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Abstract

The Global Positioning System (GPS) is used extensively in both the military and civilian
communities for such diverse activities as navigation, surveying, remote sensing, asset
management and precise timing. The tremendous popularity of GPS has stemmed from
the low cost and small size of modern GPS receivers, and from the high accuracy and
reliability of the system. This second factor has also resulted in GPS being considered as a
sole means of navigation for critical safety of life applications such as precision approach

and landing for aircraft and narrow channel navigation for ships.

A number of environmental factors are known to affect the performance of GPS, including
electromagnetic interference, multipath, foliage attenuation, atmospheric delays and
ionospheric scintillations. In this thesis, the effects of ionospheric scintillations on GPS will

be examined.

Tonospheric scintillations are rapid variations in the amplitude and phase of
transionospheric radio signal resulting from density irregularities in the ionosphere.
Scintillations have the capacity to affect both the accuracy and reliability of GPS systems
by compromising the performance of the code and carrier tracking loops of a receiver. In
order to quantify this effect, a widely used stochastic model of scintillation activity is
combined with various tracking and acquisition models to produce a collection of receiver
performance measures. These include the magnitude of the code and carrier range
measurement errors, a measure of the tracking state of the carrier loop, the mean time to
acquire, and the bit error probability for the navigation data. An advantage of the
stochastic model chosen in this study is that it is linked to an existing predictive
scintillation model which is based on large amounts of scintillation data collected over the
previous 20 years or so. Consequently, by combining these models it is possible to predict

the performance of a given receiver type at any future time and location.
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Chapter 1 s

Introduction

he NAVSTAR Global Positioning System (GPS) is a satellite based radio navigation
Tsystem that provides accurate three dimensional position, velocity and time
information globally and continuously under all weather conditions. The GPS system can
be conveniently divided into three segments; (i) the Space Segment which consists of the
GPS satellites, (ii) the Control Segment which comprises a network of monitor stations and
ground antennas, and (iii) the User Segment which consists of the GPS receivers and
associated systems. Because of the high accuracy, low cost and portability of GPS
receivers, applications for GPS are appearing in many different areas including air, land

and sea navigation, surveying, geodesy, and military applications to name a few.

The accuracy and reliability of GPS is a function of both system and environmental factors.
System factors are associated with the three GPS segments described above and include
errors in the satellite clock and ephemeris information, hardware channel biases, satellite
geometry effects and thermal noise errors. Environmental factors are associated with
propagation phenomena and include electromagnetic interference from external sources,
ionospheric effects (including those associated with both the quiescent and the disturbed
ionosphere), tropospheric delays, obscuration and multipath. Depending on the
circumstances, the most significant environmental factor can be the disturbed ionosphere.

For GPS, the principal manifestation of a disturbed ionosphere is ionospheric scintillations.

Tonospheric scintillations are rapid variations in the amplitude and phase of
transionospheric radio signals resulting from density irregularities in the ionosphere.
Scintillations show strong diurnal, seasonal, geographic and solar cycle dependence being
at their most severe during the evening hours, in the months of the equinox, at equatorial
latitudes and during the years of solar maximum. As we are currently at solar maximum
(year 2000), it is expected that both the frequency and severity of scintillation activity will

remain at a high level over the coming year or so.



Scintillations affect GPS receivers at the tracking loop level and so have the potential to
disrupt all GPS systems, including both single and dual frequency receivers and both
stand-alone and differential systems. The errors introduced into the code and carrier
tracking loops of a GPS receiver result in an increase in range measurement errors and
under extreme conditions can lead to a complete loss of signal lock. Other effects include
an increase in the probability of errors within the GPS navigation data and an increase in
the time taken to acquire the GPS signal when a receiver is first turned on. However, as
scintillations are unlikely to affect all of the satellites in a receiver’s field of view
simultaneously, their impact on navigational accuracy will be through a degradation in the
geometry of the available constellation. Consequently, the coverage of both the satellites
and the irregularities, as well as the intensity of scintillation activity will all contribute to

the accuracy of the final position solution.

1.1. Motivation

GPS will become the primary navigation system for the Australian Defence Organisation
(ADO) and will be installed on all air, sea and land based platforms, as well as forming an
integral part of the guidance mechanisms of many weapons. The positional accuracy of
GPS affords the possibility of enhancing many ADO operations, including navigation,
precision approach and landing, logistic support, the management of assets, mine warfare,
and the targeting and guidance of weapons. In addition, GPS allows combined operations
between air, sea and land based forces to be executed with flexibility and precision
through the use of a common reference grid and precise position, velocity and time
information. The cost effectiveness, accuracy, reliability and convenience of GPS will
ensure that it becomes an essential part of most military systems, replacing existing, more
costly navigation systems. GPS has also found an enormous market in the civilian
community in such diverse areas as aircraft and marine navigation, surveying, remote

sensing, geodesy, geographic information systems (GIS), and precise timing.

The Surveillance Systems Division (SSD) of the Defence Science & Technology
Organisation (DSTO) has been tasked with the job of assessing the impact of
environmental factors on the performance of GPS systems. These factors include
electromagnetic interference, multipath, foliage attenuation, atmospheric delays and

ionospheric scintillations. The areas that may be affected by equatorial scintillations cover



nearly 50% of the earth’s surface and include regions such as Northern Australia and
South East Asia which are of considerable operational interest to the ADO. For this reason,
SSD has an interest in quantifying the effects of scintillations on GPS performance and of
developing tools to predict the occurrence of significant scintillation events. The results
obtained from this study will also be of interest to civilian users, particularly those
attempting to achieve high levels of accuracy in equatorial regions. This is especially true
now that the United States Department of Defense has disabled Selective Availability!

which, until recently, has been the largest source of error for civilian GPS users.

1.2. Thesis outline and contributions

The principal contribution of this research is to use a widely accepted stochastic model of
scintillation activity to investigate the effects of scintillations on GPS receivers and
systems. This model has the advantage of being closely linked to the Wide Band
Scintillation Model (WBMOD?) which allows various statistical scintillation parameters to
be predicted for a given time, location and satellite-receiver geometry. The individual

contributions of this research can be summarised as follows:

Chapter 3

Expressions are derived for the variance of the carrier phase tracking error for a Costas
carrier tracking loop as a function of various amplitude and phase scintillation parameters.
These expressions are then used to determine the strength of scintillation activity that will
cause a carrier loop to lose lock. The sensitivity of the scintillation parameters to
geometrical factors such as the satellite elevation angle and satellite and receiver motion

are also discussed.

Expressions are also derived for the variance of the carrier phase range errors for a Costas
carrier tracking loop as a function of the scintillation parameters. These expressions are
then used to determine the errors that would be experienced by a carrier phase differential

GPS system over different baseline lengths.

1 Selective Availability or SA is an error introduced by the US Department of Defense to
intentionally degrade the accuracy of the civil GPS service.

2 The Wide Band Scintillation Model or WBMOD combines empirically derived models of the
global distribution and behaviour of ionospheric irregularities with a propagation model to

predict the characteristics of scintillations on a user specified transionospheric link.



Chapter 4
Expressions are derived for the variance of the code phase tracking errors and the variance of
the code phase range errors (pseudorange errors) for a code tracking loop as a function of

scintillation parameters.

Chapter 5

Expressions are derived for the effects of scintillations on codeless and semi-codeless
tracking loops. The predicted performance of a semi-codeless loop is then compared with
the measured performance obtained from a receiver located in the equatorial region

during a period of moderately high scintillation activity.

Chapter 6
Expressions are derived for the probability of a data bit error in the GPS navigation
message as a result of scintillations. The likely effects of these errors on the performance of

a receiver are also discussed.

Chapter 7
The effects of scintillations on acquisition are investigated for a square-law acquisition
detector, and expressions are derived for the mean time to acquire the GPS signal under

amplitude scintillation conditions.

Chapter 8
Optimum filters are derived for carrier phase tracking loops that minimise phase tracking
errors in the presence of scintillations. The effects of dynamics on the structure of these

optimum filters is also discussed.

Chapter 9

The problem of translating predictions of the impact of scintillations on individual
satellite-receiver links to predictions of navigational accuracy are discussed. The utility of
WBMOD for predicting the effects of scintillations on GPS and its limitations are also

discussed and some examples are given.

Appendix A

A technique is described for generating simulated amplitude and phase scintillation data
using a model based on a single, thin diffracting screen containing randomly distributed
ionospheric irregularities. The simulated scintillation data obtained from this model is

used throughout the thesis to validate the theoretical results.



Chapter 2

Background

This chapter is divided into three main sections. In Section 2.1, the morphology of
ionospheric scintillations is discussed and various scintillation models are introduced. In
Section 2.2, a brief overview of the GPS system is given and a model of GPS receiver code
and carrier tracking loops is provided. Finally, in Section 2.3 relevant literature is reviewed

and the problems to be addressed in this thesis are identified.

2.1. Ionospheric scintillations

Ionospheric scintillations are rapid variations in the amplitude and phase of
transionospheric radio signals resulting from electron density irregularities in the
ionosphere. Scintillations are therefore intimately linked to the underlying physical
processes in the ionosphere that give rise to irregularities. In this section, these processes
will be described along with the morphology of the associated scintillations. The models of
scintillation activity that will be used in subsequent chapters will then be discussed,
including; (i) a stochastic model based on data from previous solar maxima which will
form the basis of most of the analytical work that follows, (ii) a model which combines
various climatological irregularity models with a propagation model to produce
predictions of scintillation strength and occurrence, and (iii) a propagation model based on
a simple thin diffracting screen that enables simulated scintillation data to be generated for

various simulation tests.

2.1.1. The ionosphere

The ionosphere is a region of the upper atmosphere in which the density of free electrons
is large enough to have an appreciable effect on the propagation of radio waves [27], [80].
Although both the lower and upper boundaries of the ionosphere are not well defined, for

most practical purposes they can be considered to occur at roughly 50km and 1000km

5



respectively. Below this is the neutral atmosphere (the troposphere) and above is the

protonosphere that eventually merges with the interplanetary medium.

The ionosphere is formed by the ionising effects of solar X-ray and ultraviolet radiation on
neutral gasses in the upper atmosphere. As solar radiation penetrates the atmosphere, its
intensity is reduced through absorption while at the same time the density of the
atmosphere (and hence its capacity to produce ions) increases. Together, these two effects
lead to the formation of a region of maximum electron density, referred to as a Chapman
layer [27], at altitudes between about 250km and 400km. A typical daytime electron
density profile for a mid-latitude location is given in Figure 2.1-1. In this figure, it is
apparent that the ionosphere forms into several layers, the largest of these being the

F2-layer which extends from about 200 to 1000 km in height.
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Figure 2.1-1: A typical daytime electron density profile for a mid-latitude location.

The peak density of the F2-layer undergoes large diurnal variations, reaching a maximum
at approximately 1400hrs local time and a minimum just before dawn. The height of the
F2-layer peak also shows a diurnal dependence, tending to fall at dawn and rise during
the evening hours. At low geomagnetic latitudes, the F2-layer height continues to rise
during the evening reaching a maximum height of approximately 500km at about 1900hrs
local time. This effect is due to an upward ExB force created by an Eastward electric field
in the E-layer that becomes enhanced soon after sunset. At these altitudes, the free ions
recombine very slowly after dusk and so the plasma density remains relatively high.
Under the influence of pressure gradients and gravity, the equatorial plasma in the
heightened F2-layer is forced downwards along the magnetic field lines, creating regions

of enhanced electron density at approximately 15 to 20 degrees either side of the
6



geomagnetic equator. These enhanced regions are referred to as the Equatorial Anomaly,
and the process by which they are created is known as the Fountain Effect (see for example
[49], [27] and the illustration in Figure 2.1-2). The Equatorial Anomaly is an important
phenomenon in the study of scintillations as it is responsible for the formation of the

plasma density irregularities that give rise to scintillations.

ExB

Figure 2.1-2: Illustration of the equatorial Fountain Effect which gives rise to the Equatorial

Anomaly. E and B represent the electric and magnetic field vectors respectively.

2.1.2. Morphology of scintillations

Scintillations occur predominantly in the equatorial band that extends from about 2005 to
200N of the magnetic equator, and in the auroral and polar cap regions (see Figure 2.1-3).
The processes that produce scintillations in these two regions are quite different, leading

to significant differences in the characteristics of the resulting scintillations.

Auroral and polar cap scintillations are mainly the result of geomagnetic storms! that are
associated with solar flares? and coronal holes3. Unlike equatorial scintillations, they show
little diurnal variation in their rate of occurrence, and can last from a few hours to many
days, beginning at any time during the day [52]. Large and rapid variations in the plasma
density are often associated with auroral and polar cap scintillations [10] and can lead to
significant errors in differential GPS (DGPS) systems as well as rapid changes in the
apparent range and range rate [52] & [53]. Auroral scintillations also show a seasonal

dependence which is the reverse of that observed at low latitudes, being greatest from the

! Large variations in the strength and direction of the Earth’s magnetic field.
2 Sudden increases in the intensity of solar electromagnetic radiation associated with sunspot activity.
3 Low density regions of the solar corona that are associated with solar winds (high energy charged particles

from the sun).



autumn equinox through winter to the spring equinox, and a minimum during the
summer months [2]. Indeed, the geomagnetic disturbances that excite auroral and polar
cap scintillations tend to suppress the onset of equatorial scintillations during solar
maximum periods [3], [27] & [53]. Because geomagnetic storm activity is linked to solar
activity through solar flares and coronal holes, auroral and polar cap scintillations also
show a strong dependence on the 11 year solar cycle, being most intense during solar

maximum periods, but almost non-existent during minima.

Polar Region

Mid-Latitude

Mid-Latitude

Polar Region

Figure 2.1-3: Map of the world showing the approximate locations of the polar, mid-latitude and

equatorial regions. Scintillations are mainly confined to the equatorial and polar regions.

Equatorial scintillations, on the other hand, are produced by irregularities in the F-layer of
the equatorial ionosphere following the passage of the evening terminator! and tend to
disappear soon after midnight. In these regions, the most severe scintillations are
associated with the crests of the equatorial anomaly which are centred approximately 15°
either side of the magnetic equator [1]. As equatorial scintillations are coupled to the
anomaly, they tend to be worse during the years of solar maximum when the anomaly is
at its greatest. As we are currently at solar maximum (year 2000), it is expected that

scintillation activity will now be at its greatest, and will remain so for at least a year or so.

Equatorial scintillations also show a strong seasonal dependence, being greatest during the
months of April to August? in the Pacific longitude sector, but a minimum during these

months in the American, African and Indian sectors. This situation is reversed during the

! The terminator is the boundary that divides day from night.

2 Centred on the June Solstice.

8



months of September to March! [53]. During the seasons of high scintillation activity, the
equinoctial months of March and September tend to suffer the highest levels of activity,
although this does not appear to be true at all longitudes [8].

Equatorial scintillations are mainly produced by irregularities created by instabilities in the
F-layer of the ionosphere during the evening hours. After sunset, the lower regions of the
F-layer recombine more rapidly than the upper regions, leading to an unstable situation
akin to a heavy fluid being supported on a lighter fluid2. This situation eventually leads to
the formation of bubbles of low density plasma which are forced upwards through the
denser upper regions. As the bubbles grow, steep density gradients on the walls cause
smaller irregularities to form [69]. At GPS frequencies, these smaller irregularities, which
can be of the order of the Fresnel zone radius or less (< 300m), are responsible for
scintillations [3]. The low density bubbles eventually form into irregularity patches, or
Plumes, which can reach heights of up to 1500km at the magnetic equator. Once formed,
the plumes extend along the magnetic field lines in a North-South direction for over
2000km, leading to an accumulation of irregularities in the Northern and Southern
anomaly regions (+150 to +200 dip latitudes3). Because of the higher background densities
in these regions, the irregularities tend to produce much stronger scintillation effects than
at the magnetic equator. Irregularity plumes typically have East-West extents of between
one and several hundred km’s and tend to move in an Easterly direction with velocities of
the order of 50 to 200 m/s [85]. Consequently, scintillations are often experienced in
patches that can last for an hour or so with periods of little or no activity in between [3].
Eventually, in the absence of solar radiation, the irregularities begin to fade along with the
associated scintillation activity. This usually occurs around local midnight, although at

times scintillations can persist until early morning.

Scintillations can also occur during daylight hours and at mid-latitudes when Sporadic-E
is present in the E-layer. Sporadic-E are thin layers of highly dense plasma at heights of
about 100km in which large density gradients can exist. However, scintillations produced
by Sporadic-E are much less common and less predictable than those produced by the

F-layer processes described above.

! Centred on the December Solstice.
2 This is referred to as a Rayleigh-Taylor instability.

3 “dip” refers to the Earth’s magnetic dipole or magnetic axis.



In the discussions that follow, only equatorial scintillations will be considered as they
affect the largest number of people and tend to be more severe than their auroral
counterparts [53]. In addition, the latitude band that is affected by equatorial scintillations
covers approximately 50% of the Earth’s surface, compared to only 7% for the auroral and
polar cap regions. However, it should be mentioned that during intense magnetic storms,
auroral disturbances can extend well into the mid-latitudes, disrupting GPS through both
scintillation activity and large density gradients. An example of this was the magnetic
storm in March 1989 during which auroral scintillation effects were felt over most of the
continental United States causing narrow bandwidth receivers to frequently lose signal

lock [52]. Such events are, however, quite uncommon.

2.1.3. Statistical characteristics of scintillations

Scintillations are produced by changes in the phase velocity of sections of a satellite signal
wavefront as it propagates through irregularities in the ionosphere. As absorption in the
ionosphere is negligible at L-band frequencies, the amplitude of the emergent wave is
unaffected by the irregularities. However, as the wave propagates towards the ground,
interference across the wavefront creates complex amplitude and phase diffraction
patterns that are a function of both the range to the irregularities and the cross-range
position. Scintillations are produced when these spatial diffraction patterns are
transformed into temporal ones, either through relative motion between the receiver and
the patterns, or by changes in the structure of the irregularities with time. Although
diffraction is the principal cause of scintillations, weak focussing and defocusing through
refraction can introduce additional amplitude and phase variations. However, for
refractive effects to be significant at L-band frequencies, the density gradients in the

ionosphere must be extremely large.

In this thesis, the effects of ionospheric scintillations are modelled as a complex
modulation of the unperturbed GPS signal. Furthermore, the phase and amplitude
components of this modulation are modelled as Wide Sense Stationary (WSS) stochastic
processes that are produced by a random distribution of irregularities of different sizes.
Consequently, they are defined in terms of their power spectral densities, probability
density functions and variances. Although a deterministic model based on a collection of
Gaussian shaped irregularities was also investigated [56], this approach was not taken any
further as the resulting waveforms were found not to represent the vast majority of

measured scintillation data.
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The power spectral density of phase scintillations follows an inverse power law

relationship of the form [76], [35]

T
(foz +f2 )1’/2

where T is the magnitude of the power spectral density at a frequency of 1Hz (as f, <<1,

S¢p (= radians2/Hz (2.1-1)

S¢P (f =1)=T), fis the frequency of phase fluctuations, f, is a frequency that corresponds

to the ionospheric outer scale sizel, and p is termed the spectral index and usually lies in the
range 1 to 4, typically being 2.5 at equatorial latitudes [35]. The spectral strength can be
represented by the following expression [13], [76]

T o« G v{P D AC, Lsec(8) (2.1-2)

where,

- G is a factor that depends on the direction of propagation of the radio wave and the
geometry and orientation of the irregularities,

-v, is the effective velocity of the propagation path through the contours of plasma
density,

- A is the carrier wavelength,

- C,L is referred to as the height integrated irregularity strength and is a measure of the
strength of the irregularity spatial power spectrum at a scale size of 1km and the
thickness of the irregularity layer, and

- is the off-vertical incidence angle of the propagation path at the irregularity layer.

The effective velocity, v,, is a function of the velocity of the ionospheric pierce point?
through the irregularity layer, v;, the drift velocity of the irregularities, v, (typically 50 to
200 m/s [85]), and the geometry and orientation of the irregularities. For GPS, the pierce
point velocity, v;, consists of a component due to receiver motion, v, , and a component
due to satellite motion, v, (typically 60 to 450 m/s, depending on the elevation and
azimuth angles of the satellites [9]). By changing v; through receiver motion, the phase
scintillation log spectrum will either be translated to the left or right, depending on the

direction of motion of the receiver in relation to the vector sum of v; and v, and the

. o=V, / I, where [, is the outer scale size (maximum irregularity size) and v, is the effective velocity.

2 The jonospheric pierce point (IPP) is the point at which the satellite signal ray path intersects the ionosphere
at the irregularity height. This is normally taken to be the height of the F2-layer peak which is roughly 400km.
11



geometry of the irregularities. However, the spectral index, p, will remain unchanged as it
depends only on the spectrum of irregularity sizes in the ionospherel. Thus, receiver
motion will shift the phase scintillation log spectrum along the frequency axis, but will not
alter its slope. This effect, in conjunction with the higher levels of carrier loop stress
experienced during receiver motion, has the potential to significantly alter a receiver’s

tolerance to scintillation activity.

The power spectral density of amplitude scintillations follows a similar power law
relationship for high fluctuation frequencies, but is heavily attenuated at low frequencies.
The cutoff frequency of the amplitude scintillation power spectrum (the Fresnel cutoff

frequency) is given by [103]

= «/—;_z Hz (2.1-3)
F

’ Aziz, ) .
where zp = 122 is the Fresnel zone radius, and z, and z, are the distances between
Z; + Zy

the ionospheric irregularity layer and the satellite and receiver respectively. Notice that f,
is also the frequency that corresponds to the peak of the amplitude scintillation power
spectrum [103]. Fresnel filtering occurs because amplitude scintillations are mainly
produced by diffraction effects which are only significant when the irregularity scale size
is of the order of the Fresnel zone radius. At typical ionospheric heights (~400km for the
F2-layer peak) and assuming vertical propagation, zy is of the order of 276m at the GPS
L1 frequency. For an irregularity drift velocity of 100m/s (a typical equatorial value) and

assuming v; =0, the Fresnel cutoff frequency is approximately 0.26Hz.

Two commonly used measures of the strength of scintillation activity are the RMS phase,

Oy, s and the RMS intensity normalised by the mean, S, . The RMS phase is obtained from

the integral of the power spectral density of phase scintillations as follows

_[ S, (N)df (2.1-4)

! For moderate levels of scintillation activity, p is related to the slope of the one dimensional irregularity

spatial power spectrum, g , by p =g =+ 1. This approximation ignores the effects of diffraction on the phase.
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where ¢, is the carrier phase (assumed to be zero-mean). Consequently, O, is a function

of T, p and the outer scale size parameter, f,. In practice, however, the integral in
Equation (2.1-4) is limited to some low frequency which is related to the coherent
integration time of the receiver. Indeed, as the statistics of scintillations are only stationary
for a few tens of seconds [35], this integral is unlikely to produce a realistic result if 1/ £, is

much greater than a few tens of seconds.

The intensity scintillation index, Sy, is the normalised RMS intensity and is given by

EU 22} 1 (2.1-5)
E{I}

S4=

where 1= 4? is the signal intensity. S, is also a function of T and p, but includes a Fresnel
filtering factor, F1, and the Fresnel zone radius, zr, which together account for the low
frequency cutoff in the amplitude scintillation power spectrum. Under moderately
disturbed ionospheric conditions, S, can be approximated by the following expression

which is based on Rino’s weak-scatter theory [13], [76]

S4w2 o< I zp(p_l)lZCkLsec(G)
_Fzp7 (2.1-6)
G ve(P—l) ’

The following expression can be used to derive an approximate value for S, under strong

scintillation conditions (assuming that refractive focusing effects do not occur) [13], [77]

Sy =41 —exp(-S,,%) (2.1-7)

Both Oy, and S,, show a simple dependence on the carrier frequency, v [13], [27]. For

low to moderate levels of scintillation activity (S; < 0.5), §; scales with the carrier

frequency as v~ Under strong scintillation conditions, S, is approximately equal to

1 at all frequencies (unless focusing occurs which may drive 4 slightly higher than 1).

The RMS phase, on the other hand, shows a v™' dependence for both weak and strong

! The Fresnel filtering factor, F, is a function of the geometry and orientation of the irregularities, as well as
the spectral index, p.
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scintillations, unless the scintillation activity is exceptionally strong. Consequently, the
GPS 12 frequency! is affected slightly more by scintillation activity than the higher GPS L1
frequency? (by a factor of about 1.4 for §4 and 1.3 for Oy, ). This adds to the problem of

the inherently higher level of susceptibility of the L2 channel as a result of the lower signal
level of the L2 P-Code3 (the RMS carrier phase jitter resulting from thermal noise on the L2

P-Code is +/2 times greater than the carrier jitter on the L1 P-Code, and twice as large as

the carrier jitter on the C/A-Code for normal satellite signal levels).

Measurements of the probability density functions (PDF’s) of scintillations have shown
that phase scintillations follow a zero-mean Gaussian PDF, while amplitude scintillations
follow the Nakagami-m PDF [64]. Although other distribution functions have been
proposed for scintillations, the Gaussian / Nakagami-m distribution functions were found
to provide the best fit based on chi-square tests of observed intensity and phase
scintillation data [34], [101]. The Nakagami-m PDF is defined by the mean square
amplitude, (4%), and by the m parameter which is a function of the strength of amplitude
scintillation activity, viz

zmm.AZm—l e-—m.Az/(Az)

fA(A):W , A20 (2.1-8)

where 4 is signal amplitude, I'() is the Gamma function and m is a parameter that is
linked to the strength of scintillation activity by m =1/ 8% [23]. The Nakagami-m PDF
approximates the Gaussian PDF for small values of §,, and becomes equal to the Rayleigh
PDF for §4 =1 (ie. for extremely strong scintillation activity). If the scintillation statistics
are assumed to be stationary, then by conservation of energy, and assuming no absorption

in the ionosphere, (4°) is independent of the strength of scintillation activity.

Phase scintillations follow a zero-mean Gaussian PDF and are therefore defined

completely by the variance, viz

PR
1 e(p/a‘f’p

Jo, (@)= m (2.1-9)
P

! The GPS L2 frequency is 1227.6 MHz.
2 The GPS LI frequency is 1575.42 MHz.
3 The L2 P-Code is 3dB lower in power than the L1 P-Code. Refer to Section 2.2.

14



Unlike the Rayleigh or Rician fading models, the Nakagami-m model is not linked to the
phase distribution through analytical expressions (ie. the Nakagami-m PDF for amplitude
and Gaussian PDF for phase cannot be derived from an underlying signal model).
Consequently, little is known of the joint statistics of amplitude and phase scintillations,
although measurements suggest that they are negatively correlated with a correlation
coefficient of approximately -0.6 [34]. However, it is the correlation between the
amplitude and the rate of change of phase that is important in the study of tracking loop
behaviour. Again, little is known of this correlation, although it is likely that the deep
fades associated with large values of S, will be accompanied by rapid changes in the
carrier phase [76], [33]. This is expected to put tracking loops under more stress than
would be anticipated if amplitude and phase scintillations were considered to be

independent.

2.1.4. Wide Band Scintillation Model

The Wide Band ionospheric scintillation MODel (WBMOD [82]) is a global model of
ionospheric scintillation activity that enables users to predict the levels of scintillation
activity at a given time and location. The parameters provided by WBMOD include the
spectral index of phase, p, the spectral strength of phase, T, occurrence statistics and the

amplitude and phase scintillation indices, S, and o, respectively. WBMOD consists of
%

two parts; (i) a collection of empirically derived models of the global distribution and
characteristics of ionospheric irregularities, and (ii) a power law phase screen propagation
model which allows the strength of scintillation activity to be calculated in a user defined
system. The propagation model assumes a spectral index of 2.5 at equatorial latitudes, and
calculates T from a series of eight parameters provided by the irregularity model (based
on Equation (2.1-2)). These parameters include the in-situ spectral slope, g=p-1, the
height integrated irregularity strength, C,L, the in-situ drift velocity of the irregularities,
v4, the phase screen height, three parameters describing the geometry and orientation of
the irregularities, and the outer scale size, /,. The only external inputs required by
WBMOD are the carrier frequency, the satellite and receiver locations, local time and date,
and solar and geomagnetic activity levels. In addition, the user must decide between two
types of output, namely (i) the percentage of time that a specified level of scintillation
activity is exceeded, or (ii) the level of scintillation activity associated with a given

percentile of occurrence.
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An example of the output provided by WBMOD is given in Figure 2.1-4. The scintillation

indices %y, and S, are provided in the top panel, the spectral strength, T, is in the centre

panel and the spectral index, p, is in the lower panel. All plots are a function of latitude at
a longitude of 1200E and are at the 70th percentile (ie. the activity is expected to be
stronger than the specified level for only 30% of the time). This example represents a
period of high solar activity during the evening hours when the levels of scintillation
activity are expected to be at their greatest. The two humps at approximately 250N and 595
correspond to the crests of the Northern and Southern equatorial anomaly (at this
longitude, the magnetic equator is roughly 100 North of the geographic equator). Notice

that when amplitude scintillations, and therefore S,, are small, phase scintillations, and

therefore Oy and T, are also likely to be small.
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Figure 2.1-4:  An example of the scintillation indices produced by WBMOD (April 10, 21:00 hrs
local time, longitude 1200E, 70th percentile, L2 frequency, R12=150, Kp=2, Phase stability 10s).

In subsequent chapters, the various statistical parameters produced by WBMOD will be
used to determine the performance of GPS receivers in a scintillation environment. By
combining these results with the occurrence statistics provided by WBMOD, predictions

can be made about the likely performance of a receiver at a given time and location.

2.1.5. Phase screen model

A simple model, based on Fresnel-Kirchoff diffraction theory, which demonstrates the
effects of a thin phase screen on a vertically propagating plane wave is given in

Appendix A. This model assumes that the plasma density irregularities are concentrated
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within a thin layer or phase screen at a height that is typical of the F2-layer peak height
(approximately 400km). The resulting patterns of amplitude and phase variations on the
ground are then derived from the phase screen using simple diffraction theory. This model
provides an insight into the types of irregularities that are likely to produce scintillations at
L-band, as well as the characteristics of the resulting signals. It also allows simulated

scintillation data to be created for the tracking loop simulator described in Appendix B.

2.1.5.1. Deterministic phase screen

In this section, the results obtained by modelling the irregularity layer as a series of
discrete Gaussian shaped lenses is discussed. At GPS frequencies, irregularities with scale
sizes of the order of the Fresnel zone radius! or smaller are likely to produce the most
significant scintillation events. Larger irregularities produce very little amplitude variation
and only gradual phase variation, unless the density gradients are extremely large. Very
small irregularities (tens of metres or less) produce quite complex diffraction patterns, but

at an intensity which is too low to have a significant effect on GPS.
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Figure 2.1-5: Modelled diffraction patterns based on a thin screen diffraction model and an isolated
Gaussian shaped irregularity (see Appendix A). Scale sizes of the irregularities are (a) 1km, (b)
100m, and (c) 10m. The irreqularities were centred at a height of 400km with a peak density

variation of 500% over the background.

In Figure 2.1-5, three examples are given of the diffraction patterns produced by an
isolated Gaussian shaped irregularity using the model described in Appendix A. From this
figure, it is apparent that the 100m irregularity, which is approximately one third the size
of the first Fresnel zone radius, produces the most significant amplitude variations (centre

panel). Panel (a) shows the effects of a very large irregularity (1km) and panel (c) a very

! The Fresnel zone radius is approximately equal to 276m at the GPS L1 frequency and 312m at the GPS L2
frequency, assuming an irregularity height of 400km.
17



small irregularity (10m). Both of these will have much less of an impact on GPS receivers
than the 100m irregularity. In addition, the high frequency phase variations associated
with diffraction tend to be more pronounced when the irregularity size is of the order of
the Fresnel zone radius. For much larger irregularities, the phase variations merely follows
the in-situ density profile. Smaller irregularities produce prolific high frequency phase
variations but at a level that is unlikely to affect GPS. In general, because the Fresnel zone
radius at L-band frequencies is quite small, large density gradients are required in order to
produce significant scintillation effects. This tends to restrict scintillation activity to the

equatorial anomaly and polar regions where large density gradients are known to exist.

2.1.5.2. Random phase screen

Although the effects of isolated irregularities on transionospheric signals has been
reported in the literature (eg [42]), in general irregularities occur in large numbers with a
range of sizes and densities (the spectrum of irregularity densities measured in-situ using
rockets has a power-law form). By providing a more realistic in-situ density profile for the
irregularity layer, the phase screen diffraction model will produce time series amplitude
and phase scintillation data which has more realistic statistics (Appendix A). In Figure
2.1-6, a realisation of a random density layer with a Gaussian PDF and an in-situ spectral
slope! of 2 has been used in place of the deterministic phase screen from the previous
section. The wavenumber power spectrum of the vertically integrated density profile is
given in panel (a) along with a straight line representing a spectral slope of -2 (on a log-log
scale). The low frequency cutoff at a wavenumber of approximately -31 dBmetres-! is
produced by assuming an outer scale size, /,, of 1.3km for the irregularities. The power
spectra of the resulting phase and amplitude scintillations (panels (b) and (c) respectively)
also have a spectral slope of 2. However, the amplitude scintillations display a low
frequency cutoff, k.2, at a wavenumber that corresponds to the Fresnel zone radius
(approximately —26 dBmetres-! for an irregularity height of 400km). The phase scintillation
spectrum also shows evidence of Fresnel oscillations beginning at a wavenumber of about

-26 dBmetres-1. These appear as a series of nulls in the power spectrum.

The measured PDF’s of both the amplitude and phase are also consistent with the models

given in Section 2.1.3 (ie. Gaussian for phase and Nakagami-m for amplitude - panels (d)

! For the integrated density profile.
Yko=1.ve= l/ﬁzp from Equation (2.1-3).
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and (e) respectively). The smooth curves overlying both of these plots are the theoretical

distribution functions obtained from the PDF expressions given in Section 2.1.3.
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Figure 2.1-6: Scintillation statistics produced by a random, Gaussian distributed density layer with

an in-situ spectral slope for the integrated density of 2. Shown are the in-situ spectrum (a), the
phase scintillation power spectrum (b), the amplitude scintillation power spectrum (c), the phase
PDF (d) and the Intensity PDF (e).

2.1.6. Summary

In this section, the morphology and statistical characteristics of scintillations were
discussed. It was revealed that scintillations are generally restricted to specific times and
locations and that these can be predicted using models such as the Wide Band Scintillation
model. Based on studies of transionospheric scintillation data, it was decided that
scintillations can be modelled as a stochastic process in which the amplitude follows a
Nakagami-m distribution and the phase follows a zero-mean Gaussian distribution.
Furthermore, both the amplitude and phase can be assumed to have a power-law power
spectral density with a low frequency cutoff for the amplitude. A technique for generating
scintillation time series for simulation studies was also discussed. This technique is based
on a thin phase screen model for the irregularity layer and produces scintillation statistics
that are consistent with the stochastic model described above. Details of the phase screen

model are given in Appendix A.
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2.2. Global Positioning System

GPS is a satellite based radio navigation system that provides accurate position, velocity
and time information globally and continuously under all weather conditions. Although
GPS is owned and operated by the US Department of Defense (DoD) and was developed
primarily for defence applications, it is now used widely in both the defence and civilian
communities in most countries. A convenient way of describing the GPS system is to
divide it into the following three segments:

(i) The Space Segment,

(if) The Control Segment, and

(iii) The User Segment (the GPS receivers).
The Space Segment consists of 24 GPS satellites arranged in 6 orbital planes each of which
are inclined at 550 to the equator. The coverage provided by the GPS constellation ensures
that at least 4 satellites are visible at any time, anywhere on the Earth. As will be shown
later, this is an important requirement to ensure accurate three-dimensional positioning by
a receiver. The Control Segment consists of four monitor stations and four ground
antennas which are distributed around the Earth, and a master control station located in
Colorado Springs. The purpose of the Control Segment is to ensure that the Space Segment
is operating within specification, and to provide adjustments where necessary.
Communication between the Control Segment and the GPS satellites is via an S-band
uplink from one of the four ground station antennas. The User Segment consists of GPS
receivers, both military and civilian, and the associated infrastructure such as differential

stations.

2.2.1. Principles of GPS positioning

GPS receivers estimate three-dimensional position by solving four independent time delay
range measurement equations to four satellites in view. These equations can be

represented as follows:

Pi =| [xsis vsin2si]= [xR’yR’ZR]|+ cht

fori=1to 4, (2.2-1)
=R; +cAt

where [xg,yg»zg] is the 3 dimensional position vector of satellite i with respect to the

centre of the Earth, [xz,yz,zz]is the position vector of the GPS receiver, c is the speed of

light, At is the receiver clock offset from the satellite system time (cAt¢ is usually referred

to as the receiver clock bias term), R; is the true range to satellite i, and p; is referred to as
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the Pseudorange to satellite i (assumed here to be error free). The four unknowns in the
range measurement equations are the x, y and z components of the GPS receiver position
vector (ie. the location of the receiver) and the receiver clock bias. The four pseudorange
measurements are found by measuring the delay in the propagation of the GPS signal
from four satellites to the receiver, and will usually be contaminated by a variety of error

sources. The four satellite position vectors [xg,ys,zs;] are obtained from the satellite

ephemeris information which is transmitted by each satellite as part of the GPS navigation

messagel.

GPS pseudorange measurements are obtained by correlating the pseudorandom noise
(PRN) ranging codes transmitted by each GPS satellite with a replica code generated
within the receiver. The time delay, 7, which must be applied to the replica code in order
to achieve a correlation peak is related to the pseudorange, p, by p=ct. A second
estimate of the satellite range can be obtained by integrating the carrier phase rate
measurements that are generated within the carrier tracking loops. However, although the
resulting carrier phase range measurements are relatively noise free compared to the code
measurements, they are subject to an unknown integer cycle ambiguity. Therefore, a
combination of these two measurements is often used in order to derive low noise,

unambiguous estimates of the satellite pseudorange.

The GPS signal is transmitted on two carrier frequencies, L1=1575.42 MHz and
1.2=1227.6 MHz, each of which are bi-phase modulated by PRN ranging codes and GPS
navigation data. The PRN codes serve two purposes; (i) to create direct sequence spread
spectrum signals with good multiple access rejection and interference immunity, and (ii)
to enable the GPS receiver to measure satellite ranges by code correlation. Two PRN codes
are provided for this purpose, the Precision code or P-Code at 10.23 Mbits/s which is
modulated onto both GPS carriers, and the Coarse/Acquisition code or C/A-Code at 1.023
Mbit/s which is modulated onto the L1 carrier only. The US DoD reserves the right to
deny access to the higher accuracy available from the P-Code by encrypting it with a
second code referred to as the W-Code2. The resulting Y-Code is then only available to
authorised users who are equipped with the appropriate code decryption keys. This

! The navigation message is a 50 bits per second data stream that is modulated onto each satellite carrier and
includes information about the system time, clock correction factors, satellite health, and synchronisation
information for the military codes.

2 The chipping rate of the W-Code is 20 times less than the chipping rate of the P-Code.
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process is known as Anti-spoofing (AS) and its principal function is to protect authorised
users from deceptive jamming (spoofing) by hostile forces. Prior to 1 May 2000, the US
DoD also deliberately degraded the accuracy available to unauthorised users by dithering
the satellite clocks and introducing small errors into the satellite ephemeris information.
This process was known as Selective Availability (SA) and again could only be removed
by users who had access to the code decryption keys. Although SA errors are currently set
to zero, it is nevertheless possible for the US DoD to resume SA in the future if the need
arises. In GPS terminology, the more accurate P(Y)-Code service is referred to as the
Precise Positioning Service (PPS), and the less accurate C/A-Code service is referred to as

the Standard Positioning Service (SPS).

GPS pseudorange measurements are contaminated by a number of errors, including
ephemeris errors, ionospheric delays, tropospheric delays, RF channel biases, multipath
and thermal noise. Expressions for the code and carrier phase pseudorange measurements

that include these errors are as follows:

Code: p =R+ cAt+dopo +diono(f)+bs +bg +ng, +1ny,, (2.2-2)

Carrier: ¢=R+CAt+dTROPO _dIONO(f)+bS +bR +nT¢ +nM¢ +N2/, (2-2’3)

where R is the true range to the satellite, ¢At¢ is the receiver clock bias, drgppo is the
tropospheric delay error, djgyo is the ionospheric delay error, by and by are the satellite
and receiver inter-channel biases (hardware biases), n;y and n,, are the thermal noise and
multipath errors, and NA is the cycle ambiguity in the carrier phase measurement. Now
that SA has been turned off, the principal source of error is likely to be the ionospheric
delay, djoyo. Under quiescent ionospheric conditions, the ionospheric delay is
proportional to the integrated electron density in the ionosphere (also called the Total
Electron Content or TEC), and inversely proportional to the square of the carrier
frequency, f (ie. dono = kTEC/ 1%, where k is a constant [27]). As TEC is the same on the
two GPS carrier frequencies for a particular satellite to receiver link, a dual frequency
receiver is capable of measuring, and therefore removing, ionospheric delays from satellite
range measurements. Consequently, authorised military users who are equipped with
P(Y)-Code receivers, and therefore have access to both carrier frequencies, will have the
capacity to eliminate ionospheric delays directly [81]. However, as the C/A-Code is only
modulated onto the GPS L1 carrier at present, unauthorised users are unable to remove

ionospheric delays in this way and must rely on a correction factor that is derived from a
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broadcast ionospheric model [51]. In the future, modulation of the L2 carrier by the C/A-
Code and a possible second civil frequency (referred to as the L5 frequency) will

dramatically change this situation for civil users.

2.2.2. GPS receiver tracking loops

Figure 2.2-1 is an illustration of a generic GPS receiver in which the code and carrier
tracking loops are shown embedded between an RF front end stage! and a navigation
processor. A typical GPS receiver contains many such tracking loop channels, each of
which consists of a Costas phase locked loop (PLL)? for carrier tracking linked to a non-
coherent delay locked loop (DLL) for code tracking (see for example [47] & [92]). In most
receivers, the code loop is also Doppler aided by the carrier loop to improve its robustness

to dynamics3.
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Figure 2.2-1: Architecture of a generic GPS receiver.

In Figure 2.2-1, the mixer at the front of the code tracking loop is driven by a replica
carrier from the carrier tracking loop and is responsible for down-converting the GPS
intermediate frequency (IF) signal to a baseband IQ pair. The mixer at the front of the
carrier tracking loop is driven by a replica code from the code tracking loop and is
responsible for removing the satellite PRN code from the IF carrier. Consequently, under

normal tracking conditions, the carrier loop receives an IF carrier which is modulated by

! The RF front end typically consists of an antenna, a low noise preamplifier, a down-conversion mixer and an
image rejection filter.

2 As 50Hz navigation data remains on the carrier after removal of the code, the carrier loop must be capable of
tracking a suppressed carrier signal. Consequently, a Costas loop is used rather than an ordinary PLL.

3 Carrier aiding of the code loop removes virtually all of the linc of sight dynamics from the code loop,

allowing the code loop bandwidth to be significantly reduced.
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the navigation data, and the code loop receives a PRN code which is modulo 2 added to
the navigation data. Although other tracking techniques do exist (eg [44] & [71]), the
Costas PLL/DLL combination is by far the most common for GPS.

Both the code and carrier tracking loops can be represented by the signal processing model

illustrated in Figure 2.2-2. Here 7 and ¢ represent the phases of the code and carrier

components of the GPS signal at the input to the tracking loop, and ¥ and ¢ represent
the phase estimates at the loop output. The loop contains two filters, a pre-detection filter
G(s) which reduces the levels of thermal noise prior to the phase discriminator, and a loop
filter F(s) which controls the order and bandwidth of the tracking loop. The phase
discriminator is responsible for measuring the difference between the input phase and the

loop phase estimate and is in general a non-linear device. The outputs of the tracking loop

are Doppler estimates, 7 and ¢ , which are integrated in the Navigation Processor to

produce the code and carrier range estimates. In addition, the navigation data is derived
from the in-phase channel of the Costas loop at a point immediately after the pre-detection

filter G(s).

|—> Data Detect
Signal + Noise G 3 Phase > F > (f)or ‘f
(por7) (s) Discriminator ()
Signal estimate
(§or £) vco ‘—C‘?‘i
Doppler Aiding

Figure 2.2-2: Signal processing model of a generic code or carrier tracking loop.

The function of the tracking loop is to provide estimates of the desired input phase process
while rejecting unwanted phase noise. For GPS, the desired phase process is the Doppler
introduced by satellite and receiver motion, while the phase noise is a combination of
thermal noise, multipath, oscillator phase noise and ionospheric scintillations. Important
design objectives for the tracking loops are to minimise the phase noise on the Doppler

estimates, and to minimise the tracking error between the input phase and the estimated
phase processes (ie. 7, =7-% and ¢, =¢—¢@ ). The second objective is associated with the

ability of the loop to remain in phase lock and is probably the most important of the two

under strong scintillation conditions.
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2.3. A review of scintillation effects on GPS

To date there has been little detailed work done in the area of scintillation effects on GPS.
The principal reason for this is that GPS was not declared to be fully operational until the
end of 1994 [70], which is several years after the last solar maximum. Consequently, the
effects of scintillations on a fully operational system are only now being observed. The
majority of the work described in the GPS literature has either focused on the
characteristics of the disturbed ionosphere or has dealt with the issue of GPS performance
at a very qualitative level (see for example [2], [5], [9], [11], [14], [29], [53]& [98]). Other
researchers have performed tests on GPS receivers using satellite signal simulators and
either simulated or real scintillation data [12], [24], [63] & [94]. This work has shown that
full code-correlation receivers are generally quite robust to moderate levels of scintillation
activity, but that pseudorange noise and occasional loss-of-lock can occur if the
scintillation activity becomes very strong. Nichols et al [66] correlated loss-of-lock events

for a codeless receiver! with the scintillation statistics 6, and S, for a Northern Auroral

region. Although this work has demonstrated that GPS receivers are indeed susceptible to
the effects of scintillations, again it has not been accompanied by any detailed analytical
studies. More recently, a number of researchers have begun to investigate the performance
of GPS receiver tracking loops using phase locked loop simulations and simulated
scintillation data. This has included simulation tests based on discrete irregularity
structures [56], as well as those based on stochastic models of scintillations activity [41],
[58] & [73]. Hegarty et al [41] used simulators for both the L1 code and carrier tracking
loops tracking loops to determine the tracking errors as a function of S, and the quiescent
C/N, . His results suggest that very narrow bandwidth code loops are unlikely to be
significantly affected by scintillations, but that carrier loops will suffer an increase in
measurement noise and a loss of continuous carrier lock. He also found that codeless
receivers will be significantly affected by scintillations and will even lose lock in the
presence of quite mild scintillation activity. The principal advantage of using the
simulation approaches outlined in [41], [56], [58] & [73] is that they overcome the
problems associated with attempting to mathematically analyse the inherently non-linear
code and carrier tracking loops. However, these approaches also fail to provide any deep
insight into the problem and do not reveal the links that may exist between the

scintillation statistical parameters and the receiver performance parameters.

! For a description of codeless receivers, see Chapter 5.
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Despite a lack of detailed research in the navigation community, a considerable amount of
work has been done in the communications field on the effects of multipath fading on
various types of communications systems, including Direct Sequence Spread Spectrum
systems (see for example [30], [46] & [48]). However, most of this work has focused on the
calculation of error rates in the transmitted message rather than the performance of the
code and carrier tracking loops. For GPS, the probability of losing lock on the GPS signal
and the magnitude of the measurement errors in the tracking loops is considered to be of
far greater importance than errors in the navigation message. This is partly because of the
large amount of diversity associated with the navigation message (diversity in both space
and time), and partly because measurement errors in the tracking loops tend to be of more
importance for a navigation system such as GPS than they are for a communications
system. In addition, the majority of the communications literature deals with the more
common Rayleigh and Rician fading models rather than the Nakagami-m model [64]
which has been found to be more suitable under amplitude scintillation conditions [7], [34]
& [101]. This is mainly because the Rayleigh and Rician fading models have traditionally
been used to describe multipath effects, but also because they contain information about
the joint statistics of amplitude and phase and so provide a more complete description of
the fading statistics (the Nakagami-m distribution for amplitude and the Gaussian
distribution for phase cannot be derived from an underlying signal model). Nevertheless,
a few researchers in the communications field have looked at the effects of Nakagami-m
fading on communications systems, and have identified ionospheric scintillations as a
possible source of Nakagami-m fading (see for example [25], [26], [32], [61], [62], [65] &
[102]). However, the work in this area has again focused on the calculation of error rates in
the transmitted message rather than the performance of the code and carrier tracking
loops. Indeed, in all of these cases, it has been assumed that the carrier is perfectly
synchronised to the receiver local oscillator (ie. it is assumed that the carrier phase error,
¢, , is zero). Consequently, one of the principal objectives of the work described in this
thesis was to derive expressions for the performance of the code and carrier tracking
loops, navigation data demodulation and acquisition in terms of the parameters of the

scintillation model outlined in Section 2.1.3 and in [34], [35], [76], [77] & [101].

2.3.1. Carrier tracking loops

Under normal (quiescent) conditions, the tracking loop model of Figure 2.2-2 can be

linearised by assuming that the phase tracking errors are small. This enables the non-linear
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discriminator element to be ignored which significantly simplifies the analysis. All text
books on phase-locked loop theory discuss this approach and use it to obtain many of the
measures which define loop performance (see for example [15], [36] & [43]). However,
when the phase errors are large, either as a result of large amounts of direct phase noise,
electromagnetic interference or amplitude fading, the linear model approximation may be
significantly violated and the loop runs the risk of losing lock. Under these highly non-
linear conditions, the behaviour of a phase locked loop is not well understood. Indeed, the
only closed form analytical expressions that exist to define loop performance under these
conditions are the probability density function of the phase errors (also called the
“Tikhonov density function” and discussed in [97]), and the mean time to cycle slip (see
for example [43]). Although these expressions have only been derived for a standard first
order phase-locked loop that is subject to additive, white thermal noise, Lindsey and
Charles [59] have shown that they are also a reasonable approximation for higher order
loops and for non-white noise under certain conditions. In addition, Holmes [43] gives
equivalent forms for these expressions that apply to an 1.Q Costas phase locked loop. In a
number of communications papers (eg [30], [46], [48]), the Tikhonov density function is
used to determine the effects of imperfect carrier synchronisation on the bit error rates in a
communications system that is subject to multipath fading. Also, Weber [100] has looked
in detail at the effect of Rayleigh, Rician and Log-normal fading on a standard phase-
locked loop, but again has only applied his results to the calculation of error rates in the
received data. However, none of these researchers have looked at the effects of Nakagami-
m fading on the performance of a phase locked loop. Also, none have looked at the
probability of losing lock on the received signal, nor at the errors introduced into the code
and carrier phase estimates. This is mainly because the code and carrier phase estimates
provide information about the range to a satellite and so are of far less importance to a
communications system than they are to a navigation system such as GPS. In addition,
none of these papers have looked at the effects of a post-detection AGC on the
susceptibility of the tracking loop to amplitude scintillations, nor the effects of relative
motion between the transmitter and the receiver. Van Dierendonck [92] discusses the need
for a post-detection AGC or a normalised discriminator such as Atan(Q/I) in order to
control the bandwidth of the tracking loop when the signal strength is unknown. Without
such control, the instantaneous loop bandwidth may change significantly during periods
of strong amplitude fading resulting in tracking difficulties, particularly under dynamic
conditions. The behaviour of the AGC in the presence of amplitude scintillations will
depend very much on its time constant. If the time constant of the AGC is short in relation

to the correlation time of the amplitude, or the discriminator is normalised, the amplitude
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fluctuations are likely to be tracked quite accurately by the carrier loop, provided that the
amplitude fading is not too deep (if the amplitude fade is very deep, the AGC will be
limited by thermal noise). Under these conditions, the amplitude scintillations will be
decoupled from the effects of phase scintillations and will merely act as a scaling factor for
the receiver thermal noise. However, if the AGC time constant is long, it will be unable to
accurately track the amplitude fluctuations and both the loop bandwidth and the damping
factor will vary with time. Consequently, the amplitude will be strongly coupled to the
effects of phase scintillations through the loop transfer function. Under these conditions,
Weber [100] assumes that the bandwidth of the amplitude scintillations is narrow in
relation to the loop noise bandwidth and derives an expression for the phase error
variance as a function of the amplitude. The average variance is then obtained from this

conditional variance using the Nakagami-m PDF.

Consequently, the objective of this part of the research was to derive expressions for the
performance of the carrier tracking loops in terms of the scintillation parameters T, p, S,

and o, from Section 2.1.3, and to investigate the impact of different AGC regimes on

carrier loop performance. The two principal performance measures to come out of this
work were the variance of the phase tracking error and the variance of the loop phase
estimate. The first of these is useful for determining the probability of losing carrier lock,
the second is important for determining errors in carrier phase DGPS as well as errors in
the estimation of velocity. Carrier loop tracking thresholds were then derived as a function
of the two principal scintillation indices, T and §,;, and compared with predictions
obtained from the scintillation model WBMOD [82]. The dependence of these indices on
both the satellite elevation angle and the satellite and receiver velocities was also

examined.

Another significant component of this research was an investigation into the relationship
between the fade depth and duration and the probability of a cycle slip for a carrier loop
subject to a single fade with a simple rectangular profile. This problem is tackled using
both analytical techniques and simulations based on the carrier loop simulator from
Appendix B. Kintner et al [50] also considers this issue using measured scintillation data
and a real GPS receiver located in the equatorial region. His analysis shows that an
increase in fade duration, possibly as a result of satellite and receiver motion, can cause a
receiver channel to lose lock provided that the fade depth is near or below the tracking

threshold of the carrier loop. He also indicates that when the velocity of the ionospheric
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pierce point matches the drift velocity, v,, a situation referred to as velocity resonance can
occur in which the fade duration becomes extremely long and greatly increases the

probability of losing lock.

2.3.2. Code tracking loops

A delay locked-loop operates in essentially the same way as a phase-locked loop. The two
main differences lie in the discriminator algorithm and in the need to generate a replica
code for the code correlators. As the GPS carrier wavelength is more than a thousand
times shorter than the length of a code chip, the effects of phase scintillations on the code
loop can be ignored. However, the effects of amplitude scintillations on a code loop are
essentially the same as their effects on a carrier loop and can be dealt with in much the
same way. Probably the main difference in performance between the two loops is
associated with the much narrower bandwidth of the code loop and the presence of post-
detection integration within discriminator (see for example [47]). Although the principal
reason for these differences is to reduce thermal noise errors in the code loop, a second
effect will be to reduce the impact of amplitude scintillations, particularly if the fade
duration is short in relation to the loop time constant. Indeed, using simulations Hegarty
et al [41] found that the effects of amplitude scintillations on a very narrow bandwidth (0.1
Hz) delay locked loop were negligible. However, using a real GPS receiver, Coco et al [24]
observed that strong amplitude scintillations could increase the pseudorange RMS as well
as introducing large pseudorange spikes. Therefore, the key objective of this part of the
work was to derive variance measures for the delay-locked loop which take into account
the effects of post-detection integration, and to then relate these to the accuracy with
which the code pseudorange can be measured. In order to achieve this using analytical
techniques, assumptions must be made about the bandwidth of the code loop in relation to

the correlation time of the amplitude scintillations.

A second objective of this work was to demonstrate that the distortion of the GPS ranging
codes produced by frequency selective scintillation effects is likely to be negligible at GPS
frequencies. The work done by Bogusch et al. [16] & [17] on the effects of ionospheric
disturbances on the performance of code correlators demonstrates that the irregularities
must be extremely dense (such as those produced by a high altitude nuclear blast) and the
code bandwidth must be relatively wide before signiﬁcant code distortion can occur. At
GPS frequencies, the distortion of the GPS codes is expected to be negligible under

naturally occurring ionospheric conditions, even for the wider bandwidth P-Code.
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2.3.3. Codeless and Semi-Codeless receivers

It is generally accepted that scintillations will have the most profound effect on codeless
and semi-codeless tracking loops. This is based on studies of real GPS receivers exposed to
scintillation effects (see for example [57], [66], [67] & [98]) and a number of more
theoretical studies (eg. [41] & [93]). The reasons for this are that the tracking loops of
codeless and semi-codeless receivers generally have both a significantly reduced SNR and
a very narrow loop bandwidth. As a result, receivers of this sort may frequently revert to
L1 only tracking under strong scintillation conditions. This is unlikely to have a very
significant effect on the positional accuracy of a receiver (assuming SA is the dominant
source of error), but will compromise a receiver’s ability to measure ionospheric TEC.
Consequently, it is only likely to be of importance for receivers that form part of a WAAS
network and are therefore required to monitor TEC. However, with the introduction of a
second civil frequency in the near future (referred to as the L5 frequency), it is unlikely

that this problem will persist much beyond the current solar maximum.

The objective of this part of the work, therefore, was to develop analytical expressions that
define the performance of codeless and semi-codeless receivers in terms of the scintillation
parameters given in Section 2.1.3. The result of this analysis were then compared with
measurements obtained from a semi-codeless GPS receiver co-located with an ionospheric

scintillation monitoring receiver in an area known to experience scintillation effects.

2.3.4. Navigation data

A number of researchers in the communications field have looked at the effects of
Nakagami-m fading on the error rate in communications systems. Wojnar [102] obtained
an expression for the average bit error probability for a non-selective Nakagami-m fading
channel based on an expression for the conditional bit error probability which applies to
both coherent and non-coherent PSK and FSK. This result was based on earlier work by
Nesenbergs [65], Esposito [32], and Barrow [6]. Miyagaki [61] tackled the problem of non-
selective Nakagami-m fading on coherent M-ary PSK, while Crepeau [25] & [26]
considered the cases of frequency hopped non-coherent binary FSK, non-coherent M-ary
FSK and differentially coherent binary PSK. In addition, Eng [31] analysed the problem of
frequency-selective Nakagami-m fading on Direct Sequence CDMA and derived
expressions for the bit error rate of a RAKE receiver. However, none of this work has

included the effects of carrier loop phase tracking errors, and in particular the impact of
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direct phase noise from sources such as phase scintillations. Consequently, the objective of
this part of the work was to determine the effects of Nakagami-m amplitude fading and
carrier loop tracking errors from phase scintillations and thermal noise on the
demodulation performance of the navigation data. This was done using an approach
similar to those described in the cited papers, but with the Tikhonov density function used

to account for the effects of imperfect carrier synchronisation.

2.3.5. Acquisition

McDonough & Whalen [60] (pages 262-265) use the Rayleigh PDF for the signal amplitude
to find an average probability of detection for an envelope detector under multipath
fading conditions. The approach used here is to use the Nakagami-m PDF and a square-
law detector (see for example [43], [60], [72], [74] & [84]) that incorporates post-detection
integration in order to derive a similar average probability of detection. This requires both
the amplitude and phase variations of the scintillations to be slow in relation to the
integration period of the detector. This condition that is likely to be met under normal

scintillation conditions and for typical integration periods.

The false alarm probability of an acquisition detector is generally considered to be
independent of the signal level once the design parameters of the detector are fixed (ie. the
pre and post-detection integration periods and the detection threshold). However,
correlation sidelobes produced by the GPS C/A-Codes can significantly increase the false
alarm probability if they are not accounted for when the design parameters of the detector
are chosen [92]. As amplitude scintillations lead to occasional enhancements in the signal
strength, the impact of correlation sidelobes can be even greater. This effect has been
examined using the Nakagami-m PDF to account for these enhancements, as well as the
PDF of the sidelobe levels (based on a cumulative distribution function reported by Spilker

[87]) to determine an average false alarm probability.

The impact of a reduced probability of detection on the mean time to acquire has also been
investigated for a simple single-dwell, serial search strategy of the sort described in [72] &
[84]. The effects of both short and long amplitude correlation times have been addressed,
although a number of simplifying approximations have been made in order to arrive at a

closed form analytical expression.

31



2.3.6. Optimum tracking of the carrier phase

As shown by Van Trees [95] & Brown & Hwang [19], the optimum filter for tracking a
signal that is corrupted by additive thermal noise can often be mapped into an equivalent
phase-locked loop structure, provided that the transfer functions of the two have the same
general form. This allows the optimum bandwidth, loop order and damping factor of the
carrier loop to be obtained through a procedure that is independent of phase-locked loop
theory. By applying this approach to the case where a signal is corrupted by amplitude
and phase scintillations, the optimum phase locked loop structure for a minimum
probability of losing lock is obtained as a function of the scintillation parameters from
Section 2.1.3. This approach has also been extended to the case where dynamics are
present, although the resulting optimum loop transfer function cannot always be mapped
into an equivalent phase locked loop structure. In a similar way, the optimum causal and

non-causal post-loop filters for minimum carrier phase range errors were obtained.

2.3.7. Scintillation effects on navigation

As scintillations cannot be eliminated by pre-processing prior to the tracking loops!, the
most straightforward mitigation strategy involves simply avoiding the times and locations
for which scintillation activity is most likely to be a problem. Scintillation models such as
WBMOD [82] provide predictions of the occurrence and severity of scintillation activity
and are therefore very useful for planning operations in areas that may be affected by
scintillations. Other models such as the Scintillation Network Decision Aid or SCINDA,
[21] & [38], collect scintillation data from multiple receiver sites and process the data using
models of plume formation, evolution and destruction to forecast scintillation activity (the
SCINDA model reverts to WBMOD in the absence of current scintillation measurements).
By linking the analytical performance measures described in the previous sections with the
scintillation statistics generated by WBMOD or SCINDA, predictions can be made about
the likely performance of a receiver at a given time and location. It can be shown ([76] &
[77]) that the principal amplitude and phase scintillation parameters, S, and T, are
directly proportional to a third parameter, referred to as the height integrated irregularity

strength or C,L , which is a measure of the strength of scintillation activity (see Equation

! For electromagnetic interference, techniques such as adaptive filtering and adaptive null steering antennas
can be used to reduce the effects of interference prior to the tracking loops without the need to modify the

receiver hardware.
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(2.1-2)). In WBMOD, the distribution of Log(C;L) in equatorial regions is modelled as the

sum of three Gaussians, each of which have different means and variances (see for
example [13] & [82]). Therefore, as many of the receiver performance measures are
functions of S, and T, they are amenable to averaging using this distribution function.
Consequently, using WBMOD the performance of a single satellite-receiver link can be
predicted for a given time and location, either in terms of a percentile or as an average

based on the distribution function of C,L .

Ordinarily, in the absence of scintillations, the navigational accuracy of a GPS receiver is
found by estimating the single link error (referred to as the User Equivalent Range Error or
UERE) and translating this error into equivalent position and time errors using satellite
geometry factors (the Dilution Of Precision or DOP factors: see for example Kaplan [47]
pp- 261-269). The DOP factors assume that the range errors are the same on each satellite
link and are uncorrelated between the individual links. However, when the effects of
scintillations are included, WBMOD provides additional information from which the
tracking status and range errors on each satellite link can be obtained independently. The
problem then arises as to how these individual link predictions can be combined in order
to determine the likely impact on navigational accuracy. In this section, it is shown that the
joint statistics of the scintillation indices §4 and T on the individual satellite-receiver links
are required in order to solve this problem. However, as yet there are no models or data
available from which this information can be derived. Nevertheless, in [57] data obtained
from a receiver located in an active scintillation environment was analysed to show that
the probability of losing lock simultaneously on multiple satellite links is extremely small.
Further analysis of this data is required in order to determine the required statistics and

the factors on which they depend.

2.4. Summary

In this chapter, an overview of the morphology and statistical characteristics of
scintillations was given. It was revealed that scintillations can be modelled as a stochastic
process in which the amplitude follows a Nakagami-m distribution and the phase follows
a zero-mean Gaussian distribution. Furthermore, both the amplitude and phase can be
assumed to have a power-law power spectral density with a low frequency cutoff for the
amplitude. The scintillation model WBMOD was also described and its potential for

predicting the statistics of various key scintillation parameters was explained. These
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statistics link WBMOD to the stochastic scintillation model as they define the distribution
functions and spectral characteristics of the scintillations. A second scintillation model
based on diffraction from a thin phase changing screen was also described. The primary
purpose of this model was to generate scintillation time series for the simulation tests

carried out in subsequent chapters.

The second part of this chapter provided an overview of the GPS system, including a brief
description of the architecture of the front end of a GPS receiver and the operation of the
receiver tracking loops. This was then followed by a literature review and an overview of
each chapter in the thesis. The main point to come out of this review was that although
various researchers have conducted simulation studies and measurement campaigns
aimed at quantifying the effects of scintillations on GPS, there has been very little detailed
analytical work done in the area. Consequently, the main thrust of this thesis is to link the
various statistics associated with the stochastic scintillation model outlined above to

measures of the tracking and acquisition performance of a GPS receiver.
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Chapter 3

Carrier tracking loops

This chapter examines the effects of scintillations on carrier tracking loops. As carrier loops
are generally the weakest link in a receiver channel, significantly more effort has been
devoted to this chapter than to the following chapter on code tracking loops. A brief

outline of each section in this chapter is given below:

e In Section 3.1, a signal processing model of the carrier tracking loop is given. This
model is used throughout the thesis and is based on a Costas suppressed carrier tracking
loop.

e In Section 3.2, the effects of phase scintillations on a Costas carrier loop is investigated.
Phase scintillation effects include an increase in carrier tracking errors and an increase in
carrier phase range errors. The first of these is associated with the ability of the carrier loop
to remain in phase lock, the second is associated with errors in carrier phase differential
GPS. The latter is dealt with in greater detail in Section 3.6 where the decorrelation with
distance of the phase scintillation error is examined.

e In Section 3.3, the impact of amplitude scintillations on a Costas carrier loop is
investigated. This is done for an 1.Q discriminator that is normalised by a post-detection
AGC. Because the joint statistics of amplitude and phase scintillations are unknown at this
stage, it was decided to initially treat their effects separately, and to then deal with their
combined effects by assuming independence. The potential problems associated with this
assumption are highlighted.

e In Section 3.4, a rule of thumb tracking threshold for the Costas loop is defined in
terms of the amplitude and phase scintillation indices, T and S, and the loop bandwidth.

This threshold is then compared with WBMOD predictions of T and §4 obtained for a

stationary receiver located in a region of high scintillation activity. The effects of satellite

elevation angle and both satellite and receiver velocity on the scintillation indices, and
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therefore on the probability of exceeding the tracking thresholds, are examined using
WBMOD data and the scintillation model from Section 2.1.3.

e In Section 3.5, both analytical techniques and simulations are used to determine the
relationships between the depth and duration of a simple rectangular fade and the
probability of a carrier cycle slip. The intention is to show that short duration fades have
very little impact on the tracking loop performance, irrespective of the fade depth.

e Finally, in Section 3.7 the effects of scintillations on a Frequency Locked Loop (FLL)
are examined. FLL's are used as a primary means of carrier tracking in some receivers, but
more often as a fall-back strategy when phase locked loop operation is no longer possible.

In this section, the susceptibilities of FLL’s and PLL’s to scintillations are compared.

3.1. Carrier loop model

Figure 3.1-1 is a representation of a generic Costas carrier phase tracking loop. A brief

description of the operation of the Costas loop is given below.

Pp

Ip

= Sign( ) [—> Navigation Data

Y
.

IF . Phase > F(s)

N Y % j[dT_J_» Discrim
=T QP
vCo 4—%}

)i

Figure 3.1-1: Model of a generic Costas phase locked loop.

The Costas carrier loop generates in-phase (I) and quadrature (Q) signals by mixing the
GPS IF with I and Q reference signals produced by a voltage controlled oscillator (VCO).
The PRN ranging code is then removed from the I and Q signals by mixing with an in-
phase replica code, pp, that is generated within the code tracking loop (see Chapter 4).
This causes the energy of the GPS signal to be collapsed into the bandwidth of the
navigation data which is 100Hz between nulls. The resulting I and Q signals are then
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filtered by a pair of pre-detection integrate and dump filters! before being passed into the
Costas loop discriminator. The function of the discriminator is to measure the phase error
between the IF carrier and the VCO reference while simultaneously removing navigation
data from the carrier. A list of the most common discriminator types along with their

corresponding phase error functions is given in Table 3.1-1.

Discriminator Discriminator Output
sign(1).0 Asin(p, )
10 0.547 sin(29,)
o1 tan(9, )
Atan2(Q,1), Atan(Q/I) 0

Table 3.1-1: Common Costas loop discriminator functions. 4 is the filtered signal amplitude and
O, is the phase error. Atan2(y,x) is the four quadrant arctangent function (ie.
-w < Atan2(y,x)<r).

From the discriminator, the phase errors are passed through a loop filter, F(s), and then
on to the VCO. The loop filter controls the order and bandwidth of the tracking loop and
must be adjusted according to the expected dynamics and noise conditions in order to
maintain optimum tracking performance (ie. minimum phase tracking error). The filtered
phase errors force the frequency of the loop VCO to be shifted in a direction that reduces
tracking errors in subsequent phase measurements. In this way, the VCO tracks both the
frequency and the phase of the IF carrier. Estimates of the line-of-sight Doppler and the
ambiguous phase range (the integrated Doppler) are obtained directly from the filtered

phase errors by applying appropriate scaling factors.

In the analysis that follows, the effects of scintillations are modelled as a modulation of the

complex GPS signal 2. Based on this model, the IF signal can be represented by

! The integrate and dump filters are synchronised to the navigation data and have integration periods less than
or equal to the length of a navigation data bit. Without synchronisation, the SNR of the filtered I & Q signals
would be significantly degraded by changes in the sign of the navigation data.

2 The modulation is of the form A(f)exp(— Jop (), where A(r) and op (¢) are the amplitude and phase

scintillation processes respectively.
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IF (1) = A@)p(~ 1O (e~ 7(1) )sin(w e £ + (1)) +n(©) (3.1-1)

where:
A() is the signal amplitude,
plt —7(2)) is the satellite PRN code?,
d(r —7(1)) is the satellite navigation messages,
7(t) is the code delay,
wyr is the IF carrier frequency,
O(t) =04 ()+9,()+9,(?) is the phase of the GPS carrier,
¢4(2) represents the effects of satellite and platform dynamics,

¢, (#) represents the effects of phase scintillations,

¢,(r) represents other effects such as VCO phase noise,

n(t) = n.(t)cos(@rt) + ny(¢)sin(wzrt) is stationary, zero-mean, narrowband Gaussian
thermal noise with a power spectral density of N, W/Hz within the IF band, and

n.(t) and ng(f) are stationary, zero-mean, Gaussian noise processes which are

independent and identically distributed (IID).

The IF signal is mixed with I and Q reference signals from the VCO and a prompt code,
pp= p(t = (), from the code tracking loop to produce a pair of baseband I and Q signals.
The mixing process also generates double frequency terms centred on 2wz, but these are
eliminated by the pre-detection integrate and dump filters in the following stage. If it is
assumed that the pre-detection filters are synchronised to the navigation data, and the
phase error, ¢, is relatively constant over the integration period, then after filtering the I

and Q signals will become¢

IP = Zd(f"r)COS(¢€)+n1p s

N (3.1-2)
Op = Ad(t—1)sin(9, )+ ngp

where ¢, = ¢(t)— () is the carrier phase tracking errors, ¢(¢) is the loop's estimate of the

? Both the PRN ranging codes and the navigation data are represented by a %1 bit sequence.

* The VCO signal is assumed to be of the form 2sin(@;z¢ +(ﬁ(t)) .

* In this Chapter, the terms “phase error”, “carrier phase error” and “carrier phase tracking error” are used
interchangeably.

38



1
carrier phase, 7=1(f), A =% jA(u)a'u is a filtered version of the signal amplitude, T is
=T

the integration period of the pre-detection filters, and 7z and ngp are uncorrelated,

baseband Gaussian noise processes with 0',,”,2 =O',,QP2 =N, /T . This step assumes that

the replica prompt code is perfectly aligned with the satellite code and is therefore
removed completely from the carrier (ie £=7). The filtered I and Q signals are then
processed in the Costas loop discriminator to produce the phase error estimates given in
Table 3.1-1. In all cases, the discriminator algorithm eliminates the navigation data from

the phase error estimates allowing the loop bandwidth to be reduced to a few Hz.

The Costas loop can be represented in an equivalent form in which the mixers and pre-
detection filters are replaced by an adder, and the phase discriminator is replaced by the
appropriate phase error function. An example of this baseband model for the LQ

discriminator is given in Figure 3.1-2. The 1/g factor represents gain control from an AGC.

n, /g

0.542 sin(2¢;.) F(s)

A

1/s

Figure 3.1-2: Non-linear baseband model of an 1.Q Costas phase locked loop.

For small phase errors, the approximation 0.5sin(2¢, )~ ¢, can be used to produce the
linear baseband model shown in Figure 3.1-3. Similar approximations can be made for the

other three discriminator types from Table 3.1-1.

"y /g

'

A2 F(s)

A

¢ 1/s

Figure 3.1-3: Linear baseband model of an 1.Q Costas phase locked loop.
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The noise term n; represents the effects of additive thermal noise translated to the

discriminator output, and includes products between the I and Q noise terms and the I
and Q signal terms which are created within the discriminator. For the I.Q discriminator,

ny is given by (from Equation (3.1-2))

ng = Zd(t —T)[COS(¢6 )nQP + sin(¢€ )nIP ]+ nQPnIP (31'3)

The gain control shown in these figures is typically provided by a post-detection AGC and
is necessary to ensure that tracking loops based on un-normalised discriminators such as

1.Q and sign(l).0 operate within their design parameters [92]. Without such control, the
bandwidth and damping factor of the loops would be strongly affected by the signal
amplitude, 4. AGC’s of this sort can either be applied after the discriminator (as shown in
these diagrams) or at the IF stage prior to the tracking loop. In either case, their effect on
the tracking loop will be the same. For an I.Q discriminator, the AGC gain factor, g, is
given by Ip°+Qp° ~4%. If it is assumed that the discriminator is normalised (eg.
Atan(Q/I)), or the AGC is capable of accurately tracking the signal amplitude, the closed

loop transfer function of the Costas loop is given by (see for example [36])

(3.1-4)

where ®(s) and ®(s) are the Laplace transforms of ¢(t) and ¢(z) respectively. Typical
loop transfer functions and their corresponding noise equivalent bandwidth’sé for the
three loop orders are given in Table 3.1-2 (assuming active loop filters). As shown in
Figure 3.1-4, the closed loop transfer function can be used to simplify the linear baseband

model of the Costas loop.

nd/Zz

=

Figure 3.1-4: Closed loop transfer function model of a phase locked loop

1 o0
¢ The single-sided noise equivalent bandwidth is given by B, = 5 ﬂH( f)|2 df .

40



1st Order Loop 2nd Order Loop 3rd Order Loop
F(s) W, 26w, + o} [s 20, +202 [s+ o] [s*
H(s) W, 26w, s + o} 20,52 + 20325 + ]
S+, s?2 +28w,s + o} $* +20,52 + 20k + 0]
B, w, /4 w,/12

o, |
7(5 *z)

Table 3.1-2: Open and closed loop transfer functions and single-sided noise bandwidth’s for a phase

locked loop. @, is the loop natural frequency and { is the damping factor for a second order loop.

The three loop transfer functions represent the optimum Wiener filters for tracking a phase

step (1st order), a frequency step (2nd order with { = 1/ J2)and a frequency ramp (3rd

order). These optimum filters were derived by Jaffe and Rechtin [45] based on a

minimisation of the mean-square loop phase error in the presence of dynamics and noise.

The derivation of an optimum Wiener filter in the presence of scintillations and dynamics

will be discussed in Chapter 8.
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3.2. The impact of phase scintillations on carrier

phase tracking loops

In this section, the variance of the phase tracking errors and the variance of the phase
range errors will be derived for a phase locked loop in the presence of phase scintillations
and thermal noise. The variance of the phase tracking errors will be used to determine a
threshold value for the spectral strength of phase scintillations beyond which loss-of-lock
is likely to occur. The variance of the phase range errors will be used in Section 3.6 to

investigate the effects of phase scintillations on carrier phase DGPS.

3.2.1. Phase tracking errors and thresholds

The mean-square carrier phase tracking error resulting from direct phase noise and
thermal noise for the linearised carrier phase tracking loop is given by (based on Figure

3.1-4)

E{o? )= ﬂll —H Sy + [HO Sy () ]df (3.2-1)

where 1-H(f) is the transfer function of the phase errors, S4(f) is the power spectral
density (PSD) of the input phase process and S, (f) is the PSD of the normalised thermal

noise term, ny =ny / A% . The input phase process can be represented by (from Equation

(3.1-1))

() =0a () +0,(1) +9,(9) (3.2-2)

where ¢,(?), ¢,(f) and ¢,(¢) represent the contributions from satellite and platform

dynamics, ionospheric phase scintillations and other phase noise sources respectively. The

autocorrelation function of ¢(¢) is therefore

Ryg (t1,1,) = E{0(1, )92, )}
= E{[04 1)+ 0, 0)+ 0, ()] [ 04 (2) + 0, (2) + 0, ()] }

=Ry 0, (ts12) + R¢p¢p (T) + Ry, 9, (7) + crOSS - correlation terms

(3.2-3)
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where ¢, and ¢, are two instants in time and 7 =¢, —¢, . In this analysis, it is assumed that

¢,(t) and ¢,(?) are stationary, zero-mean, Gaussian random signals, and that ¢,(f) may

be deterministic or random, but is generally not zero-mean. It is also assumed that ¢,(¢),

¢,(*) and ¢,(t) are independent as they are produced by entirely different physical

processes. Consequently, the cross-correlation terms in Equation (3.2-3) are all zero. The

corresponding PSD of ¢(¢) is thus

Se(f)=S8p, (f)+S¢p (N +8, () (3.2-4)

where S, (f) =E{|(I>d (f )2} is the PSD of the dynamics component (see Appendix E),
S¢p (f) is the PSD of ionospheric phase scintillations (Equation (2.1-1)), and S, (f) is the

PSD of the other phase noise sources. In the analysis that follows, it is assumed that

thermal noise and ionospheric phase scintillations are the principal sources of phase noise,

and that amplitude scintillations are not present (ie. A=A where A is the unperturbed
signal amplitude). Under these conditions, the mean-square phase tracking error reduces

to

03, = [-H(P S, () + HOP sk (3.2:5)
=O'$[_;v + G;T

where oﬁq) and GjT are the phase scintillation and thermal noise components of the

tracking error variance, and E {q)gz } is equal to the phase error variance, 0';6 , as both phase

scintillations and thermal noise terms are zero-mean. Equation (3.2-5) can be simplified by

making the following substitutions

B, [l = ], from Equation (D-19), Appendix D

2
O4r = +
T " Cc/N,| 2TC/N,

T
S¢p(f)=W,

2k
1-H( f)|2 = Zk—f—— from Table 3.1-2 with s= j2af
S+

from Equation (2.1-1), and

2k 7
n
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where k is the loop order (1, 2 or 3), f,, =®,/2r is the loop natural frequency in Hertz, f,

is the outer scale size frequency, and a damping factor of 1/ V2 has been assumed for

second order loops. The phase scintillation component of the tracking error variance is

g ka T . ]
o-gw =—‘!-= (/‘21( +f;32k)' (/',3 +f2y"1"r2 df (3.2-6)

Unfortunately, it is difficult to obtain a closed form solution to this equation. However, for

p <2k and f, much smaller than f,, the following approximation can be made

f% T Tlflzk r (3.2-7)
(f2k+fn2k (f np )p/Z ([2}’; +f,,°")

This is based on the observation that the phase error transfer function, 1-H(f), is a high-

pass filter, and so the low frequency components of the phase scintillation power

spectrum will have a negligible effect on the phase errors. Therefore, letting f, =0 will
not significantly affect the phase error variance. As f, is usually very much smaller than

[, this approximation will be accurate under the following conditions (based on p <2k)

1st order loop: p<2
2nd order loop: p <4
3td order loop: p< 6

As the carrier tracking loop in a GPS receiver is usually 3rd order (unaided) or 2nd order
(aided), and p is in the range 1 to 4 (typically 2.5 at equatorial latitudes), this
approximation is considered to be quite accurate under most circumstances. Equation

(3.2-6) then becomes (using Spiegel’s table of integrals [86], Equation 15.20)

oo T|f|2k—p
O-‘Pep j(;zk Zk) , P<2k
(3.2-8)

l<p<2k

kf,P™ 1s1n([p 1 /2k)’

From Appendix C, the linear model tracking threshold for an 1.Q Costas loop is given by

2
O¢,

2
= (l) radians? (3.2-9)
Th 12
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By equating the total phase error variance from Equation (3.2-5) with the linear model
threshold given above, the following expression can be obtained for the threshold spectral

strength

~Ogr

2 ]’@f,,”“ sin((p -1}z /2k) (3.2-10)
(3

T|Th [ 0

In Figure 3.2-1, T|Th is plotted as a function of the spectral index, p, and the loop noise
bandwidth, B, for both a second and third order carrier tracking loop under the specified
threshold condition (C/N, =41.5dBHz7 and T=20ms are assumed). The relationships
between the loop noise bandwidth and the loop natural frequency, f,, for the two loop

orders are given in Table 3.1-2.

Second Order loop Third Order loop

Strength, T (dB)

I Strength, T (dB)
] I 1 1
BE GRS how

..r '&?', i /:'

A Wf ’4/""/' =
i .-?f,f, s 'z,, antiee

,"’}f’ fﬂfgfﬁr{f}zgf@,@ . SR y Mm

v Ly . S B ,/// /MM/// ,,,,,,/,;, 7
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I
Spectral Index, p Noise bandwidth, Bn (Hz) Spectral Index, p Noise bandwidth, Bn (Hz)

Figure 3.2-1: The threshold spectral strength, TlTh , as a function of the spectral index, p, and the

loop noise bandwidth, B,, for a second order loop (left panel) and a third order loop (right panel).
C/N, = 41.5dBHz and T = 20ms.

Figure 3.2-2 shows a cross-section through each of the plots in Figure 3.2-1 for p=2.5 (a
typical equatorial value). By comparing these results with Figure 2.1-4 which was obtained
using the WBMOD scintillation model, it is clear that in the region of the equatorial
anomaly, it is possible for the spectral strength to exceed the specified tracking threshold

and cause the carrier loop to lose lock. It is also clear that the loop noise bandwidth

7 Throughout this thesis, C/ N, =41.5dBHz will frequently be used. This is based on a nominal GPS signal
level of -160dBW [81] and a system noise temperature, Tg, of 512K, Thus
C/N, =-160—10Log ((kTs) = 41.5 where kis Boltzman’s constant.

45



strongly influences a receiver's tolerance to phase scintillations and that narrow
bandwidth receivers tend to be far more susceptible (this becomes more pronounced for
larger values of p). Although it is not apparent from these plots, it can be seen from

Equation (3.2-5) that when the carrier to noise density ratio is significantly reduced, a
point will be reached at which the thermal noise term, O'gT, dominates the variance

expression. When this occurs, wider bandwidth receivers will tend to be more susceptible
to loss-of-lock. This may occur when strong amplitude scintillations are present or when
the receiver is being affected by electromagnetic interference or attenuation from foliage or

other sources.

Spectral Strength, T (dBrad*/Hz)

1 1 1 I !
2 4 6 8 10 12 14 16 18 20
Noise bandwidth, Bn (Hz)

=30 1 1 L 1

Figure 3.2-2: The threshold spectral strength, T|Th , as a function of the loop noise bandwidth B,

for a second order loop (upper curve) and a third order loop (lower curve). p = 2.5, C/N, =

41.5dBHz and T = 20ms.

As INS8 aided receivers tend to adopt a very narrow tracking loop bandwidth, this result
suggests that aided receivers will be more susceptible to phase scintillations than unaided
receivers, although their tolerance to amplitude scintillations and interference will be
better. This situation will become even worse if a receiver is in a state of open carrier loop

aiding?, as it will no longer be able to track the high power, low frequency components of

% INS - Inertial Navigation System.
® With open carrier loop aiding, the VCO frequency is controlled by an INS. This technique is usually used as

a weak signal hold-on strategy under conditions of strong interference.
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the phase scintillations. However, INS aiding should also allow a receiver to recover more

quickly from a state of loss-of-lock when the scintillation activity eventually passes.

A third observation that can be made from these plots is that in general, second order
loops have a higher tolerance to phase scintillations than third order loops (by
approximately 2 to 3 dB for p=2.5). In Chapter 8, it will be shown that the optimum loop

order for minimum phase error is either first order or second order, depending on p, but is

never third order.

0.5

RMS tracking error (radians)
2 S0 S S T

©
—_

—?!0 =25 =20 -15 -10 =5 0

Spectral Strength, T (dBradianslez)
Figure 3.2-3: A comparison between the RMS phase scintillation error obtained from simulations
(dotted lines) with those obtained from theory (solid line) for a second order Costas phase locked
loop with p = 2.5, f,= 0.05Hz, T = 20ms and no thermal noise. The five different lines represent

2Hz, 5Hz, 10Hz and 20Hz loop noise bandwidths respectively (upper to lower curves).

In order to verify Equation (3.2-8), a number of simulations were conducted using the
tracking loop simulator from Appendix B and simulated phase scintillation data from the

model given in Appendix A. In Figure 3.2-3, the RMS phase scintillation error, o, ,

obtained from both simulations (dotted lines and circles) and theory (solid lines) is plotted
as a function of the Spectral Strength, T, for a range of loop noise bandwidths. These
results show that the linear model is relatively accurate when the phase error variance is
below the tracking loop threshold (given by the solid horizontal line above 0.25 radians).
However, when T is increased to a point beyond the tracking threshold, the simulations

fail to provide a clearly defined cutoff between tracking and loss of lock. Rather, the
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frequency of cycle slips increases until the system is effectively no longer tracking (the
sudden increases in the RMS error near the tracking threshold are the result of uncorrected

cycle slips in the data).

In Figure 3.2-4, the mean time between cycle slips obtained from simulations is plotted as
a function of T and B,, for a second order loop with p = 2.5. The solid line marked with a

200 represents an average of 200 seconds between cycle slips. The other solid line
represents an average of 10 seconds between cycle slips. Also shown as a dotted line is the
threshold based on the linear loop model from Figure 3.2-2 (the upper curve). These
results suggest that the linear model threshold is quite conservative and represents a
situation in which the loop is suffering from frequent cycle slips rather than a complete

loss of lock.

Spectral strength, T (dBradiansZ/Hz)

2 4 6 8 10 12 14 16 18 20
Noise bandwidth, Bn (Hz)

do
S

Figure 3.2-4: Mean time between cycle slips (in seconds) for a second order Costas phase locked
loop in the presence of phase scintillations with p = 2.5, f,= 0.05Hz, C/N,=41.5dBHz and
T=20ms. The dashed curve represents the theoretical threshold from Figure 3.2-2 (upper curve).

Finally, it is clear from Figure 3.2-3 that the accuracy of Equation (3.2-8) is reduced as the
loop noise bandwidth increases. This is primarily a result of pre-detection filtering and

will be discussed further in the next section.
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3.2.2. The effects of pre-detection filtering on phase

errors

In the analysis so far, it has been assumed that the pre-detection filters have a negligible
effect on the phase errors. This assumption is based on the observation that the majority of
the energy in the phase error power spectrum is within the 50Hz noise bandwidth!® of the
pre-detection filters. However, for wide bandwidth receivers it unclear whether this
approximation is valid. In the analysis that follows, the transfer function of the tracking
loop is modified to include the effects of the pre-detection filtering. The results of this
analysis are then compared with the simulations obtained from the previous section over a

range of loop bandwidths.

To account for the effects of filtering, Equation (3.1-2) can be modified as follows

3

I,= Ad(t- T)-]l—1 J.cos((be ())du +np,
t-T (3.2-11)
1
= 1 7.
Q,= Ad(t - T)? Is1n(¢£ ())au + nop
=T

where I, and Q, are the prompt I and Q signals after the pre-detection filters. This result

also assumes that the amplitude is approximately constant over the T second period of the

pre-detection filters. As will be shown in Section 3.3, this is a reasonable approximation

under most circumstances. If it is assumed that ¢, is small (ie. sin(¢,)~¢, and

cos(¢, ) = 1)1, then to a first approximation, 7, and @, canbe simplified as follows

I, =Zd(t'7)+ np,
f
~ 1 )
0,= Aar(t-r)7 j 0 () + ngp (3.2-12)
t-T

=Ad(t 7). (6)® g(0))+ nop

where g(t)=%rect(%) is the impulse response of the pre-detection filters, and ®

represents the convolution integral.

19 The double-sided noise bandwidth of a T second integrate and dump filter is 1/7 Hz (= 50Hz for T'=20ms).
! These approximations are based on the first terms in the Taylor series expansions of sin( ) and cos( ).
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The output of the 1.Q discriminator is then

1,9,=4[p,()®g®)]+n, (3.2-13)

If the transfer function of the pre-detection filters is denoted by G(f), the cascade of the
pre-detection filters and the loop filter can be approximated by G(f)F(f). The closed

loop transfer function is therefore

G(/).F([)

H(f)= B
() 725 +G).F() (3.2-14)
and the transfer function of the phase errors is given by
2
1-H(f)= ; -
(f) an £ GUNE (3.2-15)

where G(f)=sinc(fT)exp(~ jafT) (Holmes, [43] pp. 423) 12. This new transfer function can

be substituted into the expression for the phase error variance to account for the effects of

pre-detection filtering. For a second order Costas loop, this gives

o = [I-HUY Sy, (1)df + o)

(3.2-16)
T =YY + o2,
where
i-H(r) = | ' S’ - (3217)
sinc(/T) [1+2./y” |- 2f?sinc(/T)| cos@T)+2 £ sin@T)}+ fi

and fy=f/f,. In Figure 3.2-5, the RMS phase scintillation error obtained from this
modified transfer function is plotted as a function of T for a range of loop noise
bandwidths. Also shown are the simulation results from Figure 3.2-3. It is clear from this
figure that the simulations now match the theory much more closely, particularly for the

wider loop bandwidths.

12 G( f ) consists of two factors, (i) a sinc( T ) attenuation factor, and (ii) an exp(— T ) phase shift factor
associated with the filter delay. Of the two, the phase shift factor has by far the greatest impact on ¢ e -
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Figure 3.2-5: The effects of pre-detection filtering on the RMS phase scintillation error for a second
order Costas loop with p = 2.5, f,= 0.05Hz, T = 20ms and no thermal noise. The five different
lines tepresent 2Hz, 5Hz, 10Hz and 20Hz loop noise bandwidths respectively (upper to lower

curves). The dashed lines represent the results of simulations from the previous section.

3.2.3. Carrier phase range errors

Another quantity of interest in the study of GPS receiver performance is the error in the

estimate of range obtained from the carrier phase, ¢, t)=0, (t)—d? (t) (referred to here as
the carrier phase range error). The carrier phase range error reflects the second function of
the carrier phase tracking loop which is to provide estimates of the satellite and receiver
dynamics (represented by ¢,(z)) while rejecting unwanted phase noise from other
sources. Consequently, ¢,,(¢) represents the error in the loop’s estimate of ¢,(?) and is of
interest to systems that make use of carrier phase range measurements such as carrier

phase DGPS, or require precise velocity information. The mean-square value of the carrier

phase range error is given by

£k -2 s D+ O Ls, s, sen . 6219

The contribution to the carrier phase range error from phase scintillations is simply the

carrier loop’s estimate of the phase scintillation process, ¢,(f). This is given by
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o p () =h()®¢, (1), where h(f) is the impulse response of the loop filter and ® is the

convolution integral. The variance of (ﬁp (1) is therefore

T 2
= IIH (N S, (NS - (3.2-19)
By making the following substitutions

T
S¢p(f):W,

2k
(I = W i+20k-1)(7/£,)2%], from Table 3.1-2

from Equation (2.1-1), and

the variance of the carrier phase range error resulting from phase scintillations becomes

J. ‘(/ﬁ)[l + 2(k 1)(f/fn )2(k 1)] (f )p/z (3'2-20)
A closed form solution to this integral is again difficult to obtain. However, as the carrier
tracking loop is essentially a low pass filter for the carrier phase, the low frequency

components of the phase scintillation power spectrum will provide the greatest

contribution to oép . Therefore, the outer scale size parameter, f,, will have a significant

effect on o Z and must be carefully modelled in order to produce accurate results (ie. it
P

cannot be set to zero as before). In Figure 3.2-6, 6% is plotted as a function of the loop

¢p
noise bandwidth for a second order Costas phase locked loop and for three values of f,
(this is based on a numerical solution to Equation (3.2-20)). It is clear from these plots that

o? is very sensitive to f,, but relatively insensitive to the noise bandwidth. This is

op
because the majority of the energy in the phase scintillation power spectrum is well below
the lowest noise bandwidth for typical values of f, and p. The slightly higher values at
very low noise bandwidth's are the result of a hump in the transfer function of the second

order loop near f = f,.
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Figure 3.2-6: The variance of the carrier phase range error, © ;
P

, as a function of the loop noise
bandwidth for a second order Costas phase locked loop in the presence of phase scintillations. p =

2.5, T = =25 dBradians2/Hz, and f,= 0.05Hz.

.

These results suggest that a reasonable approximation for o 3
P

can be obtained by

ignoring the loop transfer function. This implies that for all sensible values of the loop
noise bandwidth, the majority of the phase scintillation energy is tracked by the carrier

loop. Equation (3.2-20) can therefore be approximated by

r T
O';p z—[ﬂm.df. (32-21)

From a table of integrals (eg Gradshteyn [37], Equation 3.241-4), this can be reduced to

52 = T (p-1)2)7,""
o (p/2) '

(3.2-22)

The results obtained from this approximation are given in Figure 3.2-6 as a series of
horizontal dotted lines. It is clear from these plots that the error in this approximation is

quite small for B, greater than a few Hertz.

The carrier phase range error is generally only of concern to users who require precise

carrier phase range measurements for carrier phase DGPS. For such applications, the
53



distance over which the phase errors become decorrelated is of interest. This is discussed

further in Section 3.6.

3.2.4. Doppler errors

Carrier Doppler measurements are used for the precise determination of velocity in GPS.

The error introduced into these measurements by phase scintillations is given by

dp,(t)
dt

W (1) = radians/s (3.2-23)

where ¢ p () is the carrier loop’s estimate of the phase scintillation process. The variance

of the Doppler error is thus

Coep = | Sugy (1)
. (3.2-24)
= [ CnfVs; (N
= p
- j (2 Y |H( f)|2S¢p (f).df (radians/s)?

where qu) (f) and S i (f) are the power spectral densities of the Doppler errors and the

phase estimate errors from phase scintillations respectively. It is clear from this equation
that the Doppler errors are a filtered version of the phase scintillations, where the filter

transfer function is given by j2afH(f). As this is a high pass filter (at least for second and
third order carrier loops), the approximation S¢p f )=T| 1 |_p can once again be used to

obtain the following expression (based on Equation (3.2-20))

2k
S
k

Oop = | CHY W)[l L2k =D L PO TP, e (3.2-25)

This can be solved using a table of integrals (eg. Spiegel [86], Equation 15.20) to give the

following result

), ATRRfrP 1 2(k—1)

o~ k I_Sin([3_P]TE/2k) ¥ Sin([p“]]?f/Zk)]’ 1<p<3 (3.2-26)

54



In Figure 3.2-7, O'Z,ﬁp is plotted as a function of the loop noise bandwidth, B,, for p=2.5

and T=-25 dBradians?/Hz.
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Figure 3.2-7: Variance of the Doppler error as a function of the loop noise bandwidth for a second
order Costas phase locked loop in the presence of phase scintillations. p = 2.5, T = -25

dBradians?/Hz.

It is clear from this figure that as the loop noise bandwidth increases, the Doppler errors
increase, unlike the phase estimate errors which remain approximately constant. This is
because a wider bandwidth receiver will allow more of the high frequency components of
the phase scintillation energy to be present on the carrier loop phase estimates (high
frequency phase fluctuations contribute more to the Doppler errors than low frequency

fluctuations). The results given in Figure 3.2-7 can be converted into equivalent velocity
errors by multiplying by the factor (c/or ¥, where c is the speed of light and oy is the

angular frequency of the GPS carrier (either 2n+L1, or 2r*L2). For the spectral strength
value specified in Figure 3.2-7, the variance of the velocity errors is only of the order of a

few tens of (cm/s)2 which is probably negligible for all but a few precision applications.

3.2.5. Summary

In this section, the effects of phase scintillations on a Costas carrier tracking loop was
examined. An expression was derived for the variance of the carrier phase tracking error

in terms of the bandwidth and order of the tracking loop and the spectral strength and
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spectral index of phase scintillations. By assigning a tracking threshold to this expression,
the conditions under which a Costas loop would be expected to lose carrier lock were
determined. In general, it was found that the susceptibility of a carrier loop to phase
scintillations increased as the loop bandwidth decreased. Also, the effects of phase
scintillations became worse as the spectral strength and the spectral index increased (ie. as

the amount of high frequency phase scintillation energy increased).

Expressions were also obtained for the variance of the phase range errors. Essentially,
these are errors in the carrier loop’s estimate of the satellite-to-receiver range and are
mainly of interest for carrier phase differential GPS. It was found that phase range errors
are predominantly affected by the ionospheric outer scale size as well as the spectral
strength and spectral index of phase scintillations, but show very little dependence on the
loop bandwidth. The outer scale size parameter is a function of the large scale structure of
the ionosphere. As this is not accurately modelled by WBMOD, nor by any of the other
scintillation models known to the author, the evaluation of the phase range error was

considered to be beyond the scope of this thesis.
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3.3. The impact of amplitude scintillations on carrier

phase tracking loops

In the previous section, the linear loop model was used to obtain a simple closed form
expression for the variance of the carrier phase tracking error for a Costas loop in the
presence of phase scintillations and thermal noise. This expression was then compared
with the linear model threshold derived in Appendix C to determine the strength of phase
scintillation activity required to force the Costas loop to lose lock. An assumption inherent
in this analysis was that the carrier to noise density ratio of thé GPS signal was relatively
large, implying that the GPS signal was unaffected by amplitude scintillations. In this
section, the effects of amplitude scintillations on the carrier phase errors will be examined
using both the linear loop model and a non-linear approach. Variance measures will be
derived as a function of the amplitude scintillation index, S, and the loop noise
bandwidth for an 1.Q Costas loop. However, as these measures tend to be a poor indicator
of loss-of-lock, an alternative approach will be used in the next section to determine
suitable tracking thresholds for the Costas loop when both amplitude and phase

scintillations are present together.

A complicating factor associated with the analysis of amplitude scintillations is that, if
large enough, they have the capacity to significantly alter the transfer function of the
tracking loop. This causes the effects of amplitude and phase scintillations to be coupled
so that the two must be considered together when deriving a single variance measure.
Unfortunately, this requires a knowledge of the joint statistics of amplitude and phase
which, at this stage, is unknown for scintillations (refer to the end of Section 2.1.3). This
problem can be circumvented to some extent by assuming that the discriminator is

normalised (eg. Q/I or Atan(Q/I)), or that a post-detection AGC is present (for 1.Q or
sign(I )Q discriminators). In doing so, the effects of amplitude scintillations are translated

to the thermal noise term allowing the two effects to be dealt with separately (phase
scintillations and thermal noise are associated with entirely different physical processes
and are therefore independent). In the analysis that follows, the effects of different AGC

time constants will also be examined.
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3.3.1. Background

As shown by Weber [100], if the bandwidth of the amplitude is relatively small compared
to the loop noise bandwidth, the PDF of the phase errors for a first order phase locked
loop is given by the Tikhonov density function. For the first order Costas phase locked
loop, this is (Equation (C-6) and [43])

~ exp(pecos(2(0)) n (3.3-1)
fﬁ((P)— n_Io(pe) s I(PIS 2 :

where ¥ =[¢, mod 7] is the phase error reduced modulo 7, p, is the effective loop signal
to noise ratio (SNR), and 7, is the modified Bessel function of the first kind of order zero.
Although an equivalent expression has not yet been found for higher order loops, Lindsey
and Charles [59] have verified experimentally that the distribution of phase errors for a
second order loop is very close to the Tikhonov density function. As shown by Viterbi [97],
Lindsey and Charles [59] and Holmes [43] (for the Costas loop), a good approximation to

the effective loop SNR is the reciprocal of the variance obtained from the linear model, viz

1
Pe = (3.3-2)

T2
4G¢e

where, from Equation (3.2-5)

o3 = _];Il ~HU S, ()G S, (e (3.3-3)

_ 2 2
_o-¢tp + G¢T

and Ggqn and oﬁT are the contributions to the tracking error variance from phase

scintillations and thermal noise respectively (other phase noise sources have been
ignored). For reasonably slow amplitude fluctuations, the transfer function of the tracking
loop, H(f), will be a function of the signal amplitude, 4, and the post detection AGC
gain factor, g (which is also a function of 4).If 4 and g are assumed to vary slowly with

time, then over a time period, 7, for which 4 and g are approximately constant, the 1.Q

Costas loop can be characterised by the following expression (see Figure 3.1-3)

58



@, ()=, (f)-0.(/)

~0,()- o) na (DAL

(3.3-4)

where @.(f), ®,(f ), ®..(f) and N, (f) are the Fourier Transforms of the random
processes ¢(t), o), ¢.(¢) and n,(f) which have been truncated to zero outside of the

time interval 0 to 7seconds. Rearranging this expression gives

2 __ @eF¢)  Nal) _
@ (f) jw+(zz/g)l,(f)-¢r(f) RG] 7 (3.3-5)

If it is assumed that E %D, (FIN(f ) }= 0 (as n,(t) is both zero-mean and independent of

#(?)), the expectation of the power spectral density of ¢,(¢) is given by

N dt U)
2

A

E{%p“ (ry } - —H’(f,Z]zE{%|<D,(fX2}+ H'(f,Z]zE{%

2
} 536

~2
where H '(f ,Z)= (A / g)F(f) is the modified loop transfer function. In the limit as

jonf +(@[gJF (1)

T — oo, this becomes

2 Snd (f)
~3

A

(3.3-7)

S, (1, A)=)i-1(7, AJ 5, 1)+ |H'(. )

Consequently, as a function of the signal amplitude, the phase error variance based on the

linear model is given by

o3, (@)= [s,, (1. 4)ar

- ]: [|1 ~H(rA)'s,, )+ (] S"iff)].df

A

(3.3-8)

=0g,, (4) + 63y ()

This expression is useful for determining both an average phase error variance and a “rule

of thumb” tracking threshold and will be discussed further in the next section.
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3.3.2. Phase errors from the linear model

3.3.2.1. Amplitude scintillations only

If, for the moment, the effects of phase scintillations are ignored, the linear model variance

becomes (from Equation (3.3-8))
o2 (4)= T|H’(f,21zs%y).df (3.3-9)

This represents the contribution to both the tracking error variance and the variance of the
phase range errors from amplitude scintillations and thermal noise. Equation (D-14) from

Appendix D can be used to reduce the above expression to

2 (~
N 7).
O.‘PT (A)— 2TBn( ) ;1'4 (3.3-10)

=278,(4)0,,* (4)
where B, (Z) is the single-sided noise equivalent bandwidth of the tracking loop as a

function of the amplitude, n}=ny / 4%, and T is the integration period of the

pre-detection filters. Again, based on Equation (D-18) from Appendix D, the discriminator

noise variance o,/ ) (Z) can be expanded to give (for an I.QQ Costas loop)

TA?

) SN

CCIN,| 4y 21rCyN, Ay

<@mﬂmmﬁ%hﬂq
(3.3-11)

where C/N, =A? /2N0 , A is the nominal (unperturbed) signal amplitude, and Ay = Z/A

is a normalised signal amplitude. The single-sided noise bandwidth is given by

5,(@)=1 [\ ar
@) [
! e ¢

_1 ]‘o (ZNz/gN)F(f)
24 |janr +ay? [gn P (f)

(3.3-12)

2

df
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where gy = g/A? is a normalised AGC gain factor. For first and second order loops, the

noise equivalent bandwidths become (from Table 3.1-2)
1. First order:
= @ 7 P2
B, (A) | AT | % | AN B, , where B, is the design loop noise bandwidth.
gy ) 4 En

2. Second order:

ol
B, (Z ) Z Ol AN ¢ +—1- , where { is the damping factor.
gN 4f

To be consistent with the non-linear analysis that will be presented in the next section,

only first order loops will be considered. Substituting the above expression for B, (2 ) fora

first order loop into Equation (3.3-11) gives

. (~\ B, |1 1
o, . \Ad)=—""——+ - (3.3-13)
AT [gN 2TC/N, Ay’ gn

For the 1.Q Costas loop, the AGC gain factor will be of the form

g=%t§kl,[1m2 +QPi2]

k
= %Z[Z,-z + 2Zid(ti - T)(nzpi cos(¢, ) +ngp; sin(¢€ )) +npp + nQP,.2 ] (3.3-14)

i=]

lirs
=7€'2A’ +8g

i=1

where Ip; and Qp; are given by Equation (3.1-2), and g, is the error in the AGC gain. The

k samples in Equation (3.3-14) represent the outputs from the pre-detection filters over the

previous kT seconds. Three different models are considered for the AGC. These are:

1. Anideal AGC for which g= 4% . This assumes that k=1 and £,=0.

2. A fast AGC for which g=4%+ E{eg}. In this case, k is assumed to be small enough

to allow the AGC to accurately track the signal amplitude, but large enough to

average the effects of thermal noise.

3. A very slow (or non-existent) AGC for which g = A’+E {eg} .
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From Equation (3.3-14), the expectation of the error in the AGC gain factor is given by
1~af, .
E{Eg }= E{;Z [2Aid(fi —T)("Ipi cos(ge )+ nop; sin(g, ))‘*’ npi + nQPiz ]}
i=1 :
1< (3.3-15)
= Z[E{Umz JoE {V‘QPiz}]
=1

_;i

_2N,

(from Equation (D - 7), Appendix D)

Consequently, after normalising, the three AGC gain factors become

1. Ideal: gN=ZN2.

. = 7.2 1
2. Past: gy=4Ay"+ TN, (3.3-16)
3. Slow: =1+ L
' C AT o,
Eye
where { g}= ! .
A? TC/N,

We now substitute the above expressions for gy into Equation (3.3-13) to derive
expressions for the contributions to the tracking error variance from thermal noise and

amplitude scintillations.

Case 1: Ideal AGC
For the ideal AGC model, Equation (3.3-13) becomes

2 (7). B | 1 1 (3.3-17)
Oor (AN) C/;’o [ZNZ + 2TC/N, ZN4:|

and the average phase error variance is given by

Ogr = f o5 (Ax) fiy (Ay)dAy
0

- (3.3-18)
= By E ~1 + 1 E ~1 I radians?
C/N,| |4y*| 2rC/N, |4,*
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where f dy (Ay) is the PDF of the normalised signal amplitude Ay . For slow amplitude

fluctuations, f Ay (A ) is assumed to follow the Nakagami-m distribution with <ZN2> =l.

The two expectation terms in Equation (3.3-18) can be simplified as follows

1 T 1
Ed——?= Ay )dA
{ANZ} E‘;ANZ Tay (A
e exp\—mA x° IldA (3.3-19)
o Tyl

From a table of integrals (eg. Spiegel [86], Equation 15.77), this becomes

E{A,lv } e e

m (3.3-20)

Also,

T
= JF fay (An)dAy
0

N
2
= m>2 (3.3-21)
m* —3m+2
1
= S<1/\2
1-352+28,% ° /
Therefore, for an ideal AGC the phase etror variance can be expressed as
2 B, 1 1 5
Oor = vt , radians i
T TN, | 1-82) 2rc/n, [1-38,? +25,%) (3.3-22)

This expression is only valid for S, <1/ V2. For 8, =1/ V2 it becomes infinite and for

Sy > 1/ V2 it becomes negative implying that the loop is likely to lose lock (at least for this
AGC model). In Figure 3.3-1, the phase error variance is plotted as a function of S, for

C/N, = 44 dBHz (typical of a strong satellite signal), and C/N, = 30 dBHz (a very weak
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satellite signal). It is clear from these plots that as §; approaches 1/ V2, the phase error

variance increases very rapidly. Indeed, the rather conservative tracking threshold of
(r/12)? radians? derived in Appendix C is only surpassed when S, is larger than about

0.7, even for the weak signal case. §; >0.7 represents quite strong scintillation activity,

and would only be expected to occur in equatorial regions during the evening hours and
under solar maximum conditions. Consequently, at other times and locations, the effects

of amplitude scintillations on the carrier phase errors is likely to be negligible.

—
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Figure 3.3-1: Phase error variance as a function of S, for a first order 1.Q Costas loop with an
ideal AGC. Parameter values are T = 20ms, B,= 5Hz, C/N, = 44 dBHz (left panel), and CIN, =
30 dBHz (right panel).
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Figure 3.3-2: Phase error variance as a function of Sy from simulations for a first order 1.Q Costas
loop with an ideal AGC (the circles denote simulation results). The unmarked curve represents the

theoretical results from Equation (3.3-22). Parameter values are T = 20ms, B,= 5Hz, C/N, = 44
dBHz (left panel), and C/N, = 30 dBHz (right panel).
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In order to verify Equation (3.3-22), a number of simulations were conducted using

simulated amplitude scintillation data and the tracking loop simulator from Appendix B
with an ideal AGC (ie. g =42%).In Figure 3.3-2, phase error variance values obtained from
simulations are plotted against S, for the two values of C/N, used in Figure 3.3-11. It is
clear from these plots that the simulations are in good agreement with the theory,
particularly for values of S, less than 1/ V2 . For larger values of S,, the occurrence of
frequent cycle slips complicates the process of estimating the variance. Nevertheless, the

simulation results do confirm that amplitude scintillations are of little concern unless §4

exceeds 1/ J2.

Case 2: Fast AGC
For the fast AGC model, the phase error variance of a first order Costas phase locked loop

is given by (from Equations (3.3-13) and (3.3-16))

2 (7. )= B, |. 1 .t 1 ;
Oor (@) C/No[[?q‘N2+1/[TC/N,,]J 2TC/N, 4y*|dy? + /[T C/N,] (3.3-23)

Again, the Nakagami-m PDF can be used to find the average phase error variance as

follows

o = [og (An ) fz, (Av )dAy
0

(3.3-24)
_ E,, . 1 5 1 E 1 3 radians
~C/N, [E{lz,vz o, ]J}+ 2T C/N, E{ZNZ 4y +ylTC/n, ]]H’ I
where
E{rﬁ‘ 1 -}:T— l "fz (AN).dAN=X1, and
A +yiren, || 3 lay? +ylre/n, 1”4
(3.3-25)

! L
Axlan? +YITC/N, ]JJAN

(Ay)dAy =X,

© =y §

S
422 +ylre/n, ]|

1 The simulation results are represented by the small circles in Figure 3.3-2.
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If we let Iy = Ay, the first integral becomes

i 1
| e R

3.3-26
JI ") exp(=mly) d ( )
Ly +ye/n, )"
From a table of integrals (Gradshteyn [37], Equation 3.383-10), we have
T2 explpx) _ aye
J.de = ﬂ CXp(ﬂ,U)F(V)F(I -V, ,B[t) (3.3-27)
0

where |arg(,3)|<7r, Re(1)>0, Re(v)>02 and T(a,b)= |exp(~#)*°.dt is the incomplete

@‘—.3

gamma function. X; then becomes
X, =m" [T C/N, )" .explm/[T C/N, )T ~m,m/[T C/N,]) (3.3-28)

and X, becomes

Xy = %(1/ [T C/N,IV" 2. explm/[T C/N, )@ ~m,m/[T C/N,)) (3.3-29)

Substituting these two expressions back into Equation (3.3-24) gives

0'£T:B m" exp(m/[T C/N, ])[F( mllTC/N, D+ (Z—m,m/[TC/NoD] (3.3-30)

C/N,(rc/n, ) 2(m—1)

Equation (3.3-30) has been used to evaluate the phase error variance as a function of S, for
C/N, =44 dBHz and C/N, =30 dBHz. This is shown in Figure 3.3-3 along with the results
of a series of simulations based on an AGC with k=10 (the ideal AGC curves from Figure
3.3-1 are also included for comparison). The simulations show quite good agreement with
the theory when §, is less than about 0.9, but tend to produce much smaller values when
§4 is very large. This is probably the result of a failure to account for the non-linear
behaviour of the tracking loop in Equation (3.3-30). It was also observed in simulations
that for large values of S, cycle slips would only occur when the amplitude scintillation

rate was significantly reduced. This is because the probability of a cycle slip depends not

2For both X| and X, these conditions are met for all values of m.
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only on the fade depth, but also on the fade duration (see Section 3.5). Consequently,
when the amplitude scintillation rate is reduced, the fade durations increase and the
probability of a cycle slip increases. This suggests that loss-of-lock may only occur when
the amplitude scintillation rate is quite small, even when the strength of scintillation

activity is very large.
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Figure 3.3-3: Phase error variance as a function of S, for a first order 1.Q Costas loop with a fast
AGC (k=10). Parameter values are T = 20ms, B,= 5Hz, C/N, = 44 dBHz (left panel), and

C/N, = 30 dBHz (right panel). The circles denote simulation results.

Case 3: Slow AGC

For a very slow (or non-existent) AGC, the AGC gain factor is a constant. The phase error

variance is then (from Equations (3.3-13) and (3.3-16))

. 1 I (3.3-31)
0% (i) C/N, [1+1/[TC/No]]+2TC/NoZNz[l“/[TC/Noﬂ

and the average variance is given by

Oor = IGﬁT (An)Say (Ay)dAy
0

(3.3-32)

= B, [ I + ! «| radians®
/N, | 1+Ir /N areyn, i+ ylre/v, I - 5.2)

Variance values obtained from Equation (3.3-32) are plotted in Figure 3.3-4 for

C/N, =44 dBHz and C/N, =30 dBHz (the ideal AGC curves from Figure 3.3-1 have again

been included for comparison). These plots suggest that in the absence of an input phase

process, the phase error variance is only affected by amplitude scintillations when §, is
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very close to 1. The simulations results, which have also been included in Figure 3.3-4,

confirm this result.
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Figure 3.3-4: Phase error variance as a function of S, for a first order 1.Q Costas loop with a slow
AGC. Parameter values are T = 20ms, B,= 5Hz, C[N, = 44 dBHz (left panel), and C/N, = 30

dBHz (right panel). The circles denote simulation results.

Although these results appear to suggest that a slow AGC is the best choice to overcome
the effects of amplitude scintillations (compare Figure 3.3-3 with Figure 3.3-4), as will be
shown in the next section, a slow AGC will also significantly increase the tracking errors
associated with phase scintillations and dynamics. Consequently, in an overall system
sense, a slow AGC may not necessarily perform any better than a fast AGC (a similar
argument can be used when comparing non-ideal AGC models with the ideal AGC

model).

It is clear from Equation (3.3-13) that when Ay =0 (ie. in the absence of a signal), the
phase error variance becomes infinite for all three AGC models. This occurs because a first

order tracking loop becomes an integrator for the white noise process n, () o, /g when

!
the amplitude is zero (ie. the phase error will be given by ¢, ()= fnd () o, /g.dt (from

Figure 3.1-3 with 4=0)). Consequently, ¢, () will become a Random Walk process (non-

stationary) with a mean of zero and a variance that is proportional to the time f (see for
example Van Trees [96]). Therefore, on occasions when the amplitude approaches zero

(this occurs more often when S, is very large), the phase error variance will increase with
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time and without bound until loss-of-lock occurs. However, if the amplitude recovers
before the loop reaches the point of losing lock, the feedback mechanism in the loop will
be restored and the phase error variance will return to much lower levels. Clearly then, the
duration of the deep amplitude fades will strongly influence both the phase error variance
and the probability of a cycle slip. Consequently, for large values of Sy, very slow
amplitude scintillations are likely to produce a much larger average variance than faster
scintillations, even when the bandwidths of the two scintillations are much less than the
loop bandwidth. For this reason, the variance corresponding to S, =1 was found to be
highly dependent on the amplitude scintillation rate. The relationship between the
duration of a deep amplitude fade and the probability of a cycle slip will be examined in

more detail in Section 3.5 using a simple rectangular model for the fade profile.

3.3.2.2. Amplitude and phase scintillations

From Equation (3.3-8), the phase scintillation component of the phase error variance is

given by

o3, (4)= T|1 ~a(r, 4] s, (N (3.3-33)

T . ’ ~ .]277(‘
here S, (f)=——55 E A-1), —EVA)E i
WRELE D¢, v) (foz +f2)p/2 (Favation @1D), and 120 (f A) j27§f+(AI%//gN )F(f)

(Equation (3.3-5)). Consequently, the open loop transfer function of the 1.Q Costas loop,
F(f), is scaled by a factor a = Z]%,/gN . For an ideal AGC (ie. gy = 4y = a=1), G;&p (Z)
ceases to be a function of the signal amplitude and the effects of amplitude and phase
scintillations can be treated separately (ie. the results presented in Section 3.2 will apply
without modification). For a non-ideal AGC (@ #1), both the loop bandwidth and the
damping factor will be influenced by the amplitude. From Table 3.1-2, it is clear that for a
first order loop, both the loop natural frequency, ®,, and the loop bandwidth, B,, will be

scaled by a factor o. For a second order loop, @, and the damping factor, ¢, will both be

scaled by a factor Jo, while the bandwidth will become equal to %—[a{,’ +—1—]

45
Consequently, if & is reduced by amplitude fading?, both the bandwidth and damping

3 For both of the non-ideal AGC models, a reduction in 4 will cause a reduction in c.
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factors of the two loops will be reduced. This effect will be far more pronounced for a slow

AGC for which ¢ can become very small during periods of deep fading.

For a second order loop with a damping factor of 1/ V2, Equation (3.3-33) reduces to

s 4
~ T
o} ()= | / df (3.3-34)
9 ) /2
T k- 2t e r?)
This is plotted in Figure 3.3-5 as a function of the fading intensity, 2010g10(ZN ), for both

the fast and slow AGC models. Also shown are a pair of horizontal dotted lines which

represent the linear model tracking threshold given by Equation (3.2-9).
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Figure 3.3-5: G«ip (Z) as a function of the fading intensity for a first order 1.Q Costas loop with a

fast AGC (left panel) and a slow AGC (right panel). Parameter values are T = 20ms, B,= 5Hz,
C/N, = 44 dBHz (lower curve), C/N,= 30 dBHz (upper curve), T = —25 dBradians2/Hz,
p=2.5, f,=0Hz.

It is clear from this figure that when the AGC is unable to track the signal amplitude (the
right panel), the phase errors produced by phase scintillations become very large.
Essentially, the deep fades associated with large values of S, cause the instantaneous
bandwidth of the tracking loop to become narrow, resulting in large phase tracking errors.
A similar effect occurs for the fast AGC model when C/N, is small (upper curve in the

left panel). Note that the expected value of Equation (3.3-34) could have been found by

averaging 0';@ (Z) using the Nakagami-m PDF (ie. 6;@ = I 0'5@ (A) S (A)dA). However,
0
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as o—'gq) provides no information about carrier phase range errors and very little

information about the probability of losing lock, this was not done.

The results given in Figure 3.3-5 are based on the assumption that the amplitude and
phase are independent of one another. In particular, they assume that the rate of change of
phase (embodied in the parameter T) is independent of the amplitude. If this assumption
is invalid, and the rate of change of phase tends to increase as the amplitude decreases,

then the actual variance will be larger than is predicted by Equation (3.3-33) (ie. Equation

oo

(3.3-33) may take on the form oﬁq) (Z)= J.|1—H '(f ,Z]Z S, (f,Z)df where

—00

S¢p (f,Z)= T(Z) (f,,z + 12 )—p/Z). An analysis of simulated scintillation data based on the

model given in Appendix A suggests that the rate of change of phase is highly correlated
with the fade depth. However, as this model is based on a greatly simplified view of the
real world, these results should be treated with some caution. As yet, there have been no

equivalent studies on real scintillation data to test the validity of this observation [33].

The phase range errors produced by phase scintillations, ¢ ;p (see Equation (3.2-19)), will

be affected in a similar way by amplitude scintillations. As a function of the signal

amplitude, the variance of the phase range errors is given by

o} (4)= IJH(}’ al's,, (1dr (3.3-35)

and the average variance is

2 =i
Ggp - ! %, (An)Sz, (Ax)dAy (3.3-36)

where f~ (Ay) is the Nakagami-m PDF. As discussed at the beginning of Section 3.2.3,
Ay g g g

the variance of the phase range errors tends to be affected more by the outer scale size

parameter, f,, and less by the loop bandwidth. However, if deep fading results in very

narrow loop bandwidth’s, this situation may change, depending on the value of f,. For a

second order loop with a damping factor of 1/ V2, Equation (3.3-35) reduces to
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201, /Y + 1 T " (3.3-37)

J(f 12 faf +2(f, 1 (ff+f2)”/2'd

The average variance for a second order loop, O'gp , is plotted in Figure 3.3-6 for both the

slow and fast AGC models (based on Equation’s (3.3-36) and (3.3-37)). It is clear from this
figure that the effects of amplitude scintillations on the phase range errors resulting from

phase scintillations is quite small, even for the slow AGC model and for small values of

C/N, .
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Figure 3.3-6: ¢ ;p as a function of S, for a first order 1.Q Costas loop with a fast AGC (left panel)

and a very slow AGC (right panel). Parameter values are T = 20ms, B,= 5Hz, C/N, = 44 dBHz
(lower curves), C[N, = 30 dBHz (upper curves), T = -25 dBradians?/Hz, p =2.5, f, = 0.05 Hz.

3.3.2.3. Amplitude scintillations and dynamics

The effects of a changing loop bandwidth are also observed when the loop is subject to
dynamics, particularly when the order of the dynamicst exceeds the order of the tracking
loop resulting in errors that are not zero-mean. Again, at times when the signal amplitude
is heavily attenuated by scintillations, the instantaneous loop bandwidth will be small and
the loop will become unresponsive to dynamics. If it is assumed that the bandwidth of the
amplitude scintillations is narrow enough for the phase errors to settle at their steady state
values, then using Table E.1 (Appendix E) it is possible to determine the steady state error
as a function of the amplitude. For a second order loop in the presence of a constant

acceleration, the steady state tracking error is given by (from Table E.1)

4 1st order: Phase step, 2nd Order: Constant velocity, 3rd Order: Constant acceleration.
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27r*a0

¢eSS=T e radians (3.3-38)

n

where a, is the acceleration in m/s2. Under amplitude scintillation conditions, the loop
natural frequency becomes a function of the signal amplitude. For a second order loop this

is given by (based on Equation (3.3-12))

wn (ZN )= ‘\/a-wn
=[ 4 (3.3-39)

N
VEN
where @, is the nominal loop natural frequency. The steady state phase error is thus
Doss (ZN )= e *“—0(5;’;—] radians (3.3-40)

Ao | A

An equivalent expression for a first order loop in the presence of a constant velocity, v, is

~ 2t v, | gn .
Ay J=——*—=| == dia 3.3-41
Bess (A ) 7B, (Af,} radians ( )

Consequently, the steady state errors for the first and second order loops are scaled by the
same factor, 1/a. The biases represented by Equation’s (3.3-40) and (3.3-41) affect the
tracking thresholds for the phase error variance. From Equation (C-3) (Appendix C), a new

tracking threshold can be obtained based on the steady state error, viz

(ZN)=1[£ — P (Ay )]2 radians? (3.3-42)

2
7o 9l 4

Th
Therefore, in the presence of dynamics, amplitude fading may result in both an increase in

G£€ and a decrease in the threshold, 0'5‘6 |Th. Together, these two effects will result in an

increase in the probability of losing lock.

3.3.2.4. Additional comments

For an ideal AGC, or for a fast AGC for which C/N, islarge and S, is less than 1/ V2, the
effects of amplitude scintillations are decoupled from the loop transfer function and from
the effects of phase scintillations. As the AGC normalised noise term, n;, is zero-mean

and uncorrelated between successive T second epochs, the phase error variance resulting
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from thermal noise is given by (from Equation (D-14))

04y =2TB,07,

where (from Equation (D-28))

o2 = 1 E{——‘z' }+——1 E {—1 }
n
4 2TC/N, 812\/ 2T C/N, gfv

If we assume that gy = A% and Ay isN akagami-m distributed, this becomes

SCRN S 1 B B B
2TC/N,| |4y| 2TC/N, |4y

o[ 1
= +
2TC/N,|1-8.2 2TC/N,(1-3S,2 +2S44)]

The phase error variance is thus

o.2 . Bn 1 + ; 1
T /N, |[1-52) 2rc/n, [1-35,2 +25,)

which is the same as Equation (3.3-22). However, this result has been obtained without
assuming that the bandwidth of the amplitude scintillations is narrow in relation to the
loop noise bandwidth. It only requires that the amplitude bandwidth be narrower than the

pre-detection filter bandwidth, 1/T, that C/N, is relatively large, and that S, is less than

1/ V2 . As this result is based on Equation (D-14), it is also independent of the loop order.

3.3.3. Phase errors from the non-linear model

In the previous section, Equation (3.3-8) was used to determine an average phase error
variance based on the linear loop model. In this section, the Tikhonov PDF for the reduced
phase error (Equation (3.3-1)) will be used to determine an equivalent non-linear model

variance.

Consider the following conditional form of the Tikhonov PDF

exp(pe(Z)CONS(Z(p))’ I |<7z:

[ 3.3-43
1, (pe(d) (5.5-49

Jo (‘Plz)= >
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where pe(Z)zﬁ) and 0'58 (Z) is given by Equation (3.3-8)5. The conditional
Pe

Tikhonov PDF can then be used to obtain an expression for the tracking error variance that

is equivalent to Equation (3.3-8), but based on a non-linear model of the tracking loop, viz

2
o3(4)= njq’zﬁs (p|4)do (3.3-44)

/2
Although this non-linear approach provides a more accurate variance measure than the
linear model, it does have a number of limitations. These are; i) the Tikhonov PDF strictly
only applies to a first order phase locked loop (although Lindsey and Charles [59] have
verified experimentally that the PDF of a second order loop is very similar), ii) it does not
take into account the effects of satellite and receiver dynamics, and iii) the approximation
of setting p, equal to the reciprocal of the linear model variance (Equation (3.3-2)) is only
accurate for reasonably high SNR’s (Weber [100], Lindsey and Charles [59] and Viterbi
[97]). This last restriction implies that the effects of phase scintillations can only be
included if S, is assumed to be relatively small. However, as shown by Van Trees [96], if
the loop is first order and the spectral index is equal to 2, the phase noise associated with
scintillations can be considered to be equivalent to additional white thermal noise at the

input. This is illustrated in Figure 3.3-7 where the input phase process, ¢, (), associated

with phase scintillations has been translated back through the VCO and loop filter to
1 d9,(0)

produce a term y = ——— at the discriminator output.
Oy

n,; gaincontrol Y
+

- 0542 sin(2¢£)41é—>é—+>é-9—>@—

1/s |=

Figure 3.3-7: An equivalent non-linear model of a first order Costas phase locked loop with phase

scintillations translated back through the VCO and loop filter to the discriminator output.

5 This expression will also be used in Section 6 to determine the bit error rate in the navigation data
in the presence of scintillations.
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If it is assumed that S¢p (f)=Tf2 (ie. f, is assumed to be small and p=2), the power

spectral density of y is given by

5,()=27 5, (1)

Dy

_lr)T
Oy

(3.3-45)

where (27) T/ wy is a constant. Consequently, for a first order loop with p=2, y is white

and can be treated as if it were produced by additive white thermal noise. Therefore,
under these conditions it is quite reasonable to use the non-linear model to describe the

phase errors, even when S, is quite large.

An average non-linear model variance can be found by applying the Nakagami-m PDF,

Iy (A), to the variance given by Equation (3.3-44). Thus

0§ = [oj(a)f5(a)da (3.3-46)
0

Theoretically, all of the linear model analysis given earlier (apart from the Doppler
analysis) could be repeated using the equations given above in order to obtain equivalent
non-linear model results. If only amplitude scintillations and thermal noise are considered,

Equation (3.3-46) represents both the average tracking error variance and the average

phase range variance from the non-linear model (ie. 65 becomes the non-linear equivalent

of 02 6). In Figure 3.3-8, 02 is compared with both ¢2. and the results of simulations
o1 gu 9 p o7

for the fast AGC model (from Figure 3.3-3). It is clear from this figure that the two models

give very similar results until S, is quite large, at which point the non-linear model

variance begins to fall below the linear model variance.

Notice that because the Tikhonov PDF approaches a uniform distribution when the linear

model phase error variance is very large (ie. f3 ((p|Z)= x, |(0| S%), the largest possible

¢ This is used in Section 3.6 to account for the effects of amplitude scintillations and thermal noise
on carrier phase DGPS systems.
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/2
value of o3 that can be produced by this model is J(pz /ﬂ.d(p ~ 0.82 radians® (~7.5 cm?
-2

at GPS L1). Consequently, even for very low values of C/N, and for S4=1, 03 will never

exceed this level (indeed, loss-of-lock is likely to occur well before this point).
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Figure 3.3-8: 6§ (lower curves) and G,fT (upper curves) as a function of S, for a first order 1.Q

Costas loop with a fast AGC. Parameter values are T = 20ms, B,= 5Hz, C/N, = 44 dBHz (left

panel), and C/N, = 30 dBHz (right panel). The circles denote simulation results.

3.3.4. The effects of pre-detection filtering on phase errors

In Equation (3.1-2), the amplitude following the pre-detection filters is given by

A=— | Alu)du (3.3-47)

T

—

1
T
t

where A is the unfiltered signal amplitude. In general, it has been assumed that 4 is
Nakagami-m distributed and approximately equal to A. This is based on the observation

that the bandwidth of the pre-detection filters, 1/T, is usually much greater than the

bandwidth of the amplitude scintillations, which is typically less than a few hertz (see

Appendix G). In this section, the validity of this assumption will be examined.

The power spectral density of the filtered signal amplitude, 4, is given by

S:()=|6(F PS4 (f) (3.3-48)
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where G(f)=sinc(fT)exp(~ jafT) is the transfer function of the pre-detection filters, and
S4(f) is the power spectral density of the unfiltered signal amplitude. In Figure 3.3-9,
both S (/) and Sy (f) are given for f,=1Hz and p=2.5 (S, (f)=1 is assumed for f < f,).
It is clear from this figure that the impact of the pre-detection filters on amplitude
scintillations is insignificant for fluctuation frequencies less than about 10Hz.
Consequently, for typical values of f, (of the order of 1Hz or less), the impact of the pre-
detection filters on the total amplitude variance is likely to be quite small (ie. very little
scintillation energy lies above 10Hz for typical values of p and £, ). However, this may not
be true under high velocity conditions when f, may be quite large on certain satellite-

receiver links.

1 1
=}
205+ 1
&
0 I} i i i}
=5 0 5 10 15 20
Ao : J
7%
AL
8 20k l
3 -20
e :
-0 : _ |
=5 0 5 10 15 20
Frequency (dBHz)

Figure 3.3-9: The impact of a 20ms pre-detection filter on the power spectral density of amplitude
scintillations. The upper panel represents the magnitude of the filter transfer function. The lower

panel represents the power spectral densities of amplitude for p=2.5 and f, =1Hz (in the lower

panel, the upper and lower curves represents the unfiltered and filtered amplitudes respectively).

Unfortunately, the power spectral density does not provide a complete picture of the
effects of pre-detection filtering on the amplitude. Using simulated scintillation data
obtained from the model described in Appendix A, it appears that the very deep fades that
cause the greatest loop stress are often quite short in duration. Consequently, the pre-
detection filters are likely to have a greater impact on deep amplitude fades than on
shallower fades. In Figure 3.3-10, a scatter plot of the fade depth after filtering versus the

fade depth before filtering is given for a 40s segment of simulated scintillation data for
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which f,=1Hz, p=25, and S;=0.75. Also given are equivalent average plots
for f, =0.5Hz, 1Hz and 2Hz based on approximately 20min of scintillation data. It is clear
from these plots that on average, the pre-detection filters significantly attenuate the very
deep fades. It is also clear that for larger values of f, (and so shorter average fade
durations), the effects of filtering become even more apparent. Indeed, it appears that the
average fade depth after filtering tends to plateau at different fade depths depending on
the value of f,.Consequently, for very large values of f, it is possible that pre-detection
filtering on its own may significantly reduce the effects of amplitude scintillations within
the tracking loop. However, as f, is usually much less than about 1Hz for a stationary

receiver (often considerably so — see Appendix G), this effect can probably be ignored for

stationary receivers.
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Figure 3.3-10: Scatter plot of the fade depth after filtering versus the fade depth before filtering fora
40s segment of simulated scintillation data with f,=1Hz, p=25, and S4~0.75 (left panel).
Equivalent average plots for f.=0.5Hz, \Hz and 2Hzbased on approximately 20min of

simulated scintillation data (right panel). Fade depths are shown relative to a normalised quiescent
signal level of 0dBW.

3.3.5. Summary

In this section, the effects of amplitude scintillations on a Costas carrier tracking loop was
examined. In order to approach this problem using analytical techniques, it was decided to
assume that the discriminator algorithm was 1.Q, normalised by a post-detection AGC. As

other discriminator types’ are not as amenable to direct analysis as the 1.Q discriminator, a

7 For example, the arctangent or decision-directed discriminators.
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simulation approach would be required in order to assess their susceptibilities. This was

considered to be beyond the scope of this thesis.

In Section 3.3.2, expressions were derived for the variance of the thermal noise errors for
an 1.Q Costas phase locked loop in the presence of amplitude scintillations. Three different
AGC cases were considered; (i) an ideal AGC that provided a perfect estimate of the GPS
signal strength, (ii) a fast AGC with a time constant much shorter than the duration o‘f a
typical amplitude fade, and (iii) a very slow AGC. It was shown that the effects of
amplitude scintillations on the phase error variance is negligible, unless the amplitude
scintillation index, S,, is very large. It was also shown that for non-ideal AGC'’s, the
bandwidth of the tracking loop may fluctuate with the amplitude. If phase scintillations
and Doppler errors are also present, this could result in a significant increase in carrier
tracking errors (ie. phase scintillation errors may become larger during deep fades as a
result of a momentary reduction in the loop bandwidth). Finally, it was observed that
thermal noise errors, and therefore amplitude scintillation effects, increase with the loop

bandwidth. This is the reverse of the situation observed for phase scintillations.

The analysis carried out in Section 3.3.2 was based on a linearised model of the Costas
carrier loop. In Section 3.3.3, the thermal noise variance was re-calculated using the
Tikhonov PDF, which is based on a non-linear model of a 1st order Costas loop. It was
found that significant variations between the linear model (based on a fast AGC) and the
non-linear model only occurred for very large values of §,. However, as shown in the
next section, it is highly likely that loss-of-lock or frequent cycle slips will occur under

these conditions anyway.
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3.4. Carrier loop tracking thresholds

The principal objective of this section is to determine the strength of scintillation activity
required to force the Costas loop to lose lock. However, as discussed in Appendix C, it is
difficult, if not impossible, to precisely define a point at which a phase locked loop will
transition to a state of loss-of-lock!. Usually, a threshold is defined beyond which the
linear model approximations are significantly violated. Although this does not guarantee
that the loop will lose lock, it does suggest that the probability of frequent cycle slips and
perhaps loss of lock will become very high.

In Section 3.3.3, it was shown that the average variance measures for the linear and
non-linear loop models, oﬁ and oﬁe respectively, diverged when S, was very large.

Although this implies that the linear model approximations are being violated, it does not
indicate how frequently this is occurring. For example, a very deep fade for a short
duration may produce the same average linear model variance as a shallower fade for a
longer duration (or a series of shallower fades for shorter durations). Consequently, a
comparison between the average phase error variance measures is not considered to be a

good measure of loss-of-lock.

In this section, the Nakagami-m PDF is used to determine the percentage of time that the
amplitude falls below the tracking threshold for the linear loop model. This is then used as
a basis for deciding whether loss-of-lock is likely to occur in the tracking loop. Inherent in
this approach is the assumption that the bandwidth of the amplitude scintillations is
narrow in relation to the carrier loop bandwidth. This ensures that fade durations below
the tracking threshold are sufficiently long to produce carrier cycle slips and loss-of-lock
(the impact of a reduced fade duration on loop behaviour is discussed in Section 3.5). The
justification for this assumption is that for a power law PSD, the majority of the amplitude
scintillation energy is near the cut-off frequency, f,, which is typically much less than the
loop bandwidth, B, (see Appendix G). Although this condition is likely to be met for a

stationary or slowly moving receiver, it is not guaranteed under high dynamic conditions.

Under such conditions, the effects of amplitude scintillations may be significantly

1 Loss-of-lock is defined as the point at which the VCO frequency drifts away from the IF
frequency and the phase errors (reduced modulo ) become uniformly distributed.
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suppressed on certain links, particularly for narrow bandwidth tracking loops (again, see

Section 3.5 for more details).

From Equation (3.3-8), the variance of the phase tracking error resulting from scintillations

and thermal noise is given by

~ Ay B
03, (A)=0} (4)+o2, (4)
where O',fq; (Z ) represents the contribution from phase scintillations (Equation (3.3-33)) and

oﬁT (Z) represents the contribution from thermal noise (Equation (3.3-11)). By equating

G££ (Z) with the linear model tracking threshold, 0';6 ” (Equation (C-3), Appendix C), a

threshold amplitude, Az, can be obtained below which the tracking loop would be

expected to lose lock, viz

(3.4-1)

0-56 (ZTh ): O-ge Th

Unfortunately, a closed form expression for Ay, is difficult to obtain for the non-ideal

AGC models. However, for the ideal AGC model, O'gq) (Z) ceases to be a function of the

signal amplitude and is given by Equation (3.2-8). Consequently, the threshold variance

for thermal noise only becomes oﬁT |Th =0'£€

N —oﬁq,. By rearranging the standard

expression for the variance of the phase tracking error for an I.Q Costas PLL (Equation
(D-19), Appendix D), the signal amplitude corresponding to this new threshold can be

obtained as follows

A, =AJ i L A (3.4-2)

BT C/N,

205
%, A is the nominal (unperturbed) signal amplitude, and C/N, is the

n

where ff =

nominal carrier to noise density ratio. In Figure 3.4-1, the normalised threshold amplitude,
(4p,[A), is plotted as a function of the spectral strength, T, for both the ideal AGC model
(solid line) and the non-ideal AGC model (dotted line). It is clear from these plots that the
two models return approximately the same value of Ay, /A . It is also apparent that for the
specified loop bandwidth (5Hz), the carrier loop will lose lock when the spectral strength
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exceeds about —11 dBradians2/Hz, even in the absence of amplitude fading.
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Figure 3.4-1: The normalised threshold amplitude, Ap, /A , as a function of the phase scintillation

spectral strength, T, for both the ideal AGC model (dotted line) and the fast AGC model (solid line).

Parameter values are T = 20ms, B,= 5Hz, p = 2.5, f,= 0.05Hz, C/N, = 44 dBHz (left panel),

and C/N, = 30 dBHz (right panel).

Using the Nakagamai-m PDF, the probability that the amplitude will drop below the

threshold 4p, (thus resulting in cycle slips or loss-of-lock) can be found as follows

Ary
P= [ fz(A)dA
0 3 (3.4-3)
m A 22
J' A2m—1e—m.A (4 >.dA

0

L
T(m){4%)"
In Figure 3.4-2, the probability of losing carrier lock is plotted as a function of S, and B,

for C/N, = 41.5 dBHz under the assumption that phase scintillations are not present and

the AGC is ideal (ie. 0';@ =0 is assumed). This figure clearly shows that the probability of

losing lock in the presence of amplitude scintillations increases as the loop bandwidth
increases. However, even for a very wide bandwidth receiver at S,=1, this probability is
still quite small for the specified nominal signal level. If the duration of the amplitude
fading is relatively short, this may only result in an occasional cycle slip rather than a
complete loss of signal lock. Indeed, for an inertially aided receiver for which the loop

bandwidth is likely to be very narrow (less than a few Hertz), the effects of amplitude
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scintillations may be negligible (particularly since an inertial aiding unit will usually assist

the receiver to recover lock once the fading has passed).
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Figure 3.4-2: The probability of losing lock for a 2n order Costas PLL as a function of S4 and B,,.

Parameter values are C/N, = 41.5 dBHz and oﬁep =,

Although, Equation (3.4-3) does not provide a clearly defined threshold for S, above
which loss of lock will occur, based on simulations it has been found that a threshold of
1% is quite a good choice, particularly for 2nd and 3rd order loops (for 1st order loops, the
frequency of cycle slips merely increases with S, with no clearly defined threshold).
Using this somewhat conservative threshold, it is still clear that amplitude scintillations
alone are unlikely to significantly affect GPS receivers, unless the activity is very severe
and the bandwidth of the tracking loop is quite wide. However, as will be shown later,
this does not necessarily apply to codeless and semi-codeless receivers for which the SNR

is significantly reduced.

In Figure 3.4-3, the tolerance of a receiver to scintillations is plotted as a function of T and
S, using the approach outlined above. It is clear from this plot that as the loop bandwidth
increases the tolerance to phase scintillation increases while the tolerance to amplitude
scintillation decreases. Indeed, using Wiener filter analysis it is possible to find an
optimum loop bandwidth and order that minimises the phase tracking error, and therefore

the probability of losing lock, for any combination of T and S, (See Chapter 8).
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Figure 3.4-3: Tracking threshold as a function of T, S4, and B,. Parameter values are

C/N,=415dBHzand p = 2.5.

Figure 3.4-3 is based on the underlying assumption that the spectral strength of phase
scintillations, T, is independent of the amplitude, A (note that this does not imply that T is

independent of ;). With reference to Section 3.3.2.2, if T can be expressed as a function of

A, then C4ep will become a function of A and the derivation of 4y will become more

complicated.

3.4.1. Optimum loop bandwidths

The optimum loop bandwidth for a minimum probability of losing lock is found by

minimising Equation (3.4-3). As the amplitude PDF must always be positive, this can be

achieved by minimising the threshold amplitude, Ag,, from Equation (3.4-2). The first

derivative of Ay, with respect to B, is given by

Hy, _ A [ leiBl] o8 (3.4-4)
9B, 2,BTC/N, -+ /1B ] 241+B B |9By

where Bis a function of B, . For the ideal AGC model, f can be expressed in the following

form (from Equations (3.4-2) and (3.2-8))
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(3.4-5)

p-I
T 2n 0)
where o = _ and & =—% is a constant for a given loop order. The
ksin([p—l]n'/Zk)( 3 J =3 & P

n

9B

n

only real, non-trivial roots to Equation (3.4-4) are found by solving

=0 to give

1
(p-1)
| paT
n Iup: - 2
Pe

(3.4-6)

Th

Equation (3.4-6) represents the bandwidth that minimises A4y,, and therefore the

probability of losing lock, for a given phase scintillation spectral strength, T. In Figure
3.4-4, the optimum bandwidth is plotted as a function of T for a phase scintillation spectral

index, p, of 2.5. The corresponding phase error variance due to phase scintillations is given

2
O-¢€ Th

by 0',;@ = which is very close to the threshold variance, G;e o particularly for p

close to unity. This implies that the optimisation process attempts to keep the bandwidth

as small as possible (and thus the phase scintillation error as large as possible) in order to

minimise Ay, .

oo

N ~J

W

(8]
T

Optimum Loop Bandwidth, Bn (Hz)
(S B

=

do
o=

|

L
L

=25 =20
Spectral Strength, T (dBradiansz)

Figure 3.4-4: Threshold loop noise bandwidth as a function of the phase scintillation spectral

strength, T, for the three loop orders (o: 1st order, O: 214 order, V: 3rd order loops).
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3.4.2. WBMOD predictions of T and S4

By combining Equations (2.1-6) (the weak scatter formula for §4) and (2.1-7) (the strong
scatter approximation), it is possible to obtain a relatively simple expression which links T

and S, through the various geometrical factors discussed in Section 2.1.3, viz

2
T=_1n!l—S4 ) (3.4-7)

4

(r-1

LF
G ve(P‘l)

where ¥ is a factor that depends mainly on the satellite-receiver geometry and

the orientation and elongation of the ionospheric irregularities. The logarithm of Equation

(3.4-7) is thus
1
T,z =10logo| In > ||~ YaB (3.4-8)
1 . S4

Consequently, for a given geometry factor, ¥,5, the locus of possible values of T and §; is

a single line (at least for the scintillation model discussed in Section 2.1). From WBMOD, it
appears that for a stationary GPS receiver, ¥,z is usually greater than about 20dB in
equatorial regions above a 5° elevation angle. Therefore, T and S, values will normally lie
below the line obtained from Equation (3.4-8) by letting ¥,5=20dB. This is illustrated in
Figure 3.4-5 where the line obtained from Equation (3.4-8) with ¥, =20dB is plotted along
with a series of dots representing the T and S, values for each visible satellite at 64

locations near to the equatorial anomaly. Also shown in Figure 3.4-5 are the threshold

curves from Figure 3.4-3.

The T and S, values in this figure were obtained from WBMOD under the following
conditions, which represents strong scintillation activity:

e An area of 60 x 60 degrees centred on 100N and 1200E.

e A sunspot number of 150 (ie. high solar activity).

e A magnetic activity index, K, of 5.6.

¢ The September Equinox.

e 12:00 hrs GMT (~20:00 hrs local time at 1200E).

e 2 hours duration from 12:00 hours GMT.

e A 5° elevation mask angle (elevation angle cutoff).

e The 90th percentile of scintillation activity.
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Very similar results were obtained at other times and at other equatorial locations.
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Figure 3.4-5: T and S, values obtained from WBMOD for a period of high solar activity plotted
over the tracking thresholds from Figure 3.4-3. C/N, = 41.5 dBHz is assumed.

This result suggests that a stationary receiver is probably more likely to lose lock from
amplitude scintillations than from phase scintillations, except when the bandwidth is very
narrow (ie. for medium to wide bandwidths, it is unlikely that the threshold will be
exceeded unless S, is very large). However, an increase in the effective scan velocity, v,,
perhaps due to receiver motion, will reduce yand force the locus in Figure 3.4-5 to move
upwards. As a result, phase scintillations will have more of an effect on loop performance,
as will the choice of the loop bandwidth. However, the optimum bandwidth for minimum
tracking error will still be quite different for each satellite link as a result of the different

geometries and signal levels on each link.

3.4.3. Velocity and elevation angle effects

3.4.3.1. Elevation angle effects

From the equations given in Section 2.1.3, it appears likely that the geometry factors for T

and S, will be larger at low elevation angles as a result of a larger ionospheric pierce point
velocity due to satellite motion, v, and a larger Fresnel zone radius, zr, respectively. This
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is demonstrated in Figure 3.4-6 which was obtained using WBMOD data under the same
conditions as Figure 3.4-5.

% 10 20 30 40 50 60 70 80 90
Elevation angle (degrees)
Figure 3.4-6: The mean and RMS of the geometry factors for T (upper panel) and S,,, (lower

panel) obtained from WBMOD for a period of high solar activity.

The two geometry factors used in Figure 3.4-6 were obtained by dividing T (Equation
(2.1-2)) and S, obtained from the weak scintillation model (Equation (2.1-6)) by the height

integrated irregularity strength parameter, C;L , viz

% =K, *G v sec(6)
k (3.4-9)

S 2
W _ =K, *F zF(p_l)sec(O)
C.L (3.4-10)

where, from Equation (2.1-7), S4w2 =—ln(1—Sf) and K; and K; are factors that are

independent of the geometry.

For the phase geometry factor, the principal contribution to the elevation angle
dependence originates from the effective scan velocity, v,, and from the sec(6) term. As

the elevation angle decreases, the ionospheric pierce point velocity due to satellite motion,
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vy, increases which in general leads to an increase in v, (see Figure 3.4-7) 2. A more
thorough discussion of the effects of velocity on v, is given in the next section and in

Appendix F.
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Figure 3.4-7: Effective scan velocity, v,, as a function of the satellite elevation angle for a
stationary receiver. The elevation angle dependence is largely due to satellite motion and the

individual curves represent different satellite trajectories. p = 2.5.

For the amplitude geometry factor, the Fresnel zone radius, zy, and the sec(f) terms

provide the greatest contribution to the elevation angle dependence. zy can be

approximated by zj4fsec(6) where zp =ﬁ,7 is the Fresnel zone radius of a vertically
propagating plane wave. Therefore, the majority of the elevation angle dependence for
S4w can be accounted for through a single sec(e)("’“)/2 term. For highly elongated

irregularities, the Fresnel filter factor, F, tends to be mainly a function of p, and therefore

shows very little dependence on the elevation angle [78].

It is also anticipated that at low elevation angles, the carrier to noise density ratio of the
GPS signal will be reduced. This is a result of a combination of additional atmospheric

absorption, a greater distance to the satellites, and satellite and receiver antenna gain

2 The actual effect on v, will depend on the vector sum of v, and the drift velocity, v;, and on the
orientation and elongation of the irregularities. v, can be quite small if the vector sum of v, and

v, is either very small or approximately aligned to the principal irregularity axis [76].
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pattern effects. From Equation (3.4-2), it is clear that a reduction in C/N, will lead to an

increase in the threshold amplitude, Ay, which in turn will increase the probability of

losing lock. Consequently, the threshold curves of Figure 3.4-5 will be shifted to the left,

and the loop will become even more susceptible to the effects of amplitude scintillations.

Consequently, through a combination of a reduced C/N, and larger geometry factors,
satellite links that penetrate the peak of the equatorial anomaly at low elevation angles are
likely to be significantly more stressed than high elevation angle links. Notice that this is
not guaranteed to occur on all links as there are large variations in the geometry factors

between the individual links (ie. the RMS values of the geometry factors for both T and S,

are also large - see Figure 3.4-6).

3.4.3.2. Satellite and receiver velocity

In the presence of receiver dynamics, two effects will alter a receiver’s tolerance to
scintillations. These are:
(i) the additional stresses imposed directly upon the tracking loops by dynamics, and
(ii) the change in the scintillation rate caused by motion of the receiver through the

interference patterns.

The stresses introduced into the carrier tracking loop by dynamics may be accounted for if
the characteristics of the dynamics are known. If a steady state phase error, @5, is

produced by a constant dynamic process, then a modified tracking threshold of the form

2
Oy

2
" =[%—¢%:| radians? can be obtained from Equations (C-3) and (E-7) and used
in place of Equation (3.4-1). The effects of transient errors may be accounted for by adding
an extra term to the tracking error variance to account for the Total Transient Distortion, &7

(Equation (E-11)). This results in another modified tracking threshold of the form

2

2
e | s = [ 7r ] —g# . If amplitude scintillations influence the transfer function of a tracking

12

loop, both the steady state and transient errors produced by dynamics will change.

Indeed, during deep fades, the instantaneous bandwidth of the tracking loop may be

reduced, resulting in an increase in both ¢.¢s and £# during those times.

The second effect of dynamics is related more directly to scintillations and can be

accounted for by adjusting the spectral strength parameter, T, and the Fresnel cutoff
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frequency, f,. As shown in Equation (2.1-2), T can be related to the effective scan velocity,

v, , through the expression T = BvZ™, where B is a constant for a given set of ionospheric
conditions and satellite-receiver geometry. The effective scan velocity is a function of the
ionospheric drift velocity, v;, the ionospheric pierce point velocity, v; (consisting of the
satellite component, v;, and the receiver component, v,), and the geometry and
orientation of the irregularities. At equatorial latitudes, v, is typically of the order of 50 to
200 m/s in an Easterly direction and is accounted for in WBMOD through a drift velocity
model. For an ionospheric height of 350km, v, is typically between about 60 and 500 m/s
depending on the elevation and azimuth angles of the GPS satellites (Appendix F). In
Figure 3.4-8, v, is plotted as a function of the elevation angle over a 24-hour period for a
receiver located at 100N and 1200E. It is clear from this figure that v, shows a strong
dependence on the satellite elevation angle, being much larger at low elevation angles. It is

also apparent that despite the effects of Earth’s rotation, the East-West component of v; is
usually in an Easterly direction for all satellites (ie. v, is usually positive). Consequently,
the East-West component of v, is in the same direction as the drift velocity, v;, which
tends to reduce v, somewhat (ie. the ionospheric pierce point scans across the plasma

density contours at a reduced rate as a result of satellite motion).

50 60 70 80 90
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Figure 3.4-8: lonospheric pierce point velocity due to satellite motion (upper panel), North velocity

component, v, (middle panel) and East velocity component, v,,, (lower panel) for a GPS receiver

located at 100N and 1200E. The ionospheric height is assumed to be 350km. v =vZ + v}z, .
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The pierce point velocity due to receiver motion, v,, is a function of the receiver velocity
and the elevation and azimuth angles of the satellite (Appendix F). In Figure 3.4-9, v, is
plotted as a function of the satellite elevation angle and the direction of motion of the
receiver in relation to the satellite azimuth angle3 (v, is plotted as a percentage of the
receiver velocity, vg). In this figure, it is assumed that the receiver is moving in a
horizontal plane with velocity v and at a height that is small in relation to the mean
ionospheric height (ie. level aircraft flight will meet this requirement). It is clear from this
figure that v, is approximately equal to the receiver velocity, except at moderate to low

elevation angles, and when the receiver motion has a large component that is aligned with
the satellite azimuth angle. Although WBMOD allows only one end of a link to be in
motion (usually the satellite end), it is possible to account for receiver motion by

translating v, to the satellite end and determining an equivalent satellite velocity*.
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Figure 3.4-9: Ionospheric pierce point speed as a percentage of the receiver speed and as a function
of the satellite elevation angle and the direction of motion. The ionospheric height is assumed to be

350km.

3 00 represents motion of the receiver towards the satellite.
41f v, is the pierce point velocity due to the modified satellite motion, then Vv, =v, +v, where v,

is the unmodified satellite pierce point velocity. This approach is discussed further in Appendix F.
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From the foregoing discussion, it is clear that the speed with which the satellite
propagation path cuts across the plasma density contours is given approximately by

Va - (v, + v,.j , where v;, v, and v, are two-dimensional velocity vectors in a horizontal
plane at the mean ionospheric height. For isotropic irregularities, this result is also the
effective scan velocity, v,. However, as the irregularities are in general highly anisotropic,
the degree of anisotropy and the orientation of the irregularities must all be taken into

account in order to determine v, .

In general, very high receiver velocities are likely to lead to an increase in v, , although not
on all satellite links. On average, this will lead to an increase in the spectral strength, T,
with a consequent increase in the probability of losing lock due to phase scintillations.
With reference to Figure 3.4-5, this effect will be manifested as an upward shift in the
curve that represents the likely combinations of T and §,. If this shift is sufficiently large
(say 10dB or so), it may cause narrow bandwidth receivers to become much more
susceptible to scintillations than wide bandwidth receivers. Although the amplitude
scintillation strength, §,, is not influenced by v,, the Fresnel cutoff frequency, f£.,
increases with v, (Equation (2.1-3)). Consequently, the duration of the deep fading events
that lead to loss of lock in a receiver will be reduced. This will be an advantage for narrow
bandwidth receivers for which the time constant of the tracking loops may exceed the
duration of the deep fading event (see Section 3.5). Although this effect is not accounted
for in the threshold curves of Figure 3.4-5, for very high receiver velocities, it is likely that
loss of lock will mainly occur as a result of phase scintillations (ie. the effects of amplitude

scintillations can be ignored on many of the links).

3.4.4. Summary

Expressions were derived for the probability of losing lock, P, as a function of both the
tracking loop parameters and the scintillation statistics. It was shown that in general,
amplitude and phase scintillation activity must be at a high level before loss of carrier lock
will occur. It was also shown that as the carrier loop bandwidth increases, the
susceptibility to amplitude scintillations increases, but the susceptibility to phase
scintillations decreases. Consequently, for a given set of signal and scintillation conditions,

an optimum bandwidth exists which minimises the probability of losing lock.
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Predictions of the amplitude and phase scintillation indices, S, and T, based on the
scintillation model WBMOD suggest that even during times of severe scintillation activity
(ie. during high solar activity, at equinox and near the equator), the majority of a receiver’s
channels will remain in lock. This is despite a relatively conservative threshold being
chosen for P, and a large percentile for the WBMOD predictions. However, this result
assumes that the receiver is stationary, uses full code correlation tracking loops and is not

subject to any other sources of loop stress.

The relationship between the geometry of the propagation path and the strength of
scintillation activity was investigated. The intention was to determine under what
conditions a satellite-receiver link would be subject to the greatest scintillation stresses,
and therefore when it would be most likely to lose lock. The two geometry factors
examined in this section were the elevation angle of the propagation path and its velocity
through the ionosphere. It was found that in general, for a given level of ionospheric
disturbance (embodied in the parameter CyL ; the height integrated irregularity strength),
both S, and T tended to be larger at low elevation angles. Consequently, propagation
paths that penetrate highly disturbed regions of the ionosphere at low elevation angles
will have the greatest probability of losing lock. It was also found that an increase in the
effective scan velocity of the propagation path through the irregularity layer, v,, will
result in an increase in the phase scintillation index, T, and therefore an increase in the
susceptibility of narrow bandwidth tracking loop to scintillations. v, is a function of
satellite motion, receiver motion, ionospheric drift and the irregularity geometry. The
effects of both satellite and receiver motion on v, were examined and a technique for
incorporating receiver motion into the WBMOD model was discussed. Although the
dependence of v, on the various geometry and velocity factors is quite complex, it can be
said that in general under very high velocity conditions, v, is likely to increase on most

satellite-receiver links which will increase the probability of losing lock, particularly for

narrow bandwidth tracking loops.
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3.5. The impact of fade depth and duration on cycle
slips

The results given in Sections 3.3 and 3.4 do not explicitly take into account the amplitude
scintillation rate. In these sections, it was assumed that if the amplitude scintillation
bandwidth was much less than the carrier loop bandwidth5, the carrier loop would lose
lock once the amplitude had fallen below the tracking threshold, Az,. However, if the
deep fades occur with very short durations, this assumption may become invalid. This
may occur in the presence of high velocity dynamics, particularly if a receiver is aided by
an Inertial Navigation System (INS) and can therefore adopt a very narrow tracking loop
bandwidth. In this section, the relationship between fade depth and duration and the
probability of a cycle slip is investigated for a simple rectangular fade. Although the issue
of loss-of-lock is not dealt with directly in this analysis, it can be assumed that if the
probability of a cycle slip becomes very large, the carrier loop has a much greater chance

of losing lock.

From Holmes [43], the mean time to cycle slip for a 1st order I.Q Costas phase locked loop

is given by

T = pe 12(p,) (3.5-1)

where B, is the loop noise bandwidth, p, = 1/ 40$T is the effective loop SNR (the thermal

noise variance, G%T , is obtained from the linear loop model), and I,,( ) is the modified
Bessel function of the first kind of order zero. Based on simulations ([43] page 199), it has
been found that an approximate mean time to cycle slip for a 2nd order loop can be
obtained from Equation (3.5-1) by increasing GgT by 1dB. Viterbi [97] has shown that the
cycle slipping rate is the inverse of the mean time to cycle slip for a 1st order loop, and
approximately so for a 2nd order loop. As the slipping process is approximately Poisson

distributed ([43], page 95), the probability of slipping in 7 seconds from a state of zero

error is given by

5 A justification for this assumption is given in Appendix G using data obtained from WBMOD for

a stationary receiver at an equatorial location.
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Prg =1- exp(—t/T_")
2B, ] (3.5-2)

=1-exp| ~———2—
p[ 7’ pe1; (p.)

If 7is taken as the duration of the fade, and p, is calculated for a given fade depth and

loop bandwidths, then the probability that one or more cycle slips will occur over the

duration of the fade will be given by this expression.

Equation (3.5-2) implies that for an infinitely deep fade (ie. p, =0), the probability of a
cycle slip is one, irrespective of the fade duration, 7. However, Viterbi’s equation is
modelled on an ideal 1.Q discriminator for which the discriminator noise term, n;,
becomes infinite when p,=0. For a real tracking loop, the characteristics of the
discriminator will tend to override this effect and prevent Pgg from becoming large when
the fade duration is very short. Indeed, for an arctangent discriminator, there is a
minimum fade duration below which the probability of a cycle slip is zero, irrespective of
the fade depth. In the analysis that follows, a correction to Equation (3.5-2) is derived for
the case of an infinitely deep fade. The probability of a cycle slip is then given as a
function of fade depth and duration for two representative loop bandwidths and
compared with the results obtained from simulations. The impact of loop order and

dynamics is also discussed.

For an infinitely deep fade (ie. 4=0), the phase locked loop behaves as if it was an open

loop. With reference to Figure 3.1-2, when A=0 the phase locked loop takes on the

following form

n, —)@-—) /s ¢

Figure 3.5-1: Model of a phase locked loop for zero signal amplitude.

¢ Note C/NolFaded = C/N0|Unfaded — F where F is the fade depth in decibels.
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where n; is the discriminator noise term which is zero-mean but is generally not
Gaussian. n; can be found by applying the discriminator algorithms given in Table 3.1-1

to the prompt I and Q signals from the pre-detection filters. In the absence of a GPS signal,
the I and Q signals have the following form (from Equation (3.1-2))

Ip=np

(3.5-3)
Op =ngp

where n;p and nop are zero-mean, Gaussian and 1ID. For the arctangent discriminators,

ng is given by

n
Ry =Atan(£) or AtanZ(nQP,n Ip) 7 (3.5-4)
nip

From studies of narrowband Gaussian noise processes (see for example [39] pages 294
onwards), it is known that the arctangent of the ratio of two zero-mean, Gaussian, IID
random variables has a uniform PDF. Consequently, the PDF of n; is also uniform and

can be represented by

1 d
g )= rect 3.5-5
Juy () 2430, 2430, (3:55)
where o0,, is the standard deviation of n; and is equal to 75/ 24/3 for the Atan

discriminator, and 717/ V3 for the Atan2 discriminator.

For the normalised 1.Q discriminator, the PDF is considerably more difficult to determine.

However, using numerical techniques it has been found that o,,, = 1/ 242 s.

7 Atan2(y,x) is the four quadrant arctangent function.

8 This is found by evaluating J‘ J.ndzf"IP,"QP (nlp,nQP )dnlp.anP where ntPanP (nIP,nQP) isa

bivariate Gaussian PDF and n; =nppngp / (n IP2 + nQP2 )
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3.5.1. 15t Order loops

For a 1st order phase locked loop, the phase error yseconds after the start of an infinitely

deep fade is given by

¢e (to’t)= ¢(t)—¢;(to’t)
' X (3.5-6)
=o(r)- J'nd Wo,.du+¢(,)| for t=1¢,

o

where F(s)=w, is the transfer function of the loop filter, ¢, is the time at which the fade
begins, t=t,+Y, and #(,) is the loop phase estimate at time ¢,. If it is assumed that
o(t)-9(,)=0 (ie. the input phase process, ¢(z), is constant and the initial phase error,
[/ (to), is zero), then
?
¢, (t,,2)= Jnd w)w,.du for t>1, (3.5-7)
lo
Therefore, ¢, (t,,t) is a random walk (or Brownian motion) process which begins from

zero at time t=¢,. As ¢, (t,,t) is zero-mean, its variance is given by

o2 (r)=E{9, (0,1 }

= E{jnd (u)a),, .dujnd (), .dv}

o o

—0,2 [ [ Bl g O bceas (3.5:8)

o b

1t
= a)n2 f J.O'n dzrect(u—;z)du.dv

1 1o

2 2
=0y, O-nd T}’

Consequently, for a 1st order loop the variance of the phase error increases linearly with
the fade duration, y If the magnitude of the phase error exceeds the threshold of the

discriminator, 9, a cycle slip will occur when the signal level eventually returns to
el S P s y

P, |T = 71:/ 2 for an 1.Q or Atan discriminator, and # for an Atan2 discriminator.
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normal. Consequently, even for an infinitely deep fade, the probability of a cycle slip will
be quite small if the total fade duration, 7, is very small. This is particularly true if the loop

bandwidth, which is proportional to ®,,, is also very small.

As the loop is effectively open circuit during an infinitely deep fade, the concept of a cycle
slip becomes meaningless during this time. A cycle slip will only occur if the magnitude of

the phase error exceeds ¢,|,. when the signal level returns to normal (or at least becomes

lr

large enough for the loop to re-lock). Nevertheless, by comparing the phase errors for an

infinitely deep fade with ¢,|,., it is possible to determine an upper limit on the probability

of a cycle slip for different fade durations. This assumes that 0'56 (y) is at a maximum

value when the fade is infinitely deep.

The Random Walk described by Equation (3.5-7) is essentially a first order Markoff
process for which the PDF of ¢, at time #; depend only on the value of ¢, at time #,_;.
The time separation between consecutive samples in this model (ie. #;, —#,_;) is given by
the hold period, T, of the integrate and dump pre-detection filters. Consequently, the joint
PDF of the sequence of phase errors, l¢6k ey yseer ¢80J is given by

f¢gk »-Peq (¢£k N ¢eo ) f¢50 (q)so Hf¢ @e, |¢e, 1 ) (3.5-9)

£; |¢el

where f%l l vers (¢€i ‘¢€i—1) is the conditional PDF of ¢, given ¢, , and ¢, is the phase
error immediately after the start of the fade. For the Atan and Atan2 discriminators, this is

given by 10

1 ¢£- _¢€'_1
o )= rect| —=—— (3.5-10)
/ 9e:|0e;s (q)e’ |¢e"1 ) 2430,,,0,T [2«/50',, OnT ]

which is based on the following discrete version of Equation (3.5-7)

10 An equivalent expression for the normalised I.Q discriminator has not been found.
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Oe; =j§lndjwnT f - )/

= ¢Ei—l + ndi a),,T

The probability that the magnitude of the phase error exceeds the threshold, ¢,|,, at any

time during the fade is therefore

P(max(|¢€k| |¢ek ll |¢50| ) > ‘PelT)
%ely  9elr

J .‘ e, ¢eo H -y (fl’e,-l%,-_l )d¢ek"'d¢eo (3.5-12)

~delp  ~%elp

el ¢e|T &

1 O, — 9,

e I | Ilrect 2} e’l g, ...dPg,
(2J—G"dw Ty( ¢£|T _¢£|T Gnd n

Although this has not been solved in closed form, it has been evaluated using Matlab™ for
a range of fade durations!! and found to correspond very closely with the results of

simulations.

One of the implications of this result is that for an Atan discriminator, it is impossible for

the phase error to exceed ¢,|. and produce cycle slips prior to a certain time which is a

lr
function of the loop bandwidth, irrespective of the fade depth (assuming that the link is

not subject to any dynamics and the phase error is initially zero). The reason for this is that

the discriminator noise term, n,, is limited to *¢,|, (Equation (3.5-5)), and so the
maximum possible phase error at time kT is kT, ¢E|T radians. Consequently, a cycle slip

cannot occur before 1/, seconds from the beginning of the fade. Indeed, if this is less

than the pre-detection integration period, T, the pre-detection filters will play a significant

role in limiting the effects of the fade (see Section 3.5.3).

In Figure 3.5-2 and Figure 3.5-3, the probability of a cycle slip, P, is plotted as a function
of the fade depth and duration based on Equation (3.5-2) and the correction for an
infinitely deep fade given by Equation (3.5-12). Thus if Prg and Fgg, represent the cycle
slip probabilities from Equations (3.5-2) and (3.5-12) respectively, the corrected curves are

given by min(Pes;, Pes )-

11 The total fade duration, 7, is assumed to be £T seconds.
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Figure 3.5-2: Probability of a cycle slip as a function of the fade depth and duration for a 1st order
Costas carrier tracking loop based on theory. The left panel represents an ideal 1.Q discriminator
from Equation (3.5-2). The right panel incorporates the correction based on an infinitely deep fade
for an Atan discriminator. Parameter values are B, =15Hz, T=20ms, C/N, =40dBHz.
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Figure 3.5-3: Probability of a cycle slip as a function of the fade depth and duration for a 1st order
Costas carrier tracking loop based on theory. The left panel represents an ideal 1.Q discriminator
from Equation (3.5-2). The right panel incorporates the correction based on an infinitely deep fade
for an Atan discriminator. Parameter values are B, =5Hz, T=20ms, C/N, = 40dBHz.

The following observations can be made from these figures:

¢ For long duration fades (seconds to hundreds of seconds), Pcg increases sharply when
the fade depth approaches the theoretical tracking threshold given by Equation (3.4-2)
(16.2 dB for the 15Hz bandwidth tracking loop and 20.3 dB for the 5Hz bandwidth
tracking loop for C/N,=40dBHz). However, as the fade duration decreases,
increasingly larger fade depths are required for the same value of Prg.
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o Narrow bandwidth tracking loops have a much greater resistance to fades than wide
bandwidth loops.

e The correction for an Atan discriminator based on an infinitely deep fade greatly
reduces Pgg for short duration fades, particularly for the narrow bandwidth tracking
loops.

o Although Equation (3.5-2) strictly only applies to an ideal 1.Q discriminator, the
correction associated with Equation (3.5-12) should provide an upper limit on Fgg for

an Atan discriminator (as ¢, , will be a maximum when the fade is infinitely deep).

a;"'

i | "lﬁ"} vs:f:s B | I‘M ,..»,.,..v. S

Figure 3.5-4: Probability of a cycle slip as a function of the fade depth and duration for a 1st order
Costas carrier tracking loop based on simulations. The left panel represents an ideal 1.Q
discriminator. The right panel represents an Atan(Q/I) discriminator. Parameter values ate

B, =15Hz, T=20ms, C/N, =40dBHz.
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Figure 3.5-5: Probability of a cycle slip as a function of the fade depth and duration for a 1t order
Costas carrier tracking loop based on simulations. The left panel represents an ideal 1.Q
discriminator. The right panel represents an Atan(Q/I) discriminator. Parameter values are

B, =5Hz, T=20ms, C/N, =40dBHz.
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In Figure 3.5-4 and Figure 3.5-5, the probability of a cycle slip is plotted as a function of
fade depth and duration for both an ideal 1.Q discriminator and an Atan(Q/I)
discriminator based on simulations!2. It is clear from these plots that the simulations match

the theory from Figure 3.5-2 and Figure 3.5-3 quite closely.

The following observations can be made from these figures:

e For the ideal 1.Q discriminator, the theory appears to break down for very short
duration fades (ie. less than about 0.1s or so). This may be the result of a failure to
correctly account for the effects of pre-detection filtering in Equation (3.5-2). This will
be discussed further in Section 3.5.3.

e For the Atan(Q/I) discriminator, Equation (3.5-2) appears to provide a good fit for
longer duration fades, and the correction for infinitely deep fades appears to provide a

reasonably good fit for short duration fades.

Simulations were also performed for 1st order Costas loops based on both normalised 1.Q
and Atan2(Q,I) discriminators. The results of these tests are given in Figure 3.5-6 for a
15Hz bandwidth tracking loop (this can be compared with the right panels of Figure 3.5-2
and Figure 3.5-4).
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Figure 3.5-6: Probability of a cycle slip as a function of fade depth and duration for a 1st order
Costas carrier tracking loop based on simulations. The left panel represents an Atan2(Q,I)
discriminator. The right panel represents a normalised 1.Q discriminator. Parameter values are

B, =15Hz, T=20ms, C|N,, = 40dBHz.

12 Several hundred simulations were performed for each combination of fade depth and duration.
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In both cases, it is clear that the sharp upward trend in Pgg occurs at a greater fade depth
than is predicted by the theory. For the Atan2 discriminator, the reason for this is that the

discriminator threshold, ¢, | 7 18 twice as large as the corresponding threshold for an 1.Q or

Atan discriminator (ie. ® compared with 7/2 radians). Consequently, an Atan2
discriminator is capable of tolerating twice as much thermal noise as the other two
discriminators before the non-linear region is encountered. However, for infinitely deep
fades (not shown), it was found that the tracking loop based on an Atan2 discriminator
followed the Random Walk theory very closely (ie. Pgs for the Atan2 and Atan tracking
loops converged for infinitely deep fades). However, for the normalised 1.Q discriminator,
a tradeoff is occurring between thermal noise errors, and thus Pgg, and the ability of the
loop to track dynamics under deep fading conditions. Consequently, although the
normalised 1.Q tracking loop appears to perform better at low signal levels (ie. Frg is
generally less), its ability to respond to dynamics tends to be worse. As this analysis
assumes that the link is not subject to any dynamics, this tradeoff is not apparent in these
results. In addition, because the statistics are not known for a normalised 1.Q

discriminator, the Random Walk model cannot be used to define Prgy under extremely

deep fades.

3.5.1.1. Constant velocity

So far, this analysis has only considered 1st order loops that are not subject to any line of
sight dynamics. One of the reasons for this is that the Fokker-Planck non-linear stochastic
differential equation which defines loop performance (see Appendix C) has only been
solved for a 1st order loop which is driven by thermal noise. When a 1st order loop is
subject to a constant velocity, the phase tracking error will no longer be zero-mean (see
Appendix E) and the probability of a cycle slip will be different. However, if the velocity,
and thus ¢y, is relatively small, the impact on Pcs should not be very great. For an
infinitely deep fade, the phase error will consist of a combination of a Random Walk due
to thermal noise, and a linearly increasing phase error resulting from the dynamics (ie. the
loop will be an open circuit and will no longer be capable of tracking the input phase

process, ¢(t), during the fade). For a constant velocity of v radians/s, the input phase

process 7 seconds after the start of an infinitely deep fade is given by (from Equation

(3.5-6))
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!
0c (15, 1)=vi—| [y ()o0,.du+§(t,)| for t21, (3.5-13)

[0
If it is assumed that (f; (t,)=vt, — dess, where @55 is the steady state tracking error, then

H
P (to,t)=v7+¢ess —Jnd (u)a)n.du for 121,
"’ (3.5-14)

!
= Pess +I[v—nd(u)a)n]du for t21¢,

o

An equivalent discrete form of this expression is

. T—ng T
9, ¢ws+§f[v "d/w"] (3.5-15)

=10, +vT]— ng®,T

Consequently, for Atan and Atan2 discriminators, the PDF of ¢, given ¢, _, is now

1 De; ﬁb&‘-_l +VT]
0. . )= t| — : (3.5-16)
f¢ei|¢8i—1 (¢El |¢61_1) 230 ng OnT ree [ 2430 ng @nT

which is the rectangle function centred on ¢,,_ +vT'. An equivalent form of Equation

(3.5-12) can then be used to determine a new upper limit on the probability of a cycle slip.
Clearly, this new upper limit will depend heavily on the magnitude of the velocity. For
sustained higher order dynamics (eg. a constant acceleration), the 1st order loop will

quickly lose lock, even in the absence of scintillation activity.

3.5.2. 2nd Order loops

For a 2nd order Costas loop, the loop filter takes on the form illustrated in Figure 3.5-7.
Under steady state conditions, the output of the integrator in the upper path provides an
estimate of the line of sight velocity (v in radians/s) which is then combined with the
phase error estimate provided by the lower path. The resulting filtered phase error is then
passed to the VCO which is represented by the second integrator block. The velocity
estimate, v, provided by the loop filter enables the second order loop to track a constant

velocity with zero steady state error (see Appendix E).
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Figure 3.5-7: Loop filter for a 2n order phase locked loop. {is the damping factor.
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In the absence of dynamics, it has been shown that the expression for Fgg given in

Equation (3.5-2) is a good approximation, provided that o, is reduced by 1dB (Viterbi

[97]). However, under infinitely deep fading conditions, the loop filter is once again driven

only by the discriminator noise term, n,, which tends to create both a Random Walk

process (from the lower path), and an integrated Random Walk process (from the upper

path). If velocity is present, the integrated Random Walk component will begin from an

initial value of ¥ radians/s. The phase error yseconds after the onset of an infinitely deep

fade is therefore

t u
0, (t,,t)=vt - Ilzgnd(u)wn+wnzjnd(w)dw+ﬁ}.du+ﬁto for t>1,

‘o o

(3.5-17)

If it is assumed that ¥ =v and the initial phase error is zero, this reduces to

0, (t,,1)= J.|:2Cnd (W, + w,’ Ind (w)dw}du for 121,

o ‘o

! I u
= J2Cnd (), .du +0,” .”.nd (w)aw.du for t>¢,

o Iolo

In discrete form, this is given by

i i
Oe; =22Cndja)nT+wn2z anmTZ
j=1

Jj=l m=l

_—_indjwnT[%’ +0,T(—j+1)]
Al

=@, + wnT[2§n 4+ anj wnT]

J=l

(3.5-18)

(3.5-19)

Equation (3.5-19) implies that for a 2nd order loop, the phase error is not a first order

Markoff process. Consequently, the result given in Equation (3.5-12) cannot be used to
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evaluate the probability of a cycle slip. However, it is clear from the additional
[2(: +0,T{—-j+ 1)] factor in Equation (3.5-19) that the phase error will grow much more
rapidly for a 2nd order loop, particularly if the fade duration is quite long (ie. if the time
index, i, is large). Nevertheless, using simulations it has been found that P.g for a 2nd
order loop is only slightly greater than Prg for a 1st order loop and tends to follow the
theory for a 1st order loop quite closely. In Figure 3.5-8, Prs is plotted as a function of fade

depth and duration for a 2nd order loop which is based on an Atan(Q/I) discriminator.
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Figure 3.5-8: Probability of a cycle slip as a function of fade depth and duration for a 2n order
Atan(Q/I) Costas carrier tracking loop based on simulations. The left panel represents a 15Hz
bandwidth tracking loop. The right panel represents a 5Hz bandwidth tracking loops. Parameter
values are T=20ms, C/N, =40dBHz.

3.5.2.1. Constant acceleration

In the presence of a constant acceleration, the phase error for a 2nd order loop has a non-
zero mean, @5, which is a function of the magnitude of the acceleration and the loop

bandwidth (see Appendix E). The phase tracking error is given by

D) t u
e (to,t)z%— J 2ng W, + o, jnd(w).dw+13 du+(,)| for £>¢, (3.5-20)
ty to
at,’

where ¢(z, )= T" —¢gss and v =at, . The error component associated with the dynamics is

given by
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51-—'— J.ato.du"' g _¢£SS
2 ) 2 (3.5-21)

Consequently, the total phase error is given by the Random Walk of Equation (3.5-18)
added to the quadratic error term given above. For sustained higher order dynamics or
very large accelerations, the 2nd order loop would be expected to lose lock irrespective of

the presence of scintillations.

A similar approach can be applied to the analysis of 3rd order loops in the presence of

sustained velocity, acceleration and jerk.

3.5.3. Pre-detection filters

In the previous two sections it has been shown that very narrow fades have a negligible
impact on tracking loop performance, irrespective of their depth. A second factor which
comes into play for very narrow fades is the effect of the pre-detection filters. From

Equation (3.1-2), the I and Q signals at the output of the pre-detection filters is given by

Ip = A4d(t—7)cos(, )+ np,

~ (3.5-22)
Op = 4d(t —7)sin(p, )+ ngp

where 4 is a filtered version of the received GPS signal amplitude. For a rectangular fade

of depth 10log, (1- B) dB and duration d seconds, the unfiltered amplitude is given by

Alt)=1- ﬁrect(é) (3.5-23)
and the filtered amplitude is
BT rect®
A@)=1 _?,!T rect(g)du (3.5-24)

In Figure 3.5-9, A(t) is plotted as a function of time for a range of infinitely deep fades (ie.

B=1) with varying durations. It is clear from this figure that for fades less than T seconds,

the pre-detection filters will heavily suppress the fade. Also, as the sample time of the
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sample and hold circuits is uncorrelated with the fade times, the filtered signal amplitude

is effectively based on a random sampling of these waveforms (at a sample rate of T's).
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Figure 3.5-9: The filtered signal amplitude as a function of time for a range of infinitely deep fades
with varying durations (4T, 2T, T, T/2, T/4 and T/32 seconds).

3.5.4. Summary

In this section, the impact of fade depth and duration on the probability of a carrier cycle
slip was examined. It was shown that the probability of a cycle slip can become extremely
small if the fade duration is sufficiently short, irrespective of the fade depth. It was also
shown that this behaviour becomes more pronounced as the bandwidth of the tracking
loop is reduced. By assuming an infinitely deep fade and taking account of the
characteristics of the discriminator, it was possible to develop a crude correction to the
standard expression for the probability of a cycle slip which took account of this effect.
Through the use of simulations, it was shown that this correction used in conjunction with
the standard expression produced a relatively accurate measure of the probability of a
cycle slip. The effects of line-of-sight velocity, acceleration, higher loop orders and pre-

detection filtering was also examined.
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3.6. Scintillation effects on carrier phase differential

GPS

Carrier phase differential GPS techniques can be used to calculate the relative locations of
GPS receivers separated by hundreds of kilometres to centimetre level accuracy in real
time. As scintillations affect both the amplitude and phase of the incoming signals, it is
reasonable to assume that they will impact on the accuracy of the phase range
measurements made by carrier phase DGPS (CPDGPS) receivers. One of the most
important processes involved in CPDGPS is the resolution of the integer cycle ambiguities
in the carrier phase measurements. This involves forming a number of carrier phase
observables including the single difference observable Ag;,, (the difference in the carrier
phase measurements to satellite i from two receivers, 4 and b), and the double difference

observable VA¢,, (the difference in the single difference observables between two

satellites, i and j). Errors in these measurements will increase the time taken for a receiver
to resolve the cycle ambiguities and therefore the time required to obtain an accurate
carrier phase measurement. This is likely to be of greatest concern to systems that attempt

to resolve ambiguities on the fly from moving platforms.

In this section, the effects of amplitude and phase scintillations on the single difference

phase observable, A¢ , will be examined. If we assume that the ionospheric irregularities

are infinitely long, field aligned, rod like structures [16], then the scintillation patterns on
the ground will show negligible variation in a North-South direction. If the East-West

velocity of the patterns is given by v, m/s (a function of v, ), then for a pair of receivers

separated by S metres in an East-West direction, the component of the single difference

phase observable that is associated with phase scintillations and thermal noise is given by

89 =| 6,1 @)+ @) |18, 0+, ()] (3.6-1)

where,

(ﬁpl t)=m()® 9, (t) is the component of the carrier loop phase estimate produced by

phase scintillations at site #1 (® denotes the convolution integral),

(ﬁpz O)=h0)® o, (t—7) is the component of the carrier loop phase estimate produced

by phase scintillations at site #2,
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h(¢) and h, (¢) are the impulse responses of the two carrier tracking loops,
9, (¢) is the phase scintillation time series at site #1,
y=S/v, is the time taken for the scintillation pattern to traverse the distance between

the two sites (moving from site #1 to site #2), and

ni(t) and n,(z) are associated with thermal noise and amplitude scintillations at the

two sites.

Although the amplitude scintillations may be correlated between the two sites, it is quite

straightforward to show that #,(r) and n,(f) are uncorrelated with each other and with
qu (), irrespective of the baseline length. As A¢ is zero-mean in the presence of phase

scintillations and thermal noise, its variance is given by

Ohp = {897}

; ¢ {¢p1(t) ¢p2( ) }+ 031 + 032 (3.6-2)

where 0'5 . and 0'; , are the variances of the phase estimates associated with phase
P P

scintillations, and 0-51 and 0',%2 are the thermal noise variances (given by oﬁT or o5 from

Section’s 3.3.2 or 3.3.3). If we assume that the majority of the phase scintillation energy is

within the bandwidth’s of the two carrier loops, then ﬁpl(t)zq)p (r) and (51,2 (t)zq)p t-7).

The variance of the single difference phase observable then becomes

O'§¢ =2[O’,§p —R¢p¢p (}’)J+O'31 +O',%2 (3.6-3)
oo B Ip
where O';p ~ jS¢p (f)df = T‘/;F((r{’ (p/lg‘/)2)f 2 from Section 3.2.3, Equation (3.2-22), and

Ry0, (1)= B0, (0, (t=7) |
8 (3.6-4)
= [y, (£)cosmry)dr

is the autocorrelation function of ¢, (). The following simplification can be made using a

table of integrals (eg. Gradshteyn [37], Equation 3.771-2)

q
Ro,, )= ZLinK, (2%7)[’;—”) (3.6-5)

I(p/2)
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where g={p-1)/2, T(x) is the Gamma function, T is the spectral strength, and X, (x) is

the Bessel function of imaginary argument. In Figure 3.6-1, the RMS difference in carrier
phase between two GPS receivers is plotted as a function of the baseline length in an East-
West direction in the presence of phase scintillations (the five curves represent different
outer scale size parameters, f, ). These curves assume that the two receivers will be subject
to the same phase scintillation spatial patterns, but with a delay that is a function of the
baseline length, S, and the pattern velocity, v,,. In this figure, the effects of thermal noise

and amplitude scintillations have been ignored as they will be independent of the baseline
length (ie. it has been assumed that 0'31 and 0'32 are both zero). This figure shows that
although the single difference error depends on the outer scale size parameter, f,, in

general the baseline length must be less than a few hundred metres in order to

significantly reduce the impact of phase scintillations.
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Figure 3.6-1: Gy, as a function of f, and the baseline length in the presence of scintillations.

Parameter values are T = —15 dBradians?/Hz, p = 2, v, = 150m/s), and f = L1.

This analysis assumes that the irregularities are infinitely long, field-aligned, rod like
structures. Under this model, the component of 0'§¢ which is produced by phase

scintillations is dependent only on the East-West component of the baseline length. For a
pair of receivers placed at two arbitrary locations, the variance of the single difference
observable can be obtained from the previous expression, but with y replaced by

S|sin(06)/ v, , where a is the azimuth of the baseline. If it is assumed that the irregularities

are not field aligned, then the decorrelation with distance will be much less dependent on
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the direction of the baseline and the direction of velocity of the patterns (indeed, for

vertical propagation it will be independent).

In Figure 3.6-2, the RMS phase error from thermal noise and amplitude scintillations (&,
Section 3.3.3) is plotted as a function of §; for a range of loop bandwidths. This result is
based on the fast AGC model and the Tikhonov PDF for the modulo n reduced phase
error, ¥. By comparing this with Figure 3.6-1, it is apparent that the contribution to the
phase estimate error from thermal noise and amplitude scintillations, 1{031 + 0'32 , is quite

small compared to the contribution from phase scintillations, even over relatively short

baselines, quite small values of f, and large values of S,.

<

N

wn
T

RMS phase error (cm)
o
[\*]

e
o

Figure 3.6-2: The RMS phase error (modulo =) as a function of S, and the loop bandwidth.
Parameter values are C/No = 38dBHz, T = 0, and f = L1. Simulation results are also shown for B,

=20Hz (the dotted line).

Using WBMOD, it is theoretically possible to determine 0,, for each of the satellites in a

receiver’s field of view. However, the accuracy of the results will depend on the accuracy
with which the parameters T, p, f, and v, are modelled in WBMOD. Although the
models for T, p and v, are quite sophisticated, the model for f, is rather crude.
Consequently, at this stage WBMOD is not considered to be a very effective tool for

predicting the effects of scintillations on CPDGPS.
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3.7. Carrier frequency tracking loops

Frequency locked loops (FLLs) or Automatic Frequency Control loops (AFCs) track the
frequency of the GPS carrier and are normally used during times when the carrier phase is
difficult to track or during acquisition!. Indeed, many receivers use FLL assisted PLL’s and
will automatically transition to FLL operation when phase locked loop tracking is no
longer possible [99]. The FLL discriminator estimates the carrier frequency by measuring
the change in the carrier phase over a finite interval of time, Af. As these frequency
estimates will in general be sensitive to changes in the sign of the navigation data, they are
usually obtained within the period of a data bit2. The general form of an FLL is very
similar to that of a PLL (compare Figure 3.7-1 with Figure 3.1-1). The principal differences
lie in the discriminator algorithm (see Table 3.7-1) and in the additional integrator prior to

the loop VCO (the loop filter, F(s), is identical to the phase locked loop filter from
Table 3.1-2).

lr Ip

Y

A =T —I—)
JF—— Frequency | o] F(s)/s

Discrim
> % Jd T
=T QP
vCo <—(?<

Oy

Figure 3.7-1: Representation of a generic frequency locked loop.

For small frequency errors (ie. ¢, —9,, is small compared to 1 radian, where ¢,; =¢, ),

the output of each discriminator is proportional to dg, /dt . Under this condition, the linear

1 However, some receivers such as the Miniature Airborne GPS Receiver or MAGR only track the
carrier frequency.
2 This is not true of decision directed and Atan2 discriminators.
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equivalent circuit of an FLL has a similar form to the linear equivalent circuit of a PLL (see

Figure 3.7-2).

Discriminator Discriminator output
] 4 sin(g,, ~9¢;)
At At
Bign(@) A sin(g,, —9s;)
At At
Atan(Qp, /Ip,) - Atan(Qp /Ip) D, =0
At At
Atan2(8,@) Pe, —Pe,
At At

Table 3.7-1: Typical frequency locked loop discriminators. A is the filtered signal amplitude,
oa=Ip.Ip +0nOp, B=1p.Op —Ip,.Op, A=t -ty <10ms, Ip and Qp arethe land Q

signals at time t,, and Ip, and Qp, are the I and Q signals at time t,.

g /g

F(s)

/s [<

Figure 3.7-2: Linear equivalent model of a frequency locked loop (for either of the first two

discriminator types).

The transfer functions and noise bandwidths of a frequency locked loop are the same as
those given in Section 3.1 for a phase locked loop. The mean-square frequency error is also

very similar to the mean-square carrier phase error and is given by

Efvi} T[ll—H(f)lZSV ) HECR S,y (D ar (3.7-1)

where f is the fluctuation frequency of the carrier frequency v, §,,(f) is the power

spectral density of frequency errors associated with thermal noise, and S, (f) is the power
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spectral density of input frequency processes such as dynamics and phase scintillations.

3.7.1. The impact of phase scintillations on frequency

tracking loops

The power spectral density of the input frequency process is given by

S, (N =Efv(Nvn’}
= E{(j2n) (1) - j2nf ) 1)' } (3.7-2)
=@nf ) .Sy(f)

where S,(f) is the power spectral density of the input phase process. For phase

scintillations, S, (H= S¢p (NH= . As the frequency errors resulting from phase

(fz )0/2

scintillations are zero-mean, the mean-square frequency error is

Q
<N
]

[h-H Caf Vs, ()-df

_ .[ i T(2r@f Y (3.7-3)
' (r 2" 1) (2 e 2y
|f|2k+2—p
.,(27;)2Tj i df, p<2k+2
For 3< p <2k +2 this becomes
3
2 @n)'T (3.7-4)

Ovep = 2kf,P73 sin((p - 3} /2k)

For p <3 the integral in Equation (3.7-3) is infinite.

Equation (3.7-3) implies that there is no limit to the rate of phase fluctuation that can be
detected by the FLL discriminator. Consequently, very low level but high frequency phase
fluctuations can introduce significant frequency jitter. Under these circumstances, the

frequency error is given by
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_d¢ _d

dr dt (3.7-5)
_ 0.

dt

where ¢, =¢ —¢ . However, as the incoming phase process, ¢, is only sampled every T

seconds, what is actually detected by the discriminator is

90—t _(52 -0
T T

Ve =

(3.7-6)
¢(-:2 — ¢el
T

where ¢; and ¢, imply ¢(z;) and ¢, (¢;) respectively, and ¢, —#; =T . Consequently, the
power spectral density of the incoming phase process will be limited to 1/27 Hz.
Although aliasing will cause the power spectral density to fold back on itself for
frequencies beyond 1/2T Hz, we can approximate the effect of sampling by limiting the
integral in Equation (3.7-3) to ¥1/2T Hz. By ignoring spectral foldover in this way, the

resulting variance will be slightly less than the actual value. However, the error should not

be too large as the power spectral density falls off according to a power-law relationship.

The variance obtained by limiting the power spectral density to 1/2T Hz is useful for
determining the tracking state of the FLL. From [47] and [99], the tracking threshold of an
FLL is defined as the point at which the 30 frequency jitter from all sources equals 7/2

radians in one T second period. Therefore, it is given by

2
Ve

2
|7 o 2 :
o= [_6T ) (radians/s) (3.7-7)

Consequently, for the FLL to remain in lock, the following condition must be met

E{vf } < 0'58 or

™'

: (3.7-8)
E{[¢52 _¢£1]z}< (%) , radians?
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The threshold spectral strength for phase scintillations is therefore (from Equation (3.7-3))

2 2
[G"e Th G"T]

|Th - 12T |f|2k+2—1} ’

ey |

-1/2T

p<2k+2 (3.7-9)

3k, g2k
+ fa

where 0'31, is the thermal noise component of the frequency error (see Appendix D,

Equation (D-21)). In Figure 3.7-3, the difference in the threshold spectral strengths between
a frequency locked loop and a phase locked loop are plotted as a function of the spectral
index and the loop noise bandwidth (Equation (3.2-10) is used for the phase locked loop
threshold). It is clear from this figure that the frequency locked loop is in general less
susceptible to phase scintillations than the phase locked loop (ie. the difference in

thresholds is positive for all values of p and B,). This is particularly true for narrow

bandwidth tracking loops and large values of p.

Spectral strength, T (dB)

Spectral Index, p Noise Bandwidth, Bn (Hz)

Figure 3.7-3: The difference between the threshold spectral strength of a frequency locked loop and

the threshold spectral strength of a Costas phase locked loop. Parameter values are

C/N, =41.5dBHz, T=20ms, and k=2 (ie. second order loops).
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3.7.2. The impact of amplitude scintillations on frequency

tracking loops

From Equation (D-21) in Appendix D, the thermal noise variance in an FLL is given by

2
Ve

- 4F3Brr [1+ 1

e | Tom, ] (radians/s)’

where F; =1 for high C/N, and 2 for low C/N, (near the tracking threshold). By making

use of the following relationship

~2
Ay

C/NolTh=FXC/No (3.7-10)

where C/N0|Th is the threshold carrier to noise density ratio, Ay, is the threshold
amplitude, and A is the quiescent or unperturbed signal amplitude, the following

expression can be obtained for A4y,

N i (3.7-11)

Ay =A
T” oT C/N,
To?
h __ VTim 2| _ .2 ? = . .
where o = , O =0 —o,,  is the threshold variance due to thermal noise
2F,B, VTl “Velm Ve
alone, 035 ” is given by Equation (3.7-7), and 0'3@ is the contribution to the tracking

error variance from phase scintillations (Equation (3.7-3)).

Equation (3.7-11) can be compared with the equivalent expression for a PLL which is

(from Equation (3.4-2))

~ 1+4/1+
A=A oL E

BTC/N, (3.7-12)

where f3 = ‘Th : 0'$T |Th =G(§e

. —O'é__p is the threshold variance due to thermal noise

alone, o, ’Th =(x/12)* (Equation (3.2-9), and oﬁep is the contribution to the tracking error

variance from phase scintillations (Equation (3.2-8)).
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Consequently, if T and C/N, are the same for each loop, the ratio of the two threshold

amplitude values is given by

%Th|FLL =J 1++/1+ 20 |B (3.7-13)
Iyl VI+1+BR

If the effects of phase scintillations are ignored (ie. 0'3@ = O',fep =0),and F; =2 is assumed

(ie. near the tracking threshold), Equation (3.7-13) reduces to V2. Consequently, the
threshold signal power is 3dB higher for an FLL assuming that T is the same for both
loops. As a result, FLL’s will be marginally more susceptible to amplitude scintillations

than PLL’s.

These results suggest that in general, FLL's are more robust to scintillations than PLL’s.
Also, because FLL’s are much less susceptible to phase scintillations, the optimum

bandwidth of an FLL should be less than the optimum bandwidth of a PLL.

3.8. Conclusions

The analysis carried out in this chapter suggests that in general, the carrier tracking loops
of full code correlation GPS receivers are quite robust to scintillations, even when the
levels of scintillation activity are quite high. It was shown that as the carrier loop
bandwidth increases, the susceptibility to amplitude scintillations increases, while the
susceptibility to phase scintillations decreases. Consequently, an optimum bandwidth
exists for minimum probability of losing lock which depends on the relative contributions
of amplitude and phase scintillation activity, as well as the quiescent signal level and the

presence of dynamics.

For a given level of ionospheric disturbance, the geometry of the propagation path affects
the ratio of amplitude to phase scintillation activity as well as the absolute levels of
scintillation activity. Therefore, geometry will affect both the optimum bandwidth of a
tracking loop and its overall susceptibility to scintillations (for this reason, the optimum
bandwidths will be different for each channel in a receiver). It was found that propagation
paths that penetrate highly disturbed regions of the ionosphere at low elevation angles
generally experienced higher levels of amplitude and phase scintillation activity. It was
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also found that an increase in the effective scan velocity of the propagation path through
the irregularity layer resulted in an increase in the phase scintillation spectral strength, and
therefore an increase in the susceptibility of narrow bandwidth tracking loops to
scintillations. Although the dependence of the scan velocity on the geometry and the
receiver velocity is quite complex, it can be said that in general, under very high velocity
conditions, the scan velocity is likely to increase on most propagation paths, thus

increasing the probability of losing lock.

Carrier tracking loops are generally very robust to signal fades of short duration,
particularly if the bandwidth of the tracking loop is narrow. Indeed, for fades with a
sufficiently short duration, the probability of a cycle slip can approach zero, irrespective of
the fade depth. However, the precise effect on a tracking loop will depend on the
discriminator algorithm, the quiescent signal level, and the presence of other factors such

as dynamics.

RMS carrier phase errors of several centimetres can be introduced into satellite range
measurements as a result of scintillations. Generally, these errors will become decorrelated
over distances of a few kilometres, depending upon the magnitude of the ionospheric
outer scale size parameter, f,, and the geometry of the baseline. This may have a
significant impact on carrier phase DGPS observations made in equatorial regions during

solar maximum, particularly for baselines of a kilometre or more.

Frequency locked loops are more robust to phase scintillations but slightly less robust to
amplitude scintillations than phase locked loops for the same loop bandwidth and pre-
detection integration period. Therefore, receivers that make use of frequency locked loops,
either as a primary means of carrier tracking or as a fall-back strategy to phase locked
loops, are likely to be more tolerant to scintillations than receivers that employ only phase

locked loops.

Many of the results presented in this chapter are based on the assumption that the phase
scintillation spectral strength, T, is uncorrelated with the amplitude (ie. the rate of change
and strength of phase scintillations are uncorrelated with the amplitude). If T is negatively
correlated to the amplitude (ie. T increases when the amplitude decreases), then the
combined effects of amplitude and phase scintillations on carrier tracking loops may be

greater than is suggested by these results.
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Chapter 4

Code tracking loops

This chapter examines the effects of scintillations on code tracking loops. In Section 4.1, a
signal processing model of a code tracking loop is given which is based on a generic non-
coherent delay locked loop with a normalised Early-Late power discriminator. In Section
4.2, it is shown that the effects of phase scintillations on a code tracking loop are negligible
and can therefore be ignored. In section 4.3, the impact of amplitude scintillations on the
range measurement accuracy of a code loop is examined. It is shown that unless the levels
of amplitude scintillation activity are very large (ie. S, close to unity), the additional
thermal noise associated with amplitude scintillations is on average quite low, although
occasional noise spikes may occur when the amplitude undergoes very deep fades.
Finally, in Section 4.4 it is shown that because GPS signals are narrowband, it is expected
that frequency selective scintillation effects will produce negligible distortion of the PRN

codes.

4.1. Code loop model

Figure 4.1-1 is a representation of a generic, non-coherent delay locked loop (DLL). The
function of the DLL is to track the GPS PRN codes and to provide estimates of the code
delay from which pseudorange measurements can be obtained. The DLL mixes the
baseband I and Q signals from the carrier tracking loop with an early code, pg, a prompt
code, pp, and a late code, p; which are produced by a PRN code generator and a 3 bit
shift registerl. The resulting early, prompt and late I and Q signals are then filtered by a
bank of pre-detection filters and passed into the DLL discriminator. The function of the

discriminator is to determine the difference in code phase between the received GPS signal

! The shift register spacing is typically % code chips
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and the replica signal represented by the prompt code, pp. A list of the most common

discriminator types and their delay error functions is given in Table 4.1-1.

L > [dt |-2>
K
> Jdt IP‘;
y =
»@ > Jdt IL: é .
‘@j > [dt Os, g = a
i i 7 =
—)—® > Jdt s
K
Q——H%; > Jdt QL‘;

|L|P |E l— Code Gen. — VCO «—@—(—I?*
Pr Pp Pg
fe

Carrier
Aiding
Figure 4.1-1: Representation of a generic delay locked loop.
Discriminator algorithm Discriminator name | Delay error function
Z(IE ~-I,)1p +Z(QE —-0;)0p Dot product a(Rg — R;)Rp
2([125 +02 )_ Z(Iz + Q%) Early-Late power a(REZ _ RLZ)
2 {I%; +02 _2 (Iz +0? Early-Late envelope B(Rz —R;)

Table 4.1-1: Common delay locked loop discriminators. a and B are functions of the signal
amplitude (a=4%,B=4), R{x) is the autocorrelation function of the PRN code,
Ry =R, +T,/2), R, =R, -T,/2), Rp=R({.), T, =T—1% is the delay error and T, is the

code chip width.

The discriminator errors given in Table 4.1-1 are a function of the autocorrelation function

of the PRN code which is given by

Tp/2

_
R(r)= . }{ i(t +7).p(t).dt

) ﬂ (4.1-1)
_ T k|<T,

0, f>T,
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where T, is the code chip width (approximately 1us for the C/A-Code and 100ns for the
P-Code), and Tp is the code period (1ms for the C/A-Code and 7 days for the P-Code).
Although the period of the P-Code is extremely long, its autocorrelation function can be
well approximated over relatively short code segments. The delay error function of an

Early-Late power discriminator is illustrated in Figure 4.1-2.

1
I
]
I
: 3T,2
I
S
3T/2 -T, -TJ2 0

— () [Fem e S i e e

Figure 4.1-2: Delay error function of an Early-Late power discriminator.

It is clear from this figure that for delay errors in the range —T,/2<7, <T,/2, the delay
error function is a straight line given by —20a7, /T, . Errors larger than this will eventually
cause the code loop to lose lock (ie. the code phase estimate will drift away from the true
code phase). From the discriminator, the code error estimates are passed through a code
loop filter, F(s), and then on to the code VCO. The frequency of the code VCO, and
therefore the code chipping rate, is then adjusted in a direction that minimises subsequent
delay errors (this is a very similar process to the one that occurs in a phase locked loop). In
addition, a carrier aiding signal from the carrier loop is used to remove the majority of the
Doppler induced code phase error allowing the use of a much narrower loop bandwidth

and a lower loop order (typically 1st order).

An analysis of the code loop which tackles the issue of scintillation induced amplitude

variations is given below.

The early, prompt and late codes from the code generator are mixed with the baseband I

and Q signals to give (from Equation 3.1-1)
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Iy = A0)ple—t)p(t—£ +T,/2)d(t —7)cos(@, )+ nig
Q5 = AW ple—1)p(t—£ +T, /2)d (e ~7)sin(@, )+ nge
Ip = A@)plt—7)p(t —£)d(t -7 )cos(9, )+ np

Qp = A@®)p(t—7)p(t—£)d(t -7 )sin(p, )+ ngp

I = A plt—7)p(t £~ T, [2)d(t —T)cos(p, )+

Q1 = A@W)ple ~)p(t -t —T,/2)d(t—7)sin(p, )+ ng,

(4.1-2)

where the superscript ‘ indicates that the signals are at a point immediately prior to the
pre-detection filters. If it is again assumed that the pre-detection filters are synchronised to
the navigation data, and that the carrier phase errors are relatively constant over the

integration period, T, then the I and Q signals will become (only 7 is shown)

t
I =d(t-T)cos(®, )% J.A(u)p(u -T)pu-t+T,[2).du+ny (4.1-3)
=T
where G,%IE =N,/T. If the integral in Equation (4.1-3) is divided into L equal parts in

which A(x) is approximately constant, we have

L [=G-pT/L
I =d(t—T)cos(®, )%2 IAjp(u—T)p(u—f+Tc/2).du +ng (4.1-4)
J= —jTiL

where 4; represents the constant amplitude value at each T/L second interval. By
removing 4, from the integral and letting L = 20 (giving T/L = 1ms which is the period of

the C/A-Code, assuming T=20ms), the integral in Equation (4.1-4) becomes the

autocorrelation function of the code?. Thus,

| & 1 UDTIL
Iy =d(t—7)cos( G)ZZAJ. = [ pu-v)pu—t+T,/2).cu |+ s
J=1 t—jT/L (41_5)

L
=d(t—1)cos(g, R(x, +T, /2)%2/1 +np
J=l

2 This is also an accurate approximation for the P-Code even though its period is much greater than 1ms.
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The amplitude summation term can then be replaced with the filtered amplitude 4 giving

(for all six signals)

Ip =Ad(t-1)R@, + T,/2)cos(d, )+ nE
Qp = Ad(t - T)R(z, + T, [2)sin(p, )+ npe
Ip= Zd(t - r)R(‘L’e )cos(q)e )+ nyp

Qp = Ad(1—1)R(z, )sin(p, )+ ngp

I, =A4d(t-t)R(, — T, /2)cos(9, )+ np
Q= Ad(t-7)R(r, - T,[2)sin(@ )+ ngr

(4.1-6)

Notice that the prompt I and Q signals contain an R(t,) factor. This was ignored in the
analysis given in Chapter 3 as 7, was assumed to be zero (ie. perfect code tracking). The

statistics of the various thermal noise terms, njz, 7o, ... etc, are examined in Appendix D.

This approximation assumes that the majority of the power in the amplitude scintillation
power spectrum is at frequencies below 1 kHz (ie less than L/T Hz). This is considered to
be quite an accurate approximation as the low frequency cutoff in the amplitude
scintillation power spectrum is typically less than a few Hertz, even at very high platform
velocitiess. Therefore, for a spectral index, p, of 2.5 ¢ and a low frequency cutoff, f,, of
1 Hz, the power spectrum of amplitude at 1 kHz will be approximately 75dB below the

cutoff value.

The filtered I and Q signals (Ig, O, Ip, Op, I1, Q1) are processed in the code loop
discriminator to produce code delay errors of the form given in Table 4.1-1. In all cases,
the navigation data and carrier phase error terms will be eliminated by this process.
Consequently, the code loop is referred to as non-coherent (ie. it does not require the

carrier phase to remain in lock).

If it is assumed that the summations in the code loop discriminator are over m successive
periods of the integrate and dump filter (ie. T seconds in total), the coefficients of the

delay error function for the three un-normalised discriminators are

3 Scintillation frequencies are determined by the relative velocity between the spatial diffraction patterns and
the receiver. At high relative velocities, the spectrum is translated to higher frequencies.
4 A spectral index of 2.5 is typical of equatorial scintillation activity.
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o= YA47 ad B= Y4, (4.1-7)
j=i—m+l j=i-m+l
JT
where K]- = J.A(u).a’u are the amplitude values after filtering. This assumes that 7, is
(-nr

relatively constant over the time interval Tm (a reasonable assumption if the loop is

expected to track the delay).

The code loop can be represented in an equivalent linear form in which the mixers and
pre-detection filters are replaced by an adder, and the discriminator is replaced by the
appropriate delay error function. For an Early-Late power discriminator, this

representation is given in Figure 4.1-3.

Discriminator
n, l/g
+ Te 20 6
(F— 4 = > F(s
; T, (s)
T
1/s
Carrier Aiding

Figure 4.1-3: Linear model of a delay locked loop with an Early-Late power discriminator.

In this form, the delay errors are assumed to be in the linear range, —7T,/2<7, <T,/2 (for
a ¥ chip spacing between the Early, Prompt and Late codes). Consequently, the loop is
assumed to be in lock. In Figure 4.1-3, n; is the thermal noise translated to the
discriminator output and includes cross-terms between the input thermal noise term and
the I and Q signals. An expression for n; for the Early-Late power discriminator is given

in Section 4.3.

The delay on the received GPS PRN code, 7, can be represented in the following way

T=T+1,+7,+7, (4.1-8)
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where T represents the constant contributions to the code delay (including the mean
satellite to receiver range, satellite and receive clock biases, benign ionospheric delays,

benign tropospheric delays and hardware channel biases), 7; represents the effects of

satellite and platform motion, 7, represents the effects of ionospheric phase scintillations

on the code, and 7, represents other delay noise effects (eg tropospheric scintillations and

VCO oscillator jitter etc.).

For a normalised discriminator, the transfer function of the DLL is given by

T(s) _ F(s)

) = 4.1-
T(s) s+F(s) =

H(s)=
The transfer functions and noise bandwidth’s of the delay locked loop are the same as

those defined for the phase locked loop in Table 3.1-2, although the loop order is usually

no greater than 2 because of carrier aiding.
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4.2. The impact of phase scintillations on code

tracking loops

The mean-square delay tracking error resulting from code delay noise and thermal noise

for the linearised code tracking loop is given by

B{e2}= [ [J-HOY s ()| S, () | ar (42.1)

oo
oo

where S,(f) is the PSD of the input delay process and S, 5 (f) is the PSD of the thermal

noise, n, . If it is assumed that the carrier phase advance and code group delay are equal

in magnitude under scintillations conditions (as they are under quiescent ionospheric

conditions, Davies [27]), the code delay can be related to the carrier phase advance by

z,()=-0, (r)szPL, chips (4.2-2)

where ¢, () is the component of the carrier phase associated with phase scintillations (in

radians), f; is the L-band carrier frequency (L1 = 1575.42 MHz, 1.2 = 1227.6 MHz) and f»
is the PRN code chipping rate (C/A-Code: 1.023 Mchips/s, P-Code: 10.23 Mchips/s).

One of the undesirable consequences of carrier aiding of the code loop is that the code
error resulting from ionospheric effects is doubled. This occurs because at L-band
frequencies, the carrier phase is advanced and the code phase is delayed by equal amounts
(Davies [27]). Consequently, in the presence of carrier aiding, the component of the code

delay associated with phase scintillations becomes

_ e fp
Tp(t)— 2 ¢p(t)27er (42_3)

= _éfp §2 (t )/ ChipS

In Table 4.2-1, the scaling factor £ is given for the four combinations of carrier frequency

and code chipping rate which may be encountered in GPS.
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& C/A-Code P-Code
il 2.07x10-4 2.07x10-3
=2 2.65x10+4 2.65x10-3

Table 4.2-1: Scaling factor, & as a function of carrier frequency and code type.

The PSD of the ionospheric delay process is given by

5., ()= E¥le, ©)F e, () }
- £f2F(p, () Flo, ) |
=£ 2S¢p (f) chipsZ/Hz

(4.2-4)

where F( ) denotes the Fourier Transform. Consequently, the variance of the delay error

resulting from phase scintillations (in chips?) is £? times smaller than the corresponding

phase error variance for the carrier loop (in radians?) for the same loop order and
bandwidth. Therefore, as the thermal noise errors on the code and carrier loops are of a
comparable size, it is reasonable to expect that phase scintillations will have a negligible

effect on the delay errors (ie. they will be swamped by the effects of thermal noise).

The effects of phase scintillations on the code pseudorange measurements may, however,

be significant, particularly if £, is very small. The variance of the code pseudorange error
is given by

oo

of, = [|H( Y 8. (/)

4.2-5
= éjza%p , chips? (429

. 2 2
_(Tcé)zo-‘p‘p, m

Where 0'4% is the variance of the carrier phase range error due to phase scintillations, and
i

T, is the code chip width in metres. The low frequency components of the phase
scintillation power spectrum provide the greatest contribution to G%p (ie. G%p is very
sensitive to £, ). However, as these are associated more with the background ionosphere

than with scintillations, it can be argued that phase scintillations will probably have a

negligible effect on the pseudorange.
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4.3. The impact of amplitude scintillations on code

tracking loops

In this section, an expression is derived for the delay error variance of a delay locked loop
in the presence of amplitude scintillations and thermal noise. To simplify the analysis,
other sources of noise including phase scintillations, dynamics and oscillator phase noise
etc. have been ignored. It is also assumed that code distortion caused by frequency
selective scintillation effects is negligible at GPS frequencies because of the narrow

bandwidth of the GPS PRN codes (see Section 4.4).

The discriminator used in this analysis is an Early-Late power discriminator which is
normalised by a post-detection AGC (see Table 4.1-1). The AGC ensures that the principal
effect of amplitude scintillations is to scale the thermal noise component of the tracking
error rather than altering the loop transfer function. The output of a normalised Early-Late

power discriminator is given by (see Table 4.1-1).

o=l vos?)-2 o)
=l

where k represents the number of T second epochs over which data is averaged in the
discriminator, Iy, Qp,, I;, and @, represent the early and late I and Q signals from the

pre-detection filters (see Equation (4.1-6)), and g is the output of a post-detection AGC.
This expression is based on the assumption that the discriminator is operating within the

linear region (ie. —=7,/2<7, <T,/2). The AGC output can be approximated by (assuming

that 7, is small)

g:%i[lp,-z +QP[2]
i=1

1% [~ ~ :
= _Z[AizRP2 + 2Aid(t,~ —T)RP (nIp’. COS(¢€ )+ nQPl s1n( e ))+ nIPl.Z + nQP’.2] (43'2)

i=1

L ~2
ZA,- t&,y
i=1

b

I

tl

where Rp =R(r,) is the cross-correlation function of the prompt code with the satellite

code and is approximately equal to one for small values of 7., and ¢, is the thermal noise

component of the AGC gain factor.
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The expression for the discriminator output can be expanded to give

k
='§1;2[Zi2 (RE2 _RL2)+22id(ti _T)(REnEi —RLnLi )+n1Ei2 +nQEi2 —nILiz —nQLI_Z] (4.3-3)
Koz

where Rg =R, +T,/2) and R; =R, - T, /2) are the cross-correlation functions of the
early and late codes with the satellite code (assuming a % chip correlator spacing), 7. is
the true delay error, and ng, =np, cos(¢, )+ noE; sin(g, ) and n =ny, cos( e)+"QL,- sin(g, )

are zero-mean, white, Gaussian random variables. The first term in the discriminator
expression (Equation (4.3-3)) is proportional to the delay error and is given by
1 &

— > e (REz _RLz)

k52
, o147 (4.3-4)
= —R,2 =y
(k- , {kg ] )
~Rg> R’ fore, =0

=’yre

where yis the slope of the discriminator delay error function. For delay errors in the region

-T,/2<1, <T,/2, the discriminator slope is

2 (4.3-5)
%

c

A==

where T, is the code chip width. The remaining terms in Equation (4.3-3) represent the
effects of thermal noise and amplitude scintillations and are given by
L

k
T 2[22,-61(2‘,- _T)(REnE,' —RLnLi )+n1Ei2 +nQEi2 —nILiz -nQLiz] (4.3-6)

ng4
g 8ri5

where n, is the equivalent thermal noise term for an un-normalised discriminator. As

g, Ngg;, Ni;» and ng, are zero-mean random variables which are independent’ and

identically distributed (IID) and independent of 4; and g 6, the thermal noise term, ngy,

must also be zero-mean. The variance of ngy is therefore given by

S Fora Y chip correlator spacing, 77g;, nog;, Pyzi>and ngy; are all independent (see Appendix D).

6 g is a function of Z,-, nip and npp which are all independent of nyg, , ngg;, P, » and ng;, fora '

chip correlator spacing.
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Again, as the four thermal noise terms are zero-mean and IID, the expectation of the
second term in the variance expression is zero, and both the first and third terms are zero

when i# j. Squaring also eliminates the navigation data from the first term (ie.

d(t; —t)* =1). The variance expression therefore reduces to

k
”dN { 22[4‘4 (REnE _RLnL,)Z (nIE +nQE —"111 —hgp, )2]}

!

z 45{ }E{R;.;HE,- “Ryny P I+ E{g%}E{(n i +ngg wng Peng * }] (4.3-8)
1 uE{Z;-Z}(REzE{,E,. k2, }>+E{g }(M{M, L 4[}3{%/,,,2}12)]

2
(a1 |

_=

where o represents either I or Q, and B represents either E or L. From Equation (D-5) in

Appendix D, the variance of n,5 is given by N,/T where T is the pre-detection

integration period. Also, as ngg is a real, zero-mean, Gaussian random variable,

E {”aﬁi4}= 3[E{naﬂ,~2 }]2 =3(N,/T)*. In addition, the amplitude sequence is assumed to be

stationary and so E {Z,.Z }= E {Z jz }: E {Z ) } Therefore, the variance reduces further to

2 _A4N, ( 2 Z)E{AZ} N, { 1 H 4.3-9
o, Rp“+R; +2 o= (4.3-9)
dN k. T[ g T g2

For a small delay error, the early and late autocorrelation functions, Ry and R;, are

approximately equal to ¥4 giving

2 _2N,|. 4|, N, 1
o pl A ol
nan k.T[ { g2}+4 T {gz H (4.3-10)
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The signal amplitude A and the AGC gain factor, g, can be normalised by dividing by the

nominal (unperturbed) signal amplitude, A, as follows

. gn=—> (4.3-11)

- JEN

N

By substituting 4= A * Ay, g=A%%gy and C/N, = A’ /2N , into the variance expression,

the following result is obtained

~ 2
2 1 Ay 2 1
o.. = E + E (4.3-12)
"Nk TC/N, [ {gNZ} TC/N, {gNz H

The discriminator noise, ngy (t), consists of a sequence of random variables that are

maintained at constant for kT seconds, but are uncorrelated between successive kT second
epochs. Therefore, based on the analysis given in Appendix D for the Costas loop, the

power spectral density of ngy is given by

Sy (f) =02 kT sinc? (#T) (4.3-13)
and the variance of the delay error resulting from thermal noise becomes

o2, =—12- [IHGY Sy ()r
- (4.3-14)

""’N J.|H (r ] sinc? (fkT).df

As the bandwidth of the closed loop transfer function, H (f), must be smaller than the

bandwidth of the sinc(fkT) function’, the sinc? (fkT) term can be approximated by one,

giving
2 _20 ndN
Crp = J.|H () g
(4.3-15)
_ 20 ol v KTBy,
e

7 In order to correctly track the desired signal (in this case the code delay process), the bandwidth of the pre-
detection filters must be greater than the design bandwidth of the tracking loop.

135



where B, =% J|H (f lz.df is the loop noise bandwidth and y =-2/T, is the slope of the

delay error function. Combining Equations (4.3-12) and (4.3-14) gives

52 _ BT EZNZ g 2 ) 2
T 2C/N,| |gx?| TCIN, |gy®

" (s =
= Ta E A Sk 2 E 12 chips?
2C/N, B T'CIN, [gn"]]

If it is assumed that there are no amplitude scintillations (ie. ZNZ =1 and gy = ZNZ =1),

(4.3-16)

the delay error variance expression reduces to the standard form for a delay locked loop

(see Equation (D-20), Appendix D), viz

5 B, [ 2 .
= L + h L
Orr 2C/N, [] TC/N,,] cips (4.3-17)

Discussion

As the code loop is usually aided by Doppler estimates from the carrier loop, its noise
bandwidth can be made quite narrow in order to minimise the effects of thermal noise.
Indeed, if external Doppler aiding is provided by an inertial measurement unit, the code
loop bandwidth can be as small as 0.1Hz [47]. Under these conditions, the bandwidth of
the discriminator errors can be reduced significantly by increasing the size of k (ie.
summing more terms in the discriminator). This will also reduce the effects of amplitude
scintillations by an amount which depends on both the sample rate of the discriminator
(1/kT), and the bandwidth of the scintillations. To quantify this effect, it is first necessary

to show that the signal intensity under amplitude scintillation conditions is chi-squared

distributed with 2m degrees of freedom (ie. x7, where m = 1/ 82).

The PDF of a chi-squared random variable, X, with 2m degrees of freedom is given by [74]

fx ()= b 2&):)(_)6/2)’ x>0 (4.3-18)

0, x<0

If we let x=2mI/(I) where [ = 4° is the signal intensity at the output of the pre-detection

filters, and (I)= A? is the average value of I, the PDF of I can be found from
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where x(I)=2—m-I— an d .

(1) 1)

This leads to the following expression for the PDF of the
intensity

m ym-1

m”.1
S @)= M) explm(i)) o (43-20)

0, 1<0

which is the Nakagami-m PDF for intensity (this can be obtained from Equation (2.1-8)
through a simple change of variables). If k successive values of the random variable X are
summed, the number of degrees of freedom of the resulting random variable will be
increased. The amount by which the number of degrees of freedom increases will depend
on the summation period, k7T, and the correlation time, Tcr, of X. In Haykin, page 246
[39], the correlation time of a zero-mean, wide-sense stationary random process, Z (t), is
the time taken for the autocorrelation function, Rz(t), to reduce to a small fraction of
Rz(0) (say 1%). For a random process, X (¢), that is not zero-mean, the correlation time
can be defined as the time taken for the autocovariance function, Kx(r), to reduce to a

small fraction of K x(0). Therefore, the correlation time, Tcr, can be defined by

Kx(Tcr)=¢ (4.3-21)

where Ky (t)=Ry r)-[E{x ()} F is the autocovariance function of X (t), and £is a very
small number. Consequently, Ty defines the separation required between successive
samples of X (t) in order for those samples to be uncorrelated (ie. to have a zero

correlation coefficient). If we make the following definition

1, Ter £T
a=3T/Tey, T<Tep <kT (4.3-22)
1/k, Tor 2kT

k
then a random variable given by Y =a2X ; is chi-squared distributed with 2mok
i=1

effective degrees of freedom (ie. ¥ ~ x2.0¢)- Y can be related to the normalised AGC gain
factor, gy, in the following way
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i=1

=2mok* gy

where Iy, =1;/(I) is the normalised signal intensity. This expression only applies for
moderately deep fades where the effects of thermal noise on the AGC gain factor can be
ignored (ie. £, =0). If we let m’=matk , then Y =2m’*gy where Y ~ %, . Therefore, gy

is also approximately Nakagami-m distributed but with m=m’. The increase in the
number of degrees of freedom (and the consequent decrease in the apparent strength of
scintillation activity) is unlikely to be very significant unless k is quite large and/or Tr is
quite small. Such a situation is most likely to occur when a GPS receiver is aided by an
inertial measurement unit and can therefore adopt a very narrow loop bandwidth (ie. k is
large), and when the GPS ray path is moving rapidly in relation to the irregularity layer

(ie. T¢r is small). Both of these conditions may be encountered when a GPS receiver is

operating within a jet aircraft.

4.3.1. Slow amplitude fluctuations

In Chapter 3, the impact of deep, slow fades on the transfer function of a 1st order Costas
carrier tracking loop was accounted for by expressing the loop noise bandwidth as a
function of the amplitude. This allowed the tracking error variance to be expressed as a
function of amplitude, and from there an average variance could be obtained using the
Nakagami-m PDF. An equivalent approach can also be used to analyse the DLL, although
the results will only apply for very slow amplitude fluctuations because of the narrow

bandwidth of most DLL’s.

Using the approach outlined in Section 3.3 for the Costas carrier loop (see Equations (3.3-4)
to (3.3-7)), the following expression can be obtained for the power spectral density of the
delay errors as a function of the signal amplitude (assuming that the amplitude remains
approximately constant for a time period which greatly exceeds the time constant of the

tracking loop)
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Seo (1, 2)= -7, A 5. () +]r(, 4]

The component of the delay error variance associated with thermal noise and amplitude

scintillations is given by

" ¥ 28
oz, @ [ 2] 2e Dy
Y22, (4.3-25)
ok, (4) o2, (4)
- ¥ ' 7

where y=-2/T,. ol 4 (Z) represents the variance of the discriminator noise as a function

of the amplitude (ie. conditioned on the random variable A) for an un-normalised

discriminator. An expression for 0',2, 4 (Z ) can be obtained from Equation’s (4.3-6) to (4.3-10)

by letting g=1. This gives

A\ 2N, [ 52 , 4N,
ol (A)zk—T[A2 +—T—] (4.3-26)

From Equation (3.3-12), the loop noise bandwidth of a 1st order loop is given by

B,(4)= [ Ay ]F (4.3-27)
N

Inserting Equations (4.3-26) and (4.3-27) into (4.3-25) results in

2 (~ B, 1 2 2
o2 (A)}=—2—| —+——=———| chips (4.3-28)
TT( ) 2C/No [gN TC/NDgNA]%]] p

The expected value of the delay error variance is therefore

5 B, 1 2 1 (4.3-29)
ol = Ed—>+ E —= e
7 2C/N,,[ {gN} TC/N, {gNAI%, H

The differences between Equations (4.3-16) and (4.3-29) will only become significant for

large values of S, when the probability of a deep fade becomes sufficiently large. The
simplifications applied to the fast AGC model (model #2) for the 1.Q Costas loop can be
applied to Equation (4.3-29) to obtain the following result (see Equation’s (3.3-23) to

(3.3-30))
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(m-1)
where T'(a,b) is the Incomplete Gamma function (the integral from b to infinity), and

~2
gy =4y +

TC/N has been assumed (from Equation (3.3-16)). Equations (4.3-16) and

(4.3-30) are compared in Figure 4.3-1 over a range of typical code loop bandwidths for the
C/A-Code and for C/N,=38dBHz. Also included as a dotted line are the results of
simulations for the case B, =2 Hz. This result assumes that the dynamics driving the input

delay process is being tracked by the DLL with zero steady state error.

15

RMS error (m)
o
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().2Hz
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Figure 4.3-1: The delay error variance as a function of S, from Equation (4.3-16) (lower curves)
and (4.3-30) (upper curves). The small circles and the dotted line represent the results of
simulations for B, =2Hz . Parameter values are T=20ms and C/N, =38dBHz .

It is clear from this figure that the two models do not diverge significantly until the
scintillation activity is moderately strong (S, >0.7 or so), and that the RMS pseudorange
error resulting from scintillations does not become excessive until the scintillation activity
is very strong (S, >0.9 say). However, this level of activity is likely to be close to, if not
beyond, the tracking threshold of the carrier loop. Moreover, the effect is small when
compared with the RMS error from the background ionosphere which tends to dominate

the pseudorange error budget for a stand-alone SPS receiver. Nevertheless, for DGPS or
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WADGPS users, the increase in thermal noise errors from amplitude scintillations may

become a significant factor under strong scintillation conditions.

Nominal figures for the RMS thermal noise errors for a standard DLL are 1.5m for the
C/A-Code, and 20cm for the L1 P(Y)-Code ([47] Chapter 7). However, modern receivers
frequently achieve a significant reduction in these levels by smoothing the code
measurements with carrier phase measurements obtained from the carrier loop. In the
absence of significant multipath, this approach typically reduces RMS thermal noise errors
to a few tenths of a metre. This approach will also reduce thermal noise errors in the
presence of amplitude scintillations, provided that the carrier loop remain in lock and does
not suffer from an excessive number of cycle slips. Although this condition is likely to be
met under moderately strong scintillation conditions, as explained below, it may not hold

under very strong scintillation conditions.

The RMS errors plotted in Figure 4.3-1 represent an ensemble average based on a
distribution of GPS signal levels given by the Nakagami-m PDF. As it is assumed that
scintillations are ergodic, these measures also represent the statistics of an individual
realisation of the delay error process. In practice, a time sequence of delay errors obtained
under amplitude scintillation conditions will contain a series of noise spikes, separated by
several seconds or more, which represent momentary increases in the DLL tracking error
resulting from deep fading events. These noise spikes, which become larger and more
frequent as the strength of scintillation activity increases, tend to provide the largest
contribution to the RMS error. Under strong scintillation conditions, it is likely that the
carrier loop will either lose lock or suffer frequent cycle slip during these events which
may preclude carrier smoothing during those times. Consequently, the impact of
amplitude scintillations on the carrier smoothed code observable may be quite

pronounced when the scintillation activity is strong.

The DLL analysis presented in this chapter parallels the linear model analysis for the PLL
in that it is based on the premise that the delay errors are unbounded. However, from
Figure 4.1-2 it is clear that for delay errors beyond +7¢ /2 (for an E-L spacing of 1 chip), the
discriminator delay error function will begin to return to zero. Indeed, when the delay
errors exceed 37T /2, the delay error function will become equal to zero and will remain
at that level until the delay error approaches the period of the code sequence (1ms for the

C/A-Code). This behaviour implies that if the magnitude of the delay error exceeds 7¢ /2,
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the feedback mechanism in the DLL will force the delay error beyond 37 /2, at which
point the loop will lose lock. However, during these times, the reported delay error will be
at a maximum when the true delay error is at 7 /2, and will then become smaller as the
true delay error increases beyond this point. Although this non-linear discriminator model
differs significantly from the simple linear model used to obtain Equations (4.3-16) and
(4.3-30), the differences are only significant when the delay errors become very large. From
the linear model, it is clear that this will occur when the amplitude is heavily attenuated
during deep fading events. Indeed, even if the PLL was to remain in lock during these
events, the DLL may lose lock, and be unable to regain lock until the fade has passed and
the loop has reverted to re-acquisition mode (the DLL cannot cycle slip and then regain
lock in the same way as the PLL). In the case of the Costas PLL, the non-linear behaviour
of the discriminator was accounted for by making use of the Tikhonov PDF for the modulo
7 reduced phase error. For the DLL, an equivalent non-linear PDF does not exist for the
delay error. A crude approximation that has been applied to this problem has been to
formulate the RMS error as a function of the amplitude using Equation (4.3-28), and to
then restrict the errors to some upper limit based on a nominal tracking threshold for the
DLL (d/3 code chips, where d is the correlator spacing [47]). As before, the RMS error is
then found by averaging over all possible amplitude values using the Nakagami-m PDF.
This procedure results in an RMS error curve which lies slightly above the curve obtained
from Equation (4.3-16). This suggest that for moderately strong scintillation activity (ie.
S, >0.7 or so), the depth and frequency of the deep fading events which force delay
errors beyond the tracking threshold is sufficiently large to significantly affect the average

RMS delay error. Consequently, for large values of S, the analytical expressions for the

RMS delay error must be treated with some caution.

Nevertheless, based on simulations for which the cutoff frequency of the amplitude
scintillation power spectrum, f,, is much less than B,, the RMS delay error appears to
follow the upper curve given by Equation (4.3-30). For larger values of f,, the RMS errors

become smaller, particularly when S, is large.
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4.4. Frequency-selective scintillation effects

In the analysis so far, it has been assumed that all frequency components in the GPS code
spectrum undergo the same amplitude and phase variations at the receiver. This situation,
which is also referred to as frequency-flat or frequency-nonselective fading (see for example
[72], [75] or [88]), may produce fluctuations in the amplitude and delay of a code
sequence, but will not result in any code pulse distortion. Consequently, tracking errors
and pseudorange noise will be produced mainly by additive thermal noise, assuming that

phase scintillations have a negligible effect.

However, if the bandwidth of the code is sufficiently large and/or the scintillation activity
is sufficiently strong, variations will exist in the amplitude and phase of the scintillation
waveforms across the code spectrum (ie. the frequency response of the propagation path
will no longer be flat). If these variations are large enough, they will produce distortions in
the code sequence which may affect the performance of the code loop discriminator.
When a channel’s frequency response exhibits statistical decorrelation across its
bandwidth, it is said to be frequency-selective. The most common source of
frequency-selective fading in a wireless communications system is multipath. In a
multipath environment, the multipath reflectors introduce different delays and reflection
coefficients relative to the direct path, and so the electrical lengths of each path will be a
function of the frequency. Consequently, each frequency component in the signal
spectrum will be subject to slightly different amplitude and phase variations at the
receiver. From the model given in Appendix A, it is clear that this is very similar to
scintillation effects, where the received signal is a composite of multiple rays scattered
from different points on a phase screen, each of which are subject to different phase

advances.

The parameter that characterises the degree of frequency selectivity of a propagation

channel is the coherence or correlation bandwidth, B, . The coherence bandwidth determines

the frequency separation for which the fading statistics of two frequency components are
essentially uncorrelated. Therefore, if the bandwidth of the transmitted code sequence is

much greater than B, significant frequency-selective fading may occur leading to code
pulse distortion. The coherence bandwidth is related to the RMS code delay jitter, o, by
the following relationship (see for example [17], [55], [83] & [88])

143



1
oh = = Hz -
cok 270, (4.4-1)

B

Consequently, if B, > B, or 0, > , where B, is the two-sided bandwidth of

27[Bcode
the code sequence, code pulse distortion may occur. For the GPS C/A-Code and
P(Y)-Code, this becomes o, >23m (B, = 2.046 MHz) and o.;>2-3m (B, = 20.46

MHz), respectively.

Unfortunately, there are few measurements of either the delay jitter or the coherence
bandwidth for transionospheric radio channels at GPS frequencies. However, in [79] Rino
derives an expression for the single-point, two-frequency coherence function, R(5f; f), of
a transionospheric radio channel that is subject to scintillations. R(§f; f) is a measure of
the correlation between the time varying transfer functions of the propagation channel at

two frequencies, f; and f, 8 and can be used to determine the coherence bandwidth, viz

RBeon; f)=1t (4.4-2)

where B, is defined as the value of & for which R(;f) drops to some pre-defined
value p (see for example Steele, [88]). In [79], it is shown that for highly anisotropic (rod-
like) irregularities, such as might be encountered at equatorial latitudes, R(Jf;f) can be

expressed as a function g(") of the form

(p-1)2
R f)= g[H x[a%] J (4.4-3)

where H is a measure of the strength of scintillation activity (proportional to 7 under
weak scatter conditions, [79]), and p is the spectral index (the slope of the phase
scintillation power spectrum). Therefore, for a given level of scintillation activity, H, the
two-frequency coherence function and the channel coherence bandwidth will depend only

on the ratio &/ f . Consequently, the following relationship will hold

Bcohl = Bcth

I3 7, (4.4-4)

SO =|fi—fo| and £ =(fi + £2)/2.
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where B, is the coherence bandwidth at frequency f| for a channel with a scintillation
strength of H at f|, and B, is the coherence bandwidth at f, for a channel with the

same scintillation strength H at f,.

In [55], Knepp determines the channel coherence bandwidth at VHF frequencies (centred
on 155.5 MHz) by isolating the component of the code delay spread due to scintillations
and applying this to Equation (4.4-1). At these frequencies, it was found that the channel
coherence bandwidth could be as low as 0.5 MHz under very disturbed scintillation
conditions. Indeed, the measured S, values on a two-way propagation path were in
excess of 2.25, implying a one-way S, slightly greater than one. This indicates strong
Rayleigh fading with some focusing effects to drive S, above one. By applying these

results to Equation (4.4-4), it can be shown that under very intense scintillation conditions,

the channel coherence bandwidths at the two GPS carrier frequencies will be

0.5
BCDhL] = le x155 5 = 5.1 MHZ
’ (4.4-5)
Beonra = fr2 % 05 _ 4.0MHz
155.5

Therefore, under very strong scintillation conditions, the P(Y)-Code may suffer from
frequency-selective scintillation effects, and thus code pulse distortion, whereas the C /A-
Code is unlikely to be affected. In addition, the L2 channel is likely to be affected more by
frequency-selective scintillation effects than the L1 channel, partly because the coherence
bandwidth at L2 is less for a given level of scintillation activity (as shown above), and
partly because the scintillation activity is stronger at L2 for a given set of irregularity

conditions.

In order to test whether frequency-selective scintillation effects will cause significant code
pulse distortion, the phase screen model from Appendix A was used to generate
amplitude and phase scintillation waveforms at a number of frequencies across the code
spectrum (note that in all cases, the in-situ carrier phase perturbations were Gaussian
distributed with a power-law power spectral density). Examples of these waveforms at the
GPS L1 frequency and 10 MHz above L1 are given in Figure 4.4-1. It is clear that although
the general shape of the waveforms are quite similar, the detailed structures are very
different between these two frequencies. In particular, it appears that the differences are at

their greatest when the amplitude fading is at a maximum.
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Figure 4.4-1: Amplitude and phase scintillation waveforms (left and right respectively) at the GPS
L1 frequency (upper two panels) and 10 MHz above GPS L1 (lower two panels). The scintillation

index S, is approximately equal to 0-8.

The amplitude and phase scintillation waveforms, A(x, f) and ¢ " (x, f), were then

converted to a complex modulation for each frequency component, f, in the GPS code

spectrum, viz

M(x, f)= A, fexpljg, (x, 1)) (4.4-6)

where x represents a position in the scintillation pattern (the East-West ground position in

these examples). If P(f) is the Fourier transform of an ideal pulse with a pulse-width
equal to the GPS code chip-width, T,, then the distorted code pulse, p'(x,z), can be found

by taking the inverse Fourier transform of the product of M(x, f) and P(f) as follows

p5,0)= [ MG, PP )expliam)ar 447)

Examples of the effects of frequency selective scintillations on a single code pulse are
given in Figure 4.4-2 to Figure 4.4-4. In these figures, it is assumed that the code pulse
spectrum is limited to the first nulls of the sinc(fT,) power spectrum (ie.

VI,
p'lx,t)= j M(x, £)P(f)exp(j2nft)df , where 1/T, =1.023 MHz for the C/A-Code and
-7,

10.23 MHz for the P(Y)-Code). Figure 4.4-2 shows the full effect of scintillations on a
P(Y)-Code pulse as a function of time and ground position, while Figures 4.4-3 and 4.4-4

represent the distorted waveforms that have been normalised by their respective peak
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pulse values. Consequently, the last two figures provide a more accurate picture of the

true distortion to the code pulse shape.

Reconstructed pulse

Time (code chips) Ground position (km)

Figure 4.4-2: The impact of a single phase-changing screen with a power law in-situ density profile
on 0.0978 ys pulses that are bandlimited to #10.23 MHz (representative of a single P(Y)-Code
chip).

Reconstructed pulse, normalised by the peak

4

Time (code chips) Ground position (km)

Figure 4.4-3: Figure 4.4-2 normalised by the peak pulse height.
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Reconstructed pulse, normalised by the peak

Time (code chips) Ground position (km)

Figure 4.4-4: The impact of a single phase-changing screen with a power law in-situ density profile
on 0.978 us pulses that are bandlimited to +1.023 MHz (representative of a single C/A-Code

chip).In this example, the reconstructed pulses are normalised by their peak values.

By applying these pulses to a simple Early-Late gate error function, the error in the code
loop discriminator can be found. The Early-Late gate error function is given by the

following expression

e(x, 7, )=Ti [Pl n)ple+ee +7, 2)dt— [ p'(x,)ple+7, ~T, /2)dt (4.4-8)

—r

where 7, is the code tracking error, p(t+7, +7,/2) is a locally generated (ideal) early
pulse, and p(t+7, —T,/2) is a locally generated late pulse. This is equivalent to a
normalised version of the Early-Late envelope discriminator from Table 4.1-1 (ie.
e(x,7.)=Rg(x)-R;(x)). In Figures 4.4-5 to 4.4-7, the Early-Late gate error function is
plotted for the distorted code pulses from the previous figures. Figures 4.4-6 and 4.4-7

represent the error function normalised by their respective peak values to isolate the

effects of code distortion from frequency-flat amplitude fading.
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Early-Late gate error function

1 ~ l.--...‘-...,.:-

0.5 e

Tracking error (chips) Ground position (kim)

Figure 4.4-5: Early-Late gate error function for the bandlimited 0.0978 s pulses.

Normalised Early-Late gate error function

Tracking error (chips) : Ground position (km)

Figure 4.4-6: Figure 4.4-5 normalised by the peak discriminator error.
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Normalised Early-Late gate error function

Tracking error (chips) Ground position (km)

Figure 4.4-7: Early-Late gate error function normalised by the peak discriminator error for the

0.978 us pulses.

From the results presented in these figures, it is clear that the effects of frequency-selective
fading are much greater for the wider bandwidth P(Y)-Code than for the C/A-Code, as
would be expected. However, it is also apparent that even under relatively strong
scintillation conditions (ie. S, zO.é), the distortions to the P(Y)-Code are only significant
for relatively short periods of time. As will be shown next, these times are usually

associated with deep amplitude fading.

In Figures 4.4-8 and 4.4-9 (left panels), the code delay errors are plotted as a function of the
ground position, x, for 7, =0. As 7, =0 represents a situation in which the replica code is
correctly aligned to the received code, the errors in these figures are associated entirely
with distortions to the code pulse shape. It is clear from these figures that the
discriminator errors associated with the P(Y)-Code (in chips) are much greater than those
associated with the C/A-Code. It is also clear from the scatter plots on the right that
significant tracking errors are usually associated with the time periods during which the
amplitude is deeply faded. Consequently, when the scattered rays come close to complete
cancellation on the ground (ie. during deep fading), the amplitude and phase response of

the channel attains its greatest sensitivity to frequency. However, as the carrier tracking
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loops of a GPS receiver are likely to suffer from cycle slips and tracking problems during

these times, it is questionable whether these errors will be of practical importance in a real

GPS receiver.

P-Code tracking error. RMS = 0.0312 chips P—Code tracking error v Fade depth
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Figure 4.4-8: The delay errors (upper left panel) and amplitude scintillation waveform (lower left

panel) as a function of ground position for the bandlimited 0.0978 ys pulses. The scatter plot on the
right compares the delay errors to the fade depth.

CA-Code tracking error. RMS = 0.00865 chips

CA-Code tracking error v Fade depth

Error (chips)
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Figure 4.4-9: The delay errors (upper left panel) and amplitude scintillation waveform (lower left

panel) as a function of ground position for the bandlimited 0.978 s pulses. The scatter plot on the
right compares the delay errors to the fade depth.

The procedures outlined above are very similar to those followed by Bogusch [16], [17]
and Knepp [54] using their more sophisticated multiple phase screen model. However,
their results suggest that the coherence bandwidth at L-band frequencies (2 GHz) could be
as low as 0.25 MHz under very strong scintillation conditions [17]. Using Equation (4.4-4),
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this implies that B, =0.2MHz, which is roughly 25 times smaller than the value
derived from the measurements in [55]. Although this result implies that code distortion
could be quite severe under strong scintillation conditions (ie. B, << B oge ), it was not
clear in [17] whether significant distortion was only observed during periods of deep

amplitude fading.

4.5. Conclusions

In this chapter, the effects of scintillations on code tracking loops was examined. It was
found that phase scintillations have a negligible effect on code loops, and that the
additional RMS thermal noise error associated with amplitude scintillations is only small,
unless S, is close to unity. Nevertheless, under strong amplitude scintillation conditions,
it is likely that error spikes will exist in the code pseudorange measurements during times
when the amplitude is deeply faded. However, as the carrier loop is likely to be stressed to
the point of losing lock during these times, this effect may not be regarded as important
for most GPS users. It was also found that because of the very narrow bandwidth of GPS
signals, frequency selective scintillation effects are unlikely to produce significant code
distortion under naturally occurring ionospheric conditions, except possibly for the P(Y)-

Code during times when the amplitude is deeply faded.
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Chapter 5

Codeless and semi-codeless receivers

In this Chapter, the effects of scintillations on codeless and semi-codeless receivers! is
examined. Because codeless tracking loops have a much lower signal to noise ratio than
full code correlation tracking loops, their susceptibility to scintillations is expected to be far
greater. In Section 5.1, the various codeless tracking techniques employed in non-military,
dual frequency receivers are outlined. In Section 5.2, a theoretical analysis is given of the
effects of amplitude and phase scintillations on codeless tracking loops. Essentially, the
reduced signal to noise ratio of codeless tracking loops increases their susceptibility to
amplitude scintillations, while their much narrower loop bandwidths increases their
susceptibility to phase scintillations. Finally, in Section 5.3 the theoretical performance
measures of semi-codeless tracking loops are compared with measurements taken from a

semi-codeless receiver located in a region of high scintillation activity.

5.1. Codeless processing techniques

Codeless and Semi-codeless receivers obtain L2 code and carrier phase measurements
without requiring access to the military Y-Code. These receivers are frequently used in
WAAS and LAAS? systems and are therefore important for civilian applications such as air
traffic control. The two most commonly used codeless techniques are squaring and cross-
correlation [91]. Squaring removes both the navigation data and the Y-Code from the L2
signal and produces a carrier at twice the L2 frequency. However, this technique does not
provide code phase information, and with such a high carrier frequency the process of
resolving carrier cycle ambiguities can be difficult and time consuming. Cross-correlation

is an improvement on the squaring technique that produces a carrier at the difference in

1 To improve the readability of this Chapter, the term “codeless” will frequently imply both
codeless and semi-codeless tracking loops.
2 WAAS: Wide Area Augmentation Systems, and LAAS: Local Area Augmentation Systems.
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frequency between L1 and L2 as well as a measure of the code delay difference between
the two frequencies. The much lower frequency allows carrier cycle ambiguities to be
resolved more rapidly, while the code delay difference provides an unambiguous measure

of the ionospheric delay on each carrier.

Both techniques can be enhanced by employing semi-codeless processing prior to the
codeless tracking loops. In a semi-codeless receiver, the P-Code (which is known a priori)
is removed from the GPS signal to produce an L2 carrier which is modulated by the
encryption code (also called the W-Code) and the navigation data. As the bandwidth of
the encryption code is 20 times less than the P-Code bandwidth, the resulting signal can be
filtered to reduce the noise power by up to 13dB [4]. Consequently, a semi-codeless
receiver will have a 13dB advantage in signal to noise ratio (SNR) over a purely codeless
receiver. Both techniques, however, suffer a considerable reduction in SNR over full code

correlation P(Y)-Code tracking.

Another semi-codeless technique that is frequently used in Novatel™ receivers involves
tracking the P-Code directly using a standard tracking loop, but with a pre-detection
bandwidth that is equal to the W-Code bandwidth (500 kHz) 3. Consequently, the W-Code
is treated in essentially the same way as the navigation data in a full code correlation
tracking loop. An advantage of this technique is that a true estimate of the L2 P-Code
pseudorange is produced, although the associated thermal noise errors are at a greatly

elevated level.

In order to cope with the reduced SNR, codeless receivers employ very narrow tracking
loop bandwidths, typically much less than 1 Hz. To reduce the consequent dynamic
stresses associated with satellite and receiver motion, codeless carrier tracking loops are
aided by carrier phase error estimates provided by the more robust L1 C/A-Code carrier
tracking loops. These estimates tend to reduce, but not eliminate, the phase scintillation

errors on the codeless loops.

3 The pre-detection integration period, T, is therefore 2 x107 s.
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5.2. Theoretical analysis

Based partly on the above discussion, the various aspects of codeless tracking loops which

determine their susceptibility to ionospheric scintillations can be summarised as follows:

1. The L2 signal power is approximately 6dB below the L1 C/A-Code signal power.

2. The SNR of codeless tracking loops is significantly less than the SNR of full code
correlation tracking loops.

3. Both amplitude and phase scintillations are slightly stronger at the lower L2 frequency
as a result of the inverse frequency scaling of scintillations.

4. L1 carrier aiding of the L2 codeless loop reduces the effects of phase scintillations.

5. Carrier aiding virtually eliminates dynamic stresses on the codeless loops allowing the

tracking loop bandwidth of the carrier loop to be significantly reduced.

The first two factors can be accounted for by determining an equivalent C/N, for the

codeless tracking loops. This can then be used to determine a tracking threshold under
amplitude scintillation conditions based on the variance expression for a standard phase

locked loop.

The degradation in C/N,, for codeless and semi-codeless tracking loops is given by [91]

1010 6B,
7.8+101og10(B,)—c/N,,|C/AdB > TN,

(5.2-1)

c/A
where B; is the pre-detection bandwidth (10MHz for a codeless loop, 500kHz for a semi-
codeless loop), and C/N,| c/A is the carrier to noise density ratio of the C/A-Code. The

equivalent C/N, is thus [91]

A

6B,

C/No|g, = (5.2-2)
As both squaring and cross-correlation eliminates the navigation data from the GPS signal,
a standard (non-Costas) phase locked loop can be used to track the resulting carrier. For a
standard phase locked loop, the variance of the tracking error is given by the inverse of the

loop SNR [73], viz
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O’je = (Loop SN'R)_I
= —Bn
C/No|g, (5.2-3)
6B, B;
C/N,|. /4

where B, is the tracking loop bandwidth. If a variance threshold is chosen for o, ,

threshold values of the signal amplitude can be found for both codeless and semi-codeless

receivers as a function of B,, By, and the nominal C/N0| cla’ viz

~ | 6B,B;

Ap =A
! V(C/NOIC/A *G¢T|Th)z

(5.2-4)

where A is the nominal signal amplitude and G¢T|Th is the threshold RMS error once the

effects of phase scintillations have been removed (see Section 3.4). As before, these
threshold values can be used to determine the probability of losing lock as a function of S,

(see Equation (3.4-3)).

The third factor (ie. the difference in the strength of scintillations at the L2 frequency) is
automatically accounted for by using the L2 frequency as an input to the WBMOD

scintillation model. In Section 2.1.3, it was stated that §, and Oy, scale in the following

way with the carrier frequency, v

Sy 0y~ for low to moderate levels of scintillation activity

~1 , for strong scintillations (5.2-5)

-1
O-¢p o<y

From Equations (2.1-1) and (2.1-4) it is also apparent that for a constant outer scale size

parameter, f,, T also scales with the carrier frequency as Toev™? (ie. O'gp o< T).

Consequently, at the L2 frequency, S, is between 1 and 1.4 times larger than the

corresponding L1 value, while T is approximately 1.65 times larger.

The fourth factor (ie. carrier aiding of the codeless loops) is accounted for by assuming

that the majority of the phase scintillation energy is associated with refraction effects
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which show a simple v™' dependence with frequency. Consequently, scintillation induced

phase variations on the L2 carrier, ¢, , , can be related to the corresponding variations on

the L1 carrier, through 4

¢PL1 /

Vi1
¢PL2 -

¢ 5.2-6
v, P (5.2-6)

where v;; =157542MHz and v;, =1227.6MHz. Aiding of the L2 carrier loop is

primarily intended to eliminate Doppler errors associated with satellite and receiver

motion. The Doppler correction term is given by

A%
_L£¢a'Ll (52-7)
Vi

where ¢, is the phase error associated with Doppler on the L1 . The v, /v;; factor in
this expression is also applied to the phase scintillation errors on L1, ¢,  , before they are
removed from the L2 carrier loop. The residual phase scintillation error is thus [91]

Vi
Vi

V_Lz_]z (5.2-8)

’
¢PL2 _¢PL2 - ¢le

Vi1

=0pr, 1_(

=0.393¢,,,

Consequently, the phase scintillation spectral strength, T, obtained from models such as

WBMOD at the 1.2 frequency must be scaled by a factor of 0.3932 (-8.1dB) to account for

the effects of carrier aiding.

The last factor (ie. a very narrow loop bandwidth) provides a considerable amount of
resistance to the effects of amplitude scintillations. By implementing a narrow loop
bandwidth, the codeless receiver reduces thermal noise errors on the phase estimates

which in turn increases the SNR of the tracking loop. This helps to overcome some of the

4 Tt is worth noting that if diffraction effects were to predominate, this simple relationship would
not necessarily apply. However, as the bandwidths of the codeless loops are very narrow, it is
reasonable to assume that a large proportion of the energy in the carrier loop phase tracking errors

is below the Fresnel cutoff frequency and so can be attributed mainly to the effects of refraction.
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effects associated with the lower signal level at the L2 frequency and the reduced SNR of
the codeless tracking loops. A second effect of a narrow loop bandwidth is that the
duration of the deep fading events which lead to loss-of-lock may now be much less than
the time constant of the tracking loop. For loop bandwidths as low as 0.1Hz, this could
greatly improve a loop’s tolerance to amplitude scintillations, particularly if the amplitude
scintillation rate is increased by receiver motion. However, this effect will be offset
somewhat by the greatly reduced amplitude threshold of codeless tracking loops. Figure
5.2-1 is an illustration of the impact of a reduced amplitude threshold on the fade duration
using a short segment of simulated amplitude scintillation data obtained from the model
in Appendix A. For deep fading events, the signal amplitude will be below the semi-
codeless threshold for much longer periods of time, effectively resulting in a longer

duration fade.

T ™

Semi-codelessv\ /“ v

Coded Loop U v

Figure 5.2-1: Illustration of the effect of a reduced amplitude threshold on the fade duration.

5.3. Threshold curves

In Figure 5.3-1, threshold curves are plotted for both codeless and semi-codeless receivers
(both techniques) based on the following assumptions:

¢ The loop bandwidths are 0.1Hz.

e C/N, for the C/A-Code tracking loop is 44dBHz (at 38dBHz, the codeless loop is

already very close to losing lock for a loop bandwidth of 0.1Hz). Therefore, C/N ,,I Eq is

10.2dBHz for the codeless loop, and 23.2dBHz for the semi-codeless loop.

e Carrier aiding of the codeless loops reduces T by 8.1dB.

e The amplitude scintillation bandwidth is narrow compared to the loop bandwidth.
This assumption is necessary in the absence of a suitable approach to the problem of
very narrow loop bandwidths and may result in an overestimation of the susceptibility

of tracking loops to amplitude scintillations.
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The threshold curve for the semi-codeless-2 technique (see caption of Figure 5.3-1) is
simply found using the approach outlined in Section 3.4 with T =2x107%s and the
Spectral strength, T, reduced by 8.1dB. Also shown as a dotted line is the curve obtained
from Equation (3.4-8) with ¥, = 20dB (ie. the approximate upper limit on [T, S, ] values

for a stationary receiver obtained from WBMOD).

1
(3]
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Semi-codeless=2

[
w

Spectral StreI:ngth, T (dB)
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Semi-codeless—1| |
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Figure 5.3-1: Tracking thresholds for both codeless and semi-codeless receivers as a function of the

Spectral Strength, T, and the amplitude scintillation index, S,. A loop bandwidth of 0.1Hz has

been assumed. Semi-codeless-1 refers to the process of removing the P-Code from the L2 carrier

prior to codeless processing. Semi-codeless-2 refers to the technique of adopting a much wider pre-

detection bandwidth in a Costas loop to accommodate the W-Code.

It is clear from this figure that because the various threshold curves lie well below the
dotted line obtained from WBMOD, the probability of losing lock is likely to be reasonably
high on links that are affected by scintillations. By comparing this with Figure 3.3-3, it is
also clear that codeless and semi-codeless tracking loops are considerably more susceptible
to scintillations than full code correlation tracking loops. The very narrow loop bandwidth
increases their susceptibility to phase scintillations, despite a reduction in phase
scintillation energy through aiding from the C/A-Code carrier loop. Similarly, the reduced
SNR greatly increases their susceptibility to amplitude scintillations, despite a very narrow

loop bandwidth.
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5.4. Scintillation measurements

The objective of this section is to check the validity of the semi-codeless performance
models derived in the previous sections using data obtained from co-located Novatel
Millennium™ and PAQI12™ Jonospheric Scintillation Monitoring (ISM) receivers. The
Millennium™ uses full code correlation for the L1 C/A-Code and a semi-codeless tracking
technique for the L2 Y-Code. The ISM receivers are high data rate L1 SPS receivers which
are designed specifically to measure the scintillation indices S, and T [92]. Although data
from the peak of the current solar cycle has not yet been processed, ISM data from the
September 1998 and March 1999 equinoxes shows sufficient evidence of scintillation

activity for an analysis to be performed.

5.4.1. Overview of scintillation data

The data used in this study was obtained from co-located Millennium™ and ISM receivers
deployed at Parepare in Indonesia. Parepare is located at 4°S, 119.6°E, which places it
beneath the crest of the southern anomaly in a region of potentially strong scintillation
activity. The 12 month smoothed mean monthly sunspot number (SSN)5 for the March
1999 equinox was approximately 83.8, which represents a moderate level of solar activity.
At the time of writing (November 2000), the measured SSN’s for the September 1999,
March 2000 and September 2000 equinoxes were 102.3, 119.8 and 128.7, respectively. In
addition, it is predicted that the peak of the current solar cycle will occur in December
2000, and that it will take until late 2003 before the solar activity drops below the level
measured in September 1998 (69.5). Consequently, over the coming few years it is
expected that scintillation activity and it impact on GPS will continue, although mainly

during the equinoctial months.

5.4.1.1. Novatel Millennium™ data

The Novatel Millennium™ provides an indication of the tracking state of the L1 and L2
code and carrier tracking loops as part of its standard outputt. A second set of lock

indicators obtained by comparing the reported code and carrier pseudorange

5 Sunspot numbers were obtained from the Australian Ionospheric Prediction Service (IPS) web
site at “http:/ /www.ips.gov.au”.

6 Tracking state information is contained within the Novatel format RGEA /B data blocks [68].
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measurements with the range calculated from the satellite ephemeris information was
found to give virtually the same results. Consequently, for convenience it was decided that
the tracking state indicator would be used in all subsequent analysis as an indicator of a
loss of valid pseudorange data. In addition, a 10° elevation angle mask was chosen to
avoid multipath effects and the possibility of satellite obscuration on low elevation angle

links.
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Figure 5.4-1: The percentage of time from 8:00pm to 10:00pm (local time) that the Novatel
Millennium™ loses lock on one or more satellites at Parepare, Indonesia (left panel: September
1998 equinox, right panel: March 1999 equinox). The white bars represent the loss of one satellite.

The solid bars represent the simultaneous loss of two or more satellites.

In Figure 5.4-1, the percentage of time between 8:00pm and 10:00pm (local time) that the
Millennium™ loses lock on one or more satellites is plotted as a function of the day for
both the September 1998 and March 1999 equinoxes. It is clear from this figure that the
carrier loops lose lock slightly more often than the code loops (by a factor of about 1.5).
This supports the assertion that in the absence of external Doppler aiding, the code loop
loses lock soon after the carrier loop. It is also apparent that the semi-codeless L2 loops are
considerably more susceptible to the effects of scintillations than the L1 loops. Indeed, on
average the 1.2 carrier loop loses lock on one or more satellites about 30 times more often
than the L1 carrier loop, although this factor varied significantly from day to day. It is also
apparent that for the moderate levels of solar activity represented by these two months,
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the impact on navigation is relatively minor. On the worst day (16th March 99), the L1 code
loop lost lock on 1 satellite for approximately 1.7% of the two hour period of interest
(roughly 2 minutes in total). For a mask angle of 10°, the minimum number of available
satellites during this period was 8. Consequently, even during these two minutes, the loss
of one satellite would not prevent navigation or even seriously degrade the satellite
geometry. However, it is clear that the effect of scintillations on the semi-codeless L2
channels was significantly greater. On the 16th March 1999 (a bad day), the L2 carrier loop
lost lock on one or more satellites for approximately 27% of the two hour period of interest
(a total time of 32 minutes). In addition, two and three satellites were lost simultaneously

for about 3% and 0.03% of the time, respectively.

5.4.2. A comparison of models with measurements

The PAQ12™ ISM receiver provides measurements of the four scintillation parameters,

S4, Gy, s T and p once every minute. By feeding these parameters into the single link

performance models given in Section 5.2, it is possible to predict the probability of an
outage on the L2 semi-codeless tracking loops. Unfortunately, because the Millennium™
and ISM receivers are co-located and have approximately the same L1 carrier loop
bandwidths, the L1 tracking loops of the Millennium™ would be expected to lose lock at
about the same time as the ISM tracking loops (ie. a deep fade will affect both receivers
simultaneously). Consequently, it is not possible to check the validity of the tracking
thresholds for a full code correlation tracking loop using this approach. Indeed, during the
September 1998 equinox, it was found that on average ISM data was missing from 97% of
L1 code and 95% of L1 carrier epochs for which the Millennium™ had lost lock. However,
as the L2 loops lose lock at much lower levels of scintillation activity, only 54% of L2 code
and 52% of L2 carrier loss-of-lock epochs had missing ISM data. Unfortunately, because

the §, measurements vary so much from epoch to the next, it is not possible to interpolate

between valid measurements to eliminate this problem.

In Figure 5.4-2, the percentage of time that the Millennium™ loses lock is plotted as a
function of §, using data from both the September and March equinoxes (from 6:00pm to
local midnight). Data for which the Spectral Strength, T, is greater than -30dBradians? has
been ignored to ensure that amplitude scintillations have the predominant effect. Included
in the lower panel of this figure is the probability of losing lock on the carrier loop based

on the theoretical analysis presented in Section 5.2 and using the ISM measurements of S,
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(the upper and lower error bars represent *1c values of the measured C/N, from the
Millennium™), If the tracking loops re-acquire the signal shortly after the amplitude rises
above the tracking threshold, then the measured and theoretical probability of an outage
should be comparable. From Figure 5.4-2, this appears to be true until S, becomes large, at
which point the measurement curve begins to flatten off. This flattening is believed to be
the result of deep fades which result in the simultaneous loss of both Millennium™ L1 and
ISM data. Although, these results indicate that the expression for the probability of losing

lock, P, , is relatively accurate, they also suggest that the 1% threshold discussed in Section

3.4 may be relatively conservative.

L2 Code %
k:)
L2 Carrier %

0 0.2 04 0.6 08 1
sS4
Figure 5.4-2: The percentage of time that the L2 code and carrier loops lose lock as a function of S, .

Data for which the phase scintillation Spectral Strength, T, is greater than -30dBradians? has been
ignored. The error bars represent theory based on quiescent L2 C[N, values between 34dBHz

(upper bars) and 44dBHz (lower bars).

An equivalent analysis of the relationship between loss-of-lock and the spectral strength

parameters, T and Gy, s has not been given because of a lack of confidence in the integrity

of the ISM measurements of T and 0'¢p .

5.5. Conclusions

Codeless tracking loops are far more susceptible to the effects of scintillations than full
code correlation tracking loops. However, the different tracking techniques employed in
codeless receivers do have significantly different susceptibilities, with semi-codeless

techniques being generally more robust than purely codeless techniques. The poor
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performance of codeless tracking loops under scintillation conditions may result in a
degradation in the accuracy of systems such as the Wide Area Augmentation System
(WAAS) which rely on dual frequency SPS receivers for the measurement of ionospheric
delays. However, by the time WAAS and equivalent systems become operational, it is
expected that solar activity will have declined to the point where scintillations are no
longer regarded as a significant threat. Also, with the imminent introduction of a second
C/A-Code signal on the L2 frequency, and with approval being given for a future L5 civil
signal, the effects of scintillations on codeless receivers is unlikely to be an issue for future

solar maxima.

Measurements of the strength of scintillation activity and loss-of-lock taken during times
of strong scintillation activity are generally in quite good agreement with the theory. They
also show that because scintillations are very patchy, the chances of losing lock on several
channels simultaneously are very small, even under strong scintillation conditions. This

issue is discussed further in Chapter 9.

164



Chapter 6

Navigation data

In this chapter, the effects of scintillations on the process of demodulating the navigation
data is examined. In Section 6.1, background theory is given which enables the bit error
rates and word error rates to be calculated under quiescent signal conditions. In Sections
6.2 and 6.3, scintillation effects on the navigation data are determined by treating
amplitude and phase scintillation effects separately. It is shown that even under very
intense scintillation conditions, word error rates increase to only a few percent with
amplitude scintillations providing the greatest contribution. The results of these two
sections are then used to determine the combined effects of amplitude and phase
scintillations on the navigation data. Finally, in Section 6.5 the effects of a slowly varying

amplitude waveform on the word error rate is examined.

6.1. Background

The GPS navigation message is broadcast by each satellite and contains information about
the satellite ephemerides, clock and ionospheric correction factors, timing information and
constellation status. The navigation message consists of 25 data frames, each containing 5
subframes and each subframe containing 10 words of 30 bits. Therefore, at a data rate of 50
bits/s, the complete navigation message takes 12.5 minutes to be downloaded by a
receiver. The first three subframes of each frame contain the same clock and ephemeris
information which is considered critical to the operation of a receiver. Consequently, this

information is made available to a receiver at a rate of once every 30 seconds.

In a GPS receiver, the navigation data is extracted from the in-phase channel of the carrier
tracking loop at a point immediately after the pre-detection filters (see Figure 3.1-1). In the
analysis that follows, it is assumed that the carrier tracking loop remains locked to the GPS
carrier and synchronised to the navigation data. Under these assumptions, the in-phase

signal is given by (from Equation (3.1-2))
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Ip = Ad(t —T)cos(p, )+ npp (6.1-1)

where 4 is the signal amplitude after the pre-detection filters, d(z—7) is the navigation
data, ¢, is the carrier phase error and ngp is distributed N(0,0,) where o, =W .
Two new random variables, X, and X;, can be introduced to represent Ip during the
transmission of a binary 0 data bit (d(¢t—7)=—1: Hypothesis H,) and a binary 1 data bit
(d(t—-7)=1: Hypothesis H;), viz

HO: IP=X0=—ZCOS(¢£)+HIP

~ (6.1-2)
HII IP=X1=ACOS(¢€)+V!IP

Under quiescent conditions (ie. no scintillations), A4 is approximately constant and ¢, is

small compared to 1 radian. Consequently, X, and X, can be approximated by

XO =—A+nIP

Xl =A+nlp (6‘1-3)

where A = 4 is a constant. The probability density functions of X, and X; are therefore

fX() (x0)=N(—A’Gn)

(6.1-4)
le (xl )= N(A?Gn )
and the probability of a bit error is given by (see for example Haykin [39])
o 0
P, = p(H, )J.fxo (30 )abxo + P(Hl)_[fxl (o1 Jedxy
0 oo
T 6.1-5
= _[fxo (xo )dxo ( )
0

1 A
==FErfc
2 [chr,, J

where Erfc( ) is the Complementary Error Function!, and p(H,) and p(H,) are the




probabilities of binary 0 and 1 data bits respectively2 This can also be expressed in terms
of the carrier to noise density ratio, C/N, = A’ /(2N0) , and the energy per bit, E, = TA? /2,

as follows

P,= %Erfc(,/T. C/N,)

=1-Erfc[ E_]
2 N,

Under normal tracking conditions, T = 20 ms and C/N, = 41.5 dBHz resulting in a bit error

(6.1-6)

probability of 3-4x 107'%° (this assumes a nominal satellite signal power level of -160 dBW
at the ground and a noise temperature of 530 K).

The probability of a word error, assuming no error correction, is given by (Hegarty [40])

P,=1-(1-n)" (6.1-7)
=mP, for P,<<1

where m is the number of bits per word (30 for the GPS navigation message). This results

in a word error rate of approximately 1072 under the signal conditions outlined above.

Similarly, the probability of a word error in any of the first three subframes (ie. the critical

navigation data) is given by 1-(1-P,)° =3.1x107'%2. These results demonstrate that

under quiescent signal conditions, the bit error rates and word error rates are negligible for

GPS.

In the following sections, the effects of scintillations on the navigation data will be
examined by treating the GPS receiver as a BPSK communications system that is subject to
non-dispersive fading (ie. frequency and time-flat fading). The principal difference in this
analysis over most other analyses is that the signal intensity is assumed to follow the
Nakagami-m distribution, and the resulting bit error rates are linked to the scintillation

parameters discussed earlier.

2 For binary data, p(H0)+ p(H1)= 1.
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6.2. The impact of phase scintillations on navigation

data

In this section, the effects of phase scintillations on the bit error probability will be
examined under the assumption that amplitude scintillations are absent (ie. it will be

assumed that the amplitude is constant).

When the satellite signal is modulated by phase scintillations, the phase error, ¢, becomes
a random variable. Therefore, the random variables X, and X; given in Equation (6.1-2)

become functions of the two random variables n;p and ¢, as follows

X() = —ACOS((})B )+ nIP

X, =Acos(9, )+np (6.2-1)

where the amplitude A is assumed to be constant (ie. for the moment, amplitude
scintillations have been ignored). If it is assumed that the linearising approximations made
in the analysis of the tracking loops are not significantly violated, the variance of ¢, can be
obtained from the linear model transfer function of the tracking loop as follows (from

Equation (3.2-5))

N b _/‘2* - T v By I
E{¢e }“’% __J; (/.Zk +fn2k) (f;)z_l_fz)ﬂﬂ'd/_'-c/Na [HzTC/N,,] (6.2-2)
=0, +04,

where 0';@ and O',;T are contributions to the phase error variance from phase scintillations

and thermal noise respectively. This assumes that the pre-detection filters have a
negligible effect on the phase errors produced by phase scintillations. As the integration
period of the pre-detection filters coincides with the duration of a navigation data bit, this
also implies that the phase errors will remain approximately constant over each data bit.

This is an important assumption on which the following analysis is based.

As X, is now a function of the phase error, ¢, the new PDF of X is given by
x000)= [ Fxojge ol@) Sy, (@)l (6.2-3)
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where fy, (x0|<p) is the conditional PDF of X, given ¢, and f, (¢) is the PDF of

¢, . The probability of a bit error is thus (from Equation (6.1-5))

P, = jfxo (xo )dxo
0

oo oo

:j I.I:Y9|¢£ (xﬂl@)f% (¢)d§0-dxo

0

- .[ Joe (‘P{Jf Xolée (xolp )ex, }dqp
~e 0

[ /1, @P.(04,0)d0

(6.2-4)

where p, =T.C/N,,and P,(p,,¢) is the conditional bit error probability given p, and ¢.

As f Xolde (x0|(p) is distributed N(-Acos(p)0,), the conditional bit error probability is

given by

1 Acos
P(0s,0) = D) Erfc( JEG(‘P)}

- %Erfc(cos((/’)‘/m: )

If it is assumed that the phase errors follow the Tikhonov density function for a Costas

(6.2-5)

loop (Equation (C-6)), the probability of a bit error is given by

/2
P = J' eXP(Pe COS(2¢)).lErfC(COS((p T.C/N, )d(p (6.2-6)
_7;/2 ﬂ’-Io (pe ) 2

where p, =1/ 40'¢2b and oﬁe is the phase error variance from the linear model (Equation

(6.2-2)). Although this result strictly only applies to a system that is based on a first order
Costas loop, it is also likely to be quite accurate for higher loop orders, particularly when
the spectral index, p, is close to 2. The reasons for this were discussed earlier in Chapter 3.

In Figure 6.2-1, the bit error probability and word error probability are plotted as a
function of 0;@ for a first order Costas loop with T = 20ms, C/N, = 41.5dBHz and

B, =2Hz. The maximum phase error variance is set to (13/12)2 radians® which is the rule

of thumb tracking threshold for linear operation (Equation (C-3), Appendix C). Notice that
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0'5@ can be related to the scintillation parameters T, p and f, for a specific loop order and

bandwidth through Equation (6.2-2).
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Figure 6.2-1: Probability of a bit error (left panel) and a word error (right panel) as a function of the
phase error variance, 0';@ , for a first order loop with T=20ms, C/N, = 41.5dBHz and B, =2Hz.

The results presented in Figure 6.2-1 suggest that phase scintillations have a relatively
minor effect on the process of demodulating the navigation data. Even when the phase
error variance is near the carrier loop tracking threshold, the probability of a word error is
only 0.1% (-30dB) and the probability of a word error in any of the first three subframes is

approximately 3% (30P,). As will be shown in the next section, these are much smaller

than the corresponding probabilities under amplitude scintillation conditions with S, =1.

6.3. The impact of amplitude scintillations on

navigation data

In this section, the effects of amplitude scintillations on the bite error probability will be

examined under the assumption that phase scintillations are absent (ie. ¢, =¢, =0).

Under quiescent signal conditions, ¢, is extremely small and the simplifying
approximation cos(¢,)=~1 can be made. However, when amplitude scintillations are
present, occasional deep fading can result in a significant increase in the thermal noise

contributions to ¢, , particularly when the tracking loop bandwidth is wide. Consequently,
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both the amplitude, A , and the phase error, ¢, will become random variables. X, and

X, can therefore be represented by

XO = —ZCOS(¢8)+}'[IP

~ (6.3-1)
X, = Acos(¢,)+np

where 4 is Nakagami-m distributed (Equation (2.1-8)), njp is distributed N (0,0,) and ¢,
is assumed to follow the Tikhonov PDF. In this analysis, it is assumed that the effects of

the pre-detection filters on the amplitude are negligible (ie. A=~ A4, where A is the signal
amplitude prior to filtering). For amplitude scintillations, the Tikhonov PDF is considered

to be a reasonable choice as the phase errors are driven entirely by white, Gaussian

thermal noise. The effective SNR for the Tikhonov PDF is given by p, =1/ 40'52 , where

O'(fe is a function of 4 and is given by (from Equation (3.3-9))

o3, ()=}, (4 ﬂH af "d(f)~ (6.3-2)

For a first order loop, this reduces to (from Equation (3.3-13))

B 11, L 5 (6.3-3)
C/N,|gv 2TC/N,Ay gy

Cq (Z)= Car (Z):

where 4y = Z/ A is the normalised signal amplitude, and gy = g/ A? is the normalised
AGC gain factor. These equations assume that the bandwidth of the amplitude
scintillations is small compared with the nominal loop noise bandwidth B,. The PDF of

X, is given by

o 2
fX() (xo) J J.on|¢ A xol‘P, A)f¢ |A ((PlA)fA A)d(P dA (6.3-4)
0 -m/2
where
fX0|¢E,Z (x0‘¢’A)=N(_ACOS((p)9Gn) (6.3-5)

is the conditional PDF of X, given ¢, and A. Also

2
FonilA)= exp(pI E;S() 2 ol < (6.3-6)
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is the conditional PDF of ¢, given 4 with P =—— 7~ ,and
40, (4)
m A 2m—1 2
LA)= A el A Ao (6.3-7)
T(m){4*) (4%)

is the Nakagami-m PDF for amplitude. The probability of a bit error is then (from
Equation (6.1-5))

J xo )dxo
0
w w2
= I j X()|¢ A xoltp,A)f¢ |4 (‘PlA)fA (A)do.dA.dx, (6.3-8)
0 0 -x/2

]
0
_T J. f¢ |,4 (P|A)f,4 {]:onlqbe,Z(xol(P’A)dond(P-dA
0 -2 0

By substituting the appropriate PDF expressions from Equations (6.3-5) to (6.3-7) into
Equation (6.3-8), the probability of a bit error becomes

T exp(p cos(2(p)) 2m" APl _mA2 lEf ACOS((P) do.dA
! ,!/2 qop.)  Temsay | (&) 2 7 V25, ¢- (6.3-9)

Although a closed form solution to this integral is difficult to obtain, a numerical solution
can be produced for a given nominal (undisturbed) carrier to noise density ratio and noise
bandwidth. To obtain a numerical solution, it is convenient to replace the dummy variable
A with a variable p, which represents the instantaneous carrier to noise density ratio of

the satellite signal. By making the following substitutions

A=42N,p,
6, = N,/T (6.3-10)
(A*y=2C/N,*N,

where C/N, is the nominal carrier to noise density ratio, the following expression can be

obtained for the probability of a bit error

P, J- J cxp(p COS(ZfP)) m"p,"" ex;{ mp, j Erfc(\/Fp:cos((p )d(p dp, (6.3-11)

d ) Tomem, T,
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In Figure 6.3-1, P, is plotted as a function of the intensity scintillation index §j (= 1/ m*)
for a first order loop with T=20ms, C/N, = 41.5 dBHz and B, =2Hz (upper of the two

curves). In this case, the AGC is assumed to be ideal (ie. gy = ZNZ ), and the effective loop

SNR is given by (from Equation (6.3-3))

1
Pe= =
4o, (i)
- C/N, _
4B,| =5+ =
Ay® 2T C/N, Ay

___Th
2B,127p, +1]

If it is assumed that the phase errors are negligible (ie. cos(¢£) =1), the PDF of X, reduces

to

S 00)= [ FrarolA) £ (A)aA (6.3-13)
0
The probability of a bit error is then

F,=|fx, (30 hedxq

8 ot} O}

{f ol (ol L7 (A)dlA i, (6.3-14)

_ m"'Pom_l exp( P, J—;-Erfc(,[Tpo )dpo

9 I'(m).C/N," C/N,

Wojnar [102], demonstrated that this integral could be expressed in terms of an incomplete

Beta function ratio as follows

1 ﬁm}'(m‘{'-a)(m’l/z)
‘Di.' =
2 Blm2) (6.3-15)

1
= Elm/(mﬂx)(m,l/z)

where a=T.C/N,, B(a,b) is the Beta function, B,(a,b) is the Incomplete Beta function,
and 1,(a,b)=B,(a,b)/B(a,b) is the Incomplete Beta function ratio (see for example

Gradshteyn [37]). In Figure 6.3-1, the lower curves represent P, obtained from Equation
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(6.3-15) under the assumption that the phase errors are negligible. These curves show that
for a narrow bandwidth receiver (in this case 2Hz), the direct effect of amplitude
scintillations on the probability of a bit error is far more significant than the effect of an
increase in the level of thermal noise in the feedback path. For wider noise bandwidth’s,
the contributions to P, from phase errors in the feedback path becomes more significant

but are still relatively small (see Figure 6.3-2).
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Figure 6.3-1: Probability of a bit error (left panel) and a word error (right panel) as a function of
S, for T = 20ms, C/N, = 41.5dBHz and B,= 2Hz. The upper curves represent a situation in

which the phase errors have been included (Equation (6.3-11)). The lower curves represent a

situation in which they have been ignored (Equation (6.3-15)).
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Figure 6.3-2: Probability of a bit error as a function of S, for T=20ms, C/N, = 41.5dBHz and
B, = 15Hz. The upper curve represent a situation in which the phase errors have been included.

The lower curve represent a situation in which they have been ignored.
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So far, only the effects of an ideal AGC have been considered. In order to account for the
effects of a non-ideal AGC (either fast or very slow), the linear model variance expression
(Equation (6.3-3)) must be modified to include a non-ideal AGC gain factor, gy . However,
as shown in Section 3.3, when the loop is only subject to amplitude scintillations and
thermal noise, a non-ideal AGC will result in smaller phase tracking errors. Therefore, the
phase errors will have even less of an effect on the bit error rates than has already been
discussed. However, this is not necessarily true when the loop is also subject to phase

scintillations as its ability to track phase variations will be impaired.

6.4. The combined effect of scintillations on

navigation data

When, as is normally the case, amplitude and phase scintillations are present together,
their impact on the navigation data can be found using Equation (6.3-11), but with 0'4%6
based on Equation (3.3-8) rather than Equation (6.3-2). Again, this assumes that the

Tikhonov PDF is a valid choice for the phase error density function (ie. it assumes that

p =2). From Equation (6.3-11), the bit error probability is given by

o /2

exp(p, cos 2(p)) m"p," mp
& L——exp| —— = [~ ErfclyT] do.d (6.4-1)
j ,!/2 do(p.)  T(m).C/N," XI{ C/N, J ttelyTp, cos(p))dp.dp,

nd(f)

where p, =m and 0'% J[|1 -H (f 1 St (f )+|H ’(f, N] ]df from

%
Equation (3.3-8). For a first order 1.Q Costas loop, this becomes

oo

O'¢ (Z J En I‘-—l—--l- 1~ ]
’ —= f +(fAN2/gN)2 (/ +f )u/ C/N"]_gN 2T C/N, dy*gy (6.4-2)

For an ideal AGC (or a fast AGC with a large C/N, and S, < 1/ \2), this reduces to

" £2 T 1
Kl vk P L [+ Tpo] (643
=02 +o2 (d)
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In Figure 6.4-1, the probability of a bit exror is plotted as a function of S, and oﬁep for a
first order loop with an ideal AGC, T = 20ms, C/N, = 41.5dBHz and B, =2Hz. Note that
0'5@ can be represented in terms of the phase scintillation spectral parameters T, p and £,

for a given loop order and bandwidth.
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Figure 6.4-1: Probability of a bit error (left panel) and a word error (right panel) as a function of
S, and o;@ for T = 20ms, C/N, = 41.5dBHz and B, = 2Hz.

It is clear from Figure 6.4-1 that even under very strong amplitude and phase scintillation

conditions (ie. S4 =land O, =04,

- ), the probability of a word error in the navigation

data is only a few percent. Because of the high level of redundancy in the navigation data
(both within the navigation message and between satellites), it is unlikely that this level of
impairment will have much of an impact on a tracking GPS receiver. Indeed, the complete
loss of the navigation data will only affect GPS operation if the outage is long enough for
the ephemeris data to be significantly in error. As the ephemeris data can be regarded as
being accurate for many tens of minutes or more, short losses of a few seconds to minutes
would be inconsequential to a receiver (under sever scintillation conditions, loss of code
and carrier lock would be of more importance). However, navigation data errors may
affect the process of downloading almanac data from a satellite during acquisition, thus

extending a receiver’s time to first fix.
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6.5. A note on word error probabilities

An implicit assumption in the analysis so far has been that the amplitude scintillation
waveform remains approximately constant for the duration of a navigation data bit (ie. for
20 ms). Based on a knowledge of the typical fluctuation rates of amplitude scintillations, it

is expected that this assumption will be valid under most scintillation conditions.

Word error probabilities were calculated by assuming independence between the bit error
probabilities of successive data bits. Consequently, from Equation (6.1-7) the word error

probability is given by

p,=1-1-2)° (6.5-1)

where P, is the average bit error probability. As the bit error probability is conditioned on
the amplitude, this assumption implies that the amplitude is independent between
consecutive data bits. As explained later (see Section 7.3.3 on acquisition) this in turn
implies that the amplitude scintillation waveform must be fluctuating at a very rapid rate.
However, depending on the cutoff frequency of the amplitude scintillation power
spectrum3, f,, it is known that the amplitude waveform may vary quite slowly in relation
to the navigation data. For a slowly varying waveform, there will be fewer, longer
duration deep fades over a given interval of time. Therefore, the occasions during which
the bit error probabilities are at an elevated level are likely to be clustered and associated
with these longer duration deep fades. As the loss of only one data bit is required for the

loss of a word, it is expected that this condition will reduce P, somewhat.

To test this hypothesis, it is assumed that the amplitude remains approximately constant
for the 0.6 seconds duration of a word, but may vary between consecutive words (in fact,
this result will be the same if the amplitude is assumed to remain constant for longer

periods of time). The average word error probability is then

P, = ]:[1 -fi-p, (A)]”] f7(A)dA (6.5-2)

3 f. is a function of the satellite-receiver geometry and the ionospheric drift velocity (see
Appendix G).
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where P,(A) J f Xold x0|A)dx0 ——Erfc[ 7 ] is a conditional bit error probability.
20,

Replacing A with p, gives

T(m).C/N," C/N,

PW=T[1—[1—0.5Erfc(JE )FO:I—MeXp( MPo_ Jdpo (6.5-3)
0

In Figure 6.5-1, P, is plotted as a function of §; for T=20ms and C/N, = 41.5dBHz using
both Equations (6.5-1) and (6.5-3). It is clear that by assuming a slowly varying amplitude
waveform, the word error probability is reduced by as much as 5dB for values of S, near
to one. In practice, it is anticipated that the actual values of P, will lie somewhere

between these two curves.
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Figure 6.5-1: Probability of a word error as a function of S, for T=20ms and C/N, = 41.5dBHz.

The upper curve represent a situation in which the amplitude is assumed to be independent between
successive T second epochs. The lower curve represent a situation in which the amplitude is

assumed to be constant during each word.

Although this approach could be extended to include the effects of amplitude scintillations
on a subframe, the much greater length of a subframe (10 words = 6s) means that the

assumption of a constant amplitude is probably no longer valid.
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6.6. Conclusions

In general, phase scintillations have much less of an effect on the navigation data than
amplitude scintillations. When phase scintillations are at the tracking threshold of the
carrier loop, the word error probability is less than 0.1%, compared to approximately 4%
when S;=1 (assuming a nominal, quiescent GPS signal level and rapid amplitude
fluctuations). However, for a very slowly varying amplitude waveform, the word error
probability can fall to only 1% for S, =1 under the same quiescent signal conditions.
Consequently, even under conditions for which the carrier loop is likely to lose lock, the
word error probability will only be a few percent, assuming that amplitude and phase

scintillations are uncorrelated.

It is considered unlikely that the small error rates associated with scintillations will cause

much of a problem for GPS for the following reasons:

e There is significant redundancy within the navigation message, particularly with regard
to the ephemeris data and clock correction factors which are repeated once every frame
(ie. every 30 seconds).

e There is also significant redundancy between the navigation messages transmitted by
different satellites. Each satellite transmits the same almanac data which contains
health, ionospheric correction factors and low precision orbital information etc. for all
of the satellites in the constellation.

e As much of the navigation data consists of slowly varying correction factors, loss of the
navigation data will only cause a gradual degradation in navigational accuracy.

Nevertheless, during the acquisition process, navigation data errors may have a more

significant effect, particularly is the receiver is tracking only one satellite and is attempting

to download almanac data following a cold start.
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Chapter 7

Acquisition

In this chapter, the effects of scintillations on the acquisition performance of a GPS receiver
is examined. In Section 7.2, the effects of scintillations on the probability of detection and
the probability of false alarm are investigated for a full code period, square-law, Neyman-
Pearson type detector. It is shown that both amplitude and phase scintillations have a
negligible effect on the probability of false alarm, but that amplitude scintillations can
significantly reduce the probability of detection. The effect of this reduced probability of
detection on the mean time to acquire the GPS signal is then examined in Section 7.3 for a
single dwell, serial search strategy for which there is assumed to be no a priori information
about the code phase. This is then extended to a situation in which the correlation time of
the amplitude scintillations is much longer than the time required to execute one pass of
the search domain. The results show that amplitude scintillations increase the mean time
to acquire, and that the effect is more pronounced for longer amplitude correlation times

(ie. for slower scintillations).

7.1. Acquisition model

Acquisition is the process of synchronising a local reference signal to the received GPS
signal prior to closure of the code and carrier tracking loops. The process involves a two

dimensional search for the GPS signal in both Doppler frequency and code phase.

As shown in Figure 7.1-1, the acquisition detector is essentially a square-law detector for

the GPS signal where the test statistic is given by

k
Z=%ZI;2 +0f (7.1-1)
<

The output of the detector, Z, is compared with a threshold, n, to determine whether a
satellite signal is present and whether it is correctly aligned with the reference signal. If the
threshold is exceeded, it is assumed that both the code delay and carrier frequency of the

reference signal are sufficiently close to those of the satellite signal for tracking to begin.

181



plt-1)

Y

I?

W'l
gl

90°

Ed

[F— —>7

=

~.
|

cos(y:t)

Figure 7.1-1: A square-law acquisition detector for a GPS receiver.

Usually, when the reference is incorrectly aligned, it is assumed that the signal produced
at the output of the code and carrier mixers behaves like zero-mean, white Gaussian noise.
However, because correlation sidelobes! may be present, particularly during C/A-Code
acquisition, this model is strictly not correct and a more accurate approach is to assume
that a signal of much lower strength is present under these conditions [92]. In the analysis
that follows, the white Gaussian noise model will be used predominantly, and the error in

this model will be discussed in Section 7.2.2.

7.2. Detection and false alarm probabilities

For an IF signal of the form A(t)p(t —7)d(t - t)cos(wyrt + (1)) +n(r) and a reference signal

of the form 2 p(t—f)cos(cf),FHd; ), the I and Q signals immediately after the pre-detection
filters are given by [20]
~ sin(w,T/2)
1= =2 B e, Joslo e-7/2) 0, () 1)
€

0= )it~ 2D, in, =172+, )+ ()

(7.2-1)

where w, =W —@dy is the error in the frequency estimate, 7, =7—7 is the error in the
code delay estimate, ¢, ()= ¢(t)- ¢ is the phase error, and R(7) is the code autocorrelation

function (Equation (4.1-1)). These two expressions assume that the amplitude, A(t), and

! Correlation sidelobes can result from correlation between the reference signal and another satellite signal, or

between an incorrectly aligned reference signal and the desired satellite signal.
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the phase, ¢(¢), of the GPS signal do not change appreciably over the T second integration
period of the filters, and that the navigation data does not change sign. As T is typically of
the order of a few ms, these conditions are usually met, even in the presence of

scintillations.

For a typical GPS receiver, the separation between bins in the Code/Doppler search
domain is of the order of % a chip and 3/(4T) Hz respectively [20]. T can be made quite
small for strong satellite signals (eg. 1ms for a 750 Hz bin spacing), but must be large for
weak signals (eg. 10ms for a 75 Hz bin spacing). Increasing T to account for weak signals
will result in longer search times, even if the dwell time in each bin, kT, is kept constant, as
the number of Doppler bins required for a given frequency uncertainty will increase. As
the signal strength is rarely known a priori, assumptions must be made about the receiver
antenna gain pattern and the satellite signal power etc. in order to obtain a good estimate
of the signal strength. However, such assumptions are unlikely to take into account effects

such as obscuration and attenuation by nearby obstacles, nor the effects of scintillations.

In the analysis that follows, it is assumed that if the correct bin is selected in the

Code/Doppler search domain, 7, and @, will both be zero. If the bins are separated by

7, chips and @, radians/s, the maximum error in this assumption will be

sin(w,T/4)

0T /4 212 R(ts/2) (7.2-2)

=

To account for this error, the GPS signal power can be multiplied by a correction factor,
&%, prior to calculating the probability of detection. If, @ =27%3/4T radians/s and

75 =} a chip, this correction factor will be -4.6dB.

By assuming , =7, =0, the I and Q samples produced at the output of the pre-detection

filters for a correctly aligned reference signal can be represented by

= Zz‘ COS(%‘ )+ny

~ (7.2-3)
Q; = 4;sin(p, )+ noi

The navigation data, d(f—7), has been ignored in these expressions as it will be eliminated
by squaring in the subsequent stage. When the reference signal is incorrectly aligned, it is

assumed that I; =ny; and Q; =ny;.
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The probability density function (PDF) of the test statistic, Z, in the presence of noise only,
or in the presence of an incorrectly aligned signal (Hypothesis H,) is given by the central

chi-squared distribution with 2k degrees of freedom [84]

k
k Pal zk
S P e B 78

where, 6,2 = N, /T is the thermal noise variance on either the I or Q channels and k is the

order of the post-detection integrator. The PDF of the test statistic in the presence of a
correctly aligned satellite signal (Hypothesis H;) is given by the non-central chi-squared

distribution with 2k degrees of freedom [84]

(k-1)/2 o1 ~2
S, @)= #[—Z—] Tos ["A‘/f Jexp[— e 4 )] 220 (7.2-5)

4* o, 20,

where 4 =0, V2T C/N, is the signal amplitude immediately after the pre-detection filters,
and I, ;( ) is the modified Bessel function of the first kind of order k-1. If a detection

threshold of 7 is chosen, the probability of a correct detection is given by

! . ~ . (7.2-6)
=J. k [L](_)/ 1 kiz exp —kZ+A2 dz
, 20, L4 g2 20,

and the probability of a false detection (false alarm) is given by [84]

e B g1
— ._k_z Z_.'exp ._iz dZ (7.2'7)
n 26» F(k) 20::
k=1 _rj
=exp(-n) YT
=0 J

where n'=k11/ 26,% . As the random variables, I2+Q?, generated at the output of the
square law detector are independent, the Central Limit theorem can be invoked for large
values of k to allow Z to be approximated by a Gaussian distribution. The corresponding

probabilities of detection and false alarm are then [84]
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_ o B-rk
Fa “Q[ Jir2r } (7.2-8)

Py, =0(B) (7.2-9)

n

where Q is the Gaussian probability integral, =\/;(2 ! > —1] and y=4° / 20,° is the

signal to noise ratio.

Equations (7.2-8) and (7.2-9) (or (7.2-6) and (7.2-7)) can be used to select the design

parameters k and 7 once the required values of P; and P, have been chosen for a given

application. 6, can also be adjusted through the pre-detection integration period, T, but
is restricted somewhat by the presence of navigation data and by uncertainties in the

carrier Doppler.

From these equations it is clear that Py, is not a function of the GPS signal characteristics,
and so will not be affected by scintillations. However, F; is a function of the GPS signal

amplitude, 4, and so will be directly affected by amplitude scintillations. In the presence
of amplitude scintillations, the PDF of the test statistic Z under Hypothesis H; becomes

conditional on the amplitude, 4, and can be represented by le H Z(ZIA)' The marginal

PDF of Z|H, is thus

Fai @)= [ foym, @AY £ (A)dA (7.2-10)
0

where f5 (A) is the Nakagami-m distribution for amplitude (Equation (2.1-8)). The

average probability of detection is therefore

Po=[| [ fopuy,2@A)S5 (A)dA].dz
n Lo

_[fZ|H1,Z (ZlA)dZ]f; (A)dA (7.2-11)

n

Il
O ey §

P;(A)f7(A)dA

I
S §
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where P,(A) is the probability of detection as a function of the signal amplitude and can
be obtained from either Equation (7.2-6) or (7.2-8). In Figure 7.2-1, P, is plotted as a
function of S, (=1/ Jm ) for five values of C/N, and for P, =0.01% (using Equations
(7.2-8) and (7.2-9)). It is clear from this figure that the probability of detection decreases as
S, increases, and that the effect is more pronounced for smaller values of C/N, .

Consequently, satellite links that penetrate the peak of the ionospheric anomaly at low

elevation angles are likely to have the poorest acquisition performance (C/N, is likely to

be lower and §, larger under these conditions).

0.95r
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0.8
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0.7
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0'550 0.2 0.4 0.6 0.8 1
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Figure 7.2-1: P, as a function of S, for five values of C/N, (32 to 40dBHz in 2dBHz steps).
T=1ms, k=20, and P =0.01%.

By inverting Equation (7.2-8) and solving for the signal to noise ratio, an equivalent C/N,
for quiescent ionospheric conditions can be obtained that will produce the same

probability of detection as Equation (7.2-11). If « is defined as the inverse of Equation

(7.2-8) and we let P; = P;, we have

a=0"(7,)
_B-vk (7.2-12)
142y

where ¥’ is the equivalent signal to noise ratio and § is constant for a given P, . Solving

for ¥’ gives
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Y = [a2 + Bs/;+|a|\fa2 +2[3w/;+k]/k (7.2-13)

from which the equivalent C/N, can be obtained using C/N, =y’/T. In Figure 7.2-2,
C/N, is plotted as a function of S, using the same five values of C/N, that were used in
Figure 7.2-1. It is clear from this figure that C/N, decreases as S, increases and that the

effect is more pronounced for large values of C/N,, .
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Figure 7.2-2: Equivalent C/N, as a function of S, for five values of C/N, (32 to 40dBHz in
2dBHz steps). T=1ms, k=20, and Py, =0.01%.

7.2.1. Phase scintillation effects

If 7, and @, are assumed to be zero when the correct Code/Doppler bin is selected, the
test statistic, Z, can be represented by Equation (7.1-1) with J; and @; given by Equation

(7.2-3). By making the following substitutions

np =N COS(%') +ng Sin(%‘)

Roi = Rei Sin(q)ﬁi ) i COS((I)E,- ) (te2-12

where n,; and ng; are uncorrelated, zero-mean, baseband Gaussian noise processes with

variances of 6,2 = N, /T, the test statistic becomes
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1~ (
Z = EZ(AI + nci)z + n?i (72'15)
i=1
In this form, it is clear that the carrier phase (and therefore phase scintillations) do not
affect Z and so will not influence the detection process for acquisition, provided that the
phase does not vary significantly over the integration period of the pre-detection filters. A

measure of the phase variation over the integration period of the filters is the expectation

of the phase variance over that period. This is given by

O,¢PT2 :E{%JT[% (u)—qu]z.du} (7.2-16)

f
where 471, Jq)p (u)du is the average value of ¢y (t) over a T second period (which is
Ty

also the output of a T second integrate and dump filter which operates directly on the

phase). Equation (7.2-16) can be simplified as follows

2oL j.[E{‘pp (”)2 }_ 2E{¢p (u)@-p }+ E{apz Hd”

r =T
(7.2-17)

=Ry, ©)- 2E{¢p Jd’p ”)du}"'E{q’P }

=T

=&, 0)-£{3,}
where Ry, ©0)= J.S¢ )df is the power in the phase scintillations prior to filtering,

E{¢7p2}= I |G(f jz.Sq,p (f)df is the power in the phase scintillations after a T second

integrate and dump filter which operates directly on the phase, and

G(f)=sinc(fT )exp(~ jafT) is the transfer function of such a filter. Thus,

04y = J1-I60 P ]s,, ()

(7.2-18)

—“1 e ](f Do
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This can be rearranged to obtain a threshold, T, below which the approximation can be

considered to be valid, viz

_ Yopr z‘n.-
= (7.2-19)
[l~smc(ﬂ") ]
) s

where G¢PT 2‘ is a threshold variance.
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Figure 7.2-3: Threshold T as a function of f, for a threshold variance of 1 rad?, T=10 ms and
p=2.5.

In Figure 7.2-3, the threshold spectral strength, T, is plotted as a function of f, for a
threshold variance of 1 rad?, T=10 ms (a typical upper limit) and p=2.5. It is clear from this
figure that the spectral strength must be enormous in order for phase scintillations to cause
a significant deviation in the carrier phase over a typical filter integration period. By
comparison, a typical large value for the spectral strength parameter in equatorial regions
during high solar activity is about -20 dBW/Hz (ie. about 40dB below the values given in
Figure 7.2-3). Consequently, for the acquisition model described earlier, the effects of

phase scintillations can be ignored.
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7.2.2. Correlation sidelobes

The impact of correlation sidelobes on the probability of false alarm can be found by

obtaining a new Py, based on the probability of detection equation (Equation (7.2-8)), but

using a signal level that is significantly less than the nominal GPS signal level. For the GPS
Gold codes (the C/A-Code), the largest sidelobe is approximately 22dB below the
correlation peak, although this can vary by several decibels depending on the Doppler
offset [87] & [47]. Consequently, the worst case Py, will be associated with a very strong

satellite signal that is producing a sidelobe at the maximum level.

0.1

0.08f

0.06f

Pfa (%)

0.04

0.02f

Figure 7.2-4: }_’fa for a peak sidelobe level of -22dB as a function of S, for five values of C/N,

(32dBHz to 40dBHz in 2dBHz steps). T=1ms, k=20, and the design Py, =0.01%.

In Figure 7.2-4, the average false alarm probability, }—’ﬁ,, obtained from Equation (7.2-8)
using the maximum sidelobe level is plotted as a function of §, for the same five values of
C/N, that were used in Figure 7.2-1. The threshold, 7, has once again been chosen for a
design P, of 0.01% based on the assumption that the input to the detector is white
Gaussian noise when the desired satellite signal is incorrectly correlated. It is clear from
these plots that }_’fa increases as S; increases, and that the effect becomes more

pronounced as the GPS signal level increases. This is because enhancements in the
sidelobe levels caused by amplitude scintillations only become a problem when the GPS

signal level is relatively large. For small signals, the sidelobe energy remains below the
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noise floor at the output of the pre-detection filters, even when the signal level has been

significantly enhanced.

The results given in Figure 7.2-4 are based on the maximum sidelobe level which will only
occur infrequently. In [87], the cumulative probability distribution function of the sidelobe
levels is given for the GPS Gold codes for a range of Doppler shifts from 0 to + 5kHz. This
distribution function is obtained by averaging the results for all 1023 Gold codes in the
GPS family, for all possible code time offsets, and for all possible code pairs. By
differentiating this function, the PDF of the sidelobe levels, f (s), can be found (see Figure

7.2-5, left panel for the case where a Doppler shift of a few kHz is assumed).
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Figure 7.2-5: CDF and PDF of the sidelobe levels for the GPS Gold codes (left panel) and the
corresponding Py, (right panel). T=1ms, k=20, and the design P;,=0.01%. A Doppler shift

between the satellite and local codes of a few kHz is assumed.

The average probability of false alarm for a single interfering signal can then be obtained
by averaging the probability of detection expression over both the amplitude (to account

for scintillations) and the sidelobe levels as follows

Py, =ﬁPd (s 4). £ (4) fs (s)dAds (7.2-20)
00

where f5 (4) is the Nakagami-m PDF for a nominal GPS signal, and s is the sidelobe level

(s and A are independent random variables). When Equation (7.2-20) was evaluated for

the five values of C/N, used in Figure 7.2-4, the effects of sidelobes on P;, were found to

be negligible, even at high S, (see Figure 7.2-5, right panel). However, as the sensitivity to
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sidelobes and scintillations will depend very much on the design parameters P, , kand T,

this result really only applies to this particular example. In addition, these results assume
that only one interfering signal is present. In reality, there may be up to 12 satellites visible
(possibly more in the future) which will increase the probability that a strong sidelobe will

be present.

Van Dierendonck [92] suggests that the detection threshold, n, should be adjusted to

account for the worst case sidelobe level while maintaining P, at a desired level. This can

be achieved by solving the probability of detection equations ((7.2-8) or (7.2-6)) for n with

Py =Py . and using a signal level that corresponds to the maximum sidelobe level. If

this is done, the tracking threshold, 1, will be substantially larger and the effects of
sidelobes and scintillations will probably be negligible.

Note that because of the extremely low sidelobe levels for the P(Y)-Code, the effect

outlined above will not be apparent during direct P(Y)-Code acquisition (at present, direct

P(Y)-Code acquisition is only available to the US military).
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7.3. Acquisition times

In the previous section, the probability of detection and the probability of false alarm were
calculated for a single cell in the code phase / carrier Doppler uncertainty region. The
detector type used in this analysis was a fixed integration time, square-law detector based
on a Neyman-Pearson detection strategy. In this section, the time required to identify the
correct cell will be examined for a single dwell}, serial search strategy for which there is
assumed to be no prior information about the code phase. It will also be assumed that the
code Doppler is zero, and that the search is only conducted in the code domain (ie. the

frequency of the replica carrier is assumed to be approximately correct).

7.3.1. Acquisition search strategy

In the absence of a priori code phase information, a serial search begins at the start of the
uncertainty region and progresses through each cell in sequence until a successful
detection is made. If a detection is not made before the end of the region is reached, the
search returns to the beginning and is repeated. If a false alarm occurs, time will be
expended in order to verify that the detection is incorrect before the search can continue.
This is usually referred to as verification time and may include the time required to re-run
the detector on a particular cell, or the time associated with a failed attempt to revert to
code tracking mode. The total time required to make a correct detection is therefore a

function of the time spent in each cell (the dwell time, T; = kT ), the number of cells in the
uncertainty region, N, the probability of detection, P;, the probability of false alarm,

Py, , and the verification time, T, =K,T; where K, isa factor greater than one.

In the absence of scintillations, the mean time to acquire, T ACO 1 and the RMS acquisition

time, 6 4¢¢, for a uniform serial search are given by [84]

— 2-P
TACQ =NCTd(Kvaa +11: P d] (7.3-1)
d

! Single dwell: The detector’s decision is based on a single, fixed time observation of the received signal plus
noise. The alternative is multiple dwell in which multiple observations are used to verify the first observations
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I 1 1
o =N:T K P +1) [—+——— (7.3-2)

In Section 7.2, it was shown that when scintillations are present, the probability of

detection becomes a function of the signal amplitude, 4 (if sidelobes are ignored, the
probability of false alarm will be unaffected by scintillations). The average mean time to
acquire and the RMS acquisition time must then be found by taking an ensemble average
of these two parameters over all possible realisations of the amplitude. In order to do this,
assumptions must be made about the statistics of the amplitude over the time period
required for acquisition. In particular, the joint statistics of the amplitude at time periods

separated by N T, seconds must be determined (ie. the time between successive re-visits

to the correct code phase cell, assuming that no false alarms have occurred).

In the following sections, it will be assumed that the amplitude is approximately constant
during the relatively short dwell time, T, in each cell, but that significant variations may

occur between the start and end of the acquisition process. As before, it will be assumed

that these variations are described by the Nakagami-m distribution.

7.3.2. Mean time to acquire

This analysis closely follows that given by Peterson & Ziemer [72], but has been modified
to account for variations in the signal amplitude between successive re-visits to the correct

code phase cell. In order to keep the time between re-visits, 7,, constant, it will be
assumed that false alarms do not occur, and so T, =N.T,;. The justification for this
assumption is that most acquisition systems are designed to have a very small P, such
that K, P, <<1. Therefore, from Equations (7.3-1) and (7.3-2) it is clear that to a first

approximation, the mean and RMS acquisition times are largely unaffected by false

alarms. As Py, is also not affected by scintillations (if sidelobes are ignored), it is expected

that this approximation will also hold under scintillation conditions. The error in this

approximation will be discussed further in Section 7.3.4.

If the nth cell is assumed to be the correct code phase cell, and there are j missed detections,

then the total acquisition time is given by
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Taco(n j)=nTy + jNcTy (7.3-3)

where the first term represents the time required to detect the correct cell on the final
(successful) pass, and the second term represents the time expended in the j unsuccessful
passes. The probability of this event occurring, assuming that there is no prior information

about the location of #, is given by 2

B nildy)=~ Pd CGOTTh-PiGn) (7.3-4)

i=l

where 4 g = [ZS,ZS_I, A 5y, A, j] is a vector that represents the amplitude of the GPS
signal at the times during which the acquisition detector is testing the correct code phase
cell (ie. A, ; = Alt, ;) where ¢,_; is the time corresponding to the (j-i +1)’h pass through
the correct cell, and ¢,_; —t,_;; =T,). As a function of ASJ, the mean time to acquire is

therefore

TACQ(—S_] nj{TACQ n.]) S_]}
=22TACQ("aJ')Pr(”,J'|Esj)

n=1 j=0

(7.3-5)

By taking the expectation over all possible realisations of 4 o » this becomes

Tycp =Ej, -{TACQ @sj)}
R oo (7.3-6)

_ZZE 4, {TACQ (. )P, (n J |ASJ )}
n=1 j=0 ]
Substituting Equations (7.3-3) and (7.3-4) into the above expression gives

Do =—2[n2E {Pd(A 12 »]}

N n=l| j=0 i=1

NS JE3, {Pd(A )ﬂ i-P,A, )]H

J=0 i=1

(7.3-7)

[{]
2 By definition, | [ £()=1.

i=1
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In order to obtain a closed form solution to this expression, it is necessary to simplify the

following two terms

Tem1- Y £ j{Pd(Zs)ﬁ -~ (Zs_,-)]} (7.3-8)
j=0 * A

Tema:iﬂgsj {Pd (4, )ﬂ f —Pd(Zs—i)]} (7.3-9)
j=0 i=1

These terms can only be simplified once the joint statistics of the amplitude scintillations

have been established. This will be discussed next.

7.3.2.1. Amplitude correlation times

The correlation time, Ty, of amplitude scintillations is a function of both the Fresnel zone

radius, zp =,/h,./l 3, and the relative velocity between the satellite ray path and the

irregularity structure (which in turn is a function of the irregularity drift velocity, the
receiver velocity, satellite motion and satellite/receiver geometry). Ty is typically of the
order of a few seconds, but may extend to a few tens of seconds if the ionospheric pierce
point tracks the irregularity drift [50]. For a receiver that is attempting to acquire the GPS
signal with no prior information about the code phase (ie. a cold start), the number of cells,
N, is typically of the order of 2046 (ie. 2 x the number of code chips in the C/A-Code
assuming a cell spacing of %2 a code chip). For a dwell time of 20ms, this equates to a re-
visit time, T, = NoT,, of 41 seconds. Consequently, for a cold start it is likely that the
correlation time of the amplitude will be much less than the time to re-visit the correct cell.
This situation is discussed in Section 7.3.2.2. However, if a receiver is re-acquiring
following a relatively short period of loss of lock (ie. a warm start), the correlation time
may be greater than the re-visit time. The re-acquisition times of modern GPS receivers
following a period of signal loss of greater than 1 minute are typically less than a few

seconds (GPS World, January 2000, pages 34-54). Consequently, for such receivers, T,
would be expected to be only a few seconds which may be less than 77 . This situation is

discussed in Section 7.3.2.3.

3 h; is the height of the ionospheric pierce point as discussed in Section 2.1.
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7.3.2.2. Short amplitude correlation times

If it is assumed that the amplitude correlation time is much less than the re-visit time (ie.

during a cold start or in the presence of rapid amplitude scintillations), it is likely that the

individual amplitude values in the 4 o vector will be independent (see Section 7.3.3 for a

justification of this assumption). Consequently, the joint PDF of zsj becomes the product

of the individual marginal PDFs as follows

fa, B KoKz &ey)= 17, &) Bea)rg, B3, By) 310

where each marginal PDF follows the Nakagami-m distribution. The expectation

expressions within Equations (7.3-8) and (7.3-9) can then be simplifies as follows

E; {Pd(A )]"[ - Pd(AH)]}

=1

oca

P&, )H[1 Pd(As_l)]f ( . K, )&, ...d&,_,

i=1

O"—u8
o'~——-.

(7.3-11)
&mﬂhmaﬁ()mﬁhmw@ﬁ

O"—.R
0'-.8

=Ey {Pd(is)}]%[ [1 Ej i (As—,)}]

=B, (-7
This result assumes that the amplitude scintillations are a stationary random process, and

so P, =E i {Pd (K,-)}= E 7 {Pd (Kk )}. Consequently, Equations (7.3-8) and (7.3-9) reduce to

Terml=Y P, (- ;) (7.3-12)
j=0

Term2= Y jB;(1-F; ) (7.3-13)
Jj=0

Substituting these two terms back into Equation (7.3-7) results in the following expression

= 7, Y| =, _\; o
Tyco =N_dcz nzpd(l_Pd)J +chjpd(l—Pd)J (7.3-14)
1| =0 =0
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This expression has the same form as that derived by Peterson & Ziemer [72] (ignoring
false alarms), except that the standard probability of detection has been replaced by P, .
As shown by Peterson & Ziemer, Equation (7.3-14) can be reduced to

- T
Tyco =—d+Nch[

2

2-7,
7

(7.3-15)
2-P, _
=NcT, —2—5—— for large values of N and F,

Indeed, as this result assumes that 7, is large enough for the amplitude to be independent
between successive re-visits, the additional verification time associated with false alarms

will not alter the statistics of Esj. Consequently, the effects of false alarms can readily be

incorporated to obtain (see Peterson & Ziemer for a justification of this step)

2 —1‘3,]
(7.3-16)

Tio =N-T K, P, +1] —
ACQ Cd(vfa {zpd

The percentage increase in the mean acquisition time as a result of scintillations is then
found by dividing Equation (7.3-16) by (7.3-1) as obtain

T;tc'QLcim _Fa 2-7) 7.3-17
PC-P,) i

Ticol
ACO |16 scint

where P, and P, are the probabilities of detection in the presence of scintillations and in

the absence of scintillations respectively.
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Figure 7.3-1: Mean acquisition time ratio as a function of S, for C/N, =32 to 40 dBHz. T=1ms,

k=20, P, =0.01%.
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In Figure 7.3-1, Equation (7.3-17) is plotted as a function of S; for five values of C/N, .
The worst case increase in the mean acquisition time is by a factor of approximately two,
although this corresponds to quite a low quiescent C/N,. However, at normal signal

levels (around 40dBHz) the increase in the acquisition time is relatively small, even under

strong scintillation conditions.

A similar argument can be used to demonstrate that the effects of scintillations on the RMS
acquisition time can be found by substituting P, in place of P; in Equation (7.3-2). Again,
this only applies to the situation in which T¢r is much less than 7, . The corresponding

RMS acquisition time ratio is therefore

O 4co|.. P, |P,2-12P; +12
lscmt - dJ d d (7.3-18)

P\ P -12P; +12

(o
4cQ no scint

In Figure 7.3-2, the RMS acquisition time ratio is plotted as a function of S4 for the same
four values of C/N, that were used in Figure 7.3-1. From these two figures, it is clear that

both the mean and the spread of the acquisition times increases.

35 ; : ; :
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S4

Figure 7.3-2: RMS acquisition time ratio as a function of S, for C/N, =32 to 40 dBHz. T=1ms,
k=20, P, =0.01%.
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7.3.2.3. Long amplitude correlation times

If the correlation time of the amplitude increases, or conversely the re-visit time decreases,

it may no longer be valid to assume that the components of _Z_sj are independent. Under

these conditions, it is not valid to represent the joint PDF of _Zsj as the product of the

individual marginal PDF’s, as in Equation (7.3-10). The difficulty that arrises under these

circumstances is that because the joint PDF is unknown, the two expectation terms in

Equations (7.3-8) and (7.3-9) cannot be solved. Therefore, an expression for TACQ cannot

be found. Indeed, if the joint PDF were known, it is likely that the complexity involved in
attempting to solve Equation (7.3-7) would be so high that a closed form solution would

be very difficult to find.

The approach used here to achieve an increase in the correlation time of the amplitude

while still allowing T’ 4co to be solved in closed form is to simply repeat amplitude values

within the original sequence. For example, if each amplitude value is repeated once only,

the original sequence becomes

~ ~

b = 4, (A =4,) 4, (A =4.,) 4., ..} with probability %

T =E,=44) A4, (G =45) A, (g =4,5) ...] withprobability %

(7.3-19)

where now only every second amplitude value is independent (ie.
p(X,.,X,._n)= p(K,-)p(Ki_,,) for |n|>1). Based on this model, the joint PDF’s of the

amplitude sequence become

5?2 Ks—l s Ks—z )= %p(zs—Z ) [p(;is b(zs—l - Zs—Z )+ p(zs—l b(zs - Z -1 )]
(7.3-20)

p (Ns—3 ) |;D(Zs b Zs—l - Zs—2 )p (ZS—Z )+ p (‘Zs—l }S(Zs - ZS—l b(ZS—Z - Zs—ii )]
etc. for j

where the notation p(Z,») has been used in place of f- p? (K,-) to improve clarity, and &( ) is

the Dirac Delta function [39]. The joint PDF can be generalised for arbitrary values of j to

give
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p(zs' “"Zs_j Jjeven

a2 N N 2, _ N
= %P(As- j ) IL[ p(As—2q+l )5(As—2q+2 — A 2411 )"‘ IL[ p(As—2q+2 )5 (As—2q+l =A%, )]
(7.3-21)

| q:l =1

oA, ... 4 -

1 7 N(j—12~ " x ~ ~(j—12~ » ~
= Ep(As—j ) [p(As ) l-fp(As—Zq )S (As—2q+l - As—2q )+ o (As - As—l ) l—fp(As—ZqH }5 (As—Zq - As—2q—1 )]

q=] q:l

The sequence A’ 4 is wide sense stationary and the marginal density functions, p(Z,-), are

again described by the Nakagami-m PDF. The autocorrelation function of 4 o i givenby

R(nTr)= E{Zizi—n}
(7.3-22)

Zizi—np(Ai' o - )dZi 'dZi—"

O ey §
O by §

where 7 is an integer. As it has been assumed that amplitude values separated by more

than one sample are independent, the autocorrelation function reduces to

RO)=E{#* - £*
R(T,)=E{f =@}, |o>1

0o 00
~

R(T r ) N jjzizi—lp(zi’ 4 )dzi-dzi—l (7.3-23)

where R(0)2R(T,)2R(nT,) as A% > (X )2 . Consequently, the correlation time of the
amplitude sequence is now between T, and 27T, seconds (originally, it was less than 7,

seconds).

The joint PDF of 4 5 (Equation (7.3-21)) can be used to obtain closed form expressions for
Equations (7.3-8) and (7.3-9), which in turn can be used to derive a simplified expression

for T ¢, . Expanding Equation (7.3-8) gives
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terml=Ey {Pd (Zs )[1 +0 (Zs—l )+ 0 (Zs—l b(zs—z )+ Q (Zs—l b(ZS—Z b(‘zs—ﬁi )+ - ] } (7.3-24)

where E, =E£,sj for j >, and Q(Zi)= [I—Pd(Z,-)]. By taking account of the two

L2 goo

separate amplitude sequences in 4 5 (see Equation (7.3-19)), this can be reduced to

term1 = %E 24 {P 2 (A, )[1 +0(@ 2+ 0 + () 0 )+ O, f O, +- ]} +

£ 500

%E P {Pd (Zs—l )[1 + Q(Zs—l )+ Q(Zs—l p (Zs—3 )+ Q(Zs—l )Q(ZH )2 + Q(Es_l D(ZH )ZQ(ZS_5 )+ . ]}

£2 go0

(7.3-25)

where £_, =E_, and E_, =E_, for j— . Using properties of the expectation such
500 Lsf 500 Lsf

as EZ N {Pd (Zs b(zs_z ) }= Eq {Pd (Zs )}E i {Qd (‘Zs——Z )}, Equation (7.3-25) becomes

term1=% P, [1+5][1+E+—Q—22 +---etc] + P + }.'JC,,_Q[1+6][I+E+E2 +---etc]]

3
2

7, +[F, +Po]1+Q] i?"]
=0

E+[za—?f][z—mi§"]
h =
(7.3-26)
where Q =1-P,
E:E{[l—Pd(Z,.)]Z}ﬂ—zE, +p?
Pd_Q=E{Pd(Zi)[1_Pd(Zi)]}=Fd _Pd2
However, as
50" -3[1-(n _P—;)]",and
py =0
0 < 7:7[1—Pd(A,)]2p(Zi)dA, < }p(Z,)dA, -
0 0
we can say that
— |
20" =——= (7.3-27)
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Therefore, Equation (7.3-26) reduces to

1

P, +[21—’d _P_dz] -7, ]_:_:2
[2Pd _P ] (7.3-28)

terml= l
2

=1
This result is the same as that obtained for both the constant amplitude and the

independent amplitude sequence. In a similar way, Equation (7.3-9) can be expanded

using the 4’ 4 model from Equation (7.3-19) to give

em2=15_, {r,(3,) 0l 2+ 200 o +30(4 2V Ui 1) a0l oF 0o +--]}+

£ g0

LE;‘,{, {pd (i1)[ 0l J+ 2003, 1 o5 )+ 30,1 (Ao +40(d.- 1 Jo(A F ol )+...]}

(7.3-29)

By once again evaluating the two expectation terms, this expression reduces to

term2=—;- P, [Q+2?+3§E+4§2 + ---etc] + ﬁQ-[l+2_Q_+3§+4§E+ ---etc]]

7, [Qi(nzj)? + iz@”] + &_Q[.Ofi(uzj)@—j + i(mj)é?’ﬂ
j=0

j=0 j=0 j=0

-HRo+Eoee+)]Y 0" + z@+l)h+a_é]2j97f]
j=0 j=0

:% [4Pd -3P,2 -3P} +2P, P} ]2 0*" + 2[4Pd ~2F;" ~2P] + Ry P ]ZJ'QZ ]
=0 =0

(7.3-30)

Also,

Yot = Zj[l —[2& P ]]
j=0 j=0
1-2P, + P? (7.3-31)
== _—3
(27 -7} |

By substituting Equations (7.3-27) and (7.3-31) into Equations (7.3-30), it is possible to
show after some manipulation that term 2 reduces to
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P,-2

term2:l [IE’—_ -1 (7.3-32)
2| 2p, - P}

Consequently, although the amplitude sequence 4’ 4 is somewhat artificial, it does allow

Equations (7.3-8) and (7.3-9) to be reduced to simple closed form expressions while still
obeying the requirements that the marginal density functions are Nakagami-m distributed

and the correlations time is greater than that of an independent amplitude sequence.

By substituting these reduced expressions for terms 1 and 2 back into Equation (7.3-7), the

mean acquisition time becomes

_ Ne P, -
TAC =T—d n + Ncl @:— 1
NC n=1 2 2Pd—PdZ

_ T4 Nc(N¢ +1)+ N | [Py “Zi 1 (7.3-33)
Nc 2 2 2}_)(1_}73

=T_d+NCTd[}_)d -2f
2 2[2E—P}]

It is relatively straightforward to prove that this new mean acquisition time is greater than
or equal to the mean acquisition time obtained by assuming an independent amplitude
sequence (ie. T 4co from Equation (7.3-33) > T 4CO from Equation (7.3-15)). This implies
that as the rate of the amplitude scintillations decreases, the mean time to acquire
increases, at least for the amplitude model used in this analysis. However, this effect is
only likely to be important when the time taken to re-visit the correct cell, T, , is relatively
small. This will generally be the case when the receiver is re-acquiring following a short
outage and has a good knowledge of the code phase and carrier frequency. When 7, is
large, such as during a cold start, the probability that a typical amplitude scintillation

sequence will be correlated between successive re-visits is likely to be quite small.

7.3.3. Independence

The analysis given in the previous section was based on the assumption that if the
amplitude scintillation sequence was sampled at a sufficiently low rate, successive

samples would be independent. This section provides a justification for this assumption.
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As discussed in Appendix A, the majority of the amplitude scintillation energy is created
by irregularities of the order of the first Fresnel zone radius. For GPS, this is approximately
300m or so depending of the height and elevation angle of the irregularities. Irregularities
much larger or much smaller than this produce negligible diffraction energy, although
large, extremely dense irregularities may produce refractive fading effects. However,
generally it can be assumed that amplitude scintillation patterns are produced by the
composite effect of numerous irregularities of the order of the first Fresnel zone radius.
The amplitude diffraction pattern produced by an isolated irregularity has the following

general form

EZF_

where zp is the first Fresnel zone radius. It is clear from this diagram that the pattern
decays very rapidly beyond zp /2, and that the spacing between the peaks is independent
of the irregularity size (as zy is not a function of irregularity size). Consequently, if the
amplitude scintillation waveform produced by an isolated irregularity is sampled with a
spacing in excess of zp, it is likely that only one sample will contain a significant amount
of energy from the scintillation pattern. Adjacent irregularities will produce similar
patterns, and superposition can be used to determine the combined effects of these
irregularities (ie. a composite pattern can be obtained). As the sizes and locations of the
irregularities within a larger plume structure can be assumed to be random, it is
reasonable to assume that samples of the pattern taken more than zy m apart will be
approximately independent. If it is then assumed that the irregularities are part of a frozen
flow, and that motion of the frozen flow causes the pattern to move past the receiver with a
relative velocity of v, m/s, then samples taken more than zg /v, seconds apart can be
assumed to be independent. For example, for v, =100m/s, zp =275m, and 7, =20ms
(typical values), then samples taken more than 2.75s apart (N¢ >125cells) will be

approximately independent.
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7.3.4. False alarms

If the amplitude values are assumed to be independent between successive re-visits (ie.
the amplitude correlation time is relatively short), TACQ can be calculated as the sum of
two parts; one associated with detecting the correct cell assuming no false alarms, the
other associated with the false alarm verification time (see for example [84]).

Consequently, under these conditions TACQ becomes (based on Equations (7.3-1) and

(7.3-15))

- 2-P
Tycog =NcTy (Kvaa +1{ > d] (7.3-34)
7

However, if the amplitude correlation time is long enough for the amplitude sequence to
be correlated between re-visits, the additional verification time associated with false

alarms may shift the sequence more towards an independent sequence by increasing the
average re-visit time. This will tend to reduce T, 1cp somewhat. In this section, it will be
demonstrated that the probability that the amplitude sequence statistics are significantly
affected by false alarms is extremely small, even for quite large verification times. This
assumes that scintillations do not greatly affect the false alarm rate, even when sidelobe

enhancements are considered (this is justified in Section 7.2.2).

If we let:

K, =false alarm verification time factor,
T, = K, T, =false alarm verification time,
g = the number of false alarms between successive re-visits (ie. in N cells),
N 4, =the number of cells in which false alarms can occur,
then,
NcT; is the time taken for one unsuccessful pass of the uncertainty region with no
false alarms,
Ny =N¢ —1 as one cell out of N in the uncertainty region is the correct cell,

T, =qK,T; is the false alarm penalty time for one pass,

T, =NcT,; +T, is the total re-visit time,
Ne-1 .
P(‘I|Nfa)=( : )Pfaq(l_Pfa)Nc %
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N¢-1

E{lgV = Ya+P(qN )

q=0 ’

=(NC_1)Pfa

BTN 4o f= (Ne ~1)Py *K, T,

Consequently, the average false alarm penalty time for one pass of the uncertainty region

is T, = (Ne - l)Pﬁ, *K T, seconds. As a proportion of the total time, this is

(NC _I)PﬁJ *Kde - (NC —I)Kvaa
Nels Ne (7.3-35)
= KVPfa

Thus, if K, Py, << 1, false alarms will have a negligible impact on both the average re-visit
time and the statistics of the amplitude sequence. For example, if P, =0.01% (a typical
level), K, << 10,000 is required. In general, this condition is expected to be met, although
the actual value of K, will depend on the verification methodology. For example, re-
checking the cell once will result in K, =1, whereas attempting to establish carrier lock

immediately will probably result in K, >>1 (Campanile [20] suggests that K, >>10).

If K, Py << 1, false alarms can be ignored and Equation (7.3-33) can be used to give the
mean acquisition time for the amplitude model described by Equation (7.3-19). However,
if K,P,<<1 is violated, the additional verification time will tend to increase T_ACQ
somewhat, while the increase in the degree of independence of the amplitude sequence

will tend to reduce T, 4co slightly. As the two effects are linked, it is difficult to account for

them correctly.

7.4. Conclusions

Scintillations increase acquisition times by reducing the probability of detection while
searching the code phase / carrier Doppler uncertainty region. For satellite signals which
have a relatively low signal to noise ratio, the mean time to acquire may increase by a
factor of two or more, and the RMS acquisition time by a factor of three, depending on the

characteristics of the detector and the precise value of the carrier to noise density ratio,
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C/N, . Amplitude scintillations have by far the greatest impact on detection probabilities.
For example, the probability of detection can drop from almost one to approximately 0.8 at
S4 =1 fora C/N, of 36 dBHz (this represents an equivalent C/N, of only 31 dBHz under
quiescent signal conditions). It was also found that for a slowly varying amplitude
waveform (ie. slow in relation to the time required to search the uncertainty region), the
increase in the mean time to acquire may be larger than for a rapidly varying amplitude

waveform.

Phase scintillations, on the other hand, were found to have virtually no effect on detection
probabilities for the square-law detector studied in this chapter. Similarly, correlation
sidelobes produced by competing satellite signals or by an incorrectly aligned signal were
found to have a negligible impact on false alarm probabilities, even under severe

scintillation conditions.

This chapter examined the effects of scintillations on the time to locate the correct code
phase and carrier Doppler for a square-law acquisition detector. However, the problems
that may be encountered when attempting to transition to a state of code and carrier
tracking under scintillation conditions have not been addressed. From earlier chapters, it
seems likely that under very intense scintillation conditions, it may not be possible to
achieve code and carrier lock, even though the correct code phase and carrier Doppler
may be known. Consequently, the acquisition time may effectively be extended to include
the time required for the scintillation patch to pass, or at least for the level of scintillation

activity to drop to the point where carrier tracking can begin.
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Chapter 8

Optimum tracking of the carrier phase

The objective of this Chapter is to determine an optimum phase locked loop for the GPS
carrier that provides minimum phase tracking error under the specified ionospheric
scintillation and dynamic conditions. In Section 8.1, this is achieved by finding an
optimum filter using Wiener filter theory, and then mapping this filter into the structure of
an equivalent phase locked loop. Although in practice it is unlikely that GPS receivers will
be designed with scintillations in mind, this exercise nevertheless gives some insight into
the benefits that may arise from adopting an optimum loop configuration, and the
sensitivity of this optimum to receiver dynamics (normally, the characteristics of a tracking
loop are based solely on the dynamics and nominal signal to noise ratios). In Section 8.2,
the optimum bandwidth for minimum mean square tracking error is determined directly
for each loop order. Although this approach is not as generic as the Wiener filter approach
(ie. it assumes that the filter is a phase locked loop), it nevertheless allows the optimum to

be determined for arbitrary values of the spectral index, p.

8.1. Wiener filter approach

If the GPS signal is modelled as the sum of a phase process, ¢(), and thermal noise, w(t),

which are assumed to be jointly stationary, the Wiener filter is the filter that minimises the
R
mean-square carrier phase tracking error, E {[(p(t)—(p(t)] } Figure 8.1-1 is an illustration

of the relationship between the Wiener filter (represented by the dotted box) and the

equivalent phase locked loop filter, F(s).
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> 9(f)

¢(D)+m)

Figure 8.1-1: Wiener filter model of a phase locked loop.

8.1.1. Causal Wiener filters

As the carrier tracking loop is causal (ie. future phase measurements are unavailable), the
Wiener filter must also be causal. The causal Wiener filter for the tracking loop illustrated

in Figure 8.1-1 is given by (see for example Brown & Hwang [19], Van Trees [95])

Spw
H,(s)=— s ) (8.1-1)
ls
o+ pos

WO | 1S ()

where S,.,, (s) is the power spectral density of the combined signal ¢(z)+w(z), Sprwg (s) is
the cross-spectral density of ¢(¢)+w(t) with ¢(r), + and - denotes all poles and zeros in the
left and right half of the complex s plane respectively (ie. X(s)=X"(s)X (s) where

X*(s)=Xx" (s)* ), and [ ] . denotes the transform of a positive-time function f(z) such

pos
that f(t)=0 for ¢<0. If it is assumed that ¢(f) and w(t) are uncorrelated, then

Spew(s)=S,(s)+S,(s) and S,.,, ,(s)=S,(s). The Wiener filter then becomes

S §
: [ o) ] (8.1-2)
pos

H, (s

B0 50 | 5,6+ su0F

When w(t) is white with a power spectral density of BN, (where B is a constant), the
Wiener filter reduces to (based on the result by Yovits and Jackson [104])

H,(s)=1- AN, (8.1-3)

B [-5'¢(S)"‘ﬂNo]P

The transfer function of the optimum loop filter is then
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F, (.s'):",—ﬂ_”(s)_]

_1 -H, (‘5.)
_ ,-[Slp (s)+ BN, |' (8.1-4)

Initially, it is assumed that the input phase process is produced entirely by phase
1o . : 2, 2YpP2 . .
scintillations with a power spectral density of S¢p N=T\,"+f (ie. dynamics and
other sources of phase noise are ignored for the moment). This is representative of a
situation in which the receiver is either stationary or INS aided and phase scintillations are

the dominant source of phase noise. It is also assumed that the thermal noise term, w(t), is

zero-mean and white, but with a power spectral density that is scaled by the effects of

amplitude scintillations. A justification for this assumption is given below:

If it is assumed that the filter is a phase locked loop with an imperfect AGC, then the

thermal noise at the loop input can be represented by

)= Jﬁ% (8.1-5)

where n(t) is zero-mean, white Gaussian thermal noise at the loop input (ie. on the IF

signal from Equation (3.1-1)), and g(¢) is the AGC gain factor from Section 3.2 which has

been translated back to the IF (ie. g(t)=Z(t)2 +2N,/T >0 for an imperfect AGC — see
Equation (3.3-16)). If n(¢) is assumed to be independent of g(?)1, the mean value of w(t) is

given by

Ep(()}= E{—J;%%}

= E{n(r)}E{

1
t

720

} (8.1-6)

=0.

Therefore, w(t) is zero-mean.

! This implies that the amplitude fades are not too deep (ie. A4 (t) does not become too small), or the AGC

time constant is relatively large.
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The autocorrelation function of wft) is

R, ()= E{w(t) wit +T)}

:E{__ri(il n(t+1) ]
Ve() gl +7)

= E{n(t)nle +r)}£‘m} (8.1-7)
1

= Nn5(r)E{m}.

=N,5()B

where N, =E {n(t)z} is the power spectral density of the thermal noise on the IF, §(r) is

the Dirac Delta function and B is a constant. The power spectral density of w(z) is thus

S, (f)=F{N,6(c)B}

= BN,

(8.1-8)

where F{ } denotes the Fourier Transform. This result demonstrates that w(t) is white,

although it is not necessarily Gaussian. For an ideal AGC (ie. g = 4 (t)), the power spectral

density of w(t) reduces to

1
S, (f)= NOE{‘;E:(S{}

1

“2¢/N, 1-5.2)

In Section 3.2, it was shown that this result is only likely to be accurate for S, less than

(8.1-9)

about 1/ V2. As n(t) is assumed to be independent of g(¢) and o, (¢), it is straightforward

to show that w(t) is uncorrelated with ¢ b (¢), viz

} (8.1-10)
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However, as 4(t) and ¢, (t) are produced by the same ionospheric processes, it cannot
also be said that w(t) and ¢ 2 (t) are independent. Nevertheless, these results are sufficient

to make use of Equation (8.1-3) to find an optimum Wiener filter.

The power spectral density of w() and o, (t) can be represented in terms of the complex

frequency variable s = j2nf as follows

S,.(s)= BN,

27 )P T (8.1-11)
5, )= T
¢p (woz _.Tz)pﬁ

where w, =2nf, is the outer scale size angular frequency. The causal Wiener filter is then

H,(s)=1 ANo

) k¢p (s)+ BNOP

1

@z )’ T/BN, +(cu,,2 —sz)'" 2T

o =)

(8.1-12)
=1-

._1__

X(s)
The denominator of X(s) can be separated into two factors which represent repeated

2 .
poles at s=+@,. These are (w, —s)” /2 and (@, +5)/*. However, the numerator is more

difficult to factorise. The zeros can be found by solving

(7))’ T/BN, +(w02 —s? Y’/ 20

to give

—+‘]w2—(271:)2( T ]21'1’ expmj(1+2n)/p) (8.1-13)
§ =240, ﬂN -CXplery n)p '

o

where 7 is an integer. Consequently, depending on the value of p, there are potentially an
infinite number of zeros and so no unique solution to the factorisation problem. When m

zeros are present, the Wiener filter can be represented by
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1

Hy(s)=1-

+
m

[1G+s) TG -s)

i=1 i=l
2 (o —s VP
(wo +S)P (wo S)p (8.1'14)

(@, +5)*

m

[1G+s)

i=1

where z; are the zeros which are given by Equation (8.1-13). In order to proceed, two

integer values are chosen for the spectral index, p. These are p=2 and p=4.

Casel: p=2
For p = 2, the Wiener filter simplifies considerably as shown below

(@, +5)
(z+3s)

_z- @,

B Z+8

H, (s)z 1-
(8.1-15)

where z = \/ w,? +@2n) T/ BN, . The loop filter then becomes

s+a,

F, (s)=[ 2 ](z—wo) (8.1-16)

Consequently, in the limit as @, approaches zero (ie. for an infinitely large ionospheric

outer scale size), the Wiener filter approaches a first order loop with a loop natural

frequency of

lim P (s)

w"l":wo -0 °

=21 L )
BN,

As the spectral index, p, at equatorial latitudes is typically equal to 2.5 [82], a first order

(8.1-17)

loop gives a good approximation to the optimum tracking loop at these latitudes. The

corresponding phase error variance is given by (from Equation (3.2-1))
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05, = [-Ho N S5, D+ GP S, e 6119

A simplified version of this expression for the case where w(t) is white is (Van Trees [95])

n

Gy, = BN, 2 (2: = Pi) (8.1-19)

i=l

where p; and z; are the poles and zeros of S¢p (s)+ BN, . For p=2, this becomes

G, = BN, (z-®,) (8.1-20)

Therefore, in the limit as @, approaches zero, the phase error variance becomes

lim 2
o, =pN,o0
w, >0 % @, (8.1-21)

= Zn,/TﬁN R
Consequently, the variance increases equally with both the phase scintillation energy, T,
and the amplitude scintillation energy, . However, as would be expected, the optimum
loop bandwidth increases with the phase scintillation energy, but decreases with the

amplitude scintillation energy (the optimum loop bandwidth is proportional to @,], ).

Case 2: p=4
For p=4, the Wiener filter is given by

(@, +5)

o= Y #9)

712y~ 0, +5lz +2, - 20, ] (8.1-22)
2,2y + Sz + 2 |+ 52
where z, and z, are the zeros which are given by (from Equation (8.1-13))
(8.1-23)

21, 23 =Jw02 '?.](2717)2 ﬁN
0
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If we let o,7FjCr) ﬁ; =kexp(T j@), where k= wa + (@) T and
2
0 =atan Q% L} , the zeros become
% VBN,
B, 2= «/;exp(i j6/2)
= k| [cos(0/2) F jsin(6/2)]
= Jk/2 l‘/l +c0s(8) F jf1 - cos(G)] (8.1-24)
= [\/f'c rw,? F jylk -, ] V2
By substituting Equation (8.1-24) into (8.1-22), the Wiener filter becomes
k—w,% +5|+2 +o,’ —2a)0]
H,(s)= : (8.1-25)
k+s1jz(k +a)02)+ s?
In the limit as @, approaches zero, this reduces to
2
H, (5)=— Y2008 * 0 (8.1-26)

s> +2w,5 + w,*

’ T
where , Io =274 o In this form, the Wiener filter represents an active second order
o

loop with a damping factor of { = 1/ V2 and a loop natural frequency of w, (see Table 3-

2). As 4 is the upper limit for the spectral index parameter [27], this result suggests that a
third order loop will not provide an optimum solution unless dynamics are also present.

The corresponding phase error variance is given by (from Equation (8.1-19))

04, = BN,[(z1 — @, ) +(2, —a),,)]

1-
= ﬂNO[ 2k+0,?) - 2(00] (S
In the limit as @, approaches zero, this simplifies to
lim 2
w, > 064’5 - ‘/E'BN" w”,o
(8.1-28)
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Consequently, for p=4 the variance is far more sensitive to amplitude scintillation energy,

B, than to phase scintillation energy, T

8.1.2. Non-causal Wiener filters

Although the non-causal Wiener filter is not a practical filter structure for a phase locked
loop, it does provide a lower bound on the phase tracking error which cannot be

surpassed by any filter type (Van Trees [95]). As ¢, (t) and w(t) are uncorrelated, the

non-causal Wiener filter for arbitrary values of p is given by
S¢p (S )
S¢p (S)+SW(S)

Qr YT
@r P T+ BN, W, -2 )"

H,()-

(8.1-29)

and the corresponding phase error variance is

00 = [B- S, )+ P S. (0l

*Sw U)

j Sy UWul) df (8.1-30)
) Sy, (N)+S,(f)

_-£T+13N D

In the limit as f, approaches zero, this expression reduces to

. I/p
lim 2 2mfN T
B o , i (8.1-31)
£, =0%% psin(ﬂ:/p)[ BN ] p=

Although a closed form expression for the transfer function of an optimum causal filter
cannot be obtained for arbitrary values of p, it is possible to determine the variance for

arbitrary p without the need to factor the input spectrum. This given by (Van Trees [95])
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(8.1-32)

0.01

¥a
(rad;
=
o0

0,006}

Phase error variance
(=)
=
r

=
S

15 2 3 3.5 4

2.5
Spectral Index p
Figure 8.1-2: Phase error variance as a function of the spectral index p for T=—25dBW /Hz,
S4=0, C/N,=415dBHz and f, ~0. The lower line represents the non-causal Wiener filter, the

upper line represents the causal Wiener filter. The two circles correspond to the variance values

obtained from Equations (8.1-21) and (8.1-28) for p=2 and p=4 respectively.

A comparison between these two variance measures is given in Figure 8.1-2 for
T=-25dBW/Hz, S, =0 (ie. B= l/A2 ), C/N,=415dBHz and f, =0. It is clear from these

plots that the errors associated with the causal Wiener filter are always larger than those

associated with the non-causal filter (as would be expected).

8.1.3. Doppler errors

The optimum filters obtained in the previous sections were based on the assumption that
the tracking loops are only subject to scintillations and thermal noise. However, the
tracking loops of a real GPS receiver will also encounter Doppler errors resulting from
relative motion between the satellite and the receiver. An optimum filter which takes
account of Doppler errors can be obtained by adding a Doppler term to the power spectral

density of the input phase process, Sy (s)-
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In the approach taken by Jaffe and Rechtin [45], optimum loop filters were obtained for a
phase locked loop that was subject to thermal noise and dynamics consisting of a step in
position, velocity and acceleration. This resulted in 1s, 2nd, and 3rd order tracking loops
respectively. An equivalent approach can be taken here by adding the power spectral
densities of a step in position, velocity and acceleration to the phase scintillation terms.

From Appendix E, the power spectral density of the dynamics, S, (s), is given by

S, (5)= E{®@ 4 ()x @, (s)' |

2

=—-—5-, positionstep

s

Q’ : (8.1-33)
= +?—, velocity step

2
== acceleration step
s

where ©, Q and A are the magnitudes of the dynamic processes in radians, radians/s and
radians/s? respectively (note that these can be related to the quantities given in Appendix

E through ©=27n7,/A, Q=2mw,/A,and A=2na,/L, where A is the carrier wavelength).

Equation (8.1-33) can be generalised as follows

2
8, (5)=(1)" srz (8.1-34)

where T is either ©, Q or A, and 7 is the order of the dynamics (1, 2 or 3 for position,
velocity and acceleration respectively). The total power spectral density of the input phase

process is therefore

Sy (s)= S¢p (s)+ Soq (s)

P 2 (8.1-35)
- _(ZL)T_/Z+ 1y r;n
(@2 <Y ;
Assuming o, =0 and letting s = j27f gives
T I
Sy (f)= (8.1-36)

—_—t
171” nf )

The corresponding closed loop transfer function is therefore (from Equation (8.1-3))
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e BN, 1.
H,(f)=1 W (8.1-37)

In the analysis that follows, four cases are considered corresponding to p=2 and p=4, and
steps in both position and velocity (other values of p result in filters that do not map into

phase locked loop structures).

Case 1: Position step (n=1), p=2

For a position step with p=2, S, (/) becomes

2
Sy (f) =t =2 (8.1-38)

s ey
Consequently, the optimum tracking loop is 1st order with a loop natural frequency of
/)2
_op | T+ (6/27) (8.1-39)
Note that this reverts to Equation (8.1-17) when dynamics are absent (ie. ©=0).

Case 2: Velocity step (n=2), p=2

For a velocity step with p=2, S, (f) becomes

2
Sy (f )=—T—+—Q (8.1-40)

st ey
Consequently,
(T ]+
—+——=+fN,
Lf* Q)

_[ £+ /v, +0*/[en) gV, Y]
r*/BN,

_ [ (jorf )’ +(j2nf)4+ B ]{(— j2nf ) + (- jonf)A+B ]J
CGons ¥ Clj2nf ¥

_ G2 ) +(j2nf)4+ B
C(j2nf )

[S¢(f)+ﬂNoP o

(8.1-41)
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2
where B= Q , A=AD+2B, C= ’D=(27r)T

. The optimum closed loop filter
\} ﬁ NU ﬁN 0 ﬁN o

is therefore

BN,
H4)=1- [(iznf)z + (iZﬂf)A+B]
C(janf
__ (2n)a+B
(onf ¥ +(j2nf )4+ B
__ (oo plo, +o,
(2 Y +(j2nf Lo, + @

(8.1-42)

which is the transfer function of a 2nd order loop with a loop natural frequency, @,, and

damping factor, §, given by

A _ 1 |@efT

CSNE T\,

(8.1-43)

Consequently, the loop natural frequency (and thus bandwidth) depends only on the
magnitude of the dynamics and the amplitude scintillations. However, the damping factor

is greater than the normal critical damping factor of 1/ V2 by a factor which depends on

all three effects (ie. dynamics and both the amplitude and phase scintillation

characteristics).

Case 3: Position step (n=1), p=4

For a position step with p=4, S, (f) becomes

T ©?

_— (8.1-44)
ft @eny

S¢ (f):

Consequently, by inspection from Case 2 it is clear that the optimum tracking loop is 2nd

order with
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T
W,|, =27 4’ BN

1 o’ (8.1-45)
e e 1 ]
¢ V2 87t21/TﬁN0+

Consequently, the loop natural frequency depends only on the magnitude of the

scintillation activity, and the damping factor depends on all three effects.

Case 4: Velocity step (n=2), v=4

For a velocity step with p=4, S, (/) becomes

T Q?
S = 8.1'46
[ (.f) f4 (2 n)4 ( )

And the optimum tracking loop is a 2nd order loop with

o, =21 T+Q2/(x)*
e BN,

T

Consequently, phase scintillations and dynamics affect the loop bandwidth equally.

(8.1-47)

Although this analysis has not been continued for higher order dynamics, it appears that if
the order of the dynamics is expected to be large (ie. 21 >> p), the order of the optimum
tracking loop will be determined solely by the dynamics. Indeed, at equatorial latitudes
where p=2, it appears that the strength of phase scintillations will only affect the
damping factor, ¢, for a velocity step. The loop order will be determined by the dynamics,
and the loop bandwidth will be a function of both the dynamics and the strerigth of

amplitude scintillations.

8.1.4. Optimum post-loop filters

The optimum loop filters discussed so far have been designed to minimise the phase
errors in the carrier tracking loop. To reduce the effects of scintillations on the phase
estimates without compromising this first design objective, a second filter can be placed in
cascade with the tracking loop. This can be done in one of two ways as shown in Figure
8.1-3.
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Figure 8.1-3: Post-loop filtering schemes to reduce scintillation phase noise in the loop phase

estimates.
The transfer functions of the resulting cascaded systems are

Case 1: K, (s)=5.H,(s)G,(s), and (8.1-48)

Case 2: K, (s)=[1-H,(s)IG,(s). (8.1-49)

The causal Wiener filter for either system is given by (from Equation (8.1-2))

(8.1-50)

S¢(1 ('5) jl

_ 1
Kol e B F 0T,

where S, (s) is the power spectral density of the dynamics (ie. the desired signal for a
GPS receiver) and S, (s)= Soq (s)+ S¢p (s)+ So, (s) is the power spectral density of the input
phase process. Notice that Equation (8.1-3) cannot be used in this case as the noise is no
longer white (ie. it is of the form w(t)+ ¢p (t)+¢o (t)). The Wiener filter represented by

Equation (8.1-50) is designed to minimise the errors from all noise sources while providing
a best estimate of the dynamics ¢,(¢). By substituting Equation (8.1-50) into Equations

(8.1-48) and (8.1-49), the following optimum post-loop filters can be obtained for a causal

system
Case L: Gy, s 0, () ] (8.1-51)
ke YO o | YO -
. 1 S¢d( )
Case2: G, ()= T [[S OB, }] (8.1-52)
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As the cascaded system does not necessarily need to be causal, equivalent non-causal

filters can also be found. The non-causal Wiener filter is given by

SQ”{J' (S)

S¢ (S) + ﬁNU (81-53)

KoNC ("")2
The non-causal filter applies to systems that are not required to provide range and velocity
estimates in real time and so may have access to future phase estimates. Consequently,
filter of this sort may be approximated arbitrarily closely by introducing a processing

delay. Notice that although the cascade represented by K,yc(s) may be non-causal, the

loop filter, H,(s), must always be causal. The two non-causal post-loop filters are given by

Spq )
Case 1: G, (s)= 9d d (8.1-54)
— 10(0)= slS¢ (5)+ BN, —JBN, 15,6)+ BN, T |’ an
Case 2. 500 ) (8.1-55)

) I T

The error associated with the estimate of the Doppler process, ¢, (), is given by

¢ed (z)=¢A(t)—¢d (t) (8.1-56)

The corresponding mean square error is therefore

E{%d () }— f Soe (s)ds (8.1-57)

_jgo
where S%d (s)=|1 -K, (s]2S¢ . (s)+|Ko (sl2 [S¢p (s)+ ,BN,,J is the power spectral density of
the Doppler estimate error. Using Equation (8.1-57), the mean-square error can be found
for the optimum loop filter, H,(s), the optimum causal cascaded filter, K,c(s), and the
optimum non-causal cascaded filter, K,y¢(s). Although a comparison of these errors has

not been carrier out here, it is expected that the optimum non-causal cascaded filter will

produce the minimum error as it has access to both past and future information.
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8.2. Direct determination of the MMSE

The principal advantage of the Wiener filter approach is that it allows the optimum filter
for minimum mean square error (MMSE) to be found without regard for the filter
structure. However, a drawback with this approach is that it results in a filter which does
not readily map into a phase locked loop unless the spectral index, p, is either 2 or 4. By
minimising the mean square error for each loop order directly, it is possible to determine
an optimum loop bandwidth and MMSE for all values of p. The optimum loop order can
then found by comparing the MMSE's for each of the three loop orders and selecting the
minimum. In this section, an expression will be derived for the optimum loop bandwidth
for MMSE for all three loop orders in the presence of scintillations and thermal noise. It
will also be demonstrated that dynamics may strongly influence the choice of an optimum
loop bandwidth and order, and will in many cases take precedence over scintillation

effects.

The variance of the phase tracking error for a phase locked loop in the presence of

scintillations is given by (from Equation (3.2-5))

+o ;T (8.2-1)

where (based on Equation (8.1-8))

g =28, S, (f)

(8.2-2)
=2B, BN,
and (from Equation (3.2-8))
2 T
Oy, = , l<p<2k
% = 1 r T sin((p—1Je/2k) p (8.2-3)
and (from Table 3-2)
2, 1% Order
= nd
B, =13, / 02, 2rd Order G55
Snfu /3, 3" Order
=0,

Therefore, the derivative of ¢ ;e with respect to the loop natural frequency, f,, is given by
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2
d0y,, _

(1-p)rT + 206N

¥,

——=0 gives

Sl

k7 sin((p -1} /2k) ’

_[2aﬂNoksm(Ep)ﬂllw/2k)Tp

(8.2-5)

(8.2-6)

B,,Io is the optimum loop bandwidth for MMSE for all three loop orders. As shown in

Figure 8.2-1, Equation (8.2-5) is guaranteed to return the bandwidth for MMSE as the

variance of the tracking error consists of a monotonically increasing component due to

thermal noise added to a monotonically decreasing component due to phase scintillations.

It can also be shown that for a 1st order loop and p=2, or a 2nd order loop and p=4,

o, lo reduces to the two results given in Section 8.1 for the Wiener filter solution.

MS.E.

| Phase Scintillations

Amplitude Scintillations
& Thermal Noise

Bn

Figure 8.2-1: Illustration of the relationship between the two components of the mean square

tracking error as a function of the loop noise bandwidth, B, . The dotted line represents the sum,

2
O'¢e .
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The corresponding MMSE can be found by substituting Equation (8.2-6) back into
Equation (8.2-1) to give

2
Ope

(8.2-7)

=2aﬂNop[ (p—1)T }"”
o (p-1) | 20BN, ksin([p —1}r/2k)

8.2.1. Doppler errors

The effects of dynamics on the optimum loop bandwidth can be treated in one of two
ways; (i) assume that the dynamics are constant and the loop is in steady state, or (ii)
assume that the dynamics are introduced suddenly and produces a transient error in the
tracking loop. In the first case, the dynamics will either produce a constant error if the
order of the dynamics is equal to the order of the tracking loop, or zero error if the order of
the dynamics is less than the order of the tracking loop (see Appendix E, Section E.1). In

the second case, the transient error can be accounted for by introducing a term referred to
as the Total Transient Distortion, &2. This is based on the approach taken by Jaffee and

Rechtin [45] that was discussed in Section 8.1.3.

Using Jaffee and Rechtin’s approach, the optimisation problem becomes one of minimising

the following variance expression

2 2 2 2
Op. =0pg, TOpp TET (8.2-8)

From Appendix E, the Total Transient Distortion is given by

g2 = j L-H(F)Y*S,, (f)df (8.2-9)

2
— from Section 8.1.3. €% can be expanded to give

_r
@Y

where S, (f)=

2k rZ

. .
er "_‘_L 72 f;lzx- A (279,.)2;. df

(8.2-10)
r2

= , 05<n<k+05
2k @2nf, V" sin(2n — 1} /2k)
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The condition 0.5<7<k+0.5 implies that the loop order must be greater than or equal to
the order of the dynamics in order for &7 to be finite (eg. either a position or velocity step
for a 2nd order loop, but not an acceleration). In principle, the optimum loop bandwidth for
MMSE can once again be found by minimising Equation (8.2-8) with Equation (8.2-10)
used in place of 7. However, in practice a simple analytical expression cannot readily be
obtained for all values of 7, k and p as the derivative of Equation (8.2-8) is a polynomial
with a non-integer order. What can be done is to solve the polynomial using numerical
techniques for a specific set of conditions, or obtain an analytical solution for integer
values of p. Alternatively, it is possible to determine a value for the spectral strength, T,
above which the phase scintillation component dominates over the dynamics component.

This can be found by equating Equations (8.2-3) and (8.2-10) to give

- % sin((p —1}x/2k)f, 772"

= , 05<n<k+05 and 1< p<2k (8.2-11)
@7 )" sin(2n -1}z /26) i

In Figure 8.2-2, T (in decibels) is plotted as a function of T for a 2nd order loop that is
subject to both a position step (I'=0) and a velocity step (I'=Q). In addition, two loop
bandwidths are considered that represent typical upper and lower values for a phase

locked loop.
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Figure 8.2-2: Threshold values of T above which phase scintillation energy will dominate over
dynamics in the selection of an optimum loop bandwidth. The upper two panels represents a loop

bandwidth of 2Hz. The lower two panels represent a loop bandwidth of 15Hz. p=2.5.
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Also note that because of the ambiguity in a sinusoid, it is only necessary to look at
instantaneous phase steps of less than % a cycle (~0.095m at the GPS L1 frequency). For

this reason, © is often modelled as a uniform random variable on (— 7r,7t) such that

' Efe*} =3
Soq (f)= 5 = > The corresponding value of T can then be found from the two
Cwy ()

left panels of Figure 8.2-2 by assuming a position step of 7r/ V3 radians or 0.055m at GPS

L1. Notice that this implies that T must be greater than about -10dBradians?/Hz in the
presence of a random phase step before it will begin to dominate over dynamics in the

selection of an optimum loop bandwidth.

8.3. Conclusions

Using Wiener filter theory, it can be shown that the optimum causal filter for minimum
carrier phase tracking error has the same structure as a first order phase locked loop when
the spectral index, p, is equal to two, and a second order loop when p = 4. Therefore, as p is
usually close to 2.5 at equatorial latitudes, it seems likely that a first order loop will be the
best choice for carrier tracking in an equatorial scintillation environment. However, this
result is predicated on the assumption that amplitude scintillations can be treated as a
scaling factor for the thermal noise power spectral density, and that other direct phase

processes such as dynamics are absent.

For p =2 (close to the typical equatorial value) and for a step in position, the optimum
phase locked loop structure is a first order loop with a bandwidth that depends on both
the strength of scintillation activity (ie. T and S4), and the magnitude of the phase step.
However, for p =2 and a step in velocity, the optimum loop order is determined by the
dynamics (ie. it is second order) and the bandwidth is a function of the magnitude of the
velocity step and the strength of amplitude scintillations only. Although this analysis has
not been carried out for dynamics with higher orders, it appears that if the order of the

dynamics is large (ie. 27 >> p), the order of the optimum tracking loop will be decided by

the dynamics.

Based on a direct determination of the optimum bandwidth for a second order phase
locked loop, it appears that the strength of phase scintillations must be extremely large
before it begins to dominate over dynamics, even when the magnitude of the dynamics is
quite modest. Consequently, in practice the choice of loop order and bandwidth should be
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based on the dynamics, the quiescent GPS signal level and perhaps the anticipated
strength of amplitude scintillation activity. The level of phase scintillation activity is only
likely to be important when dynamics are greatly minimised through the use of inertial
aiding, or in the case of codeless and semi-codeless receivers, through L1 aiding of the L2

carrier loop.
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Chapter 9

Scintillation effects on navigation

In this thesis, a number of receiver performance measures have been derived by
combining a stochastic ionospheric scintillation model with various receiver tracking loop
models. By linking these measures with a climatological scintillation model such as the
Wide Band Scintillation Model, WBMOD, the performance of individual satellite-receiver
links can be predicted for a given time and location. This is discussed further in Section
9.1. However, because WBMOD does not account for large scale structures such as
equatorial plumes which affect the distribution of irregularities in the sky, it is unable to
model the spatial and temporal patchiness of scintillations, nor the night-to-night
variability that is frequently observed on scintillating links. Consequently, it is not well
suited to predicting the performance of multiple satellite links simultaneously, and so
cannot easily be used to assess the impact of scintillations on navigational accuracy. This is
discussed in more detail in Sections 9.2 and 9.3. Nevertheless, in Section 9.4 it is shown
that WBMOD can be used to determine the number of links that may be stressed to the
point of losing lock for a given time, location and percentile. Although this does not
indicate the likelihood of simultaneous losses of lock, it does illustrate when and where

significant scintillation events are likely to occur for a given receiver type.

9.1.Predicting the performance of a single link

For any given satellite-receiver geometry, time and date, uncertainty will exist about the
size and density of the irregularities along a specified propagation path. In WBMOD, this
uncertainty is accounted for by providing a probability density function (PDF) for the
height integrated irregularity strength parameter!, C;L. Based on Equations (3.4-9) and

1 C,L is the height-integrated strength of the irregularity spatial power spectrum at a scale size of
1km (see Equation (2.1-2) and [82] and [76]).
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(3.4-10), it is clear that T and S, can be related to C; L through the expressions

T=aC,L, and

$1=1-enl- B G,L) o
where « and 3 are based on a combination of deterministic geometrical factors and
accurately modelled random parameters (see for example [82] and [76]). T and §; can also
be related to each other through the expression T=—1n(l—Sf)/y where y=8/a
(Equation (3.4-7)). Therefore, for a given set of conditions (ie. time, date and satellite-
receiver geometry), WBMOD's internal models provide information from which the

parameters ¢, B, and yand the distribution functions of T and §,, f1(T) and f; 2 (S,), can

be deduced. These functions can then be used to determine average values for many of the
receiver performance measures derived in earlier chapters. These include the variance of
the code and carrier phase range errors, the probability of losing lock, P, the probability
of a navigation data bit error, P,, and the probability of detection for acquisition, P, . Also,
because T can be expressed as a function of S, and the geometry factor ¥, it is only
necessary to determine the PDF of §; (or T) in order to find average values for the

specified performance measures (ie. the joint PDF of T and S, can be expressed as

J1,54 (T,84)=8(T - T’)fs4 (S4) where T'= —ln(l - 5% )/7)-

In WBMOD, the PDF of log(C;L) in equatorial regions is modelled as the sum of two
Gaussians [82]. In principle, this allows Equation (9.1-1) to be used to determine the PDF
of §; for a given value of B. In practice, however, WBMOD does not provide this
information as part of its standard output. Nevertheless, it is possible to deduce the PDF of

S, directly by differentiating the cumulative distribution function of $, which can be

obtained from WBMOD's predictions of §; over a range of different percentiles.

If the PDF of S, is known for a particular link, the average probability of losing lock can
be found as follows

i

O 8

1

JlPL (T) S4)fT,S4 (T3S4 )-dS4.dr

0

1 (9.1-2)

= J.PL (T’,S4)fs4 (S4 ).dS4
0
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where P, (T,S,) is the probability of losing lock as a function of T and S, (from Equation
(3.4-3) with m=1/82), T'=-n(1-53)/y, fs,(S4) is the PDF of S,, T>0 and 0< S, <1.
In a similar way, the average values of P, and P; can be found for each visible satellite

link (ie. from Equation (6.3-11) and (6.3-15) we have P.(S,), and from Equation (7.2-11)

we have P,(S,)).

9.2.Predicting the performance of multiple links

In order to determine the impact of scintillations on navigational accuracy, it is necessary
to find the probability of losing lock on multiple satellite links simultaneously. The

average probability of losing lock on 7 satellite links simultaneously is given by

1 1
B=|..| [HPLk Tk,S4k)]*fs4 (S41,---S4,,)d541-~-dS4,, (9.2-1)
0

oL %=1
where P, (T,:,S4k) is the probability of losing lock on link k as a function of the S, index

on that link, and f, Say-Sa, (S41 ,...S4n) is the joint PDF of S, on the #n links. Equation (9.2-1)

implies that for a given set of §; values, the individual probabilities of losing lock are
independent of one another. In other words, the probability of losing lock on 7 links
simultaneously is simply the product of the probabilities of losing lock on each link. This is
based on the observation that although the strength of scintillation activity may be
correlated between the links (perhaps as a result of a large plume structure that is
penetrated by several links simultaneously), the individual scintillation patterns, and in
particular the deep fades that give rise to loss-of-lock, are likely to be independent. The
justification for this assumption is that scintillation patterns are produced by small scale
irregularities of the order of the Fresnel zone radius or smaller (< 300m or so), and so it is
unlikely that two propagation paths will penetrate the same group of irregularities at the
same time. This assumption may, however, break down if the ionospheric pierce points of

the two propagation paths happen to be extremely close.

Although WBMOD does not provide information about the joint PDF of S, on multiple
satellite links, if it is assumed that the links are independent (ie. the irregularity regions are
assumed to be highly “patchy”), then the average probability of losing lock on 7 links
simultaneously is simply the product of the average probability of losing lock on each link,
viz
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=117, (9.2-2)

n
where fs41 oS4, (S41,...S4n )= g fs4k (S4k) has been assumed. Under these conditions, the

probability of simultaneously losing lock on n links is expected to be very small, given that
the individual probabilities are also likely to be quite small. Measurements of loss-of-lock
taken from a Novatel Millennium™ receiver during the September 1998 and March 1999
equinoxes tends to support this view. In Figure 5.4-1 from Chapter 5, the percentage of
time between 8:00pm and 10:00pm that the Novatel Millennium™ loses lock on both the
L1 and semi-codeless L2 channels is plotted as a function of day. It is clear from these plots
that the percentage of time that one link was lost (represented by the white sections of the
bars) was always much greater than the percentage of time that two or more links were
lost simultaneously (represented by the solid sections). Indeed, on days during which
significant scintillation activity occurred, the average ratio of the percentage of time that
two or more links were lost simultaneously compared to only one link was 4.7% for the
semi-codeless L2 carrier loop. Again, this supports the view that the simultaneous loss of

multiple links becomes much less common as the number of links, 7, increases.

9.3.Predicting navigational accuracy

Equation (9.2-1) gives the average probability of losing lock on 7 satellite-receiver links
based on the joint PDF of §; on those links. However, on its own this provides no
information about the navigational accuracy, nor the probability of a complete navigation
outage. In this section, an approach is outlined which addresses these problems by
assuming that the joint statistics of scintillation on multiple satellite-receiver links are

known.

Consider a situation in which any # of m visible links have lost lock, and let i index the

different ways in which this can occur. The probability of any one of these is denoted as

13,”. and is given by (based on Equation (9.2-1))

so

1 1
B, =|. jHPLk .5, ) TTb-2, (@5, ) X fstyn5y, o Sap S - dS4,  (9.3-1)
0 oOLk=l k=n+1
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If it is assumed that a navigation outage occurs when less than four satellites are tracking,
and a RAIM? failure occurs when less than six are tracking, the probabilities of these two

events are given by

m
3 |\J
P(Navigation 0utage)= Z gﬁm_ )

j=0| =l
< |17 (9.3-2)
P(RAIM outage)z E 13(,,,_}-)‘,
j=0] =1
!
where (m J= (—TT represents the number of different satellite-receiver combinations
J m—j)j!

for which j of the m visible satellites are tracking, and I_’Em_ j) are the probabilities

associated with each possible satellite-receiver combination (ie. the ith satellite combination

for which m-j satellite links have lost lock).

Unfortunately, Equation (9.3-2) cannot be evaluated as the joint PDF of §; is unknown.
However, if it is assumed that the probability of losing lock on each satellite link is the

same (and given by P;), then

B=R"(1-B )" (9.3-3)

where P, = I_’,,i as all combinations associated with the loss of # satellites now have the

same probability. In practice, this is an extremely unlikely situation given the
inhomogeneous nature of the ionosphere and the vastly different satellite-receiver

geometries on each link. Nevertheless, this assumption allows Equation (9.3-2) to be
simplified and evaluated for a given value of P;. Tt also illustrates the sensitivity of
Equation (9.3-2) to the number of satellites, m, and the single link probability of losing

lock, P, . Under this assumption, Equation (9.3-2) simplifies to

2 Receiver Autonomous Integrity Monitoring or RAIM is a technique whereby six or more satellite
pseudorange measurements are cross-checked to determine their integrity. As RAIM is performed
within a receiver, it eliminates the need for external integrity information. Although five satellites
are required for fault detection, an additional satellite is needed for both the detection and
exclusion of faults [47], page 313.
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3 .
P(Navigation outage)= Z[(m )E(m_j 1-B,Y J
J

J=0

(9.3-4)

P(RAIM outage)= i[('}'_’)ﬂ(’”" ) —E)’]

J=0

In Figure 9.3-1, the probability of a navigation outage and a RAIM outage are given for
different values of P, and m based on Equation (9.3-4). Although these results must be
treated with caution, they do show that a small increase in m, perhaps as a result of
improved satellite visibility or the use of a supplementary navigation system such as
GLONASS, will greatly reduce the risk of navigation or RAIM outages. They also shows

that RAIM is far more vulnerable to failure than a loss of navigation.

Figure 9.3-1: The probability of a navigation outage (left panel) and a RAIM outage (right panel)
as a function of both the single link probability of losing lock, Py, and the number of visible

satellites, m.
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Although a navigation outage is very unlikely, it is still possible for scintillations to reduce
navigational accuracy by degrading the satellite-receiver geometry. For example, if a
receiver is located slightly to the North of the anomaly peak, it may lose several satellites
towards the South in the direction of the anomaly. Consequently, the satellites available to
the receiver will be skewed towards the North which will probably degrade the horizontal

accuracy of the receiver in a North-South direction.

In order to assign probabilities to different levels of navigational accuracy, it is necessary

to determine a DOP? value for each satellite-receiver combination. If a probability is

assigned to each satellite combination, _P:,i , and a DOP value is assigned, DOPF,, the

probability of the DOP exceeding some acceptable level, f, can be represented by

p(por>p)= Y P, (pop,) (9.3-5)
DOPy;>B

However, as this expression cannot be evaluated without a knowledge of the joint

statistics of S, and T, it will not be considered any further.

3 The Dilution of Precision or DOP is a factor which converts the average pseudorange error into
equivalent navigation and time errors by taking into account the geometry of the satellite
constellation. DOP factors exist for horizontal position error, vertical position error, 3 dimensional

position error, time error, and position and time error.
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9.4.Predictions based on WBMOD

Although WBMOD does not provide information about the PDF of S, and T, or the joint
statistics of scintillations on multiple satellite links, it does allows the scintillation stresses
on individual links to be predicted for a given time, location and percentile. This enables
areas to be identified within a broader region of interest in which significant scintillation
effects may occur for a given receiver type. It also allows factors such as the sunspot

number (SSN), the magnetic activity index (K, ), the carrier loop bandwidth, the quiescent

signal level, and the elevation mask angle4 etc. to be varied and the resulting impact on
carrier loop performance to be examined. In Figure 9.4-1, the percentage of links above an
elevation angle of 10° that may be stressed to the point of losing lock is plotted over an
area that encompasses both the northern and southern anomalies in the South East
Asia / Australian region. These plots were obtained by passing WBMOD'’s predictions of
the scintillation indices, S, and T, into the carrier loop model from Section 3.4. For each
satellite-receiver link, the tracking state was then found by comparing the predicted

probability of losing lock, P, (obtained from S, and T), with a 1% threshold. In this

particular plot, the following parameter values were chosen:

Date: 23/09/2000 (the Sept. equinox nearest to the current solar maximum)
Time: 12:00 UTC (approximately 8:00pm local time at a longitude of 120°E)
Duration:  ~ 20 minutes

Percentile:  90%
SSN: 135 (based on predictions for September 2000 obtained from the IPS5)

K,: 4.3 (a moderate level of geomagnetic activity)

Mask angle: 10°

C/N,: 41.5 dBHz

B, 15 Hz
It is important to realise that this plot does not indicate the likelihood of simultaneous
losses of lock, merely the number of links that may be stressed to the point of losing lock

for a given percentile. Nevertheless, it could be said that if many links are stressed, and the

¢ The elevation mask angle is the satellite elevation angle below which receiver measurements are
ignored. It is primarily intended to reduce contamination of the navigation solution by multipath
and thermal noise.

5 IPS: the Australian Ionospheric Prediction Service.
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chosen percentile is relatively small, the probability of simultaneous losses of lock should

become much larger.

90 100 110 120 130 140 150
Longitude

Figure 9.4-1: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 90t percentile, SSN=135,
K, =43, 10° elevation angle mask, C/N, =41-5dBHz, B,=15Hz, Loop order = 3, Coded L1 loop.

It is clear from Figure 9.4-1 that scintillations are only likely to be a problem between
6:00pm and 10:00pm local time$ and within the region of the anomaly. It is also apparent
that directly beneath the anomaly crest at approximately 120°E (~ 8:00pm local time), the
percentage of affected links increases to about 70%. However, care must be taken in
drawing too many conclusions from this result as it only applies to WBMOD predictions at
the 90th percentile and is based on the rather conservative threshold of 1% for Pr.
Additional simulations (not shown) revealed that if the percentile was reduced to 65%, the
percentage of links affected by scintillations dropped to zero at all times and locations.
Therefore, based on WBMOD, it can be said that under the specified conditions, the
probability of losing lock on any satellite-receiver link in the region would be less than

35%.

In Figure 9.4-2, the quiescent carrier to noise density ratio was raised to 44dBHz with all

other parameters left unchanged. By comparing this with Figure 9.4-1, it is clear that the

¢ Because of Earth rotation, 90°E and 150°E represent 6:00pm and 10:00pm local time respectively
for a simulation time of 12:00 noon UTC.
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signal to noise ratio has a significant influence on the tolerance of wide bandwidth
receivers to scintillations. From Figure 3.4-3, it is apparent that this is because wide
bandwidth receivers have a greater susceptibility to amplitude scintillations which are
strongly influenced by the quiescent signal level (essentially, an increase in C/N, will

reduce the probability of the amplitude falling below the tracking threshold).

90 100 110 120 130 140 150
Longitude
Figure 9.4-2: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 90% percentile, SSN=135,
K, =43, 10° elevation angle mask, C/No =44dBHz, B, =15Hz, Loop order = 3, Coded L1 loop.

In Figure 9.4-3 and Figure 9.4-4, the predictions are repeated for a 2Hz bandwidth receiver
for both C/N, =41.5dBHz and 44dBHz respectively. It is clear from these figures that
variations in the carrier to noise density ratio have much less of an effect on narrow
bandwidth receivers than on wide bandwidth receivers. This suggests that the majority of
the predicted outages in these figures are due to phase scintillations which are not
influenced by the quiescent signal level. Again, this conclusion is consistent with

Figure 3.4-3 for a narrow bandwidth receiver.

In the four figures presented so far, the elevation mask angle was set to 10°. In Figure
9.4-5, the effect of reducing the mask angle to 0° is examined. By comparing Figure 9.4-5
with Figure 9.4-1, it is apparent that a reduced mask angle increases the extent of the
region affected by scintillations, but also reduces the impact of scintillations directly
beneath the anomaly peak. This second effect is a result of an increase in the number of

satellite-receiver links that are directed away from the anomaly peak when the additional
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low elevation angle links are included (ie. directly beneath the anomaly peak, the low
elevation angle links all point away from the peak and will therefore be largely unaffected

by scintillations).

80 100 110 120 130 140 150
Longitude
Figure 9.4-3: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 90 percentile, SSN=135,
K, =4-3, 10° elevation angle mask, C/N, =41-5dBHz, B,=2Hz, Loop order = 3, Coded L1 loop.

90 100 110 120 130 140 150
Longitude
Figure 9.4-4: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 90 percentile, SSN=135,
K, =43, 10° elevation angle mask, C/N, =44dBHz, B, =2Hz, Loop order = 3, Coded L1 loop.
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Figure 9.4-5: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 90 percentile, SSN=135,

K , =43, 0°elevation angle mask, C/N, =41-5dBHz, B,=15Hz, Loop order = 3, Coded L1 loop.

So far, all simulations have been conducted for the equinox of the 23rd September 2000.
Simulations conducted under the conditions outlined in Figure 9.4-1 and Figure 9.4-3, but
for days that were two months removed from the September and March equinoxes
revealed no evidence of scintillation effects at all, even at a reduced signal level (30 dBHz).
Also, simulations conducted on days that were one month removed from the equinoxes
showed that scintillation effects were significantly reduced. An example of this is given in
Figure 9.4-6 which is based on the 23rd October 2000 (all other parameters are the same as
Figure 9.4-1). Therefore, according to WBMOD, it appears that receivers are unlikely to
suffer any effects from scintillations beyond about one month from the equinoxes, even
near solar maximum. Obviously, more simulations would need to be conducted in order

to rigorously test this observation.

In Figure 9.4-7, the impact of reducing the sunspot number to 100 is given. Based on
current predictions, this level of solar activity is unlikely to be reached until about October
2002. When the sunspot number was reduced to 70 (approximately August 2003), the
observed effects were negligible, and when reduced further to 50 (approximately March

2004), no effects were observed at all under the specified conditions.
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Figure 9.4-6: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Oct. 2000, 12:00 noon UTC, 90% percentile, SSN=135,

K, =4-3, 10° elevation angle mask, C/N, =41-5dBHz, B,=15Hz, Loop order = 3, Coded L1 loop.
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Figure 9.4-7: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 90t percentile, SSN=100,
K, =43, 10° elevation angle mask, C/N, =41-5dBHz, B, =15Hz, Loop order = 3, Coded L1 loop.
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Figure 9.4-8: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 90 percentile, SSN=135,

K, =43, 10° elevation mask angle, C/N, =41-5dBHz, B,=0-2Hz, Loop order = 3, Semi-codeless
L2 tracking loop.
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Figure 9.4-9: The percentage of links that may be stressed to the point of losing lock from
WBMOD. Parameter values are: 23 Sept. 2000, 12:00 noon UTC, 65% percentile, SSN=135,

K,=43, 10° elevation angle mask, C/No =41-5dBHz, B, =0-2Hz, Loop order = 3, Semi-codeless
L2 tracking loop.
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In Figure 9.4-8, the effects of scintillations on a semi-codeless tracking loop of the sort
discussed in Chapter 5 are given. By comparing this with Figure 9.4-1, it is clear that the
predicted effects are much more severe than for a full correlation L1 tracking loop. Indeed,
even at the 65th percentile, significant effects were observed on the semi-codeless tracking
loops when virtually no effects were observed on a full correlation tracking loop (see
Figure 9.4-9). Consequently, it would be expected that the probability of simultaneously
losing two or more satellites would be much greater for the semi-codeless channels (the
measurements reported in Section 5.3.1.1 for lower levels of solar activity tend to support

this view).

9.5.Conclusions

WBMOD provides information from which the PDF’s of the two principal scintillation
indices, S, and T, can be deduced. Using these functions, it is possible to determine the
average values of various receiver performance measures such as the variance of the code
and carrier phase range errors, the probability of losing lock, the probability of a

navigation data bit error, and the probability of detection for acquisition.

However, WBMOD is not well suited to predicting the performance of multiple channels
simultaneously, and so cannot be used to determine the overall impact of scintillations on
navigational accuracy. This is because it does not account for the large scale structures
such as equatorial plumes which tend to restrict scintillation activity to certain parts of the
sky. The statistics that are required from a scintillation model in order to determine
navigational accuracy are the joint PDF’s of S, and T on each of the propagation paths.
Although this information is not available at present, it is clear that if scintillations are
assumed to be independent between the individual propagation paths, the probability of
losing lock simultaneously on multiple channels would be expected to be quite small,
given that the individual probabilities are also quite small. Consequently, the probability
of a navigation outage or a loss or RAIM is likely to be very small, even under conditions

for which all links are affected by scintillations (ie. when the irregularities cover the entire

sky).
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Predictions of the percentage of links that may be stressed to the point of losing lock based
on WBMOD clearly show that scintillation effects are mainly restricted to:

- Solar maximum (or at least high sunspot numbers).

- The equinox.

- Approximately 6:00pm to 10:00pm local time.

- The Northern and Southern anomalies.
However, even under these conditions, the probability of losing lock simultaneously on

multiple links would be very small.
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Chapter 10

Summary

In Section 10.1, a brief overview of the thesis is given and the main results from each
chapter are summarised. In Section 10.2, conclusions are drawn about the overall
performance of GPS in a scintillation environment by drawing together the results from all
previous chapters. Finally, in Section 10.3, future research directions are examined
including areas in which the scintillation model can be improved, and the potential impact

of new developments in GPS on the susceptibility of GPS to scintillations.

10.1. Overview

In this thesis, a stochastic model of scintillation activity was combined with various
receiver tracking and acquisition models to determine the likely impact of scintillations on
GPS. A summary of the key points to come out of this work is given below:

e In general, the carrier tracking loops of full code correlation GPS receivers are quite
robust to scintillations, even under very strong scintillation conditions.

¢ An optimum bandwidth exists for minimum probability of losing lock which depends
on the relative contributions of amplitude and phase scintillation activity, as well as the
quiescent signal level and the presence of dynamics.

e For a given level of ionospheric disturbance, the geometry of the propagation path
affects the ratio of amplitude to phase scintillation activity as well as the absolute levels of
scintillation activity. Therefore, geometry will affect both the optimum bandwidth of a
tracking loop and its overall susceptibility to scintillations.

e Carrier tracking loops are generally very robust to signal fades of short duration,
particularly if the bandwidth of the tracking loop is narrow.

¢ RMS carrier phase errors of several centimetres can be introduced into satellite range

measurements by scintillations. These may have a significant impact on carrier phase

247



DGPS observations made in equatorial regions during solar maximum, particularly for
baselines of a kilometre or more.

e Frequency locked loops are more robust to phase scintillations but slightly less robust
to amplitude scintillations than phase locked loops for the same loop bandwidth and pre-
detection integration period. Therefore, receivers that make use of frequency locked loops,
either as a primary means of carrier tracking or as a fall-back strategy to phase locked
loops, are likely to be more tolerant to scintillations than receivers that employ only phase
locked loops.

e Phase scintillations have a negligible effect on code tracking loops and the additional
thermal noise associated with amplitude scintillations is only small, unless S, is close to
unity. Nevertheless, under strong amplitude scintillation conditions, it is likely that error
spikes will exist in the code pseudorange measurements during times when the amplitude
is deeply faded.

e Codeless tracking loops are far more susceptible to the effects of scintillations than full
code correlation tracking loops. The poor performance of codeless tracking loops may
result in a degradation in the accuracy of systems such as WAAS which rely on dual
frequency SPS receivers for the measurement of ionospheric delays.

e Even under conditions for which the carrier loop is likely to lose lock, the probability
of a word error in the navigation data will only be a few percent. Therefore, because of the
high levels of redundancy that exist in the navigation data, it is expected that scintillations
will have negligible effect on a receivers ability to acquire the navigation information.

e Scintillations increase acquisition times by reducing the probability of detection. For
satellite signals which have a relatively low signal to noise ratio, the mean time to acquire
may increase by a factor of two or more, and the RMS acquisition time by a factor of three,
depending on the characteristics of the detector and the signal to noise ratio.

e Wiener filter theory was used to determine the optimum structure of a phase locked
loop that is subject to both scintillations and dynamics. It was found that in the absence of
line of sight dynamics, the optimum loop order was determined by the slope of the phase
scintillation power spectrum. However, in the presence of dynamics, the order of the
dynamics would usually determine t}‘1e optimum loop order. It was also found that the
magnitude of the dynamics and the strength of amplitude scintillation activity would
determine the optimum loop bandwidth, unless phase scintillation activity was very
strong.

e WBMOD provides information from which the probability of occurrence of

scintillations at different levels can be determined for individual satellite-receiver
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propagation paths. This information can be used to determine average values for many of
the receiver performance measures derived in earlier chapters. However, WBMOD is not
well suited to predicting the performance of multiple receiver channels simultaneously,
and so cannot be used to determine the overall impact of scintillations on navigational
accuracy.

e Although information about the joint statistics of scintillations on multiple propagation
paths is not available, it is clear that if scintillations are assumed to be independent
between the individual paths, the probability of losing lock simultaneously on multiple

channels would be very small, given that the individual probabilities are also quite small.

10.2. Conclusions

The analysis carried out in this thesis suggests that equatorial scintillations will have a
relatively minor effect on the navigation performance of stand-alone GPS receivers. This is
partly because the patchy nature of scintillations introduces a degree of independence
between the individual satellite-receiver links, and partly because the coverage of satellites
in the equatorial region is generally very good. Consequently, the probability of
simultaneously losing lock on enough satellites to significantly degrade the satellite
geometry is relatively small. Also, on the satellite links that remain in lock, the additional
noise introduced into the code tracking loops by amplitude scintillations is unlikely to
contribute significantly to the overall pseudorange error. Data obtained from GPS
receivers deployed throughout South East Asia during the past three equinoxes strongly

supports this view.

However, if the visible constellation is reduced, either through an increase in the elevation
mask angle or obscuration from nearby obstacles, fewer satellite losses would be required
before navigational performance was significantly degraded. In addition, Receiver
Autonomous Integrity Monitoring or RAIM requires at least six visible satellites in order to
be effective. Consequently, under conditions of limited sky coverage, strong scintillation

activity may degrade the performance of RAIM.

The combination of conditions under which a receiver is likely to experience the greatest
stresses from equatorial scintillations are as follows:
e High solar activity.

¢ Low geomagnetic activity.
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¢ During the months of the equinoxes (March/April and September/October).

e For several hours following local sunset.

e Within bands approximately 15° wide and centred on the crests of the northern and

southern anomalies.

However, simulations based on WBMOD reveal that scintillation effects may extend well
beyond the nominal northern and southern boundaries of the anomaly. This is caused by a
few satellite-receiver links penetrating the peak of the anomaly at low elevation angles,
even when the receiver is well removed from the region of the anomaly. Consequently,
areas of Northern Australia that are generally considered to be south of the southern
anomaly may still be affected by scintillations on certain low elevation angle links. In
addition, plume structures are known to reach enormous heights near the equator and
may extend the influence of scintillations well beyond that predicted by WBMOD (the
WBMOD model assumes that all irregularities are concentrated at height that is typical of
the F2-layer peak height).

The analysis carried out in Chapters 3 and 9 suggests that narrow bandwidth receivers,
such as those used in tightly coupled GPS-INS systems, are more susceptible to the effects
of phase scintillations than wide bandwidth receivers. Consequently, narrow bandwidth
receivers are more sensitive to factors that influence the phase scintillation rate such as
receiver dynamics. Wide bandwidth receivers, on the other hand, are more susceptible to
the effects of amplitude scintillations and thermal noise, and so are affected more by
factors that influence the signal to noise ratio such as the antenna gain pattern and

electromagnetic interference (EMI).

Most military and some civilian aircraft are likely to be fitted with tightly coupled
GPS-INS systems to improve their immunity to EMI and high dynamics. Although the
GPS receivers in such systems will adopt a narrow bandwidth and so will become more
susceptible to phase scintillations, the INS units will be unaffected by scintillations and so
will continue to provide a navigation solution during any scintillation induced GPS
outages. This will also help the GPS receiver to recover when the scintillation activity has
eventually passed. It is also likely that the high velocities of jet aircraft will allow the
satellite-receiver links to pass through the scintillation patches much more rapidly. Again,

the reduced dwell time within the patches will help to mitigate their effects on GPS.
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It should also be mentioned that under high velocity conditions, the amplitude
scintillation rate will increase on many satellite links causing the assumption B, > f.1 to
be violated (ie. the duration of deep fades will be reduced on many links). This is likely to
reduce the impact of amplitude scintillations somewhat, particularly for narrow
bandwidth receivers for which B, is already quite small. However, as phase scintillations

are likely to be the principal factor causing loss of lock at high receiver velocities, this

effect may be negligible in terms of the number of satellites lost.

Although the higher chipping rate of the P-Code offers P(Y)-Code receivers greater
resistance to interference, it does not afford them any protection against scintillations.
Indeed, the lower power levels of the P(Y)-Code tends to make P(Y)-Code receivers
slightly more susceptible to the effects of amplitude scintillations. Added to this is the
higher level of scintillation activity on the L2 frequency as a result of the inverse frequency
scaling of scintillations. However, military P(Y)-Code receivers are likely to be designed
and constructed much better than civilian receivers, which may give them superior
performance under conditions of reduced signal level (ie. in the presence of amplitude

scintillations).

Codeless and semi-codeless tracking loops are considerably more susceptible to the effects
of scintillations than full correlation tracking loops. The very narrow bandwidths of
codeless tracking loops increases their susceptibility to phase scintillations, despite a
reduction in phase scintillation energy through carrier aiding from the L1 C/A-Code
carrier loops. Similarly, the reduced signal to noise ratio of codeless channels greatly
increases their susceptibility to amplitude scintillations, despite their very narrow loop
bandwidths. Therefore, it seems likely that systems which rely on codeless and semi-
codeless receivers such as the Wide Area Augmentation System (WAAS) may suffer very
adverse effects under strong scintillation conditions. However, by the time these systems
are actually operational, the expectation is that the second civil signal on the L2 frequency

will be available which will mitigate the need for codeless and semi-codeless processing.

RMS carrier phase errors of several centimetres can be introduced onto individual

satellite-receiver links by phase scintillations. Generally, these errors will become

1 Where B, is the loop bandwidth and f, is the cutoff frequency of the amplitude scintillation

power spectrum.
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decorrelated over distances of a few km, depending upon the ionospheric outer scale size
parameter, f,, and the direction of the baseline. This may have a significant impact on
carrier phase DGPS measurements taken in equatorial regions during solar maximum.

Unfortunately, the modelling of f, in WBMOD is very primitive at this stage.

Under very intense scintillation conditions, the mean time to acquire the GPS signal may
increase by a factor of two or more, although only when the carrier to noise density ratio
of the GPS signal is at a reduced level. However, under these conditions it is uncertain
whether a channel will have the ability to transition to a stable tracking state anyway.
Nevertheless, as only a few of the satellites in a receiver's field of view are likely to be
subject to such high levels of activity, even during solar maximum, this effect is not

expected to be overly important.

The impact of scintillations on the navigation data also appears to be negligible. It is likely
that a tracking loop will lose lock or become unreliable well before navigation data
demodulation errors become significant. Indeed, much of the navigation data is repeated
on each satellite-receiver link and the update rate required from such information is

relatively low anyway.

The performance measures discussed in this thesis have been based on a number of
assumptions and approximations, some of which have already been discussed. However,
other sources of loop stress such as oscillator phase noise, multipath, foliage attenuation,
obscuration, antenna gain pattern variations, the elevation angle dependence of C/N,,
and EMI etc. have largely been ignored. Each of these effects is likely to reduce a receivers

tolerance to the effects of scintillations.

10.3. Further research

Research into the effects of ionospheric scintillations on GPS is by no means complete.

Possible areas for further research include:

1. Determining the joint statistics of scintillations on multiple satellite links. Data
obtained from scintillation monitoring receivers located in equatorial regions could be
used to determine the correlation between scintillation activity on different satellite-
receiver links. Factors that may influence this correlation include the separation

between individual ionospheric pierce points (IPPs), the location and local solar time
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at the IPPs, and other factors that affect the overall levels of scintillation activity such
as the sunspot number and the magnetic activity index.

The correlation between signal amplitude and the strength of phase scintillations. 1f
the amplitude is negatively correlated to the rate of change of the carrier phase (ie. the
rate of change of carrier phase increases when the amplitude decreases), then the
combined effects of amplitude and phase scintillations on GPS may be more severe
than is predicted in this thesis.

The impact of highly dense ionospheric structures, or plasma lenses, on the
performance of GPS receivers. Structures of this sort produce refractive focusing and

de-focusing effects which can alter the statistics of scintillations and drive §, values

well above one. Predicting the occurrence of lenses and developing models of the
resulting signal statistics at L-band frequencies are two areas that could be looked at
further. In [56], the effects of a collection of discrete, Gaussian shaped ionospheric
lenses on the performance of carrier tracking loops was investigated using the
diffraction model from Appendix A and the tracking loop simulator from Appendix B.
However, an analytical approach to this problem has yet to be developed. Also, it has
not been established whether naturally occurring ionospheric lenses will have a
sufficiently short focal length at L-band frequencies to cause significant scintillation
effects for GPS.

The development of a model to account for the non-stationary nature of scintillations.
In this thesis, it has been assumed that scintillations can be described by wide-sense
stationary random processes. However, scintillations tend to occur in patches, the
duration of which will depend on the dimensions of the irregularity patch and the
speed with which the satellite-receiver ray path scans through the patches. Also,
statistics such as S, and T may change with time as the ray path scans through a
particular patch. Models that account for the resulting non-stationarity will not only
help with the analysis of single link performance, but will also assist in the
development of models of the joint statistics of scintillations on multiple satellite links.
The validation and extension of models such as WBMOD and SCINDA for the South
East Asia | Australian region. The WBMOD and SCINDA models are based largely on
data obtained from the American longitude sector. Consequently, it is necessary to
determine whether these models also apply to the South East Asia / Australian region

by analysing scintillation data obtained from this region. DSTO in conjunction with the
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AFRL?2, LAPANS3, and DSTC¢ have deployed a network of ionospheric scintillation
monitoring receivers in Indonesia, Malaysia and Papua & New Guinea to measure
scintillations and to compare their occurrence statistics with models such as WBMOD
(see for example [57], [22]). The data obtained from these sites is also being used to
investigate the probability of scintillation activity occurring simultaneously on
multiple satellite links.

6. The validation of analytical results against hardware simulations. For the past few
years, various groups within the United States’ have been investigating the effects of
simulated scintillation data on real GPS receivers by appropriately modulating the
signals produced by satellite signal simulators. However, these tests have yet to
include the effects of high receiver velocities, inertial aiding, and EM interference on
receivers that are subject to scintillations.

7. Accounting for new developments in GPS, including:
¢ Alternative tracking and acquisition architectures.

e The use of beamforming antennas. Antennas that are capable of steering beams
towards the GPS satellites will gain a significant advantage under amplitude
scintillation conditions as a result of an increase in the signal to noise ratio. Antennas
of this sort are already in existence (eg. the Navsys Corporation High gain Advanced
GPS Receiver or HAGR™ [18]).

® The introduction of a second civil signal at 1176.45 MHz (referred to as the L5
signal), the new military code or M-Code signals, the addition of a C/A-Code signal at
the L2 frequency, and a general increase in satellite signal power levels following the
launch of the modified block IIR and new generation block IIF satellites. Under the
current launch schedule, it is anticipated that the constellation will consist primarily of
block IIF and the proposed new block III satellites by the time the next solar maximum
occurs in 2011.

e Increased satellite coverage through the use of supplementary satellite navigation
systems such as the Russian GLONASS system, the European Geostationary
Navigation Overlay System (EGNOS), and the proposed European Galileo system.

2 AFRL: The Air Force Research Laboratory, USA.

3 LAPAN: The Ionospheric Research and Development Centre, Indonesia.

4 DSTC: The Defence Science and Technology Centre, Malaysia.

5 The GPS & Navigation Systems division of the SPAWAR Systems Center in San Diego, and the
Air Force Research Laboratory and Wright Patterson Laboratory, AFRL and WPL, in Cambridge

Massachusetts and Dayton Ohio respectively.
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Appendix A

Scintillation model

The scintillation model used in this study is essentially that of Titheridge [89] and Davies
[28] and is based on the solution of the Fresnel-Kirchoff integrals for an assembly of field
aligned irregularities. The irregularities are assumed to produce variations in TEC in
directions normal to the earth's magnetic field lines, but no variations along the field lines.
For convenience, the phase perturbations are assumed to be concentrated within a thin
phase screen located at a typical F2 layer peak height. In reality, such perturbations would
result from the cumulative effect of numerous small irregularities located along the ray

path.

A.1 Deterministic phase screen

The deterministic model, which is essentially that described by Titheridge and Davies,
assumes that the irregularities are discrete rod like lenses which are aligned with the
Earth’s magnetic field and produce Gaussian phase perturbations normal to the field. The

phase perturbation produced by k such lenses is given by

< —(x—xo,- )2
D(x)= Zq’o:-exp S (A-1)

i=1 i
where x is the horizontal position in a direction normal to the Earth’s magnetic field lines
(ie. in an East-West direction), and ®,, /;, and x,; are the peak phase variations, scale
sizes, and centres of the irregularities respectively. The peak phase variations, ®,, are

related to the peak TEC variations, ATEC,; , through the expression (Davies [27])

@, = 40,3*27z£E7Cﬁ (radians) (A-2)
C,

where f is the GPS carrier frequency and c is the speed of light. If it is assumed that the
variations in plasma density are Gaussian in both the x and y (vertical) directions, ATEC;

can be found as a function of the scale sizes and peak density variations. The variation in
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plasma density over the background is given by?!

R (o
AN(X,J’)=AN03XP[_ b 1)20) oL 1)20). ] (A-3)
x y

where AN, is the peak density variation. As TEC is the vertical integral of the electron

density,

ATEC(x)= J.AN(x, ).dy

(A-4)
P
- ANolyJ;exp - ~————(x J;G)
lx
The peak TEC variation is therefore
ATECy = ANyl T (A-5)

AN, can then be defined as a fraction, p, of the background electron density, N,, as

follows

ANg =pNy, p2-1 (A-6)
An additional constraint which can be applied in order to establish a relationship between
the scale sizes, /, and /,, and AN, is the maximum permissible electron density gradient,
N g, - From Equation (A-3), the maximum density gradients in both the x and y directions

are

i AN"JZ/_Q, Y=Yy (A-7)
ox |mux gx

8AN| - AN(}‘\/z/_e ] x=x; (A-8)
ay Imax ly

The maximum peak density variation which will ensure that N,,, is not exceeded is then

1 This assumes that the density profile is symmetrical in both the x (horizontal) and y (vertical)
planes.
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AN, =min(,,1,).N g Je/2 (A-9)

By combining Equations (A-1), (A-2), (A-5), (A-6) and (A-8), an irregularity layer can be

defined once values for N, and N, are assigned. If it is assumed that the irregularities

are located at the F2 layer peak, N, will be equal to the peak density of the F2 layer,
NmPF2.

The peak phase variations can either be positive, which corresponds to an enhancement in
TEC (a defocusing type irregularity), or negative which corresponds to a depletion in TEC
(a focusing type irregularity). Both types of irregularity have been shown to exist in the
ionosphere [90]. The radio wave is also assumed to experience no attenuation as it passes
through the phase screen. Consequently, any amplitude fluctuations are caused entirely by

the effects of interference across the wavefront as it propagate towards the ground.

At the ground, and relative to the undisturbed wave, the in-phase, I, and quadrature, Q,
components of a vertically propagating plane wave? can be found by solving the Fresnel-

Kirchoff integrals (see for example [89] & [28]). This results in the following two terms

1=1- 2jsin(PD +®/2)sin(®/2)dsx /FA (A-10)
0 =2 cos(P, +®/2)sin(®/2)dx/rA (A-11)

where ® =®(x), P, =—m/4—2r(r—h)/A, h is the screen height and 7 joins the elements dx
on the phase screen to a point on the ground (see Figure A-1). As these two integrals
contain a sin(®/2) term which approaches zero when the emergent wave is unperturbed,

the integrals need only be calculated over the region of the irregularities in the plane of the

phase screen. This region is denoted as ir.

2 In this analysis it is assumed that the GPS satellites are at sufficiently high altitudes to make the
simplifying assumption that the all incident waves are plane waves.
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Figure A-1: Geometry of the thin phase screen diffraction model.

The resulting phase and amplitude variations are obtained from the I and Q components

as follows

Phase = Atan(Q/I)
Amplitude= \[Qz +1?

For irregularities much larger than the first Fresnel zone radius, zy, diffraction effects are

(A-12)

minimal and a geometric optics solution can be employed. As a result, phase variations on
the ground will closely resemble those in the ionosphere and amplitude variations will be
negligible. On the other hand, for scale sizes of the order of the Fresnel zone radius or
smaller, or for very large plasma density gradients, rapid variations in both amplitude and
phase will occur. Irregularities smaller than z; produce diffraction effects, whereas those
containing large density gradients produce significant refraction and hence interference
effects. Both cause rapid variations in the amplitude and phase of the GPS signals on the
ground. For a Gaussian shaped irregularity, the threshold conditions for diffraction and

interference are (from [89])

Diffraction: I<zp= 2212, = Az, (A-13)
z1t2zy

Interference: 1< |2kt (A-14)
37f

where @, is the peak phase variation, z; and z, are the distances between the

ionospheric irregularity layer and the satellite and receiver respectively. Typical upper

limits on the scale sizes of irregularities which are likely to produce these effects are
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Diffraction: 300m (L2), 275m (L1)
Interference: 220m (L2), 190m (L1)

where it has been assumed that #; =400km and ATEC, =1 TECu (approximately 1% of a
typical equatorial TEC value during solar maximum). This analysis also assumes that the
irregularities are directly overhead and that propagation is vertical. For E-region

irregularities (i ~ 100 km), the equivalent dimensions are approximately one half.

It is expected that irregularities of the order of the Fresnel Zone radius or slightly smaller
will produce the most significant scintillation effects. Larger irregularities are unlikely to
produce fully developed diffraction effects and would require very large peak densities in
order to produce significant interference effects. Irregularities much smaller than the
Fresnel zone radius will produce prolific diffraction effects, but with very small peak
phase variations. Examples of the effects of different scale sizes on the amplitude and

phase diffraction patterns is given in Section 2.1.5.

The phase and amplitude fluctuations derived from this model are a function of position
in an East-West direction. Because the irregularities are assumed to be field aligned,
fluctuations do not exist in a North-South direction. Consequently, the temporal variations
in phase and amplitude experienced by a GPS receiver will depend on the East-West
component of the irregularity velocity, the GPS platform velocity and the satellite velocity.

These velocity components are encapsulated in the effective scan velocity, v, , which was

discussed in Section 2.1.3.

A.2 Random phase screen

A more realistic model for the phase screen based on in-situ measurements® of electron
density fluctuations is the power law phase screen model. This model assumes that the
phase perturbations on the emergent wave are random with a Gaussian distribution and a

power law wavenumber power spectrum which is given by

Se (k)= A.(koz +k2T”/ ? (A-15)

where k is the wavenumber, A determines the strength of scintillation activity,

3 In-situ measurements of electron density are made with probes flown on rockets and satellites.
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k, =2n/l, m™' is an outer scale wavenumber, I, is the outer scale size, and p is the spectral

index. The in-situ wavenumber power spectrum of phase (or equivalently of TEC) has the
same spectral index as the power spectrum of scintillations measured on the ground ([16]

and [49]). Consequently, p is in the range 1 to 4 and is typically 2.5 at equatorial latitudes.

Realisations of a random phase screen ®(x) with the desired spectral characteristics can

be obtained from an Nth order Autoregressive (AR) process of the form

N
D(nX) = w(nX)+ Y h®(n-ilx) (A-16)

i=1

where 7 is an integer, X represents the spacing between successive points on the phase
screen, w(nX) is a white Gaussian noise process and #; are the coefficients of the AR

model. Equation (A-16) can be rearranged as follows

N
D(nX) - D h®@([n—ilX) = w(nX) (A-17)

i=1

Multiplying (A-17) through by ®(nX) and taking the expectation gives

n=- Y hr=0,’ (A-18)

where r; =Ry (jX) is the Autocorrelation function of phase at a separation of jX m and

o, is the variance of the white noise process. In a similar way, multiplying through by

®([n-1]x) and taking the expectation gives

N
n= D hrg =0 (A-19)
i=1

By repeating this process N+1 times, the following matrix expression can be obtained

B 1oty 1 1

Hoor () 0 -
B 2
rN . . I‘D —-}I.‘V 0

which can also be expressed as
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(A-21)

= 2 0=
h=0,".P 0 (A-22)

Consequently, in order to determine / , the autocorrelation function of phase Rg(x) must
be found. As the wavenumber power spectrum of phase is an even function, Rg(x) is

given by

Ry (x)= j S (k)™ dk

—oco

} (A-23)
=2 _[ Sq (k).cos(ex).dk
0
Substituting (A-15) into (A-23) gives
.1 cos(kx)
R(I)(X)—ZA.([_(kg +k2)p/2 d (A—24)

This is a general expression for the autocorrelation function of phase for a power law
wavenumber power spectrum. Unfortunately, it is difficult to solve in closed form for

arbitrary p. Consequently, numerical techniques must be used in order to determine

Ro(x)and P! for any p.

However, for the special case of p=2, the following simple solution for Rg(x) can be

obtained from a table of integrals

T cos(kx)
Ro(x)=24) == dk
k2 +E
A-25
Arn ~kox ( )
=—¢
k,
Giving
1 e_koX e_NkoX
ko X
p= Am| e ™0 1 '
k, : , : (A-26)
—Nkp X 1
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X and

Substituting (A-26) into (A-22) and solving for the AR coefficients gives =¢ o
hy-+-hy =0. Therefore, for p=2 a first order AR process will generate suitable realisations,

viz
@ (nX) = wnX) + ©([n—-1]x).e** (A-27)

An example of simulated scintillation data obtained from the Fresnel-Kirchoff diffraction
model using the AR process from Equation (A-27) is given in Figure A-2. Parameter values
for the AR process are /, =1km (outer scale size), X =1m (step size), and h; =400km
(ionospheric height). In addition, it was assumed that the velocity of the propagation path
normal to the receiver was 150m/s and that the L1 frequency was being used.

Consequently, for this example, the AR process is of the form
O(nX) = w(nX)+0.9940([n —1]X) (A-28)

where w(nX) is assumed to have a variance of 0.0025 radians2.

In—situ phase (rad)
o

Phase (rad)

% ol
)
§ OISR Y| SR I L A0 R 3 I DO S SO S TR, i
0 — a ; P - a |
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure A-2: A sample realisation of the In-situ phase (upper panel), phase scintillations (middle
panel), and amplitude scintillations (lower panel) obtained from the Fresnel-Kirchoff diffraction

model.
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Notice that the phase process at the receiver (middle panel) bears only a vague
resemblance to the in-situ phase process (upper panel). For much larger in-situ phase
gradients, the two phase processes would become even more different. The RMS phase
and S, values for this particular example are 0.41 radians and 0.39 respectively. These
were obtained by averaging numerous different realisations based on Equation (A-28) and

the phase screen model.
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Appendix B

GPS tracking loop simulators

In this thesis, software simulations of GPS receiver code and carrier tracking loops are
used to validate analytical results and to determine where the analytical results begin to
fail. The advantage of simulation over a purely analytical approach is that it allows the
loop non-linearities to be taken into account without the need to introduce any
approximations. These non-linearities include the discriminator, the I and Q channel
mixers and the code correlators. Although the majority of the work described in this thesis
is based on stand-alone code and carrier tracking loops, the behaviour of a combined code
and carrier tracking loop channel can be investigated relatively easily through the

simulation approach described here.

The tracking loop simulators are based on Simulink™ for Matlab™ and are driven by
amplitude and phase scintillation data produced by the model described in Appendix A.
Simulink™ diagrams of a stand-alone Costas carrier tracking loop and a delay locked loop
are given in Figures B-1 and B-2. An equivalent diagram of a combined tracking loop is
given in Figure B-3. In all cases, the simulated scintillation data is stored in amplitude and

phase lookup tables and is extracted at a rate which depends on the value of v, chosen for

the simulation.

For the Costas loop simulator, it is assumed that the prompt code estimate is perfectly
aligned with the satellite code (ie. 7, =0) and is therefore removed completely from the
GPS signal. It is also assumed that the pre-detection filters are correctly synchronised to
the navigation data. Similarly, for the delay locked loop it is assumed that the carrier

phase error is negligible (ie. ¢, =0) and so the Q channel consists only of thermal noise
(ie. Ap(t)sin(p, )+ ng =ng). In the combined simulator, the code and carrier phase errors

affect both tracking loops. In addition, because of the dispersive nature of scintillations,
the effects of phase scintillations on the code delay is assumed to be equal in magnitude

but opposite in sign to the effect on the carrier phase.
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Figure B-1: Simulink™ model of a Costas phase locked loop.
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Figure B-3: Simulink model of a combined Costas phase locked loop / Delay locked loop channel.

The upper panel represents the environment model. The lower panel represents the tracking loops.

In all simulations, the thermal noise blocks are based on Gaussian distributed random
number generators which are fed with different seeds. This helps to ensure that the
individual noise sequences are uncorrelated, or at least approximately so. For the delay
locked loop, this implies that the separation between the Early, Prompt and Late signals
must be % chips or greater (see Appendix D). The code spacing is set within Early, Prompt
and Late autocorrelation functions which replicate the behaviour of the three code
correlators in a delay locked loop. In addition, all simulators provide the capacity to vary

the loop order, the loop bandwidth and the discriminator type.
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Appendix C
Tracking thresholds and cycle slips

Tracking thresholds define the point at which a tracking loop transitions from a state of
stable tracking to one of loss-of-lock. When a tracking loop loses lock, the VCO frequency
drifts away from the signal frequency and the loop phase estimates become meaningless.
This is qualitatively different from a condition of frequent cycle slips during which the
loop continues to track the phase and frequency of the signal between successive slips. In
practice, however, it is difficult to distinguish between the two states, particularly when
the cycle slipping rate is very high. Consequently, it is often useful to define tracking
thresholds in terms of acceptable tracking performance. This may take the form of a
maximum acceptable probability of a cycle slip based on the non-linear analysis described
in Section C.2, or a maximum acceptable phase error variance based on the linear model
analysis described in Section C.1. The second of these threshold measures is based on the
assumption that a loop will lose lock when the magnitude of the phase tracking error
exceeds a certain boundary. This is generally set at a fairly conservative level under the
assumption that the probability of losing lock increases sharply when the linear model

approximations are significantly violated.

Because tracking loops are highly non-linear in the threshold region, Monte Carlo
simulation techniques are usually required in order to establish the true tracking
performance. The code and carrier tracking loop simulator described in Appendix B takes
account of the non-linearities in a tracking loop and provides an indication of where loss-

of-lock is likely to occur for various noise and dynamic conditions.

For an unaided GPS receiver, loss of carrier lock is usually followed soon after by a loss of
code lock. Consequently, the tracking threshold of such a receiver is typically set by the
carrier tracking loop. However, when a receiver is aided with Doppler measurements
from an Inertial Navigation System (INS), the tracking threshold will be determined by the
code loop. This is because Doppler aiding allows the VCO to continue tracking the
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frequency of the desired signal ¢, even when the carrier loop has been forced to lose lock.
However, in the analysis that follows, the receiver is assumed to be unaided and the loop

threshold is assumed to be determine by the carrier loop.

C.1 Linear analysis

The tracking loop threshold derived from the linear loop model is based on the
assumption that loss of lock occurs when the linearising approximations are significantly
violated. If the carrier phase errors are modelled as zero-mean, Gaussian’ random

variables, the probability of a phase error exceeding some threshold @ is given by

q | ) q)J'T 1 (@ — Pess )
plge|>Pr)=1- exp| — el (C-1)
oy sz% 2o¢£ Z

where ¢ is the steady state phase error resulting from relative motion between the

satellite and the receiver (see Appendix E). This can also be expressed in terms of the

complementary error function as follows

0 Pr —Gess Pr +Pess
Pq¢e| >®; )= 5 [Erfc{ \/50'% ]+ Erfc[ 4/50'% II (C-2)

A widely used rule of thumb tracking threshold for a Costas loop is that the 3-sigma phase
jitter from all sources other than dynamic stress errors must be less than 45° for the loop to
remain in lock (Ward [47], page 157). This corresponds to an error in the linear loop model
of approximately 36% for an I1.Q Costas loop (ie. the phase error estimate from the

discriminator is in error by a factor of 1—[0.5sin(2®; )/®;]~0.36). Thus for ¢, =0, the
tracking threshold can be represented by 30, =®; =45°. From Equation (C-2), this

corresponds to a probability of approximately 0.27% of the phase error exceeding @,

which is the probability of a Gaussian random variable lying more than 3 standard
deviations from the mean. In Figure C.1, the RMS phase error from all sources other than

dynamic stress errors, g, is plotted as a function of the steady state phase tracking error,

4 For a prolonged outage, changes in the carrier frequency as a result of satellite motion will
eventually cause the VCO frequency to drift away from the carrier frequency.
5 This is based on the assumption that the thermal noise and ionospheric phase scintillations are

both zero-mean and Gaussian distributed.
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.55, for @7 =45° and p(|¢£| > CIJT) =0-27%. This curve represents the locus of points for
which the loop is on the verge of losing lock under the specified threshold conditions
(from Equation (C-2)). Notice that for a zero steady state error, the threshold RMS jitter is
approximately 150 (7/12 radians) which is consistent with the initial assumption. Also,
notice that the straight section of Figure C.1 implies that the following approximate
relationship holds between the RMS phase error and the steady state dynamic phase error

for the loop to remain in lock

36, + fuss S 45° (C-3)
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Figure C.1: 10 phase error from all sources other than dynamics versus the steady state dynamic

phase error at the tracking threshold of an 1.Q Costas loop.

C.2 Non-linear analysis

In this section, various results from the non-linear analysis of tracking loops are presented
without proof. Closed form expressions are given for the PDF of phase errors, the mean
time to cycle slip and the probability of a cycle slip for a Costas loop. Although these
expressions have only been obtained for a 1st order tracking loop under fairly restrictive
signal conditions, various researchers have shown that the performance of higher order
loops can be closely approximated by these expressions with only minor adjustments to
the SNR . The principal drawback in the use of results from the non-linear model is that
they assume that the system is driven by additive white Gaussian thermal noise only.

However, in the presence of scintillations, coloured phase noise will also be present.
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Nevertheless, Van Trees ([96], pages 55-56) demonstrated that by a simple translation of

the phase noise process back through the loop integrator, phase noise with a power
spectral density of the form 7f > could be considered to behave like additive white

Gaussian thermal noise at the input (also see Section 3.3.3).

The non-linear analysis is based on the solution of the non-linear stochastic differential

equation which defines the operation of a standard phase locked loop. This is given by

o=p, + f) [4sin(p, )+ n,] (C-4)

The origin of this equation can be understood by referring to Figure 3.1-2 with the non-
linear element 0.54° sin(2¢e) replaced with Asin(¢,) for a standard phase locked loop. By

assuming a first order loop with the input phase process, ¢, constant (ie. the system is
driven by additive white thermal noise only), the following PDF for the phase errors

reduced modulo 2r can be obtained (for proof, see Holmes [43], pages 114-118)

folp)= W, o] <7 (C-5)

where I,( ) is the modified Bessel function of the first kind of order zero, p is the loop
SNR which is given by p =1 / 0'55 = A / (2N,B, ) for a standard phase locked loop, and ¥ is

the phase error reduced modulo 2w (ie. ¥ =¢, mod 27 ). This PDF is usually referred to as

the “Tikhonov density function”. For a first order Costas loop with an 1.Q discriminator,

the Tikhonov density function is given by (Holmes [43], page 274)

- exp(p,,_ cos(2qo )) /4
folp)= Ap,) |¢|SE (C-6)

where p, is the effective loop SNR which is given by p, :1/ 40'56 ,and ¥ is the phase

error reduced modulo 7 (ie. ¥=¢, mod 7). For an I.Q loop in the presence of white
Gaussian thermal noise only, the variance of the phase errors is given by the following

expression (Appendix D)

By |11 5
C/N,| 2TC/N, (&

2 _
Ogr =
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The variance of the phase errors reduced modulo = for a first order 1.Q Costas loop can be

obtained from the Tikhonov PDF as follows (assuming that the errors are zero-mean)

/2

oy*=EP* = [02f,(p)dp (C-8)

-1/2
where 0,2 zoﬁe when the phase errors are small (ie. when they rarely exceed *7/2

radians).

For a standard phase locked loop in the presence of white Gaussian thermal noise, the

mean time to cycle slip is given by (Homes [43], page 95, Gardner [36], page 38)

n’pl,* (p)
2B,

[ = (C-9)

where B, is the single sided noise bandwidth of the tracking loop. For a standard phase

locked loop, a cycle slip is defined as an increase in the magnitude of the phase error by 2n
radians. This usually leads to a jump in the loop’s estimate of carrier phase by an integer

number of carrier cycles.

A more generalised expression for the mean time to cycle slip which includes the steady-

state phase tracking error, @ , is [59]

. 1\ 2
?Tzntanh(xqbas;gp) 102([.7)'1'22 (-1)"1,%(p) (C-10)

2B, Pess n=1 [1 +(n/PWess )2 ]

where I,( ) is the modified Bessel function of the first kind of order n.

For an 1.Q Costas loop, the mean time to cycle slip includes the effective loop SNR and is

given by (Holmes [43], page 200)

xzpe qu (pe )
2B,

T = (C-11)

where for a Costas loop, a cycle slip is defined as an increase in the magnitude of the

phase error by = radians (leading to an integer number of half cycle jumps in the carrier
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phase). The corresponding expression for the mean time to cycle slip in the presence of a

steady-state phase tracking error, ¢y, is

GALICE 1] FEYPRNA il V-

(C-12)
4Bn¢eSS n=1 [l + (n/2pe¢ess )2]

T =

Equations (C-11) and (C-12) can be obtained from the standard phase locked loop
expressions by doubling both o, and ¢ . This simple relationship holds because the
phase error characteristic of an 1.Q Costas loop discriminator is sin(2¢, )/2, while the
corresponding characteristic for a standard phase locked loop is sin(¢, ). Consequently, the

carrier phase tracking errors of an 1.Q Costas loop need only be half as large as those of a

standard phase locked loop to have the same impact in terms of cycle slips.

By applying the linear model tracking threshold for o, (Equation (C-3)) to Equation (C-

11), the mean time to cycle slip becomes T =1260/B, seconds. This demonstrates that the

tracking threshold obtained from the linear model analysis is quite conservative. For
example, for a noise bandwidth of 10Hz, the mean time to cycle slip is more than 2

minutes.

If it is assumed that the slipping process is approximately Poisson distributed, then the
probability of a slip within ¢ seconds from a condition of zero error is (Holmes [43], page

95)

=1-ex (—L)
Ps Pl ~F (C-13)
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Appendix D

Thermal noise errors

In this Appendix, the statistics of thermal noise errors on the code and carrier tracking
loops are examined. A method is outlined for obtaining the standard expression for the
variance of the thermal noise errors on a Costas carrier loop. This is then extended to
include the effects of amplitude scintillations on an 1.Q Costas loop that is normalised by

an AGC.

D.1 Thermal noise prior to the discriminator

From Equation (3.1-1), the IF signal at the input of the receiver tracking loops is given by

IF(t)= A(t)p(t — ©(2))d(t — 7(2))sin(@;pt + $(2)) + n(t)

where n(t) = n,(t)cos(wrt)+ny(t)sin(wyet) is a narrowband representation of thermal
noise at the IF stage. n(f) is assumed to be a wideband, stationary, zero-mean Gaussian
random process with a power spectral density of N, W/Hz within the IF band. Similarly,
the two baseband noise processes, n.(t) and n,(¢), are wideband, stationary, zero-mean,
Gaussian noise. processes with power spectral densities of N, W/Hz at baseband. After

mixing with the VCO reference signals, the noise is separated into I and Q components as
follows (note that the double frequency terms have been ignored as they will be

eliminated by filtering in the pre-detection filters).

ny =n,(1)sin(@(®)) + n, (£) cos(@(?))

. . (D-1)
ng = n.(1)cos(@ (1)) —ny(2)sin(@(?))

where n; and n, are again uncorrelated noise processes with the same statistics as n.(?)

and n,(7). The I and Q signals are mixed with Early, Prompt and Late replica codes from
the code generator and filtered by pre-detection integrate and dump filters to produce the
three I and Q pairs given by Equation (4.1-6). These are then converted into phase tracking
errors by the code and carrier tracking loop discriminators. The noise on the six I and Q

signals after filtering can be represented by the following vector
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n=[nmg,ngg,nip,Nop, i, gy | (D-2)

The covariance between any two of these six signals is given by

Oux0 py = E{ (nox — Edtg Dlngy — E{ngy P} (D-3)

where o and B represents either I or Q, and X and Y represents either E, P or L. As all of

these noise terms are zero-mean, the covariance simplifies to

O ox0 py =E{”axnﬁr}

N E{[% [rauyp(u- x).du] [% [rpper- y)-dV]} (D-4)

=T =T

- % -[ J. E {”a (@ng(v)p(u—x)p(v—- y)}du.dv
t-Tt-T

where n, and ng are given by Equation (D-1), plu—x) and p(v-y) represent the PRN
codes with delays of u—x and v—y seconds respectively, and x and y represent the
delays associated with either the Early, Prompt or Late codes. As n, and ng are

uncorrelated and independent of the PRN codes, the covariance expression can be

simplified as follows

owopy =25 | [Eba@ngElp-2)p0-»)duay

t-T T

| [Era Elp-sp-ylu, o=p
0, - a+p
(D-5)

!
1
— [N RG=yytu, =B
"

0, o#p
N,

=47 R(x—y)’ a=ﬁ
0, a+p

where E{p(u—x)p(u—-y)}=R(x—y) is the autocorrelation function of the PRN code
(given by Equation (4.1-1)), and E{na (u)? }: R,(0)=N, is the power spectral density of #,

(or ng). This result also relies on n; and n, being sufficiently wideband for
B I 0 g ]
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E{na (u)na (v)}= 0 foru#v.

Based on Equation (D-5), the covariance matrix of the six noise terms for an Early-Late

spacing of 2d code chipsé is given by

1 0 R@ 0 RQ@d) 0
0 1 0 R(@) 0 RQd)
r 1N, | Rd) 0 1 0 Rd) 0 (D-6)
E{" "}' 7| o R@ o0 | 0 R()
R2d) 0 Rd) 0 1 0
0 RQ2d) 0 R@) o 1]

For an Early-Late spacing of 1 code chip (d="1% ; typical of most GPS receivers), the

covariance matrix becomes

1 0 05 0 0 0
0O 1 0 05 0 0
r1 N,J0o5 0 1 0 05 0 s
E{" nj= 710 05 0 1 0 05 (D-7)
0 0 05 0 1 0
(0 0 0 05 0 1]

Consequently, when the Early-Late spacing is greater than or equal to 1 code chip, the
noise on all Early and Late signals is uncorrelated (ie. R(2d)=0). However, this is not the

case for narrow correlator spacing receivers such as the Novatel GPSCard™ for which

d < % chips.

D.2 Thermal noise errors in the absence of scintillations

For a phase locked loop, the mean-square phase tracking error resulting from thermal

noise is given by

R (D-8)
= [IH S,y (Frdf

6 The spacing between the Early and Prompt codes and between the Prompt and Late codes is

assumed to be d chips.
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where H(f) is the closed loop transfer function (Table 3.1-2), and §, 4 (f) is the power

spectral density of the discriminator noise term (labelled #n; in Figures 3.1-2 and 4.1-3). In
the analysis that follows, it is assumed that amplitude scintillations are absent and that ny

is a zero-mean random variable. Also, the sample-and-hold circuits which form part of the

pre-detection filters will maintain »n; at a constant level for a period of T seconds.
However, between successive T second epochs, the values of n,; will be uncorrelated. As

will be shown in Equation (D-24), this is a result of n;p and nye being uncorrelated

between epochs.

The discriminator noise can be viewed as the output of a sample-and-hold circuit fed by a
white noise sequence, w(t). Therefore, we can express n,(¢) in the following way (from

Haykin [39], Section 7.3)

na(6)=ws ()® g, (¢) (D-9)

where w; (t)= ZW(kT)S(t—kT) is an instantaneously sampled version of w(t),

k=—°0
t—-T / 2 “” ” :
g, (t)=rect = represents the “hold” function of the sample-and-hold, and ®
represents the convolution integral. The corresponding power spectral density of n,(¢) is

Sy ()= EFlvs 00® 2, B |

(D-10)
= 8,5 NG (A

where S, (f) is the power spectral density of ws (£), and G, (f)=T sinc(fT)exp(- jmT) is

the Fourier transform of g, (). As w(t) is a white noise sequence, wg(r) is also white.

Therefore, S,,; (f)=N,,; which is a constant. The variance of 7, (¢) is given by
or, =[S, (N)df

= [8us DIGH (Y o
e D-

= J.NwaoTz sinc? (fT)df
=Ny, T
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Consequently, S, (f)= 0'5 " /T and Equation (D-10) becomes

S, (f) =00, T sinc® (fT) (D-12)

Therefore, from Equation (D-8), the thermal noise variance of the phase errors is given by

Opp = _ﬂH(f}2 on, T sinc® (fT)df

—oo

(D-13)

_22, T[%I!H(/)zsincz(ﬁ).df]

The closed loop transfer function, H(f), is a low-pass filter with a bandwidth much

smaller than the bandwidth of the sinc(fT) function’. Consequently, sinc®(fT') can be

approximated by one, giving

2 o217 2
O4r =20,, T[E_J;!H (r l df :l (D-14)
=27TB,0 " radians?

where B, =% ”H (f )Izdf is the single-sided noise equivalent bandwidth of the tracking

loop. Noise equivalent bandwidth’s for the three loop orders are given in Table 3.1-2 as a

function of the loop natural frequency, ®,.

Equation (D-14) is independent of the algorithm chosen for the Costas loop discriminator.

In order to proceed, however, it is necessary to specify a discriminator algorithm so that
o , can be found. For the 1.Q Costas loop, the discriminator noise term n, is given by

(from Equation (3.1-3))

ny = Ad(t —1)[cos(@, Jngp +sin(@e e [+ nppnip (D-15)

7 The single-sided noise equivalent bandwidth of H (f ) is normally less than 20Hz, whereas the
equivalent bandwidth for the sinc( fT) function is 1/2T Hz = 25Hz for T=20ms.
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If it is assumed that the signal amplitude is constant (ie. A=A where Aisa constant), and
the discriminator is normalised by an ideal post-detection AGC (ie. g=A?), the noise

term will become

n
nf,=—d=

1 . 1
AZ Xd(f _T)[COS(¢S )nQP +sin(@, Jnzp ]“‘ FnQPan (D-16)

As ngp and njp are uncorrelated and zero-mean, the variance of n, is given by

(D-17)
= %COSZ (¢ )E{V’QPZ }"‘L in” (9, )E%’IPZ }+XITE{’QP2 }5{'11’2 }

S1
A2

Letting E{nQP2 } =FE {n ,P2}= N, /T (from the diagonal elements of Equation (D-6)) gives

o2 =No_ [l+ N, ]

nd TA? TA? (D-18)

= ! 1+ :
2TC/N, 2T C/N,

where C/N, = A2/2NO is the nominal carrier to noise power density ratio of the GPS

signal8. Consequently, the phase error variance of a normalised I.Q Costas loop is given by
(from Equations (D-14) and (D-18))
4 =2TB,0%,

-5 1+ L ,  radians?
C/N,| 2TC/N,

(D-19)

Equivalent expressions for the thermal noise variance of both the Delay Locked Loop
(DLL) and the Frequency Locked Loop (FLL) are given below (see for example Kaplan
[47]).

2 _4Fd’B,
T C/N,

4F,d
TC/N,

DLL: [2(1 —d)+ ] chips? (D-20)

8 If it is assumed that the nominal satellite signal power at the ground is -160dBW [81] and the

noise temperature is 530K, the nominal carrier to noise density ratiois C/N, =41-5 dBHz.
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F3B 1 2
FLL: ol = 3 1+ Hz D-21
T m’T*C/N, [ T C/No] e

where F is the discriminator correlator factor (1 for time shared tau-dithered early/late
correlators, 1/2 for dedicated early/late correlators), F, is the discriminator type factor (1
for early/late discriminators, 1/2 for dot product discriminators), F; is 1 at high C/N,
and 2 at low C/N, and d is the correlator spacing (in chips). Although the discriminator

algorithms are quite different for the DLL and FLL, it is clear that the variance expressions

have the same general form as Equation (D-19).

D.3 Thermal noise errors in the presence of amplitude scintillations
In the presence of an AGC, the discriminator noise term is given by (based on Eqn (3.1-3))

n

n:i=_d
g

= é[zd(t—r)[cos@e)ngp sin(@, ) [+ ngpnzp ) (D-22)

k
where g=%ZIi2 +0? is the AGC gain factor. If ngp and np are assumed to be

i=1
independent of A and g (ie. independent of amplitude scintillations), and both n,p and

npp are uncorrelated and zero-mean, the noise term n; will also be zero-mean. This is

demonstrated below

If we let n,=cos(9,)ngp +sin(¢,)n;p and n,=nppnsp, it can easily be shown that

E{nx}=0, E{ny}=0 and E{nxny}=0. Therefore

E{n}= E{—;-[Zd(t% o, + ny]}
_ E{M}E{nx }+ E{l}E{n Sl

(D-23)

g g
=0.

and so n) is zero-mean. It is can also be shown that under the assumptions outlined
above, nj; is uncorrelated between successive T second epochs. The autocorrelation

function of nj; for a lag of T seconds is given by
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Ry, (T)= Edny e)ny e+ 1)}
—E{ ()[ ()d(t-T)n, ()+ny(t)]*g(t;m[Z(t+T)d(t+T—T)nx(t+T)+ny(t+T)]}

=F

AQ)d(t-1) A+ T +T - r)}E{nx(t),,x(t+T)}+

g()gle+7)

hj

g)glt+1)

b

(t)g(t+1)

AT ol 47

E

3
2D o v 47
e
Fore

0 (t+T)}E{n (©)n, (i +7)}

(D-24)
As E{ ny ny} =0, the second and third terms in this expression are zero. Also, as n, and
n, are uncorrelated between epochs, E . @n, ¢+T)}=0 and EJW b ()n " t+1 )}= 0.
Consequently, R, (T)=0 and so n is also uncorrelated between successive epochs (note

that R, (r)=0 for 7 >T also). The variance of n} is given by
0% =EWy )|
o 2 el sl LLeh,
8 g
= E{?}E{ngpz cos? (¢E )+ nIPZ sin? ( A )+ 2ngpnip cos(qbe )sin(d)e )}+ E{-gl—z}E{?sznlpz }
- T b bos o) s i o] b o)

(D-25)

Letting E{nQP2}=E{n,P2}=NO /T (from the diagonal elements of Equation (D-7)), the

variance expression reduces to

~2
o2 =No| gl AL Nopl 1 (D-26)
T g2 T g2

The signal amplitude 4 can be normalised by dividing by the nominal (unperturbed)
signal amplitude A as follows
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Ay = (D-27)

JAEN

where E{ZN2}= E{Z 2} / A? =1 under amplitude scintillation conditions. By substituting

A=A*4y and C/N,= A2/2N0 into the variance expression, the following result is

obtained

2 1 Ay* 1 1
O, = E + E
" 2TC/N,,[ {gNZ 2TCIN, | gy* (D-28)

where gy =g/A? is a normalised AGC gain factor, and C/N, is the carrier power to
N8 24 P

noise density ratio of the GPS signal.

Equation (D-28) represents the noise variance at the output of a normalised 1.Q
discriminator. The only assumptions made in this analysis are that the amplitude and

AGC gain factor are independent of the thermal noise terms, ngp and npp. However, no

assumptions have been made about the bandwidth of the amplitude scintillations.

D.3 A note on sample-and-hold circuits

The outputs of the pre-detection integrate-and-dump filters will generally be held constant
for T seconds by a zero-order sample-and-hold circuit. The purpose of the
sample-and-hold is to maintain the I and Q signals at a constant level so that #() is fixed
for the subsequent T second integrate-and-dump period. Using arguments similar to those
given in Equations (D-9) to (D-12), it is relatively straightforward to show that the
sample-and-hold does not change the variances or power spectral densities of the six noise
terms from Equation (D-2), although it may alter their appearance in the time domain (ie.

they will become stepped rather than continuous). Therefore, if 74y (t) represents one of
the noise terms from Equation (D-2), §, (f)= N, sinc(fT ¥ and o} o =No /T,

irrespective of whether a sample-and-hold circuit is present after the integrate-and-dump

filters.
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Appendix E

Doppler errors

The effects of satellite and receiver motion on the phase of the GPS signal can be

represented by the following Doppler expressions

Carrier: o,(t)= u(t)%[ro +v,t+ -;—aot2 + %jot3+. . ] radians (E-1)
1 1 2 1 . L3

Code: T()=u(t)—|r, + v, + ant +Zjot +... seconds (E-2)
c

where u(¢) is the unit step function, 7,,v,,a, and j, are constants which define the range,

velocity, acceleration and jerk components of the relative motion between the satellite and
receiver, A is the carrier wavelength and c is the speed of light. These equations assume
that the dynamics are applied at time #=0, and that prior to #=0 there is no relative motion
between the satellite and receiver. The Laplace transforms of ¢,(r) and 7,(z) are given by

the following generalised expression

0,(s)= k[r—o pre ey J—4+] (E-3)
s s Ky N

where 6,(s) represents either ¢,(s) or 7,(s), and k is a constant which equals 2zn/A for
the carrier tracking loop and 1/c¢ for the code tracking loop. The phase errors at the output

of the tracking loop are given by

56,(s)

0:(s)=[1- H()]04(s) = S+ F(s)

(E-4)

where F(s) is the loop filter and H (s) is the closed loop transfer function (from Table 4.2-

2). The phase error as a function of time, 6,(¢), can be obtained from Equation (E-4) by

taking the inverse Laplace transform.
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E.1 Steady state errors

The steady state tracking error is given by the Final Value Theorem of Laplace transform

theory as follows

lim lim

where 6,(¢) is the inverse Laplace transform of 6,(s). For the generalised Doppler process

of Equation (E-3), the steady state tracking error becomes

Opss = k* R B | S S— - T E— (E-6)
s+F(s) s+F(s) s(s+F(s)) s°(s+F(s)

Equation (E-6) results in the following steady state phase errors as a function of the loop

order and the specified component Doppler processes.

2 .3
O R A O
1st Order | 2nd Order | 3rd Order | 4th Order
st OI' der 0 k v_o oo [o%)
wn
2nd Order 0 0 a, oo
k—5%
wn
3rd Order 0 0 0 j
k "3
wn

Table E.1: Steady state tracking errors as a function of the loop order and loop natural frequency
w,, for the specified Doppler process.

It is clear from Table E.1 that if the loop order is less than the order of the Doppler process
minus one, the loop will lose lock. However, when the loop order is greater than or equal
to the order of the Doppler process, the steady state tracking error will be zero (assuming
that the loop filter is active). When the loop order is equal to the order of the Doppler

process minus one, the steady state phase error is given by (based on Table E.1)
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d"0,(1)
k

Opss = i}‘—
n

(E-7)

where k is the loop order. This expression implies that the steady state error can be
reduced by increasing the loop bandwidth (ie. increasing ®,). For the frequency locked

loop, the steady state error is given by the first derivative of the phase error as follows

dk+19d (t)
k+1
= dBes5(1) __dr” radians/s (E-8)
dt .k

n

Consequently, an FLL will in general be more robust to Doppler effects than a PLL of the

same order.
E.2 Transient errors

For a typical GPS receiver closed loop transfer function, the transient errors will overshoot
the steady state error by only a small amount ([92], page 390). Nevertheless, the
contribution to the loop phase error from transient dynamic effects can be accounted for
by including a Total Transient Distortion term in the phase error variance expression [45].

The Total Transient Distortion is given by

e’ = [6,().dt (E-9)
0

If we replace 6,(s) with a truncated version of the series given in Equation (E-3), and we
assume that 6,(¢) is bounded (ie. The loop remains in lock), then 6,(7) is a deterministic

power signal and its power spectral density is defined by

se (= Efe. [}
= e{i- s}
=i- H P Efea ('}
=i~ H(/ ) Sq, (/)

(E-10)
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The Total Transient Distortion then becomes

e’ = [So,(f).df
o= (E-11)

= [-H) o, (/)
Equation (E-11) assumes that the steady state tracking error is zero (ie the order of the loop

is greater than the order of the Doppler process). If this assumption is violated, the Total

Transient Distortion will become infinite.
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Appendix F

Ionospheric pierce point velocity

Satellite motion
The steps required in order to determine the Ionospheric Pierce Point (IPP) velocity due to

satellite motion, ¥,, are outlined below. It is assumed that suitable algorithms are

available to convert between the geodetic coordinate system (latitude, longitude and

height) and the Cartesian Earth Centred Earth Fixed (ECEF) coordinate system.

Step 1
Using the satellite Almanac (or Ephemeris) parameters, calculate the satellite ECEF
coordinates, 7y =(xg, ys,zs). The appropriate equations can be found in Appendix II of

ICD-GPS-200 [81].

Step 2

Convert the satellite ECEF coordinates to local level coordinates as follows:

The ECEF line of sight coordinates of the satellite from the receiver are

s =(XLs, Yis»ZLs) =Fs — TR

where 7z =(xg, yg,2zg) are the ECEF coordinates of the receiver. Convert the receiver
ECEF coordinates to latitude and longitude coordinates, (¢, Az), using an appropriate

transform. Convert the line of sight satellite coordinates to local level coordinates using the

following matrix
—sin(Az) cos(Ag) 0

R=|-sin(pg )cos(Az) —sin(pg)sin(Az) cos(@r)
cos(@p )cos(Az)  cos(@g)sin(Az)  sin(pr)

The local level coordinates are then

FL =R*FLS
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where 7, =(x.,y;,z;) are in the East, North and Up directions respectively, and the

x;y; plane is tangent to the Earth at the receiver location.

Step 3
Determine the elevation and azimuth angles of the satellite using local level coordinates.
Only those satellites for which the elevation angles are above some low elevation angle

mask are considered further (a typical mask angle is 50)

Zy,

Elevation, e=arctan —
Je2+50)
Azimuth, a= arctan(x/ )
yL

Step 4
Calculate the earth centred angle, ¥ (the angle between a line joining the centre of the

Earth and the receiver, and a line joining the centre of the Earth and the IPP).

Y =90 —¢—arcsin M
R, +hy

where R, = 6378 km is the Earth’s radius, and 4; = 350 km is the mean ionospheric height.

Step 5
Calculate the IPP in geodetic coordinates. The IPP is the point below which the line of

sight vector penetrates the mean ionospheric height.

Oy =¢p + ‘I‘cos(a)

where (¢;, ;) are the IPP latitude and longitude respectively.

Step 6

Determine the velocity of the IPP in ECEF coordinates as follows:
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Convert the IPP geodetic coordinates (@7, A7, ;) to ECEF coordinates, 7y =(x;,y;,21),
using an appropriate transform. Perform this step at two time instants separated by a

small time increment, 7, to obtain the two coordinates, 7;; and 7, . The ECEF velocity of

the IPP is then approximately

= - _Iz—"n
vl_(vxl’vyl’vzl)_ T
(An alternative approach is to solve the expression R, +h; =|FR +pB ’_'le for the scalar

factor B (0 < B < 1) at two different satellite locations separated in time by 7 seconds. The
IPP in ECEF coordinates is then 7; =7 + B 75 and the IPP velocity, v;, is once again
found using the equation given above. This approach by-passes steps 2 to 5. However, if
this approach is used, it is still necessary to find the local level vector, 7;, in order to

obtain the satellite elevation angle for masking purposes.)

Step 7
Translate the IPP ECEF velocity into a local level velocity as follows:

Form a translation/ rotation matrix based on the first IPP coordinate 7;; (or (@1, 71, ;1) in

geodetic coordinates)

—sin(4;,) cos(2;,) 0
Ry =|—sin@; )cos(Ay) —sin(@y )sin(Ay,) cos(ey)
cos(@y Jeos(Ayy)  cos(@y )sin(Ay,)  sin(g;,)

Convert the velocity vector to a local level vector as follows

’ ’

vir =Ri*vp
where V7 =(vpy, Vs Vi) are the velocity components in the East, North and Up

directions respectively. The IPP velocity due to satellite motion is then v, =v;; and the

speed of the IPP is simply v, = |VL,| m/s.
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Receiver motion

The steps required to determine the IPP velocity due to receiver motion, v, , are outlined

below.

Step 1

Determine the ECEF coordinates of two receiver locations separated by 7 seconds in time.

The receiver must be characterised in terms of its location 7z (in ECEF coordinates), and
its velocity in local level coordinates, vz =(v,g,V,gr,V;z) (East, North and Up directions
respectively). Following 7 seconds of motion, the location of the receiver in local level
coordinates (with respect to 7 ) is given by v *7. Consequently, the ECEF line of sight

vector from 7z to the new receiver location is

’ ’

FLS =R_1 *1_)R *T

where R™! is the inverse of the transformation matrix given earlier. Therefore, the two

receiver locations in ECEF coordinates will become

Fr1 = 7R

Yro =Fg +7g

Step 2
If it is assumed that the satellite position, 7y, remains fixed over the t second period of

interest, the procedures outlined earlier for satellite motion can be repeated in order to
derive the two IPP coordinates corresponding to the two receiver locations (ie. repeat
step’s 2 to 6 for satellite motion). As before, these two coordinates can then be combined in

order to obtain ECEF, and finally local level IPP velocity measures (ie. ¥, ).

Combined motion

It is quite straightforward to combine the effects of satellite and receiver motion by
calculating two values of 7y (75; and 75,) and two values of 7z (7z; and 7z, ) which
represent the two time instants of interest. Steps 2 to 7 of the analysis of satellite motion

can then be used to determine ¥; based on combined motion.
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However, to a first approximation, the IPP velocity can simply be found by summing the

two velocity vectors obtained by treating the satellite and receiver motion separately.

Equivalent satellite velocity

For GPS calculations, the WBMOD model is called using the FILE option. This requires
that the receiver be stationary at a known location, and that the satellite position and
velocity vectors be specified in a file that is passed to WBMOD. Unfortunately, WBMOD
does not include an option in which both the satellite and receiver are capable of moving
independently of one another. To account for this, it is possible to determine an equivalent
satellite velocity vector that includes the effects of both satellite and receiver motion. The
receiver is then considered to be stationary and the equivalent velocity vector is passed to
WBMOD within the satellite file. The equivalent satellite velocity vector is calculated as

follows:

The ECEF satellite vector can be described in terms of the ECEF receiver and IPP vectors

as follows

I A
"S="R+E("1_’”R)

where f is the scalar factor described earlier. If 7 is considered to be stationary, and 3 is

assumed to be constant, the time derivative of the above expression is given by

o O 1(dn Ofp
vSE'at+ﬁ(at 8t]

v
B
where 7; is the IPP ECEF velocity which includes the effects of both satellite and receiver
motion, and Vg is the equivalent satellite velocity. The value of Vgz given by this
expression will ensure that WBMOD creates an IPP velocity vector which accounts for

both satellite and receiver motion, and that 8 is a constant over some small time interval,

ot. The Vg vector must then be transformed into a local level velocity vector for

WBMOD by multiplying by the following matrix
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—sin(Ag) cos(Ag) 0
Rg =|-sin(gg Joos(As) —sin(pg)sin(Ag) coslps)
cos(fs Jeos(As)  cos(py )sin(As)  sin@y)

where ¢g, Ag are the satellite latitude and longitude respectively.
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Appendix G
WBMOD predictions of f.

Many of the results derived in this thesis are based on the assumption that the bandwidth
of the amplitude scintillations is much less that the bandwidth of the tracking loops. This
assumption greatly simplifies the problem of analysing tracking errors and allows
analytical expressions to be obtained for measures such as phase error variance and the
probability of losing lock. The cutoff frequency of the amplitude scintillation power
spectrum, f,, is an important indicator of the validity of this assumption as the majority
of the amplitude scintillation energy is expected to be concentrated near to f, (above f,

the PSD of amplitude scintillations falls off according to a power law expression of the

form k,f~? where k, is a constant). From Equation (2.1-3), f, is givenby

vV

= L H =
Jfe Tozs Z (G-1)

where v, is the effective velocity, zg =+fAz is the Fresnel zone radius, A is the carrier
wavelength, and z is the distance to the irregularity layer. For a given satellite-receiver

geometry, WBMOD provides predictions of v, based on internal models of the
ionospheric drift velocity, v, . In addition, simple geometry can be used to determine z as

a function of the elevation angle, ¢, for an assumed ionospheric height of 4; , viz

z=r, [J sin(e)? + (1 + A /r, ) =1 —sinle ] (G-2)

where 7, is the radius of the Earth. In Figure G-1, WBMOD predictions of v, under the
same conditions as those used in Figure 3.4-5 were used to obtain f, as a function of the
elevation angle for 4; =350km. Each point in the upper panel of this figure represents one
propagation path at one instant in time between 12:00 noon and 14:00 hours GMT. It is

clear from this figure that on average, f, tends to be slightly larger at low elevation
angles. This implies that the increase in zy at low elevation angles tends to be outweighed
by a larger increase in v, on some of the low angle links. It is also clear that f, is

generally less than about 0.3Hz (often considerably less), which is well below the
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bandwidth of a typical carrier loop. However, it is possible that in the presence of high
platform velocities, f, may increase significantly on some links. If the carrier loop
bandwidth is also very narrow, perhaps due to INS aiding, the assumptions made about
the amplitude bandwidth may be violated, particularly for the narrower bandwidth code

loops.

0.4 1 '. i { ! T T T
0.2

fc (Hz)

00 10 20 30 40 50 60 70 8 90
Elevation angle (degrees)

Figure G-1: f, as a function of the elevation angle from WBMOD.
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