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SUMMARY

This thesis presents an investigation of some of the
properties of cosmological models that possess the property of self-
similarity. These models are inhomogeneous. In this respect the
motivation is to find suitable models for study to try and answer
some of the questions about the structure of the universe left un-

answered by the standard homogeneous models.

The major proportion of this study concerns itself with a
class of cosmological models which admit a three parameter group of
conformal motions which act on the space-like hypersurfaces. The
metric in these models is conformal to that of the well-known homo-
geneous models which admit a three parameter group of isometries.

Homothetic models are included as a special case.

Initially we consider the group theoretic and Lie derivative
properties of these models. This leads to a discussion about the
nature of energy-momentum tensor admitted by these models and the
kinematical behaviour of the fluid. It is noted that only a restricted
class of conformal models will admit a perfect fluid and that in general
these models with matter will be filled with non-zero acceleration and
vorticity.

To investigate the existence and nature of diagonal models
admitting a perfect fluid, we use Einstein's equations written in tetrad
form. These solutions are found to be restricted to Bianchi types I,V
and VII. However, the energy - momentum tensor in these models has either
an unphysical equation of state ot the fluid quantities are unrealistic

in view of the currently accepted nature of the universe.

In the next two sections we consider two further aspects of
these conformal models. At first we examine the problem of placing a
conformal motion symmetry upon the initial data in the Cauchy hypersurface,
and then find the conditions imposed on this initial data for the space-
time to admit a local conformal motion. If the model admits a perfect

fluid, it is noted that certain constraints must be satisfied. However,
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these constraints vanish for the special case of homothetic motionms.
We then consider the applicability of the Hamiltonian methods
developed by Ryan to the class of homothetic cosmological models.
While only a restrictive class of model is allowed, the method is
found to be admissable to the homothetic generalizations of some

of the homogeneous Class B models previously disallowed.

In the latter part of this thesis we consider self-similar
spherically symmetric universe models admitting the conformal vector
£ = 03t + Bdr. These models,while presenting an opportunity to study
Zhhomogeneous models with a completely different global structure than
the previous, also allow us to study the singularity structure in a
simple inhomogeneous model. We find that this situation allows a
singularity structure completely different to that found in the standard
Friedmann models with the possible existence of a continuous big-bang
presence and timelike singularities. A short discussion is also given

on the redshift relations found in these models.

The thesis ends with a brief examination of the need for
further work intothe nature and existence of inhomogeneous models of

the universe.
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(viii)
NOTATION

Notation used is as follows: the metric tensor Bap has
signature (-++). Covariant differentiation in the XA direction is

", = _AXA; partial differentiation in the XA direction is AXA.

A vector is regarded as a directional derivative, A basis of

A
A, where XA are components of the vector

with respect to the basis. Thus X(f) = XABf/BxA = f AXA. The

vectors is B/BXA, so X = X 9/3x

commutator of the vectors X, Y is [X,Y] defined by [X,Y]f =

xX(¥f) - YxE) = &° - %" )af/0x® = (LY)E where L Y is the Lie

derivative of Y with respect to X.

A set of vectors {Ea} that are orthonormal at each point is
called a tetrad. The notation Ba is used to emphasize the action of

these vectors as directional derivatives: Baf = Eaf'

The indices A,B,C... are coordinate indices and a,b,c... are
tetrad indices. Both run from 0 to 3. The indices i,j,k,... are
coordinate indices and ¢,B,Y,... are tetrad indices and run from 1 to 3.
These indices are also used to label the elements of the 3-dimensional

groups C3 and G3. Round brackets denote symmetrized indices and square

brackets denote skew-symmetrized indices.

In the following we shall be dealing with two metric tensors -

the homogeneous metric with components 8AR and the conformally related

~ 2 Sk :
metric with components By = © OgAB. To distinguish those conformal
- LI |

quantities written with respect to 8\p Ve write over them. Also,

the covariant derivative with respect to éAB is written as a bar '|',

while the covariant derivative with respect to 8AB is written as a

semi-colon ';'
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CHAPTER 1 A

INHOMOGENEQUS COSMOLOGICAL MODELS

§1.1 Introduction

The primary focus of cosmological thought in the present
century has been on interpreting the observations of the sample of the
universe available to our telescopes in terms of a set of models based
on various theories of gravitation, especially general relativity.
That general relativity, in principle, provides a new insight into the
properties of the world as a whole was first indicated by Einstein in
1919. Subsequent progress in relativistic cosmology was initially
connected principally with the solution of Einstein's gravitation

equations first obtained by Friedmann in 1922,

The improvements in our observational knowledge of the universe,
coupled with the better understanding of the theory of matter over the
past few decades, has opened up a veritable Pandora's box of
relativistic models of the universe [e.g. see Narlikar [1] for a survey].
However, in face of the continued success of Einstein's theory of
general relativity as the most aesthetically pleasing theory fitting the
known experimental facts, it is widely held that the standard model of
the universe, based on the Friedmann models, fits most features of the
actual universe quite well [see Weinberg [2] for a thorough examination
of this model]. Nevertheless, the assumption of homogeneity used in
this model is to be regarded merely as a working hypothesis, suggested

by the state of present observations.



§1.2 Standard Cosmological Models

As i1s well known, these solutions are based on the assumption
that the distribution of matter in space is completely homogeneous and
isotropic. The main property of these solutions, that the universe
is not stationary, has found confirmation in the red-shift effect and
this property must be basic to any modern description of the state of

the universe.

Given the 'success' of the standard models, at the same time
it is clear that the universal assumption that the universe is
homogeneous can be satisfied at best only approximately. Belief in
homogeneity is really the outcome of a continuing series of reverses
for a geocentric point of view. Briefly, these were [3] a) Copernicus'
1543 proposal that the Earth is not the centre of the universe, b)
Shapley's 1918 discovery that the Sun is not at the centre of our Galaxy,
c¢) Hubble's 1924 confirmation that the 'island nebulae' were other
galaxies, and d) Baade's 1952 revision of the distance scale showing
that our galaxy is not the biggest in the universe. The consequence is
a widely held belief, known as the Copernican principle, [4] that the
Earth is in no special position in the universe. Thus if we see
isotropy, everybody must see isotropy and we are lead to homogeneity in

space.

The orly attempts at direct testing of homogeneity use the
distribution of galaxies, and since the galaxies appear to be clustered
on scales which may be very large, the outcome of these tests is
disputed. However, the problem faced here is one that confronts all
theories of the universe, as outlined by Ellis in a paper entitled

"Cosmology and Verifiability', op.cit, [4]. Given that the subject of



relativistic cosmology is the determination of the smoothed out metrical
structure of the universe, Ellis argues that the problem of determining
this structure is centred on the fact that there is only one universe
to be observed, and that we can effectively only observe it from one-
point in space-time. Because it is a unique object, we cannot infer its
probable nature by comparing it with similar objects. This leads to
very real limitations in our observational knowledge as to the actual

nature of the universe and its contents.

Given this situation, we are unable to obtain a model of the
universe without making some specifically cosmological assumptions
which are completely unverifiable. (Although we can presumably make
some extrapolations of the conditions observed in our immediate
neighbourhood to greater distances, we have no real justification for
assuming that the whole universe has the same properties.) Thus we see
that any theory we have of the universe will be heavily influenced by

the assumptions we make.

Because the universe is so complex, it is immediately obvious
that if we are to have a workable model of the universe, we must
commence by simplifying it and discarding what hopefully we believe to
be the irrelevant aspects. We start by discarding the planets and
usually, in an all or nothing spirit, follow by dismissing the entire
range of stellar and galactic structure. Everything is smeared into a
uniform fluid and we are left with an idealized universe that is
virtually little more than the 'grin on the Cheshire cat'. Just before
all structure is dissolved away we hold on to some of the grosser
rudiments of the universe — this is usually achieved by having the
model satisfy some symmetry constraint. However, we must interpret these

statements as meaning that the actual inhomogeneity and anisotropy at a



point, are only small statistical deviations from the underlying symmetry.

In the standard models, the homogeneity working hypothesis is
justified on the ground that on a sufficiently large scale the universe
does appear to be roughly homogeneous. If it were not, then large
clumps of matter would produce anisotropies in the microwave radiation
in excess of those observed. Also, from a mathematical point of view,
the study of homogeneous model universes has enormous advantages.
Whereas, in general, non-homogeneous model universes involve us in
global questions, the beauty of homogeneous models is that they can be
studied mainly locally; any part is representative of the whole. Also,
the field equations become more tractable (reducing to ordinary
differential equations) and from the general class of spatially
homogeneous models, a Bianchi-Behr classification scheme has been

devised that indicates which are the most general [5].

We have thus created a smooth and featureless model of the
universe. The next step is to show that irregularities grow and in the
course of time the unstructured universe becomes the structured universe
we observe today. On this point however, progress has been slow and the
structure in the universe has become difficult to relate to models based
on smoothing postulates. This has usually resulted in separate
theoretical approaches to the origin of the various structures in the
universe, and while these approaches have met with some success, they
are usually inadequately related to one another and to cosmological

theories.



§1.3 Homogeneity vs. Inhomogeneity

In this situation we are forced to reconsider our initial
generalizations about isotropy and homogeneity. This view is also

reinforced by the discovery that the standard model [6]

a) may not be sufficiently general for problems where generality
conditions are of prime importance e.g. in the study of

singularities.

b) seems incapable of explaining such phenomena as the
homogenization and isotropization of the universe (see e.g.

Misner's programme of chaotic cosmology, [71]).

¢) do not provide a suitable background for the formation of

galaxies from small random fluctuatioms.

Also, with the homogeneous models that are generally favoured for giving
the best fit to the observations, the observational tests for
discriminating between the various models are usually difficult to carry
out and at best only marginal. It is unfortunate that the large amount
of information contained in the various sub-structures of the universe

cannot be used in testing these models.

Thus, we see that there is a need for more complete and
descriptive cosmological models and in order to study questions as the
above it will be necessary to consider inhomogeneous cosmological models.
The homogeneity question should be formulated not as 'Is the universe

homogeneous?’' but rather as '"To what degree is the universe homogeneous?'.

In any case, careful study of other models can advance our
understanding of relativity (see [8]). We must always keep an open

mind as to changes and improvements which could make a better or more



extended theory possible.

§1.4 Inhomogeneous Cosmological Models

Many exact solutions of Einstein's field equations are known
and the qualitative behaviour of certain general classes has been
studied. However, most of these solutions in one way or another are
ruled out as cosmological models, and even less qualify as inhomogeneous
cosmological models. In this section we briefly outline the work which

has been done in this area.

Apart from the mathematical difficulties, the generally
accepted cosmological principle, which together with the isotropy of
space-time about a single observer leads unambiguously to the Friedmann
models, has lead, until recently, to a lack of work on inhomogeneous
models. As has been noted already, the standard models cannot explain
fully a number of phenomena and Alfven [9] claims that some observations
actually disagree with the theoretical predictions and can be bought
into apparent agreement only by a number of ad hoc assumptions. Also,
Ellis et al. [10] claim that while isotropy is directly observable,
homogeneity (on a cosmological scale) is not. Thus, if the assumption
that the universe is homogeneous is discarded, the situation is not so

clear.

Given this situation of the observable isotropy about us, one
of the first studies of inhomogeneous models was by Omer in 1949, which
used the spherically symmetric Tolman-Bondi solution {12]. Although
mathematical models for such Earth-centred cosmologies have occasionally
been investigated, they have not been taken seriously as they are

philosophically unattractive since it is believed to be unreasonable



that we should be near the centre of the universe [see §1.2]. It is
usually argued that it is unlikely that certain isotropies are peculiar
to the observer's location, so that the observer infers that the
symmetries he perceives are not fortuituous but that probably they exist
everywhere. Thus aimed with this principle the observer usually infers
widespread symmetry [13]. However in a recent paper by Ellis et al.
[10], some intriging aspects of such universes are presented. It would
certainly be consistent with the present observations that we were near
the centre of such a universe and Varshni [14] argues that the
distribution of quasars infact implies such a case. These statements

have also been supported by Ellis [4].

It has been stated [6] that the main stumbling block in the
development of inhomogeneous cosmologies has been the need to impose
in a covariant way, symmetries which are sufficiently strong to render
the field equations tractable, while being not so strong that they
require spatial homogeneity. One way to introduce inhomogeneity is to
still require the space-time to admit a group of isometries but that the
orbits of the group are not three-dimensional. In this case we obtain
the locally-rotationally symmetric (L.R.S.) models of Ellis & Stewart
[15] where the space-time is invariant under a spatial rotation about a
spacelike axis of symmetry at each point. Further, fairly symmetric
cases occur when the space-time admits a two parameter group of motions.
These include the Gowdy universes [16] and the stiff equation of state

models of Wainwright et al. [17].

Also, one can impose less restrictive symmetries upon the
space-time. Eardley [18], following the idea of Cahill and Taub [19]
to consider 'self-similar' cosmological models, considered those

space-times that admitted a 3-parameter group of homothetic motions that



acted simply transitive on the spacelike hypersurfaces, and was able to
generalize the Bianchi-Behr classification to include new and more general
inhomogeneous models. Similarly motivated, Wesson [20] devised a new
dimensional cosmological principle [21] that lead him to new 'self-
similar' models, which being non-Friedmann, he hoped would solve some of

the puzzling problems that face Friedmann models.

Another inhomogeneous exact model that has been used for
cosmological purposes is one in which spherical regions in a Friedmann
model are removed and replaced by part of the well-known spherically
symmetric Schwarzschild solution. This model is often called the
'swiss~-cheese' model [22]. This model has been used to discuss the
influence of concentrations of matter on the propagation of light. An
alternate approach has been to treat, approximately, perturbed spatially
homogeneous models. This method was used by Lifschitz and Khalatnikov
[23] in a classic discussion, and has subsequently been explored by many

other authors.

More recently, Szekeres [24] discovered a useful and fairly wide
set of dust cosmologies by assuming that the metric have a particular
form. These models generalize the previously known Tolman-Bondi and
Kantowski-Sachs [25] models. These models were extended by Szafron [26]
to include pressure but the matter content is in general an unusual one,
if not unphysical, in that although we have for the density
p = p(t,x,y,2), we have for the pressure p = p(t) only. Although these
spacetimes do not in general admit any Killing vectors [27] they do admit
a preferred two-parameter family of two-surfaces of constant curvature.

Also, each comoving space slice t = const. is conformally flat [28].

The study of the Szekeres solutions has suggested a different



approach to the study of inhomogeneous models when the group theoretic
techniques may no longer be applicable. The assumption of conformally
flat space sections may provide the symmetry necessary to solve the
Einstein equations when the condition of spatial homogeneity is relaxed.
Spero and Szafron [29] have shown that any family of inhomogeneous
solutions with conformally flat space-sections can only contain
homogeneous solutions invariant under groups of Bianchi type I, VIIO, v,

IX, VII, or VI_. or be of the Kantowski-Sachs form. The Szekeres

h 1

solutions extend a subset of the above listed spaces to a family of

inhomogeneous perfect fluid solutions with the following properties:

a) irrotational, geodesic flow and an expansion tensor with two

equal eigenvalues.

b) conformally flat, comoving hypersurfaces whose Ricci tensor

has two equal eigenvalues (Petrov type D).

c) a nonbaratropic equation of state.

Their results indicate that, if one wishes to generalize that subclass
of perfect fluid solutions satisfying (b), then some portion of (a)
must be discarded. If one does this, then the extension must include

other spatially inhomogeneous models.

Most recently, Collins and Szafron [6] have suggested another
alternative to space-time symmetries. Not unlike the previous problem,
they impose restrictions on certain sub-manifolds instead of considering
the full space-time. The problem can be regarded as one of classifying
three-dimensional Riemannian geometries (i.e. the intrinsic geometry of
the hypersurfaces) and of classifying normal time-like congruences. The
properties of the normal time-like congruences relates to the way in

which the hypersurfaces are imbedded in space-time (i.e. their extrinsic
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geometry). This classification is thus purely geometrical and is thus
independent of any field equations. Their classification is based on
the Ricci tensor of the metric induced on the hypersurfaces and on the
shear tensor of the normal congruence. An investigation in which the
normal congruence is geodesic and the hypersurfaces conformally flat

led to a characterization of the Szekeres solutions.

This approach is being extended by Wainwright [30] in order to
set up a classification scheme which is sufficiently general to
distinguish the various known inhomogeneous solutions. Some of these
exact solutions — such as the Szekeres solutions, the type-N perfect
solutions of Oleson [31] and a class of algebraically special solutions

found by Wainwright [32] - do not admit any Killing vectors in general.

§1.5 Aim of Thesis

Motivated by the foregoing work on inhomogeneous cosmological
models, in the following we shall extend to work of Eardley [13] in
considering models that admit a three-parameter group of conformal
motions that act simply transitively on space-like hypersurfaces. These
models will be inhomogeneous. In this respect it is hoped to find
suitable models for study to try and answer some of the questions about
the structure of the universe left unanswered by the standard

homogeneous models.

In Chapter 2 we define the mathematical nature of a conformal
motion and obtain the metric governing these models. In Chapter 3 we
elucidate the Lie derivative of certain geometrical objects used in
describing these models. From this we consider the nature of the

energy-momentum tensor admitted by these models and examine the
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kinematical properties of the fluid. To help us we introduce a tetrad
basis. Using this basis, the Einstein field equations governing these
models are written down, and the existence and nature of diagonal perfect
fluid solutions is examined in Chapter 4. In the next two chapters we
consider two further aspects of these models. First we consider the inftial
valie problem in relation to the preservation of a conformal symmetry in
the initial data. Secondly, we investigate the applicability of the
Hamiltonian methods developed by Ryan for giving a qualitative description

of these models.

In Chapter 7, we break with the foregoing work and consider spherically
symmetric models admitting the conformal vector & = adt + B3r. These
models, while presenting an opportunity to study i;homogeneous universe
models with a completely different global structure than the previous,
also gives rise to the study of the singularity structure in a simple
inhomogeneous model. The thesis ends with a brief examination of further

work needed in the study of inhomogeneous models of the universe.



12

CHAPTER 2

CONFORMALLY HOMOGENEOUS MODELS

§2.1 Inhomogeneity as a Similarity Construct

As we have seen in Chapter 1, if one is to pursue the study of
galaxies and similar structures, then we obviously need a cosmological
structure which acts as an environment that allows for aggolomerations
of matter. On this ground, one would exclude the homogeneous models -
in view of the fundamental equivalence of geometry and physics stated
by Einstein's equations, physical inhomogeneities such as the
aggolomeration of matter into galaxies etc. imply spatial geometric
inhomogeneities. Edelen and Wilson [33], in their study of
discretization in astronomy argue that the simplest manner of
introducing such inhomogeneities, and one that is consistent with the
idea that the inhomogeneities can be viewed as '"bumps' on a homogeneous
substratum, is that in which the spatial geometry of the inhomogeneities
is similar to the geometry of the homogeneous substratum. They
reasoned that the factor of proportionality obtained in stating the
similarity as an equality would then describe the inhomogeneities
through the variation in the values of the proportionality factor from

point to point.

Edelen and Wilson also argued that the spatial inhomogeneities
would in turn imply inhomogeneity in the energy-density and proper time
rates. Hence, in considering both the spatial and temporal
inhomogeneities, they constructed cosmological models that were

conformal to the classical Friedmann models.

In this thesis we will be considering the wider class of models



which are conformal to the well~known spatially homogeneous models
which admit a three-parameter group of isometries [34]. In particular,
we will be considering those metric spaces which admit a three-
parameter group of conformal motions (which includes the class of

homothetic motions as a special case) on their space-sections.

13

Geometrically, this means that lengths are not necessarily preserved upon

transformation from point to point upon the spacelike orbits, but may

be multiplied by a conformal factor.

In constructing these models, our work follows closely
Eardley's [18] paper on spatially homothetic cosmological models, where
the conformal factor in the transformation mentioned above is a
constant. Eardley called these models 'self-similar' space-times and
cited the use of such solutions in classical hydrodynamics where the
physical systems involved have no intrinsic scale of length. This led
him to use the notion of self-similarity as meaning invariance under
scale transformations. Such a scale free property could be a desirable
property of a cosmological model which had 'forgotten' its initial
conditions and had become scale invariant e.g. the expansion of the

universe.

Finally, above and beyond the arguments of both mathematical
and physical simplicity, conformally equivalent models possess a unique
property that singles them out from all other possible inhomogeneous
models [33]. It is known that the complete curvature tensor of a
metric space can be decomposed uniquely into the sum of two tensors,

one of which is the Weyl conformal tensor and the other which is

uniquely determined by the metric tensor and the energy-momentum tensor.

Now, the Weyl tenmsor is that part of the curvature tensor that is not

determined locally by the matter and may thus be viewed as representing



the 'free gravitational field'; further, the Weyl tensor is the unique
curvature invariant under conformal changes in the metric temsor. It
thus follows that conformally homogeneous models describe inhomogeneous
distributions of matter whose free gravitational fields are identical
with the free gravitational fields of the corresponding homogeneous

models.

§2.2 Spatially Homogeneous Cosmological Models

We collect here those results from the spatially homogeneous
models that are required for the purposes of reference and comparison

[for a recent review, see MacCallum [311.

Let E denote the class of Einstein-Riemannian spaces admissible
in spatially homogeneous models (see below) and let gAB(E) denote the
components of the metric tensor of an element of E. We then have

B

ds?(g) = gAdeAde - - dt? + \)aB(t)waﬁw (2.1a)

o B o B , 1.3
at”° + qu(t)W ¥ jdx dx (2.1b)

%
where = denotes evaluation in a coordinate system in which the matter

in the models is at rest (i.e. comoving coordinates).

Spatial homogeneity is specified mathematically in that the
space-times (2.1) admit a three-parameter group of motions (isometries)
simply transitive on the spacelike hypersurfaces. [Note that this
definition doesn't include the Gddel universe, which while being
homogeneous, rotating and shear-free, docs not possess spatial surfaces

of homogeneity. Also, if we weaken the above definition of homogeneity

14
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so that space-time need only be locally invariant under a group of

isometries whose surfaces of transitively are spacelike surfaces, then
it can be shown [35] that the general group Gr will possess a subgroup
G. which satisfies the definition of spatial homogeneity except in the

3
case of the Kantowski-Sachs type I universes [25].]

By definition, the spaces E admit an isometry if there exists
a vector field £ such that

E(A;B) = LEgAB =0 (2.2)

where LE denotes the Lie derivative along the vector field £ [36].

This is known as Killing's equation and & is called a Killing vector.

Any Killing vector field generates isometries, and the set of all

Killing vector fields forms a Lie algebra, which is the Lie algebra of

the group of isometries. Physically, this corresponds to a transformation
that maps the metric BAB at some point p on the spacelike hypersurface

to the same metric at another point q on the hypersurface (1.e. it
preserves all length measurements). If we choose a basis {Ei} for the

group G,, then the Lie algebra G3 will be specified by the commutation

3

relations

k

k . . s
where the structure constants C 13 satisfy the antisymmetry condition

and Jacobi identities.

It is possible to systematically list all real three-
dimensional Lie algebras which are non-isomorphic [5]. For the three-

dimensional Lie algebras above, this was first done by Bianchi, and it



is this classification that 1s relevant to spatially homogeneous
models. The classification examines the commutators. These themselves
form a Lie algebra, which is a subalgebra of é, called the derived
algebra. Bianchi's method was to consider first the dimension of the
derived algebra and then to enumerate all possibilities. This gave him
nine inequivalent types of which type I is abelian, and has zero-
dimensional Lie algebra, types II and III have a l-dimensional Lie-
algebra, types IV, V, VI and VII are 2-dimensional and types VIII and
IX are 3-dimensional. Types VI and VII, in fact, are one-parameter
families of algebras, where certain values of the parameters are
excluded because they yield types III and V instead. Bianchi's method
has been modified in recent years and the present method is as follows

[34].

Take any (positive definite) scalar product on G, and suppose

its components in the basis {Ei} are gij' Then write
i ig i
c ., = Ezjkn + 28 [kaj] (2.43)
This defines the vector aj (on G) uniquely, since

a, = LC,, (2.4b)

. ] ij . . .
and it defines n J, which is symmetric, up to an overall scalar factor.

The Jacobi identity is equivalent to

nija =0 (2.5)

16



The classification now gives two broad classes; Class A

where a

i = 0, and class B (ai # 0), each divided into several types

according to the rank and signature of n"?. When ay # 0, there is a

further invariant h, which can be defined by

Ck

i
(1 + h)C 1

- 2hC™, .C

ki (2.6)

ok ig

This is the parameter required to subclassify types VI and VII,.

By rotating the basis {Ei} we can diagonalize the matrix nJ so
that a; = (0,0,a) and nd = diag(nl,nz,nB) and then by scaling the basis
to +1 or -1.

we can set the non-zero entries in n,, In types IV and V

i3
we can also scale a = 1, In general, h = a2/n1n2 so the scaling gives
a = V|h|. The resulting classification and canonical forms are shown
in Table 1.
Table 1
Class A B
Type I 11 VIo VIIo VIII IX A Iv II1 VIh VIIh
Rank n'd [0 1 2 2 3 3/0 1 2 2 2
2 %
a 0o 0 O 0 0 o1 1 1 (-h) h %
ny 0 1 1 1 1 110 1 1 1 1
n, 0 0 -1 1 1 1|10 o -1 -1 1
ng 0 0 0 0 -1 1|0 0 0 0 0

The spatial basis vectors in (2.1), {X,}, can be found in
i
several ways. Essentially, these all make use of the result that in

the case of a simply-transitive group with a basis of infinitesimal

17



transformations {Ei}, one can find a set of three vector fields {Xi}

spanning the tangent space at every orbit such that [37],

[Xi,gj] =0 i,j = 1,2,3 (2.7)

Moreover, since we can choose arbitrarily both the initial values of
{Ei} and {Xi}, we can ensure that at one point we have Xi = - Ei for all
i. Hence, defining functions le by Xj = xljgi (so that at the origin

i i
x, == 868,) and defini D ., b
h| J) e gk Y

k
[Xi’Xj] =D ink (2.8)

, we find by substitution for Xi in (2.7) and (2.8) that

Thus that at the origin

¢t -p (2.9)

Hence, the algebraic structure of the Lie algebra of the {Xi} at a point
is the same as that of the algebra of infinitesimal transformations.
In addition, substituting (2.7) and (2.8) in the Jacobi identities for

{E.,X.,Xk} shows that the D.. are constants in the orbit.
i ] jk

Let us denote the duals of the {Xi} by {w"}. Then to express
the metric in the form (2.1) we consider the dual set of l-forms (W}

defined by

L= e . (2.10)

18



These invariant 1-forms satisfy the curl relations
i

S = - %cijkijwk . (2.11)

Since the hypersurfaces being considered here admit a simply transitive

group of motions, they are diffeomorphic to the group itself. Using the

basis of vector fields W.s 8O that g gijwin we find

L
£81j

and so the gij are constants. Also, since the group orbits are hyper-
surfaces, we can prove that the (unit) normals of these hypersurfaces
are geodesic. Then taking t to be the affine parameter along these

geodesics we obtain, if n is non-null
ds? = - dt? + g..wl@wJ
1]

where as we have seen the gij are constant within each orbit.

For each type in Table 1, we can calculate the infinitesimal
generators £, in a canonical basis {Bi = 3/3xi} and hence obtain the
explicit forms of the three invariant 1-forms dual to the Ei (see for

example, [38]). For completeness they are listed in Appendix A.

We now see that the elements of E are metrics having the form

(2.1) and which are solutions of Einstein's field equations

= 1 -
Gyp = Rpp = Reyp = Tpp (2.12)

in which the matter tensor takes the form of a perfect fluid

19
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T,g = (p + Pluyup + pg,p (2.13)

A

where u (uAg = -1) is the velocity vector and p and p are the density

A’

and pressure respectively. We shall also assume the energy condition

p+p>0 (2.14)
The simplest spatially homogeneous models are the isotropic
Friedmann models while the simplest spatially homogeneous anisotropic

models are the Bianchi type I models.

§2.3 Conformal Space-Times

Let C denote the class of Einstein-Riemannian spaces that are

conformal to the elements of E, and let gAB(x;) denote the components

of the metric tensor of such spaces. We then have

~

C
gAB( 20(x”)

L) =e &) (3.1)

EAB

where dsz(g) e gAdeAde = ezcdsz(g) (3.2)

is the fundamental metric form on elements of C and o(xc) is the

conformal coefficient. We assume that E and C have the same coordinate
patches and coordinate functions [i.e. {dxA} in E are the same as

{ax™} 1n C, and the respective points of E and C have the same coordinates

with respect to the coordinate system in which the {dxA} are computed].

We now wish to restrict our attention to those models, having

a metric tensor of the form (3.1), which admit transformations that

~

map the metric tensor BAB at some point p on a spacelike hypersurface to
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o ~

some tensor f at another point q on the hypersurface, such that £

AB AB

A A

is a multiple of the metric BAB at q i.e. fAB = ¢(xc)éAB for some

scalar function ¢. Such a transformation is called a conformal motion,
and scales up all length measurements but preserves angles [see Yano,
[36]]. If ¢ is a constant (¢ # 1) then the motion is called a homothetic
motion and if the transformation leaves the metric invariant (¢ = 1),

then it is an isometry.

The diagram below, taken from Oliver and Davis [39] shows how

the various symmetries are related.

cC

Fig. 1 ) som | —7

M - Isometry L 0

£8AB T

HM - Homothetic Motion L Y = constant

£BAB ~ 2¢gAB

S.C.M. - Special Confermal Motion LEgAB = ngAB VAVB =0

- 1 Il =
CM - Conformal Motion EgAB ngAB
A _
AC - Affine Connection LEF BC = 0
. . A _
CC - Curvature Collineation LER BCD 0

It is seen here that mathematically a homothetic motion is a special
case of a more general class of symmetries known as curvature

collineations. Collinson and French [40] have shown that for non-flat
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vacuum space-times not of Petrov type N with hypersurface orthogonal
geodesic rays, the more general collineations reduce to a homothetic

motion.
When the desired transformation is infinitesimal,

, ,
<A w0 = 2™+ i (3.3)

the condition for a conformal motion becomes

A

Ligpp = 2085

(3.4)

The vector EA is called a conformal Killing vector (C.K.F.) and is said

to generate consometries. From (3.4) we find
Lig =20 g= |det g,

and so by eliminating ¢ we have the result

LG . =0 G

£9aB AR = 8 Bpp (3.5)

Hence GAB is an invariant geometric object under the group of conformal
transformations.

Now the system (3.4) does not depend on the choice of coordinate
systems and so by choosing a coordinate system in a suitable neighbourhood

of a regular point of EA such that in this neighbourhood

then the infinitesimal point transformation generates the transformation



~

gAB,]. - 2¢gAB =0

This can be integrated to give

~

Bap = exp{[ 2¢dxl}gAB(x2,..xn) . (3.6)

Also, we see that Bap Ca0 be rescaled to yield a AR for which

EA is a Killing vector. Conﬁersely, if EA is a Killing vector for some
EAB »

C c C
8pg,ct T 8act ,B Y et 4~ 0

~ ~ 20, . .
then for a BAR conformal to BAR® gAB =e Byp> we regain (3.4) with

ECG c = ¢ . (3.7)

23

Generalizing this result, we obtain the result first proven by Yano [36].

- In an n-dimensional Riemannian or pseudo-Riemannian manifold
(Mn,g), every r-dimensional Lie group Cr of local conformal

transformations that is simply transitive is conformally isometric.

This means that if a space-time admits a group Cr of conformal
motions with generators EAa (o =1,...,r) acting on (Mn,g) [i.e. there
. L -
exist functions ¢a on Mn such that EgAB 2¢agAB]’ then one can
rescale BAB such that the resulting metric tensor, ezogAB, will admit

the vectors EAa as Killing vector fields and

L 6-¢ =0 (3.8)
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These results give us the desired models mentioned at the
beginning of this section [see also Defrise-Carter, [411]. In summary

we have -

If a space-time admits a 3-parameter group of conformal
motions which act simply-transitively on the spacelike hypersurface, then

e

there exists a coordinate system with respect to which the metric BAR
of th ce—time has the form = eZo(xC) ( C)where (XC) is the
e spa i a BAR 8pp (X BAp 1

metric of a space-time which admits a 3-parameter group of Killing vectors

and so is an element of E. Hence the original space-time is an element

of C.

The significance of -this result is that we can use the
classification scheme previdusly outlined in the last section to classify
the conformal space-times. As we shall see, with certain specifications
on the conformal factor o, we can obtain a Bianchi-Behr classification

similar to that of the spatially homogeneous models.

To eludicate this behaviour we look at the structure of the
group of transformations more closely. The 3-parameter group of
conformal motions forms a continuous Lie group C3 which acts on (M,é)
and let Gm (m € 3) be the corresponding isometry group. If o = 0, then

the conformal motions are trivial (¢a = 0) and reduce to isometries and

G = C.. However, if C, is non-trivial G_< C,. The infinitesimal
m 3 3 m 3
generators Ea of C3 are vector fields on M and form a Lie algebra C3;
each gA € C3 obeys
LEgAB = 2<¢,£a>gAB (3.9)

Here <¢,E&> E ¢a is a scalar function depending on the choice of Ea’ i.e.



25

~

<¢,> is a linear functional on C3. In particular, each EB € Gm is a

Killing vector field satisfying
LEgAB =0 g =1,..m

Thus Gm = Kernel<¢,>

and ¢u can be interpreted as an element of the dual space to the Lie

~

algebra C3. Hence m = 2 if 03 is non-trivial since Gm is the subspace

orthogonal to the covector ¢a corresponding to the non-trivial conformal

motion Ea i.e. (M,g) admits at most one independent, non-trivial

conformal motion [see Eardley, [18] for spatially homothetic casel.

Consider now the commutator of gu,g €C

B 3

L e =L L 1lg
[£,.64)588 = 17g e, OAB

Ly Qg - L Coofyp)

o

~

2(LgaLEB O)gAB+-4¢B¢agAB

= 2(LEBLgd o) gup” 4¢a¢8gAB

+ 2(L o)é
[e,£,]" BaB

- 2¢aBgAB ¢a8 - L[Ea,58]0

where we have used the result from (3.8) that ¢a = Lg 0. Thus in general

o
the commutator is an element of C3. However, the commutator can be



shown to be an isometry i.e. L[EG’EB]O =0

This follows from the result that if H is a normal Lie subgroup of

a Lie group G, then the corresponding Lie algebras H and G satisfy [84]
[G,H] < H (3.11)

Now since (M,g) admits at most one independent, non-trivial conformal
motion and Gm = Kernel <¢,> (and is thus a normal subgroup of C3),
then the commutator [ga,gs] where o # B takes the form of (3.11) and

so is a killing vector i.e.

A A A
[C3,G2] c G2
Hence we have the result
v
[g,08glo = G gf 0 = 0= C b, =0

where the structure constants correspond to one of the canonical forms
listed in section 2.

Using the decomposition (2.4) this gives the restriction
a®® + aYanB)zbs -0 . (3.12)

Using the normalized basis of section 2, with a, = a363d, one can NOW
use (3.12) to refine the classification of Table 1 in terms of the sets

{nas,aa,¢a} that are non-equivalent under a change of basis {Ea}. This

classification was first obtained by Eardley [18]. We obtain four

classes
Class A : a =20 ¢ =0
o o
Class B : a # 0 ¢a =0
Class C : a =0 ¢ #0
a o

Class D : a #0 ¢a £ 0

26
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Obviously the two classes A and B correspond to the spatially homogeneous
models of section 2 while classes C and D are generalizations of the

previous two classes respectively.

To find a canonical form for ¢a’ consider equation (3.8) while

it can be written in the form

g =g =0 (3.13a)

Introducing the dual invariant 1-forms {w®} defined by (2.10) and (2.11),

we find that ¢ is defined by

(3.13b)

Hence, the spatial derivative of the conformal factor lies in the wvector
space of left-invariant l-forms on C3 and it follows that o is
independent of t, the group invariant scalar field which specifies each
spacelike hypersurface s(t). Now, for a given type there will exist a
non—trivial consometry if we can find a linearly independent combination

% that is locally a total differential. By inspection of the explicit

¢ W
form of the w* for the various types, as listed in Appendix A, we find

that we can reduce ¢a to the canonical form

¢ = ¢§ . (3.14)

where ¢ = F(x®) for type I

and ¢ = F(x') for types II - VII

where F is any function of the indicated variable. We see immediately

that for types VIII and IX, although a G3 of isometries exists, there
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does not exist a non trivial conformal motion. The reason for this is
that the existence of the spatial derivative of the conformal factor
in the vector space of left-invariant l-forms implies that C3 is not
semi-simple and hence the semi-simple Bianchi types VIII and IX does not
allow conformal extensions. To see this more clearly, we have, putting

a, = 0 in (3.12) the equation

af

Hence, from (3.14) and the canonical basis for n = we have n3¢ = 0 and
thus if we require ¢ # O then n, = 0 and this excludes Types VIII and

IX. This is unfortunate as we do not have a generalization of the closed

Friedmann model (k = 1), which is a special case of the Type IX models.

In Table 2 we now list those types, together with the appropriate

canonical forms, which are allowed in Classes C and D.

Table 2
Class c D
Type I IT VIO VIIO v IV VIh VIIh
L L
a 0 0 0 0 1 1 (-h)7? h
n; 0 1 1 1 0 1 1 1
n, 0 0 = 1 0 0 -1 1
n, 0 0 0 0 0 0 0 0
¢ Fx®) | P | F(xY) | F(xY) | F&H F(x}) | -hF(x') | hF(x")

Note:

We have written ¢ = F(x')a for latter convenience.

Type

III = Type VI_

1°
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2.4 Remarks

It was stated at the beginning that the Weyl tensor is the
unique curvature invariant under conformal changes in the metric tensor.
Thus, from the group theoretic point of view, the conformal motions
preserve the conformal group structure of the homogeneous models while
destroying the metric motions that give rise to spatial homogeneity.
This first point is demonstrated by the fact that physically the light
geometry of the conformal models is the same as that of the spatially
homogeneous models. Null curves remain null curves because the square
of their tangent vector remains zero, i.e.

b 2

ILaIL = e B

0 =2.2 = 2% =0

g
Eab 8ab

Also, it is the second point above that hopefully will afford us the
freedom to model the actual agglomerations of matter in the forms of
galaxies and clusters of galaxies that are precluded by the assumptions

of homogeneity that underlie the standard models.

Thus, the conformally related models developed here may be
expected to preserve most of the agreement between the predictions of
the standard theories and the cosmological observables as well as acting

as an environment that allows for agglomerations of matter.
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CHAPTER 3

LIE DERIVATIVE AND KINEMATICAL PROPERTIES

§3.1 Introduction

In the last chapter we studied the metrical structure and group
classification of the conformally related models. Here we shall study
some of the more salient physical properties of these space-~times. We
also introduce a tetrad coordinate system which will be used in

subsequent chapters.

In the first section we investigate the Lie derivative of
certain geometrical objects which we use to describe the conformal
models and we obtain the relations with the corresponding homogeneous
quantities. While these relations are of a simple nature for homothetic
motions, they are more complicated for the conformal case. Also, while
we will be restricting our attention to those models which admit a
perfect-fluid energy-momentum tensor, it is seen that in general the
conformal models will demand an energy-momentum tensor with anisotropic

stress terms.

We then investigate the kinematical structure of the fluid in
the models. In the investigations of homogeneous anisotropic models,
filled with a perfect fluid, the relation between the 4-normal to the
hypersurfaces s(t) and the 4-velocity of the fluid plays an essential
role. If they are collinear, then the world lines of matter are
geodesic, even in the case of non-zero pressure. However, if é_and ﬁ
are not collinear, then in general the 4-acceleration is not zero and
hydrodynamical effects become apparent. Relations are obtained for the

various kinematical quantities used in describing the fluid and it is

seen that in general the fluid will have non-zero acceleration and
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vorticity.

To examine the space-times in accordance with the group
classification a tetrad coordinate system is introduced. This is again
used in the next chapter to investigate the existence of perfect fluid

solutions.

§3.2 The Lie Derivative And Conformal Motions

In this section we wish to list some properties of the Lie
derivative and some results concerning conformal motions. Firstly, the
following expressions for the Lie derivative with respect to a vector
field £ of a scalar field A, a vector field AA, and a 2-rank tensor

field A.AB are used extensively [36].

LEA = A,BE

B _
LEA —A’CE - Ag

D D D
LF,ABC =Agcpt t Apct 3 T Amdb ¢

In these formulas, partial derivatives, A can be replaced by covariant

derivatives S throughout.

We now let the vector field £ generate on the space-time a
l-parameter group of conformal transformations which satisfy the
relations

-~

where ¢ = ¢(XA) and ¢A = VA¢ (2.2)
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We wish to find out how the Riemann curvature tensor RABCD transforms.
To do this we will need to find the Lie derivative of both sides of the

Ricci identity

B2 B o vv - v . (2.3)

Consider the following expressions

3 B. - B C _C.B
VA[LgY ] = VA[Y ICE -YE |C]

- (%AQCYB)gC 3 %CYBGAgC - %AYC%CEB - YCQAGCEB
amd LI, = T, YREC - a0t 4 vort et
= (79, 1%e% - 7,3 6P + v .17,
= %A[LEYB] - LE[%AYB]
== YB¢A + Y, - GBA(YC¢C) @2
and %A[LEYB] - LE[GAYB]
=Y 0, + Y0, - g, (Y0 @25y
B'A T "AB T SAB' *C
and combining the above two expressions we obtain
NR LS IEFNIN S B)
= YAYB¢D + YAYD¢B - 6DA¥BYC¢C - gABYDYC¢C

D
and from this we obtain for a mixed second order tensor T B the result



~ D ~ D
v.IiLT _ ] - LE[VAT ]

A"E B B

D D c C D
= Tyg? * TDA¢B - TBpp® ~ T p(0cS p) -

D
Let T, = VX',

<] >

then
LE[GAQBXD] - %A[LEGBXD] - %BxA¢D - %AXD¢B
+ (%CXD)¢CgAB + (%Bxc)¢CGDA
Interchanging A and B and subtracting
LE[(QA%B - %BQA)XD] - %A[LE%BXD] = %B[LE%AxD]
- 0 x4 v x e - 700 + v X0,

> ,C D s G D
+ (VBX )¢C6 A (VAX )¢C6 B

A

) D, _ .2 5~ D . D
= Lg[zv[AvB]X 1 = 2v[A[L€vB]x ]+ 2V X0

. b -
- 2V, .X + 28§
(¥ ?8] [

C
A% %

Now, from (2.4) we have
~.D N D D D D C
LE[VBY 1 = VB[LEX 1] +X ¢B - XB¢ + 8 B(x ¢C)

Substituting this into (2.5) we obtain, after rearranging

~ ~

O D D D’
LE[ZV[AVB]X ] = ZV[AVB][LEX ] - 2X°V

87a]®

~ D D C
2K U0+ 280 5T, 00X

[A

(2.5)
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Now, from (2.3) we have
ZV[AVB][LEXD] = Rl LX)
and substituting back into the previous expression

D C, 2D C D2,
LR GupX ] = R lL X7 + 2X7V 6y,

D ~

s~ D C
+ 2K[ Vb = 260, V00K

[A

and expanding the left-hand side we obtain the desired result

)] c _ ,,Dg > D D c
[LER CAB]X = 2X V[A¢B] + 2X[AVB]¢ - 26 (A B]¢Cx
_ ,uCD 2 c > D cD °
= 2X°6 CV[A¢B] + 2X gC[AVB]¢ - 2X'8 [AVB]¢C
) _ > D D D’
= [LER CAB] ] ng[AvB]¢ - 26 [AVB]¢C + 28 CV[A¢B]

. ~ _ AA .
Since RCB = R cAB Ve also find
LR, == 29, 6. —g. 74>
£ CB (C"B) CB'D
_ A ~CB*
and also, since R =g RCB we have
LR =- 2¢R - 67.4°
g C

2.7)

(2.8)

(2.9)

By putting ¢ = constant we obtain the results for a homothetic motion

34
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D .
LR cyp = O
LiRep = O h (2.10)
and Lgﬁ = - 2¢ﬁ )

as obtained by Wainwright and Yaremovicz [42].

In the study of spatially homogeneous models where it is
assumed that the space-time metric admits one or more Killing vector
fields £ i.e. (¢ = 0), which generate a group of isometries, it has
been shown that when the energy-momentum tensor has the form of a
perfect fluid that the source quantities are invariant under the group,

in the sense that

LEUA =0 Lgp =0 Lgp =0

where Uy P and p are respectively the fluid velocity vector, density
and pressure. In this study we shall again assume that the energy-
momentum associated with the conformal models is a perfect fluid, as

this assumption appears essential for the physical interpretations in

the corresponding standard models. Thus

FS A A A o

TAB = (p + p)uAuB + P8aR (2.11)
and using the results (2.8) and (2.9) we can study the Lie derivatives
of the conformal source quantities under the conformal group.

From (2.8), (2.9) and Einstein's field equations

~

~ G
LTyp == 20045 * 28,59 | (2.12)
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Now the perfect fluid TAB is so structured that it has a simple
eigenvalue yielding a timelike eigenvector (the velocity vector u) and

an eigenvector yielding an eigenvalue of multiplicity three. Hence using

the relation

Tpg® = = P8ppY
we find
Lo = - 26 = 206415 - éAB¢C|C13AGB (2.13a)
LE&A = du, + 2(p + 5)‘}[¢(C|D)GC§DgAB + ¢(A|B)]£B (2.13b)
and Lgﬁ = - 2p —-%[¢(A|B) - ;AB¢C|C]ﬂAB (2.13¢)
where ﬂAB = ;AB + ;A;B

Thus we can see from these expressions that in general the geometric
objects in the conformal spaces depend in a complicated way upon the

conformal factor ¢ and its derivative.

From equations (2.7) - (2.10) and (2.13) we have the following
conclusion. We see that each physical geometric object A is invariant
under a group of Killing vectors (¢ = 0) and has a dimension q such

that under a homothetic motiom, A transforms like

LEA = q<¢,&>N . (2.14a)

Thus a spatially homothetic field A of dimension q is related to a

spatially homogeneous field A(t) by

A= %% (1) (2.14b)
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Since the covariant metric has dimension 2, the dimension depends on
the positioning of the indices [18]. From (2.13) we thus have

~ A

p=e %) p=e %) u, =elul, () (2.15)

Note that p', p' and u'A may depend upon the homothic constant ¢ but
will reduce to the homogeneous quantities of the models of Class E when
¢ = 0. When the space-time admits a more general group of conformal
motions, the relationship between R and A'(t) is more complicated, but

can be found by using the respective expressions for the geometric

objects and substituting the relation

A

20 c
8yp = © gAB(X ). (2.16)

We find

~AD .~

=1 -
gc = 8 lepgc* gDC B ch,D]

AD
(g) + (6 a c + G BBO - g gBCBDc) (2.17a)

= >
]
Q
|
|
[oF]
—
+
o |
—
—
—

AB C' BA B CA CD" BA ~ DA CB

C C
RAB(g) - ZVBVAO + ZBAOBBO - gAB(VCV o+ ZVCOV o) (2.17b)

and contraction gives

A

R = e 29[R(g) - 67"V,0 - 63,00"0] (2.17¢)

It can be shown, using the relations LE(VBBAO) e VB(LEBAO) and

LE(BAG) = ¢A’ that the above equations are solutions of equations (2.8)
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and (2.9).

From these equations, we note that a spatially conformal field

A

A of dimension q is related to another field A'(xA) where
B qo,A
A=e A () (2.18)

This form will be used in the rest of this chapter, where appropriate.

§3.3 Energy-Momentum Tensor

We are now in a position to be able to study some of the
properties of the energy-momentum tensor in relation to the conformal

models. From Einstein's equations we have

>
>
>

R=G (3.1)

where GAB is the Einstein tensor. Substituting in (2.17 b,c) we have

~

T =T

AB AR ZVAVBO + ZBAOBBG

+ gAB[vaaCo + BCUBCG] (3.2)

Assuming that the spatially homogeneous models admit a perfect fluid
energy-momentum tensor we have

~

T,g = (p + p)uAuB - 2V, Vg0 + 23,0850

[2v%s o + 3%3.0 + p] (3.3)

RN C c
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However, we see from this equation that, in general, the terms VAVBU

and 3A03B0 will preclude the eigenvalue and eigenvector structure of a

perfect-fluid energy-momentum tensor [see last section]. Thus, TAB will,
in general take the more general form
TAB = (p + p)uApB + P8 + q (3.4)

A

where 9up constitute the components of a symmetric tensor which
describes anisotropy [since 4 # 0 precludes the isotropic 3-space of

eigenvectors of T, ]. Conformally homogeneous models thus, in general,

AB
demand more general dynamical processes than those exhibited by a
perfect fluid [see next section]. Only a restricted class of conformal

models will admit a perfect fluid [see Chapter 4]. 1In these models we

require

- ZVAVBG + ZBAOBBG = AuAuB + BgAB .

A

In (3.4), if p is to be the eigenvalue corresponding to the
] " . ~ "B . "
eigenvalue u,, We require q,pu = 0 and we can also normalize u.
Under these conditions p and u, can be identified with the total rest
energy and the velocity vector field of fluid elements of C,

respectively.

Following Edelen and Wilson [33] we write

u, = Au, + v vu =0 (3.5)

where A and v, are to be determined. V has been interpreted as the
dispersion vector of the conformal models with respect to the

corresponding velocity vector field of the homogeneous model. 1In this

way we can make sense of the conformal models even though there are, in
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general, no isotropic comoving coordinate systems on elements of C

(see next section).

§3.4 Kinematical Properties

The immediate geometrical objects defined in a space-time in

which a spacelike group C3 of conformal motions acts are the surfaces

in which the group acts and defines, s(t) and the fluid flow vector uA;

The surfaces s(t) then determine a unique-future directed normal field

nA, (nAnA = - 1) which, by definition, is rotation-free.

In the investigations of homogeneous anisotropic models filled

with a perfect fluid, the relation between the 4-normal nA and the

AA .
4-velocity u plays an essential role. If they are collinear, then the
world lines of the matter are geodesic, even in the case of non-zero
.. A "A ]
pressure. However, if n and u are not collinear, then in general the
4-acceleration is not zero and hydrodynamical effects become apparent.

McIntosh [43] has already shown that, in general, homothetic models are

tilted and we can expect a similar result for conformal models.

~

Considering firstly the normal field nA, we find that unlike
the homogeneous models, it is not geodesic. To see this consider a
family of conformal vector fields gA& which are linearly independent at

each point. Then we have

A B
EaAn =0 o =1,...,3

“A o
oal8® T aa® |B T

*

Covariant differentiation w.r.t. 8AR is denoted by a bar '|'
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1 .
Multiply by n = 13 (!|B)n n + & ,n |Bn =0

and since

“A "B "A"B _ _ A
we have EuAn an = - ¢ugABn n = ¢a = g aaAG
- n, 00 = 9,0 (4.1)
A|B AT :

Now, since the normal congruence is rotation-free and thus satisfies

the condition

~ A

n[AnBIC] =0

-~

, then by standard theorems it can be shown [see Ellis in [37]) that n,

is proportional to a gradient i.e.

w = 0 © 3 locally functions R(XA), t(xA) :n, = - 4t 4.2)

Since t 1 is a vector normal to the surfaces {t = constant} this is the
3

condition that n, be orthogonal to these surfaces. Thus the spaces

~ ~ A A

defined at each point by the spatial projection tensor hAB = B,B + n,ny

mesh together in this case to form spacelike surfaces {t = constant}

A . - "B . A
orthogonal to n~ (i.e. hABn = 0). Thus the function t(x ) may be
thought of as a cosmological 'time' coordinate defined by the normal
congruence. However, since these future-directed normal vector fields
are not geodesic, the function t(xA) does not measure proper time along
the world lines. Thus the hypersurface normals are the tangent vector

fields of a non-geodesic hypersurface orthogonal congruence. A similar

result was noted by Eardley [18].
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Traditionally, the problems of relativistic cosmology are
attacked by choosing a coordinate system in which all fundamental
particles are at rest. This result shows that the fact that such a
coordinate system exists is by no means obvious and is usually closely

related to the principle of homogeneity [44].

The motion of the cosmological fluid is described by a

congruence of timelike curves tangent to the unit vector field

uA[uAu = - 1], where the fluid flow vector is uniquely defined as the

A

future directed timelike eigenvector of the Ricci tensor. In general the

~

surfaces S(t) will not be orthogonal to u. This is the case whenever
the vorticity of the fluid congruence is different from zero. Thus the

rest spaces H orthogonal to u, defined by the projection operator

~ ~ A A ~ AB

M = 8pp + u,up (mABu = 0), are in general tilted with respect to the

surfaces s(t). Note however that tilt does not necessarily imply non-

zero vorticity. The geometry is displayed in fig. 1.

0 )

1>

Rest Space H fig 1

LIGHT-CONE



Following the notation of Ellis and King [35] we define the

A

relation between uA and nA by

(a) the hyperbolic angle of tilt B, where

ApA

coshBf = - uAh B=20 (4.3)

A

and the direction of tilt, specified either by
. CA ) . "A
(b) the direction k™ of the projection of u” in s(t)

h g¢ = sinhBk #»kAn

~ A
0, kAk =1 (4.4)

or by

~ ~

(c) the direction zA of nA perpendicular to uA

ot n® = - stmmge® = Lot =0, 200 -1 (4.5)
Then one has the relations
GA = coshB;A + sinhBl';A (4.6a)
;A = coshB:xA - sinhBE

When B # 0, kA and QA are uniquely defined by (4.4), (4.5) and (4.6)

expresses the way in which uA is tilted with respect to the surfaces

s(t) [see fig. 1].

We now wish to relate the various quantities introduced above
to their respective counterparts which apply in the spatially
homogeneous models. We note that from the form of the conformal metric

(4.2) that the normal vectors of the two models are related as follows;
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N 4.7)

[= IS
n
1
j=]

Since in the spatially homogeneous models the normal is geodesic and

rotation-free, we have

n, =-t (4.8)

where t measures proper time. Comparing (4.7) and (4.8) with (4.2) we

find

= ; =-et (4.9)

Similarly, one can define a directiom kA' such that

and so we may write

_ g 0 1
u, =e [costhA + 51nthA ] (4.10)

The corresponding velocity vector in the spatially homogeneous

models can similarly be written as

u, = coshenA + 51nh6kA (4.11)

where the angle and direction of tilt, © and kA’ are defined as before.

Solving for n, from (4.11) and substituting into (4.10) we have the

A

expression

o
~ (e coshB g, . .
Ua <coshe >UA t+ e (SlnthA : tanhecosthA)
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and this has the form (3.5). We see that the dispersion vector is so
called since it is the direction vector corresponding to the difference

*
between the two directions of tilt .

We can now use the above relations to give a kinematical
description of the fluid as seen by the local inertial observer, one
whose frame is Fermi propagated along the world lines of the matter. In

the usual decomposition,

u =w,_+0o,,+ lem -u (4.12)

o= ~ ~

, where the acceleration Uyo volume expansion 6, shear temsor OAB’ and

vorticity tensor w,p are defined by

& =, ‘
Ya T YAlB
~ _~ "AB
0 = uAle
( (4.13)

o =a, ol - tem

AB (clp)y” A" B~ 377AB
w

AB - Y[c|p]™ A" B )
Substituting (4.10) into these expressions we have:

~

u =u 3B0 + eo[coshB(n

AlB T %A + 9g8n,)]

) N 1
AlB + BBBkA ) + sinhB(k AlB

(4.14)
where, using (2.17a) we may write

*
In the homothetic case, a spatial homothetic field ¢' of dimension q is

always related to a spatially homogeneous field by ¢' = eq0¢. The

velocity vector uA has q = — 1 and so uy, has q = 1. Hence we obtain

B = B(t).
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~c
malp = 9% T T aB"c
_ C C C C
= BBnA - [T AB + & A?BO + § BaAo gABa o]nC

= - _ C
=n,.p nApBo nBaAo + gABa ong

= eAB - nApB + wAB - nAaBo - nBaAo + gABaCU

= eAB . nAaBo - nBBAg

where we have employed a similar decomposition of n.p as used in (4.12),
?

where in this case, the acceleration and vorticity are zero. Note that

if the homogeneous models are non-tilted (i.e. 6 = 0 in (4.11)) then

n, =u, and eAB then becomes the expansion tensor of the fluid in these

models. Again, as noted earlier, the acceleration and vorticity in the

non-tilted homogeneous models is zero.

Similarly, we have

©
t . = Lt ! Tt 1
k AlB k AsB kA BBO k BBAg + gABB ckc
Hence
- =0l - s L T C‘l
Uyl e [ZA BBB + coshB(ﬁAB nBaAo) + sinhp(k AsB k BBAO + gABB ok C)]
(4.15)
where L M= e_oi
A A

Substituting (4.15) in (4.13) we obtain expressions for the fluid
quantities in terms of the respective homogeneous quantities with
respect to the normal congruence, the angle of tilt and the conformal

factor. The acceleration is
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>

~ . B ' ,B
u, = coshB!LA BBBn + sinhBlABBBk + BAU

. B ' B ¢ B
+ costh1nhB(eABk + k A;Bn + nAk Ba o) (4.16)

1B + k' k'BaBo)

2, 0
+ sinh B(k A;Bk Al

* B
uA + uABBOu + aAg

; the expansion is

6 =e[17,0% + ocosh8 + sinhg (> + 3k,0%0) ] (4.17)
-0 A
= e (e(h) + 33Acu )
. “A _, ABCD" © .
; the vorticity vector w = - uBuD'C is
2
wA = %ezanBCD [COShBSinthBk'C'D + sinhZBk'Bk'C_D]
9 H
= Q2oA (4.18)

- (h)
and while the expressions for the expansion, shear and rotation tensors

are somewhat more complex, we have
; = eco and ; = ecw
AB AB(h) AB AB(h)
In these expressions, G(h), w(h), OAB(h) and WAB(h) refer to the

COrrespondihg terms in the homogeneous models which one regains by putting

o =0 [see Ellis and King [35]. Since the shear temsor, vorticity vector
and vorticity tensor in the conformal models differ from their homogeneous
counterparts only by a multiplicative conformal factor, they have the same
physical significance in both models. Further, unlike the standard models,

the acceleration and vorticity will be non-zero in these models.

From (4.18), the projection of wA in the direction of kA is
~pn A
k W, = —coshfn vy

~

A . . vy s
Thus one sees that the vector w 1lies in the surface s(t) 4iff it is

~

perpendicular to the tilt directions kA and ZA. To examine the behaviour

of particular group types it will be convenient to introduce
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the group classification of Chapter 2. This is achieved in the next

section where we write the above equations in terms of a tetrad basis.

Finally, consider the energy-momentum conservation equations

%AB

= 0 for the perfect fluid

|B
TAB = (p + p)uAuB + g pP (4.19)
The components uATA lB =0 and m ATA |B = 0 become
A~ AA ~ ~ N
p ,u + (p+p)6 =0
SA
~ B " S "B _
and my P g + (p + p)uAlBu =0

~20

—200'(xA) and 3 = e p‘CxA) these

Substituting in the forms p = e
equations become

~

o! AuA + (p' + pW)o = 2p'8A0uA (4.20a)

B , ! N v ~ B

~
m

(4.20b)

From (4.20b) we see that for dust solutions (i.e. p' = 0) the

~ ~

acceleration (uA)' is zero. However, from (4.1 ) we have (UA). = aAg
if B = 0 i.e. if the conformal model is non-tilted. Hence we have the

result that there are no non-tilted dust conformal models.

For homothetic 'self-similar' models p' = p'(t) and p' = p'(t)

and so we may define the functions [34]

& dp' dp'
w(t) = exp J PR r(t) = exp J . (4.21)
tO P P tO P
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and substituting into equations (4.20) we have

. 20'9 ouA

e_ocosth(logw)/dt +6 = ?Bﬁ-é}Eﬁ3~ (4.22a)
N . . 2p'8BomBA
s1nh8d(logr)/dtlA + (uA) = (—p_'_-'i'—P'—)_ (4.22b)

Substituting (4.16) into (4.22b) we have after contracting with kA

) ~ TA'B _ (p' - p') coshB ~A
dlog(rsinhg)/dz + eABkAk B o iahs 2a%K (4.23)

The form of this equation shows that if 5 = ;, then B is either zero or
non—zero for all t i.e. a tilted model stays tilted. Hence, combining
this result with the result first proven by McIntosh [43] that all
homothetic models with perfect fluids are titled if 5 # ;, we find
that in fact all homothetic models are either tilted or non-tilted for

all t.

3.5 Tetrad Description

So far, when components of tensors have been written, it has
been with respect to a coordinate basis. However, any set of linearly
independent vectors will do as a basis at each point and it is
convenient to write the equations in terms of an orthonormal tetrad {ea}
[34]. We denote the derivative of any function F in the basis vector

~ ~

3 ] . . A :
directions by aaF, so if e, are the components of the vectors e, ina

local coordinate system aaF = eaAaAF. The inverse matrix will be
"a “a "B B . .

denoted by e A® SO € A a4 ° GA . Then, any tensor with coordinate
A...B a..b .

components T C D has tetrad components T c..d defined by
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a...b _ "a ~b ~c ~D ..B
T c...d ~®a..%8%cC..® dTA C..D

The metric tensor components B, 3Tre defined by

- -~ ~ ~ (\BA

=e .e = e e g, (5.1a)

and g = e (5.1b)

The differential properties of the basis may be characterized

A

. . ta
by the rotation coefficients T or T where
abc bc

a].: _ AAA B Aa _ AadA

abec  ‘a ecA|BEb be & ‘abe (5.2)

Alternatively, one may consider the basis vector commutators. We define

~ ~

. , a
the commutation functions v s V by
be abc

[;a’;bJ - ;cab;c ;cab - ;cd; ab (5.3)
and it follows that

;abc = %abc - f‘acb = ;abc = }abc - f‘acb (5.4)
and f‘abc - 1/Z[E)béca + 5céab - 5aébc + ;abc + ;cab N ;bca] (5.5)

Taking the tetrad components of the curvature tensor and

contracting, one obtains the field equations in tetrad form

~ ~ ~ ~ A

=T (5.6a)

_ 1 ~
db T T8pq
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The identities Ra[bcd] = 0 are equivalent to the Jacobi identities

~ A A

[eb,[ec,;d]] + [;d’[;b,;c]] + [;c’[ed,éb]] -0

A~ Af AS Af N
B[dv be] + v [dbv cls = 0 (5.6b)

In a similar way we can set up an or thonormal basis of vectors
{ea} on the homogeneous spaces. Equations (5.1) - (5.6) again hold for
this basis. The homogeneity of these models is expressed by the

restrictions [34]

(t) & = vcab(t) r¢ . = Fcab(t) ] (5.7)

gab = gab ab ab

The group of motions which act in these models is classified by
considering the triad of vectors {ev} which span the surfaces of
homogeneity s(t) at each point and which is invariant under this group.
From (5.3) we have [ed,es] = \)(SOLBe(S and as in Chapter 2 we decompose

) . . af .
the v into a symmetric temsor n = and a relative tensor a ;

oB

v =¢ n -68_a -6 a (5.8)

nasa =0 (5.9)

and as before the solutions of this equation give the Bianchi

classification of group types.

To complete the triads {ep} and {eu} to obtain a complete set

of basis vectors we add the normal vectors making the normal bases
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{;a} = {é}eu} and {ea} = {E’eu}' While for non-tilted models there is
no other compelling choice, two alternatives are more closely related to
the fluid properties. However the tilted basis {éa} = {é,ea} is not
orthogonal and the fluid basis {éa} = {ﬁ’éa}’ where the vector {éa} are
orthogonal to u, does not span the surfaces s(t). The normal bases are
those most closely related to the symmetry properties of the space-time.
As we have restricted  the bases to be orthonormal it follows that the

metric components have the form

S

8. = diag(-1,1,1,1) and 8p = diag(-1,1,1,1) (5.10)

To establish the relationship between the two sets of tetrad

components we note that

- “a b " 20 _20a b
AR © © A® B8®ab T ¢ BAp T € € 5® p8ap
"a _ oa
- L = e, (5.11)
From this, it follows directly that
¢ _ -0, cC c _ <€
ab = © [v ab(t) + 6 aabo 8 baac] (5.12)
‘a  _ =-0..a a a
and T be = © (T bc(t) + 6 baco gbca o] (5.13)
Also, the choice of normalized basis {ea} = {E}ea} where
nA ='6A0, and the decomposition
n .= h_ +o. +w. -n (5.14)
a:;b 3 ab ab ab anb
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implies v =n v’ =206 (no sum) )
oo o oo. o
o _ 8
v aB - 2eu86w
o _ § §
v og " eaBGQ OaB eassw . (5.15)
§ _ ué 9 §
v o = easu + 6 Bau 8 aaB )
a _, abcd_ - . . \
where Q = Y4n ec.ed gives the angular velocity, of the triad {ea}

with respect to a set of

follows that

. o _ B
= nB T Bo 0 T 8o
r¢ =n° r’°. =e
00 Bo.
PB = es wd + GB FB
0.0 o6 o
: 8o v
= 6[€Bu6n + 2n (of B)V
o _ o
T aB 2aB T

Fermi-propaged axes.

Then from (5.6) it

'

(5.16)

We can now write out the kinematical quantities of the conformal fluid

in terms of the above tetrad quantities.

For example, the components

of the vorticity vector (4.18) in the normal frame are

o
W o=

Le

(o]
w_ o=

20 af aBS
tanhB(n k'B + ¢ k'Ba(S

%ezcsinhzsk'ak'

B

% sinhZBk'ak'Bn

apB

n

BS

(5.17a)

6) (5.17b)
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From the Jacobl identity naB aB = 0, it can be seen that if the tilt
vector k'a is parallel to a > then the vorticity vector is zero. It
also follows from the time preservation of the Jacobi identity that if
the above is true at any time, the same is true at all times. Thus w
is either zero or non-zero at all times (i.e. it is an invariant relation
quantity [35] ).

oB

When n = 0, the vorticity vector becomes

o
%ez tanhp EOLBGk'

£
I

825

and so Type I models have zero vorticity. Similarly, Type V models have

non-zero vorticity unless k'a is parallel to a, ; then LA and k'u

B

are orthogonal. Further, the vanishing of vorticity in other class C models

(i.e. Types 1II, fVIO, and fVIIO) corresponds to the vanishing of
naBk'B and from (5.17b) we see that in these cases ky' cannot be
perpendicular to w> since ka'wOL = 'l/zs-inthosth'OLk'BnO‘ls 4 0.

The above comments hold for all conformal extensions of homogeneous
models (Myg). However, if one restricts oneself to homothetic extensions then
aao is a constant ba . Iii these cases much of the above still holds, as
work recently published by Chao [81] demonstrates. However, in an attempt to
consider whether any simple conformal extensions actually exist, we must solve
Einstein's field equations. These field equations, using the above tetrad have

been written out in Appendix B.
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CHAPTER 4

PERFECT FLUID CONFORMAL MODELS

§4.1 Introduction

In this chapter we shall investigate the existence of perfect
fluid solutions of class C which are conformal to homogeneous perfect
fluid solutions of class E. To do this we shall use the tetrad form of
Einstein's field equations derived in the last chapter for conformally

homogeneous models.

Tn the first section we consider the form of the metric and for
later ease in calculations we restrict ourselves to diagonal models.
Next we consider the form and nature of the governing Einstein equations
in both a coordinate and tetrad frame. To aid in solving these
equations we at first restrict ourselves to considering those models
which are conformal extensions of non-tilted homogeneous models. We
then consider conformal extensions which are non-tilted. To illustrate
the form of the fluid quantities in these models, Bianchi type I

models are examined using known general solutions.

For homothetic models we again establish the result first found
by McIntosh that non—tilted homothetic models only admit a hard equation

of state (i.e. p = p).

§4.2 The Metric

As we have seen, the metric for spatially homogeneous models

has the form

ds? = - dt? + \)ij(t)wl@wJ (2.1)
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where the three invariant 1-forms have the following structure [see

Appendix A]

wl = (sx? + rx?)dx! + dx? = Adx! + dx?
w? = (rx® + qx?)dx* + dx® = Bax' + ax®
wd = - dx!
where we have put
A= (sx® + rx?) B = (rx° + gx?)

.except for Bianchi Type I where woo= dxl. The values of the constants

s, r, and q for each type are given in Table 3.

In the coordinate base {dt,dxl} we can rewrite the metric (2.1)

in the form

ds? = - dt? + gijdxidxj
where gll = \)llA2 + 2v12AB + v33 - 2v13A + v22B2 - 2v23B
819 = V112 t V128 7 Vi3
813 = VoA T Va8 ~ Vos
822 T V11 823 T V12 833 = V22

In the following we shall restrict ourselves to diagonal

metrics where

Vig = Vpa = Voo =0 (2.2)
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TABLE 3
TYPE S T q
IT 1 0 0
VI 1 0 1
[o]
VII 1 0 -1
[o]
v 0 -1 0
v 1 -1 0
VIh 1 -a 1
VIIh 1 -a -1
IIT = VI_, 1 -1 1
We then have
811 = VpphA" t VBT t Vg 82 = V11
812 = V1A By3 = 0
814 = VooB 833 = Voo

The conformally homogeneous metrics thus have the form

2 _ 20 2 2 2 1\2 1.2
ds® = " [~ dt° + (vllA + v22B + v33)(dx )< + 2vllAdx dx

1403 252 3.2
+ 2v22de dx® + Vll(dx )<+ vzz(dx Y] (2.3)

where from (2.3.13) and (2.3.14) we have the conformal coefficient
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g = - [ ¢dx! for Bianchi types IIL - VII and 0 = { ¢dx® for Bianchi

type I.

§4.3 The Governing Equations

In the next section we shall investigate the existence of
perfect fluid solutions of class C [i.e. having the metric form (2.3)]
which are conformal to homogeneous perfect fluid solutions of class E.
To do this we shall use the tetrad form of Einstein's field equations
introduced in the last chapter. However, we first consider the form of

these equations in a coordinate frame and the tetrad frame.

1) Coordinate Frame

We obtain the governing equations by eliminating TAB between

equations (3.3.3) and (3.3.4) and substituting in (3.3.5), putting

~

dup = 0. This gives the equation

~ ~ 40, 9 ~ 20
(p + ple [A u,up + v,vp + XﬂuAvB + quA)] + pe g,p

. AB AB
= (p + p)uAuB ZVAVBO + ZBAGBBU + gAB(Zg V,Vgo + g aAoBBc + p)

(3.1)

Note that the metric tensor &AR is assumed to be known from the
homogeneous models and hence its ten independent components are not to
be counted as unknown variables in the above system. The same holds

for the source quantities p and p.

Multiplication of (3.1) by uAuB and summing gives,
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2

= _9 _
p = e op + Vi + pP) - e 0gAB(ZV v,o + BAOBBO)

A'B

AB
- uu [ZVAVBO - ZBAOBBO] (3.2)

where V2 = gABVAvB. Also, multiplication of (3.1) by gAB and summing

gives,

09.0) (3.3)

- °y 20 _ AB
(3p - p)e™ = (3p - p) + 6g (V,Vpo + 93,00,

for which, using (3.2), we obtain

A

_ -20 2 =20 AB
3p =3 "p+Vi(p+p) +te [AVAVBO + aAoaBo]g

AB
- uu [ZVAVBO - ZBAOBBO] (3.4)

The above system of equations gives the relations between the
salient physical quantities of the conformally homogeneous models, the
conformal coefficient and its derivatives and the known quantities of
the corresponding homogeneous models. We can hence solve these
equations to find the unknowns 5, ; and {VA}. This will involve
solving the constraint equations (3.1) in conjunction with the full
system of homogeneous field equations. Since these equations are of
second order in a coordinate frame, it is easier to work with an
orthonormal frame where the differential equations are of first order
only. However, in this latter frame, the time evolution of any
constraint equation needs to be found to ensure consistency. This
procedure will give rise to further constraint equations which must
themselves be conserved in time giving rise to yet more constraints.

Either these sets of constraints will lead to inconsistencies or there
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will be a stage when the new constraints found are merely identities by

virtue of the previous equations and we have a consistent solution.

The solution of the coordinate system of equations (3.1) - (3.3)
together with the homogeneous field equations in coordinate form is

outlined for the interested reader in Appendix C.

i1) Ovrthonormal Frame

The construction of Einstein's field equations in an orthonormal
frame has been outlined in Appendix B. For a tilted conformal model it
was found that the field equations reduced to the following system of

equations;

6 -08 6% 43 3% + 29 08% - 2a 3%
o o, [0}

of
= L' (1 + 2sinh?B) +-%(1 + %sinhzs)p' (3.5a)

eaBGn(SpoBu - 308aa8 + %eaao + ZOBGBBO
= - (p' + p')sinthosth& (3.5b)
aocas + eoaB + ZOV(QEB)GVQG + 2n6<dn8)6 - 26\)6(0L1'1\)B)a(S - nnaB - ZBBBGO
- eaBGnGvao - Zaaaso + 28a0380 + ZEvG(GnB)vaao
+%«5a8(n2 - ZnUvnuv - ZBvOavo + ZBVBvG + Zavavo)
= (o' + p')sinh?B(kks - '%Gas) (3.5¢)
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2 12 _ .0 2 _ _aB _ on0 a0 a
Lo 3a a, + %(sn n naB) 29 aao d oaao + 4au8 o

uir

= coshZBp' + sinhZBp' (3.5d)

where the various terms refer to the homogeneous quantities describing
the normal congruence (and hence the fluid quantities in a non-tilted
homogeneous model), the angle and direction of tilt and the conformal

factor and its derivatives.

Since these models are conformal to homogeneous models, the
various homogeneous terms will thus satisfy the field equations for a
homogeneous model. If the tilt in these homogeneous models is described

by equation (3.4.11), then the corresponding field equations are [35],

5 0 + 202 + 0% _ + %o (1 + 2sinh?6) + gp(l + 2sinh20) = 0 (3.6a)
0 3 o.B 3 3

3a 08 - ¢ nvuc8 = (p + p)sinhBcoshbk (3.6b)

B o aBv U o
_ v b VIRT u
BOOQB + eoas + 20 (aEB)qu zevu(anB) a + 2naun 8
- nn - 16 (2nuvn - n?)
oB 37 aB uv

=

]

( + p)sinhze(kak - 36 ) (3.6¢)

B of

o
Lg? - 3aaaa + %(%nz - n Bn

uga
N
1
-

0.8

= pcosh28 + psinhze (3.64)
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Substituting these equations into the set (3.5) we obtain the following

constraints.

3 3% + 25 09% - 2a 3%
ol o o

1

L' -p) + %(P' -p) + (p' + p')sinZB - (p + p)sinh26

(3.7a)
26a8860 = (p + p)sinhecoshekOl - (p' + p')sinthosth& (3.7b)
- 2303 0 - easun“vavo - 2a 3,0 + 20 000
+ 2€uv(an8)u3vo + 38,028 3% + 20% o - 22%0 0)
= (p' + p')sinhZB(k&ké - %6a8) - (p + p)sinhze(kakB - %6u8)
(3.7¢)

4aa3a0 ZBQBGO - Bucaao = p'cosh?B - pcosh?6 + p'sinh®’B - psinh?e

(3.74)

To write out these equations in detail we use the basis {eu} introduced

in Appendix B such that

a = (0,0,a) naB e diag(nl,nz,nB) (3.8)

Using this basis, and the results from Appendix D that
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1
3 0 = £§3 £ = 2p(xl) (3.9a)

o o v33

'1aF(x1) (3.9b)

%

QL

Q
I

3 &3
= 3f§ a6 8 of = ~ Vag

-1
33

equations (3.7) can be written in the form,

sexcept for Bianchi type I where 3f = v OF and F = F(x°), then

of + 2f2 - 2af = L' - p) +~%(p' -p) + (p' + p')sinh?g - (v + p)sinh26

(3.10)
2913f = (p + p)sinhecoshek1 - (p' + p')sinthosthi (3.11a)
2623f = (p + p)sinhecoshek2 - (o' + p')sinthosthé (3.11b)
2633f = (p + p)sinhecoshek3 - (p' + p')sinthosthé (3.11¢)

2af + 23f - 2£%2 = 3(p"' + p')sinhZB(kiz - %9 - 3(p + p)sinhze(ki - %9

(3.12a)

- - ' "Vainh2RL ! s 12
(n2 -0 n3)f (p' + p'")sinh Bklk2 {(p + p)sinh eklk2 (3.12b)
0= (o' + p')sinhzskiké - (p + p)sinh28k1k3 (3.12¢)
2af + 23f - 2£2 = 3(p" + p')sinhzs(kéz - %) - 3( + p)sinhze(k§ = %p

(3.124d)

0= (" + p')sinhzskéké - (o + p)sinh26k2k3 (3.13e)

Lf? - 4af - 43f

3(p' + p')sinhZB(ké2 - %D - 3(p + p)sinhze(k§ - ‘%)

(3.121)




64

haf - 23f - £2 = p'cosh?B + p'sinh?B - pcosh?6 - psinh?6  (3.13)

We can now solve the above constraint equations and use the
conditions thus found in solving the system of homogeneous field

equations for allowable models.

§4.4 Conformal Extensions

i) Non-tilted homogeneous models (6 =0, ka = 0): We consider
first conformal extensions from non-tilted homogeneous models. From

(3.12a) and (3.12d) we have

1

2af + 23f - 2f2 3)

3" + p')sinhzs(k'l2 -

2af + 20f - 2£2

y [} 2 '2_;.
3(p' + p')sinh B(k2 3)

Y 1
= kl—k2
Then (3.12c) and (3.12e) give the equation
- 1 1 . 2 (R |
0 = (p' + p")sinh Bklk3

Now, if ké = 0, then from (3.1lc) we have, since f # 0, 63 = 0. Hence

using equation (3.4.15) one can show that eé = 0. However, since
observation shows that the universe is expanding, we discard this result

as being unrealistic. Therefore we have k! = 0 and the result

1

=1 4.1
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Thus, the conformal models will always be tilted if the homogeneous

model is not. We see immediately from (3.1la) and (3.11b) that

013 = Opq = 0 (4.2)

and from (3.12b) that
(n2 - ny - n3)f =0 (4.3)
Since n3 = 0 for all conformal models, we have the result that n, = n,

and hence the only allowable Bianchi types are types I, V and VII.
Also, Ellis and MacCallum [34] have shown that a non-tilted homogeneous
model of class B has n, =mn, on an open neighbourhood iff there is a
group of Type V. Hence, for class B models we need only consider Type

V models.

Using these results (3.12a), (3.12d) and (3.12f) give

2af + 23f - 2£%2 = - (p' + p')sinh®B (4.4)

Substituting this into (3.13) we obtain

p' =p + 3f(2a - f) (4.5a)

and then (3.10) gives

p' =p - £f(2a - f) + 25f (4.5b)

Noting the values for f given by equations (3.9), these equations are

identical to those obtained by the coordinate method in Appendix C.
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Finally, equation (3.11lc) becomes the constraint equation

263f = - (p' + p')sinhBcoshB
Squaring, and substituting for (p' + p') from (4.5) and sinh?g from
(4.4), we obtain

202

3f2 = (f2 - af - 3f)(p + p + 2af) (4.6)

Again, by substituting in for the values of f given in (3.9) and noting
1
the additional coordinate transformation a = - v33 r found in Appendix

D, then (4.6) can be written in the coordinate form:

26;F2 = (F> + rF + 9F)(p + p - 2v45 " TF) (4.7a)
for Bianchi types II - VII, and
20%F2 = (F% - 3F) (p + p) (4.7b)

3

for Bianchi type I (r = 0).

We are now in the position of using the above results in
conjunction with the homogeneous field equations (3.6) in obtaining the
properties of those homogeneous solutions allowing a conformal extension.
We have seen that we need restrict our attention to Bianchi types I,
VIIo and V only. It has been shown that for such models [34] that
there exists an orthonormal tetrad such that

Qa =0 0w = 0 (o # B) (4.8a)



67

and 8 _ = diag(®

B (4.8b)

1362’63)
Substituting (4.8) into the system of homogeneous equations (B.1l4) of
Appendix B leaves

9.a+ 6,a =20 4.9)

aonl + (62 + 63 - Bl)n1 =0 (4.10a)
Bonz + (61 + 63 - 62)n2 =0 (4.10b)

350 + ei + 6y + eg + +-%p =0 (4.11)
a(26, - 6, - 6)) =0 (4.12)

8p9p = - €6, + 2a% + %(p - p) (4.13a)
3p8y = = 08, + 2a2 + %(p - p) (4.13b)
3g8q = — 004 + 2a2 + L(p - p) (4.13c)

In solving these equations we shall consider Class B models first (i.e.

type V). We shall then consider the simpler Class A models.

ii) Type V Models (a # 0 or r # 0). Take the time derivative of

the conformal constraint (4.7a), first noting that from (4.9)

3
= - > -1 ~2. - _ 1 -1 =
38 8g(V33 T) = ’V33 VagT = = V3 "Va53 = = 033
3 O B e and v ® 2v..0 (4.14)
3 33 V33 33 33%3 '
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Also, writing the equation of state in the form p = vp and using

equation (3.4.19a), which in the homogeneous case becomes

Bop = - (1 + v)bp (4.15)

we obtain the result

- 49;6F2 + 8r26.F2v,. L

_ 2
3 33 + 293(1 v)poF

= (F% + rF + 3F) [~ (L + v)20p + 4v33_1e3rF]

Substituting in the original constraint (4.7a), we obtain

1 -1

{2v _lr[8r26 Voo r}F

- 402 - + 863
33 3V33 4636 + 263(1 vpl 8 3v33

= 2 &l 2 o} 2
= p(1l + v)[8r 63v33 - 4636 + 263(1 v)p + 2636(1 + v)]

Inspection of this equation shows that it has the following form

A()F(x) = B(t)

Thus, this equation can be consistent only if F(x) = constant unless

A(t) = B(t) = 0, in which case F(x) is arbitrary.

ii-a) F(x) # constant - Conformal. 1In this case we have

|
o

8rig.v.. L - 4829 + 20,(1 - V)p + 405 = (4.16)

3733 3

and 462 - 8r2e.v -1

2 =
3 3V33 - 263(1 - Vv)p 2639(1 +v) =0
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Adding these equations we obtain

3 _ 2
463 2636(1 + v)

and since we require 63 to be non-zero (otherwise 63 = 0), we have
263 =0(1 + v) 4.17)
Also, from (4.12) we have since a # 0

20, =0, + 0 (4.18a)

= 8 = 30 (4.18b)

Substituting this into (4.17) gives

1 +v) = %- v = -

W+~

We thus have an unphysical equation of state for the homogeneous models,

where from (4.16) we have

- 22 - 2. -1
p = 363 3r Vi (4.19)
We now consider the equation of state in the conformal model.

Substituting (4.18) and (4.19) into the constraint equation (4.7a) we

have

202 _ 2 2 _ 2 ol -1
263F = (F° + rF + 8F)(293 2r Vg 2v33 rF) (4.20)
and since F(x) # constant, this equation is consistent only if

83 = B\)33_;5 where B € TR. In this case, (4.20) becomes
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B2F2 = (F2 + rF + 3F)(B% - r? - xF) (4.21)
Also, from (4.5) and since p = - %p we have the result
|=_ll_ -1
P 3P 2v33 oF (4.22)

Hence, this is an unrealistic fluid since it will be impossible to
satisfy the conditions p' > 0 and p' 2 0 for all space-time points.
Thus, we conclude that there are no Class B homogeneous models admitting
a conformal extension which has a realistic perfect fluid. We now

consider the other alternative where F(x) = constant.

1i-b) F(x) = constant: Homothetic. Here the constraint (4.7a)

reduces to

262F = (F + 1) (p +p - 2ug ) (4.23)
and the time derivative gives, using (4.17)

1ze§F - 8r2Fv33_1 -~ 2(1 - V)pF = (F + ©)[3(1 + v)?p - 4v33_1rF]

Eliminating 6., by substituting in (4.23) gives

3

8rF(F + 2r)v33—1 = (1 - V)[F + 3VF + 3r + 3vrlp 4. 24)

if o # 0, this constraint will be satisfied if F = - 2r and v = 1 or

1 .
v = =. If, however, none of these conditions hold, then time evolution

3

of (4.24) leads to the condition v = - %—and from (4.22) we have

1 R .
p' = - §p' and we have an unrealistic equation of state. Thus we

consider the case where F = - 2r.
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Substituting this condition into the homothetic constraint

(4.23) glves

-1

2 _ 2
33 T = (1 + vV)p + 4a (4.25)

4e§ = (1L + Vv)p + 4v

Also, since 6 = 303 and using equations (4.11) and (4.13) we have

0.6. + 6.6 + 0.6 = 3aZ +p

172 13 2°3

and since (61 + 62) = 263, and using (4.25) we obtain
8.0, =a® + %(1L - v)p (4.26)

172

We now consider the two cases v = 1, v = %-separately.

Case I: (v = l). Here (4.25) and (4.26) become

3
bog-
and %p = 8,0, - a?
Subtracting we obtain 6; = 6162 and together with (4.18) we have the

result el = 92 = 63. All constraint equations are satisfied and we thus

have the isotropic Friedmann model of type V.

Case II: (v

1). Here (4.25) and (4.26) become

202 - 2a?

2
3

©
Il

N
[

<@

D

and a 192
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Both these equations are consistent with the remaining homogeneous
field equations and thus represent a solution. Note that in general

these models will be non-isotropic; otherwise p = 0.

Now, given the condition F = - 2r, which 1s equivalent to

f = 2a, we have from equations (4.5)

Hence, the density and pressure in the conformal models is given by the

expressions

p = e o and p=-e p (4.27)

where o = - J Fdx! = 2r f dx* = 2rx?t. Howevgr, referring to Table 4.1,
for type V models r = -1 and so, although the density and pressure
satisfy the requirements of always being positive, they become
unbounded as Xy approaches infinity. This would seem to be unrealistic,

however, in an open universe.

The above theory holds for Class B (type V) models where
a # 0. We shall next consider Class A models: in particular Bianchi

type I.

iii) Bianchi Type I models: Equation (4.7b) gave the conformal

constraint applicable for type I models:

262F2
63F

(F* - 39F)(p + Pp)

or 26375‘l (F2 - 3F) (1L + Vv)p (4.28)
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where p = vp. This equation has some immediate consequences. Since
p and 63 are homogeneous functions of t, while F is a function of x3, we

have that

1 - 93F FTZ= constant = B2 (4.29)

Note that since (1 + Vv)p and 632 are positive (p > 0), so is the

constant B2. Rearranging (4.29) we obtain

(B2 - 1)F%> + 3F = 0 (4.30)

1f B2 = 1, then 9F = 0 and F = constant. This corresponds to the

homothetic case. Hence, for conformal models we require g2 # 1.

As an example of a solution of the differential equation (4.30)

consider F = cx3n. Substitution gives the result n = -1, ¢ = (g% - 1)_1.

Hence a solution of (4.30) is
Bowmmgiioes 82 41 (4.31)

(8" = 1)x4
and from this we have
RnxS )
0(x3) = I Fdx3 = ®T-D ° B #1 (4.32)
Now, substituting (4.29) back into (4.28) we have

202 = B2(1 + v)p (4.33)

3

As in the previous case, we take the time evolution of this equation

which gives
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(1 - v)636 = (1 -v)p (4.34)
If v # 1, we obtain the condition
p =6,6 (4.35)
Substituting this into (4.33) we obtain

20, = 82(1 + v)o (4.36)

which gives B%(1 + v) = %-upon taking the time derivative. Substituting

this result back in (4.36) gives 6 = 30 From (4.35) we have p = 382

3° 3

and from the homogeneous field equations we obtain the condition
Hence, the homogeneous models with v # 1 must be isotropic.

3°

When v = 1, the conformal constraint (4.33) becomes 6; = sz
and from (4.34) we saw that its time evolution was immediately satisfied.
Thus, there are no constraints on the homogeneous models as the above
equation defines the value of B for each case. For example, if one

considers an isotropic homogeneous model then from the field equations

362. Comparing this with the above

we obtain the condition p 3

condition we find 82 =

Wl

Finally, when g2 1, we again reduce to the homothetic case

and the conformal constraint reduces to

29; = (1 + v)p

Comparing this with equation (4.36) and the condition obtained from its

time evolution, we see that if v # 1, we have the result v = - %u Using

equations (4.5) then gives
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and hence the equation of state for the homothetic models is unrealistic.

§4.5 Bianchi - Type | Models

In this section we shall investigate the form and properties
of Bianchi - type I models allowing conformal extensions, by using known
analytic type I solutions. Perfect fluid type I models have been
investigated by Jacobs [45] and we use his closed form solutions for
dust and hard equation of state (v = 1). We at first show that these
solutions satisfy the conformal constraint, reaffirming some of the
results of the previous section, then obtain explicit expressions for

the fluid quantities.

Using equations (4.14) and (4.33) we write the conformal

constraint in the form

2(p + PIB2 = (Vg5 V)2 (5.1)

From the homogeneous field equations we can find expressions for p and
p in terms of the metric coefficients and substitute back into (5.1).

This gives

_1.. _1. _11

1- _l-
Vol = (Vg5 \’33)2 (5.2)

2 - 2 _
B [(vgy TV33)" = 2ZV35 V33 T Vyg V1Y)

We can now take the known analytic type I solutions and see whether this

constraint is satisfied.
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i) Dust Solutions:

From Jacobs [45] we have the solution

2 2y
v, = vy o= D+ e DTGy + Jepld/xg] 2 (5.3a)
_ 2n , 4r)
where X = sin(w,w t3o9 + 3 ) (5.3b)
and Xy = normalized time = (t + tB)/TD
_ _ %
Ty T time scale = (6ﬂp0)

Substituting (5.3) into (5.2) and equating coefficients of x; we find

gZ = %u Equating coefficients of x, we have, if € # 0, X3 =0 and from

the xg equation Xi = %n However, these last two conditions do not

satisfy (5.3b) and hence we require e = O which satisfies these

D
equations. Thus, isotropic dust solutions will give a perfect fluid

2
conformal extension where B2 = 3" This result is in agreement with the

discussion after equation (4.3b) in the previous section.

Substituting ey = 0 into (5.3) we find

= x4/3 and = =
33~ %p P = Po¥p

Hence, from equations (4.5), the density and pressure in the conformal

model are

~ % 2
-2
p =e U{-—(z)- - 32/3} (5.43)
D
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R =20 -20

=& 27 o Se
P =73 [28F + F7] E

*p 3%

F2 (5.4b)

where we have used (4.30) in eliminating 9F in (5.4b)., Note that while
the pressure is always positive, this need not always be the case with
the density. Also, depending upon the choice of solution of (4.30) for

F, the behaviour of the source terms could be unrealistic. As an example,

consider the solution (4.31) with gZ = %-giving T = - 3x;1.
- fy -
3\x2 = 2. 4/3
*D XXy
- 15x;
73

As with the homothetic Type V models found in the last section we see

that these quantities increase quite rapidly in ome direction.

ii) Hard Equation of State Solutions (v = 1)

From Jacobs [45] we have the solution

48X,
_ . .2/33 P
LTV Xk, s 0<8<1 (5.5)

where X normalized time = (t + t%)/rz

'_‘
1

1
time scale = [(1 - 62)/2400]/i

and Xi is as above. Substituting (5.5) into the constraint (5.2) gives

the single equation
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(382 - 1) + 482X X.,62 - 4(B% + 1)62%X2 - 48X, =0 (5.6)
1 3

2 3

With the free parameters at our disposal, this equation can be satisfied.
For example, putting § = 0 we obtain an isotropic homogeneous model and
g2 = %u Again this agrees with the discussion in the last section.

Expressions for the fluid quantities for the conformal models may be

obtained and similar comments as above hold.

Putting B2 = 1 into (5.6) we obtain the homothetic case, and

the equation

2 _ as2¢2 _ -
1+ 26 X1X2 46 X3 26X3 0
From this equation we note that the homogeneous models must be
anisotropic, as putting § = 0 leads to a contradiction. Using
expression (5.5) and the fact that p = poxgz, we find the homothetic

fluid quantities to be

. o /P 2
= 20(){0 = —3F ) (5.7a)
z V33
N /P 2
. 20(;34,2_) (5.7b)
2 Va3

where

g = I Fdx3 = Fx3 since F is a constant.

Since the denominator of the second term in (5.7a) increases
less rapidly with time than the first term, a time will come when the
density becomes negative. However, if F > 0, then both quantities

approach zero as x, increases without bound.

3
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§4.6 Non-Tilted Conformal Extensions

In this section we now consider tilted homogeneous models
allowing non-tilted conformal extensions. We use the tetrad frame and
the governing equations are obtained by putting B = 0, k& =0 in
equations (3.10) - (3.13). 1In this manner, equation (3.11c) has an
immediate consequence. Since all terms except the function f are
homogeneous quantities, then we must have of = 0. Thus only homothetic

extensions are allowed.

As before, solving these equations gives the results:

kl = k2 =0 k3 =1 (6.1)
p' =p + 3£(2a - £) (6.2a)
p' =p + £f(f - 2a) (6.2b)

and as before the only admissible Bianchi types are those where n, =1,
i.e. types I, VIIo and V. Again it is possible to find a basis such

that

@ =0, o, =0 (a#B), 8 . =diag(e;,0,,05) (6.3)

and we obtain the following constraint

2e§f =(a - f)(p +p + 2af - 2£?) (6.4)

Substituting the above results into the homogeneous field equations

(B.14) of Appendix B leaves
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3.a+ 6.,.a =20 (6.5)

9.n, + (92 + 6, -0

o™ 3 1)n1 =0 (6.6a)

dghy + (81 + 05 = 8,)m, = 0 (6.6b)

2 2 2 2 31 42 2 -
806 + 61 + 62 + 63 + %(1 + 2sinh“0)p + 2(1 +-§sinh 8)p =0 6.7)

a(263 - 61 - 62) = (p + p)sinhBcoshd (6.8)
3g8y = = 06, + 2a% + 4%(p - p) (6.9a)
= - 2 —
3092 = 662 + 2a° + %(p P) (6.9b)
3983 = = 665 + 2a2 + %(p - p) + (p + p)sinh?p (6.9c)

From (6.8) we note that since the angle 6 is non-zero, and since we want

| §

(p +p) # 0, [otherwise p =p =0 and from (6.2) p' = ;a%p which is

unrealistic], then a(263 - 91 - 62) # 0 and hence a # 0. Thus there
are no Class A homogeneous perfect-fluid models giving non-tilted

homothetic extensions. Thus we need only consider Type V models.

Combining (3.11lc) and (6.8) gives
20, f = a(263 -6, -0

3 1 2)

or 263(F + 1) = r(e1 + 62) (6.10)

Taking the time derivative and using (3.12a) we obtain
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(b = P)vyq = 82F + 472 (6.11)

However, from (6.2) we also have

1

p-p=p'-p'+ (8F + 4F2)\)33_ (6.12)

Hence, combining (6.11) and (6.12) gives the condition

Thus the only non-tilted homothetic models allowed have a hard equation

of state. This result was first obtained by McIntosh [43].

Now taking the time derivative of (6.11), if v # 1, gives

(1 +v)s = 263 (6.13)

and similarly, the time evolution of this equation gives

2(1 + V)F = - r(1 + 3v) (6.14)

which is also obtained by substituting (6.13) into (6.10). Also,

substituting (6.14) and (6.11) into (6.2) we obtain

F2(3 + v) -1
LI
Po=P a-v) V33

and hence p' > 0 only when v > 1 or v < -3, However, if v # 1, then the
time evolution of the homothetic constraint (6.4) admits the solutions

v=-30orv=- g-only. Hence, if v # 1, the homothetic extensions have

a negative pressure and density or are a vacuum.
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When v = 1, then from (6.11) we have F = ~ 2r, or f = 2a, and
substitution into (6.2) gives the fluid quantities as p' =p' = p.
However, from (3.11f) we have - 432 = 2psinh?6 and so p < 0, and hence

the homothetic extensions again have a negative density.

§4.7 Discussion

We have considered the restrictions implied by the condition
that a perfect fluid model be a conformal extension of a perfect fluid
homogeneous model. We have, however, restricted our attention to models

where the metric has the following form
2 _ _ 4.2 12 242 3y2
ds dt< + vll(w )<+ vzz(w )< + v33(w )

In general it has been found that the conformal models are tilted i.e.
the fluid 4-velocity is not the normal direction to the surfaces upon
which the group acts. 1In fact, the velocity vector of the conformal
models is always tilted with respect to the velocity vector of the
homogeneous model, for if one puts k; = ka in equations (3.10) ~ (3.13)

we obtain the result f = 0.

In the models investigated above, either the conformal or
homogeneous model was constrained to be non-tilted. In these cases the
only perfect fluid models allowed were of Bianchi types I, VIIo or V,
Unfortunately, it was usually found in all cases that the conformal
equation of state was unphysical or the fluid quantities were unrealistic
in view of the currently accepted observational data. The form of these
fluid quantities, being inhomogeneous in one direction, was due to the

fact that only one non-trivial conformal motion is allowed by these
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models. This will be the form of even the most general solutions not

considered here.

Some of the fluid kinematical quantities can also be obtained
using the expressions in §3.5. TFor example, for the tilted models it
is seen that the direction of tilt k& is parallel to the vector a and
so from the discussion at the end of §3.5, these models have zero
vorticity. This is unfortunate as not many models with non-zero

rotation are known with closed form solutions.

The restrictions we have considered here have been both
dynamical and kinematical. However, we have not considered the nature
of the dynamical evolution of these models. One aspect which is of
particular interest, the initial value problem, we consider in the next

chapter.
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CHAPTER 5

CONFORMAL MOTIONS AND THE INITIAL VALUE PROBLEM

§5.1 Introduction

We have seen that the application of various symmetries to
space-time has proved to be useful in finding exact solutions and in
classifying space-times. Also, to consider a solution of Einstein's
equations as the time evolution of an initial spacelike hypersurface
has proven successful in various applications. We consider here the
problem of placing a conformal motion symmetry upon the initial data in
the Cauchy hypersurface, and then finding the conditions imposed on
this initial data for the space-time to possess a local conformal motion,
i.e. given initial data admits a conformal motion, does a solution to

the evolution equations exist which also admits a conformal motion?

We shall follow closely the work of B. Berger [46] who
obtained the appropriate equations and constraints for the case of
vacuum space-times. In the following we extend this work to include a

non-zero energy-momentum tensor.

§5.2 The Initial Value Problem

Consider the spacetime M with metric 8.1 which satisfies

Einstein's field equations

(2.1)

where Ta is an arbitrary stress-energy tensor

b
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Tap = 10 + ph, + 2q(anb) * Moy (2.2)

Consider a spacelike hypersurface S, defined as having constant
coordinate time t, embedded in the space-time. Let n? denote the unit
normal to this hypersurface and let an? be the connecting vector from
each surface to nearby surfaces [na = - AVat, A= [- VatVat]_%]. We
wish to discuss the geometry within the surfaces S(t) in terms of the

intrinsic tensor field h = g, +nn_and the extrinsic curvature
ab ab ab

d

b These tensor fields on S describe the intrinsic

K. =h®h
a

ab vcn

q°
geometry of S and the embedding of S in M, respectively and constitute

the initial data for Einstein's equations.

The initial value problem has the usual structure. Einstein's
equations (2.1) can be written down as four constraint equations and
twelve evolution equations for hab and Kab' Roughly speaking, one
sets initial data {hab(xa), Kab(xa)} at some initial time on a space-

slice S(o) satisfying the constraint equations

G =T (2.3a)

G_ =T (2.3b)

¢* =r1% (2.4a)
¢f =1% - %6“ Y (2.4b)

, which give the change in the data from one instant to the next, to see
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whether or not there exlsts a unique solution which preserves the

constraints over the space-time region of interest.

To write out equations (2.3) and (2.4) in such a way that all
tensors and tensor operations on S involve tensors and operations in M
we follow Geroch [47] and use the intrinsic covariant derivative defined

by

and such that Dahbc = 0. Using this Geroch has shown that the four
constraint equations (2.3) can be written in the form [extended here to

include non-zero T , ]
ab

_ ab 2 _ ab
R K Kab + K° = 2Tabn n (2.5)
ab ab, _ ,ab
D (K™ - Kh™") = h anbm (2.6)

where R is the curvature scalar formed from hab using D, and the twelve

evolution equations (2.4) give

L]

ab = anhab = - ZAKab 2.7
. m
and Kab = LAnKab = - ZAKamK b + AKKab + ARab
_ - m , 1 1
DanX A(h ah bTmn 6habT) (2.8)

where R is the Ricci tensor formed from D and h_, .
ab ab

The function A in (2.7) and (2.8) allows the evolution to proceed at
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different rates at different points of S and even into the future at

certain points of S (where A > 0) and into the past at others (A <0).

In the following we first derive the constraints imposed on
the initial data in the hypersurface due to the presence of a conformal
motion and then consider whether these constraints are preserved by

Einstein's equations.

§5.3 The Conformal Constraints

The spacetime is assumed to possess a conformal motion

generated by the vector field Ea such that
where ¢ is an arbitrary function. We now find the components of equation

(3.1) with respect to the hypersurface S restricting our attention to

spacelike conformal Killing vectors i.e. naEa = 0, The normal component

gives
LEA = ¢A (3.2)
; the mixed component
Lt =0=1L¢" =¢n (3.3)
and the spatial component
Lghab = 2¢hab . (3.4)

To obtain an additional comstraint on S, operate on (3.4) with LXn and
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use the relation

LvLuhab = LuLvhab + LLvu ab

together with (2.7), (2.8), (3.2) and (3.3). We obtain

LEKab = ¢Kab - habLn¢

or, using the result that LEKab SLEKab we have

3L K

Eal ¢Kab - habLn¢ . (3.5)

Equations (3.4) and (3.5) are constraints which must be satisfied by the
intrinsic metric and extrinsic curvature on S in the presence of a
spacelike conformal Killing vector (CKV). All the above equations

correspond to similar equations found by Berger [46].

§5.4 Evolution and Results

It is now possible to see whether the constraints (3.4) and
(3.5) are preserved under evolution using Einstein's equations. This
will involve acting on the above constraints with the operator an and
seeing whether or not an identity results. The evolution of (13.4)

yields (13.5), so we need only consider

L)\nLEKab N Lkn((bKab) - Lkn(habl’nq))

A term by term calculation of the right hand side gives
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L LK, =¢L K

An"g ab + 3>‘Kabl'ncb = Mt b (4.1)

ab
For the calculation of the left hand side the reader is referred to
Appendix A of Berger, [46], modified here to include non-zero energy-

momentum tensor. We find

L, LK. = ¢LAnK

an g ab ab M >‘Kabl'n(t’ - ZADan¢

c
= KhabDCD ¢ - AhabKLn¢

c
= h_ D AD¢ - A[L (n™ h I ) - 1L (h pI) 1] (4.2)

Comparing (4.1) with (4.2) we obtain the following identity

-1l ¢ (]
- 2D D ¢ - 2§ L o +h [LLé -2 "DAD ¢ -DD¢ - KLn¢]

L (h h T ) - 4L (h T) (4.3)

m.,.n mn
(LT (07 07 = g™

Thus for a given energy-momentum tensor, this equation is a restriction
on ¢. If ¢ does not satisfy (4.3) then the conformal constraint (3.5)
is not preserved by Einstein's evolution equations, which in fact restrict

the conformal motions compatible with solutions of Einstein's equationms.

Additional restrictions in the hypersurface S also arise from
requiring the Lie derivative along the conformal Killing vector of the

Einstein constraints (2.5) and (2.6) to be zero
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f.e. LE(KabKab - K2 - R) = - 2L (4.4a)
and LE(Db(Kab - k) = - L (4.4b)
Direct calculation yields the restrictions

DCDC¢ + KLn¢ = - Lgp - 2¢p (4.5a)
and D Lo+ KabDacb = L,ay, - 99, (4.5b)

These equations give the correct extensions to equations (49) and (51)
of Berger's paper for non-zero energy-momentum tensor. That this is the
case can be seen by examining the case for homothetic motions. As was
mentioned in Chapter 2 under a homothetic motion any geometric object

with dimension (length)q transforms with a factor exp(q¢). Thus we have
LEp = - 2¢p and qub = ¢qb

and so we see from equations (4.5) that these constraints are satisfied
for ¢ constant, as pointed out by Berger. Also, we obtain from (4.3)
the result shown by Berger that the conformal constraints are conserved

if Lg(Tab) = 0.

Now, from equation (3.2.12) we have the result that for a

general energy-momentum tensor, such as (2.2)

Bl (T,,) = gabvcvc¢ AN (4.6)
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Using this result it is easy to show that the constraints (4.3) and
(4.5a,b) are satisfied. Thus, in general, if in a spacelike hypersurface
S, a set of initial data satisfy the conformal constraints (3.4) and
(3.5), [in addition to the Einstein constraints], for a conformal Killing
vector Ea, then the space-time development of S contains a conformal
motion with generator £2. However, in general this development will be
compatible only with animperfect fluid stress-energy tensor, as we noted
in Chapter 3. Hence, we wish to find out whether, given the initial
conditions of S(o), the space-time development still admits a conformal
motion when we constrain the energy-momentum tensor to be that of a

perfect fluid

Tab = en 0y + phab 4.7)

Using (4.6), (3.3) and (3.4) we have

— — C — —
%Lgp =-D Dc¢ KLn¢ op (4.8a)
_2.c 2 -1 ¢
and Blp = D¢ + KL ¢ + 2 b AD_¢ - L Lo - ¢p (4.8b)

These expressions also follow from equations (3.2.13a) and (3.2.13c)
when written out in terms of tensors and tensor operations on S. Thus

we have for the perfect fluid (47)

21 c
%LETab = (3 ab ~ nanb)(KLn¢ w I Dc¢)
-1_c
+ hab(l D ADC¢ - LnLn¢) (4.9)

and substituting this result into the constraint (4.3) gives the
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following restriction upon ¢

1 c
Ehab(DcD ¢ + KLn¢) - Dan¢ - KabLn¢ =0 (4.10)
Also, substituting (4.8a) into (4.5a) gives an identity while (4.5b)

gives the constraint

a —
DL ¢ +K, D¢ =0 (4.11)

It is immediately seen that equations (4.10) and (4.11) are not
automatically satisfied for ¢ nonconstant. These restrictions serve,
in general, to prevent a conformal motion in spacelike initial data from

being a spacetime conformal motion.

Putting ¢ = constant, one immediately sees that all the
constraints are satisfied. 1In fact, from (4.6) LE(Tab) = 0 whenever
¢ = constant and so the Einstein and homothetic constraints on the
initial hypersurface cannot spoil the compatibility of Einstein's
equations and a homothetic motion. Thus we see that when ¢ is a
constant, each spacelike point effectively evolves in a similar manner
and so the symmetry property of the space-time is conserved. However,
this is not the case when ¢ is an arbitrary function of the space

variables.

Finally, if ¢ is independent of the time coordinate, then

constraints (4.10) and (4.11) reduce to

1 c, _
Dan¢ - ShachD ¢ =0 (4.12a)
a
D¢K. =0 (4.12b)

ab
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We see that if ¢ = F(x3), as for the models considered in the previous
chapter, then we have from (4.12a) DCDC¢ =0 or F' = 0 and thus we have
the result that no conformal solutions having a non-tilted velocity

vector admit a perfect fluid. This agrees with the result found in

§4.4.
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CHAPTER 6

HAMILTONIAN COSMOLOGY AND SPATIALLY HOMOTHETIC MODELS

§6.1 Introduction

The value of an action principle as a vehicle for intuition in
the study of homogeneous cosmologies was first demonstrated by Misner
in his programme of Chaotic cosmology [48]. Since then, Hamiltonian
cosmology, the study of cosmological models by means of equations of
motion in Hamiltonian form, has received considerable attention,
especially due to the work of Ryan [49]. The cosmological models which
have received detailed examination are the Kantowski-Sachs models, the
spatially homogeneous models and Eardley has initiated work on spatially

homothetic models [18].

Apart from Eardley's work, Hamiltonian cosmology has not been
applied to inhomogeneous cosmological models. Nevertheless, studies
have been made of non-cosmological metrics which have inhomogeneous
space sections. Kuchar [50] has studied the Einstein-Rosen cylindrical
wave metric in the ADM formulation; Berger et al. [51] have applied
this formalism to the study of spherically symmetric gravitational
fields,while Lund [52] has considered the complete vacuum Schwarzschild
solution. Ryan [49] sees the most outstanding problem that will arise
in considering inhomogeneous three spaces is that the Hamiltonian will
become a Hamiltonian density and so we must deal with a field theory

instead of a particle problem.

In the following we reconsider and extend Eardley's work on
homothetic models. Conformal models are ruled out since ¢u is not a

constant and so a necessary spatial integration cannot be carried out.
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In section 6.2 we briefly review the A.D.M. procedure but the reader
1s referred to the review by Ryan [49] and the relevant chapters in the
book 'Relativistic Homogeneous Cosmologies (Princeton U.P.) by Ryan and
Shepley. 1In section (6.3) we consider the applicability of this method
to homothetic models and show that only models where ¢a = Zau will give
valid field equations from variation of the action. Then in section

(6.4) we apply the qualitative methods of Ryan to these models.

§6.2 A.D.M. Formalism

The first step in the Hamiltonian formulation is the
identification of the field variables with the metric. However, the
general coordinate invariance of the theory creates problems, introducing
redundant variables to insure the correct transformation properties.

Thus it is necessary to separate the metric into the parts carrying the
true dynamical information and those parts characterizing the coordinate
system. When in canonical form, the Hamiltonian will involve the

minimal number of variables specifying the state of the system.

The usual action integral for general relativity is
I-= [ a*xlL = { d*xv/—g R (2.1)

One obtains Einstein's equations upon variation in the metric. The

three dimensional quantities appropriate for the Einstein field are
1
g.. = “gij N = (- ugoo) 2 N, = *g . (2.22a)

ij . /:4— l"’1_'0 _ |+1_‘O rs iP jq 2.2b)
. 8T 0 = 8pq T rsB )g e (
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Here, and subsequently, we mark every 4-dimensional quantity with the

prefix *, so that all unmarked quantities are understood as 3-dimensional.

In terms of the basic quantities (2.2), the Lagrangian becomes

L=/-"g "R =-g,m j’o - ne® - Nizci
~ 2(niiy, - LN + Nli/_),i (2.3)
where
0% = /gCR + g7 Car - W) (2.42)
el - _ Zﬂijlj (2.4b)

The quantity 3R to the curvature scalar formed from the spatial metric
gij; | indicates the covariant derivative using this metric, and the
spatial indices are raised and lowered using giJ and gij'

The use of the Palatini Lagrangian - writing L linear in the
time derivatives - and the 3 + 1 dimensional notation does not impair
the general covariance of the theory under arbitrary coordinate
transformations and hence the action is analogous to the parametrized
form of mechanics in which the Hamiltonian and the time derivative are
introduced as a conjugate pair of variables. Consider the example [58]

of a system with M degrees of freedom. Its action may be written

t t m dq
_ [t _ (1 < \ - i
I = [ Ldt = 4[ ( 2 piqi H(P ,Q)}dt qi a dt
9 2 i=1

where L is linear in time variables. The action may be cast into
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parametrized form in which the time is regarded as a function U1 of

an arbitrary parameter T

T T mt1 dq
_ 1 = 1 1 ] _i;
L= f badm B2 fT dT{ E Piqi} 9 = 37

Tz 9 i=1

and the constraint equation Posl + H(p,q) = 0 holds. One may equally

replace this constraint by an additional term in the action

Ty m+1
I= J dt{ R ICHE NR} (2.5)
Ty i=1

where N(t) is a Lagrange multiplier. Its variation yields the constraint
R(pm+1,p,q) = 0 having solution Poy1 =~ H(p,q). The theory, as cast

in form (2.5),is now generally covariant with respect to arbitrary
coordinate transformations T = t(t). The price of achieving this has
been not only the introduction of the (m + 1)st degree of freedom, but
loss of canonical form. Also, the Hamiltonian H' = NR now vanishes

due to the constraint.

In changing from a particle case to a field theory, the
. ) . bitg gl U, o
coordinates now appear as four new field variables q =x (1) and
there are four extra momenta. Four constraints are now required and
four Lagrange multipliers. From (2.3), we see N and Ni are the Lagrange
multipliers corresponding to the constraints Co and C'. Variation with

respect to ﬂlJ, gij’ N and Ni gives the field equations as

- 2Ng—6(ﬂij - gy ™)+ 2N |5 (2.6a)
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TTij . - _ Ng%(aRij - %gist) + %Ng_%gij(nmnwmn - %ﬂz)

- 2Ng_%(wimwmj - %ﬂﬂij) + g;i(Nlij - gijN|m|m)

mi

+ (ﬂiij)lm - Ni‘mjmj - lemﬂ (2.6Db)
=0 (2.6c)
t-o (2.6d)

Note that the spatial divergence in the integrand plays no part in the

variational principle and may be neglected.

To reduce the Lagrangian (2.3) to canonical form, one inserts
the solution of the constraint equations and then imposes coordinate
conditions (equivalent to introducing intrinsic coordinates). Only
after this will the true non-vanishing Hamiltonian of the theory arise.
The canonical formalism necessarily destroys the space—-time covariance
of the theory by cutting space-time into slices and investigating their
geometrical properties. In the ADM approach, a definite slicing of
space-time and a definite coordinatization of the slices are picked

out by the coordinate conditions.

In applying the ADM procedure to cosmological models, the
basic method is to freeze all but a few degrees of the infinitely many
degrees of freedom of the gravitational field by putting a number of
the canonical coordinates and their momenta zero. The pioneer of this
approach was DeWitt who first applied the Dirac method to the Friedman
universes [53]. The second model, treated by the ADM method, was

Misner's mixmaster universe. However, because of the high symmetry of
g
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these models, a privileged slicing of space-time exists, such that the
intrinsic geometry of the slices is homogeneous. The symmetry thus
provides a unique l-parameter family of spacelike hypersurfaces on which
the further formalism is based. This goes against the usual properties
of the ADM method, which picks out a l-parameter family of slices by

coordinate conditions, rather than by symmetry requirements.

Also, the homogeneity of these models was responsible for the
major reduction in the number of gravitational variables. 1In a typical
field theory we can expect to find several degrees of freedom at each
point of space and we can study the interaction between the degrees of
freedom at neighbouring points. However, the requirement of homogeneity
ties the corresponding degrees of freedom at different points rigidly
together and so the field aspect of gravity thus almost completely

disappears from the model.

The methods used by Misner and Ryan in the study of homogeneous
cosmologies involved assuming a metric of the form

a b
= 8ap (M0 40 (2.7)

gij
(see (2.2.1)) where the 0@ are three time-independent 1-forms. With
this assumption used in the variational principle, the new generalized
coordinates and momenta (gab,ﬂab) are now discrete variables. However,
as first noted by Hawking [54] the resultant variational principle
does not always give the correct field equations. This difficulty was
first investigated by MacCallum and Taub [55] and later by Ryan [56],

but it was not until the work of Sneddon [57] that the situation was

clarified. It was shown that whereas the variational principle works for
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non-coordinate frames, the requirement of spatial homogeneity prevents

a boundary term being set to zero.

In the following we first discuss a similar problem when we
require spatial homogeneity (first studied by Eardley) and then apply

the qualitative methods of Ryan to the applicable cases.

§6.3 ADM Approach and Spatially Homothetic Cosmologies

We now apply the action (2.1) with Lagrangian given by (2.3)
to homothetic Bianchi metrics. In so doing we closely follow Sneddon's
work [57] on homogeneous metrics. We work in the non-coordinate frame

given by the following transformation

= o“idxi (3.1)

oQ >

_ o o B
ij = gaBo 10 i (3.2)

. . o .
From Chapter 2 we note that the invariant 1-forms w~ are independent

of the 'time' parameter T and satisfy

where the c® are the structure constants and have one of the nine

Bv

canonical forms found by Bianchi.

The conjugate momenta may be written in the form



A _ (dero® )waB : ej (3.3)

where ¢ iOiB 6“8. The first factor on the right-hand-side of (3.3)
appears because wij is a tensor density. Because of this we must be
careful in transforming from one frame to another. However, one can

see from (2.6) that there are no problems when ﬁi = 0 because only 'time'
derivatives of wij appear and the frame we are transforming to has

o

o” = dt. The coordinate condition N, = 0 (i.e. l*goi = 0) is usual in

cosmology and applies here.

Using the above results, the action (2.1) with Ni = 0 can be

written as

~ o B 9 a (ud i
8 f {— 8,p° 17 5¥{(deto P 9,9 }

e o -1 -4 2 aB i~y 8
N{(deto i) [(detc Oa OB WYSO 1 3

Al A
- %(detoai Zﬂ ] - (detcai)gé(aR)}}deax =0

o yJ_ o CaB _ =% ~aB” _ iy _ “lsa _
= § J (deto i){ gaBﬂ T N[ (w L Lme) g R]}de x =0
(3.4)
and equations (2.6) become

-~ AA_LE ~ 1 ~ ~
8uB,0 2Ng (“as = /28aBW) (3.5a)

~ AAI ~ A An_l ~ ~ " ~

B o RgECRY B + g o - g

- 2&&'4(w“YnYB — 158y (3.5b)

101 -



102

A—

H=g ¢

=) - g2 CR) = 0 (3.5¢)

B
We can now consider the specific form of the homothetic models
under construction. We have from previous results
~ 20
Boug = ¢ Bup(t) (3.6)
where o is independent of t. Hence, we need to substitute (3.6) into
the action (3.4) and see if the subsequent variations give the field

equations with (3.6) substituted. From (3.6) we have the following

transformations

~ 4o N 20
= t =
L e ﬂaB( ) T=e"Tm
(3.7)
3 _© 3“ 603
N =e N and g=e g
To see how 3R%8 and °R transform consider the following. In the
non-coordinate basis we are dealing with, we have the relations
R =r1" - rY +107 r° -1’ T 3.8
oB . aB,y ay,B T ap Y8 ad” By 3.8)
where
Y Y8G S - I
"6 = %8 [Csgy * Cosp = Coas ¥ Bsg,a T Bas,8 ~ Bpa,sl B9
na _ G,YA
and c aB = g CYaB

Also, from section (2.3) we have



103

do = 90 dxi - 90 W B o
i a
9x ox
= 39, o ¢ = constant . (3.10)
3 o

Since the structure constants depend upon the basis vectors which are

unaffected by the transformation (3.6) we have

A
C 86 c 86 (3.11)
Also, substituting (3.11) and (3.6) into (3.9) gives
28 8 § § _ 5
r Ba T B * [S a¢6 LA B¢a ga8¢ ] (B2}
and using this result in (3.8) gives
3p _ 3 _ § § v 8 s 8
RaB - RaB + ¢a¢8 ga8(¢6¢ + T y6¢ ) + ¢6C Bo + ¢6r oB + 26 I‘(OLB)G
=R+, + (2a; - 09°s - ¢5c (3.13)
ofB o'B S § oB (aB)S ‘
since 2aa e CBaB and from equation (2.3.11) we have the condition
¢GCGQB = 0. Contracting (3.13) then gives
R = e 203 4+ 8a - 20_)¢°] (3.14)

Substituting (3.7), (3.13) and (3.14) into the action (3.4) now gives

8T = § J ezo(detoai){— gas(t)nas(t) o

- MEE P @50 - it ©) - IOk + Ba - 20)0% Pacatx

=0



The spatial integration can now be performed and the variational

principle becomes

8L

=0

104

1) I {— gaB“aB,o - I\I{g_l}ﬁ('rrotﬁﬂmB o g%(ak + (8aa - 2¢a)¢a)}}dt

(3.15)

As several authors have noticed for the homogeneous case, trouble arises

when the variation of 3R/§ is taken with respect to gaB' Thus we

consider the term
3 o
§ [ CR + (8a, - 20)¢ )V/g dt
- - I R*® + (8a% - 2¢“)¢3)aga6¢g dt
1 of,3 _ v of
+ % I g "(°R + (8av 2¢v)¢ )We GgaBdt + [ g 6Ra8/g dt
and following the work of Sneddon, one can show that

[ gaBGRaB/g dt = I (4aaaB + ZavC(aB)v)/g GgaB dt

and so equation (3.16) becomes
S I R+ (8a - 2¢a)¢a)/g dt

- [ {3R“3 + (82% - 26™M¢Pf - 4a%aPf - 2aYc(°‘6)Y

oR,3 Vl
- 4P CR + (8av - 2¢v)¢ I/g GgaB dt

(3.16)

(3.17)
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Substituting (3.17) back into (3.15) and taking the variation with

respect to gaB we obtain the equation

'TTaB

5= = Ngli[aRO‘B + (83Ot - 2¢a)¢B - 4aaa6 - ZaYC(aB)Y
_ 1. 0B/ 3 _ \)]
g (R + (82 - 20)0") |

-1 1
+ WNg ”Z(HY%YG ~ 1m2)g*P _ 2ng ”i(n“"nvs - Lor®®y (3.18)

Also, substituting (3.6), (3.7), (3.11), (3.13) and (3.14) into the

field equation (3.5b) we also have the equation

- - NgT PR 4 (2a, - 0% 4 %P - %D

oB,3 v
- 5B CR + (8, - 20 )¢ )]

- 1
+ LNg 4(HY6WY6 - ¥§'rr2)g°‘B - 2Ng 4(wa6ﬂ68 - %ﬂﬂas) (3.19)

Comparing equations (3.18) and (3.19) we see that they are equivalent

only when we apply the additional constraint

-
I

2a
o

One can also check this result by first taking the variation of (3.4)
with respect to gaB and then substituting in the homothetic condition
(3.6). As before we have

~

8 [ 3Rvg AV = J‘ (- 3R*E 4+ l{go‘saﬁ)/é ‘Séasdv + f 6R g Bav  (3.21)
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and from the last term we have

~

"0B.p _ "o
g GRaB = w la

~o_ -20, av 68 _ aB 8y
where w e (g g g8 8 )((GgYG);B+GgY6¢B) (3.22)

Now provided GgaB and (<Sg0t8)’Y can be made to vanish on the boundary,
the last term in equation (3.21) will vanish and the variation will
give the usual result. However, as pointed out by Sneddon (op.cit), if
gaB and GgaB are to be constants (or functions of time only) these

conditions cannot be satisfied without GgaB vanishing everywhere. Thus

[ mala/é dv = I (¢a - Zaa)&a/g dv

will not vanish unless ¢a 2aa as before. Setting ¢a = 0 we obtain

the homogeneous result a, 0.

As in the homogeneous case, this result means that whenever
the Einstein variational principle is used, care should be takem to
ensure that the correct field equations are obtained. The usual
variational principle breaks down in a number of places, as before. By
neglecting some terms in the Lagrangian, some of these difficulties can
be overcome, but as we have seen incorrect terms still arise from a
surface integral that does not vanish. The exceptions are spaces of
Class A where a, = ¢a = 0 and the subspace of Class D spaces for which
¢a = Zaa. It can also be noted that this result coincides with the

result found in Chapter 4 that Class B homothetic extensions admitting

a perfect fluid were possibly only when F = 2a. Also in these cases the
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fluid sources in the homothetic models were described by the expressions

~20
p

© >
]
®
a >
]
0]

and so it can be seen that if the homogeneous models are vacuum models
then so are the homothetic models and this agrees with the conclusion
that the above variational principle gives the Einstein vacuum field

equations.

Note that Eardley [18] found the condition a, = ¢a for the
variational principle to give the correct field equations. However, he
assumed that the last term in (3.21) had the form wala = (ezowa(t))|a;

~

from (3.22) we see that it in fact has the form wry = (e—cha(t)) i
|a |a

§6.4 Qualitative Description of Homothetic Models

We are now in a position to use the fruitful mathematical
techniques developed by Misner and Ryan to study the qualitative
aspects of spatially homothetic cosmological models. Eardley briefly
considered Type VII models and we extend this work to all admissible

types.

From the previous section we have seen that the action can be

written in the form
g
1= J a8 0B qux (4.1)

subject to the constraints
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o _ _ Xl _ a -1 k 2 _ Y8 |

Cc = g_[ R + (Saa 2¢u)¢ + g " Cs(rw k) T ﬂYG)J =0 (4.2)
o _ _ o-0B _ , 0B a B _

c 2w .8 4 ¢B + 2¢°m 8 0 4.3)

It is seen that the scalar o (or its derivatives ¢a) does not appear in
the action (4.1), and it is thus in a form identical to the action
found in the homogeneous case. We can hence follow the work of Ryan
[49) in reducing (4.1) to canonical form. However, the constraint
equations have extra terms involving ¢a and we shall see that this
leads to a modified Hamiltonian. In reducing the action to canonical
form we follow the procedure outlined in section (6.2) of choosing

four of fhe twelve guB and ﬂaB as intrinsic coordinates and by solving

the four constraint equations to eliminate four more.

To begin with we parametrize guB by means of Misner's

= Roze_zge2B where Q(t) is a scalar and B(t) is

parametrization, gaB

oB

a 3 x 3 symmetric traceless matrix. Ro is a constant included for

convenience in choosing units. Inserting this into (4.1) we have

: aB
- _ 8 B -B uBl L
I = 167 { 2{ T s + (e me )aB _Eﬁ_fd X

B B
4B _,f -Bde”  de” -B .
where aq 41e ao + ao e }. Integrating over the space
variables one has
_ B__-B o
I = (2m) [ [(e"me )aBdBaB L adQ] (4.4)

Now, whenever Q is a monotonic function of t we can choose { as our
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"time' coordinate. This choice represents the first step in the ADM
procedure ; that is, choosing a function of the gaB and “aB as

a coordinate. In this case we have

Q

- 2 o [det(g )] (4.5)

We now see that the action (4.4) is in canonical form if we define the
Hamiltonian H = (Zﬂ)ﬂu o and if we can find a matrix paS such that

B -B
a = dB where B, are the parameters
2 (e me )GBdBGB PU.BdB(lB pA A A p
which determine the B-matrix and may number from two to six [49]. Finally,
to give the metric completely we need only specify N. For our choice of

2 as time, it has been shown that dt = - NdQ where

-3Q

N = 5 te (121LR8 ) (4.6)

§ 6.5 DIAGONAL SPACE-TIMES

Follwing Ryan [49], we define the matrix Pyg 38

B & -B
Py = 2r(e” w g © )uB - 5 SQBW 8 (5.1)

and proceed to parametrize BaB and Pug in order to reduce the first term
in (4.4) to form pydB, . We can then obtain H as a function of the

canonical variables using the constraints. To begin with we shall consider
the simplest case ; that for when BaB is diagonal. 1In this case we use

the parametrization

[o~)
]
o]
|

= diag(B, +Y3B_, B - /3B, -2B)

and

I

-1 .. .
6pa8 R, dlag(p+ + /Eb_ > Py /§b_, —2p+)
In this case the action reduces to
I = J p+dB+ + p_dB_ - HdQ

which is subject to constraints (4.2) and (4.3).

R 0
From the constraint C = 0 we have
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w? = 6pa8pa6 - 242 CR + (8a - 20 )6% ) (5.2)

_ 2 2 3 o
=p,~ + p_" -2ngCR+(Ba - 29 )¢ )

and as in the homogeneous models this equation gives a Hamiltonian
corresponding to a particle moving in two dimensions on the B+, B_ plane
where g(3R + (8aa - 2¢a )¢a ) acts as a time-dependent potential.
Defining V by the equation

3 o 3,4 -4Q
gCR+ (8a - 2¢ )¢ ) = -5 Ry e (V-1)
and using the expressions
v
3 _ _a(8v) 8 1
Ras = =C BC6 + 2a C(aB)G + 7 CB Cuﬁv
o _ Vo, o =
and C 86 = EBGVn + S GaB 835 (5.3)

Ehs eZB' noV n’86 (an eZBaB )2 + (12a0LaB - 16aa¢8

-2B
+ 4¢G¢B)e o.B } (5.4)
Putting ¢a = faa, and using the classification scheme outlined in Table

2(p.28) together with the parametrization given above for diagonal models

we have the following expressions for the potential in each of these models,

4B

TYPE IV v=1+§—+{12-16f+4f2+e4‘/§B-}
e4B+ 2

TYPE V Ve=1l+z {12-16f+4f } (5.5)
2084 2

TYPE VI, v=1+-3-e, {cosh(4/§_B_) - h(6 - 8f + 2f )}
2e4B+ 2

TYPE VIL, V=1+% {cosh(4/§B_) + h(6 - 8f + 2f )}

When f = 0 we recover the potentials appropriate for the vacuum homogeneous
universes. Note that some of these expressions differ from the potentials for

homogeneous models given in Table 11.1 in Ryan and Shepley "82] because of
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differences in the classification scheme used by them.

o
From the space constraint C = 0 we also have

g S 10+ 2005 - apn®® - g%t = 0
and using equation (5.3) we find
o _Su B _ aB _ o B _
€ g™ Ty + (2f 3)a8ﬂ + (1 - fa = 8 0 (5.6)

where we have put ¢a = faa . For diagonal models we see from (5.1) that

the matrix ﬁaB is diagonal.

In this instance the first term in (5.4) is identically zero

af

since for our Bianchi classification scheme n is also diagonal. Thus this

constraint reduces to the same expression for each Bianchi type :

C1= C2 =0 (5.73-)
and 3 EE?[
C” = -5 | p,(2f - 3) + fH} =0 (5.7b)

> (2f - 3)p, + £ = 0

We see that this constraint contains the Hamiltonian when f # 0. Indeed,

we can use this equation, instead of (5.2) to define H.

The usual methods of exegesis [see Ryan] may now be employed
to discover the qualitative behaviour of these models. As the potentials are
exponenial, they are replaced by walls in the first approximation.
From the previous sections we noted that the ADM method was valid for
homogeneous models only when a, = 0 (i.e. Class A). Thus extensive work
has been done on studying the Bianchi type I and IX models, since they
generalize the open and closed Friedmann models with k =0 and k =1
respectively, but little work has been done on Type V models, which mimic
the k = -1 Friedmann models. Nevertheless, the ADM method is valid for a
subset of class D homothetic models and these can be considered as inhomogenous
generalizations of the homogeneous class B models. Thus this allows us to
study universe models of Bianchi type V which it has been argued, using present

observational evidence, give the best representation of the real universe.
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Putting f = 2 1in equation (5.5) we have
ve=1-27 (5.8)

and so we see that the potential associated with vacuum type V models
falls away exponentially as B+ increases. This is illustrated in
figure la. From the constraint (5.7) we have upon putting f =2,

VA .B../\
1 universe poinf
EENOU S 1 S
i B,=-12
D }B+ ' >B
. ; 0 <+
_.1/3
V=const,
1(a) 1(b)

Figure 1 : Potential diagram for vacuum type V model

1
H__EP'F (5.9)
and Hamilton's equations imply that P> P_> B and H are constants

of the motion. The equation of motion for B+ is given by 1'3+ = 8H/3p+= —%-.
Thus we see that the universe point moves with a velocity of one half in

the direction of decreasing B+.

In closed universe models, the position of the wall is usually
defined where p = 0 i.e. this gives the positlon of the particle when
a 'bounce' occu;s. However, putting p = 0 into equation (5.2) gives
H2 negative. Since this is not allowedAQe conclude that the universe point
never catches up to the potential wall. Thus whereas the potential was zero

in type I universe models, and exponentially steep in type IX models where
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the universe point bounces off the walls, in this model the universe point

approaches, but never reaches the potential wall. Indeed, from figure 1b

we see that if one moves on the line g = 1, then the universe point
approaches a rising potential that flattens out as B+ F-o This seems
to correspond to the deceleration and infinite expansion of the k = -1

Friedmann models.

§6.6 MATTER IN THE A.D.M. FORMALISM

In certain universe models (especially those with non-diagonal
8ap (t)) the postulated form of the metric is inconsistent with a vacuum
solution. For this reason, and because it is customary to consider non-empty
universe models in any case we shall outline the necessary changes in the
foregoing formalism when a non-zero energy-momentum tensor is to be included.

This follows the work of Ryan [49].

In order to add matter to the Einstein equations, it is necessary

to modify the action (2.1) to read
4
I = (RV-g + Lm)d X

where the Lagrangian density for matter Lm satisfies

b By b
8 J Lmd x = =87 J Tuv( g) “8g" d'x. (6.1)

Once such a modified action is obtained it is necessary to break up Lm into
terms such as piqi and NLOm and Nile (c.f. equation (2.5)). The first
of these introduces new independent coordinates and second two quantities

modify the constraints which now read
C’ = C +1L =0 (6.2a)
+ L =0 (6.2b)

For homogeneous models of Bianchi class A with a perfect fluid

[TaB = (p + p).uauB + pgaB] and having an equation of state p = (v-1)p,

1 < v <2, such a Lagrangian has been found by Ryan :
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3

0 229 -B u )(l—\)/Z)

= {wN(1 + R."e

Lm = —16np(u ) YNVR 0 gl

_ _ -2 20 -28 - v/2
NG = 1)1+ Ry™ e™e 7 u ug) (6.3)

- (1-v)
=2 22728y gy g% )

v
N 1+ R0 of o B o

The density p 1is then eliminated from this expression by solving the
0B

conservation equation uaT ; B =0.

For homothetic models we have from equations (2.2.15)

p=e 2% p=e?h®m  uo=eu (D) 6.4)

and upon substituting into (6.1) and performing a spatial integrationm,

the variational principle for Lm becomes

~ 4 4
0 I Lyd=x = - [ st g)agdﬂ

Hence im satisfies the same equation as Lm and so has the form (6.3).
~ AaB

In order to eliminate p from th1s equation we consider u T B = 0, Using
the equation of state p = (v - l)p this equation becomes
GV, =0 6.5)
a
Now using the identity
o 1 1/2 A% c* B
A ‘a 172 (g A7), a ap A
g
together with expressions (6.4), the equation (6.5) becomes
3-321/v0 _ 3 =30 1/v, .0 2 o
R0, = - mr M VM 3 - 2y + ) (6.6)

In order to carry out the integration we consider

BCu =0

ol . 2 :
o ua(3 - ;-) + u o8
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Since CaaB = - ZaB and putting ¢a = 22" we have
o 1, _
a’u, (1 n ) =0
If aauu # 0, then v =1 ; otherwise aaua = 0 and since a, = a63a

we require u3 = 0. We thus have the result that unless u3 = 0, the
only models allowing equation (6.6) to be integrated are dust models. 1In
either case we find

B = uN—v(.uO)—v R -3 eSvQ

0 (4 = constant) (6.7)

With this we can complete the Hamiltonian Hrmalism for homothetic models.

Upon substituting (6.7) into (6.3) we notice that the Langrangian

0
has the form Lm = NL o + NaLam’ so the addition of matter in the

allowed models leaves (4.4) unchanged (i.e. no new independent coordinates)

and the constraints (6.2) now give

2 2 21/20
H® =H va 24717g L (6.8)
and
o _
cC' = -L o (6.9)
where
0 3(1 ) 3¢( ) . %9
. - v v - 1) -2 2 -2B
L 16mH Ry e {v(l +Ry “eTe aBuauB)
-V
A —2.20 2B 4 2
(v A + R0 e e B G"B) }.
1-v)
o _ _ 3(1 - v) 3(v - 1) -2 29 -2B 2 o
L o l6myu R0 e v(l + R0 ee g uauB) u

. . o
In these equations U are the space components of the fluid velocity
and are solved for as functions of Q by use of the auxiliary geodesic

equations.
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For diagonal universe models considered in the previous section
we found C1 = C2 = 0. Hence from equation (6.9) we find u1 = u2 =0
in these models. Using a previous result that non-tilted homothetic models
admit a perfect fluid only when it has a hard equation of state (v = 2),

we conclude that the above formalism is only valid for the following two

cases.

Case 1 Dust Models with tilt (ul =u, = 0, u, # 0), for which
0o _ _ -2 20 =2B y y y1/2
L o 16mu (1 + RO e e 3373 3)
P 212 20 1d = -16mw?®
m m m

Case 2 Non-tilted models (u* = 0) with hard equation of state, for which

0 _ -3 30 o _
L . 161ruR.0 e L = 0

To illustrate the behaviour of the universe point in this
latter case, we consider the type model of the previous section. Thus
for a non-tilted type V model with a hard equation of state the constraint

equations give

H2 = p+2 + p_2 - 48ﬂ2R04'e_4§2 + 4B+ + 384ﬂ3u
R §
H= - 5 Py o+

It is easy to see that the only change from the vacuum case is the addition
of the constant 384un3 to the first expression. As this is equivalent
to the addition of this constant to the potential, the dynamics of the

motion is not changed. From (6.7) the density in this model is given by

= uR0—6e6Q Using equation (4.6) together with dt = - NdQ@ and the fact
that H 1is a constant we find t = (4ﬂR03/H)e_3Q . We thus have
5 16ﬂ2u
H2t2
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§6.7 FURTHER MODELS

In the above examples the dynamics of the models have been

constrained by the space constraint C3 = L3m which has given H = - %—p+.

In order to achieve more general motion we can consider either the tilted

dust models mentioned above or non-diagonal models.
For dust models, the non-zero space constraint gives

- 24ﬂ2uu3

To find expressions for u3 (and uo) we need to consider the geodesic
A AVB

equation uu|6u = 0. When u; =u, = 0 we find
UO = —Ncosh £()
u ®Rye 9e2B4 sinh £(Q)
where f(Q) satisfies
dg
df(Q) -1/2 1 98 5o }
@ - {g33 b+ 2Ng,, do anh £ ()

However, this last equation is difficult to solve when H 1is not constant.
We can expect this difficulty in non-diagonal dust models as well so

one is left to use numerical methods of analysis.

For non-tilted non-diagonal models we can parametrize the
matrix BaB so that there are five independent coordinates. In the
so called 'symmetric' case one introduces the off-diagonal coordinate
¢ and the corresponding momentum coordinate p¢ [see Ryan and Shepley

[81] ]. The corresponding constraint (6.8) now gives

2
2 2 2 3P -
H® = p+ + p -+ (Pg) - 48ﬂ2R04e Sl 4B+ + 384ﬂ3u.
sinh (2V38-)
The new term in the Hamiltonian, being proportional to (qu)2 is called
the centrifugal potential Vc’ because it is the analogue of the centrifugal

potential in the Kepler problem of Newtonian mechanics [49]. We see that
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this term, and thus the Hamiltonian is singular at B8_ = 0. According to
Eardley [18] this locus of points is associated with a Cauchy horizon, and
arises due to the asamption that the hypersurfaces S(z) of transitivity

of the homothetic group H, were spacelike. However, Eardley argues that

3
this is not a necessary restriction on the global causal structure of the

S(z), and that some of the S(z) may be timelike. Further, if one assumes
analyticity, it should be possible to extend these models through the Cauchy

horizon (as it is possible for certain homogeneous cosmologies).

To help examine the causal and singularity structure in an
inhomogeneous class of universe models, in the next chapter we shall briefly
investigate such behaviour in the special case of spherically symmetric

self-similar space-times.
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CHAPTER 7/

SPHERICALLY SYMMETRIC SELF-SIMILAR MODELS

§ 7.1 SELF SIMILARITY AND SPHERICAL SYMMETRY

In this chapter we shall consider another class of space-times

which possess both the properties of self-similarity and spherical

symmetry.

A space-~time is spherically symmetric if it admits the orthogonal
group 0(3,R) as a symmetry group of two dimensional space-like traject-—
ories. Further, spherically symmetric self-similarity solutions of
Einstein's field equations have been defined by Cahill and Taub [19] as

those for which under the transformation

T = at,-; = ar B=09 7'$ = ¢ (7.1)

where a i1is a constant

— ox’ %" 2 =
T,t) = — = =a (x,t)
gw( ,t) =8 R e, (T
Such a solution thus gives a space-time which admits the transformation
(7.1) as ahomothetic transformation. The requirement that the barred

coordinate system be comoving is also made.

These two requirements may be given a more general and invariant
formulation. We shall define a similarity solution of the field equations
as one for which the resulting space-time admits the conformal Killing
vector field Eu satisfying

Eusw T B 2¢(r,t) 8, (7.2)

where ¢(r,t) 1s an arbitrary function of r and t.
The transformation (7.1) is thus a special case of the conditions (7.2) and
(7.3) where ¢(r,t) = constant. As a consequence of this condition, the

four—welocity vector u" satisfies

aiveY - gPmdY = —e(r, et (7.3)
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For the spherically symmetric models to be considered here,

we have

uo U !
EN = a(r,t)Gr + B(r,t)Gt (7.4)

Physically, Barenblatt and 7el'dovich [59] have shown that spherically-
symmetric space-times (with A = 0) contain no fundamental scales,
dimensional constraints or (at least for cosmologies) dimensional boundary

conditions, and so they admit no preferred scale in space or time.

§7.2 THE MODEL

We consider spherically-symmetric Tolman-Bondi models having
the metric of the form

ds2 e —dt2 + Xz(r,t)dr2 + Yz(r,t)(de2 + sin26d¢2) (7.5)
where =-o < t <®, r 1is a comoving radial coordinate and 6,9 are

the ususal spherical coordinates. The circumference of an azimuthal

circle in the model is 27Y.

THe central worldline, denoted by C, 1is at r = 0.
Because one wants this to be a regular centre of the space-time, one

requires

1 Y

Y(r,t) >0,  F(r,0) or

(r,t) =~ 1 as r >0 (7.6)
The space-time is then spherically symmetric about the world-line C.

In our coordinates, the velocity vector takes the form

¢’ = (1,0,0,0)

and we take the energy-momentum tensor to be that of a perfect fluid.

v , v v
e = (p+ p)uuu + pgu

However, it can be shown that for the metric (7.5), the pressure can
have no radial dependence i.e. Pp = p(t) only [26]. The energy density
can still have a radial and time dependence, and so in general no

equation of state of the form p = p(p) can be imposed.
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Since this dependence of the pressure on time only seems rather
unrealistic, we shall consider a pressureless dust solution. This should
closely approximate the present universe, but not necessarily the early
universe. In this case, the Einstein equations for the metric (7.5),
with A = 0, have been solved exactly. Following Szekeres [24], the
simplest case is where the dust particles are marginally bound (the

space-section t = constant are flat) and the metric has the form

2 p  (t- tl(r))z 2 2 4/3, 2
ds” = -dt” + 7/3 dr” + r (¢t - tO(r)) dQ (7.7a)
(t - t5())
where
ao? = o2 + sinZede’
dt
2r O
tl(r) = to(r) +3 ar (r) (7.7b)
and to(r) is an arbitrary function. Further
4
P 3 - 5@ - £ (1) {8
The case t. = constant implies t, = t. by (7.7b) and the solution

0 0 1
reduces to the Einstein-de Sitter model.

For this model to admit the conformal Killing vector (7.4)
then equations (7.2) and (7.3) must be satisfied. The first of these
reduce to [19]

adr | B _ (7.9a)
Y or N Y 3t 8
o X B X, da
£3c Txoat T - ¢ (7.9b)
3_8_ =¢ (7.9(.‘.)
ot
-Xda , 98 _
G tE F 0 (7.9d)

Equations (7.3) reduce to two equations, one being the third in the above

set, the other being

30,

3t 0 (7.9¢)
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From (7.9d) we then have 3g/or = 0 ie B = B(t) and from (7.9e)
o = a(r). Equation (7.9¢) then requires ¢ = ¢(t) only, and from
(7.9b) we see that, in fact, 30/9r and ¢ must be constant. Hence,
the metric (7.7) only allows self-similarity transformations which are

homothetic i.e. of the form (7.1)

From the remaining equations (7.9a,b) it is readily found that
a=1r/3, B =1t and to(r) = ar3, giving from (7.7b) tl(r) = 3ar3.

We thus have the spherically symmetric self-similar space-time with the metric

ds2 = —dt2 + (t-3ar”) dr2 - rz(t - ar3)4/3d92 (7.10)
3,2/3
(t-ar”)
admitting the homothetic Killing vector
1
g = §T3t + toE
and having the energy density
p = < (7.11)

3(t-ar3)(t—3ar3)
This solution can be shown to be identical to that found by Henrikson and

Wesson [60] by use of the coordinate transformation

3a
= = - -
r =R t 2 a *E s

This model represents an inhomogeneous, spherically symmetric expanding

space-time. This solution has also been studied by Dyer [83].

§7.3 PHILOSOPHICAL CONSIDERATIONS

Although mathematical models possessing spherical symmetry have
occassionally been investigated [see Omer [11], Bomn r [61], and Wesson
[62] for example], they are usually not taken seriously because it is
believed to be unreasonable that we should be near the centre of the universe
As we have seen, the isotropy of the microwave backgfound radiation is
usually used as evidence for the isoptrophy of the universe about the observer.
Thus by use of the location principle (i.e. the belief that we don't occupy
a privileged position in either space or time) one is lead to infer wide~

spread homogeneity.

The limited attention given to spherically symmetric universes

can be traced back to Einstein who tried to show that in contrast to
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Newton's reasoning, there could be no centre of the universe. However
Ellis, Maartens and Nel [10] argue that while it is certainly unreasonable
to imply that the universe has been centred on our presence, there is no
need for this attitude. Instead, they ask : given a universe of this

type, where is one likely to find life as we know it? The situation
would then not be that the universe had been created in an anthrocentric
way, but rather that, the universe being in existence, our life would

have evolved in the most probable region for life. This is the spatial
analogue of Carter's statement that life only occurs at favourable times

in the history of the universe [63]. For the static spherically symmetric
universe model considered by Ellis et al, this principle was found to be
satisfied by siting our Galaxy near the cool centre ; this being surrounded
by a hot singularity. Indeed, in separate paper Ellis [4]) has stated

that it would certainly be consistent with the present observations if we
were near the centre of the universe, and that, for example, radio sources
were distributed spherically symmetrically about us in shells characterised
by increasing source density and brightness as their distance from us
increases. Varshni [14] argues that in fact the distribution of quasars

implies such a case.

The investigations by Ellis et al suggested that while exactly
static inhomogeneous models may not be viable, certain interesting features
of such models may remain in expanding inhomogeneous models ; in particular
the singularity structure in such models is completely different from that
in a FRW model. More recently, Wesson [62,20] has studied a particular
spherically symmetric self-similar model in the hope of resolving some of
the long-standing problems encountered in Friedmann cosmologies. For

example, by allowing t -« 1in (7.10), the metric becomes

ds2 = —dt2 + t4/3(dr2 + rzdszz)

Thus the model evolves into the homogeneous Einstein-de Sitter model
implying that the present isotropy and homogeneity can be the product of
evolution from conditions different from those exceedingly special ones

required for FRW models.
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§7.4 THE SINGULARITY

As mentioned above, the singularity structure of the static
models studied by Ellis et al [10] displayed a behaviour very different
from that of the Friedmann models. From equation (7.11) we see that
the density has in general two singularities ; at t = t0 = ar3 and
t=t, = 3ar3. However, we define our time coordinate such that

1
t > Max(to,tl). Thus only one of the singularities needs be considered.

We see immediately, that in contrast to the FRW models, the
spatial inhomogeneity of these models opens up the possibility that the
big-bang does not, in any particularly natural sense, go off all at once.
This possibility has been mentioned previously in connection with various
astrophysical phenomena [see Miller [64] and references cited within].
Further, the behaviour of this singularity varies as to whether the

arbitrary constant, a, in the above model is positive or negative.

Case I : a<0

In this case the hypersurface I(r) = Max(ta,tl) = ar3
represents the 'big-bang' singularity, on which any co-moving observer's
world-lines originate. Since such an observer with coordinate r emerges
from the singularity at time ¢t = ar3, then the inequality dtO(r)/dr =
3ar2 < 0 implies that comoving observers with larger values of r enter
the universe at earlier times. TFurther, since tO(O) = 0, for all ob-
servers with r > O, the big-bang time is negative [in the coordinate t
used here]. The big-bang therefore acts like an implosion, the behaviour

of which is illustrated in figure 2.

Backward radial null geodesics satisfy

) (t - tl(r))

1/3

3
_— = - (7.12)
(t - to(r))

dt
dr

and thus except near the the big-bang hypersurface, ¢t = ar3, don't differ
much from the curve r = -t. Those null geodesics arising at t = ar3 are
no longer initially horizontal as in FRW models, but are initially vertical

and so the 'big-bang' hypersurface is inaccessible to future-directed
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Figure 2. Singularity behaviour for the case a < 0.

causal curves. Such a singularity is called past space-like meaning that
it cannot be influenced by observers within the spacetime - it can only

be observed [65] .

In this model the density on any hypersurface t = constant
increases as one moves radially inwards. For t > 0O, the central line C
is characterised by a finite maximum for the density. However, for t = 0,
as one moves radially inwards, eventually the singularity is reached at
r= (t/a)/3

space-time at time t = 0, after which the observer at r = 0 rests in

for which p » =, This singularity disappears from the

a thoroughly well-behaved region of space-time. However, in a universe of
infinite extent to(r) + —» as R =+ o and so it is reasonable to ask
whether this point in time is ever reached?  Further, in his investigations
of such spacelike hypersurfaces that contain 'lagging cores' of the big-bang,
Miller [ 64] has shown that the field equations allow the masses of these

lagging cores to become negative - more generally, that they allow the
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spacelike singularities to 'evolve into' timelike ones. Such

behaviour is normally not allowed in any realistic spacetime model since
it disobeys the strong form of the cosmic censorship hypothesis which
states that no timelike singularities - whether primeval or having formed

from initially non-singular circumstances are present in space-time [65].

If one assumes that the time t = 0 is never reached in these
models, then one finds that the 'big-bang' is still going off. In this
case the future of any spacelike hypersurface t = constant is only partially
determined, at least from the point of view of observers on this hypersurface.
However in such models the position of our Galaxy must be at a radius
rc»*(t/a)1/3 [given the low density and temperature in our neighbourhood]
and this will have implications for the isotrophy of any observations made

at such a position. This point will be considered in the next section.
Finally, one can avoid many of the difficulties in the singularity
behaviour just described by simply requiring t > 0O in such a model.

Then we have an initial big-bang at r = 0, as in the FRW models.

Case IT : a > 0

In this case, the hypersurface I(r) = Max(to,tl) = 3ar3
represents the big-bang singularity. As before tl(O) = 0, so the comoving
observer at r = 0 leaves the singularity at t = 0, but now, since
dtl(r)/dr = 9ar2 > 0, for all other observers with r > 0, the big-bang
time is positive. Thus one can now speak of an initial beginning to the
universe, with comoving observers having larger values of r entering
the universe at later times. Hence one can speak of an 'expanding-shell'
of the big-bang in contrast to the 'lagging-core' just described. The

behaviour of this big-bang is illustrated in figure 3.

Backwards radial null geodesics again satisfy equation (7.12)
and, as in the FRW models, are initially horizontal at the big-bang
hypersurface tl = 3ar3. However, unlike the FRW models where only null
and past timelike geodesics intersect the singularity, in this model
all space-like geodesics intersect it as well. Thus the singularity both
surrounds the central line C and bounds it past. In the former aspect,
this model represents the expanding counterpart of the static spherically

symmetric models considered by Ellis et al [10] , which like the model

here is spatial finite and bound. This can be seen from the fact that at
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Figure 3 : Singularity behaviour for the case a > 0

any time t, the proper distance from C to the singularity is

R
f *X(r,t)dr = T(R_,t) = R_(t - aRS)2/3

0
which is finite for all finite t.

The singularity in these space-times, as in the previous case where

a <0 and t <O, can be considered as 'sitting over there'. This

is unlike the FRW models where the singularity is hidden away inaccessibily
in the past. Further, like the previous case again, we see that there

are no global Cauchy surfaces and thus the singularity can influence the
universe continually. This continuous interaction, according to Ellis et al,
might be envisaged as a process which keeps the universe running i.e.

one would in these models 'have the 'thermal history' of the universe taking
place in a spatial rather than a time direction, with element formation
taking place continuously in the hot fire-ball, pair production taking

place continually, and soon'. However, unlike the previous case, those
models where a >0 possess a timelike singularity. Thus a radial null
geodesic emitted from the singularity, goes through C and is eventually
re—-absorbed by the singularity. Hence the singularity is in effect both a

source and a sink of information (and possibly matter) for the space-time.
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As we have seen, this possibility of the singularity being influenced
by the universe itself violates the cosmic censorship hypothesis.

7.5 REDSHIFTS

While the singularity structures of the spherically symmetric
self-similar spacetime with metric (7.10) have some unfamiliar features,
one must consider whether these models can adequately incorporate the
observational relations supplied by astronomers. of , these, perhaps the
most important is the redshift - distance relation. In the static model
considered by Ellis et al, while many of the features of a FRW model
could be adquately described they were unable to fit the current (m,z)

observations to their model.

Following Bondi [12], the redshift 2z of a source at r =T

as measured by an observer at T = I, is given by

T
log(l + 2z) = J € (%%
0

) dr (7.13)
r,T(r)

where T(r) is the equation of the ray of light travelling radially inwards.

From (7.13) we can write

f(r )
142 = € whe £(r) = “(B—X>
f(ro) o i = \at r,T(r)

dr } (7.14)

Because of the spherical symmetry of the metric and the matter distribution,
together with the centrality conditions, cosmological observations made at C
will be exactly isotropic. By continuity, observations made by an observer
near C will be nearly isotropic, except for small redshifts, where the
proper motion of the objects will have an appreciable effect. Evidence for

such anisotrophy in the Hubble parameter has been put forward by Fennelly

[66]. While this result is difficult to produce in a FRW model, Fennelly
shows that in the context of our expanding spherically symmetric model one
can reproduce the desired angular gradient of H by placing our galaxy

132 Mpc from the centre of such models.

While analytic expressions for the redshift - distance relation
(7.14) cannot be found, we can make the following comments. From (7.13)

we have

=i(1+z)<a—x> =t (1+2) 2t3/3

ot 4
£,T(r) 3(t - ar™)

dz
dr

r,T(r)

where the positive sign signifies outwards travelling radial null geodesics
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and the negative sign those travelling inwards. For the case a > 0, we
find this equation results in a finite limiting blueshhift at the
singularity. This result is inconsistent if one accepts the current
belief that the background radiation has cooled from an infinite

temperature to its current temperature.

When a < 0, we found that a singularity existed in these
models when t < 0. In this instance, we find dz/dr + « on the
singularity, thus giving the required infinite redshifting for the reason
just mentioned. Further the numerical size of 2z is larger for sources
seen in the direction of C (i.e. towards the singularity) than for
those seen in the opposite direction, so there is a kind of redshift
pile-up. This anisotrophy may be unecessarily large to accomodate present
observations. The model with history t > 0 has been investigated by
Wesson [20] in some detail. In this case there is a maximum observable
radial redshift which is proportional to (tO/arg)Z/B. Data on m(2)

and n(z) indicate a value for this expression of about 50.

§7.6 REMARKS

The above model throws up various points of interest in relation
to inhomogeneous cosmological models. First we have seen that there exist
singularity structures in expanding but inhomogeneous models which are
completely different in nature from those in the FRW universes, but which
can give similar observational predictions. Thus FRW models may be quite
restrictive in requiring that the 'big-bang' goes off simultaneously in the

past of each matter world line.

Secondly, any off-centre observer, while in general measuring
anisotropic galactic redshifts, will still observe isotropic background
blackbody radiation. This follows from equation (7.14) since the temperature
of the background radiation (emitted at temperature Te at coordinate value

re) measured by an observer at r will be given by the expression

T(r) = T_(1 + 7yt - T_£(x) /£ (x,)

and is thus independent of the direction of observation. This result is in
line with the conjecture put forward by Ellis et. al [10] for such a model.
As we have discussed, it is the isotropy of this background radiation,
together with the location principle, which usually leads one to infer global

homogeneity. Thus this model presents a challenge to the FRW models which
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are usually preferred on philosophical grounds rather than observational
from other models which can give quite a reasonable picture of the universe.
Thus the relative merits of models such as that outlined here should perhaps
be more seriously explored before discarding them. We need to at least
assess the assumption of homogeneity more fully relative to some of the
alternatives. Indeed, recent observations of a quadrupole moment in the

background radiation hint at such a revision of this assumption [bﬂ,

While spherically symmetric models present an alternative to
FRW universe models, like these latter models they are based on special
initial conditions, and so together these models are very implausible within
the set of all possible universe models. There is thus an on-going need to

study more general inhomogeneous models if the above task is to be more fully

carried out.
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CHAPTER 8 CONCLUSIONS

§8.1 THE STUDY OF INHOMOGENEOUS MODELS.

The basis upon which much of modern theoretical cosmology is
founded 1s the spatially homogeneous and isotropic FRW models. While it
is not believed that they truely represent the universe (they are too
simplistic to do that), it is believed that these models,in some sense,
are good global approximations of the present universe - indeed, it is
often claimed that the isotropy and homogeneity of the universe can be
partially justified observationally. However, as this thesis has attempted
to show, the much used assumption of homogeneity should be regarded merely
as a working hypothesis, suggested by the state of these present observ-
ations. Thus, it would be subject to modification or even dropped if more
powerful telescopes (such as the proposed space telescope to be launched
later this decade) should reveal a systematic lack of uniformity in
different parts of the universe. Indeed, recent observations of galaxies
with large red-shifts have shown that there are large regions of the
universe (of the order of 106 Mpc) practically devoid of galaxies [68].
This evidence tends to support the line of reasoning put forward by
de Vaucouleurs [69] who has pointed out that over the last three
centuries we have repeatedly discovered ever larger inhomogeneities in the
distribution of matter : stars, stellar clusters, galaxies, groups of galaxies,

clusters of groups, clusters of clusters.

Following up this claim Oldershaw [70] has more recently
argued that there is still no unambiguous evidence for cosmological homo-
geneity. In support of his case he presents evidence based on recent observ-
ations of the distribution of faint galaxies, in the distribution of radio
sources, in the Hubble expansion and in the isotropy of the background

radiations. Summing up his evidence he writes,

'Homogeneity on cosmological scales 1s most certainly not
a fact ; it is still a reasonable approximation, but several
lines of evidence gathered over the last decade now suggest
that inhomogeneities may persist from the smallest to the

largest observational scales'.

Motivated by this line of thinking, this study was an attempt to gain some
understanding of kinematical and dynamical effects of inhomogeneities by

carrying out an analysis on some of the more simple models - in this case
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those models which possess the character of self-similarity. First

we examined solutions of Einstein's field equations for a perfect

fluid which admit a three-paramerer group of conformal motions simply
transitive on the spatial sections. Unfortunately, the perfect fluid
models found generally had an unrealistic equation of state. Secondly

we examined spherically symmetric self-similar solutions for dust. While
these models presented some difficulties in adequately modelling the
present universe the singularity structures contained by them represented
a dramatic departure from those in the standard FRW models. From these
studies, some ideas as to the nature of the problems to be confronted by

future studies of more general inhomogeneous models can be inferred.

Firstly, the condition that conformal models admit a perfect
fluid has led to many restrictions. Also, these models have a tendency to
be tilted. Hence, it is felt that if one is to obtain realistic inhomogeneous
models then a more general energy - momentum tensor is required. This
would, by necessity, include terms representing viscosity, taking into
account dissipative processes. Thus, together with the non-zero acceleration
and rotation likely to be met with in more general models, some explanation
as to the origin and nattre of the inhomogeneities currently observed in

the universe might more readily be found.

Secondly, the singularities occurring in inhomogeneous models
may be completely different from those occurring in homogeneous models.
As we have seen, these models present one with the situation of an 'on-going'
singularity which may act as a continuous creation of matter in the universe.
Indeed, it has been suggested by Ne'eman [71] and Novikov [72] that
when we observe quasars, we are actually observing matter which has only
recently emerged from a 'lagging core' of the big-bang. Further, the
particle horizons which limit communications in the standard models could
be modified or even non-existent, and so the usual belief in the consequences
of the existence of these horizons - together with timelike singularities -

may need revision.

§8.2 OTHER MODELS

In order to be able to study the problems just mentioned, suitable
inhomogeneous models will be required. In the past, cosmology has generally
proceeded by a suitable symmetry being imposed upon Einstein's field

equations. However, usually this is very restrictive. For example, the
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requirement that the space-time metric admits a conformal motion leads
to a restricted class of Bianchi - type models. Thus the nature of
imposing symmetries on the field equations in order to find suitable
models needs to be examined. On this matter, Collins and Szafron [6]
have recently suggested imposing restrictions on certain submanifolds

instead of placing conditions on the full space-time manifold.

More ideally we should discard metrics of the form where spatial
and temporal parts are separated since it is impossible to observe at
any time a complete spatial section in such models. As an alternative we
should write the metric down in terms of the light cone structure and
then according to our observations place conditions on a backward null

cone. This leads to mathematical difficulties however.

Another class of model that has received little attention are
the hierarchical models proposed by de Vaucouleurs [69] and based upon
an idea originally proposed by Charlier in 1908 [73] . It is a commonplace
observation that nature loves hierarchies. Most of the complex systems
that occurr in nature find their place in one or more of four intertwined
hierarchial sequences. For example, analysis of chemical substances
discloses sets of component molecules, within which are found atoms, then
nuclei and electrons and finally (?) elementary particles. Further our
experiences with many different types of complex systems, both natural and
artificial, indicate that as systems grow in size and complexity, they reach
a limit where a new level of hierarchical control is necessary if the system
is to be efficient and reliable. As a result, hierarchies evolve much
more rapidly from elementary constituents than non-hierarchic systems,
containing the same number of elements [74]. Hence, almost all the very large
systems we observe in nature have a hierarchic organisation. There are thus
heuristic grounds for suspecting that the global design of nature might
also involve such organization [75]. 1Indeed, Wesson claims that recent
observations of global inhomogeneity are in fact quite close to that predicted

by de Vaucouleur's hierarchical paradigm [20].

Finally, recent insights by Prigogine [76] into irreversible
thermodynamic processes have lead to the development of a theory of natural
self-organisation to explain the processes leading to the formation of
structure in the universe. Described as 'order through fluctuations', this
theory is concern®d with systems that are initially in a state of randommess

or homogeneity and affected by fluctuations. However, rather than being
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controlled or damped, as fluctuations tend to be in stable systems,
they are 'amplified', and it is this amplification that gives rise
to what are called 'dissipative structures'. This theory has been
recently used by Zimmerman [77] to help describe the creation of

structure in the lepton era of the early universe.

While many other approaches to studying inhomogeneous models of
the universe have been proposed [see a review by Mac Callum [78] ],
general, the study of these models will involve us in global questions
as to the nature of the universe as against the situation in homogeneous

models where any part is representative of the whole.

§ 8.3 WHAT THE FUTURE HOLDS

As mentioned at the beginning of this thesis, there are various
problems associated with the FRW models. Recent developments, however, with
grand unified field theories may suggest avenues for the retention of the

standard model. Thus the possibility of a phase transition occurring at

about 10_353 after the big bang could generate density fluctuations which,
in turn, might give rise to the observed inhomogeneities on galactic and
cosmic scales. Many of these new ideas have very recently been reviewed by
Linde [79].

This aside, the dilemma that faces cosmologists is one quite familiar

to those with an appreciation of the history of science [see Kuhn (8071 1.

On the one hand, we have a well-established paradigm (the standard model)

which has served as an able guide to a generation of researchers and

through its merits has gained widespread acceptance. On the other hand,

there is a growing recognition of the fact that the major observational
evidence that once provided the empirical foundation for this paradigm,

is now providing insights into its inevitable limitations. The outcome

of this present situation is eagerly awaited.
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APPENDIX A

BIANCHI TYPES I - IX : VECTORS AND FORMS

We list here the canonical form of the (conformal) Killing

vectors and the invariant basis for each Bianchi type [38].

Class A and Class C

A _

Types I and 1I : C BC 0

El = 81 wl = dx?

E, =9, w? = dx®

53 = 83 w? = dx?

. 1 =—1 =

Types II and lII H C 23 C 32 1, rest zero

El = 32 ol = x3dx! + ax?

52 = 83 w? = dx®

- _ 3 3 _ _ gl
53 81 + x 82 w dx
- 1 = - 1 = 2 = e 2 =

Types VI0 and fVI0 : C 23 C 32 1, C 13 C 31 1

gy = 9y w' = x%dxt + dx?

E, =3, w? = x2dx! + dax?

_ _ 3 2 3 _ _ 1

£3 = 81 + x 32 + x 83 w dx
Types VIIO and fVII0 : C 23 C 32 1, C 13 C 31 1

El = 82 wl = x%dx? + dx?

£, = 33 w? = - x2dx' + dx°

53 = - 31 + x332 - x283 w? = - ax?!
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. 1 = - 1 = 2 = - 2 = 3 = - 3
Type VIII : C 23 (6 32 1, C 31 C 13 1, C 12 C 21
E, = %e_xsa - %[ex + (x?)%e xa]a - xze_xaa
1 1 2 3
&y = 93
3 3 3 3
= = alem - X" ,o2y2 "X 2 —X
53 ke 81 Lle™ (x°) ‘e ]32 + x‘e 83
3 3 3
ol = [ex - (x?)% x 1dx! - e X dx?
w? = 2x%dx! + dx®
3 _.3 _3
w? = - [ex + (x%)2%e . 1dx® - e X ax?
Type IX : Ci =€
yP : ik - fijk
8159
. 2
- 2 _ 1 2 sinx
52 = CcO0SX Bl cotanx sinx 82 + sinx® °3
£. = - sinx?9, - cotanx’cosx?? +-29§§;
3 1 2 sinx 3
wl = dx? + cosx'dx?
w2 = cosx?dx! + sinx?sinx’dx?
w?® = - sinx?dx* + cosx?sinxtdx?®
Class B and Class D
= 1 = - 1 = - 2 = - 2 = -
Types V and Types fV g C 13 C 31 1, C 93 c 32 1
El = 32 wl = - x2dxt + dx?
EZ = 33 w? = - x%dxt + dax®
- _ L2 _ L3 3 - _ 1
53 81 X 32 X 83 w dx
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. 1 = — 1 = - 1 = - 1 = 2 = - 2 = -
Types IV and fIV : C 13 C 31 1, C 23 C 32 1, C 93 C 32 1.
El = 32 w! = (x? - x¥)axt + dx?
52 = 33 w? = - x3dx! + dx°
£y = - 9, + (x3 - x2)32 - x383 w? = - dx'
: .l —_ el o 2 __ 2 = 1 __ el (o )
Types VI, and fVIh : Clyg C 32 1, C 13 C%ay 1, C 13 Coay (-h)
1
G2yy == CPgp =~ (-h)?2 (h < 0)
El = 32 wt = (x¥ - ax?)dx! + dx?
) = 33 w? = (x? - ax®)dx' + dx?®
b= - 'c)l+(x3—ax2)82+ (xz—axa)BB w? = - dx!
. - * . 1 = — 1 = 2 = - 2 =
Types IIL = V1_,, ITT = (VI ; and JIIT : C'py== Ciyy=1, C'yy== €74y =1
1 __ el oo S
Clyg==Clgy=-1, CTy3=—CTgp=-1
El = 9, wl = (x? - x2)dxt + dx?
€y = g w2 = (x% - xHdxt + dx®
Eq = - 814-(xa-xz)azi-(xz-x3)83 wd = - dx*
. 1 = - 1 = 2 = - 2 = -
Types VIIh and fVIIh. C 23 C 32 1, C 13 C 31 1,
1 _ _ @l o _ 1% 2 - _(2 o= 4
C13— C31— h,Cz3— C32 h? (h > 0)
£ =3 ot o= (x° - ax®)dx’ + dx’
£y = 33 w? = - (x% + ax®)dx' + dx3
3 2 (2 3 3 _ _ a4l
53 = - 814-(x - ax )82 (x“ + ax )33 w dx
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APPENDIX B

TETRAD FORM OF EINSTEIN'S FIELD EQUATIONS

We consider here Einstein's field equationsg written out in
the orthonormal frame introduced in Chapter 3. The virtue of the
orthonormal tetrad approach is that the field equations are differential
equations of only first order in the variables Yabc (or Fabc)' The
drawback is that, as compared with calculating from the coordinate form
of the metric, we have more variables and more equations, since in

addition to the field equations we must satisfy the Jacobi identities.

In the tetrad frame we have, using the Ricci identities

e :
Valbe ~ Valeb T T Riebe” (®.1)

and upon choosing v, as the basis vector e, the result

f _ f f f _g £ & _of .8 .
R bed Bdr cb 3CP db r cgr db Lk ng cb ¢ ng de’
and upon contraction one obtains
_ c c _ e s s _C
Rog =% ep ™ %  ab = T est ab™ T el sd - (B.2)

~

To write out the conformal components Rbd we now substitute equations
(3.5.13) into (B.2) making use of the set of equations (3.5.16). One

obtains equations (B.3):-
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= e“2°[R - 3320 -89 o + 3 3% + 3™ o
00 00 (o] (o] o o

+ 23 3% - 2a 3%]
o a

R =e 2R - 208 0+23 08 +20 030
oo, 00. o o 30 o o

B 5,8

+ 20 aaﬁo - ZeaBGw 9701

ok -20 Sy

= % - - -

RaB e [RaB zasaao easdn Bvc Zasoaa

+ 23 03,0 + 2e n’ 860
a B v8 (o B)
1 o Y v

+ §6a8(28a8 o 29 oavc + Zava o) ]

R% = e 2O[R¥ - 53 3% - 43 _0d%0 + 103%0a ] (B.3)

~ A

where R* is the trace of R ., R* is the trace-free part of R _, and R
aB’ “aB aB ab

correspond to the non-conformal components and are given by equations

(B.4):-
R =-6-08 8422 +92%+nn" - 2an"
0o of o o o
__ 2 B _ B Sy _ B B
Roa = 3aae + BBG o BB(e 0s® ) 3o 28 + n, g

§, B B Su_B
+ EuBGw (a” - 2n") + Easﬁn o ”
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* _ ° l__ u_n ° 1 . .u
RaB BOGaB B(GnB) + 3ga68 n nunB + §ga8nun
. Vv <6 §
- +
n(aas) n ( EB)an + 00 8 + 20 ( EB)GvQ
S v v §
+ 2 + - -
Q(aws) a(aas) eav(aa n 8) Zeva(an B)a

8
+ 2n (anB)G - nnmB

1

+ L uo_ TR
3 aB(aun Zqu Bua

+n? - 2n"Vn )
uv

R¥ =508 -93n%-nn*+2na%- 400 +40a
O o a o [6 o

o

_ _oB L2 _ o
nn g + n 6aaa (B.4)

The field equations can be written in the form

R, =T, - %Tg

ab ab (8.5)

ab

where Tab = (p + p)uaub + pg,, 1s the perfect-fluid energy-momentum
tensor. Substituting in u, = coshena + sinheka, the stress tensor
takes the form

- 2 2 o B L ;12
Tab = (pcosh“8 + psinh e)nanb + (p + 3(p + p)sinh e)hab

A e 1.2 _ 1
+ 2(p + p)51nhecosh6k(anb) + (p + p)sinh e(kakb 3hab)

(B.6)

when decomposed with respect to the vector n? [35]. Hence, from (B.5)

we obtain the components
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_ 2 3 2 2
Roo = p (1 + 2sinh“6) + Ep(l + §sinh 8)
Roa =- (p + p)sinhecosheka
b (B.7)
*x  _ 2 _1
Ras (p + p)sinh e(kakB 36@6)

R*

%[(p -p) + %(p + p)sinh®e] .

Equating equations (B.4) and (B.7) one now obtains the field equations.
Notice however that one can substitute the Roo component into the R*

equation, eliminating 306 and obtaining

o of

uﬂr‘

2 _ 1.2 2 _ o - o L2 _
Lo + Luw Zwuﬁ 4—28aa Baua + %(%n n naB)

= pcosh26 + psinhze (B.8)

Similarly, one can write out the equations for the conformal

models, where the perfect fluid is now given by

~ A A A An

Tap = (P FPIuy, + Py,

where from (3.4.10) one has

u = coshBn + sinhfk'
a a a

Writing p = e cp' and p = e—20p, we obtain the equations (B.9):-
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ROo = e_zc[%p'(l + 2sinh?B) +‘%p'(l + %sinhzﬁ)]
R = - e—zo[(p' + p')sinhBcoshpk']
oo. P o
¥ = -2¢0 ' 1N qd k2 e _ L
RaB e [(p' + p')sinh B(kakB §6a8)]
A* = -20.3 1 1 1 ] N 2
R* =e ""[Z(' = p') + (o' + p')sinh®g] (B.9)

Equating equations (B.9) and (B.3) now gives the desired field equations.

Also, as above, we substitute the Roo equation into the R* equation to

give
loo ¢ 2,1 2 _ a a o, 2 _ _oB
36 Lot + Luw Zwaﬂ + 23aa 3aaa + L(n n naB)
- 2% o - 3%9 o + 4a 3%
o o o
= coshZBp' + p'sinhZB (3.10)
As mentioned at the beginning, we must also specify the Jacobi
identities R? = 0 which may be written in the form

[bed]

f s f _
a¥ bel ¥ Y [abY cls = O (8.11)

Substituting in equations (3.5.15) we may write these in the form (B.12):-
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o _ O,
Baw = w (na + 2aa)

252 -3 6" +30+4+¢ ™5 (0 +uw)+6n
0o oo 0. o [TV v o

u _l _ u_-u \) \) =
+ 8 0L(2a nu) €, (2a n )@ +w) 0

H BV

9 nOLU N

o

av o
S - 2nu a -
o. o v

+ 3 a - 20" o
o v o,

Bonas + B(G(QB) + wB)) - va(ues)vs(ﬂ6 + wa) +

#2@WB + 0Py - on 4607 4 2% - 5%Pa 0¥ + 205

+ 2% + V0 - eV o) g (BEV; g (8.12)
v v v 6 v §
Similarly, using equation (3.5.12) one can show that the Jacobi

identities in the conformal case are identical to the above expressions.

To write out these equations in detail, one usually specifies
the triad of basis vectors {eu} further. One way of doing this is to

of

fit the triad {eu} to the tensor n and the vector ad such that

ng = dlag(nl,nz,ns) a = (0,0,a) (B.13)
Writing out the field equations (B.7) and (B.8) and Jacobi identities
(B.12) for homogeneous models where ﬁa =w, = 0 and all quantities are

functions of time alone we have equatioms (B.14) [34].
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a(Q2 + 013) =0
a(ﬂl + 023) =0
BOa + 63a =0
Bonl + (62 + 63 - el)nl 0

(n1 - n2)Q3 - (n1 + n2)012 =0

n, )

(ng - 0Py

3ghy + (81 + 85 = 8,)my

02

() - g8y -

- (nl + n3)013 =0
- =0
(n, + ng)oyq =0

3.n, + (61 + 62 - 63)n3 =0

50 +6.2+02+06.2+202+20,2+ 2022

0 1 2

3 12 13 3

+ %(1 + 2sinh?6)p +-%(1 + gsinhze)p =0

3

(p + p)sinthosthl

(p + p)sinhecoshek2

a(263 -8, - 6, + clz(n1 - nz) = (p + p)sinhecoshek3
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90012 = = 0015 + 0140 = 0,50y + (8, - 6,)0,
+ (n2 - nl)a + (p + p)sinh26k1k2
%0013 = 7 8933 * 0y3f3 — 01,2 + (8; - 05)0,
+ (p + p)sinhz_eklk3
90923 = 7 8953 + 9158y = 0485 + (85 - 0,)0
+ (p + p)Sinhzekzk3
30, = - 665 + 2a® - g ? + B(n, - n3)2 + 20,0,
- 2013Q2 +L%(p -p) + (p + p)sinh26k12
998, = - 86, + 2a? - lxznzz + %(ng - n3)2 + 20,40
= 20,0, + %00 - p) + (o + p)sinh26k22
303 = - 864 + 2a% - 1/2n32 +%4(n; - n,)? + 2049,
- 202391 + %0 -p) + (p + p)sinh26k32
6162 + 6163 + 6263 = Ol; + Olg + 02% + 3a® + psinh26

+ l);(nl2 + n22 + n32 - ann2 - 2n1n3 - 2n2n3) + pcosh?6
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APPENDIX C
SOLUTION OF COORDINATE EQUATIONS (4.3.1)

We outline here the solution of the coordinate equations

(4.3.1). We consider only Bianchi types II - VII where
6 =o(x!) = - I F(x')dx!. The simpler type I models follow the same

procedure. These calculations provide a useful check on some of the

results of §4.4.

For non-tilted homogeneous models we have

A A o)
u = 60 u, = - GA (c.1)

Since from (3.3.5), Ao AuA + vA where uA'vA = (0, then
v = 0, =2 and u =v (C.2)

Substituting conditions (C.l) and (C.2) into equations (4.3.1) we have

the following system of equatioms:
i) (oo) component
~ N bo,a T 20 _ AB
(p +ple A —-pe” ~p=-g¢g (ZVAVBO + 3A03B0) (C.3)

ii) (oi) components

~ ", 4o _
(p + ple Avi = ZVOViO (c.4)
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1ii) (ij) components

" . bo . ~ 20
(p + ple VY + (pe” - p)gij

- _ AB
= 2ViVjo + ZBiijo + gij[ZVAVBo + aAoaBo]g (c.5)
Putting o = 0 gives the trivial solution p = p, P = P and A = 1, v, = 0.
From (C.4) we can see that the conformal models will in general be

tilted i.e. A # 0.

Use the metric form (4.2.3) and calculating the Christoffel

symbols, it can be shown that

AB _ -1 -1
g VAVBG =~ Yq3 oF + 2ry33 F
AB _ -1
g 8A03B0 = Y33 F
1 =1 -1 1
e Toi = 733 V3384

Substituting these results into the equations (C.3) - (C.5) yields

(p + p)eack2 - pe20 -p = - Y33_1F(4r + F) + 2Y33_13F (c.6)
- . 40’ _ -1 1
(p + ple XVi = Y33 Y33F6i (c.7)
N ~. _ha v 20
(p + ple V4V + (p'e p)gij
- 2yglel _ opl -1 _ -1
= (20F + 2F*)6365 = 21} ;F + g, ¥4g F(4r + F) = 27,4 9F (C.8)
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From (C.6) we have Vy =V, = 0 and from the (2 3) component

of equation of (C.8) we find
1
P23 =0 = Y118 + Y9,4 = 0 (c.9)
This constraint puts restrictions upon the allowed Bianchi types. From

Table 3 we find that only types V and VII are admitted.

To solve equations (C.8) further we calculate the Christoffel

symbols T A series of calculations give

1
1j°
rr R

i3 =~ Y33 Bij 1%

Solving equations (C.6) - (C.8) now gives the solutionms

pe2° =p - 3Y33_1(2rF + F?) (C.9)
g a=p, & y33'1(2rF - OF + F?) (C.10)
"1v
Y33 Y33F
s = o

(o + pre*x
and we have the constraint
[o +p = 2v.. LrFI[2xF + 2F% + 20F] = (Yq ¥4q) F (C.11)
33 33 33 ‘

Equations (C.9), (C.10) and (C.11) correspond to the equations (4.5a),

(4.5b) and (4.7a) respectively of §4.4.
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APPENDIX D
TRANSFORMATION PROPERTIES

In the coordinate frame, for Bianchi Types II - VII we have

o= - I F(x')dx!. Hence

- F¢

[s8
Q
]

and 9.9.0 = -aF 6;5; where 3F = dF/dx' .

Now consider transforming to the tetrad frame where the spatial part of

the metric is written in the form

ds? wawB =g wa.ws.dxldxJ
aBf” 17 J

where gaB = diag(l,1,1). From equation (2.2.1) and Appendix A we have

2 -4 3 _ =% 1 _ -1
€1 T 11 € T Y2 €3 =~ Y33
(c.1)
2 _ k. 3 2 3 _ . 3 PR §
ey Y33 (sx° + px°) ey’ = Y33 (px® + qx°)
where wdiesl = GGB

Thus, in the tetrad frame we will have
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9 0 =¢e 18,0 = - e iFG1 = - Fel
o o 1 a i o
and 3,0 0 = e iB (- Fel) = - e i[aFdlel + Fo el]
B a B i o. B ia i o
- 11 i 1
[eBeaaF + FeB Biea]

Substituting in equations (C.1) we find

-1 .3
o Y33 FGu (C.2a)

i 5.9 0 = '131«‘5;53 (C.2b)

T Y33 8

In the Bianchi Type I case F = F(x’) and it is trivial to show

that

@

-3
Q
I

To note how the relative vector a transforms from the invariant
basis of Chapter 2 to the triad of orthonormal vectors, consider the

following change in the basis vectors

It then follows that

YOtB =Y Y YB C aB (no sum)
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B
o.B

Hence, since a = Ly and a;
o

o
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