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Abstract

State-of-the-art VLSI technology provides the opportunity to implement a complex microar-

chitecture with many functional units capable of parallel operation. To employ the machine

parallelism effectively requires extracting ILP from the application programs as much as

possible. Hardware techniques to extract ILP have an impact on cycle time, which may re-

sult in lower performance. To achieve higher clock rates, hardware can be used as only the

execution engine and ILP extraction is transferred to the compiler. One way to achieve this

is through employing the Very Long Instruction Word (WIW) architecture to implement a

wide-issue ILP processor.

One of the major obstacles to the exploitation of ILP is the uncertain change in instruc-

tion flow caused by conditional branches. Keeping multiple functional units busy most of the

time requires the executing operations from multiple execution paths. Therefore, techniques

should be employed to reduce the impact of conditional branches which are less predictable

in general-purpose applications. Predicated or guarded execution as an architectural model

reduces these limitations. Predicated execution refers to the conditional execution of an oper-

ation based on the value of a boolean source operand, referred to as the predicate. Predicated

execution is exploited through a structure called the hyperblock which was developed by the

IMPACT compiler group.

This thesis investigates techniques to achieve performance improvement in VLIW ma-

chines through predicated execution. We describe an experimental processor based on VLIW

architecture called EVA. The back-end of an optimising compiler for EVA is implemented

in order to investigate the proposed techniques. These include improving the quality of the

generated code through estimating the resource usage during the code generation. This is

applied at the time of generating the predicated code (through if-conversion) and at the time

of prepass scheduling.

VLIW architectures traditionally have not been used extensively for general-purpose ap-

x



plications. One of the major reasons is lack of object code compatibility among different

implementations of the same architecture. This is due to the detailed microarchitectural

information employed by the compiler to generate the binary code. 'When the assumed mi-

croarchitectural features are changed, the previously generated code not only may suffer

performance loss, but also may generate incorrect results. We propose a new approach to

overcome this problem.
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Introduction

Chapter 1

Introduction

Performance improvement in high-speed processors relies upon optimising architectural fea-

tures, implementing in underlying VLSI technology and the ability to extract the available

parallelism in programs. CPU time, the main criteria for performance evaluation, as de-

scribed in [Hennessy and Patterson, 1996] is proportional to three interrelated factors as

indicated in Figure 1.1.

CPU time = Instruction Count x Cycles per Instruction x Cycle time

/
ISA & compiler technology ISA & processor organisation VLSI technology &

proces sor organisation

Execution oJ multipLe
ùrcÍructio¡ts ín parallel

(employing ILP)
Simpler Ilardware

Figure 1.L: Three major factors in computation of CPU time.

Optimisation of one factor independently may have a severe impact on other factors.

For example, decreasing cycles per instruction (CPI) through designing specif,c processor

architecture and organisation may increase cycle time. Therefore, it is necessary to evaluate

the possible impact of each improvement on other factors.

The research described in this thesis is focused on techniques to reduce cycles per in-

struction. In the meantime, possible side effects of these improvements which may increase

other factors are considered.
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Introduction

Instruction Level Parallelism (ILP) is employed to enhance performance through provid-

ing a mechanism to overlap different phases of instruction processing (referred to as pipelin-

ing), and multiple data paths and functional units. In addition, new compiler transformations

are applied to expose parallelism and/or assist the hardware processing engine. ILP pro-

cessing has been used extensively in recent years. State-of-the-art microprocessors can fetch

and complete multiple operations per cycle [Dunn and Hsu, I996,Yeager, 1996, Papworth,

I996,Kessler, 1999, Horel and Lauterbach, 19991.

There are some limitations in achieving a high level of ILP. Real and synthetic data

dependencies exist among the operations, preventing parallel execution of them. Synthetic

data dependencies are due to a shortage of resources (such as registers), or conservative

decisions made regarding unresolved memory dependencies. Real data dependencies come

from the intrinsic order of operations in the program, which are the result of implementing

the required algorithm in the program. In addition to data dependencies, research studies

indicate that about 207o to 257o of operations in general-purpose applications are conditional

branches [Lam and Wilson, 1992]. These are obstacles to reordering operations for parallel

execution when the direction and target of branches are not known.

A large amount of research has been done to overcome or reduce these problems. Exe-

cution of an operation before knowing that its execution is required is known as speculative

execution, and this is employed extensively to reduce control dependencies. Speculative

reordering of operations changes the original sequence of operations by predicting the di-

rections of conditional branches. In this way, more operations can be provided for parallel

execution to the execution engine. It usually requires special hardware for recovery of mis-

predictions.

Eliminating the conditional branches is another effective technique to reduce control de-

pendencies. Predicated execution is a technique to remove conditional branches and convert-

ing control to data dependencies. In this technique, operations are executed conditionally

based on the value of a boolean source operand referred to as the predicate, which is eval-

uated at run time. [Hsu and Davidson, 1986,Rau et al., 1989]. Compiler optimisations and

scheduling are performed on a region of operations. A structure called a hyperblock, which

was introduced by the IMPACT compiler group [Mahlke et a1., I992b], is employed to make

the region exposed to the compiler. Hyperblock is a region of predicated code with single

entry and possible multiple exits.

2



Introduction

To perform speculative and predicated execution, the direction and target of conditional

branches are predicted statically by the compiler or dynamically by the hardware. Static

branch prediction techniques are based on heuristics or execution profile information. Al-

though profile information is gathered for some specific program inputs, it was shown that

it can be considered valid for almost all inputs [Fisher and Freudenberger, 1992]. In addi-

tion, some techniques have been proposed to gather and update profile data at execution time

when it is necessary [Conte et al., l996cl.

Regarding data dependency reduction, research has been conducted in two directions,

eliminating synthetic (or false) data dependencies and reducing real data dependencies. In

static techniques which are applied at compile time, resource renaming (such as register

renaming [Cytron and Ferrante, 1987]) removes the false dependencies due to resource lim-

itation. In dynamic techniques at run time, more physical resources are provided to remove

dependencies due to the architectural assumptions. For example, for dynamic register re-

naming the number of physical registers is greater than the number of architectural registers

and an architectural register may be mapped to different physical registers at execution time.

Some studies have targeted reduction of real data dependencies. A technique called value

prediction makes it possible to overlap execution of operations with real data dependen-

cies [Lipasti and Shen, 1991b]. This technique is based on the concept of value locality,

by which is meant the probability of availability of the previous value in a storage location.

Also, the dependence prediction technique allows the execution of operations speculatively

before their data dependencies are detected [Lipasti and Shen, 1997c]. Value and depen-

dence prediction are applied and recovered at run time using special hardware. For unre-

solved memory access dependencies, when static memory access disambiguation techniques

fail to detect dependency between two memory access operations, they are assumed free of

dependency and are reordered speculatively. Later, at run time special hardware checks the

correctness of speculation and performs the required recovery [Gallagher et al., 19941.

Two major processing paradigms have been employed for ILP processing. These are

Very Long Instruction'Word (VLIW) [Fisher, 1983] and superscalar processors [Johnson,

199 1l. VLIW processors rely on the compiler to extract and employ ILP, while in superscalar

processors this is performed by special hardware at execution time.

This thesis investigates techniques to improve the performance of VLIW processors. This

includes employing techniques to expose more ILP through predicated execution and over-

3



Introduction

coming one major problem of VLIW architectures, which is lack of object code compatibility

for different generations of the same architecture.

L.L Contribution of the Thesis

The contributions can be summarised as follows:

o An experimental VLIW architecture (called EVA) and its optimising compiler have

been designed and implemented. Predicated execution is exploited in the compiler

through hyperblock structures.

o A new algorithm is presented to calculate the priority of operations in the hyperblock

scheduling process. The priority of an operation is calculated based on its dependency

height and resource usage.

o A new algorithm for predicate sensitive register allocation for hyperblocks is proposed.

o A new algorithm is proposed to overcome the perfofinance loss of the original hyper-

block formation heuristic for non-uniform processors.

o A technique to provide binary compatibility among different implementations of the

same VLIW architecture is presented.

1.2 Outline of the Thesis

The thesis is organised in eight chapters. Chapter 2 presents an overview of the state-of-the-

art of compiler techniques in ILP processing. A brief comparison to some related hardware

techniques is also presented. This chapter is provided as a general background in this area.

Architectural features of VLIW processors and their problems are described in chapter

3. Description of our experimental VLIW architecture (EVA) is also presented.

Chapter 4 describes the design and implementation of the VLIW compiler for the EVA.

This compiler is based on the SUIF infrastructure, which includes SUIF ISUIF, 19941and

machine SUIF (machsuif) [Smith, L9971from Stanford and Harvard universities respec-

tively. Our new algorithms are described in detail.

4



Introduction

Experimental evaluation techniques and performance assessment of the EVA compiler is

presented in chapter 5 with experimental results. SPEC95 integer benchmark programs and

some Unix utilities are used as benchmark programs.

Chapter 6 describes a ne\ry algorithm which improves the performance of block selection

for hyperblock formations.

Our technique to provide object code compatibility in VLIW machines is presented in

chapter 7. Our approach is performed with the help of code annotation provided by the

compiler to reduce the complexity of the required hardware.

Chapter 8 presents a summary and possible future directions of this research.

5



Compiler Techniques in ILP Processing

Chapter 2

Compiler Techniques in ILP Processing

2.L Introduction

To achieve high performance processing, more work must be done in a smaller amount of

time. This means that some sort of parallelism is employed in the different stages of the

processing paradigm. The amount of parallelism depends on the application, and generally

the parallelism present in programs can be divided into coarse-grainvercusfine-grain.

Coarse-grain parallelism refers to the parallelism between different sets of instructions

such as subroutines in a program. It is usually employed by multiprocessor systems. Fine-

grain parallelism indicates the parallelism between individual instructions in the program,

and is the so-called Instruction Level Parallelism (ILP).

ILP processing involves both compiler and hardware methods. ILP is the result of in-

teraction of the available program parallelism and the machine parallelism capabilities. The

amount of work done by each depends on the adopted ILP processing paradigm [Rau and

Fisher, 19931.

To extract instructions so that their execution can be overlapped at the same time, the

program must be examined by a compiler and/or hardware. For this pulpose, a window of

instructions is established. An instruction window is the collection of instructions examined

for parallelism at a time. Instructions are scheduled considering constraints on ILP and

resource limitations.

Compilers utilise appropriate program representation schemes to facilitate ILP extrac-

tion. The amount of ILP that can be extracted and exploited is limited by the dependency

constraints. Thus, to increase the amount of exploitable ILP these dependencies must be

6



Compiler Techniques in ILP Processing

eliminated or reduced. Figure 2.1 shows an example of the dependencies.

R1=R2+R3

R4=R1*R5

(a) FIow dependency (b) Antidependency

RI = load [R3] if (RI == R2

+
RI=R2-R4

(c) Output dependency

R3 =R4+R7
(d) Control dependency

Figure 2.1,: Example of data and control dependencies

The true dependency, which is the main obstacle in parallelising operationsisflow depen-

dency (or Read-after-V/rite). Anti-dependencies (Write-after-Read), aîd output dependen-

cles (Write-after-Write) are due to storage conflicts, and can be removed by providing more

storage capability and using techniques such as register renaming [Keller, l975,Cytron and

Ferrante, I98lf, andmemory address disambiguationfJohnson, 19911. Since two memory

operands in a program may have different data dependency characteristics during different

periods of execution, determination of their data dependency is more difficult than the de-

termination of data dependency between two register operands. Some techniques have been

proposed to reduce the impact of unresolved memory accesses [Chen, 1993, Kathail et al.,

19941, and these are reviewed in section 2.3.2.

In addition to data dependencies, control dependencies impose a severe problem and

their impact may be reduced through techniques such as speculative execution. Control

dependencies can be converted to data dependencies and vice versa. Techniques to reduce

the number ofbranches in a program and convert control dependency to data dependency are

discussed in section 2.2.2.

In this chapter, basic compiler techniques in ILP processing are reviewed. This is pro-

vided as a general background for the rest of the thesis. This includes issues related to

techniques for relaxing control and data dependencies and instruction scheduling.

7



Compiler Techniques in ILP Processing

2.2 Control Dependency Reduction

A sequence of instructions with a single entry and a single exit point is referred to as a

basic block. Typically, there are fewer than 5 instructions on average in a basic block in

non-numeric programs [Lam and Wilson, 1992]. Therefore, there is not enough parallelism

within individual basic blocks to achieve significant performance improvements through ILP,

and higher levels of ILP may only be obtained through inspection of successive basic blocks.

In non-numeric programs, conditional branches are a major obstacle that limit ILP lsmith

et al., 1989,Joupi and Wall, 19911. Therefore, a mechanism is required for parallel execution

of operations across basic block boundaries. Two main techniques are used to reduce the

impact of conditional branches, which are speculative and predicated execution.

2.2.1 Speculative Execution

Execution of an operation before knowing that its execution is needed, is called speculative

execution. This technique can be employed at compile-time and/or run-time. Run-time

speculation is performed through dynamic scheduling [Johnson, 1991]. Dynamic branch

prediction is used to select the most likely execution path. There are more opportunities

for speculcttive code motion at compile-time in comparison to run-time techniques due to

use of a larger instruction window to pick up the data independent operations. However,

hardware branch predication techniques are more accurate [Johnson, l99I], so execution of

the speculative operation is more likely to be beneficial in this case.

Compile-time speculation can improve performance when the processor resources are

utilised efficiently. This means that the amount of speculation should be matched with the

resource consumption pattern of the related operations. To reduce the dependency length

of more frequently executed paths, the starting operation in this path should be executed

as early as possible to overlap its execution with other operations, resulting in a shorter

execution time. Research by Lam and Wilson indicated that speculative execution increased

the average number of independent operations per cycle in non-numerical applications from

2.I to 6.8 [Lam and Wilson, 1992]. This clearly indicates the importance of speculative

execution.

Speculative code motion must be safe so that the program execution semantics and the

processor state are not changed if the result of the branch prediction is not correct. For exam-
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Compiler Techniques in ILP Processing

ple, a speculated operation should not cause an exception that terminates the program. Also,

it should not destroy the live registers on the other paths when the branch is mispredicted.

This limits the applicability of speculative code motion.

Register renaming can eliminate the problem of overwriting live registers on the other

path for the speculative operation.

Architectural Models to Handle Trapping Operations

To handle trapping operations, three architectural models have been studied in the literature

[Chang et al., 1995].

Restricted Code Motion - In this model, the operation is moved above the conditional

branch if it cannot cause an exception and not overwrite the destination register, which is

live on the other path. Without a sophisticated compile-time analysis, the performance of

this model is limited.

General Code Motion - To support more speculative code motion, a class of non-

trapping counterparts for the trapping operations may be added to the ISA [Colwell et al.,

19881. The non-trapping versions are included for floating-point arithmetic, memory loads

and integer divide operations. Speculative operations which may potentially cause an excep-

tion are converted into their silent form. Therefore, the possible exceptions are ignored.

The floating-point arithmetic and integer divide functional units have a mechanism to

raise the exception flag only for the trapping version of the operation. Also, when an access

violation occurs for a non-trapping load, the load is aborted.

When the branch is mispredicted, and there was an exception condition for the specula-

tive operation, the exception is ignored and the program is correct. However, for the correctly

predicted branch, not asserting the exception when there is an exception condition may not

be acceptable for some special applications such as transaction processing. In this case, the

general code motion should be used with some additional hardware and software support for

exception handling to get the correct result for the program.

Boosting Code Motion - To relax both restrictions on upward code motion, a technique

called boosting was introduced lSmith et a1., 1990, Smith et al., 1992]. In this model, a

speculative operation is moved above a branch with no restriction. The processor state is

not changed until the branch commits. Special buffers as shadow structures are provided to

save the results before they change the state of the processor. The shadow register file holds

9
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the result of boosted operations which write into registers. The shadow store buffer holds

the value of the boosted store operations. When the branch commits, if it was predicted

correctly, the contents of the shadow register file and the shadow store buffer are transfered

to the sequential register file and the store buffer respectively. Otherwise, the shadow buffers

are flushed. Figure 2.2llhtstrates the general architecture which can be used for boosting.

Figure 2.2: General architecture to support boosting code motion.

If an operation is to be moved above more than one branch, a separate buffer is required

for each branch. Furthermore, to transfer boosting information from the compiler to the

hardware, extra bits are added to the instruction words, and one bit is used for speculation

over one branch.

Support for Exception Handling

Correct handling of exceptions is the main problem for speculative execution. Accurately de-

tecting and reporting exceptions is necessary to find program errors resulting in an exception.

The proposed techniques delay the exception signal of speculative operations. The exception

is handled when the outcome of the branch upon which the speculative operation is control
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dependent, is known. Several methods relying on the compiler with hardware support have

been proposed in the literature to handle this problem.

For Boosting Code Motion, any exception occurrence is marked in the relevant shadow

structure for the boosted operation [Smith et al., 1990, Smith et al., 1992]. When the ex-

cepting operation is to be committed, the shadow structure is checked to determine if an

exception condition exists. The contents of the shadow structure are thrown away for the

exception condition and control is transfered to the exception recovery code produced by the

compiler. All speculative operations related to the same branch are re-executed sequentially.

Since the processor state has not been changed, the exception is raised by re-executing the

speculative operations. Then, the exception can be handled through any exception handling

technique for pipelined processors. This model provides accurate detection and handling of

speculated excepting operations at the expense of a substantial hardware cost.

Write-back suppressiorz [Bringmann et a1., 1993),like operation boosting, needs extra

hardware to perform exception handling, and this increases significantly if the number of

branches on which the operation is speculated increases. In this method, the home block

of the potentially excepting operation prior to scheduling is used to suppress updates to the

register file by the subsequent operations in the same home block or blocks after it. In this

manner, it prevents destroying of live values in source registers for speculative operations,

which are needed at the recovery time.

A field in the operation opcode, which is called speculative distance, indicates the num-

ber of branches above which the operation has been moved. A check operation located in the

home basic block of the potentially excepting operation reports the exception. At recovery

time, a stack of PC values of suppressed operations is used to select the operations to be

re-executed.

This technique, like operation boosting, can only handle one execution path between the

operation and its origin, and cannot spill registers related to a speculated operation [August

et al., 19951. Spill code refers to the collection of load and store operations inserted due to

lack of enough registers to save and restore data.

Another technique referred to as the sentinel speculation model [Mahlke et al., I992a)1s

based on compiler support and a few architectural changes such as an extra bit (speculative

bit) for every operation and an exception lag for each register, which is at least 1 bit, to handle

exceptions efficiently. It requires less hardware than the other techniques mentioned above.
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For correct exception recovery, a non-speculative operation in the home basic block of the

speculative operation is used as the check operation and is called a sentinel. This may be a

flow dependent operation to the original speculative operation or a newly generated special

operation. When execution control reaches the check operation, the exception is signaled.

'When an exception occurs for the speculated operation, the current PC is saved in the

destination register and the exception tag of the destination register is set. 'When other flow

dependent speculative operations use this register as a source operand, they will propagate

its contents and exception tag to their destination register. Once a non-speculative operation

encounters a source register with the exception tag, the exception is signaled and the recovery

block scheme [August et al., 1995] or in-line recovery [Mahlke et al., 19931is employed

to repair the exception. Sentinel speculation with recovery block is used in the PlayDoh

architecture [Schlansker et al., 199] l.

2.2.2 Predicated Execution

Control dependencies due to frequent and unpredictable branches largely limit ILP. Spec-

ulative execution removes dependencies between operations and branches. However, the

branches are still present and appear as a performance bottleneck.

Predicated or guarded execution as an architectural model reduces these limitations.

Predicated execution refers to the conditional execution of an operation based on the value of

a boolean source operand, referred to as the predicate [Hsu and Davidson, 1986, Rau et al.,

19891. A technique called if-conversion lAllen et al., 1983,Park and Schlansker, 1991] is

used to remove conditional branches, converting control dependencies to data dependencies.

It replaces conditional branches with some comparison operations, which define a predicate.

Operations dependent on these branches are converted to predicated operations. The pred-

icated operation is executed if its predicate evaluates as 'true' at run time. Otherwise, it is

nullified to keep the processor state unchanged.

Predicated execution is often an efficient method to reduce the impact of control depen-

dencies. It can provide more opportunities for code motion. Figure 2.3 indicates a com-

parison of predicated and speculative code motion. Predicated operations are free to move

below a merge point, while this is not possible through speculative execution. However, a

predicated operation is restricted in upward code motion, so that it cannot move above the

operation which defines its predicate. Therefore, a combination of speculation and predica-
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branch

condi¿u!e
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speculalive
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predicaled
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Figure 2.3: Comparison of speculative and predicated code motion opportunities.

Predicated code can be used for efficient speculation. As an example, Ando and his

colleagues proposed predicated state buffering to reduce restrictions which limit specula-

tion [Ando et al., 19951. This simplifies the handling of side effects caused by speculative

execution.

In this technique, the selected region is if-converted. The predicate for each operation

is defined based on its control dependencies. The predicate of the operation is evaluated

at the issue time. If it is 'true', the operation is executed. If it is 'false', the operation is

squashed. When the value of the predicate is unspecified due to an undetermined condition,

the operation is executed and its destination is marked as speculative. At write-back time,

the speculative operations label the result with the predicate for later commit.

As architectural support, each entry in the register file and store buffer is augmented by

an additional shadow storage, a predicate and three extra bits. One bit is used to indicate if

the result is in the shadow storage or in the register (or store buffer entry). At commit time,

it is only required to invert this bit to move the speculative result to the register. Another bit

shows a speculative state, and the third bit indicates a pending exception, which is handled

at commit time, when the associated predicate value is known. Each operation is encoded to

indicate ifthe source operands are in the shadow storage or the actual one.
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In this scheme, the processor operates in normal (referred to as sequential) or speculative

mode. In each cycle the processor evaluates the predicate associated with each register (or

a store buffer entry) using the conditional code register (CCR). The CCR has one bit for

each branch in the region considered for if-conversion. If the predicate is 'true', the result is

committed and a pending exception is handled. If it is 'false', it is squashed.

This method reduces the pressure on register allocation connected to the techniques de-

scribed in the previous section for exception handling and it facilitates exception recovery.

When an exception is signaled, the speculative state is invalidated. In this manner, operations

semantically after the excepting operation which depend upon it are re-executed at recovery

time. The CCR is not updated and a future conditional code register (CCR) keeps the con-

ditions at the commit point. In the normal mode, upon entry into the region the value of the

PC for the top operation is saved into a special register referred to as the RPC. In the recov-

ery mode, the control is transferred to top of the region using the RPC. In this mode, those

operations which have a 'true' or 'false' predicate referring to the CCR are squashed. Other

operations are re-executed. If their predicates evaluate to 'true' by referring to the future

CCR, the pending exception is handled. The recovery mode terminates when it reaches the

original speculative exception commit point.

Anotherform of combinedpredication and speculation can be achieved throughpredicate

promotion lLin, 1992, Mahlke, 19961. In this technique, the predicate of the operation is

promoted to another predicate with fewer constraints such as the predicate of the operation

which defined this predicate, or to 'true' value. Hardware support for speculative execution

is necessary to handle the side effects of this technique too.

2.3 Data Dependency Reduction

The following techniques have been proposed in the literature to improve data dependency

restrictions

2.3.L Register Renaming

Artif,cial data dependencies may be introduced by reusing registers. Software register re-

naming tries to assign a unique architectural register to each variable definition where appro-

priate to reduce the amount of output and anti-dependencies [Cytron and Ferrante, 1987]. It
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has been used as a major technique in ILP compilation

2.3.2 Memory Access Disambiguation

Load operations are often on the critical long latency paths in programs. Scheduling them

as early as possible, so that other dependent operations can be executed earlier, increases the

ILP. In addition to control dependencies, unresolved output and anti-dependencies between

memory accesses are obstacles to this process. 'When two memory access operations refer

to the same memory address, it is said they are aliases of each other [Aho et al., 1986].

To identify the potential aliases between loads and preceding stores, or between different

stores, compilers attempt to disambiguate memory references. If compile-time memory dis-

ambiguation cannot prove that two memory accesses are to different memory locations, it is

forced to schedule them conservatively. This may result in a large reduction in the ILP.
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Figure 2.4: Scheduling example of potential conflicting memory accesses in a single issue

processor. (a) Conservative scheduling. (b) Aggressive scheduling.

Compile-time memory disambiguation is a difficult problem and often it cannot produce

the complete result. This is worse, especially for languages such as C, which extensively use

pointers. Most current techniques are useful for vector access disambiguation. Figure 2.4

illustrates an example of how conservative scheduling may decrease performance. Opera-

tions 13 andI4 have different memory addresses. If the compiler is not able to prove this, it
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schedules the code conservatively as indicated in Figure 2.4 (a), while it can be scheduled

with two cycles less as shown in Figure 2.4 (b).In this example, a single issue processor is

assumed. All operations have one cycle latency, except load which has two cycles latency.

Superscalar processors employ run-time techniques to find aliases of the same memory

location. Due to the availability of the required information at the execution time, these

techniques are more successful at resolving this issue. However, their lookahead scope to

evaluate the potentially conflicting memory accesses is less than that of compiler methods.

ILP processors which only rely on compile-time scheduling can also employ special hard-

ware to increase the opportunities for memory access disambiguation. A mechanism referred

to as the memory conflict buffer was proposed for this purpose [Chen, 1993].

A few architectural extensions are required to support this mechanism. Load operations

are divided into two different forms, one which performs the load operation irrespective of

the possible aliasing with the preceding stores and one which is used to verify the correct-

ness of the first load at run-time to find if there is a conflict and fix it. These two different

forms of loads are respectively called pre-load and check operations in [Chen, 19931, or data

speculative load and data verify load in PlayDoh architecture [Kathail et al., 1994].

If it is intended to schedule the operations dependent upon the load, another form of

check operation is required in addition to a compiler generated compensation code to im-

pose the correct execution order, when conflict occurs. This check operation, which we call

check-branch, ffansfers the control to the compiler generated compensation code if an alias

is detected. In this case, the issues related to speculative code motion discussed in section 2.2

should be considered too. Figures 2.5 and 2.6 show examples of using pre-load and check

operations.

A structure which may be called the Data Speculative Load Record (DSLR) is used by

the memory conflict buffer to keep an execution record of pre-load operations. Figxe 2.7

displays its general structure. The number of DSLR entries and the required logic is im-

plementation dependent based on the number of architectural registers. In [Chen, 19931a

number of implementations ranging from a full-associative or set-associative address com-

parison to a simpler address hashing method was proposed.

The semantics of these new operations are as follows:

pre-Ioad does the normal load operation. It invalidates any entry in the DSLR whose

target register fleld is the same as the destination register of the pre-Ioad. Depending on the
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implementation, a new entry may be assigned in the DSLR for this pre-Ioad. At execution

time, the memory addresses of store operations are checked with valid entries in the DSLR.

The entry is invalidated if a conflict was detected. The check-Ioad operation accesses the

DSLR to find a valid entry with the same target register as its destination register. If one is

found, this valid entry is invalidated and the check-Ioad is nullified. Otherwise, it performs

the normal load operation. The check-branch behaves like a check-load except that if the

valid entry is not found it branches to the specif,ed compensation routine.

Yalid Target
Address

DesL Rcg. No.

pre_load /
store
a.ddress

check
reg. no,

conflictflng

Figure 2.72 General structure to record and check the status of pre-load operations

Some heuristics or profile information are required to decide which loads can be replaced

by pre-load operations. This is because if conflict occurs frequently, performance loss due to

the overhead of the memory conflict buffer degrades overall performance. Thus, pre-loads

are used when there is less chance of conflicts at run-time. There exists the possibility

of lower latency of the load verify (or check) operation [Kathail et al., 1994]. Since it is

expected not to face conflicts, a load verify operation need only check the possibility of

conflict by accessing the information in the load execution record hardware, which is faster

than a normal load operation.

DSLR
entrypre_load

status
record

and

check
logic
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2.3.3 Operand Value and Dependency Prediction

Most studies on improving data dependency restrictions have focused on false dependencies

(WAR and WAW). A recent study by Lipasti and his colleagues revealed that many opportu-

nities exist in programs so that operand values can be predicted [Lipasti et al., 1996, Lipasti

and Shen, I997bl. Also, it was shown that dependence relationships between operations

are predictable [Lipasti and Shen, I997c]. To keep the execution semantics of a program,

it is not necessary to detect operand dependencies first and then apply them at the start of

execution. Dependencies can be predicted and if a recovery mechanism exists to handle mis-

predictions the program correctness is assured. In this way, operation execution is decoupled

from dependence checking. This leads to a higher number of instructions executed per cycle

(IPC) [Lipasti and Shen, 1997a].

2.4 Static Instruction Scheduling

Instruction scheduling is the process of rearranging the sequence of operations so that the

execution of the longest sequence can be started as soon as possible, given dependencies and

resource conflicts. In this way, the number of concurrent operations for execution can be

increased.

Scheduling algorithms are based on the nature of the control flow graph that can be sched-

uled by them [Rau and Fisher, 1993). Algorithms that can only schedule a single acyclic ba-

sic block are called local scheduling algonthms. Algorithms that schedule operations across

several basic blocks are known as global scheduling algorithms. These algorithms utilise in-

formation about the direction of conditional branches, which come from previous execution

profi les and heuristics.

Local scheduling causes the execution time of each basic block to be nearly optimum.

However, this does not necessarily cause the execution time of the entire program to be nearly

optimum, because the processor waits at each branch until all operations before that are in

execution. Global scheduling is able to rearrange operations from different basic blocks

towards a nearly optimum scheduling for the program.

Two types of global scheduling algorithms referred to in the literature [Rau and Fisher,

L9931, are reviewed in the following sections.
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2.4.1 Acyclic Global Scheduling

Acyclic global scheduling algorithms employ control flow graphs that contain no cycles.

Techniques such as loop unrolling can transform a cyclic graph for acyclic scheduling. Loop

unrolling is a technique to combine multiple iterations of a loop into a single iteration by

duplicating instructions. It is used to increase the number of operations exposed to the sched-

uler.

Figure 2.8 shows possible opportunities for code motion in acyclic global scheduling.

Each box represents a basic block. Extra compensation code may be required in some cases

of code motion. For example, in case (d) in Figure 2.8, if the destination of the operation

moving from B3 to B5 is live in 84, a copy of this operation will be placed between B3 and

B'4.

A brief description of the proposed scheduling techniques in the literature, which are

based on the general rules shown in Figure 2.8, are presented as follows.

BI

@
B6

\9

@@

Øo

B3B2

B5B4

a) Copy operation from Bl to both B2 and 83.

c) Move operation up from 84 to B3 speculalieely.

e) Copy operation from B6 into 82, B4 and 85.

b) Merge identical operations in B2 and 83 into Bl.

d) Move operation from 83 to 85 if destination is not live in 84.

ÐMove predicated opcration down from 85 to 86.

Figure 2.8: Possible code motion opportunities in acyclic global scheduling.
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Trace Scheduling

A trace is the most likely sequence of operations from an acyclic part of the program con-

trol flow graph. Trace scheduling originally was used to pack operations into horizontal

microinstructions [Fisher, 1981]. Latel it was employed as the main technique to sched-

ule operations for a Very Long Instruction Word (VLIV/) architecture for scientific applica-

tions [Fisher, 1983,Ellis, 1986,Colwell et a1., 1988].

The key step in trace scheduling is to identify frequently executed sequences and the

critical path. Then, this trace is scheduled and optimised regardless of constraints associated

with the alternative execution paths, so the result is an efficient schedule for these frequently

executed paths at the expense of slower infrequent sequences.

To select atrace, the compiler uses heuristics or profile-based prediction of conditional

branches. After scheduling a trace, the next most likely path is selected as another trace

for scheduling. This process continues until the entire program is scheduled. To keep the

program semantics, special compensation codes are inserted on the off-trace to undo the state

changes resulting from mispredictions. Code motion is performed based on the speculative

model of the compiler. Figure 2.9 indicates an example of trace scheduling.

Figure 2.92 An example of trace scheduling. The shaded path is the selected trace, which is

optimised and scheduled. (Edges are labeled with the execution frequency.)
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Due to the high frequency of conditional branches in general-purpose applications, trace

scheduling may be too time consuming and can result in code expansion because of the

required compensation codes. Therefore, it is not generally used for general-purpose appli-

catrons.

Trace scheduling-2 [Fisher, 1993] is an attempt to improve trace scheduling for non-

numeric programs. This technique, unlike the original trace scheduling, allows code motion

above a conditional branch from both taken and fall-through paths at the same time. Also,

calculating the priority of operations for scheduling is based on a criterion called speculative

yield to reduce the amount of less useful speculative code motion. Figure 2.10 illustrates an

example of this technique.

Figure 2.L0: An example of trace scheduling-2. The shaded region is optimised and sched-

uled.

Trace scheduling-2has the advantage of performing scheduling and code generation at

the same phase, like trace scheduling. However, the dynamic nature of data flow analysis and

priority calculation for scheduling, which also takes into account the generated compensation

code, makes it more complex and difficult for implementation. To the best of our knowledge,

no experimental result has been reported about its performance in comparison with the other

similar scheduling techniques.
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Percolation Scheduling

Foster and Riseman proposed a technique called percolation scheduling fFoster and Rise-

man, 19721 to convert a sequence of basic blocks into a larger block through duplication

of basic blocks. This results in more code expansion. Nicolau proposed a modified form

of percolation scheduling [Nicolau, 1985]. This approach employs a set of primitive code

transformations to move an operation up in adjacent nodes towards the starting point in the

program. It uses a parallel program graph in which each node includes one or more oper-

ations that can be executed in parallel, and nodes are connected according to dependencies.

As code transformation is done incrementally, moving an operation from a source node X

to a target node Y involves checking each intermediate node on the path. This increases

the compilation time. Trailblazing is an extension to this technique to reduce the amount of

compensation code and compilation time through introducing some new code transforma-

tions [Nicolau and Novack, 1993]. Percolation scheduling is used in some VLIW compilers

like the UCI VLIW compilers [Nicolau and Novack,1993l.

Superblock Scheduling

Superblock scheduling is an extension of trace scheduling which was proposed by the IM-

PACT compiler group [Hwu et al., 1993]. Similar to trace scheduling, the most frequently

executed path with no cycle is selected for optimisation and scheduling. A superblock is

an extended block with single entry, and possible multiple exits. Due to the requirement

for more compensation code and complexities in optimisation for side entrances, tail duplï

cation is performed to remove the side entrances. Published works on implementing trace

scheduling [Ellis, 1986, Colwell et al., 1988], described scheduling, code generation and

even register allocation to be done in a single phase. In superblock scheduling each of these

are considered as a separate phase. Speculative code motion is the main source of more ILP

in superblocks. Most local classical optimisations can be simply applied on superblocks in

addition to specific ILP optimisations [Hwu et al., 19931. Figure 2.11 shows an example of

superblock formation. Weighted edges represent execution frequency.

Hyperblock Scheduling

Superblocks include only one possible execution path in a region. When the machine par-

allelism capabilities allow execution of more operations, multiple execution paths should
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Figure 2.1.1^z Ãn example of superblock formation.

be considered to form the block of code for optimisation and scheduling. For this purpose,

conditional branches should be removed through if-conversion.

Conventional if-conversion techniques suffer from two problems lMahlke et al.,I992b].

They do not consider the execution path frequency in the region of interest. This may limit

the performance of the resulting predicated code due to the use of limited machine resources

for infrequent execution paths. Also, speculative execution as an important source of ILP is

not supported effectively. A predicated operation is speculatively executed when its predicate

is not calculated. To overcome these problems, a structure called ahyperblock was proposed

by the IMPACT compiler group [Mahlke et al., l992b,Mahlke, 1996].

A hyperblock is a group of basic blocks, which are selected from the most frequent

execution paths and then if-converted to form a single unit for optimisation and scheduling.

It only has one entry point but one or more possible exit points. To eliminate other entry

points to the basic blocks of the hyperblock, tail duplication is performed. Figure 2.I2

shows an example of a hyperblock.

To select the basic blocks for hyperblock formation, the execution frequency, the size, and

the number of hazardous operations in the basic blocks are considered. Hazardous operations

like unresolvable memory accesses and function calls are avoided to improve performance

[Mahlke et al., I992b]. Smaller basic blocks with no (or fewer) hazardous operations which

are executed more frequently are given higher priority for inclusion in the hyperblock.
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Figure 2.122 An example of hyperblock formation.

Speculative execution is supported in hyperblocks through predicate promotion [Mahlke

et al., l992bl. Predicate promotion changes the predicate of an operation to another predicate

(called the ancestor), which was used to compute the current predicate. Three types of

algorithm have been presented for predicate promotion [Mahlke, 1996].

2.4.2 Cyclic Global Scheduling

Loops are considered as a good source for ILP. Cyclic global scheduling is used directly to

schedule and optimise a cyclic graph due to loops. It is generally referred to as soþ,uare

pipelining in the literature.

Software pipelining is a technique to overlap or pipeline different iterations of a loop

[Charlesworth, 1981,Rau and Glaeser, 1981,Lam, 1988]. The result of software pipelining

is a new loop whose body contains operations from different iterations of the original loop.

This means that, after initiating an iteration of the loop, the next iteration is initiated as soon

as possible. The number of cycles between the initiation of two successive iterations is called

the initiation interval Ø). A smaller initiation interval means higher execution throughput.

The II is usually less than the time that it takes to execute a single iteration. The minimum

initiation interval (MII), is the maximum of the lower bounds due to the cyclic data dependent

constraints caused by recurrences (Rec MII) and the lower bound due to the resource usage

constraints (Res MII) [Rau and Fisher, 1993]. The resource which is the most heavily used by

the loop body determines the lower bound of the Res MII. Hence, the operation latencies and
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the number of registers in the processor affect the MII. The II is dependent on the software

pipelining algorithm and can be a single f,xed value, a periodic sequence of values, or a

sequence of fixed values which depend on the control flow within the loop body [Lavery,

19971. Figure 2.13 shows a simple example of software pipelining.

Software pipelining can be applied to loops with inter-iteration or loop carried dependen-

cies and with arbitrary control flow including loops with an unknown number of iterations,

llke while loops. Early works on software pipelining addressed only loops with a single

block. Rau and his colleagues proposed a general formulation of the software pipelining

process for a single basic block loop. Their approach called, modulo scheduling, [Rau and

Glaeser, 19811 was also used as a basis for other software pipelining algorithms [Jones,

1991,Rauetal., l992,Huff,I993l. TheCydrome'sCydraVLIWcompilerisbasedonmod-

ulo scheduling with hardware support [Rau et al., 1989,Dehnert and Towle, L9931.

different iterations
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Figure 2.L3: Software pipelining: (a) The original loop with N iterations. (b) A new loop

with M iterations.

The modulo scheduling algorithm is based on the local scheduling concept and uses list

scheduling. It requires that all iterations have a common schedule. It was shown to achieve

the MII, so it can be an asymptotically optimal schedule. This algorithm was restricted to
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þr loops which contain a single basic block and the resource usage of the operations can be

viewed as a single resource for a single cycle [Rau and Fisher, 19931. Generating an optimal

resource constrained schedule for loops with arbitrary recuffences is NP-complete [Hsu,

1986,Lam, 19871, but a near optimal scheduling can be performed by using heuristics [Rau

andFisher, 1993).

Later works extended the original modulo scheduling to include conditional structures in

the loop body [Lam, 1987,Dehnert et al., 1989,Warter et al.,l992,Lavery and Hwu, 1996],

and more accurate Res MII calculation for a complicated resource usage [Rau, 1994].

In Lam's algorithm, called hierarchical reduction [Lam, 19871, two paths of a conditional

branch are f,rst scheduled independently. NOP operations may be added to one path to make

both have the same length. Both paths are considered as a single node for scheduling. This

causes an overestimation of resource usage. Also, adding NOPs may decrease the execution

speed as well as expanding the code.

In the Cydra 5 compiler, predicated execution was employed to reduce multi paths in the

loop to a single one [Dehnert et al., 1989]. Then, the scheduling method for a single block

was used.

Another approach for including conditional branches in modulo scheduling employs f
conversion before modulo scheduling and reverse if-conversion after that [Warter et al.,

I992,Warter et al., 19931. This approach, referred to as enhanced modulo scheduling (EMS),

was shown to have better performance than the hierarchical reduction approach, due to com-

plicated resource usage patterns in the latter [Warter et a1., 1992]. Since the control flow

graph is regenerated after scheduling through reverse if-conversion, EMS can be used for

processors that do not have hardware support for predicated execution.

Lavery and Hwu proposed a technique for control intensive loops with multiple ex-

its [Lavery and Hwu, 1996].It only considers the most frequently executed path in the loop

body for software pipelining. Superblocks [Hwu et al., 1993] are used to exclude unimpor-

tant paths and speculative execution increases parallelism both in each iteration and between

successive iterations.

Some approaches were also proposed based on a global scheduling techniques such as

percolation scheduling [Nicolau, 1985] or region scheduling [Allan et al., 1992] to make the

software pipelined loop.

In Perfect Pipelining [Aiken and Nicolau, 1987], the first step is to apply global code
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motion in the loop body to schedule operations as early as possible without considering

resource limitations. The second step is unrolling the scheduled loop. This is performed as

an iterative process until a repeating pattern is found.

Identifying the repeating pattern is a complex task. To avoid rt, Enhanced Pipeline

Scheduling was proposed [Ebcioglu and Nakatani, 1989]. In this technique, which was de-

veloped for a VLIW architecture with a tree instruction for multi-way branching, a VLIW

instruction is created and placed at the beginning of the loop as abarier, while the original

loop remains intact. Operations in the loop body are moved up to fill this instruction, consid-

ering resource conflicts. Once this instruction is filled, it is moved across the loop back-edge

and copied into the prologue. In this way, those operations enter the loop body as operations

from the next iteration. This process continues until all operations from the original iteration

are scheduled.

An approach called GURPR* [Su and 'Wang, I99Il avoids the requirement for pattern

matching as in perfect pipelining. In this approach, first the loop body is compacted using

a global compaction algorithm. Then, it is unrolled and scheduled. Loop unrolling is per-

formed until the last instruction of the first iteration is scheduled. After finding the II, the

software pipeline schedule is generated by overlapping iterations, considering loop carried

dependencies and resource constraints. Redundant instructions are removed and a new loop

with prologue and epilogue is constructed. Theoretically, perfect pipelining can expose more

parallelism but, GURPR* may result in less code expansion than perfect pipelining as the

pattern is often too long in the latter [Su and Wang, 1991].

2.5 Hardware Techniques

Popular ILP processors referred to as superscalar [Johnson, L99Ll perform ILP extraction

dynamically at run-time. To extract a large amount of ILP at run-time, a relatively large

number of operations for parallel execution must be investigated. This is done by fetching

multiple operations per cycle, dynamic register renaming and dynamic speculative execution.

Dynamic branch prediction techniques [McFarling, 1993, Yeh, 1993], play a key role for

this purpose. Depending upon the branch predictor, the execution of speculatively fetched

operations can be overlapped ifthe required resources are available.

For dynamic register renaming, there are more physical registers available than the regis-
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ter names (or architectural registers). Register names are mapped to physical registers using

a map table. In the decode stage, the source registers are renamed, and the output register

is mapped to a new free physical register, then the map table is updated. The usage and

efficiency of each method is related to the way dynamic speculation and precise intemrpts

are handled.

Out of order execution is performed through dynamic scheduling. When an operation

is to be issued, its register operands can be either the actual value, or just a symbolic (tag)

value. The tag is used for register renaming. The source of a tag might be a centralized or dis-

tributed pool depending on the implementation. In Tomasulo's algorithm [Tomasulo,I967f,

a number of reservation stations are dedicated to each functional unit. A tag is assigned to

the destination register of each operation during the decode cycle or fetch cycle [Moudgill

et al., 19931. After issuing, the operation with its operands is buffered in the reservation sta-

tion of the specified functional unit. These buffered operations are scanned in each cycle to

find an operation ready to execute, which is the operation that has all of its source operands

available. Upon completion, the result and destination registers' tags are broadcast to all

reservation stations and the register file by a common bus.

The future file mechanism is an extension of Tomasulo's algorithm to implement precise

interrupts [Smith and Pleszkun, 1985, Johnson, 1991]. The register file keeps the in-order

state, the future file has architectural state. A reorder buffer, which is a FIFO queue, is used

to keep the lookahead state. A slot at the top of this queue is allocated to each operation

during decoding. Meanwhile, register identifiers are applied to both the future file and the

register file to get the source operand values (or tag). When the most recent value of a register

is not found in the future file, the value in the register file will be used. After completion, the

result is written into the allocated slot in the reorder buffer and the future file. This method

is faster and has less hardware complexity in comparison to the associative lookup in the

original Tomasulo's algorithm.

Centralised mechanisms like the scoreboard technique, were used earlier than distributed

mechanisms [Thorton, 1964].In this method, the instruction window is used to hold opera-

tions that are waiting for operands. The scoreboard as a centralised control structure keeps

track of the source and destination registers of each operation in the window, and their de-

pendencies. The Metaflow architecture [Popescu et al., 1991] uses this technique.

The Metaflow architecture employs an approach referred to as DRIS (Deferred-scheduling,
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Register renaming Instruction Shelf) for out of order execution and dynamic speculation. In

this method, after register renaming, operations are placed in a central structure. To dis-

patch the ready operations, this central structure is searched every cycle. The DRIS, like

the reorder buffer, is a queue. A slot at the bottom of the DRIS is allocated to each issued

operation. After completion, the result is written to that slot. When the completed operation

reaches the top of the DRIS, the register file is updated and the allocated slot is removed.

During the decode cycle (i.e. when the slot is allocated), the DRIS is scanned to find the

source operands of the operation which match the destination register of the present opera-

tions. If some match is found, the newest one is used. Otherwise, the register file is accessed

for source operands. The actual value is read from the DRIS or the register file, when the

dependent operation is completed.

Run-time techniques are more successful at resolving memory access dependencies as

the address of memory references are known at run time. As discussed in section 2.3.2, a

compiler, with the help of a specialised hardware, can speculate on memory access aliases

and value prediction leading to a higher performance.

Providing alarger scope for a run-time technique requires alarge amount of hardware.

This may reduce the execution speed. Regardless of using extra hardware support for ILP ex-

traction, compiler techniques can still be very useful for ILP processors to place independent

operations closer together to be picked up at execution time.

2.6 Summary

Code transformations are applied at compile time to extract more ILP in programs. To avoid

ILP performance limitations due to dependencies in critical paths, some transformations are

applied to reduce the length of these paths. Critical paths are identified with regard to depen-

dency constraints which are considered based on the scheduling model. Data dependencies

can be reduced through register renaming, memory address disambiguation and data value

prediction. Control dependencies are eliminated or reduced through speculative and predi-

cated execution.

Speculative execution relies on the accuracy of branch prediction techniques. Compil-

ers utilise static branch prediction methods and previous execution profiles (if available) to

schedule operations speculatively. On the other hand, dynamic techniques employ dynamic
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branch predictors which predict the control flow based on a recent history ofbranch direc-

tions.

Predicated execution is an architecturally supported technique, which is used to reduce

the number of conditional branches using a technique referred to as if-conversion. Hyper-

block scheduling demonstrates that higher performance can be achieved through selective

if-conversion. Hardware mechanisms to nullify operations with false predicates are needed

to support predicated execution.

Hardware techniques in general may have an adverse effect on performance due to a po-

tentially longer cycle time. In some cases, such as memory access disambiguation, appealing

to a run-time technique seems to be inevitable. However, compiler techniques can still be

very effective in improving the performance regardless of whether simple hardware (such

as VLIW machine) or a more complex hardware (an out of order superscalar processor) is

employed as the ILP processor.
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Chapter 3

EVA: An Experimental VLIW

Architecture

A Very Long Instruction Word (VLIW) processor exploits ILP that has been extracted through

compiler transformations. The advantage of these processors is their ability to exploit large

amounts of ILP with relatively simple and fast control hardware. This is in comparison with

the popular superscalar processors, in which ILP extraction is performed dynamically at run-

time. Although compilers can enhance the performance of superscalar processors by placing

the independent operations closer together to be picked up by the dynamic scheduler, they

are not generally relied on for this purpose.

In this chapter, the main features and shortcomings of VLIW processors are briefly dis-

cussed. 'Works to remove or reduce the impact of these shortcomings are reviewed. Our

experimental VLIW architecture (EVA) is also presented.

3.L VLnry Architectural Features

In VLIW processors, architecturally visible parallelism capability is exposed to the com-

piler. This includes an accurate semantic model of the processor, which defines the opera-

tion latencies, and a description of the allowed sets of independent operations in a VLIW

instruction. The two main features of VLIW architectures are multiple-operation instruction

(MultiOp) [Rau et al., 1989] and non-unit assumed operation latency (NUAL) [Rau, 1993].
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3.L.L Multiple-Operation Instruction (MuttiOp)

To extract independent operations for parallel issue and execution, dependency checking

must be performed on the code. Dependency checking considers the constraints resulting

from the current operations in execution (if it is done at run-time) in addition to, destination

and source operand references of all candidate operations for issue. If this is to be performed

by hardware, a complex circuitry is needed, with a complexity proportional to .lú2 for an

issue-N processor [Johnson, 1991]. Also, the size of the set of candidate operations is a

factor that affects hardware complexity. Therefore, transferring the dependency checking

task to the compiler significantly reduces the amount of hardware, which is often on the

critical path determining the cycle period.

Operations to be packed in a MultiOp instruction, are determined by the compiler. They

are aligned based on the architectural model of the target processor. In this way, the hardware

required for instruction alignment is removed. Also the operations are transferred from the

instruction buffer to the corresponding decode slot and functional unit in a straightforward

manner with no extra hardware.

3.1.2 Non-[Jnit Assumed Latency (NUAL)

Operation latencies are architecturally visible in VLIW processors. This execution semantic

is called non-unit assumed latencies (NUAL) [Rau, 1993].

In conventional RISC and superscalar processors, which are usually based on unit-assumed

latencies (UAL) execution semantics, it is assumed that previous operations in the sequence

are committed at the time of source operand access for the current operation. If this is not

the case (such as an out-of-order superscalar processor), or when the actual latency is greater

than specified, additional hardware mechanisms such as register interlocks are provided to

preserve the program correctness. Figure 3.1 shows a piece of code to illustrate differences

in interpretation of program semantics between NUAL and UAL. In Figure 3.1 (a), opera-

tions 3 and4 use the results of operations 1 and 2 respectively. In Figure 3.1 (b), due to UAL

semantics, both operations 3 and 4 use the result of operation 2 and the destination register

of operation 1 is overwritten by operation2.In this manner, the semantics of the same code

are different in Figures 3.1 (a) and (b).
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1)

2)

s)

4)

(

r1 = 12 +10

rl = Ioqd [r5]

13=rI+12

14=13+rI

)

r1=12+10

rl = load /d r
13 =rl*rZ-2
14 =13+rI

(b)(a)

* assumed latency for øddition and load are 2 cycles

Figure 3.L: Comparison of the execution semantics for (a) NUAL and (b) UAL operations

NUAL provides more eff,ciency in code optimisation and generation for the compiler.

As the details of the target processor are exposed to the compiler, the resource usage of the

target processor can be more efficiently scheduled by the compiler. However, this is at the

expense of introducing some problems when the control flow at run-time is not the same

as assumed at compile time. Unexpected events like exceptions dynamically change the

assumed program behaviour due to control transfer to the exception handling routine, which

causes the assumed latency of the scheduled operations to be non-deterministic. Hence,

exact NUAL semantics are violated.

To handle this problem, two scheduling models of NUAL referred to as EQ (equals)

model and LEQ (less than or equals) model have been defined [Rau, 1993]. An EQ NUAL

operation accesses its operands at the specified time and writes back the result exactly at

its latency time. In the LEQ model, if the operation latency is L, it is assumed the result

is available between one and L cycles after launching the operation. Therefore, unexpected

run-time events are handled more easily with LEQ NUAL semantics, while with EQ NUAL,

hardware support is required to save the status of the processor before execution of exception

handling code.

EQ NUAL is more capable of extracting parallelism due to its deterministic nature. How-

ever, its benefits may not justify using more hardware for exception handling.
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3.2 Tfaditional VLIW Shortcomings

3.2.1 Inefficient Memory Usage

Due to statically scheduled code, unused slots appear in a VLIW instruction. A VLIW in-

struction can be encoded in uncompressed or compressed form, of which the former includes

explicit NOP operations for empty slots. Uncompressed encoding, while it involves simpler

hardware, results in inefficient use of memory. A study by Conte and et al. [Conte et al.,

I996al indicates a significant loss of performance for an uncompressed l-cache with respect

to an I-cache that never misses (perfect cache) due to low space utilisation.

Compressed encoding schemes were proposed for some VLIW machines and CISC ar-

chitectures. In the Multiflow TRACE VLIW machine, a VLIW instruction is stored in com-

pressed form in memory, and extra mask words are used to identify which field is present in

the instruction [Colwell et al., 1988]. During instruction cache refill, each operation is placed

in its special field in the cache and NOPs are inserted for non-present fields. The Cydrome

Cydra 5 VLIW machine used two different formats for VLIW instructions stored in memory

(or cache) which are referred to as MultiOp and UniOp respectively [Rau et al., 1989]. When

enough parallelism is not available to form a MultiOp instruction, six UniOps are packed in

an instruction word. MultiOps are stored in uncompressed form and NOPs are also used for

memory alignment in the case of UniOps. TINKER, a research VLIW machine [Conte and

et al., 1995,Conte et al., l996al uses compressed encoding of MultiOps. Each operation has

four extra bits which are used to identify each field of a MultiOp. These are one header bit,

one tail bit to show the first and the last operation respectively, and two bits to indicate the

functional unit type. In the IBM VLIW architecture, the program is arranged as a sequence

of tree instructions which consist of a set of operations and multi-way branches [Moreno,

19961. Tree instructions are pruned at run time based on the implementation of the architec-

ture and there are no explicit NOP operations.

Compressed encoding requires hardware support for instruction fetch and expansion.

Different instruction fetch mechanisms and cache structures were investigated by Conte and

et al [Conte et a7., I996a]. Generally, the basic pipelined fetch model consists of block fetch,

next PC computation, and an expander to uncompress a MultiOp. The expander can be

placed on the cache refill path or between the cache and the execution pipeline depending

on the cache organisation. The branch misprediction penalty may be increased in the latter
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case.

Among different cache organisations studied for the compressed encoded VLIW instruc-

tions, silo caches achieved higher performance [Conte et al.,l996a]. The silo cache is made

up of several separate caches, which are accessed at the same time to get operations of a Mul-

tiOp. Each cache stores one specific operation type. The expander is placed on the cache

refill path. To reduce the amount of the required storage, a group of operations which are

rarely executed at the same time can be mixed into one cache. This is called a flexible silo

cache [Conte et al., I996a].

A silo cache needs more storage, as NOPs are explicitly present in the cache and each

separate cache has its own tag and length fields. A cache organisation called banked cache

requires less storage than a silo cache at the expense of lower performance. The banked

cache consists of two data and tag arrays (for example, in the Intel Pentium processor [Alpert

and Avnon, 19931) with the block size N for an issue-N processor. Since a MultiOp is

compressed, some part of it may be stored in a different bank. Thus, it is necessary for both

banks to be accessed at the same time. The header bit in the operation identifies the first

operation of the fetched MultiOp. The fetched blocks may be swapped if required. This is

done by finding the last operation in the MultiOp through its tail bit. The expander is located

on the cache hit path resulting in a higher branch misprediction penalty. Results of Conte's

work show less than l0%o pertorrnance loss with respect to a direct-mapped silo cache of the

same size [Conte et al., 1996a].

Valid select lines are used to direct the required Ops to the expander. The expander is

located on the hit path, so the misprediction penalty is higher. Addressing in the banked

cache is similar to a traditional cache. Each Op in the cache is augmented by 3 offset bits, 1

valid and 1 bank bit which are set at the time of cache refill and are used to compute the next

PC. Offset bits indicate where the next sequential MultiOp is with respect to the current one.

The next PC is computed at the same time of the cache access [Banerjia et al., 1996].

3.2.2 Object-Code Incompatibility

In VLIW machines operations are scheduled statically by considering architectural features.

This may produce object code incompatibility with other implementations of the same archi-

tecture when the assumed architectural features such as operation latencies, the number of

functional units and register file specifications are changed. Figure 3.2 shows an example of
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a sequence of operations scheduled for a hypothetical issue-4 VLIW machine. In Figure 3.3,

execution of the same code, when the latencies for MULT and MEM functional units have

increased, leads to incorrect results. A decrease in latencies does not violate the program se-

mantics for the LEQ model but, this is not the case for the EQ model. In the case of changes

in the number of functional units, a n¿rlro\¡/er issue processor may execute a section of the

VLIW instruction from the original VLIW code but, keeping correctness and respecting de-

pendencies is not guaranteed. In a wider issue processor, the original code may be executed

correctly but the additional new resources are not utilised.

1) rl + MEM (r2)
2) 13 +r4+r5
3) 16 <-rI+r4
4) 17 <-12*r4
5) r8 <-13-14
6) 19 +12+rs
7) rI0 <- MEM (r8)
8) r77+16+rS
9) rI2+17+rI
ru) r13 + r10 * rll
1I) MEM (r3) <- rI2

cycle ALU ALU MULT MEM

0

I
)

3

4

13 <-r4 + 15

r8 +r3 - 14

16 <-rl + 14

r11 <- 16 + 15

19<-12+15

r12+r7+rI

17+12*14

r13 <-r10 * rll

rI + MEM (r2)

r10 + MEM(r8)

MEM (r3) <-r12

(a) Original sequence of operations. (b) Scheduled code for VLIW machine (Generation 1).

Inlencies sssumed |or ALU, MULT erul MEM lunclíonøl unils are I, 3 and 2 cycles respeclively.

Figure 3.2: Scheduled code example for an issue-4 hypothetical VLIW machine

(generation-1).

clcl. AI-U ALU MULT MEM

0

1

)

3

4

.5

ri + 14+15

r8<-13-r4
16+rI+

19 +12+r5

+17+rI

17<- r2tr4
t| ....

I
I
I

rI <- MEM (r2)

r10 <- MEM (r8)

t MEM (rj) + r12

VLIW machine (assumed Generation 2) - Shaded operâtions are not executed

correctly due to differences between actual and assumed operation latencies.

(New lqlencies øre 7, 4 and 3 Jor ALU, MALT and MEM îuncl¡onal un¡ls rcspecl¡vel!)

O in¡l¡cütes when aclual result is ready.

Figure 3.3: Incorrect interpretation of the code scheduled for VLIW (generation-1) in a new

VLIW (generation-2) with different operation latencies.
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In chapter 7, research performed to overcome this problem is discussed. Also, a new

approach to address the problem is presented.

3.3 Architecture of EVA

To support research in compiler techniques and architectural features for VLIW machines,

we use an experimental VLIW architecture (EVA). Some parameters to def,ne architectural

characteristics can be set depending on the experiment.

At the time of this research, no suitable experimental or commercial compiler was avail-

able to us for our research purposes. Therefore, we designed the EVA architecture, and an

accompanying compiler, as the basis for our research. This architecture is based on MIPS-I,

which is a classic RISC architecture. Using the MIPS-I architecture provides the opportu-

nity to generate the program execution traces on a MIPS based platform (as discussed in

chapter 5). In addition, this allows us to use different C standard libraries for our benchmark

programs directly from the MIPS based platform. As the MIPS-I architecture does not have

many required features employed in this research, some appropriate features from I{PL Play-

Doh [Kathail et al., 1994] and the TINKER [Conte and et a1.,1995) architectures have been

adopted. These features are all discussed in Chapter 4. In all other respects the architecture

is identical to MIPS-I.

3.3.1 Instruction SetArchitecture

Each operation in the VLIW can be any RISC type instruction that is executed by a functional

unit. The number of operations in a VLIW is specif,ed as an architectural parameter. The

instruction set architecture (ISA) of EVA is based on the MIPS-I ISA. Each operation is

augmented with two extra bits to prevent the need for explicit NOPs in the VLIW instruction.

Similarly to the TINKER VLIW architecture [Conte and et al., 1995], one header bit and

one tail bit are used, which are set for the first and the last operation in the VLIW instruction

respectively. To specify a VLIW instruction with all NOPs, both header and tail bits are set.

3.3.2 Architectural Support for Speculative Execution

For control speculative execution we use the general code motion scheme [Chang et al.,

19951. For this purpose, non-trapping (or silent) versions of excepting operations are added
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to the ISA. These include floating-point arithmetic, memory loads and integer divide oper-

ations. Operations which may potentially cause an exception are converted into their silent

form if they are scheduled for speculative execution. Having silent versions of trapping

operations makes it possible to ignore unwanted exceptions.

3.3.3 Architectural Support for Predicated Execution

To support predicated execution each operation has an extra source operand as the predicate.

If this input predicate is 'true' the operation is committed, otherwise it is nullified. Also,

new compare operations, which are adapted from IIPL PlayDoh [Kathail et al., 1994] and

the IMPACT architecture [Mahlke , 19961, are used to define predicates in the if-conversion

process. Each eliminated branch is replaced by a corresponding predicate define operation.

The predicate define operation computes predicate values using semantics similar to those

for conventional comparison operations. Its format is as follows:

p<cmp> Dest1, Dest2, Srcl, Src2, Src3

Srcl and Src2 are the original source operands of the eliminated branch. Src3 is the input

predicate, which is normally set to 'true' if this predicate define operation is not itself pred-

icated. Destl and Dest2 are the two destination predicate registers. Having two destination

registers in one operation makes it possible to combine two predicate definitions into one

operation when the source operands for the two predicate definitions are the same. This may

happen frequently as defining a predicate and its complement are usually needed. Destina-

tion registers are set based on the comparison result and two mode bits which are encoded

in Destl and Dest2. The first bit indicates if the predicate definition is unconditional or

OR-type. The second bit defines normal or complement action.

When the destination type is 'unconditional normal', if the input predicate (Src3) is 'true'

and the comparison result is 'true', the predicate register is set to 'true'. Otherwise, a 0 is

written to the predicate register. Multiple conditions in programs (like OR, AND) require

OR-type predicate definition which can handle all situations for this purpose. If both the

comparison result and the input predicate are 'true', a I is written to the predicate register (for

OR-type normal) otherwise, it is left unchanged. When destination predicates are seen at the

f,rst time in an OR-type predicate define operation, they must be initialised before p<cmp>
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input predicate

(Src3)

comp¿ìfe

result type

unconditional

normal

unconditional

complemented

OR-type

normal

OR{ype

complemented

0 0 0 0

0 1 0 0

1 0 0 1 1

1 1 1 0 1

Thble 3.1: Predicate comparison behaviour for predicate definition. '-' indicates the previous

value is not changed.

operation. This is performed through a special operation which resets the predicate register

unconditionally. Table 3.1 briefly summarises the behaviour of predicate define operations.

3.3.4 Architectural Support for Memory Access Disambiguation

Load and store operations may have special modifiers to indicate the latency and control the

way the memory hierarchy is accessed for data. [Abraham and et al, 1993]. For example, in

the PlayDoh architecture modifiers can specify the first and second level of cache or main

memory for data transfer [Kathail et al., 1994]. In our VLIW architecture, the assumed

memory latency by the compiler refers to the first level cache. However, a data speculation

technique similar to that of the PlayDoh architecture is provided to reduce the latency of the

oritical paths in the program.

As described in section 2.3.2, compile-time memory disambiguation is a difficult prob-

lem and often it cannot produce the complete result. This results in a conservative schedul-

ing of the ambiguous memory access operation. Consequently, the critical path length is

increased as load operations are usually located on the critical paths. As an architectural sup-

port for run-time memory access disambiguation, two different forms of loads are included

in our VLIW architecture. The semantics are the same as for the PlayDoh architecture. Table

3.2 describes the general description of these operations.

3.4 Implementation of EVA Architecture: An Example

Although the aim of this thesis is not to investigate details of implementation issues of ILP

processors, an example of the implementation of EVA is provided to illustrate the relation-
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Operation Description Opcode example

preJoad or data speculative load performs normal

load operation even if it is not clear whether there is no

alias with previous stores.

s-lw

checkJoad or data verify load checks the memory

conflict hardware and performs the load if it f,nds

a conflict with previous stores.

v-lw

check-br checks the memory conflict hardware and

branches to the recovery code ifit finds a conflict

with previous stores.

check-br

Table 3.2: General description of operations to support run-time memory access disam-

biguation.

ship between different parts of the processor.

The format of the instruction (MultiOp) is shown in Figure 3.4. Operations are priori-

tised from left to right for the same functional units. In addition to BRU, all IALU functional

units can also execute branches. However,the check-br operation can only be scheduled in

the BRU slot. Only one taken branch can be present in the instruction. It is the responsibility

of the compiler to ensure that multiple scheduled branches have mutually independent condi-

tions. If it is not possible for the compiler to guarantee that, only one branch is scheduled in a

MultiOp (in the last slot). As the architecture supports predicated execution, few conditional

branches are expected after code generation.

IALIJ - lnleger ALU MEM - Memory access unil

FP ADD uddlsubtract unil

FP_MPY - Flooling-po¡nl mulliply/tlivide unil

BRa - Branchunil

Figure 3.4: Instruction (MultiOp) format for the example implementation.

IALU IALU IALU MEM MEM FP A.DD u.-n*"1 u*u
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Figure 3.5 shows the general organisation of an implementation of EVA. The banked

cache scheme with two banks is assumed for the instruction cache and the required logic

for decompression and alignment are located after the instruction cache. Each operation is

forwarded to its specified decode slot.

3.5 Summary

VLIW machines as ILP processors rely on a compiler to extract ILP. This results in sim-

pler hardware and a shorter cycle time. However, the traditional forms of these machines

suffer from some shortcomings. These include ineff,cient memory usage and lack of binary

compatibility among different generations of the same architecture. Some techniques to im-

prove memory usage presented in the literature have been reviewed. Chapter 7 addresses the

previous work and our new approach to improve object code compatibility.

An experimental VLIW architecture (called EVA) was presented. It has several exten-

sions to common RISC architectures. These include ISA extensions to support speculative

and predicated execution. Also, special hardware for dynamic memory access disambigua-

tion is provided. This basic VLIW architecture is used as a base in this research.
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Instruetion Cq,che

7 \

Decotnpress Logic

\

Decod,er

Floating-Point
Register FiIeInteger Register File

J
'\

MEM MEM FP ADD FP MPY BRUIALU IALU IALU

)

Predicate Register File

Result Forward Logic

,$-
Store Buffer

Datø Cøehe

Figure 3.5: General organisation of the example implementation.
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Chapter 4

The VLIW Compiler for the EVA

Efficient employment of processor resources requires that enough ILP to be extracted to keep

the resources busy. For a VLIW processor, where the complexity is transfered from hard-

ware to the compiler, a powerful and robust compiler is necessary. All of the instruction

scheduling in a traditional VLIW machine is performed by the compiler. Due to a larger in-

struction window available for inspection at compile time, more opportunities for extracting

independent operations exist than in a superscalar processor. To investigate performance im-

provement trade-offs in ILP architectures in general, and VLIW architectures in particular, a

powerful experimental compiler is required.

In this chapter we describe our implementation of such a compiler. This compiler em-

ploys state-of-the-art algorithms that have been published in recent literature, as well as new

back-end algorithms that we have developed. The structure of the compiler is presented,

including descriptions of all of the algorithms employed. The new algorithms are described

in detail.

4.1 Compiler Structure

4.1.1 ùIotivation

Implementing an experimental optimising compiler requires a large amount of effort and

time. We designed and implemented our compiler for the EVA based on the STIIF infras-

tructure, which includes SUIF ISIIIF, 1994] and machine SUIF (machsuif) [Smith, 19971

from Stanford and Harvard universities respectively. The SUIF infrastructure has been used
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in other research in ILP [Young, 1998, Gloy, 1998]. Our work is based on SUIF-I, the f,rst

version of the SLIIF.

As described in chapter 2,there is generally not enough parallelism within individual ba-

sic blocks to achieve significant performance improvements through ILP, and higher levels

of ILP may only be obtained through investigation of successive basic blocks. The method of

combining several basic blocks into a larger structure depends upon the instruction schedul-

ing technique employed and the capabilities of the target machine architecture . To select the

instruction scheduling technique, we realised that employing an acyclic scheduling method

is reasonable within the framework of our research, as cyclic scheduling techniques target

only innermost loops, while scheduling of code outside the loops needs an acyclic scheduler.

For larger block structures, if the target architecture cannot support predicated execu-

tion, the use of superblock scheduling [Hwu et al., L993] is more efficient than the other

techniques for acyclic scheduling mentioned in chapter 2. Employing superblocks uncov-

ers ILP through speculative execution, involving less effort for bookkeeping during upward

speculative code motion. However, frequent and unpredictable branches are still present in

non-numerical programs. Predicated execution is used to eliminate the conditional branches,

resulting in a larger block of linear code. This can be achieved through using the hyperblock

structure described in chapter 2, which implies selective conditional branch removal.

Results of work done by the IMPACT compiler group [Mahlke, 1996] indicate that on

average, the size of the block presented for optimisation and scheduling increased from 34.5

operations in a superblock to 53.0 in a hyperblock for predicated execution with the same

benchmarks. Also, the performance is less changed with predicated execution regardless of

the capability to execute more branches per cycle, which can be a performance bottleneck

when the branch resources are scarce and handling multiple branches per cycle is difficult.

Therefore, for an optimising and aggressive VLIW compiler, we use predicated execution

through hyperblock scheduling at the expense of higher implementation cost.

4.L.2 GeneralStructure

The basic structure of a compiler consists of two main parts, the front-end and the back-end.

The purpose of the front-end is to convert the input high-level language into an appropriate

intermediate code for further processing in the next stages. Optimisations and code genera-

tion for the target architecture are performed by the back-end.
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The compiler for the EVA is implemented as a multi-pass compiler. The results of each

pass are saved in files and used as input for the next pass. This results in a longer compile

time, however, as an experimental compiler, it enables us to investigate different optimisation

methods and furthermore, to modify each pass irrespective of the implementation details of

other passes when the interface between passes is unchanged. We used C++ (as do SUIF and

machsuif) to implement different passes in the compiler. Preliminary work of the structure

and implementation of our compiler v/as presented in [Biglari-Abhari et al., l99J,Biglari-

Abhari et al., 19981. Figure 4.1 indicates the main blocks of the compiler.

The front-end is from the SUIF system, and produces the SUIF intermediate code (IC).

The purpose of the intermediate code restriction is to convert the first level intermediate

code to a second level to provide a one to one coffespondence between each IC and machine

operations. Classical optimisations need a single form of each operation. As our VLIW

operations are based on the MIPS instructions, this is performed by the mgen pass, which

is a slightly modified version of the original one from the machsuif and transforms the suif

intermediate code to MIPS-I instructions.

Profile information is used mainly for hyperblock formation and optimisation (such as

loop peeling). Information derived from the execution profile such as the execution fre-

quency of the subroutine calls may be used during code generation too.

Figure 4.2 indicates the steps of profile information generation. We modified HALT

[Young and Smith, 1996], which is an ATOM [Eustace and Srivastava,I995f like profiler to

gather profile information. The file produced by mgen is augmented by annotations which

for example, indicate the unique numbers associated with branches and basic blocks and

other required parts for instrumentation. This is done by the label pass. Then, halt tnserts

calls to the analysis routines, which employ the unique numbers introduced before, and other

relevant information for the instrumentation points. The output of the halt pass is converted

to an executable code and linked with the analysis routines to produce an executable code

to be run on a MIPS-based platform. The profile results are saved in a file and are further

processed to place the profile annotations into the input file to produce information in a

suitable form to be used in the next passes. This can be performed several times if necessary

to collect the information of different profiling processes.

Predicated execution introduces new challenges in compiler optimisation and scheduling

phases for highly-optimised code generation. Conventional program analysis tools must be
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C paganr

SUIF inte¡medÍde
coilc

optímìs eil íntetøeilîat
code

assembl¡ code

Figure 4.L: General structure of the main phases of the EVA VLIW compiler.
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su¡f intermediate

¡nput Ílle

(.mcg)

annotated input file

(.prt)

Figure 4.22 Main steps to generate the execution profile information for the benchmark

programs.

augmented by information about the relationships between predicates. For example, con-

ventional data flow analysis is not eff,cient in scheduling and register allocation, resulting in

conservative code generation. Thus, a library was developed to provide the required infor-

mation.

Figures 4.3 and 4.4 illustrate the structure of the two main parts of the back-end in our

compiler, which are the optimiser and the code generator. More details of the important

passes are described in the following sections. The libraries developed to facilitate imple-

mentation of our compiler are described in the appendix A.

4.2 Predicate-Sensitive Analysis

Conventional program analysis tools assume that operations are executed unconditionally in

each basic block. To analyse programs containing predicated operations the conventional

tools must be modified to consider the existence of predicates and their relationships.

Two structures have been introduced to communicate information regarding predicates

to the compiler. The predicate hierarchy graph (PHG) lLin,l992l was used to find certain

relationships among predicates in a hyperblock by the IMPACT compiler group. A PHG is

a directed acyclic graph which represents the boolean equations under which each predicate

is defined. The PHG consists of predicate nodes and condition nodes. Each predicate has a

single predicate node in the PHG. Condition nodes correspond to predicate def,ne operations.

Edges show how predicates and conditions are determined. The PHG is queried to find if
two predicates are disjoint.

Another structure referred to as a partition graph was introduced by the FIP lab compiler

mgen
adding

instrumentation code

halt

identify the needed
profile lnformation

label

generate the

executable code
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SIIIF Inte¡medlote Code

RTC RIC

Optímísed RIC

Figure 4.3: General structure of the code optimisation phase of the VLIW compiler.

Predlcater rclatlon
lnlormatlon

Predicate€ens¡t¡ve
Data Flow Analysls

Optlmisations

Hyperblock
ILP

Opt¡m¡sations
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lnstructlon

Schedullng Data Flow Analysis
Predicate-sensitiveMemory access

disambiguation

generation

Optíní-sed. RIC

asm ftle

Figure 4.42 General structure of the code generation phase of the VLIW compiler

group [Johnson and Schlansker, 1996]. A partition graph is a directed acyclic graph in which

nodes represent execution sets and the labeled edges represent partition relations among the

nodes. An execution set for a predicate is considered as the set of execution traces in which

the predicate is assigned'true'. A partition of a predicate is a division of the domain of

the predicate into multiple disjoint subsets, where the union of these subsets is equal to the

domain. Figure 4.5 illustrates an example of the set relation between predicate domains.

In operatioî peq p2(UN),p3(UC),r1,r2 (pl) if rl = 12 and the guard predicate pl is'true',

predicates p2 and p3 are set as 'true' and 'false' respectively. So, pl is partitioned into p2

and p3. Here UN represents unconditional normal predicate behaviour and UC represents

unconditional complement (see Table 3.1).

To use traditional optimisation techniques, which are based on control flow graphs, the

predicated code can be transformed back to produce control flow graphs. Using the PHG,

reverse if-conversion [Warter et al., 19931is applied to the predicated code to produce the

control flow graphs for the hyperblocks. Since this new control flow graph may in gen-

eral contain some paths that cannot be traversed during execution, it produces conservative

optimisation results.

It is more efficient to be able to perform data flow analysis directly on the predicated

code. The partition graph and its related query algorithms for predicate relationships can
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peq p2(UN),p3(UC),r7,r2 (p1)

+

pl = p2Up3

Figure 4.5: Set relation between predicate domains.

facilitate this.

V/e perform the required data flow analysis and predicate relation queries for instruction

scheduling and register allocation based on the partition graph algorithms. Currently, SUIF

and machsuif llbraires do not have specific tools to support predicated execution. We have

developed the required tools for our compiler.

4.2.1 Overview of Partition Graph Construction

The construction process for the partition graph involves two steps. First, an initial graph is

built and then the graph is complemented, so that all nodes can be reached from the root.

The initial graph can be generated either from the original control flow graph when the

predicates are assigned to basic blocks just before if-conversion, or directly from the pred-

icated code. The former method seems easier. However, to keep the predicate relations

after each code transformation the partition graph must be kept along with each code trans-

formation process. Also, this method may not include the effect of other predicated code

generated through optimisations or control critical path reduction [Schlansker and Kathail,

19951. Therefore, we employ the second method which generates the partition graph directly

from the predicated code.

To extract predicate relations, the predicate define operations are translated to a sequential

form [Johnson and Schlansker, 19961. In this form, the destination predicate value is a

boolean function of the compare condition and the guard predicate. Table 4.1 indicates how

the translation is performed.

Then, the predicated code is translated to the sequential single assignment (SSA) form.

The SSA code is processed to extract partition relations. Each partition relation is recorded
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Predicate define operation Sequential form

Pout=cmp(un) (r1 <cond> 12)ifP¡n Pout= (r1 <cond> 12).P¿"

Pout= cmp(øc) (r1 <cond> 12)if P¡" Pout = (!(r1 (cond> r2)) . P¡"

Pout = cmp(an) (r1 <cond> 12) if P¡" Pout =Pout t (r1 <cond> 12) . P¿,

Pout = cmp(oc) (r1 <cond> 12) if P¿" Pout =Pout * (!(r1 <cond) r2)) . P¿"

Table 4.L: Sequential form for predicate define operations

LBl: load

plt
add
ødd
ple
move

load
bne
peq

14, 0(r3)

p2(UN), pl(UC), 14, r71

17, r7, 7 (pI)
12, 12, 7 (p2)
p4(UN), p3(UC), 14, r7
r7, 14 (p3)

13,4(r3) (p4)
LB(, 13,0
p6(UN), pS(UC), 13, r7 (p3)

LBl: load

p2=
pI=
add
ødd

p4=
p3=
load,

bne
p6=
p5=

14,0(r3)

(r4 <r11) . TRUE
! (r4 <r11) . TRUE

r7, r7, 7 (pI)
12, r2, I (p2)

(r4 <= r7) . TRUE
! (r4 <= 17) . TRUE

13,4(r3) @a)
LB7, 13,0

(r3=r7).p3
! (r3 =r7). p3

(a) assembly code after if-conversion (b) Sequential SSA form

p0

pI p2 p4

p5

(c) Partition graph

Figure 4.62 An example illustrating partition graph generation.

p6
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as a set of labeled edges in the partition graph. To make every node reachable from the root,

additional partitions consistent with the existing partitions are added. In this way, the graph

is completed and can be exposed to the query algorithms. The process is illustrated through

an example in Figure 4.6.

4.3 Supporting Predicated Execution

Compilation for predicated execution involves converting sequences of operations represent-

ing the program control flow into predicated operations through if-conversion. If-conversion

transforms control dependencies into data dependencies. Code should be if-converted early

in the compilation process (early in the back-end) to be effective in both ILP optimisations

and scheduling. The amount of code to be if-converted is dependent upon the number of

resources in the target processor. Full if-conversion may reduce the perfoÍnance for gen-

eral applications due to lack of resources [Mahlke et al., 1992b]. Hyperblocks are formed

through selective if-conversion of the most frequently executed paths. A study by August and

his colleagues [August et al., 19971indicates that performance can be improved if a balance

is made between the amount of existent control flow and predicated code after hyperblock

formation. This can be achieved through partial reverse if-conversion.

4.3.L Hyperblock Formation

After classical optimisations, the hyperblock formation pass is performed. Hyperblock for-

mation involves three main steps: Block selection, tail duplication and if-conversion [Lin,

I992,Mahlke, 19961.

Block Selection

Basic block X dominat¿s basic block Y if X is visited on every path from the start point

in the CFG to Y. A group of basic blocks with a single entry block for control flow, which

dominates all other blocks in the group is called a region [Aho et al., 1986]. First, the largest

regions are identified in each procedure. A block is only considered as a member of a single

region with no internal cycles. Cycles are due to loop back edges. A loop back edge is

an edge from basic block Y to block X if X dominates Y. Since only branches that are not

loop back edges or region exit edges are considered for if-conversion, all loop back edges
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are coalesced into a single back edge. For this purpose, a new basic block is added to the

region, which contains the control transfer operation required for the back edge. Then, all

other previous back edges are modified to target this new basic block. Figure 4.7 shows an

example.

(a) (b)

Figure 4.72 An example illustrating the loop back edge coalescing. (a) The original loop

with multiple back edges. (b) The modified loop with a ne\ry back edge.

The block selection algorithm heuristically considers several criteria in determining whether

to include different execution paths in the region for the hyperblock. Prof,le information pro-

vides the execution frequency of each basic block. To employ the processor resources more

efficiently, less frequent execution paths are avoided. In this manner, the processor resources

are not occupied for these paths. In addition, paths with a smaller number of operations,

lower dependency height, and less hazardous operations are given higher priority. Hazardous

operations like unresolvable memory accesses and subroutine calls limit the effectiveness of

optimisation and scheduling of the hyperblock [Mahlke, L9961. Higher priority paths are

included in the hyperblock having regard for the estimated available execution resources and

the characteristics of the path. The set of blocks in the selected paths form the hyperblock.

BBl

RR2 BB3

B84 B85

BBó

BBl

B82 BB3

BB4 BB5

BB6

B87
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Tail Duplication

To remove side entry points to the hyperblocks, tail duplication is performed. In this process,

basic blocks in the hyperblock, which are the target of control flow from outside of the

hyperblock are cloned and the original control transfer of side entries are adjusted to the

corresponding duplicated blocks. Basic blocks are duplicated at most once, even for other

entry points.

If-conversion

If-conversion, as the final step of hyperblock formation, eliminates the control flow among

the basic blocks of the hyperblock through predicated operations. The RK if-conversion

algorithm [Park and Schlansker,l99I] has been employed in our compiler for this purpose.

For if-conversion, first the predicates are assigned to the basic blocks. Then, the op-

erations which define the predicates are inserted into the basic block to keep the program

semantics. In the RK algorithm, the R function determines how to assign the predicates to

basic blocks, and the K function indicates how a predicate is defined and where it is placed.

Control dependencies inside the hyperblock are calculated from the control flow graph

[Ferrante et al., 1987]. Then, it is decomposed into the R and K functions. Based on the R

function, one predicate register is assigned to each set of basic blocks with the same control

dependencies. Using the K function, predicate defining operations are inserted in all basic

blocks, which are the source of the control dependency. The predicate compare condition

is determined by the corresponding branch condition, and then the branch is removed. All

operations in the basic block are conditioned under the predicate assigned to it. Using a

topological sort of the hyperblock control flow graph, the predicated code is placed into the

final hyperblock. Figure 4.8 shows a simple program before and after if-conversion. The

shaded area indicates the code selected for if-conversion.

4.4 Code Optimisation

To produce more efficient and parallel code both general and machine-dependent code opti-

mising transformations are required. Code optimisation for our purpose can be classified as

either classical or ILP optimisations, which are described in the following sections.
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no-of¿tassed = 0;
no-of-failed. =0;
max_value = 0;
while (next-element != NALL) {

if (next-element -> value >= pass-value)
no-of-¡tasseil + +;

else
no_of;failed + +;

if (next_element -> value > max-value)
max_vlaue = nexl_element -> value;

next_element = next-element -> link;

]
lotal_elements = no _ol_passe¡l + no_of_failed;
if (total-ilems != 0)

pas s _rafe = no _oî_passed / tolal _eleme nts ;

n
12
I3
I4
ß

move
move
move

load.
beq

r7, 0 /* no_of-passeil=0 */
12, 0 /* no_of_faileil= 0 */
17,0 /* max_value = 0 */
13, next_element
LBS, 13,0

115 LBS: ailil
116 beq
117 iliv

LB6: ...

r5, rI, 12

LB6, r5,0
16, r7, r5

(a) C code (b) assembly code

16 LBl
17
I8
I9
n0
n1
112

113
114

load
ph
add

add
ple
,nove

load
bne

14, 0(r3) /* next_element -> value */
p2(UN), pI(UC), 14, pass_value
r7, rI, I (p1)

12,12,7 (p2)
p3(UC), -, 14, r7
r7,14 (p3)

13,4(r3) /* next_element -> link */
LBl, 13,0

(c) assembly code after if-conversion

16 LBl:
I7
IE
I9
IIO LB2:
IlI LD3:
II2
I13 I.B4:
I'I

load 14 0(¡3) lt nefl_clement -> vabe ./
bU LB2,rdposs_value
o¿d rI,r7,7
jnp Iß3
aùl 12, 12, I
ble LB4, 14, 17
move 17, 14

load 13,4(r3) l, nexl-clement -> lht V
hna l-Rl. ¡7. O

Figure 4.8: A simple program and its assembly code before and after if-conversion
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'We have implemented most of the optimisation techniques discussed here based on algo-

rithms from [Aho et al., 1986,Mahlke,I992,August, 1996].

4.4.I Classical Optimisations

The aim of classical optimisation is to reduce the size of a program and improve its execution

time. Some conflicts may exist between these aims but our main concern in this work is

reducing the execution time even at the expense of increasing the code size. Depending

on the program area considered for code transformation, three types of optimisations are

performed. These include local, global and loop optimisations.

Local Optimisations

Optimisations performed on the individual basic blocks are called local optimisations l\ho
et al., 19861. No information regarding other basic blocks is required for this type of optimi-

sations. The following local optimisation techniques have been implemented in our VLIW

compiler. Some of them are also applied for the global optimisations.

Copy Propagation - Copy propagation replaces the future uses of a variable x, which is

assigned by the value of another variable y, with the variable y. This helps eliminate useless

assignments.

Common Subexpression Elimination - If a computed expression appears again in the

code sequence, while its source operands have not been changed, it is not necessary to re-

compute the expression. The previously computed value is stored in a register and is reused

for the next occurrence of the expression.

Constant Folding - When the operands of an operation are constant values, the operation

can be evaluated at compile time. Also, operations such as add with zero and multiply by

one or zero càn be evaluated at compile time. This optimisation removes the need to execute

these operations.

Dead-code Elimination - The code that computes a value, which is never used, is a dead

code. Dead code may be introduced after performing some other optimisations. Dead-code

elimination prevents executing unnecessary operations in the final code.

Strength Reduction - Operations like multiply, divide and remainder have longer latency

then other ALU operations. Strength reduction is atechnique to replace these operations with

an operation with a lower latency like add, subtract, or shift, where possible to reduce the
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dependency height. This optimisation is performed when the compiler can make sure that

the new code is executed faster.

Redundant Memory-access Elimination - When the compiler can make sure that the

value in a memory location has not been changed then additional load or store operations

can be removed.

Global Optimisations

The scope for global optimisation covers the entire procedure. Therefore, data flow infor-

mation among the basic blocks is needed. To gather these information, systems of equations

relating the information at different points in a procedure are solved iteratively. Available

definition information, live variable information, and available expression information are

required for global optimisations. Due to the existence of predicated code, a predicate-

sensitive data flow analysis is required to avoid conservative optimisation decisions.

Copy propagation, common subexpression elimination, dead-code removal and redun-

dant memory-access elimination are applied as global optimisation.

Loop Optimisations

Many programs spend most of their execution time within loops. So, reducing the number of

operations in a loop will improve the execution speed even at the expense of increasing the

amount of code outside the loop in some cases. Loop optimisations are applied to natural

loops, which have a unique entry node called the header and at least one path to the header

referred to as a back edge.

Natural loops are identified through finding loop headers and back edges in the control

flow graph. For this purpose, dominator information for basic blocks is first calculated.

Some transformations include moving operations before the loop header to a preheader

block. A loop preheader is the only predecessor block of the loop header which is not in

the loop and the header is its only successor. If the loop does not have a preheader block,

a new block is created for this purpose and the control transfers to the loop are adjusted

accordingly.

The following transformations are considered in our VLIW compiler as the classical loop

optimisations.

Invariant Code Removal - Operations in the loop whose source operands do not change
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in each iteration are moved to the loop preheader block. This is referred to as invariant code

removal.In this way, these operations are executed only once.

Induction Variable Strength Reduction - Basic induction variables are used as index

in each loop iteration. Also, address calculations for data structure elements like an array

are based on these variables. Changes on the induction variables are typically increment or

decrement. Induction variable strength reduction replaces variables whose value is a linear

function of the basic induction variable with a new basic induction variable and a simpler

increment or decrement operation. This may decrease the dependency height in the loop.

Induction Variable Elimination - Induction variable elimination considers as useless

the induction variables which are not live after the loop exit or whose contents are not used

in the loop, and removes them.

Global Variable Migration - Global frequently accessed variables which live in memory

are moved into a register for the duration of the loop. So, memory accesses are replaced by

faster register accesses within the loop.

4.4.2 ILPOptimisations

In order to extract more ILP to form the VLIW instruction, a number of ILP optimisations are

performed after classical optimisations. The ILP optimisations considered in this compiler

are as follows:

Loop Unrolling

Loop unrolling is a technique to combine multiple iterations of a loop into a single itera-

tion. It is used to increase the number of operations exposed to the scheduler for further

optimisations.

Register Renaming

Output and anti-dependencies limit the amount of ILP extraction. These dependencies do

not arise from the program characteristics and can be removed or reduced through register

renaming [Cytron and Ferrante, 1987] . Register renaming is very useful especially after loop

unrolling or loop peeling to reduce the dependency height.
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Accumulator Variable Expansion

In some loops the value of a variable is recomputed and accumulated in each iteration. This

variable is called aî accumulator variabl¿. Redefinitions of these variables impose more de-

pendencies after loop unrolling. To remove these dependencies, for a loop unrolled N times,

N temporary accumulator variables are placed instead of the original one. At exit points

of the loop all of these temporary accumulator variables are combined again to produce the

correct result. Using this technique removes additional dependencies and provides more ILP.

Induction Variable Expansion

Induction variables are used as loop indices or to access array elements inside the loop. These

variables may be referenced many times in an unrolled loop. To remove the dependencies

between induction variable definition and their use, N temporary induction variables are cre-

ated. N is the number of operations which define the induction variable. Each new induction

variable replaces one definition of the original induction variable and is initialised in the loop

preheader. To avoid dependency between the definition and use of the temporary induction

variable, its update operations are placed near the end of the unrolled loop body.

4.4.3 Hyperblock-specific Optimisations

In addition to the above optimisations, there are some optimisation techniques which are

only applied on hyperblocks. The following hyperblock-specific optimisations have been

implemented in our VLIW compiler.

Predicate Promotion

Research by the IMPACT compiler group indicates that the performance of hyperblock

scheduling is highly dependent on speculative execution [Mahlke, 1996]. In addition to

the conventional speculative motion of operations above the branches which they depend

on, predicate promotion provides another form of speculative execution for predicated code

[Mahlke et al., 1992b]. Predicate promotion changes the predicate of an operation to an-

other predicate (called the ancestor), which was used to compute the current predicate. The

ancestor predicate is less constrained than the original predicate. Therefore, the promoted
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operation is executed under fewer conditions than the original operation. Predicate promo-

tion reduces the dependency height of the code.

Three types of algorithms have been presented for predicate promotion [Mahlke, L9961.

Currently, the simple predicate promotion algorithm is implemented in our compiler. Other

algorithms are multi-definition predicate promotion and renaming predicate promotion.

Simple predicate promotion is applied on operations whose predicates are computed by

a single predicate definition operation (which we call the promotion target operation). The

candidate predicated operation for simple predicate promotion has some conditions. Its des-

tination register must not be live where its ancestor predicate was defined. Also, the des-

tination register must not be written by other operations in the control paths between the

candidate and the promotion target operation. Then, depending on the speculative execution

model adopted, the proper form of the candidate operation is inserted and its predicate is

promoted to predicate of the promotion target operation. Simple predicate promotion is ir
eratively applied where possible. Multi-definition predicate promotion is similar to the f,rst

one and is used for predicates which are defined by more than one operation. The same

conditions exist for this type of predicate promotion, but the predicate is promoted to 'true'

predicate in this case. In renaming predicate promotion, first an evaluation of the profitability

of this transformation is made and then it is applied if profitable.

Loop Peeling

Loop peeling is a technique to separate the first several iterations of the loop. Each peeled

iteration is a copy of the loop body and is placed before the rest of the modified original loop.

Determining which loop is suitable for peeling and the number of peeled copies is a com-

plicated task. Loop peeling is an effective optimisation for a hyperblock. To perform loop

peeling, loop behaviour, dependency height, and resource utilisation patterns must be con-

sidered. Execution profiles can provide information regarding loop behaviour. Dependency

height and resource utilisation patterns can be estimated by the compiler.

In a hyperblock, too many peels cause much code expansion and excessive resource

utilisation. This leads to a possible loss in performance. Also, too few peels cause early exit

from the hyperblock and therefore, the advantage of a hyperblock optimisation cannot be

employed effectively.

Figure 4.9 illustrates an example of hyperblock loop peeling and its benefits. As men-
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tioned before, a hyperblock may not contain inner loops. When a frequently invoked loop

has only a few iterations per invocation, conventional techniques cannot expose ILP because

other ILP loop optimisations like loop unrolling and software pipelining fCharlesworth,

19811 rely on many iterations on each loop invocation. In addition, loops which do not

have enough parallelism by themselves cannot be optimised by these techniques. On the

other hand, loop peeling makes it possible to overlap the execution of loop operations with

their surrounding code.

In situations where the regions considered for hyperblock formation are not large due to

inner loop structures, loop peeling can help form alnger hyperblock. As shown in Figure

4.9 (a), the original control flow graph is divided into three small regions for hyperblock

formation. After loop peeling in Figure 4.9 (b), alarger hyperblock can be formed. Figure

a.9 @) indicates the flow graph after hyperblock formation.

larger hyperblock
after loop peellng

tentat¡ve
reglons for
hyperblock
formation

(ø) (b) (c)

Figure 4.9: An example of hyperblock loop peeling. (a) Original control flow graph with

tentative regions for hyperblock formation. (b) Loop BB3 is peeled three times. (c) A large

hyperblock is formed after loop peeling.

To select suitable loops for peeling, some general guidelines can be followed. Generally,

BB1

BB2

B83

BB4

BB1

BB2

I

BB3-3

B84

BB1

B82

BB3 3

BB4 B84
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low iteration count loops are considered as good candidates for loop peeling. When the

number of peeling is more than the number of iterations, it is less likely that the program exits

the hyperblock before completion. Some other loops may have different iteration counts

for each invocation. When the loop has a low iteration count it benefits from the above

mentioned advantages of peeling. When it has a high iteration count, the rest of the loop after

peeling, which is referred to as the recovery loop l\ugust, 19961 will be invoked several more

times and therefore, it is useful to optimise it by conventional loop optimisation techniques.

Optimisations and scheduling after loop peeling may change the characteristics of the

loop, so it is not possible to know exactly how much to peel a loop. The loop peeling

selection heuristics should be such as to not make a hyperblock useless by too many peels,

causing more operations to saturate the processor resources, or too few peels causing the

recovery loop to be invoked more often.

The following heuristic, which is based on work by the IMPACT compiler group [August,

19961, provides a reasonable number by which to peel the candidate loop. In this heuristic

the number of operations in a peeled loop must be less than a specified value. This will

help to estimate the resource usage of the peeled loop. Also, there is an upper bound on the

number of peels. Profile information is also used to estimate the number of invocations for

the recovery loop and the efficiency of loop peeling.

4.5 Instruction Scheduling

Instruction scheduling is used to rearrange the sequence of operations so that the execution

of the longest sequence of operations can be started as soon as possible and to increase

the number of concurrent operations for execution. Scheduling is an NP-complete problem

[Dewitt, I976], and obtaining an optimal solution for all cases is not possible. Therefore, it is

attempted to find a nearly optimal solution having regard to dependencies among operations

and the available resources in the target architecture.

Scheduling algorithms are based on the nature of the control flow graph that they can

schedule [Rau and Fisher, 19931. Algorithms that can only schedule a single acyclic basic

block are called local scheduling algorithms. Algorithms that schedule operations across

several basic blocks are known as global scheduling algorithms. These algorithms utilise in-

formation about the direction of conditional branches, which come from previous execution
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profiles and heuristics.

Local scheduling causes the execution time of each basic block to be nearly optimum.

However, this does not necessarily cause the execution time of the entire program to be

nearly optimum, because the processor waits at each branch until all operations before it are

in execution. Global scheduling is able to rearrange operations from different basic blocks

towards a nearly optimum scheduling for the program.

In this section, issues concerning the scheduler in the EVA VLIW compiler are discussed.

Figure 4.10 shows the basic parts of the scheduler.

optimised code

scheduled code

Figure 4.10: General structure of the scheduler

4.5.L Dependency Representation

Dependencies among the operations in the program are often represented by an extended

directed acyclic graph. Each operation may only be dependent upon the operations preceding

it, resulting in the acyclic nature of the graph. Nodes in the dependency graph (DG) represent

the operations that are to be executed in order to perform the semantics specified in the source

program. Usually, additional information is included in each node to identify both the fields

needed and the resources used and defined by the operation. This provides all information

needed by the scheduler at each node.

Flow dependencies (RAW), anti-dependencies (WAR) and output dependencies (WAW)

Muchhß
Model

Resoufce
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are marked on DG edges. Of these three types of edges, only flow dependency edges are

necessary to keep the program semantics. Output and anti-dependencies are the result of

reusing processor resources. The removal of these dependencies has a large impact on the

resulting schedule. Resource binding should occur as late as possible to reduce this impact.

Control dependency edges indicate the ordering constraint between a branch operation and

the operations before and after it. Other types of edges such as constraint edges based on the

adopted speculation model may be added to enforce some restriction of operation movement

with respect to each other. Generally, all the required constraints regarding the operation

scheduling are summarised in the dependency graph.

4.5.2 Resource Management

Resource modelling is employed to check for resource conflicts during instruction schedul-

ing. Two approaches have been used in compilers for this purpose. One method looks

backward over already scheduled code when an operation is considered for scheduling in the

current cycle. To perform this task, a list of scheduled operations is maintained to find the

cycle in which the operations were issued. To schedule a new operation, this list is checked

to find any resource conflict between the new operation and every previously scheduled op-

eration. Therefore, it is required to do several checks prior to scheduling each operation,

resulting in a slow scheduling process. Also, the implementation of this type of resource

modelling is dependent on the target processor implementation.

The second method looks forward over the resources which are already dedicated to

the scheduled operations. In this method, the pipeline of the processor is simulated by the

compiler. A bit matrix referred to as reservation table is maintained in each future cycle and

is checked against the resources already committed in the current and future cycles when

scheduling a new operation. The size of the reservation table is proportional to the number

of resources and the length of the longest pipeline. Every check for a resource conflict

needs an AND operation on bit matrices. When the operation can be scheduled another

OR operation is needed to update the bit matrices. Also, the required storage space for the

reservation table is large. Some techniques have been introduced to overcome the large space

problem [Eichenberger and Davidson, 1996,Gyllenhall et aL.,19961, but checking a resource

conflict is still a bit-matrix operation.

Other techniques employ finite state automata [Müller, I993,Bala and Rubin, 1997] in
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order to increase the speed ofresource conflict detection through a fast table lookup. These

methods have the advantage that the finite state automaton is built only once for a given

processor implementation. A lookup into the automaton transition table indicates if there is

a legal state transition and thus the candidate operation can be scheduled.

As the EVA has a relatively simple hardware complexity in comparison to out-of-order

superscalar processors, we employed a technique similar to the reservation table. Two re-

source description files are defined for the processor. The first one describes the resource

group used by each operation. The second file defines the processor resources and indicates

the relative cycles in which these resources are used.

4.5.3 Scheduling Process

Figure 4.11 shows the main steps of the scheduling process. These are described in more

detail in the following sections.

// Scheduling main steps

read machine mod.el specification files and construct the required datø structures

for each procedure

identify scheduling regions (e.g. hyperblock, superblock or a single basic block)

for each scheduling region

construct the dependency graph

p erform list s c heduling

convert the speculntive operatians into their non-trapping version

write the new procedure

Figure 4.1,L: Main steps of scheduling

Dependency Graph Generation

Figure 4.I2 indicates the basic algorithm to construct the dependency graph (DG). In addi-

tion to the data dependency edges between nodes in the DG, constraint edges are added to

maintain program correctness and impose the required restrictions on operation scheduling.

In our scheduler, control transfer operations are not allowed to be reordered, so constraint
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edges are added between them. Also, control dependency edges are included from operations

above a branch (or subroutine call) to the branch (or subroutine call), and from the branch (or

subroutine call) to the operations below it if their destination registers are in the live-out set

of the control transfer operation. To prevent illegal speculative code motion, other constraint

edges may be added depending on the underlying speculation model. In all these cases, the

predicate-sensitive data flow analyser is queried to determine the required information (such

as liveness).

At first, memory dependency edges from loads to stores, stores to loads, and stores to

stores are included if there is a real or ambiguous dependency between them. Dependent

store operations are not allowed to be reordered. However, other memory dependency edges

may be modified if a run-time memory access disambiguation mechanism (such as the mem-

ory conflict buffer described in section 2.3.2) is provided.

In order to perform scheduling for the memory conflict buffer (MCB) [Chen, 1993,Gal-

lagher, 19951, a check operation (check-br) is added immediately after each load operation.

Since the source operand of the check operation is the destination operand of the coffe-

sponding load, a dependency edge is added from the load to the inserted check operation.

Then, ambiguous dependencies between the load and previous stores are removed. This is

performed for only a limited number of stores to prevent more register pressure and reduce

the chance of false conflicts [Gallagher, 1995]. Control dependencies which exist for the

load are added to the check operation too. Figure 4.13 shows an algorithm to modify the

dependency graph to prepare for MCB scheduling.

At scheduling time, if the load is not scheduled above any stores upon which it was de-

pendent, the corresponding check operation is removed. Otherwise, the load is converted to

a pre-Ioad and the required correction code is generated. The correction routine includes the

load and all operations dependent upon it. Meanwhile, the compiler makes sure the operands

which are used in the correction routine are not destroyed. The correction routine branches

to tail duplication code as it is not allowed to jump into the hyperblock [Gallagher, 1995].

Later, after scheduling, some optimisation can reaffange those jumps to a more appropriate

position in the code.
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for each operation <opL> in the scheduling region

create a node in the dependency graph

ødd dependency edges (RAW, WAR, WAW) to the previous operations

if <opl> is a memory access operation then

// ad.d memory constraint edge

if <opl> is a store operation then

for each previous load or store <op2>

if there is a real or ambiguous dependency between <opl> ønd <op2> then

add (MEM) edge from <op2> lo <opl>
else //for loads

for each previous store <op3>

if there is ø real dependency between <ap3> and <opL> then
a.dd (MEM) edge trom <op3> to <opl>

else ifthere is an ambiguous dependency between <op3> and <opl> then

add (MEM-A) edge from <op3> to <opl>

ú <opl> is a control transter operation then

tor each non controltransfer operation <op4> above <opL>

if dst of <op4> ß in the live-out set of <opL> then

add constraint edge (CTS) Írom <op4> to <opl>

for each previous control transþr operation <opS>

il <opL> is a control transfer operation then

// control transfer operations are not allowed to be reordered
add constraint edge (CTR) from <ops> lo the <opl>

else
itdst of <opl> is in the live-out set of <opS> then

add constrøint edge (CTS)from <opS> to the <opl>

RAW, WAR, WAVy' : Data dependencies.

CTR : Control dependency between control transfer operations.

CTS : Cont¡ol dependency between a control transfer a¡d a Don-control trarsfer operation.

MEM : Real memory dependency betweeD memory access operations.

MEM-A : Ambiguous memory dependeucy between memory access operations.

Figure 4.122 Basic algorithm for dependency graph construction
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// Input: dependency graph ofthe schedulingregion
K : the parønteter to lùnít data ovcr-speculatiott.

for each operation <op> in the scheduling region

il <op> is load and has ambiguous Ínemory ilependency edge (MEM-A) then

insert an appropriate check-br after <op> in the operation list

add a new node to the dependency graphfor check-br

add control and memory dependencies of <op> tor check-br

add RAW dependency from <op> to check-br

retnove dependencics of <op> from K preceding slores above it with (MEM-A) edge

Figure 4.13: Algorithm to modify the dependency graph to prepare for MCB scheduling.

List Scheduling

In most instruction schedulers a technique called list scheduling is employed to pack in-

dependent operations to be executed concurrently [Beaty,IggI,Bringmann,l995l. A list

scheduler constructs the schedule based on the priority of each operation. List scheduling is

relatively easy to implement and has been shown to produce good results in the presence of

good heuristics [Davidson et al., 1981].

After building the dependency graph, the earliest issue cycle for all operations is cal-

culated. In our list scheduling algorithm, two lists are used. These are candidate list and

scheduled list. After prioritising all operations in the dependency graph, operations whose

earliest issue cycle is less than or equal to the cuffent cycle are placed in the candidate list.

The candidate list is sorted from highest to lowest priority.

In each cycle, the candidate list is examined. If the operation is not dependent on sched-

uled operations whose latencies are not fulfilled, or on other unscheduled operations, it is

considered as ready for scheduling. Then the resource manager is queried. If the resource is

available the operation is scheduled. Otherwise, the earliest issue cycle of the operation and

all other operations dependent upon it are incremented. When all operations in the candidate

list are processed, the current cycle is advanced by one. The scheduling terminates when all

operations in the DG are scheduled. Figure 4.14 shows the basic scheduling algorithm.

Due to resource limitations, to select the best ready operation to schedule in each cycle,

these operations should be prioritised. Dependency height is often used for this purpose. In
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// Input: Dependency Graph (DG)

P rio r i.ty c alc ulatio n alg o rit hm

// Output: scheduled_list

Calculate the earliest issue cycle for each operation in the DG

Prioritise operations in the DG based on the input algorifhm
current_cycle = 0
candidate-list and sched.uled-list are empty

do

| / exEracE csndl.date operations

for each unprocessed operation <op> in the DG

if earliest-issue-cycle ol ap> <= cuftent-cycle then
append <op> to candidøte_list
set <op> øs processed

/ I grj-orlEiEe candidate opêrat,Lona
sort candidate-Iist based on priority

I / Droceaa ca¡rdidaÈe operatsiona

for eøch operation <op> in candidate-list

iî ap> does not have dependency & resources are øvøilable then
append <op> to scheduled-list (ap>, cycle, issue-slot, speculatíveJag)
updøte the state of the resource manager
re mo v e <o p> fr o m c atu d.idate _list

else
increment earliest-issae-cycle ot<op> by one cycle
up dat e e ørlie st 

-is 
s ue 

-c 
y c le of o p e r qtio n s de p e nde nt up o n <op>

ø.dvance cunent_cycle by one cycle

while non-scheduled ap> left

Figure 4.14: Basic scheduling algorithm
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path-oriented scheduling schemes such as superblock and hyperblock scheduling, which rely

on profile information to select the best paths to be included in the scheduling region, it is

important to reduce the impact of changes, due to differences in assumptions made for profil-

ing and what happens at the execution time, on performance. When the run-time behaviour

of the scheduled code is different from what was assumed during scheduling based on profile

information, the overall performance may degrade. In addition, the usefulness of specula-

tion is dependent upon the accuracy of profile information. Speculating an operation above a

frequently taken branch may delay the execution of the branch resulting in performance loss.

Fisher [Fisher, 19931proposed a heuristic called speculative yield in order to measure

the effectiveness of speculating an operation by considering branch probabilities. It has been

used with the dependency height to calculate the priority of each operation for superblock

scheduling [Bringmann, 1995]. In Bringmann's work priorities are calculated statically once

for each operation x before list scheduling using the following equation.

n

Pri,ori,ty,:l(Prob¿x (MarLT +7 - LT")) (4.1)
i=1'

Prob¿ is the probability of exit¿ (branch¿). n is the number of exits in the superblock or

hyperblock region. LT, is the late time of operation x with respect to exit¿. A late time

for an operation is the latest time that an operation can be scheduled without delaying an

exit [Deitrich and Hwu, L996]. MaxLT is the maximum late time in the dependency graph.

In Bringmann's algorithm,late time is calculated based on the dependency height. How-

ever, not considering resource usage may reduce the effectiveness of priority calculation. For

this purpose, we modified this algorithm so that the resource restrictions can be taken into

account. We calculate two late times for each operation for an exit. These are based on de-

pendency height and resource usage. The maximum of two late times is used as the late time

in 4.1. MaxLI is the maximum late time considering the dependency graph and resource

usage. Figure 4.15 illustrates our algorithm, which we refer to as the modified static priority

calculation algorithm. In this algorithm, late times with respect to resource limitations are

calculated through considering issue-width, type and number of functional units in the target

processor.

Deitrich and Hwu proposed a heuristic, which is referred to as speculative hedge to cal-

culate priority for unscheduled operations dynamically [Deitrich and Hwu, 19961. In their

algorithm, which we refer to as the dynamic priority calculation algorithm, first a critical
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// lnput: dependency graph (DG)

determine dependecy heightfor øll operations in the DG

for each exil, (branch) in the scheduling region

calculale late time (LTI) regarding dependency height in the DG

calculate late time (LT2) regarding rcsource restrictions

LT. = Max (LTL, LT2)

MaxLT = Max (L\, LT2,..., LT j)
for each operation <OP> in the DG

tor each exit,
calculate LTr, .

priorþ. = prob, * LTr, ,

Figure 4.15: Modified static priority calculation algorithm.

need for each exit is identified. A critical need is related to the dependency height or any

processor resource limitation. In this way, this algorithm takes resource limitations into ac-

count to prevent delaying of exits unnecessarily. Operations \ilhich result in earlier retirement

of more branches (exits) are assigned a higher priority. This is calculated by considering pro-

cessor issue width, availability of branch functional units and late time of operations ready

to schedule. This calculation is performed in each scheduling cycle. It was shown that for

SPEC CINT92 benchmarks, the dynamic priority algorithm improved the performance how-

ever, the compile time is 267o to 49Volonger than the static Bringsmann's algorithm [Deitrich

and Hwu, 19961.

In hyperblocks, the number of branches is much lower than in superblocks. Therefore,

it seems the performance advantage of using a dynamic algorithm cannot justify large com-

pilation time. We use the modified static algorithm to calculate operation priorities. Experi-

mental results are presented in chapter 5.

4.6 RegisterAllocation

Register allocation is the process of assigning the best possible physical registers among

those provided by the target architecture, to the virtual registers (and possibly variable sym-

bols) in the intermediate code, Optimal register allocation is an NP-complete problem lSethi,
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19751. Early techniques developed for this purpose attempt to approach the optimal solution

for a single procedure [Chaitin, I982,Chow and Hennessy, 1984, Briggs, 1992]. Recently,

inter-procedural allocation techniques have also been studied lKurlander, 1996].

Our register allocator uses one scheduling region (hyperblock, superblock or simply a

basic block) each time for register assignment while considering software conventions for

register usage on MIPS-based systems. The register set of the processor is divided by soff

\ryare convention into two different classes referred to as caller-saved and callee-saved. This

may reduce the procedure call penalty at the expense of more complexity in the register al-

location. In the EVA, the general-purpose, floating-point and predicate registers are divided

into these classes.

To perform register allocation, the target machine registers are classified into different

register banks. Each register bank is identified by the type of data and usage convention

(such as integer callee-saved). Similarly to Chaitin's work lChaitin, 1982] and the IMPACT

compiler register allocator [Hank, 1993], we consider virtual registers for the allocation pro-

cess. The allocation process assigns a location from an array of n registers to each virtual

register. The index of the array can be considered as an abstract name for the register. Later,

in the final phase, a proper physical register is assigned to each element of this array.

Basic steps of the allocation process are live range construction, interference graph con-

struction and graph colouring, which are described in the following sections.

4.6.L Live Range Construction

Live ranges indicate where a virtual register is live. For predicated code, it is necessary to

perform liveness analysis by considering predicate relations in order to avoid conservative

register allocation and more spill code generation. A study by Gillies and et al [Gillies

et al., 19961shows the importance of a predicate-aware register allocator. Predicate-sensitive

analysis reduces register pressure and allows more efficient register allocation.

Live ranges are constructed for the selected region (basic block or a hyperblock). First

a partition graph (as described in section 4.2.1) is constructed. Then, liveness information

is determined. The live range of a virtual register is constructed by applying definition-use

analysis on each operation.
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4.6.2 InterferenceGraph Construction

The interference graph is used to take into account the relations among the virtual registers

for the purpose of register assignment. The interference graph consists of one node for each

live range. An arc joins two live ranges if they interfere. The importance of using predicate-

sensitive analysis in interference graph construction is indicated in Figure 4.16. As this

Figure shows, it seems at first that there is interference between the live ranges of virtual

registers v2 and v3. However, predicates pI andp2 are disjoint. Therefore, the live ranges of

v2 and ui do not interfere. So, both of them can be assigned to the same physical register.

plt
move
move
add
sub

p2(UN), pI(UC), v1, 10
v2, 5 (pI) -r
v3, 2 (p2) ,21

v4, v2, vI (pI) I
v4, v3, vl (p2)

Figure 4.162 An example of non-interfering live ranges due to predicate-aware analysis.

The number of physical registers required is dependent upon the number of nodes in

the interference graph. Some transformations may be used to reduce the size of the inter-

ference graph. A process called as coalescing [Briggs, 1992] is performed to merge two

non-interfering live ranges, which are the source and destination of copy operations, into

one live range.

As was mentioned before, we perform register allocation for a hyperblock or a basic

block. Figure 4.17 illustrates the algorithm for interference graph construction. Predicate-

sensitive liveness analysis using the partition graph for each scheduling region is performed.

In this process, liveness information is combined conservatively at the boundaries of regions

to reduce the complexity (as shown in Figure 4.18). This means that considering two regions

Regt and Reg3,liveness under predicate p, in Reg3 is promoted to the liveness under the

'true' predicate at the boundary.
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// Inpttt: sclrcduled regi.ons (in the procedure)

for each scheduled region (SR)
construct the pred.icate partition graph

perform liveness analysis for the procedure

for each SR
dete rmi ne the liv e - o at informatio n (liv e n e s s - s et )
for each operation in the SR in backward order

q = quaffiing (or guard) predicate

for each dst operand (defl of the operation

for each virtual register (vr) in liveness-set
p_set = set of predicates under which vr is live
for each predicate p in p_set

if (p and q are not disjoint )
addedgefromdef to vr

update liveness-set

for each src operand ofthe operation
update liveness-set

Figure 4.172 The algorithm to construct the interference graph.

Similar approximations are performed in the predicate-aware register allocation method

proposed by Gillies and his colleagues [Gillies et al., 1996]. In their method, the partition

graph is constructed for the entire procedure by considering all predicates in the procedure.

To employ the conventional bit vector data flow analysis, an affay of bit vectors is created.

The size of the array indicates the number of virtual registers in the procedure. The size of

the bit vectors are based on the number of predicates in the procedure. The bit vectors are

referred to as the basis. Then, the basis of basic blocks in the CFG are combined based on

the required scheduling region. However, only some of the predicates (depending on the size

limit of the basis) are considered in the analysis and the effects of the rest are approximated.

The size of the bit vectors in our implementation is the maximum number of predicates in

the scheduling regions. This is less than the total number of predicates in the procedure. The

approximation in our case is the promotion of predicates in the liveness information at the

boundaries of the regions if necessary.

After performing liveness analysis for the procedure, each scheduling region is traversed

backwardly to make nodes in the interference graph and apply the effect of each operation on

the liveness information. The updating of liveness information is illustrated in Figure 4.19,
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RegI

vI
live uruler lrue predicøle

Re92

v1..
ltt'e utrteÌ p,

Reg3

Figure 4.18: Predicate promotion to approximate the liveness of a virtual register at the

region boundaries.

which gen/kill scheme represents generation and destroy of live values. This is based on

Johnson and Schlansker's work [Johnson and Schlansker,1996] and the EVA architecture.

add r7, 12, 70 (p1)
gen : 12 under pl , pI under true predicate

kill : rI under pI

pge p2(UN), -, 13, I (p1) -'-\

pge p2(ON), -, 13, I (pI) -''-\

gen : 13 & pI under lrue predicate

kill : p2 under true predicate

gen : 13 under pI , p1 under lrue predi.cate

kill : p2 under (r3 == I) . pl *

* ¡r3 == 1¡ . pI meøns inteßecl¡on ol synbob (r3 == 1) and pl in the pødilion grøph.

Figure 4.192 Liveness update in the presence of predicates. Each type of operation has a

different genlkill scheme for the liveness.

4.6.3 Graph Colouring

The purpose of graph colouring is to assign colours to graph nodes so that adjacent nodes

have different colours. This approach is employed in register allocation to assign n physical
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registers of the target architecture to rn nodes in the interference graph [Chaitin, 1982, Chow

and Hennessy, 19841. When ffi ) fl, there are not enough physical registers available for all

virtual registers. In this case, some registers are spilled. Spill operations are inserted at each

definition and use of the virtual register in the live range. The spill cost is the time required

to execute the spill code.

To reduce the spill cost, nodes in the interference graph are prioritised. The priority is

used to determine the virtual register that is to be assigned next. Depending on the number

of subroutine call operations in the live range, a register is selected from the caller-saved or

callee-saved convention. To control the amount of spill code, live ranges with a few or no

subroutine calls are assigned to the caller-saved register. For live ranges with more subroutine

calls, the callee-saved registers are used. In this case, spill code is needed when the callee

routine uses those registers. Two values are calculated, which are referred to as caller-faclor

and callee-factor,based on the spill cost in order to make a decision to use a caller-saved or

a callee-saved register. The spill cost and the priority are calculated as follows [Hank, 19931.

k

spi,ll-cost, : l(def ,i * use¿) x w¡ - PF (4.2)
i:7

This equation determines the spill cost of virtual register v. k is the number of operations

in the live range. def¿ is 1 if operation i defines v; otherwise, it is 0. If v is a source operand

of the operation i, use¿ is 1; otherwise, it is 0. w¿ represents an estimation of the execution

frequency of operation I based on the execution profile. We use PF (predicate effect factor),

which represents the number of disjoint predicates of defs and uses in the live range. For

unpredicated code this would be 0.

The caller-factor and callee-factor for a live range are defined as follows.

caller-f actoru: spill-cost, - call-wei,ght x leaf x K¡ (4.3)

callee-f actor, : sp'ill-cost, - (f n-wei,ght -l 1) x Ks (4'4)

In equations 4.3 and 4.4, K¡ and Ks are the cost factors for caller-saved and callee-

saved respectively. Kr and Ks are processor dependent. The call-weighr is the sum of the

execution frequency of any subroutine call in the live range. The parameter leaf is 0 when the

current subroutine calls another subroutine, otherwise it is I. The fn-weight is the execution

frequency of the current subroutine.
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Equation 4.5 shows how priority for a live range is determined and was adopted from

[Hank, 19931.

pri,ori,ty,: t!#Ë (4.s)

N is the number of operations in the live range. So, smaller live ranges are given a higher

priority. The significance of spill cost in calculation of the priority is reflected as power of 3

in equation 4.5.

After each virtual register is allocated to a location in the array of registers (or possi-

bly spilled) in the register allocation process, the elements of this array arc mapped to the

physical registers corresponding to a particular bank. Finally, the VLIW assembly code is

generated.

The spill cost and the priority calculation schemes for a live range that we use are similar

to the IMPACT register allocator [Hank, 1993]. However, we modified it to consider the

impact of the predicated code, which was not available in the IMPACT register allocator. We

added the predicate effect factor (indrcated as PF in equation 4.2), to consider the number

of disjoint predicates of defs and uses in the live range. We do not expect our predicate-

aware register allocator to be as efficient as the method presented in [Gillies et al., 1996)

in considering the effects of predicates in register allocation. This is because we consider

predicates only in our scheduling region, which is the scope of register allocation, and pro-

mote predicates outside the regions, while in [Gillies et al., 1996], the aim is to consider all

predicates in the procedure where practical. As the scope of most optimisations (especially,

ILP optimisations) in our compiler is a hyperblock, it is expected that register allocation to

be effectively performed for the EVA by our method.

4.7 Summary

In this chapter, we described the design and implementation of a VLIW compiler for the

EVA. No experimental or commercial compiler was available to capture the requirements of

our research based on the characteristics of the EVA architecture. 
'We employed state-of-the-

art techniques to implement a suitable compiler for the EVA.

This compiler is based on the SUIF infrastructure, which includes SUIF and machine

SUIF (machsuif) library and passes. The front-end, which converts a C program into a
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RISC type SUIF intermediate code, is from the SUIF system. We implemented the back-

end including the code optimiser and generator. We used some algorithms mostly from the

research of the IMPACT and FIP lab compiler groups to implement the back-end.

The EVA provides architectural features for predicated execution. Therefore, its com-

piler should generate predicated code. This is achieved through employing hyperblocks. A

hyperblock is built through selective if-conversion of the conditional branches in the selected

region. The control transfer information is kept by the generated predicates. The presence of

predicates increases the complexity of the compiler. It is also necessary to perform predicate-

sensitive data flow analysis in order to optimise and schedule operations efficiently. This also

affects the final step of code generation, which is register allocation. Neglecting the relation-

ship among the predicates reduces the quality of the code and increases register pressure.

These effects were considered in the implementation of the compiler for the EVA and we

developed the required tools for this purpose. All phases in the back-end (after forming

hyperblocks) work on the predicated code.

After performing a group of classical and ILP optimisations including predicate-specific

optimisations, code generation is performed. This step generates the VLIW assembly code

after performing operation scheduling and register allocation.

The EVA compiler is the first VLIW compiler based on SUIF infrastructure. Our major

contributions in design and implementation of this compilet aÍe as follows. Currently, SUIF

and machuf libraries do not have specific tools to support predicated execution. We have

developed the required tools for our compiler. The libraries and new passes are described in

appendix A. We proposed an algorithm to calculate the priority of operations in the schedul-

ing process. It considers both the dependency height and resource usage to calculate the

priority. Also, an algorithm for predicate-sensitive register allocation for hyperblocks was

proposed. It considers a hyperblock as the scope of register allocation and takes the effects

of disjoint predicates into account for register assignment.
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Chapter 5

Experimental Evaluation of the EVA

Compiler

Performance evaluation of an ILP processor and its compiler is a complex process and re-

quires a systematic approach. Depending on the stage of design, the performance model may

use varying levels of abstraction. In this thesis, architectural performance is considered, so

we use the total number of execution cycles as the performance measure. This depends on

both architectural features and the target processor workload or benchmark programs.

In this chapter, first different approaches to performance evaluation of ILP processing are

reviewed. Some experimental results to indicate the capability of the EVA VLIW compiler

in extracting ILP are presented. Also, experimental results for the modified static priority

calculation algorithm, which was described in section 4.5.3, are presented.

5.L Simulation Techniques for ILP Processing

As the complexity of processors and their compilers have increased, design and analysis

of them require increasingly complex models and robust simulators, The simulator software

takes the program compiled for an experimental target machine and executes it on an existing

host machine. The complexity of the simulator is based on the performance evaluation cri-

teria. Information about the behaviour of a program at run-time is captured by tracing tools.

The accuracy and level of detail of this information depends on the analysis technique em-

ployed. For example, to study memory systems, address traces are collected. The dynamic

number of operations is used for optimisation studies, and branch outcome frequencies drive
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branch prediction analysis tools.

Direct simulation of detailed functional and pipeline timing of the target machine requires

several thousands of instructions of the host machine (which runs the simulator) to interpret

the behaviour of each T.arget machine instruction [Bose and Conte, 1998]. To increase the

simulation speed, a decoded execution trace of the program is fed into the simulator. Fig-

ure 5.1 shows a diagram of the traditional trace-driverz simulator, which was used by Smith

and his colleagues [Smith et al., 1989]. First, the benchmark program is executed on the

host machine to generate a trace file, which captures information such as target address of

branches and their direction, memory access addresses, operand values for selected opera-

tions, and the contents of the PC. The trace decoder uses the trace and object files to generate

the appropriate input for the simulator. Details of the information provided by the trace file

depends on the type of experiment. This simulator models only the cycle-by-cycle pipeline

flow of the target machine. In some cases, event-driver¿ simulation can be used [Bose and

Conte, 19981.

rurts on hosl rtt¿tclriilc

Figure 5.1: Basic diagram of a traditional trace-driven simulator

A trace-driven simulator is faster than the direct interpretation method, because it does

not require the processing of data values to maintain the machine state and for this purpose,

source file object file
compiler

and linker

i¡utrumentation
lor høee

generation

trace fiIe
trace

decoder

simulator

pfocessor
and

memory
models
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it relies on the execution trace information fed into it.

Nevertheless, trace-driven simulation requires a long time, which often limits the num-

ber of design alternatives that the researcher can consider. It may also need a large disk

area to save execution traces. To reduce these problems, statistical trace sampling has been

employed [Conte and Gimarc, 1995]. In this method, simulation results are produced using

a sample representative of the entire workload. The method employed to collect the sample

is critical. Statistical methods are used to predict the accuracy of the results. The use of

statistical trace sampling methods on SPEC92 benchmarks indicated the maximum relative

error in the predicted performance to be less than3%o [Conte and Gimarc, 1995].

A potential source of error in this method is the state-loss problem [Bose and Conte,

1998]. This occurs because, at each sample point of the trace, the state of the simulated

machine is unknown, Therefore, the state should be built before applying the next trace

sample. For this purpose, the beginning part of a trace sample can be used only to build the

state. The next paft of the trace sample is used to gather statistical performance information.

Conte and et al [Conte et al.,l996b] presented techniques for calculating confidence intervals

to reduce this problem.

Another approach which is referred to as execution-driven simulation [Covington and

et al., 1988, Bose and Conte, 19981 or compiled simulation [Young, 1998] is faster than

trace-driven simulation. It is more efficient when the instruction set of the simulation host

machine is the same as, or very similar to, that of the machine being simulated. This method

is based on shade lCmelik and Keppel,1993), which is an instruction-set simulator to gener-

ate execution traces to be used by analyser code. It dynamically cross-compiles executable

code for the experimental machine into an executable code that runs directly on the host

machine. Analyser code can be called by shade, which can determine the type and size

of the required tracing information. Shade lacks timing-level simulation [Cmelik and Kep-

pel, 19931. An extension of this approach has been used for simulation of the IBM VLIW

architecture [Moreno et al., 1996, Altman et al., 1996].

Figure 5.2 indicates the basic diagram of an execution-driven simulator. It consists of

two main parts, the translator and the cycle timer. The translator converts the assembly

code from the target experimental architecture into the host processor executable code. The

translator also generates the instrumentation code, which includes counters at selected points

in the code and calls to the cycle timer, and generates descriptors to indicate when and how
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source file

target processor

assembly file

target processor
ínstructio n de s críptor

pracessor
model

Figure 5.2: Basic diagram of an execution-driven simulator.
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resources are used by the program. Then, cycle by cycle simulation is performed using the

output of the translator with alternative memory and processor models.

A third approach which is simpler and less accurate than the two previous methods can

be used to estimate the execution time of an application based on the static code schedules

weighted by dynamic execution frequencies obtained from profiling. It was reported that the

accuracy of results is better than 957o in comparison with simulation results (generated by a

trace-driven simulator) assuming perfect caches [Bringmann, 1995, August et aL.,19971.

5.2 ExperimentalResults

In this section, some experiments performed to evaluate the capability of the EVA compiler

at extracting ILP are described and results are presented. These include measurement of

speedup and code size changes for the basic structure of the compiler.

5.2,L Methodology

To evaluate the perforrnance improvements quickly, we use the third method described in

section 5.1, which is based on execution profile information and static code schedules. Per-

fect cache models are assumed for both data and instruction caches. The possible effects

of non-prefect cache on performance are discussed in section 5.2.4. More accurate results

with a detailed target processor model and non-perfect cache model can be generated by

a complex simulator (such as an execution-driven simulator) but, this requires a long time

to implement. As mentioned before, the accuracy of results in our case is more than 957o

in comparison with results generated with a simulator, assuming perfect caches. This is

because, a VLIW processor can be considered similar to the in-order issue processor used

in fBringmann, 1995] and [August et al., 1997]. However, we use different sets of prof,le

information for proflle-based compilation passes and performance estimation to increase the

accuracy. We used train inputs in the former and reference inputs in the latter for the SPEC95

benchmarks.

Our work mainly considers performance improvement for general-purpose applications.

Thus, as is common practice in architecture research, SPEC95 integer benchmarks and some

common Unix utility programs are used as the workload in our experiments. Tables 5.1 and

5.2 indicate the benchmark set and the inputs used for profiling. The results are generated
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Benchmark Group Description

099.go

l29.compress

130.1i

132.ijpes

134.perl

l4T.vortex

cmp

grep

yacc

wc

SPEC95 - INT

SPEC95 - INT

SPEC95 - INT

SPEC95 - INT

SPEC95 - INT

SPEC95 - INT

Unix utility

Unix utility

Unix utility

Unix utility

The game of GO

File compressor

)0ISP Interpreter

JPEG encoder

Interpreted Programming Language

Obj ect-oriented database

File comparison

Pattern search

Word count

Parser generator

Table 5.1: Benchmark programs used in our experiments.

with three different machine models of the EVA VLIW architecture (chapter 3), which are

shown in Figure 5.3.

INT MEM FP INT/BR

FP -- Floating-point ALU BR - Branch Unit

Figure 5.3: Issue slot configuration of three machine models

The number of functional units and the affangement of the issue slots in the VLIW in-

struction word for each model are based on the reports of average dynamic frequency of each

operation type in typical workloads [Jourdan et al., 1995]. Table 5.3 indicates the assumed

latency of operations, which are similar to MIPS R10000 processor [Yeager, 19961.

The platform used in our experiment is a multiprocessor supercomputer composed of 20

M4

M6

M8

INT -- Integer ALU MEM -- Memory Port

INT INT MEM MEM FP INT/BR

INT INT INT MEM MEM MEM FP INT/BR
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Benchmark Profiling Data Set

099.go

l29.compress

130.li

132.ijpeg

134.perl

l4T.vortex

cmp

grep

wc

yacc

SPEC train input

SPEC train input

SPEC train input

SPEC train input

SPEC train input (prime)

SPEC train input

g23.c with g25.c (from 099.go)

string "if" from g23.c (099.go)

Postscript file of chapter 3

jv-exp.y from GNU gdb-4.18

Table 5.2: Profiling data set for benchmark programs.

Operation Group Latency

Integer ALU

Load

Slore

Int-Multiply

Int-Divide

Branch

FP ALU

FP Multiply

FP Divide (SP)

FP Divide (DP)

1

2

1

3

9

1

J

3

9

I4

Table 5.3: Latency of operations
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64-bit 200MHz MIPS R10000 processors connected by aL2 Gbyte/sec system bus with Irix

6.2 operating system.

5.2.2 Results

To evaluate the effectiveness of predicated code in the performance of the EVA compiler,

relative dynamic frequencies of different groups of operations and code size increase were

measuredfortheMSmachinemodel. Tables 5.4and 5.5indicatethepercentageof each

group of operations for basic block and hyperblock scheduling respectively. The hyperblock

scheduling is based on the heuristics presented in [Mahlke,1996] which we call IIB1. A

new algorithm called FIB2 is presented in chapter 6 but in this section, results for FIBl are

presented as this scheme is used as the basic hyperblock scheduling algorithm in the EVA

compiler.

The results in Table 5.5 are generated with speculative code motion (both conventional

code motion above a conditional branch and predicate promotion.) The impact of hyperblock

scheduling on the percentage of different groups of operations can be explained as follows. It

is clear that the dynamic number of branches should be decreased as some branches would be

converted to predicate define operations (which are considered as IALU operations). There is

an increase in the percentage of IALU operations as expected. The scheduler tries to schedule

those operations which are on the critical paths and other operations that depend on them as

early as possible. For this reason, load operations are often candidates for speculation when

a mechanism is provided to avoid unwanted exceptions. In the EVA, non-trapping version of

loads are used for speculative loads.

Table 5.6 shows the relative code size after hyperblock scheduling. Combining multiple

execution paths into alarger block, tail duplication and employing speculative code motion

potentially increase the code size. If most operations in a hyperblock are executed when

control is transfered to the beginning of the hyperblock, the impact of tail duplication on

the dynamic number of operations is less as they are not executed often. Speculation causes

some redundant operations to be executed when their effects are nullified later. The number

of operations can be decreased as more optimisation opportunities (such as global variable

migration and loop invariant code elimination) are enabled for hyperblocks.

Figure 5.4 illustrates the speedup achieved for hyperblock scheduling (IIB1) with respect

to basic block scheduling for the three machine models. Speedup is calculated as the ratio
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Benchmark load store IALU branch FP

099.go

l29.compress

130.Ii

I32.ijpes

134.perl

l4T.vortex

cmp

Srep

wc

yacc

20.87

21.36

3r.23

21.35

25.44

2t.36

48.28

2t.t3

30.46

29.8r

6.89

14.59

16.81

3.63

t6.35

t4.27

21.4

9.48

19.22

3.64

58.68

46.71

28.08

58.14

47.68

54.55

13.63

12.5t

26.0t

36.67

13,56

16.74

23.88

r0.28

t0.24

9.8

t6.69

50.88

24.3r

29.88

0

0.6

0

0

0.29

0.02

0

0

0

0

Average 28.32 t2.62 38.32 20.62 0.91

Table 5.4: Dynamic percentage of each group of operations in the benchmarks with basic

block scheduling for the M8 machine model.

Benchmark load store IALU branch FP

099.go

l29.compress

130.li

l32.ijpeg

134.perl

l4T.vortex

cmp

Srep

wc

yacc

r7.32

15.62

23.t3

20.59

20.78

25.42

21.86

22.43

ro.2

22.33

8.01

t2.32

14.64

4.r2

r7.02

9.6t

r.02

9.11

1.31

3.75

64.86

6t.42

44.02

68.04

53.15

58.64

6r.79

47.29

15.77

58.29

9.81

10.1

18.21

7.25

8.35

6.33

9.33

2t.t]
t2.72

t7.63

0

0.54

0

0

0.1

0

0

0

0

0

Average 20.56 8.09 59.38 t2.09 0.64

Table 5.5: Dynamic percentage of each group of operations in the benchmarks with hyper-

block scheduling Gß1) for the M8 machine model.

88



Experimental Evaluation of the EVA Compiler

Benchmark Code size increase

099.go

l29.compress

130.Ii

132.ijpeg

134.perl

l4T.vortex

cmp

Srep

wc

yacc

1.53

1.68

1.18

T.4T

r.29

1.13

0.4r

0.83

1.85

1.35

Average t.266

Table 5.6: Code size for hyperblock scheduling relative to basic block scheduling for the

M8 machine model.

of the number of cycles for basic block scheduling to the number of cycles for hyperblock

scheduling.

As expected, the performance is increased for wider-issue processors. For some bench-

marks such as cmp, grep, and wc larger speedup achieved. This is due to high reduction in

the dynamic number of conditional branches in these benchmarks. In this way, hyperblock

scheduling is more effective in performance increase for these benchmarks.

5.2.3 Results for modified static priority calculation algorithm

Calculation of the priority of operations for scheduling affects the achieved performance.

The results presented in the previous section are based on Bringmann's algorithm to calculate

the priority of operations described in section 4.5.3. We proposed a modified version of that

algorithm (the modified static priority calculation algorithm) to take resource constraints into

account to prevent delaying ofbranches (exits) unnecessarily.

Figure 5.5 indicates the relative improvement in speedup by applying this algorithm. As

the number of branches (exits) are reduced in hyperblocks, the number of operations between

branches increases. Also, more operations contend for processor resources. Therefore, it is

expected that including some aspects of resource usage awareness in calculating the priority
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Figure 5.4: Speedup of hyperblock scheduling with respect to basic block scheduling in the

EVA compiler for different machine models.

2.69
2.56 2.78

flM4 M6 IM8
2,1

2.0

t.9

1.8

1.7

1.6

1.5

t.4

1,3

1.2

1.1

1.0

go compress li rjpeg perl vortex cmp grep wc yacc

flM4 M6 lM8

9Vo

8Vo

'lVo

67o

57o

47o

3Vo

27o

1%

0

go compress li ijpeg perl vortex cmp grep wc yacc

Figure 5.5: Speedup of the modified static priority calculation algorithm'with respect to the

original algorithm.
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of operations would result in a better schedule. The results indicate that this method is more

effective when ILP is limited because of fewer processor resources.

5.2.4 Effects of Non-perfect Cache

The impact of non-perfect caches is greater for wider-issue processors. Cache miss penalty

is increased as the issue rate of the processor increases, resulting in performance loss. This

is because, for the same finite caches, a larger part of the total execution cycles are wasted

due to cache misses.

In order to evaluate the impact of non-perfect caches, we use the following relation to

adjust the cycle count obtained for the perfect cache.

cycle-count¡vp : (c¡¡ * m¡¿ i cw * **) * num-'instrs I cycle-countp (5.1)

cycle-counfp represents the cycle count obtained for the perfect cache. m¡¿ aîd my¡

indicate miss rates for cache read and write. c¿ and c,¡y a.rê miss penalties for read and write

operations respectively. num-instrs is the dynamic number of operations.

Equation 5.1 is an approximation used to obtain cycle count in the case of using non-

perfect caches. For example, in an out-of-order superscalar processor, some part of miss

penalty cycles are covered by executing other operations which are not dependent on the

operation resulted in the cache miss. In our case, which is a VLIW machine, equation 5.1 is

a reasonable approximation.

To generate the results, we use mlcache [Tam et aL.,19971, which is a multilateral cache

simulator to get miss rates. Instruction traces are generated in the appropriate format and fed

into the mlcache. Figure 5.6 shows the impact of finite instruction cache on the performance

of the EVA compiler. A perfect data cache is assumed to generate these results.

Speedup is decreased for all benchmarks with a small cache. The non-perfect instruction

cache effects for hyperblock scheduling can be mainly considered due to code size increase

in a block and changes in the code layout. The number of operations between two branches

(which makes a code block for execution) increases after hyperblock formation through in-

clusion of multiple execution paths and removal of their branches with if-conversion. Also,

speculative operations increase the dynamic number of operations. When the number of op-

erations in a block are higher than can be handled by the underlying finite instruction cache,
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2'17 z.ls

fl sK I 32K I 64K ! Perfect

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

l.l
1.0

go compress li ijpeg perl vortex cmp grep wc yacc

All caches are direct-mapped.

Figure 5.6: Speedup of hyperblock scheduling with respect to basic block scheduling in the

EVA compiler for different instruction caches for the M8 machine model. A perfect data

cache is used.
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capacity misses [Hennessy and Patterson, 1996] increase. If the cache is direct mapped, ad-

ditional collision misses occur. So, it is expected that finite instruction caches have negative

impact on the performance of hyperblock scheduling. For most benchmarks, the perfor-

mance for a 64K direct mapped instruction cache is very close to the case with a perfect

cache.

Table 5.7 indicates the relative normalised speedup with finite data caches. The speedup

for a perfect data cache is assumed 1. A perfect instruction cache is used to generate these

results. Figure 5.7 shows the speedup for this case.

For finite data caches, speculative loads can be a cause of cache misses. Due to the higher

scheduling priority of loads (as a sequence of operations are often dependent on them), these

operations from different execution paths after hyperblock scheduling tend to be clustered,

and in this way data from different parts of memory are requested and more conflict misses

occur. Results indicate that the working data set of benchmarks fit into a 64K data cache,

resulting in little performance loss with respect to a perfect data cache.

5.3 Summary

In this chapter, first different approaches in perfoffnance evaluation in ILP processing were

discussed. In order to generate the experimental results efficiently within an acceptable accu-

racy, we used execution prof,le information and static code schedules to calculate the number

of execution cycles. In addition, the effects of non-perfect caches were evaluated. Experi-

mental results show effectiveness of hyperblock scheduling in the EVA compiler over basic

block scheduling. Also, significant improvement due to ourmodifiedBringmann's algorithm

was achieved. In addition, experimental results indicate that 64K data and instruction caches

produce performance almost equivalent to a perfect memory system, justifying our use of a

perfect memory system in earlier results.
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Benchmark 8K(DM) 16K(DM) 16K(2w) 32K(DM) 64K(DM)

099.go

l29.compress

130.1i

132.ijpeg

134.perl

l47.vortex

cmp

Srep

WC

yacc

0.141

0.826

0.939

0.922

0.871

0.149

0.952

0.989

0.978

0.979

0.9

0.868

0.953

0.958

0.934

0.824

0.99

0.998

1

0.991

0.97

0.91

0.979

0.981

0.943

0.881

1

1

1

1

0.981

0.92t

0.989

0.981

o.9ll

0.918

1

1

I

1

0.989

0.952

0.996

0.994

0.99

0.942

1

1

I

1

Table 5.7: Relative normalised speedup with finite data caches with respect to a perfect data

cache for the M8 machine model. A perfect instruction cache is assumed.

2.76
2.782.64

fl 8K (DM) l6K (DM)

| 32K (DM) E 64K (DM)
I 16K (2w)

I Perfect
2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

l.l
1.0

go compress li ijpeg perl vortex cmp grep wc vacc

DM and 2W represent direct-mapped and 2-way set associative data caches.

Figure 5.7: Speedup of hyperblock scheduling with respect to basic block scheduling in the

EVA compiler for the M8 machine model and different data caches. A perfect instruction

cache is assumed.
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Chapter 6

Partial Path Selection for Hyperblock

Formation

It has been shown that hyperblock scheduling in some cases suffers from perfoÍnance loss in

comparison with superblock scheduling [Mahlke, 1996,August et al., 199]1. The most com-

mon cause of poor hyperblock formation is excessive resource consumption. Paths which

are combined together to construct the hyperblock share processor resources and when the

amount of resource usage is not well estimated, execution time for overlapped paths may

lncrease.

In this chapter, an algorithm is presented for hyperblock formation which considers an

estimation of the resource usage to include partial paths when beneficial.

6.I Issues in Hyperblock Formation

Two issues should be considered in order to generate predicated code at compile-time ef-

ficiently. These are related to when the if-conversion should be applied and what is to be

if-converted [August et al., 19911. Making proper decision with regard to these issues is a

complex process. Figure 6.1 shows two possible strategies for a compiler which generates

predicated code.

In Figure 6.1 (a), if-conversion is applied early in the compilation process. This provides

more opportunities for code improvement, especially employing predicate-sensitive optimi-

sations. In this way, the cost of some optimisations related to conditional branches (such

as branch combining [Mahlke et al., 19951and control height reduction [Schlansker et al.,
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source code

asm code

asm code

(b)

Blocks with shadow represent compile passes whichwork on predicated code.

Figure 6.1: Two possible strategies in a compiler to generate predicated code. (a) If-

conversion before ILP optimisation and instruction scheduling. (b) Combined if-conversion

and instruction scheduling.
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19941) are also avoided [August et al., 199]1. Figure 6.1 (b) indicates another approach,

in which if-conversion and instruction scheduling are combined into one phase. At this

stage, more information about the target processor characteristics (such as resource usage) is

available to the if-converter and this may result in higher performance. However, applying

if-conversion at the time of scheduling increases the complexity of scheduler. Also, it seems

not to be practical to apply predicate-sensitive optimisation techniques at this time due to

additional complexity, so the opportunity for these optimisations is lost.

To decide on what to be if-converted, previous studies especially for general-purpose

applications indicated that selective if-conversion should be employed in order to achieve

higher performance [Mahlke et al., I992b].

As discussed in [August et al., 199]1, optimisation performed after hyperblock formation

may change the code characteristics so that decisions made at the time of hyperblock forma-

tion may no longer result in an eff,cient hyperblock at execution time. Some effects of these

optimisations may be estimated in advance. However, it is not possible to estimate the impact

of all code transformations applied on the hyperblock. For example, optimisations related to

dependency height reduction have different opportunities before and after if-conversion.

6.2 Related Work

Basic blocks in a region are selected based on a heuristic which indicates their usefulness

when included in the hyperblock. In the original work on hyperblock scheduling from the

IMPACT compiler group [Mahlke et a1., 1992b), three features are considered in order to

calculate the usefulness of a basic block for this purpose. These are the size of the block,

its execution frequency and the number of hazardous operations (which limit the applica-

bility of optimisation and scheduling). Smaller and more frequently executed blocks with

fewer hazardous operations have higher priority for inclusion in the hyperblock. Depen-

dency height is added to the heuristic in [Mahlke,1996] to give higher priority to paths with

lower dependency height. The overall dependency height of a hyperblock is the maximum of

dependency heights of all included paths, so the execution of a hyperblock is not completed

until the path with maximum dependency height completes. This has a negative impact on

the other included paths when their execution frequency is higher.

Figure 6.2 indicates the basic steps of the heuristic. The priority of each path is propor-
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tional to its execution probability, number of hazardous operations, and normalised factors

indicating the relative number of operations in the path and the relative dependency height

with regard to the highest priority path. The resource estimation is simple and is proportional

to the target processor issue-width and the dependency height of the path. Including the basic

blocks of a path is considered benef,cial if the path does not have a large relative dependence

height with respect to other included paths.

// Input: c:andidate regiott

// Output: selected 
-bk¡cks

sele cted _blo cks is empty

enumerate all paths in region

calculúe prtority of each path

sort paths based on priority
add all basic blocks ofthe highest priority path to the selected-blocks

for each execution pøth <path>

estimate resource usage for <pøth>

if resource availnble then

if including gaÍh> is beneficial then

add all basic blocks of <path> to the selected-blocks

Figure 6.22 Onginal heuristic for hyperblock formation.

Results presented in [Mahlke, 1996] indicated effectiveness of the above heuristic for a

target processor with regular resources. When this is not the case, perforrnance loss occurs in

comparison with superblock scheduling fAugust et al., 19971. To solve this problem, August

and his colleagues proposed a technique called partial reverse if-conversiorz [August et al.,

L99ll. Figure 6.3 indicates the compilation phases proposed in this approach. To generate

predicated code, aggressive if-conversion is performed in the early phases of the compilation

process. Some of the predication is converted back to control flow at scheduling time through

reverse if-conversion [Warter et a1.,1993]. Partial reverse if-conversion is integrated with the

prepass scheduling.

To apply reverse if-conversion, execution paths in the predicated code should be identi-

fied. A structure called a predicate flow graph (PFG) is used for this purpose. A PFG is a
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Figure 6.3: Compiler structure to adjust the amount of generated predicated code based on

resource usage through reverse if-conversion.
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control flow graph (CFG) in which predicate execution paths are also represented. Execution

paths are determined having regard to the relations among the predicates in the region. These

can be provided through the predicated code analysis techniques discussed in [Johnson and

Schlansker, 1996,Gillies et al., 19961.

To generate the PFG, a path is created at a predicate definition for both 'true' and 'false'

cases. The number of paths in the PFG is proportional to the number of independent pred-

icates with overlapped live ranges. Therefore, a complete PFG has a large number of paths

which might not be practical to implement in some cases. For this reason, it is useful to

create only those paths of the PFG that are required for the specific analysis. For example, in

the approach discussed in [August et al., 199'7], the PFG is generated only for the predicate

considered for reverse if-conversion.

A process called predicate partial dead code removal is applied to eliminate dead code,

like other types of partial dead code elimination [Knoop et a1., 1994].

Partial reverse if-conversion results in separate code segments: the code before the re-

verse if-converting branch, the code removed from the hyperblock through this process, and

the remaining code below the reverse if-converting branch. Using the generated PFG, op-

erations are inserted in the proper code segment. An operation which exists in both paths

is placed in both segments after the reverse if-converting branch. Because of the duplicated

code generated in this process, the code size may increase signiflcantly. A simple technique

was discussed in fAugust et al., 1997] to reduce this problem in some cases.

Predicates to be if-converted are considered from top to bottom in the scheduled order of

their predicate define operations. Three schedules are considered for each candidate predi-

cate to evaluate possible benefits of its reverse if-conversion. These are the schedule without

reverse if-conversion, the schedule of the new hyperblock after reverse if-conversion, and

the schedule of the removed code which is put in a separate block. If the number of cy-

cles of the scheduled code without reverse if-conversion is greater than the combined num-

ber of cycles for removed code, the new hyperblock, and the effect of miss prediction of

the reverse if-converting branch (that is, miss prediction rate * miss penalty) then, the re-

verse if-conversion is beneficial. Generating three schedules to make a decision for reverse

if-conversion increases the compile time. Some methods to re-use previous schedules are

discussed in fAugust et a1., 19971in order to minimise the increase in the compile time.
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6.3 A New Approach

In order to construct a more efficient hyperblock, we improve the heuristic of Figure 6.2

through a better resource estimation for non-regular processors. The complete resource usage

pattern in a processor can be known at the time of scheduling, so if the if-conversion process

is performed before scheduling, resource usage may only be estimated.

Figure 6.4 indicates our algorithm for block selection to construct a hyperblock. First

local scheduling (or basic block scheduling) is performed on the selected region in order

to collect the resource usage information of a basic block. Later, this information is used

to assess each basic block (BB) in an execution path to find out if it would be profitably

included in the hyperblock. This estimation cannot reveal accurate resource usage, as spec-

ulation and predication applied later would change the sequence of operations. However,

since the branches cannot be reordered in our scheduler, and inclusion of each basic block is

based on its control flow predecessor which was selected previously, this method may give a

reasonable estimation.

A parameter which we call hb-factor is calculated for each BB to indicate its value for

inclusion in the hyperblock. It is proportional to the execution probability of the BB and

the number of hazardous conditions. In the current implementation, we use hazatd factor

of 1, when no such conditions exist. Otherlvise, its value is 0.3. This indicates the relative

importance of hazard conditions, which should be considered in the BB selection.

The algorithm uses three lists. BB-queue holds basic blocks that are previously selected

for the hyperblock and their control flow successors, which are candidates for selection.

These successor blocks are added to succ-lisr. Selected basic blocks are inserted in the

selected-BB -list.

The algorithm works as follows. First the head BB of the region is selected. Each selected

BB is placed into BB-queue and selected-BB-llsr. Unprocessed successors of each BB in the

BB-queue are placed into succ-lisl and the BB is popped from BB-queue. succ-lisr is sorted

based on hb-factor. Each BB in succ-list is examined to check if it is beneficial to include it

in the hyperblock. The resource usage pattern of this BB is compared with the record of used

resources of previously selected basic blocks. This information is kept in a structure called

res-usage-record. Adding a new BB to the partially selected path may add a delay on the

completion of the previously included paths. This can be due to the changing of the schedul-

ing priorities at the time of scheduling. Therefore, a pafameter called delay-cycle-count is

q iì'{
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// Input: Csndidate regiott of basic ltkrcks

// Output: list of selected ltasic bktcks for hyperblockfttnnatitttt

Perþrm preliminary local scheduling for each basíc block (BB) in the region

Calculate hb ¿factor for each BB in the region using the following relation:

hb-factor = BB -exec¿rob 
* hazard-factor

selecteil-BB lßt, BB-queue, and succ-lßt are enpty
aùl the first BB (heod BB) of the region to BB-queue

aùl head BB to selected-BB-list
while BB-queue not empty

BB4> = top node of BB-queue

add unprocessed successor nodes of BB4> to succ-lßl
sotl succ-list based on hb-.¡factor

for each BB<x> in succ-list
mark BB<> as processed

selected-BB = NULL
comparc BB resoutce usage with res-usage-record

if no conflict with regard to the specified ilelay-cycle-count then

selected-BB = BB<x>
else if partinl of BB<x> ß beneficial then

move extra operafions of BBcx> to a new BB (BBcy>)

adjust appropriale control edges of BBcx> to BB<y>

selected-BB = BB<>
if selecteil-BB lhen

add selected-BB to selected BB list
adil selecteil-BB lo BB-queue

up dat e r e s 
-us 

age -r e c o rd

Figure 6.42 The block selection algorithm for hyperblock formation
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used to consider this delay. delay-cycle-count indicates the maximum acceptable delay im-

posed on the completion of other included paths. For example, if delay-cycle-counl is set to

1, this means that the candidate BB can be included into the hyperblock if the completion of

other included paths is estimated to be delayed at most one cycle.

If inclusion of the candidate BB does not conflict within the specified acceptable delay

then this BB is selected and added to the selectedlist. In some cases, inclusion of only a

part of the BB can prevent additional delay. If hb-factor of the BB is greater than a threshold

value (0.4 in our implementation), it is considered for partial inclusion . This is performed by

creating a new basic block and moving the additional operations from the selected BB to this

new BB. Control edges are adjusted accordingly. The selected BB is inserted in selected-Iist

and BB -queue. This process ends when there is no basic block in BB -clueue .

Figures 6.5 and 6.6 show an example on how the inclusion of a part of basic block can

be useful.

In Figure 6.5, after selection of BB1, both BB2 and BB3 are candidates for selection.

However, as indicated in their schedule, inclusion of both basic blocks results in a resource

conflict (because of operations 15 and !2). Therefore, after selection of BB2 (as its execution

probability is higher), a part of BB3 is selected and those operations that cause resource

conflict are transferred out of the hyperblock as shown in Figure 6.6.

6.4 ExperimentalResults

The experimental results are generated based on the method described in section 5.2.L Our

approach attempts to include partial paths, when beneficial, with relatively simple resource

usage estimation. To evaluate the effectiveness of this approach, results are presented for

three different machine models. Speedups are relative to basic block scheduling scheme. To

measure the performance improvement, speedup for superblocks (SB), original hyperblock

scheme (Iß1) and our approach (Iß2) are calculated.

Figures 6.J, 6.8, and 6.9 show the speedup results for issue-4, issue-6 and issue-8 ma-

chine models respectively.

As the results indicate, in some cases the performance is less for hyperblock scheduling

(Fß1) compared to superblock scheduling technique. This is due to over-saturation of the

processor resources The performance loss is greater for lower issue processors.
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Figure 6.5: Example of a candidate region for hyperblock formation with local schedules

for the candidate basic blocks.
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Figure 6.6: Constructed hyperblock based on our heuristic

105



Partial Path Selection for Hyperblock Formation
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Figure 6.7: Speedup of superblock (SB), traditional hyperblock (FIB1), and new hyperblock

GIB2) scheduling methods with respect to basic block scheduling for the M4 machine model.
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Figure 6.8: Speedup of superblock (SB), traditional hyperblock (FIB1), and new hyperblock

(Iß2) scheduling methods with respect to basic block scheduling for the M6 machine model.
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Figure 6.9: Speedup of superblock (SB), traditional hyperblock (ÉIB1), and new hyperblock

(Iß2) scheduling methods with respect to basic block scheduling for the M8 machine model.

Applying our heuristic for block selection in hyperblock scheduling improves the perfor-

mance. For those benchmarksllke cmp, andwc, there is no improvement in performance. In

these benchmarks, traditional hyperblock formation method successfully selects blocks on

the main execution path which dominates the total execution time. So, it seems less potential

improvement exists for these benchmarks.

6.5 Summary

In this chapter, the issues in hyperblock formation were discussed. Applying if-conversion to

generate predicated code can be done early in the compilation phase (after classical optimi-

sation in the back-end) or late at the scheduling time when more information about the target

processor characteristics is available. The performance of hyperblock scheduling depends

on the accuracy of resource estimation when the basic blocks are selected to construct the

hyperblock.
'We proposed a new algorithm to overcome the perfoÍTnance loss of the original hyper-

block formation heuristic for non-regular processors. We estimate resource usage through

performing local scheduling before block selection. Also, to avoid delays on execution of
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more frequent execution paths, partial paths are selected in cases where it appears to be ben-

eficial. Experimental results indicate the effectiveness of our approach, particularly for low

issue processors.
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Chapter 7

Supporting Binary Compatibitity in

VLIW Machines

One of the main problems that prevented extensive use of VLIW architectures for non-

numeric programs is lack of object code (or binary) compatibility. As explained in section

3.2.2, this is due to exposing all architectural features to generate code at compile time. In

this manner, new features of a VLIW machine may lead to incorrect results by executing the

code compiled for the old machine.

In this chapter, a new approach to overcome this problem is presented. It is performed

with the help of code annotation provided by the compiler, to reduce the complexity of the

required hardware.

7.1 Related Works

Several software and hardware approaches to overcome the binary incompatibility problem

have been proposed by researchers. Figures 7.1 and 7.2 outline the general methods which

have been used. An overview of research based on these approaches follows.

The first technique is binary translation. An application program which was compiled

for one architecture can be converted to a new code for another architecture through binary

translation. Binary translation does not require the original source code of the application

program. As indicated in Figure 7.I (a), the old object f,le and the characteristics of the

target machine are required for new code generation. This is an off-line approach which

does not affect the run-time behaviour of the processor. This technique has been used for
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Figure 7.L: Outline of software-based techniques to achieve object code compatibility for

different generations of the VLIW architecture. (a) Binary translation. (b) OS-based dy-

namic rescheduling.
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large scale migration of programs from one generation of machine to the next [Sites and et.

al., L993,Silberman and Ebcioglu, 19931.

Binary translation has some advantages over re-compilation of the source code for the

new machine. When the source code is not available or an understanding of the structure

of the source code is necessary for re-compilation, binary translation is preferred. Also, it

is possible to apply some code optimisation techniques at translation time to improve the

quality of the executable code.

Issues such as self-modifying code and the operating system interface impose problems

for binary translation. The old machine's OS traps may require that their arguments be

translated to equivalent calls on the new machine's OS. These issues should be addressed in

the binary translation software.

Run-time rescheduling can be performed by a software method, or a hardware technique,

or a combination of both. Figure 7.1 (b) shows a run-time rescheduling technique through

the operating system of the underlying machine. Two major researches have been reported

which use this approach. Conte and Sathaye described a dynamic rescheduling approach

which works as follows [Conte and Sathaye, 1995].

On a page-fault, the OS performs context switching and loads the page from the next

level of the memory hierarchy. At the first-time page fault, the OS detects the difference

between the current machine's characteristics and those assumed to generate the executable

code. This may be possible through saving the machine characteristics in the header of the

binary file. This page of code is rescheduled by special scheduling software that is invoked

by the OS to generate a correct executable code for the current machine. When the same

pages are accessed again, they are retrieved from the text swap space of the OS, where they

were saved when displaced by new pages. As the page size is constant, a special operation

encoding has been designed to keep the size of the rescheduled code the same as the original

code [Conte and et al., 19951.

Rescheduling of each page at each first-time page fault introduces additional overhead on

the page fault handling process by the OS. When a program is to be executed several times,

the scheduled pages can be saved for later use. A technique called the persistent rescheduled-

page cache (PRC) was proposed to reduce the overhead in these cases [Conte et al., 1996d].

The PRC, as a part of the OS file system, keeps the rescheduled pages that were written into it

at the last termination of the program. For subsequent program execution, when a page fault
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occurs with generation mismatch, the PRC is searched for the existence of the rescheduled

version of the page. If it is present, it will be used and in this way, the time for rescheduling

is saved.

Another work based on the approach shown in Figure 7.1 (b) was presented by Ebcioglu

and Altman [Ebcioglu and Altman,1996]. The aim of this work is to emulate an old archi-

tecture on a new architecture and follows similar steps to those mentioned above, to generate

a new schedule for a tree-based VLIW processor.

Figure 1.2 lllustrates the general outline of hardware-based techniques to achieve ob-

ject code compatibility among different generations of a VLIW architecture. InFigure 7.2

(a), dynamic rescheduling is performed in the execution pipeline path. Rau [Rau, 1993]

presented dynamic scheduling for non-unit assumed operation latencies (NUAL) execution

semantics in VLIW machines. In his method, which is called Split-Issue, each operation is

partitioned into two phases. Phasel includes access of source operands and computation.

The result of the phasel is written into a renamed register. Phase2 is copying the content of

the renamed register into the actual architectural register. The latencies of phasel and phase2

areL-I and L respectively, if the assumed latency of the operation is L. Phase2 is scheduled

to issue atL-l cycles after phasel issue to maintain the program semantics. In this way, the

computation part and writing of the result into the architectural registers are performed at dif-

ferent phases and by different functional units (the main computation functional unit and the

copy-back unit, respectively). This approach in general, requires complex hardware which

potentially has an impact on cycle time, To achieve simpler hardware, a special mechanism

referred to as latency stalling was proposed [Rau, 1993]. In this case, the instruction issue

stalls when the assumed latency of an operation elapsed, but the actual latency does not.

Arita and his colleagues presented an extended VLIW architecture called V++ to over-

come the problem of increase in code size and changes of the assumed operation latencies

at run time [Arita et al., 1994]. Their rescheduling technique is based on predetermined and

adaptive restructuring. Predetermined restructuring is performed by a set of delay registers

for each functional unit. The amount of delay is assigned to each operation by the compiler.

Adaptive restructuring employs the ultimate-barrier method [Takagi et al., 1991], which is

a high-speed synchroniser. It is used to apply the precedence relations among operations

dynamically through blocking those operations whose precedence relations have not been

satisfied. In this manner, it provides a producer-consumer synchronisation process. In sum-
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Figure 7.2: Outline of hardware-based techniques to achieve object code compatibility for

different generations of the VLIW architecture. (a) Dynamic rescheduling at the execution

pipeline path. (b) Dynamic rescheduling before moving operations to the instruction cache.
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mary, functional unit assignment and detection of precedence relations in V++ is perfomed

by the compiler. However, resolution of precedence relations is done by the hardware.

In Figure 7.2 (b), dynamic rescheduling is performed out of the execution pipeline path.

One proposed approach in this category is based on a mechanism called the fill unit. The fill

unit was originally proposed to form larger executable units from microoperations [Melvin

et al., 1938]. In this approach, operations are prefetched from memory or instruction cache

and are converted into their corresponding microoperations. Then, these microoperations

are placed into a buffer. 'When the operation is a branch or the buffer is full, the group

of microoperations (which is called multinode in [Melvin et al., 1988]) are placed into the

decoded cache. Later,instructions are fetched from the decoded instruction cache. Hardware

mechanisms are provided to handle data dependencies and exception recovery.

The original fill unit approach was extended by Franklin and Smotherlnan lFranklin and

Smotherman, 19941to form VLIW instructions dynamically from operations that can be

issued together. This works as follows. The fill unit receives operations in the program order

from the conventional instruction cache and decoder. A group of decoded operations which

can be issued at the same time are formed in the fill unit buffer. When the buffer is full, it

is written into an extra cache called the shadow cache. At each cycle, both the conventional

instruction cache and the shadow cache are accessed and if the shadow cache is hit, the

VLIW type instruction from the shadow cache is sent to the functional units. Otherwise, one

operation fetched from the conventional l-cache is executed. Similarly to the original fill

unit technique, the fill unit buffer is finalised when a branch is encountered. However, in this

technique both paths of a branch can be fetched to form a tree-like instruction.

The DIF (Dynamic Instruction Formating) machine [Nair and Hopkins, I9971is another

approach which can be considered to be based on Figure 7.2 (b). In the DIF machine, op-

erations are executed for the first time by a separate processing engine referred to as pri-

mary engine in [Nair and Hopkins, 1997]. At the same time, the dependency information

is provided by the primary engine to translator hardware, which reschedules these executed

operations as a DIF group. A DIF group is the unit of execution and consists of a sequence

of VLIW instructions. DIF groups are stored in the DIF cache which is connected to another

execution engine called the parallel engine and is similar to a VLIW execution pipeline. This

approach is able to schedule operations speculatively above a few conditional branches. This

is performed through a path prediction mechanism, rather than a branch prediction method.
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The direction of a path is determined based on the results from the primary engine at trans-

lation time. When a misprediction or exception occurs, all operations in the DIF group are

re-executed in the primary engine and a new DIF group is generated.

Miss Path Scheduling (MPS) introduced by Banerjia and et al. [Banerjia et al., 1998]

is also based on the approach of Figure 7.2 (b). In this technique, operations are resched-

uled at cache miss time when the operations are received from a higher level of memory.

The rescheduling hardware is able to schedule operations speculatively above conditional

branches. Then, scheduled blocks are provided to an in-order execution engine. A sched-

uled block contains a set of VLIW-type instructions. The MPS technique uses one cache to

hold operations fetched by the processor pipeline, in comparison with two different caches

(shadow cache and instruction cache) required for the fill unit approach and the DIF method.

7.2 A New Approach

This section describes our proposed approach to overcoming the binary incompatibility prob-

lem between different generations of VLIW machines. We call this dynamic VLIW genera-

tion (DYG). It requires ISA support and additional hardware, but this hardware is not located

on the critical path of the execution pipeline. Operations are rescheduled at the cache miss

repair. Thus, DVG is based on the approach in Figure 7 .2 (b).

To simplify dependency checking hardware, some form of dependency information is

encoded for each operation at compile time. Each operation has a dependency-word. This

information can be combined into the f,nal binary code or may be provided in a separate f,le,

which can be loaded into memory by the OS loader at execution time.

To schedule operations, the compiler generates a dependency graph to capture all de-

pendency information in a scheduling region (such as a hyperblock). Transferring all of

this information through the object file is not practical as it requires a large amount of disk

space. Also, this information should be available in a suitable form to be used by a dynamic

rescheduler with less overhead. Therefore, for DVG, the compiler provides a limited form of

dependency information which will be processed at the time of instruction cache miss repair.

The simplest way of encoding dependency information is by using a bit vector for each

group of operations. Each bit can represent a dependency to a previous operation based on

its position in the bit vector. For example, if an operation has a dependency on the 14th op-
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eration before it, then bit 13 in the bit vector is set. This scheme however, increases the code

size. If each operation is 32 or 64 bits, then having a 64-bit dependency-word is unaccept-

able. To reduce the size of the dependency-word, each bit may represent dependency to a

packet of previous operations. For example, if each bit represents dependency to a packet of

eight operations, keeping dependency information for 64 previous operations requires only

8 bits. This is at the expense of imposing more limitations at the time of rescheduling. As

an example, if operation x is only dependent on one of the operations in the corresponding

packet, it cannot be scheduled before all eight operations in that packet unless it is known

which operation in that packet should precede it. This can be done by using special hardware

to resolve the issue. Details are described in the next sections.

7.2.L Speculative Scheduling

It was shown that speculative scheduling is an essential technique to achieve higher amounts

of ILP in general-purpose applications [Lam and Wilson,1992].In order to perform specu-

lative code motion in DVG, several issues should be considered.

The first issue is a method to predict conditional branches. In our scheme, two possibili-

ties are available. One is an ISA extension, so that each conditional branch operation has an

additional bit to indicate the prediction of its direction. This is similar to architectures pre-

sented in [FIP, 1994,'Weiss and Smith, 1994]. This bit is set if the branch is predicted taken.

The prediction can be based on profile information or the heuristics used by the compiler.

The other one is modifying the code layout, so that the most likely direction of a forward

conditional branch is its fall-through path.

The second issue is providing a mechanism to keep and restore the processor state when

the prediction direction is not valid. Speculative motion of operations which write into a

register is not allowed when the destination register is live on the other path. For this purpose,

it is necessary to rename the architectural registers.

Register renaming involves mapping an architectural register into a physical register

where the result of the operation is written. Following operations refer to this physical reg-

ister to retrieve the value for their input operands. In a typical hardware register renaming

scheme in superscalar processors, a mapping table is looked up to determine the current map-

ping of the register when the contents of the register is read. The mapping table is updated

when the register is written. A large number of ports is required to perform this process when
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multiple operations are executed concurrently.

To avoid this complexity, we extend a form of the rotational remap renaming scheme

which \vas presented in [Nair and Hopkins, 1997].In our scheme, the register file has several

physical locations and status fields for each architectural register. The status f,elds indicate

which physical location holds the most recent value and how the original physical location

can be identified when a branch is mispredicted. Figure 7.3 shows an example to indicate

how this scheme works.

A sequence of operations with two conditional branches is shown in Figure 7.3 (a). The

aim is to move operation Ix above branches BR1 and BR2. Figure 1.3 (b) shows the state

of register 11 if I* is not scheduled above BR1. After moving it up above BR2, the state is

changed to that shown in Figure 7.3 (c). The activeJ fleld indicates the current physical

location mapped to rI. Speculation adjustment (SA) determines how many locations should

be moved to the left (considering a rotating remapping scheme) to reach the correct value of

the architectural register when the branch is mispredicted. In the case of moving Ix above

BR2, the value in speculation adjustment f,eld is set to 01, which means one shift to the left

to access the original value of 11 if BR2 is taken.

Figure 7.3 (d) shows the case when Ix is scheduled above BR1. In this case,Ia is specu-

lated over two conditional branches and if one of them is taken the original state is preserved

through moving two locations to the left (based on speculation adjustment of 10). It should

be noted that, no operation exists in the fall-through path of BRr to change r1. Otherwise, it

would not be possible to schedule Ix above BR1 due to that dependency constraint.

7.2.2 DVG Scheduling Algorithm

We propose the DVG approach in the context of predicated code. The beginning and end

points of each hyperblock are encoded in the ISA by the compiler. Any code motion is

performed in the hyperblock. This means that the original hyperblock is rescheduled for the

new machine.

Figure 7.4 illustrates the DVG algorithm. At instruction cache miss time, the value of the

PC is used to load at most N operations from the upper level of the memory hierarchy. N is

implementation dependent. The issue-width of the processor and the implementation details

of the DVG hardware are used to determine N, so that the amount of rescheduling overhead

is tolerable.
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Figure 7.3: An example of using the rotational remapping scheme in DVG with special

status fields to restore registers' original state when a branch is mispredicted. (a) A sequence

of operations to be rescheduled. (b) State of rl before rescheduling of I*. (c) State of r1 after

moving Ix above BR2. (d) State of r1 after moving Ix above BRr.
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// Input: N (maxínutm nambers of operalions to be rescheduled)

PC (address of missed operation ín the lCache)

// Output: rescheduled code in the schedulfitg-buffer

Iast-sched.uled-cycle = 0

for N operations

use PC to fetch operation <op> ønd its dependency-wordfrom rnemory

il <op> is a branch then
start-cycle = last-scheduled-cycle

else

størt-cYcle = 0
use start-cycle ønd dependency-word to firuL the sch-cycle for <op>

if valid sch-cycle notfound then

l/ E}:ís neans chac no resource avaiLable.
termínate the scheduling process

if scheduled <op> ß speculative and has dst-reg then

set SP-statas of the register d.st-reg

place scheduled <op> in the sched.uling-buffer

if sch-cycle > last-scheduled-cycle then

last 
-s 

cheduled-cy cle = sch -clcle
il <op> is the last operatíon in the hyperblock then

terminøte the scheduling prccess

increment PC (PC = PC + 4 in our case)

Figure 7.42 }dain steps of the DVG scheduling algorithm.
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After receiving each operation from the upper level of memory, it is scheduled and placed

in the scheduling buffer. The scheduling buffer is similar to the reservation table in [Banerjia

et al., 1998]. Its structure is like a matrix with m rows and n columns, where m is the

maximum number of cycles (or the maximum number of generated VLIWs), and n is the

issue-width of the processor. Also, a structure called the operation scoreboard is used to

record the status of each processed operation. The cycle in which the result of each scheduled

operation will be ready is recorded in the operation scoreboard.

Each architectural register has a counter which is loaded with the latency value of the

operation writing into it. The counter is decremented each cycle when the execution of an

operation is started until it is 0. Then, thrc ready bit is set. When a register is accessed for

reading, if the result is not ready, all operations in the cuttent VLIW are stalled until the

required result is ready. The main purpose of the counter is to handle cases when the latency

of an operation scheduled in the previous scheduling region is not fulfilled. At the same

time, this mechanism preserves the processor state at the time of unexpected events which

may increase the latency of an operation. The value of these counters may be saved and

restored when necessary to keep the processor state.

When the maximum number of generated VLIWs is reached, or the last operation of a hy-

perblock is scheduled, or N operations are processed, the rescheduling process is terminated

and the contents of the scheduling buffer are transferred to the instruction cache. The amount

of time required for this step depends on the structure of the instruction cache. In [Baner-

jia et al., 19981, two cache organisations for holding VLIWs were considered. These are

the uncompressed I-Cache and the compressed banked I-Cache [Conte et al., 1996a]. As

the structure of the uncompressed I-Cache is similar to the scheduling buffer, transferring

VLIWs from the scheduling buffer to the I-Cache does not require a long time in comparison

to the compressed banked cache. In the latter, NOP operations are not included in the cache

and special encoding is used to handle this. This results in longer time to transfer operations

from the scheduling buffir to the I-Cache.

To schedule operations speculatively, the rotational remapping scheme is employed as

discussed above. To prevent scheduling of a branch before operations which originally pre-

ceded it, the latest scheduled cycle is kept into a special register. Branches cannot be re-

ordered. Also, an operation cannot be moved above a call subroutine and an indirect jump.

Note that for applying the DVG approach to the EVA, the ISA of EVA includes non-trapping
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version of excepting operations, so it does not require additional hardware to keep the precise

exception handling. Otherwise, similar hardware schemes to those used in any multiple-issue

processor to achieve precise exception handling would be necessary.

We use the example in Figure 7.5 to describe how the DVG approach works. Figure

1.5 (a) shows a code segment scheduled for an issue-2 VLIW processor which is considered

as the old-machine. Operations 11 to I15 are located consecutively in memory with their

dependency words. In this example, predicate operands are assumed as "TRUE" and are not

shown. Also, we assume each bit in the dependency-word is used to indicate a dependency

to one previous operation.

Figure 7.5 (b) illustrates the scheduled operations for the new VLIW machine, which is

an issue-3 processor and the latency for multiplication is reduced to 2 cycles in comparison

to the old machine. The scheduling process is as follows.

When the cache miss occurs, the address of the operation resulting in the cache miss

is used to get the operation from the higher level of memory hierarchy with its depen-

dency-word.'lhe dependency-word is applied to the operation scoreboard to find the earliest

cycle for scheduling. Operations 11, 12 and 13 do not have dependency on previous opera-

tions (as the region begins with Ir). Therefore, they can be scheduled in cycle 0 in the new

machine. Then, operation Ia is processed. It is dependent on 11 so, referring to the operatton

scoreboard determines that Ia can be scheduled in cycle 2. Other operations are processed

and scheduled in this way. Operations Iro, Itr and I12 are speculative and the status fields in

the related architectural registers are set appropriately as described before. When an except-

ing operation is speculated, its non-trapping version is used as the speculative operation.

In the case of backward branches, which are marked by the compiler, a limited form of

loop unrolling can be applied which is dependent on N (the maximum number of operations

to be rescheduled) and the distance between the branch and its target.

7.3 Comparison with Related Works

The DVG approach, similarly to the fill unit [Franklin and Smothelrnan, 1994], the DIF

machine [Nair and Hopkins, 19971, and the MPS [Banerjia et al., 1998], reschedules opera-

tions before placing them in the cache which is accessed by the parallel execution engine in

the machine. The f,ll unit method lacks speculative scheduling and requires two instruction
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Figure 7.5: An example of DVG rsscheduling process. (a) Code scheduled for the old

machine. (b) Code rescheduled for the new machine.
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caches (the conventional l-Cache and the shadow cache). The DIF machine also employs

two caches and has two different execution engines. The DVG method on the other hand

requires one instruction cache. It is an extension of the conventional VLIW processor which

reschedules operations dynamically at cache miss time. The most similar published work

to the DVG method is the MPS method. In the MPS, operations are also rescheduled at the

cache miss repair. The major difference between the DVG approach with the previous works

(particularly with the MPS method) is the use of code annotation generated by the compiler

to direct the rescheduling process. Also, a limited form of loop unrolling can be performed

for backward branches in the DVG.

7.4 ExperimentalResults

To evaluate the effectiveness of the DVG approach, experimental results were generated

based on the following methodology.

We modifiedthe mlcache ÍTam et al., 1991), so that at each cache miss at most N opera-

tions are fetched from the next level of the memory hierarchy and scheduled. The scheduled

operations are placed into the appropriate locations of the instruction cache. A perfect data

cache is assumed for all experiments. The instruction cache is a 64K direct mapped banked

cache (as described in section3.2.L). The assumed bandwidth between the I-Cache and the

next level of memory is one word (32 bits) per cycle with six cycles latency. These are

contemporary assumed values typical of current memory technology. To approximate the

scheduling overhead, five additional cycles are added to the total miss repair latency. This

assumption is reasonable especially, if pipelined hardware is employed.

To record the number of cycles, one cycle latency is assumed for each cache hit, and the

processor stalls for the period of the cache miss repair. The number of execution cycles for

the old machine and the speedup are obtained as described in section 5.2.L

Six SPEC95 integer programs (from our benchmark set) are used as the benchmarks in

this experiment. Each benchmark program is compiled with the EVA compiler for the old

machine, and the required code annotations (dependency-word and other operation marking

such as backward branches and so on) are generated. Program traces (using the train inputs

of the benchmarks) are generated in a proper format and are used by the mlcache.

Figure 7.6 shows the speedup achieved through moving the older machine code to the
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new wider machine and applying the DVG technique. This indicates that the DVG tech-

nique uses additional resources in the new machine to improve the performance of the code

compiled for the old machine.

EM4
TM6

ffil M4 to M6

I M6toM8

I M4toM8

1.5

1.4

1.3

12

1.1

1.0

go compress li ijpeg perl vortex

Figure 7.6: Speedup of the rescheduled old machine code on a wider new machine model

Table 7.1 shows the decrease in speedup when the code complied for the old machine

is rescheduled through the DVG method for the new machine in comparison to the code

compiled for the new machine. For example, the number in the M4 to M8 column indicates

the reduction in speedup for the code originally compiled for M4 and rescheduled for M8

compared to the speedup of the code compiled for the M8 machine model. Speedup Figures

are based on basic block scheduling as discussed in section 5.2.1.

Results are shown in Figures 7.7, J.8, and 1.9 for three cases. Figure 7.7 shows the

performance of the code rescheduled for machine model M4. The speedup is compared with

the code compiled for the M4 model. Figures 7.8 and 7.9 indicate the perforrnance for the

M6 and M8 models respectively. The results show that performance of the DVG technique

is higher for wider-issue processors, This is due to the more opportunities for scheduling

provided when more resources are available.
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Benchmark M4 M6 M8

M6 to M4 M8 to M4 M4 to M6 M8 to M6 M4 to M8 M6 to M8

099.go l2Vo I27o llTo lO.37o I0.27o 9.17o

129.compress 8.57o l0Vo l0Vo 9.lVo 9.4Vo 97o

130.1i 7.9Vo 8.97o '77o 67o 5.8Vo 5.67o

132.ijpes IO.8%o 10.97o 9.17o 8.97o 8.5Vo 7.67o

134.perl IlTo II.37o llTo lO.5Vo l0.2Vo 10.27o

l4T.vortex 9.47o I0%o 9.57o 9.37o 9.I7o 8.9Vo

Table 7.L: Relative perfonnance of the rescheduled code in comparison to the code gener-

ated by the compiler for different machine models.
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Figure 7.7: Speedup of the rescheduled code for machine model M4.
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Figure 7.8: Speedup of the rescheduled code for machine model M6.
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Figure 7.9: Speedup of the rescheduled code for machine model M8.
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7.5 Summary

In the process of ILP extraction and code generation for a VLIW processor, the architectural

features are exposed to the compiler and operations are statically scheduled based on the

target machine characteristics. This leads to binary incompatibility among different imple-

mentations of the same VLIW architecture. We presented a new approach called dynamic

VLIW generation (DVG) to overcome this problem.

In the DVG technique, operations are rescheduled for the new machine at the time of

instruction cache miss repair. In this way, the rescheduler hardware is not located in the

execution pipeline engine avoiding potentially longer cycle times. To simplify the depen-

dency checking hardware, dependency information is encoded for each operation at compile

time. This information can be combined into the final binary code, or may be provided as a

separate file, which can be loaded into memory at the execution time by the OS loader. In

this technique operations can be rescheduled speculatively and a mechanism is presented to

prevent destroying the contents of live registers.

The rescheduled code can be fetched from the instruction cache in the conventional form.

Experimental results show that the performance of rescheduled code using the DVG tech-

nique is only a few percent worse, for both wider and narrower issue processors, than code

compiled directly for the target processor,
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Chapter I

Summary and Conclusion

S.L Summary

The effective exploitation of ILP involves extracting as much ILP as possible from the ap-

plication programs with regard to the available processor resources. Possible side effects

which may potentially result in lower processor speed should be avoided and their impact

reduced. This research targets these issues through implementing an optimising compiler for

VLIW architectures. The task of ILP extraction is achieved by the compiler mainly through

exposing the architectural features and processor characteristics to the compiler.

Predicated execution has been employed in our compiler to reduce the serious obstacles

to ILP extraction due to frequent conditional branches in general-purpose programs. Predi-

cated execution allows the compiler to eliminate some conditional branches through utilising

conditional execution. Predicated execution is exploited in the compiler through a structure

called a hyperblock. Hyperblocks include basic blocks from multiple execution paths. The

performance of hyperblock scheduling depends on the accuracy of resource estimation when

the basic blocks are selected to construct the hyperblock. We proposed a new algorithm to

reduce the performance loss of the original hyperblock formation heuristics for non-regular

processors. An estimation of the resource usage is made through performing local scheduling

before block selection. Partial paths or part of a basic block are selected if it is shown to be

profitable. Also, a new technique for predicate-aware register allocation was presented. We

implemented a complex VLIW compiler system based on SUlF/machsuif to test these ideas.

Experimental results indicate improvement of the order of l07o-207o using our approach.

VLIW machines have not been used extensively as an ILP processor for general-purpose
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programs. One of the major reasons is the lack of object code compatibility among differ-

ent generations of the same architecture. This is due to the assumed architectural features

such as operation latencies, the number of functional units and register file specifications at

the time of code generation. When the characteristics of the processor is changed, the as-

sumptions made at compile time may not be valid and preservation of program correctness is

not guaranteed. 'We presented a new approach to solve this problem which we call dynamic

VLIW generation (DVG).

In the DVG technique, operations are rescheduled for the new machine at the time of

instruction cache miss repair. In this manner, the rescheduler hardware is not located in the

execution pipeline engine. To simplify dependency checking hardware, dependency infor-

mation is encoded for each operation at compile time. This information can be combined

into the final binary code, or may be provided as a separate file, which can be loaded into

memory at the execution time by the OS loader. This technique is able to perform specula-

tion in the rescheduling process. The rescheduled code is placed into the instruction cache

and the next cache accesses, which are cache hits, receive the rescheduled code. Experimen-

tal results show that the performance of rescheduled code using the DVG technique is about

107o worse than code compiled directly for the target processor.

8.2 Future Directions

Possible future works along this line of research can be classified into two different parts.

These are related to new optimisation techniques for the predicated code and improving the

compiler assisted object code compatibility among different VLIW processors.

For the first part, the following are considered as possible further research topic.

o Inter-region code motion - In our research, we performed code optimisation and schedul-

ing in the context of hyperblocks. Therefore, the possibility of code improvement

through performing special case optimisation and code motion between hyperblocks

can be investigated.

o Predicated loop peeling - Loop peeling is an effective technique to enlarge loop re-

gions with inner loops for predicated code generation. As optimisation and scheduling

after loop peeling may change the characteristics of the loop, a heuristic is required to

estimate the possible changes in the loop characteristics for loop peeling.
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o Inter-procedural register assignment in the predicated code - We proposed a tech-

nique for predicate-aware register allocation. Further works are required to adjust it to

achieve more efficient code, especially through taking account of the inter-procedural

characteristics.

For the second part, we notice that our approach to improve binary compatibility was

investigated in the context of predicated code. So, further research is required to assess

its performance when predicated execution is not supported by the architecture. Also, the

overhead of the rescheduling process and its impact on the performance should be evaluated

for different cases.
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Appendix A

A Brief Description of Libraries and

Different Passes in EVA VLIW Compiler

The VLIW compiler for the EVA is developed based on SUIF-I andmachin¿ SUIF-I (mach-

suif) infrastructures ISUIF, I9g4,Smith, 1997). The front-end of the compiler generates

SUIF intermediate code. In addition to the SUIF library, a general machine instruction li-

brary and a CFG library are used in our work. To implement different compiler optimisation

techniques for ILP processing, we also developed several new libraries. Figure 4.1 illus-

trates different libraries and their dependency upon each other. A brief description of each

new library is given in Table 4.1.

The EVA compiler is designed as multi-pass compiler. The results of each pass are saved

in files and used as input for the following passes. This provides an easier way to modify the

current passes and to implement new passes without the need to know the details of other

passes. Table A,.2 indicates a brief description of typical passes in the EVA compiler. The

sequence of theses passes is shown in Figure 4.2.

The instruction set architecture (ISA) of the EVA is an extension of MIPS-I instructions.

In Figure A.2, mgen converts the SUIF intermediate code to MIPS-I instructions. Optionally,

the control transfer operations can be modified to change the code layout when necessary.

This is performed by cti-optimize. Other passes including raga,label, fllrtfl, halt and print-

machine are used to generate code to be run on a MIPS-based host machine. In this way,

the profile information is generated. raga performs register allocation. label assigns unique

numbers to branches, basic blocks and other required parts for the instrumentation. mfinfin-

ishes the required steps related to the stack frame. halt inserts calls to the analysis routines,
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Library name Description

gen-utils

pred-sup

prof-info

pdla

machine-model

region

dep-graph

Iist-sch

Provides general utility functions (e.g. finding number of each type

operations in a procedure, bitset array, etc.)

Provides functions to generate and access predicate

operands in the predicated code.

Includes functions and data structures to insert and retrieve profile

information through code annotations.

Predicate-sensitive data fl ow analysis routines.

Provides functions to define and use information about the target

machine characteristics.

Provides functions to define and access different code regions for

optimisations and scheduling.

To generate dependency graphs including both data and control

dependencies.

Provides functions and data structures for list scheduling based

schedulers.

Table 4.1: A brief description of new libraries in the EVA compiler

Table 4.2: A brief description of typical passes in the EVA compiler.

Name Description

cti-optimize

reg-deaIIoc

processqrofJrace

classic-optimize

hypergen

ILP-optimize

scheduler

reg-alloc

vliw-gen

Optimises control transfer instructions and modifies code layout.

Register de-allocation. Undo the previous register allocation and

converts most hardware registers to virtual registers.

Process execution trace file to generate the required instruction

annotations.

Perform selected classical optimisations.

Generate hyperblock structures.

Perform selected ILP optimi sations.

Instruction scheduler.

Perform register allocation.

Generate final VLIW instructions (based on the specified coding

information).
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prof_infopred,Sup

libraries from

SUIF infrastructure

/
New libraries in the EVA compiler

Figure 4.1: Different libraries and their dependency on each other in the EVA compiler.
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which use the unique numbers introduced before, and other relevant information for the in-

strumentation points. Passes label and halt are a part of HALT [Young and Smith, 1996],

which is an AIOM [Eustace and Srivastava, 1995] like profiler to gather profile information.

printmachine generates the MIPS assembly file. The output of printmachine is linked with

the instrumentation code and the executable code is generated by the host compiler. The

executable code is run on the host machine to generate profile information traces.

The new passes in the EVA compiler work as follows. reg-dealloc converts most regis-

ters assigned by ragaback to virtual registers. This is necessary for the following passes.

Then, processprof-trace generates annotations such as the execution frequency of a basic

block, branch direction, memory reference address and so on, using the profile trace files.

This step may be performed several times if required to handle all trace files. Classical opti-

misations are performed by classic-optimize. hypergen generates the code with hyperblocks.

This pass can be replaced by another pass to generate other structures such as superblock.

After ILP optimisation by lLP-optimize, the code is scheduled through scheduler pass. Reg-

ister allocation and final VLIW code assembly files are generated by reg-alloc and vliw-gen

respectively.
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c source llle

@

@

@

@
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t_

(a) profile generalion process

machine suif (or suif) untouched passes

machine suif modified passes

tr'flce

asm

(b) assembly code generatíonfor the EVA

@

@

¿;\

@

@

@

@
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imtment¿tion code

MIPS-I obj code

w
@

Figure 4.2: Typical passes in the EVA compiler.
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