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Abstract

The Global Positioning System (GPS) is used extensively in both the military and civilian

communities for such diverse activities as navigatiory surveying, remote sensing, asset

management and precise timing. The tremendous popularity of GPS has stemmed from

the low cost and small size of modern GPS receivers, and from the high accuracy and

reliability of the system. This second factor has also resulted in GPS being considered as a

sole means of navigation for critical safety of life applications such as precision approach

and landing for aircraft and narrow channel navigation for ships.

A number of environmental factors are known to affect the performance of GPS, including

electromagnetic interference, multipatþ foliage attenuatiory atmospheric delays and

ionospheric scintillations. In this thesis, the effects of ionospheric scintillations on GPS will

be examined.

Ionospheric scintillations are rapid variations in the amplitude and phase of

transionospheric radio signal resulting from density irregularities in the ionosphere.

Scintillations have the capacity to affect both the accuracy and reliability of GPS systems

by compromising the performance of the code and carrier tracking loops of a receiver. In

order to quantify this effect, a widely used stochastic model of scintillation activity is

combined with various tracking and acquisition models to produce a collection of receiver

performance measures. These include the magnifude of the code and carrier range

measurement errors, a measure of the tracking state of the carrier loop, the mean time to

acquire, and the bit error probability for the navigation data. An advantage of the

stochastic model chosen in this study is that it is linked to an existing predictive

scintillation model which is based on large amounts of scintillation data collected over the

previous 20 years or so. Consequently,by combining these models it is possible to predict

the performance of a given receiver type at any fufure time and location.
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,Bf{Chapter 1-

Introduction

Tn" 
NAVSTAR Gtobal Positioning System (GPS) is a satellite based radio navigation

I system that provides accurate three dimensional position, velocity and time

information globally and continuously under all weather conditions. The GPS system can

be conveniently divided into three segments; (i) the Space Segment which consists of the

GPS satellites, (ii) the Control Segment which comprises a network of monitor stations and

ground antennas, and (iii) the User Segment which consists of the GPS receivers and

associated systems. Because of the high accuracy, low cost and portability of GPS

receivers, applications for GPS are appearing i^ many different areas including air, land

and sea navigation, surveying, geodesy, and military applications to name a few.

The accuracy and reliability of GPS is a function of both system and environmental factors.

System factors are associated with the three GPS segments described above and include

errors in the satellite clock and ephemeris informatiory hardware channel biases, satellite

geometry effects and thermal noise errors. Environmental factors are associated with

propagation phenomena and include electromagnetic interference from external sources,

ionospheric effects (including those associated with both the quiescent and the disturbed

ionosphere), tropospheric delays, obscuration and multipath. Depending on the

circumstances, the most significant environmental factor can be the disfurbed ionosphere.

For GPS, the principal manifestation of a disturbed ionosphere is ionospheric scintillations.

Ionospheric scintillations are rapid variations in the amplitude and phase of

transionospheric radio signals resulting from density irregularities in the ionosphere.

Scintillations show strong diurnal, seasonal, geographic and solar cycle dependence being

at their most severe during the evening hours, in the months of the equinox, at equatorial

latitudes and during the years of solar maximum. As we are currently at solar maximum

(year 2000), it is expected that both the frequency and severity of scintillation activity will

remain at a high level over the coming year or so.

1



Scintillations affect GPS receivers at the tracking loop level and so have the potential to

disrupt all GPS systems, including both single and dual frequency receivers and both

stand-alone and differential systems. The errors introduced into the code and carrier

tracking loops of a GPS receiver result in an increase in range measurement errors and

under extreme conditions can lead to a complete loss of signal lock. Other effects include

an increase in the probability of errors within the GPS navigation data and an increase in

the time taken to acquire the GPS signal when a receiver is first tumed on. However, as

scintillations are unlikely to affect all of the satellites in a receiver's field of view

simultaneously, their impact on navigational accuracy will be through a degradation in the

geometry of the available constellation. Consequently, the coverage of both the satellites

and the irregularities, as well as the intensity of scintillation activity will all contribute to

the accuracy of the final position solution.

1,,1,. Motivation

GPS will become the primary navigation system for the Australian Defence Organisation

(ADO) and will be installed on all air, sea and land based platforms, as well as forming an

integral part of the guidance mechanisms of many weapons. The positional accuracy of

GPS affords the possibility of enhancing many ADO operations, including navigatiory

precision approach and landing, logistic support, the management of assets, mine warfare,

and the targeting and guidance of weapons. In addition, GPS allows combined operations

between air, sea and land based forces to be executed with flexibility and precision

through the use of a common reference grid and precise positiory velocity and time

information, The cost effectiveness, accuracy, reliability and convenience of GPS will

ensure that it becomes an essential part of most military systems, replacing existing, more

costly navigation systems. GPS has also found an enoûnous market in the civilian

community in such diverse areas as aircraft and marine navigation, suweying, remote

sensing, geodesy, geographic information systems (GIS), and precise timing.

The Surveillance Systems Division (SSD) of the Defence Science & Technology

Organisation (DSTO) has been tasked with the job of assessing the impact of

environmental factors on the performance of GPS systems. These factors include

electromagnetic interference, multipatþ foliage attenuatiory atmospheric delays and

ionospheric scintillations. The areas that may be affected by equatorial scintillations cover
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nearly 50% of the earth's surface and include regions such as Northern Australia and

South East Asia which are of considerable operational interest to the ADO. For this reasory

SSD has an interest in quantifying the effects of scintillations on GPS performance and of

developing tools to predict the occurrence of significant scintillation events. The results

obtained from this study will also be of interest to civilian users/ particularly those

attempting to achieve high levels of accuracy in equatorial regions. This is especially true

now that the United States Department of Defense has disabled Selective Availabilityt

which, tntil recently, has been the largest source of error for civilian GPS users.

L.2. Thesis outline and contributions

The principal contribution of this research is to use a widely accepted stochastic model of

scintillation activity to investigate the effects of scintillations on GPS receivers and

systems. This model has the advantage of being closely linked to the Wide Band

Scintillation Model (WBMOD2) which allows various statistical scintillation parameters to

be predicted for a given time, location and satellite-receiver geometry. The individual

contributions of this research can be summarised as follows:

Chapter 3

Expressions are derived for the variance of the carrier phnse tracking error for a Costas

carrier tracking loop as a function of various amplitude and phase scintillation parameters.

These expressions are then used to determine the strength of scintillation activity that will

cause a carrier loop to lose lock. The sensitivity of the scintillation parameters to

geometrical factors such as the satellite elevation angle and satellite and receiver motion

are also discussed.

Expressions are also derived for the variance of the carcier phase range errors for a Costas

carrier tracking loop as a function of the scintillation parameters. These expressions are

then used to determine the errors that would be experienced by a carrier phase differential

GPS system over different baseline lengths.

1 Selective Availability or SA is an error introduced by the US Department of Defense to

intentionally degrade the accuracy of the civil GPS service.

2 The Wide Band Scintillation Model or WBMOD combines empirically derived models of the

globat distribution and behaviour of ionospheric irregularities with a propagation model to

predict the characteristics of scintillations on a user specified transionospheric link.
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Chapter 4

Expressions are derived for the variance of the code phase tracking errors and the variance of

tlne code phase rønge errors (pseudorønge errors) for a code tracking loop as a function of

scintillation parameters.

Chapter 5

Expressions are derived for the effects of scintillations on codeless and semi-codeless

tracking loops. The predicted performance of a semi-codeless loop is then compared with

the measured performance obtained from a receiver located in the equatorial region

during a period of moderately high scintillation activity.

Chapter 6

Expressions are derived for the probability of a data bit error in the GPS navigation

message as a result of scintillations. The likely effects of these errors on the performance of

a receiver are also discussed.

Chapter 7

The effects of scintillations on acquisition are investigated for a square-law acquisition

detector, and expressions are derived for the mean time to acquire the GPS signal under

amplitude scintillation conditions.

Chapter 8

Optimum filters are derived for carrier phase tracking loops that minimise phase tracking

errors in the presence of scintillations. The effects of dynamics on the structure of these

optimum filters is also discussed.

Chapter 9

The problem of translating predictions of the impact of scintillations on individual

satellite-receiver links to predictions of navigational accuracy are discussed. The utility of

WBMOD for predicting the effects of scintillations on GPS and its limitations are also

discussed and some examples are given.

Appendix A

A technique is described for generating simulated amplitude and phase scintillation data

using a model based on a single, thin diffracting screen containing randomly distributed

ionospheric irregularities. The simulated scintillation data obtained from this model is

used throughout the thesis to validate the theoretical results.
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Chapter 2

Background

This chapter is divided into three main sections. In Section 2.I, t}:re morphology of

ionospheric scintillations is discussed and various scintillation models are introduced. In

Section 2.2, abrief. overview of the GPS system is given and a model of GPS receiver code

and carrier tracking loops is provided. Finatly, in Section 2.3 relevant literature is reviewed

and the problems to be addressed in this thesis are identified.

2.1. Ionospheric scintillations

Ionospheric scintillations are rapid variations in the amplitude and phase of

transionospheric radio signals resulting from electron density irregularities in the

ionosphere. Scintillations are therefore intimately linked to the underlying physical

processes in the ionosphere that give rise to irregularities. In this section, these processes

will be described along with the morphology of the associated scintillations. The models of

scintillation activity that will be used in subsequent chapters will then be discussed,

including; (i) a stochastic model based on data from previous solar maxima which will

form the basis of most of the analytical work that follows, (ii) a model which combines

various climatological irregularþ models with a propagation model to produce

predictions of scintillation strength and occurrence, and (iii) a propagation model based on

a simple thin diffracting screen that enables simulated scintillation data to be generated for

various simulation tests.

2.1.1. The ionosphere

The ionosphere is a region of the upper atmosphere in which the density of free electrons

is large enough to have an appreciable effect on the propagation of radio waves 1271,1801,

Although both the lower and upper boundaries of the ionosphere are not well defined, f.or

most practical purposes they can be considered to occur at roughly 50km and 1000km
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respectively. Below this is the neutral atmosphere (the troposphere) and above is the

protonosphere that eventually merges with the interplanetary medium.

The ionosphere is formed by the ionising effects of solar X-ray and ultraviolet radiation on

neutral gasses in the upper atmosphere. As solar radiation penetrates the atmosphere, its

intensity is reduced through absorption while at the same time the density of the

atmosphere (and hence its capacity to produce ions) increases. Together, these two effects

lead to the formation of a region of maximum electron density, referred to as a Chapman

layer 1271, at altitudes between about 250km and 400km. A typical daytime electron

density profile for a mid-latitude location is given in Figure 2.1,-1. In this figure, it is
apparent that the ionosphere forms into several layers, the largest of these being the

F2-layer which extends from about 200 to 1000 km in height.

10e 1010 1011 1012

Electron Deneity (e'lm3)

Figure 2.1-1: A typicøl daytime electron density profíle for ø mid-løtitude locøtion.

The peak density of the F2-Layer undergoes large diurnal variations, reaching a maximum

at approximately 1400hrs local time and a minimum just before dawn. The height of the

F2-layer peak also shows a diumal dependence, tending to fall at dawn and rise during

the evening hours. At low geomagnetic latitudes, the F2-layer height continues to rise

during the evening reaching a maximum height of approximately 500km at about 1900hrs

local time. This effect is due to an upward ExB force created by an Eastward electric field

in the E-layer that becomes enhanced soon after sunset. At these altitudes, the free ions

recombine very slowly after dusk and so the plasma density remains relatively high.

Under the influence of pressure gradients and gravity, the equatorial plasma in the

heightened F2-Iayer is forced downwards along the magnetic field lines, creating regions

of enhanced electron density at approximately L5 to 20 degrees either side of the
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geomagnetic equator. These enhanced regions are referred to as t}".:re Equatoriøl Anomaly,

and the process by which they are created is known as the Fountain Effect (see for example

1491, Í271and the illustration in Figure 2.t-2). The Equatorial Anomaly is an important

phenomenon in the study of scintillations as it is responsible for the formation of the

plasma density irregularities that give rise to scintillations.

ExB

e- e-

200N 200s

Figure 2.1-2: Illustrntion of the equatoriøl Eountøin Effect which giaes rise to the EquatoriøI

Anomaly. E and B rEresent the electric and møgnetic field aectors respectiaely.

2.L.2. Morphology of scintillations

Scintillations occur predominantly in the equatorial band that extends from about 20oS to

20oN of the magnetic equator, and in the auroral and polar cap regions (see Figure 2.1'-3).

The processes that produce scintillations in these two regions are quite different, leading

to significant differences in the characteristics of the resulting scintillations.

Auroral and polar cap scintillations are mainly the result of geomagnetic stormst that are

associated with solar flaresz and coronal holess. Unlike equatorial scintillations, they show

little diumal variation in their rate of occurrence, and can last from a few hours to many

days, beginning at any time during the day ll2l.Large and rapid variations in the plasma

density are often associated with auroral and polar cap scintillations [10] and can lead to

significant errors in differential GPS (DGPS) systems as well as rapid changes in the

apparent range and range rate [52] & [53]. Auroral scintillations also show a seasonal

dependence which is the reverse of that observed at low latitudes, being greatest from the

t Large variations in the strength and direction of the Earth's magrretic field.

t Sudden increases in the intensity of solar electromagnetic radiation associated with sunspot activity.

3 Low density regions of the solar corona that are associated with solar winds (high energy charged particles

from the sun).
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autumn equinox through winter to the spring equinox, and a minimum during the

summer months [2]. Indeed, the geomagnetic disturbances that excite auroral and polar

cap scintillations tend to suppress the onset of equatorial scintillations during solar

maximum periods [3], [27] & [53]. Because geomagnetic storm activity is linked to solar

activity through solar flares and coronal holes, auroral and polar cap scintillations also

show a strong dependence on the 11. year solar cycle, being most intense during solar

maximum periods, but almost non-existent during minima.

Figure 2.L-3: Map of the zuorld showing the approximate locations of the polar, mid-latitude ønd

equatorial regions. Scintillations are møinly confined to the equatoriøl and polør regions.

Equatorial scintillations, on the other hand, are produced by irregularities in the F-layer of

the equatorial ionosphere following the passage of the evening terminatorl and tend to

disappear soon after midnight. In these regions, the most severe scintillations are

associated with the crests of the equatorial anomaly which are centred approximately L5'

either side of the magnetic equator [1]. As equatorial scintillations are coupled to the

anomaly, they tend to be worse during the years of solar maximum when the anomaly is

at its greatest. As we are currently at solar maximum (year 2000), it is expected that

scintillation activity will now be at its greatest, and will remain so for at least a year or so.

Equatorial scintillations also show a strong seasonal dependence, being greatest during the

months of April to Augustz in the Pacific longitude sector, but a minimum during these

months in the Americary African and Indian sectors. This situation is reversed during the

I The terminator is the boundary that divides day from night.

2 Centred on the June Solstice.

I

Polar Region

Mid-Latitude

Polar Region

Mid-Latitude
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months of September to Marctrt [53]. During the seasons of high scintillation activity, the

equinoctial months of March and September tend to suffer the highest levels of activity,

although this does not appear to be true at all longitudes [8].

Equatorial scintillations are mainly produced by irregularities created by instabilities in the

F-layer of the ionosphere during the evening hours. After sunset, the lower regions of the

F-layer recombine more rapidly than the upper regions, leading to an unstable situation

akin to a heavy fluid being supported on a lighter fluidz. This situation eventually leads to

the formation of bubbles of low density plasma which are forced upwards through the

denser upper regions. As the bubbles grow steep density gradients on the walls cause

smaller irregularities to form [69]. At GPS frequencies, these smaller irregularities, which

can be of the order of the Fresnel zone radius or less (< 300m), are responsible for

scintillations [3]. The low density bubbles eventually form into irregularity patches, or

Plumes, which can reach heights of up to 1500km at the magnetic equator. Once formed,

the plumes extend along the magnetic field lines in a North-South direction for over

2000km, leading to an accumulation of irregularities in the Northem and Southem

anomaly regions (+150 to +200 dip latitudess). Because of the higher background densities

in these regions, the irregularities tend to produce much stronger scintillation effects than

at the magnetic equator. Irregularity plumes typically have East-West extents of between

one and several hundred km's and tend to move in an Easterly direction with velocities of

the order of 50 to 200 m/s [85]. Consequently, scintillations are often experienced in

patches that can last for an hour or so with periods of little or no activity in between [3].

Eventually, in the absence of solar radiation, the irregularities begin to fade along with the

associated scintillation activity. This usually occurs around local midnight, although at

times scintillations can persist until early morning.

Scintillations can also occur during daylight hours and at mid-latitudes when Sporadic-E

is present in the E-layer. Sporadic-E are thin layers of highly dense plasma at heights of

about 100km in which large density gradients can exist. However, scintillations produced

by Sporadic-E are much less common and less predictable than those produced by the

F-layer processes described above.

I Centred on the December Solstice.

2 This is referred to as a Rayleigh-Taylor instability.

' "dip" refers to the Earth's magnetic dipole or magnetic axis.
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In the discussions that follow, only equatorial scintillations will be considered as they

affect the largest number of people and tend to be more severe than their auroral

counterparts [53]. In additiory the latitude band that is affected by equatorial scintillations

covers approximately 50% of the Earth's surface, compared to only 7o/" Í.or the auroral and

polar cap regions. However, it should be mentioned that during intense magnetic storms,

auroral disturbances can extend well into the mid-latitudes, disrupting GPS through both

scintillation activity and large density gradients. An example of this was the magnetic

storm in March 1989 during which auroral scintillation effects were felt over most of the

continental United States causing narrow bandwidth receivers to frequently lose signal

lock [52]. Such events are, however, quite unconunon.

2.1.3. Statistical characteristics of scintillations

Scintillations are produced by changes in the phase velocity of sections of a satellite signal

wavefront as it propagates through irregularities in the ionosphere. As absorption in the

ionosphere is negligible at L-band frequencies, the amplitude of the emergent wave is

unaffected by the irregularities. Ffowever, as the wave propagates towards the ground,

interference across the wavefront creates complex amplitude and phase diffraction

patterns that are a function of both the range to the irregularities and the cross-range

position. Scintillations are produced when these spatial diffraction patterns are

transformed into temporal ones, either through relative motion between the receiver and

the pattems, or by changes in the structure of the irregularities with time. Although

diffraction is the principal cause of scintillations, weak focussing and defocusing through

refraction can introduce additional amplifude and phase variations. However, for

refractive effects to be significant at L-band frequencies, the density gradients in the

ionosphere must be extremely large.

In this thesis, the effects of ionospheric scintillations are modelled as a complex

modulation of the unperturbed GPS signal. Furthermore, the phase and amplitude

components of this modulation are modelled as Wide Sense Stationary WSS) stochastic

processes that are produced by a random distribution of irregularities of different sizes.

Consequently, they are defined in terms of their power spectral densities, probability

density functions and variances. Although a deterministic model based on a collection of

Gaussian shaped irregularities was also investigated [56], this approach was not taken any

further as the resulting waveforms were found not to represent the vast majority of

measured scintillation data.
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The power spectral density of phase scintillations follows an inverse power law

relationship of the form [76], [35]

T
,u¿iuo"z/Hzsro(f) =

U: * rYt'
(2.1-1)

where T is the magnitude of the power spectral density at a frequency of LHz (as fo <<1,

SO.U =l) =T),f is the frequency of phase fluctuations, fo is a frequency that corresponds

to the ionospheric outer scale sizel, and p is termed the spectral index and usually lies in the

range 1. to 4, typically being 2.5 at equatorial latitudes [35]. The spectral strength can be

represented by the following expression 1131, Í761

T*G v[n-rl¡rotsec(g) (2.1-2)

where,

- G is a factor that depends on the direction of propagation of the radio wave and the

geometry and orientation of the irregularities,

-v" is the effective velocity of the propagation path through the contours of plasma

density,

-â is the carrier wavelength,

- C¡L is referred to as the height integrated irregularity strength and is a measure of the

strength of the irregularity spatial power spectrum at a scale size of Lkm and the

thickness of the irregularity layer, and

- g is the off-vertical incidence angle of the propagation path at the irregularity layer.

The effective velocity, v, is a function of the velocity of the ionospheric pierce pointz

through the irregularity layeg vy , the drift velocity of the irregulariti€s, v¿ (typically 50 to

200 rn/s [85]), and the geometry and orientation of the irregularities. For GPS, the pierce

point velocity, v7 r corìsists of a component due to receiver motiory v, and a component

due to satellite motiory v, (typically 60 to 450 m/s, depending on the elevation and

azimuth angles of the satellites I9l). By changing v¡ through receiver motion, the phase

scintillation log spectrum will either be translated to the left or right, depending on the

direction of motion of the receiver in relation to the vector sum of v¿ aîd v" and the

t 
.fo=v"f lo wherc /o istheouterscalesize(maximumirregularitysize)and v, istheeffectivevelocity.

2 The ionospheric pierce point (IPP) is the point at which the satellite signal ray path intersects the ionosphere

at the irregularity height. This is normally taken to be the height of the F2-layer peak which is roughly 400km.
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geometry of the irregularities. However, the spectral index, p, will remain unchanged as it

depends only on the spectrum of irregularity sizes in the ionospheret. Thus, receiver

motion will shift the phase scintillation log spectrum along the frequency axis, but will not

alter its slope. This effect, in conjunction with the higher levels of carrier loop stress

experienced during receiver motion, has the potential to significantly alter a teceiver's

tolerance to scintillation activity.

The power spectral density of ømplitud¿ scintillations follows a similar power law

relationship for high fluctuation frequencies, but is heavily attenuated at low frequencies.

The cutoff frequency of the amplitude scintillation power spectrum (tllre Fresnel cutoff

frequency) is given by [103]

ve

Jl",f" Hz (2.1-3)

whete zo =
7--tvrL2 

is the Fresnel zone radius, and z1 and z2 are the distances between
zy*22

the ionospheric irregularity layer and the satellite and receiver respectively. Notice that f"
is also the frequency that corresponds to the peak of the amplitude scintillation power

spectrum [103]. Fresnel filtering occurs because amplitude scintillations are mainly

produced by diffraction effects which are only significant when the irregularity scale size

is of the order of the Fresnel zone radius. At typical ionospheric heights (-400km for the

F2-layer peak) and assuming vertical propagatioÍt, zp is of the order of 276m at the GPS

L1 frequency. For an irregularity drift velocity of 1,00m/s (a typical equatorial value) and

assuming vr =0, the Fresnel cutoff frequency is approximately 0.26H2.

Two commonly used measures of the strength of scintillation activity are the RMS phase,

aç0, arrd the RMS intensity normalised by the meary ,Sa. The RMS phase is obtained from

the integral of the power spectral density of phase scintillations as follows

oQo ='[t{a'r} = Isrorf>.af (2.1-4)

1 For moderate levels of scintillationactivity, p is related to the slope of the one dimensional irregularity

spatialpower spectrum, q ,by p = q *l. This approximationignores the effects of diffractiononthephase.
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where 0, is the carrier phase (assumed to be zero-mean). Consequently, oqo is a function

of T, p and the outer scale size parameter, -fo . ln practice, however, the integral in

Equation (2.1,-4) is limited to some low frequency which is related to the coherent

integration time of the receiver. Indeed, as the statistics of scintillations are only stationary

for a few tens of seconds [35], this integral is unlikely to produce a realistic result if I f, is

much greater than a few tens of seconds.

The intensity scintillation index, ,S4, is the normalised RMS intensity and is given by

8¿=
E{12)
E{I}2

-l (2.1-5)

(2.1-6)

where I = A2 is the signal intensity. .Sa is also a function of T and p,but includes a Frcsnel

filteringfactor, pr, and the Fresnel zone radius, zp,wl:ríc}".:. together account for the low

frequency cutoff in the amplitude scintillation power spectrum. Under moderately

disturbed ionospheric conditions, 
^S4 

cân be approximated by the following expression

which is based on Rino's weak-scatter theory 1131,176l

s4*2 n r zo(rr)¡cotsec(o)
o - (¡-t)

*!2-T
Gv"@-r) 

''

The following expression can be used to derive an approximate value for 
^Sa 

under strong

scintillation conditions (assuming that refractive focusing effects do not occur) [13],l77l

^s - exp(-,Sar2 ) (2.1-7)

Both oço and ,S4'" show a simple dependence on the carrier frequency, v 1131, [271. For

low to moderate levels of scintillation activity ( S¿ < 0.5), ^S4 scales with the carrier

frequency as y-@+3)t4. Under strong scintillation conditions, Sa is approximately equal to

L at all frequencies (unless focusing occurs which may drive ,Sa slightly higher than L).

The RMS phase, on the other hand, shows a v-r dependence for both weak and strong

I The Fresnel filtering factor, d is a ñrnction of the geometry and orientation of the irregularities, as well as

the spectral index, p.
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scintillations, unless the scintillation activity is exceptionally strong. Consequently, the

GPS L2 frequencyt is affected slightly more by scintillation activity than the higher GPS L1

frequencyz (by a factor of about 1.4 for 
^Sa 

and 1.3 for opo ). This adds to the problem of

the inherently higher level of susceptibility of the L2 channel as a result of the lower signal

level of theL2 P-Codes (the RMS carrier phase jitter resulting from thermal noise on the L2

P-Code is Ji fimes greater than the carrier jitter on the LL P-Code, and twice as large as

the carrier jitter on the C/A-Code for normal satellite signal levels).

Measurements of the probability density functions (PDF's) of scintillations have shown

that phase scintillations follow a zero-mean Gaussian PDF, while amplitude scintillations

follow the Nakagami-m PDF [64]. Although other distribution functions have been

proposed for scintillations, the Gaussian / Nakagami-m distribution functions were found

to provide the best fit based on chi-square tests of observed intensity and phase

scintillation data Í341, [101]. The Nakagami-m PDF is defined by the mean square

amplitude, (A2> , and by tt.re m parameter which is a function of the strength of amplitude

scintillation actív ity, aiz

A>0 (2,1-8)

where I is signal amplitude, f( ) is the Gamma function and m is a parameter that is

linked to the strength of scintillation activityby m=tlSl [Æ]. The Nakagami-m PDF

approximates the Gaussian PDF for small values of ^9¿, and becomes equal to the Rayleigh

PDF for S¿ = 1 (ie. for extremely strong scintillation activity). If the scintillation statistics

are assumed to be stationary, then by conservation of energy, and assuming no absorption

in the ionosphere, <A2) is independent of the strength of scintillation activity.

Phase scintillations follow a zero-mean Gaussian PDF and are therefore defined

completely by the varíance, riz

1 -v2fz}ro
fqo(Q) =

t The GPS L2 frequency is 122'7.6MH2.

2 The GpS Ll frequency is 1575.42MH2.

3 The L2 P-Code is 3dB lower in power than the Ll P-Code. Refer to Section 2.2.

1.4

(2.1-9)



Unlike the Rayleigh or Rician fading models, the Nakagami-m model is not linked to the

phase distribution through analytical expressions (ie. the Nakagami-m PDF for amplitude

and Gaussian PDF for phase cannot be derived from an underlying signal model).

Consequently, little is known of the joint statistics of amplitude and phase scintillations,

although measurements suggest that they are negatively correlated with a correlation

coefficient of approximately -0.6 [34]. However, it is the correlation between the

amplitude and the rate of change of phase that is important in the study of tracking loop

behaviour, Aguit, little is known of this correlation, although it is likely that the deep

fades associated with large values of ,Sa will be accompanied by rapid changes in the

carrier phase 1761, 1331. This is expected to put tracking loops under more stress than

would be anticipated if amplitude and phase scintillations were considered to be

independent.

2.1,.4. Wide Band Scintillation Model

The Wide Band ionospheric scintillation MODeI (WBMOD [82]) is a global model of

ionospheric scintillation activity that enables users to predict the levels of scintillation

activity at a given time and location. The parameters provided by WBMOD include the

spectral index of phase, p, t}rre spectral strength of phase, T, occurrence statistics and the

amplitude and phase scintillation indices, ^Sa and opo respectively. WBMOD consists of

two parts; (i) a coltection of empirically derived models of the global distribution and

characteristics of ionospheric irregularities, and (ii) a power law phase screen propagation

model which allows the strength of scintillation activity to be calculated in a user defined

system. The propagation model assumes a spectral index o12.5 at equatorial latitudes, and

calculates T from a series of eight parameters provided by the irregularity model (based

on Equation (2.1,-2)). These parameters include the in-situ spectral slope, q=p-|, the

height integrated irregularity strengtlU C¡rL , t}ite in-situ drift velocity of the irregularities,

v¿, tlrle phase screen height, three parameters describing the geometry and orientation of

the irregularities, and the outer scale size, Io. The only extemal inputs required by

WBMOD are the carrier frequency, the satellite and receiver locations, local time and date,

and solar and geomagnetic activity levels. In addition, the user must decide between two

types of output, namely (i) the percentage of time that a specified level of scintillation

activity is exceeded, or (ii) the level of scintillation activity associated with a given

percentile of occurrence.
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An example of the output provided by WBMOD is given in Figure 2.1-4. Thte scintillation

indices oqo and 54 are provided in the top panel, the spectral strength, T, is in the centre

panel and the spectral index, p, is in the lower panel. All plots are a function of latitude at

a longitude of 1200E and are at the 70th percentile (ie. the activity is expected to be

stronger than the specified level for only 30% of the time). This example represents a

period of high solar activity during the evening hours when the levels of scintillation

activity are expected to be at their greatest. The two humps at approximately 25oN and 5oS

correspond to the crests of the Northern and Southem equatorial anomaly (at this

longitude, the magnetic equator is roughly l-00 North of the geographic equator). Notice

that when amplifude scintillations, and therefore S4z âr€ small, phase scintillations, and

therefore o, and T, are also likely to be small.
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Figure 2.1-4: An example of the scintilløtion indices produced by WBMOD (April 10, 21:00 hrs

local time, longitude 12008, 70th percentile, L2 frequency, R12=150, Kp=2, Phøse stability 10s),

In subsequent chapters, the various statistical parameters produced by WBMOD will be

used to determine the performance of GPS receivers in a scintillation environment. By

combining these results with the occurrence statistics provided by WBMOD, predictions

can be made about the likely performance of a receiver at a given time and location.

2.1.5. Phase screen model

A simple model, based on Fresnel-Kirchoff diffraction theory, which demonstrates the

effects of a thin phase screen on a vertically propagating plane wave is given in

Appendix A. This model assumes that the plasma density irregularities are concentrated

16

(a) Solld - sa

Dashed - oa (rad6)

(b)

(c)



within a thin layer or phase screen at a height that is typical of the F2-layer peak height

(approximately 400km). The resulting patterns of amplitude and phase variations on the

ground are then derived from the phase screen using simple diffraction theory. This model

provides an insight into the types of irregularities that are likely to produce scintillations at

L-band, as well as the characteristics of the resulting signals. It also allows simulated

scintillation data to be created for the tracking loop simulator described in Appendix B.

2.1.5.7. Deterministic phase screen

In this sectiory the results obtained by modelling the irregularity layer as a series of

discrete Gaussian shaped lenses is discussed. At GPS frequencies, irregularities with scale

sizes of the order of the Fresnel zone radiusl or smaller are likely to produce the most

significant scintillation events. Larger irregularities produce very little amplifude variation

and only gradual phase variation, unless the density gradients are extremely large. Very

small irregularities (tens of metres or less) produce quite complex diffraction patterns, but

at an intensity which is too low to have a significant effect on GPS.
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Figure 2.1.-5: Modelled dffiøction patterns based on a thin screel dffiaction model and øn isolated

Gøussiøn shaped ircegularity (see Appendix A). Scale sizes of the iruegulørities are (a.) 1km, (b)

100m, and (c) 10m. The irregularities were centred at a height of 400km with ø peak density

aariation of 500% oaer the background.

In Figure 2.1,-5, three examples are given of the diffraction patterns produced by an

isolated Gaussian shaped irregularity using the model described in Appendix A. From this

figure, it is apparent that the L00m irregularity, which is approximately one third the size

of the first Fresnel zone radius, produces the most significant amplitude variations (centre

panel). Panel (a) shows the effects of a very large irregularity (1km) and panel (c) a very

1 The Fresnel zone radius is approximately equal to 2'76matthe GPS Ll frequency and 3l2m at the GPS L2

frequency, assuming an irregularity height of 400km.
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small irregularity (10m). Both of these will have much less of an impact on GPS receivers

than the 100m irregularity. In addition, the high frequency phase variations associated

with difftaction tend to be more pronounced when the irregularity size is of the order of

the Fresnel zone radius. For much larger irregularities, the phase variations merely follows

the in-situ density profile. Smaller irregularities produce prolific high frequency phase

variations but at a level that is unlikely to affect GPS. In general, because the Fresnel zone

radius at L-band frequencies is quite small, large density gradients are required in order to

produce significant scintillation effects. This tends to restrict scintillation activity to the

equatorial anomaly and polar regions where large density gradients are known to exist.

2.1,.5.2. Random phase screen

Although the effects of isolated irregularities on transionospheric signals has been

reported in the literature (eg fazl, in general irregularities occur in large numbers with a

range of sizes and densities (the spectrum of irregularity densities measured in-situ using

rockets has a power-law form). By providing a more realistic in-situ density profile for the

irregularity layer, the phase screen diffraction model will produce time series amplifude

and phase scintillation data which has more realistic statistics (Appendix A). In Figure

2.1,-6, a realisation of a random density layer with a Gaussian PDF and an in-situ spectral

slopet of 2 has been used in place of the deterministic phase screen from the previous

section. The wavenumber power spectrum of the vertically integrated density profile is

given in panel (a) along with a straight line representing a spectral slope of -2 (on a log-1og

scale). The low frequency cutoff at a wavenumber of approximately -31 dBmetres-l is

produced by assuming an outer scale size, Io, of 1..3krct for the irregularities. The power

spectra of the resulting phase and amplitude scintillations (panels (b) and (c) respectively)

also have a spectral slope of 2. However, the amplitude scintillations display a low

frequency cutoff, k"2, at a wavenumber that corresponds to the Fresnel zone radius

(approximateLy -26 dBmetres-t for an irregularity height of 400km). The phase scintillation

spectrum also shows evidence of Fresnel oscillations beginning at a wavenumber of about

-26 dBmetres-l. These appear as a series of nulls in the power spectrum.

The measured PDF's of both the amplitude and phase are also consistent with the models

given in Section 2.1.3 (íe. Gaussian for phase and Nakagami-m for amplitude - panels (d)

I For the integrated density profile.

t k"= frlr"=tf J-zrp fromEquation(2.1-3)
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and (e) respectively). The smooth curves overlying both of these plots are the theoretical

distribution functions obtained from the PDF expressions given in Section 2.1.3.
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Figure 2.1.-6: Scintillation støtistics produced by a random, Gaussiøn distributed density layer with

øn in-situ spectral slope for the integrnted density of 2. Shown are the in-situ spectrum (a), the

phase scintillation polner spectrum (b), the ømplitude scintillation pozner spectrum (c), the phase

PDF (ù and thelntensity PDF (e).

2.I.6. Summary

In this section, the morphology and statistical characteristics of scintillations were

discussed. It was revealed that scintillations are generally restricted to specific times and

locations and that these can be predicted using models such as the Wide Band Scintillation

model. Based on studies of transionospheric scintillation data, it was decided that

scintillations can be modelled as a stochastic process in which the amplitude follows a

Nakagami-m distribution and the phase follows a zero-mean Gaussian distribution.

Furthermore, both the amplifude and phase can be assumed to have a power-law Power

spectral density with a low frequency cutoff for the amplitude. A technique for generating

scintillation time series for simulation studies was also discussed. This technique is based

on a thin phase screen model for the irregularity layer and produces scintillation statistics

that are consistent with the stochastic model described above. Details of the phase screen

model are given in Appendix A.
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2.2. Global Positioning System

GPS is a satellite based radio navigation system that provides accurate position, velocity

and time information globally and continuously under all weather conditions. Although

GPS is owned and operated by the US Department of Defense (DoD) and was developed

primarily for defence applications, it is now used widely in both the defence and civilian

communities in most countries. A convenient way of describing the GPS system is to

divide it into the following three segments:

(Ð The Space Segment,

(ii) The Control Segment, and

(iii) The User Segment (the GPS receivers).

The Space Segment consists oÍ 24GPS satellites arranged in 6 orbital planes each of which

are inclined at 550 to the equator. The coverage provided by the GPS constellation ensures

that at least 4 satellites are visible at any time, anywhere on the Earth. As will be shown

later, this is an important requirement to ensure accurate three-dimensional positioning by

a receiver. The Control Segment consists of four monitor stations and four ground

antennas which are distributed around the Earth, and a master control station located in

Colorado Springs. The purpose of the Control Segment is to ensure that the Space Segment

is operating within specificatiory and to provide adjustments where necessary.

Communication between the Control Segment and the GPS satellites is via an S-band

uplink from one of the four ground station antennas. The User Segment consists of GPS

receivers, both military and civiliary and the associated infrastructure such as differential

stations.

2.2.1,. Principles of GPS positioning

GPS receivers estimate three-dimensional position by solving four independent time delay

range measurement equations to four satellites in view. These equations can be

represented as follows:

P i =llx si, ! si, z s¡l- lx p, ! p, z pJ | 
+ ar

=Ri+c\t for i=l to 4, (2.2-1)

where f"r,,yr,,tgl is the 3 dimensional position vector of satellite I with respect to the

centre of the Earth, l, o, y 

^," ^]is 
the position vector of the GPS receiver, c is the speed of

light, Lt is the receiver clock offset from the satellite system time ( c\t is usually referred

to as the receiaer clock bias term), R¡ is the true range to satellite i, and p, is referred to as
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t}ne Pseudorange to satellite I (assumed here to be error free). The four unknowns in the

range measurement equations are tlrre x, y and z components of the GPS receiver position

vector (ie. the location of the receiver) and the receiver clock bias. The four pseudorange

measurements are found by measuring the delay in the propagation of the GPS signal

from four satellites to the receiver, and will usually be contaminated by a variety of error

sources. The four satellite position vectors fxs¡,l5i,zsil are obtained from the satellite

ephemeris information which is transmitted by each satellite as part of the GPS navigation

messaget.

GPS pseudorange measurements are obtained by correlating the pseudorandom noise

(PRN) ranging codes transmitted by each GPS satellite with a replica code generated

within the receiver. The time delay, ø which must be applied to the replica code in order

to achieve a correlation peak is related to the pseudoran1e, P, by p = cT . A second

estimate of the satellite range can be obtained by integrating the carrier phase rate

measurements that are generated within the carrier tracking loops. However, although the

resulting carrier phase range measurements are relatively noise free compared to the code

measurements, they are subject to an unknown integer cycle ambigutty. Therefore, a

combination of these two measurements is often used in order to derive low noise,

unambiguous estimates of the satellite pseudorange.

The GPS signal is transmitted on two carrier frequencies, L'1.=1575.42MH2 and

L2=L227.6Mr}ir2, each of which are bi-phase modulated by PRN ranging codes and GPS

navigation data. The PRN codes serve two pu{poses; (i) to create direct sequence spread

spectrum signals with good multiple access rejection and interference immunity, and (ii)

to enable the GPS receiver to measure satellite ranges by code correlation. Two PRN codes

are provided for this purpose, the Precision code or P-Code at 10.23 Mbits/s which is

modulated onto both GPS carriers, and the Coarse/Acquisition code or C/A-Code at L.023

Mbit/s which is modulated onto the LL carrier only. The US DoD reserves the right to

deny access to the higher accuracy available from the P-Code by encrypting it with a

second code referred to as the W-Codez. The resulting Y-Code is then only available to

authorised users who are equipped with the appropriate code decryption keys. This

I The navigation message is a 50 bits per second data stream that is modulated onto each satellite carrier and

includes information about the system time, clock correction factors, satellite health, and synchronisation

information for the military codes.

2 The chipping rate of the W-Code is 20 times less than the chipping rate of the P-Code.
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process is known as Anti-spoofing (AS) and its principal function is to protect authorised

users from deceptive jamming (spoofing) by hostile forces. Prior to 1 May 2000, the US

DoD also deliberately degraded the accuracy available to unauthorised users by dithering

the satellite clocks and introducing small errors into the satellite ephemeris information.

This process was known as Selective Availability (SA) and again could only be removed

by users who had access to the code decryption keys. Although SA errors are currently set

to zero, it is nevertheless possible for the US DoD to resume SA in the fufure if the need

arises. In GPS terminology, the more accurate P(Y)-Code service is referred to as the

Precise Positioning Service (PPS), and the less accurate C/A-Code service is referred to as

the Standard Positioning Service (SPS).

GPS pseudorange measurements are contaminated by a number of errors, including

ephemeris errors, ionospheric delays, tropospheric delays, RF channel biases, multipath

and thermal noise. Expressions for the code and carrier phase pseudorange measurements

that include these errors are as follows:

Code: p=R+c\t+dr oro +dtowo(f)+á, + bp+nro tn¡¡p r (2,2-2)

Carrier: Q=R+c\t+dr oro -dtouo(f)+á, + bp+nr,¡nM0+N)", (2,2-3)

where R is the true range to the satellite, c\t is the receiver clock bías, dTpsp¿ is the

tropospheric delayerror, drcNo is the ionospheric delayerror, á5 and bp are the satellite

and receiver inter-channel biases (hardware biases), ny aîd n¡¡ arre the thermal noise and

multipath errors, and N)" is the cycle ambiguity in the carrier phase measurement. Now

that SA has been turned ofl the principal source of error is likely to be the ionospheric

delay, drcuo. Under quiescent ionospheric conditions, the ionospheric delay is

proportional to the integrated electron density in the ionosphere (also called the Total

Electron Content or TEC), and inversely proportional to the square of the carrier

frequency, f (ie. d rc¡to = íTECI f2 , where k is a const ant l27l). As TEC is the same on the

two GPS carrier frequencies for a particular satellite to receiver link, a dual frequency

receiver is capable of measuring, and therefore removing, ionospheric delays from satellite

range measurements. Consequently, authorised military users who are equipped with

P(Y)-Code receivers, and therefore have access to both carrier frequencies, will have the

capacity to eliminate ionospheric delays directly [81]. However/ as the C/A-Code is only

modulated onto the GPS L1 carrier at present, unauthorised users are unable to remove

ionospheric delays in this way and must rely on a correction factor that is derived from a
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broadcast ionospheric model [51]. In the future, modulation of the L2 carrier by the C/ A-

Code and a possible second civil frequency (referred to as the L5 frequency) will

dramatically change this situation for civil users.

2.2.2. GPS receiver tracking loops

Figure 2.2-1, is an illustration of a generic GPS receiver in which the code and carrier

tracking loops are shown embedded between an RF front end staget and a navigation

processor. A typical GPS receiver contains many such tracking loop channels, each of

which consists of a Costas phase locked loop (PLL)2 for carrier tracking linked to a non-

coherent delay locked loop (DLL) for code tracking (see for example l47l e. [92]). In most

receivers, the code loop is also Doppler aided by the carrier loop to improve its robustness

to dSmamics3.

Channel I

a'

IF xrl,

l¡rlyrVZ

Channel n

Figure 2.2-1: Architecture of ø generic GPS receiaer.

In Figure 2.2-'1., the mixer at the front of the code tracking loop is driven by a replica

carrier from the carrier tracking loop and is responsible for down-converting the GPS

intermediate frequency (IF) signal to a baseband IQ pair. The mixer at the front of the

carrier tracking loop is driven by a replica code from the code tracking loop and is

responsible for removing the satellite PRN code from the IF carrier. Consequently, under

normal tracking conditions, the carrier loop receives an IF carrier which is modulated by

t The RF front end typically consists of an antenna, a low noise preamplifìer, a down-conversion mixer and an

image rej ection filter.
2 As 50Hz navigation data remains on the carrier after removal of the code, the carrier loop must be capable of

tracking a suppressed carrier signal. Consequently, a Costas loop is used rather than an ordinary PLL.

3 Carrier aiding of the code loop removes virtually all of the line of sight dynamics from the code loop,

allowing the code loop bandwidth to be significantly reduced.
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the navigation data, and the code loop receives a PRN code which is modulo 2 added to

the navigation data. Although other tracking techniques do exist (eg Í441 8x [71]), the

Costas PLL/DLL combination is by far the most common for GPS.

Both the code and carrier tracking loops can be represented by the signal processing model

illustrated in Figure 2.2-2. Here t and @ represent the phases of the code and carrier

components of the GPS signal at the input to the tracking loop, and f and @ represent

the phase estimates at the loop output. The loop contains two filters, a pre-detection filter

G(s) which reduces the levels of thermal noise prior to the phase discriminator, and a loop

filter F(s) which controls the order and bandwidth of the tracking loop. The phase

discriminator is responsible for measuring the difference between the input phase and the

loop phase estimate and is in general a non-linear device. The outputs of the tracking loop

are Doppler estimates, f and f , which are integrated in the Navigation Processor to

produce the code and carrier range estimates. In additiory the navigation data is derived

from the in-phase channel of the Costas loop at a point immediately after the pre-detection

filter G(s).

Sig4al +
(0 or $o, î

Signal estimate
($ or e)

Doppler Aiding

Figure 2.2-2: Signal processing model of ø generic code or carrier tracking loop.

The function of the tracking loop is to provide estimates of the desired input phase process

while rejecting unwanted phase noise. For GPS, the desired phase process is the Doppler

introduced by satellite and receiver motiory while the phase noise is a combination of

thermal noise, multipath, oscillator phase noise and ionospheric scintillations. Important

design objectives for the tracking loops are to minimise the phase noise on the Doppler

estimates, and to minimise the tracking error between the input phase and the estimated

phaseprocesses (ie. rr=r-î and @, =Q-ô).The second objective is associated withthe

ability of the loop to remain in phase lock and is probably the most important of the two

under strong scintillation conditions.

Data Detect

G(s)
Phase

Discriminator F(s)
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2.9. A review of scintillation effects on GPS

To date there has been little detailed work done in the area of scintillation effects on GPS.

The principal reason for this is that GPS was not declared to be fully operational until the

end of 1994l7}l, which is several years after the last solar maximum. Consequently, the

effects of scintillations on a fully operational system are only now being obsewed. The

majority of the work described in the GPS literature has either focused on the

characteristics of the disturbed ionosphere or has dealt with the issue of GPS performance

at a very qualitative level (see for example l2l,l5l,l9l,11.11,11.41,1291, [53]& [98]). Other

researchers have performed tests on GPS receivers using satellite signal simulators and

either simulated or real scintillation data 1121,1241,163l & [94]. This work has shown that

full code-correlation receivers are generally quite robust to moderate levels of scintillation

activity, but that pseudorange noise and occasional loss-of-lock can occur if the

scintillation activity becomes very strong. Nichols et al [66] correlated loss-of-lock events

for a codeless receiverr with the scintillation statistics oq and ,Sa for a Northern Auroral

region. Although this work has demonstrated that GPS receivers are indeed susceptible to

the effects of scintillations, again it has not been accompanied by any detailed analytical

studies. More recently, a number of researchers have begun to investigate the performance

of GPS receiver tracking loops using phase locked loop simulations and simulated

scintillation data. This has included simulation tests based on discrete irregularity

structures [56], as well as those based on stochastic models of scintillations activity l4ll,

tSSl & [73]. Hegarty et al [41] used simulators for both the LL code and carrier tracking

loops tracking loops to determine the tracking errors as a function of ,la and the quiescent

ClN,. His results suggest that very narrow bandwidth code loops are unlikely to be

significantly affected by scintillations, but that carrier loops will suffer an increase in

measurement noise and a loss of continuous carrier lock. He also found that codeless

receivers will be significantly affected by scintillations and will even lose lock in the

presence of quite mild scintillation activity. The principal advantage of using the

simulation approaches outlined in [41], [56], [58] Sx l73l is that they overcome the

problems associated with attempting to mathematically analyse the inherently non-linear

code and carrier tracking loops. However, these approaches also fail to provide any deep

insight into the problem and do not reveal the links that may exist between the

scintillation statistical parameters and the receiver performance parameters.

t For a description ofcodeless receivers, see Chapter 5
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Despite a lack of detailed research in the navigation community, a considerable amount of

work has been done in the communications field on the effects of multipath fading on

various types of communications systems, including Direct Sequence Spread Spectrum

systems (see for example [30], [46] & [48]). Flowever, most of this work has focused on the

calculation of error rates in the transmitted message rather than the performance of the

code and carrier tracking loops. For GPS, the probability of losing lock on the GPS signal

and the magnitude of the measurement errors in the tracking loops is considered to be of

far greater importance than errors in the navigation message. This is partly because of the

large amount of diversity associated with the navigation message (diversity in both space

and time), and partly because measurement errors in the tracking loops tend to be of more

importance for a navigation system such as GPS than they are for a communications

system. In additiory the majority of the communications literature deals with the more

common Rayleigh and Rician fading models rather than the Nakagami-m model [64]

which has been found to be more suitable under amplitude scintillation conditions l7l,l34l
& [101]. This is mainly because the Rayleigh and Rician fading models have traditionally

been used to describe multipath effects, but also because they contain information about

the joint statistics of amplitude and phase and so provide a more complete description of

the fading statistics (the Nakagami-m distribution for amplitude and the Gaussian

distribution for phase cannot be derived from an underlying signal model). Nevertheless,

a few researchers in the communications field have looked at the effects of Nakagami-m

fading on communications systems, and have identified ionospheric scintillations as a

possible source of Nakagami-m fading (see for example 1251,1261, 1321,1611,1621, [65] e.

t102]). However, the work in this area has again focused on the calculation of error rates in

the transmitted message rather than the performance of the code and carrier tracking

loops. Indeed, in all of these cases, it has been assumed that the carrier is perfectly

synchronised to the receiver local oscillator (ie. it is assumed that the carrier phase error,

Q",is zero). Consequently, one of the principal objectives of the work described in this

thesis was to derive expressions for the performance of the code and carrier tracking

loops, navigation data demodulation and acquisition in terms of the parameters of the

scintillation model outlined in Section 2.1..3 and in [34], 1351,1761,l77l EE lL01l.

2.3.1,. Carrier tracking loops

Under normal (quiescent) conditions, the tracking loop model of Figure 2.2-2 can be

linearised by assuming that the phase tracking errors are small. This enables the non-linear
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discriminator element to be ignored which significantly simplifies the analysis. All text

books on phase-locked loop theory discuss this approach and use it to obtain many of the

measures which define loop perforrnance (see for example [15], [36] & [43]). Howevet,

when the phase errors are large, either as a result of large amounts of direct phase noise,

electromagnetic interference or amplifude fading, the linear model approximation may be

significantly violated and the loop runs the risk of losing lock. Under these highly non-

linear conditions, the behaviour of a phase locked loop is not well understood. Indeed, the

only closed form analytical expressions that exist to define loop perfoûnance under these

conditions are the probability density function of the phase errors (also called the

"Tikhonov density function" and discussed in l97l), and the mean time to cycle slip (see

for example [a3]). Although these expressions have only been derived for a standard first

order phase-locked loop that is subject to additive, white thermal noise, Lindsey and

Charles [59] have shown that they are also a reasonable approximation for higher order

loops and for non-white noise under certain conditions. In addition, Holmes [43] gives

equivalent forms for these expressions that apply to an I.Q Costas phase locked loop. In a

number of communications papers (eg [30], Í461, l48l), the Tikhonov density function is

used to determine the effects of imperfect carrier synchronisation on the bit error rates in a

communications system that is subject to multipath fading. Also, Weber [100] has looked

in detail at the effect of Rayleigh, Rician and Log-normal fading on a standard phase-

locked loop, but again has only applied his results to the calculation of error rates in the

received data. However, none of these researchers have looked at the effects of Nakagami-

m fading on the performance of a phase locked loop. Also, none have looked at the

probability of losing lock on the received signal, nor at the errors introduced into the code

and carrier phase estimates. This is mainly because the code and carrier phase estimates

provide information about the range to a satellite and so are of far less importance to a

communications system than they are to a navigation system such as GPS. In addition,

none of these papers have looked at the effects of a post-detection AGC on the

susceptibility of the tracking loop to amplitude scintillations, nor the effects of relative

motion between the transmitter and the receiver. Van Dierendonckl92l discusses the need

for a post-detection AGC or a normalised discriminator such as Atan(Q/I) in order to

control the bandwidth of the tracking loop when the signal strength is unknown. Without

such control, the instantaneous loop bandwidth may change significantly during periods

of strong amplitude fading resulting in tracking difficulties, particularly under dynamic

conditions. The behaviour of the AGC in the presence of amplitude scintillations will

depend very much on its time constant. If the time constant of the AGC is short in ¡elation

to the correlation time of the amplitude, or the discriminator is normalised, the amplitude
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fluctuations are likely to be tracked quite accurately by the carrier loop, provided that the

amplitude fading is not too deep (if the amplitude fade is very deep, the AGC will be

limited by thermal noise). Under these conditions, the amplitude scintillations will be

decoupled from the effects of phase scintillations and will merely act as a scaling factor for

the receiver thermal noise. However, if the AGC time constant is long, it will be unable to

accurately track the amplitude fluctuations and both the loop bandwidth and the damping

factor will vary with time. Consequently, the amplitude will be strongly coupled to the

effects of phase scintillations through the loop transfer function. Under these conditions,

Weber [L00] assumes that the bandwidth of the amplitude scintillations is narrow in

relation to the loop noise bandwidth and derives an expression for the phase error

variance as a function of the amplitude. The average variance is then obtained from this

conditional variance using the Nakagamim PDF.

Consequently, the objective of this part of the research was to derive expressions for the

performance of the carrier tracking loops in terms of the scintillation parameters T, p, S+

and o, from Section 2.1..3, and to investigate the impact of different AGC regimes on

carrier loop perfoÍnance. The two principal performance measures to come out of this

work were the variance of the phase tracking error and the variance of the loop phase

estimate. The first of these is useful for determining the probability of losing carrier locþ

the second is important for determining errors in carrier phase DGPS as well as errors in

the estimation of velocity. Carrier loop tracking thresholds were then derived as a function

of the two principal scintillation indices, T and ^la, and compared with predictions

obtained from the scintillation model WBMOD [82]. The dependence of these indices on

both the satellite elevation angle and the satellite and receiver velocities was also

examined.

Another significant component of this research was an investigation into the relationship

between the fade depth and duration and the probability of a cycle slip for a carrier loop

subject to a single fade with a simple rectangular profile. This problem is tackled using

both analytical techniques and simulations based on the carrier loop simulator from

Appendix B. Kintner et al [50] also considers this issue using measured scintillation data

and a real GPS receiver located in the equatorial region. His analysis shows that an

increase in fade duration, possibly as a result of satellite and receiver motiory can cause a

receiver channel to lose lock provided that the fade depth is near or below the tracking

threshold of the carrier loop. He also indicates that when the velocity of the ionospheric
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pierce point matches the drift velocity, y¿', a situation referred to as aelocity reslnance car.

occur in which the fade duration becomes extremely long and greatly increases the

probability of losing lock.

2.3.2. Code tracking loops

A delay locked-loop operates in essentially the same way as a phase-locked loop. The two

main differences lie in the discriminator algorithm and in the need to generate a replica

code for the code correlators. As the GPS carrier wavelength is more than a thousand

times shorter than the tength of a code chip, the effects of phase scintillations on the code

loop can be ignored. However, the effects of amplitude scintillations on a code loop are

essentially the same as their effects on a carrier loop and can be dealt with in much the

same way. Probably the main difference in performance between the two loops is

associated with the much narrower bandwidth of the code loop and the Presence of post-

detection integration within discriminator (see for example la7l. Although the principal

reason for these differences is to reduce thermal noise errors in the code loop, a second

effect will be to reduce the impact of amplitude scintillations, particularly if the fade

duration is short in relation to the loop time constant. Indeed, using simulations Hegarty

et al [41] found that the effects of amplitude scintillations on a very narrow bandwidth (0.1

Hz) delay locked loop were negligible. However, using a real GPS receiver, Coco et all24l

observed that strong amplitude scintillations could increase the pseudorange RMS as well

as introducing large pseudorange spikes. Therefore, the key objective of this part of the

work was to derive variance measures for the delay-locked loop which take into account

the effects of post-detection integratiory and to then relate these to the accuracy with

which the code pseudorange can be measured. In order to achieve this using ana$ical

techniques, assumptions must be made about the bandwidth of the code loop in relation to

the correlation time of the amplitude scintillations.

A second objective of this work was to demonstrate that the distortion of the GPS ranging

codes produced by frequency selective scintillation effects is likely to be negligible at GPS

frequencies. The work done by Bogusch et al. [16] e. Í71on the effects of ionospheric

disturbances on the performance of code correlators demonstrates that the irregularities

must be extremely dense (such as those produced by a high altitude nuclear blast) and the

code bandwidth must be relatively wide before significant code distortion can occur. At

GPS frequencies, the distortion of the GPS codes is expected to be negligible under

naturally occurring ionospheric conditions, even for the wider bandwidth P-Code.
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2.3.3. Codeless and Semi-Codeless receivers

It is generally accepted that scintillations will have the most profound effect on codeless

and semi-codeless tracking loops. This is based on studies of real GPS receivers exposed to

scintillation effects (see for example 1571, Í661, Í671 e. [98]) and a number of more

theoretical studies (eg. [a1] & t93l). The reasons for this are that the tracking loops of

codeless and semi-codeless receivers generally have both a significantly reduced SNR and

a very narrow loop bandwidth. As a result, receivers of this sort may frequently revert to

L1 only tracking r¡nder strong scintillation conditions. This is unlikely to have a very

significant effect on the positional accuracy of a receiver (assuming SA is the dominant

source of error), but will compromise a receiver's ability to measure ionospheric TEC.

Consequently, it is orùy likely to be of importance for receivers that form part of a WAAS

network and are therefore required to monitor TEC. However, with the introduction of a

second civil frequency in the near future (referred to as the L5 frequency), it is unlikely

that this problem will persist much beyond the current solar maximum.

The objective of this part of the work, therefore, was to develop analytical expressions that

define the performance of codeless and semi-codeless receivers in terms of the scintillation

parameters given in Section 2.1.3. The result of this analysis were then compared with

measurements obtained from a semi-codeless GPS receiver co-located with an ionospheric

scintillation monitoring receiver in an area known to experience scintillation effects.

2.3.4. Navigation data

A number of researchers in the communications field have looked at the effects of

Nakagami-m fading on the error rate in communications systems. Wojnar [L02] obtained

an expression for the average bit error probability for a non-selective Nakagami-m fading

channel based on an expression for the conditional bit error probability which applies to

both coherent and non-coherent PSK and FSK. This result was based on earlier work by

Nesenbergs [65], Esposito 1321, and Barrow [6]. Miyagaki [61] tackled the problem of non-

selective Nakagami-m fading on coherent M-ary PSK, while Crepeau l25l & 126l

considered the cases of frequency hopped non-coherent binary FSK, non-coherent M-ary

FSK and differentially coherent binary PSK. In additiory Eng [31] analysed the problem of

frequency-selective Nakagami-m fading on Direct Sequence CDMA and derived

expressions for the bit error rate of a RAKE receiver. However, none of this work has

included the effects of carrier loop phase tracking errors/ and in particular the impact of
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direct phase noise from sources such as phase scintillations. Consequently, the objective of

this part of the work was to determine the effects of Nakagamim amplitude fading and

carrier loop tracking errors from phase scintillations and thermal noise on the

demodulation performance of the navigation data. This was done using an approach

similar to those described in the cited papers, but with the Tikhonov density function used

to account for the effects of imperfect carrier synchronisation.

2.3.5. Acquisition

McDonough & \Ä/halen [60] (pages 262-265) use the Rayleigh PDF for the signal amplitude

to find an average probability of detection for an envelope detector under multipath

fading conditions. The approach used here is to use the Nakagami-m PDF and a square-

law detector (see for example [43],1601,1721,l74l EE [8a]) that incorporates post-detection

integration in order to derive a similar average probability of detection. This requires both

the amplitude and phase variations of the scintillations to be slow in relation to the

integration period of the detector. This condition that is likely to be met under normal

scintillation conditions and for typical integration periods.

The false alarm probability of an acquisition detector is generally considered to be

independent of the signal level once the design parameters of the detector are fixed (ie. the

pre and post-detection integration periods and the detection threshold). However,

correlation sidelobes produced by the GPS C/A-Codes can significantly increase the false

alarm probability if they are not accounted for when the design parameters of the detector

are chosen [92]. As amplitude scintillations lead to occasional enhancements in the signal

strength, the impact of correlation sidelobes can be even greater. This effect has been

examined using the Nakagami-m PDF to account for these enhancements, as well as the

PDF of the sidelobe levels þased on a cumulative distribution function reported by Spilker

[87]) to determine an average false alarm probability.

The impact of a reduced probability of detection on the mean time to acquire has also been

investigated for a simple single-dwell, serial search strategy of the sort described in [72] &

[8a]. The effects of both short and long amplitude correlation times have been addressed,

although a number of simptifying approximations have been made in order to arrive at a

closed form analytical expression.
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2.3.6. Optimum tracking of the carrier phase

As shown by Van Trees [95] & Brown & Hwang [19], the optimum filter for tracking a

signal that is corrupted by additive thermal noise can often be mapped into an equivalent

phase-locked loop structure, provided that the transfer functions of the two have the same

general form. This allows the optimum bandwidth, loop order and damping factor of the

carrier loop to be obtained through a procedure that is independent of phase-locked loop

theory. By applying this approach to the case where a signal is corrupted by amplitude

and phase scintillations, the optimum phase locked loop structure for a minimum

probability of losing lock is obtained as a function of the scintillation parameters from

Section 2.1.3. This approach has also been extended to the case where dynamics are

present, although the resulting optimum loop transfer function cannot always be mapped

into an equivalent phase locked loop structure. In a similar way, the optimum causal and

non-causal post-loop filters for minimum carrier phase range errors were obtained.

2.3.7. Scintillation effects on navigation

As scintillations cannot be eliminated by pre-processing prior to the tracking loopst, the

most straightforward mitigation strategy involves simply avoiding the times and locations

for which scintillation activity is most likely to be a problem. Scintillation models such as

WBMOD [82] provide predictions of the occurrence and severity of scintillation activity

and are therefore very useful for plaruring operations in areas that may be affected by

scintillations. Other models such as the Scintillation Network Decision Aid or SCINDA,

[21] & [38], collect scintillation data from multiple receiver sites and process the data using

models of plume formation, evolution and destruction to forecast scintillation activity (the

SCINDA model reverts to WBMOD in the absence of current scintillation measurements).

By linking the analytical performance measures described in the previous sections with the

scintillation statistics generated by WBMOD or SCINDA, predictions can be made about

the likely performance of a receiver at a given time and location. It can be shown (1761 e.

l77l) that the principal amplitude and phase scintillation parameters, ,S4 and T, are

directly proportional to a third parameter, referred to as the height integrated irregulørity

strength or C¡L, which is a measure of the strength of scintillation activity (see Equation

1 For electromagnetic interference, techniques such as adaptive fïltering and adaptive null steering antennas

can be used to reduce the effects of interference prior to the hacking loops without the need to modify the

receiver hardware.
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(2.t-2)).In WBMOD, the distribution of. Log(C¡L) in equatorial regions is modelled as the

sum of three Gaussians, each of which have different means and variances (see for

example t13l & [82]). Therefore, as many of the receiver performance measures are

functions of Sa and T, they are amenable to averaging using this distribution function.

Consequently, using WBMOD the performance of a single satellite-receiver link can be

predicted for a given time and location, either in terms of a percentile or as an average

based on the distribution function of C¡L .

Ordinarily, in the absence of scintillations, the navigational accuracy of a GPS receiver is

found by estimating the single link error (referred to as the User Equivalent Range Error or

UERE) and translating this error into equivalent position and time errors using satellite

geometry factors (the Dilution Of Precision or DOP factors: see for example Kaplan [47]

pp.261,-269). The DOP factors assurne that the range errors are the same on each satellite

link and are uncorrelated between the individual links. However, when the effects of

scintillations are included, WBMOD provides additional information from which the

tracking status and range errors on each satellite link can be obtained independently. The

problem then arises as to how these individual link predictions can be combined in order

to determine the likely impact on navigational accuracy. In this section, it is shown that the

joint statistics of the scintillation indices ,Sa and T on the individual satellite-receiver links

are required in order to solve this problem. However, as yet there are no models or data

available from which this information can be derived. Nevertheless, in [57] data obtained

from a receiver located in an active scintillation environment was analysed to show that

the probability of losing lock simultaneously on multiple satellite links is extremely small.

Further analysis of this data is required in order to determine the required statistics and

the factors on which they depend.

2.4. Summary

In this chapter, an overview of the morphology and statistical characteristics of

scintillations was given. It was revealed that scintillations can be modelled as a stochastic

process in which the amplitude follows a Nakagami-m distribution and the phase follows

a zero-mean Gaussian distribution. Furthermore, both the amplitude and phase can be

assumed to have a power-law power spectral density with a low frequency cutoff for the

amplitude. The scintillation model WBMOD was also described and its potential for

predicting the statistics of various key scintillation parameters was explained. These
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statistics link WBMOD to the stochastic scintillation model as they define the distribution

functions and spectral characteristics of the scintillations. A second scintillation model

based on diffraction from a thin phase changing screen was also described. The primary

purpose of this model was to generate scintillation time series for the simulation tests

carried out in subsequent chapters.

The second part of this chapter provided an overview of the GPS system, including a brief

description of the architecture of the front end of a GPS receiver and the operation of the

receiver tracking loops. This was then followed by a literature review and an overview of

each chapter in the thesis. The main point to come out of this review was that although

various researchers have conducted simulation sfudies and measurement campaigns

aimed at quantifying the effects of scintillations on GPS, there has been very little detailed

analytical work done in the area. Consequently, the main thrust of this thesis is to link the

various statistics associated with the stochastic scintillation model outlined above to

measures of the tracking and acquisition performance of a GPS receiver.
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Chapter 3

Carrier tracking loops

This chapter examines the effects of scintillations on carrier tracking loops. As carrier loops

are generally the weakest link in a receiver channel, significantly more effort has been

devoted to this chapter than to the following chapter on code tracking loops. A brief

outline of each section in this chapter is given below:

o In Section 3.L, a signal processing model of the carrier tracking loop is given. This

model is used throughout the thesis and is based on a Costas suppressed carrier tracking

loop.

o In Section 3.2, tirre effects of phase scintillations on a Costas carrier loop is investigated.

Phase scintillation effects include an increase in carrier tracking errors and an increase in

carrier phase range erroÍs. The first of these is associated with the ability of the carrier loop

to remain in phase lock, the second is associated with errors in carrier phase differential

GPS. The latter is dealt with in greater detail in Section 3.6 where the decorrelation with

distance of the phase scintillation error is examined.

o In Section 3.3, the impact of amplitude scintillations on a Costas carrier loop is

investigated. This is done for an I.Q discriminator that is normalised by a post-detection

AGC. Because the joint statistics of amplitude and phase scintillations are unknown at this

stage, it was decided to initially treat their effects separately, and to then deal with their

combined effects by assuming independence. The potential problems associated with this

assumption are highlighted.

o In Section 3.4, a rule of thumb tracking threshold for the Costas loop is defined in

terms of the amplitude and phase scintillation indices, T and ,S4, and the loop bandwidth.

This threshold is then compared with WBMOD predictions of T and ,Sa obtained for a

stationary receiver located in a region of high scintillation activity. The effects of satellite

elevation angle and both satellite and receiver velocity on the scintillation indices, and
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therefore on the probability of exceeding the tracking thresholds, are examined using

WBMOD data and the scintillation model from Section2.l.3.

o In Section 3.5, both analytical techniques and simulations are used to determine the

relationships between the depth and duration of a simple rectangular fade and the

probability of a carrier cycle slip. The intention is to show that short duration fades have

very little impact on the tracking loop performance, irrespective of the fade depth.

r Finally, in Section 3.7 the effects of scintillations on a Frequency Locked Loop (FLL)

are examined. FLL's are used as a primary means of carrier tracking in some receivers, but

more often as a fall-back strategy when phase locked loop operation is no longer possible.

In this section, the susceptibilities of FLL's and PLL's to scintillations are compared.

3.1-. Carrier loop model

Figure 3.1-1 is a representation of a generic Costas carrier phase tracking loop. A brief

description of the operation of the Costas loop is given below.

Pp
Ip

Navigation Data

IF

@tp

Figure 3.1-1: Model of ø guteric Costas phøse locked loop,

The Costas carrier loop generates in-phase (I) and quadrature (Q) signals by mixing the

GPS IF with I and Q reference signals produced by a voltage controlled oscillator (VCO).

The PRN ranging code is then removed from the I and Q signals by mixing with an in-

phase replica code, pp, that is generated within the code tracking loop (see Chapter 4).

This causes the enerry of the GPS signal to be collapsed into the bandwidth of the

navigation data which is L00Hz between nulls. The resulting I and Q signals are then
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filtered by a pair of pre-detection integrate and dump filterst before being passed into the

Costas loop discriminator. The function of the discriminator is to measure the phase error

between the IF carrier and the VCO reference while simultaneously removing navigation

data from the carrier. A list of the most common discriminator types along with their

corresponding phase error functions is given in Table 3.L-L'

Discriminator Discriminator Output

sign(I).Q I sin(@" )

I,Q 0.5Ã2 sin(2@" )

olr tan(@" )

Atan2(Q,I), Atan(QlI) Qt

Tøbte 3.L-1-: Common Costas loop disuiminøtor functions. Z, is the filtered signøl ømplitude and

Q" is the phase error. Atan2(y,x) is the four quødrant arctangent function (ie.

-n < Atan2(y,x)<n ).

From the discriminator, the phase errors are passed through a loop filter, F(s), and then

on to the VCO. The loop filter controls the order and bandwidth of the tracking loop and

must be adjusted according to the expected dynamics and noise conditions in order to

maintain optimum tracking performance (ie. minimum phase tracking error). The filtered

phase errors force the frequency of the loop VCO to be shifted in a direction that reduces

tracking errors in subsequent phase measurements. In this way, the VCO tracks both the

frequency and the phase of the IF carrier. Estimates of the line-of-sight Doppler and the

ambiguous phase range (the integrated Doppler) are obtained directly from the filtered

phase errors by applying appropriate scaling factors.

In the analysis that follows, the effects of scintillations are modelled as a modulation of the

complex GPS signal z. Based on this model, the IF signal can be represented by

I The integrate and dump filters are synchronised to the navigation data and have integration periods less than

or equal to the length of a navigation data bit. Without synchronisation, the SNR of the filtered I & Q signals

would be significantly degraded by changes in the sign of the navigation data.

2 The modulation is of the form AQ)exp(- jQr(t)¡ , *rre.e AQ) and QoQ) *" the amplitude and phase

scintillation processes respectively.

37



IF(t) = AOpQ -r()þQ -r@)sin(a,rt +qQ))+ nQ) (3.1-1)

where:

,,1(t) isthe signal amplitude,

pQ <Ø) is the satellite PRN code3,

a(t -rçt¡) is the satellite navigation messageg,

r(t) is the code delay,

@¡p is the IF carrier frequency,

QQ) = QaQ)+Q p!)+Qo(t) is the phase of the GPS carrier,

Q¿(t) represents the effects of satellite and platform dynamics,

Q oG) represents the effects of phase scintillations,

QoQ) represents other effects such as VCO phase noise,

n(t) = n"(t)cos(a¡pt) + nr(l)sin(ant) is stationary, zeto-rnean/ narrowband Gaussian

thermal noise with a power spectral density of ¡f, W /Hz within the IF band, and

n"(t) and nr(t) are stationary, zeto-rrreary Gaussian noise processes which are

independent and identically distributed (IID).

The IF signal is mixed with I and Q reference signals from the VCO and a prompt code,

p p = pQ -tØ), from the code tracking loop to produce a pair of baseband I and Q signals.

The mixing process also generates double frequency terms centred on 2@p, but these are

eliminated by the pre-detection integrate and dump filters in the following stage. If it is

assumed that the pre-detection filters are synchronised to the navigation data, and the

phase error/ @", is relatively constant over the integration period, then after filtering the I

and Q signals will become¿

I p = ÀdQ-ø)cos(@") * nrp,

ep =Ãde-ø)sin(@r)+nsr
(s.1-2)

where Q, = Q(t)-ô(l) is tne carrier phase tracking errors, r[1r¡ is the loop's estimate of the

3 Both the PRN ranging codes and the navigation data are represented by a +l bit sequence.

a the VCO signal is assumed to be of the form 2sin(ø¡¡ t +$1t¡¡ .

t In this Chapter, the terms "phase error", "carrier phase error" and "canier phase tracking error" are used

interchangeably.
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I

l,q@)¿, is a filtered version of the signal amplitude, T is
J\J

t-T
carrier phase, T = T(t), Ã=+

the integration period of the pre-detection filters, and n¡p arrd ngp are uncorrelated,

baseband Gaussian noise processes with anrp -ongp =N"lT. This step assumes that

the replica prompt code is perfectly aligned with the satellite code and is therefore

removed completely from the carrier (ie f = ø ). The filtered I and Q signals are then

processed in the Costas loop discriminator to produce the phase error estimates given in

Table 3.L-1. In all cases, the discriminator algorithm eliminates the navigation data from

the phase error estimates allowing the loop bandwidth to be reduced to a few Hz.

The Costas loop can be represented in an equivalent form in which the mixers and pre-

detection filters are replaced by an adder, and the phase discriminator is replaced by the

appropriate phase error function. An example of this baseband model for the /.Q

discriminator is given in Figure 3.1-2. The lf g factor represents gain control from an AGC.

ndl

þt
a

a

Eigure 3.1-2: Non-linear baseband model of an I'Q Costøs phase locked loop.

For small phase errors, the approximation 0.5sin(2@r)=4, can be used to produce the

linear baseband model shown in Figure 3.1-3. Similar approximations can be made for the

other three discriminator types from Table 3.1-1.

nd U

Qt

Figure 3.1.-3: Linear baseband model of an l.Q Costas phøse locked loop.

a

0

F(s)0.5A2 sin(zpr)

lls

F(s)lz

lls
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The noise terrn n¿ represents the effects of additive thermal noise translated to the

discriminator output, and includes products between the I and Q noise terms and the I

and Q signal terms which are created within the discriminator. For the I.Q discriminator,

r¿ is given by (from Equation (3.1-2))

n¿ = Àd(t -ø¡þos(4" \tpn + sin(Qr)nlpf+ nernn (3.1-3)

The gain control shown in these figures is typically provided by a post-detection AGC and

is necessaty to ensure that tracking loops based on un-norrnalised discriminators such as

/.Q and sign(I).p operate within their design parameters [92]. Without such control, the

bandwidth and damping factor of the loops would be strongly affected by the signal

amplitude, Z. AGC's of this sort can either be applied after the discriminator (as shown in

these diagrams) or at the IF stage prior to the tracking loop. In either case, their effect on

the tracking loop will be the same. For an I.Q discriminator, the AGC gain factor, g, is

given by Ir'+Qr'=Ã2. ff it is assumed that the discriminator is normalised (eg.

Atan(QlI) ), or the AGC is capable of accurately tracking the signal amplitude, the closed

loop transfer function of the Costas loop is given by (see for example [36])

(s,1-4)

where (Þ(s) and .Îr(") are the Laplace transforms of @(r) and i(l) respectively. Typical

loop transfer functions and their corresponding noise equivalent bandwidth'sø for the

three loop orders are given in Table 3.1-2 (assuming active loop filters). As shown in

Figure 3.1,-4, t}'':re closed loop transfer function can be used to simplify the linear baseband

model of the Costas loop.

nolÃ'

Figure 3.1-4: Closed loop trønsfer function model of ø phase locked loop

11(s)=#=#ä

a
Qta

)
6 The single-sided noise equivalenr bandwidth is given by B, = I IWf,
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1st Order Loop 2nd Order Loop 3rd Order Loop

F(") o)n z(a,+r'fifs 2a4 + zrú l'* ,ú I t'
a(') (Dn

s + Ct)n

2(rons +al
s2 +2(a.rs +o]

2ans2 +20fi,s +of
s3 +2@rs2 +2ofi,s + al,

Bn @n14

+('.+)
a,ft.2

Table 3.L-2: Open ønd closed loop transfer functions ønd single-sided noise bandwidth's for a phase

locked loop. an is the loop natural frequency and ( is the dnmping føctor for ø second order loop.

The three loop transfer functions represent the optimum Wiener filters for tracking a phase

step (Lst order), a frequency step (2nd order with ( =llJl) and a frequency ramp (3rd

order). These optimum filters were derived by Jaffe and Rechtin [45] based on a

minimisation of the mean-square loop phase error in the presence of d¡mamics and noise.

The derivation of an optimum Wiener filter in the presence of scintillations and dynamics

will be discussed in Chapter 8.
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3.2. The impact of phase scintillations on carrier

phase tracking loops

In this sectiory the variance of the phase tracking errors and the variance of the phase

range errors will be derived for a phase locked loop in the presence of phase scintillations

and thermal noise. The variance of the phase tracking errors will be used to determine a

threshold value for the spectral strength of phase scintillations beyond which loss-of-lock

is likely to occur. The variance of the phase range errors will be used in Section 3.6 to

investigate the effects of phase scintillations on carrier phase DGPS.

3.2.L Phase tracking errors and thresholds

The mean-square carrier phase tracking error resulting from direct phase noise and

thermal noise for the linearised carrier phase tracking loop is given by (based on Figure

3.1-4)

ø{o1F j[¡ - r,r,12 sr{f) + lnç¡¡12 s,a r¡>Iar (3.2-1)

where I-H(f) is the transfer function of the phase errors, SoU) is the power spectral

density (PSD) of the input phase process and ,S,2 ("f) is the PSD of the normalised thermal

noise term , n!¿ = 
"o lZ' . The input phase process can be represented by (from Equation

(3.1-1))

Q(t) = Q¿ (t) + Q p(t) + Q,(t) (3.2-2)

where QaQ), QoQ) and Q.(t) rcpresent the contributions from satellite and platform

dynamics, ionospheric phase scintillations and other phase noise sources respectively. The

autocorrelation function of @(r) is therefore

Rqç(\,tù= ø{Q(u:\|Q)}

= ø{luoQ)* QoQ)+ Q"þ)].lOoQr)* QoLr)* ø (r, )] }

= RQ¿oa Qvtz) * Rooøo(r) + Roo¿,o(ø) + cross - correlation terms
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where ll and t2 ate two instants in time and t - t2 - /1 . In this analysis, it is assumed that

QoQ) and Q"Q) are stationary, zero-meary Gaussian random signals, and that Q¿(t) may

be deterministic or random, but is generally not zero-mean. It is also assumed that Q¿Q),

QoQ) and QoQ) are independent as they are produced by entirely different physical

processes. Consequently, the cross-correlation terms in Equation (3.2-3) are all zero. The

corresponding PSD of Q(t) is thus

sou) = sr,d (f) + soeu) + sr,,(f) (3.2-4)

where Sad(.f)=t{Þ, Ø'}is the PSD of the dynamics component (see Appendix E),

SO.U) is the PSD of ionospheric phase scintillations (Equation (2.1'-1)), and ,S*(/) is the

PSD of the other phase noise sources. In the analysis that follows, it is assumed that

thermal noise and ionospheric phase scintillations are the principal sources of phase noise,

and that amplitude scintillations are not present (ie. Ã.= A where A is the unperturbed

signal amplitude). Under these conditions, the mean-square phase tracking error reduces

to

(3.2-5)

=oî* * otv,

wlnerc ofi* and o2qr are the phase scintillation and thermal noise components of the

tracking error variance, and n{ú}is equal to the phase error varian"", oftr, as both phase

scintillations and thermal noise terms are zero-mean. Equation (3.2-5) can be simplified by

making the following substitutions

oî, =jlt-urr>2 sro{fi + H(Ð's,2{Ðfof

'* = hl,. #1, *o- Equation (D'1e),Appendix Do

s op(f) =
T

(f,' *.f'Yl'
, from Equation (2.L-L), and

l- ufl>l' = #. 
from Table 3.1-2 with s = i2nf
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where k is the loop order (1,2 or 3), .f n = @n l27T is the loop natural frequency inHertz, fo

is the outer scale size frequency, and a damping factor oÍ llJi has been assumed for

second order loops. The phase scintillation component of the tracking error variance is

(3.2-6)

Unfortunately, it is difficult to obtain a closed form solution to this equation. However, for

p <2k and fo much smaller t}rran fn, the following approximation canbe made

a

0qo

T

(f,' * f'Y''
(3,2-7)

(3.2-8)

t -f,'o

This is based on the observation that the phase error transfer function, l- H(f), is a high-

pass filter, and so the low frequency components of the phase scintillation power

spectrum will have a negligible effect on the phase errors. Therefore, letting .fo=O wiLl

not significantly affect the phase error variance. As f is usually very much smaller than

f n , this approximation will be accurate under the following conditioru þased on p < 2k )

l.'t order loop: p < 2

2"d order loop: p < 4

3'd order loop: p < 6

As the carrier tracking loop in a GPS receiver is usually 3.d order (unaided) or 2.d order

(aided), and p is in the range 1, to 4 (typically 2.5 at equatorial latitudes), this

approximation is considered to be quite accurate under most circumstances. Equation

(3.2-6) then becomes (using Spiegel's table of integrals [86], Equation 15.20)

J
')

Qqo .df , p <2k

ldf
= 

o¡,.-tsin(þ - th lzk)'

rl¡l2k-n

V'r"-

l< p <2k

From Appendix C, the linear model tracking threshold for an I.Q Costas loop is given by

oîrrr=61
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By equating the total phase error variance from Equation (3.2-5) with the linear model

threshold given above, the following expression can be obtained for the threshold spectral

strength

rl,o =1"î,1*-"'*
o-l' sln -th l2k (3.2-10)

1E

In Figure 3.2-'J-,, Tl' is plotted as a function of the spectral index, p, and the loop noise

bandwidth, Bn, Íor both a second and third order carrier tracking loop under the specified

threshold condition (CIN" = 'l'\dBHzz and T=20ms are assumed). The relationships

between the loop noise bandwidth and the loop natural frequencY, .fn, for the two loop

orders are given in Table 3.1-2.

Second Order loop Third Order loop

€
Fr

È

E

20

SpecÍal Index, p Noise bandwidth, Bn (Hz) spætral Index' P Noise bandwidth, Bn (Hz)

Figure 3.2-L: The threshold spectral strength, Tlr* as a function of the spectral index, p, and the

loop noise bandwidth, Bn, for ø second order loop \eft pønel) and ø third order loop (right panel).

Cf N, = 41.5dBHz andT = 2tms.

Figure 3.2-2 shows a cross-section through each of the plots in Figure 3.2-L for P=2.5 (a

typical equatorial value). By comparing these results with Figure2.1.-4 which was obtained

using the WBMOD scintillation model, it is clear that in the region of the equatorial

anomaly, it is possible for the spectral strength to exceed the specified tracking threshold

and cause the carrier loop to lose lock. It is also clear that the loop noise bandwidth

7 Throughout this thesis, Cf No =4l.5dBHz will frequently be used. This is based on a nominal GPS signal

level of -l60dBW tSll and a system noise temperature, TS, of 512K. Thus

Cf No = -160- l0logls(frZs) = 41.5 where fr is Boltzman's constant.

45



strongly influences a receiver's tolerance to phase scintillations and that narrow

bandwidth receivers tend to be far more susceptible (this becomes more pronounced for

larger values of p). Although it is not apparent from these plots, it can be seen from

Equation (3.2-5) that when the carrier to noise density ratio is significantly reduced, a

point will be reached at which the thermal noise term, o2q, dominates the variance

expression. When this occurs, wider bandwidth receivers will tend to be more susceptible

to loss-of-lock. This may occur when strong amplitude scintillations are present or when

the receiver is being affected by electromagnetic interference or attenuation from foliage or

other sources.

-5
N

d€
E -10

Êa

F
+í-ts
Þo
É
C)tl

U)
Ë -20
C)oq
v)

-?q

246 8l0L2t4
Noise bandwidth, Bn (Hz)

t6 l8 20

Figure 3.2-2: The threshold spectral strength, Tlro, as a function of the loop noise bandwidth Bn

for a second order loop (upper curae) ønd ø third order loop (lower curae), p = 2,5, Cf No=

41.5dBHz øndT = 20ms.

As INSa aided receivers tend to adopt a very narrow tracking loop bandwidth, this result

suggests that aided receivers will be more susceptible to phase scintillations than unaided

receivers, although their tolerance to amplitude scintillations and interference will be

better. This sifuation will become even worse if a receiver is in a state of open carrier loop

aidingo, as it will no longer be able to track the high power, low frequency components of

t INS - Inertial Navigation System.

e With open carrier loop aiding, the VCO frequency is controlled by an INS. This technique is usually used as

a weak signal hold-on strategy under conditions of strong interference.
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the phase scintillations. However,INS aiding should also allow a receiver to recover more

quickly from a state of loss-of-lock when the scintillation activity eventually passes.

A third observation that can be made from these plots is that in general, second order

loops have a higher tolerance to phase scintillations than third order loops (by

approximately 2 to 3 dB for p=2.5¡.In Chapter 8, it will be shown that the optimum loop

order for minimum phase error is either first order or second order, depending on p, but is

never third order.

-25 -5 0

Figure 3.2-3: A comparison between the KMS phase scintillation error obtained from simulations

(dotted lines) with those obtøined from theory (solid line) for a second order Costøs phase locked

loop with p = 2.5, .fo= 0.05H2, T = 20ms and no thermøl noise. The fiae dffirent lines represent

2Hz, íHz, 1-0Hz and 20Hz loop noise bøndwidths respectiaely (upper to lower curaes),

In order to verify Equation (3.2-8), a number of simulations were conducted using the

tracking loop simulator from Appendix B and simulated phase scintillation data from the

model given in Appendix A. In Figure 3.2-3, the RMS phase scintillation Pttotr õQ* r

obtained from both simulations (dotted lines and circles) and theory (solid lines) is plotted

as a function of the Spectral Strength,T, f.or a range of loop noise bandwidths. These

results show that the linear model is relatively accurate when the phase error variance is

below the tracking loop threshold (given by the solid horizontal line above 0.25 radians).

However, when T is increased to a point beyond the tracking threshold, the simulations

fail to provide a clearly defined cutoff between tracking and loss of lock. Rather, the
47
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frequency of cycle slips increases until the system is effectively no longer tracking (the

sudden increases in the RMS error near the tracking threshold are the result of uncorrected

cycle slips in the data).

In Figure 3.2-4, the mean time between cycle slips obtained from simulations is plotted as

a function of T and B, for a second order loop with p = 2.5. The solid line marked with a

200 represents an average of 200 seconds between cycle slips. The other solid line

represents an average of L0 seconds between cycle slips. Also shown as a dotted line is the

threshold based on the linear loop model from Figure 3.2-2 (the upper curve). These

results suggest that the linear model threshold is quite conservative and represents a

situation in which the loop is suffering from frequent cycle slips rather than a complete

loss of lock.
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Figure 3,2-4: Mean time between cycle slþs (in seconds) for ø second order Costas phase locked

loop in the presence of phase scintilløtions with p = 2.5, f,= 0.05H2, ClN,=41.5dBHz and

T=20ms. The døshed curae represents the theoreticøl threshold from Figure 3.2-2 (upper curae).

Finally, it is clear from Figure 3.2-3 that the accuracy of Equation (3.2-8) is reduced as the

loop noise bandwidth increases. This is primarily a result of pre-detection filtering and

will be discussed further in the next section.
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3.2.2. The effects of pre-detection filtering on phase

errors

In the analysis so far, it has been assumed that the pre-detection filters have a negligible

effect on the phase errors. This assumption is based on the observation that the majority of

the energy in the phase error power spectrum is within the 50Hz noise bandwidthto of the

pre-detection filters. However, for wide bandwidth receivers it unclear whether this

approximation is valid. In the analysis that follows, the transfer function of the tracking

loop is modified to include the effects of the pre-detection filtering. The results of this

analysis are then compared with the simulations obtained from the previous section over a

range of loop bandwidths.

To account for the effects of filtering, Equation (3.1-2) can be modified as follows

Ip=ÃdQ-r)+ J.or(P, Ø)).a"rrrp,
(3.2-11)

Qp = ÃdQ -ù+ Jsin(p" @)\au +ner

t-T

t-T

where I o and Qo are the prompt I and Q signals after the pre-detection filters. This result

also assumes that the amplitude is approximately constant over the T second period of the

pre-detection filters. As will be shown in Section 3.3, this is a reasonable approximation

under most circumstances. If it is assumed that þ, is small (ie. sin(4r)=@, and

cos(4") =l)11, then to a first approximation, I o and Qo can be simplified as follows

I p =ÃdQ -r)+ n,r,

(3.2-12)
ep = Ãd(t -ù+ 

,y,(u).au 
+ nee

=zd? -îlit4eQ)ø gQ))+ ntr

where s|)=tr."r(+) O rn" impulse response of the pre-detection filters, and I

represents the convolution integral.

r0Thedouble-sidednoisebandwidthofa?secondintegrateanddumpfilteris llTHz(=50Hzfor7=20ms).
1l These approximations are based on the fnst terms in the Taylor series expansions of sin( ) and cos( ).
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The output of the I.Q discriminator is then

I o.Qo =ZtlQ,Q)ø g(g)l+n, ß.2-13)

If the transfer function of the pre-detection filters is denoted by GU), the cascade of the

pre-detection filters and the loop filter can be approximated by G(f)F(f). The closed

loop transfer function is therefore

and the transfer function of the phase errors is given by

r- H( fi= i2tcf .

i2tcf + G(f).F("f)

(3.2-14)

(3,2-15)

where Gî)=sinc(¡7)exp(- ¡ør) (Holmes, l43l pp. 423) tz. This new transfer function can

be substituted into the expression for the phase error variance to account for the effects of

pre-detection filtering. For a second order Costas loop, this gives

o'0,= Jl-n{rl'.s,,e7\df * o'*
(3.2-16)

= r Jlr - H(f\'lffP .a¡ + o2*

where

"fu
4

(3.2-17)
sinc (1fr )z lr + z ¡ *2 l- z f ¡¡2 sincÇÍT)[ .o r (arr ) + Jî f * sin(nJr )]+ f ¡¡a

and f ¡¡ = f I "f,. In Figure 3.2-5, the RMS phase scintillation error obtained from this

modified transfer function is plotted as a function of T for a range of loop noise

bandwidths. Also shown are the simulation results from Figure 3.2-3.It is clear from this

figure that the simulations now match the theory much more closelp particularly for the

wider loop bandwidths.

t' C(f) consists of two factors, (i) a sinc(/I) afienuation factor, and (ii) an exp(- ¡n/T) phase shift factor

associated with the filter delay. Of the two, the phase shift factor has by far the greatest impact on Qe.
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Figure 3.2-5: The fficts of pre-detection fíltering on the KMS phase scintillation eruor for ø second

order Costas loop with p = 2.5, f"= 0.05H2, T = 20ms ønd no thermøl noise. The fiae dilferent

lines rEresent 2Hz, íHz, 1-0Hz and 20Hz loop noise bøndwidths respectiaely (upper to lower

curaes). The dashed lines rEresent the results of simulations from the preaious section.

3.2.3. Carrier phase range errors

Another quantity of interest in the study of GPS receiver performance is the error in the

estimate of range obtained from the carrier phase, QoQ)=AoØ-ri(r) (referred to here as

the carrier phase range error). The carrier phase range error reflects the second function of

the carrier phase tracking loop which is to provide estimates of the satellite and receiver

dynamics (represented by Q¿(t)) while rejecting unwanted phase noise from other

sources. Consequently, QoQ) represents the error in the loop's estimate of Q¿(t) and is of

interest to systems that make use of carrier phase range measurements such as carrier

phase DGPS, or require precise velocity information. The mean-square value of the carrier

phase range error is given by

0.35

(t)

Ë
dI

b 0.3

E

$o.zs
É

E o.z
!g

-20 -15 -10

(3.2-18)

The contribution to the carrier phase range error from phase scintillations is simply the

carrier loop's estimate of the phase scintillation process, QpQ). This is given by

t WI= j h - rrn 
12 

s ro {ñ *lu rÐl' ls r o <fi + s ç" (f ) * s,2 tt >flat
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Qo(t)=h(t)ØQp(r),where h(t) is theimpulseresponseof theloopfilterand I isthe

convolution integral. The variance of $oçt¡ is therefore

o'ô 
o = Jlu rt>l' s 

o e u).df (3.2-1-9)

By making the following substitutions

saeu)-_
T

from Equation (2.L-L), and
(f"' * f'Yt' '

lnç\,=h|*zçt,_DUll,¡z<t-ol,fromTable3.1-2

the variance of the carrier phase range error resulting from phase scintillations becomes

2k

f * zçn - DU I f)T r-1) 
]x .dfo?=fQp J

T (s,2-20)

'o * fn'o (f,' * f'Y/'

A closed form solution to this integral is again difficult to obtain. However, as the carrier

tracking loop is essentially a low pass filter for the carrier phase, the low frequency

components of the phase scintillation power spectrum will provide the greatest

contributionto o? . Therefore, the outer scale size parameter, fo,willhave a significant
Qp

effect on o3 and must be carefully modelled in order to produce accurate results (ie. it
Qp

cannot be set to zero as before). In Figure 3.2-6, ofio is plotted as a function of the loop

noise bandwidth for a second order Costas phase locked loop and for three values of f
(this is based on a nurnerical solution to Equation (3.2-20)). It is clear from these plots that

o1 is very sensitive to fo, but relatively insensitive to the noise bandwidth. This is
Qp r

because the majority of the energy in the phase scintillation power spectrum is well below

the lowest noise bandwidth for typical values of fo and p.T}":re slightly higher values at

very low noise bandwidth's are the result of a hump in the transfer function of the second

order loop near f = f,
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Figure 3.2-6: The aariance of the carrier phøse range error, olo, øs ø function of the loop noise

bandwidth for a second order Costas phase locked loop in the presence of phase scintillations. p =

2.5, T = -2.5 dBradiansz /Hz, and -fo= 0.05H2'

These results suggest that a reasonable approximation for olo can be obtained by

ignoring the loop transfer function. This implies that for all sensible values of the loop

noise bandwidttu the majority of the phase scintillation energy is tracked by the carrier

loop. Equation (3.2-20) can therefore be approximated by

J
J

ôp
(3.2-21)o

'+.f'

From a table of integrals (eg GradshteynfS7l, Equation 3.241.-4), this can be reduced to

(3.2-22)

The results obtained from this approximation are given in Figure 3.2-6 as a series of

horizontal dotted lines. It is clear from these plots that the error in this approximation is

quite small lor Bn greater than a few Heftz.

The carrier phase range error is generally only of concern to users who require precise

carrier phase range measurements for carrier phase DGPS. For such applications, the
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distance over which the phase errors become decorrelated is of interest. This is discussed

further in Section 3.6.

3.2.4. Doppler errors

Carrier Doppler measurements are used for the precise determination of velocity in GPS.

The error introduced into these measurements by phase scintillations is given by

radians/s (3.2-23)

where ôoQ) i" the carrier loop's estimate of the phase scintillation process. The variance

of the Doppler error is thus

(t)q srq(f)'dfo )

(3.2-24)
(z"fY s6oÍ).df

where Srq(f) and ,S¿o (f) are the power spectral densities of the Doppler errors and the

phase estimate errors from phase scintillations respectively. It is clear from this equation

that the Doppler errors are a filtered version of the phase scintillations, where the filter

transfer function is given by jZnfnj) . As this is a high pass filter (at least for second and

:

_t

= J{z"f)' n(l)2 sopÍ).df (radians/s)z

third order carrier loops), the approximation Søp(f)=Tlfl-o can once again be used to

obtain the following expression þased on Equation (3,2-20))

k>r (3.2-25)

This can be solved using a table of integrals (eg. Spiegel [86], Equation 15.20) to give the

following result

4Tn3

o,,* = j_Aøf #rnfi * z6 - DU I r,fr¿-,) ]x \¡l- 
p 

.a¡,

2
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In Figure 3.2-7, o2r* is plotted as a function of the loop noise bandwidth, Bn, for P=2.5

and T=-25 OBru¿iunez / Hz.

0.5

10 15

Noise bandwidth, Bn (Hz)
20

Figure 3.2-7: Varinnce of the Doppler enor as a function of the loop noise bandwidth for a second

order Costøs phase locked loop in the presmce of phøse scintillations. p = 2.5, T = 15

O'ru¿iu¡¡sz/F{z.

It is clear from this figure that as the loop noise bandwidth increases, the Doppler erroÍs

increase, unlike the phase estimate errors which remain approximately constant. This is

because a wider bandwidth receiver will allow more of the high frequency components of

the phase scintillation energy to be present on the carrier loop phase estimates (high

frequency phase fluctuations contribute more to the Doppler errors than low frequency

fluctuations). The results given in Figure 3.2-7 ca¡ be converted into equivalent velocity

errors by multiplying by the factor (rlrr)', where c is the speed of light and a7 is the

angular frequency of the GPS carrier (either 2n*LL, or 2nxL2). For the spectral strength

value specified in Figure 3.2-7, the variance of the velocity errors is only of the order of a

few tens of (cm/s)z which is probably negligible for all but a few precision applications.

3.2.5. Summary

In this section, the effects of phase scintillations on a Costas carrier tracking loop was

examined. An expression was derived for the variance of the carrier phase tracking error

in terms of the bandwidth and order of the tracking loop and the spectral strength and
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spectral index of phase scintillations. By assigning a tracking threshold to this expression,

the conditions under which a Costas loop would be expected to lose carrier lock were

determined. In general, it was found that the susceptibility of a carrier loop to phase

scintillations increased as the loop bandwidth decreased. Also, the effects of phase

scintillations became worse as the spectral strength and the spectral index increased (ie. as

the amount of high frequency phase scintillation energy increased).

Expressions were also obtained for the variance of the phase range errors. Essentially,

these are errors in the carrier loop's estimate of the satellite-to-receiver range and are

mainly of interest for carrier phase differential GPS. It was found that phase range errors

are predominantly affected by the ionospheric outer scale size as well as the spectral

strength and spectral index of phase scintillations, but show very little dependence on the

loop bandwidth. The outer scale size parameter is a function of the large scale structure of

the ionosphere, As this is not accurately modelled by WBMOD, nor by any of the other

scintillation models known to the author, the evaluation of the phase range error was

considered to be beyond the scope of this thesis.
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3.3. The impact of amplitude scintillations on carrier

phase tracking loops

In the previous section, the linear loop model was used to obtain a simple closed form

expression for the variance of the carrier phase tracking error for a Costas loop in the

presence of phase scintillations and thermal noise. This expression was then compared

with the linear model threshold derived in Appendix C to determine the strength of phase

scintillation activity required to force the Costas loop to lose lock. An assumption inherent

in this analysis was that the carrier to noise density ratio of the GPS signal was relatively

large, imptying that the GPS signal was unaffected by amplitude scintillations. In this

sectiory the effects of amplitude scintillations on the carrier phase errors will be examined

using both the linear loop model and a non-linear approach. Variance measures will be

derived as a function of the amplitude scintillation index, ^14, and the loop noise

bandwidth for an I.Q Costas loop. However, as these measures tend to be a poor indicator

of loss-of-1ock, an altemative approach will be used in the next section to determine

suitable tracking thresholds for the Costas loop when both amplitude and phase

scintillations are present together.

A complicating factor associated with the analysis of amplitude scintillations is that, if

large enough, they have the capacity to significantly alter the transfer function of the

tracking loop. This causes the effects of amplitude and phase scintillations to be coupled

so that the two must be considered together when deriving a single variance measure.

Unfortunately, this requires a knowledge of the joint statistics of amplitude and phase

which, at this stage, is unknown for scintillations (refer to the end of Section 2.1.3). This

problem can be circumvented to some extent by assuming that the discriminator is

normalised (eg. Qll or Atan(plt)), or that a post-detection AGC is present (for I.Q or

sign(t).Q discriminators). In doing so, the effects of amplitude scintillations are translated

to the thermal noise term allowing the two effects to be dealt with separately (phase

scintillations and thermal noise are associated with entirely different physical processes

and are therefore independent). In the analysis that follows, the effects of different AGC

time constants will also be examined.
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S.3.L Background

As shown by Weber [100], if the bandwidth of the amplitude is relatively small compared

to the loop noise bandwidth, the PDF of the phase errors for a first order phase locked

loop is given by the Tikhonov density function. For the first order Costas phase locked

loop, this is (Equation (C-6) and [a3])

ß.3-1,)

where O=fQ, mod ø] is the phase error reduced modulo n, pu is the effective loop signal

to noise ratio (SNR), and 1o is the modified Bessel function of the first kind of order zero.

Although an equivalent expression has not yet been found for higher order loops, Lindsey

and Charles [59] have verified experimentally that the distribution of phase errors for a

second order loop is very close to the Tikhonov density function. As shown by Yitefui 1971,

Lindsey and Charles [59] and Holmes [43] (for the Costas loop), a good approximation to

the effective loop SNR is the reciprocal of the variance obtained from the linear rnodel., aiz

P" ) (3.3-2)
ß

Qe

where, from Equation (3.2-5)

(3.s-3)

=olq * oh.

and o$* and ofi, are the contributions to the tracking error variance from phase

scintillations and thermal noise respectively (other phase noise sources have been

ignored). For reasonably slow amplitude fluctuations, the transfer function of the tracking

loop, H(f), will be a function of the signal amplitude, 7,, and the post detection AGC

gain factor, g (which is also a function of Z.).If Ã andg are assumed to vary slowly with

time, then over a time period, T, fot which A and I are approximately constant, the I.Q

Costas loop can be characterised by the following expression (see Figure 3.1-3)

oî, = Tl - u Vl' s ro (f) + H (t\' s,2 U)far
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= a 
" 
(-f\ -lÀ' r,, (Í) + N o, Uim

where arj), or(f), arrf) and N¿rÇ) are the Fourier Transforms of the random

processes OQ), ô(g), @r(r) and n¿(r) which have been truncated to zero outside of the

time interval0 to tseconds. Rearranging this expression gives

i27cf +\z'lrÞØ' À2

(z'làot¡)

@,,(.f)=o,(f)-õ,U)
(3,3-4)

(3.3-5)

If it is assumed that Eþ, U\w *ØI Ì= 0 @s n¿(t) is both zero-mean and independent of

Q(t)), the expectation of the power spectral density of QrQ) is given by

" {Lp,, U \' | 
= lr - n' Ç, z)' ø 

{l ¡ 

o, U \'} *ln' (r, r)' rl
2

(3.3-6)

where,,ç,z)=ffi5isthemodifiedlooptransferfunction.Inthelimitas

Í ) æ, this becomes

(3.3-7)

Consequently, as a function of the signal amplitude, the phase error variance based on the

linear model is givenby

(3.3-8)

so,(f ,Ã)=l- a'(¡,zl' sq(Ð*ln'V,Ã)' +

"î,(Ã)= !sr,(¡,2\a¡
:.

= illt - 
r'V,Ã)' s,, (r) +lr'(t,r]' +)*

=oî*(z) * 
"fi,(À)

This expression is useful for determining both an average phase error variance and a "rule

of thumb" tracking threshold and will be discussed further in the next section.
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3.3.2. Phase errors from the linear model

3.3.2.\. Amplitude scintillations only

If, for the moment, the effects of phase scintillations are ignored, the linear model variance

becomes (from Equation (3.3-8))

o'*(z)=Îlr'V,n)'ff * (3.3-e)

(3.3-11)

This represents the contribution to both the tracking error variance and the variance of the

phase range errors from amplitude scintillations and thermal noise. Equation (D-14) from

Appendix D can be used to reduce the above expression to

z/z\

"t*(Ã)=2r8,(Ã\""ono'' (3.J_10)

=2T8,Ø\o^r'Ø)

where t^(Ã) is the single-sided noise equivalent bandwidth of the tracking loop as a

function of the amplitude, ni = nd lÃ2, and T is the integration period of the

pre-detection filters. Again, based on Equation (D-18) from Appendix D, the discriminator

noise varia nce a n22 (7) .u" be expanded to give (for an LQ Costas loop)

where Cf No = e,2 f zu", A is the nominal (unperturbed) signal amplitude, and, Z,¡¡ = Zln

is a normalised signal amplitude. The single-sided noise bandwidth is givenby

B
I

2

I
2

(Ã)n

1

2
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where gN = gl{2 is a normalised AGC gain factor. For first and second order loops, the

noise equivalentbandwidths become (from Table 3.1'-2)

1. First order:

,^(z)=(*)+=(*)u,. where .a-, is the design roop noise bandwidth.

u,(Ã)=+l(#ìr.å], where (is rhe damping ractor

2. Second order:

I
ok

'î,(Ã)=&l 2T ClN"Ã*t g*

To be consistent with the non-linear analysis that will be presented in the next sectiorL

only first order loops will be considered. Substituting the above expression fo, nr(Ã) fot a

first order loop into Equation (3.3-11) gives

1

-+8u

1 (s.3-13)

(3.3-L4)

For the I.Q Costas loop, the AGC gain factor will be of the form

Ír
i=l

lr,'*Qr,'f

lÃ,' 
+ zÃ, a (t, - r)(n p,cos(4, ) +, nr, rin(Q,)) * n, r,' +, ee i2 f

2,2 + e,

,k
-ls- k?_J

,k
-ls- tLK i=l

where I p¡ and Qp¡ arc given by Equation (3.1,-2), and e" is the error in the AGC gain. The

k samples in Equation (3.3-14) represent the ouþuts from the pre-detection filters over the

previous k7 seconds. Three different models are considered for the AGC. These are:

1. AnidealAGC forwhich g= Ã2. This assumes that fr =1 and Ee =0.

2. A fast AGC for which g = À2 + n{erl. In this case, k is assumed to be small enough

to allow the AGC to accurately track the signal amplitude, but large enough to

average the effects of thermal noise.

3. A very slow (or non-existent) AGC for which I = A2 + n{er]¡ .
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From Equation (3.3-1.4), the expectation of the error in the AGC gain factor is given by

=2No
T

(from Equation (D - 7), Appendix D)

Consequently, after normalising, the three AGC gain factors become

1. Ideal: gN = A¡v'

E E r\= tl+iUn d Q, - rYv,o¡ cos (p, ) + n sr isin(4, ))+ n,r,' * n n,'\

=lLl;o-r\*'þn îX

2. Fast: g¡t = Ãu2 ++
TCIN"

su=r-&3. Slow:

2T Cf N,zN4

(3.3-15)

(3.3-16)

(3.3-17)

where 'It!-- '
^¿ 

TCIN,

We now substitute the above expressions for gu into Equation (3.3-1,3) to derive

expressions for the contributions to the tracking error variance from thermal noise and

amplitude scintillations.

Case 1: Ideal AGC

For the ideal AGC model, Equation (3.3-13) becomes

oî,Ø*)=&l#. I

and the average phase error variance is given by

J
0

ofir(t*)."f2, (e").ae"')

Qro

E,

62

CIN 
"

Et+Ì .ffi4+ll radians2

(3.3-18)



where -fVr(t*) is the PDF of the normalised signal amplitude Z.* . For slow amplitude

fluctuation 
", fÃN(n¡¡) is assumed to follow the Nakagami-m distribution *itn (7n'z) = f .

The two expectation terms in Equation (3.3-18) can be simplified as follows

It
lÃ*' !h*(n")ae".f\¡

A*'
3*^ 

!+@;' 

- 

" 

*p f 'n "' ) 
ae 

"

A*2m-3 
"*p(- 

*e,*')al'*
0

{+} =#(w)m>l
m

l={

=j
0

E

1

^m¿m-ffi

radians2

(3.3-19)

(3.3-20)

(3.3-21)

(3.3-22)

From a table of integrals (eg. Spiegel [86], Equation 15.77), this becomes

E

m-l
I

l- So''
S¿<1

Also,

E

m
)

m>2

so <tf Jl

Therefore, for an ideal AGC the phase error variance can be expressed as

{+} =[#t,.(n")ae"

)

2
Qro -8,

CI N"

This expression is only valid for Sa .tlJl. For Sa =llJl it becomes infinite and for

S o , tf Jl it becomes negative imptying that the loop is tikely to lose lock (at least for this

AGC model). In Figure 3.3-'!., the phase error variance is plotted as a function of Sa for

Cf N" = 44 dBHz (typical of a strong satellite signal), and Cf No = 30 dBHz (a very weak
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satellite signal). It is clear from these plots that as 54 approaches lJt, the phase error

variance increases very rapidly. Indeed, the rather conservative tracking threshold of

QrltZ)2 radians2 derived in Appendix C is only surpassed when ,9a is larger than about

0.7, even for the weak signal case. 54 > 0.7 represents quite strong scintillation activity,

and would only be expected to occur in equatorial regions during the evening hours and

under solar maximum conditions. Consequently, at other times and locations, the effects

of amplitude scintillatiorìs on the carrier phase errors is likely to be negligible.
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Figure 3,3-1: Phase errlr aariance as ø function of Sa for a first order I.Q Costas loop with an

ideal AGC. Parømeter aølues are T = 20ms, Bn= SHz, Cf No = 44 dBHz (left pønel), ønd Cf No =

30 dBHz (right pønel).
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Figure 3.3-2: Phase error variance as a function of S a from simulations for a first order I.Q Costas

loop with øn ideøl AGC (the circles denote simulation results). The unmarked curae represents the

theoretical results from Equntion (3.3-22). Pørameter ualues nre T = 20ms, Bn = 5Hz, Cf N , = 44

dBHz (Ieft panel), ønd Cf N" = 30 dBHz (right panel).
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In order to verify Equation (3.3-22), a number of simulations were conducted using

simulated amplitude scintillation data and the tracking loop simulator from Appendix B

with an ideal AGC (ie. g = Ã2 ).In Figure 9.3-2, phase error variance values obtained from

simulations are plotted against ^Sa for the two values of Cf N, used in Figure 3.3-Lt. It is

clear from these plots that the simulations are in good agreement with the theory,

particularly for values of Sa less than tlJ-Z .For larger values of ,S4, the occurrence of

frequent cycle slips complicates the process of estimating the variance. Nevertheless, the

simulation results do confirm that amplitude scintillations are of little concern unless .S4

exceeds 11J1.

Case 2: Fast AGC

For the fast AGC model, the phase error variance of a first order Costas phase locked loop

is given by (from Equations (3.3-13) and (3.3-16))

oî,Ø*)=&l I
+

2 +t¡lr clu, 2TCf N"zN2 2 +t¡frclN,

*2 +tllrc¡tt" À¡¡
(A*\dA,* = xr, and

I

¡ü

radians

(3,3-23)

(3.3-25)

Again, the Nakagami-m PDF can be used to find the average phase error variance as

follows

o'ø = I ofo (r *\ f 7* (t * \a¡ *
(3.3-24)0

where

=j
0

I I
J
0
A*' 2 +t¡lrc¡w" A¡¡

(e.*).an * = x,
AN

2 +t¡lrclx"
E )

1 The simulation results are tepresented by the small circles in Figure 3.3-2.
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If we let I N = A2¡t, the first integral becomes

Xr= JE. +I@cINJ
I .f , * (tN).dtnr

0

(3.3-26)

From a table of integrals (Gradshteyn lSTl,Equation 3.383-1"0), we have

m
m

ñ)

(3.3-27)

where l-g(B) <n, rte(¡t)>0, Re(v)>02 and l(a,b)=Je*p(-r)*ro-L.dt is the incomplete
b

gamma function. X1 thenbecomes

xt = m'ílIr clN,I)^-t ."*p@llr clN,l).r(r-m,mlþ c¡tr,) (3.3-28)

and X2 becomes

Substituting these two expressions back into Equation (3.3-24) gives

o'ze, _8,.** e*p(*l[rcln,l r(r-m,mlþ clu")+

(3.3-29)

f(2-*,mlfrclx,l (3,3-30)

*, = #01[r c I u,]Y - 2 
. 

"*p(* lþ c lnr, l). r(z - m, m llr c I u,)

clN,(TClN,)*1 z(*-t)

Equation (3.3-30) has been used to evaluate the phase elror variance as a function of ,Sa for

Cf N o = 44 dBHz and Cf N, = 30 dBHz . This is shown in Figure 3.3-3 along with the results

of a series of simulations based on an AGC with k=L0 (the ideal AGC curves from Figure

3.3-L are also included for comparison). The simulations show quite good agreement with

the theory when ,Sa is less than about 0.9, but tend to produce much smaller values when

Sa is very large. This is probably the result of a failure to account for the non-linear

behaviour of the tracking loop in Equation (3.3-30). It was also observed in simulations

that for large values of ^S4, cycle slips would only occur when the amplitude scintillation

rate was significantly reduced. This is because the probability of a cycle slip depends not

2 For both X 1 and X 2, theseconditions are met for all values of m.
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only on the fade depth, but also on the fade duration (see Section 3.5). Consequently,

when the amplitude scintillation rate is reduced, the fade durations increase and the

probability of a cycle slip increases. This suggests that loss-of-lock may only occur when

the amplitude scintillation rate is quite small, even when the strength of scintillation

activity is very large.
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Figure 3.3-3: Phase error aariance as a Íunction of Sa for a first order l.Q Costas loop with ø føst

AGC (k=10). Pørameter values areT = 20ms, Br= íHz, Cf No= 44 dBHz (left panel), ønd

Cf No = 30 dBHz (right pønel). The circles denote simulation results.

Case 3: Slow AGC

For a very slow (or non-existent) AGC, the AGC gain factor is a constant. The phase error

variance is then (from Equations (3.3-13) and (3.3-16))

o'*Ø*)=h
CI N. 2r clN"Ã*2lt+r¡þ c¡w"

ß,3-31)I I
+

T

0.80.60.8060402
s4s4

+

and the average variance is given by

oî, = I ofi, (t *).f7* (t *).aú
0

+
1

2r cf N,ft+rlþ clu"
^ (3.3-32)

radians'
2

-,S4

Variance values obtained from Equation (3.3-32) are plotted in Figure 3.3-4 for

Cf N o = 44 dBHz and Cf N o = 30 dBHz (the ideat AGC curves from Figure 3.3-L have again

been included for comparison). These plots suggest that in the absence of an input phase

process, the phase error variance is only affected by amplitude scintillations when Sa is
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very close to 1. The simulations results, which have also been included in Figure 3.3-4,

confirm this result.

xl

d
Ê
6t

cdF

d

F
€
(d

6

5

4

3

2

0.01

0

001

S4S4
08060402080.60402

Figure 3.3-4: Phøse error aariance as a function 0f S4 for a first order l.Q Costns loop with a slow

AGC. Parameter aalues øre T = 20ms, Bn= íHz, Cf No = 44 dBHz (Ieft panel), and Cf No = 30

dBHz (right panel). The circles denote simulation results.

Although these results appear to suggest that a slow AGC is the best choice to overcome

the effects of amplitude scintillations (compare Figure 3.3-3 with Figure 3.3-4), as will be

shown in the next section, a slow AGC will also significantly increase the tracking errors

associated with phase scintillations and dynamics. Consequently, in an overall system

sense/ a slow AGC may not necessarily perfonn any better than a fast AGC (a similar

argument can be used when comparing non-ideal AGC models with the ideal AGC

model).

It is clear from Equation (3.3-13) that when Ãu = O (ie. in the absence of a signal), the

phase error variance becomes infinite for all three AGC models. This occurs because a first

order tracking loop becomes an integrator for the white noise process n¿Q),anf g when

t

the amplitude is zero (ie. the phase error will be given by Q"Q)= !"oQ).co,lg.dt (from

Figure 3.1-3 with À=0)). Consequently, Qrþ) will become a Random Walk process (non-

stationary) with a mean of zero and a variance that is proportional to the time f (see for

example Van Trees [96]). Therefore, on occasions when the amplitude approaches zero

(this occurs more often when Ja is very large), the phase error variance will increase with
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time and without bound until loss-of-lock occurs. However, if the amplitude recovers

before the loop reaches the point of losing locþ the feedback mechanism in the loop will

be restored and the phase error variance will return to much lower levels. Clearly then, the

duration of the deep amplitude fades will strongly influence both the phase error variance

and the probability of a cycle slip. Consequently, for large values of 54, very slow

amplifude scintillations are likely to produce a much larger average variance than faster

scintillations, even when the bandwidths of the two scintillations are much less than the

loop bandwidth. For this reasory the variance corresponding to 54 = t was found to be

highly dependent on the amplitude scintillation rate. The relationship between the

duration of a deep amplitude fade and the probability of a cycle slip will be examined in

more detail in Section 3.5 using a simple rectangular model for the fade profile.

3.3.2.2. Amplitude and phase scintillations

From Equation (3.3-8), the phase scintillation component of the phase error variance is

givenby

"î*(z)= Jl - n'Ç,2)' s ro 
tc\at (3.3-33)

where sro7)= (Equation (2.1-1)), and t-H'(Í,Ã)=ffiT

(f,'* f'Yl'
(Equation (3.3-5)). Consequently, the open loop transfer function of the I.Q Costas loop,

F(f),is scaled by a factor a= Tnt lsìr. For an ideal AGC (ie. g¡¿ = Tn + a=l), ofi*Ø)

ceases to be a function of the signal amplitude and the effects of amplitude and phase

scintillations can be treated separately (ie. the results presented in Section 3.2 will apply

without modification). For a non-ideal AGC (u+l), both the loop bandwidth and the

damping factor will be influenced by the amplitude. From Table 3.1.-2, it is clear that for a

first order loop, both the loop natural frequency, 0), , an:rd the loop bandwidth, Bn , willbe

scaled by a factor a. For a second order loop, @n and the damping factor, (, wíll both be

scaled by a facto, J-a, while the bandwidth will become equal to +l*.+)
Consequently, if a is reduced by amplitude fadinga, both the bandwidth and damping

3 For both of the non-ideal AGC models, a reduction h Ã* will cause a reduction in ø.
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factors of the two loops will be reduced. This effect will be far more pronounced for a slow

AGC for which ø can become very small during periods of deep fading.

For a second order loop with a damping factor of tlJl, Equation (3.3-33) reduces to

-2 h\- r fowç*\nt-l_6 T
2 +f2

(3.3-34)

o

This is plotted in Figure 3.3-5 as a function of the fading intensity, 20lo916(7"), for Uotfr

the fast and slow AGC models. Also shown are a pair of horizontal dotted lines which

represent the linear model tracking threshold given by Equation (3.2-9).
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Figure 3.3-5: o$*Ø) ot a function of the fading intensity for ø first order LQ Costøs loop with a

fast AGC (left panel) ønd ø slow AGC (right panel). Pørnmeter aøIues øre T = 20ms, B,= íHz,

Cf No= 44 dBHz (Iouter curoe), Cf No= 30 dBHz (upper curae),T = 15 OBtu¿iu¡¡sz/Hz,

P=2.5, .fo=0 Hz.

It is clear from this figure that when the AGC is unable to track the signal amplitude (the

right panel), the phase errors produced by phase scintillations become very large.

Essentially, the deep fades associated with large values of ^Sa cause the instantaneous

bandwidth of the tracking loop to become narrow resulting in large phase tracking errors.

A similar effect occurs for the fast AGC model when Cf N" is small (upper curve in the

left panel). Note that the expected value of Equation (3.3-3a) could have been found by

averaging 
"î*(À) 

using the Nakagami-m PDF (ie. dî* =jofr*(t\fz(t).at). However,
0
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AS el* provides no information about carrier phase range errors and very little

information about the probability of losing lock, this was not done.

The results given in Figure 3.3-5 are based on the assumption that the amplitude and

phase are independent of one another. In particular, they assume that the rate of change of

phase (embodied in the parameter T) is independent of the amplitude. If this assumption

is invalid, and the rate of change of phase tends to increase as the amplitude decreases,

then the actual variance will be larger than is predicted by Equation (3.3-33) (ie. Equation

(3.3-33) may take on the form ofi*Ø) = ll - n' (r,z)' s ro Ç,2\a¡ where

tro(í,Ã)=r(Z)U: +¡zfrlz). 4., analysis of simulated scintillation data based on the

model given in Appendix A suggests that the rate of change of phase is highly correlated

with the fade depth. However, as this model is based on a greatly simplified view of the

real world, these results should be treated with some caution. As yet, there have been no

equivalent studies on real scintillation data to test the validity of this observation [33].

The phase range errors produced by phase scintillations, ofio Gee Equation (3.2-19)), will

be affected in a similar way by amplitude scintillations. As a function of the signal

amplitude, the variance of the phase range errors is given by

"$,Ø)= lr'(f ,z)' s 
a e 

(f\df (3.3-35)

and the average variance is

oîo J
0

ofioGu\f7*(n*\aú (3.3-36)

where f^*(l') is the Nakagami-m PDF. As discussed at the beginning of Section 3.2.3,

the variance of the phase range errors tends to be affected more by the outer scale size

parameter, fo, and less by the loop bandwidth. However, if deep fading results in very

narrow loop bandwidth's, this situation may change, depending on the value of fo. For a

second order loop with a damping factor of tlJl, Equation (3.3-35) reduces to
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"3,Ø)= I
z(f,"f)t * "fl T

,df (3.3-37)

U: - f l"Y *z(î,f), (rl * f o''

The average variance for a second order loop, ofto, is plotted in Figure 3.3-6 for both the

slow and fast AGC models þased on Equation's (3.3-36) and (3.3-37)). It is clear from this

figure that the effects of amplitude scintillations on the phase range errors resulting from

phase scintillations is quite small, even for the slow AGC model and for small values of

CIN".
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Figure 3.3-6: ofio as n function of S a for a first order I.Q Costøs loop with a føst AGC (teft panet)

ønd a aery slow AGC (right pønel). Parømeter aalues øre T = 20ms, Bn= íHz, Cf No = 44 dBHz

(lower curaes), Cf No = 30 dBHz (upper curaes),T = 15 dBradiansz /Hz, p =2.5, fo= 0.05 Hz.

3.3.2.3. Amplitude scintillations and dynamics

The effects of a changing loop bandwidth are also observed when the loop is subject to

dynamics, particularly when the order of the dynamics+ exceeds the order of the tracking

loop resulting in errors that are not zero-mean. Again, at times when the signal amplitude

is heavily attenuated by scintillations, the instantaneous loop bandwidth will be small and

the loop will become unresponsive to dyramics. If it is assumed that the bandwidth of the

amplitude scintillations is narrow enough for the phase errors to settle at their steady state

values, then using Table E.1 (Appendix E) it is possible to determine the steady state error

as a function of the amplitude. For a second order loop in the presence of a constant

acceleration, the steady state tracking error is given by (from Table E.1)

a lst svdsl' Phase step, 2"d Order: Constant velocity, 3.d Order: Constant acceleration.
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Ouss
2n

=-E
ao

radians
oî

(3.3-38)
1

where a, is the acceleration in m/sz. Under amplitude scintillation conditions, the loop

natural frequency becomes a function of the signal amplitude. For a second order loop this

is given by þased on Equation (3.3-12))

(3.3-39)

where ar-, is the nominal loop natural frequency. The steady state phase error is thus

3.3.2.4. Additional comments

For an ideal AGC, or for a fast AGC for which Cf N " is large and ,Sa is less tlran tf J-Z , ttre

effects of amplitude scintillations are decoupled from the loop transfer function and from

the effects of phase scintillations. As the AGC normalised noise term, n) , is zero-mean

and uncorrelated between successive T second epochs, the phase error variance resulting

radians (3.3-40)

An equivalent expression for a first order loop in the presence of a constant velocity, vo, is

þu,Ø*)=+.h|.ä) radians ß 3-41)

Consequently, the steady state errors for the first and second order loops are scaled by the

same factor, lfa. The biases represented by Equation's (3.3-40) and (3.3-41) affect the

tracking thresholds for the phase error variance. From Equation (C-3) (Appendix C), a new

tracking threshold can be obtained based on the steady state error, aiz

Q*,Ø*)=+.#tA)

oî,1,,(o.)=tlî- øussø")]' radians2 (i.3-42)

Therefore, in the presence of d¡mamics, amplitude fading may result in both an increase in

o2ç, and, a decrease in the threshold, "îrl*. Together, these two effects will result in an

increase in the probability of losing lock.
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from thermal noise is given by (from Equation (D-14))

o'V, =2TBrol2

where (from Equation (D-28))

If we assume that gw = Tw and Ã¡¡ is Nakagami-m distributed, this becomes

o'no = 

"ù*l'l*l. 
r+*" {* }]

oîe=#l'[*'Ì.#"{*}]
I

2TCf N, 2T ClN, -3so'+2soa

The phase error variance is thus

o'z* -8,
CI N"

I
+

zrclw" -3so'+2saa

which is the same as Equation (3.3-22). Flowever, this result has been obtained without

assuming that the bandwidth of the amplitude scintillations is narrow in relation to the

loop noise bandwidth. It only requires that the amplitude bandwidth be narrower than the

pre-detection filter bandwidth , IIT , that Cf N " is relatively large, and that 
^Sa 

is less than

I J, As this result is based on Equation (D-14), it is also independent of the loop order.

3.3.3. Phase errors from the non-linear model

In the previous sectiorL Equation (3.3-8) was used to determine an average phase error

variance based on the linear loop model. In this section, the Tikhonov PDF for the reduced

phase error (Equation (3.3-1)) will be used to determine an equivalent non-linear model

variance.

Consider the following conditional form of the Tikhonov PDF
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where p"(Ã)= and 
"'rr(Z) 

is given by Equation (3.3-8) s. The conditional

Tikhonov PDF can then be used to obtain an expression for the tracking error variance that

is equivalent to Equation (3.3-8), but based on a non-linear model of the tracking loop, oiz

n12

"'oø)= Iq't*Ølz\¿ç (3.3-44)

-n12

Although this non-linear approach provides a more accurate variance measure than the

linear model, it does have a number of limitations. These are; i) the Tikhonov PDF strictly

only applies to a first order phase locked loop (although Lindsey and Charles [59] have

verified experimentally that the PDF of a second order loop is very similar), ii) it does not

take into account the effects of satellite and receiver dynamics, and iii) the approximation

of setting p" equalto the reciprocal of the linear model variance (Equation (3.3-2)) is only

accurate for reasonably high SNR's (Weber [100], Lindsey and Charles [59] and Viterbi

[97]). This last restriction implies that the effects of phase scintillations can only be

included if ^Sa 
is assumed to be relatively small. However, as shown by Van Trees Í961, if

the loop is first order and the spectral index is equal to 2, the phase noise associated with

scintillations can be considered to be equivalent to additional white thermal noise at the

input. This is illustrated in Figure 3.3-7 where the input phase Process, QrQ), associated

with phase scintillations has been translated back through the VCO and loop filter to

produce a term T= ,! 
oO:,Ø 

at the discriminator output.
ro¡¡ dt

nd gain control Y

+
+ +

Eigure 3.3-7: An equiaølutt non-lineør model of a fírst order Costas phase locked loop with phase

scintilløtions transløted back through the VCO and loop filter to the discriminøtor output.

s This expression will also be used in Section 6 to determine the bit error rate in the navigation data

in the presence of scintillations.
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If it is assumed that S4o U)=Tf-' (ie. -f, is assumed to be small and p =2), the power

spectral density of y is given by

syU)=WsooL)

=(zo)'r
a)¡¡

(3.3-45)

where (Zn)2f f ø* is a constant. Consequently, for a first order loop with p = 2 ,7 is white

and can be treated as if it were produced by additive white thermal noise. Therefore,

under these conditions it is quite reasonable to use the non-linear model to describe the

phase errors/ even when ,Sa is quite large.

An average non-linear model variance can be found by applying the Nakagami-m PDF,

fz(l), to the variance given by Equation (3.3-44). Thus

o3Ø)rzØ)ln (3,3-46)

Theoretically, all of the linear model analysis given earlier (apart from the Doppler

analysis) could be repeated using the equations given above in order to obtain equivalent

non-linear model results. If only amplitude scintillations and thermal noise are considered,

Equation (3.3-46) represents both the average tracking error variance and the average

phase range variance from the non-linear model (ie. o$ becomes the non-linear equivalent

of o$, o). InFigure3.3-8, o2"iscomparedwithboth ofr, andtheresultsof simulations

for the fast AGC model (from Figure 3.3-3). It is clear from this figure that the two models

give very similar results until ^la is quite Large, at which point the non-linear model

variance begins to fall below the linear model variance.

Notice that because the Tikhonov PDF approaches a uniform distribution when the linear

model phase error variance is very large (ie. f6þlÃ)=lo, lrl=Lr), the largest possible

6 This is used in Section 3.6 to account for the effects of amplitude scintillations and thermal noise

on carrier phase DGPS systems.
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E12

value of ol that can be produced by this model is JO' lo.aO = 0,82 radians2 (-7 '5 cmz

-n12

at GPS L1). Consequently, even for very low values of Cf N, and for 54=1, ofr wil never

exceed this level (indeed, loss-of-lock is likely to occur well before this point).
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Figure 3.3-8: o26 Qower curaes) ønd ofi, fupper curaes) as a function of Sa for a first order LQ

Costas loop with ø føst AGC' Parameter aøIues flre T = 20ms' Bn= SHz' cf N o = 44 dBHz Aeft

panel), nnd Cf N, = 30 dBHz (right pønel). The circles denote simulation results.

3.3.4. The effects of pre-detection filtering on Phase errors

In Equation (3.1,-2), the amplitude following the pre-detection filters is given by

(3.3-47)

where 24, is the unfiltered signal amplitude. In general, it has been assumed that I is

Nakagami-m distributed and approximately equal to Á. This is based on the observation

that the bandwidth of the pre-detection filters, lfT , is usually much greater than the

bandwidth of the amplitude scintillations, which is typically less than a few hertz (see

Appendix G). In this sectioru the validity of this assumption will be examined.

The power spectral density of the filtered signal amplitude, 2., is givenby

ß.3-48)

Ã=+'!e(u).a,
' t-T

sÀ(f)=lc7)'su7)

77



where G(-f)=sinc(/)exp(- ¡øf) is the transfer function of the pre-detection filters, and

SnU) is the power spectral density of the unfiltered signal amplitude. In Figure 3.9-9,

both ,s7f) and sz(¡) are given lor f"=llHz aîdp=2.5 (StU)=l is assumed for f < f").

It is clear from this figure that the impact of the pre-detection filters on amplitude

scintillations is insignificant for fluctuation frequencies less than about 1,0H2.

Consequently, lor typical values of f" (oÍ the order oL LF{z or less), the impact of the pre-

detection filters on the total amplitude variance is likely to be quite small (ie. very little

scintillation energy lies above L0Hz for typical values of p and f").However, this may not

be true under high velocity conditions when .f" may be quite large on certain satellite-

receiver links.

0 5 10 15 20

0 510
Frequency (dBHz)

l5 20

Figure 3.3-9: The impact of a 20ms pre-detection filter on the power spectrøI density of ømplitude

scintillations. The upper panel represents the magnitude of the filler transfer function. The lower

panel represents the poToer spectral densities of amplitude for p=).$ and f" =lHz (in the lower

panel, the upper nnd lower curaes represents the unfiltered and filtered amplitudes respectiaely).

Unfortunately, the power spectral density does not provide a complete picture of the

effects of pre-detection filtering on the amplitude. Using simulated scintillation data

obtained from the model described in Appendix A, it appears that the very deep fades that

cause the greatest loop stress are often quite short in duration. Consequently, the pre-

detection filters are likely to have a greater impact on deep amplitude fades than on

shallower fades. In Figure 3.3-10, a scatter plot of the fade depth after filtering versus the

fade depth before filtering is given for a 40s segment of simulated scintillation data for
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which f"=1lH2, p=2.5, and Sq=0.75. Also given are equivalent average plots

for f, =O.SIHz, LHz and 2Hzbased on approximately 20min of scintillation data. It is clear

from these plots that on average, the pre-detection filters significantly attenuate the very

deep fades. It is also clear that for larger values of .f" (and so shorter average fade

durations), the effects of filtering become even more apparent. Indeed, it appears that the

average fade depth after filtering tends to plateau at different fade depths depending on

the value of .f". Consequently, for very large values of f" it is possible that pre-detection

filtering on its own may significantly reduce the effects of amplitude scintillations within

the tracking loop. However, as .f" is usually much less than about lFJz f.ot a stationary

receiver (often considerably so - see Appendix G), this effect can probably be ignored for

stationary receivers.
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Figure 3.3-L0: Scatter ptot of the fade depth after filtering uercus the fade depth beþre fíltering for ø

40ssegmentofsimulatedscintillationdøtawithf"=lHz,p=2'5,ands4=0'751eftpanel)'

Equiaalent aaerøge plots for f" =0.5H2, lHz and 2Hzbased 0n approximately 20min tf

simulated scintillation data (right panel). Fade depths øre shoutn reløtiae to a normalised quiescent

signølleael of )dBW,

3.3.5. Summary

In this sectiorL the effects of amplitude scintillations on a Costas carrier tracking loop was

examined. In order to approach this problem using analytical techniques, it was decided to

assume that the discriminator algorithm was I.Q, normalised by a post-detection AGC. As

other discriminator typesz are not as amenable to direct analysis as the I.Q discriminator, a

7 For example, the arctangent or decision-directed discriminators.
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simulation approach would be required in order to assess their susceptibilities. This was

considered to be beyond the scope of this thesis.

In Section 3.3.2, expressions were derived for the variance of the thermal noise errors for

an I.Q Costas phase locked loop in the presence of amplitude scintillations. Three different

AGC cases were considered; (i) an ideal AGC that provided a perfect estimate of the GPS

signal strength, (ii) a fast AGC with a time constant much shorter than the duration of a

typical amplitude fade, and (iii) a very slow AGC. It was shown that the effects of

amplitude scintillations on the phase error variance is negligible, unless the amplitude

scintillation index, 54, is very large. It was also shown that for non-ideal AGC's, the

bandwidth of the tracking loop may fluctuate with the amplitude. If phase scintillations

and Doppler errors are also present, this could result in a significant increase in carrier

tracking errors (ie. phase scintillation errors may become larger during deep fades as a

result of a momentary reduction in the loop bandwidth). Finally, it was oÈser*'ed that

thermal noise errors, and therefore amplifude scintillation effects, increase with the loop

bandwidth. This is the reverse of the situation observed for phase scintillations.

The analysis carried out in Section 3.3.2 was based on a linearised model of the Costas

carrier loop. In Section 3.3.3, the thermal noise variance was re-calculated using the

Tikhonov PDF, which is based on a non-linear model of a Lst order Costas loop. It was

found that significant variations between the linear model þased on a fast AGC) and the

non-linear model only occurred for very large values of ,9a. However, as shown in the

next sectiory it is highly likely that loss-of-lock or frequent cycle slips will occur under

these conditions anyway.
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9.4. Carrier loop tracking thresholds

The principal objective of this section is to determine the strength of scintillation activity

required to force the Costas loop to lose lock. However, as discussed in Appendix C, it is

difficult, if not impossible, to precisely define a point at which a phase locked loop will

transition to a state of loss-of-lockr. Usually, a threshold is defined beyond which the

linear model approximations are significantly violated. Although this does not guarantee

that the loop will lose lock, it does suggest that the probability of frequent cycle slips and

perhaps loss of lock will become very high.

In Section 3.3.3, it was shown that the average variance measures for the linear and

non-linear loop models, ofi, and, ort, respectively, diverged when ,S4 was very large'

Although this implies that the linear model approximations are being violated, it does not

indicate how frequently this is occurring. For example, a very deep fade for a short

duration may produce the same average linear model variance as a shallower fade for a

longer duration (or a series of shallower fades for shorter durations). Consequently, a

comparison between the average phase error variance measures is not considered to be a

good measure of loss-of-lock.

In this section, the Nakagami-m PDF is used to determine the percentage of time that the

amplitude falls below the tracking threshold for the linear loop model. This is then used as

a basis for deciding whether loss-of-lock is likety to occur in the tracking loop. Inherent in

this approach is the assumption that the bandwidth of the amplitude scintillations is

narrow in relation to the carrier loop bandwidth. This ensures that fade durations below

the tracking threshold are sufficiently long to produce carrier cycle slips and loss-of-lock

(the impact of a reduced fade duration on loop behaviour is discussed in Section 3.5). The

justification for this assumption is that for a power law PSD, the majority of the amplitude

scintillation energy is near the cut-off frequency, f" , wlrjiclr. is typically much less than the

loop bandwidth, Bn (see Appendix G). Although this condition is likely to be met for a

stationary or slowly moving receiver, it is not guaranteed under high dynamic conditions.

Under such conditions, the effects of amplitude scintillations may be significantly

r Loss-of-lock is defined as the point at which the VCO frequency drifts away from the IF

frequency and the phase errors (reduced modulo æ) become uniformly distributed.
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suppressed on certain links, particularly for narrow bandwidth tracking loops (again, see

Section 3.5 for more details).

From Equation (3.3-8), the variance of the phase tracking error resulting from scintillations

and thermal noise is given by

"î,(Ã)= 
o'r*Ø)* 

"î, 
(Z)

where o'r*Ø) represents the contribution from phase scintillations (Equation (3.3-33)) and

"'rr(À) 
represents the contribution from thermal noise (Equation (3.3-L1)). By equating

"îr(Ã) 
with the linear model tracking threshold, oî"1r, (Equation (C-3), Appendix C), a

threshold amplitude, Z7¡, carr be obtained below which the tracking loop would be

expected to lose lock, uiz

"1,Ørr)="ã,1*
(3.4-1)

Arh = (3.+2)
pTClN,

where U='"'dr'. A is the nominal (unperturbed) signal amplitud e, and, cf No is the

nominal carrier to noise density ratio. In Figure 3.4-1,, t}":te normalised threshold amplitude,

G* l¡), is plotted as a function of the spectral strength, T, Lor both the ideal AGC model

(solid line) and the non-ideal AGC model (dotted line). It is clear from these plots that the

two models retum approximately the same value of Ãy¡ f 1,. It is also apparent that for the

specified loop bandwidth (SHz), the carrier loop will lose lock when the spectral strength
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Unfortunately, a closed form expression for A7¡ is difficult to obtain for the non-ideal

AGC models. However, for the ideal AGC model, 
"î*(Z) 

ceases to be a function of the

signal amplitude and is given by Equation (3.2-8). Consequently, the threshold variance

for thermal noise only becomes 
"'*lrr=oîrlro-oî*. 

By rearranging the standard

expression for the variance of the phase tracking error for an I.Q Costas PLL (Equation

(D-19), Appendix D), the signal amplitude corresponding to this new threshold can be

obtained as follows
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exceeds about -11 dBradiuoszf}lz, even in the absence of amplitude fading.
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Eigure 3.4-1: The normalised threshold amplitude, Àrr l^ , as ø function of the phase scintilløtion

spectrnl strength,T, for both the ideal AGC model (dotted line) ønd the fast AGC model (solid line).

pørømeter aalues are T = 20ms, Br= íHz, p = 2.5, f"= 0.05H2, ClN, = 44 dBHz (left pnnel)'

and Cf N" = 30 dBHz (right panel).

Using the Nakagamai-m PDF, the probability that the amplitude will drop below the

threshold Ãr, lthus resulting in cycle slips or loss-of-lock) can be fotmd as follows

-25 -20 -15
Spectral Strength, T (dBradians2/Hz)

PL

Àrh

I¡2tu-\at
0 (3.4-3)

= 2*!,= 'f or.-r"-^.r21<Ã2>.oo
t@).(Ã2)' Jn'^

In Figure 3.4-2, the probability of losing carrier lock is plotted as a function of Sa and B,

lor Cf N o = 41..5 dBHz under the assumption that phase scintillations are not present and

the AGC is ideal (ie. o$* =0 is assumed). This figure clearly shows that the probability of

losing lock in the presence of amplitude scintillations increases as the loop bandwidth

increases. However, even for a very wide bandwidth receiver at ^S4=L, this probability is

still quite small for the specified nominal signal level. If the duration of the amplitude

fading is relatively short, this may only result in an occasional cycle slip rather than a

complete loss of signal lock. Indeed, for an inertially aided receiver for which the loop

bandwidth is likely to be very narrow (less than a few Heúz), the effects of amplitude
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scintillations may be negligible (particularly since an inertial aiding unit will usually assist

the receiver to recover lock once the fading has passed).

1.5

0.s 0.6 0.7
s4

0.8 0.9 1

Figure 3.4-2: The probøbility of losing lock for a 2"d order Costøs PLL øs ø function of S a ønd B n

Parameter aølues øre Cf No = 4'1.5 dBHz and oî* = 0

Although, Equation (3.4-3) does not provide a clearly defined threshold for ,Sa above

which loss of lock will occur, based on simulations it has been found that a threshold of

L% is quite a good choice, particularly for 2"d and 3.d order loops (for I't order loops, the

frequency of cycle slips merely increases with .la with no clearly defined threshold).

Using this somewhat conservative threshold, it is still clear that amplitude scintillations

alone are unlikely to significantly affect GPS receivers, unless the activity is very severe

and the bandwidth of the tracking loop is quite wide. However, as will be shown later,

this does not necessarily apply to codeless and semi-codeless receivers for which the SNR

is significantly reduced.

In Figure 3.4-3, the tolerance of a receiver to scintillations is plotted as a function of T and

^Sa 
using the approach outlined above. It is clear from this plot that as the loop bandwidth

increases the tolerance to phase scintillation increases while the tolerance to amplifude

scintillation decreases. Indeed, using Wiener filter analysis it is possible to find an

optimum loop bandwidth and order that minimises the phase tracking error, and therefore

the probability of losing lock, for any combination of T and 
^Sa 

(See Chapter 8).
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Figure 3.4-3: Tracking threshold as a function of T, 54, ønd. Bn. Pørømeter aalues are

Cf N" = 41.5 dBHz and p = 2.5.

Figure 3.4-3 is based on the underlying assumption that the spectral strength of phase

scintillations, T, is independent of the amplitude,24. (note that this does not i-ply that T is

independent of .ia ). With reference to Section 3.3.2.2, if T can be expressed as a function of

A, then oç* wíIl become a function of A and the derivation of Ã7¡ will become more

complicated.

3.4.1. loop bandwidths

The optimum loop bandwidth for a minimum probability of losing lock is found by

minimising Equation (3.4-3). As the amplitude PDF must always be positive, this can be

achieved by minimising the threshold amplitude, Z7¡, fuom Equation (3.4-2). The first

derivative of Ãy¡ with respect to B, is given by

S4

úro
ã8,

A aþ (3.4-4)
dBn

where p is a function of B, . For the ideal AGC model, B can be expressed in the following

form (from Equations (3.4-2) and (3.2-8))
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þ=
,1"î,lrr- arnf-øf

(3.4-5)
TBn

r.vhere "=#Vø( and ( =? t" a constant for a given loop order. The

only real, non-trivial roots to Equation (3,4-4) are found by solving
ap

= 0 to give
ð8,

(3.4-6)

Equation (3.4-6) represents the bandwidth that minimises Zrr, and therefore the

probability of losing lock, for a given phase scintillation spectral strengtþ T. In Figure

3.4-4, the optimum bandwidth is plotted as a function of T for a phase scintillation spectral

index, p, of 2.5. The corresponding phase error variance due to phase scintillations is given

by oîq = "î,1*
p

which is very close to the threshold variance, oîrlrr, particularly for p

close to unity. This implies that the optimisation process attempts to keep the bandwidth

as small as possible (and thus the phase scintillation error as large as possible) in order to

minimise 77¿.

-25 -20 -15
Spectral Strength, T (dBradians2)

Eigure 3.4-4: Threshold loop noise bøndwidth øs ø function of the phase scintillntion spectrul

strength, T , for the three loop orders (o: 1't order , t: 2nd order, Y : 3rd order loops) .
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3.4.2. WBMOD predictions of T and S+

By combining Equations (2J,-6) (the weak scatter formula for 
^9a ) and (2.1'-7) (the strong

scatter approximation), it is possible to obtain a relatively simple expression which links T

and .Sa through the various geometrical factors discussed in Section 2.1'.3, aiz

,=-m(r-so') (3.4-7)

T

n - @-t)
where y * 

îl 
is a factor that depends mainly on the satellite-receiver geometry and

the orientation and elongation of the ionospheric irregularities. The logarithm of Equation

(3.4-7) is thus

rdn=ror,e,,[r"[#)) * ß4_s)

Consequently,for agivengeometry f.actor, f6,thelocusof possiblevaluesof Tand,Sa is

a single line (at least for the scintillation model discussed in Section 2.L). From WBMOD, it

appears that for a stationary GPS receivêr, Tdn is usually greater than about 20dB in

equatorial regions above a 5o elevation angle. Therefore, T and ,S4 values will normally lie

below the line obtained from Equation (3'4-8) by letting Tan=20d8' This is illustrated in

Figure 3.4-5 where the line obtained from Equation (3.4-8) with y¿B =20d8 is plotted along

with a series of dots representing the T and ^S4 values for each visible satellite at 64

locations near to the equatorial anomaly. Also shown in Figure 3.4-5 are the threshold

curves from Figure 3.4-3.

The T and .Sa values in this figure were obtained from WBMOD under the following

conditions, which represents strong scintillation activity:

o An area of 60 x 60 degrees centred on LOoN and 1200E.

o A sunspot number of L50 (ie. high solar activity).

o A magnetic activity index, K, oÍ 5.6.

. The September Equinox.

o L2:00 hrs GMT (-20:00 hrs local time at 1200E).

o 2 hours duration from L2:00 hours GMT.

. A 5o elevation mask angle (elevation angle cutoff).

. The 90th percentile of scintillation activity.
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Very similar results were obtained at other times and at other equatorial locations.

Ë -30¡<Ð
O
o)
O.-?5

V)

| 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
S4

Figure 3.4-5: T ønd Sa aalues obtøined from WBMOD for a period of high solar øctiaity plotted

oaer the tracking thresholds from Figure 3,4-3, Cf N 
" 

= 41,5 dBHz is assumed.

This result suggests that a stationary receiver is probably more likely to lose lock from

amplitude scintillations than from phase scintillations, except when the bandwidth is very

narrow (ie. for medium to wide bandwidths, it is unlikely that the threshold will be

exceeded unless ,Sa is very large). However, an increase in the effective scan velocity, v",

perhaps due to receiver motiorL will reduce yand force the locus in Figure 3.4-5 to move

upwards. As a result, phase scintillations will have more of an effect on loop performance,

as will the choice of the loop bandwidth. However, the optimum bandwidth for minimum

tracking error will still be quite different for each satellite link as a result of the different

geometries and signal levels on each link.

3.4.3. Velocity and elevation angle effects

3.4.3.1. Elevation angle effects

From the equations given in Section 2.1.3, it appears likely that the geometry factors for T

and 
^Sa 

will be larger at low elevation angles as a result of a larger ionospheric pierce point

velocity due to satellite motion, v" , and a larger Fresnel zone radius, Zp r respectively. This
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is demonstrated in Figure 3.4-6 which was obtained using WBMOD data under the same

conditions as Figure 3.4-5.

1.5
-11x10-

¡JI
O
F 0.5

10 20 30 40 50 60 70 80 90

x lo-3s

1

l0 80 90

Eigure 3.4-6: The mean ønd RMS of the geometry factors for T (upper panel) and Sa* 1ower

pønel) obtøined from WBMOD for ø period of high solar actiaity.

The two geometry factors used in Figure 3.4-6 werc obtained by dividing T (Equation

(2.1.-2)) and ^Sa 
obtained from the weak scintillation model (Equation (2.1-6)) by the height

integrated irregularity strength parameter, C¡L , aiz

1

J&
O

e.l
È$(n

20 30 40 50 60 70
Elevation angle (degrees)

+= Kt*Gv!r-r1.".,r,

t:i- 
= Kz * F z rb-t) r""1r,

CpL

where, from Equation (2.1"7), So*'=-ft(f -S?)

independent of the geometry.

(3.4-9)

(3.4-10)

and Kl and & are factors that are

For the phase geometry factor, the principal contribution to the elevation angle

dependence originates from the effective scan velocity, v", and from the sec(0) term' As

the elevation angle decreases, the ionospheric pierce point velocity due to satellite motion,

Mean
RMS

Mean
RMS
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v", incteases which in general leads to an increase in v, (see Figure 3.4-7) 2. A more

thorough discussion of the effects of velocity on ye is given in the next section and in

Appendix F.
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Figure 3.4-7: Effectiae scøn aelocity, ve, as ø function of the satellite eleaation angle for n

stationary receiaer. The eleaation angle dependence is largely due to satellite motion and the

indiuidual cltrues represent dffirent satellite trnjectories. p = 2.5.

For the amplifude geometry factor, the Fresnel zone radius, zp ¡ àrrd the sec(O) terms

provide the greatest contribution to the elevation angle dependence. zp can be

approximated by 
"'FJsec|@) 

where z;=,,lh,L is the Fresnel zone radius of a vertically

propagating plane wave. Therefore, the majority of the elevation angle dependence for

54, can be accounted for through a single secl0¡Þ+t)/' te.-. For highly elongated

irregularities, the Fresnel filter factor, ,F', tends to be mainly a function of p, and therefore

shows very little dependence on the elevation angle [78].

It is also anticipated that at low elevation angles, the carrier to noise density ratio of the

GPS signal will be reduced. This is a result of a combination of additional atmospheric

absorptiory a greater distance to the satellites, and satellite and receiver antenna gain

2 The actual effect on v" wtll depend on the vector sum of v, and the drift velocity, r)¿ , ãrrd on the

orientation and elongation of the irregularities. v, can be quite small if the vector sum of v, and

v¿ is either very small or approximately aligned to the principal irregularity axís 1761.
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pattern effects. From Equation (3.4-2), it is clear that a reduction in Cf N, will lead to an

increase in the threshold amplitude, 2.7¡, which in turn will increase the probability of

losing lock. Consequently, the threshold curves of Figure 3.4-5 will be shifted to the left,

and the loop will become even mote susceptible to the effects of amplitude scintillations.

Consequently, through a combination of a reduced C/N, and larger geometry factors,

satellite links that penetrate the peak of the equatorial anomaly at low elevation angles are

likely to be significantly more stressed than high elevation angle links. Notice that this is

not guaranteed to occur on all links as there are large variations in the geometry factors

between the individual links (ie. the RMS values of the geometry factors for both T and Sa

are also large - see Figure 3.4-6).

3.4.3.2. Satellite and receiver velocity

In the presence of receiver dynamics, two effects will alter a receiver's tolerance to

scintillations. These are:

(i) the additional stresses imposed directly upon the tracking loops by dynamics, and

(ii) the change in the scintillation rate caused by motion of the receiver through the

interference pattems.

The stresses introduced into the carrier tracking loop by d¡rnamics may be accounted for if

the characteristics of the dynamics are known. If a steady state phase error/ @uss, is

produced by a constant d¡mamic process, then a modified tracking threshold of the form

-z I -l n 0""'l' radians2 can be obtained from Equations (C-3) and, (E-7) and usedoQtlrnz=ln- 
3 I 

rqu¡qrrÐ çq¡r vL I

in place of Equation (3.4-1). The effects of transient errors may be accounted for by adding

an extra term to the tracking error variance to account for the Total Transient Distortion, el

(Equation (E-11)). This results in another modified tracking threshold of the form

o'r"lr^=l3l' -e].ttamplitude scintillations influence the transfer function of a tracking

loop, both the steady state and transient errors produced by dynamics will change.

Indeed, during deep fades, the instantaneous bandwidth of the tracking loop may be

reduced, resulting in an increase in both @u5s and e| during those times.

The second effect of dynamics is related more directly to scintillations and can be

accounted for by adjusting the spectral strength parameter, T, and the Fresnel cutoff
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frequency, f" . As shown in Equation (2.1,-2), T can be related to the effective scan velocity,

v,, through the expression T = Br!-1, where B is a constant for a given set of ionospheric

conditions and satellite-receiver geometry. The effective scan velocity is a function of the

ionospheric drift velocity, v¿ , t};te ionospheric pierce point velocity, v¡ (consisting of the

satellite componentr rst and the receiver component, vr), and the geometry and

orientation of the irregularities. At equatorial latitudes, v¿ is typically of the order of 50 to

200 m/ s in an Easterly direction and is accounted for in WBMOD through a drift velocity

model. For an ionospheric height of 350km, v" is typically between about 60 and 500 m/s

depending on the elevation and azimuth angles of the GPS satellites (Appendix F). In

Figure 3.4-8, v, is plotted as a fr.rnction of the elevation angle over a 24-hour period for a

receiver located at l,0oN and L20oE. It is clear from this figure that v, shows a strong

dependence on the satellite elevation angle, being much Iarger at low elevation angles. It is

also apparent that despite the effects of Earth's rotatiory the East-West component of v" is

usually in an Easterly direction for all satellites (ie. v, is usually positive). Consequently,

the East-West component of v" is in the same direction as the drift velocity, v¿, which

tends to reduce v, somewhat (ie. the ionospheric pierce point scarìs across the plasma

density contours at a reduced rate as a result of satellite motion).

10 20 30 40 50 60 70 80 90

500Ø
É

q

Ø

x

0
0 10 20 30 40 50 60 70

Elevation angle (degrees)
80 90

Figure 3.4-8: Ionospheric picrce point aelocity due to satellite motion (upper pønel), North aelocity

component, v *, (middle pønel) and Eøst aelocity component, v, , (lower pønel) for a GPS receiaer

locnted at 10oN ønd 1200E. The ionospheric height is øssumed to be 350km. v? = vl + v2, .
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The pierce point velocity due to receiver motiory v, is a function of the receiver velocity

and the elevation and azimuth angles of the satellite (Appendix F). In Figure 3.4-9, v, is

plotted as a function of the satellite elevation angle and the direction of motion of the

receiver in relation to the satellite azimuth angles ( v, is plotted as a Percentage of the

receiver velocity, v¡ ). In this figure, it is assumed that the receiver is moving in a

horizontal plane with velocity un and at a height that is small in relation to the mean

ionospheric height (ie. level aircraft flight will meet this requirement). It is clear from this

figure that v, is approximately equal to the receiver velocity, except at moderate to low

elevation angles, and when the receiver motion has a large component that is aligned with

the satellite azimuth angle. Although WBMOD allows only one end of a link to be in

motion (usually the satellite end), it is possible to account for receiver motion by

translating v, to the satellite end and determining an equivalent satellite velocitya.

100

0

300

100 40
20

Direction (deg) 0 0 Elevation Angle (deg)

Figure 3.4-9: Ionospheric pierce point speed as a percentage of the receiaer speed nnd as n function

of the satellite eleuation angle and the direction of motion. The ionospheric height is assumed to be

350km.

3 00 represents motion of the receiver towards the satellite.

+ l1 vI is the pierce point velocity due to the modified satellite motion, then vi = v" * v, whete v"

is the unmodified satellite pierce point velocity. This approach is discussed further in Appendix F.
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From the foregoing discussion, it is clear that the speed with which the satellite

propagation path cuts across the plasma density contours is given approximately by

lu, - (u" +rr\, where r¿ r vs, an:rd v, are two-dimensional velocity vectors in a horizontal

plane at the mean ionospheric height. For isotropic irregularities, this result is also the

effective scan velocity, ve .Flowever, as the irregularities are in general highly anisotropic,

the degree of anisotropy and the orientation of the irregularities must all be taken into

account in order to determine v".

In general, very high receiver velocities are likely to lead to an increase in v", although not

on all satellite links. On average/ this will lead to an increase in the spectral strengtþ T,

with a consequent increase in the probability of losing lock due to phase scintillations.

With reference to Figure 3.4-5, this effect will be manifested as an upward shift in the

curye that represents the likely combinations of T and ^9a. If this shift is sufficiently large

(say 10dB or so), it may cause narrow bandwidth receivers to become much more

susceptible to scintillations than wide bandwidth receivers. Although the amplitude

scintillation strengtþ ^S4, is not influenced by v", thre Fresnel cutoff frequency, .f",

increases with v" (Equation (2.1-3)). Consequently, the duration of the deep fading events

that lead to loss of lock in a receiver will be reduced. This will be an advantage for narrow

bandwidth receivers for which the time constant of the tracking loops may exceed the

duration of the deep fading event (see Section 3.5). Although this effect is not accounted

for in the threshold curves of Figure 3.4-5, for very high receiver velocities, it is likely that

loss of lock will mainly occur as a result of phase scintillatioru (ie. the effects of amplitude

scintillations can be ignored on many of the links).

3.4.4. Summary

Expressions were derived for the probability of losing lock, P¡, as a function of both the

tracking loop parameters and the scintillation statistics. It was shown that in general,

amplitude and phase scintillation activity must be at a high level before loss of carrier lock

will occur. It was also shown that as the carrier loop bandwidth increases, the

susceptibility to amplitude scintillations increases, but the susceptibility to phase

scintillations decreases. Consequently, for a given set of signal and scintillation conditions,

an optimum bandwidth exists which minimises the probability of losing lock.
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Predictions of the amplitude and phase scintillation indices, ^Sa and T, based on the

scintillation model WBMOD suggest that even during times of severe scintillation activity

(ie. during high solar activity, at equinox and near the equator), the majority of a receiver's

channels will remain in lock. This is despite a relatively conservative threshold being

chosen for P¡ and a large percentile for the WBMOD predictions. Flowever, this result

assumes that the receiver is stationary, uses fuIl code correlation tracking loops and is not

subject to any other sources of loop stress.

The relationship between the geometry of the propagation path and the strength of

scintillation activity was investigated. The intention was to determine under what

conditions a satellite-receiver link would be subject to the greatest scintillation stresses,

and therefore when it would be most likely to lose lock. The two geometry factors

examined in this section were the elevation angle of the propagation path and its velocity

through the ionosphere. It was found that in general, for a given level of ionospheric

disturbance (embodied in the parameter CxL; the height integrated irregularity strength),

both ,la and T tended to be larger at low elevation angles. Consequently, propagation

paths that penetrate highly disturbed regions of the ionosphere at low elevation angles

will have the greatest probability of losing lock. It was also found that an increase in the

effective scan velocity of the propagation path through the irregularity layer, v", will

result in an increase in the phase scintillation index, T, and therefore an increase in the

susceptibility of narrow bandwidth tracking loop to scintillations. v" is a function of

satellite motion, receiver motiory ionospheric drift and the irregularity geometry. The

effects of both satellite and receiver motion on ve were examined and a technique for

incorporating receiver motion into the WBMOD model was discussed. Although the

dependence of v" on the various geometry and velocity factors is quite complex, it can be

said that in general under very high velocity conditions, v, is likely to increase on most

satellite-receiver links which will increase the probability of losing locþ particularly for

narrow bandwidth tracking loops.
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3.5. The impact of fade depth and duration on cycle

slips

The results given in Sections 3.3 and 3.4 do not explicitly take into account the amplitude

scintillation rate. In these sections, it was assurned that if the amplitude scintillation

bandwidth was much less than the carrier loop bandwidths, the carrier loop would lose

lock once the amplitude had fallen below the tracking threshold, Arh, Flowever, if the

deep fades occur with very short durations, this assumption may become invalid. This

may occur in the presence of high velocity d¡mamics, particularly if a receiver is aided by

an Inertial Navigation System (INS) and can therefore adopt a very narrow tracking loop

bandwidth. In this section, the relationship between fade depth and duration and the

probability of a cycle slip is investigated for a simple rectangular fade. Although the issue

of loss-of-lock is not dealt with directly in this analysis, it can be assumed that if the

probability of a cycle slip becomes very large, the carrier loop has a much greater chance

of losing lock.

From Holmes [43], the mean time to cycle slip for a 1't order I.Q Costas phase locked loop

is given by

(3.5-1)

where B, istheloopnoisebandwidth, p"=tl*î, istheeffectiveloopSNR(thethermal

noise variance, o2Q, is obtained from the linear loop model), andl,( ) ir the modified

Bessel function of the first kind of order zero. Based on simulations ([a3] page 199), it has

been found that an approximate mean time to cycle slip for a 2"d order loop can be

obtained from Equation (3.5-1) by increasirrg o2ilr by 1dB. Viterbi lgZllnas shown that the

cycle slipping rate is the inverse of the mean time to cycle slip for a L"t order loop, and

approximately so for a 2"d order loop. As the slipping process is approximately Poisson

distributed ([43], page 95), the probability of slipping in ø seconds from a state of zero

error is given by

5 A justification for this assumption is given in Appendix G using data obtained from WBMOD for

a stationary receiver at an equatorial location.
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Pcs =r-e*p(-rlT)
(3.5-2)

-l-l

If z is taken as the duration of the fade, and p, is calculated for a given fade depth and

loop bandwidtho, then the probability that one or more cycle slips will occur over the

duration of the fade will be given by this expression.

Equation (3.5-2) implies that for an infinitely deep fade (ie. P"=0), the probability of a

cycle slip is one, irrespective of the fade duration, î. However, Viterbi's equation is

modelled on an ideal I.Q discriminator for which the discriminator noise term, /td,

becomes infinite when p"=0.For a real tracking loop, the characteristics of the

discriminator will tend to override this effect and prevent Pc'5 from becoming large when

the fade duration is very short. Indeed, for an arctangent discriminator, there is a

minimum fade duration below which the probability of a cycle slip is zero, irrespective of

the fade depth. In the analysis that follows, a correction to Equation (3.5-2) is derived for

the case of an infinitely deep fade. The probability of a cycle slip is then given as a

function of fade depth and duration for two representative loop bandwidths and

compared with the results obtained from simulations. The impact of loop order and

dyramics is also discussed.

For an infinitely deep fade (ie. Ã = 0 ), the phase locked loop behaves as if it was an oPen

loop. With reference to Figure 3.'!.-2, when Ã=0 ttre phase locked loop takes on the

following form

a
+

nd

Figure 3.5-1: Model of a phase locked loop for zero signal amplitude.

Ar

ô
llsF(s)

6 Note CI N "lr* = CI N'lun** --F where F is the fade depthin decibels'
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where n¿ is the discriminator noise term which is zero-mean but is generally not

Gaussian. n¿ càn be found by applying the discriminator algorithms given in Table 3.1-1

to the prompt I and Q signals from the pre-detection filters. In the absence of a GPS signal,

the I and Q signals have the following form (from Equation (3.1-2))

Ip=ÍtIp

Qp =nep
(3,5-s)

(3,5-4)

where nn, aîd nep ate zero-mean, Gaussian and IID. For the arctangent discriminators,

n¿ is given by

,a=atu,[tr) or Atan2(nep ,fl IP 7

r,oØ)=;tr1;,""r1¡-,-l u.oo

where ond is the standard deviation of n¿ and is equal to "lzJi for the Atan

discriminator, and 
"lJ-3 

for the Atan2 discriminator.

From studies of narrowband Gaussian noise processes (see for example l39l pages 294

onwards), it is known that the arctangent of the ratio of two zero-meary Gaussian, IID

random variables has a uniform PDF. Consequently, the PDF of n¿ is also uniform and

can be represented by

For the normalised LQ discriminator, the PDF is considerably more difficult to determine.

However, using numerical techniques it has been found that ano =tlZJl t.

7 Atan2(y,x) is the four quadrant arctangent function.

s This is found by evaluating J Iro'fnrr,nnr(nrr,nor\drrr.dngr where fr¡p,ngrþn,nop) i" u

bivariate Gaussian PDF and n¿ = lt¡pngp
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3.5.1. l.'t Order loops

For a 1't order phase locked loop, the phase error Iseconds after the start of an infinitely

deep fade is given by

Q,Q,,t)= o(g)- ôQ,,t)
(3.5-6)

=QQ)_ !"n@þ,.au+$Q" f.ot t > to

lo

where f'(s)= ar, is the transfer function of the loop filter, lo is the time at which the fade

begins, t=toiy, and O(t,) ir the loop phase estimate at time t,.If it is assumed that

AQ)-ôQ")=o (ie. the input phase process, QQ),i" constant and the initial phase error,

QrQ),is zero), then

QrQo,t)= no(uþ,.au lor t) to (3.5-7)

Therefore, QrQ,t) is a random walk (or Brownian motion) process which begins from

zero at time I = /o . As QrQ.,t) is zero-mean, its variance is given by

o'q"0)= øIo,Q",rYI

t

J
lo

,¿(vþ,.d,

(3.5-8)

Consequently, lor a 1't order loop the variance of the phase error increases linearly with

the fade duration, y, If the magnitude of the phase error exceeds the threshold of the

discriminator, þ"1, e, a cycle slip will occur when the signal level eventually returns to

J
lo

b,.du='lJ:''
tt

= r^' I I u{"0 @þ¿ (v)}au.av
to to

=','' I o' I,o, o" ""t(T)* o'

J)-
- (Dn'Ond- 'I'y

t Qrlr = 7c 12 for an I.Q or Atan discriminator, and n for an Atar2discriminator
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normal. Consequently, even for an infinitely deep fade, the probability of a cycle slip will

be quite small if the total fade duration, r, is very small. This is particularly true if the loop

bandwidth, which is proportional to {Ðn , is also very small.

As the loop is effectively open circuit during an infinitely deep fade, the concept of a cycle

slip becomes meaningless during this time. A cycle slip will only occur if the magnitude of

the phase error exceeAr 0rlr when the signal level returns to normal (or at leastbecomes

large enough for the loop to re-lock). Nevertheless, by comparing the phase errors for an

infinitely deep fade with @rl' it is possible to determine an upper limit on the probability

of a cycle slip for different fade durations. This assumes tlrú ofrr(Z) ir at a maximum

value when the fade is infinitely deep.

The Random Walk described by Equation (3.5-7) is essentially a first order Markoff

process for which the PDF of Q, at time l¿ depend only on the value of. Q" at time l¿-1 .

The time separation between consecutive samples in this model (ie. t¡-tut) is given by

the hold period, T, of the integrate and dump pre-detection filters. Consequently, the joint

PDF of the sequence of phase errors, lQro,Qro_r,...,Qrsl is givenby

error immediately after the start of the fade. For the Atan and Atan2 discriminators, this is

$ivenbY to

fo,t ,...,Q,o(Q,0,...,Q"0)= .fç,0(Q"olfrrr,,lr,,-r6",1ø,-, ) ß,5-g)

where for,l'r,_r6r,1Qr,-r) ir,n" conditional PDF of Qr¡ given Qe¡-1 and Qre is the phase

Qr¡ - Qr¡-1

2Jlonoto,T
(3,5-10)

which is based on the following discrete version of Equation (3.5-7)

t0 An equivalent expression for the normalised I.Q discriminator has not been found.
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-iY 4)

-)
;,':

Qe¡ =\n¿rønT

=Q"-t tn¿'anT

The probability that the magnitude of the phase error exceeds the threshold, Qrl7, at any

time during the fade is therefore

r(-u*(þo l,lu,o_r|,..., lo,o | ) = øb)
Qel_r arb ,_L t ,

-1- j, -i, 
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j=r

T
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Although this has not been solved in closed form, it has been evaluated using MatlabrM for

a range of fade durationsrr and found to correspond very closely with the results of

simulations.

One of the implications of this result is that for an Atan discriminator, it is impossible for

the phase error to exceed Q"l, and produce cycle slips prior to a certain time which is a

function of the loop bandwidth, irrespective of the fade depth (assuming that the link is

not subject to any dynamics and the phase error is initially zero). The reason for this is that

the discriminator noise term, n¿ , is limited to t[rl, (Equation (3.5-5)), and so the

maximum possible phase error at time kT is kTarQrl, radians. Consequently, a cycle slip

cannot occur before l/at, seconds from the beginning of the fade. Indeed, if this is less

than the pre-detection integration period, T, the pre-detection filters will play a significant

role in limiting the effects of the fade (see Section 3.5.3).

In Figure 3.5-2 and Figure 3.5-3, the probability of a cycle slip, Pçs, is plotted as a function

of the fade depth and duration based on Equation (3.5-2) and the correction for an

infinitely deep fade given by Equation (3.5-12). Thus if P6's1 and Pc's2 represent the cycle

slip probabilities from Equations (3.5-2) and (3.5-12) respectively, the corrected curves are

given by min(P¿s v Pcsz).

11 The total fade duration, 7, is assumed to be Æl seconds
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Duration (dBs) Depth (dB) Duration (dBs) Depth (dB)

Figure 3.5-2: Probability of ø cycle slip as a function of the fade depth ønd durøtion for a Ist order

Costøs carrier tracking loop bøsed on thelry. The left panel rEresents an ideal I.Q discriminator

ftom Equation (3.5-2). The right panel incorporates the correction based on an infinitely deE føde

for øn Atøn disuiminator. Parømeter aølues øre Bn =L5Hz,T=20ms, Cf N, =4\dBHz,

100

80

s60
o

-5

Duration (dBs) Depth (dB)

-5

Duration (dBs) Depth (dB)

Figure 3,5-3: Probability of a cycle slþ as a function of the fade depth and duration for ø Lst lrder

Costas carrier tracking loop based on theory. The Ieft pønel represents øn ideal I.Q disuiminator

from Equation (3.5-2). The right panel incorporates the correction based on an infinitely deep føde

for an Atan discriminator. Parømeter anlues are B, = 5Hz, T=20ms, Cf N 
" = 41dBHz.

The following observations can be made from these figures:

o For long duration fades (seconds to hundreds of seconds), Pcs increases sharply when

the fade depth approaches the theoretical tracking threshold given by Equation Q.a-z)

(1.6.2 dB for the 15Hz bandwidth tracking loop and 20.3 dB for the SHz bandwidth

tracking loop for Cf N"=4}dBHz). However, as the fade duration decreases,

increasingly larger fade depths are required for the same value of Pc'5.
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. Narrow bandwidth tracking loops have a much greater resistance to fades than wide

bandwidth loops.

. The correction for an Atan discriminator based on an infinitely deep fade greatly

reduces P.5 for short duration fades, particularly for the narrow bandwidth tracking

loops.

. Although Equation (3.5-2) strictly only applies to an ideal I.Q discriminator, the

correction associated with Equation (3.5-12) should provide an upPer limit on P6'5 for

an Atan discriminator (as oro willbe a maximum when the fade is infinitely deep).

-5

Duration (dBs) Depth (dB) Duration (dBs) l0 Depth (dB)

Figure 3.5-4: Probability of ø cycle slip øs a function of the fade dEth and duration for a l't order

Costas carrier tracking loop based on simulations. The left panel represents an ideal I'Q

discriminator. Thz right panel represents øn Atan(QI) dis*iminator. Parømeter aalues are

B, =15Hz,T=20ms, Cf N, =4\dBHz.

Duration (dBs) Depth (dB)

-5

Duration (dBs) Depth (dB)

Figure 3.5-5: Probability of n cycle slip as a function of the fade depth and duration for a 1't order

Costøs carrier trøcking loop bøsed on simulntions. The left panel represents nn idenl LQ

discriminator. The right panel rEresents øn Atan(QÃ) discriminator. Pørømeter aalues are

B, =íHz,T=20ms, Cf N" = )dBHz.
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In Figure 3.5-4 and Figure 3.5-5, the probability of a cycle slip is plotted as a function of

fade depth and duration for both an ideal I.Q discriminator and an Atan(Q/I)

discriminator based on simulationsl2. It is clear from these plots that the simulations match

the theory from Figure 3.5-2 and Figure 3.5-3 quite closely.

The following observations can be made from these figures:

o For the ideal I.Q discriminator, the theory appears to break down for very short

duration fades (ie. less than about 0.1s or so). This may be the result of a failure to

correctly account for the effects of pre-detection filtering in Equation (3.5-2). This will

be discussed further in Section 3.5.3.

o For the Atan(Q/I) discriminator, Equation (3.5-2) appears to provide a good fit for

longer duration fades, and the correction for infinitely deep fades appears to provide a

reasonably good fit for short duration fades.

Simulations were also performed for Lst order Costas loops based on both normalised I.Q

and Atan2(Q,I) discriminators. The results of these tests are given in Figure 3.5-6 for a

L5Hz bandwidth tracking loop (this can be compared with the right panels of Figure 3.5-2

and Figure 3.5-4).

OÀ

-5

Duration (dBs) Depth (dB)

-5

Duration (dBs) Depth (dB)

Figure 3,5-6: Probability of a cycle slþ as ø function of fade depth ønd duration for ø I't order

Costøs carrier trøcking loop bøsed on simuløtions. The left pønel represents an Atøn2(Q,I)

discriminator, The right pønel represents ø normølised l.Q discriminøtor. Parameter oalues øre

B, =L5Hz,T=20ms, ClN" = \dBHz.

12 Several hundred simulations were performed for each combination of fade depth and duration.
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In both cases, it is clear that the sharp upward trend in P6'5 occurs at a greater fade depth

than is predicted by the theory. For the Atan2 discriminator, the reason for this is that the

discriminator threshold, Qrlr, is twice as large as the corresponding threshold for an I.Q or

Atan discriminator (ie. TE compared with fi12 radians). Consequently, an Atan2

discriminator is capable of tolerating twice as much thermal noise as the other two

discriminators before the non-linear region is encountered. However, for infinitely deep

fades (not shown), it was found that the tracking loop based on an Atan2 discriminator

followed the Random Walk theory very closely (ie. P6'5 for the Atan2 and Atan tracking

loops converged for infinitely deep fades). Flowever, for the normalised LQ disciminator,

a tradeoff is occurring between thermal noise errors, and thus P¿'5, and the ability of the

loop to track dynamics under deep fading conditions. Consequently, although the

normalised I.Q tracking loop appears to perform better at low signal levels (ie. P6'5 is

generally less), its ability to respond to dynamics tends to be worse. As this analysis

assumes that the link is not subject to any dlmamics, this tradeoff is not apparent in these

results. In addition, because the statistics are not known for a normalised I.Q

discriminator, the Random Walk model cannot be used to define P¿'5 under extremely

deep fades.

3.5.1.1. Constant velocity

So far, this analysis has only considered L't order loops that are not subject to any line of

sight dlmamics. One of the reasons for this is that the Fokker-Planck non-linear stochastic

differential equation which defines loop perforrnance (see Appendix C) has only been

solved for a 1't order loop which is driven by thermal noise. \rVhen a 1't order loop is

subject to a constant velocity, the phase tracking error will no longer be zero-mean (see

Appendix E) and the probability of a cycle slip will be different. However, if the velocity,

and thus @rss, is relatively small, the impact on P6's should not be very great. For an

infinitely deep fade, the phase error will consist of a combination of a Random Walk due

to thermal noise, and a linearly increasing phase error resulting from the dynamics (ie. the

loop will be an open circuit and will no longer be capable of tracking the input phase

process, 4(r), auring the fade). For a constant velocity of v radians /s, t}:te input phase

process 7 seconds after the start of an in-finitely deep fade is given by (from Equation

(3.5-6,))
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Q, Q., t) = * -l'!,,, øv, *. ô d,l lor t) to

for t 2to

tvT

(3.5-1-3)

(3.5-14)

(3.5-15)

(3.5-16)

If it is assumed that $Q")=úo-Quys, where /rss is the steady state tracking error, then

Q"Qo,t)=vT +Qess - ,¿(uþ,.au for t2to
I

J
lo

+ J[, -r¿(rþ,fa,
to

0urs

An equivalent discrete form of this expression is

Q,¡ =Qæs *fb' -"a,o,rf

b,,_ f-n¿,r,tnT

j=r

*vT

Consequently,lor Atan and Atan2 discriminators, the PDF of 0r¡ given 4"¡_, is now

f 
o,,lo r, -16',lQ', -r) 

= ffi 2^l3onoanT
I

which is the rectangle function centred on Qri_t +vZ. An equivalent form of Equation

(3.5-12) can then be used to determine a new upper limit on the probability of a cycle slip.

Clearly, this new upper limit will depend heavily on the magnitude of the velocity. For

sustained higher order dyramics (eg. a constant acceleration), the Lst order loop will

quickly lose locþ even in the absence of scintillation activity.

3.5.2. 2"d Order loops

For a 2"d order Costas loop, the loop filter takes on the form illustrated in Figure 3.5-7.

Under steady state conditions, the ouþut of the integrator in the upper path provides an

estimate of the line of sight velocity (n in radians/s) which is then combined with the

phase error estimate provided by the lower path. The resulting filtered phase error is then

passed to the VCO which is represented by the second integrator block. The velocity

estimate, û, provided by the loop filter enables the second order loop to track a constant

velocity with zero steady state error (see Appendix E).
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Qr+na

Figure 3.5-7: Loop filter for a 2nd order phøse locked loop. ( is the damping factor'

In the absence of d¡rnamics, it has been shown that the expression for P6'5 given in

Equation (3.5-2) is a good approximatiory provided that op, ís reduced by 1dB (Viterbi

[97]). However, under infinitely deep fading conditiors, the loop filter is once again driven

only by the discriminator noise term, lt¿ , which tends to create both a Random Walk

process (from the lower path), and an integrated Random Walk process (from the upper

path). If velocity is present, the integrated Random Walk component will begin from an

initial value of û radians/s. The phase error Iseconds after the onset of an infinitely deep

fade is therefore

a

lot t> to

If it is assumed that û = y and the initial phase error is zero, this reduces to

Q"Qo,t)=vt - 2(r¿

2(n¿

(" \0. n¿(w\aw+

')= J
to

I

=J
lo

)
0)n+

J
to

I
to

)
a)n

î
to

,¿(* lor t> to

(3.5-17)

(3.5-18)

ß,5-19)

+rto

þ,("Q,Q" +

tu
zÇn ¿ (uþ,.du + ro,t [ ! " o @\a*.a" for t> to

lolo

In discrete form, this is given by

Q,, =fzçro,
j

m:l

j=r

= Qe¡; +@n 2(n¿, +\nojrnT
j=r

I

ønT + rr'2
j=r1l

=\n¿ .a,Tþç + a,r Q- j + 1)]

dn T2

'I
Equation (3.5-19) implies that for a 2nd order loop, the phase error is not a first order

Markoff process. Consequently, the result given in Equation (3.5-12) cannot be used to
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evaluate the probability of a cycle slip. However, it is clear from the additional

þÇ + a,f (i - j + l)] factor in Equation (3.5-19) that the phase error will grow much more

rapidly for a 2"d order loop, particularly if the fade duration is quite long (ie. if the time

index, l, is large). Nevertheless, using simulations it has been found that P6'5 for a 2"d

order loop is only slightly greater than P6's for a L"t order loop and tends to follow the

theory for a Lst order loop quite closely. In Figure 3.5-8, Pcs is plotted as a function of fade

depth and duration for a 2"d order loop which is based on an Atan(Q/I) discriminator.

Duration (dBs) Depth (dB) Duration (dBs) Depth (dB)

Figure 3.5-8: Probability of a cycle slþ as n function of føde dEth and durøtion for ø 2na order

Atøn(Q/D Costøs carrier trøcking loop based on simulations. The left pønel represents a 15Hz

bandwidth trøcking loop. The right pønel represents n íHz bandwidth tracking loops. Parømeter

aøIues areT=20ms, ClNo =4\dBHz.

3.5.2.1. Constant acceleration

In the presence of a constant acceleration, the phase error for a 2"d order loop has a non-

zero meary pus5, which is a function of the magnitude of the acceleration and the loop

bandwidth (see Appendix E). The phase tracking error is given by

\a

^oÈ 40

20

l0l0

Q,Qo,t)=+ J
to

zÇn¿(uþn + an2 n¿(w).aw+û +ôQ" for t> to ß.5-20)J
to

where ôt..")= 4- r* and û = ato. Theerror component associated with the dynamics is

given by
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=aT2
2

+Ouss

'!or,.dr*Ç-o*
to

Corsequently, the total phase error is given by the Random Walk of Equation (3.5-18)

added to the quadratic error term given above. For sustained higher order dynamics or

very large accelerations, the 2"d order loop would be expected to lose lock irrespective of

the presence of scintillations.

A similar approach can be applied to the analysis of 3.d order loops in the presence of

sustained velocity, acceleration and jerk.

3.5.3. Pre-detection filters

In the previous two sections it has been shown that very narrow fades have a negligible

impact on tracking loop perforrnance, irrespective of their depth. A second factor which

comes into play for very narrow fades is the effect of the pre-detection filters. From

Equation (3.1-2), the I and Q signals at the output of the pre-detection filters is given by

(3,5-21)

(3,5-22)
I p = ÃdQ -ø)cos(p, )* n,r,

Qp =ÃdQ-ø)sin(@,)+ner

where Z. is a filtered version of the received GPS signal amplitude. For a rectangular fade

of depth I 0 log 1¡ (l - B ) dB and duration d seconds, the unfiltered amplitude is given by

(3.5-23)

and the filtered amplitude is

ÃQ)=t- (3.5-24)

In Figure 3.5-9, ZQ) is plotted as a function of time for a range of infinitely deep fades (ie.

ft1) with varying durations. It is clear from this figure that for fades less than T seconds,

the pre-detection filters will heavily suppress the fade. Also, as the sample time of the

AQ)=t - B*"(;)

*,'!*"(5)*
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sample and hold circuits is uncorrelated with the fade times, the filtered signal amplitude

is effectively based on a random sampling of these waveforms (at a sample rate of T s).

1

0

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Time (s)

Figure 3.5-9: The filtered signal nmplitude øs a functiln of time for a range of infinitely deep fades

raith anrying durntions (47, 2T, T, T/2, T/4 and T/32 seconds),

3.5.4. Summary

In this sectiory the impact of fade depth and duration on the probability of a carrier cycle

slip was examined. It was shown that the probability of a cycle slip can become extremely

small if the fade duration is sufficiently short, irrespective of the fade depth. It was also

shown that this behaviour becomes more pronounced as the bandwidth of the tracking

loop is reduced. By assuming an infinitely deep fade and taking account of the

characteristics of the discriminator, it was possible to develop a crude correction to the

standard expression for the probability of a cycle slip which took account of this effect.

Through the use of simulations, it was shown that this correction used in conjunction with

the standard expression produced a relatively accurate measure of the probability of a

cycle slip. The effects of line-of-sight velocity, acceleration, higher loop orders and pre-

detection filtering was also examined.
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9.6. Scintillation effects on carrier phase differential

GPS

Carrier phase differential GPS techniques can be used to calculate the relative locations of

GPS receivers separated by hundreds of kilometres to centimetre level accuracy in real

time. As scintillations affect both the amplitude and phase of the incoming signals, it is

reasonable to assume that they will impact on the accuracy of the phase range

measurements made by carrier phase DGPS (CPDGPS) receivers. One of the most

important processes involved in CPDGPS is the resolution of the integer cycle ambiguities

in the carrier phase measurements. This involves forming a number of carrier phase

observables including the single difference observable LQ¡6 (the difference in the carrier

phase measurements to satellite i from two receiverc, ø and b), and the double difference

observable Y Lfiuou (the difference in the single difference observables between two

satellites, i and j). Errors in these measurements will increase the time taken for a receiver

to resolve the cycle ambiguities and therefore the time required to obtain an accurate

carrier phase measurement. This is likely to be of greatest concern to systems that attempt

to resolve ambiguities on the fly from moving platforms.

In this section, the effects of amplitude and phase scintillations on the single difference

phase observable, LQ , will be examined. If we assutne that the ionospheric irregularities

are infinitely long, field aligned, rod like structures [L6], then the scintillation patterns on

the ground will show negtigible variation in a North-South direction. If the East-West

velocity of the pattems is given by vp m/s (a function of vr), then for a pair of receivers

separated by S metres in an East-West directiory the component of the single difference

phase observable that is associated with phase scintillations and thermal noise is given by

& =lô orî)* nrØ )-1,ô rrØ * "rQ) )
(3.6-1)

where,

6¿(t)=lrr!)ØQo(r) is tne component of the carrier loop phase estimate produced by

phase scintillations at site #1 ( @ denotes the convolution integral),

ôor!)=lrrQ)ØQoQ-T) is the component of the carrier loop phase estimate produced

by phase scintillations at site #2,
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htQ) and h2Q) are the impulse responses of the two carrier tracking loops,

QoQ) i" the phase scintillation time series at site #1,

y = Slv p is the time taken for the scintillation pattern to traverse the distance between

the two sites (moving from site #L to site #2), and

n1(r) and ,2Q) ar" associated with thermal noise and amplitude scintillations at the

two sites.

Although the amplitude scintillations may be correlated between the two sites, it is quite

straightforward to show that n1Q) and n2Q) are uncorrelated with each other and with

ôoQ), irrespective of the baseline length. As A@ is zero-mean in the presence of phase

scintillations and thermal noise, its variance is given by

where o 2 urd o'ô0, are the variances of the phase estimates associated with phase
Qpr

whereoîo=js,,U\af=WfromSection3.2.3,Equation(3.2-22),and

n, 
o, o 

(T) = ølo o(,þ oQ - ù I

otoo = n{notl
=o'^ . +01 -zø{ôorØ*ôorQ)l+ol, +ot,

Qpl Qp2

= Isro7)*o'(znfy\al

(s.6-2)

(3.6-4)

scintillations, and o], and olrare the thermal noise variances (given bV o'ø or ofr fro-

Section's 3.3,2 or 3.3.3). If we assume that the majority of the phase scintillation energy is

within the bandwidth's of the two carrier loops, then fo1(r) =QpQ) and $02(t)=QoQ -y)
The variance of the single difference phase observable then becomes

o1,o =zL"too - RQoooQ)l+ol, +o], (3,6-3)

is the autocorrelation function of Qo(t). ff," following simplification can be made using a

table of integrals (eg. Gradshteynl37l, Equation 3.771,-2)

(z"f,r) ttT

I
1.12

nqoqo(T)=
2rJl x

l2 f,
(3.6-5)



where q = (p -t)lZ , f(x) is the Gamma function, T is the spectral strengtþ and f, (x) is

the Bessel function of imaginary argument. In Figure 3.6-1., the RMS difference in carrier

phase between two GPS receivers is plotted as a function of the baseline length in an East-

West direction in the presence of phase scintillations (the five curves represent different

outer scale size parameters, f ). These curves assurne that the two receivers will be subject

to the same phase scintillation spatial patterns, but with a delay that is a function of the

baseline length, S, and the pattem velocity, v o. In this figure, the effects of thermal noise

and amplitude scintillations have been ignored as they will be independent of the baseline

length (ie. it has been assumed that o2r, and o], arc both zero). This figure shows that

although the single difference error depends on the outer scale size parameter, .fo, in

general the baseline length must be less than a few hr¡ndred metres in order to

significantly reduce the impact of phase scintillations.
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33.54

Figure 3.6-1: o 
^O 

as a function of fo ønd the baseline length in the presence of scintillations.

Parameter aølues areT = -15 dBradiunszfHz, p = 2, vp= 150m/s), øndf = 71.

This analysis assumes that the irregularities are infinitely long, field-aligned, rod like

structures. Under this model, the component of o2tO which is produced by phase

scintillations is dependent only on the East-West component of the baseline length. For a

pair of receivers placed at two arbitrary locations, the variance of the single difference

observable can be obtained from the previous expression, but with 7 replaced by

Slsin(ø)/vo , where ø is the azimuth of the baseline. If it is assumed that the irregularities

are not field atigned, then the decorrelation with distance will be much less dependent on
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the direction of the baseline and the direction of velocity of the patterns (indeed, for

vertical propagation it will be independent).

In Figure 3.6-2, the RMS phase error from thermal noise and amplitude scintillations ( o¿,

Section 3.3.3) is plotted as a function of ,Sa for a range of loop bandwidths. This result is

based on the fast AGC model and the Tikhonov PDF for the modulo æ reduced phase

error/ d. By comparing this with Figure 3.6-'1,, ít is apparent that the contribution to the

phase estimate error from thermal noise and amplifude scintillations, oî, * of;, , is quite

small compared to the contribution from phase scintillations, even over relatively short

baselines, quite small values of fo and large values of 
^Sa.
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Figure 3.6-2: The KMS phnse error (modulo n) as ø function of Sa ønd the loop bandwidth.

Pørømeter aølues øre C/l,lo = S$dBHz,T = 0, nnd f = L1. Simuløtion results øre also shown for B,

=20H2 (the dotted line).

Using WBMOD, it is theoretically possible to determin" oa' for each of the satellites in a

receiver's field of view. However, the accuracy of the results will depend on the accuracy

with which the parameters T, p, fo and ve ate modelled in WBMOD. Although the

models for T, p and ve are quite sophisticated, the model for fo is rather crude.

Consequently, at this stage WBMOD is not considered to be a very effective tool for

predicting the effects of scintillations on CPDGPS.
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3.7. Carrier frequency tracking loops

Frequency locked loops (FLLs) or Automatic Frequency Control loops (AFCs) track the

frequency of the GPS carrier and are normally used during times when the carrier phase is

difficult to track or during acquisitiont. Indeed, many receivers use FLL assisted PLL's and

will automatically transition to FLL operation when phase locked loop tracking is no

longer possible [99]. The FLL discriminator estimates the carrier frequency by measuring

the change in the carrier phase over a finite interval of time, A¡. As these frequency

estimates wilt in general be sensitive to changes in the sign of the navigation data, they are

usually obtained within the period of a data bitz. The general form of an FLL is very

similar to that of a PLL (compare Figure 3.7-1" with Figure 3.1-1). The principal differences

lie in the discriminator algorithm (see Table 3.7-1) and in the additional integrator prior to

the loop VCO (the loop filter, f(s), is identical to the phase locked loop filter from

Table 3.L-2).

Pp

Ip

IF

Figure 3.7-1: Representation of ø generic frequency locked loop,

For small frequency errors (íe. Q"z-0"1 is small compared to L radiarç where Qr¡ =QrQ¡)),

the ouþut of each discriminator is proportional to dQ, f dt. Under this conditiory the linear

1 Flowevet, some receivers such as the Miniature Airborne GPS Receiver or MAGR only track the

carrier frequency.

z This is not true of decision directed and Atan2 discriminators.
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equivalent circuit of an FLL has a similar form to the linear equivalent circuit of a PLL (see

Figure 3,7-2).

Discriminator Discriminator output

p
Lt

Ã2 sin(Qrr-Qo)

A,t

ftiSn(ø)
Lt

Ã2 sin(Qrr-Qo)

A,t

Atan(Qry I I Ð - Atan(Q a f I a)
Lt

Qt2 - Qr1

dl

AtarA(B,a)
Lt Lt

Table 3.7-1: Typical frequency locked loop discriminators. A is the filtered signøI amplitude,

d=I\.In+Qn.Qry, þ=I\.Qk-Iry.Qn, Lt=tz-4<l0ms, IO and Q4 arethelandQ

signøls øt time \ , and I, ønd Qn, øre the I and Q signøls nt time t2.

nd lls

+ vE
v

v

Figure 3.7-2: Linear equiualent model of ø frequency locked loop (for either of the first two

discriminøtor types).

The transfer functions and noise bandwidths of a frequency locked loop are the same as

those given in Section 3.L for a phase locked loop. The mean-square frequency error is also

very similar to the mean-square carrier phase error and is given by

(3.7-1,)

where / is the fluctuation frequency of the carrier frequency v, Sra(f) is the power

spectral density of frequency errors associated with thermal noise, and ,S, (,f) is the power

u{"3}= jl, -, rn' s, (f) + n ç¡¡12 s,o (nl¿¡

1.16



spectral density of input frequency processes such as d¡mamics and phase scintillations.

3.7.L. The impact of phase scintillations on frequency

tracking loops

The power spectral density of the input frequency Process is given by

sr(Ð= n{uU)n(/)-}
= n{(¡2"Ðo(r.(- i 2ú) aU). }
=(2rúf)2so7)

where So (,f) is the power spectral density of the input phase Process. For phase

T
scintillations , SAU) = Sçr("f) = As the frequency errors resulting from phase

(ß * rY''
scintillations are zero-meary the mean-square frequency error is

o3 * =lt - ",tr' 
(z,f)' s 

a e(Ð.df

(s.7-2)

(3.7-3)

2k+2-p

=(z"Yr I p <2k+2
+ "f:k

For 3 < p <2k +2 this becomes

T ß.7-4)o3* =
zt'f ,l-3 sin(þ - zh I ztc)

For p < 3 the integral in Equation (3.7-3) is infinite.

Equation (3.7-3) implies that there is no limit to the rate of phase fluctuation that can be

detected by the FLL discriminator. Consequently,very low level but high frequency phase

fluctuations can introduce significant frequency jitter. Under these circumstances, the

frequency error is given by

117



Ve =V -û

(3.7-5)

where Qr=Q -@. However, as the incoming phase process, @, is only sampled every T

seconds, what is actually detected by the discriminator is

dQ

dt

dQ_
dt

dQ,

dt

(3.7-6)

where Q¡ and Qa irrrply @(r,) and p"(r,) respectively, and t2-\=7. Consequently,the

power spectral density of the incoming phase process will be limited to tlZf }{z.

Although aliasing will cause the power spectral density to fold back on itself for

frequencies beyond If 2T Hz, we can approximate the effect of sampling by limiting the

integral in Equation (3.7-3) to +112T }Jz. By ignoring spectral foldover in this way, the

resulting variance will be slightly less than the actual value. However, the error should not

be too large as the power spectral density falls off according to a power-law relationship.

The variance obtained by limiting the power spectral density to ll2T Hz is useful for

determining the tracking state of the FLL. From l47l and Í991, the tracking threshold of an

FLL is defined as the point at which the 3o frequency jitter from all sources equals nf2

radians in one T second period. Therefore, it is given by

(radians/s)2 (3,7-7)

Consequently, for the FLL to remain in lock, the following condition must be met

t{ú}. o3,l,o, o,

-Qz -h Qz -Qt
'e ---T-- f

Qez - Qet

T

o3,lrr=(*Ï
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The threshold spectral strength for phase scintillations is therefore (from Equation (3.7-3))

)
vTo3,l,r-o

rl
Th

p <2k +2 (3,7-9)

(z"Y
J

-tl2r

+2- p

+ f:k

wlnerc oj, is the thermal noise component of the frequency error (see Appendix D,

Equation (D-21)). In Figure 3.7-3,the difference in the threshold spectral strengths between

a frequency locked loop and a phase locked loop are plotted as a function of the spectral

index and the loop noise bandwidth (Equation (3.2-10) is used for the phase locked loop

threshold). It is clear from this figure that the frequency locked loop is in general less

susceptible to phase scintillations than the phase locked loop (ie. the difference in

thresholds is positive for all values o1 p and B, ). This is particularly true for narrow

bandwidth tracking loops and large values of p.

20

l5

5

0

É€
F

Þo
É
c)
E
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d
!o
ci)
Þ.

c/)

3
l5

10,
5

Spectral Index, p t 
Noise Bandwidth, Bn (Hz)

Figure 3.7-3: The dffirence between the threshold spectral strength of a frequency locked loop and

the threshold spectral strength of a Costas phase locked loop. Parømeter ualues are

Cf N, =41.5dBHz,T=20ms, andk=2 (ie. second order loops).
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3.7.2. The impact of amplitude scintillations on frequency

tracking loops

From Equation (D-21) in Appendix D, the thermal noise variance in an FLL is given by

o3"l= l'-.&l {,"aiu,,,u,)'

clN,lrr=*xcf N"

where Fz =l for high Cf N" and 2 for low Cf N" (near the tracking threshold). By making

use of the following relationship

(3.7-10)

where ClN"l* is the threshold carrier to noise density ratio, Ãr, is the threshold

amplitude, and A is the quiescent or unperturbed signal amplitude, the following

expression can be obtained for Z7¡

Arh =
t+ Jt+zu (3.7-11)
aTCf N"

where "=':!)" , oSrlrr=oSrlrr-o]*is the threshold variance due to thermal noise
2F3Bn

alone, oSrl* is given by Equation (3.7-7), and, oi* is the contribution to the tracking

error variance from phase scintillations (Equation (3.7-3)).

Equation (3.7-11) can be compared with the equivalent expression for a PLL which is

(from Equation (3.4-2))

+
prclN" (3.7-12)

where O ='"H^* , o'*lro=oîrlrr-o'o*is the threshold variance due to thermal noise

alone, olrlr^=@ltZ)t (Equation (g.2-9), and ofi* is the contribution to the tracking error

variance from phase scintillations (Equation (3.2-8)).

120

Ã,,



Consequently, if T and Cf N, are the same for each loop, the ratio of the two threshold

amplitude values is givenby

ß.7-13)
+B

If the effects of phase scintillations are ignored (ie. o3* = ol* =0 ), and Ft =2 is assumed

(ie. near the tracking threshold), Equation (3.7-13) reduces to Jl. Consequently, the

threshold signal power is 3dB higher for an FLL assuming that T is the same for both

loops. As a result, FLL's will be marginally more susceptible to amplitude scintillations

than PLL's.

These results suggest that in general, FLL's are more robust to scintillations than PLL's.

Also, because FLL's are much less susceptible to phase scintillations, the optimum

bandwidth of an FLL should be less than the optimum bandwidth of a PLL.

3.8. Conclusions

The analysis carried out in this chapter suggests that in general, the carrier tracking loops

of fu|I code correlation GPS receivers are quite robust to scintillations, even when the

levels of scintillation activity are quite high. It was shown that as the carrier loop

bandwidth increases, the susceptibility to amplifude scintillations increases, while the

susceptibility to phase scintillations decreases. Consequently, an optimum bandwidth

exists for minimum probability of losing lock which depends on the relative contributions

of amplitude and phase scintillation activity, as well as the quiescent signal level and the

presence of d¡mamics.

For a given level of ionospheric disturbance, the geometry of the propagation path affects

the ratio of amplitude to phase scintillation activity as well as the absolute levels of

scintillation activity. Therefore, geometry will affect both the optimum bandwidth of a

tracking loop and its overall susceptibility to scintillations (for this reasory the optimum

bandwidths will be different for each channel in a receiver). It was found that propagation

paths that penetrate highly disturbed regions of the ionosphere at low elevation angles

generally experienced higher levels of amplitude and phase scintillation activity. It was

12t
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also found that an increase in the effective scan velocity of the propagation path through

the irregularity layer resulted in an increase in the phase scintillation spectral strength, and

therefore an increase in the susceptibility of narrow bandwidth tracking loops to

scintillations. Although the dependence of the scan velocity on the geometry and the

receiver velocity is quite complex, it can be said that in general, under very high velocity

conditions, the scan velocity is likely to increase on most propagation paths, thus

increasing the probability of losing lock.

Carrier tracking loops are generally very robust to signal fades of short duratiory

particularly if the bandwidth of the tracking loop is narrow. Indeed, for fades with a

sufficiently short duration, the probability of a cycle slip can approach zero, irrespective of

the fade depth. Ffowever, the precise effect on a tracking loop will depend on the

discriminator algorithm, the quiescent signal level, and the presence of other factors such

as dynamics.

RMS carrier phase errors of several centimetres can be introduced into satellite range

measurements as a result of scintillations. Generally, these errors will become decorrelated

over distances of a few kilometres, depending upon the magnitude of the ionospheric

outer scale size parameter, fo, and the geometry of the baseline. This may have a

significant impact on carrier phase DGPS observations made in equatorial regions during

solar maximum, particularly for baselines of a kilometre or more.

Frequency locked loops are more robust to phase scintillations but slightly less robust to

amplitude scintillations than phase locked loops for the same loop bandwidth and pre-

detection integration period. Therefore, receivers that make use of frequency locked loops,

either as a primary means of carrier tracking or as a fall-back strategy to phase locked

loops, are likely to be more tolerant to scintillatiors than receivers that employ only phase

locked loops.

Many of the results presented in this chapter are based on the assumption that the phase

scintillation spectral strength, T, is uncorrelated with the amplitude (ie. the rate of change

and strength of phase scintillations are uncorrelated with the amplitude). If T is negatively

correlated to the amplitude (ie. T increases when the amplitude decreases), then the

combined effects of amplitude and phase scintillations on carrier tracking loops may be

greater than is suggested by these results.
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Chapter 4

Code tracki.g loops

This chapter examines the effects of scintillations on code tracking loops. In Section 4.1, a

signal processing model of a code tracking loop is given which is based on a generic non-

coherent delay locked loop with a normalised Early-Late power discriminator. In Section

4.2, ítis shown that the effects of phase scintillations on a code tracking loop are negligible

and can therefore be ignored. In section 4.3, the impact of amplitude scintillations on the

range measurement accuracy of a code loop is examined. It is shown that unless the levels

of amplitude scintillation activity are very large (ie. ,Sa close to unity), the additional

thermal noise associated with amplitude scintillations is on average quite low, although

occasional noise spikes may occur when the amplitude undergoes very deep fades.

Finally, in Section 4.4 it is shown that because GPS signals are narrowband, it is expected

that frequency selective scintillation effects will produce negligible distortion of the PRN

codes.

4.1. Code loop model

Figure 4.L-1 is a representation of a generic, non-coherent delay locked loop (DLL). The

function of the DLL is to track the GPS PRN codes and to provide estimates of the code

delay from which pseudorange measurements can be obtained. The DLL mixes the

baseband I and Q signals from the carrier tracking loop with an early code, p5, a prompt

code, pp , and a late code, p¡ wtric}:. are produced by a PRN code generator and a 3 bit

shift registerr. The resulting early, prompt and late I and Q signals are then filtered by a

bank of pre-detection filters and passed into the DLL discriminator. The function of the

discriminator is to determine the difference in code phase between the received GPS signal

1 The shift register spacing is typically % code chips
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and the replica signal represented by the prompt code, pp. A list of the most common

discriminator types and their delay error functions is given in Table 4.1.-L.

IE

hPpPn
"f"

Carrier
Aiding

Figure 4,1-1: Representøtion of a generic deløy locked loop.

Discriminator algorithm Discriminator name Delay error function

)Q' - Ir\1, +\@' -e).e, Dot product a(Rz - Rr).R,

Zfr" *øÈ)-2þz+o?) Early-Late power ob,, nr')

l" +gtu -L I2 *o? Early-Late envelope þ(n" - n')

Table 4.L-1-: Common delay locked loop discriminators. a nnd B are functions of the signal

amplitude (a=Ã2,þ=Ã), ,RG) is the autocorreløtion function of the PRN code,

Rp=RQr+f"fZ), Rt =RGr-Trl2), Rp=Rkr), ir=r-t is the delny eryor and T" is the

code chip width.

The discriminator errors given in Table 4.'I.,-1. are a function of the autocorrelation function

of the PRN code which is givenby

I

o

n G ) = +,'_if y + r). p(t).dt

{j

þl
þ ,r,

dt

dt

IP

IL
dt
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Q,
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drJ

J¿,

F(s)
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É
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Ê
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where f is the code chip width (approximately Lps for the C/A-Code and 100ns for the

P-Code), and Tp is the code period (Lms for the C/A-Code and 7 days for the P-Code).

Although the period of the P-Code is extremely long, its autocorrelation function can be

well approximated over relatively short code segments. The delay error function of an

Early-Late power discriminator is illustrated in Figure 4.L-2.

ü

T"l2 T" 3TJ2

tre

-3TJ2 -T" -TJ2 o

Figure 4.L-2: Delay error function of øn Early-Lnte plu)er discriminator

It is clear from this figure that for delay errors in the range -T"l2Str3T"l2, the delay

error function is a straight line given by -2arrff, . Errors larger than this will eventually

cause the code loop to lose lock (ie. the code phase estimate will drift away from the true

code phase). From the discriminator, the code error estimates are passed through a code

Ioop filter, F(s), and then on to the code VCO. The frequency of the code VCO, and

therefore the code chipping rate, is then adjusted in a direction that minimises subsequent

delay errors (this is a very similar process to the one that occurs in a phase locked loop). In

addition, a carrier aiding signal from the carrier loop is used to remove the majority of the

Doppler induced code phase error allowing the use of a much narrower loop bandwidth

and a lower loop order (typically 1"t order).

An analysis of the code loop which tackles the issue of scintillation induced amplitude

variations is given below.

The early, prompt and late codes from the code generator are mixed with the baseband I

and Q signals to give (from Equation 3.1-1)

-c[
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I'n = AQ)pQ -r)pQ -t +r" lÐd? -z)cos(O. )*nîu
QL = A(t)pQ-r)pQ-ê +r"lÐd(t-ø)sin(fu )*":au
I'p = AQ)pQ -r)pQ -t)d(r -z)cos(P, )* ni,
Q'p = A(t)pQ -r)pQ -fidQ -r)sin(Q")+n*
IL = A(ùpQ-r)pQ-î -r"lz¡aQ -z)cos(O, )*"it
QL = A(ÐpQ -r)pQ -î -r" lz¡aQ -r)sin(@, )* ":a,

*nn

(4.1-2)

(4.1-5)

where the superscript ' indicates that the signals are at a point immediately prior to the

pre-detection filters. If it is again assumed that the pre-detection filters are synchronised to

the navigation data, and that the carrier phase errors are relatively constant over the

integration period, T, then the I and Q signals will become (only 1¿ is shown)

(4.1-3)

where oîn=N,lT. If the integral in Equation (a.1-3) is divided into L equal parts in

which A(u) is approximately constant, we have

t

I n = d (t - r) cos(o, )| J 
nøl o@ - r) p(u - t + r" I 2).du -t n ¡¿

t-T

r n = d(t-r¡cos(@. )+Él'"j'üir, -r)p(u -t +r" l2).ou]* n,,
ml .irti j

r n = d (t - r) co s (p, 
) +i ^,1+' 

t', 

_!1 :1 
- r ) p (u - o *, 

" 
t r> o,f

(4.1-4)

where A, rcpresents the constant amplitude value at each Tf L second interval, By

removing A, fuom the integral and letting L = 20 (giving T f t = Lms which is the period of

the C/A-Code, assuming T=20 ms), the integral in Equation (4.1,-4) becomes the

autocorrelation function of the code2. Thus,

= d(t-r)cor(4" )n(r, .r"lùlàA, +n¡B

' This is also an accurate approximation for the P-Code even though its period is much greater than lms.
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The amplitude summation term can thenbe replaced with the filtered amplitude V' giving

(for all six signals)

I n = Ãd Q - ùRG, + r, f z)cos(Q") * n,,

Q ø = ÃaQ - ÒRG, + r, f z)sin(Q") + nsn

I p =ÃdQ -ÐRG,)cos(p, )* n,,

Qp = ZdQ -ÐRG,)sin(4" )+ nee

I r = Ãd(t -ÐR(î, - r,lz)cos(Qr)* n,,

Qt = Ã¿Q - ùR(î, - r, lz)sin(Q,)+ ner

(4.1-6)

Notice that the prompt I and Q signals contain an R(ør) factor. This was ignored in the

analysis given in Chapter 3 as T, was assruned to be zero (ie. perfect code tracking). fn"

statistics of the various thermal noise terms, k¡¡¡ tneE,... etc, are examined in Appendix D.

This approximation assumes that the majority of the power in the amplitude scintillation

power spectrum is at frequencies below lkËlz (ie less than Lf T Hz). This is considered to

be quite an accurate approximation as the low frequency cutoff in the amplitude

scintillation power spectrum is typically less than a few Hertz, even at very high platform

velocities3. Therefore, for a spectral index, p, of 2.5 ¿ and a low frequency cutoff, .f", of

¡¡grz, the power spectrum of amplitude at L kHz will be approximately 75dB below the

cutoff value.

The filtered I and Q signals (Ir, Qn, Ip, Qp, It, Qr) are processed in the code loop

discriminator to produce code delay errors of the form given in Table 4.1-L. In all cases,

the navigation data and carrier phase error terms will be eliminated by this process.

Consequently, the code loop is referred to as non-coherent (ie. it does not require the

carrier phase to remain in lock).

If it is assumed that the summations in the code loop discriminator are ovet m successive

periods of the integrate and dump filter (ie. Irn seconds in total), the coefficients of the

delay error function for the three tm-normalised discriminators are

3 Scintillation frequencies are determined by the relative velocity between the spatial diffraction pattems and

the receiver. At high relative velocities, the spectrum is translated to higher frequencies.

a A spectral index of 2.5 is typical of equatorial scintillation activity.
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ai >Zi and P: LÀt (4.1-7)
j=i-m+l j=i-m+l

jr
where Ãj = !,eç"¡.a" are the amplitude values after filtering. This assumes that ø" is

U_DT

relatively constant over the time interval Tm (a reasonable assumption if the loop is

expected to track the delay).

The code loop can be represented in an equivalent linear form in which the mixers and

pre-detection filters are replaced by an adder, and the discriminator is replaced by the

appropriate delay error function. For an Early-Late power discriminator, this

representation is given in Figure 4.1-3.

Discriminator

T

I

Carrier Aiding

Figure 4,1-3: Linenr model of a delay locked loop rnith an Eørly-Late power discriminøtor

In this form, the delay errors are assumed to be in the linear range, -Trl21T" 1f"f Z (1or

a Tz chip spacing between the Early, Prompt and Late codes). Consequently, the loop is

assumed to be in lock. In Figure 4.1-3, n¿ is the thermal noise translated to the

discriminator ouþut and includes cross-terms between the input thermal noise term and

the I and Q signals. An expression for n¿ f.or the Early-Late power discriminator is given

in Section 4.3.

The delay on the received GPS PRN code, T , canbe represented in the following way

ôT€

nd us

F(s)_2dT

lls
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where T represents the constant contributions to the code delay (including the mean

satellite to receiver raîge, satellite and receive clock biases, benign ionospheric delays,

benign tropospheric delays and hardware channel biases), ?¿ represents the effects of

satellite and platform motiorL ?p represents the effects of ionospheric phase scintillations

on the code, and Í, represents other delay noise effects (eg tropospheric scintillatiors and

VCO oscillator jitter etc.).

For a normalised discriminator, the transfer ftmction of the DLL is given by

(4.1-9)

The transfer functions and noise bandwidth's of the delay locked loop are the same as

those defined for the phase locked loop in Table 3.L-2, although the loop order is usually

no greater than 2 because of carrier aiding.

H(s\=-f(Ð.= F(s)
\ / f(t) s+F(s)
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4.2. The impact of phase scintillations on code

tracking loops

The mean-square delay tracking error resulting from code delay noise and thermal noise

for the linearised code tracking loop is given by

u{, :}= i [þ - 
H(r\' s, (r) *ln (¡)l",o U)f. ot (4.2-1)

where Sr(,,f) is the PSD of the input delay process and .S,, (f) ir the PSD of the thermal

noise, n¿ .lI it is assumed that the carrier phase advance and code group delay are equal

in magnitude under scintillations conditions (as they are under quiescent ionospheric

conditions, Davies l27l), the code delay can be related to the carrier phase advance by

chips (4.2-2)

where QoQ) i" the component of the carrier phase associated with phase scintillations (in

radians), /¿ is the L-band carrier frequency (LI = 1575.42MH2,L2 = 1227.6 MHz) and fp
is the PRN code chipping rate (C/A-Code:1,.023 Mchips/s, P-Code: 10.23 Mchips/s).

One of the undesirable consequences of carrier aiding of the code loop is that the code

error resulting from ionospheric effects is doubled. This occurs because at L-band

frequencies, the carrier phase is advanced and the code phase is delayed by equal amounts

(Davies [27]). Consequently, in the presence of carrier aiding, the component of the code

delay associated with phase scintillations becomes

, oQ)= -a,Ø*-úi,

, oQ)= -2*QpØh

= -€QoQ), chips

(4,2-3)

In Table 4.2-\, t}lte scaling factor f, is given for the four combinations of carrier frequency

and code chipping rate which may be encountered in GPS.
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Þ C/A-Code P-Code

L1 2.07x10-t 2.07x10's

L2 2.65x10¿ 2.65x1.0's

Table 4.2-1: Scøling factor, (, as a function of caftier frequency and code type.

The PSD of the ionospheric delay Process is given by

s, o(f)= EþG ,tr))-r(r" trü Ì

= EE' F (Q o(r)- r(0, (r)I Ì

=62sroj) chipsz /Hz

(4.2-4)

where f( ) denotes the Fourier Transform. Consequently, the variance of the delay error

resulting from phase scintillations (in chipsz) is f 
2 times smaller than the corresponding

phase error variance for the carrier loop (in radians2) for the same loop order and

bandwidth. Therefore, as the thermal noise errors on the code and carrier loops are of a

comparable size, it is reasonable to expect that phase scintillations will have a negligible

effect on the delay errors (ie. they will be swamped by the effects of thermal noise).

The effects of phase scintillations on the code pseudorange measurements may, however,

be significant, particularly if fo is very small. The variance of the code pseudorange error

is givenby

o?, = IlrU\'s,(f).¿f
(4,2-5)

=(r"ËYoâ., ^

Where o;2 is the variance of the carrier phase range error due to phase scintillations, and
9p

T" is the code chip width in metres. The low frequency components of the phase

scintillation power spectrum provide the greatest contribution b olo $e. olo is very

sensitive to f"). However, as these are associated more with the background ionosphere

than with scintillations, it can be argued that phase scintillations will probably have a

negligible effect on the pseudorange'

chips2= Ëtoî0,
7
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4.3. The impact of amplitude scintillations on code

tracking loops

In this sectiory an expression is derived for the delay error variance of a delay locked loop

in the presence of amplitude scintillations and thermal noise. To simplify the analysis,

other sources of noise including phase scintillations, dynamics and oscillator phase noise

etc. have been ignored. It is also assumed that code distortion caused by frequency

selective scintillation effects is negligible at GPS frequencies because of the narrow

bandwidth of the GPS PRN codes (see Section 4.4).

The discriminator used in this analysis is an Early-Late power discriminator which is

normalised by a post-detection AGC (see Table 4.1,-1). The AGC ensures that the principal

effect of amplitude scintillations is to scale the thermal noise component of the tracking

error rather than altering the loop transfer function. The output of a normalised Early-Late

power discriminator is given by (see Table 4.1,-1).

(4.3-1)

where k represents the number of T second epochs over which data is averaged in the

discriminator, I¿,, QE¡, I¿, and Qt, represent the early and late I and Q signals from the

pre-detection filters (see Equation (a.1-6)), and g is the ouþut of a post-detection AGC.

This expression is based on the assumption that the discriminator is operating within the

linear region (ie. - T"f 2<r" <7"12 ). The AGC output can be approximated by (assuming

that ø, is small)

Þ,'^r' +2Ãid|í -r)Rp6,r, "or(çr)+ 
ner¡sin(p, )+ n*' * nsr,') (4.3-2)

where Rp = RGr) is tne cross-correlation function of the prompt code with the satellite

code and is approximately equal to one for small values of T, and e" is the thermal noise

component of the AGC gain factor.
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The expression for the discriminator output can be expanded to give

(4.3-3)

where Rn=RGr+f"lZ) and .R¿ =RGr-f"12) are the cross-correlation functions of the

early and late codes with the satellite code (assuming a th c}irip correlator spacing), ø" is

the true delay error, and. nB. = nrE. cos(Qe)+nqn¡sin(4" ) and n¡, = n7¿, cos(Qr)+nq¡sin(p, )

are zero-meary white, Gaussian random variables. The first term in the discriminator

expression (Equation (4.3-3)) is proportional to the delay error and is givenby

Llr,' 6 r' - ^ 
r')+ 2Àíd Q i - fi(n rr r, - R t n h) * n,r,' + n e,iz - n, h' - n n,n'f
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(4.3-4)
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where 7is the slope of the discriminator delay error function. For delay errors in the region

-T"l23rr 3T"12, the discriminator slope is

2l=--'7"
(4,3-5)

where f is the code chip width. The remaining terms in Equation (4.3-3) represent the

effects of thermal noise and amplitude scintillations and are given by

')

L
2

E

g.k

(^

{+

2

n r* = ? = #àbr,a Q, - r\n rn ¿ - R7n ¡n)* n,r, *ng¿¡ _nth neI4
)

(4.3-6)) 2 )

where n¿ is ttre equivalent thermal noise term for an un-normalised discriminator. As

nr*¡, ngE¡, nrL¡, and n*. are zero-mean random variables which are independents and

identically distributed (IID) and independent of Ã, and g s, the thermal noise tetm, n¿y,

must also be zero-mean. The variance of n¿¡¡ is therefore given by

t Fora % clnpcorrelatorspacing, nIEi,ttgyi,rt¡¿¡,àrrdrtgti zreallindependent(seeAppendixD).

6gisafunction of Ã¡, nyp.arrd ngr. whichareallindependentof nrl¡, nqE¡, nrL¡, and ngr. fora/,

chip correlator spacing. 
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Agairç as the four thermal noise terms are zero-mean and IID, the expectation of the

second term in the variance expression is zero, and both the first and third terms are zero

when i * j . Squaring also eliminates the navigation data from the first term (ie.

dQ, -c)'= I ). The variance expression therefore reduces to

"'r^ = ul

1

k2

l@ "', 
[, r,']+ n r' nþ r,']. "{å}(

lz:
l2
Lc

lÃ,'
lz
Lc

2 ,lll
{QuÎ 

*

)l
=#7,1^,

2
neni ntt¿

{;

(4.3-8)

(4,3-9)

neh

qøþ"pll¡-oltt *:l
where o represents either I or Q, and p represents either E or L. From Equation (D-5) in

Appendix D, the variance of nop. is given by N,fT where T is the pre-detection

integration period. Also, as naþ. is a real, zero-meary Gaussian random variable,

n{noB,o}=tlu{r*i}]' =r@"lr)2 . tnaddition, the amplitude sequence is assumed to be

stationary and so u{Ã,'t tIZiF u{Z'}. ther"fo.e, the variance reduces turther to

2 (^,'*^rÞl5l *zLn
T ll

ondN

For a small delay error, the early and late autocorrelation functions, R¿ and R¿, are

approximately equal to1/2. givtng

)
ndN =2No

k.T
E

^*'[þ I
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The signal amplitude À and the AGC gain factor, g, can be normalised by dividing by the

nominal (unperturbed) signat amplitude, A, as follows

A

Bysubstitut^S Ã=A*Ã¡,t, g=Ã2 xg¡u' and ClNo=n2fZW" intothevariance expressiory

the following result is obtained

z.N -A' r* =þ (4.3-11)

(4.3-14)

o (4.3-12)

The discriminator noise, na,tQ), consists of a sequence of random variables that are

maintained at constant for kT seconds, but are uncorrelated between successive kT second

epochs. Therefore, based on the analysis given in Appendix D for the Costas loop, the

power spectral density oÍ n¿¡¡ is given by

s no* U) = olo* w sinc2 Qfltr)
(4.3-13)

and the variance of the delay error resulting from thermal noise becomes

î*=ffi1'l#1.ftu{*}l

"?, 
=þ 

lr(f\'s,o*U)ar

=Tj:HUl,snczQrnr\a¡

"i,='#l+îwur,t)

As the bandwidth of the closed loop transfer functiory HU), must be smaller than the

bandwidth of the sinc(1flrf) functionz, the sinc2 (¡nf) term can be approximated by one,

giving

(4.3-15)

_2olr*krn,

7 In order to correctly track the desired sigral (in this case the code delay process), the bandwidth of the pre-

detection filters must be greater than the design bandwidth of the tracking loop.
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where u,:Ij)o(^f\' .o¡ is the loop noise bandwidth and y = -217" is the slope of the

delay error function. Combining Equations (4.3-12) and (4.3-14) gives

2m

chips

(4.3-1.6)

(4.3-17)

(4.3-18)

2

If itisassumedthattherearenoamplitudescintillations(ie. Z¡¡2 =1 and gw=Ã¡¡2=I),

the delay error variance expression reduces to the standard form for a delay locked loop

(see Equation (D-20), Appendix D), aiz

)o chips2tT

Discussion

As the code loop is usually aided by Doppler estimates from the carrier loop, its noise

bandwidth can be made quite narrow in order to minimise the effects of thermal noise.

Indeed, if extemal Doppler aiding is provided by an inertial measurement unit, the code

loop bandwidth can be as small as 0.1H2 [47]. Under these conditions, the bandwidth of

the discriminator errors can be reduced significantly by increasing the size of k (ie.

summing more terms in the discriminator). This will also reduce the effects of amplitude

scintillations by an amount which depends on both the sample rate of the discriminator

Olkf ), and the bandwidth of the scintillations. To quantify this effect, it is first necessary

to show that the signal intensity under amplitude scintillation conditions is chi-squared

distributed wíth 2m degrees of freedom (íe. X1, where m =tf Sl ).

The PDF of a chi-squared random variable, X, with 2m degrees of freedom is given by l7al

f *(*)=
(rlz)" exp(- xlz)

2r(*)
0,

, x>0

x<0

If we let x=zmtf (tl where I = Ã2 is the signal intensity at the ouþut of the pre-detection

filters, and (f)= A2 is the average value of I, the PDF of 1 can be found from
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t,Q)= r.GØlfjl (4.3-19)

(4.3-22)

*(therew )
2mI . dx 2m

ffi 
ana *=ø. This leads to the following expression for the PDF of the

intensity

n¡ - m-lm.I m.tlp\\

Tcr (?
T <Tcr <kr
Tcr >kr

k

I>0
f,(t)= r(^).(I)' (4.3-20)

0, I<0

which is the Nakagami-m PDF for intensity (this can be obtained from Equation (2.1-8)

through a simple change of variables). If k successive values of the random variable X are

strmmed, the number of degrees of freedom of the resulting random variable will be

increased. The amount by which the number of degrees of freedom increases will depend

on the summation period, kT , and the correlation time, Tç7 , of X. In Haykin, page 246

[39], the correlation time of a zero-mean, wide-sense stationary random Process, ZQ), is

the time taken for the autocorrelation function, R7(r), to reduce to a small fraction of

nr(g) þay 1%). For a random process, XQ),tnat is not zero-mearù the correlation time

can be defined as the time taken for the autocovariance function, Ky(t), to reduce to a

small fraction of f;s (O). Therefore, the correlation time, Ts7 , cãîbe defined by

Kx@u)= e (4.3-21)

where K*G)=n*G)-ln{xØ}l is the autocovariance function of XQ), and e is a very

small number. ConsequentLy, Tcr defines the separation required between successive

samples of XQ) in order for those samples to be uncorrelated (ie. to have a zeÍo

correlation coefficient). If we make the following definition

then a random variable given by Y =aZX, is chi-squared distributed with 2mak
i=l

effective degrees of freedom (ie. f - X?.o*). f can be related to the normalised AGC gain

factor, gN , inthe followingway
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k

Y =aZX¡

(4.3-23)

where t*,=t,f(tl is the normalised signal intensity. This expression only applies for

moderately deep fades where the effects of thermal noise on the AGC gain factor can be

ignored(ie. e"=0). If welet m'=mak,then Y=2m'*gu where Y-Xtr^,.Therefore, g¡¿

is also approximately Nakagami-m distributed but with m=m'. The increase in the

number of degrees of freedom (and the consequent decrease in the apparent strength of

scintillation activity) is unlikely to be very significant unless k is quite large and/ or Tç7 is

quite small. Such a situation is most likely to occur when a GPS receiver is aided by an

inertial measurement unit and can therefore adopt a very narrow loop bandwidth (ie. k is

large), and when the GPS ray path is moving rapidly in relation to the irregularity layer

(ie. Tç7 is small). Both of these conditions may be encountered when a GPS receiver is

operating within a jet aircraft.

4.3.1,. Slow amplitude fluctuations

In Chapter 3, the impact of deep, slow fades on the transfer function of a 1't order Costas

carrier tracking loop was accounted for by expressing the loop noise bandwidth as a

function of the amplitude. This allowed the tracking error variance to be expressed as a

function of amplitude, and from there an average variance could be obtained using the

Nakagami-m PDF. An equivalent approach can also be used to analyse the DLL, although

the results will only apply for very slow amplitude fluctuations because of the narrow

bandwidth of most DLL's.

Using the approach outlined in Section 3.3 for the Costas carrier loop (see Equations (3.3-4)

to (3.3-7)), the following expression can be obtained for the power spectral density of the

delay errors as a function of the signal amplitude (assuming that the amplitude remains

approximately constant for a time period which greatly exceeds the time constant of the

tracking loop)
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(4.3-24)

The component of the delay error variance associated with thermal noise and amplitude

scintillations is given by

H,V
, SroU)

.df,Ã)
Ã4 (4.3-25)

where y = -217" . oirø) represents the variance of the discriminator noise as a function

of the amplitude (ie. conditioned on the random variable Z.¡ tot an un-norïnalised

discriminator. An expression lor olo@) .u" be obtained from Equation's (4.3-6) to (a.3-10)

by letting 8=1. This gives

s,,(1,Ã)=l- n'(r ,Zl' s,Ç)+ln'(f ,Ãl' W

oîo(Ã)=+ln'.+)

"?,Ø)=&[*.

o?,(Ã)=þi_

zkTBn

From Equation (3.9-12),the loop noise bandwidth of a L't order loop is given by

Inserting Equations (4.3-26) and (4.3-27) into (4.3-25) results in

(4,3-26)

(4.3-27)

2
chips2 (4.3-28)

rClN,.snZ&

The expected value of the delay error variance is therefore

o?,=&l'l*1.&"{*}] øj.2s)

The differences between Equations (a.3-16) and (4.3-29) will only become significant for

large values of 
^Sa 

when the probability of a deep fade becomes sufficiently large. The

simplifications applied to the fast AGC model (model #2) for the I.Q Costas loop can be

applied to Equation (4.3-29) to obtain the following result (see Equation's (3.3-23) to

(3.3-30)) 
13s



o?- =8,'m- expJryl,T-cl!")l.A- 
m,mfrcf N,¡*@] ,0.3-80)" îr 

zcf N,(r clx "f-t (^ -t) j

where f(a,b) is the Incomplete Gamma function (the integral from b to in-finity), and

.-:., l
gw = A"w.f rl*, has been assumed (from Equation (3.3-16)). Equations (4.3-16) and

(4.3-30) are compared in Figure 4.3-'1. over a range of typical code loop bandwidths for the

C/A-Code and for CfN"=38dBHz. Also included as a dotted line are the results of

simulations for the case B, =2H2. This result assumes that the d¡mamics driving the input

delay process is being tracked by the DLL with zero steady state error.

15

2 0.3 0.4 0.s 0.6
S4

0.7 0.8 0.9 1

Figure 4.3-1: The delay error aariønce as a function of Sa from Equøtion (4.3-16) (lower curaes)

and (4,3-30) (upper curaes). The small circles ønd the dotted line represent the results of

simuløtions for B, = 2Hz . Parameter aalues are T=20ms and Cf N, = 3\dBHz .

It is clear from this figure that the two models do not diverge significantly until the

scintillation activity is moderately strong (S4 > 0.7 or so), and that the RMS pseudorange

error resulting from scintillations does not become excessive until the scintillation activity

is very strong (.ç4 >0.9 say). However, this level of activity is likely to be close to, if not

beyond, the tracking threshold of the carrier loop. Moreover, the effect is small when

compared with the RMS error from the background ionosphere which tends to dominate

the pseudorange error budget for a stand-alone SPS receiver. Nevertheless, for DGPS or

Lo
Eí)
v)
aú

1

5
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WADGPS users, the increase in thermal noise errors from amplitude scintillations may

become a significant factor under strong scintillation conditions.

Nominal figures for the RMS thermal noise errors for a standard DLL are 1.5m for the

C/A-Code, and 20cm for the Ll P(Y)-Code [a7l Chapter 7). However, modem receivers

frequently achieve a significant reduction in these levels by smoothing the code

measurements with carrier phase measurements obtained from the carrier loop. In the

absence of significant multipath, this approach typically reduces RMS thermal noise errors

to a few tenths of a metre. This approach will also reduce thermal noise errors in the

presence of amplitude scintillations, provided that the carrier loop remain in lock and does

not suffer from an excessive number of cycle slips. Although this condition is likely to be

met under moderately strong scintillation conditions, as explained below, it may not hold

under very strong scintillation conditions.

The RMS errors ptotted in Figure 4.3-L represent an ensemble average based on a

distribution of GPS signal levels given by the Nakagamim PDF. As it is assumed that

scintillations are ergodic, these measures also represent the statistics of an individual

realisation of the delay error process. In practice, a time sequence of delay errors obtained

under amplitude scintillation conditions will contain a series of noise spikes, separated by

several seconds or more, which represent momentary increases in the DLL tracking error

resulting from deep fading events. These noise spikes, which become larger and more

frequent as the strength of scintillation activity increases, tend to provide the largest

contribution to the RMS error. Under strong scintillation conditions, it is likely that the

carrier loop will either lose lock or suffer frequent cycle slip during these events which

may preclude carrier smoothing during those times. Consequently, the impact of

amplitude scintillations on the carrier smoothed code observable may be quite

pronounced when the scintillation activity is strong.

The DLL analysis presented in this chapter parallels the linear model analysis for the PLL

in that it is based on the premise that the delay errors are unbounded. Flowever, from

Figure 4.1-2ít is clear that for delay errors beyond flc 12 (for an E-L spacing of 1 chip), the

discriminator delay error function will begin to retum to zero. Indeed, when the delay

errors exceed t3Tc 12, the delay error function will become equal to zero and will remain

at that level until the delay error approaches the period of the code sequence (1ms for the

C/A-Code). This behaviour implies that if the magnitude of the delay error exceeds rç fz,

1.41.



the feedback mechanism in the DLL will force the delay error beyond zrç f z, at which

point the loop will lose lock. However, during these times, the reported delay error will be

at a maximum when the true delay error is at tTc f2, and will then become smaller as the

true delay error increases beyond this point. Although this non-linear discriminator model

differs significantly from the simple linear model used to obtain Equations (4.3-16) and

(4.3-30), the differences are only significant when the delay errors become very large. From

the linear model, it is clear that this will occur when the amplitude is heavily attenuated

during deep fading events. Indeed, even if the PLL was to remain in lock during these

events, the DLL may lose lock, and be unable to regain lock until the fade has passed and

the loop has reverted to re-acquisition mode (the DLL cannot cycle slip and then regain

lock in the same way as the PLL). In the case of the Costas PLL, the non-linear behaviour

of the discriminator was accounted for by making use of the Tikhonov PDF for the modulo

n reduced phase error. For the DLL, an equivalent non-linear PDF does not exist for the

delay error. A crude approximation that has been applied to this problem has been to

formulate the RMS error as a function of the amplitude using Equation (4.3-28), and to

then restrict the errors to some upper limit based on a nominal tracking threshold for the

DLL ( df3 code chips, where d is the correlator spacing [a7]). As before, the RMS error is

then found by averaging over all possible amplitude values using the Nakagami-m PDF.

This procedure results in an RMS error curve which lies slightly above the curve obtained

from Equation (4.3-L6). This suggest that for moderately strong scintillation activity (ie.

,S4 > 0.7 or so), the depth and frequency of the deep fading events which force delay

errors beyond the tracking threshold is sufficiently large to significantly affect the average

RMS delay error. Consequently, for large values of ,sa, the analytical expressions for the

RMS delay ertor must be treated with some caution.

Nevertheless, based on simulations for which the cutoff frequency of the amplitude

scintillation power spectrum, f", is much less than B, the RMS delay error appears to

follow the upper curve given by Equation (a.3-30). For larger values of f" , the RMS errors

become smaller, particularly when ,Sa is large.
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4.4. Frequency-selective scintillation effects

In the analysis so far, it has been assumed that all frequency components in the GPS code

spectrum undergo the same amplitude and phase variations at the receiver. This situatiory

which is also referred to as frequency-flat or frequmcy-nonselectiae fadrng (see for example

1721, l75l or [88]), may produce fluctuations in the amplitude and delay of a code

sequence, but will not result in any code pulse distortion. Consequently, tracking errors

and pseudorange noise will be produced mainly by additive thermal noise, assuming that

phase scintillations have a negligible effect.

However, if the bandwidth of the code is sufficiently large and/ or the scintillation activity

is sufficiently strong, variations will exist in the amplitude and phase of the scintillation

waveforms across the code spectrum (ie. the frequency resporìse of the propagation path

will no longer be flat). If these variations are large enough, they will produce distortions in

the code sequence which may affect the performance of the code loop discriminator.

When a channel's frequency resporìse exhibits statistical decorrelation across its

bandwidth, it is said to be frequency-selectiae. The most coÍunon source of

frequency-selective fading in a wireless communications system is multipath. In a

multipath environment, the multipath reflectors introduce different delays and reflection

coefficients relative to the direct path, and so the electrical tengths of each path will be a

function of the frequency. Corsequently, each frequency component in the signal

spectrum will be subject to slightly different amplitude and phase variations at the

receiver. From the model given in Appendix A, it is clear that this is very similar to

scintillation effects, where the received signal is a composite of multiple rays scattered

from different points on a phase screery each of which are subject to different phase

advances.

The parameter that characterises the degree of frequency selectivity of a propagation

channel is the coherence or correlation bandwidth, Bcoh .The coherence bandwidth determines

the frequency separation for which the fading statistics of two frequency components are

essentially uncorrelated. Therefore, if the bandwidth of the transmitted code sequence is

much greater tllran Bro¡, significant frequency-selective fading may occur leading to code

pulse distortion. The coherence bandwidth is related to the RMS code delay jittet, o",by

the following relationship (see for examplellTl, [55], [83] & t88l)
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D - J- ^, (4.4-1)u"oO - 
2OO,

Consequent\y, iÎ B"o¿" ) Broh or ot, 
#,where 

B"o¿" isthe two-sided bandwidth of

the code sequence/ code pulse distortion may occur. For the GPS C/A-Code and

P(Y)-Code, this becomes or>23m (B"o¿"= 2.046MH2) and o">2.3m (B"od"= 20.46

lllIF{z), respectively.

Unforfunately, there are few measurements of either the delay jitter or the coherence

bandwidth for transionospheric radio channels at GPS frequencies. However, in [79] Rino

derives an expression for the single-point, two-frequency coherence function, n(õ¡;¡), of

a transionospheric radio channel that is subject to scintillations. R(ô/;/) is a measure of

the correlation between the time varying transfer functions of the propagation channel at

two frequencies, f1 and -fz 8, and can be used to determine the coherence bandwidth, uiz

R(B"on;"f)= lt Ø.4_2)

where B"o¡ is defined as the value of. õf for which n(õ¡;¡) drops to some pre-defined

value p (see for example Steele, [88]). In 1791, it is shown that for highly anisotropic (rod-

Iike) Iregalarities, such as might be encountered at equatorial latitudes, n(6¡;f) can be

expressed as a function g0 of the form

n(õr;.r)=,þ,[i]"") (4.4-3)

where H is a measure of the strength of scintillation activity (proportional to ,Sa2 under

weak scatter conditions, l79l), and p is the spectral index (the slope of the phase

scintillation power spectrum). Therefore, for a given level of scintillation activity, H, the

two-frequency coherence function and the channel coherence bandwidth will depend only

on the ratío 6f I f . Consequently, the following relationship will hold

B"ohl Bco¡h2

fifz

'6f =l¡t-f)and f =Ut+fz)12

1.44
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where B"o¡1 is the coherence bandwidth at frequency fi for a channel with a scintillation

strength of H at fy, and Bro¡2 is the coherence bandwidth at f2 for a channel with the

same scintillation strength H at f2.

In [55], Knepp determines the channel coherence bandwidth at VHF frequencies (centred

on 155.5 MHz) by isolating the component of the code delay spread due to scintillations

and applying this to Equation (a.a-l). At these frequencies, it was found that the channel

coherence bandwidth could be as low as 0.5 MHz under very disturbed scintillation

conditions. Indeed, the measured ,Sa values on a two-way ProPagation path were in

excess of 2.25, implying a one-way Sa slightly greater than one. This indicates strong

Rayleigh fading with some focusing effects to drive .S4 above one. By applying these

results to Equation (4.4-4), it can be shown that under very intense scintillation conditions,

the channel coherence bandwidths at the two GPS carrier frequencies will be

BcohLt= /r, "# = 5.1MHz
(4.4-5)

BcohL2=frr*#=4.IMfIz

Therefore, under very strong scintillation conditions, the P(Y)-Code may suffer from

frequency-selective scintillation effects, and thus code pulse distortion, whereas the C/A-

Code is unlikely to be affected. In addition, the L2 channel is likely to be affected more by

frequency-selective scintillation effects than the Ll channel, partly because the coherence

bandwidth at L2 is less for a given level of scintillation activity (as shown above), and

partly because the scintillation activity is stronger at L2 for a given set of irregularity

conditions.

In order to test whether frequency-selective scintillation effects will cause significant code

pulse distortiory the phase screen model from Appendix A was used to generate

amplitude and phase scintillation waveforms at a number of frequencies across the code

spectrum (note that in all cases, the in-situ carrier phase perturbations were Gaussian

distributed with a power-law power spectral density). Examples of these waveforms at the

GPS L1 frequency and L0 MHz above LL are given in Figure 4.4-'l..lt is clear that although

the general shape of the waveforms are quite similar, the detailed strucfures are very

different between these two frequencies. In particular, it aPPears that the differences are at

their greatest when the amplitude fading is at a maximum.
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Figure 4.4-L: Arnplitude and phase scíntilløtion waaeflrms (left and right respectiaely) at the GPS

L1f'requency (upper two panels) and L0 MHz aboae GPS LL (lower two panels). The scintillation

index S a is npproximately equal to 0.8,

The amplitude and phase scintillation waveforms, A(*,.f) and Qo6,f), were then

converted to a complex modulation for each frequency component,I, in the GPS code

specttum, aiz

M (x, f)= A(x, fþxpÇ Q o G, Ð) (4.4-6)

where x represents a position in the scintillation pattern (the EastWest ground position in

these examples). If fÇ) is the Fourier transform of an ideal pulse with a pulse-width

equal to the GPS code chip-width , 7", then the distorted code pulse, p'(*,t), can be found

by taking the inverse Fourier transform of the product of M(x, f) and PÇ) as follows

p' (*, ù = I, 6, flrÇ) expÇ2lîft).df (4.4-7)

Examples of the effects of frequency selective scintillations on a single code pulse are

given in Figure 4.4-2 to Figure 4.4-4. In these figures, it is assumed that the code pulse

spectrum is limited to the first nulls of the sincÇff") power spectrum (ie.

lT"
p'(x,t)= Irî,flrÇ)expÇ27îfi).df , where lfT"='t.)2BMHz for the C/A-Code and

-lT"

1"0.23}l4H2 for the P(Y)-Code). Figure 4.4-2 shows the fuIl effect of scintillations on a

P(Y)-Code pulse as a function of time and ground positiory while Figures 4.4-3 and 4.4-4

represent the distorted waveforms that have been normalised by their respective peak
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pulse values. Consequently, the last two figures provide a more accurate picture of the

true distortion to the code pulse shape.

Reconstructed pulse

I

l0

1.5

Time (code chips) -s0

Figure 4.4-2: The impact of a singte phase-chnnging s*een with a power law in-situ density profile

on 0.0978 ps pulses thøt are bøndlimited tu 110.23 MHz (representatiae of a single P(Y)-Code

chþ).
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Eigure 4,4-3: Figure 4.tI-2 normøIised by the peak pulse height
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Reconstructed pulse, normalised by the peak
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Time (code ohips) -50
Ground position (krn)

Figure 4.4-4: The impact of a single phøse-chønging screen with a pou)er law in-situ density profile

on 0.978 ¡ts pulses thøt are bandlimited to t1..023 MHz (representatiae of ø single C/A-Code

chip).In this example, the reconstructed pulses are normalised by their peak aalues.

By applying these pulses to a simple Early-Late gate error function, the error in the code

loop discriminator can be found. The Early-Late gate error function is given by the

following expression

e6,r,, = +lj:' @, t)pQ + r, + r" f z

0.8

0.6

0.4

U

5

).at - [ r'G,t)p(t +r, - r" 12 ø,4-8)

where ø, is the code tracking error, pQ+tr+f"lZ) is a locally generated (ideal) early

pulse, and pQ+r"-i."f2) is a locally generated late pulse. This is equivalent to a

normalised version of the Early-Late envelope discriminator from Table 4.L-1 (ie.

e(x,r")=Åu(")-nt(r\.In Figures 4.4-5 to 4.4-7, the Early-Late gate error function is

plotted for the distorted code pulses from the previous figures. Figures 4.4-6 and 4.4-7

represent the error function normalised by their respective peak values to isolate the

effects of code distortion from frequency-flat amplitude fading.
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Figure 4.4-5: Early-Late gøte error function for the bøndlimited 0.0978 ¡ts pulses.
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Fígure 4.4-6: Figure 4.4-5 normalisedby the peak disuimínator eruor.
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Normalised Early-Late gate error function
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Figure 4.4-7: Eørly-Late gøte error function normalised by the peak disuiminator error for the

0.978 ¡ts pulses,

From the results presented in these figures, it is clear that the effects of frequency-selective

fading are much greater for the wider bandwidth P(Y)-Code than for the C/A-Code, as

would be expected. However, it is also apparent that even under relatively strong

scintillation conditions (ie. ^la = O.ã), the distortions to the P(Y)-Code are only significant

for relatively short periods of time. As will be shown next, these times are usually

associated with deep amplitude fading.

In Figures 4.4-8 and 4.4-9 (Ieft panels), the code delay errors are plotted as a function of the

ground position, x,f.ot T, =0. As Te =0 represents a situation in which the replica code is

correctly aligned to the received code, the errors in these figures are associated entirely

with distortions to the code pulse shape. It is clear from these figures that the

discriminator errors associated with the P(Y)-Code (in chips) are much greater than those

associated with the C/A-Code. It is also clear from the scatter plots on the right that

significant tracking errors are usually associated with the time periods during which the

amplitude is deeply faded. Consequently, when the scattered rays come close to complete

cancellation on the ground (ie. during deep fading), the amplitude and phase response of

the channel attains its greatest sensitivity to frequency. However, as the carrier tracking

0

0
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loops of a GPS receiver are likely to suffer from cycle slips and tracking problems during

these times, it is questionable whether these errors will be of practical importance in a real

GPS receiver.

P-Code tracking enor. RMS = 0.0312 chips P-Code tracking enor v Fade depth
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Figure 4.4-8: The delay errors (upper left panel) and ømplitude scintillation waaeþrm (lower left

pnnel) øs a function of ground position for the bøndlimited 0.0978 ¡ts pulses. The scatter plot on the

right compares the delay errors to the fade dEth.
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Figure 4.4-9: The delay errors (upper left pønel) and amplitude scintillation zaaaeþrm (lower left

panet) as a functiln 0f ground plsition flr the bandlimited 0.978 ¡rs pulses. The scøtter plot on the

right compøres the deløy errors to the fade depth.

The procedures outlined above are very similar to those followed by Bogusch 11,61, Í171

and Knepp [54] using their more sophisticated multiple phase screen model. However,

their results suggest that the coherence bandwidth at L-band frequencies (2 GHz) could be

as low as 0.25 MHz under very strong scintillation conditions [17]. Using Equation (4'4-4),

I ï

lÌ"l "tt il!ltlTrir'tr-rT "'l 
-J rr,rr',,ff '!'
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this implies that BcohLt=0.2MH2, which is roughly 25 times smaller than the value

derived from the measurements in [55]. Although this result implies that code distortion

could be quite severe under strong scintillation conditions (ie. B"o¡¡, 11B"od"), it was not

clear in [17] whether significant distortion was only observed during periods of deep

amplitude fading.

4.5. Conclusions

In this chapter, the effects of scintillations on code tracking loops was examined. It was

found that phase scintillations have a negligible effect on code loops, and that the

additional RMS thermal noise error associated with amplitude scintillations is only small,

unless ,Sa is close to unity. Nevertheless, under strong amplitude scintillation conditions,

it is likely that error spikes will exist in the code pseudorange measurements during times

when the amplitude is deeply faded. However, as the carrier loop is likely to be stressed to

the point of losing lock during these times, this effect may not be regarded as important

for most GPS users. It was also found that because of the very narrow bandwidth of GPS

signals, frequency selective scintillation effects are unlikely to produce significant code

distortion under naturally occurring ionospheric conditions, except possibly for the P(Y)-

Code during times when the amplitude is deeply faded.

152



Chapter 5

Codeless and semi-codeless receivers

In this Chapter, the effects of scintillations on codeless and semi-codeless receiversl is

examined. Because codeless tracking loops have a much lower signal to noise ratio than

ful| code correlation tracking loops, their susceptibility to scintillations is expected to be far

greater. In Section 5.1, the various codeless tracking techniques employed in non-military,

dual frequency receivers are outlined. In Section 5.2, a theoretical analysis is given of the

effects of amplitude and phase scintillations on codeless tracking loops. Essentially, the

reduced signal to noise ratio of codeless tracking loops increases their susceptibility to

amplitude scintillations, while their much narrower loop bandwidths increases their

susceptibility to phase scintillations. Finally, in Section 5.3 the theoretical performance

measures of semi-codeless tracking loops are compared with measurements taken from a

semi-codeless receiver located in a region of high scintillation activity.

5.1. Codeless processing techniques

Codeless and Semi-codeless receivers obtain L2 code and carrier phase measurements

without requiring access to the military Y-Code. These receivers are frequently used in

WAAS and LAAS2 systems and are therefore important for civilian applications such as air

traffic control. The two most commonly used codeless techniques are squaring and cross-

correløtion [91]. Squaring removes both the navigation data and the Y-Code from the L2

signal and produces a carrier at twice the L2 frequency. However, this technique does not

provide code phase informatiory and with such a high carrier frequency the process of

resolving carrier cycle ambiguities can be difficult and time consuming. Cross-correlation

is an improvement on the squaring technique that produces a carrier at the difference in

1 To improve the readability of this Chapter, the term "codeless" will frequently imply both

codeless and semi-codeless tracking loops.

2 Wfu{S. Wide Area Augmentation Systems, and LAAS: Local Area Augmentation Systems.
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frequency between LL and L2 as well as a measure of the code delay difference between

the two frequencies. The much lower frequency allows carrier cycle ambiguities to be

resolved more rapidly, while the code delay difference provides an unambiguous measure

of the ionospheric delay on each carrier.

Both techniques can be enhanced by employing semi-codeless processing prior to the

codeless tracking loops. In a semi-codeless receiver, the P-Code (which is known a priori)

is removed from the GPS signal to produce an L2 carrier which is modulated by the

encryption code (also called the W-Code) and the navigation data. As the bandwidth of

the encryption code is 20 times less than the P-Code bandwidth, the resulting signal can be

filtered to reduce the noise power by .rp to L3dB [4]. Consequently, a semi-codeless

receiver will have a 13dB advantage in signal to noise ratio (SNR) over a purely codeless

receiver. Both techniques, however, suffer a considerable reduction in SNR over full code

correlation P(Y)-Code tracking.

Another semi-codeless technique that is frequently used in NovatelrM receivers involves

tracking the P-Code directly using a standard tracking loop, but with a pre-detection

bandwidth that is equal to the W-Code bandwidth (500 kHz) 3. Consequently, the W-Code

is treated in essentially the same way as the navigation data in a full code correlation

tracking loop. An advantage of this technique is that a true estimate of the L2 P-Code

pseudorange is produced, although the associated thermal noise errors are at a greatly

elevated level.

In order to cope with the reduced SN& codeless receivers employ very narrow tracking

loop bandwidths, typically much less than 'J. Hz. To reduce the consequent d¡rnamic

stresses associated with satellite and receiver motion, codeless carrier tracking loops are

aided by carrier phase error estimates provided by the more robust L1 C/A-Code carrier

tracking loops. These estimates tend to reduce, but not eliminate, the phase scintillation

errors on the codeless loops.

3 The pre-detection integration period, T, is therefore 2 xl0{ s.
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5.2, Theoretical analysis

Based partly on the above discussiory the various aspects of codeless tracking loops which

determine their susceptibility to ionospheric scintillations can be summarised as follows:

1. The L2 signal power is approximately 6dB below the LL C/A-Code signal power.

2. The SNR of codeless tracking loops is significantly less than the SNR of full code

correlation tracking loops.

3. Both amplitude and phase scintillations are slightly stronger at the lower L2 frequency

as a result of the inverse frequency scaling of scintillatiors.

4. LL carrier aiding of the L2 codeless loop reduces the effects of phase scintillations.

5. Carrier aiding virtually eliminates dy:ramic stresses on the codeless loops allowing the

tracking loop bandwidth of the carrier loop to be significantly reduced.

The first two factors can be accounted for by determining an equivalent C/N, for the

codeless tracking loops. This can then be used to determine a tracking threshold under

amplitude scintillation conditions based on the variance expression for a standard phase

locked loop.

The degradation in Cf N" for codeless and semi-codeless tracking loops is given by [91]

7.8+t0log1o(B¡) -clw"lr,nan to'/ro 
) (5.2-1)

where B¡ is the pre-detection bandwidth (10MHz for a codeless loop, 500kHz for a semi-

codeless loop), and ClN"l"lu it the carrier to noise density ratio of the C/A-Code. The

equivalent Cf t't, is thus [91]

(c¡u )"¡^Y (5.2-2)ClN"lsq=
68t

As both squaring and cross-correlation eliminates the navigation data from the GPS signal,

a standard (non-Costas) phase locked loop can be used to track the resulting carrier. For a

standard phase locked loop, the variance of the tracking error is given by the inverse of the

loop SNR 1731, aiz
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oî" = SNR(t-oop T
Bn

- clN,lrn

68nBr

(5.2-3)

(5.2-5)

l, I *'lq nl

where B, is the tracking loop bandwidth. If a variance threshold is chosen lor oqr,

threshold values of the signal amplitude can be found for both codeless and semi-codeless

receivers as a functionof B, B7 , andthe nominal Cf N"lr,n, uiz

Arn=A 68nBr

N"lq.c*oøl*
(5,2-4)

where A is the nominal signal amplitude and oøl* is the threshold RMS error once the

effects of phase scintillations have been removed (see Section 3.4). As before, these

threshold values can be used to determine the probability of losing lock as a function of ,Sa

(see Equation (3.a-3)).

The third factor (ie. the difference in the strength of scintillations at tl:re L2 frequency) is

automatically accounted for by using the L2 frequency as an input to the WBMOD

scintillation model. In Section 2.L.3, it was stated that ,Sa and oqo scale in the following

way with the carrier frequency, v

,S4 * y -(z+3) I a, for low to moderate levels of scintillation activity

=l , for strong scintillations

_í
ooo n'

From Equations (2.1,-1) and (2.1,-4) it is also apparent that for a constant outer scale size

parameter, -fo, T also scales with the carrier frequency as Tnv¿ (ie. ofio*f¡.

Consequently, at the L2 frequency, ,Sa is between L and 1..4 times larger than the

corresponding L1 value, while T is approximately 1.65 times larger.

The fourth factor (ie. carrier aiding of the codeless loops) is accounted for by assuming

that the majority of the phase scintillation energy is associated with refraction effects
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which show a simple v-l dependence with frequency. Consequently, scintillation induced

phase variations on the L2 carÅer, Qrrr, can be related to the corresponding variations on

the Ll" carrier, Qorr,t}lrough+

,r, =frQ^a (5.2-6)

where vt;=1575.42MH2 and vL2=1227.6l|llFl2. Aiding of the L2 carrier loop is

primarily intended to eliminate Doppler errors associated with satellite and receiver

motion. The Doppler correction term is given by

(5.2-7)

where Qa^ is the phase error associated with Doppler on the LL . The vnlvn factor in

this expression is also applied to the phase scintillation errors on L1, Qprr,bef.ore they are

removed from the L2 carrier loop. The residual phase scintillation error is thus [91]

The last factor (ie. a very narrow loop bandwidth) provides a considerable amount of

resistance to the effects of amplitude scintillations. By implementing a narrow loop

bandwidth, the codeless receiver reduces thermal noise errors on the phase estimates

which in turn increases the SNR of the tracking loop. This helps to overcome some of the

¿ It is worth noting that if diffraction effects were to predominate, this simple relationship would

not necessarily apply. However, as the bandwidths of the codeless loops are very narrow, it is

reasonable to assume that a large proportion of the energy in the carrier loop phase tracking errors

is below the Fresnel cutoff frequency and so can be attributed mainly to the effects of refraction.

fir0",

Q'or, = Qor, -?Qo^'vu

=Qprz['lrlf ø'at

=0.393Qon

Consequently, the phase scintillation spectral strength, T, obtained from models such as

WBMOD at the L2 frequency must be scaled by a factor of 0.3932 (-S.ldB) to account for

the effects of carrier aiding.
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effects associated with the lower signal level at the L2 frequency and the reduced SNR of

the codeless tracking loops. A second effect of a narrow loop bandwidth is that the

duration of the deep fading events which lead to loss-of-lock may now be much less than

the time constant of the tracking loop. For loop bandwidths as low as 0.1H2, this could

greatly improve a loop's tolerance to amplitude scintillations, particularly if the amplitude

scintillation rate is increased by receiver motion. However, this effect will be offset

somewhat by the greatly reduced amplitude threshold of codeless tracking loops. Figure

5.2-L is an illustration of the impact of a reduced amplitude threshold on the fade duration

using a short segment of simulated amplitude scintillation data obtained from the model

in Appendix A. For deep fading events, the signal amplitude will be below the semi-

codeless threshold for much longer periods of time, effectively resulting in a longer

duration fade.

Eigure 5,2-1: Illustration of the ffict of a reduced ømplitude threshold on the føde duration.

5.3. Threshold curves

In Figure 5.3-L, threshold curves are plotted for both codeless and semi-codeless receivers

(both techniques) based on the following assumptions:

o The loop bandwidths are 0.1H2.

. ClNo for the C/A-Code tracking loop is A dBIlz (at 38dBHz, the codeless loop is

already very close to losing lock for a loop bandwidth of 0.1H2). Therefore, Cf N 
"lro 

is

1,0.2dBHz for the codeless loop, and 23.2dBHz for the semi-codeless loop.

o Carrier aiding of the codeless loops reduces T by 8.1d8.

. The amplitude scintillation bandwidth is narrow compared to the loop bandwidth.

This assumption is necessary in the absence of a suitable approach to the problem of

very narrow loop bandwidths and may result in an overestimation of the susceptibility

of tracking loops to amplitude scintillations.

Semi-codeless"l vil
Coded Loop tl I

158



The threshold curve for the semi-codeless-2 technique (see caption of Figure 5.3-1) is

simply found using the approach outlined in Section 3.4 with 7=2x10{s and the

Spectral strengtþ T, reduced by 8.1d8. Also shown as a dotted line is the curve obtained

from Equation (3.4-8) wit]r. y¿t = 20dB (ie. the approximate upper limit on [T,,S¿] values

for a stationary receiver obtained from WBMOD).
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Figure 5.3-1.: Tracking thresholds for both codeless and semi-codeless receiaers as a function of the

Spectrøl Strength, T, and the amplitude scíntillation index, S¿. A loop bandwidth of 0.LH2 has

been øssumed. Semi-codeless-L refers to the process of remoaing the P-Code from the L2 carrier

prior to codeless processing. Semi-codeless-2 refers to the technique of adopting a much wider pre-

detectionbandwidth in ø Costas loop to accommodate theW-Code.

It is clear from this figure that because the various threshold curves lie well below the

dotted line obtained from WBMOD, the probability of losing lock is likely to be reasonably

high on links that are affected by scintillations. By comparing this with Figure 3.3-3, it is

also clear that codeless and semi-codeless tracking loops are considerably more susceptible

to scintillations than fulIcode correlation tracking loops. The very narrow loop bandwidth

increases their susceptibility to phase scintillations, despite a reduction in phase

scintillation energy through aiding from the C/A-Code carrier loop. Similarly, the reduced

SNR greatly increases their susceptibility to amplitude scintillations, despite a very narrow

loop bandwidth.
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5.4. Scintillation measurements

The objective of this section is to check the validity of the semi-codeless performance

models derived in the previous sections using data obtained from co-located Novatel

MillenniumrM and PAql2ru Ionospheric Scintillation Monitoring (ISM) receivers. The

MillenniumrM uses full code correlation for the L1 C/A-Code and a semi-codeless tracking

technique for the L2 Y-Code. The ISM receivers are high data rate L1 SPS receivers which

are designed specifically to measure the scintillation indices 
^9a 

and T 1921, Although data

from the peak of the current solar cycle has not yet been processed, ISM data from the

September L998 and March 1999 equinoxes shows sufficient evidence of scintillation

activity for an analysis to be performed.

5.4.L Overview of scintillation data

The data used in this study was obtained from co-located MillenniumrM and ISM receivers

deployed at Parepare in Indonesia. Parepare is located at 4oS, 119,6"8, which places it

beneath the crest of the southem anomaly in a region of potentially strong scintillation

activity. The 1-2 month smoothed mean monthly sunspot number (SSN¡s for the March

L999 equinox was approximately 83.8, which represents a moderate level of solar activity.

At the time of writing (November 2000), the measured SSN's for the September 1999,

March 2000 and September 2000 equinoxes were 102.3, LL9.8 and 128.7, respectively. In

addition, it is predicted that the peak of the current solar cycle will occur in December

2000, and that it will take until late 2003 before the solar activity drops below the level

measured in September 1998 (69.5). Consequently, over the coming few years it is

expected that scintillation activity and it impact on GPS will continue, although mainly

during the equinoctial months.

5.4.L.1. Novatel MillenniumrM data

The Novatel MillenniumrM provides an indication of the tracking state of the L1 and L2

code and carrier tracking loops as part of its standard outputo. A second set of lock

indicators obtained by comparing the reported code and carrier pseudorange

s Sunspot numbers were obtained from the Austratan Ionospheric Prediction Service (IPS) web

site at "httçt; / / www.ips.gov.au".

6 Tracking state information is contained within the Novatel format RGEA/B data blocks [68].
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measurements with the range calculated from the satellite ephemeris information was

found to give virtually the same results. Consequently, for convenience it was decided that

the tracking state indicator would be used in all subsequent analysis as an indicator of a

loss of valid pseudorange data. In addition, a_ l,0o elevation angle mask was chosen to

avoid multipath effects and the possibility of satellite obscuration on low elevation angle

links.
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Figure 5.4-1-: The percentnge of time from 8:00pm to 10:00pm (local time) that the Noaatel

MillenniumrM loses lock on one or more satellites at Pnrepare, Indlnesia (left panel: September

1.998 equinox, right pønel: Mørch 1999 equinox). The white børs rEresent the loss of one satellite.

The solid børs represntt the simultaneous loss of two or more satellites.

In Figure 5.4-1, the percentage of time between 8:00pm and L0:00pm (local time) that the

MillenniumrM loses lock on one or more satellites is plotted as a function of the day for

both the September 1998 and March 1999 equinoxes. It is clear from this figure that the

carrier loops lose lock slightly more often than the code loops (by a factor of about L.5)'

This supports the assertion that in the absence of external Doppler aiding, the code loop

loses lock soon after the carrier loop. It is also apparent that the semi-codeless L2loops are

considerably more susceptible to the effects of scintillations than the L1 loops. Indeed, on

average the L2 carrier loop loses lock on one or more satellites about 30 times more often

than the LL carrier loop, although this factor varied significantly from day to day. It is also

apparent that for the moderate levels of solar activity represented by these two months,
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the impact on navigation is relatively minor. On the worst day (16tn March 99), tllre L1 code

loop lost lock on 1 satellite for approximately 1,.7% of the two hour period of interest

(roughly 2 minutes in total). For a mask angle of L0", the minimum number of available

satellites during this period was 8. Consequently, even during these two minutes, the loss

of one satellite would not prevent navigation or even seriously degrade the satellite

geometry. However, it is clear that the effect of scintillations on the semi-codeless L2

channels was significantly greater. On the L6th March 1999 (a bad day), the L2 carrier loop

lost lock on one or more satellites for approximately 27% of the two hour period of interest

(a total time of 32 minutes). In addition, two and three satellites were lost simultaneously

for about 3o/" and 0.03% of the time, respectively.

5.4.2. A comparison of models with measurements

The PAQl2rM ISM receiver provides measurements of the four scintillation parameters,

S+, o4p, T and p once every minute. By feeding these parameters into the single link

performance models given in Section 5.2, it is possible to predict the probability of an

outage on the L2 semi-codeless tracking loops. Unfortunately, because the MillenniumrM

and ISM receivers are co-located and have approximately the same L1 carrier loop

bandwidths, the L1. tracking loops of the MillenniumrM would be expected to lose lock at

about the same time as the ISM tracking loops (ie. a deep fade will affect both receivers

simultaneously). Consequently, ít is not possible to check the validity of the tracking

thresholds for a full code correlation tracking loop using this approach. Indeed, during the

September 1998 equinox, it was found that on average ISM data was missing from 97% of

LL code and95'/" of LL carrier epochs for which the MillenniumrM had lost lock. However,

as the L2 loops lose lock at much lower levels of scintillation activity, only 54o/" of L2 code

and 52'/o of L2 carrier loss-of-lock epochs had missing ISM data. Unfortunately, because

the ,Sa measurements vary so much from epoch to the next, it is not possible to interpolate

between valid measurements to eliminate this problem.

In Figure 5.4-2, the percentage of time that the MillenniumrM loses lock is plotted as a

function of 
^Sa 

using data from both the September and March equinoxes (from 6:00pm to

local midnight). Data for which the Spectral Strength, T, is greater than -30dBradians2 has

been ignored to ensure that amplitude scintillations have the predominant effect. Included

in the lower panel of this figure is the probability of losing lock on the carrier loop based

on the theoretical analysis presented in Section 5.2 and using the ISM measurements of ,Sa
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(the upper and lower error bars represent *1o values of the measured C/No from the

Millenniumrtu). If the tracking loops re-acquire the signal shortly after the amplitude rises

above the tracking threshold, then the measured and theoretical probability of an outage

should be comparable. From Figure 5.4-2, this appears to be true until ,S4 becomes large, at

which point the measurement curve begins to flatten off. This flattening is believed to be

the result of deep fades which result in the simultaneous loss of both MillenniumrM L1 and

ISM data. Although, these results indicate that the expression for the probability of losing

lock, P¡, is relatively accurate, they also suggest that the L% threshold discussed in Section

3.4 may be relatively conservative.
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Figure 5.4-2: The percentage of time that the L2 code ønd carrier loops lose lock as ø function of Sq.

Døtø for which the phase scintillation Spectrøl Strength, T, is greater than -3)dBradians2 has been

ignored. The error bars represent theory bnsed on quiescent L2 ClN, aalues between 34dBHz

(upper børs) and 44dBHz (lower bnrs).

An equivalent analysis of the relationship between loss-of-lock and the spectral strength

parameters, T and aço ,has not been given because of a lack of confidence in the integrity

of the ISM measurements of T and oqo.

5.5. Conclusions

Codeless tracking loops are far more susceptible to the effects of scintillations than full

code correlation tracking loops. However, the different tracking techniques employed in

codeless receivers do have significantly different susceptibilities, with semi-codeless

techniques bei.g generally more robust than purely codeless techniques. The poor
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performance of codeless tracking loops under scintillation conditions may result in a

degradation in the accuracy of systems such as the Wide Area Augmentation System

(WAAS) which rely on dual frequency SPS receivers for the measurement of ionospheric

delays. However, by the time WAAS and equivalent systems become operational, it is

expected that solar activity will have declined to the point where scintillations are no

longer regarded as a significant threat. Also, with the imminent introduction of a second

C/A-Code signal on the L2 frequency, and with approval being given for a future L5 civil

signal, the effects of scintillations on codeless receivers is unlikely to be an issue for fufure

solar maxima.

Measurements of the strength of scintillation activity and loss-of-lock taken during times

of strong scintillation activity are generally in quite good agreement with the theory. They

also show that because scintillations are very patchy, the chances of losing lock on several

channels simultaneously are very small, even under strong scintillation conditions. This

issue is discussed further in Chapter 9.
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Chapter 6

Navigation data

In this chapter, the effects of scintillations on the process of demodulating the navigation

data is examined. In Section 6.1, background theory is given which enables the bit error

rates and word error rates to be calculated under quiescent signal conditions. In Sections

6.2 and 6.3, scintillation effects on the navigation data are determined by treating

amplifude and phase scintillation effects separately. It is shown that even under very

intense scintillation conditions, word error rates increase to only a few percent with

amplitude scintillations providing the greatest contribution. The results of these two

sections are then used to determine the combined effects of amplitude and phase

scintillations on the navigation data. Finally, in Section 6.5 the effects of a slowly varying

amplitude waveform on the word error rate is examined.

6.1-. Background

The GPS navigation message is broadcast by each satellite and contains information about

the satellite ephemerides, clock and ionospheric correction factors, timing information and

constellation stafus. The navigation message consists of 25 data frames, each containing 5

subframes and each subframe containing 10 words of 30 bits. Therefore, at a data rate of 50

bits/s, the complete navigation message takes 12.5 minutes to be downloaded by a

receiver. The first three subframes of each frame contain the same clock and ephemeris

information which is considered critical to the operation of a receiver. Consequently, this

information is made available to a receiver at a rate of once every 30 seconds.

In a GPS receiver, the navigation data is extracted from the in-phase channel of the carrier

tracking loop at a point immediately after the pre-detection filters (see Figure 3.1-1). In the

analysis that follows, it is assumed that the carrier tracking loop remains locked to the GPS

carrier and synchronised to the navigation data. Under these assumptions, the in-phase

signal is given by (from Equation (3.1-2))
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I p = ZdG - r)cos(fu )* n,, (6.L-1-)

where 7 is thu signal amplitude after the pre-detection filters, AQ-r) is the navigation

data, Q" is the carrier phase error and n¡p is distributed N(O,on) where on=r|ffi.
Two new random variables, Xs and X1r cãrt be introduced to represent 1p during the

transmission of a binary 0 data bit UQ-r)= -1 : Hypothesis F1¡ ) and a binary L data bit

@Q -r) =1 : Hypothesis Hy), aiz

Ho:

Ht:
Ip = Xo=-Ãcos(Qr)*nn

Ip=Xt=Ãcos(Qr)*nu
(6.1-2)

(6.1-3)

(6,1-4)

(6.1-5)

Under quiescent conditions (ie. no scintillations), Z is approximately constant and @, is

small compared to 1 radian. Consequently, Xo and X1 canbe approximated by

where A= A is a constant. The probability density functions of Xç and X1 are therefore

Xo=-Ã*np
X1= Ã* n¡p

l*o(*ò= N(- e,o, )
l*r(n)= 1/(4,o,)

and the probability of a bit error is given by (see for example Haykin [39])

0

P" p(H f *oîo\d*o + p(H t) ! f *rîr\a*')j
0

0

= Jf*o?o\axs
0

I=-
2

where Erfc( ) is the Complementary Error Functionl, and p(Hù and p(n) are the

,nnr{ù=ftJ
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probabilities of binary 0 and 1 data bits respectivelyz. This can also be expressed in terms

of the carrier to noise density rctio, Cf N 
" 

= Ã2 I(Z¡V,), and the energy per bit, Et = TA2 12,

as follows

/-\
turc\Jr.clN" )

(6.1-6)
P- =L"2

=1
2

Under normal tracking conditions , T = 20 ms and CIN o = 41..5 dBHz resulting in a bit error

probabitity of 3.4x 10-125 (this assumes a nominal satellite signal power level of -160 dBW

at the ground and a noise temperature of 530 K).

The probability of a word error, assuming no error correction, is given by (Hegarty t40l)

P* =l-(t- P"Y

= mP" for P" << I

(6.1-7)

where m is tirre number of bíts per word (30 for the GPS navigation message). This results

in a word error rate of approximately 10-123 under the signal conditions outlined above.

Similarly, the probability of a word error in any of the first th¡ee subframes (ie. the critical

navigation data) is given by l-(t-p,)'o =3.1x10-122. These results demonstrate that

under quiescent signal conditions, the bit error rates and word error rates are negligible for

GPS.

In the following sections, the effects of scintillations on the navigation data will be

examined by treating the GPS receiver as a BPSK communications system that is subject to

non-dispersive fading (ie. frequency and time-flat fading). The principal difference in this

analysis over most other analyses is that the signal intensity is assumed to follow the

Nakagami-m distributiory and the resulting bit error rates are linked to the scintillation

parameters discussed earlier.

2 For binary d,ata, p(Hs)+ p(nt)=1
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6.2. The impact of phase scintillations on navigation

data

In this sectiory the effects of phase scintillations on the bit error probability will be

examined under the assumption that amplitude scintillations are absent (ie. it will be

assumed that the amplitude is constant).

When the satellite signal is modulated by phase scintillations, the phase error/ @r, becomes

a random variable. Therefore, the random variables X¡ and X1 given in Equation (6.1-2)

become functions of the two random variables n¡p and @" as follows

xo = -Acos(çr)+ n,,
xr = Acos(/" )* r,,

rc.2-1)

(6.2-2)

where the amplitude A is assumed to be constant (ie. for the moment, amplitude

scintillations have been ignored). If it is assumed that the linearising approximations made

in the analysis of the tracking loops are not significantly violated, the variance of Q, can be

obtained from the linear model transfer function of the tracking loop as follows (from

Equation (3.2-5))

ø{Q,'t"t, =j_
t frto 2 + f

T
2

o

2

Qqo * o'0,

where ofr* and, o2p, ut" contributions to the phase error variance from phase scintillations

and thermal noise respectively. This assurnes that the pre-detection filters have a

negligible effect on the phase errors produced by phase scintillations. As the integration

period of the pre-detection filters coincides with the duration of a navigation data bit, this

also implies that the phase errors will remain approximately constant over each data bit.

This is an important assumption on which the following analysis is based.

As Xo is now a function of the phase error, Q,tllre new PDF of Xs is givenby
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where f *ol*(Irlq) is the conditional PDF of Xs given Qe, aîd fçr@) is the PDF of

@". The probability of a bit error is thus (from Equation (6.1-5))

P" = I.f*o!s\ax,

(6.2-4)

where p6 = T.Cf No, and P"(p6,g) is the conditional bit error probability given p6 and tp .

A" f*olorftrlq) is distributed N(-Acos(g)o,), the conditional bit error probability is

givenby

= 
!*(EÞ"bu,ç\dç

P"(Po
(6.2-5)

erfc(cos(e)Jffi)

If it is assumed that the phase errors follow the Tikhonov density ftmction for a Costas

loop (Equation (C-6)), the probability of a bit error is given by

exp(p"cos(29))

ß1"(p") In'r.(.o'(e¡Jffi)aç

,l
a)=t

I
2

n12

J
(6.2-6)

P"

-nl2

where p" =lho'h and, of, is the phase error variance from the linear model (Equation

(6.2-2)). Although this result strictly only applies to a system that is based on a first order

Costas loop, it is also likely to be quite accurate for higher loop orders, particularly when

the spectral index, p, is close to 2. The reasons for this were discussed earlier in Chapter 3.

In Figure 6.2-!, thre bit error probability and word error probabitity are plotted as a

function of ofi* for a first order Costas loop with T = 20ms, Cf No= 4l..5dBHz and

Bn=2tsr2. The maximum phase error variance is set to (nltZ)z radians2 which is the rule

of thumb tracking threshold for linear operation (Equation (C-3), Appendix C). Notice that
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ofi* canbe related to the scintillation parameters T, p and fo lor a specific loop order and

bandwidth through Equation (6.2-2).

-50

-60

-70

e
!

-ôd
,oIÀ
Êo
Eo

Êq

o
o
Ë

F

0.02 0.03 0.04 0.05 0.06

Phase e¡ror variance (radians2)
0.03 0.04 0.0s 0.06

Phase error variance (radians2)
0.07 0.07

Figure 6.2-1: Probability of n bit error (left pønel) ûnd a word error (right panel) as a function of the

phøse error aariønce, ofi*,for afirst order loop withT=20ms, Cf No = 41.5dBHz and Bn=2H2.

The results presented in Figure 6.2-1. suggest that phase scintillations have a relatively

minor effect on the process of demodulating the navigation data. Even when the phase

error variance is near the carrier loop tracking threshold, the probability of a word error is

only 0.1'/" (-30d8) and the probability of a word error in any of the first three subframes is

approximately 3% (30P.). As will be shown in the next section, these are much smaller

than the corresponding probabilities under amplitude scintillation conditions with 
^Sa = l.

6.3. The impact of amplitude scintillations on

navigation data

In this section, the effects of amplitude scintillations on the bite error probability will be

examined under the assumption that phase scintillations are absent (ie, Qq = Qp = 0).

Under quiescent signal conditions, Q" is extremely small and the simplifying

approximation cos(pr)=t can be made. However, when amplitude scintillations are

present, occasional deep fading can result in a significant increase in the thermal noise

contributions to @r, particularly when the tracking loop bandwidth is wide. Consequently,

170



both the amplitude, À, and the phase error, Q",will, become random variables. X6 and

X1 can therefore be represented bY

where 7 i, Nukugami-m distributed (Equation (2.1-S)), nyp isdistributed N(0,o,) and @"

is assumed to follow the Tikhonov PDF. In this analysis, it is assumed that the effects of

the pre-detection filters on the amplitude are negligible (ie. f. = A, where ,4 is the signal

amplitude prior to filtering). For amplitude scintillations, the Tikhonov PDF is considered

to be a reasonable choice as the phase errors are driven entirely by white, Gaussian

thermal noise. The effective SNR for the Tikhonov PDF is given by p"=tf +ofir, where

ort,, is a function of. Z. andis given by (from Equation (3.3-9))

Xo = -Ã"os(Qr)+ nn

xt = Ãcos(Qr)+ n,,

oî, ø)= oî, Ø)= jlr' V,n)' f *

(6.3-1)

(6.3-2)

(6.3-4)

(6.3-5)

(6.3-6)

For a first order loop, this reduces to (from Equation (3.3-13))

ol,(Ã)="î,(z)=&[*. -"Ífu'j ,6i-r)

where Z.* = Àf e, is the normalised signal amplitude, and g¡ = gl 
^2 

is the normalised

AGC gain factor. These equations assulne that the bandwidth of the amplitude

scintillations is small compared with the nominal loop noise bandwidth 4. fn" PDF of

X¡ is givenby

fro
''f , * 

^r",r(* 

¡,0, n\ f ,,lznllù ¡ z@)d ç. d t("0 )
-n12

J
0

where

f xolo,,À("olq,n)= N(-Acos(E)o, )

is the conditional PDF of Xç given @, and 7. Alto
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is the conditional PDF of @, given Ã witl- P" = 4 , and
+ofu\e)

A>0 (6,3-7)

is the Nakagami-m PDF for amplitude. The probability of a bit error is then (from

Equation (6,.1-5))

f*oGo\dro

'' 
i, * 

^*,rG 
olq, o\ f ,"lz Ølù t z(¡þ ç.d A. dx,

1i,,, 
^røIo)r, 

6{ 
ir.,¡,",,G, 

lr, o)*, 
] 

d'lp dA'

-nl2

j
0

'" 
=j

0

=J
0

=J
0

By substituting the appropriate PDF expressions from Equations (6.3-5) to (6.3-7) into

Equation (6.3-8), the probability of a bit error becomes

(6.3-8)

6.3-9)

(6,3-10)

P"=
J

exp(p"cos(zg)) 2*m ¡2m-l
xIo(p") \m) );""[#)*'^0

,vl2

J
-n12

.(A

mÃ2
-=

(A">

Although a closed form solution to this integral is difficult to obtairy a numerical solution

can be produced for a given nominal (undisturbed) carrier to noise density ratio and noise

bandwidth. To obtain a numerical solution, it is convenient to replace the dummy variable

A with a variable ¿ which represents the instantaneous carrier to noise density ratio of

the satellite signal. By making the following substitutions

A= rl2N"p"

a n2 = N,lT
(Ã') =zcf No * N,

where Cf N, is the nominal carrier to noise density ratio, the following expression can be

obtained for the probability of a bit error

P=Î
"J

0

nl2

J
-nl2

_ mPo

CI N"

t72

)i*"Un "o,(e)\aE.ap"
(6.s-11)



In Figure 6.3-1,, P" is plotted as a function of the intensity scintillation index S¿ ( = tl*' )

for a first order loop with T=20ms, ClNo= 41.5 dBHz and Br=ZHz (upper of the two

curves). In this case, the AGC is assumed to be ideal (ie. g¡r = Z,*t ), and the effective loop

SNR is given by (from Equation (6.3-3))

1

C

rp3

If it is assumed that the phase errors are negligible (ie. cos(@r)= I ), the PDF of X6 reduces

4Bn
1l

-I
AN" 2T Cf No AN'

f ,o G ò = I r rolr\ olo\ ¡2';-\at

(6,3-12)

(6.3-13)

rc.3-14)

(6.3-15)

to

0

The probability of a bit error is then

P"= If*o!o\a*o

J
0

f *oøGol¡\fi(.l.\al..a,o

)I'*"Um\or.

0

=J
0

_l_J
0

_ mPo

CIN.

Wojnar 11021, demonstrated that this integral could be expressed in terms of an incomplete

Beta function ratio as follows

=!I,l@*o)(*,112)

where a = T.ClNo , þþ,b) is the Beta function, Bn(a,b) is the Incomplete Beta functiory

and l,(a,b)= Br(a,b)f Þ(a,b) is the Incomplete Beta function ratio (see for example

Gradshteyn [37]). In Figure 6.3-L, the lower curves represent P" obtained from Equation
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(6.3-15) under the assumption that the phase errors are negligible. These curves show that

for a narrow bandwidth receiver (in this case 2Hz), the direct effect of amplitude

scintillations on the probability of a bit error is far more significant than the effect of an

increase in the level of thermal noise in the feedback path. For wider noise bandwidth's,

the contributions to P" from phase errors in the feedback path becomes more significant

but are still relatively small (see Figure 6.3-2).
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Sa for T = 20ms, Cf N, = 4L.5dBHz ønd Bn= 2Hz. The upper curues represent a situøtion in

which the phøse errlrs høae been included (Equøtion (6.3-11)). The lower atrues represent ø

situøtion in which they høae been ignored (Equation (6.3-15)).
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So far, only the effects of an ideal AGC have been considered. In order to account for the

effects of a non-ideat AGC (either fast or very slow), the linear model variance expression

(Equation (6.3-3)) must be modified to include a non-ideal AGC gain factor, g¡¡. Flowever,

as shown in Section 3.3, when the loop is only subject to amplitude scintillations and

thermal noise, a non-ideal AGC will result in smaller phase tracking errors. Therefore, the

phase errors will have even less of an effect on the bit error rates than has already been

discussed. However, this is not necessarily true when the loop is also subject to phase

scintillations as its ability to track phase variations will be impaired.

6.4. The combined effect of scintillations on

navigation data

Whery as is normally the case, amplitude and phase scintillations are present together,

their impact on the navigation data can be found using Equation (6.3-11), but with o/"

based on Equation (3.3-8) rather than Equation (6.3-2). Again, this assumes that the

Tikhonov PDF is a valid choice for the phase error density function (ie. it assumes that

p = 2). From Equation (6.3-11), the bit error probability is given by

exp(p"cos(zrp)) m' m-l
_ mPo

CI N.
(6.4-1)

nro(p") ' f@).cf N,'
nl2

J
-nl2

P" =i
0 )i*"Un"o"(ç)\aç.ap"

," = ffi and oî,(Ã)=Îl1 - 
"'V,À)' 

r roU)*ln'(r,rl' +)* fromwhere

Equation (3.3-8). For a first order I.Q Costas loop, this becomes

"î,(z)=i_ f *(f,Ã*'ls*l
.f' T

.df +
Bn

CIN.
1

'(f,' 
* f'Yt' 2T Cf N"À*'s* rc.4-2)

(6.4-3)

For an ideal AGC (or a fast AGC with a large Cf N, and, 54 <lf Jr),this reduces to
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In Figure 6.4-1, tine probability of a bit error is plotted as a function of Sa and o$* for a

firstorderloopwithanidealAGC,T=20ms, Cf N,= 41,.5dBHzand Bn=2Hz.Notethat

o$* canbe represented in terms of the phase scintillation spectral parameters T, p and. fo

for a given loop order and bandwidth.
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Figure 6.4-1: Probøbility of a bit error (left panel) and a word error (right panel) as a function of

Sa ønd o2r* for T = 20ms, Cf No = 41.5dBHz and Bn= 2Hz.

It is clear from Figure 6.4-L that even trnder very strong amplitude and phase scintillation

conditions (ie. ,Sa = I and oQ* = oO"lrn), the probability of a word error in the navigation

data is only a few percent. Because of the high level of redundancy in the navigation data

(both within the navigation message and between satellites), it is unlikely that this level of

impairment will have much of an impact on a tracking GPS receiver. Indeed, the complete

loss of the navigation data will only affect GPS operation if the outage is long enough for

the ephemeris data to be significantly in error. As the ephemeris data can be regarded as

being accurate for many tens óf minutes or more/ short losses of a few seconds to minutes

would be inconsequential to a receiver (under sever scintillation conditions, loss of code

and carrier lock would be of more importance). However, navigation data errors may

affect the process of downloading almanac data from a satellite during acquisition, thus

extending a receiver's time to first fix.
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6.5. A note on word error probabilities

An implicit assumption in the analysis so far has been that the amplitude scintillation

waveform remains approximately constant for the duration of a navigation data bit (ie. for

20 ms). Based on a knowledge of the typical fluctuation rates of amplitude scintillations, it

is expected that this assumption will be valid under most scintillation conditions.

Word error probabilities were calculated by assuming independence between the bit error

probabilities of successive data bits. Consequently, from Equation (6.1-7) the word error

probability is given by

P* =l- (r - p,)'o (6.5-1)

where P, is the average bit error probability. As the bit error probability is conditioned on

the amplitude, this assumption implies that the amplitude is independent between

consecutive data bits. As explained later (see Section 7.3.3 on acquisition) this in tum

implies that the amplitude scintillation waveform must be fluctuating at a very rapid rate.

However, depending on the cutoff frequency of the amplitude scintillation power

spectrum3, f", itis known that the amplitude waveform may vary quite slowly in relation

to the navigation data. For a slowly varying waveform, there will be fewer, longer

duration deep fades over a given interval of time. Therefore, the occasions during which

the bit error probabilities are at an elevated level are likely to be clustered and associated

with these longer duration deep fades. As the loss of only one data bit is required for the

loss of a word, it is expected that this condition will reduce P, somewhat.

To test this hypothesis, it is assumed that the amplitude remains approximately constant

for the 0.6 seconds duration of a word, but may vary between consecutive words (in fact,

this result will be the same if the amplitude is assumed to remain constant for longer

periods of time). The average word error probability is then

(6.5-2)

t f" is a function of the satellite-receiver geometry and the ionospheric drift velocity (see

Appendix G).

177

",, 
= Ï[r - tr - ¿(n)T 

o]h|,l.\oo

0



where p"(a)= 
Î ¡*Arirlo\d*o =;"r"[å) is a conditional bit error probability

Replacing A with po gives

= 
ï['

P*
mPo

CI N.
(6.5-3)

In Figure 6.5-1., P* is plotted as a function of ^la for T=20ms and Cf No = 41'.5dBHz using

both Equations (6.5-1) and (6.5-3). It is clear that by assuming a slowly varying amplitude

waveform, the word error probability is reduced by as much as SdB for values of ,Sa near

to one. In practice, it is anticipated that the actual values of. P* will lie somewhere

between these two curves.
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Figure 6,5-1: Probability of ø word error as ø function of Sa for T=20ms and Cf No = 4L.5dBHz.

The upper curae represent a situntion in which the amplitude is øssumed to be independent between

successiae T second epochs. The lower curae represent a situøtion in which the amplitude is

assumed to be constant during ench word.

Although this approach could be extended to include the effects of amplitude scintillations

on a subframe, the much greater length of a subframe (10 words = 6s) means that the

assumption of a constant amplifude is probably no longer valid.
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6.6. Conclusrons

In general, phase scintillations have much less of an effect on the navigation data than

amplitude scintillations. When phase scintillations are at the tracking threshold of the

carrier loop, the word error probability is less than 0.L%, compared to approximately 4%

when S¿ = I (assuming a nominal, quiescent GPS signal level and rapid amplitude

fluctuations). However, f.or a very slowly varying amplitude waveform, the word error

probability can fall to only 1"/o for S¿ = 1 under the same quiescent signal conditions.

Consequently, even under conditions for which the carrier loop is likely to lose lock, the

word error probability will onty be a few percent, assuming that amplitude and phase

scintillations are uncorrelated.

It is considered unlikely that the small error rates associated with scintillations will cause

much of a problem for GPS for the following reasons:

o There is significant redundancy within the navigation message, particularly with regard

to the ephemeris data and clock correction factors which are repeated once every frame

(ie. every 30 seconds).

o There is also significant redundancy between the navigation messages transmitted by

different satellites. Each satellite transmits the same almanac data which contains

health, ionospheric correction factors and low precision orbital information etc. for all

of the satellites in the constellation.

. As much of the navigation data consists of slowly varying correction factors, loss of the

navigation data will only cause a gradual degradation in navigational accuracy.

Nevertheless, during the acquisition process, navigation data errors may have a more

significant effect, particularly is the receiver is tracking only one satellite and is attempting

to download almanac data following a cold start.

t79



180



Chapter 7

Acquisition

In this chapter, the effects of scintillations on the acquisition performance of a GPS receiver

is examined. In Section7.2, the effects of scintillations on the probability of detection and

the probability of false alarm are investigated for a fullcode period, square-law, Ne¡nnan-

Pearson type detector. It is shown that both amplitude and phase scintillations have a

negligible effect on the probability of false alarm, but that amplitude scintillations can

significantly reduce the probability of detection. The effect of this reduced probability of

detection on the mean time to acquire the GPS signal is then examined in Section 7 3 for a

single dwell, serial search strategy for which there is assumed to be no a priori information

about the code phase. This is then extended to a situation in which the correlation time of

the amplitude scintillations is much longer than the time required to execute one pass of

the search domain. The results show that amplitude scintillations increase the mean time

to acquire, and that the effect is more pronounced for longer amplifude correlation times

(ie. for slower scintillations).

7.1. Acquisition model

Acquisition is the process of synchronising a local reference signal to the received GPS

signal prior to closure of the code and carrier tracking loops. The process involves a two

dimensional search for the GPS signal in both Doppler frequency and code phase.

As shown in Figure 7.1.-'!., tlne acquisition detector is essentially a square-law detector for

the GPS signal where the test statistic is given by

)
+Q? (7.1-1)

The output of the detector, Z, is compared with a threshold, rl, to determine whether a

satellite signal is present and whether it is correctly aligned with the reference signal. If the

threshold is exceeded, it is assumed that both the code delay and carrier frequency of the

reference signal are sufficiently close to those of the satellite signal for tracking to begin.

k

i=l
z=L

k
I
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Figure 7.L-1: A squøre-law acquisition detector for a GPS receiaer

Usually, when the reference is incorrectly aligned, it is assumed that the signal produced

at the output of the code and carrier mixers behaves like zero-meary white Gaussian noise.

However, because correlation sidelobest may be present, particularly during C/A-Code

acquisition, this model is strictly not correct and a more accurate approach is to assume

that a signal of much lower strength is present under these conditions l92l.In the analysis

that follows, the white Gaussian noise model will be used predominantly, and the error in

this model will be discussed in Section 7.2.2.

7.2. Detection and false alarm probabilities

For an IF signal of the torm A(t)n(r-r)a(t-ø)cos(ar¡¡t+QQ))+n(t) and a reference signal

of the form 2pQ-t).or(ôor+ø), ,n" I and Q signals immediately after the pre-detection

filters are given by l20j

Z

(7.2-1_)

where ú)e=o)rF-ôtu is the error in the frequency estimate, te=T -f is the error in the

code delay estimate, QrQ)= AØ- ô is the phase error, and R(r) is the code autocorrelation

function (Equation (4.1-1)). These two expressions assume that the amplitude, Z,(t), and

I Correlation sidelobes can result from correlation between the reference signal and another satellite signal, or

between an incorrectly aligrred reference signal and the desi¡ed satellite sigrral.
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the phase, QQ), "Í 
the GPS signal do not change appreciably over the T second integration

period of the filters, and that the navigation data does not change sign. As T is typically of

the order of a few ms, these conditions are usually met, even in the presence of

scintillations.

For a typical GPS receiver, the separation between bins in the Code/Doppler search

domain is of the order of 1/z a chip and 3lØT) Hz respectivety [20]. T can be made quite

small for strong satellite signals (eg. Lms for a 750 Hz bin spacing), but must be large for

weak signals (eg. 10ms f.or a 75 lHzbín spacing). Increasing T to account for weak signals

will result in longer search times, even if the dwell time in each bin, kT, is kept constant, as

the number of Doppler bins required for a given frequency uncertainty will increase. As

the signal strength is rarely known a priori, assumptions must be made about the receiver

antenna gain pattem and the satellite signal power etc. in order to obtain a good estimate

of the signal strength. Flowever, such assumptions are unlikely to take into account effects

such as obscuration and attenuation by nearby obstacles, nor the effects of scintillations.

In the analysis that follows, it is assumed that if the correct bin is selected in the

Code/Doppler search domain, Í, and ø, will both be zero.If the bins are separated by

r¡ chips and ar¡ radians/s, the maximum error in this assumption will be

(7.2-2)

To account for this error, the GPS signal power can be multiplied by a correction factor,

€2, prior to calculating the probability of detection. If, al¡ =2n*314T radians/s and

r t = % a chip, this correction factor will be -4.6d8'

By assuming @e =Íe = 0, the I and Q samples produced at the output of the pre-detection

filters for a correctly aligned reference signal can be represented by

€=WnGolz)

I ¡ = Zicos(po )+ r¡
Qi =Ã¡sin(P",)+nqi

(7.2-3)

The navigation data, dQ -r), has been ignored in these expressions as it will be eliminated

by squaring in the subsequent stage. When the reference signal is incorrectly aligned, it is

assumed that 1; = n¡ àrrd Q¡ = ne¡.
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The probability density function (PDF) of the test statistic, Z, in the presence of noise only,

or in the presence of an incorrectly aligned signal (Hypothesis I10) is given by the central

chi-squared distribution wíth2k degrees of freedom [84]

rz¡nol)=l#lr#..{- #) z>o (72-4)

where, an' = N"lT is the thermal noise variance on either the I or Q channels and k is the

order of the post-detection integrator. The PDF of the test statistic in the presence of a

correctly aligned satellite signal (Hypothesis ¡4 ) is given by the non-central chi-squared

distribution with2k degrees of freedom [84]

z>0 (7.2-5)

where A = 6n 2T ClN" is the signal amplitude immediately after the pre-detection filters,

and 1¡-1( ) is tfre modified Bessel function of the first kind of order k-1,.If a detection

threshold of 4 is chosen, the probability of a correct detection is given by

frlurQ\a"
(7.2-6)

r 4n, Q) = rþ, l"lr 
-"'', 

r .(4)"-(- #)

,þ"1*lo-"'',r'(4)"-'(-W)-

po=l
n

=J
tl

and the probability of a false detection (false alarm) is given by [8a]

.f4noQ).d"Pr=J
n

=J
n

.*[
k-l

a zk

r(r) 2o )-
(7.2-7)

')

k-l
=.*p(-r?')I

j=o

q'j
jt

where ¡1'=kql2o,z . A" the random variables, l? +O?, generated at the ouþut of the

square law detector are independent, the Central Limit theorem can be invoked for large

values of k to allow Z tobe approximated by a Gaussian distribution. The corresponding

probabilities of detection and false alarm are then [84]
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(7.2-8)

P¡" =Q(Þ) (7.2-9)

signal to noise ratio.

Equations (7.2-8) and (7.2-9) (or (7.2-6) and (7.2-7)) can be used to select the design

parameters k and 4 once the required values of P¿ and P¡o have been chosen for a given

application. on2 canalso be adjusted through the pre-detection integration period, T, but

is restricted somewhat by the presence of navigation data and by uncertainties in the

carrier Doppler.

From these equations it is clear thal P'a is not a ftrnction of the GPS signal characteristics,

and so will not be affected by scintillations. However, P¿ is a function of the GPS signal

amplitude, 2,, and so will be directly affected by amptitude scintillations. In the presence

of amplitude scintillations, the PDF of the test statistic Z under Hypothesis -F11 becomes

conditional on the amplitude, 2,, and. can be represented by î4r,r\fe). fn" marginal

PDF of zln, is thus

f zg, Q) = ! f z¡n ¡z?l¡\ rz(n)ae (7.2-L0)

where Q is the Gaussian probability integral, U =A(#-r) ""a 
y =Ã'lzo,2 is the

0

where fZ(jl^) is the Nakagami-m distribution for amplitude (Equation (2.1-8)). The

average probability of detection is therefore

f 
''vz?W\tz6tï

P¿=J
n

=J
0

=J
0

tf4,,,z?lo\."
n

(7.2-L1)

ro@\¡i(x).at

(n)ae
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where p, (e) is the probability of detection as a function of the signal amplitude and can

be obtained from either Equation (7.2-6) or (7.2-8). In Figure 7.2-\, Pd is plotted as a

function of ,Sa ellJ;) for five values of Cf N" and for P¡o=0.01%o (using Equations

(7,2-8) and (7.2-9)). It is clear from this figure that the probability of detection decreases as

,S4 increases, and that the effect is more pronounced for smaller values of ClN,
Consequently, satellite links that penetrate the peak of the ionospheric anomaly at low

elevation angles are likely to have the poorest acquisition performance (Cf N" is likely to

be lower and 
^Sa 

larger under these conditions).

I
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Figure 7.2-1: P¿ as a function of Sa for fiae ualues of ClN" (32 to 41dBHz in 2dBHz stEs),

T=l,ms, k=20, and Pn =0,0L%.

By inverting Equation (7.2-8) and solving for the signal to noise ratio, an equivalent C/No

for quiescent ionospheric conditions can be obtained that will produce the same

probability of detection as Equation (7.2-11).If a is defined as the inverse of Equation

(7.2-8) and we Iet P¿ = P¿,wehave

0.4
S4

(7.2-12)

where y' is the equivalent signal to noise ratio and B is constant for a given P¡ . Solving

for 7' gives

186



T a2+þJl+ a2 +2þ k+k

n ri = nc¡.or(ø", ) + r?rr sin(øê, )

7t9i = ncísin(or¡)- n", cos(oei)

k (7.2-13)

(7.2-14)

from which the equivalent C/N, can be obtained using CIN:=T'|T.IîFigwe 7.2-2,

CIW', is plotted as a function of 
^Sa 

using the same five values of Cf N, that were used in

Figure 7.2-1.ft is clear from this figure that CIN'. decreases as .Sa increases and that the

effect is more pronounced for large values of Cf N 
" 

.

30

0.2 0.8

Figure 7.2-2: Equiaalent Cf No as ø function of Sa for fiue aølues 0f ClN. (32 to  )dBHz in

2dBHz steps). T=7ms,k=20, and P¡o=0.0'L%".

7.2.1,. Phase scintillation effects

lî. r, and ae ate assumed to be zero when the correct Code/Doppler bin is selected, the

test statistic, Z, cantbe represented by Equation (7.1,-1) with /; and Q¡ given by Equation

(7.2-3). By making the following substitutions

38
N

É
9ro
oz
(J
234
o)
ct

=-Zz
r¡l

0.60.40
S4

where nr¡ ànd fir¡ ãte uncorrelated, zero-mean, baseband Gaussian noise processes with

variances of o n2 = N o lT , the test statistic becomes

1.87



(7.2-15)

In this form, it is clear that the carrier phase (and therefore phase scintillations) do not

affect Z and so will not influence the detection process for acquisitiory provided that the

phase does not vary significantly over the integration period of the pre-detection filters. A

measure of the phase variation over the integration period of the filters is the expectation

of the phase variance over that period. This is given by

.du (7.2-16)

t =IàQ,+n",1 +n!,

where ,r=I 
,J!r(u\a, 

isthe average value of Qp(r) over a T second period (which is

= i 'Jlt{o 
,(,)'}- zr{o oØþ-o}* n{ç o'Na,

t-T

,Ir_
+ EIQp

where nrn(o)= Jsrr(ndf is the power in the phase scintillations prior to filtering,

=no(o)-,tlrr+

aQo, (,Qp

t

Jt
t-T

1

T
E

')

) arr

also the output of a T second integrate and dump filter which operates directly on the

phase). Equation (7.2-16) can be simplified as follows

o oo,
)

\a"
t

Jo,fu

(7.2-17)

t-T

= nr, (o)- E{l.r'l}

E{l,o'Þ Ïpøl' .sae(f\df is the power in the phase scintillations after a T second

integrate and dump filter which operates directly on the phase, and

G(f)=sinc(/)exp(- ¡øf) is the transfer function of such a filter. Thus,

o ro,'= j [t -lc(¡ì'lsro U).ar
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This can be rearranged to obtain a threshold, T, below which the approximation can be

considered to be v alíd, aiz

2ooo,
Tro

.t
(7.2-19)

snc(1fT)z
I

(f"' * f'Yl'
df

where oror'lrois a threshold variance.

19.46
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Eigure 7.2-3: Threshold T as a function of f" for a threshold aariance of 1 radz, T=10 ms and

P=2'5'

In Figure 7.2-3, tlrre threshold spectral strengtþ T, is plotted as a function of fo fot a

threshold variance of. L radz, T=L0 ms (a typical upper limit) and p=/.5.It is clear from this

figure that the spectral strength must be enorrnous in order for phase scintillations to cause

a significant deviation in the carrier phase over a typical filter integration period. By

comparison, a typical large value for the spectral strength parameter in equatorial regions

during high solar activity is about -20 dBW /Hz (ie. about 40dB below the values given in

Figure 7.2-3). Consequently, for the acquisition model described earlier, the effects of

phase scintillations can be ignored.
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7 .2.2. Correlation sidelobes

The impact of correlation sidelobes on the probability of false alarm can be found by

obtaining a new P¡o based on the probability of detection equation (Equation (7.2-8)),but

using a signal level that is significantly less than the nominal GPS signal level. For the GPS

Gold codes (the C/A-Code), the largest sidelobe is approximately 22dB below the

correlation peaþ although this can vary by several decibels depending on the Doppler

offset [87] & [47]. Consequently, the worst case P¡o will be associated with a very strong

satellite signal that is producing a sidelobe at the maximum level.

0.1

0.08

^0.06ñ
d
Âi

0.2
S4

0.60.4 0.8 I

Figure7.2-4: P¡, for øpeaksidelobeleael of -22d8 as afunction of Sa for fiue anlues of ClN,

(32dBHz to  )dBHz in 2dBHz steps). T=l.ms, k=20, ønd the design P¡o=0.01"/o.

In Figure 7.2-4, the average false alarm probability, Fp, obtatned from Equation (7.2-8)

using the maximum sidelobe level is plotted as a function of ,Sa for the same five values of

Cf w, that were used in Figure 7.2-1, The threshold, 17, lnas once again been chosen for a

design Pp of 0.01% based on the assumption that the input to the detector is white

Gaussian noise when the desired satellite signal is incorrectly correlated. It is clear from

these plots that Pfà increases as ^Sa increases, and that the effect becomes more

pronounced as the GPS signal level increases. This is because enhancements in the

sidelobe levels caused by amplitude scintillations only become a problem when the GPS

signal level is relatively large. For small signals, the sidelobe energy remains below the

190



noise floor at the ouþut of the pre-detection filters, even when the signal level has been

signif icantly enhanced.

The results given in Figure 7.2-4 are based on the maximum sidelobe level which will only

occur infrequently,Inls7l, the cumulative probability distribution function of the sidelobe

levels is given for the GPS Gold codes for a range of Doppler shifts from 0 to + SkHz. This

distribution function is obtained by averaging the results for all 1023 Gold codes in the

GPS family, lor all possible code time offsets, and for all possible code pairs. By

differentiating this function, the PDF of the sidelobe levels, 
"fr 

(t), can be found (see Figure

7.2-s,Ieflpanel for the case where a Doppler shift of a few kHz is assumed).

0.1

E0.s
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5 6
s4

0.80602
xl0-

Figure 7.2-5: CDF ønd PDE of the sidelobe leaels for the GPS Gold codes (left panel) and the

corresponding Fn Oight pønel). T=lms, k=20, ønd the design Pp=0.01-"/o. A Doppler shift

between the satellite and locøl codes of n few kHz is assumed.

The average probability of false alarm for a single interfering signal can then be obtained

by averaging the probability of detection expression over both the amplitude (to account

for scintillations) and the sidelobe levels as follows

F, = [ I ro G * 4. fzçq\ ¡, (s\a,t.as (7.2-20)

00

where fZØ) is the Nakagami-m PDF for a nominal GPS signal, and s is the sidelobe level

(s and A arc independent random variables). When Equation (7.2-20) was evaluated for

the five values of C f N " used in Figure 7 .2-4, the effects of sidelobe s on P¡o were found to

be negligible, even at high ,Sa (see Figure 7.2-5, right panel). However, as the sensitivity to
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sidelobes and scintillations will depend very much on the design parameters P¡o , k and T,

this result really only applies to this particular example. In addition, these results assume

that only one interfering signal is present. In reality, there may be up to L2 satellites visible

(possibly more in the future) which will increase the probability that a strong sidelobe will

be present.

Van Dierendonck l92l suggests that the detection threshold, Tl, should be adjusted to

account for the worst case sidelobe level while maintaining P¡o at a desired level. This can

be achieved by solving the probability of detection equations ((7.2-8) or (7.2-6)) for 4 with

Pa = P¡oloo,* 
^ndusing 

a signal level that corresponds to the maximum sidelobe level. If

this is done, the tracking threshold, r7, wiLl be substantially larger and the effects of

sidelobes and scintillations will probably be negligible.

Note that because of the extremely low sidelobe levels for the P(Y)-Code, the effect

outlined above will not be apparent during direct P(Y)-Code acquisition (at present, direct

P(Y)-Code acquisition is only available to the US military).
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7.3. Acquisition times

In the previous sectiory the probability of detection and the probability of false alarm were

calculated for a single cell in the code phase f canier Doppler uncertainty region. The

detector type used in this analysis was a fixed integration time, square-law detector based

on a Neyman-Pearson detection strategy. In this section, the time required to identify the

correct cell will be examined for a single dwelll, serial search strategy for which there is

assumed to be no prior information about the code phase. It will also be assumed that the

code Doppler is zero, and that the search is only conducted in the code domain (ie. the

frequency of the replica carrier is assumed to be approximately correct).

7.3.1,. Acquisition search strategy

In the absence of ø priori code phase informatiory a serial search begins at the start of the

uncertainty region and progresses through each cell in sequence until a successful

detection is made. If a detection is not made before the end of the region is reached, the

search returns to the beginning and is repeated. If a false alarm occurs/ time will be

expended in order to verify that the detection is incorrect before the search can continue.

This is usually referred to as uerificntion time and may include the time required to re-run

the detector on a particular cell, or the time associated with a failed attempt to revert to

code tracking mode. The total time required to make a correct detection is therefore a

function of the time spent in each cell (the dwell time, Ta =kT ), the number of cells in the

uncertainty regiory N¿, the probability of detectiort, Pd, the probability of false alarm,

P¡a , and the verification time, Tu = KrT¿ where K, is a factor greater than one.

In the absence of scintillations, the mean time to acquire, TecA, and the RMS acquisition

time, o pg, for a uniform serial search are given by [8a]

(7.3-1)

1 Single dwell:The detector's decision is based on a single, fxed time observation of the received signal plus

noise. The alternative is multiple dwell nwhich multiple observations are used to verify the first observations

L93

Ttce = Ncra(*,rr-t[æ]



a.qce = N"To(K.,rro +t 1l
-L- _-,P} 

Pd
(7,3-2)

l2

In Section 7.2, it was shown that when scintillations are present, the probability of

detection becomes a function of the signal amplitude, 7 1if siaetobes are ignored, the

probability of false alarm will be unaffected by scintillations). The average mean time to

acquire and the RMS acquisition time must then be found by taking an ensemble average

of these two parameters over all possible realisations of the amplitude. In order to do this,

assumptions must be made about the statistics of the amplitude over the time period

required for acquisition. In particular, the joint statistics of the amplitude at time periods

separated by NsT¿ seconds must be determined (ie. the time between successive re-visits

to the correct code phase cell, assuming that no false alarms have occurred).

In the following sections, it will be assumed that the amplitude is approximately constant

during the relatively short dwell tirne, T¿, in each cell, but that significant variations may

occur between the start and end of the acquisition process. As before, it will be assumed

that these variations are described by the Nakagami-m distribution.

7.3.2. Mean time to acquire

This analysis closely follows that given by Peterson & Ziemer 1721, but has been modified

to account for variations in the signal amplitude between successive re-visits to the correct

code phase cell. In order to keep the time between re-visits, 7r, constant, it will be

assumed that false alarms do not occur, and so Tr=NçT¿. The justification for this

assumption is that most acquisition systems are designed to have a very small Pp such

that K,P¡o <<1. Therefore, from Equations (7.3-L) and (7.3-2) it is clear that to a first

approximatiory the mean and RMS acquisition times are largely unaffected by false

alarms. As P¡¿ is also not affected by scintillations (if sidelobes are ignored), it is expected

that this approximation will also hold under scintillation conditions. The error in this

approximation will be discussed further in Section 7.3.4.

If the ztn cell is assumed to be the correct code phase cell, and there are f missed detections,

then the total acquisition time is given by
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Tu"oØ,i)=nT¿ + iN¿T¿ (7.3-3)

where the first term represents the time required to detect the correct cell on the final

(successful) pass, and the second term represents the time expended in the i unsuccessful

passes. The probability of this event occurring, assuming that there is no prior information

about the location of. n,ls given by z

(7.3-4)

r- 'l

where Zr¡=lÃr,Àr-1,Àr-2,...,Àr-jl is a vector that represents the amplitude of the GPS

signal at the times during which the acquisition detector is testing the correct code phase

cell (ie. Ã,-i = ÃQr-,) where /"-¡ is the time corresponding to the (7' -i+l)th pass through

the correct cell, and ts-i-ts-¡-r=Tr). As a function of Ã,r, ttre mean time to acquire is

therefore

n(,, ¡ lZ,,) = A nt4 IJI | - ro çÀ,-¡l

T uraØ,¡) = n,,¡ þ n"o Ø, ìlZ o\
Nc-

=f¿'n"nØ,¡)+þ,¡12,,)
n=l j--0

By taking the expectation over all possible realisations oL Ar¡, this becomes

Trce = tZ,,Fu"nØ)I

= åàt uo þ n"o Ø, i)p, þ, ¡ lz,,)\

Substituting Equations (7.3-3) and (7.3-4) into the above expression gives

,} +1,_¡TrcQ )

(7.3-5)

(7.3-6)

(7.3-7)

* "â,r rrþ, ra iú l, - rora, r{l

0

'By deruritio", fl/(;)= t
i=1
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In order to obtain a closed form solution to this expression, it is necessary to simplify the

following two terms

rermr = 
àu nof+ rz,>¡1, - ror+-, i{

r",*z=i, iruofrorZ,,[ [r - rrrL,-)\

(7.3-8)

(7.3-9)

These terms can only be simplified once the joint statistics of the amplitude scintillations

have been established. This will be discussed next.

7.3.2.I. Amplitude correlation times

The correlation time, Tçy , of amplitude scintillations is a function of both the Fresnel zone

radius, "o =,llrfl 3, and the relative velocity between the satellite ray path and the

irregularity structure (which in turn is a function of the irregularity drift velocity, the

receiver velocity, satellite motion and satellite/receiver geometry). Ts7 is typically of the

order of a few seconds, but may extend to a few tens of seconds if the ionospheric pierce

point tracks the irregularity drift [50]. For a receiver that is attempting to acquire the GPS

signal with no prior information about the code phase (ie. a cold størt), the number of cells,

N6', is typically of the order of 2046 (ie. 2 x the number of code chips in the C/A-Code

assuming a cell spacing of 1/z a code chip). For a dwell time of 20ms, this equates to a re-

visit time, T.=N¿T¿, of 4L seconds. Consequently, lor a cold start it is likely that the

correlation time of the amplitude will be much less than the time to re-visit the correct cell.

This situation is discussed in Section 7.3.2,2. However, if a receiver is re-acquiring

following a relatively short period of loss of lock (ie. a wørm størt), the correlation time

may be greater than the re-visit time. The re-acquisition times of modern GPS receivers

following a period of signal loss of greater than 1 minute are typically less than a few

seconds (GPS World, ]anuary 2000, pages 3Ç54), Consequently, for such receivers, T,

would be expected to be only a few seconds which may be less than Tç7 . This situation is

discussed in Section 7.3.2.3.

t h, isthe height of the ionospheric pierce point as discussed in Section 2.1
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7.3.2.2. Short amplitude correlation times

If it is assumed that the amplitude correlation time is much less than the re-visit time (ie.

during a cold start or in the presence of rapid amplitude scintillations), it is likely that the

individual amplitude values in the 7r, vector will be independent (see Section 733 for a

justification of this assumption). Consequently, the joint PDF of Z,¡ becomes the product

of the individual marginal PDFs as follows

fz,¡6,,Ã"-1, Ã,-2,...,Ã"-r)= h,6,)./r"-, (Ã*,)¡n-r6"-r) .'fÀ*¡(Ã"-r) (7.8-10)

where each marginal PDF follows the Nakagami-m distribution. The expectation

expressions within Equations (7.3-8) and (7.3-9) can then be simplifies as follows

Ez
4si

Pd 2,,

ï
0

i
0

tt - Pa(4,-¡)

(7.3-11)

J

T [ - 
"r(Ã"-,)]Aj 6,, ...,Ã,-,\oÃ, ...dÃ,-¡

i=l

(

(Ã")

j

)TI
í=l

Pd=j
0

P¿(Ã=j
0

" 
)t'I [t - po (Ã,ìbz, 6,\ . . fr*,(Ã"-, þÃ" . .. dÃ,- i

i=l

= n i,þ¿ {Ã" )}ÍI l, - u r, -,[", tÃ,-, l]]
i=1

- 
, 

- 
\i

= P¿ll- P¿ ï

This result assutnes that the amplifude scintillatiors are a stationary random process, and

so h = Ez,þo(Ã,)Ì= uroþo(Ão)I Consequently, Equations (7'3-8) and (7.3-9) reduce to

TermL= >Pr(-FoY (7.3-12)
j:0

Term2= \iFoçFry (7.3-13)
j--0

Substituting these two terms back into Equation (7.3-7) results in the following expression

(7.3-14)r *n = #f,1"à* í - p,Y . *,F*nt, - 
"; 

Y 
l
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This expression has the same form as that derived by Peterson & Ziemer [72] (ignoring

false alarms), except that the standard probability of detection has been replacedby P¿.

As shownbyPeterson &.Zierner, Equation (7.3-1,4) canbe reduced to

Indeed, as this result assurnes that T, is large enough for the amplitude to be independent

between successive re-visits, the additional verification time associated with false alarms

will not alter the statistics sf Zrj. Consequently, the effects of false alarms can readily be

incorporated to obtain (see Peterson & Ziemer for a justification of this step)

T,qce=!.*rrrlæl

= N"rrl+l ro, nrs" values of Nç and, P¿

Trce = Nrro(K,P¡o.t@l (7.3-16)

The percentage increase in the mean acquisition time as a result of scintillations is then

found by dividing Equation (7.3-1.6)by (7.3-1) as obtain

(7.3-15)

(7.3-17)

where P¿ and P¿ are the probabilities of detection in the presence of scintillations and in

the absence of scintillations respectively.

1.5

0.2 0.4 0.6 0.8
S4

Figure 7,3-1: Meøn øcquisition time røtio as a function of Sa for Cf N" =32 to 40 dBHz. T=lms,

k=20, P¡o=0.01%.
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In Figure 7.3-l,Equation(7.3-17) is plotted as a function of ^Sa 
for five values of Cf N".

The worst case increase in the mean acquisition time is by a factor of approximately two,

although this corresponds to quite a low quiescent ClN". However, at normal signal

levels (around 40dBHz) the increase in the acquisition time is relatively small, even under

strong scintillation conditions.

A similar argument can be used to demonstrate that the effects of scintillations on the RMS

acquisition time can be found by substitutrng P¿ in place of P¿ in Equation (7.3-2). Again,

this only applies to the situation in which Tçy is much less than Z, . The corresponding

RMS acquisition time ratio is therefore

o.tcalr"¡t

d,¿co 
lrro r.i't

Fo' -tz4 +tz
Po' -r2P¿ +12

=þ
Pd

(7.3-18)

In Figure 7.3-2, t}rre RMS acquisition time ratio is plotted as a function of Sa for the same

four values of Cf N, that were used in Figure 7.3-1. From these two figures, it is clear that

both the mean and the spread of the acquisition times increases'

2.5

1.5

0.2 0.4 0.6 0.8
S4

Figure 7.3-2: RMS acquisition time ratio øs a function of Sa for Cf N" =32 to 40 dBHz. T=Lms,

3.5

3

k=20, Pfo=0.0L'/o
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7.3.2.3. Long amplitude correlation times

If the correlation time of the amplitude increases, or conversely the re-visit time decreases,

it may no longer be valid to assume that the components of Àr, are independent. Under

these conditions, it is not valid to represent the joint PDF of Ãr, as the product of the

individual marginal PDF's, as in Equation (7.3-L0). The difficulty that arrises under these

circumstances is that because the joint PDF is unknowry the two expectation terms in

Equations (7.3-8) and (7.3-9) cannot be solved. Therefore, an expression for Façy cannot

be found. Indeed, if the joint PDF were known, it is likely that the complexity involved in

attempting to solve Equation (7.3-7) would be so high that a closed form solution would

be very difficult to find.

The approach used here to achieve an increase in the correlation time of the amplitude

while still allowing T,qcp to be solved in closed form is to simply repeat amplitude values

within the original sequence. For example, if each amplitude value is repeated once only,

the original sequence becomes

j, -lz; =V,,Ø,-t=Ã,-z\ Ã,-r, Ø,-t=Ã,-o\ z,-0, ...I
!¿-si - 

IZi =l(Ã, = Ã,-r\ Ã,-t, Ø,-z = Ã,.\ Ã,¿, Ø,-+ = Ã,-r\ I
with probabilítyr/z

with probabilityl/2

(7.3-20)

(7.s-19)

where now only every second amplitude value is independent (ie.

p6,,Ã,n)=o(Ã')r(Ã,-,) fo, lrltr).Based on this model, the joint PDF's of the

amplitude seguence become

i = r : n(Ã,, Ã,-r)= 
|oØ,-r)loø,)* 

a(7" - 4-, )]

i = 2 : p6,,Ã"-r, Ã,-z )= )oØ*r)lpØ,þ ø-, - Ã,-z)* oØ,-rÞ (¿ - 7"-, )
/- \j =3: pV, Ar-t, Ar-2, Ar-t)

= | oØ, -,) lp Ø,þ (Ã-' - z, -z)o Ø, -,) * oØ, -,þ (i" - Ã, -,Þ Ø *, - Ã, -r)]

etc.forj>3

where the notatio" pØ,) has been used in place of fr,6,) to i*prorre clarity, and ô( ) is

the Dirac Delta function [39]. The joint PDF can be generalised for arbitrary values of j b
give
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pØ,, ...,Ã,-j)r..,",,

i12il
A=l

1

2

,zr_r)

,')

pØ*,) ÞØ,-,0*,\A,-zq*p - Ã, 
-z q +t).fr , ø -r r*rÞ Ø, -, n u - r, -r r\

(7.3-21)

P\A,, , j odd

I plA,-
lrr,f il'rØ,-,nÞØ,-,*,-2,-zq)*a(4-t,-tf f,,iø'-o*,ÞØ,-,.-,,-,,-,\2

The sequen ce V-,¡ is wide serìse stationary and the marginal density functions, pØ,), ut"

again described by the Nakagami-m PDF. The autocorrelation function of À' ,, is given by

R(nr,)= øF,À,-,I
(7,3-22)

t- \ æ
A, A,_ n plA,, A i -n ) dAí. dA i-n

where n is an integer. As it has been assumed that amplitude values separated by more

than one sample are independent, the autocorrelation function reduces to

,R(o)= tþ'tT
R(nr,)= t{Ãl = @Y , lrl 'r

/- \ -
A¡ A¡ 4 plA¡, A¡ -r ) dA i. dAí-l (7.3-2s)

where ,R(0)>n(f,,)> R(nf,) as ,q'r@Y. Consequently, the correlation time of the

amplitude sequence is now between T, and 2f seconds (originally, it was less than {.

seconds).

The joint PDF of Ã' ,, lHquLution (7.3-21)) can be used to obtain closed form expressions for

Equations (7.3-8) and (7.3-9),, which in turn can be used to derive a simplified expression

for T6p. Expanding Equation (7.3-8) gives
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=1Î r,r,-,|o(2,,)lpØ,)* dØ, - 2,,-,)fú., ú,,-,
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termr =Ez,*þoØ,)lr*o(2,-,)*g(2,-,þØ,)*oØ,-,þØ,-rÞØ,-.)- ]Ì ei-24)

where Ev- =87,-,forj-+æ, ând O(Ã,)=lt-ro(Ã)] Ut taking account of the two
3Sæ :S.l

separate amplitude sequences ¡ Z,¡ (see Equation (7.3-19)), this can be reduced to

terml = *t O*lo\,)lt * 917,-,)* eØ,-,Y * oØ,-,Y eØ,-o)* eØ*,Y sØ*o! . ']Ì .

=+l

=;l

=;l

terml

It æ_{",6-,)[t 
* eØ,-,,)* eØ,-,þØ,,)* eØ,-,þØ,.Y + eØ,-,þØ,-,Y o(7,-, ). .]]

u" u 
rr *þ' 

(À,þ ø-, ) )= t a h Ø,)þ a -rþ o Ø, -r)I, Equation (7 .3 -25) becomes

(r*-4)l',und

(7,3-25)

for 7 -+ - . Using properties of the expectation suchwhere E-o =E-ro and E-¡ =E-rþ
4s- ^ tj Ls* a sj

Pd

i=0

o<Q2=

þ*

Fo *lpo. r,a]b.Alta"

Fo +lzPn -4llz-PolàO'

O{t.F *e"....".] + p¿ + prab.O{t *s'*0". 
".]]

where Q =l- Pa

s' = u{lr- poØ,)Tlr-zøo * r}
Poe = ø{r,@,)l- rrØ,)l}=n - rj

However, as

tt'=ij=o j=o t'-

(7.3-26)

J
0

[r-roØ)l oØ')ü, = n\A,)att =1J
0

we can say that
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Therefore, Equation (7.3-26) reduces to

I
Po +lzPo -Q)Þ-Fo

- ro'z

1
termL =

2Pa (7.3-28)

-l
This result is the same as that obtained for both the constant amplitude and the

independent amplitude sequence. In a similar way, Equation (7.3-9) can be expanded

using ttre f,, model from Equation (7.3-19) to give

2

þ,

{n

(2,)loØ*r)*roØ,-rY +3eØ,-z! oØ,-o)* aeØ,-r! oØ,-^Y. ]l +

Ø, -)loØ, -,) * 2 QØ, -,þØ, -r) * 3 QØ, -,þØ, -'Y + a QØ *,þØ, -'lf sØ, -,). ] Ì

(7.3-29)

By once again evaluating the two expectation terms, this expression reduces to

t"r-z = 1l
2L

_,I-rl

_ rf-tl

Q +zf +3øO' *4Q" * ...",.] . ,rllr+2Q +zt *+Ot * ."]]

l- - 
-i -,1urlU I(t * 2i)e,' * >j_02i er' 

)
+ PaQ oi,tr*2i)úi . iO *zìti

j=0 j=0

FoA * noQO *t)li ú' * z@ *ùFo *pool|t t'
j=0

îll^u, -3Po' -zpi .rnrl)
l+Po 

-zPo' -zp; *Pop|)Vr,*t)

j=0

2,t'=2¡j=0 i=0

! o2' + 2
j=0

(7.3-30)

Also,

r-2Pa + Pj (7.3-31)

By substituting Equations (7.3-27) and (7.3-31) into Equations (7.3-30), it is possible to

show after some manipulation that term 2 reduces to
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term2 = I
2

Fo -2Ï
zpo - pj

1 (7.3-32)

(7.3-33)

Consequently, although the amplitude sequence /r, is somewhat artificial, it does allow

Equations (7.3-8) and (7.3-9) to be reduced to simple closed form expressions while still

obeying the requirements that the marginal density functions are Nakagami-m distributed

and the correlations time is greater than that of an independent amplitude sequence.

By substituting these reduced expressions for terms 1 and 2 back into Equation (7.3-7), tllre

mean acquisition time becomes

rrcQ=#f"l'+ NcrlT+ 
',ll

#lo+n.+lT+ l)
_Td , Xrroþ-o -Zl-2-Tl4

It is relatively straightforward to prove that this new mean acquisition time is greater than

or equal to the mean acquisition time obtained by assuming an independent amplitude

sequence (ie. T69 from Equation (7.3-33) 2 Trca from Equation (7.3-15)). This implies

that as the rate of the amplifude scintillations decreases, the mean time to acquire

increases, at least for the amplitude model used in this analysis. However, this effect is

only likely to be important when the time taken to re-visit the correct ceII, T, is relatively

small. This will generally be the case when the receiver is re-acquiring following a short

outage and has a good knowledge of the code phase and carrier frequency. When Ç is

large, such as during a cold start, the probability that a typical amplitude scintillation

sequence will be correlated between successive re-visits is likely to be quite small.

7.3.3. Independence

The analysis given in the previous section was based on the assumption that if the

amplifude scintillation sequence was sampled at a sufficiently low rate, successive

samples would be independent. This section provides a justification for this assumption.
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As discussed in Appendix A, the majority of the amplitude scintillation energy is created

by irregularities of the order of the first Fresnel zone radius. For GPS, this is approximately

300m or so depending of the height and elevation angle of the irregularities. Irregularities

much larger or much smaller than this produce negligible diffraction €n€rg/, although

Iarge, extremely dense irregularities may produce refractive fading effects. Howevet,

generally it can be assumed that amplitude scintillation patterns are produced by the

composite effect of numerous irregularities of the order of the first Fresnel zone radius.

The amplitude diffraction pattern produced by an isolated irregularity has the following

general form

where zp is tine first Fresnel zone radius. It is clear from this diagram that the pattem

decays very rapidty beyond zr 12, and that the spacing between the peaks is independent

of the irregularity size (as z¡ is not a function of irregularity size). Consequently, if the

amplitude scintillation waveform produced by an isolated irregularity is sampled with a

spacing in excess of zp, it is likely that only one sample will contain a significant amount

of energy from the scintillation pattern. Adjacent irregularities will produce similar

patterns, and superposition can be used to determine the combined effects of these

irregularities (ie. a composite pattern can be obtained). As the sizes and locations of the

irregularities within a larger plume structure can be assumed to be random, it is

reasonable to assume that samples of the pattem taken more than zF trt apart will be

approximately independent. If it is then assumed that the irregularities are part of. a frozen

flow, andthat motion of the frozen flow causes the pattern to move past the receiver with a

relative velocity of. v" m/s, then samples taken more than zrlv" seconds apart canbe

assumed to be independent. For example, lor v"=100m/s, zp=275m, and T¿ =20ms

(typical values), then samples taken more than 2.75s apart (Nc>125cells) will be

approximately independent.

+
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7.3.4. False alarms

If the amplitude values are assumed to be independent between successive re-visits (ie.

the amplitude correlation time is relatively short), T¿çp can be calculated as the sum of

two parts; one associated with detecting the correct cell assuming no false alarms, the

other associated with the false alarm verification time (see for example I84l).

Consequently, under these conditions Tsg becomes þased on Equations (7.3-1) and

(7.3-1s))

Ttce = NrTo(K,Pro +t 2- P¿ (7.3-34)

Flowever, if the amplitude correlation time is long enough for the amplitude sequence to

be correlated between re-visits, the additional verification time associated with false

alarms may shift the sequence more towards an independent sequence by increasing the

average re-visit time. This will tend to reduce T1ç9 somewhat. In this sectiory it will be

demonstrated that the probability that the amplitude sequence statistics are significantly

affected by false alarms is extremely small, even for quite large verification times. This

assurnes that scintillations do not greatly affect the false alarm rate, even when sidelobe

enhancements are considered (this is justified in Section 7.2.2).

If we let:

Ku =false alarm verification time factor,

Tu = KuT¿ = false alarm verification time,

Q = the number of false alarms between successive re-visits (ie. in l/6' cells),

N îo =the number of cells in which false alarms can occur,

then,

NsT¿ ís the time taken for one unsuccessful pass of the uncertainty region with no

false alarms,

N fo = Nc -I as one cell out of. Nç in the uncertainty region is the correct cell,

To = gKrTa is the false alarm penalty time for one pass,

T, = N çT¿ + T o is the total re-visit time,

2Pa

p(qlu à=
Nc -l

q
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N¡--l
ø{ql¡r nts Ln * r(qlN ,")

a=o t

= (N" _t)p¡"

uþol* r]= W" -t)Pn*Kura

Consequently, the average false alarm penalty time for one pass of the uncertainty region

is To = QV " 
-tP¡" * KuTa seconds. As a proportion of the total time, this is

(¡r" -t * KuT¿ (N 
" -t)x,P¡,

NcT¿ Nc 0.3_35)

= Krp¡o

Thus, if KrP¡o << I , false alarms will have a negligible impact on both the average re-visit

time and the statistics of the amplitude sequence. For example, if P¡o = 0.01%o (a typical

level), Ku << 10,000 is required. In general, this condition is expected to be met, although

the actual value of Ku will depend on the verification methodology. For example, re-

checking the cell once will result h K, = l, whereas attempting to establish carrier lock

immediatety will probably result in K" >> I (Campanile [20] suggests that Ku >> 10 ).

If KuPío << 1, false alarms canbe ignored and Equation (7.3-33) canbe used to give the

mean acquisition time for the amplitude model described by Equation (7.3-19). However,

if KuPtu << I is violated, the additional verification time will tend to increase Tpp

somewhat, while the increase in the degree of independence of the amplifude sequence

will tend to reduce Trc, sligtrtly. As the two effects are linked, it is difficult to account for

them correctly.

7.4. Conclusions

Scintillations increase acquisition times by reducing the probability of detection while

searching the code phase / carrier Doppler uncertainty region. For satellite signals which

have a relatively low signal to noise ratio, the mean time to acquire may increase by a

factor of two or more, and the RMS acquisition time by a factor of three, depending on the

characteristics of the detector and the precise value of the carrier to noise density ratio,
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ClN,. Amplitude scintillations have by Íar the greatest impact on detection probabilities.

For example, the probability of detection can drop from almost one to approximately 0.8 at

S¿=l foraCf N" ol36dBHz(thisrepresentsanequivalent CfN" ofonly3L dBHzunder

quiescent signal conditions). It was also found that for a slowly varying amplitude

waveform (ie. slow in relation to the time required to search the uncertainty region), the

increase in the mean time to acquire may be larger than for a rapidly varying amplitude

waveform.

Phase scintillations, on the other hand, were found to have virtually no effect on detection

probabilities for the square-law detector studied in this chapter. Similarly, correlation

sidelobes produced by competing satellite signals or by an incorrectly aligned signal were

found to have a negligible impact on false alarm probabilities/ even under severe

scintillation conditions.

This chapter examined the effects of scintillations on the time to locate the correct code

phase and carrier Doppler for a square-law acquisition detector. However, the problems

that may be encountered when attempting to transition to a state of code and carrier

tracking under scintillation conditions have not been addressed. From earlier chapters, it

seems likely that under very intense scintillation conditions, it may not be possible to

achieve code and carrier lock, even though the correct code phase and carrier Doppler

may be known. Consequently, the acquisition time may effectively be extended to include

the time required for the scintillation patch to pass, or at least for the level of scintillation

activity to drop to the point where carrier tracking can begin.
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Chapter 8

Optimum tracki.g of the carrier phase

The objective of this Chapter is to determine an optimum phase locked loop for the GPS

carrier that provides minimum phase tracking error under the specified ionospheric

scintillation and d¡rnamic conditions. In Section 8.1, this is achieved by finding an

optimum filter using Wiener filter theorp and then mapping this filter into the structure of

an equivalent phase locked loop. Although in practice it is unlikely that GPS receivers will

be designed with scintillations in mind, this exercise nevertheless gives some insight into

the benefits that may arise from adopting an optimum loop configuratiory and the

sensitivity of this optimum to receiver dynamics (normally, the characteristics of a tracking

loop are based solely on the dynamics and nominal signal to noise ratios). In Section 8.2,

the optimum bandwidth for minimum mean square tracking error is determined directly

for each loop order. Although this approach is not as generic as the Wiener filter approach

(ie. it assumes that the filter is a phase locked loop), it nevertheless allows the optimum to

be determined for arbitrary values of the spectral index, p.

8.L. Wiener filter approach

If the GPS signal is modelled as the sum of a phase process, @(l), and thermal noise, w(t),

which are assutned to be jointly stationary, the Wiener filter is the filter that minimises the

mean-square carrier phase tracking error, ø{[Of tl - ôfr>]' ] 
. rig.rr" 8.1-L is an illustration

of the relationship between the Wiener filter (represented by the dotted box) and the

equivalent phase locked loop filter, F(s).
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+
Q(t)+v(t) QQ)

I

Figure 8.1-1: Wiener filter model of ø phase locked loop.

8.1.1. Causal Wiener filters

As the carrier tracking loop is causal (ie. future phase measurements are unavailable), the

Wiener filter must also be causal. The causal Wiener filter for the tracking loop illustrated

in Figure 8.1-1 is given by (see for example Brown & Hwang [L9], Van Trees [95])

(8.L-1)

where sa*,(") is the power spectral density of the combined signal QQ)+rQ), Sp*,,p (") is

the cross-spectral density of QQ)+w(r) with Q(t), * and - denotes all poles and zeros in the

left and right half of the complex s plane respectively (ie. x(s)=x*(s)x-(s) where

x*G)=x-(r)'), and [1o,, d"r,otes the transform of a positive-time function /(r) such

that fØ=0 for /<0. If it is assumed that OØ and .Ø are uncorrelated, then

^S4 *, (") = SA (s ) + ^9, 
(s) and S 

O * *,0(t) = SO (s) . ff," Wiener filter then becomes

H"(s)=#1,,#],^

H, (") =
(s)+,s, (s

(8.1-2)

pos

When w(r) is white with a power spectral density of. BNo (where þis a constant), the

Wiener filter reduces to þased on the result by Yovits and Jackson [10a])

¡¡,(")=1-
pN,

(8.1-3)

G)+ É¡r,0

The transfer function of the optimum loop filter is then

F(s)ls
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Initially, it is assumed that the input phase process is produced entirely by phase

scintillations with a power spectral density of .S4o U)=T.(f,2 * ftlol' (ie. dynamics and

other sources of phase noise are ignored for the moment). This is representative of a

situation in which the receiver is either stationary or INS aided and phase scintillations are

the dominant source of phase noise. It is also assumed that the thermal noise term, wþ), is

zero-mean and white, but with a power spectral density that is scaled by the effects of

amplitude scintillations. A justification for this assumption is given below:

If it is assumed that the filter is a phase locked loop with an imperfect AGC, then the

thermal noise at the loop input can be represented by

(8.1-4)

(8.1-5)

(8,1-6)

where nQ) is zero-meary white Gaussian thermal noise at the loop input (ie. on the IF

signal from Equation (3.1-1)), and S( ) is the AGC gain factor from Section 3.2 which has

been translated back to the IF (ie. g(r)=ÃQY *2N"fT >0 for an imperfect AGC - see

Equation (3.3-16)). l1 nQ) is assumed to be independent of SQ)t, the mean value of w(r) is

given by

-0.

Therefore, ,(t) is zero-mean.

I This implies that the amplitude fades are not too deep (ie. 7(l) ao"t not become too small), or the AGC

time constant is relatively large.
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The autocorrelation function of w(l) is

A,G)= ø{w(t)wQ+r)}

(8.1-7)

(8,1-8)

(8,1-9)

= N,6(r)p

where u" = E{rQf } i, tf," power spectral density of the thermal noise on the IF, ô(r) is

the Dirac Delta function and B is a constant. The power spectral density of wQ) is thus

s,U)= r{u"dG)p}

= þNo

where F'{ } denotes the Fourier Transform. This result demonstrates that w(r) is white,

although it is not necessarily Gaussian. For an ideal AGC (ie. g =Z,Q)' ), the power spectral

density of wQ) reduces to

s
t4)

Eo¡r(r)

1

In Section 3.2,it was shown that this result is only likely to be accurate for ,Sa less than

about I J, . As n (r) is assumed to be independent of g(r) and Qr(r), it is straightforward

to show that w(r) is uncorrelated with QoQ),a¡,
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Flowever, as A(t) and Qo(r) are produced by the same ionospheric processes, it cannot

also be said that w(l) and QoQ) ur" independent. Nevertheless, these results are sufficient

to make use of Equation (8.1-3) to find an optimum Wiener filter.

The power spectral density of wQ) and Qo(r) can be represented in terms of the complex

frequency variable s = i2nf as follows

S'"(s)= B¡¿,

(8.1-11)

where @o =2do is the outer scale size angular frequency. The causal Wiener filter is then

n"(r)=t-qffi
ß.1-12)

_l

-1-

(zn T o

2 2
-.t

p

+
22

-.ç+

The denominator of X(s) can be separated into two factors which represent repeated

poles at s=+øo. These are (ao-lnlz and, (ao+sflz. FIowever, the numerator is more

difficult to factorise. The zeros can be found by solving

(z,n)p r f g, *(r"' - u'Yl', = o

to give

.expQlç¡(r+zn)l p) ß.1-13)

where z is an integer. Consequently, depending on the value of p, there are potentially an

infinite number of zeros and so no unique solution to the factorisation problem. When nt

zeros are present, the Wiener filter can be represented by

.s @o2-(rù'(#

2t3



1ä,(s)= 1-
tn m

fl(,, +') fl(,, -')
i:l Ê1

(a,+tf 12 (r" -tYl' (8.1-14)

where z¡ ala the zeros which are given by Equation (8.1-13). In order to proceed, two

integer values are chosen for the spectral index, p. These arc p=l and p=4.

Caselt ? = 2

For p = 2, t}r.e Wiener filter simplifies considerably as shown below

,r,(")=l.tlø-*l
Ls+(Ðo)

/E
'lþ'''

(8.1-15)

where z = ao'*Qo)'r Bll, . The loop filter then becomes

(8.1-16)

Consequently, in the limit as ú)o approaches zero (ie. for an infinitely large ionospheric

outer scale size), the Wiener filter approaches a first order loop with a loop natural

frequency of

. lim
anlo= 

a" +oFolt)
(8,1--17)

2tt

As the spectral index, p, at equatorial latitudes is typically equal to 2.5 1821, a first order

loop gives a good approximation to the optimum tracking loop at these latitudes. The

corresponding phase error variance is given by (from Equation (3.2-1))
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2ao, =
llt 

- ", 
(t)' so,(f)*lu,(.Fl' s.U)fa¡ (8.1-18)

A simplified version of this expression for the case where w(r)is white is (Van Trees [95])

oo", = pw,iþ,- p,)
i=l

where p¡ and, z¡ ãrêthe poles and zeros of ,S4o (s)+ É¡f, .For p=2, this becomes

oh' = BN"(z-a")

Therefore, in the limit as ao approaches zero, the phase error variance becomes

(8.1-19)

(8.1-20)

(8.1.-2L)

(8.1-22)

(8.1-23)

lim

ao+ooor2 = þNoorlo

=zoJW

Consequently, the variance increases equally with both the phase scintillation energy, T,

and the amplitude scintillation energy, p. However, as would be expected, the optimum

loop bandwidth increases with the phase scintillation energy, but decreases with the

amplitude scintillation energy (the optimum loop bandwidth is proportionalto a,l,).

Case 2: P=4

For p=4, the Wiener filter is given by

where z1 and z2 àtê the zeros which are given by (from Equation (8.1-13))

t 
+ j(zo)' T

zl, zz= pN.
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If we let (Do2 T i(2ù' 
æ 

= t ep| io),

t =^r^ (%-,,ffiJ,the zeros become

where k - a)oo t fr")' # and

(8.1-24)

(8.1.-25)

(8,1-26)

21, 22 =tÆ 
"rp(+ 

j el2)

= J n["o'(e ¡ z)+ ¡ sin(e ¡ z)]

= JØ[Jn*'te¡+ - cos(0)

k-@o2

By substituting Equation (8.1-24) nto (8.r-22), the wiener filter becomes

H,(")=
k-@o2 + ,[@-2,"

k+ *ao .2
+.ç

In the limit as @o apptoaches zero, this reduces to

n"G)= J-2on, + an2

,' +.!-2ø.n, + otr2

,)

where a,lo=rræ In this form, the wiener filter represents an active second order

loop with a damping factor of. Ç =lf J-Z and, a loop natural frequency of ton (see Table 3-

2). As 4 is the upper limit for the spectral index parameter [27], thrc result suggests that a

third order loop will not provide an optimum solution unless dynamics are also present.

The corresponding phase error variance is given by (from Equation (8.1-19))

oor' = þN "l(t, - 
o,) + ("2 - r,)l

= þ*"1 z(n+ co"2) -za"
(8.1-27)

In the limit as @o approaches zero, this simplifies to

lim

,::ooa,' =J2BNoanl'
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Consequently, lor p=4 t]ne variance is far more sensitive to amplitude scintillation energy,

þ, thanto phase scintillation energy, T.

8.L.2. Non-causal Wiener filters

Although the non-causal Wiener filter is not a practical filter structure for a phase locked

loop, it does provide a lower bound on the phase tracking error which cannot be

surpassed by any filter type (Van Trees [95]). As QpQ) arra w(r) a.e uncorrelated, the

non-causal Wiener filter for arbitrary values of p is given by

H,(s)=
so, (")

sro (')+s,(r)

(zoYt

1r"y,.B*,k,"'-r'Y''

and the corresponding phase error variance is

(8.1-29)

(8.1-30)

o o,2 = j [t - ", 
(fl' s ro(,,f)*ln "(¡l' s -(Ð]a¡

j .df

In the limit as fo approaches zero, this expression reduces to

lim z 2nßN, ll]u'. o>t ß.L_3j_)

.fo +ootr' =-prin@þ)Lø, j ', P)

Although a closed form expression for the transfer function of an optimum causal filter

cannot be obtained for arbitrary values of p, it is possible to determine the variance for

arbitrary p without the need to factor the input spectrum. This given by (Van Trees [95])
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6Q,2 =ør,i,"[, .W]-
(8,1.-32)

''t
T

=þN,J 1+
p*,(f"' * f'Yl'

0.01

oo
ßt€.F

o
E
O
()
3E*

0.004

0.002

15 22.53
Spectral Index p

3.5 4

Figure 8.1-2: Phase error aøriance as a function of the spectral index p for T=-2SúBWlHz,

S+ = 0 , Cl N o= 41.5 dBHz and .fo = 0 . The lower line rEresents the non-causal Wiener filter, the

upper line rEresents the cøusøl Wiener filter. The tuto circles correspond to the aøriance aalues

obtained from Equations (8.L-2L) and (8.1-28) for p=2 and p={ respectiaely.

A comparison between these two variance measures is given in Figure 8.1-2 for

T=-25dBW' l Hz,S¿ =0 (ie. É =tl Ñ ), ClN,=4l.5 dBHz and fo=0. It is clear from these

plots that the errors associated with the causal Wiener filter are always larger than those

associated with the non-causal filter (as would be expected).

8.1.3. Doppler errors

The optimum filters obtained in the previous sections were based on the assumption that

the tracking loops are only subject to scintillations and thermal noise. Ffowever, the

tracking loops of a real GPS receiver will also encounter Doppler errors resulting lrom

relative motion between the satellite and the receiver. An optimum filter which takes

account of Doppler errors can be obtained by adding a Doppler term to the power spectral

density of the input phase process, SoG)
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In the approach taken by faffe and Rechtin [45], optimum loop filters were obtained for a

phase locked loop that was subject to thermal noise and d¡rnamics consisting of a step in

positiory velocity and acceleration. This resulted in lst, fnð, and 3'd order tracking loops

respectively. An equivalent approach can be taken here by adding the power spectral

densities of a step in positiory velocity and acceleration to the phase scintillation terms.

From Appendix E, the powel spectral density of the dlmamics, Sr, (t), is given by

sr, (")= tlo o(")xo¿ (s)- )
@2 position step

(8.1-33)
velocity step

6t
s

acceleration step

where @, O and z\ are the magnifudes of the dynamic processes in radians, radians/s and

radians/sz respectively (note that these can be related to the quantities given in Appendix

E through @=2nrolL, {l=2twof À,, and L=2naolL, where Â is the carrier wavelength).

Equation (8.1-33) can be generalised as follows

2'
.s

çr2
4t

.ç

ñ

(8.1-34)

where f is either @, C) or Â,, and z is the order of the d¡mamics (1',2 ot 3 for position,

velocity and acceleration respectively). The total power spectral density of the input phase

process is therefore

s, (r)= sro (t)+ sød (t)

(8.1-s5)

Assuming @o =0 and letting s = j2nf gives

sr, (")= (-ù^ #

= (zo)'r *l_ryl
(ú - 

"Y'' 
' -t 

"2n

trØ=ft.# (8.1-36)

The corresponding closed loop transfer function is therefore (from Equation (8.1-3))
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(8.L-37)

In the analysis that follows, four cases are considered corresponding to p=2 and p=4, and

steps in both position and velocity (other values of p result in filters that do not map into

phase locked loop structures).

Case L: Position step (ø=1), p=2

For a position step withp=2, SþU) becomes

T@2sau)=
--¡--.f' ' (zof)'

(8.1-38)

Consequently, the optimum tracking loop is L't order with a loop natural frequency of

a'rlo =2n
T+

(8.1.-3e)
þN,

Note that this reverts to Equation (8.1-17) when dynamics are absent (ie. @=0).

Case 2: Velocitv steo (n=21.ø=2

For a velocity step withp=2, SO(f) becomes

H"(r)=r_W#ñf

sau)=+.#

Consequently,

+{t2 þN.

hø)* pN.l=lþ.#.r".].

(8.1-40)

(8,1-41)
f 4 +

=l(Uz"Ð' 
*(¡2"¡),q* n\( (- ¡zon' *ç ¡zú),q* a\].

Ll c(¡z"f)' Jl c(- ¡z"f)' )J

.f4 pN"
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o I
where B = ,A= D+28, C= Dw
is therefore

H"(-f)=t- þN"

(¡z"l )2 +Çzn¡),1,+n

c(¡z,tY

(¡z"l +B

The optimum closed loop filter

(8.1 42)

(¡2"¡Y +Çzn¡)t + n

(¡2"¡ *r?
r¡zo¡Y +AznfÞçat,+@1

which is the transfer function of a 2"d order loop with a loop natural frequency, 0)r, and

damping factor, (, givenbY

(8.1-43)

T
+1

a,lo=JE =2n

,AlL =-=-' 2.lB 4Z pN"

Consequently, the loop natural frequency (and thus bandwidth) depends only on the

magnitude of the dynamics and the amplitude scintillations. However, the damping factor

is greater than the normal critical damping factor of tlJl by a factor which depends on

all three effects (ie. dyramics and both the amplitude and phase scintillation

characteristics).

Case 3: Position steP (ø=1), P=4

For a position step wíthp-4, So(/) becomes

T@2 (8.1-44)sçU)= _ -L-

fo ' (z,f)'

Consequently,by inspection from Case 2 it is clear that the optimum tracking loop is 2na

order with
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rÐnlo=r"æ

@2t'9= +l
(8,1-45)

(8.1.-46)

õ þN"8n2

Consequently, the loop nafural frequency depends only on the magnitude of the

scintillation activity, and the damping factor depends on all three effects.

Case 4: Velocitv steo (n=21,ø=4

For a velocity step witlr.p- , SaU) becomes

soL)=+* Q' 
,

-to 
' 

Q,f)o

And the optimum tracking loop is a 2"d order loop with

r +a2 f (z.n)a

pN"

I
(8.1.-47)

€= Jî
Consequently, phase scintillations and dynamics affect the loop bandwidth equally

Although this analysis has not been continued for higher order dynamics, it appears that if
the order of the dynamics is expected to be large (ie. 2n>> p), the order of the optimum

tracking loop will be determined solely by the dyramics. Indeed, at equatorial latitudes

where P = 2 , it appears that the strength of phase scintillations will only affect the

damping factor, Ç, for a velocity step. The loop order will be determined by the dynamics,

and the loop bandwidth will be a function of both the d¡mamics and the strength of

amplitude scintillations.

8.1.4. Optimum post-loop filters

The optimum loop filters discussed so far have been designed to minimise the phase

errors in the carrier tracking loop. To reduce the effects of scintillations on the phase

estimates without compromising this first design objective, a second filter can be placed in

cascade with the tracking loop. This can be done in one of two ways as shown in Figure

8.1-3.
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Eigure 8.1--J: Post-loop fittering schemes to reduce scintillation phøse noise in the loop phase

estimates.

The transfer functions of the resulting cascaded systems are

Case L: K1 (s)= s.ø, (s)G1 (s), and ß.1-48)

Case 2: K2(s)= [r -ø,(s[cr(s).

The causal Wiener filter for either system is given by (from Equation (8'1-2))

K,"(")=

(8.1-49)

(8.1-52)

ltrt"l* PN"f pos

(8.1-50)

where Sod (r) is the power spectral density of the d¡mamics (ie. the desired signal for a

GpS receiver) and so (r)= sp, (s) + sro (s) + so, (") is the power spectral density of the input

phase process. Notice that Equation (8.1-3) cannot be used in this case as the noise is no

longer white (ie. it is of the form w(r)+ QoQ)+Q"(t)¡. fne Wiener filter represented by

Equation (8.1-50) is designed to minimise the errors from all noise sources while providing

a best estimate of the dynamics OoQ). By substituting Equation (8.L-50) into Equations

(3.1-48) and (8.1-49), the following optimum post-loop filters can be obtained for a causal

system

Case 1: Gr,(")=
1 sod (')

, and (8.1-51)

'þa 6)+ (s)+BN,

I

I

1 sod (r)
Case 2: Gr'G)=

pN" brt"l* BN.l pos

pos
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As the cascaded system does not necessarily need to be causal, equivalent non-causal

filters can also be found. The non-causal Wiener filter is given by

(8.L-5s)

The non-causal filter applies to systems that are not required to provide range and velocity

estimates in real time and so may have access to future phase estimates. Consequently,

filter of this sort may be approximated arbitrarily closely by introducing a processing

delay. Notice that although the cascade represented by K,¡¡ç(s) *uy be non-causal, the

loop filter, H"(t), must always be causal. The two non-causal post-loop filters are given by

Case L: G1, (s)= ,

G,"(,)=6¡;d#ffi

ø{Q,,ûr}= h'Ïr", Gro,

and (8.1.-54)

(8.1-55)

(8,1_-56)

(8.1.-57)

Case 2:

The error associated with the estimate of the Doppler process, QoQ) , is given by

Q"oØ=ôØ-þoQ)

The corresponding mean square error is therefore

where ,sr", (")= lt- x,(")'sr, (")*lr,G)'h, (")+ É¡r,l t, ,n" power spectral density of

the Doppler estimate error. Using Equation (5.1.-57), the mean-square error can be found

for the optimum loop filter, H,G), the optimum causal cascaded filter, K""(t), and the

optimum non-causal cascaded filter, K,""("). Although a comparison of these errors has

not been carrier out here, it is expected that the optimum non-causal cascaded filter will
produce the minimum error as it has access to both past and fufure information.
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8.2. Direct determination of the MMSE

The principal advantage of the Wiener filter approach is that it allows the optimum filter

for minimurn mean square error (MMSE) to be found without regard for the filter

structure. However, a drawback with this approach is that it results in a filter which does

not readily map into a phase locked loop unless the spectral index, p, is either 2 or 4' By

minimising the mean square error for each loop order directly, it is possible to determine

an optimum loop bandwidth and MMSE for all values of p. The optimum loop order can

then found by comparing the MMSE's for each of the three loop orders and selecting the

minimum. In this sectiorL an expression will be derived for the optimum loop bandwidth

for MMSE for all three loop orders in the presence of scintillations and thermal noise' It

will also be demonstrated that dynamics may strongly influence the choice of an optimum

loop bandwidth and order, and will in many cases take precedence over scintillation

effects.

The variance of the phase tracking error for a phase locked loop in the presence of

scintillations is givenby (from Equation (3.2-5))

(8.2-1)

where (based onEquation (8.1-8))

o'ø =28, s*(Jf)
(8.2-2)

þN,

and (from Equation (3.2-8))

oî" =ol* +o'*

2Bn

l< p <2k (8.2-3)

(8.2-4)

and (from Table 3-2)

B

=6n

Itt order

2nd order

3'd order
n

Therefore, the derivative of o2r, wíthrespect to the loop natural frequencY, fn, is given by
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Letting = 0 gives

uoî, = Q- pþit
àf, tcff sin(þ-tfu¡zn)

f,l" = þ -tþn
2aBN,ksinþ -tþ¡ztc)

='nlo
2n

=B'loa

òol"

òfn

+2aBN,

p

(8,2-5)

(8.2-6)

B,lo is the optimum loop bandwidth for MMSE for all three loop orders. As shown in

Figure 8.2-7, Equation (8.2-5) is guaranteed to return the bandwidth for MMSE as the

variance of the tracking error consists of a monotonically increasing component due to

thermal noise added to a monotonically decreasing component due to phase scintillations.

It can also be shown that for a Lst order loop and p=2, or a 2"d order loop and p=4,

ar,lo reduces to the two results given in Section 8.L for the Wiener filter solution.

Bn

Figure 8.2-1: lllustration of the relntionship between the two components of the meøn squøre

tracking error ns ø function of the loop noise bøndwidth, Bn , The dotted line rEresents the sum,

oî",

i
U)

-'À

Phase Scintillations

& Thermal Noise

Scintillations
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The corresponding MMSE can be found by substituting Equation (8.2-6) back into

Equation (8.2-1) to give

tlp

ß.2-7)

8.2.L. Doppler errors

The effects of d¡rnamics on the optimum loop bandwidth can be treated in one of two

ways; (i) assume that the dynamics are constant and the loop is in steady state, or (ii)

assume that the dynamics are introduced suddenly and produces a transient error in the

tracking loop. In the first case, the dynamics will either produce a constant error if the

order of the dynamics is equal to the order of the tracking loop, or zero error if the order of

the d¡mamics is less than the order of the tracking loop (see Appendix E, Section E.1). In

the second case, the transient error can be accounted for by introducing a term referred to

as the Total Transient Distortion, e]. This is based on the approach taken by Jaffee and

Rechtin [45] that was discussed in Section 8.1'3.

Using Jaffee and Rechtin's approacþ the optimisation problem becomes one of minimising

the following variance expression

(8.2-8)

From Appendix E, the Total Transient Distortion is givenby

,? =ilt-n(Íl'soot¿\a¡ (8.2-9)

oî,1"=wlffi

where sro(l)=# from Section 8.1.3. el canbe expanded to give

ol, =oî* +ofr, + e27

(8.2-10)

0.5<n</r+0.5
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The condition 0.5 <n <k +0.5 implies that the loop order must be greater than or equal to

the order of the dynamics in order for el to be finite (eg. either a position or velocity step

fot a2"d order loop, but not an acceleration). In principle, the optimum loop bandwidth for

MMSE can once again be found by minimising Equation (8.2-8) with Equation (8.2-10)

used in place of e|.Ho*euer, in practice a simple analytical expression carurot readily be

obtained for all values ol n, k and p as the derivative of Equation (8.2-8) is a polynomial

with a non-integer order. I4trhat can be done is to solve the pol¡momial using numerical

techniques for a specific set of conditions, or obtain an analytical solution for integer

values of p. Alternatively, it is possible to determine a value for the spectral strength, T,

above which the phase scintillation component dominates over the dynamics component.

This can be found by equating Equations (8.2-3) and (8.2-10) to give

T_ 12 sin(þ - th I ztc)¡,n-z'

\o)t'sin(zn-1hl2k) ' 0.5<n<&+0.5 and I <p<2k (8.2-1,1.)

In Figure 8.2-2, T (in decibels) is plotted as a function of f for a 2"d order loop that is

subject to both a position step (f=@) and a velocity step (f=O). In addition, two loop

bandwidths are considered that represent typical upper and lower values for a phase

locked loop.
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Also note that because of the ambiguity in a sinusoid, it is only necessary to look at

instantaneous phase steps of less than r/2. a cycle (-0.095m at the GPS L1 frequency). For

this reason, @ is often modelled as a uniform random variable on (-r,n) such that

srrØ=#=#. The corresponding value of r can then be found from the two

left panels of Figure 8.2-2by assuming a position step of "lJt radians or 0'055m at GPS

LL. Notice that this implies that T must be greater than about -L0dBradia*z/Hz in the

presence of a random phase step before it will begin to dominate over dynamics in the

selection of an optimum loop bandwidth.

8.3. Conclusions

Using Wiener filter theory, it can be shown that the optimum causal filter for minimum

carrier phase tracking error has the same strucfure as a first order phase locked loop when

the spectral index, p, is equal to two, and a second order loop when P = A'Therefore, as p is

usually close to 2.5 atequatorial latitudes, it seems likely that a first order loop will be the

best choice for carrier tracking in an equatorial scintillation environment. However, this

result is predicated on the assumption that amplitude scintillations can be treated as a

scaling factor for the thermal noise power spectral density, and that other direct phase

processes such as dynamics are absent.

For p = 2 (close to the typical equatorial value) and for a step in positiory the optimum

phase locked loop structure is a first order loop with a bandwidth that depends on both

the strength of scintillation activity (ie. T and .Sa), and the magnitude of the phase step.

However, for p - 2 and, a step in velocity, the optimum loop order is determined by the

dlmamics (ie. it is second order) and the bandwidth is a function of the magnitude of the

velocity step and the strength of amplitude scintillations only. Although this analysis has

not been carried out for dlmamics with higher orders, it appears that if the order of the

dynamics is large (ie. 2n >> p), the order of the optimum tracking loop will be decided by

the dynamics.

Based on a direct determination of the optimum bandwidth for a second order phase

locked loop, it appears that the strength of phase scintillations must be extremely large

before it begins to dominate over dynamics, even when the magnitude of the dynamics is

quite modest. Consequently, in practice the choice of loop order and bandwidth should be
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based on the dynamics, the quiescent GPS signal level and perhaps the anticipated

strength of amplitude scintillation activity. The level of phase scintillation activity is only

likely to be important when dynamics are greatly minimised through the use of inertial

aiding, or in the case of codeless and semi-codeless receivers, through Ll aiding of the L2

carrier loop.
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Chapter 9

Scintillation effects on navigation

In this thesis, a number of receiver performance measures have been derived by

combining a stochastic ionospheric scintillation model with various receiver tracking loop

models. By linking these measures with a climatological scintillation model such as the

Wide Band Scintillation Model, WBMOD, the performance of individual satellite-receiver

links can be predicted for a given time and location. This is discussed further in Section

9.1. However, because WBMOD does not account for large scale structures such as

equatoriøl plumes which affect the distribution of irregularities in the sky, it is unable to

model the spatial and temporal patchiness of scintillations, nor the night-to-night

variability that is frequently observed on scintillating links. Consequently, it is not well

suited to predicting the performance of multiple satellite links simultaneously, and so

cannot easily be used to assess the impact of scintillations on navigational accuracy. This is

discussed in more detail in Sections 9.2 and 9.3. Nevertheless, in Section 9.4 it is shown

that WBMOD can be used to determine the number of links that may be stressed to the

point of losing lock for a given time, location and percentile. Although this does not

indicate the likelihood of simultaneous losses of lock, it does illustrate when and where

significant scintillation events are likely to occur for a given receiver type.

g.l.Predicting the performance of a single link

For any given satellite-receiver geometry, time and date, uncertainty will exist about the

size and density of the irregularities along a specified propagation path. In WBMOD, this

uncertainty is accounted for by providing a probability density function (PDF) for the

height integrated irregularity strength parameterl, CrL. Based on Equations (3.4-9) and

t CtL is the height-integrated strength of the irregularity spatial Power spectrum at a scale size of

1km (see Equation (2.L-2) and [82] and176l).
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(3.4-10), it is clear that T and ^Sa can be related to C¡L through the expressions

T =ü,CtL, and

sî =t-exp(- þ c*L) 
(9'1-L)

where a and þ are based on a combination of deterministic geometrical factors and

accurately modelled random parameters (see for example [82] and Í761).T and ,Sa can also

be related to each other through the expression f=-h(l -SîYy where T=Pld
(Equation (3.4-7)). Therefore, for a given set of conditions (ie. time, date and satellite-

receiver geometry), WBMOD's internal models provide information from which the

parameters a, þ, and yand the distribution functions of T and Sq, f.r(T) and /ro (So ), .utt

be deduced. These functions can then be used to determine average values for many of the

receiver performance measures derived in earlier chapters. These include the variance of

the code and carrier phase range errors/ the probability of losing lock, P¡, the probability

of a navigation data bit error, P", and the probability of detection for acquisition, P¿. Also,

because T can be expressed as a function of ^la and the geometry factor 7 it is only

necessary to determine the PDF of ,Sa (or T) in order to find average values for the

specified performance measures (ie. the joint PDF of T and ,S4 can be expressed as

fr,so\,so)=ô(T -r')fs+(so) where t'=-ln(l - sîYy¡

In WBMOD, the PDF of tog(C¡f) in equatorial regions is modelled as the sum of two

Gaussians [82]. In principle, this allows Equation (9.1-1) to be used to determine the PDF

of ^Sa for a given value of p. In practice, however, WBMOD does not provide this

information as part of its standard output. Nevertheless, it is possible to deduce the PDF of

Sa directly by differentiating the cumulative distribution function of ,Sa which can be

obtained from WBMOD's predictions of ,Sa over a range of different percentiles.

If the PDF of Sa is known for a particular link, the average probability of losing lock can

be found as follows

æl
P, = I J 

rr\,t ) fr,ro\,s ).as o.dr
00
1

= [rr(T',so)fro6).aso
0
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where PrF,So) is ttre probability of losing lock as a function of T and ^Sa 
(from Equation

(3.4-3) withm=tls'o),T'--rn(r- sîYy,6r(s+) isthePDFof .!a, T>0 and 0<^s4<1.

In a similat way, the average values of Q and P¿ can be found for each visible satellite

link (ie. from Equation (6.3-11) and (6,.3-15) we have P"6), and from Equation (7.2-1.1)

we have Pr(so))

g.2.Predicting the performance of multiple links

In order to determine the impact of scintillations on navigational accuracy, it is necessary

to find the probabitity of losing lock on multiple satellite links simultaneously. The

average probability of losing lock on z satellite links simultaneously is given by

n=i jlU" Fi,soo,l-o,, ,0,('o'," 'son\dso,"'ds+n e2-1)

where Prt Fi,Sav) ir tt" probability of losing lock on link k as a function of the ,Sa index

on that link, and -f s4r, ..sar(to, , . . . Sor ) is the joint PDF of ^S4 on the n links. Equation (9 .2-1)

implies that for a given set of ^94 values, the individual probabilities of losing lock are

independent of one another. In other words, the probability of losing lock on n links

simultaneously is simply the product of the probabilities of losing lock on each link. This is

based on the observation that although the strength of scintillation activity may be

correlated between the tinks (perhaps as a result of a large plume structure that is

penetrated by several links simultaneously), the individual scintillation pattems, and in

particular the deep fades that give rise to loss-of-1ock, are likely to be independent. The

justification for this assumption is that scintillation patterns are produced by small scale

irregularities of the order of the Fresnel zone radius or smaller (< 300m or so), and so it is

unlikely that two propagation paths will penetrate the same grouP of irregularities at the

same time. This assumption may, however, break down if the ionospheric pierce points of

the two propagation paths happen to be extremely close.

Although WBMOD does not provide information about the joint PDF of .Sa on multiple

satellite links, if it is assumed that the links are independent (ie. the irregularity regions are

assumed to be highly "patchy"), then the average probability of losing lock on ø links

simultaneously is simply the product of the average probability of losing lock on each link,

oiz
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(9.2-2)

where .f sar,..sanbo,,...So, )= firrooþoo ) nu, been assumed. Under these conditions, the

probability of simultaneously losing lock on n links is expected to be very small, given that

the individual probabilities are also likely to be quite small. Measurements of loss-of-lock

taken from a Novatel MillenniumrM receiver during the September 1998 and March 1999

equinoxes tends to support this view. In Figure 5.4-1 from Chapter 5, the percentage of

time between 8:00pm and L0:00pm that the Novatel MilleruriumrM loses lock on both the

LL and semi-codeless L2 channels is plotted as a function of day. It is clear from these plots

that the percentage of time that one link was lost (represented by the white sections of the

bars) was always much greater than the percentage of time that two or more links were

lost simultaneously (represented by the solid sections). Indeed, on days during which

significant scintillation activity occurred, the average ratio of the percentage of time that

two or more links were lost simultaneously compared to only one link was 4.7o/" for t},:re

semi-codeless L2 carrier loop. Again, this supports the view that the simultaneous loss of

multiple links becomes much less common as the number of links, z, increases.

g.S.Predictirg navigational accuracy

Equation (9.2-1) gives the average probability of losing lock on n satellite-receiver links

based on the joint PDF of ,Sa on those links. However, on its own this provides no

information about the navigational accuracy, nor the probability of a complete navigation

outage. In this section, an approach is outlined which addresses these problems by

assuming that the joint statistics of scintillation on multiple satellite-receiver links are

known.

Consider a situation in which any n of m visíble links have lost locþ and let I index the

different ways in which this can occur. The probability of any one of these is denoted as

Pn, and is given by þased on Equation (9.2-1))

Fn =flFro

,,, =i 
ilU"Fi,roolll¡ 

- p+Fi,soo )1"o,,,0, (s0,,..,s 4*\0, o,...ds¿m

k=I
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If it is assumed that a navigation outage occurs when less than four satellites are tracking,

and a RAIM2 failure occurs when less than six are tracking, the probabilities of these two

events are given by

(9.3-2)

where ?\= , ^!, represents the number of different satellite-receiver combinations
fiJ @-i)tit '

for which 7 of the m visible satellites are tracking, arrd Pþr-¡), are the probabilities

associated with each possible satellite-receiver combination (ie. the ltt satellite combination

for which m-jsatellíte links have lost lock).

Unfortunately, Equation (9.3-2) cannot be evaluated as the joint PDF of ,Sa is unknown.

However, if it is assumed that the probability of losing lock on each satellite link is the

same (and givenby P¿), then

Pn (9.3-3)

where 1=1, as all combinations associated with the loss of n satellites now have the

same probability. In practice, this is an extremely unlikely situation given the

inhomogeneous nature of the ionosphere and the vastly different satellite-receiver

geometries on each link. Nevertheless, this assumption allows Equation (9.3-2) to be

simplified and evaluated for a given value of P¿. It also illustrates the sensitivity of

Equation (9.3-2) to the number of satellites, m, antd the single link probability of losing

lock, P¡. Under this assumption, Equation (9.3-2) simplifies to

2 Receiver Autonomous h:rtegrity Monitoring or RAIM is a technique whereby six or more satellite

pseudorange measurements are cross-checked to determine their integrity. As RAIM is performed

within a receiver, it eliminates the need for external integrity information. Although five satellites

are required for fault detection, an additional satellite is needed for both the detection and

exclusion of faults l47l,page313.
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p (Navi ga ti on outa ge) = 
V-13þ,Ø 

- ì (t - uy)

r(RRnø outase) = 
V"l|y,r-;r 

6 - r, I 
]

(9.3-4)

In Figure 9.3-1, the probability of a navigation outage and a RAIM outage are given for

different values of. P¡ and m based on Equation (9.3- ). Although these results must be

treated with caution, they do show that a small increase in m, perhaps as a result of

improved satellite visibility or the use of a supplementary navigation system such as

GLONASS, will greatly reduce the risk of navigation or RAIM outages. They also shows

that RAIM is far more vulnerable to failure than a loss of navigation.
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Figure 9.3-1.: The probability of ø naaigation outage (left panel) ønd ø RAIM outage (right panel)
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i : im=8i I i I

236



Although a navigation outage is very unlikely, it is still possible for scintillations to reduce

navigational accuracy by degrading the satellite-receiver geometry. For example, if a

receiver is located slightly to the North of the anomaly peak, it may lose several satellites

towards the South in the direction of the anomaly. Consequently, the satellites available to

the receiver will be skewed towards the North which will probably degrade the horizontal

accuracy of the receiver in a North-South direction.

In order to assign probabilities to different levels of navigational accuracy, it is necessary

to determine a DOPo value for each satellite-receiver combination. If a probability is

assigned to each satellite combination, Pni, and a DOP value is assigned, DOPr., t}rre

probability of the DOP exceeding some acceptable level, þ, canbe represented by

P(DzP, þ)= >1,(oor,,) o.3-5)
DOPni>p

However, as this expression cannot be evaluated without a knowledge of the joint

statistics of .la and T, it will not be considered any further.

3 The Dilution of Precision or DOP is a factor which converts the average pseudorange error into

equivalent navigation and time errors by taking into account the geometry of the satellite

constellation. DOP factors exist for horizontal position error, vertical position ertot, 3 dimensional

position error, time error, and position and time error.
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g.4.Predictions based on WBMOD

Although WBMOD does not provide information about the PDF of ,Sa and T, or the joint

statistics of scintillations on multiple satellite links, it does allows the scintillation stresses

on individual links to be predicted for a given time, location and percentile. This enables

areas to be identified within a broader region of interest in which significant scintillation

effects may occur for a given receiver type. It also allows factors such as the sunspot

number (SSN), the magnetic activity index (K o), the carrier loop bandwidth, the quiescent

signal level, and the elevation mask angler etc. to be varied and the resulting impact on

carrier loop performance to be examined. In Figure9,4-L, the percentage of links above an

elevation angle of 10o that may be stressed to the point of losing lock is plotted over an

area that encompasses both the northern and southem anomalies in the South East

Asia / Australian region. These plots were obtained by passing WBMOD's predictions of

the scintillation indices, ,S4 and T, into the carrier loop model from Section 3.4. For each

satellite-receiver link, the tracking state was then found by comparing the predicted

probability of losing lock, P¡ (obtained from ^la and T), with a L% threshold. In this

particular plot, the following parameter values were chosen:

Date: 23/09 /2000 (the Sept. equinox nearest to the current solar maximum)

Time: 12:00 UTC (approximately 8:00pm local time at a longitude of 120oE)

Duration: - 20 minutes

Percentile: 90%

SSN: 135 þased on predictions for September 2000 obtained from the IPS)

K p, 4.3 (a moderate level of geomagnetic activity)

Mask angle: L0'

Cf N,: 41,.5 dBHz

Br: 15Hz

It is important to realise that this plot does not indicate the likelihood of simultaneous

losses of lock, merely the number of links that may be stressed to the point of losing lock

for a given percentile. Nevertheless, it could be said that if many links are stressed, and the

a The elevation mask angle is the satellite elevation angle below which receiver measurements are

ignored. It is primarily intended to reduce contamination of the navigation solution by multipath

and thermal noise.

s IPS: the Australian Ionospheric Prediction Service.
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chosen percentile is relatively small, the probability of simultaneous losses of lock should

become much larger.
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Eigure 9.4-1: The percentøge of links thøt may be stressed to the point of losing lock lrom

WBMOD. Parameter aalues øre: 23 Sept. 2000, 1.2:00 noon UTC, 90th percentile, SSN=135,

K p =4.3, 10o eleaøtion angle mask, Cf N o =41-5dBHz, Bn=15H2, Loop order = 3, Coded L1 loop.

It is clear from Figure 9.4-t that scintillations are only likely to be a problem between

6:00pm and L0:00pm local timeo and within the region of the anomaly. It is also apparent

that directly beneath the anomaly crest at approximately L20'E (- 8:00pm local time), the

percentage of affected links increases to about 70"/". However, care must be taken in

drawing too many conclusions from this result as it only applies to WBMOD predictions at

the 90tt' percentile and is based on the rather conservative threshold of 1% f.or P¡.

Additional simulations (not shown) revealed that if the percentile was reduced to 65"/", the

percentage of links affected by scintillations dropped to zero at all times and locations.

Therefore, based on WBMOD, it can be said that under the specified conditions, the

probability of losing lock on any satellite-receiver link in the region would be less than

35%.

In Figure 9.4-2, the quiescent carrier to noise density ratio was raised to 4J.dBF{z with all

other parameters left unchanged. By comparing this with Figure 9.4-1., it is clear that the

6 Because of Earth rotation, 90oE and 150oE represent 6:0þm and 10:00pm local time respectively

for a simulation time of L2:00 noon [-ITC.
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signal to noise ratio has a significant influence on the tolerance of wide bandwidth

receivers to scintillations. From Figure 3.4-3, it is apparent that this is because wide

bandwidth receivers have a greater susceptibility to amplitude scintillations which are

strongly influenced by the quiescent signal level (essentially, an increase n Cf N, will

reduce the probability of the amplitude falling below the tracking threshold).

(l)€

s

e0 100 trorffid. tro tN lso

Figure 9.4-2: The percantage of links that mny be stressed to the point of losing lock ftom

WBMOD, Parameter aølues øre: 23 SEL 2000, 12:00 noon UTC, 9Qtn percentile, SSN=135,

K p =4.3, 1-0o eleuation angle mask, Cf N" =44¿BHz, Bn=L5H2, Loop order = 3, Coded LI loop.

In Figure 9.4-3 and Figure 9.4-4, the predictions are repeated for a 2Hzbandwidth receiver

for both Cf No =41'5dB.H2 and 44dBHz respectively. It is clear from these figures that

variations in the carrier to noise density ratio have ch less of an effect on narrow

bandwidth receivers than on wide bandwidth receivers. This suggests that the majority of

the predicted outages in these figures are due to phase scintillations which are not

influenced by the quiescent signal level. Again, this conclusion is consistent with

Figure 3.4-3 lor a narrow bandwidth receiver.

In the four figures presented so far, the elevation mask angle was set to LOo. In Figure

9.4-5, t}rre effect of reducing the mask angle to 0o is examined. By comparing Figure 9.4-5

with Figure 9.4-1., it is apparent that a reduced mask angle increases the extent of the

region affected by scintillations, but also reduces the impact of scintillations directly

beneath the anomaly peak This second effect is a result of an increase in the numbe¡ of

satellite-receiver links that are directed away from the anomaly peak when the additional
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low elevation angle links are included (ie. directly beneath the anomaly peak, the low

elevation angle links all point away from the peak and will therefore be largely unaffected

by scintillations).
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Figure 9.4-3: The percuttøge of links thøt may be stressed to the point of losing lock from

WBMOD. Pørømeter aalues are: 23 Sept. 2000, 1"2:00 noon UTC, 90th percantile, SSN=135,

Kp=4.3,1,0"eleantionønglemøsk, Cf No=41-.5dBHz, Bn=2Hz,Looporder=3,CodedL1"loop.
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Eigure 9.4-4: The percmtage of links that may be stressed to the point of losing lock from

WBMOD. Parømeter aalues are: 23 Sept. 2000, L2:00 noon UTC, 90th percmtile, 5SN=135,

Kp=4.3,L0oeleuationanglemask, Cf No=44dBHz, Br=2Hz,Looporder=3,CodedL1loop.
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Figure 9.4-5: The percentøge of linlcs that møy be stressed to the point of losing lock ftom

WBMOD. Parnmeter aalues are: 23 SEt. 2000, 12:00 noon UTC, 9Qtn percentile, 55N=135,

K p =4.3, 0 o eleaøtion angle mask, C f N 
" =41'5¿BHz, B, =15H2, Loop order = 3, Coded L1 loop.

So far, all simulations have been conducted for the equinox of the 23.a September 2000.

Simulations conducted under the conditions outlined in Figure 9.4-l and Figure 9.4-3,but

for days that were two months removed from the September and March equinoxes

revealed no evidence of scintillation effects at all, even at a reduced signal level (30 dBHz).

Also, simulations conducted on days that were one month removed from the equinoxes

showed that scintillation effects were significantly reduced. An example of this is given in

Figure 9.4-6 which is based on the 23'd October 2000 (all other parameters are the same as

Figure 9.4-1), Therefore, according to WBMOD, it appears that receivers are unlikely to

suffer any effects from scintillations beyond about one month from the equinoxes, even

near solar maximum. Obviously, more simulations would need to be conducted in order

to rigorously test this observation.

In Figure 9.4-7, the impact of reducing the sunspot number to L00 is given. Based on

current predictions, this level of solar activity is unlikely to be reached until about October

2002. \Atrhen the sunspot number was reduced to 70 (approximately August 2003), the

observed effects were negligible, and when reduced further to 50 (approximately March

2004), no effects were observed at all under the specified conditions.
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Figure 9.4-6: The percentage of links that may be stressed to the point of losing lock from

WBMOD. Parømeter aalues øre: 23 Oct. 2000, 1.2:00 noon UTC, 90th percantile, 5SN=135,

K p =4.3, 1-0" eleaation øngle mask, Cf N o =47.5d8H2, Br=15H2, Loop order = 3, Coded Ll loop.
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Figure 9,4-7: The percentøge of links that møy be stressed to the point of losing lock from

WBMOD. Pøram¿ter aalues are: 23 SEt. 2000, L2:00 noon UTC, 9gtn percmtile, SSN=100,

K p =4-3, L0" eleaation angle mask, Cf N o =41..5d8H2, Br=15H2, Loop order = 3, Coded Ll loop.
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Figure 9.4-8: The percantøge of links thnt mny be stressed to the point of losing lock from

WBMOD. Parameter aøIues øre: 23 SEt. 2000, 12:00 noon UTC, 9gtn percentile, SSN=131

K p =4.3, L0o eleaøtion mask angle, Cf N, =41.5¿BHz, Br=0'2H2, Loop order = 3, Semi-codeless

L2 tracking loop.
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Figure 9.4-9: The percentøge of links that may be stressed to the point of losing lock from

WBMOD. Parameter uølues øre: 23 Sept. 2000, 12:00 noon UTC, 65th percentile, SSN=135,

Kp=4'3, L0o eleaøtion øngle møsk, Cf No =41.5d8H2, Br=0.2H2, Loop order = 3, Semi-codeless

L2 tracking loop,
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In Figure 9.4-8, the effects of scintillations on a semi-codeless tracking loop of the sort

discussed in Chapter 5 are given. By comparing this with Figure 9.4-1', it is clear that the

predicted effects are much more severe than for a full correlation LL tracking loop. Indeed,

even at the 65*'percentile, significant effects were observed on the semi-codeless tracking

loops when virtually no effects were observed on a full correlation tracking loop (see

Figure 9.4-g). Consequently, it would be expected that the probability of simultaneously

losing two or more satellites would be much greater for the semi-codeless channels (the

measurements reported in Section 5.3.1.1 for lower levels of solar activity tend to support

this view).

9.5. Conclustons

WBMOD provides information from which the PDF's of the two principal scintillation

indices, Sa and T, can be deduced. Using these functions, it is possible to determine the

average values of various receiver performance measures such as the variance of the code

and carrier phase range errors, the probability of losing lock, the probability of a

navigation data bit error, and the probability of detection for acquisition.

Flowever, WBMOD is not well suited to predicting the perforrnance of multiple channels

simultaneously, and so cannot be used to determine the overall impact of scintillations on

navigational accuracy. This is because it does not account for the large scale structures

such as equatorial plumes which tend to restrict scintillation activity to certain parts of the

sky. The statistics that are required from a scintillation model in order to determine

navigational accuracy are the joint PDF's of .Sa and T on each of the propagation paths.

Although this information is not available at present, it is clear that if scintillations are

assumed to be independent between the individual propagation paths, the probability of

losing lock simultaneously on multiple channels would be expected to be quite small,

given that the individual probabilities are also quite small. Consequently, the probability

of a navigation outage or a loss or RAIM is likely to be very small, even tnder conditions

for which all links are affected by scintillations (ie. when the irregularities cover the entire

skY)'
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Predictions of the percentage of links that may be stressed to the point of losing lock based

on WBMOD clearþ show that scintillation effects are mainly restricted to:

- Solar maximum (or at least high sunspot numbers).

- The equinox.

- Approximately 6:00pm to L0:00pm local time.

- The Northem and Southem anomalies.

Howevet, even under these conditions, the probability of losing lock simultaneously on

multiple links would be very small.
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Chapter 1"0

Summary

In Section 1,0.1,, a brief overview of the thesis is given and the main results from each

chapter are sununarised. In Section 10.2, conclusions are drawn about the overall

performance of GPS in a scintillation environment by drawing together the results from all

previous chapters. Finally, in Section 10.3, fufure research directions are examined

including areas in which the scintillation model can be improved, and the potential impact

of new developments in GPS on the susceptibility of GPS to scintillations.

L0.1-. Overview

In this thesis, a stochastic model of scintillation activity was combined with various

receiver tracking and acquisition models to determine the likely impact of scintillations on

GPS. A summary of the key points to come out of this work is given below:

o In general, the carrier tracking loops of full code correlation GPS receivers are quite

robust to scintillations, even under very strong scintillation conditions.

. An optimum bandwidth exists for minimum probability of losing lock which depends

on the relative contributions of amplitude and phase scintillation activity, as well as the

quiescent signal level and the presence of dynamics.

o For a given level of ionospheric disturbance, the geometry of the propagation path

affects the ratio of amplitude to phase scintillation activity as well as the absolute levels of

scintillation activity. Therefore, geometry will affect both the optimum bandwidth of a

tracking loop and its overall susceptibility to scintillations.

¡ Carrier tracking loops are generally very robust to signal fades of short duratiory

particularly if the bandwidth of the tracking loop is narrow.

o RMS carrier phase errors of several centimetres can be introduced into satellite range

measurements by scintillations. These may have a significant impact on carrier phase
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DGPS observations made in equatorial regions during solar maximum, particularly for

baselines of a kilometre or more.

o Frequency locked loops are more robust to phase scintillations but slightly less robust

to amplitude scintillations than phase locked loops for the same loop bandwidth and pre-

detection integration period. Therefore, receivers that make use of frequency locked loops,

either as a primary means of carrier tracking or as a fall-back strategy to phase locked

loops, are likely to be more tolerant to scintillations than receivers that employ only phase

locked loops.

o Phase scintillations have a negligible effect on code tracking loops and the additional

thermal noise associated with amplitude scintillations is only small, unless ^9a is close to

unity. Nevertheless, under strong amplitude scintillation conditions, it is likely that error

spikes will exist in the code pseudorange measurements during times when the amplifude

is deeply faded.

. Codeless tracking loops are far more susceptible to the effects of scintillations than fulI

code correlation tracking loops. The poor performance of codeless tracking loops may

result in a degradation in the accuracy of systems such as WAAS which rely on dual

frequency SPS receivers for the measurement of ionospheric delays.

o Even under conditions for which the carrier loop is likely to lose lock, the probability

of a word error in the navigation data will only be a few percent. Therefore, because of the

high levels of redundancy that exist in the navigation data, it is expected that scintillations

will have negligible effect on a receivers ability to acquire the navigation information.

o Scintillations increase acquisition times by reducing the probability of detection. For

satellite signals which have a relatively low signal to noise ratio, the mean time to acquire

may increase by a factor of two or more, and the RMS acquisition time by a factor of three,

depending on the characteristics of the detector and the signal to noise ratio.

o Wiener filter theory was used to determine the optimum structure of a phase locked

loop that is subject to both scintillations and dynamics. It was found that in the absence of

line of sight dynamics, the optimum loop order was determined by the slope of the phase

scintillation power spectrum. However, in the presence of dynamics, the order of the

dynamics would usually determine the optimum loop order. It was also found that the

magnitude of the dynamics and the strength of amplitude scintillation activity would

determine the optimum loop bandwidth, unless phase scintillation activity was very

strong.

o WBMOD provides information from which the probability of occurrence of

scintillations at different levels can be determined for individual satellite-receiver
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propagation paths. This information can be used to determine average values for many of

the receiver performance measures derived in earlier chapters. Flowever, WBMOD is not

well suited to predicting the performance of multiple receiver channels simultaneously,

and so cannot be used to determine the overall impact of scintillations on navigational

accuracy.

. Although information about the joint statistics of scintillations on multiple propagation

paths is not available, it is clear that if scintillations are assurned to be independent

between the individual paths, the probability of losing lock simultaneously on multiple

channels would be very small, given that the individual probabilities are also quite small.

10.2. Conclusions

The analysis carried out in this thesis suggests that equatorial scintillations will have a

relatively minor effect on the navigation performance of stand-alone GPS receivers. This is

partly because the patchy nature of scintillations introduces a degree of independence

between the individual satellite-receiver lhks, and partly because the coverage of satellites

in the equatorial region is generally very good. Consequently, the probability of

simultaneously losing lock on enough satellites to significantly degrade the satellite

geometry is relatively small. Also, on the satellite links that remain in lock, the additional

noise introduced into the code tracking loops by amplitude scintillations is unlikely to

contribute significantly to the overall pseudorange error. Data obtained from GPS

receivers deployed throughout South East Asia during the past three equinoxes strongly

supports this view.

However, if the visible constellation is reduced, either through an increase in the elevation

mask angle or obscuration from nearby obstacles, fewer satellite losses would be required

before navigational performance was significantly degraded. In additiory Receiver

Autonomous Integrity Monitoring or RAIM requires at least six visible satellites in order to

be effective. Consequently, under conditions of limited sky coverage, strong scintillation

activity may degrade the performance of RAIM.

The combination of conditions under which a receiver is likely to experience the greatest

stresses from equatorial scintillations are as follows:

. High solar activity.

o Low geomagnetic activity.

249



. During the months of the equinoxes (March/April and September/October).

¡ For several hours following local sunset.

o Within bands approximately L5" wide and centred on the crests of the northern and

southern anomalies.

Flowever, simulations based on WBMOD reveal that scintillation effects may extend well

beyond the nominal northern and southern boundaries of the anomaly. This is caused by a

few satellite-receiver links penetrating the peak of the anomaly at low elevation angles,

even when the receiver is well removed from the region of the anomaly. Consequently,

areas of Northem Australia that are generally considered to be south of the southem

anomaly may still be affected by scintillations on certain low elevation angle links. In

additiory plume structures are known to reach enormous heights near the equator and

may extend the influence of scintillations well beyond that predicted by WBMOD (the

WBMOD model assurnes that all irregularities are concentrated at height that is typical of

the F2-layer peak height).

The analysis carried out in Chapters 3 and 9 suggests that narrow bandwidth receivers,

such as those used in tightly coupled GPS-INS systems, are more susceptible to the effects

of phase scintillations than wide bandwidth receivers. Consequently, narrow bandwidth

receivers are more sensitive to factors that influence the phase scintillation rate such as

receiver dynamics. Wide bandwidth receivers, on the other hand, are more susceptible to

the effects of amplitude scintillations and thermal noise, and so are affected more by

factors that influence the signal to noise ratio such as the antenna gain pattern and

electromagnetic interference (EMI).

Most military and some civilian aircraft are likely to be fitted with tightly coupled

GPS-INS systems to improve their immunity to EMI and high d¡mamics. Although the

GPS receivers in such systems will adopt a narrow bandwidth and so will become more

susceptible to phase scintillations, the INS units will be unaffected by scintillations and so

will continue to provide a navigation solution during any scintillation induced GPS

outages. This will also help the GPS receiver to recover when the scintillation activity has

eventually passed. It is also likely that the high velocities of jet aircraft will allow the

satellite-receiver links to pass through the scintillation patches much more rapidly. Agaþ

the reduced dwell time within the patches will help to mitigate their effects on GPS.
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It should also be mentioned that under high velocity conditions, the amplitude

scintillation rate will increase on many satellite links causing the assumption B, >.fr'to

be violated (ie. the duration of deep fades will be reduced on many links). This is likely to

reduce the impact of amplitude scintillations somewhat, particularly for narrow

bandwidth receivers for which B, is aheady quite small. However, as phase scintillations

are likely to be the principal factor causing loss of lock at high receiver velocities, this

effect may be negligible in terms of the number of satellites lost.

Although the higher chipping rate of the P-Code offers P(Y)-Code receivers greater

resistance to interference, it does not afford them any protection against scintillations.

Indeed, the lower power levels of the P(Y)-Code tends to make P(Y)-Code receivers

slightly more susceptible to the effects of amplitude scintillations. Added to this is the

higher level of scintillation activity on the L2 frequency as a result of the inverse frequency

scaling of scintillations. However, military P(Y)-Code receivers are likely to be designed

and constructed much better than civilian receivers, which may give them superior

performance under conditions of reduced signal level (ie. in the Presence of amplitude

scintillations).

Codeless and semi-codeless tracking loops are considerably more susceptible to the effects

of scintillations than full correlation tracking loops. The very narrow bandwidths of

codeless tracking loops increases their susceptibility to phase scintillations, despite a

reduction in phase scintillation energy through carrier aiding from the L1 C/A-Code

carrier loops. Similarly, the reduced signal to noise ratio of codeless channels greatly

increases their susceptibility to amplitude scintillations, despite their very narrow loop

bandwidths. Therefore, it seems likely that systems which rely on codeless and semi-

codeless receivers such as the Wide Area Augmentation System (WAAS) may suffer very

adverse effects under strong scintillation conditions. However, by the time these systems

are actually operational, the expectation is that the second civil signal on the L2 frequency

will be available which will mitigate the need for codeless and semi-codeless processing.

RMS carrier phase errors of several centimetres can be introduced onto individual

satellite-receiver links by phase scintillations. Generally, these errors will become

1 Where B, is the loop bandwidth and /) is the cutoff frequency of the amplitude scintillation

power spectrum.
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decorrelated over distances of a few km, depending upon the ionospheric outer scale size

parameter, _fo, and the direction of the baseline. This may have a significant impact on

carrier phase DGPS measurements taken in equatorial regions during solar maximum.

Unfortunately, the modelling of. fo TnWBMOD is very primitive at this stage.

Under very intense scintillation conditions, the mean time to acquire the GPS signal may

increase by a factor of two or more, although only when the carrier to noise density ratio

of the GPS signal is at a reduced level. However, under these conditions it is uncertain

whether a channel will have the ability to transition to a stable tracking state an¡rway.

Nevertheless/ as only a few of the satellites in a receiver's field of view are likely to be

subject to such high levels of activity, even during solar maximum, this effect is not

expected to be overly important.

The impact of scintillations on the navigation data also appears to be negligible. It is likely

that a tracking loop will lose lock or become unreliable well before navigation data

demodulation errors become significant. Indeed, much of the navigation data is repeated

on each satellite-receiver link and the update rate required from such information is

relatively low anyway.

The performance measu¡es discussed in this thesis have been based on a number of

assumptions and approximations, some of which have already been discussed. However,

other sources of loop stress such as oscillator phase noise, multipatþ foliage attenuation,

obscuration, antenna gain pattern variations, the elevation angle dependence oÍ Cf No,

and EMI etc. have largely been ignored. Each of these effects is likely to reduce a receivers

tolerance to the effects of scintillations.

1-0.3. Further research

Research into the effects of ionospheric scintillations on GPS is by no means complete.

Possible areas for further research include:

t. Determining the joínt støtistics of scintilløtions on multiple søtellite links. Data

obtained from scintillation monitoring receivers located in equatorial regions could be

used to determine the correlation between scintillation activity on different satellite-

receiver links. Factors that may influence this correlation include the separation

between individual ionospheric pierce points (IPPs), the location and local solar time
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at the IPPs, and other factors that affect the overall levels of scintillation activity such

as the sunspot number and the magnetic activity index.

2. The coreløtion behneen signøI amplítude ønil the strength of phøse scintilløtions.Il

the amplitude is negatively correlated to the rate of change of the carrier phase (ie. the

rate of change of carrier phase increases when the amplitude decreases), then the

combined effects of amplitude and phase scintillations on GPS may be more severe

than is predicted in this thesis.

3. The ìmpact of highly dense íonospheric structures, or pløsmø lenses, on the

performønce of GPS receìoers. Structures of this sort produce refractive focusing and

de-focusing effects which can alter the statistics of scintillations and drive 54 values

well above one. Predicting the occurrence of lenses and developiìrg models of the

resulting signal statistics at L-band frequencies are two areas that could be looked at

further. In [56], the effects of a collection of discrete, Gaussian shaped ionospheric

lenses on the performance of carrier tracking loops was investigated using the

diffraction model from Appendix A and the tracking loop simulator from Appendix B.

However, an analytical approach to this problem has yet to be developed. Also, it has

not been established whether nafurally occurring ionospheric lenses will have a

sufficiently short focal length at L-band frequencies to cause significant scintillation

effects for GPS.

4. The ilepelopment of ø moilel to øccount for the non-stationøry nature of scintilløtíons'

In this thesis, it has been assumed that scintillations can be described by wide-sense

stationary random processes. However, scintillations tend to occur in patches, the

duration of which will depend on the dimensions of the irregularity patch and the

speed with which the satellite-receiver ray path scans through the patches. Also,

statistics such as Sa and T may change with time as the ray path scans through a

particular patch. Models that account for the resulting non-stationarity will not only

help with the analysis of single link performance, but will also assist in the

development of models of the joint statistics of scintillations on multiple satellite links.

5. The oaliiløtion ønil extensíon of moilels such as WBMOD ønil SCINDA for the South

East Asia I AustrøIiøn region. The WBMOD and SCINDA models are based largely on

data obtained from the American longitude sector. Consequently, it is necessary to

determine whether these models also apply to the South East Asia / Australian region

by analysing scintillation data obtained from this region. DSTO in conjunction with the
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AFRL2, LAPAN3, and DSTCa have deployed a network of ionospheric scintillation

monitoring receivers in Indonesia, Malaysia and Papua & New Guinea to measure

scintillations and to compare their occurrence statistics with models such as WBMOD

(see for example 1571, Í221), The data obtained from these sites is also being used to

investigate the probability of scintillation activity occurring simultaneously on

multiple satellite links.

6. The aølídøtíon of ønølyticøl results agøinst hwdware simulations. For the past few

years, various groups within the United Statess have been investigating the effects of

simulated scintillation data on real GPS receivers by appropriately modulating the

signals produced by satellite signal simulators. However, these tests have yet to

include the effects of high receiver velocities, inertial aiding, and EM interference on

receivers that are subject to scintillations.

7. Accounting for nero deaelopments in GPS, including:

. Altemative tracking and acquisition architectures.

o The use of beamforming antennas. Antennas that are capable of steering beams

towards the GPS satellites will gain a significant advantage under amplitude

scintillation conditiors as a result of an increase in the signal to noise ratio. Antenrtas

of this sort are already in existence (eg. the Navsys Corporation High gain Advanced

GPS Receiver or HAGRTM [18]).

. The introduction of a second civil signal at 1176.45 MHz (referred to as the L5

signal), the new military code or M-Code signals, the addition of a C/A-Code signal at

the L2 frequency, and a general increase in satellite signal power levels following the

launch of the modified block IIR and new generation block IIF satellites. Under the

current launch schedule, it is anticipated that the constellation will consist primarily of

block IIF and the proposed new block III satellites by the time the next solar maximum

occurs in 20L1.

o Increased satellite coverage through the use of supplementary satellite navigation

systems such as the Russian GLONASS system, the European Geostationary

Navigation Overlay System (EGNOS), and the proposed European Galileo system.

2 AFRL: The Air Force Research Laboratory, USA.

3 LAPAN: The Ionospheric Research and Development Centre,Indonesia.

a DSTC: The Defence Science and Technology Centre, Malaysia.

s The GPS & Navigation Systems division of the SPAWAR Systems Center in San Diego, and the

Air Force Research Laboratory and Wright Patterson Laboratory, AFRL and \AIPL, in Cambridge

Massachusetts and Dayton Ohio respectively.
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Scintillation model

App"ndix A

The scintillation model used in this study is essentially that of Titheridge [89] and Davies

[28] and is based on the solution of the Fresnel-Kirchoff integrals for an assembly of field

aligned irregularities. The irregularities are assumed to produce variations in TEC in

directions normal to the earth's magnetic field lines, but no variations along the field lines.

For convenience, the phase perturbations are assumed to be concentrated within a thin

phase screen located at a typical F2 layer peak height. In reality, such perturbations would

result from the cumulative effect of numerous small irregularities located along the ray

path.

4.1 Deterministic phase screen

The deterministic model, which is essentially that described by Titheridge and Davies,

assumes that the irregularities are discrete rod like lenses which are aligned with the

Earth's magnetic field and produce Gaussian phase perturbations normal to the field. The

phase perturbation produced by k such lenses is given by

Õ(x) =Iao, -G- ro,Y
(A-1)

i=l

where ¡ is the horizontal position in a direction normal to the Earth's magnetic field lines

(ie. in an East-West direction), and Qç¡, l¡, and x¡¡ are the peak phase variations, scale

sizes, and centres of the irregularities respectively. The peak phase variations, Õ6¡ , âr€

related to the peak TEC variations, LTEC,, through the expression (Davies [27])

Qo,= !Q,J*2¡
LTECoi (radians) (A-2)

where/is the GPS carrier frequency and c is the speed of light. If it is assumed that the

variations in plasma density are Gaussian in both the ¡ and y (vertical) directions, LTEC¡1

can be found as a function of the scale sizes and peak density variations. The variation in

k

2
Ií

cf
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plasma density over the background is given byt

N,{(x,y) - ANo (A-3)

where Â,À/¡ is the peak density variation. As TEC is the vertical integral of the electron

density,

..,[-ryry)

J
LTøCçx¡= N,{(x,y).dy

= NrtslrJ;
Ix

The peak TEC variation is therefore

ATEC, = N'-strJ; (A-5)

ANs can then be defined as a fraction, p, of. the backgrou¡d electron density, N6, as

follows

Ntlç = pN6, p>--l (A-6)

An additional constraint which can be applied in order to establish a relationship between

the scale sizes, lrandlr, and Ál/s is the maximum permissible electron density gradient,

.Ày'* . From Equation (A-3), the maximum density gradients in both the r and y directions

*rl
2

(A-4)

(A-7)

(A-8)

are

!=!o

x=xo
â,N,{

ù ly

The maximum peak density variation which will ensure that N * is not exceeded is then

1 This assumes that the density profile is symmetrical in both the x (horizontal) and y (vertical)

planes.
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ANs = min(t,,tr).N*,þþ Ø-g)

By combining Equations (A-1), (A-2), (A-5), (A-6,) and (A-8), an irregularity layer can be

defined once values for N¡ and N * are assigned. If it is assumed that the irregularities

are located at the F2layer peak, N¡ will be equal to the peak density of the F2 layer,

NmF2.

The peak phase variations can either be positive, which corresponds to an enhancement in

TEC (a defocusing type irregularity), or negative which corresponds to a depletion in TEC

(a focusing type irregularity). Both types of irregularity have been shown to exist in the

ionosphere [90]. The radio wave is also assumed to experience no attenuation as it passes

through the phase screen. Consequently, any amplitude fluctuations are caused entirely by

the effects of interference across the wavefront as it propagate towards the ground.

At the ground, and relative to the r¡ndisfurbed wave, the in-phase, I, and quadrature, Q,

components of a vertically propagating plane wave2 can be found by solving the Fresnel-

Kirchoff integrals (see for example [89] & [28]). This results in the following two terms

1= 1-2jsin (r, +olz)sin(alzþxtJh' (A-10)

tr

(A-11)

,r

where Õ = Õ(x) , Po =-fi|4-2n(, - h)lh,h is the screen height and r joins the elements dr

on the phase screen to a point on the ground (see Figure A-1). As these two integrals

contain a sin(O/Z) term which approaches zero when the emergent wave is unperturbed,

the integrals need only be calculated over the region of the irregularities in the plane of the

phase screen. This region is denoted as lr.

2In this analysis it is assumed that the GPS satellites are at sufficiently high altitudes to make the

simplifying assumption that the all incident waves are plane waves.
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Figure A-1: Geometry of the thinphase screcn dffiactionmodel.

The resulting phase and amplitude variations are obtained from the I and Q components

as follows

Phase =/rtan(ell)
(A-12)

Amplitude =,,[Ot * Ì

For irregularities much larger than the first Fresnel zone radius, zp, díffuaction effects are

minimal and a geometric optics solution can be employed. As a result, phase variations on

the ground will closely resemble those in the ionosphere and amplitude variations will be

negligible. On the other hand, for scale sizes of the order of the Fresnel zone radius or

smaller, or for very large plasma density gradients, rapid variations in both amplitude and

phase will occur. Irregularities smaller than z¡ produce diffraction effects, whereas those

containing large density gradients produce significant refraction and hence interference

effects. Both cause rapid variatiors in the amplitude and phase of the GPS signals on the

ground. For a Gaussian shaped irregularity, the threshold conditions for diffraction and

interference are (from [89])

I1"r=P""=J-t,

T

Dffiaction: (A-13)

Interference: (A-14)

where O0 is the peak phase variation, z1 and 22 are the distances between the

ionospheric irregularity layer and the satellite and receiver respectively. Typical upper

limits on the scale sizes of irregularities which are likely to produce these effects are
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Dffiøction:

Interference:

300m (L2),

220m(L2),

275m (LI)

190m (L1)

where it has been assumed that å; =400km and LTECI =L TECu (approximately 1'/" of a

typical equatorial TEC value during solar maximum). This analysis also assumes that the

irregularities are directly overhead and that propagation is vertical. For E-region

irregularities (h - 100 km), the equivalent dimensions are approximately one half.

It is expected that irregularities of the order of the Fresnel Zone radius or slightly smaller

will produce the most significant scintillation effects. Larger irregularities ale unlikely to

produce fully developed diffraction effects and would require very large peak densities in

order to produce significant interference effects. Irregularities much smaller than the

Fresnel zone radius will produce prolific diffraction effects, but with very small peak

phase variations. Examples of the effects of different scale sizes on the amplitude and

phase diffraction patterns is given in Section 2.1.5.

The phase and amplitude fluctuations derived from this model are a function of position

in an East-West direction. Because the irregularities are assutned to be field aligned,

fluctuations do not exist in a North-South direction. Consequently, the temporal variations

in phase and amplitude experienced by a GPS receiver will depend on the East-West

component of the irregularity velocity, the GPS platform velocity and the satellite velocity.

These velocity components are encapsulated in the effective scan velocity, v", which was

discussed in Section 2.1.3.

A.2 Random phase screen

A more realistic model for the phase screen based on in-situ measurements3 of electron

density fluctuations is the power law phase screen model. This model assumes that the

phase perturbations on the emergent wave are random with a Gaussian distribution and a

power law wavenumber power spectrum which is givenby

So(Ë) = ¿.(t 
"' 

*o'loÞ (A-15)

where k is the wavenumber, A determines the strength of scintillation activity,

e In-situ measurements of electron density are made with probes flown on rockets and satellites.
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ko:2xf lo rtr-1 ir an outer scale wavenumber, io is the outer scale size, and p is the spectral

index. The in-situ wavenumber power spectrum of phase (or equivalently of TEC) has the

same spectral index as the power spectrum of scintillations measured on the ground ([16]

and [a9]). Consequently, p is in the range 1 to 4 and is typically 2.5 at equatorial latitudes.

Realisations of a random phase screen tÞ(x) with the desired spectral characteristics can

be obtained from an Nth order Autoregressive (AR) process of the form

¡/

Zn,arl"A@X)=w(nX)t -ilx) (A-16)

(A-17)

(A-le)

i=l

where n is an integer, X represents the spacing between successive points on the phase

screery w(nx) is a white Gaussian noise process and h¡ are the coefficients of the AR

model. Equation (A-16) can be rearranged as follows

N

)n,a("a@x)- - i]Ð = w(nx)
í=I

Multiplying(A-17) throughby A@X) and taking the expectation gives

N
,ç -lh,r, -6*2 (A-18)

i=l

where r¡ = Rç(iX) is the Autocorrelation function of phase at a separation of iX m and

o*2 is the variance of the white noise process. In a similar way, multiplying through by

O([, - t]X) and taking the expectation gives

¡r

\h¡r¡-1=o
i=1

By repeating this process N+I times, the following matrix expression can be obtained

11

11

lg

rg

11

r¡¡

which can also be expressed as
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P,h =o*21 (A-21)

The coefficients of the AR model are therefore

ñ =o*2.P-r.8 (A-22)

Consequently, in order to determine h , t}:re autocorrelation function of phase ,R6(x) must

be found. As the wavenumber power spectrum of phase is an even functiory R6(;) is

givenby

Ao (x) = Js.1r¡., 
itu .dk

no(x) =2AI
cos(Ãx)

dk

Sa (/r).cos(ftx).dk

0

0

=2i
0

(A-23)

(A-24)

(A-25)

(A-26)

Substituting (A-15) into (A-23) gives

)o''Qí*n'
This is a general expression for the autocorrelation function of phase for a power law

wavenumber power spectrum. Unfortunately, it is difficult to solve in closed form for

arbitrary p. Consequently, numerical techniques must be used in order to determine

Ro(x) and P-l lor any p.

However, for the special case of p=2, the following simple solution for R6(x) can be

obtained from a table of integrals

cos(Àx)

nl +n2
Ro(x) =2nl .dk

An +^*
ç

ko

Giving

I

e-kox

"-i"*

AnP_
ko

e-kox e-Mox
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Substituting(A-26) into (A-22) and solving for the AR coefficients gives h1=s-kox ^ ^
hz...hx = 0. Therefore, for p=2 a first order AR process will generate suitable realisations,

Tlz

a@þ = w(nx)+ o([n - l]x¡.s-k"x (A-27)

An example of simulated scintillation data obtained from the Fresnel-Kirchoff diffraction

model using the AR process from Equatíon (A-27) is given in Figure A-2. Parameter values

for the AR process are Io =1km (outer scale size), X=lm (step size), and h¡ =400km

(ionospheric height). In addition, it was assumed that the velocity of the propagation path

normal to the receiver was L50m/s and that the L1 frequency was being used.

Consequently, for this example, the AR process is of the form

a@x) = w(nx) + 0.99aa ([n- 1]x) (A-28)

where w(nX) is assumed to have a variance of 0.0025 radiansz.
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Figure A-2: A sømple realisation of the ln-situ phase (upper pønel), phøse scintillntions (middle

pønel), and ømplitude scintillations (lower panel) obtøined from the Fresnel-Krchof dffiaction

model.
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Notice that the phase process at the receiver (middle panel) bears only a vague

resemblance to the in-situ phase process (upper panel). For much larger in-situ phase

gradients, the two phase processes would become even more different. The RMS phase

and ,Sa values for this particular example are 0.41, radians and 0.39 respectively. These

were obtained by averaging numerous different realisations based on Equation (A-28) and

the phase screen model.
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App"ndix B

GPS trackitg loop simulators

In this thesis, software simulations of GPS receiver code and carrier tracking loops are

used to validate analytical results and to determine where the analytical results begin to

fail. The advantage of simulation over a purely anal¡ical approach is that it allows the

loop non-linearities to be taken into account without the need to introduce any

approximations. These non-linearities include the discriminator, the I and Q channel

mixers and the code correlators. Although the majority of the work described in this thesis

is based on stand-alone code and carrier tracking loops, the behaviour of a combined code

and carrier tracking loop charurel can be investigated relatively easily through the

simulation approach described here.

The tracking loop simulators are based on SimulinkrM for MatlabrM and are driven by

amplitude and phase scintillation data produced by the model described in Appendix A.

Simulinkru diagrams of a stand-alone Costas carrier tracking loop and a delay locked loop

are given in Figures B-L and B-2. An equivalent diagram of a combined tracking loop is

given in Figure B-3. In all cases, the simulated scintillation data is stored in amplitude and

phase lookup tables and is extracted at a rate which depends on the value of v, chosen for

the simulation.

For the Costas loop simulator, it is assumed that the prompt code estimate is perfectly

aligned with the satellite code (ie. tr, =0) and is therefore removed completely from the

GPS signal. It is also assumed that the pre-detection filters are correctly synchronised to

the navigation data. Similarly, for the delay locked loop it is assumed that the carrier

phase error is negligible (ie. 0" = 0 ) and so the Q channel consists only of thermal noise

$e. Ap(t)s1n(çr)+nn=ne).In the combined simulator, the code and carrier phase errors

affect both tracking loops. In additioru because of the dispersive nature of scintillations,

the effects of phase scintillations on the code delay is assumed to be equal in magnitude

but opposite in sign to the effect on the carrier phase.
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The upper pønel represents the ennironment model. The lower panel represents the tracking loops.

In all simulations, the thermal noise blocks are based on Gaussian distributed random

number generators which are fed with different seeds. This helps to ensure that the

individual noise sequences are uncorrelated, or at least apProximately so. For the delay

locked loop, this implies that the separation between the Early, Prompt and Late signals

must be 1/z clips or greater (see Appendix D). The code spacing is set within Early, Prompt

and Late autocorrelation functions which replicate the behaviour of the three code

correlators in a delay locked loop. In addition, all simulators Provide the capacity to vary

the loop order, the loop bandwidth and the discriminator type.
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App"ndix C

Trackitg thresholds and cycle slips

Tracking thresholds define the point at which a tracking loop transitions from a state of

stable tracking to one of loss-of-1ock. When a tracking loop loses lock, the VCO frequency

drifts away from the signal frequency and the loop phase estimates become meaningless.

This is qualitatively different from a condition of frequent cycle slips during which the

loop continues to track the phase and frequency of the signal between successive slips. In

practice, however, it is difficult to distinguish between the two states, particularly when

the cycle slipping rate is very high. Consequently, it is often useful to define tracking

thresholds in terms of acceptable tracking performance. This may take the form of a

maximum acceptable probability of a cycle slip based on the non-linear analysis described

in Section C.2, or a maximum acceptable phase error variance based on the linear model

analysis described in Section C.1. The second of these threshold measures is based on the

assumption that a loop will lose lock when the magnitude of the phase tracking error

exceeds a certain boundary. This is generally set at a fairly conservative level under the

assumption that the probability of losing lock increases sharply when the linear model

approximations are significantly violated.

Because tracking loops are highly non-linear in the threshold region, Monte Carlo

simulation techniques are usually required in order to establish the true tracking

performance. The code and carrier tracking loop simulator described in Appendix B takes

account of the non-linearities in a tracking loop and provides an indication of where loss-

of-lock is likely to occur for various noise and d¡mamic conditions.

For an unaided GPS receiver, loss of carrier lock is usually followed soon after by a loss of

code lock. Consequently, the tracking threshold of such a receiver is typically set by the

carrier tracking loop. However, when a receiver is aided with Doppler measurements

from an Inertial Navigation System (INS), the tracking threshold will be determined by the

code loop. This is because Doppler aiding allows the VCO to continue tracking the
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frequency of the desired signal4, even when the carrier loop has been forced to lose lock.

Howevet, in the analysis that follows, the receiver is assumed to be unaided and the loop

threshold is assumed to be determine by the carrier loop.

C.1 Linear analysis

The tracking loop threshold derived from the linear loop model is based on the

assumption that loss of lock occurs when the linearising approximations are significantly

violated. If the carrier phase errors are modelled as zero-meary Gaussians random

variables, the probability of a phase error exceeding some threshold (Þ¡ is given by

Ay

p(Q,lrÕr)= t - J
(q -Q*'YI

(c-l)
_rÞ7 þe 2o 2

Qe

where @uss is the steady state phase error resulting from relative motion between the

satellite and the receiver (see Appendix E). This can also be expressed in terms of the

complementary error function as follows

(c-2)

A widely used rule of thumb tracking threshold for a Costas loop is that the 3-sigma phase

jitter from all sources other than dynamic stress errors must be less than 45o for the loop to

remain in lock (Ward [47], page 157). This corresponds to an error in the linear loop model

of approximately 36o/o lor an I.Q Costas loop (ie. the phase error estimate from the

discriminator is in errorby a factor of l-[O.Srin(ZOr)lAr]=0.36). Thus for puss =0, the

tracking threshold can be represented by 3or, -@r =45o. From Equation (C-2), this

corresponds to a probability of approximately 0.27% of the phase error exceeding Q7,

which is the probability of a Gaussian random variable lying more than 3 standard

deviations from the mean. In Figure C.L, the RMS phase error from all sources other than

d¡rnamic stress errors, or, , ís plotted as a function of the steady state phase tracking error,

a For a prolonged outage, changes in the carrier frequency as a result of satellite motion will
eventually cause the VCO frequency to drift away from the carrier frequency.

s This is based on the assumption that the thermal noise and ionospheric phase scintillations are

both zero-mean and Gaussian distributed.
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o".ss, for Qr=45o ana p(lQ"ltOr) =0.27o/o. This curve represents the locus of points for

which the loop is on the verge of losing lock under the specified threshold conditions

(from Equation (C-2)). Notice that for a zero steady state error, the threshold RMS jitter is

approximately 150 (nltZ radians) which is consistent with the initial assumption. Also,

notice that the straight section of Figure C.1 implies that the following approximate

relationship holds between the RMS phase error and the steady state dynamic phase error

for the loop to remain in lock

3or" +0u* l45o (c-3)

10 20 30 40
Steady state dynamic phase error (degrees)

50

Figure C.1: Lo phase error from øll sources other thøn dynømics aersus the stendy state dynamic

phnse error øt the trøcking threshold of an I.Q Costas loop.

C.2 Non-linear analysis

In this sectiorL various results from the non-linear analysis of tracking loops are presented

without proof. Closed form expressions are given for the PDF of phase errors/ the mean

time to cycle slip and the probability of a cycle slip for a Costas loop. Although these

expressions have only been obtained for a 1't order tracking loop under fairly restrictive

signal conditions, various researchers have shown that the performance of higher order

loops can be closely approximated by these expressions with only minor adjustments to

the SNR . The principal drawback in the use of results from the non-linear model is that

they assume that the system is driven by additive white Gaussian thermal noise only.

F{owever, in the presence of scintillations, coloured phase noise will also be present.
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Nevertheless, Van Trees ([96], pages 55-56) demonstrated that by a simple translation of

the phase noise process back through the loop integrator, phase noise with a power

spectral density of the f.orm Tf-2 could be considered to behave like additive white

Gaussian thermal noise at the input (also see Section 3.3.3).

The non-linear analysis is based on the solution of the non-linear stochastic differential

equation which defines the operation of a standard phase locked loop. This is given by

Q =Qr* 
¡'(s) 

[zsi n(q")+ rol (c-4)

The origin of this equation can be understood by referring to Figure 3.1-2 with the non-

linear element O.SÃ2 sin(Zqr) replaced with lsin(@") for a standard phase locked toop. By

assuming a first order loop with the input phase process, @, constant (ie. the system is

driven by additive white thermal noise only), the following PDF for the phase errors

reduced modulo 2n canbe obtained (for proof, see Holmes [43], pages 114-118)

J

lql=" (c-5)

where ro( ) is the modified Bessel function of the first kind of order zeto, p is the loop

SNR which is given by p =tf o$, =e2 f \N"Bn) for a standard phase locked loop, and rl is

the phase error reduced modulo 2n (ie. û = Q" mod2x ). This PDF is usually referred to as

the "Tikhonov density function". For a first order Costas loop with an LQ discriminator,

the Tikhonov density function is givenby (Holmes [43], page274)

lql=i (c-6)

where ¿ is the effective loop SNR which is given by p"=If 4oî", and t) is the phase

error reduced modulo rc (ie. û=Qrmodn). For an I.Q loop in the presence of white

Gaussian thermal noise only, the variance of the phase errors is given by the following

expression (Appendix D)

2

0r -8,
Cl No
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The variance of the phase errors reduced modulo n lor a first order I.Q Costas loop can be

obtained from the Tikhonov PDF as follows (assuming that the errors are zero-mean)

(c-8)

-n12

where o,r2 =opf, when the phase errors are small (ie. when they rarely exceed +nl2

radians)

For a standard phase locked loop in the presence of white Gaussian thermal noise, the

mean time to cycle slip is givenby (Homes [43], page 95, Gardner [36], page 38)

.n_,t- (c-e)

where B, is the single sided noise bandwidth of the tracking loop. For a standard phase

locked loop, a cycle slip is defined as an increase in the magnitude of the phase enorby 2n

radians. This usually leads to a jump in the loop's estimate of carrier phase by an integer

number of carrier cycles.

A more generalised expression for the mean time to cycle slip which includes the steady-

state phase tracking error, @us5, is [59]

o o2 = øtr)'I=' 
tf 
,o' t* {,ù n,

t+(nlpq,ss)2

28n

t"'(p)+2>
n=l

-l n In'

where 1r( ) is the modified Bessel function of the first kind of ordet n.

For an I.Q Costas loop, the mean time to cycle slip includes the effective loop SNR and is

givenby (Holmes [43], page 200)

(c-10)

(c-11)

where for a Costas loop, a cycle slip is defined as an increase in the magnitude of the

phase error by n radians (leading to an integer number of half cycle jumps in the carrier
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phase). The corresponding expression for the mean time to cycle slip in the presence of a

steady-state phase tracking error, @uss, is

(c-12)

Equations (C-11) and (C-12) can be obtained from the standard phase locked loop

expressions by doubling both o4" and @u55. This simple relationship holds because the

phase error characteristic of an I.Q Costas loop discriminator is sin(2@, )/2, while the

corresponding characteristic for a standard phase locked loop is sin(@, ). Consequently, the

carrier phase tracking errors of an I.Q Costas loop need only be half as large as those of a

standard phase locked loop to have the same impact in terms of cycle slips.

By applying the linear model tracking threshold for oç, (Equation (C-3)) to Equation (C-

LL), the mean time to cycle slip becomes T =1260lBn seconds. This demonstrates that the

tracking threshold obtained from the linear model analysis is quite conservative. For

example, for a noise bandwidth of. 10F{2, the mean time to cycle slip is more than 2

minutes.

If it is assumed that the slipping process is approximately Poisson distributed, then the

probability of a slip within f seconds from a condition of zero error is '(Holmes 
1431, page

e5)

p, =r-*r(-"4) (c-13)
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App"ndix D

Thermal noise errors

In this Appendix, the statistics of thermal noise errors on the code and carrier tracking

loops are examined. A method is outlined for obtaining the standard expression for the

variance of the thermal noise errors on a Costas carrier loop. This is then extended to

include the effects of amplitude scintillations on an I.Q Costas loop that is normalised by

an AGC.

D.l Thermal noise prior to the discriminator

From Equation (3.1-1), the IF signal at the input of the receiver tracking loops is given by

IF(t) = A()p(t - 4t¡)a(t - r(r))sin(o¡¡ t + QQ)) + nU)

where n(t¡=n"(t)cos(ro¡pr)+nr(t)sin(trrt) is a narrowband representation of thermal

noise at the IF stage. n(t) is assumed to be a wideband, stationary, zero-mean Gaussian

random process with a power spectral density of N, Wlllz within the IF band. Similarly,

the two baseband noise processes, nr(t) and nr(l), are wideband, stationary, zeÍo-mean/

Gaussian noise processes with power spectral densities of N" WlHz at baseband. After

mixing with the VCO reference signals, the noise is separated into I and Q components as

follows (note that the double frequency terms have been ignored as they will be

eliminated by filtering in the pre-detection filters).

n7 = n,(t)sin(0(t) + n" (r)cos(ri(r))

ns = n"(t) co(o(Ð) - n" (r) sin(rf1r))

(D-1)

where n¡ and ne arc again uncorrelated noise processes with the same statistics as n"(l)

and n"(r). The I and Q signals are mixed with Early, Prompt and Late replica codes from

the code generator and filtered by pre-detection integrate and dump filters to produce the

th¡ee I and Q pairs given by Equation (a.1-6). These are then converted into phase tracking

errors by the code and carrier tracking loop discriminators. The noise on the six I and Q

signals after filtering can be represented by the following vector
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ll =ffl lg, kgg 1ft¡p t ngp, n ¡t, ngt) (D-2)

The covariance between any two of these six signals is given by

oaxo þv = ElØ* - Eþ*|)Øp, - ølrBrÐl (D-3)

where s and p represents either I or Q, and X and Y represents either E, P or L. As all of

these noise terms are zero-mearL the covariance simplifies to

oaxo þy = øþ*npyI

(D-4)

where no and nB arc givenbyEquation (D-1), p("-*) and p(v-y) represent the PRN

codes with delays of u-x and v-y seconds respectively, and ¡ and y represent the

delays associated with either the Early, Prompt or Late codes. As nq and np are

uncorrelated and independent of the PRN codes, the covariance expression can be

simplified as follows

a=þ

a+þ
(D-5)

A,= p

Ar, p

R(x- y), d= p

a+p

where n{p@ - x)p(u - Ð}= R@ - y) is the autocorrelation function of the PRN code

(givenbyEquation(4.1-1)), and. øþoçul'Ì=n,(O)=No isthepowerspectraldensityof no

(oru p). This result also relies on n¡ and ne being sufficiently wideband for

='ll+,'J, o@) p(u -, *ll+,'l n 0,, 0,,-,,,11

= 
i,'L'J:{no(u)n B o) p(u - x) p(v - v¡}au.av

oaxa þy =# 
,'Jr,'J:frro@)nBr,>þ{pr,- 

x)p(v - y¡}du.dv

= þ'lr$"rù'þ{p@- 
x)p(u- Ðvu '

0,

= i,'Jï'R(x-Yþu'
0,
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nþ"("k"(u)|=o lor u+,

Based on Equation (D-5), the covariance matrix of the six noise terms for an Early-Late

spacing of.2d code chipso is given by

z{"'"þ

1

0

n(a)
0

R(2d)

0

R(2d)

)o
n(a)

0

I

)o

0

R(2d)

0

n(¿)

0

I

(D-6)

(D-7)

(D-8)

0

1

0

n(¿)
0

T

n(a ) 0

R(d

N
0

1

0

n(¿)

0

100.s0 0 0

0 r 00.50 0

0.50100.50
00.50100.5
0 00.5010
0 0 00.501

No

T

0

1

0

R(2d) R(d

For an Early-Late spacing of L code chip (d =th. ; typical of most GPS receivers), the

covariance matrix becomes

uþ'"1=

Consequently, when the Early-Late spacing is greater than or equal to L code chip, the

noise on all Early and Late signals is uncorrelated (ie' n(z'a)=O )' However' this is not the

case for narrow correlator spacing receivers such as the Novatel GPSCard" for which

d <rÁ. chips,

D.2 Thermal noise efrors in the absence of scintillations

For a phase locked loop, the mean-square phase tracking error resulting from thermal

noise is given by

n{o?Þ"'*

= !1urt\'s,a(.f).df

ó The spacing between the Early and Prompt codes and between the Prompt and Late codes is

assumed tobe d chips.
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where U(7) is the closed loop transfer function (Table 3.1"-2), and ^S,r("f) is the power

spectral density of the discriminator noise term (labelled n¿ in Figures 3.I-2 and 4.1-3). In

the analysis that follows, it is assumed that amplitude scintillations are absent and that n¿

is a zero-mean random variable. Also, the sample-and-hold circuits which form part of the

pre-detection filters will maintain n¿ at a constant level for a period of T seconds.

Howevet, between successive T second epochs, the values of n¿ will be uncorrelated. As

will be shown in Equation (D-24), this is a result of n¡p and ngr being uncorrelated

between epochs.

The discriminator noise can be viewed as the output of a sample-and-hold circuit fed by a

white noise sequence, w(t). Therefore, we can express ,¿Q) nthe following way (from

Haykin [39], Section 7.3)

n¿Q)=w6Q)ø grQ) (D-e)

where ,a|)=2r!rrþ(-tr) is an instantaneously sampled version of ,Q),
k4

sn|)=r""r(+) ,"Rr"r"r,ts the "hord" ftmction of the sample-and-hold, and @

represents the convolution integral. The corresponding power spectral density of n¿Q) is

s^¿(f) = nllr{ruQ)Ø sr(r)}l'}

= s*du)lGr(l\' @-1"0)

where S,a(Ð is the power spectral density of w6(r), and GoU)=f snc(fI)exp(- ¡rc|f) is

the Fourier transform oÍ gn(t).er w(l) is a white noise sequence, wô(r) is also white.

Therefore, SraU)- Nw6o which is a corstant. The variance of n¿Q) is given by

(f).df

= Js'u u)lch(¡\'.ar

oîo = Is,o

= j N**r' sinc2 Qtr\a¡

= N*6oT
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Consequently, S,a (-Ð=o?¿ ff anaEquation (D-10) becomes

s,a(f)=o',aT snc2Q¡r) @-12)

Therefore, from Equation (D-8), the thermal noise variance of the phase errors is given by

oî, = IVU¡'"',or sinc2 r¡r\al
(D-13)

=2olo ,l+jyur2sinc2 (rÐdr)

o,ø =*î,rl+\r,ut, or)

The closed loop transfer functiory H(î), is a low-pass filter with a bandwidth much

smaller than the bandwidth of the sinc(¡T) functionz. Consequently, sinc2(¡7) can be

approximated by one, giving

(D-14)

=2TBrolo, radians2

where B, = n(¡\'df is ttre single-sided noise equivalent bandwidth of the tracking

loop. Noise equivalent bandwidth's for the three loop orders are given in Table 3.1'-2 as a

function of the loop natural frequency, úor.

Equation (D-14) is independent of the algorithm chosen for the Costas loop discriminator.

In order to proceed, however, it is necessary to specify a discriminator algorithm so that

olo 
"un 

be found. For the I.Q Costas loop, the discriminator noise term n¿ is given by

(from Equation (3.1-3))

na = ÀdQ-")[.o(ø her +sin(Q")n,r]* nsrnn (D-15)

z Tlre single-sided noise equivalent bandwidth of nÇ) isnormally less than 2}Hz,whereas the

equivalent bandwidth for the sinc(/f) function is ll2T Hz = 25Hz for T=20ms.

ijt
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If it is assumed that the signal amplitude is constant (ie. Ã= A where A is a constant), and

the discriminator is normalised by an ideal post-detection AGC (ie. g = A2), the noise

term will become

As ngr and n¡p are uncorrelated and zero-meary the variance of n) is given by

"i =þ=*.0Q-")[po.(4" )nn, +sin(Q,k,r)*|nn nn

=åî1,.#1,

(D-16)

(D-17)

(D-le)

@-20)

o',h = uþt;'I

= 1.o'' (0" )ul'nlþ #.t' @)øf, n'I* i uhn'þh *'I

Letting n{nqo'}= u{"ot}= NolT (from the diagonal elements of Equation (D-6)) gives

^2. - N, f,..,- N, lu nh = ,ñl'* Tñ ) @-1s)

t-l'*t .l

= 2rclN,l'- 2rclN")

where Cf No=n'zfzw, is the nominal carrier to noise power density ratio of the GPS

signals. Consequently, the phase error variance of a normalised I.Q Costas loop is given by

(from Equations (D-14) and (D-18))

otø =2TB,ol2

radians2

Equivalent expressions for the thermal noise variance of both the Delay Locked Loop

(DLL) and the Frequency Locked Loop (FLL) are given below (see for example Kaplan

t47D.

DLL chips2

a If it is assumed that the nominal satellite signal power at the ground is -160dBW [8L] and the

noise temperature is 530K the nominal carrier to noise density ratio is Cf N o = 41.5 dBHz .

280

o?, = lru-or.ffil



FLL: Hzz (D-21)

where fi is the discriminator correlator factor (1. for time shared tau-dithered early/late

correlators , 1/ 2 for dedicated early/late correlators), F2 is the discriminator type factor (1

for early/late discriminators, '1./2for dot product discriminators), ,F3 is 1 athiglr. Cf N'

and2 at low Cf N" and d is the correlator spacing (in chips). Although the discriminator

algorithms are quite different for the DLL and FLL, it is clear that the variance expressions

have the same general form as Equation (D-19).

D.3 Thermal noise errors in the presence of amplitude scintillations

In the presence of an AGC, the discriminator noise term is given by (based on Eq" (3.1-3))

n; =nd =r ftaçr-r)þo(@")nn" +sin(Qe) nol*nn nu) (D-22)

o3r =ffi1,.i^l

ooóò

,k
where f=!\1,2+9,2 is the AGC gain factor. I1 nyr and nyp are assumed to be

o l-H.L i=l

independent of À and g (ie. independent of amplitude scintillations), and both ngp and

nyp ãrE uncorrelated and zero-meary the noise term n) will also be zero-mean. This is

demonstrated below

If we let nr=cos(@")ngp+sin(Q)nn and nr=ngpnrp, it can easily be shown that

E{n,}=0, n{nr]l= 0 and z{"-nr}= 0 ' Therefore

o {,h} = uft¡Z o(t - r)n **,, ] I

='lrylur,;*'l+l't",}
(D-23)

-0.

and so n) is zero-mean. It is can also be shown that under the assumptions outlined

above, n) is uncorrelated between successive T second epochs. The autocorrelation

function oÍ. n'¿ for a lag of T seconds is given by
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llu 
í, n'þo,' (0, ) *, þ, r'I,n' (0" t. t Iþlt l, n; þ þ *' I

Letting t{"*'}=u{n,r']l=¡v,lr (from the diagonal elements of Equation (D-7)), the

(D-24)

As E{nrnr}=0, the second and third terms inthis expression are zero. Also, as n, and

ny are uncorrelated between epochs, ø{"-Q)"-Q*r)}=0 and øþrrQkr(r+r)}=0.

Consequently, Rn2(f)= O and so n) is also uncorrelated between successive epochs (note

that R,2G)= O lor r >7 also). The variance oÍ n'¿ is given by

olh = E\,;Q)'I

I,þ n'cos2 (p" ) * r,r'sin2 (p, ) + 2n e¡,n ¡pcos(p, )sin(p, ù. tlþ

l'þ;v'{¡l't;t
zzInpl

(D-25)

variance expression reduces to

oîh =
þ{

z2
-7
go

No

T
*Lø

T Ìl
I

-oó
(D-26)

The signal amplitude A can be normalised by dividing by the nominal (unperturbed)

signal amplitude A as follows
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A
AN (D-27)

A

where u{1;}= n{l'}f e,2 = 1 under amplitude scintillation conditions. By substituting

À=Ã*Ãn and ClNo=n2fzw" into the variance expression, the following result is

obtained

(D-28)

where S^r=glÃ2 is a normatised AGC gain factor, and Cf No is the carrier power to

noise density ratio of the GPS signal.

Equation (D-28) represents the noise variance at the ouþut of a normalised I.Q

discriminator. The only assumptions made in this analysis are that the amplitude and

AGC gain factor are independent of the thermal noise terms, nep and n¡p. Howevet, no

assumptions have been made about the bandwidth of the amplitude scintillations'

D.3 A note on samPle-and-hold circuits

The ouþuts of the pre-detection integrate-and-dump filters will generally be held constant

for T seconds by a zero-order sample-and-hold circuit. The PurPose of the

sample-and-hold is to maintain the I and Q signals at a constant level so that f(r) is fixea

for the subsequent T second integrate-and-dump period. Using arguments similar to those

given in Equations (D-9) to (D-12), it is relatively straightforward to show that the

sample-and-hold does not change the variances or power spectral densities of the six noise

terms from Equation (D-2), although it may alter their apPearance in the time domain (ie.

they will become stepped rather than continuous). Therefore, if 
"ørQ\ 

represents one of

the noise terms from Equation (D-2), S,*(f)=N,sinc(/)2 and oSox = NolT ,

irrespective of whether a sample-and-hold circuit is present after the integrate-and-dump

filters.

oîh=ui-*l'l#1.+,"{*}]
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App"ndix E

Doppler errors

The effects of satellite and receiver motion on the phase of the GPS signal can be

represented by the following Doppler expressions

Carrier:

Code:

Qa(t) = "(ù+lr' * v ot I i"r' * | i',t *...)

r ¿(t) = "(ù:l% 
+ v ot + 

L' r' * | i',' *'..)

radians

seconds

(E-1)

(E-2)

(E-3)

(E-4)

where u(t) is the unit step functio'n, ro)vo,ao artd jo are constants which define the range,

velocity, acceleration and jerk components of the relative motion between the satellite and

receiver, Â is the carrier wavelength and c is the speed of light. These equations assume

that the d¡mamics are applied at time f=0, and that prior to f=0 there is no relative motion

between the satellite and receiver. The Laplace transforms of Q¿Q) and r¿(t) are given by

the following generalised expression

+

where 0¿(s) represents either QaG) or ø¿(s), and k is a constant which equals 2nf L fot

the carrier tracking loop and lf c lor the code tracking loop. The phase errors at the ouþut

of the tracking loop are given by

,o'r=ol?

g"(") = [t - ø1s¡]er1s¡ =

?.?.f. ]

s0a(s)

s+.F'(s)

where f(s) is the loop filter and A(s) is the closed loop transfer function (from TabLe 4.2-

2). The phase error as a function of time, 1r(t) , can be obtained from Equation (E-4) by

taking the inverse Laplace transform.
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E.L Steady state errors

The steady state tracking error is given by the Final Value Theorem of Laplace transform

theory as follows

gurs =rg o"Q)= sOr(s).
lim

sâ0 (E-5)

where 0r(t) is the inverse Laplace transform of 0"(s). For the generalised Doppler process

of Equation (E-3), the steady state tracking error becomes

0ug5 = /çx
lim

s+0 l ro, * ro + ao *- i, *...-.|
ls+r(s) s+.F(s) s(s+F(s)) s¿(s+Jc'(s)) I

(E-6)

Equation (E-6) results in the following steady state phase errors as a function of the loop

order and the specified component Doppler processes.

uQ)r,

l.'t Order

,Q\,"t

2nd Order

1

,Ø+
3.d Order

"d)+
4th Order

L't Order 0
kvo

an

oo oo

2"d Order 0 0 ao
7

(Dn-
k

oo

3.d Order 0 0 0 Jok
3(Dn

Table 8.1: Steødy state tracking errors as a function of the loop order and loop nøtural frequency

a, for the specified Dopplu process.

It is clear from Table E,1 that if the loop order is less than the order of the Doppler process

minus one, the loop will lose lock. However, when the loop order is greater than or equal

to the order of the Doppler process, the steady state tracking error will be zero (assuming

that the loop filter is active). \ÁIhen the loop order is equal to the order of the Doppler

process minus one, the steady state phase error is given by þased on Table E.1)
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(E-7)

(E-1-0)

where k is the loop order. This expression implies that the steady state error can be

reduced by increasing the loop bandwidth (ie. increas^g a).For the frequency locked

loop, the steady state error is given by the first derivative of the phase error as follows

dk*roo7t¡

radians/s (E-8)

Corsequent\y, anFLL will in general be more robust to Doppler effects than a PLL of the

same order

E.2 Transient errors

For a typical GPS receiver closed loop transfer function, the transient errors will overshoot

the steady state error by only a small amount (1921, page 390). Nevertheless, the

contribution to the loop phase error from transient dynamic effects can be accounted for

by including a Total Transient Distortion term in the phase error variance exPression [45].

The Total Transient Distortion is given by

er2 = [erçt¡2.dt

r ^^ =dorss?) - dro*trâ)r ú ùnk

se,(f)= n{1e"rnl'}

= r{[r - nç>]eou>l'I

=í- nrÐ1, n{leru\'}

=Í- nu)l"ro(f)

(E-e)

0

If we replace 0¿(s) with a truncated version of the series given in Equation (E-3), and we

assurne tlrtat ee!) is bounded (ie. The loop remains in lock), then 0r(l) is a deterministic

power signal and its power spectral density is defined by
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The Total Transient Distortion then becomes

tr' = Isrr(f).df
(E-11_)

- n(fl\'sau).df

Equation (E-11) assurnes that the steady state tracking error is zero (ie the order of the loop

is greater than the order of the Doppler process). If this assumption is víolated, the Total

Transient Distortion will become infinite.

¡'
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App"ndix F

Ionospheric pierce point velocity

Satellite motion

The steps required in order to determine the Ionospheric Pierce Point (IPP) velocity due to

satellite motiory lr, are outlined below. It is assumed that suitable algorithms are

available to convert between the geodetic coordinate system (latitude, longitude and

height) and the Cartesian Earth Centred Earth Fixed (ECEF) coordinate system.

Step L

Using the satellite Almanac (or Ephemeris) parameters, calculate the satellite ECEF

coordinates, 4s = (x s , / s ,es ) . The appropriate equations can be found in Appendix II of

rCD-GPS-2O0 [81].

Step 2

Convert the satellite ECEF coordinates to local level coordinates as follows:

The ECEF line of sight coordinates of the satellite from the receiver are

Vts = (xrs, y 6, z u) =Vs -Vn

where Vn=(xn,yp,zn) are the ECEF coordinates of the receiver. Convert the receiver

ECEF coordinates to latitude and longitude coordinates,(Qn,l.¡), using an appropriate

transform. Convert the line of sight satellite coordinates to local level coordinates using the

following matrix

Rr¡

The local level coordinates are then

I 7ts
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where Vr=(xr,yL,zL) are in the East, North and Up directions respectively, and the

x ¡y ¡ plane is tangent to the Earth at the receiver location.

Step 3

Determine the elevation and azimuth angles of the satellite using local level coordinates.

Only those satellites for which the elevation angles are above some low elevation angle

mask are considered further (a typical mask angle is 5o)

Elevatiory e =
z

Step 4

Calculate the earth centred angle, Y (the angle between a line joining the centre of the

Earth and the receiver, and a line joining the centre of the Earth and the IPP).

(xr2 + yt2)

Azimuttr, t = ur"run(" t/l, r)

Ysin(ø)At=Ln +#
cos(91l

Y =90-e-

where R"= 6378 km is the Earth's radius, and h7 = 350 km is the mean ionospheric height.

Step 5

Calculate the IPP in geodetic coordinates. The IPP is the point below which the line of

sight vector penetrates the mean ionospheric height.

Qt =Qn+Ycos(a)

where (Qr, hr) are the IPP latitude and longitude respectively.

Step 6

Determine the velocity of the IPP in ECEF coordinates as follows:
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Convert the IPP geodetic coordinates (fu,Lr,h,) to ECEF coordinates, 7r =(x7,!¡,2¡),

using an appropriate transform. Perform this step at two time instants separated by a

small time incremertt, T, to obtain the two coordinates, Ty ànd 7y2.Thle ECEF velocity of

the IPP is then approximately

ryz-*tl¡ =(vr¡,vyI ,vzl)=-
T

(An alternative approach is to solve the expression R, *ht=17^*þ ¿rl for the scalar

factor B (0 < þ < 1) at two different satellite locations separated in time by r seconds. The

IPP in ECEF coordinates is then 7t =Vn + þ 4Ls and the IPP velocity, ly , is once again

found using the equation given above. This approach by-passes steps 2 to 5. However, if

this approach is used, it is still necessary to find the local level vectol, V¡, in order to

obtain the satellite elevation angle for masking purposes.)

Step 7

Translate the IPP ECEF velocity into a local level velocity as follows:

Form a translation/rotation matrix based on the first IPP coordinate Vy (or (Qrr, Lrr,h,r) in

geodetic coordinates)

Rl

Convert the velocity vector to a local level vector as follows

ILI = Rr *v¡

where l¿¡=(v¡¡,v4r,vLrr) are the velocity components in the East, North and Up

directions respectively. The IPP velocity due to satellite motion is then î, =iy and the

speed of the IPP is simply v, =lîr,l m/s.
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Receiver motion

The steps required to determine the IPP velocity due to receiver motion, î, , are outlined

below.

Step 1

Determine the ECEF coordinates of two receiver locations separated by øseconds in time.

The receiver must be characterised in terms of its location r¡ (in ECEF coordinates), and

its velocity in local level coordinates, îp=(vrp,vrR,r"R) (East, North and Up directions

respectively). Following ø seconds of motiory the location of the receiver in local level

coordinates (with respect to h ) is given by ln x ø . Consequently, the ECEF line of sight

vector from r¡ to the new receiver location is

Vrs = R-l *iR' *T

where R-l is the inverse of the transformation matrix given earlier. Therefore, the two

receiver locations in ECEF coordinates will become

lnRr = fR

fp2=rpIrTg

Step 2

If it is assumed that the satellite positiory 75, remains fixed over the t second period of

interest, the procedures outlined earlier for satellite motion can be repeated in order to

derive the two IPP coordinates corresponding to the two receiver locations (ie. repeat

step's 2to 6 for satellite motion). As before, these two coordinates can then be combined in

order to obtain ECEF, and finally local level IPP velocity measures (ie. 4 ).

Combined motion

It is quite straightforward to combine the effects of satellite and receiver motion by

calculating two values of ß (61 and 7s) and two values of h (r¡1 and r¡2) which

represent the two time instants of interest. Steps 2 to 7 of the analysis of satellite motion

can then be used to determine r,7 based on combined motion.
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Flowever, to a first approximatiory the IPP velocity can simply be found by summing the

two velocity vectors obtained by treating the satellite and receiver motion separately'

Equivalent satellite velocity

For GPS calculations, the WBMOD model is called using the FILE option. This requires

that the receiver be stationary at a known locatiory and that the satellite position and

velocity vectors be specified in a file that is passed to WBMOD. Unfortunately, WBMOD

does not include an option in which both the satellite and receiver are capable of moving

independently of one another. To account for this, it is possible to determine an equivalent

satellite velocity vector that includes the effects of both satellite and receiver motion. The

receiver is then considered to be stationary and the equivalent velocity vector is passed to

WBMOD within the satellite file. The equivalent satellite velocity vector is calculated as

follows:

The ECEF satellite vector can be described in terms of the ECEF receiver and IPP vectors

as follows

where B is the scalar factor described earlier. If r¡ is considered to be stationary, and p is

assumed to be constant, the time derivative of the above expression is given by

drn
vsE =

òt

where v7 is the IPP ECEF velocity which includes the effects of both satellite and receiver

motiory and f5¿ is the equivalent satellite velocity. The value of vs¿ given by this

expression will ensure that WBMOD creates an IPP velocity vector which accounts for

both satellite and receiver motiory and that B is a constant over some small time interval,

ôr. The v5¿ vector must then be transformed into a local level velocity vector for

WBMOD by multiplying by the following matrix

, t(òr, Ahl-p[a, - ar.J

vI

þ
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Rs

where þ s , Ls are the satellite latitude and longitude respectively
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WBMOD predictions of Í,

Appendix G

Many of the results derived in this thesis are based on the assumption that the bandwidth

of the amplitude scintillations is much less that the bandwidth of the tracking loops. This

assumption greatly simplifies the problem of analysing tracking errors and allows

analytical expressions to be obtained for measures such as phase error variance and the

probability of losing lock. The cutoff frequency of the amplitude scintillation Power

spectrum, f", is an important indicator of the validity of this assumption as the majority

of the amplitude scintillation energy is expected to be concentrated near to f" (above f",

the PSD of amplitude scintillations falls off according to a power law expression of the

lorm k,af-p where k1 is a constant). From Equation (2-1'-3), /) is givenby

.f, Hz (G-l)

where v" is the effective velocity, zr=JÀz is the Fresnel zone radius, )"is the carrier

wavelength, and z is the distance to the irregularity layer. For a given satellite-receiver

geometry, WBMOD provides predictions of ve based on internal models of the

ionospheric drift velocity, v¿.ln addition, simple geometry can be used to determine z as

a function of the elevation angle, e, f.or an assumed ionospheric height of h¡ , uiz

sin(e)2 +(t+lt,lr")2 -l -rin(,)l (G-2)Z=fe

where ¿ is the radius of the Earth. In Figure G-1, WBMOD predictions of v, under the

same conditions as those used in Figure 3.4-5 were used to obtain f" as a function of the

elevation angle for h¡=350km. Each point in the upper panel of this figure represents one

propagation path at one instant in time between L2:00 noon and L4:00 hours GMT. It is

clear from this figure that on average, /) tends to be slightly larger at low elevation

angles. This implies that the increase in zp at low elevation angles tends to be outweighed

by a larger increase h v" on some of the low angle links. It is also clear that /) is

generally less than about 0.3}J2 (often considerably less), which is well below the
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bandwidth of a typical carrier loop. However, it is possible that in the presence of high

platform velocities, /" may increase significantly on some links. If the carrier loop

bandwidth is also very narrow, perhaps due to INS aiding, the assumptions made about

the amplitude bandwidth may be violated, particularly for the narrower bandwidth code

loops.
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Figure G-1: f" as ø function of the eleaøtion angle from WBMOD.
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