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SUMMARY

In this thesis “A Mathematical Study of Peristaltic Transport of Physiological
Fluids”, a mathematical investigation of both Newtonian and non-Newtonian fluids are
considered.

The Newtonian models are outlined and compared to two non-Newtonian models,
namely the power law model and the Casson model. The geometry considered are a planar
channel and an axisymmetric tube.

After considering the respective constitutive equations and subsequently the
equations of motion and continuity equation, the method of solution is obtained using stream
function of zeroth and first order, by performing a perturbation series expansion in
amplitude ratio.

Comparisons and implications were made between the Newtonian and non-
Newtonian models, in some cases after the introduction of simplifications, without
deviating from the context of the problem. The validity of all models were highlighted, in

particular that of non-Newtonian fluids when compared to Newtonian fluids.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction to Petristaltic Transport and Motivation for
Mathematical Modelling.

Peristalsis is the phenomenon in which a circumferential progressive wave of
contraction or expansion (or both) propagates along a tube. If the tube is long enough, one
might see several identical waves moving along the tube simultaneously. Peristalsis
appears in many organisms and a variety of organs.

Peristalsis is well known to physiologists to be one of the major mechanisms for
fluid transport in many biological systems. In particular, peristaltic mechanisms may be
involved in urine transport from the kidney to the bladder through the ureter, the
movement of chyme in the gastrointestinal tract, the transport of spermatozoa in the
ductus efferentes of the male reproductive tract and in the cervical canal; the movement of
ova in the fallopian tubes; the transport of lymph in the lymphatic vessels and in the
vascomotion in small blood vessels.

These flows also provide efficient means for sanitary fluid transport and are thus
exploited in industrial peristaltic pumping and medical devices. For example, mechanical
roller pumps using viscous fluids are used in the printing industry and the peristaltic
transport of noxious fluid in the nuclear industry. in addition, peristaltic pumping occurs
in many practical applications involving biomedical systems. Many modern medical
devices have been designed on the principle of peristaitic pumping to transport fluids
without internal moving parts, for example, the blood in the heart lung machine.

Mathematical studies of peristalsis were initiated by Fung & Yih(1968), Shapiro
et al(1969), and others. Most of these analyses are based on the Navier-Stokes equation,
considering flow in a circular cylindrical tube or two-dimensional channel with a
sinusoidal displacemnt wave travelling in its wall at constant velocity. The objects of these

studies are:



(1) to determine the longitudinal pressure pradient that can be generated by the travelling
wave;

(2) the flow resulting from peristalsis superposed on pressure differences at the ends;
and

(8) conditions of reflux.

To simplify the analysis, various approximations are introduced such as;

(a) small amplitude of the wall displacement compared with the undeformed radius of the
tube; or

(b) long wavelength compared with the tube radius ; or

(c) very small Reynolds number so that the non-linear convective acceleration term in
the Navier-Stokes equation can be neglected.

In this thesis all these assumptions are applied and in some cases the third
assumption is relaxed when considering the power-law fluid and Casson fluid.

One conclusion reached by these studies is that peristalsis is an effective method to
move fluid only if the fluid is transported in the form of a series of isolated boluses. If the
amplitude of the displacement of the wall is small compa;ed with the tube radius, very
little pressure gradient can be generated by the travelling wave. Pressure gradient
increases significantly when the radius of the minimum section of the wave approaches
zero. This is the reason in normal conditions that peristaitic waves of the ureter,
intestine, and the lymphatics are of this mode.

The main motivation for any mathematical analysis of physiological fluid flows is to
ultimately have a better understanding of the particular flow being modelled. If there is
similarity between the results obtained from the analysis and experimental and clinical
data, then the mechanism of flow can at least be explained. Because peristalsis is evident in
many physiological flows, an accurate mathematical study can help explain the major
contributing factors to many flows in the human body. When comparing results between
the mathematical model and the experimental and clinical data it is desirable that the data
obtained from experimental research be as close as possible to the actual physiological
flow/parameter being analysed. That is to say, it may be necessary to take into account the
effect the measuring instrument or device or procedure has on the data obtained. In other
words, the results of the mathematical model will be compared with appropriate data of the
flow being modelled.

Results obtained from a mathematical analysis of the flow of urine from the kidney,
to the bladder, through the ureter are being considered. Data values obtained via an

appropriate experiment, indicate the drop in pressure across a certain section of the
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ureter during peristalsis. Similarity of this data with the corresponding theoretical
results of the pressure drop across the same section of the ureter, means that future
predictions may be made about the change in pressure drop across the ureter during
peristalsis, and possibly the pressure. Therefore the pressure change, can be governed by
means of change to the urinary tract environment, and possibly even a slight modification
of the urinary tract itself.

Regarding reflux; governing the pressure across the ureter means that if the
pressure applied to the ureter is insufficient to pass urine on to the bladder, a minor
adjustment to the ureter, causing an increased applied pressure by the ureter on the
bladder, can enable the ureter to apply a sufficiently great pressure on the bladder so that
urine is successfully passed on to the bladder, without a backflow of urine to the kidney,
thus preventing serious kidney diseases. The mathematical analysis may be used to
determine a critical pressure, below which reflux occurs, hence, reflux can be diagnosed
in its early stages and dealt with accordingly.

Once an accurate mathematical analysis of the flow of urine in the ureter is seen as
important, it would be extremely useful to be able to generalise this analysis so that it
could be used to model other physiological flows which are considered to be caused by
peristalsis. Extending the theoretical model means that one model can be used to obtain
theoretical results for various fluid flows in the human body, instead of conducting a

completely separate analysis for each physiological flow being modelled.

1.2 General Outline of Previous Research_in Peristaltic Transport

The study of the mechanisms of peristalsis, in both mechanical and physiological
situations, has been the object of scientific research for quite some time. Since the first
investigation of Latham(1966) several theoretical and experimental attempts have been
made to understand peristaltic action in different situations.

Interest in peristaltic pumping has been stimulated by its relevance to ureteral
function. As reliable and accurate urometric measurements became available through the
work of Kiil(1967) and Boyarsky(1964), several hydrodynamic models of ureteral
function invoking peristalsis were attempted. The earliest models Shapiro(1967), Fung
and Yih(1968) and Shapiro et al(1969) were idealised and represented the peristalsis by
an infinite train of sinusoidal waves in a two-dimensional channel. Thus they could pretend
to only a qualitative relationship with the ureter. These models concerned themselves, in

part, with offering an explanation of the biologically and medically important phenomenon
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of ‘reflux’. One manifestation of this reflux is that bacteria sometimes travel from the
bladder to the kidney against the mean urine flow. A similar phenomenon has been observed
in the small bowel. These observations are puzzling because the travel times are too small
to be explained by diffusion and also because retrograde peristaltic waves have not usually
been observed.

Later, Lykoudis(1971) and Weinberg et al(1971) proposed models that represent
ureteral waves more realistically. Fung(1971) investigated the coupling between the
forces of fluid-mechanical origin and the dynamics of the ureteral muscle. Some of these
models showed that observed urometric pressure pulses and flow rates could be accounted
for by assuming internal dimensions of the ureter which seem physiologically plausible.

But ureteral physiology has not been the only motivation for the study of
peristalsis. Burns & Parkes(1967) and Hanin(1968) contributed to the theory of
peristaltic pumping without reference to physiological applications. Barton &
Raynor(1968) made a calculation based on peristalsis theory of the time required for
chyme to traverse the small intestine and found that this calculation compared favourably
with observed values. In addition, Fung(1971) studied peristaltic flow taking muscle
action in the tube wall into account. Some new examples of peristalsis were given in
Liron(1978). Considerable experimental investigations of peristaltic pumping have also
been undertaken, for example, Latham(1966), Eckstein(1970), Weinberg et al(1971),
Yin & Fung(1971), Hung & Brown(1976).

Most of the theoretical investigations have been carried out by assuming blood and
other physiological fluids behave like a Newtonian fluid. Although this approach may
provide a satisfactory understanding of the peristaltic mechanism in the ureter, it fails to
provide a satisfactory model when the peristaltic mechanism is involved in small blood
vessels, lymphatic vessels, intestine, ductus efferentes of the male reproductive transport
and in the transport of spermatozoa in the cervical canal. It has now been accepted that
most of the physiological fluids behave like non-Newtonian fluids. But it appears that no
quantitative rigorous attempt has been made to understand the problem of a non-Newtonian
fluid before the investigation of Raju & Devanathan(1972) and Raju(1972) in the case of
small wave amplitude.

Srivastava & Srivastava(1984) investigated the problem of peristaltic transport
of blood assuming a single layered Casson fluid and ignoring the presence of a peripheral
layer. Subsequently, Srivastava & Srivistava(1985) considered the axisymmetric flow of
a Casson fluid in a circular non uniform tube. More recently, Siddiqui, et al(1991)

investigated peristaltic motion of a non-Newtonian fluid modelled with a constitutive
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equation for a second order fluid for the case of a planar channel. A perturbation series was
used representing parameters such as curvature, inertia and the non-Newtonian character
of the fluid. Tang & Rankin(1993) proposed a mathematical model for peristaltic motion
of a nonlinear viscous flow where they used an iterative method to solve a free boundary
problem.

Das & Batra(1993) studied the fully developed, steady flow of a Casson fluid
through a curved tube for small values of Dean Number. A plug core formation at the
centre is considered where the shear stress is not sufficient to exceed the yield value. El
Misery et al(1996) considered peristaltic flow in a two-dimensional channel of a
generalised Newtonian fluid. Under the assumption of creeping motion, the problem is
formulated using a perturbation expansion in terms of the variant of the Weissenberg
number. Elshehawey et al(1998) consider the problem of peristaltic transport of a non-
Newtonian(Carreau) fluid in a non-uniform channel under zero Reynolds number with
long wavelength approximation. Again the problem is formulated using a perturbation
expansion in terms of a variant Weissenberg number. They find the the pressure rise and
friction force are smaller than the corresponding values in the case of uniform geometry.
Naidu & Kumar(1995) solve the Navier-Stokes equations of a Newtonian fluid
numerically by using a streamline upwinding finite element method on the peristaltic

flow, induced by an infinite train of sinusiodal waves in a two-dimensional channel.

1.3 Outline of Approach in the Present Study

To achieve the aims stated above, the present study has been organised in the
manner described below.

In Chapter 2, a brief description of peristaltic flow is given, in particular, an
introduction to the biological occurrence of peristaltic flow. Specifically, fluid flow in the
ureter and flow in the gastrointestinal tract, with particular emphasis of flow of chyme in
the small intestine is presented. Also, an outiine of flow in the Vas deferens is presented.

Chapter 3 examines how the basic laws of physics and laws of fluid dynamics as
applied to non-Newtonian fluids may be applied to mathematical modelling of peristalsis. |t
considers consequences; with particular emphasis on the time independent fluids; power
law fluid and Casson fluid.

In Chapters 4 and 5 mathematical models are developed for the understanding

of peristalsis.



In Chapter 4, flow in a two-dimensional channel is considered with emphasis on the
Newtonian fluid, power law fluid and Casson fluid. Comparisons of models are investigated,
outlining possible simplifications and difficulties in finding analytical and numerical
solutions to the respective model.

Chapter 5, describes flow in an axisymmetric tube, again considering the
Newtonian fluid case and the power law fluid case and Casson fluid case. Comparisons of
models are investigated and the validity of an analytical algebraic solution of the power law
model is compared with results in the literature.

The concluding chapter, Chapter 6 summarises the work done and discusses the
significance of the present study and outlines suggestions and directions for future

research in the area of peristalsis as applied to physiological fluids.



CHAPTER 2

PERISTALTIC FLOWS

2.1 Introduction to Peristaltic Transport and where it occurs.

The word peristalsis stems from the Greek word peristaltikos, which means
clasping and compressing. Peristalsis is a muscle controlled flow similar to the flow in the
cardiovascular system. Peristalsis occurs in may organs. Peristaltic flow is the flow
generated in the fluid contained in a distensible tube when a progressive wave travels along
the wall of the tube. Although elasticity of the wall does not enter directly into the flow
equations, it affects the flow through the progressive wave travelling along its length.

The mathematical problem of peristaltic flow is similar to that of a collapsible
tube. In the case of the ureter, it is modelled mathematically assuming that the ureter
receives fluid from the kidney at the upper end and passes it down to the bladder against a
pressure gradient. Normally, there is more than one wave along the entire length of the
ureter, which is of the order of 30cm. The amplitude of the wave is of the order of 5mm
and its wave speed is approximately 6 cm/s. The frequency of contractions is of the order
of 1-8 per minute. Each contraction lasts about 1.5-9 seconds, where the diastolic
(expansion) phase is about twice as long as the systolic (contraction) phase. Pressure
during the contraction varies from 2-8mmHg at the pelvis to 2-10 mmHg in the upper

portion of the ureter and 2-14 mmHg in the lower portion (Wienberg 1971).



2.2 Fluid Flow in the Ureter.

Ureteral peristalsis was described by Aristotle (384-322BC) in his book on

animals (Historia animalium). The ureters collect urine from the kidneys and send it to
the bladder. The form of the wave propagating down the tube when we consider the ureter

is given as Figure 2.1 and Figure 2.2 for anatomical details of ureter and kidney.
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Figure 2.1 Waveform of ureter. Adapted from Liron(1978)
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Figure 2.2 Anatomical location of ureter. Adapted from Miller Keane(1992)



At the bladder each ureter passes through a one way valve called the
ureterovesicular junction. It works by pressure in the bladder. The kidneys are not
capable of producing enough pressure to force urine away from them overcoming the
pressure of the expanded bladder.

When the bladder is full, its pressure is high. The bladder presses on the one way
valve, which is Z or U shaped, and collapses it, stopping back flow into the ureter. This
valve can be opened by each bolus of urine in the ureter if the pressure in the bolus of
urine in the ureter is sufficient to exceed the lateral pressure imposed by the urine in the
bladder and the muscle in the bladder wall.

If the smooth muscle of the ureter is unable to generate a higher pressure in the
bolus of urine or if the ureterovesicular junction is improperly formed then the
ureterovesicular junction will not function properly and a disease state called hydroureter
results. A hydroureter is a swollen ureter whereby the lumen size is much increased and
is filled with urine.

The reason why hydroureter is a disease state is made understandable when one
considers hoop stress in a pressurised tube. For example, in a tube of radius, a, with
tension T generated by the ureteral smooth muscle, a pressure P is created and given as
P=T/a .

Therefore for given T, P can be large if the radius, a, is small. But in a
hydroureter the radius, a, becomes so large that the pressure which can be generated by
the ureter is insufficient to send urine through the ureterovesicular junction. If the
occlusion of the ureter is not complete then depending on the pressure difference between
the two ends of the wave, the peristaltic wave may not propel the entire contents of the
fluid it contains. That is, some of the fluid propagates forward while other portions
proceed in the opposite direction. Then urine remains in the ureter and urine and hence
any bacteria backs up to the kidney and eventually causes kidney disease.

One conclusion reached in Chapter 4 and chapter 5 of this thesis is that peristalsis
is a effective method to move fluid only if the fluid is transported in the form of a series of
isolated boluses. Pressure gradient increases significantly when the radius of the
minimum section approaches zero. If the amplitude of displacement of the wall is small
compared to the tube radius, very little pressure gradient can be generated by the

travelling wave.



2.3 Gastrointestinal Flow.

We now consider the flow of an inelastic liquid which is generated by contractions
in the intestine. Unlike regular peristaltic motion these contractions occur locally over a
finite length and have a finite amplitude, see Figure 2.3 for geometry of wave shape and

Figure 2.4 for anatomical details of duodenum and small bowel.

Figure 2.3 Waveform of intestinal tract. Adapted from Liron(1978)
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Rectum

Anus
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Figure 2.4 Anatomical location of intestinal tract. Adapted from Miller-Keane(1992)

The motor activity of the small bowel is a complex physiclogical reaction, the
internal mechanisms of which are stilli not well understood. Analysis of this phenomenon is

an extremely difficult problem from both theoretical and experimental points of view.
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Electromechanical wave processes form the basis of many physiological phenomena.
They are inherent in the function of non-linear biological systems that possess the
properties of excitability and motor activity. Because of their internal features and
specific conditions, the progression from an initial steady state to an excitable state can
occur which results in the formation of a propagating peristaltic wave.

Stereotypic and organised small bowel motor activity is a product of dynamically
stable neuromuscular regulatory mechanisms charcterised by internal inputs that are
functionally excitatory or inhibitory. The neural component consists of an overlapping
series of functional modules interconnected by horizontal polysynaptic channels that form
the myenteric plexus, a neural network into which reflex pathways are locked and which
serves to coordinate motor activity.

Peristalsis is the main mode of propulsion, which enables the passage of solids and
liquids in the gastrointestinal tract, and disorganisation of which results in conditions
such as paralysis of the intestine and constipation.

Under normal physiological conditions, it begins with a preliminary phase, the
gradual reflex, with longitudinal contractions that are followed by the phase of a broad
spread of circular contractions.

In the first 30cm or so of the small intestine (the duodenum) a local contraction of
some finite length and amplitude occurs, and this contraction depends on the amount of
chyme in the alimentary system of the human subjects. Two types of contraction have been
distinguished: the stationary and the propagative contraction. In the stationary contraction
a bundle of muscle ceils contract simultaneously and move fluid contents over certain
length on both sides of the contraction. In this mode, the peak of the contraction does not
propagate along the axial direction. In the propagative contraction, the peak of the
contraction propagates along the axial direction. The propagative model is more realistic
and based on experimental data whereby simple mathematical models have been proposed
by Macagro and Christensen(1982).

It is known that the content of the intestine (chyme) is not really a Newtonian
fluid, however most of the analyses in the literature have assumed it so. Experimental

tests on human faeces have revealed that the liquid seems to follow a power-law behaviour,

with a power-law index of about 0.25 if the shear rate is above 4 s_l, (see power-law
mathematical model in chapter 4 and 5, in particular various results for axisymmetric
tube case with varying values of power-law index). This power-law index can vary with
the pathological condition of the sample. At low shear rates, the liquid has a kinematic

viscosity of 5-10 times that of water.
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It is found that the pumping action does not depend strongly on the power law index
of the liquid. This is a desirable characteristic of any positive-displacement pump and
allows us to simplify the analysis by assuming a Newtonian behaviour for the liquid.

It may be noted that the theory of long wavelength and zero-low Reynolds number(
see section 2.7) remains applicable as the radius of the small intestine r=1.25cm is small
compared with the wavelength A =8.0lcm. Barton and Raynor(1968) reported the
observed average chyme velocity as 2.54 cm/min on the basis that the male small
intestine length was approximately 685cm and the time for the chyme to pass through the

small intestine was 4.5hrs.

2.4 Flow in Vas deferens.

Vas deferens is a thick walled tube which connects the epididymis, an elongated
organ on the posterior surface of the testis, to the ejaculatory duct. Spermatic fluid
consisting of spermatozoa and fluid medium flows through the vas Deferens to the
ejaculatory duct and is finally expelled during intercourse from the penis by a series of

rapid muscle contractions. See Figure 2.5 for anatomical details of Vas deferens.

————Bladder
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Figure 2.5 Anatomical location of Vas deferens. Adapted from Miller-Keane(1992)
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Movement through Vas deferens is accomplished by means of peristaltic action of
contractile cells in the duct wall. The Vas deferens in rhesus monkeys is in the form of a
diverging tube with a ratio of exit to inlet dimension of approximately four. According to
some experimental observations of flows in the Vas deferens of rhesus monkeys made by
Guha et al(1975) the period of ejaculation was about two seconds and the average flow rate
is 0.02ml/s for 30mmHg pressure rise. The approximate value of various parameters for
flow in the vas Deferens of rhesus monkeys based on experimental observations made by

Guha et al(1975) are wavelength A= 20cm, inlet radius r=0.012cm and viscosity of

semen = 4centpoise. The value of Reynolds number is of the order of 107 therefore low

Reynolds number mathematical models are viable and applicable.

2.5 Biological Significance and Applications, Including Medical Devices.

Peristalsis serves more than one function and that waveshape and its amplitude
may be directly related to these various functions. One aspect of particular interest is the
question of complete occlusion. If the function is fluid transport, then certainly complete
occlusion will do the job as is observed in the ureter. All the fluid bounded by two
consecutive constrictions will be carried along with the moving wave. Why then does
complete occlusion not occur in the blood vessels? For one thing, one pays for complete
occlusion by having to use more energy, in fact much more than if the occlusion was 50 %
(Liron 1978). Moreover, complete occlusion causes high pressures and high shear rates
near the occluded region. In the blood this may cause damage to the erythrocytes, a well
known problem in artificial blood pumps. On the other hand, partial occlusion reduces the
efficiency of the peristaltic wave in its role as a pump.

The following data about the human ureter may be of interest(Bergman 1967).
Normally there are about 3-4 waves along the entire length of the ureter. The wave speed
is about 3-6¢cm/sec. The viscosity of the urine is 0.007 cm?® /sec (this is the viscosity of
water at 40 degress celsius, since the urine is essentially water. Hence under normal
conditions the flow of fluid in the ureter may be considered as Newtonian thus exhibiting a
linear relationship between the stess and strain tensors as depicted in Figure 3.1.

It is known that the content of the intestine(chyme) is not really Newtonian;
however, most analyses in the literature assume that it is so. Patel et al(1973) have
carried out some tests and found that the fluid seems to follow a power-law behaviour,

with a power-law index of approximately 0.25 if the shear rate is above 4 s'. This
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power-law index can vary with the pathological condition of the sample. At low shear
rates, the liquid has a kinematic viscosity of about 5-10 times the kinematic viscosity of
water). Hence, it is appropriate to model flow of chyme in the intestine as a power-law
fluid in an axisymmetric tube, Phan-Thien(1989), as depicted in Figure 3.1.

Srivastava and Srivastava(1989) state that it is difficult to estimate rheological
properties of the Vas deferens, however, Guha(1975) found that the viscosity parameter
is of the order 0.1 and hence have modelled flow as a non-Newtonian(power-law) fluid.

An examination of available viscometer data(Rand et al, 1964) suggest that the
non-newtonian behaviour of blood increases rapidly when the haematocrit rises about
20%, possibly reaching a maximum at between 40 and 70%. It has been established by
Merrill et al, that Casson model held satisfactory for blood flowing in tubes 130-1000u

in diameter, within certain wall shear stress limits. Therefore, for realistic description
of blood flow, it is perhaps more appropriate to treat blood as a Casson fluid,
Srivastava(1987), thus exhibiting behaviour as depicited in Figure 3.1. Also, Srivastava
and Srivastava(1984) investigate the problem of peristaltic transport of blood in a
uniform and non-uniform tube under zero Reynolds number and long wavelength
approximation. Blood is represented as a two-layered fluid, whereby the central layer is

Casson fluid and peripheral layer is Newtonian fluid.

When both mixing and transport are important, one would like to reduce the
efficiency of the peristaltic wave as a pump and thus increase the time that a given volume
of the fluid stays in the tube, as in the small intestine. Lowering the amplitude of the wave
is one way and changing the wave shape is another. Another phenomenon which may be
significant biologically and physiologically is that of refiux and trapping. If the occlusion
is not complete and even in the ureter to assume that we have complete occlusion is an
idealisation; then depending on the pressure difference between the two ends of the wave,
the peristaltic wave may not, and usually does not, propel the entire volume of the fluid it
contains. It turns out that some of the fluid and material is indeed propagated forward,
while other portions proceed in the opposite direction. This is called reflux, back flow.

Under suitable conditions a central blob will form which does not mix with the rest

of the fluid and propagates with the wave at the wave speed as seen in Figure 2.6
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blob wall

Figure 2.6 Bolus configuration. Adapted from Liron(1978)

If the total flux across any section, that is, the amount of fluid carried in the
direction of the propagating wave per unit time, is less than the volume of fluid contained
by the wave, then backflow will certainly occur. If this occurs in the ureter, then bacteria
may be carried back from the bladder to the kidney - a phenomenon believed to be the
mechanism by which some of the bacteria reach and infect the kidneys.

In some instances cilia are found within these organisms and organs, like in the
Fallopian tubes. For wave form see Figure 2.7. In some instances peristalsis occurs and in
some other instances cilia are used, whereas in other organs both modes of transport are

used.

Figure 2.7 Geometry of waveform in Fallopian tube. Adapted from Liron(1978)

It is only natural to inquire under what conditions an organism or organ
might find it advantageous to move from cilia transport mode to peristaltic transport mode.
For instance, one could suppose that enlarging of the tubes made cilia transport inefficient,
forcing the organism or organ to rely on the other mode of transport, peristaltic
transport.

2.5.1 Understanding and Contributions

The above discussion has pointed out some of the questions that theory may be
helpful in determining. So, a fluid dynamically quantitative theory is necessary for a more
detailed understanding of physical phenomena such as back flow.

it would be interesting to know under what physical conditions backflow occurs and
where it occurs, that is, is it close to the wall where we have postulated a two layered

model whereby the peripheral layer is Newtonian? Or is backflow occurring at the centre



where we have postulated in our two layered model that the central core of the flow is non-
Newtonian? Also, what fraction of the fluid is flowing back, under normal and abnormal
conditions?

Several other questions also require theoretical treatment. For example, what sort
of peristaltic wave, amplitude, shape and frequency has the organism or organ developed in
order to perform a given task? Hence a theory is needed to take these considerations into
account.

Hence, it is inherent that peristalsis appears in many tubular organs. Several
studies have been undertaken with respect to the peristaltic flow by applying a simple
hydrodynamic represented with sinusiodal waves. These studies owing to their
physiological emphasis, assume small Reynolds number. A theoretical analysis of
peristaltic flow in the range of moderate Reynolds number is extremely difficult because
of the non-linearity owing to the interaction between the moving wall and the flow field.
However, Fung and Yih(1968) initiated research by considering peristaltic flow with
mild non-linear effects and with a small ratio of amplitude to wavelength.

Two interesting phenomena associated with peristaltic flows are fluid trapping and
material reflux. The former descibes the development and downstream transport of free
eddies, called fluid boluses. The latter refers to net upstream convection of fluid particles
against the travelling boundary waves. These two phenomena are of great physiological
significance, as they may be responsible for thrombus formation in blood, and pathological
transport of bacteria.

From the standpoint of fluid mechanics, these phenomena demonstrate the
complexity but also motivate the fundermental study of peristaltic flows. The inclusion of
both Newtonian and non-Newtonian models in this thesis serve as a platform to
understanding the application of a particular fluid model to the appropriate organ and
serve as a comparison between fluid models. For example, chyme behaves as a power-law
fluid hence modelling of the material in the intestine as a power-law fluid in an
axisymmetric tube. Similarly for the other organs mentioned (Blood as a Casson fiuid in
two-dimensional channel and urine as Newtonian fluid in axisymmetric and two-
dimensional channel and fluid in the Vas defrens as power-law fluid in an axisymmetric

tube) and their appropriate fluid dynamical model.
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2.6 Peristaltic Transport in a Cylindrical Tube.

Consider now peristaltic transport of an idealised two-dimensional flow with an
infinite length and constant width cylindrical tube with sinusoidal wave of moderate
amplitude travelling along its walls. Assume that the cylindrical tube or the channel is
filled with a homogeneous Newtonian viscous fluid, although the fluid involved may be non-
Newtonian, and the flow may take place in two layers, ie., a core layer and a peripheral
layer. Taking the x-axis along the centre line of the channel, and the y-axis normal to it,
the equations governing two-dimensional motion of a viscous fluid, the continuity and

Navier-Stokes equations are given by

—+—=0 (2.1)

—+u—a£+v——=—l—+vV2u (2.2)

&+uﬂ+v&=—la—p+vvzv (2.3)

o0 dx dy poy

Using the stream function Y, such that u = y/y S VESY and eliminate pressure

by cross differeniating equations 2.2 and 3.3 and eliminating pressure p we obtain

u v du v u v b NP
- +u —— |tV === |=V| = Vu-—V7 (2.4)
dyor oxor |\ dyox ox H*  oxdy Ay o

Using the above equation for definition of stream function we obtain

d _ 2 2
E(Wyy * wn)+ l//y(l//yyx i Wm‘) - l//x(l'{/yyy - Wxx)') Bl V(V V/yy v ‘/’n_) (2.5)

Defining the Laplacian Operator as

3?9
V2 = y y ( 2 . 6 )
therefore
Vzwt + wazy/x - l//xvzl//y = W'y (2.7)
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Assume the fluid is subjected to conditions imposed by the symmetric motion of the elastic
walls. Let the vertical displacements of the upper and lower walls
ben and — 1, respectively.

Hence, the equations of the walls are given by

yzin(x,t)=ia[1+800527ﬂ(x—ct)} (2.8)

where € is the amplitude ratio, A is the wavelength, c is the wave speed and a is

the undeformed radius if the tube as seen in Figure 2.8

| wave speed,c

|\_/ ?\_/(\'r‘(x,t)\_/

Figure 2.8 Geometry of Cylindrical tube. Adapted from Mazumdar(1992)

The main objectives is to determine the longitudinal pressure gradient that can be
generated by the travelling wave, and the flow resulting from peristalsis superimposed on
pressure differences at the ends of the tube. In order to solve our equation we assume the

following boundary conditions

u=0 (2.9)

2 2
mcgsin—f(x—ct) at y =xn(x,1) (2.10)

yv==%
Our equation finally reduces; after introducing dimensionless variables

x=2 y=2 =2 ¢-¥ ,_Z2 p== (2.11)
A A A ac A

to
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D?¥ +¥ D -V D?¥ =—
n T Y n X X n Y nR n

where the operator Dn is given by
¢ I
D = 7’12 o7 + 5
B oX° JdY
The corresponding boundary conditions become

Y =0
Y

¥, =2mesin2n(X -T) ar Y=34n(X, T)

From the above we notice the following:

(a) The Reynolds Number Re will be small if

(i) the wave speed is small
(i) the distance between the walls is small

(iii) the viscosity is large

(2

(2.

(2.

(2.

.12)

13)

14)

15)

(b)  The wave number, n, will be small if the wavelength is large as compared to the

distance between the walls.

A
Also, the amplitude ratio € = ; will be small if the amplitude of the travelling waves is

small compared to the distance between the walls. We make various approximations in

order to solve the problem, such as

(a) small Reynolds number R so that nonlinear convective terms in the Newtonian
€

case in the Navier-Stokes equations may be neglected.

(b) long-wavelength compared with the underformed radius of the tube.

(c) small amplitude of the wall displacement compared with the tube

radius.
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Longwavelength Approximation.

2.7

We now assume small Reynolds Number and small wave number such that

(2.16)

We introduce cylindrical coordinates such that the Z axis is along the

centreline of the tube; hence the equation of the tube wall becomes

. 2
hWZ,t)= a(l + esm7(2 - ct))
We now assume that the pressure is independent of the radial coordinate

such that
(2.17)

p=p(Z,t)

If we perform a coordinate transfomation such that

r=R and z=Z-ct (2.18)

our continuity equation and equation of motion in cylindrical coordinates become if we let u

and w be the radial and axial velocity respectively

g;(ru)+% rw)=0 (2.19)
’w  1ow
2 Gre ] (2.20)
-

]
u
' o(1+€)r\q(1_e) h(Z)
w Z

Figure 2.9 Coordinate Transformation. Adapted from Mazumdar(1992)

With the above geometry in mind(Figure 2.9) and using the boundary condition
¢



w=-c at r=h

from equation 2.20

Given the flow rate is
h
q= 27rj rwdr
0

we obtain by substitution and rearrangement

hence from above equations 2.19 and 2.21

w= _C+2(;t%+hc_2)(h2 - r2)

2

q r

w=—c+2 —S+c||l-—
(nhz )( hz)

that is,

whose velocity profile will be parabolic-Poiseuille’s flow

and

oo o

that is,

whose velocity profile is only approximately parabolic
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CHAPTER 3

OUTLINE OF BIOLOGICAL FLUID DYNAMICS

3.1 General Introduction of non-Newtonian Fluids.

The study of fluid dynamics began with an ideal fluid that is incompressible and
without viscosity or elasticity and completely frictionless. However, severe limitations in
the practical application of frictionless flow to real situations in general led to the
development of a dynamical theory for the simpliest class of real fluids-Newtonian fluids.

A Newtonian fluid, by definition, is one in which the coefficient viscosity is
constant at all rates of shear as seen in Figure 3. 1. Homogeneous liquids behave closely
like Newtonian fluid, however, there are fluids that do not obey the linear relationship
between stress and shear strain rate. Hence, these fluids that exhibit a non-linear

relationship between shear stress and rate of strain are called_non-Newtonian fluids. Many

common fluids behave as non-Newtonian, for example, paints, wet clay, solutions of
various polymers and many biological fluids like chyme, blood etc.

Although the properties of non-Newtonian fluids do not allow simple and precise
analysis as developed for Newtonian fluids, there are some interesting and useful
characteristics of non-Newtonian fluids. For example the anomalous behaviour of blood

that deviates from Newtonian and exhibit non-Newtonian properties of two types

(a) at low shear rates, the apparent viscosity increases markedly-sometimes a yield

stress is required for flow, hence power-law and Casson modelling.
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(b)

in small tubes such as capillaries, the apparent viscosity at higher shearing rates
is smaller than is for larger tubes. It is thus concluded that the behaviour of blood is

almost Newtonian at higher shear rates, while at low shear rates the blood exhibits yield
stress and non-Newtonian behaviour.

3.2 Classification of non-Newtonian Fluids,
|
"
n
&
w ' <1
» pseudoplastic (n ) power-law
o Newlonian (n=1)p fluids
2 "o dilatant (n>1)
(V2]
—
Shear strain rate , 7
Figure 3.1

Newtonian and non-Newtonian curves.Adapted from Mazumdar(1999)

Fluids which do not obey the linear relationship between shear stress and the rate
of shear strain can be grouped into 3 general classifications.

(1) The simpliest of the non-Newtonian fluids is the time independent non-Newtonian
fluids in which the shear strain rate is a nonlinear function of the shear stress,
independent of shearing time and previous shear stress rate history.

(2) Time dependent non-Newtonian fluids have more complex shearing stress strain

rate relationships. Hence the apparent viscosity depends not only on the strain rate

but also on the the time shear has been applied.

These can generally be grouped into two categories

(i) thixotropic fluids-printers ink-the shear stress decreases with time as the
fluid is sheared

(i) rheopectic fluids-the shear stress increases with time as the fluid is sheared

23



(8) Viscoelastic fluids- this is different from truly viscous fluids in which all the
energy of deformation is dissipated. Hence the shear strain as well as shear strain

rate are related in some way to shear stress.

3.3 Time Independent Fluids.

For a time independent non-Newtonian fluid the constitutive equation is

r=f(j/] (3.1)

or Y = f(2) (3.2)

A Newtonian fluid is a special case of a non-Newtonian fluid where the function f(‘}/J is

linear in the form uy

(a) power law fluids
One important class of non-Newtonian fluids is that of power-law fluids which have the
constitutive equation

T=puy"
="'y (3.3)

This class of non-Newtonian fluids has effective viscosity coefficient or apparent viscosity

n

uy ~!and does not have a yield stress.

If n<1, we get a psuedoplastic strain rate. If n>1, we get a dilatant power law fluid in which
the apparent viscosity increases progressively with increasing strain rate. It n=1, we

obtain the Newtonian fluid as a special case.

{(b) Casson fluid

Another important class of non-Newtonian fluids is that of Casson fluid which has the

constitutive equation

1
. 1
12=ﬂ2}/ +T2 ,T27T (3.4)

(3.5)
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There exists a yield stress at zero shear rate, followed by a non-linear relationship
between shear stress and shear strain rate. If the shearing stress is less than the initial
shear rate no flow takes place. The plastic viscosity is non-linear and not constant. The
behavior of many real fluids such as slurries, household paint and plastics very closely

approximate this concept.
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CHAPTER 4

FLOW IN A TWO-DIMENSIONAL CHANNEL

4.1 Mathematical Modelling of a Newtonian Fluid in a Two-Dimensional
Channel.

The basic definition of a Newtonian fluid is given in Chapter 3. This shows that
there exists a linear relationship between the shear stress and the shear strain rate where
the constant of proportionality is known as the viscosity of the fluid.

It is convenient to model physiological fluids as Newtonian because Newtonian fluids
are generally easier to deal with as long as this does not cause over simplification of the
particular physiological fluid being modelled.

Much of the research interest of peristaltic flow has concentrated on
incompressible Newtonian fluid. The analysis of this type sufficiently explains some
physiological flows, such as the flow of fluid from the kidney to the bladder via the ureter
against a pressure gradient.

In this section, the peristaltic motion of a Newtonian, viscous, incompressible fluid
will be modelled for the case of a two-dimensional channel. The undeformed radius of the
channel is given by d and the tube is considered to be infinitely long. The sinusiodal waves
travelling along the walls, at wave speed c, have wavelength A and amplitude A. The

geometry of the sinusiodal travelling wave is given by G(x,t) where

G(x,t)=Ac0527n(x—ct) (4.1)

We assume the conventional cartesian coordinate system where x is the abscissa andy is

the ordinate, as shown in Figure 4.1
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Figure 4.1 Geometry of Peristaltic Flow in a Two-dimensional Channel

The governing equations of motion for the two-dimensional flow of a viscous
incompressible Newtonian fluid as discussed in Chapter 2 are given by the Navier-Stokes

equations in the form

2Li+uﬂ+véb£:—l@+vvzu (4.2)

ot odx oy p Ox

Qv—+u@+v&=—l@+vvzv (4.3)

where x and y are Cartesian coordinates and u and v are the fluid velocity components in

the x and y directions respectively and t is the time, p is the pressure, p is the fluid

density and v = Iad is the kinematic viscosity of the fluid, it as the coefficient of viscosity.

The equation of continuity is given as

@+@=O (4.4)
ox dy

We may now introduce a stream function y that satisties the equation of continuity as
27



p= ¥ Y

=—— 4.
R v S (4.5)
Cross Differeniating equations 4.2 and 4.3 and eliminating pressure p we obtain
Pu v Nu v u v d g Jdon
- +u - 3 +v—7— =V—VIA——VV (4.6)
dyot oxdt |\ dyox ok o’ oxdy dy ox

Using the above equation for definition of stream function we obtain

i(w +y )+w (w +y )—w (v/ +y )=V(V2w +Vy ) (4.7)
o\ xx y\ " oy o X\ yyy xxy Y xx '
Defining the Laplacian Operator as
2 2

V?= %ﬁ% (4.8)
and non dimensionalising by introducing non dimensional variables(see Appendix A) we
obtain

vy vy VP —y Vi | =Ly (4.9

rA AR AR Pl AR i .9)
hence

£V2W+I/IV21// —y Viy =LV41// (4.10)

o yo T Te Ty TR

e

Assuming that during the peristaltic motion that there is no horizontal displacement of the

tube walls the boundary conditions are as follows:

(1) u=0

the no slip condition (particles of a viscous fluid in the
vicinity of the surface over which it flows adhere to the surface) (4.11 )

d
+2 6(x,
5 (x.y)

(ii) v
the impermeable condition (no fluid penetrates the

surface: the fluid transverse velocity component and the
surface velocity are equal at the wall) (4.12)

Using G(x.t) as given in equation 4.1 and the above the boundary conditions we find
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l//y=0 (4.13)

___27rAc
‘l’x—‘*‘ 1

sinz%(x—ct) at y=1(d + G(x,1)) (4.14)

Organs of the human body involved in peristalsis, as described in previous
chapters, are of a finite length and hence the end conditions need to be specified. However
in this analysis we shall be considering a channel of infinite length, so end conditions need

not be specified. What is required is the pressure gradient which is assumed to be of the

form,

2-(2),+A%) (%)

— == Al — ATl — .

PR 8x0+ (9x1+ 8x2+ (4.15)
that is,

2 2 2 2,2

ﬂizﬂc_(@] +&c_é(@) +£1(:_A_2(9_Pj . (4.16)

d ox deoddé’x,dd&xz
and after nondimensionalisation, yields

2-(2)+43) 3

- &x0+88x,+8 8x2+"' (4.17)

and the boundary conditions 4.13 and 4.14 are reduced to the form after non-

dimensionalisation as follows

=0 (4.18)

v
v =Faesina(x—t)  aty==x(l+ecosa(x-1)) (4.19)

X

where €, a , R are the amplitude ratio, wave number and Reynolds Number respectively
e,

and are defined in the Appendix.

4.2 A Method of Solution of a Newtonian Fluid in a Two-Dimensional
Channel.

A method of solution is now required to solve the differential equation(4.10) for

the Newtonian case,
The form of the stream function Y is assumed to be
2
l//=l//0+£l//l+£l//2+..‘ (4.20)
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After substituting equation 4.20 into equation 4.10 and equating terms of the same order,
that is after collecting like terms in e, g, g8 erca system of differential equations may

be established to solve v,V Y, etc successively. After some rearrangement of terms

of the same order of € gives us for unsteady Newtonian flow the following equations to et

d 1

gvzwo + l’IIO)JVZVIO,\' B l//O)rVZVIOy - ?V‘il'[/() ( 4.21 )
9V vy Vi +v Vi -y Vi -y Vi =Lv 4
ot Y ll/Oy Vi le Vor ™ Yox le Vi WOy "R v, (4.22)
Vi vy Vw +y Vi -y Vi —y Vi +
3’: l//Z lI/Oy WZ,\' l//ly l//l,\‘ l//0,\* l//2y llll)\‘ lllly

) , - (4.23)

WZyV lI/O)c B V/va l//0)' = ?V ll/2

(4

The boundary conditions equations 4.18 and 4.19 can be written using a Taylor series

expansion about y = #(1+ G) where G = ecosa(x —t) such that

2

G
l/fy(irl)iGv/yy(il)+7wyyy(il)i...—0 (4.24)

2

G D
wx(il)i Gy/xy(il)+—2—1//xyy(il)i... = Faesino(x —1) (4.25)

After substituting equation 4.20 into equations 4.24 and 4.25 and collecting and

equating terms of the same order in € on either side of the equations to B gives

v, (x)=0

y
l//ly(il) + Y, (1) cosa(x—1)=0

1 ) ~
l//zy(il) + l;/lyy(i‘l)cos ofx—1)+ Ewom(il)cos a(x—1)=0
(£1) =

l//0,\’
v (£1)

I+
H

0
l//oxy(il)cosoc(x—t):$asina(x—t) (4.26(a)-(f))

ix

1 : _
sz(il) + y/lxy(il)cosoc(x — 1)+ EI//Ony(il)cos ofx—1t)=0
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From equation 4.17, because (?) , is a constant W, may be considered as a function of y
X0

only. Hence from equation 4.21 and using the condition that equation 4.26 is automatically

satisfied we obtain for the steady flow case the following ordinary differential equation

4
Vl//0=0 (4.27)
that is
d41//0
7 =0 (4.28)
dy

which has a solution of the form

v ()= Ay’ +By +Cy+D (4.29)

Using equation 4.2 and a nondimensionalising gives us after making use of equation 4.17

and equation 4.20 and collecting terms of ° the following is obtained

_ . 1
v tvy vy o= ax+Rwa (4.30)
which yields the equation
Py, dy
R(@) DA P (4.31)
e\dx /), Oy dy
however from equation 4.29
4’ R
y§°=6A:>A=—i(a—p] (4.32)
dy 6 \ ox /,

If we use the symmetry condition

o d'y

hence from equation 4.29 this implies B=0 and using the condition

I//O(y e 0) =0
(4.34)
=D=0
(4.35)
Finally, 4.26(a) implies that
3A+C=0 (4.36)
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Hence,

C=--¢% __1 4 7

Therefore substituting these values in equation 4.29 gives us the solution to l//O(y) as

R () 3 R (o
‘//0()’):"_6[—[)) [_y—)?] where k:—e(ij (4.38)
0 = 0

2 \ ox 2 \ ox
That is,
y3
V/O(Y)=k(?—yj (4.39)

which coincides with the solution given in the literature, Fung And Yih(1968).

We now seek solutions to l//l(x,y,t) and are of the form
] —t * —io{x—
2y, = CI)](y)e'a(x ¢ ? (y)e fax=1) (4.40)
where * denotes complex conjugate.

The differential equations for @ s and their solution, for the case [@] =0 (free
X /0

pumping) are given in the paper by Fung and Yih(1968) as follows,

(Dl(y): Asinh oy + Bsinh fy where B*=a? _iaR,
and
—peoshp o cosha

= an =
o cosh asinh § — Bcosh Bsinh o cosh asinh f — Bcosh Bsinho

It is found that the non-dimensionalised time average of the pressure gradient is given by

%:‘;—21(+0(s3)

where K is a constant determined from the end conditions.

e

Hence it is observed that the magnitude of the mean pressure gradient decreases as
Reynolds number increases and conversely. This demonstrates the significance of Reynolds
number. Pumping against a positive pressure gradient greater than the critical value

would result in backflow(reflux).
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4.3 Mathematical Modelling of a Power Law Fluid in a Two-Dimensional
Channel.

In this section, the peristaltic motion of a non-Newtonian fluid will be considered
in a two dimensional channel; the fluid will be modelled as a power law fluid. In chapter 3
it was stated that a Newtonian fluid is one whereby its shear stress and shear rate of strain
obey a linear relationship, Hence a non-Newtonian fluid is one whereby its shear stress

and shear rate of strain are related non-linearly(see section 3.2 for graphical depiction)

The non-Newtonian fluid in this section obeys the following

T=Uy (4.41)
The stress tensor corresponding to a power law fluid is given by

T.=—pd. +mbV_ (4.42)
y Yy 9

where T is the stress tensor and V _is the rate of strain tensor and p is the isotropic
y Yy

pressure and m is the flow consistency index.

n—1
ez‘lvv 2

ne (4.43)
%

where n is the flow behaviour index.

4.4 A Method of Solution of the power law fluid in a Two-Dimesional
Channel

If the fluid is modelled as an incompressible viscous fluid, the classical equation of motion

relating shear stress and shear rate of strain may be used, that is

—l—-_J 4.44
p > ( )

where p is the density of the fluid and ¢ is the fluid velocity component in the respective

ith direction and as stated above T __ is the stress tensor. Substituting of equation 4.42 in
9)

equation 4.44 gives
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Dq,_ 0
P =P
j
C B Py e
= 8x,6"f+mo7x Vij+m9 » (4.45)
j j J
=—£7I-)—+mﬁ '+ mOVu +i(V.q)
ox, 8xj i foox

Asuming the incompressibility condition V.g =0, the equation of motion in tensor format

becomes

D
i = -—a—p+m{9vzu,+£v}
i oo (4.46)

p Dt <9x:_ i

J

Using the summation convention and setting i=1 and 2 respectively and
nondimensionalising in a manner as indicated in the Appendix A we obtain the two

momentum equations as follows:

%+u@+vi=—@+i 0V2u+2@8—6+ %+i 8—9 (4.47)
ot ox oy ox R ox dx \dy oy
i+ui+v2v—=—a—p+i 6V2v+2&—8£+ %+& _82 (4.48)
o ox dy ady R dydy \dy Jx)ox

where if we use the equation of continuity 4.4 we find from 4.43

n—|

2[‘9—) ' 2(%)2 {gyﬁ ; g‘_] N

n—|

(4.49)
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and the boundary conditions are given as equations 4.26(a)-(f).

The solution for the stream function y is found by assuming a perturbation series

in stream function and pressure as

Y=y ey FEY, o

p=p0+£pl+82p2+... (4.50)

On substituting equation 4.50 and equation 4.5 into equations 4.47 & 4.48 and
equating coeffcients of € of equal order on either side of the equations we obtain a series of

partial diferrential equations for W, .V, .V, el

(i) Solution Procedure (Zeroth Order Approximation)

The zeroth order equation describing the absence of peristaltic flow(free pumping

situation) is found by considering the above substitution in equation 4.47 and collecting

coefficients of order £° on either side of the equation and yields, after introducing non

dimensional parameters as described in the Appendix A, as follows

Re [%J k= (Woyy)"_l wayy * (n - 1)(VIOYJ')"—l WOW

n—1
- n(WOyy) lVOyyy

(4.51)

where the solution l//o(y) is assumed to be a function of y only because the zeroth order

axial pressure gradient, g" , is assumed to be constant.

The solution to equation 4.51 is sought in the form

2n+l

ny "
=A . 4.52
v, ) =4 = ( )

which satisfies the required boundary conditions,that is, equations 4.26(a)-(f) and 4.34.

Thus we obtain
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y,(0)=0
w,,()=0 (4.53)
y, (0)=0

Oyy

We are now required to find the constant A appearing in 4.52. Hence substituting equation

4.52 in equation 4.51 we obtain

”[A(n'*'l)jn_lynT_l A(nj- l)y'i:_:" —k =(A(n+1))"

n n
, (4.54)
= A=l p»
n+1
(4.55)
Therefore the solution for v, becomes
2n+l
|
n —|ny?"”
- k" - 4.56
l//O()’) n+l o+l ( )

We see that for n=1 equation 4.56 reduces to equation 4.39 which is the Newtonian case of

peristaltic motion in a two dimensional channel as outlined in the previous section.

(ii) Solution Procedure (First Order Approximation)

We now seek to develop the equations and hence the solution for v,

On substituting equation 4.5 and equation 4.50 into equations 4.47 and 4.48 and non

dimensionalising as shown in the Appendix A and collecting the coefficients of ¢' we obtain

respectively the following partial differential equations.

Equation 4.47 reduces to

let + wawlyx B WIXWOW -
_£+L( )"—' . o _1)( ~ )_i_2(n~I)( ~ ) (4.57)
ox R V/Oyy l'l/lyy)(x l'lllyyy N ll/l yyy ll/l)ucy ny l'l/lyy lVI,\',\'
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Equation 4.48 reduces to

_y/lxt B l//Oyllll)a\' -

2(n—1) (4.58)
l//lxy}

&pl +—L( n-1 ( i (
8}’ R lVOyy) —wlxxx_wlxyy+ i )wlxyy lI/l)acx)ﬁ ny

To obtain a single equation by eliminating the pressure terms, we cross differentiate

equation 4.58 and equation 4.59 and subtract to obtain the following

J 2 2
gv l//1 +l,/OyV llllx h l'Ill,\:l// -

Oyyy
2(1-n)
1 ( n-1 "V o +(4_2n)wlxxyy +m//1yyyy " n2y2 (ley - ll/l)cx)+ (4.59)
— (v, )
R A" | (n=1)(n 1)W , (n+2)(n-1)

ny Lxxy ny Lyyy

Letting n=1, and remembering that v, is a function of y only, equation 4.59 reduces to the
governing equation 4.22, v, for the Newtonian case. If we introduce the boundary
conditions as given in equation 4.26 and substitute v, as given in equation 4.56 we obtain

the boundary condtions as

1

y/ly(l) = —k" cos ofx—1)

v (1)=-asina(x—1)

Ix

(4.60)

From these boundary conditions, it is assumed that 1//I can be obtained in the form

y (xp.1) = f(y)cosa(x—1t)+ g(y)sinor(x —¢) (4.61)

Where f and g are to be determined. By substituting equation 4.61 for v, and equation
4.56 for y into equation 4.59 and collecting coefficients of cosa(x —t) and sino(x —t)

on either side of the equation, two differential equations for f(y) and g(y) can be obtained.
Due to the complexity of the equations exact solutions in analytical form are not able to be
obtained.

Approximate solutions can be obtained by assuming that the wave number is small.
However, this approximation will not be performed and analysed in this case but will be
considered later in the case of Casson fluid in a two-dimensional channel and a power-law

fluid in an axisymmetric tube.
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4.5 Mathematical Modelling of a Casson Fluid Case in a Two-Dimensional
Channel

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson fluid
in a two-dimensional channel, where, d, is the undeformed width of the channel and the
channel is considered to be infinitely long; A, represents the amplitude of the sinusiodal
waves travelling along the channel at velocity c;A, is the wavelength (Figure.4.1). A
rectangular co-ordinate system is chosen for the channel with x along the centre line and y
normal to it. Let u and v be the longitudinal and transverse velocity components,
respectively. It is assumed that an infinite train of sinusiodal waves progresses along the
walls in the x direction. The vertical displacements for the upper and lower walls are G

and -G for peristaltic flow at time t, where G is defined by,
2r
G(x,t)=AcosT(x—ct) (4.62)
We assume that there is no motion of the wall in the longitudinal direction
(extensible or elastic wall).

For the case of peristaltic pumping of a Casson fluid in a planar channel the

stress-strain relationship in tensor format is given by Fung(1981) as
o, =-p5ij+2u(]2)vu (4.63)
where
i 1 : | | B

- =1 | ~ == 1 1 1P
2 L, = 4 1 L
u(]z)z (n J2)4 +2 zryz I,z = n2+2 ZTyzjz . =|:oz+[3j2 4} = p(say) (4.64)

Here we have denoted

!
where 1 is the Casson coefficient of viscosity, and Ty is the yield stress

Here,
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1( du Ou
Vo=~ =+ (4.66)

i 2 8xj o
and

J=lyy = 1(v +V, 242V )

= SV (4.67)
where

1% :8u V =&,V =V =l(_&ﬁ+&]

o’ oy’ 12 2t 2lgy ox

4.6 A Method of Solution of a Casson Fluid in a Two-Dimensional

Channel

Substituting equations (4.63-4.67) into the basic equations for continuity and momentum

respectively given by

divg =0 (4.68)
and
%—ia (4.69)
Dt_o'bcj ij '
we have
o u o op u EYRY Pu I o
pl —+tu—+v—|=—7+2U —+p|—+—|+2 >+ U—| —+
ot o dy ox xox " Ydy d o oy\dy ox

which, using continuity reduces to

p(%+u%+v%):—% u%+u(%+%]+uvzu (4.70)
Similarly,

&+u&+v§l :—QI—)+2#&+ &—+& + 1V (4.71)

o™ %) o D ey a

Defining as before the stream function y(x,y) asu =y and v=-y¥ we obtain from
¥ X
equations (4.70) and (4.71) respectively
__% 2
p(v/y, YV, u/xwyy) = o 20 W i uy(wy), = u/m.) UV (4.72)
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and

_op 2
-ﬂ’WH+VQWU)—‘—“MGWW*WGO%W‘WU)‘“VVG (4.73)

Av,-v, 2

i 1,3l

(i) Solution Procedure( Zeroth Order Approximation)

where i = %[u(!z)

Expressing stream function, Y, pressure, p, and [l as a series in terms of amplitude

A
ratio € = g where A is the amplitude and ,d, is the undeformed width of the channel,

(Figure 4.1), we have

W=V’0+5V’l+52‘l’2+--- (4.74)
p:p0+£pl+£2p2+... (4.75)
u:u0+sul+ezu2+... (4.76)

where it is assumed that y is afunction of y only, ie, ¥ = (). because of zeroth

order axial pressure gradient. We finally obtain from equations (4.72 & 4.74-4.76)

after collecting coefficents of e

0 _
_87_2#0,(]"/0)},\' + ‘HOyWOyy - ‘UOyWO,tx +‘u0ll/0xxy + 'HOWO)'){)’ ( & )
that i Py + (4.78)
at 1s — = .
"o N ‘uOyWOyy #Owoyyy
Therefore
dp, 9
OZ_WW ) (4.79)
ox oy\ 0" Oy

We now need to find the zeroth order expression for H, = /,L(JZ)O

From equation (4.67) and expanding and substituting we have

A BRBEE ) e )
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fr ]

Therefore we have, after introducing equations (4.74, 4.76, 4.80)

1 2

u("z): a+'8|:i(v/0yy2+2£w v _w‘“)}z+0(82) (4.81)

Oyy ™" lyy

Neglecting second and higher order terms in € in equation (4.81) and expanding we have

] 2
B g _LYoe
'U(J2) - a+B(Zj Yoyy 2(1_5W0yy Wy _Wl«vx)) (4.82)

Which after further expansion and collecting terms in amplitude ratio for the first two

terms and using equation(4.82) yield equations for it = u(J ) and p =u(J ) as
0 2/9 1 2/
1
B = o+ Zﬁaﬁy/oyy‘g + Zﬂzwoyy“ (4.83)

w=—apvay, (v -v_ )28, (v, -y (4.84)
1 Oyy 2\ " 1yy lxx Oyy lyy lxx '

Solving equation(4.79) by using equation(4.81) and applying the symmetry boundary

condition Yo, (0) =0 we have

Ky+L=py,

o (4.85)
where K = p\/c3d7._>—0 and L =2°
X
Our equation to solve for ¥ (y) then becomes
1
2 !
+24/2 - = 4.86
o'y, +220By, 2 -Ky=0 (4.86)
If we set
1//0yy=W2 (4.87)
then equation(4.86) becomes a quadratic in W as
W2+ 2\20BW - Ky =0 (4.88)
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whose roots are given by

28% + Ky (4.89)

Using equation(4.87 and 4.89) we obtain

=(_ﬁﬁii ’2ﬁ2+Kyj (4.90)
a o

4

Qyy

But the symmetry boundary condition l,l/oyy(O) =0 demands only the positive sign to be

valid, therefore

y =(—ﬁg+—@2+—1@j (4.91)

1
Oyy o

Integrating equation(4.91) twice we obtain

5

282 2 K 3 828 2 >
+ - 2B°+Ky)2 +Ay+B 4.92
— 15K2a2(ﬂ y)? + 4y ( )

Where A and B are constants of integration.

Using the boundary conditions l//oy(l) =0 and WO(O) =0 we find

AMN2B. 2 o 4B K
A:3a2K(2ﬂ +1<)2——a2 —> 7 (4.93)
8V2B () 2\
T 15K%7 28°) (4.94)

If we let B — 0 thatis Ty — 0 from equation(4.65), we obtain the Newtonian case in the

form

which coincides with the literature, Fung(1968)
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We now seek to determine the dimensionless pressure rise, Apo, where

1(9[)0
Ap0=£§;dx (4.95)

| will consider two cases( A and B) for pressure rise versus flow rate

(A) The flow rate, q, considering the boundary of the channel given by y=G, is

q= Tudy = T(?—Wdy
0 0 ay

(4.96)
where G =€gcoso(x—1)
Hence from equations (4.85 and 4.92-4.96) we have
I 2 23 3
1 6goa” —12p3°€ cos™ x
Ap = J q3 3 B dx (4.97)
: px/c3d , € cos” x—3gcosx
the solution to which is found by making the substitution
1
z=tan—x
that is (4.98)
1-z2 2 2
cosx = 22, sinx = Zz, and dx = > dz
1+z 1+z I1+2z

Separating integrands and using the method of partial fractions we obtain the following

three integrals to be solved;

12402 0546 .. p 12g0? 0546 ~. . p 2g02 0546 o o
A [ = [ Atd| (4.99)
plcd] g (Z —(9+7)) pNed| g (Z —(9—7’)) pNtd| g ("I“]
23036 4248 2,3|0346 ¢ .4 p
Bhe [0 g K P e L (4.100)
pd| o (=) | plla| o (&-©-7)
2 RTINS M B
+ . ——dz |+ - dz |+ - : =z
pNdd | (’——(94“}’)) petd | g (22 (9—}’)) pVed 0 (' +_:2)
(4.101)
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where

a (4.102)

a=¢€ -3¢ b=¢+3¢

Clearly, in our case, both a and @ are always negative and both band y are always
positive.

The coefficients Ai ,Bi ,Cl_ ,Dl_ ,E‘, F’ ,i=1,2,3 are found by equating coefficients in equations
(4.99-4.101) after replacing cos’ x by 1—sin®x in equation(4.97) and applying Gauss-

Jordan elimination, and are as follows:

A=C=E=0
1 1 L

_= {(_9+7+|)-29(2y+2)(-—0+y_1)}

b {(cieo+y)o-7)+20(~(0+7)(6 -7 -1)+20)(2r + 2)}

(4.103)
(-6+y+1) (-1+06+7)0-7)
=- + F
1 20 20 !
B =-1-D +F
1 1 1
A=C=0
2 2
p - (1+0-7) (4.104)
2 2'}/
_(6+y+1)
2_ 2}/
A=C=E=0
3 3 3
_ 1
P (1+6+y)(1-(6-7))
(4.105)
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The solution to equation(4.97) after considering equation(4.99-4.101) takes the form,

2o |, | 2T v +ﬁtanh"z
z+40-7 ) 2

Ap = 12gc? B, In
pJd|2J0+y \z+:6+y ) 2/6-7
128’1 B, I z2—-+/0+7 D, ,[z=+0-7
oNd |20+ \z+0+y ) 20—y \z+ 06—y
0f RE3 _ o= _ —
6P| B, | [z JO+y b [z NCE Foan
plcid | 20+7 \z+0+7y ) 2J6-y \z+6-7v) 2
(4.106)
If we assume 9—‘}/=i51 J@+y=i52
since 8-y and ©@+7Y are always negative, then we have
z—id. 0
Inj—2| = —2itan™"| £
z+15}_ z (4.107)
where i=~-1 j=12
Subsequently,
2B 8 5\ F 2.3 B 5\ D )
Ap0=_12qa —ltan_{—{]+—ltan I[——]——'tanhq z|+ 20 € [—z—tan—l[—zj+—2tan—l(—1]
p*,c3d _52 z 5, z 2 P d 52 z : z
23 B 5\ D 5\ F
—96ﬂ : —3tan_l[—2]+—3—tan_l[—']——3tan"I z
p 3d _52 z : z 2
(4.108)

Graphical representation of dimensionless pressure rise vs flow rate, given the boundary
Figure(4.2) and Figure(4.3),

of the channel as y=G is shown in Figures(4.2 & 4.3).
compare Casson with Newtonian fluids and are depicted for two values of amplitude ratio.
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Figure 4.2: Pressure Rise vs Flow Rate, £=0.2, with waveform G
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Figure 4.3: Pressure Rise vs Flow Rate, £=0.8, with waveform G

(B) The flow rate, q, considering the boundary of the channel given by y=1, is
1 la'//
g=[udy = [ Zody =w() = w(0) (4.109)
0 0 %

therefore from equations(4.92-4.94)

282 K 442 =
1//(1)—1//(0)=—(f2 o {(2ﬂ2+l{)2:q (4.110)

3 3a°K
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Applying expansion gives

_2/32_1( 168°
o 30°K

4.111
o 3¢ ( )

Separating the pressure gradient after solving for quadratic in K, and using equation(23)
gives
P, K

1
Bx_p@_p@

Hence using equation(4.95) pressure rise is

J—j {‘— (3a%q-6p)% -\/90-’4612+100,34—36a2qﬁ2 }dx
p

because — %(30&1 - 6[32) i%\/9a4q2 +1008* —36a°gB* = constant (4.113)

1 | 1 —=
Ap, =——{—— 3ag - 68%) £ —+9a’q® +1003* - 36a’q 2}
=T S )£ B

However, 8=0, implies that only the negative sign of the quadratic to be valid, therefore

- po=— | B 67) - S P+ 1005 S6elg | (411

Graphical representation of dimensionless pressure rise vs flow rate, given the boundary

of the channel is taken as y=1, is shown in Figure(4.4).
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Figure 4.4: Pressure Rise vs Flow Rate, without waveform G

(ii) Solution Procedure( First Order Approximation )

We now look at the procedure for determining v (x,y,t).

The boundary conditions for v, (x,y,t) are derived as follows; Assuming that there is no

horizontal displacement of the tube walls during the peristaltic motion, the boundary

conditions at the walls are

(a) no-slip condition:u=0aty= i[d + G(x,t)]

P (4.115-4.116)
(b) impermeable condition : v = igG(x,t) at 'y = {d + G(x,1)]

2r
Using G(x,t) = Acos—/,L—(x—ct) and equation (4.74) and non-dimensionalising we obtain
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v, = 0at y=i[1 + eoost;t(x —t)j|
(4.117-4.118)

_2mAc

v, =7

X

2 — -— ~
sinT”(x —ct)=Foaesina(x —t)at y=i|:1 +ecosax — t):|

The boundary conditions (4.117-4.118) can be written, using Taylor series expansions

about y = (1 + G) where here G = ecos&(x —1) as, after equating terms of the same order in g,

on either side of the equations, which gives

G2 3
+1)+ +)+ — +1)+ =
u/y(_l)_(;u/yy(_l)+ 5 u/yyy(_l)_O(G ) 0

(4.119-4.120)

v (1) +Gy (il)+%u/ (#1)0(G’) = Faesina(x-1)

Substituting equation (4.74) into equation (4.119-4.120) and collecting terms of the

same order in €, gives

v, (F)=0
VENE: woyy(ﬂ)cos&(x ~1)=0
y, (F1)=0 (4.121)

Ix

v (£])+ l//oxy(il)cos&(x— £) = Fasina(x—1)

and so on for higher order terms in €.

Taking the positive sign of the boundary conditions as given in equation (4.121) yields the

boundary conditions as

wly(l)z—yloyy(l)cosa(x—t) (4.122)

v, ()=-asina(x-1) (4.123)

1x

From these boundary conditions, it can be assumed that y/l(x,y,t) can be obtained in the

form

v, (x0) = F(y)cosalx — 1) + g(y)sina(x — 1) (4.124)

Eliminating the pressure terms in equations (4.72) and (4.73) by cross-differentiation

and subtraction, the following equation is obtained:
2 2 2
v -y V = - _
p(Viw, +y Vi —y Viy )=dp v +20 Y R, VIR W )t (4.125)

2 2 2 2
\vj _ _ _ _
llyV v, tuviy t2uy v ffé(ll/”* v oItH VY VY



By substituting equation (4.124) for y/l(x,y,t) and equation (4.92) for l//o(y) into

equation (4.125), and collecting coefficients of cosgc(x—t) and Sin(;t(x—t) on either side of
the resulting equation, two differential equations for f(y) and g(y) are obtained.

Due to the length and complexity of these equations approximate solutions are obtained by

2nd
assuming that the parameter, o , which is T is small. As a first approximation, the

.2
terms of order a and higher can be neglected; as a second approximation, the terms of

23
order « and higher can be neglected and so on.

Hence the following equation is obtained from equation(4.125) by expanding in a
pertubations series as indicated in equations(4.74-4.76) after collecting terms of the

first order in amplitude ratio, € and remembering Y, =y (y) only,

p \ C3d (l//lyyl L WO)’WI)')’X - l//lxlllo'\')g\') =
'uOyleyy + 'ul)',vwoy.v + 2'u0,vl//l)')',v + zul.vl//f))w.v + 'uOWI,v.vy.v + ”lwo.vy.v.v

(4.126)

where Hos Hoy o and p,, Hypo by are extensive and complicated equations and are obtained

from equation (4.83) and equation (4.84) respectively, as follows,

_ . 2,
oy —20p Yoy 2Youy = 2P Voy Yoy (4.127)
w =3B 2 Gapy, v +aply, w22, Py (4.128)
Oyy ~ 2 7 0wy 2 Oyyy Oyy 27 0y Oyy 7 Oyyy Oyy * Oyyyy )
I L w v, =208y 'iw +4B%y, Sy oy —2f%y, Py, (4.129)
y 2 TOow VoY iy Oyy 2% tyyy Oyy " Oyyy tyy Oyy Ty T
ISaﬁ 3a[5 s boff 3
:uly = 2\F WO)\\ Itl/l\\ \/5 llI/O_\g\' Zl//0_\'_\[\'_\"‘//I_\'_\' + WWO){\ ZV/O\{\"_\'WI_\Z\"\ -
ﬁaﬁ WO,‘:\'_;WU'.V)'.\' - 12ﬂ 2"[/0.\1\'—4W0.\1\'y2wm - 4ﬁ 2Wd)‘.\'¥]l//0,\’)')')'WI.\'.\' s (4.130)

2 -3 2 -2
8'8 WOJ‘)‘ WO)‘)’)'WULV.\' - 2'8 WO){\' lIVI.\'.\L\',\'
After substituting for the various terms in equation(4.126) and collecting terms and

remembering the approximation made on terms in the parameter, &, the following

ordinary differential equation is obtained
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(;f”sin(;t(x —1)- &g”cosouc(x -+

2 3 N - - -
p cd [4ﬁ2 y+ k2 y? - 4[3\/_(2[3 +ky)2 +A}( af”sina(x—t)+ch"cosa(x—t))h:
o 2a 3kat®

. 2
- —afsma(x—t)+agcosa(x—t)) k 3y

2 2

2
( (f cosa(x—t)+g sm(;t (x—1) _ﬁ

3
|2
by (f”cosa(x +g” sm(x(x t [i —k—2 2ﬂf(2ﬁ2+br)5} 2+
o

48 °x

B
az[f'vcosoc(x £)+g' sma(x t))

2 3 2 Il
(4" .- y]jg(f”cosa(x 1+g” sma(x 0){%_’_;’%)}_2[3\/—(2[3 +k)} .

2B 168%°

2 M2y . - L
ap2 4—(532—+;kz-y—%@(2[32+ky)2j| (f'vcosa(x—t)+g'vsina(x—t)j

(4.131)

where the constant A is given in equation(4.93).

Collecting coefficients of cos&(x—t) in equation(4.131) gives
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Collecting coefficients of sin(;t(x—t) in equation(4.131) gives
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The equations for f(y) and g(y) can be simplified by assuming that the Reynolds number
associated with the present model is small, where the associated Reynolds number is given

as
Re = pvc’d (4.134)
Therefore,

fon= fo(y) +Re? £, (y) + higher order terms in Re
(4.135)

g(y) =Re Bl (y) +Re® g (y) + higher order terms in Re

Hence, evaluating equation (4.132) and equation(4.133) with equation(4.135) and
equating equal terms in Reynolds Number the following ordinary differential equations are

obtained for fO(y) and g (y) respectively,
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From equation(4.122 and 4.123) the boundary conditions for fy(y) and g,(y) are given as

LO=0 =0 f=1 fi=-v,

, , (4.138)
8,(0)=g/(0)=g (D =g/1)=0

The analytical solution to equation(4.136) is found by using the results given by Polyanin
& Zaitsev(1992)
Hence by reducing equation(4.136) to a second order equation and then integrating

twice the solution is found. Comparing our reduced second order equation to and using part

28 on page 134 of Polyanin & Zaitsev(1992) with their notations
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Consequently, with W, = fo” equation(4.136) reduces to
” D ’ 1 2 _
wo—Eyw0+E{Ay +By-Clw, =0 (4.140)
Then following through the analysis they describe where
D 1[|D* A
s=—x—\—-= (4.141)
4E 2\4E° E
is the root of the quadratic(see page134 of Polyanin & Zaitsev(1992))
2 D
4s +2as+a=0,a=—E,b=O (4.142)

It is found that if we consider only the first two terms of the series,

w.=f'= exp(hy)exp(syz)z(é) where z()is found in Table2.2 page 143 of Polyanin

o Jo
|
oo » 2 " l o0 a4 1p2 i . 43_}
= 2 (a)rl (kg ) 2 ( 2]11 (k(: ) (4 !
= exp(hy)exp(sy” )1 C, l+"z=;—(b)H T +Cyy ]+§ (b), n!

where

1
U =4, k¢
2b.h+b
=L p=-—t—1

A7 a,

(4.144)
A=1,

é(a,%,k’gz) is the degenerate hypergeometric solution and is found on page143,

part 103 and page137, part 65 of Polyaninsi& Zaitsev(1992).



Subsequently, the solution to equation(4.136) and hence equation(4.143 and
4.144), after applying symbolic integration twice using MATLAB v5.3 is very intricate
and given in Appendix C.

Numerical solutions to equations (4.136) for fo(y) and (4.137) for gl(y) results
the plots in Figures(4.5-4.9). Figure (4.5) shows a comparison of fo(y) with other
models, in particular, Raju and Devanathan(1972). Figure (4.6) shows the curves for

fo(y) and fo (y) with varying values of yield stress. That is, B is gradually varied

between zero and unity. Figures (4.7-4.9) show curves for gl(y) and 8, (y) with varying

values of yield stress and various values of wave number. Figure(4.10) gives the
streamfunction plot, as derived in this research from equations(4.74, 4.92-4.94), and
4.124 and 4.135 which are very similar to plots given in the paper by Raju and
Devanthan(1972).

1.2

fo(y) vs y

0.8

fo(y) 0.6

0.4

——f0{Casson-present

0.2 study)

0 t ; f t ; t ; f f

0 0.1 0.2 03 04y 05 0.6 0.7 0.8 0.9 1

Figure 4.5: Comparing f, vs y with Raju & Devanathan(1972)
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4.7 Discussion of Results

in this study it was found that for the Casson model, the governing partial differential
equations are indeed extensive and complicated. If however it is considered that the zeroth
order perturbation in stream function is a function of the axial coordinate only, we find
that the Casson model may be quantitatively expressed as a Newtonian model (Figures 4.2
- 4.4).

It was found that in the zeroth order approximation in stream function that there
was a dependence on the Casson coefficient of viscosity, yield stress, the density of the
fluid, the wave speed and the dimensions of the channel.

When considering this approximation in the zeroth order stream function, results
show for Figures(4.2 & 4.3), representing Pressure rise vs flow rate derived with the
upper limit at y=G for lower values of amplitude ratio the difference between
Newtonian(dashed line) and non-Newtonian(bold line) in Figure 4.2 seems to be
consistent with the literature, and very similar to Figures(4.2 and 4.3). However, for
higher values of amplitude ratio represented by Figure 4.3, the pressure gradient is
noticeably affected by the non-Newtonian character of the fluid. The effect appears to
increase as the occlusion gets larger. Also, in Figure(4.4), representing pressure rise vs
flow rate derived using upper limit y=1, results are also consistent with the literature.

However, we see that for the first order in stream function the differential
equation to be solved is complex, and the analytical solution derived from symbolic
integration is more so. When comparing the values of our Casson model in Figure 4.5,
obtained from numerical integration, of the first order in stream function, with those of
the power-law model of Mernone & Mazumdar(1998a) and Raju & Devanathan(1972) the
results are similar (that is, the curves almost coincide) when comparing the two power-
law models(Raju’s numerical and this thesis' analytical). However, noticably different
when comparing the Casson mode! with the power-law, but similar if form. The Casson

model indicating the effects of the yield stress and Casson viscosity on the stream function.

When considering fO(y)and fo'(y)in Figure 4.6 it is found that as the yield stress f3 is
gradually varied between zero and unity the effects on both fo(y)and fol(y) are noticeable.
It appears that the maximum value for fol(y) in decreased and shifted slightly to the right.

Similarly, in Figures 4.7-4.9 when considering the functions gl(y) and gl,(y) we find that

the wave number & has considerable affect on the curves.
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it appears that as the yield stress g is gradually varied between zero and unity, and

therefore the value of fol(y)=—l//0yy(y), there is a shift in the size and shape of the left side

and right side in the curve representing gll(y). There seems to be a reversal in the location

of peaks between the right side and left side. It is of interest to note that the points of

inflection occur in exactly the same location when considering each of the respective graph

of gl(y) and gl,(y). As the yield stress f§ is gradually varied between zero and unity the

points of inflection are shifted slightly to the right.

The numerical values obtained for fo(y) and fo'(y), and gl(y) and gll(y) are

indicative of the validity of the perturbation analysis used throughout this research as

indicated in equation (4.74 and 4.124). It is seen that the order in magnitude offo(y) is
very much greater than that of g](y) as is suggested and expected by the perturbation

method.
From the numerical calculations we find that the change in behaviour of the
streamfunction patterns  occur depending on many parameters, including

K, a, o, B, R ,and €. When we consider Figure (4.10), which is a plot of the stream

function given by equations(4.74 and 4.92) and equations(4.124 and 4.135) and selecting

€=0.01; for the case of high pressure gradient, with ___ representing v, l(y=0.1),
- representing Woqr oo representing Wosr " representing Vg and -..-..-
representing wog(y=0.9), it is found that the streamfunction curves run parallel to the

axis of the channel when considered near the axis(y=0.1), whereas considerable
deformation is observed when they are considered near the boundary(y=0.9).

Perhaps a possible explanation for this sort of behaviour of the streamlines can be
given by considering the region as consisting of two parts - a central core and a boundary
layer region. As the pressure gradient increases, we find that the curves in the central
region are more influenced by it, than by the motion of the boundary and hence the curves
run parallel to the axis, while in the region near the boundary the flow is influenced by
both the wave and the pressure gradient(see explanation later, Chapter 5).

This modelling is appropriate as it may allow insight into the validity of the reduction
of the complexity of modelling some non-Newtonian fluids like flow of urine in the ureter and

blood flow in the blood vessels under certain physiological conditions.
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4.8 Comparisons and Implications

Finally, we note that the governing equation for all three mathematical models show
some similarity to the Newtonian case when certain assumptions and simplification are
made, particularly for the power law and Casson case.

It was found that for the power law and Casson model the governing partial
differential equations were indeed extensive. If however, the fact was used that the zeroth
order perturbation in stream function is a function of the axial coordinate only,( because
the zeroth order axial pressure gradient is constant), it was found that in the power law
fluid, if the flow behaviour index was set to unity, the model may be considered and
quantitatively expressed as a Newtonian model.

Similarly, if we consider the same assumption for the zeroth order axial pressure
gradient for the Casson model; It was found that the Casson model was also a natural
extension and may be physically modelled as a Newtonian model. When we considered the
first order perturbation in stream function the resulting equations were very complicated
and did not allow analytical solutions without considerable effort and manipulation, if at
all.

it was found for the power law case that the governing equations reduced to those of
the Newtonian model if the power law index was set to unity. Also it was found for the
Casson model if we carry out a Binomial expansion on the viscosity term and the
derivatives of the apparent viscosity term we find that the Casson model reduces to a
Newtonian model in the case of the zeroth order perturbation in stream function. It was
also found that the solution for the first order in stream function agreed with that in the
literature, after simplifications and assumptions, and the results of numerical analysis
performed indicate the validity in the derivation and assumptions made in deriving the

complex differential equations. That is to say, the order of magnitude betwwen fo(y) and

gl(y) is consistent with current knowledge in fluid flow.
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CHAPTER 5:

FLOW IN AN AXISYMMETRIC TUBE

[ g

b= X C\\th‘() = Rw&m&%—-ga\)
A
Figure 5.1: Geometry of Peristaltic Flow in an Axisymmetric Tube

5.1 Mathematical modelling of a Newtonian fluid in an Axisymmetric Tube

The governing equations for the flow of a Newtonian, incompressible fluid in a circular
cylindrical tube in cylindrical coordinates is given by the Navier-Stokes equations and

continuity equation in cylindrical coordinates as

(%_}_uﬁ_'_wﬁj—_&_p_{_v _a_z_u.*.l%_ﬁ.{_a_zu (5 1)
£ ot or oz or ot ror o .
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2 2
p(mu@w@):_@w[a_uimu] (5.2)

—+—+—-=0 (5.3)

There exists a stream function y which relates to the velocity components u and w,

satisfying equation 5.3 such that

ldy 1 1 oy I
= = — d = —_—— = —— .
- rl//Z and w o rwr (5.4)

(The signs above are opposite to those used in Raju & Devanathan(1972))

u

Eliminating the pressure term by cross differentiating the momentum equations 5.1 and

5.2 and subtracting gives the following

Pu Iw udu (azu 82w} [é’zu ahy] udw

T ———+u e B + =
kot ordt rok ordz  or " orde| ror

Pu  Bw 1 u Fw 1 (au aw) Pw  u
W3z, o3 ~—z "=l 3 T Tt 5
or‘dz or r\drdz Or r’\dz or) oor oz

Substituting for stream function  in place of velocity components u and w by using

(5.5)

equation 5.4 we obtain from (5.5)

9 (v2 Loy (g2 292 Loy 1oy o, \_ 4
2 V’)*;—g(v. v, -V VT Vv, )=v ) (5.6)
where
? 9 19
VZE—— = — 5.7
VTR rar et

We assume that there is no horizontal displacement of the walls and consider an idealised
tube of infinite length where the end conditions need not be specified because we assume the
pressure gradient in the axial direction is specified. The boundary conditions for an

axisymmetric case are therefore given as follows after using equation(5.4)

1 2
w=——y =0 at r=d+G(z,t) where G(z,z)=Acos—;(z—ct) (5.8)
r r

u=-1—l// :%G(z,t)zg(Acosz—f—(z—ct)jz27?Csin27n(z—ct) at r=d+G(z,t) (5.9)

r <
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The pressure gradient in the axial direction (z) is of the form

%:(%}0+A(%§)]+Az(%l+... (5.10)

where A is the amplitude of the sinusoidal waves travelling along the walls of the tube and

(@) = constant and (@) =F(r,z,t) i=1273... (5.11)
9z Jy Iz ),

If we introduce non-dimensional quantities as outlined in Appendix B, the boundary

conditions become

vy =0 a r=1+G(z1) where G(z,t) = €cosa(z —t) (5.12)

l//Z=ra£sin05(z—t) at r=1+G(z,t) (5.13)
and

@{%j +g[%) +82[%’) b

% 0 | 2 (5.14)

A
where € is the amplitude ratio, € = )
Substitution of non dimensional variables as shown in Appendix B equation 5.6 becomes

2
%{%(V,zw)ﬂ“%&—w(v 2y, _%Vlzv,J,rL?lj_la_V’(vfwz)} - gg(vla,,) (5.15)

which becomes

B e I AR BT

@

5.2 A Method of Solution of a Newtonian Fluid in an Axisymmetric Tube

The method of solution for solving equation 5.16 is in much the same manner as solving
that for the two dimensional channel case. That is, we substitute a perturbation series for

the stream function y in terms of the amplitude ratio € of the form

W=y ey FE Y, +. (5.17)

Therefore equation 5.17 in equation 5.16 gives
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%(V12Wo +eV 'y, +...1)+
%(l//oz +ey, + ...)(Vlzwm + erl//lr Foim %(VIZV/O + eVlzt//I +.. ) + riz(wor +ey, +.. )) -~

%(wm +ey, +"‘)(V|2W01 + £V121//|Z + ) =
%(V|4W0 +£V12W|)
’ (5.18)

Equating coefficients of equal power of ¢ we obtain for the first two terms

e A s LAY
(5.19)

and

e A O ) e A

=RL(V14‘V1)

Applying a Taylor series expansion (as before ) about r=1+G(z,t) implies the boundary

conditions, equations 5.12 and 5.13 become

2
wr(1)+G(z,t)wrr(1)+(G(—;’t)l y_+..=0 (5.21)
2
y/Z(l)+G(z,t)l//”(1)+(G—(;'t—)) v, +...=oesina(z—1) (5.22)

Using the form for y as given in equation 5.17 in equations 5.21and 5.22 we obtain

l//or(l) + eu/”(l) +ecosafz — t)l//ol_r(l) +...=0 (5.23)

l//oz(l) + swlz(l) +E£cosa(z —t)l//ozr(l) +...=aesino(z —¢) (5.24)
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Equating coefficients of the same order of amplitude ratio € on both sides of the boundary

condition equations we obtain

W,,(1)=0 (5.25)
v, (D +cosa(z—y,, (1)=0 (5.26)
W,,(1)=0 (5.27)
v, (D+y,, (Dcosa(z—1)=oasina(z — 1) (5.28)

(i) Solution Procedure(Zeroth Order Approximation)

We now consider the zeroth order perturbation, where if we consider that v, = l//o(r)

only because of the constant zeroth order pressure gradient, we obtain from equation 5.19

V|4‘/’o:0 (5.29)

which becomes

4 3 2
dwoﬂgdwh_s_dwu 3 dy,
2

. =0
drt rodr P dr? P odr
that is (5.30)
d*y I’y vy, dy
rf—t -2 —0 4320300
dr dr dr dr

Which is a homogeneous linear equation of order four, whose solution is akin to that of the

Euler or Cauchy equation, that is, the solution is of the form
l//O(r):Ar4+Br3+Cr2+Dr+E (5.31)

where A,B,C,D.E are constant coefficients

Using the boundary condition as in previous analysis,

y,(0)=0=E=0 (5.32)

Using equation 5.2 and non-dimensionalising we obtain

+— =—164A-—+—= (5.33)
o

3 2
R(a_p] _ 14, 14y, 1dyy 38 D
e o rdrf rFdt P odr roor
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Hence using boundary conditions 5§.25 and 5.27

R
B=D=0 and A=——e(a—pj
0

16\ oz
and (5.34)
R
4A+2c:o=>c=—e(@)
8 \ dz J,

Hence collecting values for the coefficients of the fourth order Ordinary Differential

Equation 5.31 we obtain from equation 5.32-5.34 the solution to l//o(r) as

R () <
!//0(’)=—8€-(§]0{r2—%] (5.35)

5.3 Mathematical Modelling of a Power Law Fluid Case in an
Axisymmetric  Tube

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a power law
fluid, which is viscous and incompressible in an axisymmetric cylindrical tube,where, d,
is the undeformed radius of the tube and the tube is considered to be infinitely long. As
before, A, represents the amplitude of the sinusoidal waves travelling along the walls of

the tube, A, is the wavelength and they are travelling at speed, c,( as shown in Fig. 5.1).

As indicated previously, the geometry of the sinusoidal travelling waves is given by
G(z,t) where the vertical displacements for the upper and lower walls are Gand -G for

peristaltic flow at time t,

in
G(z,t) =Acos— (z —ct) (5.36)
A
The non-Newtonian power law fluid is characterised by the well-known constitutive

equations 5.42 and 5.43

fo T

ij :~p5l-j+m€Vij (5.37)

v | 2 (5.38)



where, O'l-j, and v, are the stress and the deformation tensors respectively, p denotes the

isotropic pressure and, m and n are respectively flow consistency index and the flow

behaviour index.

Because the fluid being modelled is assumed to be incompressible the following equation of

motion may be used,

Dg; 99
p— =

Dt (9xj

(5.39)

Here D/Dt is the material derivative of a particle following the fluid and is given as

D 9
—=—+gqV (5.40)
Dt o

where, P, is the density of the fluid and, g;, is the velocity component in the respective
direction.

Substitution of equations 5.37 and 5.38 into equation 5.39 finally gives

Dg. 5 26 2
p—l-=—-—p-+m——V__+m9 Vzu.+—
Dt ox. oY Lo,

[ J i

(V.q) (5.41)
which after using the incompressibility condition V.q =0 yields

Dq. P 90
o2 mdevie vv, 2 (5.42)

Dt o . ! Y ox
! 7]

p

By setting i=1 and then i=2 and using summation convention with dimensionless variables
and parameters (shown in the AppendixB ) the following equations of motion are obtained

from equation 5.42

%+u@+wﬂ:—a—p+i B(Vzu—%)+2%a—9+ @Jra—w r}_f)] (5.43)
or dr Jz Ir Re r or or \dz ar)dz|
al+uﬂ+wﬂ=—i€+i 6 V2w ﬂ+a—w 8_9+2ﬂ8_9 (5.44)
ot ar dz dz Re dz dr )ar dz &

where O appearing in equations 5.43 and 5.44 is given by
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2 PARTE—
du dw  du 2
gt 22 ] = = (5.45)
ar ar 0z
and
Y LR
Vis—F+-—+— (5.46)
ar r 5" az
The equation of continuity in cylindrical coordinates is given by
Ju Jdw u
—+—+—-=0 (5.47)
dr dz r
There exists a stream function W satisfying 5.47 such that
1 0¥
u=—— (5.48)
r dz
1 0¥
W= ——— (5.49)
r or

where u = radial velocity, w = axial velocity

5.4 A Method of Solution of a Power Law Fluid in an Axisymmetric_Tube

We now express ¥ and p as a power series in the parameter € as
Y=¥ +e¥ + 2‘{’ + (5.50)
=W, el re W, o .
2
pP=py tEP TE Pyt (5.51)

Hence, if we consider equations 5.50 and 5.51 and make the substitution given in equation

5.48 and 5.49 and collect like terms associated with powers of € on either side of the

equation 5.44, this yields to the differential equation for the zeroth order term \PO (r) ,

given by
n—1 n
s | v av (20— 1) N A
K smflo. O 0 _n -0 ~_0 (5.52)
0 r d,-3 r er ,-2 dr r r dr2 r2 dr
where K, is defined as follows(the opposite sign to Raju & Devanathan(1972))
a
—K0=K=—Re(ﬂ (5.52a)
0z
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We now assume that ‘P, (7) is afunction of the radial direction only, due to the constant

zeroth order axial pressure gradient, the solution for equation 5.52 and thus the solution

for W (r) is is given as

1 =,
¥o(r) (k)" I L. (5.53
ry=|— e .
0 2 n+1| 3n+1 2 )
This is derived assuming the solution to(5.52) is of the form
341 )
nr " r i
¥ (r)=4 -— where A is a constant. (5.53a)
3n+1 2

which satisfies the boundary conditions ‘¥,(0)=0,¥ (1)=0,

Hence substituting(5.53a) into 5.52 yields,

K, =£A(n+1)()2;;+1)r5{(n+1A}};—'_(2::—1)[(n+1A}r

r n n r n

hence

1
oE
2) n+l

For n = 1, equation 5.53 reduces to the case of a Newtonian flow for axisymmetric

peristaltic flow, (Raju and Devanathan, 1972).

(i) Solution Procedure(First Order Approximation)

We shall now consider the 1st order perturbation in V.

By substituting equations 5.48 and 5.49 and collecting coefficients of order € in equation

5.43 the following equation is obtained

dp
1 ﬂL\{/ ) e I
r lzt r or lzz or
n-—-|
Al 2 = —n)+2(1-n -1
i l\{l _Llp My +(n 2)‘{’ +u(2 u)+7 (1 H)T +2(/7 )‘{’
R r Orr r2 Or r lzzz r lzrr nre lz1 ”r3 Iz

(5.54)



which becomes

r ol r_2 or lzz
n-1 (5.55)
p, 1 ? 2 - —n’ 2(n -
ALy Dl Iy +(" 2)‘{’ PRIl (n 1)\}’
o R r Orr r2 or yo laz N lzrr m.2 lzr ,”,3 Iiz

Similarly for equation 5.44, substituting equations 5.48 and 5.49 and collecting

coefficients of order £ in equation 5.44 the following equation is obtained

1 1 1
;\Plrr - .’.T\Porqllzr i ?‘\POrr\Plz - r_3\P0r‘Plz =
2
. el LA +(2_n)\l’ L —n+22—2nlp (5.56)
ﬂ.{.L (l\[} ‘L\F ) 2 |y r Lzzr oy 12z
% Ro &7 OF o8O n—2n"+2n-2 2t —n+2-2n
3 s T 3 ¥,
nr Iz nr 3
which becomes
1‘1’ 1‘{’ Y ! VY v Y ¥ =
; ln_r_2 or lzr+-;2- Orr 11_:3_ or 1z
2
) -t | 1 +(2—n)\¥ +3n—2n2 _2‘}‘ N (5.57)
apl 1 1 1 2 r L r lzzr nr 12z
Rl | e i 2
r rr r r = _ _
; (n 2)(2n 1)\{1 +2n +2 3n\¥
e lzz nr3 Ir

To form one equation from these, we differentiate equation 5.55 w.r.t. z and equation 5.57

w.r.t. r and adding we obtain,

1 1 3 1
VIR L i s T GRS 2 T S ¢
Or{ 2 “izzz 2 zrr 3 lzr A IZ} 3 °0rr 1z 2 Orrrlz

r r

——i—‘I’ +l‘l’ +1‘P (5.58)

2 e o drrt lzzt

n 2 2 (4n3—4n2+n+2)
-¥ ——(n —n+1)‘l’ + Yoo+
roleeer 2 Irrr w23 lrr
-1 -1

e g £ (4n2—4n3—n—2) (2n2-2n—2) (3n—r12—2)

— = e Yoo+ ¥ Y +

Re(Z) n2r4 Ir nr2 Irzz nzr3 lz2
4-2
( n)‘{’ + 2y

r lzzrr r lzzzz
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By letting n = 1, equation 5.58 reduces to the governing equation for Y in the case of a

Newtonian fluid undergoing peristaitic motion in an axisymmetric tube. Remembering

thatWP', (r) is a function of r only, the above equation thus becomes

2 2.2 l 1 2 L 4
VY -—-VV¥+—=Y¥Y --¥Y V¥V =—V VY (5.59)
lr r | r2 Ir , Or lz Re 1 1
2 2
2 4 1 J d
and Y =—0 -~ t—> (5.61)

Taking the boundary conditions as follows

‘Por(l) =0

‘I’lr(l) + ‘I’Orr(l)cosa(z -1)=0

¥ (1)=0 (5.62)
0z

‘I‘lz(l) + ‘I’Ozr(l)cos oz ~t) = asina(z—t)

and substitution for ‘Po(r) as given in equation 5.53 yields the boundary conditions in the
form

1

k

\Plr(l)=—('2_)n cosa(z—t) (5.63)
\{Ilz (1) = ¢ sin a(z - t)
From these boundary conditions, ‘Pl can be assumed to be of the form,
¥, (r, z, t) = F(r) cos a(z N r) + G(r) sin oz - 1) (5.64)
where F(r) and G(r) are to be determined.
Substituting for, (), as given in equation 5.53 and, V|, as given in equation

5.64 into equation 5.58 and collecting coefficients of, COS OC(Z — t), on either

1-n 1+4Il.

k T n
side of the resulting equation after muitiplying both sides by Re(;o & r yields
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(4n3 - 4n2 +n+ 2]

2
nr4F1V—-—(n2—n+l)r3F"'+ 3 r +(2n—4)a2r4 F” -
n n
3 2
(4n —4n +n+2) 2n2—2n—2 23], 4 4 n3—3n+2 220,
3 r+ ar F+nar+—2ar F=
. n n
2-n 2+4n 1+ 3n 2=n |+ 2n 2+ 3n
k n k
—Re(_) d 04 r iz - r (L G” + Rc(_) n o L r n —-r ] (;? %
2 n+1 2 n+l
2—n 24+2n 2—n I1+3n 2+ 4n
k -1 k n
Rc(—) " o« [” jr noG +Re(—) o R AT a?‘G 3
2 n 2 n+1
l—n 1+3n 1+2n l-n | +3n
k
Re(_) n ad —r n G’ +r n G’ +Re(_j n o a2’ M G
2 2

(5.65)

Substituting for, ‘PO (r) as given in equation 5.53 and,‘Pl, as given in equation

5.64 into equation 5.58 and collecting coefficients of, sin oc(z - t), after multiplying

1-n 1+4n

koY n 7
both sides by , Re —2— 3 yields,

4 WV 2(2 3 4n3—4n2+n+2 2
nr G ——(n —n+l)r G” + > r
n n

3 2 2
4n” —4n" +n+2 2n° =2n-=2
lon-4)o2rt}er - o+ {"_"_]azﬁ %

G” +

n

4 nwo=3n+2| 22
+ynor + 5 ar G=
n
2-n 2+4n 1+3n 1+2n  3+2n : 242n
n h=
_Re(_) ! (x{ L rto—r MR+ r " F
2 n+1 n+1 n
14+3n  2+4n ] I=n [ 143n 1+2n 1+3n
n B
+ r o 7 azF-}+Re(— Tadr M P F’—Olzr i
n+1 . 2

(5.66)
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The corresponding boundary conditions from equation(5.63) are

|

Fh)=-1 F'()= ﬁ[ﬁ]’_‘
2
GO)=G(H)=G'(0)=G"(1)=0 (5.66a)

F(0)=F'(0)=0

It is not possible to find closed form solutions to the differential equations 5.65 and 5.66,
so approximate solutions will be sought.

Firstly the equations for F(r) and G(r) can be simplified by assuming that the
Reynolds number associated with the present model is small, and consequently the forms of

F(r) and G(r) are assumed to be given as

F(r)=F0(r)+Re2 B(r)+...

3 (5.67)
G(r)=ReG(r)+Re” Gs3(r)+...

Substituting these forms for F(r) and G(r ) into equation 5.65 and equation 5.66 and

collecting terms of equal order in Re on either side of the equations yield the following

differential equations for the first terms F, (r) and G, (r).

(4n3 —4n2 +n+2)

2
nr4F1v——(n2—n+1)r3F”’+ 2 4 (2n— ot L
0 g 0 2 0
3 2
(4" —4n +”+2) 2112—2n—2 231, 4 4 .'13—3n+2 )
= o) r+ o r pF s r +| ———— e r £ =0
n n 0 > 0
(5.68)
and
2( 2 3 4n3—4n2+n+2 2 2 4
nr4le——-(n —n+1)r G+ r*+(2n-4)a"r }G”
1 n 1 2 [
4n3—4n2+n+2 2n2—2n—2 23 4 4 n3—3n+2 22
- r+ a"r G+ sna r | ————— | r G =
2 I 2 1
n n n
2-n 2+4n 14 3n 14 2n 3+ 2n 2+ 2n
k -1
—(—) " Oz{ e r - F7+ r "ty F' + r "F
2 n+1 0 n+1 0 n 0
14+3n  2+4n l=n ( 143n 142n 1+3n
. n n |2, k) on o no o n
+ r -r a F -»+| — asr F'—r F =ar F
n+t 0 2 0 0 0
(5.69)



Once Fo(r) and Gl(r) and subsequently F(r) and G(r) have been solved ‘¥ is immediately

found from equation 5.64.

If we assume X is very small such that higher order terms in X may be

neglected, equations 5.68 and 5.69 may be simplitied as

(4:13 - 4;:2 + o+ 2) (4n3 - 4n2 + 1+ 2)

4 2

2
nr F i ——(n2 —n+l)r3F’”+ rmrEY - rel” =0
0 . 0 w2 0 2 0
(5.70)
and
3 2 3 2
2 4n” -4 2 4n” -4 2
nr4G v ——(n2 —n+1)r3G”’+ . & r2 G"- B O G =
I n 1 2 1 nl l
2-n 2+44n  143n 2-n 1+2n  3+2n
k . k
—(—)na{n rto—r " F"-}+(—)na L I AT
2 n+1l 0. 2 n+1 0
2-n 2+2n G = O TV 1+2n
(E) " an—_lr noF —(-’\—) P S T
2 n 0 2 0 0
(5.71)
The solution to equation 5.70 can be sought as the form
R m m m m
F(r)=Ar1+Br2+Cr3+Dr4 (5.72)
where m;, i = 1-4 are to be determined by making the substitution
E(r)y=r" (5.73)
On substitution (5.73) into equation 5.70 yields
m 2(2
r {nm(m—l)(m—2)(m—3)——(n —n+1)m(m—l)(m—2)+
n
5.74)
(4n3~4n2+n+2) (4n3—4n2+n+2) (
5 (m—1)m- 5 m;} =0
n n
This finally reduces to,
2 32
m(m—2)|:nm2—(6;1—2+—)m:|+m(m—2)|:9n—6+—+—2:|=O (5.75)
n n n

75



Where the roots m, and m, are given by

m =0
|

m =2
2

The other two roots are evaluated by determining the determinant of (5.75) to see if all

the roots are real, hence

4
A= (2n-1)? (5.76)
n
Az20
1 3 2
so, m =3+—, m =3——+—2—
3 n n pn
our general solution to (5.77) is
R 2 m m
F()=A+Br"+Cr 3+pr 4 (5.77)

where the values of m; and m, are given above.

There is now sufficient information to find £ (r)and Gl(r)

For the Newtonian case n = 1 (5.77) gives the general solution to Fo(r) as
A 2 4 2
Fo(r)=A+Br +Cr +Dr Inr (5.78)

where Inr is introduced because m,= m, = 2 in this particular case.
From (5.78)

Fg(r)=2B+3D+2DInr (5.79)

keeping this second derivative bounded at r= 0 means,
D=0

Care needs to be taken by taking into consideration the raising of a negative value to the
power of 1/n in equation(5.66a) due to 5.52a.

This problem can be avoided by re-writing the solution to as given in (5.53) as

|

| - 2 "
k)n no|rt onr

v =|—
o(r) (2 n+l|2 3n+l
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Hence, also, the corresponding boundary conditions are given by

1

’ k ;
E)=-1 F'(1)= (5)

G(1H)=0 G (H=0 (5.80)
F (0)=0 F, (0)=0

G, (0)=0 GII(O) =0

Hence the boundary conditions (5.80) enable the constant coefficients to be determined as

A=0
B+ C=-1

k
2B + 4C =— (5.81)
2

For the case k=1, the solution to (5.81) is
C=5/4
B=-9/4
Thus, for n=k=1, the approximating function for Fo(r) is

I?;,(r)=%(54—9r2) (5.82)

For, n = k = 1 the homogeneous solution to equation 5.71 again keeping the second

derivative bounded at r=0 is
2 4
G (r)=A +Br +Cr 5.83
”( ) 11 1 ( )

A particular solution to equation 5.74 can be sought of the form,

A 6 8

G (r)=Dr +Er 5.84)

,(r)=p, 1 (

Therefore substitution of (5.84) into equation 5.71 with n = 1 yields

6 g8 Sx[ 6 8
192Dr  + 1152Er =—\5r =r
2
25 —Sa
Hence D, = — Ey=s— (5.85)
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so from (5.83) and (5.84) the solution to equation 5.71 is

4 25a ¢ 50§
r r

A 2
G(r)=A +Br +Cr +—r - 5.86
1( ) 11 1 384 2304 ( )
The boundary conditions imply from equation 5.80
Al = 0
5o 25a
B +C =——-——
2304 384
S0 25¢
2B +4C| =— - —— (5.87)
288 64
9
2C1 = -
384
275¢
By =—
2304
For the non-Newtonian case n = 0.8, k = 1
N 4.2 .
F(r)=A+Br2+Cr 5+Dr2375 (5.88)
Therefore using the boundary conditions in equation 5.80
A=0
B+C+D=1
2B + 4.25C + 2.375D = 0.420448 (5.89)

Hence another boundary condition is required, therefore using the condition of symmetry,

ie, ¥|,, =0,atr=0

C = 1.490906, D = -2.490906

B=0 (5.90)
therefore,

ﬁo(r) — 1.490906r 2 ~2.490906->7 (5.91)

In Raju and Devanathan(1972) they have not specified the values of the parameter o,
except for an example using (=1, to obtain numerical solutions to Fo(r) and Gl(r), SO
the only meaningful comparison that can be made is between approximate values obtained

for Fo(r) in the present analysis and the corresponding solution given in Raju and
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Devanathan(1972). In spite of this, the approximating function for Gi(r) will be

specified for the special case of n =1.

From equations(5.83 - 5.87) the approximate solution for the function given
by G,(r) for the case, n = k = 1, is given by
2 4 6 8
A 275ar 95ar  25ar  Sar

G,(r)= = + - (5.92)

2304 768 384 2304

5.6 Discussion

If we define an error term as

F(r)

Fo(r)—Fo(r)‘ (5.93)

a measure of whether the approximate function ﬁo(r) from 5.77 gives values which are a

good approximation to Fo(r), the numerical solution ( note, these values taken from Raju

& Devanathan 1972).

From Tables 5.1-5.4 where we are considering various values of flow behaviour index, n,
and a function of pressure gradient (k), it is evident that the values are very good. This is

graphically depicted in figures 5.2-5.5

r Fy(r) | Fo() | B
0.0 0.000(0.000|0.000
0.1 0.022|0.022|0.000
0.2 0.088|0.085|0.003
0.3 0.192(0.186 | 0.006
0.4 0.328(0.318|0.010
0.5 0.484|0.471]0.013
0.6 0.648(0.634|0.014
0.7 0.802|0.790|0.012
0.8 0.928|0.920(0.008
0.9 1.002|0.999| 0.003
1.0 1.000|1.000| 0.000
Table 5.1: n=k=1, where n is flow behaviour index, showing error term
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For Newtonian case n=k=1, the approximating function Fo(r) is given by (5.82) as

ﬁo(r)=i(5r4—9r2) (5.94)

1.2
Plot of data in Table 5.1

0 E } I 1
0 0.2 04 r 06 0.8 1

Figure 5.2: Plot of data in Table 5.1, showing comparison between the
approximate solution Fy(7) to the numerical solution F(r)

For the non-Newtonian pseudoplastic case n = 0.8, k = 1, the approximating function for
Fy(r) is given by (5.91) as

()= 1.490906r %5 — 2.490006r>37° (5.95)
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A comparison between values obtained from equation 5.95 and values as recorded in Raju

and Devanathan(1978) is given in Table 5.2

' Fo(r) | Fo(r) | Eggn
0.0 0.000]|0.000(0.000
0.1 0.010/0.019| 0.009
0.2 0.053(0.076|0.023
0.3 0.134(0.168| 0.034
0.4 0.252|0.292| 0.040
0.5 0.402(0.439|0.037
0.6 0.570|0.600|0.030
0.7 0.740|0.759(0.019
0.8 0.889/0.897| 0.008
0.9 0.987(0.989|0.002
1.0 1.000|1.000|0.000
Table 5.2: n=0.8, k=1, where n is the flow behaviour index
1.2

Plot of data in Table 5.2

Figure 5.3:  Plot of data in Table 5.2, showing comparison between the
approximate solution Fj(7) to the numerical solution Fy(r)

Similarly, for the non-Newtonian dilatant case n = 1.2, k = 1, the approximating function
for FO (r) is given by (5.77) after using boundary conditions (5.80) as

23
ﬁo(r) = 1391035r 6 — 2397035/ (5.96)
A comparison between values obtained from equation 5.96 and values as recorded in Raju

and Devanathan(1972) is given in Table 5.3
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' Fy(r) | B | Ery
0.0 0.000(0.000| 0.000
0.1 0.024|0.024|0.000
0.2 0.093(0.092]|0.001
0.3 0.202(0.199]| 0.003
0.4 0.342(0.337)0.005
0.5 0.501(0.494|0.007
0.6 0.666(0.658| 0.008
0.7 0.819(0.811] 0.008
0.8 0.940(0.935| 0.005
0.9 1.009|1.007|0.002
1.0 1.000|1.000| 0.000

Table 5.3: n=1.2, k=1,where

3

is flow behaviour index, showing error term

1.2
Plot of data in Table

5.3

0.8 1

0.4 1

0.2 T

0 f } I }
0 0.2 0.4r 06 0.8 1

Figure 5.4: Plot of data in Table 5.3, showing comparison between the
approximate solution Fo(r) to the numerical solution Fo(r)

Also, for the non-Newtonian dilatant case n =1.4, k = 1, the approximating function
for FO (r) is given by (5.77) after using boundary conditions (5.80) as

26
£ (r)=1522212r T _2.52012/7 (5.97)

82



A comparison between values obtained from equation 5.97 and values as recorded in Raju

and Devanathan(1972) is given in Table 5.4

r Fo(r) Fy(r) EFO(r)
0.0 0.000/0.000]|0.000
0.1 0.025/0.025|0.000
0.2 0.097/0.098]0.001
0.3 0.210]0.209]0.001
0.4 0.353|0.351|10.002
0.5 0.515|0.512|0.003
0.6 0.680/0.676(0.004
0.7 0.831/0.828]|0.003
0.8 0.950/0.947]0.003
0.9 1.014(1.013| 0.001
1.0 1.000(1.000|0.000
Table 5.4: n=1.4, k=1, where n is flow behaviour index, showing error term
1.2 -
Plot of data in Table 5.4
1 —
08 T
0.6
F
0.4 +
0.2
0 f t } }

0 0.2 04 r 06 0.8 1

Figure 5.5: Plot of data in Table 5.4, showing comparison between the
approximate solution Fo(r) to the numerical solution Fo(r)

Also, for the non-Newtonian pseudoplastic case n = 0.5, k= 1, the approximating function
for FO (r)is given by (5.77) after using boundary conditions (5.80) as

i’o(r) = O.25(3r5 - 7r2) (5.98)

A comparison between values obtained from equation 5.98 and values as recorded in

Raju and Devanathan(1972) is given in Table 5.5, where error term is approximate.
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' Fy(r) | Fo(r) | Ern
n=0.5 | n=0.6
0.0 0.000(0.000| 0.000
0.1 0.017|0.015| 0.002
0.2 0.070(0.062)|0.018
0.3 0.156|0.140| 0.016
0.4 0.27210.249(0.023
0.5 0.414|0.385(0.029
0.6 0.572)|0.542|0.030
0.7 0.731]10.707 | 0.024
0.8 0.874|10.860| 0.014
0.9 0.975|0.972(0.003
1.0 1.000(1.000|0.000
Table 5.5: n=0.5, n=0.6, k=1, where n is flow behaviour index,

showing error term

It is worth mentioning again that a graphical plot of the closeness of solutions for FO (r)

is graphically depicted in Figures 5.2-5.5 for behaviour index (n)=n; and k=1

From these Tables and Figures it can be seen that the approximate solutions are
very accurate for n = 1.0, 1.2 & 1.4 and less accurate for n = 0.8 & n=0.5, but still good
enough to be used to find approximate solutions for the stream function and pressure

gradient for those values of n.

From equation 5.50 it is clear that for £ very small the stream function, can be

approximated as

Y=Y, +e¥, (5.99)

N N
Thus, defining, ¥ to be W in the case n = N and defining F (r) as the approximate

solution for F(r) in the case n = N, equation 5.99 gives the approximation to the stream

function, along with equations 5.53 and 5.64 as
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3N+1

1
wN Z(EJN N fr_ M = +g[i«“N(r)cosa(z—t)+éN(r)sina(z—t)] (5.100)
2 N+1| 2 3N +1

N
where G (r), is the approximate function to G(r) in the case n = N,

From equation 5.67 it can be seen that

N N
e|:1:" (r) cos a(z - t) +G (r) sin a(z N t)j| =

cosa(z - t)[EFO-N (r)+ 0(6 Re? )] +sina(z - t)[e Re GIN (r)+ O(e Re> )] (5.101)

Under the assumption, €, & Re small and defining
a(z—1)=z (5.102)

equations 5.100-5.101 give an approximation to the stream function as,

1 5 IN+L
- N
N _(k\WW_N | r N i N ] 5.103
= (2) N+1| 2 3N+ +E[F0 (r)cos(z) ( )

Streamlines for , n = N = 0.5, 1.0, 1.2 are given in Figures 5.6-5.8 respectively, where
k=10and & =0.01.
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Figure 5.6: Streamline VY for n=0.5, k=1,where n is flow behaviour index
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Figure 5.7:  Streamline Y for n=1k=1,where n is flow behaviour index
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Figure 5.8:  Streamline WY for n=1.2, k=1, where n is flow behaviour index

The approximating functions for Fo(r) in the case k=0.01 and n=0.5, 0.8, 1.0 and 1.2
are found in the same manner as the approximating function FO (r) k=1, and are given by

. 0.5 5 2

P (r) = 06666751~ — 1.666675r (5.104)

. 0.8 425 2.375

FO (r) = 12673767 — 2.267376r (5.105)

. 1.0

FO (r)= 10025, = 2.00257° (5.106)
23

.12 6 2

£ (r) =1.097504r = - 2.097504r (5.107)

Streamlines for n = 0.5, 0.8, 1.0 & 1.2 in the case k = 0.01 are plotted in Figures 5.9-

5.12 respectively where £=0.01: and are derived from equation 5.103 using 5.104-
5.107

It can be seen that the streamlines plotted in (Fig 5.6-5.8 )(high pressure gradient) and

Fig. (5.9-5.12) (low pressure gradient ) are similar to those established in Raju and

Devanathan(1972).
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Figure 5.9:  Streamline Y for n=0.5, k=0.01, where n is flow behaviour index
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Figure 5.10: Streamline Y for n=0.8, k=0.01,where n is flow behaviour index
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Figure 5.11: Streamline YV for n=1.0, k=0.01,where n is flow behaviour index
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Figure 5.12: Streamline Y for n=1.2, k=0.01,where n is flow behaviour index

The difference between streamlines for high and low pressure is apparent due to the

boundary of the tube has a more significant impact with regard to low pressure gradient.

All approximate results have been obtained by assuming that the terms of the order 062
and higher are negligible and the parameters £ and Re are small. More accurate results
could be obtained by neglecting terms (x3 and higher but keeping orderoc2 and & aswell

asao.
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5.7 Mathematical Modelling of a Casson Fluid in an Axisymmetric Tube

In this section mathematical equations are developed for the case of a Casson fluid
in an axisymmetric tube. Due to the immense complexities of the equations and time
restrictions involved in finding solutions for both the zeroth order approximation and
first order approximation in streamfunction, only a brief outline will be given. Perhaps
this may be a matter of possible future research. There may be possible similarities with
both the Newtonian and power law models as developed earlier in this thesis.

As before, the vertical displacements for the upper and lower walls are given by G
and -G, where the geometry G is defined by equation(5.36)

As with the case of a Casson fluid in a two-dimensional channel the stress-strain
relationship is given by equations(4.63-4.67). In this case, we use the co-ordinate
system where w and z are defined in the axial direction and u and r are defined as the radial
direction.

The varying viscosity term is still defined as equation(4.64), where

equations(4.65-4.67) still hold. However, due to the axisymmetric system,

W=

v =2y =—|Z+Z
2 gr 2 2\dr o

ow Ou 1(8w 8u)
%
As before, we consider the equation of continuity as equation(5.3) and develop the

equations of motion as

2
ap d°w 8u+c9w 8u+28w8u+ d
dz dr

du Jdw
—tu— =——+2U— —| —+— 5.108
p(at+uar+waz) 8z+ uaz2+ dz odr )or dz oz #ar( " ) ( )

2
p(@mﬂw@] - —Q+zu§—‘i+(@+a—wja—“+zi“-i‘i+ui[@+a—wj (5.109)

ot dr  Jz ar o2 \dz dr)dz  or or dZz\dz Ir
where
; ‘PZZ 1[Y, ¥ ‘I’ZZ (5.110)
] L + - —r _ .
2,2 41 r r? r

As before equations(4.74-4.76) express the streamfunction, pressure and viscosity in
terms of amplitude ratio.

Therefore, as defined by (4.64) and taking only zeroth power in amplitude ratio
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We finally obtain after introducing the streamfunction as defined by (5.48 and 5.49) and

substituting equations(4.74-4.76) and collecting coefficents of e in equation(5.108)

and remember that the zeroth order in stream function is a function of r only, due to that

constant axial pressure gradient

oz r r r r

¥’ v W v oy
(3”) = o, =gty Gy O g g (5.112)
0

which simplified is

%_i( 2(&))
r o= = = (5.113)

and integrating once gives

2
%—%+constant=rﬂo—g—r(%) (5.114)

There are many complexities involved in trying to solve equation(5.112). The first of
which are the difficulties collecting the derivatives of equation(5.111) and substituting
them into equation(5.112) thus creating a very complex equation due to the radial
dependency. The first order equation in streamfunction is many times complicated and may

be a possible resaerch area for the future

5.8 Comparisons and Implications

The results obtained in this analytical study of a non-Newtonian power law fluid
are consistent with those established by Raju and Devanathan(1972) in their study of
peristaltic motion of a non-Newtonian fluid.

It should be noted that Raju and Devanathan(1972) have sought an approximate
numerical solution of the non-Newtonian power-law model in an axisymmetric tube. They
have made use of the Runge-Kutta Gill integration. In this thesis the solution to the same
problem/model(non-Newtonian power law model) is achieved by deriving an analytical
solution based on the assumptions and simplifications made by Raju and Devanathan in
their paper “Peristaltic motion of a non-Newtonian fluid”, thus allowing a direct

comparison between a numerical solution and an analytical solution. Figures 5.2 -5.5 and
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the error terms in Tables 5.1 =5.5 verify and validate the correctness of the analytical
mathematical procedure undertaken in this study.

it was seen that the equation of motion for the non-Newtonian (power law) model of
peristaltic motion reduced to the governing equations for the Newtonian model in the case
of flow behaviour index, n = 1.

Approximate results for the stream function Y were obtained and is seen for n >=
1 are close to the exact results given in the literature. For the case n <= 1, the results
were less accurate, but nevertheless to an acceptable level, if we consider the magnitude of
the errors.

The streamlines obtained from the approximate results were found to be very
similar to those found in Raju and Devanathan(1972), thus demonstrating the effect of
pressure gradient and boundary structure and type. In fact, it is found that for low
pressure gradient the streamlines form closed loops and for higher presure gradient the
streamlines run parallel to the axis of the tube when considered near the axis , whereas a
considerable deformation is noted near the boundary. The streamline plots for low
pressure gradient and high pressure gradient are entirely different, as shown in Figures
5.6-5.8 and 5.9-5.12. An explanation for this is that the region may be considered to be
consisting of two parts; one the central core region and the other near the boundary, the
boundary region. The physical expalanation for this sort of behaviour of the streamlines
can be given as that in the case of a rigid tube with sinusiodal deformation, (Raju and
Devanathan, 1972). Hence, highlighting the validity of current modelling of this type of a
two layered fluid with a non-Newtonian core region and Newtonian peripheral region.

In the case of low pressure gradient, the effects of the wave travelling along the
boundary of the tube are more dominant. But as the pressure gradient increases, we find
that the streamlines in the central part of the region are more influenced by it, than the
motion of the boundary, hence run approximately parallel to the axis.

It is also seen that for the study of a Casson fluid in an axisymmetric tube that for
the zeroth order perturbation in stream function, the model reduces to the Newtonian case
contains parameters involving fluid density, geometry, wave speed and Casson viscosity
coefficient. A similar result is obtained for the case of a Casson fluid in a two dimensional
channel under certain simplifications.

One conclusion reached by these studies was that peristalsis is an effective method
to move fiuid only if the fluid is transported in the form of a series of isolated boluses. If
the amplitude of displacement of the wall is smail compared to the tube radius, very little

pressure gradient can be generated by the travelling wave. Pressure gradient increases
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significantly when the radius of minimum section approaches zero, (complete occlusion).
It is thus understandable why peristalsis is a common phenomena in the lymphatics,
intestine, ureter,and many other biological systems and peristaltic pumps (dialysis

machines and hearn-lung machines).
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CHAPTER 6

CONCLUSION

6.1 Brief Summary

The first chapter of this research outlined why a mathematical perspective of peristaltic
motion may be helpful in the understanding of physiological flow and why complications
may arise.

In this study, mathematical models were developed and implemented for the case of
a Newtonian fluid, power-law and Casson fluid with the geometry modelled as a two
dimensional channe! and axisymmetric tube. In the case of an axisymmetric tube, this may
be approximated to flow in many physiological organs in the human body. However, the
literature provides many examples of flow in atwo-dimensional channel. This provides a
very accurate insight into the dynamics and workings of the models of peristaltic flow, and
hence it is important to consider both geometries not only for completeness but also serve
as a comparison between the two geometries, thus providing continuity of results.

The study then involved the development of mathematical models for the study of
peristaltic flow for the case of non Newtonian fluids; in particular the study analysed the
constitutive equation for the power law model in both a two dimensional channel and
axisymmetric tube. Also this research considered the non Newtonian case represented as a
Casson fluid in the geometry of a two dimensional channel and axisymmetric tube.

Although the constitutive equations governing the fluid motion for the non
Newtonian models of power law fluid and Casson fluid differ substantially, this research
found that under certain conditions, (when considering the zeroth order approximation in

stream function), both models reduce to that of the Newtonian case. In particular, it is
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seen that for the non Newtonian case of the power law fluid in an axisymmetric tube and
two dimensional channel, the governing equations reduce to the Newtonian case when the
power law index approached unity. The study also finds that for the case of an
axisymmetric tube for the power law that the developed algebraic analytical solutions
agree both graphically and numerically with that published in the literature when
streamline functions are considered.

The study also shows the equations for the first order approximation in stream
function for the Casson two dimensional channel case are very complicated and extensive,
however an analytical and numerical solution is found which seem to agree in form with

research in the literature.

6.2 Clinical Significance of Present Study

Consider results obtained from a mathematical analysis of flow of urine from the
kidney to the bladder via the ureter. Assuming that the actual flow provides some cohesion
between data obtained from experiment( Fung 1981,1984,1990) and the results of
mathematical analysis, the present study validate that peristalsis explains the flow of
urine from the kidney to the bladder.

For example, experiment(Fung, 1981, 1984, 1990) indicates a pressure drop in
the ureter during peristalsis. Similarity of this data with corresponding theoretical
results of pressure drop, means that future predictions may be made about the change in
pressure across the ureter, during peristalsis; and probably the pressure and subsequent
pressure change, can be governed by means of change to the urinary environment.

To generalise the analysis of flow of urine, assumptions which seem reasonable for
urine, may and are not necessarily correct for other physiological fluids, but however
may be relaxed and replaced by less restrictive assumptions.

With regard to reflux, control of the pressure across the ureter means that if the
pressure applied by the ureter is sufficient to allow urine to flow into the bladder, a
minor change to the ureter, causing increased applied pressure by the ureter on the
bladder, can enable the ureter to then apply a sufficiently great pressure on the bladder so
that urine passes into the bladder without backflow of urine to the kidney.

The mathematical analysis may be used to determine a critical pressure, below
which reflux occurs. Thus reflux may be diagnosed at an early stage and dealt with by the

medical urologists accordingly.
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It has been seen that an accurate mathematical analysis of flow of urine in the
ureter is an important issue; It may be useful to generalise this analysis to other
physiological flows like that in the intestine and others whereby peristalsis occurs.

The non-Newtonian models provide insight to the complexity of these models and
the phenomena of peristalsis, but ultimately in the first instance a Newtonian approach is
viable for a basic understanding of peristalsis.

For example, it may be reasonable to assume that flow of urine is that of
Newtonian flow, however by allowing the inclusion on non-Newtonian effects into the
analysis, it becomes a special case of a generalised fluid. On this basis the assumption of
Newtonian fluid is a special case of a generalised non-Newtonian fluid whereby theoretical

results are a significant step when mathematically modelling peristalsis.

6.3 Recommendations for Future Study

In this research a study has been made concerning mathematical modelling of
peristalsis as applied to Newtonian and non-Newtonian fluids. It is seen that their are
similarities between all models when certain assumptions and simplifications are
considered.

Perhaps in future work, it would be possible to generalise these mathematical
models, by relaxing the assumptions and simplifications and attempt to obtain and compare
solutions that are arrived at using a numerical solution, based on the existing equations
and boundary conditions. And if apparent, compare these solutions and models to research
that appears in the literature in the future.

Also as a possible area of future work would to consider a Casson model in an
axisymmetric tube and extend research beyond what has been established in this thesis and
compare the results with those within. Cohesion with analytical and numerical solutions

will provide an inevitable quality control of the models in question.
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APPENDIX A

Non dimensional variables and parameters are as follows

P ——
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APPENDIX B

Non dimensional variables and parameters are as follows

Axi tric_Tul
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APPENDIX C

Analytical solution to Casson model in two-dimensional channel
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MATHEMATICAL MODELLING OF PERISTALTIC

TRANSPORT OF A NON-NEWTONIAN FLUID.
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Abstract

The paper considers the phenomena of peristaltic transport of a non-Newtonian fluid
represented as a power law fluid. The governing equations are the modified Navier-Stokes
equations and the continuity equation in axisymmetric form. A solution is sought in terms of a
perturbation series and it is shown the close proximity between analytical and numerical solutions
when considering stream functions for various values of the flow behaviour index.

Keywords
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Introduction

Peristalsis is the phenomenon in which a
circumferential progressive wave of contraction
or expansion travels along a tube. Peristalsis
appears in many organisms and in a variety of
organs. Some examples include swallowing of
food through the oesophagus, transport of urine
through the ureter, transport of the egg down
the fallopian tube and transport of chyme

¢ Postgraduate student, Dept. Applied Mathematics,
University of Adelaide
email:amernone @maths.adelaide.edu.au

through the small intestine. The initial wave may
be followed by similar or identical waves after a
short time has elapsed(4).

The above examples of when and where
peristalsis occurs seem to warrant the inference
that the role of peristalsis is transport. This is
definitely clear in the ureter, where the tube
connects the kidney to the bladder and is
responsible for the transport of urine. The
kidneys are not capable of producing enough
pressure to force urine away from them by
overcoming the pressure caused by the
expanded bladder. However, in the case of the
small intestine, the existence of segmental
contraction could indicate that mixing is important



and indeed food is absorbed by the tube walls
during the passage of chyme through the small
intestine(4).

Therefore, if the function is fluid transport, then
certainly complete occlusion will do the job, as is
observed in the ureter. But, complete occlusion
is an idealisation, and depending on the
pressure difference between the two ends of
the wave, the peristaltic wave usually does not
propel the entire volume of the fluid, resulting in
reflux. If this occurs in the ureter, then bacteria
may be carried back from the bladder to the
kidney; a phenomenon believed to be the
mechanism by which bacteria reach and infect
the kidneys(4,13) (see Fig. 1)

KIDNEY
{partly in hemisection)

Capsule
Artery e
Vein Cortex
Pelvis . Medull
w ulla
Pyramid

Figure 1, Kidney with ureter

The action of a healthy ureter is one whereby the
amplitude of the travelling wave on the elastic
wall is so large that at the narrowest point the
walls press against each other. Some typical
dimensions for the ureter may be of interest. The
entire length of the ureter is of the order of
30cm; normally, there are 3-4 waves along this
length. The amplitude (average maximum
inflated diameter) of the wave is of the order of
5mm, thus the amplitude ratio, is approximately
unity. The wavelength ratio is approximately
0.04. The speed of the wave is between 1-6
cm/s whereby the frequency of contraction
varies from one individual to the next and is
about 1-8 per min(4). Because of the
equivalence of inertial to viscous forces the
Reynolds number is approximately equal to
unity.

It is known that physiological flows are not only
maintained by pressure gradient but are
supported by the motion of the boundaries.
Many authors(7,9-12) including the pioneering

work by C.S. Yih &Y.C. Fung(5)and F. Yin & Y.C.
Fung(6) where they have considered peristalsis
applied to a two dimensional channel and
asymmetric geometry respectively; whereby a
perturbation method of solution in terms of wave
amplitude to the tube radius is considered taking
into account non linear convective terms.
However, these papers have considered the
case of a Newtonian fluid and it is not until the
paper by K.K. Raju & R. Devanathan(3) and
others(8,9,14) that a non-Newtonian fiuid is
considered.

Therefore, following this analysis we shall obtain
the solution for the stream function as a power
series in terms of the amplitude of deformation.
We will show the close proximity between
numerical and analytic forms for the first order
perturbation in stream function and consider the
effect of flow behaviour index on streamlines

Statement of Problem

Consider the peristaltic motion of a non-
Newtonian fluid, modelled as a power law fluid,
which is viscous and incompressible in an
axisymmetric cylindrical tube,where, d, is the
undeformed radius of the tube and the tube is
considered to be infinitely long. A, represents
the amplitude of the sinusoidal waves travelling
along the walls of the tube, A, is the wavelength

and they are travelling at speed, ¢,( as shown in
Fig. 2).

J G\ xy= P“”S’i&i—-u-\)
A

Figure 2, Geometry of Peristaltic Flow

The geometry of the sinusoidal travelling waves
is given by G(z,t) where

G(Z,t):Acosz—”(z i ct) (1.1)
A



The non-Newtonian power law fluid is
characterised by the constitutive equation(1,2)

O'ij = —[)5’] +m9VU (12)

where, Gijv and Vi are the stress and the

deformation tensors respectively, p denotes the
isotropic pressure and, m and n are respectively
flow consistency index and the flow behaviour
index.

In equation (1.2), 0, is given by

n-1
o=| v;v; | 2 (1.3)

Because the fluid being modelled is assumed to
be incompressible the following equation of
motion may be used,

p—t = — (1.4)

Here D/Dt is the material derivative of a particle
following the fluid and is given as

D 4
—=—+qV
Dt o

where, P, is the density of the fluid and, g, is
the velocity component in the respective
direction.

Substitution of (1.2) in (1.4) finally gives

Dq, ap 26
p =———4+m—V,. +
Dt 8xl. (9xj Y
J
mo Vzu, +—(VC])
L ok, .

i

which after using the incompressibility condition

V.g =0 yields

Dq. d 0
p 2 ¢

p—l—=——-—+m 6V u. +V.,—
Dt ox . g v c)."j

4

(1.5)

By setting i=1 and then i=2 and using summation
convention with dimensionless variables and
parameters (shown in the Appendix C) the
following equations of motion are obtained from
(1.4) and (1.5)

Ju Jdu du
+u—+

Sy
0z

Cor

_1_ g[vzu_ij+2@@+ %4__8_“} %
Re 2 ordr \dz dr)odz

(1.6)

aw aw dw ap
—tu—tw—=——+

at or dz dz

1 2 Jdu Jdw |06 dw d0
—40V wH | —+— | —+2——
Re dz dr ) dr dz dr

(1.7)

where in equation (1.6} and (1.7), 0, is given by

2 5 L
du adw  du 2
0 =4 — +| —+— (1.8)
ar dr  dz
, ot 14 9
V =—F+-—+—5 (1.9)
ar r ar az

The equation of continuity in cylindrical
coordinates is given by

(1.10)

There exists a stream function satisfying (1.10)
such that

1 ¥

r dz
1 9¥

w=——"
r dar
where u = radial velocity,
w = axial velocity

u=-=

(1.11)

|



Boundary Conditions

Assuming that there is no horizontal
displacement and using (1.11) we obtain the
non-dimensional boundary conditions,

Y =0 a r=d+¢G

r

‘I’Z = rQEsin a(z — t)

(2.1)
where G = gcosa(z—1)
and
dp ap ap 2 dp
— = — +¢e — | +&€ |— | +K
dz az Jo 9z J| dz )

(2.2)

(For explicit details see Appendix B)

Method of Solution

The solution for, Y, the stream function, is
sought via the expansions given as a power
series, in the form,

2
‘P—ll‘0+e‘{’1+e ‘-P2+K (3.1a)

2
p=pyteEp *E p2+K (3.2a)

Hence, if we consider equations (3.1a) and
(38.2a) and make the substitution given in (1.11)
and collect like terms associated with powers
of € on either side of the equation (1.7), this
yields to the differential equation for the zeroth
order term ‘P, (r) , given by

n—1

rodr rodr r dr

n
(2n-1) |1 d ¥y | 4,
B r r d,-2 _r2 dr

(3.1)

We now assume that ‘¥, (r) is a function of the

radial direction only, due to the constant zeroth
order axial pressure gradient, and thus the

solution for equation (3.1} is obtained as given in

Appendix B (3.1B-3.3aB),
Hence the solution for ‘¥, (r)is

1
1 34— )

- n
‘*‘o(f)=(§)" A J—— (3.2)

n+l|3n+1 2

For n=1, (3.2) reduces to the case of a
Newtonian flow for axisymmetric peristaltic flow,
(6).

We shall now consider the 1st order perturbation
in . We collect coefficients of order€ in
equations (1.6) and (1.7) after substitution of
(1.11) and to form one equation from these we
differentiate (1.6) w.r.t. zand (1.7) w.r.t. rand
adding we obtain,

l 1 1
P lll o —_—
‘P{)r{ril lzzz + r2 \ylzrr + 3 \Plzr}

r

3 1
_:S—WOrr 1z "2 T0rrr 1z
1 1 1
_r_\ylrt I T I V2T
n—1

+ 23 \Plrl *
nor
2
4dn —4n —-n-2
2 4 \Vlr
nor
2 2
2n —-2n-2 3n—-n -2
u 2 lrzz 23 \PIZ"



(For extensive derivation see Appendix B)

By letting n = 1, equation (3.3) reduces to the
governing equation for Y inthe case of a
Newtonian fluid undergoing peristaltic motion in
an axisymmetric tube (6). Remembering

that ‘PO (r) is a function of r only, the equation

becomes

2 | 1 2
Vz‘{’ —-—Vz‘{‘ +—=Y¥Y --¥ Vv
Ir  , 1 r2 Ir , Or 1z
| 4
=—V V¥
Re | I
(3.4)
where, V14 =V12V12
2 4 1 d d
and \Y =—2——-"—+—2— (3.5)

Taking the boundary conditions are as follows
\POr (1) =0

Wy, (1) + ¥, (1) cosalz — 1) =0
¥, (1) =0
¥y, (1) + ‘POU(I) cos a(z - t)

= a sin a(z - t)

(3.6)
and substitution for \PO (r) as given in (3.2)
yields the boundary conditions

L]
‘{’lr(l) = —(S)n cos a(z N t)
¥, (1) = asin a(z . t)
(3.7)

From these boundary conditions, ‘Pl can be
assumed to be of the form,

¥y (r‘ Z, t) = F(r) cos a(z - t) + G(r) sin a(z - l)
(3.8)

where F(r) and G(r) are to be determined.

In the Appendix B, lengthy differential equations
were derived in order to solve the first order term

for the stream function (see Appendix B). Once
F(r) and G(r) have been solved \Pl is immediately

found from ( 3.8).

It is not possible to find closed form solutions to
the differential equations 3.6B and 3.7B, so
approximate solutions will be sought. Firstly the
equations for F(r) and G(r) can be simplified by
assuming that the Reynolds number associated
with the present model is small, and
consequently the forms of F(r) and G(r) are
assumed to be given as

F(r)= F()(r)+Re2 B (r)+K a0
G(r) = ReGy(r) + Re> Gy (r) +K '

Substituting these forms for F(r) and G(r) into
(3.6B) and (3.7B), and collecting terms of equal
order in Re on either side of the equations yield
the following differential equations for F, (r) and
G, (1.

If we assume X is very small such that higher
order terms in & may be neglected, equations
(3.8B) and (3.9B) may be simplified as

4 1V 2¢( 2 3
nr F ——(n —n+l)r F”+
3 2
dn ~-4n +n+2
r F”
2
n 0
2
(4:13—4n +n+2)
N reF =0
2
n 0
(3.10)
and



4 2 3 ..,
nr Gy -=ln —-n+l)r G"+

3 2
4n —4n 4+ n+2 | 9

n

(3.11)

The solution to (3.10) and the homogeneous
solution to (3.11) can be sought as the form

m m m m

F(ry=ar Y+8r 24cr 34Dr #

(see Appendix A1) (3.12)

It follows from (3.12) that the general solution to
equation (3.10) is given by

3n2 -3n+2
2 3+£ n2
Fo(r)=A+Br +Cr " +Dr

(3.13)

In Raju and Devanathan(3) they have not
specified the values of the parameter ( they
have used to obtain numerical solutions to

Fy(r)and G, (r), so the only meaningful
comparison that can be made is between

approximate values obtained for Fy (7)in the

present analysis and the corresponding exact
solution given in (3). In spite of this, the

approximating function for Gl (r) will be
specified for the special case of n = 1.

This means that the differential equations for
approximating Fy (r)and G, (r) are now given
as (3.10) and (3.11).

The corresponding boundary conditions are
given by

1

Fé(1)=—(k—2°~)" Fo(1) =1

Gi(1)=0

Gi(t) =0 Fp(0) =0
G0 =T 5 (0) =0
Gi(0)=0

(3.14)

For the Newtonian case n = 1, (3.13) (A1) gives
the general solution to (3.10) as

[:‘O(r) =A+ Br2 + Cr4 + Dr2 Inr
(3.15)
(See Appendix A7 - A9)

From Appendix A, the approximate solution for

the function given by Gl (r) for the case, n =k
=1, is given by

275 i 95 ¢ 25 i 5 s
o ar ar ar ar
61(” )= - + -

2304 768 384 2304

(3.16)
Discussion
If we define an error term as
=|F (r)- 4.1

A AGRAGR (4.1)

a measure of whether the approximate function
#(r) gives values which are a good

approximation to FO (r) the exact solution



( note, these values taken from Raju &
Devanathan (3) ). From Tables 3.1-3.4, where we
are considering various values of flow behaviour
index (n) and a function of pressure gradient (k) it
is evident that the values are very good. This is
graphically depicted in figures 3.1-3.4

A 4.25 2.
P (r) = 1.490906r > ~ 2490006, "

0
(4.3)
A comparison between values obtained from

(4.3) and exact values as recorded in (3) is given
in Table 3.2

’ ) | Bo(r) | Egey
0.0 0.000 0.000 0.000
0.1 0.022 0.022 0.000
0.2 0.088 0.085 0.003
0.3 0.192 0.186 0.006
0.4 0.328 0.318 0.010
0.5 0.484 0.471 0.013
0.6 0.648 0.634 0.014
0.7 0.802 0.790 0.012
0.8 0.928 0.920 0.008
0.9 1.002 0.999 0.003
1.0 1.000 1.000 0.000

Table 3.1, n=k=1, where n is flow
behaviour index, showing error term

For the non-Newtonian case n=k=1, the

approximating function I:_'O (r) is given by

4 2
(Sr -9r )
4

4.2)

Plot of data in Table 3.1

0

0.2 0.4

r 0.6

0.8 1

: Fy(r) | Fo(r) | Ern
0.0 0.000 0.000 0.000
0.1 0.010 0.019 0.009
0.2 0.053 0.076 0.023
0.3 0.134 0.168 0.034
0.4 0.252 0.292 0.040
0.5 0.402 0.439 0.037
0.6 0.570 0.600 0.030
0.7 0.740 0.759 0.019
0.8 0.889 0.897 0.008
0.9 0.987 0.989 0.002
1.0 1.000 1.000 0.000

Table3.2, n=0.8,k=1, where n is flow
behaviour index, showing error term

1.2

1 s

0.8 T

0.4

Plot of data in Table 3.2
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0.2 0.4

0.6

0.8 1

Figure 3.2, Plot of data in Table 3.2,

Figure 3.1, Plot of data in Table 3.1,
showing comparison between the

approximate solution Fy(r) to the

numerical solution Fy(r)

For the non-Newtonian case n = 0.8, k=1, the

approximating function for I’;\‘O (r) found by
combining, A15-A18, is given by

showing comparison between the
approximate solution Fyy(r) to the
numerical solution Fyy(r)

Similarly, for the non-Newtonian case n=1.2, k =
1, the approximating function for Fy (r) is given
by



23

F (r) =1391035r 6
0

2
— 2.397035r
(4.4)
A comparison between values obtained from

(4.4) and exact values as recorded in (3) is given
in Table 3.3

Also, for the non-Newtonian case n=1.4, k=1,
the approximating function for FO (r) is given by

26
A 7 2
F(r)=1522212r © -2.52212r (4.5)
0

A comparison between values obtained from
(4.5) and exact values as recorded in (3) is given
in Table 3.4.

] Fy(r) Fo(r) EFo(r)
0.0 0.000 | 0.000 | 0.000
0.1 0.024 | 0.024 | 0.000
0.2 0.093 |0.092 | 0.001
0.3 0.202 |0.199 | 0.003
0.4 0.342 |0.337 | 0.005
0.5 0.501 |0.494 | 0.007
0.6 0.666 |0.658 | 0.008
0.7 0.819 |0.811 | 0.008
0.8 0.940 |0.935 | 0.005
0.9 1.009 |[1.007 [ 0.002
1.0 1.000 | 1.000 | 0.000

Table 3.3, n=1.2, k=1,where n is flow

behaviour index, showing error term

] Fy(r) Fy(r) EFo(r)
0.0 0.000 | 0.000 | 0.000
0.1 0.025 | 0.025 | 0.000
0.2 0.097 | 0.098 | 0.001
0.3 0.210 | 0.209 | 0.001
0.4 0.353 | 0.351 | 0.002
0.5 0.515 | 0.512 | 0.003
0.6 0.680 |0.676 | 0.004
0.7 0.831 |0.828 | 0.003
0.8 0.950 | 0.947 | 0.003
0.9 1.014 |1.013 | 0.001
1.0 1.000 | 1.000 | 0.000

Table 3.4, n=1.4, k=1, where n is flow
behaviour index, showing error term

1.2

1.2

Plot of data in Table 3.3
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Figure 3.3, Plot of data in Table 3.3,
showing comparison between the

approximate solution Fy(r) to the

numerical solution F (r)
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in Table 3.4
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Figure 3.4, Plot of data in Table 3.4,
showing comparison between the

approximate solution Fy(r) 1o the

numerical solution Fy (r)



Also, for the non-Newtonian case n= 0.5, k=1,

the approximating function for FO (r)is given
by

ﬁo (r)= 0.25(3r5 - 7r2) (4.6)

A comparison between values obtained from
(4.6) and exact values as recorded in (3) is given
in Table 3.5, where error term is approximate.

r Fy(r) Fy(r) EFO(r)
n=0.5 n=0.6
0.0 0.000 | 0.000 | 0.000
0.1 0.017 |0.015 | 0.002
0.2 0.070 |0.062 | 0.018
0.3 0.156 | 0.140 | 0.016
0.4 0.272 | 0.249 | 0.023
0.5 0.414 |0.385 | 0.029
0.6 0.572 | 0.542 | 0.030
0.7 0.731 | 0.707 | 0.024
0.8 0.874 | 0.860 | 0.014
0.9 0.975 |0.972 | 0.003
1.0 1.000 | 1.000 | 0.000

Table 3.5, n=0.5, n=0.6, k=1, where n is
flow behaviour index, showing error term

it is worth mentioning again that a graphical plot
of the closeness of solutions for Fj, (r) is

graphically depicted in Figs. 3.1 - 3.4 for
behavior index (n)=7; and k=1

From these tables and Figs. it can be seen that
the approximate solutions are very accurate forn
=1.0, 1.2 & 1.4 and less accurate forn = 0.8 &
0.5, but still good enough to be used to find
approximate solutions for the stream function
and pressure gradient for those values of n.

From (3.1a) it is clear that for € very small the
stream function, can be approximated as

N
Thus, defining, ¥ tobe ¥ inthe casen=N
N

and defining F' (7) as the approximate

solution for F(r) in the case n = N, (4.7) gives the
approximation to the stream function, along with
(3.2) and (3.8) as

N

N
EIZI:" (r) cos O((z - t) +G (r) sin a(z . t)j|

(4.8)
N

where G (r) is the approximate function to
G(r)inthe case n=N.

From (3.9) it can be seen that

N N
£|:ﬁ (r) cos Ot(z - t) +G (r) sin a(z - t):|

2
cosa(z—t) EFON(r)+GRe :|+
N 3
sina(z—t) eRe G (r)+O[£Re j

(4.9)

under the assumption, €, & Re small and
defining

alz—1)=z2 (4.10)

(4.8), (4.9)&(4.10) give an approximation to the
stream function as,

3N+

o 2 N
N kYN N r Nr
Y = —_— - |+

2 N+ 2 AN +1

e[ Fy i (r) cos(Z)]

(4.11)



Streamlines for, n =N =0.5, 1.0, 1.2 are given in
Figs. 3.5, 3.6 and 3.7 respectively, where k = 1.0
and € =0.01.
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Figure 3.5,Streamline ¥ for n=0.5,
k=1,where n is flow behaviour index
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Figure 3.6,Streamline ¥ for n=1I,
k=1,where n is flow behaviour index
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Figure 3.7,Streamline VY for n=1.2, k=1,
where n is flow behaviour index

The approximating functions for FO (r) in the
case k=0.01 and n=0.5, 0.8, 1.0 and 1.2 are
found in the same manner as the approximating
function Fyy (r)k=1, and are given by

. 0.5 5 2
F (r) = 0.666675r" — 1.666675r

(4.12)

. 0.8 425 2.375
F (r)=1267376r " - 2.267376r

(4.13)
. 1.0 4 2
F (r) =1.0025- - 2.0025r

(4.14)

23

.12 2
£ 7 (r) = 1.097504r S 2.007504r

(4.15)

Streamlines forn = 0.5, 0.8, 1.0 & 1.2 in the case
k = 0.01 are plotted in Figs. 3.8 - 3.11
respectively where € =0.01; and are derived
from (4.11) using (4.12) - (4.15).

It can be seen that the streamlines plotted in (Fig
3.5-3.7 )( high pressure gradient ) and Fig. (3.8 -
3.11) (low pressure gradient ) are similar to those
established in Raju and Devanathan(3).
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Figure 3.8,Streamline W for n=0.5,
k=0.01, where n is flow behaviour index
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Figure 3.9,Streamline ¥ for n=0.8,
k=0.01, where n is flow behaviour index
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Figure 3.11,Streamline ¥ for n=1.2,
k=0.01, where n is flow behaviour index

The difference between streamlines for high and
low pressure is apparent due to the boundary of
the tube has a more significant impact with regard
to low pressure gradient.

All approximate results have been obtained by

assuming that the terms of the order a2and
higher are negligible and the parameters and
Re are small.

More accurate results could be obtained by
neglecting terms a3 and higher but keeping
orderOt2 and (X aswellas Oto .

Conclusion

The results obtained in this study are consistent
with those established by Raju and
Devanathan(3) in their study of peristaltic motion
of a non-Newtonian fluid.

It was seen that the equation of motion for the
non-Newtonian (power law) model of peristaltic
motion reduced to the governing equations for
the Newtonian model in the case of flow
behaviour index, n = 1.

Approximate results for the stream function b g
were obtained and is seen for n >= 1 are close to
the exact results given in the literature. For the
case n <= 1, the results were less accurate, but
nevertheless to an acceptable level, if we
consider the magnitude of the errors.

The streamlines obtained from the approximate
results were found to be very similar to those
found in Raju and Devanathan(3), thus
demonstrating the effect of pressure gradient
and boundary structure. In fact, it is found that
for low pressure gradient the streamlines form
closed loops and for higher presure gradient the
streamlines run paralle! to the axis of the tube
when considered near the axis , whereas a
considerable deformation is noted near the
boundary. An explanation for this is that the
region may be considered to be consisting of
two regions; one the central core region and the
other near the boundary, the boundary layer
region. Highlighting the validity of current
modelling of this type. In the case of low
pressure gradient, the effects of the wave
travelling along the boundary of the tube are
more dominant. But as the pressure gradient
increases, we find that the streamtines in the
central part of the region are more influenced by
it, than the motion of the boundary, hence run
approximately paralle! to the axis. One
conclusion reached by these studies is that
peristalsis is an effective method to move fluid
only if the fluid is transported in the form of a



series of isolated boluses. If the amplitude of
displacement of the wall is smalil compared to the
tube radius, very little pressure gradient can be
generated by the travelling wave. Pressure
gradient increases significantly when the radius
of minimum section approaches zero, (complete
occlusion). It is thus understandable why
peristalsis is a common phenomena in the
lymphatics, intestine, ureter,and many other
biological systems and peristaltic pumps (dialysis
machines and heart-lung machines).

Appendix A

Solution to (3.10) and (3.11) may now be sought
as

m m m m
ﬁ(r)=Ar ; + Br 2 + Cr i + Dr 4
(A1)
where m;, i = 1-4 are to be determined by
making the substitution
F(r)=r" (A2)
On substitution (A1) into (3.10) yields
P {nm(m - 1)(m - 2)(m - 3) -
2(2
—(n -—n+ 1)m(m - 1)(m - 2)
n
3 2
(4n —4n +n+ 2)
+ 2 (m - 1)m -
3 2
(4n —4n +n+2) ‘
5 m—} =0
n .
(A3)

This finally reduces to,

m(m - 2)|:nm2 -(6,, 2 +3)m}

n
+m(m—2)|:9n—6+g+i:| 0
-

i

(A4)

Where

m = 0

m =2
2

The other two roots are evaluated by
determining the determinate of (A4) to see if all
the roots are real, hence

4 2
A=—(2n-1) (A5)
n
Az0
1 3 2
so, m =3+—, m =3-——+—F
4 2
n n n

our general solution to (3.10) is

| on —onts
34+~ 2
. 2 n n
Fo(r)=A+Br + Cr + Dr
(A6)
There is now sufficient information to find

Fy(r)and G,(r)

For the Newtonian case n = 1 (3.13) gives the
general solution to equation (3.10) as

. 2 4 2
Fo(r)=A+Br +Cr +Dr Inr (A7)

where Inr is introduced because m,=m, =2

From (A8)
Fg(r)=2B+3D+2DInr (A8)

keeping this second derivative bounded at r=0
means,

D=0
The boundary conditions (3.27) imply
A=0
B+C=-1
2B+4C=—

(A9)



For, n = k = 1 the homogeneous solution to
(3.11) again keeping the second derivative
bounded at r=0 is

2 4
G (r)=A +Br +Cr A10
(r)=a +B 1 (A10)
A particular solution to (3.26) can be sought of
the form,
. 6 8
G (r):Dr +E r (A11)
P 1 1

Therefore substitution of (A13) into (3.11) with
n =1 yields

6 g Saf_6 8
192Dr + 1152Er =—1}{5r -—7r
2

250 —Sa
Hence D= — E=—" (A12)

384 2304

so from (A12) and (A13) the solution to (3.11) is

n 2 4 250 ¢
G(r)=A1+Br +Cr + r
1 I |

384
500 8

- r

2304

(A13)

The boundary conditions impty from (3.14)

Al b 0
S5a 250
Bl il Cl = ="
2304 384
5 25
231 + 4C1 ==
288 64
95
2C1 = -
384
275
2304

(A14)

For the non-Newtoniancasen=0.8, k=1

N 2 425 2.
F(r)=A+Br + Cr + Dr 375

(A15)
therefore using the boundary conditions (3.14)
A=0
B+C+D=1

2B + 4.25C + 2.375D = 0.420448
(A16)

Hence another boundary condition is required,
therefore using the condition of symmetry, ie,
¥, =0,atr=0

C = 1.490906, D = -2.490906

B=0 (A17)
therefore,

P ()= 149090642 _ 2.490006->37 (A18)
Appendix B

w=0 atr=d+G(z})

d 2 2
= —G(z, t) = Ac—nsin —E(z - Cl)
ot A A

atr=d+G(zt)
therefore using (1.11)

1 0¥ 2rm 2
———— = — Acsin —(z - cr)
r 0z A A

atr=d +G(z,})

1 ¥
and —— =0
roor

atr=d+ G(z}t)

(2.1B)

Because we are dealing with an infinite tube the
end conditions are not specified; instead the
pressure gradient in the longitudinal (z) direction
is specified and is assumed to be of the form,



dp | dp dp 2( 9p
—=— | +A| — | +A7| — | +K
(92 8z 0 32 | aZ 2

(2.2B)
ap ap
— | =constant and =] = f-‘(z,r,t)
0z 0 dz i
(2.3B)
where A is specified in Figure 2.
ap
— Re| — =
dz g
n—1
3 2
nd‘{’o 1 d ‘{’O ld‘{lo
r dr3 r dr2 r2 dr
) n
(2n-1) |14 ¥y 1 4%
r r dr r2 dr
(3.1B)
if we now let
%
k =Re or (3.2B)
z ),

(3.3)gives us the differential equation for,

¥, (r),as

1
3+n 2
nr r
‘FO (r) =A -—
3n+1 2
(3.3B)
which satisfies the required boundary
conditions,
Yo (0)=0
\POr (1) =0
On substitution of (3.3B) into (3.1) yields
1
k\n n
A= (— . (3.3aB)
2) n+l1

Collection of coefficents in € in equation (1.6)
after substitution of (1.11) we obtain

(3.4B)

Similarly collection ofcoefficients in € in equation
(1.7) after substitution of (1.11) we obtain,
1 1 1
~Wir =7 Yor¥ire + =3 Yorr ¥z -
r r

1
3 Yotz =

r

n-—1

2
o, L)Ly Ly ? X
_—+—— _— —_— —

9z Re|\r Orr r2 Or

n 2-n 3n—2—2n2
~YWpprt| — \Vlzzr*' - 2 Yirr
r r nr

2
(n-1)(n-2) 2n° +2-3n

+ 2
nr nr
(3.58)
Substituting for, ¥y (r), as given in (3.2)

and, ‘{’1, as given in (3.8) and collecting



coefficients of, COS OC(Z - t), on either side of

the resulting equation after multiplying both
sides by,

l—n 1+4n
koY n 7
Re(-& r yields
2
2
nr4F1V ——(n2 —n+1)r3F’”+
n
’ 3 2 h!
(4n —4n +n+2) 2 4
< 5 r +(2n—4)a roeF”—
n
1
(4n3—4n2+n+2) 2n2—2n—2 23
{ 5 r+ o’ r o F
n n

3
4 4 n=3n+2\| 22
Hre r |5 |@r F=
n
2—-n 2+4n 1+3n
k n
—Re(—-) n o r o, on G" b+
2 n+1
2-n 1+2n  2+3n
k
Re(—] L S e A
2 n+1
2-n |( 2+42n
k -1
Re[—) " aﬂ" )r noGh+
2 n
2-n | 1+3n  2+4n
k n n " N
Re| — oy r -r o G+
2 n+l
L
I=n [ 1+3n 1+2n

(3.6B)

making the substitution as before for,
\PO (r) as given in (3.2) and, LPI

as given in (3.8) and collecting coefficients of,
sin oz — t), after multiplying both sides by ,

l—n 1+4n
ke n
Re(?o ro yields,

2
n.r4(7I = —(n2 -n+ 1)1'36’” +
n

4n3——4n2+n+2 )
> r-»G” +

n

{(Zn = 4)a2r4}G”

4n3—4n2+n+2
= 5 reG'+

(3.7B)



2
nr4 FOIV - ---(n2 -n+ 1)r3F6"+
n

2 4

(4n3 - 4112 +n+ 2)
rF+(2n-4)a"r bRy

2
n

3 2
(411 —4n +n+2) 2”2_2”_2 23
r+ o K

- 5 r

n n

3
4 4 n" -3n+21| 22
-+-notr+——-—2 o r PRy =0
n

(3.8B)
and

2
nr4G Ve —(n2 n+ l)r G”’

—4 +n+2
{[ w4’ ]2+(2n— A 2r4}Gi'
‘—f-'m +n+2 2% -2 -2 N3
r+ o r Gl'
n

n” —3n+2
na r [ 2 jazrz}Gl =

2+4n 1+3n
k
_) { r n —r n Féf
2 n+1l
1+ 2n 3+2n 2+2n
n -1
[ F6+ r FO
n+1 n

Appendix C

¢ Dimensionless variables and parameters are
defined as follows

r Z w u
rr=— ,77=— ,w=— |u=-
d d ¢ ¢
G hd ct P
Gl=_ ’\{’/=—_ ’t,= ‘p/:___
2 2
cd d pc
A 2nd
£E=— ,00=—-
d A
92—
(3 ndn
Re = p
m
n-—1
2
, d 2
0 = o 0

s
/0 pcz /0
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Also, for the non-Newtonian case n = 0.5, k=1,

the approximating function for ﬁo (r)is given
by

. 5 .2
FO(r) =0.25(3r -7 ) (4.6)

A comparison between values obtained from
(4.6) and exact values as recorded in (3) is given
in Table 3.5, where error term is approximate.

' Fy(r) | Fo(r) | Egen
n=0.5 n=0.6
0.0 0.000 0.000 0.000
0.1 0.017 0.015 0.002
0.2 0.070 0.062 0.018
0.3 0.156 0.140 0.016
0.4 0.272 0.249 0.023
0.5 0.414 0.385 0.029
0.6 0.572 0.542 0.030
0.7 0.731 0.707 0.024
0.8 0.874 0.860 0.014
0.9 0.975 0.972 0.003
1.0 1.000 1.000 0.000

Table 3.5, n=0.5, n=0.6, k=1, where n is
flow behaviour index, showing error term

it is worth mentioning again that a graphical plot
of the closeness of solutions for Fy (r) is

graphically depicted in Figs. 3.1 - 3.4 for
behavior index (n)=A; and k=1

From these tables and Figs. it can be seen that
the approximate solutions are very accurate forn
=1.0, 1.2 & 1.4 and less accurate forn = 0.8 &
0.5, but still good enough to be used to find
approximate solutions for the stream function
and pressure gradient for those values of n.

From (3.1a) it is clear that for £ very small the
stream function, can be approximated as

V=W, + e, (4.7)

N
Thus, defining, ¥ tobe W inthecasen=N
N

and defining £ (r) as the approximate

solution for F(r} in the case n = N, (4.7) gives the
approximation to the stream function, along with
(3.2) and (3.8) as

3N+1
1 2 N

N ri\y N |r Nr
v oo=|- e ———1

2 N+1| 2 3N +1

N N
E|:}:" (r) cos a(z - t) +G (r) sin a(z - t)i|

(4.8)
N

where G (r), is the approximate function to
G(r)inthe case n = N.

From (3.9} it can be seen that

N N
e{f? (r) cos a(z - t) +G (r) sin a(z - l)j|

cos Ol(z - t)|:£FON (r) + G Re2 :| +

N 3
sin a(z - t) eERe G (:) + O(e Re j

(4.9)
under the assumption, €, & Re small and
defining

o(z—t)=z (4.10)

(4.8) , (4.9)&(4.10) give an approximation to the
stream function as,

3N+
i) 2 N
N (k)N N r N1
Y =|- — +
2 N+1| 2 AN+

(4.11)



Streamlines for, n =N = 0.5, 1.0, 1.2 are given in
Figs. 3.5, 3.6 and 3.7 respectively, where k = 1.0
and £ =0.01.
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Figure 3.5,Streamline ¥ for n=0.5,
k=1,where n is flow behaviour index
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Figure 3.6,Streamline ¥ for n=1,
k=1,where n is flow behaviour index
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Figure 3.7,Streamline Y for n=1.2, k=1,
where n is flow behaviour index

The approximating functions for FO (r) in the

case k=0.01 and n=0.5, 0.8, 1.0 and 1.2 are
found in the same manner as the approximating

function FO (r) k=1, and are given by

. 05 5 2
F (r) = 0.666675r" — 1.666675r

(4.12)

. 08 425 2.375
k. (r) =1.267376r =" - 2.267376r

(4.13)
. 1.0 4 2
F (r) =1.0025r - 2.0025r

(4.14)

23

12 2
F (r) = 1.097504r © — 2.097504r

(4.15)

Streamlines for n = 0.5, 0.8, 1.0 & 1.2 in the case
k = 0.01 are plotted in Figs. 3.8 - 3.11
respectively where € =0.01; and are derived
from (4.11) using (4.12) - (4.15).

It can be seen that the streamlines plotted in (Fig
3.5-3.7 )( high pressure gradient ) and Fig. (3.8 -
3.11) (low pressure gradient ) are similar to those
established in Raju and Devanathan(3).
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Figure 3.8,Streamline Y for n=0.5,
k=0.01, where n is flow behaviour index
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Figure 3.9,Streamline ¥ for n=0.8, -
k=0.01, where n is flow behaviour index
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Figure 3.10,Streamline ¥ for n=1.0,
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Figure 3.11,Streamline Y for n=1.2,
k=0.01, where n is flow behaviour index

The difference between streamlines for high and
low pressure is apparent due to the boundary of
the tube has a more significant impact with regard
to low pressure gradient.

All approximate results have been obtained by

assuming that the terms of the order Oczand
higher are negligible and the parameters and
Re are small.

More accurate results could be obtained by
neglecting terms 053 and higher but keeping
ordera2 and (X aswellas ao.

Conclusion

The results obtained in this study are consistent
with those established by Raju and
Devanathan(3) in their study of peristaltic motion
of a non-Newtonian fluid.

It was seen that the equation of motion for the
non-Newtonian (power law) model of peristaltic
motion reduced to the governing equations for
the Newtonian model in the case of flow
behaviour index, n = 1.

Approximate results for the stream function Y
were obtained and is seen for n >= 1 are close to
the exact results given in the literature. For the
case n <= 1, the results were less accurate, but
nevertheless to an acceptable level, if we
consider the magnitude of the errors.

The streamlines obtained from the approximate
results were found to be very similar to those
found in Raju and Devanathan(3), thus
demonstrating the effect of pressure gradient
and boundary structure. In fact, it is found that
for low pressure gradient the streamlines form
closed loops and for higher presure gradient the
streamlines run parallel to the axis of the tube
when considered near the axis , whereas a
considerable deformation is noted near the
boundary. An explanation for this is that the
region may be considered to be consisting of
two regions; one the central core region and the
other near the boundary, the boundary layer
region. Highlighting the validity of current
modelling of this type. In the case of low
pressure gradient, the effects of the wave
travelling along the boundary of the tube are
more dominant. But as the pressure gradient
increases, we find that the streamlines in the
central part of the region are more influenced by
it, than the motion of the boundary, hence run
approximately parallel to the axis. One
conclusion reached by these studies is that
peristalsis is an effective method to move fluid
only if the fluid is transported in the form of a



serigs of isolated boluses. If the amplitude of
displacement of the wall is small compared to the
tube radius, very little pressure gradient can be
generated by the travelling wave. Pressure
gradient increases significantly when the radius
of minimum section approaches zero, (complete
occlusion). It is thus understandable why
peristalsis is a common phenomena in the
lymphatics, intestine, ureter,and many other
biological systems and peristaltic pumps (dialysis
machines and heart-lung machines).

Appendix A

Solution to (3.10) and (3.11) may now be sought
as

m m m m

ﬁ(r):Ar 1 + Br ) + Cr = + Dr £
(A1)
where m;, i = 1-4 are to be determined by
making the substitution
F(r)y=r" (A2)
On substitution (A1) into (3.10) yields
m
r {nm(m N l)(m - 2)(m - 3) -
2(2
(n s 1)m(m = 1)(m - 2)
n
3 2
(4n —4n -+rl+-2)

+ 3 (m - l)m =

n

3 2

(411 —4n +n+2) )

5 m-}==0

n .
(A3)

This finally reduces to,

m(m — 2)[an - (6n -2+ i—)mi|

3 2
+m(m —2) n—6+-+—1=0

n

(A4)

Where
m = 0
m =2

2
The other two roots are evaluated by
determining the determinate of (A4) to see if all
the roots are real, hence

4 2
A=—2(2n—1) (A5)
n
A20
1 3 2
so, m =3+—, m =3-—+—F
4 2
n n n

our general solution to (3.10) is
2
| 3n —3n+2

34+~ 2
2 n n

f’o(r)=A+Br + Cr + Dr
(A6)
There is now sufficient information to find

Fy(r)and G,(r)

For the Newtonian case n = 1 (3.13) gives the
general solution to equation (3.10) as

A 2 4 2
Fo(r)=A+Br +Cr +Dr Inr (A7)
where Inr is introduced because m,=m, =2
From (A8)

Fg(r)=2B+3D+2Dlnr (A8)

keeping this second derivative bounded at r= 0
means,

D=0
The boundary conditions (3.27) imply
A=0
B+C=-1
2B +4C =—

(A9)



For, n = k = 1 the homogeneous solution to
(8.11) again keeping the second derivative
bounded at r=0 is

2 4
G’ (r)=A +Br +Cr (A10)
n 1 1 1

A particular solution to (3.26) can be sought of
the form,

G (r)=D r6 + E r8 (A11)
P 1 |

Therefore substitution of (A13) into (3.11) with
n =1 yields

6 8 So 6 8
192Dr + 1152Er =—|5r —r

25c =So
Hence D= — E=— (A12)
384 2304

so from (A12) and (A13) the solution to (3.11) is

A 2 4 25a ¢
G (r)=A +Blr +C]r + r
1 1

384

S §
= r

2304

(A13)

The boundary conditions imply from (3.14)

Al = 0
Sa 25¢
B +C|=——-—
2304 384
5 25¢
231 + 4C1 = -
288 64
95
2C1 = -
384
275
2304

(A14)

For the non-Newtonian case n=0.8, k=1

N 2 4.25 .
F(r)=A+Br + Cr +Dr2375

(A15)
therefore using the boundary conditions (3.14)
A=0
B+C+D=1

2B + 4.25C + 2.375D = 0.420448
(A16)

Hence another boundary condition is required,
therefore using the condition of symmetry, ie,

¥, =0,atr=0

C = 1.490906, D = -2.490906

B=0 (A17)
therefore,

ﬁo(r) — 14909062 ~2.400906: 27 (A18)
Appendix B

w=0 atr=d+ G(z})

Jd 2 2
u= —G(z,t)=Ac—”sin—n(z - ct)
dt A A

atr=d+ G(z}t)
therefore using (1.11)

1d¥Y 2rm 2n
——— = —Acsin——(z - ct)
r dz A

atr=d+G(z,})

1 ¥
and —— =0
r or

atr=d+ G(z1)

(2.1B)

Because we are dealing with an infinite tube the
end conditions are not specified; instead the
pressure gradient in the longitudinal (z) direction
is specified and is assumed to be of the form,



dp [ dp ap 2( dp
—=|—| +Al — | +A | — | +K
2z 9z Jo dz J| dz /o

(2.2B)
ap ap
— | =constantand | — =F(Z.r,[)
dz 0 dz /.
!
(2.3B)
where A is specified in Figure 2.
dp
— Re| — =
9z /g
n—1
3 2
Ea! ‘PO _1.d ‘PO Ld\PO
i
r dr3 rodr r2 dr
) n
(2n-1) |14 ¥y 1 4%
r rodr ,-2 dr
(3.1B)
if we now let
d
k =Re ar (3.2B)
2 ),

(3.3)gives us the differential equation for,

W, (r),as

Mp 2
nr r
¥, (r)=4 st
3n+1 2
(3.3B)
which satisfies the required boundary
conditions,
¥ (0)=0
\POr (1) =0
On substitution of (3.3B) into (3.1) yields
1
k\n n
A= (— " (3.3aB)
2) n+l

Collection of coefficents in € in equation (1.6)
after substitution of (1.11) we obtain

(i)
nr 54

Similarly collection ofcoefficients in € in equation
(1.7) after substitution of (1.11) we obtain,

(3.4B)

1 1 1
:\ert D) \POr‘Plrz + 3 \POrrqllz -

r r
{
’_3‘\P0r\{‘lz—
N
n—1
2

ap 1 |[1 Ly 2 :
_—+— [

Jz Re P Orr r2 Or

2
(n=1)(n-2) 2n° +2-3n
ey | |9,
nr nr
(3.5B)
Substituting for, ¥ (r), as given in (3.2)

and, ‘¥';, as given in (3.8) and collecting



coefficients of, COS OC(Z - l‘), on either side of

the resulting equation after multiplying both
sides by,

l—n [+4n
ko n 7
Re(—o r o yields
2
2
nr4F1v——(n2—n+1)r3F’”+
n

-

(4n3 —4n2 +n+ 2)

2
n

2 4

rF+(2n-4)a"r tF7 -

L

3 2
(4n —4n +n+2) 2n2—2n—2 23
r+ a r o F

4 n=-3n+2\| 22
+nox r + 3 r-pF =
n
2—-n 2+4n 1+3n
k n
_Re(_) n o r n —r n G.r.r +
2 n+1
2-n |4+2n  2+3n
k 1" n ,
Re| — af——|r N = N |Gt
2 n+1
2-n 2+2n
k .
Rc(—] g a{(n ljr n Gr+
2 n
2-n | [+3n  2+4n
k n
RC(—) " r o rsz +
2 n+l
l—n 1+ 3n 14+2n

(3.6B)

making the substitution as before for,
\PO (r) as given in (3.2) and, \Pl

as given in (3.8) and collecting coefficients of,
sin OC(Z — t), after multiplying both sides by ,
I—n ﬂ

ko \ n
Re(—o] " " yields,
2

2
nr4GW — —(n2 -n+ l)rSG”’ +
n

4n3—4n2+n+2 210 ..
3 r-G" +

n

{(Zn — 4)a?r }G"

4.!:3 —41:2 +n+2 ,
= 3 reG +
n

2
2n° —2n-—
+[——" = 2}12:-3 G’

n

2
n
2-n 2+4n 1+3n
B AT ASE R 4
—Re(—) " a{ r -y "+
2 n+1
; 1+2n 3+2n ) 2+42n
=Tl n—
—| o=y " + r " F
n+l n
B 143n 2+4n
+ rto—p R aZFi} +
n+l1



2
nr4F01v - —(n2 -n+ l)r3F6"+
n

(4:13 - 4:12 +n+ 2)

2
n

3 2
(411 —4n +n+2) (2”2_2"_21 2 3
r+ (¢4

r +(2rl—4)a2r4 I8

[35]

(3.8B)

2
11V - —(nz -n+ l)r3Gl’"+
n

2
n

4n3—4n2+n+2 2n2—2n—2 231 .,
5 r+ a"r” oG
n n

3 2
4n” —4n” +n+2
: ]rz +(2n- 4)a2r4}G{'

2-n 2+4n 1+ 3n
k n
_(_) n o r n —r n F6f+
2 n+t
1+ 2n 3+42n 2+ 2n
n n—1
r oy n F6+ r FO
n+1 n

Appendix C

® Dimensioniess variables and parameters are
defined as follows

r z w u
= ,Z,=_ ,w'=— ,u':—
d d c ¢
G Y ct p
GI=_ Y\{lI:___ ’t/= 1pl=_—
2 2
cd d pc
A 2md
£ = , 0= —
d A
on
. ndn
Re = p
m
n-=1
2
d 2
0= — 0

(r?p] % d (E)p}
oz /0 pcz dz /0
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Abstract

In this paper, the peristaltic flow of rheologically complex physiological fluids when modelled by a
non-Newtonian Casson fluid in a two-dimensional channel is considered. A perturbation series
method of solution of the stream function for zeroth and first order in amplitude ratio is sought. Of
interest is the difference between peristaltic transport of Newtonian and non-Newtonian fluids. It
is found that Newtonian fluid is an important sub-class of non-Newtonian fluids that may
adequately represent some physiological phenomena. Analytical and numerical solutions are found
for the zeroth and first order in stream function and compared to well-documented research in the
literature. It is shown that for a Casson fluid, when certain approximations are made in the most
generalised form of constitutive equation, the fluid may be adequately represented as an

improvement of a Newtonian fluid.

Keywords Mathematical Modelling, Casson Fluid, Peristalsis, Perturbation Series Method

INTRODUCTION

As mentioned in an earlier paper in this sequel Mernone and Mazumdar[1] peristalsis is the

phenomenon in which a circumferential progressive wave of contraction or expansion (or both)

" Corresponding Author:A.Mernone
email: amernone @maths.adelaide.edu.au



propagates along a tube. If the tube is long enough, one might see several identical waves moving
along the tube simultaneously. Peristalsis appears in many organisms and a variety of organs.

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid
transport in many biological systems. In particular, peristaltic mechanisms may be involved in
urine transport from the kidney to the bladder through the ureter, the movement of chyme in the
gastrointestinal tract, the transport of spermatozoa in the ductus efferentes of the male
reproductive tract and in the cervical canal, the movement of ova in the fallopian tubes, the
transport of lymph in the lymphatic vessels and in the vascomotion in small blood vessels.

These flows also provide efficient means for sanitary fluid transport and are thus exploited
in industrial peristaltic pumping and medical devices, for example, industrial applications of
mechanical roller pumps using viscous fluids in the printing industry and the peristaltic transport
of noxious fluid in the nuclear industry. In addition, peristaltic pumping occurs in many practical
applications involving biomedical systems. Many modern medical devices have been designed on
the principle of peristaltic pumping to transport fluids without internal moving parts, for example,
the blood in the heart-lung machine.

The main motivation for any mathematical analysis of physiological fluid flows is to
ultimately have a better understanding of the particular flow being modelled. If there is similarity
between the results obtained from the analysis and experimental and clinical data, then the
mechanism of flow can at least be explained. Because peristalsis is evident in many physiological
flows, an accurate mathematical study can help explain the major contributing factors to many
flows in the human body. When comparing results between the mathematical model and the

experimental and clinical data it is desirable that the data obtained from experimental research be as



close as possible to the actual physiological parameter being analysed. That is to say, it may be
necessary to take into account the effect of the measuring instrument or device or procedure has on
the data obtained.

The study of the mechanisms of peristalsis, in both mechanical and physiological
situations, has become the subject of scientific research for quite some time. Since the first
investigation of Latham[2]several theoretical and experimental attempts have been made to
understand peristaltic action in different situations. Interest in peristaltic pumping has been quite
recently stimulated by its relevance to ureteral function. As reliable and accurate urometric
measurements became available through the work of Kiil[3]and Boyarsky[4] several hydrodynamic
models of ureteral function invoking peristalsis were attempted. The earliest models by Shapiro[5],
Fung[6] and Shapiro, et al[7] were idealised and represented the peristalsis by an infinite train of
sinusoidal waves in a two-dimensional channel; thus they could pretend to only a qualitative
relationship with the ureter. These models concerned themselves, in part, with offering an
explanation of the biologically and medically important phenomenon of ‘reflux’. One manifestation
of this reflux is that bacteria sometimes travel from the bladder to the kidney against the mean urine
flow. A similar phenomenon has been observed in the small bowel. These observations are
puzzling because the travel times are too small to be explained by diffusion and also because
retrograde peristaltic waves have not usually been observed. Later, Lykoudis[8]and Weinberg, et al
[9] proposed models that represent ureteral waves more realistically. Fung[10] investigated the
coupling between the forces of fluid-mechanical origin and the dynamics of the ureteral muscle.

Some of these models showed that observed urometric pressure pulses and flow rates could be



accounted for by assuming internal dimensions of the ureter which seem physiologically plausible.
But ureteral physiology has not been the only motivation for the study of peristalsis.

Burns and Parkes[11] and Hanin[12] contributed to the theory of peristaltic pumping
without reference to physiological applications. Barton and Raynor[13] made a calculation based
on peristalsis theory of the time required for chyme to traverse the small intestine and found that
this calculation compared favourably with observed values. In addition, Fung[10] studied
peristaltic flow taking muscle action in the tube wall into account. Some new examples of
peristalsis were given in Liron[14]. Considerable experimental investigations of peristaltic pumping
have also been undertaken, for example, Latham[2], Mank[15], Shapiro and Latham[16],
Eckstein[17[, Weinberg[18] Weinberg, et al[9], Yin and Fung[19] and Hung and Brown[20]. Most
of the theoretical investigations have been carried out by assuming blood and other physiological
fluids behave like a Newtonian fluid. Although this approach may provide a satisfactory
understanding of the peristaltic mechanism in the ureter, it fails to provide a satisfactory model
when the peristaltic mechanism is involved in small blood vessels, lymphatic vessels, intestine,
ductus efferentes of the male reproductive transport and in the transport of spermatozoa in the
cervical canal. It has now been accepted that most of the physiological fluids behave like non-
Newtonian fluids. But it appears that no quantitative rigorous attempt has been made to
understand the problem of a non-Newtonian fluid before the investigation of Raju and
Devanathan[21] in the case of small wave amplitude. Subsequently, Srivastava and Srivastava[22]
investigated the problem of peristaltic transport of blood assuming a single layered Casson fluid
and ignoring the presence of a peripheral layer. Later on, Srivastava[23] considered the

axisymmetric flow of a Casson fluid in a circular non uniform tube. More recently, Siddiqui,et al



[24] investigated peristaltic motion of a non-Newtonian fluid modelled with a constitutive equation
for a second order fluid for the case of a planar channel. A perturbation series was used
representing parameters such as curvature, inertia and the non-Newtonian character of the fluid.
Tang and Rankin[25] proposed a mathematical model for peristaltic motion of a nonlinear viscous
flow where they used an iterative method to solve a free boundary problem. Das and Batra[30]
studied the fully developed, steady flow of a Casson fluid through a curved tube for small values of
Dean number. A plug core formation region at the centre is considered where the shear stress in not
sufficient to exceed the yield value. Elshehawey et al[31] consider the problem of peristaltic
transport of a non-Newtonian (Carreau) fluid in a non-uniform channel under zero Reynolds
number with long wavelength approximation. The problem is formulated using a perturbation
expansion in terms of a variant of Weissenberg number. They find that pressure rise and friction
force are smaller than the corresponding values in the case of uniform geometry. However, in the
present paper we propose to study peristaltic transport of physiological fluids in a planar channel
using the most generalised form of constitutive equation, for Casson fluid, as given by Fung[26].
The final analysis is done by using a perturbation method in the same way as was done in our
previous paper, Mernone and Mazumdar[1]. To the author’s knowledge the use of this generalised
equation has not been considered previously in the literature.

PROBLEM FORMULATION

Dimensionless Variables in a Two dimensionalChannel
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Figure 1:Peristaltic flow in a Two-dimensional Channel
Statement of Problem
Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson fluid in a two-
dimensinal channel, where, d, is the undeformed width of the channel and the channel is considered
to be infinitely long; A, represents the amplitude of the sinusiodal waves travelling along the
channel at velocity c; A, is the wavelength (Figure.1). A rectangular co-ordinate system is chosen
for the channel with x along the centre line and y normal to it. Let u and v be the longitudinal and
transverse velocity components, respectively. It is assumed that an infinite train of sinusiodal
waves progresses along the walls in the x direction. The vertical displacements for the upper and

lower walls are G and -G for peristaltic flow at time t, where G is defined by,
2
Gx.t) = Acos%(x —en) (1)

We assume that there is no motion of the wall in the longitudinal direction(extensible or elastic

wall).



For the case of peristaltic pumping of a Casson fluid in a planar channel the stress-strain relationship in

tensor format is given by Fung[26] as

o, =-p8 +2u(J,)V. (2)

where
I I B 1 I 2 ’
I 2R P e UL e o Lol !
u(Jz)— (n J2)4 +2 1 Sy = +2 %1204 = o+ fl,7 | = pisay) (3)
Here we have denoted
L LI
a=n* : B= 2 21y5 (4)

where 1 is the Casson coefficient of viscosity, and Ty is the yield stress

Here,
v 1| ou auj ;
= | g
io2 ‘?x,.- c?xl, 2
and
1 L2 2 2
J =—V,,V_,=—(v +V 242V ) (6)
2 9 gl 2 12
where
v =Py =Py -y =l[@+ﬂ)
Nogel 2 gyt 2lgy ax

Mathematical Modelling of a Casson Fluid in a Two-Dimensional Channel
Substituting equations (2-6) into the basic equations for continuity and momentum respectively
given by

divg =0 (7)

and



p=—====0 (8)

we have

which, using continuity reduces to

du du  du) dp ou ou o 2
S s )T s[5 g Y
Similarly,

Defining a stream function asu = v, and v = -y _we obtain from equations (9) and (10)

respectively
v, afr o
p(wy,+wyww wxwyy)— Sty v, -y reVY, (1)
and
J 2
p(—wx, A wxwxy) = —-9% —2 Y+ ux(wyy - wn) -uVy (12)

d d
where Bo= g[,u(Jz )] and /iy = 5[#(12 )]
Solution Procedure( Zeroth Order Approximation)
: . o A ) A
Expressing stream function, y, pressure, p, and 4 as a series in terms of amplitude ratio € = 7

where A is the amplitude and ,d, is the undeformed width of the channel, (Figure 1), we have

Y=y t+ey + 82l/12 + 0(83) (13)



p=p0+£pl+82p2+0(£3) (14)
K= H,+El +82/12 + 0(83) (15)
where it is assumed that v, is a function of y only, ie, v, = l//o( y), because of zeroth order axial

pressure gradient. We finally obtain from equations (11 & 13-15) after collecting coefficents of e’

8p0
E = 2'UOXWOyX N ‘HOyWOyy B uOyWOxx M HOWOXX)' + ‘uOWOyyy
i =
that is, . uoywoyy + “o"’om (16)
Therefore

b, 9
0 -
5= 5 v, 7)

We now need to find the zeroth order expression for K, = ,u(Jz )0

From equation (6) and expanding and substituting we have

s=H{ET )53 s v)

“fo o))

Therefore we have, after introducing equations (13, 15 and 18)
i 2

W)= {ar ] S, Pv2ew, v, v )| o (19)

Oyy " " lyy

Neglecting O(&?) and higher in equation (19) and expanding we have
q
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u(s,) = {a + ﬂ(ﬂ_% WOyy—%(l - gwoyy—l(wl . wlxx))Jz (20)
Which after further expansion and collecting terms in amplitude ratio for the first two terms and
using equation(15) yield equations for H, = /L(JZ)O and H = u(]z)l as
H, = o’ + Zﬁaﬁwoyy‘% + Zﬂzq/oyy" (21)

3
_ = 2 -2
b= —aﬂﬁwoyy 2(vflyy —u/m)—zﬂ Yoy (wlyy -'//m) (22)

Solving equation(15) by using equation(19) and applying the symmetry boundary condition

l//oyy(O) = 0 we have

Ky+L=uy,

where K = pm% and L =2p" e
Our equation to solve for y (y)then becomes

azwoyy + 2J§aﬂw0yy% -Ky=0 (24)
If we set

Vo, =W (25)
then equation(24) becomes a quadratic in W as

a* W +22aBW — Ky =0 (26)
whose roots are given by

W= —ﬁg—ié-JmI}; @7

Using equation(25 & 27) we obtain



v =(—ﬁ§iéJ2ﬁ2+Kyj (28)

Oyy

But the symmetry boundary condition l//oyy(O) = 0 demands only the positive sign to be valid,

therefore

v =[—ﬁ§+$\/2ﬂ2+1@) (29)

Oyy

Integrating equation(29) twice we obtain

(2;32 + Ky)% +Ay+B (30)

25 2, K N 828
o 6a®”  15K%a’
Where A and B are constants of integration.

Using the boundary conditions _ (1)=0 and v (0)=0
Oy 0

we find

_42B > 48 K

A= 3a2K(2ﬁ2+K)5_7_W D
8+/2 3

Ifwelet  —> 0 thatis T, > 0 from equation(4), we obtain the Newtonian case in the form

which coincides with the literature, Fung[6].

We now seek to determine the dimensionless pressure rise, Apo, where

Ldp
Ap, = {Efidx (33)

11



The flow rate, q, is given by

| 1
d
g=[udy=[Ldy=yn)-y© (34)
0 0 (9))

therefore from equations(30-32)

2 K 4f
(12

A
302 3 K(zﬂ K= s

() -y(0)=~

Applying expansion gives

28° K 16ﬁ

q:
az 3a2 3aK

(36)

Separating the pressure gradient after solving for quadratic in K, and using equation(23) gives

%P,
o p«/_ pr

Hence using equation(33) pressure rise is

——3 29— 6p* 9aq? +1008* - 360%q B> (37)
£y

1 W ol o a2y, 1 4 2 4 2 a2
ApO———pmjo{ 2(3a 6/3)452@11 +1008* - 36aqp }dx

because — —;—(3052 —63° ) + %\/9a4q2 +1008" - 3602 gB* = constant (38)

1 1 2 2y, 1 4 2 4 2 p2
Ap =__{—— 307 — 65%) £ —[9aq? +100B* - 36024 }
i 2

However, the condition 8 =0, implies that only the negative sign of the quadratic to be valid,

therefore

1 1, 2 2y 1 4 2 4 Y
Ap :—{—— 3 - 68%)— —/9a'q? +1008* - 360°qp } (39
0 0 /c3d 2( ) 2

This is graphically dipicted in Figure(2).

12
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Figure 2: Pressure Rise vs Flow Rate
Solution Procedure( First Order Approximation )

We now look at the procedure for determining v, (x,y.1).

The boundary conditions for v, (x,y,t) are derived as follows; Assuming that there is no horizontal

displacement of the tube walls during the peristaltic motion, the boundary conditions at the walls
are

(a) no - slip condition:u =0 at y = {d + G(x,1)]

3 (40a&b)
(b) impermeable condition : v = igG(x,t) at y = Hd + G(x,1)]

2 . .
Using G(x,t) = Acos%(x - ct) and equation (13) and non-dimensionalising as defined above we

obtain



14

v, = Oaty= i[l + ecos(;t(x - t)]
(41a&b)

_2mAc

w =%

X

2 -~ - -~
sin—/{i(x —ct)=Faesina{x—t)aty =i[l +ecosofx — t)}

The boundary conditions (41) can be written, using Taylor series expansions about
y = (1 + G) where here G = £cos &(x —1) as, after equating terms of the same order in &, on either side

of the equations, which gives

2

G
1)+ 1)+ — +
wy(_l)_Gu/yy(_l)+ 5 y/yyy(_l)

H+

o(¢*)=0

2
G B =
'Vx(il)iG'ny(il)+7'/’xyy(il) O(G )—+a£sma(x t)

(42a&Db)

+

Substituting equation (13) into equation (42) and collecting terms of the same order in €, gives
v, (£1)=0

v, ()Y (El)cosa(x—1)=0
wa (il) =0 (43)

Wlx(il) * y/Oxy(il) cos&(x —t)= i(}sin&(x —1)

and so on for higher order terms in €.
Taking the positive sign of the boundary conditions as given in equation (43) yields the boundary

conditions as

v ()=—-y. (eoso(x—1)
= = (44a&b)

v, (1)=-asina(x 1)

From these boundary conditions, it can be assumed that y (x,y,t) can be obtained in the form

y,(x.y.1) = f(y)cosalx — 1) + g(y)sinax - 1) (45)
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Eliminating the pressure terms in equations (11) and (12) by cross-differentiation and subtraction,

the following equation is obtained:

2 2 2 _ _ N
pVY +v Vi —y Viy)=dp v +2uy i W =V IR WL )

(46)
2 2 2 2
BV AV 2u Y W s )W Y IRV A VY

By substituting equation (45) for v, (x,,t) and equation (29) for l//o(y) into equation (45), and

collecting coefficients of cos &(x —t) and sin ofx - 1) on either side of the resulting equation, two
differential equations for f(y) and g(y) are obtained.

Due to the length and complexity of these equations approximate solutions are obtained by

. = ... 2md . N
assuming that the parameter, o , which is e is small. As a first approximation, the terms of

22 23
order o and higher can be neglected; as a second approximation, the terms of order & and higher

can be neglected and so on.

Hence the following equation is obtained from equation(45) by expanding in a pertubations series
as indicated in equations(13-15) after collecting terms of the first order

in amplitude ratio, €

[3 —
@A d(wlyyl * V/walyyx N Wlxwoyyy) B #Oyywlyy " ulyywoyy * zuOy ” 2/’Llywoyyy T Hy + 'UIWOyyyy

(47)

leyy leyyy

where u, Hoye Mo, and 1, By 1y, ATC extensive and complicated equations and are obtained from
equation (21) and equation (22) respectively, as follows,

3
— . —-= _9p2 -2
Hoy = e Yoy 2% 0y 2B Yoy Yoy G



3af > _3 2 3 2 2 .
Hoyy = 2 way 2W0yyy 20 Yoy 2u10y>'y)'+4[i Yoy Yoy -2p Yoy Yoy (49)
30([3 5 _3 2 -3 2 -2
MWl Voyy 2¥oyyYiyy = 208 Vopy ¥yt 4B Vo Vo Wiy ~ 28 W0y W (30)
_ 1508 7 308 5 6o 3
Fiy =~ 207 Yoy 2W0y)y Vi ™ N Yoy 2Voym¥ iy * 2 Yoy 2Yoy¥iyy = IaﬁWOw 2ll/lyy»
= -3 -3 _ -2
12ﬁ Woyy wayy iy +4ﬂ Yoy Yorm¥iyy +8ﬁ Yoy Yoy iy 2[3 Yoy Vipw
(51)

After substituting for the various terms in equation(47) and collecting terms and remembering the

approximation made on terms in the parameter, a, the following ordinary differential equation is

&f"sin(;e(x —1) —(;g"cost;(x -+

2 3 B N - -
p d {4'32 y+ k2 y2—4ﬁ\/_(2[3 +ky)2 +A:|(—af”sina(x—t)+ag”cosa(x~t)j>=
1 o 2a 3ka

) . ~ B 2
_(_afsina( x—t)+agcosax t))4k2 7Y
o
5
£ 2ﬁvr' E
— (2[3 +ky) -I =
o?
3

2ot |

4 (X

{ Ky ] f’cos(;( -t)+g” sma —t)

l_’—1

] f"" cos a( ~1t)+ g"”sin a(x - t)

2

Bla
o (f'vcosa(x—t +g' sma(x—-t)]

3

K2 %> \aB( .. 4B | k Zﬁwf_ ’
( - y]ﬁ(f cosa(x—t)+g sma(x-—t))l:?+?y 2 (2[3 ky) +

4a2ﬁ2 16[340(2

2 Ylap o o L=
ap\2 %+§y—2ﬁ22(2ﬁ2+ky)2:| (f'vcosa(x—t)+g'vsina(x—t))

(04

(32)

where the constant A is given in equation(31).
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Collecting coefficients of cos ofx - 1) in equation(52) gives

3 2
oL 4B ko 4B s ( j () i
ccdi-ag’+ + - 2B +ky|2 +A|ag” |- o 5=
p { 8 L{z Yo 7Y 3ka2(ﬁ ky) g 8 ) )

5
i ]
Ky V(e84 , & 262 i
4p’a ]U )2«5_0(2 e (Zﬂ ky) |
3
1 [ 5 13 .
4;2'—}“2](1"”)@\5 Bty g et | (s 52
) ) 3
ST 778 Tl R
40*B* 16ﬁ4a2y V2 o’ szy

22 o | ()

4% &k
ap\2| 5+ =
B [ e
Collecting coefficients of sin gc(x —1) in equation(52) gives

) . 3 2
P CSd{af"—|:4(fz yt k2y2_4ﬂ\/—(2ﬁ +ky)2+A}(af”) [ f) ﬂkazy}z

20 3ka

2ﬁ«f(2ﬂ +ky) :

2
4ﬁ2052 242 o o

k
—5 -

4[3205

2
Lz](g”’)aﬂﬁ % +—

Zﬂ«f(zﬁ +ky)l 2+a2(giv)_

(54)

2B«/—(2[3 +ky) } 2+

g3 ygp—(g”)ﬁwLLy
4azﬂ2 16,640(2 V2 o ot

208 o | ()

2
aﬁﬁ{iﬁz— + k2 y-
a”
The equations for f(y) and g(y) can be simplified by assuming that the Reynolds Number

associated with the present model is small, where the associated Reynolds Number is given as
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Re = pvc'd (55)

Therefore,

fo=rf{y)+ Re? 1, (y) + higher order terms in Re
’ : (56)
g(y)=Re gl(y) +Re g3(y) + higher order terms in Re

Hence, evaluating equation (53) and equation(54) with equation(56) and equating equal terms in

Reynolds Number the following ordinary differential equations are obtained for f (y) and g, (y)

respectively,

) =
oy " 308 | 482 2;3«/_ L2
o )(f )M{ et e el R D

3

|1s
_ky__.j(fo”)aﬂﬁ[ia%i+;2y 2[3\/—(2[)' +ky) } 2 +a2(f0iv)_

4[32(12
(7)

3
k2

33 o 4Bk 2BN2 [, 2 ,_llmi
e PR ){77%7(2’3 +Bff| '+

1
L
aﬁﬁ[%+§y_2ﬂ‘/—(2ﬂ +ky) } z(foiv)z()




: k2 4p2 : ¢
o[ ot oo a5 )

§
g W[ﬁ%— B o]
|
e

(04

3

S
3

22 2 33 yjjg(gr)[%+;2y 2[3xf_(zﬂ ky) ] 2 .

16,340t2

LA i

From equation(44) the boundary conditions for fo(y) and g,(y) are given as

L®=0 £O=0 f)=1 ==y,

, ” (59)
8,(0)=g0)=g =g 1H)=0

The analytical solution to equation(57) is found by using the text[38].

19

Reducing equation(57) to a second order equation and then integrating twice the solution is

found. Comparing our reduced second order equation to and using part 28 on page 134 of text[38]

with their notations

by 3
k43(xﬁ(4—ﬂ;J 2% 3% ﬁ[ B J 0 k aﬁ[4f ] .
o

where, A = B= C=

2V2(4p%%) 168°’ 242 a2p%a’

1
N |-

!-:=a2+\/§ocﬁ[4 ,-] o (60)
o 4
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Consequently, with w, = fo" equation(57) reduces to

w(')’——yw(’)+—{Ay2 + By~ Clw =0 (61)
Then following through the analysis they describe where
is the root of the quadratic(see pagel134 of text[38])
(63)

D
4s2+2as+(x=0,a=—E,b=0

It is found that if we consider the first two terms of the series,

Wy = f0”= exp(hy) exp(sy2 )z(é) where z(E)is found in Table2.2 page 143 of text[38]

1
2\ | a+— 2\
SO TN 1 O Y G N ] B
= exp(hy)explsy™ )1 ‘*E(b),, | ”Z{ ),
where
1
w)=Ea k)
(LITH 2bhtb (63)
L o
al

& a,l,k’g ) is the degenerate hypergeometric solution and is found on page143, part 103
> p

and page137, part 65 of [38].
Subsequently, the solution to equation(57) and hence equation(64 & 65), after applying

symbolic integration twice using MATLAB v5.3 is very intricate and given in Appendix A.
Numerical solutions of equations (57) for fy(y) and (58) for g,(y) result in the plot in Figures(4-7).

Figure (4) shows a comparison of fo(y) with other models[21]. Figure (4) shows the curves for



fo(y) and foi( y) with varying values of yield stress.
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That is, g is gradually varied between zero and

unity. Figures (5-7) show curves for g,(y) and gl’(y) with varying values of yield stress and

various values of wave number. Figure(8) gives a plot of the function, y vs X, where x = x —ras

derived in this paper from equations(13), (30-32), (45) and (56), which are very similar to plots

given in [21].
1.2
L fo(y) vs y
0.8 1
fo(y) 0.6 1
0.4 7T —-—--f0(Power Law,
Ref.[21])
— — —-f0(Power Law,
0.2 1 Ref.[1])
fo(Casson-present
study)
0 1 } i t t f t t i
0 0.1 0.2 0.3 0.4y 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Comparing f, vs y with [21]

When comparing the values of our Casson model in Figure 3, obtained from numerical integration,

of the first order in stream function with those of the power-law model of Mernone &

Mazumdar[1] and Raju & Devanathan([21] the results are similar but noticably different. The

Casson model indicating the effects of the yield stress and Casson viscosity on the stream function.
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However, there are a similarities between the two models in form. Initially the two models coincide

then diversify with as increasing values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

Figure 4:f0(y)&f0'(y) with , fo'(1)=—1(ﬁ=0), ......... fo'(1)=—0.5,—.—.—fo'(l)=—0.1(ﬂ: )

When considering the fy(y) and fo'(y)in Figure 4 it is found that as the yield stress f is gradually

varied between zero and unity; the effects on both fi(y) and fol(y)are noticable and significant. It

appears that the maximum value for fol(y) is shifted slightly to the right.



__4 I L 1 L 1 ] 1 1 N
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Figure 5: g (y)& g (W with £, ()=~1: _3=02,....&=04,-.~&=0.6,---&=038
x107°
3 T T T T T T T T T

Figure 6: gl(y) & gl,(y) with fo,(l) =-0.5: 0=02,...8=04,—-a0=06,——-a=08
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25 1 1 L 1 | 1 1 1
“o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

Figure 7: ¢ (y) & gl’(y) with fo'(l) =-0.1: a

I
I~
»

....... =04,—-0=06,-—-a=028
Similarly, in Figures 5-7 when considering the functions g;(y) and gl’(y) we find that the wave
number & has considerable affect on the curves. It appears that as the yield stress g is gradually

varied between zero and unity, and therefore the value of fol(y) = —woyy(y), there is a shift in the

size and shape of the left side and right side in the curve representing gll(y). There seems to be a
reversal in the location of peaks between the right side and left side. It is of interest to note that the
points of inflection occur in exactly the same location when considering each of the respective
graph of g,(y) and gl'(y). As the yield stress f is gradually varied between zero and unity the
points of inflection are shifted slightly to the right. The numerical values obtained for fo(y) and

fo'(y), and g;(y) and gl'(y) are indicative of the validity of the perturbation analysis used

throughout this research as indicated in equation (45). It is seen that the order in magnitude of fo(y)

is very much greater than that of g;(y) as is suggested by the perturbation method. From the



25

numerical calculations we find that the change in behaviour of the streamfunction occur depending

on many parameters, including K, & c, B, R ,and €. Just for the sake of understanding peristaltics,

we have taken some basic values of the parameters, with &=0.01.

0.04
Stream Function
0035 + LT,
7 N,
/ 7NN \
0.03 + ’ ' Y
/ 7 A
/7 \ N
/!' '/ ‘\\
0025 / h
“\ / ! L ‘\ \‘\
7 .= -"\_ 2
N\ v o RN
0.02 + o 7 . AVRN
\ \ / i " St \ *
\ \ ’ ‘\ Ol
\ // = . \ \
‘\ \\\ ”~ /' ‘\ \ '\
0015 T ‘\. . "-..._.‘:’,/ ‘/' ‘-‘ \\
\‘ \“-_" g /’_\\ ' Y ~
\‘. ’,' ,’—- \\ -“\‘
TR g -~ \\ = N
0.01 < - ~<
. \\~ /’/ ~ -
~ ’/’ \\\.._.
0005 +
0 } } } } } } { t } {
-1.57 -0.785 0 0.785 1.57 2.355 3.14 3.925 4.71 5.495 6.28

Figure 8: Plot of function w vs x as given by equations (30-32, 45 & 56)

When we consider Figure (8), which is a plot of the function y given by equations(13 and 30) and
equations(45 and 54) and selecting e=0.01; for the case of high pressure gradient, with _

representing v (y=0.1), ---- representing v, ., ..... representing v o, -~ representing v, and -

.~.~tepresenting v ,(y=0.9); it is found that the curves for streamfunction y run parallel to the
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axis of the channel when considered near the axis(y=0.1), whereas considerable deformation is
observed when they are considered near the boundary(y=0.9). Perhaps a possible explanation for
this sort of behaviour of the streamlines can be given by considering the region as consisting of two
parts - a central core and a boundary layer region. As the pressure gradient increases, we find that
the streamfunction y in the central region are more influenced by it, than by the motion of the
boundary and hence the values for the streamfunction run parallel to the axis, while in the region

near the boundary the flow is influenced by both the wave and the pressure gradient.

CONCLUSION

In this research it is found that for the Casson model the governing partial differential equations are
indeed extensive and complicated. If however we use the fact that the zeroth order perturbation in
stream function is a function of the axial coordinate only, because the zeroth order axial pressure
gradient is constant, we find that the Casson model may be quantitatively expressed as a
Newtonian model (Figure 2 ).

It is found that in the zeroth order approximation in stream function that there is a
dependence on the Casson coefficient of viscosity, yield stress, the density of the fluid, the wave
speed and the dimensions of the channel.

When considering this approximation in ther zeroth order stream function, results show the
difference between Newtonian(dashed line) and non-Newtonian(bold line) in Figure 2 seems to be
slightly significant, and consistent with that of a Newtonian model, with slight anomalies at very

low and very hiogh flow rates.
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However, we see that for the first order in stream function the differential equation to be
solved is complex, and the analytical solution derived from symbolic integration is more so.

The values for the first order in streamfunction are indicative of the perturbation method
used and results in Figures(4-7) are consistent with that given the literature.

This modelling is appropriate as it may allow insight into the validity of the reduction of
the complexity of modelling some non-Newtonian fluids like flow of urine in the ureter and blood
flow in the blood vessels under certain physiological conditions.
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where C, .C,.C,,C, are constants of integration determined by the boundary conditions in

equation(66).

where Q= D—-4sE and
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Biomathematical Modelling of Physiological Fluids using a Casson

Fluid with emphasis to Peristalsis.
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Abstract

In this paper, the peristaltic flow of rheologically complex physiological fluids when
modelled by a non-Newtonian Casson fluid in a two-dimensional channel is considered. Of
interest is the difference between peristaltic transport of Newtonian and non-Newtonian
fluids. A perturbation series method of solution of the stream function in amplitude ratio is
sought. It is found that Newtonian fluid is an important sub-class of non-Newtonian fluids
that may adequately represent some physiological phenomena. It is shown that for a
Casson fluid, when certain simplifications and approximations are made in the most
generalised form of constitutive equation, the fluid may be adequately represented as an

improvement of a Newtonian fluid.
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INTRODUCTION

As mentioned in Mernone and Mazumdar®

peristalsis is the phenomenon in which a
circumferential progressive wave of contraction or expansion (or both) propagates along a tube. If
the

tube is long enough, one might see several identical waves moving along the tube simultaneously.
Peristalsis appears in many organisms and a variety of organs.

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid
transport in many biological systems. In particular, peristaltic mechanisms may be involved in
urine transport from the kidney to the bladder through the ureter, the movement of chyme in the
gastrointestinal tract, the transport of spermatozoa in the ductus efferentes of the male
reproductive tract and in the cervical canal, the movement of ova in the fallopian tubes, the
transport of lymph in the lymphatic vessels and in the vascomotion in small blood vessels.

These flows also provide efficient means for sanitary fluid transport
and are thus exploited in industrial peristaltic pumping and medical devices, for example, industrial
applications are mechanical roller pumps using viscous fluids in the printing industry and the
peristaltic transport of noxious fluid in the nuclear industry. In addition, peristaltic pumping occurs
in many practical applications involving biomedical systems. Many modern medical devices have

been designed on the principle of peristaltic pumping to transport fluids without internal moving

parts, for example, the blood in the heart-lung machine.



The main motivation for any mathematical analysis of physiological fluid flows is to
ultimately have a better understanding of the particular flow being modelled. If there is similarity
between the results obtained from the analysis and experimental and clinical data, then the
mechanism of flow can at least be explained. Because peristalsis is evident in many physiological
flows, an accurate mathematical study can help explain the major contributing factors to many
flows in the human body. When comparing results between the mathematical model and the
experimental and clinical data it is desirable that the data obtained from experimental research be as
close as possible to the actual physiological parameter being analysed. That is to say, it may be
necessary to take into account the effect the measuring instrument or device or procedure has on
the data obtained.

The study of the mechanisms of peristalsis, in both mechanical and physiological
situations, has recently become the subject of scientific research. Since the first investigation of
Latham ! several theoretical and experimental attempts have been made to understand peristaltic
action in different situations. Interest in peristaltic pumping has been quite recently stimulated by
its relevance to ureteral function. As reliable and accurate urometric measurements became available
through the work of Kiil’and Boyarsky® several hydrodynamic models of ureteral function
invoking peristalsis were attempted. The earliest models, Shapiro*, Fung’ and Shapiro, Jaffrin and
Weinberg® were idealised and represented the peristalsis by an infinite train of sinusoidal waves in a
two-dimensional channel; thus they could pretend to only a qualitative relationship with the ureter.
These models concerned themselves, in part, with offering an explanation of the biologically and
medically important phenomenon of ‘reflux’. One manifestation of this reflux is that bacteria

sometimes travel from the bladder to the kidney against the mean urine flow. A similar



phenomenon has been observed in the small bowel. These observations are puzzling because the
travel times are too small to be explained by diffusion and also because retrograde peristaltic waves
have not usually been observed. Later, Lykoudis’and Weinberg, Jaffrin and Shapiro® proposed
models that represent ureteral waves more realistically. Fung’ investigated the coupling between
the forces of fluid-mechanical origin and the dynamics of the ureteral muscle. Some of these models
showed that observed urometric pressure pulses and flow rates could be accounted for by assuming
internal dimensions of the ureter which seem physiologically plausible. But ureteral physiology has
not been the only motivation for the study of peristalsis.

Burns and Parkes'® and Hanin'! contributed to the theory of peristaltic pumping without
reference to physiological applications. Barton and Raynor'? made a calculation based on
peristalsis theory of the time required for chyme to traverse the small intestine and found that this
calculation compared favourably with observed values. In addition, Fung’ studied peristaltic flow
taking muscle action in the tube wall into account. Some new examples of peristalsis were given in
Liron"®. Considerable experimental investigations of peristaltic pumping have also been undertaken,
for example, Latham!, Mank'4, Shapiro & Latham'3, Eckstein!®, Weinberg” Weinberg8 etal, Yin &
Fung'® Hung & Brown'®. Most of the theoretical investigations have been carried out by assuming
blood and other physiological fluids behave like a Newtonian fluid. Although this approach may
provide a satisfactory understanding of the peristaltic mechanism in the ureter, it fails to provide a
satisfactory model when the peristaltic mechanism is involved in small blood vessels, lymphatic
vessels, intestine, ductus efferentes of the male reproductive transport and in the transport of
spermatozoa in the cervical canal. It has now been accepted that most of the physiological fluids

behave like non-Newtonian fluids. But it appears that no quantitative rigorous attempt has been



made to understand the problem of a non-Newtonian fluid before the investigation of Raju &
Devanathan?® in the case of small wave amplitude. Subsequently, Srivastava & Srivastava®!
investigated the problem of peristaltic transport of blood assuming a single layered Casson fluid
and ignoring the presence of a peripheral layer. Later on, Srivastava?? considered the axisymmetric
flow of a Casson fluid in a circular non uniform tube. More recently, Siddiqui, Provost &
Schwarz? investigated peristaltic motion of a non-Newtonian fluid modelled with a constitutive
equation for a second order fluid for the case of a planar channel. A perturbation series was used
representing parameters such as curvature, inertia and the non-Newtonian character of the fluid.
Tang and Mankin®* proposed a mathematical model for peristaltic motion of a nonlinear viscous
flow where they used an iterative method to solve a free boundary problem. Das & Batra® studied
the fully developed, steady flow of a Casson fluid through a curved tube for small values of Dean
number. A plug core formation region at the centre is considered where the shear stress in not
sufficient to exceed the yield value. Elshehawey>’et al consider the problem of peristaltic transport
of a non-Newtonian (Carreau) fluid in a non-uniform channel under zero Reynolds number with
long wavelength approximation. The problem is formulated using a perturbation expansion in terms
of a variant of Weissenberg number. They find that pressure rise and friction force are smaller than
the corresponding values in the case of uniform geometry. However, in the present paper we
propose to study peristaltic transport of physiological fluids in a planar channel using the most
generalised form of constitutive equation, for Casson fluid, as given by Fung?®’. The final analysis is
done by using a perturbation method in the same way as was done in our previous paper, Mernone
& Mazumdar®. To the author’s knowledge the use of this generalised equation has not been

considered previously in the literature.



PROBLEM FORMULATION

Dimensionless Variables in a Two dimensionalChannel
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Figure 1: Peristaltic flow in a Two-dimensional Channel

Statement of Problem

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson fluid, which is
viscous and incompressible in a two-dimensinal channel, where, d, is the undeformed width of the
channel and the channel is considered infinitely long. A, represents the amplitude of the sinusiodal
waves travelling along the channel, 4, is the wavelength and they are travelling at velocity, ¢

(Figure.1). A rectangular co-ordinate system is chosen for the channel with x along the centre line



and y normal to it. Let u and v be the longitudinal and transverse velocity components,
respectively. It is assumed that an infinite train of sinusiodal waves progresses along the walls in

the x direction. The height of the wall for peristaltic flow at time t is defined by,
G(x,t) = Acos%{-r—(x —ct) 1)

We assume that there is no motion of the wall in the longitudinal direction(extensible or elastic

wall).

For the case of peristaltic pumping of a Casson fluid in a planar channel the stress-strain relationship i

tensor format is given by Fung® as

i ~p9, +2u(12)VU (2)
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where 1 is the Casson coefficient of viscosity,

T s the yield stress
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Mathematical Modelling of a Casson Fluid in a Two-Dimensional Channel

If we use the basic equations for continuity and momentum we have

divg =0 continuity equation 7
Dg, d .
— = —— (0. momentum equation 8
P = o5 Ci q (8)

J

Substituting equations (2-6) into equation (8) our momentum equations become, after defining a

stream function,as u=y and v=-Yy
y X
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A Method of Solution of a Casson Fluid in a Two-Dimensional Channel

Expressing stream function, ¥, pressure, p, and u expressed as a series in terms of amplitude ratio

A : . . . .
€= L where A is the amplitude and ,d, is the undeformed width of the channel, (Figure 1), we

have
y/=w0+gwl+£2y/2+.“ (11)
p=p,+ep +Ep,+.. (12)
li=ﬂo+8#1+82#2+--- (13)

Where it is assumed that v, is a function of y only, ie, v, = I/IO( y), because of zeroth order axial

pressure gradient, we finally obtain from equations (9 & 11-13) after collecting coefficents of g’
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P,
Eua HoVor T Ho¥ 05 (14)
Therefore
o, 9
o - 5 (/JO‘//O”) (15)

We now need to find the zeroth order expression for i, = ,u(JZ)O

From equation (6) and expanding and substituting we have

S EREE e



{w +o{v,-v )2} (16)

Therefore we have, after introducing equations (11, 13 and 16)

o)-

1 2

1 4 17
o+ Z(WOy ¥ (ley XX)+ &4

O(e?)
Neglecting O(&?) and higher in equation (17) and expanding we have
ZEAR

1
+B LYoy Sl . -v )
* 4 WOyy WO)‘)’ ley Wlxx

2

(18)

Expanding equation(18) and collecting terms in amplitude ratio for the first two terms and using

eqaution(13) we obtain equations for M, u( ) and K, ,u( )
!
B = o’ + 2ﬁaﬂw0yy-5 + 2ﬂ2w0yy“ (19)

=—OC[3«/—l//0yy ( lyy Wlxx)_

(20)
ﬁ way ( lyy _wlxx)

10
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Solving equation(15) by using equation(19) and applying the symmetry boundary condition

KytA=pnyw,

where
l/’Oyy(O) =0 we have . pmipg (21)

ox

and A = constant of integration = 23
Our equation to solve for 1//0( y)then becomes

i

2 ol —_—
oy, + 2ﬁa/3q/0yy2 Ky=0 (22)
If we set
!

llloyy - W2 1, Woyya =W (23)
Equation(22) becomes a quadratic in W as
W2 +2-20BW - Ky = 0 (24)

whose solution is given by

W=—«/_2_§i—(1;w/2ﬂ2+l(y (25)

Using equation(23) and equation(25)

(5Bl hFar)
W _( ﬁaianﬁ +KJ) (26)

Oyy
But the symmetry boundary condition l//Oyy(O) = 0 demands only the positive sign to be valid,
therefore

(L L) @

Integrating equation(27) twice we obtain

v

Oyy
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28* K
l/lo(y)= ﬂ2 y2+ 2}’3—

o 6 (28)
821 2

T (28° +Ky): + Ay + B

Where A and B are constants of integration.

Using the following boundary conditions vloy(l) =0 and l//O(O) =0

we find
428 2 4 K
G e v o
823 3
SRTTo 28°) (30)

Ifweset f>0= . — 0 from equation(4) we obtain the Newtonian case in the form

v, (v)= —2%2[ = l;_)

which is as recorded in the literature, Fung®. We now seek to determine the dimensionless pressure
rise, Apo’ where

' (9;:0
—dx (31)

Ap
0 5 ox

The flow rate, g, is given by

G Gaw
= |ludy = | —d
A (32)
where G = €ecosa(x—t)

hence from equations (21, 28,29, 30, 31 and 32)
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| 2 2.3 3
| I6qa 123°¢” cos X 33)

Ap =
73
. p-\/c3d , € cos’x—3gcosx

The solution to equation(33) is found by making the substitution

z= tanlx
2

therefore (34)
1-z- . 2 2

cosx = z2 sinx = £ > dx= > dz
1+z2 1+z 1+z

Seperating integrands and using the method of partial fractions we obtain three integrals to be

solved; they are

0.546

dz
pNtd| o (Zz —(6+ ?’))
2 _(l.546 Cz+D
12ga I L (35)

"Ned| s [F-e-m)

. 12(}&2 0.546 E1Z+ F;

p\/de_ 0 (1_22) dz

1252 [[0.546 Az+B, W
__T. ._2.:._'-—dz
pNecd| b (Z —(6‘*"}’))

- . (36)

plcld | { (&2-6-1)

dz




—0.546
+96ﬁ2£3 J~ Ajz+B_1 ”
plcd | o (&2-0+7)
[ 0.546
+96ﬁ283 o Cz+D, 0

pJed | o (2-©-1)

3 dz

*M—d_{ (1+2)

962> 0.546 Ez+F, ]

where

a=¢ -3¢ b=¢ +3¢

|
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(37)

(38)

Clearly, in our case, a and 0 are always negative and b and 7y are always positive.

The coefficients A’_ ,Bi ,Ci ’D, ,Ei IT ,i = 1,2,3 are found by equating coefficients in equations (35-37)

after substituting cos> x = 1 —sin” x in equation(33) and applying Gauss-Jordan elimination, and are
g

A=C=FE=0
1 1 1

Fo=-

{(~0+v+1)-20(2y +2) (-0 + v -1)}

found to be

(o y)o-7)+20(-(0+ v)(0-7 1)+ 20)(27 +2)}

. 20

B =—1-D +F
| 1 1

A=C =0

2 2

D =_(l+9wy)

2 2-],
(6+y+1)

2 2]/

_“(—9+y+1)+(—1+6+y)(9—y)F

(39)

(40)



A3=C3=E3=0
1

B roen)-06-7))

N UM B
D3_27[1 (1—(9—}’))]

The solution to equation(33) after considering equation(35-37) takes the

Bl 1 2—0+7
n +
2,J0+ ¥ z+1/9+y
Ap e IN(Z_VB_Y)+
0 0 Sal 2=y \z+6-7
F
—ltahn z
L2
82 In z—\/9+}’
!25263 240 +7 Z+40+Y
form, - =
p\)c'd D2 | z—+0-7
n
|_2\/9—:~' 2++0-7
B3 In z—‘G*:_}/
240 +7 z+\f67+y
23 —
963" ¢ D3 ln(z—\{B—}’
p c3d 240 -7 z+40—7y
F —
—itan Z
2

if we assume /60—y = i6l Jo+y = i62

since §—7y and 6+ Ys negative, then we have

41)

42)

15
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z-1i0.

j
z+1i6.
J

In

1)
= -2itan_i[—"—}
z

where i=~-1 j=12

43)

2.3 B ) D )
+12ﬁ.8 —2-tan_l[—2 +—2tanl£—'}:] (44)
Z

Representation of pressure rise vs flow rate, Figure(2) and Figure(3) are obtained for varying values

of amplitude ratio.
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CONCLUSION

It should be emphasised that this research represents a fluid dynamical biomathematical model of
the phenomena of peristalsis whereby a non-Newtonian Casson fluid is travelling through a channel
with sinusoidally varying waves travelling along the upper and lower boundary of the channel. It is
found that for the Casson model the governing partial differential equations are indeed extensive
and complicated. If however the fact that the zeroth order perturbation in stream function is a
function of the axial coordinate only, because the zeroth order axial pressure gradient is constant,
we find that the Casson model may be quantitatively expressed as a Newtonian model.

Figures 2 and 3 are graphs of Pressure Rise vs Flow Rate for the case of amplitude ratio,
€=0.2 and 0.8, respectively.

It is found that in the zeroth order approximation in stream function that there is a
dependence on the Casson coefficient of viscosity, yield stress, the density of the fluid, the wave
speed and the dimensions of the channel.

When considering this approximation in stream function, results show for lower values of
amplitude ratio the difference between Newtonian(dashed line) and non-Newtonian(bold line)
seems to be slightly significant. However, for higher values of amplitude ratio, the pressure gradient
is noticeably affected by the non-Newtonian character of the fluid. The effect appears to increase
as the occlusion gets larger.

This modelling is appropriate as it may allow insight into the validity of the reduction of the
complexity of modelling some non-Newtonian fluids like flow of urine in the ureter and blood flow in

the blood vessels under certain physiological conditions.
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The analysis here is restricted to the zeroth order approximation. The first order
approximation using the most generalised form of constitutive equation for a Casson fluid is under
active study.

Acknowledgements

The authors wish to express gratitude to the reviewers for their constructive and valuable comments.

REFERENCES

1. T.W. Latham, Fluid motion in a peristaltic pump, M.S Thesis M.L.T., Cambridge(1966).

2. F. Kiil, The function of the ureter and the renal pelvis, Philadelphia Saunders(1957)

3. S. Boyarsky, Surgical physiology of the renal pelvis, Monogr. Surg. Sci 1:173-213(1964)

4. A.H. Shapiro, Pumping and retrograde diffusion in peristaltic waves, Proc. Workshop Ureteral
Reflux Children, Nat Acad. Sci. Wash.,D.C(1967)

5. Y.C.Fung and C.S. Yih, Peristaltic Transport, J. Appl. Mech. 35:669-75(1968)

6. A.H. Shapiro, M.Y. Jaffrin and S.L. Weinberg, Peristaltic pumping with long wavelengths at
low Reynolds number. J. Fluid Mech. 37:799-825(1969)

7. P.S. Lykoudis, Peristaltic pumping; a bioengineering model. Proc. Workshop Hydrodynam.
Upper Urinary Tract, Nat Acad. Sci. Wash.,D.C(1971)

8. S.L. Weinberg, M.Y. Jaffrin and A.H. Shapiro, A hydrodynamical model of ureteral function,
Proc. Workshop Hydrodynam. Upper Urinary Tract, Nat Acad. Sci. Wash.,D.C(1971)

9. Y. C. Fung, Peristaltic pumping; a bioengineering model, Proc. Workshop Hydrodynam.
Upper Urinary Tract, Nat Acad. Sci. Wash.,D.C(1971)

10. J.C Burns and T. Parkes, Peristaltic Motion, J. Fluid Mech. 29:731-43(1968)



11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

20

M. Hanin, The flow through a channel due to traversely oscillating walls, Israel J. Technol.
6:67-71(1968)

C. Barton and S. Raynor, Peristaltic flow in tubes, Bull. Math. Biophys.30:663-80(1968)

N. Liron, A new look at peristalsis and its functions, Horizons Biochem. Biophys.5:161-
82(1978)

M.G. Mank, Berechung der peristalticchen flussigkeits Forderong mit Method der Finiten
Element. Dissertation, Hanover(1976)

A.H. Shapiro and T.W. Latham, On peristaltic pumping(abstact), Proc. of Annual Conference
on Engineering in Medicine and Biology, Holden Day, San Francisco, 8:147(1966)

E.C. Eckstein, Experimental and theoretical pressure studies of peristaltic pumping. S.M
Thesis, Dept. Mech. Eng. M.I.T., Cambridge(1970)

S.L. Weinberg, Theoretical and experimental treatment of peristaltic pumping and its relation
to ureteral function. PhD Thesis M.I.T. Cambridge(1970)

Y.C. Fung and F.C.P. Yin, Comparison of theory and experiment in peristaltic transport,
J.Fluid Mech. 47:93-112(1971)

T.K. Hung and T.D. Brown, Solid-particle motion in two-dimensional peristaltic flows, J Fluid
Mech. 73:77-96(1976)

K.K. Raju and R. Devanathan, Peristaltic motion of a non-Newtonian fluid, Rheol. Acta, 170-
179(1972)

L.M.Srivastava and V.P. Srivastava, Peristaltic transport of Blood:Casson Model II, J.
Biomechanics 17:No.11, 821-829(1984)

L.M. Srivastava, Peristaltic transport of a Casson fluid, Nig.J.Sci.Res. 1:71-82(1987)



21

23. A.M. Siddiqui, A. Provost and W.H. Schwarz, Peristaltic pumping of a second order fluid in a
planar channel, Rheol. Acta 30:249-262(1991)

24. D. Tang and S. Rankin, Numerical and asymptotic solutions for peristaltic motion of non-
linear viscous flows with elastic boundaries, SIAM J.Sci.Compt. 14:No.6,1300-1319(1993)

25. Y.C. Fung, Biomechanics, Mechanical Properties of Living Tissues, Springer-Verlag.
N.Y(1981)

26. Y.C. Fung, Biomechanics, Motion, Flow, Stress and Growth, Properties of Living Tissue,
Springer-Verlag. N.Y(1990)

217. Y.C. Fung, Biomechanics, Circulation, Springer-Verlag. N.Y(1984)

28. R.L. Batra and B. Jena, Flow of a Casson fluid in a slightly curved tube, Int. J.Eng.Sci

29:No.10,1245-1258(1991)

29. B.Das and R.L. Batra, Secondary flow of a Casson fluid in a slightly curved  tube. Int. J.

Non-linear Mechanics, 28,5, 567-577 (1993)

30. J. Elshehawey, et al, Peristaltic motion of Generalised Newtonian fluid in a non-uniform

channel, J. Phys. Soc. Japan 67, 434-440, (1998)

31. W. P. Walawender et al, An approximate Casson Fluid model for tube flow of blood.

Biorheology, 12, 111-119 (1975)

32. E. Kreyszig, Advanced Engineering Mathematics, 1979, Fourth Edition, Wiley & Sons

33. A.V.Mernone and J.Mazumdar, Mathematical Modelling of peristaltic Transport of a Non-

Newtonian Fluid, J.Australasian Physical and engineering Sciences in Medicine,21,3,126-140

(1998)



22

34. A.M. El Misery, E.F. Elshehawey and A.A. Hakeem, Peristaltic Motion of an Incompressible
Generalised Newtonian Fluid in a Planar Channel, J. Phys. Soc. Japan, 65, 11 pp3524-3529 (1996)
35. .M. Srivastava, V.P. Srivastava and S.N. Sinha, Peristaltic Transport of a Physiological Fluid
Part [ Flow in non-Uniform Geometry, Biorheology, 29 153-166 (1983)

36. L.M. Srivastava and V.P. Srivastava, Peristaltic transport of a power-law fluid: application to
ductus efferentes of the reproductive tract, Rheol. Acta: 27. 428-433, (1988)

37. L. Liethold, The Calculus with Analytic Geometry,3rd Edition





