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Abstract

Late-orogenic magmas are common to many foldbelts, suggesting a causal link
between this thermal pulse and the cessation of deformation, An investigation of such a
late-orogenic magmatic suite is made in the southern Adelaide Foldbelt which forms part
of the large Late Proterozoic - Early Cambrian Adelaide Geosyncline deformed by the
Cambro-Ordovician Delamerian Orogeny, During this orogeny the foldbelt was intruded
firstly by a 516-490 Ma syn-orogenic (or deformed) group of magmas and subsequently
by a 490-487 Ma late-orogenic (or undeformed) group, these two suites having marked
chemical and isotopic differences. The late-orogenic suite is bimodal with mafic dykes
and plutons accompanied by high-silica granites and rhyolites. It is argued that these
mafic and felsic intrusives are both thermally and compositionally related.

The mafic rocks of the late orogenic suite are exemplified by several layered
gabbroic plutons outcropping at Black Hill near the eastern side of the Mt Lofty Ranges,
Lithologies include troctolites, peridotites, olivine gabbros and gabbronorites, The
mineralogy of these gabbros shows that they crystallized in high level magma chambers
from a continental tholeiitic magma, Like layered gabbroic intrusions in other parts of the
world they contain a plagioclase plus two pyroxene assemblage with an olivine
compositional hiatus. Crystallization occurred under high temperature, low pressure, low
fO- conditions producing a trend of moderate iron enrichment followed by silica
enrichment after the appearance of magnetite. Geochemical and isotopic constraints
indicate that the magma underwent fractional crystallization combined with assimilation of
the amphibolite grade metasedimentary wall rocks. The greatest contamination occurred
near the margins of the plutons resulting, amongst other things, in silica and marked
potassium enrichment to ‘produce potassic gabbronorites and pyroxene monzonites. The
effect of contamination was to displace the magma from the two pyroxene-plagioclase
cotectic resulting in the formation of anorthosites and the stabilization of pigeonite,
Geochemical and isotopic evidence is interpretable in terms of 5-20% contamination but
such a scenario requires that the initial magma (and therefore probably also the source) be
enriched in incompatible elements,

High-silica, potassium-rich rhyolites and rapakivi granites have been examined
near Black Hill at Mannum and from the Padthaway Ridge. These form a probable felsic
end of the suite and are characterised by low Al203 and CaO contents and high LREE,
Zr, Nb, Y and Ga contents identifying them as A-type magmas. Although various
petrogenetic models have been proposed for A-types, their high incompatible/compatible
element ratios are most readily obtainable by extended fractionation of mantle derived
basaltic magma. Such a model is supported by data from the Padthaway A-types. They



tend towards one feldspar (hypersolvus) varieties and typically contain Fe-rich biotite and
ferrohastingsite. Less common are fayalite-hedenbergite assemblages and some samples
contain relicts of pigeonite and magnesian-augite. These latter pyroxenes are not in
equilibrium with their host rocks and indicate polybaric crystallization from mafic parental
magma. The mineral assemblages show that this parental magma was hot (>960 °C),
relatively anhydrous and consequently able to undergo extensive fractionation when it
reached the water-undersaturated granite minimum, Progressive development of low Sr,
AlpO3, CaO concentrations and negative Eu anomalies support this interpretation, Again
plausible crystallization models suggest the need for the mafic parent to be enriched in
incompatible elements,

Granophyres from the Black Hill plutons are compositionally similar to the
Padthaway Ridge rocks and gravity data suggests both these and Black Hill overlie an
extensive tract of mafic plutons. Also located on the gravity high and belonging to the
same suite is the A-type Mannum Granite which preserves evidence for contemporaneity
of the mafic and felsic magmas. This granite contains numerous dioritic enclaves whose
compositions contribute to a tholeiitic fractionation trend similar to the Black Hill
gabbros, The droplet-like shapes and microtextures of these enclaves along with
geochemical and isotopic data suggest that they and their host granite formed
contemporary magmas and that the enclaves may represent draw-up from an underlying
layered mafic chamber. The available evidence suggests that despite the high temperatures
of both mafic and felsic magma, the viscosity contrast after thermal equilibration was too
high for unrestricted mixing and only mingling and diffusion took place,

The range of Nd and Sr isotopic compositions of all of these silicic rocks are
virtually indistinguishable from the mafic ones consistent with other data suggesting a
common source, Overall €Nd varies from +5 to -4 and initial 37Sr/863r from 0,7035 to
0.7065 so that the entire suite has an isotopic range which is like some parts of the so-
called c_hriched mantle sampled by ocean island basalts. In conjunction with their
geochemistry this suggests derivation from an enriched source with relatively little crustal
contribution, particularly from the evolved Archaean and Proterozoic material likely to
characterize the lower crust in this region. However, a model involving crustal
contamination of asthenospheric melts cannot be conclusively rejected although it requires
quite high assimilation rates (>30%) to produce the incompatible trace element
concentrations, One potential source is subcontinental lithospheric mantle that was
previously enriched by infiltration of small partial melts from the asthenosphere. Enriched
mantle xenoliths suggest the existence of such a source and Ty Nd model ages for both
the late orogenic magmas and many of these mantle xenoliths range from 900 to 1200 Ma
which may partially reflect the timing of the enrichment event,



The generation of melts within the subcontinental lithosphere requires a substantial
thermal anomaly which is also likely to affect the potential energy of the lithosphere.
Following the suggestion of Houseman et al. (1981) that mantle lithosphere thickened
during convergence may become unstable to convective thinning, theoretical models are
outlined which suggest that mantle lithospheric thinning will increase both the potential
energy and the thermal budget of the orogen. The increased potential energy
accompanying isostatic uplift causes convergent deformation to be terminated or
partitioned elsewhere whilst uplift is likely to induce rapid unroofing of the orogen, The
increased thermal budget results in the potential for melting in the lower crust and low
temperature melting fractions in the mantle lithosphere, Such melts will be relatively
anhydrous and able to fractionate extensively to produce silicic differentiates and a
bimodal magmatic suite. In the southern Adelaide Foldbelt both the nature of the
magmatism and evidence for ca. 10 kms denudation just prior 10 emplacement of the late-
orogenic suite provide some support for such a model. It is suggested that this process
may also be responsible for the late-orogenic suites found in other foldbelts. Late-
orogenic magmatic episodes may involve considerable new additions to the crust
transfering geochemical enrichments from small degree partial melts contained in the
mantle lithosphere.



