The computer-aided design of rectangular microstrip antennas

by
Noel Maxwell Martin,
M.Sc., B.Eng., C.Eng.

A thesis submitted to the Department of Electrical and Electronic Engineering, the University of Adelaide, to meet the requirements for the award of the degree of Doctor of Philosophy

SUMMARY

A computer-aided design program has been developed for use with probe or transmission line fed rectangular microstrip antennas and arrays. The antenna is modelled using both a single mode leaky resonant cavity and a transmission line with radiating apertures at each end, where in both cases a series reactance is used to represent the effects of the feed probe. The cavity model is used to specifically define and calculate the resonant frequencies to within 2% of measurements, where the effective electrical dimensions of the antenna are empirically determined. The accuracy of the transmission line model in determining input impedances is greatly improved through the use of empirical equations for the effective admittances located at each end of the antenna. Typical errors of 17% and 2% are obtained for the resonant resistances and impedance resonant frequencies respectively. In the case of probe fed antennas, the success of both the resonant frequency and input impedance calculations depends on the accurate determination of the equivalent series reactance of the probe. Here a coaxial transmission line with an empirical taper is used as a model. The resultant reactances are within $\pm 3 \Omega$ of the transformations in the measured input impedance loci. The near field distributions of the two apertures at each end of the antenna are examined using a liquid crystal film, and leads to the conclusion that the respective far field patterns are tilted off the broadside direction and emanating at different power levels. The far field radiation pattern is calculated to within 2 dB of measurements using an array of two uniformly illuminated apertures, where the separation takes into account the effective length to which the fields fringe at each end of the antenna. A space radiation model for the power transfer between two apertures is used to calculate the mutual coupling to within 3 dB of measurements, where the antennas are separated by at least $0.75 \lambda_{0}$. The definition of bandwidth used for resonant cavities is proposed as a more appropriate quantity for comparative studies between microstrip antennas whether they are
matched or not; and is used in an investigation into the bandwidth performance of a novel hexagonal element, which is shown to exhibit wider bandwidth and greater gain performance than a rectangular antenna. All of the models are tested on typical geometries operating up to a frequency of 5 GHz , and are shown to provide results of sufficient accuracy for most design purposes without requiring extensive computations.

STATEMENT

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University and to the best of the candidate's knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text.

Also the author consents to the thesis being made available for photocopying and loan if accepted for the award of the degree.

Noel Martin

ACKNOWLEDGEMENTS

The guidance of the author's supervisor, Dr.D.W.Griffin, is gratefully acknowledged. His balanced practical and theoretical approach to problems in electromagnetics has been invaluable to this research programme.

The author's wife, Kathleen, is also thanked for her constant support and encouragement, for without it this candidature would have never started. She is also thanked for typing the thesis. The author is also grateful for the regular encouragement of Mr. and Mrs. P. Budimir.

Messrs G.W.Pook and G.L.Allison are thanked for their skilled technical assistance.

The author also acknowledges the financial support from the University of Adelaide through a URG scholarship.

LIST OF PRINCIPAL SYMBOLS

a radius of a circular patch or the inner conductor of a coaxial transmission line. a_{e} effective radius of a circular patch.
A_{l} length of a rectangular aperture.

As separation between two apertures in a broadside array.
A_{w} width of a rectangular aperture.
b radius of the outer conductor of a coaxial transmission line.
$\boldsymbol{B}_{\boldsymbol{a}}$ input susceptance of a radiating aperture.
B_{s} input susceptance of a slot antenna.
$B W$ bandwidth.
c velocity of electromagnetic waves in free space.
d diameter of the feed probe.
D inset distance: distance between the feed probe and the nearest end of a rectangular patch antenna.
\underline{E} electric field intensity vector.
$\underline{u}_{\rho} E_{\rho}, \underline{u}_{\theta} E_{\theta}, \underline{u}_{\phi} E_{\phi}$ spherical components of \underline{E}.
f frequency in hertz.
f_{o} resonant frequency.
$f_{m, n}$ resonant frequency of the m, n mode.
$f_{o c}$ resonant frequency of an ideal unloaded cavity.
$f_{o z}$ frequency at which the input impedance of an antenna is real.
G_{a} input conductance of a radiating aperture.
$G_{\text {rad }}$ radiation conductance.
h thickness of a dielectrically filled substrate.
$J_{o}(x), J_{n}(x)$ Bessel functions.
$k_{m, n}$ wave number of the m, n mode.
l_{e} electrical length.
$l_{\text {ph }}$ physical length.
L length of a transmission line or a rectangular patch antenna.
$Q_{c u}$ quality factor due to ohmic losses.
$\boldsymbol{Q}_{\text {die }}$ quality factor due to dielectric losses.
$Q_{\text {ext }}$ quality factor that includes only the external load.
Q_{L} quality factor that includes internal and external losses.
Q_{o} quality factor of an ideal unloaded cavity.
$Q_{\text {rad }}$ quality factor due to radiation losses.
r aspect ratio W / L.
\boldsymbol{R}_{0} resonant resistance: input resistance at $f_{o z}$.
$R_{c u}$ equivalent resistance due to ohmic losses.
$\boldsymbol{R}_{\text {die }}$ equivalent resistance due to losses in the dielectric.
$\boldsymbol{R}_{\text {rad }}$ radiation resistance.
$s_{11}, s_{21}, s_{12}, s_{22}$ scattering matrix parameters.

TEM transverse electromagnetic
t thickness of copper cladding.
$\tan \delta$ loss tangent of a dielectric material.
$\underline{\boldsymbol{u}}_{x}$ unit vector in the x-direction; similarly $\underline{u}_{y}, \underline{\boldsymbol{u}}_{z}, \underline{u}_{\rho}, \underline{u}_{\theta}, \underline{u}_{\phi}$.
$v_{p h}$ phase velocity.

W width of a microstrip transmission line or a rectangular microstrip patch antenna.
W_{e} effective width of a microstrip transmission line or a rectangular microstrip patch antenna.
X, series reactance used to model the antenna's feed probe ($=\omega L_{s}$).
Y_{a} input admittance of a radiating aperture.

Yom characteristic admittance of a microstrip line.
Z_{a} input impedance of a radiating aperture.
$Z_{\text {in }}$ input impedance of an antenna.
$Z_{o m}$ characteristic impedance of a microstrip line.
Z_{o} characteristic impedance of an air filled transmission line.
Z_{r} impedance located at the receiving end of a transmission line.
Z_{a} input impedance of slot or aperture A.
Z_{b} input impedance of slot or aperture B.
α attenuation constant.
β_{o} phase constant in free space.
β_{8} phase constant in the substrate.
δL edge extension.
δ_{s} skin depth.
ϵ_{e} effective relative dielectric constant.
ϵ_{r} relative dielectric constant of a dielectric substrate.
$\boldsymbol{\gamma}$ propagation constant.
η_{0} intrinsic impedance in a vacuum (120 Ω).
η antenna efficiency.
η_{8} intrinsic impedance of a dielectrically filled medium.
λ_{3} wavelength in a dielectrically filled medium.
λ_{0} wavelength in free space.
σ conductivity.
Ω ohm.

U mho.
ω angular frequency.

LIST OF TABLES

Table Title page
2.1 Parameters for the large cavity transmission line model 2.19
2.2 Measured series reactance at 5 GHz for a large cavity 2.23
2.3 Series reactance measured using the shorted transmission line method 2.26
2.4 Comparison between the series reactance calculated by the tapered transmission linemodel and measured by the locus transformation method2.43
3.1 For the formulas of various authors, a comparison between the percentage difference in the calculated and measured cavity resonant frequency 3.7
3.2 Calculated and measured resonant frequencies 3.16
5.1 Calculated and measured resonant resistances and impedance resonant frequencies 5.22
8.1 A summary of the bandwidth characteristics of microstrip antenna structures 8.7
LIST OF PLATES
Plate Title page
6.1 Liquid crystal display of the fields around the periphery of a rectangular patch 6.5
6.2 Liquid crystal display of the fields off the end of a rectangular patch 6.5

LIST OF FIGURES

Figure Title page
1.1 Rectangular microstrip antenna 1.2
1.2 Feeding arrangements: (a) probe feeding and (b), electromagnetic coupling 1.3
1.3 Microstrip antenna array configurations: (a) series fed array and (b), a wide radiator antenna 1.5
1.4 Transmission line model of a microstrip transmission line fed rectangular element 1.7
1.5 A rectangular microstrip patch antenna fed by a coaxial probe 1.9
1.6 The transmission line model of a probe fed rectangular patch 1.12
1.7 Quality factor and efficiency versus frequency 1.16
1.8 (a) Network model for a multi-mode cavity and (b) a simplified network model foroperation around a dominant mode of resonant frequency, $f_{m n}$. 1.182.1 Transforming the measured input impedance versus frequency locus of a rectangularmicrostrip antenna2.3
2.2 Series reactance calculated using the modal-expansion method versus probe diameter for a rectangular element 2.5
2.3 Series reactance calculated using the modal-expansion method versus probe inset dis- tance for a rectangular element 2.5
2.4 Schematic representation of the development of Carver's the transmission line feed point model, (a) sketch of the electric field in the proximity of the probe and, (b),(c) and (d) lumped parameters models and (e), its transmission line equivalent 2.8
2.5 Series reactance calculated by the transmission line and the modal-expansion modelsfor $d=0.016 \lambda_{s}$ and $d=0.08 \lambda_{s}$. A measured result is also shown2.9
2.6 Calculated series reactance for the case of an APC-7 probe, where $d / \lambda_{s}=0.08, h / \lambda_{s}=$ $0.04, \epsilon_{r}=2.55 .:$ calculated by Carver's transmission line model using λ_{o}, Griffin, Lier, Sengupta 2.11
2.7 (a) The geometry for a rectangular element fed at a general point, and (b) the circuit representation of the antenna, where the transmission line is related to the transverse mode 2.12
2.8 (a)The apparatus for the large cavity experiment and (b), its network model 2.15
2.9 Smith chart plot of the measured reflection coefficient for a 1.57 mm thick large cavity fed by an APC-7 probe 2.16
2.10 Magnitude of the measured reflection coefficient versus frequency for a 1.57 mm thick large cavity fed by an APC-7 probe 2.18
2.11 Phase of the measured reflection coefficient versus frequency for a 1.57 mm thick large cavity fed by an APC-7 probe 2.18
2.12 Transmission line model for the large cavity apparatus 2.19
2.13 Using the dual transmission line model, the magnitude of the calculated reflection co- efficient versus frequency for a 1.57 mm thick large cavity fed by an APC-7 probe 2.22
2.14 Using the dual transmission line model, the phase of the calculated reflection coefficient versus frequency for a 1.57 mm thick large cavity fed by an APC- 7 probe 2.22
2.15 Averaged reflection coefficient for the large cavity 2.23
2.16 Series reactance versus frequency results for the large cavity and shorted transmissionline experiments, where an APC-7 connector is feeding a 1.57 mm thick substrate 2.24
2.17 Measurement of the series reactance; (a)transmission line model, (b) model of the struc-ture, (c)model after transformations and, (d) a side elevation sketch 2.25
2.18 Measured reflection coefficient for the shorted transmission line fed by an APC-7 probe,where $h=1.57 \mathrm{~mm}, W=16 \mathrm{~mm}, L=39.6 \mathrm{~mm}, \epsilon_{r}=2.55$2.26
2.19 Determination of the equivalent series reactance from a set of calculated input imped- ance data for a hypothetical cavity 2.29
2.20 Calculated series reactance for the case of an APC-7 probe, where $d / \lambda_{s}=0.08, h / \lambda_{s}=$$0.04, \epsilon_{r}=2.55$: calculated by Carver's transmission line model using λ_{o}, Griffin, Lier,Sengupta and the locus transformation method2.30
2.21 Series reactance using the locus transformation method as a function of the feed point position 2.31
2.22 Measured series reactance as a function of the aspect ratio 2.32
2.23 Series reactance using the locus transformation method as a function of substrate thick- ness 2.36
2.24 Series reactance using the locus transformation method versus probe diameter 2.36
2.25 Series reactance calculated using the modal-expansion method. Also a hybrid curve comprising results from the locus transformation method and extrapolating Carver's measured result 2.37
2.26 Fringing electric field around the probe 2.40
2.27 Electrostatic fringing field around the probe with an approximate equi-potential of mid- value 2.40
2.28 The field distribution of a sinusoidally tapered transmission line 2.40
2.29 Empirical determination of the radius of the outer conductor as a function of the probe dimensions 2.42
2.30 Empirical determination of the radius of the outer conductor as a function of the aspect ratio of the patch 2.42
2.31 Series reactance versus substrate height for a rectangular element fed through an APC-7 probe: calculated using the tapered transmission line model and measured using the locus transformation method2.44
2.32 Series reactance versus aspect ratio for a set of a rectangular elements fed through APC- 7 probes: calculated using the tapered transmission line model and measured using the locus transformation method 2.44
2.33 Series reactance versus frequency for a 1.57 mm thick substrate fed through an APC-7 probe: calculated using the tapered transmission line model for a rectangular element $f_{o c} \approx 5 G H z$, and directly measured using the large cavity 2.45
3.1 The definition of resonant frequency; $f_{o c}$ the resonant frequency of the cavity and $f_{o z}$, the frequency at which the input impedance is real 3.9
3.2 Determination of the edge extension as a function of the aperture dimensions 3.11
3.3 Empirical determination of the edge extension as a function of the substrate height 3.12
3.4 Network model of a leaky resonant cavity 3.12
3.5 Sensitivity of the impedance resonant frequency to the resonant resistance 3.17
3.6 Calculated and measured cavity resonant frequency versus the width for a rectangular antenna 3.18
4.1 The input impedance response of a rectangular microstrip antenna measured over a $\pm 30 \%$ bandwidth about the resonant frequency: $f_{o c} \approx 5 \mathrm{GHz}$. Measured data and the circle approximation 4.3
4.2 The transformed circle approximation for the input impedance response of a rectangular microstrip antenna 4.4
4.3 Bandwidth versus feed point inset distance for a 18.1 mm by 16 mm by 1.57 mm rectan- gular element 4.6

Abstract

5.1 Calculated aperture conductances (a) and susceptances (b) using the published equations for a rectangular element: 65.5 mm by 105.6 mm by 1.57 mm , Derneryd, Carver, Harrington, Marcuvitz, Newman, and Sengupta 5.8

5.2 Measured and calculated input impedances using Carver's aperture admittance for a rectangular element: 65.5 mm by 105.6 mm by 1.57 mm 5.9
5.3 Measured and calculated input impedances using Carver's aperture admittance for a rectangular element: 41.4 mm by 68.58 mm by 1.59 5.9
5.4 Measured and calculated input impedances using Carver's aperture admittance for a rectangular element: 16.93 mm by 16 mm by 1.57 mm 5.10
5.5 Aperture conductances (a) and susceptances (b) versus frequency for a rectangular element: 16.93 mm by 16 mm by 1.57 mm , Derneryd, Carver, Harrington, Marcuvitz, Newman, Sengupta, Empirical, Modified Derneryd
5.6 Measured and calculated input impedances using a modified set of Derneryd's equations for the aperture admittance of an patch: 16.93 mm by 16 mm by 1.57 mm
5.7 Empirical aperture conductance versus aperture width 5.15
5.8 Empirical aperture susceptance versus aperture dimensions 5.16
5.9 Calculated and measured input impedances for rectangular elements with $W=16 \mathrm{~mm}$, $\epsilon_{r}=2.55, h=1.57 \mathrm{~mm}:$ (a) $L=16.93 \mathrm{~mm}, D=5.5 \mathrm{~mm}, A P C-7$ and (b), $L=18.11 \mathrm{~mm}, D=$ 6 mm , SMA, where $\mathrm{f}=4500 \mathrm{MHz}$ plus 100 MHz increments 5.17
5.10 Calculated and measured input impedances for rectangular elements with $\epsilon_{r}=2.55$, $h=0.8 \mathrm{~mm}$: (a) $L=18.47 \mathrm{~mm}$, APC-7, $D=6.14 \mathrm{~mm}$ and (b), $L=18.47 \mathrm{~mm}$, SMA, $D=$ 6.14 mm , where $\mathrm{f}=4500 \mathrm{MHz}$ plus 100 MHz increments
5.11 Calculated and measured input impedances for rectangular elements with $L=18.03 \mathrm{~mm}$, $h=1.57 \mathrm{~mm}, \epsilon_{r}=2.55, A P C-7, D=6.21 \mathrm{~mm}$, where (a) $W=13.5 \mathrm{~mm}$, and (b) $W=28 \mathrm{~mm}$, where $\mathrm{f}=4500 \mathrm{MHz}$ plus 100 MHz increments 5.19
5.12 Calculated and measured input impedances for rectangular elements: (a) 25.66 mm by 23.1 mm by $0.8 \mathrm{~mm}, D=10.15 \mathrm{~mm}, \epsilon_{r}=2.55$, where $\mathrm{f}=3400 \mathrm{MHz}$ plus 50 MHz increments and (b), 41.4 mm by 68.58 mm by $1.59 \mathrm{~mm}, D=10.16 \mathrm{~mm}, S M A, \epsilon_{r}=2.5$, where $\mathrm{f}=2200 \mathrm{MHz}$ plus 20 MHz increments for the measurements, and for the calculated data $\mathrm{f}=2100 \mathrm{MHz}$ plus 20 MHz increments
5.13 Calculated and measured input impedances for rectangular elements: (a) 76 mm by 114 mm by 1.59 mm , transmission line fed, $\epsilon_{\mathrm{r}}=2.62$, where $\mathrm{f}=1157 \mathrm{MHz}$ plus 10 MHz increments and (b) 150 mm by 75 mm by $3.18 \mathrm{~mm}, D=60 \mathrm{~mm}, S M A, \epsilon_{r}=2.56$, where $\mathrm{f}=632 \mathrm{MHz}$ plus 1 MHz increments for the measurements, and for the calculated data $\mathrm{f}=618 \mathrm{MHz}$ plus 1 MHz increments 5.21
6.1 Sketches indicating the location of the antenna behind the liquid crystal film for (a) plate 6.1 and (b) plate 6.2 6.4
6.2 The short circuit patch; (a) sketch of the structure and (b), the measured input imped- ance locus compared with the locus of a rectangular element: 18.03 mm by 16 mm by 1.57 mm 6.8
6.3 Rectangular aperture in a spherical coordinate geometry 6.9
6.4 Measured E-plane pattern for the short circuited patch 6.9
6.5 Absorbent pads around a radiating aperture for E-plane measurement 6.10
6.6 Measured E-plane patterns for a 16.93 mm by 16 mm by 1.57 mm rectangular element with 30 mm of absorbent pad and without 6.12
6.7 Measured E-plane patterns for the short circuited patch through a 40 mm window 6.12
6.8 Sketch of a section through the short circuit patch 6.13
6.9 Measured E-plane pattern for the aperture near to the feed point of a 16.93 mm by 16 mm by 1.57 mm rectangular element 6.14
6.10 Measured E-plane pattern for the aperture far from the feed point of a 16.93 mm by16 mm by 1.57 mm rectangular element6.14
6.11 Coordinate geometry for the two aperture side by side array 6.16
6.12 Measured E-plane pattern for a 16.93 mm by 16 mm by 1.57 mm rectangular element at $f_{o c}=5013 \mathrm{MHz}$, with the calculated results of the new model and old model 6.19
6.13 Measured and calculated H-plane pattern for a 16.93 mm by 16 mm by 1.57 mm rectan- gular element at $f_{o c}=5013 \mathrm{MHz}$ 6.19
6.14 Measured and calculated patterns for a 18.47 mm by 16 mm by 0.8 mm rectangular ele- ment at $f_{o c}=4670 \mathrm{MHz}$, (a) E-plane and (b) H-plane 6.20
6.15 Measured and calculated patterns for a 25.66 mm by 23.1 mm by 0.8 mm rectangular element at $f_{o c}=3502 \mathrm{MHz}$, (a) E-plane and (b) \boldsymbol{H}-plane 6.21
7.1 Mutual coupling between two patch antennas located in each others far field: (a) side- elevation sketch of two antennas coupled in the E-plane, and (b) the equivalent network in terms of the scattering coefficients 7.4
7.2 Measured and calculated mutual coupling as a function of separation for two 66 mm by 105.6 mm rectangular elements of thickness (a) 1.57 mm and (b) 3.2 mm , where $f_{o}=1.4 \mathrm{GHz}$ 7.9
7.3 Mutual coupling as a function of separation for two 16.93 mm by 16 mm by 1.57 mm rectangular elements, where $f_{o}=5 \mathrm{GHz}$ 7.10
8.1 Bandwidth versus substrate height and relative dielectric constant 8.2
8.2 VSWR versus frequency for a rectangular element 8.4
8.3 Bandwidth versus transmission line characteristic impedance 8.4
8.4 Bandwidth versus frequency for different substrate heights and relative dielectric con- stants 8.5
8.5 The basic geometry of the hexagonal patch 8.8
8.6 Bandwidth, impedance resonant frequency, and resonant resistance versus the apex
distance 8.88.7 E-plane far field radiation patterns for a rectangular, 18.1 mm by 16 mm by 1.57 mm ,and hexagonal, $a=+4 \mathrm{~mm}$, element . 8.9

TABLE OF CONTENTS

SUMMARY i
STATEMENT iij
ACKNOWLEDGEMENTS iv
LIST OF PRINCIPAL SYMBOLS v
LIST OF TABLES ix
LIST OF PLATES ix
LIST OF FIGURES x
CHAPTER I
INTRODUCTION
1.1 General introduction 1.1
1.2 Analytical models 1.6
1.2.1 Introduction 1.6
1.2.2 Transmission line model 1.6
1.2.3 Cavity model 1.13
1.2.4 Models for numerical analysis 1.20
1.3 Conclusion 1.22
CHAPTER II
A TAPERED TRANSMISSION LINE MODEL FOR THE COAXIAL FEED PROBE
2.1 Introduction 2.1
2.2 Models for the series reactance 2.2
2.2.1 Modal-expansion cavity model 2.3
2.2.2 Transmission line models 2.4
2.2.3 Model based on the field solution of a coaxial feed probe located in a radial waveguide 2.10
2.2.4 Model that uses a parallel-plate transmission line to represent the transverse mode 2.10
2.2.5 Conclusion 2.13
2.3 Experimental investigations 2.13
2.3.1 The large cavity method 2.14
2.3.2 The shorted transmission line method 2.21
2.3.3 The locus transformation method 2.27
2.3.4 Comparisons between the results of the large cavity, short circuited transmission line, and the locus transformation experiments 2.31
2.3.5 Comparisons between the results of the locus transformation method and measurements performed by other authors 2.34
2.3.6 Conclusions 2.37
2.4 The tapered transmission line model 2.38
2.5 Conclusions 2.43
CHAPTER III
THE CALCULATION OF THE RESONANT FREQUENCY USING AN EMPIRICALLY DETERMINED EDGE EXTENSION PARAMETER
3.1 Introduction 3.1
3.2 A literature survey of the analytical and empirical models used to calculate the resonant frequency 3.2
3.3 The limitations of the published formulas used in the calculation of the resonant frequency 3.5
3.4 The definition of resonant frequency 3.6
3.5 The calculation of the cavity resonant frequency using an empirically determined edge extension parameter 3.8
3.6 The impedance resonant frequency 3.11
3.7 Discussion of results 3.15
3.8 Conclusions 3.18
CHAPTER IV
THE APPLICATION OF THE DEFINITION OF BANDWIDTH FOR SINGLE PORT RESONATORS TO MICROSTRIP ANTENNAS
4.1 Introduction 4.1
4.2 The resonant cavity definition of bandwidth 4.2
4.3 Conclusion 4.7
CHAPTER V
THE CALCULATION OF THE INPUT IMPEDANCE USING THE TRANSMISSION LINE MODEL
WITH EMPIRICALLY DETERMINED APERTURE ADMITTANCES
5.1 Introduction 5.1
5.2 Survey of the methods used to calculate the effective aperture admittance at each end of the patch 5.2
5.2.1 A comparison between aperture admittance formulas 5.6
5.3 The determination of an empirical equation for the aperture admittance 5.7
5.4 Calculating the input impedance using the empirically determined aperture admittance parameters 5.14
5.5 Conclusions 5.16
CHAPTER VI
THE CALCULATION OF THE FAR FIELD RADIATION PATTERN USING A TWO APERTURE ARRAY
6.1 Introduction 6.1
6.2 Examination of the near fields using a liquid crystal film 6.2
6.3 Measured far field radiation pattern for a single aperture 6.6
6.4 Calculation of the far field radiation pattern of a rectangular microstrip antenna using a two aperture array 6.13
6.5 Discussion of results 6.16
6.6 Conclusions 6.22
CHAPTER VII
AN ANALYTICAL MODEL FOR THE MUTUAL COUPLING BETWEEN TWO RECTANGULAR PATCH ANTENNAS
7.1 Introduction 7.1
7.2 Survey of the models used for the calculation of the mutual coupling 7.1
7.3 A radiation based model for the mutual coupling between well separated rectangular patch antennas 7.2
7.3.1 The transfer coefficient modelling the radiative coupling 7.4
7.3.2 Transfer coefficients within the antenna elements 7.6
7.4 Discussion of results 7.8
7.5 Conclusions 7.8
CHAPTER VIII
THE BANDWIDTH CHARACTERISTICS OF THE
RECTANGULAR PATCH ANTENNA
AND ITS EXTENSION USING A HEXAGONALLY SHAPED PATCH
8.1 Introduction 8.1
8.2 Using the transmission line model to study the effects of antenna parameters on the bandwidth of the antenna 8.1
8.3 A review of the techniques used by other authors to increase the bandwidth of microstrip antennas 8.3
8.4 Bandwidth of the hexagonal patch 8.6
8.5 Far field radiation pattern of the hexogonal patch 8.7
8.6 Conclusions 8.9
CHAPTER IX CONCLUSIONS
9.1 Conclusions 9.1
REFERENCES R. 1
APPENDICES
A Antenna manufacture and specifications A. 1
B Radiation pattern, input impedance, and mutual coupling measurement B. 1
C Computer-aided design program C. 1
D List of scholarly publications related to this thesis D. 1

CHAPTER I

INTRODUCTION

1.1 General introduction

Microstrip antenna elements were originally proposed by Deschamps in 1953 [1]. However, eighteen years or more passed before the work was carried further by Howell [2,3], Munson [4] and Weinschel [5], after which numerous analytical and experimental studies into the operation of the antenna followed [6]. The fundamental form of the antenna is an arbitrarily shaped thin uniform sheet of metal, called a patch, bonded to the surface of a thin dielectric substrate clad with a large metal sheet on the other surface to form a ground plane. The element is usually excited at a frequency such that the wavelength in the substrate is comparable with the dimensions of the patch. The relative dielectric constant of the substrate material is usually less than ten, resulting in significant fringing fields around the periphery of the patch. These fields give rise to electric currents on the patch and the ground plane, so the element's far field radiation may be regarded as being directly related to these electric currents or to the equivalent magnetic currents of the fringing fields.

This investigation is primarily concerned with the operation of antenna elements constructed using rectangular patches because they have been the most widely used

Figure 1.1: Rectangular microstrip antenna.
in industry, and lend themselves to analysis by simple models. Figure 1.1 shows a rectangular element fed by a microstrip transmission line.

To radiate as an antenna the rectangular element should be excited at a frequency such that the length of the side L is approximately equal to half of the wavelength in the dielectric. The electric field associated with this transmission line resonator fringes beyond the ends of the patch to create two main sources of radiation. Fringing also occurs along the two sides but the radiation from these sources does not contribute significantly to the main beam, is cross polarised, and creates side lobes in the element's radiation pattern.

There are three common excitation structures for the antenna. Figure 1.1 shows an element fed at its edge by a microstrip transmission line. Figure 1.2(a) illustrates a patch fed from behind the ground plane by the inner conductor of a coaxial transmission line that extends through the substrate to make connection with the metallic patch.

This extension of the coaxial line through the substrate is called a "probe," hence this configuration is referred to as probe feeding. In the third arrangement shown in figure $1.2(\mathrm{~b})$, feeding is achieved by placing the patch in close proximity to some other source such as the microstrip transmission line shown, thereby permitting the excitation of the antenna element through electromagnetic coupling.

(b)

Figure 1.2: Feeding arrangements: (a) probe feeding and (b), electromagnetic coupling.

Probe fed elements have been used almost exclusively in this investigation because at microwave frequencies input impedances are most accurately measured by coaxial equipment. Also the ground plane provides a shield against interference between the measurements and the test equipment, and serves as a well defined reference plane for the measurement of the input impedance. Probe feeding also offers a degree of
design flexibility because the location of the probe can be used to select the impedance presented by the antenna, or the polarisation characteristics of its far field radiation pattern.

Rectangular and circular patches can be used to build up linear arrays to achieve fan shaped far field radiation patterns. Figure 1.3(a) shows an example [7] where the elements are arrayed in the E-plane. This arrangement is called a series fed array. Isolated elements can also be arrayed in the H-plane, or joined together to form one wide radiator [4]. This wide microstrip radiator together with its feed network, as shown in figure $1.3(\mathrm{~b})$, is ideal for wrapping around the body of a satellite to provide an omnidirectional radiation pattern. A pencil beam can also be formed by a two dimensional array of single elements [7], or by arraying wide microstrip radiators in the E-plane.

Microstrip antenna elements and arrays are finding many uses in the field of antenna engineering because they have many unique advantages over the costly and bulky mechanical structures which they have the potential to replace. They are conformal, low in profile, and best suited to applications requiring small size and light weight. They are also attractive because of the advantages of low production cost, high design flexibility and ruggedness.

The antenna's fabrication advantages are the result of the monolithic planar manufacturing technology which is used, and include: low cost because all of the advantages of printed circuit technology can be exploited, high reliability, because there are no registration problems, and technology compatibility with other circuit elements such as transmission lines, filters and active devices. Also where necessary a radome can be included as an integral part of the antenna structure. The mechanical advantages start with the antenna's flat and low profile, therefore there is minimum disturbance to the aerodynamic flow across the outside of a vehicle and minimum protrusion into the vehicle's interior. There is also good reliability due to the absence of high stress components and the need to assemble the antenna system. The electrical advantages of microstrip antenna technology include: reliability and general flexibility because there

Figure 1.3: Microstrip antenna array configurations: (a) series fed array and (b), a wide radiator antenna.
is no restriction on the antenna's shape.

The antenna has also been found to have the following disadvantages. For operation on common substrates around 5 GHz , the bandwidth is typically limited to about 3% and 4% for basic rectangular and circular elements respectively. The electrical characteristics of the antenna are very sensitive to the relative dielectric constant which is subject to variation during manufacture and thermal stress. Voltage breakdown can be a problem in high power transmitter applications because of the close proximity of the patch to the ground plane. In array applications spurious radiation from the feed network occurs when using microstrip lines to feed the antenna, particularly whenever there are bends or curves or simple perturbations in the characteristic impedance due to surface imperfections and material inhomogeneity. In array applications this problem
together with line attenuation raises the side-lobe level of the radiation pattern.

Even with the above limitations, microstrip antenna technology has many advantages over other antenna classes in a wide variety of applications. However the pace at which they have found application has been greatly hindered by the expensive cut-and-try design techniques that have been employed. The analytical models available to the designer are now reviewed.

1.2 Analytical Models

1.2.1 Introduction

This review of analytical models is concerned primarily with resonant frequency and input impedance because these characteristics are difficult to calculate because they are very sensitive to an accurate representation of the fields within the antenna. Conversely, the main lobe of the far field radiation pattern is insensitive to small errors that might occur in modelling the fields under the patch and is therefore regarded as a lesser challenge to analysts.

The analytical approaches that are accurate enough for some but not all design purposes are now discussed. In turn they are each shown to give agreement with measurements when applied to antennas operating in the lower microwave band. This review will also provide a foundation for the simple novel models that are proposed for the resonant frequency, input impedance, and radiation pattern, and demonstrated to be accurate up to mid-microwave frequencies in Chapters III, V, and VI respectively. The analytical models for the mutual coupling between rectangular patches are reviewed in Chapter VII.

1.2.2 Transmission Line Model

The transmission line model is the oldest and simplest model, being first applied to rectangular elements in 1974 by Munson [4]. For input impedance calculations the antenna shown in figure 1.1 is modelled by the equivalent transmission line circuit of
figure 1.4, which includes two radiating slot antennas in the $y= \pm L / 2$ planes, both of area W by h and separated by a low characteristic impedance parallel plate transmission line.

Figure 1.4: Transmission line model of a microstrip transmission line fed rectangular element.

The input impedance at the junction between the antenna and the transmission line, where $y=-L / 2$, is calculated by transforming the input impedance of slot antenna A, Z_{a}, a distance L along a transmission line of characteristic impedance $Z_{o m}$, to the reference plane at $y=-L / 2$. If the transformed impedance is labelled Z_{a}^{\prime}, then the input impedance is obtained from the parallel combination of \mathcal{Z}_{a}^{\prime} and Z_{b}, hence

$$
\begin{equation*}
Z_{\text {in }}=\frac{Z_{a}^{\prime} Z_{b}}{Z_{a}^{\prime}+Z_{b}} \tag{1.1}
\end{equation*}
$$

This equation can be used to show that the antenna is resonant when its length is slightly less than $\lambda_{s} / 2$. Introducing the input resistance and reactance of the equivalent radiating aperture of the slot antenna, let

$$
\begin{equation*}
Z_{a}=Z_{b}=R_{a}+j X_{a} \tag{1.2}
\end{equation*}
$$

then if the antenna's length is $\lambda_{s} / 2$, the transmission line equation [8] can be used to show that the transformed slot impedance $\left(Z_{a}^{\prime}\right)$ equals the original impedance $\left(Z_{a}\right)$.

However if the slot impedance is transformed by $0.48 \lambda_{8}$ to $0.49 \lambda_{8}$, then

$$
\begin{equation*}
Z_{a}^{\prime}=R_{a}-j X_{a} \tag{1.3}
\end{equation*}
$$

Substituting equations (1.2) and (1.3) into (1.1) gives a real result called the resonant resistance, where

$$
\begin{equation*}
R_{o}=\frac{R_{a}}{2} \tag{1.4}
\end{equation*}
$$

The expressions due to Harrington [9] for the conductance and susceptance of an aperture in a ground plane have been widely applied to microstrip antennas in the literature [4,10]. They are:

$$
\begin{align*}
& G_{a}=\frac{\pi\left(1-\left(\beta_{o} h\right)^{2} / 24\right)}{\lambda_{o} \eta_{o}} \tag{1.5}\\
& \text { mho/unit length } \tag{1.6}\\
& B_{s}=\frac{3.135-2 \log \beta_{o} h}{\lambda_{o} \eta_{o}} \text { mho/unit length }
\end{align*}
$$

where the aperture is assumed to be thin, $h / \lambda_{o}<0.1$. It is concluded in Chapter V, where the slot admittance is considered in detail, that expressions (1.5) and (1.6) are only useful for a very limited set of antenna electrical dimensions. In the literature on microstrip antennas the terms slot, aperture, and wall admittance are used interchangeably. Except for these introductory comments, the term aperture admittance is used throughout this thesis.

Early use of the transmission line model by Munson [4] was accompanied by a simple method of calculating the far field radiation pattern, where the antenna was represented by a uniformly illuminated metallic rectangle, or array of rectangles in the case of an antenna array. The radiation pattern is calculated by standard techniques [11]. Even though this rudimentary form of the model only gives fair agreement with experiments for cases where the antenna is fed at its edge [15], it is still used as a computational aid to the antenna designer working in the lower microwave band [4]. Milligan [10] used this simple form of the transmission line model to account for the
variation in the frequency bandwidth as other antenna parameters are changed. Chapter VIII continues with a review of the bandwidth characteristics of the antenna.

Derneryd [12] carried the transmission line model further when a TEM-mode field distribution was proposed as an approximation to the field in the cavity between the patch and the ground plane; where the TEM standing wave is the distribution resulting from the interference of two TEM travelling waves in the plus and minus y directions. Refer to figure 1.5. This approximate field distribution has no x-directed components under the patch, and the same is assumed for the fringing fields at each end of the patch. Thus the two imaginary slot antennas are assumed to have electric field distributions that are constant in the z-direction and zero in the x-direction. Figure 1.5 also shows how the electric field vectors of the fringing field, E_{θ}, are decomposed into E_{z} and E_{y} components. Derneryd proposed that the E_{ν} components should be used to represent the fields across the slot antennas, rather than the E_{z}-components that were previously used by Munson [4]. The input impedance and far field radiation pattern of the antenna element are modelled by an array of two slots in the $z=h$ plane.

Figure 1.5: A rectangular microstrip patch antenna fed by a coaxial probe.

The transmission line equivalent network shown in figure 1.4 was used by Derneryd [12] to derive an expression for the antenna's input admittance referred to the $y=-L / 2$ plane,

$$
\begin{equation*}
Y_{i n}=G_{a}+j B_{a}+Y_{o m} \frac{G_{a}+j\left(B_{a}+Y_{o m} \tan \beta_{s} L\right)}{Y_{o m}-B_{a} \tan \beta_{s} L+j G_{a} \tan \beta_{s} L} \tag{1.7}
\end{equation*}
$$

The element is said to be resonant when the imaginary part of the input admittance equals zero, which occurs when the length of the patch satisfies

$$
\begin{equation*}
\tan \beta_{s} L=\frac{2 Y_{o m} B_{a}}{G_{a}^{2}+B_{a}^{2}-Y_{o m}^{2}} \tag{1.8}
\end{equation*}
$$

In developing new design methods new formulas for the slot admittance were proposed by Derneryd [12]. The conductance is calculated by integrating the real part of the Poynting vector over a hemisphere surrounding a magnetic dipole. The susceptance is represented by the static capacitance associated with the fringing fields of an opencircuited microstrip line. Detailed investigations of the methods for representing the admittance of the slot antennas will be given in Chapter V.

Derneryd [12] was the first worker to apply to microstrip antennas the approximate electrostatic expressions for the effective dielectric constant (ϵ_{e}) and edge extension (δL) proposed for use with microstrip lines by Schneider [13] and Hammerstad [14] respectively. They are

$$
\begin{align*}
& \epsilon_{e}=\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-1}{2}\left(1+\frac{10 h}{W}\right)^{-0.5} \tag{1.9}\\
& \delta L=0.412 h \frac{\epsilon_{e}+0.300}{\epsilon_{e}-0.258} W / h+0.262 \tag{1.10}\\
& W / h+0.813
\end{align*}
$$

Derneryd also proposed treating the transmission line between the slot antennas as a microstrip line of characteristic impedance $Z_{o m}\left(=Y_{o m}^{-1}\right)$. There have been three formulas used for $Z_{o m}$ in the analysis of microstrip antennas, and they are as follows.

Using a conformal mapping approach Schneider [13] developed an exact solution which was then approximated by a truncated series expansion,

$$
\begin{equation*}
Z_{o m}=\frac{\eta_{0}}{\sqrt{\epsilon_{e}}\left(W / h+2.42-0.44 h / W+(1-h / W)^{6}\right)} \quad \text { ohm } \tag{1.11}
\end{equation*}
$$

where $W / h \geq 1$. Carver [15] suggested using Schneider's approximation to the above equation,

$$
\begin{equation*}
Z_{o m}=\frac{h \eta_{o}}{W \sqrt{\epsilon_{r}}} \text { ohm } \tag{1.12}
\end{equation*}
$$

and Sengupta [16] suggested using an equation published by Hammerstad [14] that was a modification of Wheeler's result [17] for two parallel strips separated by a dielectric sheet, Hammerstad's equation is,

$$
\begin{equation*}
Z_{o m}=\frac{h \eta_{o}}{\alpha W \sqrt{\epsilon_{e}}} \quad \mathrm{ohm} \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=1+1.393 \frac{h}{W}+0.667 \frac{h}{W} \ln \left(\frac{W}{h}+1.444\right) \tag{1.14}
\end{equation*}
$$

For typical antennas operating at 5 GHz with widths roughly equal to $0.5 \lambda_{8}$, there is only a 5% variation in the calculated characteristic impedances obtained from these three formulas.

As far as the radiated field in the normal direction is concerned, the components of the near field fringing beyond the ends of the patch parallel to the ground plane, E_{y}, add in phase to give a maximum radiated field normal to the element, while for this direction the radiation associated with the E_{z} components is out of phase and cancels. The far field radiation pattern can be determined by the classical methods [18] for a two element side by side array of slots in the $x-y$ plane. This two element array is used in Chapter VI, where it is refined and used to calculate radiation patterns that are in good agreement with measurements.

Derneryd [12] also used this model to calculate the directivity and bandwidth, and to design linear arrays of rectangular patches interconnected with microstrip lines.

It has also been used by Newman et.al. [19] in conjunction with the moment method technique to calculate the input impedance of a rectangular element fed part way along its E-plane axis, as shown in figure 1.2(a). Here the moment method technique is used to determine the slot impedance, and the input admittance of the antenna is determined using the transmission line model shown in figure 1.6 as,

$$
\begin{equation*}
Y_{i n}=Y_{o m} \frac{Z_{o m} C_{1}+j Z_{a} S_{1}}{Z_{a} C_{1}+j Z_{o m} S_{1}}+Y_{o m} \frac{Z_{o m} C_{2}+j Z_{a} S_{2}}{Z_{a} C_{2}+j Z_{o m} S_{2}} \tag{1.15}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{1}=\cos \beta_{s} L_{1} \tag{1.16a}\\
& C_{2}=\cos \beta_{s} L_{2} \tag{1.16b}\\
& S_{1}=\sin \beta_{s} L_{1} \tag{1.16c}\\
& S_{2}=\sin \beta_{s} L_{2} \tag{1.16d}
\end{align*}
$$

At 600 MHz this analytical approach was compared with measurements and shown to be within -1.6% and 32% for the resonant frequency and resonant resistance respectively.

Figure 1.6: The transmission line model of a probe fed rectangular patch.

The transmission line model has been useful for studying rectangular elements operating at fundamental or simple higher order modes in the y-direction. Refer to figure 1.5. However like the more complicated models it depends on an accurate determination of a few key parameters, including: effective dielectric constant, effective
electrical dimensions and the admittance of the equivalent slot antennas that model each end of the element. Chapter V shows that the agreement between the calculated and measured input impedances falls off as the frequency is increased because the formulas used for the above parameters do not model the actual behaviour accurately enough. Chapter V also shows how the accuracy of the transmission line model is improved using an empirical approach to determine some of the key parameters, permitting the use of the model up to at least 5 GHz .

1.2.3 Cavity model

Some of the limitations of the transmission line model have been overcome by various workers using a dielectrically loaded cavity analogy for the microstrip antenna. This analogy was used much earlier for the analysis of microstrip resonators [20,21,22], so its application to antennas has been a natural progression. In this method the antenna was initially modelled by Lo et.al. [23] as a cavity bounded by two short-circuited and four open-circuited walls; and because the cavity is thin, the following assumptions about the electromagnetic fields within it can be made:
i Only the E_{z}, H_{x}, H_{y} components exist within the cavity.
ii The above field components are independent of the z-coordinate over the frequency bandwidth of interest.
iii The electric current in the microstrip must have no component normal to the edge at any point on the edge, implying a negligible tangential component of the magnetic field intensity along the edge.

Initially only rectangular and circular cavities were considered. The rectangular cavity was treated as a section of a microstrip transmission line of length equal to half of the wavelength in the dielectric and supporting a TEM-mode standing wave. The circular cavity was treated as a thin section through a cylindrical cavity supporting a TM standing wave derived from propagation in the z-direction.

Howell [2,3] used the cavity model to calculate the fundamental resonant frequencies of both circular and rectangular elements. For a rectangular element; as was the case using the transmission line model, the fundamental resonance occurs when the distance, L, between the two radiating slots is equal to one half of the wavelength in the dielectric. Therefore,

$$
\begin{equation*}
f_{o}=\frac{c}{2 L \sqrt{\epsilon_{r}}} \tag{1.17}
\end{equation*}
$$

The lowest order resonant frequency for a circular element of radius a is

$$
\begin{equation*}
f_{o}=\frac{1.841 c}{2 \pi a \sqrt{\epsilon_{r}}} \tag{1.18}
\end{equation*}
$$

However the measured resonant frequency was found to be 5% lower than that calculated, mainly because in practice the effective edge of the patch was extended slightly, due to the fringing fields around the patch. This means that the antenna's electrical length or radius is larger than the physical dimensions, hence lowering the resonant frequency. Therefore the physical length L in (1.17) is replaced by the electrical length of the patch ($L+2 \delta L$) using the edge extension given in equation (1.10). The fringing around the edge of the circular patch is taken into account in equation (1.18) by using an effective radius [24], given by

$$
\begin{equation*}
a_{e}=a\left[1+\frac{2 h}{\pi a \epsilon_{r}}\left(\ln \frac{\pi a}{2 h}+1.7726\right)\right]^{0.5} \tag{1.19}
\end{equation*}
$$

where $a / h \gg 1$.

Further consideration of a cavity leads to the possibility of higher order resonant frequencies for microstrip patch antennas [3]. For a rectangular antenna these resonances occur when the distance in the dielectric between the slots is a multiple number of half wavelengths, therefore the resonant frequencies f_{n} are given by

$$
\begin{equation*}
f_{n}=\frac{c}{2 n(L+2 \delta L) \sqrt{\epsilon_{r}}} \tag{1.20}
\end{equation*}
$$

It has also been shown [25] that a series of modes exists for the circular element that is similar to those of a cylindrical cavity except for the boundary conditions at the
edges. Here the resonant frequencies are given by

$$
\begin{equation*}
f_{m, n}=\frac{c X_{m n^{\prime}}}{2 \pi a_{e} \sqrt{\epsilon_{e}}} \tag{1.21}
\end{equation*}
$$

where $J_{m^{\prime}}\left(\boldsymbol{X}_{m n^{\prime}}\right)=0, J_{m^{\prime}}$ being a Bessel Function. The lowest order of resonance occurs when $X_{n^{\prime}}=1.841$.

The cavity model has been extended to determine most of the electrical characteristics of microstrip disc antennas $[26,27,28]$. Here the cavity comprises the patch, the ground plane, and the open circuited walls around the periphery of the patch. The field internal to the cavity is approximated solely by a dominant mode. Because of the close proximity of the patch and the ground plane ($h<\lambda_{s} / 10$), the antenna can be modelled as a thin resonant cavity with equivalent magnetic line currents along the perimeter of the patch. The source of the radiation field of the rectangular antenna is still modelled as a two element side-by-side array of uniformly illuminated slots.

The model has been used to calculate the stored, lost, and radiated energies, and also the input impedance, quality factor, radiation efficiency, and bandwidth. Figure 1.7 is a graph of the quality factor and radiation efficiency against the resonant frequency for rectangular and circular antennas on a 1.524 mm thick substrate with $\epsilon_{r}=$ 2.55 and $\tan \delta=0.0018$. Because the quality factor is inversely proportional to bandwidth ($\% B W=100 / Q$), the figure implies that bandwidth is an increasing function of frequency. The improved bandwidth can be attributed to the increasing electrical substrate thickness which in turn permits greater radiation from the element due to the increased fringing fields.

The cavity model has been very helpful in providing all of the electrical characteristics for microstrip antennas of a few simple shapes, as long as the antenna is thin compared with the wavelength. Both the transmission line and single-mode cavity models give results that are in agreement with measured radiation patterns. However, these models ignore the effects of the terminal region and therefore calculate the input

Figure 1.7: Quality factor (——) and efficiency (-) versus frequency [24]. impedance loci to be symmetrical about the real axis of the Smith chart, which is not the case with the experimental results. Hence good agreement between the calculated and measured input impedance loci only occurs when the feed point is located near the edge of the antenna, because when this is the case, the measured impedance locus is approximately symmetrical about the real axis anyway. The deficiencies of these simple models, as they have been presented in the literature, can be summarised:
i In the case of probe fed elements, they predict resonant frequencies that are a few percent lower than the measured resonant frequencies.
ii They cannot be easily adapted to account for structures that support transverse modes as may be caused by perturbations in the cavity's internal field due to the feed point.
iii They are only suitable for modelling rectangular or circular patches.

The modal-expansion cavity model is an extension of the cavity model already discussed. Again the antenna is viewed as a thin cavity with short circuit and open circuit walls, and the field within the cavity is expanded in terms of a series of discrete resonant modes. Initially the field distributions for the modes are established assuming
that the end and side walls are open-circuited, which implies that there is no radiation from the antenna. Richards et.al. [29] accounted for the radiation and other losses to the cavity by an artificially increased loss tangent, and Carver [15,30] replaced the open-circuited walls by an impedance boundary condition, or wall admittance. The accuracy of both approaches depends on the complex wave number for each mode, the real part of which is used to determine the resonant frequency.

The feed is then modelled as a z-directed current strip and a double summation of cosinusoidal terms is used to represent the cavity field distribution of the resonant modes, where the distribution of the fundamental mode is identical to that used with the transmission line model discussed earlier. A double summation expression is derived for the input impedance which is in effect a Foster [31] expansion of resonant sections. Figure 1.8(a) shows a general network representation of the input impedance. The (0,0) section includes the static capacitance and a resistor to represent losses in the substrate. The $(0,1)$ section represents the dominant mode and is equivalent to the parallel $R L C$ network where the R represents the radiation and losses in the metal cladding and dielectric substrate. The (m, n) section represents an unspecified higher order mode. The infinite number of higher order sections have negligible losses and sum to form a series inductance. The microstrip antenna is typically narrow band; therefore provided that the modes are well separated, the input impedance can be represented by the single (m, n) Foster section and a series inductance, as shown in figure 1.8(b).

The modal-expansion model incorporating the wall admittance gave good input impedance results when applied to circular and rectangular antennas operating at or near 2.2 GHz [30]. The wall conductance was based on a parallel-plate TEM waveguide radiating into an open half space [9], and represents the effects of radiation and cavity losses. The susceptance of the walls represents the energy stored in the fringing fields, and is based on the static capacitance of an open ended microstrip line [14]. The method has been extended using a finite element approach to obtain the magnetic currents on the radiating walls of a general five-sided patch [30].

Figure 1.8: (a) Network model for a multi-mode cavity and (b) a simplified network model for operation around a dominant mode of resonant frequency, $f_{m n}$.

A similar investigation by Carver [32] followed where the field within the cavity was expanded into a Fourier series. Also proposed was an empirical modification to the aperture admittance equations that accounted for the aspect ratio of the metallic patch. At 1 GHz the calculated and measured resonant frequency and resistance were within $\pm 0.25 \%$ and $\pm 5 \%$ respectively. This model was later tested against measurements at 2.2 GHz [15], and showed a 0.5% error in resonant frequency and negligible error in resonant resistance. However as the frequency increased to $+4.5 \%$ above the resonant frequency the error in the input impedance increased markedly. This approach was also shown [33] to give errors in the resonant frequency of 4% when used with rectangular antennas operating at 5 GHz .

Carver [34] used the wall admittance approach in a detailed investigation of the equivalent series reactance of the feed probe. At S-band a comparison between the
calculated and measured series reactance revealed an error of 47%. This unacceptably high error led Carver to conclude that an effective probe diameter of five times the physical diameter should be used in the model. This was also suggested by Richards et.al. [35]. It was further recommended by Carver that the modal-expansion model not be used to determine the series reactance because the computation time is not rewarded by accuracy. Furthermore, as will be elaborated on in Chapter II, the modal-expansion model gives series reactance errors of the order of 250% for a 5 GHz antenna on a 1.57 mm thick substrate fed by a probe of $\mathbf{3 . 0 4 m m}$ diameter.

The second method of representing the radiation from the cavity in equivalent circuit terms is based on an effective loss tangent, which is determined using the quality factor of a non-radiating cavity of the same dimensions and resonant at a frequency slightly higher than the cavity under consideration [29,35]. This approach gives radiation pattern and input impedance results that are in good agreement with measurements for a number of different feed points, even when the dominant mode is not strongly excited. Typical agreement between the measured and calculated resonant frequency is within 0.3%, with negligible difference between the input impedance loci over a 7% frequency bandwidth around 1190 MHz . However, once again the effective radius of the feed probe was used to ensure good agreement between the measured and calculated impedance loci.

Even though the modal-expansion cavity model gives good results for antenna elements that are simple in shape, its application is still limited to antennas mounted on electrically thin substrates because the accuracy of key parameters in the model falls off as the substrate thickness increases. Calculation of the aperture admittance parameter is based on an empirical modification to formulas that ignore radiation. This is a reasonable approach when dealing with electrically thin antennas with minimal fringing fields, but Chapter V shows that it leads to useless results at higher frequencies of the order of 5 GHz . The same limitation applies to the accurate determination of the effective loss tangent because the quality factor of the cavity needs to be assumed
high enough to be insensitive to the frequency, which is the case for electrically thin substrates. Therefore the modal-expansion cavity model remains limited to the analysis of antennas on electrically thin substrates, unless new formulas for the key parameters are found that are applicable to cases where the substrate is not necessarily thin.

1.2.4 Models for numerical analysis.

Rectangular and circular shaped patch antennas have fulfilled most design requirements. However other shapes are occasionally used when particular electrical characteristics of the antenna require enhancement. In particular the pursuit of increased bandwidth performance has resulted in a number of shapes like the pentagon, triangle, and hexagon to be discussed in Chapter VIII. Also rectangular patches have been modified by removing corners or cutting holes or notches into the patch. The models hitherto discussed cannot be easily applied to these arbitrary shapes, therefore numerical techniques have been directly applied to evaluate the currents or the fields associated with these antenna structures.

A wire grid model has been proposed by Agrawal et.al. [36] for the patch and its electromagnetic image. Here the two metal surfaces are modelled by wire meshes of vee-dipoles and the current distribution solved numerically. The dielectric slab is taken into account using empirical frequency shift and impedance scaling information. The results of the analysis were compared with measurements, but it is difficult to establish the accuracy of the work because the authors have tended to minimize computing time at the expense of accuracy. For a 4.4 GHz square patch antenna fed at its edge by a microstrip transmission line, comparisons with measurements show an error in the radiation pattern of 3 dB , a resonant frequency error of 2.3%, and a resonant resistance error of 33%. The method appears to have possibilities as a design tool because it is potentially very general in its application. However it is more costly in computing time than most other methods and provides little physical insight into the operation of this class of antenna.

Carver et.al. [30] used a finite element approach was also used to find the interior fields within a general five-sided cavity. An equivalent aperture admittance was placed around the boundary of the patch in the same manner as was used with the modalexpansion cavity model, and therefore once again the accuracy of the results depends upon empirically modified formulas that are only useful at lower frequencies. The results of this work could not be found in the open literature so it is highly possible that it was never finished.

A general method of moments solution of the reaction integral equation was proposed by Newman et.al. [37] to determine the electric and magnetic surface currents associated with a strip dipole on a thin dielectric slab, where the volume equivalence theorem was used to replace the dielectric inhomogeneity by equivalent volume polarisation currents in free space. The work was later continued using a surface patch model for a patch antenna and a thin-wire model for the feed lines [38]. The image theory was used to account for the ground plane. Very good input impedance results were shown for rectangular and pentagonal shaped patches operating at frequencies up to 1200 MHz . For the rectangular patch the agreement was within 0.08% and 15% for the resonant frequency and resonant resistance respectively. In fact at this frequency the accuracy of the model is no better than that obtained using the transmission line and cavity models. Even compared to the other numerical analysis techniques, the model requires excessive computing time because of the high precision needed for the computation of the impedance matrix.

Another method of moments solution was proposed by Pozar [39], and uses an exact Green's function to analytically account for the dielectric slab and ground plane. The earlier problem [38] of the sensitivity of the input impedance results to the numerical accuracy was overcome because the ground plane was included in the Green's function. Also the Green's function rigorously accounts for the surface waves launched into the dielectric. For rectangular patch antennas operating at 660 MHz , this approach provides results that agree with measurements to within -0.08% and $+23 \%$ for the reso-
nant frequency and resonant resistance respectively. Also the mutual coupling between rectangular antennas at 1410 MHz was calculated to within $\pm 1 \mathrm{db}$ of measurements. However, the excellent agreement with measurements was only arrived at after the adjustment of the dielectric constant.

1.3 Conclusions

The analytical models for the radiation pattern and input impedance of microstrip antennas fall into three main categories. In the first category the transmission line model is simple and provides results that are adequate for the design of microstrip transmission line fed rectangular antennas. The modal-expansion cavity model is in the second category, and can be applied to simple shaped antennas and their feed structures. The accuracy of both the transmission line model and the modal-expansion cavity model, incorporating the boundary condition, depends on the accuracy of the aperture admittance. The resonant frequency is a function of the aperture susceptance and the aperture conductance has a major effect on the resonant resistance. The aperture admittance that has been used in both of these models is based on the empirical adjustment of equations that were originally proposed for use with thin microstrip lines, or long thin slot radiators. Some of these equations for the key parameters of the models are based on electrostatic considerations, and ignore dispersion and radiation and the possible effect of evanescent modes on the field distribution around the patch periphery. Moreover they are demonstrated in the following chapters to give incorrect results as the frequency increases to 5 GHz . Modelling the patch and its image by fine wire grids is representative of the third category of analytical models, and is applicable to the analysis of antenna structures of general shape. This approach could be carried out using one of the widely available wire grid computer-aided analysis programs. Although the results obtained using the wire grid model are in fair agreement with measurements, it is clear that the electromagnetic near fields of the antenna are not accurately represented. Firstly, the same current distribution is supported above and below each of the wire meshes, which is not the case for the patch and its image in an inhomogeneous medium. Secondly,
the image principle is widely applied to field problems involving electrostatic charges and isolated thin wires supporting electromagnetic fields above ground planes. However the application of this principle to meshes of wire antennas does not necessarily follow. Along with the other two classes of analytical models, this wire grid model requires the empirical adjustment of key parameters and has the disadvantage of demanding much more computer power than the models in the other two categories.

The analysis of the microstrip antenna element is made very difficult because the electromagnetic fields around the periphery of the patch exist in an inhomogeneous medium. Figure 1.1 shows that the half-space above the ground plane is partly filled with air and partly with a thin dielectric substrate of some non-unity dielectric constant. The problem is more clearly illustrated if the transmission line model is used, and the patch is treated as a section of microstrip transmission line comprising a plate above a ground plane. Firstly the image principle is used to replace the currents in the ground plane by another fictitious plate located a distance $2 h$ from the first plate at $z=-h$ on figure 1.1. A length of parallel-plate transmission line is the result, comprising two plates separated by a dielectric substrate of thickness $2 h$. If this structure was in a homogeneous uniform isotropic medium, then it could support two TEM waves propagating in the plus and minus y-directions, and the analysis would be relatively straight forward. But for the partially filled space under consideration the structure can only support a set of hybrid modes having non-zero E_{y} and H_{y} components. However at low frequencies the lowest-order hybrid mode resembles a TEM mode and is therefore referred to as a quasi-TEM mode, and because the antenna is a half wavelength long section of this transmission line, this quasi-TEM standing wave distribution can be used to approximate the field between the patch and the ground plane. This complexity in the mode structure has impeded the development of solutions sufficiently accurate for engineering purposes for even the simplest electrical parameters. Chapter VI describes an investigation into the fringing field distributions around the patch using a liquid crystal film. It is concluded that, for frequencies above 3 GHz , the distribution under
the patch is much more complicated than a quasi-TEM mode would indicate.

In the absence of an exact electromagnetic treatment of the antenna element, various workers have used approximate solutions based on quasi-static or full-wave representations of the electromagnetic problem. Then part of their procedure appears to have been the empirical adjustment of results to account for the approximations in the field distribution under the patch, particularly those that occurred when radiation was ignored. These approaches have been very useful for the input impedances and radiation patterns of antennas operating at frequencies up to 3 GHz , where the radiation efficiency of the structure is low. As the frequency is increased however, 80 does the effective electrical thickness of the substrate thereby permitting increased fringing and associated radiation, eventually rendering the previous refinements useless.

The aim of this investigation is to develop a computer-aided design program for rectangular elements operating at frequencies beyond those where the existing analytical models have been successfully applied. There are numerous examples in the open literature of analytical techniques that have been useful at frequencies below 3 GHz . However, microstrip antennas are typically used up to 10 GHz and to a lesser extent up to 30 GHz . This investigation was carried out around 5 GHz because of the extensive use of this band in radar, communication and biomedical applications, and because the models suggested in the literature are very inaccurate at $\mathbf{5 G H z}$.

This investigation uses a lossy cavity model to determine the resonant frequency and the bandwidth, and a transmission line model for the input impedance, far field radiation pattern and mutual coupling. These models were chosen instead of the more complicated ones because:
i They have been shown to be quite adequate for design purposes at lower frequencies, giving useful results for resonant frequency, input impedance, radiation pattern, and mutual coupling.
ii They use the same field distribution under the patch as the fundamental mode
used in the cavity models, and the assumption that most of the energy is stored in the fundamental mode is reasonable because the antenna has such a narrow bandwidth. Also, the transmission line model will require no more empirical refinement than the modal-expansion cavity model because the accuracy of both models is dependent on knowledge of the aperture admittance.
iii Given a fundamental acceptance that modelling of the antenna at frequencies of about 5 GHz will necessarily require a large empirical component in determining the key electrical parameters, it is then an advantage to use simple models where reasonably obvious account of the electromagnetic phenomenon taking place can be maintained. Another advantage is that the simple models will only require moderate computing facilities.

Novel models for the main electrical characteristics of rectangular microstrip antennas will now be developed for application in a computer-aided design program. The starting point is to model the equivalent series reactance of the coaxial feed probe because it must be known before the resonant frequency and input impedance can be calculated. Chapter II surveys the literature associated with modelling the feed probe and goes on to describe an extensive experimental investigation into the characteristics of the probe. A coaxial transmission line with an empirical taper is then developed as a model. The resonant frequency is discussed in Chapter III. Here a cavity model is used as the basis for the introduction of specific definitions for resonant frequency, and the development of an empirical model for the effective edge extension. The cavity model is also used in Chapter IV, where the definition of bandwidth usually applied to single port resonant cavities is put forward as a more appropriate definition of bandwidth for microstrip antennas, particularly when there is a need for bandwidth comparisons between antennas, as is the case in Chapter VIII. The models for the aperture admittance are reviewed in Chapter V, and then the transmission line model with empirical aperture admittances is used to calculate the input impedance. Chapter VI describes some of the properties of the effective apertures at each end of the antenna, and then
continues with the calculation of the radiation pattern using a two aperture side-by-side array. A far field radiation model is used to calculate the mutual coupling in Chapter VII. Finally Chapter VIII explores the bandwidth properties of the antenna and the efforts of other researchers to enhance the bandwidth of microstrip antennas generally. A novel hexagonally shaped patch is then proposed as a more suitable element than the rectangular patch because of its superior bandwidth and gain characteristics.

The new models for calculating many of the electrical characteristics of rectangular microstrip antennas and arrays operating up to 5 GHz are incorporated into a computer-aided design program listed in Appendix C. The body of the thesis describes the development and testing of the models used in the program.

CHAPTER II

A TAPERED TRANSMISSION LINE MODEL FOR THE COAXIAL FEED PROBE

2.1 Introduction

This chapter describes an investigation into the characteristics of the feed point region of probe fed microstrip antennas. The study of the feed point precedes the chapters to come because the results of the resonant frequency and input impedance models must be transferred, using the feed point model, to the antenna terminals before they can be compared with measurements. So an accurate model for the feed point is required before the resonant frequency and input impedance of the antenna can be considered.

Lo et.al. [23] proposed modelling the microstrip antenna by a resonant cavity in series with an inductive reactance, called the series reactance. Figure 1.8(b) shows this network model where the series reactance represents the effects of the probe on the cavity resonant circuit, where $X_{s}=\omega L_{s}$.

Insight into the characteristics of the probe is obtained if the self-inductance of a short length of wire is used as a model. Basic physics suggests that the self-inductance of the wire is proportional to its length and inversely proportional to its diameter. This will be shown to be the case for the coaxial probe.

The series reactance has been measured in three independent investigations. In each case the probe is terminated in a different load with the aim of isolating the
effect of the connection region from the measured input impedance versus frequency characteristics of the overall apparatus. The first arrangement terminates the probe in a large cavity and the second in a short circuited, low characteristic impedance transmission line. In the third arrangement the probe is used to feed a rectangular patch antenna. The measured series reactances are used to show that the results of the analytical and empirical models proposed by other authors become increasingly inaccurate as the frequency increases, and in fact seriously incorrect at 5 GHz .

A new model for deriving the series reactance of the probe is also proposed. A tapered transmission line is used to transform a short circuit termination down the length of the probe to the antenna's terminals at the ground plane, where the taper has been empirically determined to be a function of the dimensions of the probe and the aspect ratio of the patch. This model will be shown to give series reactances that agree with measurements for a variety of commonly used antenna and feed dimensions, and operating up to 5 GHz .

2.2 Models for the series reactance

The need to determine the series reactance is illustrated by considering the Smith chart plot of the measured input impedance versus frequency characteristic of a rectangular microstrip antenna resonant at 5 GHz , refer to figure 2.1. The locus can be closely approximated by a circle of best fit, which in turn can be approximated by the input impedance of the network shown in figure 1.8 (b); that is, an $R L C$ resonant circuit fed through a series inductive reactance. The plot of the input impedance of an $R L C$ circuit, as seen from the detuned short position [41], is a circle placed symmetrically about the real axis of the chart. The effect of adding the series reactance, $+j \omega L_{8}$, to each point on the locus is to transform the circular locus around the chart in a clockwise direction. The problem is to model this transformation of the input impedance locus. The models to be described in the following sections use either a series inductance derived from the net reactance of a parallel combination of detuned $R L C$ networks or a

Figure 2.1: Transforming the measured input impedance versus frequency locus of a rectangular microstrip antenna, 16.93 mm by 16 mm by $1.57 \mathrm{~mm}, D=5.5 \mathrm{~mm}, \epsilon_{r}=2.55$: measured locus (\quad mund), circle of best fit to the measured locus (——), and the circle of best fit referred to the detuned short position (--).
transmission line analogy.

2.2.1 Modal-expansion cavity model

Richards et.al. [29] suggested that the transformation in the impedance locus is due to the energy stored in higher order mode resonances within the cavity. The antenna's input impedance is in affect a Foster [31] expansion and is represented by the network shown in figure 1.8(a). Notice that the series inductance, L_{s}, represents the net energy stored in all of the higher order Foster sections, and contributes to the calculated impedance locus of the Foster sections being displaced by $+j X_{s}$ to the inductive side of the Smith chart's real axis. Carver [34] expanded the fields within the cavity into a series of modes for a detailed investigation of the effects of both the coaxial and microstrip line type feed point structures. The narrow-band approximation to the resulting expression
for the input impedance describes the input impedance of the resonant network shown in figure $1.8(\mathrm{~b})$, where the parallel $R L C$ circuit represents resonance at the dominant TM mode frequency. The R represents the resistive losses and the radiation associated with the dominant mode, and L_{s} is the net series inductance of the higher order modes. This approach has been used to show the dependence of the series reactance on the probe diameter and feed point position, shown in figures 2.2 and 2.3 respectively [34].

The results graphed in figure 2.2 show that the series reactance is a decreasing function of the diameter of the probe. It also shows that the series reactance increases by 6Ω when W / λ_{o} increases from 0.304 to 0.503 , which is equivalent to an increase in the aspect ratio (W / L) from 0.96 to 1.60 . From figure 2.3 it is concluded that the series reactance is almost independent of the position of the feed point, except for $D / L \leq 0.1$. Figure 2.3 also presents the results of an experimental investigation carried out by Carver [34] which shows that the series reactance is independent of the position of the feed point for a $0.02 \mathrm{~W}\left(0.01 \lambda_{o}\right)$ diameter probe. It is disappointing that the experimental technique was not described because these measurements disagree with the conclusion obtained when measured input impedances of Carver [30] are used to derive values of the series reactance. That is, it will be later shown in figure 2.21 that the position of the feed point does have an effect on the series reactance. However, the measurements shown in figure 2.3 can be used to verify the conclusion of Richards et.al. [29] that the probe diameter to be used with the modal-expansion model should be an effective diameter equal to five times the physical diameter of the probe. Carver [34] goes on to conclude that the computational time required by this method is not justified because the results are not accurate and in fact, require the probe diameter term to be altered in order to ensure good agreement with measured series inductances.

2.2.2 Transmission line models

Carver [34] proposed the use of the classical transmission line equation to calculate the inductance of the probe, where the equivalent inductance of the probe was

Figure 2.2: Series reactance calculated using the modal-expansion method versus probe diameter (d) for a rectangular element: $h=0.0116 \lambda_{o}, D=0.05 L, \epsilon_{r}=2.5$, for $W=$ $0.503 \lambda_{o}(\longrightarrow)$ and $0.304 \lambda_{o}(-\longrightarrow)$.

Figure 2.3: Series reactance calculated using the modal-expansion method versus probe inset distance (D) for a rectangular element: $h=0.0116 \lambda_{o}, \epsilon_{r}=2.5, W=0.503 \lambda_{o}$, for $d=0.02 \mathrm{~W}(-)$ and $0.1 W(-$). The results of an experimental study are also shown where $d=0.02 W(x)$.
obtained using a simple formulation that ignores the probe diameter and views the reactance as that of a coaxial transmission line of length h which is shorted by the top patch. There was no detailed explanation given by Carver, however his result can be obtained if a number of assumptions are made and his line of reasoning postulated.

The variation of input impedance with frequency shown in figure 2.1 gives rise to the notion that a microstrip antenna can be considered as a leaky resonant cavity in series with an inductance L_{s}. Figure 2.4 shows the development of this model schematically. Firstly consider the cross-section diagram of the antenna and feed shown in figure 2.4(a). Notice that the coaxial line feeding the antenna supports a transverse electromagnetic wave which extends into the region around the probe. Reference planes (1) and (2) respectively represent the antenna terminals, defined at the ground plane, and the point at which the feed probe contacts the metallic patch. The problem is then to model the self-inductance of the thin wire between the two planes (1) and (2). Figure 2.4(b) gives the network equivalent, where the effect of the probe is taken into account by the inductance L_{s}. Characteristic impedances Z_{o} and $Z_{o p p}$ are respectively that of the transmission line feeding the antenna and the equivalent wide parallel-plate transmission line that terminates the probe. Figure 2.4(c) shows the result of the parallel combination of the two low impedance microstrip transmission lines Z_{r}, and figure 2.4(d) the network after the parallel combination is approximated to zero. Finally in figure $2.4(\mathrm{e})$ the lumped inductance component is replaced by an equivalent coaxial transmission line terminated in a short circuit. $Z_{o t}$ is the characteristic impedance of the coaxial transmission line between reference planes (1) and (2). Carver's [34] expression for the series reactance is that for the sending end impedance of a short circuited coaxial transmission line of length h, and is obtained using the transmission line equation [8],

$$
\begin{equation*}
Z_{s}=Z_{o t} \frac{Z_{r}+Z_{o t} \tanh (\gamma h)}{Z_{o t}+Z_{r} \tanh (\gamma h)} \tag{2.1}
\end{equation*}
$$

This is used to derive an expression for the impedance at reference plane (1) in figure 2.4(e). That is, equation (2.1) is used to transform the approximate short circuit at
plane (2),

$$
\begin{equation*}
Z_{r} \approx 0 \tag{2.2}
\end{equation*}
$$

through a distance h to the antenna terminals at plane (1). Assuming that the attenuation, α, is negligible, then

$$
\begin{equation*}
\gamma=j \beta_{s} \quad=\frac{2 \pi}{\lambda_{s}} \quad=\frac{2 \pi \sqrt{\epsilon_{r}}}{\lambda_{o}} \tag{2.3}
\end{equation*}
$$

When equations (2.2) and (2.3) are substituted into (2.1), the resulting expression for the series reactance $\left(Z_{s}=j X_{s}\right)$ is:

$$
\begin{equation*}
X_{s}=Z_{o l} \tan \frac{2 \pi h}{\lambda_{s}} \tag{2.4}
\end{equation*}
$$

In determining the characteristic impedance of the coaxial line Carver has chosen the special case of a line of dimensions such that its characteristic impedance is that of a dielectric filled free space. Thus

$$
\begin{equation*}
Z_{o t}=\frac{\eta_{o}}{\sqrt{\epsilon_{r}}} \tag{2.5}
\end{equation*}
$$

However Carver [30,34] has been inconsistent in that the evacuated free space wavelength is used, rather than the wavelength in the substrate as shown in equation (2.4). Newman et.al. [19] uses the wavelength in the substrate.

Figure 2.5 shows the series reactance versus the substrate thickness for both of the above cases, together with the results obtained by the modal-expansion cavity model and a measured result [34]. At $h / \lambda_{s}=0.018$, the error between the measured reactance and the reactance calculated using equation (2.5) and the free space wavelength is only 1.0Ω, or 6%. However it will be shown later that the results of experimental work carried out as part of this investigation at 5 GHz indicate that the reactances calculated by the transmission line model, using either wavelength, become increasingly inaccurate as the substrate thickness increases.

Figure 2.4: Schematic representation of the development of Carver's transmission line feed point model, (a) sketch of the electric field in the proximity of the probe and, (b),(c) and (d) lumped parameters models and (e), its transmission line equivalent.

Figure 2.5: Series reactance calculated by the transmission line model using λ_{o} (- -) and λ_{8} (-); and the modal-expansion model for $d=0.016 \lambda_{s}$ (--一) and $d=$ $0.08 \lambda_{s}(-\cdots-\cdots)$. A measured result (x) is also shown. $\left(\epsilon_{r}=2.5\right)$

Grifin et.al. [43] proposed another transmission line model for the series reactance of the probe. The model was initially applied to probe fed disc antennas of radius a, fed through a probe of radius $d / 2$. The radius of the outer conductor of the equivalent coaxial transmission line was assigned to the disc radius and the radius of the probe used for the inner conductor. The reactance is calculated by transforming an equivalent short circuit load at the patch, through the distance h, to the antenna terminals. The characteristic impedance of the of the coaxial line is

$$
\begin{equation*}
Z_{o t}=\frac{60}{\sqrt{\epsilon_{r}}} \ln \frac{2 a}{d} \tag{2.6}
\end{equation*}
$$

and the series reactance is then

$$
\begin{equation*}
X_{s}=Z_{o t} \tan \frac{2 \pi h}{\lambda_{s}} \quad \text { ohm } \tag{2.7}
\end{equation*}
$$

This approach has been applied to a rectangular patch, replacing the disc radius in (2.6) by the distance from the centre to the corner of the rectangle that forms the patch. The result of a test of the model is shown in figure 2.6, together with the transmission line model of Carver, using the free space wavelength, and the results of other models yet to be discussed.

2.2.3 Model based on the fleld solution of a coaxial feed probe located in a radial waveguide

Sengupta $[16,44,45]$ proposed a model where the series reactance is a function of the probe diameter

$$
\begin{equation*}
X_{s}=\frac{Z_{o m} \beta_{s} W \alpha}{2 \pi} \ln \left(\frac{4}{\gamma \beta_{s} d}\right) \quad \text { ohm } \tag{2.8}
\end{equation*}
$$

where α is a factor calculated by equation (1.14) and Euler's constant, $\gamma=1.781$. This expression was obtained from considerations similar to those for the excitation of a parallel-plate guide supporting a dominant E-type radial mode. Figure 2.6 shows a test of this model.

2.2.4 Model that uses a parallel-plate transmission line to represent the transverse mode

A more detailed model that includes the aspect ratio of the patch has been proposed by Lier [46], where the series reactance is the series combination of two reactances X_{f}^{t} and X_{q}. Figure 2.7(a) shows a W_{e} wide rectangular patch resonant over the length L_{e} and fed at a general point (x_{o}, y_{o}). Lier uses X_{f}^{l} to represent the contribution towards the energy stored in the region of the feed point from a travelling wave propagating in the y-direction. Figure $2.7(\mathrm{~b})$ is a circuit representation of the resonant antenna where Z_{k}^{t} is the characteristic impedance of the parallel-plate transmission line in the y-direction. The open circuit terminations at $y=0$ and $y=W_{e}$ are transformed along the parallel-plate transmission line to the feed point where they are combined in

Figure 2.6: Calculated series reactance for the case of an APC-7 probe, where $d / \lambda_{s}=$ $0.08, h / \lambda_{s}=0.04, \epsilon_{r}=2.55$.: calculated by Carver's transmission line model using λ_{o} (—), Griffin (-••一), Lier ($\cdots \cdots \cdot)$, Sengupta ($-\cdots-\cdots$).
parallel to give

$$
\begin{equation*}
X_{f}^{t}=\frac{-Z_{k}^{t}}{\tan \left(\pi W_{e}^{\prime} / L_{e}\right)+\tan \left(\pi W_{e}^{\prime \prime} / L_{e}\right)} \quad \text { ohm } \tag{2.9}
\end{equation*}
$$

where the effective electrical lengths and widths are defined in figure 2.7(a).
The reactance $\boldsymbol{X}_{\boldsymbol{q}}$ is representative of the energy stored in higher-order modes, and is obtained by a calculation of the input reactance of a square cavity excited at the resonant frequency through a coaxial probe located in the centre of the patch. The result is:

$$
\begin{equation*}
X_{q}=\mu_{o} h f_{o} \ln \left(\frac{2 c}{\pi \gamma \sqrt{\epsilon_{r}} d f_{o}}\right) \quad \text { ohm } \tag{2.10}
\end{equation*}
$$

where f_{o} is the frequency of the resonant mode and γ is Euler's constant. The total series reactance is then

$$
\begin{equation*}
X_{s}=X_{q}+X_{f}^{t} \tag{2.11}
\end{equation*}
$$

This series reactance has been calculated for the previously considered antenna and plotted on figure 2.6. It can be seen that the reactances calculated using this model lie between those of Griffin and Sengupta. Lier [46] also presented the results of an experimental investigation which will be discussed in section 2.3.3.

(a)

(b)

Figure 2.7: (a) The geometry for a rectangular element fed at a general point, and (b) the circuit representation of the antenna, where the transmission line is related to the transverse mode.

The apparent similarity between equations (2.10) and (2.8) can be better appreciated if both equations are simplified. If equation (1.13) is substituted into (2.8) the
resulting equation of Sengupta is

$$
\begin{equation*}
X_{s}=\frac{\eta_{o} h}{\lambda_{o}} \ln \left(\frac{2 \lambda_{o}}{\gamma \pi \sqrt{\epsilon_{r}} d}\right) \tag{2.12}
\end{equation*}
$$

Lier's equation can be simplified using

$$
\begin{align*}
c & =\frac{1}{\sqrt{\mu_{o} \epsilon_{o}}} \tag{2.13}\\
\eta_{o} & =\sqrt{\frac{\mu_{o}}{\epsilon_{o}}} \tag{2.14}
\end{align*}
$$

to give

$$
\begin{equation*}
X_{s}=\frac{\eta_{o} h}{\lambda_{o}} \ln \left(\frac{2 \lambda_{o}}{\gamma \pi \sqrt{\epsilon_{\mathrm{r}} d}}\right) \tag{2.15}
\end{equation*}
$$

Thus equations (2.12) and (2.15) are the same.

2.2.5 Conclusions

All of the models presented have been useful in studying the dependence of the series reactance upon the antenna geometry. However, the difference between the calculated and measured reactances will be shown, in the next section, to increase rapidly as the equivalent electrical thickness of the substrate increases. This problem will be clearly illustrated when the results of these models are compared with measurements made around 5 GHz .

2.3 Experimental investigations

The series reactance has been measured by three methods, where in each case the probe is terminated in a different load with the aim of isolating the effect of the connection region from the measured input impedance versus frequency characteristics of the overall structure. The first arrangement terminates the probe in a large cavity and the second in a short circuited low characteristic impedance transmission line. In the third arrangement the probe is used to feed a rectangular patch antenna. The measured series reactances are used to show that the results of the analytical and empirical models
proposed by other authors become increasingly inaccurate as the frequency increases, and in fact become seriously incorrect as the frequency approaches 5 GHz .

2.3.1 The large cavity method

In order to isolate the series reactance from the input impedance presented to the probe by the patch structure, the metallic patch associated with the antenna was removed and replaced by a large sheet of copper. In essence, the coaxial probe was then feeding a large sheet of double sided copper clad board, refer to figure 2.8(a). The network in figure $2.8(\mathrm{~b})$ shows the coaxial probe represented by a series reactance, X_{s}, and the sheet as a large open cavity with input impedance Z_{c}, called the cavity impedance. Therefore a value for the series reactance can be determined from the measured input impedance of the overall structure, $Z_{i n}$, as long as the value of Z_{c} is known or at least can be approximated. Moreover it is only the reactive component of the cavity impedance that needs to be known. The length and width of the cavity were chosen large while the substrate thickness was minimised in order that Z_{c} might approach a short circuit. The value of the imaginary component of the cavity impedance will be later shown to approximate zero over the frequency range of interest. Hence the measured input reactance of the structure can be equated to the series reactance of the probe.

Measurements of the input impedance were performed on four structures over a twenty percent frequency bandwidth, using the following combinations of connector type and substrate thickness: APC-7/1.57mm, APC-7/0.735mm, SMA/ 1.57 mm and SMA $/ 0.735 \mathrm{~mm}$. The relevant connector dimensions are listed in Appendix A, and the dimensions of the cavity were $10.8 \lambda_{s}$ by $24.3 \lambda_{s}$ by $0.04 \lambda_{s}$ at 5 GHz .

A typical result for the measured input impedance versus frequency is shown in figure 2.9 for the case of an APC-7 connector feeding a 1.57 mm thick substrate. The figure shows a cluster of reflection coefficient points with significant real and imaginary components. This cluster is attributed to the reflection coefficient of the series com-

(a)

Figure 2.8: (a)The apparatus for the large cavity experiment and (b), its network model. bination of the series reactance, \boldsymbol{X}_{b}, and the cavity's input impedance, \boldsymbol{Z}_{c}, where the contribution of the latter will be shown to be less significant.

A better understanding of the complex nature of this measured result is obtained if the magnitude and phase of the reflection coefficient versus frequency are presented separately. See figures 2.10 and 2.11. Both graphs show an almost random variation about a mean value, and in both cases the mean value is decreasing with frequency. The mean values of the amplitude and phase of the reflection coefficient at 5 GHz are -5.2 dB and 142°, which is equivalent to an impedance of $16+j 16.5 \Omega$. Before a value for the series reactance at 5 GHz can be derived from this measured result further explanation regarding the effect of the cavity impedance is required. Firstly the cavity impedance,

Figure 2.9: Smith chart plot of the measured reflection coefficient for a 1.57 mm thick large cavity fed by an APC-7 probe.
Z_{c}, is calculated using a dual transmission line model and secondly a multi-mode cavity model is used to further explain the experimental observations.

The input impedance of the cavity excluding the series reactance is calculated using a model comprising two orthogonal parallel-plate transmission lines, refer to figure 2.12. The propagation constant, γ, and the characteristic impedance, $Z_{o m}$, for each of the lines are calculated [47] using,

$$
\begin{align*}
\gamma & =\sqrt{(R+j \omega L)(G+j \omega C)} \tag{2.16}\\
Z_{o} & =\sqrt{\frac{R+j \omega L}{G+j \omega C}} \tag{2.17}
\end{align*}
$$

where the distributed line constants are

$$
\begin{gather*}
R=\frac{2 \operatorname{Real}\left(Z_{s}\right)}{W} \tag{2.18}\\
L=\frac{\mu h}{W}+\frac{2 \operatorname{Imag}\left(Z_{s}\right)}{W} \tag{2.19}\\
2-16
\end{gather*}
$$

$$
\begin{align*}
& G=\frac{W \sigma_{d}}{h} \tag{2.20}\\
& C=\frac{\epsilon W}{h} \tag{2.21}
\end{align*}
$$

and Z_{s} is the surface impedance of the copper cladding given by

$$
\begin{equation*}
Z_{s}=\sqrt{\frac{j \omega \mu}{\sigma_{c}}} \tag{2.22}
\end{equation*}
$$

Using the dielectric and copper conductivities

$$
\begin{aligned}
& \sigma_{d}=1.0 \mathrm{E}-12 \quad U / \mathrm{m} \\
& \sigma_{c}=5.8 \mathrm{E}+7 \quad \mathrm{U} / \mathrm{m}
\end{aligned}
$$

The per unit length line constants for the wide and narrow transmission lines are listed in Table 2.1. Also listed in the table are the input impedances, calculated using Harrington's equations (1.5) and (1.6), for the two radiating apertures at each end of the two transmission lines. The cavity impedance is calculated as a function of the frequency over a 3.5 GHz to 6.5 GHz bandwidth. Figures 2.13 and 2.14 show the magnitude and phase of the equivalent reflection coefficient normalised to 50Ω.

The magnitude of the calculated reflection coefficient, figure 2.13 , displays a number of resonances across the band, where the typical quality factor is approximately equal to 600 . Figure 2.14 shows that the phase of the calculated reflection coefficient is reflected through 180° at each resonant frequency. The phase is bounded within plus or minus 3°, and the average phase over the bandwidth is 180°. So it can be concluded that the reflection coefficient of the cavity is

$$
\left|k_{c}\right| \leq 0.8 d B
$$

and

$$
\text { phase }\left(k_{c}\right)=180^{\circ} \pm 3^{\circ}
$$

or in terms of the cavity impedance

$$
\operatorname{Real}\left(Z_{c}\right) \begin{cases}\leq 2.3 \Omega & \text { at any of the resonances } \\ \approx 0 & \text { otherwise }\end{cases}
$$

Figure 2.10: Magnitude of the measured reflection coefficient versus frequency for a 1.57 mm thick large cavity fed by an APC-7 probe.

Figure 2.11: Phase of the measured reflection coefficient versus frequency for a 1.57 mm thick large cavity fed by an APC-7 probe.

Figure 2.12: Transmission line model for the large cavity apparatus.

Large cavity model parameters at 5GHz		
Parameter	Wide line	Narrow line
$h(\mathrm{~mm})$	1.57	1.57
$L(\mathrm{~mm})$	913	406
$W(\mathrm{~mm})$	406	913
$\alpha \mathrm{n} / \mathrm{m}$	0.05	0.05
$\beta \mathrm{rad} / \mathrm{m}$	167.3	167.3
$\operatorname{Re}\left(Z_{o}\right) \Omega$	0.91	0.41
$\operatorname{Im}\left(Z_{o}\right) \Omega$.0003	.0001
$R \Omega / \mathrm{m}$	0.09	0.04
$\omega L \Omega / \mathrm{m}$	152.8	67.9
$G U / \mathrm{m}$	$0.26 \mathrm{E}-9$	$0.58 \mathrm{E}-9$
$\omega C U / \mathrm{m}$	181.8	416.7
$R_{a} \Omega$	5.5	2.4
$X_{a} \Omega$	-8.2	-3.6

Table 2.1: Parameters for the large cavity transmission line model.
and

$$
-1.3 \Omega \leq \operatorname{Imag}\left(Z_{c}\right) \leq+1.3 \Omega
$$

The average cavity impedance over the frequency bandwidth closely approximates a short circuit. Therefore, the input impedance of the overall structure can be equated to the series reactance of the probe. However, the measured input impedance has a significant real component, equal to 16Ω at 5 GHz , which is hitherto unaccounted for in the dual transmission line model.

The complex nature of the measured input impedance can also be explained when it is appreciated that the probe is coupling into many closely spaced modes, all of high index, which are specified according to the cavity's length and width dimensions. At any single frequency, the degree of coupling into each mode is dependent on the position of the feed point relative to the field distribution of each and every mode, as well as the frequency and quality factor of that mode. Therefore due to the multiplicity of modes, it follows that their degrees of coupling and hence their reflection coefficients are almost random. Furthermore there are a large number of weakly coupled off-resonant modes both above and below the bandwidth of interest. The real part of the cavity impedance that is observed in the measurements, but not included in the results of the dual cavity model, is therefore attributed to the sum of the copper and dielectric losses associated with the multiplicity of off-resonant modes.

Greater insight into the measured input impedance of the overall structure is obtained if the complicated effects of the cavity resonances are removed from the magnitude and phase of the measured reflection coefficient. So the results of figures 2.10 and 2.11 are averaged over the frequency band by rejecting the excessive excursions, $\pm 2 \mathrm{~dB}$ or ± 20 degrees respectively, and then deriving the lines of best fit. The figures show that the magnitude and phase of the average measured reflection coefficient decrease with frequency. These observations can be explained by considering the associated increase in the electrical length of the probe. This increased length will result in more energy
being coupled into the cavity as well as an increase in the effective inductance of the probe, as seen from the terminals of the cavity.

Figure 2.15 shows the resulting Smith chart plot of the reflection coefficient versus frequency that is constructed from the lines of best fit for the respective reflection coefficient magnitude and phase. This arc represents the measured input impedance of the large cavity apparatus without the complex resonance effects of the cavity. Using the same process of averaging, similar arcs were determined for the other connector and substrate thickness combinations. In each case the input reactance was equated to the equivalent series reactance of the feed probe. Table 2.2 lists the results obtained at 5 GHz for the four connector and substrate thickness combinations.

This large cavity experiment has been useful in showing the frequency dependence of the series reactance. Figure 2.16 shows this dependence for the connector and substrate thickness combination of APC-7/1.57mm. The figure also shows the results of the shorted transmission line experiment, to be discussed next.

2.3.2 The short circuited transmission line method

A second technique to measure the series reactance directly provides a single frequency check of the experimental results already presented. Figure 2.17(a) shows the transmission line model of a general rectangular patch antenna with X_{s} included. For the purpose of measuring only \boldsymbol{X}_{s}, the radiating walls at each end of the transmission line are replaced by short circuit loads, the feed point is moved to the transmission line's centre, and the line length, L, is chosen such that the distance between the plane of the feed point and each short circuit load is equal to half the wavelength in the dielectric. Refer to figure 2.17(b). Therefore, when the two short-circuit loads are transformed down the transmission lines to the feed, they form another short across the series combination of X_{s} and the feed terminals, refer to figure 2.17(c). Thus the measured reactance equals the series reactance.

Figure 2.13: Using the dual transmission line model, the magnitude of the calculated reflection coefficient versus frequency for a 1.57 mm thick large cavity fed by an APC-7 probe.

Figure 2.14: Using the dual transmission line model, the phase of the calculated reflection coefficient versus frequency for a 1.57 mm thick large cavity fed by an APC-7 probe.

Figure 2.15: Averaged reflection coefficient for a 1.57 mm thick large cavity fed by an APC-7 probe.

Series reactance using the large cavity method Probe type Substrate thickness		
	0.80 mm	Substrate thickness
	6.8Ω	1.57 mm
APC-7	11.7Ω	16.5Ω
SMA	19.2Ω	

Table 2.2: Measured series reactance at 5 GHz for a large cavity: 424 mm by 955 mm by (1.57 mm and 0.8 mm), where $\epsilon_{r}=2.55$.

Figure 2.16: Series reactance versus frequency results for the large cavity (—_) and shorted transmission line $(\times \times \times)$ experiments, where an APC-7 connector is feeding a 1.57 mm thick substrate.

Four experiments were carried out using an APC-7 probe with $W=16 \mathrm{~mm}, h=$ 1.57 mm , and $L=39.6 \mathrm{~mm}, 39.0 \mathrm{~mm}, 38.1 \mathrm{~mm}$ and 37.0 mm . Figure 2.17 (d) illustrates the final apparatus.

Figure 2.18 shows the measured input impedance versus frequency on a Smith chart for the case where $L=39.6 \mathrm{~mm}$. The measured result can be interpreted using the network model of the parallel $R L C$ single mode resonant circuit shown in figure $1.8(\mathrm{~b})$, where the resistance represents the sum of the copper and dielectric losses and the small amount of radiation from the structure. The structure is observed to be resonant, that is $L=\lambda_{b}$, at the frequency for which the reflection coefficient is a minimum, which corresponds to a TEM $_{020}$ mode resonance within the cavity. So it turns out that the

(b)

(c)

(d)

Figure 2.17: Measurement of the series reactance; (a)transmission line model, (b)model of the structure, (c)model after transformations and, (d) a side elevation sketch of the apparatus.

Figure 2.18: Measured reflection coefficient for the shorted transmission line fed by an APC-7 probe, where $h=1.57 \mathrm{~mm}, W=16 \mathrm{~mm}, L=39.6 \mathrm{~mm}, \epsilon_{r}=2.55$.

Series reactance using the shorted transmission line		
$L(\mathrm{~mm})$	$f_{o}(\mathrm{MHz})$	$X_{s}(\Omega)$
39.6	4570	9.5
39.0	4640	10.0
38.1	4850	11.3
37.0	4950	12.0

Table 2.3: Series reactance measured using the shorted transmission line method.
resonant frequency is clearly indicated on the Smith chart plot, implying that the length of the apparatus need not be accurately predicted. The result displayed in figure 2.18 shows that resonance is achieved at 4569 MHz . Here the input reactance is 9.5Ω which is attributed to the effective series reactance of the probe. Table 2.3 lists the results of the four experiments and figure 2.16 shows these four results as a plot of the series reactance versus frequency. The apparent inconsistency between these two sets of data can partly be explained if the widths of the two apparatuses are taken into account. This point is taken up in detail in Section 2.3.4.

2.3.3 The locus transformation method.

If the network model of the series reactance and leaky cavity resonator shown in figure $1.8(\mathrm{~b})$ is accepted ${ }^{1}$, then it follows that the series reactance can be obtained from a Smith chart plot of the measured input impedance versus frequency data by observing the extent of the reactive transformation of the locus of the cavity alone. This is easily done by approximating the measured impedance locus by a circle, which can then be related to the series reactance.

The process of deriving the series reactance from the centre of a circle of best fit to measured data is considered by introducing a hypothetical cavity having the following arbitrarily chosen specifications

$$
f_{o c}=5 \mathrm{GHz} \quad Q_{o}=25 \quad R_{o}=80 \Omega \quad X_{s}=20 \Omega
$$

Then using

$$
\begin{align*}
f_{o} & =\frac{1}{2 \pi \sqrt{L C}} \tag{2.23}\\
Q_{o} & =\frac{R_{0}}{\omega L} \tag{2.24}
\end{align*}
$$

1 For the sake of correctness, it is necessary to point out that the network suggested by Carver[30], and shown in figure $1.8(\mathrm{~b})$, needs to be amended to model the gap between the circle of best fit and the perimeter of the Smith chart. The gap resistance is not elaborated on here because it plays no part in the determination of the series reactance. It will be discussed in detail in Chapter IV.
the lumped circuit parameters for the parallel $R L C$ plus series reactance equivalent circuit of figure $1.8(\mathrm{~b})$ are

$$
L=1.018 \mathrm{E}-10 H \quad C=9.95 \mathrm{E}-12 F \quad L_{s}=6.37 \mathrm{E}-10 H
$$

The calculated input impedance data are plotted on figure 2.19. The centre of the circle of best fit is then located as equidistant from each data point, and then the circle is drawn. Notice that the calculated data does not form a perfect circular locus because the series reactance is a function of the frequency. More importantly however, notice that the centre of the circle of best fit is not on the X_{s} contour but on the line \boldsymbol{O} - \boldsymbol{A}. Therefore to determine the \boldsymbol{X}_{s} parameter for the resonant cavity model of figure 1.8(b) from a measured input impedance locus, simply locate the centre of the circle of best fit to the measured data, and construct the line O - A. The reactance at point A is then equivalent to the series reactance. The process has also been verified for well over-coupled and under-coupled cavities. This technique has been applied to many sets of measured input impedance versus frequency data; both measured by the author and published in the open literature by other authors. The results are detailed in Table 2.4, section 2.4. For the case of an APC-7 probe feeding a 1.57 mm thick substrate, figure 2.20 compares this method with those previously discussed and graphed in figure 2.6.

The technique has also been used to investigate the dependence of the series reactance on the position of the feed point along the E-plane of the patch; that is as a function of the distance D, defined in figure 1.5. Figure 2.21 shows that the effect of shifting the feed point is greater for the probe of larger electrical dimensions. The curve for $d / \lambda_{s}=0.015$ is derived from the measured input impedance data published by Carver [30], and disagrees with his earlier direct measurements [34] of the series reactance as a function of the feed point position, shown in figure 2.3. A set of impedance loci for the case of $d / \lambda_{s}=0.008$ have also been published [23], and the series reactances derived using the locus transformation method exhibit no dependence on the feed point position. Therefore it is concluded that the series reactance is a weak function of feed

Figure 2.19: Determination of the equivalent series reactance from a set of calculated input impedance data for a hypothetical cavity.

Figure 2.20: Calculated series reactance for the case of an APC-7 probe, where $d / \lambda_{s}=0.08, h / \lambda_{s}=0.04, \epsilon_{r}=2.55$: calculated by Carver's transmission line model using $\lambda_{o}(-)$, Griffin ($-\cdots$), Lier ($\left.\cdots \cdots \cdot\right)$, Sengupta ($-\cdots-$) and the locus transformation method (---).
point position and only becomes significant when the probe diameter increases beyond $0.008 \lambda_{s}$.

A study of the effect that the aspect ratio has on the series reactance has also been carried out. Here the input impedance of a rectangular patch was measured as the width was varied. Figure 2.22 shows the series reactance versus aspect ratio for an antenna operating at about 5 GHz and the results of the direct measurement of series reactance by Lier[46] for an antenna operating at 3.1 GHz . Lier's experimental technique involved measuring the input reactance of a centre fed rectangular patch, where the electrical length of the patch was carefully calculated to ensure that it was half wave resonant at 3.1 GHz . The absolute values of the series reactances from the
two experiments cannot be directly compared because the electrical dimensions of the probes and substrate heights differ, but the two sets of results are graphed side by side to show that both results exhibit a similar trend and generally support one another.

Figure 2.21: Series reactance, using the locus transformation method, as a function of the feed point position for: $f_{o}=1189 \mathrm{MHz}, h=1.59 \mathrm{~mm}, d / \lambda_{s}=0.008, \epsilon_{r}=2.62$ $(-\cdot-)[23] ; f_{o}=2.2 \mathrm{GHz}, h=1.59 \mathrm{~mm}, d / \lambda_{\mathrm{s}}=0.015, \epsilon_{r}=2.62(-)[30] ; f_{o}=4.9 \mathrm{GHz}$, $h=1.59 \mathrm{~mm}, d / \lambda_{s}=0.076, \epsilon_{\mathrm{r}}=2.55(-\cdot)$.
2.3.4 Comparisons between the results of the large cavity, short circuited transmission line, and locus transformation experiments

The series reactance results of the large cavity experiment are typically larger than those measured using the short circuited transmission line and the locus transfor-

Figure 2.22: Measured series reactance as a function of the aspect ratio for: $f_{o} \approx 4.9 \mathrm{GHz}$, $h / \lambda_{s}=0.042, d / \lambda_{s}=0.076, \epsilon_{r}=2.55(\cdots) ; f_{o}=3.1 G H z, h / \lambda_{s}=0.025, d / \lambda_{s}=0.020$, $\epsilon_{r}=2.62(\times \times \times *)[46]$. Also included is a result obtained using the shorted transmission line method: $f_{o}=4.950 \mathrm{GHz}, h / \lambda_{s}=0.04, d / \lambda_{s}=0.08, \epsilon_{r}=2.55\left(^{\circ}\right)$.
mation techniques. For example, for an APC-7 probe feeding a 1.57 mm thick substrate at 5 GHz , the results of the large cavity experiment are 5Ω and 4Ω greater than those of the short circuited transmission line and locus transformation methods respectively. This may be due to the absence of any patch edges in the large cavity case, thereby giving any energy stored in modes associated with the probe an effectively unlimited volume in which to establish themselves. The extra series reactance might be attributed to the energies stored in these modes that extend out from the probe in the volume over and above that available in the case of the other experiments where the dimensions of the structures are typically of the order of a half wavelength. It is tempting to attribute this extra series reactance to extra evanescent modes that might exist in the increased volume of the large cavity. However these modes are very localised within the proximity
of the probe. Although the physics of the modes associated with the probe is not understood, it is clear that the presence of the edges of the patch have an effect on the fields around the probe. This conclusion is based on two observations. Firstly the aspect ratio of the patch has already been demonstrated to influence the effective series reactance. The second observation will be discussed in detail in Chapter VI, where a liquid crystal film is used to visually display the field distributions around the edges of the patch. For frequencies and probe dimensions similar to those used in the large cavity experiments, the probe was seen to cause an increase in the level of radiation emanating from the end of the patch nearest to it. Thus if the probe has an effect on the fields at the edges, then it is possible that the presence or absence of the edges will effect the energy stored in the proximity of the probe, and hence the effective series reactance.

Even though the absolute values of the series reactances obtained using the large cavity experiments may be doubtful, the method still provides valuable information on the relative increase in the series reactance associated with an increase in the frequency. Refer to figure 2.16. A study of the frequency dependence of the series reactance is usually made difficult because of the frequency sensitivity of the rest of the antenna, or test structure. For example in the short circuited transmission line method, the isolation of the series reactance of the probe from the input impedance of the remaining apparatus could only be achieved at a single frequency because the success of the experiment depended on the effective length of the wide transmission line being resonant. For a similar reason the method used by Lier [46] is also a single frequency experiment. Alternatively the large cavity method can be used in a wide band investigation because of the extremely large length and width of the cavity, which means that the experiment is virtually independent of these parameters over the bandwidth of interest.Therefore, to a good approximation, figure 2.16 is displaying the change in the series reactance as the electrical length and diameter of the probe are effectively altered by a change in frequency. Similar results were obtained for the other probe and substrate thickness combinations.

At 5 GHz the the short circuited transmission line experiment provides reactances that are roughly 1Ω below the results of the locus transformation method. This is consistent when account is taken of the aspect ratios of the apparatus used in each case. The shorted transmission line experiment has also been used to show the variation of the series reactance with frequency, see figure 2.16. The frequency dependence is observed to be stronger than that measured in the large cavity experiment. Recall that for the shorted transmission line experiment an increase in the test frequency corresponds to a decrease in the length of a constant width microstrip transmission line. Therefore the extra increase in the series reactance is due to the increasing width to length aspect ratio of the wide transmission line, and as just mentioned, the series reactance is a positive function of aspect ratio, refer to figure 2.22.

2.3.5 Comparisons between the results of the locus transformation method and measurements performed by other authors

Comparisons between the series reactances obtained from the locus transformation method and those measured by other authors are difficult unless the exact antenna dimensions and frequencies are duplicated. However, rough comparisons can be made if the differences in the effective electrical length and diameter of the probes are accounted for. This is achieved by extrapolating the results of other authors using the information on the characteristics of the probe obtained from locus transformation studies. Figure 2.23 is a plot of the series reactance, obtained from the locus transformation method, versus the substrate thickness as a function of the probe diameter. Because of the sensitivity of the series reactance to small changes in the substrate thickness, the results of figure 2.23 have been extrapolated to include data on probes thinner than those actually investigated using the locus transformation method. The line for $d / \lambda_{s}=0.034$ is based on two points that were obtained from a locus transformation study at 5 GHz on two rectangular elements fed through SMA probes, while the $d / \lambda_{s}=0.08$ points are based on a similar investigation using APC-7 probes. The lines for the cases of $d / \lambda_{B}=0.02$ and 0.016 are derived using figure 2.24 , which is a graph of the series reactance ver-
sus the probe diameter using the same four results as were used in figure 2.23. Using figures 2.22 and 2.23 the measured reactances of other authors can be extrapolated to obtain equivalent reactances, for which locus transformation results exist with the same dimensions and frequencies.

Carver's average measured reactance of figure 2.3 is 17Ω for $W / L=1.65$ and $h / \lambda_{s}=0.018$, and can be extrapolated for comparison with results from the locus transformation method, where $W / L=0.9$ and $h / \lambda_{s}=0.02$. Firstly figure 2.23 implies that an addition of 1Ω to the 17Ω would account for an equivalent series reactance for the case of $h / \lambda_{s}=0.02$ instead of the original $h / \lambda_{s}=0.018$. In a similar manner, the graph of figure 2.22 implies that a lowering of the aspect ratio from 1.65 to 0.9 would involve the subtraction of 10Ω. The resultant equivalent reactance is $17+1-10=8 \Omega$, which is plotted on figure 2.25. Two results from the locus transformation method, APC7 and SMA probes feeding a 0.8 mm thick substrate, are also graphed on figure 2.25 , and a dashed curve is used to approximate the characteristic for the series reactance versus the probe diameter for patches of a common aspect ratio of 0.9. This figure includes curves repeated from figure 2.2 so that the reactances calculated by the modalexpansion method can be used to indicate the relative dependence of the series reactance on probe diameter. Because the dashed curve displays a similar characteristic to the curves obtained by the modal-expansion method, it is concluded that the results of the locus transformation method are consistent with Carver's measured result.

Figure 2.22 shows good agreement between the series reactances measured by Lier [46] and those obtained using the locus transformation method. For comparison of one data point, consider the case of Lier at $W / L=1, h / \lambda_{s}=0.025, d / \lambda_{s}=0.02$, where the series reactance is 14Ω. Figure 2.23 is again used to imply that an increase in h / λ_{s} from 0.025 to 0.042 would correspond to an increase in the series reactance of 88. Increasing in d / λ_{s} from 0.02 to 0.08 , as shown for the $h / \lambda_{s}=0.04$ line in figure 2.24 , results in a corresponding decrease in the series reactance of 4Ω. The resultant extrapolated series reactance of Lier for the $W / L=1$ case is $14+8-4=18 \Omega$, which is

Figure 2．23：Series reactance using the locus transformation method as a function of substrate thickness for：$f_{o} \approx 5 \mathrm{GHz}, d / \lambda_{s}=0.016(-\cdots 一), 0.02$（一•一） 0.034 （ - －） and 0.08 （－），where the 0.016 and 0.02 lines are based on extrapolated data， $\epsilon_{r}=2.55$ ．

Figure 2．24：Series reactance using the locus transformation method as a function of probe diameter for：$f_{0} \approx 5 \mathrm{GHz}, h / \lambda_{s}=0.04$（——）and 0.025 （－．一）and 0.02 （ -- ），where the 0.025 line is based in extrapolated data，$\epsilon_{r}=2.55$ ．

Figure 2.25: Series reactance calculated using the modal-expansion method for $\mathrm{r}=1.62$ (—) and $0.98(---)$, where $h=0.0116 \lambda_{o}, \epsilon_{r}=2.5$. Also a hybrid curve for $r=0.9$ ($\cdots \cdots .$.) comprising results from the locus transformation method (••) and extrapolating Carver's measured result (\times).
5Ω above the 13Ω result from the locus transformation method for the case of $W / L \approx 1$, $h / \lambda_{8}=0.042$ and $d / \lambda_{8}=0.08$.

2.3.6 Conclusions

The equivalent series reactance of the probe has been measured using the large cavity, the shorted transmission line, and the locus transformation methods. The results of these investigations have been shown to support each other and those performed by other authors.

Because the results of the locus transformation method agree with those of other experimental techniques proposed in this investigation, as well as those of other authors, its results will be used in the development of a new empirical model for the series reactance.

Table 2.2 shows that the short wire analogy of the probe is valid. An increase in the effective electrical length of the probe causes an increase in the self-inductance of an equivalent wire, and an increase in the diameter has an associated decrease in
inductance. Also the positive slope of the series reactance versus frequency lines in figure 2.16 indicates that the series reactance is a more sensitive function of the probe length than the diameter.

The results in figures 2.23, 2.22, 2.24, and 2.21 can be used to determine the relative dependence of the series reactance on substrate height, aspect ratio, probe diameter and feed point position respectively. As the stated aim of this investigation is to develop models for the computer aided design of rectangular microstrip antennas operating at about 5 GHz , the most suitable indication of the sensitivity of the series reactance to the above parameters is obtained by considering a rectangular patch: $f_{o} \approx 5 \mathrm{GHz}$, $L=16.93 \mathrm{~mm}, W=16 \mathrm{~mm}, h=1.57 \mathrm{~mm}$ fed by an APC-7 probe. The percentage change in the series reactance as the substrate height, aspect ratio, probe diameter and feed point position are in turn increased by 10% is: $+11.5 \%,+10.0 \%,-8.2 \%$ and -2.1%. Therefore the new model to be developed in the next section will concentrate on the dependence of the series reactance on the substrate height, aspect ratio and probe diameter, feed point position being rejected because it only has a minor effect on the series reactance.

2.4 The tapered transmission line model

Although Carver's transmission line model is widely accepted, better agreement with experimental results can be obtained by a more detailed consideration of the field distribution in the region of the probe. A sketch of a cross-sectional view of the electric field in the probe region is shown in figure 2.26. Efforts have been made by Richards et.al. [35] to perform field analysis in the region of the probe using moment method techniques. However, in explaining this new model a sketch will suffice.

Using an electrostatic field analogy, the crosses in figure 2.27 approximate an equi-potential contour of mid-value between the two metal surfaces A and B. This contour can then be roughly approximated by the quarter-wave sinusoid shown in figure 2.28. Now if the outer conductor of a tapered transmission line is placed along this contour, then the fields along this short circuited transmission line will approximate
those in the proximity of the feed probe. This tapered line deviates from the equipotential contour to make connection with the short circuiting patch in the $y=0$ plane, but because the tapered line is feeding a short circuit load, the stored energy density decreases as x and y approach f and 0 respectively; that is, as the end of the line is approached. Therefore there is little error introduced by the approximation.

The reactance of the probe is now numerically evaluated using the transmission line equation (2.1) to transform the short circuit at $y=0$ through a stair-case approximation to the tapered transmission line to the antenna terminals at the plane $y=-h$, where the reactance is renormalised to the characteristic impedance of the coaxial line used to feed the antenna, typically 50Ω. Therefore,

$$
\begin{equation*}
X_{s}=50 \frac{X_{s t}}{Z_{o t}} \tag{2.25}
\end{equation*}
$$

where $Z_{o t}$ is the characteristic impedance of the coaxial tapered line at $y=-h$, and $X_{s t}$, is the calculated series reactance normalised to $Z_{o t}$.

Using the mid-value equi-potential contour, the model has produced series reactances that are typically between 3Ω and 5Ω greater than those obtained by the locus transformation method. However, there is of course a multitude of equi-potentials that could be chosen for the model. An investigation into the agreement between the results of the locus transformation method and the reactances calculated using various contours has concluded that an empirically determined contour is the best choice; where e in figure 2.28 is chosen as $a+(b-a) / 20$ and $(f-e)$ is made a function of the feed point's dimensions and aspect ratio of the patch. Hence the amplitude of the sinusoid, A_{8}, is a variable and will be used to determine the outer radius of the tapered coaxial line that is representing the probe. Figure 2.29 is a graph of the radius of the outer conductor at $y=0, r_{t o}$, versus the probe diagonal, p, normalised to the length of the patch, where

$$
\begin{equation*}
p^{2}=h^{2}+(b-a)^{2} \tag{2.26}
\end{equation*}
$$

Figure 2.26: Fringing electric field around the probe.

Figure 2.27: Electrostatic fringing field around the probe with an approximate equipotential of mid-value.

Figure 2.28: The field distribution of a sinusoidally tapered transmission line.
and is a measure of the probe's dimensions. These points describe the sinusoidal contour that was used with the tapered transmission line model to provide exact agreement with the measured impedance locus transformations. The data are actually derived for the case of an equivalent aspect ratio, $r \approx 0.9$. They have then been approximated by an exponential contour, using a curve fitting program, as follows

$$
\begin{equation*}
\frac{r_{t o}}{a}=1.929 e^{-4.369 \frac{p}{L}} \tag{2.27}
\end{equation*}
$$

In a similar fashion figure 2.30 has been used to show the taper radius as a function of the aspect ratio of the patch and implies that for $p / L=0.14$ the taper radius is almost independent of the aspect ratio. Again using a curve fitting program the approximate expression is

$$
\begin{equation*}
\frac{r_{l o}}{a}=0.935 e^{0.153 r} \tag{2.28}
\end{equation*}
$$

The combined expression is then

$$
\begin{equation*}
\frac{r_{t o}}{a}=1.681 e^{0.153 r-4.369 \frac{p}{L}} \tag{2.29}
\end{equation*}
$$

Table 2.4 shows, that by using the empirically determined taper of equation (2.29), the tapered transmission line model calculates series reactances that are within plus or minus 3Ω of the measured input impedance locus transformations. Notice that the model has been tested over a large range of antenna dimensions and frequencies, all with relative dielectric constants between 2.5 and 2.55.

Figure 2.31 and 2.32 show excellent agreement between the results of the tapered transmission line model and those measured by the locus transformation method for reactance versus substrate height and aspect ratio respectively. Figure 2.33 displays series reactances versus frequency where the calculated results are compared with those of the large cavity experiment. Notice the similar slopes of the two lines. Recall that the results of the large cavity experiment are 3.5Ω higher than the accepted results of the locus transformation method.

Figure 2.29: Empirical determination of the radius of the outer conductor at $y=-h$ as a function of the probe dimensions, where the numbers refer to the measured foc of the antennas concerned: full specifications can be found through Appendix A.

Figure 2.30: Empirical determination of the radius of the outer conductor at $y=-h$ as a function of the aspect ratio of the patch for the case $p / L=0.14$.

Series reactance						
Freq. MHz	h mm	r	Probe type	Calc'd Ω	Meas'd Ω	
1189	1.59	1.5	SMA	10	10	
1396	1.57	1.6	SMA	11	11	
2213	1.59	1.7	SMA	16	19	
2792	1.52	1.0	SMA	15	15	
3387	0.80	0.9	SMA	9	7	
3502	0.08	1.9	SMA	9	6	
4659	1.57	1.6	APC-7	20	23	
4670	0.08	0.9	APC-7	9	6	
4744	1.57	0.9	APC-7	13	12	
4784	1.57	0.9	SMA	15	18	
4830	0.08	0.9	SMA	10	8	
5013	1.57	1.0	APC-7	13	13	

Table 2.4: Comparison between the series reactance calculated by the tapered transmission line model and measured by the locus transformation method.

2.5 Conclusions

The models proposed by other authors for the calculation of the series reactance have been reviewed and shown to be inadequate due to computational complexity or poor accuracy, especially as the substrate thickness increases.

The equivalent series reactance of the probe has been measured using the large cavity, the shorted transmission line, and the locus transformation method. The results of these methods have been shown to agree with each other and with those performed by other authors.

A novel tapered transmission line model, using an empirically determined contour, has been shown to provide series reactance results that are within $\pm 3 \Omega$ of the

Figure 2.31: Series reactance versus substrate height for a rectangular element fed through an APC-7 probe: calculated using the tapered transmission line model (—), and measured using the locus transformation method ($x \times$), where $f_{o c} \approx 5 \mathrm{GHz}$, and $\epsilon_{r}=2.55$.

Figure 2.32: Series reactance versus aspect ratio for a set of a rectangular elements fed through APC-7 probes: calculated using the tapered transmission line model (—), and measured using the locus transformation method ($x \times x$), where $f_{o c} \approx 5 \mathrm{GHz}$, $h=1.57 \mathrm{~mm}$, and $\epsilon_{r}=2.55$.

Figure 2.33: Series reactance versus frequency for a 1.57 mm thick substrate fed through an APC-7 probe: calculated using the tapered transmission line model for a rectangular element $f_{o c} \approx 5 \mathrm{GHz}(---)$, and directly measured using the large cavity (-), where $\epsilon_{r}=2.55$.
measured impedance locus transformations. Furthermore, this agreement is maintained over a very wide range of antenna and feed dimensions and frequencies.

This new empirical model for calculating the equivalent series reactance of the probe is incorporated into a computer-aided design program listed in Appendix C. The series reactance is numerically evaluated using the transmission line equation (2.1) to transform a short circuit load through a stair-case approximation to a tapered transmission line, where the taper is given by equation (2.29) and the length of the transformation is equal to the substrate thickness. At the terminals of the antenna the reactance is then re-normalised to the characteristic impedance of the coaxial line used to feed the antenna.

CHAPTER III

THE CALCULATION OF RESONANT FREQUENCY USING AN EMPIRICALLY DETERMINED EDGE EXTENSION PARAMETER

3.1 Introduction

The narrow bandwidth of the microstrip antenna means that it is crucial that the resonant frequency be accurately determined. The resonant frequency is very sensitive to the effective dielectric constant of the substrate and the effective electrical dimensions of the patch. Therefore the determination of the distance to which the fields fringe at each end of the rectangular microstrip antenna is a major step in determining the antenna's resonant frequency.

The methods to determine the resonant frequency suggested by other authors will be reviewed, where it will be noticed that the definition of resonant frequency being used is often unclear. It will also be shown that these methods give results that are in good agreement with measurements for antennas operating at frequencies up to the lower microwave band, but give misleading results as the frequency is increased, and especially at around 5 GHz . The resonant frequency is clearly specified for probe fed microstrip antennas using the antenna's input impedance versus frequency locus plotted on a Smith chart. The poor performance of the published models in predicting the resonant frequency prompted the development of a new empirical model for the
edge extension that will be shown to lead to resonant frequencies that are in excellent agreement with measurements carried out at frequencies up to 5 GHz .

3.2 A literature survey of the analytical and empirical models used to calculate the resonant frequency

The procedures of other authors to calculate the resonant frequency of rectangular patch antennas are now reviewed. Most use a resonant length transmission line or cavity model together with equations for the effective dielectric constant and edge extension which may or may not be their own.

To analyse the resonant frequency of rectangular microstrip antenna's Howell $[2,3]$ used a rectangular cavity model and assumed the cavity to be driven at its fundamental TEM_{010} mode. Then at resonance

$$
\begin{equation*}
f_{o}=\frac{c}{2 \sqrt{\epsilon_{r}} L} \tag{3.1}
\end{equation*}
$$

where L is the antenna's physical length. This model was tested at 3.5 GHz on a rectangular patch mounted on a 0.8 mm thick substrate. The calculated resonant frequency was 2.8% above the measured frequency. The method is however only useful at low frequencies, because as the frequency is increased effects of the fringing fields at each end of the patch extend its effective electrical dimensions. Howell also ignored the fact that the medium around the antenna is partially filled with air and a substrate material having a non-unity dielectric constant, and that the effective dielectric constant of the overall medium must therefore be between that of the air and the substrate material.

Derneryd [12] added to this simple model the effects of the non-uniform medium and the fringing fields at each end of the patch by letting

$$
\begin{equation*}
f_{o}=\frac{c}{2 \sqrt{\epsilon_{e}}(L+2 \delta L)} \tag{3.2}
\end{equation*}
$$

where ϵ_{e} is the effective dielectric constant and δL is the effective length to which the fields fringe at each end of the patch, and is called the edge extension. Hence
the accuracy of Derneryd's model for the resonant frequency depends on the accurate determination of the effective dielectric constant of the substrate and the total electrical length of the antenna or cavity, $L+2 \delta L$. Derneryd applied to microstrip antennas the approximate electrostatic expressions for the effective dielectric constant and the edge extension that were proposed for use with microstrip transmission lines by Schneider [13] and Hammerstad [14],

$$
\begin{align*}
& \epsilon_{e}=\frac{\epsilon_{r}+1}{2} \frac{\epsilon_{r}-1}{2}\left(1+\frac{10 h}{W}\right)^{-0.5} \tag{3.3}\\
& \delta L=0.412 h \frac{\epsilon_{e}+0.300}{\epsilon_{e}-0.258} W / h+0.262 \tag{3.4}\\
& W / h+0.813
\end{align*}
$$

where the equation for the effective dielectric constant was obtained by empirically modifying the theoretical data of Schneider [13] and Wheeler [17]. The edge extension equation is an empirical expression based on the theoretical results of Silvester et.al. [49].

Six years later Hammerstad [50] proposed another empirical equation based on the calculations for the edge extension associated with the open circuited end of a microstrip transmission line, and furthermore recommended its use in the design of rectangular microstrip antennas

$$
\begin{equation*}
\delta L=\frac{h}{2 \pi} \frac{W / h+0.366}{W / h+0.556}\left[0.28+\frac{\epsilon_{r}+1}{\epsilon_{r}}[0.274+\ln (W / h+2.518)]\right] \tag{3.5}
\end{equation*}
$$

Using a computer-aided matching technique Kirschning et.al. [51] derived the following expressions from a rigorous numerical hybrid mode solution of the end effect of a microstrip line,

$$
\begin{equation*}
\delta L=\frac{h \xi_{1} \xi_{3} \xi_{5}}{\xi_{4}} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \xi_{1}=0.434907 \frac{\epsilon_{e}^{0.81}+0.26}{\epsilon_{e}^{0.81}-0.189} \frac{(W / h)^{0.8544}+0.236}{(W / h)^{0.8544}+0.87} \tag{3.7}\\
& \xi_{2}=1+\frac{(W / h)^{0.371}}{2.358 \epsilon_{r}+1} \tag{3.8}
\end{align*}
$$

$$
\begin{align*}
& \xi_{3}=1+\frac{0.5274 \arctan \left(0.084(W / h)^{1.9413 / \xi_{2}}\right)}{\epsilon_{e}^{0.9236}} \tag{3.9}\\
& \xi_{4}=1+0.0377 \arctan \left(0.067(W / h)^{1.456}\right)\left[6-5 e^{0.036\left(1-\epsilon_{r}\right)}\right] \tag{3.10}\\
& \xi_{5}=1-0.218 e^{-7.5 W / h} \tag{3.11}
\end{align*}
$$

The authors recommend using a third equation published by Hammerstad [52] for the calculation of the effective dielectric constant,

$$
\begin{equation*}
\epsilon_{e}=\epsilon_{r}-\frac{\epsilon_{r}-\epsilon_{e o}}{1+G\left(f / f_{p}\right)^{2}} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{align*}
f_{p} & =\frac{Z_{o m}}{2 \mu_{o} h} \tag{3.13}\\
G & =\frac{\pi^{2}}{12} \cdot \frac{\epsilon_{r}-1}{\epsilon_{e o}} \sqrt{\frac{2 \pi Z_{o m}}{\eta_{o}}} \tag{3.14}
\end{align*}
$$

and

$$
\begin{equation*}
\epsilon_{e o}=\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-1}{2}\left(1+\frac{10 h}{W}\right)^{-a b} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{align*}
& a=1+\frac{1}{49} \ln \frac{(W / h)^{4}+(W / 52 h)^{2}}{(W / h)^{4}+0.432}+\frac{1}{18.7} \ln 1+(W / 18.1 h)^{3} \tag{3.16}\\
& b=0.564\left(\frac{\epsilon_{r}-0.9}{\epsilon_{r}+3.0}\right)^{0.053} \tag{3.17}
\end{align*}
$$

These equations are all empirical modifications of theoretical models. Equations (3.12) (3.13) and (3.14) are based on the work of Getsinger [48] which will be presented in section 3.5.

Using the transmission line model for rectangular microstrip antennas Sengupta [16] developed formulas for the resonant frequency that include the frequency shift due to the effect of feeding the antenna through a coaxial feed probe. For the admittance at each end of the transmission line Sengupta used the expressions of Marcuvitz [42] for the admittance of a parallel-plate waveguide radiating into free space. Ignoring the
probe, an expression for the resonant frequency is derived by determining the frequency at which the input impedance is real

$$
\begin{equation*}
f_{r}=f_{o} \frac{1-\frac{2 h}{\epsilon_{e} L \pi \alpha}}{1+\frac{2 h}{\epsilon_{e} L \pi \alpha} \ln \frac{\sqrt{\epsilon_{e}} 2 L}{\gamma h}} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{o}=\frac{c}{2 L \sqrt{\epsilon_{e}}} \tag{3.19}
\end{equation*}
$$

and the relative shift in the resonant frequency caused by the probe is

$$
\begin{equation*}
\frac{\delta f_{r}}{f_{r}}=\frac{\pi h^{2} W}{2 \alpha \epsilon_{e}^{2} L^{3}} \ln \frac{4 L}{\gamma \pi d} \tag{3.20}
\end{equation*}
$$

where α is evaluated using equation (1.14). Sengupta also recommends using equation (3.3) for the effective dielectric constant.

These formulas are used in the next section to calculate the resonant frequency of a number of antennas, and when the results are compared with measurements the agreement is shown to decrease with increasing frequency.

3.3 The limitations of the published formulas used in the calculation of the resonant frequency

Resonant frequencies have been calculated using the equations of other authors for a number of rectangular patch antennas. The resonant frequency at which the comparison is made is the cavity resonant frequency, $f_{o c}$, which will be defined in the next section. Suffice to say that for a probe fed antenna, this is the frequency at which the input impedance is real when the effects of the probe are removed. The effect of the probe on the measured resonant frequency can be compensated for by first determining the series reactance of the probe using the locus transformation method described in Chapter II. Then the cavity resonant frequency is the frequency at which the input reactance is equal to the series reactance of the probe.

Table 3.1 shows the percentage difference between the calculated and measured resonant frequencies. The first column lists the measured cavity resonant frequencies of a number of antennas, where this frequency can be used as a guide to identify the complete specifications of the antennas which can be found through Appendix A. Column two lists the resonant frequencies calculated using the method of Derneryd [12] based on equation (3.2) and Hammerstad's expressions for the effective dielectric constant and edge extension; equations (3.3) and (3.4). Hammerstad's equations (3.3) and (3.5) are used in column three and the results obtained using the equations of Kirschning et.al. are listed in column four. The fifth column shows the results using Sengupta's method.

Most of the above equations for the edge extension have been published for use with microstrip transmission lines and provide unsatisfactory results when applied to antennas, especially as the frequency is increased. The typical bandwidth of microstrip antennas operating at 5 GHz is 4%, therefore methods that give a 6% error in the prediction of the resonant frequency are of little use. This error in the resonant frequency is possibly because the antenna's length is only half of a wavelength in the dielectric, therefore evanescent and hybrid modes caused by perturbations in the cavity's field by the feed may be present in the fringing fields. This point is taken up in more detail in Chapter VI. Sengupta's expression was published for the specific application to rectangular microstrip antennas. However, it too gives poor results for resonant frequency when applied to antennas operating above 4 GHz . An empirical model to determine the edge extension is now developed, but first the input impedance versus frequency locus is used to specifically define the resonant frequencies of the antenna.

3.4 The definition of resonant frequency

In dealing with resonant structures and their feeds there are at least three definitions for determining the frequency at which resonance occurs:
i when the structure, excluding the feed network, is resonant. Typically this implies the frequency at which an electrical dimension of a cavity or antenna is a

Resonant frequency percentage error				
Freq.(MHz)	Derneryd	Hammerstad	Kirschning	Sengupta
633	-0.94	-2.21	+1.49	+1.43
658	+0.80	+0.69	+0.47	+0.28
1189	+1.15	-1.04	+0.57	+0.51
1197	+0.74	-1.45	+0.15	+0.01
1396	+1.31	-1.15	+0.62	+0.56
1410	+0.53	-1.91	-0.16	-0.26
2195	+1.98	-1.24	+0.89	+1.10
2224	+2.32	+0.39	+1.32	+1.82
3387	+3.26	+1.17	+2.42	+2.67
3502	+3.52	+1.34	+2.66	+2.90
4672	+5.59	+1.16	+3.40	+4.70
4744	+5.84	+3.19	+3.91	+6.15
4770	+5.85	+3.66	+4.04	+6.43
4784	+4.52	+1.92	+2.63	+4.69
4792	+4.26	+1.87	+3.12	+3.75
4830	+3.82	+1.44	+2.68	+3.32
5013	+6.11	+3.31	+4.07	+6.43

Table 3.1: For the formulas of various authors, a comparison between the percentage difference in the calculated and measured cavity resonant frequency.
multiple number of half-wavelengths.
ii when the input impedance, referred to the input terminals, is real.
iii when the VSWR, referred to the input terminals, is a minimum.

Furthermore when working with resonant type antennas and their feeds, the above definitions typically do not lead to the same frequency value. Notice also that the use of definition ii can lead to either two closely spaced resonant frequencies or no resonant
frequency at all, as shown in the measured input impedance versus frequency results of figures 5.12(a) and 5.11(b) respectively.

The Smith chart display of the input impedance versus frequency characteristic of a cavity excited about its fundamental mode resonant frequency is shown in figure 3.1, and suggests that a microstrip patch antenna can be modelled as a leaky cavity coupled through a series reactance. In the region near the centre of the operational bandwidth of the antenna either of two values for resonant frequency can be identified: $f_{o c}$, the frequency at which the cavity itself resonates, or $f_{o z}$, the frequency at which the input impedance of the antenna is real. The definition of resonant frequency using the VSWR is not considered any further because this investigation is primarily concerned with antennas that are matched to their feeding transmission lines, and when this is the case, the frequency at which the VSWR is a minimum is equal to the frequency at which the input impedance is real. A new empirical model for the calculation of the cavity and impedance resonant frequencies will now be developed.

3.5 The calculation of the cavity resonant frequency using an empirically determined edge extension parameter

Equations for the effective dielectric constant and edge extension are now proposed. These equations are necessary inorder that equation (3.2) may be used to calculate the cavity resonant frequency, and obtain an agreement with measurements that is better over a wider frequency bandwidth than that obtained using the equations of other authors. This section describes an equation for the effective dielectric constant derived by another author, and the development of an empirical model for the effective edge extension.

The effective dielectric constant, ϵ_{e}, is calculated using an expression developed by Getsinger [48] for use with microstrip transmission lines

$$
\begin{equation*}
\epsilon_{e}=\epsilon_{r}-\frac{\epsilon_{r}-\epsilon_{e o}}{1+G\left(f^{2} / f_{p}^{2}\right)} \tag{3.21}
\end{equation*}
$$

Figure 3.1: The definition of resonant frequency; $f_{o c}$ the resonant frequency of the cavity and $f_{o z}$, the frequency at which the input impedance is real.
where

$$
\begin{align*}
f_{p} & =\frac{Z_{o m}}{2 \mu_{o} h} \tag{3.22}\\
G & \approx 0.6+0.009 Z_{o m} \tag{3.23}
\end{align*}
$$

This analytical expression was derived for an approximation to a microstrip line; that is, a transmission line supporting a single longitudinal section electric (LSE) mode. Equation (3.22) may be regarded as an approximation to the first TE-mode cut-off frequency while G is an empirically determined factor. The application of this expression to microstrip antennas was recommended by James et.al. [40] because it can be used to attribute the frequency dispersion effects that may be observed to the effective dielectric constant. The calculation includes the zero frequency effective dielectric constant, $\epsilon_{e o}$, which is obtained from equation (3.3). A model for the edge extension is now developed on the assumption that the effective dielectric constant calculated by equation (3.21) is
a correct result that accurately describes the physical phenomenon.

An empirical equation for the edge extension, δL, is determined using equation (3.2), by substituting the measured results for the cavity resonant frequency, $f_{o c}$, and the effective dielectric constant, ϵ_{e}, calculated using equation (3.21). Figure 3.2 shows for a range of antennas the calculated results for the edge extension as a function of the dimensions of the W by h aperture located at each end of the antenna. The calculations were carried out for a range of antennas of different dimensions built on substrates of relative dielectric constants between 2.5 and 2.62. Because this small range in dielectric constant is so widely used in antenna applications, the dielectric constant will not be included in the model for the edge extension. It is therefore understood that the model will only be applicable to antennas on substrates of dielectric constant between these values. Based on the formulas of the previous authors, the empirical equation for the edge extension will primarily be a function of W / h; the aspect ratio of the crosssection through the dielectric filled region under the patch. Shown in figure 3.3 is the extrapolated edge extension at $W / h=0$ versus the electrical substrate thickness. This graph has no physical interpretation, but it is used to determine a correction term that takes into account the substrate thickness. The overall expression of best fit for the effective edge extension as a function of the dimensions of the aperture and frequency is

$$
\begin{equation*}
\beta_{8} \delta L=\frac{322.5}{10^{6}} \frac{W}{h}+C \tag{3.24}
\end{equation*}
$$

where

$$
C= \begin{cases}0.606+0.128 \ln \frac{h}{\lambda_{s}} ; & h / \lambda_{s} \geq 0.009 \\ 0 ; & \text { otherwise }\end{cases}
$$

Here h and W are the aperture width and length respectively which correspond to the substrate height and patch width of the antenna. Equation (3.24) has been evaluated for $h / \lambda_{s}=0.01,0.02,0.03,0.04$, and the lines of $\beta_{s} \delta L$ versus W / h have been superimposed on the points of figure 3.2. The specifications of the antennas used are referred to in Appendix A.

Using this empirical approach, any error in the calculated effective dielectric
constant due to the failure of equation (3.21) to accurately represent the physical phenomenon is accounted for in the edge extension term. In the next section the combination of equations (3.2), (3.21) and (3.24) are shown to lead to calculated results for $f_{o c}$ that are within 2% of measured ones for a wide variety of antennas. However, in any design exercise the frequency at which the input impedance is real, $f_{o z}$, is of primary concern, so the impedance resonant frequency will now be calculated from the cavity resonant frequency.

Figure 3.2: Empirical determination of the edge extension as a function of the aperture dimensions, where the numbers along side each point refer to the h / λ_{g} and $f_{o c} \mathrm{MHz}$.

3.6 The impedance resonant frequency

To determine $f_{o z}$ from $f_{o c}$, the equation for the circle of best fit to the input

Figure 3.3: Empirical determination of the edge extension as a function of the substrate height, where the numbers along side each data point refer to $f_{o c} \mathrm{MHz}$.

Figure 3.4: Network model of a leaky resonant cavity.
impedance versus frequency locus must be obtained. The network model of the antenna suggested by Carver $[15,30]$ and shown in figure 1.8 (b) is a good starting point because it has been useful in the calculation of the input impedance of microstrip antennas operating at lower microwave frequencies. However for the 3 GHz and 5 GHz antennas studied in this investigation, there is typically a gap between the impedance locus and the perimeter of the Smith chart. This gap can be observed in the measured input impedance results of figure 2.1. Carver's network of figure 1.8(b) can therefore be improved by adding a series resistance, \boldsymbol{R}_{s}, to the circuit, as shown in figure 3.4. It turns out that the equation for the resonant frequency is independent of the series resistance. The series resistance will be treated in more detail in Chapter IV.

Using normalised parameters the equation for the input impedance of the network of figure 3.4 is

$$
\begin{equation*}
z_{i n}=r_{s}+j x_{s}+\frac{r_{o}}{1+j Q_{o}\left(f^{2} / f_{o c}^{2}-1\right)} \tag{3.25}
\end{equation*}
$$

and was obtained using

$$
\begin{equation*}
f_{o c}=\frac{1}{2 \pi \sqrt{L C}} \tag{3.26}
\end{equation*}
$$

and for a parallel $R L C$ circuit

$$
\begin{equation*}
Q_{o}=\frac{R_{o}}{\omega L} \tag{3.27}
\end{equation*}
$$

where

$$
\begin{align*}
z_{i n} & =\frac{Z_{i n}}{Z_{o}} \tag{3.28}\\
r_{o} & =\frac{R_{o}}{Z_{o}} \tag{3.29}\\
r_{s} & =\frac{R_{s}}{Z_{o}} \tag{3.30}\\
x_{s} & =\frac{X_{s}}{Z_{o}} \tag{3.31}
\end{align*}
$$

Note that r_{o} is the resonant resistance, that is the input resistance at resonance $f_{o z}$, and that Z_{o} is the characteristic impedance of the transmission line feeding the cavity.

Because only the relationship between the closely spaced frequencies $f_{o z}$ and $f_{o c}$ is of interest, let $f \approx f_{o c}$ so that the classical definition of the frequency tuning
parameter [41] can be used

$$
\begin{equation*}
\delta=\frac{f-f_{o c}}{f} \tag{3.32}
\end{equation*}
$$

Substituting the frequency tuning parameter into equation (3.25) results in an expression for the input impedance versus frequency locus

$$
\begin{equation*}
z_{i n}=r_{s}+j x_{s}+\frac{r_{o}}{1+j 2 Q_{o} \delta} \tag{3.33}
\end{equation*}
$$

To calculate $f_{o z}$, substitute $f_{o z}$ for f and then equate the imaginary part of equation (3.33) to zero to obtain a quadratic equation in δ :

$$
\begin{equation*}
\delta^{2}-\frac{r_{o}}{2 Q_{o} x_{s}} \delta+\frac{1}{4 Q_{o}^{2}}=0 \tag{3.34}
\end{equation*}
$$

Equation (3.32) can be used to determine $f_{o z}$ from $f_{o c}$, where the series reactance term, x_{θ}, is calculated using the tapered transmission line model, and the unloaded quality factor, \boldsymbol{Q}_{o}, for a lossy dielectrically filled rectangular cavity is given by [53]

$$
\begin{equation*}
\frac{1}{Q_{o}}=\frac{1}{Q_{r a d}}+\frac{1}{Q_{d i e}}+\frac{1}{Q_{c u}} \tag{3.35}
\end{equation*}
$$

and is evaluated using [24]

$$
\begin{align*}
Q_{r a d} & =\frac{\pi W}{4 G_{r a d} \mu_{o} h f_{o c} L} \tag{3.36}\\
Q_{d i e} & =\frac{1}{\tan \delta} \tag{3.37}\\
Q_{c u} & =\frac{h}{\delta_{s}} \tag{3.38}\\
G_{r a d} & =\frac{1}{60 \pi^{2}} \int_{0}^{\pi} \frac{\left(1+J_{o}\left(\beta_{o} L \sin \theta\right)\right) \sin ^{2}\left(\frac{\beta_{o} W}{2} \cos \theta\right) \sin ^{3} \theta}{\cos ^{2} \theta} d \theta \tag{3.39}\\
\delta_{s} & =\sqrt{\frac{2}{\omega \mu_{o} \sigma}} \tag{3.40}
\end{align*}
$$

The transmission line model for the input impedance of a rectangular patch antenna, to be discussed in Chapter V, can be used to derive an expression for the resonant resistance, r_{o}, in terms of the radiation conductance

$$
\begin{equation*}
r_{o}=\frac{Z_{o}}{2 G_{r a d}} \tag{3.41}
\end{equation*}
$$

where the radiation conductance can be calculated using equation (3.39), or one of the many other expressions to be reviewed in Chapter V.

3.7 Discussion of results

Table 3.1 clearly shows that the agreement between the measured cavity resonant frequencies and those calculated using the formulas of other authors falls off as the frequency is increased. Typically the difference exceeds 2% for frequencies greater than 2.5 GHz , and up to an average difference of 5% at 5 GHz .

The first and second columns of Table 3.2 compare the measured cavity resonant frequencies with those calculated using equation (3.2), where equations (3.21) and (3.24) were used for the effective dielectric constant and the empirically determined edge extension respectively. The third column of Table 3.2 lists the percentage difference between the measured and calculated frequencies. For frequencies less than 3.5 GHz , the agreement between the calculated and measured results is similar to that obtained using the formulas of other authors, as listed in Table 3.1. However the frequencies calculated using the accurately determined parameters are within 2% of measurements for frequencies up to 5 GHz . Furthermore there is no indication of the agreement falling off as the frequency increases.

The sixth column of Table 3.2 shows that the maximum percentage difference between the measured and calculated impedance resonant frequencies is less than $\mathbf{2 \%}$. The antennas tested represent a wide range of aspect ratios (W / L), substrate heights, feed point positions, and frequencies. The dielectric constant of the substrate materials was between 2.5 and 2.62 .

The computational effort required to determine the impedance resonant frequency can be decreased if the resonant resistance, r_{o}, is assumed to have a value equal to one; that is, the antenna is assumed to be critically coupled to the transmission line feeding it. This assumption was made during the calculation of the results

Cavity and impedance resonant frequencies					
$f_{o c}$ meas'd	$f_{o c}$ calc'd	$\%$ error	$f_{o z}$ meas'd	$f_{o z}$ calc'd	$\%$ error
633	627	-1.03	634	628	-0.95
658	652	-0.96	658	652	-0.91
1189	1190	+0.09	1190	1193	+0.25
1197	1193	-0.36	1197	1195	-0.17
1396	1389	-0.51	1393	1393	0.00
1410	1392	-1.25	N/A	1396	N/A
2195	2153	-1.93	N/A	2175	N/A
N/A	2203	N/A	2224	2209	-0.70
3387	3422	+1.02	N/A	3428	N/A
3502	3539	+1.06	3507	3547	+1.10
4659	4630	-0.62	N/A	4702	N/A
4744	4725	-0.39	N/A	4751	N/A
4770	4756	-0.29	4778	4779	+0.02
4784	4707	-1.59	4798	4740	-1.20
4792	4805	+0.28	4794	4818	+0.50
4830	4822	-0.17	4833	4835	+0.04
5013	5000	-0.26	5028	5031	+0.06

Table 3.2: Calculated and measured resonant frequencies, where N/A refers to cases where the data was not available.
listed in the fifth column of Table 3.2. The resonant resistance is used in the evaluation of the frequency tuning parameter; equation (3.34). The assumption that the antenna is critically coupled can be justified for two reasons. Firstly, the resonant resistance is difficult to calculate because it depends on the radiation conductance, and it will be shown in Chapter V that the expressions for the radiation conductance proposed by other authors disagree with conductances derived from experiments by up to $\mathbf{7 0 \%}$ when used with microstrip elements at frequencies of 5 GHz . The second justification
for assuming $r_{o}=1$ is that the effect on the calculated impedance resonant frequency is demonstrated in figure 3.5 to be small. Shown are the results of the calculation of the impedance resonant frequency as a function of the resonant resistance. Here $f_{o c}$ has been calculated for a 16.93 mm by 16 mm by 1.57 mm rectangular element to be 5 GHz , and when the normalised resonant resistance is equal to one, the corresponding calculated $f_{o z}$ is 5.033 GHz . The value of r_{o} was then varied between 0.6 and 2.5 , and the resulting change in $f_{o z}$ expressed as a percentage of 5.033 GHz . The figure shows that the impedance resonant frequency is a weak function of the resonant resistance, especially as the coupling moves from critical to over-coupled; that is, r_{o} greater than one.

Figure 3.5: Sensitivity of the impedance resonant frequency to the resonant resistance.

Figure 3.6 shows a comparison between the calculated and measured cavity resonant frequencies as a function of the patch width, for a set of antennas of different widths. Notice that the agreement between the two results is independent of width.

Figure 3.6: Calculated (—) and measured ($\times \times \times$) cavity resonant frequency versus the width for a 18.01 mm by W by 1.57 mm rectangular antenna, where $\epsilon_{r}=2.55$.

3.6 Conclusions

Specific definitions of the resonant frequencies of a microstrip antenna have been proposed. A new empirical model for the effective edge extension of rectangular microstrip antennas has been shown to provide cavity resonant frequencies that are within 2% of measurements. A method for determining the impedance resonant frequency from the cavity resonant frequency is also proposed; it again provides results that are within 2% of measurements. The models have been tested on a wide variety of antenna geometries, including a study on the variation of the accuracy as a function of the width of the patch. The new formulas represent a significant improvement on those of other authors because of their simplicity and the fact that they produce accurate results up to a frequency of 5 GHz .

In the computer-aided design program listed in Appendix C the cavity resonant frequency is calculated from the dimensions of the rectangular patch antenna using equations (3.2), (3.21), and (3.24). The impedance resonant frequency is then calculated from the cavity resonant frequency using equations (3.32) to (3.40), where the series
reactance is calculated using the tapered transmission line model outlined in Chapter II. The value of the resonant resistance is assumed equal to one.

CHAPTER IV

THE APPLICATION OF THE DEFINITION OF BANDWIDTH

 FOR SINGLE PORT RESONATORS TO MICROSTRIP ANTENNAS
4.1 Introduction

The bandwidth of an antenna can be defined in many ways: in terms of a change in the far field radiation pattern's shape, direction, polarisation, loss in the gain, or an increase in side-lobe levels or, as is usually the case with microstrip antennas, a change in the VSWR. The VSWR definition of bandwidth is however not suitable for comparative studies of bandwidth because it requires the antennas to be matched or driven by the same degree of mismatch. In other words, the VSWR definition is suitable for determining the bandwidth of an antenna by direct measurements where a specific antenna is being tested. However, when studying the effect of antenna geometry on the bandwidth of a family of antennas an experimentally evaluated comparison may be difficult, because the coupling between the feed and each antenna in the investigation may have to be adjusted to give a match at a specific frequency. The bandwidth definition used for single port resonators is applicable to microstrip patch antennas because they are, in essence, cavity resonators with leaky side walls. In this chapter the classical definition of bandwidth is proposed as the most suitable definition for carrying out comparative studies between microstrip antennas.

4.2 The resonant cavity definition of bandwidth

It has already been mentioned in Chapters II and III that the input impedance of a microstrip antenna can be closely approximated by the circular locus that characterises a single mode resonant cavity. The Smith chart of Figure 4.1 shows how the measured input impedance versus frequency locus can be approximated by a circle of best fit, where the measurements were carried out on a 18.1 mm by 16 mm rectangular patch over a 3.5 GHz to 6.5 GHz bandwidth; the resonant frequency being about 5 GHz . The lumped network model for the approximating circle response is given in Figure 3.4, where R_{o} represents the sum of the copper and dielectric losses in the cavity as well as the radiation from the cavity. Thus

$$
\begin{equation*}
R_{o}=R_{c u}+R_{d i e}+R_{r a d} \tag{4.1}
\end{equation*}
$$

where $R_{r a d} \gg R_{c u}+R_{d i e}$. The $L C$ terms account for the energy stored in the antenna structure. The X_{s} term is the equivalent series reactance of the probe, which is only included in the network when probe fed antennas are considered. The series resistance term, R_{s}, models the gap between the locus and the perimeter of the Smith chart. The gap was originally attributed by Ginzton [41] to resistive losses in the coupling structure. More recently however, Griffin [54] pointed out that the gap is a consequence of the fundamental difference between a distributed parameter resonator, which the antenna is, and a lumped fixed element equivalent circuit: moreover, the gap is mostly due to the residual effects of higher order modes rather than losses in the coupling structure. Therefore let

$$
\begin{equation*}
R_{s}=R_{l}+R_{h} \tag{4.2}
\end{equation*}
$$

where R_{l} represents the losses in the coupling structure, and the energy radiated and dissipated in the higher order modes is represented by the $\boldsymbol{R}_{\boldsymbol{h}}$ term. For the representation of the antenna operating about a single resonant mode the R_{h} term can be approximated to zero, and because R_{l} is negligible in value then to a good approximation R_{s} can be removed from the circuit model.

Figure 4.1: The input impedance response of a rectangular microstrip antenna, 18.1 mm by 16 mm by $1.57 \mathrm{~mm}, D=6 \mathrm{~mm}, \epsilon_{r}=2.55$, measured over a $\pm 30 \%$ bandwidth about the resonant frequency: $f_{o c} \approx 5 \mathrm{GHz}$. Measured data ($\cdots \cdots$) and the circle approximation (- -).

The classical method [41] for determining the terminal characteristics of a single port single mode resonator requires that the locus be symmetrical about the real axis of the Smith chart. This is usually achieved by choosing a special reference plane along the transmission line feeding the cavity at which the series reactance term representing the coupling structure disappears. This happens at a series of singular positions, a half wavelength apart, called the detuned-short positions. This shift in the reference plane is usually achieved by rotating the locus around the chart until symmetry about the real axis is achieved, where the off-resonance region of the locus is located near the short circuit end of the chart. It is however more accurate to directly subtract the value of the series reactance, $j X_{8}$. The equivalent series reactance of the feed probe is inductive. Therefore, the input impedance locus is made symmetrical about the real axis of the Smith chart by subtracting the value of $j \omega L_{s}$ from each point on the locus. The resulting
transformed circle of best fit is shown in figure 4.2. For the parallel $R L C$ circuit of figure 3.4, the unloaded quality factor, Q_{o}, describes the ratio of the energy dissipated to the energy stored within the cavity. The unloaded quality factor can be expressed in terms of the half power point frequencies, f_{1} and f_{2}. These points represent the intersections of the $r=x$ contour with the locus of the transformed impedance. Thus

$$
\begin{equation*}
Q_{o}=\frac{f_{o c}}{f_{2}-f_{1}} \tag{4.3}
\end{equation*}
$$

where $f_{o c}$ is the cavity resonant frequency defined in Chapter III.

Figure 4.2: The transformed circle approximation for the input impedance response of a rectangular microstrip antenna, 18.1 mm by 16 mm by $1.57 \mathrm{~mm}, D=6 \mathrm{~mm}, \epsilon_{r}=2.55$, measured over a $\pm 30 \%$ bandwidth about the resonant frequency: $f_{o c} \approx 5 \mathrm{GHz}$.

The loaded quality factor is defined as the ratio of the total reactance to the total series loss, and is a function of the unloaded quality factor, \boldsymbol{Q}_{o}, and the coupling coefficient, β. Thus

$$
\begin{equation*}
Q_{L}=\frac{Q_{o}}{1+\beta} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\beta_{1} \frac{1}{1+x_{s}^{2}} \tag{4.5}
\end{equation*}
$$

where β_{1} is the ratio of the coupled resistance to the cavity resistance, R_{0}. When $\beta_{1}=1$ the cavity is critically coupled. When $\beta_{1}<1$ the cavity is under coupled, and over coupled when $\beta_{1}>1$. Also β is related to the resonant resistance by

$$
\beta= \begin{cases}r_{o} & \text { for the over coupled cavity } \\ \frac{1}{r_{o}} & \text { for the under coupled cavity }\end{cases}
$$

When comparing the bandwidths of a number of microstrip antennas, it is helpful to use a definition of bandwidth that is independent of the degree of coupling between the antennas and their respective feeds, which in practice typically means the positions of the feed points along the E-planes of the patches. The bandwidth between the half power point frequencies is expressed in terms of the unloaded coupling factor

$$
\begin{equation*}
B W=\frac{1}{Q_{o}} \tag{4.6}
\end{equation*}
$$

Therefore the bandwidth can be determined for differently shaped patches for comparative bandwidth studies, without the need to match each antenna to the transmission line feeding it.

The application of the single port cavity definition of bandwidth to microstrip antennas is based on the assumption that these antennas can be modelled as cavities with the network model shown in figure 3.4. This assumption can be easily tested because one of the results of the classical theory is that, for the definition of bandwidth based on the unloaded cavity factor, the bandwidth is independent of changes in the coupling coefficient, which in this case is achieved by altering the feed point position. The results of an experimental investigation carried out to test this assumption are show in figure 4.3. Here the bandwidth is calculated from the measured input impedance versus frequency data of a set of rectangular patches and is plotted against the feed point position, D. Here $D \approx 6.4 \mathrm{~mm}$ corresponds to a critically coupled antenna, and
$D<6.4 \mathrm{~mm}$ and $D>6.4 \mathrm{~mm}$ corresponds to the over coupled and under coupled cases respectively. The bandwidth can be seen to be almost independent of the changes in the coupling mechanism.

Figure 4.3: Bandwidth versus feed point inset distance for a 18.1 mm by 16 mm by 1.57 mm rectangular element, $f_{o c} \approx 5 \mathrm{GHz}, \epsilon_{r}=2.55$.

Specifying an antenna's bandwidth in terms of Q_{o} has two advantages over specifying it in terms of the VSWR. Firstly, the antenna bandwidth can be investigated without regard for the feeding structure. This means, for example, that the bandwidth of two antennas can be compared even though neither may be matched to its feeding structure nor mismatched by equal amounts. The other advantage of this definition is that once the locus has been transformed so that it is symmetrical about the real axis of the Smith chart, there is no ambiguity in specifying the resonant frequency because
there is now only one frequency at which the input impedance is real, the cavity field structure resonant and the VSWR a minimum.

4.3 Conclusion

The classical definition of bandwidth, as used for single port resonant cavities, is regarded as a more appropriate quantity for comparative studies between microstrip antennas whether they are matched or not. The use for this bandwidth definition will be described in Chapter VIII, where an experimental investigation into the bandwidth performance of a novel hexagonal patch is presented.

CHAPTER V

THE CALCULATION OF THE INPUT IMPEDANCE USING THE TRANSMISSION LINE MODEL WITH EMPIRICALLY DETERMINED APERTURE ADMITTANCES

5.1 Introduction

The accuracy of the original models devised for designing rectangular microstrip antennas can be improved if new empirical formulas are used to determine key parameters in these simple models. The particular quantity for which new formulas are proposed is the equivalent impedance of the radiating apertures that are assumed to be located at each end of the antenna element. These quantities are incorporated in a simple model that consists of two aperture antennas separated by a low characteristic impedance microstrip transmission line that is connected part way along its length to a coaxial feed line. In the past the model has predicted resonant frequencies and input impedances that were only in agreement with measurements at low frequencies, which led to the discarding of the simple transmission line model in favour of more comprehensive modal-expansion cavity models $[29,32]$. It will be shown that the empirical formulas for parameters presented here give design results that are in accurate agreement with measurements for the input impedances of rectangular elements operating at frequencies up to 5 GHz .

5.2 Survey of the methods used to calculate the effective aperture admittance at each end of the patch

A major part of modelling the input impedance and far field radiation pattern is the determination of the effective admittance which the walls present to the fields within the cavity. When the resonant frequency was initially considered, the antenna was modelled as a lossless cavity bounded by two short circuit and four open circuit walls. This rudimentary model predicts frequencies that are higher than those measured because it ignores the extent to which the fields fringe beyond the physical dimensions of the patch. The radiated and stored power associated with the fringing fields are represented by an effective aperture admittance. For the case of a rectangular element, the side walls are assumed to be open circuited and the effective aperture admittances of the two end walls are determined by modelling them as radiating apertures, both with input admittances, \boldsymbol{Y}_{a}, referred to as the aperture admittance. This parameter is also referred to in the literature as the wall admittance. There are no rigorous solutions for the aperture admittance, but several authors have published approximate solutions and the results of these formulas will now be reviewed, tested, and compared.

One appropriate model for the aperture admittance has been developed by Marcuvitz [42] for the case of a semi-infinite parallel-plate feeding an aperture in a ground plane which is then radiating into free space. If the height of the guide is h^{\prime}, then the expressions in units of mho per unit length of aperture are

$$
\begin{align*}
& G_{a} \approx \frac{Y_{o} \pi h^{\prime}}{2 \lambda_{o}} \tag{5.1}\\
& B_{a} \approx \frac{2 Y_{o} h^{\prime}}{\lambda_{o}} \ln \left(\frac{e \lambda_{o}}{\gamma h^{\prime}}\right) \tag{5.2}
\end{align*}
$$

where Y_{o} is the characteristic admittance of the air-filled guide, and is given by

$$
\begin{equation*}
Y_{o}=\frac{1}{\eta_{o} h^{\prime}} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{aligned}
e & =2.71828 \\
\gamma & =1.78107
\end{aligned}
$$

These formulas have been applied to microstrip antennas by Sengupta [16]. If a rectangular antenna of width W is mounted on an substrate of thickness h, then

$$
\begin{equation*}
Y_{o m}=\frac{\alpha W \sqrt{\epsilon_{e}}}{h \eta_{o}} \text { mho } \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=1+1.393(h / W)+0.667(h / W) \ln (W / h+1.44) \tag{5.5}
\end{equation*}
$$

Then

$$
\begin{align*}
G_{a} & =\frac{Y_{o m} \beta_{s} h}{2 \alpha \epsilon_{e}} \mathrm{mho} \tag{5.6}\\
B_{a} & =\frac{Y_{o m} \beta_{s} h}{\pi \alpha \epsilon_{e}} \ln \left(\frac{\sqrt{\epsilon_{e}} 2 \pi e}{\gamma \beta_{s} h}\right) \quad \mathrm{mho} \tag{5.7}
\end{align*}
$$

where

$$
\begin{equation*}
\beta_{s}=\beta_{o} \sqrt{\epsilon_{e}} \tag{5.8}
\end{equation*}
$$

Sengupta's equations for the admittance of the radiating apertures can be derived from the expressions of Marcuvitz by firstly taking into account the image beneath the ground plane of the aperture at each end of the antenna. Thus

$$
\begin{equation*}
h^{\prime}=2 h \tag{5.9}
\end{equation*}
$$

is substituted into equations (5.1) and (5.2). Secondly because the characteristic impedance of the transmission line between the ends of the antenna is independent of any radiation considerations, Sengupta has substituted

$$
\begin{equation*}
h^{\prime}=h \tag{5.10}
\end{equation*}
$$

into equation (5.3). When both these substitutions are made equations (5.6) and (5.7) are the result.

Another expression that has been widely used with the transmission line model was proposed by Harrington [9] for the input admittance of a parallel-plate guide feeding an aperture in a metallic plane, and radiating into a half-space. The expressions for a slot of width h in units of mho per unit length are

$$
\begin{align*}
G_{a} & =\frac{\pi\left(1-\frac{\left(\beta_{o} h\right)^{2}}{24}\right)}{\eta_{o} \lambda_{o}} \tag{5.11}\\
B_{a} & =\frac{3.135-2 \log \beta_{o} h}{\eta_{o} \lambda_{o}} \tag{5.12}
\end{align*}
$$

where the aperture is assumed narrow; that is $h / \lambda_{o} \leq 0.1$. Expression (5.12) is based on the quasi-static capacitance associated with the fields fringing from the end of the antenna element.

Derneryd [12] suggested modelling the aperture admittance as the input impedance of an equivalent slot radiator above the ground plane. Referring to figure 1.5, the length and width of the slots at each end of the transmission line are respectively W and h, and the electric field distribution across the slot is constant in the y-direction. The radiation field was determined by replacing the slot's electric field by a longitudinal magnetic current distribution. The effect of the image slot beneath the ground plane was taken into account by multiplying the magnitude of the magnetic current by a factor of two. The slot's radiation conductance was determined by integrating the real part of the Poynting vector over a hemisphere of large radius. The approximate solutions in the units of mho are

$$
G_{a}= \begin{cases}\frac{W^{2}}{90 \lambda_{o}^{2}} & W \leq \lambda_{o} \tag{5.13}\\ \frac{\pi W}{\eta_{o} \lambda_{o}} & W>\lambda_{o}\end{cases}
$$

The aperture's input susceptance was obtained using a static capacitance representation of the fringing field in the region beyond the end of a microstrip transmission line. The equivalent capacitance of the slot is

$$
\begin{equation*}
C_{a}=\frac{\delta L}{v_{p h} Z_{o m}} \tag{5.14}
\end{equation*}
$$

where $v_{p h}$ is the substrate phase velocity and $Z_{o m}$ is the characteristic impedance of
the microstrip line. The approximate expression [14] for the edge extension is

$$
\begin{equation*}
\delta L=0.412 h \frac{\epsilon_{e}+0.300}{\epsilon_{e}-0.258} \frac{W / h+0.262}{W / h+0.813} \tag{5.15}
\end{equation*}
$$

where ϵ_{e} is the effective dielectric constant.

Carver [32] assumes the aperture conductance is that of a parallel-plate TEM waveguide slot radiating into a half-space, and suggests using an approximation to Harrington's [9] expression for a narrow slot,

$$
\begin{equation*}
G_{a}=\frac{\pi W}{\eta_{o} \lambda_{o}} \quad \mathrm{mho} \tag{5.16}
\end{equation*}
$$

This expression is used on the assumption that only a dominant TM_{10} mode is excited in the cavity. Therefore the waves within the cavity are normally incident on the two radiating ends of the antenna producing uniform field intensities across each aperture. Carver also suggests that the susceptance may be approximated using Hammerstad's [14] formula for the capacitance of an open circuited microstrip line

$$
\begin{equation*}
B_{a}=\frac{0.01668 \delta L W \epsilon_{e}}{h \lambda_{o}} \quad \mathrm{mho} \tag{5.17}
\end{equation*}
$$

Carver [32] goes on to suggest an empirical modification to the aperture admittance given by equations (5.16) and (5.17). This modification is based on an analysis of the zig-zag nature of the quasi-TEM plane waves in the cavity reported by Chang and Kuester [55]. The analysis of this condition was carried out as a function of the patch aspect ratio, W / L, and showed that the aperture admittance is a function of both the frequency and the angle of incidence of waves on the cavity walls, suggesting that the normal incidence assumed above is inadequate. By probing the fields near the cavity's walls, Carver has shown empirically that expressions (5.16) and (5.17) may be multiplied by an aspect ratio factor given by

$$
\begin{equation*}
F(W / L)=0.7747+0.5977(W / L-1)-0.1638(W / L-1)^{2} \tag{5.18}
\end{equation*}
$$

which is recommended to provide improved agreement with the measured input impedance loci of microstrip antennas operating at frequencies lower than about 3.5 GHz .

Newman [19] also recommended using Carver's equations (5.16) and (5.17). However Newman has incorrectly quoted Carver for the conductance equation. Newman published the expression

$$
\begin{equation*}
G_{a}=\frac{\pi W}{\eta_{o} \lambda_{z}} \quad \mathrm{mho} \tag{5.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{s}=\frac{\lambda_{0}}{\sqrt{\epsilon_{e}}} \tag{5.20}
\end{equation*}
$$

which is only true if the free space wavelength in Carver's equation (5.16) is replaced by the substrate wavelength.

5.2.1 A comparison between the aperture admittance formulas

For typical microstrip antenna geometries, where $\left(\beta_{o} h\right)^{2} / 24 \ll 1$, equation (5.11) reduces to (5.16) and (5.13) for the aperture conductance when $W>\lambda_{0}$. Equations (5.11) and (5.6) can be derived when (5.3) is substituted into (5.1). Also (5.19) is equivalent to (5.11) using the substrate wavelength. Furthermore each of the formulas imply that the conductance is proportional to the effective electrical width of the aperture. The main difference between them is the constant factor.

For the aperture susceptance, (5.12) was obtained using a quasi-static capacitance approach, while (5.14) and (5.17) were determined using the static capacitance. Also equation (5.17) can be derived from (5.14) using:

$$
\begin{align*}
\left|B_{a}\right| & \approx\left|\omega C_{a}\right| \tag{5.21}\\
Z_{o m} & \approx \frac{h \eta_{o}}{W \sqrt{\epsilon_{e}}} \tag{5.22}\\
v_{p h} & =\frac{\omega}{\beta_{o} \sqrt{\epsilon_{e}}} \tag{5.23}\\
\beta_{o} & =\frac{2 \pi}{\lambda_{o}} \tag{5.24}
\end{align*}
$$

Also expression (5.7) can be derived from (5.2). The similarities in the susceptance expressions are not as obvious as those found with the conductance. However in the next paragraph they are evaluated and shown to produce similar susceptance versus frequency characteristics. The main difference again being the factor of proportionality.

Figures 5.1(a) and (b) compare these published aperture admittances for a typical antenna geometry operating at about 1.4 GHz . Because of the large variation between the results of the different formulas, it is concluded that the input impedance results obtained using the transmission line model are greatly dependent on the choice of the correct aperture admittance. Each of the formulas was used in turn with the transmission line model to calculate the input impedance and the results compared with measurements for the case of $f_{o c} \approx 1.4 \mathrm{GHz}$. The best agreement was obtained with Carver's expressions (5.16), (5.17) and (5.18). The calculated and measured input impedances are shown in figure 5.2. The same equations also provide useful results at 2.2 GHz , shown in figure 5.3 , but are shown in figure 5.4 to be worthless when applied to an antenna operating at about 5 GHz .

It is therefore necessary to develop accurate empirical equations for the aperture admittance that are applicable to rectangular elements on electrically thick substrates; that is, during operation at mid-microwave frequencies, say 5 GHz for example.

5.3 The determination of an empirical equation for the aperture admittance

Modelling the microstrip antenna as a multi-mode lossy cavity has tended to replace the transmission line model in recent work. However, if the width of the patch is restricted, then the fundamental resonant mode field distributions are the same for both the transmission line and the cavity models. Therefore good results might be expected for the transmission line model if its parameters are empirically determined to account for the residual effects of other modes.

The transmission line model is used to derive an empirical equation for the aperture admittance parameter. The input admittance of the similar effective aperture

Figure 5.1: Calculated aperture conductances (a) and susceptances (b) using the published equations for a rectangular element: 65.5 mm by 105.6 mm by $1.57 \mathrm{~mm}, S M A$, $D=17 \mathrm{~mm}, \epsilon_{r}=2.55$: (1) Derneryd, (2) Carver, (3) Carver with aspect ratio factor, (4) Harrington using λ_{o}, (5) Harrington using λ_{3}, (6) Marcuvitz, (7) Newman, and (8) Sengupta.

Figure 5.2: Measured ($\times \times \times$) and calculated ($\cdot \bullet$) input impedances using Carver's aperture admittance for a rectangular element: 65.5 mm by 105.6 mm by $1.57 \mathrm{~mm}, S M A$, $D=17 \mathrm{~mm}, \epsilon_{r}=2.55$, where $f=1380 \mathrm{MHz}$ plus 10 MHz increments.

Figure 5.3: Measured ($\times \times \times$) and calculated (•••) input impedances using Carver's aperture admittance for a rectangular element: 41.4 mm by 68.58 mm by $1.59 \mathrm{~mm}, S M A$, $D=10.16 \mathrm{~mm}, \epsilon_{r}=2.5$, where $f=2200 \mathrm{MHz}$ plus 20 MHz increments.

Figure 5.4: Measured ($\times \times \times$) and calculated (••) input impedances using Carver's aperture admittance for a rectangular element: 16.93 mm by 16 mm by $1.57 \mathrm{~mm}, A P C-7$, $D=5.5 \mathrm{~mm}, \epsilon_{r}=2.55$, where $f=4600 \mathrm{MHz}$ plus 200 MHz increments.
antennas, one at each end of the line, is determined using measured input impedance data. The calculated aperture admittances resulting from this technique will be referred to as empirical admittances. Where necessary the effect of the feed probe is modelled by a series reactance, the value of which is determined using the locus transformation method already outlined in Chapter II. This derivation of the empirical admittances has been completed for two rectangular elements: 18.03 mm by 16 mm and 16.93 mm by 16 mm , both mounted on 1.57 mm thick substrates each having a dielectric constant of 2.55. Figures $5.5(\mathrm{a})$ and (b) show the empirical aperture admittances together with values obtained using the formulas of other authors. The figures also show the close agreement between the two sets of empirical conductance and susceptance data. It is interesting to note that Derneryd's expressions (5.13) and (5.14) can be modified to achieve better agreement with the empirical values. This is done by using the conductance expression for a long aperture, even though for the apertures under consideration
$W / \lambda_{0}=0.27$. Also the susceptance is calculated using equation (5.14) with the empirically determined expression for δL, equation (3.24), and Getsinger's equation (3.21) for the effective dielectric constant. In contrast, Derneryd recommended using equations (1.10) and (1.9) for the edge extension and the effective dielectric constant, respectively. With these modifications Derneryd's formulas for the aperture admittance give results that are close to the empirically derived aperture admittance. Figure 5.6 shows the calculated input impedance locus using these modified equations for the aperture admittance. There is a 1% error in the impedance resonant frequency and a 12% error in resonant resistance when the results are compared with measurements. However this excellent agreement is not maintained over a very large frequency range. Therefore due to the sensitivity of the calculated input impedance to the aperture admittance, it is necessary to determine an accurate empirical equation for the aperture admittance.

A simple approach to the determination of an empirical model for the aperture admittance of antennas operating at around 5 GHz might be the approximation of the empirical aperture data shown in figure 5.5 by lines of best fit. This approach would provide very accurate input impedances for antennas operating at about 5 GHz , but would be of limited use at other frequencies and geometries. Instead it was decided to aim at developing a set of equations that will enable the transmission line model to be used to calculate the input impedance to sufficient accuracy for the design of antennas operating over a wide range of frequencies; say 0.5 GHz to 5 GHz .

The modified set of Derneryd's equations are in fair agreement with measurements so they are used as a starting point in the development of new empirical equations for the aperture admittance. Derneryd's equations (5.13) and (5.14) can be used to show that the conductance is a function of the effective electrical length of the aperture, while the susceptance is a function of the effective electrical length of the aperture and the edge extension normalised to the substrate thickness. That is,

$$
\begin{equation*}
G_{a}=\text { function }\left(\frac{W}{\lambda_{0}}\right) \tag{5.25}
\end{equation*}
$$

Figure 5.5: Aperture conductances (a) and susceptances (b) versus frequency for a rectangular element: 16.93 mm by 16 mm by $1.57 \mathrm{~mm}, A P C-7, D=5.5 \mathrm{~mm}, \epsilon_{r}=2.55$: (1) Derneryd, (2) Carver, (3) Carver with aspect ratio factor, (4) Harrington using λ_{0}, (5) Harrington using λ_{s}, (6) Marcuvitz, (7) Newman, (8) Sengupta, Empirical: 16.93 mm by 16 mm by $1.57 \mathrm{~mm}(x)$ and 18.03 mm by 16 mm by 1.57 mm (*), and Modified Derneryd (---).
and

$$
\begin{equation*}
\omega C_{a}=\text { function }\left(\frac{\delta L}{h} \frac{W}{\lambda_{o}}\right) \tag{5.26}
\end{equation*}
$$

The aperture susceptance can also be considered in terms of a classical parallel-plate capacitor, where the equivalent capacitor has a plate area of δL by W and a plate separation of h. It is worth noting that the ratio $\delta L / h$ only varies between 0.7 and 0.9 for typical antenna geometries. Therefore it is concluded that the aperture susceptance, like the conductance, is predominantly a function of the effective electrical length of the aperture.

An experiment was carried out to determine the empirical aperture admittance as a function of the aperture dimensions using a 16.93 mm long antenna on a 1.57 mm thick substrate of dielectric constant 2.55. The width of the patch was varied between 13 mm and 30 mm . The empirical conductance data is given in figure 5.7, and approximated by the exponential equation of best fit

$$
\begin{equation*}
G_{a}=\frac{546}{10^{6}} e^{\frac{4.47 W}{\lambda_{0}}} \text { mho } \tag{5.27}
\end{equation*}
$$

The aperture susceptance is graphed in figure 5.8, and the straight line of best fit is

$$
\begin{equation*}
\omega C_{a}=0.0455 \frac{\delta L}{h} \frac{W}{\lambda_{o}}+\frac{5}{10^{4}} \tag{5.28}
\end{equation*}
$$

Strictly speaking ωC_{a} is an approximation to the aperture susceptance because a susceptance is only the reciprocal of the reactance when the resistance is equal to zero. Therefore an iterative routine is used to determine the aperture admittance from the aperture conductance, G_{a}, and reactance, $1 / \omega C_{a}$.

Notice that both the aperture conductance and susceptance are increasing functions of the frequency. This is because these aperture admittance parameters now include many other characteristics of the antenna that were hitherto ignored in the transmission line model. For example, copper and dielectric losses are combined with the aperture conductance, and the aperture susceptance includes the energy stored in

Figure 5.6: Measured ($\times \times \times$) and calculated (. . .) input impedances using a modified set of Derneryd's equations for the aperture admittance of a rectangular element: 16.93 mm by 16 mm by $1.57 \mathrm{~mm}, A P C-7, D=5.5 \mathrm{~mm}, \epsilon_{r}=2.55$, where $f=4600 \mathrm{MHz}$ plus 200 MHz increments.
evanescent modes. These parameters also account for the residual effects of higher order modes.

5.4 Calculating the inpat impedance using the empirically determined aperture admittance parameters

The transmission line model as described by equation (1.15) in Chapter I is now used with the empirically determined aperture admittances to calculate the input impedance loci of a number of rectangular elements of differing feed types, and operating from 600 MHz to 5 GHz . The tapered transmission line model described in Chapter II is used to model the effects of the feed when probe fed structures are considered.

Figures 5.9 and 5.10 show the combination of results for four 5 GHz antenna elements on 1.57 mm and 0.8 mm thick substrates fed through APC-7 and SMA probes.

Figure 5.7: Empirical aperture conductance versus aperture width.

It can be seen that the proposed models provide good results for different feeds and substrate thicknesses. It is also concluded that the previous assumptions are acceptable. That is, the aperture conductance is independent of the substrate thickness and the aperture susceptance is only weakly dependent on the ratio of the effective edge extension to the substrate thickness. Figure 5.11 also shows good agreement between calculated and measured results for extremes in patch aspect ratio, 0.8 and 1.65 respectively. Figures 5.12 and 5.13 demonstrate that the accuracy of the models is maintained as the frequency is decreased. Shown are the calculated and measured input impedance loci for elements operating at $3.5,2.2,1.2$ and 0.63 GHz respectively. Notice also that the 1.2 GHz element in figure $5.13(\mathrm{a})$ is fed through a microstrip transmission line.

Figure 5.8: Empirical aperture susceptance versus aperture dimensions.
Where they exist, table 5.1 lists the resonant resistances and impedance resonant frequencies for the antennas under consideration, together with the percentage errors between the calculated and measured results.

5.5 Conclusions

The accuracy of the transmission line model in determining input impedances of rectangular microstrip antennas has been greatly improved by the use of accurately determined empirical equations for the input admittances of the effective apertures located at each end of the transmission line where, if necessary, the effects of the feed probe are evaluated using the tapered transmission line model. The accuracy of this impedance modelling combination has been extensively tested on typical antenna ge-

Figure 5.9: Calculated (. . .) and measured ($x \times \times$) input impedances for rectangular elements with $W=16 \mathrm{~mm}, \epsilon_{r}=2.55, h=1.57 \mathrm{~mm}$: (a) $L=16.93 \mathrm{~mm}, D=5.5 \mathrm{~mm}$, APC-7 and (b), $L=18.11 \mathrm{~mm}, D=6 \mathrm{~mm}, S M A$, where $f=4500 \mathrm{MHz}$ plus 100 MHz increments.

Figure 5.10: Calculated (. . .) and measured ($\times \times \times$) input impedances for rectangular elements with $\epsilon_{\mathrm{r}}=2.55, h=0.8 \mathrm{~mm}$: (a) $L=18.47 \mathrm{~mm}, A P C-7, D=6.14 \mathrm{~mm}$ and (b), $L=18.47 \mathrm{~mm}, S M A, D=6.14 \mathrm{~mm}$, where $f=4500 \mathrm{MHz}$ plus 100 MHz increments.

Figure 5.11: Calculated (...) and measured ($\times \times \times$) input impedances for rectangular elements with $L=18.03 \mathrm{~mm}, h=1.57 \mathrm{~mm}, \epsilon_{r}=2.55, A P C-7, D=6.21 \mathrm{~mm}$, where (a) $W=13.5 \mathrm{~mm}$, and (b) $W=28 \mathrm{~mm}$, where $f=4500 \mathrm{MHz}$ plus 100 MHz increments.

Figure 5.12: Calculated (. . .) and measured ($\times \times \times$) input impedances for rectangular elements: (a) 25.66 mm by 23.1 mm by $0.8 \mathrm{~mm}, D=10.15 \mathrm{~mm}, \epsilon_{r}=2.55$, where $f=3400 \mathrm{MHz}$ plus 50 MHz increments and (b), 41.4 mm by 68.58 mm by 1.59 mm , $D=10.16 \mathrm{~mm}, S M A, \epsilon_{r}=2.5$, where $f=2200 \mathrm{MHz}$ plus 20 MHz increments for the measurements, and for the calculated data $f=2100 \mathrm{MHz}$ plus 20 MHz increments.

Figure 5.13: Calculated (. . .) and measured ($\times \times \times$) input impedances for rectangular elements: (a) 76 mm by 114 mm by 1.59 mm , transmission line fed, $\epsilon_{r}=2.62$, where $f=1157 \mathrm{MHz}$ plus 10 MHz increments and (b), 150 mm by 75 mm by $3.18 \mathrm{~mm}, D=60 \mathrm{~mm}$, SMA, $\epsilon_{r}=2.56$, where $f=632 \mathrm{MHz}$ plus 1 MHz increments for the measurements, and for the calculated data $f=618 \mathrm{MHz}$ plus 1 MHz increments.

Resonant frequency and resonant resistance							
L / W $\mathrm{mm} / \mathrm{mm}$	$f_{o z}$ meas'd	$f_{o z}$ calu'd	$\%$ error	R_{o} meas'd	R_{o} calu'd	$\%$ error	
$16.93 / 16.00$	5028	5060	+0.6	52	59	+13	
$18.11 / 16.00$	4795	4760	-0.7	68	59	-13	
$18.47 / 16.00$	4674	4825	+3.2	69	63	-9	
$18.47 / 16.00$	4825	4824	-.02	85	64	-25	
$18.03 / 13.50$	4770	4805	+0.7	65	62	-5	
$25.66 / 23.10$	3510	3542	+0.9	23	23	0	
$41.40 / 68.58$	2221	2164	-2.6	50	41	-18	
$76.00 / 144.0$	1197	1194	-0.3	150	118	-21	
$150.0 / 75.00$	633	626	-1.1	90	41	-54	

Table 5.1: Calculated and measured resonant resistances and impedance resonant frequencies.
ometries operating up to a frequency of 5 GHz . Errors in the resonant resistance and the impedance resonant frequency are typically of the order of 17% and 2% respectively.

In the computer-aided design program listed in Appendix C the input impedance of a rectangular microstrip antenna is calculated using equation (1.15); a form of the transmission line equation adopted to model the microstrip antenna fed at a general point along its E-plane axis. An iterative routine is used to determine the aperture admittance from the aperture conductance and susceptance equations (5.27) and (5.28) respectively. When required, the equations of the tapered transmission line model developed in Chapter II are used to calculate the equivalent series reactance of the feed probe.

CHAPTER VI

THE CALCULATION OF THE FAR FIELD RADIATION PATTERN USING A TWO APERTURE ARRAY

6.1 Introduction

Each of the analytical models introduced in Chapter I involves an approximation for the field distribution around the boundary of the antenna so that it is expressed in terms of the components of the electric field normal to the ground plane, $E_{z}(x, y)$. The far field radiation pattern can be obtained by the application of Huygen's principle to the equivalent magnetic current sources [29,56], or obtained directly from equivalent electric current sources on the top side of the patch and the ground plane [15]. Because the near fields along the sides of the element are polarised in such a direction that they have no effect on the far field radiation in the main E - and H-planes, their contribution is usually omitted, leaving only the two sources at each end of the antenna. With these approximations the radiation problem is reduced to the analysis of a two aperture array, where the apertures are modelled as slot antennas or equivalent magnetic dipoles [12]. The far field radiation from a two aperture array was also obtained using the vector Kirchhoff relationship [57]. Agrawal et.al. [36] calculated the radiation pattern of the antenna directly from a numerical solution for the electric current distributions on the segments of two fine wire grids which model the patch and its image beneath the ground plane. In all of these models the accuracy of the far field radiation pattern
is directly dependent on a knowledge of either the electric currents on the patch and ground plane or the field distributions around the boundary of the antenna element. In the analyst's favour, however, is the fact that the radiation pattern is not sensitive to small changes in the near field distribution. Therefore radiation patterns that are accurate enough for design purposes are not difficult to obtain. However detailed near field information is required when the far field radiation pattern needs to be accurately investigated away from the E - and H-planes, or when cross-polarisation, or side-lobe information is required.

This chapter describes an investigation into the fundamental radiation mechanism of rectangular elements mounted on typical substrates and operating at frequencies up to 5 GHz . In order to base the two aperture array model on a good foundation, the radiation characteristics of the individual apertures are studied in detail using a liquid crystal film to observe the near field distributions. The far fields of the individual apertures are measured. Finally a two aperture side by side array model is proposed for the calculation of the far field radiation patterns, where the aperture width and separation parameters take into account the effective distance to which the fields at each end of the patch fringe.

6.2 Examination of the near fields nsing a liquid crystal film

A liquid crystal film $[58,59]$ was previously used by Derneryd [60] to verify the standing-wave nature of the fields under the patch by viewing the distributions of the fringing fields. When the film is placed on the patch, the component of the electric field intensity in the plane of the film induces a voltage in the resistive coating on the film surface, causing localised heating, the extent of which is seen using a heat sensitive liquid crystal. Thus the coloured patterns on the surface of the film give a relative indication of the power associated with the electric field intensity. The high to low field intensity scale is indicated by the colours blue through to yellow. The black areas correspond to intensity levels outside of the dynamic range of the detector; that is, saturation and
under excitation. Plate 6.1 shows a liquid crystal display of the fringing fields of a 18.47 mm by 16 mm by 0.8 mm rectangular antenna fed by a SMA probe located 6.14 mm from the right hand edge. Figure 6.1 can be used in conjunction with the plates to indicate the position of the liquid crystal film on the antenna. The antenna was driven at its cavity resonant frequency, 4830 MHz , with a power level of 0.001 mW . An asymmetry in the size of the blue areas at each end of the antenna can be observed. This indicates that in the $z=h$ plane, refer to figure 1.1, the electric field intensity is stronger at the aperture closest to the feed point. This effect is consistent for rectangular, circular or hexagonal antennas mounted on 0.8 mm or 1.57 mm thick substrates and fed through SMA or APC-7 probes, when the operating frequency is of the order of 5 GHz . No asymmetry in the power level was observed for transmission line fed antennas, or antennas operating at 3.1 GHz or 3.3 GHz . Therefore it is concluded that the effect can be associated with any probe fed antenna built on substrates of typical thickness and operating at mid-microwave frequencies, say 5 GHz . The asymmetry is attributed to two frequency dependent phenomena. Firstly, as the frequency is increased the effective electrical dimensions of the probe are also increased, which will in turn increase the distortion of the field distribution under the patch caused by the presence of the probe. Also the amount of energy stored in the evanescent modes associated with the probe will be increased. Secondly an increase in the effective electrical substrate thickness occurs when the frequency is increased, thereby accommodating an increase in the residual effects of higher order modes. The difference in the power levels radiated from the two apertures was tested for the previously mentioned combinations of substrate thickness and probe dimensions, and estimated to be $1.0 \pm 0.4 \mathrm{~dB}$. This was done by observing the size of the illuminated area associated with the aperture emanating the greater power, then noting the increase in input power level required to obtain a similar sized blue area for the low power aperture. This increase in the input power is then a rough estimate of the difference between the power levels of the two apertures.

Plate 6.2 shows the distribution of the field intensity of the fringing field off the

Figure 6.1: Sketches indicating the location of the antenna behind the liquid crystal film for (a) plate 6.1 and (b) plate 6.2.

Plate 6.1: Liquid crystal display of the fields around the periphery of a rectangular patch.

Plate 6.2: Liquid crystal display of the fields off the end of a rectangular patch.
edge of the patch, where the crystal film is aligned in the E-plane of a 16.93 mm by 16 mm by 1.57 mm antenna, operating at $f_{o c}=5013 \mathrm{MHz}$. Again the blue area indicates the region of highest electric field intensity in the plane of the film. Therefore it is concluded that the direction of maximum radiation is roughly normal to the patch. This observation is consistent with Derneryd's [12] approach to modelling the radiation pattern of the antenna, where the radiation is considered to be emanating from two slot antennas in the $z=h$ plane, refer to figure 1.1. However closer examination of the plate leads to the conclusion that the direction of maximum radiation is slightly tilted off the normal in a direction away from the patch, where this angle shall be called the tilt angle, ϕ_{t}. This tilting of the angle of maximum radiation in the indicated direction was also observed for the short circuited patch on a 1.57 mm thick substrate to be described in the next section, but not detectable for the case of antennas mounted on substrates of electrical thickness less than those considered here; that is $0.042 \lambda_{d}$, which is equal to 1.57 mm at 5 GHz .

Increasing the substrate thickness has been widely used to decrease the quality factor and therefore increase the bandwidth of the antenna. However plates 6.1 and 6.2 show that the radiation sources and hence the radiation from antennas on thick substrates appears to be subject to undesirable properties. The effects on the far fields of the tilt and power level asymmetry of the apertures at each end of a $0.042 \lambda_{s}$ thick antenna will now be examined in an experimental investigation.

6.3 Measured far fleld radiation pattern of a single aperture

The following far field measurements were carried out to further verify the power level asymmetry and beam tilting effects that were observed when using a liquid crystal film to examine the near fields of antennas mounted on electrically thick substrates.

Because of the difficulties of separating the far field radiation from the individual apertures located at each end of a rectangular element, the rectangular antenna was modified so that the radiation from one of the apertures was shielded. The resulting
structure is the short circuit patch shown in figure 6.2(a). Here the radiation from the aperture furthermost from the feed point, aperture B, is shielded by connecting a wide microstrip transmission line to the end of the antenna. This line presents an open circuit at the reference plane of aperture B and so the field distribution under the short circuit patch is the same as that for the original rectangular patch antenna. At plane B the transmission line presents an open circuit to the original half wavelength long antenna because it is transforming, along a length $\lambda_{s} / 4$, the short circuit at its other end. Because the measured input impedance shown in figure $6.2(\mathrm{~b})$ is close to that of the original rectangular antenna, it is therefore concluded that the field distributions under the patch and fringing around its boundary are a very good approximation to those of the original antenna. Moreover a liquid crystal examination of the structure's fringing fields in the $\boldsymbol{X}-\boldsymbol{Y}$ plane shows that the only significant fringing is along aperture A. Fringing from aperture B is thus successfully shielded.

For the purpose of defining measurement planes and aiding analysis, a general A_{l} by \boldsymbol{A}_{w} rectangular aperture is now defined and placed in the spherical coordinate system of figure 6.3. Notice that the aperture's field distribution is left unspecified so that it can be used to represent either the end or the side magnetic walls of the rectangular patch antenna. For the isolated aperture, the E - and H-plane radiation patterns are represented by the far field distributions in the $X-Y$ and $Z-Y$ planes of the coordinate system respectively.

Figure 6.4 shows the measured E-plane far field pattern for the single aperture of the short circuit patch. Notice the small gain in the broadside ($\phi=\pi / 2$) direction, again justifying the use of apertures in the $z=h$ plane for a radiation pattern model. Refer to figure 1.1. The low gain also leads to the conclusion that the equivalent radiating aperture is quite thin. However, this figure gives no indication of the beam tilt referred to in the preceding section.

In order to increase the sensitivity of the experiment to the direction of the main lobe, microwave energy absorbent pads were placed equi-distant from the axis of

Figure 6.2: The short circuit patch; (a) sketch of the structure where $L=29.16 \mathrm{~mm}$, $W=16 \mathrm{~mm}, D=6.3 \mathrm{~mm}$, and (b), the measured input impedance locus (——) compared with the locus of a rectangular element: 18.03 mm by 16 mm by $1.57 \mathrm{~mm}, D=6.21 \mathrm{~mm}$, APC-7, $\epsilon_{r}=2.55$ (- -).

Figure 6.3: Rectangular aperture in a spherical coordinate geometry.

Figure 6.4: Measured E-plane pattern for the short circuited patch.
the radiating aperture to ensure significant absorption of the radiation emanating from the edges of the dielectric sheet. Thus the single aperture of the short circuit patch was effectively radiating through a window as shown in figure 6.5, where the window width refers to the distance between the pads. The pads were 15 mm thick and made by slicing up a commercially available absorber of the type typically used to line the walls of anechoic chambers. The measured patterns shown in figure 6.6 indicate that the pads do not interfere with the general operation of the antenna. Here radiation patterns are compared for a 16.93 mm by 16 mm by 1.57 mm rectangular element, with and without 30 mm of absorber tightly pressed totally over the face of the patch. Only minor changes in the shape of the pattern are observed whilst, in fact, the measured pattern with the absorber in position is 6.7 dB down on the unobstructed pattern. It is therefore concluded that the absorber material does not interfere with the shape of the radiation pattern.

Figure 6.5: The placing of absorbent pads around a radiating aperture for E-plane measurement.

Figure 6.7 shows the radiation pattern of the short circuit patch measured through a 40 mm wide window. Notice that the maximum in the radiation pattern is tilted roughly 5° off the normal in a direction away from the antenna, thereby ver-
ifying the near field observations referred to earlier. Figure 6.8 illustrates a section through the short circuit patch and the coordinate system used. The measured direction of maximum radiation is also indicated. The lobes in the pattern of figure 6.7 at 30° and 150° are due to secondary radiation from the edges of the dielectric substrate on which the short circuited patch is mounted. These lobes can be observed on all of the far field radiation patterns presented.

Absorbent pads were also placed on each side of one of the two apertures of a 16.93 mm by 16 mm by 1.57 mm rectangular patch antenna with the aim of measuring in turn the radiation from the apertures at each end of the antenna. The window width was chosen at 30 mm in order to significantly absorb the radiation from the aperture that was not of interest. This process was, in turn, applied to the apertures near to and distant from the feed point. For these respective apertures the measured far field E plane patterns are given in figures 6.9 and 6.10. Again notice a small but distinguishable tilt in the direction of maximum radiation. In both cases the tilt represents a 5° squint off the normal direction away from the patch itself. The conclusion again verifies the near field observations using the liquid crystal film.

Comparing the absolute maximum signal levels of the radiation patterns from the individual apertures reveals a 0.9 dB difference, thereby supporting the near field liquid crystal observations which indicated a $1.0 \pm 0.4 \mathrm{~dB}$ difference.

These far field measurements have served to independently verify the observations that the aperture nearest the feed point is radiating at a higher signal level than the other, as well as confirming the existence of a 5° tilting of the beams off the normal and in directions away from the antenna element. Although these characteristics of the apertures are now established, it still remains to be determined whether or not their effect on the far field radiation pattern is significant enough to include them in an analytical model of the two aperture array; that will be used to calculate the radiation pattern of the rectangular antenna element.

Figure 6.6: Measured E-plane patterns for a 16.93 mm by 16 mm by 1.57 mm rectangular element with (--) 30 mm of absorbent pad and without (-).

Figure 6.7: Measured E-plane patterns for the short circuited patch through a 40 mm window.

Figure 6.8: Sketch of a section through the short circuit patch.

6.4 Calculation of the far field radiation pattern of a rectangular microstrip antenna using a two aperture array

In developing a model for the far field radiation pattern it is advantageous to continue with the transmission line analogy introduced in Chapter V so that the same model is being used for the radiation pattern and the input impedance. Here a quasiTEM $_{010}$ mode is again assumed to exist under the patch. If the leakage from the sides of the element is ignored and the fringing fields across the ends of the patch are assumed to be the only sources of far field radiation in the E - and H-planes then, as was previously proposed by Derneryd [12], the rectangular antenna element is represented by a two element side by side array of uniformly illuminated apertures. However unlike Derneryd's model, the equivalent apertures are not necessarily excited at the same signal level, nor are they radiating in a direction normal to the patch.

The expressions for the far field of a single uniformly illuminated aperture have been obtained by considering the case of an equivalent magnetic dipole with a time

Figure 6.9: Measured E-plane pattern for the aperture near to the feed point of a 16.93 mm by 16 mm by 1.57 mm rectangular element.

Figure 6.10: Measured E-plane pattern for the aperture far from the feed point of a 16.93 mm by 16 mm by 1.57 mm rectangular element.
harmonic magnetic current

$$
\begin{equation*}
\underline{M}=\underline{\boldsymbol{u}}_{z} 2 E_{x}=\underline{\boldsymbol{u}}_{z} \frac{2 V_{o}}{A_{w}} \tag{6.1}
\end{equation*}
$$

where the factor 2 accounts for the image of the magnetic current beneath the ground plane, and V_{o} is the voltage across the aperture. According to Bahl et.al. [61] the far field at a distance r from the origin is given by

$$
\begin{align*}
& \underline{E}_{\phi}=\frac{-j \underline{u}_{\phi} 2 V_{o} A_{l} \beta_{o} e^{-j \beta_{o} r}}{4 \pi r} F(\theta, \phi) \tag{6.2}\\
& \underline{E}_{\theta}=0 \tag{6.3}
\end{align*}
$$

where

$$
\begin{equation*}
F(\theta, \phi)=\frac{\sin \left(\frac{\beta_{o} A_{w}}{2} \sin \theta \cos \phi\right) \sin \left(\frac{\beta_{o} A_{l}}{2} \cos \theta\right)}{\frac{\beta_{o} A_{w}}{2} \sin \theta \cos \phi} \frac{\beta_{o} A_{l}}{2} \cos \theta \quad \sin \theta \tag{6.4}
\end{equation*}
$$

For the E-plane pattern let $\theta=\pi / 2$, then:

$$
\begin{equation*}
F(\phi)=\frac{\sin \left(\frac{\beta_{o} A_{w}}{2} \cos \phi\right)}{\frac{\beta_{o} A_{w}}{2} \cos \phi} \tag{6.5}
\end{equation*}
$$

and for the pattern in the H-plane let $\phi=\pi / 2$, so that

$$
\begin{equation*}
F(\theta)=\frac{\sin \left(\frac{\beta_{0} A_{1}}{2} \cos \theta\right)}{\frac{\beta_{0} A_{1}}{2} \cos \theta} \sin \theta \tag{6.6}
\end{equation*}
$$

Now the E-plane pattern of the two aperture array is obtained by the vector addition of the contributions to the far fields from the two apertures shown in figure 6.11. Thus

$$
\begin{align*}
\underline{E}_{\phi} & =\underline{E}_{\phi a}+\underline{E}_{\phi b} \tag{6.7}\\
& =\frac{-j \underline{u}_{\phi} 2 A_{l} \beta_{o}}{4 \pi}\left[V_{o a} \frac{e^{-j \theta_{o} r_{a}}}{r_{a}} \frac{\sin \left(\frac{\beta_{o} A_{w}}{2} \cos \phi_{d}\right)}{\frac{\beta_{o} A_{w}}{2} \cos \phi_{d}}+V_{o b} \frac{e^{-j \beta_{o} r_{b}}}{r_{b}} \frac{\sin \left(\frac{\beta_{o} A_{w}}{2} \cos \phi_{s}\right)}{\frac{\beta_{o} A_{w}}{2} \cos \phi_{s}}\right] \tag{6.8}
\end{align*}
$$

where

$$
\begin{align*}
& \phi_{s}=\phi+\phi_{t} \tag{6.9}\\
& \phi_{d}=\phi-\phi_{t} \tag{6.10}\\
& r_{a} \approx r-\frac{A_{s}}{2} \cos \phi \tag{6.11}\\
& r_{b} \approx r+\frac{A_{s}}{2} \cos \phi \tag{6.12}\\
& 6-15
\end{align*}
$$

Then letting $r_{a} \approx r_{b} \approx r$ in the denominator and substituting (6.11) and (6.12) into the numerator gives an equation for the E-plane pattern of a patch antenna that includes the excitation level and beam tilting of the radiation from the individual apertures.

Figure 6.11: Coordinate geometry for the two aperture side by side array.

The H-plane radiation pattern is independent of the nature of the array and therefore can be obtained using the equation for the H-plane pattern of a single aperture, equation (6.6). The magnitudes of equations (6.6) and (6.8) are normalised and compared with measured H - and E-plane far field radiation patterns in the next section.

6.5 Discussion of results

The asymmetry in the power level of the two apertures has been established in antennas of electrically thick substrates of the order of $0.02 \lambda_{8}$ and $0.042 \lambda_{8}$, while the beam tilting was only observed for the $0.042 \lambda_{s}$ substrates. Equation (6.8) for the
E-plane far field radiation pattern of the rectangular antenna can be used to show that the effect of the asymmetry in the excitation level is to cause a slight ripple in the calculated pattern, the magnitude of which is smaller than the tolerances of the experimental technique. Therefore ripple due specifically to asymmetrical excitation of the apertures could not observed in the measured patterns.

The effects on the antenna's far field pattern of the beam tilting also turns out to be minor because the single thin aperture is characterised by an E-plane radiation pattern that is almost omni-directional. So the orientation of the aperture has little affect upon the analytical results. Figure 6.4 showed that the measured pattern of a single aperture has a slight gain roughly in the $\phi=\pi / 2$ direction. Also, the calculated gain is almost $0^{0} B_{i}$.

Further investigations with the equations for the far field radiation patterns showed that their accuracy is mainly dependent on the aperture separation term, $\boldsymbol{A}_{\mathrm{s}}$. Furthermore, other authors $[4,12,61]$ have suggested using the length of the patch for the aperture separation; however, this approach was found to constantly predict patterns of lower gain than those measured for the antennas on electrically thick substrates operating around 5 GHz .

A more accurate representation of the two aperture array is obtained when the aperture separation is made to include the aperture width. Referring to figure 6.11 indicates that

$$
\begin{equation*}
A_{s}=L+A_{w} \tag{6.13}
\end{equation*}
$$

Inclusion of the aperture width into the separation term is necessary for antennas operating at mid-microwave frequencies because the width of the aperture is significant when compared to the patch length. For example, following the recommendations of other authors, let the equivalent aperture width equal the substrate thickness. Then for typical antennas operating at 1.2 GHz and 5 GHz , the ratios of the substrate thicknesses to the patch lengths are 2.1% and 9.3% respectively. So it is concluded that the width of the aperture can no longer be ignored.

It was also found that the equivalent aperture width is best represented by the equivalent length to which the fields fringe beyond the end of the patch; that is, the effective edge extension as calculated in Chapter III. Moreover the dielectric substrate is taken into account by using an equivalent free space edge extension. Therefore

$$
\begin{equation*}
A_{w}=\sqrt{\epsilon_{r}} \delta L \tag{6.14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A_{s}=L+\sqrt{\epsilon_{r}} \delta L \tag{6.15}
\end{equation*}
$$

and as previously recommended by other authors, let the length of the apertures be

$$
\begin{equation*}
A_{l}=W \tag{6.16}
\end{equation*}
$$

For most antennas in general use the equivalent free space edge extension will be greater than the substrate height. This increased aperture width will have an associated increase in the gain of the patterns radiated by the individual apertures, however in practice this will be negligible because the apertures are still very thin compared with the wavelength. However, increasing the width of the apertures will significantly add to the array separation and cause a marked increase in the gain of the radiation pattern of the antenna. This increase represents improved agreement with measurements over the patterns obtained using $\boldsymbol{A}_{s}=L$ and $\boldsymbol{A}_{\boldsymbol{w}}=h$, as recommended by other authors. Figure 6.12 compares with measurements the E-plane patterns calculated by the substitution of equations (6.14) (6.15) and (6.16) into (6.8). The figure also includes the calculated result obtained when the patch length is substituted for the array separation. The improved agreement between the results of this new model and the measured pattern is easily seen.

The model is also used to calculate the H-plane pattern to good agreement with measurements, as shown in figure 6.13. Figures 6.14 and 6.15 show comparisons with measurements for 5 GHz and 3.5 GHz antennas on thin substrates.

Figure 6.12: Measured (-) E-plane pattern for a 16.93 mm by 16 mm by 1.57 mm rectangular element at $f_{o c}=5013 \mathrm{MHz}$, with the calculated results of the new model (——) and old model ($\cdots \cdots \cdots$).

Figure 6.13: Measured (———) and calculated (——) H-plane pattern for a 16.93 mm by 16 mm by 1.57 mm rectangular element at $f_{o c}=5013 \mathrm{MHz}$.

Figure 6.14: Measured (- -) and calculated (-) patterns for a 18.47 mm by 16 mm by 0.8 mm rectangular element at $f_{o c}=4670 \mathrm{MHz}$, (a) E-plane and (b) H-plane.

(b)

Figure 6.15: Measured (- -) and calculated (——) patterns for a 25.66 mm by 23.1 mm by 0.8 mm rectangular element at $f_{o c}=3502 \mathrm{MHz}$, (a) E-plane and (b) H-plane.

6.6 Conchasions

A study of the fundamental radiation characteristics of the apertures at each end of electrically thick rectangular antennas has been carried out. The aperture nearest the feed point was shown to be excited at a higher relative signal level than the other, and a tilt off the normal direction of the radiation beams of both apertures was also observed. However, both phenomena were shown to have little effect on the E - and H-plane radiation patterns of the overall antenna, mainly because the apertures are so thin that their E-plane radiation patterns are almost omni-directional. However these characteristics of the apertures may be, and probably are, significant if a detailed knowledge of the far field radiation pattern is required, particularly that off the main planes, or when side-lobe and cross-polarisation information needs to be determined. The two aperture side by side array model was improved through an accurate representation of the array separation which takes into account of the equivalent free space edge extension associated with the fringing fields at the end of the patch.

The computer-aided design program listed in Appendix C enables the calculation of far field radiation patterns of rectangular microstrip antennas using equations (6.8) and (6.6) for the E-plane and H-plane patterns respectively. The two apertures in the model are assumed to have approximately the same characteristics, that is, $V_{o a} \approx V_{o b}$ and $\phi_{t} \approx 0$. The dimensions of the effective radiating apertures are calculated using equations (6.15) and (6.16).

CHAPTER VII

AN ANALYTICAL MODEL FOR THE MUTUAL COUPLING BETWEEN TWO RECTANGULAR PATCH ANTENNAS

7.1 Introduction

Mutual coupling between two microstrip antenna elements can result in the degradation of the radiation pattern and VSWR performance of each of the elements. These effects are difficult to predict, especially in scanned arrays where they are sensitive to the scan angle.

In 1979 Jedlicka and Carver [62] published a comprehensive set of measurements of mutual coupling as a function of the spacing between two rectangular microstrip antennas. The results have been widely used as a basis for comparison with many analytical models. A new analytical model for the mutual coupling is compared with these measurements and others performed as part of this investigation. The model is very simple and is used to study the mechanism of the coupling phenomenon.

7.2 Survey of models for the calculation of mutual coupling

Various analyses of mutual coupling between rectangular microstrip antennas have been published. Krowne et.al. [63] modelled the H-plane coupling between two rectangular elements using a coupled transmission line approach and the method of
moments technique to calculate even and odd mode transmission line parameters. In a second paper Krowne [64] modelled the E-plane coupling using an equivalent π-network of capacitances, where the capacitance values were obtained by an approximation to a quasi-static formulation of the gap in a microstrip line. The rectangular antennas themselves were represented by transmission lines.

Penard and Daniel [65] have used the equivalence theorem to reduce the problem to one of coupling between two loops of magnetic current and then used the reaction theorem to calculate the coupling. The calculated magnitude of the transfer coefficient is shown to agree with their own measurements to within 1 dB for separations greater than 0.1λ.

Pozar [39] has presented a moment method solution which uses an exact Green's function for the dielectric slab. This is regarded as rigorously accounting for surface waves and other coupling mechanisms between patches. Pozar's results show good agreement with the measurements of Jedlicka et.al., however the value of the effective dielectric constant was chosen to ensure this agreement.

The analytical models published by the above authors rely on extensive numerical calculation which tends to impede development of a physical understanding of the phenomena involved and engineering insight for their exploitation. This investigation into a simpler analytical technique that models the coupling as the power transfer between two aperture antennas was undertaken to promote understanding and insight.

7.3 A radiation based model for the mutual coupling between well separated rectangular patch antennas

A simple radiation based model for determining the mutual coupling between rectangular microstrip patch antennas is developed for the case where the separation is greater than the classical $2 D^{2} / \lambda_{o}$ far field distance. The antennas are modelled by resonant cavities radiating through the four rectangular apertures that form the sides
of each cavity. The coupling mechanism is then modelled as the power transfer that occurs when the far field radiation pattern of the transmitting aperture illuminates the receiving aperture as shown in figure 7.1(a). Only the two apertures facing each other are considered to have an effect on mutual coupling.

This model is developed with the aim of accounting for the mutual coupling, between two antennas, that is measured at reference planes located at the coaxial connections to each of the coupled antennas. Therefore it is necessary to consider the cascade of two-port equivalent networks shown in figure 7.1(b) to relate the parts of the model to the different mechanisms of signal flow from the transmitting to the receiving coaxial connections. Ports 1 and 2 are the terminals of the transmitting and receiving elements and the apertures responsible for the coupling are at ports \mathbf{A} and \mathbf{B}. With the elements isolated from each other it is assumed that s_{11} and s_{22} are set to zero at some specified frequency which is the resonant frequency of each element and also the frequency at which experimental data has been gathered. Also $s_{a a}$ and $s_{b b}$ are the reflection coefficients of the transmitting and receiving apertures respectively. The \boldsymbol{s}_{43} term represents the forward and reverse transfer coefficients between the two aperture antennas. The transfer coefficients $s_{a 1}$ and $s_{2 b}$ account for transmission between the antenna terminals at ports 1 and 2 and the apertures at ports A and B.

In terms of the scattering parameters, the total forward transfer coefficient between the terminals of the two elements is s_{21} and is expressed in terms of a set of scattering transfer parameters for the cascaded two-port networks in figure 7.1(b)

$$
\begin{equation*}
s_{21}^{-1}=T_{2 b}\left(T_{a 1} T_{33}-T_{a a} T_{43}\right)-T_{22}\left(T_{a 1} T_{43}-T_{a a} T_{44}\right) \tag{7.1}
\end{equation*}
$$

The patch elements are matched to their external coaxial connections so that

$$
\begin{equation*}
s_{11}=s_{22}=0 \tag{7.2}
\end{equation*}
$$

and expression (7.1) becomes

$$
\begin{equation*}
s_{21}=s_{a 1} s_{43} s_{2 b} \tag{7.3}
\end{equation*}
$$

Figure 7.1: Mutual coupling between two patch antennas located in each others far field: (a) side-elevation sketch of two antennas coupled in the E-plane, and (b) the equivalent network in terms of the scattering coefficients.

The transfer coefficient, s_{43}, models the power transfer between two aperture antennas and the $s_{a 1}$ and $s_{2 b}$ coefficients represent the ratios of the wave amplitudes at the coaxial connections to those in the associated radiating apertures taking part in the coupling. Each of these three transfer coefficients will now be considered in detail.

7.3.1 The transfer coefficient modelling the radiative coupling: s_{43}

Regard the two rectangular elements as resonant cavities with electric fields distributed over the aperture-like four magnetic walls. The equivalence theorem is used to replace the electric fields of the walls by equivalent magnetic currents. Also the ground plane of figure 7.1 (a) is replaced by the image of these magnetic currents for the purpose of determining the radiation in the half space above the ground plane. The coupling is
evaluated on the basis of the power transfer that occurs when the transmitting aperture illuminates the receiving aperture.

The two antennas are assumed to be in each others far field to the extent that the separation is at least $2 D^{2} / \lambda_{o}$ where D is the largest dimension of the radiating (or receiving) aperture. Referring to figure 1.1, the aperture field distributions are taken to be the z-directed electric field around the patch's perimeter. This choice of orientation of the effective aperture at each end of the antenna does not conflict with the use of the y-component of the fringing field in the models for the antenna's input impedance and radiation pattern. Appreciate that it is the electric field distributions in the magnetic walls of the cavity that are being used in the coupling model rather than a component of the curved field lines of the fringing field that exists out from the edges of the patch, as shown in figure 7.1(a). Both elements are assumed to be operating at a common resonant frequency and in their fundamental TM_{01} modes. Referring to the aperture and coordinate geometry shown in figure 6.3, the time harmonic electric field distributions of the apertures located along the edges of the patch can be expressed as follows. At each end of the patch

$$
\begin{equation*}
\underline{E}_{x}=\underline{u}_{x} E_{m} \quad-A_{l} / 2 \leq z \leq A_{l} / 2 \tag{7.4}
\end{equation*}
$$

and for each side of the patch,

$$
\begin{equation*}
\underline{E}_{x}=\underline{u}_{x} E_{m} \sin \frac{2 \pi z}{\lambda_{o}} \quad-A_{l} / 2 \leq z \leq A_{l} / 2 \tag{7.5}
\end{equation*}
$$

where the length of the effective free space aperture is resonant, that is, $A_{l}=\lambda_{o} / 2$.

In both cases the far field radiation pattern is calculated by taking the equivalent magnetic current density of the source distributions and integrating over the source points to obtain the electric vector potential F_{z}. The far field approximation is used to obtain the E_{ϕ}-component of the electric field in terms of F_{z} through the approximate relation;

$$
\begin{equation*}
\underline{E}_{\phi}=-\underline{u}_{\phi} j \beta_{o} F_{z} \sin \theta \tag{7.6}
\end{equation*}
$$

The resulting expressions for the H-plane far fields of the end [12] and side [66] apertures are

$$
\begin{align*}
& \underline{E}_{\phi}=-\underline{u}_{\phi} j E_{m} A_{w} e^{-j \beta_{o} r} \frac{\sin \left(\left(\pi A_{l} / \lambda_{o}\right) \cos \theta\right) \tan \theta}{\pi r} \tag{7.7}\\
& \underline{E}_{\phi}=\frac{-\underline{u}_{\phi} j E_{m} A_{w} e^{-j \beta_{o} r} \cos \left(\left(\pi A_{l} / \lambda_{o}\right) \cos \theta\right)}{\pi r \tan \theta} \tag{7.8}
\end{align*}
$$

where A_{w} and A_{l} are the width and length of the equivalent aperture being considered.
Equations (7.7) and (7.8) are now used to calculate the transmitted and received power. The transmitted power is given by the Poynting vector \underline{P} where

$$
\begin{equation*}
P=\frac{E^{2}}{\eta_{0}} \tag{7.9}
\end{equation*}
$$

and η_{o} is the characteristic impedance of free space. The radiation intensity is the power per unit solid angle, and is given in the units of watt per sterradian by

$$
\begin{equation*}
\Phi(\theta, \phi)=r^{2} P \tag{7.10}
\end{equation*}
$$

The total power radiated by the aperture is found by the integration of equation (7.10) over a spherical surface that encloses the aperture so that

$$
\begin{equation*}
P_{t}=\frac{\pi r^{2}}{\eta_{o}} \int_{0}^{\pi} E^{2}(\theta) \sin \theta d \theta \quad \text { Watt } \tag{7.11}
\end{equation*}
$$

The power received by the equivalent aperture in the coupled antenna is derived in a similar way

$$
\begin{equation*}
P_{r}=\frac{2 A_{w}}{\eta_{o}} \int_{0}^{A_{l}} E^{2}(z) d z \quad \text { Watt } \tag{7.12}
\end{equation*}
$$

and $\left|s_{43}\right|^{2}$ follows as the ratio of (7.12) and (7.11)

$$
\begin{equation*}
\left|s_{43}\right|^{2}=\frac{P_{r}}{P_{l}} \tag{7.13}
\end{equation*}
$$

7.3.2 Transfer coefficients within the antenna elements: $s_{a 1}$ and $s_{2 b}$

The coefficients $s_{a 1}$ and $s_{2 b}$ represent the ratios of the wave amplitudes at the coaxial connections to those in the associated radiating apertures selected in the previous
section for the determination of s_{43}. Simple reasoning in terms of the distribution of the power at the coaxial connection port and the equivalent radiating apertures around the four edges of the rectangular patches yields values for these transfer coefficients.

Because each antenna element is assumed to be matched to its coaxial connection, and if the antenna's copper and dielectric losses are assumed negligible, then all of the input power must be radiated. Only a fraction of that power is considered in the determination of s_{43}. Thus, in the case of two elements with their ends facing each other, only the power passing through the apertures equivalent to those ends is considered. For the case of element sides facing each other, the power passing through the equivalent apertures is considered with accurate account being taken of the level relative to the power through the end apertures. This is done by assuming unit amplitude for the aperture distributions at the positions that are common to the end and side apertures; namely the corners of the rectangular patch. This means that the coefficients $s_{a 1}$ and $s_{2 b}$ are the same for both the "ends facing" and the "sides facing" or, more succinctly, the E-plane and H-plane coupling cases.

For rectangular geometries that are nearly square only a small fraction of the total input power is radiated through the side apertures and therefore nearly half of the input power is radiated through each end aperture. This means that

$$
\begin{equation*}
\left|s_{a 1}\right|^{2} \approx 0.5 \tag{7.14}
\end{equation*}
$$

and

$$
\begin{equation*}
10 \log \left|s_{a 1}\right|^{2}=-3 d B \tag{7.15}
\end{equation*}
$$

If the only contribution to the power in the receiving antenna is through an end or a side aperture, then reciprocity applies so that

$$
\begin{equation*}
\left|s_{2 b}\right|^{2}=\left|s_{a 1}\right|^{2} \approx 0.5 \tag{7.16}
\end{equation*}
$$

7.4 Discussion of results

The mutual coupling is calculated using a free space equivalent to the experimental study, where the dimensions of the patch elements are multiplied by $\sqrt{\epsilon_{r}}$ in order that the free space wavelength be used throughout the model.

Jedlicka and Carver [62] published the set of mutual coupling measurements for two substrate thicknesses shown in figure 7.2. Although these experimental results have been widely referred to by other researchers, Jedlicka et.al. omits details of the tuning and matching conditions maintained as the spacing between the elements is varied. However, it is reasonable to assume that each element was resonant and matched to its coaxial connection at the specified test frequency when isolated from other elements. There is no information given on the mismatches that may occur due to the interaction between elements as the spacing decreases. Experiments carried out as part of this investigation show that this is only important at spacings smaller than the minimum tested by Jedlicka and Carver. The measured results correspond to the $\left|s_{21}\right|^{2}$ scattering transfer coefficient in figure 7.1.

Figure 7.2 shows the agreement between the calculated and measured coupling for two substrate thicknesses. For separations greater than $0.75 \lambda_{o}$, the calculated mutual coupling is within 3 dB of the measurements for both the E - and H-plane cases. Excellent agreement with measurements is also shown in figure 7.3 for the coupling between two elements excited at 5 GHz . These results also show that the model holds for separations less than the far field distance, which is equal to $1.2 \lambda_{o}$ and $0.5 \lambda_{o}$ for the E - and H plane coupling cases respectively. The good agreement between the results of this simple radiation coupling model and measurements indicates that the amount of coupling by a surface wave mechanism is negligible, even at 5 GHz .

7.4 Conclusions

This work has shown that for E - and H-plane coupling between rectangular

Figure 7.2: Measured (. . .) and calculated (——) mutual coupling as a function of separation for two 66 mm by 105.6 mm rectangular elements of thickness (a) 1.57 mm and (b) 3.2 mm , where $f_{o}=1.4 \mathrm{GHz}$.

Figure 7.3: Measured (...) and calculated (—) mutual coupling as a function of separation for two 16.93 mm by 16 mm by 1.57 mm rectangular elements, where $f_{o}=5 \mathrm{GHz}$.
patches separated by at least $0.75 \lambda_{0}$, a very simple space radiation based transmission model of the coupling phenomena can provide results of comparable accuracy with those obtained by more sophisticated analytical techniques. Furthermore the model has been shown to give excellent results for antennas operating up to a frequency of 5 GHz .

This model for calculating the mutual coupling between neighbouring rectangular microstrip antennas is used in the program listed in Appendix C. The coupling is expressed in terms of the magnitude of the scattering transfer coefficient. Given the dimensions of the two antennas, the frequency and the separation, the program evaluates the coupling using equations (7.3), and (7.11) through to to (7.14).

CHAPTER VIII

THE BANDWIDTH CHARACTERISTICS OF THE RECTANGULAR PATCH ANTENNA AND ITS EXTENSION USING A HEXAGONALLY SHAPED PATCH

8.1 Introduction

This chapter does not contribute to the computer-aided design of rectangular microstrip antennas but rather is in part an application of the work described in the previous chapters. The transmission line model described in Chapter V is used to investigate the dependence of the bandwidth on other antenna parameters. The efforts of other authors to increase the bandwidth of rectangular patch antennas are reviewed. Finally the definition of bandwidth introduced in Chapter IV is used to identify the hexagonally shaped patch as exhibiting a greater bandwidth than an equivalent rectangular patch, and a comparable bandwidth to a circular patch.

8.2 Using the transmission line model to study the effect of antenna parameters on the bandwidth of the antenna

The transmission line model has been used to account for the variation in the bandwidth of the rectangular patch antenna as cther antenna parameters are varied. For example figure 8.1 shows that at 5 GHz the bandwidth, expressed as a function of

Figure 8.1: Bandwidth versus substrate height and relative dielectric constant.
the operating frequency, is an increasing function of the substrate thickness, h, and a decreasing function of the relative dielectric constant, ϵ_{r}.

The narrow bandwidth of the antenna was explained in Chapter III in terms of the cavity model as being due to the high quality factor of the equivalent cavity. The same conclusion can be reached using the transmission line model by calculating the antenna's input impedance as a function of frequency. Thus the frequency sensitivity of the input impedance can be attributed to the large ratio of aperture impedance, Z_{a}, to the characteristic impedance of the transmission line, $\boldsymbol{Z}_{\text {om }}$. Refer to figure 1.4. This result is shown in figure 8.2, where the VSWR is plotted as a function of normalised frequency for three values of the characteristic impedance of the microstrip line. An extension to figure 8.2 is figure 8.3 where the percentage bandwidth is plotted against the characteristic impedance of the microstrip line. The transmission line model was
also used to calculate the bandwidth versus frequency relationship for different substrate thicknesses and substrate dielectric constants. Refer to figure 8.4.

8.3 A review of the techniques used by other authors to increase the bandwidth of microstrip antennas

There are many ways of increasing the bandwidth of microstrip antennas. However, all methods represent a compromise of bandwidth against substrate thinness, efficiency, or complexity in the antenna's structure. The techniques to increase the bandwidth can be combined into two groups.

The first group involves alterations to the fundamental element. The reason for the increase in the bandwidth can be explained by considering either a decrease in the antenna's quality factor or, appealing to the transmission line model, by an increase in the characteristic impedance of the microstrip line. An increase in the substrate thickness, h, will increase the bandwidth but at the cost of the antenna's low profile advantage. Karlsson [67] achieved a. 17% bandwidth (VSWR $\leq 2: 1$) for a 6 GHz square patch by increasing the substrate height to 8 mm , where $\epsilon_{r}=4$. Hall [68] showed that an increase in the loss tangent of the substrate material will lower the quality factor of the cavity, however, a decrease in the radiation efficiency will also result. Wiesbeck [69] loaded the cavity by cutting holes and slots into the metallic patch. This improvement may be explained in terms of lowering the quality factor of the cavity, or increasing the inductance per unit length of the transmission line, thus increasing the characteristic impedance of the line. A decrease in the dielectric constant has also been used to increase the bandwidth $[2,70]$.

The other group of bandwidth broadening techniques involves a major alteration to the antenna's structure. The shape of the patch element has a small effect on bandwidth. The circular patch usually has a one to two percent wider bandwidth than its rectangular equivalent. When the patch is fed from a microstrip line, it is usually necessary to use a transmission line transformer to match the input impedance

Figure 8.2: VSWR versus frequency for a rectangular element with the aperture resistance, R_{a}, arbitrarily chosen to be 100Ω, where the characteristic impedance of the transmission line, $Z_{o m}=10 \Omega(-)$, $4 \Omega(---)$, and $1.3 \Omega(\cdots)$.

Figure 8.3: Bandwidth versus transmission line characteristic impedance $Z_{o m}$, where the aperture resistance has been artitrarily chosen to be 100Ω.

Figure 8.4: Bandwidth versus frequency for different substrate heights and relative dielectric constants, where $h=1.57 \mathrm{~mm}$ and $\epsilon_{r}=2.55(---), h=0.8 \mathrm{~mm}$ and $\epsilon_{r}=2.55$ $(\cdots \cdots), h=1.57 \mathrm{~mm}$ and $\epsilon_{r}=1.0(\square)$.
of the patch to the characteristic impedance of the microstrip feed line. The resulting bandwidth of the antenna system is then limited by the transformer rather than by the patch. However Howell [2] and Derneryd [71] have used a computer optimised two section transmission line transformer to match the element without decreasing the system bandwidth. Derneryd also used this technique to enhance the system's bandwidth by matching the element at two frequencies, $\pm 12 \%$ each side of the element's resonant frequency. The usefulness of an antenna may be extended by a dual band configuration $[71,72,73]$. Here the element or the feed is constructed so that the antenna appears to be resonant at more than one frequency. However, the bandwidth is still a problem because at each of the resonant frequencies it is still only of the same order as the
bandwidth of a simple element. Ito et.al. [74] obtained a bandwidth improvement of two and a half times that of a single linear strip element by placing a window in the ground plane, directly behind the element. Here the antenna will radiate from both sides, and the antenna's electrical characteristics will depend on the size and location of the window. Multilayer elements were used by Hall [70] to achieve a bandwidth of 18% (VSWR $\leq 1.2: 1$). Two rectangular patches were placed above a smaller feeder patch which excited the top two patches by electromagnetic coupling. Broad-band microstrip antennas have also been constructed by combining together into arrays a number of stagger-tuned elements. The simplest case being a microstrip power divider feeding two rectangular patches located side by side, each resonant at a slightly different frequency. A more complex log-periodic type array has been built by Hall [68] and achieved a 30% bandwidth (VSWR $\leq 2.2: 1$) without any loss of radiation efficiency, or increased substrate thickness compared to the single element. The antenna was constructed of nine rectangular patches placed in a line and fed, via electromagnetic coupling, by a microstrip line buried in the centre of the substrate. The sizes of the patches were increased as the feed progressed through the array. Travelling wave antennas have also been constructed using microstrip techniques. However, there is a problem with mode control because these antennas are usually many wavelengths long. It has been shown that a microstrip line will radiate from discontinuities such as bends, and Wood [75] used this principle to design a spiralling line antenna that produced circularly polarised radiation cver a 40% bandwidth (VSWR $\leq 1.3: 1$). Table 8.1 summarises the bandwidth related properties of the antennas that have been discussed.

8.4 Bandwidth of the hexagonal patch

A new hexagonally shaped patch exhibits a bandwidth greater than an equivalent rectangular element and comparable to that of a circular element. Figure 8.5 shows that the hexagon is formed by adding triangles along the sides of the rectangular patch, where the extension from the original rectangle is described in terms of the apex distance, a, measured from the original side of the rectangle. Also positive and negative apex

Microstrip antenna structures							
Antenna type	h mm	ϵ_{r}	$f_{o z}$ MHz	η	Bandwidth $\%$	VSWR	
Rec. patch	1.59	2.32	10	90	5	$\leq 2.0: 1$	
Cir. patch	1.59	2.32	10	90	7	$\leq 2.0: 1$	
Lossy sub't	1.59	2.32	10	16	40	$\leq 2.2: 1$	
Spiral	1.59	2.32	10	50	40	$\leq 1.3: 1$	
Stacked	4.77	2.32	10	80	18	$\leq 1.2: 1$	
Log periodic	1.59	2.32	10	70	30	$\leq 2.2: 1$	
Window	0.80	2.60	3	$\mathrm{~N} / \mathrm{A}$	6	$\mathrm{~N} / \mathrm{A}$	

Table 8.1: A summary of the bandwidth characteristics of microstrip antenna structures, where N/A refers to cases where no data is available.
distances are considered.
Input impedances were measured for a series of hexagonal elements with different apex distances as a function of frequency over a 1.6:1 range of variation. The impedance behaviour was then expressed in terms of the bandwidth using the definition presented in Chapter IV. Figure 8.6 shows that the bandwidth is proportional to the apex distance. It also shows that for the 0 to +3 mm range of apex distances the resonant frequency is increased by 3.5 percent and the resonant resistance decreased by 11Ω.

The increase in the bandwidth with increasing apex distance is believed to be due to enhanced radiation from the sides of the patch. Hence the quality factor is decreased because the energy lost by the cavity through radiation is increased. This explanation is based on the changes in the far field radiation pattern that will be discussed in the next section.

8.5 Par field radiation pattern of the hexagonal patch

As the apex distance increases from 0 to +4 mm , the gain is increased by 2 dB ,

Figure 8.5: The basic geometry of the hexagonal patch.

Figure 8.6: Bandwidth, impedance resonant frequency, and resonant resistance versus the apex distance.
the E-plane beam-width increases from 62 to 72 degrees and the H-plane beam-width decreases from 65 to 59 degrees. Figure 8.7 shows typical E-plane radiation patterns for both the rectangular and hexagonal, $a=+4 \mathrm{~mm}$, patch antennas.

Figure 8.7: E-plane far feld radiation patterns for a rectangular (--), 18.1 mm by 16 mm by 1.57 mm , and hexagonal (-) $a=+4 \mathrm{~mm}$, element.

8.6 Conclusions

The transmission line model has been used to account for some of the bandwidth properties of rectangular patch antennas. The results of an experimental investigation into the bandwidth performance of a novel hexagonal element have been presented. This element exhibits a wider-band and greater gain performance than an equivalent rectangular patch antenna.

CHAPTER IX

CONCLUSIONS

9.1 Conclusions

Models for inclusion in a computer-aided design program have been developed for rectangular microstrip antennas, fed by either a coaxial probe or a microstrip transmission line. Both the leaky resonant cavity and transmission line models were used to calculate the main electrical characteristics of the antenna to an accuracy sufficient for most design purposes. The accuracy of the new models for the probe reactance, resonant frequency, and input impedance all relied on empirically determined key parameters, while the radiation pattern and mutual coupling models represent the application of existing classical techniques of electromagnetic analysis.

The major achievement of this research was the presentation of formulas for critical antenna characteristics that produced results in very good agreement with measurements for antennas on typical substrates operating from 600 MHz to 5 GHz . The model for the feed probe predicted equivalent series reactances that were within $\pm 3 \Omega$ or 15% of measurements. This was very satisfying alongside errors of up to 350% for models suggested by other authors. For the resonant frequency models the agreement with measurements was within $\pm 2 \%$. This was achieved through specific definitions of the cavity and impedance resonant frequencies and the accurate empirical determination of
the effective edge extension. Again these models provided consistently accurate results for a very wide variety of antenna geometries. The accuracy of the transmission line model in calculating the input impedance was greatly improved by the use of empirically determined aperture admittances. The calculated loci gave resonant frequencies and resonant resistances that were on average within 2% and 17% of measurements. This agreement represents a significant improvement over the results that are obtained if an aperture admittance calculated using one of the published expressions is substituted into the transmission line model. The near field investigations carried out using the liquid crystal film produced some very interesting results regarding the radiation characteristics of the apertures located at each end of the antennas mounted on electrically thick substrates. However, the asymmetry in the excitation level and the beam tilting were later shown to be of little significance to the antenna's radiated field in the main E - and \boldsymbol{H}-planes. Furthermore, the widely used two aperture array model has already been frequently shown in the literature to produce results in good agreement with measurements. Even for the case of an electrically thick substrate the model, as stated in the literature, provides results within 3 dB of measurements. However, the agreement was improved to 2 dB by correctly accounting for the array separation in terms of the effective width of the apertures at each end of the patch. This is regarded as a minor achievement of the research because the current state of the radiation pattern models provides main plane patterns that are sufficiently accurate for most desigu purposes. Another achievement of the research was the modelling of the mutual coupling in terms of the power transfer between two apertures located in each others far field. This work demonstrated that useful results can be obtained from a simple model. Although limited to cases where the separation was at least $0.75 \lambda_{o}$, it gave both E - and H-plane mutual coupling results that were within 3 dB of measurements for antennas operating up to and including 5 GHz .

Areas within the microstrip antenna field that need immediate attention include a rigorous solution for the aperture admittance. Like the effective dielectric constant,
the aperture admittance parameter affects the accuracy of the analysis of all of the important electrical characteristics of the antenna. The great variation between the approximations that are currently being used has already been highlighted. The empirical equations for the aperture admittance presented here will certainly be useful until a rigorous approach is found. However, a more accurate empirical approach would be to determine a set of aperture admittance equations that cover a set of frequency bands of interest rather than the approach taken here where the aim was to present equations that were widely applicable. This aperture admittance problem is also evident from the liquid crystal near field investigations, which indicated a need for further work on the detailed nature of the mode structure of the fields under and fringing from the patch. Only when the types of observations described here are accounted for in an analytical model will all of the properties of the radiation field be predictable. Such a complete analysis would also permit the accurate calculation of input impedance and mutual coupling between antennas on thick substrates, even when they are so closely spaced that they are loading each others field distributions.

Because the brightest future of microstrip antenna technology lies in array applications, there is still a need for further work in developing new antenna geometries. This may include new patch shapes, or making major changes to the antenna's structure by cutting notches in the substrate, or even its total removal from around the patch. A new hexagonal element with enhanced bandwidth and gain performance over the rectangular antenna has been introduced but further work is needed to determine its suitability as an array element.

This thesis describes the development of simple models requiring moderate computing power for the major electrical characteristics of rectangular microstrip antennas. The models have been incorporated in a computer-aided design program which has been extensively tested on antennas representing a wide variety of those commonly encountered, and proven to provide results that are accurate enough for most design purposes.

REPERENCES

[1] G.A.Deschamps, "Microstrip microwave antennas," Third USAF Antenna Symposium, '53.
[2] J.Q.Howell, "Microstrip antennas," IEEE Antennas and Propagation Society International Symposium, Digest, pp177-180,'72.
[3] J.Q.Howell, "Microstrip antennas," IEEE trans. Antennas Propagat., pp90-93 Jan'75.
[4] R.E.Munson, "Conformal microstrip arrays and microstrip phased arrays," IEEE trans. Antennas Proagat., pp74-78, Jan'74.
[5] H.D.Weinschel, "A cylindrical array of circularly polarised microstrip antennas," IEEE Antennas and Propagation Scciety International Symposium, Digest, pp177-180, '75.
[6] P.S.Hall, J.R.James, "Survey of design techniques for flat profile microwave antennas and arrays," IERE proc., vol 48, no 11, pp549-565; Nov'78.
[7] I.J.Bahl, "Build microstrip antennas with paper-thin dimensions," Microwaves, pp50-63, Oct'79.
[8] W.C.Johnson, "Transmission lines and networks," McGraw-Hill, pp105, '50.
[9] R.F.Harrington, "Time harmonic electromagnetic fields," New York, McGrawHill, pp183, '61.
[10] T.A.Milligan, "Bandwidth and efficiency of a microstrip patch antenna," IEEE Antennas and Propagation Society International Symposium, Digest, pp585588,'80.
[11] S.Silver, "Microwave antenna theory and design," McGraw-Hill,'49.
[12] A.G.Derneryd, "Linearly polarised microstrip antennas," IEEE trans. Antennas Propagat., pp846-851, Nov'76.
[13] M.V.Schneider, "Microstrip lines for microwave integrated circuits," Bell System T.J. vol 48 no 5, pp1421-1444, May-Jun, '69.
[14] E.O.Hammerstad, "Equations for microstrip circuit design," 5th European Microwave Conference. pp268-272, Sep'75.
[15] K.R.Carver, J.W.Mink, "Microstrip antenna technology," IEEE trans. Antennas Propagat., pp2-24, Jan'81.
[16] D.L.Sengupta, "Approximate expression for the resonant frequency of a rectangular patch antenna," Electron. Lett. vol 19, no 20, pp834-835, '83.
[17] H.A.Wheeler, "Transmission line properties of parallel strips separated by a dielectric sheet," IEEE trans. Microwave Theory and Technique, pp172-185, Mar'65.
[18] W.L.Weeks, "Antenna engineering," New York, McGraw-Hill, pp8-26,'68.
[19] E.H.Newman, P.Tulyathan, "Microstrip analysis technique," Proc. workshop on printed circuit antenna technology, New Mexico State Univ., Las Cruces, pp9.19.8, Oct 17-19, '79.
[20] T.Okoshi, T.Miyoshi, "The planar circuit - an approach to microwave integrated circuitry," IEEE trans. Microwave Theory and Technique, vol MTT-20, no 4, pp245-253, Apr'72.
[21] T.Itoh, R.Mittra, "A new method for calculating the capacitance of a circular disc for microwave integrated circuits," IEEE trans. Microwave Theory and Technique, pp431-432, Jan'73.
[22] T.Itoh, "Analysis of microstrip resonators," IEEE trans. Microwave Theory and Technique, vol MTT-22, no 11, pp946-952, Nov'74.
[23] Y.T.Lo, D.Solomon, W.F.Richards, "Theory and experiment of microstrip antennas," IEEE trans. Antennas Propagat., vol AP-27, no 2, pp-137-145, Mar'79.
[24] A.G.Derneryd, "Circular and rectangular microstrip antenna elements," Ericsson Technics no 3, pp160-171, '78.
[25] J.Watkins, "Circular resonant structures in microstrip," Electron. Lett., vol 5, pp524-525, 16th Oct'69.
[26] K.R.Carver, "The radiation pattern of a microstrip disc antenna," Physical Science Laboratory, New Mexico State Univ., Las Cruces PSL Tech Memorandum, 29th Nov'76.
[27] A.G.Derneryd, "Analysis of the microstrip disc antenna element," RADC-TR-77-383, Nov'77.
[28] S.A.Long, L.C.Shen, "The circular disc, printed circuit antenna," IEEE Antennas and Propagation Society International Symposium Digest, pp100-103, Jun'77.
[29] W.F.Richards, Y.T.Lo, D.D.Harrison, "An improved theory for microstrip antennas and applications," IEEE trans. Antennas Propagat., vol AP-29, no 1, pp38-46 Jan'81.
[30] K.R.Carver, E.L.Coffey, "Theoretical investigation of the microstrip antenna," ARO semi-annual research report, PT-00929, Jan'79.
[31] R.M.Foster, "A reactance theorem," Bell System Tech.J, vol 3, pp259-267, Apr '24.
[32] K.R.Carver, "Practical analytical techniques for the microstrip antenna," Proc. workshop on printed circuit antenna technology, New Mexico State Univ., Las Cruces, pp7.1-7.20, Oct'79.
[33] A.H.Mohammadian, N.M.Martin, D.W.Griffin, "A theoretical and experimental study of mutual coupling in microstrip antenna arrays," in preparation.
[34] K.R.Carver, "Input impedance to probe-fed microstrip antennas," IEEE Antennas and Propagation Society International Symposium, Digest, Quebec, pp617620, Jun'80.
[35] W.F.Richards, Y.T.Lo, P.Simon, D.D.Harrison, "Theory and applications for microstrip antennas," Proc. workshop on printed circuit antenna technology, New Mexico State Univ., Las Cruces, pp8.1-8.23, Oct'79.
[36] P.K.Agrawal, M.C.Bailey, "An analysis technique for microstrip antennas," IEEE trans. Antennas Propagat., vol AP-25, no 6, pp756-759, Nov'77.
[37] E.H.Newman, "Strip antennas in a dielectric slab," IEEE trans. Antennas Propagat., vol AP-26, no 6, pp647-653, Sep'78.
[38] E.H.Newman, P.Tulyathan, "Analysis of microstrip antennas using moment method," IEEE trans. Antennas Propagat., vol AP-29, no 1, pp47-53, Jan'81.
[39] D.M.Pozar, "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE trans. Antennas Propagat., vol AP-30, no 5, ppl191-1196, Nov'82.
[40] J.R.James, P.S.Hall, C.Wood, "Microstrip antenna theory and design," Peter Peregrinus, ' 81
[41] E.L.Ginzton, "Microwave measurements," McGraw-Hill,New York, '57, pp391428.
[42] N.Marcuvitz, "Waveguide handbook," McGraw-Hill, New York, '51, pp183-184.
[43] J.M.Griffin, J.R.Forest, "Broadband circular disc microstrip antenna," Electron. Lett. vol 18, no 6, pp266-269, Mar'82.
[44] D.L.Sengupta, L.F.Martins-Camelo, "Theory of dielectric filled edge slot antennas," IEEE trans. Antennas Propagat., vol AP-28, no 4, pp481-490, Jul'80.
[45] D.L.Sengupta, "The transmission line model for rectangular patch antennas," IEEE Antennas and Propagation Society International Symposium, Digest, pp158-160, May'83.
[46] E.Lier, "Improved formulas for input impedance of coax-fed microstrip patch antennas," IEE proc, vol 129, pt H, no 4, pp161-164, Aug '82.
[47] E.C.Jordan, K.G.Balmain, "Electromagnetic waves and radiating systems," Prentice-Hall, '68, pp154,212.
[48] W.J.Getsinger, "Microstrip dispersion model," IEEE trans. Microwave Theory and Technique, vol MTT-21, no 1, pp34-39, Jan'73.
[49] P.Silvester, P.Benedek, "Equivalent capacitances of microstrip open circuits," IEEE trans. Microwave Theory and Technique, vol MTT-20, Aug'72.
[50] E.O.Hammerstad, "Computer-aided design of microstrip couplers with accurate discontinuity models," IEEE Microwave Theory and Technique Society International Symposium, Digest, pp54-56,'81.
[51] M.Kirschning, R.H.Jansen, N.H.L.Koster, "Accurate model for open end effect of microstrip lines," Electron. Lett, vol 17, no 3, pp123-125, Feb'81.
[52] E.O.Hammerstad, O.Jensen, "Accurate models for microstrip computer-aided design," IEEE Microwave Theory and Technique Society International Symposium, Digest, pp407-409, May'80.
[53] I.Wolff, N.Knoppik, "Rectangular and circular microstrip disc capacitors and
resonators," IEEE trans. Microwave Theory and Technique, vol MTT-22, pp857864, Oct’74.
[54] D.W.Griffin, "Computer-aided determination of resonator characteristics based on expansion in normal modes and using automatic network analyser data," IEEE Microwave Theory and Technique Society International Symposium, Digest, '82.
[55] D.C.Chang, E.F.Kuester, "Resonance characteristics of a rectangular microstrip antenna," Proc. workshop on printed circuit antenna technology, New Mexico State Univ., Las Cruces, pp28.1-28.18, Oct'79.
[56] P.Hammer, D.Van Bouchaute, D.Verschraeven, A.Van De Capelle, "A model for calculating the radiation field of microstrip antennas," IEEE trans. Antennas Propagat., vol AP-27, no 2, pp267-270, Mar'79.
[57] J.R.James, C.J.Wilson, "Microstrip antennas and arrays," Pt. I, Fundamental action and limitations, IEE proc. pt H, Microwaves, Optics and Acoustics, vol 1, pp165-174, '77.
[58] N.P.Kernweis, J.F.McIlvenna, "Liquid crystal diagnostic techniques, an antenna design aid," Microwave journal, vol 20, pp47-51, 58, Oct'77.
[59] J.Mcllvenna, N.Kernweis, "Diagnostic use of liquid crystal detectors in microstrip antenna design," RADC-TR-77-250, Jul'77.
[60] A.J.Derneryd, "A theoretical investigation of the microstrip antenna element," IEEE trans. Antennas Propagat., vol AP-26, no 4, pp532-536; Jul'78.
[61] I.J.Bahl, P.Bhartia, "Microstrip antennas," Artech House, '80, pp48-50.
[62] R.P.Jedlicka, K.R.Carver, "Mutual coupling between microstrip antennas," Proc workshop on printed circuit antenna technology, New Mexico State Univ., Las Cruces, pp4.1-4.19, Oct'79.
[63] C.M.Krowne, A.R.Sindoris, "H-plane coupling between rectangular microstrip antennas," Electron. Lett. vol 16, pp211-213, '80.
[64] C.M.Krowne, "E-plane coupling between two rectangular microstrip antennas," Electron. Lett. vol 16, no 16, pp635-636, '80.
[65] E.Penard, J.P.Daniel, "Mutual coupling between microstrip antennas," Electron. Lett. vol 18, no 14, pp605-607, Jul'82.
[66] D.W.Griffin, "Cross-polarised radiation from metal patch type microstrip antenna elements," IEEE Antennas and propagation Society International Symposium, Los Angeles, pp31-34, Jun'81.
[67] I.Karlsson, "Broadband microstrip antenna array," IEEE Antennas and Propagation Society International Symposium, Digest, pp593-596, '80.
[68] P.S.Hall, "New wideband microstrip antenna using log-periodic technique," Electron Lett. vol 16, no 4, pp127-128, Feb'80.
[69] W.Wiesbeck, "Miniaturisierte antenne in mikrowellenstreifen lectungstechnik," Nackrichtentechn Zeitschrift vol NTZ-28, pp156-159, May'75.
[70] P.S.Hall, C.Wood, C.Garrett, "Wide bandwidth microstrip antennas for circuit integration," Electron Lett. vol 15, pp458-460, '79.
[71] A.G.Derneryd, "Microstrip disc antenna covers multiple frequencies," Microwave journal, vol 21, pp77-79, May '78,
[72] G.G.Stanford, R.E.Munson, "Conformal VHF antenna for the Apollo-Soyuz test project," IEE conference proceedings, no 128, pp130-135, '75.
[73] J.L.Kerr, "Other microstrip antenna applications," Proc. of the 1977 Antenna Applications Symposium, Univ. of Illinois.
[74] K.Ito, N.Aizaira, N.Goto, "Increasing the bandwidth of circularly polarised
printed array antennas composed of strips and slots," IEEE Antennas and Propagation Society International Symposium, Digest, pp597-600, '80.
[75] C.Wood, "Curved microstrip lines as compact wideband circularly polarised antennas," IEE proc. pt. H, Microwaves, Optics and Acoustics, vol 3, no 1, pp5-13, Jan'79.

APPENDIX A

ANTENNA MANUPACTURE AND SPECIFICATIONS

Abstract

All of the antennas and microstrip transmission lines were manufactured using DI-CLAD CUT-N-PEEL woven PTFE laminate made by Keene Corporation, where: $\epsilon_{r}=2.55, h=1.57 \mathrm{~mm}$ or 0.735 mm , and $t=0.05 \mathrm{~mm}$.

The antennas were manufactured using standard precision workshop equipment, including: a flat table, a right angle block, and a scalpel blade fixed to a height vernier. The copper clad substrate was mounted in the vertical position while the blade in the height vernier was used to successively scribe and eventually cut through the copper. After all of the horizontal cuts were made, the substrate was rotated by 90° to facilitate cutting in the direction perpendicular to those taken first. Any lifting along the edges was then lightly smocthed down. The technique produced a consistent undersized product, however this was taken into account by adding 0.03 mm to all dimensions before cutting. The final manufacturing accuracy was $\pm 0.04 \mathrm{~mm}$.

APC-7 and SMA connectors were used throughout this project, the relevant dimensions of which are given in table A.1. For the case of probe fed antennas, the inner conductors of either APC-7 or SMA type connectors were extended through the dielectric substrate to make connection with the metallic patch. Hence these probes are referred to as either APC-7 or SMA in dimension.

Coaxial connector dimensions		
Type	inner radius $\mathrm{a}(\mathrm{mm})$	outer radius $\mathrm{b}(\mathrm{mm})$
APC-7	1.520	3.50
SMA	0.635	2.05

Table A.1: Dimensions of the coaxial connectors feeding the antenna, where the inner conductor is extended to become the probe.

The complete manufacturing data for the antennas referred to in the thesis are listed in the "DATA" statements near the start of the computer program in Appendix C. The order of information is:

$$
\text { Measured } f_{o c}, L, W, h, D, \epsilon_{\mathrm{r}}, \text { Feed type }
$$

Note that due reference is given to the data obtained from measurements published by other authors. Experiments that were incomplete in their description were quite common. However, the parameters could often be pieced together through reference to successive papers published by the author or members of the same research group. In the cases of [19], [29], and [30] however, it was necessary to directly write to the authors concerned seeking full details of their experiments. Without exception these researchers did not reply to the request, necessitating the guessing of some of the parameters of their experiments in order to make up the data sets.

APPENDIX B

RADIATION PATTERN, INPUT IMPEDANCE, AND MUTUAL COUPLING MEASUREMENT

All of the experimental techniques were built around an automatic network analyser system (ANA) based on the HP8410 controlled by a HP9845 mini-computer.

The far field radiation patterns were measured in a 3 m by 3 m by 9.1 m anechoic chamber lined on all faces with 46 cm high pyramidal absorbers. The test path of the ANA was used to measure the radiation pattern of the antenna by determining the s_{21} scattering transfer coefficient for the free space path loss between the rotating test antenna and the receiving horn. Figure B. 1 shows a schematic of the measurement system where the HP9845 was used to plot out the radiation patterns in polar coordinates.

Input impedances were also measured using the ANA where the reference plane was defined at the back of the ground plane through the use of in-house constructed calibration terminations. The gold plated APC-7 short and open circuited terminations were used to move the reference plane 33.6 mm away from the face of the connector in the test port of the ANA, permitting the easy manufacture of numerous extended flange mount receptacles that were used to feed the antennas. The SMA calibration terminations were constructed using a commercial flange mount receptacle for the short circuit and a modified in-line female-female adapter for the open circuit. Again, the reference plane was the back of the ground plane. The HP9845 was used to present the

Figure B.1: Schematic of the equipment used to measure far field radiation patterns.
s_{11} results for the input impedance in Smith chart form. Also a HP5245L frequency counter and HP5257A transfer oscillator were used to calibrate the frequency of the ANA.

The mutual coupling between the antennas shown in figure 7.1 was measured with an ANA in terms of s_{21} using the same technique as proposed by Jedlicka et.al. [62], where in order to establish two antennas of varying separation, a set of substrate inserts were placed between the antennas to form a continuous substrate of variable length.

APPENDIX C

COMPUTER-AIDED DESIGN PROGRAM FOR RECTANGULAR MICROSTRIP ANTENNAS

The following is a listing of the computer-aided design program for rectangular microstrip antennas. It includes all of the new models introduced in the body of this thesis and, through the use of multiple option flags, can be used to execute many of the models suggested by other authors. The program is written in BASIC computer language and is suitable for execution on a HP9845 mini-computer.

10	$!$	
20	$!$	
30	$!$	**
40	$!$	** COMPUTER AIDED DESIGN
50	1	** OF
60	$!$	** RECTANGULRR MICROSTRIP ANTENNAS
76	1	** **
80	1	** Part of the research effort towards the
90	1	** degree of Doctor of philasophy by:
100	$!$	*
110	1	** HOEL MAXWELL MARTIN
120	1	**
130	$!$	** University of Adelaide
140	$!$	** Department of Electrical and Electronic
150	1	Engineering
160	1	**
170	1	** December 1984 **
180	1	**
190	1	**
200	1	** Supervisor: Dr.D.W.Griffin
210	$!$	**
220	$!$	
230	$!$	
240	1	
250	$!$	
260	!	
270	$!$	
280	$!$	
290	1	
300	!	This is a computer-aided design program for rectarigular microstrip
310	$!$	antenras. The design and analysis are carried out uiing the formulas
320	1	presented in the thesis af the same title. The equetion numbers
3510	$!$	in the thesis can be used to identify the same quations in
340	1	the program.
350	$!$	
368	1	The general layout of the program is shown below. If the designer is
370	$!$	starting with a desired resonant frequency and a specified patch widih,
380	$!$	substrate height, dielectric constant and feed type, then the length
390	1	of the patch must be designed before analysis can take place. Fefer
406	1	to line 'Ddesign'. The analysis of a fully specified patch starts at
410	$!$	line 'Analysis'. From this point the designer can choose to analyse
420	$!$	for the series reactance of the probe and the resonant frequency,
430	!	the input impederice, the far field radiation pattern or the mutual
440	1	coupling between two aritennas of the safile dimensions. If the measured
450	$!$	resonant frequency is put into the program then the radiation pattern
460	1	and mutual coupling are evaluated at this frequency. However if the
470	$!$	resoriarit rrequency is calculated, then this calculated yalue replaces
480	1	the measured frequency in any further analysis.
490	1	
500	$!$	Two sets of flags, located at lines 'Fi' and 'F2', permit the
516	1	evaluation of the equations proposed by other euthors for uarious
520	$!$	anterica and trangmission lirid parameters. This program also includes
530	!	the code that was used to determine the empirical equations for the
540	$!$	effective edge extension arid the aperture admiteance. The aperture
550	1	adiititance teing the reciprocal of the impedance referred to as the
560	1	slot impedance in the program.
570	$!$	
580	!	
590	!	The analysis of a rectangular resonant cavity is also included in the
600	$!$	program. These subroutines enable the calsulation of the resonant
610	!	frequencies froni a set of dimensions and the dielectric constarit,
620		or the calculation of the dielectric constant fromitwo sets of lifeasured
E30	$!$	resoriant frequencies obtained from two cauities of slighty different
640		dimensions.
650	!	
660	!	
670		


```
2550 INPUT "Foc of data array set ?",Data
2560 | Data=5013
2570 RESTORE
2500 FOR NW1 TO 40
2590 READ Focmhz,VIengthmm,Wmm,Hmm,D,Er,Feeds
2600 IF Focmhz=Data THEN GOTO Enddata
2610 NEXT N
2620 PRINT
2630 PRINT " Data not available"
2640 GOTO Start
2650 ! Frequency corrected foc.
2660 DATR 4659,18.03,30.0,1.57,6.21,2.55,"APC7"
2670 DATA 4669,18.03,28.6,1.57,6.21,2.55,"&PC7"
2680 DATA 4674,18.03,25.65,1.57,6.21,2.55,"APC7"
2690 JATA 4687,18.03,24.75,1.57,6.21,2.55,"APC7"
2700 DATA 4700,18.03,22.66,1.57.6.21,2.55,"APC7"
2710 JATF 4724,18.03,19.40,1.57,6.21,2.55,"FFC7"
2720 DATA 4751,18.03,16.49,1.57.6.21,2.55,"FPC7"
27.30 DATA 5007,18.03,13.04,1.57,6.21,2.55,"FPC7"
2740 !
2750 DRTA 633.5,150,75,3.175,60,2.56,"SMA" !Pozar APS NOU8? [39]
    & Newman 'Workshop'[19]
    DATA 658,139.7,204.5,1.5日8,63.50,2.59,"SMA" IFOzar APS NOU82 [39]
    DATA 915,57.7,50,1.57,0,2.1,"SMR"
    DATA 1189,76.2,114.3,1.59,22.9,2.62,"SMA" !Richards AFS Jan'81 [29]
    DATA 1197,76.0,114.0,1.59,00,2.62,"SMA"
    DATA 1396,65.5,105.6,1.57,17,2.55,"SMA"
    DATA 1410,66,105,6,1.57,17,2.5,"SMA"
    IATA 1518,59.5,10日,1.59,0,2.62,"TL"
    DRTH 2195,41.4,60.58,1.508,00.00,2.50,"TL"!Carver/[offeg MRÜ pp52 [30]
    1 and Er=2.5 from FFS Jan'81 [29] pol:3
    DATA 2210,41.4,68.58,1.588,00.00,2.50,"SMA"! [30] pp53
    DATA 2213,41.4,68.58,1.588,10.16,2.50,"SMH"! [30] pp54
    DATA 2224,41.4,48,1.59, 7.62,2.50,"SMA"
                            refer Carver/Mink APS Jan'81 [15] for Er=2.5
    DATA 2792,33.0,33.0,1.524,11.50,2.55,"SM&" !Derneryd Ericson [24]
    DATA 3387,26.63,23,.8,16.15,2.55,"SMA"
    DATR 3502,25.66,23.10,0.80,10.15,2.55,"SMA"
    DATA 4670,18.47.16,0.80,6.14,2.55,"FPC7"!4663
    DATA 4672,18.03,30,1.57,6.21,2.55,"APC7"
    DATA 4744,18.03,16,1.57,6.21,2.55,"APC7"
    DATA 4770,18.03,13.5,1.57,6.21,2.55,"APC7"
    DATR 4784,18.11,16,1.57,6,2.55,"SMA"
    DATA 4792,18.54,16.04,.8,6.14,2.55,"SMA"
    DATA 48.30,18.47,1\epsilon,.8,6.14,2.55,"SMA"
    DATA 5013,16.93,16,1.57,5.5,2.55, "APC7"
    ! DATA 5013,27.04,25.55,2.51,5.5,1.,"HFC7"
    Enddala: !
    PRINT
    PRINT "Measured cavity resonant frequency(Foc)=";Focmhz;"Mriz"
    I
    !
    I
    PRINT "Sperified patch length=";Vlengthmm;"mm"
    PRINT "Specified feedpaint posicionz";D;"mm"
    Cont:!
    PRINT
    IF Fesd%="SMA" THEN GOTO 3210
    IF Feed$="AFCT" THEN GOTU 318\Delta
    IF Feed*="TL" THEN GOTO 3230
    PFINT "feed nol specificd correctly"
    GOTO Start
    Radiusi=1.52 !mm
    Radiuso=3.5 !mm
    LOTO 3230
    Radiusi=.64 !mm
    Radiuso=2.05 1 mm
    !
    Rr=Wmm/Vlengthmm
```

```
3260 PRINT "Patch width=";Wmm;"mm"
3270 PRINT "Substrate height=";Hmm;"mm "!100*h/lamdas @ Foc=";Hdlams
3280 PRINT "Dielectric constant=";Er
3290 PRINT "Fe+d type=";Feed$
3300
3310
3320
3330 Analysis: I
3340 PRINT "---------------------------------------------------------------------------------------
```



```
3360
3370
3380
3390 CALL Effer(Erflag#,Focmhz,Zom,Er,Wmm,Hmm,Effer)
3400 CALL Deltal\Fringeflag*, Hmm,Hmm,Vlengthmm,Er,Effer,Focmhz,Deltalmm)
3410 1
3420 ! ##Zom by other authorsW䊉
3430 ! Carver APS trans Jan 'B1 ppS [15]
3440 Zomc aver=Hmm*377/(Wmm*SQR〈Er))
3450 ! Sengupter FPSIS ' 83 pp159 [45]
3460 Alpha=1+1.393*(Hmm/Wmm)+.667*(Hmm/Wmm)*LOG(Wmm/Hmm+1.444)
3470 ZOmsen=377*Hmm/(Wmm*Rlpha*SQR(Effer))
3480 1
3490 Deltalm=Deltalmm/1000
3500 Fochz=Focmhz*lE6
3510 Vlamom=3E8/Fochz!m
3520 VIamsm=Vlamom/SQR(Effer)!m
3530 Vlamsmm=Vl amsm*1000
3540 Vlamomm=Vlamom*1000
3550 Zoms=Zom/SQR(Effer)
3560 !
3570 PRINTER IS 16
3580 PRINT" the order of analysis is:-"t
3590 PRINT " Series reactance of the probe,"
3600 PRINT " Resonant frequency,"
3610 PRINT " Input impedance,"
3620 PRINT " Radiation patiern, and"
3630 PRINT " Mutual coupling."
3630
3640
3650 PRINT "Howewer these enalysts do not need to be dorie in order."
3 6 6 0 ~ P R I N T E R ~ I S ~ 0 ~ 0
3570 INFUT "DO you want to follow the abowe arder Y/N ?",fris$
3680 IF Rns&#"Y" THEN GOTO FeEdpt
3690
3690
3700
3718
3720
3730
3740
3750 INPUT "Determine values for Zslot Y/N ?",Ans$
3760 IF Ans$E"Y" THEN GOTO Sy
3770 GOTO 3500
3780 PRINT
3790 PRINT
3800 PRINT
3810 ।
3820
3030 !
3840 Fe&dpt: PRINT
3850 FRIHT "------------------------------------------------------------
3860 !
3870 IF Feed$="TL" THEN GOTO 3910
```



```
)
3890
;")"
3900 GOTO Fo
3910 Xseries=0! the case for a transmission line feed
3920 PRINT "For the transmission line fed case the series reactance = +j";Xseri
```

```
*s;"ohm (";Tlilag$;")"
3930 !
3940
3950 !
3960 Fo: PRINT
3970 PRINT "------------Analysis for the resorianit frequericy----------------------------
3980 !
3990 Hdlams=100*Hmm/Vlamsmm
4000 CALL Fo<Foflag*,Feed$, Er, Effor, Ylengthmm,Radiusi,Radiuso, Wmm, Deltalmm,Hmm,
Xseries,Focmhz)
4 0 1 0 ~ P R I N T ~
4020 FRINT "Wavelength in the free space Foc="; vlamomm;"mm"
4030 PRINT "Wavelength in the substrate O Foc(using effective Er)=";Vlamsmm;"mm
4040 PRINT "Aspect ratio=";Wmm/VIengthmm
4 0 5 0 ~ F I X E D ~ 4 ~ \$
4 0 6 0 ~ P R I N T ~ " S u b s t r a t e ~ h e i g h t ~ ( h / l a m d a s ~ \& ~ F o c ) = " ; H d l a m s
4070 FIXED 2
4080 PRINT "Effective dielectric constant=";Effer;" (";Erflag*;")"
4090 PRINT "Characteristic impedance of MS line,freespacea";Zom
4100 PRINT "Characteristic impedance of MS lirie,substrate=";Zoms;"(Hammerstad)"
4110 PRINT "Characteristic impedance of MS line,substratem";Zomcaver;"(Caver)"
4120 PRINT "Characteristic imptdance of MS line,substrate=";Zomsen;"(Sengupta)"
4130 PRINT "Edge extension=";Deltalim;"mm <";Fringeflag年;")"
4140 !
4150 !
4160 !
4170 GOTO TI !Program development
4 1 8 0 ~ 1
4 1 9 0 ~ ! ~ - - - - - ~ C a l c u l a t e ~ Z i n ~ u s i n g ~ t h e ~ c a v i t y ~ m o d e l ~ f o r ~ a ~ f r e q u e n c y ~ F r e q m h z - - - - - - " " )
4200 INPUT "Freqmhz ?",Freqmitz
4210 Ftpz<Freqmhz-Focminz)/Frequhz !frequency turing parameter
4220 Pl=Rr !r
4230 P2=0
4240 P3=1
4250 P4=Ftp*QO
4260 CRLL Cdiv(P1,P2,P3,P4,P5,P6)
4270 Rezin=P5*50
4280 Vimzin=(PG+Xseries/50)*50
4290 PRINT "Freq=";Freqmhz;"Zin=";Rezin,Vimzin;Focmhzc;Xseries
4 3 0 0 ~ P R I N T ~
4310 !
4320 !
4 3 3 0 ~ !
4340 TI: INPUT "Modify aritenna specs. Y/N ?",fns$
4350 IF Ans$="N" THEN GOTO 4390
4 3 6 0 ~ P R I N T
4370 PRINT " Change in the dimerisions"
4380 GOTO Dims
4390 INPUT "Go to the iriput impedance or start of th& arialysis I/G ?",fins$
4400 IF Ans%="R" THEN GOTO finalysis
4410 PRINT
4 4 2 0 ~ I ~
4430 I
4440 !
4450 T12: PRINT "----------finalyzis for the input impedance--------------------------
4 4 6 0 ~ ! ~
4 4 7 0 ~ F R I N T
4400 !
```



```
4500 Slotflag$="M" ! C,N/Cf,D/Md/Ma/SEn/Ho/Hs/M/.....MEfer ta SUB Zslo:
4510 Lengrhflag="P" !Prphysical,E/Elultrical..Trarismission line model only
4.520 Fpfleg$z"IN" !Feedpoint model IN/OUT
4530 ! ####*********************************************************************
*
4540 PRINT "Lengthflag=";Lerigthflag*
4550 PRINT "Slotflag=";Slotflag*
4560 PRINT "Fpflag=";Fpflag*
4570 PRIHY "Fringeflag=";Fringeflag*
4580 PRINT
```

```
4590 PRINT
4 6 0 0
4 6 1 0
4 6 2 0 ~ \|
4630 INPUT "STRRT,STOP,STEP FREQUENCY Mhz?",Fstart,Fstop,Fstep
4640 l Fstart-4500
4650 | Fstop=5500
4660 ! Fstep=500
4670 FOR Freqmhz=Fstart TO Fstop STEP Fstep
4 6 8 0 ~ P R I N T
4690 PRINT "Freq=";Freqinhz;"Mhz"
4700 FIXED 3
4710 Hdlams=Hmm/Vlamsmm
4720 I PRINT "h/lamsm";Hdlams
4 7 3 0 ~ F I X E D ~ 2 ~
4740 Vlamomm=3E5/Freqmhz
4750 CRLL Effer〈Erflag$,Freqmhz,Zom,Er,Wmm,Hmm,Effer\
4760 Vlamsmm=Vlamomm/SQR(Effer)
4770 IF Fred$="TL" THEN GOTO 4800
4780 CALL Mgfp(Tlflag$,Freqmhz,Er,Effer,Wmm, Deltalmm,Hmm,Radiusi,Radiuso,%serie
s)
4 7 9 0
4 8 0 0
4810 CALL Zin<Vlengthmm,Vl自Omm,Vlamsmm,Zoms, Er, Effer,Wmm,Hmm,Deltalmm, Slatflag
*,Lengthflag*,D,Zpr,Zpi,Zsr,Zsi)
4820 Zinr=2pr
4 8 . 3 0 ~ ! ~ N o w ~ i n c l u d e ~ t h e ~ f f e c t ~ o f ~ t h e ~ p r o t e
4840 IF Fpflag%="IN" THEN GOTO 4860
4850 IF Fpflag$="OUT" THEN Xseries=0
4060 Zini=2pi+Xseries
4870 R1=2inr-50
4890 R2-2inn+50
4890 CRLL Cdiu{R1,Zini,R2,Zini,REr,Rci)
4900 PRINT "Suries reactance=";XseriEs;"ohm"
4910 PRINT "Reflection coeff.=";RCr;"+j";Rci
4920 PRINT "Zine";Zinr;"+j";Zini;"ohm"
4 9 3 0 ~ N E X T ~ F r e q m h z ~
4 9 4 0 ~ \| ~
4 9 5 0
4 9 6 0 ~ \|
4970 INPUT "Stay in impedance routine and new feedpoint YY/YN/HN ?",Gris悉!SP
4 9 8 0 ~ I F ~ A r i s \% = " Y Y " ~ T H E N ~ G O T O ~ 5 0 6 0 ~
4 9 9 0 ~ I F ~ A n s \% = " Y N " ~ T H E N ~ G O T O ~ T I ~
5000 INPUT "Go back to the start of the analysis Y/N ?",Ans$!SF
5010 IF Ans$="Y" THEH GOTO Analysis
5020 INPUT "Calculate the Pattern or the Mutual coupling PiM ?",fins%!SP
5030 IF Fns$a"M" THEN COTO Mutual
5040 IF Ans$="P". THEN GOTO Pattern
5050 GOTO 4970
5060 INPUT "New feedpoint(mm) ?",D
5070 PRINT "Feedpoint pusition=";D;"mm"
5080 GOTO TIZ
5090 !
5100 !
5110 Pattern: !
5120 PRINT
5130 PRINT "-----------Arialysis for the radiation patiern------------------------------
5140 PRINT
5150 CALL Rad<Focmhz,Er,Vlerigthmm, Wrnm,Hmm,DEltalmifi\
5160 IMPUT "Calculate the Mutual coupling or go to the start M/S ?",Ari\equiv年:SF
5170 IF Ans$="S" THEN GOTO Start
5180 !
5190 !
5200 !
5210 PRINT
```



```
5230 ! Coupling$="E"!.........E/H-PLAHE COUPLING
5240 - Dlamo=.5
5250 INPUT "SEParation in free space wavelengths ?", Dlamo
5266 INPUT "Direction of coupling E/H ?",Coupling年
```



```
5280 INPUT "Stay in mutual couplirgg or go to the start of arialyEli M/A ?",friz:
5290 IF Ans$="R" THEN GOTO Analysis
5300 GOTO 5250
5310 |
5320 INPUT "Synthesis of patch or array P/A ?",Ans*
5330 IF fins变"A" THEN GOTO 5826
5340
5350
5360
5370 S
5380 |
5390 INPUT "Xsertes Q Foc rom measurements(ohm) ?",Xseries
5400 Vlsaxseries/(2*PI#Focmhz*1E6)
5410 VIsp=VIs*1E12
```



```
5430 PRINT
5 4 4 0 ~ P R I N T
5450 PRINT "frequ.Mhz Zin Xseries Zslot Yslot《mmiho`"
5460 INPUT "Frequency Mhz,Input impedance R,X ?",Freqmhz,Zinr,zini
5470 Kseries=2*PI*Freqmhz*V1s*1E6
5480 CALL Effer(Erfleg$,Freqmhz,Zom,Er,Wmm,Hmm,Effer)
5490 Vlamsmm=3E5/(Freqmhz*SQR(Effer))
5500 I Zin: Input impedance at the terminals
5510 ! 2p: Parelleled trasferred impedances
5520 1 2s: Input impedance of the slot antenna
5530 | V11 mm
5540 Zpr=Zinr
5550 IF Fpflags="OUT" THEN GOTO 5590
5550 | CALL Msfp(Fr.qmhz,Er,Hmm,Radiusl, Radiuso,Xsertes)
5570 Zpi=Zini-Xseries!Inputted
5580 GOTO 5608
5590 Zpi=Zini
5600 CALL Zslo&sun(Zoms,D,Vlengihmm,Vlamsmm,Zpr,Zpi,Zsr,Zsi)
5610 IF Fpflag$="OUT" THEN GOTO 5460
5620 Zsrpl=Zsr*1000/Wmm lZslot/length (ohm/m)
5630 ZsipleZsi*1000/Wmm
5640 Ysr=1000*Zsr/(Zsr~2+Zsi~2)
5650 Ysi=-1000*Zsi/(Zsr^2+Zsi^2)
5660 PRINT Freqmhz,Zinr;Zini;Xseries;Zsr;Zsi;Ysr;Ysi
5670 GOTO 5690
5680 PRINT Freqmhz,Zinr;Zini;"-----";Zsr;Zsi;Zsrpl;Zsipl
5690 PRINT
5700 PRINT
5710 INPUT "Stay in Zslot determiriation or goto fnalysis S/P ?",Aris$
5720 IF Ans$="A" THEN GOTO Analysis
5730 GOTO Sy
5740 |
5750 1
5760 1
5 7 7 0
```



```
6420 IF Slotflag$="Ho" THEN GOTO 7170
6 4 3 0 ~ I F ~ S l o t f l a g \$ = " H s " ~ T H E N ~ G O T O ~ 7 1 7 0
6440 IF Slotflag$="M" THEN GOTO P300
6 4 5 0 ~ P R I N T ~ " S l o t f l e g ~ e r r o r " ~
6460 GOTO 7500 IEXIT
6 4 7 8 ~ \|
6480 ! Caruer PT00929pp42
G=,00836*Wmm/4l amomm
6500 B=.01668*Deltalmm*Wmfm*Efers(Hmm*VI amomm)!
6510 GOTO 7270
6 5 2 0 ~ \|
6530 I Newman Mexico pp9. 2
6540 G=.00836*Wmm*SQR(Effer)/V1 amomm
6550 E=.01668*D*Italmm*Wmm*Effor/(Hmm*Vlamomm)!
6560 COTO }727
6570 |
6590 I Caruer Mexico pp7.6 & APS trans Jan 81
6590 Wdl=W(mm/Vlengthmm
6600 FWI=. P747+.5977* (WdI-1)-.1638*(Wdl-1)^2!
6610 PRINT "F(W/1)=";FW1
6620 G=Fwl*.00836*Wmm/VI amomm
6630 BxFwl*.01668*Deltalmm*Wmm*Effer/(Hmm*VIamomm)
6 6 4 0 ~ G O T O ~ 7 2 7 0 ~
6 6 5 0 ~ I ~
6 6 6 0 ~ ! ~ M o d i f i e d ~ D e r n e r y d ~
6670 cOTO 6740 !wide slot
6 6 8 0 ~ I ~
6 6 9 0 ~ I ~ D a r n e r y d ~ A P S ~ N o w ~ 7 6 ~
6700 Wdl am=Wmm/Vlamomm
6710 IF Wdlam>1 THEN GOTO 6740
6720 G=(Wmm/Vlamomm)^2/90 !nerrow
6 7 3 0 ~ G O T O ~ 6 7 5 0 ~
6740 GmWmm/(120*VIamomm) !wide
6750 Freq=3EII/VImmomm !Hz
6760 D: C=Deltalmm/(Freq*2oms*VIamsmm)F.
6770 N=0 Inth guess
6780 S=-1
6790 Error=.002*C
6800 Bt=2*PI*Fr-q*C*(I+S*N/1000) !Test or First approximation
6810 Rt=G/(G^2+Bt^2)
6820 Xt=-8t/(G^2+Bt^2)
6830 Ct-ABS(1/(2*PI*Fr*q*Kt))
6 8 4 0 ~ I F ~ A B S ( C - C t ) < E r r o r ~ T H E N ~ G O T O ~ 6 8 9 0 ~
6 8 5 0 ~ I F ~ N > 0 ~ T H E N ~ G O T O ~ 6 8 7 0
6860 IF Ci<C THEN S=-S
6070 N=N+1
6880 GOTO 6800
6890 Zsr=Rt
6900 Zsi=xt
6910 B=- Xt/(Rt^2+ (Xt~2)
6920 GOTO 7500
6 9 3 0 ~ \| ~
6 9 4 0 ~ ! ~ M a r c u v i t z ~ p p 1 7 9 ~
6950 Ha=2*Hmm/1000 ! Aperture height(m)
6960 Yom=1/(377*{Hmm/1000)) Imho Sen
6970 Ha=2*Hmm/1000 ! Aperture heighe \m)
6980 G=YOm*PI*Ha*(Wmm/1000)/(2*V1amomm/1000) !mho (5.1)
6990 B=LOG(2*2.71828*(VIamOmm/1006)/(1.78107*Ha))|
(5.2)
7000 B=Yom*B*Ha*(Wmm/1000)/(vlamomm/1000) !mho
7010 ! * W because G & B are per length expressions`in Macuvizz.
7020 GOTO }726
7030 I
7040 ! Sengupta RPSIS '83 pp159
7050 Flpha=1+1.393*(Hmm/Wmm)+.667*(Hfimm/Wmm)*LOG(Wmm/Hmm+1.444)!
7060 | Alpha=1
7070 Beta=2*PI*SGR(Effer)/(VIamomm/1000)
7080 ! PRINTER IS 0
7090 ! PRINT "Alpha=";Alpha
```



```
7120 G=Yom*Beta*(Hmm/1000)/(2*Alpha*Effer)!
7130 B=LOG(SGR(Effer;*2*FI*2.71828/(1.78107*Beta*(Hmm/1000)))
(5.7)
B=B*YOm*Beta*(Hnm/1000)/(PI*Flpha*Effer)
GOTO }226
I
! Harrington "Time Harmonic EM Fields" pole3 [9]
IF Slotflag$a"Hs" THEN GOTO >210
VIem=Vlemomm
GOTO }722
Vlam=Vlamsmm
Bete=2000*PI/NIam
Betah-Beta*Hmm/1000
GaWmm*(1-Betah^2/24)/(120*Vlam)!
B=(3.135-2*LGT(Betah))#Wmm/(377*VIam) lbase 10 <5.12\rangle
```



```
Zsr=G/(G^2+B^2)
Zsi=-1*B/(G^2+B^2)
GOTO 7500
!
W: ! Martin:Empirical Zslot O 5GHz
G=546/1E6*EXP(4.47*Wmm/Vlamomm) !mho,26/5 (5.27)
Wc=.0455* (Delqalmm*Wmm^Hmm/Vlamomm\ +5E-4 !mho, 26/5
C=Wc/2/PI.Fr-qmhz/1E6
N=0 Inth quess
S=-1
Error=.002*C
Bq=2*PI*Fr*qmhz*IEG*C*(1+S*N/1000) !Test or First approximation
Rt=Gノ(G^2+Bt^2)
Xt=-Bt/(G^2+Bt^2)
Ct=ABS<1/(2*P1*Freqmhz*1E6*Xt))
IF ABS(C-Ct)<Error THEN GOTO 7470
IF N>0 THEN GOTO ?450
IF Ct<C THEN S=-S
N=N+1
GOTO 7386
Zsr=Rt
Zsi=Xt
B=- Xt/(Rt^2+ Xt^2)
I PRINT "Slotflag=";Slotflag$! P
FIXED 6
PRINT "Zslot=";Zsr;Zsi;"ohm"! P
Gm=G*1000
Bm=B*1000
PRINT "Yslot=";Gm;Bm;"mmho"1 P
PRINT "W/lamo=";Wmm/VIamomm;"dLW/hlamo=";Deltalmm*Wmm/Hrim/Vlamomm
PRINT "wC=";2*PI*Freqmhz*lEE*C*1000;"mho"
FIXED 2
SUBEND
I
1
2sy: ! Synthesis of the slot inqut impedarce*******************************
!
SUE Zslotsyn<Zoms,V11,Vlengthmm,Viamsmm,Zinr,Zini,Zsr,Zsi)
!
V11 mm
all impedances in Ohm
DIEv11/1000 !m
D2=(Vlengthmm-VII)/1000 !m
Beta=2000*PI/Vlamsmm
RFD
CI=COS(Bel a*D1)
C2=COS〈Bela*D2)
SI=SIN(BGta*DI)
S2=SIN(Beta*D2)
CALL Crec(Zinr,Zini,Yirir,'Yini>
Yo=1/Zoms
S6=51*C2+C1*S2
C=C1*C2
S=S1*S2
```

```
7820 frmyinr*C
7830 Ai=Yini*C-YO*S6
7040 Br=-2*C+2*S-Yini*Zoms*S6
7850 Bi=Yinr*Zoms*S6
7860 Crm-1*Yinr*S*Zoms^2
7970 Ci=-1*(Y|ni*S*ZOms^2+Zoms*S6)
7080 I Evaluate ZA
7890 P3-2*Ar
7900 P4-2*Ri
7910 CALL Cdiu(Er,Bi,P3,P4,Z1,22)
7920 21=-21
7930 22=-22
7940 CALL Cmult(Br,Bi,Br,Bi,B1,B2)
7950 P5=4*Ar
7960 P6-4*R1
7970 CALL Cmult(P5,P6,Cr,Ci,P7,P8)
7900 P9=B1-P7
7990 P10=B2-PB
0000 CALL Csqr(PG,P10,P11,P12)
8010 CALL Cdiu(P11,P12,P3,P4,Z3,24)
8020 Zsr=Z1-Z3 IZslot
8030 Zsi=22-24
B040 SUBEND
B050 ।
8060
8070 !
8080 Eff: ! Effective dielectric constant of a microstrip t.l.******************
8090 ।
8100 SUB Effer〈Erflag$,Freqmhz,Zom,Er.,Wmm,Hmm,Effer`
8110 Effer=(Er+1)/2+(Er-1)/(2*SQR(1+10#Hmm/Wmm))!
                                    (1.9)
    IF Erflag$="Hammerstad" THEN GOTO 8210
    IF Erflagsa"Gersinger" THEN GOTO 8160
    PRINT "error 0 Eff"
    PAUSE
    Zoms=Zom/SQR(Effer)
Fp=Zoms/(.,0*PI#Hmm) !
(3.22)
G=.6+.009*Zoms!
(3.21)
Effer=Er-(Er-Effer1)/(1+G*(Freqmhz/1000)^2/Fp^2)!
SUBEND
    1
    1
    I
    Zom: ! Characteristic imp. of a Microstrip trarmsmigsion line***************
    I
    SUB Zom(Wmm,Hmm,Zom)
    | M.V.Schneider,"Microstrip lines for MICs",ESTJ,May,June,1969,Vol 48
    I pp1421-1444,pp1430
    Wh=Wmm/Hmm
    Hw=Hmm/Wh
    IF Hw>I THEN GOTO 8350
    ZOm=120*PI/(Wh+2.42-.44*Hw+(1-Hw)^6)
    GOTO 8368
    ZOm=60*LOG(8*Hw+Wh/4)
    SUBEND
    !
    !
    Del: ! Fringirg length of a microstrif opern gircuit**************************
8410 !
8420 SUB Deltal(Fringeflag年, Wmur, Hmif, Wheng:hmin, Er, Effer, Fmitiz, DEltalmm)
8430 Vlamsmm=3E5/(Fmhz*SQR(Effer))
8440 IF Fringeflag$="Hamml" THEN GOTO 8510
8450 IF Fringeflag$="Harmm2" THEN GOTO 8640
8460 IF Fringeflag$="KIR" THEN GOTO EP50
8470 IF Frirgeflag$="Empirical" THEN GOTO 9326
8480 IF Frimgeflag*="Experimerital" THEN GOTO 89:30
8490 PRINT "Fringeflag error"
8500 PRUSE
8510 ! E.0.Hammerstand"Equations for microstrip circuit desigr,"
```

```
8520
8530
8540
8550 Efferh=(Er+1)/2+(Er-1)<<<2*SQR(1+10*Hmm/Wmm>)
8560 ! Effer using Halmmerstad EMC'75
8570 D*1tmlmmm.412*Hmm*(Efferh+.3)*(Wh+.262)/((Efferh-.258)*(Wht.813))!
8500 Deltalmmah=Delt imm/Hmm
0590 Focmhz=300/(2*(V1engthmm/1000+2*D*1&almm/1000)*SQR(Efferh))!
8600 Error=(Focmhz-Fmhz) 100%Fmhz
86!0 ! PRINT "HRMI/h=";DEltalmmdh,"Freqz";Focmhz,"%ez";Error
8620 GOTO 9540
8630 ।
6640 I Hammerstad :Int. MTT Conf.'gI pp54-56/Lier IEE-H Aug'82 ppl61-163
8650 Wh=Wmm/Hmm
8660 D&1talmm=Hmm/2/P!*((Wh+.366)/(Wh+.556))
8670 D*1talmm=Deltalmm*(.28+(Er+1)/Er*(.274+LOG(Wh+2.518))> iln (3.5)
86B0 Deltalmmdh=Deltalmm/Hmm
8690 Focmhz=300/(2*(Vlengthmith/1000+2*Deltalmm/1000)*SQR(Efferh))
8700 ! Change bove Effer using MTT'80 later
8710 Error=(Focmhz-Fmhz) 100/Fmhz
B720 | PRINT "HAM2/h=";Deltalmmdh,"Freq=";Facmhz;"%e=";Error
8730 LOTO 9540
8740 ।
8750 K: ! Kirschning Elect Lett Feb 81 pp123-125
er€0 Efferh=(Er+1)/2+(Er-1)/(2*SQR(1+10*Hmm/Wmm)) !Effer using Hammergtad
8770 RRD
8780 21=.434907*(Efferh^.81+.26)*((Wmm/Hmm)^.8544+.236)! (3.7)
8790 Z1=Z1/((Efferhm.81-.189)*((Wmm/Hmm)^.8544+.87))
8800 22=1+(Wmm/Hmm)n. 371/(2.358*Er+1)!
(3.8)
8810 23=1+.5274*ATN(.804*(Wmm/Hmm)m(1.9413.22))/Efferh^.9236! (3.9)
8820 24=1+.0377*RTN(.067*(Wmm/Hmm)^1.456)*(6-5*EXP(.036*(1-Er)))! (3.10)
8日38 25=1-.218*EXP(-7.5#(Wmm/Hmm))! (3.11)
)
8850 Focmhz=300.(2*(Vlengthmm/1000+2*De1talmm/1000)*SQR(Efferh))
8860 Errore(Focmhz-Fmhz)*100,Fmhz
89?0 Deltalmmdh=Deltalmm/Hmm
8880 ! PRINT "KIR/h=";Deltalmmdh,"Freq=";Focmhz,"%e=";Error
8890 ! PRINT "Er=";Er,"Effer=";Effer,"Eff&rh=";Efferh
8900 | PRINT "Z12345=";Z1;22;Z3;Z4;25
8910 COTO 9540
8920 |
8930 ! Experimental determination of deltalmm
8940 ( INPUT "Patch length(mm) ?",Vlengthmm
8950 | PRINT "Freq.a";Fmhz
8960 Deltalmm=500*(150/(SRR(Eff(er)*Fmhz)-Vl@ngihmm/1000)
6970 ! Hh=1000*(Hmm/Wmm)^2!
8980 ! PRINT "(h/W)へ2*1000=";Hh
8990 Vlamsmm=3E5/(Fmhz+SQR(Effer))
9000 Ulamsmm=3E5 ({Fmhz*SQR(Effer))
9010 Vlamomm=3E5/Fmhz
9020 ! PRIHT "lamo=";VIamomm;"lams=";Vlamsmm
9030 WW=Wmm/VI amsm解
9040 ! PRINT "W/lamdas=";Ww
9050 ! Ra=1000*Hmm*Wmm/Vlamsmm^2
9060 | Aao=1000*Hmm*Wmm/VI amownm^2
9070 ! PRINT "1000*Wh-lams^2";fla,HaO
9080 | Aasa=HmmWmm
9090 ! PRINT "Wh"";Aaed
9100 FIXED 6
9110 Hhs=Hmm/VIamsmm
9120 HhomHmm/Vlamomm
9130 WWO=Wmm/VI amomm
9140 WWs=Wmm/VIamsmm
9150 ! PRINT "W/1 amdas=";Wws!,"W/lamdac=";Wwo
9160 ! PRINT "----hh h/lamdas=";Hhs;"hh"!,"h/lamdao=";Htio
9170 Wh=Wmm/Hmm
9180 ! PRINT "----WWW W/h=";Wh;"WWW"
9190 Deltalmmah=Deltalmm-Hmim
9200 ! PRINT "Synthesis"
9210 ! PRINT "----Deltalmm=";Deltalmm,"DEltal/h=";Deltalmmdh
```

```
9220 Deltalmmds=Deltalmm/V1amsmm
9236 Deltalmimdo=Deltalmm/Viamomim
9240 ! PRINT "Deltalmmstamdas="; Deltalmmds, "Deltalmm/Lamdao="; Deltalmmdo
9250 Bl-2*PI*Deltalmm/VIamsm
9260 I PRINT "----kkkk kDeltaL""; Bl;"kkkk"
9270 I Deltalmmdhs=Deltalmm/Hmm/Vlamsmm
9280 | PRINT "Deltalmm/h/lamsx"; Deltalmmdhs
9290 FIXED 2
9300 STOP
9310 !
9320 E: 1 PRINT " Empirical determination of deltalmm"
9330 FIXED 3
9340 Betasm2*PI/VIamsmm ! mm, in substrate
9350 ! Deltalmm=54*(Hmm/Wmm)~2+. 849
9360 Hds=Hmm/Vlamsmm
9370 IF Hasर.0日9 THEN GOTO 9420
9380 ! Deltalmm=(Wmm/Hmm*3.225E-4+.1421*LOG(111.11*(Hnm/Vlamsmm)) )/Betas
9390 ! Deltalmm=(Wmm*3.225E-4/Hmm+.606+.128*LOG(Hmm/V1amsmin) )/BEtas ! \(3,5,84\)
\(9400 \mathrm{C}=.606+.128 * \mathrm{LOG}(\mathrm{Hmm} / \mathrm{VIamsmm})!3 / 5 / \theta 4\)
9410 GOTO 9430
\(9420 \mathrm{C}=0\)
9430 Deltalmm=(Wmm*3.225E-4/Hmm+C)/Betas ! 3/5/84
(3.24)
    । PRINT "C="; C, "h/lambdas=";Hmmovlamsmm,"W/hc"; Wmm/Hmm
    Bd=DeltalmmeBetas
    Deltalmmdh=Deltalmm/Hmm
    1 PRINT
    ! PRINT "DI日";Deltalmm,"Betas*Dl=";Bd,"Dlrh=";Deltalmmah
    FIXED 2
    1 PRINT
    Focmhz=300r(2* (Vlengthmm/1000+2\#Deltalmm/1000)*SOR(Effer))
    Error* (Focmhz-Fmhz) \(\# 100 / F m h z\)
    ! PRINT "MRRTIN/h="; Deltalmmdh, "Freq=";Focmhz,"\%e";Error
    SUBEND
    1
    1
    Msf: ! Microstrip feed point**********************************************
    !
    SUB Msfp〈Tlflag*,Freqmhz,Er,Effer,Wmm, Deltalmm, T, A, E,Xs)
    Fr*q=Freqmhz*1E6
```



```
    half wave (m)
    Ar=Wmm/VIengthmm! Patch aspect ratio
    Vlam=3E日/Freq
    Vlamomm=VIam*1000
    Vlams=VIam/SQR(Er)!m
    Vlamsmm=Vlams*1000
    ! PRINT "lamdas\#": vlamsmm;"mm"
    ! PRINT "h/lamdas="; T/Vlamsmm
    ! PRINT "d/lamdas¥"; \(\mathfrak{A}\) ノVIamsmm
    ! PRINT "r="; Ar
    IF Tlfiag*z"Sinusoidal" THEN GOTO 9810
    IF Tlflag\$="Straight" THEN COTO 16480
    IF Tlflag \(\$=\) "Carver" THEN GOTO 10568
    IF Tlflag\$="Newman" THEN GOTO 10600
    IF Tlflago="Sengupta" THEN GOTO 1 be64日
    IF Tiflag\$="Lier" THEN GOTO 10710
    IF Tlflag*""Griffir" THEN LOTO 1 घ́ge
    PRINT "flag orror Msf+10"
    PRUSE
    Sinusoidal equ-potential contour for the tapered coax TL
    that represente the walls of a tapered irarismission line.
    ! INPUTS:Frequency(Freq)...................MHz
                                    Dielectric Coristant(Er)
                                    Substrate Height (T)............ . mifl
                                    Radius of inner( \(\mathcal{A}\) )..............mm
                                    Redius of outer(B).............mm
                    Patch aspect ratio(Ar)
880
9890
9900
OUTPUT:Series reactanc
Ohm
```

```
9910 FI=.51
9920 !
9930 !
9940 I N:NUMBER OF SEGMENTS OVER T
9950 N=16!INITIAL NUMBER OF SEGMENTS ALONG T
9960 2siold=0! DUMMY FOR TESTING
9970 ! b:RADIUS OF OUTER CONDUCTOR
9980 Boxdiag=SQR(T^2+(B-A)^2)
9990 Break=1+(B-R)/20/A
10000 Rtoda=1.681*EXP(.153*Ar)*EXP(-4.369*(Boxdiag/viengthmm)) !5,4,84 :20 Mk2
10010 IF Rtoda>=Break THEN COTO 10日30
10020 Rtoda=Break ! which will cause As to be zero.
10030 Aa=(B-A)/A
10040 F1=(Rzode-1-Aa/20)/Aa
10050 F2m.9 !Shift factor:contour is started from the point a+(t-a)/20
10060 FIXED 3
10070 I PRINT "Rto/Ra";Rtoda;"L=";Vlengthmm;"Breakm";Break;"A#Break(mm)";A*Break
100日0 I FRINT "T,A,RLO,As,F2, Boxdiag/VImmsmm, Boxdiag/L" !
10090 ! PRINT T;A;Rtoda*R;F1;F2;Boxdiag/Vlamsmin;Boxdiag/VIengthmm P
10100 FIXED 2
10110 Zrr=0 !short eircuit load
10120 2ri=0
10130 FOR K=0 TO N-1
10140 DET/N ISEGMENT LENGTH
10150 Y=K*D
10160 Yy#F1*(B-A)*COS(PI/(2*T)*(T-Y))
10170 C=1.5*(B-A)-Yy-(1-F1)*(B-A)-F2*(B-A)/2
101日0 ApC=A+CIR PLUS C
10190 Apcm=ApC /1000
10200 Am=A/1000
10210 CALL Zo<Apcm,Am,Er,Zor,Zoi\rangle
10220 I PRINT ZorI
10230 Dm=D/1000
10240 CRLL Tll(Freq,Er,Dm,Zor,Zoi,Zrr,Zri,Zsr,Zsi)
10250 I IF N=16THEN GOTO 4570IPRINT THEPPARAMETERS ONCE FOR THE CRSE
10260 ! OF N=16
10270! PRINT "Freq,Er,T,D,Yy,Zor,Zrr,Zr1, A, Ape,Zsi"
10280 ! PRINT Freq;Er;T;D;Yy;Zor;Zrr;Zri;A;Apc;Zsi
10290 Zri=2si
10300 Zrr=Zsr
10310 NEXT K
10320 | PRINT N,Zor,Zsi,Zsi*50/Zor! P
10330 IF N=16 THEN COTO 10360
10340 Error=50*RBS(Zsi-Zsiold)/Zor
10350 IF Error<. S THEN GOTO 10390
10360 zsiold=2si
18370 N=N*2
10380 GOTO 10110
10.390 Zsr=Zsr*50/Zor !re-normalisation
10400 ZsixZsi*50/Zor
10410 Xs=2si lseries reactance
10420 ! PRINT "Zot0y=-h=";Zor
10430 | PRINT "Xs=",Xs! T
10440 ! INPUT "R&",F!!! T
10450 ! GOTO 7332! T
10460 GOTO 10850
10470 !
10480 ! Straight sided coaxial transmission line
10490 !
10500 Zrr=0
10510 Zri=0
10520 Vlamsmm=3E5/(Freqmhz*SQR(Er))
10530 Xgx50#TAN(2*PI*T/VIamsmm) !already normalised to 50 ohm
10540 GOTO 10850
10550 !
10560 ! Caruer [34]
10570 Xs=376*TRN(2*PI*T/VI amomm`/SQR(Er)! frofil(2.4)
10580 GOTO 10850
10590 !
10600 ! Newman Mexico pp9.3 [19]
```

```
10610 Xsm376*TAN(2*PI*T*SQR(Er)/Vlanommi)/SQR(Er.)!
10620 GOTO 10850
10630
10640 ! Sengupta APSIS '83 pp159 [45]
10650 Alpha=1+1.393*(T/Wmm)+.667*(T/Wmm)*LOG(Wmm/T+1.444)
10660 Beta=2*PI*SGR(Effer)/(Vlamomin/lu00)
10670 Yc=\mm*Rlphe*SQR(Effer)/(377*T)! (1.13)
10680 Xs=Beta*(Wmm/1000)*Alpha*LOG(2/(1.78107*Beta*(f/100日)))/(YC*2*PI)! (2.g)
10690 GOTO 10850
10700 !
10710 ! Lier IEE/H Aug '82 pp161-164 [46]
10720 Xq=4*P1/1E7*(T/1000)*(Freqmhz*1E6)
10730 Xq= Kq*LOG(6*1EB/(PI*1.781*(A/1000)*(Freqmhz*1E6)*SQR(Er)))! (2.10)
10740 Elengthmmaviengthmm+2*Deltalmm
10750 CRLL Zom(VIengthmm,T,Zk) !Hammerstad
10760 RRD
10770 Xf=-Zk/(2*TAN(PI#(Wmm/2)/Elengthmm))!
10780 I PRINT "Kq,Xf="; Xq,Xf
10790 Xs= Kq+Xf
10800 GOTO 10850
10810 |
10820 ! Griffin El Mar '82 pp266-269 [43]
10830 2coax=60*LOG(Vlengthmm/己/A)/SQR(Er) !approximation of a disc patch. (2.E)
10840 Xs=Zcoax*TAN(2*PI*T/Vlamsmm) !ohm (2.7)
10850 SUBEND
10860 |
10870 I
10880 I
10890 Mut:! Coupling between well separated patches#*****************************
1 0 9 0 0 ~ I ~
10910 SUB Couplingfer\Dlamo,Freqmhz, Err,Ans$, V1mm,Wmm,Hmm,Deltalmm)
10920 PRINT "-------------------------------------------------------------------
10930 PRINT " MUTUAL COUPLING MODEL USING FAR FIELD RADIATION FATTEKN"
10940 PRINT " FORMULATIONS FOR APERTURE ANTENNAS"
10950 PRINT
10960 PRINT " APERTURE ILLUMINATION METHOD"
10978 PRINT
10980 PRINT
10990 TRACE ALL VARIABLES
11000 FIXED 4
11018 RAD
11020 PRINTER IS 0
11030 OPTION BASE 0
11040 DIM Et(320), Eq(320), Eqs(320), Dden(320)
11850 DIM Er(328),Yff(320)
11060 DIM Prp(320), Theta(320), Thetar(320)
11070 DIM Rm(320), Ers(320), Xm(320), ERtam(320)
11080 I COM T(320), X(320),Y(320), Betam(320), Xm(320),V1amsl।
11090 I Seperation in free space wavelerigths:Dlamo
11100 | Freqmhz
11110 ! Separation terms of the wavelength in the dielectric:Illams
11120 ! Dielectric constant:Err
11130 : E or H plane coupling (E/H):Ans$
11140 ! Length(E-plane):V1mm(mm)
11150 ! Widih:Wmm(mm)
11160 ! Substrate height:Hmm(mm)
11170 ! Fringe lengrh:Deltalmm(mm)
11180 ! PRINT "Patch dimensians:length,width,sutstrate helght {m(n) "
11190 ! PRINT "......where the lerigth is that dinensian in the E-plarie ?"
11200 I INPUT VImm,Wmm,Hmm
11210 |
11220 Printflag=1
11230 ! Dimensions of an equivalent air filled cavity
11240 Vlmme=(V1mm+2*Deltalmm)*SGR(Err) !Electrical lerigth
11250 WmmeWmm*SQR(Err)
11260 Hsubmme=Hmm*SQR(Err)
11270 ! Te:Effective aperture thickness for an air filled cauit,
11280 TmmeaHsubmme*2 !Grourid plane remowed
11290 Nmax=20
11300 VIamo=3E2/Freqmhz !m
```

```
11310 Vlams=Vlamo/SQR(Err) !m(not used)
11320 Sepm=Dlamo*Vlamo !Separation in m
11330 Sepmm=Dlamo*Vlamo*le00 !Separration in mm
11340 Tme=Tmme/1000
11350 Wm:=Wmme/1000
11360 V1me=Vlmme/1000
11370 Berem2*PI-Vlamo!in the equivalent cawity
11380 Fa2*Tme/PI ! Aperture thicknessePI ;same units as the separation(m).
11390 ! Note that the electrical apertur thickness is equal to twice that
11400 ! of the physical.
11410 Dlams=Sepm/viams !Separation in terms of dielectric wavelength
11420 IF Printflag=2 THEN GOTO 11530
11430 PRINT "Patch's physical dimensions:length,width,substrate height:"
11440 PRINT " ";VImm;"mm by ";Wmm;"mm by ";Hmm;"mm"
11450 PRINT "Effective patch dimensions for an air filled patch"
11460 PRINT "using the effective electrical length:"
11470 PRINT " ";VImlie;"mm by ";Wmme;"mm by ";Hsubmme;"nm"
11480 PRINT "Frequency: ";Freqmhz;"Mhz"
11490 PRINT "Wavelength in the dielectric= ";Vlams;"m"
11500 PRINT "Wavelength in free space= ";vlamo;"m"
11510 PRINT "Dielectric const. = ";Err
11520 PRINT "Coupling=";Ans涪"-PLFNE"
11530 PRINT "Separation = ";Sepmm;"mm"
11540 PRINT "Separation in dielectric wavelengths= ";Dlams
11550 PRINT "Separation in free space wavelengths=";Dlamo
11560 IF Ans$="E" THEN GOTO 11600
11570 IF Ans$="H" THEN GOTO 11620
11580 PRINT "E/H flag protlem"
11590 STOP
11600 SlmmWme !Slmaperture length(in meter) for the calculations
11610 GOTO 11630
11620 Slm=VIme !Slmaperture length(in meter) for the calculations
11630 Ffd=2*SQR(Slm^2+Tme^2)^2/vlamotl000 !Distance to the far fieldrmm)
11640 PRINT "Distance to the far fieldz ";Ffd;"mm"
11650 IF Sepmm>Ffd THEN GOTO 11700
11660 PRINT
11670 PRINT "Separation is less than the far field distance and"
11680 PRINT "model is not valid !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11690 PRINT
11700 I PRINT "N,Theta,X,R, in wavelengths"!
11710 FOR N=O TO Nmax
11720 Xm(N)-N*S1m/Nmax Im
11730 Theta(N)=PI/2+ATN(<S1m/2-Xm(N))/Sepm) Irad
11740 Rm(N)=SUR((SIm/2-Xm(N))^2+Sepm^2) Im
11750 Thetad=Theta(N)*180/PI Ideg
11760 ! PRINT N;Therad;Xm(N);Rm(N)
11770 NEXT N
11780 1 ---Received power---
11790 IF Rnss="H" THEN GOTO 11850
11800 IF Anss="E" THEN GOTO 11830
118:0 PRINT "E/H flag problem"
11820 STOP
11930 CALL Eplane(Vlamo,S1m,Theta(*), Beta,Rm(*),F,Nmax, Er(*))
11840 GOTO 11860
1/850 CALL Hplanc(Vlamo,Slm,Theta(*),Beta,Rm(*),F,Nmax,Er(*))
11860 ! PRINT "N,Thetad,Er(N)"!
11870 ! PRINT " ILLUMINATED APERTURE FIELD DISTRIBUTION"!
11880 FOR N=0 TO Nmax
11890 Theted=Theta(N)*180,PI !deg
11900 IF Ans$="H" THEN GOTO 11930
11910 Tt=40+30*Er(N)/Er(Nmax/2)
11920 GOTO 11940
11930 Tt=30+10*Er(N)/Er(Nmax)
11940 ! PRINT N;Thetad;Er(N);THB(T&);"*"! P
11950 Ers(N)=Er(N)~2
11960 NEXT N
11970 CALL Simp(Xm(*),Ers(*),Nmax,A)
11980 ! PRINT "Integral part or Pr";A! P
11990 ! FUR N=0 TO Nmax
12000 ! PRINT "N,X,ER,ET";N,X(H),Er(N),Et(N)! P
```

```
12010 I NEXT N 
12030 FLORT 4
12048 PRINT "Received power x";Pr;"watz"
12050 1 ---transmitted power---
12060 FOR N=0 TO Nmax
12070 Theta(N)=N*PI,Nmax
12080 Rm(N)=SQR(Sepm^2+(S1m/2)^2)
12096 NEXT N
12100 IF Ans$="H" THEN GOTO 12130
12110 CALL Eplane(Vlamo,Slm,Theta(*), Beta,Rm(*),F,Nmax,Er(*))
12120 GOTO 12140
12130 CALL Hplane(Vlamo,Slm,Theta(*), Beta,Rm(*), F, Hmax, Er(*))
12140 Sepmm=Sepm*1000 !separation mm
12150 | PRINT " FAR FIELD RADIATION PATTERN"
12160 ! PRINT " Theta Er at Distance a ";Sepmm;" mum"!
12170 FOR N=0 TO Nmax
12180 Therad=Theta(N)*I80/PI ldeg
12190 IF Ans$="H" THEN GOTO 12220
12200 Tt=30+30*Er(N)/Er(Nmax/2)
12210 GOTO 12230
12220 Ti=30+15*Er(N)/Er(Nmex)
12230 I PRINT Thetad;Er(N);TAB(Tt);"*"!
12240 Ers(N)=Er(N)^2*SIN(Theta(N))!Er squared
12250 NEXT N
12260 CALL Simp(Theta(*),Erg(*),Nmax,A)
122?0 P&=PI*Sepm^2*A*SQR(Err)/(120*PI) !wett
12280 PRINT "Transmitted power a";Pr;"watt"
12290 FIXED 4
12300 S21=10*LGT(Pr/P!)-6 !Cavity trarisfer coefficient [S21]^2
12310 IF Nmex=20 THEN GOTO 12340
12320 Error-ABS(S21-S21p)
12330 IF Error<. 5 THEN GOTO 12370
12340 Nmax=Nmax*2
12350 S21p=521
12360 GOTO 11710!8040
12370 Slmm=Slm*1000 lslot length in mm
12380 PRINT
12390 PRINT "****";Ans$;"-PLANE COUPLING FOR ";Tmme;"mm by ";Slmm;" APERTURES**
*"
12400 PRINT "(...wher the image bereath the ground plane is accounted for)"
12410 PRINT "Separation= ";Dlamo,"free space wavelengths (";Sepmm;"mm, )"
12420 PRINT " [S21]^2 =";S21;"dB"," (Hmax=";Nmax;")"
12430 PRINT LIN(3)
12440 I IF DIAmo-2 THEN 12520
12450 | Dlamo=Dlamot.25
12460 ! Printflag=2 lSecand pass
12470 I GOTO 11280
12480 SUBEND
12490 |
12500 ।
12518 !
12520 Epl:| E-planc coupling*****************************************************
12530 |
12540 SUB EplanerVlamo,Slm,Theta(*),Beta,Rm(*),F,Nmax,Er(*))
12550 FOR N=1 TO Nmax-1
12560 IF Theta(N)=PI/2 THEN 126E日
12570 FthetamSIN(PI*(Slm<VIamo)#COS(Thcta(N)))*SIN(Theta(N))/COS(Thata(N))
12580 ! E=SIm~VIams
12590 ! PRINT "E";E
12600 Reer=F*Fiheta*COS(Beta*Rm(N))/Rm(N)
12610 Imer=-1*F*Ftheta*SIN(Beta*Rm(N))/Rm(N)
12620 Er(N)=SQR(Reer^2+Imer"^2)
12630 ! PRINT "Theradeg,Theta(N),Ftheta\langleN),Er(N)"! P
12640 ! Thetad=Theta(N)*180/PI
12650 ! PRINT Thetad;Theta(N);Ftheta;Er(N);Et(N)
12660 NEXT N
12670 Er(B)=2*Er(1)-Er(2)
12680 Er(Nmax)=Er(0)
12690 Er(Nmax/2)=Er(Nmax/2-1)+.3^AES(Er(Nmax/2-2)-Er(Nmax/2-1)) !plus 30%
```

```
12700 ! of previous hop.
12710 SUBEND
12720 |
12730 |
12740 |
12750 Hpl:I H-planccoupling****************************************************
12760 |
12770 SUB Hplane(Vlamo,Slm,Th*ta(*),B\inta,Rm(*),F,Nmax,Er(*)>
12780 FOR N=1 TO Nmax-1
12790 IF N=Nmax/2 THEN 12850
12800 RRD
```



```
12820 Reer=F*Ftheta*COS(Beta*Rm(N))/Rm(N)
12830 Imer=-1*F*Fiheta*SIN(Beta*Rm(N))/Rm(N)
12840 Er(N)=SQR(REER^2+Imer^2)
12850 NEXT N
12860 Er(0)=2*Er(1)-Er(2)
12870 Er(Nmax)=Er(0)
12880 Er(Nmax/2)=0
12890 SUBEND
12900 !
12910 |
12920 I
12930 Sim:! Simpsons rule #####***************************************************
12940 1
12950 SUB Simp(X(*),Y(*),Nmax,Result)
12960 | Simpsons rule for a predecermined data array or Nmax elements.
12970 | THOMOUS PP309
12980 ( Result=INTEGRRL
12990 ( (X(N),Y(N))=DATA POINTS
13000 | N=0...NMAX WHERE NMAX IS EVEN
13010 , FOR N=0 TO Nmax
13020 | PRINT "Simp X,Y=",,X(N):Y(N)
13030 I NEXT N
13040 Sumo=0
13050 Sume=0
1 3 8 6 0 \text { FOR N=2 TO Nmax-2 STEP 2}
13070 Sume=Sume+Y(N)
13080 NEXT N
13090 FOR N=1 TO Nmax-1 STEP 2
13100 Sumo=Sumo+Y(N)
13110 NEXT N
13120 H=(X(Nmax)-X(0))/Nmax
13130 Result=H/3*(Y(0)+Y(Nmsx)+2*Sume+4*Sumo)
13140 I PRINT "Integral for Nmax=";Nmax;"is";Result
13150 SUBEND
13160 I
13170!
13180 !
13190 Tle:! Transmission Line Equat\on*******************************************
13200 I
13210 SUB Tll(Freq,Er,D,Zor,Zoi,Zrr,Zri,Zsr,Zsi)
13220 ! All impedances are in ohm
13230 | 27/5/82
1.3240 | Freq(Hz)
13250 ! Distence(m)
13260 ! Zs:sending end impedance
13270 ! Zr:receiving end impedance
13280 Vlam=3EB/(Freq*SQR(Er))
13290 Eera=2*P!/Vlam
13.300 T-TAN(Beta*D)
13310 Tr=0
13320 T1=T
1 3 3 3 0 \text { CALL Cmult(Tr,Ti,Zor,Zoi,P5,P6)}
13340 CALL Cmul&(Tr,T1,Zrr,2ri,P7,P8)
13350 P1=2rr+P5
13360 P2=2ri+P6
13370 P3=Zor+P7
13380 P4=20i + P8
13390 CALL Cdiv(P1,P2,P3,P4,PG,P10)
```

```
3400 CALL Cmuli(P9,P10,Zor,Zoi,Zsr,Zsi
13410 GOTO 135001
13420 PRINT "----DEBUG:SUB TLL----*
13430 PRINT "Freq= ";Freq/iE6;"MHz"
13440 PRINT "Er= ";Er
13450 PRINT "D= ";D*1000;"mm"
13460 PRINT "Zo= ";ZoriZoi
13470 PRINT "Zreceive= ";ZrriZri
13480 PRINT "Zsend= ";Zsr:Zsi
13490 PRINT "---------------------------
13500 SUBEND
13510 !
13520 |
13530 |
13540 Pir:l Polar to rectangular************************************************
13550 |
13560 SUB Ptor(P1,P2,P3,P4)
13570 DEG
13580 P3=P1*COS<P2)
13590 P4EP1*SIN(P2)
13600 SUBEND
13610 1
13620 |
13630 ।
13640 Rtp:| Rectangular to polar*********####***********************************
13650 !
13660 SUB Rtop(P1,P2,P3,P4)
13670 DEG
13680 P3=SQR(P1*P1+P2*P2)
13698 DEFAULT ON
13700 P4=2*ATN(P2/(P1+P3))
13710 SUBEND
13720 ।
13730 1
13740 1
13750 Cmu:! Complex mulriply****************************************************
13760 |
13770 SUB Cmult(P1,P2,P3,P4,P5,P6)
13780 P5=P1*P3-P2*P4
13790 P6=P1*P4+P2*P3
13800 SUBEND
13810 |
13820 I
13830 !
13840 Cdi: C Complex divide********************************************************
13850 1
13868 SUB Cdiv(P1,P2,P3,P4,P5,P6)
13870 P7-P3*P3+P4%P4
13880 P5={P1*P3+P2*P4)/P7
13890 P6:< P2*P3-P1*P4)/P7
13900 SUBEND
13910 I
13920
13930
13940 Caq:! Complex square-rocot************************************************
13950 |
13960 SUB Csqr(P1,P2,P3,P4)
13970 CRLL RtOP(P1,P2,R,T)
13980 R=SQR\R)
13990 T=T/2
14000 CALL Ptor{R,T,P3,P4)
14010 SUBEND
14020 !
14030 I
14040 !
14050 Cre: | Complex reciprocal*****************************************************
14060 1
1 4 0 7 0 \text { SUB Crec(P1,P2,P3,P4)}
14080 P3=P1/(F1^2+P2^2)
14090 P4=-1*P2/(P1^え+P(P2^2)
```

```
14100 SUBEND
14110
14120
14130
14140 Zoc:l Chmecteristic impedance of a coaxial trarismission line*********#***
14150 |
14160 SUB Zo<B,A,Er,Zor,Zoi)
14170 I USING JOHNSON PPET
14100 Zorm60%LOG(B/A)/SQR(Er)
14190 201=0
14200 SUBEND
14210
14220 I
14230 !
14240 Cpp:! reactance of a parallel plate capacitor*******************************
14250
14260 SUB Cpp(Fr&q,Er,T,Area,Zrr,Zri)
14270 I FREQ(Hz)
14200 I Thickness(m)
14290 ! Area(m^2)
14300 Omega*2*PI*Freq
14310 Eo#1/(36#PI*IE9)
14320 Zrr=0
14330 2ri=-i*T/(Omega*Er*Eo*Area)
14340 SUBEND
14350
14360
14370
14300 Gan:! Quality factors and radiation conductarce****************************
14390 ।
1440日 SUB Qandgrad(FOCmhz,Hmm, VIengthmm, Wmm, Grad, Orad,Qdi, Gcu, Do)
14410 DIM Th(300),Garg(300)
14420 B-t ao=2*FI*(Focminz*1E6)/3E8 Ifree space
14430 RAD
14440 Nmax=20
14450 FOR N=8 TO Nmax
14460 Th(N)=N*PI/Nmex Ired
14470 BessargeBetso*(VImngthmm/1000)*SIN(Th) Ir*d
14480 CALL Bessel((Bessarg,Bes)
14490 IF N=Nmax/2 THEN GOTO 14520
14500 Garg(N)=(1+Bes)*SIN(Betco*(Wmm/1000)*COS<Th(N))/2)^2*SIN(Th(N))A3/COS(Th〈N
))^2
14510 | PRINT "N,Th,Garg";N;Th(N);Gerg(N)1
14520 HEXT N
14538 Nmexd2=Nm 3x/2
14540 Garg(Nmaxd2)=Gmrg(Nmaxd2-1)
145se CALL SImp(Th(!),Garg(%),Nmax,Resulq)
14560 Grad=Result/(60#PI^2)
14570 Ua=4*PI/1ET IPermeabillity of fret space
14500 0=1E7 !mhorm Conductivity of copper
14590 Tandeltam.0010 !Typical loss tangent
14600 Qrad=PI*Wmm/(4*Grad*Uo*(Hmm/1000)*(Focmhz*1E6)*Vlengthmm)! (3.16)
14610 Qdi=1/T利m/(4*
14620 Deltas=SQR(2/(2*PI*(Focmhz*IE6)*Uo*O)) !Skin depth!
14630 Ucu=Hmm/(1000*Deltas)! (3.38)
14640 Qo=1/(1/Orad41/adi+1/Qcu)! (3.35)
14650 SUBEND
14660 ।
14670 1
14680
```



```
14690 C
14700 !
14710 SUB Cavity
14720 PRINTER IS 16
14730 PRINT "RNALYSIS OF A RECTANGULAR DIELECTRICALLY FILLED"
14740 PRINT " CAVITY TO DBTAIN ITS DIELECTRIC EONSTANT."
14750 PRINT " PROGRAM 1:RESONRNT FREQUENCIES"
14760 PRINT" INFUTS-CRVITY DIMENSIONS(A,B, D)"
14770 PRINT " -DIELECTRIC CONSTANT(ER)"
14780 PRINT " OUTPUTS-RESONANT FREQUENCIES(F(n,m,l)Mhz)"
```

```
14790 PRINT "
14800 PRINT " PROGRRM 2:Er BY INCREMENTAL CAVITIES"
14810 PRINT " INPUTS-MOUE DETRILS(n,1)"
14820 PRINT " -RESONANT FREQUENCIES"
14830 PRINT " -DIMENSIONS"
14840 PRINT " OUTPUT-Er"
14日50 PRINT "
14860 INPUT "PROGRAM 1 OR 2?",N
14870 IF N=2 THEN GOTO 14938
14880 CALL Progone
14890 BEEP
14900 INPUT "PRESS 1 TO GO TO THE START OF PROG 1",M
14910 IF N=1 THEN GOTO 14880
14920 GOTO 14730
14930 CALL Progtwo
14940 BEEP
14950 INPUT "PRESS 2 TO GO TO THE START OF PROG 2",N
14960 IF N=2 THEN GOTO 14930
14970 GOTO 12240
14980 SUBEND
14990
15000 !
15010 1
15020 SUB Progone
15030 ! RESONANT FREQUENCIES OF A RECTANGULAR CRYITY
15040 1 FILLED WITH A DIELECTRIC FROM THE DIMENSIONS
15050 | AND DIELECTRIC CONSTANT
5060 ! COLLIN PP322
15070 DIM F(10,10,10)
15080 PRINTER IS O
15090 PRINT "R;WIDTH,B;HEIGHT,D;LENGTH(D>R) ?"
15100 INPUT R,B,DImm
15110 PRINT "A=";A
15120 PRINT "B=";B
15130 PRINT "D=";D
15140 R=R/1000
15150 B=B/1000
15160 D=D/1000
15170 I INPUT Er:DIELECTRIC CONSTANT
15180 PRINT "Er?"
15190 INPUT Er
15200 PRINT "Er=";Er
15210 PRINT LIN(2)
15220 PRINT "N M FREQ(Mhz)"
15230 PRINT LIN(2)
15240 C=300000800
15250 FOR N=0 TO 10
15260 FOR M=0 TO 10
15270 FOR LEO TO 10
15280 F=(L/(2*D))n2
15290 G=(M/(2酋B))^2
15300 H=(N/(2#R))^2
15310 F(N,M,L)=C*SQR(F+G+H)/SQR(Er)
15320 IF F(N,M,L)<1E9 THEN 15370!LOWER LIMIT
15330 IF F(N,M,L)>6E9 THEN 15370!UPPER LIMIT
15340 F(N,M,L)=F(N,M,L)/1EG
15350 FIXED 2
15360 PRINT N;M;L,F(N,M,L)
15370 NEXT L
15380 NEXT M
15390 NEXT N
15400 SUBEND
15410 
15420 !
15430
15440 SUB Progrwo
15450 ! Er BY INCREMENTRL CRVITY METHOD
15460 ! R:RSPECT RATIO
15470 C=300000000
15400 PRINTER IS 0
```

```
15490 PRINT "A2>A1 where A is the length of the shorter sides of the"
15500 PRINT "two cauities,that is SMALL,LARGE"
15510 INPUT "DIMENSIONS:AI,R2(mm), RSPECT RATIO ?", R1, R2,R
15520 INPUT "MODE : n,l ? (in the directions: }x,2\mathrm{ or W,L. And typically 0,1)",N,L
15530 INPUT "FREQUENCIES:F1,F2(MHz) where F1>F2 ?",F1,F2
15540 PRINT "R1,A2,RSPECT RATIO =";A1;R2;R
15550 PRINT "n,I=";N;L
15568 PRINT "F1,F2#";F1;F2
15570 Al=R1/10001M
15580 R2=A2/1000!M
15590 F1=F1*1000000
15600 F2*F2*1008000
15610 Diff=A2^2-R1^2
15620 1 F=(N^2+L^2/R^2)*(B^2/M^2)
15630 | A&=1/(F1^2-F2^2)
15640 | Bb=-1&(<F2^2+F1^2)*Aa+F/Diff)
15650 | Cc=F1^2*F2^2*RA
15660 1. CALL Quadratic(Aa,Bb,Cc,Eplus,Eminus)
15670 | PRINT Eplus,Eminus
15680 | E=Eplus
15690 ! Er=C^2*M^2/(4*E*B^2)
15700 Er=C^2/(4*Diff)*(L^2/R^2+N^2)*(1/F2^2-1/F1^2)
15710 PRINT "Er=",Er
15720 SUBEND
15730
15740
15750 1
```



```
15770 1
157日0 SUB Gumdratic{A,B,C,Xplus,Xminus)
15790 Arg=8^2-4*A*C
15800 IF Arg>00 THEN GOTO 15830
15810 PRINT "Argument negative Que:"
15020 STOP
15830 Xplus=-1*g/(2*A)+SQR(Arg)/(2*R)
15840 Xminus=-1*B<(2*R)-SQR(Arg)/(2*A)
15850 SUBEND
15860
15870
-5870
```



```
15900 ।
15910 SUB Parallel(Zin1r,Zin1i,Zin2r,Zin2i,Zinr,Zini)
15920 I Paralitling Zinl and Zin2
15930 CALL Cmult(2in1r,zinti,zin2r,zin2i, D1,D2)
15940 Denr=Zinir+Zin2r
15950 Dent-2init+2in2
15960 CALL Cdiv<Di,D2,Denr,Deni,zinr,zini> Iohm
15970 SUDEND
15980 1
15990
16000 1
```



```
16020 ।
16030 SUB Faczorial(I,Fac)
16840 P=I
16050 FOR N=1 TO I-1
16060 P=P*(I-N)
16070 NEXT N
16080 Fac=P
16090 SUBEND
16100 !
16110
16120 !
16130 Bes:| Bessel's function of order zero#*************************************
16140 1
16150 SUB Bessel(X,Bes)
16160 DIM T(160),X(160),Y(160), Bet am(160)
16170 Nmex=16
16180 FOR N=0 TO Nmex
```

```
16190 T(N)=N*PI/Nmax !radian
16200 Y(N)=COS(X*SIN(T(N)))
16210 NEXT N
16220 CALL Simp(T(*),Y(*),Nmax,A)
16230 Bes=A/PI
16240 GOTO 163101
16250 IF Nmax=16 THEN GOTO 16280
16260 Error=ABS<Besp-Bes)
16270 IF Error<.005 THEN GOTO 16310
16200 Besp=Bes
16290 Nmax=Nmax*2
16300 GOTO 161日0
16310 1 PRINT "X,Bes,Nmax"; X;Bes;Nmax
16320 SUBEND
16330 |
16340 !
16350 !
16360 Sci:! Sine and cosine iritegrals********************************************
16370 !
163日0 SUB Sici(Si,Ci,X)
16390 2=RBS(X)
16400 IF Z>4 THEN 16480
16410 Y=2*Z
16420 Si=X*(<<<(< (9.7942154E-12*Y-2.2232633E-9)*Y+3.0.561233E-7)*'Y-2.83414E0E-5)*Y
+1.6666582E-3)*Y-5.555554PE-2)*Y+1)
16430 IF Z THEN 16460
16440 Ci=-1E75
16450 SUBEXIT
16460 Ci=.57721566+LOG(Z)-Y*(<<<<<-1.3869851E-10*Y+2.6945842E-8)*Y-3.0952207E-6)*
Y+2.3146303E-4)*Y-1.0416642E-2)*Y+.24999999)
16470 SUBEXIT
16480 SI=SIN(Z)
16490 Y=cos(Z)
16500 2=4/Z
16510 U=<<<<<<<<<(4.0480690E-3*2-.022791426)*Z+.055150700)*Z-.072616418)*Z+.049日>?
159)*2-3.3325186E-3)*Z-.02314616日)*Z-1.1349579E-5)*Z+.062500111)*Z+2.5839886E-10
16520 Vp=<(<<(<<<<-.0051086993*Z+.02&191786)*Z-.065372834)*Z+.079020335)*Z-.04400
4(55)*Z-.007945556.3)*Z+.0260129.30)*Z-3.7640003E-4)*Z-.031224179)*Z-6.6464406E-?
16530 V=Vp%Z+.25000000
16540 Ci=Z*(Si#V-Y*U)
16550 Si=-Z*(Si*U+Y*V)+PI/2
16560 IF X)=0 THEN 16470
16570 Si=-PI-Si
16580 SUBEXIT
16590 SUBEND
16600 PRINT "N,Therad,Er(N)"
16610 I
16620 |
16630 !
15640 Rad:! radiation pattern***************************************************
16650 !
16660 SUB Rad(Freqmhz,Er,Patchlengthmm,Wmm,Shmm,Deltalmm)
16670 PRINT
16680 PRINT "---------------- radiation pattern --------------------------------------
16690 PRINT
16?00 ! INPUT "Tilt angle in degrees ?",Thitd
16710 | INPUT "factor?",F
16720 Hmm=Deltalmm*SQR(Er)
16730 | HmmaShmm
$6740 Vlengthmm=Patchlengthmm+Hmm
16750 ! Vlengrhmm=Patchlengrnmm
16760 I PRINT "Factor=";F
16770 PRINT
16700 PRINT "frequency=";Freqmihz;"Mnz"
16790 PRINT "apertur length=";Wmm;"mm"
16800 PRINT "effective aperture width=";Mmm;"mm"
16010 PRINT "eperture separationm";*lengihmm;"mm"
IS*30 FRINT
16830 Thit=Thitd*P!/1g0irad
16840 ! PRINT "Tilit angle=";Thitd,"H=";Hmm,"Lmm=";viengthmm
```

```
16850 DIM Thi(500),Thid(500), Theta(500),Thetad(500), Ee(500), Eh(500)
16060 Emexem.000001
16870 Emaxh=.000081
168日0 RAD
16890 VI momm=3E5/Freqmhz
16900 PI=PI*Vlengthmm~VIamomm
16910 PW=PI*Wmm/VI amomm
16920 Ph=PI*Hmmrv| amomm
16930 NnwlBIset to 36 for 5 degree increments
16940 FOR N=0 TO Nn
16950 Thid(N)=N#180/Nnldegrees
```



```
16970 I PRINT N;Thid(N)
16980 Thi\langleN\rangle=N*180*PI/Nn/180!rad
16990 Theta(N)=N*180*P!/Nn/180!rag
17000 ! Pr=SIN(Pw#COS(Theta(N)))*TAN(Theta(N)) !Pattern factor
17010 SmPh*COS(Thi(N)+Thil)
17020 D=Ph=Cos(Thi(N)-Thit)
17030 1 ArmSGR(<COS(PI*D)+COS(FI*S)>n2+(SIN(P|*D)-SIN(FI*S))^2)!array factor
17040 | E(N)=Pf#Rf
17050 Cl=Pl*COS(Thi\langleN\rangle)
17060 Ch*Ph*COS(Thi(N))
17070 IF S*0 THEN GOTO 17110
17080 IF D=0 THEN GOTO 1>110
17090 Ss=SIN(S)/S
17160 Sd=SIN(D)/D
17110E*(N)=SQR((COS(C1)*(Ss+Sd))^2+(SIN(C1)*(Sd-Ss))^2)! E-plene
17120 T=COS(Thete(N))
17130 IF T=O THEN GOTO 17150
17140 Eh(N)=SIN<Th&ta(N))*SIN(Pw*COS(Theqa(N))/\langlePw*COS(Theta(N)>)>!H-plarie
17150 ! PRINT "pettern of the left hand eperture"
17160 ; E(N)=SIN(Ch)/Chlpattern of the left hend eperture...Bahl [61] pp2.45
17170; E(N)=SIN(Ch),Cn+COS(C1)1 Bahl eq. 2.47 [61]
17180 E(N)=Sslsingl slot
17190 IF E&(N)<Emax THEN GOTO 17210
17200 Emaxe=E (N)
17210 IF Eh(N)<Emaxh THEN GOTO $7230
17220 Emexh=Eh(N)
17230 NEXT N
17240 PRINT "Thi/Theta","2010g(Ee/Emmxe)","2010g(Eh/Emaxh)"
17250 FOR N=0 TO Nn STEP 1
17260 IF E:(N)>0 THEN GOTO 17290
17270 Efloga-9999
17280 GOTO 17300
17290 Eelog=20#LGT(Ee(N)/Emaxe)
17300 IF Eh(N)>0 THEN GOTO 17330
17310 Ehlog=-9999
17320 GOTO 17340
17330 Ehlog=20*LGT(Eh(N),Emaxh)
17340 PRINT Thid(N),E&log,Ehlog
17350 NEXT N
17360 GOTO 17420
17370 FOR N=0 TO Nn STEP 1
17300 PRINT
17390 PRINT ThId(N);TAB(10+50*En(N));"*"
17406 PRINT
17410 NEXT N
17420 SUBEND
17430
17440
17450
17460 Res:! Resonant frequencu*****#************************************************
17470!
17480 SUB Foffoflag$,Ffedt, Er, Effer, VIengthmm,Radiusi, Radiuso, Wmm, Lel almm, Hmm,X
seri*s,Focmhzc)
17490 IF Foflag*="Martin" THEN GOT0 Martin
17500 IF Foflag$="Sengupea" THEN GOTO Sen
17510 PRINT "flag error O Pa+3"
17520 PRUSE
17530 |
```

```
17540
17550
17560 Martin:! "Foc..RESONANT FREQUENCY FROM THE CAVITY MODEL
17570 Focmhzc=300, (2*(VI Engthmm, 1000+2*Deltalmm/1000)*SQR(Effer))
17580 PRINT "Resonani frequencies by the cavity and network models"
17590 PRINT " (MARTIN)
17600 PRINT "Calculated resonant frequency(Foc)=";Focmhzc;"Mhz"
17610 1 "FOz..RESONANT FREQUENCY FROM NETWORK MODEL
17620 CALL Gandgrad<Focmhze,Hmm,Vlengthmm,Wmm,Grad,Qrad,Gdi,Qcu,Go)
17630 IF Feeds<>"TL" THEN GOTO 17660
17640 Fozmhzc=Focmhzc
17650 GOTO E
l7660 ! Solving a quadratic equation in the frequency-tuning parameter (3.32)
17680 Rr=1 Ir=1 for crifical coupling
17690 A=1
17700 Ba-Rr/(2*QO*(Xseries/50)) ! where r(aRr) has been set equal to 1
17710 C=1/(4*0ロ^2)
17720 | PRINT A,B,C
17730 CALL Quadratic(A,B,C,Xplus,Xminus) !Ftp:Frequency tuning parameter
17740 Ftp=Xminus
17750 Foznhzc=Focmhzc/(1-Ftp)
17760 E:PRINT "Calculated resonant frequency(FOz)=";Fozmhze;"Mhz (assuming eriti
cal coupling)"
17P70 Rrad=1/Grad lohm
17790 Re-Rrad/2 |Rrad#Rslot,Re:resistance at the end=Rslot//Rslot
17790 Gradmm=Grad#1000
17800 PRINT "Radiation conductance =";Gradmm;"mmho"
17910 PRINT "Radiation resistance =";Rrad;"ohm"
17820 PRINT "(Rrad/ノRrad)/50=";Rrad*Rrad<(50*(Rrad+Rrad))
17830 PRINT "Q radiation "";Qrad
17040 PRINT "Q dielectric=";Qd
17850 PRINT "Q copper m";Qcu
17860 PRINT "O unloaded=";Oo
17070 COTO 19070
17880 I
17990 |
17908
17910 Sen:PRINT "Resonant frequericies by Sengupta's model"
17920 Effer*(Er+1)/2+(Er-1)/(2*SQR(1+10*Hmm/Wmm))
17930 PRINT "...using Hemmerstedis model for the effective dieleciric canst."
17940 Alpha=1+1.393*(Hmm/Wmm)*.E67*(Hmm/Wmm)*LOG(Wmm/Hmm+1.444)1 (1,14)
17950 Ar=2*Hmm/(Effer*VIengthmm*PI*Alpha)
17960 Fo=3E5/(2*VIengthmm*SQR(Effer)) !Mnz
17970 Fozc*FO*(1-Ar)<(1+Ar#LOG(2*Vlengthmm*SGR(Effer)/(1.7日107*Hmm)>)! (3.18)
179日0 Deltef=PI/2*(Hmm/Vlengthmm)^2*(Wmm~VIengthmm)*(Foze/(Alpha*Effer^2)) IMhz
17990 I
```



```
(3.20)
18010 Facc=Fozc-Deltaf !Mhz
18020 PRINT "Calculated Foc=";Facc;"Mhz"
18030 PRINT "Calculated Foz=";Fozc;"Mhz"
10U40 PRINT "Freq. shift=";Deltaf;"Mhz"
10050 ! Error=100*(Focc-Focmhz)/Focmhz
18060 | PRINT "% when compared with measurement=";Error
18E70 SUBEND
18080 End:! !!!!!!!!!!!1!!!!1!END OF PROGRRM!!!!!!!!!!!!!!!1!!!!1!!!!!!!!!!!!
```


APPENDIX D

LIST OF SCHOLARLY PUBLICATIONS

 RELATED TO THIS THESIS[D.1] N.M.Martin, "Techniques for overcoming the bandwidth limitations of microstrip patch antennas," IREE Symposium on problems in Radio Communications, Adelaide, August 1980.
[D.2] N.M.Martin, D.W.Griffin, "A novel hexagonally shaped microstrip patch antenna," IREE, 18th International Electronics Convention Digest Melbourne, August 1981.
[D.3] N.M.Martin, D.W.Griffin, "A new approach to microstrip antenna bandwidth determination and its application to a novel hexagonally shaped patch," IEEE/ Antennas and Propagation Society International Symposium, Albuquerque, May 24th-28th, 1982.
[D.4] N.M.Martin, D.W.Griffin, "A tapered transmission line model for the feed probe of a microstrip patch antenna," IEEE/Antennas and Propagation Society International Symposium, Houston May 23rd-26th, 1983.
[D.5] N.M.Martin, D.W.Grifin, "New empirically determined parameters for modelling rectangular microstrip antennas," IEEE/Antennas and Propagation Society International Symposium, Houston, May 23rd-26th, 1983.
[D.6] N.M.Martin, D.W.Griffin, "Mutual coupling between well separated rectangular microstrip antennas using an aperture illumination method," IREE, 19th International Electronics Convention Digest, Sydney, September, 1983.
[D.7] N.M.Martin, D.W.Grifin, "Modelling the feed point of microstrip antennas," IREE, 19th International Electronics Convention Digest, Sydney, September, 1983.

