CONTROL MECHANISMS OF HIGHER EUKARYOTIC GENE TRANSCRIPTION
 - DIVERGENT HISTONE GENES

A thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy
by

Richard Alan Sturm, B.Sc. (Hons.)

Department of Biochemistry,
University of Adelaide,

Adelaide, South Australia, AUSTRALIA.

April, 1985.
awarded 8-7-85

Chapter 1: Thesis perspective - molecular levels of gene control

1-1 Introduction 1
1-2 Levels in the control of gene expression 1
1-3 Active chromatin 2
1-3-1 The nucleosome and histone proteins 2
1-3-2 Nuc1eosome phasing and DNase hypersensitive sites 5
1-3-3 Non-histone proteins associated with chromatin 6
1-3-4 Higher order structures 8
1-3-5 Role of matrix 9
1-3-6 DNA modification and structure 10
1-4 RNA transcription and transcriptional control 12
1-4-1 RNA polymerases 13
1-4-2 Polymerase II promoter elements 13
(1) Immediate 5' elements 14
(11) Transcriptional enhancers 16
(1ii) Tissue-specific and inducible gene expression 18
1-4-3 Transcription of polymerase I genes 19
1-4-4 Transcription of polymerase III genes 20
1-4-5 Processing and stability of RNA 21
(1) Initiation and termination 22
(ii) 3^{\prime} end processing and poly A addition 22
(iii) Splicing 23
(iv) Differential processing 24
1-5 Cytoplasmic control of gene expression 25
1-5-1 Stability of mRNA 25
1-5-2 Translation 26
1-5-3 Post-translation 28
1-6 Histone genes 29
1-6-1 Tandemly repeated systems 29
1-6-2 Disorganized clusters 30
1-6-3 Gene sequences 30
(1) mRNA untranslated region and cap site 30
(ii) Coding regions and spacers 31
(iii) Promoter elements 31
(iv) Conserved 3^{\prime} elements 32
1-6-4 Regulation of histone expression 32
1-7 Functional testing of eukaryotic genes 35
1-7-1 In vitro transcription 36
1-7-2 Transfection of DNA into cultured cells 36
1-7-3 Microinjection of DNA into ce11s and the construction of transgenic organisms 38
Note to reader 40
Chapter 2: Organization of the chicken histone multigene family- divergently orlentated H2A/H2B genes
2-1 Introduction 41
2-2 Orientation of $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes 41
(1) $\lambda \mathrm{CH}-01$ 41
(2) Cosmid 6.1C 42
(3) $\lambda \mathrm{CH}-07$ 44
(4) Cosmid 6.3C 45
(5) $\lambda \mathrm{CH} 1-10$ 46
2-3 Discussion 46
Chapter 3: Comparative sequence analysis of chicken H2A/H2B gene pairs
3-1 Introduction 483-2 Sequence of six chicken H2A/H2B gene pairs
(1) pCH3.3E/p7AT 48
(2) pCH 22.0 B 49
(3) pCH 3.5 E 49
(4) pCH 11.0 E 49
(5) $\mathrm{CH} 1-10$ 49
3-3 Results 50
(1) Protein coding regions 50
(2) Intergene region 51
(3) 3^{\prime} gene elements 53
3-4 Discussion 54
 expression of an isolated $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair in the Xenopus oocyte
4-1 Introduction 57
4-2 Mapping of 5^{\prime} and 3^{\prime} termini of the H 1 , H 2 A and H 2 B genes of p7AT in 5 day chick embryo RNA 58
(i) 3' termini 59
(i1) 5' termini 60
4-3 Characterisation of histone gene transcripts from p7AT microinjected into Xenopus oocyte nuclei 61
4-4 Quantitation of p7AT transcripts in chick embryo RNA and from injected Xenopus oocytes 62
4-5 Discussion 63
Chapter 5: Mapping of a chicken H2A/H2B divergent pair promoter region
5-1 Introduction 65
5-2 Expression of separated H2A/H2B genes 66
5-3 Expression from a $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergenic restriction fragment 67
5-4 Effect of the removal of an intergenic CCAAT element on expression of the H2A/H2B genes 69
5-5 Discussion 72
Chapter 6: Analysis of the 13 base H2B gene-specific element
6-1 Introduction 74
6-2 Effect of heat-shock on transcription of a chicken H2B gene In the Xenopus oocyte 77
6-3 Analysis of a H2B-box deletion mutant 78
6-4 The H2B-box has homology to a conserved 5' immunoglobulin gene sequence 80
6-5 Discussion 83
Chapter 7: Final discussion
7-1 Histone gene architecture 85
7-2 Divergent gene promoter sequences: multiple repeating sequence elements and the role of the CCAAT box 87
7-3 Functional analysis of a $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ divergent gene promoter region 89
Chapter 8: Materials and methods
8-1 Abbreviations 91
8-2 Materials
8-2-1 Chemicals and reagents 91
8-2-2 Enzymes 92
8-2-3 Buffers and media 92
8-2-4 Bacterial strains, clones and cloning vehicles 93
8-3 Methods
8-3-1 Isolation of plasmid DNA
(1) Growth and amplification of plasmid DNA 93
(i1) Large scale isolation 94
(11i) Miniscreen procedure 95
8-3-2 Isolation of M13 replicative form 95
8-3-3 Restriction endonuclease digestions 95
8-3-4 Routine ge1 electrophoresis
(i) Polyacrylamide gel electrophoresis 96
(ii) Agarose gel electrophoresis 97
(iii) Low melting point agarose gel electrophoresis 97
8-3-5 Autoradiography 98
8-3-6 Elution of DNA from polyacrylamide gels 98
8-3-7 Isolation of DNA from low melting point agarose 99
8-3-8 Subcloning of DNA fragments into plasmid and M13 vectors
(1) End-fil11ng of DNA fragments and blunt-end ligations 99
(ii) Sticky-end ligations 100
8-3-9 Transformation procedure for plasmid recombinants 100
8-3-10 Transformation procedure for M13 recombinants 101
8-3-11 M13 chain terminator sequencing of DNA
(i) Preparation of template101
(1i) Sequencing reactions
(a) Hybridization 102
(b) Polymerisation 102
(iii) Sequencing ge1s 103
8-3-12 Preparation and kinasing of synthetic oligonucleotides 104
8-3-13 Sequencing of synthetic oligonucleotides 105
8-3-14 Isolation of chick embryo RNA 106
8-3-15 Injection of Xenopus oocytes
(i) Animals 107
(ii) Frog dissection 107
(1ii) Ovary dissection and evaluation of oocytes 108(iv) Construction, calibration and handling ofmicro-pipettes and components of the injectionsystem109
(v) Micro-injection technique
(a) Filling of micro-pipette 109
(b) Preparation of DNA and oocytes for injection 110
(c) Nuclear injection 110
(vi) Barths' saline 111
8-3-16 Isolation of Xenopus oocyte RNA 112
8-3-17 S1 nuclease analysis of RNA 112
8-3-18 Primer extension analysis of RNA 113
8-3-19 M13 site directed mutagenesis
(i) Formation, stabilization and enrichment of heteroduplex DNAs 114
(11) Phage screening 114
8-3-20 Containment facilities 115
Bibliography 116

CONTROL MECHANISMS OF HIGHER EUKARYOTIC GENE TRANSCRIPTION
 - DIVERGENT HISTONE GENES

This laboratory has isolated the entire gene complement of the histone multigene family from the chicken genome. The isolated chicken H 2 A and H 2 B protein encoding genes have been studied in detail in this thesis. Six divergent $H 2 A / H 2 B$ gene pairs have been orfented and their intergene promoter regions sequenced. Comparative analysis has identified potential regulatory elements and a conserved spatial arrangement of the genes. Coding regions of the divergent genes are all approximately 350 bases apart. TATA boxes are separated by 180 bases that contain four CCAAT boxes and a 13 base mot.if that is also found near immunoglobulin gene promoter elements.

Functional testing of the intergene promoter region has been carried out by in vitro mutagenesis using pAT plasmid or M13 phage vectors and by gene transfer experiments in the nuc1eus of Xenopus oocytes. A 420 basepair fragment containing the intergene region la sufficient to correctly promote and initiate the divergent transcripts. Mapping of the promoter region indicates that the two genes have overlapping promoter elements. The significance of this gene arrangement in the contol of histone protein expression is discussed.

STATEMENT

This thesis contains no material which has been accepted for the award of any other degree or diploma by any University. To the best of my knowledge, it contains no material that has been previously published by any other person except where due reference is made in the text. I consent to the thesis being made available for photocopying and for loan.

Richard Alan Sturm

ACKNOWLEDGEMENTS

I wish to acknowledge the assistance of and express my thanks to the following people:

Dr. Julian Wells, for his supervision throughout the course of this work.

Peter Wigley and Anna Koltunow, for their help, technical advice and many critical discussions.

Allan Robins, Dave Bird, Richard D'Andrea and Leeanne Coles and other members of the laboratory for their valuable practical advice during the initial stages of this work.

Professor W.H. E111ot, for permission to work in the Department of Blochemistry, University of Adelaide.

Allan Robins, for the use of his microcomputer in the preparation of this thesis, Deb Ehmann and Anne Chartier for their typing assistance and Jenny Cassady for the production of photographic diagrams.

During the course of this work I was supported by a Commonwealth Postgraduate Research Award.

CHAPTER 1: THESIS PERSPECTIVE - MOLECULAR LEVELS OF GENE CONTROL
1-1 Introduction
The theme of this thesis concerns the molecular mechanisms involved in cellular transcription of eukaryotic DNA. In particular, the control and co-ordination of a multigene family will be the focus of the experimental work presented in the main text of the thesis. Steps in the pathway from DNA to proteln ayntheala that may be involved in repalation in eukaryotea will be examined. An account of the histone gene systems of eukaryotic organisms and various techniques used to analyse DNA transcription will also be presented as a background to the experimental work of the chicken histone multigene family investigated here.

1-2 Levels in the Contro1 of Gene Expression
The living biological cell is a marvellous machine (Alberts et al., 1983). Cells of higher metazoans are of many types with strikingly distinct morphology and function. Differential gene expression underlies many of the differences between cell types. Gene expression in turn is controlled at a number of leve1s. Cell types can develop differences by controlling:
(1) how or when a given gene is transcribed
(2) how the initial transcript is processed
(3) selecting which mRNAs in the cell nucleus are exported to the cytoplasm
(4) selecting which mRNAs in the cytoplasm are translated by ribosomes
(5) selectively stabilizing certain mRNA molecules in the cytoplasm
(6) once protein has been produced from the mRNA it can be post-translationally modified to impart different activities, properties or stabilities.

DNA transcription is especially subject to cellular regulation and a very important part of the control processes occurs at the first step, the synthesis of the primary RNA transcript (Derman et a1., 1981). There are two general processes which need to be understood in the transcription of eukaryotic genes; firstly the nature of the DNA signals and molecular components required for the activation of any gene, and secondly how
transcription is regulated throughout development. That is, what determines whether a particular gene is transcribed at a specific time and in a specific cell.

1-3 Active Chromatin
The DNA of all eukaryotic organisms is closely assoclated with a wide varlety of DNA-binding proteins of two general classes: the histones and the non-histone chromosomal proteins. The localised structure of the chromosome influences gene regulation since genes present in heterochromatin are not expressed (Weisbrod, 1982). On the other hand those genes which are being expressed in a tissue specific fashion exist in an active chromatin conformation which is different from that of the equivalent chromosome regions in tissues where the gene is inactive (Weisbrod, 1982). Active genes are readily accessible to reagents such as DNase I.

Irrespective of the characteristics of active genes described below, transcriptional activation requires an initial un-ravelifng step of a domain of the chromosome containing the gene to be transcribed. The primary events involved in decondensation/condensation of chromatin domains are fundamental to the questions of gene control and differentiation but very little is known in this area. Thus, the secondary components directly involved in the act of transcription will be the major points of discussion.

1-3-1 The Nucleosome and Histone Proteins
The basic unit of chromatin is the nucleosome. This consists of 146 to 240 base pairs of DNA wound twice around a histone protein core. The core proteins are made up of four types H2A, H2B, H3 and H4 present in equa1 amounts in the form of an octamer. A fifth histone type, H 1 and variants
such as H1 (Gjerset et al., 1982) and H5 (Aviles et al., 1978), is associated with the nucleosome as a linker between core particles. Major and minor subtypes of all the histone protein types except $H 4$ have been found (Isenberg, 1979; Von Holt et al., 1979; Zweidler, 1980). The majority of these variants differ from the most common forms by only a few amino acids, however the variant residues could cause potentially important conformational differences between the subtypes.

Histone variants appearing in only one specialized tissue are found in sperm of several species (Zweidler, 1980). A histone which appears to be specific to erythroid cells of fish, amphibians, reptiles and birds is the 0
H1 variant H5 (Aviles et al., 1978). H1 , a mamalian histone closely related to $H 5$ is found in a relatively wide range of terminally differentiated cells (Gjerset et al., 1982) and like H5 accumulates postmitotically. Developmentally controlled varlants also occur in a more general sense in some species. For example, in the sea urchin the forms of H2A, H2B and $H 1$ which are expressed in the blastula are replaced by the late subtypes β, γ and ζ by the gastrula stage (Newrock et a1., 1978).

The histones can exist in different forms by post-translational modifications. These modifications include acetylation, phosphorylation, ADP-ribosylation, methylation and ubiquitination (Isenberg, 1979). Histones in either their modified or unmodifled forms have been associated with various states of activity of chromatin (Halleck and Gurley, 1982; Prentice et al., 1982). Phosphorylation of H2A for example has been found to be greater in the euchromatin fraction and a ubiquitinated form of the H2A protein has been shown to have a selective arrangement in the Drosophila genome (Levinger and Varshavsky, 1982). Whether these modifications are the cause or effect of changes in chromatin states is not known.

A histone variant which differs substantially from its major subtype is H2A.Z. This protein was initlally isolated from mouse nucleosomes but has subsequently been found in all tissues and species studied (West and Bonner, 1980). Whether H2A.Z's sequence differences are related to its distribution in chromatin is yet to be determined. One histone variant which appears to be strong1y associated with active chromatin is an H2A variant from Tetrahymena thermophila, known as hv-1. It is found exclusively in the transcriptionally active macronucleus and not at all in the transcriptionally inactive micronucleus (A11is et al., 1982).

As well as being linked with developmental stages, various histones are expressed differently during the cell cycle. Approximately 90% of histone synthesis is coupled to DNA synthesis but 10% proceeds throughout the cell cycle and is known as basal synthesis. This 10% includes the ongoing synthesis of the variants H2A.X, H2A.Z, H3.3 and H2B vardants (Wu and Bonner, 1981).

The presence of these histone variants, their cross species conservation and developmental regulation suggests that they could well play a role in differentiation and selective gene expression.

A special type of nucleosomal subunit located on transcribed DNA regions with properties that facilitate transcription has been postulated (Prior et al., 1983) and termed the "lexosome". Applied to rDNA in particular, it is a speculative gene activation model involving a nucleosome - lexosome transition. The lexosome formation involves a symmetrical unfolding of the histone core and the binding of proteins in addition to the core histones. A loosening of DNA - histone interactions could lead to a transient displacement of histones during the passage of RNA polymerase molecules (see below).

1-3-2 Nucleosome Phasing and DNase Hypersensitive Sites
As mentioned, actively transcribed genes exhibit a structure different from that of non-transcribed regions when pancreatic DNase I is used to probe its accessibility. A sensitivity to DNase I of actively transcribed genes seems to be a general phenomenon (Weisbrod, 1982; E1gin, 1984) but only indicates a potential for gene transcription rather than transcription itself. The appearance of DNase I hypersensitive sites precedes the initiation of transcription and is apparent only in tissues that are committed to expressing a gene.

Studies of the mini-chromosome of SV40 and the chick β - globin gene indicate that hypersensitive sites correspond to regions of DNA that are possibly nuc.leosome free (Jakobovitis et a.1., 1980; Saragostl et a.1., 1980; McGhee et al., 1981). Data from rearranged SV40 genomes and from Drosophtla mutants at the Sgs-4 locus indicate that sequences adjacent to genes can be critical for the formation of DNase I hypersensitive sites (Jongstra et a1., 1984, Shermoen and Beckendorf, 1982). It is possible that nuc1ease sensitive sites are generated by the interaction of non-histone proteins with DNA by binding to the region itself. The Drosophila hsp70 gene once Induced by heat shock binds a trans-acting factor (Wu, 1984a), however a DNase I sensitive chromatin structure is present at this 5^{\prime} terminus of the coding sequence before activation (Wu, 1980).

The question of how nucleosomes are arranged on active and inactive DNA has three simplistic answers. They could be arranged randomly on the DNA, they may be located in unique positions that are identical in a homogeneous population of cells, or they may occupy a small number of distinct positions. The 1atter two of these arrangements are referred to as nucleosome "phasing". Phasing does exist for certain positions in the genome, however the extent of the nucleosome preference, its structural
reasons and its function is far from being understood (Zachau and IgoKemenes, 1981; Kornberg, 1981).

The functional significance of regular nucleosome arrangements on satellite DNA may be that, by modulating chromatin superstructure they affect chromosome recognition and pairing. The DNase I hypersensitive regions of protein coding genes, postulated to be nucleosome-free, may precisely position nucleosomes at their borders or influence the chromatin structure at the region of transcription and impose a short range order. However for genuine phasing of nucleosomes to exist, it would mean that the loss or addition of just a single base pair could have deleterlous effects. A loosely preferred distribution of nucleosomes at specific sites would accommodate the genomic variations of individuals of a species that are found in nature (Jeffreys, 1979; Brown, 1982). At present research on nucleosome phasing is only at the level of nuclease digestion and blot hybridization.

1-3-3 Non-Histone Proteins Associated with Chromatin
The protein fraction most often associated with active nucleosomes is the high mobility group proteins (HMG). They are small highly conserved proteins and are present in $10 \%-20 \%$ of nucleosomes. Two HMGs in particular have been associated with active chromatin, HMGs 14 and 17 . These protelns can be eluted from chick erythrocyte chromatin with 0.35 M NaCl , without any detectable change in the gross structure of individual nucleosomes. However with this depleted chromatin the globin gene is no longer hypersensitive to DNase I (Weisbrod and Weintraub, 1979). Reconstitution of the depleted chromatin with purified HMGs at a ratio of 1 mole HMG: 10 mole of nucleosomes successfully restores the DNase I sensitivity of the globin gene.

There is no tissue specificity associated with HMGs. HMGs 14 and 17 from brain nuclei are capable of restoring the hypersensitivity of the globin gene from salt depleted erythrocyte chromatin. The specificity of HMG binding resides in the recipient depleted chromatin; HMGs 14 and 17 from red blood cell chromatin fail to induce DNase I hypersensitivity to the globin gene of HMG - depleted chromatin from brain. The positioning of HMGs in active nucleosomes has been investigated and indicates a direct correspondence between chromosomal regions which are capable of interacting with HMGs and the regions which are highly sensitive to DNase I digestion. The general conclusion is that HMGs 14 and 17 occupy two binding sites at each end of the nucleosome core and interact with or cover the internucleosomal, histone - free DNA of the hypersensitive site (Weisbrod, 1982).

Much less is known about other non-histone proteins associated with active chromatin. Increasing attention is being paid to sequence specific DNA binding proteins. It has been suggested that specific regulatory proteins may bind to a gene promoter site independently of RNA polymerase. The polymerase could then bind directly to the promoter-recognition protein complex (Travers, 1983). General promoter recognizing proteins have indeed been purified and their role in transcription suggests that a preinitiation complex is formed independently of the RNA polymerase (Davison et a1., 1983; Gidoni et al., 1984).

The isolation and characterization of gene-specific regulatory proteins is just beginning. A 5S RNA gene transcription factor known as TFIIIA is required for the accurate initiation in vitro of Xenopus 5 genes (Korn, 1982; Brown, 1984). This factor interacts with residues 50-83 of the transcribed region and thus binds to an intragenic promoter. The large T - antigen of $S V 40$ and polyoma acts as a positive regulator of virus
replication/late transcription and a negative regulator of its own early gene transcription by binding to three operator sites near its origin of replication (Schaffhausen, 1982). The E1A gene product of Adenovirus acts as a trans-acting transcriptional enhancer of the human β - giobin gene transfected into Hela cells (Green, 1983b). Moreover a 36 base pair region of the β^{-}globin promoter containing the TATA box is sufficient for such an interaction. Whether there is a direct contact between the ElA protein and the promoter has not been directly shown but it is a distinct possibility.

Positive control has also been shown by the sequence-specific binding of the glucocorticoid receptor complex to cloned fragments of murine mammary tumour virus DNA (Chandler et al., 1983). This binding mediates hormone responsiveness via the promoter. A partially purifled fraction of chicken erythrocyte nuclei can confer hypersensitivity to the chick β globin gene 5^{\prime} flanking region in vitro, when allowed to form chromatin with purified histone proteins. One or more proteins may interact specifically with the sequence of the hypersensitive region (Emerson and Felsenfeld, 1984). Direct investigation of the binding of a heat shock activator protein to a specific DNA sequence, termed a heat-shock box, 5' to the Drosophila hsp 70 and hsp 82 genes has been done by mapping DNA exonuclease resistance sites in chromatin (Wu, 1984a and b).

1-3-4 Higher Order Structures
The nucleosome is only the first level of DNA packaging inside the ce11. A hierarchy of superstructures compact the nucleosomal DNA chain culminating in the most condensed form of metaphase chromatin. A 100 A fibre is generated by folding of the internucleosomal linker DNA; this fibre is then coiled into a 300 A fibre probably by the crosslinking of
nucleosomes by Hl protein (Igo-Kemenes et a1., 1982).
In both interphase and metaphase chromosomes the 300 A chromatin fibre appears to be folded into loops or domains. Stretches of 35-85 kilobases of DNA are thought to be anchored to a supporting structure of the nucleus termed the matrix or scaffold. The distribution of DNA sequences and the location of proteins within chromatin domains are now being studied. The identification of a sequence-specific chromatin-1oop organization for the tandemly repeated histone gene cluster of Drosophila has been reported (one loop for each repeated unit; Mirkovitch et al., 1984).

DNA endonucleases have been used to investigate higher order organization of active chromatin. Active genes have an overall DNase I sensitivity intermediate between that of the hypersensitive sites of active genes and a totally inactive gene (Weisbrod, 1982). Different genes are preferentially degraded in different cell types corresponding to the pattern of RNAs that the cells make. As stated above (1-3-2) DNase I sensitivity only indicates the potential for transcription of a gene and not transcription itself, therefore eukaryotic gene activation probably occurs in two stages. In the first stage a local region of chromatin, probably a domain, is modified to decondense it in preparation for transcription. Secondly, DNA transcription is activated in selected gene regions of decondensed loops by regulatory proteins binding to specific sites on the altered chromatin (1-3-3).

Domains or loops are essential elements of higher order chromatin structure and are related to units of transcription. Their structure, rearrangement, and time course of activation may control developmental regulation.

1-3-5 Role of Matrix

The nuclear matrix consists of a peripheral lamina, nuclear pore structures, a residual nucleolus, and an intranuclear matrix. It has an important role in the structural organfzation of DNA and is composed of three major polypeptides (Berezney, 1979). The DNA loops of interphase nuclei are anchored to the matrix possibly at specific sites along the chromosome. The preferential location of specific gene loci at specific sites has been examined in Drosophila polytene nuclef (Agard and Sedat, 1983). The topographical analysis reported was sufficient to determine an overall folding pattern, but could not align the genetic map with the topological arrangement.

The nuclear matrix is the site of DNA replication (Pardoll et al., 1980), possibly the site of nuclear RNA processing (Long et al., 1979) and has been shown to bind hormones in a specific manner. Isolated nuclear matrix has been found to preferentially contain actively expressed genes (Ciejek et al., 1983) indicating that the nuclear matrix is the site of nuclear transcription. The attachment of the hormone sensitive chicken ovalbumin gene is reversible when the hormone is withdrawn. Thus another level of control for gene expression may exist in the nucleus.

1-3-6 DNA Modification and Structure
In most higher organisms, DNA is modified by the conversion of a small percentage of cytosine residues to 5-methyl-cytosine. The major site of methylation is at CpG sequences and the methylation pattern is inherited automatically following DNA replication due to the specificity of eukaryotic methylases recognizing hemimethylated CpG dinucleotides. The control of gene activity by DNA methylation has been recognized as a logically attractive possibility. A region of DNA important for gene activation could be stably maintained through repeated cell divisions in
either a methylated or unmethylated form because of the inheritance of methylation patterns.

Methylation of DNA can supress transcription of some genes, however the activity of others are unaffected (Bird, 1984). In vitro site directed methylation of globin genes has shown that the methylation of specific CpG sequences between 760 base pairs upstream and 100 base pairs downstream of the 5' end of the human γ-g1obin gene can prevent transcription; methylation of CpG sequences elsewhere in the gene appear to be unimportant to transcription of the gene (Busslinger et al., 1983). In evaluating the effect of DNA methylation on gene expression it is significant that the levels of $C p G$ methylation varies considerably between vertebrates and invertebrates. No 5-methy1-cytosine residues have been detected in Drosophila at all and no methylated gene as such has been detected in other invertebrates. It is therefore not clear at the moment what part DNA methylation plays in eukaryotic gene expression.

The structure and function of a DNA molecule can both be affected by the DNA sequence itself, torsional stress, base modification and the interaction of specific proteins with the DNA. Altered DNA conformations are likely to play an important part in DNA packaging into nucleosomes and In the sequence-specific recognition of DNA by proteins (Wu and Crothers, 1984). DNA is a dynamic molecule and alterations in its fine structure possibly play a role in controlling genes.

Conventional DNA is a right-handed double helix (the B-helix; B-DNA) but a range of right-handed structural hellx families can exist (Cantor, 1981). One left-handed DNA structural variant has been described and is known as Z-DNA. Z-helix formation is favoured in alternating purine/pyrimidine stretches and is stabilized by the inclusion of the 5-methyl-cytosine base.

Supercoiled DNA is torsionally stressed and in response to this stress the molecule twists, bends or deforms to minimize its free energy. Changing
 thus supercoiling of DNA also favours Z-DNA formation. Another possible response of DNA to torsional stress is the formation of cruciforms, which requires the presence of inverted sequence repeats. This relieves some of the stress by denaturing several base pairs in the cruciform duplex junctions and loop outs at the end of the cruciform.

Direct evidence for $Z-D N A$ formation in vivo comes from the binding of anti-Z antibodies to Drosophila polytene chromosomes. This binding has been shown to depend on the chromatin fixation techniques used and it is therefore not certain if Z -DNA does exist in vivo (Hi11 and Stollar, 1983). Many regions that have the potential to form $Z-D N A$ are often located at important sites. Several eukaryotic enhancer elements contain potential z DNA regions (Nordheim and R1ch, 1983).

Under relaxed conditions the structural conformation of normal righthanded DNA changes from place to place along the length of a DNA molecule depending on the base sequence. Specific sequence induced variation in the structure of Watson-Crick DNA may be of importance for proteins that bind to a consensus sequence. The recognition of the essential bases in the consensus may be influenced by the flanking sequences and influence protein binding affinity (Drew and Travers, 1984). Thus there may be a consensus of structure as we11 as sequence.

1-4 RNA Transcription and Transcriptional control
Transcriptional control, the rate of synthesis of nuclear RNA, is certainly of paramount importance in eukaryotic cells (Darne11, 1982). Differential stability of cytoplasmic mRNAs and RNA processing represent
important and as yet not fully investigated levels of control. The mechanical steps of mRNA formation are considerably more complex in eukaryotes than prokaryotes; the mRNA requires the addition of a 7-methy1guanosine cap at the 5^{\prime} end of primary transcripts, the addition of a 3^{\prime} polyadenosine segment and the removal of introns/ligaton of exons (Nevins, 1983). All of these steps are likely to be subjected to regulation.

1-4-1 RNA Polymerases

The first level of transcriptional control in cells is in the choice of RNA polymerase. Three different RNA polymerases make RNA in eukaryotes. Polymerase II transcribes genes that encode proteins; polymerase I makes the large ribosomal RNAs $18 \mathrm{~S}, 28 \mathrm{~S}$ and 5.8 S in a contiguous cistron; RNA polymerase III transcribes a variety of small RNAs including the tRNAs, 5 S ribosomal RNA and some repetitive DNA sequences. The different polymerases can be identified by their sensitivity to the fungal toxin α - amanitin. RNA polymerase I is unaffected by α - amanitin, polymerase III is moderately sensitive and polymerase II is very sensitive. All three classes are multi-subunit structures of six to ten polypeptides and within each class heterogeneity of subunit composition has been observed. The three enzymes recognize different start and stop signals on the DNA.

1-4-2 Polymerase II Promoter Elements
A primary mRNA transcript is generated from a transcriptional unit of the genome containing appropriate signals for initiation and termination. A conslderable body of information has been collected concerning the structure of eukaryotic promoters but as yet there is no data for a general definitive termination site for polymerase II transcription. The definition of gene promoters has relied on sequence comparisons to look for homologies, followed by surrogate genetics to probe the function of the sequence homologies as no one consensus promoter sequence, as such, exists
for eukaryotic genes. However a number of distinct, transcriptional control elements can be identified. This, in itself, may allow modulation of transcription of different genes by using different combinations of these elements. These elements are common to most genes, but are not all present In all cases; it appears that only a combination of them is required. Sequences essential for the transcription of polymerase II genes can be divided into those that act immediately 5^{\prime} to the cap site of mRNA or those that can act in a cis fashion far upstream/downstream from the start of transcription. Sequences specific to individual genes or to a group of genes have been discovered and may be recognized in a tissue specific or inducible manner.
(1) Immediate 5' Elements

The region of initiation of an mRNA transcript usually consists of an A residue surrounded by pyrimidine residues (Breathnach and Chambon, 1981). Rather than having a single site of RNA initiation on the DNA sequence there may be heterogeneity in the start site of transcription (McKnight et al., 1981; Wigley et al., 1985; work presented in this thesis). It is assumed that the cap site of the mature mRNA is the transcription start site as we11 (Nevins, 1983).

An A-T rich region centered about $25-30$ bases upstream from the mRNA start sites is found in most genes and is known as the Goldberg - Hogness or TATA box (Goldberg, 1979). It is identified by a consensus sequence $\operatorname{TATA}(A / T) A(A / T)$ (Corden et al., 1980) but the most important part of the box is an ATA stretch (Grosschedl et al., 1981). Virtually every gene analyzed to date, except the E2 and IVa2 genes of adenovirus and the late genes of SV40 and polyoma, have some form of the TATA sequence. The function of this sequence appears to be involved in the accurate
positioning of the start of transcription (Grosschedl and Birnstiel, 1980a).

A second region of homology, the CCAAT box, is positioned 70-90 bases upstream from the cap site of some genes. It has the canonical sequence GG PyCAATCT (Benoist et al., 1980). The generality of this box and the exact sequence (because of the heterogeneity of most CCAAT boxes identified in the 1iterature) for its function are yet to be fully investigated. Work presented in this thesis shows that multiple CCAAT boxes are found in the promoter region of the divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ histone gene pairs of the chicken.

It has been determined that this sequence is functionally important for the maximal expression of the rabbit β-globin gene (Dierks et a1., 1983), but deletion of the CCAAT-like sequences of other genes has either had no effect (SV40; Benolst and Chambon, 1981) or led to a slight stimulation of transcription (H2A; Grossched1 and Birnstie1, 1980a). No functionally significant sequence with homology to the CCAAT box is found in the HSV TK gene (McKnight et al., 1981).

A third region, the -100 region, approximately 100 bases from the cap site of the rabbit $\beta-g$ lobin gene has been identified as an upstream promoter element (Dierks et a1., 1983). The important component of this region seems to be (T/A)CACCC which is present in almost all the β-1ike globin genes so far studied. Mapping of the promoter regions of HSV TK and the SV40 early genes suggest that they contain elements that are structurally and functionally related to the -100 region of the globin genes. The sequence CCGCCC is part of the recognition site of the second distal promoter of the TK gene (McKnight et a1., 1984) and is located approximately 100 bases from the $T K$ cap site. However the reverse of this sequence GGGCGG is found in the first dlstal promoter region of the $T K$ gene and is present in multiple copies in the $S V 40$ and a related monkey promoter
(Gidoni et al., 1984). These elements have variously been referred to as GC rich elements (box). The SV40 early promoter contains six repeats of the CCGCCC box and the production of T antigen is proportional to the number of repeats present (Fromm and Berg, 1982; Everett et al., 1983).

Comparisons of gene sequences and the functional analysis of several gene promoters indicate that there is no direct role for DNA sequences more than 100-300 bases immediately upstream of mRNA cap sites. No evidence exists linking any of these above elements discussed to cell specific gene expression, they may only represent the binding sites for proteins that function in the mechanics of transcription. Upstream elements which have been implicated in tissue specific or inducible expression (see below) could function to modulate the efficiency of recognition or exposure of these immediate "core promoter" elements to the transcriptional apparatus.

(ii) Transcriptional Enhancers

Study of viral transcription units has identified a class of control elements, termed enhancers, that can activate transcription units independent of their orientation or precise position relative to a transcription start site (Khoury and Gruss, 1983). Enhancers are short stretches of DNA containing a core of about 8-11 bases, usually located 5' to promoters; they can act over a distance of up to several kilobases to increase transcription from promoter sequences. Viral enhancers operate in a variety of cell types, although not always with equal efficiency and can function not only when linked to their natural genes but also in assoclation with heterologous genes. They are of ten present in short tandem repeats of 50 to 100 bases. Viruses with a single copy of the sequence are viable so the purpose of the duplicated element is unclear.

Several cellular genes have now been shown to possess their own
enhancer elements. Expression of cloned immunoglobulin genes introduced into myeloma cells has shown the presence of an enhancer upstream of the immunoglobulin heavy - chain switch region (Gillies et al., 1983; Banerji et al., 1983; Queen and Baltimore, 1983). During the generation of antibody diversity the immunoglobulin molecule is assembled by the translocation of one of several hundred variable - region (V) gene segments to the site of the constant - region (C) gene segment. Each V - region segment has its own promoter but is transcriptionally inert until linked to the constant region which has its low constitutive activity increased by the DNA rearrangement. The sea urchin H2A gene modulator region located between -111 and -165 upstream of the initiation site can act in both orientations and has extended homology to several viral enhancers (Grossched1 et al., 1983). Upstream regulatory elements of the insulin and chymotrypsin genes may increase transcription in a cell type specific manner by a mechanism related to those used by the viral enhancer elements (Walker et al., 1983).

The human adult β-globin gene may contain a controling element downstream of its transcription start site (Charnay et al., 1984; Wright et al., 1984). In experiments to define the DNA sequences responsible for the differential expression of human α - and β-globin genes a hybrid of the human α-globin upstream promoter region and the β-globin structural gene was produced. When introduced into a mouse erythroleukemia cell line the chimeric gene construct is inducible in the same manner as the complete β globin gene upon terminal differentiation of the cell line. Similar results were obtained with fusions between the promoter of either the non-inducible human fetal globin gene or a mouse histocompatibility antigen gene and the human adult $\quad \beta$-globin structural gene. It is suggested that the $\beta-g 1 o b i n$ gene, which has a full complement of upstream promoter elements, also harbours an element within the structural gene that is crucial for
appropriate expression in erythroid cells.
How enhancers work is unknown but several possibilities have been suggested. They may act as chromatin organizers, bidirectional entry sites for RNA polymerase, sites of attachment to the nuclear matrix or regulators of local DNA supercolling. The potential of enhancer regions of several DNA viruses and RNA retroviruses to form Z-DNA suggests that sequence-specific Z-DNA binding proteins may be involved in transcriptional enhancement (Nordheim and Rich, 1983).
(iii) Tissue-Specific and Inducible Gene Expression

The hypothesis that trans-activating molecules interact with gene specific cis recognition sequences of tissue specific or co-ordinately induced genes is the currently accepted model of gene activation. Thus a regulatory network of trans-activators could activate or repress genes in a cascade mechanism during the development and differentiation pathways of metazoans (Davidson et a.l., 1983). Regulatory signals of several higher eukaryotic genes have now been analyzed by in vitro mutagenesis and gene transfer. As discussed above eukaryotic promoters can extend over a large region and be composed of different functional elements. The enhancer elements are strong candidates for the cis acting sequences postulated for selective gene expression.

Sequence analysis has revealed no extensive homology between varlous heterologous enhancers. It is noted that the functional activities of different enhancers vary depending upon the host or the tissue into which they are introduced. This host/tissue dependence of enhancer activity has been examined in a competitive assay between several enhancer-containing molecules for cellular components that may interact with them (Scholer and Gruss, 1984). Indeed, a host cell preference of different enhancers was
reflected in these competitive experiments and an interaction between enhancer-containing DNA fragments and cellular components suggested.

Perhaps the best evidence for the gene activation model so far is the properties of the glucocorticoid responsive region in mouse mammary tumour virus (MMTV). Steroid hormones modulate the transcription from the MMTV long terminal repeats by an interaction between the steroid-receptor complex and a specific DNA sequence resembling an enhancer element (Parker, 1983). The glucocorticoid receptor has also been shown to interact with the human metallothionein-IIa gene and the region of interaction is homologous to the MMTV glucocorticoid responsive region (Karin et al., 1984). Therefore it has been shown that two structurally unrelated genes can be Induced by an interaction with the same trans-acting molecule. Another example is the co-ordinate induction of the Drosophila heat-shock genes by the heat shock activator proteln binding to the heat-shock box (Wu, 1984b).

Another facet of this proposed regulatory network is that one gene can be expressed from different promoters in different tissues if more than one cis acting element is present near the gene. The synthesis of different mRNAs from a single gene by the use of alternative promoters has been found In eukaryotes. The α-amylase gene of the mouse, the invertase gene of yeast, the Discoidin-la gene of Dictyostelium and the Alcohol Dehydrogenase gene of Drosophila are examples of such transcriptional initiation complexity (Benyajati et a.l., 1983).

1-4-3 Transcription of Polymerase I Genes
RNA polymerase I acts exclusively on a single kind of transcription unit, the ribosomal RNA cistron. Comparing rRNA genes from yeast, Drosophila, Xenopus and mouse does not identify any common sequences that could potentially act as promoters (Sommerville, 1984). However homologies between more closely related species can be identified. From these short
range comparative data an important role for sequences located immediately around the initiation site is suggested.

By using rRNA genes with various sequence deletions in in vitro functional assays a wider region of DNA is implicated. The first few transcribed nucleotides and a stretch of T residues that may be analogous to the RNA polymerase LI TATA box may act together in the inftiation of transcription. It has been found that sequences that lie further upstream of the start site can enhance transcription of mouse rDNA. Xenopus rDNA contains duplicated promoters that extend several thousand base pairs upstream of the start site; the number of these repeated spacer elements is related to the production of rRNA in oocyte injection studies (Reeder et al., 1983). In vitro transcription assays of rDNA templates is dependent upon components supplied from cell extracts. Only if the rDNA and transcription factors are from the same species is correct initiation seen. Thus RNA polymerase I transcription factors and promoters appear to be species specific.

1-4-4 Transcription of Polymerase III Genes
In eukaryotic cells, RNA polymerase III is responsible for the transcription of 5 S RNA, tRNA, some small cytoplasmic and nuclear RNAs and some virus assoclated RNAs. These genes are short compared with the average length of the genes transcribed by polymerase I and II and the region of DNA essential for promotion of transcription is always contained within the coding sequence (Korn, 1982; Lassar et a1., 1983). The termination of transcription occurs at the first run of four or more T residues following initiation.

For the 5 S RNA genes a 34 base pair segment has been mapped as the internal promoter and inftiation of transcription occurs 50 bases upstream
of this internal control region. The promoter of tRNA genes is split into two essential regions of about 10 bases (Box A and B), separated by 30-40 bases, and these are highly conserved in all tRNA genes. Inftiation of transcription occurs 11-18 bases upstream from box A. Other polymerase III transcribed genes appear to be very similar to tRNA genes containing two regions of homology to boxes A and B and also initiating a short distance 5^{\prime} to the A box. The first 11 bases of the 5 S RNA gene promoter have been shown to be structura11y and functionally related to the A box component of the tRNA gene promoter (Ciliberto et al., 1983)

Multiple cellular factors are required for RNA polymerase III transcription. These form stable transcriptional complexes in association with the polymerase III genes and have been analyzed by chromatographic fractionation of crude cellular extracts. Two factors, IIIB and IIIC are necessary for transcription of the tRNA type genes where as 5 genes require these same factors plus a third gene-specific factor TFIIIA. TFIIIA also interacts with 5 S RNA in oocytes apparently to stabilize the stored 5 S RNA. This interaction has led to the suggestion that in the cell 5 S gene transcription in the presence of limiting amounts of this factor may be subject to autoregulation. Pre-initiation complexes between purifted genes and the fractionated factors persist even after many rounds of transcription or when challenged with a competing template. The establishment of stable complexes may represent a key step in the activation of these genes and provide a means for the maintenance and propagation of a specific set of activated polymerase III genes.

1-4-5 Processing and Stability of RNA
The events that convert a primary RNA transcript to a mature RNA molecule are collectively known as RNA processing. Changes in transcriptional initiation, termination and RNA spilcing have been shown to
fluctuate in specific situations, in an apparently regulated fashion. Even after the formation of an mRNA is complete, changes in the stabllity of the mRNA can alter the effective expression of the gene. Thus the complex pathway of RNA biogenesis serves a regulatory role.
(i) Initiation and Termination

7
Almost immediately after initiation of an RNA chain an m Gp residue is added to the first base of the RNA. The central phosphate of the m GpppN cap is derived from the pppN that starts the RNA chain, which is evidence for the RNA transcript initiating at the cap site (Darne11, 1982). Precision of nascent RNA synthesis termination is not yet understood for polymerase II transcription. In every case where it has been examined, transcription does not terminate at the poly A addition site of the mRNA but at some distance downstream. Although termination can be mapped within a few hundred bases, a clearly defined site has yet to be shown.
(1i) 3' End Processing and Poly A Addition
The one clear example of a class of nonpolyadenylated mRNAs, the histone mRNAs, initially represented potential 3^{\prime} end generation by termination (Birchmeier et al., 1982). However even in this instance it has been shown (using one of the chicken H2B genes described in this thesis), that the $3^{\prime \prime}$ terminus is generated by processing (Krieg and Melton, 1984). A sequence with dyad symmetry present at the 3^{\prime} end of histone genes together with some immediate downstream elements serves as a recognition site for a small nuclear ribonucleoprotein (snRNP) to process at this point (Galli et al., 1983).

The Poly A containing mRNAs possess an AAUAAA or related sequence about 10-30 bases upstream from the poly A tail. The role of the AAUAAA hexanucleotide has been shown to be that of a recognition signal for the
processing of the primary transcript (Fitzgerald and Shenk, 1981). An endonucleolytic cleavage is thought to occur at the site of polyadenylation to generate a substrate for a poly A polymerase to polymerase A residues onto the 3^{\prime} hydroxyl group (Monte11 et al., 1983). An intact AAUAAA sequence is required for efficient RNA cleavage, but not for polyadenylation. It appears that the AAUAAA sequence only forms part of the RNA cleavage signal as internal AAUAAA sequences are observed distant from 3^{\prime} ends of mRNA. Other primary or secondary structures may be additional features of the RNA cleavage signal.

(1ii) Splicing

The primary transcripts of many eukaryotic genes are interrupted by stretches of non-coding DNA called introns. These sequences are subsequently deleted by a cleavage-ligation process termed RNA splicing to generate the mature transcript of colinear exons. It appears there are three general classes of RNA splicing, one for tRNA, a second for mRNA and a third that includes rRNA and mitochondrial mRNA and rRNA (Cech, 1983). Nuclear mRNA splice sites are designated by short sequences at the intronexon junctions, tRNA splicing is directly related to the structure of the exons and mitochondrial splicing is directed mainly by the structure of the intron. A11 three classes of splicing systems have different chemical mechanisms for the cleavage and ligation of the phosphodiester bonds.

In nuclear mRNA precursors, the splice sites are always marked by sequences resembling $5^{\prime}(A / C) A G / G T A G T \ldots$ intron.... (T/C) $n N(T / C) A G / G 3^{\prime}$ (Mount, 1982). The first two 5^{\prime} bases (GT) and the last two 3^{\prime} bases (AG) of an intron (underlined) are strictly conserved. Mutations that disrupt one of these sequences interfere with splicing whereas mutations that make a nonjunction sequence a better match to the consensus can produce a new splice site. This indicates that the consensus sequence is the primary
determinant of the splice functions. The small nuclear ribonucleoprotein Ul RNP has been shown to be involved in the selection of splice sites (Padgett et al., 1983). The introns are excised as larlat- like structures rather than as linear or circular RNA. The lariats are formed by attachment of the 5^{\prime} end of the intron to a site close to the 3^{\prime} end (Weissmann, 1984). The m Gp cap is required for efficient in vitro splicing and it is thought that recognition of the cap structure may be an important step in the formation of a specific ribonucleoprotein complex required for splicing (Konarska et al., 1984).

(1v) Differential Processing

There are several cases known in which varlous poly A addition sites or splice sites can be chosen on the same primary transcript. Such differential processing can depend on the physiological condition of the cell, on the cell type or the type of transcription unit. A number of virus transcription units, such as in adenovirus, SV40, polyoma and retroviral RNAs, contain multiple splicing arrangements of their RNA precursors. These viral genomes on integration into cellular DNA of a variety of cell types can still produce multiple mRNAs. Thus, it is clearly possible for DNA in the cell genome to encode primary transcripts that can be spliced in alternative ways. This suggests some sort of scanning model for the identification of splice sites of mRNA. If splice site selection were to be dissimilar in different tissues, different gene products could be obtained from the one gene. Tissue-specific RNA processing has been shown in the production of the calcitonin protein and a calcitonin gene related peptide from the unique calcitonin gene (Rosenfeld et al., 1983).

A differential choice of poly A addition sites has been found in the late adenovirus transcript and the immunoglobulin heavy chain
transcriptional unit. During late adenovirus infection a transcript encompassing five poly A sites occurs. The selection of a poly A site initially occurs before the polymerase has completed the transcription of distal sequences f.e. a poly A site has already been chosen and a poly A tail added before the downstream poly A sites have become avallable. As the infection proceeds, site selection does not follow a random pattern. Although one would expect a polar effect where the first site was selected most frequently, such is not the case. A relative efficiency of $1: 2: 3: 2: 2$ progressing down the transcription unit is seen (Nevins and Wilson, 1981). These results indicate that poly A site utilization is controlled to alter gene expression.

During B-lymphocyte development and immunoglobulin synthesis, the heavy chain is first inserted as an integral protein in the plasma membrane. Later, a similar chain is found secreted as part of the immunoglobulin molecule. The membrane-bound form of the protein is generated by the transcription of all the coding sequences into nuclear RNA, which has a hydrophobic carboxyl protein terminus coded for at the end of this long transcript. Two poly A sites occur in this transcription unit, the long primary transcript covering both of them. Depending on the choice of poly A site, two heavy chain mRNAs with different 3^{\prime} sequences (due to the presence of alternative exons) can be formed, one for the membrane protein and one for the secreted chain (Early et al., 1980).

1-5 Cytoplasmic Control of Gene Expression
1-5-1 Stability of mRNA
The final concentration of functional mRNA avallable for translation into protein depends not only on the rate of gene transcription, but also on the relative stability of the mRNA once in the cytoplasm. Immediate shutdown of expression of a given gene after cessation of transcription can
only be accomplished if the mRNA is also rapidly degraded.
Changes in the half-1ife of specific mRNAs in response to the presence of hormones have been documented. Estrogen selectively stabilizes Xenopus 1iver vitellogenin mRNA against cytoplasmic degradation. The half-1ife of vitellogenin mRNA is 3 weeks in the presence of estrogen but only 16 hours after estrogen is withdrawn (Brock and Shapiro, 1983). Upon exposure of breast tissue to prolactin, the stability of the casein mRNA increases 25 fold (Guyette et al., 1979). It has been proposed that there are cytoplasmic hormone binding proteins that act to stabilize particular mRNAs by a direct and reversible protein-nucleic acid interaction.

Histone gene expression is closely co-ordinated with cellular DNA replication. In addition to the temporal coupling of histone transcription, Inhibition of DNA replication results in a rapid destabilization of histone mRNA (Nurse, 1983).

Several studies have suggested that the 3^{\prime} poly A tail plays a determining role in mRNA stability (Nevins, 1983). However there is a body of evidence which implies that the poly A does not regulate mRNA stability in certain cases but that its primary function is in protein synthesis (Jacobson and Favreau, 1983; Palatnik et al., 1984). It has been postulated that the two phenomena are indirectly related in that mRNA stability is in 7
part a consequence of translational efficiency. The m Gp cap structure has been shown to be critical in determining the nuclear and cytoplasmic stabllities of mRNA in the Xenopus oocyte (Green et al., 1983a). Thus blocking of 5^{\prime} and 3^{\prime} ends of an mRNA transcript may significantly reduce degradation by RNA exonucleases.

1-5-2 Translation
Translation of eukaryotic mRNAs typically occurs at the first AUG
triplet from the 5^{\prime} end of the message. This observation led to the hypothesis, termed the "scanning" mechanism of initiation, whereby the 405 subunit of eukaryotic ribosomes binds to the 5^{\prime} cap structure of message and subsequently migrates along the RNA chain searching for and stopping at the first AUG codon. Subsequently a 60 S subunit joins this stalled complex and peptide bond formation begins (Kozak, 1980). Although it seems clear that the position of an AUG triplet relative to the 5^{\prime} end of the mRNA has a major role in identifying it as a functional initiator codon, initiation of translation at internal AUG codons is possible (Liu et a1, 1984).

The distribution of the bases flanking functional initiator codons has been examined and the sequence $C C(A / G) C C$ AUG G has been tentatively proposed as a consensus sequence for eukaryotic inftiation sites. To assess if the translational machinery is sensitive to the sequences around AUG initiator codons, single nucleotide changes have been introduced near the translational start site of a cloned pre-proinsulin gene (Kozak, 1984). Sequence changes around the initiator codon drastically affect the yield of proinsulin protein, with the presence of an A residue 3 bases upstream from the $A U G$ being required for the most efficient utilization of the initiator codon.

Differential translation of specific mRNA molecules present in the ce11 cytoplasm is recognized as a level of control of gene expression. A characteristic of growing oocytes of all animal species is the storage of maternal mRNAs which are destined to be translated in the early embryo. The mechanism which regulates the translation of this mRNA is unknown but oocyte-specific proteins have been implicated in the reversible repression of embryonic stored maternal mRNAs (Richter and Smith, 1984). Major shifts in translation of mRNA have also been analyzed in non-embryonic ce11s. During heat trauma of most eukaryotic ce11s there is a decrease in total
protein synthesis and enhanced production of certain 'heat-shock' proteins (hsp's). This increase in the level of hsp's has both transcriptional and translational components, but selective translation of specific mRNAs plays a major part in the heat-shock response (Bienz and Gurdon, 1982; Ballinger and Pardue, 1983).

1-5-3 Post-Translation

Although all eukaryotic mRNAs are monocistronic, in that only one species of polypeptide can be translated per messenger molecule, different individual functional proteins can be encoded by the one mRNA species. In this case the mRNA is translated into a single, large "multifunctional" protein. This polyprotein is then cleaved by specific proteases to yleld distinct proteins. Several hormonal and neural peptides are initially synthesized as larger precursors, which are then converted to individual peptides by post-translational cleavage.

The precursor to adrenocorticotropic hormone (ACTH) is a.lso the precursor to β-endorphin and melanocyte-stimulating hormones (MSHS) and is called pro-opiomelanocortin (POMC). The precursor to the enkephalins contains six copies of Met-enkephalin and one copy of Leu-enkephalin (Herbert and Uhler, 1982). The major domains of the POMC molecule are flanked each side by pairs of basic amino acid residues and it is thought that a trypsin-like activity separates the domains from one another. POMC is present in both the anterior and the intermedlate lobes of the pituitary and in a number of sites in the brain. POMC is processed to different hormones in these tissues and the synthesis and secretion of ACTH/endorphin peptides is regulated differently in these sites. Processing studies have Indicated that differential tissue expression of POMC products can be affected by different post-translational processing enzymes in each tissue.

The blological slgnificance of multi-peptide precursors may be to effect the slmatitancous production of multiple, active peptides that perform co-ordinate functions.

1-6 Histone Genes
The first eukaryotic polymerase II transcribed genes to be cloned and studied were the histone genes of sea urchins and Drosophila. Studies were facilitated by the high histone gene copy number in these species and the extraordinary DNA sequence conservation of histone subtypes between species which has allowed subsequent isolation and examination of the histone multigene families from a wide range of organisms. Consequently, histone genes are one of the best characterized eukaryotic gene systems so far researched. Recent advances in the knowledge of histone gene organizations and their expression has been the subject of several extensive reviews (Hentsche1 and Birnstiel, 1981; Maxson et al, 1983a and b; Stein et al., 1984; 01d and Woodland, 1984). Thus on1y a cursory review of histone gene systems of a variety of species will be given and only those details that are directiy relevent to this thesis wil. be presented.

1-6-1 Tandemly Repeated Systems
The major class of histone genes of invertebrates occur in loci containing tens to hundreds of nearly identical repeating units. Such tandemly repeated clusters are found in Drosophila and several species of sea urchin. The newt and possibly Xenopus may also contain similar repeats (see Maxson et al., 1983). Several common features can be seen in this type of organization, vig., the repeating units contain the genes for all five histones; these genes all encode the "early" histone proteins (embryonically expressed); repeated units of such clusters are extremely homologous within species, but there may be distinct major and minor repeats which differ considerably. However, some organizational features of
tandem repeats show significant variation, such as gene orders, polarity of transcription and the lengths of the repeats.

1-6-2 Disorganized Clusters
The histone genes of the higher eukaryotes (mammals and birds) and the lower eukaryotes (yeast and protista) are present in much lower copy numbers than those of the "tandemly repeating" organisms. There is no immediately apparent gene order or arrangement in these organisms, except that the histone genes are loosely clustered into groups of several genes separated by large spacer DNA regions. The most detailed picture of vertebrate histone gene organisation has come from recent studies in the chicken genome (D'Andrea et al., 1985; see chapter two). Genes for the "1ate histone" subtypes of the sea urchin have recently been isolated and shown to have a similar disordered structure. However, upon closer examination of the gene organization tables in Maxson et a1. (1983a) trends do become apparent, in that there is a close association of H2A genes with H2B genes and to a lesser extent an association of H3 and H4 genes. Work presented in this thesis goes on to define the extent of the H2A/H2B association in the chicken genome.

1-6-3 Gene Sequences
Gross examination of the histone gene architecture from several genera has not suggested any regulatory mechanism controlling these genes. More detailed structure-function relationships have come from DNA sequence analyses.
(i) mRNA Untranslated Region and Cap Site

Characteristically histone leader regions are short and pyrimidine rich but there is little conservation of sequences in the leader regions of any of the histone mRNA subtypes in genera1. There are, albiet short,
conserved regions between the mRNA leaders of adjacent chicken histone H1 and H2B genes (Coles, 1985). The 5° termini of most histone mRNAs are located within a conserved PyCATTCPu sequence.
(1i) Coding Regions and Spacers
Initial attempts to identify conserved sequences in the cloned major histone repeat of P. miliaris (clone h22) revealed that the coding regions were G-C rich and intronless. The spacers were $A-T$ rich, could not code for proteins and contained stretches of alternating copolymeric DNA. Simple alternating copolymers are also present in the spacers of Drosophila but in a somewhat shorter form. Histone genes from a wide variety of organisms studied subsequently have also been shown to lack introns. Exceptions to this trend have been found in two chicken genes, one an $H 3$ subtype variant gene and the other an H2A protein varlant gene called H2AF (A. Robins persona1 communication).

(iii) Promoter Elements

The sequences 5^{\prime} to histone genes are thought to be more important in the control of histone gene transcription than any gross organization of this multigene family (this will be further discussed in the main text). As outined in 1-4-2 there are several independent promoter signals common to most polymerase II transcribed genes and these are present in the histone genes, though not present in all genes of the family. There also exist several histone-specific/histone-subtype specific sequences.

The TATA element (with variations) is present in all histone genes examined. In the sea urchin, the sequence GATCC is present 11 bases upstream of the TATA sequence of most genes. Work in this laboratory has shown that this sequence is not found close to the TATA box of any chicken histone gene except H4. Moreover this element is present on1y in H4 genes of several other higher eukaryotes. It is concluded that, at least for
these cases, this element is in fact $H 4$ gene-specific (Wang et al., 1985).
Other subtype specific motifs have been described for H 1 and H 2 B genes of several species. The most significant $H 1$ motif is an AAACACA, found approximately 100 bases upstream from the cap site (Coles and We11s, 1985). A 13 base H2B-specific sequence (Harvey et a1., 1982) is located 6-30 base pairs upstream from the TATA box and will be a major point of discussion in chapter 6 of this thesis. The sea urchin H2A gene promoter region has been extensively mapped and deletion of far-upstream sequences can modulate transcription (1-4-2 (i1)). This area contains two well conserved regions (with homology to several viral enhancers) between sea urchin species which are also present in two chicken H2A genes (Wang et al., 1985), although these two elements have been fused into one element in the chicken.

(.Lv) Conserved 3^{\prime} Elements

The 3^{\prime} flanking regions of histone mRNAs are remarkable in that most contain a 23 base canonical
sequence which contains a 6 base hyphenated inverted repeat; 3^{\prime} termini of histone mRNAs localized to date fall within the ACCA region. This sequence is responsible for the endonucleolytic cleavage event that generates the histone 3^{\prime} end (1-4-5 (ii)). Those histone genes that lack this processing site, such as in yeast, contain an AATAAA sequence and are correspondingly polyadenylated.

1-6-4 Regulation of Histone Expression
Histone proteins associate with DNA as a nucleosomal particle containing an invariant 1:1 molar ratio of the four core histones - H2A, H2B, H3 and H4 - and about half equimolar amounts of the $H 1$ histone subtype. Histone gene families therefore are regulated by controls that
must ensure proper stoichiometric relationships of histone to histone and total histone to DNA. Clearly these controls must ensure that dividing cells synthesize sufficient histones to organize newly replicated DNA into functional chromatin. The demand for histones may be periodic and light or sustained and heavy depending on the doubling time of the cell. For example, cultured cells exhibit a relatively long cell cycle whereas cleaving embryos of some species divide extremely rapidly. Different strategies for histone regulation are obviously called for in these two extreme cases.

A considerable body of evidence exists to indicate that histone production and DNA synthesis are temporally co-ordinated during the cell cycle. For most studies of expression in the cell cycle cultured mammalian ce11s have been employed. The tightness of the coupling between DNA synthesis and histone expression has been found to depend upon the cell type. Regulation of replication-dependent histone synthesis operates at two levels, that of transcription of the genes and of destabilization of the histone transcripts at the end of S-phase. Knowledge of the mechanisms of regulation at both levels remains at the hypothetical stage but is currently an intensive area of research.

The coupling of histone and DNA synthesis of eukaryotes is not found throughout their life cycles. A we11 documented example of uncoupled histone synthesis occurs durlng embryogenesis. Upon fertilization, the eggs of many organisms undergo a period of rapid cell division in the course of which distinct cell lineages are established. Large quantities of histones are used in chromatin formation and the developing zygote can use preexisting stores of histone protein and newly synthesised histone from mRNA accumulated during oogenesis. These stores can be supplemented by de novo transcription and translation during cleavage. The presence of many copies
of histone genes in several organisms may permit unusually rapid synthesis of large quantities of histone mRNA during cleavage compared to that seen during adult expression.

The unfertilized sea urchin egg contains a significant store of histone mRNA and protein. During the development of the sea urchin three major classes of histone proteins appear. A succession of switches occurs between these histone gene classes; from the first cell division cleavage stage (cs) variants are found in chromatin and their synthesis continues until the 8 -ce11 stage whereupon the α variants are synthesized and used throughout early cleavage after which they are largely replaced by the γ class. The maternal stockpile of histone contains both α and cs variants. Histone genes coding for early embryonic protein forms (α) are the ones that are organized in tandem repeats. There is no evidence of any developmental classes of histone genes in Drosophila or Xenopus which have the tandemly repeated component of sea urchin organization, so major histone class switching may be an echinoderm speciality.

Thus histone gene expression is regulated temporally, qualitatively and quantitatively. Such regulation must also include mechanisms to ensure that the appropriate stoichiometry of all five histone subtypes is maintained in newly synthesized chromatin. One way of achleving this would be through the assembly of nucleosomes from appropriately sized histone protein pools. Alternatively, nucleosome histone stoichiometry may result from specific regulatory controls exerted during chromatin assembly. It has been observed that the sea urchin histone mRNAs are synthesized in amounts that reflect the molar ratio of histones in chromatin. Conversely gene dosage experiments with H2A/H2B genes in yeast apparently shows no deleterious effects when the cell only contains one of its normal two
copies of these genes. Synthesis of stoichiometric quantities of the various histone mRNAs does not alone explain how chromatin assembly is achieved during embryogenesis; such large maternal stores of histones occur that further mechanisms must exist to regulate their accumulation and use. How stoichiometry is achieved in these two completely different biological circumstances (i.e. the stoichiometry of the large embryonic store of histone produced when histone synthesis is uncoupled to DNA replication compared to that achieved when there is tight coupling of histone synthesis and DNA replication that is characteristic of non-embryonic ce11s) will be further investigated in the thesis discussion.

1-7 Functional Testing of Eukaryotic Genes
Gene structure and sequence analyses alone do not enable the mechanisms involved in the control of gene expression in higher organisms to be elucidated. For this to be achieved, gene function must be studied.

Classical genetic studies of higher organisms have been relatively restricted for several reasons viz., the mammalian genome is approximately 1000-fold more complex than that of bacteria; most animals and plants have long generation times so experiments take a long time to complete; they are usually diploid, which hinders the isolation of recessive mutations. To solve these problems a procedure of "reversed" genetics has been developed. In this approach, alterations are first introduced into specific regions of DNA believed to be involved in some aspect of gene regulation or expression. Secondly, the "phenotype" conferred by these sequence manipulations is tested by assaying for gene function. A primary requirement in this assay is that the unmutated gene is expressed in the system, \ln vivo or in vitro, in as physiological a manner as is possible.

Several experimental systems for the study of eukaryotic gene expression have been developed. Each has its own advantages or special uses
and all the systems can be grouped into three main categories. In vitro assays are obviously limited by their nature and to the specific purpose for which they were developed. Whole cell analysis can examine each level of a gene's control mechanism. The production of transgenic organisms can investigate the complete spectrum of a gene's physiological significance.

1-7-1 In Vitro Transcription
Transcriptional systems that operate in vitro are available for the anaysis of templates for all three types of RNA polymerase genes (Wickens and Laskey, 1981). The advantage of cell-free systems lies in the fractionation and identification of active components. When a soluble cell -free system performs a function efficiently it becomes possible to fractionate away that activity and to characterize the factors that restore it. When purified eukaryotic RNA polymerases are incubated with purified DNA templates, transcription begins at non-specific sites. When crude cellular extracts are added it is possible to identify sequences and fractions that direct accurate initiation.

1-7-2 Transfection of DNA into Cultured Ce11s
Genes can be introduced into eukaryotic cells by the use of various chemicals or electrical gradients which facilitate DNA uptake. DEAEdextran, calcium phosphate precipitation, glycerol/PEG shock, protoplast or 1iposome fusion and electrointroduction have a 11 been used to mediate the trasfection of DNA into tissue culture cells. The particular technique to be utilized depends on the cell type being used for analysis, the efficiency of uptake or survival rate required and the selection procedure being used. How the DNA actually enters the cell nucleus using these techniques is not known.

There are two main experimental approaches used with tissue culture
cells, either cellular "transformation" (stable inheritance of genes) can be bestowed upon the transfected cell, or transient expression of the introduced gene can be obtained.

If cellular "transformation" is aimed for, the efficiency of transformation and thus transfection is not necessarily important; a selectable marker is usually co-1ntroduced; and a clonal or homogeneous population of cells can be obtained, but the time period required to do this can be long (weeks or months). Transient gene expression does not require the production of a permanent cell line and the time course of the experiment is limited only by the survival time of the cells or the DNA introduced into them (usually days). However a high transfection efficiency 1s normally required, and a sensitive assay (such as the production of a marker protein) is commonly used to analyze the expression from a gene promoter.

The fate of the DNA once it has entered the cell nucleus depends upon the form in which it was introduced. Circular or linear molecules are usually used for transformation experiments, and will be integrated into the cells' chromosomes in variable numbers and in a random manner unless the gene is specifically transfected on a vector that reslsts integration; that is one that naturally exlsts as an eplsomal DNA molecule. An example of this type of vector is Bovine Papilloma Virus (Lusky and Botchan, 1984). Retroviral vectors have been designed for transformation experiments because the copy number and fidelity of integration is controlled by the virus (Williams et al., 1984).

Transient assays usually do not allow time for the DNA to be integrated or if it does the integrated copies do not contribute significantly to the detected expression. It is a great advantage to the detection of expression if, once an introduced molecule has been delivered
to the cell nucleus, it can be replicated or propagated to provide a number of templates for transcription. A series of SV40-derived vectors have been developed for this purpose (Spandidos and Wilkie, 1984) making use of the SV40 origin of replication.

The applications of this technology make almost every cellular operation amenable to study. There is no better example of the power of this new genetics than the transfection of yeast cells. In this lower eukaryote it is possible to replace precisely specific genes that have been cloned, with in vitro mutagenized coples and even to introduce new minichromosomes that exist at single copy number and segregate properly on replication (Struh1, 1983).

1-7-3 Microinjection of $\frac{\text { DNA into Cells }}{\text { Transgenic Organisms }}$ and the Construction of
The only practical method for introducing genetic materlal into the nuclei of some somatic cells, oocytes and fertilized eggs of Xenopus and the mouse, and into Drosophila embryos is by physical means. Direct microinjection procedures have been developed for all these systems.

DNA can be introduced into single tissue-culture cells without the help of chemical treatment (Capecch1, 1980). A high proportion of stable transformants can be obtained using these methods, possibly because the DNA is directly applied to the nucleus whereas other techniques only allow Indtial DNA entry into the cell cytoplasm. The advantages of this route of entry are that the efficiency of transfection is so high (approaching unity) that a selection procedure need not be used, the fidelity of DNA integration is good and the copy number of insertion can be controlled by controlling the number of DNA molecules injected per cell.

The expression of cloned genes in Xenopus oocytes and eggs is a common and rapid method for analysis (Gurdon and Melton, 1981; Wickens and Laskey,

1981; Gurdon and Wickens, 1983; see methods section). Its advantages are that the injections are technically easy, nearly all the steps in gene expression take place in injected oocytes, and because the amphibian ovum is such an enormous cell very few cells have to be injected to obtain enough materlal for analysis. The vast molecular knowledge available on the development of the frog egg and the control of injected DNA during embryogenesis is one of its special advantages (Newport and Kirschner, 1982).

Microinjection of plasmid DNA into fertlized mouse ova has been shown to be a convenient and also rapid system for studying transcriptional regulation (Brinster et al., 1982). If the male pronucleus of a fertilized mouse egg is injected it is possible to get retention of the gene in every cell of the developing mouse (Palmiter et al., 1982; Lacey et a1., 1983). Such transgenic animals often transmit the gene through the germ line to the next generation. This technique promises to be invaluable in the Investigation of tissue speciflc gene expression.

Drosophila embryos can be made transgenic when injected with genes contained in P-element vectors. P-elements are transposons which are highly mobile in the Drosophila germ line when in non P-strain genetic backgrounds, and are responsible for the phenomenon of hybrid dysgenesis. The injected DNA specifically integrates into the germ line cells of embryos, thus the phenotype conveyed by the injected gene does not show up until the progeny of the injected fly is produced. Using this system three tissue specific genes have been shown to be controlled correctly in the Drosophila chromosomes (Flavel1, 1983). The added attractions in Drosophila are the short generation time (about 2 weeks) and the availability of mutants.

NOTE TO READER:
The number and the names of histone gene containing recombinant clones discussed in the text can become overwhelming. Most of the work can be followed in a logical progression. Whenever a group of clones is discussed (such as the six divergent H2A/H2B gene clones) they are always presented in the same order, which is usually the order of their isolation. The position of a histone clone within the chicken histone gene loci can always be traced by reference to figures 2-1, 2-2 and 2-3.

CHAPTER 2: ORGANIZATION OF THE CHICKEN HISTONE MULTIGENE FAMILY - DIVERGENTLY ORIENTATED H2A/H2B GENES

2-1 Introduction

The entire complement of core and H1 histone genes have been isolated from the chicken genome (D'Andrea, 1985; Coles, 1985; D'Andrea et al., 1985). Fourty-two genes are located within four as yet unlinked loci. The total region of the chicken genome covered is 175 kilobases , encompassed in three genomal cosmid clones and ten λ clones (figures 1, 2, and 3). The number of each type of histone gene is approximately equal 1.e. $\mathrm{H} 1,6$; H 2 A , 10; H2B, 8; H3, 10; H4, 8.

The overall pattern of histone gene organisation from gross restriction mapping and southern blotting is one of disorder, with no long range repeat being evident. Dispersed clusters is the most apt description of the distribution of the genes. There are however preferred associations, H1 with H2A and H2B genes, and a coupling of H3 and H4 genes. The extent of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ associations w111 be examined in this chapter.

2-2 Orientation of H2A/H2B Genes

The starting points for Richard D'Andrea and Leeanne Coles chromosome walk through the chicken histone gene 1 loci were $\lambda \mathrm{CH}-01$ and $\lambda \mathrm{CH}-02$ (Harvey et al., 1981; figures 2-1 and 2-2). There is therefore a temporal relationship between their isolation of clones, and my orientation of the H2A/H2B gene pairs contained within them. The initial stimulus for looking specifically at the coupling of $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes was the orientation of such a pair in the $\lambda \mathrm{CH}-01$ clone and my subsequent realization that the promoter region of each gene was extremely close together. Moreover it was obvious that the two genes could share common promoter elements.
(1) $\lambda \mathrm{CH}-01$

A 3.3 kilobase-pair (kb) fragment generated by an EcoRI digestion of

Figure 2-1: Structure of recombinant clones surrounding $\lambda \mathrm{CH}-01$
The overall organization of the region surcounding $\lambda \mathrm{CH}-01$ ts shown. The position and direction of histone genes are shown in the top of the diagram by the arrows and the clones derived from this region are indicated. Detailed restriction maps of subclones derived from the genomal clones are also shown with the precise location of genes illustrated (figure taken from D'Andrea et al., 1985).

Figure 2-2: Structure of recombinant clones surrounding $\lambda \mathrm{CH}-02$
The genes present in this region are shown above the overall restriction map. Subclones pCH 22.0 B and pCH 2.7 B were constructed from cosmid 6.1C and detailed restriction maps of these are shown indicating precise gene locations (figure taken from D'Andrea et al., 1985).

KEY:		
P Eco RI	4 Bam HI	P Soc II
P Sal 1	P Xho I	8 Hinc 1
¢ Hind III		

Figure 2-3: Structure of genomal clone $\lambda \mathrm{CH}-10$
An overali restriction map of this histone gene containing region is presented. Terminal EcoRI cleavage sites are derived from synthetic DNA 1inkers used during the construction of the clone. The sequencing strategy of the $H 2 A / H 2 B$ pair used to orientate the two genes is shown below the restriction map (data taken in part from D'Andrea et al., 1985). The total sequence of the EcoRI-HindIII fragment is presented in figure 3-6.
$E=E \operatorname{coR} I$
P = PstI
$\mathrm{B}=$ BstEII
$\mathrm{H}=\mathrm{HindIII}$

$\lambda \mathrm{CH}-01$ contains the entire $\mathrm{H} 1, \mathrm{H} 2 \mathrm{~A}$ and H 2 B coding regions. This 3.3 kb fragment has been inserted into the EcoRI site of $\operatorname{pBR} 325$ and is known as pCH3.3E (this fragment will later be described in a 7 kb genomal EcoRI fragment from λ CH-05, known as p 7 AT). A restriction map of it is shown in figure 2-4. The complete sequence of the 3.3 kb insert has been determined initially using Maxam and Gilbert technology, then M13 dideoxy sequencing (D'Andrea et a1., 1981; Harvey et a1., 1982; Coles and We11s, 1985). The H2A gene is contained completely within a $706 \mathrm{~b} . \mathrm{p}$. Xhol fragment and the H2B gene within a 533 b.p. XhoI-EcoRI fragment.

At this stage the orientation of the XhoI fragment in pCH3.3E had not been determined, and in fact had been assumed to be oriented such that the H2A gene was transcribed in the same direction as the $H 1$ and $H 2 B$ genes. From the sequence analysis of the 3.3 kb insert, three BstEII restriction sites were predicted. A11 were in coding regions, one in the $H 2 \mathrm{~A}$ and two in the $H 2 B$. The contiguous sequence of the $H 2 B$ gene meant that there had to be a 300 b.p. BstEII coding fragment. Depending on the orientation of the XhoI fragment a 407 b.p. (co-directional transcription) or $702 \mathrm{~b} . \mathrm{p}$. (divergent transcription) BstEII band was predicted. Upon analysis of the DNA (figure 2-4) a band of approximately 700 b.p. was found.

The discovery of the $702 \mathrm{~b} . \mathrm{p}$. BstEII band meant that the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes of λ CH-01 were divergently transcribed, and sequencing from the SmaI site of pCH3.3E through the XhoI site $140 \mathrm{~b} . \mathrm{p}$. away (figure $2-4$) confirmed this. Subsequently, sequencing of a DNA fragment containing the intergenic XhoI site confirmed the junction of the H 2 A and H 2 B genes (A . Robins, this 1aboratory).
(2) Cosmid 6.1C

Having the sequence of the $\lambda \mathrm{CH}-01 \mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair available did not

Figure 2-4: Organization of H2A/H2B genes contained within λ CH-01
A schematic representation of the genomal clone $\lambda \mathrm{CH}-01$ and the plasmid subclone derived from it pCH 3.3 E , 111ustrates the position and orientation of the H 1 gene, and the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ divergent gene pair. The position of BstEII restriction sites used to orientate the genes of the divergent pair are shown along with the unique SmaI and the two XhoI restriction sites.
$\mathrm{B}=$ BstEII

S = SmaI
$\mathrm{X}=\mathrm{XhoI}$

E $=$ EcoRI
L
E = EcoRI 1Inker
The photograph of the polyacrylamide gel containing the BstEII digest of pCH3.3E and a pBR322 HinfI marker track is shown below the figure. The 700 base BstEII fragment indicates that the H2A and H2B genes must be directed away from each other. The 350 base BstEII band results from two internal H 2 B gene BstEII recognition sites.

pCH 3.3E
M Bst EII

conclusively identify the promoter elements contained within the intergene region although likely TATA and CCAAT box elements (1-4-2(1)) were suggested. By comparison to a single independent chicken $H 2 B$ gene contained within $\quad \lambda \mathrm{CH}-02$ (figure 2-2), and several H 2 B genes of other species a so called "ubiquitous $H 2 B$-gene specific 5 ' element" was identified in front of the H2B TATA box (Harvey et al., 1982).

Given this lack of readily identifiable motifs that could potentially be shared by the two genes it was decided to examine other chicken $H 2 A / H 2 B$ gene pairs in order to determine their respective orientations and, if appropriate, to do comparative sequence analysis. Examination of the restriction map of cosmid 6.1C (Lesnikowski, 1983; D'Andrea et al., 1985; figure 2-2) identified a H2A/H2B gene system containing a XhoI site which separated the two coding regions when southern blot analysis was done. Because a H2A/H2B Intergenic XhoI site was found in λ CH-01 (figure 2-4) it seemed reasonable to investigate, by sequence analysis, the nature of the cosmid 6.1C H2A/H2B intergenic region.

A subclone from cosmid 6.1C, named pCH 22.0 B (figure $2-2$) was used as the source of DNA for this $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pair. A 5.0 kb EcoRI fragment (figure 25) was isolated preparatively from this clone and redigested with XhoI. A 1.0 kb XhoI-EcoRI H2B containing fragment and a 2.3 kb partially digested XhoI-EcoRI fragment were subcloned into an Ml3mp8 SalI-EcoRI directional sequencing vector. Upon analysis of the 1.0 kb fragment, reading from the XhoI site, the start of the H 2 B coding region was readily identified (figure 3-3) thus orientating the gene toward the EcoRI site. The presence and position of the XhoI recognition sequence was found to be coincidental, in that it was not in the same position as the $\lambda \mathrm{CH}-01$ intergene XhoI site (also I beleive it to be of no consequence when comparative sequence analysis is done; see chapter 3).

Figure 2-5: Analysis of the H2A/H2B gene pair of cosmid 6.1C
The diagram shows a gross restriction map of the 22.0 kb BamHI subclone from cosmid 6.1 C and the 5 kb EcoRI restriction fragment used in the analysis of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair. The strategy used in obtaining the partlal sequence of the two genes (figure 3-3) is also outlined.
$B=B a m H I$
$\mathrm{E}=\mathrm{EcoRI}$.
$\mathrm{X}=\mathrm{XhoI}$
$\mathrm{S}=\mathrm{SauIIIA}$
$\mathrm{R}=\mathrm{RsaI}$

H = HaeIII

The 2.3 kb XhoI-EcoRI clone containing both the H 2 A and H 2 B coding regions was restricted with Sau3A as a recognition site for this enzyme was discovered close to the intergenic XhoI site. It was then run on an acrylamide gel next to a track of M13mp8 Sau3A digested DNA in an attempt to identify bands that were unique to the 2.3 kb partial XhoImEcoRI ingert. A band of approximately $500 \mathrm{~b} . \mathrm{p}$. was seen to be unique to the 2.3 kb XhoIEcoRI clone, it was therefore excised and cloned into an M13mp8 BamHI vector. Sequence analysis of one direction of this Sau3A band was found to go through the intergenic Xhol site and into the start of the H2A coding region. A second divergently orientated chicken $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair was thus characterized as shown in figure 2-5.
(3) $\lambda \mathrm{CH}-07$

A third $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair was mapped on a clone overlapping $\lambda \mathrm{CH}-01$, termed λ CH-07 (figure 2-1). A 3.5 kb EcoRI fragment containing this pair had been subcloned into pBR325 by Richard D'Andrea to facilitate mapping of the chicken histone gene loci. Fine restriction mapping of this pCH3.5E clone however was not intended to orientate the gene pair.

From mapping data a SacI restriction site was seen to separate the two coding regions (figure 2-6). In addition another SacI site was found in the H2A coding region. This unique SacI band of approximately 550 b.p. was purified through an acrylamide gel and cloned by blunt ending the fragment with DNA polymerase I Klenow fragment and ligating into the SmaI site of the M13mp9 sequencing vector. The complete sequence of this fragment was then obtained. The H2A coding region was indeed found but in itself this fragment did not orientate the H2A gene.

Utilizing the sequence generated from the cloned SacI band and with the liklihood that a divergent pair was indeed being studied a PstI-BstEII

Figure 2-6: Analysis of the H2A/H2B gene pair of $\lambda \mathrm{CH}-07$
The position of the 3.5 kb EcoRI restriction fragment of $\lambda \mathrm{CH}-07$ containing the $H 2 A / H 2 B$ gene pair along, with the position of the SacI restriction sites used in the initial sequencing/orientation of the gene pair are shown. The strategy used to obtain the sequence data presented in figure 3-4 is outlined below the restriction maps.
$E=E c o R I$
L
$\mathrm{E}=$ EcoRI 1inker

S = SacI
$B=$ BstEII
$P=$ PstI

fragment of approximately $470 \mathrm{~b} . \mathrm{p}$. generated upon digestion of pCH 3.5 E was purified, blunt-ended and cloned. The coding regions of every iso-coding chicken histone gene, excepting H , is very highly conserved. From other data it seemed 1ikely that there was a BstEII site near the beginning of the $H 2 B$ coding region, and it was known (from the SacI sequence) that a PstI site was present near the start of the H2A coding region. A band of about 470 b.p. was consistent with the bellef that a divergent pair was being examined. The sequencing data provided by this insert spanned the intergenic SacI site and entered the start of the H2B coding region. The hypothesis of divergent gene orientation was thus confirmed (figure 2-6).
(4) Cosmid 6.3C

Two additional $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pairs were discovered in the $\lambda \mathrm{CH}-01$ overlapping cosmid 6.3C (figure 2-1). It was decided to restrict pCHIl.0E, a subclone from cosmid 6.3C (figure 2-1), with EcoRI and Sall to separate these two pairs from each other and so not confuse restriction fragments generated from them. To completely remove any doubt of identification, the 1eft-hand 4.5 kb EcoRI-SalI fragment of pCHll.0E was c1oned into the SalIEcoRI sites of M13mp8. The right handed SalI-EcoRI fragment was obtained in sufficient quantity and purity so as not to necessitate cloning.

The left-handed and right-handed SalI-EcoRI isolates of pCHIl.OE were digested with PstI-BstEII. Each generated a 470 b.p. fragment on an acrylamide gel. As discussed above (and will become apparent from the data discussed in chapter 3) the size of these PstI-BstEII bands is consistent with divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes and as such these size bands were good candidates for sequencing. These bands were isolated separately, treated with Klenow enzyme and 1igated into the SmaI site of M13mp9. Sequencing of each fragment identified both pairs as divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes as shown in figure 2-7.

Figure 2-7: Analysis of the H2A/H2B gene pairs of cosmid 6.3C
An 11.0 EcoRI subclone from cosmid 6.3C (figure 2-1) was used as the source of DNA for the two pairs of divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes of this cosmid clone. The restriction map of the left (4.5 kb) and right (5.5 kb) EcoRISal. fragments of pCH1L.OE and the position and orientation of the gene pairs in them is presented. The restriction sites used for sequencing of the two intergene regions (figure 3-5) are shown.

```
E = EcoRI
S = SalI
SI = SacI
P = PstI
B = BstEII
```


(5) $\times \mathrm{CH}-10$

The last $H 2 A / H 2 B$ gene pair isolated is contained within the clone $\dot{\lambda} C H 1-$ 10 (figure 2-3). The genes in this clone form a separate cluster, with no apparent 1inkage to the $\lambda \mathrm{CH}-01$ or $\lambda \mathrm{CH}-02$ loci. An EcoRI-HindIII fragment from this clone was inserted into the EcoRI-HindIII sites of M13mp8 and M13mp9 by Leeanne Coles. Sequencing of these two clones readily identified the $H 2 A$ coding region reading from the EcoRI linker site and the H 2 B coding region reading from the HindIII site. A divergent gene orientation was thus determined as shown in figure 2-3.

2-3 Discussion

The histone genes present in the chicken genome can be divided, by close association, into 11 clusters (figures 2-1, 2-2 and 2-3). None of these arbitrary regions contain an entire complement of core and $H 1$ genes and there is no evidence for a repeating unit between the clusters. Within 5 of the clusters, however, there are closely associated and divergently transcribed H2A/H2B gene pairs. This leaves four of the H2A and two of the H2B gene complement (of 10 H 2 A and 8 H 2 B) as separate entities.

One of these independent gene clusters without a divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pair retains the $H 1, H 2 A, H 2 B$ gene association (figure $2-2$). The remaining H2B gene is associated with an H3 gene and two H4 genes in an apparent inverted duplication (figure 2-1; Wang et a1., 1985). The last H2A gene is contained within a fourth histone gene loci represented by a single cosmid clone (not presented here) in association with a H3 gene.

A form of a repeating unit has thus been discovered within the apparently randomly organized chicken histone multigene family. It is interesting to consider the gene associations of other non-repeating histone gene systems. Upon examination of the gene organization tables in

Maxson et al. (1983a) it is clear that a divergent organisation of $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pairs is present in a number of species such as Yeast, Sea Urchin (late transcripts), Xenopus and Human. This arrangement is also present in the repeating systems of Drosophila and Newt. This association of H2A/H2B genes through evolution suggests a functional significance of this arrangement.

CHAPTER 3: COMPARATIVE SEQUENCE ANALYSIS OF CHICKEN H2A/H2B GENE PAIRS
3-1 Introduction
Concurrently with the orientation of the six divergent H2A/H2B pairs the sequence of the intergene regions could be compared. The sequence comparison for all six pairs was initlally intended to analyze the promoter regions of these genes, but in addition several of the protein coding regions were extensively sequenced during orientation, and therefore were also available for comparison. The complete sequence of pCH3.3E (figure 24) had been obtained previously, but with the isolation of overlapping clones to $\lambda \mathrm{CH}-01$ it became possible to sequence the 3° end of the $H 2 B$ gene, which was not contained within pCH3.3E, to complete this gene in its entirety.

3-2 Sequence of six chicken H2A/H2B gene pairs
(1) $\mathrm{pCH} 3.3 \mathrm{E} / \mathrm{p} 7 \mathrm{AT}$

The construction of the chicken genomal λ library (screened by Richard D'Andrea and Leeanne Coles) involved a partial HaeliI/AluI restriction digestion of chicken DNA, 1igation of a 12 base EcoRI 1inker onto the blunt termini generated by these enzymes and cloning into the EcoRI site of the charon 4A vector. pCH3.3E has an EcoRI 1inker just after the end of the H2B protein-coding region. With the isolation of $\lambda \mathrm{CH}-05$ and the discovery that it overlapped the right hand end of $\lambda \mathrm{CH}-01$ it became possible to extend the sequence of pCH 3.3 E and so find the 3^{\prime} histone terminator of this H 2 B gene.

A 7 kb genomal EcoRI fragment generated from $\lambda \mathrm{CH}-05$ contained the entire 3.3 kb EcoRI fragment of $\lambda \mathrm{CH}-01$ and pCH 3.3 E (figure 3-1). This was subcloned into the EcoRI site of pBR325 by Richard D'Andrea for mapping purposes (figure 2-1) and into the EcoRI site of pATl53 by myself to facilitate the isolation of the $\mathrm{H} 2 \mathrm{~B} 3^{\prime}$ end (figure 3-1) and the gene expression work to be discussed in chapters 4 and 5. From mapping data a

Figure 3-1: Isolation of the 3^{\prime} end of the $\mathrm{pCH} 3.3 \mathrm{~F} / \mathrm{p} 7 \mathrm{AT}$ H2B gene
The overlapping chicken histone genomal clones $\lambda \mathrm{CH}-01$ and $\lambda \mathrm{CH}-07$ and a gross restriction map of p 7 AT are presented. The BstEII-SacII restriction fragment used to generate the sequence of the $\mathrm{H} 2 \mathrm{~B} 3^{\prime}$ end is shown.

L
$\mathrm{E}=\mathrm{EcoRI}$ linker

E = EcoRI
$S=S m a I$
$X=$ XhoI

B = BamHI
BII $=$ BstEII
SII = SacII

SacII site was found 3^{\prime} to the H 2 B gene. Sequence of the H 2 B gene predicted a BstEII restriction site very close to the right-hand EcoRI 1inker of λ CH01. A BstEII-SacII digestion of p7AT allowed isolation of the required fragment of about $700 \mathrm{~b} . \mathrm{p}$. which was purified through an acrylamide gel. The termini were blunt ended with Klenow enzyme and the fragment ligated into the HincII site of M13mp7. Sequencing in from the BstEII site generated the 3^{\prime} end of the H2B gene discussed by Harvey et al. (1982).

The sequence of p7AT from the unique SmaI site to the end of the $H 2 B$ gene is presented in figure 3-2. This includes the complete sequence of both the H2A and H2B mRNA transcription units.
(2) pCH 22.0 B

The sequencing strategy for the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pair of cosmid 6.1 C is shown In figure 2-5. $751 \mathrm{~b} . \mathrm{p}$. of continuous DNA sequence is presented in figure 3-3 which spans the intergenic region of the genes and includes the first 63/72 N-terminal amino acids of $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ respectively.
(3) pCH 3.5 E

The sequencing strategy for the $H 2 A / H 2 B$ pair contained in pCH 3.5 E is shown in figure 2-6. A continuous sequence of $1017 \mathrm{~b} . \mathrm{p}$. is presented in figure $3-4$. The first $102 / 120$ amino acids of $H 2 A / H 2 B$ are contained within this sequence.
(4) pCH 11.0 E

The sequencing strategy for the left and right divergent pairs of pCH11.0E is shown in figure 2-7. A non-contiguous $488 \mathrm{~b} . \mathrm{p}$. for the 1 eft $H 2 A / H 2 B$ and a complete $463 \mathrm{~b} . \mathrm{p}$. for the right $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ is shown in figure 35. In each pair $25 / 20 \mathrm{~N}$-terminal amino acids of $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ are presented.
(5) $\lambda \mathrm{CH}-10$

The complete sequence of the EcoRI linker-HindIII H2A/H2B containing

Figure 3-2: Sequence of the pCH3.3E/p7AT H2A/H2B gene pair
The complete sequence of the H 2 A and H 2 B transcription units from p7AT is shown (data taken from Harvey et al., 1982). Coding regions have been translated and the intergene region is numbered on both strands starting from each ATG initiation codon. The restriction enzyme recognition sites for SmaI, XhoI, BstEII and the two HpaII sites that encompass the Intergene region are indicated, as are the dyad symmetry elements responsible for mRNA 3' end formation. The elements lientified in Table 3-1 are highlighted In colour (see legend to Table 3-1). The beginning and end of each mRNA is marked by vertical arrows.

SmaI

 CGCAACGATAATAATGGGTGGTTTATTATGACTATTATTTATACTCTTTTTTTTTACTTT

 GAGAGGACGCTACGACACCCACCGAGACTTTTTCTCGAAACCTGACAAGAGAGTCTGTCGC
 GАСGGAGCGGCCACGAGTGAACCGGAACCGOAACACCGACAGCCAGAAGAACCCGTCGTO aht lys ala lys ala lys hls ser asp thr lys lye pro leu leu
 GTGCCGGACCTACAACCCGTCGTGGGGCGGGACGCGCTACCAGTGGAACGGGTCGTCGAA val ala gln lle asn pro leu val gly gly gln ala lie thr val lys gly leu leu lya GTTGAGCTCCTCGTCGTTGCGGATGGCCAGCTGCAGGTGGCGGGGGATGATGCGCGTCTT CAACTCGAGGAGCAGCAACGCCTACCGGTCGACGTCCACCGCCCCCTACTACGCGCAOA, asn leu glu glu asp asn arg lle ala leu gin leu his arg pro lie lie arg thr lys CTTGTTGTCGCGGGCCGCGTTGCCCGCTAGCTCCAGGATCTCGGCCGTCAGGTACTCCAG

 val ala ala leu tyr val pro ala gly ala gly val arg glu ala tyr asi gly lys arg

 -80

-200

-180
-170
-160
-150

тАт -260 - -270 -

 HpaíI
lys lys gly aer lys lys ala val the lys the gin lys lys gly asp lys lys arg lys
 СтTCTTCCCGAGATTCTTCCGCCAGTGGTTCTGGGTCTTCTTCCCGCTGTTCTTCGCGTT lys ber axg lys glu ger tyr ser lle tyr val tyr lys val leu lys gin val hia pro

asp thr gly lle ser sex lys ala met gly lle met asn ser phe val asn asp lie phe GCTGTGCCCGTAGAGCAGGTTCCGGTACCCGTAGTACTTGAGCAAGCAGTTGCTGTAGAT
 GCTCGCGTAGCGGCCGCTCCGCAGCGCGGACGGCGTGATGTTGTTCGCGAGCTGGTAGXGO
ser arg glu lie gln thr ala val arg leu leu leu pro gly glu leu ala lys his ala
 CAGCGCCCTCTAGGTCTGTCGGCACGCCGACGACGACGGGCCGCTCGACCGGTTCGTGCG
val ser glu gly thr lys ala val thr lys tyr the ser aer lys wa*
 CCAGAGCCTCCCGTGGTTCCGCCAGTGGTTCATGTGGTCGAGGTTCATTCGACAAAAGTA

caganaィt
GTCTTTTI

Figure 3-3: Sequence of the $\mathrm{pCH} 22.0 \mathrm{~B} \mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair
The partial sequence of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ transcription units of pCH 22.0 B is shown. The protein coding regions are indicated above or below the DNA sequence. The SauIIIA, RsaI, XhoI and HaeIII restriction sites used in the analysis of this gene pair (figure 2-5) are outlined in the figure. The two amino acid differences of the $H 2 B$ protein encoded by this clone at positions 31 and 33 are boxed. The intergene elements identified in Table 3-1 are highlighted in colour (see legend to Table 3-1).

[^0]Figure 3-4: Sequence of the pCH3.5E H2A/H2B gene pair
The partially determined amino acid sequences and nucleotide sequence of the intergene region of the $\mathrm{pCH} 3.5 \mathrm{E} \mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair are presented. BstEII, PstI, and SacI restriction enzyme recognition sites used in the generation of M13 clones for sequencing are outlined (figure 2-6). The Intergene elements identified in Table 3-1 are highlighted in colour (see legend to Table 3-1).
 the val lys gly leu leu lys asn leu glu glu asp asn arg ile ala leu gin leu his

GCGGGGGATGATGCGCGTCTTCTTGTTGTCGCGGGCCGCGTTGCCCGCCAGCICCAC CGCCCCCTACTACGCGCAGAAGAACAACAGCGCCCGGCGCAACGGGCGGTCGAGGTGCTA arg pro ile ile arg the lys lys asn asp arg ala ala asn gly ala leu glu leu ile
 GAGCCGGCAGTCCATGAGGTCGTGCCGGCGGTCCATGTGGCCCCGCGGCCGCGGGTGGGC glu ala thr leu tyr glu leu val ala ala leu tyr val pro ala gly ala gly val arg CTCCGCGTAGTtGCCCTTGCGCAGCAGCCGGTGCACGCGGCCCACGGGGAACTMEXACCC GAGGCGCATCAACGGGAACGCGTCGTCGGCCACGTGCGCCGGGTGCCCCTTGACGTCGGG glu ala tyr asn gly lys arg leu leu arg his val arg gly val pro phe gln leu gly

GGCCCGCGACGAGCGCGACTTGGCCTTGGCGCGCGCCTTCCCGCCCTGCTTTCCGCGCCC CCGGGCGCTGCTCGCGCTGAACCGGAACCGCGCGCGGAAGGGCGGGACGAAAGGCGCGGGG ala arg ser ser arg ser lys ala lys ala arg ala lys gly gly, gln lys gly arg gly

CGACATCGCAGCGACCGAACGTCCAACCAGCAAACCAACCGCTCGCAGCACAGCGCTCTC GCTGTAGCGTCGCTGGCTTGCAGGTTGGTCGTTTGGTTGGCGAGCGTCGTGTXGCGAGAG ser met

CGGCCGCGCCCGCCCGCTTATATtCAGTTCGGGCGGAGCGGAGGCGCGCTGTCGGATAGG GCCGGCGCGGGCGGGCGAATATAAGTCAAGCCCGCCTCGCCTMCCGCGCGACACCXTATCC CCGAGCGGTCGGCGCACGGCGTCGCAGCCAATGGGAGAGCGGATCGGCGGGCACCCAATE GGCTCGCCAGCCGCGTGCCGCAGCGTCGGTMACCCTCTMGCCTAGCCGCCCGTGCGTATAC GTGGGCGCGCGTTGTGGTGACGCCACAAACACGGACTTCCAGCCAATOCCAGTGCGGCGC CACCCGCGCGCAACACCACTGCGGTGTTTGTGCCTGAAGGTCGGTTACGGTCXCGCGGCG

TGCGGAGCTGCTGCTTTGCATAGCGCCGCTATAAAGGCGGCTCCTGCGGTCGGCTGCGTT ACGCCTCGACGACGAAACGTATCGCGGCGATATTTCCGCCGAGGACGCCAGCCGACGCAA
 TGACGCGAGGCTCGCTCACACGACCAXCACAAAACGCTCGAGCAAGCXACAAGTCGTTAC pro glu pro ala lys ser ala pro ala pro lys lys gly ser lys lys ala val the lys

 thr gln lys lys gly asp lys lys arg lys lys ser arg lys glu ser tyr ser lie tyr
 - GGCGTTCCTCTCGATGAGCTAGATG
val tyr lys val leu lys gln val his pro asp thr gly lle ser ser lys ala met gly GTGTACAAGGTGCTGAAGCAGGTGCACCCCGACACGGGCATCTCGTCCAAGGCCATGGGC CACATGTTCCACGACTTCGTCCACGTGGGGCTGTGCCCGTAGAGCAGGTTCCGGTACCCG
lle met asn ser phe val asn asp lle phe glu arg fle ala gly glu ala ser arg leu

ala his tyr asn lys arg ser thr lie thr ser arg glu ile gln thr ala val arg leu GCGCACLACACACACGCGGGAGATCCAGACGGCCGTGCGGCTG CGCGTGATGTTGTTCGCGAGCTGGTAGTGCAGCGCCCTCTAGGTCTGCCGGCACGCCGAC
CTG leu pro gly glu leu ala lys his ala val ser glu gly the lys ala val thr

BSEEII

Figure 3-5: Sequence of the pCH11.0E $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pairs
The nucleotide and amino acid sequences of (a) the left H2A/H2B gene pair and (b) the right $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair of $\mathrm{pCH11.0E}$. The sequence of the left gene pair was obtained by several sequencing runs of a PstI-BstEII restriction fagment clone orientated in only one direction. The dashes in the sequence represent undetermined bases. Both orientations of a PstBstEII intergenic fragment of the right hand gene pair were used in the determination of this sequence. The Intergene sequences identified in Table 3-1 are highlighted in colour (see legend to Table 3-1).
(a)
 gln leu gly ala arg aer ser arg ser lys ala lys ala arg ala lys gly gly gin lye
TCCGCGCCCCGACATCGCAGCGACCGAACGTCCAACCAGCAAACCAACCGCTCOCAGCAC AGGCGCGGGGCTGTAGCGTCGCTGGCTTGCAGGTTGGTCGTTTGGTTGGCGAGCGTCGTG gly arg gly ser met

AGCGCTCTCCGGCCGCGCCCGCCCGCTTATATTCAGTTTCGGGCGGAGCGGAGGCGCGCT TCGCGAGAGGCCGGCGCGGGCGGGGGAATATAAGTCAAAGCCCGCCTCGCCTCCGGCGCGA

GTCGGATAGGCCGAGCGGTCGGCGCACGGCGTCGCAGCCAXTGGGAGAGCGOATCGGCGG CAGCCTATCCOGCTCGCCXOCCGCGTGCCOCAGCGTCGGTTACCCTCTCGCCTAGCCGCC

GCATCCAATGGTGGGCGCGCGTTTGTGGTGACGCCACAAACACGAACTTCCAGCCAATGC CGTAGGTTACCACCCGCGCGCAAACACCACTGCGGTGTTTGTGCTTGAAGGTCGGTMACG
CAGTGCGGCGCTGCGGAGCTGCTGCTTTGCATAGCGCCGCTATAAAGGCGGCTCCTGCGG GTCACGCCGCGACGCCTCGACGACGAAACGTATCGCGGCGATATMTGGCGCCGAGGACGCGC
TCGGCTGCTTTACTGCGCTCCGAGCGAGTGTGCCGGTTGTGTTTTGCGTGCTCGTTCGGT

(b)

 AGGCGCGGGGCTGTACCGTCATTGCTGTCTAAGTTTTCGCTTTCTTTACGTCATCATGGAT gly arg gly ser met

GCAACCCGGCAGCTCCCTCTTATATCCCTTCTCACTAAAAAGAGCGCGATTCGATAGGCT CGTTGGGCCGTCGAGGGAGAATATAGGGAXGAGTGATTTTTCTCGCGCTAAGCTATCCGA
AAGAAAAAGCGATTGCAAAATCAGCCAATGGGAGCGCGGATCGTATTCTAACCAATGGCG TTCTTTTTTCGCTAACGTTTTAGTCGGTTAXCCTTCGCGCCTAGCATAAGATTGGTTACCGC

AAGAATTATGGACACCTATGAGCGGAAGGGCCTGTATCACCCAATAGAAACAGAGCATAG TTCTTAATACCTGTGGATACTCGCCTTCCCGGACATAGTGGGTTATCTTTGTCTCGTATC

AGGAACCTAATCTGCATACAGCGACTATAAXAGAGGGCGAGCGGAGTTACAGGAAACGTTM TCCTTGGATMAGACGTATGTCGCTGATATTTTCTCCCGCTCGCCTCAATGTCMTTTGCAX
 AGACACCAACCAACGACACAACGACAAACTCGAGTAACATCCTATGCGTGAGCCGGCCAA
ser ala pro ala pro lya lys gly ser lys lys ala val thr GTCCGCGCCCGCCCCGAAGAAGGGCTCCAAGAAGGCGGTCACC CAGGCGCGGGCGGGGCTTCTTCCCGAGGTTCTTCCGCCAGTGG

BsteII

Figure 3-6: Sequence of the $\lambda \mathrm{CH} 1-10 \mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair
The partial sequence of the $H 2 A$ gene and the complete sequence of the H2B gene transcription unit and the intergene region of $\lambda \mathrm{Hl}-10$ are shown. The two amino acid changes in the $H 2 A$ coding region at positions 11 and 52 are boxed. The position of the EcoRI, PstI, BstEII and HindIII restriction sites used to generate M13 clones for sequencing are out1ined (figure 2-3). The 3^{\prime} dyad symmetry element of the $H 2 B$ gene showing the one base loopout (base shown by asterisk) is indicated by the arrows. The intergene sequences identified in Table 3-1 are highlighted in colour (see legend to Tab1e 3-1).
 THAGGAGCGAACGTGTTCGAAATGCCTGAGCCGGCCAAGTCCGCACCCGCCCCCAAGAAG gly ser lys lys ala val thr lys thr gln lys lys gly asp lys lys arg lya lys aer GGGGTGACCAAGACCCAGAAGA CCGAGGTTCTTCCGCCACTGGTTCTGGGTCTTCTTCCCGCTGTTCTTCGCGTTCTTCTCG BstEII
arg lys glu ser tyr ser lie tyr val tyr lys val leu lys gln val his pro asp thr

lle ala gly glu ala ser arg leu ala his tyr asn lys arg ser thr the thr ber arg ATCGCCGGCGAGGCGTCGCGCCTGGCGCACTACAACAAGCGCTCGACCATCACGTCGCGG AGCGGCCGCTCCGCAGCGCGGACCGCGTGATGTTGTTCGCGAGCTGGTAGTGCAGCGCC
glu ile gln thr ala val arg leu leu leu pro gly glu leu ala lys his ala val ser GAGATCCAGACGGCCGTGCGGCTGCTGCTGCCCGGCGAGCTGGCCAAGCACGCGGTCTCC CTCTAGGTCTGCCGGCACGCCGACGACGACGGGCCGCTCGACCGGTTCGTGCGCCAGAGG
glu gly thr lys ala val thr lys tyr thr ser ser lys ***
GAGGGCACCAAGGCGGTCACCAAGTACACCAGCTCCAAGTAGACTGGTCCTGATCCTCAC CTCCCGTGGTTCCGCCAGTGGTTCATGTGGTCGAGGTTCATCTGACCAGGACTAGGAGTG TTTGGAACCCAAA GGCTCTHTTTCAGAGGCCACCCACTCATTCAATGAAAGAGCTTTAACAC AAACTTGGGTTTCCGAGAAAAGTCTCCGGTGGGTGAGTAAGTTACTTTCTCGAAATTGTG

TCATACAAGGGCACAGTTAACGAAACTTTCGAA
fragment of $\lambda \mathrm{CH} 1-10$ has been obtained (strategy presented in figure 2-3). The entire H 2 B transcription unit and the first 93 amino acids of the H 2 A gene is shown in the $1113 \mathrm{~b} . \mathrm{p}$. of figure 3-6.

3-3 Results
The first H2A/H2B divergent gene pair isolated and examined was that from $\lambda \mathrm{CH}-01$. Because of this it was used as the "standard" divergent pair to which all the others were compared in computer analysis and my own analysis by eye. The material discussed below is summarized in Table 3-1.
(1) Protein Coding Regions

One of the striking aspects of the "core" chicken histone genes is the extraordinary conservation of DNA sequence in coding domains. Third base changes are usually rare. When the coding regions of the divergent pairs are each compared to the complete coding regions of pCH3.3E/p7AT, several third base and very few first and second base changes are seen. Most of these base changes result in identical amino acid sequences

The proteins encoded by the H 2 B genes of $\mathrm{pCH} 3.3 \mathrm{E} / \mathrm{p} 7 \mathrm{AT}$, pCH 3.5 E and λ CH1-10 correspond to the H2B. 1 variant described by Urban et al. (1979). Not enough DNA sequence was obtained to classify the pCH11.0E H 2 B encoded proteins. Cosmid 6.1C H2B gene has two amino acid changes (viz. 1ys to arg at position 31, and ser to thr at position 33) as shown in the amino acid sequence of figure 3-3 (boxed residues). These amino acid changes are conservative and are probably of no functional significance given that the N-terminus of the histone H 2 B protein is the most variable part of the protein when comparisons between species are made (Isenberg, 1979). In addition N-terminal residues 14 to 31 of the yeast $H 2 B$ protein can be deleted without apparent adverse effect on the function of the protein (Wa1lis et al., 1983). These amino acid changes do not correspond with the H2B. 2 subtype variant sequence (Urban et al., 1979) and moreover an H2B

Table 3-1: Comparative sequence analysis of chicken H2A/H2B genes
The six divergent chicken $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergene regions have been compared In an attempt to identify common regulatory sequences. A consensus of conserved regions has been compiled in the Table with distances between them indicated. Two independent H2A genes and one separate H2B gene are also presented in the comparison. The conserved regions identified are highlighted in colour (see figures $3-2$ to $3-6$), i.e. TATA boxes in green; CAT1, 2,3 boxes in red; CAT4 in orange; $H 2 B$ box in yellow). The distance between divergent pair ATG initiation codons, the protein subtype encoded and the number of amino acids determined from the DNA sequence for each gene pair are 1isted in the Table.

protein containing these amino acid changes has not yet been reported in the 1iterature.

Both of the $H 2 A$ subtype variants reported in the 11 terature can be Identified from the sequence of the divergent pair H 2 A genes. $\mathrm{pCH} 3.3 \mathrm{E} / \mathrm{p} 7 \mathrm{AT}$, pCH22.0B, pCH3.5E and as far as the DNA sequence of pCH11.0E left and right H2A genes extend, all correspond to the H2A.1 subtype variant (Urban et al., 1979). The H2A protein of $\lambda \mathrm{CH} 1-10$ has two amino acid changes (viz. ala to val at position 11 , and leu to met at position 52) as shown in figure 36. These are protein changes in the H2A. 2 variant identified by Urban et al., (1979).
(2) Intergene Region

Each of these independent chicken H2A/H2B gene pairs is extremely tightly linked. The coding regions are on average, $342 \mathrm{~b} . \mathrm{p}$. apart. Table 31 shows a comparative analysis of the six intergene regions to fllustrate the position and spacing of the conserved elements identified. The organization of TATA boxes and hence predicted mRNA leader sequence lengths are similar for all the genes; an average of $180 \mathrm{~b} . \mathrm{p}$. separate the H 2 A and H2B TATA boxes.

The most significant homologies identified between the gene pair intergene regions are four CCAAT boxes (1-4-2(11)). These are all regularly spaced with three of them having the consensus "CCAATG" (CAT 1, CAT 2 and CAT 3 of Table 3-1) positioned at approximately 40,90 and 110 b.p. upstream of and directed towards the H2B TATA boxes. Each juxtaposed H2A gene has a "GCCTATC" sequence (CAT 4 of Table 3-1) orientated towards it and about $135 \mathrm{~b} . \mathrm{p}$. from the H2B TATA boxes. This fourth CCAAT box is an average of $28 \mathrm{~b} . \mathrm{p}$. upstream from the H2A TATA boxes.

The position of the pCH3.3E/p7AT H2A TATA box designated in Table 3-1
differs from that assigned by D'Andrea et al. (1981). The only A rich region to be found at a position consistent with the other divergent pairs is a run of three A residues. This is an extremely poor match to the consensus TATA box (1-4-2(i)) whereas the region identified by D'Andrea is an extremely good match. However the mRNA cap site of this H2A gene has been determined (chapter 4) and is consistent with my assignment of the TATA box. In addition, no true TATA box consensus for either the H2A or H2B gene can be derived from the comparative sequence analysis. It is possible that the full sequence of a TATA region is not of over-riding importance, but an ATA string can usually be identified in most TATA boxes.

Two of the intergene regions have almost exactly the same nucleotide sequence. $\mathrm{pCH} 3.5 \mathrm{E} \quad \mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ and the left $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pair of pCH 11.0 E have only seven b.p. differences between them. The sequence of the pCH3.3E H2A mRNA leader sequence is almost the same as that of the predicted H2A mRNA leader sequences of the $\mathrm{pCH} 3.5 \mathrm{E} / \mathrm{pCH} 11.0 \mathrm{E} \mathrm{L} \mathrm{H} 2 \mathrm{~A}$ genes. A11 three of these pairs are In gene clusters that are adjacent on the chicken chromosome (figure 2-1). This may be significant in that gene conversion or gene duplication processes may have been involved in generating these homologies.

A fifth region of homology with almost exact conservation for $13 \mathrm{~b} . \mathrm{p} .$, present $6 \mathrm{~b} . \mathrm{p}$. upstream of H2B TATA boxes, has been described previously (Harvey et al., 1982) and is known as the H2B box (Table 3-1). This will be discussed in length in chapter 6.

The sequence of two separate chicken H 2 A genes (pCH 8.4 E L and R , figure 2-1) and one separate chicken $H 2 B$ gene ($\lambda \mathrm{CH}-02$, figure 2-2) is available for comparison (Table 3-1). These genes contain the same CCAAT elements as those identified in the divergent $H 2 A / H 2 B$ pairs. They are less we11 conserved in sequence but the spacing and orientation of CCAAT boxes are still high1y conserved. The independent H2A genes of pCH8.4E contain
almost the same sequence up to about $250 \mathrm{~b} . \mathrm{p} .5^{\prime}$ to their ATG initiation codons and it is thought that this is the result on a duplication event (Wang et a1., 1985). Their sequences diverge almost immediately after the most distal CCAAT box (CAT 1) and no evidence of a H 2 B box can be found. This suggests that the H2B box is truely H2B-specific.

The single $H 2 B$ gene of $\lambda \mathrm{CH}-02$ contains all the elements of the divergent pairs up to the end point of the available sequence data (Table 3-1; Grandy et a1., 1982). The three CCAAT boxes orientated toward the H2B are present but insufficient sequence data is available to determine whether the H2A CCAAT box (CAT 4) is present. This leaves open the question as to whether CAT 4, oriented toward the H2A gene, is gene specific or not.
(3) 3' Gene Elements

Of the divergent pairs discussed here only the 3° end of the H2B genes of $\mathrm{pCH} 3.3 \mathrm{E} / \mathrm{p} 7 \mathrm{AT}$ and $\lambda \mathrm{CH}-10$ and the 3^{\prime} end of the H2A gene of pCH 3.3 E have been determined. The total sequence of many chicken histone genes within this cluster has however been obtained (Wang et al., 1985; Coles and We11s, 1985; L. Coles and J. Powell personal communication). All of these genes have been shown to contain the dyad symmetry required for the processing of histone mRNAs (1-6-3(1v)). An additional chicken specific 3 base extension to this 3^{\prime} element has been noted previously (Harvey et al., 1982).

The 3^{\prime} dyad symmetry of the $\lambda \mathrm{CH} 1-10 \mathrm{H} 2 \mathrm{~B}$ gene is unusual in that the base pairing is not complete (figure 3-6). How this loop out in the stem would affect the processing of the 3^{\prime} termind of this gene is not known, but the correct base pairing of the stem has been shown to be essential for the formation of a sea urchin H2A gene 3^{\prime} end in the Xenopus oocyte (Birchmeler et al., 1983).

The H2B gene described in pCH3.3E/p7AT was given to Krieg and Melton
(1984) to conduct experiments to determine whether histone 3^{\prime} termini are generated by RNA polymerase termination or RNA processing at the 3' hyphenated symmetry element. A XhoI fragment of p7AT was cloned into an Sp6 in vitro RNA synthesis vector and extended RNA transcripts of the H2B gene were obtained. Upon injection of this RNA into the nucleus of Xenopus oocytes the correct 3^{\prime} termini was generated, indlcating 3^{\prime} processing was involved in the formation of histone 3^{\prime} termini.

3-4 Discussion

The linkage of $H 2 A / H 2 B$ genes in the chicken has been shown by sequence comparison to have a very strict association with respect to the distance between protein coding regions. Four CCAAT-like sequences have been identified in the intergene regions that also have a strict spatial association. This sequence has been shown to be important for eukaryotic gene expression (1-4-2(1)), although its exact role is not known for certain due to conflicting experimental results. So far only one CCAAT box has usually been emphasised in promoter regions of eukaryotic genes positioned 40-60 b.p. from the TATA box (Breathnach and Chambon, 1981). The nature of this element (or possibly a group of individual elements) termed the CCAAT box must be rethought given the number, orientation and specific sequences of them found in the chicken $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes. It may be that the CCAAT box can function in both orientations much like the eukaryotic enhancer elements (Khoury and Gruss, 1983) and the hexanucleotide CCGCCC element of the H.S.V. Thymidine kinase gene (McKnight et a1., 1984).

Divergent, closely linked $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes are relatively common in histone gene families. Examination of the few that have been sequenced; Yeast, $600 \mathrm{~b} . \mathrm{p}$. Intergene region (Wa11is et al., 1980; Choe et al., 1982); Drosophila, 200 b.p. Intergene region (Goldberg, 1979); Xenopus, 300-400 b.p. intergene region (Moorman et a1.,1982) and a human H2A/H2B pair (Zhong
et al., 1983) has failed to identify the same promoter element arrangement. Such large evolutionary comparisons with yeast and Drosophila may be limited in their usefulness in trying to identify controlifng elements other than TATA boxes. Insufficient sequencing data was obtained for the Xenopus divergent pair to make the comparison but it is potentially comparable. The identification of the human divergent pair referred to seems premature since no H 2 A coding region was identified.

Because the promoter regions of these divergent pairs are so close it is tempting to make an analogy with prokaryotic systems. Some prokaryotic genes have been found to be closly associated, allowing for co-ordinate regulation by common regulatory molecules. Two divergent gene pairs in E. coli have been shown to be regulated by proteins binding to sites between the genes (Brandsma et a1., 1983). Gene promoter and operator Interactions commonly occur in prokaryotes. The λ bacteriophage leftward and rightward transcripts being controlled by three binding sites for the CI repressor is such an example (Hendrix et al., 1983).

The control of the yeast mating type locus involves divergent transcription from a central promoter region (Stliciano and Tatcheil, 1984). Moreover, deletions in the intergenic region (263 b.p. separate the ATG start codons) have mapped a single promoter region essential for transcription of each of the two genes of the locus. There is therefore a precedent in a eukaryotic organism for the sharing of a common regulatory region(s).

The possibility of regulatory elements being present in the coding regions of either gene of the chicken $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pairs can be argued given the close and consistent distance between the coding regions of the two genes. This comparative sequence analysis presented here does not allow a
determination of the functional role of the conserved intergene elements or the coding regions. For this a high fidelity transcriptional assay has to be used in combinaton with in vitro mutagenesis of the divergent pair intergene/promoter region.

CHAPTER 4: ANALYSIS OF H2A/H2B TRANSCRIPTS IN 5 DAY CHICK EMBRYO RNA and expression of an ISOLATED h2A/h2B GENE PAIR IN THE XENOPUS OOCYTE

4-1 Introduction
Because of the unusually close apposition of the divergently transcribed H2A/H2B gene pairs, and with the aim of determining the nature of this 1inkage in the control of the expression of these genes, I initiated a study of transcription from one of the cloned gene pairs. Various systems are available for the analysis of gene expression (1-7), but a prerequisite of using any surrogate genetic system is that introduced genes must be expressed with fidelity. This seems to be true for genes microinjected into Xenopus oocyte nuclei (Gurdon and Wickens, 1983) and in particular the work done by Birnstiel's group on expression of sea urchin histone genes in Xenopus oocytes (Hentschel and Birnstiel, 1981) suggested that it was a generally useful system to study transcriptional control of chicken H2A/H2B divergent gene pairs.

Histone genes in the chicken exist in clusters in relatively low copy number in the genome. Their transcription is usually coupled to S-phase in dividing cells (J. Coleman, personal communication). When cloned chicken histone genes are microinjected into frog oocytes, the genes are present in very high copy number and as circular plasmid nucleoprotein rather than low copy number chromosomal structures. In addition in the developing oocyte expression of histone mRNA and protein is uncoupled from cell division , as this specialised cell builds a maternal store of histone to be used during embryonic development. For these reasons some caution must be exercised in extrapolating conclusions from heterologous systems.

In conjunction with the functional testing of a $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pair, the endogenous chicken transcripts from these genes (in 5 day embryo extracts) were also examined to determine the fidelity and the relative level of each
transcript compared to that in microinjected oocytes. The gene pair chosen for study was the one that was first isolated and orientated, and for which the complete gene sequences were available. This gene system was the one from $\lambda \mathrm{CH}-01$. As discussed in chapter 3, the H2B 3' termini is missing from the 3.3 kb fragment generated by EcoRI digestion of $\lambda \mathrm{CH}-01$. A 7 kb genomal EcoRI fragment overlapping (and containing in full) the 3.3 kb fragment was obtained from $\lambda \mathrm{CH}-05$ (figure $2-1$ and $3-1$). This was subcloned into the EcoRI site of pATl53 for propagation and ease of isolation of the 7 kb insert. This clone was named p7AT and in addition to containing the complete divergent pair, an $H 1$ gene is also contained within the insert.

4-2 Mapping of 5^{\prime} and 3^{\prime} termini of the Hl , H 2 A and H 2 B genes of p7AT in 5 day chick embryo RNA

To examine whether histone gene transcripts obtained in the oocyte from injected templates (see below) were the same as is seen in vivo S1 nuclease protection experiments and primer extension assays for the H 2 A and H2B gene transcipts of p7AT present in 5 day chick embryo RNA were carried out. The DNA restriction fragments used for $S 1$ analysis and the position of synthetic primers used in primer extension analysis are shown in figure 41. The Hl gene of p7AT was analyzed in collaboration with Leeanne coles; the 5^{\prime} and 3^{\prime} mapping of this gene is presented by her in her Ph.D. thesis. It will suffice here to produce only the 5^{\prime} termini mapping data with the Hl synthetic primer (figure 4-2).

Iso-coding chicken histone genes are highly homologous in the coding region but often diverge immediately in flanking sequences (compare the leader sequences of the divergent pairs presented in chapter 2; L. Coles and J. Powe11, personal communication), it was therefore expected that two kinds of S 1 resistant DNA products would be observed for each type of gene

Figure 4-1: DNA restriction fragments used for $S 1$ analysis and extension of synthetic primers for the H2A/H2B genes of p7AT

The products of the H 2 A and H 2 B 26 base synthetic DNA primers after hybridisation to mRNA and extension with reverse transcriptase are indicated above the gene representations (see materials and methods for synthetic primer sequences). Below the gene figures are the positions and lengths of restriction fragments used in the Sl assays and the protected fragments after hybrisation of them to RNA and digestion with S1 nuclease. The restriction fragments used were as follows:

3' $\mathrm{H} 2 \mathrm{~A}=205 \mathrm{bp}$ XhoI-BstEII
5' H2A = 420 bp HpaII-HpaII
$3^{1} \mathrm{H} 2 \mathrm{~B}=650 \mathrm{bp}$ BstEII-SacI
5' H2B $=202 \mathrm{bp}$ XhoI-BstEII

PRIMER EXTENSION ANALYSIS

H2B

S1 NUCLEASE ANALYSIS

Figure 4-2: Sequence of the 5^{\prime} region of the p7AT H1 gene
The 5' nucleotide sequence of the p7AT H1 gene sense strand is presented starting at -200 from the ATG initiation codon (data taken from Coles and Wells, 1985). Bases in bold type are H1 gene conserved elements thought to be involved in the promotion of the H1 transcript which begins at -37 in the sequence (shown by the vertical arrow). The position of binding of the Hl gene specific 26 base primer is indicated below the gene.
-200
TGGTGGCAGAAATTCCGAGGAAAATACACTTTTGTTAGTCCAAAG AAACACA AATCGAGCACACCGAAG
-100
GGCTCCCCGGCCGTGCAGCG GGGCGG GCTTAGCAACGCA CCAAT CACCGCGCGGCTCCTCTC TAAA

AATA CGAGCATCTGACCCGCGCCA GCCCA ATTGTGTTCGCCTGCTCCGCAGAGGACTGCGCCGCG
+1 ser glu thr ala pro ala
ATG TCC GAG ACC GCT CCC GCC

```
Hl primer
```

transcript. One of these corresponds to the homologous hybrid, the other(s) to hybrids which are only homologous in the coding regions.

In addition, this heterogeneity in 5° mRNA leader sequences makes it possible to synthesise gene-specific primers. Empirically it was found that 26 base primers in the 5^{\prime} untranslated region or spanning the 5^{\prime} non-coding and the start of the coding region gave unambiguous extension products. That is, they generally permitted detection of specific transcripts from genes microinjected into Xenopus oocytes, and in total chick embryo RNA could be used to define transcripts from precise genes. We11 after the oocyte transcription studies were initiated, sequencing of other $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pairs revealed that the leader of the H2A gene in p7AT is homologous enough to the H2A leaders of pCH3.5E and pCH11.0E L (figures 3-4 and 35(a)) to allow cross-hybridization of any synthetic primer that could be designed. This was not realized until the sequence of these $H 2 A$ genes became available, and after the synthesis of the p7AT H2A synthetic 26 base primer. Consequently the p7AT H2A primer also detected transcripts from other H2A genes in RNA from chick embryos.
(i) 3' Termini

The results of $S 1$ analysis to determine 3^{\prime} termini of H 2 A and H 2 B transcripts in chick embryo RNA are shown in figure 4-3. As discussed above, more than one set of protected fragments is to be expected from a heterologous mixture of RNAs (multiple, closely migrating bands within each region are often encounted in S1 analysis and are not the point of heterogeneity just referred to). For H2A (lane 2), the $148 \mathrm{~b} . \mathrm{p}$. protected fragment maps the 3^{\prime} terminus of the transcript derived from the gene equivalent to the H 2 A in p7AT. Other fragments include the undigested probe (205 b.p.), a $109 \mathrm{~b} . \mathrm{p} . \quad$ protected fragment from a closely related but nonhomologous $H 2 A$ gene 3^{\prime} end and a 90 b.p. coding-region protected fragment.

Figure 4-3: $S 1$ mapping and primer extension analysis of p7AT gene transcripts in 5 day chick embryo RNA
5^{\prime} and 3^{\prime} S1 analysis of the endogenous p7AT H2A/H2B gene pair transcripts in size fractionated chick embryo RNA is shown in tracks 1-4:
$1=\mathrm{H} 2 \mathrm{~B} \quad 3^{\prime}$
$2=112 A 3^{\prime}$
$3=\mathrm{H} 2 \mathrm{~B} 5^{\circ}$
$4=\mathrm{H} 2 \mathrm{~A} 5^{\circ}$
$\mathrm{M}=\mathrm{pBR} 322$ HpaII markers
Primer extension on size fractionated chick embryo RNA using the 26 base synthetic DNA primers designed for the genes of p7AT is shown in tracks 5-7:
$\mathrm{M}=\mathrm{pBR} 322$ HpaII markers
$5=\mathrm{H} 2 \mathrm{~A}$ primer
$6=\mathrm{H} 2 \mathrm{~B}$ primer
$7=H 1$ primer

For H2B (lane 1), only one major band of $87 \mathrm{~b} . \mathrm{p}$. Is seen and this maps the 3' terminus at the expected position. The predicted coding region fragment is not seen for H 2 B , but the hybrid would only be 26 bases 10 ng and therefore unstable in the Sl digestion conditions used (Grosschedl and Birnstiel, 1980b). Because the 3^{\prime} dyad symmetry element is involved in the generation of correct 3^{\prime} termini, the mapping of p7AT H2A and H 2 B 3' termini to the ACCCA adjacent to the stem of the hairpin loop (see figure $3-2)$ is expected and confirmed.
(ii) 5' Termini

The H2B-specific primer shows a major extension product of 68 bases, consistent with a cap site at -57 In figure $3-2$ (figure 4-3, lane 6). This is 28 b.p. downstream from the H2B TATA box and therefore maps in the expected position. Less abundant bands seen in this analysis may be due to heterogeneous start sites in vivo or pause sites in reverse transcription in vitro. Sl analysis (figure 4-3, lane 3) also shows some heterogenefty, but protection of fragments of approximately 115 b.p. confirm the designation of a major cap site at -57 . The smaller bands ($58 \mathrm{~b} . \mathrm{p}$.) are coding-region protected fragments.

The results for 5^{\prime} mapping of H 2 A genes is also shown in figure 4-3. Both Sl mapping and primer-extension analysis clearly locate the cap site to -52 in figure 3-2. That is, the 420 b.p. Hpall fragment (figure 4-1) is protected by embryonic RNA to yield an $S 1$ product of $118 \mathrm{~b} . \mathrm{p}$. and the H 2 A specific primer yields an extension product of 49 bases (figure 4-3, 1anes 4 and 5 respectively). The 69 b.p. S1 protected fragment in lane 4 detects the $H 2 A$ coding region. These independent assays therefore place a cap site for H2A at -52. As discussed above, the primer extension assay here probab1y detects the H2A genes from pCH3.5E and pCH11.0E L in addition to
that contained within p7AT. However the $S 1$ experiment is expected to be completely specific for the H2A gene of p7AT.

An extension assay using the H1-specific primer detects a product of 58 bases (figure 4-3, lane 7). This is consistent with the H1 cap site being at -37 in figure 4-2.

4-3 Characterisation of histone gene trascripts from p7AT microinjected

Into Xenopus oocyte nuclei
Inftially, vector-free supercoiled 7 kb EcoRI insert of p7AT was injected into the Xenopus oocyte as described for optimal expression of the sea urchin h22 repeat genes (Kressman et a1., 1977; Probst et a1., 1979). However, side-by-side experiments in which vector-containing and vectorfree DNA preparations were microinjected showed there was little difference in expression of the chicken histone genes as assayed by Sl nuclease analysis or primer extension (see below). The recombinant plasmid, containing pATl53 sequences, was therefore used routinely.

The restriction fragments outline in figure 4-1 and the synthetic primers were used to analyse transcripts from each histone gene after injection of p7AT into Xenopus oocyte nuclei. The major 3' termini of H 2 B and H 2 A transcripts and the 5^{\prime} termini of Hl from the injected genes mapped to the same position as found for transcripts in chick embryo RNA (figure 4-4, lanes 2,3 and 6).

The major H2A 5' Sl-protected fragment as well as the major H2A primer extension product always mapped at the site seen for chick embryo H2A 5' termini, however, other distinct minor bands are also seen. A doublet at 215 and 220 b.p. for Sl analysis (figure 4-4, lane 1) and primer extension to 135 and 140 bases (figure 4-4, lane 4) maps additional H2A cap sites to A residues four b.p. apart, at -148 and -153 in figure 3-2. These sites are 21 and 26 b.p. respectively downstream from a TATA sequence at -173 .

Figure 4-4: S1 mapping and primer extension analysis of p7AT gene transcripts from micro-injected Xenopus oocytes
5^{\prime} and 3^{\prime} S1 analysis of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes of p7AT expressed in Xenopus oocytes is shown in tracks 1-3:
$1=\mathrm{H} 2 \mathrm{~A} 5^{\circ}$
$2=\mathrm{H} 2 \mathrm{~B} 3^{\prime}$
$3=\mathrm{H} 2 \mathrm{~A} 3^{\prime}$
$M=\mathrm{pBR} 322$ HpaII markers
Primer extension analysis on RNA equivalent to that of one oocyte injected with p7AT using the 26 base synthetic DNA primers is shown in tracks 4-6:
$\mathrm{M}=\mathrm{pBR} 322 \mathrm{HpaII}$ markers
$4=\mathrm{H} 2 \mathrm{~A}$ primer
$5=\mathrm{H} 2 \mathrm{~B}$ primer
$6=\mathrm{Hl}$ primer

An additional minor extension product to that seen in 5 day chick embryo RNA is also seen with the H2B gene-specific primer (figure 4-4, lane 5). A band of approximately 305 bases is produced in addition to the major extension product of 68 bases. No potential TATA element can be found upstream of this spurious H2B cap site.

4-4 Quantitation of p7AT transcripts in chick embryo RNA and from injected Xenopus oocytes

The three gene specific synthetic primers can be used to assay the expression of all three genes in the same primer extension reaction due to their (purposely designed) different extension lengths (H2A: 49 bases; H1: 58 bases ; H2B: 68 bases). When the primers are used in excess the assay becomes quantitative (McKnight et al., 1981) and the level of each genes extension product can be directly related to one another. The data in figure $4-5$ shows directly comparable (i.e. the same specific activity of Individual gene-specific primers used in each extension) quantitative extension results on p7AT gene transcripts from chick embryo RNA (lane 1), RNA from oocytes injected with p7AT (lane 2) and RNA from oocytes injected with vector-free closed circular 7 kb insert from p7AT (lane 3).

The relative abundance of each message differs between chick embryo and p7AT oocyte transcripts. In the chicken, the H 1 and H 2 B transcripts are about equally abundant and both are present at a higher leve1 than the H 2 A transcript $(H 1=H 2 B>H 2 A)$. When p7AT is microinjected into the oocyte the various levels of the three genes is quite different. The H2A mRNA is now the most abundant followed by the $H 2 B$ transcript and the $H 1$ gene is at a much lower detectable level ($\mathrm{H} 2 \mathrm{~A}>\mathrm{H} 2 \mathrm{~B} \gg \mathrm{H} 1$). This pattern of expression is identical in oocyte RNA from 7 kb EcoRI closed circles, however the level of H2B extension product is slightly increased.

Figure 4-5: Quantitation of p7AT H1, H2A and H2B gene transcripts in chick embryo RNA and in micro-injected Xenopus oocytes

Quantitative primer extension analysis is shown using the three 26 base p7AT gene specific primers on size fractionated 5 day chick embryo RNA (track 1) and on RNA equivalent to that from one oocyte injected with p7AT (track 2) or 7 kb EcoRI circularised insert of p7AT (track 3). A pBR322 Hpall marker lane is shown to indicate the different extension lengths of the three primers; H2A extends to a major band at 49 bases, H1 to 58 bases and H2B to 68 bases.

4-5 Discussion
Despite the production of additional minor mRNA transcripts from p7AT DNA templates injected into the Xenopus oocyte, all of the histone genes of p7AT are transcibed efficiently and with fidelity. Differences in the leve1s of each transcript compared with that in the chick, however, can be discerned. The Hl gene of p7AT is not expressed in the oocyte at anywhere near the relative level that it is in chicken embryonic RNA (approximately 10 fold relative reduction). This is consistent with the finding that the sea urchin H1 gene is not expressed well in Xenopus oocytes (Hentschel et a1., 1980). Perhaps this poor level of expression of exogenous $H 1$ genes is not surprising considering the Xenopus Hl protein (and therfore probably the mRNA) itself is made at a low rate during oogenesis and remains relatively low even into the cleavage stage of embryogenesis (Flynn and Wood1and, 1980).

The difference in the relative level of $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ transcripts in the chick embryo (approximately $1: 10$) and the oocyte (approximately $3: 1$) RNA analysed is surprising and made even more so when it is realised that transcripts from three H2A genes are actually being analysed in the chick RNA. Notwithstanding the change in relative levels of the chicken histone transcripts of p7AT in the Xenopus cell the fidelity of each transcript is good. The use of minor aberrant cap sites constitutes only between 1 to 5% of detectable transcripts (i.e. compared to the correctly inftiated transcripts). These spurious initiation sites may be due to the unusually large number of gene copies injected into the oocyte ($\simeq 10$ gene coples), allowing some of the plasmid molecules to be assembled into a wrong chromatin formation and thus direct the initiation of these artifactual transcripts.

The accurate and efficient initiation of transcripts from the p7AT

H2A/H2B divergent histone gene pair in the Xenopus oocyte shows the potentlal of this system to map the promoter elements contained within the Intergene region. The expression of the $H 1$ gene should be unaffected by any in vitro mutation introduced into the divergent gene region and should act as an internal "expression level indicator" of any modified p7AT templates i.e. it can be used to directly compare the levels of H2A/H2B transcripts from modified p7AT templates (see next chapter). Mandpulation of the p7AT plasmid and expression of such templates in the oocyte system is the next step in determining the role of the chicken divergent $H 2 A / H 2 B$ gene structure in the control of expression of these genes.

CHAPTER 5: MAPPING OF A CHICKEN H2A/H2B DIVERGENT PAIR PROMOTER REGION 5-1 Introduction

Mapping DNA sequences responsible for the efficient and accurate Initiation of gene transcription can be done in several ways (1-7). All Involve selective deletion/insertion of sequences or single/multiple base transitions followed by functional testing of the mutants in suitable transcription assay systems. As shown in chapter 4 the Xenopus oocyte is a suitable functional testing system for the chicken H2A/H2B gene pair contained within p7AT. In deciding what mutational approach (deletion/insertion/base mutation) should be taken in dissecting the promoter of the divergent pair, three aspects were considered,
(1) can the H2A/H2B genes be separated from each other and still be expressed ?
(2) what is the minimum amount of sequence required for the expression of both genes at the optimum leve1 ?
(3) from comparative sequence analysis (chapter 3) it can be predicted that any of the four CCAAT elements of the intergene region could be promoter elements. Are these shared by the two genes ?

In addition to these considerations it was important to determine if there is co-ordinate regulation of the two genes at the level of transcription. The most precise mutational analysis of the intergene region would be one in which single base changes were introduced into the conserved regions identified by the comparative sequence analysis, such as the CCAAT boxes. Another all encompassing approach would be to 1inker scan the intergene region (McKnight and Kingsbury, 1982). The insertion of a linker through every part of the intergene region would be unnecessary because of the identification of the conserved sequence elements. A gross approach, and one that is commonly used, would be to construct progressive
delet lons from hoth ends of the $I 2 A / H 2 B$ intergene region.
For reasons of simplicity, a combination of gross deletional mutagenesis and directional mutagenesis was used in the analysis of the H2A/H2B promoter region.

5-2 Expression of separated H2A/H2B genes
The H2A and H2B genes of p7AT are each contained entirely on separate XhoI restriction fragments (figure 3-1). Moreover the intergene region of the two genes is split by a XhoI recognition sequence (figure 3-2) and the Hl gene of p7AT is unaffected by XhoI digestion. By independent removal of each of the XhoI fragments of $p 7 A T$ it is possible to examine the expression of each gene in the absence of the other.
p7AT DNA was partially digested with XhoI restriction enzyme. This DNA was then passed through a 1% low melting point agarose gel to purify the 8.9 kb (p7AT minus the H 2 B gene) and 10.0 kb (p7AT minus the H 2 A gene) partially digested fragments away from the 1.8 kb H2B XhoI band and 0.7 kb H2A XhoI band. The resolution of high molecular weight DNA is poor in this type of agarose gel system, so no attempt was made to get the single gene deletion bands away from linear p7AT (10.7 kb) or the fully Xhol digested band (8.2 kb). This purified DNA was then 1igated to reform circular plasmid molecules and transformed into bacterial cells for propagation. It was expected that p7AT parental, p7AT-H2A (minus the H2A gene), p7AT-H2B (minus the $H 2 B$ gene) and $\mathrm{p} 7 \mathrm{AT}-(\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B})$ molecules would be obtained. Upon miniscreening of antiblotic resistant bacterial colonies obtained after transformation all of these types of molecules were indeed found (figure 51). The two single gene deletion constructs leave one CCAAT box present in p7AT-H2A (containing Hl and H 2 B genes), and three in p7AT-H2B (containing H1 and H2A genes).

Figure 5-1: Miniscreening of potential p7AT partial Xhol fragment deletion plasmids

Plasmid DNA extracted from bacteria transformed with a partial XhoI digestion of p7AT were digested with XhoI and electrophoresed on a horizontal 1% agarose ge1. Four types of plasmid molecules were expected to result from the partial digestion and transformation of p7AT:
(1) no deletion $=$ p7AT
(2) deletion of the 0.7 kb XhoI fragment $=\mathrm{p} 7 \mathrm{AT}-\mathrm{H} 2 \mathrm{~A}$
(3) deletion of the 1.85 kb Xhol fragment $=\mathrm{p} 7 \mathrm{AT}-\mathrm{H} 2 \mathrm{~B}$
(4) deletion of both XhoI fragments $=p 7 A T-(H 2 A, H 2 B)$

The photograph of the miniscreen gels show examples of all these types of molecules along side lambda EcoRI marker tracks:

```
p7AT = upper ge1 tracks 2 to 7
    middle gel tracks 1, 3, 4 and 5
    lower ge.l tracks 3 and 7
p7AT-H2A = upper ge1 track 1
    middle gel track 2
    lower gel track 2
p7AT-H2B = middle gel tracks 6 and 7
    lower ge1 track 4
    p7AT-(H2A, H2B) = lower gel tracks 1 and 5
```


Quantitative primer extension analysis on RNA extracted from Xenopus oocytes infected with either p7AT, p7AT-H2A or p7AT-H2B is shown in figure $5-2$. The expression of the Hl gene in these constructs is not affected by the gross deletions and acts as the internal control in the expression experiments. The data in figure 5-2 shows that the level of the Hl primer extension product is approximately the same for all constructs indicating a consistent microinjection technique. Thus a direct comparison between H 2 A and H2B primer extension bands can be made on this ge1. The H2A and H2B genes are expressed when separated at the intergenic XhoI site, but are trascribed at much lower levels as independent entities compared with their expression in a divergent pair configuration.

The H2A gene decreases its expression by approximately three fold whereas the H2B gene decreases its transcription rate by about 10-fold when the genes are isolated from one another. This may reflect the number of CCAAT boxes present in each of the separated promoter regions; three for H2A and one for H2B. This experiment demonstrates that in this transcription system, the two genes have overlapping promoter elements.

5-3 Expression from a $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergenic restriction fragment
In an attempt to delineate the minimum sequence requirement for promotion of the divergent transcripts, and to exclude the possibility of the protein coding regions (which are also we11 conserved, chapter 3) effecting transcription, I decided to take an intergenic restriction fragment from p7AT and clone it into the polylinker cloning sites of an M13 vector. The ability of the intergene region, plus a small amount of coding region, to direct transcription could then be tested in the Xenopus oocyte.

A practical requirement of such a restriction fragment is that it must contain the priming sites complementary to the 26 base gene specific primers for H2A and H2B to allow transcriptional analysis to be performed.

Figure 5-2: Quantitative primer extension analysis of separated $H 2 A / H 2 B$ gene constructs of p7AT injected into Xenopus oocytes

The photogragh shows primer extension on oocyte RNA from p7AT (track 1), p7AT-H2A (track 2) and p7AT-H2B (track 3) injected oocytes using all three of the histone gene specific primers. The identity of each group of primer extension products is indicated on the figure. A pBR322 HpaII marker track is included next to the primer extension tracks.

M 123

The isolation of the intergene fragment in an M13 vector removes most of the coding reglons and a1so the normal 3^{\prime} end of each transeript. It was a1ready known that the 3^{\prime} nontransiated region of histione genes is requilred for 3^{\prime} end formation (1-6-3(iv)) but it was not known what effect the removal of the 3^{\prime} conserved symmetry element would have on the stability, and therefore the level of histone transcripts in the ooctye. Because the intergene region was to be introduced into a polylinker cloning site it was possible to introduce other fragments on either side of it easily. If necessary the histone 3^{\prime} dyad symmetry could be introduced efther side of the M13-intergene region clone. However, this was found to be unnecessary. As judged by primer extension assays, histone transcripts without their 3^{\prime} end are found at levels comparable to transcripts of the entire genes and It is likely that the truncated RNA is stable in the oocyte (see below; figure 5-3).

The restriction fragment spanning the p7AT H2A/H2B intergene region chosen for analysis was a 420 b.p. HpaII fragment (figure 3-2). This was cloned into the AccI site of M13mp9 and sequenced to confirm the insert and determine the orientation. This clone contains $68 \mathrm{~b} . \mathrm{p}$. of the H2A coding region and $13 \mathrm{~b} . \mathrm{p}$. of the H 2 B coding region and the HpaII restriction site In the $H 2 B$ gene is immediately adjacent to the H2B synthetic primer site.

When this intergene constuct is f'njected into the Xenopus oocyte and compared by quantitative primer extension to transcripts from p7AT injected oocytes the Hl gene cannot be used as the internal expression control. To circumvent this problem a control gene was coinjected in equal amounts with each of the above constructs and the level of this genes expression used as an internal control. The expression of the H 5 gene has been examined by primer extension in the Xenopus oocyte (Wigley et al., 1985) and gives an

Figure 5-3: Quantitative primer extension analysis of p7AT/pH5 and M13 HpaII intergene clone/pH5 constructs injected into Xenopus oocytes

RNA extracted fom oocytes that had been co-injected with either p7AT/pH5 (track 1) or the 420 base HpaII H2A/H2B intergene region M13 clone/pH5 (track 2) DNA templates were analysed by primer extension in the presence of excess H1, H2A, H2B and H5 synthetic primers. The primer extension products of each 26 -mer is indicated on the figure and a pRR322 Hpall marker track is included for size determination.

M 12
$123 \leftarrow H_{5}$

358

extension of 111 bases using a gene specific 26 base primer. This H5 gene was therefore used as the internal expression level indicator.

Primer extension on RNA extracted fom oocytes injected with p7AT/pH5 and M13 HpatI intergene c.lone/pH5 is shown in figure 5-3. The extensions are almost quantitatively identical for the two injection serles. Obviously the Hl gene is not detected in the M13 HpaII intergene clone injected oocytes. The 305 base spurious H2B primer extension transcript (discussed in section 4-3, see figure 4-4) is also absent when the intergene fragment is expressed in isolation; somehow the aberrant promoter must be rendered Inactive in this fragment. This result indicates that the majority of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ coding regions are not required for the promotion of transcription of the H2A/H2B mRNA's in the oocyte.

5-4 Effect of the removal of an intergenic CCAAT element on expression of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \overline{\mathrm{~B}}$ genes

The demonstration that the intergene region is the promoter of the divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes, and that separation of the genes in the intergene region effects both transcripts, does not determine whether the two genes share any of the conserved elements of the intergene region (chapter 3). It was decided to initiate a site-directed mutagenesis study of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergene region to see if the genes not only overlap their promoter elements but actually share them. The CATl box (Table 3-1) was chosen as an element to be removed from the intergene region as it was already known that the gross XhoI deletion construct $\mathrm{p} 7 \mathrm{AT}-\mathrm{H} 2 \mathrm{~B}$, which lacked this CCAAT element, had a reduced H 2 A gene transcription rate. It seemed $11 k e 1 y$ that this mutation would cause a detectable phenotypic change in H2A transcription when removed. It was also possible that the $H 2 B$ gene transcription efficiency would be affected if there was a common usage of this promoter element.

Deletion of short segments of DNA is facilitated by the use of single stranded M13 bacteriophage vectors (Ade1man et al., 1983; Chan and Smith, 1984). The procedure involves hybridisation of a short oligodeoxyribonucleotide to sequences that flank either side of the specific sequence to be deleted. The "deletion primer" is incorporated into heteroduplex DNA by Klenow DNA polymerase synthesis on a suitable M13 single stranded template. The heteroduplex DNA, when transformed into bacterial cells, gives rise to mutant recombinant phage by utilizing the repair mechanisms of the bacterial cell. Mutant bacteriophage are identified by hybridization of the deletion primer poligodeoxyribonucleotide to 'phage DNA bound to nitrocellulose filters. Appropriate cycles of washing at successively higher temperatures and autoradiography, clearly identifies mutant phage which contain inserts colinear with the deletion primer sequence.

To commence the site-directed deletion of the CAT 1 box sequence a 5 kb BamHI fragment of p7AT was excised and cloned into the BamHI site of the M13mp8 phage vector (see restriction map in figure 3-1). This fragment includes the $375 \mathrm{~b} . \mathrm{p}$. BamHI-EcoRI fragment of the pAT153 vector sequence and stil1 contains the complete transcription units of the $\mathrm{H} 1, \mathrm{H} 2 \mathrm{~A}$ and H 2 B genes. Both orientations of the 5 kb insert were obtained in the M13mp8 vector but the orientation containing the coding strand of H 2 B and H 1 genes was chosen for mutagenesis. This clone, named M135kb.B-parental was chosen for mutagenesis as this allowed the H 2 B and H 1 (for H 1 mutagenesis work not described in this thesis) 26 base synthetic primers (figure $4-1$ and $4-2$) to be used as sequencing primers to verify potential deletion mutants.

A 22 base synthetic DNA deletion primer homologous for 11 bases efther side of the CATl sequence "CCAATG" was used for the deletion mutagenesis. The sequence of this primer and the seqence of the expected CATl deletion
mutant M135kb.BDCATl is shown in figure 5-4. The sequence of the M135kb. Bparental genome is compared to that of M135kb.BDCAT1 using the H2B synthetic 26 base primer as a sequencing primer in figure 5-5. The single CAT1 deletion identified is not a clean removal of the CCAATG sequence, but Includes an additional base substitution as shown in the actual deletion sequence of figure 5-4. It is not fully understood how this extra mutation has occured but a similar base mutation has been seen in other sitedirected mutagenesis work undertaken on the Hl gene of $\mathrm{M} 135 \mathrm{~kb} . \mathrm{B}$-parental (B. Younghusband, personal communication). This additional base change was thought to be incidental to the purpose of the experiment and so M135kb.B $\triangle C A T 1$ was used for subsequent expression work.

Functional testing of M135kb.B-parental and M135kb.B CAT1 phage R.F. DNA in the Xenopus oocyte is shown in figure 5-6. Unexpectedly it appears as if the CATl deletion has made essentially no 1mpact on the expression of either the H 2 A or H 2 B genes (compare parental and $\triangle \mathrm{CATl}$ in figure 5-6; note that the level of Hl control transcripts is virtually identical in these tracks). The minor $H 2 A$ extension products from the pseudo TATA box at -173 (figure 3-2) and giving rise to the 135-140 base primer extension products are increased when CAT1 is deleted. The major H2A extension transcript(s) however remain unaffected. The H 2 B aberrant primer extension transcript of 305 bases (4-3) is reduced to 299 bases in the M135kb.BACATl injections as this spurious transcript encompasses the CAT1 element, and is therefore reduced by 6 bases when CAT1 is deleted.

This absence of a phenotypic effect of the CATl box deletion is unexpected and is made even more so given the extaordinary sequence conservation of the element in all six of the $H 2 A / H 2 B$ divergent pairs (Table 3-1). One possible answer to the anomaly between the expression of

Figure 5-4: Deletion of the CAT1 box of the H2A/H2B intergene region
The sequence of the 22 -base synthetic oligonucleotide designed to delete the CAT1 box of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergene region is shown against the corresponding sequence of the single stranded M135kb.B-parental DNA used in the mutagenesis procedure. The sequence is numbered according to that presented in figure 3-2 for the intergene region. The primer is homologous for 11 bases either side of the sequence to be deleted. The sequence expected to be obtained after the deletion procedure and that actually obtained (figure 5-5) is also presented. Note the additional one base transition between the parental sequence and the deletion sequence (shown with asterisk).
Sequence surrounding the CATl box:
XhoI
$-150 \quad-140 \quad-130 \quad-120 \quad-110$
ITCTCGAGITCCGA CCAATG AAAGAGIGCGAAAGGAATGCT
AGCTCAAGGCT TTTCTCACGCT CATl deletion primer
Expected deletion sequence:
TTCTCGAGITCCGA DELETED AAAGAGTGCGAAAGGAATGCT
AAGAGCTCAAGGCT
3^{\prime}
Actual deletion sequence:

TTCICGAGITCCGA DELETED AAAAAGTGCGAAAGGAATGCT		
$3{ }^{\prime}$ AAGAGCICAAGGCT	TTITTCACGCITTCCITACGA	strand read on

Figure 5-5: Sequence analysis of the M135kb.BACATl box deletion
The H2B gene specific 26 base primer was used to sequence across the H2A/H2B intergene region of the M135kb.B-parental genome and the CAT1 box deleted genome. The sequences are listed beside the gel to indicate the deletion and the additional one base transition of M135kb.BACATl box (shown by the asterisk).

Figure 5-6: Quantitative primer extension analysis of RNA from M135kb.Bparental and M135kb.BDCAT1 Injected Xenopus oocytes

The figure shows primer extension on M135kb.B-parenta1 (track 1) and M135kb.BACATl (track 2) injected oocyte RNA and a pBR322 HpaII marker lane. The bands corresponding to each gene of the injected templates are 1abe11ed.

p7AT-H2B (three fold decrease in H2A expression) and M135kb.B \triangle CATl (no effect on H2A or H2B expression) which both lack the CAT1 box is that p7ATH2B also lacks the conserved $13 \mathrm{~b} . \mathrm{p}$. H2B box (Tab1e 3-1). This element and its possible involvement in the lowering of H2A gene expression will be discussed in chapter 6.

Other feasible but unlikely explanations for the lack of effect of the CAT1 box mutation include the possibility that the resultant mutant sequence may be able to substitute for a CCAAT element (new sequence CCGAAA) and thus represent a null mutation. Also, there may be synergistic effects of the remaining CCAAT elements that compensate for the removal of the CAT1 box. A simplistic explanation for the normal expression of the M135kb.B \triangle CAT1 recombinant is that it could be an artifact of the oocyte system.

```
5-5 Discussion
```

Mapping the DNA sequence of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes of p 7 AT responsible for the correct initiation of mRNA transcripts from these two genes in the Xenopus oocyte transcription system, has shown that a fragment of $420 \mathrm{~b} . \mathrm{p}$. is sufficient for promotion of transcripts from both genes. Moreover splitting the two genes within this $420 \mathrm{~b} . \mathrm{p}$. region reduces expression of each transcript demonstrating that the divergent genes overlap promoter elements. This promoter arrangement has an obvious potential to co-ordinate expression of the two genes at the transcriptional level leading to balanced production of each protein within the cell.

Despite the failure to demonstrate a transcriptional effect from deletion of the CATl box, it is still probable that this element has a significant biological role in vivo given the conserved nature of this sequence in six divergent gene pairs and two isolated $H 2 A$ and one single H2B gene. Sequence comparison data makes it most likely that at least some
of the three remaining CCAAT elements not investigated in this study could be used to promote both of the divergent transcription units.

CHAPTER 6: ANALYSIS OF THE 13 BASE H2B GENE-SPECIFIC ELEMENT

6-1 Introduction

Sequence comparison of two chicken H2B genes by Harvey et a1. (1982) showed a highly conserved $13 \mathrm{~b} . \mathrm{p}$. sequence, termed the H2B-box, located in the 5' "promoter" region of two chicken H 2 B genes. It was also found to be present in H2B genes from other organisms. The sequence of seven chicken H2B 5' regions is summarized in Table 3-1 and a consensus 13 b.p. H2B-box sequence is presented. This element is extaordinarily well conserved in sequence and position in the chicken H2B genes, always being 6 b.p. from the $H 2 B$ TATA boxes. A summary of potentially analogous sequences to the chicken $H 2 B$-box at similar positions in $H 2 B$ genes of several different organisms are presented in Table 6-1, and are compared to the chicken H2Bbox consensus sequence.

Ubiquitous 5' histone gene-specific sequences have also been observed for the H 1 gene (Coles and We1ls, 1985) and the H 4 gene (Clerc et al., 1983). In the latter case the sequence was shown to be a functional component for the efficient transcription of the H 4 gene in the Xenopus oocyte transcription system. In the case of the H1 gene, the specific element is about $70 \mathrm{~b} . \mathrm{p}$. from the genes TATA box (-149 to -155 of figure 42). The $H 4$ gene-specific element is approximately 20 b.p. upstream from the TATA box, and is therefore more like the H2B-box in having a close association with the TATA box.

The presence of the $13 \mathrm{~b} . \mathrm{p} . \mathrm{H} 2 \mathrm{~B}$ element in the divergent gene pairs gives it the potential to act on the H2A genes that accompany the $H 2 B$ genes. The 5^{\prime} sequence of the isolated H2A genes shown in Table 3-1 lack this element indicating that it is probably specific to the $H 2 B$ genes of the H2A/H2B pairs. The close association of the H2B-box with the TATA box suggests that it may be an element involved in the binding of a trans-

Table 6-1: H2B gene specific sequence element across species and comparison to the Drosophila heat-shock box consensus

Sequences potentially equivalent to the chicken H2B-box in a varlety of species are tabulated and compared to the Drosophila heat-shock box consensus. Sequences have been aligned around the central triple T bases in an attempt to highlight maximal homology. The chicken consensus was taken from Table 3-1, the HSB consensus from Pelham (1982) and Davidson et a1. (1983), the Xenopus sequence from Moorman et al. (1982), the mouse sequence from Sittman et al. (1983), the human sequence from Zhong et al. (1983), the Sea Urchin sequences from Sures et al. (1978) and Busslinger et a.1. (1980), the yeast sequence from Wa111s et al. (1982) and the Drosophila sequence from Goldberg (1979).

Species	H2B box sequence	
Xenopus laevis	CITATITGCATGG	... 6 bp ... tata box
Mouse	CITGACGIITGGCAGA	... 24 bp ...
Human	CTTATTTGCATAAG	... 6 bp ...
Sea Urchin Sp/2	CTCATTTGCATAC	... 28 bp ...
H19	CTCATITGCATAC	... 315 bp ...
	CTCTPTCCGCAT	... ? bp
H2B 2	CTAATMTTGITTAT	... ? bp ..
Drosophila	CTGAAT-TGACTG	... $12 \mathrm{bp} . .$.
Chicken consensus	CTGATTTGCATAG/C	... 6 bp ...
Drosophila HSB consensus	CTNGAAINITTCTAGA	... 10 bp ...

acting factor capable of modulating $H 2 B$ transcription perhaps independently of the H2A gene and Indeed a11 other histone genes. The report of $H 2 B$ as a heat-shock protein in Drosophila (Sanders, 1981) prompted a close look at the possible relationship between the $H 2 B$ box and the heat-shock box as discussed below.

The heat-shock response in eukaryotes is characterised by the rapid synthesis of a small number of specific proteins (heat-shock proteins: hsp's) and a repression of the synthesis of most other proteins (Schlesinger et al., 1982). The mechanism by which heat-shock genes are activated has been shown to have both transcriptional and translational components (Ashburner and Bonner, 1979; Bienz and Gurdon, 1982; D1 Domenico et al., 1982; Ballinger and Pardue, 1983). Heat induction of hsp genes at the transcriptional level has been best characterised using the Drosophila hsp 70 and hsp 82 genes (Pelham, 1982; Wu, 1984 a and b). Pelham identified an upstream element, termed a heat-shock box (HSB), present 5' to hsp genes that has been shown by Wu to bind a heat-shock activator protein (HAP) which acts as a positive regulator of the genes.

In separate experiments, the $H 2 B$ protein was identified as an hsp in Drosophila (Sanders, 1981). Further analysis suggested that there is a rapid transcriptional response mediating the increased synthesis of H2B during heat-shock (Tanguay et a1., 1983) but post-translational control has also been shown to be important (Farre11-Towt and Sanders, 1984).

Table 6-1 compares the H2B gene-specific sequence of diverse species and the chicken consensus H2B-box to a consensus HSB from Drosophila (Pe1ham, 1982; Davidson et a1., 1983). There is an homology between the two consensus sequences and also the same approximate position relative to the TATA box. The H2B-specific box is we11 conserved between species with the
exception of yeast and Drosophila H2B genes. The consensus HSB is derived from 8 Drosophila HSB sequences which in themselves show considerable variation. The H2B-box sequence is certainly more highly conserved than the HSB sequences listed by Pelham but this is not surprising since different genes with different heat-shock responses were considered. Looking across species it is notable that the HSB consensus sequence from Drosophila can be aligned directiy with a HSB in the silme mold (Zuker et al., 1983) Indicating that the Drosophila HSB consensus is functionally significant.

The combination of three independent pieces of information, namely that histone H2B is a heat-shock protein in Drosophila, that a consensus sequence for the heat-shock promoter can be defined and that H2B genes have a highly conserved element with homology to the heat-shock promoter sequence suggested that the chicken $13 \mathrm{~b} . \mathrm{p}$. H2B-box may be functionally equivalent to the HSB. Although it is not known whether the H2B protein in the chicken or any other species besides Drosophila is a heat-shock protein it is most likely to be given the conserved nature of the response to thermal stress (Sch1esinger et al., 1982).

The reason that the Drosophlla H2B-box shown in Table 6-1 is not homologous to the consensus Drosophila HSB could have two possible explanations. First, the heat-shock genes used to compile the Drosophila HSB consensus are those that give rise to the major hsp's of the cell, whereas the stimulation of H 2 B production by heat-shock is only about two fold (Camato et al., 1982). Different transcriptional stimulation of hsp genes could be medlated by different binding affinities of the respective HSB for the trans-acting HAP i.e. the weaker the homology to the consensus the lower the binding efficiency and the less tanscriptional stimulation. A1ternative1.y it has been suggested that a different H 2 B gene from the one present in the tandem histone repeat that has been sequenced could be
transcribed during heat shock (Farre11-Towt and Sanders, 1984).
Experiments to test the ability of the H 2 B -box to function as a heatshock box were undertaken utilizing the Xenopus oocyte transcription system as it had been shown to be a suitable system to analyse the heat-shock phenomenon i.e. the Drosophila hsp70 gene is only transcribed during heatshock treatment (Voe11my and Rungger, 1982).

6-2 Effect of heat-shock on transcription of a chicken $\frac{\text { H2B }}{\text { Xenopus }}$ gene in the
The H2B gene utilized in this study was the one whose expression had already been established in the Xenopus oocyte i.e. the H2B gene of the p7AT divergent $H 2 A / H 2 B$ gene pair. With the $H 2 B$-box sequence from this gene alone it is possible to align 12 out of 14 bases with the Drosophila HSB allowing two deletions and two insertions:-

Drosophila HSB	CTNGAATNTTCTAGA
p7AT H2B-box	CTC-A-TTT C TAGA
	G A

p7AT DNA was injected into thirty Xenopus oocyte nuclei and incubated 0 at 20 C for 6 hours to allow nuclear protein assembly on the injected DNA. Ten such oocytes were incubated for another 2 hours at 37 C (heat-shock), 0
another ten continued incubation at 20 C for 2 hours and the third set of ten allowed to incubate for a total of 24 hours at 20 C as in the normal injection procedure. RNA was extracted from the first two pools of oocytes at 8 hours and the final pool at 24 hours. The level of transcription initiation for $\mathrm{H} 1, \mathrm{H} 2 \mathrm{~A}$ and H 2 B genes was estimated by quantitative primer extension analysis using the 26 -mer synthetic primers. Two exposures of the data are presented in figure 6-1. The shorter exposure shows the major cap sites of each gene after the usual 24 hour incubation. In the longer exposure, a comparison of the two 8 hour incubated oocyte tracks shows that

Figure 6-1: Quantitative primer extension on control and heat shocked oocytes injected with p7AT

Two exposure times are shown of the one primer extension gel used to analyse the RNA from oocytes used in the heat-shock experiment. The exposure on the left shows the normal level of the histone gene primer extension products after 24 hours at normal temperature (track 3) next to pBR322 HpaII markers, the bands corresponding to each gene of p7AT are indicated on the figure. A longer exposure of this primer extension analysis is shown on the right panel to allow the 8 hour injected oocyte RNA samples to become visible. Track 1 shows the effect of heat-shock on the expression of the H 2 B gene compared to that in track 2 which contains RNA from control oocytes kept at normal temperature.

M1 23

M 123

H1 and H2A transcripts appear unaltered by the heat shock treatment. On the other hand, there is a clear alteration in cap site usage for H 2 B transcripts such that the lower band of the H2B primer extension doublet is markedly increased (this effect is not due to the primer extension protocol).

There is about a five-fold increase in the use of the cap site giving the lower band of the H2B primer extension doublet and although this is small, it is consistent with the small (two-fold increase) in $H 2 B$ expression during heat-shock treatment of Drosophjla Kc cells (Camato et a1., 1982). It appears that a heat-shock response for H 2 B genes injected into Xenopus oocytes may be brought about by a change in cap site usage. Whatever the mechanism, it was thought likely that it was mediated via the H2B-box given its similarity to the Drosophila HSB. Alternatively the data of figure 6-1 could have been a relatively non-speciffc effect of the two hour heat treatment on Xenopus oocyte functions.

6-3 Analysis of a $\mathrm{H} 2 \mathrm{~B}-$ box deletion mutant
In conjunction with the deletion of the CAT1 box of the p7AT H2A/H2B pair (5-4) the H2B box was also deleted. The reasons for this were two fold; to see if the heat shock effect could be abolished with the removal of the H 2 B -box and thus establish that this sequence was responsible for the phenomenon, and also to see if this element caused the decrease in H 2 A gene expression in the $\mathrm{p} 7 \mathrm{AT}-\mathrm{H} 2 \mathrm{~B}$ construct (see section 5-2, figure 5-2). The procedure for deleting the $13 \mathrm{~b} . \mathrm{p}$. H2B gene-specific sequence was identical to that already outlined in 5-4. The 22 base deletion primer used to hybridize to the M135kb.B-parental single stranded phage DNA is outlined In figure 6-2. The resultant sequence after the removal of the H 2 B -box is also shown in figure 6-2, the deletion being named M135kb.BAH2B-box. Figure

Figure 6-2: Deletion of the H 2 B -box contained within the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergene region

The sequence of the 26 -base synthetic oligonucleotide designed to delete the H 2 B -box of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergene region is shown against the corresponding sequence of the single stranded $M 135 \mathrm{~kb} . \mathrm{B}$-parental DNA used in the mutagenesis procedure. The sequence is numbered according to that presented in figure 3-2 for the intergene region. The primer is homologous for 13 bases either side of the sequence to be deleted. The sequence expected to be obtained after the deletion procedure is also presented.

Sequence surrounding the H2B-box:
$\begin{array}{llllll}-130 & -120 & -110 & -100 & -90 & -80\end{array}$
AAAGAGTGCGAAAGGAATGCIT CTCATTTGCATAGA GGGGCTATAAATAAA

CIITCCITACGAA
3^{\prime}

Expected deletion sequence:

AAAGAGIGCGAAAGGAATGCIT

TITCTCACGCITTCCITACGAA 3^{\prime}

CCCCGATATITAT H2B-box
5' deletion primer
.

Figure 6-3: Sequence analysis of the M135kb. $\mathrm{B} \wedge \mathrm{H} 2 \mathrm{~B}$-box deletion
The H2B gene spectfic 26 base primer was used to sequence across the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergene region of the $\mathrm{M1} 35 \mathrm{~kb}$. B-parental genome and the H 2 B -box deleted genome. The sequences are listed beside the gel to indicate the deletion.

6-3 compares the sequence of the M135kb.B-parental genome to that of M135kb. $\mathrm{B} \Delta \mathrm{H} 2 \mathrm{~B}$-box using the H 2 B 26 -mer as a sequencing primer.

The first experiment using the H2B-box deletion construct was to compare the expression of the divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ genes to the that of the parental genome under normal conditions. As can be seen on the primer extension assay presented in figure 6-4 the 305 base H2B aberrant transcript, spanning the divergent intergene region, is reduced by 14 bases due to the H2B-box deletion being part of this transcript. Besides this obvious change there is no immediately apparent effect on the level of either the $H 2 A$ or $H 2 B$ transcript produced by the removal of the $H 2 B-b o x$. There may be a slight relative reduction of the H2A gene transcript but nowhere near the extent seen in the p7AT-H2B construct (5-4). It is possible that the removal of both the CAT1 and H2B-box regions together in the p7AT-H2B construct contribute synergistically to the poor expression of the H2A gene. A point not previously considered is that the H2B TATA box, though not conserved in sequence to the extent that the CAT1 and H2B-box of the intergene region are, may affect the usage of the H 2 A transcription unit by concentrating polymerase molecules in the intergene region or even allowing the entry of polymerase on to the DNA in the opposite direction to the H 2 B transcription unit.

The heat-shock protocol on injected oocytes discussed above was repeated on the M135kb.B-parental and M135kb.BA H2B-box constucts. The results of this experiment are shown in figure 6-5. The primer extension analysis of the $H 1$ and H2A transcripts are virtually identical in both Injection series irrespective of the heat treatment. The H2B primer extension product indicates a change in cap site usage induced by the temperature shift of the oocytes regardless of the presence or absence of the $13 \mathrm{~b} . \mathrm{p}$. H2B gene specific sequence. The H2B gene resonse to thermal

Figure 6-4: Quantitative primer extension analysis of RNA from M135kb.Bparental and $\mathrm{M} 135 \mathrm{~kb} . \mathrm{B} \Delta \mathrm{H} 2 \mathrm{~B}$-box injected Xenopus oocytes

The figure shows primer extension on M135kb.B-parental (track 2) and M135kb.B $\triangle H 2 B$-box (track 1) injected oocyte RNA and a pBR322 HpaII marker lane. The bands corresponding to each gene of the injected templates are labe11ed.

Figure 6-5: Quantitative primer extension on control and heat shocked oocytes injected with M135kb.B-parental and M135kb.B $\triangle \mathrm{H} 2 \mathrm{~B}$-box

Two exposures are shown of the primer extension gel used to analyse RNA from oocytes injected with the parental histone construct or the H2Bbox deletion mutant. The exposure on the left shows a short exposure time of histone gene primer extension products after 8 hours incubation at 0
normal temperature (tracks 1 and 3) or 37 C (tracks 2 and 4) of M135kb.Bparenta1 and M135kb. $\mathrm{B} \triangle \mathrm{H} 2 \mathrm{~B}$-box injected oocytes respectively, next to $\mathrm{p} B \mathrm{R} 322$ Hpail markers. Bands corresponding to each gene are indicated on the figure. This exposure allows the change in H 2 B cap site usage to be seen most clearly.

A longer exposure of this primer extension analysis is shown on the right panel to allow the other gene primer extension products to become visible.

stress may therefore be an artifactual result due to the thermal lability of some factor(s) involved in the transcription of the gene.

Given the homology of the H2B-box to the HSB consensus of Drosophila but the negative result upon experimentation, shows that care must be taken in extrapolating the function of DNA sequences at low homologies. This will be discussed in detail below.

6-4 The H 2 B -box has homology to a conserved 5^{1} immunoglobulin gene sequence The tightly conserved $13 \mathrm{~b} . \mathrm{p}$. sequence, present in the H 2 B genes of al1 species, Initially had not been found in the 5^{\prime} regions of other histone genes, nor any other genes transcribed by polymerase II. It was therefore thought to be an element specific to H2B genes. Later work has shown it to be present in a number of genes.

Falkner and Zachau (1984) in the course of their work on immunoglobulin genes defined a decanucleotide (dc) sequence, TNATTTGCAT, found upstream of all human and mouse immunoglobulin Kappa and lambda chain variable region genes, and within the mouse heavy-chain enhancer. An inverted form of the dc element, ATGCAAATNA, was found to occur upstream of all immunoglobulin heavy-chain variable region genes. Their computer search of the EMBL nucleic acid sequence library for related sequences at a 89% homology level found the dc element in the $72-\mathrm{b} . \mathrm{p}$. repeat of SV 40 , the 5^{\prime} flanking region of the chicken ovalbumin gene, in the sea urchin histone gene cluster, the dispersed repetitive R sequences, and also upstream of the genes for mouse and human class II histocompatability antigens.

Parslow et al. (1984) independently identified the same sequence elements when studying a mouse lymphocytoid pre-B cell line 70Z/3 containing a rearranged immunoglobulin kappa light chain gene. The octanucleotide sequence, ATTTGCAT, was found to lie approximately 70 b.p.
upstream from the cap site in every light chain gene examined; in the heavy genes at the corresponding location the precise inverse of the above sequence, ATGCAAAT, was discovered.

It was suggested by both groups of workers that the conserved immunoglobulin sequence block may serve as a recognition locus for factors regulating immunoglobulin gene expression in a tissue specific fashion. These equivalent 8 -mer and 10 -mer sequences are contained within the 13 base H2B-box (Table 6-2). At the time of Falkner's search of the EMBL data base the sequence of the two chicken $H 2 B$ genes reported by Harvey et al. (1982) to Identify the $13 \mathrm{~b} . \mathrm{p}$. H2B-box were not included, thus explaining their fallure to identify it. Subsequent scientific correspondence purports to having identified the dc element in the homoetic gene ftz of Drosophila (see below; Tsonis, 1984).

Table 6-2 is a compilation of sequences cited by either Falkner or Parslow and by a computer search (indtiated here but not comprehensive) of gene regions with homology to the dc consensus sequence. The Table lists the sequence with the identifiable homology and the relative position of the sequence to the recognised TATA box or one with suitable homology if this has not been determined. In the case of the immunoglobulin heavy chain genes where the element is inverted with respect to the TATA box, the Inverse sequence is presented to facilitate comparisons.

The first points of note from this sequence compilation is that for most of the regions identified (except for those listed at the bottom of the Table) the homology extends further than the 10 base dc consensus sequence and there is a tight coupling to a TATA box of the same order of distance to that of the H 2 B -box and its TATA box. Indeed the homology of each box extends to something like the inter-species homology between the histone H2B genes themselves shown in Table 6-1. However, the homology is

Table 6-2: Gene systems containing the U -box sequence
Upstream sequences of a number of gene systems containing the U-box sequence, TTTGCA, are compiled and their position relative to a TATA box indicated. The sequences are aligned around the central U-box homology to show the almost invariant nature of this element.

In the case of the heavy chain immunoglobulin genes and one of the Drosophila ftz sequences, the reverse orientation of the element is presented so the sequence tabulation is consistent. The distance from a TATA box divergent from the real TATA box is also presented for the heavy chain immunoglobulin genes.

References for the immunoglobulin data are in Falkner and Zachau (1984) or Parslow et al. (1984). The U-box containing sequences in the chicken feather keratin gene A, chick H5 and H1 genes, the Herpes Simplex Virus Thymidine Kinase gene and the human B-globin gene were found by computer analysis. The Drosophila ftz gene U-box sequences were from Tsonis (1984), the human metallothionein IIa gene from Karin and Richards (1982), the consensus metallothionein heavy metal binding sequences were from Stuart et a1. (1984) and Carter et al. (1984).
$\left.\begin{array}{|l|ccc|}\hline \text { Gene system } & \text { distance from } & \text { Sequence } & \begin{array}{c}\text { distance from } \\ \text { TATA box }\end{array} \\ \hline & & & \\ \text { Immunoglobulin box }\end{array}\right]$
not absolute and there is always a "wobble" in homology around an absolutely conserved 6 base sequence, TTTGCA, that I have termed the U-box (ubiquitous-box). It looks as if there is a family of elements (much like the family of heat-shock boxes identified in each Drosophila hsp gene) that bind a common trans-acting factor with different efficiencies depending on the exact sequence of the box. It is known that each Drosophila HSB has a different binding efficiency to the HSAP identified by Wu (1984b), presumably depending on the precise nucleotide sequence.

The finding of an inverse U-box in front of all heavy chain immunoglobulin gene regions suggests that the sequence maybe able to act Irrespective of orientation when linked to a TATA box. I have indicated the distance between the inverse U-box and a TATA element just downstream of it with respect to the normal orientation presented in Table 6-2. Thus, the $U-$ box may not act irrespective of orlentation but possibly works on a transcription unit divergent from but very closely associated with the heavy-chain gene locus. This is pure speculation and no data for a divergent transcription unit in the immunoglobulin heavy-chain locus has been reported.

The expected occurance of any 6 base sequence in a single strand of DNA can be calculated statistically to be once every 4096 bases (4). Therefore the identification of the U-box in an average length gene should be relatively common, however the strict positioning of the 6 base U-box relative to other known promoter elements futher refines the definition of a U-box. The U-box must be very tightly assoclated with the TATA element of a gene to be called a U-box (in my definition) as the following examples show.

Two genes with good U-boxes with respect to sequence and position in
relation to a TATA box is a HLA-DR gene and a human metallothionein gene (Table 6-2). To illustrate the need for sequence homology and position associations in identifying a U-box, sequences with homology to the U-box in the chick feather keratin gene A, HSV-TK gene, the p7AT H1 gene, human β-g1obin gene, the chick $H 5$ gene and the Drosophila ftz gene are presented in Table 6-2. The homology of these elements to the dc consensus is slightly less than any of the other genes presented in Table 6-2 but their distances from known TATA boxes hears no resemblence to their function as a U-box, in the sense of the other genes whose U-box is always tightly assoclated with a TATA box. The same may be true for the U-boxes identified in the mouse immunoglobulin enhancer and the SV40 enhancer identified by Falkner and Zachau (1984).

The work of Parslow et a1. (1984) showed that the 70Z/3 rearranged immunoglobulin kappa light chain gene exhibits all the known properties of a functionally competent transcription unit. However mRNA transcripts from this gene are only detected after exposure (1.e. induction) of the cells containing the gene to bacterial 1ipopolysaccharide. The induction of this gene and also the presence of a potential U-box in the consensus DNA sequence thought to be responsible for heavy metal induction of the meta11othionein genes (Stuart et a1., 1984; Carter et al., 1984; Table 62), has lead me to the following speculative hypothesis to the function of the U-box. I propose that the U-box may be the recognition sequence for a trans-acting factor induced by general stress of a eukaryotic cell be it heat-shock, heavy metals or a challenge with bacterial 11popolysaccharide. This is despite my failure to demonstrate the induction of the p7AT H2B gene by thermal stress in the oocyte being caused by the $H 2 B / \mathrm{U}$-box ($6-3$). 6-5 Discussion

The search for a biological function of the chicken H 2 B -box has not
been successful. It is difficult to imagine that such an element, conserved in sequence and in its position relative to the TATA box, does not have a role in the expression of H 2 B genes. Perhaps the non-dividing oocyte is an inappropriate host cell to reveal the function of this motif. The presence of the $H 2 B / U$-box \ln several other gene systems leads to the idea of a general stress response mechanism whereby induction of genes containing the U-box next to their TATA boxes occurs. It may also be that the role of such a motif will be more mundane and may be seen in a multitude of diverse genes as a general promoter element, much like the TATA box. I doubt this wil1 be the case.

Other roles of the U-box sequence besides one involved directly in transcriptional control include a possible function as a specific origin of DNA replication, which could subsequently activate genes containing it. The synthesis of histone transcripts during the replication of DNA (1-6-4) must be considered as evidence for this hypothesis. One final option to the function of the U-box ls that it may be a nuclear matrix binding sequence, and be involved in higher order active chromatin functions (1-3-5). It has been recently determined that there are specific DNA sequences that bind to the nuclear matrix (Mirkovitch et al., 1984).

CHAPTER 7: FINAL DISCUSSION

7-1 Histone gene architecture
One feature of a designed system, in this case the control of gene expression of two genes of a multigene family, is that it is likely to be easier to control the system if the component parts are together.

The apparently random organisation of histone genes in the chicken genome (figures $2-1,2-2$ and $2-3$) belles the extraordinarily similar architecture of two of the genes of the multigene family. The coupling of H2A and H 2 B genes cannot be mistaken for a remnant of evolution of the gene family in the chicken. The DNA sequence of five of the six pairs shows that some 5^{\prime} regions have been evolving independently, but forces have been operating to keep the genes not only together but with a consistent spacing between each other. Nor can the divergent H2A/H2B gene architecture be viewed as a peculiarity of the chicken histone gene system. As discussed in 2-3 this association, though not spacing or sequence homology, can be seen in a number of diverse species.

The selection pressure keeping these two genes together is probably the strict stoichiometric requirement of the proteins coded for by each gene. The equimolar appearance of H 2 A and H 2 B in the nucleosome can be achleved by assembly from the appropriately sized pools or by some regulatory control operating during nucleosome assembly. Given the divergent gene architecture of H 2 A and H 2 B in the chicken its seems more than likely it is a coupling of mRNA production resulting in the accumulation of each protein at an equal or an appropriate level so that the nucleosome is assembled from the correct stoichiometric pool of each protein. The expression work undertaken in this thesis supports the idea that the genes are coupled for the purpose of coupling the production of each protein. When the genes are separated the production of each
transcript would be affected. This does not preclude the idea of a fine tuning of nucleosome assembly by mechanisms that operate during nucleosome formation. Indeed it is possible that the levels of the other histones relative to H 2 A and H 2 B are controlled in just such a manner.

Why only two of the chicken histone genes have such a regular gene arrangment and the others not is puzzling. So far research on H3 and H4 genes have shown no rigid association of these two, however there is a loose coupling of these two genes in several species (see gene organisational tables in Maxson et al., 1983a). A more comprehensive explanation for the coupling of only the H 2 A and H 2 B histone genes may be gained with futher investigation into the biology of the histone gene system of the chicken.

There are $H 2 A$ and $H 2 B$ genes that are not in a divergent arrangement in the chicken. There are three individual H2A genes and a single H2B gene in addition to the six divergent $H 2 A / H 2 B$ gene pairs. The effect of these additional non proportional gene coples would be expected to increase the level of H 2 A protein relative to that produced by the H 2 B genes due to the higher gene copy number. However relative rates of mRNA transcription and translation must also be taken into account before the eeffect of gene copy number on protein production can be considered. In addition, some of these genes may be non-functional although sequence analysis of 27 of the 42 core plus Hl chicken histone genes has not yet revealed a pseudogene.

One of the best characterised histone gene systems, besides that of the chicken, contains the embryonically-expressed sea urchin histone genes. It is noteworthy here that the H2A and H2B genes are not linked but are separated by an $H 3$ gene in a tandem gene repeat of the 5 histone gene types (Hentschel and Birnstiel, 1981). A possible explanation for the uncoupling
of the $H 2 A$ and $H 2 B$ genes in this system is that there may be only loose transcriptional control exercised in this gene system. These highly reiterated genes of the sea urchin are used to produce the maternal histone mRNA store during oogenesis and the newly synthesised histone gene transcripts produced during the early stages of cleavage of the zygote. It may be better when dealing with a maternal store of histone mRNA and protein to control the translation and/or the nucleosomal assembly of the histone proteins to achieve the stoichiemetric requirement of the nucleosome. In contrast to these embryonic type histone genes, the lower copy number late histone subtype genes in sea urchin are more like the chicken histone gene system, with a random gene architecture and contain at least one divergent $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ gene pair.

7-2 Divergent gene promoter sequences: multiple repeating sequence elements and the role of the CCAAT box

The chicken H2A/H2B pairs contain four CCAAT sequences in their intergene regions. The presence of multiple CCAAT boxes may not be uncommon In eukaryotic genes although to date it has on1y been customary to identify one CCAAT element in a genes promoter sequence. Indeed there is a duplication of the CCAAT element in the human γ-globin gene. Moreover a single G to A substitution in the more distal of the two CCAAT elements can be correlated to the hereditary persistence of fetal haemoglobin in some B-thalassaemics (Gelinas et al., 1985; Collins et a1., 1985). It has been speculated that this CCAAT box region of the $\gamma-g l o b i n$ gene is the binding site of a repressor that turns off the gene in the normal human adult. The G to A substitution would then inhibit the DNA-protein interaction and allow the inappropriate expression of the fetal gene in the adult. Alternatively the γ-gene may depend on binding of a positive transactivating factor normally present in fetal cells, the single base change
would then not affect this binding but may change the specificity of the CCAAT element so that another trans-activator can act upon the sequence in the adult. Whatever the mechanism, it has been proposed that the CCAAT box is one of the elements which contribute to the developmental control of r-globin expression.

This suggested function for the CCAAT element must be considered to be its role in only one specific case; the element is by no means specific to the globin genes and therefore must act differently in other genes. The CCAAT element is in all probabllity a family of protein/factor binding sequences, its role changing with slight changes in the CCAAT sequence itself and sequences surrounding it. This example of a semi-conserved sequence block identified in front of diverse genes is similar to the identification of the U-box in front of the several different types of genes discussed in chapter 6. Again a definitive functional role for an apparently consistent sequence block is elusive.

The appearance of multiple repeating sequence blocks, like the CCAAT boxes of the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ pair, has also been seen in the intergene region of the SV40 virus divergent gene promoter region. However in this case it is the $G-C$ box element (1-4-2(i)) that is repeated. A transcription factor termed Spl, one of the few that have so far been examined, has been shown to interact with this G-C region (Gidoni et al., 1984). It has been found that the factor binds only to the DNA strand that contains the six GGCGGG repeated sequences. There is evidence that the Spl dependent transcription of the SV40 genome results in the initiation of divergent transcripts on opposite DNA strands at locations approximately equidistant from the binding region.

Gidoni et al. have proposed two models to explain how the binding of a factor to an asymmetric sequence results in symmetrical activation of
transcription of the SV40 genome. Activation could preceed via proteinprotein contact. This would require the $S p l$ protein to have recognition sites at both ends of the asymmetric molecule which is unlikely. Alternatively the activation of the SV40 divergent transcripts by Spl has been suggested to proceed by a perturbation of the DNA hellx that propagates in both directions. I favour this second hypothesis and imagine the same thing could happen in the $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ intergene region with the multiple repeating CCAAT elements. In this case the activation must be more complex in that a single CCAAT box is orientated toward one gene and three toward the other.

No three dimensional conformation for any eukaryotic gene promoter has been described in any detail, therefore what can be said about the structure of the promoter region of genes must be taken as speculation. The effect of the binding of a regulatory protein to a gene promoter sequence may be mediated through direct protein-protein interactions or through an "action at a distance" whereby the structure of the DNA helix at some disance from the actual protein binding site undergoes a conformational change. It is possible that both mechanisms could be used at the same time by different DNA binding proteins that bind to the same promoter region. The presence of multiple asymmetrical sequence units in both the divergent H2A/H2B and SV40 transcription units suggests that the hypothesis of a algnal being propagated through the DNA backbone fis more 1.tkely to be correct.

7-3 Functiona1 analysis of a $\mathrm{H} 2 \mathrm{~A} / \mathrm{H} 2 \mathrm{~B}$ divergent gene promoter region
The failure to find effects of the CATl and H2B-box deletions on the expression of either the H 2 A or the H 2 B gene (5-4; 6-3) in the oocyte transcription system is paradoxical given the marked effect of separation
of the two genes (5-2), the finding that the intergene region with oniy small amounts of the gene coding region is sufficient for promotion of both transcripts (5-3), and the conserved sequence and spatial arrangement of these two elements in the intergene region (Table 3-1). Perhaps in the separation of the genes at the intergenic XhoI site there is a loss of the postulated "perturbation signal" transmitted through the helix (7-2) which is not seen in the small site directed deletions. This loss of control on gene separation could mean that the remaining CCAAT boxes would not be able to act synergistically to promote transcription.

The remarkable spatial relationship of the conserved intergenic elements (Table 3-1) suggests that spacing could be important in the interaction of the CCAAT boxes proposed to be involved in the promotion of transcription. Future work on the analysis of the divergent gene promoter could concentrate on the significance of the spacing of these elements. Experiments would Involve the introduction of exogenous DNA of varying lengths between the conserved elements, followed by functional testing. This would be most easily done by utilising the unique Xhol site between the CAT1 and CAT2 boxes.

CHAPTER 8: MATERIALS AND METHODS

8-1 Abbreviations
Abbreviations were as described in "Instructions to authors" (1978). In addition:

BCIG : 5-bromo-4-chloro-3-indolyl- β-D-galactoside
bisacrylamide : N,N'-methylene-bisacrylamide
ddNTP : dideoxynucleoside triphosphate
DTT : dithfothreito1
IPTG : isopropyl- $\beta-D-$ thio-galactopyrosine
PIPES : piperazine-N,N'-bis(2-ethnane-sulfonic acid)
PEG : polyethylene g1ycol
SDS : sodium dodecy1 sulphate
TEMED : N,N,N', N^{\prime}-tetramethylethylenediamine

8-2 Materia1s

8-2-1 Chemicals and Reagents
All chemicals were of analytical reagent grade, or the highest available purity. Most chemicals and materials were obtained from a range of suppliers, the major source of the more important chemicals and reagents are listed below.

Acrylamide, agarose, ATP, ddNTPs, dNTPs, DTT and bisacrylamide - Sigma Low melting point agarose - B.R.L.

Mixed bed resin AG 501-X8 (D) - Bio-rad
TEMED and xylene cyanol - Tokyo Kasel
Urea (ultra pure) - Merck
Chloramphenicol - gift from Parke-Davis
Bromo cresol purple, formamide and PEG 6000 - BDH 323232
M13 universal primer, $\gamma-P-A T P, \alpha-P-d C T P$ and $\alpha-P-d A T P$

- Biotechnology Research Enterprises of S.A. (BRESA)

8-2-2 Enzymes
Enzymes were obtained from the following sources:
AMV reverse transcriptase - Molecular Genetic Resources
Calf intestinal phosphatase and Ribonuclease A - Sigma
E. coli DNA-polymerase I, Klenow fragment - Boehringer Mannheim BRESA

Proteinase K - Boehringer Mannheim
Restriction endonucleases - Boehringer Mannheim New Eng1and Biolabs

S1 nuclease - Boehringer Mannheim
T4 DNA 1igase - New England Biolabs
BRESA
T4 polynucleotide kinase - Boehringer Mannheim
8-2-3 Buffers and Media
A11 bacteria, except JM101, were grown in L-broth or on L-agar plates. JM101 was grown in minimal medium, $2 \times$ YT broth and on minimal plus glucose plates.

L-broth : 1% (w/v) amine A, 0.5% (w/v) yeast extract, 1% (w/v) NaC1, pH 7.0

L-agar plates contained L-broth with 1.5% (w/v) bacto-agar
 ($\mathrm{NH}_{4} \mathrm{~S}_{4} \mathrm{SO}_{4}, 0.1 \%(\mathrm{w} / \mathrm{v})$ tri-sodium citrate
Minimal plus glucose plates contained minimal medium, 0.4% (w/v)
glucose, 0.0001% (w/v) thiamine and 1.5% (w/v) bacto-agar
$2 \times \mathrm{YT}$ broth : 1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) $\mathrm{NaC1}, \mathrm{pH} 7.0$.

Al1 buffers and media were prepared with distilled and deionised water
and sterilised by autoclaving, except heat labile reagents, which were filter sterilised.

8-2-4 Bacterial strains, clones and cloning vehicles
Bacterial stocks
E392 - gift from Dr. J.B. Egan
MC1061 - gift from Dr. R.P. Harvey
JM101 - gift from Dr. A. Robins
Cloned DNA Sequences
pCH3.3E - gift from Dr. R.P. Harvey
pCH22.0B - gift from C. Lesnlkowski
λ CII-05, pCH3.5F and pCHIL.0E - gift from R. D'Andrea
λ CH1-10 EcoRI-HindIII H2A/H2B fragment - gift from L.S. Coles
Cloning Vectors
pBR322 - gift from R. D'Andrea
pAT153-gift from Dr. J.B. Egan
M13mp7, M13mp8, M13mp9, M13mpl8, M13mp19-gift from Dr. A. Robins
8-3 Methods
8-3-1 Isolation of plasmid DNA
(1) Growth and amplification of plasmid DNA

A loopful of a glycerol stock of E. coli, containing the plasmid to be grown, was streaked on an L-agar plate (usually supplemented with an appropriate antibiotic to maintain selective pressure for the retention of 0
the plasmid; $30 \mathrm{ug} / \mathrm{ml}$) and incubated overnight at 37 C . A single colony was used to infect 5 ml of L-broth (supplemented with antibiotic), which was 0
then grown overnight at 37 C , with vigorous shaking if amplification of the plasmid was intended. If amplification was not required a 100 ml solution of L-broth was infected with a single colony and the broth incubated overnight with shaking.

To amplify plasmid in the 5 ml overnight culture it was diluted 100 fold into 500 m 1 of fresh broth (without antibiotic) and grown with aeration at 37 C to an A_{600} of 1.0 , at which time chloramphenicol was added to a final concentration of $150 \mathrm{ug} / \mathrm{ml}$, and incubation continued overnight (Clewell, 1972).
(ii) Large scale isolation

The cells from the 100 ml overnight or the 500 ml amplified culture were harvested by centrifugation (JA-10 rotor, 6000 rpm for 10 minutes). The plasmid DNA was isolated by a modified procedure of the alkaline extraction procedure of Birnboim and Doly (1979).

Ce11 pellets were resuspended in 4 ml of 15% (w/v) sucrose, 25 mM Tris-HC1, $\mathrm{pH} 8.0,10 \mathrm{mM}$ EDTA, $2 \mathrm{mg} / \mathrm{ml}$ lysozyme and Incubated on ice for 20 minutes. 8 ml of freshly made $0.2 \mathrm{M} \mathrm{NaOH}, 1 \%$ (w/v) SDS was added and gently mixed until the suspension became almost clear and slightly viscous. The solution was then left on ice for a further 10 minutes. 5 m 1 of 3 M sodium acetate, pH 4.6 , was added and gently mixed by inversion for a few seconds. The tube was maintained on ice for 30 minutes to allow protein, high molecular weight RNA and chromosomal DNA to precipitate, then centrifuged for 25 minutes at $15,000 \mathrm{rpm}$ (JA-20 rotor) to remove the clot. The supernatant containing supercoiled plasmid DNA was carefully aspirated, avoiding $\underset{0}{\text { lumps }}$ of the precipitate, treated with Ribonuclease A (heattreated at 80 C for 20 minutes to inactivate deoxyribonucleases; 50 ul of a $10 \mathrm{mg} / \mathrm{m} 1$ stock) for 20 minutes at 37 C , phenol-ch1oroform extracted, then ethanol precipltated (8-3-3).

After centrifugation, the plasmid DNA pellet was redisolved in 1.6 m 1 of water and 0.4 ml of $4 \mathrm{M} \mathrm{NaCl}, 2 \mathrm{ml}$ of $13 \% \mathrm{PEG} 6000$ added and the solution was then placed on ice for 1 hour (half of these volumes were used
when the nucleic acid from a 100 ml bacterlal culture was to be PEG precipitated). The plasmid DNA was collected as a pellet after a 10 minute centrifugation in an Eppendorf microfuge. The PEG supernatant was removed, the pellet washed in 70% ethanol and then dried in vacuo. The pellet was then resuspended, ethanol precipitated, washed, dried and resuspended in an appropriate volume of water.

The yield of DNA, prepared by this method, was approximately 300 to 600 ug per 500 ml amplifled culture and 100 ug per 100 ml culture, as assayed by electrophoresis (8-3-4).
(iii) Miniscreen procedure

Colonies were grown overnight in 2 ml of L-broth plus an appropriate antibiotic at 37 C with continual shaking. The cells were then pelleted by centrifugation for 5 minutes in an Eppendorf microfuge. Plasmid DNA was extracted by the same, but scaled down, procedure as described above except that the PEG precipitation procedure was omitted. The DNA prepared in this way was pure enough to be cut with restriction enzymes.

8-3-2 Isolation of M13 replicative form
A single plaque was toothpicked into 100 ml of 2 x YT broth containing 10 ml of a fresh JM101 overnight culture, grown from a single colony picked from a minimal plus glucose plate. This culture was incubated at 37 C with vigorous aeration for 6 hours. The method of isolation of M13 replicative form from this culture was the same as that for the isolation of plasmid DNA (8-3-1). The yield of DNA prepare in this way was approximatly 200 ug.

8-3-3 Restriction endonuclease d]gestions
A11 restriction endonuclease digestions were performed using the conditions for each enzyme described by Davis et al. (1980). ATP (50 uM) was also included if the restricted DNA was to be ligated. A two-fold excess of enzyme generally was used and the reactions were run for an hour,
although this time was increased for preparative digestions.
Reactions were stopped by the addition of EDTA, pH 7.4 to 5 mM , and protein removed by phenol/chloroform extraction or by the addition of a quarter volume of urea load buffer (4 M urea, 50% (w/v) sucrose, 50 mM EDTA, $\mathrm{pH} 7.4,0.1 \%$ (w/v) bromo cresol purple). In phenol/ch1oroform extractions one half volume of phenol saturated with 100 mM Tris-HC1, pH 9.0, 5 mM EDTA, 50 mM 2-mercaptoethanol, was added, mixed and a half volume of chloroform added. After vortex mixing and centifugation (Eppendore microfuge, 1 minute; JA- 20 rotor 5 minutes at $7,000 \mathrm{rpm}$ the upper aqueous phase was recovered.

DNA was ethanol precipitated from the aqueous supernatant by adjusting the reaction mix to 0.2 M NaCl or 0.3 M sodium acetate, pH 5.5 and addition of 2.5 volumes of nuclease-free ethanol, followed by freezing in an ethanol/dry ice bath. After thawing, the DNA was pelleted by centrifugation for 10 minutes in an Eppendorf microfuge or a JA-20 rotor ($10,000 \mathrm{rpm}$). The DNA pe11et was washed with 70% nuclease-free ethanol and iried in vacuo before being redissolved in an appropriate volume of water.

8-3-4 Routine ge1 electrophoresis

(1) Polyacrylamide ge1 electrophoresis

Electrophoresis of DNA species of less than about 1 kb in length was carried out on vertical $14 \mathrm{~cm} \times 14 \mathrm{~cm} \times 0.5 \mathrm{~mm}$ slab gels containing $5-20 \%$ acrylamide/bisacrylamide (30:1), which had been deionized with mixed bed resin.

A 15 ml mixture of acrylamide and bisacrylamide in TBE buffer (100 mM Tris-borate, 2.5 mM EDTA) was prepared, 250 ul of 10% (w/v) ammonium persulphate and 12.5 ul of TEMED added, and the solution poured into a gel mould and allowed to polymerise. Gel reservoir tanks contalned
approximately 1 1itre of TBE buffer and gels were pre-electrophoresed at 50 mA for 20 minutes before loading. Samples were dissolved in 10 ul of water and a quarter volume of loading buffer (50\% (w/v) sucrose, 50 mM Tris- HCl , pH 7.4, 5 mM EDTA, 0.1% (w/v) bromo cresol purple and 0.1% (w/v) xylene cyanol) and layered directly into gel slots approximately 1 cm wide. When DNA samples of greater than 10 ug were electrophoresed, the DNA samples were dissolved in a larger volume of water and loading buffer and layered into an appropriately sized gel slot.

A11 acrylamide gels were electrophoresed at 30 mA until the dyes had moved the desired distance. DNA was visualised under UV light after ethidium bromide staining or by autoradiography (8-3-5) if the DNA 32
contained P.
(1i) Agarose ge1 electrophoresis
Agarose was dissolved in TEA (40 mM Tris-acetate, 20 mM sodium-acetate, 1 mM EDTA, pH 8.2) to $0.7-2 \%(\mathrm{w} / \mathrm{v})$ and cast either in 14 cm x 14 cm x 0.3 cm vertical slab gel templates or on to $7.5 \mathrm{~cm} \times 5 \mathrm{~cm}$ microscope slides, for horizontal gels. Vertical gels were electrophoresed between reservoirs each containing 500 m 1 of TEA at 65 mA , usually for 3 hours. Horizontal gels were submerged in 400 ml of TEA buffer and a current of 125 mA was applied for approximately 20 minutes.

DNA samples were dissolved in 10 ul of water and 2.5 ul of loading buffer (50\% (v/v) g1ycerol, 50 mM Tris-HC1, $\mathrm{pH} 7.4,5 \mathrm{mM}$ EDTA, 0.1% (w/v) bromo cresol purple) and loaded directly into gel slots for vertical gels. Samples of 5-8 ul were loaded into the horizontal gel slots.

The DNA was visualised with ethidium bromide as described above (8-34(i)).
(ii1) Low melting point agarose gel electrophoresis
When a DNA sample was to be recovered from an agarose ge1, low melting
point agarose was used in p1ace of normal agarose in the ge1 systems described above. To prevent cracking due to shrinkage, the gel was poured after leaving agarose and the gel mould to equilibriate at 37 C . The gel was then allowed to set at 4 C and electrophoresis was also carried out 0 at 4 C .

Prior to loading the gel was pre-electrophoresed for 10 minutes. Electrophoresis was at similar voltages and for simitu limed lo that for normal agarose gel electrophoresis. The bands were visualised and then cut from the ge1 for elution (8-3-7).

8-3-5 Autoradiography
32
P-1abelled DNA, which had been electrophoresed on polyacrylamide gels was visualised by autoradiography. Ge1s were covered with a thin sheet of plastic-wrap and a sheet of Fuji X-ray film was placed over the gel enclosed in an Llford autoradiography cassette and exposed at room temperature for the required amount of time. For detection of low leve1s of radioactivity, autoradiography was carried out in a cassette with a tungsten intensifying screen, at -80 C . After exposure, the X -ray film was developed, fixed, washed and dried automatically.

When DNA bands were to be eluted from a gel, one of the glass plates of the ge1 mould was removed and plastic wrap placed over the ge1. Two strips of tape were adhered to the plastic wrap each side of the tracks concerned and spotted with radioactive ink (to act as markers). A sheet of X-ray film was placed on the gel and autoradiographed for the required amount of time. After developing and fixing the film, the radioactive ink spots were lined up with the X-ray film and bands cut from the gel for elution (8-3-6).

8-3-6 Elution of DNA from polyacrylamide ge1s

The gel slice containing the DNA to be eluted was placed in an Eppendorf tube and 400 ul of TE buffer ($10 \mathrm{mM} \operatorname{Tris}-\mathrm{HCl}, \mathrm{pH} 7.4,1 \mathrm{mM}$ EDTA) was added and incubated overnight at 37 C with shaking. The buffer was aspirated from the gel silce and the DNA precipitated with nucleasefree ethanol.

8-3-7 Isolation of DNA from low melting point agarose
The smallest slice of agarose possible, containing the DNA fragment, was placed in an Eppendorf tube. The agarose was melted at 65 C , then 200 $u 1$ of 0.2 NET buffer ($200 \mathrm{mM} \mathrm{NaC1}, 10 \mathrm{mM}$ Tris $-\mathrm{HCl}, \mathrm{pH} 7.4,1 \mathrm{mM}$ EDTA) added. This mixture was phenol extracted twice without the addition of chloroform, then once with phenol/ch1oroform. The aqueous phase was then ethanol precipitated. Approximately $50-70 \%$ of the fragment loaded onto the gel was recovered in this way.

8-3-8 Subcloning of DNA fragments into plasmid and M13 vectors
(1) End-fil11ing of DNA fragments and blunt-end 1igations

Vector DNA was 1inearised with a suitable restriction enzyme then dephosphorylated with calf-intestinal phosphatase in a 50 ul reaction mix containing 50 mM Tris-HC1, $\mathrm{pH} 9.0,1 \mathrm{mM} \mathrm{MgC1}, 0.1 \mathrm{mM} \mathrm{ZnSO}$ and 0.18 units of enzyme. After a 1 hour incubation at 37 C the enzyme was heat Inactivated at 68 C for 15 minutes in the presence of 0.5% SDS and the protein removed by phenol/chloroform extraction. The linearised dephosphorylated vector was purified from uncut vector by passaging the DNA through a low melting point agarose gel.

Restriction fragments to be subcloned were preparatively isolated from either agarose or polyacrylamide gels. When the DNA fragment had protruding 5^{\prime} or 3^{\prime} termini, it was treated with DNA polymerase I Klenow fragment to end-fill or digest back the single-strand regions to blunt-ends. This was done, before purification of the fragment by ge1 electrophoresis, in a 20
u1 reaction mix containing 10 mM Tris- $\mathrm{HC1}, \mathrm{pH} 7.4,50 \mathrm{mM} \mathrm{NaC1}, 10 \mathrm{mM} \mathrm{MgC1}$, 1 mM DTT, 30 uM of each dNTP and 1 unit of Klenow fragment.

Ligation of insert into vector was done in a 10 ul volume containing 50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{MgCl}, 1 \mathrm{mM} \mathrm{DTT}, 0.5 \mathrm{mM}$ dATP and 0.5 units of 0 T4 DNA ligase at 4 C for 16 hours. Sufficient insert to give a three fold molar excess over vector was generally used, 50 ng of plasmid or 10 ng of M13 vector was normally contained in a ligation mix. Recombinant molecules were transformed into bacteria as described below ($8-3-9,8-3-10$).
(ii) Sticky-end 1igations

These were performed as described above except 0.1 units of ligase was used in the reaction and incubation carried out at 14 C for 4-16 hours.

8-3-9 Transformation procedure for plasmid recombinants
A single colony of E . coli strain E392 or MC1061 was used to infect 5 m 1 of L-broth which was then grown overnight at 37 C with aeration. One m1 of the overnight culture was diluted 50 fold in 50 ml of L -broth and grown with shaking to an A of 0.8 . The cells were then rapidly chilled on ice
for 30 minutes. The cells were pelleted by gentle centrifugation (HB-4 rotor, 5000 rpm for 2 minutes), washed in a half volume of ice cold 0.1 M $\mathrm{MgC1}$, then resuspended in one twentleth volume of ice cold 0.1 M CaCl and 2 2 left on ice for at least 1 hour. 200 ul of this cell suspension was mixed with 100 ul of 1igation mix diluted in $100 \mathrm{mM} \mathrm{Tris}-\mathrm{HCl}, \mathrm{pH} 7.4$ and left on ice for 30 minutes with occasional mixing. The transformation mix was heated to 42 C for 2 minutes then returned to ice for 30 minutes. After slowly warming to room temperature, 0.5 ml of L -broth was added and the cells incubated at 37 C for 30 minutes. After this time 3 ml of L-broth containing 0.7% agar was added to the transformation $m i x$ and poured onto an L-agar plate containing an appropriate antibiotic, depending on the
resistance carried by the plasmid. The plate was incubated overnight at
 37 C .

8-3-10 Transformation procedure for M13 recombinants
A loopful of E. coli strain JM101, from a minimal plus glucose plate, was used to infect 5 ml of minimal medium which was then grown overnight at 0 37 C with aeration. The overnight culture was diluted 50 fold into 50 m 1 of 2 x YT and grown with shaking to an A of 0.4 . The cells were pelleted 600
by gentle centrifugation (HB-4 rotor, 5000 rpm for 2 minutes), then resuspended in one-twentleth volume of ice cold 50 mM CaCl and left on lee 2
for at least 1 hour. 200 ul of this cell suspension was mixed with a sample of the ligation mix and left on ice for 40 minutes. The transformation mix was heated to 42 C for 2 minutes. 3 ml of L -broth containing 0.7% agar, 20 u1 of BCIG, $20 \mathrm{mg} / \mathrm{m} 1$ in dimethy1formamide, 20 ul of $\mathrm{IPTG}, 24 \mathrm{mg} / \mathrm{m} 1$ in water, and 0.2 ml of a JM101 overnight culture diluted $1: 5$ in 2 x YT broth was then added and the mixture plated directly onto a minimal plus glucose 0 plate. Incubation was overnight at 37 C .

8-3-11 M13 chain terminator sequencing of DNA (EMBO sequencing notes, 1980)
(1) Preparation of template

M13 phage plaques were toothpicked into 1 ml of a $1: 40$ dilution of a fresh JM101 overnight culture (grown in minimal medium) in 2 x YT broth. After incubation at 37 C with vigorous shaking for 5 hours, the culture was centrifuged for 5 minutes in an Eppendorf microfuge. The supernatant was poured into an Eppendorf tube containing 200 ul of $2.5 \mathrm{M} \mathrm{NaCl}, 20 \%$ PEG 6000 and left at room temperature for 15 minutes. The single-stranded M13 phage particles were collected as a pellet after centrifugation for 5 minutes. The supernatant was aspirated and the pellet resuspended in 100 ul of 10 mM Tris-lIC1, $\mathrm{pH} 8.0,0.1 \mathrm{mM}$ EDTA, phenol/ch1oroform extracted and the DNA
recovered by the addition of 10 ul of 3 M sodium acetate, pH 5.5 and 250 u 1 of nuclease-free ethanol (as for an ethanol precipitation 8-3-3). The DNA pellet was resuspended in 25 ul of $10 \mathrm{mM} \operatorname{Tris}-\mathrm{HCl}, \mathrm{pH} 8.0,0.1 \mathrm{mM}$ EDTA and 0 stored frozen at -20 C .
(i1) Sequencing reactions
Four separate reactions, each specific for one of the bases in DNA, were used in the sequence analysis of the insert of the M13 single-stranded template. In each of the sequencing reactions, the M13 universal primer or one of the histone gene specific primers (8-3-12; chapter 4) was extended In the presence of a different ddNTP such that there was a partial incorporation of each, which resulted in termination of synthesis.

The method described below is for the sequencing of one M13 clone but is readily expanded to allow the concurrent sequencing of $8-16$ clones.
(a) Hybridization
2.5 ng of universal primer (17-mer) or 5 ng of one of the histone $26-$ mers was annealed to 5 ul of M13 single-stranded template (prepared as above) in a 10 ul volume containing $10 \mathrm{mM} \operatorname{Tris}-\mathrm{HC} 1, \mathrm{pH} 8.0,50 \mathrm{mM} \mathrm{NaC1}, 10$ mM MgC1 by heating the solution to 70 C for 3 minutes and then hybridizing 2 at room temperature for 45 minutes.
(b) Polymerisation

32
1 ul of $\alpha-P-d A T P$ (approximately 4 uCl) was lyophilized, the hybridization mix added, vortexed to dissolve the labelled dATP and then 1 ul of 10 mM DTT added. 1.5 ul of each of the appropriate zero mixes (T for ddTTP: $10 \mathrm{uM} \mathrm{dTTP}, 200 \mathrm{uM}$ dCTP, $200 \mathrm{uM} \mathrm{dGTP}, 5 \mathrm{mM} \operatorname{Tris}-\mathrm{HCl}, \mathrm{pH} 8.0,0.1 \mathrm{mM}$ EDTA; C for ddCTP: 200 uM dTTP, 10 uM dCTP, 200 uM dGTP, 5 mM Tris- HCl , pH 8.0, 0.1 mM EDTA; G for ddGTP: 200 uM dTTP, 200 uM dCTP, 10 uM dGTP, 5 mM Tris-HCl, $\mathrm{pH} 8.0,0.1 \mathrm{mM}$ EDTA; A for ddATP: 200 um of dTTP, dCTP and dGTP,

5 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,0.1 \mathrm{mM}$ EDTA) and ddNTP solutions (0.1 mM for ddCTP and ddATP, 0.5 mM for ddTTP and ddGTP, each in water) were added together. 2 ul of the zero - ddNTP mixtures were added separately to four Eppendorf "reaction tubes".
0.5 ul of DNA polymerase I , Klenow fragment (1 unit/u1) was added to the hybridization mixture - label - DTT solution. 2 ul of this was then added to each of the four reaction tubes and the solutions were mixed by centrifugation for 1 minute. After 10 minutes incubation at $37 \mathrm{C}, 1 \mathrm{ul}$ of dATP chase (500 uM dATP in 5 mM Tris $-\mathrm{HC1}, \mathrm{pH} 8.0,0.1 \mathrm{mM}$ EDTA) was added to each of the four tubes, mixed by a 1 minute centrifugation and incubated for a further 15 minutes at 37 C .

3 ul of formamide loading buffer (100% formamide, 0.1% (w/v) bromo cresol purple, $0.1 \%(\mathrm{w} / \mathrm{v})$ xylene cyanol and EDTA to 20 mM) was added to stop the reactions and mixed by a short centrifugation. Samples were boiled for 3 minutes and then loaded onto a sequencing ge1.

(iii) Sequencing gels

Products of the dideoxy-chain terminator sequencing reactions were separated by electrophoresis on polyacrylamide gels which included 7 M urea as a denaturant. The gels used were $40 \mathrm{~cm} \times 40 \mathrm{~cm} \times 0.35 \mathrm{~mm}$. A 6% gel, which was normally run, was made in the following way. A 85 ml mixture of acrylamide monomer (20:1, acrylamide to bisacrylamide) in TBE buffer containing 7 M urea, was prepared, 800 ul of 10% (w/v) ammonium persulfate and 65 ul of TEMED added, the mixture poured into a gel mould and allowed to polymerise.

Reservoir tanks contained about 4 litres of TBE buffer and these gels were pre-electrophoresed for 45 minutes at 30 mA . Debris and urea were removed from sample wells prior to loading by flushing with buffer from a syringe. All gels were run at $25-40 \mathrm{~mA}$ and kept at high temperature during
electrophoresis to facilitate DNA denaturation.
Ge1s were fixed with 200 ml of 10% (v/v) acetic acid and washed with 2 litres of 20% (v / v) aqueous ethanol. After drying, the gels were autoradiographed overnight at room temperature.

8-3-12 Preparation and kinasing of synthetic oligonucleotides
Synthetic DNA primers were generously provided by Dr. D. Skingle and S. Rogers. Oligodeoxyribonucleotides were synthesised on a silica gel support using deoxynucleoside morpholinophosphoramidite monomers (McBride and Caruthers, 1983), and protecting groups were removed as described by Metterici and Caruthers (1981). The tritylated DNA was purified by reversephase HPLC and then de-tritylated (Metterici and Caruthers, 1981). The products were provided as triethylammonium DNA salts in water and were both single-stranded and devoid of 5^{\prime} phosphate groups making them ideal substrates for kinasing and sequencing by chemical degradation methods of Maxam and Gilbert (8-3-13).

The histone specific 26 base primers prepared were as follows:
H2A primer: (residues -340 to -315 , figure $3-2$, upper strand)
5' dAGCGACTGAACACTCAGAGAGCAAAC 3'
H2B primer: (residues -354 to -329 , figure $3-2$, lower strand)
5' dGGCTCGGGCATAGTGGCACAACGCGC 3'
H1 primer: (residues complementary to 21 to -5 , figure 4-2)
5' dGGCGGGAGCGGTCTCGGACATCGCGG 3'
Primers were 5' end-1abelled with T '4 polynucleotide kinage and $\gamma-P-$ ATP. Normally $50-100 \mathrm{ng}$ of synthetic primer was kinased in a 10 ul reaction containing 50 mM Tris- $\mathrm{HC} 1, \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{MgC1}, 5 \mathrm{mM} \mathrm{DTT}, 7 \mathrm{u} 1$ of lyophilized $\gamma-\mathrm{P}-\mathrm{ATP}$ (approximately 35 uCl) and 1 unit of enzyme. The reaction was incubated for 45 minutes at 37 C were upon 5 ul of formamide
loading buffer was added (8-3-11(1i)b) and the mixture loaded onto a 20% polyacrylamide gel for purification (8-3-4(1), 8-3-6).

8-3-13 Sequencing of synthetic oligonucleotides
Inftally the sequences of gome of the synthet olf olfonucheot thes were verified by a modified Maxam-Gilbert procedure (Banaszuk et a1., 1983). 100 ng (in a volume of 50 ul) of radioactively labelled primer prepared as described above was subjected to the following reactions.

Guanine cleavage
5 ul of \quad P-primer containing 4 ug of carrier tRNA and 200 ul of 50 mM sodium cacodylate, $\mathrm{pH} 8.0,10 \mathrm{mM} \mathrm{MgCl}$ and 0.1 mM EDTA were combined and 1 u1 of Dimethyl sulfate added and the mixture incubated at 37 C for 15 minutes. The mixture was chilled on ice, and then 50 ul of "stop" solution containing 3 M sodium acetate, $\mathrm{pH} 5.5,2.5 \mathrm{M} 2$-mercaptoethanol, 1 mM EDTA and 0.1 ug/ul tRNA added. The DNA was precipitated by the addition of 750 $u 1$ of ethanol and chilling at -80 C . The dried pellet was re-ethanol precipitated then dissolved in 1 M piperidine and incubated at 90 C for 30 minutes. After cooling the mixture was dried in vacuo then resuspended in 100 ul of water and transferred to a new Eppendorf tube, adjusted to 200 mM NaC1 and the sample precipitated with ethanol. The residue was dissolved in 5 ul of formamide loading buffer.

Adenine and guanine cleavage
10 ul of \quad-primer containing 4 ug of carrier DNA and 10 ul of 3% diphenylamine, 1.5 mM EDTA in 98% formic acid were combined and incubated 0 at 37 C for 12 minutes. The reaction was chilled on ice and 250 ul of 0.3 M sodium acetate, $\mathrm{pH} 5.5,0.1 \mathrm{mM}$ EDTA and $0.025 \mathrm{ug} / \mathrm{ul}$ tRNA then added. The mixture was then treated as described for the guanine cleavage above.

Cytosine and thymine cleavage
10 ul of P-primer containing 4 ug of carrier tRNA was combined with

10 u 1 of water and 30 u l of of hydrazine and incubated at 45 C for 18 minutes. The reaction was stopped by the addition of 200 u 1 of 0.3 M sodium acetate, $\mathrm{pH} 5.5,0.1 \mathrm{mM}$ EDTA and $0.025 \mathrm{ug} / \mathrm{u} 1$ tRNA. The DNA was precipitated with ethanol and then treated with piperidine as described for the guanine cleavage.

Cytosine cleavage

5 ul of P -primer containing 4 ug of carrier tRNA was combined with 15 ul of 5 M NaCl and 30 ul of hydrazine and the reaction incubated at 45 C for 18 minutes. The reaction was stopped by the addition of 200 ul of 0.1 mM EDTA, 0.025 ug/ul tRNA. The DNA was precipitated with ethanol and treated with piperidine as described for the guanine cleavage.

Thymine $\frac{\text { cleavage }}{32}$
5 ul of P -primer containing 4 ug of carrier tRNA was mixed with 20 0
u 1 of freshly prepared $\mathrm{KMnO}_{4}(20 \mathrm{ug} / \mathrm{ul})$ and incubated at 37 C for 1 hour. The reaction was stopped by the addition of 10 ul of allyl alcohol then dried in vacuo and treated with piperidine as described for the guanine cleavage.

The cleavage samples were run on 20% sequencing ge1s (8-3-11(iifi)) which were frozen during autoradiography.

8-3-14 Isolation of chick embryo RNA
5-day chick embryo RNA was prepared by a guanidine-HC1 method (Brooker et a1., 1980). Twenty 5-day chicken eggs were cracked open and the embryos lifted out and dropped into 25 ml of 6 M guanidine- $\mathrm{HC} 1,0.2 \mathrm{M}$ sodium acetate, $\mathrm{pH} 5.2,1 \mathrm{mM}$ 2-mercaptoethanol at 4 C and homogenised. The homogenate was passed through a French pressure cell at $843.7 \mathrm{~kg} / \mathrm{cm}$ and 0 4 C , and RNA was precipitated with 0.5 volume of ethanol (HB-4 rotor, $10,000 \mathrm{rpm}$ for 10 minutes). The RNA pellet was resuspended in 12.5 m 1 of 6
M guanidine- $\mathrm{HCl}, \quad 0.2 \mathrm{M}$ sodium acetate, $\mathrm{pH} 5.2,10 \mathrm{mM}$ EDTA and reprecipitated with 7 m 1 of ethanol. After centrifugation the pellet was resuspended in 10 ml of 7 M urea, 0.1 M Tris-HC1, pH $8.0,0.1 \mathrm{mM}$ EDTA, 0.1% SDS and phenol/chloroform extracted twice followed by precipitation with 2.5 volumes of ethanol. Total RNA isolated by this procedure was washed in 5 ml of $2 \mathrm{MLiCl}, \mathrm{dried}_{0}^{\mathrm{fn}} \underline{\text { vacuo }}$ and resuspended in 2 ml of sterile water and store at -80 C . Approximately 10 mg of RNA was yie1ded by this procedure.

1 ml of the RNA was made to 10 mM Tris-HC1, $\mathrm{pH} 7.4,1 \mathrm{mM}$ EDTA, heated 0
to 65 C for 5 minutes, snap chilled on ice and centrifuged (Beckman SW-41 rotor at $37,000 \mathrm{rpm}$ for 16 hours at 4 C) on four $10-40 \%$ (w/v) 11near sucrose gradients in 10 mM Tris- HCl , pH 7.4 , 1 mM EDTA. Gradients were fractionated by upward displacement with a 50% (w/v) sucrose solution using an ISCO Density Gradient Fractionator. The RNA fractions containing the histone mRNA (about 9 S) were collected, adjusted to 200 mM NaCl and ethanol precipitated.

8-3-15 Injection of Xenopus oocytes
(i) Anima1s

Xenopus laevis females were obtained from Dr. Ray Harris (South Australian Institute of Technology, Pharmacology Department) or Dr. Keith Dixon (F1inders University, Department of Biological Sciences). A breeding stock is maintained at Flinders University whereas the Institute colony of 50 females was brought from Ring Shipping Pty. Ltd., Cape Town, South Africa. For best results, wild-type females were maintained under laboratory conditions for at least six months prior to harvesting of oocytes.
(ii) Frog dissection

Frogs were anaesthetised and the ovary, or part thereof, surgically
removed. Alternatively the animal was sacrificed (by pithing and decapitation) and the whole ovary obtained. A frog can be recycled up to four times if only a small portion of the ovary is removed during surgery.

In preparation for dissection the frog was placed in a plastic box containing 0.1\% Ethyl-m-aminobenzoate (an anaesthetic) for approximately 20 minutes, removed using plastic gloves, washed with tap water and placed on its back. A1ternatively, the frog was equally well immobilized by immersion in an ice water slurry for 20 minutes, placed on 1 ts back on an ice tray and covered in ice.

When no reflexes were evident the frog was dissected. The skin was swabbed in 0.5% Hibitane 70% ethanol to remove slime. Since the ovary of a mature female is the largest organ in the animal, the ovarian lobes are easily removed with forceps through a small incision either side of the ventral mid-line. The required number of lobes were cut off with scissors and the excised lobes placed immediately in Barths' saline. Once the incision had been sutured post-operative care entailed placing the animal In an angled dish, its nose just out of water, untlil it revived.
(iii) Ovary dissection and evaluation of oocytes

The excised ovary was rinsed in fresh Barths' saline then teased apart with (grade 5) watchmaker forceps. For long term storage the ovary must be divided into small clumps (1ess than 50 oocytes) and ideally into separate oocytes, which in any case are used for nuclear microinjection.

A good ovary contains over 30,000 large oocytes. They are at all stages of development. The ideal materlal is stage 5 and 6 oocytes (Dumont, 1972) in which the animal (brown) and vegetal (yellow) poles are separated by a white band and each ce. 11 is about 1 mm in diameter. The separated oocytes were kept in groups of 100 in 5 cm petri-dishes in a temperature-
controlled incubator at $17-21 \mathrm{C}$; the medium was changed every two days.

Oocytes were kept submerged at all times. Healthy oocytes are evenly pigmented, not blotchy. Dimpled or deformed oocytes were removed. In order to segregate out oocytes damaged during the isolation procedure, oocytes were commonly injected the day after they had been separated.
(iv) Construction, calibration and handiing of micro-pipettes and components of the injection system

Micro-injection needles were made from 100 ul micro-capillaries (BLAUBRAND, intraMARK). Figure 8-1 outlines the procedure of construction and gauging.

An Agla screw-controlled syringe (Wellcome Australia Ltd.) was connected to the micro-pipette by plastic tubing of 1 mm internal diameter. The needle was held and manoeuvered by means of a micromanipulator which gives a 4-5 fold reduction in the movement of the hand in all directions (Micro Techniques (Oxford) Ltd.). The whole system is shown in figure 8-2. The tubing and the needle was filled with medicinal paraffin coloured with Fast Red dye enabling discrimination of the paraffin/aqueous interface.

Injections were carried out under a dissecting stereozoom microscope at a magnification of about $15 x$. A cold light source for the microscope was essential as oocytes are prone to dehydration under a direct light source. A glass fibre optics system was suitable.
(v) Micro-injection technique
(a) Filiting of micro-plpette

Usually 1 ul samples of infection solution were brought to the microscope stage on a plece of Parafilm. The tip of the paraffin filled needle was introduced below the surface of the droplet and the sample drawn into the pipette by screwing out the syringe. The only constraint on the amount of sample used to fill the pipette is that both the sample meniscus

Figure 8-1: Micro-injection pipettes
(a) A glass micro-capillary is drawn out by hand to an external diameter of approximately 300 um.
(b) The second pull is done using a heated coil, the needle being drawn out by attachment to a weighted puliy. A 20 um diameter optimizes easy delivery of fluid and minimizes the damage to oocytes. Only one needle is obtained from each micro-capillary.
(c) The tip of the needle is broken off approximately $0.5-0.75 \mathrm{~cm}$ away from the first pull at an acute angle with watchmaker forceps.
(d) Lengths and diameters of the fine and intermediate sections of a complete pipette.
(e) The diameter of the expelled drop is measured by an eye plece graticule. The needle is then calibrated at 50 n 1 volumes on the pipette shaft with a fine (0.2 mm) texta drawing pen.
(figure adapted from Gurdon, 1974)

(b)

(c)

(d)

Figure 8-2: Micro-injection equipment
A schematic representation of the micro-injection equipment is shown. (figure adapted from Gurdon, 1977)

and the needle tip have to remain within the same field of view.
During experiments the needle occasiona11y blocked and it was important not to put excessive positive or negative pressure on the sample as this would result in a spifflicating disaster. If repeated attempts to clear the needle failed a little of the tip of the needle was broken off with fine forceps; often the micro-pipette could be re-used. of course, excessive trimming of a needle necessitated replacement.
(b) Preparation of DNA and oocytes for injection

As stated previously oocytes were usually used 24 hours after collection, DNA for injection was prepared by a clear lysate method (8-31), ethanol precipitated several times (a11 phenol must be removed), and resuspended in a buffer consisting of $88 \mathrm{mM} \mathrm{NaC1}, 10 \mathrm{mM}$ Tris-HC1, pH 7.4. DNA was injected into the nucleus at a concentration of $200-400 \mathrm{ng} / \mathrm{ul}$ in a volume of $25-50 \mathrm{nl}$.

Initially, circularized, vector free insert was used for injection but later whole plasmid DNA was found to give identical results and was therefore routinely used. Circularization of insert DNA after purification through a low melting point agarose gel was done in a volume of 1 ml containing 50 mM Tris- $\mathrm{HC1}, \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{MgC1}, 1 \mathrm{mM}$ DTT with the DNA at a concentration of $2 \mathrm{ug} / \mathrm{m} 1$ and 2 units of $T 4 \mathrm{DNA}$ 11gase. This mixture was 0
incubated overnight at 14 C , ethanol precipitated, phenol extracted and reethanol precipitated before being resuspended in injection buffer.

A batch of 30 oocytes was usually used per DNA template injected. After injection the oocytes were generally incubated for 24 hours in Barths' saline at 20 C .
(c) Nuclear injection

Because the oocyte is not transparent the nucleus cannot be seen. This
only a minor problem as the nucleus occupies a consistent position in the oocyte and is readily injected with the following method.

Each oocyte was transferred from the petri-dish to a dry microscope silde (3-6 per silde) with a wide-mouthed pasteur pipette. Excess fluid was removed with the pasteur pipette as excessively wet oocytes were difficult to grasp with forceps. The slide was then transferred to the microscope stage.

Looking through the microscope the oocytes were individually manoeuvred with forceps and the end of the needle so the animal hemisphere was orientated towards the needle. The pipette was inserted at right angles to the oocyte equator exactly over the apex of the animal pole. The pipette was inserted about a quarter the depth of the oocyte. At the same time the oocyte was steadied with forceps. Once the needle had been positioned the syringe screw was turned to deliver the required volume by focussing on the calibrated shaft and watching the paraffin/aqueous meniscus. The oocyte was again grasped during needle withdrawal. The group of injected oocytes was then washed off the slide into another petri dish filled with fresh Barths' buffer.

(vi) Barths' saline	
Solution A:	NaCl
	KC1
	206 gm
	NaHCO 3.0 gm Trizma base
	8.1 gm
	73 gm

Made to one 1itre and pH to 7.6 with concentrated HC1.

Solution B:	$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	$10.1 \mathrm{gm} / 500 \mathrm{~m} 1$
Solultion C:	$\mathrm{Ca}(\mathrm{NO}) \cdot .4 \mathrm{Ho}$	3.9 gm
	322	
	CaC1 . H O	3 gm
	22	

[^1]Solution D: Penicilif $\quad 10 \mathrm{mg} / \mathrm{m} 1$
Streptomycin $\begin{gathered}10 \mathrm{mg} / \mathrm{ml} \\ 0\end{gathered}$
Solutions A, B and C are stored at 4 C . Solution D is stored frozen at 0 -20 C. To make Barths' saline, add 25 ml of A to 954 ml of water. Then add 10 m 1 of B and C and finally 1 m 1 of D.

8-3-16 Isolation of Xenopus oocyte RNA (Probst et al., 1979)
The oocytes were squashed in a loose-fitting glass homogenizer in a solution containing 10 mM Tris- $\mathrm{HC} 1, \mathrm{pH} 7.4,1.5 \mathrm{mM} \mathrm{MgC1}, 10 \mathrm{mM} \mathrm{NaCl}, 1 \%$ SDS and $0.5 \mathrm{mg} / \mathrm{ml}$ proteinase K (0.5 ml of this solution was used per batch of oocytes). After incubation at room temperature for 25 minutes, EDTA was added to 10 mM and the mixture extracted three times with phenol/chloroform. The aqueous phase was made to 0.2 M NaCl and the oocyte RNA precipitated by the addition of 2.5 volumes of ethano1. Docytes usually yielded 4-5 ug of total RNA each. They were stored dry at -80 if the RNA extraction was not carried out immediately after incubation.

8-3-17 S1 nuclease analysis of RNA
For 5' analysis, DNA restriction fragments were treated with calf32
intestinal phosphatase (8-3-8(i)) then labelled with $\gamma-\mathrm{P}$-ATP using T4 polynucleotlde kinase (8-3-12) . For 3^{\prime} end analysts, coheslve 3^{\prime} termint of the appropriate restriction fragments were end-filled using DNA32
polymerase I Klenow fragment in the presence of $\alpha-\mathrm{P}-\mathrm{dNTPs}$ (8-3-8(1)).
For Sl analysis both double stranded and single standed probes were used, though the single stranded fragments proved to be better reagents. Double stranded restriction enzyme fragments (figure 4-1) were heat denatured and annealed with an excess of M13 single stranded DNA (M135kb.Bparental genome and its reverse orientation; see 5-4) in a buffer containing $100 \mathrm{mM} \mathrm{NaC1}, 20 \mathrm{mM} \operatorname{Tr} 1 \mathrm{~s}-\mathrm{HC1}, \mathrm{pH} 7.4,0.1 \% \mathrm{SDS}$ at 60 C to remove
the unwanted hybridizing strand. The unhybridized reagent strand was then purifled by electrophoresis on a 6% non-denaturing polyacrylamide gel (8-3-4(1)).

Hybridisation reactions were carried out in a volume of 30 ul. The reaction mix contained 80% formamide, 40 mM PIPES, $\mathrm{pH} 6.4,1 \mathrm{mM}$ EDTA, 400 0 0 mM NaCl and incubations were at 50 C for double standed probes and 30 C for single stranded probes for $12-16$ hours. Annealing reactions were diluted with 300 ul of ice-cold S 1 buffer ($200 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{ZnSO}, 50 \mathrm{mM}$ sodium acetate, pH 4.6) and $1,000-2,500$ units of $S 1$ nuclease added. Digestions were at 37 C for 1 hour; the mixture was then phenol/chloroform extracted, nucleic acids precipitated with ethanol, and dissolved in formamide loading buffer and electrophoresed on 6% sequencing gels (8-3-11(1ii)) prior to exposure.

8-3-18 Primer extension analysis of RNA (McKnight et a1., 1981)
1 ng of each primer, 5' end-labelled (8-3-12), was separately or together added to the RNA equivalent to that of one injected oocyte (4-5 ug of total RNA) and ethanol precipitaed. The pellet was resuspended in 10 ul of $200 \mathrm{mM} \mathrm{NaC1}, 10 \mathrm{mM}$ Tris-HC1, pH 8.3 , heated to 70 for 3 minutes then allowed to anneal at 42 C for 1-3 hours. Following hybridization, the samples were incubated with reverse transcriptase (1 hour, 42 C) in a volume of 34 ul containing $60 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ Tris-HC1, $\mathrm{pH} 8.3,10 \mathrm{mM}$ DTT, 500 uM dNTPs, $10 \mathrm{mM} \mathrm{MgC12}$ and 8 units of enzyme.

Extension products were ethanol precipitated, washed in 70% aqueous ethanol and dried in vacuo. After resuspension in 5 ul of formamide loading buffer the extended primers were electrophoresed on 6% sequencing gels (8-$3-11(111))$ and detected by exposure to X-ray film.

8-3-19 M13 site directed mutagenesis (Adelman et a1., 1983; Chan and Smith, 1984)
(i) Formation, stabilization and enrichment of heterodup1ex DNAs

For use as primers in the mutagenesis procedure, 10 pmoles of the CAT1 and H2B-box deleting synthetic oligonucleotides (figures 5-4 and 6-2 respectively) were each phosphorylated in the presence of 0.1 mM nonradioactive-ATP (8-3-12). For heteroduplex formation, 300 ng singlestranded M135kb.B-parental DNA (5-4) was heated to 70 for 3 minutes and placed at room temperature for 10 minutes in a 20 ul volume containing 10 mM Tris-HC1, $\mathrm{pH} 7.4,0.1 \mathrm{mM}$ EDTA, $50 \mathrm{mM} \mathrm{NaC1}$ and 1 pmole (1 ul) of each phosphorylated deletion primer.

Primer extension was started by the addition of 30 ul of 50 mM Tris$\mathrm{HC1}, \mathrm{pH} 8.0,0.1 \mathrm{mM}$ EDTA, $12 \mathrm{mM} \mathrm{MgCl}, 10 \mathrm{mM}$ DTT, $0.7 \mathrm{mM} \mathrm{ATP}, 0.07 \mathrm{mM}$ dATP, 2 0.2 mM each of dTTP, dCTP, dGTP and 2 units of DNA polymerase I Klenow fragment. After 30 minutes at room temperature, reaction mixtures were incubated for 4 hours at $37 \mathrm{C}, 2$ units of T4 DNA ligase then added and Incubated overnight at 4 C. Heteroduplexes were recovered by phenol/chloroform extraction and ethanol precipitation then resuspended in 20 ul of water, 10 ul aliquots of the heteroduplexes were treated with 1000 units of Sl nuclease (8-3-17) for 5 minutes to digest single stranded parental M13 DNA, carrier tRNA (4 ug) was added and nucleic acid recovered after phenol/chloroform treatment by ethanol precipitation.

A 1:200 dilution of the Sl treated and non-Sl treated heteroduplexes were transformed into E. coli strain JM101 (8-3-10).
(ii) Phage screening (Benton and Davis, 1977)

Screening for mutant phage was done by in situ plaque hybridization 32
using 100 ng of each of the P-labelled deletion oligonucleotides (8-312). 100 of the $S 1$ resistant recombinant M13 phage plaques obtained after bacterial transformation were picked in duplicate onto fresh1y plated JM101
on minimal plus glucose plates and grown overnight at 37 C . An unwashed, 5 cm nitrocellulose disc was layed onto one of the duplicate plates, orientation marks made with a needle, and when uniformly wet (1 minute later), peeled off and placed on to filter paper saturated with 0.5 M NaOH , 1.5 M NaCl for 2 minutes. The filter was then sequentially transfered to two filter papers soaked in $1.5 \mathrm{M} \mathrm{NaC1}, 0.5 \mathrm{M} \mathrm{Tris}$,pH 8.0 for 4 minutes each.

0
The filter was air dried, baked at 80 C in vacuo for 1.5 hours then prehybridised in 4 ml of 0.9 x NET, $0.5 \% \mathrm{NP} 40$ and 0.05% Blotto ($0.9 \times \mathrm{NET}=$ $0.9 \mathrm{M} \mathrm{NaC1}, \quad 0.09 \mathrm{M} \mathrm{Tris}-\mathrm{HC1}, \mathrm{pH} 8.0,0.006 \mathrm{M}$ EDTA; $1 \times$ Blotto $=5 \%$ (w/v) non fat dry skim milk, 0.01% Antifoam A (Johnson et al., 1984)) in a sealed plastic bag at 65 C for 3 hours. Hybridization of the radioactively 1abelled primers to identify mutant phage was done in 4 ml of fresh 0.9 x NET, 0.5% NP40 and 0.05% Blotto at 42 C for 16 hours. Wash1ng of the filter was done in $6 \times \operatorname{SSC}(1 \times S S C=0.15 \mathrm{M} \mathrm{NaC1}, 0.015 \mathrm{M}$ tri-sodium citrate) twice for 5 minutes at room temperature, then at successively higher 0 temperatures ($45-65 \mathrm{C}$) each for 5 minutes following exposure to X -ray film.

P1aques that still hybridized strong1y, over negative M135kb.Bparental controls included on the filter, at the high temperature washes were picked from the duplicate master plate and sequenced ($8-3-11$) with the H2B 26 -mer to confirm the mutant phenotype. A mutation frquency of approximately 1% was observed using both the CATl and H2B-box deletion primers.

8-3-20 Containment facilities
All manipulations involving recombinant DNA were carried out in accordance with the regulations and approval of the Australian Academy of Science Committee on Recombinant DNA and the University Council of the University of Adelaide.

BIBLIOGRAPHY

Adelman, J.P., Hayflick, J.S., Vasser, M. and Seeburg, P.H., DNA, 2, 183193 (1983).

Agard, D.A. and Sedat, J.W., Nature, 302, 676-681 (1983).
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D., Molecular Biology of the Ce11, Garland Publishing, Inc. New York and London (1983).

Allis, C.D., Ziegler, Y.S., Gorovsky, M.A. and 01msted, J.B., Cell, 31, 131-136 (1982).

Ashburner, M. and Bonner, J.J., Ce11, 17, 241-254 (1979).
Aviles, F.J., Chapman, G.E., Kneale, G.G., Crane-Robinson, C. and Bradbury, E.M., Eur. J. Biochem., 88, 363-371 (1978).

Ballinger, D.G. and Pardue, M.L., Ce11, 33, 103-114 (1983).
Banaszuk, A.M., Deugau, K.V., Sherwood, J., Michalak, M. and Glick, B.R., Analytical Biochemistry, 128, 281-286 (1983).

Banerji, J., O1son, L., Schaffner, W., Ce11, 33, 729-740 (1983).
Benoist, C., O'Hare, K., Breathnach, R. and Chambon, P., Nuc1. Acids Res., 8, 127-142 (1980).

Benoist, C. and Chambon, P., Nature, 290, 304-310 (1981).
Benton, W.D. and Davis, R.W., Science, 196, 180-182 (1977).
Benyajati, C., Spoerel, N., Haymerle, H. and Ashburner, M., Ce.l1, 33, 125133 (1983).

Berezney, R., Ce11 Nucleus, 7, 413-456 (1979).
Blenz, M. and Gurdon, J.B., Ce11, 29, 811-819 (1982).
Birchmeier, C., Grossched1, R., Birnstiel, M.L., Ce11, 28, 739-745 (1982).
Birchmeier, C., Folk, W. and Birnstie1, M.L., Ce11, 35, 433-440 (1983).
Bird, A.P., Nature, 307, 503-504 (1984).
Birnboim, H.C. and Doly, J., Nuc1. Acids Res., 7, 1513-1523 (1979).
Brandsma, J.A., Bosch, D., Backendorf, C. and van de Putte, P., Nature, 305, 243-245 (1983).

Breathnach, R. and Chambon, P., Ann. Rev. Biochem., 50, 349-383 (1981).
Brinster, R.L., Chen, H.Y., Warren, R., Sarthy, A. and Palmiter, R.D., Nature, 296, 39-42 (1982).

Brock, M.L. and Shapiro, D.J., Ce11, 34, 207-214 (1983).
Brooker, J.D., May, B.K. and Elliott, W.H., Eur. J. Blochem., 106, 17-24 (1980).

Brown, A.L., Nature, 298, 793-794 (1982).
Browit, J.1)., (Ce.L1, 37, 359-365 (1984).
Busslinger, M., Hurst, J. and Flave11, R.A., Ce11, 34, 197-206 (1983).
Bussifnger, M., Portmann, R., Irminger, J.C. and Birnstie1, M.L., Nucl. Aclds Res., 8, 957-977 (1980).

Camato, R., Nicole, L. and Tanguay, R.M., Cold Spring Harbor Lab. of Quantitative Biology, Abstract of Papers Presented, 59 (1982).

Cantor, C.R., Ce11, 25, 293-295 (1981).
Capecchi, M.R., Ce11, 22, 479-488 (1980).
Carter, A.D., Felber, B.K., Walling, M., Jubier, M-F., Schmid, C.J. and Hamer, D.H., Proc. Nat1. Acad. Sci. USA, 81, 7392-7396 (1984).

Cech, T.R., Ce11, 34, 713-716 (1983).
Chan, V-L and Smith, M., Nuc1. Aclds Res., 12, 2407-2419 (1984).
Chandler, V.L., Maler, B.A. and Yamamoto, K.R., Ce11, 33, 489-499 (1983).
Charnay, P., Treisman, R., Mellon, P., Chao, M., Axe1, R. and Maniatis, T., Ce11, 38, 251-263 (1984).

Choe, J., Ko1odrubetz, D. and Grunsteln, M., Proc. Nat1. Acad. Sci. USA, 79, 1484-1487 (1982).

Ciejek, E.M., Tsai, M-J. and 0'Malley, B.W., Nature, 306, 607-609 (1983).
Ciliberto, G., Raugel, G., Costanzo, F., Dente, L., and Cortese, R., Ce11, 32, 725-733 (1983).

Clerc, R.G., Bucher, P., Strub, K. and Birnstiel, M.L., Nuc. Acids Res., $11,8641-8657$ (1983).

Clewell, D.B., J. Bacteriology, 110, 667-676 (1972).
Coles, L.S. and We11s, J.R.E., Nuc1. Acids Res., 13, 585-594 (1985).
Coles, L.S., Ph.D. thesis, University of Adelaide, Adelaide, South Australia (1985).

Collins, F.S., Metherall, J.E., Yamakawa, M., Pan, J., Weissman, S.M. and Forget, B.G., Nature, 313, 325-326 (1985).

Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C. and Chambon, P., Science, 209, 1406-1414 (1980).

D'Andrea, R., Harvey, R. and We11s, J.R.E., Nucl. Acids Res., 9, 3119-3128 (1981).

D'Andrea, R.J., Ph.D. thesis, University of Adelaide, Adelaide, South Australia (1985).

D'Andrea, R.J., Coles, L.S., Lesnikowski, C., Tabe, L. and We11s, J.R.E., Molec. and Cell. Blol., submitted (1985).

Darnell, J.E. Jr., Nature, 297, 365-371 (1982).
Davidson, E.H., Jacobs, H.T., Britten, R.J., Nature, 301, 468-470 (1983).
Davis, R.W., Botstein, D. and Roth, J.R., "Advanced Bacterial Genetics", Cold Spring Harbor Press, New York (1980).

Davison, B.L., Eg1y, J-M, Mulvihill, F.R. and Chambon, P., Nature, 301, 680-686 (1983).

Derman E., Krauter, K., Walling, L., Weinberger, C., Ray, M. and Darne11, J.E., Ce11, 23, 731-739 (1981).

Di Domenico, B.J., Bugaisky, G.E. and Lindquist, S., Ce11, 31, 593-603 (1982).

Dierks, P., Van Ooyen, A., Cochran, M.D., Dobkin, C., Reiser, J. and Welssmann, C., Ce11, 32, 695-706 (1983).

Drew, H.R. and Travers, A.A. Cel1, 37, 491-502 (1984).
Dumont, J.N., J. Morpho.L., 136, 153-180 (1972).
Early, P., Rogers, J., Davis, M., Calame, K., Bond, M., Wa11, R. and Hood, L., Ce.11, 20, 313-319 (1980).

Elgin, S.C.R.,Nature, 309, 213-214 (1984).
EMBO dideoxy sequencing notes, In "Advanced Molecular Genetics " (1980).
Emerson, B.M. and Felsenfeld G., Proc. Nat1. Acad. Sci. USA, 81, 95-99 (1984).

Everett, R.D., Baty, D. and Chambon, P., Nuc1. Ac1ds Res., 11, 2447-2464 (1983).

Falkner, F.G. and Zachau, H.G., Nature, 310, 71-74 (1984).
Farrel1-Towt, J. and Sanders, M.M., Molec. and Ce1.1. Biol., 4, 2676-2685 (1984).

Fitzgerald, M and Shenk, T., Ce11, 24, 251-260 (1981).

Flave11, A., Nature, 305, 96-97 (1983).

Flynn, J.M. and Woodland, H.R., Developmental Biology, 75, 222-230 (1980).
Fromm, M. and Berg, P., J. Mol. App.1. Genet., 1, 457-481 (1982).
Galli, G., Hofstetter, H., Stunnenberg, H.G. and Birnstle1, M.L., Ce11, 34, 823-828 (1983).

Gelinas, R., Endilch, B., Pfeiffer, C., Yag1, M. and Stamatoyannopoulos, G., Nature, 313, 323-325 (1985).

Gidoni, D., Dynan, W.S. and Tjlan, R., Nature, 312, 409-413 (1984).
G1111es, S.D., Morrison, S.L., 01, V.T., Tonegawa, S., Ce11, 33, 717-728 (1983).

Gjerset, R., Gorka, C., Hasthorpe, S., Lawrence, J.J. and Eisen, H., Proc. Nat1. Acad. Sci. USA, 79, 2333-2337 (1982).

Goldberg, M.L., Ph.D. thesis, Stanford University, Palo A1to, California (1979).

Grandy, D.K., Enge1, J.D. and Dodgson, J.B., J. B1ol. Chem. 257, 8577-8580 (1982).

Green, M.R., Maniatis, T and Melton, D.A., Ce11, 32, 681-694 (1983a).
Green, M.R., Treisman, R. and Maniatis, T., Ce11, 35, 137-148 (1983b).
Grossched1, R. and Birnstie1, M.L., Proc. Nat1. Acad. Sc1. USA, 77, 14321436 (1980a).

Grossched1, R. and Birnstiel M.L., Proc. Nat1. Acad. Sci. USA, 77, 71027106 (1980b).

Grossched1, R., Wasylyk, B., Chambon, P. and Birnstiel, M.L., Nature, 294, 178-180 (1981).

Grossched1, R., Mach1er, M., Rohrer, U. and Birnstiel, M.L., Nuc1. Acids Res., 11, 8123-8136 (1983).

Gurdon, J.B., In "Control of gene expression in animal development", Harvard University Press (1974).

Gurdon, J.B., Methods in Cell Biology, 16, 125-139 (1977).
Gurdon, J.B. and Melton, D.A., Ann. Rev. Genet., 15, 189-218 (1981).
Gurdon, J.B. and Wickens, M.P., Methods in Enzymology, 101, 370-386 (1983).
Guyette, W.A., Matuski, R.J. and Rosen, J.M., Ce11, 17, 1013-1023 (1979).
Halleck, M.S. and Gurley, L.R., Experimental Ce11 R., 138, 271-285 (1982).

Harvey, R.P., Krieg, P.A., Robins, A.J., Coles, L.S. and We11s, J.R.F., Nature, 294, 49-53 (1981).

Harvey, R.P., Robins, A.J. and Wells, J.R.F., Nuc1. Acids Res., 10, 78517863 (1982).

Hendrix, R.W., Roberts, J.W., Stah1, F.W. and Weisberg, R.A., Lambda II, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1983).

Hentsche1, C., Probst, E. and Birnstiel M.L., Nature, 288, 100-102 (1980).
Hentsche1, C.C. and Birnstie1, M.L., Ce11, 25, 301-313 (1981).
Herbert, E. and Uh1er, M., Ce11, 30, 1-2 (1982).
H111, R.J. and Stollar, B.D., Nature, 305, 338-340 (1983).
Igo-Kemenes, T., Horz, W. and Zachau, H.G., Ann. Rev. B1ochem., 51, 89-121 (1982).

Instructions to authors, Biochem. J., 169, 1-27, (1978).
Isenberg, I., Ann. Rev. Biochem., 48, 159-191 (1979).
Jacobson, A. and Favreau, M., Nuc1. Acids Res., 11, 6353-6368 (1983).
Jakobovitis, E.B., Bratosin, S. and Aloni, Y., Nature, 285, 263-265 (1980).
Jeffreys, A.J., Ce11, 18, 1-10 (1979).
Johnson, D.A., Gautsch, J.W., Sportsman, J.R. and Elder J.H., Gene Ana1. Techn., 1, 3-8 (1984).

Jongstra, J., Reudelhuber, T.L., Oudet, P., Benoist, C., Chae, C-B, Je1tsch, J-M, Mathis, D.J. and Chambon, P., Nature, 307, 708-714 (1984).

Karin, M. and Richards, R.I., Nature, 299, 797-802 (1982).
Karin, M., Haslinger, A., Holtgreve, H, Richards, R.J., Krauter, P., Westpha1, H.M., Beato, M., Nature, 308, 513-519 (1984).

Khoury, G. and Gruss, P., Ce11, 33, 313-314 (1983).
Konarska, M.M., Padgett, R.A. and Sharp, P.A., Ce11, 38, 731-736 (1984).
Korn, L.J., Nature, 295, 101-105 (1982).
Kornberg, R., Nature, 292, 579-580 (1981).
Kozak, M., Ce11, 22, 7-8 (1980).
Kozak, M., Nature, 308, 241-246 (1984).
Kressman, A., Clarkson, S.G., Telford, J.L. and Birnstle1, M.L., Cold Spring Harbor Symp. Quant. Bio1., 42, 1077-1082 (1977).

Krleg, P.A. and Melton, D.A., Nature, 308, 203-206 (1984).
Lacy, E., Roberts, S., Evans, E.P., Burtenshaw, M.D. and Costantinf F.D., Ce11, 34, 343-358 (1983).

Lassar, A.B., MartIn, P.L. and Roeder, R.G., Sclence, 222, 740-748 (1983).
Lesnikowski, C., Honours thesis, University of Adelaide, Adelaide, South Australla (1983).

Levinger, L. and Varshavsky, A., Ce11, 28, 375-385 (1982).
Liu, C-C., Simonsen, C.C. and Levinson, A.D., Nature, 309, 82-85 (1984).
Long, B.H., Huang, C-Y and Pogo, A.0., Ce11, 18, 1079-1090 (1979).
Lusky, M. and Botchan, M.R., Ce11, 36, 391-401 (1984).
Maxson, R., Cohn, R., Kedes, L. and Mohun, T., Ann. Rev. Genet., 17, 239277 (1983a).

Maxson, R., Mohun, T. and Kedes, L., In "Eukaryotic Genes, Their Structure, Activity and Regulation" Editors, Maclean, N., Gregory, S.P. and Flavel1, R.A., Butterworths, Chapter 16, 277-298 (1983b).

McBride, L.J. and Caruthers, M.H., Tetrahedron Letts., 24, 245 (1983).
McGhee, J.D., Wood, W.I., Dolan, M., Enge1, J.D. and Fe1senfe.ld, G., Cell, 27, 45-55 (1981).

McKnight, S.L., Gavis, E.R., Kingsbury, R., and Axe1, R., Ce11, 25, 385-398 (1981).

McKnight, S.L. and Kingsbury, R., Science, 217, 316-324 (1982).
McKnight, S.L., Kingsbury, R.C. Spence, A. and Smith, M., Ce11, 37, 253-262 (1984).

Metteric1, M.D. and Caruthers, M.H., J. Amer. Chem. Soc., 103, 3185 (1981). Mirkovitch, J., Mirault, M-E. and Laemmli, U.K., Ce11, 39, 223-232 (1984).

Monte11, C., Fisher, E.F., Caruthers, M.H and Berk, A.J., Nature, 305, 600-605 (1983).

Moorman, A.F.M., de Boer, P.A.J., de Laaf, R.T.M. and Destree, O.H.J., FEBS Letters, 144, 235-241 (1982).

Mount, S.M., Nuc1. Acids Res., 10, 459-472 (1982).
Nevins, J.R. and Wilson, M.C., Nature, 290, 113-118 (1981).
Nevins, J.R., Ann. Rev. Blochem., 52, 441-466 (1983).

Newport, J.W. and Kırschner, M.W., Ce.11, 30, 687-696 (1982).
Newrock, K.M., Cohen, L.H., Hendricks, M.B., Donne.11y, R.J. and Weinberg, E.S., Ce.11, 14, 327-336 (1978).

Nordheim, A. and Rich, A., Nature, 303, 674-679 (1983).
Nurse, P., Nature, 302, 378 (1983).
01d, R.W. and Woodland, H.R., Ce11, 38, 624-626 (1984).
Padgett, R.A., Mount, S.M., Steitz, J.A. and Sharp, P.A., Ce11, 35, 101-107 (1983).

Palatnik, C.M., Wilkins, C. and Jacobson, A., Ce11, 36, 1017-1025 (1984).
Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C. and Evans, R.M., Nature, 300, 611-615 (1982).

Pardo11, D.M., Voge1stein, B. and Coffey, D.S., Ce11, 19, 527-536 (1980).
Parker, M., Nature, 304, 687-688 (1983).
Parslow, T.G., Blair, D.L., Murphy, W.J. and Granner, D.K., Proc. Natl. Acad. Sc1. USA, 81, 2650-2654 (1984).

Pelham, H.R.B., Ce11, 30, 517-528 (1982).
Prentice, D.A., Loeche1, S.C. and Kitos, P.A., Blochemistry, 21, 2412-2420 (1982).

Prior, C.P., Cantor, C.R., Johnson, E.M., Littau, V.C. and Allfrey, V.G., Ce11, 34, 1033-1042 (1983).

Probst, E., Kressman, A. and Birnstiel, M.L., J. Mol. Biol., 135, 709-732 (1979).

Queen, C. and Baltimore, D., Ce11, 33, 741-748 (1983).
Reeder, R.H., Roan, J.G. and Dunaway, M., Ce11, 35, 449-456 (1983).
Richter, J.D. and Smith, L.D., Nature, 309, 378-380 (1984).
Rosenfeld, M.G., Mermod, J-J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., Wylie, W.V. and Evans, R.M., Nature, 304, 129-135 (1983).

Sanders, M.M., The Journal of Ce11 Blology, 91, 579-583 (1981).
Saragosti, S., Moyne, G. and Yaniv, M., Ce11, 20, 65-73 (1980).
Schaffhausen, B., Critical Reviews in Blochemistry, 13, 215-265 (1982).
Schlesinger, M.J., Ashburner, M. and Tissieres, A., Heat Shock: From Bacteria to Man. Cold Spring Harbor, New York: Cold Spring Harbor

Laboratory (1982).
Scholer, H.R. and Gruss, P. Cel1, 36, 403-411 (1984).
Shermoen, A.W. and Beckendorf, S.K., Ce11, 29, 601-607 (1982).
Stliciano, P.G. and Tatchel1, K., Ce11, 37, 969-978 (1984).
Sittman, D.B., Graves, R.A. and Marzluff, W.F., Nuc1. Acids Res., 11, 66796697 (1983).

Sommervil1e, J., Nature, 310, 189-190 (1984).
Spandidos, D.A. and Wilkie, N.M., Chapter 1, 1-48, In "Transcription and translation - a practical approach", Edited by Hames, B.D. and Higgins, S.J., IRL press (1984).

Stein, G.S., Stein, J.L. and Marzluff, W.F., Histone Genes: Structure, Organization, and Regulation, Wiley - Interscience, 1984.

Struh1, K., Nature, 305, 391-397 (1983).
Stuart, G.W., Searle, P.F., Chen, H.Y., Brinster, R.L. and Palmiter, R.D., Proc. Nat1. Acad. Sci. USA, 81, 7318-7322 (1984).

Sures, I., Lowry, J. and Kedes, L.H., Ce11, 15, 1033-1044 (1978).
Tanguay, R.M., Camato, R., Lettre, F. and Vincent, M., Can. J. Biochem. Cell Biol., 61, 414-420 (1983).

Travers, A., Nature, 303, 755 (1983).

Tsonis, P.A., Nature, 312, 314 (1984).
Urban, M.K., Frank1in, S.G. and Zweidler, A., Biochemistry, 18, 3952-3960 (1979).

Voellmy, R. and Rungger, D., Proc. Nat1. Acad. Sci. USA, 79, 1776-1780 (1982).

Von Holt, C., Strickland, W.N., Brandt, W.F., Strickland, M.S., FEBS Letters, 100, 201-218 (1979).

Walker, M.D., Edlund, T., Boulet, A.M., Rutter, W.J., Nature, 306, 557-561 (1983).

Wallis, J.W., Hereford, L. and Grunstein, M., Ce11, 22, 799-805 (1980).
Wallis, J.W., Rykowski, M. and Grunstein, M., Ce11, 35, 711-719 (1983).
Wang, S-W., Robins, A.J., D'Andrea, R. and Wells, J.R.E., Nuc1. Acids Res., 13, number 4 (1985)

Weisbrod, S. and Weintraub, H., Proc. Nat1. Acad. Sci. USA, 76, 630-634 (1979).

Welsbrod, S., Nature, 297, 289-295 (1982).

Welsmann, C., Nature, 311, 103-104 (1984).
West, M.W.P. and Bonner, W.M., BLochemistry, 19, 3238-3245 (1980).
Wickens, M.P. and Laskey, R.A., In "Genetic Engineering I" Edited by R. Williams, Academic Press London, 103-167 (1981).

Wigley, P.L., Sturm, R.A. and We11s, J.R.E., J. Mo1. B1ol., 181, 449-452 (1985).

Williams, D.A., Lemischka, J.R., Nathan, D.G. and Mulligan, R.C., Nature, 310, 476-480 (1984)

Wright, S., Rosentha1, A., Flave11, R. and Grosve1d, F., Ce11, 38, 265-273 (1984).

Wu, C., Nature, 286, 854-860 (1980).
Wu, C., Nature, 309, 229-234 (1984a).
Wu, C., Nature, 311, 81-84 (1984b).
Wu, II-M. and Crothers, D.M., Nature, 308, 509-513 (1984).
Wu, R.S. and Bonner, W.M., Ce11, 27, 321-330 (1981).
Zachau, H.G. and Igo-Kemenes, T., Ce11, 24, 597-598 (1981).
Zhong, R., Roeder, R.G. and Heintz, N., Nuc1. Acids Res., 11, 7409-7425 (1983).

Zuker, C., Cape11o, J., Chisho1m, R.L. and Lodish, H.F., Ce11, 34, 997-1005 (1983).

Zweidler, A., In "Gene Families of Collagen and Other Structural Proteins". Eds. Prockop, D.J. and Champe, P.C., Amsterdam: Fisevier, 47-56 (1980).

[^0]: auIIIA
 (ATCTCGGCCGTCAGGTACTCCAGCACGGCCGCCAGGTACACCGGGGCGCCGGCGCCCAC CTAGAGCCGGCAGTCCATGAGGTCGTGCCGGCGGTCCATGTGGCCCCGCGGCCOCGGGTG ile glu ala thr leu tyr glu leu val ala ala leu tyr val pro ala gly ala gly val

 CCGCTCCGCGTAGTTGCCCTTGCGCAGCAGCGGGTGCACGCGGCCCACGGGGAACTGCAG GGCGAGGCGCATCAACGGGAACGCGTCGTCGGCCACGTGCGCGGGGTGCCCCTTGACGTC argy glu ala tyr asn gly lys arg leu leu arg his val arg gly val pro phe gin leu
 CCCGGCCCGCGACGAGCGCGACTTGGCCTTGGCGCGCGCCTTCCCGCCCTGCTTCCCGCO GGGCCGGGCGCTGCTCGCGCTGAXCCGGAXCCGCGCGCGGXAGGGCGGGACGAAGGGCGC gly ala arg ser ser arg ser lys ala lys ala arg ala lys gly gly gln lys gly arg
 CGGGCTGTAGTGAAGCGGACGTTCAGTCGGTTTTGTTAGCTCTTCTGTCTGACTTCCGGT gly ser met

 GAAGACTCGAAAGAATCCAGCAGTAACTGAGCACCGCCCTTTTATCCCTTCCTGCTGGGG CTTCTGAGCTTTCTTAGGTCGTCXTTGACTCGTGGCGGGAAAATAGGGAXGGACGACCCC

 GTAGAATACCGACCAATтGAACAGCGCGAGTGATTTTGACGTCACGGTCMGAAGATGTCC
 XhoI
 TTACCCCTCCTTGCTGGAGCTCAGAGGATTAAACGTATGGCGGAGATATTCATGAGCCGCC
 GCCGCGGTAACATGGACGCAGCTAGGXCGCCATGTCCGTCATCGCCCGCACGCGCTACGGG
 glu pro ala lys aer ala pro ala pro lys lys gly ser lys lys ala val thr lys thr AGAACCAGCGAAGTCGGCTCCTGCCCCTAXGAAGGGCTCCAXGAAGGCGGTCACTAAGAC TCTTGGTCGCTTCAGCCGAGGACGGGGATTCTTCCCGAGGTTCTTCCGCCAGTMATTCTG
 gin lye lys gly asp lys lys arg arg lys thr arg lys glu ger tyc ser lle tyr val CCAAAAGAAGGGCGACAAGAAACGTAGAAAGACGAGGAAAGAGAGCTACTCGATCTACGT GGTTTTCTTCCCGCTGTTCTTTGCATCTTTXCTGCTCCTTTCTCTCGATGAGCTAGATGCA GTAC lys val leu lys gln val his pro asp thr gly ile ser ser lys ala met gly the CATGTTCCACGACTTCGTCCACGTGGGGCTGTGCCCGTAGAGCAGGTTCCGGTACCCGTA
 met asn ser phe val asn asp ile phe glu
 C ATGAACTCGTTCGTCAACGACATCTTCGAG
 GTACTTGAGCAAGCAGTTGCTGTAGAXGCTC

[^1]: made to 500 ml .

