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Abstract

Let U and H be real separable Hilbert spaces. This thesis is devoted to the con-
struction of H-valued stochastic distributions and to stochastic evolution equations
with additive noise

dX(t) = AX(t)dt + BdW(t) , t€[0,T],
X(0)=¢€D(4), (1)

where A is a linear operator on H, B is a continuous linear map from U to H and W (-)
is a U-valued Wiener process. The thesis consists of five parts. In Chapter 1 spaces
of H-valued stochastic test functions S(H), and H-valued stochastic distributions
S(H)_,, p € [0,1], are constructed. Results regarding the strong topology of S(H) -,
together with continuity, differentiation and integration in S(H)-, with respect to
the strong topology on S(H)—, are studied.

In Chapter 2 the Hermite transform of elements of S(H )1 is defined, which maps
elements of S(H)_; to power series defined on particular subsets of CY with values in
H¢ (Hc being the complexification of H ). Results regarding the strong convergence
of sequences in S(H)_; and their Hermite transform are studied, which leads to
results relating the continuity, differentiability or integrabilty of S(H)-; processes
and their Hermite transform in the last part of the chapter.

In Chapter 3 a sequence of independent Brownian motions {/;(-)}$2, is constructed
so that the U-valued Wiener process

o0

W) => 6O,

=1

belongs to S(U)_o, where { f;}2, is an orthonormal basis for U. This is used to define
a generalised stochastic convolution for strongly continuous families of continuous
linear maps from U to H.

In Chapter 4 equation (1) is shown to have a unique solution in S(H)_1, when A
is the generator of a Co-semigroup. The result is illustrated with the stochastic Heat
and Wave equations.
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In Chapter 5 equation (1) is shown to have a unique solution in S(H)-1, when
A is the generator of a non degenerate, 1-times integrated, exponentially bounded
semigroup. The result is illustrated with the stochastic Wave equation.
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Introduction

Many models in physics, biology, finance, etc, involve stochastic differential equa-
tions. Some stochastic evolution equations can be written in the following form

dX(t) = AX (t)dt + BdW(t), t€[0,T],
X(0)=¢€D(A) ae, (2)

where B is a continuous linear map from a Hilbert space U to another Hilbert space
H, A is the generator of some semigroup on H and W(-) is a U-valued Wiener
process. One example of this is the stochastic Heat equation

d.X (t,z) = D X (¢, z)dt + dW (t,z) , t€[0,T], 2€0,
X(t,z)=0, tel0,T], z€80,
X(0,z)=0, z€0O, (3)

where dW (¢, ), t € [0,T], z € O is temporal and spatial white noise and
O={zeR": 0<z<a, k=1,...,N} .

Another is the stochastic Wave equation

2
Y/ (t,z) = %Y(t,x)dt +dW(tz), t>0,z€Q=(01),

Y(t,0) =Y(1) =0, tel0,T],
Y (0,2) = Yo(z) , ¥{(0,z) =Yi(z), z€. (4)

The semigroup approach to stochastic evolution equations has been developed by
many authors. See [2], [3], [17] and references therein. It is shown in [2] that if A
generates a Cy-semigroup {S(t), t > 0} and the operator

T
Sra :=] SH)S* Wz dt, zeH, (5)
0
is trace class, then the process

X(t) = S@)E + /0 S(t— s)BAW(s)

viii



is the unique weak L?(H) solution to (2). For the stochastic Heat equation, if N > 1,
then Sy is not trace class. If the stochastic Wave equation is considered in the space
L2(Q) x L*(), then the operator A generates a l-times integrated semigroup and
not a Cyp-semigroup.

One of the alternative approaches to treating stochastic differential equations was
developed in the framework of the white noise analysis. White noise analysis for R"
valued processes and stochastic differential equations has been developed extensively
in the past three decades, see for example [8], [10], [11] and references therein. The
approach of [10] has been to construct spaces of R-valued stochastic distributions
(S)_,, p € [0,1], in which a stochastic differential equation becomes a determinis-
tic differential or integral equation, which is then solved using standard results for
deterministic differential or integral equations.

While some steps were made in [15] to consider spaces of stochastic distributions
with values in particular Sobolev spaces, no one has constructed spaces of stochastic
distributions with values in arbitrary Hilbert spaces. This motivates this thesis,
that is developing a particular white noise framework within which one can consider
stochastic evolution equations as deterministic differential or integral equations that
can be solved using the semigroup theory.

We generalise the approach of [10] by constructing spaces of Hilbert space valued
stochastic distributions S(H)_,, p € [0,1], in which we wish to consider stochastic
evolution equations. The first three chapters deal with the construction and proper-
ties of these spaces and particular S(H)_o and S(H)_; processes. In Chapter 4 we
solve equation (2) in S(H)_,, for the case when A generates a Co-semigroup, without
Sr being necessarily trace class. In Chapter 5 we solve equation (2) in S (H)_; when
A generates a non degenerate, n-times integrated, exponentially bounded semigroup,
n > 1. We illustrate our results with the stochastic Heat and Wave equations.

Chapter 1 deals with the construction and properties of the spaces of H-valued
stochastic distributions S(H)_,, p € {0,1]. The main motivation of the chapter is to
set up the spaces S(H)-, in which H-valued stochastic differential equations can be
considered as deterministic differential or integral equations.

We start by considering the classical Wiener-Ité expansion of elements in L?(u) in
terms of Hermite polynomials (see, for example [10]). The expansion works as follows:
if f € L?(u), then
fZZCaHaa ca €R,
acJ
where J = (Ng)V, the space of finite sequences whose values belong to No = NU{0},
and
<Ha, Hﬁ)Lz(u) = 6,1"304! = 50‘”@0111012! e

We then show that {H,e;}ienacs is an orthogonal basis for L*(H), that is if f €
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L?(H), then

f = Z f:ci,aHaei ) Ci € R )

acJ =1
where
<Ha6i, Hﬁej>L2(H) = (5,1’[351"]-04! :
We use {Hqe;}ienacs to construct the spaces of H-valued test functions S(H),,
p € [0,1], being all f =3, csCaHa, ca € H, belonging to L?(H) such that for all
ke N
1£125 = (@) *]lcalF(2N)* < o0 .
aeJ

We also construct spaces of H-valued stochastic distributions S(H)-,, p € [0, 1],
being all formal sums f = Zaej coH,, o € H, such that for some ¢ € N

1F12pmg = D (@) ?llcallH(2N) 7% < 00

acd
These spaces have the property

S(H): C S(H), C S(H)o C L*(H) C S(H)-o C S(H)-, C S(H)-1 (6)

Before defining and proving results for continuity, differentiation and integration in
S(H)_,, results on the topology of S(H), and S(H)_, are proved. To do this, the
intermediary spaces S(H),x, k¥ € N and S(H)_,_¢ ¢ € N are introduced, having
the properties

S(H), = M1 S(H)ppk S(H)-p, = UZ?—.ls(H)-p,—q . (7)

By showing that S(H), is a Hilbert space with the dual S(H)—p,—k, we show that
S(H), is a countably Hilbert space with the dual 5 (H)-,. We then prove that a
sequence { F;,}32, converges strongly to F'in S(H)_, if and only if there existsag € N
such that F, —n—eo F in S(H)_, o This result leads to the defining of continuity,
differentiation and integration in S(H)-, with respect to strong convergence, so that
with continuity, differentiation and integration, one need not deal directly with the
(strong) topology of S(H)_,, but only with one space S(H)-,,~,, for some g € N.

Chapter 2 deals with the Hermite transform # : S(H)-, — Hc. The main motiva-
tion of the chapter is to provide a way of transforming differential or integral equa-
tions in S(H)_, into differential or integral equations in Hc. The Hermite transform
also provides a convenient way of showing that an S(H)_; process is continuous,
differentiable or integrable.

We start by considering power series with values in Hc, defined on the sets
K, = {z€C"; |yl <(2))™ jeN},

where g > 1. Two important results proved regarding power series needed latter on
in the chapter for the Hermite transform are the following:
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1. Consider X (2) : K; — Hc, ¢ > 1, given by
X(Z)Zanza, ce € He
aed
bounded by some M < oo. Then for all z € Ky,
> llcallmel=®] < MA(g) ,
aceJ
where A(q) := 3¢, (2N)79* converges if and only if ¢ > 1.
9. Consider Xn(2), X (2) : K; — Hc, ¢ > 1, given by

Xn(z) = ch‘)z"‘ . X(z) = Z C w cg‘),ca € He ,

acd aeJ
such that Xn () —¥n—eo X () pointwise boundedly for z € Kq. Then
X, (-) —ns00 X (-) uniformly on Ko.

After the results relating to power series defined on K, are proved, the Hermite
transform H : S(H)-y — Hc of F =3 .7 caHa € S(H)-1, is then defined to be
the power series

HF(z) := Z (A (8)

aed

for z € CN such that the series converges in Hc. Using the two results above, we
prove the following results:

1. If F € S(H)_1, then there exists a ¢ € N'\ {1} such that HF(z) exists for all
z € K, and
IHF(2)ll e < IFl-1-0A@)"* -

2. Consider X (z) : K, — Hc, ¢ € N\ {1}, given by

X(z)chaza, ce € H,

bounded by some M < co. Then

F=anHa,

aEd

belongs to S(H)-1,—4¢ and

| Fll-1,-4¢ < MA(g) -

3. A sequence {F,}%, converges strongly to F in S(H)- if and only if there
exists a ¢ € N\ {1} such that HF,(z),HF(z) exist for all z € K; and
HE,(-) —>n—soo HF(-) pointwise boundedly in K,.
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The last part of the chapter uses these three results to prove results regarding conti-
nuity, differentiation and integration of a S(H)_1 process and it’s Hermite transform.
For instance, for a S(H)_, process F(t) : [a,b] — S(H)-1, the following statements
are equivalent:

1. F(-) is a continuous S(H)_y process on [a,b] .
2. There exists a ¢ € N\ {1} such that
(a) HF(t,z) exists for all (t,2) € [a,b] x K,.

(b) HF(, z) is continuous with respect to t on [a, b] for all z € K, and bounded
by some M < oo, for (¢,2) € [a,b] x K.

Chapter 3 defines generalised stochastic convolution in S(H)_ for strongly contin-
uous families of continuous linear maps from U to H.

We start by defining a sequence of independent, Brownian motions {8;(+)}32,, so that
the U-valued Wiener process

oo

W)=Y B(t)fi,

=1

belongs to S(U)_o for all ¢ > 0 ({fi}2; is an orthonormal basis for U). We also
define W(-), which we call a U-valued singular white noise process. We show that
W(-) is the continuous derivative of W(-) in S(U)-o. We also show that W(.) is
differentiable up to any order in S(U)_o.

Before developing generalised stochastic convolution, the Pettis integral for S(H)-o
processes is defined. A S(H)_o process F(t) : R — S(H)-, is said to be Pettis
integrable if (F(-), f) belongs to L' (R) for all f € S(H)o. The Pettis integral of F'(-)
is defined to be the unique element, denoted [ F(t)dt belonging to S(H)-o such
that

( / F(t)dt, f) = / (F(®), f)dt
for all f € S(H)o.

We define the extension of a linear map from U to H to a linear map from S(U)—, to
S(H)_,, for p € [0,1]. This allows us to define generalised stochastic convolution for
a strongly continuous family of continuous linear maps from U to H, {S(t), t > 0},
as the Pettis integral

t t
f ()W (s) i= / S(s)W(s)ds , t€[0,T], ()
0 0
assum;mg that S(-)W(-) is Pettis integrable on [0,T.
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For the case U = H (the case for when U # H is the same proof), we prove that if
the operator

T
St :=/ S(s)S*(s)zrds, ze€H,

is trace class, then for ¢ € [0,T], we have that fo (s)6W (s) belongs to L*(H) and
agrees with the notion of stochastic convolution found in [2], that is

/Ot /s )dW (s Z/s JexdB(s) ,

where {e;}$2, is an orthonormal basis for H, fo (s)dW (s) is the Wiener integral of
{S(t), t > 0} with respect to the H-valued Wiener process W(-) and fo (s)exdBr(s)
is the It6 integral of {S(t)ex, t > 0} with respect to Bk (-).

The final part of the chapter defines generalised nt" stochastic convolution for a
strongly continuous family of continuous linear maps from U to H, {(Vv(t), t > 0},
as the Pettis integral

/ tV(s)éW(”)(s) = / t V(W™ (s)dt, te[0,T],

assuming that V()W (-) is Pettis integrable on [0, T].

In Chapter 4 we consider the differential equation in S(H)-,

9‘%@ _ AX(t) + BW() , te0,T],
X(0)=¢6€D(A)-1, (10)

where A generates a Cg-semigroup {S(t), t > 0} on H and B is a continuous linear
map from U to H. We give the definition of a solution to (10) in S(H)_; and for
the case U = H, show that it has the unique solution in S(H)_;

1
X(8) = S()E + / S(t — s)BSW (s) .
0
We also show this is the unique solution to the problem
t
X(t) = X(0) +/ AX(s)ds + BW(), t€[0,T],
0

X(0)=¢€D(4)

In the last part of the chapter we illustrate our results with the stochastic Heat and
Wave equations.

In Chapter 5 we consider two problems. The first is

X () =X(0)+A/tX(s)ds+BW(t) , telo,T],
X(0) =€ € D(A), (12)

xiil



where A is a closed, densely defined operator on H, generating a non degenerate,
1-times integrated, exponentially bounded semigroup {V(t), ¢ = 0} and B is a
continuous linear map from U to H. We give the definition of a solution to (11) in
S(H)_; and for the case U = H, show that it has the unique solution in S(H)_4

X(t) = %

t

V()¢ +/ V(t — s)B6WM (s) + V(t) BW(0) . (12)
0

We illustrate our results with the Wave equation.

The second problem we consider is

X(t) = ;—n‘X(O)+A/tX(s)ds+/t t ;f)an(s) Ctelo,T),

X(0)=¢€SH)1, (13)

where A is a closed, densely defined operator on H, generating a non degenerate,
n-times integrated, exponentially bounded semigroup {V(¢), t > 0} and B is a
continuous linear map from U to H. We give the definition of a solution to (13) in
S(H)_; and for the case U = H, show that it has the unique solution in S(H)-1

X(t) = V{)E + /O Vit—)BSW(s), tel0,T]. (14)

xiv



Chapter 1

Spaces of H-valued Stochastic Test
Functions and Distributions

1.1 Preliminaries

The probability space used in this thesis is (S'(R*), B(S' (R%)), ), where S'(R?) is
the space of tempered distributions and B(S’ (R%)) is the o-algebra generated by the
opens sets generated by the weak star topology on S'(R?). The measure u is the
unique probability measure on (S'(R?), B(S'(R?))) satisfying

/ el(w,¢)dﬂ(w) — 6_1/2”¢”L2(Rd) , (11)
S/ (R2)

where ¢ € S(R%) and (w,¢) denotes the action of w € S'(R?) on ¢ € S(R?). The
proof of the existence and uniqueness of 4 can be found in [18]. By L*(u) we denote
the space L2(S'(RY), B(S'(RY)), u; R).

We let H be a real separable Hilbert space with the orthonormal basis {e;}2;. We
denote the space L2(S'(R%), B(S'(R?)), u; H) by L*(H).

1.2 Orthogonal Basis for L*(p)

We use the classical Wiener-Ito chaos expansion of elements of L?(u) in terms of
Hermite polynomials and functions (see, for example, [10]). The Hermite polynomials
are defined as

d'ﬂ.
hn(z) = (—1)"61/2"’255;((1/2’*”2)  n=0,1,2,... . (1.2)
The Hermite functions are defined as
£a(z) =7 V4 (n— 1))V V2 R, 1 (z), n=1,2,.... (1.3)
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The Hermite functions form an orthonormal basis for L?*(R). This gives rise to the
following orthonormal basis for L#(R*), the family of tensor products

i Z=§5§i)®...®§5y), 1=1,2,..., (14)
where 6@, e 6,(f) € N are chosen such that if 1 <
59 160 4. 460 <6 469+ +0P .

The classical Wiener-Itd chaos expansion of elements of L?(u) is the expansion of
elements in L2(x) with respect to the following orthogonal basis {Ha}aes for L% (),
defined by

o

Ho(w) = [ [ o (), w € S'(RY) (1.5)

=1
where J = (N}'), is the space of sequences o = (a1, a2, .- ), a1,Qg,... € Ny, such
that there are only finitely many «; # 0. The norm in L*(p) of these {Hg}aes is

“HOZH%%[J,) =a =ala!... . (16)

1.2.1 Some Notation

We introduce the notation
index o := sup{k | ax # 0},
I[,:={a€J|a<n, Vi<nand o; =0, Vi >n}.

Take f € L?(u). As {Ha}acs is an orthogonal basis for L?(u), f has the following
expansions in L?(p)

f=lim 5 caHy = lim E Carblly,
k—o0 n—00
index a<k a€l'n

where

ca = (&)7Hf, Ho) L2(u) -
We denote limg_, o0 Zindex <k and lim,_, Zaern by > oy unless the application
needs a specific choice.

1.3 Orthogonal Basis for L*(H)

In this section we use the functions {H,}ees to construct an orthogonal basis for
L%(H). With this basis we construct the spaces of H-valued stochastic test functions
and distributions.

The folllowing lemma is needed.



Lemma 1.1 For a random variable f(w) : S'(R?) — H, belonging to L*(H), there
ezists random variables a;(w) : S'(R?) — R, i € N belonging to L*(u), such that the
series

f = Zaiei ) (17)
1=1
converges in L*(H).

Proof: Define a;(w) : S'(R?) — R almost everywhere to be

a;(w) = (f(w), &) n

We firstly show that a; is measurable. Now f(w) : S' (R?) — H is measurable and
(-,ei)m : H — R is continuous. Hence a; is measurable. Note that by continuity of
scalar multiplication, a;e; is then measurable.

We secondly show that a; belongs to L%(u). Now

g ) < /)Z 0)= [ W) <o

Note that ase; then belongs to L?(H).

We lastly show that the series in equation (1.7) converges in L*(H). Using the
Dominated Convergence Theorem

[ s @lante) = /,RdJZaJ e Z [, 8
. zHai”QLz(u)

1=1

Hence for any € > 0, there exists an N € N such that foralln > N

[Ral Z a3l Z2(u) Z laslZag — D llasllFag
1= =1

= Y el = 3 [, el = [ S sl

€ >

i=n+1 1= n+1
[e 0} o0 n 2
= / Z a;(w)e;|| dp(w =/ Eal(w)ei —E:ai(w)eZ dp(w)
SI(Rd) i=n+1 H SI(Rd) i=1 i=1 H

= /S,(Rd) f(w) . Zai(w)ei d,u(w) . ) f Zazez

as required. W

L%(H)

This expansion helps give rise to an orthogonal basis for L(H).
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Propositon 1.1 The family of functions {Haei}ienaes 1S GN orthogonal basis for
L?(H), with norm in L*(H)

| HaeillZagmy = o - (1.8)

Proof: The family of functions { He; }ienocs is orthogonal as
(Hati, Hpej) 120

- / (Ho(w)es, Ho(w)e;) ndp = / 63 Hal(w) H(w)dp = 81 ap 0} .
S/(RY) S/(R?)

We secondly show that the family of functions { Hue€; }ien,acs SPanS L*(H). Take any
f € L*(p). From the previous lemma

oo
/= Z ai€; ,
i=1

where each a; belongs to L?(u) and the series converges in L?(H). Each q; has the
following expansion in L?(u)

a; = 2 Ci,aHa y Cia € R.
acJ
Hence it remains to show that
Qi€ = Z CiaHati
aed
where the series is in L2(H). Now for any € > 0, there exists an N € N such that for

aln> N
2 2
e > lla;— Z Sl =/ (ai(w) - Z ci,aHa(w)) du
a€ln L2(p) S'(R%) a€ln
2
-/ (axw) - ci,aHaw)) el du
5'(RY) aeT -
2
= ||Q:€; — Z ci,cxHaei )
a€ln L2(H)

as required. W

Note that the order of summation can be changed as {Haé€;}ienacs is an orthogonal
basis for L2(H). That is

f = ZZ(Q!)_IQ‘.: Haei>L2(H)Haei



Propositon 1.2 Consider f € L*(H) with form

f = Z i cmHQei .

e 1=1
Then
£ 122 = D @lically (1.9)
aced
where

(o)
Co = E Ci o€
=1

converges in H, for alla € J.

Proof: To do this, we need only show that

o0

§:2
Ci,a<OO,

=1
for all o € J. This is true as
o0 [oe]
o = 5ot = St (o) <o,
aeJ 1=1 acJ =1
as required. W
Note also that if f € L?(H) has the form
o0
f= Z Z Ci,aHaei s Cia € R,
acd =1

then we can write

fzzcaHa, CQEH,
aeJ

where the series is in L2(H) and ca = D _ioy Ci,a€i-

1.4 H-valued Stochastic Test Functions
and Distributions
We start by introducing the following Kondratiev spaces of R-valued stochastic test

functions and distributions which are standard in the white noise calculus (see [10]
and references therein).



Definition 1.1 1. For p € [0,1], define (S), to consist of all

f:ZCaHaa ca €R,

acJ

in L?(u) such that

e = ()P (2N)" < oo, (1.10)
acd

for all k € N.
2. For p € [0,1], define (S)_, to consist of all formal sums

FZZCaHaa CaERa
acJg

such that
IF[2,_ = ci(a) 2N < o0, (1.11)

—-h—q "’
aed

for some ¢ € N.

In a similar way, we define the spaces S(H), of H-valued stochastic test functions
and the spaces S(H)_, of H-valued stochastic distributions.

Definition 1.2 1. For p € [0,1], define S(H), to consist of all

oo
f . Z zci,aHaei 5 Cia eR s

aceJ =1

in L*(H) such that

112, =D Gala) PN <00, (1.12)

aeJ i=1
for all k € N.
2. For p €[0,1], define S(H)—, to consist of all formal sums

F= Z ici,aHaei y Cia € R,

aceJ =1

such that

IFI2, = > () (2N < o0, (1.13)

aeJ i=1

for some g € N.



For p € [0,1], and f and F belonging to S(H), and S(H)-, respectively, we can
write

f= chmHel > coHo = Zf1617

acJ i=1 acd
F=Y Zdi,aHaei =S doH, = Z Fie; ,
acJ i=1 acd i=1

where forallo € J and 1 € N

:ici’aei e H, Zdzaez €H
ZCZQH E ) F ZdzaH E

acd aeJ
For k,q € N

1712, = () (2N)**lealfy = Z |filbs »

acd

IF)2 g = > (@)(2N)|dall% —Z|F|_,,,

aed

We can see that for p € [0, 1]
S(H), C S(H), C S(H)o C L*(H) C S(H)-o C S(H)-, C S(H)-

and

1£llpn < Mfllp2 € oo S MFlloge < -2
for all f € S(H),.

1.5 Topologies of S(H), and S(H)_

We wish to consider stochastic differential equations as deterministic differential or
integral equations in S(H)_,. In order to do this, we firstly need to investigate the
topologies of S(H), and S(H)_,. The main results we prove in this section are:

1. For all p € [0,1], S(H), is a countably Hilbert space.
9. For all p € [0,1], S(H)-, is the dual of S(H),.

3. For all p € [0, 1], a sequence {F,}32, converges strongly to F' in S(H)-, if and
only if there exists a ¢ € N such that £, converges to Fin S(H)_p—q

7



Appendix A contains the definitions and results regarding linear topological spaces
which we need for this section.

The following result found in [22] is needed.

Lemma 1.2 The sertes

converges if and only if ¢ > 1.
The following spaces are needed.

Definition 1.3 1. For p€[0,1] and k € N, define S(H),x to to be

{f e L*(H); |Ifllpk < 00} - (1.14)

Define the inner product of two elements

IZCaHa, Q=ZdaHa,

acd acd

in S(H),x to be

(F,9)pk = Y _{Carda) (@) TP (2N)* . (1.15)

acd
2. For pe[0,1] and ¢ € N, define S(H)_,,—4 to be
{f € S(H)-p; Ifll-p—q < 00} . (1.16)

For p € [0,1] and k € N, (f, g),x is well defined as

[fs 9) 0.kl
< Zl €y d H| a|)1+P(2N ke < Z HcaHH Hd 15 ((al) (QN)’%)
acJ =y
1/2 12
(Z ncanz(a!)lw(m’“") (Z Hda||§f<a!)l+ﬂ(zN>’““) <o
acJ Y

We can see that for p € [0, 1]
S(H), = ﬁ?;1S(H)p,k ) S(H)—p = Ug?-ls(H)—p,—q .

The proof of the next result follows the proof of Lemma 2.7.2 found in [10].

Lemma 1.3 For p € [0,1] and k € N, S(H),« equipped with (-,")p 15 a separable
Hilbert space.



Proof: We start with the completeness. Take a Cauchy sequence { fn}52; in S(H),x,

where
fn= 2{: Cgolya
aced

Now for any € > 0, there exists an N € N such that for all ny,ny 2 N

2
Um = Faall2e = 3 (@) PN ) — e[ <€
aed

For this N and ni,ne > N
2

€
<62

Eajyﬁ;qéﬁﬁig < , Vo 6‘7‘

e - e <

Therefore {c&")};‘f:l is a Cauchy sequence in H and hence converges to some ¢, in
H, for all @ € J. Using these c,, define

f:-anHa.

We need to show that f € S(H),x and || fn — fllps —n—-00 0.

We start by showing that f € S(H),x. Now {f,}52, is a Cauchy sequence in S(H )k,
50 || fnll, is bounded by some M < co. So for all,n; € N

S (@ el < Y an ] < M7 < oo

a€el'y acJd
This implies that

nliz,noo(2<a!>l+9<2N>“ llcffl)llif) = Y ()N

a€ln

2

N n
lim ¢
ny—o0

H
= > (a)PENF el < MP < o0

a€ly

Therefore
Jim (Z(a!w(mka ucanz> = 3 () (N fleallly < M? < 00,
aEly aEJ
as required.

We secondly show that ||fr — fllp5 —*n—o0 0. Now for all n € N and ny,7n2 2 N

Z-(a!)””(ZN)ko‘ [|clr) — cg‘z)”i{ < Z(a!)1+”(2N)k°‘ | clr) — cg‘z)“; <€
o€l aed

9



This implies that for all n, > N

1 (Xt - )

a€ly
2

_ Lo onke || T olm) _ o(n2)

= Z(a!) (2N) n}l_r)noo e — et
acl, H

= S ()N e — ) < €
a€l,

Therefore for all ny > N

- (Z (o) (2N [ea - c&"”il';) = > (e EN) flea — |

n—00
aern C!GJ
< € 5

as required.

The separability of S(H), follows from the observation that the set {Huei}ienoeT
is a countable, linearly dense subset of S(H), ;. B

Lemma 1.4 For p € [0,1], the system of inner products (-,-),x on S(H), are com-
patible.

Proof: Take a sequence {f,}32, in S(H),, where

fﬁ ==:£:,Cg01¥a-

aed

that converges to 0 in some norm || - ||,, and is a Cauchy sequence in another norm
| - |l p.k,- We need to show that {f,}52; also converges to 0 in the norm Il ks

We note that for all @ € 7, &y . 0in H as | fallp ey —Fn—o00 0-

As {fn}22, is a Cauchy sequence in the norm || - ||,k,, it is also a Cauchy sequence
in S(H),k, By the completeness of S(H),x,, there exists an element f € S(H),,

having form
] =:§£:Chf¥a’
aceJ

such that fn —nooo f in S(H),k,- Suppose that f # 0. Then there exists an
a € J such that ¢, # 0. However this is not possible as c&n) —nooo Co in H. Hence
.ﬂ“%awonqy”mh'.

Theorem 1.1 For p € [0,1], S(H), equipped with the countable collection of inner
products {(:,")px oz, 8 a countably Hilbert space.

10



Proof: S(H), is a countably Hilbert space if and only if
S(H), = M (S(H)p)k

where (S(H),)x is the completion of S(H), with respect to norm || - |ls. We have
that
S(H), =ML S(H)pk -

So it remains to show that S(H), is the completion of S(H), with respect to the
norm || - ||x. This is the case because {Haei}ienacs C S(H), is linearly dense in
S(H), (with respect to (-, ),), which is complete. B

Corollary 1.1 For p €(0,1], S(H), 1s a Frechet space.
Proof: A countably Hilbert space is a Frechet space. B
Lemma 1.5 For all p € [0,1] and r € N, S(H)—,,—r is the dual of S(H),;-

Proof: To prove, we set up a one-to-one correspondence between S(H)_p—r and
S(H),r, then use the Riez Representation theorem to set up a one-to-one correspon-
dence between S(H)_,_, and S(H),, which preserves norms.

Take an element F € S(H)_, _r having form
F=Y coH,-

By letting bo = (!)™(2N)""%c,, we can identify this with f € S(H),, having form

f=Y boHa.

aced

We have that f belongs to S(H),, as

ST balZ (@) PN = Y (o) PN T callf (o) P (2N

acd acd
= Y lleallf(e) 72 (2N) 72 (al)+* (2N)™
aed
= 3 lleally (@) (N < oo
aEJ

Similarly any element f € S(H),, with form
f=Y boHa,
aeJ

can be identified with an element F' € S(H)_, _. having form

B = N 2t e

a€dJ

11



where ¢, = (a!)?(2N)"* b,

Now a linear functional ¥ on S(H), is continuous if and only if there exists an
unique f € S(H),x such that

Ulgl = (9, Flor =D {Garba)u(a) (2N,
aed
for all g € S(H),x, where
f:ZbaHaa QZZCLQH&.
a€J ocd

So a continuous linear functional ¥ can be identified with an element F' € S(H ) I—
via f. Similarly an element F' € S(H)_,, - can be identified with a continuous linear
functional ¥. The norms of ¥ and F' coincide as

1Wlscay,, = ”f”p,rzZ7||ba‘|%(a!)1+p(2N)Ta
= z;II(a!)i@N)”mcaII%(O&!)“”(?N)’“
- aezjllcallif(al)‘z"(QN)‘m(a!)”"(?N)”"
= :z;l|cal|§z(a!)l“’(2N)‘m =[|Fli-p—r »

as required. W
Propositon 1.3 For p € [0,1], S(H)_, is the dual of S(H),.
Proof: For a countably Hilbert space, & = N, P4, the dual is
' =U, P, .
Now for p € [0,1] and k € N, S(H)_, — is the dual of S(H),x. Therefore
S(H>—p = UZLS(H)—p,—k )
is the dual of S(H),. B

Lemma 1.6 Take p € [0,1]. Consider F € S(H)-, and f € S(H),, having forms
F=Y cHs, f=) aHs.
acd acJ

The action of F on f is
<F, f) = Z a!<a'a: Ca)H .

aEJ

12



Proof: There exists a ¢ € N such that F € S(H)_,,—. Since S(H)-, is the dual of
S(H),, the action of F' on f is just the action of F on f when F and f are considered
as elements of S(H)_,_, and S(H),, respectively. Hence

Ef) = 3 (m cala) PN () PN = 3 ol(aa ca)
acd acd
as required. W

Lemma 1.7 Take p € [0,1]. Consider a sequence {Fn};2, and F belonging to
S(H)-,, having forms
Fo=Y cWH,, F= > coHa -
aed a€J
If F, —n_00 F strongly in S(H)—,, then

Jim e = ca (117)

in H, forala € J.

Proof: As F,, —n_a F strongly in S(H)_,, there exists a ¢ € N such that {Fn}2,
and F belong to S(H)_, _, and are bounded by some M < co in the norm || - | —
It follow that

() =)l ™% (2N) ", (o) Plleql|% (2N) 79 < M? < o0 .
Therefore
™12, lleally € (@) 1EN) e M? = C; < o0,

for all @ € J. Now for fixed a € J, the set {hHa}HhHHSQCa is a bounded set in
S(H), as

|RH |2 = ()P (2N)*||h|| = 4(a!) TP (2N)**Cq < o0,
for all £ € N. Hence
(F, — F,hH,) = al{c{” —ca,h)g — 0,

n—o0

uniformly on the set {AHq}n|y<2c., that is, for all € > 0, there exists an N € N
such that for alln > N

2
(Fy — F,hHa)| = |al{c® — ca, h)u| < =
& al

on the set {RHq}jnjjz<2c.- For this N, we have that foralln > N

HC&") - Ca”%{ = |<chn) - Caac(n) - Ca)Hl

03

IN

sup |(cg‘) —coyhYm| < €.
”h“HSZCa

as required.
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Propositon 1.4 Take p € [0,1]. Consider a sequence {F,}32; and F' belonging to
S(H)_,, such that Fr, —sn_e0o F strongly in S(H)_,. Then there ezists a ¢ € N such
that F,, F belong to S(H)-p~q and

|Fw = Fll=pg =20 (118)

Proof: Let F,, F have forms

= Zc&”)Ha , H= anHa .

aed aeJ
As F, —,_o0 F strongly in S(H)-_,, there exists a ¢ € N such that {F,}32, and F
belong to S(H)_, _, and are bounded by some M < oo in the norm || - ||-p,—q- Since
{F,}2,, F belong to S(H)—p,—, they also belong to S(H)_p,—g-2- Now
”Fn - F”%-p,—q—2
n 2 = -
= Z Hcﬁl) — caHH (o)} 7 (2N) (a2
acJ
n 2 - -
= D [l - call (@) T
a€cl'y
+ 37 |l — cally; () P(2N) 7 (2N) 72
ag_ka
1=p || A(n) _ 2 —(g+2)e 2 —2a
< (gg%); (@)= |cC caHH> SN L4y Yy (2N
a€ly ael“k

Take ¢ > 0. Choose k such that

2
—2a €
> (N < Tk

a¢1‘k

Now there exists an N € N such that for all n > N

2
10 | — o |12 ¢
max (o) [|ec” = cally < 7755y -

For k and N chosen this way

2 2

€ €
—————A(g +2) +4M? =€
oA T M gE =

| £ — F||2—1,~q—2 <

for all n > N, as required. W

1.6 Analysis in S(H)_,

In order to consider stochastic differential equations as deterministic differential or
integral equations in S(H)_,, definitions and results for continuity, differentiability
and integration in S(H)_, need to be set up.

In this section [a, 5] will be a closed, bounded interval in R.

14



1.6.1 Continuity

Definition 1.4 A function F(t) : [a,b] — S(H)_, is said to be continuous at to €
[a,b] if for each bounded set E C S(H), and € > 0, there ezists a § > 0 such that

€ [a, b], lto — 5| < 6 = [(F(to) — F(s), f)] <e, (1.19)
forall f € E.

We say F(-) is a continuous S(H)_, process on [a,b] if it is continuous at each point
t € [a,b).

Propositon 1.5 A function F(t) : [a,b] — S(H)-, is continuous at ty € la, b] if
and only if for all f € S(H), and sequences {t,}, C [a,b] such that t, —n—o0 to,

we have that
(F(to) = F(ta), f) —2 0, (1.20)

uniformly on all bounded subsets of S(H),.

Proof: (=) By continuity at to, for any bounded set £ C S(H), and € > 0, there
exists a § > 0 such that

s €la,b], to— 8| <8 = |(F(to) —F(s), )l <e,

for all f € E. Consider a sequence {t,}32; C [a,d] such that tn —Fnco to- Now
there exists an N € N such that for alln > N

ItO_tn|<5-

This gives
[(F(to) = Fta), )l < ¢,
for all f € E and n > N, as required.

(<) Suppose that F(-) is not continuous at to. Then there exists a bounded set
E € S(H), and € > 0 such that for all n € N, there exists a t, € (to — 1/n,to+1/n)
and f, € E such that

|<F(tn) - F(tO))fn>| Z €.
However, {fn,}32; C F is a bounded set and t, —n—c0 to, SO there exists an N € N
such that for alln > N

[(F(tn) = F(to), f)l <€,

for all f € {f,}%2,, which is a contradiction, as required. M

Corollary 1.2 Consider F(t) : [a,b] = S(H)_, with form
Ft) = ca(t)Ha -

acJ

If F(-). is a continuous S(H)_, process on [a,b], then the functions ca(t) : [a,b) = H
are uniformly continuous on [a,b], for alla € J.

15



Proof: Take any t; € [a,b] and any sequence {t,}52; C [a, b] such that t, —n_c0 to-
Then for all f € S(H), we have that

(F(to) — F(ta), [) — 0,

n—oQ

uniformly on all bounded subsets of S(H);. By Lemma 1.7
llca(to) = calta)llr —2 0,
n—oo

for all o € J. This gives continuity on [a,b]. Uniform continuity follows from [a, b]
being a closed, bounded interval. M

Lemma 1.8 If a function F(t) : [a,b] = S(H)-, is a continuous S(H)-, process
on [a,b], then the set {F(t)}iefa) s o bounded set in S(H)—,.

Proof: Take a bounded set E € S(H),, any point ¢ € [a,b] and € > 0. Then there
exists a 6; > 0 such that forall f € F

€ [a,b], |t—s| <& = [(F(t) = F(s), )l <e.
Therefore, for all f € E
s € [a,b], [t —s| <8 =(F(s), )l <e+ (F(E), /)l < My < o0,

as F(t) is a single element in S(H)_,, single elements being bounded sets. Now
consider the collection of balls {B(t, 6;) }cfasy that cover [a,b]. Since [a,b] is closed
and bounded, there exists a finite subcover

{B(t1,61), B(t2,62),..., B(tn,0n)}

covering [a, b]. For each B(t;,d;), there exists a M; < oo such that |[(F(t), /) < M,
for all t € B(t;,6;) N[a,b] and f € E. Let M = max;=1,.n M;. Then WF(@), <M
for all t € [a,b] and f € E. Hence the set {F(t)}se[o, is bounded on any bounded
set of S(H),, as required. W

Propositon 1.6 Consider a function F(t) : [a,b] — S(H)-,. The following state-
ments are equivalent:

1. F(-) is a continuous S(H)—, process on [a,b].
2. There exists a g € N such that:
(a) F(t) € S(H)-pq for all t € [a,b].

(b) For all € > 0, there ezists a 6 > 0 such that

st €ab], [t—s|<8=[|F () = F(8)|lopg <€ (1.21)
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Proof: (1 = 2) (a) From the previous lemma we know that {F(t)}tclo,y) is @ bounded
set in S(H)_,. Hence there exists a ¢ € Nsuch that F(t) € S(H)-),—qand is bounded
by some M < oo in the norm || + ||p,—g, for all ¢ € [a, b].

(b) Let F(-) have form
F(t)=>  cat)Ha -
acd
Note that as F(t) € S(H)_,, for all t € [a,0], then F(t) € S(H)_p—g-2 for all
t € [a,b]. Take s,t € [a,b]. Then

IF(t) = F()I2) g2
= 3 () flea(t) — cals)ly (2N)~1HHe
- Zj ()" fea(t) — ca(s)II% (28) @+
f; () llea(t) — cals)||}; (N> (2N) 72
=S (ggf (@) llea(t) = ca(S)lli) 3 @N)TeDe 4 ap? Y (2N) 7

a€ly a¢l‘k

Take € > 0. Choose k € N such that

2
€
2N) "2 < .
4:;( ) 8M?2
24 k

From the uniform continuity of ¢, (+) on [a,b] for each o € J, there exists a 6 > 0
such that for all s,t € [a,b] with |t — 5| < ¢

2

max (a1)'~*llealt) = calo)lr < 575

For k and & chosen this way

2 2

€ €
— A 2) + 4M? = ¢?
2Ag T a2 A =<

|F () = F(s)|2p-q-2 <

for all s,t € [a,b] with |t — s| < J, as required.

(2 = 1) Take any ¢, € [a, b] and any sequence {tn}2; C [a,b] such that t, —>n—00 Po-
Then for all f € S(H),

[(F(to) — F(tn), /)| < IIF(t0) = F(tn)ll-p,—q [Ifllog -

Hence F(tg) — F(tn) —noco 0 strongly in S(H)-,. So by Proposition 1.5, we have
continuity at t, and hence continuity on [a, b], as required. W
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1.6.2 Differentiability

Definition 1.5 A function X (t) : [a,b] — S(H)-, is said to be differentiable at
to € [a,b] if for all f € S(H), and sequences {ta}oz; C [a,0], tn # to such that

tn —n—oo to, we have that
X(t,) — X(¢
( (t)_to(O),f% (1.22)

converges uniformly as n — oo on all bounded subsets of S(H),.

We say X (-) is a differentiable S(H)_, process on [a,b] if it is differentiable at each
point t € [a,b)].

Lemma 1.9 If a function X (t) : [a,b] — S(H)_, is differentiable at ty € [a,b], then
there ezists a unique F(¢o) such that for all f € S(H), and sequences {t,}52; C [a, 0],
tn # to such that t, —n—oo o, WE have that

(X(t") —Xlt) _ F(t),f) — 0, (1.23)

tn — to n—00
uniformly on all bounded subsets of S(H),.

We call F(ty) the derivative of X(-) at .

Proof: Firstly existence. From the completeness of S(H )—, with respect to strong
convergence, for a particular sequence {t,}n2; C [a, b], tn # to such that t, —rn—e0 to,
there exists a unique F(tq) € S(H)-, such that for all f € S(H),

X(tn) — X(tO) _ F(to), f) — 0

tn — to n—oo

(

uniformly on all bounded subsets of S(H),.

Secondly uniqueness. Take two sequences {tg), {tﬁf)};":l C [a, b], where 11 42 # to

and both sequences converge to to. From these two sequences define a new sequence

tay nodd
2l
th =
t(v_?) n even
2

Now t, —¥n—sco to, SO there exists a unique F(to) € S(H)-, such that for all f €
S(H),

KL= X)), 1y 30,
uniformly on all bounded suszts of S(H),. Therefore for all f € S(H),

X( %1)) — X (to)

— F(to), — 0
< %1) — ( 0) f> 2D o00
X(#) = X(to) |
( @ g — F(to), f) n(z)_—:ooo ;
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uniformly on all bounded subsets of S(H),, as required. W

Corollary 1.3 If X (1) : [a,b] = S(H)-, is a differentiable S(H)_, process on [a,b],
then there ezists a unique function F(t) : [a,b) — S(H)-, such that F() is the
derivative of X (-) on [a,b].

Lemma 1.10 Consider functions X (t), F(t) : [a,b] = S(H)_, having forms

X(t) =Y cat)Hs, F(t)= > da(t)Ha -
acd aced

If X(-) is a differentiable S(H)_, process on [a, b], with derivative F(-), then the
functions ca(t) : [a,b] — H are differentiable on [a, b] with derivative do(-), for all
o € J and therefore

dX(t) /

T = Z Ca(t)Ha . (124)

aed

Proof: Take any to € [a,b] and any sequence {tn}s2, C [a,8], I, # fo such that
t, —¥n—oo to. Then for all f € S(H),

X(tn) — X(tO) - F(tO)af> — 0 3

tn —_ to n—0

{

uniformly on all bounded subsets of S(H),. By Lemma 1.7

. da(to) —0 s

n—00
H

for all a € J, as required. W

Lemma 1.11 If a function X (t) : [a,b] = S(H)_, is differentiable at o € [a, b],
then it is continuous at ty.

Proof: We wish to show that for any sequence {£,}%2; C [a, b] such that t, —rn—c0 o,
we have that for all f € S(H),

(X (ta) = X(t0), /) =0,

uniformly on all bounded subsets of S(H),.

Consider a sequence {t,}52; C [a,b], tn # to such that t, —nc0 to- Take any € > 0
and any bounded set E C S(H),. Since X(-) is differentiable at to, there exists an
N; € N such that for all n > N,

<X(tn) — X (to)

tn - tO
for all f € E. Therefore, for all n > N

(X (ta) = X (t0), )] < ltn — tol (e + [(F (%), H)I)

—F(tO)’f> <E€,
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for all f € E. Now F(to) is a single element of S(H)_,, so there exists a M < oo
such that
(F(to), I < M,

for all f € E. Also t, —¥n—00 to, SO there exists an Ny € N such that for all n > N,

‘tn — tol <

€
e+M
So for all n > max{Ny, Na}

€

(X (1) — X (o), ) < =57

(e+ M) =c¢,

for all f € E.

Now consider any sequence {t,}3, C [a,b] such that ¢, —n—co to. From the previ-
ous argument

(X(ta) = X(80), 1) =0,
uniformly on all bounded subsets of S(H),, as required. B

Corollary 1.4 If a function X (t) : [a,b] = S(H)-, is a differentiable S(H)-, pro-
cess on [a,b], then it is also a continuous S(H)_, process on [a,b].

Propositon 1.7 Consider functions X (t), F(t) : [a,0] = S(H)-,. The following
statements are equivalent:

1. X(-) is a differentiable S(H)_, process on [a,b] with a continuous derivative
F(-) on[a,b] in S(H)—,.

2. There exists a ¢ € N such that:
(a) X(t), F(t) € S(H)—pq, for all t € [a,b].
(b) For all € > 0, there exists a 6 > 0 such that

sitelabl, [t—sl <6=|FE) = F(s)ll_,_, <€ (1.25)

(¢) For any ty € [a,b] and € > 0, there ezists a 6 > 0 such that

X(to) — X(s)

- F
to — 8 (to)

<e. (1.26)

s € [a, b, 0<|to—s|<5=>l
—p—a

Proof: Let X(-) and F(-) have forms
X@t)=> calt)Ha, F(t)=) da(t)Hs.
aed acJ

(1= 2) (a) As X(-) and F(-) are both continuous on [a, b], there exists a ¢ € N such
that X (¢) and F(t) belong to S(H)_,,-, and are bounded by some M < oo in the
norm || - ||-p,—g, for all t € [a, b].
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(b) This follows from Proposition 1.6.
(¢) Consider s,t € [a,b] with s # ¢. Now

202 o
— Z(a!)l—p ca(ti- Ca(s) . da(t) ’ (QN)—(Q+2)a .
oed - H

By Lemma 1.10, ¢,(-) is differentiable on [a, b], with derivative do(-), for all o € J.
So by Langranges inequality, for all t,s € [a,b] with s #

ca(t) — cals)

t—s g telab]
implying
() ca(ti - Za(S) ) (2N)~@
< sup (@) *da()|a2N ")
< sup (Z(a!)l"’lida(t)||%I(2N)“”> <M.
t€(a,b] acT
Therefore
|92 re
_ 1—p Ca(t) — Ca(S) ’ —(g+2)a
= Sl E -] @y
b3 (e | g s
adly e H

2
) SN L an? Yy (2N
H/ aqeg agly,

Take € > 0 and t; € [a,b]. Choose k € N such that

N —2a 62
SN < g
a&l"k
and 6 > 0 such that
s€[ab], 0< |to—s| <d

= max (a!)'™’
o€l

g 2A(g+2) '



For k and § chosen this way

2 2 2

_ _Ag+2)+ 4= 2
R

— F(t e
(0) M2 €,

HX(to) — X(s)
to— s

—p’_q—Q
for s € [a, b] with 0 < [to — s| < §, as required.
(2 = 1) Continuity follows from Proposition 1.6.

Differentiability. Take any ¢ € [a,b] and any sequence {ta}% C [a,b), tn # to such
that £, —rn—eo to. We have that for all f € S(H),

(EE=E) r, g
< [HE=SB o pe)| 15l
This implies
X(tn) B X(tO) _ F(to) —50
tn — to n—oo

strongly in S(H)-,, as required. W

1.6.3 Integration

Definition 1.6 A function F(t) : [a,b] — S(H)_, is said to be integrable on [a, 1],
t' € [a, b] if there exists a X (t') € S(H)-, such that for all f € S(H),

tim < S F(E) (e —0),.0) = (X(E), 1) .21)

uniformly on all bounded subsets of S(H),, for any set of partitions
{a=ty<ti<...<ta=t}2,,

of [a,t'], where:
1. lim, o0 (maxke{o,...,n—l}(tk+l - tk)) = 0.
2. t} € [tk, tkt1)-

If F(-) is integrable on [0,t'], then we define
LF
f F(s)ds = X(£) . (1.28)
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Propositon 1.8 Consider F(t) : [a,b] = S(H)-, with form

F(t)=> ca(t)Hs -

TN g

If F(-) is a continuous S(H)_, process on [a,b], then F(-) is also an integrable
S(H)_, process on [a,b] and

/:F(s)ds =

n, (/t ca(S)ds> H, (1.29)

acd
for all t € [a,b].

Proof: As F() is continuous on [a,b], there exists a ¢ € N such that F(t) €
S(H)_,_, and is bounded by some M < oo in the norm || - ||-p—g> for all t € [a, b].
Note that ¢o(-) is continuous on [a,b] and hence integrable on [a,b], for all o € J.
Now for any t € [a, b]

aezj ( / ca(s)ds> H, .
= Tl | calerds| (myesa |
< ;(a!)” ((b—a) (tiﬂﬂ] ||ca(t)I|H>> (2N) (¥
< (b—a) ; (tiﬁg](a!)l“’llca(t)Ilfq(2N)“”> (2N~
< (b-a)?M?> N = (b - a)’MPA(2) = M} < 0.
v

Take any t' € [a,b] and a set of partitions {a =ty <1 <... <ty = t'1%_;. Now

2

N-— t
Z (t0) (B — ) — D (/ ca(s)ds> H,
k=0 aed N —p,—q—4
N-1 ¢ B
= ()| 3 calti) (b — 1) - / ca(s)ds| (2)(e+0e
acJ k=0 a H
N-1 ¢ 2
= Z(a!)l' ca (tp) (tk+1 — te) — / ca(s)ds|| (2N)~(et4e
a€l, @ H
N-1 ¢ 2
)| Yl =t - [ calekds] (e
o¢Ty k=0 a H
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N-1 o 2
< (gg%x (@) 2| calti) (Brsr — te) = / ca(s)ds ) (Z(?N)‘(‘”‘”‘*)
i k=0 ¢ H &€l

s (

+ 3 ((a

N-1
3 calth) (ther = 1)

a¢ln k=0
+ 7:ca(s)als >(2N)_q%°‘> (2N)~2
Jo e,
B (2&%’5 ()= Ca(th) (tes1 — k) — / co(s)ds ) Alg+4)
k=0 ¢ H
+y ((2—: M(tk;l-l - tk)) + M1> (2N)~
aé¢l'y k=0
< (gg%}: () g o (th) (bear — te) — /tl ca(s)ds H) A(g+4)
+Mp Y (2N)7?
aé¢l'n

Take any € > 0. Choose n € N such that
2

) —2¢ €
>N <

a¢lna
and N,, € N such that for all N > N,

max (a!)'~
acl'n

For n and N, chosen this way

SR (e — )~ 3 ( / ca(s)ds) H,

k=0 a€J

N-

t.f
Z (tr) (b1 — te) — /ca(s)ds

k=0

2
. <
24(g+4)

H

2

—p—g—4
€2 €2

T g+ 4+ My =
< TAgroiit )+2M2 2=

for all N > N,, as required. B
Corollary 1.5 If F(t) : [a,b] = S(H ) _, is a continuous S(H)_, process on [a,b],

then there exists a ¢ € N such that F(t f F(s)ds € S(H)_p—q and are bounded by
some M < 0o in the norm || - ||—p,—q, fort € [a b]

Proof: From the proof of Proposition 1.8, there exists a ¢ € N such that F (t) €
S(H)_p—q and [I F(s)ds € S(H)_p,g-2, both bounded in the || - || -2, for all
t €la,b). B
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Propositon 1.9 Consider a continuous S(H)-, process F(t): [a,b] = S(H)-, and
a differentiable S(H)-, process X(t) : [a,0] — S(H)-,, which has a continuous
derivative on [a,b]. Then

X({t) = /tF(s)ds + X(a) , (1.30)
if and only if "
(gt ] dit =F(t), (1.31)

for all t € [a,b)].

Proof: Let F(-) and X(-) have forms

Fi) =Y cal®Ho, X(£)=) da(t)H

acd a€d

(=) As F(-) is continuous on [a, b]

for all t € [a,b] and a € J. Therefore d;,(t) = ca(t) for all t € [a,b] and

=Y d(Ha =) calt)H

a€d a€eJ

(<) As X'(t) = F(t) for all ¢t € [a,b], we have that d.(t) = ca(t) for all o € J.
Hence

do(t) = / ca(8)ds + do(a)

Hence

X)) = 3 da®) ZU ds+d()>Ha

acd aeJ

L
= f F(s)ds+ X(a) ,
@
as required. W

Propositon 1.10 Consider a continuous S(H)_, process F(t) : la,b] = S(H)-,
Then the function X (t) : [a,b] = S(H)-,, defined by

t
X(t) =/ F(s)ds (1.32)
a
is a diﬁerentiable S(H)_, process on [a,b] with derivative F(-).
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Proof: Take any ty € [a,b] and any sequence {t,}52, C [a,b], t, # to such that
tn —n—seo to. We need to show that for all f € S(H),

X (to) —X(tn),f) — (F(t0), f)

o — tn n—00

{

uniformly on all bounded subsets of S(H),. To do this we shall show that there
exists a ¢ € N such that

— 0.

n—oo

-p—q

Now we know that there exists a ¢ € N such that F(t), X (t) € S(H)-,,—q and are

tO_tn

bounded by some M < co in the norm || - ||, —4, for all ¢ € [a,b]. Now
X(to) — X (tn ?
((t))—t ( ) —F(to)
0 n —p,—q—2
[P F(s)ds — [ F(s)ds ’
- to —t ~ F(to)
0 n L uspeid
to d tn d 2
= (e | il ol )| oy
acd to—1tn H
. ftto co(s)ds ? _(g42)a
== Z(Oz') P —;—_t_—ca(tg) (QN) q
a€ly 0 n I
to 2
ca(s)ds
(g Nl E RS
a¢Tx 0 n "
f:" ca(s)ds : e
< [ mpr o) 5202 e ) (Sew
) 0 7, H o€l
to : 2
- cal(s)ds a
+> [ (@)7F iy cale)ds +llealto)lly | @N)7% ) (2N)72e
gl to — tn
to 2
co(8)ds
< (max (o 2o 0% o ) (Z (28)~+? )
g H a€l

(fo — tn) (SUPseltn o) I0a(5)]1 1)
to — tn

+z<

a¢Fk

“

+ flealte)ll) (2N ) (28

AN
/‘;\
5
"
B
T
©

) Alg+2) + > (M + M (2N)~>

H agly



where we denote [to, tn] by [tr, %o} if tn > to-
Take ¢ > 0. Choose k € N such that

2
-2« €
> (N <

agél‘k
and N, € N such that for all n > Ni
2
[.° ca(s)ds €2
N1-p ||t =
mex (o) o, el L 24y
For k and Nj chosen this way
X (to) — X (t) P i €2
- Pt Alg+2) + —=4M? = ¢
H to — tn W|_ _, < wAgry @t ast e

for all n > N, as required. B
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Chapter 2

Hermite Transform

In this chapter we develop the Hermite transform for elements of S (H)-1 and results
involving it. However before defining the Hermite transform, some results on power
series are needed.

2.1 Results for Power Series Defined on CY

H¢ denotes the complexification of H.

The following neighbourhoods of zero are used for the Hermite transform.

Definition 2.1 For ¢ > 0 define the following sets:

LK ={ze(C"); |zl <(2)7% j<nandz =0, 7> n},
Kyo={zeC"; |z <(25)% j€ N}.

2. KZ ={z€ (N)e; |5 <(2)™% j<nandz; =0, j> n},
K, ={zeC; [ <(2))7 j€ N}.

We can regard K7 and KZ as subsets of C™.

Lemma 2.1 Consider f(z) : KZ — CF, ¢ > 0, having form

fz) = (fi(2),- - fu(2)

where
filz) = Z aaez®, anu€C,l=1,...k,

mndez a<n

bounded by some M < co. Then for all o € J such that indez  <n and z € KZ

k 1/2
(Z |cl,a|2> |22 < M . (2.1)
=1
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Proof: For all a € J such that index o < n

cl,a=<1> Mdz, l=1,...,k,

2_75 r potl
where I = (|z1] = 279, | 22| = (2.2)79, ..., |2x| = (2.n)79) and dz = dz; ... dzn.

Set co = (C1,s - - - » Chya), NOtINgG that

_ 13" fi(2) fi(2)
é& B <2_m) (anﬂdz,...,/rzaHdz) .

Now reparametrize z = z(#) by

7= (25)7%"% , 0<6<2r,1<j<n.

This gives

fi(z) . fl(z(e)) - % 9 9
2ot = /[0,27r] H‘/[O,ZW] Z(Q)Q-H (H 89]) o dn

= fi(2(6)) o 21\~ %¥ | dg
/[O’QF]n (H?sl(gj)—‘i‘(ﬂj+l1ei8j(aj+l)) (j Z( ]) € )

[ f(2(6)) (Il ie)
e (T @))

in

= 2(0)) et == %% dh
T [[ L e

where df = df;...df,. So

df

_ (EN)QG ( —3 22-7’:1 0;c;j 6 o 2?=1 805 )
= (27[_),1 A/[‘0.21r]" fl (Z(e)) € d9, §o /[0’2,"]“ fk(z( )) e de ) .

/ fi(2(6)) e* Xm0 dg
[0,27]™

57 1/2
)

IA
/\/&3\
N
3|2
3|8
VR
=
[~
2
2

IA
/\/ED\
[\
a2
5|3
i-
——
T
IS
2,
3
=
~—
53
>
N
S
o
Q
D
—
g
~
[\
/—M\
5
S
A
3
—
[\%)
IS8
>
~—
g
~
[ ]
N—
(.
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(2N)* [ ( / )
= filz(0)]|7d8 | (2m)"
7 |2 gy POV 8 ) )
1/2
ey k : i AR
= 6 d < M
(om) T2 mw;lﬁ(z( Nt < o - df
_eNe T, V2 (o) iz _ .
=GP M mﬂﬂld& = (27r)n/2M(2) M (2N)
Therefore for all Vz € KZ, we have that
lca| lza| <M,

as for z € KZ, 2] < (2N)7*. &

Corollary 2.1 Consider X (z) : K, = C*, ¢ > 0, having form

X(z) = Z e = z(cl,a,...,ck’a)za . caeCF

acJd acJ

bounded by some M < co. Then for alla € J and z € Kq

lcal 2% < M . (2.2)

Proof: Take an o € J. Let n = index a. For z € K, define w € KZ as

T =, zj:an
7 0, 7>n

Now there exists a sequence {w™}%_, such that w™ € K, ,,, and {| (™3>,
is an increasing sequence such that |(w™)®| —p_, |w?*|. From Lemma 2.1

leal J(@™)| < M.

Therefore
leo| |w* < M .

Now it follows from the construction of w that |w®| = |2¢|. Therefore
lea| [2%] < M,
as required. W

Lemma 2.2 Consider a z € CY such that

o0
(¢}
§ E Cia? €, Cio eC )

aeJ i=1
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converges in He. For this z
[o.2] o0
E Z B e — Z Z CiaZ€i , (2.3)
acd i=1 i=1 a€J
and therefore

2
E ci,azo‘

e

L]
(o] = 0
E E Cie? ™8 =§

aeJ 1=1 He =1

Proof: Using the fact that the functional (-, e;) . is continuous, we have that

o0
E E G2 Cj

aEJ i=1
o0
= E E E Ci a2, €5  HeCj = E _S_ E Cia?”€i, €5) Hebj
ji=1 a€J i=1 j=1 aeJ i=1
o0 oo o0
J— (57 — 87
= 3 3D b ciate =) D ciaz’
j=1 acJg i=1 7=l aed

as required. W
Corollary 2.2 Consider X(z) : K; = Hc, ¢ > 0, having form
= Z o = Z Zci’azaei , Co € He
aeJ aeJ i=1
bounded by some M < oo. Then for alla € J and z € K,

o 1/2
lleallae 12°] = (Z \ 2) 2%l < M . (2.5)

=1

Proof: For z € K, and k € N, define

o) = Xl s = Tl

acd aEd
where c¥) = (Clay---3Cha) Thisis well defined as
-~ 2
Ge(2)|" = Z Zcmz <3 D ie?®| = 1X @) < M2,
i=1l |a€eJ i=1 |a€J

using Lemma 2.2. From Corollary 2.1, for z € K,
\cff)| 2% < M .
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So the increasing sequence
oo
{8 1251} ey

has a limit and

2% < M,

Hc

lim [¢f] |2] =

o0
E Ci,a€i
=1

as required. W

Propositon 2.1 Consider X(z) : K = Hc, ¢ > 1, having form

X(z):anza, CQEH(c,
aeJ

bounded by some M < co. Then for all z € Kaq

Z ”Ca”Hc‘za‘ S MA(Q) 4

acJ

Proof: Forw € K, and e € J
lcallme [w® < M,
from Corollary 2.2. Take z € Ky,. Define w by
wj = (24)%; .
We have that w € K, as
[wj| = (29)%23] < (24)%(29)7 = (25)7° -
So

S lleallzele®l = 3 llcalle [2%1@N)F (2N)7%

a€J ac€J
1/2 1/2
< (Z llcall%e |Z°|2(2N)q“> (Z@N)'qa)
aeg agJ

1/2
= (lecalﬁ;c Iw“|2(2N)"2q“(2N)"“) A(g)*?

aed

1/2
< (MQZ(zN)“’“> A(g)'* = MA(q) ,

acdJ

as required. W
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Propositon 2.2 Consider X1(z), X2(z2) : Ky = Hc, ¢ > 0, having form

Xi(z) = anz“ , Xo(2) = Zdaza , Ca,dq € He .
acd aeJ

If X1(2) = Xo(2) for all z € K} and n €N, then for alla € J, ¢o = da. Moreover,
X1(z) = Xa(2) for all z € K.

Proof: Take any a € J. Let n = index a. If X;(z) = Xa(2) for all z € K7, then

<X1(Z)aei>Hc b <X2(z)>ei>Hc )
for all z € K. Now
Xi(2),edme = (Y. cfedme= Y, (sedns’,
index g<n index g<n
and similarly
(Xo(2),e)me = Y, (dpedncs’
index g<n

By standard results for power series in C* with values in C, we have that
(Car €i) He = {das €:) He -

Therefore

o0 oo

Ca = O Acaredmcei =) (das€i)rcei = da ,

i=1 =1

as required. W

2.2 Convergence Theorems for Power Series

Definition 2.2 Consider X.(z), X (2) : K; — Hc, ¢ > 0, n € N, having form

Xn(z) = Zc&”)zo‘ , X(2) = anza , ™ c, € He .
aced acJ

The sequence {Xn(-)}2%, is said to converge pointwise boundedly to X (-) for z € Kq
if:

1. For all z € K
' | Xn(z) = X(2)llge =0

n—>00
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2. There exists a M < oo such that
“Xn(z)HHc ) “X(Z)HHC < M )
forallz€ K, andn € N.

Lemma 2.3 Consider X,(z), X(z) : K; = He, ¢ > 0, n € N, having form

Xn(z) = Z cg‘)z"‘ , X(z) e Z ca2® Cg‘n), co € Hc .
aed ced

If the sequence {X,(-)}2, converges pointwise to X (-) for z € Ky, then for alla € J
™ — e, (2.7)
n—00
mn Hc.

Proof: Take 8 € J. Let k = index 8. By standard results for power series in Ck
with values in C and the continuity of the operator < -, e; >p., we have that

o0 o0
o8
Cs = Z(Cﬁ,6¢>Hc€i=Z 528 Z (Car €:) He2® €
i=1 i=1 index o<k 2=0
o o]
ol
e Z W Z <Caza, 6Z‘>HC €
=1 index a<k 2=0
o0
of
= Y la( 2 e |e
i=1 \ index a<k 2=0
g
b
— RANAT () o o .
= Z 5 A D edm ¢
i=1 index a<k =0
o0
of
_ A IR T (n) o, o .
= 2lop (MmO el e
i=1 index a<k 2=0
e e)
oF
— : = (n) o, o .
= |im g X @ens| e
i=1 index a<k 2=0
oo
bl
— ' 2L (n),a o .
= Z,}E&, = Z (e 2%, e;) neei
i=1 index e<k 2=0
= Y lim | > Ass D () ednes| eidnces
i=1 =1 index a<k 2=0
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= 2 Jim | > |55 Y, (2 en (€i, €5) Hee;
i=1 J=1 index o<k =0
= Im3 (o5 D (e e
i=1 index a<k .
= 2=0
R (n) o
= lim >~ 55 > ez &
3=1 index o<k o
o0
. M) N )
= M D e ednees = Jim 7
j=1.

as required. W

Propositon 2.3 Consider X,(z), X(2) : K; = Hc, ¢ > 1, n € N, having form

Xn(z) = Z cg‘)za , X(z) = Z ca2® cg‘),ca € He .
acd acd

If the sequence {X,(-)}&, converges pointwise boundedly to X(-) for z € K, then
X, (+) converges uniformly to X(-) for z € Ko,

Proof: Take z € Ky, Using 2, define w € K, by
w; = 7(27)7 -

Now by the definition of pointwise convergence, there exists a M < oo such that
1 Xn (2) || ey 11X (2) ||z < M for all z € K, and n € N. Therefore

[1Xn(2) = X (2)]|

S (e —ca)z®| < D Ml = callue 121 + D M1l — callae 2]

acJg He  @€l% Ty
< ST e = callre N+ D el = callae [w?](2N)7*
o€l ag¢ly
(n) __ —qa —ga
< (maslldy - aline ) 3 21 3o R,
a€ly aédly

using Corollary 2.2.

Take € > 0. Choose & € N such that
€
—ga _ €
>N < 7
¢l

and N, € N such that for all n > IV

(n) _ e
gé%f”ca ca”Hc < 2A(q) ?
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for all o € T,. With this k£ and N

1%n(2) = X(@llne < ggeyA@ +2M gz =€,

for all n > Ng, as required. B

Propositon 2.4 Consider X(t,2) : (a,b] x Ky = He, ¢ > 1, having form

an ) )GH((:,

aceJ

bounded by some M < oo, where the functions {ca()}acs are continuous on [a,b].
Then X (-, z) is continuous with respect to t on [a,b] for all z € Ko,

Proof: Take z € Kgq. Using 2, define w € K, by

Now
1 X (t,2) — X (s, 2)|| e
= ||D(calt) = cals))2®
a€J He
< > llealt) = cald)lme 221 + > llcalt) = cal(s)llae 12°]
a€eTy, aglg
< Y llealt) = ca(s)llme 2N + > llealt) = cal8)llre [w*|(2N)7*
o€l ol
< (maleats - calsllne ) (27 420 3 N
A=tk a€ely ag¢Ty

using Corollary 2.2. Take € > 0. Choose k € N such that

Ot¢r\k

and §; > 0 such that

€

s,t €la,b], |t—s| <& = Lng:”@(t) — cal8)|lrc < A

With this k& and d,

€

||X(t,z)—X(s,z)||HC < m

A( )+2Mm'=€,

for all s,t € [a,b] with |t — s| < &, as required. W
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and 0, > 0 such that

s€la,b], 0< |t —s|<b =

for all @ € T'y,. With this k£ and 6%

— F(t,2)

HX(t,z) — X(s,7)
t—3s

He 2A(q)

for s € [a,b] with 0 < |t — 5| < 0, as required. W

2.3 The Hermite Transform

In this section we define the Hermite transform for elements of S(H)_; and establish
results regarding S(H)-; processes and their Hermite transform.

2.3.1 Characterisation Theorems

We let F,G € S(H)_; in this section have the form

F=anHa, G=ZdaHa.

acd acJ

Definition 2.3 Define the Hermite transform of F € S(H)_, as

HF(2) = F(2) =) caz®, (2.9)

for z = CN such that the above series erists in Hc.

Propositon 2.6 If F € S(H)-1,-4, where ¢ € N\ {1}, then for all z € K,, HF(z)
converges absolutely and

3 lleallmelz®| < [Fll-1-¢ A(@)Y? - (2.10)

acJ

Proof: Note that as F' € S(H)_1,—4
[ Fll-1,-¢ <00 .

Now for all z € K,

> lleaz®|l e

acJ
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= > lleallme 1221 2N~ (2N) %

e
1/2 1/2
< (Z ||ca||§qc<2N>-qa) (Z |27 (2N>qa>
acd aed
1/2 1/2
< |JFl-1- (Z (2N) 72 (QN)"") = [[Fll-1,-¢ (Z (2N) _q")
a€J aeJ

= ||F|l-1-4 A(9)/? < o0,
as required. W

Propositon 2.7 Consider X(z) : K, — Hc, ¢ € N\ {1}, with form
X(z) =anz°‘ , e €H,
aed
bounded by some M < oo. Then the formal sum
F:=) cH,,
oed
belongs to S(H)_1,~4q and
| Fl|-1,~4¢ < MA(q) - (2.11)
Also HF(z) = X (z) for all z € K.

Proof: As X(-) is bounded by M < oo for z € K, it follows from Proposition 2.1
that

> llcalla(2N)72 < MA(g) ,
aed

as ((2.1)72,(2.2)7%,(2.3)7%,...) € Ky,. So

IFIP s = D a3 (2N)® <Y~ MA(g)|calla(2N) 72
oed aed

= MA(q) ) llcalln(2N)75* < (MA(9))* < o0,
aeJ

as required.

We just take the Hermite transform of F' to show that HF(z) = X (z) for all z € K,.
[

Propositon 2.8 Consider F,G € S(H)_y. If there exists a ¢ € N such that
HE(z) = HG(z) for all z € K, then F = G.

Proof: We need to show that ¢, = d,. This is the case by Proposition 2.2. B

This proposition allows us to use the notation %" in the following contexts:
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1. If F € S(H)_1, then there exists a ¢ € N\ {1} such that for all z € K,

F=H"(HF(2) .

2. If X(2): K, = Hc, ¢ € N\ {1} given by
X(z):anz"‘, cq € H,
aed

is bounded by some M < oo, then

for all z € K,.

2.3.2 Convergence Theorems

Propositon 2.9 Consider a sequence {F,}32, and F belonging to S(H)_1. The
following statements are equivalent: ~

1. F, —n—oo F strongly in S(H)_;.

2. There ezists a ¢ € N\ {1} such that Fo(-) = naoo F(+) pointwise boundedly in
K,.

Proof: (1 = 2) We start by finding a ¢ € N\ {1} such that {F,(2)}, and F(z)
exist and are bounded by some M < oo, for z € K.

Now F,, —n—eo F' strongly in S(H)_;. So by Proposition 1.4 there exists a ¢ €
N\ {1} such that F, —n 0 F in S(H)_1,—g. This implies that {[|Fal|-1,—¢}7Z, and
|F||-1,—q are bounded by some M < co. By Proposition 2.6, for z € K,

IF@lre = I1Floi-A@)? < MA@Q)'? < o0,

and similarly for F(-).

We now show that F,(2) —n—eo F(z) for all z € K,. By Proposition 2.6, for all
z €K,

< |[Fo = Fll-1,- A(q)l/z — 0,

He n—00

Ful2) - F(2)

as required.
(2 = 1) To do this we show that F, —rn—e0 F' in S(H)-1,-84-

By Préposition 2.7, {F,}2, and F belong to S(H)_1,—4, and hence S(H)_1,-sq-
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By Proposition 2.3, ﬁn() — oo 13() uniformly on Ky,. So for any € > 0, there
exists an NV € N such that foralln > N

1Fa(z) = F(2)llfre <

€
A(2¢)+ 17

for z € Ky,. With this N and Proposition 2.7

| Fn = Fll-1,-80 = | Fo = Fll-1,-2.2¢ < A(2g) <e,

€
A(2¢)+1
for all n > N, as required. ®

Theorem 2.1 Consider a S(H)_; process F(t) : [a,b] = S(H)-1. The following
statements are equivalent:

1. F(-) is a continuous S(H)_1 process on [a,b].
2. There erists a ¢ € N\ {1} such that:
(a) F(t,2) exists for all (t,2) € [a,b] X K.

() F(-,2) is continuous with respect to t on [a,b] for all z € K, and bounded
by some M < oo for (t,2) € [a,b] x K.
Proof: (1 = 2) (a) By Proposition 1.6, there exists a ¢ € N'\ {1} such that F(t) €
S(H)_1,_, for all t € [a,b]. From Proposition 2.6, F'(t, z) exists for (t, 2) € [a, 0] x K,.
(b) Firstly continuity. Take any ¢ € [a,b]. By Proposition 1.6, for any € > 0, there
exists a § > 0 such that

selab], [t—s|<d=FE) = F6)l_y_, < =

A@V?+1°

Hence it follows from Proposition 2.6 that

Hﬁ(t, z) — f(s,z)}

o SIE® = Fs)llo,— Alg)? <,
for s € [a,b] with |t — s| < ¢ and z € K, as required.

Secondly boundedness. As F\(-) is continuous with respect to the norm ||+ ||-1,—¢, F'(*)
must also be bounded by some M < oo in that norm, as [a,b] is a closed, bounded
interval. Hence F(-,-) is bounded on (t,2) € [a,b] x K, by the inequality

|F. 2|, < IFOIL-, AQ@Y < MA@ <o,
C
by Proposition 2.6.

(2 = 1) Take any ¢ € [a,b] and any sequence {tn}2; C [a,d] such that t, —n oot
Then by (b)
|Ftt ) = Fita, 2)

— 0,
He n—o0

pointwise boundedly on K,;. By Proposition 2.9, F (tn) —n—oo F'(t) strongly in
S(H)_,. By Proposition 1.5, this gives continuity at ¢, as required. B
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Theorem 2.2 Consider two S(H)_; processes X (1), F(t) : [a,b] — S(H)-1. The
following statements are equivalent:

1. X(-) is a differentiable S(H)_; process on [a,b], and F(-) is a continuous
S(H)_, process on [a,b], such that

‘_%_EQ = F(t), (2.12)
for allt € [a,b].
2. There ezists a ¢ € N\ {1} such that:
(a) X(t,2) and F(t,2) ezist for all (t,2) € [a,b] x K.

(b) F(-,z) is continuous with respect to t on [a,b] for all z € K, and bounded
by some M < oo for (t,2) € [a,b] x K.

(c) X(-,z) is differentiable with respect to t on [a,b] for all z € Ky and

dX(t,2)
dt

=F(t,z2), (2.13)

for all (t,2) € [a,b] x K.

Proof: (1 = 2). (a) By Proposition 1.7, there exists a ¢ € N\ {1} such that X (¢)
and F(t) belong to S(H)_ g, for all t € [a,b]. From Proposition 2.6, X(t, z) and
F(t, 2) exist for z € K,.

(b) Follows from Theorem 2.1.

(c) Take any t € [a,b] and € > 0. By Proposition 1.7, there exists a 6 > 0 such that

X(t) — X(s) €
s€[a,b],0<|t—s|<5=>“ P— — F(t) _1,_q<A(q)1/2+1'
Hence it follows from Proposition 2.6 that
X - X - X(t) -
t—s e t—s —1—-g

for s € [a,b] with 0 < [t — s| < ¢ and z € K, as required.
(2 = 1) Continuity of F(-) on [a,b] follows from Theorem 2.1.

We now show that X(-) is differentiable with derivative F(-) on [a,b]. Take any
t € [a, b] and any sequence {¢,}%2, C [a,b], tn # t such that ¢, —n00t. Now

— 0 .

n—oo
Hc

g — F(t, 2)

')?(tn,z) ~Xt2) =
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This convergence is pointwise boundedly for z € K, as

< sup “Fv(taz)HHc < M >
He (t,z)€[a,b]x K,

X(tn,Z) — )?(ta z)
t, —t

by Lagranges theorem. Hence, by Proposition 2.9

X(ta) = X(8) _ F{t) —0,

i, —1 n—o00
strongly in S(H)_1, as required. Wl

Theorem 2.3 Consider a function X(t) : [a,b] = S(H)_1, with a ¢ € N\ {1}, such
that X (t,2) exists and is bounded by some M < oo, for (t,z) € [a,b] x K,. If

t —~
/ X(s,2)ds

ezists for all (t,2) € [a,b] x K, then X(-) is an integrable S(H)_, process on [a,b]
and

H (/tX(s)ds> (2) = /t)-f(s,z)ds , (2.14)
for all (t,2) € [a,b] x K,. “
Proof: Take any t € [a,b] and a set of partitions
{a=to <t <..t,=t}2,,

of [a, ], such that

lim ( max (g4l — tk)> =03

n—00 \ k€{0,...,n—1}

For n € N define

n—1

Sn — ZX(t;:;)(tk+l == tk) 5
k=0
where t} € [t tg41). Now
. n—1 . n—1 .
18] = |E Xt -] <3[R~ )],
B k=0 He k=0 ¢
n—1
< D Mg —te) = M(t—a) S M(b—a) <oco.
k=0

Therefore §n() — oo fat X (s,-)ds pointwise boundedly, for z € K;. So by Propo-
sition 2.9

t —
S, — H! (/ X (s, z)ds) .
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strongly in S(H)_;, as required.

Equation (2.14) follows from

/at)?(s,z)ds = H (’H"l /at)?(s,z)ds> =H </:X(s)ds) (2)

as required. W

Theorem 2.4 For a continuous process F(t) : [a,b] — S(H)_1, there exists a q €
N\ {1} such that F(t,2),H (f: F(s)ds) (2) ezist for (t,2) € [a,b] x Ky and

H ([F(s)ds> (2) = /atﬁ(s, z)ds | (2.15)

for all (¢,2) € [a,b] x K.

Proof: As F(-) is continuous on [a, b], there exists a ¢ € N (and hence N\ {1}) such
that X (t) and F(t) belong to S(H)_1,—g, for all ¢ € [a,b]. From Proposition 2.6,

F(t,z),H (f:F(s)ds) (2) exist for all (¢, z) € [a,b] x K.
Take t € [a, b] and a set of partitions

{a=ty <t <...t, =t}e

n=1 >
of [a, ] such that
lim < max (tk+1 - tk)> =0.

n—oo \ k€{0,...,n—1}

For n € N define

1

S = S OF(E) (ther — t) -
0

3
|

ES
1

where t} € [tk,tk+1). So by Proposition 2.6

5.0 - ([ Ployas) )

for all z € K, as required. M

S A(q)1/2 — 0 )

n—r00
_lv—q

S, — / P(s)ds

Hc
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Chapter 3

Stochastic Convolution

3.1 Introduction

In chapters 4 and 5 we consider the stochastic evolution equation with additive noise

dX(t) = AX(t)dt + BAW () , t€[0,T],
X(0)=£€D(4),

where A generates a Cy-semigroup {S(t), t > 0} on H and B is a continuous linear
map from U (a separable Hilbert space) to H. Here W(:) is a U-valued Wiener
process, being the formal sum

oo

W) =>_ B)fi,

=1

where {8;(-)}, is a sequence of independent Brownian motions and {f;}2, is an
orthonormal basis for U. In [2], they define particular notions of weak and strong
solutions for this problem. In both cases the solutions involve the stochastic convo-
lution

/OtS(t—s)dW(s) ::Z/O S(t — s) f:dBi(s) -

However to guarantee f; S(t — s)dW (s) converges in L?(H), the following operator
must be trace class

Stz = fOT S(s)S*(s)z ds .

We define generalised stochastic convolution in S(H)_o that does not require this
condition, but agrees with the above stochastic convolution when St is trace class.
To do this we start by generating a sequence of independent Brownian motions.
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3.2 Generating a Sequence of Independent
Brownian Motions

Let ¢, = (0,...,0,1,0,...), a sequence with a 1 in the n-th place and 0 elsewhere.

Define the function n(i,j) by the following table

j
i |1 2 3 4 5 6 7
1 | 1 3 6 10 15 21 28
2 | 2 5 9 14 20 27
3 | 4 8 13 19 26
4 | 7 12 18 25 (3:1)
5 | 11 17 24 n(i, )
6 | 16 23
7 | 22

Take i € N. Define §;(¢) : [0,00) — L?(u) by

( ] £:(5) ds> e (3.2)

where {&;(-)}32, are the Hermite functlons found in section 1.2. This series converges
in L?(u) for each t > 0 as

= S (Uou() &) o)’

= [[pg(s )“L2 (R) =’ <o0.

Lemma 3.1 For alli€ N andt € [0,00)

6i(t) = wfj(/ £(s ds)nn ) (3.9)

for almost all w € S'(RY), where {n,}3%, are the functions defined in equation (1.4).
Proof: Take t € [0,00). By the definition of {8;(-)}$2,, for almost all w € S'(R?)

) = 3 ([ 6048) Hay =2 ([ 6060) ot

j=1

- wi(/ (s ds)nn i)

=1
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as required. Wl

With this lemma, we now show that these {8;(-)}$2, have the properties required to

be Brownian motion.

Before stating the next proposition, we introduce the following notation. If X is
a random variable defined on a probability space (2, F, 1), with values in R, then

P[X = q] is defined to be

P[X =a] = p{w; X(w)=a} .

Propositon 3.1 The random variables {B;(-)}$2, have the following properties for

all v € N:
1. P[B;(0) =0] =1.

2. Bi(-) has independent increments.

3. For 0 < s <'t, the random variable B3;(t) — B;(s) is N(0,t — s) distributed.

Proof: (1) Foralli e N

o0 0
Pl =0 =P |3 ([ 660 ) (0.} = 0| = Plo=
Jj=1
(2) Take any set of increments 0 = %, < ¢; < ... < i, and ¢ € N. We show

that the random variables from the collection {Gi(tr+1) — Bi(tx)}oco are mutually

independent. Now, the collection of functions

1 1/2 o tey1 nel
() S ([ ) o)

J k=0

are orthonormal in L?(R?) as

b+ st tk+1
Z; </t1 f]( ) Tin(i,g) » Z (/ ) nn(i’j)>L2(Rd)

= (_f: (/:+1 du> &, i (/tk+1 dU) &) rem)

o0
= <I[tl:tl+1](u)’I[tkvtk+1]( )>L2(R) / I[thtt+1]( )I[tk»tkﬂ](u)du

= S e(thsr — tk) -

47

= (f: </R it 0,1 (W)€ )5; : g (/ Tite tagr) (0 )fj(u)du) &) 2wy



So by Lemma 2.1.2 in [10], the random variable

1 1/2 oo t
w = <<W’ (tl —t0> ;( ) fj(u)du> (i) » ==
1 1/2 tn
() 2 swe) ”"‘”’) /
n n— -1 tn_1

]_

has normalised Gaussian measure

d\,(z) = (2%)_"/26_1/2|$|2dx1 .o.dz,, zeR".

1 1/2 oo tet1 =
{(w, (m) ;(/tk Ej(U)dU>nn<i,j>>} 1

k=0

Therefore

are independently distributed N(0,1) random variables. Now

{w,i ( ft :Hl Sj(U)dU> Mn(ig))

j=1
= tr+1 ® 23

= (w,z ([ fj(U)dU) Mn(i,j) — Z ( §j(u)du> Tn(i.g))
j=1 WO j=1 WO

= Bite+1) — Bilte) -
Hence the random variables from the collection {f;(tx11) = Bi(te) }roo are mutually
independent, N (0, tx+1 — t) distributed.

(3) From above we see that the random variable §;(t) — f;(s) has a N(0,t — s)
distribution, for alli € N W

For all i € N we choose a continuous version of f§;(-) which we know to exist by
Kolorgorov’s extension theorem (see for instance [14]) because

2 [(;f—) (8) - @-(s»‘*} -1,

( : >1/2 (B:(t) — Bi(s)) ~ N(0,1) .

t—s

as

Propositon 3.2 The sequence of R-valued processes {Bi(-)}2, is a sequence of in-
dependent Brownian motions.

Proof: For all t > 0 and 7 € N, we have that j;(¢) is N(0,t) distribution. Hence it
is sufficient to show that

E[Bi(s)Be(t)] =0,

48



for all s, t>0andi5£k. Now

[ (®)]

(/ g] du) €n(ig) ? ; (_/0 @(u)du) an(k,j)>L2(#) =0 >

as n(i,J) is a one-to-one function. W

3.3 H-valued Wiener Processes

To define generalised stochastic convolution, we need the S(H).o processes defined

in this section.

If {5:()

thonormal basis for H, the formal sum

=> Bit)e;, t>0,
=1

% is a sequence of independent Brownian motions and {e;}2, is an or-

(3.4)

is called an H-valued Wiener process. We use the Brownian motions defined in the

previous section. In this case

0=3:31 ([ 6000r)

This is equivalent to the formal sum

where

ot t )
> bngeank (A &(s)ds 61) He, =) 6k(t)He, ,
k=1

k=1

0; x(t) = 0k (t) /§J s)dse;, k=n(i,7j).

Lemma 3.2 For allt > 0, W(t) belongs to S(H)—o,—2 and hence S(H)_o.

Proof: Now

IA

W ()10,

oo}

S (el 16:(6) 132 =ia (@) H( [t ds) :

On(if).k ( Toy(s ds)

Syt Ti0,5(8), &5 (8)) Famy (2K) 2

o0

Sni gyt (2k)™ Z (2k)7% <

(2k)72

e E0s £ £

x>
Il
—
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as required. M

3.3.1 H-valued Singular White Noise Process

Define W(-) to be the formal sum

W(t) == f:l‘&k(t)ka , teR, (3.8)
k=1
where
kik(t) = ki(t) = &(ter, k= n(i, ) . (3.9)

We call W(-) an H-valued singular White noise process.
Lemma 3.3 For allt € R, W(t) belongs to S(H)_o,—2 and hence S(H)_q.

Proof: Now

[W()]|2,—2
= Y (aD]lm(®)IFEN) 7 = = Sna k(1) [1€5(Deil g (2k) 7

where C' = supen e 1§5(8)], as required.

We now show that W (-) is a differentiable S(H)_; process with continuous derivative

Propositon 3.3 For any closed bounded interval [a,b], a > 0, W(:) is the continuous
derivative of W(-) on [a,b] in S(H)_1.

Proof: We need to show that there exists a ¢ € N\ {1}, so that conditions (a), (b)
and (c) of Theorem 2.2 are fulfilled.

(a) For all ¢ € [a,b), W (t) and W(t) belong to S(H)—o2, and hence S(H)-1,-4
Hence W (¢, z) and W(t, z) exist for all (¢, 2) € [a,b] x Ka.

(b) We need to show the continuity with respect to ¢t on [a,b] and the boundedness
of W(-,-). Now the functions {k(-) = dn(:,j)4&;(-)ei}52; are continuous on [a, b] and
from the proof of the previous lemma

[Wen)||, < W@l A < [WE)-0-2 A2

Hc

- 1/2
< (02(%)—2> A@2)'? < (CA@2))'? A@2)'? = CA(2)

k=1
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where C = sup;en;eqa |€5(t)]- Hence by Proposition 2.4, W(-, z) is continuous with
respect to t on [a,b] for all z € Ky.

(c) Now W(-,-) is bounded on [a,b] x K4 and
df(t)

B d (fot fj(S)dS)

— = Snte gy = nag (e = mill) -

By Proposition 2.5, W(, z) is differentiable with respect to ¢ on [a,b] for all z € K4
and

for all (t,2) € [0, x K,. B

Corollary 3.1 For any closed bounded interval [a,b], a > 0, W(-) is the continuous
derivative of W(-) on [a,b] in S(H)—q.

Proof: For ¢ € N

()18 (2) [ (20~

I
[™]8

W (@)]IZ0,

-
Il

bl

I
[]8

165 ($)1[7 (2N) 79 = W ($)]|1Z,, »

ES
il
-

and similarly ||[W(t)||—0,—g = [|W(t)||-1,~g- Result then follows from Proposition 3.3
and Proposition 1.7. B

3.3.2 n'* Derivative of W(t)

For n € Ny, consider the formal sum

8

W (1) =Y kP(t)H, , teR. (3.10)

k=1

Lemma 3.4 For alln € Ny and t € R, W™ (t) belongs to S(H)_o,-opng1)—o- More-
over, for any interval [a, b]

W @)[]_g, _agasr—z < Kapn <00, (3.11)
where the constant K, pn depends only on a,b and n.

Proof: Consider an interval [a,b]. Then for all ¢ € {a, b]
2
”Wn) (t) ” —-0,~2[2f]-2
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k=1
= D bnusk |§§n)(t)e H(?k)—g[[nTl]]'Q
k=1
3 1
< Y bngeayk | sup €M (1))? | (2k) L2
k=1 t€(a,b)
5 2 n+l
= St (Cunna )
- n+1l 2 n+l o0
¢ S (Contt P 000 .
k=1 -~

< CZLaA(2) <o,
using Proposition B.2, as required. W

Propositon 3.4 For alln € Ny and any closed bounded interval [a,b], W™ (-) is a
differentiable S(H)_; process on [a,b], with continuous derivative W+l ().

Proof: We need to show that there exists a ¢ € N\ {1}, so that conditions (a), (b)
and (c¢) of Theorem 2.2 are fulfilled.

(a) For t € R, W™ (¢) and W1 (¢) belong to S(H)_q,—q, and hence S(H)_o_q C
S(H)_1,_q, where g = 2[%2] + 2. Hence HW™ (¢, z) and HW"HD (2, z) exist for all
(t,z) € [a,b] x K.

(b) We need to show continuity with respect to t on [a,b] and boundedness of

HWr+ (..). Now the functions

(oo}
(K90 = naaat™ ™V Oes)

k=1

are continuous on [a,b] and from Lemma 3.4
[HWED (8, 2) |, < IWED (@) A@)Y? < WD (0)] 20, Al9)*
< Kopnt14(g9)? < 0,

for all (¢, z) € [a,b] x K,. Hence by Proposition 2.4, HW"*+1 (., z) is continuous with
respect to t on [a, b] for all z € Ky,.

(c) Now HW™+1 (..} is bounded on [a,b] x K, and

a5 (1) _

—kdg—‘ = K,;cn_'- )(t) .
It follows from Proposition 2.5 that HW™ (-, z) is differentiable with respect to ¢ on
[a,b] for all, z € Kyy and

HWM (¢, 2)

= n+1)
= HWEHD (¢, 2) |
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for all (t,2) € [a,b] x Ky, as required. M

Corollary 3.2 For any closed bounded interval [a,b], W™ () is a differentiable
S(H)_q process on [a,b], with continuous derivative W+ (1),

Proof: Forg e N

(e[| (1)1 (2N) 7=

K

W™ ()][25,—

o
Il

1

16 (@)% (2N) 79 = [[W™ ()12, _,

I
M8

B
Il
—

and similarly [|[WD (2)]|g,—q = ||[W D (¢)||-1,—. Result then follows from Propo-
sition 3.4 Proposition 1.7. W

3.3.3 (-Wiener Process

While we won’t use Q-Wiener processes ourselves, it’s of interest to see their expan-
sion in L?(H) using the Brownian motions constructed earlier.

Let Q be a positive, trace class operator on H with positive eigenvalues {);}{2; and
eigenvectors {e;}2;. If {Bi(-)}&; is a sequence of independent Brownian motions,
the following sum

=3 VAiit)ei, 120, (3.12)

is called a Q- Wiener process. If we use the Brownian motions constructed earlier in
this chapter, Wg(:) is equivalent to the formal sum

Wo(t) = gé"“’””“ (\/x/ot §;(s)ds 6z’> He, (w)

k() He, () (3.13)

I
bgg

b
Il
—

where
£ = v/ /0 &(s)ds e, k=nli,j) - (3.14)

For all t > 0, Wy(t) belongs to L*(H) as

o t 2
Wo@zem = 3 () wan—Za ,ﬁk(\/x- / @-(s)ds)

1

o0 0 2 0
< S ([ toastos) =3 Moaliae <o

bl

=1 = =1
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3.4 Wick Product

1. Take F,G € S(H)_; given by

F=>" ibi,aHaei , bia€R,

aeJ i=1

G = Z i ci,aHaei y Cia € R .

aeJ i=1

Definition 3.1

Define the Wick product of F' and G as

FoG = Z <§: Z bi,aci,ﬁ 6i> H7

v€J \i=l at+f=v

= Zg’)’H’Y(w) ’

yeJ

(3.15)

where
o0
Gy = Z Z biaCip €i -
i=1 a+f=xy

2. Take F € (S)_1 and G € S(H)_; given by
F=) bHy, ba€R

aeJ

G=anHa7 CQEH'

acd

Define the Wick product of F and G as

FoG := Z ( Z baCﬁ> H,= Zg.,H7 : (3.16)

yeJ \a+B8=y veJ
where
gy = Z bacs -
atf=y

Propositon 3.5 The following properties hold:
1. IfF,Ge€ S(H)_, then FoG € S(H)_1.
2. If Fe(S)_, and G € S(H)-1, then FoG € S(H)_1.
3. If F € S(H)_q, then F o W(t) € S(H)o.

Proof: (1) Let

F=)Y i bioHoti , G=)_ i CiaHati

aeJ =1 acJ =1

54



There exists ¢1,¢> € Nso that F € S(H)_1,—¢ and G € S(H)_1,—¢,- Now for £ > 1

| F o G||2—1 —(q1+ga+k)

&6 2
= Z(QN —(q1+gq2+k)v (Z ( Z b,:_aci'g) )

veg a+f=y

S (& (W e ))

- T (EJNW (;b )z (2)
e gov (v (Be)) (2 (59)
< (o) (g (5e)) (B (5)

as required.
(2) Let
F=> buHe, G=) coH
acd acd
There exists ¢1,¢2 € N so that F € (S)_1,—,, and G € S(H)-1,—¢,- Now for k > 1

I1FoGliZ, —(q1+q2+k)

— Z(zN (q1+g2+k)y Z bacCs
veJ a+p=y

< Z(QN (g1 +g2+k)y (Z HbaCﬁHH>
veT a+f=v

< >N ( > (2N)"’”bi> ( > (2N)“’”HC;3||§;>
yeJ a+p=y a+f=y

< Yen ( > <2N>—q1ab2) ( » <2N>—qzﬂncﬂnz)
veJ a+fB=vy a+pf=v

< (Z(zN)"”> ( b) > eN) qzﬂncmm)

veJ aeJ BeJ :
< 0,

%)



as required.

(3) Let

o0

F = z Zci,aHaei i

acJ i=1

There exists a ¢ € N so that F' € S(H)-g,—g. For k >1

IA

IN

IA

IA

IN

<

|1F o W20 —(grotrt2)

ny!(2N)_(q+2+k+2)7 (Z( Z ci,am,k> )

ve€J g==1 A+EL="Y

> (aN)~lerzEy (Z( S (N cz-,am-,k> )

veT i=1 \oter=y
22(21\1)"‘”2*’“” (_wl ( Z_ (a!(ak—l—l)(QN)‘Q(a“k))cf,a) ( Z_ N?‘.;:))
s (55 02) (£.2)
veJ i1 \ote=7 orer=y
g (s (£2)) (2 o (2 %))
(Z(zN)—k”f) (Z a!(2N)~ (i cfa)> (i 2k)'2n?,k)

YT aes 1 k=0

as required. W

Propositon 3.6 1. Consider F, G € S(H)_, given by

F=iFiei, G:iGzez
i=1 i=1

Then
H(F o G)( Z?—LF i(2) e s

for all z € CY such that both 'HFi(z) and HG;(z) exist, for all i € N.

2. Consider F € (S)-1,G € S(H)_1. Then

H(F ¢ G)(2) = HF(2) HG(2) ,
for all z € CN such that both HF(z) and HG(z) ezist.
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Proof: (1) Let

F=Y" i‘ CioHoti, G=) f: d; o Hoei -

acd i=1 acJ i=1
Using Lemma 2.2
H(F o G)(z2)
yeJ i=1 \a+B=y i=1 v¢J \a+B8=vy
oo
-3 ) (z b ) - SR Hae) e
i=1 \a€J BeJ

as required.

(2) Let

Now

H(FoG)(z) = Z ( Z cadﬂz"‘w)

veJ \a+pf=y
= (Z cazo‘> <Z dgz ) =HF(2) HG(z) ,
a€d peJg

as required. B

Following the ideas of [10], we define the generalised expectation of elements in
S(H)_;.

Definition 3.2 Consider F € S(H)_; having form
F= Z caH

Define the generalised ezpectation of F' as

E[F):=cq.)=F(0) € H.
Clearly we have for all F,G € S(H)-;
E[FoG]=Y E[F] E[Gi e,
i=1

and for all F € (S)-; and G € S(H)_;
E[F oG] = E[F) E[G] .
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3.5 Pettis Integral

Definition 3.3 We say F(t) : R — S(H)_o is Pettis integrable if
(F(), f) € LR, ) | (3.17)

for all f € S(H)o. In addition, we say F(-) is Pettis integrable on E C R if Ig(-)F (")
is Pettis integrable.

Propositon 3.7 If F(t) : R — S(H)_q is Pettis integrable, then there erists a
unique element in S(H)_o, denoted [p F(t)dt, such that

F)dt, f) = F(t), fHdt, 3.18
([ P = [ F0,na (318)
for all f € S(H),.

If F(-) is Pettis integrable, then we call [, F(t)dt the Pettis integral of F'(-).

Proof: This proof follows the proof of Proposition 8.1 in [8].

To do this, we only need to show that

JRORES

is a continuous, linear functional on S(H ), that is, it is an element of S(H)_o.

Linearity follows from the linear property of the integral and the linearity of F'(t),
for each ¢ € R.

To show continuity, we need the linear functional X : S(H)y — L*(R) defined by

X[f] = (F (), f) -

We start by showing that X is closed. Take a sequence {f,}5%, C S(H)o such that
frn —nosoeo f in S(H)q and

1 X [fa] = 6@l 2wy =20
for some ¢(t) € L*(R). Note that for almost all ¢ € R

lim (F(t), fn) = ¢(t) ,

n—eo
where the convergence pointwise in R. Also note that as for each ¢t € R, F(t) €
S (H )_0, then

lim (F(t), fo = ) = (F(0), lim (fa = ) =0

n—+00
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Hence

1X17] = 6Ol e
- /\X @t~ [ [P0, ) - o(0)] e
= [ tF).0) = 0) + lim (P, fu - 0]

lim (F(2), f = fa) + lim (F(£), fa) — 6(2)] dt

n—oo

- J.

= 0.

Therefore X[f] = ¢(t) in L*(R). Hence X is closed.
Now S(H)o is Frechet space, where closedness is equivalent to continuity. This gives

continuity for X. Hence

Hm
n—oo

/ <F(t),fn—f>dt' < lim [ [(F@), fu— f)lde

n—r00 R

= Hm [IX[fo = iz =0,

as required. W

Note that if F'(-) is Pettis integrable on E C R, then for measurable G C E we define

/ F(t)dt = / L@ F(t)dt . (3.19)
c; B
Propositon 3.8 Take F(t) : R — S(H)_o with expansion

= c(t)Ha ,

acd
such that for some g € N
a' 2N)~ (/ llea(t) ||Hdt> <00. (3.20)
aGJ

In this case, F(-) is Pettis integrable and

/ F(t)dt = ( / (t)dt> H. . (3.21)

Proof: We firstly show that F(-) is Pettis integrable. Take f € S(H)o with form

f= ZaaHa

a€J

a€d
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Using Lemma 1.6

[ kFw, pla

= /RZ al{ag, Calt) dt</2a\aa,ca Ygldt

acd aEJ
< /Za'HaallHllca Mgdt = ol(2N)% (2N)F |lag)|x /||ca(t)l|Hdt
a€.7 aedJ
/2
< (Za!(QN)qa“aaH%{) (Zav (2N)~ </ llca () ||Hdt) )
aeg aeJ
< 0,

as required.

Secondly show equation (3.21). Start by noting that the formal sum

e (/Rca(t)dt> Ho

g

belongs to S(H)_o —, by equation (3.20). Using Proposition 1.6 again

( /]R Ft)dt, f)
= / dtZaa a>—aej/F t)dt, aoHo)

- a;j/ aec;i Ydt = ;/a' Ca(t), Go)rdt
- T [ euttt, e = by ( [ ca(t)dt> Ha, f),

as required. B

Definition 3.4 Consider a S(H)_q (or (S)-o) process, F(t) : R — S(H)—-o (or
(S)_o). If F(-) oW(:) is Pettis integrable, define the abstract Hitsuda-Skorohod inte-
gral of F(-) as the Pettis integral

/ F)6W (2) = / F(t) o W(t)dt . (3.22)

Propositon 3.9 Consider F(t) : R — S(H)_o with form

= Z Zci’a(t)Haei = Z ca(t)Ha ;

aeJ i=1 aceJ
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such that for some ¢ € N

K := sup {a!(2N)—qa /IR nca(t)ni,dt} < 00. (3.23)

acJ

Then F(-)oW(-) satisfies the condition of Proposition 3.8, and hence F(-) is Hitsuda-
Skorohod integrable.

Proof: F(-) o W(-) has expansion

F(t)oW() = Z(Z Z Cio(t)Kik(t ei> H7=:Zp,,(t)H7

yeJ \i=1 a+tep=7 veJ

We need show that there exists a p € N such that

S ([ npv(t)nﬂdt)Q (2N < oo

veT
Now
2
S et ( [ o >||Hdt)
v R
o\ 1/2 2

= Z(’TI) 2N)~ (e (t)fig'k(t)) dt

ved R cz+q—

1/2 2

< —(g+8)y Z Cialt >< Z /ii’k(t)2>> dt

"/6.7 R z—l ater=7 atep=7

1/2 / oo 1/2 2

S —(g+8) Z Z Cza 2) (Z Z K/i,k(t)2> dt

767 =1 ater=7 i=1 ote=7
< )(2N) =@+ (/Z > cialt dt) (/Z 3 i 2dt)

'7€~7 =1 atep=7 i=1 atep=7
< DN (/ S (a)(on+1)(2N)" 2’*nca(>||%{dt>

veJ a+ep="7y

(/ S st HHdt>

a+ep=Yy

< YNy (/ > (@liealt uw)

veJ atep ="

(/ >l ||Hdt>

o+ep=7
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= (/ > (al)(om)” q+“||c(>||Hdt>

—yej oatep="y
(/ S N qut)
Q+E€p="Y
< (/ S (o) (2N) =02 ey ||Hdt> (/ > (2h) el ant)
76.7 acJ

= A(2) (g(ab(?N)‘(q”)"‘ /R Ilca(t)ll%dt> (; Stk (2K) /R fj(t)zdt)
< A@2) (K Z(zN)-qa) (i(%)*) < KA(2)?® <00,

acd k=1

as required. W

3.6 Operators on S(H)_

For this section we take p € [0,1], letting F, G € S(H)_, have expansions

= By G=> doH, .

aced acJ

We let £L(H) denote the space of bounded linear operators on H.
Definition 3.5 For a linear operator A on H define the domain of A in S(H)_, as
D(4)-,

= {F(w) € S(H)-, :3q € N such that Z(a!)l'pHAcaH?{@N)'qa < oo} .
aeJ

For F € D(A)_,, define the action of A on F as

AF = (Ac.)H.

Let H; be another separable Hilbert space with inner product (-, -) g, and norm |||z, -
Let £(H, H;) denote the space of continuous linear maps from H to H;.

Definition 3.6 For a linear map A : H — H,, define the domain of A in S(H)_,
as

(4)-5

D
= {F(w) € S(H)-, :3q € N such that Z(a!)l_"l|AcaH%h(2N)_q°‘ < oo} i
acJd
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For F € D(A)_,, define the action of A on F as

AF = (Aca)H, .
oed

Propositon 3.10 Let A be either a linear operator on H, or a linear map from H
to H,. If F,G € D(A)_,, then F+ G € D(A)_, and

A[F +G] = AF + AG . (3.24)

Proof: The proof of either case will be the same, so we just prove case for when A
is a linear operator on H.

Take F,G € D(A)_,. There exists q;, g2 € N such that

S (@) Pl Acall (2N < 0o, () Ada |3 (2N) ¢ < o0 .
acJg e

Let ¢ = max{q, ¢2}. Then

> (@)l A(ca + da) |5 (2N) 7

acd
< ST (lAcallg + | Adallx)* (2N) 7
acd
= > (&) (| Acallfy + 2l Acallall Ada]l & + [|AdallZ) (2N) %
aced
< Z(a!)l"’llAcallif@N)“’“ + > () 7P| Adall} (2N) %
acJ aeJ
1/2 1/2
+ 2 <Z(a!)1"’I|AcaII%(2N)“"’) (Z(a!)l“’llAdalliz(iZN)“"’)
acd aceJ
< 0.
Also
A[F+G] = > Alca+da) Ha=) (Aca+ Ada) H,
aed acJ
= Y AcoHn+ Y  AduH.,
aceJ acJ

as required. W

Propositon 3.11 Let B belong to either L(H) or L(H, Hy). In both cases we have
that D(B)_, = S(H)-,.

Proof: The proof of either case will be the same, so we just prove case for when B
belongs to L(H).
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Take F € S(H)_,. There exists a ¢ € N such that ' € S(H)_, _,. For this ¢

> ()| BeallH(2N)™ < Y (o) BIPfleallk (2N) 7
acJ aed
= |IBI? [IF|2),-y <0,

as required. W

Propositon 3.12 Let A be either a closed operator on H or a closed linear map
from H to Hy. Let F € D(A)_;. Then there ezxists a ¢ € N\ {1} such that

H(AF)(z) = AF(2) ,

for all z € K.

Proof: The proof of either case will be the same, so we just prove case for when A
is a closed operator on H.

Since F € D(A)_1, there exists a ¢ € N\ {1} such that for all z € K,
Z B Z Acy 2%,
aed aed
both converge absolutely in Hg, by Proposition 2.6. For each n € N, define

F.(2) = Z Ca2® .

a€ly

Now for each z € K, Fa(2) —rnaee F(2) and AF,(2) —nosoo H(AF)(2) in Hg.
Hence by closedness of A, for each z € Ky, F(z) € D(A) C Hc and H(AF)(z) =
AF(z), as required. W

3.7 Generalised Stochastic Convolution

For a strongly continuous family of continuous linear maps from U to H, {S(t), t >
0}, such that S(-)W() is Pettis integrable on [0, 77, define

fotS(s)JW(s) — /OtS(s)W(s)ds , te0,T]. (3.25)

We call fot S(s)6W (s) generalised stochastic convolution. Note that in the above
equation, W(-) belongs to S(U)_q, being defined in the same way as in section 3.3.1
with respect to {f;}32;.

In the rest of this section we consider the case the when U = H, so that {S(t), t > 0}
is a strongly continuous family of bounded operators on H. However, all of the results
proved in this section will apply equally to the more general case of when U # H.
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Propositon 3.13 Suppose that for some T € (0, c0)

/T 1S(®)||Pdt < oo . (3.26)

Then we have the following:
1. S(-YW(.) is Pettis integrable on [0,T] and for all t € [0,T)

/s )W (s (/S s)k(s ds> (3.27)

2. fOt S(s)6W (s) is a continuous S(H)_, process on [0,T].

Proof: (1) We show that Ijo7)(-)S(-)W(:) satisfies equation (3.20) of Proposition
3.8. Now

Mg

(ex! </ poy(D)[S(t)s ()”Hdt>2(2N)—2€k

o ([ s nnm)qut)Z (oK)~
i ([ israr) ([ loeliar) @r
([ 1snra) Sem < ([ isofea) ae) <co.

k=1

ES
I

1

[M]8

e
Il

1

MS

&
I

IN

as required.

(2) Note that from the proof of part (1), we have that fo (s)6W (s) belongs to
S(H)_g—o C S(H)-1,—2, for t € [0,T]. So by Proposition 2.7, we have that for

e K,
([ swowea)
< | [ swaweas|  aere
= (S| [ semtas (2N)_2€’°>1/2A(2)1/2
< f) ([ s fox(olds ) (2k)‘2> " e
< fj ([ 1seeas) ([ sl ) (%)—2) T
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< (/OTIIS(s)Il%ls (i&m /Hé] el“HdS) o) )1/214(2)1/2

k=1

- ([Tisreas)” (fj ) AR

k=1

([ us<t>||2dt) CAQPARR <K < oo,

IN

where K is a constant depending only on T'. Hence H ( fo (s)oW (s )) (z) is contin-
uous with respect to t on [0,7] for all z € Ky, by Proposition 2.4, as the functions

{[ st

are continuous on [0,7). Hence fo s)6W (s) is a continuous S(H)_; process on
[0,T], by Theorem 2.1. W

Note that from the previous proof, [7 S(¢)6W (s) € S(H)-o,—2 C S(H)_1,2.
Corollary 3.3 Suppose again that for some T € (0, 00)
@
/ 1S(8)[2dt < oo . (3.28)
0

Then fo (s)6W (s) is a continuous S(H)_q process on [0,T].
Proof: Forge N

a_q

- ek 8)ki(s)ds (ZN)_“"

o] 2

S(s)0W (s)

(2N)“?€k -

K,k ds
k= _la_q
Result then follows from Proposition 3.13 and Proposition 1.7. B

Propositon 3.14 Suppose that for some T € (0, 00), the linear operator Sr defined
by
T
Stz :=/ S(s)S*(s)z ds, ze€H, (3.29)

is trace class. Then S(-)W(-) is Pettis integrable on [0,T] and for all t € [0,T]

/ S(5)6W (s ( / S(s)ka(s ds) H., | (3.30)
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Proof: To show that S(-)W(-) is Pettis integrable on [0, T] and equation (3.30), we

show that Ijo7)(t)S(-)W(-) satisfies equation (3.20) of Proposition 3.8. Now

(ex!) (/RI[OT( )“S(t)ﬁ?k(t)HHdt>2 (2N)~2e

[]8

=
1t
A

. gam oy ([ Iswgmetna) @8
=§:°j ([ sl |dt) (2h)

< in(mk(/ ISt ezngdt) ([ tstrar) oo

- Soton ([t s0ms) ([ dt>
_ i i k( Hei, S*(t)es) Hdt> (2k)*

_ i} i k( e, ) Hdt> (2K)*

_ i( (/ SO (es e ) (20)°

< izjan@,ﬂ,ﬂr(sfxzk)- 2 = TH(Sr)A(2) < o,

a
1l
—

as required.
To show that fo (5)6W (s) belongs to L2(H) for all ¢t € [0, T}, consider

t 2

S(8)6W (s)

- ZZ(&')"1<Z< 0 S(s)kk(s )dS>H Hee) 7o
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IN

i 1(i (/S k(s ds),el)HE a]>2

acJ I=1 k=1

;;<< . S(S)’ik(s)d5> ,61>H=; /0 S(s)k(s)ds ;

Z%a)k / S(s)es §(s)ds|| < ZZ / S(s)e; &;(s)ds

k=1 0 H =1 j=1 V0O H
;;;(/0 S(s)e; &(s)ds, ey :;;z; (/0( (s)e; &(s) el)Hds)
;;; (/R i (8)Tipg(s)S(s)es, &) mrds

ZZ H<I[0t](s)‘s( €i; € H“L2(R) ZZ </ 61,81 HdS)

=1 (=1 =1 =1

;;( . S(s)e: ds, e ; / S(s)e; ds <Z (/ 1S (s)es|| & ds)

(/ IS()elly ds) TZ/ $)ess S(5)ex) s
TZ/ (S*(s)ei, S*(s)es) Hds-—TZ/ (s)e;, e;)gds

(/ S(5)S*(s)e; ds,e;)g =T Tr(Sr) < 00

as required. W

Theorem 3.1 Suppose again that for some T € (0,00), the linear operator St de-

fined by

T
Spa = / SOS (Wz dt, zeH, (3.31)
0

is trace class. Then for all t € [0,T), we have that in L*(H)

/ S(s)6W (s Z / S(s)e; dBi(s) (3.32)

where summation is in L*(H) and fOtS(s)ei dB;(s) is the normal Ito integral with
respect to G;(-).
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Proof: Now [; S(s)0W (s) has the following expansion in L?(H)

= 33 ([ s st

£ ([somion)

So it remains to show that in L*(H)

/ S(s)e; dBi(s

where series is in L*(H).

i=]l j=1

j=1

Take any t € [0,T], and a set of partitions

{0=t0<t1<

of [0,] such that

1\}5{1)0 (ke{g,r.l..&}z)\cf—l}(tk+1 B tk)) =0.

Now

lim E

N->oo

VJ

t

= lim
N>

where tz € [tk,tk+1).

N-1
I[tkvtk+1
k=0
N-1
Titg ) (
k=0

(tr)ei

Z </ S 61 5_7 ds) n(i,5)

<ty =t}N=1

2
)6,‘ dS:l
H

2

ds
H

Since {S(t), t > 0} is strongly continuous, the functions

{S(-)e;}2, are continuous and hence bounded by some M < oo on [0, T]. So by the

Dominated Convergence theorem

ot N-—

lim S(s)e; —
N—oo [ .
t N-

= / lim (|.S(s)e; —
0 N—ooe —

I[tk»tk+1) (S)S(tZ)ei

I[tkatk+l) (S)S(t};)ei

H

ds

2
t
ds:fﬂd.s:[)
0

H

for all 4 € N as the functions {S(-)e;}$2, are continuous. Therefore

/OtS(s)ei dBi(s) =

N-1

where limit is in L?(H). Now in L*(H)

/0 " S(s)e: dBi(s)
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I
[M]8

(Oé!)_1</: S’(s)ei dﬁi(s),Hael)Lz(H)Hael

Q

m
Q
m
[}

=

I
(V)8

(a!)_1<1\}i_{{1w S(ty)es (Biltrsr) — Biltr)) , Haer) 2y Holr

i

Q

m

Q

i
=

I
NE

(ah)™ (A}l_fgo i(s(t}ﬁ)ei (Bi(tesr) — Bilte)) ;Hael>L2(H)) Huep .

1 k=0

R
m
(&
i

(3.33)

Now
<S(t2)61 (/Bi(tk+l) - ﬁz(tk)) , Hael>L2(H)
/Sl(Rd)<S(tZ)ei (Bi(trs1) — Bi(tr)) , Ho(w)en) mdp(w)

/ ey el (Blt) = 1) (STe e e)rd)

= (S(Een e (Ha (f: (f £i()ds ) H) )

J=1

= (S(t})es, e n (i < /:ﬂ gj(s)ds> (Ho, He, ;) Lz(“)>

=1

= (S{t)ei,e)n (i (/t:"“ §j(8)ds> 5en(i,j),a>

j=1

e tht1
Z‘ana,j)»a((/ fj(s)d3> S(ty)e 61>H
j=1 123

= tht1
= > Geuyel [ S le)ds,em
13

t

= i(a!)—l ( lim ) (S(tp)ei (Bi(tes1) — Bilte)) 7Hael>L2(H)) Hee

20 = g1
= Z(a!)—l ]}im Z 5511.(12,_1‘)70‘(/ S’(t;)ez §j(s)ds, 6[>H) H,e
; N
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=1 l=1 k=0
= 23 St ex(s)ds, e,
j=11=1 Y0
Now
§:</0t5(s)ei §i(s)ds, e uHe, €
- (/ S(s)e; fj(s)ds) He, .
L*(H)
— /S, " / S ez 6]( )ds 6;) an(u)( )
- (/ S(s)e: §j(5)d8) Heipy (W) du(w)
e LRd /S e; §i(s)ds, ey nHe,, ;, (W)e
—Z</ S(s)e fj(s)dsvel>HH€n(i,j)(w)el du(w)
=1 0 H
= [ loldue) =0.
S'(R¢)
Hence
fo S(s)e dfi(s) = D3 / S(s)eitj(s)ds, en)n Heyio €1
Jj=1 I=1
= ; (/0 S( )ezéj( ) ) €n(ij)

as required. W

3.8 Generalised n'* Stochastic Convolution

For a strongly continuous family of continuous linear maps from U to H, {V(t), t >
0}, such that V(-)W(™ (-) is Pettis integrable on [0, T], define

/ V()W (s) 1= / VW (s)ds, te0,T]. (3.34)

0
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We call [ V(s)6W(™(s) generalised n'* stochastic convolution. Note that in the
above equatlon W(-) belongs to S(U)—o, being defined in the same way as in section
3.3.1 with respect to {f;}32,

In the rest of this section we consider the case the when U = H, so that {V(¢), ¢ > 0}
is a strongly continuous family of bounded operators on H. However, all of the results
proved in this section will apply equally to the more general case of when U # H.

Propositon 3.15 Suppose that for some T € (0, 00)

[B 1V (0)|[Pdt < oo . (3.35)

Then we have the following:
V()W) (.} is Pettis integrable on [0,T] and for allt € [0,T]

/0 t V(s)ﬁfc”)(s)ds> H, . (3.36)

2. [[V(s)6W™(s) is a continuous S(H)_y process on [0,T).

Proof: (1) We just need Ijo7y(+)V (-)W™ (-) to satisfy equation (3.20) of Proposition
3.8. Now

(ex!) (/ Iio1)(t) HV(t)/sfcn) (t)HHdt>2 (2N)~ (L 1+2)er
. (/ Vel H G H dt)2(2k)-2ﬂ“—2ﬂ1—z
([ o) (] o ) s

M2

&
I

1

Mg

&
Il

1

M2

k=1
) . n
< K1) Onagk ( f ‘§§”)(t)ei Hdt> (2k) 242
k=1 0
S n 7:1. 7k Sup N t . : _
1 k=1 ) jengeo) N7
e ] i n
< K Y BuuonaT (Coza(2)*HT) (2h)AFT2
k=1
3 ntl 2 o[nE1]_o
S Klzén(iaj),kT (CO,T,n(zk)ﬂ 2 ]]> (Qk)— II 5 ]]_
k=1
— KQ 2(21{;)-2 — K2A(2) < o0,
k=1

using Proposition B.2. Note that K; and K, are constants depending only on T
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(2) Note that from the proof of part (1), we have that for all ¢ € [0, T]
t

[ VW) € SUE) o pepay-0 © S(H)-s oo
0

Let ¢ = 2[2] + 2.

By Proposition 2.6, we have that for 2 € K;
t
“H(/V@www@>@)
0

Hence H (fot V(s)&W(")(s)) (z) is continuous with respect to ¢ on [0,T] for all z €
Ky,, by Proposition 2.4, as the functions

IN

Ag)'?

-1,—¢

/ t V(s)6W™ (s)ds

< K,A(2)A(g)Y? .

He

{[vopos} .

are continuous on [0, T]. Hence fot V(s)6W™(s) is a continuous S(H)_; process on
[0,7] by Theorem 2.1. B

Corollary 3.4 Suppose again that for some T € (0, 00)
i
/ 1V (8)||2dt < oo . (3.37)
0

Then f(f V(s)sW™(s) is a continuous S(H)—q process on [0, T].

Proof: For g e N

2 2

(2N) e
H

/0 V(S)Iigen) (s)ds

/t V(s)6W™(s)

0

= > (a)

/0 V()6 (s)ds

2

-0,—q
2

(2N) 9
H

|
MS I

>
1

1
t

V(s)sW ™ (s)

S~

—1,—(]

Result then follows from Proposition 3.15 and Proposition 1.7. l
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Chapter 4

Stochastic Evolution Equation
when A Generates Cy-Semigroup

4.1 Stochastic Evolution Equation as a
Differential Equation in S(H)_;

Consider the following differential equation in S(H)_;

d—)flt@ _ AX()+ BW(E), te[0,T],
X(0)=¢€D(A)-1, (4.1)

where we have that:
1. A is the generator of a Co-semigroup {S(t), t > 0} on H.
2. B is a continuous linear map from U to H.

Note that as {S(t), t > 0} is a Co-semigroup, there exists a K > 0 and a € R such
that [|S(t)|| < Ke®.

Note also that in the above equation, W(-) belongs to S(U)_g, being defined in the
same way as in section 3.3.1 with respect to {f;}2;, an orthonormal basis for U.

In the rest of this section we consider the case the when U = H. However, all of the
results proved in this section and section 4.2 will apply equally to the more general
case of when U # H.

Definition 4.1 A function X (t) : [0,T) — S(H)_1 is said to be a solution of (4.1)
if:
1. X(t) € D(A)_1 for all t € [0, T).
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2. X(+) is a differentiable S(H)_1 process on [0,T] with continuous derivative on
[0, T).

3. X(-) satisfies (4.1).
Propositon 4.1 We have that:

1. For allt € (0,00), S(t — s)BW(s) is Pettis integrable with respect to s on [0,1]
and

Wa( fSt—sB(SW =Z(/St——sBﬂk )ds) : (4.2)
=1

2. For allt € [0,00), Wa(t) € D(A)-1

3. For all T € (0,00), AWa(-) + BW(-) is a continuous S(H)_1 process on [0,T)].

4. For all T € (0,00), Wa(:) is a differentiable S(H)_, process on [0,T] and for
allt € [0,T]
dWal(t)
dt

= AW, (t) + BW(t) . (4.3)
Proof: (1) Forany t > 0

t t
/ 1St = 5)B|ds 5/ (Ke*=)||B||)?ds < oo .
0 0

So by Proposition 3.13, S(t — s) BW(s) is Pettis integrable with respect to s on [0, ]
and

[ ste-9Bewis) = i () ste-ommiou) &

(2) Using integration by parts and property (5) of Proposition C.1

A ([ ste-9Brteias)
= A( f tS(s)B%(t—s)ds)
_ ([(/s Bdr)nk(t—s)]:Jr/ot (/OSS(T)Bdr> n;c(t—s)ds)
(f S(r)Bra(0 dr) /A(/OSS(r)Bn;c(t—s)dr> &

‘= (S(t) = I) Bry(0) + /O (S(s) — I) Bi(t — s) ds .
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So

o0

> A (/OtS(t - s)Bnk(s)ds> H.,, 2

: A(/OtS(t—s)B/sk(s)ds> : -

<||5(1t)—IIIHBIIIIf~'~k(0)IlH+/0 IIS(S)—IHIIBIIIIEL(t—S)IIHd8> (2k)~*

(2N) 4

I
M2

k

1

)8

x>
Il

1

Snigy il BII” (Ke* +1)C

[M]8

-
il

1
2

(4
(sup IIS}(t—S)eiIIH)f(K6“+1)d8> (2k)~
s€[0,t] 0
2

s t
Z 6n(i,j),k[|B||2 ((Ke“t +1)C + C’o,t,lj/ (Ke* + 1)ds> (2k)~*
0

1

+

IA
ko
1

t 2
5n(i,j),k|lB||2 ((Keat +1)C+ C’o,t,lk/ (Ke* + 1)ds> (2k)™*
0

NE

k=1

2

t
< k%|| B||? ((Ke“t +1)C+ CO,,,,I/ (Ke* + 1)d5> (2k)~*
0

)8

&
Il

1
[eTe)

< DY k*(2k)™* < DA(2) <0,

k=1
as required. Note that for ¢ € [0, T, the constant D need only depend on T

(3) Take any T € (0,00). We firstly show that AW,(-) is a continuous S(H)-;
process on [0,T]. Now AW,(t) € S(H)—_o,—4 C S(H)-1,—4- So by Proposition 2.6,
we have that H(AW4(t))(z) exists, for all (¢, z) € [0,T] x K. Now

A (/OtS(t -~ s)Bnk(s)ds) P

((S’(t) — I) Brg(0) + /Ot (S(s) — I) Bry(t — s) ds) AN

N

HAWA())(2) =

s 118

a
Il

1

The functions

(o]

(S4) =~ 1) Bre(@) + [ (S(s) = D) Byt —5) ds}
{ / }

k=1

are continuous on [0, T, for all T > 0. From the proof of (2) above, we see that there
exists a Mt < oo such that

|AW 4(2)||-1,—4 £ Mt ,
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for all ¢ € [0, 7). So by Proposition 2.6, we have that
[H(AWA()) (2)]l e < MrA@4)?,

for all (¢,z) € [0,T] x Ky. So by Proposition 2.4, H(AW4(-))(z) is continuous with
respect to ¢ on [0, 7] for all z € Kg. By Theorem 2.1, AW4(-) is a continuous S(H)_;
process on [0, T'.

We secondly show that BW(-) is continuous on [0, T]. Now for (¢,2) € [0,T] x Ky

< D IBsr®)2* g, < Y IBI k()2 (28) 72

He k=1 k=1

< |IBII>_C(2k)™ < BCA(2) < o0,

where C depends only on 7. Now the functions { Br(-)}52, are continuous on [0, 77,
so by Proposition 2.4, H(BW(-))(z) is continuous with respect to ¢ on [0, 7] for all
z € Ky. By Theorem 2.1, BW(:) is a continuous S(H)-; process on [0, T].

(4) Take any T € (0,00). Now from the proof of Proposition 3.13 and (1) of this
proposition, we have that W4(t) belongs to S(H)-o,~2 C S(H)_1,-9, for all t > 0.
So by Proposition 2.6 we have that H(W4(t))(z) exists, for all (¢,z) € [0,T] x K.

From the proof of part (3) of this proposition, we see that H (AW (t) + BW(?)) (z)
exists and is bounded for (¢, z) € Ky x [0, T}, for all T > 0. Also

% /0‘ S(t— s)Bnk(s)ds S A/O St~ S)B/{k(s)ds + Bry(t) .

So by Proposition 2.5, H(Wa(-))(z) is differentiable with respect to ¢ on [0, T for all
z € Kg and for all (¢,2) € [0,T] x Kg

- (A (/Ots — B )ds) +Bmk(t)) e
S (Z:A ( /0 “s(t- s)Bnk(s)ds> H, + Bnk(t)H€k> ()

= H(AWA(E) + BWE) (2) .

So by Theorem 2.2, Wa(-) is a differentiable S(H)_, process on [0, T, with continuous
derivative AW,(-) + BW(:). &
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Propositon 4.2 We have that:
1. For allt € [0,00), S(t)¢ belongs to D(A)-1.
2. For all T € (0,00), AS(-)¢ is a continuous S(H)_, process on [0,T].

8. For all T € (0,00), S(-)¢ is a differentiable S(H)_, process on [0,T] and for
all t € [0,T]

dS(t)e
S =4S (4.4)

Proof: (1) Let £ have expansion

£=> caHa.

acJg

As £ € D(A)_1, there exists a ¢ € N\ {1} such that

D N Acalzm(@N)T < o0

acJ
For this ¢
STIASBelHENT = Y (IS Ace|E (N
acd ceJ
< D IS 1 Acallk (N7 < o0,
acJ

since ¢, € D(A) foralla € J.

(2) Take any T € (0,00). We firstly show that H(AS(-)§)(2) is continuous with
respect to ¢ on [0, T) for all z € Kgp,. By Proposition 2.6, we have that H(AS()€)(2)
exists for all (¢,2) € [0,T] x K, (and hence Ky,). Now for all (t,2) € [0,T] x K,

S AS@Weaz|| = Do S@Ac| < D ISOI el [2%]
acd He acd He acJ
< Kety | Acalln 12°] < Ke*l|A]|-1,-0A(9)"?
aeJ
< M<oo,

where M is a constant depending only on 7. Also, the functions
{AS(-)ca = S(-)Aca}per »

are continuous on [0,T]. So by Proposition 2.4, H(AS(-)§)(z) is continuous with
respect to ¢ on [0,T] for all z € Ky. By Theorem 2.1, AS (-)€ is a continuous
S(H)_, process on [0, T].
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(3) Take any T € (0,00). Now there exists a ¢ € N\ {1} such that { € S(H)_1
and hence that S(t)¢ € S(H)_1 4. By Proposition 2.6, we have that H(S(t)£)(2)
exists for all z € K, .

Now for (t,2) € [0,T] X Kmax{gq} We have that from the proof of part (2) of this
Proposition, H(AS(t)€)(z) exists and is bounded. Also

iS(t)c = AS(t)c

dt QT (O]

for all @ € J. So by Proposition 2.5, H(S(:)£)(z) is differentiable with respect to ¢
on [0, 7] for all z € Ky, and for (,2) € [0,T] X Kunax{2¢,20:)

= (ZS Ca? ) = Z%(S(t)caza):ZAS(t)caza

aced aeJ aed

= H (Z AS(t)caz"‘> (2) = H (AS(2)€) (z) .

acd

So by Theorem 2.2, S(-)¢ is a differentiable S(H)_; process on [0, T| with continuous
derivative AS(-)¢. B

Theorem 4.1 The S(H)_, process
X () =S¢+ Wal(t), (4.5)
is a solution to (4.1).

Proof: We need to show that X (-) satisfies the requirements for a solution to (4.1).

(1) From the two previous propositions, we have that for all t € [0,T], S(¢)§, Wa(t) €
D(A)_;. So by Proposition 3.10, for all ¢ € [0, T

X(t) = SE)E+ Wa(t)

belongs to D(A)_;

(2) From the two previous propositions, we have that S(-)¢ and Wy(-) are differ-
entiable S(H)_; processes on [0,T]. So X(-) is a differentiable S(H)_; process on
[0, 7.

For all ¢ € [0, T]
AX(t)+ BW(t) = A(S(t)¢+ Wa(t)) + BW(t)
= AS(t)§+ AWu(t) + BW(?) .

We know from the two previous propositions that AS(-)¢, AWa(-) and BW(:) are
continuous S(H)_; processes on [0, T]. Hence AX (-)+BW(-) is a continuous S(H)_;
process on [0, T.
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(3) For all t € [0, T

%@ = %(S(t)§+WA(t))=%(S(t)f)+%(WA( )

= AS(t)E+ AW(t) + BW(t) = AX(t) + BW(t) ,
as required. l
Propositon 4.3 If X(-) is a solution to (4.1), then

X () = S()E + Walt) - (4.6)

Proof: Suppose

= da(t)H

acd
is a solution to (4.1). By the conditions placed on a solution and Theorem 2.2, there
exists a ¢ € N\ {1} such that for all (t,2) € [0,T] x K,

dX(t,z)
dt
= H(AX(t)+ BW() (Z Adg,(t)H, +ZBnk(t)Hek> (2)
acdg k=1
= Y Ada(t)2* + > Bre(t)z* = A (Z da(t)z"‘> +B (Z nk(t)sz>
aEJ k=1 aeJ k=1

= AX(t,z)+ BW(t,2) ,

as A is closed and B is bounded. So by Theorem C.1, for z € K,

R(t,2) = /S(t—s £2) .

+ ftS(t — s)BW(t, 2)

= 5T car® +/St-—s)B(Z:: o(5)2° )ds

Hence for all n € N, for z € Ky

X(t,2)

il

aed

- anz +/St——sB( ()e")ds

aeJ

= 5 caz® +Z</St—ank )d)

aedJ

= > 5(t)ca” +Z</St—ank )d)

acd
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So by Proposition 2.2

X)) = Z S(t)caHa + {2 </0t5(t - s)stk(s)ds> H,

acd k=1
= S)E+Wa(?) ,

as required. W

4.2 Stochastic Evolution Equation as an
Integral Equation in S(H)_,

Consider the following integral equation in S(H)_;

X(t) = X(0) +/tAX(s)ds+BW(t) , tel0,T],
X(0)=¢¢€ D(A)O_1 : (4.7)
where A, B, and {S(t), t > 0} are the same as in the previous section and U = H.
Definition 4.2 A function X (t) : [0,T] = S(H)_; is said to be a solution of (4.7)
if:
1. X(t) € D(A)_, for allt €[0,T).
2. X () is a differentiable S(H)_1 process on [0,T] with continuous derivative on
[0,T).
3. X () satisfies (4.7).

Propositon 4.4 A S(H)_; process X (¢t) : [0,T] — S(H)-1 is solution to (4.1) if
and only if it is a solution to ({.7)

Proof: Conditions (1) and (2) for a solution of (4.1) correspond to conditions (1)
and (2) of (4.7)

Condition (3) of (4.1) is equivalent to condition (3) of (4.7) by Proposition 1.9, that
1s

dX (¢

——dt(—) = AX(t) + BW(t) ,
if and only if

/ot L~ xy-x0 = / AX(s)ds + / ' BW(s)ds

ds 0 0

t
= / AX(s)ds+ BW(t),
0
as required. W
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4.3 Examples

4.3.1 Stochastic Heat Equation

Consider the stochastic Heat equation

d X (t,1) = D X (¢, z)dt +dW(t,z), t€[0,T],2€0,
X(t,z)=0, te€l0,T], z€00,
X(0,z)=0, z€0, (4.8)

where dW (¢, z) is temporal and spatial white noise. O is the open, bounded set in
RN
O:{xE]RN s 0< 2 <ay, i=1,2...,N} .

Equation (4.8) can be considered in the abstract form in L*(O)

dX(8) = AX(t)dt +dW (), te€[0,T],
X(0)=0, (4.9)

where

D(A) := H*(0) N Hy(0)
A= Az )

where the Laplace operator 4, is understood in the sense of distributions.

A is a self adjoint, strictly non-negative operator on L?(0) with eigenbasis {ex}52,
and real negative eigenvalues —\; > —X; > .... A is also the generator of a Cyp-
semigroup {S(t), t > 0} on L*(O) given by

0o
S(t)u = Zuke_)"“tek s
k=1

where u has the expansion in L?(O)

00
u = E UrEr -
=1

See section D.1 of appendix D for more details regarding A and {S(t), t > 0}.

Let H = L?(©®). We consider equation (4.9) as the following integral equation in
S(H) 1

X(t)=/tAX(s)ds+W(t) . telo,T],
X(0)=0€ D(A)_1 ” (4.10)
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where we have

with

oo t
— ; (A gj(é‘)ds> an(i,j) o

By Theorem 4.1, Proposition 4.3 and Proposition 4.4, equation (4.10) has the unique
solution in S(H)_1

/St—s&W) Wa(t) .

Note that for all ¢ € [0, T] X (t) belongs to S(H)_o by definition of generalised
stochastic convolution.

Now for N =1, the operator Sr defined by
T
Sru = / S(s)S8*(s)uds, wueL*0),
0
is trace class as

0o s T
TI‘(ST) = Z STek,ek)Lz(o) S Z(/ S(t)S*(t)ek dt,ek)Lz(@)

= Z/ ek,ek L2(O dt Z/ S* ek, )ek>L2((’))dt
—22t e~
. Z/ 1S(¢)exl|Z2 (0 ds_Z/ kit = [ 2AJ
_ —2)\kT =
Z 7 Z 2

So by Propositlon 3.14 and Theorem 3.1, for N =1, X(-) = Wa(-) belongs to L?(H)
and agrees with the normal notion of stochastic convolution, that is

X(t) = /St—de Z/St—sezdﬂz(),

where summation is in L?(H). Hence if N = 1, Wy(-) agrees with the weak solution
of equation (4.9) found in [2].

4.3.2 Stochastic Wave Equation

Consider the stochastic Wave equation
2

dY;(t, z) = gz—zY(t,m)dt +dW(t,z), telo,T],zeQ=(0,1),
Y(t,0)=Y(1)=0, tel0,T],
Y(0,2) = Yo(z) , ¥{(0,7) =Yi(z), z€Q, (4.11)
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where dW (¢, z) is temporal and spatial white noise. Let

_( Y(t,z) _{ Yo(z)
x0=(yen ) x0=(35 )
with X (¢) € H(Q) x L*() for all ¢ € [0,T]. Also define the operator A on L*(Q)

as

D(A) = HX(Q) N Hy(Q) € L*(Q) ,

d2
=
where dd—2 is understood in the sense of distributions. If Y, € D(A) and ¥ € H}(%Q),

then we can write equation (4.11) in the abstract form in Hg () x L?(Q)

X(t) = A1 X ()dt + BAW(t) , te€0,T],
X(0)=¢€D(A), (4.12)

where

D(A1) =D(4) x Hy(Q)
0 I
Al = ( A 0) )
and B : L?(Q) — H}(Q) x L*(Q) is defined by
D(B) = L*(Q) ,

(1),

Note that W(-) is a L2(2)-valued Wiener process.

A; generates a Co-semigroup U (t) on H} () x L*(Q2). See section D.2 of appendix
D for more details regarding .A; and U(t).

Let H = H}(Q) x L*(©)). We consider equation (4.12) as the following integral
equation in S(H)_;

X(2) /A1 (s)ds+ BW(), te[0,T],
X(0) = £ € DA s (4.13)

where we have that .
= Z Bit)fi

where {f;}32, is an orthonormal basis for L2(Q) and

- ; (/0 §j(5)d5> He -
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Hence by Theorem 4.1, Proposition 4.3 and Proposition 4.4, equation (4.13) has the
unique solution in S(H)_;

X(t) = Ut)E + /Ot Ut — s)BSW(s) .
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Chapter 5

Stochastic Evolution Equation
when A Generates an n-times
Integrated Semigroup

5.1 Stochastic Evolution Equation when A
Generates a 1-times Integrated Semigroup

Consider the integral equation in S(H)_;

X(t) = X(0) + A/tX(s)ds +BW(), tel0,T],
X(0)=¢£€D(A)_, (5.1)

where we have that:
1. A is a closed, densely defined operator on H.

2. A generates a non degenerate, 1-times integrated, exponentially bounded semi-
group {V(t), ¢t > 0}.

3. B is a continuous linear map from U to H.

Note that as {V(t), ¢t > 0} is exponentially bounded, there exists a M > 0 and
a € R such that for all t € [0, 00), we have that ||V (t)|| < Me*.

Note also that in the above equation, W (:) belongs to S(U)_o, being defined in the
same way as in section 3.3 with respect to {f;}$2;, an orthonormal basis for U.

In the rest of this section we consider the case the when U = H. However, all of
the results proved in this section will apply equally to the more general case of when

U+ H.
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Definition 5.1 A function X (t) : [0,T] — S(H)-1 is said to be a solution of (5.1)
if:

1. X(-) is a continuous S(H)_1 process on [0,T.

2. For allt € [0,T], we have that

/tX(s)ds € D(A)_, . (5.2)

8. X (-) satisfies equation (5.1).
Propositon 5.1 For all T € (0,00):
1. V(-)BW(0) is a continuous S(H)_; process on [0,T].
2. For allt € [0,T], [V (s)BW(0)ds € D(A)_;
Proof: (1) We know that W(0) € S(H)-o-4 C S(H)-1,-4, so for (t,z) € [0,T] x K4
[H(V () BW(0))(2)|l re
> VE)Bre(0)2%| <[V IIBI || wi(0)2
k=1 He k=1

< Me®||B|| |W(0)]|-1,-4A(4)/* < K < 0,

He

where the constant K depends only on T'. So by Proposition 2.4, H(V (-)BW(0))(z) is
continuous with respect to t on [0, T] for all z € Kg, as the functions {V(-)Bri(0)}52,
are continuous on [0,7]. Hence V(-)BW(0) is a continuous S(H)_; process on [0, T1,
by Theorem 2.1.

(2) Since V' (-)BW(0) is a continuous S(H)_; process on [0, T7, it is also an integrable
S(H)_; process on [0, 7] such that

/OtV(s)BW(O)ds = gj </0tV(s)Bnk(0)ds) H., .

Now for all k € N, each Bk (0) € D(A) = H. So by property (2) of Proposition C.2,
each fo (s)Brkyi(0)ds € D(A) and

= > |[V(#)Bre(0) — tBrr(0) |5 (2N)~** = |V (£) BW(0) — tBW(0)[|Z, _,
< (IV(©)BW(O)||-1,-4 + [EBW(0)|-1,-4)" < 00,

2
(2N) e
H

/ s)Bxr(0)ds

as required. W
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Propositon 5.2 We have that:

1. For allt € [0,00), V(t — s)BWW (s) is Pettis integrable with respect to s on
[0,t] and

w(t) = /Ot V(t—-s)BsWW(s) = i (/Ot V(t— S)Bn;c(s)ds) er . (5.3)

k=1
2. For all T € (0,00), ngl)(-) is a continuous S(H)_; process on [0,T].

3. For allt € [0,00), [i WP (r)dr € D(A)_1 and

W) + V(t)BW(0) = A / t (Wg)(s) + V(s)BW(O)) ds+BW(t) . (5.4)

Proof: (1) and (2). For any ¢t > 0

/0 IV (t - 5)B|l%ds < / (vt = )l [B)? ds < / (M= B)* ds < oo .

So by Proposition 3.15, S(t — s)BW((s) is Pettis integrable with respect to s on
[0,¢] and

/Vt—sBdWl) i(/ (t — 5)Bri(s )ds)Hek,

=1
is a continuous S(H)_; process on [0,T], for all T € (0, c0).

(3) From Proposition C.5 we have that

f; /ﬁ V(r — 8)Br,(s)ds dr € D(A) .

and
/0 V(¢ — 5)Brl(s)ds + V(£) Brs(0)
_ /0 </ (r — 5)Br.(s )ds+V(r)Bnk(0)) d7+f; Brey(s)ds
N A/ (/ (r — 8)BK, (s )ds+V(r)B/ck(0)) dr + BOu(t) .
So

(2N) Aek

> |4

//VT—SBK,k s)ds dr

/ V(t = 5)BK,(s)ds + V(£)Brx(0)

0

Il
Ms T

b
Il

1
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2

(2N) e

—A / t V(s)Brky(0)ds — B (%)

- HW,gl)(t) +V(t)BW(0) — A / t V(s)BW(0)ds — BW (t) 2

-1,—-4

< (WS Oll-s-s + 1V O BWO)l |14

+ HA/OtV(S)BW(O)ds + ||BW(t)||_1,_4>2

-1,-4
< 0.

Hence fot W (r)dr € D(A)_,, using

as WS)(-) is a continuous S(H)_; process on [0,T]. Now

—

w (@) + vV (©)W(0)

</0t V(t — s)Bri(s)ds + V(t)BK/k(O)> H.,

hN

I
NIE

k=1

I
NgE

(A /0 t ( /0 "Vir - 8)Bri(s)ds + V(T)Bmk(O)) dr + Bek(t)>

1

= A / t (ij) () + V(T)BW(O)) dr + BW(%)

ES
Il

as required. W

Propositon 5.3 For allT € (0,00):
1. For allt € [0,T), V(t)¢ belongs to D(A)_1 and

AV ()€ = V() A€ .

2. AV ()¢ is a continuous S(H)_; process on [0,T].

3. V(.)€ is a differentiable S(H)—, process on [0,T] with continuous derivative on

[0,T] given by
d

for allt € 10,T).
4. For allt € [0,T)
t
Ve [ Ve
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Proof: (1) Let £ have form

§=ZbaHa.

acd
As € € D(A)_,, there exists a ¢ € N\ {1} such that

> llAballH(2N) 7% < oo .

aeJ

Note that forall € 7, by € D(A). So by property (1) of Proposition C.2, V(t) Ab, =
AV (t)by, which gives

> NAV ([O)balim (2N) 7% > V@) Abl (2N

a€d acd

< S IVEIPIAblEEN ™ < oo
a€d

Therefore V (t)§ € D(A)_1 and

AV(0)E = Y AV(t)baHo = Y V() AboHy = V(1) AL,
acJ acd

as required.

(2) We show that V(-) A€ is a continuous S(H)_; process on [0, T]. Now the functions

{V(')Aba}aej )
are continuous on [0,T] and for (¢,2) € [0,T] x K,

Z Aby2®

acd He
< Me¥||Ag]|-1-gA@)? < K <00,

> V(1) Abyz®

acJ

< Vel < IV O 14€]-1,-0A(0) 2

Hc

where K is a constant depending only on 7. So by Proposition 2.4, H ((V(-) A¢) (z)
is continuous with respect to ¢ on [0, 7] for all z € Ky,. Hence V() A€ is a continuous
S(H)_; process on [0,T], by Theorem 2.1.

(3) For all & € J, by € D(A). So by property (3) of Proposition C.2

%V(t)ba = V(t)Abg + bo = AV ()b + b, -

By part (1) and (2) of this proof, we can see that H (AV (-)€ + &) () is bounded for
(t,2) € [0,T] x K;. Now the functions

{V()batees »
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are differentiable on [0, T). Therefore by Proposition 2.5, H(V (-)€)(z) is differentiable
with respect to ¢t on [0, 7] for all z € Ky, and

IUNVHE () = 3 (AV(Eba+bo) 2
acd
= HAVEE+E) (),

for (¢,2) € [0,T] x Ko, Hence by Theorem 2.2, V(t)¢ is a differentiable S(H)_;
process on [0, T] with continuous derivative AV (t)€ + &, as required.
(4) Take t € [0,T). By part (3) of this proposition

d

SV = AV(HE+E= ST AV(t)baHa + Y baHa
aed aceJ

d
= (;7 (AV(t>ba + ba) Ha - ;7 (Ev(t)ba> Ha :

Now V’(-)¢ is a continuous S(H)_; process on [0,T7], so

/Ot Lvigr = X (| t L (rYoadr ) Ha = 3 VRl

-
d acJg aeJ

= V()¢

as required. W

Theorem 5.1 For any T € (0,00), the S(H)_1 process

X(t) = 2

==V + W (t) + vV (t)BW(0) , (5.8)

is a solution to (5.1).

Proof: We need to show that X (-) satisfies the requirements for a solution to (5.1).

(1) By Propositions 5.1, 5.2 and 5.3 we have that V'(-)¢, Wfll)(-) and V(-)BW(0) are
continuous S(H)_; processes on [0,T]. Therefore

X() = Zvie+ W) +VOBWO) |

is a continuous S(H)_; process on [0, 7).

(2) By Propositions 5.1, 5.2 and 5.3 we have that for all ¢ € [0, T]

/Ot 4y (s)eds , /0 WO (s)ds | / V(s)BW(0)ds € D(4)..

ds 0

Therefore
/0 X(s)ds = /0 (%V(s)g+wg1>(s)+V(s)BW(0)) i
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belongs to D(A)_; for all t € [0,T).
(3) Using Propositions 5.2 and 5.3, we have that for t € [0, T

X(¢)

= SVE+ WP +VHOBWO)

= (AV()E+E) + (A / t (ng>(3) + V(s)BW(O)) ds + BW(t))

0

= (A /Ot %V(s)fds + f)

+ (A / t (W/g”(s) V(s)BW(O)) ds—l—BW(t))
= §+A/ ( (5)e + W(s) + V(s)BW(0)> ds + BW ()
= X(0)+A/ X(s)ds + BW(2) |

as required. W

Propositon 5.4 Take T > 0. If X(-) is a solution to (5.1), then

X(0) = SvHe+ W)+ VEBWO) | (5.9)
for allt € [0,T].

Proof: Let X(-) and £ have forms
Xt)=Y calt)Ha, X(0)=E=) baHa.

acJg acJ

As X(-), X(0), BW(-) are continuous S{H)_, processes on [0,T], we have that

t
A/ X(s)ds = X (t) — X(0) - BW(t) ,
0
is a contlnuous S(H)_; process on [0,T]. So there exists a ¢ € N\ {1} such that
), A [* X (s)ds, BW (), X(0) € S(H)—1,— forallt € [0,T] and X (-), A fy X (s)ds

BW( ) are contlnuous with respect to ¢ in the norm || - ||-1,—4 on [0, T]. Note that as
X(-) is a continuous S(H)_; process on [0,T], then for all ¢ € [0, T

A/X ds_A<a;</ca ds> ) ;:;1(/ )Ha.
Now for (t,2) € [0,T] x K,
R(t2) = H(X(0)+A/OtX(s)ds+BW(t)> ).
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That is

S = 30 (ba +A/Ot ca(s)ds> o +k§°::13 (/0: /{k(s)ds) 2

acdg aed

So by Proposition 2.2, for all « € J and k € N

calt) = ba+A/:ca(s)ds+5ek,a (B/;nk(s)ds> .

So by Corollary C.1 and Proposition C.5

Ca(t)
= %V(t)ba + /OtV(t — 8)ki(s)ds + 8¢ 0 (V(t)Bre(0)) , a€J, keN,
Hence
X ()
= an(t)Ha
acg
d = ([
= —V (t)boHe + V(t — s)Bkj(s)ds + V(¢t)Bki(0) | He,
3 S(f (5)ds + V() Ba(0))
= LV@e+ W)+ VEBW)

as required. W

5.1.1 Example

Consider again the stochastic Wave equation

2
dY](t,z) = —8—Y(t, r)dt+dW(t,z), te€l[0,T],zeQ=(01),

0x?
Y(t,0=Y(¢1) =0, tel[0,T],
Y(0,z) = Yo(z) , Y/(0,z) =Yi(z), z€Q. (5.10)

Again let
Y(t,z) Yo(z)
t)y = X =
x0=(yn ) 0= (%3)-
but in this case X (t) € L*(Q) x L*(Q). If Y, € D(A) and Y, € L*(Q2), then we can
write equation (5.10) in the abstract form in L*(2) x L*()

dX(t) = A X (t)dt + BdW (t), te€[0,71],
X(0) € D(A2) , (5.11)
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where

D(As) = D(A) x LA(9) ,

0 I
A2’—<A 0))

and B : L*(2) — L*(Q) x L*(Q) is defined by

D(B) = L*(Q) ,

o= (3).

Ay generates a non degenerate, 1-times integrated, exponentially bounded semigroup
{V(t), t > 0} on L*(Q) x L*(). See section D.2 of appendix D for more details
regarding A, and {V (t), ¢t > 0}.

Let H = L*(Q) x L*). We consider equation (5.11) as the following integral
equation in S(H)_;
t
X(t) = X(0) +A2/ X(s)ds+ BW(), tel[0,T],
0
X(0)=¢ € D(A)-1 (5.12)
where we have that

ORI IOTS

where {f;}%, is an orthonormal basis for L?() and

Bilt) = 2 ( / t @-(s)ds) He.,

By Theorem 5.1 and Proposition 5.4, equation (5.12) has the unique solution in
S(H)-1
d

V()€ + /0 t V(t—s)BSWD(s) + V(t) BW(0) .

5.2 n-Integrated Solution

Consider the integral equation in S(H)_,

X(t) = %X(O)+A/tX(s)ds+/t (t ;'S)HBcSW(S) , telo,T],
: 0 0 :
X0)=¢€e S(H)-1, (5.13)
where ‘We have that:
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1. A is a closed, densely defined operator on H.

2. A generates a non degenerate, n-times integrated, exponentially bounded semi-
group {V (t), t > 0}.

3. B is a continuous linear map from U to H.

Note that in the above equation, W (-) belongs to S(U)_, being defined in the same
way as in section 3.3.1 with respect to {f;}$2,, an orthonormal basis for U.

In the rest of this section we consider the case the when U = H. However, all of
the results proved in this section will apply equally to the more general case of when
U+#H.

Note that by Proposition 3.13 it follows that as B is a bounded linear operator on
H, the S(H)_o process (t_ns!)n BW(s) is Pettis integrable with respect to s on [0, 1],
for all ¢ > 0 and

/0 G ;!s)" BéW(s) = i ( /0 t(i—n—f)—ank(s)ds> He, . (5.14)

k=1

As {V(t), t > 0} is exponentially bounded, there exists a M > 0 and a € R such
that for all ¢ € [0, 00), we have that ||V (2)]| < Me®.

Definition 5.2 A function X(t) : [0,T] — S(H)-, is said to be a solution of (5.13)
if:

1. X () is a continuous S(H)_1 process on [0,T].
2. For allt €[0,T)
t
/ X(s)ds € D(A)_1 . (5.15)
0

3. X () satisfies equation (5.13).
Propositon 5.5 For all T € (0,00) we have that:
1. V()¢ is a continuous S(H)_; process on [0,T).
2. For allt €[0,T)
/OtV(s)é eD(A)_, . (5.16)

3. For allt €[0,T) t
V(e = i+ A /0 V(s)eds . (5.17)

Proof: (1) Let X(0) = £ have expansion

€= boHy .

acJg

95



There exists a ¢ € N\ {1} so that £ € S(H)-1,_,. Now for all t € [0,T], V()€ €
S(H)_1,—, and for all (¢,2) € K,

HV OO g = | VO < IVEOI|D baz®

acJ Hc aeJ
< Me*||€]|-1,-A(Q)* < K < 00,

He

where K is a constant depending only on 7. It follows from Proposition 2.4 that
H(V (-)€)(2) is continuous with respect to t on [0, T for all 2z € Ky, as the functions

{V ()b }acs are continuous on [0, T]. Hence by Theorem 2.1, V/(-)¢ is a continuous
S(H)_, process on [0, T].

(2) As V(-)¢ is a continuous S(H)_; process on [0, T]

f: V(s)éds=> (/; V(s)bads> H, .

T

Now for all & € J, b, € D(A) = H. So by property (2) of Proposition C.2,

/t V(s)byds € D(4) ,

and for all ¢t € [0, T

t 2
> |4 / V(s)bads|| (2N)™%
aced 0 H
e | |7
= Y |[V(t)ba — Sba (2N)“1°‘=HV(t) - —
n. n.
aceJ H -1l,—q

IN

o 2
(W @l-sme+ S lelL,) <oo.

as required.

(3) For all ¢t € [0,T)

VRE = > V(t)baHa=) (i—"!ba + A/OtV(s)bads> H,

acJ acJ
" ¢
= —§+A/ V(s)éds ,
n! 0
as required. B
Propbsiton 5.6 We have that:
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1. For allt € (0,00), V(t — s)BW(s) is Pettis integrable with respect to s on [0, 1]

and
ot
Walt) = / V(t — s)BSW (s)
0
0 L
=y U V(t—s)Bnk(s)ds> H, . (5.18)
k=1 W0
2. For all T € (0,00), Wa(+) is a continuous S(H)-1 process on [0,T].
3. For allt € [0, 0) fOWA (s)ds € D(A)1
4. For allt € [0,00)
/ Wals ds+/ E=5)" Bsy(s)ds . (5.19)

Proof: (1) and (2). For any t > 0

t t
/ |V (t — 5)B|ds 5/ (Me*=9||B]|) ds < oo .
0

0

So by Proposition 3.13, V (t — s) BW(s) is Pettis integrable with respect to s on [0, ]

(f (t — 8)Bry(s )ds) H., ,

is a continuous S(H)_; process on [O,T].

and

gt

/Vt—sBéW =

(3) Now
/0 V(¢ — 5)Brg(s)ds

A/Olt /OT V(T — 8)Bky(s)dsdT + /Ot ( ;!S)an;(S)ds :

Now W (-) is a continuous S(H)_; process, so

/ot Wa(s)ds = g </0t /OT vir- QBK,C(S)deT) Haw

Ydr € D(A)-1. We have that

We now show that fo Wa(r
(2N) A

V(r — s)Bky(s)dsdr

¢ (t— s)"

/0 V(¢ — 8)Bru(s)ds — /0 By (s)ds

97

(2k)™

Mg i M8

b
I
o



2

N HWA /t( ﬁf“BéW( )ds

(HWA o +H/

]

—-1,-4

IN

BéW(s)ds

2
<00,
—-1,—4

as required.

~

(4) For all t € [0,

(/tV(t— )i (s )ds) H.,
< // b —si: b )dsd'r+/( )Bnk(s)ds> H.,

=A/OW()d+/0(t—)B6W()d

n!

[M]¢

Wat) =

&
]

1

I
Msz

>
1

as required. W
Theorem 5.2 For any T € (0,00), the S(H)_1 process
X(@):=V@)E+Wa), tel0,T], (5.20)
is a solution of (5.13).
Proof: We need to show that X (-) satisfies the requirements for a solution to (5.13).

(1) By Propositions 5.5 and 5.6, we have that V/(-)¢ and Wy(-) are both continuous
S(H)_; processes on [0, T]. Therefore X (-) = V(-)§ + Wa(:) is a continuous S(H)-1
process on [0, 7).

(2) By Propositions 5.5 and 5.6, we have that for all t € [0, T

/tV(s)Eds , fﬁ Wa(s)ds € D(A)_1
Therefore 0 0
[ x@as= [ e+ Wi ds € D)
for all ¢t € [0, 7).
(3) By Propositions 5.5 and 5.6, we have that for all ¢ € [0, T

X(1)
= V() + Wal(t)

= (tn5+Af éds) ( /WA ds+/( )BéW( ))

_ §+A/ $)E + Wal ))ds—l—/ Lo )B<5W()

0 'n/.

as required. W
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Propositon 5.7 If X () is a solution to (5.13), then
X(t) = V(@) +Wu(t), (5.21)
for all t € [0,T1.
Proof: Let X(-) and £ have forms
XO) = calt)Ha, X(0)=£6=) boHa.
acd 0eJ
As X(+), £X(0) and ft U ns “B6W (s) are continuous S(H)_; processes on [0, 7],

then o
A/ X(s)ds=X(t)—ﬁX(0)—/ E=3)" Bows) |

n!

is a continuous S(H)_; process on [0 T]. So there exists a ¢ € N\ {1} such that
t), A [ X (s)ds, £,X(0) and [y =2 B§W (s) belong to S(H)-1,—¢ for all ¢ € [0, T]

and are contlnuous “with respect to ¢t on [0,7] in the norm || - [|—1,—,. Note that as

X (+) is a continuous S(H)_; process on [0, T], then for all ¢ € [0,T]

o [ a( ([ o) ) - T ([[eto) .

acJ aEJ
Now for all (t,2) € [0,T] x K,

Rt2) = H <g§+A/OtX(s)ds+/ot (t—'s)nBcSW(s)> ().

n.

That is

Z ca(t)2®

= Z(%baJrA/oca ds>z +Z</

acd
So by Proposition 2.2, foralla € J and k € N

) Bru(s )ds) 2

7 t t (t - 3)71
ca(t) = mba+A/0 Ca(s)ds+6ek,a/0 — Bry(s)ds .
So
t
2] = V(t)ba+6€k,a/ V(t—s)Bre(s)ds, a€J,keN.
0
Hence
X ()
= > ca(t)Ha = V(t)baHa +Z</ (t — 5)Brx(s )ds)Hek
aeJ acJ
= V()¢ +Wa(®)

as required. I
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Appendix A

Linear Topological Spaces

The theory found in this chapter on linear topological spaces follows Chapter 1 of
[7]. We need the results on countably normed spaces to show that S(H),, p € [0,1]
is a countably Hilbert space and S(H)_, is it’s dual.

Throughout this chapter, ® is at least a vector space.

A.1 Linear Topological Spaces

Definition A.1 A wvector space ® equipped with a topology such that addition and
multiplication are continuous in this topology is called a linear topological space.

By a topology we mean that there is a system of (open) neighbourhoods {U} such
that:

1. For every point ¢ € ®, there exists a neighbourhood U = U(¢) such that
¢ € U(¢).

2. If ¢ belongs to two neighbourhoods U and V, then there exists a neighbourhood
W,suchthat e W CcUNV.

3. For any pair of points ¢ 3 1, there exists a neighbourhood U such that ¢ € U
but ¢ ¢ U.

The topology is the set of all finite and infinite unions of this system of neighbour-
hoods {U}.

By continuity of addition we mean that if
Y =x,

and U is any neighbourhood of y, there exists a neighbourhood V' of ¢ and W of ¢
such that V. + W C U.
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By continuity of multiplication we mean that if Ag¢ =+ and U is any neighbourhoo
of 1, then there exists a number e > 0 and neighbourhood V' of ¢ such that [A—Xq| < ¢
implies A\V C U.

Note that the topology in ® induced by the system of neighbourhoods {U} can be
reconstructed by all possible translations of the neighbourhoods of zero.

Definition A.2 A sequence {¢,}52, is said to converge to an element ¢ if each
neighbourhood of ¢ contains all but a finite number of {¢n}5;-

Definition A.3 1. A system of neighbourhoods {V'} containing ¢ is said to be a
basis of neighbourhoods of ¢ if each neighbourhood of ¢ contains at least one
neighbourhood from {V'}.

2. We say a point ¢ € ® satisfies the first aziom of countablity if it has a countable
neighbourhood basis.

Propositon A.1 If there exists one point in ® having a countable neighbourhood
basis, then every other point in @ also has a countable neighbourhood basis.

Theorem A.1 Suppose that on a vector space O there exists a system C of sets all
containing the zero element such that:

1. For any U,V € C, there ezists a W € C such that W CUNV.

2. For any ¢ # 0, there exists a U € C such that ¢ ¢ U.

3. For any set U € C, there ezists a W € C such that W £ W C U.

4. If € U € C, then there ezists a V € C such that ¢ +V CU.

5. For any U € C and any number ¢, there ezists a V € C such that aV C U.

6. For any U € C and any point ¢, there exists an € > 0 such that 6¢ € U for
0] < e.

7. For any U € C, there exists an € > 0 such that U C U for || < e.

Then there ezists a system of (open) neighbourhoods {U} in ® such that ® is a linear
topological space and C is a neighbourhood basis of zero.

Two distinct systems of sets C; and C; satisfying the above theorem lead to the same
topology if for any U € C; there exists a V' € C; such that V C U and for any V € C;
there exists a U € C; such that U Cc V. We say C; and C, are equivalent systems if
this is the case.
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A.2 Countably Normed Spaces

A.2.1 Comparability and Compatibility of Norms

Definition A.4 1. Take two norms || - ||1 and || - ||2 on a vector space ®. The
norm || - ||1 is weaker than || - ||z (and || - ||2 stronger than || - ||1) if there ezists
a constant C < oo such that for all ¢ € @

ol < Cll8]lz -

2. Take two norms || - |1 and || - ||2 on a vector space ®. The norms || - ||, and
|- ll2 are said to be compatible if for any sequence that converges to zero in one
norm and is a Cauchy sequence in the other will also converge to zero in that
norm.

If || - || is a norm on ®, we denote the completion of ® with respect to this norm by
D

Lemma A.l If||- ||, and ||-||2 are compatible norms on @ and || - ||, is weaker than
| - ||z, then
& 00,09

A.2.2 Countably Normed Spaces

Propositon A.2 If ® has a system of norms {|| - ||k} 321, then the collection of sets

{¢ € (I)a “¢Hl <e¢, ”¢||2 <€.., “¢||:D < e}pGN, e>0
satisfies the conditions of Theorem A.1.

Lemma A.2 The collection of sets

1 1 1
loc o ol < mulolle < ool < ]

m

is an equivalent system of sets to

{9 €9 ”¢Hl <€ ”¢H2 <€y “¢HP < E}peN, 0 °

Definition A.5 If the system of norms {||-||x}52, are compatible, we call @ equipped
with the topology introduced in Proposition A.2 a countably normed space.

Note that by Lemma A.2, a countably normed space satisfies the first axiom of
countablity.
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We also assume that the system of norms are non-decreasing, that is for all ¢ € @

8l < llgllz < llolls < - -

This means that
0P, DP;D...00.

Definition A.6 1. A sequence in a countably normed space is said to be a Cauchy
sequence if it is a Cauchy sequence in each norm.

2. We say a countably normed space is complete if every Cauchy sequence con-
verges.

Propositon A.3 A countably normed space is complete if and only if

& =2,y .

From now on, we assume that any countably normed space is complete.

Definition A.7 A countably normed space is called a countably Hilbert space if the
system norms {|| - ||p}32, correspond to a system of inner products {(:, Jpteey, that
is for allp € N

16l = (8,8} »
for all p € @.

Bounded sets in Topological Linear Spaces

Definition A.8 A set E contained in a topological linear space ®, is said to be
bounded if for each neighbourhood U of zero, there exists a A > 0 such that

AECU.

Propositon A.4 A set E contained in a countably normed space @, is bounded if
forallpeNand ¢ € E
llll, < Cp < oo (A1)

Propositon A.5 Any convergent sequence in a topological linear space is a bounded
set.

A.3 The Dual of a Linear Topological Space

A.3.1 Continuous Linear Functionals

Definition A.9 A linear functional (f,-) on @, a topological linear space, is said to
be continuous if for any € > 0, there exists a neighbourhood U of zero such that

[(f,0)l <€, (A.2)
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forallp €U.

We denote the space of continuous linear functionals on a topological linear space ®
by @'.

Propositon A.6 If ® satisfies the first aziom of countablity, then [ is continuous
if and only if for each ¢ € ®

lim (,40) = (£,9)

for all convergent sequences {¢n}52, C @ such that ¢n —rn—o0 @-

For a countably normed space, denote (®;)' by ®_, and the dual norm on (®;)" by

I -
Propositon A.7 For a countably normed space
@_1C@_2C@_3C...C©I, (A3)

and
P =UR Dy . (A.4)

If f € @', then there ezists a p € N such that f € ®_, and

00> Ifllp = I fll—guany 2 .- - (A.5)

A.3.2 Strong Topology on &

Definition A.10 For &', the dual of a linear topological space ®, define the strong
neighbourhoods of zero as

{f & ®; sup|(f, )| <e} |
¢pEE

where £ C ® is bounded and € > 0.

Propositon A.8 The strong neighbourhoods of zero satisfy the conditions of Theo-
rem A.1.

We call the topology induced on @ by the strong neighbourhoods of zero, the strong
topology on &’

Definition A.11 Let {f,}2, be any sequence contained in ®'.

1. We say {fx}2, converges strongly to f in @ if (fi, ¢) —k—oo(f, @) uniformly
on all bounded sets in @.
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2. & is said to be complete if (fx, ¢) converging uniformly on all bounded sets in
& implies there exists a f € &' such that fr — koo [ strongly.

Propositon A.9 If the first azion of countablity is satisfied for the space @, then
@’ 1s complete with respect to strong convergence.

Corollary A.1 If ® is a countably normed space, then ®' is complete with respect
to strong convergence.

Strongly Bounded Sets

Definition A.12 A set F C @ is said to be strongly bounded if for every strong
neighbourhood U of the zero functional, there ezists a A > 0 such that AP CU.

Lemma A.3 A set F C & is strongly bounded if and only if F is bounded on every
bounded set E C ®.

Corollary A.2 If & satisfies the first aziom of countablity, then every strongly
bounded set F C &' is bounded on some neighbourhood of zero U C @.

Corollary A.3 For a countably normed space, a set F' C @' is strongly bounded if
and only there exists a p € N such that F C ®_, and bounded in the norm || - ||

Lemma A.4 A strongly convergent sequence {fi}32, in ®' is strongly bounded.

Corollary A.4 For every strongly convergent sequence {fe}2, in @', there erists a
p € N such that {f,}2, is contained in ®_, and bounded in the norm || - ||-p.

A.4 Frechet Spaces

The material found in this section on Frechet spaces can be found in [19].

For a countably normed space ®, define the following metric on p(, )

© 1 |lp—l, :
221+n¢ o, PYET

Propositon A.10 p(-,-) is a complete invariant metric on ®, inducing the same
topology on @ as {[| - [|p}p21-

Definition A.13 A set U C ® is called convez if for all ¢,% € U and o € [0, 1]
ap+(1—a)peU.
Deﬁnition A.14 A linear topological space ® is called a Frechet space if:
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1. There exists a neighbourhood basis of zero such that it’s members are convez.

2. The topology on ® is induced by a complete invariant metric.
Propositon A.11 A countably normed space is a Frechet space.

Propositon A.12 In Frechet space, a closed functional is also a continuous func-
tional.
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Appendix B

The Hermite Polynomials and
Functions

B.1 Properties of Hermite Polynomials
and Functions

The Hermite polynomials h,(-) are defined by

hn(z) = (—1)"e1/212d—dx—n (6_1/%2) . n=0,1,2,... . (B.1)

The Hermite functions &,(-) are defined by

£a(z) = 7 V4((n = 1)) V26V, (\/ix) Cn=1,2,.... (B.2)
The following properties of the Hermite polynomials and functions can be found in
[9] and [10]:

1. Forn=0,1,2,...
dhn(z)

dz

= nhp-1(z) ,
where we take h_1(0) = 0.

2. {&,()}, is an orthonormal basis for L*(R).

3. Forn=1,2,...
sup [¢a(z)| = O(n™Y/*?) .
z€R
4. Forn=1,2,...
d*&n () 2
—7 +z fn(x) - 2”671(‘7") .
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B.2 Growth Estimates for the Derivatives of
Hermite Functions

The following results we demonstrate in this section provide growth estimates for
the derivatives of &,(-) up to any order. We use these results in Chapter 4 to show
that W (t) is differentiable in S(H)_; up to any order, on any interval [a, b].

Lemma B.1 Foralln e N
dé,(z)
dz
where we take &(x) = 0.

= —x&,(z) + (2n — 2)1/2§n—1(x) J (B.3)

Proof: Using the definition of the Hermite functions and property (1) above, we

have
dén(z)
dzx
_ ﬂ—1/4((n . 1)!)—1/2 (_%2“—1/%2%_1 (\@x) TN ) dhn;;(x) )
V2z

= 7 V4((n-1)))"1/2 (—xe_l/zzzhn_l <\/§x) + e Y2 /2 — Dhn_s (\/53:))
= —ata(a) + (n = DVVE (VA (0 — )2 g (Vi)
= —z&(2) + (20— 2)"&(2)

as required. B

Propositon B.1 For alln € Nanda,b € R
dén(z)

dz

< Ca,bn 3 (B4)

sup
z€{a,b]

where Cyyp is a constant depending only on a and b.

Proof: Using Lemma B.1 and property (3) above, we have

dén(x)

r2| < s fata(o)] + sup |(2n—2) (@)

z€[a,b] z€[a,b]
= Myp1+ Ma(2n — )2 < 2n(Mypy + Ma) = Copn

sup
z€[a,b]

where the constants M,;1 and M, and hence Ca,p do not depend on n, as required.
[ |

Lemma B.2 Forallk > 2

k k—2 d’
d*n(z) Zﬁx) = ddxingn (£ —2n +Z 6" (a; + bn + ¢jz + djz?)

where the constants aj, bj, cj, d; € R do not depend on n.
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Proof: By property (4) above, we have for k& = 2
d*6n ()
dx?

Therefore true for k& = 2.

— 6a(z) (2% = 20) = £n() (a2 — 20) +0 .

Assume true for some k£ > 2. Then

d6a(z) _ d%(a) S énl2)
dxk — —Emk—_-z— (.’172 - 2TL) + Z dajj (aj -+ bj’I’L -+ Cj.’l? -+ dj$2) .
=0
So
d* & (x)
d$k+1
k—1 k—2
- L8 o)+ T
k=3 . k=3 44
ditLe, (z) & (z
j=0 j=0
d*1¢,(x) d"26n(2)
= e @ =)+ R (%)
k=2 i £ 2 0
4 e d’ n\T
+ ————flxg ) (ajo1 +bjoan+ oz + djaz?) + ) ng ) (¢j + 2d;2)
i=1 -
gk oz drk—2 T
= Ta;ﬁ__(Tl (.772 = 2”) + Txﬁ—_(f—) (ak_z + bp_3n + (2 + ck—3)T + dk—3$2)
k=3
& (T
+> fmg i (aj-1 + ¢) + bjan + (¢j-1 + 2d;)7 + dj-12°)
7j=1

+ &n(x)(co + 2doz) .
So if p(k) is true, then p(k + 1) is true, as required. W

Propositon B.2 For any interval [a,b], and n,k € N
d*6n ()

S| < Cape(2n)TF < 00, (B.5)

sup
z€(a,b)

where the constant Cyp depends only on a,b and k.
Proof: True for £k =0 as

sup |&x(z)| < suplén(z)| £ C < 0.
z€[a,b) z€R

True for k=1 as

dén(z)
dz

sup < C’a,bn = Ca,b,l (2’1’14)“-1_-2tiIl .

z€[a,b]
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Assume true for 0,1,...,k, where k¥ > 1. From Lemma B.2

dF1¢,(z) d*- 1§n( Jﬁn 2
So
sup dk'an(iE)
u
z€[a,b] dxk+l

dk—lgn (LL‘)
T ;ufb] =

& =
+ sup sup @n(2) Z sup |aj + bjn + ¢z + d;z?|
je{0,1,....k—2} \ z€[a,b] =0 z€[a,b)

da:J

IN
VRS
8

m »
= B
.“S.»U

j€{0,1,...k—2}

(k—1)+1
= (C“’b’k‘l(zn)[[ : ]]) (Kopk-1(2n))
+ sup  Cup,;(2n) 4] Ko pi(20)
<j€{0,1,...,k:—2} s Z b4
- C‘l’bvk—lK@ab,k—l(2”)[[%]]“+(2n)[[£k__?ﬂ]]( sup ab:—7> (2n) (ZKab,J>

k~-1

Moy (2n) I 4 M, (2n) T 14 = Map1(20)F) + M, 40(2n)
< Ma,b,l (277')[[1%2]] + Ma,b,2(2n)‘lk—-2+—2]] = Ca,b,lc+1(271)[[(“"%)-'-1]I

[5=3%%]

for some C, 41 < 00 that only depends on a, b and k. So if p(0),...,p(k) are true,

then p(k + 1) is true, as required. W
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Appendix C

Semigroups

C.1 (Cy-Semigroups

The material regarding Cy-semigroups in this section can be found in [5].

X is a Banach space throughout this chapter.

Definition C.1 A one-parameter family of bounded linear operators {S(t), t > 0}
on X is called a Cy-semigroup if

(S1) Foralls,t >0

S(t+s)=S(t)S(s) . (C.1)
(S2) S(0) =1.
(S3) {S(t), t >0} is strongly continuous with respect to t > 0.

By strongly continuous we mean that for all x € X, S(-)z is continuous with respect
tot > 0.

Definition C.2 For a Cy-semigroup {S(t), t > 0}, define the operator

D(A) := {x € X; Hfltin(l) —Sl}i_—{x} ,

h
A(z) = lim %'—Iz , z€D(A).

We call A the generator of {S(t), t > 0}.

Propositon C.1 For a Co-semigroup {S(t), t > 0} with generator A, we have that:

1. Eor all s,t >0
S(s)S(t) = S(t)S(s) . (C.2)



2. There ezists a K > 0 and w € R such that for allt > 0

IS < Ke' . (C.3)

Co

. A is a densely defined, closed operator on X.

. For allz € D(A) andt >0

B

U't)z =U(t)Az = AU(t)z . (C.4)
5. Forallz € X andt >0, [, U(s)ds € D(A) and

A / U(s)ds = Ut)z— 13 (C.5)

6. For all A € C with Re\ > w, (A — A) is invertible and for all z € X

Ra(Nz:= (A — A) 'z = / " e Mg (t)r dt (C.6)

0

C.2 n-times Integrated Semigroups

The material regarding integrated semigroups in this section can be found in [12],
[1] and [13)].

Definition C.3 Let n € N. A one-parameter family of bounded linear operators
{V(t), t > 0} is called an n-times integrated, ezponentially bounded semigroup if

(V1) Foralls,t >0

N i o /Os [(s =) W(Et+7r)=(t+s—r)"'V(r)]dr=V()V(s) . (C.7)

(V2) {V(t), t > 0} is strongly continuous with respect to t 2 0.

(V3) There ezists a K > 0 and a € R such that for allt >0

V@I < Ke®. (C.8)
In addition, {V(t), t > 0} is said to be non degenerate if
Vi>0, V(t)z=0=z=0.
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If {V(t), t > 0}, an n-times integrated, exponentially bounded semi-group is non
degenerate, then V(0) = 0. Also, the operator

Ruyz/ MeMV(1) dt, Red>a, (C.9)

0

is invertible. There exists a unique operator A such that for all z €
o0
(A-m4x:/ e MY (4 dt | (C.10)
0

with domain equal to the range of (A — A)~!. A is called the generator of {V (), t >
0}. Note that A does not depend on the choice of A.

Propositon C.2 Take n € N. For a non degenerate, n-times integrated, ezponen-
tially bounded semigroup {V (t), t > 0} with generator generator A, we have that:

1. For allz € D(A) andt >0
Vi)t € D(A), AV(t)z=V(t)Az,
V(t)z = (ﬁx> + /tV(s)Ax ds . (C.11)

n!

2. For allz € D(A) andt >0

/t V(s)z ds € D(A) ,

t n
A/ﬁagx@=vun—(%ﬁ>. (C.12)
0 .
3. For allz € D(A™) andt >0
V() = V(t) A"z + Z <F> AFz (C.13)
k=0
4. For allz € D(A™!) andt >0
%Vw@szWm®m=VW@Mw. (C.14)

C.3 The Abstract Cauchy Problem

The material regarding the abstract Cauchy problem in this section can be found in
[1], 5], [12] [13] and [20].
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Consider the Cauchy problem

u(0) ==z, (C.15)
where A is a linear operator on X with D(4) C X.

Definition C.4 A function u(t) : [0,00) — X is called a solution of the Cauchy
problem if:

1. u(") € C*{[0,00), X} N C{[0,00),D(A)}.
2. u(-) satisfies equation (C.15).

Definition C.5 The Cauchy problem is said to be uniformly well-posed on E C X
(where E = X ) if:

1. A unique solutions ezists for any z € E.

2. For any T > 0, the solution is uniformly stable for t € [0, T] with respect to the
initial data.

Theorem C.1 Suppose that A is a closed, densely defined operator on X. Then the
following statements are equivalent:

1. The Cauchy problem is uniformly well-posed on D(A).
2. The operator A is the generator of a Co-semigroup {S(t), t > 0}.

3. The Miyadera-Feller-Phillips-Hille-Yosida (MFPHY) conditions are fulfilled,
that is, there ezists a K > 0 and w € R such that

“(ReA—w)"“R%)()\)/n!H <K, ReA>w,n=012,....

In this case, the solution of the Cauchy problem is given by
u(t) = S(t)z .

If A is a linear, closed, densely defined operator on X, then define [D(A™)] as the

Banach space
{D(A™) , ||zl = ll=]| + | Az|l + ... |A™]]} .

Definition C.6 The Cauchy problem is said to be (n,w)-well-posed if for any z €
D(An+1)_.

1. There erists a unique solution u(-).

9. There exists a K > 0 and w € R such that

lu@®)ll < Ke* |zl -
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Theorem C.2 Let A be a densely defined linear operator on X with nonempty re-
solvent set. Then the following statements are equivalent:

1. A is the generator of a non degenerate, n-times integrated, exponentially bounded
semigroup {V (t), t > 0}.

2. The Cauchy problem is (n,w)-well-posed.
In this case, the solution of the Cauchy problem is given by
u(t) =V (t)x .

Definition C.7 A function v(-) € C{[O oo) X} is called an n-integrated solution of
(C.15) if for all t > 0, we have that [7v(s)ds € D(A) and

= Cosa / (C.16)

Theorem C.3 If A generates an n-times integrated semigroup {V(t), t > 0} (not
necessarily non degenerate), then for any x € X, (C.15) has unique n-times inte-
grated solution, given by

v(t) =V () . (C.17)

Consider the problem
u(t) A/ u(s)ds+z, te[0,T],
0
u(0) =z € D(A) , (C.18)

where A is a closed, densely defined operator, generating a non degenerate, 1-times
integrated, exponentially bounded semigroup {V(t), ¢ > 0}.

Definition C.8 A function u(t) : [0,00) — X is called a solution of (C.18) if:
1. u(-) € C{[0,00), X}.
2. [Ju(s)ds € D(A) for all t > 0.
3. u(-) satisfies equation (C.18).

Propositon C.3 The function
u(t) ==V, t>0, (C.19)

is a solution to (C.18).

Proof: We show that u(-) satisfies the requirements to be a solution of equation
(C.18).
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(1) By property (3) of Proposition C.2, we have that

%V(t):v = V() Az +7 .

Now {V/(t), t > 0} is strongly continuous, so V(-)Az is continuous and therefore so
tois V'(:)z.

(2) As V'(-)z is continuous, we have that

|| 3V = V(e)aly = V(e

Now by property (1) of Proposition C.2, we have that V(t)z € D(A) as z € D(4),
as required.

(3) By property (1) and (3) of Proposition C.2, we have that

d td
— = AV - —
dtV(t):c )z +z A/o dSV(s)xds +z,

as required. W

Propositon C.4 . If u(-) is a solution to (C.18), then

v(t) = /Otu(s)ds , t>0, (C.20)

is an 1-times integrated solution to (C.15).

Proof: We need to show that v(-) satisfies the requirements for a solution to (C.15).
As u(-) belongs to C{[0, 00), X}, then v(-) belongs to C{[0, c0), X'}
We have that fot u(s)ds € D(A) and

A'/otu(s)ds =ut) —z.

Therefore [, (A [ u(r)ds) dr exists and because A is closed

/Otv(s)ds=/; [D u(r)drds € D(A) .
Finally, v(-) satisfies equation (C.16) as
o(t) = /Otu(s)ds=/0t (A/OSu(r)dfr-i—x) 2
- A/Ot (/Osu(r)dr> ds+tx=A/0tv(s)ds+it—!a:,

since A is closed. B
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Corollary C.1 The function

is the unique solution to (C.18).

Proof: Follows from Proposition C.3, Proposition C.4 and Theorem C.3. B

C.4 Some Additional Results for a 1-times
Integrated Semigroups

The following results we demonstrate in this section are needed in Chapter 5.

In this section A is closed, densely defined operator, generating {V'(¢), t > 0}, a non
degenerate, 1-times exponentially bounded semigroup.

Lemma C.1 If f(t) : [0,T] — X is continuously differentiable on [0,T1, then
t
=/ V(t—s)f'(s)ds, tel0,T], (C.21)
0
satisfies the equation

u(t) = /:Au(s)ds + /Ot f(s)ds—tf(0), tel0,T]. (C.22)

Proof: For ¢t € [0, T, define

Now

This implies

v(t) —v(0) = /t v,ﬁ(s)ds S / V(t—s)f'(s)ds +/ / s)dr ds

Therefore

/OtV(r dr+ff s)dr ds .



Now fj V(r)f'(0)dr € D(A) and

A / —tf'(0) .
Therefore

/otA (/OT V(T)f'(O)dr) dr = /0 V()£ (0)dr — /OtTfI(O)dT.

Now [{~°V(r)f"(s)dr € D(A) and

/ Vi (s)dr = Vit—9)f"(s) = (= )f"(s) -

Hence, by using closedness of 4, [ [;7°V(r)f"(s)dr ds € D(A) and

R M)
- ) (/0 (o) s
= /Ot/OTV(T s)f"(s)ds dr — // T —38)f"(s)ds dr .

Now
Aiﬁ‘df—ﬁf(ﬁ%df
- /Ot/OtJ[O] 5)ds dr = //1[0 s)dr ds
= /ot/V s)dr ds = // s)dr ds
= u)— [ V() (0)dr
and /O

/Ot /OT(T —8)f"(s)ds dr = /Ot <[(T —8)f'(8)]y + /OT f'(s)ds) dr

=‘A(-rf®)+fh)—fmﬂdf

= —/tTf’(O)dT+ /tf(T)dT—tf(O) .
0 0
So u(t) € D(A) for all t € [0,T] and

/OtAu(T)dT - [/Otv(f)f'(o)dfr—/Otrf’(o)df] + [(u(ﬂ—/otv(")f'(o)d?")
_ <_ /0 CF(O)dr + /0 tf(T)dT—tf(0)>]
=

w—AUmw+ﬁm,
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as required. W

Propositon C.5 If f(t) : [0,T) — X is continuously differentiable on [0,T], then

/Vt—s (s)ds + V@) F(0), t€[0,T], (C.23)

satisfies the equation

/ ds-l—/ f(s € [0,T] (C.24)
Proof: We know that

/Otv(t—s)f’(s)ds = f; (A/OTV(T—s)f'(s)ds> d7'—+—/0tf(s)ds—tf(0).

Therefore by closedness of A

/;V(t—s [f (r—29)f dsd7'+/f (s)ds —tf(0)

Therefore

0

V(- ) @)ds + VOO

= ) dsdr+/f (s)ds — t£(0 ))
0= 4/0)+170)

5)f dsdT+/f (s)ds — ¢£(0 ))

u/(
-
(

// -
// (r—
(4 [ vrsar-10)

_ A/Ot(/o Vir — 5)f'(s)ds + V() >d7+/f
A/Ot (T)d7'+/0tf(s)ds

|4

as required. W

119



Appendix D

Examples of Semigroups

The examples in this chapter are based on material from [4], [6], [16], [21] and [20].

D.1 Heat Equation

We start this section by defining operators A and {S(¢), t > 0}.
Let O be the following open, bounded set in RY
O={zeR"; 0<zi <0, i=1,2...,N} .

Define the operator A on L?(O) by

D(A) = H}(O) N H}(0) c L*(0)

A=A,
where the Laplace operator A, is understood in the sense of distributions. Note that
H?(O) and H}(O) are the classical Sobolev spaces

H&(O):{ueLz((’)); %ELz(O) , i:1,2,...,Nandu=Oon8(9} ,

H*(0) = {ue L*0); Duc€ L*(0)} .

A is a self adjoint, closed, densely define operator on L*(0), with eigenvalues

k2q? _
-3 af . keN,i=12,...,N,

T

=1
and eigenvectors

N
2 kimz; .
wkl,...,kN=H —_sin( ;rx) , keN,i=12,...,N.

=1




Let {—\}$2, and {ex}22, be an ordering of the eigenvalues and eigenvectors of A
respectively such that
A2 A2

Note that {e;}$2, is an orthonormal basis for L*(0). We have that A generates a
Co-semigroup {S(t), t > 0} on L*(O), given by

o0
S(t)v = kae—“tek )
k=1

where v has the expansion in L*(O)
o0
v = Z Vi€ -
k=1

Consider the problem

éng)zzgwnm, tel0,T],z€0,

u(t,z) =0, z€0d0,
u(0,z) =u’(z), z€0O. (D.1)

If u® € D(A), then equation (D.1) can be can considered as the operator equation

u'(t) = Au(t), t€0,T],
u(0) € D(4) , (D.2)

in the space L?(0©), with unique solution given by

u(t) = S(t)u(0), te0,T].

D.2 Wave Equation

We start this section by defining operators 4, {C(t), t > 0}, {S(t), t = 0}, Ay,
{U(t), t >0}, Ay and {V(t), t > 0}.

Let = (0,1).
Define the operator A on L?*(Q2) by
D(A) = H*(Q) N Hy(Q) € L*(Q)

d2

A=
dz?’
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where 25 is understood in the sense of distributions. Note that H?(Q) and Hj(Q)

dz?
are the classical Sobolev spaces

H;(Q) = {u € L*(Q) ; Z—Z e L*(Q) ,u(0) =u(l) = 0} ;
H*(Q) = {u e L*() ; %Zx—?; € Lz(Q)} :

A is a self adjoint, closed, densely defined operator on L?(Q), with eigenvalues —pu
and eigenvectors e, where

pe = k21% | ep = V2sin(knz) , kEN.

Define the operators on {C(t), t > 0} and {S(t), t > 0} on L*(Q) by

Ct)v := Zcos(\/ﬂt)vkek , S(tv= Z %\ﬂ:zi)—vkek ,

where v has the expansion in L*()
o0
v = Z Vi€ -
k=1

Define the operator A, on H}(Q) x L*(Q) by

D(A) = D(A) x Hy(Q) ,

0 I
w=(21).

A, generates a Co-semigroup {U(t), t > 0} on Hj(Q) x L*(R), where

(e SW
Um‘(c%t) cm)’ t20.

Define the operator Ay on L2(Q2) x L*(Q2) by

D(Az) = D(4) x L*(Q) ,

0 I
w=(01).

A, generates a non degenerate, 1-times integrated, exponentially bounded semigroup
{V(t), t >0} on L*(Q2) x L*(Q2), where

_ sw)  [;S(s)ds |
V(t)_<C(t)—I S(t) ) t20-
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Consider the problem
&ul(t,z)  O%u(t,x)

te[0,T], z€Q,

otz 9z2
w(t0) = u(t,1) =0, te[0,T],
u&ﬂzﬁ@%i“&@ W(z), zeq. (D.3)

Let
0= () w0= ()
)

If u® € D(A) and u* € H}(Q), then equation (D.3) can be can considered as the
operator equation

w'(t) = Aw(t), telo,T],
w(0) € D(Ay) , (D.4)

in the space H(Q) x L?(2), with unique solution given by
w(t) =U@)w(), te[0,T].

If u* € D(A) and u' € L?(2), then equation (D.3) can be can considered as the
operator equation

=t ./Am te0,T],

w(0) € D( (D.5)
in the space L?(Q) x L%(Q), with unique solution given by
w(t) =V(@)w(), tel0,T].

If v’ € D(A?) and u* € L*(Q), then equation (D.3) can be can considered as the
operator equation

W) = Ayw(t), tel0,T],
w(0) € D(A3) , (D.6)

in the space L2(Q) x L?(Q), with unique solution given by

w(t) = VO @)w(©), te€[0,T].
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List of Symbols

S(RY)
S'(RY)
B(S'(R%))
7

H

{e}i2
|-l

<' >'>H
Hc

I lre

(' 7'>HC
L*(w)

| RR{FAI
<'7 '>L2(u)
L*(H)

- llzeca
O T
[RRIPZS
(., '>L2(R)
|- lzewey
(s ) L2(re)
hn()
én()
Ca,b,k

U

Ny = Nu {0}
J =)

al = al!agl .o

{Ha}aej
index o

I'n

space of tempered test functions

space of tempered distributions

weak star topology on S'(R?)

probability measure on (S'(R?), B(S'(R?)), see Section 1.1
a separable Hilbert Space

orthonormal basis for H

norm on H

inner product on H

complexification of H

norm on H¢

inner product on H¢

space of square integrable functions with values in R, see Section 1.1
usual norm on L?(u)

usual inner product on L?(u)

space of square integrable functions with values in H, see Section 1.1
usual norm on L*(H)

usual inner product on L?(H)

usual norm on L*(R)

usual inner product on L?(R)

usual norm on L?(R%)

usual inner product on L?(R?)

Hermite Polynomials, see appendix B

Hermite Functions, see appendix B

see Proposition B.2

see Section 1.2

space of finite sequences & = (o, 2, .. .), &; € Ny, see Section 1.2
where a € J

orthogonal basis for L?(y), see Section 1.2

see Section 1.2.1

see Section 1.2.1
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e N

L&A

= A

Q

X
OBs!
™

e

—~
™

spaces of R-valued stochastic test functions, see Definition 1.1
see Definition 1.1

spaces of R-valued stochastic distributions, see Definition 1.1
see Definition 1.1

spaces of H-valued stochastic test functions, see Definition 1.2
see Definition 1.3

see Definition 1.3

see Definition 1.3

spaces of H-valued stochastic distributions, see Definition 1.2
see Definition 1.3

see Definition 1.3

see Lemma 1.2

neighbourhood of zero, see Definition 2.1

neighbourhood of zero, see Definition 2.1

neighbourhood of zero, see Definition 2.1

neighbourhood of zero, see Definition 2.1

Hermite transform of F' € S(H)_;, see Definition 2.3
Hermite transform of F' € S(H)_;, see Definition 2.3

a sequence of independent Brownian motions

H or U-valued Wiener process, see Sections 3.1 and 3.3
function defined in equation (3.1)

see Section 3.2

the normal distribution with mean 0 and variance o2
indicator function, equals 1 on [a, b] and 0 elsewhere

see equations (3.6) and (3.7)

see equations (3.6) and (3.7)

H or U-valued singular white noise, see Section 3.3.1

see equations (3.8) and (3.9)

see equations (3.8) and (3.9)

nth derivative of xi(t)

nth derivative of W(t) in S(U)_1, or S(U)-1, see Section 3.3.2
greatest integer less than or equal to n

see Lemma 3.4

Q-Wiener process, see Section 3.3.3

see equations (3.13) and (3.14)

wick product, see Definition 3.1

generalised expectation, see Definition 3.2

Hitsuda-Skorohod integral, see Definition 3.4

see Definition 3.5

generally a Cy-semigroup, see Definition C.1

usually a Cy-semigroup

usually an n-times integrated semigroup, see Definition C.3
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L(H) space of bounded linear operators on H

H, a separable Hilbert space

L(H, Hy) space of continuous linear maps from H to H;

U a separable Hilbert space

{f: g;l orthonormal basis for U

f(f generalised stochastic convolution, see equation (3.25)
fo W(") s) generalised n™ stochastic convolution, see equation (3.34)
Wal(t ) see Propositions 4.1 and 5.6

W/gl)(t) see Proposition 5.2

0] usually a linear topological space

ol dual space of @, see Section A.3.1

A, see Section D.2

As see Section D.2

H}(O) see Section D.1

H?(0) see Section D.1

HQ) see Section D.2

H2(Q) see Section D.2
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