
t2*7-o t

TyERSi

Genetic diversity and the
dynamics of metapopulations

STEPHEN J. BALL

A thesis submitted for the degree of Doctor of Philosophy
in the Faculty of Agricultural and Natural Resource Sciences

Department of Applied and Molecular Ecology
University of Adelaide

June 2001



Table of contents

SUMMARY

DECLARATrON.................

ACKNOWLEDGEMENTS

PUBLICATIONS ................

CHAPTER 1

GENERAL INTRODUCTION .........

I.I THE MANY MEANINGS oF ''METAPOPULATION'
Tgn urllrrv oF METApOpULATION THEoRy
THesls ourLINE.......
1.3.1 First section
1.3.2 Link between the first and second sections .

1.3.3 Second section.........

lv

vll

X

I

2
J

2
4
6
6
7
1

CHAPTER 2

THE GENETIC CONTRIBUTION OF SINGLE MALE IMMIGRANTS TO SMALL,INBRED
POPULATIONS: A LABORATORY STUDY USING DROSOPHILA MELANOGASTER................

2.I INTRODUCTION
2.2 MerHons................

2.2.1 Establishment and maintenance of wild-type laboratory population...
2.2.2 Development of marked outbred base populations............
2.2.3 The experiment...

2.3 R¡sulrs ...
2.3. I Statistical tests
2.3.2 The binomial test as an alternative to parametric analyses...............
2.3.3 Justification for using parametric analyses.
2.3.4 Comparison of treatment means to the null allele frequency ........
2.3.5 Comparison of allele frequency between treatment means ...........
2.3.6 Results summary

2.4 DrscussroN ...............

CHAPTER 3

ADDITIONAL ANALYSES OF IMMIGRANT FITNESS EXPERIMENT DATA... .29

3.1 IxrnooucrroN .29
3.2 How cl-osE ARE THE SAMpLE MEANS oF CHArTER 2 ro sptr.rc NoRMALLy DISTRIBUTED? .....
5.5 N0N-PARAMETRIC ALTERNATIVES TO THE ANALYSIS OF IMMIGRANT EXPERIMENT DATA.....

3.3.1 Calculation of confidence intervals using bootstrap analysis
3.3.2 Comparison of treatment means using randomisation tests...........

3.4 Cor.lcr-usroNS...........

30
34
35
38
42



4.1
4.2
4.3

CHAPTER 4

THE LIMITATIONS OF USING GENETICS TO MAKE INSIGHTS INTO COLONISATION
PROBABILITIES IN METAPOPULATIONS: A DISCUSSION........

I¡¡rRooucrroN ..................
GeNe ¡low, DTSpERSAL AND coLoNISATIoN ...........
USING GENETIC DIVERSITY DATA To ESTIMATE DISPERSAL RATES...
4.3.1 Wright's Nm
4.3.2 The assignment method..

4.4 Tnø RELATIoNSHIp BETwEEN DTSpERSAL RATE AND col-oNISATtoN pRoBABtl-rry..
4.5 Cor.rcr-usroN.............

CHAPTER 5

USING GENETICS TO RANK THE VALUE OF PATCHES: INTRODUCTION AND MODEL

5,I INTRODUCTION
5.2 Moon DESCRìPrroN .....

5.2.1 The model structure (flow of demographic processes).. . .. .. ..
5.2.2 Melapopulation is filled with indi viduals ................
5.2.3 Age individuals...
5.2.4 Pairing (applies only to owls)

5.2.7 Mortality................
5.2.8 Optional feature l: catastrophic disturbance events .....
5.2.9 Optional feature 2: sex-biased dispersal ........

5,3 THE N¡T EFFECT oF BREEDING, DISPERSAL AND MoRTALITY
5.4 Tsn rHnEE-pArcH METApopuLATroN....................
5.5 THe ErcHr-pATcH METApopuLATtoN ............
5.6 Usnc rHE MoDEL To DETERMINE THE DEMocRApHIc vALUE oF pATCHES

5.7 USNG THE MoDELTo MEASURE cENETtc DtvERStry IN pATCHES .........
5.8 T¡srn¡c rHE succESS oF usrNc GENETICS To RANK pATCHES

5.9 Corr¡rr¡¡NTS oN THE sIMpLIFICATIoNS IN MuLTIPop...
5.10 A KEY ASSUMmION: GENETICS DOES NoT INFLUENCE DEMoGRAPHICS
5.I I Tue FoLLowINc CHAP|ER

CHAPTER 6

USING GENETICS TO RANK PATCHES: MODEL RESULTS AND SUMMARY .96

.56

.62

.66

.66

.67

.69

.69
1')

6. I INrnooucrroN ..........
6.2 Popul¡rroN DyNAMrcs...................

6.2.1 The population dynamics of individual replicate metapopulations
6.2.2 Frequency distributions of the time to global extinction ................
6.2.3 Estimating the probability of metapopulation extinction................
6.2.4 The effect of patch removal.....
6.2.5 Some relative value measures are unreliable................
6.2.6 Comparison of extinction probabilites among all metapopulations..
6.2.1 The impact of initial conditions on patch value estimates................
6.2.8 The time frame for extinction probabilities: 100 years......
6.2.9 Summary of relative patch value estimates

6.3 PopuLATroN GgNETIcs...................
6.3.1 The population genetics of individual replicate metapopulations ....
6.3.2 Mean changes in genetic diversity over time
6.3.3 Changes in the variance of genetic diversity over time

96

..........................97

..........................98

........................ 104

105
ll5

104

rI7
........1 l8
........1 l8
........t22
........t22
........t21
........130



6.4 Ir.¡'rscn¡,TING popul-ATtoN DyNAMICS AND GENETICS.....
6.4. I Reducing the analysis to a manageable level

6.4.1.1 The choice of sampling time ..............
6.4.L2 The proportion of correct genetic rankings as a function of connectivity...... ...,14O
6.4.1 .3 Choosing an appropriate measure of genetic diversity.., ... . .149

6.5 UuoensrANDING Hovrl rHE pRopoRTtoN oF coRRECT cENETrc RANKINcS vARTES AS A FUNCTION oF
RELATIVE PATCH VALUE .,......,....,...,.I51
6.5.1 Using 1O-year samples of the mean number of alleles per locus for owls and rodents..................151
6.5.2 Using 40-year samples of the mean number of alleles per locus for owls:

an encouraging insight. ,,',,,,,',.',.,.|52
................1576.6 Mnrrxc rHE Mosr oF cENETrc DTvERSITy DATA..........

6.7 SurøvnnY oF MoDEL RESULTS

.........133

.........133

.........133

CHAPTER 7

DISCUSSION AND CONCLUSIONS

7.1 How cAN METApopULATIoN MANAGERS us¡ cENETIC DIVERstry ro RANK pATCHES? ....
1 .2 Tsr. RoLE oF cENETICS-BASED pATCH RANKING tN THE coNTEXT oF orHER AppRoACHES
7.3 Frr.l¡r- coMMENTS FoR rHE rHests..........

APPENDIX 1

ASSESSMENT OF TURBO PASCAL'S PSEUDO.RANDOM NUMBER GENERATOR....

Al. I INTRoDUCrloN.........
Al.2 Tgsrs oF psEUDo-RANDoM NUMBER GENERATOR pRopERTIES.....

Al.2.l Descriptive statistics.......
Á^1.2.2 Frequency test (equidistribution test) .............
A.1.2.3 Test for correlation between sequential pairs ....................
A.1.2.4 Serial Test......
1.I.2.5 Coupon collector's test.........
Á.1.2.6 Run Test
41.2.7 Gap Test
y'.I.2.8 Poker Test...

41.3 SuutvtrRY...........

BIBLIOGRAPHY

163

............163

............161

............ I 68

183



Summary

Habitat fragmentation has important consequences for the genetics and dynamics of

populations. As such, ideas concerning the effects of fragmentation have become an

important part of conservation biology, often under the name of metapopulation biology. A

metapopulation is a group of subpopulations that live in discrete habitat patches, but may be

connected by dispersal. While much work on metapopulations has looked at genetics and

dynamics separately, there is a growing body of literature examining the relationship between

these two aspects of metapopulation biology. In this study I examined how patterns of

genetic diversity can be used to gain insights into various aspects of metapopulation

dynamics.

The thesis can essentially be divided into two sections, In the first section I considered the

relationship between the rate at which individuals enter a population, and their impact in

terms of gene flow. In parlicular, I addressed one of the assumptions involved when using

genetic diversity data to infer immigration rates between habitat patches: that immigrants

have the same fitness as population residents. For this I performed a laboratory experiment,

using Drosophila melanogaster, to measure the genetic contribution of single male

immigrants to small, inbred populations. Genetic contribution was assessed by measuring the

relative frequency of immigrant marker alleles. When immigrants were outbred, the mean

frequency of the immigrant allele was significantly higher than its initial frequency, as early

as one generation after immigration. There was no significant change in allele frequency for

populations receiving inbred immigrants. The increase in allele frequency for outbred

immigrants was attributed to an initial outbred vigour fitness advantage of immigrant males

over resident males experiencing inbreeding depression. Furthermore, hybrid vigour of
immigrant progeny and the rare male effect did not have a statistically significant role in the

fitness advantage of the immigrant allele. These results, based initially on parametric

analyses, were also supported by randomisation tests and bootstrap analyses.

The results of this experiment add to our understanding of the complex relationship between

the rate at which immigrants arrive into a population and their impact in terms of gene flow.

This work also has implications for understanding the rescue effect, whereby immigrants may

lv



rescue extant populations from extinction. In particular, this study suggests that large,

outbred populations may be valuable for their contribution to the genetic diversity of small,

inbred populations.

In the second section of the thesis I explored the value of using genetic diversity data to make

qualitative "rules of thumb" decisions when managing the dynamics of metapopulations. In

particular, I examined whether ranking patches based on genetic diversity provides a good

estimate of the relative value of those patches in terms of their contribution to metapopulation

persistence. The logic behind this approach is that the same features that make a patch

valuable for metapopulation persistence also tend to increase the genetic diversity of the

subpopulation occupying that patch. Thus, a large, centrally located patch is expected to (1)

be valuable for maintaining metapopulation persistence , and (2) support a genetically diverse

subpopulation. I explored thís potential link between genetic diversity and relative patch

value using an individual-based computer simulation model for two taxa with very different

life history properties: owls and rodents. The model was run over a number of scenarios:

three-patch and eight-patch metapopulations, with and without catastrophes, with sex-biased

and unbiased dispersal, and over a range of dispersal rates. For each scenario, the relative

value of two patches to the metapopulation was assessed by measuring the effect of patch

removal on the metapopulation's 1O0-year extinction probability, as determined by

simulation. The question was whether a measure of the relative genetic diversity for the two

patches could reliably identify which of the two was most valuable for metapopulation

persistence. The probability of correctly ranking patches was then estimated by simulation,

based on a number of measures of nuclear and mitochondrial DNA diversity.

In some scenarios, genetic diversity provided very good predictions of relative patch value,

with a greater than 907o chance of correctly ranking the two patches in question. However, in

other scenarios this predictive accuracy was as low as (or sometimes lower than) the null

hypothesis of 507o (equivalent to randomly assigning relative patch value). Importantly, this

variation in predictive accuracy appears to be related to how different two patches are in

value; the greater the difference in value between two patches, the higher the probability that

we will rank them correctly using genetic diversity. This pattern suggests that biologists

could make statements about the probability of correctly ranking patches as a function of the

difference in patch value.



A relatively tight, positive relationship between relative patch value and the predictive

accuracy of genetic rankings was found for owl metapopulations whose genetic diversity

(mean number of alleles per locus) was sampled 40 years after the system was fragmented. It

appears that with earlier samples there was too little time for the subpopulations to diverge in

genetic diversity, while with later samples there was too great a chance that one or more of

the patches would be unoccupied. Unfortunately it was not possible to explore the link

between relative patch value and predictive accuracy of genetic rankings for rodent

metapopulations beyond l0 years after fragmentation, as too many metapopulations

contained unoccupied habitat patches. This limitation is attributable to the higher extinction

probabilities of rodent metapopulations compared to owl metapopulations, which, in turn, is a

reflection of the highly stochastic nature of rodent population dynamics. As such, one avenue

for further study would be to model rodent metapopulations with larger, more extinction-

resistant subpopulations. In summary, this second section of the thesis suggests that genetic

diversity may, in some circumstances, provide a useful way of assessing the relative value of

the various patches in metapopulations.
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CHAPTER 1

General introduction

Fragmented populations abound in nature, over a broad range of spatial scales and wide

variety of organisms. Examples of naturally fragmented populations include birds on oceanic

islands (Reed et a\.,1998), plants on rocky outcrops (Holderegger and Schneller, 1994), and

parasites living in their host "islands" (Ferrara and Cook, 1998). Extensive fragmentation has

also occurred as a result of human activity; one widespread example is the fragmentation of

previously continuous forest habitat into patches of forest surrounded by farmland (Wilcove

et a\.,1986; Skole and Tucker, 1993; Quammen, 1996).

Biologists have known for many years that subdivision has important implications for the

genetics and dynamics of populations (Wright, L93l; Andrewartha and Birch, 1954; Levins,

1970), and over time, ideas concerning the effects of fragmentation have become an integral

part of conservation biology (Hanski and Gilpin, l99l). A key element in managing

fragmented populations lies in understanding the amount of dispersal that occurs between

habitat fragments. Dispersal has been described as the "glue" that binds fragmented

populations together (Hansson, 1991), and those systems loosely connected by such dispersal

glue are commonly referred to as metapopulations (Hanski, 1991).

While much work on metapopulations has dealt with genetics and dynamics separately, there

is a growing body of literature that examines the relationship between these two aspects of

metapopulation biology (Hastings and Harrison, L994; Lacy and Lindenmayer, 1995;

Saccheri et al., 1998). My thesis also considers this relationship. In particular, I am

interested in how patterns of genetic diversity can be used to understand aspects of

metapopulation dynamics. Following the definitions of Moritz (1994), the emphasis of this

study is on "molecular ecology" (the use of genetic variation to guide and assist demographic

studies), rather than "gene conservation" (the identification and management of genetic

diversity per se).



The thesis can essentially be divided into two distinct sections. In the first section I examine

the reliability of using genetic diversity data to estimate dispersal rates in fragmented

populations. Using a laboratory system, I address one of the assumptions involved in using

genetic diversity data to infer immigration rates between patches: namely that immigrants

have the same fitness as population residents.

In the second section of the thesis I explore the value of using genetic diversity data to make

qualitative "rules of thumb" decisions when managing the dynamics of metapopulations. In

particular I consider a question that might be asked by the managers of specific fragmented

populations: What is the relative importance of the different patches in a system, in terms of

their contribution to long term metapopulation persistence? I examine whether ranking

patches based on genetic diversity provides a good estimate of the relative value of those

patches.

With the focus of this thesis on metapopulations, it is important to recognise that the term

metapopulation has come to mean many things to many people. Therefore, before further

discussion I will define its use in this thesis. I then consider the role of metapopulation

theory in conservation management, and discuss how genetic diversity data can potentially be

used to help make specific management decisions about metapopulations. Finally I outline

the structure of this thesis, presenting the questions that will be addressed.

1.1 The manv meanings of "metapopulation"

The metapopulation concept can be traced back to Andrewartha and Birch (1954), who

argued that local extinction and recolonisation were important aspects of many natural

populations. Later, Den Boer (1968) developed the concept of the "spreading of risk",

identifying dispersal as a key process stabilising the dynamics of patchy populations.

However it wasnt until Levins (1970) that the term "metapopulation" first entered the

literature. He defined a metapopulation as a fragmented population that could persist

indefinitely in a balance between local extinction and colonisation of subpopulations,

assuming that:

- All occupied patches contribute equally to a common pool of colonists and are equally

likely to go extinct in a given time step.
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All unoccupied patches are equally likely to be colonised in a given time step.

There are so many patches in the system that the dynamics of patch occupancy can be

described deterministically.

The metapopulation concept gained widespread popularity after its introduction by Levins

(1970), despite a time lag of 20 or so years (Hanksi and Simbefloff, L997). However, this

popularity has been associated with much distortion of the original definition. While it is
unrealistic to expect any natural system to fit Levins' assumptions exactly, many uses of the

term metapopulation do not even vaguely resemble the sort of system Levins was describing.

In its broadest sense, the term "metapopulation" has come to refer to any population that can

conceptually be broken down into spatially smaller units, with or without any reference to

local extinction or colonisation events.

Harrison (1991) presented a well-needed review of the semantics of metapopulations, and

identified four types of fragmented populations to which the term metapopulation has been

applied in the literature. These are:

- Patchy populations, which have high enough dispersal between patches that any

extinction events are rendered trivial, in the sense that empty habitat patches are colonised

extremely quickly.

- Non-equilibrium metapopulations, which are fragmented populations in which local

extinction occurs, and in which so little dispersal occurs that empty patches remain

empty. These systems are non-equilibrium in the sense that they are in transition towards

global extinction.

- Classical metapopulations, which fit Levins' (1970) description (as described earlier).

- Mainland-island metapopulations (and source-sink metapopulations) in which one or a
few extinction-resistant populations are largely responsible for the long-term persistence

of the system, and provide most of the colonists for recolonisation of the smaller (or sink)

habitat patches.

While Harrison's (1991) definitions provide a clear basis for naming the different types of
fragmented populations, they place the onus on biologists knowing what name to apply to the

particular system being studied. The problem is that in many cases, without adequate time to

observe dynamics, it isn't clear whether a system is a patchy population, classical

metapopulation, mainland-island metapopulation or non-equilibrium metapopulation,
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Accordingly, in this thesis I use the terms ntetapopulation andfragmented population to refer

collectively to all of Harrison's categories (including patchy populations which she identifies

as not being metapopulations). This is similar to Spellerberg and Sawyer's (L999) use of the

term metapopulation to refer to "a group of populations that are possibly but not necessarily

interconnected." However, while using such a general definition, it is important to recognise

that I am focussing on systems for which subpopulation turnover (extinction and

recolonisation) is at least suspected. Thus, I am placing subpopulation turnover as a major

management concern, even if it never actually occurs. This contrasts with the more

extinction-resistant fragmented systems for which the overriding concern would be one of

gene conservation rather than demographic persistence, such as those systems for which

biologists define evolutionary significant units (see Moritz, 1994).

1.2 The utility of metapopulation theorv

Many systems of management concern are described as metapopulations in the literature.

Examples include work on marsupial gliders (Possingham et a|.,1994), spotted owls (Lahaye

et al., L994), butterflies (Hanksi and Thomas, 1994) and plants (Ouborg, 1993). Although

metapopulation theory is often seen as a valuable framework for managing such populations

(Simberloff, 1988; Hanski and Gilpin, l99I; Caughley, L994), it is important to recognise

that metapopulation theory offers management support at two very different levels - the

general and the specific.

At a general level, metapopulation theory has been quite valuable, providing many useful

principles and guidelines. For example:

- The Levins (1970) model provided a basis for (1) placing value on empty habitat patches,

and (2) placing value on dispersal between patches.

- Day and Possingham (1995) showed that the most important patches in a system (in terms

of their contribution to metapopulation persistence) are those patches that are most

frequently occupied.

- Hanski's core-satellite hypothesis (Hanskì, 1982) stated that metapopulations are unlikely

to exist in a state of intermediate patch occupancy ln nature.

- Gilpin (1991) showed that metapopulation dynamics can drastically reduce the effective

genetic size of a fragmented population.
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Sacchen et at. (1998) reported that inbreeding depression can influence metapopulation

dynamics.

Lande (1987) found that metapopulation persistence requires a threshold, minimum

amount of suitable habitat in a region.

While these insights have certainly helped change the way biologists think about fragmented

populations, they nonetheless fail to address some of the specific questions that managers of

specific metapopulations may ask. For example, a manager may ask:

- Which patches are the most important for the long-term persistence of a particular

metapopulation?

- How quickly will a particular metapopulation lose genetic diversity?

- How much effect does inbreeding depression have on the persistence of a particular

metapopulation?

- Which set of patches should be connected by habitat corridors in order to maximise a

particular metapopulation's persi stence?

The aim of this thesis is to explore how genetic diversity data can help to answer specific

questions such as these. In particular, I consider how genetic diversity data can be used to

gain the sort of specific insights that help make management decisions that concern the

dynamics of metapopulations.

Unfortunately many of the biological processes that influence metapopulation dynamics are

inherently difficult to observe, and not surprisingly biologists have tried to make the most out

of the limited data available. In the absence of good demographic data, patterns of genetic

diversity potentially offer a valuable indirect insight into many of the biological processes

underlying metapopulation dynamics. Importantly, genetic diversity is influenced by local

population dynamics, and immigration - two key processes in the dynamics of

metapopulations. For instance, population bottlenecks cause reductions in genetic diversity

(Nei er a\.,I975; Packer et al.,I99l; Glenn et a1.,1999), while immigration increases genetic

diversity (Hartl and Clarke, 1989; Hedrick, 1995). Given that genetic diversity is influenced

by the processes underlying metapopulation dynamics, it is tempting to think that genetic

diversity data will in turn reflect those processes in some resolvable way (Milligan et al.,

1994). The aim of this thesis is to consider the utility of genetic diversity data in this regard.
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1.3 Thesis outline

1.3.1 First section

The first section of this thesis considers how genetic diversity data can be used to estimate the

amount of dispersal occurring among the subpopulations of a metapopulation, A popular

approach in this regard is to estimate Wright's (1931) Nm, the number of migrants exchanged

between subpopulations per generation (e.g., Driscoll et aI. (1995); Seppa and Laurila,

(1999)). In this section of the thesis, I explored one of the key assumptions involved when

using genetic diversity data to infer immigration between patches: namely that immigrants

have the same fitness as population residents. The focus of this section is a laboratory

experiment where I used Drosophila melanogaster to measure the genetic contribution of

single male immigrants (either inbred or outbred) to small, inbred populations. The aim of

this experiment was to examine whether inbreeding can influence the impact that an

immigrant has on the genetic diversity of a population. In so doing, this experiment adds

another element to our understanding of the relationship between the rate at which

individuals immigrate into populations, and their impact in terms of gene flow. The

experiment was designed in such a way that it was possible to explore the relative importance

of the different components of immigrant fitness including (i) the rare-male effect, (ii) initial

outbred vigour of immigrants and (iii) hybrid vigour of immigrant progeny. The experiment

also has implications for understanding the "rescue effect" (Brown and Kodric-Brown, 1977)

whereby the arrival of immigrants may rescue populations from extinction.

The first section of the thesis is structured as follows. Chapter 2 is an experiment-based

chapter where I examine the genetic contribution of immigrants arriving into inbred

populations of Drosophila melanogaster. Non-normality of the data in Chapter 2 throw

concerns over the robustness of analyses; therefore in Chapter 3, I explore alternate analyses

using bootstrapping and randomisation tests. The primary issue in Chapter 3 is whether the

paramctric analyscs in Chapter 2 (based on the normal distribution) concur with thcir non-

parametric analogues. I also assess the validity of the parametric analyses of Chapter 2

through considerations based on the central limit theorem.
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1.3.2 Link between the fTrst and second sections

Chapter 4 is a general discussion of the limitations of using genetics to make insights into

dispersal rates and colonisation probabilities - two processes underlying metapopulatìon

dynamics. This is largely a review chapter, and forms something of a link between the first

and second sections of the thesis.

1.3.3 Second section

The aim of the second section of the thesis is to examine the utility of using genetic diversity

data to estimate the relative value of patches in metapopulations, where the value of a patch is

defined as its contribution to metapopulation persistence.

At present, patch value tends to be estimated through the use of population viability analysis,

or PVA (Hanski, 1994b; Day and Possingham, 19951' Lindenmayer and Possingham, 1996).

Among metapopulation PVAs, biological processes are modelled in very different ways

according to the size of the system in question. In large metapopulations (containing more

than 30 patches), a statistical procedure based on patch occupancy data can be used to

parameterise "incidence functions", which describe subpopulation extinction and colonisation

probabilities as functions of patch area and isolation (Hanski, I994a; Hanski, 1994b). These

can then be used to run numerical iterations of metapopulation dynamics, and thereby explore

relative patch value (Hanski, 1994a; Hanski, 1994b).

In contrast, small metapopulations (containing relatively few patches) are better suited to a

style of simulation that incorporates more biological detail than is used in the incidence

function approach (Beissinger and Westphal, 1998). There are two reasons for this. Firstly,

the presence of fewer patches offers too little patch occupancy data to use the incidence

function approach with confidence (Hanski, I994a). Secondly, with fewer patches (and

fewer individuals) computer models can deal with greater complexity, and thereby follow the

fate of individuals in each population within reasonable run times. Accordingly, PVAs for

small metapopulations often include descriptions of many biological processes, including

reproduction, mortality, dispersal, and disturbance events. Thus, PVAs for small

metapopulations attempt a bottom-up approach, describing the mechanisms that underlie

metapopulation dynamics (and sometimes genetics). PVA packages well suited to modelling
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small metapopulations include VORTEX, ALEX and RAMAS/space (Lindenmayer et al.,

lees).

The focus in the second section of the thesis is on small metapopulations, where PVA

predictions depend on good descriptions of many aspects of an organism's biology. There are

certainly many small metapopulations of management concern. Examples include the

Mauritius Fody (a bird) with five subpopulations (Safford, 1997), Shenandoah salamanders

with six subpopulations (Griffis and Jaeger, 1998), the fern Asplenium septentrionale with

three subpopulations (Holderegger and Schneller, 1994), and Nepalese tigers with four

subpopulations (Smith et a\.,1998). While biologists may hope to obtain good descriptions

of some of the processes incorporated into PVAs for small metapopulations, many processes

such as dispersal and mortality are difficult to measure (Beissinger and Westphal, 1998).

In light of these difficulties for estimating relative patch value for small metapopulations, I
have explored a new approach that simply involves ranking patches according to the genetic

diversity of the subpopulations they contain. The logic behind this approach is that the same

features that make a patch valuable for metapopulation persistence also tend to increase the

genetic diversity of the subpopulation occupying that patch. Thus, large, centrally located

patches are expected to (1) be valuable for maintaining the long-term persistence of a

metapopulation, and (2) support genetically diverse subpopulations. I explore this potential

link between genetic diversity and relative patch value using an individual-based computer

simulation model. This model is based on two taxa with very different life history properties:

owls and rodents.

Chapter 5 provides an introduction and detailed description of the model I use to explore the

link between genetic diversity and the relative value of patches. This can essentially be

considered a methodological chapter. In Chapter 6, I present and analyse the results of the

metapopulation model, while Chapter 7 is a general discussion of the model results, with

some final comments for the thesis.
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CHAPTBR 2

The genetic contribution of single male immigrants to small,
inbred populations: a laboratory study using Drosophilø
melønogaster

2.1 Introduction

One of the major challenges in metapopulation biology lies in the integration of two very

different forms of information: genetic and demographic (Hastings and Harrison, 1994). An

important part of this challenge involves using patterns of genetic diversity to try to estimate

the rate at which immigrants move among subpopulations. A popular model in this regard is

Wright's infinite-island model (1931) which states that the number of immigrants, Nm,

entering each subpopulation per generation can be predicted from the degree of genetic

subdivision among subpopulations, F51, using the equation Fsr = ll(4Nm + I).

The use of Wright's model recently received criticism from Whitlock and McCauley (1999)

on the grounds that many real systems do not meet its assumptions. They argued that

Wright's (1931) model is unlikely to produce reliable estimates of the true rate at which

immigrant individuals arrive into populations, as compared to the effective genetic rate of

immigration. Furthermore, Whitlock and McCauley (1999) point out that although

alternative models exist for estimating Nm (using different measures of genetic

differentiation), those models make the same fundamental assumptions as Wright's (1931),

and are therefore open to the same criticisms. Essentially this means that biologists may havc

been putting false hopes in using Wright's model (and others like it) to link the genetic and

ecological impacts of immigration.

Importantly, Wright's model assumes that immigrants have the same fitness as population

residents. For real systems however, there are several reasons why this assumption may be
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violated. For example immigrants may differ from population residents in both age and

social status (Gaines and McClenaghan, 1980). Genetic factors may also be important, and in

this chapter I describe an experiment where I examined the effect of inbreeding on immigrant

fitness. In particular, I examined the genetic contribution of single male immigrants (both

inbred and outbred) arriving into inbred populations. Essentially this study addressed two

assumptions implicit in Wright's model: 1) that immigrants have the same fitness as residents

of the populations they arrive into, and 2) fhú an immigrant's fitness is independent of

whether it originated from a large outbred source population or a small inbred source

population. As such, the purpose of this chapter is to contribute to the questioning of the way

in which biologists use measures of genetic subdivision to estimate the rate at which

individuals immigrate into subpopulations.

I initially identified three reasons why immigrants arriving into inbred populations might

have higher fitness than residents. These were:

(1) Higher fitness over resident males due to araÍe male effect.

(2) Higher fitness over resident males experiencing inbreeding depression. I refer to this as

"initial outbred vi gour".

(3) Higher fitness due to hybrid vigour of immigrant progeny over inbred competitors.

The rare male hypothesis states that genetically rare males have greater mating success over

their non-rare competitors due to rareness per se. While the underlying mechanisms are

poorly understood, it has been suggested for Drosophila that females assess the rarity of the

different males in a population using a range of cues, and subsequently choose rare males to

mate with them (Petit and Ehrman, 1969). This rare male effect has been reported in a

number of Drosophila species (Petit and Ehrman, 1969), as well as a number of other insect

species (Sinnock, 1970; Grant et a\.,1974). Rareness was expected to arise in the present

study due to the random drift of allele frequencies whenever populations were inbred.

Inbreeding depression is the decrease in fitness due to the mating of closely related

individuals. The prevailing belief is that this drop in fitness is caused by increased

homozygosity associated with inbreeding, which in turn causes more frequent expression of

rare recessive (or partially recessive) deleterious alleles (Charlesworth and Charlesworth,

1987; Lande, 1988), In this study inbreeding had the potential to favour the immigrant

genome at two points in time. Firstly it could give outbred immigrants an initial outbred
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vigour advantage over inbred residents. Secondly, it could give immigrant progeny a hybrid

vigour advantage over inbred competitors. Hybrid vigour arises when the crossing of two

inbred lines (or an outbred line with an inbred line) produces individuals that are

heterozygous at loci that were previously homozygous for deleterious alleles (Falconer,

1e8 1).

I studied the impact of these mechanisms by measuring the genetic contribution of single

male immigrants arriving into inbred populations of Drosophila melanogaster in the

laboratory. This species was chosen because of its fast generation time, the ease with which

sexes can be distinguished, evidence that the species is highly polymorphic af allozyme loci

(Singh and Rhomberg, 1987), and ease of rearing. Furthermore, indirect evidence suggested

that single D. melanogasrer immigrants are capable of making a substantial genetic

contribution to small, inbred populations. Spielman and Frankham (1992) found that single

D. melanogaster immigrants caused a marked decrease in the inbreeding depression of inbred

laboratory populations. My experiment differs from that of Spielman and Frankham (1992)

by directly considering the implications of immigration on allele frequencies per se, rather

than any effects on inbreeding depression.

The experimental design involved two treatments: one where the immigrant was inbred and

one where the immigrant was outbred. Inbred immigrants received the same inbreeding

regime as the populations they arrived into. Such immigrants may experience a fitness

advantage over population residents because (a) they are genetically rare to their recipient

population, and (b) their progeny experience a hybrid vigour advantage over the progeny of

residents. Importantly however, there can be no initial outbred vigour in this case, as the

immigrant males would, on average, have the same level of inbreeding depression as the

resident males.

Outbred immigrants were much less inbred than their recipient populations. As with inbred

immigrants, outbred immigrants may also be genetically rare to their recipient population,

and their offspring may also experience hybrid vigour. However in addition, outbred

immigrants may themselves experience an initial outbred vigour advantage as a result of

inbreeding depression amongst their recipient population. By comparing the two treatments I
was therefore able to assess the importance of any initial outbred vigour.
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Importantly, both arare male effect and hybrid vigour potentially give the immigrant genome

a fitness advantage in the generations following immigration (compared with initial outbred

vigour, which is restricted to the generation in which the immigrant arrives). Given this

potential, I decided to measure the fate of the immigrant allele in both the first and the second

generations after immigration.

The genetic contribution of single immigrants into populations has received some attention in

the past. Kaufmann and Wool (1992) used flour beetles to measure the frequency of a

phenotypically-dominant marker in the first generation after immigration. While immigrant

beetles had significantly higher fitness than residents, it is possible that this immigrant

advantage was due entirely to selection associated with the marker used. The use of a

dominant marker restricts such an experiment to being performed in one direction, with

homozygous dominant immigrants arriving into homozygous recessive populations.

Importantly, I controlled for any effect of selection at the marker locus. By using a co-

dominant allozyme polymorphism (Adh with two alleles F and S) I was able to perform the

experiment reciprocally, producing one set of results with an FF immigrant arriving into an

SS population, and another sel vice versa. This reciprocal design is particularly important

given that there is evidence of selection at the Adh loctss in D. melanogaster (Oakshott, 19791'

Gilbert and Richmond, 1982). Secondly I controlled for the experience of immigrants by

rearing all experimental individuals (immigrant and resident) under equivalent conditions.

The structure of this study can be summarised as follows:

(1) The fate of an immigrant allele was measured in the two generations following

immigration.

(2) There were two main treatments: inbred immigrant and outbred immigrant.

(3) The entire experiment was performed reciprocally to account for any selection associated

with the allelic marker used.

2.2 Methods

This study involved collecting a wild-type population from the field, developing two marked

base populations (each fixed for a different allele at the same locus), and then using these

marked populations as the source of individuals for the experiment. Figure 2.1 provides an

overview of the methods that are detailed below.
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Figure 2.1 Experimental design. This shows the processes leading
from the initial collection of wild-type flies to the introduction of
either an outbred SS or inbred SS immigrant into an inbred FF
population.

140 virgin flies
(Fr, ss, Fs & sÐ

S,S-marked base
population: 2000 flies

2 generations of
sib-sib inbreeding
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2.2.1 Establishment and maintenance of wild-type laboratory population

A prerequisite for this experiment was to have a population which, when inbred, would have

the potential to experience both a rare male effect and inbreeding depression. This meant

obtaining a base population that contained as much genetic diversity as possible. I therefore

made a field collection of D. melanogaster and maintained as large a population as was

practical. The population was collected in September 1996 from the Penfolds winery in

Nuriootpa (approximately 60 km northeast of Adelaide, South Australia). Ninety wild-

inseminated females were placed in separate vials, and each female was confirmed as being

D. melanogaster by examining the genetalia of her male progeny (using the description in

McNamee and Dytham (1993)). Twenty progeny from each of 90 wild-inseminated females

were combined to create a total population of 1800 individuals. This was maintained at

approximately 2000 individuals in subsequent generatlons.

Efforts were made to limit the rate at which genetic diversity was lost in the laboratory

population. Briscoe et al. (1992) demonstrated that even relatively large populations of D.

melanogaster can rapidly lose genetic diversity in the laboratory. While Briscoe et al. (1992)

were unable to identify the mechanism responsible for this effect, it is clear from theoretical

considerations (Falconer, 1981) that variation in fitness between individuals can greatly

increase the loss of genetic diversity in populations. Given the polygamous mating structure

of D. melanogaster (Gromko et al., 1984), the potential exists for large variation in mating

success. Ideally I would have ensured that every individual had the same number of

offspring, however this was clearly not practical in a large population. Therefore an approach

of population subdivision was used (based on pers. comm., R. Frankham). Every generation

the population was subdivided into 32 jars (64 flies per jar) and allowed to oviposit for three

days on fresh agar. The adults were removed, and two weeks later the progeny were moved

onto fresh agar (to avoid another generation of flies emerging in the same jars). One to two

weeks later, 64 flies were removed from each jar, and all 2048 flies were combined in a

single jar, where they were allowed to mix (for no more than one hour). The population was

once again subdivided into 32 jars of 64 flies, thereby completing a full generation of

subdivision, panmixis and subdivision. While this is far from ensuring equal fitness of

individuals, it does mean that at an individual's fitness is restricted to U32th (37o) of the total

population in any given generation.
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The culture was maintained at 25oC as discrete generations with approximately 30 days per

generation. The flies were reared on a boiled mixture of water (910 ml), cornmeal (130 g),

agar (12 g), treacle (150 ml) and fresh baker's yeast (240 g), with approximately 30 mls of

Tegosept mould inhibitor per litre of medium (Tegosept is a IOTo w/w solution of

methylparaben in 957o ethanol). The flies were handled under anesthesis using CO2 and

moved using the flared tip of a small paint brush.

2.2.2 Development of marked outbred base populations

Approximately l6 generations after the field collection, the wild-type laboratory population

was used to set up two marked base populations - each one fixed for a different Adh allele (F

and S). These base populations then became the source of all individuals (both inbred and

outbred) in the experiments. Electrophoresis was carried out on cellulose acetate gels using

methods described by Richardson ¿/ al. (1986). While I found a number of polymorphic loci

in the wild-type population , Adh was chosen because it had two common alleles and was the

least expensive stain for large-scale screening. Although there is evidence of selection at this

locus (Oakeshott, 1979; Gilbert and Richmond, 1982), I considered it better to use Adh than a

poorly studied locus - in this way I would at least have some insights into any marker effect.

I founded the two marked base populations with as many individuals as possible in order to

maximise their genetic diversity, and therefore maximise their potential to produce outbred

and inbred individuals that would differ in fitness. The important issue here is that any

outbred experimental fly could only be as outbred as the base population from which it was

drawn. Therefore, a total of 140 wild-type virgin flies were non-destructively genotyped by

removing a middle leg (using jeweler's forceps) from individuals immobilised in a cold room

(10"C), and squashing the leg directly onto the gel loading position. Individuals homozygous

for the same allele were then arranged into mating pairs, which were placed in separate vials

and allowed to reproduce. This provided a total of six SS pairs and six FF pairs. Each

marked population was increased to 180 individuals in the tbllowing generation (30

individuals from each of the founding pairs), and maintained at approximately 2000

individuals in subsequent generations using the same method of subdivision-panmixis-

subdivision described above for the wild-type population. The inbreeding imposed by this

founding bottleneck is considered negligible relative to the two generations of full sib-sib

mating imposed during experiments. If we set the inbreeding coefficient, F, to zero for the
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wild-type base population, then F = 0.04 for outbred immigrants, and F = 0.46 for both inbred

residents and immigrants (based on Falconer (1981)). The purity of the two marked base

populations was tested and confirmed both before and after individuals were removed for the

experiments by sampling20 individuals from each population.

2.2.3 Theexperiment

The units of replication in this study were single populations. Each replicate involved

creating an inbred population founded by a mated female from one of the marked base

populations. This is similar to founding each population with a mating pair of virgins given

that D. melanogaster has a strong last male advantage, with 857o of a female's progeny being

sired by her last mate (Gromko et al., 1984). Each population was then inbred for two

generations by removing a single female every generation and placing her in a vial of fresh

medium. Given the last male advantage this approximates full sib-sib mating in each

generation.

In the third generation (20 days after oviposition from the previous generation), 10 females

and nine males were removed from the population, and placed on fresh medium together with

a single male immigrant that was marked with the alternate allele to the resident flies.

Importantly, immigrants were given similar experience to resident flies, whereby each

immigrant was drawn from a vial in which a mated female had been allowed to oviposit 20

days beforehand. The mother of each outbred immigrant was drawn directly from the

appropriate marked base population. In contrast, inbred immigrants had experienced the

same inbreeding regime as the populations they arrived into. After the immigrant was

introduced, each population was kept on fresh medium for l0 days to allow remating, and

then placed in a jar with fresh medium for three days to allow females to oviposit.

'When the immigrant arrived, the immigrant marker allele made up 1 in 20 (i.e.0.05) of the

total alleles in each replicate population. The null hypothesis was that the mean allele

frequency would not change from this initial frequency over time. Allele frequency was

measured by sampling up to 20 individuals in the two generations following immigration.

Each generation was discrete, and was separated by 30 to 33 days. On day 20 of the first

generation, 10 males and 10 females were removed from each population and placed on fresh

medium (the remaining flies were discarded). Ten days later these 20 flies were placed on
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fresh medium and allowed to oviposit for three days. These same flies were then frozen and

genotyped. This meant that the flies that parented the second generation were the same

individuals genotyped in the first generation. Although less than 20 individuals were

available for some replicates, very few (only 2.5Vo of all replicates) provided fewer than l5

individuals.

A total of 40 replicate populations were established with FF-marked immigrants arriving into

S,S populations. In 20 of these the immigrant was outbred and in the other 20 the immigrant

was inbred. Because allele frequency was measured over two generations, this experimental

design provided four data sets. While these will be referred to as four separate "treatments",

the data sets from the two generations are essentially repeated measures rather than separate

experimental treatments. A reciprocal experiment (with equal replication) was performed in

which ^SS immigrants were introduced into FF populations. The entire experiment of eight

treatments was carried out simultaneously. All replicates were independent in the sense that

each replicate was derived from a separate female drawn from one of the marked base

populations. The populations of all treatments were thoroughly shuffled to minimise bias due

to microclimatic variation in laboratory conditions.

Two sets of questions were addressed in the data analyses:

(1) Was there a change in the mean allele frequency from the null level of 0.05 (one

immigrant fly in a population of 20) for each of the treatments?

(2) Were there differences in the mean allele frequencies between certain pairs of treatments

(see results for details)?

All data were analyzed using c = 0.05 as the significance level, and all analyses were

performed as two-tailed tests to include the possibility that immigrants could somehow be at

a selective disadvantage in inbred populations. Although a number of tests were performed,

no adjustment was made of the test-wise cx value in order to maintain the experiment-wise cr

value of 0.05, since each test was planned a priori as a separate hypothesis, each with a

different biological meaning.

Importantly, the data were not pooled over markers. The concern was that in the presence of

a strong marker effect, pooling would produce a mean immigrant allele frequency greater
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than the null frequency of 0.05, and thereby give a false impression of an immigrant fitness

advantage. To illustrate the basis for this concem, consider a hypothetical extreme marker

effect where SS-marked males have complete mating dominance over FF males (i.e. when

the two strains are together, only SS males sire the next generation's progeny). Assume here

that there are no treatment effects. In this case, all first generation progeny from the SS

immigrant replicates would have FS genotypes (the FF resident females mate only with the

SS immigrant male), giving an immigrant allele frequency of 0.50. In contrast, all progeny

from the FF immigrant replicates will be SS (the resident SS females mate only with the SS

resident males), giving an immigrant allele frequency of 0.00. If we pooled these data we

would obtain the misleading result that the immigrant allele frequency was 0.25, and

incorrectly infer that this was greater than the null allele frequency of 0.05 due to an

immigrant fitness advantage. In contrast, by not pooling the data, we are able to detect that

the changes in allele frequency were due (at least in part) to a marker effect.

2.3 Results

2.3.1 Statistical tests

A total of 3066 flies were genotyped in the eight treatments (for raw data see Table 2.1). The

frequency distributions of the immigrant allele frequency in the first and second generations

after immigration were not normally distributed (Figure 2.2), a feature confirmed using the

Shapiro and Wilk (1965) test. This test showed that the data in six of the eight treatments

diverged significantly from normality (Table 2.2). The use of several data transformations

was unsuccessful in reducing this non-normality; not surprising given the large numbers of

zeros in each distribution (Figure 2.2). This threw initial concerns on using parametric

analyses that assume data are normally distributed.

2.3.2 The binomial test as an alternative to parametric analyses

As an alternative to parametric analyses, I initially considered performing a set of binomial

tests and binomial-based confidence intervals. To appreciate the logic behind this approach,

consider the case of testing whether observed allele frequencies differ significantly from the

null allele frequency of 0.05. Two forms of binomial tests could be used to address this issue.
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One approach is to pool results asross all individuals and all replicates in each treatment.

Thus, for the first generation progeny of FF-marked inbred immigrants (the first column of

data in Table 2.1), there were 46 individuals from a total of 360 that carried the immigrant

allele. The expectation according to the null hypothesis of no change in allele frequency is

that 18 individuals (i.e. 0.05 x 360) should carry the immigrant allele. It is then simply a

matter of using the binomial distribution to determine the probability that a result as extreme

or more extreme than the observed 46 individuals could have occurred by chance. The other

approach is to perform a binomial test on each replicate population, giving 20 P-values for

each treatment. A combined probability test would then have to be performed across

replicates to give an overall P-value for each treatment (Sokal and Rohlf, 1981).

Table 2.1 Raw data showing the number of immigrant alleles per replicate population (in
bold), together with the number of individuals sampled (not in bold). The frequency of the
immigrant allele is calculated as the number of immigrant alleles I (2 x the number of
individuals). The first and second generation results are paired for each replicate. In first
generation replicates, individuals possessing the immigrant allele must be heterozygous,
while second generation results include immigrant-heterozygous and immigrant-homozygous
individuals (data not shown).

FF Inbred
l.t Zod

FF Outbred
l.t Znd

SS Inbred
l.t Z"d

SS Outbred
lrt 2"d

replicate
1

2

3

4

5

6

7

8

9

10
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17
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Figure 2.2 Distributions of immigrant allele frequency. Shown for each
treatment are the numbers of replicates (from n = 20) belonging to
different allele frequency categories. Each category has a width of 0.10,
and each label on the x axis refers to the midpoint of a category. The grey
portion of the 0.05 category is the number of values that were zeros. The
sample mean and sample variance are given for each treatment.
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Table 2.2 Results of the Shapiro and Wilk (1965) test
for normality. Smaller values of the test statistic W
represent greater deviations from normality.
wcriticat(0.05) = 0.905, and significance (a = 0.05) is
indicated by an asterisk.

Marker Treatment w P-value

FF
FF
FF
FF
SS
ss
SS
SS

I't gen. inbred
1" gen. outbred
2nd gen.inbred
2"d gen. outbred
l't gen. inbred
l't gen. outbred
2nd gen. inbred
2od gen. outbred

0.624
0.873
0.670
0.872
0.751
0.913
0.756
0.918

< 0.01*
< 0.02*
< 0.01x
< 0.02*
< 0.01*
< 0.10
< 0.01*
< 0.10
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The problem with both these approaches is that they assume that each individual represents

an independent event with a 0.05 chance of carrying the immigrant allele. I believe this

assumption is incorrect. Importantly, the design of the experiment would have encouraged

non-independence among the progeny of each replicate population. Because there are only

20 flies per generation (ten males and ten females), there is likely to be some degree of

clumping in the fate of the immigrant genome. D. melanogaster females remate

approximately every two to five days on average (Fukui and Gromko, 1989; Pitnick, 1991),

and as stated earlier, most of a female's progeny are sired by her most recent mate (Gromko el

aI., 1984). Given that the females in this experiment were only given three days in which to

oviposit, this means that there may have been somewhere close to ten independent

opportunities (i.e. ten females) for the immigrant male to sire offspring. With variation in

female fitness there would be even fewer opportunities. For example if for some reason only

five females dominated a population's reproduction, there would essentially be only five

independent opportunities for the immigrant male to pass on his genes. Similarly, variation

in male fitness (other than that due to treatment or marker effects, or chance alone) may also

have contributed to non-independence among progeny genotypes.

The number of independent events involved in a binomial test can have a large effect on

whether or not we reject the null hypothesis. Consider a replicate population where four of
the 20 first generation progeny carry the immigrant allele. If we assume these progeny

originated from 20 independent events each with a 0.05 probability of resulting in an

immigrant individual, a binomial test would tell us there was a 0.016 probability of observing

a result as extreme or more extreme than four immigrant progeny. If the data actually came

from only ten independent events (e.g., ten females each producing two offspring from a

given mating event), the probability of obtaining a result as extreme or more extreme than the

observed result is somewhat higher, at 0.086. With only five independent events the

probability is 0.226. Therefore, by assuming that all individuals originate from independent

events we are likely to underestimate the likelihood of extreme events according to the null

model.

Given that there is reason to believe the progeny in this experiment did not arise from

independent events, and that it is not clear how many independent events were actually

involved, I believe it is inappropriate to use binomìal tests for the data in this chapter.
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2.3.3 JustifÏcation for using parametric analyses

Despite the non-normality of the raw data, I nonetheless decided to use parametric analyses.

The saving grace of parametric analysis when data are not normally distributed is the central

limit theorem, which states that even if a distribution is highly skewed, the probability

distribution of sample means will approximate a normal distribution as the number of

replicates in the sample increases (Hays, 1988). The validity of relying on the central limit
theorem for the analyses in the present chapter is assessed in detail in Chapter 3.

2.3.4 Comparison of treatment means to the null allele frequency

The mean allele frequency was compared to the null allele frequency of 0.05 for each of the

eight treatments. The test in each case was whether a 95Vo confidence interval around the

sample mean would include the null allele frequency of 0.05. While the sample mean was

greater than the null allele frequency for all treatments, it was significantly greater only when

the immigrant was outbred (Figure 2.3). This was true for both the first and second

generations after immigration, and for both marker combinations.

2.3.5 Comparison of allele frequency between treatment means

Treatment means were compared in a pair-wise manner using /-tests. The four types of
comparisons were:

(l) first generation (outbred vs. inbred immigrant)

(2) second generation (outbred vs. inbred immigrant)

(3) inbred immigrant (second generation vs. first generation)

(4) outbred immigrant (second generation vs. first generation)
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Figure 2.3 Sample mean + 95Vo confidence interval for all treatments. l't and 2nd refer to
generations after immigration. Note the position of confidence intervals relative to the null
allele frequency.

Non-normality and heterogeneity of variances (Figure 2.2) initially threw concerns on using

/-tests (with data transformation doing little to reduce the heterogeneity of variances).

Nonetheless, I considered /-tests to be a robust approach for the data at hand. In regards to

normality the central limit theorem once again applies (Sokal and Rohlf, 1981 - pg. 4I4),

while the heterogeneity of variances is compensated by the equality of sample sizes - an

important component of r-test robustness (Zar, L984 - pg. 130).

Of the four t-tests performed on F'F immigrant data, only first generation offspring (outbred

vs. inbred immigrant) showed a significant difference between treatment means (Table 2.3).

Of the four tests applied to the SS immigrant data, two showed a significant difference

between treatment means (Table 2.3). These were first generation offspring (outbred vs.

inbred immigrant), and second generation offspring (outbred vs inbred immigrant). Thus,

unlike the SS immigrant data, the .Fl- immigrant data did not show a significant diff'erence for

second generation offspring (outbred vs. inbred immigrant). Notably however, this

comparison was only marginally non-significant for FF immigrants, with P = 0.064 (Table

2.3).
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Table 2.3 Results of r-tests. "Marker" refers to the
immigrant genotype. For each comparison d.f. = 38
Significance (cr - 0.05) is indicated by an asterisk.

Marker Comparison /-stat. P-value

FF
FF
FF
FF
ss
ss
ss
SS

I't gen. (outbred vs. inbred)
2nd gen. (outbred vs. inbred)
inbred (2nd vs. 1't gen.)
outbred (2nd vs. 1't gen.)
1" gen. (outbred vs. inbred)
2"d gen. (outbred vs. inbred)
inbred (2nd vs. l" gen.)
outbred (2nd vs. l" gen.)

2.502
1.901
0.922
0.879
2.372
3.202
0.499
r.789

0.017*
0.064
0.363
0.385
0.023*
0.003*
0.656
0.082

2.3.6 Results summary

The reciprocal marker experiments produced very similar results (Figure 2.3). In summary:

(1) When the immigrant was outbred, the mean frequency of the immigrant allele was

significantly higher than the null allele frequency of 0.05 in the first and second

generations after immi gration.

(2) When the immigrant was inbred, the mean frequency of the immigrant allele was not

significantly different from the null allele frequency in either the first or second

generations after immigration.

(3) The mean allele frequency of both inbred and outbred immigrants did not change

significantly from the first generation to the second generation, for both markers.

(4) In the first generation after immigration, the mean allele frequency of outbred immigrants

was significantly higher than that of inbred immigrants.

(5) In the second generation after immigration, the mean allele frequency of outbred

immigrants was still significantly higher than that of inbred immigrants when the

immigrant carried the SS marker. This difference was marginally non-significant for FF

immigrants.
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2.4 Discussion

This experiment showed that inbreeding can have a considerable impact on the contribution

of single male immigrants to the genetic diversity of inbred populations.

At the same time, the rare male effect and hybrid vigour of immigrant progeny seemed to

have had little impact on immigrant fitness in this system. This is evident in the observation

that the genetic contribution of inbred immigrants did not differ significantly from the initial

null allele frequency of 0.05. However, although non-significant, the fact that the sample

means for this treatment were above the null frequency for both markers suggests a trend

worthy of further study.

The apparent lack of a rare male effect in this study lends suppoft to suggestions that this

effect either (a) does not exist or (b) is not of universal importance. In terms of the former, a

number of authors have argued that the rare male effect may be an artifact of experimental

design (Bryant et a|.,1980; Knoppien, 1987). In relation to the latter, it has been argued that

the rare male effect is not as strong for D. melanogaster as for another well studied species in

this regard - Drosophila pseudoobscura (Markow et al., 1980). Alternately, it could be true

that a weak rare male effect was operating in this study, but could not be detected due to

inadequate statistical power.

The observation that inbred immigrants had no significant fitness advantage suggests the rare

male effect and hybrid vigour also made an insignificant contribution to the fitness of outbred

immigrants. This inference relies on the assumption that both the rare male effect and hybrid

vigour operate with equal strength irrespective of whether the immigrant is inbred or outbred.

If this assumption is valid, the results imply that the fitness advantage of outbred immigrants

over residents is attributable to initial outbred vigour, as this was the only mechanism

identified as giving outbred immigrants an advantage over inbred immigrants. There are

several ways in which this initial outbred vigour could occur. Outbred immigrants may have

been (a) more active in courting mates, (b) more attractive to females by appearing fitter than

resident males (e.g., by being larger or more active), or (c) more successful in fertilising

females (e.g., by producing semen that is more competitive than that of resident males).

Exploring these three mechanisms warrants further study.
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This experiment did not detect a significant change in the frequency of the immigrant allele

from the first generation to the second generation after immigration. This was true for both

markers and both inbred and outbred immigrants. This result is somewhat surprising given

that first generation populations should include male immigrant progeny that, due to hybrid

vigour, have the same advantage over their inbred competitors that gave the original male

immigrants their initial outbred vigour advantage. One potential explanation is that the

difference in fitness between immigrant progeny and inbred individuals was not as strong for

females as it was for males. This would clearly reduce the average impact of hybrid vigour.

Recombination of genes may also have reduced the impact of hybrid vigour, a mechanism

that potentially applies to both sexes. The effect of recombination is that when immigrant

progeny reproduced, the marker allele would have become disassociated from part of the

immigrant genome that previously gave it a selective advantage.

Another issue to consider is that an increase in allele frequency between the first and second

generations may have been obscured by increased variance. Indeed, in every situation

(inbred and outbred immigrants, and both marker situations) the sample variance increased

from the first to the second generation (Figure 2.2). This is understandable when we consider

the design of this experiment - from all treatments initially having the same immigrant allele

frequency of 0.05, the variance in allele frequencies would tend to accumulate over the

generations as population allele frequencies diverge. Although non-significant, there were

consistent increases in the sample means from the first to second generations for all treatment

combinations it is perhaps unwise to say that any increase can be ruled out. Therefore I
would recommend further testing of the ability of immigrant genes to increase in frequency

over the generations following immigration.

Although this study controlled for both 1) a marker effect, and 2) the experience of male

immigrants relative to population residents, there remains the potential for inherited

environmental effects to have influenced the results. Inherited environmental effects are

those components of an individual's phenotype that are derived from either parent, apart from

nuclear genes (Rossiter, 1996). In this regard it is important to acknowledge that the parents

of outbred immigrants were reared in jars containing many hundreds of individuals, whereas

the parents of all inbred immigrants were reared in small vials containing approximately 20 to

40 individuals. While I believe the density of flies was comparable in each case, I cannot
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dismiss the possibility that inherited environmental effects influenced the results to some

degree.

This experiment has demonstrated a situation where Wright's (1931) assumptions of l)
immigrants having the same fitness as residents, and 2) immigrants from different source

populations having the same mean fitness as each other, are not met. Essentially this adds

another element to our understanding of the complex relationship between the rate at which

individuals immigrate into populations, and their impact in terms of gene flow. As such, this

experiment lends support to notion that biologists should be careful when using measures of

population subdivision such as Fs-, to infer Nm - the number of migrants entering each

population per generation (Whitlock and McCauley, L999).

This experiment also has implications for understanding the "rescue effect". It is thought that

the occasional arrival of immigrants may rescue populations from extinction (Brown and

Kodric-Brown, 1977), and that this may play a crucial role in the dynamics of
metapopulations (Hanski and Gyllenberg,1993). If the loss of genetic diversity increases the

probability that populations become extinct (Lande and Barrowclough, l98l Caughley,

1994; Frankham, I995a; Saccheri et aI., 1998), the rescue effect may have an important

genetic component (as compared to a purely demographic component). Given the potential

for such genetic rescue, this study suggests that for conservation purposes, greater value

should be placed on large mainland populations that act as a source of outbred immigrants to

small, inbred populations.

Finally, in this chapter I have raised concerns about the adequacy of the statistical tests

performed. These tests were based on the assumption of normality, but used data that were

not normally distributed. As such, there is reason to doubt some of the conclusions made. At
the same time, the central limit theorem provides some indication that the effect of such

departures from normality may be trivial. Therefore, in the next chapter I assess the

robustness of the analyses presented here in Chapter 2.
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CHAPTER 3

Additional analyses of immigrant fTtness experiment data

3.1 Introduction

The purpose of this chapter is to assess the robustness of the analyses performed in Chapter 2.

Those analyses, based on an assumption of normality, involved data that were clearly not

normally distributed. As such, the inferences in that chapter depend on the central limit

theorem, which states that although a distribution (with mean p and variance o2) may be

highly skewed, the probability distribution of sample means will approximate a normal

distribution (with mean ¡tandvariance o2lN) as the sample size (N) increases (Hays, 1983).

The key question here is: were the sample sizes in Chapter 2large enough to achieve sample

mean distributions that were acceptably close approximations to normality? Unfortunately

there is no golden rule for deciding what sample size is adequate, with the degree of

approximation to normality depending on the shape of the underlying probability distribution

of the data (Pagano, 1994, p. 286). Nonetheless, it is suggested in the literature that a sample

size of 30 is large enough in most cases to effectively normalise a distribution of sample

means (Madsen and Moeschberger, 1980; Hays, 1988; Pagano, 1994). Given that the

samples in Chapter 2 each comprised of 20 replicates, this throws some doubt on whether the

conclusions in that chapter depend critically on the shape of the underlying distributions.

This chapter has two components. In the first component I use bootstrap analysis to assess

the degree to which the sample means of Chapter 2 are normally distributed. Secondly, I use

data-driven techniques (bootstrap analysis and randomisation tests) as alternatives to the

parametric analyses in Chapter 2. While these represent very different ways to analysing

data, this chapter demonstrates that the two approaches may in fact compliment each other,

thereby providing a valuable cross-check of the robustness of analyses such as those

performed in Chapter 2. Throughout this chapter I will use the term "parametric" to refer to
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analyses that rest on specific assumptions about the form of the population distribution - in

this case the normal distribution (Gibbons, I976).

3.2 How close are the sample means of Chapter 2 to beine normally distributed?

While the central limit theorem tells us that the distribution of sample means approximates

normality if our sample size is large enough, the data in Chapter 2 provide only one sample

mean per treatment, and thus no direct insight into how sample means are distributed. A

highly impractical way to gain this insight would be to perform hundreds of replicate

experiments, obtain hundreds of sample means, and use these to construct sample mean

distributions. Bootstrap analysis provides a powerful alternative in this regard by enabling us

to ask: How would sample means be distributed if drawn from a population of data points

having a probability distribution similar in shape to the frequency distribution of the observed

data set?

The philosophy behind bootstrap analysis is to treat a sample frequency distribution as the

best estimate (in the absence of other information) of the underlying probability distribution

of some population of data points (Manly, 1997). Accordingly, the observed frequency

distribution is treated as an infinite pool of data points from which alarge number of replicate

bootstrap samples are drawn. Each bootstrap sample is drawn by randomly sampling the

observed data set with replacement a certain number of times (generally the number of data

points in the original sample) to obtain a value for some parameter of interest such as the

sample mean. Thousands of replicate bootstrap samples are drawn to create a frequency

distribution of that parameter (a relatively straightforward task given modern computing

power) and this frequency distribution is then used either to test hypotheses or create

confidence intervals. In this way, we can mimic the act of performing replicate experiments.

Appropriately, the term "bootstrap" is said to represent someone pulling themselves out of the

[statistical] mud by their bootstraps (Manly,1997).

By creating an artificial infinite population of data points, the bootstrap approach offers

biologists the versatility of being able explore the properties of a wide range of parameters

and data structures (Young, 1994a). Essentially the approach allows us to "play" with a data

set as if we had the true probability distribution (bearing in mind that we dont, and probably
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never will, have access to the true probability distnbution). One application of bootstrapping

is as an alternative to traditional parametric analyses, such as the calculation of confidence

intervals (undertaken in a later section of this chapter). While there is generally no need to

perform bootstrapping when the assumptions of parametric analogues are valid (Efron and

Tibshirani, 1993, p. 171), it can provide a useful alternative in situations when those

assumptions are broken. Bootstrap analysis is also valuable in situations where parametric

analogues do not exist, as is the case for example, when trying to analyse phylogenetic

relationships (Hillis and Bull, L993). Manly (1991) provides a summary of some of the

diverse ways in which bootstrapping has been used. For a thorough description of the theory

of bootstrap analysis see Efron and Tibshirani (1993), Young (I994a) and Manly (1991).

While bootstrapping is generally used to generate confidence intervals and test hypotheses

(Manly, 1997),I believe the approach is also well suited for assessing how well the central

limit theorem applies to samples whose normality is in question. In this context,

bootstrapping may represent a useful support, rather than an alternative, to parametric

analyses. A clear precedent for this approach is provided by Pitt and Kreutzweiser (1998)

who used a frequency distribution of 5000 bootstrap sample means to illustrate the central

limit theorem for a sample of 30 data points drawn from an exponential distribution. They

demonstrated the approximate normality of this bootstrap distribution by comparing the

mean, variance and proportion of data points within one standard deviation of the mean, to

those values expected under the assumption of normality. This connection between the

central limit theorem and bootstrapping is also made by Efron and Tibshirani (1993, p. 171).

I have essentially adopted the same approach as Pitt and Kreutzweiser (1998), but used

10,000 bootstrap samples instead of their 5000, and have taken a more direct approach to

measuring the normality of bootstrap distributions.

Using a program written in Turbo Pascal 7.0 (see Appendix 2 - A:\APP2\CHAPTER3.PAS

on the accompanying disk) I calculated 10,000 bootstrap sample means for each of the eight

treatments in Chapter 2. This and other programs written for this thesis used the predefined

pseudo-random number generator available in Turbo Pascal 7.0 (see Appendix I for
confirmation that this produces an effectively random sequence of numbers uniformly

distributed between 0 and 1). The frequency distributions of bootstrap sample means closely

approximate normality in each case (Figure 3.1). To measure how close the approximation

was, I calculated the maximum absolute difference between the bootstrap cumulative
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Figure 3.1a Distribution of bootstrapped sample means for each of the four treatments
where the immigrant was FF-marked. Each distribution is from 10,000 bootstrap samples.
Also shown is the normal curve having the same mean and variance as that calculated among
the 10,000 bootstrap samples. D is the maximum absolute difference between the cumulative
frequency distribution of bootstrap samples and the cumulative probability distribution for
the associated normal curve.
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33



frequency distribution and the associated normal cumulative frequency distribution. In all

cases there was little difference between the two distributions (see "D" values in Figure 3.1) -
the greatest absolute difference being 2.8 7o.

In one sense, using bootstrapping to explore the distribution of sample means has simply led

to another question - how close an approximation to normality is tolerable? Clearly the value

of this approach lies in providing an explicit, quantitative measure of how closely a

distribution of sample means approximates normality. The decision then lies with the reader

as to how close an approximation is acceptable. While the literature offers no guidelines, I
would suggest that the differences observed here are negligible.

Another way to assess the robustness of the analyses in Chapter 2 is to perform alternate, yet

analogous tests. In the remainder of this chapter I explore such alternatives. As with Chapter

2, two sets of analyses were carried out: (1) estimation of 957o confidence intervals around

the mean allele frequency for each treatment to test for a significant difference from the null

allele frequency of 0.05, and (2) pairwise comparisons between treatment means.

I estimated confidence intervals using bootstrap analysis, and compared means using

randomisation tests. Both these methods use some form of resampling of the observed data

as the basis for drawing inferences (Manly, 1997). Importantly they are non-parametric in

the sense that they do not assume the data come from a particular probability distribution, and

for this reason they are particularly useful when we have reason to doubt the assumptions of

parametric analyses (Potvin and Roff, 1993).
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3.3.1 Calculation of confidence intervals using bootstrap analysis

Bootstrap confidence intervals were estimated using a modification of Efron's (1919)

percentile method. This method involves simply delineating 957o confidence limits as the 2.5

and 97.5 percentiles of a frequency distribution of bootstrapped values. This is shown in

Figure 3.2 for a set of 10,000 bootstrap sample means calculated from the data of FF inbred

immigrants, first generation offspring (using the same set of values presented in the topmost

graph in Figure 3.1a).

Importantly though, Efron's (1979) approach does not take into account the bias introduced

by bootstrapping. Bias occurs when an estimator is, on average, higher than or lower than the

true value of that parameter. This is the reason why statisticians use "n - 1" instead of "n" as

the denominator when estimating sample variance (Zar, 1984). Bias may arise in

bootstrapping when a parameter value (as estimated from the original sample) is not the

median of a distribution of bootstrap estimates of that parameter (Manly, 1997). To illustrate

the importance of this discrepancy, consider the example of trying to estimate the mean. The

starting point here is to state that the mean from our original sample is our best estimate of

the true population mean. Accordingly, with traditional parametric statistics, the sample

mean is automatically included in any confidence interval we make. This is because the

symmetry of the normal distribution dictates that the mean and median of a parameter

coincide. Thus, when we calculate 95Vo confidence limits for a normal distribution we

include the 47.5 percentiles lying either side of the mean. The problem with Efron's (L919)

percentile method is that when bias exists, the mean of the original sample is displaced from

the centre of the percentile confidence interval. This means that instead of a957o confidence

interval including the 47.5 percentiles lying symmetrically either side of the original sample

mean, we may unwittingly state the confidence interval as includingthe 42 percentile below

and the 53 percentile above the sample mean. In this way, using Efron's (1979) original

percentile method may bias our estimate of the confidence limits towards one particular sicle

of our best estimate of the true population mean. Accordingly, Efron (1981) introduced a

method for calculating bias-corrected percentile confidence limits, and this is the approach I
have used.
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Figure 3.2 A demonstration of Efron's (1979) percentile confidence limits as applied to the
data of FF inbred immigrant, first generation offspring. In this case a sample of 10,000
bootstrap sample means were drawn, and the confidence interval delineated by the values that
exclude the 250 largest and 250 smallest sample means (shaded). Because the histogram is
composed of discrete categories, there are slightly fewer than 250 values included in the
shaded portion of each tail of the histogram.

To perform this analysis I used the same sets of 10,000 bootstrap samples calculated earlier

(Figure 3.1). This level of replication is likely to be more than adequate, given Manly's

(1997) recommendations of having a minimum of 1000 bootstrap samples to resolve

significance at the 57olevel.

Bootstrap analysis produced strikingly similar 95Vo confidence intervals to the parametric

analyses (Table 3.1 and Figure 3.3). Importantly, the bootstrap confidence intervals lead to

the same inferences that were drawn in Chapter 2.
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Table 3.1 957o confidence limits of immigrant allele frequencies calculated using Efron's
(1981) bias-corrected percentile method ("bootstrap" in the table headings), and traditional
parametric analysis. The greatest absolute difference between the two approaches was 0.010.

Marker Immigrant Generation Limit Bootstrap Parametric Difference

Fast inbred

Fast inbred

Fast outbred

Fast outbred

Slow inbred

Slow inbred

Slow outbred

Slow outbred

I

2

2

2

upper
lower

upper
lower

upper
lower

upper
lower

upper
lower

upper
lower

upper
lower

upper
lower

0.103
0.016

0.109
0.009

0.17 1

0.025

0.222
0.o92

-0.006
+0.007

-0.008
+0.008

-0.005
+0.005

-0.008
+0.010

-0.002
+0.009

-0.007
+0.008

-0.004
+0.008

0.163
0.033

0.2r7
o.o9'7

0.287
0.r23

0.153
0.040

0.t79
0.049

0.254
0.1 38

0.364
0.208

0.295
0.1 13
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Figure 3.3 The relationship between bootstrap and parametric estimates of 95% confidence
limits. These data are the upper and lower limits presented in Table 3.1. The hatched line is
NOT a line of best fit, but the line along which bootstrap and parametric estimates would be
equal (y-intercept = 0, slope = 1). The value r is the correlation coefficient.
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3.3.2 Comparison of treatment means using randomisation tests

Treatment means were compared using randomisation tests, an approach pioneered by Fisher

(1935). As well as facilitating the comparison of means, randomisation tests are useful for

addressing a wide range of statistical problems (Potvin and Roff, 1993; Manly, I99l). As

with parametric tests, the general question behind randomisation tests is: "Can an observed

pattern be explained by chance?" To compare means between two samples, we start with the

null hypothesis that the two samples'were drawn randomly from a single population - the

same assertion we would make for the null hypothesis of a /-test. However, where parametric

analyses rely on the concept of theoretical populations of data points, randomisation tests

treat the observed data as if it were the entire population of data points.

The starting point of a randomisation test is to combine the data from two treatments into a
common pool. The question then is - if the data from the two treatments came from a

common pool (i.e. a single population of data), how likely is it that we would have obtained

the observed difference in treatment means, or a more extreme difference? If the probability

of obtaining the observed difference by chance is too low (less than 0.05) then we would

reject the null hypothesis that the data were randomly drawn from a single population, and

state that there is a significant difference between means. This probability is estimated by

obtaining a set of randomised differences between means. Each randomised difference is

calculated by allocating the data points without replacement from the combined data pool

into two "treatments", each having the same sample size as the observed samples. After
obtaining a number of randomised differences, the test is then simply whether the observed

difference lies in the 57o most extreme of these values. For two-tailed tests, we are interested

in whether the observed difference lies amon g the 2.57o largest or 2.57o smallest randomised

differences. Alternately we can present the P-value for such a test as the proportion of
randomised difference between means that are as extreme as, or more extreme than the

observed difference between means (Figure 3.4).

Two approaches to randomisation can be used - complete enumeration and random sampling

(Manly, 1997). With complete enumeration, the difference between means is calculated for
every possible permutation of the combined data pool. While this is well suited to analysing

the data from small sample sizes, complete enumeration becomes cumbersome for larger data

sets - for example comparing two treatments using the data in Chapter 2 would involve
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complete enumeration of more than I37 billion permutations! Fortunately random sampling,

when performed with adequate replication, provides a good approximation to complete

enumeration (Manly, 1997), and for this reason it was used for the data at hand. A small

point worth noting is that the observed difference between means was included as one of the

randomised values. This technicality is simply in keeping with the null hypothesis that the

observed difference is one of a random sample of differences between means (Manly, 1997).

One of the major attractions of randomisation tests over their parametric analogues is that

they do not assume the data fall into any particular theoretical distribution (Pitt and

Kreutzweiser, 1998). Accordingly, such tests are frequently referred to as "distribution-free",

a term that is appropriate if we simply test for the equality of distributions - that is, if we

simultaneously test for differences in skewness, variance, and the location of the mean.

Importantly though, not all randomisation tests are entirely free of assumptions. This is

certainly the case if we test the equality of single "location parameters" such as the mean.

Indeed, using a randomisation test to compare means is only appropriate when variances are

equal among treatments (Boik, 1987). Thus, the randomisation tests employed in this section

have the same assumption of homogeneity of variances that is important in r-tests and

ANOVAs. Although a bootstrapping alternative exists for comparing sample means when

variances differ (Efron and Tibshirani, 1993), I have chosen to use randomisation tests here.

While the comparisons performed in this chapter involve samples whose variances do indeed

differ (see Figure 2.2 - previous chapter), the effect of such heteroscedasticity (variance of

variances) is likely to be trivial. Fortunately several features of the data are favourable in this

regard (see Boik, 1987): (i) the heteroscedasticity is moderate; (ii) the sample sizes are equal;

and (iii) the sample sizes (n = 2O) are moderately high.

For each of the eight pairwise comparisons of Chapter 2, random sampling was performed

using a program written in Turbo Pascal 7.0 (see Appendix 2 - A:\APP2\CHAPTER3.PAS on

the accompanying disk) to obtain 10,000 values of the test statistic - the difference between

means. As with bootstrapping, this level of replication exceeds Manly's (1997)

recommendations of a minimum of 1000 randomisations to resolve significance at the 57o

level (and 5000 at the I7o level). The results from randomisation tests and the previously-

employed /-tests were strikingly similar, and the same inferences would be drawn using c =
0.05 (Table 3.2 and Figure 3.5).
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Table 3.2 P-values from comparisons of treatment means using randomisation tests and

parametric analysis (r-tests). The greatest absolute difference in P-values between the two

approaches is 0.07. In every comparison the two approaches lead to the same inference when

using cx, = 0.05.

Marker Comparison Randomisation Parametric

Fast

Fast

Fast

Fast

Slow

Slow

Slow

Slow

0.017

0.063

0.370

0.383

0.023
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Figure 3.5 Relationship between P-values calculated using randomisation tests and
parametric /-tests. The hatched line is NOT a line of best fit, but the line along which
randomisation and parametric P-values would be equal (y-intercept = 0, slope = 1). The
value r is the correlation coefficient.
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3.4 Conclusions

In summary:

- Although the frequency distributions of the data in Chapter 2 were highly skewed,

bootstrap sampling suggests the distributions of sample means associated with these data

closely approximate normality. As such, the parametric analyses of Chapter 2 are likely

to be robust to the non-norrnality of the raw data.

- Bootstrap confidence intervals and randomisation tests produced very similar P-values to

their parametric analogues.

To some extent the two points above are related. It turns out that both bootstrap confidence

intervals and randomisation tests produce very similar results to their parametric analogues

when the assumptions of parametric analysis are met (Efron and Tibshirani, L993, p. 17l;

Manly, 1997). Thus, there is some degree of overkill by (1) showing that parametric analyses

are likely to be valid by virtue of the central limit theorem, and (2) providing alternatives to

those parametric analyses. It is therefore worth considering which of these approaches

should be employed whenever there are concerns about data not meeting the assumptions of

normality for parametric tests.

The value of using bootstrap sampling to initially explore the normality of sample means

clearly lies in being able to support the use of parametric analysis. The potential advantage

of this is that parametric analyses are widely accepted and understood. The disadvantage

however, is that it is not clear how closely a distribution of sample means must approximate

normality in order for inferences to be robust. Until guidelines exist to help make this

judgement, using bootstrap analysis to demonstrate the central limit theorem is limited to

guesses about how close an approximation to normality is acceptable.

In order to remain strictly quantitative, any serious doubts about data not meeting the

assumptions of normality should lead to non-parametric analogues, such as the bootstrapping

and randomisation techniques employed in this chapter. It is important to point out however,

that the data-driven analyses used in this chapter are not the only alternatives to traditional

parametric analysis. For example, the Mann-Whitney test provides a non-parametric

alternative to the t-test (Potvin and Roff, 1993). However this and many other forms of non-

parametric analyses are based on ranks rather than actual data (Potvin and Roff, 1993).
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Another form of non-parametric analysis is the sign test (Zar, 1984), which requires that the

difference between two, paired data points is recorded as +, 0, or -. While ranks-based and

sign-based methods are simple to perform and offer a useful alternative for hypothesis

testing, they do have the disadvantage of "destroying" data by converting numbers to ranks or

signs. This reduces the amount of information in the data, and leads to less powerful tests.

Because of the way they simplify data, many non-parametric tests have less statistical power

than their bootstrapping and randomisation analogues (Pitt and Kreutzweiser, 1998), and are

unable to facilitate parameter estimation.

At the same time, it is important to recognise that bootstrapping and randomisation

techniques are not without their drawbacks. As discussed earlier, the bootstrap method does

have the complication of bias (Efron, 1981), and some randomisation tests must satisfy the

assumption that variances are equal (Boik, 1987). Clearly each form of analysis has its own

advantages and disadvantages, and deciding which approach to use requires carefully

weighing the advantages and disadvantages in relation to the questions being asked, the

computer tools available and the features of the data being analysed.

While this chapter has provided a useful opportunity to explore a number of issues

concerning the analysis of non-normally distributed data, the most important point here is that

all conclusions made in Chapter 2 still hold. That is, the mean allele frequencies of outbred

immigrant males (and not inbred immigrant males) were found to increase significantly

within the first generation upon arriving into inbred populations. This, in turn, reaffirms the

more general statement that inbreeding can effect the contribution made by immigrants to the

genetic diversity of populations.

This concludes the experiment-based section of my thesis. So far I have considered the

effects of immigration on population genetics, and have thereby focussed on one of many

aspects of metapopulation biology. At this point the direction of my thesis changes

considerably, with the emphasis shifting towards entire metapopulations, taking into account

a large number of biological processes. It is important to appreciate that there is no direct

connection between these two halves of the thesis - that is, I do not include the results of the

earlier chapters into the later, modelling chapters. Nonetheless the next chapter does provide

something of a link between the two sections of the thesis, in the sense that I discuss the
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relationship between different metapopulation processes. In particular, I consider the

limitations of using gene flow data to estimate colonisation probabilities'
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CHAPTER 4

The limitations of using genetics to make insights into colonisation
probabilities in metapopulations: a discussion

4.1 Introduction

Just as it is useful to study population dynamics in terms of birth and death rates, it is also

useful to study metapopulation dynamics in terms of colonisation and extinction probabilities.

By knowing the colonisation probabilities of the empty habitat patches in a metapopulation,

we can potentially make valuable insights into how well the system will recover from local

extinctions. Unfortunately colonisation probabilities are not easy to measure. In most

systems of management concern there is little time available to wait and observe colonisation

directly. Even if we are lucky enough to observe one or more colonisations, it is unlikely that

a handful of stochastic events will allow us to make reliable estimates of colonisation

probabilities, let alone predict how those probabilities vary as patch occupancy in the

metapopulation changes. One option is to measure the process that drives colonisation -

dispersal. However, detecting dispersal is itself quite a challenge, often requiring

considerable effort in radio-tracking or mark-release-recapture techniques to try to detect

what may be very rare events. The amount of time and money required to make reliable

estimates of dispersal rates from such data is probably prohibitive in most cases. An indirect

alternative to estimating dispersal in metapopulations is to use genetic diversity data.

A number of studies have used insights into gene flow to make statements concerning the

likelihood of colonisation within metapopulations. For example, in a study of the frog

Geocrinia alba,Dt'rscoll et aI. (1995) used Wright's Nm (1931) to state that "with less than

one individual per generation ... recolonization of vacant habitat patches is unlikely to

occur", Other studies that made similar statements include Sarre (1995), Hitchings and

Beebee (L997) and Hoole et al. (1999). Despite such assessments, no one to my knowledge

has ever tried to use genetic diversity data to make quantitative estimates of colonisation
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probabilities. However, such a quantitative approach is necessary if statements about

colonisation are to make a valuable contribution to understanding the dynamics of particular

metapopulations.

In this chapter I explore the reliability of using genetic diversity data to estimate both

dispersal rates and colonisation probabilities. I first define gene flow, dispersal and

colonisation, and describe the relationship between these three processes. I then consider the

limitations of using genetic diversity data to estimate dispersal rate, focussing firstly on

Wright's (1931) infinite island model, and then on the relatively new "assignment method". I

then discuss the limitations of using estimates of dispersal rate to predict colonisation

probabilities, and argue that ultimately there are unavoidable limitations in using genetic

diversity data to predict colonisation probabilities. Nonetheless, it is important to recognise

that genetic diversity data can provide valuable insights into the dynamics of

metapopulations, and I describe some examples of this. Finally, as a prelude to Chapter 5, I

suggest a qualitative "rule of thumb" approach for using genetics to make management

decisions about the dynamics of metapopulations.

4.2 Gene flow. dispersal and colonisation

Initially it is important to distinguish between gene flow as the movement of genes, dispersal

as the movement of individuals between habitat patches, and colonisation as the initiation of

a new population in a previously empty habitat patch. In many organisms (e.g. vertebrates),

gene flow can only occur when individuals disperse. In other organisms however, gene flow

may occur through the movement of gametes. For example, much gene flow in plant

populations involves pollen transfer (Chase et a\.,1996; Nason et a\.,1998) while gene flow

in many marine organisms may occur via the movement of gametes through the water

column (Yund, 1995). Hence, in some organisms, evidence of gene flow does not necessarily

indicate that individuals have dispersed.

Here it is important to define what is meant by the term "individual". Clearly this is open to

interpretation, since there is essentially no reason why a pollen grain should be considered

any less of an individual than a mature tree. Both are essential parts of a life cycle. In this

thesis however, I am defining an individual as any part of an organism's life cycle that can
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directly give rise to a life history stage that could be sampled by a metapopulation biologist.

Accordingly, I would consider a plant seed be an individual, as it can directly give rise to a

seedling or mature plant, either of which could be sampled by a metapopulation biologist. In

contrast a pollen grain is not considered here to be an individual, since it cannot give rise to a

metapopulation sampling unit (seedling or mature plant) without first fertilising an ovule.

Furthermore, a pollen grain is unlikely to ever be a metapopulation sampling unit itself, since

biologists tend not to describe the metapopulation dynamics of pollen! Following this

definition, I use the term "dispersal" to refer exclusively to the movement of individuals

between habitat patches.

While gene flow can occur without the dispersal of individuals, the reverse is also true. That

is, individuals can disperse without having an impact on gene flow, simply because they fail

to reproduce into their new patch.

Dispersal into empty habitat patches can, but doesnt necessarily result in colonisation. For

example, a female brown bear may disperse into an unoccupied habitat patch but fail to
reproduce, through lack of males. Here it is important to define the term "colonisation". So

far I have defined colonisation as the initiation of a new population in a previously empty

habitat patch, but it is important to recognise that the term "initiation" is itself open to

interpretation. Clearly it would be inappropriate to say that a population has been initiated if
a patch contains only a single male. Therefore, I am defining a patch to be colonised only if
it contains a potentially reproducing set of individuals, a definition that clearly depends on

the breeding system of the organism in question. For selfing plants and parthenogenic

animals, this would simply require the presence of a single individual, while for other plants

and animals colonisation would require the presence of at least one individual of each strain

or sex, or a mated female. Admittedly other definitions of population initiation are possible.

For example, we could say that a population has only been initiated when at least one full life
cycle has been completed in the patch, or when the population has passed through its initially

high extinction probability (Ebenhard, 1991).

To summarise the relationship between these different processes, we can say that gene flow

can occur without individuals dispersing (in some organisms), individuals can disperse

without having an impact on gene flow, and individuals can disperse into empty habitat

patches without necessarily resulting in colonisation (Figure 4.1).
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colonisation Dispersal of
individuals

(ie not gametes)

Gene flow
(individuals

and/or gametes)

Figure 4.L Venn diagram representing the relationships between gene flow, dispersal and
colonisation. Not all gene flow is due to the dispersal of individuals, not all dispersal events
result in gene flow, and not all dispersal results in the colonisation of previously empty
habitat patches. For some organisms (e.g. vertebrates), gene flow only occurs when
individuals disperse. Therefore, the lefrhand side of this figure (gene flow without dispersal)
does not apply to all organisms.

4.3 Usins senetic diversitv data to estimate dispersal rates

4.3.1 Wright's Nm

A number of studies have used estimates of gene flow to infer the rate at which individuals

disperse between the patches in metapopulations (Driscoll et al.,1995; Hitchings and Beebee,

1997; Vrijenhoek, L997; Seppa and Laurila, 1999). The motivation for using this approach

may be partly related to the popularity of Wright's "Nm" (L931), which provides a convenient

way of conceptualising gene flow as equivalent to the number of individuals moving from

one subpopulation to another per generation. Wright's model states that Nm can be estimated

from the degree of genetic subdivision, Fsr, using the equation Nm = (Fsr-l - l) I 4.

Importantly though, a particular value of Nm does not necessarily mean that individuals are

actually immigrating at that same rate.
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The distinction between gene flow and dispersal underlies two very different ways in which

the results of Wright's model can be interpreted. One major use of Wright's model is for gene

conservation - the study and conservation of genetic diversity for its own sake (following the

definition used by Moritz (1994)). Among the many examples of such studies are Van

Dongen et al. (1998), Broadhursl et al. (1999) and Durka (1999). In this context the process

of interest is gene flow, and the dispersal rate responsible for a particular level of gene flow is

essentially irrelevant. The other potential use of V/right's model is for molecular ecology - to

provide insights inro the demographics of populations (following Moritz (1994)). I make this

distinction so it is clear that the criticisms I have are not of using genetic diversity data to

describe gene flow and genetic structure per se, but of using genetic diversity data to estimate

dispersal rates and the likelihood of colonisation.

The results in Chapter 2 (as supported by Chapter 3) represent one reason why it is

potentially misleading to use measures of genetic subdivision to estimate dispersal rates in

metapopulations. Those chapters demonstrated that inbreeding can influence the impact that

an immigrant has on population genetic diversity. This means that if a metapopulation

contains inbred subpopulations, Wright's island model (1931) may lead to poor estimates of

the true rate at which immigrants arrive into those subpopulations (in this case leading to an

overestimate of dispersal rate).

The effect of inbreeding is only one of a number of potential problems of using Wright's

(1931) model to estimate dispersal. Other problems with the model's assumptions are

discussed in detail by Mills and Allendorf (1996), and by Whitlock & McCauley (1999), who

state that their criticisms apply not only to Wright's model but also to similar models which

use measures of genetic subdivision to estimate dispersal rate. Below is a summary of the

frequently violated assumptions involved in using Wright's model to relate genetic

subdivision to dispersal rate (taken from Mills and Allendorf (1996)):

(l) Island model of migratiorz: There is no spatial pattern to migration - a migrant is equally

likely to have originated from any subpopulation. This implies that the system is made up

of a large number of similar-sized subpopulations.

(2) Selective neutrality and no mutation'. There are no selective differences among genotypes,

and no new mutations entering the population. That is, gene-frequency dynamics are

determined entirely by the interaction between genetic drift and gene flow.
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(3) Ideal populations: The subpopulations have the characteristics of an ideal genetic

population, so that the census number of individuals equals the effective population size.

For general purposes, the ideal population consists of a constant number of N diploid

individuals (N/2 females and N/2 males) in which all parents have an equal probability of

contributing offspring to the next generation.

(4) Demographic equality: Immigrants have the same demographic attributes (in terms of

survival and reproduction probabilities) as resident individuals.

(5) Equilibrium: Subpopulations persist long enough to reach steady-state or equilibrium

gene frequencies.

In the "real world" metapopulations that biologists try to understand and manage, many of

these assumption are likely to be violated. Perhaps the only assumption we can easily accept

is that of selective neutrality and no mutation. Neutrality is not a major issue given the

availability of selectively neutral markers such as microsatellites (Queller et al., 1993). And

although mutation occurs, in many cases it is probably negligible relative to the effects of

gene flow and drift (Hartl and Clarke, 1989).

In contrast, the other assumptions of Wright's (1931) model should be of considerable

concern when applied to real metapopulations. The assumption of an island model of
migration is clearly incompatible with the present views of metapopulations. Although the

early work on metapopulations described them as large collections of similar-sized habitat

patches (Levins, 1970), it is now believed that such systems are quite rare in nature (Harrison,

1991). Instead, there is now a greater appreciation that the subpopulations of many systems

vary considerably in their relative importance as sources of immigrants to other patches

(Harrison, 1991).

Cases where the assumption of ideal populations is upheld are probably best thought of as the

exceptions rather than the rule, with most natural populations showing a large discrepancy

between the effective size of a population (N.) and its census size (N.) (Frankham, 1995b).

Furthermore, the ratio of N" to N" varies considerably among species (Frankham, 1995b).

There are several reasons why the assumption of demographic equality of immigrants and

residents may be violated in real systems. As described earlier in relation to Chapters 2 and

3, immigrants may differ from residents in fitness due to inbreeding depression. Non-genetic
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effects may also be important. For example, immigrants may have reduced fitness if the act

of dispersal is itself costly. Importantly, these processes operate in different directions, the

former increasing the genetic contribution of immigrants over population residents, and the

latter decreasing their impact. As such, it may be unclear whether a particular value of Nrz is

an overestimate or underestimate of the true rate at which immigrants arrive into a

population.

Finally, the assumption of equilibrium requires that the system in question has reached a

stable state with respect to gene frequencies. While this may apply to naturally occurring

metapopulations that have been existence for a long time, this may be an invalid assumption

for the many metapopulations that have arisen in recent history due to human-induced habitat

fragmentation.

In summary, many aspects of the biology of metapopulations throw doubt on the assumptions

of Wright's (1931) model. Following Whitlock and McCauley (1999), I have focussed on

Wright's model because of its popularity. Nonetheless, it is important to recognise that many

of the criticisms above also apply to other methods that, like Wright's model, also estimate

gene flow from measures of genetic differentiation (Whitlock and McCauley, 1999).

4.3.2 The assignment method

An alternative to using gene flow to estimate dispersal involves the relatively new

"assignment method", which uses genetic diversity data (typically microsatellites) to

determine which subpopulation is the most likely birthplace of the different individuals in a

metapopulation (Waser and Strobeck, 1998). Essentially this is the same type of analysis that

a forensic scientist would use to estimate the probability that a particular animal trophy

originated from a protected population rather than a non-protected population (Waser and

Strobeck, 1998). This method allows biologists to estimate both the number and sex of

immigrants entering each subpopulation, as well as identifying the source subpopulation of

each immigrant. In this way, the assignment method may provide useful insights into the

biology and spatial patterns of dispersal within metapopulations. Although studies based on

ecological methods such as radio-tracking and mark-recapture may attempt to collect similar

data, those methods may influence the dispersal behaviour of their subjects. In contrast
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genetics-based approaches such as the assignment test have the advantage of being

potentially non-invasive, by using samples of hair, feather or faeces (Tablerlet et al.,1999).

While the level of detail provided by the assignment method is on the one hand quite

appealing, such detail is also a challenge to interpret. One problem is that there may be high

levels of error involved when using individual records of dispersal to estimate dispersal rates

- the same problem that would be encountered with dispersal data from ecological studies.

For instance: How would we interpret evidence of only one individual moving between two

subpopulations? While estimation error could be reduced through repeated measures, this

may be impractical for the many metapopulations where management decisions are required

over a short time frame.

While the reliability of using genetic diversity data to estimate dispersal rates is clearly one

issue of concern, it is also important to question how useful it is to know dispersal rate for the

pulposes of estimating colonisation probability. To address this issue, it is useful to consider

a hypothetical metapopulation where our estimates of dispersal rate are entirely reliable.

Given that dispersal is the process driving colonisation, it follows that there should be a

positive relationship between dispersal rate and colonisation probability. This does not

however, mean that if we know the dispersal rate into a habitat patch that we can make a

reliable estimate of its colonisation probability if it were empty. To do so would obviously

require that we have a good understanding of the relationship between these processes.

Factors likely to affect this relationship are:

- The demographic composition of dispersers: What proportion of dispersers are males,

unmated females and mated females? If dispersal into a patch is strongly male-biased, we

would expect colonisation probability to be relatively low compared to a situation with

the same overall dispersal rate where the majority of dispersers are mated females.

- The temporal distribution of dispersal events: How is the arrival of individual dispersers

distributed over time? For example, if birds disperse between habitat islands in flocks

(Diamond, 1975), this may have a large effect on colonisation probabilities. A patch

receiving a single group of five individuals once in fifty years may have a higher
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colonisation probability than a patch receiving the same overall rate of dispersers (five in

fifty years), but spread out as one individual every ten years.

It is easy to imagine that the above factors vary considerably among species. Accordingly, if
estimates of dispersal rates are to be used to estimate colonisation probabilities, the challenge

then lies with biologists in being able to describe both the demographic composition of

dispersers and temporal distribution of dispersal events for each system being studied.

Estimates of gene flow can, to some extent, be used to describe the demographic composition

of dispersers. Because organellar DNA is maternally inherited, and nuclear DNA is

biparentally inherited (Birky et a1.,1989), a comparison of organellar and nuclear gene flow

can be used to estimate the sex-ratio of gene flow (Birky et aI., 1989; FitzsSimmons et al.,

1997). However, this approach only tells us about the sex-ratio of gene flow, and not the sex-

ratio of dispersal; these may differ if male and female immigrants vary in their demographic

relationship to population residents, as in point (4) of section 4.3.1. Estimates of gene flow

do not tell us the proportion of dispersing females that are mated before they arrive at a patch;

nor do they provide insights into the temporal distribution of dispersal events, since they only

describe an average rate of gene flow over time (Whitlock and McCauley, 1999). In

summary, gene flow data is of limited value for describing the link between dispersal rates

and colonisation probabilities.

In contrast, the assignment method does potentially provide the basis for a comprehensive

description of the processes linking dispersal rates to colonisation probabilities. By allowing

biologists to identify particular individuals as dispersers, the assignment method provides the

opportunity to determine the relative proportion of dispersers that are males, unmated females

and mated females. For example, Mossman and Waser (1999) used the assignment method

to detect sex-biased dispersal in the white-footed mouse. Importantly though, the accuracy of

this approach will be limited to systems with relatively high rates of dispersal. By facilitating

a real-time description of dispersal, the assignment method could also be used to estimate the

temporal distribution of dispersal events. Once again however, the same feature that makes

the assignment method appealing (i.e. its detailed output data) also presents a difficulty in

terms of estimation effor. Although this could be overcome through replication over time,

the amount of time and money required may be prohibitive in many cases.
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4.5 Conclusion

The relationships between genetic diversity, dispersal rate and colonisation probability are

influenced by many biological processes, the nature of which may vary considerably among

species. Unless biologists are able to describe those processes accurately for each system in

question, genetic diversity data is unlikely to provide a reliable basis for estimating

colonisation probabilities.

Nonetheless, the analysis of genetic diversity data does have an important role to play in

metapopulation biology. For biologists interested in preserving genetic diversity per se,

describing genetic diversity patterns is essential, and analyses such as those based on Wright's

island model provide a valuable way of summarising genetic structure.

There are also ways in which genetic diversity data can assist biologists studying

metapopulation dynamics, albeit not for making statements about colonisation probabilities.

Firstly, genetic diversity can be used to help identify the spatial scale at which populations

interact. Isolation by distance models allow biologists to describe how genetic "distance"

varies as a function of geographic distance between subpopulations (Slatkin,1993; Allegrucci

et al., 1997; Becher and Griffiths, 1998), thereby essentially providing an insight into the

spatial scale at which gene flow occurs. This, in turn, may provide a good approximation of

the spatial scale at which dispersal occurs. Although gene flow may be an unreliable

indication of dispersal rate, it may provide valuable insights into the spatial scale of dispersal.

Genetic diversity patterns may also be useful in indicating directionality of gene flow, and

hence dispersal (Gornall et al., 1998); thereby giving biologists valuable insights into the

potential for source-sink metapopulation structure (Pulliam, 1988; Harrison, 1991).

In this chapter I have focussed on the utility of genetics for making the quantitarive insight of

trying to estimate colonisation probabilities. An alternate approach is to use genetics to make

qualitative insights into metapopulation dynamics. For example, the assignment method can

tell us if there is any evidence of dispersal, and hence any potential for colonisation.

Similarly, for organisms where gene flow only occurs through the dispersal of individuals

(e.g. verfebrates), estimates of gene flow may be taken as evidence that at least some

dispersal has occurred, even if the rate of dispersal is open to debate. In this regard, perhaps
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we should treat evidence of high rates of gene flow as strong evidence that dispersal has

occurred, rather than as an indication of a high dispersal rate.

Genetic diversity data may also be valuable in providing evidence of population tumover

(extinction and colonisation). Importantly, population tumover is known to influence genetic

structure (Wade and McCauley, 1988; Whitlock and McCauley, 1990; Milligan et al',1994),

and it has been suggested that patterns of genetic diversity may therefore reflect population

turnover in some resolvable way (Milligan et al., L994). Unfortunately it is difficult to

disentangle the confounding effects of migration and population turnover, and as such,

methods for detecting turnover from genetic diversity data are currently not available

(Milligan et aI., 1994).

Finally, genetic diversity data may be used to make qualitative "rules of thumb" insights into

the dynamics of metapopulations. In the next two chapters I explore the utility of such an

approach. In particular I examine whether the genetic diversity of each subpopulation can

provide a good indication of the relative value of habitat patches to metapopulation

persistence.
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CHAPTBR 5

Using genetics to rank the value of patches: introduction and
model description

5.1 Introduction

Metapopulations were initially described as collections of equivalent habitat patches

contributing equally to overall metapopulation persistence (Levins, 1970). Over recent years

however, there has been a growing appreciation that many metapopulations possess large

variation in the relative value of individual patches (Gilpin, 1987; Hanski, 1994a; Day and

Possingham, 1995). An extreme form of this variation occurs in mainland-island

metapopulations where persistence may depend almost entirely on the presence of one large

patch (Harrison, lggI). Appreciating that variation in patch value exists is one thing; actually

describing that variation in a way that can be used to manage metapopulations is another

challenge altogether. In this chapter I introduce a method for estimating the relative

importance of the different patches in a metapopulation using genetic diversity information'

Initially it is important to define patch value. I am considering patch value based purely on

demographic concerns (i.e. maintaining metapopulation persistence), rather than genetic

concerns (i.e. preserving the genetic diversity of a metapopulation). The definition I use is

that the demographic value of a patch is a measure of its contribution to a metapopulation's

likelihood of persistence (Hanksi, 1994a; Hanski, I994b; Day and Possingham, 1995;

Lindenmayer and Possingham, 1996). Thus, the patch whose removal would cause the

greatest increase in metapopulation extinction probability is ranked as the most important

patch.

There are several reasons why understanding variation in patch value is potentially useful for

managers of metapopulations. In metapopulations where the impact of threatening processes

can be reduced by human intervention, a ranking of patches could help managers focus their
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limited resources on the patches of greatest value. This might involve reducing the impacts

of predation, weeds, pathogens, or disturbances such as fire, In the extreme case of patches

being destroyed (e.g., due to vegetation clearance), it would clearly be important to avoid

losing one of the more valuable patches.

The value of a patch to metapopulation persistence is likely to depend on a combination of

four patch attributes - the tendency to (1) remain occupied, (2) become recolonised in the

event of extinction, (3) help keep other extant subpopulations occupied (by facilitating a

"rescue effect"), and (4) contribute to the recolonisation of other habitat patches if they

become unoccupied. In turn, these attributes are likely to be influenced by patch size and

location (i.e. size and location are the ultimate causes of patch value, while the four attributes

are proximate causes). A large patch should have a relatively high chance of remaining

occupied (attribute 1) by supporting a large subpopulation that is resistant to the extinction

risks imposed by demographic and environmental stochasticity. A large patch may be more

likely to intercept dispersing individuals by virtue of its longer perimeter (thereby imparting

attributes 1 and 2), and a large patch is also likely to act as a large source of immigrants

capable of facilitating any rescue effect and recolonisation in other patches (attributes 3 and

4). In terms of location, a centrally located patch is likely to be relatively well connected to

other patches by dispersal, thereby facilitating any rescue effect and recolonisation of both

the patch in question and the surrounding patches (attributes 1,2,3, and4).

Admittedly the patch areallocation framework for understanding metapopulations makes a

number of simplifying assumptions. Using area to predict the tendency of a subpopulation to

resist extinction and act a source of dispersers assumes that all patches have the same quality

per unit area, and experience the same disturbance regimes. Using location to represent

connectivity assumes that landscape features such as dispersal corridors and dispersal barriers

are of little importance to the interaction between patches. Despite these assumptions, the

patch areallocation approach serves as a useful framework for visualising the processes

responsible for variation in patch value, and has been widely used as a best-guess approach

for modelling metapopulations (Hanksi and Thomas, 1994; Hanski, 1994a Day and

Possingham, 1995; Possingham and Davies, 1995). I use the patch areallocation paradigm

throughout this thesis, for both its simplicity and appeal as a visual aid in understanding

variation in patch value.
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Ranking patches according to their value to metapopulation persistence may initially seem a

trivial exercise. That is, we expect large patches to be more valuable than small ones, and

centrally located patches to be more valuable than isolated ones. Combining these two

criteria, we would clearly expect large, centrally located patches to be more valuable than

small, isolated ones. A challenge arises however, when we want to compare a small,

centrally located patch with a large, isolated one. In this case relative patch value is not

immediately obvious, as it depends on a tradeoff between patch size and location. Thus, a

key point to draw from the patch areallocation approach is that connectivity can compensate

for patch size. Although a patch may be small, if it is close enough to another patch it may

nonetheless be valuable to the metapopulation due to its tendency to interact with that

neighbouring patch (Figure 5.1).

Figure 5.1 An example of how connectivity may cause changes in patch value. In these two
metapopulations, relative patch value is represented by different shades: black = most
valuable patch; grey - patch of intermediate value; white = least valuable patch. This figure
suggests how even a small patch may be valuable if it is well placed in relation to other
patches (as in the metapopulation on the right).

Ecologists have already developed a number of tools for assessing the value of patches in

metapopulations. The "incidence function" approach (Hanksi, I994a; Hanski, I994b) uses a

snapshot of a metapopulation's spatial pattern of patch occupancy to assign parameter values
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to functions that describe patch extinction and colonisation probabilities on the basis of patch

area and isolation, Once these functions have been parameterised, it is then possible to use

numerical iterations of metapopulation dynamics to determine the relative value of the

different patches in a system (Hanski, I994a; Hanski, I994b). Importantly however, the

incidence function approach requires that a metapopulation contains a relatively large number

of patches, with Hanski (I994a) suggesting that 30-50 patches are sufficient. This raises the

question: How are we to determine the relative value of patches in metapopulations that

contain relatively few patches? There are certainly many examples of metapopulations of

conservation concern that contain too few subpopulations to use the incidence function

approach. Examples include the fern Asplenium septentrionale with three subpopulations

(Holderegger and Schneller, L994); the Mauritius fody (a bird) with five subpopulations

(Safford, 1997); Shenandoah salamanders with six subpopulations (Griffis and Jaeger, 1998),

and Nepalese tigers with four subpopulations (Smith et a|.,1998).

While small metapopulations are not suitable for the use of incidence functions, they are

amenable, by virtue of their size, to computer simulation. Modern computing power has

facilitated the widespread use of stochastic models of population viability analysis (PVA) for

studying the dynamics of small metapopulations, with programs such as ALEX, VORTEX

and RAMASispace (Lindenmayer et al., 1995). Another potential approach is to use

deterministic numerical modelling (Day and Possingham, 1995).

Although PVA allows biologists to ask a range of valuable questions, it is unlikely to provide

reliable estimates of the relative value of the patches in a system. Ultimately the predictive

accuracy of PVA packages is limited by the ability of ecologists to either directly estimate

colonisation and extinction probabilities, or estimate the biological processes that determine

those probabilities. It is difficult to imagine many small metapopulations (i.e those

containing few patches) where ecologists will ever be able to make good direct estimates of

extinction and colonisation probabilities. Unless there happens to be enough long term data

on population turnover events (without the system going extinct in the meantime) any attempt

to directly estimate extinction and colonisation probabilities can at best be an educated guess.

Perhaps for this reason, many PVAs (including the widely-used VORTEX and ALEX

packages (Lindenmayer et a.I., 1995)) attempt a bottom-up approach to predicting

metapopulation dynamics, whereby the emphasis is not on estimating extinction and

colonisation probabilities per se, but on parameterising the many biological processes that
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determine those probabilities. Accordingly, the reliability of many PVAs rests on how well

ecologists can estimate the processes underlying metapopulation dynamics. This includes

trying to estimate birth rates and death rates, spatial and temporal variability in those rates,

the impact of genetic diversity on demographic processes, and the rates and spatial patterns of

dispersal between patches. While data is often readily available for some of these

parameters, many parameters are extremely difficult to measure accurately. Descriptions of

inter-patch dispersal are particularly difficult in this regard, requiring large amounts of time

and money to try to detect what in many cases may be very rare events. Even if a researcher

is lucky enough to record a handful of stochastic dispersal events, it is another challenge to be

able to use that data for making reliable estimates of the rates and patterns of inter-patch

dispersal.

Given the challenges that ecologists face when trying to assess the relative value of patches in

small metapopulations, I decided to explore a new approach that would avoid the theoretical

and empirical problems of trying to directly estimate extinction and colonisation

probabilities, or the processes that underlie those probabilities. In particular, I examined

whether genetic diversity information could provide a reliable basis for ranking the patches in

a metapopulation. The logic behind this approach is that the same features that make a patch

valuable for metapopulation persistence also tend to increase the genetic diversity of the

subpopulation occupying that patch. Thus, where a large patch is valuable due to its
resistance to extinction and its role as a source of immigrants to other patches, it will also

have higher levels of genetic diversity than a small population, by having lower levels of

drift. Patch location and connectivity are also important. Where a well-connected patch is

valuable for its ability to receive and send immigrants, it should also have higher genetic

diversity due to the influx of genes from the surrounding subpopulations. Therefore, both

genetic diversity and patch value are expected to vary in similar ways as functions of both

patch area and connectivity (Figure 5.2). Accordingly we can imagine that Figure 5.1 applies

to genetic diversity in the same way that it applies to patch value. It is this logic that lead me

to the idea that ranking the patches in a metapopulation according to their genetic diversity

may provide a good estimate of their relative contribution to metapopulation persistence.

Dunham et al. (1999) presented a similar argument to this, suggesting that genetic diversity

may reflect the relative extinction risk of the different subpopulations in a metapopulation.

My approach differs from that of Dunham et al. (1999) by considering how genetic diversity

reflects relative patch value, rather than the relative risk of subpopulation extinction.
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Figure 5.2 Illustration of how genetic diversity and patch value are influenced in similar
ways by patch area and isolation. Note that population size, patch perimeter and the reception
of immigrants influence both genetic diversity and patch value. In contrast, emigration out of
a patch affects only its value. The numbers in brackets are the four patch attributes described
earlier in this chapter (see second page).
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While there is good reason to believe that genetic diversity data provide a basis for estimating

the relative values of patches in a metapopulation, there are also reasons why the relationship

between genetic diversity and patch value may be unreliable.

1) The processes driving both genetic diversity (drift, mutation and immigration) and

colonisation and extinction are inherently stochastic. Therefore any relationship between

patch value and genetic diversity is subject to a certain amount of noise.

2) Patch size and isolation will affect patch value and genetic diversity in different ways

(Figure 5.2). Although these relationships may have the same general trends, subtle

differences between them might mean that the combined effect of patch size and isolation

are quite different for ranking patch value than for ranking genetic diversity. In

particular, note that while the value of a patch may be increased by its tendency to act as a

source of immigrants to other patches (Figure 5.2), this will not increase the genetic

diversity of the patch.

The aim of the present study was to explore the utility of using genetic diversity data to

estimate the relative value of the patches in metapopulations, and to explore the conditions

under which the approach is most reliable. I addressed these aims using a Monte Carlo

computer simulation model. This was necessary because of the highly stochastic nature of

metapopulations, and the subsequent need to run thousands of replicate metapopulations to

obtain accurate parameter estimates for the questions being asked.

5.2 Model description

In this section I describe the computer simulation model used to examine the utility of using

genetic diversity to estimate the demographic value of the different patches in

metapopulations. Essentially the model (referred to as "MultiPop") is an individual-based

stochastic simulation model of metapopulation dynamics and genetics. It is individual-based

in the sense that it follows the fate of individual organisms - each with an age, a sex and a

genome. It is stochastic in the sense that all demographic processes (reproduction, dispersal

and mortality) are modelled stochastically using by a pseudo-random number generator. The

model also allows environmental stochasticity to be included, whereby subpopulations may

independently experience random years of unusually high mortality. Both forms of

stochasticity are capable of causing subpopulation extinctions. It is a metapopulation model
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since it involves modelling a set of subpopulations, with dispersal between habitat patches.

Dispersing individuals are capable of recolonising empty habitat patches and rescuing extant

subpopulations from extinction. And finally, the model can be used to examine both

population dynamics (in terms of the time to metapopulation extinction), and genetics (using

several measures of subpopulation genetic diversity).

The structure of MultiPop is not unlike that of VORTEX - a model widely used for

population viability analysis (Lacy, 1993; Lindenmayer et al., 1995). The motivation for

writing MultiPop rather than using an existing model such as VORTEX was that I could have

full control over the various scenarios that were run, and the type of output produced.

Writing MultiPop also meant that I was able to avoid using computer run time to model

processes that I was not interested in modelling. MultiPop was written in Turbo Pascal 7.0,

and the code is presented as a Pascal file on the enclosed floppy disc

(A:\APP3MULTIPOP.PAS). All stochastic processes modelled in MultiPop use the Turbo

Pascal 7.0 built-in pseudo-random number generator (see Appendix 1 for an examination of

the quality of this number generator).

The initial aim of using this model was to create a system where the ranking of patches

(based on their demographic value to a metapopulation) could be manipulated by changing

the connectivity between patches. With low connectivity, the value of patches in a

metapopulation should be closely associated with patch size, while with increased

connectivity, isolation becomes an important component of patch value. I then aimed to test

the utility of using genetic diversity data to predict patch value over a wide range of

connectivity scenarios, in order to assess how robust the approach might be.

MultiPop was used to model two types of metapopulations: three-patch systems and eight-

patch systems. Canying capacities are assigned to the different patches in a system, and

individuals only reproduce within the habitat patches. Nonetheless, juveniles are able to

leave patches and disperse to other patches, and this dispersal can lead to the recolonisation

of empty habitat patches, and can facilitate the rescue of extant subpopulations from

extinction.
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Each individual in the model has the following attributes:

. Habitat patch: A single integer value that represents the habitat patch in which the

individual lives.

. Sex: Male or female.

. Age: This is an integer value representing the individual's age in years from 0 up to a set

maximum age.

. Genotype: There are both nuclear and mitochondrial components to each individual's

genome. The nuclear component is comprised of l0 loci, each with l0 possible alleles.

This number of loci and number of alleles per locus were chosen to represent the amount

of variation commonly found using microsatellites (Burland et al., 1998; Dallas and

Piertney, 1998; Hughes et a\.,1998; Kumari and Kemp, 1998; Piertney et aL.,1998). Each

individual in the model carries two copies (effectively homologous chromosomes) for

each locus. All loci assort with complete independence as if they occur on separate

chromosomes. The mitochondrial genome is comprised of a single integer value

representing one of 100 possible haplotypes. An individual's haplotype is essentially its

mitochondrial DNA fingerprint. Because mitochondrial DNA is maternally inherited

without recombination, the only way an individual's haplotype can differ from its

mother's haplotype is by mutation. I chose to initialise the model with 100 possible

haplotypes - a conservatively high representation of the number of haplotypes found in

natural populations (Edwards, 1993; Sarre, L995; Moritz et al., 1997:' Lovejoy and De

Araujo, 2000; Trewick, 2000). For both the nuclear and mitochondrial genotypes I
assumed that there is no mutation during the running of the model.

. Mating partner: For monogamous organisms, each individual is described as either

paired or single, and any paired individual carries the identity of its mating partner.

The amount of computer memory required for each individual imposed considerable

limitations on the maximum number of individuals allowable within the model. For a system

with three habitat patches, the maximum allowable subpopulation size was 735, while for an

eight-patch system the maximum was 273 individuals. To remain safely under these

population ceilings, it was necessary to restrict use of the model to organisms with relatively

low fecundity, such as mammals and birds, rather than more highly fecund organisms such as

plants and insects.
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Within the constraints of low population ceilings and low fecundity, I decided to model two

organisms with very different life history properties, as a form of sensitivity analysis at the

species level. Using this approach, a large difference in the output of the two organisms

would be interpreted as the model's sensitivity to life history properties.

The two organisms I modelled were based on the life history properties of owls (to represent

a slow breeding monogamous organism) and rodents (to represent a fast breeding

polygamous organism), (Table 5.1). Importantly these model organisms are not intended to

represent particular species, and should be thought of as a generic owl and a generic rodent.

Tabte 5.1 Summary of the life history properties of owls and rodents as modelled in this
study.

Life history property Owl Rodent

Maximum life span

First year survivorship

Yearly survivorship (after first year)

Age at sexual maturity

Mating system

Offsprin g/female/year: mean (max)

Sex ratio at bith

20 years

507o

957o

3 years

Monogamous

0.6 (4)

0.5

2 years

50Vo

507o

1 year

Polygamous

6 (8)

0.5

These properties were based loosely on examples in the literature. For owls, see Lundberg

and Westman (1984), Wilson et al. (1986), Lande (1988), Bull e/ al. (L989), Pientiainen

(1989) and Gerhardt et al. (1994); and for rodents see French et al. (1967), Watts and Aslin

(1981), Millar and Zammato (1983), Kenagy and Bartholomew (1985) and Strahan (1998).

While the values used for some of these parameters are clearly open to debate, the importance

lies not in the values themselves, but in how much they vary between the owl and rodent.
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5.2.1 The model structure (flow of demographic processes)

The model starts by filling the metapopulation with individuals. The metapopulation then

enters a yearly cycle of non-overlapping demographic events: aging, pairing, breeding,

dispersal and mortality (Figure 5.3). The model continues through this cycle until either (1)

the entire metapopulation becomes extinct, or (2) the metapopulation has been in existence

for as many years as the user has specified. In the sections below I describe each of the

model processes in the annual cycle.

Metapopulation is filled with individuals

Age individuals

Mortality Pairing

Dispersal Breeding

Figure 5.3 The basic model structure. Each replicate metapopulation starts by filling the
system with individuals. The metapopulation then enters an annual cycle of demographic
events.

5.2.2 Metapopulation is filled with individuals

Summary: The patches are filled to carrying capacity with individuals drawn randomly from
what was previously a large continuous panmictic population.

Each replicate metapopulation is initiated as if a previously panmictic population living in

continuous habitat has suddenly been subdivided into a set of subpopulations restricted to

habitat islands.
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All patches are filled to a predetermined carrying capacity. The assumption here is that in

the previously continuous landscape any local variation in densities due to demographic

stochasticity was reduced by dispersal - giving a uniform density of individuals over

space and time.

The genome of each individual is drawn randomly as if from a genetically panmictic

population containing maximum levels of heterozygosity. Thus for the nuclear genome it

is assumed that the 10 alleles at each of the 10 loci occurred in equal proportions in the

previously continuous population, and that the 100 mitochondrial haplotypes also

occurred in equal proportions. Individuals are simply allocated genomes by drawing

randomly from this gene pool.

Individuals are randomly allocated a sex, assuming a 1:l sex ratio.

All individuals are initially unpaired (to be assigned mates in the pairing procedure).

The age of each individual is assigned by drawing randomly from a stable age

distribution. The use of stable age distributions is based on the condition set earlier that

densities in the previously panmictic population were constant over space and time.

These stable age distributions (Figure 5.4) were determined on the basis of mortality rates

that will be described in the section 5.2.7.

5.2.3 Age individuals

Summary: One year is added to the age of each individual every year,

Each individual's age is stored as an integer value.

This procedure simply adds one year to the age of each individual.

Notice that aging is performed immediately prior to the courting and breeding procedures.

Thus a newborn individual turns one-year-old just before the following year's

pairing/breedin g season.
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Figure 5.4 Stable age distributions used to initialise the age of individuals at the start of each
metapopulation. These distributions are each based on a hypothetical large, continuous
population at equilibrium, with no net immigration or emigration. The owl age distribution
assumes 957o survival each year and a maximum age of 20 years; the rodent age distribution
assumes 50% survival each year and a maximum age of two years (these conditions are
described in the section on mortality). Note that these distributions describe the ages of
individuals immediately prior to one year being added (this is why there are no 2O-year-old
owls, or two-year-old rodents).

68



5.2.4 Pairing (applies only to owls)

Summary: AII sexually mature individuals are randomly allocated mates until the supply of

potential mates is exhausted for one sex. This procedure applies only to owls (the rodents

are polygamous and do not form lasting pair bonds).

Only sexually mature individuals can form mating pairs (the age of maturity is set at three

years for owls).

Individuals are arranged into pairs until the supply of unpaired sexually mature

individuals is exhausted for at least one sex. Any remaining, unpaired individuals simply

remain in the patch.

Pair bonds last for life.

Widowed individuals may form new pairs.

Pair allocation is performed using a pseudo-random number generator, whereby any

unpaired sexually mature male has an equal probability of pairing with any of the

unpaired sexually mature females. Thus, pair allocation is independent of age (as long as

individuals are sexually mature), and very old individuals may pair with newly matured

individuals.

5.2.5 Breeding

Summary: If subpopulation size is less than or equal to carrying capacity, every female

produces a set number of zygotes - each of which has the same probability of developing into

an independent juvenile. If subpopulation size is larger than carrying capacity, no

indiv idual s r ep r o duc e.

Only sexually mature individuals reproduce, and for owls, only paired individuals

reproduce.

If subpopulation size is smaller than or equal to carrying capacity then reproduction can

occur. Each female's expected fecundity is independent of population size (as long as the

population size is smaller than or equal to carrying capacity). If subpopulation size is

greater than carrying capacity, no individuals reproduce. Thus, fecundity is a step

function of population size (Figure5.5).
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Figure 5.5 The fecundity of females as a function of population size.

Whether or not each individual reproduces is fixed at the start of the breeding season.

That is, although breeding may cause the size of a subpopulation to exceed carrying

capacity part of the way through the model dealing with a list of breeding females, this

does not change the fecundity of the remaining females in that list.

In a given breeding season, all breeding females produce the same number of zygotes and

all zygotes have the same survivorship probability. The model specifies that a breeding

owl produces 4 zygotes, each with a 0.15 probability of surviving to birth, while a

breeding rodent produces 8 zygotes, each with a 0.75 probability of surviving to birth.

Table 5.2 shows the probability distribution of different clutchilitter sizes for each

reproducing female owl and rodent per year.

0
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Tabte 5.2 Probabilities of different clutch/litter sizes for each reproducing female owl and

rodent per year.

Clutch/litter size owl rodent

0
1

2
3
4
5
6
7
8

0.5220
0.3685
0.0975
0.0115
0.0005

0.0000
0.0004
0.0038
0.023r
0.0865
0.2016
0.3115
0.2610
0.1001

total 1.0000 1.0000

Once an individual is old enough to reproduce, its yearly fecundity is independent of age.

For owls, there are no extra-pair matings.

For rodents, each zy1ote has an equal probability of being sired by any of the breeding

males in the population. Age does not influence the fitness of males. Although unlikely,

one male alone could sire all the offspring in an entire subpopulation in a given

generation (the probability of a given male, from a population of m breeding males, siring

all n possible offspring in a given generation equals m-n).

New offspring are born with an age of zero, and their sex is determined randomly,

assuming a 1:1 sex ratio.

Each offspring's mitochondrial genome is maternally inherited. This is simply a matter of

giving each offspring the same haplotype as its mother.

Each offspring's nuclear genome is assigned according to the laws of Mendelian

inheritance. Thus, an individual inherits two copies of each gene - one from its mother

and one from its father. Importantly, the mother herself has two copies of each gene. A

pseudo-random number generator is used to determine which of her copies is passed on -

each having an equal probability of being inherited. The same applies to the father's

copies.
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5.2.6 Dispersal

Summary: Only juveniles disperse. If subpopulation size is less than or equal to carrying

capacity there is a 5Vo chance that a given individual will disperse. If subpopulation size is

greater than carrying capacity there is a 307o chance of an individual dispersing.

Only juveniles (i.e. individuals who have not yet reached the age of sexual maturity) can

disperse. One important implication of this is that only unmated individuals disperse.

If the subpopulation size is smaller than or equal to the patch's carrying capacity, there is

a 5Vo chance of each juvenile leaving the patch in that year. If the subpopulation size is

greater than the patch's canying capacity there is a307o chance of each juvenile leaving

the patch in that year. Thus, dispersal probability is a step function of population size

(Figure 5.6).

All ths juveniles in a subpopulation have the same probability of leaving their patch in a

given year.

Whether or not a particular juvenile leaves a patch in a given year is determined by a

pseudo-random number generator.

0.30

Probability of
leaving a patch

0.05

K

Figure 5.6 Dispersal probability of juveniles as a function of population size.
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The probability of each individual leaving its patch is set at the start of the dispersal

season. Thus, even if emigration causes a subpopulation to fall below carrying capacity,

or if immigration causes a subpopulation to rise above carrying capacity part of the way

through the model dealing with a list of juveniles, this does not change the dispersal

probabilities of the remaining juveniles in the list. This is equivalent to having all

dispersal occur simultaneously.

Not all dispersing individuals arrive at other patches - some effectively die in transit. This

"dispersal moftality" occurs in addition to the normal mortality experienced within each

patch (described below in section 5.2.7). Mortality during dispersal has been reported in

many empirical studies (Bowman and Robel, 197'7; Gaines and McClenaghan, 1980;

Woollard and Harris, 1990; Matthysen, 1999) and has been included in a number of

metapopulation models (Adler and Nuernberger, 1994; Possingham and Davies, 1995;

Ruxton et aL.,1997).

Dispersal does not impose any lasting (post-disperal) effects on an individual's fitness.

That is, an immigrant has the same potential fitness as a resident individual of the same

age and sex.

The probability that a dispersing individual immigrates into a particular patch is

independent of the size of the subpopulation in the recipient patch.

In the baseline case males and females have the same probability of dispersing. Later I

present the special case of sex-biased dispersal.

If an individual leaves a certain patch, its destination is determined using a pseudo-

random number generator and referring to a matrix that describes the pairwise dispersal

probabilities between patches. Each value in such a matrix is the probability that an

individual emigrating from one patch will arrive in a particular other patch. These

probabilities are fixed for the duration of each replicate metapopulation.

Dispersal is reciprocal between pairs of patches, in the sense that an individual leaving

patch x has the same probability of arriving at patch y as an individual leaving patch y has

of arriving at patch x. This of course means that the dispersal rate is not necessarily the

same in both directions. For example if patch x has a larger carrying capacity than patch

y, then on average more individuals are expected to move from patch x to patch y than

vrce versQ.

Each individual can disperse only once in a given year. Thus, an individual cannot

disperse from one patch to another and then disperse again in the same year.
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Owls (which experience three dispersal seasons before they mature), may disperse more

than once over a number of years, potentially back to a patch they were previously in.

5.2.7 Mortality

Summary: Owls and rodents have a 507o chance of dying in their first year of ltfe; thereailer,

owls have a 57o chance of dying each year and rodents a 507o chance; no owls live beyond

20years ofage, andno rodents beyondtwoyears.

The chance of dying is independent of population size.

First year mortality probability is set at 0.50 for both owls and rodents.

The yearly mortality probability for owls older than one year of age is set at 0.05. For

rodents the yearly mortality probability it is set at 0.50.

Whether or not an individual dies is determined by drawing a pseudo-random number.

There is a maximum life span (20 years for owls, two years for rodents). Any individual

that reaches that age has a mortality probability of 1.00.

Mortality probability is independent of whether or not an individual is in a mating pair,

and whether or not the individual has produced offspring.

A note on the MultiPop code: For newborn individuals, the model inflicts first year

mortality in the same procedure that allows breeding. This avoids having to create

complete records for individuals that are likely to die soon anyway. This approach has

two advantages. Firstly it helps to reduce the model's running time (by requiring fewer

calculations and less storage of unnecessary information). Secondly it reduces the risk

that when a subpopulation breeds, the addition of new individuals will overflow the

amount of memory allowed by the program. This essentially means that I was able to

model (1) patches with larger carrying capacities and"/or (2) a greater number of patches

without crashing the program. This preemptive application of first year mortality is only

possible because first year mortality probability is fixed across all patches, irrespective of

local population dynamics. Thus, the chance of each newborn individual dying is 0.5,

irrespective of whether it disperses to another patch or stays in the patch it was born in.
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5.2.8 Optional feature 1: catastrophic disturbance events

Summary: Catastrophic disturbance events represent an optional feature that wcts used in

some scenarios. When this disturbance feature is switched on, each subpopulation has a 57o

chance per year of experiencing a disturbance event. A disturbance event applies a strottg

bout of mortality in addition to the normal yearly mortality. For owls, a disturbance event

gives every individual in the subpopulation a 507o chance of dying, while for rodents there is

a 97.5Vo chance of dying.

Catastrophes represent one of the "treatments" I apply using the model.

When a disturbance regime is applied to a metapopulation, each subpopulation has a 5Vo

chance per year of experiencing a disturbance event. Disturbance events occur

independently among subpopulations.

Each catastrophe lasts for just one year, and disturbance events occur independently

among years and patches.

A catastrophe applies a strong bout of mortality in addition to normal yearly mortality.

For owls, a disturbance event means that any individuals surviving normal yearly

mortality have a 50Vo chance of dying due to the disturbance, while for rodents there is a

97 .57o chance of dying due to disturbance.

It is an important feature that the catastrophes are not modelled as causing L007o

mortality. Firstly, this rarely occurs in nature: usually some individuals survive

catastrophes (Patterson, 1984; Stiles, 1992;'Wauer and Wunderle, 1992 Young, I994b;

Hailey, 2000). Secondly, if disturbance caused L007o mortality, all patches would end up

having similar extinction probabilities, particularly in systems with carrying capacities

high enough that demographic stochasticity is a negligible cause of subpopulation

extinctions. In contrast, with disturbance mortality less than IO07o, subpopulations with

larger carrying capacities are more likely to survive disturbance events. This in turn

means that the patches in the model are more likely to differ in their demographic value to

their metapopulation.
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5.2.9 Optional feature 2: sex-biased dispersal

Summary: Sex-biased dispersal is an optional feature that was used in some scenartos.

When sex-biased dispersal is applied, ct female owl is four times more likely to disperse than

a male owl, while a male rodent is four times more likely to disperse than a female rodent.

Sex-biased dispersal represents one of the "treatments" I apply using the model. The owls

are modelled as having female-biased dispersal, and the rodents as having male-biased

dispersal. This follows the patterns reported in the literature for female-biased dispersal

among birds (Greenwood, 1980; Clarke et al., 1997) and male-biased dispersal among

mammals (Greenwood, 1980).

For owls, a juvenile female has four times the odds of dispersing than a juvenile male.

The dispersal tendency of females is set to the same as that for individuals in populations

where there is no sex-bias in dispersal. Thus, the probability that a juvenile female will

disperse is 0.05 when N is less than or equal to K, and 0.30 when N is greater than K.

This means that the probability of a juvenile male dispersing is 0.013 when N is less than

or equal to K, and 0.097 when N is greater than K. These values were calculated by

rearranging the equation:

Pr**tÁ
- Pouror") - (Eqn 5.1)Odds ratio = 4

Pror, /
/Í- Proru)

where the odds ratio describes how many times more likely an individual of one sex is to

disperse compared to an individual of the other sex. In this equation, PreN4RL¡ and Punle

are the probabilities that a juvenile female and juvenile male will disperse.

For rodents, juvenile males are four times more likely to disperse than juvenile females,

the opposite to owls. This means that the probability of a juvenile male dispersing is 0.05

when N is less than or equal to K, and 0.30 when N is greater than K, and that the

probability of a juvenile female dispersing is 0.013 when N is less than or equal to K, and

0.097 when N is greater than K.
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5.3 The net effect of breedins. dispersal and mortalitv

The demographic properties of owls and rodents as specified in this model clearly differ'

Owls produce fewer offspring per year, have female-biased instead of male-biased dispersal

(when sex biased dispersal is specified), experience much lower mortality and have a longer

potential lifespan. A useful basis for understanding the net effect of these differences

between owls and rodents is to consider R, the fundamental net per capita rate of increase

(N1t+rl / Nto). There are several important points to note when using R. Firstly, we need to

define the time step which separates N1t*r; from N19. For the MultiPop model the obvious

choice is one year. Secondly, R depends on the distribution of age classes in a population.

Changes in population size influence the recruitment of new individuals, and this causes

changes in the abundance of different age classes over time. Because the different age

classes in MultiPop vary in their demographic profiles (reproduction, dispersal and to a

limited extent mortality), R is sensitive to changes in the shape of the age class distribution.

For this reason it is perhaps most meaningful to report the equilibrium R - when the

frequency distribution of age classes has effectively stabilised. In reality this equilibrium will

never be reached, since recruitment, mortality and dispersal will vary over time as a

population bounces above and below carrying capacity. Nonetheless we can determine the

equilibrium R value that would be approached if demographic properties were held constant

for long enough. Accordingly, I estimated R for both owls and rodents by iterating their

respective life-history tables (using a Microsoft Excel spreadsheet) until population growth

rate had stabilised to the third decimal point. This approach involved setting an arbitrary

initial frequency distribution of age classes (I gave all a1e classes the same initial

abundance), and allowing population dynamics to unfold deterministically as if the

population was so large that demographic stochasticity was zero. In every case R was

calculated by considering females as the limiting sex.

The equilibrium R value for owls in this model is 1.053, while that for rodents is 1.896. After

including the effect of catastrophes (by averaging their impact over years), R becomes 1,030

and 1.880 respectively. These values assume that immigration and emigration are equal.

With only emigration (no immigration) and sex-biased dispersal, R = 1.035 for owls and R =

1.875 for rodents, while including catastrophes changes these to I.012 and 1.859. With only
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emigration (no immigration) and unbiased dispersal, R = 1.035 for owls and R = 1.817 for

rodents. With catastrophes included these become I.012 and 1.801.

5.4 The three-patch metapopulation

The model was first applied to a hypothetical three-patch metapopulation. This is the

smallest system in which it is possible to manipulate the demographic value of patches by

altering connectivity. The baseline case does not include catastrophes or sex-bias in

dispersal.

The three patches were given carrying capacities of 20, 15 and 10 individuals, and the

patches will be referred to as Patch2s, Patchls and Patchlo (or as P2s, P¡5 and Pls).

Admittedly these carrying capacities are quite low, and for any real system we would hardly

think of this as the basis for a long-lived metapopulation. Nonetheless, it is important to

remember that in this situation the only cause of extinction being modelled is demographic

stochasticity. Therefore the subpopulations are in fact quite extinction-resistant. If we were

to increase their carrying capacities by much, there would be so little turnover of patch

occupancy that it would be quite inappropriate to be concerned about metapopulation

extinction.

While it is difficult to imagine any natural system free of environmental stochasticity, its

exclusion from the three-patch metapopulation provides the basis for some potentially useful

insights. Importantly, environmental stochasticity reduces the link between a patch's genetic

diversity and its value to a metapopulation. Remember that one component of the value of a

patch is its tendency to contain an extinction-resistant subpopulation. Ideally we would like

the genetic diversity of a subpopulation to reflect its resistance to extinction. If we consider a

scenario of extreme environmental stochasticity where each disturbance event causes 1007o

mortality, extinction essentially strikes without warning, and there is no opportunity for

genetic diversity to reflect the extinction-resistance of each patch. In contrast, when the only

cause of extinction is demographic stochasticity, each subpopulation may have a number of

bottleneck "warnings" before actually going extinct, and these may be reflected by the

genetic diversity of that subpopulation. Therefore, we might expect the genetic diversity of a

system free of environmental stochasticity to provide relatively good insights into the
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demographic value of patches. Although the environmental stochasticity used in this thesis is

catastrophic mortality that is less than IO07o (507o for owls and 97.57o for rodents), this

stochasticity may nonetheless cause considerable decoupling of genetic diversity data from

patch value. For this reason I have included the special case of the three-patch system

without environmental stochasticity.

In the three-patch metapopulation, I create what is effectively a dispersal corridor between

patch2¡ and patchr6, while keeping Patch¡5 isolated using dispersal barriers (Figure 5'7). I

then vary the amount of connectivity between Patchzo and Patchls, and run replicate

metapopulations. I use six different connectivity levels: 07o, 20Vo, 4OVo, 60Vo, 807o and

lO¡Vo. A connectivity of 407o means that an individual leaving Patch2e has a 407o chance of

arriving at patch16, and vice versa (the remain ing 607o of individuals effectively die en route).

The different connectivity levels can be thought of as different risks of predation or starvation

while travelling through the dispersal corridor. This in turn could be visualised as changes in

the quality of the corridor environment, or by having different distances between Patchzo and

patchro. When the connectivity is \Vo, all three patches are isolated and the relative value of

each patch is determined purely by its resistance to extinction, and hence carrying capacity.

In this no-dispersal case Patchls is of the least demographic value to the metapopulation.

With 1007o connectivity however, individuals dispersing from Patchzo and Patchlo are able to

rescue their neighbouring subpopulation from extinction, and recolonise their neighbouring

patch in the event of extinction. While Patchzo should not change from being the most

important patch, we might expect Patchls to become more valuable than Patch15, due to its

ability to interact with Patchzo. This approach - changing the level of connectivity to change

patch ranking - is the basis for much of the analyses I perform using the MultiPop model.

One "treatment" applied to the initially simple three-patch metapopulation was the inclusion

of environmental stochasticity in the form of catastrophic disturbance events. This has two

implications. Firstly, as stated earlier, environmental stochasticity may reduce the link

between a patch's genetic diversity and its demographic value. Secondly, because

disturbance increases metapopulation extinction probabilities, it becomes feasible (in terms of

the program's run time) to model patches with much larger carrying capacities than what is

practical for a system without environmental stochasticity. Thus, patch carrying capacities

that were previously set at 20, 15 and 10, are increased to 80, 60 and 40, and the three patches

are referred to as Patchs¡, Patch66 and Patcha6. In fact if the carrying capacities were not
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increased, the metapopulation would have such a high extinction probability that it would be

quite meaningless to try to conserve such a system. An important consequence of increasing

patch carrying capacities is that subpopulation genetic diversity is likely to decay at a slower

rate and with less stochasticity (until a disturbance event strikes).

Figure 5.7 Hypothetical three-patch metapopulation. Patch2e and Patchro are linked by a

dispersal corridôr, represented here by small circles (as if they were tiny fragments of
traUitaÐ. Patchrs is completely isolated from the other patches by a dispersal barrier, here

represented by a mountain range.

Patchro

Patchrs

o
o

o
ooo
o

ooo oo
o

Patch2s
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Another treatment applied to the three-patch metapopulation was to have sex-biased

dispersal. This was applied to metapopulations with and without environmental stochasticity.

The three-patch metapopulation was therefore analysed separately under a range of different

scenanos

ORGANISM (owl and rodent)

ENVIRONMENTAL STOCHASTICITY (excl uded and included)

SEX-BIASED DISPERSAL (yes and no)

CONNECTIVITY (jVo, ZOVo, 407o, 607o, 80Vo, 1'007o)

5.5 The eisht-patch metapopulation

The model was also applied to an eight-patch system. This increase in complexity was

undertaken to address concerns that the results from a three-patch system may be too

simplistic to generalise to the larger systems that commonly occur in nature. This particular

number of patches was chosen as a compromise between trying to increase complexity while

working within the constraints of how much computer memory was available. Importantly,

there are many examples of metapopulations of management concern with similar numbers of

patches (e.g.,GotÍellietal., 1994;Gaona eta1.,1998; GriffisandJaeger, 1998; ReedetaI.,

1998; Baguette et aI.,2000).

The eight patches were given different carrying capacities: 15,20,25,30,35, 40,45 and 50.

Unlike the three-patch system where only two patches were connected by dispersal, the eight-

patch system involves a "web" of connectivity, with all patches being connected to all seven

other patches to varying degrees. The connectivity in the eight-patch system is based on an

isolation-by-distance model of connectivity. Initially I placed the eight patches on a two

dimensional landscape (Figure 5.8). Having created a number of random computer-generated

patch arrangements, the arrangement shown in Figure 5.8 was selected on the basis of having

a relatively wide range of inter-patch distances (and hence connectivities).
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Figure 5.8 Arrangement of patches used for the eighfpatch metapopulations. Each
number represents patch carrying capacity.
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more sensitive to low levels of dispersal than was the persistence of owl metapopulations.

Therefore different ranges of dispersal mortality were chosen for the two organisms: for owls

they were 0.08,0.04,0.02,0.01,0.005, and 0.0025, and for rodents they were 0'12,0.10,

0.08, 0.06, 0.04, and 0.02

For each connectivity level, a matrix of pairwise dispersal probabilities between patches was

calculated using equation (5.2). Below is the exact patch arrangement used (Table 5'3), the

matrix of pairwise distances between patches (Table 5.4), and example matrices of the

pairwise dispersal probabilities between patches (Tables 5'5 and 5'6)'

Table 5.3 Exact patch arrangement in the eight-patch metapopulation. The x and y
coordinates are integer values in a 100 by 100 grid, and these axes correspond to the

horizontal and vertical dimensions of Figure 5.8.

Patch identity (in terms of carrying capacity)

15 20 25 30 35 40 45 50

x-coordinate

y-coordinate

51 6

30 9r

39 52 2466

l6
91

63

48

3532470

Table 5.4 Matrix of pairwise straight-line distances between patches. Patch identities are

represented by their carrying capacities (bold). "Departure" and "destination" refer which
patch a dispersing individual is leaving and which patch it is arriving into. The distances are

taken from the centre of the departure patch to the centre of the destination patch (i.e. treating
patches as points on the landscape).

DESTINATION PATCH

DEPARTURE
PATCH

15
20
25
30
35
40
45
50

15
0.00

75.80
20.52
29.5s

6.08
48.26
56.61

5.83

20
75.80

0.00
96.05
93.98
8r.21
2'7.66

95.21
70.00

25
20.52
96.05

0.00
29.97
t6.t2
68.41
56.30
26.t]

30
29.55

93.98
29.97

0.00
24.70
68.66
83.45
33.24

35
6.08

8r.27
16.t2
24.70

0.00
5 3.85
59.55
I 1.70

40
48.26
27.66
68.41
68.66
53.8s

0.00
73.33
42.44

45
56.6r
95.2r
56.30
83.45
59.55
13.33

0.00
56.44

50
5.83

70.00
26.t7
33.24
I 1.70
42.44
56.44
0.00
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Table 5.5 High mortality during dispersal. This is a matrix of pairwise immigration
probabilities beiween patches when dispersal mortality is high (0.12). This is the highest

àispersal mortality urèd fo. rodents. Patch identities are represented by their carrying
capacities (bold). Each value is the probability that an individual that has left a particular
deþarture patch arrives at a particular destination patch. "Total" refers to the probability that

an individual leaving a particular departure patch arrives at any of the other patches.

DESTINATION PATCH

30 35 40
0.004 0.069 0.000
0.000 0.000 0.005

0.004 0.021 0.000
0.000 0.007 0.000
0.007 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.003 0.035 0.001

DEPARTURE
PATCH

DEPARTURE
PATCH

L5
20
25
30
35
40
45
50

15
0.000
0.000
0.0r2
0.004
0.069
0.000
0.000
0.071

20
0.000
0.000
0.000
0.000
0.000
0.005
0.000
0.000

25
o.0r2
0.000
0.000
0.004
0.02t
0.000
0.000
0.006

45
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

50
0.071
0.000
0.006
0.003
0.035
0.001
0.000
0.000

total
0.r57
0.005
0.043
0.018
0.r32
0.007
0.001

0.1 l6

Table 5.6 Low mortality during dispersal. This is a matrix of pairwise immigration
probabilities between patches when dispersal mortality is low (0.0025). This is the lowest
àispersal mortality used for owls. Patch identities are represented by their carrying capacities
(bold). Each value is the probability that an individual that has left a particular departure

patch arrives at a particular destination patch. "Total" refers to the probability that an

individual leaving a particular departure patch arrives at any of the other patches.

DESTINATION PATCH

40
0.r27
0.1 33

0.120
0.r20
0.t25
0.000
0.119
0.128

15
20
25
30
35
40
45
50

15
0.000
0.118
0.136
0.133
0.i41
0.r27
0.124
0.141

20
0.118
0.000
o.t12
0.113
0.1 r7
0.133
0.1 13

0.r20

25
0.1 36

o.t12
0.000
0.133
0.t37
0.120
0.r24
0.r34

30
0.r33
0.1 13

0.133
0.000
0.134
0.120
0.116
0.i31

35
0.141
0.1 17

0.t31
0.r34
0.000
0.t25
0.123
0.1 39

45
0.r24
0.113
0.t24
0.116
0.r23
0.1 19

0.000
0.r24

50
0.141
0.120
o.t34
0.131
0.1 39
0.128
0.124
0.000

total
0.919
0.826
0.896
0.880
0.916
0.873
0.843
0.9r7
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The run times required for the eight-patch system were extremely long under some scenanos.

Therefore eight-patch metapopulations were analysed over a much smaller range of scenarios

than was used for the three-patch metapopulations. The scenarios used were:

ORGANISM (owl or rodent)

ENVIRONMENTAL STOCHASTICITY (included)

SEX-BIASED DISPERSAL (Yes)

CONNECTIVITY (Owl dispersal mortality: 0.08, 0.04,0.02,0.01. 0.005, 0.0025

Rodent dispersal mortality: 0.12,0.10, 0.08' 0'06' 0'04,0'02)

The different scenarios analysed for the three-patch and eight-patch systems are summarised

in Figure 5.9.

The relative value of the different patches to each metapopulation was determined using a

method of single patch removal (Day and Possingham, 1995; Lindenmayer and Possingham,

1996) - first running the metapopulation with all patches included, and then running it with

each of the patches removed. Each patch was removed by setting its carrying capacity to

zero and preventing it from receiving any immigrants (in the model the removal of a patch

does not have any effect on the dispersal probabilities between the other patches remaining in

the system). A total of 10,000 replicate metapopulations were run in each patch removal

scenario. This level of replication offered an acceptable compromise between (1) obtaining

reliable parameter estimates and (2) the model having reasonable run times. With each

replicate metapopulation, the patches were initially filled to carrying capacity, and the time

(in years), v/as set to zero. Each metapopulation was then allowed to pass through yearly

cycles of demographic events until no more individuals remained in the system. The output

variable for each replicate was the number of years taken to reach metapopulation extinction.

The 10,000 extinction times for each patch removal scenario were then sorted, and the

probability of extinction by 100 years was calculated as the proportion of replicates whose

extinction time was less than or equal to 100 years (for code see A:\APP3\SORTER.PAS on
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METAPOPULATION SIZE

ORGANISM

ENVIRONMENTAL
STOCHASTICITY ?

SEX-BIAS IN DISPERSAL ?

(M=MALE, F=FEMALE)

CONNECTIVITY

3 patches 8 patches

/\
Owl Rodent Owl

Yes

Rodent

I
Yes

/\ /\ I
Yes No Yes No

t\ I \ t\ I \ I

I

I

IIIIIII
No No

I
M No M No

I
M

6 connectivity levels6 connectivity levels

oo\ì

F F F

Figure 5.9. Summary of the different scenarios examined using the MultiPop model.



the accompanying disc). Patches were ranked using probabilities of extinction within 100

years, P[E]loo, given that this is commonly used as a measure of population viability by

conservation biologists (Mace and Lande, l99L; Day and Possingham,1995 Maguire et al.,

1995; Green et a\.,1996; Hiraldo et a1.,1996).

The data from Multipop were analysed using a two-patch approach. Thus, I tested whether

ranking two patches on the basis of their genetic diversity provides a good estimate of their

ranking in terms of demographic value to the metapopulation. The measure in this case is

simply the probability of correctly ranking the two patches, estimated from the proportion of

simulations when genetic diversity correctly ranked the two patches according to their

demographic value. This is then compared to the null hypothesis that our estimate of patch

ranking was randomly assigned (i.e. probability of correct ranking = 0.5). The logical

alternative to this approach would involve measuring the association between the two

complete lists of ranks (in this case genetic versus demographic patch rankings), using a

measure such as Kendall's coefficient of rank correlation, t (Sokal and Rohlf, 1981). While a

multi-patch approach allows the use of a convenient summary statistic for an entire

metapopulation, the interpretation of such a statistic for metapopulation management is not

immediately clear. In contrast, a two-patch comparison allows us to express the predictive

accuracy of ranking patches as a probability, which has a clear and direct meaning for

metapopulation management.

The two-patch comparison is also valuable in allowing us to measure the magnitude of

differences in patch value. For this I have chosen to measure the value of each patch as the

percent decline in metapopulation viability caused by the removal of that patch, as used by

Lindenmayer and Possingham (1996). The viability of a metapopulation is simply the

probability that the metapopulation will be extant by some chosen time (e.g., 100 years).

Thus if P[E]roorcorøp¡-ErEl is the probability that the complete metapopulation (no patch

removals) goes extinct within 100 years, then

Viability = l- P[E]toolcoMp'-ErEl (Eqn 5.3)
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Upon removing Patchr we have P[E]roownHour Al, the probability that the metapopulation,

now missing Patcha, goes extinct within 100 years. This gives a new viability of 1-

P[E] r oorwrrHour_Al, giving us

decline in viability (1- P[E]roorcovrprerel) - (1- P[E]rootwtrHour¡,1) (Eqn 5.4a)

P[E] loorwrruour Al - P[E] rootcoMpI-ErEl (Eqn 5.4b)

And from this,

Vo decline in viability
(value of a patch)

100 x (P[E]rootwrrHour Al P[E] loorcorøpr-erer)
(Eqn 5.5)

(1- P[E] rootcott¡plerel)

Thus a patch of no value (i.e. whose removal caused no change in the metapopulation's

extinction probability) is given a patch value of zero, while a patch of infinite value (whose

removal caused the metapopulation's extinction probability to drop to zero) is given a patch

value of 100. Using this measure, the relative value of two patches A and B can be expressed

AS

7o decline in viability caused by removing Patch¡ (Eqn 5.6a)
RVns -

7o decline in viability caused by removing Patchg

which reduces to

(P[E] rootwrruour Ar - P[E] rootcott¡prerel)
RV¡s - (Eqn 5.6b)

(P[E] roownHour Bl - P[E] rootcovrpr-ernl)

To assess the ability of RVns to provide a consistently meaningful measure of the relative

value of two patches, I identified a number of different "test" scenarios (Table 5.7). Each

scenario is rcprcscnted by a set of three extinction probabilities - one for a complete
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metapopulation, one with Patch A removed and one with Patch B removed' In each case

there are logical arguments for expecting RVas to have a certain property' In one case RVne

is predicted to equal exactly 1; in one case it should be infinite; and in another case the value

should be meaningless (0 divided by 0). There are also two sets of paired scenarios where

logic tells us which scenario should have the highest RVns value. If the calculated values

were to go against any of these predictions, we would clearly have reason to doubt RVns as a

meaningful measure of relative patch value. The measure was able to meet the prediction in

each case (Table 5.7).

Table 5.7 Test scenarios used to assess the robustness of using RVns to measure the relative
value of patch A to patch B. In scenario (1), the relative value of the patches should equal

one because the removal of both patches gave the same metapopulation extinction
probability. In scenario (2) patch B is of no value at all, so patch A should be infinitely more
valuable. The only difference between scenarios (3a) and (3b) is that patch A has greater

value in scenario (3a) - and should therefore have higher relative value over B in (3a) than in
(3b). The only difference between scenarios (4a) and (4b) is that the extinction probability of
the complete metapopulation is higher in (4a). The closer this baseline probability gets to
P[E]roounHour Bl, the higher the relative value of Patch A (if we increased the baseline
probability even further, we would approach the situation we see in scenario (2) where the

relative value of Patch A = oo). In scenario (5) both patches have no value to the
metapopulation, and reporting a relative value is meaningless. The calculation in this case is
RVns = 0/0, which is also meaningless.

Scenario P[E] roorcor'rp.t P[E] roowrour-nt P[E] roorwour-sl Prediction RV¡,s

(1)

(2)

(3a)
(3b)

(4a)
(4b)

0.4

0.4

0.4
0.4

0.4
0.3

0.4

0.8

0.8

0.9
0.6

0.6
0.6

0.5
0.5

0.5
0.5

0.8 RV(l) = 1

0.4 RV(2) = "'

1

co

5
2

RV(3a) > RV(3b)

RV(aa) > RV(4b) 2
1.5

(s) 0.4 0.4 meaningless 0/0
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By allowing us to measure the relative value of patches, the two-patch approach opens up

potentially useful opportunities in the analysis of MultiPop's output. In particular, we can

examine whether the probability of correctly ranking patches increases as a function of the

difference in value between patches. The same issue could not be easily addressed with a

multi-patch approach to patch ranking. While it may be possible to measure the differences

among a number of patches using a measure analogous to variance, such a summary statistic

would clearly ignore valuable information.

5.7 Usins the model to measure senetic diversitv in patches

Subpopulation genetic diversity was measured at 5, 10, 20, 40 and 80 years after the model

was initialised. A total of 1000 replicate metapopulations were run independently for each of

these sampling times, and these were independent of the runs used to determine the

demographic value of patches. There are two reasons why I chose to use less replication for

the genetic diversity data than was used to determine the demographic value of patches (i'e

1000 compared to 10,000). Firstly, the genetics replicates had much greater run times than

the dynamics replicates. The reason for this was that the genetics replicates required the

inclusion of the full genome (ten nuclear loci with ten alleles and 100 mitochondrial

haplotypes), whereas this information was unnecessary and therefore omitted when running

the dynamics replicates. Secondly, the genetic replicates required less replication simply

because they were being used for a different purpose to the dynamics replicates. The purpose

of the dynamics replicates was one of parameter estimation - to identify the demographic

value of the patches as accurately as possible. In contrast, the purpose of the genetics

replicates was one of hypothesis testing - to test whether using genetics to rank patches is

better than making a random guess of the demographic ranking of patch values.

Genetic diversity was measured in six different ways, to account for the possibility that some

measures may provide more information than others. A separate set of 1000 replicates was

run for each of these six measurements of genetic diversity (i.e. they were independently

sampled). Genetic diversity was measured across all individuals in each subpopulation.

For the nuclear genome I measured:

(1) The mean number of alleles per locus.

(2) The number of polymorphic loci in the subpopulation'
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(3) Mean observed heterozygosity across all 10 loci and all individuals in a

subpopulation.

(4) Mean expected heterozygosity across all 10 loci. This is the heterozygosity we would

expect to observe if the population was very large and àt Hardy-Weinberg

equilibrium, and is calculated as

I t-\n?a

Expected - Itreterozy gosiry = (Eqn 5.7)

where / = the number of loci, a = the number of alleles per locus, and p¡ = the

frequency of allele i in the population (Crow, 1986).

The difference between the observed and expected heterozygosity can be appreciated

by considering a population with only two individuals that are homozygous for

different alleles (A and a) at the same locus. While we would record the observed

heterozygosity as zero for this locus, it is intuitive that a population of two individuals

(AA and aa) is genetically more diverse than a population entirely fixed for one allele

(e.g., both individuals are AA and AA). Expected heterozygosity takes this into

account, and a population of two individuals AA and aa would give an expected

heterozygosity of 0.5.

For the mitochondrial genome I measured:

(1) The number of haplotypes in the subpopulation.

(2) Haplotype diversity. This is a measure of both (1) how many different haplotypes are

in a population and (2) how even the haplotype frequencies are. It is calculated as

Haplotype -Diversity =t-f,v? (Eqn 5.8)

where h = the number of haplotypes in the population, and pi = the frequency of

haplotype i in the population (see Crow (1986)).

To understand this measure it is useful to consider some examples. Firstly, if a

population contains only one haplotype, the haplotype diversity equals zeÍo,

irrespective of how many individuals are in the population. In a population with two

haplotypes in equal abundance, the haplotype diversity = 0.5, while with three
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haplotypes in equal abundance the diversity = 0.67. If we double population size, but

still have only three haplotypes in equal proportion, the haplotype diversity remains at

0.67. In a population where there are three haplotypes in unequal abundance, the

diversity is less than 0.67.

5.8 Testins the success of usins senetics to rank patches

The two patches compared within the three-patch metapopulation were Patchl5 and Patch16,

based on the expectation that the ranking of these patches would change as a function of

connectivity between Patchro and Patchzo. V/ith the eight-patch system, four pairs of patches

were chosen for comparison:

Pair 1 = Patchso and Patchzo;

Pair 2 - Patch¿s and Patchrs;

Pair 3 - Patch3s and Patchzs;

Pair 4 = Patch¿o and Patch¡s;

Genetic diversity was used to rank the two patches in each pair, and the patch with the

highest level of genetic diversity was given the highest ranking of the two patches. This

genetic rank was then compared to the ranking of the patches according to their demographic

value to the metapopulation, as calculated using the dynamics data. Each genetic rank was

labeled as correct or incorrect, and this was repeated 1000 times to give the proportion of

ranks based on genetic diversity data that were correct (for code see

A:\APP3\ANALYST.PAS on the accompanying disc). This analysis was performed

separately for each of the six measures of genetic diversity.

In some cases the two patches in question will have equal genetic diversity - particularly with

integer measures such as the number of polymorphìc loci and the number of mitochondrial

haplotypes. In these cases the data point was excluded from the analysis. Importantly, this

doesnt represent an incorrect guess of patch ranking, but simply non-informative data. This

is because the question being asked here is not "Do the two patches differ in value?", but

"Which of the two patches is most valuable?". An ecologist trying answer the latter would be

unable to use data where the two genetic diversity values are equal. Accoldingly, I am not
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interested in knowing the proportion of all occasions where genetics correctly ranks two

patches, but the proportion attempted patch rankings that are correct.

5.9 Comments on the simplifÏcations in MultiPop

MultiPop clearly simplifies a number of biological processes, and as such, would probably

provide an inappropriate description of the dynamics or genetics of any real species. At the

same time, care was taken to include the general features associated with the real populations.

Importantly the model includes stochasticity in a range of demographic processes, as well as

environmental disturbance events. Although fecundity and dispersal are described in the

model as very simple functions of population size (and mortality described as being

independent of population size), this set of demographic properties nonetheless creates

density dependence, with population growth varying either side of carrying capacity.

Some aspects of MultiPop's simplicity actually contribute to its value as a tool for asking

questions about metapopulations. Many parameters such as carrying capacities and mortality

probabilities were fixed for each scenario, and the metapopulation started from the

hypothetical situation of a previously large panmictic population being fragmented essentially

instantly. These simplifications are likely to have eliminated much of the random variation

that may otherwise have scrambled the link between the value of a patch and its genetic

diversity. Accordingly, if we do not find a good link between patch value and genetic

diversity using the model, it would seem unlikely that such a link would be found in real

systems.

Finally, a key reason for maintaining the model's simplicity was to enhance its transparency

5.10 A kev assumption: senetics does not influence demographics

One assumption of MultiPop is that genetic diversity and inbreeding does not influence

demographic processes. Clearly if such effects were included, this would strengthen the link

between genetic diversity and the demographic value of a patch, for the simple reason that

patches with higher genetic diversity (ancl therefore less inbreeding) would be more resistant
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to extinction than patches with low genetic diversity. The main reason for excluding such

effects from the model is that the relative importance of genetics to metapopulation dynamics

is still hotly debated in the literature (Lande, 1988; Caro and Laurenson, 1994; Caughley,

1994; Mills and Smouse, 1994; Frankham, 1995a). Even if biologists can demonstrate that

genetic processes are important in the dynamics of some metapopulations (e.g', Saccheri ¿r

al., 1998), the magnitude of such effects may vary considerably between systems (Ralls er

al., 1988; Simberloff, 1988). Therefore I took the stance that if genetic diversity data is to

provide a robust approach to assessing the demographic value of patches, it must be

successful in the baseline scenario of genetics having no impact on demographic processes.

5.11 The followine chapter

In the next chapter I present the results of the MultiPop model for the scenarios outlined in

Figure 5.9. After initially presenting the results for dynamics and genetics separately, I then

link these two aspects of metapopulation biology with an analysis of how well genetics-based

ranks estimate the relative demographic value of patches in owl and rodent metapopulations'
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CHAPTER 6

Using genetics to rank patches: model results and summary

6.L Introduction

The model of metapopulation genetics and dynamics used in this thesis (MultiPop) was

developed as a simulation model because of the need to include a complex combination of

stochastic genetic and demographic processes. Unlike many analytic models whose logic and

behaviour is often readily accessible as a set of equations, simulation models may fall into the

trap of becoming something of a black box - accepting one data set as input and delivering

another set as output. To understand how such a simulation model works, it can be valuable

to examine the patterns produced by a number of its component processes. Accordingly, this

chapter is structured so that before presenting results of the MultiPop model relevant to the

central questions of the thesis, I offer a range of insights into the way the model works, firstly

in terms of population dynamics, and then in terms of population genetics. Although the final

results are described for a wide range of scenarios (Figure 5.9), many of the initial results

used to demonstrate the model's behaviour are restricted to a limited range of all possible

scenarios. In some instances I have chosen to only focus on the simple case of a three-patch

owl metapopulation where there are no catastrophes and no sex-bias in dispersal. While

some of these results can be interpreted quantitatively, some are intended purely to provide a

general impression of how the model works. Finally the main results are presented and I

focus on the central question of whether genetic information is likely to be useful for

determining the relative value of patches in metapopulations.
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6.2 Population Dynamics

6.2.1 The population dynamics of individual replicate metapopulations

Starting at one of the model's most basic levels we can look at the dynamics of individual

replicate metapopulations (Figures 6.I to 6.4). Figure 6.1 presents six replicate

metapopulations for the scenario of a three-patch owl metapopulation with no catastrophes

and no dispersal between patches. Note that the population size trajectories are quite erratic

(in this case purely as a result of demographic stochasticity), and that the population with the

largest carrying capacity (thickest line) is often, but not always, the last to go extinct. In

some instances the metapopulation is still extant 100 years after the model is initiated' Figure

6.2 presents six replicates for the same scenario, except that now there is I007o dispersal

(with no sex-bias) between the large and small patches (the very thick and very thin lines

respectively). Although it is difficult to appreciate how increased dispersal benefits the large

patch, it is clear to see that the small patch is more likely to be occupied by virtue of

recolonisation - a feature evident in Figures 6.2.c. and 6.2.e. Also of importance is the

existence of a rescue effect, evident in Figure 6.2.d., where the subpopulation in the smallest

patch dropped to a single individual before being rescued from extinction by individuals

dispersing from the large patch.

The dynamics of rodent populations is quite different to that of the owls. This is evident in

Figure 6.3, which shows six replicates for a three-patch rodent metapopulation with no

catastrophes and no dispersal between patches (i.e. the equivalent scenario to that for owls in

Figure 6.1). The overwhelming feature of the rodent population dynamics is the strong, rapid

cycling (every 3 or 4 years) as population size bounces over and under carrying capacity'

Given the structure of the model (Chapter 5), a plausible explanation is that each cycle

involves the following phases:

(1) One or two years of high fecundity and low dispersal (5Vo), when the population is below

carrying capacity but increasing in size.

(2) A year of high fecundity, followed by high dispersal (307o) as the population exceeds

carrying capacity.

(3) Possibly (if the subpopulation is still above carrying capacity) a year of zero fecundity

and high dispersal (3OEo).
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(4) A return to phase (1), after phases (2) and, (3) have decreased the population below

carrying capacity.

As such, the strong cycling in rodent population dynamics is to some extent a function of the

model's simplicity, with both fecundity and dispersal being step functions of population size

(Figures 5.5 and 5.6). Nonetheless, 4-5 year cycling is known to be a feature of some rodent

populations in nature (Finerty, 1980; Heikktla et al., 1994), and is therefore not an entirely

unrealistic feature for the model to produce.

Figure 6.4 demonstrates the effect of catastrophes and increased canying capacities on owl

population dynamics. These replicates are for a three-patch owl metapopulation with

catastrophes and no dispersal between patches. Thus, the only differences between this and

the scenario in Figure 6.1 are (1) the presence of catastrophes (occasional years of 5O7o

mortality on top of normal yearly mortality), and (2) the fact that the carrying capacities (and

hence the scale of the y-axis) have been increased four-fold. The effect of catastrophes is

clearly evident in the sporadic crashes in population size - as in, for example, the large patch

of Figure 6.4.a. at the 15-year mark.

6.2.2 Frequency distributions of the time to global extinction

Moving a level up from the detail of population dynamics, each replicate metapopulation

provides us with a time to global extinction (i.e. extinction of all subpopulations). Thus for

the replicate in Figure 6.1.c., the time to global extinction is 8l years. From 10,000

replicates, we can obtain a frequency distribution of extinction times. Figure 6.5 shows a set

of frequency distributions for the extinction times of a three-patch owl metapopulation with

no catastrophes, over varying levels of connectivity. There are two key features to note here:

(1) The time to metapopulation extinction increases as a function of connectivity. Thus, the

frequency distributions of extinction times shift to the right hand side as connectivity

lncreases.

(2) The per year metapopulation extinction probabilities are initially low - a feature which is

attributable to the model's starting condition of having all patches fully occupied (and

therefore less likely to go extinct) at year zero.
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Figure 6.1 Population dynamics of six replicate three-patch owl
metapopulations with no catastrophes and no dispersal. Each graph
shows how population size (N) changes over the first 100 years for each of
the three subpopulations. The thickness of each line reflects the carrying
capacity of the associated habitat patch: thick (K=20); medium (K=15);
thin (K=10).
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6.2.3 Estimating the probability of metapopulation extinction

Each frequency distribution of extinction times provides the basis for estimating the

probability of extinction within some time frame. This is simply calculated as the proporlion

of values lying to the left of some chosen time, such as 100 years. Thus, in Figure 6.6.a.,

where a total of 44.67o of all extinction times (shaded values) were less than or equal to 100

years, the estimate of P[E] roo is 0.446.

6.2.4 Thre effect of patch removal

Figure 6.6 demonstrates the effect of patch removal on metapopulation viability for a three-

patch owl metapopulation with no catastrophes and no dispersal between patches. The

baseline case against which to measure patch removal is the complete three-patch system

(Figure 6.6.a.), with P[E]ro o = 0.446. On removing the smallest patch and performing 10,000

simulations, the probability of metapopulation extinction increases very slightly to 0.455

(Figure 6.6.b.). Replacing the small patch and removing the medium patch gives an even

higher extinction probability of 0.551 (Figure 6.6.c.), while the large patch is clearly the most

important, with its removal causing the extinction probability to increase to 0.761 (Figure

6.6.d.). Using equation 5.5, these extinction probabilities can then be converted into patch

value measures. Accordingly, the value of the small, medium and large patches are 0.016,

0.190, and 0.569 respectively. Finally, this can be used to estimate the value of the medium

patch relative to the small patch, as 0.190 / 0.016 = 11'9.

Table 6.1 and Figure 6.7 present summary results for the three-patch owl metapopulation

with no catastrophes and no dispersal. This includes the results for all six connectivity levels.

The very first line of Table 6.1 (connectivity =07o) is the same data as that in the paragraph

above (with slightly different values because significant figures were preserved for the

calculations in the table). Note that there are two versions of relative patch value. The

version on the left hand side of the relative value measures of Table 6.1 are the same as that

described above - calculated as the relative value of the largest patch in a pair over the

smallest patch in the pair. In contrast, the version on the right hand side is calculated as the

relative value of the most important patch in a pair over the least important patch in the pair.

In future these will be referred to as RVl and RV2 respectively. Thus, if RVl is less than
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one, RV2 equals the inverse of RVl, while if RVl is greater than or equal to one, RVI equals

RV2.

Tables 6.2 to 6.10 present the equivalent results to Table 6.1, for all other scenarios examined

using the model. In the eight-patch metapopulations (Tables 6.9 and 6.10), the connectivity

values represent different levels of mortality during dispersal.

6.2.5 Some relative value measures are unreliable

It is important to note that some of the relative value measurements are negative (Tables 6.2,

6.8 and 6.10). Although it is possible to conceive of patches with negative values in nature

(e.g., a poor quality sink patch which attracts immigrants but sends out few emigrants), no

such mechanisms were included in this model. Therefore these results would seem to be an

artifact of sampling effor, and indeed there is some indication that this is the case. The

problem here is not in our confidence in each P[E]roo value per se. For example, with 10,000

simulations the957o confidence interval around an estimated P[E]roo of 0.5000 is 0.4902 to

0.5098 (based on Zar (1984)). Instead, the real problem is that relative patch value is

calculated as a ratio of the difference between P[E]roo values:

P[E] loounHour Al - P[E] rootcovrpl¡ret)
RV¡,s -

(P[E] roownHour Bl - P[E] rootcotøplerel)

This means that the closer two P[E]1s0 values are to each other, the greater the impact of

sampling erïor. To illustrate this point, consider the data in the second row of Table 6.2 (a

three-patch rodent metapopulation, with 207o dispersal), where the relative value of the

medium patch over the small patch is reported as -0.01. This in turn is attributable to the very

small yet negative value of the medium patch of -0.0035. The problem here is that the value

of this patch was calculated as:
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(P[E] rooungour pl5l - PtEl tootcot¡pler¡l)
Value of medium patch

( 1 - P[E] r ootcorr¡plerel)

(0.6sle - 0.6s31)

(1- 0.6s31)

Thus, the difference between the two proportions in the numerator (0.0012) involved only 12

replicate metapopulations out of 10,000. Clearly the potential effects of sampling error in

this case gives considerable cause for concern. For this reason I have chosen to exclude from

future analyses all cases where the relative value measure involved a difference of less than

0.01 (i.e. 100 replicate metapopulations out of 10,000). These are printed in bold in Tables

6.1 to 6.10. Although this is a rather crude approach for which there may be more elegant

alternatives, this criterion v/as successful in excluding all negative patch value measures, as

well as many suspiciously large positive values where sampling effor may have been equally

misleading (e.g., Table s 6.2, 6.6 and 6.8). Unfortunately the effect of this exclusion was that

some scenarios are poorly represented, particularly among rodent metapopulations (Tables

6.2,6.8 and 6.10).
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Table 6.1 Summary data for 3-patch owl metapopulation ; no catastrophes ; unbiased

dispersal.

PlEhoo
Conn. Complete P2s Prs Pro

Patch value
Pzo Prs Pro

Relative value
(P¡5 :P¡s)
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20Vo

40Vo
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80Vo
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0.6054

o.6462

0.6738

0.7145

o;7224

0 1904

0. l 695

0. l 098

0.0831

0 0585

0.0355

0.0162

0.t291

0.2277

0.2868

0.3530

0.3855

11.72

l .31

0.48

0.29

0. l7

0.09

11.72

l.3t
2.0'7

3.45

6.03

10.86

Table 6.2 Summary data for 3-patch rodent metapopulation ; no catastrophes
unbiased dispersal.

PlEhoo
Conn. Complete Pzo Prs Pro

Patch value
Pzo Prs Plo

Relative value
(P¡5 : P16)

ÙVo

207o

4O7o

6OVo

80Vo

l00Vo

0.8076

0ó531

0 4781

0.4054

o.3675

0 3486

0.984ó

0.9845

0.9850

0.9843

0.9855

0.9851

0.8266

0.6519

o.4'726

0.4087

0.3709

0.3531

0.8101

0.814'7

0.8209

0.8135

0.8139

0.8121

0.9200

0.9553

0.9713

o 9736

0.9'771

0.9771

0.0988

-0.0035

-0.0105

0.0055

0.0054

0.0069

0 0130

0.4658

0.6568

0.6863

0.?058

0.71 l 5

7.60

-0.01

-0.02

0.01

0.01

0.01

7.60

-134.67

-62.33

123.67

131.29

103.00

Conn. = connectivity level.
P[E]roo = probability of metapopulation extinction within 100 years'
"Complete" means the metapopulation contains all patches.
"P2s" under the P[E]roo heading means the metapopulation is missing the patch which has a carrying
capacity of 20 individuals.
"P2¡" under the Patch value heading refers to the value of that patch.
"(P15 : P1s)" refers to the relative value of these two patches - the left hand column is RVI (the value of
the large patch relative to the small patch), while the right hand column is RV2 (the value of the most

important patch relative to the least important in the pair of patches).
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Table 6.3 Summary data for 3-patch owl metapopulation ; no catastrophes ; female-

biased dispersal

PlELoo
Conn. Complete P2s Prs Pto

Patch value
Pzo Prs Pto

Relative value
(P¡5 :P16)

OVo

207o

4OVo

60Vo

80Vo

lÙOVo

0.32'7'7

0.2952

0.2393

0. r 950

0.1532

0.1174

0.6634

0.6619

0.67'70

0.6'70'7

o 6641

0.6700

o 4641

0.4059

0.3298

0.2't03

0.2061

0. l 635

o-3625

0.35't9

o 3622

0.3618

0.3634

0.3668

0.4993

0.5203

0.57s4

0.5909

0.6040

0.6261

02029

01571

0 1190

0.0935

0.0625

0.0522

0.051 8

0.0890

0.1616

o.20'72

0 2482

0.2826

392
1;t'7

o.74

045

o.25

0.18

3.92

t't'7

1.36

2.22

3.9'l

5.4t

Table 6.4 Summary datafor 3-patch rodent metapopulation ; no catastrophes ; male-
biased dispersal.

P[E]roo
Conn. Complete P2s Prs Pro

Patch value
Pzo Pls Pto

Relative value
(P15 : Pls)

07o

20Vo

40Vo

607o

SOVo

1007o

0.7230

0.6731

0.5825

0.5261

0.4898

0.4't39

0.9692

0.9655

0.961r

0.9646

0.9655

0.9642

0.7530

o 6942

0.6015

0.5462

05lll
0.4964

0.73r7

0.7268

0.7286

o;7289

0.7296

0.7280

0.8888

0.8945

0.9068

0.9253

0.9324

0.9320

0.1 083

0.0645

0.0455

0.0424

o.041'7

0 0428

0.0314

0. l 643

0.3499

o 4279

0.4700

0.4830

3.45

0.39

0.1 3

010

009

0.09

3.45

2.55

't.69

10.09

11.26

11.29

110



Table 6.5
dispersal.

Summary data for 3-patch owl metapopulation ; catastrophes ; unbiased

PlEhoo
Conn. Complete P2s Prs Pro

Patch value
Pzo Prs Pto

Relative value
(P15 :P¡6)

ïVo

20Vo

407o

60Vo

80Vo

lOÙVo

0.2953

0.24'71

0.1 884

0.1 382

0.0969

0.0'702

0.5501

0.5439

0.5541

0.5384

0.5492

0 5452

0.4480

o.3715

0.2801

0.21t0

0. l 455

0. I 052

0.373.s

0.3't93

0.3701

0 3768

0.3't0'7

0.3703

0.3616

0.3942

0,4506

o.4644

0.5008

0.s 109

0.216'7

0.1652

0 r 130

0.0845

0.0s38

0.0376

0 I ll0
0. l 756

o.2239

o.2'769

03032

0.3228

1.95

0.94

0.50

0.31

0.1 8

o.12

1.95

l.06

198

3.28

s.63

8.57

Table 6.6 Summ ary data, for 3-patch rodent metapopulation ; catastrophes ; unbiased

dispersal.

PlEhoo
Conn. Complete P2e Prs Pro

Patch value
Pzo Prs Pro

Relative value
(P15 :P¡¡)

07o

207o

40Vo

60Vo

807o

lOjVo

0.9588

0-484'7

0.3507

0.3199

0.3303

o.3440

0.9'792

0.9819

0.9'799

0.9817

0.9810

0.9787

0.9'ts6

0.491I

0.3557

0.3312

0.3431

0.3479

0.9691

0.9726

0.9709

0.9't2'7

o.9699

0.9't25

0.4951

0.9649

0.9690

0.9't3t

0.9't16

o 9675

0.4078

0.0t24

0.0077

0.0166

0 0191

0.0059

0.2500

0.9468

o.9552

0.9599

0.9s51

0.9581

1.ó3

0.01

0.01

0.02

0.02

0.01

r.63

76.23

|u.04
57;77

49.9'7

16r.15

lll



Table 6.7 Summary data for 3-patch owl metapopulation ; catastrophes ; female-
biased dispersal.

P[E]roo
Conn. Complete P2s Prs Pro

Patch value
Pzo Prs Pro

Relative value
(P15 :P1s)

07o

20Vo

409o

607o

807o

l00Vo

0.2245

0. r 846

0.t420

0. r 093

0.0888

0.0758

o 4620

0 4587

0 4536

0 4635

0 454t

0.4570

o.3719

0.3r25

0.2438

0 1830

0 1506

o.1116

0.2947

0.3056

0.3000

0.2952

0.2901

0.290'7

0 3063

0.3362

0.3632

0.397'1

0.4009

o.4125

0 1901

0.1569

0.1 186

0.0827

0.0678

o 0452

0 0905

0.1484

0.1 841

0.208'7

0.2209

0.2325

2.10

1.06

0.64

040

0.31

0.19

2.10

l.06

r.55

2.52

3.26

5.14

Table 6.8 Summary data for 3-patch rodent metapopulation ; catastrophes ; male-
biased dispersal.

PlEhoo
Conn. Complete P26 Prs Dr l0

Patch value
Pzo Prs Pro

Relative value
(P15 :P¡s)

O7o

207o

407o

60Vo

807o

l00Vo

0.9543

0.6483

0.4887

0.4348

0.4218

0.4121

0.9756

0.9755

0.9152

0 9758

0.9752

0.9't52

0.9701

0.6542

0.4931

o.4354

0.42t3

0.4248

0.9620

0 961'7

0.9616

0.9631

0.9588

0.96't1

0.4661

0.9303

0.9515

o.9572

0.9571

0.9578

0.345'7

0.0168

0.0086

0.0011

-0.0009

0.0216

0. l 685

0.8911

0.9249

0.9347

0.928'7

0.9440

2.05

0.02

0.01

0.00

0.00

o.02

2.05

53.12

1o7.48

880.s0

-1074.00

43.70

rt2



Table 6.9 Summary data for 8-patch owl metapopulation ;

catastrophes ; female-biased dispersal. The connectivity levels are

expressed in terms of dispersal mortality.

PlEhoo
Conn. Complete P¡5 Pzo Pzs P¡o P¡s P¿o P¿s Pso

0.0800

0.0400

0.0200

0.0100

0.0050

0.0025

0.1 770

0.1376

0.0889

o.045'7

0 0319

o.0212

0.1 843

0.1 550

0. l 097

0.0671

0.0463

o.032'7

0. l 899

0.1629

0 1003

0.0655

0.0463

0.0375

0.2040

0.1 73 l
o 1254

o.0767

0.0552

0.0409

0.2146

0. r 868

0.1294

0.0852

0.0628

0.05 13

0.2433

0.2042

0. I 555

0.1086

0.0709

0.0528

0.2300

0.1985

o.t4'73

0.1 035

0.0778

0.0636

0.2420

0.2029

0.1 560

0. l 089

0.0800

0.0636

0.27',76

0.2523

0. I 965

0.1450

0.0983

0.0760

Conn. Pls Pzo
Patch value

Pzs P¡o P:s P¿o Pu Pso

0.0800

0.0400

0.0200

0.0100

0.0050

0.0025

0.0089

0.0202

0.0228

0.0224

0.0149

0.0117

0.0157

0.0293

0.0125

0.020?

0.0149

0.0167

0.0328

0.0412

0 0401

0 0325

0.0241

0.0201

0.0457

0 0571

0.0445

0.0414

0.0319

0.0308

0.0806

0.07'72

0 073r

0.0659

0.0403

0.0323

o.0644

0.0706

0.0641

0.0606

0.04'14

0.0433

0.0790

0.075'7

0 0736

o.0662

0.049'7

0.0433

o.1222

0.1 330

0.1181

0.1041

0.0686

0.0560

Conn. (P5e: P2e)

Relative value

(Pa5 : P15) (P36 :P25) (Pae : P35)

0.0800

0.0400

0 0200

0.0100

0.0050

0.0025

7.80

4.53

9.44

5.02

4.61

3.36

8.90

375
3.23

2.95

3.34

3.69

8.90

3.7s

3.23

2.95

3.34

3.69

1.39

1.39

1.11

1.2'7

1.33

1.53

1.39

1.39

l.t I

1.27

1.33

1.53

7.80

4.53

9.44

5.02

4.61

3.36

0.80 1.25

0.91 1.09

0.88 t.r4
o92 1.09

1.18 r.18

1.34 1 .34
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Table 6.10 Summary data for 8-patch rodent metapopulation ;

catastrophes ; male-biased dispersal. The connectivity levels are

expressed in terms of dispersal mortality.

Conn. Complete Prs Pzo Pzs
PlEhoo
P¡o P¡s P¿o P+s Pso

0.12

0.10

0.08

0.06

0.04

0.02

0.9083

0.8854

0.8336

0.729't

0.4541

0.0669

0.93 l3
o.9223

0.890s

0.8218

0 6195

0.1317

0 9099

0,8807

0.8364

0.72't1

0 4810

0.0835

0.9199

0.8936

0.8662

0;79't6

o.6246

0.1'74'l

o 9146

0.8944

0.8492

0;t723

0.5920

0 1578

0.9491

0.9430

0.9358

0.9029

0.7854

0.2766

0.9095

0.897s

0.845s

0'7438

0.5293

0. l616

0 9125

0.8881

0.8406

0.7456

0.5065

0.1 330

0.9545

0.9486

o.934'1

0.9100

0.8 I 63

0.3394

Conn. Prs Pzo
Patch value

Pzs P¡o P¡s P+o P+s Pso

0.t2

0.10

0.08

0.06

0.04

o.02

0.5038

0.55 r s

0.6076

0.6670

0.6635

o.2920

0.2508

03220

0.3419

0.340'l

0.3030

0.0694

0.or'74

-0.0410

0.0168

-0.009ó

0.0493

0.0r 78

0.1265

0.0716

0. I 959

0.2512

0.3t23

0 1155

0.0687

0.0785

0.0937

0.r576

o.2526

0.09'74

0.4449

0.5026

0.6142

0.6408

0.6069

0.224',1

0.0131

0.1056

0.0715

0.0s22

0.1 378

0.1 01 5

0 0458

0.0236

0.0421

0.0588

0.0960

0.0708

Conn. (P5s :P2e)

Relative value

(Pa5 :P15) (P3e : P25) (Pas : P35)

o.t2

0.10

0.08

0.06

0.04

o.02

28.87

-13.45

36.11

-69.35

13.46

16 42

28.87

-13.45

36.11

-69.35

13.46

16.42

0.18

0.07

0.t2

0.17

o.32

1.O2

5.48

13.67

8.13

5.79

3.16

r.o2

0.54

l.l0
0.48

0.63

0.81

0.84

1.84

1.10

2.09

1.59

r.24

l.l9

0.03

0.21

0.12

0.08

o.23

0.45

34.00

4.76

8.59

12.28

4.41

2.21

Ir4



6,2.6 Comparison of extinction probabilites among all metapopulations

The degree of connectivity between subpopulations had a large effect on the viability of both

the owl and rodent metapopulations. This is evident in Figure 6.8, which is a summary of all

P[E]rootcor,¿p'-ErEl values in Tables 6.1 to 6.10 (i.e. the left-most column in each table). One

interesting feature of this figure is that rodent metapopulations experienced an extinction

threshold effect, whereby extinction probability suddenly increased below critical levels of

connectivity. If connectivity decreases as a function of inter-patch distance in real systems,

this suggests that a similar extinction threshold might occur as a function of patch density. In

other words rodent metapopulations may be sensitive to critical levels of patch density.

A similar extinction threshold effect was reported by Lande (1988), with a model that

suggested minimum threshold levels of suitable habitat are required for the persistence of

spotted owl metapopulations. It is interesting that a similar effect was not found for the owl

metapopulations modelled in this thesis (Figure 6.8). While the basis for this discrepancy is

unclear, the scale of fragmentation may somehow be important for achieving a threshold

effect in owls, given that Lande (1988) modelled habitat patches at the scale of individual

territories. The occurrence of extinction threshold effects is certainly worth further study,

and may shed light on the apparent bimodal distribution of patch occupancy reported in many

natural metapopulations (Hanski, 1982). In this regard it would be valuable to know if
organisms with particular life histories are more susceptible to critical levels of fragmentation

than other organisms.

The metapopulations modelled here have relatively high 1O0-year extinction probabilities by

conservation standards (Figure 6.8). This is particularly true for the rodent metapopulations,

many of which have 100-year extinction probabilities greater than 0.3, and some greater than

0.8. It is also important to recognise however, that these extinction probabilities are not

dissimilar to the expectations for many of the world's endangered populations and species

(e.g., Maguire et al., 1995; Green et aI., 1996; Hiraldo et aI., 1996; Gaona et al., 1998).

Although it would have been valuable to examine metapopulations with lower extinction

probabilities, this would have required larger carrying capacities, which in turn would have

required computing speed and memory beyond that which was available for this thesis.
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P[E]roo

P[E]roo

123 4 5 6

unbiased
no catastrophes

3-patch

unbiased
no catâstrophes

3-patch

123456
female-biased
no catastrophes

3-patch

female-biased
no catastrophes

3-patch

Owl

123456
unbiased

catasúophes
3-patch

Rodent

unbiased
catastrophes

3-patch

123456
female-biased
catastrophes

3-patch

female-biased
catastrophes

3-patch

123456
female-biased
catastrophes

8-patch

female-biased
catastrophes

8-patch

1.0

0,8

0.6

0.4

0.2

0.0

1.0

0,8

0.6

0.4

0.2

0.0 't 23456 123456 123456 123456 123456

Figure 6.8 Comparison of 100-year extinction probabilities for all
complete metapopulations (i.e. not missing any patches). Values I to 6 on
the x-axis corespond to increasing levels of metapopulation connectivity
(refer to Tables 6.1 to 6.10 for the details of these connectivity levels).
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6.2.7 ^lhe impact of initial conditions on patch value estimates

The main purpose of using the MultiPop model in this thesis was to assess whether genetic

diversity data, as measured at different times after a system's fragmentation, provides a good

estimate of the relative value of different habitat patches. Later I make this assessment for

genetics-based rankings of patch value that are made 5, 10, 20, 40 and 80 years after

fragmentation. If we define viability over a 1OO-year time frame, a biologist measuring the

genetic diversity of a metapopulation 40 years after fragmention would like to know the value

of patches over the next IOO years. Accordingly, the patch value estimates for the 40-year

sampling time should ideally be based on extinction probabilities measured from 40 to 140

years after fragmentation.

In contrast, all patch value estimates used in this thesis are based on extinction probabilities

measured from 0 to 100 years after fragmentation (Tables 6.1 to 6.10). If patch extinction

probabilities are constant over time, this discrepancy will have no effect; howevet, as shown

earlier (Figure 6.5), the metapopulations modelled by MultiPop do have an initially low

extinction probability due to the starting condition of all patches being fully occupied to

carrying capacity. To some extent this may bias the estimates of relative patch value.

The ideal approach would be to determine separate patch value estimates for each genetic

sampling time (5, I0, 20,40 and 80 years), using each of these as the starting point from

which the time to extinction is measured. However this was not possible because of the

extremely long computer run times required. For example consider an eight patch

metapopulation where we want to measure the 100-year extinction probability starting from

80 years after fragmentation. In this case the chance of obtaining metapopulations with all

patches occupied at the 80-year mark is so low that the vast majority of the program's run

time is wasted on replicates which end up being discarded after 80 years. Instead, I have

chosen to use the patch value estimates above (Tables 6.1 to 6.10) as the best estimates of

patch value available. The assumption being made here is that these measurements provide a

reasonable estimate of the value of a patch in maintaining metapopulation persistence over

the 100 years following the genetic sample. Nonetheless it is important to keep in mind that

these estimates may include some bias due to the potential effect of initial conditions.
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6.2.8 The time frame for extinction probabilities: 100 years

Although patch values were calculated using 100-year extinction probabilities, any time

frame could have been used. The 100-year criterion was used here mainly to be in keeping

with the conservation literature (Mace and Lande, l99l; Day and Possingham, 1995; Maguire

et a1.,1995; Green et a1.,1996; Hiraldo et al.,1996). While a longer time frame will clearly

increase extinction probabilities, it may also have some impact on patch value estimates'

This is evident in Table 6.11 where values based on both 100 and 200-year extinction

probabilities are given for a three-patch owl metapopultion with no catastrophes and 207o

dispersal.

Table 6.ll A demonstration of how the time frame used to measure extinction probabilities
affects patch value estimates for a 3-patch owl metapopulation with no catastrophes and207o

dispersi between patches. Here, extinction probabilities (and hence patch value estimates)

arsbased on two different time frames (100 and 200 years after the model is initiated). See

the box under Table 6.2 for further explanation of column headings.

OWL: 3-PATCH : UNBIASED DISPERSAL : NO CATASTROPIIES: CONN. =207O

PtE]
Time Complete P2s Prs Pro

Patch value
Pzo Pls Pro

Relative value
(P15 :P16)

100 yr

200 yr

0.3857

o.8429

0.7576

o.97'76

0.4898

0.8648

0.4650

0.8696

0.6054

0.8574

0. I 695

o.1394

0.129r

0.1700

1 .31

0.82

1.31

t22

6.2.9 Summary of relative patch value estimates

Figure 6.9 shows, for owls and rodents, how RVI (the relative value of the large patch over

the small patch in a patch pair) changes with connectivity for each of the five scenarios

modelled. Any value above 1 indicates that the largest patch was the most valuable in the

pair of patches. Remember that in the three-patch scenario, the comparison being made is

between an isolated medium-sized patch and a small patch connected by dispersal to a large

parch (section 5.4 and Fig. 5.7). Notice that for all three-patch metapopulations, the relative

value of the medium patch over the small patch decreases with connectivity. This is entirely

ll8



in keeping with the prediction that increased connectivity between the small and large

patches would increase the value of the small patch over the isolated medium patch.

The changes in RVl are more complex for the eight-patch metapopulations (bottom

scenarios), with patch value changing erratically as a function of connectivity. Although

these changes in patch value may in part be due to sampling etror, it could also be the case

that they are somehow attributable to subtle changes in the web of interaction involved in

these eight-patch metapopulations. This interesting feature of metapopulation dynamics is

potentially worth further study.

Note: some scenarios are poorly represented because of missing data (bold values in Tables

6.1 to 6.10), with no data at all for the top-most rodent scenario.

Figure 6.10 shows how RV2 values change with connectivity. Remember that this is the

relative value of the most valuable patch over the least valuable patch in a pair of patches. As

with RV1, any value close to I means that two patches in a pair were very similar in value to

the metapopulation. However, large RV2 values may be due not only to differences in patch

size (as for RVl) but also due to differences in connectivity. Accordingly the high RV2

values on the left hand side of these graphs (i.e. low or zero connectivity) represent

differences in patch value due to patch size, while high RV2 values on the right hand side

(i.e. high connectivity) represent differences due to one of the patches being well connected

to another patch (or set ofpatches).
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6.3 Population Genetics

6.3.1 The population genetics of individual replicate metapopulations

Just as it is useful to introduce metapopulation dynamics in terms of individual replicate

metapopulations, it is equally useful to introduce genetics at the same level. Figure 6.11

shows the changes in all six measures of genetic diversity (and population size) over the first

100 years after fragmentation for a large patch (carrying capacity = 20) in a three-patch owl

metapopulation with no catastrophes and no dispersal. These data were taken irrespective of

whether the other patches in the system were occupied. This differs from the later treatment

of genetic diversity data, where values are only used for ranking patches if all patches are

occupied. Note how the different measures of genetic diversity decay at different rates.

Observed heterozygosity and expected heterozygosity (i.e. expected under Hardy-Weinberg

equilibrium) decay slowly, the mean number of alleles per locus has a moderate rate of

decay, the number of polymorphic loci does not change at all, while both measures of

mitochondrial diversity decay very quickly.

As a comparison, Figure 6.12 shows the same set of graphs but for a small patch (carrying

capacity = 10) in a three-patch owl metapopulation with no catastrophes and L007o dispersal

between the large and small patches. This subpopulation goes extinct soon after 20 years,

and receives immigrants several times before becoming fully established again at

approximately the 7S-year mark. Where the patch is empty, no genetic diversity values are

given. Thus, I am considering the genetic diversity of a non-existent population to be a

meaningless concept. Note the effect on genetic diversity of immigrants arriving into the

patch after extinction occurred. Some measures such as observed and expected

heterozygosity, and the number of polymorphic loci are extremely sensitive to immigration,

with the arrival of only one or two immigrants from the large patch being enough to elevate

genetic diversity to almost pre-extinction levels. This sensitivity makes sense given that a

single immigrant individual that is heterozygous for every locus will result in observed and

expected heterozygosties of 1.0, and l0 polymorphic loci. In contrast the mean number of

alleles per locus is only moderately affected by immigration, being only partially restored to

its pre-extinction level of diversity. This also makes sense given that the mean number of

alleles per locus depends not just on the genetic diversity of individuals, but also the number
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of individuals with different alleles. Meanwhile both measures of mitochondrial diversity are

almost unaffected by immigration, presumably because the rest of the metapopulation has

already lost much of its mitochondrial diversity (as in Figure 6.11).

Figure 6.13 shows the changes in population size and genetic diversity for a large patch

(canying capacity = 20) in a three-patch rodent metapopulation with no catastrophes and no

dispersal. Note the relatively high rates of genetic diversity decay compared to the equivalent

owl population (Figure 6.11). While the number of polymorphic loci did not change for

owls, it drops to zero here for rodents. The measures of mitochondrial diversity decay

particularly quickly - down to their minima within 10 years. Such rapid rates of decay for the

rodent population are attributable to both its fast generation time and frequent bottlenecking

in numbers. Interestingly, although the changes in rodent population size are quite erratic,

the decay in genetic diversity is quite smooth.
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6.3.2 Mean changes in genetic diversity over time

Because the changes in genetic diversity of individual populations are stochastic, it is useful

to examine the summary results from a large number of replicates. Figure 6.14 shows the

changes in mean observed heterozygosity, expected heterozygosity (i.e. assuming Hardy-

Weinberg equilibrium) and mean number of alleles per locus for owls and rodents in three-

patch metapopulations with no dispersal. Each graph shows the conditional mean genetic

diversity from 100 replicates for six different populations, calculated in each of the first 80

years after fragmentation. These means were conditional in the sense that replicates were

only used when the population in question was extant. Therefore many more than 100

simulations were required to obtain the 100 suitable replicates. Due to long computer run

times, it was not possible to perform independent replicates for each of the different measures

of genetic diversity (i.e. the same 100 replicates were used for all measures). The top three

lines (from top to bottom) are the large (K - 80), medium (K = 60) and small (K = 40)

patches in a system with catastrophes, while the bottom three lines (from top to bottom) are

the large (K = 20), medium (K = l5) and small (K = 10) patches in a three-patch system with

no catastrophes. Figure 6.15 is from the same metapopulations, but describes changes in the

mean number of polymorphic loci, mitochondrial diverisity, and number of mitochondrial

haplotypes.

Important features to note are that:

- The rate of decline in mean genetic diversity is much higher for rodents than owls.

- The shape of genetic diversity curves varies considerably between the different measures.

In particular, at different times, some measures of genetic diversity achieve greater

separation among patches than other measures.

The rate of decline in genetic diversity of these populations is particularly high. Clearly these

populations would be somewhere toward the hopeless end of any conservation genetics

spectrum. It is important to remember however, that the purpose of this model is not explore

issues of conservation genetics per se, but to understand how genetic diversity can help gain

insights into metapopulation demographics. The high extinction probabilities and high rates

of decay of genetic diversity produced by this model are an unfortunate limitation required to

keep computer run times reasonably low.
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6.3.3 Changes in the variance of genetic diversity over time

As well as looking at changes in mean genetic diversity, it is also important to appreciate

changes in variance over time. The higher the variance, the greater the chance that genetic

diversity will provide a poor basis for estimating the relative value of patches. Figures 6.16

and 6.17 show (for both owls and rodents) how the spread in genetic diversity values changes

over time for an isolated patch with a carrying capacity of 20 and no catastrophes. The line

on each graph is the conditional mean from 100 data points (i.e. the same as the K = 20 line

in Figures 6.14 and 6.15). Also shown are 80 scatterplot values - one for each of the 80 years

after fragmentation. Each of these values was calculated from a single replicate population,

and as with the means, these values were only taken conditional on the population in question

being extant. Note how the patterns of variation vary among the six measures of genetic

diversity.
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6.4 Intesrating population dvnamics and genetics

6.4.1 Reducing the analysis to a manageable level

One of the major difficulties of trying to draw general conclusions from a simulation model

lies in determining an appropriate set of scenarios over which to run the model. One extreme

is to explore so few scenarios that the generality of any conclusions may come into question,

while the reverse extreme is to explore so many scenarios that any synthesis is obscured by

the sheer volume of results. Clearly it is important to achieve a compromise between these

two extremes. In trying to assess the utility of genetic diversity data for ranking patches, I

chose the set of scenarios described in Figure 5.9. The number of genetic diversity ranks

produced with this design became immense following the inclusion of five sampling times

and six measures of genetic diversity. Therefore, in order to restrict the analyses to a

manageable level, I decided to reduce the results to what appeared to be the best sampling

time, and the most informative measure of genetic diversity.

6.4.1.1. The choice of sampling time

Figures 6.18 to 6.22 show for owls and rodents the proportion of metapopulations still extant'

and the proportion of metapopulations with all patches occupied, for all scenarios examined

using the model. Each page represents a different sampling time (5, 10,20,40 and 80 years),

while the ten graphs on each page coffespond to the ten different scenarios (containing data

for all six connectivity levels). Note that for any given scenario the proportion of

metapopulations still extant decreases with time, as does the proportion of metapopulations

with all patches occupied. The most important of these two variables is the proportion of

metapopulations with all patches occupied, as only fully occupied metapopulations were used

as replicates for ranking the genetic diversity of patches. This level of conditionality

contrasts with the genetic examples above, where conditionality extended only to the

subpopulation in question (i.e. not to all subpopulations in the metapopulation) (Figures 6.14

to 6.17), or where data were used without any conditions on patch occupancy (not even for

the patch in question) (Figures 6.1 1 to 6.13).

The approach taken here was to choose a sampling time that would be long enough to have

allowed the genetic diversity of subpopulations to diverge, but not be so long that (1) genetic
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diversity had reached its minimum, or (2) that there were too few scenarios with high levels

of patch occupancy. No single sampling time is optimal for all scenarios, with rodent

metapopulations appearing to be much more sensitive to an increase in sampling time than

owl metapopulations. Fully intact rodent metapopulations were very rare at the longer

sampling times of 20, 40 and 80 years (Figures 6.20, 6.21 and 6.22). Not only does this

reduce the number of fully intact replicates available for data analysis at these times, but also

presents a situation of very little management importance. That is, if the chance of finding a

fully intact rodent metapopulation at 20 years is extremely low, we would expect to only very

rarely find all subpopulations extant in such a metapopulation in nature. In that case we

would hardly ever expect to apply any rule that links genetic diversity to patch value. For

these reasons I chose to use the sampling time of l0 years after fragmentation (see Figure

6.19) to accommodate all scenarios. Although some scenarios are still poorly represented

(e.g., the eight-patch rodent metapopulation), in most scenarios the proportion of

metapopulations fully intact is quite high. Furthermore, Figures 6.14 and 6.15 suggest that at

10 years after fragmentation there is generally some differentiation between patches in mean

genetic diversity.
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Figure 6.20 Proportion of metapopulations extant (large vihite
markers) and proportion of metapopulations with all subpopulations
extant (small black markers) 20 years after fragmentation, for
owls (left) and rodents (right). 95Vo confidence intervals were
included but do not extend beyond the markers. Connectivity for

increases from left to right).
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Figure 6.2L Proportion of metapopulations extant (large white
markers) and proportion of metapopulations with all subpopulations
extant (small black markers) 40 years after fragmentation, for
owls (left) and rodents (right). 957o confidence intervals were
included but do not extend beyond the markers. Connectivity for
three-patch metapopulations is the 7o of dispersers successfully
moving between the large and small patches; connectivity for eight-
patch metapopulations is dispersal mortality per unit distance (note:
the x-axis for eighfpatch systems is reversed so that connectivity
increases from left to right).

138



1.00

0.50

0.00

1.00

0.50

0.00

1.00

0.50

0.00

1.00

0.50

0.00

1.00

0.50

0.00

owL
3-patch ; no catastrophes ;

unbiased dispersal

80 1000 20 40 60

1.00

0.50

0.00

1.00

0.50

0.00

1.00

0.50

0.00

1.00

0.50

0.00

1.00

0.50

0.00

RODENT

3-patch ; no catastrophes ;

unbiased dispersal

0 20 40 60 80 100

3-patch ; no catastrophes ;

sex-biased dispersal
3-patch ; no catastrophes ;

sex-biased dispersal

0 20 40 60 80 100

3-patch ; catastrophes ;

unbiased dispersal

0 20 40 60 80 100

3-patch ; catastrophes ;

sex-biased dispersal

0 20 40 60 80 100

8-patch ; catastrophes ;

sex-biased dispersal

0 20 40 60 80 100

3-patch ; catastrophes ;

unbiased dispersal

o 20 40 60 80 100

3-patch ; catastrophes ;

sex-biased dispersal

o 20 40 60 80 100

8-patch ; catastrophes ;

sex-biased dispersal

0.08 0.04 0.00 0j2 0.08 0.04 0.00

connectivity

Figure 6.22 Proportion of metapopulations extant (large white
markers) and proportion of metapopulations with all subpopulations
extant (small black markers) 80 years after fragmentation, for
owls (left) and rodents (right). 957o confidence intervals were
included but do not extend beyond the markers. Connectivity for
three-patch metapopulations is Íhe 7o of dispersers successfully
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patch metapopulations is dispersal mortality per unit distance (note:
the x-axis for eighrpatch systems is reversed so that connectivity
increases from left to right).
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.4.t

Having decided upon a sampling time of 10 years after fragmentation, we can now look at

how well the different measures of genetic diversity perform in determining the relative value

of patches. Figures 6.23 to 6.28 show the ability of each of the six different measures of

genetic diversity to detect which patch in a pair is the most valuable to a metapopulation.

This is measured as the proportion of genetics rankings that correspond to the ranking of the

patches based on their demographic value (as in Tables 6.1 to 6.10). So, for example, Table

6.1 tells us that when there is 1007o dispersal in the 3-patch owl metapopulation with no

catastrophes and no sex-bias in dispersal, the relative value of the medium patch to the small

patch (RVl) is 0.09. Because this is less than the critical value of l, we identify the small

patch as the most valuable of the two patches. Next, with the data from 1000 replicate

metapopulations where genetic diversity was recorded we can rank the same patches

according to their genetic diversity, making the assertion that the most valuable patch will

have the highest genetic diversity. For the same scenario described above, it turns out that

using observed heterozygosity performs quite poorly in this regard - correctly identifying the

small patch as the most important of the two patches on only slightly more than 5O7o of

occasions (the right-most data point in Figure 6.23a). In other words this is similar to the null

hypothesis of randomly choosing the most valuable patch. In contrast, expected

heterozygosity provides a much better basis for predicting relative patch value for this

example (the right-most data point in Figure 6.24a). In this case we correctly identified the

most important patch on approximately 757o of all occasions (i.e. genetic diversity was

higher in the small patch than in the medium patch for l57o of the replicates).

Although 1000 metapopulations were replicated for each proportion, not all of these were

useable in the analysis. There were several reasons for this. Firstly, metapopulations were

excluded if some of their patches were unoccupied at the time of sampling. This was

particularly common with the rodent metapopulations (see Figure 6.19). These replicates

were excluded so that the same starting condition used to estimate relative patch value by

simulation (i.e. all patches being initially occupied) would correspond to the patch occupancy

at the time of genetic sampling. Also, in many cases, one or more of the patches being

ranked was unoccupied, in which case it was not possible to measure genetic diversity. Even

when all patches were occupied, replicate metapopulations were excluded when there was no

difference between the genetic diversity of the two patches in question. As stated in section
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5.8, these excluded data points do not represent incorrect estimates of patch ranking, but

simply non-informative instances when a conservation biologist would not attempt to rank

patches.

Because many of the proportions in Figures 6.23 to 6.28 were based on less than 1000 data

points, these estimates have varying levels of sampling effor. Accordingly the size of the

957o confidence intervals in these figures varies somewhat among scenarios and different

measures of genetic diversity. In many cases no confidence interval can be seen - this is

simply because the confidence interval was too small to extend beyond the marker'

Confidence limits based on less than or equal to 50 data points were calculated using

binomial probabilities, while a normal approximation was used for proportions based on

more than 50 data points (Steel and Torrie, 1960).

There are several important features to note from Figures 6.23 to 6.28:

- Some measures of genetic diversity are better predictors of relative patch value than

others. Observed heterozygosity (Figure 6.23) seems a weak predictor of relative patch

value, particularly for the owl metapopulations, for which its predictive accuracy was

very close to the null hypothesis of 0.50. The number of polymorphic loci is also a poor

predictor of relative patch value, for rodents as well as owls. In this case (Figute 6.26)

note the large confidence intervals which are due to fact that so few of the 1000 genetics

replicates were useable. This was not due to the lack of fully occupied metapopulations

(Figure 6.19) but to the high frequency of metapopulations having two patches with the

same number of polymorphic loci. This in turn can be attributed to this measure of

genetic diversity being (1) based on a small range of integer values, and (2) having a slow

initial rate of decay from the starting condition of all subpopulations having 10

polymorphic loci (Figure 6.15).

- Even the better predictors of relative patch value (expected heterozygosity, mean number

of alleles per locus, mitochondrial diversity, and number of mitochondrial haplotypes)

were quite unreliable. None of these measures allow us to make a general statement such

as "a guess of relative patch ranking based on this measure of genetic diversity will be

correct 807o of the time". While in some instances these measures of genetic diversity

provide very good predictions of relative patch value (i.e. more than 907o correct), they

also provide poor predictions (507o conect or lower). Although this is frustrating, it is

not at all surprising, since we can expect that the ability to resolve a difference in patch

t4t



value will be low when two patches have a similar value, and higher when patches are

more different in value. Indeed there is some indication that this is the case, with the

proportion of genetics-based guesses that are correct being greater at the two extremes of

connectivity (Figures 6.24,6.25, 6.27, and 6.28) - a somewhat similar pattem to the way

that relative patch value (RV2) varies with connectivity (Figure 6.10).

Some predictions of patch value were misleading, whereby less than 5O7o of the genetics-

based gueSSeS were colTect (e.g., Figures 6.25a, C, a, E, and j). In such cases, using

genetics to estimate relative patch value is worse than randomly assigning relative patch

values. Interestingly, these misleading scenarios occurred when connectivity made the

smaller patch in a pair slightly more valuable than the larger patch (see Tables 6.1, 6.3,

6.5,6.7). This pattern provides some insight into an issue highlighted in Chapter 5 (in

relation to Figure 5.2), that the link between genetic diversity and relative patch value

may in part be obscured if these variables follow different functions of patch isolation and

aÍea. The data here suggest that as we increase connectivity, the switch in relative

relative patch value occurs just before the switch in relative genetic diversity.
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Figure 6.23 Proportion of correct genetic rankings for owls (left) and
rodents (right) when using a l0-year sample of observed
heterozygosity. Where large enough, 957o confidence intervals extend
beyond markers. For the eight-patch systems the four markers at each
connectivity level correspond to the following patch pairs: P5e & P26,

P¿s & Prs, P¡o & Pzs, and P¿o & P35. Connectivity for three-patch
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dispersal mortality per unit distance (note: the x-axis for eight-patch
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Figure 6.24 Proportion of correct genetic rankings for owls (left) and
rodents (right) when using a lO-year sample of expected
heterozygosity. Where large enough, 957o confidence intervals extend
beyond markers. For the eight-patch systems the four markers at each
connectivity level colrespond to the following patch pairs: Pso & Pzo,

P¿s & Prs, P:o & Pzs, and P¿o & P35. Connectivity for three-patch
metapopulations is the 7o of dispersers successfully moving between
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metapopulations is dispersal mortality per unit distance (note: the x-
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Figure 6.25 Proportion of correct genetic rankings for owls (left) and
rodents (right) when using a lO-year sample of the mean number of
alleles per locus. Where large enou gh, 957o confidence intervals
extend beyond markers. For the eight-patch systems the four markers
at each connectivity level conespond to the following patch pairs: P56
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patch metapopulations is Íhe Vo of dispersers successfully moving
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axis for eight-patch systems is reversed so that connectivity increases
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Figure 6.26 Proportion of co11ect genetic rankings for owls (left) and
rodents (righÐ when using a lO-year sample of the number of
polymorphic loci. Where large enough, 957o confidence intervals
extend beyond markers. For the eight-patch systems the four markers
at each connectivity level coffespond to the following patch pairs: P56

&Pzo, P¿s & Prs, P¡o & P25, and P¿o & P¡s. Connectivity for three-
patch metapopulations is the %o of dispersers successfully moving
between the large and small patches; connectivity for eight-patch
metapopulations is dispersal mortality per unit distance (note: the x-
axis for eight-patch systems is reversed so that connectivity increases
from left to right).
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Figure 6.27 Proportion of coffect genetic rankings for owls (left) and
rodents (right) when using a lO-year sample of mitochondrial
diversity. Where large enou gh, 957o confidence intervals extend
beyond markers. For the eight-patch systems the four markers at each

connectivity level coffespond to the following patch pairs: Pso & Pzo,

Pa5 & P15, P3s & P25, and P¿o & P¡s. Connectivity for three-patch
metapopulations is the 7o of dispersers successfully moving between
the large and small patches; connectivity for eight-patch
metapopulations is dispersal rnortality per unit distance (note: the x-
axis for eight-patch systems is reversed so that connectivity increases
from left to right).
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Figure 6.28 Proportion coffect genetic rankings for owls (left) and
rodents (right) when using a lO-year sample of the number of
mitochondrial haplotypes. Where large enough, 957o confidence
intervals extend beyond markers. For the eight-patch systems the four
markers at each connectivity level correspond to the following patch
pairs: P56 & P2s, P¿s & Pts, P¡o & P25, and P¿o & P35. Connectivity
for three-patch metapopulations is the Vo of dispersers successfully
moving between the large and small patches; connectivity for eight-
patch metapopulations is dispersal mortality pef unit distance (note:

the x-axis for eightpatch systems is reversed so that connectivity
increases from left to right).
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6.4.1.3 Choosing an appropriate measure of genetic diversity

The purpose of this section is to choose a particular measure of genetic diversity with which

to base further analyses. Of the six measures, two (observed heterozygosity and the number

of polymorphic loci) have already been identified as poor candidates for predicting relative

patch value. 'When choosing among the remaining four measures of genetic diversity, the

first point to note is that the proportion of guesses correct is highly correlated among the four

measures. While this can be seen by comparing the shapes of Figures 6.24,6.25,6.27 and

6.28, Figure 6.29 summarises these data as a set of pairwise correlations, with the correlation

coefficient, r, ranging from 0.95 to 0.98. Based on how tight these correlations are (and the

fact that the data fall approximately around a 1:1 line), it would seem that none of the genetic

measures stands out as being better than the others. Given this freedom of choice I decided to

use the mean number of alleles per locus. As will become clear later, this measure is

particularly useful in providing a quantitative measure of relative genetic diversity of two

patches. Because the mean number of alleles per locus is greater than or equal to 1, we can

always obtain a ratio of genetic diversity between two patches, and because it is a real

number, the ratio can potentially take on a large number of values. In contrast, both expected

heterozygosity and mitochondrial diversity can drop to zero, thereby preventing us from

calculating a ratio. The number of mitochondrial haplotypes, while always greater than or

equal to 1, has the disadvantage of being an integer. Accordingly any ratio of two patches

will be limited to a smaller number of possible values than if we used the mean number of

alleles per locus.
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of relative patch value

6.5.L Using l0-year samples of the mean number of alleles per locus for owls and
rodents

Based on the results so far, we are limited to stating that the predictive accuracy of using

genetics to guess relative patch value varies among scenarios from less than 507o (i.e. worse

than a random choice) to more than 907o (see Figure 6.25 for the mean number of alleles per

locus). In itself this would provide very little guidance for the managers of metapopulations,

other to say that genetic ranking of patches can be accurate in some circumstances.

Importantly however, this variation in predictive accuracy appears to be related to how

different two patches are in value (i.e. compare Figures 6.25 and 6.10). For the purposes of

managing metapopulations, it would certainly be useful to know if genetic rankings are more

likely to be correct when the real difference in patch value is greater. This would potentially

provide a useful way for dealing with variation in the proportion of genetic rankings that are

correct. So although we cant make a general statement such as:

"there is an 807o chance of correctly ranking two patches"

we might be able to make the statement that:

"there is an 807o chance of correctly ranking two patches whose relative value dffirs by a

factor of 2 or more."

In other words, we might be able to make statements about the probability of making

mistakes of varying magnitude. The important point here is that the more different two

patches are in value, the greater our need (from a management perspective) to be correct in

ranking them. For example we dont want to give advice to clear a patch of native vegetation

if there is a much less valuable patch to sacrifice in its place. In contrast, if two patches have

very similar value (i.e. RV2 = 1), we should not really care if we rank them incorrectly. Even

the misleading scenarios (i.e. when less than 507o of genetic rankings are correct) are not of

any great concern if they occur only with pairs of patches that have similar value.
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Figure 6.30 shows how the proportion of correct genetic rankings varies as a function of

relative patch value (RV2). Ideally we would like the relationship between the proportion of

correct genetic rankings and relative patch value to be positive, tight, steep, and reaching a

high asymptote. Unfortunately this is not the case for most of the data in Figure 6.30, with

the exception of the scenarios in Figures 6.30d and 6.30i. Instead, the high level of noise

apparent in most of Figure 6.30 suggests that we are unable to use genetic rankings to make

meaningful statements about relative patch value, at least in the set of scenarios examined

here.

6.5.2 Using 4O-year samples of the mean number of alleles per locus for owls: an
encouraging insight

Given the lack of success in using lO-year genetic samples to predict relative patch value, I

decided to perform the same set of analysis using 4}-year samples, thereby giving more time

for the genetic diversity of subpopulations to have diverged. Importantly however, these

analyses could only be performed for the owl metapopulations, since very few rodent

metapopulations were fully occupied 40 years after fragmentation (Figure 6.21). As with the

10-year samples, the mean number of alleles per locus was chosen as the measure of genetic

diversity.

Figure 6.31 shows how the proportion of correct genetic rankings varies as a function of

relative patch value (RV2). This is the 4O-year equivalent of the left-hand column of 6.30.

Importantly, note how for each scenario these relationships are now positive, tight, steep, and

reach a high asymptote - thereby satisfying all the criteria we would expect of a meaningful

predictor of relative patch value. Pooling the data from all owl scenarios examined in this

thesis, Figure 6.32a demonstrates how a single tight relationship between the proportion of

correct genetic rankings and relative patch value accommodates the different situations.

Included here are three-patch metapopulations (with and without catastrophes, with and

without sex-biased dispersal), eight-patch metapopulations (with catastrophes and sex-biased

dispersal), and a range of patch pairs - some where relative patch value is determined by size,

and some by connectivity. From this relationship we could claim that there is at least a757o

chance that a genetics-based guess will correctly rank two patches whose relative value

differs by a factor of 4 or more. Note that in these 4}-year data, there are none of the

misleading (less than 507o correct) scenarios that occurred with the lO-year samples. This
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suggests that the misleading results for l0-year samples are partly because the system has not

yet approached quasi-equilibrium (i.e. equilibrium conditional on subpopulations still being

extant). Remember that these misleading results occurred when small patches were not

properly identified as the most important patch in a pair. Accordingly it would seem that if a

system is sampled too soon after fragmentation, there has been insufficient time for dispersal

to have made the genetic diversity of a small patch greatü than that of a larger but less

important patch to which it is being compared.

To further describe the relationship in Figure 6.32a, it is convenient to initially transform the

y axis from a proportion, p, to its odds, p/(l-p). This has the desirable effect of making the

relationship between y and x approximately linear (Figure 6.32b). To perform linear

regression however, it is also necessary that the data are homoscedastic (equal variance

around y for different values of x). This was achieved with these data by log-transforming

both the x and y values, giving Figure 6.32c. The regression equation for this relationship is

y = -0.0133 + 0.93x (R2=0.91, d.f. = 45, P < 0'001).

Perhaps most importantly, the results from this regression show that relative patch value

explains 9L7o of the variation in the proportion of correct genetic rankings. Keeping in mind

that some of the remaining 97o wtll be partly due to sampling error (see error bars in Figure

6.32a), this result tells us a number of things. Firstly it suggests that within a set of

circumstances (e.g., 4}-year samples the number of alleles per locus in owl metapopulations),

we may expect a high level of robustness to this method of ranking patches. That is, even

including variables such as environmental catastrophes, sex-biased dispersal and the number

of patches, there is a tight relationship between the proportion of correct rankings and relative

patch value. To the extent that these scenarios differ, these results indicate that the approach

used here has passed a form of sensitivity analysis. This in turn suggests that if we have a

system with unknown parameter values, we can include a range of different, plausible

scenarios and hope that that the same relationship between the proportion of correct rankings

and relative patch value holds across all scenarios.
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Secondly, the tightness of the regression supports the use of the measure of relative patch

value used in this thesis. The fact that a pattern of genetic diversity can be so closely related

to a set of metapopulation extinction probabilities suggests that the relative patch value

measure used here is indeed meaningful. If, in contrast, it was a meaningless measure of

relative patch value we could not expect the tight relationship in Figure 6.32. This confirms

not only Lindenmayer and Possingham's (1996) equation for the value of a single patch (Eqn

5.5), but also its adaptation here into the relative value of two patches (Eqn 5.6).

6.6 Makins the most of eenetic diversitv data

So far the data have only been analyzed in terms of which of two patches has the highest

genetic diversity. This ignores some potentially useful data concerning the magnitude of the

ratio of genetic diversity between two patches. The important issue here is that a large ratio

of genetic diversity may be a good indication that there is a large difference in the value of

the two patches. To understand how this affects our estimate of making a coffect guess of

patch ranking, consider the following. Figure 6.33 shows a frequency distribution of 1000

genetic ratios for the scenario of a three-patch owl metapopulation with no catastrophes, and

unbiased 1007o dispersal. These data are based on 4O-year samples of the mean number of

alleles per locus. In this scenario the medium patch is less valuable than the small patch

because of the small patch's connectivity to the large patch. This is reflected in the relative

patch value (RVl) of the medium patch to the small patch, of 0.09. Accordingly, most of the

genetic ratio values (medium/small) are less than 1 (Figure 6.33b), the proportion being 0.87

(i.e.874 of the 1000 replicates). Therefore, if we simply guess that the patch with the highest

genetic diversity is the most important patch then there is an 8'77o chance of being correct.

The accuracy of this guess improves however, if we take into account the magnitude of the

genetic diversity ratio. For example, we can ask what the probability of being correct is when

the observed ratio of genetic diversity is greater than or equal to 2.0 (or less than or equal to

its reciprocal, 0.5). In this case we exclude all genetic ratios between 0.5 and 2.0 (Figure

6.33c) and recalculate the probability of being correct as 0.94 (276/294). Thereby the

confidence of making a correct guess has increased from 0.87 to 0.94.

r5'7



Figure 6.34 shows how taking into account the size of genetic diversity ratios increases our

confidence in correctly guessing patch value across the full set of owl metapopulation

scenarios examined in this thesis. As before, this is using 4}-year samples of the mean

number of alleles per locus. Figure 6.34a is virtually the same as 6.32a, the only difference

being the level of replication. In the case of 632a, proportions were based on anything up to

1000 replicates, depending on the number of metapopulations fully-occupied, and the number

of replicates whose genetic diversity ratio was not exactly 1. In contrast, each of the

proportions in Figures 6.34a and 6.34c was based on 100 values, so as to standardise the level

or replication for 6.34a and 6.34c.

Note the higher proportion of correct rankings when patches are ranked only if the ratio of

genetic diversity is greater than or equal to 2.0 (or less than or equal to 0.5). Not only does

the curve in the selective case (6.35c) rise faster than the all-inclusive case (6.35a), but it also

reaches a higher asymptote. The difference between the two curves can be seen clearly by

comparing the regression lines in Figures 6.34b and 6.34d. These two data sets are

superimposed in Figure 6.34e, with the slopes of the two regression lines being significantly

different (F = 6.89, d.f. = 88, P = 0.01, using Sokal and Rohlf (1981, p. a99)).
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6.7 Summarv of model results

The MultiPop model has shown that genetic diversity data can provide a useful way for

estimating the relative value of the patches in a metapopulation. Among the situations

examined, a strong link between genetic diversity and patch value was found using the mean

number of alleles per locus, sampled 40 years after fragmentation in owl metapopulations. In

contrast, measuring genetic diversity in owl metapopulations only l0 years after

fragmentation provided a very poor basis for estimating patch value' This clearly

demonstrates that metapopulations created by the fragmentation of a previously panmictic

population should not be sampled too soon after fragmentation or the genetic diversity of

their subpopulations will not have diverged enough to distinguish patches of different value.

Unfortunately rodent metapopulations could only be studied at sampling times close to

fragmentation, where there was no clear pattern between genetic diversity and relative patch

value. Because of their highly stochastic dynamics (due to high fecundity and high

mortality), the rodent metapopulations were so extinction-prone that there was a scarcity of

fully occupied metapopulations beyond the l0-year sampling time.

The data produced by MultiPop suggest that there are no golden rules in relating genetic

diversity to relative patch value; in other words, there is no single probability of correctly

ranking patches. Although under some circumstances the probability of successfully ranking

patches can be quite high (greater than 907o), this probability varies according to how

different two patches are in value. As such, we can really only hope to talk about "accuracy

versus relative patch value curves", the quality of which is determined by a combination of

the tightness and steepness of the relationship, and height of its asymptote. Essentially these

curves allow us to describe the probability of making mistakes of varying magnitude, where

ideally we want a low probability of making a big mistake when estimating relative patch

value.

Some metapopulations may lend themselves very well to this framework of analysis. This is

evident in the analysis performed on 40-year samples of owl genetic diversity in this thesis.

In this case the accuracy versus relative patch value curve was indeed a tight, steep

relationship with a high asymptote. Importantly, the shape of this relationship seemed

insensitive to details of the metapopulation's structure - disturbance regime (none or some),
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dispersal (amount and whether or not it was sex-biased), and the size of the metapopulation

(three versus eight patches). Even more encouraging was that both the steepness of the

relationship and height of the asymptote were improved by excluding data in which the ratio

in genetic diversity between the two patches was less than a nominated threshold.

If measures of genetic diversity are to be used to estimate relative patch value, it is important

to identify the conditions under which the approach works. In the following chapter I suggest

how the managers of specific metapopulations might incorporate a genetic-based approach to

ranking the value of the different patches for a particular species. Nonetheless it is important

to consider the need for general research in developing an understanding of the link between

genetic diversity and relative patch value. One of the major challenges in this regard would

be to try to gain an indication of what combinations of organism life histories, patch carrying

capacities and sampling times provide the basis for reliable genetics-based ranking of

patches. While rodent metapopulations were examined in this study, their carrying capacities

were clearly too low (and hence extinction probabilities too high) to fully explore the

potential link between genetic diversity and relative patch value. Increasing the carrying

capacities of rodent metapopulations should result in higher levels of patch occupancy,

slower and more deterministic declines in genetic diversity over time, and thereby possibly

provide the basis for more successful ranking of patches at sampling times greater than the l0
years after fragmentation examined here. This however, would require making significant

changes to the MultiPop model, possibly in a different language to Turbo 7.0 Pascal, which

(a) accommodates more individuals, and (b) allows faster population dynamics. If possible, it
would also be valuable to include organisms with very different life histories to owl and

rodents, such as plants and invertebrates.
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CHAPTER 7

Discussion and conclusions

The purpose of this chapter is to discuss how the findings from the model in Chapters 5 and 6

may be applied in managing real metapopulations, and how the approach presented in those

chapters relates to existing methods used in metapopulation management. I then make some

final comments to summarise the ideas in this thesis.

Chapter 6 showed that genetic diversity data can, under some circumstances, provide a useful

way for estimating the relative value of patches in a metapopulation. For the managers of

any real metapopulation, the challenge lies in knowing how well to trust this potential link

between genetic diversity and relative patch r¡alue. In particular, this requires system-specific

knowledge of the shape of the "accuracy versus relative patch value" curve that describes

how the estimated proportion of correct genetics-based patch rankings varies as a function of

the relative value of the two patches being ranked.

Importantly, the owl and rodent metapopulations presented in this thesis should only be seen

as examples of how to perform similar analyses, and as such, the results here are not directly

applicable to any real scenario. Thus, although a strong relationship was found to link the

mean number of alleles per locus to relative patch value for owls sampled 40 years after

habitat fragmentation, this does not mean that this finding applies directly to any real owl

metapopulation. There are simply too many parameters and assumptions specific to these

simulations to have confidence they will match up closely with any particular real system.

Furthermore, many of the assumptions used in this thesis are optimistic. For example the

subpopulations were initialised with very high levels of genetic diversity, and all genetic

diversity measurements were based on a complete census of every individual in each

subpopulation being measured.
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Accordingly, it is important that the link between genetic diversity and relative patch value is

thoroughly explored for any new system to which it is applied. This would involve first

creating a simulation model that best captures the dynamics and genetics of the system at

hand, and then performing sensitivity analysis for those parameters that are poorly

understood. Because population simulation models often contain a large number of
processes, the most practical approach is to simply fix well-known parameters while varying

the poorly known ones. In the MultiPop model presented in Chapters 5 and 6, disturbance

regime and dispersal biology (with or without sex-bias) were varied as though they were

unknowns, while many other components of population biology such as fecundity and

mortality were treated as if they were known. In contrast, the manager of a real system may

have a good description of disturbance and dispersal biology, and decide to keep those

descriptions fixed while performing sensitivity analysis on poorly known aspects of the

organism's reproductive biology. Biologists may also want to relax some of the many

assumptions made in this thesis. This might involve:

(1) Allowing genetic diversity to influence demographic processes, whereby loss of genetic

variation and inbreeding depression increase population extinction probabilities

(Caughley, 1994; Frankham, I995a; Sanjayan et a1.,1996; Saccheri et aL,1998). This is

predicted to strengthen the link between genetic diversity and patch value, given that

patches with higher genetic diversity (and therefore less inbreeding depression) would be

more resistant to extinction than patches with low genetic diversity.

(2) Allowing inbreeding depression to change the impact that immigrants have on genetic

diversity (Ball et a1.,2000: Chaprer 2 of this thesis).

(3) Providing a more realistic description of density dependence than the simple step

functions used for the owls and rodents in Chapters 5 and 6.

(4) Including source/sink dynamics whereby habitat quality varies between patches

(Pulliam, 1988; Harrison, L99I; Gaona et aL, 1998). It may be that centrally located

sink populations have high genetic diversity due to the influx of genes, but are of very

little value for the persistence of the metapopulation. In this way, source/sink dynamics

may weaken the link between genetic diversity and patch value.

(5) Sampling only a proportion of the subpopulations - a situation likely to apply to cryptic

organisms. This would increase the error of genetic diversity measurements, and

therefore weaken the link between genetic diversity and patch value. It is also important

to consider how the various genetic diversity measures are biased by sample size. In
particular, the number of haplotypes, number of polymorphic loci and the mean number
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of alleles per locus are all expected to increase with sample size. For example, if we

only sample five individuals from a population, then we are limited to recording a

maximum of five haplotypes. By using complete population censuses (as in this thesis),

higher values for these variables are partly a reflection of the fact that some patches

contain more individuals. This sampling effect increases the apparent genetic diversity

of patches with higher carrying capacities, and would therefore strengthen the link

between genetic diversity and patch value. In reality, biologists may invest similar

sampling effort into all patches, and in such cases it would be appropriate to sample the

same number of individuals from each patch when running the model. Note that this

sampling effect does not apply to observed or expected heterozygosity, or mitochondrial

diversity, which are only expected to decrease in variance as a function of sample size.

It is important that any model is set up to incorporate the history and limitations of the real

system being studied. For example, if the real system in question was fragmented gradually

over a period of 20 years then ideally the same patch-by-patch history of fragmentation

should be incorporated into the simulation. And if genetic diversity data exist for only six

loci, then this should also be included as a constraint. In many situations, the real situation

may dictate the timing of genetic sampling in the model. For instance we may have a

metapopulation that was fragmented 54 years ago but for which we urgently need to assess

relative patch value. In that case we would need to specify that the model takes a genetic

sample at the 54-year mark. Alternately, we may be trying to manage a recently fragmented

population, in which case we may have the opportunity to choose which set of future

sampling times will provide the best indication of relative patch values.

Any new study aiming to establish a link between genetic diversity and relative patch value

should explore the utility of the different measures of genetic diversity. The mean number of

alleles per locus was chosen for the organisms in this thesis because, compared to the three

other measures which provided similar predictive capabilities, this measure had the added

advantage of allowing calculation of the magnitude of the ratio of the genetic diversity in two

patches. This in turn provided the basis for more accurate genetics-based estimates of

relative patch value, whereby patches were only ranked when the ratio of the genetic

diversity of their subpopulations was above some critical level. Although this same

advantage may apply in other situations, some of the other measures of genetic diversity may

be of greater utility under different circumstances. For example, the slow decay in the
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number of polymorphic loci may mean that in some situations this measure provides more

information than the other, more rapidly decaying measures of genetic diversity.

Real metapopulations are likely to have properties that were not introduced in this thesis' For

instance some patches might be unoccupied. This complication was avoided in the owl and

rodent metapopulations in Chapters 5 and 6 by only analyzing data from fully occupied

metapopulations. Partially unoccupied metapopulations present a challenge for a number of

reasons. Firstly, because unoccupied patches contain no genetic diversity they cannot be

ranked using a genetics-based method. This clearly ignores one of the major lessons to be

learnt from metapopulation biology - that unoccupied habitat patches can be valuable.

Nonetheless it may be possible to rank occupied patches relative to each other, and where

possible, assign values to empty patches of similar size and position to some of the ranked

patches. Alternately, it may be appropriate to simply give empty patches a default minimum

value of zero or one, depending on the measure of genetic diversity used to rank the occupied

patches. Thus, the minimum for observed and expected heterozygosity, the number of

polymorphic loci and mitochondrial diversity would be zero, while the minimum for the

number of haplotypes and the mean number of alleles per locus would be one. This approach

would effectively treat all empty patches as the least valuable patches in a metapopulation.

Although this would lead to some mistakes (i.e. when highly valuable patches are

unoccupied), the chance of making such mistakes may be quite low given that the more

valuable a patch is to metapopulation persistence, the less likely it is to be unoccupied (Day

and Possingham, 1995). Exploring different ways of ranking empty patches would certainly

be an important step in being able to apply the insights of Chapters 5 and 6 to other systems.

An important simplification made in this thesis was that patch value was defined on the basis

of removing a single patch at a time. Importantly, some management scenarios may require

that we consider the simultaneous removal of more than one patch (Lindenmayer and

Possingham, 1996). For instance the manager of a metapopulation may need to know

whether it is more important to preserve one large patch than a group of six smaller patches.

The potential complication here is that while each of the small patches may individually be of

little value, they may collectively be of greater value than the single large patch, particularly

if they are tightly linked by dispersal. Determining the value of groups of patches presents

something of a challenge. Simply determining the average genetic diversity will only give us

the average value of each patch, and will not represent their collective value. An alternate
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approach would be to treat each group of patches as a single entity, and calculate genetic

diversity across all individuals in the group of patches. However this may lead to effoneous

results in many situations. For example, consider two small patches of low value at either

end of a metapopulation. Although each population may have become fixed at all the loci

being measured, when analysed as a pair (by pooling data) the two patches may appear to

have high genetic diversity, and therefore lead to an overestimate of their value as a pair. In

summary it is not clear whether there is any promising way of using genetics to estimate the

value of groups of patches, and as such, this may represent one of the limitations of genetics-

based ranking of patches.

7.2 "lhe role of natch rankins in the context of other anproaches

While this thesis suggests there is a potential role for using genetic diversity data to estimate

relative patch value, it is important to recognise its place as one of a number of approaches to

determining the relative value of patches in metapopulations. For systems with many

patches, Hanksi's incidence function provides a well established statistical basis for gaining

insights into metapopulation dynamics and hence patch ranking (Hanski, I994a; Hanski,

1994b; Nieminen, 1996; Lindenmayer et aI.,1999; Moilanen, 1999). In contrast, for systems

with few patches, population viability analyses (PVAs) that incorporate basic details of a

population's biology form a key approach to making management decisions (Beissinger and

Westphal, 1998). As described earlier, the link between genetic diversity and relative patch

value should be established separately for each system using what is essentially a PVA. In

this way, genetics-based estimation of relative patch value should be thought of as one

component to potentially emerge from of a more comprehensive PVA approach applicable to

small metapopulations. With this being the case, there are two possible ways of ranking the

patches in small metapopulations: (a) PVA can be used to directly calculate patch values

based on the patch-removal method (Day and Possingham, 1995; Lindenmayer and

Possingham,1996), and (b) genetic diversity data can be used to rank patches if the PVA has

shown a strong link between genetic diversity and relative patch value. While the first

approach may suffice when patch value predictions are robust to unknown variables in the

model's structure, in situations when this is not the case it may be useful to also consider

estimates based on genetic diversity data (if these are robust to sensitivity analysis).
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7.3 Final comments for the thesis

While metapopulation genetics and demographics are becoming more integrated disciplines

with time, there remains much opportunity to develop our understanding of the link between

these two aspects of metapopulation biology. Developments in molecular biology (Avise,

1994; Jarne and Lagoda, 1996) have meant that biologists can often collect large amounts of

data on the genetic diversity of fragmented populations. The challenge in many cases lies in

analyzing those data in ways thdt give meaningful insights into the dynamics of

metapopulations. In this thesis I explored some aspects of how patterns of genetic diversity

can be used to understand metapopulation dynamics.

I have considered how genetic diversity data can be used at different levels. The first level

represents something of a bottom-up approach, by trying to understand the link between

genetic diversity and one of the key processes underlying metapopulation dynamics -

dispersal. For many years biologists have used patterns of genetic diversity to infer

movement rates in fragmented populations (Wright, I93l', Slatkin, 1985; Neigel, 1997;

Waser and Strobeck, 1998), with a popular approach involving the calculation of Wright's

Nm (1931). Recently however, this approach has attracted the criticism that it represents an

unreliable basis for estimating the true rate at which individuals move about fragmented

populations (Whitlock and McCauley, 1999). In Chapters 2 and 3, I demonstrated the

existence of a process lending support to this criticism. In particular, I found that the genetic

contribution of an immigrant can be influenced by inbreeding, thereby adding another

element to our understanding of the complex (and therefore difficult to predict) relationship

between the rate at which immigrants arrive into a population and their impact in terms of

gene flow.

Chapters 2 and 3 also have implications for understanding the rescue effect, whereby

immigrants rescue extant populations from extinction (Brown and Kodric-Brown, L977). If
the results of those chapters apply to real metapopulations, this study suggests that large

outbred populations may make a disproportionately large contribution to the genetic diversity

of small, inbred populations. If populations with low genetic diversity have higher extinction

probabilities through lack of adaptive potential (Frankham, 1995a; Sanjayan et al., 1996), the

influx of outbred immigrants may be an important component to the rescue of small inbred

populations from extinction. Such a genetic rescue may thereby increase the patch
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occupancy of small patches in metapopulations, and thereby increase metapopulation

persistence times.

While modelling studies have shown that the rescue effect can potentially have alarge effect

on the dynamics of metapopulations (Hanski, 1982; Gotelli, l99L; Hanski and Gyllenberg,

1993), relatively little is known about the importance of this effect in real systems. Although

a number of empirical studies have reported the presence of genetic and./or demographic

rescue (Sjogren, I99l; Sinsch, 1992; Spielman and Frankham, 1992; Hanski et aI', 1994;

Matthysen, 1999), much remains to be learned about the relative importance of these two

processes. The results in Chapters 2 and 3 add further support for the existence of a genetic

rescue effect; in this case due to the disproportionately large contribution of male immigrants

to the population genetic diversity of inbred populations. Furthermore, I was able to

demonstrate that the basis for this immigrant fitness advantage was outbred vigour of

immigrant males, rather than a rare male effect or hybrid vigour of immigrant progeny. This

in turn suggests that outbred source populations would provide the basis for a stronger

genetic rescue effect than inbred source populations.

In Chapter 4, I considered the reliability of using genetic diversity to estimate both dispersal

rates and colonisation probabilities in metapopulations. Importantly, the relationships

between genetic diversity, dispersal rate and colonisation probability are influenced by many

biological processes, the nature of which is likely to vary considerably among species.

Although different types of analysis are available for estimating dispersal rate from genetic

diversity data (e.g., Wright's Nm and the assignment method), such methods are either

burdened by questionable assumptions, or require so much data that they are of limited use

for estimating dispersal rates and colonisation probabilities.

I also explored a way of using genetic diversity data that is probably best considered a top-

down approach, since it treats genetic diversity as a single composite measure of the many

biological processes involved in metapopulation dynamics. In this way, I believe there is

benefit in not pulling this composite apart, but instead using it directly as an informative

measure in its own right.

In this regard, I believe one of the key issues in managing metapopulations lies in deciding

the relative value of the different patches in a system, where the value of a patch is a measure
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of its contribution to metapopulation persistence. In the absence of good demographic data to

parameterise population viability analyses, genetic diversity data is potentially very useful in

reflecting many of the processes that determine relative patch value.

By creating a simulation model of metapopulation dynamics and genetics I was able to

demonstrate in Chapters 5 and 6 that ranking pairs of patches based on the genetic diversity

of their subpopulations can, under certain circumstances provide good estimates of relative

patch value. Although the applicability of this approach may vary considerably between

systems, this can and should be assessed for each system, and could potentially provide a

useful component of population viability analyses.

Finally, if genetic diversity does concur well with relative patch value, this may represent

common ground on which both metapopulation demographers and geneticists can stand. For

a number of years there has been an active debate in the literature as to whether conservation

biologists should be more concerned with population demographics or genetics (Lande, 1988;

Caro and Laurenson, 1994; Caughley, 1994; Mills and Smouse, 1994; Frankham, 1995a).

Accordingly, the patches in a metapopulation can be ranked on the basis of their ability to

increase metapopulation persistence or preserve genetic diversity. Importantly, the results in

Chapter 6 suggests that these two criteria may in some circumstances rank patches in a very

similar way, and this may prove to be one situation where biologists studying metapopulation

dynamics and genetics can agree on the same course of action.
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APPENDIX 1

Assessment of Tûrbo Pascal's pseudo-random number generator

Al.L Introduction

Programs written for this thesis used the built-in pseudo-random number generator available

in Turbo Pascal 7.0 whenever it was necessary to produce real numbers uniformly distributed

between 0 and 1. The term "pseudo-random" refers to the fact that the numbers are not

generated by a truly random process, but by a deterministic algorithm (Savitch, 1993). Thus,

given the same initial "seed" value, such a number generator produces the same sequence

every time. For the programs in this thesis the seed value was taken from digits on the

computer's clock, so that the seed values and therefore the pseudo-random sequences \vere

likely to differ every time a program was run.

A "good" pseudo-random number generator should produce a sequence of numbers that has

the same relevant statistical properties as a sequence of truly random numbers (Ripley, 1987).

The purpose of this appendix is to provide some insight into whether the Turbo Pascal 7.0

pseudo-random number generator produces data with the same properties we would expect to

find in a truly random sequence of real values uniformly distributed between 0 and 1 A

number of descriptive statistics and tests are useful in this regard, and these are described

below, with each being applied to a separate sequence of 10,000 pseudo-random values.

If the reader prefers to skip the details of these tests, the synopsis is that the Turbo Pascal 7.0

pseudo-random number generator passed every test applied in this appendix. These were the

frequency (equidistribution) test, the test for correlation between sequential pairs, the serial,

coupon collector's, run, gap and poker tests.
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41.2 Tests of pseudo-random number generator properties

^1.2.1 
Descriptive statistics

The mean of 10,000 values was 0.4996. Importantly, 0.5000 (the mean of a uniform

distribution between 0 and 1) was included in the 957o confidence interval (0.4939 < P <

0.5052). The sample variance of 0.0825 was close to the expected value of 0'0833 - the

variance of a uniform distribution between 0 and I (Madsen and Moeschberger, 1980).

A1.2.2 Frequency test (equidistribution test)

The frequency test examines whether some sections of the range 0 to 1 are over or under-

represented in terms of the number of values produced. To perform this analysis, the range 0

to 1 was divided evenly into 100 intervals. The null hypothesis (for randomly generated

values uniformly distributed between 0 and 1) is that there is an equal probability (0.01 in this

case) of each value falling into each of the 100 intervals. Therefore there is an expected

frequency of 100 values occurring in each of the 100 size categories (from the sequence of

10,000 values). This set of expectations can be compared to the observed frequencies using a

chi-square test. Importantly however, this should be performed as a two-tailed test, as there

are two ways in which the pattern can diverge from randomness (Morgan, 1984). Firstly, we

should be suspicious if the observed frequencies are too divergent from the expected

frequencies. This is the sort of chi-square analysis generally employed for a goodness of fit

test. However because we are testing randomnes s per se, we should also be suspicious if our

observed frequencies are too close to the expected frequencies, as this would suggest that

there is some pattern to the way that values are produced. To illustrate this concern, consider

a number generator that, in a sample of 100 numbers, produces a value in each of the 100

evenly spaced categories between 0 and l. While such a pattern would exactly match the

expected frequencies, we would clearly be suspicious that the numbers are too evenly

distributed. Accordingly, we should also be concerned if the observed chi-square statistic is

too small. Using this two-tailed approach (with a = 0.05), we should therefore reject the null

hypothesis if yu'o.rr, ) I2obr.,u"d ) X2oozs. The logic behind this two-tailed testing applies to all

of the other chi-square tests used in this appendix.
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The results of the frequency test showed that the observed frequencies (Figure A1'1) were

neither too close to, nor too divergent from the expected frequencies ([2ourrrved = 115'84,

X2o.sts = 73.36, Xzo.ozs = 128.42, d.f' = 99)'

140

8120
fr roo

,ts 80o
b60¡¡
E40
220

0
0 o.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value of pseudo-random number

Figure 41..1 Frequency distribution of 10,000 sequential pseudo-random numbers produced
by Turbo Pascal 7.0. The dashed line represents the expected frequency.

L1.2.3 Test for correlation between sequential pairs

The correlation test examines whether there is a correlation between one value and the next in

a sequence of values. The null hypothesis (based on truly random sampling from a uniform

distribution) is that there is no correlation between one value and the next. The 10,000

pseudo-randomly generated values were used to provide a total of 5000 non-overlapping

pairs of sequential values. Figure 41.2 shows a scatterplot of 500 of these pairs. A two-

tailed test (allowing for the possibility of a positive or negative correlation) showed no

significant correlation between the first and second values in sequential pairs (r = -0.01L24,p

= 0.42J, d.f. = 4998).
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Figure 4L.2 Scatterplot of the first vs second values in sequential pairs of pseudo-random
valuesproducedbyTurboPascalT'0(r=-0'01124,p=0'427,d'f'=4998)'Tomaintain
visual clarity this plot shows only the first 500 of the total 5000 pairs used to calculate the

correlation.

^1.2.4 
Serial Test

The serial test allows us to examine whether there is non-randomness in the transition

between pairs of sequential numbers. Therefore this test bares some resemblance to the

correlation test. The starting point for the serial test is to convert a sequence of real numbers

into integers. I have chosen to use the range 0 to 9 inclusive. This is achieved by multiplying

each value by l0 and tnrncating the result, so that for example 0.373 becomes 3, and 0.801

becomes 8. Then, by working through the list of 10,000 pseudo-random integers, we have

5000 non-overlapping pairs for which we can record a "first number -) second number"

transition: ¿.g., first number in pair = 3, second number in pair = 8. We would, for example,

be suspicious of pseudo-random number generator in which every occuffence of a 3 was

followed by an 8.
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A l0 by 10 matrix is created to record the frequency of the 100 different possible transitions

(i.e. 10 possible first numbers and 10 possible second numbers). The null hypothesis (based

on a randomly generated sequence of uniformly distributed values) is that there is an equal

probability for each of the 100 different transitions in the matrix. Therefore from a total of

5000 replicate transitions we have the null expectation that each transition receives 50

replicates. (Note that this null hypothesis includes the assumption that there is an equal

probability of each of the 10 possible first numbers occurring - an assumption we can clearly

be confident of given the results of the frequency test.)

The observed values were compared to the expected values using a two-tailed chi-square

analysis. The results of the serial test (Table 41.1) showed that the observed frequencies

were neither too close to, nor too divergent from the expected frequencies (f2ou."ru.¿ = 101.52,

X2osts = 73.36, X2o.ozs = L28.42, d.f. = 99).

Table 41,.1, Results of the serial test. 10,000 sequential values produced by the Turbo Pascal
7.0 pseudo-random number generator were converted into integers 0 to 9, giving 5000
sequential integer pairs. Shown are the numbers of pairs falling into different sequence
categories according to what the first and second values in each pair were. The null
hypothesis for each category is an expected frequency of 50 values.

first value in sequential pair

012 3 4 5 67 8 9

0

1

)-
3

second value in 4

sequential pair 5

6

7

I
9

39 40

63 54

46 51

43 45

65 51

63 53

54 51

48 57

41 59

54 45

56

37

44

51

4l
38

52

58

56

48

51

48

52

35

5l
50

59

56

52

57

43

59

51

6t
45

57

44

48

43

38

39

46

50

45

55

58

52

47

59

4l

46

55

43

60

39

38

52

54

65

59

50

48

49

41

37

60

48

46

49

48

48 52

54 45

60 42

39 43

55 44

45 49

59 56

55 46

59 53

4t 6r
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^L.2.5 
Coupon collector's test

As its name suggests, the coupon collector's test is based around the idea of collecting a set of

coupons. Knuth (1969) describes this using the analogy of a child trying to collect a set of

coupons which are randomly distributed among breakfast cereal boxes - the child must keep

eating cereal until he/she has collected one coupon of each type. 'We can perform a similar

exercise with a sequence of numbers, where we are interested in how many sequential

pseudo-randomly generated values we must work through before we obtain a full collection

of some pre-defined set of integers.

The first step with the coupon collector's test is to define the set of numbers that are to be

collected. Here I have chosen to simply convert a list of 10,000 pseudo-random real numbers

into the integers 0 to 9 inclusive (as was done for the serial test). These 10 integers form the

full set of coupons. The next step is to work sequentially through the list of 10,000 values

and record the length of consecutive coupon collector segments (a segment is the set of

sequential values required to collect a full set of "coupons"). Clearly the segments will vary

in length, and we can calculate the probability distribution of segment lengths expected of a

truly random number generator (Knuth, 1969). Accordingly, we can assess the apparent

randomness of our pseudo-random number generator by comparing the observed and

expected frequency distributions of segment lengths using a two-tailed chi-square test.

From the list of 10,000 values, there were 328 consecutive segments. The frequency

distribution of the different segment lengths is shown in Figure 41.3. The probability of

obtaining each segment length was calculated according to Knuth (1969, pg 58) and

multiplied by 328 to give the expected frequencies of the different segment lengths. Because

the calculation of these probabilities required Stirling numbers of the second kind, and these

numbers were unavailable for segments greater than 25 values in length (Goldberg et al.,

1964), observed and expected frequencies were pooled for segment lengths >

Frequencies were also pooled for segment lengths 10 to 13 inclusive so that none of the

expected frequencies would be less than 1.0 and no more than 20Vo of the expected

frequencies would be less than 5.0 - both of which are important conditions for performing a

chi-square analysis (Zar,1984, pg 50).
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The results of the coupon collector's test showed that the observed frequencies of segment

lengths were neither too close to, nor too divergent from the expected frequencies (f,2ob...u"a =

8.554, X2o.sts = 5.009, Xzo.ozs=24.736, d'f' = 13).

tt,
co
E

15

ct)o
U,

o 10 20 30 40 50 60 70 80 90 100

Number of sequentialvalues recorded before
collecting all ten integer "coupons"

Figure 4L.3 Results of the coupon collector's test: the frequency distribution of segment
lengths. 10,000 sequential values produced by the Turbo Pascal 7.0 pseudo-random number
generator were converted into integers 0 to 9. A segment is the collection of sequential
values required to collect a full set of the integers 0 to 9. Expected frequencies are shown for
segment lengths L4 to 25 inclusive (diamond markers).

^1.2.6 
Run Test

A run is a sequence of values that either consistently increases (a "run up"), or consistently

decreases (a "run down"). Thus, in the following sequence of 10 values, runs up are shown in

brackets: (0.023, 0.302, 0.780) (0.456) (0.232, 0.985) (0.891) (0.321, 0.543, 0.634).

Probability theory can be used to calculate the frequency distribution of the different run

lengths expected under the null hypothesis of true randomness (Morgan, 1984), and this can

be compared to an observed frequency distribution of run lengths to test the apparent

randomness of our number generator. Importantly though, because runs are contiguous (as in

the sequence above), they are not independent. Thus a long run will tend to bc followed by a
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short run, and vice versa (Knuth, 1969). This means that the usual chi-square approach is

inappropriate for comparing observed and expected frequencies, and an alternate statistic, V,

which takes into account the covariance of run lengths should be employed (Knuth, 1969).

Using this statistic, I analysed the frequency distribution of runs up from a sequence of

10,000 pseudo-random numbers, and then the frequency distribution of runs down from a

separate sequence of 10,000 numbers. The results of runs that were six or more values in

length were pooled to comply with the approach used by Knuth (1969). Table 41.2 shows

the observed frequency distributions of runs up and runs down, together with the frequency

distribution expected under the assumption of randomness. With six data categories, the V

statistic has a chi-square distribution with six degrees of freedom (not the five (k-1) degrees

of freedom we would use in a standard goodness of fit test). The data were analysed as a

two-tailed test (Morgan, 1984).

The run test showed that the observed frequencies of run lengths were neither too close to,

nor too divergent from the expected frequencies. This was true for both runs up and runs

down (Vup = L2.645, Vdo*n = 4.402, )(2osts = 14.449, X2o.ozs = L.23J, d.f. = 6).

Table 41.2 Results of the run test. Shown are the frequencies of different run lengths for
runs up (consecutively increasing values) taken from a sample of 10,000 pseudo-randomly
generated values. Also shown are the frequencies for runs down (consecutively decreasing
values) from a separate sample of 10,000 values, as well as the frequencies expected under
the assumption of randomness.

Run length
Runs up

frequency
Runs down
frequency

Expected
frequency

I
2
J
4
5
>6

t645
209t

911
212

62
7

1648
2059

960
259

52
9

t666.3
2082.7

916.3
263.8

51.5
11.9
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^1.2.7 
Gap Test

A gap is a sequence of numbers in which a pre-defined numerical "event" has not occurred.

For example, in a sequence of integers we could define the event as the occurrence of the

number four. By working through a sequence in order, we then simply record gap lengths as

the number of values before each next occurrence of a four. Thus, in the following

sequence:

s 43 2 5 6 8 4 4 67 8 4 63 0 629 87 4

we would say that the gap lengths were 1, 5, 0, 3 and 8. In a truly random sample, gap

lengths are geometrically distributed (Morgan, 1984), and this forms the basis for calculating

our expected frequencies. To perform the gap test I converted all pseudo-randomly generated

values into the integers 0 to 9, and then carried out 10 gap tests - using a different integer 0 to

9 as the "event" in each test. A separate sequence of 10,000 pseudo-random values was

generated for each of the 10 tests. Gaps greater than 10 values in length were pooled, giving

a total of 11 gap length categories (0, 1, ..., 8,9, >10). The observed gap length frequencies

were compared to the expected frequencies using two-tailed chi-square tests. Importantly,

because there were essentially 10 "replicate" gap tests, the test-wise clt, was adjusted from 0.05

to 0.0051 to maintain the experiment-wise clt, at 0.05 (Jones, 1984). Table 41.3 shows the

observed frequencies and chi-square values for each of the 10 gap tests. Expected

frequencies can be calculated by referring to Morgan (1984). In all 10 tests the observed

frequencies were neither too close to, nor too divergent from the expected frequencies

(critical chi-square values when using cx = 0.0051 are: l)(2s.eslas = 1.837, X2o.oozss = 27.049, d'f .

= 1o).
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Table 4L.3 Results of the 10 gap tests. Each test used a different integer as the event
marking the end of gaps. Shown for each test are the observed frequencies of different gap

lengths recorded from 10,000 pseudo-randomly generated values. The expected frequencies
for chi-square values were based on the null hypothesis of gap lengths being geometrically
distributed. The critical chi-square values are'. y's.sn os = 1.83J , X2o.oozss = 27.049, d'f. = 10'

Integer used as the "event" marking the end of gaps

0 t2 3 4 5 (t 7 I 9 Expectcd

0
I
a

3
4
5
6
7
I
9

>10

52
60
43
43

348

38
48

119
93
81
74
75
55
49
63
44
36

355

92
101
99
69
60

LO4
r03

88
77
70
48
43
50
48
39

353

101
85
85
61
62
69
47
35
42
36

364

83
llt

82
6L
57
65
60
42
30
45

34r

90
94
77
78
75
59
51
54
53
35

330

103
80
81
64
64
57

100.0
90.0
81.0
'72.9

65.6
59.0
53. l
47.8
43.0
38.7

348.7

41

94
99
82
73
51
64
51
43
35
4I

350

96
T2I
77
83
63
58
43
4t
48
39

366

82
82
79
83
18
60
58
52
35
32

349

6t

-tt
349

X' 8.503 t2.353 7.200 15.t46 9.300 6.986 18.091 7 .637 6.013 11.252

A1.2.8 Poker Test

The poker test is modelled around the idea of drawing a hand of five cards from an infinite

deck and recording if there are (i) no cards of the same rank, (ii) one pair, (iii) two pairs, (iv)

three of a kind, (v) a full house, (vi) four of a kind, or (vii) five of a kind. Instead of using

card ranks (2 to l},jack, queen, king and ace) the poker test simply uses a set of integers, and

once again I have chosen to use the range of integers 0 to 9 inclusive. Furthermore I have

chosen to use the approach suggested by Knuth (1969) of simply recording the number of

distinct values among each hand of five "cards". Thus there are five possible outcomes:

5 different values

4 different values

3 different values

2 different values

1 different value

= all different;

= one pair;

= two pairs, or three of a kind;

= full house, or four of a kind;

= five of a kind.
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Each hand is drawn as five consecutive values from a sequence. Thus, a total of 2000 hands

were drawn from the sequence of 10,000 pseudo-randomly generated integers. Assuming

that we have a truly random number generator producing uniformly distributed values, the

probability of obtaining a hand with a particular number of unique values can be calculated

based on Knuth (1969). Multiplying these probabilities by 2000 gives the expected number

of hands falling into each of the five categories, and this forms the null hypothesis against

which we can compare the observed frequencies (using a two-tailed chi-square test). Because

the expected number of hands containing only one unique value was only 0.2, this category

was pooled with the "two unique values" category to maintain the condition that all expected

frequencies were greater than 1.0. The results of the poker test show that observed

frequencies of the different types of "poker hands" were neither too close to, nor too

divergent from the expected frequencies (X2obr".u"d = 5.49I, X2o.gts = 0.216, X2o.ozs = 9.348, d.f '

= 3) (Table AI.4).

Table 41.4 Results of the poker test. 10,000 sequential values produced by the Turbo
Pascal 7.0 pseudo-random number generator were converted into integers 0 to 9. A total of
2000 "hands" of cards were drawn in sequence, with five integer "cards" per hand. These
hands were placed into one of four different categories depending on the number of unique
integers in each hand (the results for hands with only one or two unique integers were
pooled). Shown here are the observed and expected numbers of hands in different categories.

number of unique

values in "hand" observed expected

2or
-J
4
5

1 22
393

1010
575

27.2
360
1008
604.8
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4L.3 Summarv

The Turbo Pascal 7.0 pseudo-random number generator passed all the empirical tests of

randomness employed in this appendix. In other words, there was no significant difference

(using a = 0.05) between the statistical properties of the data produced by this number

generator and the properties of data produced by a truly random number generator producing

values uniformly distributed between 0 and 1. On this basis it is assumed that any artifact

patterns produced by the Turbo Pascal 7.0 pseudo-number generator had a negligible impact

on the results of the programs used in this thesis.
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