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Existing approaches to the cell formation problem concentrate on simultaneous part family formation and
machine sharing. A fundamental problem faced when part families and independent cells are desired is
that two or more cells may share a machine type. Then, an integer assignment to each cell, subject to
total machine availability constraints, leads to underutilisation or overloading of the important machines
in the cells. Practical shopfloor conditions such as machine failures, fluctuations in part mix or demands
may also make cells unstable. These methods do not use flow data. Hence, they cannot solve together the
machine grouping, machine sharing, intracell layout, intercell layout and handling subproblems. Beyond
the logical grouping of the resources, another important aspect of manufacturing system design is the

physical placement of these resources on the shop floor, which defines the actual flow patterns of parts.

This dissertation addresses, for the first time, an analytical approach to the integrated problems of
designing the dynamic cellular manufacturing (DCM) system layout concurrently with its material flow
(handling) requirements, in such a manner that minimises the material handling within the system. The
proposed strategy encourages the design of a dynamic layout to identify simultaneously the machine

groups, economical machine distribution, and intracell and intercell layouts.

Thus the proposed mathematical models are based on network analysis and graph structures for flowline
decomposition of machine groupings, and flowline layout design of dynamic cellular manufacturing
cells. To minimise travel distances for forward, and backward material flow arcs, the derived model
minimises total travel distances and machine duplications. Consequently, stages I and II of this research
generates machine groups, identifies a flowline layout for each group, indicates which flowlines must be
placed adjacent to each other to minimise intercell distances, and an approximate configuration of the
aisles. Thus by capturing the directionality embedded in the operation sequences of a variety of parts
produced, the associated facility floor area can be optimised. It is concluded that the classification of
flow arcs used is effective for assessing whether material handling and layout, or machine sharing, is

necessary to minimise intercell or intracell material travel distances respectively.

As a development from stages I and II, stages III and IV outlines the associated economics of machine
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distribution and layouts of a dynamic cellular manufacturing facility. Furthermore, by employing
simulated annealing (SA) algorithms the design (machine placement) of the shop layout for these

dynamic cells can be optimised.

Illustrative case study material demonstrates that the sequential use of these proposed stages effectively
integrates machine grouping and layout design requirements into dynamic cell configurations. It is
established that these evolved dynamic cells have a superior utilisation of resources, when compared
with equivalent classical cellular systems employing traditional design methods such as clustering
analysis, operation sequence clustering and graph based layout techniques. In addition, parametric
analyses of the proposed SA algorithm procedure shows an improvement in the cells responsiveness and
effectiveness, with respect to the reported mean values of the material flow cost function. Furthermore,
examples are utilised for both equal and unequal resource dimensions, with the average value of the
material flow cost comparable with other methodologies. It should be appreciated however, that the SA
algorithm was programmed in MATLAB, and has matrix and graphical interface outputs, which is again a

further step forward in this research area.
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