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SUMMARY

Ihisthesispresentsaninvestígationofsomeoft'he
properÈíes of cosmologícal models that possess the proPerty of self-

similaríty. These models are inhomogeneous. In this respect the

motivation is to find suitable models for study to Èry and answer

some of the questions about Èhe sÈÏucture of the universe left un-

answered by the standard homogeneous models'

The major proporÈion of this study concerfls ítself with a

class of cosmological models which admít a three Parameter group of

confonnal motions which act on the space-like hypersurfaces ' The

meÈric in these nodels is conformal to that of the well-known homo-

geneous models which admit a three parameter gTouP of isometries.

HornotheÈic models are included as a specÍal case'

InÍtially we consider the grouP theoretic and Lie derivative

properties of these models. This leads to a discussion about the

nature of energy-momentum tensor admitted by these models and the

kínematícal behavíour of Èhe fluid. rt ís noted Ëhat only a restrícted

class of confomal models will adrnit a perfect fluid and ÈhaÈ in general

these models r¡ith matter wil-l be filted with non-zero acceleration and

vorticitY.
To investigate the existence and natuÏe of diagonal models

adrnitÈing a perfect fl-uid' I^le use Eínsteinrs equaÈions written in Èetrad

form. These solutíons are found to be restricted to Bianchi types I' V

and VII. However, the energy - momentum Èensor ín these models has either

an unphysical equation of sËate or the fluid quantities are unrealistic

in view of the currently accepted nature of the universe.

In the next t\^ro sections we consider t\^lo further aspects of

these conformal models. At first we examine the problem of placing a

conformal motion symetry upon the initial data in the Cauchy hypersurface'

and then find the condiËions imposed on this initial data for Ëhe space-

time Ëo adrnit a local conforroal motion. If the model admits a perfect

f1uid, it is noted that certain constraints must be satisfied' However'
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these constrainËs vanl-sh for the speclal case of homothetic motions.

trIe then consider the applícabflfty of the Hamiltonian methods

developed by Ryan to the class of homothetlc cosmological models.

I,ltrlle only a restrictfve class of model 1s allowed, the method fs
found to be admlssable Èo the homoËheÈfc generallzatíons of some

of the homogeneous Class B models previously disallowed.

In the latter part of this thesis we consfder self-simll-ar
spherícally syrunetric unfverse models adnltting the conformal vector

E = crât * ßâr. These modelsrwhile presenting an opportunity to study

inhomogeneous models r¡ith a completely different global sÈructure than

the previous, also a1low us to sËudy the singularlty sËructure in a

simple inhomogeneous model . I^Ie f índ that thÍs situation a11ows a

singularity sËructure completely different to that found ín the standard

Fried¡nann models with the possible exisÈence of a contínuous big-bang
presence and timelíke singularitíes. A short discussion ís also gÍven

on the redshift relatÍons found in these models.

The thesis ends with a brief examÍnatíon of the need for
furÈher workíntothe nature and exístence of inhomogeneous models of
the universe.
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NOTAT ION

Notation used is as follows: the metric tensor g* has

signature (-#) . CovarianÈ dífferenËiation ín the XA direction is

V, = ,nf; parÈial differentfation ín the XA dl-rection is f.
,A

A vector ls regarded as a directional derivatíve, A basls of

vectors is â/âxA, so X = xAâ/â*A, where XA "t. components of the vector

wíth respect to the basís. Thus X(f) = xAaf/â*A = f,4X4. The

connutator of Èhe vecËors X, Y is [X,Y] defined by [X,y]f =

x(yf) - y(xf) = (x\B,A - y\8,6)atla*B = (Lry)f where Lry is the Lie

derivaÈive of Y wíÈh respect to X.

A seË of vectors {nr} that are orthonormal at each poínt ís

called a tetrad. The notaÈíon â" is used to emphasize Èhe action of

these vect.ors as dÍrecÈional- derívaÈives: ârf = E"f .

The índices ArBrC... are coordinate indices and a,b,c... are

teÈrad indices. Both run from 0 to 3. The indices í,j,k,... are

coordinate indices and crrp,y,... are tetrad indices and run from I to 3.

These índices are also used to labe1 the elements of the 3-dímensional

groups Co and Go. Round brackets denote symmetrized índíces and square
JJ

bracket.s denote skew-syrunetrlzed. indices.

In the following we shal-l be dealing wíth two metríc tensors -

the homogeneous metríc wíth componenÈs g* and the conformally related

meËric wíth components ;* = 
"2o B^8. To distinguish those conformal

quantitíes writÈen wíth respect Ëo å* r. wríEe t^f over them. Also,

Ehe covaríant derivatív with respect to â* i" written as a bar t 
l 
t,

while the covariant derivatíve with respect to g^U is wrítten as a

semi-co1on t; t.
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CHAPTER 1

¡ NHOMOGENEOUS COSMOLOGI CAL MODELS

51.1 lntroduction

The primary focus of cosmol-ogical thought in the Present

century has been on interpreting the observaÈions of the sarnple of Ëhe

unÍverse avail-able to our telescopes in terms of a set of models based

on various theoríes of graviÈation, especially general relativity.

That general relatívíty, in prínciple, provídes a ne\ü insighÈ ínto the

properties of the worl-d as a whol-e rllas fírst indicated by Eínsteln in

1919. Subsequent progress ín relativistic cosmology was iniÈially

connected principally wiÈh the solution of Einsteinrs gravitation

equations fÍrst obtained by Friednann ín 1922.

The improvements ín our observational knowledge of Lhe universe'

coupled wíÈh the better understanding of the theory of maËter over the

past few decades, has opened up a veritable Pandorats box of

relativistíc models of the universe [e.g. see Narlikar tl] for a surveyl.

However, in face of the cont.inued success of Einsteinfs theory of

general relativity as the most aesthetically pleasing theory fitting the

known experimental facts, ít is widely held that the standard model of

the uníverse, based on the Fríedmann models, fits most features of the

acËual universe quite well Isee \^Ieinbetg 12] for a thorough examination

of thís model-] . Nevertheless, the assumption of homogeneíty used in

Èhis model ís to be regarded merely as a working hypothesis' suggesËed

by the st.ate of present observatíons.
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51 . 2 Standard Cosmological Models

As ls well known, these solutlons are based on the assumpËion

that the distribution of matter in space is compleÈely hornogeneous and

lsotroplc. The main property of Èhese solutlons, that the uníverse

is not stat.ionar¡ has found confirmat,ion 1n the red-shlft effect and

this property must be basíc to any modern description of the staËe of

the uníverse.

Given the tsuccessr of the standard models, at the same tíme

iÈ is clear that the uníversal assumpÈion Ëhat the universe ís

homogeneous can be satisfied at best only approximately. Belíef ín

homogeneity ís real-ly the outcome of a continuing seríes of reverses

for a geocentric point of view. Briefly, these were [3] a) Copernicusf

1543 proposal Èhat the Earth ís noÈ the centre of the uníverse, b)

Shapleyts 1918 discovery Ëhat the Sun is not at the cenËre of our Galaxy,

c) Hubblets L924 confirmation that Èhe tisland nebulaet r^rere other

galaxies, and d) Baaders 1952 revision of the disËance scale showing

thaÈ our galaxy ís not the biggest in the universe. The consequence ís

a widely held belief, known as the Copernican prínciple, t4] Èhat the

Earth is in no special positíon in the universe. Thus íf we see

isotropy, everybody must see isotropy and Tre are lead to homogeneity ín

space.

The only aÈtempts aÈ direct test.ing of homogeneity use the

dístribution of galaxíes, and since the galaxies appear to be clustered

on scales which may be very large, the outcome of these tests is

disputed. However, the problem faced here ís one that confronËs all

theories of the universe, as outlined by Ellis in a paper entitled

'Cosmology and Verifiabíl-ítyr, op.cit, t4l. Given that the subject of
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relativlstic cosmology ts the determl-natlon of the smoothed out metrlcal

structure of the uníverse, E1lis argues that the problem of determinlng

thls structure fs cenÈred on Èhe fact that there 1s only one universe

Èo be observed, and that we can effecÈlvely only observe ít from one-

poÍnt in space-time. Because iÈ is a unique object' Iùe cannot ínfer its

probable nature by comparing it wlth sinilar obJects. This leads to

very real limitations in our observational knowledge as to the acËual

nature of the universe and its contents.

Given this situatlon, r^re are unable to obÈaín a model of the

uníverse wlthouË making some sPecífically cosmologlcal assumptions

whích are courpletely unverifiable. (Although \¡7e can presumably make

some extrapolations of the condiËíons observed 1n our immediate

nelghbourhood Èo greater distances, we have no real justificatÍon for

assuming that the whole universe has the same proPerties.) Thus we see

that any theory we have of the uníverse will be heavíly ínf1-uenced by

Èhe assumpt.íons we make.

Because the universe is so complex, it Ís immediately obvious

that if r^re are to have a workable model of the uníverse, \^7e must

conmence by simplifyíng it and discarding what hopefully we believe to

be the irrelevant aspecËs. tr'Ie start by díscarding the planets and

usually, in an all or nothíng spirit, follow by dismissing the entire

range of stellar and galactic structure. EveryÈhing ís smeared into a

uniform fluid and we are left wíth an idealized universe that ís

vírtually little more than the rgrin on the Cheshire catr. Just before

all structure is dissolved a\¡Iay \¡Ie hold on to some of the grosser

rudiments of the universe - thís is usually achíeved by having the

model satísfy some syûmetry constraint. However! \47e must interpret these

statements as meaning Lhat the actual inhomogeneity and anisoÈropy at a
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point, are only smal-l statlstical deviations from the underlying syrnmeÈry.

In the standard models, the homogeneity worklng hypothesis 1s

justlfied on the ground that on a sufficlentl-y large scale the unlverse

does appear to be roughly homogeneous. If it rùere not, then large

clumps of matÈer would produce anlsotropíes in Èhe microwave radiat.ion

in excess of those observed. Also, from a mathematical point of view,

the sËudy of homogeneous model- universes has enormous advantages.

trlhereas, in general, non-homogeneous model universes involve us in

gl-obal questlons, the beauty of homogeneous models Ís thaÈ they can be

studíed mainly locally; any part is representative of the whole. Also,

the field equatíons become more Èractable (reducing to ordinary

dlfferential equaÈlons) and from the general class of spaËial-ly

homogeneous models, a Bíanchí-Behr classification scheme has been

devísed that indícates whích are the most general t5].

I^Ie have thus created a smooth and featureless model of the

unÍverse. The next step is to show that írregularities grorrr and fn the

course of t.ime the unsËructured universe becomes Ëhe structured universe

we observe today. On this point however, progress has been slor¿ and the

structure ín the universe has become difficulÈ to relaÈe to models based

on smoothÍng postulates. This has usually resulted in separaËe

t.heoretical approaches to the origín of the various strucËures in the

universe, and whíle these approaches have rnet with some success, they

are usually inadequately related to one another and to cosmological

theoríes.
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S1.3 HomoqeneitY vs. I nhomoqe neity

In this sltuatl0n we are forced to reconsider our 1n1tia1

generalizations about lsotropy and homogeneiËy' This view ls also

reinforced by the discovery that the standard model [6]

a) nay not be sufflcienÈly general for problems where general-ity

conditions are of prime lmportance e'g' in the study of

slngularlËles.

b) seems incapable of explainíng such phenomena as the

homogenization and isotropization of the universe (see e.g'

Mísnerts progranmne of chaotic cosmology' t7])'

c) do not. provÍ-de a suitable background for the formation of

galaxies from small random fluctuaÈions'

Also, with the homogeneous models that are general-ly favoured for givíng

the best fiÈ to the observations, the observatíonal tests for

dlscriminating between the various models are usually dífficult to carry

out and at besË on1-y marginal. It is unfortunate that the large amount

of ínformation contained in the various sub-structures of the universe

cannot be used in testing Èhese models '

Thus, hte see that there is a need for more comPlete and

descriptive cosmological models and ín order to study questions as Èhe

above ít wíll be necessary to consider inhomogeneous cosmological models '

The homogeneity question should be formulated not as tIs the universe

homogeneous?, but rather as rTo what degree is the universe homogeneous?r'

In any case' careful study of other models can advance our

understanding of relatlvíty (see t8]). I^Ie must always keep an open

mind as to changes and improvements r¿hich could make a better or more
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extended theory possible.

Sl.4 lnhomoqe neous Cosmoloqical Models

Many exact soluÈlons of Einsteint s field equatÍ-ons are known

and the qualitative behaviour of certain general classes has been

sÈudled. However, most of these soluËions in one way or anoÈher are

ruled out as cosmologlcal- models, and even less qualffy as inhomogeneous

cosmologÍcal- model-s. In this section we brief l-y outline the work whích

has been done in this area.

Apart from the mathematlcal difficultíes, the generally

accepted cosmological prlnciple, which t,ogether with the ísotropy of

space-time about a single observer leads unambiguously to the Fríedmann

models, has lead, untíl recenËly, to a lack of work on inhomogeneous

models. As has been noted already, the standard models cannot explain

fu11y a number of phenomena and Alfven [9] claims Ëhat some observatíons

actually disagree with the theoretical predÍctions and can be boughÈ

into apparent agreement only by a number of ad hoc assumptions. Also'

Ellis et al. tlol claím that while isotroPy is directly observable,

homogeneity (on a cosmological scale) is not. Thus, if the assumption

that the universe is homogeneous ís discarded, the situation is not so

clear.

Gíven thís situaEíon of the observable isoËropy about us ' one

of the firsÈ studíes of inhomogeneous models was by Omer in L949 ' whích

used the spherically symmetric Tolman-Bondi solutíon I,LZI - Although

mathemaÈical models for such Earth-centred cosmologíes have occasionally

been ínvestigated, they have not been taken seriously as they are

philosophically unattractive sínce it is believed to be unreasonable
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that we should be near Èhe centre of the unlverse lsee S1.2]. It 1s

usual1-y argued that ft fs unlikely that certaln isotropíes are pecullar

to Èhe observerrs locat.ion, so that the observer infers that the

synrnetries he perceives are not forÈuituous but that probably they exist

everyvhere. Ihus aimed wÍth Èhis principle the observer usually lnfers

widespread symnetry t13]. However in a recent paper by Ellis et al.

[10], some int.rígÍng aspects of such universes are presenÈed. It would

cerÈainly be consistent. rdíth the present observatíons thaË we \dere near

Èhe cenÈre of such a uníverse and Varshni [14] argues thaÈ Èhe

dlstribution of quasars ínfact implies such a case. These statements

have also been supported by Ellis t4l.

It has been sÈated t6l that the main stumbling block ín the

development of ínhomogeneous cosmologies has been the need to impose

ín a covariant way, symmetries which are sufficiently strong to render

Èhe field equations tractable, while beÍng noÈ so strong that Ëhey

requíre spatial homogeneity. One way to introduce ínhomogeneity is to

still require the space-time to admiÈ a group of isometríes buÈ that the

orbíts of the group are not three-dimensional. In this case I¡Ie obtaÍn

the locally-rotationally syrmnetric (t.R.S.) models of Ellis & Stewart

[15] where the space-tíme ís invaríant under a spaËía1 rotation about a

spacelike axis of syÍmetry at each point. Further, fairly synrnetríc

cases occur when the space-time admits a tvlo parameter group of motíons.

These incl-ude the Gowdy universes t16] and the stiff equaÈion of state

models of l^Iainwright et a1. [17].

Also, one can impose less restríctive symmetríes upon the

space-time. Eardley [18], fo11owíng the ídea of Cahill and Taub t19l

to consider 'se1f-símilarr cosmologícal models, considered those

space-tímes that admiËted a 3-parameter group of homothetic motíons that



acted slmply transitive on the spacellke hypersurfaces, and was able to

generalize the Btanchi-Behr classificatlon to lnclude new and more general

lnhomogeneous models. Simllarly motivated, üIesson [20] devised a nerù

dimensional cosmologtcal principle [21] Ëhat lead hfm to nelÍ tself-

similart models, whích being non-Friedmann, he hoped would solve some of

ttre puzzllng problems Ëhat face Fríedmann models.

Another ínhomogeneous exacÈ model that has been used for

cosmological purposes is one ln which spherical regions in a Friedmann

model are removed and replaced by part of the well--knorrn spherical-Ly

synrnetric Schwarzschild solution. This model is often called Èhe

rswiss-cheeset model 1221. This model has been used to discuss the

influence of concenÈrat,ions of maËter on Èhe propagation of light. An

alternaËe approach has been to treat, approxímatel-y, perturbed spaÈially

homogeneous models. This method was used by Lifschitz and KhalaËnikov

t23] in a classic discussion, and has subsequently been explored by many

other authors.

More recently, Szekeres [24] discovered a useful and fairly wide

set of dust cosmologies by assuming that the metric have a partícular

form. fhese models generaLize the previously knoum Tolman-Bondí and

KanÈowski-Sachs [25] rnodels. These models \^rere extended by Szafrot 126l

to include pressure but the mat.t.er content is in general an unusual one,

if not unphysical, in that alÈhough we have for the densíty

p = p(t,x,y,z), we have for the pressure p = p(t) only. Although these

spacetimes do not in general admit any Kílling vectors 127 ] they do adnít

a preferred two-parameter fanrily of two-surfaces of constant curvature.

Also, each comoving space slíce Ë = const. ís conformally flat t28].

The sËudy of the Szekeres solutions has suggested a dífferent
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approach to the study of inhomogeneous models when the group theoretlc

technlques may no longer be applicable. The assumption of conformally

flat space sections may provide the syrnmetry necessary to solve the

Einstein equations when the condítíon of spatial homogenelty is relaxed.

Spero and Szafron 129] have shown that any fanily of inhomogeneous

solutíons w1Èh conformally flaË space-sectíons can only contaÍn

homogeneous solutfons Ínvariant under groups of Bi.anchl type I, VII., V,

IX, VIIh or VI_, or be of the Kantowskí-Sachs form. The Szekeres

solutions extend a subset of Èhe above listed spaces to a famlly of

inhomogeneous perfect fluíd solutions wÍth the following properties:

a) irrotatíonal, geodesic flow and an expansion tensor with two

equal eigenvalues.

b) conformally flat, comoving hypersurfaces whose lLlcci tensor

has two equal eígenvalues (Petrov Èype D).

c) a nonbaratropíc equation of state.

Their resulÈs índi-cate that, if one wÍshes Èo generallze that subcLass

of perfect fluíd solutions satisfying (b), then some portion of (a)

must be discarded. If one does this, then Èhe extension must include

other spatially inhomogeneous models.

MosË recenÈly, Collins and Szafron [6] have suggested another

alternative to space-time synrnetries. Not un1íke the prevíous problem,

they impose restrictÍons on certain sub-manífolds instead of considering

the full space-time. The problem can be regarded as one of classifying

three-dimensional Riemannían geometríes (i.e. the íntrinsic geometry of

the hypersurfaces) and of classifyíng normal time-like congruences. The

propertíes of the normal tíme-like congruences relates to the way in

whích the hypersurfaces are ímbedded ín space-time (i.e. their extrinsíc
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geometry). Thls classlfication fs thus purely geometrlcal and is thus

independent of any fíeld equatlons. Their classificatÍon is based on

the Ricci tensor of the metric induced on the hypersurfaces and on the

shear tensor of Ëhe normal congruence. An ÍnvestígaÈLon in whlch the

normal congruence is geodesic and the hypersurfaces conformally flat

led to a characterizatlon of the Szekeres soluËions.

This approach is belng extended by l^Iainwright tfOl in order to

set up a classifícation scheme which ís sufficlently general to

dl-stínguish the various known inhomogeneous solutlons. Some of these

exacÈ solutíons - such as the Szekeres solutíons, the type-N perfect

solutions of Oleson [31] and a class of algebraieally special solutions

found by Wainwright l3Z1 - do not admít any Kill1ng vectors in general.

S1.5 Aim of Thesis

MotivaÈed by the foregoing work on inhomogeneous cosmological

model-s, in the following we shall extend to work of Eardley [13] in

considering models that admit a three-parameter group of conformal

moÈíons Èhat act símply transitively on space-like hypersurfaces. Ihese

models wf1l be ínhomogeneous. In Èhis respect it ís hoped to find

suitable models for study to try and answer some of the quesÈions about

the structure of the uníverse left unans\¡rered by Ëhe standard

homogeneous models.

In Chapter 2 we define the maÈhematlcal nature of a conformal

mot,ion and obtain the metric governing these models. In Chapter 3 we

elucidate the Lie derivatíve of certain geometrical- objects used in

describing these models. From this we consider Èhe nature of the

energy-momentum tensor admítted by these models and examine the
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kÍnematical properties of the flufd. To help us we lntroduce a tetrad

basls. Using thls basfs, the Elnstein field equations governing these

models are wrltten down, and the existence and nature of diagonal perfecË

fluld solutions ís examined in Chapter 4. In the next t\üo chapters we

consider two further aspects of Èhese models. Flrst we consfder Èhe inltial
value problem fn relatlon to the preservation of a conformal synmetry fn

the initial data. Secondly, we lnvestLgate the applicabfllty of the

HamlLtonlan methods developed by Ryan for giving a qualftative descriptíon

of Èhese models.

In ChapÈex 7, we break with the foregoing work and consíder spherícally

slrrrnetric models admittÍng the confo:mal vector E = oât f Bâr. These

models, while presentíng an opportunity to study Íãhotog.rreous universe

models with a completely different global structure than the previous,

also gÍves ríse to the sÈudy of Ëhe síngularity structure in a simple

ínhomogeneous model. The Èhesis ends \riÈh a bríef examination of further
work needed in the study of ínhomogeneous models of the uníverse.



L2

CHAPTER 2

CONFORMALLY HOMOGENEOUS MODELS

52.1 lnhomoqeneity as a Similaritv Construct

As we have seen 1n Chapter 1, if one is Èo Pursue the study of

galaxies and similar structures' Ëhen we obviously need a cosmologlcal

structure which acts as an environment that allows for aggolomeratlons

of matter. On this ground, one would exclude the homogeneous models -

in view of the fundamental equivalence of geometry and physics staÈed

by Einsteints equations, physical inhomogeneities such as the

aggolomeration of matter into galaxies etc. iurply sPatial geometríc

inhomogeneitíes. Edelen and þtr1lson [33], in their study of

díscretfzation in asÈronomy argue that the simplest manner of

introducíng such inhomogeneíÈies, and one that is consisÈent \^líth the

idea that Èhe lnhomogeneit,ies can be viewed as tbumps r on a homogeneous

substraËum, is Ëhat ín whích the spatíal geometry of the inhomogeneities

is sirnilar to the geometry of the homogeneous subsÈratum. They

reasoned that the factor of proportional-ity obtaíned in stating the

similarity as an equality r^rould then descríbe the inhomogeneities

through Ëhe varíation in the values of the proportionality factor from

poínt to PoínË.

Edelen and wilson also argued that the spatial inhomogeneities

would in turn irnply inhomogeneity in Èhe energy-density and proper time

rates. Hence, in consídering both Èhe spaËial and temporal

inhomogeneities, they constructed cosmologícal models thaÈ were

conformal to the classical Fríedmann models '

In this thesis we will be considering the wider class of models
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which are conformal Èo the well-known spatlally homogeneous models

whlch admit a three-parameter group of isometries t341. In partÍcul-ar,

we wlll- be considering those metric spaces whlch admit a three-

parameter group of conformal moËions (which includes Èhe class of

homothetfc motions as a special case) on their sPace-secËíons.

C,eometrically, this means that lengths are not necessaríly preserved upon

transformation from point to point upon the spacelíke orbÍts, buË may

be rnultiplied by a conformal factor.

In constructing these models, our work follows closely

Eardleyrs [18] paper on sPatially homoÈhetÍc cosmological models, \ùhere

the conformal factor in the transformation mentioned above is a

constant. Eardley called these models tself-similarr space-times and

ciÈed the use of such solutions in classical hydrodynamics where Èhe

physical systems involved have no íntrinsic scale of length. This l-ed

hím to use the noÈion of self-sirnÍlarity as meaning invaríance under

scale transformaÈíons. Such a scale free property could be a desirable

properËy of a cosmological model which had rforgottenr íts ínítial

conditíons and had become scale invariant e.g. the expansion of the

universe.

Finally, above and beyond the arguments of both maÈhematícal

and physícal simplícity, conformally equivaLent models Possess a uníque

property that singles them out from al1 other possible lnhomogeneous

models t33]. It ís known that the complete curvature tensor of a

metric space can be decomposed uníquely into the sum of two Èensors,

one of which is the Inleyl conformal tensor and the other which ís

uniquely determined by the metric tensor and the energy-momentum tensor'

Now, the lrtreyl tensor ís that part of the curvature tensor that is not

determined locally by the matter and may thus be víewed as representing
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the tfree gravíÈational fíeld'; further, the t{eyl tensor ls the unlque

curvature invariant under conformal changes in the metríc tensor' IÈ

thus follows that conformally homogeneous models describe ínhomogeneous

distributions of matter whose free gravltational fields are identlcal

with the free gravltaÈlonal fields of the corresponding homogeneous

models.

92.2 Spatiallv Homoqeneous Cosmoloqical Models

l.le collect here Ëhose results from the spatially homogeneous

models that are required for the purposes of reference and comparíson

[for a recent revíew, see MacCallurn [3] ].

Let E denote the cl-ass of Einstein-Riemannían spaces admissible

fn spatial-ly honogeneous models (see below) and let gAB(5) denote the

components of the metríc tensor of an elemenÈ of E. I'tre Èhen have

a"'(g) = g*d*Ad*B = - dtz + vou(t)wcowß

I - ¿.' * uoß(t)w'.wÊ.d*id*j

(2.la)

(2.lb)

where I d"rroa"" evaluation ín a coordinate system in which the matter

in the models is aÈ rest (i.e. comoving coordÍnates) '

SpaÈial homogenelÈy is specified mathematically in that the

space-times (2.L) adrnit a three-parameter group of motions (isometries)

sÍrnply transitive on the spacel-ike hypersurf aces. [tlote that this

definition doesntt include the Göde1 uníverse, whích while being

homogeneous, rotating and shear-free, does not possess spatial surfaces

of homogeneíty. Also, if we weaken the above definition of homogeneity
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so Èhat space-time need only be 1-ocally invariant under a group of

lsometrles whose surfaces of transitf-vely are spaceltke surfaces, then

Ít can be shown [35] that the general group Gr will possess a subgroup

G, which satisfies the deflnltion of spatiaL homogeneity excepÈ in the

case of the Kantowskl-Sachs type I universes t25]']

By deflnition, the spaces E admít an isomeËry if there exists

a vector fíeld E such that

(A;B) Lre* = o (2.2)

where L- denotes the LÍe derivative along the vector field E t36]'
q

This is known as Klllingts equation and I is called a Killing vector.

Any Kil1-Íng vecËor fíeld generates isometries, and the set of all

Killing vecÈor fields forms a Lie algebra, whích is the Lie algebra of

the group of isometries. Physicall-y, thís corresponds to a transformatíon

that maps the metrí" 8A¡ at some point p on the spacelíke hypersurface

to the same metric at another poínt q on the hypersurface (1.e. it

preserves all length measurements). If we choose a basis {Er} for tne

group Gr, then Èhe Lie algebra ô, wíll be specified by the commutation

relations

E

k (2.3)=Ç ij tr

k satisfy the antisyrmeÈry condition
íj

IÈispossibletosystematicallylistallrealÈhree-

dimensíonal Líe a1-gebras whích are non-isomorphic t5]. For the three-

dimensional Lie algebras above, this was first done by Blanchi, and it

IEi,Ej]

where the structure constants C

and Jacobi identitíes.
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1s thls classlflcation that ls relevant to spatially homogeneous

models. The classifícatÍon examines the conunutators. These Èhemselves

form a LÍe algebra, whfch is a subalgebra of ô, called the derlved

algebra. Bianchits method T'ras Èo consider first the dirnensfon of the

deríved algebra and then to eriumerate all possibiliËies. Thls gave him

nlne inequivalent types of whích type I ls abelfan, and has zero-

dimensíonal Lie algebra, Èypes II and III have a l-dimenslonal Lie-

algebra, types IV, V, VI and VII are 2-dimensional and types VIII and

IX are 3-dimensional. Tlpes VI and VII, in fact, are one-parameter

famil-Íes of algebras, where cert,aj-n values of the parameters are

excluded because they yield types III and V ínstead. Bianchirs method

has been modified in recent years and the present method is as follows

t:+1.

Take any (posítive definite) scalar product on G, and suppose

íts components in the basis {Er} are gij. Then wriÈe

l_ itc
3k = e.r,3kn + 26itt"j l (2.4a)

This defines the vector a (on G) uníquely, since
J

a.
J

= L4c l- (2.4b)ji

and it defines ,ríj , rhi"h is synunetric, up t.o an overall scalar factor.

The Jacobi fdentity is equivalent to

iin "a.
J

-0 (2.s)
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The classíficatíon now gíves two broad classesi Class A

¡¡here "i = 0, and class t (at # 0), each divlded into several tyPes

according to the rank and slgnature of .rij. I^Ihen a, # 0, there 1s a

further invarianÈ h, which can be deflned by

nk
z:hc| (2.ø¡

this 1s the parameter required to subclassify types VI and VII.

By rotating the basís {Er} we can diagonaLLze the matri* ,ríj so

Ëhat a. = (0,0,a) rrrd rrij = diag(r1,t2,nr) and then by scallng the basís

rùe can set the non-zero entries tt trj to t1 or -1. In Ëypes IV and V

rüe can also scale a = 1. In general, h = rzlr-rn, so the scal-ing gives

" = /TñT. The resulting classifícation and canonical forms are shown

ín Table l-.

Table 1

Class A

^k
k5 

u 
t.l,

(1 + h)cijlck

B

Type

n"tk ,rij

a

t1

n2

t3

I II VI VII VIII

3

0

1_

1

-1

IX

I

1

1

1

0

0

V

0

1

0

0

0

IV III VL VII.hho o

012 3

0

I

1

1

2

0

I

I

0

t22
( -h)

2

L

h'z

1

1

0

llz

00

01
00

00

0

1 I

-1-l -1

0 00

The spatíal basis vectors ín (2.L), {x-}' can be found in
l_

several vrays. Essentíally, these all rnake use of the result that in

the case of a simply-transítíve group r¡ith a basís of infinitesímal
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Èransformatl-ons {€r}, one can find a set of three vector flelds {Xr}

spannlng the tangent space at every orbit such that [37],

Ixi, tj ] =Q (2.7)

Moreover, since rüe can choose arbttrarily both the iniÈial values of

{Er} ana {Xr}, we can ensure that aÈ one point we have Xi = - tt for a1-1

i. Hence, deffníng functlo.r" *t, by X, = *i.,E* (so that at the originJ ' J J'A

lrj = L1213

. .)LlJK

I l_
and defining D by

Thus that at the origin

utj )x j jk

klxi,x,l = D (2 .8)

(2.e)

, we fínd by substitutíon for X. ín (2.7) and (2.8) that

ix L
cm.^E

IJ¿ In
DIx ., x.

JKAj k

Hence, the algebraic structure of the Líe algebra of the {X. } at a Point

is the same as that of the algebra of lnfínítesimal transformations.

In addiríon, substitutíng Q.7) and (2.8) in the Jacobl identities for

{ti,Xj,\} shows that the DiSt are constants in the orbit.

Let us denote the duals of the {x. } by {ti}. Then to express

the metric in the form (2.1) we consíder Èhe dual seÈ of l-forms {wí}

defined by

l- L
c =f jkjk

j
a

\¡7
_A

açj =$ l_ (2 .10)
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These invaríant l-forms satisfy the curl relatlons

l_
dw =-r4C

'tk
., w" 

^$tJK
f

=Q

(2.11)

Since the hypersurfaces being consldered here adnÍt a simply transitive

group of motions, Ëhey are diffeomorphíc to Èhe grouP 1tself. Usíng the

basis of vector fields w-, so Èhat g = gijwli we flnd

sij

and so the s.. are constants. Also, since the group orbits are hyper-'u
surfaces, Lfe can prove that Èhe (unit) normals of these hypersurfaces

are geodesic. Then takíng Ë to be the affine parameter al-ong these

geodesfcs we obÈain, íf n 1s non-null

ds2=-ðt2+n..tioroj"aJ

where as r^7e have seen the gíj are constant \rithin each orbit.

For each Eype in Table 1, we can calculate the infínitesimal

generators E. ín a canonical basís {a. = A/ðx.} and hence obtain the

explicít forms of the three ínvariant l-forms dual to the [. (see for

example, [38]). For compleÈeness they are listed ín Appendlx A.

I^Ie now see Èhat the elemenÈs of E are metrics having the form

(2.1) and whích are solutíons of Eínsteín's fíeld equations

G R¡¡ äRgAB = TAB

te

AB

in whlch the matter tensor takes the form of a perfect fluid

(2.r2)
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T
AB

(p+p)unb*pgou (2.13)

Å

where uO, (tAt = -1) ls the velocíty vector and p and p are the density

and pressure respectively. I,Ie shall also assume the energy condltion

p+p)0 (2.L4)

The simplest spatially homogeneous models are the lsotropíc

Friedmann models whíle the simplest spatially homogeneous anisotropíc

models are the BÍanchí type I models.

52.3 Conformal S Times

LeÈ C denote the class of Einstein-Ríemannian spaces that are

conformal to the elemenÈs of E, and let â*C"*¡ denote the componenËs

of the meËric tensor of such spaces. I^le then have

(*G) = .2o(xc¡ gAB (*c)g

where

AB

a"'(g) = i*a*Aa*B = .2ods2 (g)

(9. r)

(s.z)

is the fundamental metric form on elements of C and o(*C) is the

conformal coefficient. I¡Ie assume that E and C have the same coordínaÈe

patches and coordínate functions [i.e. {dxA} j-n E are the same as

{a*A} in C, and the respective poínts of E and C have the same coordinates

with respect to the coordinate system tn whích tfre {dxA} are computed].

üle now wish to resÈrict our attention to those models, having

a metric tensor of the form (3. l) , which admit transformatíons that

map the metric tensor ** "a 
some poínt p on a spacelíke hypersurface to
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some tensor fAB aÈ another point q on the hypersurface, such that f

ís a multiple of the m .rr" iou at q i.e. î* = O(*c)â* ,or 
"o*.

scalar funcÈíon Q. Such a transformation is called a conformal motLon,

and scales up all length measurements but preserves angles lsee Yano,

t:011. If 0 is a constanÈ (0 * 1) then the motion is called a homothetic

motion and lf the transformaËion leaves the meÈric invaríant (0 = 1),

then it is an ísometry.

The diagram below, taken from Oliver and Davls t39] shows how

the various symmetries are related.

AB

F.\

Fig.1

M - Isometry Lrg* = 0

HM - Homothetic Motion LE*OU = 2ügAB ü = constant

S.C.M. - Specíal Conformal Motíon LETOU = 2ÛCAB VOV, = 0

CM - Conformal Motíon LETOU = 2'þgAB

AC - Affine Connectton LrtAra

CC - Curvature Collineation L

=0

RA =0
BCD

It is seen here Èhat mathematically a homothetic motion ís a special

case of a more general class of symmetries knor.¡n as curvature

collineations. Collinson and French [40] have shor^m that for non-flat
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vacuum space-times not of Petrov type N wíth hypersurface orÈhogonal

geodesic rays, the more general collineations reduce to a homotheÈlc

moÈion.

lrtrtren the desired transformation is infinitesímal ,

fA(*L,t) =*A*EAd.A' (3. 3)x

Ëhe condiÈíon for a conformal motíon becomes

(3.4)

The vector EA i" called a conformal Kí11ing vector (C.K.F.) and is said

Èo generate consometries. From (3.4) we fínd

L g=2þ

[Et* = 20BAn

r = la"r l*

G*

Þ

and so by elíminating Q we have the result

G* =0L-

1
^n^ooÞ Þ.AB (3.s)

Hence GOU is an invaríant geometric object under Ëhe group of conformal

transformations

Now the system (3.4) does not depend on the choice of coordinate

systems and so by choosing a coordinate system in a suitable neighbourhood

of a regular poínt of EA such that Ín this neighbourhood

1
^A
Ò

-A

then the inflnitesimal point transformation generates the transformation
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This can be fntegrated Èo gi.ve

BAB,1 - 20gA¡ =

;* = "*{f zqa*'}eos (*',. .*o) (r. o¡

Also, lre see that gAB can be rescaled Èo yield " BAB for whích

tA l" a Kil-l-ing vector. Conversely, íf EA ís a KiLling vector for some

8AB 
'

-0

2o

**,aEt * gRctc,g * BBcEc,¡

then for 
" 

gA.g conformal to 8*r AB BAB, t. regaín (3.4) with

=0 (3.7)

Generalizing thÍs resulÈ, we obËaín the resulÈ first Proven by Yano t361.

- In an n-dimensional- Riemannian or pseudo-Riemannian manifold

(ìAn,g), every r-dimensional Lie group Cr of local conformal

transformatíons that is simply transiÈive is conformally ísomeËric'

This means that íf a space-time admits a group Cr of conformal

motions with generators EAo {o = 1,...,r) acting on (ltn,g) [i.e. there

exist funcÈ{ons 0o on Mn such Èhat LEgAB = 20ogl¡], then one can

rescale B* such that Èhe resulting meËríc tensor , "2o 
gIúò, will admit

À

Èhe vect.ot" t^o as KiLll-ng vector fields and

eo
6

CEo ^¡U

L_
¿'o,

o-Q
c[

=0 (:.e)
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These resulÈs glve us the desired models mentioned at the

beginning of this sectíon [see also Defrise-Carter' t4f] ] . In sunmary

we have -

If a space-Èime admits a 3-parameter group of eonformal

mot,ions which acÈ simply-transitively on the spacellke hypersurface, Èhen

there exists a coordinate system with resPect to which the meÈrí" 8AB

of the space-time has Èhe rott l* = "2o(xc¡sor(*c)wheree*(*c) 
is the

metric of a space-Ëime which admíts a 3-parameter grouP of Killíng vectors

and so is an elemenÈ of E. Hence Èhe oríginal space-time is an elemenÈ

of C.

The significance of.this result 1s that Iùe can use the

classification scheme previously outlined in the last sectíon to classify

the conformal space-times. As we sha1l see, with certain specifications

on the conformal- factor o, r¡re can obtain a Bianchl-Behr classífícation

similar to that of the spatially homogeneous models'

To eludicaÈe this behaviour we look aÈ the structure of the

group of transformatíons more c1osely. The 3-parameter group of

conformal motions forms a continuous Lie grouP C, which acts on (Mr;)

and let G, (m ( 3) be the corresponding isometry grouP. If o = 0, then

the conformal- motions are trívial (0o = 0) and reduce to isometries and

G, = c3. However, if ca is non-Èrivial Gr. c3. The infinitesimal

generaÈors Eo of C, are vector fields on M and form a Lie algebt" ôr,

each EA €c¡ obeys

trâ* = z<þ,Eotâ* (3. e)

tcx tHere (Q,Eì = 0o is a scalar funcÈion depending on the choice of i.e
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(4,) is a línear functional on Cr. In particular' each E

Killíng vector field satisfying

LIEo,euJgAB ='tro,ttu'**

=L (2oueÆ)

ß
€ G

m
isa

LEBA¡ = o ß = 1,..m

Thus G = ¡s¡nsl($,)
m

and 0 can be interpreted as an element of the dual- space to the Lie
'cr

ateebra ôr. Hence m = 2 íf C3 is non-Èrivial- since G- is the subspace

orthogonal to the covector 0o corresponding to the non-trivial conformal

motion Eo i.e. (M,g) adnr-íts at most one lndependent' non-trivlal

conformal motion Isee Eardley, t18] for spatially homothetic case] '

Consíder now the commutator of 3
€cEo'E 

ß

E
teu (zoosor)

2(Lr-Lt o)ea¡- aöoôgs
'ß -cr

LlEo,Eulo

cl

o)ga¡+ 40uÖos*

AB

= * 2ttrro,6uro)Bar

= 2ooßBA¡ ooß

where we have used the result frorn (3'B) that Ôo = LEoo' Thus in general

the com¡nutator is an element of Cr' However' the commutator can be

= 2(L, Lc
tcr oß
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shor^n to be an isometrY i.e. o=0
C ß

This follows from the result that tf H is a normal Lie subgroup of

a Lie group G, then Èhe corresponding Lie algebras H and G sattsfy [84]

(3. I 1)

Now since (M,g) admits at most one independent' non-trivial conformal

motion and G, = Kernel ($,) (and is thus a normal subgroup of C3) '

then the commutatot [6cr,Eul where cl # ß takes the form of (3.11) and

so is a kílling vector i.e.

Hence we have the result

L
E l

HcH

^^^[C.,G,] c G.,
)LL

G

[8.,,8ß]o = cvouEro = o * cvouÖu = o

where the structure constarits correspond to one of the canonical forms

listed in section 2.

Using the decomposiÈion (2'4) this gives the restriction

(naß clYß
)0 =0 (3.12)+ae

Y B

using Lhe normaLLzeð,basis of section 2, with "o = "rô3o, 
or. can no17

use(3.12)torefineÈheclassifícationofTablelintermsofthesets

{roß,ro,$o} Èhat are non-equivalenÈ. *nder a change of basis {Eo}' This

classífication was first obÈained by Eardley tlB]' tr{e obtain four

classes

Class A

Class B

Class C

Class D

a =0

*o
=0

+o

=0

=0

+o

#o

0

0

0

a

ct û

ct

CI

0

a

a

cl

0
CI ct
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Obviously the thro classes A and B correspond to the spatially homogeneous

models of sectl-on 2 while classes C and D are generalizaÈions of the

previous Èwo classes respectlvely.

To fínd a canonical form for 0o'

it can be wrlÈten in the form

consíder equation (3.8) while

(3.13a)

Introducíng the dual invariant l-forms {wo} defined by (2.10) and (2.11),

we find that o ís defíned bY

do=0 CI\f
d

(3.13b)

Hence, the spatial derlvative of the conformal factor lies in the vector

space of left-ínvaríant l-forms on c, and it follows that o is

independent of t, Èhe grouP invaríanË scalar field which specifíes each

spacelike hypersurface s(t). Now, for a given type there will exísÈ a

non-trivial consomexry íf \¡re can find a linearly índependent combinatíon

ô wo Èhat Ís locally a total differential. By ínspection of the explicit
'c[

form of the w0 for the various types, as listed in Appendíx A, we fínd

that we can reduce 0o to the canonícal form

0o=06 3 (3. 14)
cl

where 0 = F(x3) for type r

and 0 = F(xr) for tYPes rr - vrr

r¿here F is any function of the índicated varlable. l{e see inrnediately

that for types VIII and IX, although a G, of ísometries exists, there

-A9o =$'c[
âoF
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does not exist a non tïivial conformal motion. The reason for this is

Lhat the existence of the spatial derívative of the conformal factor

in the vector space of left-invarlant. l-forms implíes thaÈ C, ís noÈ

semi-simple and hence Ëhe seml.-sLmple Blanchi types vIII and Ix does not

allow conformal exLenslons. To see thls more clearly' ÎIe have, putting

a = 0 in (3.12) the equation
cl

=Q

Hence, from (3.14) and the canonical basis for lloß we have t30 = 0 and

thus if we require o l! 0 then 13 = 0 and this excludes lyPes vIII and

IX. This is unfortunate as we do not have a generalízaËío¡ of the closed

Friedmann model (k = l), rshich is a special case of the Type IX models'

In Table 2 we now líst those ËyPes, together with the appropriate

canonícal forms, which are allowed in classes C and D.

Table 2

Class c

clß,no '(I.

D

type

t3

VI
o

0

1

-1

0

r (x1)

VII
o

0

1

I

0

r(xl)

VL
h

l-
(-h)-'

I

-1

0

-h¡'(xI)

VII.
h

h4

1

I

II

1

I

0

0

V

I

0

0

0

IV

a

n

0

1

0

0

I

0

0

0

0

1

n2

0

0

¡'(*1)r(x3) r(x})r(xr)

Note: tr,Ie have written 0 = F(*t)t for latter conveníence.

TyPe III = TYPe VI-t '

hF(xr)
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2,4 Remarks

It was stated aË the beginnÍng that the Weyl tensor is the

unÍque curvature invaríant under conformal changes ín the metric tensor.

Thus, from the group theoretic pofnt of view, the conformal motlons

preserve the conformal group structure of the homogeneous models whíle

dest.roying the meÈric motíons Èhat give rise to spatial homogeneiÈy.

This first point is demonstrated by the fact thaË physically the light

geometry of the conformal models l-s the same as Ëhat of the spatial-ly

homogeneous models. Null curves remain null curves because the square

of their tangent vector remains zero, í.e.

a 2o
9"

Also, it is the second poinÈ above that hopefully will afford us Èhe

freedom to model the actual agglomeratÍons of matter fn the forms of

galaxies and clusters of galaxies that are precluded by the assumptíons

of homogeneíty that underlie the standard models.

Thus, the conformally related models developed here may be

expected to preserve mosË of the agreement bet\^reen the predictíons of

the standard Ëheories and the cosmological observables as well as actíng

as an environment that allows for agglomerations of matter.

b
L^nb =0Babe+
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CHAPTER 3

LIE DERIVATIVE AND KINEMATICAL PROPERTIES

S 3. I lntroduction

In the last chapÈer we studled Èhe metrical structure and group

cl-assíficatíon of the conformal-ly related models. Here we shall study

some of the more salient physlcal properties of these sPace-times' tr{e

also introduce a t.etrad coordinate sysÈem which will be used ín

subsequent chaPters.

InthefirstsectionwelnvestigatetheLiederivativeof

certain geometrical objects which we use to describe the conformal

models and we obtafn the relations with Èhe corresponding homogeneous

quantiÈies. hlhile Èhese relaÈions are of a simple nature for homothetic

motíons, they are more complicated for Èhe conformal case. Also' while

we will be restricting our attention to those models which adnit a

perfecË-fluid energy-momentum tensor, it is seen that in general the

conformal- models will demand an energy-momentum tensor with anisotropic

stress terms.

I{e then investigaÈe the kinematícal structure of the fluid in

the models. In the ínvestigatíons of homogeneous anisotropic models'

filled r¡ith a perfect fluid, the relation bet\reen the 4-normal to the

hypersurfacess(t)andthe4_velocityofthefluidplaysanessential

role.IfEheyarecollinear'thentheworldlinesofmatterare

geodesíc, even in Ëhe case of non-zero Pressure. However, ir " an¿ "

are not collinear, then in general the 4-acceleration is not zero and

hydrodynamícal effects become apparent. Relations are obtained for Èhe

varíous kínematical quantítíes used in describing the fluid and it ís

Seenthatingeneralthefluidwillhavenon-zeroaccelerationand



31

vorticity.

To examlne the space-tLmes l-n accordance with the group

classiflcatlon a tetrad coordlnate system is lntroduced. Thls is again

used in the next chapter to investlgate the existence of perfecÈ fluid

solutions.

53.2 The Lie Derivative And Conformal Motions

In this sect.ion we wísh to list some Properties of the Líe

derivative and some resulÈs concerníng conformal moÈ1ons. Fírstl-Y, Èhe

following expressions for the Lie derívative with resPecË Eo a vector

field Ç of a scalar field A, a vector fíeld AA, and a 2-xar1k tensor

ffeld A* are used extensively t361.

LEo =[

In these formulas, partial derivatíves, A can be replaced by covaríant

derívatlves ;A throughout.

I,rIe now let the vector field f generate on the space-time a

l-parameÈer group of conformal transformations r,rhich satisfy the

relatíons

LE** - 20cAB o E¿,ln + Esln = 2Ô8an (2.1)

,B
,B'

_ oatu,atrot = AB,CEC

tE\. = \c,DED + \.Eo,n + \ngD,ç

0o = VoÖwhere o = o(*A) and (2.2)



't{e wlsh to f lnd ouÈ how the Riemann curvature tensot *OraO Èransforms.

To do this we will need to flnd the Líe derivatlve of both sides of the

Rlcci ldentity

CDXB
voi.trê (2.3)R
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(2.4a)

= tÇ.io -A

ec + i.vBiott - ootco.eu - vcvov.eB

.{vovB¡Et - io"tEu . * i.ttioe'Le

iovci.eB * Ç."Bvoec)Ec=(V.io"t

B

Consider the following expressions

vB)

ootrrttl = iolvBl.tt - vceu 
¡61

and

= (ioÇ.

on*Y¿,on - oBo{vcoa)

I - Le¡iovrl

l=V

+ Çotrr"tl - rrtiovBl

YB

and oelLE"u

C
= Y¡oA + voou - gAB(Y 0 ) (2.4b)

C

and combfníng the above tl^7o expressions we obtain

Çoltr"o"rl - tEtvo{vDvu)l

= Y.Y
A o"oouuoD+v - ôDovuvcoa - souYo"coc

and from this we obtain Í.or a mixed second order tensor TD
B

the result
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V tL TD
A E B

-m

t-, t iororl

oD+ fl c8¡¡o rcr{o.ooo)eos rD
c

A3

Let TD, = ir*o, an"r,

rrtÇoûrxDl = i¡trrirPt - or*ooo - ioftu

* {i.xD B¡.s * {Çrxc¡ 6.0)0c

Interchanging A and B and subtractlng

tE [ (vAoB iriol xDl = iotlrÇrxDl

LElzv Iri¡t xD

VBtrri

D

A

V
t Al

xc

+

oo * iahoo - io*oo, * ÇuxDqoirf

* 1Çu*c¡ô.uoo - (io*t)ö.uo,

I = 2;¡¡tt6;s1*Dl * zûtnxnloD

rrtÇu"ol = iutl."ol * 
"Don 

- *uoo * uou

* r*toirrqD * zootn;e10.

- ,o,o*oor1 + zoDto;r1*to.

trrzitl;s1xD1 = ,o¡o;ul ILExDI zP

(2.5)

Now, from (2.4) we have

(XC )
C

SubsÈituting this into (2.5) we obtain, after rearranging

0

B 0
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Now, from (2.3) we have

+

,i,oiul trEP I =iosAB I 
L,xc l

and subst.ltuting back into the prevlous exPresslon

L-l
q
io.**tl = iDce¡tlExcl * z*oo,oo'

+ zx¡ain loo - zoD,oir,o.xc

and expandíng the left-hand side we obtain the desired result

I rrnD.*lxc ,"oû¡oor1 * r"toirlóD - zoD¡lis1ó.xc

= ,"tuo.ûtlÖn1 * zxcg.reinloD - zxcootoÇu10.

trrnD.*r - z;ctrÇsr oD - zoDtrisro. + zoD.Ç¡oor1

Âo.*i.uSince we also find

(2.7)

(2 .8)DLE*a, = - 2v{c0n¡ - sarvoÖ

and also, sínce * = âtuiau we have

LE*=-20R-eva0 c (2.e)

By puttÍng Q = constant we obËain the results for a homothetic motion



35

LriD.* = o

LE*.o =Q (2. 10)

and L,R = - 2ôR
è

as obtained by Trlainwrlght and Yaremovícz 1421.

In the sÈudy of spatially homogeneous models where it is

assumed Ëhat the space-t.1me meÈric admits one or more Killíng vector

fields E Í.e. (0 = 0), which generate a group of isometries, it has

been shown that when the energy-momentum tensor has Èhe form of a

perfect fluid that t.he source quantíties are invarlant under the group'

ín Èhe sense that

L-
q
rA=0 LEr= 0 Lrl=0

where u^, p and p are respectively the fluid velocity vector, density
A'

and pressure. In this study we shall again assume that the energy-

momentrm associated wíth the conformal models is a perfecÈ fluid' as

this assumption appears essential for the physícal ínterpretations ín

the corresponding sÈandard models. Thus

TAB=(p+p)uar¡+pcAB (2 .1r)

and using the resul-Ès (2.8) and (2.9) v¡e can study the Lie derivatives

of the conformal source quanËities under the conformal group.

From (2.8), (2.9) and Einsteínrs field equatlons

L-T
Þ lcAB

2ocrlB) + 2cABo
c (2.L2)
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Now the perfect fl-uld T* ls so structured that 1t has a simpl-e

elgenvalue yíelding a timelike eígenvector (the vel-ocity vectot ,r) and

an eigenvecËor yieldÍng an elgenvalue of multfplícity three. Hence using

the relatlon

B ^B
uTAgt = - 0BAB

we ffnd

and

trì = - zþ; - zfþ(AlB) - l*ttlcl;A;B

t'io = oio * zG +nl-tto1.¡or'c"Dees + oqolr¡1"8

tri = - zþ; - åt*(AlB) - i*ttlclirs

(2.13a)

(2. 13b)

(2.13c)

where hAB=8¡¡+tnth

Thus we can see from these expressions that in general the geometríc

objects in the conformal spaces depend ín a complicated way upon the

conformal facÈor 0 and its derivative.

From equarions (2.7) - (2.10) and (2.I3) we have the followíng

conclusion. tr{e see that each physical geometric object Â ls invariant

under a group of Killing vectors (Ô = 0) and has a dímension q such

that under a homothetíc motion, À Èransforms like

LEn = q<0,8>^ (2.14a)

Thus a spatially homothetic field Â of dímension q is related to a

spatially homogeneous fíeld l\(t) by

i = "9on(t)
(2.L4b)



Sfnce the covariant metrlc has dimension 2, t'}:re dimension depends on

the positioning of the indfces t181. Fron (2.13) we thus have

-2o -2op=e p'(r) u (r)
A
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(2. r_s)

(2.L7 a)

p
Õ

=a p'(r) tA

C
cB

e

Note that 0f, pt and utO may depend upon Èhe homothíc constant Ô buË

will reduce Ëo the homogeneous quanÈittes of the models of Class E when

0 = 0. trIhen the space-time admits a more general group of confor¡nal

moÈíons, the relationship betwe.r, î' "od 
Ât (t) is more complicated, but

can be found by using the respective expressions for the geometric

objects and substituting Èhe relation

AB
= .20gA3( l(c) (2.L6)

I.Ie find

:AtBc

ùð

,.ituo - ruit.o + iccDiDBo - itooio.uRR¡

='";Ðtâou,. * 8Dc,B 8¡c

ADrAu.{s) + {o
A o+ ^Aò àBo-g

c 
ðro)

Dt

d
B C

= RAB(g) - 2VuVOo * 2âOoâuo - gA'{vavco + 2VaoVCo) (2.17b)

and contraction gives

i. = "-2otn(g) - 6v\oo - oâooäAo] (2.I7 c)

Ir can be shown, using the relations Lr(Vuðoo) = VB(Lraoo) and

Lr(ðoo) = ôA, Èhat the above equations are solutíons of equatíons (2.8)
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and (2.9).

From these equatlons, lrre note that a spatiall-y confornal fleld

i of dimensl-on q is related to another field lt'(*A) where

i = "9o¡'11ç4¡
(2.18)

This form wil-l be used ín Èhe rest of this chapter, where appropríate'

53.3 Enerqv -Momentum Tensor

[,Ie are now in a position to be able to study some of the

properties of the energy-momentum tensor ín relation to the conformaL

models. Trom Einsteints equations we have

(3. r)

ôO, i" the Einstein tensor. Substituting Í-n (2'L7 b'c) we have

i¿.u = t -2VAB

* B¡¡[zvcaao + ðcoâaol (3.2)

Assuming that the spatíally homogeneous models admit a perfecÈ fluid

energy-momentum tensor we have

(p + p)"eh - 2VOVuo * 2ôOoâuo

A'*TAB=nOu-%S

where

AB

AVgo * 2ðOoàUo

oàCo + pl

T
AB

+ g*[2VC ðao+â c (3.3)



However, tre see from Èhis equatlon that, in generaL, the terms VOVUO

and âOoâro rüill preclude the eigenval-ue and eÍgenvector structure of a
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will,perfect-fluld energy-momentrm tensor Isee last sectÍon]. Thus,

in general take the more general form

iou

T <ô*n>"o"r*iãor+ees (3. +¡

where â* "oo"ritute the components of a syrometríc tensor which

describes anisoÈropy [since âOU # 0 precludes the lsotropic 3-space of

eigenvecÈors of i*]. Conformally hornogeneous models thus, in general,

demand more general dynamícal processes Èhan those exhibited by a

perfect fl-uid [see next sectlon]. Only a restrícted class of conformal

models r¿í11 admlt a perfect fluid [see Chapter 4]. In these models we

require

- 2VOVro * 2ãOoâro = AuOuU 
"t- 

BBIB

Ir, (3. 4), irf. i t" ao be the elgenvalue corresponding to the

^^B
eígenvaluê u¡r we require qABt = 0 and lte can also normaLize u.

Under these conditlon" â "rra 
iO ""r, be identifíed with the toËal rest

energy and the velocity vector field of fluid elements of. C,

respectively.

Following Edelen and l{ilson [33] we wríte

;o =ÀuO* tA tA.ro = I (3. s)

where À and vA are to be determíned. V has been interpreted as the

dispersion vector of the conformal- models wíth respect to the

corresponding velocity vector field of the homogeneous mode1. In thís

vray 1re can make sense of the conformal models even though there are, in

AB
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general, no isotroplc comovLng coordfnate systems on eLernents of C

(see next section).

53.4 Kinematical Properties

The irnrnediate geometrícal objects defíned 1n a space-time in

which a spacel-1ke group C, of conformal- motions acts are the surfaces

in whích the group acts and deflnes, s(t) and the fluid fl-ow vectot iA,

The surfaces s (t) then deÈermine a unique-future direcÈed normal fleld

^D'^, Ct'\ - - 1) which, by definition, is rotation-free.

In the Í-nvestÍgations of homogeneous anísotropíc models f1lled

with a perfect fluíd, the rel-ation between Ëhe 4-norm"f iA and the

4-velocity u'^ plays an essential role. If Èhey are coll-1near, then the

world l-Ínes of the matter are geodesic, even Ín the case of non-zero

pressure. Howevex, .rf. iA "r¿ lA "t. not collinear, Ëhen 1n general Èhe

4-acceleration ís not zeto ar,d hydrodynamical effects become apparenË.

Mclntosh [43] has already shown Èhat, in general, homoËhetic models are

tilted and we can expect a similar result for conformal models.

Considering firstly the normal field i A , we find that unlike

the homogeneous models, it ís not geodesic. To see thís consíder a

famíly of conformal vector fíelds EA^. which are linearly independent at-c[

each point. Then we have

-^AèoÀn =0 cr = lr...r3

_^A_^Aeo^a,lnt + qoAt
*+ 0

B

Covariant differentiatlon w.r. t. B¡u is denoted by a bar 'l'
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Bn äto(rlrrioit * r*iolriB = oMulrlply by

and since

we have

+

Eo(el¡) = 20*BAB

.n
oA

. ^A^B
=-0oBABn"n-=0aE

A ^B
n aEA ActB

o

tolto
A

(4.1)

Now, sínce the normal congruence is rotation-free and thus satisfies

the condítlon

â o+

'¡e"n lc1

, then by standard theorems it can be shom lsee Ellis ín

is proporËional to a gradient f.e.

tlZ11 that no

w = 0 e f locally functfons [(*A), t(*A) no=-[È,A (4.2)

Since t is a vector normal to the surfaces {t = constant} thís ís the
,A

condltion that iO be orthogonal- to these surfaces. Thus the spaces

defined at each point by the spatial projection tensor i* = tOU * "O",

mesh togeËher ín thís case to form spacelíke surfaces {¡ = constant}

^A ,. I ^B ^\ ñr - rL^ t--- À

orthogonal to nå (i.e. hABr" = 0). Thus the functíon t(x") may be

thought of as a cosmological rtímet coordinate defined by Èhe normal

congruence. However, since these future-directed normal vector fields

are not geodesíc, the functlon t (*A) does not measure proper Ëíme along

the world lines. Thus the hypersurface normal-s are the tangent vector

fields of a non-geod.esic hypersurface orËhogonal congruence' A similar

result was noted bY EardleY tf8l.

=Q



42

Traditionally, Ehe problems of rel-aÈivistic cosmology are

aÈÈacked by choosing a coordinate system ín which all fundamental

parËicl-es are at rest. Thls result shows that the fact Èhat such a

coordinate system exists is by no means obvlous and is usually closely

related to the principle of homogeneÍty l44l'

The motlon of the cosmological fl-uid is described by a

congruence of timelike curves tangent to Ehe unit vector field

"Ot"OiO 
- - 11, where the fluid flow vector is uniquely defíned as Èhe

future dírected timelike eÍgenvector of the Riccí tensor' In general the

surf aces S (Ë) r^rill not be orthogonal to i. This Ís the case whenever

the vorticity of the fluid congruence is dífferent from zero' Íhus the

rest spaces H orthogonal ao i, defined by the projection operator

i* = S* * 
"O"u 

(;AB;B = 0), are in general tilted wíÈh respect Èo the

surfaces s(t). Note however that til-Ë does not necessarily imply non-

zero voT1icity. The geometry Ís displ-ayed in fig' 1'

un

5 \t

k

Rest SpaceH figl

LIGHT-CONE
PAST
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Following the noÈatfon of El1ls and King [35] we define the

relation beËween iA rrr¿ ,ro o,

(a) the hyperbolic angle of tllt p, where

COShg=-ufl
A

g>0

and the dlrection of tllt, speclfled either by

-1-J-

(4.3)

(4.4)

(4. s)

(4.6a)

(b) Èhe dj.rection kA of the projectíon or iA fn s(t)

FrJ = sinhßiA * i,oiA = o, -^-^

or by

(c) Èhe direction iA or åA perpendic.rl"r to iA

^A ^B A A*Bt = - sinhß0 =t
AU

9, 9. =1A

Then one has the relatlons

^A

9.
À

0

u = .o"hßiA + sinhßiA

iA="o"hß;A-síntrÊiA

I^Ihen ß t 0, i'A 
"r,¿ 

i,A are uniquely defined by (4.4), (4.5) and (4.6)

expresses the way in r¿hich ,rA f" tilted with respect Èo the surfaces

s(t) [see fig. 1].

I,rIe now wish to relate the varl-ous quantíties introduced above

to their respectíve counterparÈs which apply in the spatially

homogeneous models. I^Ie note that f rom the f orm of the conf ormal metríc

(4.2¡ thaÈ the normal vectors of the two models are related as follows;
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(4.8)

G.ro¡

are defined as before.

(4.10) we have the

(4.7)

Slnce in the spatially homogeneous models the normal ls geodesic and

rotat.ion-f ree, we have

onA=enA

tA=-trA

where t measures proper tíme. Comparing (4.7) and (4.8) with (-4.2) we

find

1' (xA¡ = to

^o+ e'trA G.9)

SÍmilarly, one can define a dírection kOr such Èhat

ke

and so l./e may wrfte

A = eo[coshßno + sinhßklt]

- 
"ouot

u

The correspondíng velocity vector in the spatially homogeneous

models can similarly be written as

uO=cosh0nO*sính0kO (4.11)

where the angle and direction of tilt, 0 and kO'

Solving for nO from (4.11) and substituting into

expression

A
u (#IA +'oGinhßko' - tanhocoshßko)
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and this has the form (3.5). l{e see that the dispersion vector is so

called sfnce it is the dlrection vector corresponding to the dífference

betr¿een the two dírections of tllt*.

I,Ie can nokr use the above relations Èo give a kinematical

description of Èhe fluid as seen by the local inertíal observer' one

r¿hose frame is Fermí ProPagated al-ong Èhe world l-ines of the matter' In

the usual decomposition,

(4.L2)ûolu = io, * â* *#Âo, - ûoiu

, where the acceleration üO, volume expansíon 0, shear tensor oAB' and

vorticíty tensor \¡rAB are def ined by

tA = tAlBt

^ABt = tolut
(4.1.3)

^c ^D 1:^oAB="cc[l¡tAnB-ftm

^C ^D
tAB = t[clo]* R* s

SubsËituting (4.10) into these expressions we have:

iolu = ioauo + eo[coshß(no1¡ + änßk¿,r) + sinhß(k'¿.ln + asßt6)J

(4.14)

where, using (2.I7a) r{e may write

*
In the homoÈheÈic case, a spatial homothetic field 0t of dÍnension q is

always related to a spatially homogeneous field by ô'= egoó. The

velocity vector ,,4 h"" q = - 1 and so uA has q = 1' Hence we obtaín

ß = ß(t).
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ctalu=ãrno-r Agoc

* ôcoa,

- nOâro - nrâOo

c C c
= âBtA lr UâOo - B*â

c

o*ô ol nc
A3

= oA;B - oAâBo - \âlo a eeBA otc

= 0AB - ior, * rAB - 
"¡.ano 

- nuâoo + B^gâco

=Q
AB

where we have enployed a símílar decomposition of tA;u "" used in (4.I2)'

where in Èhis case, the acceleration and vorticity are zexo' Note that

Íf the homogeneous models are non-tilted (i.e. 0 = 0 in c4.11)) then

oA = rA and 0* then becomes the expansion tensor of the fluid in Èhese

models. Agaln, as noted earlíer, the acceleraÈion and vortícity in the

non-tllted homogeneous models is zeto '

Sirnílarly, we have

utolu = o'o,u - kA'âBo - krrâoo + Eouacokat

iolu =.o[[A aBß + coshßConB - nuâoo) * sinhß(kta;B - ktgðAo * e*àcok'a)l

(4.15)

Hence

where
-oL

A

Subsrituring (4.15) in (4.13) we obtain e<pressions for the fluid

quantities in Eerms of the respective homogeneous quantities with

respect to the normal congruence, the angle of tilt and the conformal

factor. The acceleration is

9" e
A
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rio = coshß0A'aBßnB + srnngliaußk'B +

* coshßsirrhß (Omk' + tAk

âAo

+ aBo) (4.16)ntorutt

ott'râBo)

AaAß + ecoshß + sinhß(kA;A+ 3koâAo)l (+.rz)

B

+ stnh2ß(o'o,ru't + kr

B
uO * uOâUou + â.o

A

the expansion is

ô = "-o[¿'

= "-o(u(n) 
+ 3aoouA)

the vortíciÈy vecÈor iA = %nÆtoÇiora l_s

^A 2o ABCD ri' = rae-' n-- Lcosh9sinhß

2o A,=e t(n)

and while the expressíons for the expansíon,

are somewhat more comPlex, we have

^o
oAB = e o¡¡(h)

r5k'c;¡ + sính2ßk'nk'c,oJ

and tAB
oe we¡(h)

(4.18)

shear and roÈation tensors

rn these expressions, u (n) , t(t 
) , onnqrr¡ and w¡¡(h) ref er to Ëhe

correspondíng terms in the homogereous models which one regaíns by putting

o = 0 lsee E1lís and King [35J. Since the shear Èensor, vortícíËy vector

and. vorticity Censor in the conformal models differ from their homogeneous

eounterparts only by a multíplicative conformal factor, Èhey have the same

physical significance in both models. Further, unlÍke the standard models'

the acceleration and vorticity will be non-zero in Ëhese models '

Prom (4.18), the projection of I¡7
A

-^A^k^ro - -coshßn'ïO

Thus one sees that the vectot tA lies in the surface s(t) iff it ís

perpendicular to the tilt directíon" tA and ;4. To examine the behaviour

of particular group types it will be convenient to introduce

ISin Ehe direction of kA



the group classffícation of Chaptef 2. Thfs is achÍeved in the next

section where we write the above equatlons 1n terms of a tetrad basis.

Finally, consider the energy-momentum conservation equations

ilu,- = o for the perf ect f tuíd
l5

Èhese

4B

(4 .le)

(4.20a)

P

ilu lu = o and itoilt lu = o become

ttt (p + p)uOuu +
AB

g

and

Substituting in Èhe forms P

equations become

Ihe components uA

+ (p + p)0 = 0

åoui,u+d+nl"o'uiB=o

= 
"-2o 

o '(xA) ana ! = e-2op t GA)

,At
* p')ã = 2ptâAo;A

i,oiA

dpt
p'* P'

p
A+ (p

^B (4 .2ob)

From (4.20b) rüe see that for dust solutíons (i.e. pt = 0) the

acceleratior, {.rO)' i" ,".o. However, from (4.f ¡ we have C"Ol' = àAo

if g = 0 i.e. if the conformal model is non-tílted. Hence we have the

result that there are no non-tilted dust conformal models.

For homothetic tself-símilart models pt = p'(t) and pt = p'(t)

and so rnre may define the functions t34l

åoun' 
,B 

* (p' + p') c.ro)' = 2p"âB*A

t t dp'
p'+ p'toto

w(.t) = exp r(t) = exp (4.2r)



and substitutlng into equatlons (4.20) we have

^A

e-ocoshßd(Iogvr)/dt + e

2p'àAot
(p' + p')

zn'auoÂBo
sinhßd(1ogr) ldtt"o + (uO) (p' + p')

Substituting (4.16) into (4.22b) we have after contracting wíth kA

ouk\u = rffijJ i*å aooiA
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(4.22a)

(4.22b)

dlog(rsinhg)/dz + e (4.23)

The form of this equation shows that if ; = ;, then ß is eiÈher zeÍo ot

non-zero for all t i.e. a tilted model stays tilted. Hence, combining

rhis resulÈ with the result first proven by Mclntosh [43] Ëhat all

homorheríc models with perfect fluíds are títled if ; # i, we fínd

that in fact all homothetic models are either tí1ted or non-tíl-ted for

all t.

3.5 Tetrad Descri tion

so far, when components of tensors have been wrítten, it has

been wiËh respect to a coordinate basís. However, any set of linearly

independent vectors will do as a basis at each point and it is

conveníent to \4/rite the equations in terms of an orthonormal tetrad {ea}

134]. We denote the derivative of any function F in the basis vector
a^

d.írecÈions by â"F, so íf ""^ "t" the components of the vectors e, in a

loca1 coordinate system i^t = å^Aa^r. The inverse matríx will be'-t-'--" ,-ã a A

denoted tv â"ArSOe AE
t" = ôAu. Then, any tensor with coordinate

has tetrad components Ta"O"..U def ined bY

a

A
cornponents T

B

CD
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c...d A
+

The neÈrlc Èensor cørponents Bab are defined by

8ab
^^^AnB^tr'"b = "" 

tb 8AB

Tt"'b
''a B^b ^c ^D

.t Bt c..e d c..D

^ab ^ag =eA
^AB
o

Bõ

bc

v

bc

b

(5.1a)

(s .lb)

(s.3)

(s.4)

and e

The differential propertíes of

by the rotatíon coefficíents i"O" ot i"

the basis may be characterized

where

f "didbc
(s.2)

abc

Alternatively, one may consider the basís vector comnutators. Ìùe defíne

the commutation functíons ut'", v"b. bY

-B= "a tcA 
BEb

i"o" = Ê

cdo=;
^d
v

acb-fbc-l a. <+pcÞ aiaia

abc = ttâui." * ô"i"0 - â"i0. * u"b. * vcab - ub""l (s-s)

I e", eoJ
c

= v .gabc

bc

ca ab

and it follows that

^a
bc

and f

Taking the teÈrad componenÈs of the curvature tensor and

conÈractíng, one obtains the fíeld equatíons ín tetrad fom

_ic is .i" ic
db cs' db cb' sd-â icc

âu i""o iuo \rctd (s.6a)
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The identiÈies *"[o"u] = 0 are equfvalent to the Jacobi identitfes

tlo,tâ",àull * t:a,t!0,å"ll + tå",tàu,åoll = Q

<' ô¡u;tu"t * u"ruout.l" = o

u.. =u",(t) rc
ab ao

(s .6b)

(r) (s.7 )

Inasjmllarwayf/ecansetuPanorthonormalbasisofvectors

{e.} on Èhe homogeneous spaces. Equations (5.f¡ - (S.6) again hold for

thísbasis.Thehourogeneityofthesemodelsisexpressedbythe

restrictions t34l

TC= gab(Ë)Bab ab ab

The group of motíons which act in these models is classified by

considering the triad of vectors {e.*r} which span the surfaces of

homogeneíty s(t) at each point and which is invariant under this group'

rrom (5.3) we have [.o,.ß] ='ôoß"6 and as in Chapter 2 we decoutpose

6 oß
the v ínto a sYmmeÈric tensor n and a relative Èensor a.,;

clß

6 ^ô
Ò

ß"o
ôô

uôÊ^n'
ctþu

qßna
CI

=Q

(5 .8)voß

The Jacobi identities for the vectors {eq} give

cs.e)

and as before the solutíons of thís equation give the Bíanchi

classífícation of grouP types.

To complete the triads {eu} and {eu} to obtain a comPlete set

"ß0

of basis vectors we add the normal vectors makíng the nor'maI bases
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{; } = {i,. } and {e } = {n,e }. trltril-e for non-Ëilted models rhere isa -'u a u

no other conpelling choÍce, tl/Ío alternatives are more elosely relat.ed to

the fluid propérties. However the tilted basÍs {å^} = {i,.-} is notact
orthogonal and the fluid basis {å"} = {i,ão}, where the vecror {ã^} are

cl

orthogonal to u, does not span the surfaces s(t). The normal bases are

those most closely relaÈed to the syrnmetry proper.ties of the space-tíme.

As we have restricted the bases to be orthonormAl lt follows that the

metric couponents have Ëhe form

(s . ro)

To establish the relationshíp between the two seÈs of tetrad

components we note that

Bab = díag(-l,1-,1,1) and Bab = diag(-l,1,1,1)

2oa b
e Þoo- A- Bõab

From this, ít follows directly Èhat

u"rb = .-o[u""b(t) + ôc"aoo - ôcoa"o]

AD¿6
o=ÞÞo=êooAB - A- BÞab - oAB

+ ^a oaaA=."A

{n,e } where
ct

(s.11)

(s.12)

(5.13) land IA -oe [r"b. (r) + ôaoa"o - %.â"o]

i

bc

A1so, the choice of normaLízed basis {e

O, and the decomposít,ion

a

ô
AA

1.t";b = îhru * o"b * t"b - t"%

n

(s .14)



irnplles o n
oct cl

CIv=-0oct 0

Û

uoß=t

with respect to a set of Fermi-propaged axes.

follows that

T
o

=Q
oß ßo ßo

IC =rl fo
Êa = eaßôo +e

crßoo
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(no sum)

ô (s.15)

a

of the triad {eo}

Then from (5.6) it

oB =Q

ô

v

o

û) +e

0Ê
2toß6'

cl -6voß=-toßôf¿
aß o, ß6'eo

ôôoßutuô + ôôuao -

rß=$ß
TOn

ô

ßCT

where n" = %n"b"uroå".eu Bives the angular velocity,

T
ß

B ôß

oô
ß f ß = - ,Ê ^rôoc ctÔ

r e (s.16)

(5.17a)

clo ct

CT =-2a =Q
clÊ ß ßa

We can nor¿ write out the kinematical quantities of the conformal fluíd

in t.erms of the above Èetrad quantities. For example, the componenËs

of the vorticity vecLor (4.18) l-n the normal frame are

'ouo 
= %['ßout + 2nv(otoß)v - 2ôouao + zgouaoJ

= ,42Ú sinh2 ßkt on' UroU

r lcr

o
I{

cl
I¡7 4e2o tan.nß(rroßk' u 

* roßôk' 
ß"ô 

* sinh2ßk'ak' 
urrßôt' u) (5.17b)
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From the Jacobl- identfty roß tU - 0, 1t can be seen thaL 1f the t1lt

vector kr^. is parallel to âo, then the vorticlty vector is zero' It
ct

also follows from the Èime preservation of the Jacobl identlty that if

Ëhe above ls true at any Èlme, Ehe same is true at al-l tlmes' Thus *t

fs either zero ot non-zero at all times (i.e. iË is an invarlant relatlon

quanrlry [35] ).

I^Ihen ,roß - 0, the vorticity vector becomes

d
I¡I

and so Type I models have zero vorticity. similarly, Type V models have

non-zero vorticlty unless kto is parallel to ^ß; then to and kto

are orthogonal. Further, the vanishíng of vorticíty ín other class C models

(1.e. Types 1II, fVIo, and fVIIO) corresponds to the vaníshíng of

,roßkt^ and from (5.17b) \.fe see that ín these cases kot cannot be

n.tn"lur.u1ar to t" since uo'to = %sinhßcoshßk'ont'toB + o'

The above corEnenËs hold for all conformal extensÍons of homogeneous

updels (Mrg). Howevet, íf one restricts oneself to homotheÈíc extensions then

â 6 is a constant b Ifi these cases much of the above still holds ' as
cr, 0

work recently published by Chao [At] demonstrates. However, in an attempt to

consÍder whether any símple conformal extensions actually exist, we must solve

Einsteínrs fÍeld equatlons. These field equations, using the above tetrad have

been written out ín APPendíx B.

'¿"2o t^r,hg € oßôkt 
U"o
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CHAPTER 4

PERFECT FLUID CONFORMAL MODELS

S4.l lntroduction

In thts chapter we shall investigate the exÍstence of perfect

f1uÍd solutions of class C whích are conformal to homogeneous perfecÈ

fluíd soluÈions of class E. To do thls we shall use the tetrad form of

Einsteints fíeld equations derlved in the last chapter for conforrnally

homogeneous models.

In the fírst secÈíon we consider the form of the metric and for

later ease in calculations we restrict ourselves to diagonal models.

NexÈ we consider the form and nature of the governíng Einstein equations

fn both a coordinate and tetrad frame. To aíd in solving these

equations vre at fírst restrict ourselves to consideríng those models

which are conf ormal extensions of non-tilted homogeneous models ' I'le

then consider conformal exÈensions which are non-tilted' To illustrate

the form of the fluid quantities in these models, Bianchi type I

models are examined using knovm general solutions '

For homothetic models we again establish the resulÈ first found

by Mclntosh that non-tilted homothetíc model-s only admit a hard equation

of state (i.e. P = P).

S4.2 The Metric

As we have seen, the metríc for spatially hornogeneous models

has the form

ds2 =-dcz *v,,(t)"ierj (2.1)
1J
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where the three lnvarÍant. l-forms have the following structure lsee

Appendix Al

rr = (sx3 + rx2)dxl + dx2 = Adxr + dx2

*t = (r*3 + qx2)dxl + dx3 = Bdxr * dx3

w3=-dxI

qrhere we have puË

¡ = (sx3 + rx2) 3 = (rx3 + q*')

,except for Bianchi Type I where rí = d*i. The values of the constants

s, r, and q for each tyPe are gfven fn Table 3.

In the coordlnate base {dt,dxi} \üe can rewriÈe the metric (2.1)

in the form

ds2=-dt2+ srJ d*faxj

r¡here Bl1 = ullAt + 2ttrr\ß * r33 - 2vrrA t vrrr2 - 2vrrB

8L2=u114*'r-28-u13

8r3=u124+uzzB-uz3

822 = 'LL 823 = uLz 833 = ,22

In the following we shall restríct ourselves to dlagonal

metrfcs where

u12=u23=u13=o (2.2)



TABLE 3

s r q

Ez3=o
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I^Ie then have

TYPE

II

812 = u11A

EL3 = 'zzB

VI
o

VII
o

v

IV

vr-
h

VII.
h

III = VI
-1

B1l-=u114'*vrrB2 *v33 Ezz = \rL

0

1

-1

0

0

1

-1

1

833 = u2z

The conformally homogeneous metrics thus have the form

d.s2 = "'ol.- dt2 + (vtrA + vrrB2 + vrr)(ax1)2 + 2vrrAdxrdx2

i 2vrrldxrd*3 + vrr(dx2)' * vzz(a*3)'l

1

1

1

0

1

1

1

I

-l_

-1

-a

-a

-1

0

0

0

where from (2.3.13) and (2.3.14) we have the conformal coeffícíent

(2.3)
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u-- {dxt for Bianchí types II - VII and o = gdx3 for Blanchí

type I.

54.3 The Governinq Equations

In t,he next secÈion we shal1 investígate the existence of

perfect fl-uid solutions of class C [1.e. having the metric form (2'3)]

which are conformal to homogeneous perfect fluid solutions of class E'

To do this we shall use the tetrad form of Einsteinrs field equations

introduced in the last chapter. However, we first consider the form of

these equaÈions ín a coordinat.e frame and the tetrad frame.

i) Coordinate Frame

t{eobtainthegoverningequationsbyelírnÍnatíngT*between

equarions (3.3.3) and (3.3.4) and subsÈÍtuting in (3.3.5), putting

9AB = 0. This gives the equation

Cô + i¡"4oll',ro5 * rAtB * l(uovu + uuvo) J *pe 2o
8¡,s

= (p * p)rlr¡ - 2Vovuo * 2âooäuo * BA¡(zgÆvovuo + BABaooðuo + p)

(3. 1)

Note that the metric tensor gAn i" assumed to be known from the

homogeneous models and hence its ten independent components are not to

be counted as unknown varíables in the above system. The same holds

for the source quantities P and P.

Multiplícation of (3.r¡ by ,rArrB and sunrning gives,



ì="-'or+v21p+p¡ (2VOVro f âOoãro)-2o AB-e g
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(3.2¡

(3. 3)

.r\BIzvovro - 2âooäuoJ

where V2 = gÆ.rO.r'. Also, multiplícation of (3.1) Uy gÆ and sumrnJ-ng

gives,

AB o)(3p - p)e =(3p-p)+69 (VOVro * âOoâ
B

for which, using (3.2¡, we obtaÍn

3ì = s"-2op + v' (p + p) * 
"-'o[4vovro 

* aooaro]gAB

,rArru l2vovuo - 2âooâuoJ

2o

(3.4)

The above system of equations gives the relat.ions between Èhe

salient physical quantítles of the conformally homogeneous models, the

conformal coefficíent and íts derivatives and the known quantíties of

the corresponding homogeneous models. trIe can hence solve these

equations to find the unknor^rns p, p and {vO}. This will involve

solvíng the constraint equations (3.1) ín conjunctíon with the full

system of homogeneous fíeld equations. Since Èhese equatíons are of

second order in a coordínat.e frame, ít is easíer to work with an

orthonormal frame where the different.ial equatíons are of first order

only. However, in this latter frame, the time evolution of any

constraint equation needs to be found to ensure consístency. This

procedure wí11 give rise to further constraínt equations which must

themselves be conserved in tíme gíving rise to yet more constraints.

Either these sets of constraints wíll lead to lnconsisÈencies or there
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wi1l be a stage when the ne\./ constraints found are merely identities by

vÍrtue of the previous equations and we have a consistenÈ solution'

The solurlon of the coordinate system of equations (3.f) - (3.3)

ÈogeÈher with the homogeneous field equations 1n coordinaÈe form ls

outllned for the interested reader ln Appendix C.

ií) }rthonowhaL Frøne

The constructíon of Einsteinrs field equations in an orÈhonormal

frame has been outlíned in Appendfx B. For a tilted conformal model it

was found that the field equatíons reduced Èo the fol-lowing system of

equations;

- ð - o ^00ß + a àdo + 2à oâdo - Za.ðao- -ctß- cr 0' cl

= 4p' (1 + 2sinh2ß) + 1r, * þron'e¡p'

!oß
u

* uooß + zo'qoro)ôun6 *,ro(oru)ô - 2ru6(oruß)"ô -.r'ou - 2äuãooðoooß

- ,oßônôuðuo - ZaoðUo * 2âooãUo * 2ruô(otp¡uâôo

*\ (n2 - 2rruv'' 3" crß 
t^^ -^uv

0 3oB"^+.%a o+2oB
ctÞ J 0

â^ocrþ

(p' * p')sínhScoshßki

-2âvoâo+2ãvâuo * 2auãvo)

(3.5a)

(3.5b)

toßôt

v

åo"u)(p' * p')sinh2ß(kåkå (3. sc)
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-2aaão-à0oão+4aâ0o
ct 0 ct

= cosh2ßpt * sinh2gpt (3.sd)

where Èhe varÍous terms refer to the homogeneous quantltles describing

the normal congruence (and hence the fluid quantities 1n a non-Èilted

homogeneous model), the angle and directfon of tilt and the conformal

factor and iÈs derívaËives.

Since these models are conformal to homogeneous models, the

various homogeneous Ëerlts will thus satisfy the field equations for a

homogeneous model. If the Èilt in these homogeneous models fs described

by equation (3.4.11-), then the corresponding fiel-d equatlons are [35] '

2 2

Í (1 + f inh2e) = 0 (3.6a)

= (p + p)stnhOcoshOk
ct

(3.6b)

þ'- 4o2 - 3aoao +\(4n2 - r,oßrou)

aoo + þ' * ooßooß + kpT + 2sinh2e) +

ð0ooß * uooß + 2ov(or9)uunu - rruu(orß)'"f + rrouruß

- n2)

(p + p)sinh2o(k'kß - þru)

Vtoßrtß

ßoo-3a uß'Õ
u

-nn

þ'-'¿o'- 3aoad +4(¿rr2 aß

qß
_ 

þClu12nuvnu.,

-n toß)

(3.6c)

= pcosh20 + psinh20 (3.6d)
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Substitutlng these equatÍons into the set (3.5) we obt,ain the followlng

constraints.

ã aao + 2â oâ0o - 2a àuo
ct u (l

=rz(p' - p) + (p' * p')sin2g - (p + p)slnh2o

(3 ' za¡

2eß d o = (p ip)sínhOcoshOk (p' + pr)sinhPcoshßkj (3.7b)
CI B (l

*tr$' - p)

- 2à-â o - , - ,ruuâ o - 2a â^o * 2ð oð^
6Cl clÉU v 0þ c þ

* 2ruu(otß¡uauo * þog(2auãvo + 2âvauo - 2âvoàuo)

(p' + p')sính2ß(kåkå
oß)

(p + p)sinh2e(k'kß þ"u)
(3.7c)

4a ðoo - 2aoa o - âaoâ o = Qtcosh2ß - pcosh'o + ptsinh2p - psính2OcIctcx
(:. za¡

To write out these equations in detail rile use the basis {e

in Appendix B such Èhat

Ì introduced

ao = (0,0,a) toß = diag(nr,n2,n3) (3.8)

o

u

Using this basis, and the resulËs from Appendíx D that



(3. 9a)

âßâoo = âfôtoot' âf = - urr-lar{*t) (3. eb)

(3. 10)

20tSf = (p + p)sinh0coshOk, - (p' + p')sínhpcoshpkf (3. 11a)

2023f = (p + p)sính0coshOk, - (p' * p' )sinhßcoshßkj (3. 11b)

2e 33f = (p * p)sinhOcoshOk, - (p' * p' )sínhßcoshßkå (3. l-lc)

2ar*.2àr. - 2f2 = 3(p'rp')sinh2ß(ni'-l-) - 3(p +p)si.nh2e(kf lt

(3.12a)

(nz n, - nr)f = (p' + p')sinh2ßkiki (p + p)sinh2uktkz (3.12b)

O = (p'*p')sinh2ßkikå (p + p)sinh2okrk3 (3.L2c)

2af *2àf - 2f.2 = 3(p'+p')sinh2ß]o^;2 þ - 3(p +p)sinrr2o(t<! I
3

o = (p'+p')sính2ßkåkå

(3. 12d)

(3. 13e)

â o = fô30c , = ,rrhr(xr)
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1
3

,except for Bíanchi type I where âf = vr, lâf 
"rrd 

F = F(*3), then

equatÍons (3.7) can be wrltten in the form,

àf + zf.2 - 2af = 4G' - p) * frn' - p) * (p, + p,)sính2ß - (p * p)sinh2o

)

(p + p)sinh2ekrk,

)
4f-2 - 4ar - 4àf = 3(p' + p')sính2ßGå'z - þ - 3(p + p)sinh2o(kf

(3.r2f)
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4af - 2ðf. - f2 = p'cosh2ß + p'sinh2B - pcosh2o - psinh2O (3'13)

I{e can now solve Èhe above constralnt equatlons and use the

conditions thus found ln solving the system of homogeneous fteld

equations for allowable models.

54.4 Conformal Extensions

i) Non-tilted homogeneous models (0 = 0, ko = 0): !'le consider

first conformal extensíons from non-tilted homogeneous models ' From

(3.tza) and (3.12d) we have

2af.t2èf -2f.2 =3(P' * p')sinh'eCr.1' - þ

2af*2ðf.-2f.2=3(p' r p')sinh2ß(kå'z - \

+ ki k;

Then (3.LZc) and (3.12e) give the equaËion

0 = (p'+p')sính2ßkikå

Now, if kj = 0, then from (3.11c) we have, since f # 0' u, = O' Hence

using equation (3.4.f5) one can show that 0l = 0' However' sínce

observation shows that the universe is expanding, we discard thís result

as being unrealistic. Therefore we have kl = 0 and the result

ki k; kå I0 (4.1)
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Thus, the conformal models will always be tllted 1f the homogeneous

model is not. I,le see lmmedlaÈely fron (3.11a) and (3.11b) that

o13=oz3=o (4.2)

and from (¡.fZU) that

(n t1 nr)f = 0 (4.3)
2

Since o3 = 0 for al-l conformal models, we have the result that tl = t2

and hence the only allowable BianchÍ types are tyPes I' V and VII.

Also, Ellis and MacCalhun [34] have shown that a non-t,1lted homogeneous

modelofclassBhasol='2onanopennelghbourhoodifftherel-sa

group of Type v. Hence, for class B models we need only consíder Tlpe

V models.

Using these results (3.12a), (3.12d) and (3.Lzf) give

2af * zðf - Zf2 = - (p' * p')slnh2ß (4.4)

Substituting thís into (3.13) \ùe obtaín

p' = p + 3f.(2a - f.) (4. sa)

and then (3.L0) gives

p'=p-f(2a-f.)+2àf. (4. sb)

Noting the values for f glven by equations (3.9), Èhese equatlons are

ldentícal Èo those obtained by the coordinate method in Appendix C.



Finally equaÈÍon (3.11c) becomes the constraint equatlon

2e f=-(pt+pr)sinhßcoshß
3

* p') from (4.5) and sinh2ß fron
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(4.6)

(3.9) and noting

found in Appendix

(4.7 a)

Squaring, and substÍÈutÍng for (P t

(4.4), we obÈain

(f2 - af - ãf)(p + p + Zaf)

Again, by subsÈltutlng in for Ëhe values of f given in

the additional coordinate Èransformatíon " = - u33 -t4t

D, then (4.6) can be written in the coordinate form:

(r2 + rF + âF)(p + p - 2v -1

zo1r.2

z02F2
3

rF)
33

for Bianchi types II - VII, and

(F2 ãF) (p + p) (4.7b)

for BÍanchi type I (r = 0).

I¡Ie are now in Èhe positlon of using the above results in

conjunction r¿íth Èhe homogeneous field equations (3.6) in obtaining the

propertfes of those homogeneous solutíons allowing a conformal extension.

I^le have seen that we need restrict our attention Èo Bianchi types I'

VII' and V only. It has been shor'rn thaÈ for such models [34] that

there exísLs an orthonormal tetrad such that

,u'{'

ç¿ =0
cl

ooß=0(o#ß) (4 . Ba)



and 0oB = dlag(0r,02,03)

Substltuting (4.8) into the system of homogeneous equatlons (8.14) of

Appendix B leaves

ðOat0ra=O (4'9)

âOo1*(eZ+or-or)nl=0 (4.10a)

ð0o2 * (0f * 0, - or)n|= O (4. rob)

3+ ko+ T =Q
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(4.8b)

(4.11)

(4.L2)

(4. 13a)

(4.13b)

(4.13c)

2 2 2

0
â 0+e

1
+ e +e

3

a(20
3

ot e ) =0
2

â e =-00 1
+2a2+L(p-p)

0 1

a 0 = - 00 +2a2+L(p-p)
2 2

àoo¡ =-00 +2a2+ä(p-P)
3

2

0

In solving these equatlons we shall consider Class B models fírsË (í'e'

type V). trIe shall then consider the simpler Class A models'

iÍ) rype v Models (a * 0 or r * 0). Take the tíme derivatfve of

the conformal constrafnt (4.7a), first noting thaÈ from (4.9)

ã0" = - ãO(v*
3-2.

33 u33t = --4t) = r4t -1 .Lvrr-vrra=-ora

o3= 2u¡30 
3

i33+
'-5r)33

-1.v
33

and (4.L4)



Also, writfng the equation of state in the form p = vp and usfng

equatl_on (3.4.19a), whlch 1n the homogeneous case becomes

ðOp=-(1+v)ep

we obtaln the resulÈ

- +ozuov2 + 8r2erF2v*-1 (1 - v)pF2
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(4 .15)

= (F2 * rF * aF)t- (1 + v)'ep + 4vrr-lertrl

substituring 1n the original constralnt (4.7a), we obtain

+e'zro + 2e3(r - v)pl + Se3rvrr-lrlr

= p(l + v) [8r203u33 
1 

4e2re + 2e3(1 - v)p + 2o3e(L + v)]

Inspection of this equation shows that it has Èhe followlng forn

A(t)F(x) = B(t)

Thus, Èhis equation can be consistent only ff F(x) = constant unless

A(t) = B(È) = 0, ín which case F(x) is arbitrary'

ii-a) T(x) t consÈant - Conformal. In thls case we have

8t'o rvrr-l 4u\u

-1^-1{rugg 'r[8r'03u33

+2a
3

+20 (1-v)p+40
3 ;= 0

Br2orvrr-t - ru,and 4r; (1 -v)p - 2e32e(1 lv)=g

(4 .16)



Addfng these equations we obtain

40 3

3 = 2e3e(1 + v)

and sLnce we requlre 0, to be non-zero (otherwlse 0t = 0), we have

2e = 0(1 + v)
3

Also, from (4.12) we have since a # 0

+ 0=30
3

Substltuting thfs into (4.17) gíves

1

zo2rr2 = (F2 * rF * aF) (20å 2r u33
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(4.17)

(4 . L8a)

(4.18b)

-1 -1.r) (4.20)

el+e2213

(1 +v) =t v =--
3

I{e thus have an unphysical equation of state for the homogeneous models'

where from (4.16) we have

p=3eå-3.'vrr-1 (4. le)

I,ile now consider the equaÈion of sÈate Ln the conformal model'

Subsrirutíne (4.18) and (4.1,9) ínto the constraint equatlon (4'7a) we

have

-2v33

and since F(x) f constant, this equation ls conslstent only 1f

-t<0, = ßvrr-ã r¡here ß € IR. In this case' (4'20) becomes

2
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(4.2L)

(4.22)

(4.23)

g'E' (rt + rF + àF) (ß' - 12 - rF)

1Also, from (4.5) and sincep=-Ít. have the resulÈ

pt = -
1
5e -2v -1'a¡'

33

Hence, this is an unrealistic fl-uíd since lt wilL be impossfble to

satisfy the condftíons pt > o and pt )' 0 for al-L space-time poÍnts'

Thus, we conclude that there are no Class B homogeneous models admittíng

a conformal- extension which has a real-istlc perfect fluid' I{e now

consider the other alternative where F(x) = constant'

fi-b) F(x) = constant: Ilomothetic. Here the constraint (4.7a)

reduces to

and the Ëime derivative gives, using (4.L7)

(F + r)(p + p - 2vrr-lrl')

(F + r) t3(1 + v)2p - 4urr-lrrJ

2o2E =
3

-1
L2 råu - 8r2Fv - 2(I - v)PF =

33

Elírninatitg 03 by substituting in (4.23) gives

8rF(F + 2r)vÏ -1 (1 - v) [F + 3vF * 3r * 3vr]P (4.24)

If p # 0, this constraint will be satisfíed if F = - 2t arld v = 1 or

u = *. rf, however, none of these conditíons hold, then tlme evolution
5

of (4.24) l-eads ro the condítl-on v = - { "r,a 
from (4.22) we have

5
1

p' = - þ' and we have an unrealistic equation of state. Thus we

consider the case rrhere F = - 2x.



SubstLtuttng thls condltion lnto the homothetic constralnt

(4.23) glves

4u3 = (l + v)p + 4vrr-1r2 = (1 + v)p + 4a2 (4-25)

Also, since 0 = 30, and usf-ng equaÈlons (4.11) and (4.13) we have

ozo 
z =3a2+p

and since (01 + 02) = 203, and usfng (4-25) we obtain

otoz = a2 + L(l - v)p

e1e3 +01e2 +

7L

(4.26)

1
lJe now conslder the two cases v = 1¡ v = separately.

3

Case I:

and

Cu = þ. Here (4.25) and (4.26) becorre

þ=,å- a2

þ = tru, -a2

Subtracting rüe obtain 0f = 0r0, and together with (4.18) we have the

result 01 = 0Z = 03. Al1 constraint equations are satisfied and we thus

have Ëhe isotroPíc Frfedmann model of type V.

Case II: (v = 1). Here (4.25) and (4.26) become

P=2e 2

3

az = ouo,and

¿a



72

BoËh Ëhese equations are conslstent erlEh the remaining homogeneous

field equations and thus represent a solution. Note t.hat in generaL

these models w1ll- be non-isotroplc; oÈher¡¡íse 0 = 0.

Now, gl-ven the condition p = - 2r, which is equivalenË to

f = 2a, we have from equaËions (4.5)

pr =p and pt =p

Hence, the denslty and pressure in the conformal model-s ís given by the

expressions

^ _2o _2o
p = e p and p = e -"P (4.27)

tl
where o=- | Fd*t =2r I ¿*t =2txL. However, referrlngtoTable4.l,

))
for type V model-s r = -1 and so, although the density and pressure

saÈisfy Ëhe requirements of always being posltive, they become

unbounded as x1 approaches infinity. This would seem to be unreal-istic,

however, in an open universe.

a # 0.

type I.

The above theory holds for Class B (type V) rnodels where

hle shall nexÈ consíder Class A models: ín particular Bianchi

iii) BianchÍ Type I models: Equation (4.7b) gave the conformal

constraint applJ-cable for type I models:

zo2rv2 = (F2 - ãF) (p + p)

or 2Q2f
3

(r' - âF) (1 + v)p (4.28)
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where p = vp. Thts equation has some fnunedLate consequences. Slnce

p and 0, are homogeneous functlons of t, whlle F Ls a funcÈ1on of x3, we

have Èhat

I - AF F '= "oo"Èant = ß2 (4.2e)

Note thaÈ since (1 + v)p and 0r2 are positlve (p ) 0), so is the

constant ß2. Rearranging (4 .29) we obtain

ß2 - 1)F2 + ðF = o

If S2 = 1, then âI = 0 and F = constanÈ. This corresponds to the

homothet,ic case. Hence, for conformal models we require g2 * t.

As an exanple of a solutíon of the dlfferentlal equation (4.30)

considerF=cx3n. Substltution gfves theresultn=-1, c = (82 -1)-1.

Hence a soluÈion of (4.30) is

g2 #t

(4.30)

(4.31)

(4.22)

(4. 33)

g2 +l

and from this we have

o(x ) Fdx
3 3

Now, substltuting (4.29) back inÈo (4.28) we have

,r'3 ß2(t + v)p

As ín the previous case, we take the time evolution of this equatíon

which glves
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(L - v)0 0=(1_v)p (4.34)
3

If v # 1, we obtain Èhe condftion

p=o3o (4.35)

SubstltuÈing this fnto (4.33) we obtaln

2e = B2(1 + v)o (4.36)
3

whích gives B2(t + v) = J nnor, Èaking Èhe tlme derivatlve. Substitutfng

Èhis result back ín (4.36) gives 0 = 30r. From (4.35) we have p = 3eå

and from the homogeneous field equations we obtain the condltion

01 = 02 = 03. Hence, the homogeneous models with v # 1 must be isotroplc.

trIhen v = l, the conformal constraÍnt (4.33) becomes 0! = Bzp

and from (4.34) \üe saw Èhat its time evoluÈion was fmmediaËely saÈisfied.

Thus, Èhere are no constraints on the homogeneous models as Èhe above

equation defines the value of p for each case. For example, if one

consíders an ísotropíc homogeneous model then from the fÍeld equatlons

we obtain the condl-tion p = 3u3. Comparing this wlth Èhe above

condirion we find U' = å.

Finally, when 92 = L, we again reduce to the homothetic case

and Èhe conforrnal constraint reduces to

,r3 (1 + v)p

Comparing this with equatíon (4.36) and Èhe condlÈíon obtained from its

time evolutlon, vre see that if v + 1, we have the resula u = - å. Using

equaÈfons (4.5) then gíves



p

p =p-3v33

and hence the equatLon of state for the honothetLc nodels 1s unreal-fstic.

54.5 Bianchi - Tvpe I Models

In this section we shal1 ínvestJ.gate the form and Propertles

of Bianchi - type I models allowing conformal extenslons, bY using known

analyÈl-c type I sol-utf ons. Perfect f luid tyPe I models have been

lnvestigated by Jacobs [45] and rre use his closed form solutlons for

dusÈ and hard equatfon of state (v = 1). I^Ie at first show that these

solutions satísfy Èhe conformal constraínt, reafflrmlng some of the

results of the prevíous sectfon, then obÈaÍn explicLt expresslons for

the fluid quantiÈies.

usíng equatíons (4.L4) and (4.33) we write the conformal

constraint in the form

2(p + p) ß2 = {urr-ltlrr)' (s .1)

From the homogeneous fiel-d equations \,ùe can fínd expressions for p and

p in Èerms of the metric coefficíents and substítute back into (5.1-).

This gives

-1r,
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-1.v )2 (s.2)

= p + urr-tr' = - å,0 - 3vrr-lr')

-2v33 33 33 33

trle can now take the known analytic type I solutions and see whether this

constraínt is satisfl-ed.

-1 '* vr, -vß2 [ {vrr-lirr)' -1..v 22
-1.

'zz v l=(v11



i) Dust Solutions:

From Jacobs [45] we have the sol-ution

2

-2a=Po*l
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(5.3a)

4*'-

uLi = v, = [5("D + l.ol)]3[(*o * l.¡l>/"o] 3

"(,r,,V 
*?,v..t)

and

where Å=S1- (s.3b)

xo = normalized Èime = (t + tfi)/to

tO = time scale = (6np0) -r2

SubsÈitutlng (5.3) tnto (5.2) anð, equaÈlng coefficÍents of d we flnd
t

= ã. Equatlng coefficients of *D r. have, if eO * 0, X, = 0 and from

x$ eCuatlo" xl = f,. However, these last two conditions do not

satlsfy (5.3b) and hence we requir. .D = 0 which satisfíes Èhese

equations. Thus, isotropic dust solutíons will gíve a perfect fluid

conformal extension where g' = 4. This result is in agreement wiÈh the
J

discussion after equation (4.3b) in the prevlous sectlon.

Substftutíng eO = 0 lnÈo (5.3) we find

4 /z

g2

Ëhe

u33 *D and

Hence, from equations (4.5), the densJ-ty and pressure in the conformal

model are

p -2o
=g

lPo
t6

3F2 I
-.4 /3J
^D

(5.4a)



p
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(5.4b)

(s. s)

[2aF + F'] = F2

where we have used (4.30) 1n elfmlnating âF in (5.4b). Note that whil.e

the pressure is al-ways positive, ÈhÍs need not always be the case wfth

the densÍty. Also, dependlng upon Èhe cholce of solution of (4.30) for

F, the behavlour of the source terms could be unreal-istic. As an exampLe,

consider the solution (4.31-) with U' = ? givlng f = - ,"ãt.

From Jacobs [45] we have the sol-ution

4ôx.
l_

v. =u.*?/3*-3 , o<ô<1
AIOLL

z = normalízed rime = (È + tf)/r,

t, = Èíme scale = [ (1 - ô2) /2aOO14

p

p=

As wiÈh the homothetic Type V models found in the last section we see

thaË these quantítfes increase quite rapidly in one direcÈion.

ií) Hard Equatlon of State Solutions (v = 1)

where x

and X, is as above. Substitutíng (S.S¡ into the constraint (5.2) gíves
l-

the slngle equatíon
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(3ß2 - t) + 4ß2xr*2ô' - 4G2 + r)o'zxf - 4ôx, = s (s.6)

I^Iith the free parameters at our dLsposal-, thl-s equatfon can be satisfled.

For example, putting ô = 0 we obtaln an isotropLc homogeneous model- and

U' = å. Agafn this agrees l¡.iÈh Èhe discussÍon ln the l-ast sect,ion.

Expressions for the fluid quantltÍes for Èhe conformal models may be

obtained and similar conments as above hol-d.

Putting Bz = ! into (5.6) we obtain the homothetic case, and

the equatlon

l- + 2ô2x1xz- 4õ2x{ - zox, = g

From Èhls equation we riote Èhat the homogeneous models must be

anísotropíc, as putting ô = 0 leads to a contradiction. Usíng

expressíon (5.5) and the facÈ thaÈ p = ,O*12, we find. Ëhe homothetlc

fl-uid quanÈíties to be

=e

FdxS = Fx3 sínce F is a consËant.

p

p=e

(5.7a)

(s. 7b)

r¿here

o=

Since the denominator of the second term ln (5.7a) íncreases

less rapidly wiÈh tl-me Èhan the first term, a time wíll come when the

density becomes negative. However, j-f. F > 0, then both quantÍtíes

approach zero as x, increases without bound.
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54.6 Non -Tilted Conformal Extensions

In thfs sectlon hre novr conslder ÈilÈed homogeneous model.s

allowing non-tilted conf ormal extensl-ons. I^Ie use Ëhe tetrad frame and

the governLng equatlons are obtalned by puËtLng B = 0, kå = O to

equaÈíons (3.10) - (3.13). In thls manner' equation (3.ffc¡ has an

írmedíate consequence. Since all terms except the funcÈion f are

homogeneous quantities, then we must have àf = 0. Thus only homoÈhetic

extensíons are allowed.

As before, solvlng these equations gives the results:

kr=kr=0 k3=1 (6 .1)

=p+3f.(2a-f.) (6.2a)

p =p+f(f.-2a) (6 .2b)

and as before the only admÍssible Bíanchi types are Èhose where tl = t2

í.e. types I, vIIo and v. Again ít is possfble Èo find a basís such

that

p

= diag(0r,02,03)f¿ = 0, o =e (a*ß), o (6 .3)

(6.4)

cx crß aß

and we obÈaín the following constrainÈ

2023f = (a - f)(p + p * 2af - 2f2)

SubstituÈing Èhe above results into the homogeneous fíeld equations

(8.14) of Appendix B leaves



âOnr*(ef+0r-Or)n'=O (6.6b)

aoe + ei + el+ el + 4Q + 2sinh2e)o * å(t + þrr*,'e)p = 0 (6 .7)

3
uZ) = (p +p)sính0coshO (6.8)

âoo1=-oot+2a2+L(P-P) (6. 9a)

â e =-00 +2a2+L(p-p) (6. eb)
2 2

=-00 3
+ 2a2 + r¿(p - p) + (p + p)sinh2e (6.9c)

From (6.8) we note that since Ëhe angle 0 is non-zeto' and sÍnce we want

(p + p) # O, lotherwíse p = I = 0 and from (6.2) p' = - þr whích is

unrealisricl, rhen a(2A, - el - e) + 0 and hence a # 0. Thus there

are no Class A homogeneous perfecÈ-fl-uÍd models giving non-tllted

homothetlc exÈensions. Tltus we need only consíder TYpe V model-s.

Cornbining (3.11c) and (6.8) glves

âOa*Ora=0

âOn, * (02 * o3 0r)n, = 0

20 f = a(20 e -e
3 3 I 2

203(F+r) -r(ot+02)

-01a(20
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(6.s)

(6.6a)

0

âoog

)

or

Taking the tl-me derivative and using (3.12a) we obtaín

(6 .10)
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(p - p)v = 8rF + 4t2 (6.11)33

However, from (6.2> we also have

p-p=pr-p'+(grF+4f2)v -1 (6.12)
33

Hence, combÍning (6.1-1) and (6.12) gfves the condltion

p =Q

Itrus the only non-tilted homothetic models allowed have a hard equatíon

of state. Thts result was first obÈained by Mclntosh [43].

Now takíng the tfme derÍvatfve of (6.11), if v f l, gives

(1 + v)o = 2o
3

(6.13)

and similarly, the time evolution of this equation glves

2(I+v)F=-r(1 +3v) (6.14)

whích Ís also obtained by subsriÈuring (6.13) ínro (6.10). Also,

subsÈitutíng (6.14) and (6.11) into (6.2) we obrain

p

-1

andhence pt >0 onlywhenv)tor v(-3. However, ifv *1, thenthe

Èime evolution of the homothetic constraint (6.4) admtts the solutlons

v =-3 or v = -f o.rfV. Hence, l-f v +1, thehomothetic extensionshave

a negative pressure and denslÈy or are a vacuum.

p
. F2(3 + v)

' (1-v) "33
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I{hen v = 1, then from (6.1_l_) we have F = _ 2r, or f = 2a, anð,

substituÈfon lnto (6.2) glves the fj-ufd quantJ.tLes as p , = p t = p.

However, from (3.11f) we have - 4a2 = 2psinh20 and so p ( 0, and hence

the homothetfc exÈensfons agarn have a negative density.

S4.7 Discussion

We have considered the restrlctions implied by Èhe condiÈlon

that a perfect fluid model be a conformal- extension of a perfect fluid
homogeneous model. trrle have, however, restricted our attenËion to models

where Ëhe metrlc has the followÍng forrn

ds2 = - dÈ2 * uu(nnr)' * uz2(*r), * u33(rt),

Ïn general ít has been found that the conformal model-s are til-ted i.e.
the fluid 4-velocity is not the normal dfrecÈion to the surfaces upon

t¿hich the group act.s. rn fact, the velocity vecËor of the conformal

models is a1-ways tilted wfth respect to the velocity vector of the

homogeneous model, for if one puts kt = k" fn equations (3.10) - (3.13)

we obtaín the resulË f = 0.

rn the models invesËfgated above, eiÈher the conformal_ or

homogeneous model was constrained to be non-tilted. In these cases the

only perfect fluld models allowed were of Bíanchi types r, vrro or V.

unfortunately, 1t was usually found in alr cases that the conformal

equation of state was unphysical or the fluid quantities were unrealístic
Ín view of the currently accepted observatl-onal data. The form of these

fluid quantities, belng inhomogeneous ln one dlrectíon, was due to the

fact. Ëhat on1-y one non-t.rívial conformal motl-on ís allowed by these
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models. This wtll be the form of even the most general soluËions not

consldered here.

Some of the fl-utd kinenatical quantities can also be obtained

uslng the expresslons in S3.5. For exampl-e, for the tllted model-s j.t

is seen Èhat Èhe dl-recËlon of tílt kj is parallel to Ëhe vector ao and

so from the dlscussfon at the end of S3.5' these model-s have zero

vorÈfcity. Ttrfs ls unfortunaËe as not many models w1Èh non-zero

rotatlon are knor¡n wÍth closed form solutfons.

The rest,rlctions we have considered here have been both

dynarnlcal and kinemaËical. However, \ùe have noÈ considered the nature

of the dynamical evolution of these models. One asPect whích fs of

part,icul-ar lnterest, the initial value problem, we consider Ín the next

chapter.
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CHAPTER 5

CONFORMAL MOTIONS AND THE INITIAL VALUE PROBLEM

S5.1 lntroduction

tr{e have seen that, the appllcation of various symretrfes to

space-Èime has proved to be useful ln finding exact solutions and in

classffyíng space-Èímes. Also, to conslder a solutlon of Einstel-nrs

equaÈlons as the time evolution of an initfal spacelike hypersurface

has proven successful in various appl-icatlons. l,Ie consider here the

probl-em of placing a conformal motion symnetry upon the Ínitlal data Ín

the Cauchy hypersurface, and then finding the condítions imposed on

thfs lnitial data for Èhe space-tlme to possess a local conformal motion,

i.e. given inltfal- data adnlt,s a conformal notion, does a solut,ion to

Èhe evoluÈion equations exist which also admits a conformal motíon?

I^le shal1 follor¡ closely the work of B. Berger [46] who

obtained the appropriate equatíons and consÈraints for the case of

vacuurn space-times. In the following we extend this work to include a

non-zero energy-momentum tensor.

55.2 The Initial Value Problem

Consider the spacetíme M wíth metrt. *rb whl-ch satísfies

Einsteinrs field equations

R.
ab Ls"on = T"b

where T"b l" an arbitrary stress-energy tensor

(2.L)
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T"b = pt"tb f Ph"b + 2q("ot) *r

and then uses the evolution equatÍons

ab
(2.2)

(2. 3b)

(2.4a)

(2.4b)

Consfder a spacelike hypersurface S, defÍned as having constant

coordinate time t, embedded 1n the space-time. Let, na denote the unit

normal to thl-s hypersurface and let Àna be the connectlng vector from

each surface Èo nearby surfaces [r" = - ÀVat, À = [- Vrtvatl'b1. tr'le

wish to discuss the geometry within the surfaces S(t) in terms of the

fntrínsic tensor field h"b = B"b * nrn' and the extrinsÍc curvature

K"b = ht"hdov"r,u. These tensor flelds on s descrtbe the intrínslc

geometry of S and the embedding of S in M, respectively and constÍtute

Èhe lnlÈíal- data for EinsËeinrs equatlons.

The initlal value problem has the usual st,rucÈure. Einsteínrs

equations (2.1) can be wrítten down as four constraínt equaÈlons and

twelve evoluËion equatlons for h"o and K"o. Roughly speakLnBr onê

sets initfal data {tr"o(xa), Kab(*")} at some initial Èime on a sPace-

slice S(o) satÍsfying the constraint equations

(2.3a)TO^ott
o

--o
a

þ.ou-þ"u.tr-tou

o

GO
a

Gcl = Td
c CI

(l
TY

ß ï

, which give the change ln the data from one instant to the next, to see
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whether or not, there exlsts a unique solutlon which preserves Ëhe

constralnts over the space-tlme reglon of lnterest.

To wrlte ouÈ equatÍons (2.3) and (2.4) in such a way that all

tensors and tensor operatlons on S involve tensors and operaÈions ln M

we follow C,eroch [47] and use the intrlnsíc covariant derivative defined

by

TMD Ta"'c
e

h rha
em

qv
.rrb r,P ...h.nccld

n
Pqb t

and such that D"\"

consÈraint equaÈions

include non-zero T"O

= Q. Using ühls Geroch has shown that Ëhe four

(2.3) can be writÈen in the form [extended here to

l

(2.s)

Db (Kab - rc,"b) = ¡"br\6, (2.6)

r¡here R is the curvature scalar formed from h"O uslng D, and the twelve

evolution equations (2.4) give

h-
ab

L-h.Àn âb =-2ÀKab
(2.7)

K.
AD

= L). 2ÀK Km. + ),KK , + ÀR ,-"^-am-- b "---ab abK.naD

R - r"br"o f K2 = 2T"orranb

and

- DaDbÀ - À{hm"hnoTo,r, '¿n r) (2.8)
ab

where Rrb i" the Ricci tensor formed from D and h.O'

The function À in (2.7) and (2.8) allows the evolution to proceed at
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different rates at dl-fferent,points of S and even lnto the fuËure at

certaln points of S (where À > 0) and into the pasÈ at oÈhers (I < 0) '

In the followlng we first deríve the constralnts lmposed on

the inittal data |n the hypersurface due to the presence of a conformal

motlon and then consider whether these constraints are preserved by

EinsÈeinrs equations.

55.3 The Conformal Constraints

The spacetime is assumed to possess a conformal motion

generated by the vecÈor field Ea such that

LtB"t = ZþEab (3.1)

where $ ís an arbltrary function. I{e now find the components of equation

(3.1) hrith respect to the hypersurface S restrícting our attenÈion to

spacelíke conformal Killing vecÈors L.e' naE" = O' The normal component

gives

L,À = 0À ß.2)
q

the mixed component

L-Ea=o-LEa=4na
^n- n

(3.3)

and Èhe sPatial comPonent

(3.4)LEh"u = 20hab

To obtaín an addítional constrainÈ on S, operaÈe on (3.4) ¡¿ith L^r, and
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use the relatlon

ILh.vuab =LLu h"b * LL 
uh"uv v

together wtth (2.7), (2.8), (3.2) and (3.3). I^Ie obtaln

LtK"u=oKab-hablno

or, using the r'esulË thaË Lt*"U = 'rr*"0 we have

"r*"0
h L 0 (¡. s)óK-'ab ab n

Equations (3.+¡ and (3.5) are constraints whÍch nust be satisfied by the

fntrlnsíc netric and extrinsl-c curvature on S in the presence of a

spacelike conformal Kílllng vector (CKV). All the above equatlons

correspond to similar equatíons found by Berger 1461.

55.4 Evolution and Results

It is now possfble Ëo see whether the consÈraints (3.4) and

(3.5) are preserved under evolution usl-ng EinsteÍnrs equaÈions. This

wíl-l lnvolve actíng on the above constraints with the operator L^r, and

seeing r¿hether or not an ídenÈity results. The evolutlon of (13.4)

yields (13.5), so !ùe need only consider

L^rrLE*ro = L¡,n(öK"b) - lÀn(h"ulo0)

A term by term calculation of the right hand side gfves
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(4.1)LE*r¡ = olÀrrK"b + 3lrrol

For Ehe calculatlon of the left hand slde the reader Ls referred to

Appendlx A of Berger, Í46], modifled here to lnclude non-zero energy-

momentum tensor. We find

L^rrlE*ro = 0LÀoK"b + Àr"oLrro - 2ÀDaDbo

- Àh.D Dcö - trh""ab-c- ' "^'abKL 0n

habDcÀDco - r t Lg Cot"olot*r) - '¿L e(h"uT) I (4 .2)

Courparíng (4.1) wfËh (4.2) we obtain the followlng identity

- zD D-ó - 2K.[ ô + h. tL L ô - l,-1o"l,o ô - D ncó - rLab' aÞn' aD-nn' C c n0l

= tr(hm"h\t o) - lrl'(habT) (4.3)

= (LET* Ltr"osm)

Thus for a given energy-momentutr Èensor, thís equation ís a resÈrlct.ion

on O. If $ does not saÈl-sfy (4.3) then the conformal constraint (3.5)

is not preserved by Einsteinrs evolutlon equaÈÍons, which ín fact restrict

the conformal motions compatible with soluElons of Einstelnts equatlons.

Additíonal- restricÈions ln the hypersurface S also arfse from

requíring the Lie derivaËive along the conformal Kílling vector of the

Eínstein constraints (2.5) and (2.6) to be zero

) (ttt.hob
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1.e Le

,e

(r
a

K"b-K2-R) =-zLb

{oo{r"b - ru,tb)) -qq
L

E
p

b

(4.4a)

(4.4b)

(4.5a)

and

Dl-rect calculation yields the resÈrictions

o"D"o +rlrro = - LEo - 2þp

and Dtlrro + r<"ooto = LEoo - óqu (4 . sb)

These equaÈions glve Ëhe correct exËenslons to equatlons (49) and (5f)

of Bergerts paper for non-zero energy-momentum Lensor. That this 1s the

case can be seen by examíning the case for homotheËic motlons' As was

menÈloned in chapter 2 under a homothetic motion any geometric object

with dímension (length)Q transforms wíth a factor e:ç(q0). Thus we have

LEo = - 2þp and lrco = 0c6

and so Iüe see from equaÈíons (4.5) that these constraints are satísfied

for 0 constanË, as pointed out by Berger. Also, we obtain from (4'3)

the result shown by Berger that Èhe conformal constraints are conserved

Lf LE(T"') = 0.

Now, from equation (2.2.12) we have Èhe result that for a

general- energy-momenËum tensor, such as (2'2)

',áLEG aì = B"ovcv"4 - v"v'Ô (4.6)
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Using Èhls resulÈ tt 1s easy to show thaÈ the constralnts (4.3) and

(4.5a,b) are satl-sffed. Thus, ln general, Lf 1n a spacel-ike hypersurface

S, a set of l-nl-tl-al data satisfy the conformal constral-nts (3.4) and

(3.5), Iin additÍon to Èhe EinsÈein constraints], for a confornal I(111n9

vector ta, then the space-time development of S contalns a conformal

motion with generator fa. However, in general- this development wtl-l be

compatible on1-y wlth animperfect fluíd stress-enerry tensor' as we noted

in ChapÈer 3. Hence, we \üÍsh to fÍnd out whether, given the ínitial

condltions of S(o), the space-tlne development stfll- adrnits a conformal

motlon when we consÈrain the energy-momentum tensor Èo be that of a

perfect fluid

T onrL *ph,'aÞ ^ aÞ
(4.7)

Using (4.6), (3.3) and (S.+¡ we have

=-DcDcO-Krno-op (4 .8a)

ab

trL p
È

and

These expressions also follow from equations (1.2.13a) and (3'2'13c)

when writLen ouÈ in terms of tensors and tensor operations on S. Thus

we have for the perfect fluíd (47)

'¿Lep þ"o.t + $<roo + r-bcrD"ô - L'Loö - 0p

L-tL ,þ"0 - r"ot) (KLno + DcDco)

+h-(1,-1oc¡,nô-LLô)ab- c' n n'

(4 .8b)

ET"b

and substituÈing this result into the constralnt (4.3) gives Èhe

(4. e)
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followlng resÈrÍctlon upon {

þ.0{o"o"6 + rl.rro) - DaDbo - Kror,rro = o (4.10)

Also, substiruring (4.8a) inÈo (4.5a) gives an idenÈíty while (4.5b)

gives the constraínt

D-Lö+K.Daô=0b n' ab
(4. 11)

It 1s immedíately seen ÈhaÈ equatlons (4.10) and (4.11) are noË

automatlcally satisfied for $ nonconstant. These restrictions server

in general, to prevent a conformal moÈion in spacelíke initial data from

beíng a spaceÈime conformal motion.

PuËËing 0 = consÈant, one irnmediately sees that all the

constraÍnÈs are saËlsfied. In fact, from (4.6) LE(t"O) = 0 whenever

0 = constant and so the Einstein and homothetic constraínts on the

initfal hypersurface cannot spoil Èhe compatíbilíty of Einsteinrs

equations and a hornothetlc motíon. Thus Iüe see that when Q is a

constant, each spacelike polnt effectively evolves in a similar manner

and so the symrnetry property of the space-time is conserved. However,

thls is not the case when Q is an arbÍtrary funcËion of Èhe space

varíab1es.

Finally, if O is lndependent of the tlme coordinate, then

constrainÈs (4. 1-0) and (4.11) reduce Èo

DaDbo-þ"tD.D"Ö=o (4.I2a)

oaôK- =o'ab G.rzb)
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I,le see that lf ô = F(*'), as for the models considered in the prevlous

chapÈer, then we have from (4 'r2a) o"o"O = 0 or Fr = 0 and thus we have

the result that no conformal solutfons havlng a non-t1lted veloclty

vector admft a perfect fluid. This agrees wlth the result found ln

$4.4.
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CHAPTER 6

HAMILTONIAN COSMOLOGY AND SPATIALLY HOMOTHETIC MODELS

S6.1 lntroduction

The value of an acÈion prfnciple as a vehicle for inËuftion in

the study of homogeneous cosmol-ogies rùas fÍrst demonstrated by Misner

in hís pïogramrne of ChaotÍc cosnology t48]. Since then, tlamiltonian

cosmology, the study of cosmological models by means of equaËions of

moÈíon in Hamiltonian form, has received considerabl-e attention,

especíally due to the work of Ryan [49]. The cosmological models whlch

have receíved detaíled examínaËlon are the Kantoütskf-Sachs models, the

spatially homogeneous models and Eardl-ey has lnitlaËed work on spatlally

hornothetfc models [18].

AparÈ from Eardleyts work, Hamiltonlan cosmology has not been

applfed to inhomogeneous cosmological models. Nevertheless, studies

have been made of non-cosmologícal metrics which have inhomogeneous

space secÈions. Kuchar [50] has studíed the Einstein-Rosen cylindrical

\üave metric in the ADM formulat,ion; Berger et a1. [51] have applled

this formalism to the study of spherically syrmnetric graviÈatÍonal

fieldsrwhile Lund [52] has considered the compleÈe vacuum Schwarzschild

solutíon. Ryan t49] sees the most outsËanding problem that will arise

in considering inhomogeneous three spaces ís that the Hamiltonian wíll

become a Hamil-t.onian density and so \ùe must deal with a field Ëheory

ínsËead of a particle problem.

In the followlng rüe reconsider and ext.end Eardleyts work on

homothetic model-s. Conformal models are ruled out sínce 0o ls not a

constanÈ and so a necessary spaÈial lntegraÈíon cannot be carried out '
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In section 6.2 we briefly review Èhe A.D.M. procedure but the reader

ls referred to the review by Ryan [49] and the rel-evant chapters l-n the

book tRel-ativistlc Homogeneous Cosmologies (Prfnceton U.P.) by Ryan and

Shepley. In sectlon (6.3) we consl-der the appllcablltty of thl-s method

t,o homothetic models and show that only models where Óo = 2"o w111- gtve

valid field equations from variatlon of the actlon. Then in section

(6.4) we apply the qualftatlve methods of Ryan Èo these modeLs.

56.2 A.D.M. Formalism

The first sLep 1n the llamíltonian formul-ation is the

identífícatlon of the field varfables with the metríc. However, Èhe

general coordínaÈe invaríance of the theory creates problems, inÈroducíng

redundant variables to lnsure the correct transformatfon properties.

Thus it is necessary Ëo seParate the metrlc into the parts carryíng the

true dynamical information and those Parts characterizíng the coordl-nate

system. lJtren ín canonical form, the HanllÈonian will involve the

minirnal number of variables specifying the staËe of the system.

The usual action integral for general relativity ís

f= daxl = u+*7= R (2.r)

(2.2a)

One obtains Eínsteinrs equations upon variatÍon in the metric' The

three dimensional quantitfes appropriate for the Einstein field are

Ir= 'û_ oíJ N = ç- +roo¡-'e *i = 
ngoi

nij = ,Ãtr[1a rono - Bnouror"Brs) gípgj q

sij

(2.2b)
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Here, and subsequenÈly, we mark every 4-dfmensLonal quantlty w1Èh the

prefix 4, so that all unmarked quantftles are understood as 3-dimensl-ona1.

In t,erms of the baslc quantities (2.2), the Lagrangian becomes

L=Fe4R=- iJ Nco-N Cigtjn
,o I

- 2(r iJ - bnnt
tf")

iN.l +N (2.3)

(2.4a)

where

co ; ,trr1sR + g-1(4n, - rrijnrr)

l:
(2.4b)

The quantlty 3R to Èhe curvature scalar formed from Èhe spatíal metric

gij; I indicates the covariant derivatÍve uslng this metríc, and the

spatÍal indices are ralsed and lowered using gij 
"oa err '

The use of the Pal-atini Lagrangian - wrÍËfng L llnear in the

tÍme derivatlves - and the 3 * 1 dimensíonal notation does not ímpaÍr

the general- covaríance of Èhe theory under arbítrary coordínate

transformations and hence the actlon is analogous to the parametrized

form of mechanícs fn ruhich the llamilÈonian and the Ëime derivative are

introduced as a conjugate paÍr of variables. Consíder the example [58]

of a system with M degrees of freedom. Its actíon may be writÈen

ci = - zntj

t
1

t1 (j, nra, - H(P'ar)a
dq..'1

d=-Yl dtf= Ldt = t
tz tz

where L is linear ín tlme variables. The action may be cast lnto
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an arbft.rary parameËer r

= 
un,.

-dt
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(2.5)

dt

2

and the constralnÈ equatfon Pm+I + H(p,q) = 0 holds. One may equall-y

replace thls consÈraínt by an additlonal Èerm in the action

IT- Lf: dt
L;

qi
T

f:
1

.n¡F1 ì

trl, nrni - **lI- dr

2

where N(t) is a Lagrange multiplier. Its variation yields the constraint

R(P*',P,9) = 0 havfng soluËion Pm+l = - H(p'q)' The theory' as cast

in form (2.5)ris now generally covarfant wíth respecÈ to arbiÈrary

coordinate transformations T = î("). The price of achievíng this häs

been not onl-y the introductíon of the (m + l)st degree of freedom, but

loss of canonícal- form. Also, the Hamiltonian Hr = NR now vaníshes

due to the consËrainÈ.

In changing from a particle case to a field theory, the

coordinates norú appear as four new field variables q.*+u = xu(rd) and

there are four extra momenÈa. Four constraínts are now required and

four Lagrange multipliers. From (2.3) ' we see N and N, are the Lagrange

urultipliers corresponding to the constraina" Co and Ci. VariaÈÍon wÍth

iirespect Ëo 
''^J ' Bij, N and N, Eives Èhe field equations as

_lÁ

Bij,o = 2Ng '(ríj - hettn) * ,*,tlr, (2.6a)



ntJ,o = - ¡gL(rRiJ - LgrJ tR) * Lug-LglJ (n*n*r, - \n2)

2Ng (n l-m
TI

J - ¡nnLi) * gL(ul-\ tj - 

"J"

lr,
m
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(2.6b)

(2.6c)

(2 .6d)

m

+ lnfj¡n¡ *l ml_
TNjmJ

1t

ln - m m

bo=o

I
C =Q

Note that the spatlal divergence ín the integrand plays no parÈ in the

variational prÍnciple and may be neglected'

To reduce the Lagranglan (2.3) to canonical form, one fnserts

the solution of the constraint equatíons and then imposes coordinate

condítions (equivalenÈ to íntroducing lntrinslc coordinaËes). only

after thís w111 the true non-vanishing llaniltonian of the theory arise'

The canonical- formalism necessarÍly destroys the space-time covariance

of the theory by cutting space-tlme into slices and investfgating their

geometrícal properÈfes. In the ADM approach, a defÍnlte sllcing of

space-time and a definíte coordinatl,zalcion of the slices are picked

out by the coordínate condíÈÍons'

InapplyingtheADMprocedureÈocosmologicalmodels'the

basic method is to freeze all but a few degrees of the infÍnítely many

degrees of freedom of the gravitatlonal field by putting a number of

the canonical coordinaÈes and their momenta zeto. The pioneer of this

approaeh was DeI,Iitt who first applíed Èhe Dírac method to the Friedman

universes t53]. The second model, treated by the ADM method, was

l"lisner's mixmasÈer unlverse. However, because of the hígh syrnmetry of
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these models, a prlvlleged sllcing of space-tl.me exlsts, such that the

lntrl-nsfc geometry of the slfces J-s homogeneous. The symmetry thus

provldes a unique l-parameter farnlly of spacelJ-ke hypersurfaces on which

the further formal-ism is based. Thl-s goes against the usual propertles

of the ADM method, which plcks ouÈ a l-parameÈer family of slices by

coordinaËe condiÈions, rather than by synunetry requírements.

Also, the homogenelty of these models was responsibl-e for the

major reduction ín the number of gravit,ational varíabl-es. In a typical

fleld theory \,re can expect to fínd several degrees of freedom at each

point of space and we can sÈudy Èhe interactíon bet¡seen the degrees of

freedom aË neighbouring points. However, the requlrement of homogenelty

ties Èhe correspondfng degrees of freedom at dffferent poínts rigidly

Ëogether and so the fíeld aspect of gravity thus almost compleÈely

dísappears from the model.

The methods used by l*fÍsner and Ryan Ín the study of homogeneous

cosmologies fnvolved assumfng a metríc of Ëhe form

û=ûofj oab
l_ J

(2.7)

(see (2.2.1)) where the oa are three tLme-Índependent l-forms. I^lfth

thís assumption used in the variatíonal principle, the new generalÍzed

coordínates and momenta (8"6rrrtb¡ 
"t. now dlscrete variables. However,

as first noted by Hawking [54] the resultant varíational princlple

does not always give Èhe correct field equaÈions. Thís diffículty was

fLrsË invesÈígated by MacCallum and Taub I55l and later by Ryan [56],

but it was not unÈfl Ëhe work of Sneddon [57] that Èhe situatlon was

clarífied. It was shown that ¡¿hereas the variatlonal principle works for

(.) o" b
ú
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non-coordLnate frames, the requlrement of spatial homogenelty prevents

a boundary term befng set to zeto.

In Èhe followlng we first discuss a sfurllar problem when we

requl-re spatíal homogenelty (flrst studied by Eardley) and then apply

the qualitative methods of Ryan to the applicable cases.

56.3 ADM Approach and Spatially Homothetic Cosmoloqies

We now apply the actlorl (2.1) wÍth Lagrangian gíven by (2.3)

to homothetfc Bíanchi metrics. In so doing we closely follow Sneddonrs

work [57] on homogeneous metrics. tr{e work in the non-coordinate frane

given by the fo1-lowlng Èransformation

crcíd=o.dx
1

so that the components of the 3-met,ric have Èhe form

sij = Boßo io j
CI g

(3.1)

(3.2¡

From Chap ter 2 Iüe note that Èhe Ínvariant l-forms ,o 
"t. 

independent

of the ttÍmet parameter t and satisfy

dr¡c = - '4coßvt
ß v

where the C0^ are the structure constants and have one of the nine
þv

canonical forms found by Bl-anchi.

^(¡

The conjugate momenta may be written ín the form



;U = (aetodr)iouootouj g)

-d\Jhere o t OoU. lhe first factor on Ëhe right-hand-stde of (3'3)

appears because nlj t" a tensor density. Because of this we must be

careful in Èransfornfng from one frame to another. However' one can

see from (2.6) that there are no problems when Ñ, = 0 because only rtimer

derlvatlves of nlj tpp""r and the frame rÍe are transforming to has

oo = dt. The coordinaÈe condftfon i, = o (i.e. ugol = 0) is usual in

cosmology and aPPlies here.

Using the above results, the acElon (2'1) wlth N, = 0 can be

wrlËten as

f
o

ß

ô

+ô

0- Boßo io
u, 

F(deto' ,) iuôouiouj )

- *{ cu"ro" . ) 
-t;-%[ (detocri) 'ioßooio uj 

iruotrouS

- L(detoo r)'i'] - tu".oorl*%<'â¡))a.a'* = o

f ra.roo.){- ;"ß;"ß," - ñ[*-zc;"eios - '4;\ - ât'â]]u.a3x = 0

and equations (2.6) become

8crß,o = 2Ng
oß

zs"uîl

(3.4)

(3.5a)'Íl(

= - ñâL<rn"ß - zâoß,â> + %ñ;-%(;tui.ru -,âr);"s

_r4

^ß
1T-

^oß
1T

,o

2Ng
_r4

(n cIY

Y
,;;oß) (3. su)
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- ui,> - *('â) = o (3. sc¡
cß

[,Ie can now conslder the speclffc form of the homothetic models

under constructlon. We have from previous results

2o
8oß =' sctB(r) ß.o¡

(3.7)

(3. B)

(3. e)

where o 1s independent of t. Hence, we need to substitute (3.6) lnto

Èhe actlon (3.4) and see if the subsequent variatlons glve the field

equations with (3.6) subsÈituted. From (3.6) we have the following

transformations

4ono' ( t)

N=e oN and 3 ^6og=e g

To see to* tâoB 
"rr¿ 

3â transform consider the following' In the

non-coordinaÈe basÍs we are dealing wíth, we have Èhe relations

1t
^2o
1t=e îe

aß

3

6

cô
_ivRoß

itoß = %rtôtôoÊo + ôoog - ôgoo + eoe,o * âoo,u - igo,ol

=it _iv +iY ô

aß 
'Y

oY'9 ct ß

6 ôy
=oclß .' cyoB

r.¡ô ßY
t

where

and c

Also, from sectíon (2.3) we have



âo=-ü)
^ctdx

+ âo
0 = constant (3.10)

ß6
(3. 11)

Also, subsËltutlng (3.11) and (3.6) inro (3.9) glves

iuuo = rouo * [ôôooß + oôuoo - sdßoô] (3.12)

and using this result in (3.8) gfves

'âoB = tRoß * 0o0ß - soÊ(o6oô + rôyôov) * ooc Êo 
+ oorôou + z0ôr(oß)6

ô - oôc- 0ô)0 ooaß (crß) ô
(3.13)

ßsince 2a =0
c oß "td from equation (2.3.11) we have the condition

,ðotCO=-dx
âx1

06CôoU = 0. Contracting (3.13) rhen gíves

sfr=.-2o[3R+(ga
2þ

cc= 9o'
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( 3. 14)

âxo ct

Since the structure constants depend upon the basis vectors whlch are

unaffecËed by the transformaÈion (3.6) we have

_^c
ßô-'icr

tRoß*0o0U+(zao

) o0l
ct ct

Substituting (3.7), (3.13) and (3.14) into rhe acrion (3.4) now gives

ôI=ô | "'"{a.toor){- c.,ß (r) noß {t) 
, o

- N{s-%r"oß(.)nou(t) - ,¿n2 (t)) - e4(tR + (Bao - 2oo)01}}a.arx

-0



The spatlal lntegratl-on can now be performed and the varl-ational

principle becomes
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(:. rs)

(3.16)

ôr = ô f {- *"u"oß,o - r,r{e-k<nooroß - \n2) - eL('R * (Bao - 2oo)01}}at

., I eoß(3R + (8au - 2ov)Ou)/e ôeoßdt + f e"ßon ogle a,

A.s several authors have noticed for Ëhe homogeneous case, trouble arlses

when the variaËÍon of sRfg is taken with respect Èo g.,Ê. Thus we

consider the t,erm

f ,'o + (Bao - 2oo)qo)/g dt

=Q

ô

and following the work of Sneddon, one can show that

I ,otu + (8a0 - 2oo)qß)ogou/g at

J ,"ßon"u le a, = | (4aoaß + 2a\c{oß)u)/e ôeoÊ d.

and so equation (3.16) becomes

, I (3R + (8ac, 20o)oo) lg dt

= f {'*"u 
+ ('ad - 20o)6ß - 4"o"8 - z^\c(oß),

-'.eo9(3n + (8av 2ou)ou)/c oroß d (3. 17 )



subsriÈurlng (3.17) back into (3.15) and takl-ng the varLaÈ1on wLth

respect to Bcrg we obtafn the equatlon

noß,o - - 
"rt['Roß 

+ (8"o - zoo)oß - 4^o^B - zJc(crß),

- ,.eo9{3R + {aa, 2þu,'u']

+ l¡t¡g-L(ntonru - '¿n')roß - 2ttg-Llnavruß - bnnol)

noß,o - -**t[3Roß+ (2av ou)oueog+ooog - ouc(aß)u

- 4eo9(3R + (8av - zqu)ôu)]

+ rÃrg-'4¡ttonro - renr)roß - zng-L1no6*oß - hnno1)

Also,subsËiËutlng(3.6),(3.7),(3'11),(3'13)and(3'14)íntothe

fleld equatíon (3.5b) we also have the equation
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(3. rs)

(3.1e)

Comparíng equations (3.18) and (3.19) Iùe see that they are equlvalent

onl-y when we apply the atlditíonal constraínt

2a
ct

One can also check this result by first taking the variarion of (f.+¡

$=
'cr

wíth respect Ëo Boß "td 
then substituting in the homothetíc conditíon

(f.0¡. As before we have

u | 
,a,r; uu = I 1- sfi*ß + ¿lcrßsfrr/g osorav * I uâ.,u ,"Buu (3.21)
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and from the last t.erm we have

where

g
aß

ôR
ctcrÊ

(3.22)

ct

2a as before. SetÈ1ng 0 = 0 we obtaín
d CT

= 0.

Now provfded ôBoU and (ôeo'),y ""t be made to vanish on the boundary'

Ëhe last term Ín equaÈ1on (3.21) w111 vanish and Èhe variatlon will

gfve the usual result. However, as pointed out by Sneddon (op.cít)' 1f

goß "rd ôgoß "re to be consÈanËs (or functlons of tlme only) these

conditíons cannoË be satísfíed without ôBcß vanishing everywhere. Thus

2a ¡iolg av

c
t)

î,o = 
"-2o(gougôß - ,oß*oY) ((ogro);g + ôB.r60u)

(oo -
t^ ^ I

.|r"ottuu=.|

wÍl-l not vanfsh unless {

the homogeneous resulË a
cl

ct

As in Èhe homogeneous case, this resulÈ means that whenever

the EinsËein variational princíple ls used' care shoul-d be taken Èo

ensure that the correct field equatíons are obtained. The usual

variaÈional principle breaks down ín a number of places, as before. By

neglecÈlng some terms in Èhe Lagrangian, some of Ëhese diffículties can

be overcome, but aS we have seen íncorrect terms still arise from a

surface 1nÈegral that does noË vanish. The exceptions are spaces of

Class Awhere a = ö =0 and the subspace of Class D spaces forwhich
ct '(t

ö = 2a . It can also be noted Èhat this resulË cofncides with the,CT 
CT

result found in Chapter 4 that Cl-ass B homothetic extensíons admlttlng

a perfect fluld r¡rere possíbJ-y only when F = 2a. Also ín these cases the
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fluld sources ln the homot.het,ic models were descrfbed by the expresslons

-2o -2o
=g p p

and so it can be seen that 1f the homogeneous models are vacuun models

then so are the homothetic models and thls agrees w1Èh the concluslon

Ëhat Èhe above varíational principle gives the Einsteln vacuum field

equat,f ons.

p p=e

Note that Eardley t18l found the conditíon ao = 0o for the

varíational principle to give Èhe correcÈ field equations. However, he

assuned rhar rhe lasr, term in (3.21) had the tor* iolo = {e2oro(t))lo;

fron (3.22) we see thar ir 1n facr, has rhe form i"lo = (.-2oroçt))¡cr.

56.4 Qualitative Description of Homothetic Models

tr{e are nor¡ ín a posítion to use the fruiËful mathemat.ical

Èechnfques developed by Misner and Ryan to study the qualíËative

aspects of spatlally homothetic cosmological models. Eardley bríefly

consfdered Type VII models and we ext,end this work to all admisslble

types.

From the previous sectíon we have seen Èhat the action can be

wrÍtten in the form

T-
1T

ào-lclß 
U+*ilr

subject to the constraínts

sß (4 .1)



r08

co=-rt[r*+(8ao 2þ o)od + 
"-'(!.(,

no)
yô = 0 (4.2)t - rrYôr, I

I
)

oß + 2ganB =Q (4.3)
C0 = - 2n0B -4n ô

ß ß;ß

It is seen that the scalar o (or lts derivatfves 0o) does noÈ appear fn

the actlon (4.1) , and Ít l-s Èhus in a f orm identl-cal to the actío'n

found in the homogeneous case. [,Ie can hence follow Èhe work of Ryan

t4g] in reducing (4.1) to canonical form. However, Èhe constraint

equaËions have extra terms involvf-ng 0o and we shall see thaË this

leads to a modified Hamtltonian. In reducing the acËion to canonical

form we follow the procedure outlined in section (6.2) of choosing

four of the twelve goß 
"rrd 

noÊ as intrinsic coordinates and by solvfng

Ëhe four consËraLnt equations to ellminaËe four more'

To begín wíth we parameÈrize Eaß by means of l"fisnerrs

parametri zatíon, gclß = Ror"-2fì.28oß where Q(t) is a scalar and B(t) is

a 3 x 3 synuretric traceless matrlx. Ro ís a constant lncluded for

convenience ln choosing units. Inserting this into (4'1) we have

r=#fr{-nuô*(.'n.-B) 4 x

Integrating over the sPace

clß

dB ,f
ãCI = zi'-B deB

an
d"B -Bl+¿n e l'where

variables one has

[ (eBr," -B - no dsll
c[

(4.4)a = (2r) üB)oß crß

Now, whenever Q is a monotonic function of t we can choose fl as our
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ttimet coordfnate. Thfs cholce represents the fl-rst step in the ADM

procedure ; that 1s, choosfng a functfon of the aß8aß ancl T as

a coordfnate. In this case we have

e = - f 0,., ta"r(eo')J

I,Ie now see that Èhe acLfon (4.4) is fn canonfcal form if we

Hamlltonlan ¡¡ = (2n)no o and if rf,e can flnd a matrfx po'

2 ("Bn"-B)oßdBoß â poßdBoÊ = p¡dB^ where uA are

which detemine the B-matrix and may number from two to slx
to give the metrÍc completely we need only speclfy N. For
f¿ as ËÍme, it has been shown that dt = - NdCI where

N = H-1e-tn(tr"nf I

(l+.5)

define the
such ÈhaÈ

the parameters

149). Ffnally,
our chofce of

(4.øl

(s .1)

5 6.s Dr SPACE-TIMES

Follwing nyan [49], we define the marrix p

B6-B

as
crß

aß5
Paß = 2n (e TT e )

2n
T Ôcrß

ô^Ifô

and proceed to par¡metrize Bog "od pqß in order to reduce the first tem

in (4.4) to form pRdB¡. . trIe can then obtain H as a funcËíon of the

canonÍcal varfabl-es using the constraÍnts. To begln rsith we shall consider
the simplest case ; that for when Boß is diagonal. rn thls case we use
the parametrízation

B
cß = diag(B* + f3B_ - 28.>

-Fd

and
6Poß

B+
B {ts

nol aiag (p+ + {3p_ , p* - fgp_, -2p+)

In this case the action reduces to

If = 
,J 

p*ut* + p-dB_ -Hdo

whfch ls subject Ëo constraÍnÈs (4.2) and (4.3).

From the constraínt C
0 = Q we have
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H2
ß (5.2)

CI

+ 2

and as ln the homogeneous models thfs equatfon gives a llamÍlÈonian

correspondlng to a parüicle movÍng in t¡¡o dlmenslons on the B+, B_ pLane

where g(3n + (8aa - 20o )Oo ) acts as a time-dependent potential.
Definfng V by the equaËion

_ zþs, )ôo
o

ßP
6p

-å*oo"

1^
+"g

- z4n2g(3n + (8ao )

p
2

=Þ+ - 24n2g(3n + (8"o 20o )Oo )

e(3n + {8ao 2þ )o )oo -4a (v-1)

and using the expressions

and co C
'ßôvßô

'*ou -c(ôu)B couo + z.ôc1oß) ô +
'ôv

c
clôv

we have

v=r*| {r.

nvo + ôcx

,rcv ,rÊô (rroB 2B

ôaß
^0o ßtô

-2ß

(s.3)

(s. s)

2B
oße

2B
vô

2
aße ) toÓ 

ß
* (IZaoa 

Ê - 16

+ 4Qo0U)e aß (s .4)

Putting 0o = f"o, and usfng the classificatl-on scheme ouÈlined ín Table

2(p.28) together with the paranetrizatÍon gÍven above for díagonal models

we have the foLlowing expressÍons for the potenËíal ín each of these models.

)

48
v = 1+å Írr-t6r+4r2

t

{t -L6r+4r2
t

(_
{ 

cos h (4/38_)

(_
{ cos h (4/3B )t-

+fzs+e

h(6- af +zt2)

+ h(6-8f.+2f

+
)

TYPE IV

TYPE V

TYPE

4B
v=r+å

vL v=1*+"n"*

+

,^48-
TYPE vlh v=1+ï 2

Ì

))

trlhen f = 0 \üe recover the potential-s appropriate for Èhe vacuum homogeneous

universes. Note that some of these expressions differ from the poËentíals for
homogeneous models given in Table 11.1 in Ryan and Shepley [82] because of
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dlfferences 1n the classiffcation scheme used by them.

From the space constraint Co = 0 we also have

g 1T ô + 2(0ß
oß

0

and

aU) n

and uslng equatíon (5.3) we ffnd

€ouorrôur,ßv+ (2f. - 3)autoß + (1 - f)adnßu= 6 (s .6)

where we have put 0o = f"o . For diagonal models we see from (5.1) that
the matrix roß is diagonal.

In this instance Lhe first tem in (5.4) is identleaLLy zero

since for our Bianchi classlficatlon scheme ,rog is also diagonal. Thus Èhis

constraint reduces to Ëhe same expresslon for each Bianchí type :

c1 = c2=o (5.7 a)

,cl ß-91Tßßdv
ß

côv

c3
33L

3n I o*,r, - 3) + rII)

(2f-¡)p++ftl=0

=0 (s .7r)

+

trle see that this constraint conËains the llamiltonfan when f + 0. Indeed,

üre can use this equaËíon, instead of (5.2) to define H.

The usual methods of exQgesis lsee Ryan] toty novr be employed

to discover the qualitative behavÍour of these models. As the potentials are

exponenial, they are replaced by walls ín the fírst approximation.

From the previous sectíons we noted that the ADM method was valíd for
homogeneous models only when ro = 0 (í.e. Class A). Thus extenslve work

has been done on studying Èhe Bianchl Ëype I and IX models, since they

generalize the open and closed Friedmann models wlth k = 0 and k = l-

respectively, but 1Íttle work has been done on Type V models, which mimlc

the k = -1 Frledmann models. Nevertheless, the ADM method is valid for a

subset of class D homothetÍc models and these can be considered as ínhomogenous

generallzations of the homogeneous class B models. Thus this allows us to
sÈudy universe models of Bianchí type V which ít has been argued, using present

observational evidence, gíve the best representation of the real universe.



PutÈing f = 2 Ín equatl-on (5.5) we have

1 +<

1(b)

L]-2.

universe point

b*= -112

(s.e)

are constants

4B
4e (s.8)V=1-
3

and so we see that the potentl-al assocíated with vacuum type V models

falls away exponenË1ally as B* lncreases. TtrÍs 1s fll-ustrated ln

fÍgure la. From the constralnt (5.7) we have upon Puttlng f = 2 ,

+

V
B-

1

B+ B+
0

-113

1(a)

V=const

Figure I : Potential diagram for vacuum type V model

" = - åt*
and llamilËonf s equations imply that P+' p-r B- and H

of the motion. The equation of motÍon for B* is gfven by
.1
B+ = ðs/ap+= -ã,.

Thus we see that the unfverse point moves with a veloclty of one half ín

the directíon of decreasing B+.

In closed uníverse models, Ehe positlon of the wall 1s usuall-y

defined where e = O i.e. this gíves Ëhe posÍtlonof the parÈiele when

a t,bouncer occurs. However, puËting P = 0 into equatton (5' 2 ) gives
c-

H¿ negatÍve. Since this is not allowed we conclude that Èhe uníverse polnt

never catches up to the potential wall. Thus whereas the potentíal was zero

in type I universe models, and exponentially steep in type IX models where
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the universe poÍnt bounces off the walls, fn Ehls model the unfverse pofnt
approaches, but never reaches the potential wall. Indeed, from figure lb
we see that tf one moves on Ëhe lfne ß_ = 1, then the unLverse pofnt
approaches a rfsfng potential that flatt,ens out as B+ * - - Thls seems

to correspond to the deceleratfon and fnfinfte expansfon of the k = -1
FrÍedmann models.

56.6 MATTER IN THE A.D.M. FORMLISM

In certaÍn uníverse models (especially those with non-diagonal

gaß (t) ) the postulated form of the metric is inconslsÈent with a vacuum

solution. For this reason, and because it Ís cusÈomary to consÍder non-empty

universe models in any case we shall outline the necessary changes in the

foregoing formalism when a non-zero energy-momentum tensor is to be included.
This follows the work of nyan [49i.

In order Èo add maÈter Èo the EínsËein equatíons, it is necessary

to modífy the action (2.1) Ëo read

f= (Rlã + 4L )d
m

x

where the Lagrangian density for matter L satisfíes
m

(6.1)

Orre such a modified actíon is obtaíned ít is necessary to break up L* into
terms such as pigi and NLO* and *rrt, (c.f. equation (2.5)). The flrst
of Èhese introduces nevr índependent coordinates and second two quantitÍes
modífy the constraínts whích now read

c0t
=Q (6.2a)

cot cq+L0 =0 (6.2b)
m

For homogeneous models of Bíanchi class A r¿iÈh a perfect fluid
ltoß = (p + p)ucrug + neoul and havíng an equaËíon of state p = (v-1)p,

ollaa*Jm -8,, f ruu(-e)%oguv a4x.

co + r,o.

1 ( y ( 2, such a Lagrangian has been found by Ryan :



L, = -16rp(u0)ununo3"-3n {u*(r + no2e'n"-toßro91 
(1 - v/2)

LL4

- N(v - 1)(1 + - v/2

* *iu(r + 5
2a -28ee

oguoug)
aß

uoB

nf2 
"20"-2Buuouu) (6 .3)

(6.4)

2
)

The densfty p ls then elfminated from this expressíon by solving the

conservation equaËion u
0
Tctß ; ß = o.

For homothetic models we have from equaÈíons (2.2.L5)

i = "-2 
sp(t) i = "-' 

op(t)
d

= eou (t)
CI

u

and upon substiÈuting into (6.1) and performing a spatial integration,
the varlatÍonal prfnciple for L becomes

(-ae) ôgoßdt.

Hence i* satisffes Ëhe same equatfon as L, and so has the form (6.3).
In order to ellmÍnate p from this equatÍon we consider Joi"Ulß - 0. Usíng

the equatíon of state P = (v - f)p this equation becomes

(ô r/v ûo) ro = (6. s)

Now uslng the identity

I
171oÞ

, r/2(g A0)ra+c'ounß

ô i; d4*
Jn -f'"u

Aq
0

together with expressions (6.4), the equaËion (6.5) becomes

{unf .-30et /u., o) 
, o - **3 .-3001/v,qduo(3 - 3, + .Pcoou) (6.6)

In order to carry out the inËegratíon \ùe consider

40uo(3-3r+,rÊcqou-o
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Sfnce cct =-2a and puttl-ng zaa we have
aÊ Ê

oo

dau <t-Tt=Qq

3
If "oro # 0,

\üe require u

then

= Q.

v=1; otherrùlse "orr^ =Q andslnce
c

I^Ie thus have the result Èhat unl-ess t3 =

a
o

0,
=aô

the
ct

3

only models allowing equaËion (6.6) to be integrated are dust models. In

el-ther case we fÍnd

p = uN 
v(rro)-u *o-' .'un (u = consËant) (6.7)

!,IiËh this we can complete the Hamlltonian örmalÍsm for homoÈhetÍc models.

Upon substituting (6.7) into (6.3) we notice that the Langrangian

has Èhe fotr L
m

--0 -- -ctNL- + N L" . so the additfon of matter in the
mdm'

allowed rnodels leaves (4.4) unchanged (f.e. no neüI índependent coordinates)

and the constraínts (6.2) now give

H2 - 24T2sL/2 üO
m

(6 .8)
vac

and

cct -L0 (6.e)
m

where

2
H

"0, = -16îTu *o'(t - u).3(v - 1)rì 
{v(r 

+ no-2 2A -28ee
aß

uu
ct

)

(t-Ð

(1 -v)

ß

-2 2ç¿ -28-(v - 1)(1 + Ro uu\
sßaß'ee

vzì
t'

"o* = - 16nu *o'(t - u)"3(v - r)ov(t + *o-'.'n "-'Ig uu CT

u2
)

ß

In these equaËions ,ro are the space components of the fluid velocíËy

and are solved for as functions of f¿ by use of the auxílfary geodesíc

equations.

0
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For diagonal universe models considered fn the prevÍous sectLort

we found cl = c2 = 0. Hence from equaÈion (6.9) we find tl =,.r2 = 0

ln these models. Usfng a previous result thaË non-t1lted homothetlc models

admlt a perfecË flutd only when ft has a hard equaËl-on of state (v = 2),

we conclude that the above fomalism is only valld for the following two

cases.

Case 1 Dust Models with tilt (ut 12 = 0, u, # 0), for which

0 -2 2A -2B,eeL = -16nU (1 + RO uu
3333m

=L2
3 3= -roTuu=Q L

m m m

Llz
)

1
L

Case 2 Non-til-ted models (ud = 0) wfth hard equatíon of state, for whích

0 -3 3f¿
eL -16nuRO

m

To íllustrate the behaviour of the unfverse poínt ln this

latÈer case, we consíder the type model of the previous secÈÍon' Thus

for a non-tilËed type V model r,trith a hard equation of state the constraint

equations gíve

L0 =Q
m

2
H2 P+ +P_ 48n Ro

4 -4a + 4f_,e -r + 384n2 2

p= þh
ttL t2

3
u

[=

IË is easy to see that the only change from Èhe vacuum case is the addition

of the constant 3B4Unt to the fírst expression. As Ëhls ís equivalent

to Èhe addition of thfs constant Ëo Èhe poËential, the dynamícs of the

motíon is not changed. From (6.7) the density in thÍs model ís gfven by

p = pn.-6"60 . Using equatíon (4.6) together wlth dt = - Ndfl and the facÈ

that H ís a constant we find t = (4nRO'/")"-3n . l'Ie thus have

1_- zP+

and we see thaÈ there is a singularity at t = 0'
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56.7 FURTHER II4CDELS

In Ëhe above examples the dynanícs of the models have been

constrainèd, by the space constraint C3 = L3- whfch has given !l = - * p,.- m - - e - '¿'+

In order to achLeve more general motfon we can consider elËher the Èilted
dust models mentloned above or non-diagonal models.

For dust models, the non-zero space constrafnt gíves

!f = - ån* - 24n2vu,

To fínd expresslons
equaËion üo 

I uûu

f or ,r3 (and ,ro)

= 0. l,Ihen 11 = 12

u = -Ncosh f(0)

we need to consfder the geodesic

= Q we flnd

0

u
3

Ro"-CI -28e + sinh f(a)

where f (f¿) satisf ies

dr(ç¿) = -[r {rrr-t"o + 
^h 

*" t""t'r(') }

However, thís last equaËion ls difficult Ëo solve when H Ís not constant'

tr{e can expect thís dÍfficulty in non-diagonal dust models as well so

one is left to use numerical methods of analysis '

For non-tilted non-díagonal models \^Ie can parametrize t}:e

matrix Boß so that there are fíve independent coordinates. In the

so called rs¡nrrnetrícr case one introduces the off-diagonal coordinate

$ and the corresponding momentum coordinat" P O lsee Ryan and Shepley

[81] ]. The corresponding constraínt (6.8) now gl-ves

+22
þ+ +P-H2= 48n2n04.-40 + 48+ + 384n3u

The new term in the Hamíltonían, beíng proportlonal Èo (PO)2 is cal1ed

Lhe centrifugal potentíal V", because Ít is the analogue of the centrífugal
poÈenÈial in Ëhe Kepler problem of Newtonian mechanics [49]. I^le see that
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this term, and thus Èhe HamllÈontan 1s singular at ß_ = 0. According to
Eardley [fg] thfs locus of points is assoclaÈed wfth a Cauchy horfzon, and

arises due to the assrmptlon Ëhat the hypersurfaces S(z) of transitivlty
of the homothetic group H3 hTere spaceltke. Hor.¡ever, Eardley argues that
this fs not a necessary restrlctfon on the global causal structure of the

S(z), and that some of the S(z) may be tímelike. Further, if one assumes

analytlclty, 1t should be possÍble to extend these models through the Cauchy

horizon (as Ít is possible for certain homogeneous cosmologles).

To help examine the causal and singularity structure fn an

Ínhomogeneous class of universe models, in the next chapter l.te shall briefly
lnvestigate such behaviour in the special case of spherfcally s¡ruunetric

self-similar space-times .
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CHAPTER 7

SPHERICALLYSYMMETRIcSELF-SIMILARMoDELS

1 F SIMI ITY SPHER

In this chapter we shall consider another class of space-times

which possess both the properÈies of self-sinilaríty and spherical

symetry.

A space-time is spherically symnetric if it adrnits the orthogonal

group o(3rR) as a s)nlmetry group of two dímensional space-Iike Èraject-

ories. Further, spherically syTnetric self-similarity solutíond of

Einsteinrs field equations have been defined by Cahíll and Taub [19] as

those for which under the transfornatíon

t=at1T=ar T= 0 0=0 (7 .1)

where a isaconsÈant

8uu (l,Ð E
OT

âxo

^-udx

-2
8uu (r,Ë)

such a solution thus glves a space-time which admits the transfo:matíon

(7.1) as ahomcÈhetic transformation. The requirement that Èhe barred

coordinate sysËem be comoving is also made'

Thesetworequirementsmaybegivenamoregeneralandinvaríant

fonnulaEion. I,Ie shall define a siuilarity solution of the field equaÈions

as one for which the resulÈing space-time admits the conformal Killing

vector field [u satisfYing

E*u * Euru = Zþ(t't)Bpv (7 '2)

where $(rrt) ls an arbitrary funcÈion of r and t'

The transformation (7.1) is Èhus a special case of the conditions (7.2) and

(7.3) where o(r,t) = c-onstant. As a consequence of this condition, the

four-¡¡elociËy vector uil satisfies

7

^Tdx'
^ddx

uu ;vE
v EÞ;rtu = -0(r,t)u! (7 .3)
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Forthe'spherical.lysyrmretrícmodelstobeconsideredhere'
we have

Eu = o(r,r)ou + ß(r,t)ô! (7 '4)

physÍcally, Barenblatt and Zelrdovich [59] trave shown that spherically-

s¡metric space-times (with /f = 0) contain no funda¡nental scales '
dimensional constraints or (at least for cosmologies) dimensional boundary

conditions, and so theyadníË no preferred scale ín space or tíme'

g 7 .2 THE

we consider spherically-syrmetric Tolman-Bondi models having

the metric of the form

d=2 = -dt} + x2(r,t) dt} + y2(r,r) (ao2 + "ir,2e¿02) 
(7.5)

where -æ ( t ( æ¡ r is a comoving radial coordÍnate and 0'0 are

the ususal spherical coordinates. The circumference of an azimuthal

círcle ín the rnodel is 2T'I '

TtÍe centraL worldline, denoted by C' is at r = 0'

Because one !,¡anËs this to be a regular centre of the Space-time' one

requires

Y(r,t) * 0, IAY
x-GF ar

(rrt)+1 asr+0 (7 .6)

The space-tfme is Èhen spherleally syrrnetric about the world-line

In our coordinates, Ëhe velocity vector takes the form

C

u (1,0,0,0)u=

andwetaketheenergy-momentrmtensortobethatofaperfectfluid.

uv (p+p)uutu+pgxuT

Ìlowsver,itcanbeshownthaËforthemetric(7'5)'thepressurecan
have no radial dependence i.e. n = p(t) only 126)' The enegy density

can sËill have a radía1 and time dependence' and so in general no

equation of state of the form p = p(p) can be imposed'
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since this dependence of the pressure on tlme only seems rather

unrealistic, we shall consfder a Pressureless dust solutlon' This should

closely approximate the present universe, but not necessarlly the early

universe. In ËhÍs case, the Einstein equaÈíons for the meÈric (7'5) 
'

wíth À = 0, have been solved exactly. Following Szekeres [24], ttre

sÍmplesË case is where Ëhe dust parËfcles are margínally bound (the

space-section t = constant are flat) and the metric has the fom

-d
(r - rr(r))2

dt2 + t2(t - 413
df¿ (7.7a)

l3
to (r) )

2

2
t2+2

ds

2 * 
"rn?udþ2

(t - to(r))

where

ðn2 =d0

t I

and t (r) ís an arbitrary functlon. Further
0

4

(r)=to(r)*ï*,',

p= 3(t - to(r)) (t - tr (r) )

(7 .7b)

(7.8)

(7 .9a)

The case t0 = constant Ímplies tO = È1 by (7 '7b) and the solution

reduces Ëo the Einstein-de Sítter model'

For thís model to admit the conforural Killing vector (7.4)

rhen equarions (7.2) and (7.3) must be saÈísfied. The first of these

reduce to [rg]

aâr
Yðr

ßaY
YAr+ 0

-0 (7 . eb)

aß
ðË

=0
(7.9c)

äÊ

àr =Q (7.ed)

Equatíons (7.3) reduce to t\^Io equations' one beíng the thírd in the above

set, the other being

âcl

oâX ßAX âcr

Xðr XâÈ ðr

ar =0 ( 7 .9e)
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Froro (7.9d) we then trave ðß/ðr = 0 ie ß = ß(t) and from (7'9e)

cr = a(r). EquaÈion (7.9c) then requires Ö = 0(t) only' and from

(7.9b) \re see thaL, in fact, ða/âr and Q must be constant' Henee'

Èhe meLri e (7.7) only allows self-símilarity transformatlons which are

homothetic i.e. of the form (7'1)

FromtheremainingequaLions(7.9a,b)itisreadílyfoundthat
a = r/3, ß = t and t.(r) = ^tt, 

giving fron (7.7b) tt(r) = 3^'3 '

I^Ie thus have the spherically symnetric self-símilar space-time r¡Íth the metric

d"2 = -dr2 + Iyt"þ: ^ ðr2 - ,2(t - "r3) 
trl3anz (7.10)

G-^'3jzlt 
"' ! \

admítting the homothetic Killing vector

1E=frâr+tðr-5

and having the energy densitY

4 (7.11)
¡(r-ar3) (t-3ar ,)

Thís solution can be shornrn to be identical to that found by Henrikson and

I¡lesson iOO ì Uy use of the coordinate transformation

r.=R1/3 E=T r={""

Thís model represents an inhomogeneous ' spherically symretríc expanding

space-time. Thís solution has also been studied by Dyer tB3]'

s7 .3 PHI ICAL IDERATI ONS

Although mathematical models possessÍng spherícal syrmetry have

occassionally been Ínvestigated fsee orner [11], Bonn r [61] ' and ]'Iesson

162) for example], they are usually not taken seriously because it is

believed to be unreasonable that we should be near the centre of the universe

As we have seen, the isotropy of the microwave background radiation is

usually used as evidence for the isoptrophy of Èhe universe about the observer'

Thus by use of the location principle (i.e. the belief that we don't occupy

a prÍvileged posiÈion ín either space or time) one is lead to infer wide-

spread homogeneitY.

The ]imited attention given to spherically syrmreÈric uníverses

can be traced back to Einstein who tried to show that in contrast Èo

p
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Newtonts reasoníng, there could be no centre of the universe' However

Ellts, Maartens and nef [f0] argue that whfle 1t ls certainly unreasonable

to iurply that the universe has been centred on our Presence, there is no

need for thls attÍtude. Instead, they ask : given a universe of thls

type,whereisonelikelytofindlifeasweknowit?ThesiÈuatÍon
would then not be that the universe had been created in an anthrocentric

way, but rather that, the uníverse being ín existence' our life would

have evolved in Ëhe mosÈ probable region for life. This is the spatíal

analogue of CarËerrs statemenÈ Ëhat lÍfe only occurs at favourable times

fn the hÍstory of the unÍverse t63]. For the static spherically symmeËric

universe model consÍdered by Ellís et al, this prínciple was found to be

satísfied by siËing our Galaxy near the cool centre ; this belng surrounded

by a hot singulariÈy. Indeed, in separate Paper Ellis [4] has stated

that ít would certaínly be consístent wÍÈh the present observatíons íf we

\¡rere near the centre of the unÍverse, and that, for example, radlo sources

were distributed spherically synmetrically about us ín shells characterised

by increasing source densiËy and brightness as their distance from us

increases. Varshní [14] argues that in fact the distribution of quasars

implies such a case.

TheinvesËigationsbyElliseta]-suggestedthatwhileexactly
static inhomogeneous models may not be viable, cerÈaÍn inËeresting features

of such models may remain in expanding ínhomogeneous rnodels ; Ín particular

the singularity structure ín such models ís compleÈely dífferent from that

in a FRI{ model. More recently, I,lesson 16Z,ZO] has studíed a particular

spherically syrmnetric self-símilar model ín the hope of resolving some of

the long-standíng problems encountered Ín Friedmann cosmologies ' For

example, by allowing t -> æ in (7'10), the meÈric becomes

4132 2 2 2 ,)
-dsd t dç¿t++ t (dr

Thus the modef evolves into the homogeneous Einstein-de SitÈer model

ímplying that the present isotropy and homogeneÍty can be Ëhe product of

evolutíon from conditions dífferent from those exceedingly special 0nes

required for FRtr'l models.
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57.4 THE SINGUI-ARITY

As menËioned above, the síngulariËy strucËure of the statíc

models studled by Ellis et al [ 10] dÍsplayed a behaviour very different

from Ëhat of the Friedmann models. From equation (7.11) we see, Èhat

the density has ín general Èwo slngularitíes ; at a = a0 = "t3 and
?

t = t. = 3ar'. Howeveï, r¿e define our tlme coordinaËe such Èhat
I

). Thus only one of the singularíties needs be considered.

I^Ie see lurnedfately, that in contrast to the FRf,l models, the

spatíal inhomogeneity of these models opens up the possibiliÈy that the

big-bang does not, in any partÍcularly natural sense, go off all at once'

ThÍs possíbility has been mentioned previously ln connectíon with various

astrophysical phenomena Isee Millet IO+] and references cíted within].

Further, the behaviour of this singulariÈy varies as to whether the

arbíÈrary constant, a, in the above model is positive or negatíve'

CaseI: a<0

In thls case the hypersurface X(r) = Max(t'rÈr) = ar3

represents the tbig-bangr singularity, on which any co-movíng observerrs

woÈtd-línes originate. Sínce such an observer wíth coordinate r emerges

from the singulariÈy at time t = "t3, then the inequalíty dt.(r) fdt =

3at2 .0 irnplies that comoving observers with larger values of r enter

the universe at earlier tímes. Further' since ËO(0) = 0, for all ob-

servers with r > O, Èhe bÍg-bang time ís negatíve lin the coordÍnate t
used here]. The big-bang Èherefore acts líke an ímplosion, the behaviour

of which ís illustrated in figure 2.

Backward radial null geodesícs satisfy

(r-t (r) ) (t -¡ar3)1 (7 .tz)
(r) )

r/t (t - t.3¡1/3
dr
dt (t-t

0

and thus except near the the big-bang hypersurface, t = ar3, don't differ
much from the curve r = -t. Those null geodesics arising aË È = "t3 are

no longer iniËially horizontal as in FRI,I models, but are ínitially vertical
and so Ëhe rbíg-bangt hypersurface is inaccessible to future-direcËed
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"'...nutl geodesic

r=cODSt

ro

t= c onst<0

t =a13

space -tike
singu tarity

Figure 2. Sinsulari tv behaviour for the case a < 0.

causal curves. Such a sÍngularíty ís called past sPace-like meaning that

it cannot be influenced by observers within the spacetime - it can only

be observe¿ [ os] .

In this model the density on any hypersurface t = constant

increases as one moves radtally inwards. For t > 0, the central line C

is characterised by a fínÍËe maximum for the densiÈy. Ilowever, for t < 0,

as one moves radially inwards, eventually the síngulariÈy ís reached at

r = (t/^)L/3 for which p + -. This síngularlty dlsappears from the

space-time aÈ time t = 0, afÈer whích the observer at r = 0 rests in

a thoroughly well-behaved region of space-time. Ilowever, in a uníverse of

lnfinite extenË t'(r) + -- as R + - and so ít is reasonable to ask

whether this poínt ín tfme is ever reached? Further, ín his investigatlons

of such spacelike hypersurfaces that contain tlagging coresr of the big-bang,

Uitfer [ 64] has shown that the fíeld equations allow the masses of these

lagging cores to become negative - more generally, that they allow the

ir
it
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spacelike sÍngularities to fevolve lntot tLmellke ones. Such

behavlour fs normally not allowed 1n any realisÈic spacetlme model slnce

1t disobeys Ëhe sÈrong form of Ëhe cosmic censorshlp hypothesís which

states that no tlmell-ke singularitles - wheËher primeval or having forned

from l-niÈ1ally non-slngular circr¡msËances are present in spaee-time [65].

If one assr¡mes that Èhe tine t = 0 is never reached ín these

models, then one fínds that the tbig-6totr is sÈfll gofng off. In this
case the future of any spacelike hypersurface t = constant ls only partíaL1y

det,errnfned, at least from the poÍnt of vlew of observers on this hypersurface.

Ho¡¡ever in such models the posÍ-tlon of our Galaxy must be at a radius

, -> ,çt¡^)L/3 [gÍven the 1ow density and tempêrature Ín our neighbourhood]

and this will have impl-ications for the isotrophy of any observatlons made

at such a positíon. Thfs poínÈ ¡¿Í11 be consídered fn the next sectíon.

Finally, one can avoid many of the difficulÈíes ín the síngularity
behaviour jusÈ descrÍbed by simply requiríng t > 0 Ín such a model.

Then we have an inítial bÍg-bang at r = 0 r âs in the FRI,I models.

CaseII: a>0

In Ëhis case, the hypersurface X(r) = Max(t'rtr) = 3ar 3

represenÈs the big-bang singularity. As before tr(O) = 0, so the comoving

observer at. r = 0 leaves Èhe singularíËy at t = 0, but now, since
tdtr(r) fdr = 9ar- > 0, for all other observers wÍth r > 0, the big-bang

time is positive. Thus one can now speak of an inÍtial begínning to the

universe, with comoving observers having larger values of r entering
Èhe universe at later times. Hence one can speak of an rexpanding-shellr

of the big-bang in contrast to the rlagging-core' just described. The

behaviour of this big-bang is ÍllusËrated in figure 3.

Backwards radial null geodeslcs again satisfy equation (7.L2)

and, as ín the FRI^I models, are l-nitially horlzonÈal at the bÍg-bang

hypersurface tl = 3rt3. However, unl-ike the FRW models vrhere only null
and past timelÍke geodesics intersect the singularity, ln this model

all space-like geodesícs íntersecË iË as well. Thus the síngularity both

surrounds the central line C and bounds it past. In the former aspect,

this model represents the expanding counterpart of the static spherically
symrnetric models considered by Ellis et al [10] , which llke the model

here is spatial fíníte and bound. This can be seen from the fact that at
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1=C0ñSt

'..nutI geodesic

t = 3ar!

t =c0 0S l.

,- fime-tlke singutarity

0

FLgure 3 : Sfnsulari tv behavÍour for the case a>0

any tíme Ë, the proper distance from C to the singularity is

t

I

Rs

0

2lg
X(r, t) dr Y(Rs,Ë) n(t-an)s' s

which 1s finíte for al-l fínite t.

Ttre síngularity in these space-tlmes, as ín the previous case where

a <O and t <0, can be considered as fsítting over therer. This

is unlike Ëhe FRl,l models where the singularity is hidden away inaccessiblly

Ín the past. Further, like Èhe previous case agaÍn, Ìile see Èhat there

are no global Cauchy surfaces and thus the singularity can influence the

universe continually. This contlnuous ÍnÈeractíon' according to Ell-ís et al,

míght be envisaged as a process whích keeps the universe running f'e'

one would ín these models fhave the rthermal historyt of the universe taking

p1-ace in a spatlal raÈher than a time direcÈion, with element formation

taking place continuously in the hot fire-ball, pair production ÈakÍng

place contÍnually, and soonf. Ilowever, unlike the previous case, those

models where a > 0 possess a Èimelike singulariËy. Thus a radlal null

geodesíc emitted from the slngularity' goes through C and is eventually

re-absorbed by the slngularity. Hence the singularity is ln effect both a

source and a sink of ínformation (and possibly matter) for the space-time.
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As we have seen, thls possibllfty of the sfngularity belng l-nfluenced

by Ëhe unÍverse tÈself violates the cosmÍc censorshlp hypothesls '

7.5 IFTS

Wtrtlethesingularftystructuresofthespherlcallysyrrnnetric
sel-f-slmilar spacetlme wLth metric (7.10) have some unfaml-liar features'

one must conslder wheËher these models can adequatel-y fncorporate the

observational relatlons supplled by astronomers' Of,these, perhaps the

most lmportant 1s the redshift - distance relation. In the static model

considered by Ellls et al, whíl-e many of the features of a FRIJ model

could be adquaÈely descrlbed they were unable to flt the current (m,z)

observatlons Èo Ëheír nodel.

Fol-lowing Bondi [fZ], the redshíft z of a source at

as measured by an observer at t = t0 is given by

(#)

r =r

(7 .13)

(7 .L4)

e

log(1 + z)

is the equation of

we can write

L+Z

r.

where f(r) = exP

t(L+z)

e dr

0
r,T(r)

the ray of llght travelling radially inwards 'where T(r)
From (7.13)

f (r")
ãw

Because of the spherical syfiEnetry of the metric and the matter distributíon'

together with the centrality conditions ' cosmologícal observatfons made at

wíll be exactly lsotropic. By continuity, observations made by an observer

near c wiLl be nearly isotropic' excepÈ for small redshifts, where the

proper motion of the objects wíll have an apprecíable effect' Evidence for

such anisotrophy in the llubble parameter has been put fon'rard by Fennelly

i66]. tlhíle this result ís diffícult to produce ín a FR![ model' Fennelly

shows that ín the context of our expandíng spherically symnetric model one

canreproduceÈhedesiredangulargradientofHbyplacíngourgalaxy
132 Mpc from the cenËre of such models '

(7 .L4)

r¿e have

.ilhile analytíc expressions for the redshíft - distance relatíon

cannot be found, \¡re can make the following conrnents. From (7'13)

{fe

2t

dr
r rT (r)

c

y=r(r+,)(Ð
dr 

r ,T (r)

where the posítive sign signifíes

3(r - ^rt)olt r ,T (r)

outr¿ards travelling radíal null geodesics
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and the negatfve sfgn those travelllng fnwards. For the case a ) 0,

find this equatfon resul-ts fn a flnfte limlting blueshhfft at the

singularfty. ThLs result 1s lnconsfstent lf one accepts Èhe current

belief that the background radiatton has cooled from an lnfinite
temperature to lts currenË temperaLure.

TüE

I,ltren a < 0, wê found thaÈ a singularity exLsËed in these

models when t < O. In this instance' we find dzldr + - on the

sl-ngularity, Ëhus giving the required infíniËe redshlfting for the reason

just mentioned. Iurther the numerical sÍze of z ts larger for sources

seen Ín the directl-on of C (f.e. towards the singulartty) Ëhan for
Ëhose seen Ln the opposite direction, so there ts a kind of redshift
ptle-up. This anisotrophy may be unecessarily large Èo accomodate present

observaËíons. The model with history È > 0 has been ÍnvestlgaÈed by

I^Iesson [20] 1n some detaÍl. In this case there Ís a maximr:¡n observable

radtal redshifË which is proportíonal to t"O/^tf,>213. Data on m(z)

and n(z) índÍcate a value for thís expression of about 50.

5 7 .6 REMRKS

The above model throws up varÍous points of ínterest in relation
to inhomogeneous cosmological .models. FirsÈ we have seen Ëhat Èhere exíst

síngularity sÈrucÈures 1n expanding but inhomogeneous models whích are

compleËely differenÈ in naËure from those in the FRtrI universes, buË which

can give simllar observatlonal predíctÍons. Thus FR!ü models may be quite

restrictive in requiring that the tbl-g-bangt goes off símul-taneously 1n Èhe

pasÈ of each matter world 1ine.

Secondly, âDY off-centre observer, whí1e 1n general measurÍng

anisotropic galactic redshífts, will stíl1 observe isotropic background

blackbody radiatíon. Thís follows from equation (7.14) since Ëhe temperature

of Èhe background radl-ation (emítted at temperature t" aÈ coordinate value

r ) measured by an observer at r will be given by the expressíone-

T(r) =T"(1 +z)-I =T.f(r)/f(r.)

and ís thus independent of the directíon of observatlon. This resulÈ ís in

line with the conjecture put forward by E1lís et. al tfO] for such a model.

As we have discussed, lt is the isotropy of thls background radiatlon'
ÈogeËher with the location principle, whích usually leads one to lnfer global

homogeneity. Thus this model presents a challenge to the FRI,tr models whích
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are usually preferred on phtlosophLeal grounds rather than observatlonal

from other models whlch can glve quiÈe a reasonable plcÈure of the unl-verse'

Thus the relative merlÈs of models such as that outllned here should perhaps

be more serlously explored before discardfng then. !'le need to at least

assess the assumptlon of homogeneity more fully relative to some of the

alternatives. Indeed, recent observatlons of a quadrupole momenÈ 1n the

background radiatfon hint at such a revision of this assumption t6Z.

I.Ihile spherlcally slrmmetrlc models present an alÈernaËlve to

FRtl universe models, like these laÈter models they are based on speci'al

lniÈial condltions, and so together these models are very fmplausÍble wlthin

the set of all possÍble unlverse models. There ís thus an on-going need Èo

study more general ínhomogeneous models íf the above task is to be more fully

carried out.
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cHAPTER I cotlclusIoNS

sB.1 THE STUDY OF INHOMO GENEOUS MO DELS .

The basfs upon which much of modern theoretfcaL cosmology 1s

founded is the spatially homogeneous and isotropl-c FRtr'I models ' I'Jhile it

is not bel-leved ÈhaÈ they truely represent the unfverse (they arè Ëoo

stmplistic to do thaË), ít is belíeved that these models rln some sense'

are good gl-obal approxfmations of the present unÍverse - indeed' Ít is

ofËen claimed that the isotropy and homogenelty of Lhe unlverse can be

partially justffied observaÈionally. However' as this thesís has attempted

to show, the much used assumptÍon of homogeneity should be regarded merely

as a worklng hypothesis, suggested by the state of Èhese present observ-

atíons. Ttrus, it would be subject to modíflcation or even dropped lf more

powerful telescopes (such as the proposed space telescope to be launched

later thÍs decade) should reveal a sy'stematic lack of uniformlty ln

different parts of the universe. Indeed' recent observations of galaxies

with large red-shifts have shown that there are large reglons of the

universe (of the order of 106 t'tpc) practically devoid of galaxies [68] '

This evfdence tends to support Ëhe lÍne of reasoning puË forward by

de Vaucouleurs t69] who has poínÈed out Èhat over Èhe l-ast three

centuríes we have repeatedly dÍscovered ever larger ínhomogeneíties in the

disÈríbution of matter : stars, stellar clusters, ga1-axles ' groups of galaxfes '
clusters of groups, clusters of clusÈers'

Following up this clalm Oldershaw [70] has more recently

argued that there is still no unambÍguous evídence for cosmological homo-

geneity. Iri support of hís case he presents evídence based on recent observ-

ations of the distribution of faint galaxies, in the dÍstríbutíon of radio

sources, in the Hubble expansÍon and ín the lsoÈropy of the background

radiations. Sunrníng up hís evÍdence he writes'

rHomogeneíÈy on cosmological scales is most certainly not

a fact ; it is sÈill a reasonable approxfmation, but several

lines of evidence gathered over the l-ast decade now suggest

that lnhomogeneities may persist from Ëhe smalles Eo the

largest observational scaLes t 
'

Motivated by this line of thinkíng, thís study hras an aÈËempt to gaín some

understanding of kinematical and dynamlcal effects of inhomogeneities by

carrying out an analysis on some of the more simple models - in this case
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those models which possess the character of self-slmllarlty. Flrst
we exa¡nined solutions of ElnsÈelnts ffeld equations for a perfect

fluid which admlË a three-paramgËer group of conformal motlons slmply

transitfve on Èhe spatlal sectlons. Unfortunately, the perfecÈ flufd
models found generally had an unrealistfc equatÍon of sËate. Secondly

we examlned spherlcally s¡rumetrlc self-slmilar solutlons for dusË. I'Ihile

these models presented some dlffl-culË1es in adequately modellfng the

present, unlverse the singularity structures contained by them represented

a dramatlc departure from Ëhose in the standard FRtrI models. Frorn these

studíes, some ldeas as to Èhe nature of Ëhe problems to be confronted by

future studies of more general fnhomogeneous models can be inferred.

FÍrstly, the condiÈlon that confomal model-s admit a perfect

fluid has led to many restríctions. Also, Èhese models have a tendency to

be tilted. Hence, ft 1s felt that if one ís to obtain realísÈÍc inhomogeneous

models Ëhen a more general energy - momentum tensor is required. This

wou1d, by necessity, include terms rePresenËing víscosíty, Ëakíng 1nËo

account dissípaËlve processes. Thus, together with the non-zero acceleratíon

and rot.atlon }Íkely to be met with in more general modelsr some expl-anatíon

as to the orígin and natúre of the ínhomogeneitles currently observed in
Ëhe universe míght more readily be found.

Secondly, the slngularitfes occurrÍng in lnhomogeneous models

may be completel-y different from those occurríng in homogeneous models.

As we have seen, these models present one with the sÍtuatlon of an ron-goingt

sÍngularity which may act as a continuous creaËion of matter in the universe.

Indeed, it þas been suggested by Neteman [71] and Novikov l72l that

when we observe quasars, r¡re are actually observíng matter which has only

recentl-y emerged from a tlagging coret of the big-bang. Further, the

particle horizons whlch lÍmit comnunicatíons in Ëhe standard models could

be modified or even non-existenÈ, and so the usual belíef in the consequences

of the existence of these horizons - togeËher r¿íth tímelike síngularítÍes -
may need revisíon.

58.2 OTHER I,4ODELS

In order to be able to study the problems just mentioned, suítable

inhomogeneous models will be required. In Ëhe past, cosmology has generally

proceeded by a suítable synnneÈry being imposed upon Einsteinrs fíeld
equations, However, usually this is very restrictive. For example, the
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requirement that the space-tlme metrlc admits a conformal motion leads

to a restrlcted class of Bianchf - Èype models. Thus the naËure of

fmposing symnetries on Èhe field equaËions fn order to find sulÈable

models needs to be exanlned. On thLs matter, Coll1ns and Szafron [6]

have recenËly suggested imposing restrictlons on certain submanÍfolds

instead of placing conditions on the full space-tÍme manifold.

More ideall-y we should discard meÈrícs of Ëhe form where spatíal

and temporal parËs are separated sLnce 1È is fmpossible to observe at

any time a complete spaËial section in such models. As an alÈernative we

should write Ëhe metrfc down in Ëerms of the light cone structure and

Ëhen accordíng to our observations place conditions on a backward null
cone. Thls leads to mathematícal difflcultíes however.

Another class of model- that has received l1ttle aËtentíon are

Ëhe hierarchÍcal models proposed by de Vaucouleurs [69] and based upon

an idea originall-y proposed by Charlier ln 1908 [73] . It is a coumonplace

observation that nature loves híerarchíes. MosË of the compLex systems

Ëhat occurr ln nature fínd their place in one or more of four intertwfned

hÍerarchíal, sequences. tr'or example, analysís of chemícal substances

discloses sets of component molecules, withín r¡hích are found atoms, then

nuclei and elecËrons and fínally (?) elementary parËÍcles. Further our

experiences wÍth many different types of complex sysËems, boËh natural and

artificial, indícate that as systems grow Ín size and complexity, Èhey reach

a limit where a ne!{ level of hierarchical cont.rol Ís necessary if the system

is to be efficienÈ and reliabIe. As a result, hierarchíes evolve much

more rapidly from elementary constítuenÈs than non-hierarchíc systems '
containing the same number of elements ll+1. Hence, almost all the very large

sysËems we observe ín nature have a hierarchic organisaËion. There are thus

heuristic grounds for suspecÈing that Ëhe global design of nature might

also Ínvolve such organÍ-zal_fon 175]. Indeed, I^Iesson claims that recent

observatÍons of global inhomogeneiÈy are in fact quite close to thaË predícted

by de Vaucouleurfs hierarchical paradigm IZO].

Flnally, recenÈ insights by Prígogine [76] ínËo irreversible

thermodynaml-c processes have lead to the development of a theory of natural

self-organísation to explain the processes leading to the formatíon of

sËructure in the universe. Described as torder through fluctuationsr, this

theory is concerned with systems that are ínitially in a state of randomness

or homogeneity and affected by fluctuations. However, rather than being
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controlled or damped, as fluctuaülons tend Èo be 1i stable systems,

they are ramplffied" and it is thls ampl-fficatlon that glves rfse

to what are called tdisslpaËíve sÈructuresr. ThÍs theory has been

recently used by ZÍrmterman lll) to help describe the creatlon of

structure 1n the lepton era of the early unlverse'

trIhÍIe many other approaches to studying lnhomogeneous models of

the universe have been proposed lsee a revlew by Mac Catlum [78] ],
general, the study of these model-s will involve us 1n gLoba1- questions

as to Ëhe nature of the universe as agalnsÈ the situation in homogeneous

models where any Part is representative of the whole'

g 8.3 WHAT THE FUTURE HOLDS

As mentioned at the beglnning of Èhls Èhesis, there are various

problems associated with the FRi{ models. Recent developments, however, with

grand untfied field theories may suggest avenues for the reËention of the

standard model-. Thus the possibílity of a phase transitlon occurring at

. _?(
about IO-J)S afËer the big bang coul-d generate density fluctuations which'

in tuin, rnight gíve rise Ëo the observed inhomogeneíties on galactíc and

cosmic scales. Many of these new ideas have very recently been reviewed by

Linde [79].

This aside, the dilersna that faces cosmologists is one quíÈe familiar

to those r,¡íth an appreciation of thehisËory of scíence [see Kuhn [80] ].
On the one hand, we have a well-established paradigm (the standard nodel-)

which has served as an able guÍde to a generation of researchers and

thrrcugh its meríts has gaíned widespread aceeptance. On the other hand,

there is a growíng recogniÈion of the fact that the major observational

evidence that once provided the empirical foundation for this paradígm'

is now providing insÍghts Ínto íts íneviÈable limítations. The outcome

of Ëhís present siÈuatíon is eagerly awaited'
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APPENDIX A

BIANCHI TYPES I - lX : VECTORS AND FORMS

lfe llst here the canonical form of Èhe (conformal) K1lling

vectors and the invariant basis for each Blanchl type [38],

Class A and Class C

Types I and

t1

E2

E3

1I

=t

tora

lvpes II and -II :
I

c1

t¡I = dxl

2,2t_ù = qx

o3 = dx3

= - Cr32 = l' rest zero

,1=*3d*1+dx2

o2 = dx3

t,l3 = - dxt

=f

=0

c1
23

1

2

âg

23

61

E2

Èt3

â
2

=ð3

=-t

Tvoes VI and -VIot
l=âel "2

,2 "3

F- = - à'3

'32= 1, C213 = - C'3L

,t=*3d*1 +d.x2

,¡2=*2d*1 +dx3

o3=-dxI

, + x3ð,

l+*târ+x2ð,

=l

31
-1

o

Types VII. and fVIIo cl
23 =-C'32=L,C2L3=-c'

at=*3d*1+d*2

,r)2=-*2d*1 *dx3

o3=-dxl

61

E2

E3

à2

ð3

+ 3

l-
a x a 2 - *2ä

3



Type VIII

= -4e
_x3

â - Lle* (x2¡2.-*e]âz + *r"-*tâ3

136

C1 nl =lrc2 a2
1323 32 31

3

1

-x-e

u2=2x2dx1+dx3

L2

(x2¡2.-*sldxl - .-*'d*'

13
=-ttrr=-1' C'23=-"r,

(rr=-*2d*Ì+dx2

,2=-*3d*t+dx3

t3=-dxr

1 c3 n3 I

2L

E, = L'7e-xtr, - '¿1"*' + (x2)'"-*t làz *'"-*'

Ez=à3

ãg

E 3

frrl [.*' 1*2¡ 
z"-x31¿*r dx2

3

3
3 +ü)

,x
Ie

Type IX : C13k = et5k

E àz
1

E3= - sínx2â, - cotao*1.os*2a, +$ a,

E, = cosxza, - cotanxlsinx2â
2

.2. sLnxt 

-r- 

d^si-nx- 5

or=dx2+cosxldx2

u) = .o"*2d*1 + sinx2sinxldx3

,3 = - sinx2dxr + cosx2sín*Idx3

2

Class B and Class D

Types V and Types ,V :

--i

'1 "2

:-^
'2 "3

Ç = - ^ 2^93=-dl-xd

c1 I

2 -*03
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Types IV and rIV : Ctl.3=- attr=-1, C'23=- 
"'rr=L, 

C2Z3=- C23Z=-L'

EL

E2

E3

F

F

a3

E3= - âr*(x3-ax')èz+ (x2-axS)ô,

-o 2

=-| +
1

[t)

(*' - *2)àz - *tð3 û)

t=(*t-*')dxr+dx2

2 = - *3d*1 * dx3

3=-d.x1

h
lypes VIn and fVIh t C'23=- 

"'rr=1, 
C2l3 -- t'31=

(h<0)

,¡1 =

I c1 =- Cr = - (-h)

c'23=- c'32=- (-h)

3 31

(*'-r*2¡d*1*dx2

(*2-"*3¡d*t+dxg

I
,-1

1

2

2

ðz

â¡

23

1

(¡

u)
3=-dxl

lypes III = V1_1, f III fVI =L, C2 =- C2 =l
32 13 31

3 3l- = -L' C2 ^2= -(¡ =-l23 32

,t=(*3-*2)d*1 +dx2

,'=(*2-*3)d*t+dx3

o3=-dxr

-1
ana lnr : cI

C1

^t=- tJ

^7

El =â

Ez=ã
È=-e3

2

3

ârr (x3 - *2)ðz+ (x2 - *3)43

Types VII' and ,VII': "'r3
^1

32

CT ^1=-t 3113

EL= ðz

Çz - "3

E3 = - ðr* (x3 - ^*')ðr- 
(x2 +ax3)4,

c2 F2 =-rþ(h>o)
23 32

,t=(*'-ax2¡dxI*dx2

,r)2 = - (*' + "*3¡dxr 
* dx3

o3=-dx1

=lrC2
t-

= - tír,
t3

^2 -l ¡t
31
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APPENDIX B

TETRAD FORM OF EINSTEIN'S FIELD EQUATIONS

I,Ie consÍder here Einsteinrs fíeld equatlong written out ín

the orthonormal frame fntroduced in chapter 3. The vlrtue of the

orÈhonormal tetrad approach is that the field equatlons are differenÈial

equatlons of only first order fn the varlables YaO" (or I"O.) ' The

drawback is that, as comPared wíth calculating frorn the coordinate form

of the metric, we have more variables and more equatlons, since ln

addiÈion to the field equations Iùe must saÈisfy Ëhe Jacobi identities'

In the tetrad frame we have, usíng the Ricci identitÍes

etrlu.-t"lcb=-Rt"b.t

and upon choosíng % as the basis vector e"r the result

Rf
f rf rg +rf

bcd = âdr cb '."u0 cg db gb dc

(B.i)

(B. 2)

¿gr Yg-rfc

and upon contraction one obtains

\¿

cb

s
+

CS db cb sdãdf""b ðrc fc fs fcf
c db

TowriteouÈtheconformalcomponent"\uwenowsubst'ituteequatíons

(3.5.13) inÈo (8.2) making use of the set of equations (3'5'16)' One

obtaíns equations (s.3) :-



R

139

e-2o
lR -3â2o-0ðo*ð ðco + 3tì0a o

oo o o (I (}oo

+ 2â oã0o - 2aoâ0ol
ct

"-2o[Roo 
- 2ðoâoo +þooe * 2ãooâooR

oo
R aß

ocl

,ôaßolo-2eI2o a
ß

d ß crBô

ilu = "-2otnäo - 2ðuâoo - ecrßônôYäuo - 2èuoao

* 2âooàßo * 2"uô 
lotvp¡ 

aôo

i.o = "-2o[R* - 5âoãoo - 4ãooâoo + loâooaoJ (8. 3)

where i.o i" rhe rrace ot i.o', iäU is the trace-free part of Raß and R"o

correspond to the non-conformal components and are given by equations

(8.4):-

* þ"g(2ðoâ0o - 2ðYoàuo + 2auâvo)J

cr 'cl+tìn

- 3oßo"U + ,.o'rß

ßô, ß

oßô' \"

=-4ao+aJ cr,

eoß+zuz+a ft
0,

z'ìß)

e

+e

0 2a
.0
tt

cl,CI

R ßoßo 
- au("ßoorô)

o0,

ôp* toßôt ß
u
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* * åroeruiu - iois * þou;u;us)

- ;1o"u) * tu(oru)uuio * 0ooß t'ou(o'ß)oun

n
u

â au + ,r2 - 2r,uv
u

nR
oß

âoo a
ooÊ

"ôv 1o ß)
- 2"uô (oouÊ) "aôrru

6

ô*'2n (ooo) ô - otoß

* þoe("u
.u
n'

u

a
. .cln -nnCI(l

+ ð qo"ß)* ,n (orß)

2r¡ fll -

R.ab

(pcosh2o +psinh2o)r"ot + (p +å(o *p)sinh2o)hab

)
V

R*=àoo- + 2å a0 - 4o f¿0 + 4â-ao' ---ct- c[ d

T
'Ãg^b

where Tab = (p + p)ua.b + PB"¡ is the perfect-fluld energy-momenEum

tensor. Substituting Ín u" = cosh0n" * sinh0k.' the stress tensor

takes the form

- ooßroß + 4.,-2 - 6aoad

The field equations can be wrltten in the form

+ 2(p t p)sinhocoshok("\) + (p + p)sinh2o(krq - þ*

ab

(8.4)

(8. s)

)

(8.6)

T
ab

when decomposed with respecË to the vectot tt" [35]. Hence, from (B'5)

we obtain the comPonents
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-p)

= hp(L * 2stnh2e) + å{r + }r*r'zo¡

(p + p)sinh0cosh0koR
oct

R
*=
sß

(p + p)sinh2e(kdkß - þre)

(8. 7)

(B.8)

R* * 3þ + p)slnh2ol= lrr,

Equatíng equations (B.4) and (8.7) one norü obËains the field equations.

NotÍce however that one can substitute the Roo component ínÈo the R*

equation, eliminating ã00 and obtaíning

þ" - ,¿o' + 4r' - 2urolìo*2ãoad - 3aoao +'4?€rr2 - ,roßtou)

= pcosh2o + psinh20

Sírnilarly, one can wrile out the equations for the conformal

models, where the perfect fl-uid is now given by

Tab = (p +p)ua.b +pe"u

where from (3.4.10) one has

u =coshßn +sinhÊkl-aaa

Wríting p = e-2opt rra i = e-2opr we obÈaín the equations (8.9):-



ioo = e-zolup'(1 + 2sinh2e) +þ'(1 +$rr*,'o)J

r42

-2a

= cosh2ßpt * ptsính2g

R _-E
oct

(I CT

-2âdâo-âcoâ o+4aàdo
CT 0 0

[ (p' + pr)sinhßcoshßkjl

iiu = "-'ol(p' * p')sính2ß(k'kå - þ'u)l

¡:t = 
"-2o tlto' - P' ) + (p ' i p') sinh2 ßl (8. e)

Equating equatÍons (8.9) and (8.3) now gives the desired fleld equatíons.

Also, as above, we substitute at. i.-- equation into atr. i.o equation Ëooo

gíve

+' - '¿o2 +'¿u2 - 2o ç¿0 + 2a 3aoaq +',áeilr2 - rroßoo')a
0

(8.10)

As menËioned at the beginning, r're musÈ also specify the Jacobi

ldentl-ties Ra-- = 0 which mav be written ín the form
Locd] = 0 which maY be written ín t

'[u,to"] 
¡ v"[¿bY c]" = o (n. rr¡

SubstfËuÈing ín equations (3.S.15) r¿e may write these in the form (8.L2)z-
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n
u

cIu

ou=O

n .ouu*i + 2ooduv

- 2rouv,uvCI 2oo
u

)+(;ct
tr)

ct(¡a
CI

+0

2a
ctct

2à0"o - tutuo + aoo + eouvau(Qu + t^ru) + o;cr

u

ou+rxoua" -2out¡dclv ct

(2^v - åu) (nu + urv¡ = g

2nu cl 2rÞdvt¡ fì = o

( -n )2a
uc[ u cruv

ân
d

a

+ 2urvau + tïvnu)

ov

+

+0 (cr.ß) ôv; =0

o,

* ;(.1r8)

,oroß + a(o1nß) + rß)) - rrrv(cr.ß)uo(aô + rô)

ôu (oru, ß) 
o

+f¿ß) znu('gß)v + rroße - ôoß(àuo + zovriu))

-e

a= (0,0,a)

(r. rz¡

(8.13)

v ô

similarly, usíng equation (3.5.12) one can show that the Jacobi

idenÈities ln the conformal case are identical to Èhe above expressíons.

To write out these equations in detail, one usually specifies

the triad of basis vectors {eU} further. One way of doing this is to

fit the triad {eu} to Èhe tensor rroß and the vector ao such thaÈ

roß = diag(nr,n2,n3)
CT

I{riting out the ffel-d equations (8.7) and (8.8) and Jacobi identitÍes

(8.12) for homogeneous models where å^ = ,^. = 0 and all quantíties are
GCt

functions of time alone we have equations (n.f+¡ t34].
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a(CI + o
2 13

a(CII+orr) =0

âOa*Ora=0

)=0

âoo1 * @z+ 0r-or)n,

(nt nr)n, - (nt + nr) oL2 = o

(ng rt)02 - (nt + nr)o13 = 0

ðOo2 f (0r + 0r- 0r)n2 =Q

(¡z nr)Q, - (oz + nr)oz3 = 0

àOr3*(er+0r-er)n,

=Q

:0

aoo +,r_' *,r" * rr' * 2orl + zorl + zorl,

+ 4G t 2sính2o)p + lrt * tsron2e¡P = I

3aor, * o23(o, - t¡) = (p * p)slnhOcoshOkt

3^oZ3t o23(n, - nt) = (p + p)sinhOcosh0k,

a(20, - el - 02) + otz(ot - oz) = (p r p)sinhOcosh0k,
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â0o12 = - UoL, * o1301_ - oZ3AZ.t (02

* (nZ - rt)a + (p * p)stnh2oklk2

â0o13 = - 0o13 * o2303 - o1201 .. (ef - O3)CI2

+ (p + p)stnh2Okrk,

àOoZ3= - 0oZ3* oLZflZ - o13CI3 * (01 oz)

er) CI¡

ot

âo ot

+ (p + p)stnh2ekrk,

= - 001 + 2a2 - br' +4(:r.2 - og)2 + Zorrn,

- 2orril, +'¿(p - p) + (p + p)sinh20kr2

= - 002 + 2a2 - br' + r¿(nt - r¡) 2 + zorrn,a 0
0 2

- 2orrf,, + 4b - p) + (p + p)sinh2ekrz

0 3
= - 003 + 2a2 - br' a \(ît - nZ)2 + Zorrn,a U

- 2o.3nt + r.r(p - p) + (p + p)sinh2ekr2

e1o2 + e1e3 + 0203 = ot|. * ofå * oZï * 3a2 + psinh20

¡'ø(nt + r^z'* tr3' - 2nLîz - 2nrn, - 2nrnr) + pcosh20
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APPENDIX C

SOLUTION OF COORDINATE EQUATIONS (1.3.I)

[,le outll-ne here the solution of the coordinaËe equatlons

(4.3.1). I,Ie consider only Bianchl Eypes II - VII where
I

o = o(*t) = - | p(*t)¿*l. The slnpler type I models follow the sane
)

procedure. These calcul-at.ions provide a useful check on some of the

results of $4.4.

For non-tilted homogeneous models we have

A^Au=Ò
o

^otA=-oA (c.1)

(c.3)

slnce from (3.3.5), iA = fuA + vA wher" Åo = 0, then

o l_
= | ancl u =v t_ (c. 2)v

SubsËiËuting conditions (C.1) and (C.2) ínto equations (4.3.1) we have

the followíng syst,em of equations:

i) (oo) component

{ô + i¡ "4o^,

o u0

^2o-pe A3-p=-g (2VOVuo + AAoABo)

V.ool_

ií) (of) components

(p + P)e
4o

Àv
l_

2V (c.4)



11i) (iJ) components
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o

(c.s)

Putting o = 0 gíves the trivial solutlor, i = p, i = p and tr = 1, t, = 0'

Frorn (C.4) we can see that the conforrnal models will ln general be

tl-lted i.e. v. # O.
a

Use Èhe metric form (4.2.3) and calculating the ChrísËoffel

symbols, it can be shown that

<ô * nl.ao.rrtj + (;.2o - p)sij

BÆvovro--ygg âF+2rv* -lF

sÆãooãro = y33-1F'

SubstÍtuting rhese results into the equations (C.3) - (C.5) yíelds

(p + ;)e4or2
2 -P=-Yg¡ -1r(4t+F)+2y -1

= - 2viv.o * 2â.oãjo + Brjl2vovro + aooâro]eÆ

and
- -1tå, = lerrr-tvrrol

pe 33
aF (c.6)

(c. 7)4o trtí = Y33
I
l-33

F
1

Y(p + p)e ô

(; + P)e
4o + (p'"2o - ,) srjv.v.aJ

= (2aF * zr'loiôl - 2rl.F * srjY¡¡ 1r(4t + F) - zvrr-lar (c. a)
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Fron (c.6) we have v, = t3 = 0 and from the (2 3) component

of equatLon sf (C.8) we flnd

,Tg= Ooylls *1229=O

i"'o = p * v¡g 1(2rF - âF + F2) (c.10)

Thfs consÈraínt puts restrlctions upon the allowed Bianchi tyPes. From

Table 3 we flnd that only tyPes V and VII are admlÈted'

To solve equations (C.8) further we calculate the Christoffel

svnbols I].. A series of calculations glve.LJ

^2o ^ -r(rrF+Fz)pe =p-JY33

ri: =v33-lcrrt-tuio;

(c. e)

(c. e)

(c. 11)

solving equatÍons (c.6) - (c.8) now gíves the solutÍons

Y¡¡ 33
- l-'

Y F
tl = 4o(p + p)e À

and we have the constraínt

lp + p - 2yt3 Fl[2rF + 2F2 + 2AF] = (v¡g-1i33)tF'

Equatlons (C.9), (C.1-0) and (C.11) correspond to the equatíons (4'5a)'

(4.5b) and (4.7a) respectively of 54.4.
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APPENDIX D

TRANSFORMATION PROPERTI ES

In the coordinate frame, for Bianchl Types II - VII Ì{e have

p (xl) dxr . Hence

t
d o=-Fô

l-1

and where aF = dF/dxr

Now consider transforming Ëo the tetrad frame where the spatíal part of

the metric is written in Ëhe form

ã.â.o = -aF ôlô1
Jl ].J

ds2 gouro. rß . d*id*j

where g = díag(l,1,1). From equation (2.2.I) and Appendíx À we have
crß

_r4 -r2 _r4

aß= Boßt' =

"2
2

"1
1t3

'11 '22

CT

ß

A covariant vector transforms according to

v
ct

'33
(c.1)

"3'= vrr-b{"*'*pxz¡-1 = yg{%(p*3 + q*2)-1t3t

ô(¡ .e^
Lþ

1ct
where

i ve
0,

Thus, in the tetrad frame we will have

t
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âoo = "oia.o = - "oiFôi = - t.å

and
1

âßuo
t-o=e a

ß
( rej) = - "ß'taroler + rarejl

tefelar + r"u'ar.jl

SubsÈitutÍng Ín equations (C.f) we find

âoo = Y33
-%ro t

CI

(c.2a)

(c.2b)and

Ëhat

"1 = Yll

âßâoo = Y33

In Èhe Bianchi lype I case F = ¡'(x3) and it ís trívÍal to shor,r

ðoo = Y33
t--2ro 3

ðßâoo--y3g àFô3ôå

;uå
-1

d

âFô

To note how the relative vecÈor a transforms from the invaríanÈ

basis of Chapter 2 to the triad of orthonormal vectors, consíder the

following change ín the basÍs vecLors

l- -, l-l-l_ _,
-eF

"z ,22
t-

t t3 = Y33
l- l-

1 2 3

It then follows Èhat

6 14 -'4 -14^6
Y oß = Yô -Yo -Yß -c 

oß
(no surn)
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opHence, since a r"¿y and a
CX aß L ij = - rô? we have

L

-Lô 

"

'<cJ

"o=-Y33 CI
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l2l
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tsl
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t7l
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tel
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112l
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114l

lrsl

[16]
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