen by:

Io(9,*):o",
if g:grsuchthat F)m,
if g:9, suchthat Fl{^,m}:Ø,
if g:grsuchthat F)m.

3. I{i :aut (G¡., M¿, I¿).

An abstract contert I{¿ : (Go, M¿,1¿) i,s represented by a context table, wi,th
rows correspondi,ng to objects of q, columns correspondi,ng to attri,butes ol M¿,
and each cell corresponding to a pai,r (g,*) e G,x M¿-the cell i,s fi,lled wi,th
*, o, or - iÍ I¿(g,m) takes the ualue of 2,7, or 0, respecti,uely.

The i,nci,dence functi,on sati,sfies the followi,ng condi,ti,ons:

.I¿(g,m):2 i,ff and

. I¿(g,m) : I i,ff I¿(g,m) : 1.

Let the set M of attributes be fired, and let G be the set of all abstract objects
(ouer M ). Then the set of all subsets of G determines the set-denoted by tK-of
all abstract conterts (oaer M), i,.€., K: {Kn} 

",.": 
{(Go,M,I¿)} G¿cG.

Definition 9 requires some explanation. Firstly, In(g,*) takes on the value of
2,I, or 0 if g has m, does not have any of m and rn, ot has m, respectively.
Notice that-by Definitions 7 and 2 every abstract object has at most one of
the attributes m and rn, and hence if it has an attribute rn then it must not
have m, i.e., I¿(g,m) :2 1tr l¿(g,m) :0. By the definition of I¿, wÊ clearly
have that I¿(g,m) : 1 itr I¿(g,^) :1. These constraints allow us to identify
an abstract context over M, with the corresponding context over P : M \P.

Secondly, notice that we define the set K of all abstract contexts (over M)
as {(G,, U,I¿)} Gcc ïather than {(G,,Mo,In)) *,re. Indeed, we first frx M
and then ask whâ1 the possible abstract contexts are. If G is a set of all
abstract objects (over M) then every subset G of G determines an abstract
context (G, Mo,fi)-where we must have M¿ ç M, as we limit ourselves to
M. However, the abstract context (Go,Mn,I¿) can be (trivially) extended to the
context (Go, M, I¿), by putting the o sign in every cell in columns corresponding
to attributes in M \ M, (u" example of such operation is the move from context
-l(1 to I{2in Table 6).

Recall formal contexts and context tables introduced in Section 2.2. Consider
contexts presented in Table 6. .tf1 is a formal context, in which there is one
object "MyNewCa,r" which has the attribute l-s,9e.clan ancl cloes not have the
attribute IsRed. If nothing more is known about "MyNewCar" then extending
the set of attributes to include another attribute IsFord results in a three-
valued context l{z-"MyNewCar" still has the attribule IsSedan, does not
have Isfued, and it is not known whether it has IsFord. The move from I{2
to -[f3 corresponds to explicitly extending the set of attributes from P :
{IsSedan,IsRed,IsFord} to M : P U P, in accordance with Definition 9. In
-Ífa, another object-"MyOldCar"-is included, but notice that the objects
"MyNewCar" and "MyOldCar" are indiscernible. Hence, in .tl6 the two ob.jects

{:

I¿(g,m) : g
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MyNewCar X

IsSedan IsRedK1

MyNewCar I + o

IsSedan IsRed IsFord

MyNewCar + +o o

IsSedan IsSedan IsRed IsRed IsFord IsFord

MyOldCar

MyNewCar

+
+

+
+

o

o

o

o

IsSedan IsSedan IsRed IsRed IsFord IsFord

MyOldCar

MyNewCar

+
+

+
+

IsSedan IsSedan IsRed IsRed

{ltyotacu., MyNewcar + + a O

IsSedan IsSedan IsRed IsRed IsFord IsFord

K7

Table 6. Introducing abstract contexts

are replaced by the set consisting of the two (indiscernible) objects. The contexts

-Il5 and I{7 are versions of I{a a,nd .1f6, after eliminating the "redundant"
attribute IsFord. In .tfs we include a (singleton) set of objects-the set consists

of a single object "MyFutureCar," which is determined w.r.t. to the attribute
IsFord, but not lv.r.t. IsSedan. Finally, in context I{s we reþlace sets of
indiscernible objects with abstract objects, finishing up 

"vith 
an o,bstract contert.

(Note that in the move from .tfs to -Ke information contained in the "names of
the objects"-e.g., information conveyed by using the name "MyNewCar"-is
lost. If such information is important, attributes to encode it can be employed.)

Abstract contexts provide semantics for our formalism, and they are em-
ployed as nxodels (of worlds), whenever syntactic information is received. A
clear explication of the issue of models is deferred to Section 6.3.

Kz

K5

K6

Kg

Kg

MyOldCar, MyNewCar) + +
IsSedan IsSedan IsRed IsRed

{vtynttnt"cu.}
{uyotaco., MyNewCar}

O

+
o + +

o+ o

IsSedan G5eda" IsRed IsRed IsFord IsFo.d

9F.ro

9Fzot

o

+
+ +

+ a

IsSedan I"-Sõã4" IsRed IsRed IsFord CFõã



46 CHAPTER 4. MODEL THEORY

4.2 Information ordering on contexts
Let M be a set of attributes, and G be the set of all abstract objects (over M).
As has been explained in the previous section, sets of abstract objects-i.e.,
subsets of G-determine abstract contexts. If K is a set of all abstract contexts
(over /14) [ltetr al inforrrtatic¡rr orclering relation on K can bc introduccd. Onc
would expect that a move up from one abstract context to another, given an
itrforrnation ordering (, should account to replacing the given set of abstract
objects by another set of more speciali,sed, or less partial objects. If Gr and
G2 are sets of abstract objects of the contexts ,ú11 and -Íf2, respectively, and
we claim that I{2 has greater informational value than -úf1, then we expect the
following. Firstly, for every object gz € Gz there must be an object gt € Gt,
such that g" is a specialisation of gr-the new set of abstract objects still
corresponds to the same world, but more detailed information is available; in
other words, no object that is disallowed by Gt can appear in Gz. Secondly,
for every object g, e Gt there must be an object gz € Gz, such that g,
is a specialisation of gr-the objects of Gr must not just disappear, without
leaving (possibly more specialised) copies of themselves in G2; in other words,
information already presented by Gr must not be lost. This suggests that one
could attempt to define an ordering on abstract contexts as follows.

Let M, G and K be a set of attributes, the set of abstract objects (over
M), and the set of abstract contexts (over G). Let, I{1 : (G1,M,I1) and
I<2- (Gr,,M,12)be two abstract contexts in K. Then an ordering on K might
be introduced by requiring that -tfi 1 I{z iff the following conditions hold:

L' Vg"eez lgr.", gt 1 gz

2. VgreGtlgrr." gt I gz

This was indeed our first attempt, but-as is discussed below-an information
ordering on abstract contexts (or rather parti,al worlds) should not be defined
this way. Nevertheless, Iet us consider an example, and then discuss how a
proper information ordering on worlds should be introduced.

Consider the following, simple example of a set of abstract contexts, as
presented in Figure 77. Let P: {pr}, and M: {pt,p1} be a set of attributes.
Then, there are only three possible abstract objects one can consider (refer
to Figure 16 for the sets F and G of all formulae and abstract objects over
M, respectively). We have that .F : {Fz,,Ft,Fo} : {{pr},{p1},{}}, and
G : {gr, gu go). The set K of all abstract contexts (over M) can be determined
by considering the set of all subsets of G. Figure 17 presents all the contexts of
K, and the links between the contexts show an ordering on K, according to our
initial, just presented attempt to define the ordering.

A thing to notice is that-see Figure 17-the context -Íf162 is strictly below
the context, I{oz,i.e., I{rc2 I I{oz (we have thal I{;¡21 I{oz but -t162 I I{ror).
However, the contexts seem to represent the sllne "world," not in the sense
of. abstract worlds introduced in Chapter 3, but in a sense of partial worlds
indicating whaL possible and total worlds (or "realities" ) are hidden behind
those partial worlds. This invites us to consider a relation between o// abstract
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Figure 17. Ordering on contexts, initial attempt

contexts and total contexts, as this in turn will allow us to detect pairs of
seemingly different contexts which nevertheless are "essentially the same."

Definition IO Let M be a set of attributes, K be the corresponding set of all
abstract conterts, and K¿ be the correspondi,ng set of all tolal abstract conterts.
Defi,ne an orderi,ng 1 between K and K¿, 'i.€., I Ç K x K¿ es follows. Let
K - (G,M,/) e n< and, I{¿: (Gt,114,1t) € K¿. Then I{ 1I{t iff the

following condi,tions hold:

1. Vgreet -gec g 1 gt

2. Vgec 1grr., g 1 gt

Indeed, given Definition 10, we can introduce a mapping tot: K ---+ 2(K¿) that
allows us to find all total contexts above a given context, and then employ the
mapping to define an equivalence relation on the set K of all abstract contexts.

PtKø
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Definition LL A mapping tot: K ---+ P(K¿) is gi,uen by for(I<) : {I{t e K¿ 
I

* < t{t}. Further, an equiualence relationx onK, i.e., È g K x K is gi,uen

bA I{tx I{z iff tot(.tí1) : tot(Ifz) . Then U</= zs the set of equiualence classes
on K w.r.t. =.

woz t

wroz r wø

Wrz wro t

w1

Figure 18. Comparing contexts with total contexts

Figure 18 illustrates the notions introduced in Definition 11. It presents
abstract worlds-or, in fact, abstract contexts-and shows total contexts above
every context (above in the sense of ordering introduced in Definition 10). Of
course, for every total context there is exactly one context above it: the context
itself. The lines between the contexts show the relation of Definition 10; total
contexts (worlds) are marked with double frames. There is an equivalence class
(marked on Figure 18 with a dashed line) of contexts containing two contexts,
namely {I{ror,I{oz}; all other equivalence classes are singleton sets of contexts.

It is now clear that on the semantic side of the formalism we should have
equivalence classes (w.r.t. =) of abstract contexts, or single, uniquely determined
"representatives" of the equivalence classes. One might decide to "sâturate"
contexts, and to keep such saturated contexts-call them partial worlds-as ap-
propriate semantic entities. For instance, in the equivalence class {I{tor,I{or},

w2 wol
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such a saturation mapping would map I{s2to I{;¡2,7 and would map every other
context to itself. Therefore, we expect a proper information ordering on partial
worlds, or saturated conterts to be, in the case of M : {pr,pJ}, as presented in
Figure 19.

Figure 19. Information ordering on partial worlds (saturated contexts)

Given the equivalence relation of Definition 11, we could stop here, say-

ing that the equivalence classes of contexts are appropriate semantic entities.
However, it would be good to have a more constructive approach, for instance,
define a saturation mapping and thus be able to detect whether or not two
different contexts (different, as sets of objects) are in fact equivalent without
finding the sets of total contexts above them (finding total contexts might be
expensive). Clearly, a saturated context would be the only such context in
its equivalence class, i.e., all contexts of an equivalence class of contexts would
saturate to a single element of the class, and hence the saturated contexts would
be appropriate representatives ofthe equivalence classes ofcontexts. Let us thus
attempt to define a saturation mapping.

So far, we have one condition a saturation mapping should satisfy-if, in
a context, there is an object having attributes ,þ ¿ {*} and there is an object
having the attributes rþU{m} then the saturated context should also contain the

lNote that if we go for saturated contexts, then we loose some total contexts; an

"unsaturate" mapping could be introduce to map contexts to their parsimonious (w.r.t. the
number of objects) ev-equivalents.
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object that has the attributestþ, see Figure 18. There is another condition sat-
urated contexts should satisfy, the condition of conueri,ty w.r.t. the information
ordering on objects.

As was said at the beginning of this section, our initial attempt to define
information ordering on context is not correct. In fact, it was pointed out that
i[ may be gootl lo place res[rictit-urs t-¡n which sets can be abstract contexts.
For instance, maybe they should be convex under <. A similar comment was
made by Ganter [Gan97], who pointed out the inadequacy of the initial version
of ordering on contexts, namely, that the resulting relation would not be anti-
symmetric (and therefore, it would treat different contexts as equivalent, and
hence we would get not an order, but a quasi-order).2 Indeed, when a context
contains two objects g, and g, such that g, ( g, then the set of total contexts
above the given context does not depend on how many objects that are between
g, and g3 are included in the context. Hence, saturated contexts should satisfy
the convexity condition.

Summarising, we define a saturation mapping as follows.

Definition 12 A saturation mapping, saú: K ---+ K i,s def,ned as follows. Let
-tf e u<. Then sat(I{) is a contert (element oÍ K) that sati,sfies the followi,ng
condi,tions:

if gr,es e sat(I{) and gr 1 gz 1 gs then 92 e sat(I{)

if g,¡,u1^¡,9çu1n¡ e sat(I{) then g,,¡, € sat(I{)

sat(I{) i,s C-mi,nimal

Given Definition 72, we can introduce partial worlds as saturated context, and
then define an information ordering on partial worlds in an appropriate, and
expected, way.

Definition 13 LetKbe a set of all abstract conterts (ouer M). A seú W o/
partial worlds is the set of saturated contexts, i.e., W: {sat(If) I I< e K}. ,4n
information ordering on partial worlds is i,ntroduced as follows. W1 1Wz iff
the following conditi,ons hold:

1

2

o

+

)I<sat(I{

1'vgreWr)gr.W, gt 1 gz,

2'VgrrWr=grrW, 9t 1 9z'

This finishes our considerations on information ordering on contexts, or worlds.

[Note that in the remainder of the thesis we might employ contexts, rather
than partial worlds, but what we say applies to partial worlds-for a clean
presentation on partial worlds and related structures, see [Now98].]

2I am grateful to Bernhard Ganter and John Slaney for these, and other critical remarks,
which resulted in, I hope, an improved version of the thesis.
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4.3 Vatidity
Let M be a set of attributes, -F be the set of formulae over M, and .Úl¿ be an

abstract context over M. Lef G be the set of abstract objects of I{¿. Given
a formula F e F, the abstract object g F €. G either is present or is absent in
G. What should we say about F \f g, e G,? What should we say about F if
g, ø G,? Such questions lead us to the following definition of uali,dity.

Definition L4 Let M and F be attri,butes and the formulae, respecti,uely. Let
I{¡ : (G,, M,4) € K be an abstract contert (ouer M ). Let F e F. Then:

I{¿le F iffa"r lgect.V^ep I¿(g,m):2,

I{ le F iffa"r Vgea)meF I¿(g,m):9.

If I{¿ F* ,t. then we say that F i,s Ø-uali,d, and if I{¿ le F then we say that
F i,s O-uali,d,, i,n I{¿.

Sets of uali,d formulae of the contert I{¿ are denoted as follows:

F?<n: {F' e ,F I I{ole F},

F7, -- {F e .F I Kn lu F).

Some comments are now in order. Suppose that we said that -F is "instantiat-
able," or "has an instance" (in G¿, or I{¿),rf lgecrV*ep In(g,*):2. Then, on

the one hand @-validity would be identical with instanti,atabi,li,ty. On the other
hand, O-validity would mean guaranteed non-'instanti,atabi,lity. An important
point to note is that validity is defined in such a way that valid formulae remain
valid in any context above the context I{¿ in the information ordering ( and this
is what justifies our use of the term "validity." If a formula is (O- or O-) valid
then we do not claim that it holds (is valid) ín euery context of K. However, it
does hold in every context .If e rc such that I{ } I{¡. Indeed, if we move up in
the information ordering frorn I{¿ to I{ then if a formula has an instance in I{¿
then it also has an instance in .ff-the instances are not lost, and even if they are

replaced by more specialised objects then those objects remain to be instances.

Similarly, if a formula has no instance \n I{¿, the formula does not acquire an

instance when \rye move Lo I{, simply because objects in .tf are specialisations
of objects in I{¿, and hence the former objects preserve the attributes of the
latter ones.

For examples of valid formulae of contexts, refer back to Tables 4 and 5.

For instance, in Table 5 every description of the description set D, gives a valid
formula. For instance, if Of. € D, then ,F' is O-valid in .[1". There are however

more valid formulae in If, that can be read from D, in this way. Indeed,

although a description set might uniquely identify the corresponding abstract
context, description sets rarely list all valid formulae. If we define:

F*n:{Fe F lef e D¿},and

FT:{F€FleFeOn},
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and D¿ does describe I{¿, then we clearly have jÎfi çF*x.,, and.F$, cF"x,.
Note that if, on the one hand, a context If¿ is given, then the set of all

formulae valid in the context can be found by checking whether a formula .F is
O- or O-valid, for every F e F.

On the other hand, if a description set is given, one can employ a proof theory
that can be used to find a set, or theory, of all founulae [hab can be inferred
from the description set-this is the subject of Chapter 5. We will come back
to contexts and models in Chapter 6, where we relate contexts to theories.



Chapter 5

Proof theory

This chapter provides a proof theory for the logical formalism of the thesis.

Section 5.1 defines a formal system-this includes specifying language, axioms,
inference rules and provability. In Section 5.2, it is shown that theories-
sets of formulae provable within the formal system-are equipped with an
informati,on orderi,ng on their theorems, and the ordering can be associated

with an entailment relati,on. Section 5.3 provides a proof procedure showing how
to find, given a set of axioms, all the theorems. Section 5.4 equips the set of all
(consistent) theories (over attributes M) with an information ordering.

5.1 Formal systems

This section first provides a definition of a formal system, then we comment on

the definition, and finally an example of such a system is presented.

Definition l5 A formal system ?[¿ consists of the following.

c Language
Let P:{pt,...,po) andP:{pr,...,F;}. Then M: Pl)P i,s a set of
attributesymbols, F:{F çMlYorp FV{p,P}} it aset of formulae,
and D : .F x {e, e} is a set o/ descriptions, or description formulae.
L : (M,F) andl,: (M,D) are referred to as a language of formulae,
and a language of descriptions, respecti,uely.

o Aæioms
There o,re no logical axioms. A gi,uen set D¿ Ç D determines the formal
system 7L¿ with D¿ o,ccepted as the set of proper axioms.

c Rules of inference
The set Õ: {pt, gz,gs,p+} is a set of inference rules, where

9t

9s

O.FU{rn}
O.F'

E.F'
eFU{rn,}

ØF, eFu{rn}
9E

9z

e fTL e
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o Proaabilitg
There are two provability relations on formulae, Ø-prouability, denoted
16, and O-prouability, denoted le. Ari,oms are prouable, 'i.e., if D :
OF € D¿ then F is Ø-prouable in 7L¿, denoted, ?L¿ Fo F, or si,mply
l-o F. Simi,larly, if D : eF € D¿ then F i,s O-prouable i,n ?L¿, denoted
?{¿l-e F, or sin't1tly l-e ,F. A forntula tr'e- F 'is @-pru'uubLe (e-'pru,uuble)
i,f ØF @f ) can be obtai,ned from the ariom set D¿ usi,ng the i,nference
rules Q. A descri,pti,on D: Of' (l): OI-) is provable in?[¡, denoted
7[¿l D, i,f F i.s Ø-prouable (O-prouable).

.4 logical consequence operator Cn maps a descri,pti,on set D¿ i,nto a set of
all prouable descripti,ons. Prouable descripti,ons are called theorems, and the
set of all theorems is a theory, denotedT¿. Hence, Cn: P(D) --+ P(D),
and Cn(D¿) : T¿. A theory T¿ i's consistent i'f there i,s no formula F e F
such that {gf, g,F} Ç T¿ A descript'ion set D¿ i,s sai,d to be consistenl if the
corresponding theory i,s cons'istent, 'i.e., if Ti: Cn(D¿) i,s consi,stent. Giuen an
ariom set D¿ C D, and the theory T¿ : Cn(D¿), there 'is a "m'inimal and unique
ariom set," called a generator of the theory T¿, and, denoted A¿: gen(lq) . The
generator A¿ oÍ T¿ satisfies the following: (1) Cn(A¿) : Tn, (2) for no proper
subset A¡ of A¿ it holds that Cn(Aj) : T¿, and (3) A¿ i,s bui,lt from C-mari,mal
@-formulae and C-minimal e-formulae of T¿.

Some comments about the language, axioms, rules of inference, and provability
should be made.

Given a set of formulae .F it is natural to ask what operations can be applied
to formulae, to obtain other formulae. Note that it is known what the set of all
formulae is-it is exactly ,F, and it is finite, whenever the attribute symbol set
M is finite. Note also that formulae are sets of attributes (attribute symbols),
and hence set-theoretic operations can be applied to formulae. If F, F1, F2 € F
are formulae, then Fr a F2 and .Fr \ f', uru formulae. However, tr.r U tr'z is a
formula only if it belongs to ,F (rather than to P(M) \ -F) If F' ç M is a set
complement of f., i.e., F' : M \ f' then -t" is a formula iff -F is a formula and

lF'l : lPl in which case we have that F' : F :a.r {m I m e F}.
Regarding axioms, the definition only requires that a description set D¿

taken as a set of axioms for the formal system ?l¿ satisfies D¿ Ç D, or D¿ €
P(D) However, as only consistent theories will be considered, the set of
description sets of interest is smaller than P(D).

Rules of inference are simple. Given a set of formulae (sets of attributes)
ordered by the (set-theoretic) C relation-with bigger formulae higher in the line
diagram, cf, e,g. Figure 10-the inference rrrles p1 ,...,g4 ca,n he represented
symbolically as shown in Figure 20. Thus, rp1 sals that if a formula is O-provable
then any formula below it is also O-provable, and hence rp1 allows one to "go
down" with O-provable formulae-O-provable formulae form a down-set, taking
Ç as the ordering relation. Similarly, p2 allows one to "go up" with O-provable
formulae-O-provable formulae form an up-set, again with Ç ordering (but note
that we do not consider C as an information-ordering relation-c.f., Section 5.2).
Finally, 93 allows one to go down with O-provable formulae, and ça to go up
with O-provable ones. Note that the rules p2 and tpa could "produce" sets of
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attribute symbols not in .F-it is assumed that the rules are not applied in
such situations. This relates to our choice of formulae and axioms. Note that
one could take P(M) as the set of formulae, and "classify" the elements of
P(M) \.F as O-formulae by taking {O{p,F}}pep as a set of. logi,cal O-axioms.
We however limit ourselves to -F, i.e., we simply rule out-by the way .F is
defined-"contradictory" sets of attribute symbols.

Fu{m) Fo{m} Fu{m} Fu{m} Fu{m} Fu{m)

FF FF

(ç') (çr) (ç') (çn)

Figure 20. Rules of inference

The rules tp1 a,îd gz will be justified in Section 5.2, after introducing the
notion of entai,lment,, and hence rp3 and ga wrll also be explained there.

Regarding provability, let D" be a set of axioms used to determine the formal
system ?t.,, and let ?, : Cn(D"). It clearly is only a matter of convenience,
whether formulae of F, or descriptions of D : F x {O, O} are employed. In
particular, the set of descriptions D, determines two sets of formulae-denoted
.F$, and -Ffl-as follows:

FS" :a"r {F e r I ef e Dr}:r,otutio' D"ei

converse,y, given f; ;:, :i#],:äi*;;, 1;::,,.,ponding set or
descriptions is as follows:

D,: D"* r {e} u D"o x {e}.

(Recall that-as was said in Definition 6-we employ a notational convention
of identifying pairs (4 e¡ and (,F, O) with O.F and Q,F, respectively.)

Analogous definitions and notational conventions are applied to the theory
?, : Cn(D") and the generator A, : gen(?,):

Ffl :a"r {f. e ,F I gf e ?s} :notatio,, ?"*;

Fft :a"r {F e F I ef e ?s} :notatio,, ?"o;

aI

aI

I
,

¡,

€

€

þ

þ
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T":TP x{o} U ?"tx{e};
Ff, :a"r {F e F I ef e A,} :',otutio., Á,0i

-Ffi :a"r {F e .F I ef e A"} :,,ot.tio,, Á"o,

A,:,af x{e} u A"ox{e}.
Regarding consistency, w€ can now say that a theory ?" is consistent, if

?"* f-ì fP -- ø. A description set D, can be inconsistent, even if there is no
formula F e F such that {ef, ef } Ç D, using the above notation, it can
happen that D,onD,o - þ,bt| ?,on?,o f 6, andhence the theory 

"" 
: Cn(D,)

is inconsistent, even though the description set D" does not explicitly show that
it is. Regarding generators, note that given ã D", and ?" : Cn(Dr) and
Ar: gen("")-it can easily happen that D" and A, are "disjoint," in the sense
that D"o I Á,* -- þ and D"t r-t A? : ø.

If the set of attribute symbols M is fixed, then a set of all consistent
theories (over M) is denoted by T. We limit ourselves to lf, i.e., we do not
consider inconsistent theories. Indeed, notice that our semantics, as shown
in Chapter 4, is fairly standard-given an abstract context, its set of valid
formulae is consistent.l A set of all consistent description sets is denoted by
D-we certainly have that T'q D CP(D). Further, given the fixed M, there is
a family of all formal systems, namely {(+1,,D,)}¿".n, and the corresponding
family of theories, T : {?, I T" : C"(D"), D, € D} : {Cn(D")}o.r.

Consider the following example.

Example 3 Let D, : {e{pt},O{pt,pz,pz},O{pr,pz,rs}}. Then T, :
{e{pr,Fr}, o{pr}, e{ø}, o{}, e{pt ,nz),o{p1,pz,pz}, o{pr, pz,Fl}}, and
A,: {e{pt, Fi}, o{pt,pz}}.

Figure 21 shows how the theory resulting from the description set given in
Example 3 can be found. An ordered set of formulae from Figure 10 is used.
When provable formulae are derived, appropriate nodes of the ordered set are
coloured, or marked.

Indeed, the descriptions in f: \ D, are obtained by applying the inference
rules as follows: O{pt,pz} by çs, Ø{h,Fr} bV rpa, aîd finally ø{ø} and O{}
by çt'

Given D' and the resulting ?, and A" of Example 3, if we employ the
notation of this section, we have:

DP : {{p'}},
?,* : {{pt,Pr}, {p}, {pt}, {}},
40 : {{pt,P;}},

: {{Pt, Pz, Ps}, {pt,, pr,pt}},
: {{pr, pz}, {h,Pz,Ps}, {pr,pr,Pl}},
: {{Pr,Pz}}'

We certainly have that D, : DP x iOÌ U D"e x {e}, and similarly for ?, and
A* The theory T, of Example 3 is consistent, because ?ro O ?rt - þ, and
hence the description set D, itself is also consistent. Thus, we have that fl € lt,
and D, e n. Note also-and this is true for any theory-that ,4o is a set of
C-maximal elements of ?"@, and Are is a set of Ç-minimal elements of ?"e. Also,
T, : Cn1rr,ç"j(Ar), i.e., only tp1 and 92 need to be employed to find the theory,
given its generator.

l This is not to say that it is assumed every description set we get is consistent-but if it
is not, it needs to be replaced by its consistent subsets.

D?
?"u
A?
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{n,,n,,n"} {p,,pr,¡t} {e,,ø,e"} {e',ø;,Fr} {m,r,,o"} {ø,p,'ø} {m'ø,o"} {n,ø,ø;}
Fzzz Fzzo Fzoz Fzoo Fozz Fozo Fooz Fooo

{o,,r,}
Fzzt

{r,,o,} {p',ø} {m,o"} {n,ø} {ø*"} {ø,ø} {r"*"} {e,,ø"} {ø*"} {ø'ø}
Fztz Fzn Fozt Foor Fotz Foro Ftzz Ftzo Frcz Froo

{o, }
Fzr r

{n} {,,}
Fort Ftzt

{o.} {ø}
Fttz Fr.ro

{}
Frrr

Figure 21. Deriving provable formulae

5.2 Entailment, or information ordering on the-
orerns

In this section we introduce entai,lment relati,or¿s on descriptions. If D is a set

of all descriptions (for a given set of attributes M) then the entailment relations
provide information orderi,ngs on D. We will have that descriptions entailed by
theorems are theorems. The entailment relations also justify the inference rules
tp1 and rp2. Some examples are given; in particular, Example 3 of Section 5.1 is
reconsidered.

Definition L6 Let Dt : ØFt,, Dz : ØFz, Ds : OFz and, D+ : OFq be de-

scriptions. Dz Q-entails D1, denoted Dz )ø Dt iff Fz ) Ft. Si,mi,larlA, Dt
O-entails Da, denoted D3 )eD+ itr tr'3 Ç F¿.

The entailment relations can indeed be interpreted as information, orderings.
If Do (e- or O-) entails D6 then Do contains more information than D6, for
Lf. D" is a theorem, then so is D¿, by the inference rules <p1 and 92. (Note
that formally )6 and )" are relations on descriptions-they are sets of pairs
of descriptions-but one could apply them to formula€, €.8., by saying that
FzlePt ltr F2 2Fl.Thenwecouldsaythat D2)6D1 itr F2 àeFr. Even
further, we could then drop the subscript O from )* and say D2 ) D1 instead
of D2 )* D1-clearly, lf D2 )sD1 then D2 and D1 are O-provable, and hence

Dz ) D1 would not be ambiguous.)

Pt,Pz
Fzot

{ø}
Fror
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The introduced entailment relations also shed some light on pt and p2. Let
Dt: OFr and Dz: O¡'2 be descriptions. Then <p1 takes the form:

Dz, Dz )e Dr
DL

Similarly, let D3 : OFg and Da: OF+ be descriptions-then 92 takes the tbrm:

Ds, Ds )e D¿

Da

Hence, tp1 ànd rp2 are analogous Lo modus ponens. In contrast, the rules cp3 and
p4 are much stronger, as they are associated with the assumptions we make
about objects. Finally, the soundness and completeness result of Section 6.6
demonstrates the appropriateness of the chosen set Õ of inference rules, in
particular, it will be shown that the inference rules are semantically sound.

As the definition puts it, O-entailment on descriptions agrees with I on
the corresponding formulae, but O-entailment agrees with Ç (rather than l)
on the corresponding formulae. Hence, a line diagram of D equipped with the
information ordering <e is a reversal of the diagram of the set ordered by
(* 

-Figure 
22 demonstrates this for a : lPl:2.

Recall from Section 5.1 that O-provable formulae and O-provable formulae
form a down-set and up-set, respectively, taking Ç on the corresponding formu-
lae as the ordering relation. It seems however more appropriate to employ the
information ordering relations (* and (" (on descriptions), respectively.

Figure 22 shows descriptions, or marked formulae, ordered by the informa-
tion orderings. The descriptions that are O-marked formulae are shown in the
left half of the picture, and they are ordered by the (* information ordering,
while the right half shows descriptions that are O-marked formulae ordered by
the (u information ordering. We lift the description sets by adding to formulae
elements denoted by 1o,0o, 10, and 0e. This makes any two description sets
share at least the top and bottom elements of the ordered sets of descriptions.
We have the following:

F@ :.F u {1o, oo}, Fo :.F u {1e, oo},
DØ : -Fo x {e}, Do : fe x {e},
D@: (2*, l*), Do: (2u, lu).

Note that 2e contains all descriptions that are O-marked formulae, and De all
O-marked formulae. If we want to consider ordered sets of descriptions resulting
from a description set D" Ç D (recall that D" -- D"* t {e} u D,u t {e}) then
we get the following:

FP : D,* U {1*, o*},
DF :.F,o x {o},
4 : (2"o, le ),

F? : D," U

DP:fP*
'-r^" : (DP,

{1t,
{e}
<")

0uÌ,

The same can be done for a theory T, : f,o x {e} U 7"" 
" {O} and its

generator A" :4,* 
" {e} U A? *{e}, as they both are also description sets.

Example 3 is now considered again-see Figure 23.
Figure 23 shows ordered sets 4 and Ê of descriptions (theorems) of T,,

and ordered sets 40 and 4" of descriptions of -4.". Note that-and this is the
case for every theory-description sets of {o and $ ^re 

anti-chains (assuming
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o 1o

{p,, p,} {p,, ø} {m, r,} {n, ø}
Fzz Fzo Foz .Foo

{o'} {ø} {r"}
Fzt For Fp

{ø}
Fro

{}
Frrr

0o

Figure 22. Ordered sets of descriptions, lPl : 2

that we ignore the top and bottom elements 10,0o, 1e and 0o). Recall that we

said in Section 5.l-discussing Example 3-that ,4o and A"e are sets of g-
maximal elements of ?ro and Ç-minimal elements of ?"e, respectively. We can
now say that the corresponding descriptions-see Figure 23-are enta'ilment
marimal. Every theory in turn consists of two sets of descriptions, or theorems,
that are down-sets, w.r.t. the entailment orderings.

Finally, consider Figure 24.

Let DØ-the ordered set of all formulae marked O-be denoted by 10,
and De-the set of e-marked formulae-by le, Also, let ({1o,0o}, (e ) and
({1t,0"}, <" ) b. denoted by 0o and 0e, respectively. Clearly, (1o, le) cor-
responds to an (utterly) inconsistent theory, denoted by 1, and (0o,0e) to an
ignorant theory, denoted by O-theory that contains no information. Whether
theories and description sets are treated as ordered sets, or just sets (of de-

scriptions) depends only on which aspects we want to emphasise-hence, from
noïy on, we will denote a theory by T" rather than (f ,4o), .rrutt if order on

go

{p,, p 

"} 
{p,, ø} {ø, r,} {ø, ø)

Fzz Fzo Fo, .Foo

1o

Frn

e

ge

{o, }
Fz,

{ø}
For

{0"}
Fn

{ø}
Fro

{}
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1o 1e

{er,ø}

{er, er}

r_ì
\Pt t Pzt Pt J

A.@ A,E

{o' }

1o

{rr,ø}l

0o

{nr, nr}

1e

0e0o

Figure 23. Ordered sets of theorems and axioms (Example 3)

0o

ref@

{ø}

1o

0e

1o

F

V
0o

1e 1

ge o

1o

ge

Figure 24. Inconsistent theory and ignorant theory

theorems is not to be neglected. We also use the symbols 1 and 0 to denote the
inconsistent theory (the only inconsistent theory we consider), and the ignorant
theory (the empty theory), respectively. Recall that 1l denotes the set of all
consistent theories-clearly, 0 is in 1l but 1 is not. In Section 5.4 we will consider

1o

//\
F

I

0o

1e

0o
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a set of all consistent theories, together with the inconsistent theory 1, i.e., the
ser r u {1}.

5.3 Proof procedure

In this section we provide a proof procedure that allows us to find the theory
?, : Cn(D,), given a description set D,-recall that D, is the set of axioms the
corresponding formal system ?ú" starts with. In fact, the proof procedure will
allow us to find-given Dr-a generator, or minimal and uni,que ariom set A,
of the theory ?", without (unnecessarily) constructing ?" itself. Note that A" is
a parsimonious representation of ?", and having A, : gen("') the theory can

easily be found by using the inference rules tp1 and g2,i.e.) ?, : C.{rr,çr}(Ar).
As shown in Figure 20 of Section 5.1, the inference rules 91, cp2,rps and

ça allow us to go down with O-provable, up with O-provable, down with O-
provable, and up with O-provable formulae, respectively. Note that "up" and

"down" relate to the C relation on formulae, as shown in Figure I0, and not
to the entailment orderings of Section 5.2. In fact, it seems easier to see how

a description set D, "turns into" its theory 
"" 

by using a C-ordered sets of
formulae-like those in Figure 10 and Figures 15 and 16-and hence this is the
method2 we will employ to visualise inference. (In a sense, Section 5.2 has done

its work-of introducing information ordering on theorems-and from now on

we assume that it is clear how sets of descriptions are ordered.)

Consider the rule p1. Definition 15 says that p1 is given ¡v W . Using

the provability relation l-6, this can be expressed by saying that if F t-t {m}
is O-provable then f. is O-provable, i.e., if Fe 'F' ¿ {*} then F6 -F. Using the
entailment relation 16 , this can be expressed by saying lhat FU{m} O-entails
F, i.e., F tl {m} )o F, or rather Of' u {rn} >o O .F., to be formally correct.3

Note however that rp1 in this formulation is "local." Indeed, a formula O-entails
another formula directly below it, but a "global" version of çt can easily be

given, e.g., in the form that if Fz ). 4 then .F2 )e Fr, simply because the local
version of ç1 can be applied several times in sequence. This suggests that the
proof procedure should involve global forms of the inference rules Õ.

Given a description set D, and the resulting theory T, : C"(D') and its
generator A,: gen(?,), employ the following notation:

D,: D"* " {e} u D,e x {e},

T,: TP x {o} U ?," x {e},
A,: A"* " {e} u A,e x {e}.

2Descriptions are marked formulae. Hence, line diagrams of formulae can be employed to
show which descriptions are axioms, and which theorems follow from the axioms. For instance,

if lPl : 3 then the line diagram of Figure 10 can be used to show theorems, by marking some

formulae with O (or colouring them green), and some other formulae with O (or colouring
them red). Inferences are then locally applied to nodes in the diagram, and spread over it as

much as the axioms allow.
3There is no need to be that strict-c.f., Deflnition 16 together with the comment that

follows it.
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The question is how to find ,{o and A"e, given D"o and D"o, as this gives Ar,
which in turn can be employed to easily find Zi : Cn{rr,rr}(,4").

Consider O-provable formulae first. Giver Drt, how can ?"e be found? The
first thing to notice is that the inference rules rp2 and p3 are the only rules
that needed to be employed to derive O-provable formulae, and furthermore,
they operate on g-provable formulae only.a Having in mind that we want to
construct a parsimonious representation of 7", we replace Df;,, : Dre with a
set, denoted Df;r, of Ç-minimal formulae of D"er. Note that nothing is really
lost by applying this step, as the inference rule ç2 can be used to recover D"or.
Obviously, the formulae of D$ form an anti-chain because they are minimal.
However, \rye can still haves that ?"e t Cn{çr}(D?,r), because some O-provable
formulae might require gs to be applied.

Suppose that such a situation occurs. That is, there are F1,F2in ?"e, but
not in D$, and lhaL g3 can be applied to Fr,F2to produce f'3, but there are
no F4,Fs in Dro, such that rp3 can be applied to them to give f.e or a subset of
,t'3. Assume also that tr'1 , F2 ã,Íê, "optimal," in the sense that they produce -F3,

but no two other formulae produce a subset of f.3.

L. F1- FsU {m} and Fz: Fz¿ {m}.
It is assumed that p3 applies to F1,F2,, and hence there is an appropriate
meM.

2. F4çn and FsÇFz.
Assuming the first application of p3 operates on f.1 and F2, these must be
derivable-via ç2-from some Fq, Fs a O?,r.

3. Fs,\F'r I þ and F \Fa,*Ø.
It is so, because D$ is an anti-chain.

4. F4çFs and FsÇFs.
Otherwise, .F3 could be derived from f'a or Fb by employing ç".

5. Þ'a)m and Fs)m.
This obtains from (1,2,4).

6. F+: F6 U {m}, where F6 / m and Fs: Fz ¿ {m), where Fr / ñ.
Subsets of ,Fa and .F5 disjoint with {rn, Tñ} are selected.

7. FeÇ FqÇ 4 and Fz Ç FsÇ Fz.
This obtains frorn (6,2).

8. F1 t) F2: F3u {m,m}, by (1).

9. ¡ä U Fz Ç F'e, by (6,7).

aThis means that @-provable formulae are useless in deriving O-provable ones. Seman-
tically, knowing that there ate sorne objects in the world does not help to determine what
objects are not present.

5We abuse the notation slightly, by applying inference rules to (O-provable) formulae,
rather than to the corresponding descriptions-this should cause no confusion, and simplifies
the notation.



5.3. PROOF PROCEDURE 63

10. F'6 l) Fr: Pt.
Indeed, assume F6U F7 # h. But then bV (9) we have that .Fo U Fz C Fs.
Then bv (0) and g2 we would find both F6U Fr u {-} and -Fo U F?¿ {ñ}
to be O-provable, and hence tp3 would apply to them to produce F6 U F7

O-provable. But note that it would mean that the choice of F1 and F2

would not be optimal in the abovementioned sense. Hence contradiction,
and thus (10) holds.

11. F3 : F+t) fu \ {-,m), by (6,10).
Hence, given Fa and ,F5 one can find the desired -Fs. Note that F4l F5

must contain exactly one pair of "opposite" attribute symbols for tp3 to
be applied.

The above analysis justifies the steps (i, u) of Procedure 1.

Consider now O-provable formulae. Given D"e, and the already obtained
,{e, how can ?"o be found? The inference rules rp1 and <p1 are the only rules
that are to be used. Having in mind that we want to construct a parsimonious
representation of ?r, we replace D"*a : D"o with a set, denoted Df;r, of Ç-
maximal formulae of D"or. Again, note that nothing is really lost by applying
this step, as the inference rule p1 can be used to recover Dror. Obviously,
the formulae of D$ form an anti-chain because they are maximal. However,

we can still have that T"o * Cn{çr}(DP,r), because some O-provable formulae
might require g+ lo be applied.

Suppose that such a situation occurs. That is, there is .F'1 in ?,o (but not
in D$) and there is .Fz in ?"o, such lhat ga can be applied to Fr, F2to derive
Fs to be O-provable, but there are no Fq e DP,z and f's € AP such that cpa

can be applied to them to give O-provable F3 or a subset of FB. Assume also

that f'r, F2 are "optimal" in the sense that they produce f'3, but no two other
formulae produce a superset of ¡'3.

L. Fz: hU {m} and Fs: Ft U {øz}.
It is assumed that rp4 applies to .Fr, F2,, \.e., -F1 is O-provable, .F2 is O-
provable, and Fs is derived as a O-provable formula.

2. F4) FI and FsÇFz.
Assuming that the first application of gE operates on .Fl and F2, these

must be derivable-via g1 and 92, respectively-from some Fa e DPr,
and some F5 e Af;.

3. F4/ñ.
Otherwise, we would have F+ ) F3, and hence one could derive f's as

O-provable, by applying gt lo Fa.

4. Fa/m.
Otherwise, we would have f'a r .F'1 U {rn}, and hence fiU {m} would be

O-provable, while in fact it is O-provable.

5. Fa.ì {^,m) : Ø, by (3,a)
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6. F5>m.
This results from the following. f'5 Ø F , because otherwise -F'r would be

O-provable. Hence, we can prt m € tr'5 \ F1, and then f.5 : Fz lJ {m},
with F7 / m.

7. Fz Ç Ft.
Because-by (6,2,1)-Fz Ç Fs C F2: fiu {m} and F7 / m.

g. Fr - Ft.
Otherwise-by (7)-F, would be a proper subset of f'1, and ,t'r and F2

would not be optimal, as g+ would apply to F7 and ,F5 to produce a
proper subset of F3 as a O-provable formula. (To see thal, ça would apply
to F7 and F5, notice that F7 is O-provable, and F5 is O-provable and
Fs: Fz u {-}.)

9. Hence, Fs : Fz ¿ {m}, where Fz : Fs \ {-}, where {*} : Fb \ F4 Thus,
given.F¿ and f.5, the rule ga applies ifff'b \Fn: {m}, and the resulting
l¡3 can be computed from Fa and F5.

The above analysis justifies the steps (uru) of Procedure 1.

Procedure I Let D" be a description set, and Df; and Df; be the correspondi,ng
Ø- and O-formulae, respectiuely. The following procedure fi,nds the generator
4,, of the theory T" the descriptzon set D, implies.

(i) D3' : D?,

(ii) D,? : {r' € D"? | F' is Ç -mi,ni,mat},

(iii) D"% : D?pU{Fs € ^F I )meM FsU{m,^} : FaUF5, where F+, Fs e D?,r}
(performed recursi,u ely ),

(iv) ^o,eo: {tr. € D".J | ,F is c -minimal},

(') 4u : DB,+,

(vi) ^Ofl,' 
: DP,

(vii) D$: {,F' € D"*J I ,F' is Ç -marimal},

(viii) D,or : DP,,U {l', € F I Fs e 4e, F5 e Df;, tr'' \F'* : {m), and F', :
(fr \ {-}) u {m}} (performed recursi,uely),

(ix) O"o, : {F € D"% | F. is Ç -mari,mal},

(*) A,* : DP,n.

Applying Procedure 1 to Example 3 we get the following.

(ù D?,t: D? : {{pt,Pz,Pz},{pt,pz,p3}},

(ii) D?p: {.F' € D,? | F is C -minimal} : {{pr, pz,ps}, {pr,pr,Fl}} : DP,r,
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(äi) Dft: D?,"u {r, e F I 1^ett F3u {m,ñ} : Fau F5, where Fa,F5 e
D,tr\ : { {pt, Pz, Pt}, {Pr', Pr,Tt), {Pt, Pz}},

(*) DP,n: {F € D,? | F is Ç -minimal} : {{p', pr}},

@ n? : D?,n: {{Pr, Pr}},

(ui) Dfr: DP : {{p1}},

(uä,) D!r: {F e D,*J | ,F is Ç -maximal} : {{pr}},

(ui,i,i) D!, : DP,ru {F, € f I F+ e Æ, Fu e Df;, f5 \ F4 : {m}, and F, :
(a \ {-}) u {m}} : {{pr}, {p',Pr}),

(o) DP,n: {tr' € D"% | ,F is Ç -maximal} : {{pt,F;}},

(r) lP : D"*,n: {{pt, F;}}.

5.4 Information ordering on theories

Figure 25. Information ordering on partial worlds-showing theories

In this section we look at consistent theories equipped with an information
ordering. A natural place to start is to consider theories of conterús-Figure 25

presents those theories that correspond to contexts (or rather partial worlds, see

Section 4.2) over P, where lPl : t.
To find all consistent theories we consider a set D of all possible descriptions

(over a fixed set of attribut es M) and single out a set of those description sets

o

ge

0o,1e
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(subsets of D) which are cons'istent theori,es. The set of all consistent theories
is denoted by 11, and it is equipped with a natural i,nformati,on ordering 1.
To explicitly show 1l for the simple case of lPl : 1, we include a sequence of
figures-Figure 26 shows a set 1fo of. Ø-theori,es and 1le of O-theories, Figure 27
starts a search for consistent theories with To x To, Figure 28 contains only those
description sets in T'o xT'o which ale consistel[ (buL loL necessarily closetl ulrtler
(Þ, so some of the description sets are not theories), Figure 29 stops the search
by providing all consistent theories, and finally Figure 30 shows the consistent
theories in detail.

go

Figure 26. Lattices 10 of O-theories and 1e of e-theories

Let D, be a description set-the resrrlting theory is denoted hy ?,, i.e.
T, : Cn(D,) Let 1l denote the set of all consistent theories. In Section 5.2
we considered two specific theories, 1- and 0, treating these as simply sets of
descriptions, rather than as ordered sets, there is no need to keep 10,0o,1o,
and 0o. Then 0, the ignorant theory, is simply an empty theory, or empty set of
descriptions (note that 0 € T). The "inconsistent theory" 1 contains all possible
descriptions, i.e., all formulae are marked with both O and e-all formulae are
marked as both O-provable, and as O-provable. Hence, L / f , and given our
semantics of Chapter 4, I does not fit to our framework. Indeed, although 1

{}
,i.

{n}{o' }

10

{o, }

1e

{}
I

0o

{ø}
{}

I

0o

1e

1o

I
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Figure 27. In search for consistent theories-lattice T@ x Te

can be associated with the "most inconsistent theory," or be associated with the
set of inconsistent theories, the way we employ 1 is purely conventional. More
precisely, we will use 1 to say that two theories are mutually exclusive. If two
theories ?1 and T2 cannot be "merged," in the sense that accepting both would
allow us to derive both Of'and O.F, then we \4/ill have that TLvT2: L-this
will soon be explained.

Not surprisingly, an information ordering relation ( comes into play, and

the relation is a natural one: theorems represent some information, and so do

theories, or sets of theorems. Hence, it is appropriate to have ( coinciding with
the subset relation C on theories seen as sets of theorems (provable descriptions).

Definition 17 Let M be a set of attributes, and let T. be a set of all consi,stent

theori,es (ouer M). ,4n information ordering relation 1 on T i's defined as

follows. Let T1,Tz € T. Then T1 < Tz iff Tt Ç Tz.

The information ordering ( on theories allows us to treat 1l as a lattice, after
adding a top element 1 to it. The corresponding meet and join operations on

TI ,L"
0
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T3 ,13

T3 ,ou

,rl

J$,r"

1@, 0o
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Figure 28. Consistent description sets

T'U {1} are defined in an obvious way. The meet on two theories is simply the
intersection of the theories. To find their join, one needs to find the union of the
theories, and then compute its consequences-if the resulting description set is
a consistent theory, then it is the join of the theories, otherwise 1 is taken to be
the join. Let ?r ,Tz € lt. Then:

T1 AT2: T1l)72,

T1Y T2:

Considering the theory 1, we have:

Cn(?1 ¿fù if ?1 u ?2 is consistent,
L otherwi,se.

Hence, the following proposition.

?1 V1:1.
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Figure 29. Consistent theories

Proposition 4 Let T be the set of all consi,stent theori,es equipped with the in-

formati,on orderi,ng relation 1. Ertend the ordered set T by adding an addi,tional
element-denoted L-and ertendi,ng the ordering relation by requesting that for
allT e T i,tholdsthatT <1. Then(t U{1},<) it ¿ lattice.

In Figure 25 we depict the information ordering on (abstracl) conterts-refer
back to Figure 17-but showing theories, rather than contexts. The theories are

built-up from the O-theories and e-theories of Figure 26. The shown theories
are-in the sense made precise in Chapter ï-theories of the conterts.

In Figure 26 we consider a simple case of P : {pt}, and hence M : {pr,Tt}.
The left hand part of the figure shows the ordered set (lattice) of all possible

theories that consist of O-provable theorems only. The right hand part in turn
shows the lattice of all possible theories that consist of O-provable theorems

only. Clearly, any theory over M will be built-up from theories of Figure 26.

Although no doubt the case of lPl : 1 is very simple, it still allows us to make

some points, and this is what we do in considering the other figures.
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Figure 30. Information ordering on consistent theories

As one cân suspect, the theories of Figure 25 are possibly not all the consis-
tent theories we could consider. We start with sets of descriptions-as presented
in Figure 27-that result from considering all possible combinations of theories
of Figure 26 (we get this by taking a product of the lattices of theories of
Figure 26).

After taking a closer look at Figure 27 iI is clear we have there some
inconsistent description sets (apart from our top element l)-hence, it seems
appropriate to get rid of them. The resulting set of consistent description sets
is presented in Figure 28

1o, 1o

O1 go oo,10

ge

rB go ge go

ge ge
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This is not good enough yet, because Figure 28 contains description sets that
are not theories. Some of them, when closed under the inference rules Õ, dis-
appear or rather merge with some other description sets which are (consistent)
theories. This leads us to Figurc 29.

Indeed, Figure 29 presents 1lU {1}. This ordered set of consistent theories
forms a lattice, and the smaller inset diagram shows an equivalent but more
readable version of the line diagram of the lattice. Links correspond to informa-
tion ordering, and in Figure 30 we show this ordered set of consistent theories
with more detail.

It is instructive to compare Figure 30 with Figure 25. Both show consistent
theories, but the former shows all of them, while the latter only those "corre-
sponding to" contexts. This will be further elaborated. For now, notice that-
although the orderings on theories and contexts will be shown in Section 6.5 to
agree with each other-there is no 1-1 onto correspondence between theories
and contexts. Indeed, by comparing Figures 30 and 25 and 17 we can see that
there can be different contexts with the same theory, and that there are theories
with no corresponding contexts. For instance, one can say something about a
world without committing oneself to the nonemptiness of the world, but this is
not possible if the information about the world is to be presented in its semantic
form, as a context, or set of abstract objects.

In Chapter 6 we relate models to theories. This includes relating the infor-
mation orderings, and also addresses the just mentioned point that for some

consistent theories there are no contexts.
In Chapter 7 we consider subsets of the set of all consistent theories, namely

theories beli,eued by agents. Given a set of believed theories, we can form a

corresponding lattice of theories-usually a tiny sub-lattice of the lattice of all
consistent theories-by taking a closure on believed theories, where the closure

operation just adds to the set of believed theories all their joins and meets.
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Chapter 6

Models and theories

This chapter relates abstract contexts and theories to one another. In Section 6.1

we consider contexts and theories again, including total contexts and theories.
Cardinalities of the sets of contexts and theories are considered. Section 6.2

defines mappings between contexts and theories. In Section 6.3 models are

revisited-given a theory, a set of total contexts in which the theory is valid
can be seen as a set of standard models for the theory. The section however

also discusses partial models-if a theory is a theory of a context then that
context (possibly partial) is an obvious candidate for a model of the theory.
A theory however does not need to be a theory of a context, i.e., there might
be no context with its set of valid sentences identical to the theory-a set of
minimal contexts in which the theory is valid is then taken to be a model
for the theory. Our choice of language is considered again in Section 6.4-
in particular, some alternative propositional languages are demonstrated to be

inappropriate. Given that the sets of contexts and theories are equipped with
their respective information ordering, Section 6.5 considers how the orderings
are related. Finally, Section 6.6 gives the soundness and completeness result.

6.1 Contexts and theories revisited
In this section we recall some facts about sets of contexts and theories, and

consider cardinalities of the sets. We also provide examples of such sets, together
with their cardinalities.

Let M : P U P be a fixed set of attributes. Further, let .F and G be

formulae and abstract objects (over M), respectively. There is a 1-1 onto
mapping between formulae and abstract objects-indeed, G : {g, I f' e .F}.
Let G : P(G). Clearly, if Gi ç G, i.e., G¡ e G, then G¿ determines an abstract
context I{¡: (Go,M,I¿). It suffices to require lhat I¿(gr,rn) takes the value
of 2,L, and 0, 1f m € F, {^,ñ}nF: Ø andm € -t', respectively. Let K be a
set of all abstract contexts (over M). Then u<: {If¿ : (G¿,*,1) | G¿ e C}.
Clearly, there is a 1-1 onto mapping between G and K.

Regarding the size of K, we have the following. Let lPl : a. Then lFl : 3",
for formulae can be associated with mappings from P to a three-element set,

say {+,., -}. Of course, the same can be said about abstract objects G, and
hence we have that lGl : l.Fl : 3o. Given that G : P(G), we have that

t.1
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lGl : 23'. As contexts are determined by sets of abstract objects, we have that
ln<l : lcl :23" .

Recall that an abstract object can either be (properly) partial, or total (more
precisely, M-partial,or M-total). Anobject ge€G istotalif forevery peP

he attributes p and p, and hence llrl : lPl : o, as tr'-in
ibutes of ge.Let -F(o) be a set of formulae of length o,
I lFl : "). Then, the set of total abstract objects-
set of abstract r bjects corresponding to the formulae

of F("), i.e., 6(") : {gr I F' e .F(")}. Let G(") : pq6@¡. Clearly, if
eÍ") ç G("), i.e., GÍ") e 6(o), then Gj") dete.mines a total abstract context
I<[") : (GÍ") , M, Ii)-.lhis time the incidence relation takes values in the set

{2, 0}, as every object of the context is total, and hence it is determined w.r.t. all
the attributes. Let rc(") be a set of al| total abstract contexts (over M). Then
K(o) : {I<Í") : (G\''),M,L¿) I Gl") € G(")}. Clearly, there is a 1_ 1 onto
mapping between 6,(o) utr¿ ¡ç(o).

Regarding the size of K(o), we have the following. First note that lf {") 
¡ - 2o ,

for formulae in .F(o) can be associated with mappings from P lo atwo-element
set {+, -}. Of course, the same can be said about total abstract objects G(o),
and hence we have that lG(")l : lf(")l:2". Given that G(') :pçç(o)),we
have that lc(")¡ : 22" . Ãs total contexts are determined by sets of total abstract
objects, we have that lrc(')l : lc(") l:22". Abstract contexts and total abstract
contexts are associated with models-Lhis is discussed in Section 6.3.

Consider now theories. Let T' be a set of all consistent theories (over the
frxed M). Recall that if T en then ? is a (consistent) description set, and it
is closed under the inference rules (Þ, i.e., T: Cn(T). Further, given T e r
there is a mi,ni,mal uni,que ariom set A of T, referred to as a generator of T,
i.e., A: gen(?). Given A, there is a corresponding pair of sets of provable
formulae, namely (A*, A"). Recall that if Ao and Ao are seen as sets ordered
by the O-entailment >o and O-entailment >o relations respectively, then
they are anti-chains. This means that consistent theories can be associated
with pairs of such anti-chains. Hence, let us first consider two specific subsets
of t'. Let 1lo be a set of consistent theories with an empty set of O-provable
formulae, and similarly let n'e be a set of theories with an empty set of o-
provable formulae. Certainly, ln*l < lP(F)l and ltel < lP(-F)l-ttris is a step
towards an upper limit on number of consistent theories. It should be noted
that cardinalities of t'o and T'e are usually much smaller thanlP(F)1. Indeed,
we have that lt'ol : l{?, I To e ro}l : l{(AP, ø)},l,and hence there are
as many theories in T'o as there are anti-chains in .F ordered hy O-entailment
)* , and similarly for T'e. The precise assessment of the cardinality of T' seems

complicated, so let us contend ourselves with an upper limit. As l.Fl : 3o
and lP(^F)l:23' we have that lt'ol < 2t" and lt'el < 2t". A number of all
pairs in To x T'e is lt'ol .ln"l Now, for any T € 1t there is a corresponding
pair in 1fo x Te, although many pairs do nol correspond to consistent theories.
Hence, we clearly have that ltl < ln*l . lr.l < 23' .23" - 22'3". Although it
is true that lr'l 322's", one should remember that 22's' is usually much bigger
than Inl. Firstly, while searching for theories in llo and Te one should consider
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anti-chains rather than arbitrary subsets of F, and secondly, while searching

for consistent theories many pairs in T'o x 1le should be dismissed, as many of
them correspond to inconsistent theories, and many of the remaining ones to
description sets which are not closed under the inference rules (Þ.

It is easy to derive ø lower limit on ltl. Let t(o) be a set of úoúal consistent
theories-a theory ? e t is total, if for every F' e -F(") we have that either
OF € ? or Otr' €. T.r Total consistent theories'can be associated-in a 1-1
onto f.ashion-with mappings from -F(") to a two-element set, say {e, e}.' With
lF{")¡ -2o, there are22'such mappings, and therefore In(")¡:22'. Obviously,

Itl> 2"", because T'f T'(o).

Summarising, v/e have derived the following results on cardinalities of sets of
contexts and theories. ln<l :23o, In<(")l:22",2'' l ltl < 2z'l' and lt(")l:22'.

The fact that ln<(")l : lt(")l is not surprising-it is easy to find mappings
Tkù: ¡ç(o) > t(o) and K(CI) :1(o) > nç(o), such that r1o; and rc1o¡ arc 1-1

onto and K@): z"j. Let I{1") : (GÍ"),M,1¿) € K(")-note that elements of

Gj") ur. total abstract objects. Then A? : {F e p@) I g, e Gj")}, atrd

all O-provable formulae are T? : Cn(Áfl), with all the remaining formulae
being O-provable, i.e., Tf; : ,F \ fp. ffre pair (?p, Tf;) determines a theory

T[") : rç*¡(Xl"\ € T(o). Going in the opposite direction, fi Tl") e n(") then

Afl allows us to derive all abstract objects GÍ") of the corresponding context

trfÍ")-irrdeed, Gl') -- {g, € G I F e Af}. Clearly, the objects of Gi") are

total, and they determine a total abstract context I{1") : ryq(TÍ")) € K(o).

Mappings between the sets K and T' of all-rather than only total-abstract
contexts and consistent theories are considered in Section 6.2.

Consider the simple case of a : l. Given our results on cardinalities of
sets of contexts and theories, we have lu<l :23o - 8, In<{")¡ :22o - 4,

22'- 4 < lTl l2z'z':64 and In(")¡ :22o :4. Referringbackto Figure 17

showing abstract contexts for o: 1, there are indeed 8 abstract contexts, and

4 total abstract contexts. Referring back to Figure 30 showing-for a : 1-all
consistent theories (plus an additional element (1*,1u)), there are 10 consistent
theories, and 4 total consistent theories. Regarding the number of consistent
theories, ïve can see from Figure 26 lhat lt'*l : 5 (rather than 23' : 8) and

lu'"1 :4 (rather than 8).3 Further, description sets corresponding to pairs in
T'o x To-there are 5 . 4 - 20 such pairs-are shown in Figure 27. Some of
them are inconsistent, and those which are consistent-there arc 72 of them-
are shown in Figure 28. Those of the consistent description sets which actually
øre theories, i.e., they are closed under the inference rules Õ-there are 10 of
them-are shown in Figure 29.

llf a theory is total then also every formula in .F is either O-provable or O-provable.
zlt is easy to see that ony such mapping determines a consistent theory-indeed, regions (of

objects) corresponding to formulae in .F(o) form a partition of the set of all objects, and hence

the regions are "atomic," or "independent," in the sense that a claim about nonemptiness of
a specific region can be made independently on claims made about all the remaining regions.
We return to this point in Section 6.4.

3One can also note that 1fo and 'lfe overlap on the empty theory, and thus there are 8
theories in llo U'lfe. For the case of a:1 there are only two consistent theories outside of
T'e u Te.
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The results on cardinalities of sets of contexts and theories seem to be
discouraging. Regarding theories, given that 22" < lnl < 22'3" and ltr@)1:22" ,

it is evident that a number of theories one might consider is large. However,
as discussed in Section 7.I, we focus on theories that are actually belieued by
some agents. (There are many possible ways the world could be, there is only
one $¡ay the wolld really is, altl lhere are al; rnt-¡st ä,s rnäily ways the world is
bel'ieued to be as there are believing agents we consider-believed theories are
descriptions of such believed worlds of agents.)

Regarding contexts, it seems appropriate-given a theory ?-to associate
with the theory a set of those total contexts in which T is valid. Such total
contexts could be employed as "models" of ?. Indeed, if ? describes a world,
then the world must correspond to exactly one of the total contexts in which ?
is valid. There are three relevant points to be made here. Firstly, the number
of total contexts is22", and hence it might be impossible in practice to inspect
them to find those total contexts in which ? is valid. Secondly, the theory ?
we obtain is usually partial, and hence it only partially describes the world.
Hence, it seems appropriate to be satisfied with parti,øl contexts corresponding
to ?-indeed, if such partial contexts are found then the set of total contexts
in which ? is valid is simply the set of those total contexts that are above-
w.r.t. the information ordering ( on contexts-the partial contexts. Thirdly,
given a theory ?, there can be more than one partial context corresponding to
T. A more precise account of these issues is given in Section 6.3. What can be
said now is that given some theories we can associate with them parti,al-rather
than total-contexts, and hence there is no need to consider 22' total contexts.

The above results shed some light on how many contexts and theories there
are, and this is relevant if one wants to derive all contexts or theories over a
given set of attributes. Indeed, one might want to do this, but only to gain some
intuition about the mathematical structures involved. Normally, one would only
be interested in contexts and theories resulting from the provided description
sets-cf, Chapter 7-and therefore limit oneself to a small number of interesting
contexts and theories.

6.2 Mappings between contexts and theories

Let M be a fixed set of attributes, and let K and 1l be the set of all contexts and
the set of all theories (over M), respectively. In this section we define mappings
between K and 11.

Let I{¿ € K be an abstract context. There is an obvious choice for a theory
associated with .tf¿-the set To, of all descriptions that are valid in I{¿ forms
a consistent theory, i.e., T* : {D e D I I<¡ I D} e t. (Indeed, to see that
7L it a consistent theory, it is sufficient to note that the set of descriptiorrs
valid in .tf¿ is consistent and closed under Õ-it is consistent by the definition of
validity, and it is closed under (Þ because semantic equivalents of the inference
rules hold, cf. Section 6.6.)

Let ?, € 11. If there is a I{¿ € K such that T*u: fr then If, is the best
candidate for a context associated with 4. Unfortunately, it can easily happen
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that there is no such context .tl¿. Given.Q, one can in principle find a set of
total theories which are above T¿,i.e., Tlo) : {f e t(") I ,, T}.There is

a set ucj") of total contexts corresponding to the total theories of tj'), namely

td') : {I< e u<(") I T* € T'Í")}. (One would normally treat (") as a set of
(totat) models f.or T¡. We consider this issue in Section 6.3.)

There is however a set-denoted by K,o-of. partial contexts associated with
T,. The set K'' is usually much smaller than u<|")-the idea is to pick-up those

contexts in which 4 is valid, but which are also minimal w.r.t. the information
ordering ( on contexts.

Let D be now a set of all consistent descript'ion sets, i.e., D : {D¿ C D 
I

Cn(D¿) € T'Ì. It is important to be able to determine a rc-model for any

description set. Fortunately, it is obvious how to extend rc to the domain D ) T'.

Given a D¡ € D, we can simply pre-process D¿ to get the corresponding theory
T¡: Cn(D¿), and then apply n ro T¿

The above considerations lead to the following definition.

Definition 18 Let M be a set of attributes. Let K and T be the set of all
conterts and the set of all consi,stent theori,es (ouer M), respectiuely. Define
mappings r: K ---l T and rc:1r ---) ?(rc) øs follows.

If I{¿ eK then r(I{¿) - Tx¿ : {D e D I I<¿ I D}
If Ti€T then n(T¿) -lÇrt: {I< € K | ?¡r } fr and -Íf is (-minimal}.

Let D be the set of all consistent descri,pt'ion sets (ouer M ). A mapping rc : ID ---l
P(w) ertends the mappi,ng rc defi,ned onT.

If D¿e DthenK(D¿): {I{ € K lT*2 Cn(D¿) and-ãf is (-minimal}.
i,.e., n(D¡): rc(C"(D¿))' We denote the set K(D¿) ba Kz.

Consider the case of lPl -- a -- l. Figure 31 presents contexts K and

theories T (as already shown in details in Figures 17 and 30, respectively), and

the mappings I and rc between the contexts and theories.

Regarding the mappiûB T, it is easy to see that r is not onto. Using the
example of Figure 31, there are no contexts with a theory (0E ry), or (0o, ?uo),

or (oo, oo).
Regarding the mapping K, recall that it maps theories to sets of contexts.

If a theory is a theory of a conterf, then the theory is mapped to a singleton
set of that context. However, if a theory is not a theory of a context then it is

mapped to a set of minimal contexts in which the theory is valid. This is what
happens in the bottom row of Figure 31. Some theories are unproblematically
mapped into singleton sets of contexts-these cases are omitted in Figure 31.

Some other theories are mapped to (non-singleton) sets of contexts, e.g., as

shown in Figure 31, the empty theory (0E0e) is mapped to {Ifr, Kø}, and the
theory (0., ry) b {I{2, Kø}, and the theory (0E ry) to {Ko, Kø}

Given that K and n'are ordered sets, it is natural to ask whether the mappings
preserve the orderings. We come back to this question in Section 6.5, after
clarifying the issues of models and language.
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Figure 31. r and rc mappings

6.3 Models revisited

Let T¡ € 1l be a consistent theory. How should models for the theory be defined?
Let u<(') and T(") be a set of total contexts and total theories, respectively. If we
decided to select total conlexts in which fi is valid as models, then we would
have vroo(To): o{'): {I< e K(") I T* e T'Í")}, where TÍ"): {T e'¡(") l? >
4Ì, as already mentioned in Section 6.2.

Indeed, contexts in ncj") are total, and hence they can be identified with
total, or completely-w.r.t. all the attributes in M-determined worlds. The
world.actually described by fr. must correspond to exactly one of the contexts
of rcl'). Hence, l,roo(fr) - Kl") seems an appropriate choice for models of fr.

However, finding all total contexts in which ?¿ is valid might be expensive.
An attractive alternative is to consider only minimal partial models of the world
described by T¿. It is Ko -- K(Tr) which gives the set of such partial models of
T¿. Let us use the notation mod(",) for the set of partial models (contexts) of
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T¿,i.e., mod(fr) - Kr;: n(T¿), with rc given by Definition 18. We certainly
have that 1f I< e mod(?,) then ?* ) T¡, and also lhatT¿: l^ì r.mod(!) TK.
We refer to the set mod(?i) : Krn: n(T¿) as a K-model of fr.

Hence the following definition.

Definition L9 LetTi €T be a theory.
The set of tohal models for T¿-denoted by wroo(T¡)-is giuen by:

MoD(4) :d"):{I< 6nç(o) lT*erÍ")},
where rÍ'): {? e n(") lT 2T}

The set o/ minimal partial models for T¿-denoted by mod(T¿), or K, -i;
gi,uen by:

mod([) :n(T¿):{K €Kl?¡( )fr and,Íf is (-minimal}.
The set mod(",) is referred to as a n-model of T¡.

It is clear that mod(fi) it all we need to capture the "meaning" of fr.
Indeed, elements of mod(?,) are contexts, and hence they determine the worlds
the theory ?, might be describing. Moreover, given mod(?,), i.e., the rc-model

of T¿, the set of total models vtoo(fr) can be found, namely Ii,too(fr) : {¡l €
u<(") I -r¡e mod('¡ I{ > I{¡}, and using the notion of an upset of an ordered

set, this takes the form of nroo(fr) :f mod(fi) n uct"l.

Summarising, given a theory T¡ € 11, it is sufficient to find mod(?,) to
determine the meaning of T¡, or to determine worlds the theory ?¿ possibly
describes.

Simple examples of total models and rc-models for theories can be read from
Figure 31. For instance, the empty theory 0, i.e., the theory given by (0o,0o),
has the following models-vtoo(0) : {Kz,I{oz,I{o,Kø}, and mod(O) : {Ifr,
Kø\

6.4 Language revisite
Recall from Section 3.5, that we employ a language of formulae L: (M,F),
and a language of descript'ionsn : (M,D), where D: F x {O,O}, or D:
{ef, ef I .P e .F} is a set of. descri,ptions-lhey can be seen as pafts (formula,
marleer), or simply as marked formulae. If then .ãf is a context, we classify
formulae of .F into those which are O-valid, O-valid, or have undetermined
validity. In the language of descriptions, we select a set of O-descriptions
(formulae marked with O) and a set of O-descriptions, possibly leaving some

descriptions unselected. Hence, it seems we could employ a standard, three-
valued propositional logic-with propositional symbols denoting attributes-to
get an equivalent language. Let us attempt to provide such a language, denoted
by Lp.

Let P : {pt,. . .,po} be employed as a set of propositional symbols. To get

formulae equivalent to those of .F, one can decide for Lo: ({pr, . . . ,po), -, A)-
indeed, formulae of -F can be seen as single disjuncts in a disjunctive normal
form, i.e., as conjunctions of possibly negated propositional symbols p1, ...,pa.
Further, one might want to say that formulae are true or false, rather than
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o-valid, or o-valid, and hence employ €.g., !t.," ?1 , þt"," pt Apz, or !r"r," -p1 r

instead of Fo {pr), F* {h,,pz}, or Fe {p¡}, respectively. Although the
inference rules Q : {gt,...,gE} look fine in that alternative notation, one
might be tempted to e.g., infer þr""" h A pz from þr""" p1 and lr,u. pz. But
such an inference can easily go \4/rong. Hence, the alternative notation is
coun[erirluilive. Ildeetl, if we say that tr' is irtstantiated whenever tr' is 0-
valid, then our logic is aimed at dealing wilh i,nstantiati,bi,lity4-we do not ask
whether F is true in -Íf , but rather whether F is instantiated in .tf , or O-valid in
it. (Recall that our definition of validity ensures that if a formula is e/e-valid
in -t( then although it does not need to be valid also in every other context,
it is valid in every context above .tf.) Furthermore, given that the negation
operator - of. Lp should only apply to single propositional symbols pr,. ..,po,
our language lL of descriptions is exactly what we need.

There is another language one might consider-let us denote \f by L¡. Recall
that F(") : {F e F I lf.l : a}, and elements of -F(o) could be cailed total
formulae, as they correspond to total objects. Given elements o¡ ¡("), the
corresponding regions of the world are atom'ic, or i,ndependent, in the sense that
any of them can be empty or not, independently of all the other atomic regions-
then any region is a union of some of those atomic regions. Hence, given any
region we could associate with it a "disjunction" of formulae in .F('). Employ a
setof propositionalsymbols,fi,. ..,f2.-'thesecorrespondto Ft,...,Fz- e F@).
Thus, we get Lr : ({/r,. .., fz.}, v). Using L¡, for any region of objects there
is a corresponding formula that is a disjunction of the propositional symbols.
Note however, that for a given a, instead of e.g., tr : {pt} we would need to
employ a disjunction of 2"-1 propositional symbols of L¡, and extending the
set of attributes would require the formulae to be recomputed. Given that more
often than not the information we get is parti,al, our description language [.
seems to be a much better alternative than L¡.

Finally, our language is similar to the language of state descriptions Carnap
employs in his work on inductive reasoning [Car50].

6.5 Relating the information orderings

Let K and T' be a set of all contexts and a set of all consistent theories (over
a fixed M), respectively. In Section 6.2 we have defined mappings between K
and T, namely ¡: K ---l T' and rc: lf -) 2(K) Clearly, r is total, but neither
1-1 nor onto, and n is totals and -l 16 but noi onto-the image of rc is rc(n) :
Wr l 

" 
e n) C 

"(K). 
Howcvcr, K and T are ordered sets, and thus it is natural

to ask whether r and K ale order-preserui,ng. We consider the mapping z first,
and then rc.

aAn alternative to þ6 F would be a much less convenient þt... instantiatable(.F).
sNote that rc is defined on '11, but not on 1l U {1}, i.e., rc is not being applied to the

inconsistent theory 1.
6To see that rc is l--1, note the following. If TL + ?2 then there is a description D in,

say,Ty \?2. But then D is valid in every element of K1 : n(Tr), but there are elements of
Kz: n(Tz) in which D is not valid. Hence, Kt * Kz.
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Given that r:K ---ì 1l is defined by z(.tf):T*: {D e D I ^[l þ D], and
the fact that (u<, <) and (t', <) are sets ordered by the corresponding information
ordering relations, we expect thal tds order-preserving. Indeed, one would
suspect that there is something wrong with our definition of the information
ordering on K if r was not order-preserving. There is no surprise here-we get

the following result.

Proposition1 Let (n<,<) and (T,<) be the sets of conterts and theories

equi,pped wi,th the corresponding i,nformati,on orderings, and let r be the mappi,ng

fromKtoT. Let I{t,I{re K andletTl:r(I{t),72:r(I{2) en. Wehaue
that if I{t 1 I{z then T7 1Tz.

Recall that rc : 1r ----) P(rc) is given by n(T¿) - Kr¿ : {I< € K | ?¡(
) ?¿ and -úl is (-minimal). The domain of rc, i.e., the set of theories 1l is

ordered by the information ordering ( on theories. However, before we ask

whether rc is order-preserving, we need an (information) ordering on 2(K)-
indeed, the codomain of rc is 2(n<), rather than just K. It is suggested in
Section 2.1 tells us how to define an information ordering on 2(K). We limit
ourselves to the image rc(n) : {lC, I ? e t} of rc.

Definition 2O Let (rc, <) be the set of conterts equi,pped wi,th the i'nformation
ordering 1. Let {K, I T € T} be a set of sets of conterts. An information
ordering on { K, I f e T'} is defined as follows. Let K, : Krt : K(Tr) o,nd

K,:Kr>: K(Tr), andhencercr,Kre {K, l? e t}' We say thatK, aK,
iff the followi,ng conditi,on i,s satisfied:

L V K"eK,1I<,.'lç I{t 1 I{z

Hence, Definition 20 turns {rcr l ? e t} into an ordered set ({ K, I T € T}, <).
This is the set of rc-models of theories in 'lf, now equipped with the information
ordering (.

Given the ordered sets (t, <) and ({ K, lT € T}, (), we can now consider

whether the mapping,r : 1l ---+ P(n<), or rather rc : 1l ---l {lC, I ? e n}, is

order-preserving.

Proposition 6 Let (t, <) and ({rc, I T € T}, <) b" the set of theori,es, and

the set of rc-models of theories, respectiuely, both equi,pped wi,th the corresponding
i,nformation orderings. Let rc be the mapping fromT to {K, | 

" 
e t}. Let

Ty,T2 e T. Let K, - rcr\ : n(Tt) and Ç - lC,, -- K(Tr), and hence

K,,lç e {K, l" e n'}. We haue that if Tt <72 thenrc,.¿rc".

Note that although Proposition 6 seems complicated, it addresses an intuitively
simple and relevant question-if theories T1 and T2 ate such that Tt 172, is

the ordering preserved when we look at the theories semant'ically,\.e., when we

consider their corresponding rc-models K, and Ç.
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6.6 Soundness and completeness

Lef ?1,,=7[o; be a formal system with axioms D¿, cf., Section 5.1. Given such
a description set D¿we want to show that any sentence, i.e., any description in
the set D of all descriptions (possibly outside of D¿) is provable in the formal
systenr ?[u itl il, is valid in the rc-model of D¿.

Given a theory T¿ e T, the following procedureT allows us to find its rc-model,
denotecl K''.

Procedure 2 Let T¿ e n be a consistent theory, with the prouable formulae
gi,uen by (To*,T¿a), and the ariom formulae by (Ao*,A0"). To find, the rc-
model K¿ ol T¿ we proceed as follows.

1.G¿:{g¡lAeA¿@},

2. Gi : G¿t) {ø1¡},

3. I{¿' : (Gi, M¿, I¿),

4. K¿,0: {Iç},
5. for euerA formula F¡ e {F¡}¡:r,,...,n - Aoe

(a) for euery contert Kn,j_r,k € K¿,j_t

i,. for euerA object g¿ € G¿,j_t,k such that {g¿) Êe F¡
A. fi,nd Gt,j : {g e C I g > g¿and{g} F. { and g is <

-minimal), and G¡,¡: {G.r I ø * G^ Ç Gu¡}: {G¡}r,
B. fi,nd {Go,j-r,r,^}¡: {G¿,j-t,* \ {g,} U G.r I G.r € G¿,¡}, and,

{K 0,.¡ -t,*,^} ¡, the corresponding conterts,

C. replace {Kr,¡-t,o} ui,th {I{¿,¡-r,},,À}À,
(b) the resulti,ng set of conterts is K¿,¡

6. the resulting set of conterts is K¿.

Consider the following example.

Example 4 Let T¿ be such that Ao* : {{pr}} and A¿e : {{pr}, {pt,pz,ps},
{h,Fi,pf}} We haue the following.

1. G¿ : {g {e,}} ,

2. Gi: {9{o,},eg},

3. r<; : ({Q p,¡, I g), {n,Pt,Pz,Ø,Ps,pz,}, I¿),

4. K¿,0 : {r<;},

5. {F¡} ¡ : {{pr}, {pr, p", ps}, {h,Fr,Fl}},
TThe procedure is elaborated in Appendix A.
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. F'r : {Pr}
(a) for euery contert I{i,o,k e K¿,o

i,. for euerA object gt e G¿,o,t such that {gt} *u F¡

A. find Gt¡ : {g e C I g > g, and {g} Fu .Ç and g is <
-minimal), andG¿,j : {G^ I Ø # G>, Ç Gt,¡} : {Gr}.1,

B. find {Gu,o,r,.r}.r : {G¿,o,n \ {g,} U G.l I G.r e G¡,¡}, and,

{I(¿,g,r,.x}¡, the correspondi,ng conterts,

C. replace {I{o,o,r} with {I{¿,s,*,.r}.r,
(b) the resulting set of conterts is K¿,1

o F2: {h,Pz,Pz}
(a) for euerA contert l{i¡,t, e K¿,t

i,. for euery object gt € G¿J,t such that {gr} Wu F¡

A. find Gt,j : {s e e I s > g, and{g} Fu .Ç and s is <
-minimal), and G¿,j : {G^ I Ø # Gx Ç Gu¡} : {Grh,

B. fi,nd {Gn,r,r,,.r}¡ : {G¿J,t \ {g,} U G.i I G.r e G¿,¡}, and'

U{ ¡,r,n,x} x, the correspondi,ng conterts,

C. replace {I{0,t,*} with {I{¿,1,t,.r}.r,
(b) the resulti,ng set of conterts is K¿2

o Fs: {Pr,Pr,Pt)
(a) for euerA contert I{¿,2,k € K¿,2

i,. for euery object 9t e G¿,2,* such that {g} V" F¡

A. find Gt,j : {g e C I g > g¡ and{g} F" -Ç and s is <
-minimal), and Gt,j : {Gr I Ø I G¡ Ç Gu¡) : {Gr}.r,

B. fi,nd{G4r,t,x}s: {G¿,2,t \{g,}UG.i IG.l e G¡,¡}, and,

U{ ¿,r,n,x} x, the correspondi,ng conterts,

C. replace {I{0,r,*} with {I{¿,2,r,,¡}.r,
(b) the resulti,ng set of conterts is K¿,s

6. the resulti,ng set of conterts K¿,s is the n-model of T¿, i,.e., the model K¡
: n(T¿).

We can now formulate a proposition concerning soundness and completeness

of the logical formalism.

Proposition 7 Let D¡ e D and D e D. Let ?[" --7[o; be a formal system wi'th

arioms D¿. Let rcn =rcon be a n-model of D¿.

KolD iff UtD
Hence, theories are syntactic equivalents of rc-models.

In Chapter 7, agent-related considerations are carried out employing the-
ories, rather than models. Two comments are in place. Firstly, information
provided by agents has a form of description sets, and theories øre description
sets, and hence it seems appropriate to compute theories corresponding to
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description sets, and operate on them. Secondly however, if one wants to
consider lhe meani,ng of. theories, then rc-models of theories can be found.
The problem with such a semantic approach is that information obtained from
an agent might be partial to such an extent that no single partial context
corresponds to the theory of the agent, but a set of contexts should be found.
Dealing in Chapter' 7 mosl,ly with Lheories, we lirnit ourselves to syntactic
considerations, but we have the corresponding semantics at our disposal.



Chapter 7

Multiple agents

This chapter deals with a multiple agent case, employing the developed logical
framework.

Section 7.1 introdtces belieued theori,es resulting from sets of sentences, or
descri,pti,on seús provided by agents. The set of believed theories gives rise to a

lattice of theories. Then truth-ualues of descriptions and theories are considered

in Section 7.2. The question whether lattices of theories can be seen as FCA
concept lattices is addressed in Section 7.3. Then Section 7.4 proposes a numeric
rneasure on theories. In Section 7.5 we comment on preference and epistem'ic

states.

7.L Believed theories

Let 
^9 

be a set of. agents and let {D,}"." be a set of description sets provided by
the agents. Two agents might provide the same description set, and even if their
description sets differ they might produce the same theory. Let B be the set of
theories of the agents, or belieued theories-certainly, B ç T. Assume believed
theories are nonenxpty and consi,stent (agents are assumed to be consistent), so

Bn{0,L}:ø.
More precisely, let S be a set of agents, or sources of information. Then, there

is a mapping B from 
^9 

to the set of all consistent theories lf , i.e., þ, S ---+ 11, and

the mappingis given bV É(") : Cn(D'). Let B('S) :lB, so IB is aset of theories
that are actually belieued by some agents. It is natural to consider a related
equivalence relation NB on,S given by: s1 NB s2 iff B(s1) : þ(sz).Then we

get a set ,S - Sl xB of. =B-equivalence classes-an element of ,S is simply a

set of agents that believe in the same theory. It is hence appropriate to think
aboutamapping B:S -+ ts definedasfollows: if Se ^9andS: ["] )sthen
0(S) : B(s)-we simply take the sets of equivalent agents as the elements of
the domain. Let,9 : {5r,...,S"}. Then ts : {Br, ..., Bn},where Bi : P(Si).
It is the set lB this section is concerned with.

Furthermore, define C : CI¡,y(n), where A and V are operations already
defined-recall (n', A, V) of Section 5.4.

Figure 32 presents six examples for the case l/[ - {pt,m}, or P : {pr}.
Each example gives a set lB of believed theories and its closure C, and IB, C c 1f,

85



86 CHAPTER 7. MULTIPLE AGENTS

where 1l is a set of all consistent theories for the case of lPl : e: !, this set 1t

of theories is presented in Figures 29 and 30.

(u)

(d)

Vts Ats
Vm VB

AB

(b)

1 VB

(.)

(f)

1

Vß

0 Ats

VB 1

(.)

Figure 32. Some believed theories and their closures, lPl : 1

Clearly, it is interesting to see whether believed theories have a non-empty
meet, and whether they can be joined consistently. Hence, we define C+ :
C U {0, 1}, so forming C-. simply amounts to adding-unless they are already
there-a bottom 0 and a top element 1lo C-for every C e C. require 0 < C <
1. Certainly, C and Ca are latti,ces.

Proposition I Let ß be a set of beli,eued theori,es. Then C. and C,¡ ¿re lattices.

The possible cases of two believed theories and their closures are presented
in Figure 33.

1 11

0 0

AB AB

0 0 AB

(u) (b) (.) (d) (u)

Figure 33. Pairs of believed theories and their closures

(f)

o
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Figure 33 allows us to see whether believed theories have a nonempty inter-
section (meet), and whether or not they contradict each other (join at the top
element 1).

More interesting examples, with lPl : e. ) 1 are presented in Figure 34.

(u) (b) (.) (d)

Figure 34. Some believed theories and their closures, lPl > 1

The examples of Figure 34 are as follows. Let tso, . . . , ßd denote the sets of be-

lieved theories of the examples presented in Figure 34(a),..., 34(d), where Bo :
{Bo,t,,Bop,Bo,s}, with Ao,t : gen(Bo,1) : {O{pr, pr)), A¿,2 : gen(B",2) :
{@{pt, pz}}, A¿,s : gen(Bo,3) : {e{pr},@{ps,Pt}), ß6 : {86,L,Bb,2,Bu3},
with ,4'6,1 : gen(116,r) : {e{pr},e{pr}}, Ab,r: gen(Il6,r) : {e{pr},e{pr}},
Au¡ : gen(I16,3)
gen(.8",1) : {o{pr, pz} o {ø}}, A.,2: gen(B",2): {@{pr}, e{p¡}' @{pr,pã}}'
A.J: gen(Iì",3) : {O{pt,pe} O {pr}}, wo: {B¿,r,8d,,2,8¿,2}, with A¿,1 :
gen(Il¿,1) : {O{pl}}, Ad.,r: gen(-B¿,r) : {O{}o{pr,pg}}, A¿3: gen(-B¿,3) :
{O{pr,pn}}. For each of the examples, the top and bottom elements of the
Iattices are 1 and O, i.e., for each example the lattice C". is shown.

Given a set of believed theories lB, we thus usually consider its closure C,

and a lattice C-. that results from adding 1 and 0 to C. It is sometimes also

useful to consider a minimal subset of m that generates the same lattice C as B

itself does, i.e., ts- is a minimal subset of m such that Cl(m-) : Cl(m)-such a

set is denoted by B-. We certainly have that B- C B ç A- g C Ç C+, the only
guaranteed proper inclusion being C- C C1. The sets IB-,8,C-,C and C1 are

presented in Figure 35.

We finish the section with a more involved example, as presented in Table 7.

The lattice of theories of Table 7 is presented in Figure 36.

7.2 Conceptual worlds and bilattices

Given that C-. is a lattice, one might ask whether it is a concept lattice in the
sense defined by FCA. Consider the example of Figure 37.

In FCA, concepts are certain pairs (ertent, i,ntent), where a concept's extent
is a set of. objects, and its intent is a set of. attributes. Further, concepts are

ordered by a subconcept/superconcept relation {, and moving up in the lattice
of concepts makes the concept's extent (set of objects) bigger, and its intent
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]B

Figure 35. Believed theories lB and sets lB-, C, C+ and C-

1

C l1

Ct Cn

B1 Bs

C Cu

B

C-

c

\-+

CsC7

12

CaC¿

Crc

0

Figure 36. Lattice C-¡ of believed theories m of Table 7

(set of attributes) smaller. Given a lattice of theories like that of Figure 37,
moving up corresponds to expanding the set of theorems. Hence, theorems, or
descriptions/provable sentences should be taken as objects, to form extents of
theories (concepts). It is appropriâte to consider only those descriptions that are
axioms of some theories in C. In the labelled line diagram-¡see Figure 37 (b)-
we then place descriptions in such a way that they appear at or below the node
corresponding to the theory, €.9., in Figure 37 the theory .82 has the descriptions
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theory C e c* A - gent sentence, þ¿ x models

Bt @ þr

B2 {ote,,e, }. p, {4,;,t*4}
Bs 1 O p3 I

.ì
Lr'l,a,L,,U f

Ca: Bt A Bz O{r, }} p,v þ,
t-l
1\,x2,xqx4,x4x6 Ì

Cs=BtAfJt O þ,Y þ"

Ca: Bz A Bz O þrY þ"
-ì

2 1'1'r't'q1' 4'1,d1,7 |

Cz = EJIY Bz ) @ þ, Aþ, {n,'0"}
Cs -- fl1Y B3 1 o þ,4þ" i,,i" Ì
Cs = BzV Bz I O{e,,p.}, @{nrn". I I p,Apz {o*nn}

Cto =
BthBzABz

{e{}} ArV ÞrV B"
r_ ì
\tr,xzxsr4ztxexz Ì

Ctt =
BtY BzV Bz

{O
O

{
{

PrPz

Pz,Ps

Ì, o{o,,o.},
ÌÌ

O,AB,AB, {u, }

Cn: C+V Cs {e{o, }, e{r,}} VB VB {lr,t,r't*tu}
Cts = Cqv Ca O ,O (B,Y B") A(o,v o,

-ì
\,z,x11,a,xÊ r

Cu = Csv Co {e{o,}, o{r,}} þ,V þ" lA(p,VB") {t,trtntnir)
Crs: Cz ACa I Ø{p,, p, ) O (8, A Br',lv (p. AB" .ì

zrzrx\ I
Cß = Cz ÃCs O 1 I þ, Aþ' {t,trln}
Ctz:CzACs O , AB -ìl|lqto I

Cte:
CpY CßY Cp:
Crc ACrc ACrz

{e{o,}, o{o,},
e{o,}}

(B,v B,) A (ø, V ø,)
A(orv þ") :
(B,AB,)V(ø,4B,)
A(B,v B,)

{r,t",to4}

0 þ, v -þ, -l
xT'l'rxÞx 4,1' <,1 Èz?xe r

1 {et, et þ', A-þ,

Table 7. Believed theories its and closure Ca

Dz, Ds and Da, and they can be found by traversing the lattice "do\ryn" from
the theory's node. Finding concepts' intents is more complicated, but the idea

is simple-if you go up with theories, the set of descriptions gets bigger, but
"truthness" of the theories decreases, and hence we should take as concepts'

intents sets of "models" of the theories. We first look at Ginsberg's world-
based bilattices [Gin88], at the bilattice approach provides a method of finding
world-based truth-ualues and thus it might help us to decide about truthness of
theories.

Let the set of believed theories ts be seen as a set of worlds. We can use

the bilattice approach to associale truth-ualues with descriptions. The set of
truth-values f is given by I : 2(ß) x P(m) i.e., a truth value is a pair of sets

of worlds. A truth-valuation function I : D ---+ f is given bV p(D) : (Up,V¡t),
where Up is a set of worlds where D is true, and Vo where it is false' In
our case it is appropriate to define Uo andVn a's follows. Given D e D,Iet
To: Cn({A})-this is the smallest theory that contains D. Then,

Uo:{BneBlB,}To},
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(") I (á)

82 Dr

c3

0

Br Dz, Ds

(") (d,)

Da

4

t .)

a@
D

a@z)
D3

p(D3)

ù

Figure 37. Bilattice truth-values of descriptions

Vo:{BoetslB,VTo-1}.
Points to note no\¡¡ are the following two. Firstly, for any D e D, we have
that UpÀVp - l, because worlds are consistent. Secondly, for any D e D,
UolJVn Ç 11, and the containment is strict in all cases apart from D : O{}, as
D : e{} is the only description which entails-more precisely, O-entails-all
the formulae of .F).

Given the example of Figurc 37, the truth values for the descriptions are
presented in Table 8.

theory theory's axioms
axioms's truth-value
p(D) : (Un, Vo)

B1 Dt: ,Pz B1 B2
B2 Dz: O{pz}

Ds -- @{pt,Fl}
{Br}, {B
{Br]r, ø)

(

( 'Ì)
c3 D¿: O{pr} ({B', Br}, ø)

Table 8. Descriptions and their bilattice truth-values

Figure 37 (c) shows the bilattice-bascd truth valucs,l together with the bilat-
tice orderings ú (truth-ordering on truth-values) and k (information ordering). In
Figure 37 (d), the truth values are placed next to the corresponding descriptions.

Following the bilattice approach, \¡¡e can now consider truth and information
ordering on truth-values, corresponding bilattice meet and.join operations, and
discuss negation. After doing this, we then try to extend the method of finding
truth-values of descriptions to derive truth-values of theories.

lOnly some of the truth-values are shown, c.f., Figure 4



7.2. CONCEP'TUAL WORLDS AND BILATTICES 91

Let (U1,Vr),(Ur,Vr) € f. Then the truth ordering (¿ and the information
ordering (¡ on f are given by (Ur,Vr) <, (Ur,Vr) itr Ur Ç Uz and V1 ) V2

and (I!, V1) <k (U",Vr) itr Ur ç Uz and Vt Ç Vz. Further, the bilattice
operations A¿, V¿, Ar, Vr are given by (Ut,V) A, (Ur,Vr) : (UtlUz,Vlt-tV2),
(Ur,Vr)Vr([J",Vz) : (Ur u Uz,VtÀVz), (Ut,Vr) A*(Uz,Vz) : (ø n Uz,VtÀVz),
and (U1, Vr)vx(Ur,Vr) : (UtUUz,Vt¿Vz).The four distinguished elements 0¿,

Lt, 0k,1k of the bilattice are 0¿ : (ø, S), 1¿ : (^9, Ø), 0n : (ø, ø), and 1¡ : (S, 
^9).

Introducing a negation operator - is interesting. Firstly, we need to define

a negation operator on descriptions, -: D --+ D.

Definition 21 The negalion operator on descri,pti,ons -: D ---+ D i,s gi'uen by

-D:

We can now formulate the following proposition.

Propositiong LetT e 't be a cons'istenttheory and D € D be a description.
IÍT¿a{D,-D}: g thenTi¿ {D} is consi,stent. Thus, we also haue that if
T¿V To : L then T¿ ) -D.

An immediate consequence of the proposition is that \f Tia {D,-D}: ¿ then
fiU {D} is consistent.

The bilattice approach requires the negation operator on truth values to
satisfy --(U,V) : (V, U). Nothing goes wrong here-the two negations agree in
the following sense.

Proposition 1O Let'-: D ---+ D begi,uenby Defi,ni,tion21, andlet-: f ---+ f
be giuen by -(U,V): (V,U). Then -A(D): Q(-D), where p(D): (Uo,Vò.

Equipped with the negation operator, \¡/e can also relate locations of descrip-
tions in the lattice of theories to their locations in the bilattice of truth values.
This is shown in Figure 38.

-AIB AB

-VlB

eF if D:ØF
OF if D:OF

Figure 38. Sets of bilattice truth-values

VB
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Denote some subsets of the set f of truth values as follows. fr : {(U, y) 
I

U :ß,V : Ø),12 : {(U,V) lU I ø,V : ø},fe : {(U,V) lU * ø,V * ø},
14 : {(u,v) lu : Ø,v : B}, fs : {(4v) lu : Ø,v * ø},fu : {(u,y) I

U : Ø,V : ØI,lT: {(U,V) lU.V + Ø}, and fr : {(U, V) lU --V :ß},
Then, if AB > 0 then the truth value of every description in AIB is in the
(singleton) set f1. If VB < 1 Lhen [he [rulh value ol any clescriptiorr in Vm \ Am
is in the set 12 \f1. Negation reverses truth-values of descriptions in the sense
that the truth value of the negated description is the negated truth value, i.e.,
it is the truth-value one obtains by reflection w.r.t. the vertical axis of f-in
Figure 38 -Aß denotes the set of negations of the elements of nm. It is important
to note that we are more interested in the right-hand side of the bilattice, so it
is clearly undesirable to bother with elements of - A ts. Indeed, in our lattices
of theories, we consider the meet AIB of all the theories, but there is no point to
explicitly deal with negations of descriptions all agents accept.

Let us now try to find truth values of theories, or sets of descriptions, rather
than single descriptions. One can note that a single theory can contain several
descriptions with different truth values. If this happens, then one can separate
such descriptions by presenting a theory as a join of its two sub-theories (a small
version of such modified lattice is included in Figure 37 (d)). However, what
we need is truth-values on theories, rather than single descriptions. Modify the
truth valuation function p, so that it takes theories from C as its arguments,
p : C ----) f, and let it be given bV p(C) : (UC,76:), wher" UC is a set of
worlds where C is true, and Vg where it is false, and Uç and Vg are similar
to Up and Vp defined previously:

UC:{BoetslB,>C},

VC:{BnetslBovC:1}.
The resulting truth-values on theories are presented in Table 9.

theory in C.. theory's truth-value
B1 ({B'}' {Br}
B2 ({Br}, {s'})
c3 (|Bu Brl, ø
0 Bt, Bz ø

1 (Ø, 1B¡ Bzl

Table 9. Theories and their truth-values

Note that a theory is at most as true as its theorems (descriptions), and
at least as false as the descriptions are. The truth values of theories of C* are
presented in Table 9. Trivially, the empty theory 0 is true in every believed
theory, and false in none, and the reverse applies to L.

The problem however is that we must not be satisfied with truth-values of
theories so obtained. Indeed, if we associate a propositional symbol B¿ wíth
a statement "the theory (under consideration) is true in B¿" (í.e., it is below
.El¿), then we would e.g., associate a sentence hv þz with Cs. Propositional
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models over {B¿}¿ are functions from {0¿}¿ fo {true,false}, so j is a model if
j, {þu}n ---+ {true,false}, and let us use a convention that e.8., Jor denotes

a model which satisfies j(|r) : false and j(82) -- true. Then however, we

would Bet {r¡ , jto,, jot} as a set of models associated with Cs-but firstly, no

theory can be true in both Il1 and B2 (because they contradict each other),
so the model j11 needs to be excluded. Secondly, it is not obvious whether jss

should be excluded-maybe it is possible that both Elr and B2 are "false," but
Cs: B1 A 82 nevertheless is "true"?

We propose a different method of obtaining models for theories. The reason

that bilattice-based results are non-satisfactory is that world-based bilattices
treat worlds as indistinguishable (see [Gin88], Sections 4 and 7). Our worlds
(theories) are however structured, and in the process of deriving models for
theories we should make use of this structure. This is addressed in Section 7.3.

7.3 Concept lattices of theories

In Section 7.2 we suggested that given a set of believed theories B the corre-

sponding lattice C1 of theories could be seen as an FCA concept latti,ce. In this
section it will be shown how such a concept lattice can be obtained. It was

already said in Section 7.2 lhat descriptions would be employed as objects, to
find extents of concepts, and it was clear that truthness of theories, or their
models should be used to form concepts' intents (sets of attributes). Given that
nodes of the lattice C-r are theories, one would also expect that concepts would
simply be the theories of C*-this also provides some justification for calling
the worlds of Section 7.2 conceptual worlds. The results of Section 7.2 were not
however fully satisfactory. Although it was a step in the right direction, in this
section we refine our view on truthness and models of theories.

An attempt to present a lattice C.,, of theories as a concept lattice can be

seen as a new formulation for the old enquiry-given a theory in Ca, what is the
theory's i,nformati,onal ualue and its truthness? Hence, our search for attributes
is clearly aimed at finding models representing truthness of theories. It also

seems that presenting C-'. as a concept lattice would permit to use existing
software packages for displaying concept lattices to display lattices of theories.

This section is structured as follows. Firstly, we recall the example of
Section 7.2. Secondly, we show formally how to build a concept lattice of
theories, and address some related issues. Finally, we provide a more involved
example than the one we start with.

As was noted in Section 7.2, finding extents of concepts, or theories is

unproblematic, and precise details will soon be provided. Finding intents is more
complicated, but it will now be clarified. Consider the example of Section 7.2.

Figure 39 is a slight refinement of the top part of Figure 37, and recall that the
descriptions are given by Table 8.

As shown in Figure 39, we associate propositional symbols B1 and þz with
the believed theories El1 and -E12, respectively. So called B-models for theories
will simply be propositional models over the propositional symbols {B,}¿; for
instance, it should be read from Figure 39 that the set of B-models for 81 is
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Figure 39. Theories and ts-models

{iro}, while the set of models for Cs ir Uoo, jro}, where e.g., 71¡ is a propositional
model over {B1 ,þz}, and it is a ts-model for -81 but not for B2 Furthermore, an
additional attribute, denoted jø, is assigned to the empty theory 0, to ensure
that the concepts of 0 and Cs are distinct, We will now specify what the
intended meaning of the propositional symbol, {þo}o is, and how to obtain ß-
mod,els for theories.

Let E be a set of total theories, i.e., lE is a set of (-maximal elements of 1t.

We first propose how to find models for total theories, and then extend this to
all theories. Considering our example of Figure 39 (a), the theories.Ell, Bz, Cs
and 0 and their corresponding total theories, i.e., total theories above them, are
presented in Figure 40.

qgqgqg@Hggqgqgqg
I{a, I<s Ift I{7 I{121{1sI{141(151(s I<s 1116-ú(1Il¡ I{a I{2 I{s

E1 :lÐ1 \lE2 E2 E\(nt¡mz)
Ea Es E6 D7 E12E73E1aE1-o Es E¡86 E1 E2 Es

.9 a a a .oo.aaaaaaaa...a
B2

Bt

Cs

0

Figure 40. Total theories above Bt, Bz, C3 and 0

In Figure 40, IE is a set of all total theories (recall from Table 8 that P is
a two element set {p1 ,pz}), Et : {E+,Es,Ea,Ez,En,Eß,Eu,Iî15} is a set
of total theories above Il1, and Ez: {Ee,-Ee} are total theories above E2. If
there are two believed theories, there are in general four sets to consider, namely
Er \ lÐ2, Ez \ Er, IE1 l^ìì82 and E \ (At U nr), but in our example E1 t^ìtc2 is empty. (To
be more precise about the total theories of Figure 40, let gt,gz,g, and g+be
the objects of the contexts I{s.I{a.I{2 and,tf1. Then the contexts -úf6, ...,Krc
are all total contexts, where .tf¿ is a total context, with the subscript d being
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a binary code for the appropriate function from {gt,gz,g'ig4} to {0,1}. The

theories Eo,. . . , Erc are theories of the contexts I{o,. '. , Ifrr.)

concept
(theory)

concept's
extent

concept's
intent

B1 Dt, D+ {lto
B2 1 D2, Ds, Da]¡ jor Ì
Cz 1 Da {j.r, ior, ioo}
0 ø jrc, iot, ioo, iøl
1 {Dr, Dr, Dz, D+,, 01, O1 ø

Table L0. Theories as concepts

Let E € E be a total theory and .B¿ € IB be a beli,eued theory' We say that
E is possibly true al B¿ itr B¿ 3 -8, otherwise we say that E ís necessari,ly

false at Er¿-i.e., E is necessari,ly false at B¿ lfr Bi{ E. Lef now considet all
theories, including partial theories, let ? € 1l be an arbitrary consistent theory.

We say that ? is possibly true at B¿ iff there is a total theory .E e n such that
T < E and E is possibly true at Il¿. Similarly, we say that T is necessari,ly

false at, B¿ iff there is no .E € E such that T ( ,E and -E is possibly true al B¿.

This is equivalent to the following (simply by referring back to the case of total
theories)-T is possi,bly true at' B¿ iff there is .E e E such that ? ( -E and

B¿ 1 E. Similarly, T is necessarily false al Bi lfr there is no .E € E s.t. T < E
and, B¿ 1 E. LeI {þ¿}nbe a set of propositional symbols associated with {Bn}n
and let M p : {j t {þ¿} o ----+ {true, f alse}} be a set of propositional models over

{þo}n. Let T € 1l-then i e MB is a ts-model for ? iff

j(þn) :

Applying this definition of a model to the theories of the example of Fig-
ure 39 (a), we find the models of the theories as shown in Figure 39 (ó). Note

that Figure 40 gives all we need to find the models.

Collecting the descriptions (objects forming extents of the theories) and

models (attributes that give intents of the theories) ïve can see the theories

as concepts being (ertent, intent) pairs, see Table 10. This finishes our initial
example, and we now formally summarise how concept lattices of theories are

constructed.
Let C-. be a lattice of theories resulting from a set Its of believed theories.

We want to show that C1 is a concept latti,ce, i.e., that there is a formal contert
KC+ : (GC* ,MC*,1c*) such that L(Kc.) ã C+.

Consider objects first. Defins GC+ in two steps. Let Aç- : U6:eC- gen(C),

and then put Gç* : AC,_ U {O1,O1}. Hence, Gç* is a set of objects of the
desired context KC*, and it just collects those descriptions that are axioms for
at least some of the theories of Ca. The elements 01 and e1 are added to ensure

that the inconsistent theory 1, i.e., the top element of C1 will be a concept of
the contex¡ KC,+.

true if ? is possibly true at B¿,

false' if ? is necessarily false at B¿
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Consider now attri,butes. Defrns MC+ as follows. Let {p¡}¿ : {0t,. . . ,\nr}
be a set of propositional symbols associated with B : {Bt,...,Bnr}. Let
Mp : {j I j, {þ¿}¿ ---+ {true,false} is a total function}. Further, let .[f € K
be a context, and define Mffi : {j e MB | 7 is a tB-model f.or T* }. Then Mç*
is given by U e Mp llxrW Mffi > j)., plus i6, add,ed to ensure that the empty
theory0isaconcept.

To define 1ç*, consider two mappings, €" : C+ ---+ P(GC,') und {n, : Ca --+
P(Mc).The mapping €" is given by,

t"(C) : {A e Aç_ llene .a., An > A} 1

1GC,+

where A¡: gen(C¿). Regarding {r,let €r(C) be the set of ts-models for C,,
and hence we have that {n, (0) : Mç* and €r(L) : Ø.

Let now m € Mç* and g € GC*, and let Cn be the (unique) element of C1
such that gen(Cr) ) 9. We then define,

ifc
lfc

L if m€t,(C),Ic*(g,m): 0 otherwise

Thus, we have defined the contextr KC,+ : (GC* , MC*, /C*) corresponding to
the lattice C1 of theories.

To show that (c*, 3) = (L(l(c*), (), i.e., that the two lattices are iso-
morphic, it is sufficient to note that 1f Ci € C_,. is a theory, then Ci :
(€"(Co),€r(C )) is the corresponding concept of the context KC,+.

It should be noted that finding the set of all possible ln-models can be
non-trivial. In particular, regarding the model jo...o, i.e., the model which
demonstrates that it is possible that all the believed theories are wrong, \rye

can note that if AIB > 0 then Jo...o is a ts-model for some theories of C*-at least
for O-but otherwise, finding it can be more demanding.

Consider now another example.

Example 6 Let a setß of beli,eued theories bets: {Br,Br,,Bz,B+}, where
Bt : Cn(e{pr,pz}), Bz: Cn(e{pt,pz}), Bs : Cn(e{}) and Ba: Cn(
O{Pr, pz,ps}).

The lattice C1 resulting from lB of Example 5 is given in the left part of Figure 41,
and the figure demonstrates how the corresponding concept lattice can be found.

Given the concept lattice of theories shown in the right-hand side of Figure 41
it is possible to find a context for which the lattice is its concept lattice. The
context is presented in Table 11.

It would be interesting to further explore the ideas presented in this section,
and to implement appropriate algorithms in software. It is clear that, given a
set of believed theories, finding all total theories quickly becomes intractable,
but finding lB-models is much more feasible. Total theories and B-models are
examined again in Section 7.4, where numeric measures on theories are proposed.
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Figure 41. Forming a concept lattice of theories (Example 5)

e1
O1
O{Pr, Pz,Pz}
o{Pr,Ps}
@{Pt,Pz}
o{p'}
o{} X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Joooo -?ooro Jroro Jono Jrrro Jlrn

Table 11. Formal context of the concept lattice of theories (Example 5)

7.4 Towards numeric measure

In this section we show how to derive numeric nùeasures on theories.

Let B : {B¿}¿be a set of believed theories. Iet C : Cl(m) and C-. : CU{0,1}.
Let E be the set of all total theories, and let IE¿ : lE l lB¿ be the set of total
theories above Il¿. Note that IE¿ : {E : r(K) € E | ¡l e uoo(,El,)}, i.e., E¿

is a set of (total) theories of. total models of B¿. Associate with B¿ íts weight

@i e 10,1], and Iet ø : (ø¿)¿ denote all such weights. The weights can be seen

as values given by a weight functi,on ø: ß --) l0,Il,'ø(B¿) : -0.
A single ^El¿ 

gives its measure u¿ : E ---+ [0,1], determined as follows: if
Eo QIÐ¿ and E6 e W\ u¿ then u¿(8") lu¿(Ea) : -nl 0 - ø¿)-as a consequence

we get that if Eo,Eo, € E¿ then u¿(Eor): rn(Eo,), and \f. E6r,Eu, € E\nn
then u¡(Ebr) : ui(Ear). Further, we require !¿.6 u¿(E) :1.

Given {u¿}t, define v : E ---+ [0,1] as follows-if .E e P then z(E) :
(t/lml)Ds".m 

"¿(E) 
(but notice that z depends on ø).
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An obvious problem is that ¡z takes ø as its parameters, i.e., u : u@. Hence
the question-how can we determine weights \n ø, assuming that they are
not given? As suggested by Kyburg in [Kyb9 ], a marimum entropy pri,nciple
provides a solution-hence, we first recall the principle, and then formulate it
for the case of our theories.

Assuure bhal-givel a problern-the set of possible answers is E : {8"}0.
The marimum entropy pri,nci,ple says that given the problem, and the set of
possible answers to the problem, we should assign prior probabilities to the an-
swers in such a v/ay as to maximise entropy. Let rr: tE ----) [0, 1] be a probability
distribution on lE. Certainl¡ there are many probability distributions in the set

[0, 1]E of functions. Then entropy, or uncertainty of informatiorz, is given by,

D n(Eo)logzr(.Ei),
E¿eE

and the rnarimum entropy principle says that we should maximise entropy, i.e.,
we should select a probability distribution zr* that satisfies,

I zr.(,E,)loe f (En): (- D n(ø) logzr(.8,)).
E¿eE

max
7f

E¿eE

Considering the entropy principle as applied to our theories, we get the
following. If we are given a question "which total theory should be selected
as the correct one?" then IÐ : {Eo}o is the set of possible ans\ryers. Let
uss : E ---+ [0,1] be a probability distribution on tE. The point is that such
probability distributions must satisfy the restrictions imposed by the structure
of C-,.. Entropy is given by

D ,-(.E,)los uø(E¿),
E¿eE

and we should select a probability distribution uþ that maximises entropy.
Hence, the maximising ø*, but clearly, to obtain uþ we first determine @,*-
this accounts to maximising entropy orr @,

ryx(- D, r*(ø) logu6(E¿)),'w 
n'en'

and this gives ø*, which in turn determines z*.
It is clear how to extend u from JE to lf, i.e., how to find u:T -) [0,1]-if

? € T' then z(?) : DE>T ,(E), where E e w, i.e., E is a total theory.
Consirler now the example presented in Figure 42-this is the same example

as already presented in the preceding two sections, cf., Figure 37 with descrip-
tions given in Table 8.

We have IB : {Br, Br}, C: Cl(B) : {Bt, Bz,Cs,,1} and C+ : CU{0, 1} :
{Br, Br,Cz,O, L}. Regarding total theories, refer back to Figure 40 where both
total contexts and total theories are given-we have the following. The set of
all total theories is lE : IEo : {Eo, Et, Ez, Es, E+, Es, Eø, Ez, Ee, Es, Eß, EÍ,
E2,E1,EM,Eß]¡. The total theories above -81 and 82 are E1 : {En,
Es, Eø,Ez,En,Eß,Eu,Ercl¡, and E2 : {Es,Es}. Note that IE1 UIE2 :
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Figure 42. Towards numeric measure

{En,Eu,Ee,Ez,Es,EsrEn,Eß,Eu,Eß}, but E fì Cs : {E+,85.'86, 87,
Ee, Es,En,Et,ED,Eß,Ers,E1,sj' With n: {Br,82} associate wei'ghts

@r,@2 € [0,1], and let ø : (ø1,ø2).
We can associate with B : {Bt,B2} measur€s tt1,u2:E ---} [0,1]. Consider

the measure z1 first. Now, rz1(En) : n(Es) : ut(Ea) : u{Er) : ut(E.,) --
n(Eu): ut(E.,): ur(E.*), and

n(Eo) : ut(E) : n(Ez) -- ut(Ez) : n(Ea) : u{Es) - u7 (.Ero) :
uíE¡), and thus Q.8., ut(Ea)lu¡(Eo) : -tl\ - 6t)' We also have that
8 . a(Ea) I8 ' u1(Er) : 1. The last two equations give us the values of u1 on

Ea and, -Es, namely, w€ geI' u1(En) -- -tl8 and u1(.Eo) : (7 - ø1)18. This of
course gives us the measure u1 on all total theories.

Similarly, considering the case of u2, we have uz(Ea) : uz(Es) and u2(Eo) :
uz(Eù:uz(Ez): uz(Es)
uz(En) : uz(En) : uz(En) : uz(En) : uz(Eu) : uz(Erc). Hence,

u2(Es)lu2(Eo): -tl0 - -r) and2'uz(Es) +74'uz(Eo): 1' The resulting
measure u2takes the values uz(Ea):øzl(74-I2ø2) uz(Eo): (1- ø2)lQa-
t2ø2)-this gives u2: E ---+ [0, 1].

Given {rr,rr)0, define u : E' ---+ [0,1] as follows. If E e lE then u(E) :
T@r@) + u2(E)). It is easy to see that "(E) depends on whether or not
.E belo.rgs to 181,182. Given a two element set E : {Et,-82}, there are in
general four sets to consider, these sets partition E into sets of total theories

with the same measure, namely the sets 181 f.ì IÐ2, IE1 \ lDz, lu, \ n1 and E \ (81 U
pz). In our case, lrye have E1 ñ Ez - Ø and hence there is no .E € IÐr O IEz.

For the remaining three sets we have the following. If .E e mr : IEr \ IEz

then v(E) : L@t/S + (t - ø) I Q+ - t2ø2)), tf E € E2 : n2 \ u1 then
u(E)
u(E): å((t --ù18+ (1- ø2)ll7a-72ø2)). For instance, v(Ea): |(ql8+
(t - -r)/ (I4 - t2ø2)),, (E r) : å ((t - - ù I 8 + ø2 I $4 - t2ø2)) and v (E o) :
å (tt - -ù I 8+ (1 - ø2) I Qa - L2ø2)). Hence, we have a measure z : E ---+ [0, 1],

6utrecall lhatv stilldependson @,i.e.,wehave vçsiE --+ [0,1]. WecannoIM

apply the maximum entropy principle to determine the maximising probability
distributior ub. The entropy is given by,

t -uçs($) los uø(E¿),
E¿eEt, E¿eFz, .E; elD\(lDr uEz)

which is equal to,

Ds
Jot
Dz,
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-8'v(Ea)losv(Ea) - 2.u(Es) losz(.83) - 6.v(E.s) logz(,8¡),
and is a function of ø, namely

-8
-2
-6

à@rla + (1 - ø2)lQa- 72æ2)) 'tosl@118 + (1 - ø2)lQa- I2ø2))+
å((t - -) 18 + ø21 Q+ - I2ø2)) . tos ] (í - -ù lt * -r¡ çt+ - r2ø2))+
L(Q--') /8+(7-ø2) lQa-72ør)).tos å (Q-ø) l8+(I-ø2) I Q4-12:ø2))

This gives entropy as a functionof (ø1,ø2)-the function for (ø1,-") e [0.1,0.9]
x[0.1,0.9] is presented in Figure 43.

0.1 0.1

@2 @1

0.9 0.9

Figure 43. Entropy of. uss

The shape of the entropy function is determined by the restrictions imposed
by c+. There are usually other restrictions on (ø1, ø2) one might be willing
to impose, for instance, it seems reasonable to assume that an average weight
(confidence level, source's reliability, or trustworthiness) is above 0.b. Suppose
we decide to assume that (ø1 + ø2) l2 > 0.6-the horizontal line drawn in
Figure 43 selects the appropriate fragment of the domain. A more precise picture
on the entropy function is given in Figure 44

In Figure 44 the domain is taken to be [O.bb,0.6b] x [O.bb,0.6b], as the
entropy function takes its maximum there. In our example, the function-given
the accepted restriction on average weight-reaches maximum at ((ø1,-r) :
(0.585,0.615). Table 12 gives the values of rz* on total theories, and on theories
in Ca-recall that a measure of a theory is simple a sum of the measures of all
the total theories above the given theory.

total theory measure u. (E 
.

theory in C measure ,-(C)
Ea
Es
Eo

0.06564105
0.07238765
0.05501605

B1
B2
Cz

0.5251.2840
0.14477530
0.77993580

Table 12. Measure Lt* on theories

An obvious drawback of this method is that one needs to find all consistent
theories, and this is usually expensive. \Me now consider an alternative.
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Figure 44. Maximising entropy

Consider Figure 45-we continue with the same example.

E2 E\(mt¡nz)

.Joo

E1

Bz

Bt

Cs

0

Figure 45. lB-models above Bt, Bz, C3 and 0

Figure 45 presents the theories of C+ and their B-models, which "replace"
the total theories above the theories of C+-cf., Figure 40. It is evident that B-

models represent equivalence classes of total theories.2 In an exactly analogous

way as with z we now obtain a measure 4 on lB-models. We get rir(lro) : ørl(2-
ø1) and rnjo):Tr(/oo) : (1--)lQ--t). Similarly, qz(iot):øzl(2--r)
and q2(jn) : rtr(loo) : 0 - øùl(, - -r). Then T : (ry + qz)12 giving the
entropy as a function of ø,is presented in Figure 46.

The symmetry of q- w.r.t". ø is not surprising-Il1 and B2 of our example

have the same number of n-models. Because of the symmetry we get-assuming
the same restriction on the average weight-that the entropy function reaches

its maximum at ((øuøù: (0.6,0.6). Table 13 gives the values of 4* on total
theories, and on theories in C1.

2Recall that total theories can be mapped to total contexts, or total models, in a 1-1 onto

fashion.

1
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Figure 46. Entropy of Tø

lB-model measure q. (j) theory in C measure q. (c)
Jto
jot
joo

0.35774286
0.35774286
0.28577428

B1
B2
Cs

0.35714286
0.35774286
1.00000000

Table 13. Measure 4* on lB-models and theories

There are two comments in place. Firstly, the second measure 4 avoids the
difficulty of dealing with all consistent theories (although ln-models need to be
found)-this is important regarding implementability. But secondly, the two
measures would usually give different results-it is not obvious which measure
is the ri,ght one, and although it seems that total theories provide a good starting
point for measure related considerations, it invites to treat all total theories in a '

uniform manner, even though some total theories might be very different from
the believed theories of agents. Nevertheless, numeric measures seem interesting,
and it would be desirable to explore this possibility more extensively, and relate
the numeric ordering the measures imply to the partial ordering given by the
information ordering ( on theories.

7.5 Preference and epistemic states

Given a set ts of believed theories, the lattice Ca can be seen â,s an epistemi,c'
state. Further, the partial order ( and numeric measures of Section 7.4 can be
employed to derive a preference relation on theories.

Given the information ordering ( on theories, let 4k : { be a (-related
i,nformati,on orderi,ng preference relation on theories. A corresponding (-related
truthness preference relat'ion l, would be determined by a subset relation on
IB-models of theories, i.e., if C r, C z € C-. and the sets of B-models of C1, C 2 are
Jt, Jz respectively, then Cz 4t C r ifr Jz Ç ú,.
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Lel u be a numeric measure on theories. Then f¿ defined as C2atcr iff
u(Cr) < u(Ct) would be a z-related truthness preference relati,on. Further,
if z is a probability measure (numeric measure) on theories, then - log z is

usually considered to be an information measure-recall considerations of Sec-

tion 7.4-so, if. v(C) is a probability (numeric measure) of C, then - logv(C)
is its information measure. Hence, a z-related i,nformati,on preference relation,
denoted f¿ , would be defined as C1 lxCz iff - log v(Cù ( - log u(Cz).

Let <
represent the z-related preference relations f, and f* . The set of believed
theories ts can be seen as an epistemic state, given that the theories resulting
from description sets we obtain from the agents have already been found. Given
that lB determines the lattice C-., of theories, and that the preference relations
3 and f can be derived, it seems appropriate to see the triple (C+, 3 , f ) as

the epistemic state resulting from lE.

The preference relation f , although attractive and deserving further re-

search, can be perceived as problematic, so let us assume that the preference

relation we have at our disposal is 3 . Given { , we can decide which theory
or descriptions to prefer (recall however that <
theories might be non-comparable). It can also be noted that the preference

relation on theories allows us to consider simi,larity between theories, and the
related idea of sEstems of spheres. We omit details here, but some preliminary
discussions on these issues can be found in [NE94a, NE94b, Now96a, Now96b].
The idea of similarity spheres imposed on worlds comes from Mormann [Mor92],
where so called combinatori,al worlds he considers are standard FCA contexts.
In our case, similarity spheres would be imposed on theories of (partial) abstract
conterts. In Mormann's paper, similarity spheres are derived by employing so

called cri,ti,cal pai,rs of. attributes. The point now is that firstly, critical pairs can

be obtained from the preference relation on descriptions, and secondly, Mormann
assumes that the source we obtain critical pairs from is "total science," but we

are unwilling to accept such an assumption. We derive our critical pairs from
(our preference relation derived from) the information we get from the agents.

Additionally, critical pairs are preferences on O-valid formulae, and worlds are

modified by "suspending" such descriptions in an order specified by the critical
pairs. Given that descriptions include O-valid formulae and O-valid formulae,
be can also modify worlds by operating (suspending, adding) descriptions which
are @-valid (O-provable) formulae. More detailed exposition is left to future
research.

sGiven a preference relation on theories, one can introduce a preference relation on single

descriptions by associating descriptions with theories they imply, i.e., D would be associated
with Cn({D}).
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Chapter 8

Conclusron

In Section 8.1 a short summary is provided. Section 8.2 addresses further
research, namely it considers dynamic, rather than static worlds, and binary,

rather than unary, relations. Section 8.3 identifies references to related work

other than presented in Chapter 2.

8.1 Summary

This thesis provides a framework for reasoning about partial abstract contexts,

and applies the framework to deal with information provided by multiple agents.

The logical framework defines simple semantic structures-these are a vari-
ant of FCA contexts. A proof-theoretic part of the framework is provided. A set

of sentences valid in a context forms a set of axioms and, given a set Õ of simple

inference rules, the corresponding formal system gives a method of finding all
formulae which are guaranteed to be valid in the context. The analysis of the'

framework includes relating theories to contexts.

Given an agent, it is assumed that the agent communicates information
about a context by providing a set of sentences valid in the context. Such a set

of sentences is called a description set, and it is used as a set of axioms for the
corresponding formal system, to derive the theory induced by the description
set. The analysis of multiple agents provides methods for deriving preference

relations on theories. There is no doubt that the issue of preference is crucial
in common sense reasoning, where information can be partial, contradictory
and uncertain. The approach taken in this work is standard, in the sense that
preference relations ope.ate on theories, and hence, on consistent (and closed'

under O) sets of sentences. Semantically, contexts, or worlds, are standard in
the same sense. Deriving a preference relation thus permits selecting best, or

most preferred theories, or (sets of) worlds.

Although the thesis is self-contained, and complete in the sense that it both
provides the logical framework and specifies how most preferred theories can be

selected, there are many issues that were not addressed in this work. Comments

on future research and some related work form Sections 8'2 and 8.3.

a
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106 CHAPTER 8. CONCLUSION

8.2 Future work
There are many issues that deserve a more detailed examination. In this section
we consider including time into the framework, and extending from attributes
(unary relations) to binary relations; additionally, we remark on implementing
the fi'arnework. Sottte <.¡l,ltet'r'elated research issues are listed in Section 8.3.

8.2.1 Dynamic worlds
In our search for preferred theories, the contexts (worlds) the theories describe
are static-time is not involved, so worlds do not change. As a result, if two
theories contradict one another then the theories describe two different contexts,
rather then describing the same context that has changed. Recall that if a pref-
erence relation on theories is derived, then it captures informational value and
truthness of the theories. As theories come from agents, the preference relation
permits evaluating informational value and the trustworthi,ness of. agents. If
worlds are dynam'ic, then the informational value and trustworthiness changes
with time. [Then, if a given agent provides contradictory information at different
time points, there are two possibilities-either the world has changed, or the
agent has moved (in the believed world; this covers the case of revising beliefs).
Keeping track of the agent's performance, and observing how the most preferred
world changes, one has to decide whether the agent's trustworthiness (level of
performance) persists, or the world itself persists.]

Presenting partial theories of dynamic worlds is similar to presenting multiple
theories of static worlds but this time, the theories describe temporal snapshots
of a single, dynamic world, rather than multiple, temporally unrelated worlds.
Hence, most of the results carry over to the dynamic world case, and all that is
needed is to temporally order the information obtained about the world.

Let a6 be a discrete, linear, unbounded in both directions ordered set of time
points, i.e., os is isomorphic to the set of integers. Then c¿ is a time i,nterual if
it is a convex subset of as, and so a time interval o¿ is a sequence of consecutive
time points, ei : {to ,t; * 1, . . .,t{} with the inherited ordering, and ú,¿ and
tf, are the endpoints of a¿.

A dynamic world can be seen as a sequence (wr)r, where ú is a time moment
andW¡ is the world at time ú, or as a sequence (W,)o, where o is a (maximal)
time interval at which the world undergoes no change the set of intervals is
a temporally ordered sequence of meeting intervals. Then, validity is defined
as follows. We say that g holds at ú¿ in the dynamic world (Wr)r, denoted
(Wr), F p@ú¿, just in case when Wro I p. Employing intervals, rp holds at
a¿ (i.e., in every time point of the interval o¿) in the dynamic world (wo)o,
denoted (W")" F p @ a¿, just in case when W,o I g.

Therefore, description sets of dynamic worlds consists of formulae of the
foliowing form: ç@t, g@o, ,@¿ and D@o, where I is a time point, a is
a time interval, and ç@a: {p@¿ lt e a}, D@¿ : {ç@¿ I p Ç D}, and

this also covers the case of single formulae (with a singleton set D) and single
time points (with a singleton interval o).
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Let a set {D¿ @ o¿}¿ describe a (single) dynamic world. Then a theory of
the dynamic world is formed as follows. Firstly, for every D¿ we compute

the corresponding theory A¿ : Cn(D¿), and hence we obtain {An @ a¡}¿ --
{Cn(Da) @ a¿}¿. Secondly, so far there are no restrictions on the intervals {on}l,
in particular they can overlap-but if a1 and o2 overlap and in the dynamic
world the formulae A1@ a1 and A2@ a2 are valid in the world, then so is the

formulal A, V Ar@ c1 ñ o2-therefore, it is desirable to find intersections of
intervals and consider a sequence of meeting intervals.

Let {rr¿}¿ be a set of intervals. Then {o}n: {{t0,...,t|)}r, where ú¿ and

tf, areendpoints of the interval a¿. Let {b¡}¡:tJ¿{tn ,tf,},i'e', {ó¡}¡ collects all
the endpoints of the intervals {o¿}¿. As {br}¡ is asubset of alinearlyordered set

o¡, so it can itself be linearly ordered-let (ó¡)¡ be such an ordered sequence of
time points. The sequence (ó¡)¡ determines the sequence2 of meeting intervals,

(þ¡)¡ : ({b¡,...,b¡*r))¡. It is the intervals i" (þ¡)¡ that interest us, and all

that remains to be done is to find theories that hold at those intervals. Given

that a 0¡ is an intersection of some intervals from {o¿}¿, i.e., þj: lì¡,4¿, the
theory that holds at B¡ is a join of the theories that hold at the intervals {*o}u.
Summarising, if a description set of a dynamic world contains {Ar @ a¿}¡ and

þ¡ : ìnc¡ then the dynamic theory (logical consequences of the description
set) of the world contains the formula 83 @ þ¡ : V r A¡@ l¡ a¡.

Consider an example,3 where a description set consists of formulae of the
form D@o-suppose that the description set is {D1@ar, '..,Ds@as}' Firstly,
we compute logical consequences A1 : Cn(Dr) ,. . ., A5 : Cn(Ds) of the de-

scriptions Dt,...,D6, so we obtain {At @ (tt¡...,Á¡@o5}. The bottom half of
Figure 47 shows the intervals o1, . ..,Q5 and the theories At,'.., Au (the theories

At,...,A5 arê marked with the filled circles). The endpoints of Qr, "',d5
determine a sequence of temporally ordered meeting intervals 0r, " ', Bs, a'nd

the joins of the appropriate theories from {41, ...,Au} determine the theories

Bt,. .. , -B5 that hold at the intervals ,6r, . . . , þs' The intervals p1,. . ', B5 and
the theories 81, ...,8s are presented in the upper half of Figure 47. [The
thick links between nodes (theories) in the rightmost lattice of the upper half
of Figure 47 shows how the dynamic theory of the world evolves through the

temporal sequence of meeting intervals.]
Some comments are now in place. Firstly, when a dynamic world is con-

sidered, theories holding at meeting intervals describe snapshots of the world.
Given several sources of information, and multiple temporal descriptions of the
sources' dynamic worlds, multiple dynamic theories result-this would require

combining the results of this section with the results of Chapter 7.

Secondly, temporal information is not always precise [BCT95]. When prec'i,se

absolute ti,mes are used as time stamps, then validity intervals have precise

endpoints on the timeline. Impreci,se absolute ti,mes are used to express that

{tr, . .. , ú2} is the validity interval, but the timepoints ú1 and t2 aÍe only known to

LAlV A2 is a join of the theories A1 and 42, while a1f)a2 is an intersection of the (convex)

intervals a1 a\d a2.
2Of course, the number of meeting intervals is smaller by one than the number of endpoints.
3To instantiate the example, assume that the description sets and theories involved in the

current example are those of Figure 3a(d) of Section 7.1'

t07



108 CHAPTER 8. CONCLUSION
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Figure 47. Finding a theory of a dynamic world

belong to some specified intervals. Finally, some algebras have been proposed to
deal with qualitati,ue times, e.g., Allen's interval algebra [All83]. The presented
framework can be applied in all cases, including the case of only qualitative
information about the validity intervals; for instance, the dynamic theory pre-
sented in Figure 47 can be obtained from purely qualitative information about
the relationships between the intervals, namely, to obtain the dynamic theory
of Figure 47 it suffices to know that a3 ends a2, cv2 ends et, (rJ starts (r4, e5
ends o4 and a3 precedes o5.

Thirdly, information might be not only temporally incomplete, but some
rlata might be missing. For instance, in [TCG+93] partial temporal elements are
introduced to represent the fact that at some time intervals validity of a formula
is not known. Given a formula ç, a partíal temporal element for g is a pair
(l,u), where I Ç u and it is known that ç holds at I but does not hold outside of
u, i.e., the validity of g in z \ / is unknown. In our framework, we would have a
theory Cn({-rp}) valid outside of u, a theory C"({e}) valid at l, and an empty
theory at u\/ where the theory drops in the information hierarchy because of the
missing data. It seems that the best method to reflect the fact that some data
is missing is to employ partial theories ordered by their information contents.
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8.2.2 Binary relations
It is clear that if only properti,es of objects are considered, then the correspond-

ing language is less expressive than a language that permits representation of

relations between objects. Consider Figure 48.
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Figure 48. From properties to binary relations

Let Figure a8 @) represent O- and O-formulae of the description set D" of
Example 3. Let Figure 43 (b) represent the resulting generator A, of the theory

obtained from D,. Hence, formulae presented on the left hand side of the figure

(@-formulae) can be identified with abstract objects, but the right hand side of

the figure shows those objects which are "prohibited." Suppose now that all we

know about the world forms Figure 43 (c)-there is an object that has p1 and

is in a relation 11 to an object (possibly the same object) that has p2, but we

also know that 11 must not go in the opposite direction, because, as the right
hand side of the figure shows, there must be no object with p2 being in relation
11 to an object with p1.

It should be noted that in the binary relation case-cf. Figure 48 (c)-the
O- and O-descriptions are collections of graphs (collections of sets of points with
attribute links, but also with binary links between some of the points). This is
different to the unary relation case, where the descriptions are single, separated

points, with attribute links, but with no links between the points.

The resulting difficulty is that in the binary relation case, descriptions would

not correspond to objects, or specify those objects that are present in the

context, but would need to be partial descriptions of the graphs, and hence

collections of objects could be involved in a single description. In the binary
relation case, it is not difÊcult to give (essentially syntactic) world descriptions

in terms of collections of graphs, but providing partial, language formulated
descriptions that approximate graph-expressed descriptions is troublesome. It
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seems that a solution might require making provisional assumptions (guesses),
that the objects we talk about are those that have been talked about most
recently, unless a proliferation of graphs is allowed. These issues require more
detailed analysis that can be offered here.

[Figure 48 invites some further comments-these are left for Section 8.3.1

8.2.3 Implementation
Although the framework of conceptual reasoning (CR), as presented in this thesis
was developed with an implementation in mind, implementation efforts were not
seen as a significant aspect of the performed research. It was understood that
formal analysis of appropriate mathematical structures was more important
than software engineering efforts.

Nevertheless, a skeleton implementation in a scripting language Tcl/Tk has
been attempted, with a graphical user interface, as shown in Figure 49, and
some functions for performing desired operations implemented in C, under the
Unix operating system (given the interface, to perform a desired function one
needs to click on the corresponding button, as the buttons'labels indicate).
This initial Tcl/Tk implementation was also ported to Java, to allow access via
internet-porting from Tcl/Tk to Java is a trivial programming exercise.

The aim of this section is not to report on an implemented system, as this was
not intended, but rather demonstrate our interest in an eventual implementation
and suggest what one might expect from it.

The implementation of CR is named úrcora"-see Figure 49. The top level
window contains (apart from the 'info and qui,t bútons) a button labelled Il¿,
and a button labelled B¡; the buttons are used two invoke two other windows,
a ,El¿ window (ascii-titled BB), and a ìB¡ window (ascii-titled BBB).

The B¿ window is used to perform operations on a single description set,
more precisely, given a description set D¿ (provided by an agent, or source
of information) the corresponding theory T¿ : Cn(D¿), the generator A¿ :
gen(fi), and the model K¿ : rc(T¿), as investigated in Chapters 4-6, can be
computed. The top-row buttons D¿, A¿, T¿, K¿ of the window -B¿ invoke the
functions of reading a description set (from a file), computing the generator,
the theory, and the model, respectively. The second row buttons allow to
open editors with the corresponding files. The third row buttons are used to
graphically display the corresponding sets of (provable) formulae/theorems-
cf. Figure 21 of Section 5.1 (when magnified, the icons employed in B¿ actually
show O- and O-provable formulae of the description set, generator and theory of
Example 3, displayed in Figure 21, Section 5.1). The bottom row buttons allow
to visualise O- and O-provable formulae as "objects" and ,,counter-objects',-

cf. Figure 48 of Section 8.2.2.
For instance, when employing Example 3 of Section b.1, clicking on the

buttons labelled D¿, A¿, andT¿, would result in computing (lines of output are
shown) the following sets:

{+{p1} , -{p1 , p2 , p3} , -{p1 , p2 , -p3}} ,

{+{p1, -p2}, +{p1}, +{-p2}, +{}, -{p1, p2}, -{p 1, p2, p3}, -{p1, p2, -p3}},
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Figure 49. Cora, a Tcl/Tk implementation of CR

{+{p1,-p2}, -{p1,p2}},

respectively.
The B¡ window is used to perform operations on multiple description sets.

More precisely, given a set D¡ : {D¿,¡}¡ of description sets (provided by mul-
tiple agents) the corresponding set .A¡ : {gen(Cn(D¿,¡))}¡ of generators of the
resulting theories can be computed. [Assume that in the multiple agents case

we limit ourselves to generators of theories.] Given the set A¡, its closure under
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A and V, i.e., the set C¡ : Cl(n¡) of theories can be computed. The button
labelled ( invokes the function of computing the ordering relation on elements
of the set C¡, and (when implemented) to show the lattice structure of (a¡, <)
(the task of drawing lattices is expected to be laborious). Such activities are
theoretically investigated in Chapter 7.

Summarising, this section sketches how the base version of the system can be
structured. However, the issues of temporal reasoning (about dynamic worlds)
and binary relations are left aside, as implementing them must be preceded by
further theoretical investigations.

8.3 Related research

This section points to some research issues considered to be beyond the scope
of the thesis.

Firstly, the issue of language is a difficult one-c.f. [Qui60]. our language-
related considerations were simple, but sufficient for our purposes. Language is a
social activity, and there needs to be a society for the language to be developed.
A' language consensus can be seen as a generally accepted agreement on how
to associate words (labels, attributes) with objects. A formal FCA context
can be employed to do exactly this-associate objects with attributes. Such
contexts were employed by Mormann in his [Mor92], to propose a structural
similarity relation between them. It is interesting to note that Mormann calls
them combi,natori,al worlds, as they are combinations of objects (individuals,
particulars) with attributes (properties, universals). This suggesls realism as
the ontological framework-c.f., [Arm89]-the framework that requires not only
particulars (objects) but also universals (properties, relations) to exist. It seems
that we take a less demanding approach-we ignore the issue whether or not
universals exist (and what they are), as all we need are objects and words
to name them-this standpoint is much closer to Quine (and nominalism)
than to Armstrong (and realism). Furthermore, \.rye employ abstract objects
to represent classes of indiscernible objects, with a consequence that different
physical objects can be represented by the same abstract object-hence, if
two agents share an abstract object, it does not mean their worlds (of less
abstract, or more specialised objects) overlap. Clearly, our understanding of
abstract objects agrees with the usual one-abstract objects might lack space-
time location, [Hal87].

Furthermore, our abstract contexts permit the representation of partial ob-
jects, and such non-standard objects as fictional, futurc and nonexistent objects.
There is no doubt that existence assumptions limit representational capabilities
of knowledge representation frameworks-cf., [Hir91]-hence it is important to
avoid imposing unnecessary ontological restrictions (while at the same time
keeping the set of objects of interest small, by employing partial objects).
There is no consensus on whether eristence is a property [Hir91, Dju96], and
how to deal with nonexistent objects [ParS0]-but as it is easy to talk about
them in natural language, so it seems that a knowledge representation formal-
ism should also have such capabilities. This suggests an intensi,onal-rather
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than extensional-approach. The idea of employing Meinong's theory of ob-

jects [Mei60], and other related issues are mentioned in [Now9a]. Meinongian se-

mantics is proposed in [Rap85] and employed to provide semantics for the SNePS

formalism [SRS7]. However, revising beliefs in SNePS is not satisfactory-the
user intervention is required to deal with contradictions ISRST].

Referring to Figure 48 of Section 8.2, the figure not only connects our

approach to the SNePS formalism, but also to termi,nological reasoning, anò

more precisely to lhe hybrid representation formal'ism, see [Neb90]-indeed,
the left and right hand sides of Figure 48 (c) resemble A-Box and T-Box
of the hybrid terminological framework. However, terminological logics, now

called descri,ption logics, have an extensional semantics, and hence do not seem

appropriate to deal wilh partiøl objects.

Consider multiple agents, and hence multiple theories. Given a set of theories

it is natural to look at their meets and joins-this is for instance done by Levi

in [Lev91], but his exposition is not a detailed one. (Note that his notation
is different, as he is primarily concerned with truth rather than informati,onal
ualue-hence, f. is the top element of the lattice, it is judged error-free, and

represents a maximum ignorance state. However, Levi assumes that 1 is a
consequence of all other "potential states" and hence does not need to be empty
and corresponds to our ¡\ IB, rather than 0. Subsequently, his O-strongest
potential state that has every other state as a consequence-corresponds to our

inconsistent theory 1.)

Ordered sets of theories connect to Ginsberg's world-based bilattices, as

discussed in Section 7.2. It is interesting to note that Popper's ueri,simili'tude

is closely related to world-based bilattice truth-values-for precise definitions
of verisimilitude, and a related discussion, see Mortensen's [Mor83]. Mortensen

also comments on a connection between the theory of verisimilitude and Lewis's

theory of counterfactuals [Lew73] and a measure of simi,larity on worlds. There

is a question whether Popper's definition can be used to define Lewis's similarity
measure. Note that we have attempted to employ the bilattice approach to
address the issue of. truthness of theories, but then introduced lB-models in

Section 7.3. Employíng systems of spheres is suggested in Section 7.5, but is seen

as a step towards modifying epistemic states, rather than evaluating theories'

nearness to the truth. Much more work is needed to clarify these issues.

Regarding the mathematical tools employed in the thesis, there is a place

for improvement, too. For instance, lattices were mainly used, but in several

cases a top element was added to the structure to make it a lattice-some
alternatives are provided in Scott [Sco82]. Related mathematical structures

include intersection structures, domains and i,nformati,on systems, all thoroughly
discussed in lDP90].

The logical framework itself also deserves more attention. It is claimed that
the logic is exactly what was needed-for instance, negat'ion is not introduced
until Section 7.2, where bilattices are introduced, but then it is shown there

that, given a nonempty A B, it is better to ignore negations of the elements of

¡\ m. Clearly, our logic is multi-valued-recall two notions of validity, namely @-

and O-validity. It should be noted that multi-value logics were recommended

by Belnap in [Bel77, Bel76] as appropriate for reasoning by computers. An
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interesting exposition of multi-valued logics is given in [UrqS6] . Parti,al logi,cs
are in turn treated in detail in [Bla86]. Partial i,nformati,on states are important
from our perspective-a good survey is provided in [Doh91].

Regarding epistemological standpoint, and relating to AGM betief reui,si,on
framework |AGM85] and truth-ma'intenance systems [Doy7g], neither pure co-
herence theory, nor foundations theory is accepted. Theories and contexts cor-
respond to consistent epistemic states, but multiple of these are employed, and
hence contradictions are not simply removed. Although we derive a preference
relation, no information is treated as an absolutely certain, and hence there are
no foundational beliefs. It should be noted that an epi,stemic entrenchment
relation [GM8s] moves AGM beyond pure coherence-c.f., Doyle's [Doy92].
Regarding systems of spheres mentioned in Section 7.5, the idea has been applied
to AGM-see e.g., [Gro88, Spo88].

Finally, the issue of preference is an interesting one, see e.g., [Sho88] which is
an attempt to unify nonmonotonic formalisms employing the notions of prefer-
ence and rational decision making. However, as it is pointed out in [DW8g],
Arrow's result about the impossibility of universal social choice rules is an
impediment to such a unification. It seems that preference causes no trouble
in this work, but more detailed investigations seem desired. There also is a
significant amount of work on preference structures-see [RV85] for a survey.

The above is a non-exhaustive list of related research issues that could result
in improving the work presented here. However, it seems that even in its current
shape, the work provides a perspective on how one can deal with partial and
contradictory information coming from multiple agents.



Appendix A

Proofs

Proposition 2 Let 1s be such that Vnçç g 1 Tc.Then (G u {t"}, () is a
lattice.

Proof To show that GU {1ç} is a lattice define two algebraic operations A, V:
Gu{1c} x GU{t"} ---+ GU{1c}. Let Fr,Fz€.F and let:

9rt A 9Fr: gFrnqz

grrY 9P" --

9r, Al.: 9p,

grrY 1. :1.

Then (GU{t"}, A, V) is a lattice, because A and V are inf and sup, respectively.

Indeed, g n, A g F" : inf{ga , g pr) (because F1 ì, F2: inf (Fr, Fz), w.r.t. Ç) and

grrYgFr:sup{grr,gpr} (becauseif .F1 U F2e F thenFrl)F2: sup(Fl,F2),
in 4 w.r.t. C, else the element 16 is employed). Obviously, 7pr: inf{gp,,
16) and lc : sup{ 9 p,, 7c} , because g pt I 1" (by the definition of 1ç). Hence,

(G u {t"}, () is a lattice. I

Proposition 3 Let s be an agent, and G, be a set of believed objects of the
agent. Let G" be a set of corresponding abstract objects. Let Dç" and D6, be

descriptions of the world of s in the language IL, as implied by the sets G, and

G", respectively. Then DG": DG".

Proof Given a fixed M, let -F be the set of corresponding formulae and let
Ã| be the set of regions-recall that e: .F ---+ .R. All we need to do is to visit
every region and check whether or not it is empty-while visiting the region

we mark the corresponding formula. Let a : lPl. For every L -- Q,. .', 0 the
set -F(') C ,F is the set of formulae of cardinality l. The following procedure

generates the corresponding description sets D6 and Dç,, while also producing
the set of corresponding abstract objects G".

VFNFz if 'Fl U F2 e F
1c otherwise

115
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1. None of the formulae in 11 is marked (none of the regions has been visited).

2. Set D8, : D8" : ø, DA" : D8, : Ø, G,: Ø.

3. For every L: (r. downto 0, perform (r,):

(r) For every un-marked F e FØ, consider e (F) and perform at most one of
the two cases:

o It is known that e(F') 16. Perform (ø6 d6):

(o*) Add Of. to D$".
(ö*) Add oF' to DS".
("*) Add 9" to G".
(d*) For every f'1 that satisfies f'1 <

(d"*) Add Otr.1 to D$".
(db*) Add OFl to DS".
(d"*) Mark F1.

o It is known that e(F) : g. Perform (as-bs):

(ou) Add eF to D$".
(öu) Add e,F to Dfl".

The procedure generates Dç, and Dç,. Evidently, Dc" : DG".

Proposition 4 Let 1l be the set of all consistent theories equipped with the
information ordering relation (. Extend the ordered set T'by adding an addi-
tional element denoted 1-and extending the ordering relation by requesting
that for all ? e t it holds that ? ( 1. Then (nu {f}, <) is a latti,ce.

Proof Let 11, :1lU {1}. Define two algebraic operations A, V: 1t, x T, ---+ T'
Let T1,Tz e T' and let:

Tr AT2: TvlT2,

T1v T2 -
Cn(?1 u f z) if ?1 U T2 is consistent,
L otherw,ise,

?1 A 1 :Tr,

T1 V1:1.
Then (n'r,n,V) is a lattice, because A and V are inf and sup, respectively.
Indeed, Tt ATz: inf{?1,?2} (because the ordering relation ( is simply
a set-theoretic subset relation C, and TrlT2: inf{?r,T.2} w.r.t Ç) and
Trv T2: sup{71, ?2} (because if ?1 Y Tz - Cn(?1 ¿f ù € T then Trv T2 -
Cn(?1 U f ù : sup(?r ,72), in I w.r.t. C, else the element 1 is employed).
Obviously, Tt : inf{?1,1} and 1 : sup{Tt,L}, because ?1 < 1 (by the
definition of 1). Hence, (u'r, S) is a lattice. r



177

Proposition 5 Let (n<, <) and (t', <) be the sets of contexts and theories

equipped with the corresponding information orderings, and let r be the map-
ping from K to T. Let I{1,1{z e K and let ?1 : r(I{t),Tz: t(I<z) € T. We

have that if I<1 1 I{z then ?i 1 Tz.

Proof Let G1, Gzbe the sets of objects of I{1,1{2. Let I{t 1 I{z and let

O,F e ?1. Then, there is F1 f f'such that gr, € Gr. By Definition 13, there

is gp, €Gz such that gpz2 gr,-thus, Fz) Fr) F, and OF QTz.
Similarly, Let O,F' e Tr Then, ge I G1, and there is no object below go

and in Gr. By Definition 13 the same applies to G2-hence, eF eT2' I

Proposition 6 Let (r" <) and ({ rc, I r e T}, <) be the set of theories, and the
set of rc-models of theories, respectively, both equipped with the corresponding

information orderings. Let n be the mapping from T to { K' | ? e t}' Let
71,72 € T. Let K, - rcr\ : rc(Tt) and Ç - rcn : n(Tz), and hence

K,,1Ç e {K, l" e t}. We have that if ?r < T2lhenrc, <rc,.

Proof LeL K, -- {I(n}n and D3 - T2 \ ?t. In an attempt to derive a

contradiction, suppose that Tt 1T2b:ut K, I Kr, í.e., there is .tfs € K' such

that for every I{¿ e K, *. have that I{¿ I I{0.
Consider the following. Given I{¿ e K' Iet I{i be a minimal context above

-[f¿ such that the descriptions in D3 are valid \n I{i. Then {¡fi I I{¡ e rc,} I
K" ) I{0. Thus, there is fl¿ e K, say -t(1, such that fll - I{s' However,

Ki>.Í11, so we have that .Ífo ) I{t. Hence, there is a context I<i € rc,-
namely, ,[f1-such lhat I{¿ 1 I{0. Contradiction. I

PropositionT Let D¿ € D and D e D. Lef ?1,:7[o; be a formal system

with axioms D¿. Let K,:l(,o; be a rc-model of D¿.

rc,=D itr utD
Proof
Soundness. Suppose 

"t" 
I D. We want to show fhat Ku 

= 
D. It is sufficient

to notice that the syntactic proof of D in 4 can be carried out semantically-
because semantic equivalents of Õ preserve validity-in every context of Kn.

Hence, D is valid in every context of Ko, and so it it valid in Kn.K, i.e..' Ko I D.
Completeness (sketch). Suppose rc, 

= 
D. We want to show fhat' ?Lo I D-

Notice that Ku : n(D¿) : rc(Cn(Dn)) : n(fù Hence, given fr, generate

the rc-modeI n(T¿) of fr using Procedure 2. Firstly, formulae valid in rc(T¿)

so obtained are provable in ?L,-by tracing the procedure one can see that the

obtained contexts do not jointly violate the syntactic system ?f,0. Secondly, D
is valid in n(T¿)-because n(T¿) : n(D¡). Hence, D is provable in TLn, i.e.,

UlD. r

Proposition 8 Let ts be a set of believed theories. Then C and C-r are lattices.
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Proof Given a set ts of believed theories, let M be the appropriate set of
attributes. Further, let 1t be the set of all consistent theories (over M), and
recall that (q,A,V) is a lattice, where L : nU {1}. Certainly, C and Ca are
subsets of 'tq, and they are closed under A and V-hence, they are sub-lattices
of (T, A, V), and so lattices. r

Proposition I LeIT € llbeaconsistent theory andD € D beadescription.
rf Tia{D,--D}: p then riu{D} is consistent. Thus, we also have that if
T¿V Tp: 1 then T¿ ) -D.

Proof Let rc(T) - rc, be the rc-model of T. There is a context Ko e K,
such that I< " = 

? (because ? is valid in every element of Kr) and I{ o * -D
(because otherwise we would have that the description -D is valid in every
element of Kr, and hence we would have that T ) -D). Given .tfo we will
construct a context -fif6 such that .tf¡ þ ? and I<a I D.

1. Case of D: ØF.
LeL Go be the set of objects of I{o. Construct Gu -- G"U {ge}, and then
Jf6 with G6 as its objects. We have that

(i) formulae O-valid in I{o remain O-valid ín I{6, because Gu) Gu,

(ii) formulae O-valid in I{o remain O-valid in I{6,, because g" does not
invalidate any of the formulae O-valid in I{o (because I<" * eF),
and

(iii) ¡fbFeF,because 9ee Gt.

Hence, I<a l7 U {OF'}, and thus I{u I T ¿ {D}, where D : @F.

2. Case of D : OF.
Let Go be the set of objects of r{ o. We will modify Go to obtain G6 such
that the corresponding r{6 is as desired. For every gno € Go-recall that
fl is the set of attributes of gr-we either leave gp unchanged, or replace
it with another object, depending on the set of attributes of gpo. There
are two cases to consider.

(u) 4n{¡'UF} ç F', i.e.,1 there is anrn € 4 such that m € -F-in this
case we have that2 {g rr} F etr, and thus there is no need to modify
I pn'

(b) 4n{,F'UF} g F-but in this case \4/e also have that 4n{,F'U.F'} c
.t', because otherwise we would have that F¡ I ,t., and thus also
I<"+ @F. Hence, there is an rn € F such that f; t{-,m} -- ø.
Replace gp with gruln¡.

LF:{ñeMlmeF}.
'{g e,} F ef is a shorter way of saying that O.F is valid in the sub-context of I{ o

determined by the set of objects {94}.
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Resulting Ga determines the context Jf6. We have that

(i) formulae O-valid ín I{o remain O-valid in -If6, because no objects

of. Go were lost when constructing G6-some of them remained un-

changed, other ones rffere replaced by more specialised versions,

(ii) formulae g-valid in .ãfo remain O-valid in I{¡, by construction of G¡,
and

(iii) ,tfb F e,F', by construction of G6.

Hence, I{al 
"U 

{e,F}, and thus I<ølTU {D), where D: OF'

Thus, whether D is a @-valid or a O-valid formula, there is a context .tf6 such

that -t(a I f u {O}. Hence, T*, )- T U {D), where ?., is a theory of the
context I{6, the set of all descriptions valid in I{6. As ?*, is a consistent theory,

we also have that T*u 2 Cn(? U {D}), and thus T ¿ {D} is consistent.

Given that if Tia {D,-D} : Ø lhen TiU {D} is consistent, it is easy to
show that lf TiVTn:1- then T¿ ) -D. Indeed, in an attempt to derive a

contradiction, suppose that T¿V Tp: l" but Ti / -D' Then there are two

cases to consider. If T¿ ) D then T¿Y Tp: fr is consistent-contradiction. If
T¿/ D then ?¿ a{D,-D}: þ and hence-by the first part of the theorem-
Tcu {D} is consistent, which in turn means that cn(?, u {D}) is consistent.

This however, because 4 V To : Cn(4 U {D}), gives us rhal T¡ V ?¿ is

consistent-contradiction. I

Proposition 1O lsl - : D ---+ D be given by Definition 21, and let

- : I ---+ f be given by -(U, V) : (V,U). Then -p(D) : p(-D),, where

p(D): (Uo,Vo)

Proof Let p(D) : (UD,VD). Then p(-D) : (U-o,V-o) and -A(D) --
(Vo,U). Hence, we need to show lhat U-o - Vo and V-n - Un. To show

thatu-o -vo notice that ? €u-pífrT >T-DitrT ) -D iff ?vTo:
1iff ? €Vp,lhe second to last step holds by Proposition 9. Replacing D with

-D in U-o -- V¿ yields V-o : Uo. I
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