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SUMMARY

ln this thesis "A Mathematical Study of Peristaltic Transport of Physiological

Fluids", a mathematical investigation of both Newtonian and non-Newtonian fluids are

considered.

The Newtonian models are outlined and compared to two non-Newtonian models,

namely the power law model and the Casson model. The geometry considered are a planar

channel and an axisymmetric tube.

After considering the respective constitutive equations and subsequently the

equations of motion and continuity equation, the method of solution is obtained using stream

function of zeroth and first order, by performing a perturbation series expansion in

amplitude ratio.

Comparisons and implications were made between the Newtonian and non-

Newtonian models, in some cases after the introduction of simplifications, without

deviating from the context of the problem. The validity of all models were highlighted, in

particular that of non-Newtonian fluids when compared to Newtonian fluids.
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CHAPTER 1

INTRODUCTION

1.1 General lntroduction to Peristaltic Transnort and Motivation for
Mathematical Modelling.

Peristalsis is the phenomenon ¡n which a circumferential progressive wave of

contract¡on or expansion (or both) propagates along a tube. lf the tube is long enough, one

might see several identical waves moving along the tube simultaneously. Peristalsis

appears in many organisms and a variety of organs.

Peristalsis is well known to physiologists to be one of the major mechanisms f or

fluid transport in many biological systems. ln particular, peristaltic mechanisms may be

involved in urine transport from the kidney to the bladder through the ureter, the

movement of chyme in the gastrointestinal tract, the transport of spermatozoa in the

ductus efferentes of the male reproductive tract and in the cervical canal; the movement of

ova in the fallopian tubes; the transport of lymph in the lymphatic vessels and in the

vascomotion in small blood vessels.

These flows also provide efficient means for sanitary fluid transport and are thus

exploited in industrial peristaltic pumping and medical devices. For example, mechanical

roller pumps using viscous fluids are used in the printing industry and the peristaltic

transport of noxious fluid in the nuclear industry. ln addition, peristaltic pumping occurs

in many practical applications involving biomedical systems. Many modern medical

devices have been designed on the principle of peristaltic pumping to transport fluids

without internal moving parts, for example, the blood in the heart lung machine.

Mathematical studies of peristalsis were initiated by Fung & Y¡h(1968), Shapiro

et al(1g69), and others. Most of these analyses are based on the Navier-Stokes equation,

considering flow in a circular cylindrical tube or two-dimensional channel with a

sinusoidal displacemnt wave travelling in its wall at constant velocity. The objects of these

studies are:



(1) to determine the longitudinal pressure pradient that can be generated by the travelling

wave;

(2) the flow resulting from peristalsís superposed on pressure differences at the ends;

and

(3) conditions of reflux.

To simplify the analysis, various approximations are introduced such as;

(a) small amplitude of the wall displacement compared with the undeformed radius of the

tube; or

(b) long wavelength compared with the tube radius ; or

(c) very small Reynolds number so that the non-linear convective acceleration term in

the Navier-Stokes equation can be neglected.

ln this thesis all these assumptions are applied and in some cases the third

assumption is relaxed when considering the power-law fluid and Casson fluid.

One conclusion reached by these studies is that peristalsis is an effective method to

move fluid only if the fluid is transpoded in the form of a series of isolated boluses. lf the

amplitude of the displacement of the wall is small compaied with the tube radius, very

little pressure gradient can be generated by the travelling wave. Pressure gradient

increases significantly when the radius of the minimum section of the wave approaches

zero. This is the reason in normal conditions that peristaltic waves of the ureter,

intestine, and the lymphatics are of this mode.

The main motivation for any mathematical analysis of physiological fluid flows is to

ultimately have a better understanding of the particular flow being modelled. lf there is

similarity between the results obtained from the analysis and experimental and clinical

data, then the mechanism of flow can at least be explained. Because peristalsis is evident in

many physiological flows, an accurate mathematical study can help explain the major

contributing factors to many flows in the human body. When comparing results between

the mathematical model and the experimental and clinical data it is desirable that the data

obtained from experimental research be as close as possible to the actual physiological

flow/parameter being analysed. That is to say, it may be necessary to take into account the

effect the measuring instrument or device or procedure has on the data obtained. ln other

words, the results of the mathematical model will be compared with appropriate data of the

flow being modelled.

Results obtained from a mathematical analysis of the flow of urine from the kidney,

to the bladder, through the ureter are being considered. Data values obtained via an

appropriate experiment, indicate the drop in pressure across a certain section of the
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ureter during peristalsis. Similarity of this data with the corresponding theoretical

results of the pressure drop across the same section of the ureter, means that future

predictions may be made about the change in pressure drop across the ureter during

peristalsis, and possibly the pressure. Therefore the pressure change, can be governed by

means of change to the urinary tract environment, and possibly even a slight modif ication

of the urinary tract itself.

Regarding reflux; governing the pressure across the ureter means that if the

pressure applied to the ureter is insufficient to pass urine on to the bladder, a minor

adjustment to the ureter, causing an increased applied pressure by the ureter on the

bladder, can enable the ureter to apply a sufficiently great pressure on the bladder so that

urine is successfully passed on to the bladder, without a backflow of urine to the kidney,

thus preventing serious kidney diseases. The mathematical analysis may be used to

determine a critical pressure, below which reflux occurs, hence, reflux can be diagnosed

in its early stages and dealt with accordingly.

Once an accurate mathematical analysis of the flow of urine in the ureter is seen as

important, it would be extremely useful to be able to generalise this analysis so that it

could be used to model other physiological flows which are considered to be caused by

peristalsis. Extending the theoretical model means that one model can be used to obtain

theoretical results for various fluid flows in the human body, instead of conducting a

completely separate analysis for each physiological flow being modelled.

1.2 General Outline of Previous Research in Peristaltic Transport

The study of the mechanisms of peristalsis, in both mechanical and physiological

situations, has been the object of scientific research for quite some time. Since the f irst

investigation of Latham(1966) several theoretical and experimental attempts have been

made to understand peristaltic action in different situations.

lnterest in peristaltic pumping has been stimulated by its relevance to ureteral

function. As reliable and accurate urometric measurements became available through the

work of Kiil(1967) and Boyarsky(196a), several hydrodynamic models of ureteral

function invoking peristalsis were attempted. The earliest models Shapiro(1967), Fung

and Yih(1968) and Shapiro et al(1969) were idealised and represented the peristalsis by

an infinite train of sinusoidal waves in a two-dimensional channel. Thus they could pretend

to only a qualitative relationship with the ureter. These models concerned themselves, in

part, with offering an explanation of the biologically and medically important phenomenon

3



of 'reflux'. One manifestation of this reflux is that bacteria sometimes travel from the

bladder to the kidney against the mean urine flow. A similar phenomenon has been observed

in the small bowel. These observations are puzzling because the travel times are too small

to be explained by diffusion and also because retrograde peristaltic waves have not usually

been observed.

Later, Lykoudis(1971) and Weinberg et al('1971) proposed models that represent

ureteral waves more realistically. Fung(1971) investigated the coupling between the

forces of fluid-mechanical origin and the dynamics of the ureteral muscle. Some of these

models showed that observed urometric pressure pulses and flow rates could be accounted

for by assuming internal dimensions of the ureter which seem physiologically plausible.

But ureteral physiology has not been the only motivation for the study of

peristalsis. Burns & Parkes(1967) and Hanin(1968) contributed to the theory of

peristaltic pumping without reference to physiological applications. Barton &

Raynor(1968) made a calculation based on peristalsis theory of the time required f or

chyme to traverse the small intestine and found that this calculation compared favourably

with observed values. ln addition, Fung(1971) studied peristaltic flow taking muscle

action in the tube wall into account. Some new examples of peristalsis were given in

Liron(1978). Considerable experimental investigations of peristaltic pumping have also

been undertaken, for example, Latham(1 966), Eckstein(1 970), Weinberg et a l( 1 971 ) ,

Yin & Fung(1971), Hung & Brown('l976).

Most of the theoretical investigations have been carried out by assuming blood and

other physiological fluids behave like a Newtonian fluid. Although this approach may

provide a satisfactory understanding of the peristaltic mechanism in the ureter, it fails to

provide a satisfactory model when the peristaltic mechanism is involved in small blood

vessels, lymphatic vessels, intestine, ductus efferentes of the male reproductive transport

and in the transport of spermatozoa in the cervical canal. lt has now been accepted that

most of the physiological fluids behave like non-Newtonian fluids. But it appears that no

quantitative rigorous attempt has been made to understand the problem of a non-Newtonian

fluid before the investigation of Raju & Devanathan(1972) and Raju(1972) in the case of

small wave amplitude.

Srivastava & Srivastava(1984) investigated the problem of peristaltic transport

of blood assuming a single layered Casson fluid and ignoring the presence of a peripheral

layer. Subsequently, Srivastava & Srivistava(1985) considered the axisymmetric flow of

a Casson fluid in a circular non uniform tube. More recently, Siddiqui, et al(1991)

investigated peristaltic motion of a non-Newtonian fluid modelled with a constitutive
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equation for a second order fluid for the case of a planar channel. A perturbation series was

used representing parameters such as curvature, inertia and the non-Newtonian character

of the fluid. Tang & Rankin(1993) proposed a mathematical model for peristaltic motion

of a nonlinear viscous flow where they used an iterative method to solve a free boundary

problem.

Das & Batra(1993) studied the fully developed, steady flow of a Casson f luid

through a curved tube for small values of Dean Number. A plug core formation at the

centre is considered where the shear stress is not sufficient to exceed the yield value. El

Misery et al(1996) considered peristaltic flow in a two-dimensional channel of a

generalised Newtonian fluid. Under the assumption of creeping motion, the problem is

formulated using a perturbation expansion in terms of the variant of the Weissenberg

number. Elshehawey et al(1998) consider the problem of peristaltic transport of a non-

Newtonian(Carreau) fluid in a non-uniform channel under zero Reynolds number with

long wavelength approximation. Again the problem is formulated using a perturbation

expansion in terms of a variant Weissenberg number. They find the the pressure rise and

friction force are smaller than the corresponding values in the case of uniform geometry.

Naidu & Kumar(1995) solve the Navier-Stokes equations of a Newtonian f luid

numerically by using a streamline upwinding finite element method on the peristaltic

flow, induced by an infinite train of sinusiodal waves in a two-dimensional channel.

1 .3 Outline of Approach in the Present Study

To achieve the aims stated above, the present study has been organised in the

manner described below.

ln Chapter 2, a brief description of peristaltic flow is given, in particular, an

introduction to the biological occurrence of peristaltic flow. Specifically, fluid flow in the

ureter and flow in the gastrointestinal tract, with particular emphasis of f low of chyme in

the small intestine is presented. Also, an outline of flow in the Vas deferens is presented.

Chapter 3 examines how the basic laws of physics and laws of fluid dynamics as

applied to non-Newtonian fluids may be applied to mathematical modelling of peristalsis. lt

considers consequences; with particular emphasis on the time independent fluids; power

law fluid and Casson fluid.

ln Chapters 4 and 5 mathematical models are developed for the understanding

of peristalsis.
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ln Chapter 4, flow in a two-dimensional channel is considered with emphasis on the

Newtonian fluid, power law fluid and Casson fluid. Comparisons of models are investigated,

outlining possible simplifications and difficulties in finding analytical and numerical

solutions to the respective model.

Chapter 5, describes flow in an axisymmetric tube, again considering the

Newtonian fluid case and the power law fluid case and Casson fluid case. Comparisons of

models are investigated and the validity of an analytical algebraic solution of the power law

model is compared with results in the literature.

The concluding chapter, Chapter 6 summarises the work done and discusses the

significance of the present study and outlines suggestions and directions for future

research in the area of peristalsis as applied to physiological fluids.
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CHAPTER 2

PERISTALTIC FLOWS

2 .1 lntroduction to Peristaltic Transport and where it occurs.

The word peristalsis stems from the Greek word peristaltikos, which means

clasping and compressing, Peristalsis is a muscle controlled flow similar to the flow in the

cardiovascular system. Peristalsis occurs in may organs. Peristaltic flow is the flow

generated in the fluid contained in a distensible tube when a progressive wave travels along

the wall of the tube. Although elasticity of the wall does not enter directly into the f low

equations, it affects the flow through the progressive wave travelling along its length.

The mathematical problem of peristaltic flow is similar to that of a collapsible

tube. ln the case of the ureter, it is modelled mathematically assuming that the ureter

receives fluid from the kidney at the upper end and passes it down to the bladder against a

pressure gradient. Normally, there is more than one wave along the entire length of the

ureter, which is of the order of 30cm. The amplitude of the wave is of the order of Smm

and its wave speed is approximately 6 cm/s. The frequency of contractions is of the order

of 1-B per minute. Each contraction lasts about 1 .5-9 seconds, where the diastolic

(expansion) phase is about twice as long as the systolic (contraction) phase. Pressure

during the contraction varies from 2-BmmHg at the pelvis to 2-10 mmHg in the upper

portion of the ureter and 2-14 mmHg in the lower portion (Wienberg 1971).

l



2.2 Fluid Flow in the Ureter.

Ureteral peristalsis was described by Aristotle (384-3228C) in his book on

animals (Historia animalium). The ureters collect urine from the kidneys and send it to

the bladder. The form of the wave propagating down the tube when we consider the ureter

is given as Figure 2.1 and Figure 2.2 for anatomical details of ureter and kidney.

floPs

lumen -- effecttve
openlng

A'
I

B

Side vlew

I
A

Cross s€clion. ot

A (closed )

Cross section ot

B (open)

Figure 2.1 Waveform of ureter. Adapted from Liron(1978)

Capsule

Right renal vein

Renal pelvis

lnferior vena ca¡a

Right and left ureters

Ureteral orifices

Urethra

Adrenal gland

Left renal arlery

Hilum

Left kidney

Abdominal aorta

Bladder

Trigone

External
urethral orifice

Anatomica ocat¡on of ureter. Adapted from Mi er Keane(1992)
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At the bladder each ureter passes through a one way valve called the

ureterovesicular junction. lt works by pressure in the bladder. The kidneys are not

capable of producing enough pressure to force urine away from them overcoming the

pressure of the expanded bladder.

When the bladder is full, its pressure is high. The bladder presses on the one way

valve, which is Z or U shaped, and collapses it, stopping back flow into the ureter. This

valve can be opened by each bolus of urine in the ureter if the pressure in the bolus of

urine in the ureter is sufficient to exceed the lateral pressure imposed by the urine in the

bladder and the muscle in the bladder wall.

lf the smooth muscle of the ureter is unable to generate a higher pressure in the

bolus of urine or if the ureterovesicular junction is improperly formed then the

ureterovesicular junction will not function properly and a disease state called hydroureter

results. A hydroureter is a swollen ureter whereby the lumen size is much increased and

is filled with urine.

The reason why hydroureter is a disease state is made understandable when one

considers hoop stress in a pressurised tube. For example, in a tube of radius, a, with

tension T generated by the ureteral smooth muscle, a pressure P is created and given as

P=fla .

Therefore for given T, P can be large if the radius, a, is small. But in a

hydroureter the radius, a, becomes so large that the pressure which can be generated by

the ureter is insufficient to send urine through the ureterovesicular junction. lf the

occlusion of the ureter is not complete then depending on the pressure difference between

the two ends of the wave, the peristaltic wave may not propel the entire contents of the

fluid it contains. That is, some of the fluid propagates forward while other portions

proceed in the opposite direction. Then urine remains in the ureter and urine and hence

any bacteria backs up to the kidney and eventually causes kidney disease.

One conclusion reached in Chapter 4 and chapter 5 of this thesis is that peristalsis

is a effective method to move fluid only if the fluid is transported in the form of a series of

isolated boluses. Pressure gradient increases significantly when the radius of the

minimum section approaches zero" lI the amplitude of displacement of the wall is small

compared to the tube radius, very little pressure gradient can be generated by the

travelling wave.
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2 .3 Gastrointestinal Flow.

We now consider the flow of an inelastic liquid which is generated by contractions

in the intestine. Unlike regular peristaltic motion these contractions occur locally over a

finite length and have a finite amplitude, see Figure 2.3 lor geometry of wave shape and

Figure 2.4lor anatomical details of duodenum and small bowel.

Figure 2.3 Waveform of intestinal tract. Adapted from Liron(1978)

t

B
I

A

Parotid gland

Pharynx

Esophagus

Liver

Gallbladder

Ascending colon

lleum

Cecum

Vermiform appendix

Sublingualgland

Submandibular duct
Submandibular gland

Stomach

Duodenum

Pancreas

Transverse colon

Jejunum

Descending colon

Sigmoid colon

Rectum

Anus

Figure 2.4 Anatomical location of intestinal tract. Adapted from Miller-Keane(1992)

The motor activity of the small bowel is a complex physiological reaction, the

internal mechanisms of which are still not well understood. Analysis of this phenomenon is

an extremely difficult problem from both theoretical and experimental points of view
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Electromechanical wave processes form the basis of many physiological phenomena.

They are inherent in the function of non-linear biological systems that possess the

properties of excitability and motor activity. Because of their internal features and

specific conditions, the progression from an initial steady state to an excitable state can

occur which results in the formation of a propagating peristaltic wave.

Stereotypic and organised small bowel motor activity is a product of dynamically

stable neuromuscular regulatory mechanisms charcterised by internal inputs that are

functionally excitatory or inhibitory. The neural component consists of an overlapping

series of functional modules interconnected by horizontal polysynaptic channels that form

the myenteric plexus, a neural network into which reflex pathways are locked and which

serves to coordinate motor activity.

Peristalsis is the main mode of propulsion, which enables the passage of solids and

liquids in the gastrointestinal tract, and disorganisation of which results in conditions

such as paralysis of the intestine and constipation.

Under normal physiological conditions, it begins with a preliminary phase, the

gradual reflex, with longitudinal contractions that are followed by the phase of a broad

spread of circular contractions.

ln the first 30cm or so of the small intestine (the duodenum) a local contraction of

some finite length and amplitude occurs, and this contraction depends on the amount of

chyme in the alimentary system of the human subjects. Two types of contraction have been

distinguished: the stationary and the propagative contraction. ln the stationary contraction

a bundle of muscle cells contract simultaneously and move fluid contents over certain

length on both sides of the contraction. ln this mode, the peak of the contraction does not

propagate along the axial direction. ln the propagative contraction, the peak of the

contraction propagates along the axial direction. The propagative model is more realistic

and based on experimental data whereby simple mathematical models have been proposed

by Macagro and Christensen(1982).

It is known that the content of the intestine (chyme) is not really a Newtonian

fluid, however most of the analyses in the literature have assumed it so. Experimental

tests on human faeces have revealed that the liquid seems to follow a power-law behaviour,

with a power-law index of about 0.25 if the shear rate is above 4 s-I, (see power-law

mathematical model in chapter 4 and 5, in particular various results for axisymmetric

tubecase with varying values of power-law index). This power-law index can vary with

the pathological condition of the sample. At low shear rates, the liquid has a kinematic

viscosity of 5-10 times that of water.
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It is found that the pumping action does not depend strongly on the power law index

of the liquid. This is a desirable characteristic of any positive-displacement pump and

allows us to simplify the analysis by assuming a Newtonian behaviour for the liquid.

It may be noted that the theory of long wavelength and zero-low Reynolds number(

see section 2.7) remains applicable as the radius of the small intestine r=1.25cm is small

compared with the wavelength ),=8.01cm. Barton and Raynor(1968) reported the

observed average chyme velocity as 2.54 cm/min on the basis that the male small

intestine length was approximately 685cm and the time for the chyme to pass through the

small intestine was 4.5hrs.

2 .4 Flow in Vas dgfercns.

Vas deferens is a thick walled tube which connects the epididymis, an elongated

organ on the posterior surface of the testis, to the ejaculatory duct. Spermatic fluid

consisting of spermatozoa and fluid medium flows through the vas Deferens to the

ejaculatory duct and is finally expelled during intercourse from the penis by a series of

rapid muscle contractions. See Figure 2.5lor anatomical details of Vas deferens.

Roclum

Seminal

Urethra

delerens

Ejaculatory
duct Cavernous

bodies

Urethra

Prostale gland

penrs

Anus Bulbourethral
gland

Epididymis

Pubis of
pelvis

Scrotum

Anatomical location of Vas deferens. Adapted f rom Miller-Keane('1992)
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Movement through Vas deferens is accomplished by means of peristaltic action of

contractile cells in the duct wall. The Vas deferens in rhesus monkeys is in the form of a

diverging tube with a ratio of exit to inlet dimension of approximately four. According to

some experimental observations of flows in the Vas deferens of rhesus monkeys made by

Guha et al(1975) the period of ejaculation was about two seconds and the average flow rate

is O.O2ml/s for 30mmHg pressure rise. The approximate value of various parameters for

flow in the vas Deferens of rhesus monkeys based on experimental observations made by

Guha et al(1975) are wavelength À,= 20cm, inlet radius r=0.012cm and viscosity of

semen = 4centpoise. The value of Reynolds number is of the order of l0-3 therefore low

Reynolds number mathematical models are viable and applicable.

2.5

Peristalsis serves more than one function and that waveshape and its amplitude

may be directly related to these various functions. Ore aspect of particular interest is the

question of complete occlusion. lf the function is fluid transport, then certainly complete

occlusion will do the job as is observed in the ureter. All the fluid bounded by two

consecutive constrictions will be carried along with the moving wave. Why then does

complete occlusion not occur in the blood vessels? For one thing, one pays for complete

occlusion by having to use more energy, in fact much more than if the occlusion was 5 0 7o

(Liron 1978). Moreover, complete occlusion causes high pressures and high shear rates

near the occluded region. ln the blood this may cause damage to the erythrocytes, a well

known problem in artificial blood pumps. On the other hand, partial occlusion reduces the

efficiency of the peristaltic wave in its role as a pump.

The following data about the human ureter may be of interest(Bergman 1967).

Normally there are about 3-4 waves along the entire length of the ureter. The wave speed

is about 3-6cm/sec. The viscosity of the urine is 0.007 cmz /set (This is the viscosily of

water at 40 degress celsius, since the urine is essentially water. Hence under normal

conditions the flow of fluid in the ureter may be considered as Newtonian thus exhibiting a

linear relationship between the stess and strain tensors as depicted in Figure 3.1.

It is known that the content of the intestine(chyme) is not really Newtonian;

however, most analyses in the literature assume that it is so. Patel et al(l973) have

carried out some tests and found that the fluid seems to follow a power-law behaviour,

with a power-law index of approximately 0.25 if the shear rate is above 4 sr. This
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power-law index can vary with the pathological condition of the sample. At low shear

rates, the liquid has a kinematic viscosity of about 5-10 times the kinematic viscosity of

water). Hence, it is appropriate to model flow of chyme in the intestine as a power-law

fluid in an axisymmetric tube, Phan-Thien(1989), as depicted in Figure 3.1.

Srivastava and Srivastava(1989) state that it is difficult to estimate rheological

properties of the Vas deferens, however, Guha(1975) found that the viscosity parameter

is of the order 0.1 and hence have modelled flow as a non-Newtonian(power-law) fluid.

An examination of available viscometer data(Rand et al, 1964) suggest that the

non-newtonian behaviour of blood increases rapidly when the haematocrit rises about

2O"/o, possibly reaching a maximum at beWveen 40 and 70"/". lt has been established by

Merrill et al, that Casson model held satisfactory for blood flowing in tubes 130-10001

in diameter, within certain wall shear stress limits. Therefore, for realistic description

of blood flow, it is perhaps more appropriate to treat blood as a Casson f lu id ,

Srivastava(1987), thus exhibiting behaviour as depicited in Figure 3.1. Also, Srivastava

and Srivastava(1984) investigate the problem of peristaltic transport of blood in a

uniform and non-uniform tube under zerc Reynolds number and long wavelength

approximation. Blood is represented as atwo-layered fluid, whereby the central layer is

Casson fluid and per¡pheral layer is Newtonian fluid.

When both mixing and transport are important, one would like to reduce the

efficiency of the peristaltic wave as a pump and thus increase the time that a given volume

of the fluid stays in the tube, as in the small intestine. Lowering the amplitude of the wave

is one way and changing the wave shape is another. Another phenomenon which may be

significant biologically and physiologically is that of reflux and trapping. lf the occlusion

is not complete and even in the ureter to assume that we have complete occlusion is an

idealisation; then depending on the pressure difference between the two ends of the wave,

the peristaltic wave may not, and usually does not, propel the entire volume of the fluid i t

contains. lt turns out that some of the fluid and material is indeed propagated forward,

while other portions proceed in the opposite direction. This is called reflux' back flow

Under suitable conditions a central blob will form which does not mix with the rest

of the fluid and propagates with the wave at the wave speed as seen in Figure 2.6
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blob woll

Figure 2.6 Bolus configuration. Adapted from Liron(1978)

lf the total flux across any section, that is, the amount of fluid carried in the

direction of the propagating wave per unit time, is less than the volume of fluid contained

by the wave, then backflow will certainly occur. lf this occurs in the Lrreter, then bacteria

may be carried back from the bladder to the kidney - a phenomenon believed to be the

mechanism by which some of the bacteria reach and infect the kidneys.

ln some instances cilia are found within these organisms and organs, like in the

Fallopian tubes. For wave form see Figure 2.7.ln some instances peristalsis occurs and in

some other instances cilia are used, whereas in other organs both modes of transport are

used.

Figure 2.7 Geometry of waveform in Fallopian tube. Adapted from Liron(1978)

It is only natural to inquire under what conditions an organism or organ

might find it advantageous to move from cilia transport mode to peristaltic transport mode.

For instance, one could suppose that enlarging of the tubes made cilia transport inefficient,

forcing the organism or organ to rely on the other mode of transport, peristaltic

transport.

2.5.1 Understanding and Contributions

The above discussion has pointed out some of the questions that theory may be

helpful in determining. So, a fluid dynamically quantitative theory is necessary for a more

detailed understanding of physical phenomena such as back flow.

It would be interesting to know under what physical conditions backflow occurs and

where it occurs, that is, is it close to the wall where we have postulated a two layered

model whereby the peripheral layer is Newtonian? Or is backflow occurring at the centre
15



where we have postulated in our two layered model that the central core of the flow is non-

Newtonian? Also, what fraction of the fluid is flowing back, under normal and abnormal

conditions?

Several other questions also require theoretical treatment. For example, what sort

of peristaltic wave, amplitude, shape and frequency has the organism or organ developed in

order to perform a given task? Hence a theory is needed to take these considerations into

account.

Hence, it is inherent that peristalsis appears in many tubular organs. Several

studies have been undertaken with respect to the peristaltic flow by applying a simple

hydrodynamic represented with sinusiodal waves. These studies owing to their

physiological emphasis, assume small Reynolds number. A theoretical analysis of

peristaltic flow in the range of moderate Reynolds number is extremely difficult because

of the non-linearity owing to the interaction between the moving wall and the flow field.

However, Fung and Y¡h(1968) initiated research by considering peristaltic flow with

mild non-linear effects and with a small ratio of amplitude to wavelength.

Two interesting phenomena associated with peristaltic flows are fluid trapping and

material reflux. The former descibes the development and downstream transport of f ree

eddies, called fluid boluses. The latter refers to net upstream convection of fluid particles

against the travelling boundary waves. These two phenomena are of great physiological

significance, as they may be responsible for thrombus formation in blood, and pathological

transport of bacteria.

From the standpoint of f luid mechanics, these phenomena demonstrate the

complexity but also motivate the fundermental study of peristaltic flows. The inclusion of

both Newtonian and non-Newtonian models in this thesis serve as a platform to

understanding the application of a particular fluid model to the appropriate organ and

serve as a comparison between fluid models. For example, chyme behaves as a power-law

fluid hence modelling of the material in the intestine as a power-law fluid in an

axisymmetric tube. Similarly for the other organs mentioned (Blood as a Casson fluid in

two-dimensional channel and urine as Newtonian fluid in axisymmetric and two-

dimensional channel and fluid in the Vas defrens as power-law fluid in an axisymmetric

tube) and their appropriate fluid dynamical model.
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2 .6 Peristaltic Transport in a Cylindrical Tube.

Consider now peristaltic transport of an idealised two-dimensional flow with an

infinite length and constant width cylindrical tube with sinusoidal wave of moderate

amplitude travelling along its walls. Assume that the cylindrical tube or the channel is

filled with a homogeneous Newtonian viscous fluid, although the fluid involved may be non-

Newtonian, and the flow may take place in two layers, ie., a core layer and a peripheral

layer. Taking the x-axis along the centre line of the channel, and the y-axis normal to it,

the equations governing two-dimensional motion of a viscous fluid, the continuity and

Navier-Stokes equations are given by

Au Av

-+-=0dxù

du du du lAp -2
-+u-+y-=-- 

- +vv u
A dx ù pAx

dv Av dv làp -2
-+u-+v- =--:+vv vù àx ù pù

*(r,,*,/-) * v,(v u, 
* v -,)- r,(r,,* ø-,) = r(Y'rtr,,* o'r",)

(2.3)

Using the stream function V , such that ¿¿ = V, , , - -\I *, and eliminate pressure

by cross differeniating equations 2.2 and 3.3 and eliminating pressure p we obtain

¡2 ¡2du dv
dydt ãxãt

(2 .4',)

Using the above equation for definition of stream function we obtain

.(# #).,(# #) =,(*o 
" 

- *, ")

(2.1)

(2.21

(2.5)

(2.6)

Defining the Laplacian Operator as

2 2
a

v2 +
a

ã12

theref ore

oy'

YzV, V rY'V,-V,Y'V, = vYoV

t7

(2 .71



Assume the fluid is subjected to conditions imposed by the symmetric motion of the elastic

walls. Let the vertical displacements of the upper and lower walls

ber1 and -n , respectively.

Hence, the equations of the walls are given by

(2.8)

where e is the amplitude ratio, )" is the wavelength, c is the wave speed and a is

the undeformed radius if the tube as seen in Figure 2.8

v
wove speed,c

€
€q

1(x,t)

Figure 2.8 Geometry of Cylindrical tube. Adapted from Mazumdar(1992)

The main objectives is to determine the longitudinal pressure gradient that can be

generated by the travelling wave, and the flow resulting from peristalsis superimposed on

pressure differences at the ends of the tube. ln order to solve our equation we assume the

following boundary conditions

U=0 (2.s)

and

y = !q(x,tl = to[r * rrorll- - rù)

2tmce Zrc ,
v =+::-sinl(x-ct) at y =+r¡(x,t)L L'

x

Our equation finally reduces; after introducing dimensionless variables

x,=i, Ct
'7-_
I_

L
,

an=--
L'

(2.10)

(2.11)Y_ Yv V R
AC

vL e

to
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(2 .1 2)

where the operator D is given by
n

^t ^1.d' d"Dn=n'æ*ñ (2.13)

The corresponding boundary conditions become

Y.. = 0 (2 .1 4')
v

and

Y.-=2nesin2n(X-T) at Y=!n(X,T) (2.15)
X

From the above we notice the following:

(a) The Reynolds Number R will be small if

(i) the wave speed is small

(ii) the distance between the walls is small

(iii) the viscosity is large

( b ) The wave number, n, will be small if the wavelength is large as compared to the

distance between the walls.

A
Also, the amplitude ratio e - - will be small if the amplitude of the travelling waves is

d

small compared to the distance between the walls. We make various approximations in

order to solve the problem, such as

( a ) small Reynolds number R so that nonlinear convective terms in the Newtonian

case in the Navier-Stokes equations may be neglected.

(b ) long-wavelength compared with the underformed radius of the tube.

(c ) small amplitude of the wall displacement compared with the tube

radius.

D2Y +Y DzY _Y D
ttTYnXXn

12Y - ' DzYYnRÌt
e
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2.7 Longwavelength Approximation.

We now assume small Reynolds Number and small wave number such that

R <1, n<I
e

(2.16)

(2.1e)

(2 .2 01

We introduce cylindrical coordinates such that the Z axis is along the

centreline of the tube; hence the equation of the tube wall becomes

We now assume that the pressure is independent of the radial coordinate

such that

p=p(Z,t) (2 .'17 )

lf we perform a coordinate transfomation such that

r=Rand z=Z-cl (2.18)

our continuity equation and equation of motion in cylindrical coordinates become if we let u

and w be the radial and axial velocity respectively

h(Z,t)= 
"(t 

* rrin](t - rù)

40,)+$1,-¡ = odr dz

,IAp

Az

-1à'w I dw

rãr
+_-^)dr'

x
u

o (1+e ) h(z)
7

Figure 2.9 Coordinate Transformation. Adapted from Mazumdar(1992)

o(1-€)

With the above geometry in mind(Figure 2.9l6nd using the boundary condition



Given the flow rate is

h

q = 2tlrwdr
0

we obtain by substitution and rearrangement

dp 8¡tq 8ltc

ar=-æ--F
hence from above equations 2.19 and 2.21

w=-c-*4ø'-,')
4l.t o2,

w=-c.r(#.þ)lr, -;

w=-c.r(#.,)[' #)

from equation 2.20

that is,

w=-c at r=h

dhØ-
ãz

(2 .21 |

(2.221

(2.231

(2 .2 4l

(2 .2 51

whose velocity profile will be parabolic-Poiseuille's flow

and

3^cr ¿qr

E-æ +
2qrt

ã
that is,

'=*#'[' [;.i)r)
whose velocity profile is only approximately parabolic
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CHAPTER 3

OUTLINE OF BIOLOGICAL FLUID DYNAMICS

3 . 1 General lntroduction of non-Newtonian Fluids.

The study of fluid dynamics began with an ideal fluid that is incompressible and

without viscosity or elasticity and completely frictionless. However, severe limitations in

the practical application of frictionless flow to real situations in general led to the

development of a dynamical theory for the simpliest class of real fluids-Newtonian fluids.

A Newtonian fluid, by definition, is one in which the coefficient viscosity is

constant at all rates of shear as seen in Figure 3. 1. Homogeneous liquids behave closely

like Newtonian fluid, however, there are fluids that do not obey the linear relationship

between stress and shear strain rate. Hence, these fluids that exhibit a non-linear

relationship between shear stress and rate of strain are called non-Newtonian fluids. Many

common fluids behave as non-Newtonian, for example, paints, wet clay, solutions of

various polymers and many biological fluids like chyme, blood etc.

Although the properties of non-Newtonian fluids do not allow simple and precise

analysis as developed for Newtonian fluids, there are some interesting and useful

characteristics of non-Newtonian fluids. For example the anomalous behaviour of blood

that deviates from Newtonian and exhibit non-Newtonian properties of two types

( a ) at low shear rates, the apparent viscosity increases markedly-sometimes a yield

stress is required for flow, hence power-law and Casson modelling.
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( b ) in small tubes such as capillaries, the apparent viscosity at higher shearing rates

is smaller than is for larger tubes. lt is thus concluded that the behaviour of blood is

almost Newtonian at higher shear rates, while at low shear rates the blood exhibits yield

stress and non-Newtonian behaviour.

3.2 Classif ication of non-Newtonian Fluids.

g\ò
o

c
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o
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þ
l,l
r¡
o
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o
L
o
C,
-c
(n

n pseudoplostic (n<1)

Newtonion (n=1)

dilotont (n>t)

power-low
fluids

Sheor stroin rote ' /

Figure 3.1 Newtonian and non-Newtonian curves.Adapted from Mazumdar(1999)

Fluids which do not obey the linear relationship between shear stress and the rate

of shear strain can be grouped into 3 general classifications.

( 1 ) The simpliest of the non-Newtonian fluids is the time independent non-Newtonian

fluids in which the shear strain rate is a nonlinear function of the shear stress,

independent of shearing time and previous shear stress rate history.

(2) Time dependent non-Newtonian fluids have more complex shearing stress strain

rate relationships. Hence the apparent viscosity depends not only on the strain rate

but also on the the time shear has been applied.

These can generally be grouped into two categories

(i) thixotropic fluids-printers ink-the shear stress decreases with time as the

fluid is sheared

(ii) rheopectic fluids-the shear stress increases with time as the fluid is sheared
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( 3 ) Viscoelastic fluids- this is different from truly viscous fluids in which all the

energy of deformation is dissipated. Hence the shear strain as well as shear strain

rate are related in some way to shear stress.

3 . 3 Time lndependent Fluids.

For a time independent non-Newtonian fluid the constitutive equation is

, = r(r)

or T=fG)

A Newtonian fluid is a special case of a non-Newtonian fluid where the function

linear in the form ¡t'i

(3.1)

(3.2)

(a ) power law fluids

One important class of non-Newtonian fluids is that of power-law fluids which have the

constitutive equation

t = l-ti,n
=ltj,n-t,i, (3.3)

This class of non-Newtonian fluids has effective viscosity coefficient or apparent viscosity

pi"-r and does not have a yield stress.

lf n<1, we get a psuedoplastic strain rate. lf n>1, we get a dilatant power law fluid in which

the apparent viscosity increases progressively with increasing strain rate. lf n=1, we

obtain the Newtonian fluid as a special case.

(b ) Casson fluid

Another important class of non-Newtonian fluids is that of Casson fluid which has the

constitutive equation

,Í)T (3.4)
rrl
::21r, =LItT +Tot

0

v O ,T<To
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There exists a yield stress al zerc shear rate, followed by a non-linear relationship

between shear stress and shear strain rate. lf the shearing stress is less than the initial

shear rate no flow takes place. The plastic viscosity is non-linear and not constant. The

behavior of many real fluids such as slurries, household paint and plastics very closely

approximate this concept.
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CHAPTER 4

trr ôtnt IN TWrì-nrnf trNctôN 
^ 

I fi HAN Nttrl

4.1 Mathematical Mo lino of a Newtonian Fluid in a Two-Dimensional
Channel.

The basic definition of a Newtonian fluid is given in Chapter 3. This shows that

there exists a linear relationship between the shear stress and the shear strain rate where

the constant of proportionality is known as the viscosity of the fluid.

It is convenient to model physiological fluids as Newtonian because Newtonian fluids

are generally easier to deal with as long as this does not cause over simplification of the

particular physiological fluid being modelled.

Much of the research interest of peristaltic f low has concentrated on

incompressible Newtonian fluid. The analysis of this type sufficiently explains some

physiological flows, such as the flow of fluid from the kidney to the bladder via the ureter

against a pressure gradient.

ln this section, the peristaltic motion of a Newtonian, viscous, incompressible fluid

will be modelled for the case of a two-dimensional channel. The undeformed radius of the

channel is given by d and the tube is considered to be infinitely long. The sinusiodal waves

travelling along the walls, at wave speed c, have wavelength )" and amplitude A. The

geometry of the sinusiodal travelling wave is given by G(x,t) where

G(x,t)= l"orZ4Q-ct) (4.1)
A"

We assume the conventional cartesian coordinate system where x is the abscissa and y is

lhe ordinate, as shown in Figure 4.1
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Figure 4.1 Geometry of Peristaltic Flow in a Two-dimensional Channel

The governing equations of motion for the two-dimensional f low of a viscous

incompressible Newtonian fluid as discussed in Chapter 2 are given by the Navier-Stokes

equations in the form

(4.3)

where x and y are Cartesian coordinates and u and v are the fluid velocity components in

the x and y directions respectively and t is the time, p is the pressure, p is the fluid

u
density and y - r is the kinematic viscosity of the fluid, ¡r as the coefficient of viscosity

p

The equation of continuity is given as

ãu ãu àu lAp n2

-+u-+v-=-- 
- +vv uù ãx ù pàx

4*r4*r4=-r dP +vyzvù Ax ù pù

ãu Av

-+- - oaxù

(4.21

(4.4)

We may now introduce a stream function t¡ that satisties the equation of continuity as
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àry
u--

ù
ãy

v (4.5)

(4.6)

(4.7 )

(4.e)

(4.10)

àx

Cross Differeniating equations 4.2 and 4.3 and eliminating pressure p we obtain

à2u _ à', *,( ,', _ 4) *,(*_ _¿', I = ,( !r,,_ go,,l
dyh AxA [ða' dx' ) (ò' dxù ) \rt dx )

Using the above equation for definition of stream function we obtain

Defining the Laplacian Operator as

¡2 
d2yr=d^*l--- (4.g)' - d"' dY'

and non dimensionalising by introducing non dimensional variables(see Appendix A) we

obtain

*(r,,*,ø,,) 
* r,(v,r * r,,,) - r,(r,, *,v,",) = r(Y' v,, * Y' v *)

o(*", * v,Y"t', -'t' .v'v,)
cv

-d3
4V V

hence

*o', *v 
rY'rt, ,-r[ ,Y'v, = *oo,

e

Assuming that during the peristaltic motion that there is no horizontal displacement of the

tube walls the boundary conditions are as follows:

(t) U=0

the no slip condition (particles of a viscous fluid in the

vicinity of the surface over which it flows adhere to the surface) ( 4 ' 1 1 )

(ii)
I

v =+lGlx. v)
ãt 

.r/

the impermeable condition (no fluid penetrates the

sudace: the fluid transverse velocity component and the

surface velocity are equal at the wall) (4.12)

Using G(x,t) as given in equation 4.1 and the above the boundary conditions we find
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Organs of the human body involved in peristalsis, as described in previous

chapters, are of a finite length and hence the end conditions need to be specified. However

in this analysis we shall be considering a channel of infinite length, so end conditions need

not be specified. What is required is the pressure gradient which is assumed to be of the

f orm,

and

that is,

v r=o

V t=*
2rcAc 2tt
1A

2pc pr2 A

(x-ct) at y-t(a+cQ,t))

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

*=e),. ^(*),. 
o'(X),.

2¡pc dp

dAx d
+

dp

ãx
+ ('.):+5(Ð,o dd

and after nondimensionalisation, yields

*=e),.'(*),.r(*),.
and the boundary conditions 4.13 and 4.14 are reduced to the form after non-

dimensionalisation as follows

Vr=O (4.18)

V,=ia€sina(x-t) aty-+(l+ecosø(r-¡)) (4.19)

where e , d , R are the amplitude ratio, wave number and Reynolds Number respectively
e,

and are defined in the Appendix.

4.2 A Method Solution of a Newtonian Fluid in a Two-D imensional

Channel.

A method of solution is now required to solve the differential equation(4.10) f or

the Newtonian case,

The form of the stream function t¿ is assumed to be

2

V =Vo*eVr+e-V2+
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After substituting equation 4.20 into equation 4.10 and equating terms of the same order,

that is after collecting like terms in €0, et, e' ¿/c a system of differential equations may

be established to solve Vo,Vr,Vretc successively. After some rearrangement of terms

of the same order of t gives us for unsteady Newtonian flow the following equations to t2

(4.21)*o'r, * V orY' V o, - V o,Y' vo, = * vo,/o
e

!*" r t * v orv' v r, * v rrY' v o, - v r,Y' v r, v',,Y' v o, 
: *' 

o',

*vorY'v v 
, rv'v ,, - v o"Y"l' ,, - v ,,v'v ,, *

V rrY'V o* - ,lt r,Y'rl, o,
yoVz

+
2x

?v'*
ù '2

(4.221

(4.23)
I

R
e

The boundary conditions equations 4.18 and 4.19 can be written using a Taylor series

expansion about y = l(1 + G) where G = Ecosü(, - t) such that

.=Q (4.24)

/-2

ø,(tl) tGyr(+l).îVlrr(xt)*...=Tøesina(x-t) (4.25)

After substituting equation 4.20 into equations 4.24 and 4.25 and collecting and

equating terms of the same order in € on either side of the equations to e2 gives

ì/o)(tl) = 0

Yry(tl)t r/orr(ti)cosø(; - r) = o

ttlrr(=l)+ r/r,rr(+l)"osø("r - r)+ 
lvorrr(xt)cos2 

ø(t - t) : 0

r/0,(tt)= 0

V/r,(tl)+ Wo,r(+1)"osa(x -t)-- Tasinø(x-r) (4.2 6 ( a ) - ( f ) )

ttl2-(ll)t,/r,,r(t1).osø(x - ù.:v/.,yy(ti)c os2 u(x- t) = 0

yy(tl) * Gv ,r(*r).+rørrr(tl)t
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From equation 4.17, because , is a constant Womay be considered as a function of yAp

àx 0

only. Hence from equation 4.21 and using the condition that equation 4.26 is automafically

satisfied we obtain for the steady flow case the following ordinary differential equation

Yaw -0'0
that is

,4dvo-o
-æ

which has a solution of the form

which yields the equation

øo(l) - Ayt +Bv'+cv+D (4.2e)

Using equation 4.2 and a nondimensionalising gives us after making use of equation 4.17

and equation 4.2O and collecting terms of e0 the following is obtained

(4.27 )

(4.28)

(4.30)

(4.31)

(4 .3 2)

(4.33)

(4.34)

(4.35)

Vvr,*vrvr,-v,v, - -ap + -1-v'AxR v

¿3V 
o

however from equation 4.29

{Y-:6A= A=L(y
dv' 6 \rh

lf we use the symmetry condition

0

Ap

àx
R

e dyt
{y"
ayt

),

!6 =o) = o -",Y"0 (r= o)= o
Ay" ' ,ly' " '

hence from equation 4.29 this implies B=0 and using the condition

Vo(t: o)= o

=D=0

Finally, a.26(a) implies that

3A+C=0
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Hence,

That is,

R
a-- e

2

R R
where k - ---e-

2

ãp

ãx

ãp

Ax
(4.37)

(4.38)

(4.3e)

(4.40)

= 0 (free

Therefore substituting these values in equation 4.29 gives us the solution tor¿o(y) as

øo(r)
e

(n, I
øo(r) = r[i-rJ

which coincides with the solution given in the literature, Fung And Yih(1968)

We now seek solutions to t¡,(x,y,r) and are of the form

2v, e r(t)r'"('-') + o,-(l)e-ia(x-t)

where * denotes complex conjugate.

The differential equations for Q s and their solution, for the case

pumping) are given in the paper by Fung and Yih(1968) as follows,

O,(r)= Asinho¡,+Bsinhpy where þ' = a' - ia?"

and

2

-B cosh B

acosh øsinh B - Bcosh Bsinh ø
and B = 

acosh,'
- øcoshøsinhP - BcoshBsinhø

Ap

ãx

A_

It is found that the non-dimensionalised time average of the pressure gradient is given by

ão:r' rc+o(ej\
àxR"\/

where K is a constant determined from the end conditions.

Hence it is observed that the magnitude of the mean pressure gradient decreases as

Reynolds number increases and conversely. This demonstrates the significance of Reynolds

number. Pumping against a positive pressure gradient greater than the critical value

would result in backflow(reflux).
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4 .3 Mathematical Mod ellino of a Power Law Fluid in a Two-Dimensional
Channel.

ln this section, the peristaltic motion of a non-Newtonian fluid will be considered

in a two dimensional channel; the fluid will be modelled as a power law fluid. ln chapter 3

it was stated that a Newtonian fluid is one whereby its shear stress and shear rate of strain

obey a linear relationship, Hence a non-Newtonian fluid is one whereby its shear stress

and shear rate of strain are related non-linearly(see section 3.2 for graphical depiction)

The non-Newtonian fluid in this section obeys the following

t-pi,n (4.41)

The stress tensor corresponding to a power law fluid is given by

T (4.42)

where ?.. is the stress tensor and V.. is the rate of strain tensor and p is the isotropic

UU
pressure and m is the flow consistency index.

n-l
2 (4.43)

where n is the flow behaviour index.

4.4 A Method Solution of the r law fluid in a imesional

Channel

lf the fluid is modelled as an incompressible viscous fluid, the classical equation of motion

relating shear stress and shear rate of strain may be used, that is

--p ô.. + mev.,
UUU

e lvv
2ijij

p
Da ãr ..'i _ u
Dt -ãl

l
(4 .4 4)

where p is the density of the fluid and q- is the fluid velocity component in the respecttve

ith direction and as stated above 1.. is the stress tensor. Substituting of equation 4.42 in

U

equation 4.44 gives
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DQ,

DI
d

dx
. + m9V.
UU

p -põ

=-àoõ **ãtv**oãv"
dx ij ùr ij ãx

Jll

--ap **Êv +m
dx Ax ij

tJ

,{ a
Y2u + (v.q)

dx

(4.45)

(4.46)

(4"47)

(4"48)

(4.4e)

Asuming the incompressibility condition Y.q= 0, tne equation of motion in tensor format

becomes

De, _ "l,r)
de

dxjDt ãx

àp
-{

2p + u.+
I

ev

Using the summation convention and setting i=1 and 2 respectively and

nondimensionalising in a manner as indicated in the Appendix A we obtain the two

momentum equations as follows:

where if we use the equation of continuily 4.4 we find from 4.43

Q-

n-l

dudududpl
-+t1-+r'-=-:+-ùàxdyãxR

ev

4*u4*,4 - -ãp *J-[evr,dt dx dy ù R,t

=l,l*)'.,(-*)'.(x.*)'l

=l^l*)' .(x.*)'lr

:l-[#)' .(x.*)'lr

2u*zù4 *(ru.41?ql
àxãx \.ð dr)ù)

*zL?g*(4.¿l?qldyù \ò dx)dx)

n-l
2

Av

ù

2

+

2
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and the boundary conditions are given as equations a.26(a)-(f)

The solution for the stream function t¡ is found by assuming a perturbation series

in stream function and Pressure as

2

V=Vo+eVlt+Ê vr*

P = Po+ €Pt+ 
'2 

Pz (4.50)

On substituting equation 4.50 and equation 4.5 into equations 4.47 & 4.48 and

equating coeffcients of e of equal order on either side of the equations we obtain a series of

partial diferrential equations Íor tyo,V,,V etc

GJ Solution Procedure (Zeroth Order Approximation)

The zeroth order equation describing the absence of peristaltic flow(free pumping

situation) is found by considering the above substitution in equation 4.47 and collecting

coefficients of order r0 on either side of the equation and yields, after introducing non

dimensional parameters as described in the Appendix A, as follows

Apo

Ax

n-l
R

e
=k= V V +(n-l) V IU' oyy0w ovvl ovv (4.51)

r r n-l
= "lvor) v

where the solution Vo0) is assumed to be afunction of y only because the zeroth order

axial pressure gradien l, %, is assumed to be constant.
dx

ovvv

The solution to equation 4.51 is sought in the form

2n+I

nynr/o(r):
2n+I v (4 .5 2l

which satisfies the required boundary conditions,that is, equations a.26(a)-(f ) and 4.34

Thus we obtain
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øo(o)= o

wor(t) = o

øorr(o) = o

A(n+t) n-l n-l

yn
A(n+I)

n

(4.s3)

(4.54)

(4.s5)

(4.57)

We are now required to find the constant A appearing in 4.52. Hence substituting equation

4.52 in equation 4.51 we obtain

n
=/'=(

n

I

-A=' kin*I

Therefore the solution lor tyo becomes

n

2n+l

v (4.s6)
2n+ |

We see that for n=1 equation 4.56 reduces to equation 4.39 which is the Newtonian case of

peristaltic motion in a two dimensional channel as outlined in the previous section.

( ¡ ¡) Solution Procedure (First Order Approximation)

We now seek to develop the equations and hence the solution for ty,.

On substituting equation 4.5 and equation 4.50 into equations 4.47 and 4.48 and non

dimensionalising as shown in the Appendix A and collecting the coefficients of t' *" obtain

respectively the following partial differential equations.

vo(t) = #o'
ny'

Equation 4.47 reduces to

v,r, * v orv rr, - v rrv or, =

-*.*(r.,,)'-' {r,,,, * v,,,, + (n -,)(r,,, - v,*,) )Ìvrr,-vr.r,
ny
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Equation 4.48 reduces to

-Vrr,-VorVro=
dD
'l

ù voD )"-'{-v ror - v tryy+ 
(,2 - r)(vrrrr-vrro V,,,

2(n - t)
ny

*r'r,*vorY'rtr r"- v,,vorr, =

nv ruo + Ø - 2n)v,-, * rv,rrr, -'#(v,r, ø,- 
) 
*

I+-
R

e

(4.58)

(4.5s)

To obtain a single equation by eliminating the pressure terms, we cross differentiate

equation 4.58 and equation 4.59 and subtract to obtain the following

I

R

n-l
Vo)y

V + V
ny ny lyw

Letting n=1, and remembering that Øo is a function of y only, equation 4.59 reduces to the

governing equation 4.22, Vl, lor the Newtonian case. lf we introduce the boundary

conditions as given in equation 4.26 and substitute Øo as given in equation 4.56 we obtain

the boundary condtions as

vr. 0) = -kn cosø(x - t)y'ly\,/- "/ (4.60)

V/r,(1) =-asina(x-t)

From these boundary conditions, it is assumed that W, can be obtained in the form

v.G,y,t)=/(y)cosø(*-t)+s(y)sinø(r-t) (4.61)
t l\

Where f and g are to be determined. By substituting equation 4.61 for Ø, and equation

4.56 for Øointo equation 4.59 and collecting coefficients of cosø(x -t) and sinø(;-t)

on either side of the equation, two differential equations for f (y) and g(y) can be obtained.

Due to the complexity of the equations exact solutions in analytical form are not able to be

obtained.

Approximate solutions can be obtained by assuming that the wave number is small

However, this approximation will not be performed and analysed in this case but will be

considered later in the case of Casson fluid in a two-dimensional channel and a power-law

fluid in an axisymmetric tube. ._

(n - r)(n- r) (n+2)(n- I)
e

lxxy



4.5 Mathematical Modellino of a Casson Fluid Case in a Two-Dimensional

ft"P
Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson f luid

in a two-dimensional channel, where, d, is the undeformed width of the channel and the

channel is considered to be infinitely long; A, represents the amplitude of the sinusiodal

waves travelling along the channel at velocity c;^., is the wavelength (Figure.4.1). A

rectangular co-ordinate system is chosen for the channel with x along the centre line and y

normal to it. Let u and v be the longitudinal and transverse velocity components,

respectively. lt is assumed that an infinite train of sinusiodal waves progresses along the

walls in the x direction. The vertical displacements for the upper and lower walls are G

and -G for peristaltic flow at time t, where G is defined by,

2n
G(x,t) = Acosî(x- ct) ( 4 ' 6 2 )

L

We assume that there is no motion of the wall in the longitudinal direction

(extensible or elastic wall).

For the case of peristaltic pumping of a Casson fluid in a planar channel the

stress-strain relationship in tensor format is given by Fung(198'l) as

(4.6 3 )

where

p( 2 ]'
J,tt)=

[(,'n); 
.'-:",:)

o = -p6 *zu(tr)v,,

I
I

2 2r i

=[n2 +2 2rriJr- s + Nz-Ã =¡t(say) (4.64)

(4.6 5 )

1
4

Here we have denoted

d=¡12 : þ=

where 11 is the Casson coefficient of vis cosity, and Í , is the yield stress

v

Here,
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v =!ij2
ðu ãu

i, J

dx dx
Jt

dv
=-t)

+ ¡tY2v

(4.66)

(4.6e)

(4.70)

(4.7't )

(4.67)

where

4. 6 A Method of Solution of a Casson Fluid in a Two-Dimensional

Channel

Substituting equations (4.63-4.67) into the basic equations for continuity and momentum

respectively given by

divq:g (4.68)

arìd

and

we have

V
I

J =!v v =L(v 2 +v 2 +zv 2\
2 2 ii ii 2\ il 22 t2 t

Dqd
t_

Dt dx
J

ãu-:-
dx 22

v v -v =!(4*&ìt2 2t 2\ù ã* )

(du àvl-+-
\..ò, ãx

p

'(

'I

du ãu ãu

-+u-+v-dt Ax dy

Av dv dv_+u-+v-
dtdxù

l--ø *zuù+u
) Ax ''ãx'Y )."#.r*(

.^\àu àv\
-+- |

ù ãr)

which, using continuity reduces to

Similarly,

( a" du a'l= 
-dp +2, 4* ,(4* tl + uYzuola *" dr*' dr)- dx' 

oPr 
ãx' ' ,\ò dx )

l__ø *2, L*u(fu*el
) Ay 'tãy'"[ò, àr)

Defining as before the stream function VG,Ð asu=Vt), and ,- -V* we obtain from

equations (4.70) and (4.71) respectively

o(v r,*vrv,r-v,vu)= -*+2tr,v,y* rr(r r,- r-,,) + pYzv y (4 '7 2)
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and

,(-r, - v rv o * v,'/ r) = - # -' þ rv,, * r,(, n -, *) - L'v' v, (4.73)

(4.78)

(4.7s)

where tt, = *lp(r,)l

* = 
ft(u,r,,,)

and ,,= filu{"))

( i ) Solution Procedure( Zeroth Order Approximation)

Expressing Stream function, Vr, pressure, p, and p as a series in terms of amplitude

A
ratio e=1, where A is the amplitude and ,d, is the undeformed width of the channel,

d

(Figure 4.1), we have

V =Vo+eVt+¿2Vz (4.7 4)

p=po+ept+r2pz (4.75)

It= lro+ sltt+ t2ltz ( 4 . 7 6 )

where it is assumed that Wo is afunction of y only, ie, ttto=Voj), because of zeroth

order axial pressure gradient. We finally obtain from equations (4.72 & 4.74-4.76)

after collecting coefficents of e0.

AD

#=rporvoyr+ 
poyvoyr- Forvoo+ þovor*y+ Ltovoyyt, (4 .7 7 )

AD'o =LL w +Ulu
dx ' 0y' )yy ' 0' 0yyy

that is,

Therefore

From equat on (4.67) and expanding and subst tut ng we have

),We now need to f nd the zeroth order expresson for lro= Lt(J,

" 
= :l(*)' . 

[#)' 
.i(x. *)'l: :{,,; * v o * )(,,,-,*)' }
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={'",'*i(',,-t-)'} (4.8 0 )

2

o( 2,e) (4.81 )

(4.82)

(4.83)

(4.8 s )

(4.86)

(4.87)

(4.88)

Therefore we have, after introducing equations (4.74, 4.76, 4.80)

I(rrr,' +2evrrr(v,r,,- r,-)]-i *

,),u, = u(tterms and using equation(4.82) yield equations tor ¡to= p(tr)o

,(t,) d,+ pl

Negectng second and higherorderterms n s n equaton (4.81)and expandng we have

2

u(t,) = " 
. u(:)-' ,0,,-)(, - |v,,,-'tv,,, - Ø, ..'))

þo= a,' +z^FzuByorr-l *zþ'vorr'

Which after further expansion and collecting terms in amplitude ratio for the first two

and AS

þt = -aþJlrorr-1(rrrr-vr*)-2\'vorr-'(r,r-r,^) ( 4' 8 4 )

Solving equation(4.79) by using equation(4.81) and applying the symmetry boundary

condition ø0ry(0) = 0 we have

Ky+ L= þoVo,

-ãwhereX=p^E¿? andL=2p'
àx

Our equation to solve tor r¿o(y) then becomes

d' V rr, + z^Fzaþy o'I - Ky = o

lf we set

V =W2
ovv

then equation(4.86) becomes a quadratic in W as

a'w' +zJ1aBw - Ky : o

4l



whose roots are g¡ven by

w=-^ltL¿Et.Kyaa
(4.8e)

(4.e0)

(4.e1)

(4.e21

(4.e3)

Using equation(4.87 and 4.89) we obtain

W=' ovv a.
-",1, L

d,
+1 2p2 + Ky

)

But the symmetry boundary condition V (0) = 0 demands only the positive sign to be
ovv

valid, therefore
.,

V -"lt 2p2 + Ky
ovv u,

lntegrating equation(4.91) twice we obtain

p
a

I+-

Where A and B are constants of integration

øo(r)= 4¡ .ft; - ,#eÞ'* x)} + Av+ B

Using the boundary conditions r¿or(1) = 0 and yo(O) =0 wefind

o=ffi(rþ'**):-5 #
B=#þp,)i (4. s4)

lf welet þ->0 that is t -+ O from equation(4.65), we obtain the Newtonian case in the

f orm

vo0)
K

^2¿d
v

v aJ

which coincides with the literature, Fung(1968)
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We now seek to determine the dimensionless pressure rise, Apo, where

Lpo =
I

I
0

ãv 
ou

ù

C

I
0

udy

(4.e5)

(4.s6)

(4.e7)

(4.e8)

(4.100)

I will consider two cases( A and B) for pressure rise versus flow rate

(A ) The flow rate, q, considering the boundary of the channel given by V=G, is

where G=€cosd,(x-t)

Hence from equations (4.85 and 4.92-4.96) we have

6qu' -rzp2er.or'"Lo=,0
€' 

"or' 
x - 3e cos x

the solution to which is found by making the substitution

c
q=l

0

7 x1
2

tan

that is

r-22
COS.tr = 

-; 
,

l+2"
)z

SIn.f = 
-.;-,l+ z'

tzp2 e3

p^F d

s6p2 e3

p^[n

2

I+ z2
and dx = dz

Separating integrands and using the method of partial fractions we obtain the following

three integrals to be solved;

12qa2--E
p\c d ,'-@*yl)

,'_ re-yl)

-1.ffi1"Í'¿6", l2qa2

,{,t o
+

546

I
0

z+ Bt

r
0

546

J
0

546

J
0

+
*D,

['i'
(4.101)
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where

1 (4.t02')

a=e3-3e b=e3+3e

Clearly, in our case, both a and 0 are always negative and both b and y are always

positive.

Thecoefficients A ,8,,C,,D¡,8¡ ,F,,i=1,2,3 are foundbyequatingcoefficientsinequations

(4.99-4.101 ) after replacing cos2 x by I - sin2 x in equation(4.97) and applying Gauss-

Jordan elimination, and are as follows:

{(-t*r+r)-ze(zy+z) (-e+y-r))
E_
I

e =L
a

v
b2

2a

A =C =E =0lll

{(-' * e + y)(e - y) * ze(-(e * v)(u -r - r) * ze)(zv * z)}

A =C =O1.,

D --t

p = _(-o + v +t) *(-t+ e + v)(o - v),-r2e20r
B =-l-D +Ftll

A =C =E =0333

(4.103)

(4.104)

(4.10s)

F -_
3

I

(r+e*yXt -(e-y ))

1

2
D

) v

B =-D -F333
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The solution to equation(4.97) after considering equation(4.99-4.101) takes the form,

¡o =t2qa2 [-å'"1' P"lr'dlz"'le +Y ( n(,- ^Et l. ¡ ranh- ¿

\z+ ",le -y ) 2

o+y
z-f o+y

o+y

).

,^'-'[?).?,"' 
[?)]

læ^(ffiyffi'"[=g;1
rzp'et
p^[n

z- i6

z+ i6

)

z+

lf we assume 0+y =i5.'

since 0-7 and 0+y are always negative, then we have

",[e 
j = ¡5

(4.106)

(4.107)

l2aa2
a,no= --fi=

P\c a
F^

' tan
2

where ¡=Jj j=1,2

Subsequently,

D
+ ltan

ô,

D,
+ 'tan

ô,

(4.108)

Graphical representation of dimensionless pressure rise vs flow rate, given the boundary

of the channel as y=G is shown in Figures(4.2 A 4.3). Figure(4.2) and Figure(4.3),

compare Casson with Newtonian fluids and are depicted for two values of amplitude ratio.

B,

õ,
tanh

F,

2
tan

ô

B,

B,

õ,

.]

.]se B2 e3

ffi tan
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Pressure Rise vs Flow Rate, €=0.2, with waveform G
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Figure 4.3: Pressure Rise vs Flow Rate, t=0.8, with waveform G

( B ) The flow rate, q, considering the boundary of the channel given by Y=f is

2

*, =jYn = r//(r) - '/(o)

therefore from equations(4.92-4.94)

y(r)-Ø(o)= # #.*(zB'z + x)

I

q= I
0

(4.10e)

(4.110)
-l;t =q

Pressure Rise vs Flow Rate

Casson

Pressure Rise vs Flow Rate

Newtonian Casson
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Applying expansion gives

2p' K . ßp4
e = -----¡- - -----.- + --.- (4.1I l)

3a' 3u'K

Separating the pressure gradient after solving for quadratic in K, and using equation(23)

gives

ãPr= K : 1 [-L(^nr"-nn2\+l
d- - p^Fd p^[;d I z\-* ' "r' ):2

Hence using equation(4.95) pressure rise is

gooq'+ looBa -l6azqp2 (4.r12)

aq2 +looBo -36a'qþ' þ,l{-it'xn-e B')'iLpn =

because - )lt"' n - 6 p') r+ guoq'+ 100Ba -36azqBz = constanr (4.113)

1

gaoq'+ loop4 -36a2q82

However, þ=0, implies that only the negative sign of the quadratic to be valid, therefore

Lpo=;m{ +(zo'n-6p')r;

1

(zo', - 6þ')-+ gaoq' +1oop4 -36a2qþ2
p^[rU

Lpo (4.rr4)
2

Graphical representation of dimensionless pressure rise vs flow rate, given the boundary

of the channel is taken as y-1, is shown in Figure(4.4).
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Figure 4.4: Pressure Rise vs Flow Rate, without waveform G

( i i ) Solution Procedure( First Order Approximation )

We now look at the procedure for determining Vr(",!,t).

The boundary conditions for Vr(xJ,t) are derived as follows; Assuming that there is no

horizontal displacement of the tube walls during the peristaltic motion, the boundary

conditions at the walls are

3

(a) no - stip condition : u = 0 at y - Xld + G(x,t)l

(b) impermeable condition: , = t+GQ,t) at y - tld + G(x,)f
ù

2n.
Using G(x,t) - Acosf (x - ct) and equation (4.7Q and non-dimensionalising we obtain

(4.11s-4.116)
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The boundary conditions (4.1 17-4.118) can be written, using Taylor series expansions

abouty=l(l+ G)wherehereG=€cosd(x-r) as, after equating terms of the same order in E,

on either side of the equations, which gives

v, = o o, t = ::lt* r"orå{* -,)]

vr, = *ry rin] G - ct) =+ ã e sin ãQ - t) ot t = xlt*, 
"o, 

ã{' - 4l

y)(tr) t Gt{ yy(tr) * *r rrr(tr¡ 
t o(c3) = o

y, (t1) ! Gvr xy(!t) 
* *, -rr(tr¡ t o(c3 

) = + ã e ri n ã(' - ¡)

yry(t1) t,/orr(tt)cosø(x - r) = o

yo"(t1) = o

ør,(tl) t yo,,(*t).orä1" - t) =Tøsin ãQ - t)

and so on for higher order terms in e.

(4.117-4.118)

(4.1t9-4,r20)

Substituting equation (4.74) into equation (4.119-4.120) and collecting terms of the

same order in e , gives

V (tt¡ = 6
0y

(4.12r)

Taking the positive sign of the boundary conditions as given in equation (4.121) yields the

boundary conditions as

r/r)(1)= -Worr(1)cosø(-r - r) (4.122)

v/r*(t)=-ãsin ãQ-t¡ G.123)

From these boundary conditions, it can be assumed that V/l(*,y,t) can be obtained in the

f orm

v r(x,t,t)= ¡(v)cos ã( x - t) + s(v)sin ã(.r - r) Ø '124)

Eliminating the pressure terms in equations (a.72) and (4.73) by cross-diff erentiation

and subtraction, the following equation is obtained:

p(vzv, * rl ,Y'v , - vt ,Yzv, ,) = 4F*rv yx 
+ 2ltrr[ yyx 

* þrr(v ,, - v ,) * þr(v ,r, - v *ry) +

þrY'v, + LtYz\r yy 
* 2þ rv rr, - Lt u(ttt yy - v o) - lö', rr, - v r"r) + lr rvzv * + I'tYzv,, 

Ø'125)



By substituting equation (4.124) for Vr(*,!,t) and equation (4.92) for Vro(r) into

equation (4.125), and collecting coefficients of cosa(; -t)and sinø(x-r) on either side of

the resulting equation, two differential equations for f (y) and g(y) are obtained.

Due to the length and complexity of these equations approximate solutions are obtained by

assuming that the parameter, a , which " ry is small. As a f irst approximation, the
L

_2
terms of order a and higher can be neglected; as a second approximation, the terms of

1

order ø and higher can be neglected and so on.

Hence the following equation is obtained from equation(4.125) by expanding in a

pertubations series as indicated in equations(4.74-4.76) after collecting terms of the

first order in amplitude ratio, € and remembering Vo= t¿o(y) only,

p^[Sa(V,,,¡, + V0,,Vr11,, - Vr,Vo,r,) =

[Lo yyV, yy + l\ ynV o y, + 2 lto rV r yyr, 
-f 2 [r, uVl r rr,, + ltoV r yyr,r, 

I þ tV o rrn,

where þ0,þoy, ltr, ord lJt,þty, ,r, ur" extensive and complicated equations and are obtained

from equation (4.83) and equation (4.84) respectively, as follows,

t, _zßzv^ -2u/^ @.127)Fo, = -J-zaPV orr-ív'orr, - 2þ'v orr-'V or,

rroy, =#r rrr-1v orrr' - "{iaÞv ott-}, orr, * 4þ'v orr 
tv 

orrr' - 2þ'v orr,'v orrr, (4.128)

ur, =ffv orr-1'orrr'tvv - Õaþv orr-1',rr, * 4þ'v or,'v orrrv rr, - 2þ'v or'r-tv 'rr, 
(4 'l2g)

l5uß t , 3aß -r 6aþ 5

Itr, = -ffi Ø0,.,,-JØ0,,,,,.'Vrr,,. l frV0,,.-lØ0,..,,W,,, 
* i Ø0,, ãW0,,,,Wr,,, -

^l-zaþvro,,,-ir,,rr" -12þ'Vor,,urlrr,,,,,,'Vrrr,+4þ'Vrrr-tØ,,.,u.,,Ø,,., + (¿1.130)

8 þ' V o, r-t V0-,,-,1,wr -,,vr - 2 þ' V o rr-' V, r,,r,

After substituting for the various terms in equation(4.126) and collecting terms and

remembering the approximation made on terms in the parameter, a, the following

ordinary differential equation is obtained

(4.126)
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p^Fd

G f " sina(x - t) - u g" coscl,()c - t) +

15, 
* # r' - #po' * r):. o](-;r"' inã(" - t) + ã s" "o'ã(' - 

r)

(
k2

- u f sin a(x - t) + a g cos a(x - t)

5

k2y
qþ'o'

ky

1F7

)'(r'.",r, 
x - t)+ s",inã(* ù#15 * 4, -u*lrø'. 0,,¡i] -

)(r-.",r," 
- r) + s"'sin ãt. -,))*palþ. 4 r'u*(ro', );l 

;
+

o2 ¡'' "o"ã(* - 
t) * g'' sin ã(x - r)

--1,4o'þ' t6Bao2'
ap--=
42

f " cosa(x - t) + g"sin u(x - t))l#*4,-'Fþo.o')il
3

)k2 3k3

+

+

4þ2
2a

f-

a

k
2p2 ky ¡" "orãQ - 

t) + g" sin ã(x - r)
I
2

2

v-

where the constant A is given in equation(4.93)

Collecting coefficients of cosa(x-r) in equation(4.131) gives

(4.131)

(4.132)

l5'*#" -#Po'.'¡i.^l[

4p2
2a

k zþJ'+--=l-- a
a' a'

k

["'J
2

13,
P\c a -dg" + dg"

a
Ky

qþ'o'

5

.11-t
('P' *'r)'I

I

(#)u ")"pt'l# * 4, - #p o,'); 
I 

;

,)#url#*4,-u*þr.ù:^t¿ la s

"onl# * 4, - # p o' . rþf- 
: ,'')

* "'(/')
3

2

+
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Collecting coefficients of sina(x-r) in equation(4.131) gives

,^tn[;," l#, 
* #,' -u9¡,0 . d]. ^]¡tr"). (

(#)' rr#l# * 4, - uF(':,');] ; 
-

3

(#)r"'t*nl# * 4, -#þ0.');] u 
* o'(l') -

ffi #.,)ç*,1# * 4, -u1co' . ùifi

*"1# * 4, - uflp o' .'¡i 
]i {," )

af

The equations for f(y) and g(y) can be simplified by assuming that the Reynolds number

associated with the present model is small, where the associated Reynolds number is given

as

B" = p^[êa (4.134)

Therefore,

(4.13 3)

(4.13s)f (y) =å(y) * x"' fr(v) + higher order terms in Re

g(y)= R.cr(y)+ Re3 sr(r)+ higher order terms inke

Hence, evaluating equation (4.132) and equation(4.133) with equation(4.135) and

equating equal terms in Reynolds Number the following ordinary differential equations are

obtained tot {(r) and g,(y) respectively,
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)'t #15*4,-#Po'.')i]
5

2

I KY

6Fe fo

(*)v,¡* "l# 
* 4, - uf 

e o' *,):
3

ffi #,)#þJl# * 4, -u#þ0.');] .

*"1# * 4, - u*(, r- r¡i 
]i{.t' ) = o

3

)
* o'(fo,,)-

Ir,t 
-l#, * #,' - tÊ%þo . r)1. ^l(trl. (

(#)' çì#15 . #, - uf p o' . di)
3

GF*)ø,1*"1# 
* 4, - #p o' . qif

)+øl**4,-tfpo'.n$f

ofo
k2

(4.136)

(4.137 )'(r '" )

3

k2 zk3

æF t6{;'Y

*"1#*4,-#po' *r): 2

(t,'" )

From equation(4.122 and 4.123) the boundary conditions for fo(y) and g'(y) are given as

/o{o¡=0 {(0)=0,fn(l)=l 6(l)=-Vt0yy (4.13g)
tr, (0) = sf(0) = B, (l) = ri(l) = o

The analytical solution to equation(4.136) is found by using the results given by Polyanin

& Zaitsev(1992)

Hence by reducing equation(4.136) to a second order equation and then integrating

twice the solution is found. Comparing our reduced second order equation to and using part

28 on page 134 of Polyanin & Zaitsev(1992) with their notations
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5

A^ B Co=8,þ= U,T=-E

3k'
+B'I

2la)

3

210

4

2i0

4
where, A =

D_

where

p-

D2A
482 E

C_
z^li(+P'a')' t6þ a'z^E +JlB'a'

3

t-J' 4p' 210

D
+

4E

2
d, 4 E=a,2.^rr"p({)'\o' 

)

I-t

4

q
4

(4.139 )

(4.140)

(4.141)

(4.144)

Consequently, with *o-- fí' equation(4'136) reduces to

D
w vw0E

Then following through the analysis they describe where

* |{or' + By -c}wo = o

T
2

is the root of the quadratic(see page134 of Polyanin & Zaitsev(1992))

4sz +Zas+(x:0,o:-2,b=0 Ø.142)
E

It is found that if we consider only the first two terms of the series,

*o= fá'=exp(/zy)exp (tyz¡z(É) where z(€) is found inTabte2.2 page 143 of Polyanin

,<çt= Ë@,1,(()

9=
y-lt 2b-h + b

,p-- t t,)"=1,
),

e("|,r'e') is the degenerate hypergeometric solution and is found on page143,

part 103 and page137, part 65 of PolYaninO& Zaitsev(1992).



Subsequently, the solution to equation(4.136) and hence equation(4.143 and

4.144), after applying symbolic integration twice using MATLAB v5.3 is very intricate

and given in Appendix C.

Numerical solutions to equations (4.136) for /o(f) anO (4.137) for 8,()) results

the plots in Figures(4.5-4.9). Figure (4.5) shows a comparison of /o(f) witn other

models, in particular, Raju and Devanathan(1972). Figure (4.6) shows the curves f or
,

/n(f) anO /n (f) witn varying values of yield stress. That is, p is gradually varied

between zero and unity. Figures (4.7-4.9) show curves for g,(y) and g, (y) with varying

values of yield stress and various values of wave number. Figure(4.10) gives the

streamfunction plot, as derived in this research from equations(4.74, 4.92-4.94), and

4.124 and 4.135 which are very similar to plots given in the paper by Raju and

Devanthan (1972).
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4 -7 Discussi rln of Results

ln this study it was found that for the Casson model, the governing partial differential

equations are indeed extensive and complicated. lf however it is considered that the zeroth

order perturbation in stream function is a function of the axial coordinate only, we f ind

thatthe Casson model may be quantitatively expressed as a Newtonian model (Figures 4.2

- 4.4)'.

It was found that in the zeroth order approximation in stream function that there

was a dependence on the Casson coefficient of viscosity, yield stress, the density of the

fluid, the wave speed and the dimensions of the channel.

When considering this approximation in the zeroth order stream function, results

show for Figures(4.2 & 4.3), representing Pressure rise vs flow rate derived with the

upper limit at y=G for lower values of amplitude ratio the difference between

Newtonian(dashed line) and non-Newtonian(bold line) in Figure 4.2 seems to be

consistent with the literature, and very similar to Figures(4.2 and 4.3). However, f or

higher values of amplitude ratio represented by Figure 4.3, the pressure gradient is

noticeably affected by the non-Newtonian character of the fluid. The effect appears to

increase as the occlusion gets larger. Also, in Figure(4.4), representing pressure rise vs

flow rate derived using upper limit y=1, results are also consistent with the literature.

However, we see that for the first order in stream function the differential

equation to be solved is complex, and the analytical solution derived from symbolic

integration is more so. When comparing the values of our Casson model in Figure 4.5,

obtained from numerical integration, of the first order in stream function, with those of

the power-law model of Mernone & Mazumdar(1998a) and Raju & Devanathan(1972) the

results are similar (that is, the curves almost coincide) when comparing the two power-

law models(Raju's numerical and this thesis' analytical). However, noticably different

when comparing the Casson model with the power-law, but similar if form. The Casson

model indicating the effects of the yield stress and Casson viscosity on the stream function.

When considering /o(f)anO /o'(y)¡n Figure 4.6 it is found that as the yield stress É is

gradually varied between zero and unity the effects on both d(f)anO fr(Ð are noticeable.

It appears that the maximum value for /o'(r) in decreased and shifted slightly to the right.

Similarly, in Figures 4.7-4.g when considering the functions gr(y) and g, (y) we find that

the wave number á has considerable affect on the curves.
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It appears that as the yield stress p is gradually varied between zero and unity, and

therefore the value oÍ Ío'(y)=-Vorr(t), there is a shift in the size and shape of the left side

and right side in the curve representing s, (r). There seems to be a reversal in the location

of peaks behveen the right side and left side. lt is of interest to note that the points of

inflection occur in exactly the same location when considering each of the respective graph

of Sr(y) and g,'(y). As the yield stress B is gradually varied between zero and unity the

points of inflection are shifted slightly to the right.

The numerical values obtained for ,[{f) and foi.r), and S,(f) and s, (t) are

indicative of the validity of the perturbation analysis used throughout this research as

indicated in equation (4.74 and4.124). lt is seen that the order in magnitude of d(f) is

very much greater than that of g,(y) as is suggested and expected by the perturbation

method.

From the numerical calculations we find that the change in behaviour of the

streamf unction patterns occur depending on many parameters, including

K, ã,,a,þ,R,,and¿. when we consider Figure (4.10), which is a plot of the stream

function given by equations(4.74 and 4.92) and equations(4.124 and 4.135) and selecting

e =0.01;for the case of high pressure gradient, with --- representing y0l(y=0.1),

- representing Vot, representing Øo:, representing Ø0, and

representing y,.e(y=0.9), it is found that the streamfunction curves run parallel to the

axis of the channel when considered near the axis(y=0'1)' whereas considerable

deformation is observed when they are considered near the boundary(y=O.9).

Perhaps a possible explanation for this sort of behaviour of the streamlines can be

given by considering the region as consisting of two parts - a central core and a boundary

layer region. As the pressure gradient increases, we find that the curves in the central

region are more influenced by it, than by the motion of the boundary and hence the curves

run parallel to the axis, while in the region near the boundary the flow is influenced by

both the wave and the pressure gradient(see explanation later, Chapter 5).

This modelling is appropriate as it may allow insight into the validity of the reduction

of the complexity of modelling some non-Newtonian fluids like flow of urine in the ureter and

blood flow in the blood vessels under cerlain physiological conditions.
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4.8 Gomparisons and lmPlications

Finally, we note that the governing equation for all three mathematical models show

some similarity to the Newtonian case when certain assumptions and simplification are

made, particularly for the power law and Casson case.

It was found that for the power law and Casson model the governing partial

differential equations were indeed extensive. lf however, the fact was used that the zeroth

order perturbation in stream function is afunction of the axial coordinate only,( because

the zeroth order axial pressure gradient is constant), it was found that in the power law

fluid, if the flow behaviour index was set to unity, the model may be considered ard

quantitatively expressed as a Newtonian model.

Similarly, if we consider the same assumption for the zeroth order axial pressure

gradient for the Casson model; lt was found that the Casson model was also a natural

extension and may be physically modelled as a Newtonian model. When we considered the

first order perturbation in stream function the resulting equations were very complicated

and did not allow analytical solutions without considerable effort and manipulation, if at

all.

It was found for the power law case that the governing equations reduced to those of

the Newtonian model if the power law index was set to unity. Also it was found for the

Casson model if we carry out a Binomial expansion on the viscosity term and the

derivatives of the apparent viscosity term we find that the Casson model reduces to a

Newtonian model in the case of the zeroth order perturbation in stream function. lt was

also found that the solution for the first order in stream function agreed with that in the

literature, after simplifications and assumptions, and the results of numerical analysis

performed indicate the validity in the derivation and assumptions made in deriving the

complex differential equations. That is to say, the order of magnitude betwwen {,(f) anO

g,(l) is consistent with current knowledge in fluid flow.
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CHAPTER 5:
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(

T
â

L
A

-----+

È

\

Figure 5.1: Geometry of Peristaltic Flow in an Axisymmetric Tube

5.1

The governing equations for the flow of a Newtonian, incompressible fluid in a circular

cylindrical tube in cylindrical coordinates is given by the Navier-Stokes equations and

continuity equation in cylindrical coordinates as

q\=,t) = Ar¡s Ì:L (a --l )

( àu du â¿¿l ãp ( à'u I àu u' à'r\o[ã*' d,* 
* 

dr)= - dr* "[at n ; a,- 2. æ )
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I dtu à3w t( ã', â''l | ( au a,',l

Iæa-¡1.;ln,ù-F )-71a,- d, )

'(

dw dw Aw

-+u-+w-dt ãr dz

-)dw
dr'

dw
dz"

¡2 ¡2du dw

drÞr- eZ).,[

uàw¡-rù

(5.2)

(5.3)

(5.s)

tdw+--+
ràr

There exists a stream function r4 which relates to the velocity components u and w,

satisfying equation 5.3 such that

dudwu
-+-*-=Uàrèzr

làw Iu=--i--V-
rdz r .

Iãv I
1,y=-----J----lur ãr r''and (5.4)

(The signs above are opposite to those used in Raju & Devanathan(1972))

Eliminating the pressure term by cross differentiating the momentum equations 5 1 and

5.2 and subtracting gives the following

ð2, ã'w u ãu_-+
Azù ãrât r ù.

,I

v

Iw=--
r

-0 at r=d+G(z,t) where

r3 13dw du
I-

az.'a, ' azt

2n.
G(z,t)= ncosî(z- cr)

Substituting for stream function yr in place of velocity components u and w by using

equation 5.4 we obtain from (5.5)

I(o,'r).i#(, :v,,-?v,',t,.i#)-l#(o,'v,)=,(v,ov) ( s 6 )

where

v,:-4*4-t a (s.z)I az.' àr' r àr

We assume that there is no horizontal displacement of the walls and consider an idealised

tube of infinite length where the end conditions need not be specified because we assume the

pressure gradient in the axial direction is specified. The boundary conditions for an

axisymmetric case are therefore given as follows after using equation(5.4)

V (5.8)

u=l',= *""'o= *(^"o'!{'- ")) T'^TQ - ct¡
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The pressure gradient in the axial direction (z) is of the form

(5.10)

where A is the amplitude of the sinusoidal waves travelling along the walls of the tube and

d, =(ù\ * A(ø\ *,q,(Ø\ *...
Az \ãz )o \Az )' \èz ),

dp

àz
= constant and =F(r,z,t) i=1,2,3

0

Ap

ãz
(s.11)

(5.14)

lf we introduce non-dimensional quantities as outlined in Appendix B, the boundary

conditions become

V,=0 at r=1+ G(z,t) whereG(z,t)=¿cosø(z-l) (5.12)

V r= raesinü(z - t) at r =l + G(z,t) (5.13)
and

E,
dp

Az
+

dp

Az ), '(
+

rr
I

W+ 2r

l+
ãp

àz

Y 2w +r4yl _!ùft
I r'àr) ràr\

where e is the amplitude ratio, e = L
d

Substitution of non dimensional variables as shown in Appendix B equation 5.6 becomes

2
c

d
V

which becomes

2,V V )-i*rV

d-:-
àt

d

d,
2 .Ly(r èz\

ãty

ãr
V

vc

d2
'r r)jVV 2 ov (5.15)

*La(
'&[

2 2 4

.)
2V2V V V V V V (5.16)rr R

5.2 A Method of Solution of a Newtonian Fluid in an Axisymmetric Tube

The method of solution for solving equation 5.16 is in much the same manner as solving

that for the two dimensional channel case. That is, we substitute a perturbation series f or

the stream function r¡ in terms of the amplitude ratio e of the form

Ê.y/ (5.17)2
V

Therefore equation 5.17 in equation 5.1ô gives

V : tltn+ E+ +
2
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J(o ,'r r+ ev ,2v ,* .. ., 
) 
*

)(,,,* )(o,'ro, * 'oevl
22 2

r
V V

,V (ro, * 'v,,* ))
+eV+

1+2
r

+ v r,*

r

lz 0

(to, * uv,,*I

r

r

)(o,tto. + eY 
,2vr ,+

'vo*

V ov +eV 2
V

R 0
e

Equating coefficients of equal power of e we obtain for the first two terms

V vo,
2

V](r,'r,).:+( ì+)- i* t, :, o,)= f, (o,''. )
2

(s.18)

(5.1s)

(s.20)

rt

and

d

dt

I

(V,'ø,)
àV,
ãz

1+-
r (o'''o' -?'"'' * ì+)-l#t,',t .,)*

ãvo
Y ,'Vr, -?v ,"1', *r

I ârø,1

7 dr)
_lr0,r,,r,,

Az

= f {v,'r,)

Applying a Taylor series expansion (as before )about r='1+G(z,t) implies the boundary

conditions, equations 5.12 and 5.13 become

rr,(l)+ G(z,t)v,,(r)*(G(1't))2 v,,,*...-0 (5 ' 21 )

vr(t)+G(z,t)t{2,(l)*@(1'ù2 v,.,,*...=crtsin a(z-t) (5.221

Using the form lor ty as given in equation 5.'17 in equations 5.21and 5.22 we obtain

Vo,0)+eyr,(l)+ecosø(z _ t)W0,.,(l){...=o ( 5.2 3 )

Vor(l)+eryrr(l)+e cosø(z -t)Vor,O)f ...= a"esinu(z-t) (5 '24)
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Equating coefficients of the same order of amplitude ratio e on both sides of the boundary

condition equations we obtain

r/0,(1)= o (5.2 5)

V,,0)+ cos ø(z - t)ry o,,(I) = 0 (5.26)

Ø0.(1) = 0 (5.27 |

Vrr.(1) + t¿0.,(1)cosd,(z - t) = asin a(z - /) (s.28)

( i ) Solution Procedure(Zeroth Order Approximation)

We now consider the zeroth order perturbation, where if we consider that tlto=tlto?)

only because of the constant zeroth order pressure gradient, we obtain from equation 5.19

V,atlto = 0 (5.2e)

which becomes

z d3rtl 
o +

dr
(5.30)

,4dVn

dra
that is

- tro" =,
rt drr

J
2r

Which is a homogeneous linear equation of order four, whose solution is akin to that of the

Euler or Cauchy equation, that is, the solution is of the form

Vo?) = Ar4 + Br3 + Crz + Dr + E (5.31)

where A,B,C,D.E are constant coefficients

Using the boundary condition as in previous analysis,

Yo(0):0=E=0 (5.32)

Using equation 5.2 and non-dimensionalising we obtain

,, #t - r,, 4- * 3,, t+ - z,dîo =,

dVo

dr
I-:
tr

ãp

az
R

e

l drvo l dzvo
T_1__:_T_T

o r dr'' r' dr
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Hence using boundary conditions 5.25 and 5.27

R
^- 

e

l6
B=D=0 and

àp

ãz ).
and

R
4A+2C=0+ C----e-

8

V
R

e

8

dp

dz ).,

(5.34)

(5.35)

Hence collecting values for the coefficients of the fourth order Ordinary Differential

Equation 5.31 we obtain from equation 5.32-5.34 the solution to r¿o(r) as

ãp

à?.o(')
2r

0

5.3 Mathcmatieal Modellino of a I aw trluid Case in an

Axisvmmetric Tube

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a power law

fluid, which is viscous and incompressible in an axisymmetric cylindrical tube,where, d,

is the undeformed radius of the tube and the tube is considered to be infinitely long. As

before, A, represents the amplitude of the sinusoidal waves travelling along the walls of

the tube, 2, is the wavelength and they are travelling at speed, c,( as shown in Fig.5.1).

As indicated previously, the geometry of the sinusoidal travelling waves is given by

G(z,t) where the vertical displacements for the upper and lower walls are G and -G f or

peristaltic flow at time t,

(5.36)

The non-Newtonian power law fluid is characterised by the well-known constitutive

equations 5.42 and 5.43

põ ¡¡ + núV¡¡ (5.37)

n-l
2

2tt
G(z,t) =Acos-

L
(, - ,t)

" r.J

0- l ruru 
I
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where, O¡, and V.., arc the stress and the deformation tensors respectively, p denotes the

isotropic pressure and, m and n are respectively flow consistency index and the f low

behaviour index.

Because the fluid being modelled is assumed to be incompressible the following equation of

motion may be used,

Here D/Dt is the material derivative of a particle following the fluid and is given as

2=!*q.v (s.40)
Dtù

where, p, is the density of the fluid and, Q¡, is the velocity component in the respective

direction

Substitution of equations 5.37 and 5.38 into equation 5.39 finally gives

Dq.
I

Dt

Dqi doij
p-

Dt ã*j

ào d0
- ---:- + m-V +

ãx. ãx. U
tJ

d
u +-
tàx

ãu àw

-+-àz àr

àu ã0+2 +
àr àr

ãu ãw

(5.3e)

(5.41)

(5 .42)

(5.43)

(s.44)

p v2 (o q)

which after using the incompressibility condition Y.q - 0 yields

2 d0
+V..-tl d".

l

0v u

Dt àx

By setting i=1 and then i=2 and using summation convention with dimensionless variables

and parameters (shown in the AppendixB ) the following equations of motion are obtained

from equation 5.42

ù * u4 * *4 = -à 
P * l-[r( v,, - +lãt àr àz àr Rel\ ,') -+-ãz àr

àw ãw âw ãp I
TW-

ãt àr ãz ãz Re
ev w+

d0 ãw ã0_ +2_-
àr àz ù.

2

where 0 appearing in equations 5.43 and 5.44 is given by
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àud
2

n-l
2w

d td0 (2" - r) ¿2v
0

(5.45)

(5.46)

(5.47 )

(5.48)

(5.4e)

(5.50)

(5.51)

(s.52)

+
ãr àz

and
2 z

2â td d
V

2 2
ãr r ãr àz

The equation of continuity in cylindrical coordinates is given by

ãuàwu+-=0
àr ãz r

There exists a stream function Y satisfying 5.47 such that

laY
u-

rãz

tdY
w=---

r àr

where u = radial velocity, w = axial velocity

S .4 A Method of Solution of a Power Law Fluid in an Axisymmetric Tube

We now express Y and p as a power series in Ìhe parameter t as

2*=YO+eYr+e Y2*
2

P = P0 + e Pl + e P2 *'

Hence, if we consider equations 5.50 and 5.51 and make the substitution given in equation

5.48 and 5.49 and collect like terms associated with powers of t on e¡ther side of the

equation 5.44, this yields to the differential equation for the zeroth order term YO (t) ,

given by

{;

n
dY

0

dr

Y-Y 2
n

dY
n 0 0

K 20 , d, r dr3 2 22 drd

where Ko is defined as follows(the opposite sign to Raju & Devanathan(1972))

-Kn=K--*"1+lydz )

69

(5.5 2a )



We now assume that Yg (r) is a function of the radial direction only, due to the constant

zeroth order axial pressure gradient, the solution for equation 5.52 and thus the solution

for Ys (r) is is given as

¡+! )
wo(,) = (;)nn nrflr

n+l 3n+l 2
(5.53)

(5.53a)

This is derived assuming the solution to(s.52) is of the form

.lJ+-
nril 2r

Y¡(') = A 3"-l-;
whereAisaconstant

which satisfies the boundary conditions %(0) = 0 , Y,,(1) = 0,

Hence substituting(5.53a) into 5.52 yields,

Ko=!¡ ,:
r

A=(L\; "\2) nj r

q{(:Y.,,- ì*0)'}t{-; Y,,u*Çn,,,n Y., *:}

A A r
(n+I

n

(n+l
n

hence

For n = 1, equation 5.53 reduces to the case of a Newtonian flow for axisymmetric

peristaltic flow, (Raju and Devanathan, 1972).

( i ) Solution Procedure(First Order Approximation)

We shall now consider the 1st order perturbation in Y.

By substituting equations 5.48 and 5.49 and collecting coefficients of order t in equation

5.43 the following equation is obtained

YI
2

Y
I

I
r

Y
dpl

àr
tt-l

zl 0r lzzr

Y
7.
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which becomes

1y
r lzt

I
2 or

YY
r

rr -l

*(2-n)n 3n-2n2 -2+-a-

(5.55)

(5.s6)

(s.57)

(s.s8)

Ap,

ãr {r;
Y l'lo') 

)

l*0,, - i*o,

Y-l
Orr f,

2
_n y *Ø-z) n 2-n2r-

lzrr' ,r,

2(n - l\+-ïY

n

r

l¿
Y

R lzrr
e

Similarly for equation 5.44, substituting equations 5.48 and 5.49 and collecting

coefficients of order € in equation 5.44 the following equation is obtained

|*,, - )* ",*,u 
* 

þY o,,*,,- j *0,*,. =

+
r

V.+
tzz

Y

*;{(i*.,,+

rt-l
2

)*",*,.* i*o,,n, - i*0,

'Y +
r rrr

(2-") y *n2 -n+2-2n*
lur ,r, lzzdP,.l

AzR {r )'Ì
e

which becomes

1.v
rln

Y
lz

L
àz

I rrr Iur

2nr
y *2n2 +2-3n*

lzz nrt lr

nr

YY0rrr lz

4r3 -4n2 +n+2

r
2

Y
0rr (, -2 n-r)

To form one equation from these, we differentiate equation 5.55 w.r.t. z and equation 5.57

w.r.t. r and adding we obtain,

ft r,-. 1... ,*l_
-*o'17*kzz+ ¡Yrrrr- ,tYrrr-/ ,,)

3l
-Y Y *.:
,3 orr Lz r'z

Ya 1rt

I+-Y
¡ lrrt

I+-Y
r lzztr

+Y
I2

t"l2

7n
Y

r

4n

lr2 -, * tlv\ ) Trrr
+ Y +

7rrlrrrr
2 

-4n3

2 23
nr nr

n-l n-l

)-,-

znz -zn -z) 3n-¡t -2-n-2
2

I

Re

k Y+ Y +
lrzz24nr

(q-zn\. ,Y
r lzzr r

lr 2nr 3r ZZ

n+-Y
r lzzzz

1l



By letting ñ = 1, equation 5.58 reduces to the governing equation for Y in tne case of a

Newtonian fluid undergoing peristaltic motion in an axisymmetric tube. Remembering

thatY6(r) is a function of r only, the above equation thus becomes

'>2')v-Y --v'1r r

I*P* I--v
Rel

2v
I

1__Y V1r ,0,
4Y

I z
Y

I
(5.ss)

(s.60)

(5.61)

(s.62)

1+4¡t

where, Vto : Y r'Y r'
2 2zã td a

andV=.
| àr. rãr àz

2

Taking the boundary conditions as follows

Y ll)=o0r' '
v. (t) + v^ (l)cosø(z - r) = otr urr

Y
0z

(r)=o

(t)* vo.r(r)cosø(z - t) = a.in a(z - t)Y
I

and subst tution for Y6 (r) as g ven n equat on 5.53 y e ds the boundary cond t ons n the

z

f orm

f,\]
vr, (r) = -f : In .o, 

"(z - )\Z) 
Lwùu\( ,/ (5.63)

vt. (r) = d sin "(, - ,)

From these boundary conditions, Y1 can be assumed to be of the form,

v1(,,.,r) = r(.).oro(. - r) * c(').ina(. - r) ( s.6 4 )

where FO and G(r) are to be determined.

Substituting for, YO(t),as given in equation 5.53 and,Y1, as given in equation

5.64 into equation 5.58 and collecting coefficients of , coS U(z - t), on either

l-n

side of the resutt ng equat on after mult p y ng both s des by -.[?)
nn

72

r yields



4n3 -4r2 *n*2
4nr Ft' -:("' - n * r)'3 n"' * ,2 * (zn - +)o2 ,4

nar

F,_

I+3n

n

4r3 -4r2 +n+Z zr2 -zn-2
)""'Ì"'. {

2-n

44 .Ir+
nn

-*(;)-

2-n

2-n

l-n

2+ 4n l+3n

, n -r n

.*(;)-

G

2 +2n
(r-t\, , 

"(n )

l+3n
n

n+l

l-n

nr

*(;)- .*(i)-"
l+3n l+2n

-r ft G"+r n G'

(5.6s)

Substituting for, Yo(t),as given in equation 5.53 and,Y1, as given in equation

5.64 into equation 5.58 and collecting coefficients of, sin A(Z- /), after multiplying

l_n I+4n

both sides by ,

ko

2

n

r yields,
n

nr G

n

n*l

tv2
)"Ìn

44ndr+

4 2n -n+l G''
4n3 -4n2 +n*2Jr .{[

4n3 -4r2 *n*2
2

G"+

l+Zn 3+2n

2
n

{rr,-r"'r1."-{( )'Ì"'.{.(*=1""'}n

2+ 4n l+3n

, n -r n

r
))

-*(;)-"{

2-n
n

n*l

I+3n 2+4n \ l-n

l,'r-\* *"1Íl ' ,,

) ) \z)

n

n+l
nnr -r

2+2¡t

F'*'-l ,T ,
n

r fl -r 
n

l+3n l+2n

, fl F"-r n F'-a2, n F
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The corresponding boundary conditions from equation(S.63) are

F(1) = -1 F'(I) =

G(0)=G(1)= G'(0)=6
F(0)=F'(0)=g

(5.66a)

It is not possible to find closed form solutions to the differential equations 5 65 and 5.66,

so approximate solut¡ons will be sought.

Firstly the equations for F(r) and G(r) can be simplified by assuming that the

Reynolds number associated with the present model is small, and consequently the forms of

F(r) and G(r) are assumed to be given as

'(1) = o

Substituting these forms tor F(r) and G(r / into equation 5.65 and equation 5.66 and

collecting terms of equal order in Re on either side of the equations yield the following

differential equations for the first terms Fo @ and G t (r).

F(r) = r'g(r)+ ne2 12(r)+...

G(r) = Re G1(r)+ Re3 Qþ) +

tv -2 (n2 - n * t\r3 r"'
,1 \ I o

.{ ,2 * (zn - +)a2 ,4 FU
0

F'
0

44nü.r +

(5.67)

(5.68)

r+
2 3l,I+r

%Ì

n

J

,o),l

4n
2

-4n *n*2
4

nr F
0

4n
3 2

-4n +n+2 2,r2 _ zr-z
)"

22

Ì"

2
F =0
0

n

l+3n 2+4n

n

and

,,4 G rt' -:("' - n * t),3 c;,,.{[ 4n3 -4r2 +ntL
2

+ 2n-4 d

l+3n l+2n

2+2n
n-l n

I'T

I+3n
t7

2r (
I

f( o,t -4n2 +n+zl , (r^'-zn-z\-z-r1", 
,- [^oo,o *(,3 -t: rz\o

it----;t--)'.[ , )"-'1",r1'rdr*l.-", I
2-n ( 2+4n l+3n\ ( l+zn 3+2rl

-(:) " "{rï[' ' -'TJr.å['- -'-)',

n

l-n

22

F
0

n

n-l I J"

2 F'
0

d
n

Ì.(;)
F
0

nnr -r
nînnr r -r

0
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Once {(r) and Gr(r) and subsequently F(r) and G(r) have been solved Yt is immediately

found from equation 5.64.

lf we assume C[ is very small such that higher order terms in A may be

neglected, equations 5.68 and 5.69 may be simplified as

,,4Fotv -iV-,.,)''ï.{ 
"}

(ort -4n2 +tt+2
F"
0

0t''
0

and

)'i"'=

(5.70)

(5.71)

(5.7 2)

(5.73)

(s.74)

n,4 G 
rtv -';(; - n * r),3 c;"-Vt?-1"þt 

{[
4n3 - 4n2 r tt-t 2

n

g+ "{,,:,(,* -,+þ 
} 

. (l)+ "[*1,+ -,+] * 
] 

.

"{

2+2n
n-r rT,nO

l+3n
n F"-r

0

m

2
4n + n+2

"{

l+2n
nr %Ì

The solution to equation 5.70 can be sought as the form

mmm
Ê'(r¡=¡, I +Br 2 +cr 3 + 4Dr

where m¡ , i= 1-4 are to be determined by making the substitution

F(r) = ,*

On substitution (5.73) into equation 5.70 yields

,^ {r^(^ - t)(^ - z)(^ - t) - ? (,' - n + t\*(* - r)(m - z) +\ / n\ )

4n
2

4n + n+2
(m-t)m-

This finally reduces to,

)[ -(u,-,.:)^]* *@-Ðl

J J

22

4n
m- -0

n n

39n-6+-+
n

2

2
n

m(m -2 nm
2
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Where the roots m, and m2 are given bY

m =O
I

m -)
2

The other two roots are evaluated by determining the determinant of (5.75)

the roots are real, hence

A¡t=)(zn-t)'

to see if all

(5.76)
n

^>0
SO

I
m =3+-,3n

32
-?--r- ,2

lln
m

4

our general solution to (5.77) is

Ê-(r\=A+Br2 *cr^3 *Dr^4 (5.7710''
where the values of m. and m4 are given above.

There is now sufficient information to find Fg (r)anO Gt(r)

For the Newtonian case n = 1 (5.77) gives the general solution to Fo (r) as

r(r)=A+Br2+cr4+Dr2 ln, (5.78)
0"

where lnr is introduced because m2 - rrt4 = 2 in this particular case'

From (5.78)

Ê6G) =28 +3D +2Dtnr ( 5.7 9 )

keeping this second derivative bounded at r= 0 means,

D=0

Care needs to be taken by taking into consideration the raising of a negative value to the

power of 1/n in equation(5.66a) due to 5.52a.

This problem can be avoided by re-writing the solution to as given in (5.53) as

k

2
Yo(t) =

\;nt_
) n+t
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Hence, also, the corresponding boundary conditions are given by

{(l) = -l {'{t; =

G,(l)=O G, (l)=0 (5.80)

{(0)=0 { (0)=0

G,(0)=0 G, (0)=0

Hence the boundary conditions (5.80) enable the constant coeffictents to be determined as

A=0

B+C=-1

k
28+4C=-

2
For the case k=1, the solution to (5.81) is

(5.81)

C=51 4

B=-914

Thus, for n=k=1, the approximating function for F6 (r) is

(5.82)

For, n = k = 1 the homogeneous solution to equation 5.71 again keeping the second

derivative bounded at r=0 is

G'(r)=¡ +B 12 +c 14 (5.83)
n" I I I

A particular solution to equation 5.74 can be sought of the form,

c (r\=o 16 *E rB (5.84)p'' I I

Therefore substitution of (5.84) into equation 5.71 with n = 1 yields

I

(i)'

q(,)= IFu -e,')

6 g 5cv

2

6
,-t 

]l92Dr + 1l52Er

25a
't-

384

-5a

5r

EHence D
2304 T

(s.85)



so from (5.83) and (5.84) the solution to equation 5.71 is

ô,(') = A,
_Z ^4 25a6 5u 8+Br +Cr +-I I 384 2304

The boundary conditions imply from equation 5.80

Al =o

5a 25a
81+C1=-

2304 384

5a 25u
281 + 4Cl =- 288 64

95u
.a-..Lwl --

384

215a

" 
Bl =-

2304

For the non-Newtonian case n = 0.8, k = 1

Ê(r)= A+Br2 *cr4'25 *Dr2'315 (5.88)

Therefore using the boundary conditions in equation 5.80

A=0

B+C+D=1

28 + 4.25C + 2.375D = 0.420448 (5.89)

Hence another boundary condition is required, therefore using the condition of symmetry,

ie, Ylrr:0,atr=O

C = 1.490906, D = -2.490906
B=0 (5.e0)

therefore,

Ê (r) = t.490906r4'25 -Z.qgogoør2'37s ( 5 .9 1 )
0

ln Raju and Devanathan(1972) they have not specif ied the values of the parameter A 
'

exceptforan example using d=1, to obtain numerical solutions to F6(r) anO G1(r), so

the only meaningful comparison that can be made is between approximate values obtained

for 4 (r) in the present analysis and the corresponding solution given in Raju and
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Devanathan(|972). ln spite of this, the approximating function for

specified for the special case of n =1.

Gt(r) will

(5.e2)

be

From equations(5.83 - 5.87) the approximate solution for the function given

OVèt (r) ror the case, n = k = 1, is given by

G )r(
2468

275ar 95ar 25ar 5ar

2304 768 384 2304

Ero{,)=llqr'l-q('| (s.e3)

a measure of whether the approximate function i{r) trot 5.77 gives values which are a

good approximation to Fo(r), tne numerical solution (note, these values taken from Raju

5 .6 Discussion

lf we define an error term as

& Devanathan 1972)

From Tables 5.1-5.4 where we are considering various values of flow behaviour index, n,

and a function of pressure gradient (k), it is evident that the values are very good. This is

graphically depicted in figures 5.2-5,5

r r0 (') F0 (') EF"(')

0.0 0.000 0.000 0.0 00
0.1 o.o22 0.o22 0.0 00
0.2 0.088 0.085 0.003
0.3 0.1 92 0.1 86 0.0 06
0.4 0.328 0.31 I 0.01 0
0.5 0.4 84 0.471 0.01 3

0.6 0.648 0.634 0.01 4
o.7 0.802 0.790 0.01 2

0.8 0.928 0.920 0.00 8

0.9 1.002 0.999 0.003
1.0 1 .000 1 .000 0.000

Table 5.1: n=k=1, where n is flow behaviour index, showing error term
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For Newtonian case ñ=k=1 , the approximating function fo (t) is given by (5.82) as

% 
(') = I(',0 - 

r,') (5.s4)

1.2

0.8

0.6
F

0.4

0.2

1

0

Figure 5.2

0 0.2 0.4 r 0.6 0.8 1

Plot of data in Table 5.1, showing comparison between the

approximate solution fo (t) to the numerical solution Fg (t)

For the non-Newtonian pseudoplastic case n = 0.8, k = 1, the approximating function for

fo(t) is given by (5.e1) as

% 
( r) = t .490906 14 '25 - z .qgogoe 12 '37 s (5.e5)

Plot of data in Table 5.1
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A comparison between values obtained from equation 5.95 and values as recorded in Raju

and Devanathan(1978) is given in Table 5.2

r Fo (') Fo?) E4(')
0.0 0.000 0.0 00 0.000
0.1 0.01 0 0.01 I 0.009
o.2 0.05 3 0.0 76 0.023
0.3 0.1 34 0.168 0.034
0.4 o.252 o.292 0.04 0

0.5 o.402 0.439 0.037
0.6 0.5 70 0.600 0.030
o.7 o.7 40 0.759 0.01 9
0.8 0.889 0.897 0.008
0.9 0.9 87 0.989 0.00 2

1.0 1 .000 1.000 0.0 00

Table 5.2: n=0.8, k=1, where n is the flow behaviour index

1.2

0.8

0.6
F

0.4

0.2

0

1

0 0.2 0.4 0.6 0.8 1

r

Figure 5.3: Plot of data in Table 5.2, showing comparison between the

approximate solution 4(t) to the numerical solution F6(t)

Similarly, for the non-Newtonian dilatant case n = 1.2, k = 1, the approximating function

for ^8 (r) is given by (5.77) after using boundary conditions (5.80) as

23

þ(r\=1.39103516 -z.tglozsr2 (5.96)
0''

A comparison between values obtained from equation 5.96 and values as recorded in Raju

and Devanathan(1972) is given in Table 5.3

8l

Plot of data in Table 5.2



f r, (') r. (') E4(')
0.0 0.000 0.000 0.0 00
0.1 o.o24 0.o24 0.000
o.2 0.093 0.092 0.0 01

0.3 0.202 0.1 99 0.003
0.4 o.342 0.337 0.005
0.5 0.5 01 0.4 94 0.0 07
0.6 0.66 6 0.658 0.008
o.7 0.81 9 0.81 1 0.008
0.8 0.94 0 0.935 0.005
0.9 1.009 1.007 0.002
1.0 1.000 1 .000 0.000

Table 5.3: n=1.2, k=1,where n is flow behaviour index, showing error term

1.2

1

0.8

0.6
F

o.4

o.2

0

0 O.2 0.4 r 0.6 0.8 1

Figure 5.4 Plot of data in Table 5.3, showing comparison between the

approximate solution 41t) to the numerical solution .Fg (.)

Also, for the non-Newtonian dilatant case n =1.4, k = 1, the approximating function

tor Ês (r) is given by (s.77) after using boundary conditions (5.80) as

26

(5.s7)

Plot of data in Table
5.3

å(') = 1.5222t2r 7 
-z.sz2t2r2
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A comparison between values obtained from equation 5.97 and values as recorded in Raju

and Devanathan(1972) is given in Table 5.4

r ro (t) 4(') E4(')
0.0 0.000 0.000 0.000
0.1 0.025 0.025 0.000
o.2 0.097 0.098 0.0 01

0.3 0.21 0 0.209 0.0 01

0.4 0.353 0.3 51 0.002
0.5 0.51 5 0.51 2 0.003
0.6 0.680 0.6 76 0.0 04
o.7 0.8 31 0.828 0.003
0.8 0.95 0 o.947 0.003
0.9 1.014 1.013 0.0 01

1.0 1.000 1.000 0.000

Table 5.4: n=1.4, k=1, where n is flow behaviour index, showing error term

1.2

0.8

0.6
F

0.4

0.2

0

0 0.2 0.4 r 0.6 0.8

1

1

Figure 5.5: Plot of data in Table 5.4, showing comparison between the

approximate solution Fg (t) to the numerical solution F0 (t)

Also, for the non-Newtonian pseudoplastic case n = 0.5, k= 1, the approximating function

tor ,Ê6 (r)is given by (5.77) after using boundary conditions (5.80) as

Ê (r\=0.2s(3r5 -trz\ (5.98)
0'' \ /

A comparison between values obtained from equation 5.98 and values as recorded in

Raju and Devanathan(1972) is given in Table 5.5, where error term is approximate.

PIot of data in Table 5.4
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r ro (')
n=0.5

4(')
n =0.6

E FOU)

0.0 0.000 0.0 00 0.000
0 1 0.01 7 0.01 5 0.002
o.2 0.070 0.062 0.01 I
0.3 0.1 56 0.140 0.01 6

o.4 o.272 o.249 0.023
0.5 0.41 4 0.38s 0.029
0.6 0.572 o.542 0.030
o.7 0.731 0.7 07 0.024
0.8 o.87 4 0.860 0.01 4
0.9 0.9 75 0.972 0.00 3

1.0 1.000 1.000 0.000

Table 5.5: rr=0.5, n=0.6, k=1, where n is flow behaviour index,

showing error term

It is worth mentioning again that a graphical plot of the closeness of solutions for & (t)

is graphically depicted in Figures 5.2-5.5 for behaviour index (n)=n¡ and k=1

From these Tables and Figures it can be seen that the approximate solutions are

very accurate for n = 1.0, 1.2 & 1.4 and less accurate for n = 0.8 & n=0.5, but still good

enough to be used to find approximate solutions for the stream function and pressure

gradient for those values of n.

From equation 5.50 it is clear that for t very small the stream functlon, can be

approximated as

Y=Yo +sYl (5.ss)

N ^N
Thus, defining, Y to be Y in the case n = N and defining F (r) as the approximate

solution lor F(r) in the case n = N, equation 5.99 gives the approximation to the stream

function, along with equations 5.53 and 5.64 as
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I

yN = llì¡ ¡_\z) N+l

where ô (r), is the approximate function lo G(r) in the câsê l'ì = N

From equation 5.67 it can be seen that

* r[Ê"1r¡"osø(z - r) * ôN(r)ri.a(z - r)]

3N+l

,2 _N, 
N

2 3N+l

N

(s. r 00)

(s. 101)

(s.102 )

(s.103)

'I
N N

B, (') 
"o' 

a(z - t) + c (') sin a(, - t)

cos a(z - ,)[%" (,) * o(, n"2 
)] 

+ ,in ø(z - r)[e n" c,N 1'¡ * o(' n"3 
)]

Under the assumption,t, & Re small and defining

a(z - t): z

equations 5.100-5.101 give an approximation to the stream function as,

.'[i't'l*'6¡].' = (;)

Streamlines for , rì = N = 0.5, 1.0, 1 .2 are given in Figures 5.6-5.8 respectively, where

k = 1.0 and e =0.01.
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Figure 5.6: Streamline Y for n=0.5, k=1,where n is flow behaviour index
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Figure 5.7: Streamline Y for ñ=1,k=1,where n is flow behaviour index
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Figure 5.8: Streamline Y for n=1.2, k=1, where n is flow behaviour index

The approximating functions Íor Fg(r) in the case k=0.01 and n=0.5, 0.8, 1.0 and 1.2

are found in the same manner as the approximating function Fo (r) t<=t, and are given by

Ê 
o't(r) 

=0.666675rt - r.6666rsr' (5.104)
0"

Ê,

0

0.8,. 42s 2.315
(t) = 1.267376r -2.267376r (s. 10s )

Ê 
lo(r) 

=t.oo25r4 -z.oo25r20"
(s.106 )

23

( s.107 )

Streamlines for n = 0.5, 0.8, 1.0 & 1.2 in the case k = 0.01 are plotted in Figures 5 .9 -

5.12 respectively where e:0.01: and are derived from equation 5.103 using 5.104-

5.107

It can be seen that the streamlines plotted in (Fig 5.6-5.8 )(high pressure gradient) and

Fig. (S.9-5.12) (low pressure gradient ) are similar to those established in Raju and

Devanatha n(1972).

^t'2" 6 
-2.09i504r2% \r) = t.oe750qr

87



t'

L.o

o.1

o.8

0.-l

0.6

o.5

o.+

0.j

o'2

o.1

o

/

\t.
lo. ooST

ao.oo25

qr=

lo.ool+

10'oott

-to

V.o

-!
7
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Figure 5.12: Streamline Y for n=1.2, k=O.O1,where n is flow behaviour index

The difference between streamlines for high and low pressure is apparent due to the

boundary of the tube has a more significant impact with regard to low pressure gradient.

All approximate results have been obtained by assuming that the terms of the order d,Z

and higher are negligible and the parameters t and Re are small. More accurate results

could be obtained by neglecting terms a3 and higher but keeping ordera2 and A aswell

0æa

q=

+o.oo6t
-o.æf o
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5.7 Mathematical Modellinq of a Casson Fluid in an Axisymmetric Tube

ln this section mathematical equations are developed for the case of a Casson f luid

in an axisymmetric tube. Due to the immense complexities of the equations and time

restrictions involved in finding solutions for both the zeroth order approximation and

first order approximation in streamfunction, only a brief outline will be given. Perhaps

this may be a matter of possible future research. There may be possible similarities with

both the Newtonian and power law models as developed earlier in this thesis.

As before, the vertical displacements for the upper and lower walls are given by G

and -G, where the geometry G is defined by equation(5.36)

As with the case of a Casson fluid in a two-dimensional channel the stress-straìn

relationship is given by equations(4.63-4.67). ln this case, we use the co-ordinate

system where w and z are defined in the axial direction and u and r are defined as the radial

direction.

The varying viscosity term is still defined as equation(4.64), where

equations(4.65-4.67) still hold. However, due to the axisymmetric system,

As before, we consider the equation of continuity as equation(5.3) and develop the

equations of motion as

V, v =ù., =!(ù*øl22 ãr' t2 2\A, ãz)
dw

àz

'(

'(

àw ãw àw

-+u-+w-ãt ãr ãz

ãu ãu àu-:-*u-=-*r!-=-
dt dr dz.

\ a, ã2* (
)=-;*t' *? 

*l la, àwãu a(a, ãwI +2___:_+u_l
) ã, àz àz ãr\ãz ãr

ãu ãw

àz àr

àu àw

-+-ã2. àr

(s.108)

(s.10e)

and
.)

du
Jdr

l?¿- ,49L*,!(
)d, ârãr'¿(+

ãu ãw

-+-ãz ãr

where

Y 2 I(Y Y Y ì
J -___rL +'I -" _ j_---ul (5.110)"'-r''+tt ,' ,J

As before equations(4.74-4.76) express the streamfunction, pressure and viscosity in

terms of amplitude ratio.

Therefore, as defined by (a.6a) and taking only zeroth power in amplitude ratio
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ur,+ - rr,y * pr+ - t r+ * rr+

2

U=,0 ". o(:)-'

I

[v z y2 y ry-l-¡
I Orr 0r ¡ Orr Orl
l2'4 I

lr r r l
(s.1 I 1)

(s.113)

We finally obtain after introducing the streamfunction as defined by (5.a8 and 5.49) and

substituting equations(4.74-4.76) and collecting coefficents of s0 in equation(5.108)

and remember that the zeroth order in stream function is a function of r only, due to that

constant axial pressure gradient

(s.112)

which simplified is

dp

ãz
l_
)n-

'*=*?"*( Yo,

r

and integrating once gives

l?+tconstant=rþn+fI"l (s.tt4)
2 Az '"âr\ r )

There are many complexities involved in trying to solve equation(5.112). The first of

which are the difficulties collecting the derivatives of equation(5.111) and substituting

them into equation(5.112) thus creating a very complex equation due to the radial

dependency. The first order equation in streamfunction is many times complicated and may

be a possible resaerch area for the future

5 .8 Comparisons and lmplications

The results obtained in this analytical study of a non-Newtonian power law fluid

are consistent with those established by Raju and Devanathan(1972) in their study of

peristaltic motion of a non-Newtonian fluid.

It should be noted that Raju and Devanathan(1972) have sought an approximate

numerical solution of the non-Newtonian power-law model in an axisymmetric tube. They

have made use of the Runge-Kutta Gill integration. ln this thesis the solution to the same

problem/model(non-Newtonian power law model) is achieved by deriving an analytical

solution based on the assumptions and simplif ications made by Raju and Devanathan in

their paper "Peristaltic motion of a non-Newtonian fluid", thus allowing a direct

comparison between a numerical solution and an analytical solution. Figures 5.2 -5.5 and
9l



the error terms in Tables 5.1 -5.5 verify and validate the correctness of the analytical

mathematical procedure undertaken in this study.

It was seen that the equation of motion for the non-Newtonian (power law) model of

peristaltic motion reduced to the governing equations for the Newtonian model in the case

of flow behaviour index, ñ = 1.

Approximate results for the stream function Y were obtained and is seen for n >=

1 are close to the exact results given in the literature. For the case n <= 1, the results

were less accurate, but nevertheless to an acceptable level, if we consider the magnitude of

the errors.

The streamlines obtained from the approximate results were found to be very

similar to those found in Raju and Devanathan(1972), thus demonstrating the effect of

pressure gradient and boundary structure and type. ln fact, it is found that for low

pressure gradient the streamlines form closed loops and for higher presure gradient the

streamlines run parallel to the axis of the tube when considered near the axis , whereas a

considerable deformation is noted near the boundary. The streamline plots for low

pressure gradient and high pressure gradient are entirely different, as shown in Figures

5.6-5.8 and 5.9-5.12. An explanation for this is that the region may be considered to be

consisting of two parts; one the central core region and the other near the boundary, the

boundary region. The physical expalanation for this sort of behaviour of the streamlines

can be given as that in the case of a rigid tube with sinusiodal deformation, (Raju and

Devanathan, 1972). Hence, highlighting the validity of current modelling of this type of a

two layered fluid with a non-Newtonian core region and Newtonian peripheral region.

ln the case of low pressure gradient, the effects of the wave travelling along the

boundary of the tube are more dominant. But as the pressure gradient increases, we f ind

that the streamlines in the central part of the region are more influenced by it, than the

motion of the boundary, hence run approximately parallel to the axis.

It is also seen that for the study of a Casson fluid in an axisymmetric tube that f or

the zeroth order perturbation in stream function, the model reduces to the Newtonian case

contains parameters involving fluid density, geometry, wave speed and Casson viscosity

coefficient. A similar result is obtained for the case of a Casson fluid in a two dimensional

channel under certain simplifications.

One conclusion reached by these studies was that peristalsis is an effective method

to move fluid only if the fluid is transported in the form of a series of isolated boluses' lf

the amplitude of displacement of the wall is small compared to the tube radius, very little

pressure gradient can be generated by the travelling wave. Pressure gradient increases
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significantly when the radius of minimum section approaches zero, (complete occlusion).

It is thus understandable why peristalsis is a common phenomena in the lymphatics,

intestine, ureter,and many other biological systems and peristaltic pumps (dialysis

machines and heart-lung machines).
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CHAPTER 6

CONCLUSION

6. 1 Brief Summary

The first chapter of this research outlined why a mathematical perspective of peristaltic

motion may be helpful in the understanding of physiological flow and why complications

may arise.

ln this study, mathematical models were developed and implemented for the case of

a Newtonian fluid, power-law and Casson fluid with the geometry modelled as a two

dimensional channel and axisymmetric tube. ln the case of an axisymmetric tube, this may

be approximated to flow in many physiological organs in the human body. However, the

literature provides many examples of flow in a two-dimensional channel. This provides a

very accurate insight into the dynamics and workings of the models of peristaltic flow, and

hence it is important to consider both geometries not only for completeness but also serve

as a comparison between the two geometries, thus providing continuity of results.

The study then involved the development of mathematical models for the study of

peristaltic flow for the case of non Newtonian fluids; in particular the study analysed the

constitutive equation for the power law model in both a two dimensional channel and

axisymmetric tube. Also this research considered the non Newtonian case represented as a

Casson fluid in the geometry of a two dimensional channel and axisymmetric tube.

Although the constitutive equations governing the f luid motion for the non

Newtonian models of power law fluid and Casson fluid differ substantially, this research

found that under certain conditions, (when considering the zeroth order approximation in

stream function), both models reduce to that of the Newtonian case. ln particular, it is
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seen that for the non Newtonian case of the power law fluid in an axisymmetric tube and

two dimensional channel, the governing equations reduce to the Newtonian case when the

power law index approached unity. The study also finds that for the case of an

axisymmetric tube for the power law that the developed algebraic analytical solutions

agree both graphically and numerically with that published in the literature when

streamline functions are considered.

The study also shows the equations for the first order approximation in stream

function for the Casson two dimensional channel case are very complicated and extensive,

however an analytical and numerical solution is found which seem to agree in form with

research in the literature.

6.2 Glinical Significance of Present Study

Consider results obtained from a mathematical analysis of flow of urine from the

kidney to the bladder via the ureter. Assuming that the actual flow provides some cohesion

between data obtained f rom experiment( Fung 1981 ,.1 984,1990) and the results of

mathematical analysis, the present study validate that peristalsis explains the flow of

urine from the kidney to the bladder.

For example, experiment(Fung, 1981, 1984, 1990) indicates a pressure drop in

the ureter during peristalsis. Similarity of this data with corresponding theoretical

results of pressure drop, means that future predictions may be made about the change in

pressure across the ureter, during peristalsis; and probably the pressure and subsequent

pressure change, can be governed by means of change to the urinary environment.

To generalise the analysis of flow of urine, assumptions which seem reasonable f or

urine, may and are not necessarily correct for other physiological fluids; but however

may be relaxed and replaced by less restrictive assumptions.

With regard to reflux, control of the pressure across the ureter means that if the

pressure applied by the ureter is sufficient to allow urine to flow into the bladder, a

minor change to the ureter, causing increased applied pressure by the ureter on the

bladder, can enable the ureter to then apply a sufficiently great pressure on the bladder so

that urine passes into the bladder without backflow of urine to the kidney.

The mathematical analysis may be used to determine a critical pressure, below

which reflux occurs. Thus reflux may be diagnosed at an early stage and dealt with by the

medical urologists accordingly.

95



It has been seen that an accurate mathematical analysis of flow of urine in the

ureter is an important issue; lt may be useful to generalise this analysis to other

physiological flows like that in the intestine and others whereby peristalsis occurs.

The non-Newtonian models provide insight to the complexity of these models and

the phenomena of peristalsis, but ultimately in the first instance a Newtonian approach is

viable for a basic understanding of peristalsis.

For example, it may be reasonable to assume that flow of urine is that of

Newtonian flow, however by allowing the inclusion on non-Newtonian effects into the

analysis, it becomes a special case of a generalised f luid. On this basis the assumption of

Newtonian fluid is a special case of a generalised non-Newtonian fluid whereby theoretical

results are a significant step when mathematically modelling peristalsis.

6. 3 Recommendations for Future Study

ln this research a study has been made concerning mathematical modelling of

peristalsis as applied to Newtonian and non-Newtonian fluids. lt is seen that their are

similarities between all models when certain assumptions and simplif ications are

considered.

Perhaps in future work, it would be possible to generalise these mathematical

models, by relaxing the assumptions and simplifications and attempt to obtain and compare

solutions that are arrived at using a numerical solution, based on the existing equations

and boundary conditions. And if apparent, compare these solutions and models to research

that appears in the literature in the future.

Also as a possible area of future work would to consider a Casson model in an

axisymmetric tube and extend research beyond what has been established in this thesis and

compare the results with those within. Cohesion with analytical and numerical solutions

will provide an inevitable quality control of the models in question.
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APPENDIX A

Non dimensional variables and parameters are as follows

Two-dimensional Channel
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APPENDIX B

Non dimensional variables and parameters are as follows

A-isymmetric Tube
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APPENDIX C

Analytical solution to Casson model in two-dimensional channel
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MATHEMATICAL MODELLING OF PERISTALTIC
TRANSPORT OF A NON.NEWTONIAN FLUID.

A. MernoneÚ and J. Mazumdar

Dept. of Applied Mathematics, The University of Adelaide, Australia, 5005

Abstract

The paper considers the phenomena of peristaltic transport of a non-Newtonian fluid
represented as a power law fluid. The governing equations are the modified Navier-Stokes
equations and the continuity equation in axisymmetric form. A solution is sought in terms of a
perlurbation series and it is shown the close proximity between analyticaland numericalsolutions
when considering stream functions for various values of the flow behaviour index.

Keywords

Peristalsis, Ureter, non-Newtonian power law
fluid, Perturbation method.

lntroduction

Peristalsis is the phenomenon in which a
circumferential progressive wave of contraction
or expansion travels along a tube. Peristalsis
appears in many organisms and in a variety of

organs. Some examples include swallowing of
food through the oesophagus, transport of urine
through the ureter, transport of the egg down
the fallopian tube and transport of chyme

' Postgraduate student, Dept. Applied Mathematics,

University of Adelaide
emai I : amernone @ maths.adelaide.edu.au

through the small intestine. The initial wave may
be followed by similar or identical waves after a
short time has elapsed(4).

The above examples of when and where
peristalsis occurs seem to warrant the inference
that the role of peristalsis is transport. This is

definitely clear in the ureter, where the tube
connects the kidney to the bladder and is
responsible for the transpotl of urine. The
kidneys are not capable of producing enough
pressure to force urine away from them by

overcoming the pressure caused by the
expanded bladder. However, in the case of the

small intestine, the existence of segmental
contraction could indicate that mixing is impodant



and indeed food is absorbed by the tube walls
during the passage of chyme through the small
intestine(4).

Therefore, if the function is fluid transpotl, then
certainly complete occlusion will do the job, as is
observed in the ureter. But, complete occlusion
is an idealisation, and depending on the
pressure difference between the two ends of
the wave, the peristaltic wave usually does not
propel the entire volume of the fluid, resulting in

reflux. lf this occurs in the ureter, then bacteria
may be carried back from the bladder to the
kidney; a phenomenon believed to be the
mechanism by which bacteria reach and infect
the kidneys(4,13) (see Fig. 1)

KIDNEY
(pa.tty in homisoction)

Cap¡ulc
Arlsry

Pelvis

Cortex

Medulla

Pyramid

Ureter

Figure 1, Kidney with ureter

The action of a healthy ureter is one whereby the

amplitude of the travelling wave on the elastic
wall is so large that at the narrowest point the
walls press against each other. Some typical
dimensions for the ureter may be of interest. The

entire length of the ureter is of the order of

30cm; normally, there are 3-4 waves along this
length. The amplitude (average maximum
inflated diameter) of the wave is of the order of

Smm, thus the amplitude ratio, is approximately
unity. The wavelength ratio is approximately
0.04. The speed of the wave is between 1-6

cm/s whereby the frequency of contraction
varies from one individualto the next and is
about 1-8 per min(4). Because of the
equivalence of inertial to viscous forces the
Reynolds number is approximately equal to
unity.

It is known that physiological flows are not only
maintained by pressure gradient but are
supporled by the motion of the boundaries.
Many authors(7,9-1 2) including the pioneering

work by C.S. Yih &Y.C. Fung(S) and F. Yin & Y.C.
Fung(6) where they have considered peristalsis
applied to a two dimensional channel and
asymmetric geometry respectively; whereby a
perturbation method of solution in terms of wave
amplitude to the tube radius is considered taking
into account non linear convective terms.
However, these papers have considered the
case of a Newtonian fluid and it is not until the
paper by K.K. Raju & R. Devanathan(3) and
others(8,9,14) that a non-Newtonian fluid is
considered.

Therefore, following this analysis we shall obtain
the solution for the stream function as a power
series in terms of the amplitude of deformation.
We will show the close proximity between
numerical and analytic forms for the first order
perturbation in stream function and consider the

effeet of flow behaviour index on streamlines

Statement of Problem

Consider the peristaltic motion of a non-

Newtonian fluid, modelled as a power law fluid,

which is viscous and incompressible in an

axisymmetric cylindrical tube,where, d, is the

undeformed radius of the tube and the tube is
considered to be infinitely long. A, represents
the amplitude of the sinusoidal waves travelling

along the walls of the tube, Â, is tne wavelength
and they are travelling at speed, c,( as shown in

Fis. 2).

Ven

( -
l.

-___>

r
å

È

(\+,r¡= Auslc ¡._-1 .¡

Figure 2, Geometry of Peristaltic Flow

The geometry of the sinusoidal travelling waves

is given by G(z,t) where

2n
G(z,Q=Acos-

L
z-ct( ) (1.1)



The non-Newtonian power law fluid is
characterised by the constitutive equation(1,2)

o ¡¡ = - põ ¡¡ + m7V¡¡ (1 .2)

where, O ¡¡ , and V,.,, ^r" 
the stress and the

deformation tensors respectively, p denotes the
isotropic pressure and, m and n are respectively
flow consistency index and the flow behaviour
index.

tn equation (1.2), e, is given by

By setting i=1 and then i=2 and using summation
convention with dimensionless variables and
parameters (shown in the Appendix C)the
following equations of motion are obtained from
(1.4) and (1.5)

âu ãu àu àp

-+u-+w- 
= ---:+ãt àr àz ãr

ãu ã0+'¿-- +
ãr ãr

ãu ãw_+-
ãz àr ãz

de

(1.6)

VÜV¡J0-
n-l
2 (1.3)

àw àw ãw àp
+w-=_-*

ãt ãr ãz ãzBecause the fluid being modelled is assumed to
be incompressible the following equation of

motion may be used,

Dqi aoij
(1.4)p

Dt dx

Here D/Dt is the material derivative of a particle

following the fluid and is given as

Dd
---+nvDt dt

where, p, is the density of the fluid and,4¡, is

the velocity component in the respective
direction.
Substitution of (1.2) in (1.a) finally gives

Re

2ã

ev w+
àu ãw

T

ãz ãr

2

2 2

àe ðw à0

-rô

fL

àr àz àr

(1.7)

where in equation (1.6) and (1.7), 0, is given by
n-l

2

V
2 2

td d

(1.8)

(1.e)

(1 .10)

Dn¡ ãp dep-' Dt ãx. àx. U
tJ

+

àr r ãr ãz

The equation of continuity in cylindrical
coordinates is given by

ãuãwu*-=0
ãr ãz r

m0
.>ã

Y'r. ¡ 
-

(v s)
âx

Dq¡ ãp
=--*m

Dt ãx.

which after using the incompressibility condition

Y.q: o yields

There exists a stream function satisfying (1.10)

such that

I,Y
u

rãz
I,Y

w=--
r ãr

where u= radial velocity,
w = axial velocity

u. + V..t,J0v 2

(1.5)

(1.11)



Boundary Conditions

Assuming that there is no horizontal
displacement and using (1.1 1) we obtain the
non-dimensional boundary conditions,

solution for equation (3.1) is obtained as given in

Appendix B (3.1 B-3.3a8),
Hence the solution tor Y6 (r) is

:+f
2

I

*.i,r = (i); n nrftr
(3.2)

Yr =0 at r=d+G n+l

I
+-Y

rlrt lrrt

3n+l 2

Yz= rdgsina(z-t) For n = 1, (3.2) reduces to the case of a
Newtonian flow for axisymmetric peristaltic flow,
(6).
We shall now consider the 1st order perturbation

in Y. We collect coefficients of order€ in

equations (1.6) and (1.7) after substitution of
(1 .1 1) and to form one equation f rom these we
differentiate (1.6) w.r.t. z and (1.7) w.r.t. r and
adding we obtain,(2.2)

(For explicit details see Appendix B)

Method of Solution

The solution for, V, the stream function, is
sought via the expansions given as a power
series, in the form,

where

and

ãp 
_

àz

G = ecosa(z-t)

+K

(2.1)

(3.1a)

ãp ãp

ãz àz),. '(

2Y=YO+eYr+e Y 3l
- 3 YorrYtr*aYor,

rr
I

- 2v
r

ll
+ -TYkrr + -lYkr

rr

Y
lz

2

2
P=P0+€Pl+E P2+K

Hence, if we consider equations (3.1a) and
(3.2a) and make the substitution given in (1.11)
and collect like terms associated with powers

ot t on either side of the equation (1.7), this

yields to the differential equation for the zeroth

order term Yo (t) , given by

n-l

(s.2a) I
+-Y

, lzzt

n

(;

t -or'*n*z)

n-l

-n*l

n_Y
r lrrrr

lrrr
2

Y
z

nr
3 2

2 2

nd Y
0 td Yo t dYo

4n
Ko r dr3 dr +

(

Y +

}tt-n a

r dr r
r

23 lrr
n

n

4n -4n -n-2
2 2 J

(2n-l ) ld Y r dYo
0

2 v1
r dr 24 lrr dr n

(3 1)

We now assume that Yg (r) is a function of the

radial direction only, due to the constant zeroth
order axial pressure gradient, and thus the

2 2
2n -2n-2

+ v + Y +
2 lrzz 23

n
lr:

+-Y
r lzzr r r I zz,z.z

(3.3)
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(For extensive derivation see Appendix B)

By letting n = 1, equation (3.3) reduces to the
governing equation for Y ln the case of a

Newtonian fluid undergoing peristaltic motion in

an axisymmetric tube (6). Remembering

thatYg (r) is a function of r only, the equation

becomes

for the stream function (see Appendix B). Once

F(r) and G(r)have been solved Y1 is immediately

found from ( 3.8).
It is not possible to find closed form solutions to
the differential equations 3.68 and 3.78, so
approximate solutions will be sought. Firstly the
equations for F(r) and GO can be simplified by
assuming that the Reynolds number associated
with the present model is small, and
consequently the forms of F(r) and G(r) are
assumed to be given as

a
F(r) = fr(r)+ Re'F2(r)+x

" (3.e)

G(r) = Re G1 (r) + Rer G3 (r) + r
Substituting these forms lor F(r) and G(r/ into
(3.68) and (3.78), and collecting terms of equal
order in Re on either side of the equations yield
the following differential equations for Fo fl and
G, (r).

lf we assume út is very small such that higher

order terms in û may be neglected, equations
(3.88) and (3.98) may be simplified as

2 ')¡
- --v'Y

rl
1

+ ,Y
r

I__Y V
lrr0rv

lr lz

T4--v
Rel

Y

where, Vto : Y ,'Y t'
(3.4)

(3.s)

2 2
2d rd d

andV= +
2-2dr r ãr àz

Taking the boundary conditions are as follows

ve, (t) = o

Yr, (r) + Yor, (t) 
"or 

o(z - t) = o

v6. (t) = o

vr. (r) + Yozr(r) 
"o' "(, - ,)

= asin a(z-t)
(3.6)

and substitution for Yo (t) as given in (3.2)

yields the boundary conditions

v'. (r) = ø sin "(, - ,)
(3.7)

From these boundary conditions, Y1 can be

assumed to be of the form,

v¡ (,,.,,) = r(.).o, o(. - r) + c('),in a(. - r)

(3.8)

where F(r) and GO are to be determined.

ln the Appendix B, lengthy differential equations
were derived in order to solve the first order term

,ro rot' -:(, 2
+

3

4n -4n *nt2

-n+1 r
0

2

J 2

')',

'), ='

n

3 2
4n - 4¡t + n+2

n
2

I

Yr,"o = (;)t cosø(z - r)
(3.1 o)

and



4nr Gl
lv2 2 3 approximate values obtained for F6 (r)in tne

present analysis and the corresponding exact
solution given in (3). ln spite of this, the

approximating function Íor G1 (r) willbe

specif ied for the special case of n = 1.

This means that the differential equations for

approximatinO F6 (r)ano G' (r) are now given

as (3.10) and (3.11).

The corresponding boundary conditions are
given by2-n

2-n

n

n
n

F6- +

-n+l ci'*r

-{(^, -^:i...,),}", 
=

2+4n l+3n
n

(;) , n -r n

l+2n 3+2n

¡ tl -r n

ro(l) = -

ci(r)=o

ct(o) =o

ci(o) = o

Gt(')

l)=o

o)=o

o)=o

k0

2

)=tFo(

cr(

Fo(

Fö(

I

)'

(;)

(;)

"{'
n

(;)

Fó +

2-n

n
2+2n

n-l

-r 
n

n %d
(3.14)

l-n l+3n

n

2

l+2n

F6-, n 
'ó

3+1

23n -3n+2

For the Newtonian case n = 1, (3.13) (41) gives

the general solution to (3.10) as

þ (r\= A+ Br2 + Cr4 + Dr2 ln,0."
(3.1 1)

The solution to (3.10) and the homogeneous
solution to (3.11) can be sought as the form

mmmm
È(r)=¡, I +Br 2 +Cr 3 +D, 4

(see Appendix A1) (3.12)

It follows from (3.12) that the general solution to

equation (3.10) is given bY

(3.15)

(See Appendix A7 - A9)

From Appendix A, the^approximate solution for

the function given by Gt (t) forthe câsê, ñ = k

= 1, is given by
2468

275ar 95ur 25ar 5ar
=-+-

2304 '768 384 23M

(3.16)

Discussion

lf we define an error term as
2

n
F

0
r =A+Br

(3.13)

ln Raju and Devanathan(3)they have not

specified the values of the parameter û they
have used to obtain numerical solutions to

Fo?) and G1(r), so the only meaningful

comparison that can be made is between

a measure of whether the approximate function

Ê(r) gives values which are a good

approximation to F6 (r), tne exact solution

( ) +Cr n +D,
F
r (r\o'

ir'l-4t'l I
(4.1)



( note, these values taken from Raju &
Devanathan (3) ). From Tables 3.1-3.4, where we
are considering various values of flow behaviour
index (n) and a function of pressure gradient (k) it
is evident that the values are very good. This is
graphically depicted in figures 3.1-3.4

I ro (t) Fo (') E4(')
0.0 0.000 0.000 0.000
0.1 0.022 o.022 0.000
0.2 0.088 0.085 0.003
0.3 0.192 0.186 0.006
0.4 0.328 0.318 0.010
0.5 o.484 0.471 0.013
0.6 0.648 0.634 0.014

0.802 0.790 0.012
0.8 0.928 0.920 0.008
0.9 1.002 0.999 0.003
1.0 1.000 1.000 0.000

Table 3.1, n=k=1, where n is flow
behaviour index, showing error term

For the non-Newtonian case n=k=1, the

approximating function fo (t) is given by

/ \ 4.25 2.315(t)= L490906r -2.490906r

(4 3)

A comparison between values obtained from
(4.3) and exact values as recorded in (3) is given
in Table 3.2

I F, (') Fo (') E4(')
0.0 0.000 0.000 0.000
0.1 0.010 0.019 0.009
o.2 0.053 0.076 0.023
0.3 0.1 34 0.168 0.034
o.4 0.252 0.292 0.040
0.5 0.402 0.439 0.037
0.6 0.570 0.600 0.030
0.7 o.740 0.759 0.019
0.8 0.889 0.897 0.008
0.9 0.987 0.989 0.002
1.0 1.000 1.000 0.000

Table3.2, n=0.8,k=1, where n is flow
behaviour index, showing error term

1.2

0.8

0.6
F

0.4

0.2

0

Ê,

0

% 
(') = I(',0 - 

,,') (4.2)

1.2

0.8

o.2

0

0.6
F

0.4

o 0.2 0.4 0.6 0.8 1

I

Figure 3.1, Plot of data in Table 3.1,
showing comparison between the

approximate solution fo (t) b the

numerical solution F¡¡ (t)

For the non-Newtonian case^n = 0.8, k = 1, the

approximating function for Fg (r)found by

combining, 415-418, is given by

0 0.2 0.4 ¡ 0.6 0.8 1 Figure 3.2, Plot of data in Table 3.2,
showing comparison between the

approximate soLution Fg

numerical solution Fg (r

Similarly, for the non-Newtonian case n = 1.2, k =

1, the approximating f unction tor tr6 (r) is given

(')
)

to the

Plot of data in Table 3.2

Plot of data in Table 3.1

by



23

^ /\ 6 2
F lr)=1.391035r 

- 
-2.391035r

0
(4.4)

A comparison between values obtained from
(4.4) and exact values as recorded in (3) is given

in Table 3.3

I F, (') Fo (') E4(')
0.0 0.000 0.000 0.000
0.1 0.o24 0.o24 0.000
0.2 0.093 0.092 0.001

0.3 0.202 0.1 99 0.003
0.4 0.342 0.337 0.005
0.5 0.501 0.494 0.007
0.6 0.666 0.658 0.008
o.7 0.819 0.811 0.008
0.8 0.940 0.935 0.005
0.9 1.009 1.007 0.002
1.0 1.000 1.000 0.000

Table 3.3, n=1.2, k=l,where n is flow
behaviour index, showing error term

1.2

0.8

0.6
F

0.4

o.2

Also, for the non-Newtonian case n =1.4, k = 1,

the approximating function tor 
^Êg 

(r) is given Uy

26

2
Ê, )(

'7

r

'1.2

1

0.8

0.6

0.4

0.2

0

= 1.522212r - 2.52212r (4 5)

0

A comparison between values obtained from
(4.5) and exact values as recorded in (3) is given

in Table 3.4.

r 4(') Fo(') E4(')
0.0 0.000 0.000 0.000
0.1 0.025 0.025 0.000
0.2 0.097 0.098 0.001

0.3 0.210 0.209 0.001
0.4 0.353 0.351 0.002
0.5 0.515 0.512 0.003
0.6 0.680 0.676 0.004
0.7 0.831 0.828 0.003
0.8 0.950 0.947 0.003
0.9 1 .014 1 .013 0.001

1.0 1.000 1.000 0.000

Table 3.4, n=].4, k=], where n is flow
behaviour index, showing error term

F

0 0.2 0.4 r 0.6 0B

0

0 0.2 0.4 r 0.6 0.8 1 Figure 3.4, Plot oJ'data in Table 3.4,
showing comparison between the

approximate solution fo (t) n the

numerical solution fo (t)
Figure 3.3, Plot of data in Table 3.3,
showing comparison benueen the

approximate solution fo (.) b the

numerical solution Fg (t)

Plot of data in Table 3

Plot of data in Table 3.3



Also, for the non-Newtonian case n = 0.5, k= 1,

the approximating function ror ^Ê6 
(r)is given

by

(4.6)

A comparison between values obtained from
(4.6) and exact values as recorded in (3) is given
in Table 3.5, where error term is approximate.

I Fo (')
n=0.5

4(')
n=0.6

E4(')

0.0 0.000 0.000 0.000
0.1 0.017 0.015 0.002
0.2 0.070 0.062 0.018
0.3 0.1 56 0.1 40 0.016
o.4 o.272 o.249 0.023
0.5 0.4'14 0.385 0.029
0.6 0.572 0.542 0.030
0.7 0.731 0.707 0.024
0.8 0.874 0.860 0.014
0.9 0.975 o.972 0.003
1.0 1.000 1.000 0.000

Table 3.5, n=0.5, n=0.6, k=1, where n is
flow behaviour index, showing error term

It is worth mentioning again that a graphical plot

of the closeness of solutions tor Fg (r) is

graphically depicted in Figs. 3.1 - 3.4 for

behavior index (n)= lI¡ and k=1

From these tables and Figs. it can be seen that
the approximate solutions are very accurate for n

= 1 .0, 1 .2 & 1 .4 and less accurate for n = 0.8 &
0.5, but still good enough to be used to find
approximate solutions for the stream function
and pressure gradient for those values of n.

From (3.1a) it is clear that for€ very small the
stream function, can be approximated as

Y: Yo + sYl Ø.7)

N

Thus, defining, Y to be Y in the case n = N
N

and defining Ê (r) as the approximate

solution lor F(fi in the case n = N, (4.7) gives the
approximation to the stream function, along with
(3.2) and (3.8)as

e F (').o' u(z - t) + c (')sin "(, - t)

N 
(4.8)

where ô (r), is the approximate function to

GOin the case n = N.

From (3.9) it can be seen that

2

3N+l

.' = (;)

I

+

l(')=o2s(3rs 
-r,t) N+l 2 3N+l

2

+

'I
N

F (').o' a(z - t) + c (') sin "(, - t)

cos û z-t )[( rrb"(')+GRe

sin a(z - r eReG eRe

(4 e)

under the assumption, t, & Re small and
def ining

a(z - t): z (4.10)

(4.8) , (4.9)&(4.10) give an approximation to the
stream function as,

3N+l

N+l

,[¡ot (,') *,(.)]

)[
N

"I(') * ')]

2I

*' =(;)'
rNr
2 3N+l

+

(4.1 1)



Streamlines for, n = N = 0.5, 1.0, 1.2are given in
Figs. 3.5, 3.6 and 3.7 respectively, where k = 1.0

and t =0.01.

V. o ottL

The approximating functions for Fo (r) in tne

case k=0.01 and n=0.5, 0.8, 1.0 and 1.2 are
found in the same manner as the approximating

f unction Fo (r)t=r, and are given by

^ 0.5,, 5 2F (r)=0.666ó15r- - l.ó66675r'
o

(4.12)

2.315

o-1

0.1

0.¡

ot

0.1

f

t;o 
t 
(r) = 1.26't3i6,4'25 - 2.267316r

g1

T f {

(4.1 3)

o

T^'a

ttí

1l?

" 1.0,, 4 2F (r)=1.0025r -2.0025r
0

Figure 3.S,Streamline Y for n=0.5,
k= l,where n is flow behaviour index

(4.14)

1.2 6
F

0
(r) = r'o97so+r - 2.0975O4r

(4.15)

Streamlines for n = 0.5, 0.8, 1.0 & 1.2 in the case
k = 0.01 are plotted in Figs. 3.8 - 3.11
respectively where t =0.01i and are derived
from (4.11) using (4.12) - (4.15).

It can be seen that the streamlines plotted in (Fig

3.5-3.7 X high pressure gradient ) and Fig. (3.8 -

3.1 1) (low pressure gradient ) are similar to those
established in Raju and Devanathan(3).
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Figure 3.6,Streamline Y for n=1,
k= I,where n is flow behaviour index
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Figure 3.S,Streamtine Y for n=0.5,
k=0.01, where n is flow behaviour index
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Figure 3.ll,Streamline Y for n=1.2,
k=0.01, where n is flow behaviour index

The difference between streamlines for high and
low pressure is apparent due to the boundary of

the tube has a more significant impact with regard
to low pressure gradient.

All approximate results have been obtained by

assuming that the terms of the order a2 and
higher are negligible and the parameters and
Re are small.

More accurate results could be obtained by

neglecting terms a3 and higher but keeping

order a.2 and d, as well as do .

Conclusion

The results obtained in this study are consistent
with those established by Raju and
Devanathan(3) in their study of peristaltic motion
of a non-Newtonian fluid.

It was seen that the equation of motion for the
non-Newtonian (power law) model of peristaltic
motion reduced to the governing equations for
the Newtonian model in the case of flow
behaviourindex,n=1.

Approximate results for the stream function Y
were obtained and is seen for ñ >= 1 are close to
the exact results given in the literature. For the
case n <= 1, the results were less accurate, but
nevefiheless to an acceptable level, if we
consider the magnitude of the errors.

The streamlines obtained from the approximate
results were found to be very similar to those
found in Raju and Devanathan(3), thus
demonstrating the effect of pressure gradient
and boundary structure. ln fact, it is found that
for low pressure gradient the streamlines form
closed loops and for higher presure gradient the
streamlines run parallel to the axis of the tube
when considered near the axis , whereas a

considerable deformation is noted near the
boundary. An explanation for this is that the
region may be considered to be consisting of
two regions; one the central core region and the
other near the boundary, the boundary layer
region. Highlighting the validity of current
modelling of this type. ln the case of low
pressure gradient, the effects of the wave
travelling along the boundary of the tube are
more dominant. But as the pressure gradient
increases, we find that the streamlines in the
central part of the region are more influenced by

it, than the motion of the boundary, hence run

approximately parallel to the axis. One
conclusion reached by these studies is that
peristalsis is an effective method to move fluid
only if the fluid is transported in the form of a

v

-!, -o* o * o^ \ n il, \,1 1t z.

Figure 3.g,Streamline Y for n=0.8,
k=0.01, where n is flow behaviour index
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series of isolated boluses. lf the amplitude of

displacement of the wall is small compared to the
tube radius, very little pressure gradient can be
generated by the travelling wave. Pressure
gradient increases significantly when the radius

of minimum section approaches zero, (complete

occlusion). lt is thus understandable why
peristalsis is a common phenomena in the
lymphatics, intestine, ureter,and many other
biological systems and peristaltic pumps (dialysis

machines and heart-lung machines).

Appendix A

Solution to (3.10) and (3.11) may now be sought
as

(41)

where rr¡¡ , i = 1-4 are to be determined by
making the substitution

Ê'(r) = ,^ (42)

On substitution (41) into (3.10) yields

,^ {n*(r, - rX. - z)(^ - 3) -

Where

m =0
I

m -2
2

The other two roots are evaluated by
determining the determinate of (A4) to see if all

the roots are real, hence

4tL=-TQr-r)'

I
m =3+-,3n

32
=3__+_2.

lln

(As)

2
3n -3n+2

2
n

n

a>0

so,

lhlt l7l¡ llla tflA

Ê(r)=¡r'+Br'+Cr " +Dr r

m
4

our general solution to (3.10) is

2

I
3+-

n

?
n

2n -n*l ^(^-t)(^-z)

Fo(t)=A+Br +Cr +Dr

There is now sufficient information to r¡no(A6)

Fs (r)ano Gt (t)

For the Newtonian case n = 1 (3.13) gives the
general solution to equation (3.10) as

Ê (r) = A + Br2 + cr4 + Dr2 ln, (47)
0"

where lnr is introduced because frz= rrlt- 2

From (48)

þ6G)=28+3D+2Dtnr (48)

keeping this second derivative bounded at r= 0

means,

D=0
The boundary conditions (3.27) imply

A=0

B+C=-1

k
28+4C=-

2

(o,t -
2

4n +n+2
+ (," - t)m -2

n
J

n

2
-4n tn*24

m- -02
n

(A3)

This finally reduces to,

l-/

^(^-z\l ,^2 -( un-r*?.-L\n )-l
+m(m-Ðl e +1+3f=,

(A4)
(Ae)



G'(r)=¡n' I

For, n = k = 1 the homogeneous solution to
(3.11)again keeping the second derivative
bounded at r=0 is

(A10)

A particular solution to (3.26) can be sought of
the form,

For the non-Newtonian case n = 0.8, k = 1

Ê(t)= A+Br 2 4.25 2.375+Cr +Dr

(A1s)

therefore using the boundary conditions (3.14)

A=0

B+C+D=1

28 + 4.25C + 2.375D = 0.420448
(A16)

Hence another boundary condition is required,
therefore using the condition of symmetry, ie,

Ylr, = 0,atr=o

24+B r *C r
I

G (r\=o 16 *E r8 (411)p" I I

Therefore substitution of (413) into (3.11)with
n = 1 yields

6 8

[t'u -"]
5a

2

so f rom (41 2) and (A1 3) the solution to (3.1 1) is

2 4 25u6
+C r +-r

I Eg¿

5u8
2304

(A13)

The boundary conditions imply from (3.14)

Al =o

5ct 25a
81+C1

C = 1.490906, D = -2.490906
B=0
therefore,

Appendix B

w=0 atr=d+G(z,t)
A2r2n

u= - c(2,) = Ac-sin 
- lz - t)ãt LI

atr=d+G(z,t)

therefore using (1 .1 1 )

l92Dr + ll52Er

25a
Hence D= 

-384

2304

5a
2Bt + 4Cl

IAY 21 2n
=-Acsin-(z-,'r)

ràz L L

atr=d+G(z,t)

(A17)

-5aÊ. __L-

2304
(A12)

%(') 
= 1.49090614'25 -z.qsogosr2'37s lnte¡

ô, (') = e, +Br

384

25a

288 64

I,Y
and -

r ãr
atr=d+G(z,t)

(2.18)

Because we are dealing with an infinite tube the

end conditions are not specified; instead the
pressure gradient in the longitudinal (z) direction
is specified and is assumed to be of the form,

95ct
aî
". 1 - -

384

275a
Bt:-

2304
(414)
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=constant and

where A is specified in Figure 2
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(2.38)
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if we now let

k=Re
ãp

àz 0
(3.3)gives us the differential equation for,

Ys (r), as

3+l
nr

(3.48)

Similarly collection ofcoefficients in t in equation
(1 .7) after substitution of (1 .1 1) we obtain,

ltl
-Ylrr - ZY1rYlrz+ Z YgrrYlz-
l'¡r
I

3 YotYlz =

n-I

r

3n+l 2

z(, - r)

3nr
Y

lz

2n

Yo(') = A

which satisfies the required boundary
conditions,

Yo(0) :o
Ys,' (1) : o

On substitution of (3.38) into (3.1) yields
I(k\; nA=l - | 

-
\2) n-tr

,, (2-nl . (
-Yt,,,.[;.,J*tzzr +[

-*.r{[;Y0,,-z*')'i 2
X

2

)"

3n -2 -2n
2

nr
rr

Collection of coefficents in t in equation (1.6)

after substitution of (1.1 1) we obtain

.þ)42y,zz+(ut.+t)",,
nr\r4r)

(3.58)

Substituting for, Y6 (r), as given in (3.2)

and, Y1, as given in (3.8) and collecting



coefficientsof, cos A(Z- f), oneithersideof
the resulting equation after multiplying both
sides by,

I-n 1+4¡t

R

as given in (3.8) and collecting coefficients of,

sin ø(z - /), after multiplying both sides by ,

l_n l+4tt
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the substitution as before for,

, as given in (3.2)and, V1

(3.68)
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Appendix C

o Dimensionless variables and parameters are
defined as follows

4r3 -4n2 +n*2

zwu
,Z'=- ,w'=- ,Il'=-
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n

t
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(3.88)
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Also, for the non-Newtonian case n = 0.5, k= 1,

the approximating function tor Ês (r)is given
3N+l

N
by

(4.6)

A comparison between values obtained from
(4.6) and exact values as recorded in (3) is given

in Table 3.5, where error term is approximate.

(
Fo (')
n=0 5

Fo(')
n=0.6

E4(')

0.0 0.000 0.000 0.000
0.1 0.017 0.015 0.002
0.2 0.070 0.062 0.018
0.3 0.1 56 0.1 40 0.016
o.4 o.272 0.249 0.023
0.5 0.414 0.385 0.029

o.572 0.542 0.030
0.7 0.731 0.707 0.024
0.8 o.874 0.860 0.014
0.9 0.975 o.972 0.003
1.0 1.000 1.000 0.000

Table 3.5, n=0.5, n=0.6, k=1, where n is
flow behaviour index, showing error term

It is worth mentioning again that a graphical plot

of the closeness of solutions for F6 (r) is

graphically depicted in Figs. 3.1 - 3.4 for
behavior index (n)= lI¡ and k=1

From these tables and Figs. it can be seen that
the approximate solutions are very accurate for n

= 1.0, 1 .2 & 1.4 and less accurate for n = 0.8 &
0.5, but still good enough to be used to find
approximate solutions for the stream function
and pressure gradient for those values of n.

From (3.1a) it is clear that for t very small the

stream function, can be approximated as

Y = Yo + €Vl Ø])

N

Thus, defining, Y to be Y in the case n = N
N

and defining Ê (r) as the approximate

solution for F(Ì¡ in the case rì = N, (4.7) gives the
approximation to the stream function, along with
(3.2) and (3.8) as

N N

E Ê, (') 
"o' 

a(z - t) + c (') 
'in "(, - t)

N 
(4.8)

where ô (r), is the approximate function to

G(r) in the case n = N.

From (3.9) it can be seen that

2I

*" = lllt\z)
N rNr

+

l(') = o2s(3rs -r,') N+1 2 3N+l

{r" 
(,.).o. o(, - t)* 

" 
" 1,;,i" "(. - ,)]

.o, o(z - t rroN(r)+GRe

sln ct z-t

)[

)[ (,) *

2

"I

+

eRe ')l( eReG

(4 e)

under the assumption, €, & Re small and
def ining

u(z - t): z (4 10)

(4.8) , (4.9)&(4.10) give an approximation to the

stream function as,

3N+l
2I

*" =llì¡\z/
+

N+l 2 3N+l

,['o'(,") -,(])]
(4.11)



Streamlines for, n = N = 0.5, 1.0, 1.2are given in

Figs. 3.5, 3.6 and 3.7 respectively, where k = 1.0

and e =0.01.

The approximating functions for tro (r) in tne

case k=0.01 and n=0.5, 0.8, 1.0 and 1.2 are
found in the same manner as the approximating

f unction ^ft (r)t=r , and are given by

^ 0.5,, 5 2F lrl = O.666615r - 1.666615r
0"

iot(') =1.26i376,4'25

(4.12)
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- 2.267376r

Ê ''o lr) = r.oo25r4 - 2.0025120"

(4.13)

(4.14)
Figure 3.S,Streamline Y for n=0.5,
k= l,where n is flow behaviour index
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^ 1.2, r óOn (r) = 1.09750¿r
2

- 2.097504r

(4.15)

Streamlines for n = 0.5, 0.8, 1.0 & 1.2 in the case
k = 0.01 are plotted in Figs. 3.8 - 3.11

respectively where t =0.01; and are derived
from (4.11) using (4.12) - (4.15).

It can be seen that the streamlines plotted in (Fig

3.5-3.7 X high pressure gradient ) and Fig. (3.8 -

3.1 1) (low pressure gradient ) are similar to those
established in Raju and Devanathan(3).

f

Figure 3.6,Streamtine Y forn=1,
k= l,where n is flow behaviour index
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Figure 3.TrStreamline Y for n=1.2, k=1,
where n is flow behaviour index

Figure 3,S,StreamLine Y J'or n--0.5,
k=0.01, where n is flow behaviour index
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Figure 3.g,Streamline Y for n=0.8,
k=0.01, where n is flow behaviour index

All approximate results have been obtained by

assuming that the terms of the order a2 and
higher are negligible and the parameters and
Re are small.

More accurate results could be obtained by

neglecting terms cr3 and higher but keeping

order d.2 and d. as wellas øo .

Conclusion

The results obtained in this study are consistent
with those established by Raju and
Devanathan(3) in their study of peristaltic motion
of a non-Newtonian fluid.

It was seen that the equation of motion for the
non-Newtonian (power law) model of peristaltic
motion reduced to the governing equations for
the Newtonian model in the case of flow
behaviourindex,n=1.

Approximate results for the stream function Y
were obtained and is seen for r'ì >= 1 are close to
the exact results given in the literature. For the
case n <= 1, the results were less accurate, but
nevertheless to an acceptable level, if we
consider the magnitude of the errors.

The streamlines obtained from the approximate
results were found to be very similar to those
found in Raju and Devanathan(3), thus
demonstrating the effect of pressure gradient
and boundary structure. ln fact, it is found that
for low pressure gradient the streamlines form
closed loops and for higher presure gradient the
streamlines run parallel to the axis of the tube
when considered near the axis , whereas a
considerable deformation is noted near the
boundary. An explanation for this is that the
region may be considered to be consisting of
two regions; one the central core region and the
other near the boundary, the boundary layer
region. Highlighting the validity of current
modelling of this type. ln the case of low
pressure gradient, the effects of the wave
travelling along the boundary of the tube are
more dominant. But as the pressure gradient
increases, we find that the streamlines in the
central part of the region are more influenced by

it, than the motion of the boundary, hence run

approximately parallelto the axis. One
conclusion reached by these studies is that
peristalsis is an effective method to move fluld
only if the fluid is transported in the form of a
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The difference between streamlines for high and
low pressure is apparent due to the boundary of
the tube has a more significant impact with regard
to low pressure gradient.



series of isolated boluses. lf the amplitude of
displacement of the wall is smallcompared to the
tube radius, very little pressure gradient can be
generated by the travelling wave. Pressure
gradient increases significantly when the radius
of minimum section approaches zero, (complete
occlusion). lt is thus understandable why
peristalsis is a common phenomena in the
lymphatics, intestine, ureter,and many other
biological systems and peristaltic pumps (dialysis
machines and heart-lung machines).

Appendix A

Solution to (3.10) and (3.11) may now be sought
AS

m1 m2 m3 m4
Ê'(r) = ¡, B

Where

m =0
I

m -/)
The other two roots are evaluated by
determining the determinate of (44) to see if all

the roots are real, hence

^=+þ,-)2
n

^>0
so, m

I
=3*-,

n

32
_2__a- ,2

tln

(45)

2
3n -3n+2

2
n

m
J 4

+ r +Cr +Dr our general solution to (3.10) is

2

I
3+-

n

(A1)

where fl'ì¡¡ , i= 1-4 are to be determined by
making the substitution

Ê'(r) = ,'n (42)

On substitution (41) into (3.10) yields

,^ {n^(^ - r)(,n - z)(* - 3) -

:(,'-,+t)*@-)(*-z)

Fo(t)=A+Br +Cr +Dr
(A6)

There is now sufficient information to find

F6 (r)ano Gt(r)

Forthe Newtonian case n = 1 (3.13) gives the
general solution to equation (3.10) as

Ê (r)= A+Br2 +Cr4 *Dr2 ln, (47)
0"

where lnr is introduced because ffiz= Írq - 2

From (48)

ry(') =28+3D+2Dtnr (48)

keeping this second derivative bounded at r= 0
means,

D=0
The boundary conditions (3.27) imply

A=0

B+C=-1

k
28+4C=-

2

3 2
-4n *n*24n

2
+

(

(,, - r)^ -
n

24n -4n +n+23
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This finally reduces to,

(A3)

m(m -2 nm
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+m(m -2)
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n

-0
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For, n = k= 1 the homogeneous solution to
(3.11)again keeping the second derivative
bounded at r=0 is

G'(r)=A +B12+c14 (A1o)n" I I I

A particular solution to (3.26) can be sought of
the form,

6 8

For the non-Newtonian case rì = 0.8, k = 1

^/ \ 2 4.25 2.375F\r)=A+Br +Cr +Dr

(A15)

therefore using the boundary conditions (3.14)

A=0

B+C+D=1

28 + 4.25C + 2.375D = 0A20448
(A16)

Hence another boundary condition is required,
therefore using the condition of symmetry, ie,

Ytrr:0,atr=o

c ,(') = 'r' +E r (A11)

Therefore substitution of (413) into (3.11) with
n = 1 yields

6
192 Dr + ll52Er

25a
Hence D= 

-384

5a

2

2+B r +C r

8 r']Ir'u

so f rom (412) and (413) the solution to (3.1 1) is

C = 1.490906, D = -2.490906
B=0
therefore,

Appendix B

w=o atr=d+G(z,t)
A2n2n

u= - c(z,t) = Ac- rn-(z - cr)
àtLL

atr=d+G(z,t)

therefore using (1 .1 1)

(417)

-5aÉ. __L-

2304
(A12)
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4 25a6
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The boundary conditions imply f rom (3.14)

Al =o

5a 25a
81 +C1 =-

2304 384

5a 25a
28¡ + 4Ct =

288 64

laY 2x 2n
=-Acsin-lz-ct)

rãz L L

atr=d+G(z,t)

95u
a-LLI - -

384

laY
and -

r ãr
atr=d+G(z,t)

(2.18)

Because we are dealing with an infinite tube the
end conditions are not specified; instead the
pressure gradient in the longitudinal (z) direction
is specified and is assumed to be of the form,

275a
:. 81 = 

-2304
(A14)
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if we now let

k-
0

(3.3)gives us the differential equation for,

Ys (r), as

(3.48)

Similarly collection ofcoefficients in t in equation
(1.7) after substitution of (1.1 1) we obtain,

lll
-Ylrt - ZYOrYbz+ 2 YgrrYlz -l'¡r
I

-l YorYlz =

n-l

3+ 2
I
n

Yo(')=A
3n+l 2

which satisfies the required boundary
conditions,

Yo(o)-o
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On substitution of (3.38) into (3.1) yields
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Collection of coefficents in t in equation (1.6)
after substitution of (1.11) we obtain

Yl t

(3.58)

Substituting for, Yg (r), as given in (3.2)

and, Y1, as given in (3.8) and collecting
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o Dimensionless variables and parameters are
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A Mathematical Study of Peristaltic Transport of a Casson

Fluid.
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Abstract

In this paper, the peristaltic flow of rheologically complex physiological fluids when modelled by a

non-Newtonian Casson fluid in a two-dimensional channel is considered. A perturbation series

method of solution of the stream function for zeroth and first order in amplitude ratio is sought. Of

interest is the difference between peristaltic transport of Newtonian and non-Newtonian fluids. It

is found that Newtonian fluid is an important sub-class of non-Newtonian fluids that may

adequately represent some physiological phenomena. Analytical and nurnerical solutions are found

for the zeroth and first order in stream function and compared to well-documented research in the

literature. It is shown that for a Casson fluid, when certain approximations are made in the most

generalised form of constitutive equation, the fluid may be adequately represented as an

improvement of a Newtonian fluid.

Keywords Mathematical Modelling, Casson Fluid, Peristalsis, Perturbation Series Method

INTRODUCTION

As mentioned in an earlier paper in this sequel Mernone and Mazumdarfl] peristalsis is the

phenomenon in which a circumferential progressive wave of contraction or expansion (or both)

' Corresponding Author:A.Mernone
email : amernone @maths.adelaide.edu.au
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propagates along a tube. If the tube is long enough, one might see several identical waves moving

along the tube simultaneously. Peristalsis appears in many organisms and a variety of organs

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid

transport in many biological systems. In particular, peristaltic mechanisms may be involved in

urine transport from the kidney to the bladder through the ureter, the movement of chyme in the

gastrointestinal tract, the transport of spermatozoa in the ductus efferentes of the male

reproductive tract and in the cervical canal, the movement of ova in the fallopian tubes, the

transport of lymph in the lymphatic vessels and in the vascomotion in small blood vessels

These flows also provide efficient means for sanitary fluid transport and are thus exploited

in industrial peristaltic pumping and medical devices, for example, industrial applications of

mechanical roller pumps using viscous fluids in the printing industry and the peristaltic transport

of noxious fluid in the nuclear industry. In addition, peristaltic pumping occurs in many practical

applications involving biomedical systems. Many modem medical devices have been designed on

the principle of peristaltic pumping to transport fluids without intemal moving parts, for example,

the blood in the heart-lung machine

The main motivation for any mathematical analysis of physiological fluid flows is to

ultimately have a better understanding of the particular flow being modelled. If there is similarity

between the results obtained from the analysis and experimental and clinical data, then the

mechanism of flow can at least be explained. Because peristalsis is evident in many physiological

flows, an accurate mathematical study can help explain the major contributing factors to many

flows in the human body. When comparing results between the mathematical model and the

experimental and clinical data it is desirable that the data obtained from experimental research be as
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close as possible to the actual physiological parameter being analysed. That is to say, it may be

necessary to take into account the effect of the measuring instrument or device or procedure has orr

the data obtained.

The study of the mechanisms of peristalsis, in both mechanical and physiological

situations, has become the subject of scientific research for quite some time. Since the first

investigation of Latham[2]several theoretical and experimental attempts have been made to

understand peristaltic action in different situations. Interest in peristaltic pumping has been quite

recently stimulated by its relevance to ureteral function. As reliable and accurate urometric

measurements became available through the work of Kiil[3]and Boyarsky[4] several hydrodynamic

models of ureteral function invoking peristalsis were attempted. The earliest models by Shapiro[5],

Fung[6] and Shapiro, et al[7] were idealised and represented the peristalsis by an infinite train of

sinusoidal waves in a two-dimensional channel; thus they could pretend to only a qualitative

relationship with the ureter. These models concerned themselves, in part, with offering an

explanation of the biologicatly and medically important phenomenon of 'reflux'. One manifestation

of this reflux is that bacteria sometimes travel from the bladder to the kidney against the mean urine

flow. A similar phenomenon has been observed in the small bowel. These observations are

puzzlingbecause the travel times are too small to be explained by diffusion and also because

retrograde peristaltic waves have not usually been observed. Later, Lykoudis[8]and V/einberg, et al

[9] proposed models that represent ureteral waves more realistically. Fung[10] investigated the

coupling between the forces of fluid-mechanical origin and the dynamics of the ureteral muscle.

Some of these models showed that observed urometric pressure pulses and flow rates could be
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accounted for by assuming internal dimensions of the ureter which seem physiologically plausible.

But ureteral physiology has not been the only motivation for the study of peristalsis

Burns and Parkes[11] and Hanin[12] contributed to the theory of peristaltic pumping

without reference to physiological applications. Barton and Raynorfl3] made a calculation based

on peristalsis theory of the time required for chyme to traverse the small intestine and found that

this calculation compared favourably with observed values. In addition, Fung[10] studied

peristaltic flow taking muscle action in the tube wall into account. Some new examples of

peristalsis were given in Liron[14]. Considerable experimental investigations of peristaltic pumping

have also been undertaken, for example, Latharnf2), Mank[ls], Shapiro and Latham[6],

Eckstein[17[, Weinbergfl8] Weinberg, et al[9], Yin and Fung[9] and Hung and Brown[2O]. Most

of the theoretical investigations have been carried out by assuming blood and other physiological

fluids behave like a Newtonian fluid. Although this approach may provide a satisfactory

understanding of the peristaltic mechanism in the ureter, it fails to provide a satisfactory model

when the peristaltic mechanism is involved in small blood vessels, lymphatic vessels, intestine,

ductus efferentes of the male reproductive transport and in the transport of spermatozoa in the

cervical canal. It has now been accepted that most of the physiological fluids behave like non-

Newtonian fluids. But it appears that no quantitative rigorous attempt has been made to

understand the problem of a non-Newtonian fluid before the investigation of Raju and

Devanathan[21] in the case of small wave amplitude. Subsequently, Srivastava and Srivastaval22l

investigated the problem of peristaltic transport of blood assuming a single layered Casson fluid

and ignoring the presence of a peripheral layer. Later on, Srivastava[23] considered the

axisymmetric flow of a Casson fluid in a circular non uniform tube. More recently, Siddiqui,et al
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[24] investigated peristaltic motion of a non-Newtonian fluid modelled with a constitutive equation

for a second order fluid for the case of a planar channel. A perlurbation series was used

representing parameters such as curvature, inertia and the non-Newtonian character of the fluid

Tang and Rankin[25] proposed a mathematical model for peristaltic motion of a nonlinear viscous

flow where they used an iterative method to solve a free boundary problem. Das and Batra[3O]

studied the fully developed, steady flow of a Casson fluid through a curved tube for small values of

Dean number. A plug core formation region at the centre is considered where the shear stress in not

sufficient to exceed the yield value. Elshehawey et al[31] consider the problem of peristaltic

transport of a non-Newtonian (Caneau) fluid in a non-uniform channel under zero Reynolds

number with long wavelength approximation. The problem is formulated using a perturbation

expansion in terms of a variant of Weissenberg number. They find that pressure rise and friction

force are smaller than the corresponding values in the case of uniform geometry. However, in the

present paper we propose to study peristaltic transport of physiological fluids in a planar channel

using the most generalised form of constitutive equation, for Casson fluid, as given by Fung[26]

The final analysis is done by using a perturbation method in the same way as was done in our

previous paper, Mernone and Mazumdar[1]. To the author's knowledge the use of this generalised

equation has not been considered previously in the literature.

PROBLEM FORMULATION

Dimensionless Variables in a Two dimensionalChannel

*,=! ,/ - | ,r'=L ,'=! v'=Y
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Figure l:Peristalticflow in a Two-dimensional Channel

Statement of Problem

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson fluid in a two-

dimensinal channel, where, d, is the undeforrhed width of the channel and the channel is considered

to be infinitely long; A, represents the amplitude of the sinusiodal waves travelling along the

channel at velocity c;Â, is the wavelength (Figure.l). A rectangular co-ordinate system is chosen

for the channel with x along the centre line and y normal to it. Let u and v be the longitudinal and

transverse velocity components, respectively. It is assumed that an infinite train of sinusiodal

waves progresses along the walls in the x direction. The vertical displacements for the upper and

lower walls are G and -G for peristaltic flow at time t, where G is defined by,

(1)

We assume that there is no motion of the wall in the longitudinal direction(extensible or elastic

wall).

2n
G(x,t) = AcosTG-ct)
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For the case of peristaltic pumping of a Casson fluid in a planar channel the stress-strain relationship in

tensor format is given by Fung[26] as

o =-põ +zu(tr)v

where

p(

Here we have denoted

and

2',¡=lþ",¡i 
.'-)",:)", q

=v,,=:(r_.*)

ll tt
2 +2 2rriJr- 

+

]'=[
a + Nz-Ã = ¡t(say)

2

(2)

(3)

(4)

(s)

I
I

2 2r i

, =!fu2+v2+zvu 2\ ll 22 t2

Mathematical Modetling of a Casson Fluid in a Two-Dimensional Channel

I

2a=Tl B=

where 11 is the Casson cofficient of vis cos ity, and t, is the yield stress

Here,

v

v =!¡¡2

1
J v

U2

2 (6)
2

where

Substituting equations (2-6) into the basic equations for continuity and momentum respectively

given by

divq = g (7)

V
t2

dv.._
dy

V=
22

du
-=-
dx

v
I

and
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Similarly,
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(10)

Delrning a stream function asu = V and , - -V, we obtain from equations (9) and (10)
v

pY2v+

- pvzv 
"

(l 1)

(12)

v

and u,= 
ftlr.b,))

So lution Procedure ( Zer oth Order Approximation)

Expressing stream function, Ø , pressure, p, and ll as aseries in terms of amplitude ratio , = 4,d'

where A is the amplitude and ,d, is the undeformed width of the channel, (Figure 1), we have

V =\ro*eVt*etvr+o(e') (13)

where tt, = *ltt(Jr)l
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where it is assumed that r/o is a function of y only, 'e, 
Vo = øo(.1), because of zeroth order axial

pressure gradient. We finally obtain from equations (l I & l3-15) after collecting coefficents of e0

* = r ro., 
o y, + poyv 

oyy - þo rv o,* * þ0v o,,y * þov 
o r,

p = po+ Êpt+ 12 Pz ,(tt)

It = lto + Êltt + ,2 LLz ,(tt )

= þorvorr* þovor,

(14)

(1s)

(16)

(17)

(18)

(1e)

that is,

d-:-
")

%
dx

%
dx

Therefore

JWe now need to find the zeroth order expression for ¡to =

uvt' 0' Oyy

p( ,).

', 
= :l(*)' . [#)' 

.i(x. *)'] = i{, ; + v xv * ;(,,,-'*)'}

={, 
",' 

*i(,,,- t-)'}

From equation (6) and expanding and substituting we have

Therefore we have, after introducing equations (13, 15 and 18)

2

/r(t,)= ". illlJv 
orr' 

*Zev o,,r(v,rr- t,,")l-t + o(ez)

Neglecting O(e') and higher in equation (19) and expanding we have



l0

u(tr) ". u(:)-' , o,,-)(' - lv 0,,'rv ry, - v *,))

z

(20)

(2r)

(22)

(23)

(24)

Which after further expansion and collecting terms in amplitude ratio for the first two terms and

using equation(15) yield equations for ¡ro = p(t,)o AS

þo = d,' + z^lùuþV or;l * 2 þ'V or, 
t

J
2

and I,rp
),

rt, = - ap {zv o rr-1(r, rr- r, * ) - z þ' v o rr' (r,, - r, *)

Solving equation(15) by using equation(19) and applying the symmetry boundary condition

V (0)=0wehave
ovv

Kv+L=ll\l.tr t o'oly

where x = p^þa!%
dx

and L = 2þ'

Our equation to solve for r4o(y)then becomes

a' v 
o r, 

+ z^FzaBy 
orr) - Ky = o

If we set

vorr=w

then equation(24) becomes a quadratic in W as

a'W' +z^llapw - Ky = o

whose roots are given by

w = -JiLxL 2þ2 + Ky

(2s)

(26)

(27)
aa

Using equation(25 &.27) we obtain
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vorr= _"tt 2p2 + Kyþ,t
dd,

2

2

(2e)

(30)

(28)

(31)

(33)

But the symmetry boundary condition t¡ (0) = 0 demands only the positive sign to be valid,
ovv

therefore

V 282 + Ky
I+-

ovv a

Where A and B are constants of integratron.

Using the boundary conditions r¡ror(1) = O and r/o(o)= o

we find

Integrating equation(29) twice we obtain

B_

rro(r)= 4¡ *#r'- ,#.eø'n xll + Av+ B

o=#(rþ'*4)-5 #
(32)

If we let þ -+ O that is t, -+ 0 from equation(4), we obtain the Newtonian case in the form

3
v
3

which coincides with the literature, Fung[6]

We now seek to determine the dimensionless pressure rise, Apo, where

Lpo
I

J
0
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The flow rate, q, is given by

therefore from equations(3 0-32)

Applying expansion gives

This is graphically dipicted in Figure(2)

,tn)-w(o)= +-*.*(r,'' * x)) =na' 3u' 3a'K'

tl^
n = | udt = lo! Or= t/(l) - W(o¡J rdv

00
(34)

K . t6po-lJ" 3ûK

azo- K : I f-r(^nrn-en2\+1
dr - ;ffi-;m\-t\'*' - "v )'i

^po=-+l+(to' -tt)-:P"rl c a ' "

(36)

(3s)

(3e)

Separating the pressure gradient after solving for quadratic in K, and using equation(23) gives

gooq'+rooþa -36a2q82 (37)

Hence using equation(33) pressure rise is

^oo=fu|:{ iþ"'-6þ')'; gooq' + looBa -36a2qþ2 \.,

because-lþ"'-6þ')t; gooq'+ 100pa -36a2q82 = constant

^po=fu{ :(ro'-6p'-)'t

(38)

gooq' +rooþa -36u2qþ2

However, the conditionB - 0, implies that only the negative sign of the quadratic to be valid,

therefore

gooq'+ loopa -36u2qP2

0
L,p
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- 0.5

P ress u re

-1.5

- 2.5

Flow Rate

Figure 2z Pressure Rtse vs Flow Rate

Solution Procedure( First Order Approximation )

We now look at the procedure for determining r¡, (r,y,r)

The boundary conditions for V r(x),t) are derived as follows; Assuming that there is no horizontal

displacement of the tube walls during the peristaltic motion, the boundary conditions at the walls

are

0

2

3

(a) no - slip condition'. u = O at y = Xld +G(;r,r)]

(b) impermeable condition,, = t4C(x,t) at y = llld + G(x,t)]
At

)r
Using G(x,t) = A cos î (x - ct) and equation ( I 3) and non-dimensionalising as defined above we

L'
obtain

(40a&b)

o.2 0.3 0.4 0.5 0.6 0.7 0.8

ressure Rise vs Flow Rate

0.9

Pressu re Rise,
(Newt onian)

Pressu rc Rise,
(Casson)

Rise
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The boundary conditions (41) can be written, using Taylor series expansions about

.y = l(l + G) where here G= €coscr(r - r) as, after equating terms of the same order in t, on either side

of the equations, which gives

v, = o at v = !lt* r"o,ã{t -')l

v,,=r+rinl| - ct)=+ãe sin ãe - t¡dr y = tlr * r.orã{' -,)]

yy(tl) t Gv rr(tt) * *r rrr(tr) 
t o(c3) = o

v/, (t 1) t c y,r(xt) * *, nrêr¡ 
t o(c3 ) = + ã e rin a(* - t)

yo"(11) = o

V/r,(tl) + øo,r(+1).orã1t - t) = +ãsina(x - t)

and so on for higher order terms in Ê.

v/ry(l) = -Øorr(l)cos u(x - t)

V/r,(l) = -asin a(x - t)

vr(x,t,,r)= ¡(y)cosø(t - r)+ 6(v)sin a(x - t)

(41a&b)

(42a&b)

Substituting equation (13) into equation (42) andcollecting terms of the same order in e, gives

V (+t)= o
0y

V (tl)t r¡ (+1)cosø(x-l)=o
ly ovv

Taking the positive sign of the boundary conditions as given in equation (43) yields the boundary

conditions as

(43)

(4s)

(44a&b)

From these boundary conditions, it can be assumed that r¿, (r,y,t) can be obtained in the form
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Eliminating the pressure terms in equations (11) and (12) by cross-differentiation and subtraction,

the following equation is obtained

p(vzv 
t + v ,v'v , - rtr 

rY2rtt r) = 4l.t rrv yt + 2l.rrv 
yyx 

* þrr(v ,,, - v ) * þr,(v rr, - rlt or) *

þ rY' v, + l'Y2 v yy 
* 2 þ rv o, - lr oltt yy - v r) - lt r(v yy, - v o*) + P *v2 v, + ltY2 v *,

(46)

By substituting equation (45) for t¿,(*,y,t) and equation(29) for r¿o(y) into equation (45), and

collecting coefficients of cos ø(x - t) and sin ø(x - r) on either side of the resulting equation, two

differential equations fo. /(y) and g(y) are obtained.

Due to the length and complexity of these equations approximate solutions are obtained by

assuming that the parameter, ã , which i, ! is small. As a first approximation, the terms of
).

,> 
-3

order ø and higher can be neglected; as a second approximation, the terms of order a and higher

can be neglected and so on

Hence the following equation is obtained from equation(45) by expanding in a pertubations series

as indicated in equations(13-15) after collecting terms of the f,rrst order

in amplitude ratio, €

,ffi(r ro, 
+ v oyv tyy, - v,,v orrr)= þ r rrv, r, 

* þ 
r rrv o r, + 2 lro rv t rr, 

* 2 lr 
r rv o rr, 

* þ ov r rrr, 
* þ rv o rrry

(47)

where þ0, þoy, lro, ond t,þty, Ftyy are extensive and complicated equations and are obtained from

equation (21) and equation (22) respectively, as follows,

It o, = -Jl aPv 
o rr-\v o rr, - 2 Þ' v o rr-' v o r,r,

(48)



t6

rrorr=#rorr-]voryy2 -^FzoÞrvorr-)rorn,*4þ'vorr'vorrrz -2þ'vrrr'vorrr,, (49)

ur, =#v orr,-lv orrrv,r,, ^FzoÞ'y or,,-)v rtr, * 
qþ'v 

or,r,-tv 
'vvt'v 

tt't'- 2Þ'v orr'-'v,t',',' (50 )

tr,, = -#v orr-lv or,,r'v,r, *ff, orr-1, oytyyv tyy "#v orr-1v orrrv,rr, "lioþv o,,r-)v,r,

- t2þ'v orruv orrr'v rr, 
* 4Þ'v or, 

tv 
or,rr,v rr, 

* 8þ'rtt orr-tv orrrv trr, - 2Þ'v orr-'rlt ,rr,

(s1)

After substituting for the various terms in equation(47) and collecting terms and remembering the

approximation made on terms in the parameter, ø, the following ordinary differential equation is

ã ¡' ,inãç* - t) - ã s" cot ã(" - r; +

p^[n
15, 

* #,' - 1#po' * q:. o](-;r"' inãg -'l) + ã g"'o'ãQ -'l)

_(
(.-ølsin a(x - t) + a gcosa(x - t)

kz

4þ'o'
v

(#)' (r" cos ã(x - t) + s" sinãu - r)#l# . #, -

(r\.)(t"'cosã(x- r)+ s"'sin ãa - t)"Bal#.5' -

o'(r''.o, ã1" - t) + si' rin ã(r - ,)) -

2pJt
2a

I

*,r)t2p2

I

(zp'z + a)i

5

]'
3

]'
2þJ'

2a
+

qo'p' t6Ba a2

k2 3lr3 ,)#(r" *' ã1' - r) + s" sin ;t' -'ll$ . #
3

I l-t
(rp'*ø);l- .

I

"r"15 * 4, -#po' . di) (/,,.o,ã{, - t) + si'.i. ã1, -,))

(s2)

where the constant A is given in equation(31).
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Collecting coefficients of cosa(.r - r) in equation(52) gives

p^m
{-;,,, 

.15, * #,, - #po, * r):. ^][r,") - [t,)
5

*4,-ufpo,.ùif
3

* 4, -ufpo, . qlf * o,(l,)-

3

4pJt
3ka2 qþ'o'

(s3)

(# #,)¿v,,tlf * 4, -uflpo, *,):
1

+

qpt
2a

+
k
)./(t-

I

(,Þ, *o;il-u{r,')

Collecting coefficients of sin ø(x - r) in equation(52) gives

3

,Ì=k2

[" r,J,#o .f" -a
qß2 k-:. Y * ----=a' 2a'

(tÞ'*w)t*o af" +2v-

(#)' r",#l# * 4, - uflp o' . ùi)i
3

(rþ.)r"'vo "l# 
* 4, - #P o' * r): * "'(s'')-

2
(s4)

3

ffi #.,)#(,')l# * 4, - ufPo' .')il .

*nl? * 4, - #p o' .'¡ili{,'")

The equations for f(y) and g(y) can be simplified by assuming that the Reynolds Number

associated with the present model is small, where the associated Reynolds Number is given as
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Therefore,

p." = p^[êa

f (v) =6(v) + R"' fr(y) + higher order terms inRe

g(y)= R"sr(y)+ Re3 s3(r)+ higher order terms inke

(ss)

(s6)

(s7)

Hence, evaluating equation (53) and equation(54) with equation(56) and equating equal terms in

Reynolds Number the following ordinary differential equations are obtained for {(l) and gr(y)

respectively,

(#)' v," )#15 . þ, - u#p u' . d:)

(*)v,l*nlþ * #, - uf p o' . ùifi * o' (ro'') -

ffi #.')#(ûl#.
*"19*5,-u#þo

la' u'
* or)

k-'rY-
a'

282

I

i]-u{r',)= o
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Ir " 
-l#, * #,' - 1#p o' . r)1. ^](t rì

(#)' t,t*l# * t, - u*(, r . d:):

(*)øt* "l# 
* 4, - uf p u' . ùi):

. (t^)
2

k

* o'(s,'") -
3

(s8)

k2

qo'p' #.,)#('45 * 4, - #P u' . dif

+

where, A:

BĈ
t - --E't - E

k
2a

v
, .,;i]-u{,,,,)2p

From equation(44) the boundary conditions for f(y) and g¡(y) are given as

/o(o)=0 {(0)=0 /o(l)=l õ(l)=-V,yy
s, (o) = si(o) = B, (l) = si(t) = o

The analytical solution to equation(57) is found by using the text[38].

(se)

Reducing equation(57) to a second order equation and then integrating twice the solution is

found. Comparing our reduced second order equation to and using part28 on page 134 of textf38]

with their notations

Aa--
E

,p

5 3 3

ko
4p'

2ü

214

4
3k'

4p' 210
k' 4þ' 2ro

42 2aa 4
fi- C_

z"l1(+Þ'a') t6Boa z-11 2p22
d,

3

r"E"p(#) 'î
2 9

4
D_

4þ'o'
(60)
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Then following through the analysis they describe where

Consequently, with *o= fí' equation(57) reduces to

*" - 2vw' + ![ ¿,u' + Bv - c\w - o0 E' o El J 0

= exp(/¿y) exp(sy2 ). + Crtz r+>

(61)

(62)

(63)

(64)

D2A
¿F_E

DIs-_+_482

is the root of the quadratic(see pagel34 of textf38])

4s2 +2as * d, = 0 . o = -2 . b = 0
E

". :), þ,ç,)'

It is found that if we consider the first two terms of the series,

* 
o = fí = exp(iry) explsy2 ¡z({) where z(4) is found in TabLeL.2 page 143 of text[38]

C

n=l
(b)^ nl

where

2b^h + b,
,Lr-- t 

")"=1,ol

(6s)
5-

y-l.I
L

is the degenerate hypergeometric solution and is found on pagel43, part 103

and pagel 37, part 65 of [38]

Subsequently, the solution to equation(57) and hence equation(64 8¿ 65), after applying

symbolic integration twice using MATLAB v5.3 is very intricate and given in Appendix A

Numerical solutions of equations (57) for f6(y) and (58) for g¡(y) result in the plot in Figures(4-7)

e("'t've')

Figure (4) shows a comparison of f6$) with other models[2l]. Figure (4) shows the curves for
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f6(y) and d (l) with varying values of yield stress. That is, B is gradually varied between zero and

unity. Figures (5-7) show curves for g¡(y) and g, (y) with varying values of yield stress and

various values of wave number. Figure(8) gives a plot of the function, ry vs x, where x = x - tãS

derived in this paper from equations(13), (30-32), (45) and (56), which are very similar to plots

given in [21].

1.2

0.8

f o(y) 0.6

0.4

0.2

1

0

0 0. 1 O.2 0.3 0.4 y 0.5

Figure 3: Comparing fo vs y with [21 ]
0.6 0.7 0.8 0.9 1

When comparing the values of our Casson model in Figure 3, obtained from numerical integration,

of the f,rrst order in stream function with those of the power-law model of Mernone &

Mazumdarfl] and Raju & Devanathan[2l] the results are similar but noticably different. The

-fO(Power Law,
Ref .[21])

-fO(Power Law,
Ref .[1])

- 

f0(Casson-present
study)

f o(y) vs y

I

I
a

///,/

/
ta

/

,///
t/

Casson model indicating the effects of the yield stress and Casson viscosity on the stream function
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However, there are a similarities between the two models in form. Initially the two models coincide

then diversiff with as increasing values

1.5

-0.5

-t
0

2

05

o

0..f o.2 0.3 0.4 0.5 0.6 0'7 0.8 0.9

Figure 4rfo!)efo'(y)with,-Ío'(t)=-t(B=0),.........6'(t)=-0.s,-.-.-fo'0)=-0'l(É=l)

When considering the f¡(y) and 6'{r)in Figure 4 it is found that as the yield stress p is gradually

varied between zero andunity; the effects on both f¡(y) and /s O)are noticable and significant. It

appears that the maximum value for f,'(r) is shifted slightly to the right.
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2

0

x 1o-3

0 0.1

-2

-3

3

4

3

-1

2

-1

-2

-3

Figure5t S,(y) &SrO)withfo (l)=-1 :-ã=0.2,.......ã,=0.4,-. -ã=0.6,---ã=0.8

x 1o{

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

o.2 0.3 0.4 0-5 0.6 0.7 0'ð 0.9

0

Figure 6t g,(y) & st O) with fo (l) = -0.5 : 

-ã 
=0.2, .ã. = o.4,-. - ã = o.6,- - -á = 0.8

I

lt.
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i\

x 1o{
2.5

05

0

2

1.5

-0.5

-1

-1.5

-2

-2.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 7, er0)&Sr (y) withfo (1)=-0.1:-ã,=0.2'....'..ã,=0.4,-.-d,=0.6'---õ=0.8

Similarly, in Figures 5-7 when considering the functions gr0) and s,'(y) we find that the wave

number ø has considerable affect on the curves. It appears that as the yield stress B is gradually

varied between zero and unity, and therefore the value of fo'0)=-Vorr6ù, there is a shift in the

size and shape of the left side and right side in the curve representing s, (r). There seems to be a

reversal in the location of peaks between the right side and left side. It is of interest to note that the

points of inflection occur in exactly the same location when considering each of the respective

graph of gr0) and s,'(y). As the yield stress p is gradually varied between zero and unity the

points of inflection are shifted slightly to the right. The numerical values obtained for fs(y) and

fr 0), and g1$) and s,6,) are indicative of the validity of the perturbation analysis used

throughout this research as indicated in equation (45). It is seen that the order in magnitude of fe(y)

is very much greater than that of gr(y) as is suggested by the perturbation method. From the
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numerical calculations we find that the change in behaviour of the streamfunction occur depending

on many parameters, including K, a,a,B,R",ande . Just for the sake of understanding peristaltics,

we have taken some basic values of the parameters, with e = 0.01.

0.04

0 .035

0.0 3

0.025

0.02

0.01 5

0.01

0.005

0

-1.57 -0.785 0 0.785 '1.57 2.355 3.14 3.925 4.71 5.495 6.28

Figure 8: Plot of function r¡ vs .r as given by equations (30-32, 45 &. 56)

When we consider Figure (8), which is a plot of the function r¿ given by equations(13 and 30) and

equations(45 and 54) and selecting €=0.01; for the case of high pressure gradient, with _

representinE Vo,(y:0.1), ---- representing r¿0.r,..... representing r¿0.r, -.-.-. representing y07 and -

..-..-representing r¿on(V:0.9); it is found that the curves for streamfunction V/ run parallel to the

a-

tt

--- 
/-\-\.

/
/

\
\

Stream Function

\
\

\

\

\- ¿-\\\- ----

\\
\.'\

'.- \ '.
t'. '\ \.

t.\'
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axis of the channel when considered near the axis(y:O.I), whereas considerable deformation is

observed when they are considered near the boundary(y:0.9). Perhaps a possible explanation for

this sort of behaviour of the streamlines can be given by considering the region as consisting of two

parts - a central core and a boundary layer region. As the pressure gradient increases, we find that

the streamfunction r¡ in the central region are more influenced by it, than by the motion of the

boundary and hence the values for the streamfunction run parallel to the axis, while in the region

near the boundary the flow is influenced by both the wave and the pressure gradient.

CONCLUSION

In this research it is found that for the Casson model the goveming partial differential equations are

indeedextensiveandcomplicated. If howeverwe use the fact that the zeroth order perturbation in

stream function is a function of the axial coordinate only, because the zeroth order axial pressure

gradient is constant, we find that the Casson model may be quantitatively expressed as a

Newtonian model (Figure 2 ).

It is found that in the zeroth order approximation in stream function that there is a

dependence on the Casson coefficient of viscosity, yield stress, the density of the fluid, the wave

speed and the dimensions of the channel.

When considering this approximation in ther zeroth order stream function, results show the

difference between Newtonian(dashed line) and non-Newtonian(bold line) in Figure 2 seems to be

slightly signihcant, and consistent with that of a Newtonian model, with slight anomalies at very

low and very hiogh flow rates.
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However, we see that for the first order in stream function the differential equation to be

solved is complex, and the analytical solution derived from symbolic integration rs more so.

The values for the first order in streamfunction are indicative of the perturbation method

used and results in Figures( 4-7) are consistent with that given the literature.

This modelling is appropriate as it may allow insight into the validity of the reduction of

the complexity of modelling some non-Newtonian fluids like flow of urine in the ureter and blood

flow in the blood vessels under certain physiological conditions.
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APPENDD( A

h

erf(Vol)Vo12
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where Cr,Cr,C,Co are constants of integration determined by the boundary conditions in

equation(66).

where {l = D - 4sE and VoI = J"li -
h

z"lt
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Biomathematical Modelling of Physiological Fluids using a Casson

Fluid with emphasis to Peristalsis.

A.V. Mernonel, J.N Mazumdar

Department of Applied Mathematics, Adelaide University, Australia 5005

Abstract

In this paper, the peristaltic flow of rheologically complex physiological fluids when

modelled by a non-Newtonian Casson fluid in a two-dimensional channel is considered. Of

interest is the difference between peristaltic transport of Newtonian and non-Newtonian

fluids. A perturbation series method of solution of the stream function in amplitude ratio is

sought. It is found that Newtonian fluid is an important sub-class of non-Newtonian fluids

that may adequately represent some physiological phenomena. It is shown that for a

Casson fluid, when certain simplifications and approximations are made in the most

generalised form of constitutive equation, the fluid may be adequately represented as an

improvement of aNewtonian fluid.

' Corresponding Author: A.Mernone
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INTRODUCTION

As mentioned in Mernone and Mazumdar33 peristalsis is the phenomenon in which a

circumferential progressive wave of contraction or expansion (or both) propagates along a tube. If

the

tube is long enough, one might see several identical waves moving along the tube simultaneously.

Peristalsis appears in many organisms and a variety of organs.

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid

transport in many biological systems. In particular, peristaltic mechanisms may be involved in

urine transport from the kidney to the bladder through the ureter, the movement of chyme in the

gastrointestinal tract, the transport of spermatozoa in the ductus efferentes of the male

reproductive tract and in the cervical canal, the movement of ova in the fallopian tubes, the

transport of lymph in the lymphatic vessels and in the vascomotion in small blood vessels.

These flows also provide efficient means for sanitary fluid transport

and are thus exploited in industrial peristaltic pumping and medical devices, for example, industrial

applications are mechanical roller pumps using viscous fluids in the printing industry and the

peristaltic transport of noxious fluid in the nuclear industry. In addition, peristaltic pumping occurs

in many practical applications involving biomedical systems. Many modern medical devices have

been designed on the principle of peristaltic pumping to transport fluids without internal moving

parts, for example, the blood in the heart-lung machine.
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The main motivation for any mathematical analysis of physiological fluid flows is to

ultimately have a better understanding of the particular flow being modelled. If there is similarity

between the results obtained from the analysis and experimental and clinical data, then the

mechanism of flow can at least be explained. Because peristalsis is evident in many physiological

flows, an accurate mathematical study can help explain the major contributing factors to many

flows in the human body. When comparing results between the mathematical model and the

experimental and clinical data it is desirable that the data obtained from experimental research be as

close as possible to the actual physiological parameter being analysed. That is to say, it may be

necessary to take into account the effect the measuring instrument or device or procedure has on

the data obtained.

The study of the mechanisms of peristalsis, in both mechanical and physiological

situations, has recently become the subject of scientific research. Since the first investigation of

Lathaml several theoretical and experimental attempts have been made to understand peristaltic

action in different situations. Interest in peristaltic pumping has been quite recently stimulated by

its relevance to ureteral function. As reliable and accurate urometric measurements became available

through the work of Kiil2and Boyarsky3 several hydrodynamic models of ureteral function

invoking peristalsis were attempted. The earliest models, Shapiroa, Fung5 and Shapiro, Jaffrin and

Weinberg6 were idealised and represented the peristalsis by an infinite train of sinusoidal waves in a

two-dimensional channel; thus they could pretend to only a qualitative relationship with the ureter.

These models concerned themselves, in part, with offering an explanation of the biologically and

medically important phenomenon of 'reflux'. One manifestation of this reflux is that bacteria

sometimes travel from the bladder to the kidney against the mean urine flow. A similar
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phenomenon has been observed in the small bowel. These observations are puzzling because the

travel times are too small to be explained by diffusion and also because retrograde peristaltic waves

have not usually been observed. Later, LykoudisTand Weinberg, Jaffrin and Shapiros proposed

models that represent ureteral waves more realistically. Funge investigated the coupling between

the forces of fluid-mechanical origin and the dynamics of the ureteral muscle. Some of these models

showed that observed urometric pressure pulses and flow rates could be accounted for by assuming

internal dimensions of the ureter which seem physiologically plausible. But ureteral physiology has

not been the only motivation for the study of peristalsis.

Burns and Parkesl0 and Haninllcontributed to the theory of peristaltic pumping without

reference to physiological applications. Barton and Raynorl2 made a calculation based on

peristalsis theory of the time required for chyme to traverse the small intestine and found that this

calculation compared favourably with observed values. In addition, Funge studied peristaltic flow

taking muscle action in the tube wall into account. Some new examples of peristalsis were given in

Lironll. Considerable experimental investigations of peristaltic pumping have also been undertaken,

for example, Lathaml, Mankl4, Shapiro & Lathamls, Ecksteinl6, WeinberglT weinbergs et al, Yin &

Fungls Hung & Brownle. Most of the theoretical investigations have been carried out by assuming

blood and other physiological fluids behave like a Newtonian fluid. Although this approach may

provide a satisfactory understanding of the peristaltic mechanism in the ureter, it fails to provide a

satisfactory model when the peristaltic mechanism is involved in small blood vessels, lymphatic

vessels, intestine, ductus efferentes of the male reproductive transport and in the transport of

spermatozoa in the cervical canal. It has now been accepted that most of the physiological fluids

behave like non-Newtonian fluids. But it appears that no quantitative rigorous attempt has been



5

made to understand the problem of a non-Newtonian fluid before the investigation of Raju &

Devanathan20 in the case of small wave amplitude. Subsequently, Srivastava & Srivastava2l

investigated the problem of peristaltic transport of blood assuming a single layered Casson fluid

and ignoring the presence of a peripheral layer. Later on, Srivastava22 considered the axisymmetric

flow of a Casson fluid in a circular non uniform tube. More recently, Siddiqui, Provost &

Schwarz23 investigated peristaltic motion of a non-Newtonian fluid modelled with a constitutive

equation for a second order fluid for the case of a planar channel. A perturbation series was used

representing parameters such as curvature, inertia and the non-Newtonian character of the fluid.

Tang and Mankin2a proposed a mathematical model for peristaltic motion of a nonlinear viscous

flow where they used an iterative method to solve a free boundary problem. Das & Batr*e studied

the fully developed, steady flow of a Casson fluid through a curved tube for small values of Dean

number. A ptug core formation region at the centre is considered where the shear stress in not

sufficient to exceed the yield value. Elshehawey30et al consider the problem of peristaltic transport

of a non-Newtonian (Caneau) fluid in a non-uniform channel under zero Reynolds number with

long wavelength approximation. The problem is formulated using a perturbation expansion in terms

of a variant of V/eissenberg number. They find that pressure rise and friction force are smaller than

the corresponding values in the case of uniform geometry. However, in the present paper we

propose to study peristaltic transport of physiological fluids in a planar channel using the most

generalised form of constitutive equation, for Casson fluid, as given by Fung25. The final analysis is

done by using a perturbation method in the same way as was done in our previous paper, Mernone

& MazumdaÉ3. To the author's knowledge the use of this generalised equation has not been

considered previously in the literature.
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PROBLEM FORMTJLATION

Dimensionless Variables in a Two dimensionalChannel
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Figure l: Peristalticflow in a Two-dimensional Channel

Statement of Problem

Consider the peristaltic motion of a non-Newtonian fluid, modelled as a Casson fluid, which is

viscous and incompressible in a two-dimensinal channel, where, d, is the undeformed width of the

channel and the channel is considered infinitely long. A, represents the amplitude of the sinusiodal

waves travelling along the channel , À,, is the wavelength and they are travelling at velocity, c

(Figure.l). A rectangular co-ordinate system is chosen for the channel with x along the centre line

j
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and y normal to it. Let u and v be the longitudinal and transverse velocity components,

respectively. It is assumed that an infinite train of sinusiodal waves progresses along the walls in

the x direction. The height of the wall for peristaltic flow at time t is defined by,

2n
G(x,t) = AcosîQ - ct) (1)

L

We assume that there is no motion of the wall in the longitudinal direction(extensible or elastic

wall).

For the case of peristaltic pumping of a Casson fluid in a planar channel the stress-strain relationship ir

tensor format is given by Fung25 as

o,j = -p6,,*zu(tr)v,, Q)

where

u(t,)

a+ PJr-i = ¡t(say)

and

a=Tl2 : þ=

where r7 is the Casson cofficient of viscositv,

t is the yield sffess
.v

Here,

[{n'r,); 
*r-i,,if,,-l

=[r* *r-]",ir,-if

I
I

2 2r i

t'

(3)

(4)
v

Ax
I

1v --ij2
*, 

*^'
J

Ax

(s)
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where

and

t, = 
+v,,vu 

= )(r,,' 
+ vrr2 + zv,

Mathematical Modetling of a Casson Fluid in a Two-Dimensional Channel

o(-, ,,- v ,v ,,* v ,v ,) =

* u,(, ,- ,tt ,,)- pY'v 
*

2

2
(6)

(7)

(8)

(e)

v
I

Au
-=-
òx

v =L., -v =!(ù.'.e'l'22 Ay' 'r, '2t 2lò, ã* )

If we use the basic equations for continuity and momentum we have

divq =g continuity equation

Da, d
e;; = Aro,t 

momentum equatrcn

-*.Zrr,v,r* pr(v r- vt *)+ pY'v,

Substituting equations (2-6) into equation (8) our momentum equations become, after defining a

stream function, as u = Vl y and, - -V,

,(r y wvv+vvv,v-v'

-aP -2u w
dY 'Y'xY

(10)

where tt-= *lt(Jr)] and t,, = 
*V.Q,)l
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A Method of Solution of a Casson Fluid in a Two-Dimensional Channel

Expressing stream function, Ø, pressure, p, and /¿ expressed as a series in terms of amplitude ratio

, = !,where A is the amplitude and ,d, is the undeformed width of the channel, (Figure 1), we
d'

have

2 (1 1)V=Vo+Etft+e V2
+

P = Po¡ ePr+ 
'2 

Pz (12')

(13)2tþ,

Where it is assumed that Øo is a function of y only, ie, V o = rf o(l), because of zeroth order axial

pressnre gradient, we finally obtain from equations (9 &, ll-13) after collecting coefftcents of e0.

lrE+U= ll *, ,0 +
2

dD

# = 2lro,v o, t þrrv or, -
porvoo* þovo** þovorÐ

ùo 
=u w +nl

Ax ' oy ' oyy oV oyyy

Therefore

(14)

(1s)

du
-=-
dy

%
dx

utu
' 0'0Ð

a

ù

We now need to find the zeroth order expression for Uo = U(l,)o

From equation (6) and expanding and substituting we have

t,=:l( Au Av

)'Ìãx

2

+ +
Ax
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= T{'',' *v, *}(' ,,-' -)'\

={'.,'*iV,-'-)'}

Therefore we have, after introducing equations (11, 13 and 16)

(16)

(17)

(18)

p(t,)=
2

o( ,)
I(r rrr' 

+ 2ety 
ooll.¡r tyy - v tu) +

4

e

Neglecting O(e') and higher in equation (17) and expanding we have

p(t,) =

2
I

". u(i)-' v,,,-i(t - T, o,,-' 
(v,,, r,-,)

Expanding equation(I8) and collecting terms in amplitude ratio for the first two terms and using

eqaution(I3) we obtain equations for ¡ro = P(J,)o and

þo= d,' +zJ-zaBryorr-) *28'vorr-'

p,= p(rr),u'

(le)

tt t 
: - aþ J-2vt o rr-1(r, r, - v, o

zP'v orr-'(v,rr- v ,*)

(20)
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Solving equation(15) by using equation(19) and applying the symmetry boundary condition

Ky+ A= FoVo,

where

v/o/y(o)=owehave" =o^[rro% 
Ql)

'dx
and A = constant of integration = 2þ2

Our equation to solve for r¿o(y)then becomes

a' V or, 
+ z^Fzuþy 

orrl - Ky = o (22)

Equation(22) becomes a quadratic in W as

a'W' +z"llaBw - Ky = o

whose solution is given by

If we set

vorr= w2

V

V

t

,i€, Vorri =W (23)

(24)

(2s)

Using equation(23) and equation(25)

*=-"ø*r!Et*Ky

2

(26)-"t,ovv

But the symmetry boundary condition y0yy(0) = 0 demands only the positive sign to be valid'

therefore

(-t*+LEp' . Ky)'
ovv

Integrating equation(27) twice we obtain

(27)



t2

,\ 2ß2 2 K 3

V"lÐ = _+y + _zt" _
v d- od,

t{?þ^bn'+xn\}+Ay+B
l5K2a2\" '"r)

(28)

Where A and B are constants of integratron

Using the following boundary conditions Wor(l) = 0 and

we find

r¡ro(0) = O

o=ffi(zB' * x)) 4þ' K-7-r7 (2e\

(30)

If we set þ + 0+ ty+ 0 fromequation(4) we obtaintheNewtonian case inthe form

B=#(rp')i

.no(r) =-#(, +)

Ã,o,0

which is as recorded in the literature, Fungó. We now seek to determine the dimensionless pressure

rise, Apo, where

I

J
0

G

n=!udt=

(31)

The flow rate, q, is given by

0

rewhe

(32)

G=tcosd(x-t)

hence from equations (21, 28,29,30, 3l and32)
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6qo' -12Bzel "or'" (33)
.o.t 

" - 3e cos x

The solution to equation(33) is found by making the substitution

Iz=taî-x

thereþre

r-22 2z , )
COSX = ----z- Sln,f = -:---T a¡ = --=7dZ

L+ z" l+ z" l+ z'

Seperating integrands and using the method of partial fractions we obtain three integrals to be

solved; they are

t'i'

0.546

J
0

0.546

A
I
z+ Bl

(r'-re*r>)

C,, +D

(r'-ro-r>

dz

(34)

(3s)

(36)

z+ D,

J
0

dz

Erz* F,

(r - .')
dz

z-f

(r'-{e+r)

,'-(o-Ð)

dz

dz



T4

,'-@*y))

o.546

J
0

o.546

0 546

j
0

+

z +B

+D
396p2 ej C

dz

dz+

a

ç -_
I

found to be

þ-
I

,'-re-y¡);@
9682 e3ffi

J
0

(37)

(3e)

(40)

where

g =L r = \-, (38)a

o=Et-38 b=e3+3e

Clearly, in our case, a and 0 are always negative and b and y are always positive.

The coefficients A ,8, ,C, ,D, ,Ei ,F, ,i = 1,2,3 are found by equating coefhcients in equations (35-37)

after substituting 
"ort 

r = I - sin2 x in equation(33) and applying Gauss-Jordan elimination, and are

A =C =E =0ltl

{(-t *, + t) -ze(zy tz)(-e * y - r))

{(-' *, * y)(t - y) * ze(-(e * v)(e - v - t )*ze)(zy *z)|

(-e*y+t) (-t+e +y)(e-y)
F

20 2e
+

B =-l-D +Ftll

A
2
=C --O

2

D --
2
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Ar= Cr= Er=O

1p --
3

D"
J

(t+e+y t-(e -Y))

1

(41)

(42)

2y

Br= -Dr- F

The solution to equation(33) after considering equation(35-37) takes the

'"(
z-,,[e+y
,*t[e*y

4 0-y
z+r[e1

o+y
z+ 

^[e 
a

).

).
Lp

tzqa2

;ffi ;ñ

1,onn-|,
2

).
form,

B^
J

2þ+v
D

2^[e 4
F^ 

-l
-tan2

z-Jgtl
-l

z+ rle -Y )

'"I

'"I

z

if we assume o-y =iõt 0+Y =i5,

since g -y and 0 + y snegative, then we have
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'"1 z+iõ.
J

where i=^{j j=1,2

Lp
D

I

ô
I

z-iõ

+

1,ca

).

ô
2

z

tan
0

BI tan
ô

2 t

(43)

(44',)

ltunt -'.
2

B,, -l- tan
ô)

D
2

ô
l

F^ -l---¿tan z
2

Representation of pressure rise vs flow rate, Figure(2) and Figure(3) are obtained for varying values

of amplitude ratio.
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CONCLUSION

It should be emphasised that this research represents a fluid dynamical biomathematical model of

the phenomena of peristalsis whereby a non-Newtonian Casson fluid is travelling through a channel

with sinusoidally varying waves travelling along the upper and lower boundary of the channel. It is

found that for the Casson model the goveming partial differential equations are indeed extensive

and complicated. If however the fact that the zeroth order perturbation in stream function is a

function of the axial coordinate only, because the zeroth order axial pressure gradient is constant,

we find that the Casson model may be quantitatively expressed as a Newtonian model.

Figures 2 and.3 are graphs of Pressure Rise vs Flow Rate for the case of amplitude ratio,

t:0.2 and 0.8, respectively.

It is found that in the zeroth order approximation in stream function that there is a

dependence on the Casson coefficient of viscosity, yield stress, the density of the fluid, the wave

speed and the dimensions of the channel.

When considering this approximation in stream function, results show for lower values of

amplitude ratio the difference between Newtonian(dashed line) and non-Newtonian(bold line)

seems to be slightly significant. However, for higher values of amplitude ratio, the pressure gradient

is noticeably affected by the non-Newtonian character of the fluid. The effect appears to increase

as the occlusion gets larger.

This modelling is appropriate as it may allow insight into the validity of the reduction of the

complexity of modelling some non-Newtonian fluids like flow of urine in the ureter and blood flow in

the blood vessels under certain physiological conditions'
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The analysis here is restricted to the zeroth order approximation. The f,rrst order

approximation using the most generalised form of constitutive equation for a Casson fluid is under

active study.
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